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Abstract 

 

Space missions have evolved considerably in the last fifty years in both 

complexity and ambition.  In order to enable this continued improvement in the 

scientific and commercial return of space missions new control systems are 

needed that can manage complex combinations of state of the art hardware with 

a minimum of human interaction. 

Distributed multi-agent systems are one approach to controlling complex multi-

satellite space missions.  A distributed system is not enough on its own however,  

the spacecraft must be able to carry out complex tasks such as planning, 

negotiation and close proximity formation flying autonomously.  It is the 

coupling of distributed control with autonomy that is the focus of this thesis. 

Three contributions to the state of the art are described herein.  They all 

involve the innovative use of multi-agent systems in space missions.  The first is 

the development of a multi-agent architecture, HASA, specifically for space 

missions.  The second is to use embedded agents to autonomously control an 

interferometric type space telescope. The third is based on software agents that 

coordinate multiple Earth observation missions coupled with a global 

optimisation technique for data extraction. 

The HASA architecture was developed in reaction to the over generality of most 

multi-agent architectures in the computer science and robotics literature and 

the ad-hoc, case-by-case approach, to multi-agent architectures when 

developed and deployed for space missions.  The HASA architecture has a 

recursive nature which allows for the multi-agent system to be completely 

described throughout its development process as the design evolves and more 

sub-systems are implemented.  It also inherits a focus on the robust generation 

of a product and safe operation from architectures in use in the manufacturing 

industry. 

A multi-agent system was designed using the HASA architecture for an 

interferometric space telescope type mission.  This type of mission puts high 



requirements on formation flying and cooperation between agents.  The 

formation flying agents were then implemented using a Java framework and 

tested on a multi-platform distributed simulation suite developed especially for 

this thesis. Three different control methods were incorporated into the agents 

and the multi-agent system was shown to be able to acquire and change 

formation and avoid collisions autonomously. 

A second multi-agent system was designed for the GMES mission in collaboration 

with GMV, the industrial partner in this project. This basic MAS design was 

transferred to the HASA architecture. A novel image selection algorithm was 

developed to work alongside the GMES multi-agent system.  This algorithm uses 

global optimisation techniques to suggest image parameters to users based on 

the output of the multi-agent system. 
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1  Chapter 1 

Chapter 1 Introduction 
 

The aim of this doctoral dissertation is to answer the question “can multi-agent 

control enable more autonomous space missions?” 

 

This research is motivated by the fact that large strides have been undertaken in 

the field of autonomous artificial intelligence and robotics in recent years.  The 

possibility of utilising these technologies in the space domain offers the 

possibility to extend and enhance the abilities of currently planned missions and 

to enable previously impractical missions. 

 

The objectives of this dissertation  are to give an overview of the current state 

of the art in autonomous agent based control and how it may be applied to 

space missions.  Three contributions to the state of the art are described herein.   

 

The first is the development of a multi-agent architecture for space missions. 

Both involve the innovative use of multi-agent systems in space missions.  The 

second is to use embedded agents to autonomously control an interferometric 

type space telescope. The third is based on software agents that coordinate 

multiple Earth observation missions coupled with a global optimisation 

techniques for data extraction.  

 

1.1 Why Autonomy? 

 

There are two key drivers towards more autonomous space missions, 

performance and cost [1].  Primarily this is due to the autonomous mission’s 

ability to remove the need for human direction and through the reduction or 

removal of communication with the ground and its inherent delays, especially 

for deep space missions.  The ability of a properly designed autonomous control 

system to improve performance and lower cost for certain missions has led to 

the launch of number of missions exploring autonomous control as found in [2–6]. 
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1.2 What is an Agent? 

1.2.1   What is an intelligent agent? 

Agency as a model was developed to try to encapsulate the way we as humans 

think.  This leads us to ask a number of questions, such as: 

 

What makes something an agent? 

What makes something intelligent? 

 

At its simplest an agent can be defined as a combination of perception, 

reasoning and action or more generally as an entity with human like attributes 

such as decision making and reasoning. [7] 

 

Perception is the agent’s view of its environment. The mode of perception and 

the environment in which the agent operates are all extremely variable. 

Perception can be data from sensors, a simulation or from external data sources. 

An agent must also be able to perceive its environment and any changes that 

occur through its actions. 

 

Reasoning is where any "intelligence" of the agent is found. An agent may reason 

about its past, current or future actions, the actions of others or any past 

current or future changes to its environment. 

 

In order to have agency the agent must be able to act. This can be easily seen 

using the example of an embodied agent, i.e. a human or a robot with agent 

based intelligence. The agent is able to move or manipulate objects within its 

environment and change its position in the environment. Agents can exist 

entirely in software (an informational agent) where their actions are moving bits 

rather than moving atoms. Agents can also straddle the physical and purely 

informational domains and provide intelligent links between previously 

unconnected actors or services. It should also be noted that in multi-agent 

systems human agents may play a large role (although they don’t have to) and 

can be adequately described by the theory. 
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The inputs of the agent, its perceptions, can take the form of prior knowledge, 

past experiences, goals/values and current observations. These inputs are fed 

into the reasoning engine and the result is a set of actions undertaken by the 

agent. 

 

It is tempting to group prior knowledge and past experience together as they can 

be thought of in the human domain as one and the same thing. In the more 

abstract domain of agents though there is a clear delineation. The agent’s 

knowledge, defined by an ontology, encapsulates all the data and algorithms it 

needs to function, whereas the past experiences are a set of past perceptions 

about specific scenarios linked with the agent’s observations about what those 

scenarios led to. 

 

The goals and values determine what the agent will aim to achieve and what its 

priorities are.  These can be encoded in many different ways and must be chosen 

to make the agent carry out its desired role, that is they must be designed to 

encode the specific goals and values of the agent but allow for these to change. 

 

The current observations made by the agent are its observations of its 

environment. The environment that an agent operates in and how the agent and 

environment interact are as important as the agent design in terms of creating a 

successful system. The environment contains the agent itself and multiple 

artefacts that must be observed or interacted with. The environment can also 

include other agents which may be treated differently by the agent to how it 

would treat simple artefacts. It is this specialised interaction that allows for the 

development of multi-agent systems with another layer of control, namely 

control over the agent’s actions by utilising their societal interactions. This 

society must also be designed and tuned like all of the other aspects of an agent 

architecture to try and ensure the successful completion of the agents tasks. 

 

The high number of different domains and design choices that can be performed 

make a comprehensive formal description of an agent difficult without 

generalising too greatly. A good starting point is the definition by Franklin and 

Graesser [8] which states that: 
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"An autonomous agent is a system situated within and a part of an environment 

that senses that environment and acts on it, over time, in pursuit of its own 

agenda so as to effect what it senses in the future" 

 

From this general but comprehensive definition of an autonomous agent four key 

aspects of an autonomous agent can be described. 

 

• Reactive: the agent can respond to changes or stimuli from its 

environment, itself or other agents.   

• Autonomous: the agent has control over its own actions.   

• Goal oriented: the agent acts purposefully to execute its goals 

• Temporally continuous: the agent is a continually running process in 

whichever environment it is present. 

 

Another definition by Wooldridge and Jennings [9] splits the definition into two 

parts, that of a weak and a strong notion of what constitutes an agent. 

 

The idea of a weak agent in this case requires that the agent be: 

 

• Autonomous, that is it can operate without external control and has 

control over its internal states. 

• Social, it must be able to interact if necessary with other agents, other 

systems or humans. 

• Reactive, the agent can perceive other agents and its environment and 

respond in a timely fashion to any stimuli. 

• Pro-active, the agent can not only react to the environment but must 

exhibit goal directed behaviour. 

 

The stronger notion introduces concepts like knowledge, belief and intention. 

These higher level concepts that are more commonly associated with describing 

human decision making processes can be used to describe certain classes of 

agents. Attaching these human like attributes to agents can be of benefit when 

trying to mimic human style intelligence. In the control engineering and robotics 

fields these higher level constructs may lead to more complex designs of the 

agent. 
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More usefully for our purposes are some other concepts introduced in the notion 

of a strong agent. These include mobility which means the given agent can move 

within a given organisational structure or network, this is however not to be 

confused with physical mobility. This ability introduces many new possibilities 

when it comes to designing an autonomous distributed multi-agent system. 

Other concepts such as agent veracity (how accurately an agent’s 

communications reflect the truth) and benevolence (if an agent acts for the 

other agents benefit) are important but in in this work these are assumed. 

 

As the number of definitions of exactly what an agent is has increased there has 

been a concerted effort to try and develop a more formal definition based on 

mathematics and formal logic. When defining agents in these terms we can draw 

upon a wide range of the work on logic and the nature of decision making in 

domains such as philosophy. [10] 

 

Drawing on this work Woodridge and Jennings chose to represent an agent as an 

intentional system. An intentional system is described as "an entity whose 

behaviour can be predicted by the methods of assigning belief, desires and 

rational acumen" [11]. Again this provides another way to describe more 

complex agents and multi-agent systems but does not provide specifics for how 

to design an agent in any given domain.  

 

The main idea to be taken from all the myriad possible ways of describing an 

agent is that at a high level many of the concepts may seem nebulous but 

importantly all these aspects of an agent’s structure are linked regardless of 

what we chose to call the structures. The fact that we can define and group 

structures within an agent system allows us to tune the agent to a specific job. 

For example an agent that operates as part of a large population will have to 

have its architecture focused on communication and the ancillary functions 

required for successful communication such as negotiation and error checking. If 

an agent however works primarily alone and is required to perform complex 

reasoning tasks then describing it in terms of beliefs and desires makes more 

sense as it allows us to succinctly describe its key features. When designing a 

domain specific agent architecture the correct combination of architectural 



     
6  Chapter 1 

structures which best describe the agent and its task without over complication 

must be chosen. 

 

The concept of an agent has evolved over the last decades into an important 

tool in artificial intelligence and in computer science as a whole. The key reason 

for this is its flexibility and novel approach for designing software systems. 

 

Brenner [12] stated that an intelligent agent can be characterised using the 

following properties.  

  

Internal Properties - Characteristics that determine how it acts: 

• Autonomy  

• Learning 

• Productivity 

• Goal-Orientedness 

• Reactivity 

• Mobility 

 

The idea of autonomy is a key difference between an intelligent agent and a 

program.  The level of autonomy however, will vary greatly, depending on the 

application and how agents differ themselves within a multi-agent framework. 

The other internal characteristics are self-explanatory but learning can more 

usefully be expanded to include both learning and reasoning. 

 

External Properties - characteristics that determine how it interacts with other 

agents are: 

• Communication 

• Cooperation 

• Coordination 

 

The real challenge in developing multi-agent systems for deployment in real 

world applications is taking the theoretical description of the agent and 

implementing it. Agent architectures are designed to bridge this gap and 

construct working systems that satisfy the relevant area of agent theory. The 

agent architecture has to deal with lower level concepts than the initial theory 
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may gloss over. An agent architecture must describe the internal structure of 

the agent and how information enters, leaves and is processed in the agent as 

well as determining the state of the agent at any given time. An agent 

architecture has been defined by Maes [13] as: 

 

"A particular methodology for building agents, it specifies how the agent can be 

decomposed into the construction of a set of component modules and how these 

modules should be made to interact. An architecture encompasses techniques 

and algorithms that support this methodology" 

 

Unsurprisingly there are as many agent architectures as there are theories 

describing agents ranging from the highly abstract and general to domain 

specific examples. These intelligent agent architectures can be broadly grouped 

into three categories that will be expanded on in Chapter 2.  

 

1.3  Chapter Summary 

 

In this chapter the concept of an agent was explored.  The idea of the agent 

operating on both internal and external problems was explored.  The basic types 

of agent architectures were outlined in order to give a framework from which 

the novel agent architecture is developed in the later chapters.  The distribution 

of key properties of an agent (intelligence, knowledge, decision making and 

communication were also discussed, 

 

This chapter acts as a broad introduction and acts as the foundation for the 

discussion of the aspects of multi-agent systems to spacecraft in the following 

chapter. 

 

1.3.1   Structure of Thesis 

 

Chapter 1 outlines the fundamental concepts of autonomous agents. 
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Chapter 2 discusses agent architectures and agent system architectures, that is, 

how agents can interact as part of a multi-agent system. 

 

In chapter 3 current architectures are discussed and the concept of holonic 

recursive agents is discussed and finally the HASA (Holonic Agent Space 

Architecture) is proposed. 

 

Chapter 4 describes the DARWIN mission and a HASA based multi-agent system 

(MAS) is developed for this mission.  His chapter also details the multi-agent 

testing suite developed as part of this thesis and closes with the results of 

running a number of simulation on the DARWIN MAS using the multi-agent testing 

site. 

 

Chapter 5 covers the GMES (Global Monitoring for Environment and Security) 

mission and the development of a HASA based multi-agent system to control it.  

The GMES mission itself is discussed in detail and the MAS outlined then further 

defined using the HASA architecture. 

 

 

1.4  Contribution of thesis 

 

This thesis makes a number of contributions to the field.  The primary 

contribution is the development of a multi-agent architecture based on an 

extension of holonic and recursive agent architectures.  This architecture is then 

utilised to design the autonomous multi-agent control systems for two missions, 

each with particular requirements from the architecture.  In the development of 

the MAS for these missions the architecture is shown to be suitable for describing 

these systems. 

 

1.5  Industrial Collaboration 

 

The first period of this PhD research was undertaken in collaboration with GMV 

on the distributed agents for autonomy (DAFA) project funded by the European 
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Space Agency.  This resulted in the co-authorship of two technical documents, 

[14,15]. The first technical document was tasked with giving the rationale for 

the development of multi-agent systems to space missions as well as creating a 

shortlist of possible missions that could benefit.  The second technical document 

made the case for each mission on the shortlist to be taken forward in the DAFA 

project and a simple generic architecture was developed to be used as the 

project went progressed. 

 

This simple architecture was used to develop a demonstrator for the GMES MAS 

and is described in [16–18]. In this thesis a new architecture was developed for 

space missions in general. A MAS was developed for the DARWIN mission based 

on this architecture.  The basic GMES MAS as converted to this architecture and 

the Image selection algorithm for GMES was designed to work on top of the GMV 

developed MAS. 

 

1.6 Research Outputs 

 

1.6.1 European Space Agency General Studies Programme 06B34: 

“Distributed agents for autonomy” 

 

• Technical Note 1 – Identification of Mission Scenarios 

• Technical Note 2 – Identification of Distributed Agents Architecture and 

Selection of Reference Mission Scenario 

 

1.6.2 Conference Papers 

 

• Analysis and design of wsb transfers for the European student moon 

orbiter mission – D. Novak, W. van der Weg, G. Laguardia, S. Grey, T. 

Yang, M. Mercier.– 59th International Astronautical Congress, 2008 – 

Glasgow, UK. 

 



     
10  Chapter 1 

• Design of a Multi-Agent System for Cost Reduction in Multi-Craft Space 

Missions – S. Grey, G. Radice, M. Vasile, Q. Wijnands – 60th  International 

Astronautical Congress, 2009 – Daejeon, Republic of Korea. 

 

• Image Selection Algorithm for GMES Mission – S. Grey, G. Radice, M. 

Vasile, Q. Wijnands – 60th International Astronautical Congress, 2009 – 

Daejeon, Republic of Korea. 

 

• Design and testing of an autonomous multi-agent based spacecraft 

controller - S. Grey, G. Radice, M. Vasile – 61st International Astronautical 

Congress, 2010 – Prague, Czech Republic. 

 

1.6.3 Journal paper in review 

 

• Global Optimization Techniques in Multi-Agent Image Analysis - Journal of 

Applied Earth Observation and Geoinformation.
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Chapter 2 Background 
 

2.1 Agent Architecture 

 

2.1.1   Deliberative architectures 

 

The deliberative (logic based) architecture for creating agents is a classical 

approach to building a knowledge based intelligent system [19]. The deliberative 

architecture must contain a symbolic model of its environment and be able to 

reason based on logical concepts about its environment [20]. This reasoning can 

take the form of logical reasoning, symbolic manipulation or pattern matching or 

any combination depending on the architecture involved. This approach, at its 

simplest, creates a symbolic representation of the environment and reasons 

about it by syntactically, manipulating this model so that it can be thought of as 

a logical deduction. If logical theory is adhered to the whole process can be 

reduced to a case of logical proof. This offers many advantages when verifying 

an agent system which for many multi-agent systems is a key stumbling block to 

implementation. The downside of this approach is that as the environment and 

the agents representation of it increases in complexity then the logical 

deduction becomes more protracted and with dynamic environments the logical 

deduction can become impossible. The fact that a purely deliberative agent does 

not perform well in a dynamic environment as well as the fact that although a 

logical deduction can be made a useful result cannot be guaranteed within a 

certain timeframe limits the effectiveness of these architectures.  The 

computational complexity involved with logical theorem proving for any non-

trivial case within an acceptable time window means it is unlikely if it can be 

utilised effectively in practice. 

 

The decision making process in deliberative agents is based on the assumption of 

calculative rationality [21, 22], that is, the assumption that the environment will 

not change significantly when a decision is being made and that the resultant 

action is still rational when the decision making concludes.  
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The deliberative architecture creates agents that can reason about their 

environment and their goals and then create definite plans to achieve these 

goals. The deliberation takes two forms.  They deliberate about ends, that is, 

whether to attempt a goal, and means, that is how to achieve a given goal. 

 

Structurally deliberative agents are not constructed as a monolithic whole but 

instead usually created from a set of components which may include elements 

such as planners, executors and knowledge bases. 

 

In order for deliberation to take place there must be representations of both the 

world the agent operates in and representations of the actions it may take. This 

collection of actions and the world model is manipulated as a whole. This 

approach requires the ability to represent actions and derive the results of any 

given action using the model without actually performing them. The results of 

any deliberation in the agent are a set of actions that will conclude in the 

desired result. 

 

One of the most common approaches to achieving a deliberative agent is to 

equip the agent with a reasoning engine, that is, the ability to reason. At its 

most basic that gives the agent the ability to make plans based on its knowledge 

to achieve its goals. The intention of an agent is expressed by the creation of a 

plan. If no plan is created then there is no intention of achieving the goal. 

Agents constructed in this way are described using the BDI (Belief, Desire, 

Intention) type architectures. In BDI agents we make the assumption that the 

entire context in which the agent operates and its environment can be modelled 

using mental attitudes which contain beliefs, goals, capabilities and rules. [23] 

 

As previously mentioned however these mental attitudes will quickly become 

inaccurate in a dynamic environment and the environment may change to a 

point where they are invalid. 

 

The beliefs component of a BDI agent may come from a number of different 

sources. For example the agent’s beliefs can be influenced by input from a user, 

the actions of other agents (cooperative or uncooperative interactions) or 
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feedback from its environment. Beliefs work by constraining the possible actions 

an agent may perform from the complete list of all possible actions. The newly 

constrained list of actions includes all of the actions that the agent may 

perform, with an associated possibility of success within a given time frame. 

This is important in the successful operation of the agent because it greatly 

reduces the possibilities for action and thus reduces the size and scope of the 

plans being generated which leads to quicker response by the agent. This in turn 

means that there is less chance of the environment changing in the meantime 

and thus invalidating the plan. This approach also ensures that any plans 

generated are relevant to its current situation and priorities [24]. 

 

The fact that beliefs can be thought of as both static and transient can introduce 

problems.  Transient beliefs are defined as being largely dependent on the 

current state of the environment and thus are highly susceptible to change. In 

order to keep beliefs relevant transient beliefs must be re-evaluated at regular 

intervals. This interval depends on the change that makes the belief irrelevant. 

If beliefs are no longer valid then all of the plans and goals that are dependent 

on these beliefs must be reconsidered by the agent [25]. 

 

An agent’s desires can be thought of as its goals, the new environmental state 

the agent desires to bring about or the future goals and tasks it wishes to 

undertake. In many cases the goals of an agent are supplied by a user. In the 

case of an autonomous agent however it may be able to create its own goals. 

These goals are created based on its current information about its environment, 

its internal states and the states of the other agents in the multi-agent system. 

An agent may of course have multiple desires and as with its beliefs, the desires 

will constrain the possible choices it may make. 

 

An intention of an agent in the BDI architecture is a desire which the agent is 

committed to achieving. The commitment to achieving the desire is shown by 

the generation of a plan to complete the desire. The question arises about when 

an agent should reconsider its intentions and thus its current plans. One 

approach is to recompute its intentions at every opportunity. If reconsideration 

of plans and reasoning in general is computationally cheap then this approach 
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makes sense but often reconfiguring plans after each action could make the 

agents response slower than the rate of change in the environment.[26] 

 

The rate at which the agent reconsiders its intentions, environment, internal 

state, plans and goals is a key variable used for tuning a given agent to a given 

environment and scenario. A balance must be struck between creating plans and 

checking their execution. It is desirable that an agent drops intentions that are 

no longer valid and should thus re-evaluate its intentions. An agent that spends a 

lot of time re-evaluating however will not be able to spend much time actually 

carrying out its designated tasks. This dilemma is the key problem in balancing 

the proactive and reactive behaviours in agents. This problem was studied by 

Kinny and Georgeff [27] and they found that if the rate of world change is small 

then bold agents that do not stop to reconsider their plans will be more 

successful but in an environment that changes more rapidly the cautious agents 

that re-evaluate their plans will be more successful. 

 

The key lesson is that different environments require very different decision 

making strategies. In purely static environments goal directed behaviour will 

produce a good result but in dynamic environments the need to modify 

intentions on the fly takes precedence.  When an agent realises that due to an 

environmental change or otherwise that a goal is unobtainable then it should no 

longer pursue that course of action. Ideally the factor that causes the goal to be 

unobtainable should however not be created by the agent. In order to stop this 

case happening there must be incentives in place to achieve its goals and 

mitigate against the effects of actions on their uncompleted goals. 

 

In summary the advantages of a deliberative architecture are that a correct and 

possibly optimal solution can be found using logical proofs as long as the problem 

can be successfully encoded. The disadvantages are that an accurate world 

model must be constructed (which is only possible in a well-known, or largely 

static environment) and that there is no guarantee of how long an action will 

take and thus it is hard to predict performance. 
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2.1.2   Reactive (Behavioural) Architectures 

 

Reactive type architectures were developed as a clear alternative to logic based 

deliberative architectures.  Reactive architectures forgo the logical 

representation of their environment and the idea of solving it through logical 

manipulation and proof finding. The "intelligence" of a reactive architecture 

comes from its extremely close link to its environment and that the desired 

behaviour emerges from the interaction between many simple behaviours and 

the environment. The reactive architecture is specifically designed to operate in 

a rapidly changing environment where a more deliberative architecture would 

struggle to perform adequately due to the time taken for deliberation and 

introspection. 

 

Reactive agents have very few beliefs compared to deliberative agents and in 

many cases have none at all. Reactive agents also do not have goals but instead 

have a set of behaviours that are triggered by events in the environment (which 

includes other agents). The subsumption architecture developed by Rodney 

Brooks [28] consists of a number of reactive behaviours or action functions that 

are modelled using finite state machines. This architecture was developed to try 

to avoid the problems generated by the need to represent the agents’ 

knowledge about its environment. In a reactive architecture there are no 

centralised functional models such as reasoning, learning, etc. such as those 

found in a deliberative architecture. Instead a given reactive agent consists of a 

distributed, decentralised set of competence modules (behaviours). These 

competence modules do all of the reasoning, learning, perception and 

representation required to achieve a specific behaviour. 

 

Competence modules are all connected directly to the actuator or sensors that 

they are associated with and all of them run in parallel. This distributed parallel 

structure helps reactive agents overcome some of the problems found with 

deliberative agents. The close coupling between the reactive agent and its 

sensors/actuators means that a sensor input directly triggers an action in the 

agent without the need to create or query a representation of the problem. 

Reactive agents also produce a guaranteed fixed response to any given input 
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which makes the system predictable and more robust. Due to the distributed 

nature of the agent architecture, multiple actions can be triggered by 

independent inputs in parallel (within the computational limits of the system). 

Multiple independent actions triggered by different perceptions can be combined 

into a single composite action. This approach however can introduce a number 

of problems, such as finding only local minima of problems and the introduction 

of cyclical behaviours. These problems can be mitigated against by introducing 

noise or other random inputs into the agents’ behaviour which pushes the 

behaviour away from the local minima and breaks any cyclical behaviour. 

 

With a distributed structure it is possible that multiple behaviours will be 

triggered by the same stimuli. Therefore the agent must have the ability to 

choose between a number of different behaviours if a conflict arises. Behaviours 

can be chosen based on how mission critical they are but other behaviours may 

just be mutually exclusive such as if they both require the use of a given 

actuator to perform different actions. Whether such blind response to stimuli 

shows intelligence is up for debate. This type of reactive response can be 

thought of analogous to reflexes and instincts in biological agents. 

 

Reactive behaviours are modelled as condition-action logical rules. That is if a 

condition or set of conditions is met then an action is carried out. In this type of 

behaviour the agent keeps no representation of its environment or actions. This 

type of behaviour can be extended so that rather than only looking for inputs to 

meet conditions the behaviour also checks some state internal to the agent. This 

check of an internal state allows the agent to utilise data about its environment 

from the past or from other agents. To detect and represent changes to the 

environment in such a way we need rules and behaviours that set and change 

this representation rather than carry out an action on the outside world. Given 

the addition of a relatively small number of these "internal behaviours" that 

affect the state of other behaviours, much more complex external behaviours 

can be achieved. This structure allows the agent to remember its environment 

and recover from failures in other behaviours. The obvious drawback is that the 

maintenance of a symbolic representation of the environment is computationally 

expensive as seen in the deliberative case. 
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To summarise, reactive architectures are designed to react quickly to changes in 

the environment. If purely reactive responses are required then there is no need 

for a symbolic representation of the environment. Simple representations of the 

environment can be used and coupled with behaviours that act on other 

behaviours rather than solely on the external environment allow reactive agents 

to carry out complex tasks. The key downside to purely reactive agents is that 

no alternative plans are formed so that there is no consideration of alternatives 

or redundant actions. 

 

In a behavioural architecture the solutions to any given problem must be coded 

in advance and all possible interactions between the interconnected behaviours 

of the system mapped. Reactive architectures tend to favour scenarios where 

the environment is observable (or at least partially) and dynamic. A reactive 

agent’s goals are usually time dependant and have differing levels of utility and 

cost. 

 

2.1.3   Hybrid (Layered) Architectures 

 

As described so far, deliberative and reactive agents are at opposite ends of the 

spectrum where type of environment, dynamism and reasoning ability are 

concerned. In situations where the mission is at one of these extremes then a 

purely deliberative or reactive architecture can be deployed and any 

shortcomings are not exposed. Hybrid architectures were developed in order to 

try to combine the reactive and deliberative components within one agent 

structure. This is achieved by separating the deliberative and reactive 

components into different layers that operate separately but communicate with 

each other [29]. This level of abstraction allows for more complex agent models 

to be created and is flexible enough to be used to model agents in many 

different domains. Each function of an agent is decomposed into one of many 

layers. Reactive behaviours are the same as those in the reactive architecture 

and are responsible for tasks where a fast and robust response is required and 

are all collected in a reactive layer. The deliberative behaviours as outlined in 

the deliberative architecture are collected in their own layer and are charged 

with organising the sequencing the behaviours of the reactive layer. In 
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deliberative and reactive architectures the main design issue is the design of the 

behaviours required to carry out any given mission. In a hybrid architecture the 

interaction between the layers must be designed and managed as well. 

 

A common approach is to insert a third layer between the reactive and 

deliberative layers called the planning layer which mediates between the low 

and high level functions. In this case we have three layers: the deliberative 

layer, the planning layer and the reactive layer. A perception subsystem takes 

the inputs from the agents’ environment and feeds the required data to each of 

the three layers. An action subsystem takes the actions from all of the layers 

and applies them to the environment. Other subsystems may be added 

depending on the usage scenario for the agent that act as checks and balances 

to this structure and aid in integration with other systems. 

 

The middle planning layer in this structure, or executive layer, has a number of 

tasks. In order for the agent to operate, the planning layer must be able to 

handle tasks such as task decomposition, task scheduling, task allocation, 

synchronisation, execution monitoring, exception handling and resource 

management. The planning layer takes high level plans or goals from the 

deliberative layer and decomposes them so that they may be interpreted and 

carried out by the correct reactive components as shown in Figure 2-1. 

 

  

 

Figure 2-1 Basic layered agent 
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Layers can be arranged either vertically or horizontally. In a vertically layered 

structure inputs and actuators are processed by at most one layer each. In a 

horizontal structure each layer is attached to the input and output of the agent 

as shown in Figure 2-2. 

 

  

 

Figure 2-2 Various layered agent structures 

 

In horizontal layering the behaviours of the agent take the input from the 

environment and create some sort of output, whether they are deliberative or 

reactive. In the vertically layered structure the inputs enter on a given layer and 

messages are passed to other layers. This allows for sophisticated structures to 
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be constructed. For instance orders can be sent from deliberative layers to 

reactive layers to carry out specific tasks or sensory information can be sent 

from reactive layers to deliberative layers to be analysed.  Examples of different 

layered agent configurations see Figure 2-2. 

 

The key advantage to horizontally layered hybrid architectures is their 

conceptual simplicity. To ensure that the behaviour of the agent is coherent a 

mediator function that monitors all of the layers and prevents any clashes or 

unwanted events must be implemented. This approach requires knowledge of 

each layers’ possible interactions with every other layer and as such the 

complexity of the mediator function increases exponentially with the number of 

layers. 

 

The problems associated with constructing an adequate mediator function are 

potentiality alleviated by using a vertical structure. Vertical architectures can 

be split into two broad types: single pass and double pass architectures (Figure 

2-3). In a single pass architecture, control flows sequentially from layer to layer 

until the final layer produces some sort of output. In the double pass 

architecture, information flows sequentially up from the bottom layer to the top 

layer where decisions about actions are made.  The actions to be performed are 

then passed down back to the bottom layer where the actions are actually 

carried out. In both the single and double pass approach the complexity of the 

interactions between the different layers is reduced but at the cost of higher 

chance of failure if one of the layers fails as message passing could be disrupted. 
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Figure 2-3 Failure within a layered agent 

 

2.1.4   Decentralised Layer Control 

 

In decentralised layer control all of the layers operate concurrently and 

independently acquiring inputs and outputting actions. In hierarchical control 

the layers operate sequentially with tasks coming from higher deliberative layers 

to the reactive layers. In concurrent control the layers operate concurrently but 

may influence the layers immediately adjacent to them (Figure 2-4) 

 

  

 

Figure 2-4 Different agent control strategies 

 

The use of both reactive and deliberative layers brings with it challenges when it 

comes to representing data and synchronising time-scales as a deliberative layer 
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may well have full representation of its environment but work on slow time-

scales and a reactive agent may well have no representation of its environment 

and work on extremely fast time-scales. Regardless they must interoperate 

effectively. 

 

2.1.5   Comparison of architecture types 

 

Of the three broad agent architecture classes outlined above hybrid 

architectures are the preferred choice for many applications. The natural 

decomposition of the agent into a number of different reactive and deliberative 

layers means that a wide range of agents can be designed to meet any reactive, 

deliberative or social needs required by the designer.  The trade-off required 

when using a hybrid architecture is that although they can provide a balanced 

solution to a specific design problem the semantic clarity of the purely 

deliberative and reactive architectures are lost. The use of deliberative layers 

also requires that complex models for the environment be made.  

 

In summary, deliberative architectures can utilise elegant logical semantics to 

encode the agent’s processes and its external environment. The use of logical 

semantics also allows any behaviour to be predicted as logical proofs can be 

found. On larger and more complex problems however logical reasoning takes up 

a lot of computational power and in particular the planning algorithms used by 

deliberative agents can be difficult to scale. The overall complexity of a 

deliberative agent can be larger than those of other types due to the reasoning 

and learning requirements and the need for a suitable environmental model. The 

environment that the agent operates in must be relatively static in order for the 

deliberative agent to be able to generate a useful environmental representation. 

 

Reactive architectures can have very simple structures which are easier to 

understand and this in turn makes them easier to implement. This structural 

simplicity also means that reactive agents are on the whole much cheaper 

computationally. The fact that a reactive agent does not have a full model of its 

external environment means that it must therefore act only on limited local 

information which could lead to inaccuracies. Also due to the lack of a complete 
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model of its surroundings and operating scenario its decision making will be on a 

relatively short term time-scale. The disadvantage of a reactive architecture is 

that there is very limited opportunity to implement any sort of reasoning or 

learning functionality other than that which arises from interactions between 

simplistic components. 

 

Layered architectures benefit from conceptual simplicity, in part because the 

functionality of the agent is decomposed into multiple specialist layers which 

can be developed independently. The use of both deliberative and reactive 

components means that the hybrid agent still needs an accurate model of its 

environment. The use of many heterogeneous components adds complexity to 

the design and depending on the type of layer structure chosen there may be 

little scope for recovering from one layer’s loss. 

 

2.2   Distributed Agent Architectures 

 

Previously we touched on the idea of multi-agent systems and that the 

interactions between agents can be a highly important aspect of a system’s 

ability to operate effectively.  We define a multi-agent system as a collection of 

agents operating in the same environment for some group outcome. Cooperation 

is not necessarily required and many problems are better served with a multi-

agent system comprised of competing agents, particularly for problems involving 

finite resources, interaction with humans or where buying and selling in a 

marketplace is necessary.  Agents operate as a collective whole to perform tasks 

that are outwith the ability of a single agent to perform. A task may be outwith 

the ability of single agent due to speed constraints or lack of complete 

knowledge of its environment. A multi-agent system must be specifically tailored 

to its domain; this is especially true in that multi-agent systems developed to 

solve single problems are very different from those developed to solve multiple 

problems. Single problem multi-agent systems tend to involve a significantly 

large data set and the multi-agent system carries out many complex analyses on 

that data set. Multiple problem domains, of which autonomous spacecraft 

control is one, are characterised by less need of analytical capacity but a more 

complex structure, hierarchy and grouping of agents. The groups within the 
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multi-agent system and any layers within the agents can be treated like self-

contained problem solving units and a key problem is effectively sharing 

information about the environment and solutions to problems between these 

logical units. 

 

The key point to make is that groups of agents, agents and the components of 

agents can often be treated in a very similar way. This leads to a so called 

recursive agent structure [30] as shown in Figure 2-5. 

 

In this structure the same terminology is used to describe all of these groups and 

it can be helpful to treat the sub-layers of an agent as agents themselves 

depending on what they are designed to do and treating groups of agents as a 

single autonomous unit can help to greatly simplify the description of complex 

multi-agent systems. Obviously the terminology to describe a recursive multi-

agent architecture must be developed in order to clarify the structure rather 

than obfuscate it and this is by no means a trivial task. 

 

  

 

Figure 2-5 Recursive agent structure 

 

There are of course other ways to group and describe agents within a multi-

agent system and this means that a multi-agent system is inherently more 
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complex that a single agent. A number of key questions must be addressed when 

developing a coherent and useful multi-agent system.  The level of cooperation 

and why the agents need to cooperate must be addressed. Often this is due to 

insufficient computational resources or insufficient problem solving capabilities 

on a single agent. How the agents cooperate or compete must also be decided. 

This means making design decisions on how agents communicate, how 

specialised each agent is, how resources and tasks are shared, how actions are 

coordinated and synchronised and how any conflicts or clashes are resolved. In 

any MAS communication is a key factor and how messages are constructed and 

checked by agents must be resolved. The organisational structure of the agents 

must also be designed and this factor alone can have a wide reaching impact on 

the performance of the individual agents and the multi-agent system as whole. 

 

Organisational relationships describe the different relationships that occur 

between agents and different classes of agents. If an agent has another agent as 

an acquaintance then that means that the Agent A has a representation of the 

other agent, Agent B. This representation or knowledge of the agent could just 

be simple identification data or a detailed representation of its internal systems 

and processes. A step up from being purely an acquaintance is actual 

communication between agents. For this to happen the agents must be at least 

acquaintances as they must know the other exists and agent A sends messages to 

agent B.  An operative relationship means that an agent needs information from 

another agent in order to perform the given task, meaning to perform a task, 

agent A needs information from agent B.  A subordinate relationship means that 

tasks are delegated by an agent, agent A, to another agent, agent B, to be 

competed. The introduction of subordinate relationships introduces a level of 

hierarchical control in the multi-agent system. Hierarchical control introduces a 

branching structure with agents passing tasks from root to leaves, that is, agents 

higher up the hierarchy may pass messages to one or more agents lower in the 

hierarchy. 

