
Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

Grey, Stuart (2013) Distributed agents for autonomous spacecraft. PhD
thesis.

http://theses.gla.ac.uk/3830/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/3830/

Distributed Agents for

Autonomous Spacecraft

Stuart Grey

Submitted in fulfilment of the requirements for the Degree of

Doctor of Philosophy

School of Engineering

College of Science and Engineering

University of Glasgow

© Stuart Grey, 2012

Abstract

Space missions have evolved considerably in the last fifty years in both

complexity and ambition. In order to enable this continued improvement in the

scientific and commercial return of space missions new control systems are

needed that can manage complex combinations of state of the art hardware with

a minimum of human interaction.

Distributed multi-agent systems are one approach to controlling complex multi-

satellite space missions. A distributed system is not enough on its own however,

the spacecraft must be able to carry out complex tasks such as planning,

negotiation and close proximity formation flying autonomously. It is the

coupling of distributed control with autonomy that is the focus of this thesis.

Three contributions to the state of the art are described herein. They all

involve the innovative use of multi-agent systems in space missions. The first is

the development of a multi-agent architecture, HASA, specifically for space

missions. The second is to use embedded agents to autonomously control an

interferometric type space telescope. The third is based on software agents that

coordinate multiple Earth observation missions coupled with a global

optimisation technique for data extraction.

The HASA architecture was developed in reaction to the over generality of most

multi-agent architectures in the computer science and robotics literature and

the ad-hoc, case-by-case approach, to multi-agent architectures when

developed and deployed for space missions. The HASA architecture has a

recursive nature which allows for the multi-agent system to be completely

described throughout its development process as the design evolves and more

sub-systems are implemented. It also inherits a focus on the robust generation

of a product and safe operation from architectures in use in the manufacturing

industry.

A multi-agent system was designed using the HASA architecture for an

interferometric space telescope type mission. This type of mission puts high

requirements on formation flying and cooperation between agents. The

formation flying agents were then implemented using a Java framework and

tested on a multi-platform distributed simulation suite developed especially for

this thesis. Three different control methods were incorporated into the agents

and the multi-agent system was shown to be able to acquire and change

formation and avoid collisions autonomously.

A second multi-agent system was designed for the GMES mission in collaboration

with GMV, the industrial partner in this project. This basic MAS design was

transferred to the HASA architecture. A novel image selection algorithm was

developed to work alongside the GMES multi-agent system. This algorithm uses

global optimisation techniques to suggest image parameters to users based on

the output of the multi-agent system.

Acknowledgement

I would like to thank all of my fellow PhD students who I met working in the

Space Advanced Research Team at the University of Glasgow, particularly Dr

Matteo Ceriotti, Dr Camilla Colombo, Dr Christie Maddock, Dr Nicolas Croisard

and Dr Pau Sanchez. I’d also like to thank Dr Gianmarco Radice and Dr

Massimiliano Vasile for their supervision, guidance and most of all for giving me

this opportunity.

I’d like to thank my parents and my brothers for all of their support in following

my heart.

Lastly I’d like to thank Lorna, without her this PhD simply wouldn’t have been

possible.

Stuart Grey

13th June 2012

Authors Declaration

I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by

another person nor material which to a substantial extent has been accepted for

the award of any other degree or diploma of the university or other institute of

higher learning, except where due acknowledgment has been made in the text.