 

The coupling between agents dictates the level that agent organizations can 

modify themselves. If the coupling between the agents is fixed then the agents’ 

role and relationships will not change over time. If the coupling between agents 
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is variable the relationships and thus the organisational structure can evolve 

over time although only within predetermined limits. 

 

As well as the structure and organisational concerns, which task a given agent 

can perform within the group and how different tasks may be achieved is an 

important consideration in the design of a multi-agent system. Within this 

framework, specialisation can be thought to describe the number of actions an 

agent can perform in relation to all of the actions needed to be carried out by 

the multi-agent system. Redundancy indicates the number of agents that can 

perform any given task. 

 

With a high level of redundancy and unspecialised agents we have a redundant 

generalist type organisation. In this organisation, agents can perform many 

actions and each action can be performed by many agents. With high 

redundancy and highly specialised agents we get a redundant specialist 

organisation where each agent can only perform a limited number of actions but 

many agents perform each action.  With low levels of redundancy and 

unspecialised agents we get non-redundant generalist organisation where agents 

can perform many actions and each action is only performed by a few agents. If 

we have a high level of specialisation and low level of redundancy we get a non-

redundant specialist organisation where each agent can only perform a few 

actions and each action can only be performed by a few agents. 

 

Many multi-agent systems are designed to be deployed in dynamic environments 

where traditional architectures may be less successful. In order to operate in a 

dynamic environment the organisational structure of the multi-agent system 

must be flexible. The problem arises that as the organizational structure 

becomes more flexible then it becomes more difficult to predict what another 

agent will do. 

 

To try and overcome this problem multiple coordination frameworks have been 

developed to make sure that agents within a multi-agent system interact 

effectively and operate as team to reach their complex team oriented goals. The 

main purpose of these coordination frameworks is to make sure that the agent’s 
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plans do not conflict with each other while ensuring the successful pursuit of 

goals, both individual and societal. 

 

There are two broad strategies for ensuring coordination in a system like this. In 

the first method there is full collaboration between the agents in pursuit of the 

common goal.  Rewards are shared between agents and resources are shared to 

try to maximise group performance. In the second method the agents work for 

their own individual gain, even at the expense of others and most interactions 

involve conflict resolution, bidding for resources or tasks and negotiations. 

 

Regardless of the organisational structure chosen, the ultimate objective of any 

multi-agent system is to work towards a set of goals by achieving globally 

coherent behaviours. Key to making a system like this efficient is the ability of 

any given agent to reason about the actions and state of other agents within the 

system. 

 

How agents are grouped to carry out tasks, how intelligence and knowledge are 

distributed through these groups, how decisions are made and how these 

decisions are distributed within the system contribute to the overall 

effectiveness of a multi-agent system. 

 

2.2.1   Levels of Distributed and Local Intelligence 

 

Within a multi-agent system the level of intelligence of the individual agents can 

vary greatly depending on the need for reactive type or deliberative behaviours 

and agents. The desired level of group intelligence however can be achieved in a 

number of different ways using different levels of individual agent intelligence 

and different distribution strategies. The level of intelligence of one agent (local 

intelligence) and the level of intelligence of the group as a whole (distributed 

intelligence) has a large impact on the way decisions are made and the time-

scales in which they are made. This distribution affects how goals and tasks are 

assigned as well as performance criteria such as response time and redundancy. 
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Agents can be extremely simplistic and only react to a single input from the 

environment or a specific prompt form another agent but in a well designed 

multi-agent system with a coherent and efficient society, high levels of 

intelligence can emerge as the carefully choreographed interactions between 

the agents enable high level operations. 

 

Agents that have the capacity to plan are a level above the simple reactive 

agents and can be thought of as locally intelligent in they have at least some 

knowledge of their surrounding environment and that they use this knowledge to 

formulate their plans of action. Interactively intelligent agents can utilise the 

knowledge of others within the system to generate their plans, giving them 

access to knowledge outside of their own local group. 

 

Agents can not only generate plans for themselves but also for other agents. This 

ability is key to many multi-agent systems and especially the master-slave 

architecture. In a master-slave architecture a single agent has direct control 

over a number other agents and commands are only ever sent from master to 

slave, as shown in Figure 2-6. 

 

If the decision making and command ability is instead spread throughout the 

multi-agent system then the architecture can be described as distributed.  There 

are a number of different variations on the distributed architecture. A common 

approach is to have a peer to peer command hierarchy where commands may 

travel to any combination of peers, as shown in Figure 2-6. 

 

 

Figure 2-6 Communication strategies 
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2.2.2   Communication Process and Architecture 

 

All multi-agent systems, be they purely tasked with information retrieval or 

controlling autonomous robots have the need to communicate, with each other 

and with any users.  Many attempts have been made to standardise the methods 

for this type of communication, agent communication languages (ACL). 

 

A Defense Advanced Research Projects Agency (DARPA) knowledge sharing 

project led to the introduction of the Knowledge Query Manipulation Language 

(KQML) [31]. KQML is a language that is designed to facilitate the exchange of 

knowledge and information within software systems. This need to transfer 

knowledge is what differentiates KQML and its ilk from simpler and more widely 

used data exchange protocols. The language was initially developed for the 

construction and operation of large software knowledge bases which could be 

easily shared and reused. It was however, soon re-purposed as an agent 

communication language. KQML is both a message format and a communications 

protocol that allows agents to communicate and share knowledge in real time 

between each other and users. KQML can be used as an application layer to 

allow users to interact with an intelligent system (or agent) or for two or more 

intelligent systems/agents to communicate with each other. 

 

KQML gained popularity, especially in academia but was eventually superseded 

by the Foundation for Intelligent Physical Agents (FIPA) agent communication 

language that was designed from the ground up to describe both how agents 

would interact with each other and how they would be executed in an agent 

platform. The FIPA standard has been employed in a number of agent platforms 

and was made a formal Institute of Electrical and Electronics Engineers (IEEE) 

standard in 2005. 

 

The FIPA-ACL is based on speech-act theory [32] which states that messages 

represent actions. These actions can be communicative acts and are known as 

speech acts or performatives.   

 

There are four base performatives in the FIPA ACL:  
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• Inform an agent of a proposition  

• Request an action of an agent 

• Confirm a belief 

• Disconfirm a belief 

 

As stated earlier the ability for agents to communicate with each other 

effectively has a large bearing on the performance of the system as a whole.  

The content of the language must be suitably expressed in a content language 

such as the FIPA- Semantic language (SL)  [33] or FIPA-Knowledge Interchange 

Format (KIF) [34] and then encoded to allow it to be effectively transmitted.  

There are two other mandatory structures for an agent system to meet the FIPA-

ACL standards.  The agent system must have both an agent directory and a 

service directory accessible to the agents.  The agent directory is a shared 

information repository where each agent publishes data about themselves to 

allow for effective communication.  The service directory is a repository in 

which agents and other services can find applicable services.  Such services 

could include message transport services, agent directory services and 

application specific services. 

 

When describing an agent’s communication languages there are also other 

features that must be taken into account.  Most agent communication languages 

like the one above are prescriptive, that is they describe actions to be 

undertaken by other agents but they could also be descriptive and be based on 

describing what is occurring.   

 

Any meaning within the agent’s messages must also be as unambiguous as 

possible and as such conventions for messaging must be put in place. Any 

subjectivity in the messages sent or received must be accounted for and this is 

frequently done by introducing societal norms to the system [35].  These societal 

norms are in place so that all of the agents know how to react to any given 

message and as importantly how others will react to any given message. 

 

The pragmatics of the communication, that is how it is structured, must also be 

considered [36]. 
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The system must also be developed to take into account that messages may not 

be received and interpreted in isolation but are instead received in the context 

of the environment, other agents and other messages.  The language used by the 

agents must also be large and complete enough to meet all of its requirements 

but still be of manageable size. 

 

2.2.3   Autonomy and Representations 

 

The nature of autonomy is described with great clarity in [37].  We talk a lot 

about agents and autonomy but our definitions must be clear to avoid confusion 

as the architectures and different types of constructs we design become more 

numerous. Agency as used in our domain describes a system whose actions lead 

to some other state in the world. The goal oriented action can however cover a 

wide range of systems from the complex such as a human to the relatively 

simplistic such as a chemical compound reacting with an oxidising agent.  

 

Obviously we have to further refine our definition of an agent, and this can be 

done by having an internal representation which stores its goal and may have the 

ability to self-regulate.  "Self-regulated agents are goal governed agents, who 

given a certain goal are able to achieve it by themselves: planning, executing 

actions, adapting and correcting actions" [21] This definition more succinctly 

describes the type of "cognitive" agent that we will be working with but it must 

be noted that for any agent definition there will always be counter intuitive 

systems that meet the description but may not to our eyes seem to meet them, 

such as a simple thermostat more or less meeting our previous requirements of a 

basic cognitive agent. This description of an autonomous agent is building 

towards a usable definition for our domain but still has limitations and must be 

further refined. In our case an agent is not truly autonomous unless it has 

autonomous goal setting abilities. The impact that autonomy has on the 

definition of an agent is vast and the definition of autonomy must also be set 

before work on designing an autonomous agent system begins. 

 

At its most basic level autonomy of a system is defined by its relationship with 

others, that is, a system can only be autonomous with respect to another 
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system. Agent autonomy is frequently defined as being able to carry out its own 

wishes but for clarification we will use the term executive autonomy for this 

kind of autonomous nature. Executive autonomy defines the ability to achieve 

goals by itself.  

 

So if an agent is to be autonomous this autonomy must be defined by its 

relationships to some other system. The autonomy may be from some physical 

system or structure or it may be from some other agent or agent structure. We 

can now look at our agents and try to decide if they are autonomous by the 

physical or societal context. We can think of some interesting examples of agent 

autonomy by thinking of a generic multi satellite mission which is controlled by a 

distributed autonomous system. It can be envisaged that most of the agents will 

be societally autonomous from the other agents in the system but this intuitively 

will almost always be the case, otherwise why would we not just make a 

monolithic system?  

 

When we talk about autonomy in space missions we mostly mean that the system 

is autonomous from ground control. An autonomous systems does not always 

have to act alone however. In this case the autonomy is both societal, as the 

system is autonomous with respect to the human agents on the ground and 

physical as the system is autonomous with respect to the physical connections 

and data from the ground as well. Agents within a distributed spacecraft 

missions can also be physically autonomous in another way. The agents may not 

be tied to a particular piece of hardware and are thus able to move from 

spacecraft to spacecraft or node to node. This gives the agent the ability to 

change its environment and operate independently of certain hardware 

constraints. 

 

Agents must operate within some defined environment (even if the definition 

changes) and as such they are limited to operating and being autonomous within 

this environment. An agent must therefore operate at some level based on the 

environment it is situated in and cannot be autonomous if it receives no inputs 

from its environment at all. 
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An interesting issue arises however in that although the relationship with the 

environment is vital to the overall functionality of an autonomous agent it may 

not directly affect it. That is by operating in an environment the environment 

may influence the agent but not cause its goals to change directly. This is known 

as the Descartes problem [38], how do we ensure that our autonomous system is 

neither entirely dictated by the environment (non-autonomous) but also not 

oblivious to the environment (non-situated). 

 

2.2.4   Social Autonomy 

 

We previously discussed the fact that agents can be socially autonomous, that is 

they operate independently of other agents. This concept is key to multi-agent 

systems but must first be further defined to avoid confusion. One definition of 

social dependence is that the agent is dependent on another agent; that is it 

relies on another agent to operate. This level of dependence will vary greatly 

between agents but it can thought that each agent within an operational multi-

agent system will be dependent on many others otherwise our time would be 

better spent developing multiple monolithic systems. This way of looking at 

social autonomy basically equates to self-sufficiency and can be quantified by 

looking at how many of a given agent’s actions are dependent on other agents. 

 

Another definition of social autonomy is the relationships and interdependency 

between the goals of the agents in the multi-agent system. This definition makes 

the goals of the agents the key driver for autonomy which makes sense for a 

space based systems, as goals must be generated, coordinated and distributed 

throughout the system in order for it to operate effectively. How the goals are 

spread and the relationships between them define the social autonomy of the 

system. 
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2.3  Transition from a traditional to an agent based 

architecture 

 

An approach to transitioning to multi-agent systems must be carefully considered 

to allow for a smooth modular transition from traditional architectures.  Having 

a more structured progression or roadmap from traditional to agent based 

systems would hopefully increase adoption and acceptance of these systems. 

 

A simplified roadmap for this progression can be described using the following 

two steps.  Firstly we can enhance the traditional architecture.  We would 

achieve this by replacing components in the architecture with agent based 

components but still use the traditional interfaces.  In this case components can 

be swapped out and improved while still allowing for verification using the tools 

that already exist for that architecture.  As more components are replaced there 

should be provision for allowing agent based interaction between these replaced 

components to enhance performance gains.  Most importantly, at this stage not 

all of the components are replaced so mission critical or problematic 

components can be left as is and the system will still operate, hopefully at a 

higher level due to the inclusion of agent based components.  Some of the 

initiatives in this respect are covered by [39, 40]. 

 

The second step is then to transition to goal based mission operations which fully 

exploit the social and intelligent features of the agents to again increase 

performance over traditional systems. 

 

Appendix A - Traditional Spacecraft Control Structure describes in more detail 

the traditional approach and structure of a spacecraft control system. 

 

2.4 System Architectures 

 

In the discussion of multi-agent systems and multi-agent design the term "agent 

architecture" can sometimes have a number of different meanings and 

connotations. When working with multi-agent systems we are frequently looking 
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at both the structure of the agents themselves and the structure of the multi-

agent system as a whole. To try and avoid any ambiguity we will use the term 

“agent architecture” to define the internal structure of the agents and "system 

architecture" to describe how the agents are organised and interact with each 

other to create a cohesive multi-agent system.  

 

A number of different agent paradigms have been introduced. These paradigms 

include deliberative and reactive agents and the whole spectrum of hybrid 

agents in between. The different approaches to autonomy are extremely helpful 

in trying to define different types of agents but there are other classes of agent 

that may be better described by their internal organisation.  These internally 

defined agents offer more options and potential considerations for the agent 

architecture we want to define for autonomous space missions. 

 

2.4.1   Internally Defined Agents 

 

There are five main categories of internally defined agents, Modular, 

Subsumption, Blackboard, Production System and Layered. The simplest and 

conceptually the most simple is the modular architecture [41]. 

 

2.4.1.1 Modular Architecture 

 

In the modular architecture the agent consists of multiple modules that each 

correspond to a particular action associated with that agent, be it planning, 

negotiation, perception, execution etc. 

 

2.4.1.2 Blackboard Architecture 

 

The blackboard architecture as introduced in [42] was designed for use in single 

intelligent agent systems. The basic idea behind the blackboard structure is that 

there is central store for all of the data needed by the agent. The blackboard 

contains all of the current system states and solution data. This blackboard 

approach has been applied to multi-agent systems where a central data store 
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accessible by all the agents but independent of all of them may be desirable but 

the problems of a single central point of failure means that a more distributed 

system may be more desirable. 

 

2.4.1.3 Production System 

 

The production system approach [43] takes its structure from the system 

developed for controlling industrial production processes and has an agent acting 

as the production system within the larger multi-agent system.  The production 

system approach offers some intriguing possibilities.  Looking at our distributed 

multi-agent system as a collection of products and processes allows us to design 

a MAS tuned to the safe and efficient production of our desired product, 

scientific data. 

 

2.4.1.4 Layered Architectures 

 

Layered architectures [44] allow for a mix of reactive and deliberative 

components within a single cohesive whole. Typically the more deliberative 

components are at the top of the hierarchy and commands flow down towards 

the more reactive components and data or results flow back up to the 

deliberative components to inform their future decisions. 

 

2.4.1.5 Subsumption Architecture 

 

The subsumption architecture [28] consists of a number of finite state machines 

grouped together on layers.  These finite state machines are purely reactive and 

a key part of the subsumption architecture is that there is no environmental 

model in the agent.  Instead the environment itself acts as the model as the 

agent only reacts to the world around it. 
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2.5 Types of System Architecture 

 

The internal agent architecture can be taken by itself to help to define any 

given single agent or single agent system.  Whenever two or more agents are 

working in concert or in competition however, then great care must be taken to 

design their interactions so that they can effectively carry out their tasks. 

 

Multi-agent systems are defined by their hierarchy, be it homoarchical or 

heterarchical. In the homoarchical case (Figure 2-7) there is only one possible 

way that the agents may form a hierarchy whereas in the heterarchical case 

(Figure 2-8) there are many different possible hierarchical structures the system 

can take depending on its circumstances, the task in hand or its operating 

constraints. 

 

 

 

Figure 2-7 Homoarchical structure 

 

 

 

Figure 2-8 Heterarchical structure 
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Figure 2-9 Non-hierarchical structure diagram 

 

Much of the early work on heterarchical or non-hierarchical systems such as 

Figure 2-9 (although heterarchical is not the same as non-hierarchical they do 

share many of the same features) was based on distributed data processing 

which led to work on cooperation between agents and then to distributed sensor 

networks [45, 46, 47] This work led to many communication protocols, of which 

the Contract-Net is probably one of the most well-known [48]. 

 

The benefits of a non-hierarchical or heterarchical approach to distributed 

computing are mainly in flexibility and redundancy in the case of changing 

conditions or component failure. There are disadvantages to this system 

architecture however, most importantly there are issues with heterarchical 

systems not being able to find global optima for any given problem space and as 

the systems become more complex and the possible interactions between them 

more varied the system as a whole can only be predicted at a very high level. 

This reduction in predictability means that these systems are not seen as 

suitable for mission critical tasks or processes. 

 

The hierarchical or homoarchical systems lie at the other end of the spectrum. 

The strict nature of the hierarchy and its inflexibility means that it is more 

predictable and therefore easier to coordinate. The disadvantage of this type of 

agent system architecture however is that it is somewhat inflexible and in return 

for increased coordination there is a reduction in the reliability gains from 

redundancy in the heterarchical designs. In order to try and overcome the 
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limitations of operating at either end of the heterarchical/homoarchical 

spectrum a set of compromise architectures have been developed, collectively 

known as the federated architectures [49].  

 

These federated architectures (Figure 2-10) tend to have no central data storage 

and instead operate through the passing of messages between agents.  This is 

different however from a purely distributed approach as there are specific 

agents tasked with undertaking very particular roles in these system 

architectures. There are four main types of federated architecture and we will 

discuss each, they are the facilitator, broker, matchmaker and mediator 

approaches.  

 

 

Figure 2-10 Federated Architectures 

 

The facilitator approach uses facilitator agents that enable communication and 

coordination between agents. The key aspect of this system architecture is that 

agents may only communicate to each other though the facilitator agents and no 

direct communication is allowed. This constraint allows for a much more 

controlled system while still being able have the benefits of a distributed system 

[50]. The facilitator agents do not just pass messages on to other agents but also 

check the messages, translating them if necessary ensuring that all of the agents 
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operate as an efficient whole. This facilitator approach is found in the GMES 

agent architecture design, but in the GMES case it takes second place to the 

broker system which is much more suited to the transactional requirements of 

GMES. 

 

The facilitator approach, while enabling the communication between agents to 

be carried out in a separate layer, does not inherently have the capacity for 

more complex societal structures.  In the facilitator approach a single agent 

talks only to a single facilitator agent who takes on the responsibilities for 

communication with the other facilitators.  In some societal structures that are 

particularly suited to use in multi-agent systems a many-to-many communication 

approach is desirable rather than one-to-one.  A broker agent is an example of 

this many-to-many communication strategy.  In a broker approach to multi-agent 

systems there a number of broker agents which act as facilitators.  The agents in 

the multi-agent system advertise their services and make requests through any 

number of brokers.  The broker agents then match the requests to the services 

as best they can.  Broker agents can include functionality to not only make 

direct matches between services and requests but also to serve as a mediator in 

negotiations between services and requests.  This can also involve the instigation 

of collaboration between agents to meet a particular request or to create 

combined requests that make better use of the advertised service.   

 

The matchmaker approach is similar to the broker framework but instead of 

acting as the middle man for all communications between the agents it brings 

together the agents making the requests and offering the services then leaves 

the agents themselves to carry out any required negotiation. This approach is 

best suited to systems where there is less negotiation and collaboration between 

agents and where the performance of the system as a whole may be improved by 

the removal of the superfluous intermediary agents.  The matchmaker approach 

can lead to the creation of a yellow-pages type structure.  In this case the 

services of the agents are advertised in a single location and the agents making 

the requests all look in this location for their desired services.  The mediator 

approach is aimed at better coordinating the actions of the agents in the multi-

agent system.  The mediator agent uses the techniques of brokering and 

matchmaking to try and create groups of agents that collaborate within the sub 
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group or cluster.  This clustering is carried out during execution and is not 

strictly predefined in the system level architecture.  Once the mediator agent 

has created the desired collaborative cluster it must then ensure that it operates 

in an effective manner.  This will involve more complex behaviours such as 

mediation to reduce or combat deadlock scenarios between agents in the group 

and to increase the operating efficiency of the group where possible. 

 

Many modern agent systems incorporate aspects from many or all of the 

federated structures as well as having a mix of reactive and deliberative agents.  

Real time distributed control applications lend themselves to multi-agent 

systems that have a wide range of components which add intelligence to the 

system.  The intelligence arising from the interactions between the agents on a 

societal level is where a multi-agent system differs from other intelligent control 

techniques. 
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Chapter 3 An Agent Architecture for Space 

Missions 
 

3.1  The need for a new architecture 

 

3.1.1  GMV Architecture 

The DAFA architecture design document [51] from GMV describes the 

architecture and implementation of a MAS for GMES.  The DAFA project was 

focused on building a proof of concept for a  MAS for an ESA space mission. The 

architecture that is discussed in this work is highly implementation focused and 

does not try to describe the MAS in any consistent way that may allow for reuse 

in other space missions.  This is an extremely common approach. The 

architecture itself  is basically the default generic architecture used by the 

SeSam [52] software that is used in the implementation of the MAS.  As shown in 

the implementation of the DARWIN MAS SeSam can be used to implement any 

architecture but in the DAFA GMES case no real architecture is specifically 

outlined or used.  This lack of a clear and definitive architecture was a key 

reason for developing a new multi-agent architecture in this work to allow 

future DAFA like projects to be more easily described and for common elements 

to be transferred. 

 

A discussion of the generic architecture used for the completion of the DAFA 

project by GMV can be found here [15]. 

 

3.1.2  General Architectures 

A look at a number of multi-agent architectures follows and their suitability as a 

basis for a space mission architecture is discussed. 

 

Alami [53] posits a general architecture for autonomy comprising two layers, a 

decision layer and an execution layer. Each layer can be composed of a number 

of sub-layers depending on its application.  The actual architecture is a basic 
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layered structure and the authors description of an architecture is in fact a 

description of the tools that were developed to implement the architecture.  

This is a key distinction that has to be made.  An architecture describes the 

structure and relationships required by the system but does not specify explicitly 

their implementation.  This architecture does utilise the idea of a generic 

module that is then specialised. This use of templates is useful as it allows for 

flexibility and heterogeneity between component parts but forces the modules 

to have certain similarities.  The idea of a specific executor module/agent/layer 

is also a useful one and allows for the system to be decomposed based on its 

operating time frame as well as its role. 

 

The Cougaar architecture [54] consists of a collaborative workflow of 

coordinated agents.  Again the architecture is relatively simple, this time based 

on a blackboard for communication and agents that accept a number of modular 

plugins.  The line where the architecture finishes and the implementation begins 

is especially blurred in the case of Cougaar.  The designers have created a very 

capable multi-agent framework based on a simple architecture but the 

architecture itself is still very general and relies on the addition of extra 

components in order to be specialised to a particular task or problem.  

 

The work by Criado [55] extends the BDI architecture to allow for the use of 

normative contexts, primarily with the aim of agents acquiring norms from the 

environment.  The work offers a concise description of the architecture but its 

generality makes it hard to apply this to the very specific requirements of a 

space mission. 

 

Of the more general architectures in the literature the ANA architecture [13] 

best encapsulates the approach to architecture definition that is required for 

real progress with autonomous agents in space.  Although it is relatively general 

it still describes a novel structure for agent interaction and the agents 

themselves. 

 

Another problem with current MAS architectures is demonstrated in the Hilaire 

[56] paper on adaptive agent architectures for holonic multi agent systems.  The 

paper makes a compelling case for the use of a holonic structure as the basis for 
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an agent architecture.    The specifics of the architecture however are based on 

the conceit of describing the system in terms of an immune system.  This is a 

common problem and the terminology used only works to obfuscate an otherwise 

very powerful architecture. 

 

3.1.3  Robotic Architectures 

 

Architectures developed specifically for robotics can offer insights into the 

requirements of how autonomy and actuation can be handled within a multi 

agent architecture.  The CLARAty architecture [57] for instance is typical in that 

it encapsulates a layered autonomous design and makes the development of 

autonomous robotics platforms more standardised.  The problem with using an 

architecture like this one in multi-agent systems is that any communication and 

cooperation between agents and robots has to be added on as a an extra layer 

rather than being included and integrated at an architectural level. 

 

3.1.4  Space architectures 

 

In the Ghallab paper [58] they make a case for the suitability of the LAAS 

architecture as described in the Alami paper for space missions.  Again the 

architecture strictly defines the implementation of its components and the 

underlying structure and does not take into the account the special 

requirements of a distributed space mission.  This focus on implementation and 

individual autonomy means that the architecture could be implemented fairly 

rapidly for a given mission but it might not give all of the benefits of an 

architecture developed with distributed space systems in mind. 

 

The AGATA architecture outlined in the Verfaille paper [59] describes a highly 

modular architecture based on four key components, state tracking, object 

tracking, decision making and decision execution.  The architecture take a very 

control oriented approach and makes the system highly modular.  The downside 

of the approach is again not taking the opportunity when designing a multi-agent 

architecture to really incorporate all of the advantages of multi agent systems 
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such as communication and cooperation.  The architecture does include a robust 

description of the decomposition of the agents into smaller and smaller modules 

which enables the MAS to be viewed at multiple levels of abstraction. 

 

Much of the work on multi-agent architectures for space has been highly specific 

to a single task within the overall space mission.  An example of this is the 

OCAMS project [60] which designed and created an agent architecture for 

mission control.  A robust architecture was developed but it is only really 

applicable to mission control tasks and could not be easily adapted to other 

tasks. 

 

3.1.5  Manufacturing architectures 

 

The architectures developed for the manufacturing industry, especially the 

holonic architectures [61, 62], offer some innovative approaches to coordinating 

and optimising multi-agent systems.  The concept of the product being 

encapsulated as an agent with its own autonomy is one that has not been 

implemented in the space domain but offers potential for a logical and flexible 

structure as all of a space missions science and formation tasks can be thought 

of as products.  Adopting some of the paradigms from the manufacturing 

architectures enables a new space architecture to make the most of the 

manufacturing sectors focus on reliability and modularity.  Unfortunately there 

are number of reasons that the architectures cannot be used wholesale.  The 

environment of the manufacturing MAS is basically static when compared to that 

required by a space mission.  That is, there are discrete inputs and outputs to 

the system but the environment that the agents operate in is not continuous or 

liable to fundamentally change.  The manufacturing architectures also take a 

very different view of real-time control.  In the manufacturing architectures the 

actual actuation and control of the equipment is handled by the controllers of 

the equipment themselves whereas in a space mission the real time control must 

be handled by the agents in the MAS. 
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3.2  Holonic Control Architectures 

 

A holonic control system consists of a number of holons, each holon is identified 

as a discrete autonomous agent, in a similar way to an agent as previously 

described.  Holonic Systems have a recursive structure so that they can be 

thought of as an agent architecture as well as an agent system architecture [63].  

In this way holonic systems are very similar to certain multi-agent systems and in 

some respects can be thought of as a subset of multi-agent systems, or at least 

another way to describe these autonomous distributed systems.  The individual 

holons within a holonic system collaborate to achieve a common goal.  The key 

difference between a holonic system and software agent system is that the 

holons themselves can be decomposed into an information processing part 

(which is akin to the software agents in a typical software agent MAS) but also a 

physical processing part.  This close coupling of software and hardware makes 

holonic architectures very well suited to describing systems charged with 

distributed control of physical devices.  These physical devices can vary in 

complexity and have varying software control requirements, the flexibility of the 

holonic architecture enables us to model a variety of space missions. 

 

Holonic systems make use of functional decomposition in order to divide a larger 

system into many more simple parts.  The observation was made in [64] 

“systems evolve much more readily from simple systems if there are stable 

intermediate forms than if there are not", this means that if the system has 

many different layers of aggregation then a complex system can be easily built 

up from simple components in subsystems which are themselves complete.  

Since the holonic architecture is built on the idea of decomposition of a problem 

into smaller parts that have themselves purely informational or informational 

and physical components we are also able to define holons as comprising of a 

number of sub-holons that still meet the full definition of a holon.  This 

recursive structure allows for the system to be fully defined at a number of 

different levels using the same nomenclature and provides us with many 

stepping stones as we build our autonomous control system. 
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Holonic systems are a bottom up approach to system control but as they can be 

thought of a subset of multi-agent systems that have a bias towards physical 

integration many of the techniques and architectures that have been developed 

for multi-agent systems can also be applied to holonic systems. 

 

Certain strategies however have been developed specifically for holonic systems.  

Cooperation in holonic systems can be achieved by using a "cooperative domain" 

(CD) [65].  The CD is defined as "a logical space in which holons communicate 

and operate, that provides the context where holons may locate, contact and 

interact with each other".  Two different types of cooperation can occur within 

this CD.  Simple cooperation means that a given holon must respond to the 

requests of another holon (even if the response is negative).  Complex 

cooperation is where holons work to achieve a joint goal. 

 

In the complex cooperation paradigm the higher level deliberative software level 

must be sufficiently integrated with the lower level physical devices(s).  This can 

be thought of as the classic distinction between high level and low level control.  

In the low level control domain, functions are kept as simple as possible with the 

view to reducing response times as much as possible.  It is also at the low level 

that processes or actions can be simply automated to negate the need for higher 

level control over certain functions.  This low level of control is based around 

the optimal use of any given hardware component and a great deal of highly 

applicable work has been carried out in intelligent process and manufacturing 

control of low-level hardware that can be successfully applied to the control of 

spacecraft hardware.  The higher level control will, by its very nature, be more 

specialised to its particular domain.  However, although its implementation may 

differ by domain the key tasks of ensuring inter-holon cooperation, collaboration 

and negotiation will be found in most intelligent controllers.  As the holon 

control architecture can be thought of as a subset of agents as a whole we can 

use the standard agent descriptions and definitions, such as FIPA to define the 

deliberative layer of the holons.  There are many international standards for 

defining the low level control aspect of the holon although the majority of these 

are designed for use in manufacturing and process systems.  They can however 

act as a good starting point for defining an agent architecture for any 

application. 
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3.2.1   Standards 

 

One of the benefits of looking at the process and manufacturing domain for 

inspiration is the desire for these systems to adhere to standards.  The standards 

in industry are in place to ensure interoperability and to provide a level of 

confidence as to any given system performance.  They also provide a series of 

requirements that a system must meet to not only be safe but also to operate 

effectively in the desired environment.  For instance the International 

Electrotechnical Commission (IEC) 61499 standards for distributed industrial 

automation have the following as requirements and many of these can be 

directly applied to a distributed autonomous space control system with the 

exception of the intellectual property based requirements. 

 

• Component-Based 

• Support encapsulation/protection of Intellectual Property (IP) 

• IP Portable across Software Tools and Runtime Platforms 

• Distributed 

• Map IP modules into distributed devices 

• Integrate IP Modules into distributed applications 

• Functionally Complete 

• Control/Automation/Diagnostics components 

• Machine/Process Interface components 

• Communication Interface components 

• Human/Machine Interface (HMI) components 

• Software Agent ("Holonic") components 

• Extendable 

• Encapsulate new types of IP 

• Create new IP through Functional Composition of existing IP modules 

• Multiply the value of IP through widest possible deployment 

• Benefits available to all market players 
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3.2.2   High-level vs. Low-Level Control 

 

In [66] Deen provides an architecture that links the high-level and low-level 

control layers.  The PROSA (Product Resource Order Staff Architecture) 

reference architecture ([62]) uses concepts designed for the manufacturing 

applications and is based on the idea of creating products using resource and 

ordering holons.  This approach is applied to scientific space missions in the 

architecture developed in this work where a product must be created based on 

user requirements while being closely observed and controlled autonomously. 

 

3.2.3   Requirements for intelligent control 

 

In [67] Balasubramanian outlines four key requirements for a distributed 

intelligent control architecture (in this case for manufacturing but this also 

applies in the more general case).  Firstly the control system must be able to 

operate, at least to some level, in real time and must be able to satisfy 

deadlines with real-time constraints.  The control system must also be 

distributed, have a consistent communication strategy and be consistent across 

physically separated nodes.  The control system must be able to supply support 

for event driven control so that it can react autonomously to the occurrence of 

events.  The controller must also offer intelligent control in the form of reactive 

behaviours at lower levels and deliberative behaviours at higher levels. 

 

The common theme of the distinction between the higher level software 

functions and the lower level hardware can be seen in the frameworks outlined 

and there are many more agent/holon based architectures that show this 

layered structure.  As such the designs for the multi-agent architecture will be 

layered and will be fully outlined in section 3.3.  

 

3.2.4   Reconfiguration of Multi-agent Systems 

 

Reconfiguration has to occur whenever the hardware or software of the system 

being controlled changes.  From the software viewpoint a multi-agent system 
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can be seen as a highly dynamic system and in many cases change will be 

desirable and should be able to be accomplished with minimal adverse effects.  

In the cases of space missions which can be comprised of multiple spacecraft 

then the hardware can change as well.  This ability to reconfigure hardware can 

be useful in a number of ways.  In the GMES mission the spacecraft are highly 

heterogeneous and operated by different bodies.  It can be expected that 

spacecraft will be added to the system as well as retired. The multi-agent 

system has to be able to handle all of these possibilities.  In the DARWIN mission 

it is expected that the hardware will be largely homogeneous between the space 

telescopes, the only exception is the collector hub that will differ from the 

other telescopes.  A hardware level reconfiguration can still occur in this 

scenario though as failures of specific modules may require a reconfiguration of 

the system to make up for the lost hardware.  Distributed telescope missions 

such as Darwin are inherently expandable and it can be envisaged that in such a 

mission the number of telescope satellites could be increased to enhance the 

scientific return.  Any multi-agent control system should be able to handle this 

addition of new hardware.  

 

The work of Labeyrie [68] in particular outlines the possibilities of a great many 

interferometric telescopes together in a large coordinated formation.  These 

“hyper-telescopes” would contain up to hundreds of separate craft but offer 

unprecedented imaging abilities and have a high level of redundancy within the 

formation. 

 

The reconfiguration of software, especially as it consists of independent 

autonomous entities will be much more common.  The ability for multi-agent 

systems to reconfigure is one of their main strengths and can be a natural 

product of their ability to share knowledge and tasks and create local groupings 

to provide a required service or make a request.  In more traditional software 

control systems reconfiguration can require the whole control system to be 

replaced, even if the change is only to a small part.  If the control system 

implements a truly object oriented approach then this can be avoided to some 

extent by simply replacing the objects that need to be changed but this still 

requires the control system to be shut down, the changes inserted and then 

restarted.  This forced restart can cause many problems on an operating 
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platform.  In a multi-agent system however a new or modified agent can be 

uploaded to a given node and accepted as part of the multi-agent system.  Even 

if this step requires a restart, the other nodes will continue to operate and once 

the updated node is back on-line the new agents can propagate through the 

multi-agent system.  This desire to keep the system online as much as possible is 

another benefit of using aspects of manufacturing control systems in our 

architecture. 

 

Early work such as that by Kramer [69] postulated that reconfiguration should be 

split across a number of operating layers.  In this way the reconfiguration 

commands are introduced at a high level and then decomposed by the system 

itself at a lower level.  This lower level decomposition is handled by the 

components or at least groups of components.  This approach is taken because it 

is assumed that in a hierarchical structure problematic interactions may only 

become apparent at particular levels of abstraction so a step by step 

implementation of the reconfiguration process allows the system to check for 

possible problems with the reconfiguration.  In this early work reconfiguration 

was decomposed into multiple "change transactions" that specified the creation 

and removal of nodes and relationships within the system.   

 

For the development of reconfiguration ability for our space mission control 

system the ideas of separation and the implementation of layers are used.  A 

multi-agent system (whether it is based on the holonic model of coupled physical 

and software entities or not) is easily made into a layered structure as it is by its 

very nature comprised of many different components working on different levels 

of task.  It is therefore desirable that any reconfiguration ability works with this 

structure rather than against it.  One possible approach is that taken by Leveson 

[70] where the different requirements of system control and system recovery are 

catered for by the separation of the control components and the recovery 

components into independent layers in the system.  This approach makes sense 

as it separates the top down control sequence where commands are sent 

towards the lower reactive levels for execution from the bottom up safety 

process where faults and clashes are sensed at a low level first and then 

propagated up to the deliberative layers. 
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3.3  HASA 

 

The holonic architecture developed as part of this thesis is an extension of and 

reworking of the PROSA architecture [62].  The PROSA architecture is a holonic 

agent architecture developed for manufacturing systems.  Its central paradigm is 

that of creating products based on customer orders.  The whole manufacturing 

and control system is modelled and the PROSA architecture offers a generic 

holonic architecture that does not proscribe any hierarchy.  The PROSA 

architecture was chosen as starting point for the Holonic Agent Space 

Architecture (HASA) outlined herein for a number of reasons.  The key drivers in 

the manufacturing systems that PROSA was deployed to control are safety, 

extensibility and autonomy but above all else the ability to reliably create a 

given product.  These concepts are also key drivers in many scientific space 

missions. The PROSA architecture is very general architecture and as such acts 

only as a starting point for the development of the HASA architecture.   

 

The fundamental differences between HASA and PROSA are: 

 

• Replacement of the order holon in PROSA with an executor and planner 

holon in HASA to enable the better modelling of the structure of space 

missions. 

• An emphasis on real-time control rather than the completion of orders. 

• Continuous rather than discrete time operation. 

 

Thinking about space missions as a manufacturing process can also give us added 

insight in how a multi-agent controller may be designed.  It is quite logical to 

think of any given space mission as creating a product.  Often the product will 

be data of some sort, most likely scientific readings or images.  The product 

could also be movement of the spacecraft or the provision of a certain resource 

in the case of communication link.  As such, in the HASA architecture, a product 

can be defined as belonging to one of three groups, data, actuation or resource.   
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There are four basic types of holonic agent in the HASA architecture as shown in 

Figure 3-1. They are planner agents, executor agents, resource agents and 

product agents.    

 

 

 

Figure 3-1 Basic types of holonic agents in HASA 

 

At its most basic level the resource agent consists of a resource that is used to 

construct some product.  An executor agent monitors the creation of a product 

and the planner agent decides where and when any given product will be 

created.  The product agent encapsulates a model of the product, how it must 

be created and to what specifications. 

 

A resource agent can take many forms.  It can be thought of as a traditional 

resource, as in a computational resource to be utilised or a resource that is 

expended, such as energy.  The resource could also be an actuator or a sensor or 

at a higher level a specific spacecraft in a formation.  It should be noted that 

the key concepts of planner, executor, resource and product apply at many 

levels of aggregation of the system and this vertical self-similarity or recursive 

nature of the architecture is a key benefit of the holonic architecture. 
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A planner agent is an abstraction of the deliberative aspects of the systems.  

Again it is used to describe entities at many different levels of aggregation so a 

planner agent could be an agent deciding how to schedule and organise the 

acquisition of a certain formation or at a much lower level, deciding what data 

to pass on from a single sensor. 

 

An executor agent is an agent that manages the execution of processes in real 

time.  The processes to be undertaken will be decided by a planner agent and 

the executor agent will work with one or many resources to carry out these 

processes as dictated by the planner agent. 

 

A product agent encapsulates what exactly a given product is and how it is to be 

produced.  This can include processes and required resources as well as sub-

products it needs to create its product.  The holonic nature of the HASA 

architecture is fully recursive so a product can quite validly be made of many 

sub-products, each of which is a fully operational product agent. 

 

3.3.1   Aggregation 

 

A number of different agents will be grouped together in a given hierarchy 

dependant on what product they will be constructing or generating.  This 

hierarchical group can be thought of as a bigger agent with its own identity.  The 

recursive nature of the architecture is here the key element and allows us to 

view the systems as a whole over many different levels of detail (Figure 3-2).  In 

the HASA architecture the hierarchy is one where an agent’s membership to an 

agent group is not fixed.  Agents can belong to many different groups and due to 

the recursive structure each group is comprised of sub-groups. Aggregate agents 

may be specifically designed but scenarios can be envisaged where aggregate 

agents may emerge as a result of the self-organisational abilities of some agents.  

The multiple levels of aggregation apply to the four types of agents in the 

architecture where, for example, a given planner agent can be thought of as 

consisting of a number of smaller planner agents undertaking certain tasks, some 

executor agents overseeing the planning process and resource agents 

representing the knowledge or algorithms needed to create the plan.  A product 
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can be thought of as consisting of a number of sub products, each of which may 

consist of other products, until the product can be fully described. 

 

 

 

Figure 3-2 Aggregation of holonic agents in HASA 

 

3.3.2   Specialisation 

 

The four core types of agent can also be sub divided into a set of more 

specialised agents, defined by their individual characteristics and the sub agents 

that they are composed of, as shown in Figure 3-3 which represents the attitude 

control system of a spacecraft and Figure 3-4 which shows a resource holon. 
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Figure 3-3 Possible sub-agents of an Attitude Control Agent 

 

 

  

 

Figure 3-4 Specialisation in holonic agents 

 

3.3.3   Data managed by basic agents. 

 

A planner agent’s key data structure is a plan. This is defined as set of processes 

that lead to the creation of a product. As the planner agent encapsulates the 
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deliberative aspect of an intelligent system. Characteristics such as goals are 

also stored and manipulated in a planner agent. 

 

An executor agent’s key data structure is a set of processes.  These may be the 

set of processes currently running, the set of processes need to create a product 

or a set of processes carried out in the past.  The executor agent will also 

contain knowledge about each process that it has undertaken, is undertaking or 

plans to undertake.  This allows the planner to use data on past performance 

and predicted utilisation when creating a plan for the present. 

 

A resource’s key data structure is a set of limits or rules to its use. This could be 

used to describe a finite resource’s capacity or the rules that govern the physical 

actions of an actuator. 

 

A product’s key data structure is the model of a product and its associated 

quality requirements. This product model can take many forms. If the product is 

something like a scientific image, the product model will include all of the 

requirements needed for that image such as time constraints, resources and 

target data needed.  If the product was a manoeuvre for the formation then the 

product model would encapsulate the dynamical model of the formation and the 

individual spacecraft, thus allowing a specific product to be created. 

 

3.3.4   Functions performed by basic agents. 

 

The planner agent creates and manipulates plans based on the state of the 

current resources and running processes, the executor agent executes these 

plans using the available resources and the state of other processes. 

 

3.3.4.1 Knowledge exchange 

 

• The resource and planner agents exchange product knowledge.  That is 

how a product was create/achieved and if it was fit for purpose. 

• The planner and executor agents exchange plan knowledge.  
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• The executor and the resource agents exchange process execution 

knowledge.  That is how to achieve a given process. 

• The resource and the product holon exchange process knowledge, that is, 

how to perform a process on a resource. 

• The planner and the product holon exchange product performance 

knowledge. This is based on the quality metrics from both the product 

and the planner. 

• The executor and the product holons exchange production knowledge.  

That is how to produce a certain product. 

 

Figure 3-5 below shows how knowledge moves through the system and which 

types of holon produce and consume what type of knowledge.  This in turn shows 

the key structures of the HASA architecture. 

 

 

Figure 3-5 Functions and Knowledge exchanged by each holonic agent type 
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3.3.5   Self-Similarity in HASA 

 

Horizontal self-similarity means that at a given level of aggregation all of the 

agents of given core type are similar to each other.  This means that they 

operate in a standard way using standard interfaces.  This allows for complex 

structures to be designed but still permits standard interaction.  This self-

similarity applies to the key communication strategies and data structures of the 

agent but is not designed to hinder specialisation. 

 

Vertical self-similarity means that the basic types of agents share common 

aspects regardless of the level of aggregation.  This means that the multiple 

smaller planning agents that go to create a single larger planning agent will all 

share the same methods of communication and data structures.  This allows for 

the recursive nature of the HASA architecture. 

 

3.3.6   Agent Environment 

 

As discussed previously the environment of a multi-agent system is the key 

factor in its operation.  In the HASA architecture the environment is a 

specialised type of resource agent that can be utilised to aid in creation of 

products.  Manipulation of the environment is classed as a product in this 

architecture. 

 

3.3.7  Benefits of the HASA architecture 

 

The key benefits of the HASA architecture when compared to the other 

architectures available are: 

 

• Recursive:  The holonic structure allows for a complex system to be 

described at varying levels of abstraction, allowing for development of 

the system using a top down or bottom up approach.  This recursive 
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nature also facilitates the use of external modules in the system as they 

can be easily described in the architecture. 

 

• Real-time: The specific executor agent handles real-time operations and 

acts as a bridge between the more deliberative and reactive aspects of 

the system and is rarely found in the manufacturing architectures. 

 

• Product-oriented: An emphasis on creating a viable product is paramount 

for space missions and this concept has never been used in the 

robotics/space domain previously. 
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Chapter 4 Multi-agent system for DARWIN 
 

4.1 Introduction 

 

In the previous chapter the design of a multi-agent architecture was discussed.    

In this chapter a design for a multi-agent control system using the HASA 

architecture for a formation flying mission is developed.  This is for two main 

reasons, firstly to show that the architecture can be applied to a wide range of 

missions and secondly to show that a control system, that requires a set of 

relatively complicated simulation models, developed using this architecture can 

be adequately tested. 

 

In the first part of this chapter the DARWIN mission will be outlined as well as 

the current expected baseline for its level of autonomy, formation flying in the 

domain of space missions will be discussed before the design of a multi-agent 

system to control this type of mission is described in detail. 

 

The design of a multi-agent testing suite is developed and the testing suite 

implemented in order to test the multi-agent control system.  The multi-agent 

system described herein is an extension of the work presented here [71].  A 

more comprehensive look at the ESA missions that were considered for multi-

agent control can be found here [14]. 

 

4.1.1   The DARWIN mission 

The DARWIN mission concept offers an excellent example of a formation flying 

mission that could also benefit from on board autonomy to improve its science 

return and operational reliability. 

 

The DARWIN mission's primary purpose is to detect and characterise Earth-like 

extra-solar planets (exoplanets) and search for signs of life in the exoplanet's 

atmosphere. This is to be achieved by the use of a formation of interferometric 
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space telescopes.  DARWIN would operate in the mid infra-red band and by using 

nulling interferometry between the telescopes be able to compensate for the 

massive differences in light intensity between the exoplanet and the star it is 

orbiting [72]. 

 

The DARWIN mission’s implementation of nulling interferometry requires that a 

number of independent space telescopes all observe the same point in space, in 

this case the candidate star, simultaneously. The light from the star is collected 

at each telescope and then transmitted to a central hub. Precise phase shifts are 

applied to the light coming from each telescope with the aim to cause 

destructive interference on the light coming from the star but constructive 

interference on the light coming from the faint exoplanet [73, 74]. 

 

 

Figure 4-1 Artists impression of the DARWIN mission. Credit: ESA 

 

As such the mission concept comprises of a number of space telescopes, (3 or 4 

is the current baseline) and one central hub collecting the light from the 
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telescopes, processing the data and providing communications back to Earth. 

The current mission concept baseline suggests that the spacecraft would be 

launched by either a single Ariane-5 launch or two separate launches by Soyuz-

Fregat launchers [75]. After separation from the launcher the flotilla of 

spacecraft will acquire a coarse formation and proceed on their planned 

trajectory to the second Sun-Earth Lagrangian point (L2).  Once the flotilla 

arrives at the L2 point the imaging formation will be acquired. Once the 

spacecraft are very close to their final position they will acquire the final 

formation with sub millimetre accuracy using radio frequency and laser 

metrology devices on each spacecraft and the hub. The formation will need to 

be able to perform manoeuvres to reconfigure and rotate the formation to image 

new stars without losing the relative positional accuracy gained from using the 

metrology devices. 

 

The DARWIN space telescope concept is based on the Bracewell nulling 

interferometer concept but with key changes. The Bracewell nulling 

interferometer [76] operates when two small physically separated telescopes 

both point towards a star and collect light. The light hits the telescopes as a 

wave front and if the optical paths are exactly equal, constructive interference 

occurs when the two beams are combined. If a phase shift of half a wavelength 

is added to one of the beams (the phase shift must be achromatic in order not to 

lose any information in the resulting image) then destructive interference occurs 

and the light from the star is cancelled. If the telescopes are then rotated 

around an axis pointed towards the target star they will constantly keep the 

stars light in destructive interference as it is at the centre of the field of view 

but periodically allow the light from the exoplanet to be visible.  

 

The DARWIN system builds upon this basic premise but is significantly more 

complex. The Bracewell concept does not take into account the possibility of a 

zodiacal cloud around the target star which produces what is known as extra-

zodiacal light [77]. This exo-zodiacal light is not negligible when trying to image 

such a faint target as the exoplanet.  For example the integrated zodiacal light 

emitted from the Sun’s zodiacal cloud is equal to three hundred times the 

brightness of the Earth in the near infra-red band in which DARWIN will operate. 

The concepts required to minimize or eliminate the exo-zodiacal light require at 
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least 3 telescopes. The rotation of the interferometer in the Bracewell design is 

a relatively slow way to modulate the signal coming from the exoplanet and 

requires a constant rotation of each telescope. This rotation adds another layer 

of complexity to an already complex formation flying and attitude control 

problem. The DARWIN concept includes the partial recombination of the light 

beams within sub-interferometers and movable mirrors permit the internal 

modulation of the signal. This kind of modulation is faster and easier in terms of 

configuration control  

 

A DARWIN/Terrestrial Planet Finder (TPF) type mission will allow for direct 

observation and spectral analysis of an exoplanet but in order to directly image 

the planet an interferometric mission with much larger baselines and light 

collecting abilities would be needed.  DARWIN is however a step on this road and 

would provide priceless scientific data as well as paving the way for future 

interferometric missions [78]. 

 

During the transit to the L2 point it is envisaged that the DARWIN formation will 

fly in a sphere of roughly 30km diameter holding a loose formation. The 

maximum inter-satellite distance is limited by the operational range of the 

satellites relative position sensors. The control system at this point will aim to 

keep to the target trajectory while minimizing any risk of collision between the 

spacecraft. The acquisition of the final formation will be carried out by the 

mission’s on board autonomous control systems. The autonomous systems will 

utilise all of the available metrology data and other sensor data to be able to 

compute the set of manoeuvres to be carried out in order for the spacecraft to 

acquire the particular formation needed for the mission. 

 

4.1.2   Baseline for DARWIN mission autonomy 

 

The DARWIN mission from its very conception has required a high degree of 

autonomy in order to operate effectively.  The exact nature of many of the 

autonomous systems that would help to operate DARWIN has not been finalized. 

What has been envisaged at this early stage of mission development is an 

architecture encompassing differing levels of autonomy which are encapsulated 
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into 3 distinct levels, a decision level, an execution level and functional level. 

The exact nature or architecture of the planning, execution and FDIR systems 

has not been finalized. This requirement for a high level of autonomy but no 

hard definition of how it should be achieved offers a very good opportunity to 

design and develop an autonomous system based on newer technologies such as 

multi-agent systems for this mission. 

 

The DARWIN mission has many different requirements for autonomy throughout 

its many components and subsystems. An autonomous navigation system is 

required to allow the mission to undertake the complex formation flying aspects 

of the mission and to enable a fast enough response for retargeting and 

formation reconfiguration. In order to operate autonomously for long periods, an 

autonomous FDIR may be required and in order to operate effectively and will 

need to be connected to all of the mission subsystems. The nature of the 

distributed telescope mission means that many tasks will have to be undertaken 

in parallel aboard different spacecraft, in order to be able to carry out these 

tasks concurrently and still successfully synchronise the spacecraft’s operations 

an autonomous task execution system must be developed and can be thought of 

as part of the higher level autonomous planning system. The execution level 

must be able to respond to requests in an expedient manner and the planning 

system must also be tightly linked with the FDIR subsystem. 

 

DARWIN’s architecture and use of autonomy, and thus its feasibility, will depend 

heavily on the results from the European Space Agency’s Project for Onboard 

Autonomy (PROBA) series of spacecraft, most notably PROBA-3.  

 

PROBA-3 is the third in a series of spacecraft developed and deployed to validate 

novel technologies in space systems. It is focused on the system’s need to 

perform reliable and precise formation flying and will test hardware and 

techniques using two micro satellites. The technologies under scrutiny involve 

autonomous formation flying, autonomous FDIR and the use of RF and optical 

metrology for formation control. In PROBA-3 the guidance, navigation and 

control systems and the formation flying systems will operate autonomously and 

be entirely space based but with ground based verification. This allows the 

ground team to oversee the formation flying sequences and to intervene if a 
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problem occurs. In the PROBA-3 mission there are only two vehicles making up 

the formation so it only has a single axis. This formation allows for simpler 

autonomous formation flying controllers but is considerably less complex than 

the multi satellite formation envisaged in the DARWIN mission concept [79].  

PROBA-3 is expected to launch in 2015-2016 timeframe [80]. 

 

The baseline for the DARWIN mission states that the mission should be 

autonomous in the following ways: 

 

• The mission should be able to autonomously undertake the coarse 

navigation to its final destination orbit.  This aspect will be continuation 

of the work carried on PROBA-3 in autonomous collision avoidance along 

with autonomous loose formation flying.   

• The mission should also be able to autonomously make science 

observations from a plan and modify the observation plan if necessary.  It 

is envisaged that high level plans will be uploaded from the ground but 

the mission must have the facility to autonomously modify the plan to 

either re-factor the plan based on the current state of the mission or to 

optimise the plan further.   

• It is also envisaged that the mission will have an autonomous guidance, 

navigation and control (GNC) system capable of carrying out the 

formation flying manoeuvres required for successful operation of the 

mission.  The GNC system must, as well as operating autonomously, be 

able to accept high level commands from the ground such as acquire a 

specific formation, slew formation, resize formation etc.   

• The mission must also have an autonomous failure detection, isolation and 

recovery (FDIR) system capable of handling any potentially harmful 

scenarios to the mission as a whole or to individual subsystems.  To 

operate effectively the FDIR must have a fast and accurate fault 

detection and diagnosis system as well as a robust decision making system 

for computing solutions or repairs in response to failures. 

 

The autonomous formation flying control will be decentralised for transit and 

will then transition to a centralised structure when operations begin. Overall 
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formation control will be assigned to a single central agent which is in 

communication with all of the other agents in the system. The collision 

avoidance agents however will be fully decentralised and Independent from the 

formation flying agents. 

 

4.1.3   Formation flying 

 

When operating as a formation a consensus must be reached between the 

constituent satellites.  This consensus is vital as all of the spacecraft must agree 

on how they share information such as position, velocity etc. For further reading 

on this topic see [81, 82] 

 

There has been a significant amount of work carried out on the use of consensus 

schemes to allow for the more efficient creation and maintenance of vehicle 

formations.  Some of the findings in this body of work are only applicable to the 

specific type of vehicle that is being studied, such as wheeled vehicles, 

terrestrial unmanned aerial vehicles etc. but a lot of the general ideas can be 

applied to spacecraft flying in formation.  The ability of an algorithm to find a 

consensus and the benefits of this are different depending on the topology of the 

formation in question.  For example in the case of a circular pursuit formation 

which is favoured for many space missions the topology itself is greatly 

simplified into a uni-directional ring which allows for very efficient formation 

flying manoeuvres [83].  A common approach is to find the consensus of the 

whole formation and then use this point as the equivalent to a single vehicle and 

the other vehicles in formation just try to achieve a certain offset from this 

point.  In [84] an approach that allows for the analysis of consensus problems 

and stabilization problems is outlined. 

 

As well as finding a consensus between agents and thus between spacecraft, the 

spacecraft must also be correctly aligned and positioned with respect to each 

other.  For a mission such as DARWIN this is of vital importance as the optical 

interferometry system relies on extremely accurate inter-spacecraft distances 

and that all of the spacecraft are observing the exact same point on the target, 

in this case the candidate star that is hoped to have an exoplanet in orbit around 
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it.  It can be envisaged that a fully connected topology would be able to achieve 

a synchronised attitude of the spacecraft but this may be expensive to operate 

in terms of communication packets sent and received and thus time.  A sparser 

communication topology with spacecraft only communicating with its direct 

neighbour or neighbours to synchronise attitude may be simpler [85]. 

 

As well as being able to effectively acquire the formation position and attitude, 

there may be time constraints on the system in which a synchronised arrival at 

the desired target may be beneficial.  If not required implicitly by the mission, a 

synchronised approach to acquiring and changing formation may well simplify 

the problem and reduce the communication and computational load. 

 

Using a consensus and other explicit topologies is not limited to just the 

formation flying problem.  The design decision as to how distributed to make the 

decision making system as a whole is dependent on how much confidence the 

designer can put in the system’s ability to reach a consensus on any given 

problem.  Decentralised decision making has a number of advantages over 

centralised decision making, namely that there is redundancy if something goes 

awry and there is no single point of failure for the system.  The disadvantage is 

that in reality it relatively difficult to guarantee that consensus will be reached 

within any given time frame.  If the topology of the system is simplified without 

damaging the speed or reliability of the system then certain assumptions may be 

proved and time-scales given for normal operations. 

 

The DARWIN structure is relatively simple so a simple completely connected 

topology can be implemented so that all of the agents in the system can 

communicate with each other. 

 

The idea of using highly simplified control laws and each agent only acting 

locally to produce coherent large scale behaviour [86] is very appealing for multi 

satellite space missions.  These flocking laws are typically based on very little 

data, most famously that of the inter-craft distance and the current velocity of 

the spacecraft and the adjacent spacecraft.  All of these variables can be 

calculated at a high rate and thus a flock of spacecraft might be seen as very 

attractive.  The downside of these flocking laws is in their behaviour under a 
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wide range of conditions, their stability and their efficiency.   A lot of work must 

be carried out to understand how perturbations to the system are propagated 

through the flock and it is entirely reasonable to assume that certain types of 

disturbances will cause unexpected consequences.  In this case the very simple 

laws that govern the flocking may not have the ability to avoid collisions or other 

adverse events.  These events would be catastrophic for a space mission and the 

uncertainty inherent in these methods makes them unlikely to be used in their 

most basic state, which is most suitable for terrestrial unmanned aerial vehicle 

(UAV) systems. 

 

4.2  DARWIN MAS design 

 

The following multi-agent system design was designed for a DARWIN [87] type 

mission but can be thought of as an example implementation of the previously 

discussed HASA architecture that implements general formation flying abilities.  

In this multi-agent system there are a number of different agent types: the 

Planning agent, the Formation Flying Command agent, the Formation Flying 

execution agent, the Feedback agent and the Negotiation agent.  We will briefly 

outline their operation here before defining them in more detail as part of our 

architecture in the next section. 

 

4.2.1   Planning Agent 

 

The planning agent is one of the most important agents in the multi-agent 

system as it contains and is in charge of all the primary deliberative and decision 

making processes for the mission.  Whereas in the other agents the tasks that 

will be performed are fairly standard in the spacecraft control domain and a fair 

amount of reuse from other systems can be envisaged the planning agent will 

have to be developed uniquely for this multi-agent system.  This is because the 

decision making processes must be designed to exactly make use of the structure 

of the physical mission (multi-satellite) and the architecture of the multi-agent 

system, as no system of this type has been developed before then the planning 

agent must be developed from the ground up to fully take advantage of the 
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system.  This also means that the planning agent will also need a lot of 

developmental time compared to the other agents and must also be more 

thoroughly tested as it is more deliberative and thus more unpredictable in 

operation than the more common reactive components.  In this agent, plans are 

developed from overall mission goals and objectives which are supplied from the 

ground and should not really change over time.  The planner then uses the 

environmental model to decide which actions out of all of the actions that would 

lead to the completion of its objectives are feasible.  The format of the plans 

must take into account the fact that the planning process itself will be a 

distributed activity and as such the plans will be fragmented and provision must 

be made to allow for the recombination of the individual plans into a coherent 

global plan.  The plans will be object based and can also be further optimised 

for the mission itself, for example in this case the plan is primarily concerned 

with controlling the relative position, attitude and speed of the all the 

spacecraft in the formation.  As such the main plan types will be to acquire 

formation, acquire a target, test plans for validation and verification purposes 

and high level emergency actions that come outside remit of the lower level 

reactive emergency procedures and the collision avoidance mechanisms (CAM). 

 

4.2.2   The Formation Flying Command agent 

 

The next agent in the hierarchy is the formation flying command agent. This 

agent can be thought of as an intermediate step between the high level plans 

that are generated in the planning agent and the actual execution of a formation 

flying manoeuvre. The formation flying command agent takes as its inputs the 

plans that have been ratified at the planning level by all of the planning agents 

on all of the spacecraft. This is a key requirement as the formation flying 

command agent can only undertake to achieve a given formation as long as all of 

the spacecraft are in agreement. This should not be taken to mean however that 

there is no possibility of altering the formation once the acquisition has started, 

only that that the commencement and any change to the formation has to be 

agreed at the highest level by all the spacecraft. The level of abstraction used 

by the formation flying command agent is different to that used at the lower 

level and is not purely comprised of the requisite thruster profiles and timings. 
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Instead the formation change is encoded in its entirety to include not just the 

exact positions that are to be attained but possible alternate positions and 

emergency procedures for the different legs of the formation acquisition. It is 

also important to note that it is not a particular formation that is encoded but a 

change between two specific formations that relies on specific starting point for 

each spacecraft and that each spacecraft be operating correctly in the desired 

state. These formation changes can be manipulated at the highest level and 

exchanged between different agents allowing for them to be suggested, 

negotiated, refined and then, if consensus is reached, enacted. In order to 

generate the formation change profile with sufficient accuracy the formation 

flying command model has a number of specific requirements. It must have full 

access to the spacecraft's system status information so that it can gauge the 

relative performance of each spacecraft and must also have a more accurate 

physical model of the spacecraft and their environment in order to compute 

exactly how to achieve a given formation. 

 

 

4.2.3 The Formation Flying Execution agent 

 

The formation flying execution agent takes care of the aspects of the formation 

change not covered by the formation flying command agent, most notably the 

tasks associated with the execution of and real time monitoring of the formation 

change. At an abstract level the formation flying execution agent converts the 

formation change plan generated by the formation flying command agent into 

specific manoeuvres that are broken down to the individual thruster level.  

 

The formation flying execution agent also has the responsibility for the real time 

monitoring and control of the formation change. Whereas the formation flying 

command agent is a highly deliberative agent that accepts plans and creates and 

manipulates formation change procedures the formation execution agent is 

much more reactive. The structure of this type of real-time operation agent will 

be very different to that of the higher level agents in that it must be able to 

constantly monitor a wider range of inputs and be able to react reliably within a 

very short period of time if required in an emergency or if a change of desired 
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formation is necessary. Where the formation flying command agent creates a 

formation change procedure for the formation as a whole the formation flying 

execution agent instead concentrates on meeting the requirements outlined in 

the formation change procedure but only for its own spacecraft. This extra level 

of granularity allows the agent to more effectively use spacecraft specific 

constraints and resources as well as taking into account the spacecraft's 

performance history in its processes. Again a slightly different physical model 

will be required with more detail of the physical characteristics of the single 

spacecraft as at this level the control of the formation as whole is not 

considered and is carried out at the formation command level. 

 

It can be seen that the physical and environmental models used by the formation 

flying execution agents is very similar to that used by the agents above it in the 

hierarchy but with smaller scope and higher level of fidelity. It can therefore be 

envisaged that instead of having many different models (if our structure is 

suitably modular) we can use the same models for all levels as long as certain 

portions are accessed and taken into account by the correct agents. This ability 

to share resources between agents but only access and compute on the required 

parts offers real advantage to the system designer as fewer individual modules 

and models have to be developed. 

 

As well as receiving commands from the planning agent through the formation 

flying command agent there must also be the capability of the formation flying 

execution agent to execute commands directly, these low level commands will 

be mainly used in the testing of the system within the simulation as part of the 

extensive unit testing of the system but this direct line to the actuators may also 

be used by the emergency components of the systems. These two lines of 

communication however must be kept separate as the availability of direct 

control of the spacecraft introduces more possibility for unchecked manoeuvres 

to be carried out. 
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4.2.4   Feedback agent 

 

The feedback agent and the negotiation agent that will be discussed later are 

part of the "checks and balances" in the system that monitor the system from a 

level at least once removed from the operation but retain the ability to act at 

any level of the system if intervention is necessary. As previously discussed a 

clear distinction between the more deliberative components such as planning 

and the execution of manoeuvres is present in the system. The feedback agent is 

in charge of monitoring and finding any problems that may occur or may have 

occurred in the real-time portion of the system. In order to carry out this task it 

must have complete access to the other agents but has different needs when it 

comes to environmental and physical models. 

 

A decision must be made as to whether the feedback agent has its own models 

of the physical spacecraft and the environment or relies on the models in the 

agents it is checking or both.  An advantage of the feedback agent having its 

own versions of the environment model and physical models for checking is that 

the feedback agent can act as an independent checking mechanism, the 

disadvantage of this approach however is that the feedback agent will need 

models that equate to each agent that it will be monitoring.  The problem arises 

however if the models in both the active agent and the feedback agent are the 

same as any errors could occur equally in both as a common mode failure so the 

feedback agent will offer no real insight.   At the other extreme the feedback 

agent can have no real environmental or physical models itself but instead just 

have a set of checks and criteria that the agents it monitors must adhere to.  

This process would be much faster than computing the calculations of another 

agent in parallel and would give the feedback agent the level of independence 

required to find errors occurring in other agents.  This second approach can be 

further extended to not just operating with hard coded checks on the other 

agent but also, if the need arises, the agent can perform test calculations using 

the agent’s models to test if a particular error is caused by the models used or 

the agent structure. It may also ask other agents of the same type as the 

monitored agent to carry out these checks to see if the failure is common to all 

of the agents.  As well as these more deliberative actions the feedback agent 
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will also encompass the traditional collision avoidance mechanism (CAM) system 

found in spacecraft which is a highly reactive system.   This means that the 

feedback agent will have to decide in a very short time-scale to take action if it 

deems that a collision between any of the spacecraft is likely.  In order to be 

enacted in the quickest possible time these collision avoidance actions must be 

very simple and as standard as possible as the mission’s reliability greatly relies 

on these commands being executed and their ability to reduce the probability 

and potential severity of a collision. 

 

As well as working on very small time-scales the feedback agent will also work to 

try to determine if any errors emerge in the system over time.  With a highly 

complex interacting system such as the multi-agent system in question it is likely 

that there will be certain drifts in the performance of the sub components and 

agents.  The Feedback agent must be able to notice these longer term changes 

and inform the sub system or agent of its error or take further action to stop it if 

necessary.  This process will be carried out by the agent starting with hard 

coded bounds of the system’s expected performance in the chosen metrics, it 

will allow for some drift but this will always be monitored and taken into 

account throughout the system. 

 

4.2.5   Negotiation agent 

 

The negotiation agent is the non-real-time partner of the feedback agent and 

has a similar general remit in that it is designed to facilitate the smooth 

operation of the multi-agent system but instead of trying to mitigate the 

technical faults like the feedback agent the negotiation agent is instead 

designed to stop and recover from any social faults in the multi-agent system. 

 

These social faults are unique to autonomous agents and agent based systems 

where each agent undertakes its own actions as part of a larger system towards 

a common goal.  In this design each spacecraft has a full suite of agents to allow 

for independent operation and facilitate independent error detection and 

resolution.  The negotiation agent is needed in order for these local groups of 
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agents to work together and to overcome any deadlocks or disagreements about 

the higher level goals and plans of the system. 

 

The fact that many of the agents are repeated throughout the system allows for 

the system to operate with a high level of redundancy, this is only true however 

if errors can be detected and consensus reached by the agents if one of their 

kind has failed or is operating incorrectly.  The simple way for this to be 

achieved is for the negotiation agent to operate as mediator and allow for voting 

between agents to discern which agents views are to be incorporated into any 

action.  This sort of process works for the lower level agents but the higher level 

agents will work in a slightly different way.  The higher level agents will select 

from amongst themselves a prime agent (or the negotiation agent will choose 

one if no consensus is reached) and then the prime agent will operate for the 

whole formation.  The planning agent is an example of this approach where one 

planning agent will have to take overall responsibility for combining all of the 

disparate plans generated within the multi-agent system and then creating a 

single comprehensive plan.  The other planning agents however will also be 

constantly running the same calculations to check the prime agents operation is 

correct and the negotiation agent will revoke an agent’s prime status if the 

other agents disagree with its results. 

 

The negotiation agent will also be used by many of the other agents in the 

system to break deadlocks and enable the system to operate effectively.  It can 

be easily envisaged that two spacecraft may disagree about their position in the 

formation and this disagreement would stall any efforts to compute and enact a 

formation acquisition procedure.  In this case the negotiation agent would have 

to consult with any non-involved formation flying agents and decide which agent 

is correct.  If none can be chosen in this way the negotiation agent will have to 

try to take into account other factors such as the historical reliability of the 

agents in question and their past performance and then make a decision based 

on this data.  This agent has the most deliberative aspects after the planning 

agent but also shares the most with traditional informational agents as some of 

the most common problems with all agent systems is social deadlocks and similar 

problems [88–90]. 
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4.3  Agent Structure and Interaction 

 

Figure 4-2 shows a general overview of how the agents on each craft interact 

with each other. 

 

 

 

Figure 4-2 Agents on a single DARWIN spacecraft 

 

The agents for the DARWIN mission were initially prototyped in the SeSam [52] 

multi-agent simulation environment.  This approach offered a number of 

benefits over proceeding straight to coding the agents in the target programming 

language, firstly that the structure and interaction of individual components can 

be easily seen and modified and secondly that these designs can be used to 

create skeleton code structures in Java removing some of the work needed for 

implementation.  The following figures (4-2 to 4-7) show the structure of the 

agents in SeSam. 
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Figure 4-3 Planning Agent Level 2 

 

 

Figure 4-4 Planning Agent Level 2 
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Figure 4-5 Formation Flying Command Agent 

 

 

Figure 4-6 Formation Flying Execution Agent 
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Figure 4-7 Feedback Agent 

 

 

Figure 4-8 Negotiation Agent 
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4.3.1   Quantification of multi-agent system attributes 

 

As well as measuring the performance of the system in the simulation testing 

suite the systems should also be characterised beforehand so we can try to find 

some correlation between system parameters and system performance.  One of 

the key measures we want to make is that of system autonomy.  We can grade 

autonomy using levels such as those used by [91] which are fully autonomous, 

boss, cooperative, underling, instructable and remote control.  Using this 

approach we can use the rank of the agents within a given multi-agent system to 

uniquely identify the system. 