Stuart Grey

Glasgow, Scotland, 13th June 2012

Table of Contents

Chapter 1 Introduction .. 1

1.1 Why Autonomy? ... 1

1.2 What is an Agent? ... 2

1.2.1 What is an intelligent agent? .. 2

1.3 Chapter Summary ... 7

1.3.1 Structure of Thesis .. 7

1.4 Contribution of thesis .. 8

1.5 Industrial Collaboration .. 8

1.6 Research Outputs ... 9

1.6.1 European Space Agency General Studies Programme 06B34:
“Distributed agents for autonomy”... 9

1.6.2 Conference Papers .. 9

1.6.3 Journal paper in review ... 10

Chapter 2 Background .. 11

2.1 Agent Architecture .. 11

2.1.1 Deliberative architectures .. 11

2.1.2 Reactive (Behavioural) Architectures 15

2.1.3 Hybrid (Layered) Architectures ... 17

2.1.4 Decentralised Layer Control .. 21

2.1.5 Comparison of architecture types .. 22

2.2 Distributed Agent Architectures ... 23

2.2.1 Levels of Distributed and Local Intelligence 27

2.2.2 Communication Process and Architecture 29

2.2.3 Autonomy and Representations... 31

2.2.4 Social Autonomy .. 33

2.3 Transition from a traditional to an agent based architecture 34

2.4 System Architectures ... 34

2.4.1 Internally Defined Agents ... 35

2.5 Types of System Architecture ... 37

Chapter 3 An Agent Architecture for Space Missions 42

3.1 The need for a new architecture .. 42

3.1.1 GMV Architecture ... 42

3.1.2 General Architectures ... 42

3.1.3 Robotic Architectures .. 44

3.1.4 Space architectures .. 44

3.1.5 Manufacturing architectures .. 45

3.2 Holonic Control Architectures ... 46

3.2.1 Standards .. 48

3.2.2 High-level vs. Low-Level Control ... 49

3.2.3 Requirements for intelligent control 49

3.2.4 Reconfiguration of Multi-agent Systems 49

3.3 HASA ... 52

3.3.1 Aggregation .. 54

3.3.2 Specialisation ... 55

3.3.3 Data managed by basic agents. ... 56

3.3.4 Functions performed by basic agents. 57

3.3.5 Self-Similarity in HASA ... 59

3.3.6 Agent Environment ... 59

3.3.7 Benefits of the HASA architecture 59

Chapter 4 Multi-agent system for DARWIN .. 61

4.1 Introduction .. 61

4.1.1 The DARWIN mission ... 61

4.1.2 Baseline for DARWIN mission autonomy 64

4.1.3 Formation flying .. 67

4.2 DARWIN MAS design ... 69

4.2.1 Planning Agent .. 69

4.2.2 The Formation Flying Command agent 70

4.2.3 The Formation Flying Execution agent 71

4.2.4 Feedback agent ... 73

4.2.5 Negotiation agent .. 74

4.3 Agent Structure and Interaction ... 76

4.3.1 Quantification of multi-agent system attributes 80

4.4 Development of a multi-agent simulation suite 81

4.4.1 Simulation ... 81

4.4.2 Test suites ... 81

4.4.3 Basic types of simulation .. 83

4.4.4 Simulation Structure ... 85

4.5 Simulation Suite Architecture ... 86

4.5.1 Describing Scenarios ... 90

4.5.2 Discrete versus Continuous simulation systems 94

4.6 Formation Flying for DARWIN .. 95

4.7 Testing the simulation suite ... 96

4.7.1 Artificial Potential fields .. 96

4.7.2 CRTBP ... 104

4.7.3 Halo Orbit ... 106

4.7.4 Generation of the Halo orbit ... 111

4.7.5 Multi-agent control .. 114

4.7.6 PID Controller .. 115

4.7.7 Simulation Models ... 117

4.7.8 Test scenarios .. 121

4.7.9 ORCA... 135

4.7.10 Scalability .. 140

4.8 Chapter Summary ... 142

Chapter 5 Multi-agent System for GMES .. 143

5.1 Introduction ... 143

5.2 GMES mission .. 144

5.2.1 GMES services overview .. 144

5.3 Current Status of GMES .. 148

5.3.1 GMES Space infrastructure ... 149

5.3.2 GMES satellites ... 149

5.3.3 Sensors .. 151

5.3.4 GMES products and Image Processing 152

5.3.5 GMES Service Provision ... 152

5.3.6 Earth Observation Service Providers 154

5.4 Current GMES baseline operations concept 156

5.5 Distributed Agent Approach to the GMES system 159

5.5.1 Generation of data products in near real time scenario 160

5.5.2 Detection of an event ... 164

5.6 Multi-agent system design for the GMES mission 166

5.6.1 Ground Segment ... 167

5.6.2 Space Segment ... 169

5.7 Definition of the GMES MAS using the HASA architecture 171

5.8 Limitations and constraints on spacecraft autonomy 174

5.9 Autonomous science agent in operation 176

5.10 Image Selection Algorithm .. 177

5.10.1 Global optimisation step ... 181

5.10.2 Comparison of Global Optimisation techniques 182

5.10.3 Comparison of algorithms .. 183

5.10.4 GUI .. 185

5.10.5 Test Cases .. 190

5.10.6 Algorithm Performance .. 194

5.10.7 Conclusions on the Image Selection Algorithm 196

5.11 Chapter Summary .. 197

Chapter 6 Conclusions ... 198

6.1 Summary and findings of the thesis .. 198

6.2 Fulfilled Objectives .. 204

6.3 Limitations and Further Research .. 205

References ... 206

Appendices .. 217

Appendix A - Traditional Spacecraft Control Structure 217

Appendix B – Code snippets .. 231

Appendix C – Simulink dynamic model .. 238

Appendix D – Global optimisation methods .. 239

List of Tables

Table 4-1 Effects of individual terms of a PID controller 116

Table 4-2 Positions of points on an icosahedron 124

Table 4-3 Table of values at beginning and end of icosahedron deformation in x
axis. .. 126

Table 4-4 Table of values at beginning and end of icosahedron deformation in all
three axes. .. 128

Table 4-5 Table of values at beginning and end of icosahedron changing to ring
formation. ... 130

Table 4-6 Table of values at beginning and end of a 3 way position swap 134

Table 5-1 Data reduction from EO-1 autonomous agent 177

List of Figures

Figure 2-1 Basic layered agent .. 18

Figure 2-2 Various layered agent structures ... 19

Figure 2-3 Failure within a layered agent ... 21

Figure 2-5 Recursive agent structure ... 24

Figure 2-6 Communication strategies .. 28

Figure 2-8 Heterarchical structure .. 37

Figure 2-9 Non-hierarchical structure diagram 38

Figure 2-10 Federated Architectures ... 39

Figure 3-1 Basic types of holonic agents in HASA 53

Figure 3-2 Aggregation of holonic agents in HASA 55

Figure 3-3 Possible sub-agents of an Attitude Control Agent 56

Figure 3-4 Specialisation in holonic agents .. 56

Figure 3-5 Functions and Knowledge exchanged by each holonic agent type 58

Figure 4-1 Artists impression of the DARWIN mission. Credit: ESA 62

Figure 4-2 Agents on a single DARWIN spacecraft 76

Figure 4-3 Planning Agent Level 2 .. 77

Figure 4-4 Planning Agent Level 2 .. 77

Figure 4-5 Formation Flying Command Agent ... 78

Figure 4-6 Formation Flying Execution Agent ... 78

Figure 4-7 Feedback Agent ... 79

Figure 4-8 Negotiation Agent .. 79

Figure 4-9 3 spacecraft start from random locations within the area of interest
shown (200km by 200km) and successfully acquire their formation. 99

Figure 4-10 Distribution of times for spacecraft to acquire formation, ordered
from lowest time to highest time. ... 100

Figure 4-11 Plot showing the distribution and density of the final position of
spacecraft that failed to acquire the formation 100

Figure 4-12 Local equilibrium point leading to incorrect final position for the red
agent ... 101

Figure 4-13 3 agent failure modes ... 103

Figure 4-14 CRTBP .. 106

Figure 4-15 Gravitational potental in the rotating Earth-Sun system 107

Figure 4-16 Halo orbit relative to the earth and lunar orbit, isometric view ... 108

Figure 4-17 Halo orbit relative to the earth and lunar orbit, top view 109

Figure 4-18 Halo orbit relative to the earth and lunar orbit, front view 109

Figure 4-19 Halo orbit relative to the earth and lunar orbit, side view 110

Figure 4-20 Halo orbit family ... 111

Figure 4-21 Agent test suite structure .. 114

Figure 4-22 Feedback Controller ... 115

Figure 4-23 PID feedback controller ... 116

Figure 4-24 Accelerations during Halo orbit .. 118

Figure 4-25 Velocities during Halo orbit .. 119

Figure 4-26 Absolute distance from reference orbit over one orbital period ... 120