 

Another useful metric that is very important is the amount of resource sharing 

that a given agent or component undertakes.  One of the key reasons why multi-

agent systems can operate is that they can share and use finite resources.  An 

example given in [91] is that of a vision system that could easily apply to many 

resources in our distributed space mission.  Let us say that we have two 

behaviours using the same vision system, � and �.  � can be a collision 
avoidance behaviour that is part of the larger collision avoidance system and � is 
a scientific event detection behaviour.  Let us, for this example, assume that 

the behaviours are mutually exclusive.  This means that the behaviours must 

share the resource (in this case the vision system).  Let us say that a system has 

a certain capacity, in the vision system’s case this can be thought of as the 

frequency capacity or how many times it can be used in a given time.  If for this 

simple example we assume the cost of switching between behaviours is 

negligible and the minimum operating frequency for � is �� and for � is ��. If � 
is less than �� + �� then the capacity of the vision system must be increased.  If � is greater than �� 	+ ��  then the two behaviours can operate together without 
penalty.  If the actual operating frequency achieved can be written as ���  and ��� 
then we can use 

�	
�	
��
	��
��
��� 	 as our resource sharing metric. 
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4.4  Development of a multi-agent simulation suite 

 

4.4.1   Simulation 

 

When trying to determine the validity of a multi-agent system it is not just the 

lower level actions that must be considered.  One of the key benefits of 

distributed intelligent systems is the ability for emergent behaviour to arise.  It 

is this emergent behaviour however which cannot be adequately validated using 

most formal methods. Instead the system has to be tested in order to adequately 

gauge its response for any given scenario.  Ideally the software would be tested 

on the final hardware and within the final environment in which it will operate 

but in practice this is rarely feasible, especially in the case of space missions. 

 

The field of simulation is a particularly broad one and encompasses many 

different areas.  The many different variations of simulation have usually been 

developed to try to simulate particular systems and as such there is very little 

work on "general" simulators as for worthwhile simulation of a system to be 

carried out it must be tailored to that specific system. 

 

4.4.2   Test suites 

 

In the development of simulation test suites there are a number of approaches 

the system designer can make in order to try and simulate his system.  The 

system can be simulated entirely in software or with some components modelled 

in actual hardware.  The latter is known as simulating with "hardware in the 

loop" and is frequently seen as an effective middle ground between 100% 

software simulations and testing the control system on the actual hardware.  

Most simulation begins by being carried out completely in software for a number 

of reasons, the main one being the ease of deployment and the ease of 

modification of the simulation and the second is the reduced cost this ease of 

use entails and the zero risk it poses to expensive hardware.  If the simulation is 

developed following a modular structure then the designer has the ability to 
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introduce hardware in the loop to the system while not having to change the 

entire simulation system.  This approach entails simulating the individual 

hardware components that make up the system as accurately as possible so the 

control system is tested using sensor values and executes its action through the 

appropriate actuators.  It is then easier to bring real hardware into the 

simulation by replacing those individual software components with their 

respective hardware part where appropriate and feasible.  The approach taken 

in this work is based on a 100% software approach but with multi language and 

multi-platform compatibility which allows for the easier hardware integration in 

the future. 

 

The evolution of this concept is the development of hardware test beds.  Where 

the hardware for a given domain can be thought of as relatively standard across 

a given problem domain then a generic hardware test bed that can test multiple 

different types of control systems can be created.  A good example would be a 

motor car which is modified to allow full software control over the steering, 

acceleration, brakes, gears etc.  If the interfaces to these actuators are 

correctly developed then many different kinds of automated driving software 

could be tested on this one piece of hardware.  Similar hardware test beds have 

been developed for space missions: these range from the generic which have 

typical spacecraft subsystems such as power, thermal, etc. to formation flying 

test beds where robots or spacecraft analogues operate to acquire their 

formation in an environment specifically designed to test the formation flying 

algorithms using close to real hardware (cold gas thrusters, real sensors etc.) but 

in a reduced degrees of freedom environment such as on a "frictionless" two 

dimensional plane. 

 

Much like multi-agent systems themselves simulation systems can be distributed 

or centralised.  A centralised simulation system is better suited to single 

spacecraft whereas a distributed system is obviously more suited to a multi 

satellite or formation flying type mission.  A centralised simulation system works 

by having all of the modules comprising the simulation environment, the sensors, 

the actuators etc. all in one place.  This approach allows for a more easily 

tested simulation suite and also makes development, maintenance and 

modification easier.  The downside is that this sort of system is not suited to 
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modelling distributed systems where multiple satellites and multiple processes 

are concurrently operating.  For this type of mission a distributed simulation 

system makes more sense.  In this case the simulation is run on multiple nodes, 

roughly equating to the number of nodes on the system being tested.  In this way 

the abilities and characteristics of the distributed system can be ascertained and 

any benefits over a centralised system hopefully quantified.  Communication 

between the nodes should be in the protocols that will be used in the hardware 

where possible, frequently these protocols are wrapped in a standard 

transmission control protocol/internet protocol (TCP/IP) layer and the 

simulation runs over a distributed computing network.  The benefits of this 

approach are that any improvements arising from the distribution of the system 

can be gauged and that for complex system the computational load of the 

simulation can be distributed.  The simulation suite developed in this work is 

decentralised. 

 

4.4.3   Basic types of simulation 

 

Simulations can be further grouped as: 

 

• Containing Static or Dynamic Models 

• Containing Stochastic or Deterministic 

• Containing Discrete or continuous time models 

• As modelling aggregates or individuals 

 

Dynamic models are models that change over time.  This type of model is 

obviously used for the simulation of space systems that involve movement 

through space and thus orbital dynamics or any states that change over time.  

This includes all autonomous agent based systems (as these must inherently 

operate over time in order to be autonomous).  Static simulation models are 

used when modelling a single point in time for a system.  This type of simulation 

is used for the optimisation of models and statistical simulations such as Monte 

Carlo analysis or for statistical learning techniques such as neural networks or 

support vector machines.  Dynamic models are used for the core of the test suite 
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but static models can be introduced to increase the agent’s functionality, for 

instance by introducing a learning model for some agent or agents. 

 

The type of model in the simulation can also be further categorised.  A 

stochastic model is a model whose behaviour cannot be entirely predicted as it 

involves the interaction between the models previous state and some 

randomised elements.  A deterministic model on the other hand can be entirely 

predicted based on the current or previous states of the system.  A chaotic 

model can be thought of as a deterministic model but with a resulting behaviour 

that cannot be entirely predicted and which is highly sensitive to initial 

conditions [92]. 

 

The key modules in this suite are deterministic but stochastic processes are 

introduced by some aspects of the agent’s interactions so depending on the 

scenario and the agents involved the system can be either deterministic or 

stochastic. 

 

Another key differentiator between models is whether they operate over 

continuous or discrete time. Discrete models operate by changing their state or 

variables only at certain (discrete) points in time.  These discrete time points 

can be regular intervals or only coincide with the occurrence of certain event.  

In a continuous model the system states and variables change constantly and 

may have one of an infinite number of values.  This is the desired approach for 

modelling the physical world but a discrete model is much more practicable 

when taking into account computing constraints and the difficulty of modelling 

complex systems on analogue computers.  The models in this system are based 

on discrete models with the simulator numerically integrating between epochs. 

 

Another choice that has to be made is whether the simulation simulates every 

entity to its fullest extent or instead simulates groups or aggregates of entities. 

Cases where both would be applicable can be imagined. In a relatively small 

scale system with a limited number or agents or modules then a full simulation 

can be carried out in a reasonable time frame. If the system was much larger a 

full simulation could still be carried out but the decision would have to be made 

as trade-off between simulation fidelity and computational time. At the other 
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extreme in the case of a simulation that involves a large number of human 

protagonists that interact with each other and the system it can be useful to 

model these as groups or in aggregate in order to reduce complexity with limited 

impacts on the fidelity of the simulation as a whole. The impact of using 

aggregates and groupings on increase computational speed at the cost of fidelity 

should be measured by conducting small scale simulations using the individual 

entities and the aggregates and comparing results. It may be hard however to 

carry these results over to larger scale simulations as the effects of individual 

interactions at the larger scale may have more impact than at a smaller scale.  

As one of the key aspects of the work is the inter-agent interaction the 

simulation suite will simulate every agent to its fullest extent. 

 

The question raised above regarding the relationship between the fidelity of the 

simulation and the computational cost of the simulation is the key question in 

the field of simulation. It is relatively easy to create simulation systems that 

model the extremely low level behaviour of a system and each of its individual 

components, but frequently the computational cost is too large. With the 

constant increase in computing power available to the average user the number 

of simulations that can be run in a reasonable time increase but it is still highly 

desirable to instead optimize the simulations and run as many as possible within 

a particular time frame. There are number of different strategies for making a 

simulation more efficient.  In this work the highly parallel nature of the system 

being simulated is used to our advantage as it naturally allows large parts of the 

simulation to be run in parallel, hardware permitting. 

 

4.4.4   Simulation Structure 

 

The actual structure of simulation is extremely important to its efficiency. At 

the most basic level the simulation is either run in series or in parallel. In series 

the answer to a calculation is fully computed before moving onto the next step. 

In the parallel case multiple calculations are carried out at the same time. With 

the proliferation of multi-core and multi-threaded processors the parallel 

approach is much faster but many systems cannot be simulated entirely in this 

way as many simulations require the previous answer to a calculation before 
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being able to perform the next calculation. Distributed control systems and 

especially multi-agent control systems do however lend themselves to parallel 

computation. In operation the actions of the agents are carried out in parallel so 

it stands to reason that they should be able to be carried out in parallel in the 

simulation. There has been a great deal of work on multi-agent simulation [93–

96] and this is especially important when there is a mix of software, hardware 

and human agents. In our planned autonomous multi-agent control system there 

are no human agents in the autonomous phase and the hardware is under direct 

control of the software agents. 

 

Instead of taking a step back and trying to abstract and simulate a software 

agent system the system designer can omit the development of this extra 

simulation layer and gain a more accurate insight into the multi-agent systems 

operation and performance. This is carried out by not simulating the multi-agent 

system but instead coupling the actually running multi-agent system to a 

simulation that constitutes its external environment. In this way the multi-agent 

system’s performance can be more accurately gauged while still having full 

control of the simulation environment. 

 

4.5  Simulation Suite Architecture 

 

The following work was based on the work presented in “Design and Testing of 

an Autonomous Multi-Agent Based Spacecraft Controller” [97]. 

 

Any agent that has some deliberative aspect, that is it deduces outcomes or 

solves problems about its environment, must by implication have some sort of 

environmental model.  The environmental model for a multi-agent system can 

take many different guises but all environmental models share certain key 

features.  It helps to define the environment as that in which the agent will be 

operational.  In the robotics domain and thus similarly the space domain this 

includes the "outside world" but must also contain the hardware that the agents 

operate on and the agents themselves.  The fact that a multi-agent system’s 

environment can include both hardware and software components as well as 

some definition of the external world can make definition of these environments 
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difficult.  As with most of the more complex ideas and constructs in multi-agent 

systems the environment itself can be split into sub-sections but they must all 

have the same basis.  The agents obviously have relationships with the other 

agents in the Multi-agent system but may also have relationships with agents or 

entities outside the MAS such as ground controllers.  The ground controllers in 

this case should also be included in the environment.  The agents also have 

relationships with the hardware on the mission, at the most basic level they 

have a controlling relationship with the actuators and an observant relationship 

with the sensors.  The agents also have relationships to the outside world in that 

environmental disturbances such as atmospheric drag, gravity fields, etc. can 

alter the orbital parameters of the satellite. 

 

The agent’s relationships with the outside world may not be as literal as those 

found in the classic mobile robotics literature in that they are not pushing boxes 

or (at least we hope) not directly physically interacting with each other. Instead 

the relationship is more that the outside world acts as a set of modifiers on the 

agent’s actions and the agent must understand these modifiers in order to 

successfully deliberate about what actions to take or gain insight into what has 

happened in the past. 

 

For example the relationship an agent has with the external world may define 

certain constants or sub-relationships that affect for instance the motion of the 

robot.  For a simple wheeled robot these may include the coefficient of friction 

or the way that momentum is calculated.  They are not restricted to purely 

modelling the physics of the situation but can also include data about the 

scenario, so if the wheeled robot relied on solar power then the agent will have 

some relationship that tells it the light levels in different areas or at different 

times that will allow it to deliberate about what is the best course of action to 

take. 

 

This idea of defining a multi-agent systems environment as a series of 

relationships is extremely flexible and can be applied to both pure software 

agents as well as situated (robotic etc.) agents.  The level of abstraction gained 

by the definition in terms of relationships has another key benefit.  A well-
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defined modular structure with many common components between systems 

makes for a much greater ease of implementation into an actual system. 

 

In this way relationships between agents equate to interfaces between methods 

and behaviours and act as a good starting point for the design of the control 

software.  An interesting by-product is that if we are defining our environment 

for the agent system in a clear and modular way, this can help us with the 

simulation of the multi-agent system.  If we are sensible with our development 

then it stands to reason that the set of relationships that are used to define the 

outside world in the agent’s domain can be used as an environment in which to 

simulate the multi-agent system.  At its most simple, instead of a multi-agent 

system having knowledge of the real world through sensors and then operating in 

the real world through its actuators the relationship model developed for the 

agent can be used to model the outside world.  This can be summarise succinctly 

by the statement, "if we already have  a model of the external world to allow 

the agent to reason then why don't we use the same model to replace the 

external world in our simulations?" 

 

The description and similarity between the environmental models can lead to 

confusion so a nomenclature has been devised to ease the description of these 

types of models.  At its most basic we can think of three different models, the 

intelligence model ��, the simulation model �� and the agent model ��.  For an 
agent controlled robotic platform operating in some environment we can model 

it by a number of agent models which are coupled to one or more intelligence 

models.  These then operate within the external world when the robot is 

operating.  These intelligence models contain the relationships that describe the 

external environment.  We can then think of replacing the real world in the first 

example with a simulation model which encapsulates the nature of the real 

world through description of its relationships with the agents.  As such it can be 

seen that the �� and �� will have very similar structures and will share a 
common basis. 

 

Formally we can say the simulation model, �� can be defined as: 
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 �� 	=< �, �� > (4-1) 

 

where � is a dynamical model comprised of the agent’s relationships with the 
outside world (friction, momentum, equations of motion etc.) and �� is a sensor 
data generator that is required to convince the multi-agent system that it is 

operating in the real world and not in a simulation.  The agent model, �� can be 
described as: 

 

 �� 	=< �,��, �� , �� > (4-2) 

 

where � are the agent’s goals, �� is the agent’s knowledge, � is the agents 
memory and �� is a coupling with an intelligence model ��.  The intelligence 
model �� can be defined as: 
 

 �� =< �,�� , �� ,�� , �� >	
 

(4-3) 

where � is an intelligent behaviour,	�� is the dynamical model used by the 
behaviours (it can have exactly the same structure as the dynamical model in 

the ��), �� is the knowledge required by the behaviour � and �� is the 
behaviour model itself. 

 

So the �� equates to the dynamical model required by the intelligent behaviour 
and is thus very similar to the dynamical model � that is used in the simulation 
model ��. This requirement for a dynamical model as part of the greater 
intelligent behaviours of the agent can be made due to the fact that all our 

agents will be situated.  That is, they will operate on real hardware that 

interacts with the outside world.  Even though not all agents will require direct 

constant access to a dynamical model go their environment in order to operate, 

such as the agents in charge of formation flying or manoeuvre execution it can 

be envisaged that there will be occasions where nearly all agents may have use 

of predictions based on the dynamical model or may need to reason about the 

events of the past by using the dynamical model.  As such, although it is not 
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strictly necessary it is deemed prudent to have the dynamical model as part of 

the intelligent behaviour model �� definition. 
 

Any agent can therefore be described as: 

 

 � =< �� , ��, �� >	 (4-4) 

 

where �� is the behaviour model, �� is a coupling between the agent and a 
simulation model and �� is a coupling between the agent and intelligence models 
where |��| 	= 	1 and |��| 	>= 	1.  This structural definition allows for a given 
agent to access multiple intelligence models depending on its requirements. 

 

With a set of properly defined agents utilising a number of intelligence models, 

all operating with a single simulation model then testing can commence.   The 

simulation model itself consists of a dynamical model and sensor data generator 

and can be used by the system designer or tester to create a set of scenarios 

that will be tested.  As well as the scenario definition the relationships between 

all the agents and the structure of the agents themselves is also pre-defined and 

allows for many different tests to be carried out. 

 

4.5.1   Describing Scenarios 

 

During the early design stages of a multi-agent controlled system the designer 

wants to be able to use the test suite to quickly and easily evaluate possible 

multi-agent system configurations.  As explained before, the multi-agent system 

itself can be defined in many ways; the structure and architecture of the system 

as a whole and of individual agents can have a massive effect on the success of a 

given multi-agent system so testing variations of the same multi-agent system at 

an early stage can be highly beneficial. 

 

As well as changing the configuration of the agents and the multi-agent system 

the designer can also use the dynamical models and the structure of the 

simulation and intelligence models to gain a deeper insight into some specific 
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traits of autonomous systems. This can be achieved by introducing and managing 

a particular disparity between the simulation model and the behavioural model. 

 

To take a step back we can see the benefit of sharing the dynamical model 

between the simulation model and the intelligence model.  In this case the 

simulation model is acting as our replacement for the real world.  As such the 

simulation model as a whole and thus the dynamical model at its heart must 

have a fidelity as high as is practicably possible to make the simulation results as 

accurate as possible. 

 

If we reuse this high fidelity dynamical model for the intelligence model, and 

thus the intelligence of the agents, then we are saying that the agents have 

access to this high fidelity model when operating the real world.  In reality the 

hardware constraints of the real space mission will be orders of magnitude more 

restrictive than that of the desktop hardware and computing clusters available 

for the simulation of the mission.  As such we may choose to purposefully lower 

the fidelity of the model used by the agent’s intelligent behaviours in order to 

more closely match that which we will be able to deploy in the real spacecraft.  

As well as modifying the dynamical model used by the agents to match the 

available hardware we also modify the dynamical model in other ways to allow 

us to gain specific insights into the operation of the multi-agent system. 

 

We can lower the fidelity of the dynamical model used by the agents in a 

number of ways.  Most intuitively we can think about applying another layer to 

the model in which the values generated are rounded or errors introduced from 

some external random number generator.  The highly structured and modular 

construction of our dynamical models however also allows us to quite simply 

reduce the number of terms used in any given calculation, so for instance terms 

in the higher fidelity models dealing with other bodies or higher order harmonics 

may be excluded in order to better reflect the type of model available to the 

spacecraft in operation. 

 

In conjunction with the sensor data generator the dynamical model can also be 

manipulated to help with the definition of more complex scenarios for the test 

suite.  For instance the dynamical model can be modified to model the failure of 
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any of the actuators on the spacecraft or indeed any of the sensors of the 

spacecraft.  As well as modelling complete failure partial failure of components 

can also be modelled and subsequently the design’s ability to deal with these 

errors ascertained. 

 

As we can use the test suite at the preliminary stage of the design we can also 

use it to make decisions about what level of fidelity we need for the different 

agents by running the simulation repeatedly with different fidelity models and 

comparing performance between the systems on a the same suite of test 

scenarios. 

 

The design of multi-agent simulation system has to take into account many 

different aspects. One of the key decisions to be made is whether the simulation 

should be generic or domain specific. One of the key reasons for building a 

multi-agent simulation system should be the time it saves future users when it 

comes to simulating their own multi-agent systems. As such the more multi-

agent systems that can be modelled the more utility it offers future users. On 

the contrary however it takes a not inconsiderable amount of work to develop a 

multi-agent simulation for any given domain and although the kernel of generic 

multi-agent simulation system may be small, there will be requirement for 

domain specific libraries. Another disadvantage of generic simulation systems is 

that they will not, by their very nature, be optimised for one particular domain. 

 

It is desirable of course to find some middle ground and try to make our 

simulation system as generic as possible while still being able to adequately 

carry out the simulations we require. In our case we want to be able to 

effectively simulate spacecraft and in particular formation flying spacecraft. 

This domain has widely divergent needs when compared to purely informational 

agents but our simulation system could be easily applied to more situated 

agents, in particular mobile robotics. The clear design philosophy behind the 

development of this simulation system, that is modularity and good object 

oriented design, means that without any extra work the simulation system can 

be used on other mobile robotics applications or seemingly different domains 

such as operational analysis which can be modelled with only a change to 

simulation and intelligence models of the agents. 
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The idea of trying to pursue a more generic structure for simulation models can 

however provide benefits. The development of a more generic system means 

that the designer must try to make the system as transparent as possible and 

maximise the ability of future users to add components or even change large 

portions of the system to suit their needs. Striving for extra clarity and 

extensibility in this way will inevitably improve the interfaces and construction 

of the code being generated. One of the most common problems, and indeed 

one that our system is trying to address is that a great deal of the work carried 

out in the scientific community is opaque to other researchers either because 

they do not have access to the code in question to repeat the tests carried or 

more commonly that the code produced has been developed with the specific 

purpose of carrying out a very well defined test and is totally impenetrable to 

any other user. This impenetrability usually comes from the software's non-

existent or badly reduced documentation and the use of non-standard interfaces 

to other libraries. 

 

One of the aims of our simulation system is to allow the user to use external 

libraries for certain parts of the system. At its most general this means that 

simulation models and intelligence models can be externally developed and 

plugged in to the system.  The reason for this is that it is envisaged that our 

simulation system will be used at an early stage and primarily in the comparison 

of different architectures or intelligence approaches for the autonomous control 

system. One of the key aspects of the system developed here that is different to 

many others is that it is designed from the ground up to support multiple 

different platforms. The idea behind this was not to preclude using libraries or 

modules that a user may want to test purely because they were developed in 

another system or using a different programming language. 

 

In order to carry out simulations using different libraries on different platforms 

we have to use a fairly specialised structure to enable all of the component 

parts to talk to each other. The structure however is perfectly compatible with 

multi-agent systems. In our simulation system communication between the 

different modules or libraries (not the agents themselves) is carried out by 

simple client server structure. This structure allows us to interface disparate 
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technologies while still having full control over the communication and the 

interfaces.   It also allows us to easily deploy the system over multiple nodes as 

the client server structure is already there to allow this. 

 

4.5.2   Discrete versus Continuous simulation systems 

 

The client server structure allowing heterogeneous modules and components to 

interact with the simulation does however force our hand into making one 

specific decision; that is the decision of whether to make the simulation 

continuous or discrete in time. The asynchronous and heterogeneous nature of 

our system means that continuous real time simulation is not possible, but with a 

successfully developed discrete time system the simulation system can perform 

extremely varied simulations on differing hardware while still producing useful 

results. 

 

One such discrete multi-agent simulation system is the Swarm system, originally 

developed in the mid-nineties [95]. Swarm has many interesting features but is a 

generic simulation tool and is able to model purely informational agents as well 

as situated agents and everything in between. The modelling formalism that the 

Swarm system adopts is to model independent agents interacting via sets of 

discrete events. Another interesting aspect of the Swarm system is its ability to 

define agents recursively. In the Swarm system groups of agents are known as 

swarms. Each agent in any given swarm can however itself be a swarm (sub-

swarm) and consist of may sub agents itself. This recursive nature of the system 

allows for high level structures to be defined and the detailed structure of the 

system defined by replacing components parts of the high level swarms with sub 

swarms that add more fidelity to the model. The recursive nature can also be 

multi layered and can go any number of levels deep. The Swarm system is also 

able to dynamically create and destroy swarms which would allow for the 

dynamic increase or reduction in fidelity of the model or computational time as 

the simulation demands it. The recursive nature of the HASA architecture allows 

us to gain these benefits in our simulation suite. 
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4.6   Formation Flying for DARWIN 

 

One of the problems facing the designers of future formation flying missions is 

the problem of how to adequately control multiple spacecraft in close proximity.  

Formation flying missions vary greatly and multiple satellite missions can have 

both scientific and commercial objectives.  A current example of operating 

formation flying mission is the TerraSAR-X and TanDEM-X mission which uses 

interferometry to precisely control a close formation mapping of the earth to 

produce a more accurate digital elevation model for geophysical and 

environmental science [98, 99].  Another example is the PRISMA mission [100] 

which is designed as a formation flying and in orbit servicing technology 

demonstrator.  As can be seen it is not just test beds and technology trials for 

formation flying that are being developed and flown and the technology is 

rapidly improving.  The hardware is also already in place for interferometric 

formation flying which means that the main stumbling blocks for mission such as 

DARWIN is the obvious financial and political support and the development of 

sufficiently reliable autonomous control system. 

 

As touched on previously the control requirements for a multi satellite mission 

greatly exceed those of a single satellite mission.  As well as the development 

and implementation of more complex control laws a great deal of consideration 

must be given to the communication structure and to the decision making 

abilities of the system.  To summarise the problem of multi spacecraft control 

does not rely solely on the development of the correct control laws but also on 

other factors.  Luckily all of these factors can be described and implemented by 

using a multi-agent control system in coherent way.  The communication 

abilities are inherent to a multi-agent system and as previously discussed 

decision making processes can also be developed to give the agents and the 

system as a whole the desired level of autonomy.  The control laws will be 

encoded in the agents themselves as knowledge and enacted by the reactive 

parts of the system. 
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Understandably there has been great deal of work carried out in the field of 

controlling a formation of spacecraft.  This work varies from classical control 

work [101] to extensive work on an agent based approach to formation flying 

[102, 103]. 

 

4.7   Testing the simulation suite 

 

The simulation suite that we have developed allows for the testing of different 

formation flying strategies.  As the system is modular any given multi-agent 

system can be coupled with any formation flying control components and tested.  

The simulation system also allow the components to be run on different nodes or 

to have been developed in different programming languages so if the software 

for the given formation flying strategy has already been developed it can be 

easily integrated into the system without re-writing it. 

 

4.7.1   Artificial Potential fields 

 

One such formation flying strategy that has been tested is that of using artificial 

potential fields to govern the motion of the spacecraft in the formation.  The 

use of artificial potential fields is extremely popular in the field of mobile robots 

in general and in spacecraft control.  Good examples of the current work can be 

found in [104–107].  At its most general the method works by setting up a series 

of attractor and repulsor nodes in the spacecraft state space.  A set of heuristics 

are then chosen to determine how the spacecraft reacts to the attractors and 

repulsors.  The influence of the attractor and repulsor nodes are governed by set 

of shaping parameters that vary the effect of the nodes over distance to achieve 

the desired control response. 

 

The artificial potential functions implemented were those found in [108] and are 

described below. 

 

Suppose we have a set of spacecraft  	1	 ≤ " ≤ #	$ that are interacting by an 
artificial potential function, %.  The gradient of the artificial potential function 
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defines a virtual force acting on each individual spacecraft. With a spacecraft 

mass, &, spacecraft position,'� and a spacecraft velocity, (� the dynamics can 
be described as: 

 

 )xxxx�)+ = 	 vvvv� 
 

(4-5) 

 &)vvvv�)+ = ∇�%� xxxx�$ − ∇�%/0xxxx�12 − 3vvvv� 
 

(4-6) 

 

The virtual force experienced by the spacecraft is therefore dependent on two 

artificial potential functions and a dissipative term.  The first artificial potential 

function is the steering potential: 

 

 %� xxxx�$ = 	− 12 5 6 '�7 + 8�7$97 − :;7 +	14 6 '�7 + 8�7$97 − :;=
 

(4-7) 

 

The second is the repulsive potential: 

 

 %�1> = ? �/exp��BCD�/FG
1,1H�  (4-8) 

 

In this example we used 3 types of nodes. The attractive ‘gather’ type node has 

a relatively low intensity but a large radius and is used to guide the spacecraft 

from their starting points to the general area of the final formation.  The exact 

formation itself is governed by attractive ‘dock’ nodes that have a high intensity 

but low radius.  These are designed to guide the spacecraft to an exact position.  

There are also repulsive ‘avoid’ nodes which are used in the potential field to 

stop the spacecraft stopping at centre of the gather node for instance.  Each 

spacecraft is treated as an avoid node by all the other spacecraft to avoid 

collisions. 
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The agents on any given spacecraft have access to their �� as well as data about 
the position and state of the other spacecraft in the formation.  All of the 

communication between the agents is carried out within the MAS and consists of 

the agents passing simple FIPA/ACL messages to one another in a peer-to-peer 

fashion. 

 

The functions governing the artificial potential fields are encapsulated within 

each Mi and as such are repeated across all of the spacecraft.  In the case 

outlined in this paper the structure of the �� for each spacecraft is identical but 
this need not always be the case and changing this would allow us to test the 

negotiation and conflict resolution abilities of the MAS. 

 

As a proof of concept the artificial potential field controller was combined with 

the DARWIN MAS and tested in a 2D simulation with no gravity. As a test scenario 

the spacecraft have random starting points within a set radius of the desired 

formation.  The problem for the agents is to acquire the desired formation from 

their relative starting points.  The agents use the distributed artificial potential 

field to move towards the target positions while avoiding each other as shown in 

Figure 4-9.  In this example there is one centred ‘gather’ node with a radius of 

200km and a normalised magnitude of 0.5 and one ‘avoid’ node with a radius of 

20km and a normalised magnitude of -1 (the magnitude is always negative for 

repulsors).  Defining the desired formation are three ‘docking’ nodes with a 

radius of 30km and a normalized magnitude of 1.  Each agent is also viewed as 

an ‘avoid’ node with a radius of 30km and a normalised magnitude of -1. 
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Figure 4-9 3 spacecraft start from random locations within the area of interest 
shown (200km by 200km) and successfully acquire their formation. 

 

This scenario was run 500 times and the results of all the successful tests sorted 

by duration are shown in Figure 4-10. The MAS controlled spacecraft successfully 

acquired their desired formation within the time limit (48 hours) in 69.5% of 

these tests.  This time limit was chosen as a realistic time frame for acquiring or 

changing a formation on the order of 10s of kilometres.  Figure 4-11 shows a 

heat map of the final position of the spacecraft which did not successfully get to 

their desired position.  This was generated to show the most common areas 

where a spacecraft ends up when it fails to acquire its desired position. 
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Figure 4-10 Distribution of times for spacecraft to acquire formation, ordered 
from lowest time to highest time. 

 

 

  

Figure 4-11 Plot showing the distribution and density of the final position of 
spacecraft that failed to acquire the formation 



     
101  Chapter 4 

 

The success of a testing suite is independent however of any success of the 

controller.  The success of the testing suite is based on its ability to help us find 

scenarios where the MAS fails to achieve the desired formation.  In this case 

whenever the simulation failed the parameters are stored so we can investigate 

these failures and what might have caused them. 

 

The most common failure mode in this scenario was two of the agents acquiring 

the correct position but the third agent stopped when it found the equilibrium 

point created by the other agent’s repulsive forces rather than its intended 

destination .   

 

Figure 4-12 Local equilibrium point leading to incorrect final position for the red 
agent 

 

The test suite has proven useful even in this simplified case when trying to find 

failure modes for an autonomous multi-agent system.  As the system under test 

increases in complexity the number of unknown failure modes will increase and 

we hope this tool will aid us in finding them and helping us to validate the 

system. 

 

Grouping and identifying the different failure modes of the formation raises 

some interesting issues.  In this simplistic case the failure modes can be grouped 
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as either in formation or out of formation errors.  In formation errors can then 

be grouped based on rotational, reflectional and translational symmetry.  Out of 

formation errors are those in which the formation is no longer valid (Figure 

4-13). 

 

Figure 4-12 shows the artificial potential field as a surface where peaks are 

repulsive nodes and troughs are attractive nodes.  In this figure the spacecraft 

can be thought of marbles rolling on this surface under the effect of gravity. 

Two of the spacecraft quickly enter two of the attractive nodes but one instead 

finds a position at a local minimum from which it can’t escape. 
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Figure 4-13 3 agent failure modes 
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4.7.2   CRTBP 

 

The next step was to implement a more realistic dynamical model. The circular 

restricted three body problem (CRTBP) involves a coordinate system that rotates 

around the centre of mass (the barycentre) of the system comprising the two 

main bodies, in this case the Sun and the Earth.  In this rotating frame the 

position of the Sun and the Earth appear static from the point of view of the 

satellite as their orbits are presumed to be perfectly circular.  In order to 

further simplify the model the problem is formulated in non-dimensional units 

chosen for our convenience.  In this problem it us useful to define the unit of 

length as the distance between the Sun and the Earth (as the Earth’s orbit 

around the sun is defined as circular this stays constant).  The unit of time is 

chosen so that the Sun and the Earth have an angular velocity about the centre 

of mass that is equal to one.  This means that one full orbit of the earth has a 

period of 2I. 
 

The x and y coordinates of the Sun and the Earth are: 

 '�JK = −5						8�JK = 0		 
'M�/�N = 1 − 5						8M�/�N = 0 

(4-9) 

		 
The gravitational potential that the satellite experiences due to the mass of m1 

and m2 in our normalised units is: 

 % = 59:9 −	57:7 − 125957 (4-10) 

 

Where the normalised mass of the three body system is: 
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 	5 = &7&9 + &7 
(4-11) 

 

We can safely assume that as &9 	>> 	&7 then in our normalised system: 
 59 = 1 − 5 

57 = 5 
(4-12) 

 

The primary-spacecraft distance, :9, and the secondary-spacecraft distance, :7, 
can be defined as follows: 

 :97 =  ' + 57$7 + 87 + O7 (4-13) 

 :77 =  ' − 59$7 + 87 + O7 (4-14) 

 

If we then define C1 and C2 as: 

 

 P9 = −57:7  (4-15) 

 P7 = −59:9  (4-16) 

 

The equations of motion in the rotating frame are given by [109]: 

 'Q = 28R + ' + P9 ' − 57$ + P7 ' − 59$ (4-17) 

 8Q = −2'R + 8 +  P9 + P7$8 (4-18) 

 OQ =  P9 + P7$O (4-19) 
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Now that we have the equations of motion of a spacecraft interacting with the 

Sun and the Earth we must find a suitable orbit. 

 

 

Figure 4-14 CRTBP 

 

4.7.3  Halo Orbit 

 

For our example of the DARWIN mission we need to model our spacecraft 

formation in orbit around the second Sun-Earth Lagrangian point (L2).  There are 

5 Lagrangian points in the Earth-Sun system as shown below.  They are points 

where a third body (our satellite) would experience zero net force as it followed 

the orbit of the Earth. 
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Figure 4-15 Gravitational potental in the rotating Earth-Sun system 

 

In Figure 4-15 the x and y dimensions equate to those in the CRTBP and z shows 

the magnitude of the gravitational potential.  The Lagrangian points are situated 

at local minima and maxima of this surface. 

 

The L2 point has been chosen for missions such as DARWIN and the terrestrial 

planet finder (TPF) for a number of reasons [110, 111].  An orbit near L2 is easy 

and inexpensive to get to from Earth.  A halo orbit around L2 also offers the 

spacecraft a near constant geometry with the Sun the Earth and the Moon always 

behind the spacecraft which is of great benefit when the mission has very heat 

sensitive instruments and fine tolerances to operate within.  A halo orbit will 

also provide a near constant communications geometry with Earth due to its 

constant distance at around 1.5 million km.  The slightly lower energy required 

when inserting a satellite into a halo orbit when compared to a heliocentric orbit 

as well as the ease with which additional or replacement satellites could be sent 

to the halo orbit makes it highly appealing for interferometric telescope array 

missions.   
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Figure 4-16 Halo orbit relative to the earth and lunar orbit, isometric view 
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Figure 4-17 Halo orbit relative to the earth and lunar orbit, top view 

 

 

Figure 4-18 Halo orbit relative to the earth and lunar orbit, front view 
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Figure 4-19 Halo orbit relative to the earth and lunar orbit, side view 

 

Figure 4-16-Figure 4-19 show a typical halo orbit (in red) around the L2 point.  

For scale an Earth geosynchronous orbit is shown in green and the orbit of the 

moon is shown in black. 