Figure 4-27 Thrust of spacecraft during station keeping on a single orbit 121

Figure 4-28 Icosahedron structure, can be thought of 3 sets of 4 agents, located
on the x, y and z axis in CRTBP frame .. 124

Figure 4-29 Icosahedron formation deformed in x axis 125

Figure 4-30 The track of the individual satellite orbits in the CRTBP frame and
each agents deviation from the reference halo orbit in the icosahedron reduction
in x scenario ... 126

Figure 4-31 Icosahedron formation deformed in all three axes 127

Figure 4-32 The track of the individual satellite orbits in the CRTBP frame and
each agents deviation from the reference halo orbit in the icosahedron reduction
in 3 dimensions scenario .. 128

Figure 4-33 Icosahedron formation changing to ring formation 129

Figure 4-34 The track of the individual satellite orbits in the CRTBP frame and
each agents deviation from the reference halo orbit in the icosahedron to ring
scenario .. 130

Figure 4-35 Collision avoidance test 1 ... 131

Figure 4-36 Collision avoidance test 2 ... 132

Figure 4-37 Icosahedron 3 way postion swap ... 133

Figure 4-38 The track of the individual satellite orbits in the CRTBP frame and
each agents deviation from the reference halo orbit in the icosahedron 3 way
position swap scenario ... 134

Figure 4-39 Velocity obstacle in the velocity space 136

Figure 4-40 Minkowsky sum of robot velocity and a velocity obstacle 137

Figure 4-41 RVO collision avoidance with low tolerance for proximity 139

Figure 4-42 RVO collision avoidance with high tolerance for proximity 140

Figure 4-43 812 spacecraft swapping posotions across a sphere 141

Figure 4-44 The trajectory of 9 of the 812 spacecraft 141

Figure 5-1 The GMES mission will consist of a number of earth observation
missions working in concert. Credit: ESA ... 145

Figure 5-2 GMES Space components timeline .. 150

Figure 5-3 GMES HASA ground multi-mission level agents 171

Figure 5-4 GMES HASA ground mission level agents 172

Figure 5-5 GMES HASA space segment agents .. 173

Figure 5-6 Distribution of agents in HASA GMES 174

Figure 5-7 calculating the overlap of polygons using the convex hull 180

Figure 5-8 Comparison of global optimisaton techniques computation time for
varying dataset size .. 184

Figure 5-9 Client server interface structure betwee GMES MAS and GUI 186

Figure 5-10 The complete GUI for image selection 188

Figure 5-11 Sample results screen showing suggestions to the user 189

Figure 5-12 Area selection in the GUI ... 191

Figure 5-13 Display of results in the GUI .. 193

Figure 5-14 Global optimisation vs algorithmic sort, up to 5000 images 194

Figure 5-15 Global optimisation vs algorithmic sort, up to 200 images 195

Acronyms

ACL Agent Communication Language

AOCS Attitude and Orbital Control System

API Application Programming Interface

ASAR Advanced Synthetic Aperture RADAR

ASE Autonomous Science Experiment

BDI Belief Desire Intention

CAM Collision Avoidance Mechanism

CD Cooperative Domain

CRTBP Circular Restricted Three Body Problem

DARPA Defense Advanced Research Projects Agency

DUE Data User Element

EO Earth Observation

EO-1 Earth Observing Mission 1

EOMD Earth Observation Market Development

ERCS Emergency Response Core Service

ESA European Space Agency

FBS Function Behaviour Structure

FDIR Failure Detection Isolation and Recovery

FDS Flight Dynamics System

FIPA Foundation for Intelligent Physical Agents

FTP File Transfer Protocol

GA Genetic Algorithm

GMES Global Monitoring for Environment and Security

GNC Guidance Navigation and Control

GPS General Pattern Search

GSD Ground Sample Distance

GUI Graphical User Interface

GWT Google Web Toolkit

HASA Holonic Agent Space Architecture

HTTP Hypertext Transfer Protocol

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IP Intellectual Property

JADE Java agent development framework

KIF Knowledge Interchange Format

KQML Knowledge Query Manipulation Language

L2 Second Sun-Earth Lagrangian point

LEO Low Earth Orbit

LMCS Land Monitoring Core Service

MAS Multi-Agent System

MCS Marine Core Service

MVM Mission Vehicle Management

Acronyms

NRT Near Real-Time

ODE Ordinary Differential Equation

OOP Object Oriented Programming

ORCA optimal reciprocal collision avoidance

PID Proportional-Integral-Derivative

PROBA Project for Onboard Autonomy

PROSA Product Resource Order Staff Architecture

RAM Random Access Memory

RVO Reciprocal Collision Avoidance

SA Simulated Annealing

SAR Synthetic Aperture RADAR

SL Semantic Language

SPOT Système Pour l'Observation de la Terre

TCP/IP Transmission Control Protocol/Internet Protocol

TPF Terrestrial Planet Finder

1 Chapter 1

Chapter 1 Introduction

The aim of this doctoral dissertation is to answer the question “can multi-agent

control enable more autonomous space missions?”

This research is motivated by the fact that large strides have been undertaken in

the field of autonomous artificial intelligence and robotics in recent years. The

possibility of utilising these technologies in the space domain offers the

possibility to extend and enhance the abilities of currently planned missions and

to enable previously impractical missions.

The objectives of this dissertation are to give an overview of the current state

of the art in autonomous agent based control and how it may be applied to

space missions. Three contributions to the state of the art are described herein.

The first is the development of a multi-agent architecture for space missions.

Both involve the innovative use of multi-agent systems in space missions. The

second is to use embedded agents to autonomously control an interferometric

type space telescope. The third is based on software agents that coordinate

multiple Earth observation missions coupled with a global optimisation

techniques for data extraction.

1.1 Why Autonomy?

There are two key drivers towards more autonomous space missions,

performance and cost [1]. Primarily this is due to the autonomous mission’s

ability to remove the need for human direction and through the reduction or

removal of communication with the ground and its inherent delays, especially

for deep space missions. The ability of a properly designed autonomous control

system to improve performance and lower cost for certain missions has led to

the launch of number of missions exploring autonomous control as found in [2–6].

2 Chapter 1

1.2 What is an Agent?

1.2.1 What is an intelligent agent?

Agency as a model was developed to try to encapsulate the way we as humans

think. This leads us to ask a number of questions, such as:

What makes something an agent?

What makes something intelligent?

At its simplest an agent can be defined as a combination of perception,

reasoning and action or more generally as an entity with human like attributes

such as decision making and reasoning. [7]

Perception is the agent’s view of its environment. The mode of perception and

the environment in which the agent operates are all extremely variable.

Perception can be data from sensors, a simulation or from external data sources.

An agent must also be able to perceive its environment and any changes that

occur through its actions.

Reasoning is where any "intelligence" of the agent is found. An agent may reason

about its past, current or future actions, the actions of others or any past

current or future changes to its environment.

In order to have agency the agent must be able to act. This can be easily seen

using the example of an embodied agent, i.e. a human or a robot with agent

based intelligence. The agent is able to move or manipulate objects within its

environment and change its position in the environment. Agents can exist

entirely in software (an informational agent) where their actions are moving bits

rather than moving atoms. Agents can also straddle the physical and purely

informational domains and provide intelligent links between previously

unconnected actors or services. It should also be noted that in multi-agent

systems human agents may play a large role (although they don’t have to) and

can be adequately described by the theory.

3 Chapter 1

The inputs of the agent, its perceptions, can take the form of prior knowledge,

past experiences, goals/values and current observations. These inputs are fed

into the reasoning engine and the result is a set of actions undertaken by the

agent.

It is tempting to group prior knowledge and past experience together as they can

be thought of in the human domain as one and the same thing. In the more

abstract domain of agents though there is a clear delineation. The agent’s

knowledge, defined by an ontology, encapsulates all the data and algorithms it

needs to function, whereas the past experiences are a set of past perceptions

about specific scenarios linked with the agent’s observations about what those

scenarios led to.

The goals and values determine what the agent will aim to achieve and what its

priorities are. These can be encoded in many different ways and must be chosen

to make the agent carry out its desired role, that is they must be designed to

encode the specific goals and values of the agent but allow for these to change.

The current observations made by the agent are its observations of its

environment. The environment that an agent operates in and how the agent and

environment interact are as important as the agent design in terms of creating a

successful system. The environment contains the agent itself and multiple

artefacts that must be observed or interacted with. The environment can also

include other agents which may be treated differently by the agent to how it

would treat simple artefacts. It is this specialised interaction that allows for the

development of multi-agent systems with another layer of control, namely

control over the agent’s actions by utilising their societal interactions. This

society must also be designed and tuned like all of the other aspects of an agent

architecture to try and ensure the successful completion of the agents tasks.

The high number of different domains and design choices that can be performed

make a comprehensive formal description of an agent difficult without

generalising too greatly. A good starting point is the definition by Franklin and

Graesser [8] which states that:

4 Chapter 1

"An autonomous agent is a system situated within and a part of an environment

that senses that environment and acts on it, over time, in pursuit of its own

agenda so as to effect what it senses in the future"

From this general but comprehensive definition of an autonomous agent four key

aspects of an autonomous agent can be described.

• Reactive: the agent can respond to changes or stimuli from its

environment, itself or other agents.

• Autonomous: the agent has control over its own actions.

• Goal oriented: the agent acts purposefully to execute its goals

• Temporally continuous: the agent is a continually running process in

whichever environment it is present.

Another definition by Wooldridge and Jennings [9] splits the definition into two

parts, that of a weak and a strong notion of what constitutes an agent.

The idea of a weak agent in this case requires that the agent be:

• Autonomous, that is it can operate without external control and has

control over its internal states.

• Social, it must be able to interact if necessary with other agents, other

systems or humans.

• Reactive, the agent can perceive other agents and its environment and

respond in a timely fashion to any stimuli.

• Pro-active, the agent can not only react to the environment but must

exhibit goal directed behaviour.

The stronger notion introduces concepts like knowledge, belief and intention.

These higher level concepts that are more commonly associated with describing

human decision making processes can be used to describe certain classes of

agents. Attaching these human like attributes to agents can be of benefit when

trying to mimic human style intelligence. In the control engineering and robotics

fields these higher level constructs may lead to more complex designs of the

agent.

5 Chapter 1

More usefully for our purposes are some other concepts introduced in the notion

of a strong agent. These include mobility which means the given agent can move

within a given organisational structure or network, this is however not to be

confused with physical mobility. This ability introduces many new possibilities

when it comes to designing an autonomous distributed multi-agent system.

Other concepts such as agent veracity (how accurately an agent’s

communications reflect the truth) and benevolence (if an agent acts for the

other agents benefit) are important but in in this work these are assumed.

As the number of definitions of exactly what an agent is has increased there has

been a concerted effort to try and develop a more formal definition based on

mathematics and formal logic. When defining agents in these terms we can draw

upon a wide range of the work on logic and the nature of decision making in

domains such as philosophy. [10]

Drawing on this work Woodridge and Jennings chose to represent an agent as an

intentional system. An intentional system is described as "an entity whose

behaviour can be predicted by the methods of assigning belief, desires and

rational acumen" [11]. Again this provides another way to describe more

complex agents and multi-agent systems but does not provide specifics for how

to design an agent in any given domain.

The main idea to be taken from all the myriad possible ways of describing an

agent is that at a high level many of the concepts may seem nebulous but

importantly all these aspects of an agent’s structure are linked regardless of

what we chose to call the structures. The fact that we can define and group

structures within an agent system allows us to tune the agent to a specific job.

For example an agent that operates as part of a large population will have to

have its architecture focused on communication and the ancillary functions

required for successful communication such as negotiation and error checking. If

an agent however works primarily alone and is required to perform complex

reasoning tasks then describing it in terms of beliefs and desires makes more

sense as it allows us to succinctly describe its key features. When designing a

domain specific agent architecture the correct combination of architectural

6 Chapter 1

structures which best describe the agent and its task without over complication

must be chosen.

The concept of an agent has evolved over the last decades into an important

tool in artificial intelligence and in computer science as a whole. The key reason

for this is its flexibility and novel approach for designing software systems.