 

The disadvantages of a halo orbit are that the orbit is unstable and will thus 

require station keeping manoeuvres and its distance from the Earth may lead to 

own communications issues. 
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4.7.4  Generation of the Halo orbit 

 

 

Figure 4-20 Halo orbit family 

 

The procedure described in [112] and in [113] was used to generate the Halo 

orbits used for the simulation of the DARWIN mission. The process works by 

refining an initial estimate of an orbit by using the Newton method. The initial 

estimate for an orbit is defined by its initial position, initial velocity and its 

period:  'S, 8S, OS, 'RS, 8RS, ORS, T$.  We will hold the 'S coordinate fixed and search 
for OS∗, 8RS∗ and T∗ such that 'R ∗ T∗$, OR∗ T∗$ and 8∗ T∗$ are all zero. 
Define V ∶ 	ℝY →	ℝY by 
 

 V O, 8, T$R = [	\= 'S, 0, O, 0, 8R , 0, T$\] 'S, 0, O, 0, 8R , 0, T$\7 'S, 0, O, 0, 8R , 0, T$	^ 
(4-20) 
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Where 

 

 

V O, 8, T$R =
_̀
`̀
à
	
\9 ', 8, O, 'R , 8R , OR, T$\7 ', 8, O, 'R , 8R , OR, T$\Y ', 8, O, 'R , 8R , OR, T$\= ', 8, O, 'R , 8R , OR, T$\b ', 8, O, 'R , 8R , OR, T$\] ', 8, O, 'R , 8R , OR, T$

	
cd
dd
de
 

(4-21) 

 

To find the initial conditions for the halo orbit it is sufficient to find '∗ = OS∗, 8RS∗, T∗$f satisfying the equation 
 V OS∗, 8RS∗, T∗$ = 	 g	000	h 

(4-22) 

 

The Newton method for refining the orbit can be expressed as: 

 

 xK
9 = xK − i�V xK$j�9V xK$ (4-23) 

 

With x =  O, 8R , T$ and xS =  OS, 8RS, TS$ and the differential equal to: 
 

 

�V '$ = 	
_̀
`̀
`̀
a kkO \=kkO\]kkO\7

kk8R \=kk8R \]kk8R \7

kkT \=kkT \]kkT \7cd
dd
dd
e
 

 

=	 [Φ =,Y$Φ ],Y$Φ 7,Y$
Φ =,b$Φ ],b$Φ 7,b$

m= 'S, 0, O T$,0, 8 T$R , 0$m] 'S, 0, O T$,0, 8 T$R , 0$m7 'S, 0, O T$,0, 8 T$R , 0$^ 
 

(4-24) 

Where m:% ⊂ ℝ] → ℝ] is the vector field of the CRTBP. 
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m ', 8, O, 'R , 8R , OR$ =
_̀
`̀
`̀
am9 ', 8, O, 'R , 8R , OR$m7 ', 8, O, 'R , 8R , OR$mY ', 8, O, 'R , 8R , OR$m= ', 8, O, 'R , 8R , OR$mb ', 8, O, 'R , 8R , OR$m] ', 8, O, 'R , 8R , OR$cd

dd
dd
e
		= 	

_̀
`̀
à 'R8ROR28R + �B%−2'R + �p%�q% cd

dd
de
 

 

 

(4-25) 

With the newton method set up as described then if the initial xS is close to a 
halo orbit then 'K → '∗	as	t → ∞. 
 

Once a periodic Halo orbit has been obtained further Halo orbits are found by 

incrementing parameters of the known halo orbit and re-running the Newton 

method to find a new periodic orbit. 

 

The initial orbit was taken to be a Lyapunov orbit (that is, an orbit that is planar 

in x-y and has no z component) and its initial conditions  ', 8, O, 'R , 8R , OR$ are shown 
below. 

 

xS =
_̀
`̀̀
a
	
1.006751377554280000.018673230929960

	
cd
ddd
e
	 

 

The initial conditions of this orbit are then given a slight out of plane (z) 

component and refined using the Newton method to produce the following 

orbital initial conditions. 

 

xS∗ =
_̀
`̀̀
a
	
1.0084281556544400.000100.009810393065200

	
cd
ddd
e
 

 

To produce a family of Halo orbits  the initial z position is decremented by 

0.00002AU and then the orbit is refined again.  This process is repeated as many 

times as required to get the desired family of orbits. 



     
114  Chapter 4 

 

4.7.5  Multi-agent control 

 

Multi-agent controlled formation flying for a DARWIN type mission was 

investigated by coupling the MAS outlined previously and running it in the Java 

agent development framework (JADE) [114, 115] with the CRTBP model.  The 

structure of the simulation suite allows for easy replacement of one simulation 

model with another. 

 

 

Figure 4-21 Agent test suite structure 

 

Figure 4-21 shows the agents for the DARWIN multi-agent system running with 

JADE interacting with intelligence and simulation models running on another 

process, in this case Matlab. 
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The station keeping of the spacecraft was achieved by writing a Proportional-

Integral-Derivative (PID) type feedback controller to counteract any drift due to 

the fact that halo orbit is unstable.  The PID controller was written in Java as a 

pure Java object.  This was to show the compatibility in the test suite between 

the Jade agents, Matlab models and pure Java objects. 

 

4.7.6 PID Controller 

A PID controller is a type of feedback controller made of three constituent parts.  

The controller takes in the desired output of the system as an input (known as 

the reference signal). The difference between the reference signal and the 

output of the process is known as the error and it is this error value that is fed 

into the controller. The controller then generates a signal based on this error 

and outputs it to the process. This closed loop runs continuously. 

 

 

Figure 4-22 Feedback Controller 

 

In the proportional (P) part of the controller the error signal is multiplied by 

some value �} before being output. In the integral (I) part of the controller the 
past error values are integrated over time and then multiplied by a gain �� 
before being output.  In the derivative (D) part of the controller the rate of 

change of the error is multiplied by a gain �� before being output [116]. The 
equation of a generic PID controller is: 

 ~� +$ = �}� +$ + �� � � T$)T�
S + �� )�)+ (4-26) 
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A complete PID controller diagram is shown below. 

 

 

 

Figure 4-23 PID feedback controller 

 

Control Term Reference Tracking  
 Transient Steady state 
P Increasing Kp > 0 speeds 

up the response 
Increasing Kp > 0 reduces 
but does not remove 
steady state offset 

I Introducing integral 
action, Ki > 0, gives a 
wide range of response 
types 

Introducing Ki >0 
eliminates offset in the 
reference response 

D Derivative action Kd > 0 
gives a wide range of 
responses and can be 
used to tune response 
damping 

Derivative action has no 
effect on steady state 

 

Table 4-1 Effects of individual terms of a PID controller 

It was this PID controller that was implemented in the test suite for orbital 
maintenance and individual spacecraft control. 
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4.7.7  Simulation Models 

In order to show the workings of the multi-agent testing suite two different 

simulation models were developed.  In the first the dynamics of the system were 

modelled in Matlab and propagated by the testing suite using Matlab’s own built 

in ordinary differential equation (ODE) solver (ODE113).   

 

In the second simulation model the CRTBP dynamics are modelled using 

Simulink.  The Simulink model is shown in appendix C.  This approach may seem 

counter-intuitive compared to implementing the equations of motion as simple 

Matlab function but it offers up some interesting possibilities.  One benefit of 

using Simulink is that high level coding knowledge is not required and complex 

models can be constructed piece by piece in a relatively intuitive way. 

 

The other benefit of using Simulink is that the simulation model designer has 

access to a highly developed suite of tools in Simulink.  To illustrate this point 

the station keeping controller was implemented as a single PID controller control 

block in the Simulink model and its gains automatically tuned using the built in 

tools. 

 

Both models interact with the MAS in the same manner and use the same 

mathematical model. 

 

During the construction of the JADE/Java/Matlab model it became apparent that 

the level of numerical precision was an important limiting factor in determining 

the accuracy of the discrete time based simulation suite such as this.  For most 

models the key variables can be expressed precisely enough using Javas built in 

double variable type but the normalised non-dimensional units used in the 

CRTBP required a higher level of precision in order to avoid injecting errors and 

propagating them.  As such the BigDecimal class was used to represent all of the 

variables in the system.  The BigDecimal class offered the required precision at a 

higher computational cost. 

 

The velocities and accelerations acting on a craft following of L2 Halo reference 

orbit (from here on referred to as the 'reference orbit') are shown below (Figure 
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4-24 and Figure 4-25) and show the unsurprising cyclical nature of the velocities 

and accelerations in our rotating frame (deviations in x are dark blue, y are 

green and z is red). 

 

 

Figure 4-24 Accelerations during Halo orbit 
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Figure 4-25 Velocities during Halo orbit 

 

In Figure 4-26 a craft is placed a given distance in one axis away from the 

reference orbit and the model propagated through time.  The results show the 

craft drifting away from the reference orbit when no orbital correction 

manoeuvres are proscribed. 
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Figure 4-26 Absolute distance from reference orbit over one orbital period 

 

It should be noted that the station keeping manoeuvres required to keep the 

spacecraft on the desired orbit around the L2 point are relatively small (15.55 

ms-1) and can be easily accounted for in a mission’s Vv budget.  In this simulation 

the station keeping thrusts are modelled as instantaneous and carried out at 

each time step.  It is noted that a continuous thrust strategy would give better 

results in a real mission but that method is not implemented here and does not 

detract from the conclusion that are made about the test suite and the multi-

agent system for controlling the DARWIN mission. 
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Figure 4-27 Thrust of spacecraft during station keeping on a single orbit  

 

4.7.8  Test scenarios 

 

In order to try to demonstrate that the multi-agent test suite can be used to 

help efficiently model and test multi-agent controlled space missions a number 

of test scenarios have been developed.  These test scenarios are designed to 

serve a number of purposes, their primary purpose is to demonstrate that the 

architecture of the test suite is robust enough to handle multiple agents and 

simulation models and to show its ability to scale to progressively larger and 

simulation structures with many agents and simulations running in concert. 

 

The test scenarios were designed to test the multi-agent test suites full range of 

modes, most notably the ability of the test suite to allow for the seamless 

interoperation between the autonomous agents and components running in Java, 

C++ and Matlab. 
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The philosophy behind designing these tests was to start at a very basic level and 

then add one component or change at each level and observe how the simulator 

coped with the slowly increasing complexity of the simulation. 

 

The scenarios were built up starting from simple validation tests with one agent 

interacting with its associated environment model.  In all of the test cases 

developed, the environmental model used was the CRTBP model previously 

outlined.  The first test case comprised a single satellite following the previously 

mentioned Halo orbit around the second Lagrangian point.  The agent was not 

able to produce any actuation and was just tasked with recording to its local 

data store pertinent information about its state at any given time.  This test was 

run to check that there was a consistent flow of data from the simulation to the 

agent and that all of the basic simulation parameters were correctly applied 

such as time step and simulation to agent communication protocols. 

 

In the second test case the setup is the same as the previous case but the agent 

was now tasked with orbital correction manoeuvres to maintain it on its desired 

orbit.  This was the only addition to this test case and this allowed for the 

testing of the external controller used by the agent, in this case a closed loop 

proportional, integrator derivative controller written in Java. 

 

Three examples of code used in the test cases are shown in appendix B.  The 

code is taken from the test cases where the satellites are in an icosahedron 

formation. 

 

The next logical step is to increase the number of agents in the simulation, as 

such another spacecraft as added and placed in an offset orbit from the 

reference orbit, the agent controlling the spacecraft has access to an instance of 

the same orbital maintenance PID controller as in the previous test.  

 

This test was also successfully completed.  These first tests prove that the 

simulator can handle more than one agent operating within a shared 

environment while using identical controllers.   
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4.7.8.1 Numerical integration  

 

ode45 is based on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince 

pair. It is a one-step solver in computing 8 +K$, it needs only the solution at the 
immediately preceding time point, 8 +K − 1$. In general, ode45 is the best 
function to apply as a "first try" for most problems [117]. 

 

ode113 is a variable order Adams-Bashforth-Moulton PECE solver. It may be more 

efficient than ode45 at stringent tolerances and when the ODE file function is 

particularly expensive to evaluate. ode113 is a multistep solver - it normally 

needs the solutions at several preceding time points to compute the current 

solution [118]. 

 

A related test was also developed to show that the simulation model was not 

limited to pure Matlab and was generally software independent.  In this test the 

simulator and controller were written in Matlab’s Simulink package (See 

appendix C).  The Simulink package is frequently used to design controllers due 

to its abundance of advanced built in controller ‘blocks’ and features.  The 

equations of motion were implemented using blocks and feedback loops and a 

PID controller added to control the spacecraft.  The benefit of using Simulink is 

apparent because it allows the PID controller block to ‘self-tune’ depending on 

the users requirements.  This facility was utilised and the controller tested in 

the simulation. 

 

A number of other position hold type scenarios were developed.  The first was 

with 4 spacecraft in a square formation, equidistant from the reference orbit 

again using the basic Matlab PID controller. 

 

A test was then developed to try to push the test suite.  In this case 12 satellites 

were placed at the vertices of an icosahedron and required to maintain their 

positions relative to the reference orbit for a full orbit of the Lagrangian point.  

This is a more interesting test as instead of being limited to a single plane as in 

the previous square formation the formation of spacecraft spans all 3 axes and 

allows the user to observe the changing forces and required corrections over a 

significant number of spacecraft.   
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Figure 4-28 Icosahedron structure, can be thought of 3 sets of 4 agents, located 
on the x, y and z axis in CRTBP frame 

 

x y z 
0 -1 -1.6180 

0 -1 1.6180 
0 1 -1.6180 
0 1 1.6180 

-1 -1.6180 0 
-1 1.6180 0 
1 -1.6180 0 

1 1.6180 0 
-1.6180 0 -1 
-1.6180 0 1 

1.6180 0 -1 
1.6180 0 1 

Table 4-2 Positions of points on an icosahedron 

 

A number of scenarios were developed utilising the icosahedron structure (Figure 

4-28 and Table 4-2).   
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The first started with the 12 satellites at the vertices of the icosahedron and had 

as a target an icosahedron that had been deformed in the x axis as shown in . 

 

 

Figure 4-29 Icosahedron formation deformed in x axis 
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Figure 4-30 The track of the individual satellite orbits in the CRTBP frame and 
each agents deviation from the reference halo orbit in the icosahedron reduction 

in x scenario 

 

 Initial Positions (km) Final Positions (km) 

Spacecraft X Y Z X Y Z 

1 0.0000 -3.0000 -4.8541 0.0000 -2.9996 -4.8533 

2 0.0000 -3.0000 4.8541 -0.0001 -2.9996 4.8533 

3 0.0000 3.0000 -4.8541 0.0001 2.9996 -4.8533 

4 0.0000 3.0000 4.8541 0.0000 2.9996 4.8533 

5 -3.0000 -4.8541 0.0000 -1.4923 -4.8561 0.0000 

6 -3.0000 4.8541 0.0000 -1.4923 4.8508 0.0000 

7 3.0000 -4.8541 0.0000 1.4923 -4.8508 0.0000 

8 3.0000 4.8541 0.0000 1.4923 4.8561 0.0000 

9 -4.8541 0.0000 -3.0000 -2.4146 -0.0042 -2.9995 

10 -4.8541 0.0000 3.0000 -2.4146 -0.0042 2.9995 

11 4.8541 0.0000 -3.0000 2.4146 0.0042 -2.9995 

12 4.8541 0.0000 3.0000 2.4146 0.0042 2.9995 

Table 4-3 Table of values at beginning and end of icosahedron deformation in x 
axis. 
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The next scenario again saw 12 satellites on the vertices of an icosahedron but 

its target icosahedron had been reduced in size in all 3 dimensions. 

  

Figure 4-31 Icosahedron formation deformed in all three axes 
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Figure 4-32 The track of the individual satellite orbits in the CRTBP frame and 
each agents deviation from the reference halo orbit in the icosahedron reduction 

in 3 dimensions scenario 

 

 Initial Positions (km) Final Positions (km) 

Spacecraft X Y Z X Y Z 

1 0.0000 -3.0000 -4.8541 0.0026 -1.4914 -2.4130 

2 0.0000 -3.0000 4.8541 0.0026 -1.4914 2.4130 

3 0.0000 3.0000 -4.8541 -0.0026 1.4914 -2.4130 

4 0.0000 3.0000 4.8541 -0.0026 1.4914 2.4130 

5 -3.0000 -4.8541 0.0000 -1.4881 -2.4157 0.0000 

6 -3.0000 4.8541 0.0000 -1.4965 2.4105 0.0000 

7 3.0000 -4.8541 0.0000 1.4965 -2.4105 0.0000 

8 3.0000 4.8541 0.0000 1.4881 2.4157 0.0000 

9 -4.8541 0.0000 -3.0000 -2.4146 -0.0042 -1.4913 

10 -4.8541 0.0000 3.0000 -2.4146 -0.0042 1.4914 

11 4.8541 0.0000 -3.0000 2.4146 0.0042 -1.4914 

12 4.8541 0.0000 3.0000 2.4146 0.0042 1.4913 

Table 4-4 Table of values at beginning and end of icosahedron deformation in all 
three axes. 
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In the next scenario the same starting point was used but the target formation 

was a ring aligned to the x-axis. 

 

  

Figure 4-33 Icosahedron formation changing to ring formation 
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Figure 4-34 The track of the individual satellite orbits in the CRTBP frame and 
each agents deviation from the reference halo orbit in the icosahedron to ring 

scenario 

 

 Initial Positions (km) Final Positions (km) 

Spacecraft X Y Z X Y Z 

1 0.0000 -3.0000 -4.8541 0.0039 -0.8327 -2.8667 

2 0.0000 -3.0000 4.8541 0.0024 -1.6138 2.5100 

3 0.0000 3.0000 -4.8541 -0.0038 0.8327 -2.8667 

4 0.0000 3.0000 4.8541 -0.0025 1.6138 2.5100 

5 -3.0000 -4.8541 0.0000 0.0205 -2.7217 1.2532 

6 -3.0000 4.8541 0.0000 0.0129 2.7110 1.2532 

7 3.0000 -4.8541 0.0000 -0.0134 -2.9529 -0.4293 

8 3.0000 4.8541 0.0000 -0.0200 2.9636 -0.4293 

9 -4.8541 0.0000 -3.0000 0.0230 -2.2885 -1.9583 

10 -4.8541 0.0000 3.0000 0.0270 -0.0086 2.9995 

11 4.8541 0.0000 -3.0000 -0.0230 2.2885 -1.9583 

12 4.8541 0.0000 3.0000 -0.0271 0.0086 -0.0172 

Table 4-5 Table of values at beginning and end of icosahedron changing to ring 
formation. 
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A key aspect of the above results is the fact that the agents were only ever 

modifying their position relative to the reference orbit.  In reality the difficulty 

of formation flying and multi spacecraft missions comes from the requirement 

for interaction between the spacecraft themselves. 

 

The logical next step was to test the addition of intelligence models in the 

agents, giving them decision making abilities in the context of the scenario, and 

observe the results.  As such the next set of test scenarios reduced the number 

of satellites but now tested the collision avoidance abilities of the multi-agent 

control system.  The first collision avoidance test consisted of 2 satellites either 

side of the reference orbit.  After a certain period of time one of the craft 

moved towards the reference orbit position which was inside the radius of the 

second crafts collision avoidance mechanism, making it move away from its 

initial orbit.  It should be noted in this first test only the second spacecraft had a 

collision avoidance mechanism and the first satellite could be thought of as non-

operational in that it was not responding to any communications between the 

agents. 

 

Figure 4-35 Collision avoidance test 1 
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In the second of the collision avoidance tests the same initial set up was used 

but both satellites had the CAM activated so they both reacted equally to each 

other’s presence. 

 

 

Figure 4-36 Collision avoidance test 2 

 

The next series of collision avoidance tests were with the 12 satellites flying in 

the icosahedron formation.  The first of these involved the 3 adjacent satellites 

on the icosahedron simultaneously swapping places in a circular fashion: i.e. the 

first goes to the position of the third, the second goes to the position of the first 

and the third goes to the position of the second.  This meant that there was no 

direct conflict so the CAM should not have to be utilised. 
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Figure 4-37 Icosahedron 3 way postion swap 
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Figure 4-38  The track of the individual satellite orbits in the CRTBP frame and 
each agents deviation from the reference halo orbit in the icosahedron 3 way 

position swap scenario 

 

 

 Initial Positions (km) Final Positions (km) 

Spacecraft X Y Z X Y Z 

1 0.0000 -3.0000 -4.8541 0.0107 3.0340 -4.8533 

2 0.0000 -3.0000 4.8541 -0.0001 -2.9996 4.8533 

3 0.0000 3.0000 -4.8541 -4.8882 -0.0086 -2.9888 

4 0.0000 3.0000 4.8541 0.0000 2.9996 4.8533 

5 -3.0000 -4.8541 0.0000 -3.0011 -4.8534 0.0000 

6 -3.0000 4.8541 0.0000 -3.0011 4.8534 0.0000 

7 3.0000 -4.8541 0.0000 3.0011 -4.8534 0.0000 

8 3.0000 4.8541 0.0000 3.0011 4.8534 0.0000 

9 -4.8541 0.0000 -3.0000 0.0218 -3.0254 -4.8639 

10 -4.8541 0.0000 3.0000 -4.8559 0.0000 2.9996 

11 4.8541 0.0000 -3.0000 4.8559 0.0000 -2.9996 

12 4.8541 0.0000 3.0000 4.8558 0.0000 2.9994 

Table 4-6 Table of values at beginning and end of a 3 way position swap 
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The next icosahedron test was two agents at opposite sides of the sphere 

encompassed by the shape swapping places.  In this case the two satellites could 

collide at the centre of the formation if no CAM is deployed so this is test of the 

CAM in larger formation but with only one possible collision scenario.   

 

The next test was each of the craft trying to swap places with its oppositely 

positioned counterpart.  In this case the PID does not perform well and collisions 

are highly likely. The simple PID based controllers are effective in simple cases 

but with more complex agent interactions a more sophisticated avoidance 

approach may be needed.  A more complicated collision avoidance test allowed 

us to further test the ability of the test suite to utilise external libraries.  

 

4.7.9  ORCA 

 

In this case the external library used was the reciprocal collision avoidance 

(RVO2) library for collision avoidance among multiple agents.  The RVO2 library 

is based on the idea of reciprocal n-body collision avoidance.  A distinction must 

be made between collision avoidance and motion planning (which assume the 

environment of the agent is known) and collision detection which is purely the 

detection of the intersection of geometrical objects.  Collision avoidance aims to 

control agents to avoid obstacles in a complex environment involving other 

mobile agents. 

 

The RVO2 library is based on the theory of optimal reciprocal collision avoidance 

(ORCA) [119].  ORCA does not require communication between agents although 

it does assume perfect sensing.  In our multi-agent environment perfect sensing 

is assumed and is achieved through communication between agents. ORCA also 

assumes that the agents are fully holonomic (not to be confused with holonic), 

that is they are free to move in any direction at any time.  This constraint is not 

very onerous in a spacecraft formation flying scenario.  ORCA is found to be 

sufficient for collision avoidance if every other agent in the simulation also 

implements ORCA.  The ORCA algorithm finds a solution in the velocity space 

that guarantees collision avoidance, if no are found then the safest possible 

velocity is found. 
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4.7.9.1 ORCA Basics 

 

The following description of the ORCA algorithm is taken from [119].  For two 

robots A and B, the velocity obstacle for A induced by B for a given time window 

is a set of all relative velocities of A with respect to B that will result in a 

collision between A and B at some moment before the end of the time window.  

It is formally defined as follows. Let � �, :$ denote an open disc of radius : 
centred on �; 

 

 � �, :$ = � � ∣∣∥ � − � ∥< : �, (4-27) 

 

 ��	∣�� = �� ∣ ∃+ ∈ i0, Tj ∷ +� ∈ � �� − �	, :	 + :�$� (4-28) 

 

 

Figure 4-39 Velocity obstacle in the velocity space 

 

The geometric interpretation is shown in Figure 4-39. The definition of the 

velocity obstacle implies that if  �	 − �� ∈ ��	∣�� ,  or  �� − �	 ∈ ��	∣��   then A and 

B will collide at some point before τ if they continue moving at their current 

velocity. Conversely if �	 − �� ∉ ��	∣�� , robot A and robot B are guaranteed 

collision free at least for τ time. 
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Let X ⊕	Y	denote the Minkowski sum of sets X and Y [120]; 
 

 � ⊕ � = �' + 8 ∣ ' ∈ �, 8 ∈ �� (4-29) 

 

Then for any set ��, if (� ∈ ��and		(	 ∉ ��	∣�� ⊕ ��	then A and B are guaranteed 
to be collision free at their current velocities for at least τ time.  The set of 

collision avoidance velocities for A given the velocity set of B is: 

 

 ��	∣��  ��$ = �� ∣ � ∉ ��	∣�� ⊕ ��� (4-30) 

 

 

Figure 4-40 Minkowsky sum of robot velocity and a velocity obstacle 

 

The velocities of A and B are reciprocally collision avoiding if: 

 

 �	 ⊆ ��	∣��  ��$  and  �� ⊆ ��	∣��  �	$ (4-31) 
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The optimal reciprocal collision velocities ����	∣��  and �����∣	�  are designed to 

maximise the velocities closer to a desired optimisation velocity (�	�}� and ���}�) 
which in general is the robots current velocity.  The set is defined as follows for 

all radii > 0: 

 

 ∣ ����	∣�� ∩ �0�	�}�, :2 ∣=∣ 	�����∣	� ∩ �0���}�, :2 ∣	≥ 
min	 ∣ �	 ∩ �0�	�}�, :2 ∣, ∣ �� ∩ �0���}�, :2 ∣$ 

(4-32) 

 

In practice the robot acquires the radius, position and optimisation velocity of 

all of the other robots and computes ����	∣��  with respect to each other robot 

B.  The set of velocities permitted for A with respect to all robots is the 

intersections of the permitted velocities induced by each other robot.  All of this 

is carried out in real time and was successfully integrated into the multi-agent 

test suite. 

 

Traditionally the fact that the library is written in C++ for the windows platform 

would pose a serious problem for the test suite designers but as our multi-agent 

test suite is built from the ground up to allow heterogeneous modules to 

communicate with the agents it was a fairly trivial exercise to get it working.  

This test was run twice with different settings for the collision avoidance 

algorithm, the first giving the spacecraft very little tolerance for proximity to 

another spacecraft resulting in many of the craft leaving the formation in order 

to return at a later time (Figure 4-41).  The second test case allowed the agents 

to have a higher tolerance and the satellites moved towards the opposite corner 

but performed the required manoeuvres as they approached the centre of the 

formation (Figure 4-42). 
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Figure 4-41 RVO collision avoidance with low tolerance for proximity 
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Figure 4-42 RVO collision avoidance with high tolerance for proximity 

 

The system seemed to cope well with using this library for twelve agents so a 

similar but more computationally taxing scenario was developed to really test 

the testing suites scalability at the cost of drastically reduced realism.   

 

4.7.10 Scalability 

 

A test was developed to show the scalability of the multi-agent suite.  In the 

final test 812 spacecraft were positioned at points on an imaginary sphere and 

required to go to the opposite point on the sphere.  Similarly to the previous 

tests this would lead to a large number of collisions in the centre of the sphere.  

This produced a massive data set (Figure 4-43) and it was particularly 

informative to single out a subset of agents and track their progress to monitor 

the success of the collision avoidance algorithm (Figure 4-44). 
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Figure 4-43 812 spacecraft swapping posotions across a sphere 

 

 

Figure 4-44 The trajectory of 9 of the 812 spacecraft 
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The use of the ORCA library in this scenario was a success and all of the agents 

avoided collisions.  This ability of the test suite to accommodate novel models 

and algorithms regardless of platform is one of its key strengths.  It also shows 

that the DARWIN MAS can utilise a variety of different intelligence models in 

order to carry out its tasks. 

 

4.8  Chapter Summary 

 

This chapter introduced the DARWIN mission and developed a multi-agent system 

to control it from first principles using the HASA architecture.  A simulation suite 

was developed to try and test the MAS.  Three different control methods were 

implemented, artificial potential fields in a limited two dimensional context and 

a PID and ORCA controller utilising the full three dimensional dynamics form the 

CRTBP. 

Unfortunately the implementation of the control system in a more traditional 

way was outside of the scope of this work.  As such no direct comparisons can be 

made between the traditional architectures performance and the multi-agent 

systems performance.  This work does however clearly show that a multi-agent 

system can be used to control such a formation flying mission and that it is 

extremely flexible as to how the environment is modelled and how its control 

laws are implemented. 
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Chapter 5  Multi-agent System for GMES 
 

5.1  Introduction 

 

In Chapter one I covered what agents are, how they interact as part of larger 

multi-agent systems and the different variations of these systems.  In Chapter 

three I introduced a new agent architecture based on the idea of holonic or 

recursive agents specifically designed to meet the demands of space missions.   

 

In this thesis two missions were chosen as candidates for the development of an 

autonomous agent based control system, specifically the HASA architecture 

outlined in the Chapter three.  The HASA architecture has the flexibility to 

enable its deployment to missions with different hardware and software systems 

and varying autonomy requirements. 

 

In this chapter the focus turns to the GMES [121] mission.  As outlined in Chapter 

one, agents can be broadly characterised as software/informational agents or 

hardware/embedded agents.  Software agents have no real physical presence 

and operate autonomously by manipulating data and information rather than 

manipulating a physical environment.  Hardware agents operate in and act upon 

a physical environment. An interesting aspect of the GMES mission is that both 

types of agents are implemented side by side with slightly higher number of 

software agents. 

 

There are many different scenarios where a more autonomous approach to data 

management would be of benefit.  Data management in this context involves 

creating, moving and prioritising data. Data must be managed in this way in all 

space missions and especially in the scientific missions which are the focus of 

this work.  GMES was chosen as part of the work on the ESA contract 

“Distributed Agents for Autonomy”, a collaboration between the University of 

Glasgow and GMV, SA. 
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The GMES mission was chosen as a good example of mission where autonomous 

software agents could greatly assist the mission’s key role of data management 

but also where autonomous hardware agents could help in the acquisition of the 

primary scientific data as well. 

 

The GMES mission itself will be described in detail followed by a discussion of 

what a multi-agent system for GMES could look like, this is based on the work by 

GMV [14, 15, 18].  The multi-agent system is then defined using the HASA 

architecture defined in Chapter three.  As the basic MAS was developed by GMV 

a complementary image selection algorithm that runs alongside the MAS to 

provide relevant data to the end users was developed.  The image selection 

algorithm includes global optimisation methods to aid the user in making an 

informed choice and is described with the operation of the whole system 

explored for a number of test cases. 

 

5.2  GMES mission 

5.2.1   GMES services overview 

 

GMES (Global Monitoring for Environment and Security) is a European Space 

Agency led program to design and build information services to deal with the 

scientific and security data generated by the European Union. GMES will be 

based on the information gathered from Earth observation satellites as well as 

data gathered on the ground. GMES will enable greater access to this data as 

well as preparing, coordinating and analysing data for end users. By utilising the 

GMES system the European Union will be able to make better informed decisions 

on our environmental future in the short, medium and long term. The overall 

aim is to improve the quality of life for European citizens by using both 

environmental and security data. 
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Figure 5-1 The GMES mission will consist of a number of earth observation 
missions working in concert. Credit: ESA 

 

GMES has been a continuous project for number of years now and is now in its 

7th framework program.  As such it is hoped that GMES will be operational and 

able to meet user’s requirements in 2013 [121]. 

 

It is expected that GMES will be used by both the public and private sectors 

within the European Union. GMES could help in areas that concern the greater 

public good and the correct response to natural events such as earthquakes, 

forest fires and flooding or it could enable European firms to gain a competitive 

advantage by utilising this observational data. Decision making in this sense is 

based around the three concepts of anticipating events, intervening in events 

and controlling events. The GMES system will enable decision makers to acquire 

data in a reliable manner and make this information available to end users so 

events can be better anticipated, intervention can be swifter. As a result the 

end user has more control over a situation. All of the possible clients of GMES, 
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both private and public will have customised data services which will help them 

to make informed decisions in their own fields and areas of interest. 

 

At a high level GMES observes the Earth's main environmental subsystems, the 

land, sea and air. A multitude of services will be built on top of this base data 

structure to service the wide range clients envisaged for the system, services 

that add value to the data gathered by GMES by fusing it with other data sources 

and tailoring the final product to the individual customer.  In general terms the 

GMES services can be grouped into three main categories. 

 

• Mapping: Mapping services will include both topographic data and road 

mapping but also data that can help build a better picture of our 

environment such as land use, forestry monitoring and mineral and water 

resources. This mapping service typically involves a highly exhaustive 

coverage of the Earth's surface and periodic archiving of data. 

 

• Support: Support services for emergency management such as natural 

disasters but also for civil protection of the population and property. In 

this service the data must be as up to date as possible if intervention is 

going to be successful. 

 

• Forecasting: Forecasting services can be applied to fields such as 

fisheries, air quality or crop yields. This service would have to provide a 

systematic set of data from a selected area over a long period of time to 

support the development of the models of these systems that are required 

for accurate forecasting. 

 

It is hoped that the wide scope and fast response of the proposed GMES system 

will allow for more efficient use of human resources and infrastructure. Some of 

the proposed services that will be included in GMES are monitoring of: 

 

• Coastal water quality 

• Land use 

• Area and density of forests 
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• Land use globally to predict food shortages and to increase the European 

Union’s food security 

• Risks of flooding and fire, 

• The oceans to enable early detection of oil leakages and to aid clean-up 

• Soil movements to predict landslides and track erosion and top soil 

migration 

• The levels of ice in glaciers, icebergs and the ice in the sea, lakes and 

rivers 

 

Three GMES services have been put forward for early development and 

deployment, they were chosen based on their maturity, the level of demand for 

the service (both long and short term) and the speed at which the user 

community would start using the services. 

 

The Emergency Response Core Service (ERCS) will focus on providing rapid 

mapping and infrastructure assessment services to users. This service is primarily 

aimed at humanitarian groups and relief agencies and will provide access to geo-

spatial databases for the region concerned to get the client up to speed. It will 

also offer assessment of any events that have taken place or are predicted to 

take place and any possible impacts arising from them. It will give the client 

access to real time monitoring tools for the duration of the crisis. 

 

The Land Monitoring Core Service (LMCS) will provide both regular and complete 

satellite coverage of the European Union and will provide an up to date land 

cover database covering the entire region. This will include mapping at the 

European scale to enable the implementation, review and monitoring of 

different EU policies such as water directives, biodiversity strategies, common 

agricultural polices as well as adherence to international treaties such as the 

Kyoto protocol. The service will also provide mapping at a local scale for city 

planning, construction, noise monitoring etc. as well as looking for hotspots 

where there are rapid changes in construction, land use or agriculture. 

 

The Marine Core Service (MCS) will meet the requirements for oceanic 

environment data required for national monitoring, European directives and 
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international treaties. The MCS will hopefully lead to better management and 

exploitation of oceanic resources, improvement in safety and efficiency of 

maritime transport with the monitoring of shipping lanes and naval operations, 

anticipating and mitigating against possible man-made environmental disasters, 

enhancements in basic marine research including both the climate and the 

ecosystem for seasonal climate prediction and implementation of specific 

policies regarding coastal management. 

 

5.3  Current Status of GMES 

 

The overall mission architecture consists of four major elements: 

 

The Space Component comprises both space and ground elements.  The GMES 

space component will consist of both existing missions provided by ESA, ESA 

partners and Eumetsat as well as new missions which are known as the five 

sentinel satellites. 

 

The in-situ component comprises the development and operation of the ground 

based and airborne data gathering networks. 

 

The Data Integration component comprises the data assimilation infrastructure 

which is charged with data fusion tasks, processing the data in a standardised 

manner and all the functions associated with cataloguing and archiving the GMES 

data. 

 

The service segment provides services such as data procurement for clients, 

information generation and delivery as well as services to monitor compliance 

with requirements and to be able to meet the necessary quality assurance 

targets. 

 

GMES can be broadly thought of as comprising an infrastructure component and 

a services component.  These two broad components will be expanded on in the 

next section. 
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5.3.1   GMES Space infrastructure 

 

The GMES infrastructure will comprise of a large (approximately twenty) number 

of heterogeneous satellites designed and operated by a wide range of entities.  

The satellites within the GMES system will also change over time as older 

platforms are retired and new platforms are launched.  The two main groups of 

Earth observation satellites are polar and geostationary satellites.  These two 

types of Earth observation platforms are seen as generally complimentary due to 

their individual advantages and disadvantages.  Geostationary satellites offer 

nearly full world coverage expect for the polar regions and offer data of a region 

in a continuous way by sampling at a high rate (in the order of minutes).  The 

high orbit needed for geostationary satellite however means that the resolution 

of the produced images may not be high enough.  For instance the geostationary 

Meteosat satellite has an imaging resolution of between 2km and 5km depending 

on the sensor and latitude of the target [122] .  Polar satellites orbit at much 

lower altitudes and this enables them to achieve much higher resolutions of 

between 30m and 150m in the case of the Envisat advanced synthetic aperture 

RADAR (ASAR) [123].   

 

A polar satellite’s path will also cover the entire surface of the Earth, including 

the polar regions, but this could take at least a few tens of orbits.  The 

disadvantages of polar satellites are that because of their rapid progression over 

the surface of the Earth they cannot provide continuous data for one particular 

area of the Earth’s surface. 

 

5.3.2   GMES satellites 

 

A number of new satellites have been suggested to enhance the capability of 

GMES as a whole, these are the sentinel satellites.  The proposed nature of the 

sentinel satellites are listed below [124].  

 

Sentinel-1 - The Sentinel-1 spacecraft will operate in a Sun synchronous 

dawn/dusk orbit.  It will carry a synthetic aperture radar (SAR) which will 
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operate in the C-band and will offer wide swath medium resolution coverage.  It 

is proposed that Sentinel-1 will also be able to support emergency observation 

requests. 

 

Sentinel-2 - The Sentinel-2 space craft will have a Sun synchronous orbit which 

will pass the equator between 10-14h in ascending or descending passes.  It will 

observe the Earth in multiple spectral bands within the solar part of the 

spectrum.  It will offer wide swath on the order of 100kms and a medium spatial 

resolution.  Sentinel 2 will also be able to support emergency requests. 

 

Sentinel-3 - Sentinel 3 will operate in a  sun synchronous orbit and provide 

optical data for imaging sea colour, sea temperature and global land monitoring 

at a coarse resolution.  No support for emergency requests is envisaged.   

 

Sentinel-4 /5 - Sentinel 4 will be in a geostationary orbit and will be equipped 

with a payload for monitoring the composition and state of the atmosphere.  

Requirements for Sentinel-4 have still to be confirmed but it likely that it will 

have sensor operating in the ultraviolet or the visible range of the spectrum.  

The composition of the sentinel 5 has still not been decided but it will operate in 

low earth orbit. [125] 

 

 

Figure 5-2 GMES Space components timeline 
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5.3.3   Sensors 

There are two broad groups of sensors used in planetary observation satellites, 

radar sensors and optical sensors. 

 

Radar sensors transmit energy towards the surface of the Earth and record the 

reflections.  Radar operates both day and night and has a high tolerance to 

atmospheric conditions such as cloud cover or dust storms.  There are three 

types of radar sensor.  Synthetic aperture radar sensors allow for very high 

resolution imaging.  Using techniques such as interferometry (the phase change 

of the reflection) and polarimetry (the polarisation change of the reflection) 

very accurate images can be acquired. SAR sensors are widely used for object 

recognition and detecting variations on the ground.  Radar altimeters measure 

the height of the surface of the Earth or sea and are used for land and ocean 

topography.  Wind scatterometers utilise radar to measure wind speed and 

direction.   Radars are extremely useful for Earth observation because of their 

near independence to atmospheric conditions as well as their day and night 

availability however they are functionally limited to detect only shapes and 

surface variations. 

 

Optical sensors utilise receptors that are sensitive to certain frequencies of the 

electromagnetic spectrum.   Often the sensors are tuned to the visible light 

spectrum but many worthwhile Earth observation can be obtained by using 

frequency ranges in the ultraviolet or infra-red bands, for instance monitoring 

sea temperature using thermal infrared and monitoring the atmospheric ozone 

using the ultraviolet band [126].  Different spectral bands can also be combined 

on the spacecraft to provide a range of data applicable to the spacecraft's 

mission.  A hyper-spectral sensor is a sensor that senses many spectral bands 

simultaneously and uses the reflections or transmissions received to identify 

elements by their spectrum, not their shape.   

 

Optical sensors offer the possibility for very high resolution images and a wide 

variety of products can be created by combining the data from a number of 

different bands.  Optical sensors are however extremely weather dependant and 
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any atmospheric phenomena such as clouds, rain or dust can severely alter or 

entirely preclude the ability to obtain good results.  Optical sensors must also 

have daylight to operate as they do not transmit any light and are of limited use 

at night. 

 

5.3.4   GMES products and Image Processing 

 

Raw data from the satellites must be processed before it meets the 

requirements of the users. Typically the data is passed through a number of 

different levels, each extracting more information before it is ready for the 

user.  For instance, in the determination of land cover the data may go through 

the following stages [127] : 

 

• Geometric Corrections 

• Radiometric Corrections 

• Geographical/Algorithmical Scale 

• Temporal Scale 

• Change Detection 

 

5.3.5   GMES Service Provision 

 

The services provided by GMES can be thought of as either core services or 

downstream services.  Core services are the collection of services providing raw 

data such as sea temperature data whereas downstream services reflect some 

added value on the information such as tracking a feature over time.  There are 

a number of different operational modes in GMES.   

 

In the routine imaging operational mode an imaging schedule is produced well in 

advance by the GMES management personnel.  This plan is then checked on the 

ground and if it meets the quality requirements uploaded to the spacecraft 

roughly every two weeks.  The images are received through the x-band antennas 

of the ground stations covering the spacecraft's orbit and are then sent to the 
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central control where they are available for download by users roughly 24 hours 

after they were received on the ground.   

 

The emergency operational mode allows for emergency requests to take 

precedence over the routine imaging operations.  An emergency request would 

contain a list of images that must be obtained in the shortest possible time.  The 

emergency request image acquisition plan is uploaded outwith the usual routine 

image schedule.   Images are only acquired once and downlinked to the ground 

as soon as the spacecraft becomes visible to a ground station or an inter-

satellite link becomes available.  The target is to have the emergency request 

uploaded to the appropriate satellite within 12 hours of receipt. 

 

Most providers of Earth observation data subscribe to the "charter on 

cooperation to achieve the coordinated use of space facilities in the event of 

natural or technological disaster" [128].  The charter outlines the provider’s duty 

to deliver timely data to aid those afflicted by a natural or man-made disaster. 

 

In the near real time (NRT) operational mode a plan for both image acquisition 

and image downlink are uploaded giving priority to both.  The image once 

downlinked to the ground is given high priority of processing, thus allowing 

acquisition to delivery times in the region of 3 hours. 

 

In the direct downlink operational mode the image data is downlinked as it is 

being acquired.  This operational mode offers the lowest latency possible but 

with little or no processing of the data.  It will also only be available when a 

ground station is in sight of the satellite for low Earth orbiters (LEO). 

 

The price of Earth observation data products is largely governed by the 

operational level, with library imagery being the cheapest to acquire and direct 

downlink the most expensive. For example the cost of a particular Système Pour 

l'Observation de la Terre (SPOT) image is increased by €3900 if it is required in 

the next 24 hours [129] 

 



     
154  Chapter 5 

5.3.6   Earth Observation Service Providers 

 

There are a large number of different service providers of Earth observation (EO) 

data and no easily accessible central repository for data regarding availability of 

services as each private company or public body has its own policies and 

procedures for getting images.  As this is the case it is only possible to be 

confident of knowing where to look for EO data if the client is well versed with 

this field and knows which catalogues to search.  It is therefore desirable to 

open up the access to EO data to a wider range of users and to allow them 

access to large amounts of data. 

 

Currently GMES and the GMES service element are designed to try and widen 

access to EO data but there is also the Earth observation market development 

(EOMD) programme which aims to promote the use of EO data to new customers 

and promote partnerships and the Data User Element (DUE) which aims to foster 

a strong relationship between the EO data providers and the EO data clients. 

 

EO data providers can be classed as either image providers who allow clients to 

access the raw image data or operations providers who process the images from 

the image providers into new products.  Providers are more frequently allowing 

users to access their images through web based interfaces but images are also 

still distributed by email, file transfer protocol (FTP) or physical media. 

 

Two examples of web based catalogues are the EOLI catalogue [130] and the 

CREPAD [131] catalogue.  The EOLI catalogue is an interactive tool for accessing 

ESA's earth observation data.  CREPAD allows access to the EO data collected by 

the Instituto Nacional de Técnica Aeroespacial in Spain.  In other cases the 

requests are not automated and must be submitted in writing.  The fact that the 

request has to go through another layer of bureaucracy obviously reduces the 

system’s response time substantially. 

 

Increasingly there have been new initiatives to try to improve the provision and 

distribution of EO data.  This can be achieved through easier access, improved 

processing time/algorithms or more specialised and targeted services.  The 
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fusion of multiple data sources has also enabled for more effective products to 

be created.  Portals such as ESA's Service Support Environment have been 

deployed to provide a common platform for image and service providers to 

distribute their current products and promote future products [132].  Some of 

the common services found in the newer generation of EO services are: 

 

Clipping services are where a desired area is described by the user (typically as a 

polygon) and then the area described is clipped from a supplied image.  In this 

way the desired image data is kept by the user and any unwanted data masked 

out.  Clipping is frequently used to reduce the amount of data in an image 

before a time intensive processing step or to highlight information about only a 

specific area. 

 

Conversion services allow for the conversion of a raster image in to a format that 

is compatible with a client’s system.  This is useful for outreach purposes in the 

case of conversion to a common format or to allow the image data to be 

processed using an external provider who only accepts certain file formats. 

 

Services also exist for the re-sizing of images to more convenient resolution for 

dissemination etc.  Images may be re-projected if a user or process requires a 

non-standard projection. 

 

More complex products include forest monitoring services in which EO data is 

combined with GIS (Geographic Information Systems) to give a more objective 

view of forest management.  The same process can be applied to land 

management in general but can include data such as land use, soil moisture, leaf 

cover etc. which can be useful for studying the effects of global environmental 

change.  Urban land use can be monitored in the same way. 

 

The use of intelligent agents aims to combine and improve the ease of access to 

this wide range of products and is the focus of this work on GMES. 
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5.4  Current GMES baseline operations concept 

 

The GMES system architecture consists of the space segment, the flight 

operations segment, the payload data segment, the GMES service segment, a 

data access integration layer and interfaces to any external systems. 

 

The GMES service segment acts as the primary interface between the GMES 

system and the end users.  The GMES service segment handles the user requests 

as its input.  These user requests will contain one or more data requests which 

can either be for products that are already available, in which case the products 

are given to the user or they can be for products that have not yet been 

captured in which case the data request must be added to the acquisition plan 

for the next cycle.  Requests may be sent directly to certain spacecraft's 

ordering systems or instead assigned to the GMES service segment to acquire.  

The output of the service segment is the data products themselves that have 

been acquired and processed by GMES and these are made available to users 

through the service segment or through the sentinel ordering service.  The GMES 

service segment provides users with access to all of the available services which 

usually consist of either a set of raw images or a set of images with some post 

processing steps applied to add value. 

 

The Data Integration layer is charged with handling the interface between the 

GMES system and any external systems.  These systems can include, but are not 

limited to, third party missions and in-situ data sources. 

 

The GMES payload data segment consists of a number of sub units.  The multi 

mission planning unit is at the heart of the payload data segment and the heart 

of the GMES system itself.  The multi-mission planning component gathers 

information on user requests, ground station availability, spacecraft availability 

(including flight dynamics information) and generates an acquisition plan in 

concert with the mission specific planning components in order to meet the 

GMES global objectives.  The planning process for different spacecraft will be 

heterogeneous as to levels of autonomy or interface and the multi-mission 
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planner must take this into account.  The mission planning interface to third 

party mission will take place through the data access integration layer. 

 

The data processing unit is charged with taking in raw image data and 

generating the desired products.  It is intended that the data processing unit is 

data driven so that rather than carry out tasks at pre allocated times the data 

processing takes place as soon as the data for that processing is made available.  

Emergency and near real-time requests will be given priority for data processing 

over routine image requests.  Processing power will be dynamically allocated to 

the tasks on a priority basis. 

 

The sentinel ordering unit takes orders for the sentinel craft directly from the 

users and propagates them through the system as a whole. 

 

For each mission in the GMES system there is a flight operations segment.  The 

typical flight operations segment will consist of a monitoring and control unit, a 

flight dynamics unit and a ground station unit.  The monitoring and control units 

act as an interface between the GMES and the spacecraft hardware.  The flight 

dynamics unit manages all activities pertaining to the spacecraft's orbit and 

attitude.  As such it will compute the manoeuvres required for orbital 

maintenance and for achieving mission goals.  It will also propagate the 

spacecraft's orbit and flag any possible future orbital events.  The ground station 

unit is in charge of transmission of all telecommands to the spacecraft and the 

receipt of telemonitoring data from the spacecraft.  Another key task of the 

ground station unit is the management of ground station availability and the 

creation of plans to maintain contact with the spacecraft.  The ground station 

unit will also have to interface with existing systems for scheduling of ground 

stations to ensure there are no clashes with other missions. 

 

To further clarify the structure of the GMES baseline the following example of an 

emergency data request is outlined.  In this scenario the user makes an 

emergency request.  This request will usually consist of a geographical area to 

be imaged, a specific date and time for the first acquisition, date and time 

information about any subsequent imaging as users will often want images at set 

intervals to monitor a changing problem or monitor an evolving situation.  The 
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type of image will also be selected (infra-red, synthetic aperture radar image, 

visible etc.).  For the fulfilment of an emergency order it is envisaged that 

multiple spacecraft will work in concert to fulfil the user’s request in the 

timeliest manner possible.  This differs from the usual scheduled approach and 

will require a significant amount of cooperation between the spacecraft. 

 

Once the emergency request has been gathered it is passed to the multi-mission 

planning component which will then, in collaboration with the flight operations 

segments generate a plan to acquire the product that has been requested.  

Depending on the current status of the GMES system and the nature of the 

request the plan may involve the acquisition of images at the next possible 

opportunity or possibly the start of a near real-time feed of data to the end 

user. There may also be a combination of scheduled, near real-time and real-

time tasks depending on the request. It can be envisaged that the initial imaging 

may be taken in near real time but subsequent follow up imaging can be 

scheduled as normal.  For an emergency request, priority will also be given when 

it comes to the data processing of the images, be they scheduled or near real-

time. 

 

Once the data processing step has been finished, the product generated and 

made available to the ground segment the user is informed of its completion.  

The product will then be given to the user as per the service level agreements 

that are in place for that particular product.  Service level agreements are 

guarantees between the users and the providers of the data to ensure that the 

user gets the products they subscribe to or pay for. 

 

The service level agreements provide guarantees of service availability from the 

provider to the customer.  The provider also sets limits on the response time and 

uptime of the service. The client has some recourse if the provider fails to meet 

any of these limits.   

 

The previous example of a request for imagery and the response of the GMES 

system was used to illustrate two main points.  Firstly any emergency requests 

are fed through the multi-mission planner as not all spacecraft can respond to 

emergency requests directly.  If the spacecraft that can respond to emergency 
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requests cannot fulfil the entire request then the multi-mission planner updates 

the plans of the other spacecraft to cover the shortfall.  Secondly it is expected 

that many emergency requests will require imagery for an area over time at a 

frequency supplied by the client.  Given that for example the sentinel spacecraft 

revisit time is 12 days then there will have to be significant cooperation between 

spacecraft to offer updated imagery in timely manner.  The level of cooperation 

needed to achieve the desired products, particularly in the case of near real 

time products, and the broad range of demanding requests that can be made 

makes the GMES system an ideal candidate for the introduction of a multi-agent 

system. 

 

5.5  Distributed Agent Approach to the GMES system 

 

The following approach was developed in [15, 51].The baseline GMES system as 

outlined in the previous section incorporates a high level of automation but a 

low level of autonomy.  It is this kind of scenario where it is envisaged that 

autonomous distributed agents can improve system performance.  When 

developing a multi-agent control system for a given mission it may be seen as 

preferable to replace the entirety of the previous control system.  One of the 

benefits of using an agent oriented design is that it can be compatible with 

existing systems, especially those based on the service oriented architecture.  

The baseline system for GMES is based on a service-oriented architecture and as 

such for the sake of achievability of the implementation only certain aspects of 

the system have been replaced with agent based systems.  This approach 

increases the likelihood of adoption by reducing the amount of work needed to 

create the agent based systems as they are smaller but also from a political 

standpoint as a mission like GMES naturally has a wide range of stakeholders and 

many of the mission will be operated by different entities meaning that 

cooperation on the scale needed to rewrite the control system for each would be 

impractical. 

 

As GMES is a long term project working with a wide range of spacecraft both 

operating and under development, a categorisation of the types of spacecraft is 

beneficial as the different classes of spacecraft bring with them different 
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capabilities and restrictions.  As such the spacecraft envisaged for GMES can be 

classed in one of three categories.  Class one spacecraft such as the sentinel 

spacecraft have predefined planning that cannot be modified and users can only 

get information by subscribing to the imagery from that particular satellite.  

Class two spacecraft have planning systems so that their planning can be 

modified to adapt to user requirements in a near real time acquisition case 

where re-planning is required.  Class three spacecraft have the next level of 

autonomy on board in that they can autonomously detect scientific events or 

events of interest over particular areas and modify their own planning to better 

acquire the data of interest.  The most taxing scenarios envisaged for GMES 

require near real time data from a number of different spacecraft of different 

classes.  In the next sections two typical cases are described in detail. The first 

is to provide the best possible data product in a near real-time time frame by 

taking into account the capabilities of the different spacecraft involved (which 

may well be of differing classes of autonomy) and the restrictions on the product 

required.  In this scenario an agent based system that allows for competitive 

bidding on data products with the aim of reducing response time and reducing 

mission costs due to re-planning of missions is outlined.  The second use case is 

the autonomous detection of scientific events in which multiple class three 

autonomous spacecraft cooperate to improve the chance of detection of a 

scientific event. 

 

5.5.1   Generation of data products in near real time scenario 

 

In this scenario we will look at the GMES response to a near real-time emergency 

request.  In this type of request it is envisaged that many different data 

products could be required to meet the needs of different clients involved with 

responding to the emergency, these could include land or sea based civilian 

responders or governmental groups. 

 

In this scenario all of the different classes of spacecraft will compete to give the 

best possible product for the user once the specific request has been made.  The 

desired product will have many parameters that must be assessed such as 

deadline, resolution, area of interest, etc.  For simplicity at this stage only the 
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data service has been modelled as an agent based system and the customer 

facing services left as they are.  It can be assumed for the specifics of this case 

that the service providers generate and deliver the correctly formatted requests 

and the actual heavy lifting is carried out by the data provision service. 

 

This scenario has a number of key actors.  There will be number of users or a 

user that makes the actual emergency request.  The request itself will consist of 

number of variables that the user wants met and level of priority given to each 

variable.  In this case alternative products that meet some of his desired 

variables and not others using this fuzzy definition of his requirements can be 

suggested.  Each user or user group, depending on how they access the system, 

will be represented by an interface agent that will negotiate on its behalf.  A 

multi-mission broker agent is tasked with negotiating with the mission agents on 

behalf of the user agents and will generate requests, based on the user’s 

requirements, that are compatible with the spacecraft. 

 

Both the Sentinel type mission developed specifically for a GMES type scenario 

and third party missions will need proxy agents to act on their behalf.  These 

proxy agents will represent their respective mission in negotiations with the 

multi-mission broker agent.  The proxy agents will have a standard interface for 

communication with the broker agent but allow for different architectures and 

baselines on the different spacecraft in the system.  The Sentinel missions 

depending on the final level of autonomy may well have the capability to 

interact directly with the broker but the implementation of proxy agents despite 

this makes for a system that is easier to develop and maintain as new missions 

are added. 

 

The multi-agent approach to GMES aims to improve the responsiveness and 

availability of the system.  The interaction between the multi mission broker 

agent and the proxy agents representing each spacecraft will be designed as a 

cooperative system which can be thought of as a number of consumers 

(represented by the broker agent) negotiating for the use of a finite set of 

resources represented by the proxy agents of the spacecraft.  The cooperation 

between the agents needed for this strategy to work is based on both the local 

intelligence of the individual agents tasked with autonomous planning and 



     
162  Chapter 5 

autonomous on board science as well as the distributed intelligence that arises 

from a successful negotiation structure.  The distribution of decision making in 

this design raises the possibility of maximising the social welfare within the 

system while reaping the robustness benefits of a fully distributed system. 

 

Within this system design where agents negotiate the use of limited resources 

for the collective good there are two possible scenarios that would require full 

use of the distributed problem solving abilities inherent in the multi-agent 

system.  The first is the situation where a number of different consumers make 

incompatible requests for the use of a spacecraft resource.  Through a 

negotiation sequence where the multi mission broker agent takes into account 

the different consumers priorities, the history of a given consumer and the 

possibility of finding any alternatives that satisfy the consumers, the distributed 

agent system can find a result that satisfies the greater good.  The second 

situation is that of a request being made by a consumer for information that 

requires the collaboration of 2 or more proxy agents (and thus spacecraft) in 

order to fulfil its request.  As such, the negotiating multi-agent system needs to 

parametrise a number of variables to be able to effectively find an optimal 

solution.  It must parametrise the different needs of all its consumers so that 

they may be compared as well as parametrising the capabilities of its resources 

in such a way that an agent is not only aware of its own resources but also of the 

resources available through other proxies. The resources available to and 

required by an agent are typically resources related to the payload of a given 

satellite, computational resources on a spacecraft or on the ground and services 

supplied by other agents. 

 

The constraints and interrelations between different elements in the system 

must also be parametrised along with the priorities of the system and any 

expected results in order to get a meaningful result from the negotiation step.  

This system involving the negotiation of consumers who compete to utilise 

resources is well suited to an agent based solution.  As the decisions made by 

the multi-agent system are based on deep knowledge of each element’s 

priorities, restrictions, resources and interlinks it is envisaged that the system 

would be able to provide a higher quantity of useful data to users as a whole 

versus the traditional undistributed approach.  If such a multi-agent system is 
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successfully implemented then it can be hoped that the system would see an 

improved success rate of acquisition requests, a higher level of resource 

utilisation, a clear and transparent planning system for serving data to users on a 

scheduled basis and an ability to combine data from a number of sensors to 

provide data for emergency services in a more timely manner. 

 

Examples of the multi-agent based negotiation system will now be described to 

clarify its operation. 

 

In the first simple case a user requests a product which is then negotiated with 

the GMES proxy agents.  For this example the user must be logged into the GMES 

system in a way that complies with the appropriate service level agreements as 

well as all missions that are capable of providing data to the user taking part in 

the selection process.  Initially the user will select an area of interest for his 

desired data product.  After the region is selected a number of image and data 

characteristics must be chosen from a set of predefined values and ranges 

appropriate to the systems as whole.  These characteristics and fuzzy 

requirements are defined in more detail in the section on implementing the 

image sorting algorithm for GMES.  Based on these requirements the multi 

mission broker agent will initiate communication with each proxy agent about its 

ability to provide data that meets the requirements of the user.  The proxy 

agents response will be based on the spacecraft’s current status including the 

current capabilities of its instruments, its current mission planning status (is it 

currently engaged in other activities?) the status of its sub-systems and other 

local parameters.  The possibilities or bids generated by each proxy will then be 

displayed to the user with the system itself prioritising the prospective images 

based on the image meta data (This is expanded on in the image selection 

algorithm).  The user can then choose the image or set of images they wish to 

have acquired.  At this point the missions associated with the images the user 

wants taken will be informed and a request for specific images uploaded to the 

spacecraft's plan.  Once the data products have been acquired they will be 

delivered to the customer, either as they are ready or when all of the data in a 

given dataset has been acquired.  If the user’s requests cannot be met by any of 

the spacecraft then the multi mission broker agent informs the user of this at 

the earliest possible juncture.  If a malfunction occurs and the requested image 
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if not taken or the image request is de prioritised due to an emergency request 

the user is also notified at the earliest possible juncture. 

 

5.5.2   Detection of an event 

 

In this example a heterogeneous group of spacecraft are tasked with monitoring 

a particular geographical area for a particular event.  The event to be detected 

will be pre-programmed into the system by way of a number of parameters that 

the spacecraft are observing for particular changes.  The aim of the spacecraft is 

to work collaboratively to reduce as much as possible the response time from 

the given event occurring to the user being notified.  To help explain how event 

detection could work we will discuss how events could be detected using generic 

examples.  An interface that allows the user to specify to the spacecraft exactly 

what scientific event they are looking for and in which area, is envisaged.  The 

spacecraft used for scientific event detection will be class three spacecraft as 

these are the only spacecraft that have the ability to autonomously change their 

status in response to specific sensor readings. 

 

This type of event detection can only be carried out using the latest autonomous 

spacecraft as envisaged for future GMES missions.  As such no direct comparison 

can be made between this specific case and the GMES baseline.  The key 

difference is that in using the class three spacecraft the events can be detected 

and changes instigated all without the intervention of a ground station whereas 

in the closest comparable baseline scientific event detection scenario no event 

can be detected until the data is downloaded and analysed on the ground.  For 

comparison between the autonomous and the baseline cases it is assumed that 

the users in the baseline case will process data acquired though the standard 

scheduled planning process to see if any scientific event has been detected. 

 

In this case the three main actors are a set of users, the multi mission broker 

agent and a number of third party missions.  Each user in the process will be 

represented by an interface agent who will forward any requests, negotiate on 

behalf of the user and update the user on progress or results delivery.  The 

requests sent by the user will include a detailed description of the parameters 
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associated with the triggering of the scientific event along with data as to the 

priority of the event (this is of increased importance where multiple users are 

making science event requests), the area to be searched for the described event 

and times for validity periods or deadlines. 

 

As in the previous example the multi mission broker agent will have the task of 

negotiating with the mission proxy agents on behalf of the users taking into 

account the availability and capability of each mission as related to the user 

request.   The negotiation will attempt to satisfy all of the user interface agents 

while maximising utilisation of the spacecraft via the proxy agents. 

 

The other key actors in this case are the third party missions with autonomous 

science detection abilities.  Earth observation spacecraft with these autonomous 

capabilities are not yet common place but it is foreseen that future mission will 

have increasing levels of autonomy, enabling this type of autonomous science 

detection through GMES. 

 

The pre-conditions for this scenario is that the users involved are logged into the 

system in a manner compatible with the service level agreements describing 

interface and privileges etc. There must also be at least one class three 

spacecraft available for selection by the user and only those missions that are 

able to meet these requests are available (in that they are not undertaking some 

other higher priority task). 

 

The normal flow of this specific test will be as follows.  The user through the 

appropriate user interface agent selects a region of interest in which a search 

for a given scientific event will be undertaken.  Once the region has been 

selected the event is defined using a number of parameters depending on the 

characteristics of the event under observation.  It is envisaged that there will be 

a number of predefined events that the user can select but that the user will 

also have the ability to define their own scientific events based on a 

combination of parameters.  The system will then show the user what spacecraft 

will be able to collaborate on this task (if any).  This selection is created through 

the multi mission broker agent and is based on the projected orbital paths and 

capabilities of each class three spacecraft.  The users will then select from these 
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spacecraft the individual satellite that they want to collaborate with on this 

request and the selected mission will be asked to begin the detection of the 

described scientific event.  Once the triggering conditions are met on any 

spacecraft the spacecraft will autonomously alter its plan to start analysing the 

corresponding in data and a notification will be sent to the ground segment that 

detection has occurred.  The payload data will then be downloaded from the 

spacecraft when appropriate, with class three spacecraft this will be relatively 

soon after first detection. The data is then analysed on the ground and if the 

event is confirmed the user is informed and given the data regarding the 

scientific event. There are a number of alternatives to successful completion of 

the request as described above.  There is the possibility of a false positive from 

the spacecraft and it is up to the ground control analysis to make sure this is not 

passed to the end user.  With the limited number of autonomous class three 

spacecraft available it is likely that the situation where there are no available 

autonomous spacecraft available to undertake the request will be common.  

Checks will also have to be made on the criteria used to define given scientific 

event.   

 

5.6  Multi-agent system design for the GMES mission 

 

As previously described the GMES mission can be seen as a good candidate for 

introducing autonomy in order to improve performance over the baseline design.  

In the previous section a brief outline was given of a distributed multi-agent 

system design for GMES.  In this section we will propose our distributed multi-

agent system for GMES in full before describing the novel image selection 

algorithm and graphical user interface that completes the link between the 

GMES users and the GMES spacecraft constellation.  Again this work is a 

continuation of [15, 51]. 

 

The multi-agent system (MAS) designed for GMES has two primary functions, to 

enable the flow of requests for data to the correct spacecraft and to enable the 

flow of the desired data back to the proper user.  The MAS in this design is 

always on and in contact with the spacecraft through their appropriate proxies 

as well as any active users through their user proxy agents.  The structure of the 
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MAS is based on the spacecraft proxies being informed of a user’s request and 

then making bids comprising a set of images from that spacecraft that best meet 

the user’s criteria.  The multi-mission broker agent collects all of these bids and 

resolves any conflicts so that only those images that can be acquired remain.  

This set of images is then sent to the user.  We will discuss our proposed method 

for displaying and ranking the images in the next section. 

 

5.6.1   Ground Segment 

 

5.6.1.1 Multi-Mission Layer 

 

The MAS ground segment can be thought of as consisting of two layers, the 

mission layer and the multi-mission layer.  The multi-mission layer consists of 

the agents that coordinate the flow of requests and data and instigate any 

collaboration or resolve conflicts between spacecraft.  The user proxy agent is 

the first point of contact between the user and the GMES MAS.  The user proxy 

agent gathers the image requirements from the user.  These requirements will 

consist of information such as the desired time of acquisition, the deadline for 

acquisition, the frequency of updates to the imagery (if at all), resolution, 

spectrum etc.  The user proxy agent may operate through any number of 

different interfaces including but not limited to, request forms, web based user 

interfaces or direct access via a workstation.  The user proxy agent may not 

gather all of the information it needs from the user whether through a limitation 

in the interface or through lack of knowledge of the user.  In this case the user 

proxy agent must be able to make assumptions as to the missing parameters and 

this will be achieved by making intelligent choices based on similar results and 

standard values for any given characteristic. 

 

All of the now complete and formatted request data is then sent from the user 

proxy agent to the (multi-mission) broker agent.  The broker agent’s primary 

goal is to negotiate the provision of image data from the mission proxies to the 

end users.  The broker agent will communicate the requirements from the user 

and will negotiate a set of images from each mission proxy that the associated 
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spacecraft can acquire based on its current plans, capabilities and other 

requests on the system from the same user or other users. 

 

5.6.1.2 Mission Layer 

 

At the mission layer we have all of the agents that enable the system to act on 

image requests and determine if request for image acquisition in the future is 

feasible. 

 

A mission proxy agent will be associated with each mission within the GMES 

constellation.  The mission proxy will negotiate with the broker agent to try to 

provide a set of images that best meet the user’s requirements but also make 

best use of the system resources (Payloads, Computation, Communication, etc.) 

as a whole.  The negotiation will be based on the spacecraft's parameters such 

as when it can record a given image, the constraints on its payload and its 

commitments to other users in the meantime.  Each mission proxy will be 

tailored to its individual mission in order to take into account its individual 

capabilities and constraints.  The mission proxy agent is also tasked with 

coordinating with the other mission proxies to provide products that meet the 

user’s requirements.  There may be requests that require imagery of an area at 

intervals that cannot be achieved by single spacecraft.  In this case the 

spacecraft must collaborate to accomplish the goal.  As such each mission proxy 

agent must have knowledge of the status and abilities of all of the other mission 

proxy agents in the system.  It is in this way that a multi-agent system really 

benefits GMES as it allows for more stable and fast creation of coalitions 

between agents.  The proxy agents must work together in order to provide the 

decision making capabilities required to meet the user demands while 

maintaining availability and performance for other users.  The mission proxy 

agent is also tasked with providing and requesting information from the other 

mission level agents such as requesting orbital position predictions form the 

flight dynamics agent or coordinating the planning agents of its own mission and 

that of another to provide adequate coverage. 

 



     
169  Chapter 5 

There are a number of other agents at the mission level that support the 

decision making capabilities of the proxy agent and thus the MAS as a whole. 

 

The flight dynamics agent provides information about the spacecraft's orbit and 

attitude at the current time and predictions of its state into the future.  This 

allows plans that incorporate the satellites predicted fly over time to be 

created.  It will also allow the mission proxy agent to determine if the 

spacecraft’s current orbit and attitude allow for any given collaborative set of 

images to be taken. 

 

Each spacecraft also has a dedicated ground based planning and scheduling 

agent.  As discussed previously the planning agent constructs a plan for the 

spacecraft which consists of a detailed time line listing the activities that the 

spacecraft should carry out.  As with the other agents at the mission level there 

will be close negotiations in order to satisfy each agent.  The planning agent 

receives instructions from the mission proxy and takes into account data from 

the other mission agents such as the flight dynamics agent.  The negotiation 

between the planning agent and the mission proxy with full access to the 

appropriate data can lead to the creation of a plan that respects all of the 

constraints of the system but also tries to maximise utility to the user.  There 

are also specific agents tasked with coordinating uplink to the spacecraft and 

coordination of communications with the ground stations, these agents must also 

collaborate and negotiate with their counterparts for each spacecraft.  The data 

processing agent is tasked with generating the science products at the correct 

time and with sufficient quality to meet the service level agreements 

requirements.  The data processing agent has contact with the user interface 

agent and the agents at the mission level.  The data processing agent will 

negotiate with other agents for resources to reduce the time it takes to produce 

any given data set. 

 

5.6.2   Space Segment 

 

Many of the agents in the space segment are counterparts to the ground based 

agents.  They could be abstracted into individual components that span both 
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ground and space segments but for clarity they have been separated.  The 

communications agents on each of the spacecraft operate with the single ground 

station agent which resides at a multi-mission level.  The on-board 

communication agents is only concerned with the communication from its own 

spacecraft and its primary functions are to gather the data that is to be 

transmitted, transmitting the data and receiving and passing on requests or 

commands from the ground segment. 

 

Likewise the on-board planner agent complements the ground based mission 

planner.  In this case there is one mission planner per mission so the ground and 

space based planners form a pair specifically for that mission.  The on-board 

planner takes the high level instructions from the ground based planner and 

creates plans for execution on the spacecraft.  When making these plans it can 

take into account data from the other on board agents such as the monitoring 

agent or execution agent that may not have been available to the mission 

planner agent.  This behaviour also allows for the detection of scientific events 

as the on board science agent can directly influence the spacecraft plan without 

intervention for the ground. 

 

The executor agent executes the plans generated by the mission planner and 

refined by the on board planner.  The executor agent decomposes the plan into 

a series of actions that it finds can meet the current constraints of the system. 

 

The on board monitoring agent is tasked with monitoring the spacecraft for any 

anomalous changes in state that could indicate a failure or a reduction in 

capability.  The complexity and design of the spacecraft making up the GMES 

constellation will vary greatly and the monitoring agent will be specialised 

accordingly.  The monitoring agent will collect this data and will notify other 

agents of the spacecraft's ability to acquire a given image or even operate as 

planned. 

 

The on board payload agent is tasked with actually acquiring the data to meet 

the users initial requests.  As well as having access to the payload sensors it 

must also cooperate with the communications agent in order to get the data to 

the ground. 
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The on board science agent allows the spacecraft to acquire data when a 

scientific event is detected without any intervention from the ground.  The on 

board science agent is described in more detail later in this section. 

 

5.7   Definition of the GMES MAS using the HASA 

architecture 

 

In the following section the design for a GMES MAS will be outlined.  This design 

is based on the HASA architecture outlined in Chapter three.  As previously 

described the agents in the HASA architecture can be of one of 4 types: Product, 

Executor, Planner and Resource.  Below the high level agents are defined and 

grouped based on their segment (ground or space) and their mission level. 