Brenner [12] stated that an intelligent agent can be characterised using the

following properties.

Internal Properties - Characteristics that determine how it acts:

• Autonomy

• Learning

• Productivity

• Goal-Orientedness

• Reactivity

• Mobility

The idea of autonomy is a key difference between an intelligent agent and a

program. The level of autonomy however, will vary greatly, depending on the

application and how agents differ themselves within a multi-agent framework.

The other internal characteristics are self-explanatory but learning can more

usefully be expanded to include both learning and reasoning.

External Properties - characteristics that determine how it interacts with other

agents are:

• Communication

• Cooperation

• Coordination

The real challenge in developing multi-agent systems for deployment in real

world applications is taking the theoretical description of the agent and

implementing it. Agent architectures are designed to bridge this gap and

construct working systems that satisfy the relevant area of agent theory. The

agent architecture has to deal with lower level concepts than the initial theory

7 Chapter 1

may gloss over. An agent architecture must describe the internal structure of

the agent and how information enters, leaves and is processed in the agent as

well as determining the state of the agent at any given time. An agent

architecture has been defined by Maes [13] as:

"A particular methodology for building agents, it specifies how the agent can be

decomposed into the construction of a set of component modules and how these

modules should be made to interact. An architecture encompasses techniques

and algorithms that support this methodology"

Unsurprisingly there are as many agent architectures as there are theories

describing agents ranging from the highly abstract and general to domain

specific examples. These intelligent agent architectures can be broadly grouped

into three categories that will be expanded on in Chapter 2.

1.3 Chapter Summary

In this chapter the concept of an agent was explored. The idea of the agent

operating on both internal and external problems was explored. The basic types

of agent architectures were outlined in order to give a framework from which

the novel agent architecture is developed in the later chapters. The distribution

of key properties of an agent (intelligence, knowledge, decision making and

communication were also discussed,

This chapter acts as a broad introduction and acts as the foundation for the

discussion of the aspects of multi-agent systems to spacecraft in the following

chapter.

1.3.1 Structure of Thesis

Chapter 1 outlines the fundamental concepts of autonomous agents.

8 Chapter 1

Chapter 2 discusses agent architectures and agent system architectures, that is,

how agents can interact as part of a multi-agent system.

In chapter 3 current architectures are discussed and the concept of holonic

recursive agents is discussed and finally the HASA (Holonic Agent Space

Architecture) is proposed.

Chapter 4 describes the DARWIN mission and a HASA based multi-agent system

(MAS) is developed for this mission. His chapter also details the multi-agent

testing suite developed as part of this thesis and closes with the results of

running a number of simulation on the DARWIN MAS using the multi-agent testing

site.

Chapter 5 covers the GMES (Global Monitoring for Environment and Security)

mission and the development of a HASA based multi-agent system to control it.

The GMES mission itself is discussed in detail and the MAS outlined then further

defined using the HASA architecture.

1.4 Contribution of thesis

This thesis makes a number of contributions to the field. The primary

contribution is the development of a multi-agent architecture based on an

extension of holonic and recursive agent architectures. This architecture is then

utilised to design the autonomous multi-agent control systems for two missions,

each with particular requirements from the architecture. In the development of

the MAS for these missions the architecture is shown to be suitable for describing

these systems.

1.5 Industrial Collaboration

The first period of this PhD research was undertaken in collaboration with GMV

on the distributed agents for autonomy (DAFA) project funded by the European

9 Chapter 1

Space Agency. This resulted in the co-authorship of two technical documents,

[14,15]. The first technical document was tasked with giving the rationale for

the development of multi-agent systems to space missions as well as creating a

shortlist of possible missions that could benefit. The second technical document

made the case for each mission on the shortlist to be taken forward in the DAFA

project and a simple generic architecture was developed to be used as the

project went progressed.

This simple architecture was used to develop a demonstrator for the GMES MAS

and is described in [16–18]. In this thesis a new architecture was developed for

space missions in general. A MAS was developed for the DARWIN mission based

on this architecture. The basic GMES MAS as converted to this architecture and

the Image selection algorithm for GMES was designed to work on top of the GMV

developed MAS.

1.6 Research Outputs

1.6.1 European Space Agency General Studies Programme 06B34:

“Distributed agents for autonomy”

• Technical Note 1 – Identification of Mission Scenarios

• Technical Note 2 – Identification of Distributed Agents Architecture and

Selection of Reference Mission Scenario

1.6.2 Conference Papers

• Analysis and design of wsb transfers for the European student moon

orbiter mission – D. Novak, W. van der Weg, G. Laguardia, S. Grey, T.

Yang, M. Mercier.– 59th International Astronautical Congress, 2008 –

Glasgow, UK.

10 Chapter 1

• Design of a Multi-Agent System for Cost Reduction in Multi-Craft Space

Missions – S. Grey, G. Radice, M. Vasile, Q. Wijnands – 60th International

Astronautical Congress, 2009 – Daejeon, Republic of Korea.

• Image Selection Algorithm for GMES Mission – S. Grey, G. Radice, M.

Vasile, Q. Wijnands – 60th International Astronautical Congress, 2009 –

Daejeon, Republic of Korea.

• Design and testing of an autonomous multi-agent based spacecraft

controller - S. Grey, G. Radice, M. Vasile – 61st International Astronautical

Congress, 2010 – Prague, Czech Republic.

1.6.3 Journal paper in review

• Global Optimization Techniques in Multi-Agent Image Analysis - Journal of

Applied Earth Observation and Geoinformation.

11 Chapter 2

Chapter 2 Background

2.1 Agent Architecture

2.1.1 Deliberative architectures

The deliberative (logic based) architecture for creating agents is a classical

approach to building a knowledge based intelligent system [19]. The deliberative

architecture must contain a symbolic model of its environment and be able to

reason based on logical concepts about its environment [20]. This reasoning can

take the form of logical reasoning, symbolic manipulation or pattern matching or

any combination depending on the architecture involved. This approach, at its

simplest, creates a symbolic representation of the environment and reasons

about it by syntactically, manipulating this model so that it can be thought of as

a logical deduction. If logical theory is adhered to the whole process can be

reduced to a case of logical proof. This offers many advantages when verifying

an agent system which for many multi-agent systems is a key stumbling block to

implementation. The downside of this approach is that as the environment and

the agents representation of it increases in complexity then the logical

deduction becomes more protracted and with dynamic environments the logical

deduction can become impossible. The fact that a purely deliberative agent does

not perform well in a dynamic environment as well as the fact that although a

logical deduction can be made a useful result cannot be guaranteed within a

certain timeframe limits the effectiveness of these architectures. The

computational complexity involved with logical theorem proving for any non-

trivial case within an acceptable time window means it is unlikely if it can be

utilised effectively in practice.

The decision making process in deliberative agents is based on the assumption of

calculative rationality [21, 22], that is, the assumption that the environment will

not change significantly when a decision is being made and that the resultant

action is still rational when the decision making concludes.

12 Chapter 2

The deliberative architecture creates agents that can reason about their

environment and their goals and then create definite plans to achieve these

goals. The deliberation takes two forms. They deliberate about ends, that is,

whether to attempt a goal, and means, that is how to achieve a given goal.

Structurally deliberative agents are not constructed as a monolithic whole but

instead usually created from a set of components which may include elements

such as planners, executors and knowledge bases.

In order for deliberation to take place there must be representations of both the

world the agent operates in and representations of the actions it may take. This

collection of actions and the world model is manipulated as a whole. This

approach requires the ability to represent actions and derive the results of any

given action using the model without actually performing them. The results of

any deliberation in the agent are a set of actions that will conclude in the

desired result.

One of the most common approaches to achieving a deliberative agent is to

equip the agent with a reasoning engine, that is, the ability to reason. At its

most basic that gives the agent the ability to make plans based on its knowledge

to achieve its goals. The intention of an agent is expressed by the creation of a

plan. If no plan is created then there is no intention of achieving the goal.

Agents constructed in this way are described using the BDI (Belief, Desire,

Intention) type architectures. In BDI agents we make the assumption that the

entire context in which the agent operates and its environment can be modelled

using mental attitudes which contain beliefs, goals, capabilities and rules. [23]

As previously mentioned however these mental attitudes will quickly become

inaccurate in a dynamic environment and the environment may change to a

point where they are invalid.

The beliefs component of a BDI agent may come from a number of different

sources. For example the agent’s beliefs can be influenced by input from a user,

the actions of other agents (cooperative or uncooperative interactions) or

13 Chapter 2

feedback from its environment. Beliefs work by constraining the possible actions

an agent may perform from the complete list of all possible actions. The newly

constrained list of actions includes all of the actions that the agent may

perform, with an associated possibility of success within a given time frame.

This is important in the successful operation of the agent because it greatly

reduces the possibilities for action and thus reduces the size and scope of the

plans being generated which leads to quicker response by the agent. This in turn

means that there is less chance of the environment changing in the meantime

and thus invalidating the plan. This approach also ensures that any plans

generated are relevant to its current situation and priorities [24].

The fact that beliefs can be thought of as both static and transient can introduce

problems. Transient beliefs are defined as being largely dependent on the

current state of the environment and thus are highly susceptible to change. In

order to keep beliefs relevant transient beliefs must be re-evaluated at regular

intervals. This interval depends on the change that makes the belief irrelevant.

If beliefs are no longer valid then all of the plans and goals that are dependent

on these beliefs must be reconsidered by the agent [25].

An agent’s desires can be thought of as its goals, the new environmental state

the agent desires to bring about or the future goals and tasks it wishes to

undertake. In many cases the goals of an agent are supplied by a user. In the

case of an autonomous agent however it may be able to create its own goals.

These goals are created based on its current information about its environment,

its internal states and the states of the other agents in the multi-agent system.

An agent may of course have multiple desires and as with its beliefs, the desires

will constrain the possible choices it may make.

An intention of an agent in the BDI architecture is a desire which the agent is

committed to achieving. The commitment to achieving the desire is shown by

the generation of a plan to complete the desire. The question arises about when

an agent should reconsider its intentions and thus its current plans. One

approach is to recompute its intentions at every opportunity. If reconsideration

of plans and reasoning in general is computationally cheap then this approach

14 Chapter 2

makes sense but often reconfiguring plans after each action could make the

agents response slower than the rate of change in the environment.[26]

The rate at which the agent reconsiders its intentions, environment, internal

state, plans and goals is a key variable used for tuning a given agent to a given

environment and scenario. A balance must be struck between creating plans and

checking their execution. It is desirable that an agent drops intentions that are

no longer valid and should thus re-evaluate its intentions. An agent that spends a

lot of time re-evaluating however will not be able to spend much time actually

carrying out its designated tasks. This dilemma is the key problem in balancing

the proactive and reactive behaviours in agents. This problem was studied by

Kinny and Georgeff [27] and they found that if the rate of world change is small

then bold agents that do not stop to reconsider their plans will be more

successful but in an environment that changes more rapidly the cautious agents

that re-evaluate their plans will be more successful.

The key lesson is that different environments require very different decision

making strategies. In purely static environments goal directed behaviour will

produce a good result but in dynamic environments the need to modify

intentions on the fly takes precedence. When an agent realises that due to an

environmental change or otherwise that a goal is unobtainable then it should no

longer pursue that course of action. Ideally the factor that causes the goal to be

unobtainable should however not be created by the agent. In order to stop this

case happening there must be incentives in place to achieve its goals and

mitigate against the effects of actions on their uncompleted goals.

In summary the advantages of a deliberative architecture are that a correct and

possibly optimal solution can be found using logical proofs as long as the problem

can be successfully encoded. The disadvantages are that an accurate world

model must be constructed (which is only possible in a well-known, or largely

static environment) and that there is no guarantee of how long an action will

take and thus it is hard to predict performance.

15 Chapter 2

2.1.2 Reactive (Behavioural) Architectures

Reactive type architectures were developed as a clear alternative to logic based

deliberative architectures. Reactive architectures forgo the logical

representation of their environment and the idea of solving it through logical

manipulation and proof finding. The "intelligence" of a reactive architecture

comes from its extremely close link to its environment and that the desired

behaviour emerges from the interaction between many simple behaviours and

the environment. The reactive architecture is specifically designed to operate in

a rapidly changing environment where a more deliberative architecture would

struggle to perform adequately due to the time taken for deliberation and

introspection.