 

 

Figure 5-3 GMES HASA ground multi-mission level agents 
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Figure 5-4 GMES HASA ground mission level agents 
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Figure 5-5 GMES HASA space segment agents 

 

Figure 5-6 shows the distribution of the agents more clearly between the ground 

and space segments and the mission and multi-mission layers. 
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Figure 5-6 Distribution of agents in HASA GMES 

 

5.8  Limitations and constraints on spacecraft autonomy 

 

There are number of constraints and issues that must be understood in order to 

successfully design an autonomous space system [133].  For a typical spacecraft 

in Low Earth Orbit (many of GMES spacecraft will be of this ilk) there are severe 

limitations on communication with the ground.  For example a typical LEO 

spacecraft has approximately eight to ten minute communication windows.  The 

communication opportunities for the spacecraft that will constitute GMES are 

not as severe as those applying to deep space missions (such as the DARWIN 

mission for example) which sometimes means that there is no communication for 

weeks rather than hours but even for the LEO case regular communication 

cannot be guaranteed.  This lack of communication opportunities is the reason 

that on-board autonomy is so valuable. 

 

Another challenge with implementing an autonomous control system or any 

autonomy on a spacecraft is the spacecraft's inherent complexity.  The 

spacecraft that will be used for the GMES mission contains thousands of 
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components and even with the push towards using more commercial off the shelf 

components there will still be one of a kind, or mission specific components and 

relationships in for example a specialised payload sensor.  This complexity leads 

to many intricate interrelationships between components and systems. These 

must all be characterised and understood by any autonomous control system. 

 

The complexity of the spacecraft and the limited resources available means that 

there is limited observability of the spacecraft.  This means that any 

autonomous control system must be able to operate with only partial 

information about the state of the spacecraft.  It is important that key 

spacecraft parameters (temperature, power, storage etc.) are monitored but 

continual monitoring of every single spacecraft components down to the nut and 

bolt level would be a waste of on-board resources.  An autonomous control 

system does however have more information than a ground controller due to the 

elimination of the downlink communication bottle neck. 

 

As stated before the resources available to any autonomous control system are 

limited.  One of the biggest limitations is that of computing resources.  A typical 

spacecraft processor offers roughly 25 million instructions per second and small 

amount of random access memory (RAM) (usually 128-256 megabytes).  This is 

far less than is available on even the simplest computer on the ground.  To 

compound matters, most of this computer power is used in the day to day 

operation of the spacecraft and only a small amount is allocated to any 

autonomous system (in the case of Earth Observing Mission 1 (EO-1) about 4 MIPS 

or about 16% of the total computing resources [134]). 

 

One of the primary challenges that an autonomous system must overcome is the 

additional risk of operating without human intervention. This risk stems from not 

only the uncertainty that comes with using a novel autonomous system but also 

from the extremely high value of the spacecraft and the overall mission cost.  

Any failure by the autonomous system could lead to severe recriminations.  

Obviously a fault leading to a catastrophic failure of the mission is the worst 

case and even a failure that leads to a delay could cost the operators of the 

satellite enough money to dissuade them from deploying an autonomous system 

in the first place. 
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5.9  Autonomous science agent in operation 

 

Previously the need and possible operation of an autonomous science agent in 

the context of GMES was discussed.  As a baseline the autonomous science 

system that has been deployed EO-1 will be outlined.   

 

The autonomous system on the EO-1 mission is called the autonomous science 

experiment (ASE).  The ASE is equipped with a set of high level goals that are 

supplied form the ground and these correspond to the science targets that it 

should be monitoring.  The on-board planner for the EO-1 mission, CASPER 

generates and operations plan based on these high level targets.  CASPER is 

based on a  model based planning algorithm [133] which enables it to plan for a 

wide range of operational scenarios but still be able to respond effectively to 

unforeseen events.  The operational plan in this case consists of a plan to 

monitor scientific targets on the ground using the on board instrumentation.  If 

during these planned operations any new science event, as defined in the high 

level instructions for the spacecraft, is detected then a new science goal is 

autonomously generated.  The planning system, CASPER, must then integrate 

this new science objective into the operational plan in order to re-image or 

reacquire the event depending on the nature of the science event itself.  The 

plan is then executed to acquire the newly prioritised science data.  This cycle is 

then repeated as the spacecraft works through the current operational plan. 

 

The key difference between the autonomous science detection used in EO-1 

[133] and that proposed in this work is the use of multiple science agents 

distributed throughout the GMES constellation. 

 

The benefits of an autonomous science agent are made clear in the EO-1 data 

shown in Table 5-1 [135]. 

 

Process Total Process 

Data Acquired 

(MB) 

Data returned 

by ASE (MB) 

Savings Factor 

Volcanism 33750 294 115 
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Cryosphere 38100 304 125 

Flooding 25500 239 106 

Total 97350 837 116 

Table 5-1 Data reduction from EO-1 autonomous agent 

 

The key factor in which a distributed approach can improve on a single 

autonomous science agent is in the speed of acquisition and monitoring of new 

events.  In the EO-1 case once the anomaly is detected the agent adds a 

monitoring task to its plan for its next pass.  In the distributed case once a 

spacecraft detects an event it can be added to its own queue but also 

propagated to other spacecraft who may decide to add it to their own queue.  

This means that multiple spacecraft can be autonomously tasked with 

monitoring the science event leading to improvements in response time and 

update rate. 

 

A key aspect of this type of distributed system is that it will improve with scale. 

As more autonomous science agents run on more spacecraft, events will be 

detected faster and will be covered more completely by more spacecraft. 

 

The key requirement for the operation of this type of distributed autonomous 

science agent is autonomous communication between the science agents on all 

of the spacecraft. 

 

This will be carried out by passing all possible science targets from the 

spacecraft’s science agent to its on-board planner and to the mission planner 

and from there to the multi-mission planner from where they can be 

disseminated to the other spacecraft through the normal tasking process. 

 

5.10  Image Selection Algorithm 

 

The following image selection algorithm is an extension of the work presented 

here [136]. As the basic MAS for GMES was implemented by GMV a novel image 
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selection algorithm was developed to interface to the MAS in order to build on 

their work. 

 

In this system the images supplied by the GMES constellation themselves are not 

used; instead we use a set of variables to describe the images.  This allows us to 

describe images that have been acquired and that may be acquired in the 

future.  These variables or metadata describe the images key characteristics 

from the customer point of view. 

 

The variables describing the image products are: 

 

• Desired area of the image - n-sided polygon describing the desired area of 

the image 

• Cloud cover - percentage of the area of the image occluded by cloud 

• Hard deadline for the image – the latest possible time for the image to be 

captured 

• Desired time for the image - target time for the image to be captured 

• Resolution - the size of the area described by one pixel in the image or 

Ground Sample Distance (GSD) 

 

The images that most closely match the user request form each spacecraft’s bids 

within the MAS.  Each bid has values for each of the above variables and it is the 

algorithm's task to sort these bids into a preferred order for the customer. 

 

The image sorting algorithm consists of two main parts.  The first part uses the 

customers’ criteria to find the five images that most closely match the desired 

variables.  The deadline is used as a hard limit and if an image exceeds it it is 

excluded. In the case of all other variables the closer the variable is to the 

desired value the better. 

 

The area variable is treated differently. The desired area is supplied by the 

customer as the points of an t-sided polygon made up of longitude and latitude 
coordinates.  The area covered by the images is also an t-sided polygon ('t' 
doesn't have to be the same).  The algorithm calculates the overlap between the 
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polygons to generate a value which is then used to help rank the images (larger 

value for overlap is ranked higher). 

 

Once all of the images have been received they are ranked or excluded based on 

their metadata. If no images are left after this step then the second part of the 

algorithm comes into play. In reality this will be quite a common occurrence 

because the set of images available may be quite small and the user may 

unknowingly set too stringent requirements for the exclusion of images based on 

deadline or cloud cover. 

 

The algorithm operates as follows.  The user defined inputs are collected from 

the user through the graphical user interface (GUI).  These inputs are: 

 

• Area Threshold 

• Deadline 

• Desired Observation Time 

• Resolution 

• Cloud Cover Threshold 

• Area Weight 

• Desired Observation Time Weight 

• Resolution Weight 

• Desired Area (As polygon coordinates) 

 

The other input to the algorithm is the set of images supplied by the broker 

agent.  

 

A first pass is carried out on the image data before any images that do not meet 

the thresholds are excluded.  This step involves calculating the area of overlap 

between the desired image and images in the dataset.  The images and the 

desired area are encoded as t-sided polygons with latitude and longitude 
coordinates for each point.  To calculate the overlap we first find out if any of 

the vertices of either polygon lie within the other polygon.  Secondly we check 

each side of the image polygon to see if it crosses a side of the desired polygon. 

Once these enclosed vertices and crossing vertices have been identified, the 
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overlap polygon can then be determined by finding the convex hull of the 

vertices as shown in Figure 5-7. 

 

 

Figure 5-7 calculating the overlap of polygons using the convex hull 

 

Each proposed image is then compared against the thresholds for area overlap, 

the deadline, the cloud cover and the resolution. Rather than remove the images 

that do not meet the thresholds, the images are kept but excluded from the 

subsequent steps as we want to include them in the secondary global 

optimisation step. 

 

For each image in the set the difference between the desired time and the 

image time and the difference between the desired and image resolution are 

calculated.  These values along with the area overlap which was previously 

calculated are normalised and then multiplied by the user supplied weightings 

These weighted values are then summed and the remaining images sorted on 

these values. The top five images are then presented to the user.  
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5.10.1 Global optimisation step 

 

If no suitable images are found a multi-dimensional global optimisation on the 

images is performed by the algorithm.  This optimisation is not to find images 

per se but to suggest to the user which variables could be changed and by what 

amount in order to find suitable images. In this way the customer can decide 

which constraints to relax.  This approach gives the user results outwith the 

initially supplied thresholds. This therefore allows the agent to suggest inclusive 

threshold values to the user.  Any global optimisation algorithm requires an 

objective function, that is a function that produces a scalar value that 

summarizes the performance of the system for a given value of the variables 

that are being optimised.  That is the aim of the global optimisation algorithm is 

to minimise the objective function � �$ where � is a vector of system variables. � ∈ Θ where Θ is the domain of allowable variables for �. 
 

In our case 

 � = i��,  �, ��, ���j (5-1) 

where: ��  = Image area  � = Image time �� = Image resolution ��� = Percentage cloud cover in image 
 

The objective function is: 

 

 � �$ =  � �� , �J$�¡ +   � −  J$ ¡ +  �� − �J$�¡
+  ��� − ��J$��¡$	 

(5-2) 

Where: � ��, �J$  = Overlap function of the current image and the user’s desired area �J  J =Users desired time �J = Users desired resolution ��J = Users desired percentage cloud cover in image 
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This objective function is used for comparison with a number of global 

optimisation methods. 

 

5.10.2 Comparison of Global Optimisation techniques 

 

Global optimisation methods are mathematical approaches that aim to find the 

minimum of any given function.  In most cases this is the global minimum of a 

multi-variable function or set of functions.  There are a great many different 

global optimisation methods with distinct advantages and disadvantages when it 

comes to different optimisation problems.  In general though, all of the methods 

aim to find the global minima as quickly as possible without becoming stuck at 

one or more local minima. 

 

Global optimisation techniques can be broadly grouped into 3 categories, 

deterministic, stochastic and meta-models. 

 

Deterministic global optimisation methods utilise methods that have no random 

aspect and given the same data and initial set of conditions will always reach 

the same optimum value.  These methods commonly operate based on the local 

gradient of the function at any given point.  An example of this approach is the 

Lipschitzian method [137].  A method such as the Lipschitz method requires a 

constant, the Lipschitz constant which determines the extent of the search and 

thus determines whether the search favours local search or global search.  For 

many optimisation problems a suitable value for this constant cannot be 

specified beforehand so the search may not be truly global.  To overcome this 

possible problem, a modified deterministic global optimisation method was 

developed based on the Lipschitzian model but without the requirement for a 

Lipschitz constant.  This new method was named the DIRECT method [138] and 

works by searching and using all values of the Lipschitz constant simultaneously. 

 

5.10.2.1 Simulated Annealing  

 

Stochastic methods all utilise some random factors in their search.  This makes 

the methods non-deterministic in that for any given set of initial conditions and 
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a given data set the stochastic methods may not produce the same answer.  The 

stochastic methods utilise the random variables in order to “climb out” of local 

minima and proceed to the global minimum.  A good example of a stochastic 

method is the simulated annealing (SA) method.  Simulated annealing takes its 

name from the approach used in metallurgy and thermodynamics where a 

material is heated to a high temperature then the temperature is slowly 

reduced.  As the temperature is reduced, the internal elements of the material 

naturally try to find lower levels of internal energy.  In this analogy the global 

optimum is the lowest internal energy possible for the material.  The stochastic 

nature of the method allows for small movements away from the current 

position, even “uphill”, i.e. away from the local minima.  In this way the method 

may be able to escape local minima and search the entire function space. 

 

5.10.2.2 Genetic Algorithms 

 

Heuristic or meta-heuristic based global optimisation methods operate by trying 

to maximise some objective function.  This is done by measuring the “quality” of 

candidate solutions and then aiming to improve the candidate solution and again 

testing its “quality” using the objective function.  The actual method used to try 

and improve the candidate results is at the core of the heuristic or meta-

heuristic.  A well-known meta-heuristic method is the genetic algorithm (GA) 

method.  In this method a set of candidate solutions are generated.  Each 

candidate is then given a fitness value based on its parameters (which map to 

the variables needed to be optimised).  The candidates with the highest values 

of fitness breed and produce new offspring based on their parents.  This process 

is repeated over many generations to try to find the solution with the highest 

possible fitness value. The genetic algorithm method is also stochastic as at each 

generation a certain amount of mutation of the offspring occurs allowing for 

variation within population and the discovery of solutions outside the area 

described by the initial candidate set. 

 

5.10.3 Comparison of algorithms 
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Four different global optimisation methods were compared for inclusion as part 

of the image selection algorithm.  As a baseline a standard sort algorithm was 

also run to show any improvement in calculation time if any over the method 

used to initially rank the images.  The four methods chosen for comparison 

were, DIRECT, general pattern search (GPS) [139], simulated annealing (SA) and 

genetic algorithms (GA). 

 

As is shown in Figure 5-8 the global optimisation methods are all outperformed 

by the standard sort on small data sets.  This was to be expected and it is the 

algorithms performance on larger datasets, like those to be expected from GMES 

that is of interest.  The two deterministic methods show the lowest computation 

time by some margin, followed by the meta-heuristic genetic algorithm and 

lastly by the stochastic simulated annealing.  In terms of problems that global 

optimisation methods are applied to, this is quite simplistic and as such the 

simpler deterministic methods perform better.  Of the two deterministic 

methods, DIRECT was chosen for its slightly superior performance in large 

datasets as shown in the figures below. 

 

 

Figure 5-8 Comparison of global optimisaton techniques computation time for 
varying dataset size 
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For the sake of this comparison each global optimisation method was run five 

times to find the five optimal images within the set.  The sort only had to be run 

once as the best five images can be accessed directly once the sort is complete.  

Each method was implemented as shown in Appendix D and without significant 

optimisation.  Even though this is the case a clear performance improvement 

over the basic sort for large datasets is shown. 

 

5.10.4 GUI 

 

In this section the graphical user interface that was developed to demonstrate 

the image selection algorithm is presented. 

 

The GUI itself allows the user to easily set the thresholds and variables required 

by the algorithm and to either see the top results or the suggestions for 

threshold corrections. 

 

The GUI was built using Java and a number of other tools.  These included the 

Google App Engine platform for running the server side tasks, the Google web 

toolkit for creating the browser based client side and the Google Maps API for 

generating the maps presented to the user. 

 

The matrix manipulation of the sorting algorithm’s first pass and especially the 

multi-dimensional global optimisation step can be computationally expensive 

depending on how many images are being sorted. In order to distribute the 

workload away from the end user a client server model is used as shown in 

Figure 5-9. 
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Figure 5-9 Client server interface structure betwee GMES MAS and GUI 

 

The Google Web Toolkit (GWT) [140] was employed, as it allows a lightweight 

web based front end to make calls to a server running the native code of the 

algorithm which is in turn coupled to the MAS. On the front end we wanted the 

interface to be as easy to use and as instantly accessible as possible. To this end 

all selection of geographical areas and the display of results is handled by using 

the GWT interface with the Google Maps application programming interface 

(API). This offers the users a familiar interface and allows us to easily acquire all 

latitude and longitude data from the user. To further improve the ease of use of 

the interface, variables are entered where possible through calendar pop ups 

and sliders to minimise the use of text boxes and to show the user realistic and 

sensible ranges for a given variable. 

 

The web based GUI is delivered to the user entirely using standards compliant 

HTML, CSS and JavaScript. This will allow any user on any platform that runs a 

modern web browser to use the GUI while all of the computationally intensive 

calculations are carried out on the remote server.  The use of Java and open 

frameworks will also allow easy integration with the GMES MAS. 

 

In this test of the GUI and algorithm the image data is not supplied by the MAS 

but instead generated within the server. This allows us to test the algorithm 

easily for different data sets to ensure it is operating correctly. After the 
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generation of the image data set the user sets the hard thresholds for area 

coverage, maximum cloud cover and the deadline for the image. 

Next, the user sets the variables for the desired image, this includes the 

longitude and latitude points of the desired area.  This is done in a pop up 

showing a scalable map of the Earth and the points of the polygon are selected 

by simply clicking on the desired points on the map. 

 

The user also sets the desired resolution of the image and the desired time of 

the image. All of these variables also have accompanying weighting sliders which 

will increase or decrease their influence on the overall ranking of resulting 

images.  See Figure 5-10. 
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Figure 5-10 The complete GUI for image selection 
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Once all the thresholds, variables and weightings have been set, the user 

initiates the algorithm to calculate the ranking of the images. Any image that 

meets the threshold criteria it is displayed in ranked order on the right hand side 

of the GUI. The result shows the area covered by the image, the desired area 

and the overlap between the two (Figure 5).  The values for the area, resolution 

and cloud cover are also shown. Cloud cover for future dates is currently 

modelled by a simple probability function but could be extended to encompass a 

more accurate meteorological model. 

 

If an image is not available then no data is displayed in the results section.  

Instead a set of suggested threshold changes are displayed to the user as shown 

in Figure 5-11.  These are generated by the algorithm's global optimisation step 

but are displayed to the user as suggestions. The user may choose which variable 

they would like to change and then re-run the algorithm knowing that at least 

one result will be presented as the new threshold values generated by the global 

optimisation step ensure this. 

 

 

Figure 5-11 Sample results screen showing suggestions to the user 

 

The GUI that has been implemented here could further be extended in the 

future by incorporating more data from outside sources, for instance using 

semantic links to other GIS data sources [141] .  
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5.10.5 Test Cases 

 

In the first example we will show how the system can be used to acquire data for 

monitoring crop coverage over a large area. In this example we will use the 

monitoring of rice crops in the Kunming area of China. Rice crops can be 

monitored in a number of ways including using the visual spectrum and by 

synthetic aperture radar (SAR). Accurate image data allows the user, in this case 

most likely a government agency, to predict future yields and thus supply and 

price of future crops. 

 

In this case the deadline for the images can be easily defined as the end of the 

growing season as the crops growth cycle is well established and growing seasons 

known for each region. The Area threshold will be set at 70% as multiple images 

can be combined for full coverage.  The cloud cover threshold will be relatively 

tight and set at a maximum of 25%. Any images taken with SAR will not have to 

meet this requirement as cloud cover is invisible to SAR sensors. Images taken in 

different spectral bands are distinguished by tags in the image metadata. 

 

With the desired area chosen as shown in Figure 5-12 the desired resolution must 

be selected to give enough detail to identify areas where the crop is being 

grown. The desired date of the image is chosen but is weighted less strongly 

than the area and resolution variables as the exact day of the image is not 

important as long as it is close to the desired date. 
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Figure 5-12 Area selection in the GUI 

 

The data set supplied by GMES for this request would be large due to the 

relatively lax threshold values and thus probably not require anything more than 

the algorithms initial sort.  

 

In the second example we will show how the GMES MAS could be used to provide 

images for a rapidly changing time critical such as that in a natural disaster or 

emergency.  The response of systems to natural disasters is major area of 

research [142, 143, 144] 

 

In a natural disaster scenario the deadline for images will be in the order of a 

few days, if not even a few hours.  The further forward the deadline is brought 

the more chance that there will be no images available. At this point the global 

optimisation step is carried out and the best images selected, essentially telling 

the user when the first image that meets their criteria is available. 
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The area threshold will be set at 50% as any data on the area will be more useful 

if it can be supplied quickly, for the same reason the cloud cover threshold is at 

25% as some occlusion can be accepted as long as there is data for the majority 

of the image. 

 

The desired date variable will be given the highest weighting followed by the 

desired area and resolution.  In this case the data set could be fairly small 

depending on the area and response time required.  With a smaller data set the 

need for the global optimisation step is more likely. Scenarios where the 

algorithm cannot supply an image of the desired area but can supply an image of 

another affected area can be envisaged and the global optimisation step allows 

the system to suggest such opportunities to the user through suggested threshold 

settings.  The results are shown to the user as in Figure 5-13. 
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Figure 5-13 Display of results in the GUI 
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5.10.6 Algorithm Performance 

 

The two part structure is important because if images are not found using an 

exhaustive search by means of the first algorithm then we must very quickly tell 

the user how to proceed. We could run a slightly modified version of the first 

algorithm to try to give us answers instead of the global optimisation algorithm 

but there are a number of issues with this. The global optimisation step gives us 

a different insight into the data set when compared to our initial sort and 

supplies us with revised threshold suggestions in a very simple and timely 

manner. 

 

For our initial image sorting algorithm the time taken to sort the data increases 

roughly linearly with the size of the data set, this is shown for up to 5000 images 

in Figure 5-14.  

 

 

Figure 5-14 Global optimisation vs algorithmic sort, up to 5000 images 
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Figure 5-15 Global optimisation vs algorithmic sort, up to 200 images 

 

The system can afford to take its time with the initial sorting as the user will 

expect this but to take the same time again just to make suggestions may force 

the user to wait for an unnecessarily long time depending on the size of the data 

set. 

 

The time taken for the global optimisation step to compute is roughly constant 

for the datasets utilised in this case and of the order of 50ms as shown in figures 

5-13 and 5-14.  There is some increase in calculation time when performing the 

global optimisation step on very small datasets as shown in Figure 5-15.  This is 

due to the algorithm being configured for the larger datasets it is much more 

likely to encounter. 

 

As one of the aims is to have this system easily accessible by the end user the 

total response time of the system is important.  It consists of the communication 

time between the client and the server and the time it takes to execute the 

algorithm or algorithms (depending on whether the first sort was successful). 

 

Miller proposed [145] that there are 3 broad time frames to take into account 

when designing a user interface.  If the response time is less than 0.1 seconds 

then the response is judged by the user to be immediate, if less than 1 second 
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then the user will notice the delay but not require specific feedback to notify 

them of the delay, up to ten seconds the user will wait as long as adequate 

feedback is given but if the delay is over 10 seconds, whatever the feedback 

given the user will want to perform other tasks and will assume that the system 

has failed.  As such we strive to keep our overall response time under 10 seconds 

and this is greatly helped by the fast response of the global optimisation step. 

 

The time taken for the response to get back to the user is based both on the raw 

computational time needed as shown in figures 5-13 and 5-14 but also on the 

speed and more importantly latency of the users’ internet connection. The 

client server structure allows all of the algorithm computation to be done on the 

server, thus putting very few hardware constraints on the user. The downside of 

this is that the requests and results must be sent to the server and this takes 

time. As the server acts as the link to the GMES MAS the full set of image data 

itself is not sent between client and server. Instead only the requests and the 

resulting images are transferred between the client and server. This means that 

the user will not require much bandwidth but the latency of the connection will 

dominate. Typical values of round trip latency are below 500ms [146]. The round 

trip latency however will be dwarfed by the time taken for the algorithm to run 

on the server in all but the most trivial of data sets. 

 

 

5.10.7 Conclusions on the Image Selection Algorithm 

 

In conclusion, an algorithm was developed to rank the images supplied by the 

GMES multi-agent system. This algorithm has been incorporated into a functional 

GUI that will allow users to easily set their desired image variables such as the 

desired area and hard thresholds such as the deadline for the image to be taken. 

The use of a global optimisation step allows the algorithm to quickly suggest 

changes to the user supplied thresholds in the event that the users desired 

images cannot be acquired. The algorithm is still in the early stages of 

development and much work can be done to further increase its functionality 

and speed. For instance both the simple sort and global optimisation steps can 

be optimised for the specific structure of the data as the data structure is set 
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and relatively simple, this would further increase the speed of the algorithm. 

Different global optimisation techniques could be tested as they may offer 

increases in speed and accuracy over the current Lipschitzian Optimization. The 

prototype GUI is written in Java and presents a simple to understand web based 

interface to the user. Overall this work demonstrates that working algorithms 

and interfaces can be developed for complex multi-agent systems in order to 

hide that complexity from the user while still providing data or suggestions to 

the user rapidly. 

 

5.11  Chapter Summary 

In this chapter the GMES mission was introduced and the MAS developed with 

GMV outlined.  This MAS was then converted into the HASA architecture for 

clarity.  As the MAS was implemented by GMV an image selection algorithm as 

developed to complement this work and round out the system.  
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Chapter 6 Conclusions 
 

6.1 Summary and findings of the thesis 

 

This thesis addressed the hypothesis “can multi-agent control enable more 

autonomous space missions?”.  This resulted in three main contributions.  The 

first was the definition of a novel recursive multi-agent architecture for space 

missions named HASA. The second contribution was the design of a multi-agent 

control system based on the HASA architecture for the DARWIN mission as well as 

the design and implementation of a multi-agent simulation suite which was used 

to extensively test the formation flying capabilities of the DARWIN multi-agent 

system. The third was the design of a multi-agent control system for the GMES 

mission based on the HASA architecture which utilised both embodied agents and 

purely software agents. It also included a novel image selection algorithm.   

 

In Chapter two the key concepts of autonomy, agents and agent architectures 

were introduced.  The difference between deliberative and reactive 

architectures was defined and the idea that they can be combined in order to 

mitigate their respective shortcomings (in layered architectures for example) 

was discussed.  The concept of distributed architectures was described along 

with how this approach addresses the needs of multi satellite space missions.  

The idea that a distributed architecture could also be recursive was discussed 

and this was taken as the starting point for the development of the HASA 

architecture in the following chapters.  The design choices that need to be made 

were also outlined, specifically how knowledge, intelligence and decision making 

is distributed within a system.  This led naturally on to the issue of how 

knowledge, intelligence and decisions are managed and communicated through 
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the system and possible communication processes and architecture were 

outlined. 

 

In Chapter two the basic concepts of a space based autonomous system are 

discussed.  The ground station is where most of the current level of automation 

and autonomy is found and the difference between these current systems and an 

agent based approach would not be as great as in other mission components.  

Pure software agents, that is, agents with no physical basis, can also take over 

the data processing and product ordering tasks normally carried out for the 

missions and allow for parallel, robust processing of the data produced by the 

mission.  An agent approach would also enable new ways of receiving requests 

and disseminating results to users, more fully described in Chapter five.  The 

idea of replacing the monitoring and control components of traditional system 

with an autonomous agent based system is particularly applicable to formation 

flying missions where the control of all of the satellites from the ground may be 

prohibited by communication delays or the complexity and accuracy required by 

the particular mission.  These ideas were further discussed in Chapter four with 

respect to the DARWIN mission and its formation flying requirements.  The 

responsibilities of the attitude and orbital control system along with the failure 

detection, isolation and recovery components were discussed.  These 

components would have to work in fundamentally different ways within a multi-

agent system and monitor many more systems and the links between them. 

 

In Chapter two the concept of agent system architectures, the way agents are 

organised and operate as a group, is introduced.  Traditional agent system 

architectures are described including the blackboard, modular, layered and 

production architectures.  The key concepts to be considered when designing a 

system architecture are then introduced.  The difference between homoarchical 

(where the hierarchy of agents is fixed) and heterarchical (where the hierarchy 

of agents can change to suit the problems encountered) systems is outlined as 

well as the level of federation within a structure, that is the ability of a local 

group to solve a local problem.   

 

In Chapter three the key concept introduced in this chapter is that of the holonic 

agent and system architecture.  This is based on the idea that a system with 
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many intermediate levels of abstraction leads more easily to a robust solution to 

a complex problem.  This recursive nature allows the agents themselves and the 

system architecture to be defined in one unified language and is used to create 

the novel HASA architecture for distributed space missions.  The ability of 

holonic agents to abstract away complexity allows each agent to have both 

physical and software agent components which makes it ideal for space missions 

where a common language for defining hardware and software components can 

be extremely useful. 

 

The next part of Chapter three deals with the key problems which an agent 

system architecture must solve.  Intelligent control and the difference between 

high level and low level control is discussed.  The idea of designing with safety in 

mind from the outset is also put forward along with details of some applicable 

standards and discussion of safety in real time systems and which systems are 

critical to operation.  The safety related themes of heterogeneous versus 

homogeneous redundancy were discussed as well as the verification and 

validation of a complex agent based control system. 

 

The key contribution of this chapter is the description of HASA the holonic agent 

space architecture.  Based upon the idea of multiple levels of abstraction 

allowing intermediate stages between agent architecture and agent system 

architecture while allowing all levels to be described using the same language. 

The HASA architecture is made up of 4 holons, units that can be combined or 

separated into more holons.  They are the Executor, Planner, Resource and 

Product holons.  More details are then given of how holons are aggregated to 

create the different levels of abstraction, how specialisation is handled and the 

data and functions of each holon. 

 

Advantages of HASA for space applications 

• Holonic architecture allows for  the system to be described on many 

different levels of abstraction. 

• Focused on the creation and maintenance of ‘products’ brings with it a 

production, safety and reliability centric view of multi-agent systems. 

Ideal for space applications. 
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• Holons specifically tasked with real time execution mean it can be used 

for complex control problems that are found in the space domain and not 

in the manufacturing domain. 

 

Disadvantages of HASA for space applications 

• Novelty of the architecture requires designers to rethink how their 

mission will be controlled. 

• Has not yet been fully implemented for a space mission so no common 

modules to be reused. 

 

Chapter four describes the development of a MAS for the DARWIN mission. The 

DARWIN MAS must be tested by using a physical simulation of the environment.  

This is due to the fact that the technical challenge in DARWIN is the fact that it 

is a formation flying mission with very tight constraints.  The distributed nature 

of the hardware must also be utilised by any MAS and it was chosen because it 

would require a very specific structure in its multi-agent system. The ability of 

the HASA architecture to model a variety of missions control systems shows its 

versatility in the space domain. 

 

The DARWIN mission itself comprises a number of space telescopes flying in 

formation, a central hub then collects the light collected by each telescope and 

through selective interferometry aims to stop the light from the star swamping 

the light of the exoplanet being imaged.  Formation flying and formation control 

is covered and the MAS design for the DARWIN mission described.  The design of 

the MAS consists of 5 different types of main agents, the planning agent, the 

formation flying command agent, the formation flying execution agent, the 

feedback agent and the negotiation agent.  They are homoarchical on the 

spacecraft scale but on the formation scale the hierarchy can change to suit the 

needs of the mission as agents take turns in verifying others actions and certain 

craft take the lead.  The MAS was then described using the HASA architecture for 

clarity. The issue of how to measure the performance of multi-agent systems is 

discussed and the outcome is that the best way to measure their performance is 

to simulate their operation in an environment as close to reality as possible.  As 

such, a novel multi-agent testing suite was developed to see how the DARWIN 

MAS would operate in a number of operational scenarios.  The simulation suite 
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itself acts as an interface between the running MAS on its own hardware and 

models of the agents external environment, internal knowledge and their 

intelligent behaviours.  Utilising these fundamental models in this way allows for 

them to be changed and compared at will without affecting the underlying 

structure of the MAS or rewriting the agent code.  In all of the tests carried out 

on the DARWIN MAS using the multi-agent simulation suite the agents were 

running in Java and the simulation, internal knowledge and intelligence models 

were written in a combination of Matlab, C++ and Java.  This ability to easily 

integrate models written in any language was the major innovation in the multi-

agent simulation suite. 

 

A number of test scenarios were developed to ascertain the performance and 

feasibility of the multi-agent formation flying design.  All of the formation flying 

scenarios were carried out in predefined halo orbit at the second Lagrangian 

point.  The dynamics of the system were modelled using a standard approach to 

modelling the circular restricted three body problem. The initial scenarios 

showed the station keeping requirements of a single satellite on the defined 

reference halo orbit.  Other craft were then added to show how the relative 

distances between spacecraft changed over the course of an orbit.  The collision 

avoidance mechanism of the MAS was then tested using scenarios where all of 

the craft used the CAM and a scenario where one of the crafts control system 

had failed and was not responding in the usual way.  The primary formation that 

was tested was 12 satellites, one each on the vertices of an icosahedron.  This 

formation had four satellites each on orthogonal planes and was complex enough 

to model the changes in formation and common problems found in formation 

flying missions.  The underlying controller used in the formation flying scenarios 

was a proportional-integral-derivative feedback controller and this coupled with 

the information shared by each of the satellites was enough to hold the 

satellites in the icosahedron formation.  A number of formation changes were 

also tested.  A change in size of the formation in only one dimension was the 

simplest, followed by a change in formation size in all three dimensions.  A 

change from the icosahedron formation to a ring was also tested as well as 

satellites changing positions within a formation without affecting the other 

satellites.  Another simulation model was developed and while using the same 

equations of motion from the CRTBP it was implemented using the Matlab 
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Simulink tool which used a different interface to the test suite and allowed the 

use of Simulink specific tools, such as an automatic PID gain tuner.  Another 

major benefit of this approach and this test suite is the user's ability to easily 

change intelligence models.  To demonstrate this, the PID based avoidance 

algorithm was replaced with a model based on ORCA.  This was implemented in 

a different language to that of the agents but as it used the standard interfaces 

that are part of the test suite this was not a problem.  The ORCA based 

controller was tested using the same agents in the icosahedron and it was shown 

that it allowed for collision avoidance in otherwise dangerous scenarios.  To 

demonstrate the scalability of the test suite another scenario was created 

involving 812 satellites all crossing through a single point, the test was 

successfully carried out and the results show that collision were avoided. 

 

There are a number of steps that would be required in order to fully realise this 

architecture for a real DARWIN type mission.  The recursive nature of the HASA 

architecture means that it is ideally suited to building up the system from sub-

systems up.  The logical place to start would be to fully implement the control 

aspects of the mission on a hardware test bed.  It is much more likely that HASA 

subsystems will be flown before an entirely HASA space mission so the hardware 

test bed validated control system could be used on missions to prove the utility 

in the architecture. 

 

In Chapter five the GMES mission is introduced.  Special attention is paid to the 

services that GMES is designed to provide and the hardware and software 

components of the mission.  The role of the customer is extremely important in 

this mission and the flow of customers requesting products and the mission 

delivering them is discussed.  The hardware side of the mission is also discussed, 

the key issues being the heterogeneity of the constellation and the possibility for 

some satellites to have the capability for full autonomy.  The possibilities 

offered by fully autonomous Earth observation satellites and how an autonomous 

science agent could operate, are outlined.  What follows is the description of a 

multi-agent system for GMES and a definition of this MAS using the HASA 

architecture.   
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The MAS can be thought of as comprising four main components, a ground 

segment tasked with acquiring user requests and acting as a central negotiator, 

a multi-mission layer which acts as a proxy for the satellites combined, a mission 

layer which interacts with only one satellite and acts as its proxy during 

negotiations and finally the space segment which are the agents that reside on 

the satellites themselves.  This proposed MAS for GMES is then implemented 

using the HASA architecture which illustrates how a complex MAS can be defined 

succinctly. 