Reactive agents have very few beliefs compared to deliberative agents and in

many cases have none at all. Reactive agents also do not have goals but instead

have a set of behaviours that are triggered by events in the environment (which

includes other agents). The subsumption architecture developed by Rodney

Brooks [28] consists of a number of reactive behaviours or action functions that

are modelled using finite state machines. This architecture was developed to try

to avoid the problems generated by the need to represent the agents’

knowledge about its environment. In a reactive architecture there are no

centralised functional models such as reasoning, learning, etc. such as those

found in a deliberative architecture. Instead a given reactive agent consists of a

distributed, decentralised set of competence modules (behaviours). These

competence modules do all of the reasoning, learning, perception and

representation required to achieve a specific behaviour.

Competence modules are all connected directly to the actuator or sensors that

they are associated with and all of them run in parallel. This distributed parallel

structure helps reactive agents overcome some of the problems found with

deliberative agents. The close coupling between the reactive agent and its

sensors/actuators means that a sensor input directly triggers an action in the

agent without the need to create or query a representation of the problem.

Reactive agents also produce a guaranteed fixed response to any given input

16 Chapter 2

which makes the system predictable and more robust. Due to the distributed

nature of the agent architecture, multiple actions can be triggered by

independent inputs in parallel (within the computational limits of the system).

Multiple independent actions triggered by different perceptions can be combined

into a single composite action. This approach however can introduce a number

of problems, such as finding only local minima of problems and the introduction

of cyclical behaviours. These problems can be mitigated against by introducing

noise or other random inputs into the agents’ behaviour which pushes the

behaviour away from the local minima and breaks any cyclical behaviour.

With a distributed structure it is possible that multiple behaviours will be

triggered by the same stimuli. Therefore the agent must have the ability to

choose between a number of different behaviours if a conflict arises. Behaviours

can be chosen based on how mission critical they are but other behaviours may

just be mutually exclusive such as if they both require the use of a given

actuator to perform different actions. Whether such blind response to stimuli

shows intelligence is up for debate. This type of reactive response can be

thought of analogous to reflexes and instincts in biological agents.

Reactive behaviours are modelled as condition-action logical rules. That is if a

condition or set of conditions is met then an action is carried out. In this type of

behaviour the agent keeps no representation of its environment or actions. This

type of behaviour can be extended so that rather than only looking for inputs to

meet conditions the behaviour also checks some state internal to the agent. This

check of an internal state allows the agent to utilise data about its environment

from the past or from other agents. To detect and represent changes to the

environment in such a way we need rules and behaviours that set and change

this representation rather than carry out an action on the outside world. Given

the addition of a relatively small number of these "internal behaviours" that

affect the state of other behaviours, much more complex external behaviours

can be achieved. This structure allows the agent to remember its environment

and recover from failures in other behaviours. The obvious drawback is that the

maintenance of a symbolic representation of the environment is computationally

expensive as seen in the deliberative case.

17 Chapter 2

To summarise, reactive architectures are designed to react quickly to changes in

the environment. If purely reactive responses are required then there is no need

for a symbolic representation of the environment. Simple representations of the

environment can be used and coupled with behaviours that act on other

behaviours rather than solely on the external environment allow reactive agents

to carry out complex tasks. The key downside to purely reactive agents is that

no alternative plans are formed so that there is no consideration of alternatives

or redundant actions.

In a behavioural architecture the solutions to any given problem must be coded

in advance and all possible interactions between the interconnected behaviours

of the system mapped. Reactive architectures tend to favour scenarios where

the environment is observable (or at least partially) and dynamic. A reactive

agent’s goals are usually time dependant and have differing levels of utility and

cost.

2.1.3 Hybrid (Layered) Architectures

As described so far, deliberative and reactive agents are at opposite ends of the

spectrum where type of environment, dynamism and reasoning ability are

concerned. In situations where the mission is at one of these extremes then a

purely deliberative or reactive architecture can be deployed and any

shortcomings are not exposed. Hybrid architectures were developed in order to

try to combine the reactive and deliberative components within one agent

structure. This is achieved by separating the deliberative and reactive

components into different layers that operate separately but communicate with

each other [29]. This level of abstraction allows for more complex agent models

to be created and is flexible enough to be used to model agents in many

different domains. Each function of an agent is decomposed into one of many

layers. Reactive behaviours are the same as those in the reactive architecture

and are responsible for tasks where a fast and robust response is required and

are all collected in a reactive layer. The deliberative behaviours as outlined in

the deliberative architecture are collected in their own layer and are charged

with organising the sequencing the behaviours of the reactive layer. In

18 Chapter 2

deliberative and reactive architectures the main design issue is the design of the

behaviours required to carry out any given mission. In a hybrid architecture the

interaction between the layers must be designed and managed as well.

A common approach is to insert a third layer between the reactive and

deliberative layers called the planning layer which mediates between the low

and high level functions. In this case we have three layers: the deliberative

layer, the planning layer and the reactive layer. A perception subsystem takes

the inputs from the agents’ environment and feeds the required data to each of

the three layers. An action subsystem takes the actions from all of the layers

and applies them to the environment. Other subsystems may be added

depending on the usage scenario for the agent that act as checks and balances

to this structure and aid in integration with other systems.

The middle planning layer in this structure, or executive layer, has a number of

tasks. In order for the agent to operate, the planning layer must be able to

handle tasks such as task decomposition, task scheduling, task allocation,

synchronisation, execution monitoring, exception handling and resource

management. The planning layer takes high level plans or goals from the

deliberative layer and decomposes them so that they may be interpreted and

carried out by the correct reactive components as shown in Figure 2-1.

Figure 2-1 Basic layered agent

19 Chapter 2

Layers can be arranged either vertically or horizontally. In a vertically layered

structure inputs and actuators are processed by at most one layer each. In a

horizontal structure each layer is attached to the input and output of the agent

as shown in Figure 2-2.