 

The final section of Chapter five describes the work on creating a novel image 

selection algorithm for GMES using global optimisation techniques.  The 

algorithm itself is described and its key features are the fact that the user 

supplies a set of constraints with which to sort the images which can be 

generated by the constellation.  If the constraints supplied by the customer 

return no images then a global optimisation step on the data set, which suggests 

changes to the customer's constraints, is performed.  This relaxes the customer's 

constraints enough to return images while still maintaining their original intent.  

This global optimisation step returns results significantly faster than using 

conventional sorting algorithms on what would be an extremely large global 

dataset.  Finally the user interface and client server infrastructure for using this 

algorithm is demonstrated with case studies showing its use in practice on a test 

dataset. 

 

6.2 Fulfilled Objectives 

 

The aim of this thesis was to see if the control of multi satellite space mission 

could be improved by the use of distributed multi-agent systems.  This 

hypothesis was explored by the creation of a novel multi-agent architecture, 

HASA, which was then used to design multi-agent system for two contrasting 

multi satellite missions. The DARWIN MAS design had to be able to cope with the 

challenges presented by formation flying.  In order to test the DARWIN MAS a 

multi-agent test suite was built and the MAS run through a series of increasingly 

challenging scenarios using a variety of simulation and intelligence models. The 

GMES MAS design needed to deal with complex user requests and did so using a 
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novel image selection algorithm and interface.  It also had to successfully bridge 

the gap between the ground and space segment and allow for a complex bidding 

and negotiation framework. 

 

6.3 Limitations and Further Research 

 

The clear next step for this work is to further implement both of the MAS designs 

and design MAS for other missions.  This work would feedback valuable 

knowledge which can be used to improve the HASA architecture.  As multi-agent 

systems are developed for more missions, be it using HASA or not, the more 

compatible intelligence and simulation models become available.  This will help 

multi-agent systems make the leap from theory and technology demonstration 

missions to enabling wholly new types of mission that would be not be possible 

with existing technologies. 

 

The creation of a set of standard HASA agents that are able to carry out most 

generic spacecraft functions would be worthwhile as this would allow more time 

to be dedicated to the tasks and subsystems that can benefit the most from 

more autonomy.  In this work development effort had to be concentrated on a 

subset of possible MAS applications (autonomous order/request management and 

autonomous formation flying).  One of the main limitations of this work was thus 

the fact that the full set of spacecraft sub-systems were not included in the 

simulations.  

 

Larger scale simulations of both the GMES and DARWIN MAS would be of great 

benefit in both fleshing out the agents themselves and offering insights into the 

operation of these types of missions which will become more prevalent in the 

future. 

 

Overall I believe this work best acts a foundation for future work on multi-agent 

systems and spacecraft autonomy by providing a flexible agent architecture, 

multi-agent system designs based on this architecture and the development of a 

multi-agent simulation suite specifically for space missions. 
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Appendices 
 

Appendix A - Traditional Spacecraft Control Structure 

 

Ground station component 

This component implements the interface between the ground and the space 

segments.  It provides monitoring data for both systems and allows the user to 

execute any given plan or activity on the system.  The ground station component 

also provides tracking data and computes ground station availability.  It requires 

data on the antenna used for tracking as well as plans and activities from the 

users.  Its tasks include the planning and execution of ground based activities, 

uplink and downlink from the space segment, processing and pre-processing of 

data and data archival.  The traditional approach such as the European Space 

Agency’s  (ESA) ESTRACK Management System (EMS) [147] calculates the 

availability of different resources and schedules them accordingly.  This 

component can benefit from an autonomous agent approach by increasing its 

ability to dynamically negotiate between components of the ground station 

network. 

 

Data Processing Component 

The data processing component processes all of the mission data, generates the 

mission products and then distributes these products to the users of the system. 

The services it provides are the mission products themselves and interfaces to 

allow for the generation of bespoke products to users specifications.  The 

component requires monitoring data to allow it to create the relevant products 

with the relevant guarantees and is tasked with executing the appropriate 

processing algorithms to create the right product, calibration and quality control 

for these processing chains and consolidating and archiving the generated 

products.  The traditional approach for this component is to have linear string 

processing steps, each step taking the output of the previous step as its input, 

newer systems instead use a data driven approach and the processing step is 
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only carried out when all of its input data is available from all of its supplier 

components.  The data processing steps are computationally very intensive and 

as such are usually distributed to a number of nodes within a larger computing 

cluster.  The agent approach to the data processing component offers the 

possibility of increased performance due to dynamic resource utilisation and 

cooperation between agents.  For example the ability of an agent to move 

within a heterogeneous computing environment will allow the data processing to 

dynamically move to where most computation resources can be found and this 

would greatly increase resource utilisation.  Agents could also be involved at a 

higher level, for instance in the dynamic creation of new products for users by 

combining existing processing actions available to the agents. 

 

Flight Dynamics Component 

The flight dynamics component’s main functionality is concerned with orbit 

determination, orbit control, attitude determination and attitude control.  It 

provides the facility to execute actions singly or as part of some larger orbital 

determination procedure.  It can make predictions of variables and states based 

on its current position and historical data.  It can execute manoeuvres and 

manipulate manoeuvre data and plans.  It also provides flight dynamics data 

such as current orbit, current attitude, alerts for significant events and data 

concerned with tracking and monitoring of the spacecraft to ensure 

communications.  The flight dynamics component requires monitoring data of 

many of the other subsystems to aid in making the correct manoeuvres or 

acquiring the correct orbit.  It requires tracking data from the two way 

communication link as, in order to achieve a given orbit or position, it must have 

reliable data on its current position.  The component requires sensor data both 

when a manoeuvre is being executed and to confirm data and readings from the 

ground.  The flight dynamics component must also be privy to the long term plan 

for the mission and the current operational plan in order to successfully meet its 

requirements.  In order to successfully operate the flight dynamics agent must 

carry out a wide range of tasks.  These include the determination of its current 

orbit and attitude both with help from the ground and without.  It must also be 

able to predict a future orbit and compare orbital possibilities.  It must also be 
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able to predict any future events that may arise from a change in orbit or from 

the following the operational plan.  The flight dynamics components must also 

generate its own plans and activities to acquire the desired orbit or position and 

also be able to generate the required flight dynamics data that may be required 

by other components. 

 

In the traditional approach the orbital and attitude of the spacecraft is 

controlled through a combination of ground based and autonomous control on 

board the spacecraft. The flight dynamics system (FDS) is tasked with orbital 

determination and control with the on-board attitude and orbital control system 

(AOCS) executing these commands and monitoring their progress.  The on-board 

AOCS is more autonomous than the ground based orbit determination and 

control.  The FDS is charged with producing a range of data products which are 

used by many components including the AOCS such as restituted and predicted 

orbit and attitude. 

 

When designing a future autonomous agent based flight dynamics components 

the logical conclusion would be to have a fully autonomous AOCS coupled with 

extra components that would allow the spacecraft to autonomously carry out on-

board those tasks currently done on the ground.  As we have seen before a more 

gradual introduction of autonomy is desirable and as such it can be envisaged 

that the services currently provided by the ground segment will continue to be 

provided by the ground.  Instead of the current ground systems there will be a 

number of ground based agents who can interact more closely with the agents 

present on the spacecraft.  The flight dynamics agents would have to closely 

work with mission planning, monitoring and control agents in order to operate 

effectively.  In both the fully autonomous agent case and the component 

replacement case the flight dynamics agent would be given goals from the 

mission planner.  As a precursor level to the ground based agents the current 

ground based components, instead of being replaced could just have some 

agent-like capability added.  This would allow them to be more tightly 

integrated with the system and benefit from increased responsiveness and 

interlinking with the other agents. 
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Monitoring and Control Component 

The Monitoring and control agent’s primary task is that of controlling the mission 

and in order to do this it must also fully monitor the current status of the 

mission.  This component works at a higher level than other executive 

components and can be thought of as taking the global view.  This component 

also has the important task of supplying the mission control interface to the 

users to allow for ground based control.  The monitoring and control component 

requires access to all of the services tasked with executing activities and 

monitoring activities in order to give it a complete view of the current state of 

the mission and to be able to make changes to this state as it sees fit. It must 

also have access to the operational plan and will use this plan to make decisions 

that it deems necessary in order to the complete the said plan.  At a lower level 

the monitoring and control component must monitor individual space system 

elements and define their activities including any parameters needed for 

execution.  It must also carry out pre-execution validation steps for the desired 

commands and procedures and then execute these activities based on the 

schedule supplied from the plan or on an ad hoc basis when certain events 

occur.  Finally it must check that each action is successfully executed by the 

correct component. 

 

The traditional monitoring and control component is there to support the 

telecommunication and telecommand loops between the ground based 

operations and the spacecraft.  Some adaptation is possible in the activities to 

be carried out but any changes to the operations are usually carried out by the 

planning component.  The traditional monitoring and control component does 

have some autonomy in carrying out closed loop actions and scheduling. 

 

A fully autonomous agent based approach would see major changes to 

monitoring and control component as all of the activities currently carried out 

would instead be goals within the agent society and monitoring and control 

would be an inherent feature of the agent organisation rather than an external 
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component.  In a more conservative approach instead of replacing the 

monitoring and control components outright the level of automation and the 

number of automated procedures could be increased and agent layers of abilities 

be added in order to foster more efficient and reliable communication between 

the disparate components and any agents present in the system. 

 

Mission planning component  

The mission planning components main functions are to generate a mission plan 

and then execute this mission plan. The only outputs of this component are the 

mission plans it creates and the commands required to enable the plan to be 

executed. The mission planning component takes in planning requests as its 

inputs. These planning requests can originate from a number of sources, most 

commonly from the end user or client but also from sources internal to the 

system such as orbit determination, flight dynamics, etc. In order to create a 

useful plan the mission planning component requires planning data. This data 

will take the form of task descriptions linked with priorities, dependencies and 

costs in both time and other resources. The mission planning component also 

needs to have data regarding the successful completion or not of any task in 

order to re-plan or proceed with the current plan or re-plan. There are number 

of different plans that can be produced to enable the smooth and successful 

running of the space mission. The long term plan must be generated based on 

mission planning policies and this plan serves as a high level framework for the 

more detailed plans that will be produced later. Lower level plans such as 

operational plans must then be produced to allow the meeting of the higher 

levels plans objectives. The operational plans must bring together the required 

activities, their execution constraints and co-dependencies into a conflict free 

whole. The mission planning component must also be able to re-plan at any 

stage and this requires the execution of the plan to be closely monitored for any 

failures or divergences. The plans at all levels must also be monitored and 

controlled so that they continue to lead the mission within its constraints and 

performance envelope. 
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In the traditional approach the mission planning component undertakes all of the 

tasks related to processing the plan inputs and requests for action, creating 

plans for on-board and ground activities as well as resolving any conflicts that 

may arise in the system. The mission planning component must process a large 

amount of data including user requests, ground station visibility and data 

pertaining to the flight dynamics modules and the current state of the 

spacecraft and mission as a whole. The plan is executed either from the mission 

planning component directly or from the component tasked with carrying out the 

specific task. The two main components charged with executing the plan are the 

ground station component and the monitoring and control component. The data 

processing component tends to be more event driven and as such is less 

frequently called upon for execution by the plan. 

 

The distributed autonomous agent approach has a radically different approach to 

the centralised structure in the traditional mission planning module. In the 

multi-agent system planning and the associated tasks of replanning are 

distributed throughout the system and instead of being generated and corrected 

by one component it treats planning as a societal problem and agents and 

components cooperate to generate the plans needed for the mission. 

 

Ordering component 

The ordering components primary function is to transmit the data orders or 

requests from the user to the system. The ordering component bridges the gap 

between the user and the mission. It must generate and communicate data on 

the current service level of the system including data availability and system 

availability. It must also deliver mission data to the users when requested and 

interface with external systems in order to publish the data for other users of 

systems. The ordering component also provides a data request plan as well as 

the results themselves from the mission planning component. The requirements 

of the ordering component are limited only to the mission data of the mission so 

that it can offer the correct products to the users and of course it needs inputs 

from users or external systems. The ordering component extends the processing 
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capabilities of the data processing component and takes the processed data and 

creates products for the end users. Once these end products have been created 

the ordering component is also tasked with generating and maintaining the 

requisite data catalogues to store the products for future use. 

 

In the traditional architecture the ordering component takes all of the user 

requests and passes them to the mission planner. It also determines what 

constraints are to be put on any given request and what products can be offered 

at any given time. The ordering component may have to bring together data 

from a number of sources including external sources to create the given project. 

 

There is large scope for improvement when using a distributed autonomous 

agent approach for taking the duties of the ordering component. The main 

advantage would be that agents could negotiate on behalf of users with the 

system in order to better and more quickly provide the users their desired 

products. This approach could help to improve overall efficiency and the agents 

could be constrained to meet any relevant service level agreements or quality of 

service metrics. The ability of agents to replicate, be mobile and cooperate also 

offers the scope to increase service availability and further optimise resource 

allocation. 

 

Sensor Web Component  

The sensor web component is charged with providing the data from the systems 

sensors as a service to other components. As well as the data itself the sensor 

web component must also provide availability and sensor capability data. The 

sensor data must be supplied to its user components in the appropriate form be 

it real-time, near real-time or archived/retrieved data. The sensor web might 

also require some processing capability in order to give the other components 

the data in a format they can utilise. The sensor web component must also allow 

for the change in sensors in such that sensors may be added or removed for the 

system during development. Sensor data may also be required to be published in 
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its relatively raw state to users or to the ground for checking of the system. As 

such the sensor web component requires data from its sensors, interfaces to 

allow for the operation and configuration of the sensors and monitoring data 

from other components. 

 

The sensor web component must also determine the capabilities of all the 

sensors that are under its purview as well as undertaking simple data processing 

tasks that are required to provide any data correlation and data fusion services.  

This processing must also include some level of data quality analysis.  This 

metric is required by other components that will use the sensor data so they can 

make informed decisions based on the perceived accuracy of the data they are 

given.  In order to give components access to retrieved data as well as real-time 

and near real-time data the sensor web must instigate its own archiving 

procedure of the raw or processed sensor data, whichever is more appropriate, 

for the components that require it. 

 

The sensor web component varies greatly from mission to mission and forms a 

key component in a system such as Global Monitoring for Environment and 

Security (GMES) which will be looked at in more detail in subsequent sections.  

The traditional approach for a GMES type mission where the aim is to bring 

multiple heterogeneous satellite sensing platforms together is to provide the 

sensor data through different channels depending on whether the data is real-

time, near-real-time or retrieved.   

 

The sensor web also provides multiple different mechanisms for users to access 

the data such as immediate data provision, subscription based mechanisms, 

sending out notification to users and allowing for data search and retrieval.  In 

the traditional approach the sensor web component also supplies services that 

allow users to access data directly on the current service level which includes 

the current capabilities and characteristics of any sensors as well as service 

availability for the users and data availability which includes what data is being 
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acquired at any given time and in the immediate future.  There must also be 

services that allow for new sensors and platforms to be added to the system. 

 

A distributed autonomous agent approach is a very good fit for the requirements 

of the sensor web component.  It allows for an easy interface between the 

external user and system and a multi-agent system comes with inherent abilities 

to manage availability and the flow of information that is key to the operation of 

this component.  This will be covered in much more detail where we outline our 

design for a multi-agent system in later chapters. 

 

Mission and Vehicle Management Component 

The mission and vehicle management (MVM) component’s main function is to 

command any spacecraft and spacecraft subsystems according to the available 

mission plan, whether it is uploading from an external source or generated on 

the spacecraft.  The MVM must also have the ability to trigger a number of 

subsystems such as payload and communications. 

 

The MVM must provide commands to the AOCS in order to modify the 

spacecraft’s physical state as well as supplying commands to the payload and 

communication subsystems in order to carry out the mission tasks.  To do this 

the MVM needs an uploaded plan and access to the components charged with 

failure detection and monitoring in order to be able to trigger any contingency 

plan.  Its typical tasks involve reading the plan uploaded from the ground or 

generated on-board and then parsing this and sending the appropriate commands 

to the AOCS, payload and communication components. 

 

In the traditional approach, the plan is generated on the ground and then 

uploaded to the MVM.  These plans are usually static and cannot be adapted 

once they have been uploaded.  Often the planning is based on static look up 

tables that contain directions on which guidance navigation and control, 
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communication or payload modes are to be triggered for any given event or on 

pre-defined schedule.  There is usually a number of such look up tables for the 

different mission phases as well as tables for contingency operations. 

 

In the distributed autonomous agent approach the MVM will be entirely replaced.  

The use of static plans and look up tables can be replaced by a dynamic set of 

autonomous agents which will enhance the capability of this component.  

Examples of the agents that could be used are: 

 

Spacecraft manager agent: This agent is a high level deliberative agent and the 

main decisional component of the spacecraft control system.  It provides plans 

to the other agents, notably the AOCS agent and the payload agents based on 

high level goals sent from the ground.  The plan is dynamic and this allows the 

agent to re-plan in the case of an unexpected event or error in the plan’s 

execution.  The plan can also be updated autonomously if new goals are 

received from the ground or the scientific component in mid-execution.  The 

spacecraft manager agent will also negotiate with any communication agents to 

try to optimise the data downlink and uplink process.  In more complex systems 

the agent can also interact with other spacecraft manager agents on other 

spacecraft or multiple ground sites to try to optimise the overall mission plan for 

the good of the collective.  This agent will also have a close relationship with 

the failure detection, isolation and recovery (FDIR) agent in order to manage any 

emergency situations and will also have access to the reactive component of the 

AOCS agent the same reason. 

 

On board science agent:  This agent monitors the payload of the spacecraft 

system and autonomously detects unplanned scientific events.  In the event of a 

new science event being detected a goal is formulated, for example to observe 

the phenomenon, and this is then sent to the spacecraft manager agent.  This 

agent will obviously be of most utility in scientific observation missions but may 

also allow for mission to gather scientific data outwith their original 

observational scope if the opportunity arises and they are able. 
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Data downlink agent:  This agent is concerned with downloading data to the 

ground, as such it will generate a plan to downlink as much of its data as 

possible based on various priorities and then negotiate this plan with the 

spacecraft manager agent as this plan may well conflict with the requirements 

of the spacecraft as a whole.  This method could help to improve the quality and 

response time of the data being downloaded by having a dedicated agent 

generating plans. 

 

Resource manager agent: This agent builds a picture of all the available 

resources of the spacecraft system as whole and negotiates the use of these 

resources with the spacecraft manager agent in order to produce valid plans 

based on actual availability of any spacecraft resources. 

 

Attitude and Orbit Control System (AOCS) component 

The main functionality of the AOCS is to send commands to the actuators of the 

spacecraft in order to follow an orbital and attitude profile as supplied by the 

spacecraft plan.  It may also have secondary functionality such as computing 

optimal attitude for communications and for proper alignment of the solar 

panels.  In order to operate effectively the AOCS must have a number of inputs.  

It requires measurements from the spacecraft sensors in order to ascertain its 

position and current state.  It must also have guidance navigation and control 

data such as the current GNC mode and other parameters.  This is so that it 

knows what orbit and attitude it should try to achieve.  In order for the 

spacecraft to recover from any failure the AOCS must have access to and 

understand the commands coming from the FDIR so that recovery actions can be 

undertaken.   

 

The AOCS must know the spacecraft's current state in order to operate 

effectively and this is derived from the spacecraft's sensor data.  Once this state 

is known, the AOCS must generate a mission profile which meets the 
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requirements of the mission plan and is feasible given its current requirements.  

The AOCS must also be able to detect possible hazards to the space craft and 

when the hazard involves a possible collision be able to take direct action to 

avoid or mitigate the hazard. 

 

In the traditional approach the AOCS is frequently non-autonomous. In this case 

all of the AOCS tasks are carried out on the ground and then uploaded for 

execution by the spacecraft.  Thus the current state of the spacecraft is 

deduced on the ground from sensor readings and the appropriate mission profile 

is uploaded in order to make the spacecraft maintain or acquire the desired 

states/orbit.  The attitude guidance system has been a fertile area for the 

development of autonomy and it is fairly common to have an autonomous 

guidance system that works in conjunction with target profiles supplied from the 

ground.  Having both autonomous attitude guidance and autonomous orbital 

navigation has proved more difficult due the complexity of the orbital guidance 

algorithm and the lack of on-board knowledge of the spacecraft's full current 

state. 

 

In fully autonomous missions the area with a lot to gain is the AOCS.   In fully 

autonomous systems the guidance system autonomously generates an orbital 

profile and manoeuvres which adhere to the mission profile.  The current 

attitude and trajectory are autonomously estimated based on the current sensor 

readings.  The AOCS is then charged with generating commands which the 

actuators use to follow the reference profiles generated on the spacecraft.  The 

collision and hazard avoidance abilities of the AOCS are also autonomous in 

many of today's systems and are able to compute their own navigation solution 

to avoid the hazard autonomously.  . 

 

Using autonomous agents for the AOCS would allow for improvements over the 

traditional systems by having a closer relationship with the spacecraft manager 

agent.  An autonomous agent based AOCS will be able to transform the high level 

plan it receives and execute it robustly.  The plan will be decomposed into steps 
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and its execution monitored in real-time within the agent community.  This close 

interaction between the planning and control could allow for more flexible 

operation, allowing the spacecraft to react more effectively and quicker to 

unknown events. 

 

FDIR Component 

The FDIR is tasked with monitoring all of the different sub-systems and 

components within the spacecraft and then detecting, isolating and recovering 

from these failures either by instigating action via some other system or 

triggering the use of redundant systems.  If a failure that cannot be resolved 

satisfactorily is detected then the FDIR must be able to instruct the spacecraft 

to adopt a "safe mode", this is achieved by close contact with the mission vehicle 

manager component. 

 

The FDIR must be able to provide commands to all of the components or system 

it monitors in order to effect a change, this includes commands to instigate any 

safe mode protocols.  To do this it needs accurate status data for all of the 

monitored components and systems.  This status data must be analysed and 

conclusions drawn about the health of any given system or component, even if it 

does not itself know it has failed.  For cases such as these the FDIR must have 

the ability to forcibly shut down a unit and replace it with a redundant system, 

this gives the FDIR a lot of power within the system and any errors in the FDIR 

could lead to a total system shut-down.  Likewise should FDIR send a safe mode 

command in error this will greatly reduce the effectiveness of the spacecraft to 

complete its mission as it may take a significant amount of time to recover from 

the safe mode. 

 

The traditional approach to FDIR is to monitor the space segment and make any 

decisions on the ground.  Sensor data and system state information is collected 

on the ground and analysed to check for any errors and then changes uploaded 

to the spacecraft to correct these errors.  More autonomous FDIR systems have 
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been developed and deployed and are present in many modern spacecraft.  They 

have reactive components that allow for quicker and more decisive action when 

faced with certain types of failure.  The trend is towards increasingly more 

sophisticated and autonomous FDIR systems which enable the spacecraft to 

monitor and analyse more subsystems and thus detect and recover from more 

failures. 

 

An autonomous agent based approach is logical progression of this trend.  An 

agent based system allows for robust communication and negotiation between 

the FDIR and the agents reporting systems status and this can reduce the time 

taken to find faults and then recover from them.  In the multi-agent case the 

FDIR would take little action directly, instead it is envisaged that it would 

receive the state of the systems under its domain and then negotiate with the 

spacecraft control agent to undertake the specified recovery actions.  In this 

case recovery options that would conflict with current mission parameters could 

be weighed up by the mission control agent and executed if prudent. 

 



     
231  Appendix B – Code snippets 

Appendix B – Code snippets 

 

Below is part of a formation change instruction which is used in the testing of 

the multi-agent system. It shows the type of information which is needed by all 

of the agents to successfully change formation. 

 

Formation change format example 

 

<?xml version="1.0"?> 

<!-- Formation definition for 12 craft in a ring in x-y plane 

centred on reference orbit number 20 --> 

<!-- Author: Stuart Grey --> 

<formation> 

 <formation_name>"Ring100km"</formation_name> 

 <reference_orbit>L2Halo0020</reference_orbit> 

 <number_of_craft>12</number_of_craft> 

 

  <craft id=dw00> 

   <desired_x_offset_km>0.00000<desired_x_offset_km> 

  

 <desired_y_offset_km>100.00000</desired_y_offset_km> 

   <desired_z_offset_km>0.00000</desired_z_offset_km> 

   <neighbour>dw12<neighbour> 

   <neighbour>dw01<neighbour> 

   <child></child> 

   <parent></parent> 

  </craft> 

 

  <craft id=dw01> 

   <desired_x_offset_km>50.00000<desired_x_offset_km> 

  

 <desired_y_offset_km>86.66025</desired_y_offset_km> 

   <desired_z_offset_km>0.00000</desired_z_offset_km> 

   <neighbour>dw00<neighbour> 

   <neighbour>dw02<neighbour> 

   <child></child> 

   <parent></parent> 

  </craft> 

 

  <craft id=dw02> 
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   <desired_x_offset_km>86.66025<desired_x_offset_km> 

  

 <desired_y_offset_km>50.00000</desired_y_offset_km> 

   <desired_z_offset_km>0.00000</desired_z_offset_km> 

   <neighbour>dw01<neighbour> 

   <neighbour>dw03<neighbour> 

   <child></child> 

   <parent></parent> 

  </craft> 

 

  <craft id=dw03> 

  

 <desired_x_offset_km>100.00000<desired_x_offset_km> 

   <desired_y_offset_km>0.00000</desired_y_offset_km> 

   <desired_z_offset_km>0.00000</desired_z_offset_km> 

   <neighbour>dw02<neighbour> 

   <neighbour>dw04<neighbour> 

   <child></child> 

   <parent></parent> 

  </craft> 

.... 

 

 

Agent declaration 

 

This example shows how the individual agents are defined and gives examples of 

agent ‘behaviours’.  These behaviours are used to allow the agents to perform 

tasks.  The first behaviour is used to create other agents within the simulation.  

In the simulation suite a single reference agent is created which then in turn 

creates the other agents based on a given scenario.  This also demonstrates the 

ability of agents to create sub-agents or peers on demand. 

 

Example Agent Declaration Code 

 

/*Import required libraries to enable the agent to run on the 

JADE platform import jade.core.Agent; etc etc*/ 

 

// Declare agents class 

public class ReferenceAgentIcosahedron4 extends Agent  
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{ 

    //Set up initial values for variables 

    Boolean ReceivedPrevious = false; 

    int numberofagents = 13; 

    int iterationnumber = 1; 

    int totaliterations = 100; 

    String messagecontent; 

    int agentnumber = 0; 

 

    //Start a connection between this JADE platform and Matlab 

    MatlabClient connection = new MatlabClient(); 

    String result = "null"; 

     

    //Set up initial conditions for the reference orbit  

    BigDecimal refX = new BigDecimal("1.008420601516730"); 

    BigDecimal refY = new BigDecimal("0.0"); 

    BigDecimal refZ = new BigDecimal("-0.00028"); 

    BigDecimal refXdot = new BigDecimal("0.0"); 

    BigDecimal refYdot = new BigDecimal("0.009835862759924"); 

    BigDecimal refZdot = new BigDecimal("0.0"); 

     

/*The setup() method is run when the agent is successfully 

created and is used to describe what behaviours the agent is to 

have.  In this case the agent's main tasks are to create the 

other agents required for the simulation and and then listen in 

to all of the communication between the agents and write out a 

communication log to a data file.*/ 

 

        protected void setup()  

        { 

     

/*The CreateAgents behaviour is defined elsewhere but is here 

attached as a behaviour to our reference agent.  It creates all 

of the agents required by the simulation.  Automatically 

creating the required agents for the scenarion reduces the 

effort required to set up and change scenarios.*/ 

 

        addBehaviour( new CreateAgents() ); 

 

/*The EavesDropper behaviour repeats every 20 milliseconds and 

records position data from all of the craft in the simulation*/ 

 

        addBehaviour( new EavesDropper(this, 20)); 
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/*The log file is set up and title lines etc added.  The 

eavesdropper    

behaviour adds data to this file as it receives it.*/ 

 

    String file_name1 = "log.txt"; 

    final FileWrite referencedata = new FileWrite( file_name1 , 

false ); 

        try { 

            referencedata.writeToFile("%reftest"); 

        }  

        catch (IOException e) 

        { 

            System.out.println( e.getMessage()); 

        } 

} 

 

 

Communication between agents and Matlab 

 

This example shows how the agents communicate with Matlab.  This is done by 

passing of a defined set of strings to a given network port.  This allows for 

variables to be passed back and forth and Matlab methods to be called.  This 

example shows how the values for the satellites position and velocity are passed 

to Matlab to be propagated using its numerical integration routines.  A key 

benefit of this string passing approach is that it is platform independent and the 

simple interface can be written to connect the agent simulation with any 

external resource for simulation, modelling or agent intelligence. 

 

Communication between Matlab and the Agents 

 

void propagatecraft(){ 

         

    try{ 

/*Using the connection to Matlab (connection) send the current 

state of the craft to the method PropagationModel, assign the 

resulting string to result.*/ 

 

result = connection.createJob( 
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 "PropagationModel" + " " + tempX + " " + tempY + " " + temp +  

" " + tempXdot + " " + tempYdot + " " + tempZdot 

); 

 

/*Set up appropriate counter variables and arrays to hold the 

series of strings after tokenization and the numerical values 

of these strings*/ 

 

    int index=0; int tokenCount; 

    String words[]=new String [100]; 

    BigDecimal numbers[] = new BigDecimal[100]; 

 

/*Tokenize the string, that is break up the single large string 

returned by the Matlab method into the string array.*/ 

 

    String message=result; 

    StringTokenizer st=new StringTokenizer(message); 

    tokenCount=st.countTokens(); 

    while (st.hasMoreTokens()) 

        {words[index]=st.nextToken(); index++;} 

 

/*For each element in the array os trings convert it into a 

BigDecimal and place in the BigDecmimal array.*/ 

 

    for (index=0;index<tokenCount; index++) 

    { 

        numbers[index] = new BigDecimal(words[index]); 

    } 

       

/*Update the values for the crafts position and velocity using 

the values computed in matlab */ 

 

    tempX = numbers[0]; 

    tempY = numbers[1];  

      tempZ = numbers[2]; 

    tempXdot = numbers[3]; 

    tempYdot = numbers[4]; 

    tempZdot = numbers[5]; 

         

        } 

        catch( Exception e ) { System.err.println( e ); } 

} 
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Matlab function that can be called by agents 

 

This example shows the other side of the communication between the agent 

simulation and Matlab.  This Matlab function is called by the simulation for each 

satellite trajectory that is to be propagated. 

 

 

Communication  between Agent and Simulation 

 

function [output] = PropagationModel(a,b,c,d,e,f) 

 

G=1; 

GM_sun=1.327*10^(11); 

GM_earth=4.053*10^(5); 

mu=GM_earth/(GM_sun+GM_earth); 

period = 3.102523281056765; 

timeinterval = period/10000; 

 

referencex0=[a b c d e f]; 

 

options=odeset('RelTol',2.5e-14,'AbsTol',1e-22); 

[t,reference]=ode113('CRTBP',[0:timeinterval/5:timeinterval],re

ferencex0,options,[],G,mu); 

result=reference(end,1:6); 

 

s0=result; 

 

x = sprintf('%0.15g',s0(1)); 

y = sprintf('%0.15g',s0(2)); 

z = sprintf('%0.15g',s0(3)); 

xdot = sprintf('%0.15g',s0(4)); 

ydot = sprintf('%0.15g',s0(5)); 

zdot = sprintf('%0.15g',s0(6)); 

 

global orbit; 

global counter; 

orbit(1,counter) = s0(1); 

orbit(2,counter) = s0(2); 
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orbit(3,counter) = s0(3); 

orbit(4,counter) = s0(4); 

orbit(5,counter) = s0(5); 

orbit(6,counter) = s0(6); 

counter = counter+1 

 

class  = 'java.lang.String'; 

text = [x ' ' y ' ' z ' ' xdot ' ' ydot ' ' zdot ]; 

 

output = javaObject(class, text); 
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Appendix C – Simulink dynamic model 

 

  

Simulink block diagram showing the CRTBP equations of motion implemented 

using Simulink rather than written in Matlab code or Java. 
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Appendix D – Global optimisation methods 

 

DIRECT 

 

The DIRECT algorithm search works by subdividing the parameter hypercube into 

sub-rectangles and searching iteratively within those.  The sub-algorithm for 

dividing any subsequent sub rectangles of the hypercube is described below: 

 

Step 1: Identify the set ¢ of dimensions with the maximum side length. Let k  
equal one-third of this maximum side length. 

 

Step 2: Sample the function at the points P ± k��	for all	"	 ∈ ¢, where c is the 
centre of the rectangle and �� is the "th unit vector. 
 

Step 3: Divide the rectangle containing c into thirds along the dimensions in ¢, 
starting with the dimension with the lowest value of ¤� = &"t�V P + k��$, V P −k��$�, and continuing to the dimension with the highest ¤�. 
 

The multivariate DIRECT algorithm can then be described as follows: 

 

Step 1: Normalize the search space to be the unit hypercube. Let P9 be the 
centre point of this hypercube and evaluate V P9$. Set V¥�K = 	V P9$, & = 1 and + = 0 (the iteration counter). 
 

Step 2: Identify the set � of potentially optimal rectangles. 
 

Step 3: Select any rectangle ¦ ∈ �. 
 

Step 4: Using the sub-algorithm described above determine where to sample 

within rectangle j and how to divide the rectangle into sub-rectangles. Update V¥�K and set & = & + §&, where §& is the number of new points sampled. 
 

Step 5: Set � = � − �¦�. If � ≠ ∅ got to step 3. 
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Step 6: Set + = + + 1. If + =  , then stop; The iteration limit has been reached. 
 

Simulated annealing 

 

The simulated annealing algorithm implemented is as follows [148]: 

 

Initialization: Set the initial temperature   and initial parameter vector 
�ªS = ��J// ∈ Θ; determine � ��J//$. 
 

Step 1: Relative to the current value ��J//, randomly determine anew value of �,�KM¡ ∈ Θ and determine � �KM¡$. 
 

Step 2: Compare the two L values above using the metropolis criterion (0-1). Let ¬ = � �KM¡$ − � ��J//$. If ¬ < 0, accept �KM¡. Alternatively, if ¬ ≥ 0, accept ¬KM¡ 
only if a uniform (0,1) random variable % satisfies % ≤ �'�i−¬/ P� $j. If �KM¡ is 
accepted then ��J// is replaced by �KM¡. Otherwise ��J// remains. 
 

Step 3:  Repeat steps 1 and 2  for some period until either the budget of 

function evaluations allocated for   has been used or the system reaches a state 
of equilibrium. 

 

Step 4: Lower   according to the annealing schedule and return to step 1. 
Continue the process until the total budget for function evaluations has been 

used or some indication of convergence is satisfied.  The final estimate is �ªK 
(taken as the most recent ��J//), representing the � value after t iterations ( = t + 1 loss evaluations). 
 

Metropolis criterion: 

 exp	 − ε®¯° − ±�J//P�  	$ (0-1) 

Where ±�J// is the current energy state of the system. ±KM¡ is the new energy 
state of the system, P� is the Boltzmann constant and   is the temperature of 
the system. 
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Genetic Algorithms 

 

The genetic algorithm implemented was as follows [148]: 

 

Initialisation: Randomly generate a population of # chromosomes and evaluate 
the fitness function (an inverted � �$) for each of the chromosomes. 
 

Step 1: (Parent Selection) Select the parents from the population.  Those 

parents with a higher fitness based on their chromosomes are selected more 

often. 

 

Step 2: (Crossover) For each pair of parents identified in step 1, perform 

crossover on the parents at randomly selected splice points with a probability ²�.  
If no crossover takes place then form two offspring that are exact copies of the 

parents. 

 

Step 3: (Replacement and mutation) Replace the parent population with the 

offspring population.  Perform a mutation on an element of the chromosome 

with probability	²¥. 
 

Step 4: (Fitness and end test) Compute fitness values for the new population of # chromosomes. Terminate the algorithm if the stopping criterion is met or if 
the budget of fitness function evaluations is exhausted; otherwise return to step 

1. 

 

 