Figure 2-2 Various layered agent structures

In horizontal layering the behaviours of the agent take the input from the

environment and create some sort of output, whether they are deliberative or

reactive. In the vertically layered structure the inputs enter on a given layer and

messages are passed to other layers. This allows for sophisticated structures to

20 Chapter 2

be constructed. For instance orders can be sent from deliberative layers to

reactive layers to carry out specific tasks or sensory information can be sent

from reactive layers to deliberative layers to be analysed. Examples of different

layered agent configurations see Figure 2-2.

The key advantage to horizontally layered hybrid architectures is their

conceptual simplicity. To ensure that the behaviour of the agent is coherent a

mediator function that monitors all of the layers and prevents any clashes or

unwanted events must be implemented. This approach requires knowledge of

each layers’ possible interactions with every other layer and as such the

complexity of the mediator function increases exponentially with the number of

layers.

The problems associated with constructing an adequate mediator function are

potentiality alleviated by using a vertical structure. Vertical architectures can

be split into two broad types: single pass and double pass architectures (Figure

2-3). In a single pass architecture, control flows sequentially from layer to layer

until the final layer produces some sort of output. In the double pass

architecture, information flows sequentially up from the bottom layer to the top

layer where decisions about actions are made. The actions to be performed are

then passed down back to the bottom layer where the actions are actually

carried out. In both the single and double pass approach the complexity of the

interactions between the different layers is reduced but at the cost of higher

chance of failure if one of the layers fails as message passing could be disrupted.

21 Chapter 2

Figure 2-3 Failure within a layered agent

2.1.4 Decentralised Layer Control

In decentralised layer control all of the layers operate concurrently and

independently acquiring inputs and outputting actions. In hierarchical control

the layers operate sequentially with tasks coming from higher deliberative layers

to the reactive layers. In concurrent control the layers operate concurrently but

may influence the layers immediately adjacent to them (Figure 2-4)

Figure 2-4 Different agent control strategies

The use of both reactive and deliberative layers brings with it challenges when it

comes to representing data and synchronising time-scales as a deliberative layer

22 Chapter 2

may well have full representation of its environment but work on slow time-

scales and a reactive agent may well have no representation of its environment

and work on extremely fast time-scales. Regardless they must interoperate

effectively.

2.1.5 Comparison of architecture types

Of the three broad agent architecture classes outlined above hybrid

architectures are the preferred choice for many applications. The natural

decomposition of the agent into a number of different reactive and deliberative

layers means that a wide range of agents can be designed to meet any reactive,

deliberative or social needs required by the designer. The trade-off required

when using a hybrid architecture is that although they can provide a balanced

solution to a specific design problem the semantic clarity of the purely

deliberative and reactive architectures are lost. The use of deliberative layers

also requires that complex models for the environment be made.

In summary, deliberative architectures can utilise elegant logical semantics to

encode the agent’s processes and its external environment. The use of logical

semantics also allows any behaviour to be predicted as logical proofs can be

found. On larger and more complex problems however logical reasoning takes up

a lot of computational power and in particular the planning algorithms used by

deliberative agents can be difficult to scale. The overall complexity of a

deliberative agent can be larger than those of other types due to the reasoning

and learning requirements and the need for a suitable environmental model. The

environment that the agent operates in must be relatively static in order for the

deliberative agent to be able to generate a useful environmental representation.

Reactive architectures can have very simple structures which are easier to

understand and this in turn makes them easier to implement. This structural

simplicity also means that reactive agents are on the whole much cheaper

computationally. The fact that a reactive agent does not have a full model of its

external environment means that it must therefore act only on limited local

information which could lead to inaccuracies. Also due to the lack of a complete

23 Chapter 2

model of its surroundings and operating scenario its decision making will be on a

relatively short term time-scale. The disadvantage of a reactive architecture is

that there is very limited opportunity to implement any sort of reasoning or

learning functionality other than that which arises from interactions between

simplistic components.

Layered architectures benefit from conceptual simplicity, in part because the

functionality of the agent is decomposed into multiple specialist layers which

can be developed independently. The use of both deliberative and reactive

components means that the hybrid agent still needs an accurate model of its

environment. The use of many heterogeneous components adds complexity to

the design and depending on the type of layer structure chosen there may be

little scope for recovering from one layer’s loss.

2.2 Distributed Agent Architectures

Previously we touched on the idea of multi-agent systems and that the

interactions between agents can be a highly important aspect of a system’s

ability to operate effectively. We define a multi-agent system as a collection of

agents operating in the same environment for some group outcome. Cooperation

is not necessarily required and many problems are better served with a multi-

agent system comprised of competing agents, particularly for problems involving

finite resources, interaction with humans or where buying and selling in a

marketplace is necessary. Agents operate as a collective whole to perform tasks

that are outwith the ability of a single agent to perform. A task may be outwith

the ability of single agent due to speed constraints or lack of complete

knowledge of its environment. A multi-agent system must be specifically tailored

to its domain; this is especially true in that multi-agent systems developed to

solve single problems are very different from those developed to solve multiple

problems. Single problem multi-agent systems tend to involve a significantly

large data set and the multi-agent system carries out many complex analyses on

that data set. Multiple problem domains, of which autonomous spacecraft

control is one, are characterised by less need of analytical capacity but a more

complex structure, hierarchy and grouping of agents. The groups within the

24 Chapter 2

multi-agent system and any layers within the agents can be treated like self-

contained problem solving units and a key problem is effectively sharing

information about the environment and solutions to problems between these

logical units.

The key point to make is that groups of agents, agents and the components of

agents can often be treated in a very similar way. This leads to a so called

recursive agent structure [30] as shown in Figure 2-5.

In this structure the same terminology is used to describe all of these groups and

it can be helpful to treat the sub-layers of an agent as agents themselves

depending on what they are designed to do and treating groups of agents as a

single autonomous unit can help to greatly simplify the description of complex

multi-agent systems. Obviously the terminology to describe a recursive multi-

agent architecture must be developed in order to clarify the structure rather

than obfuscate it and this is by no means a trivial task.

Figure 2-5 Recursive agent structure

There are of course other ways to group and describe agents within a multi-

agent system and this means that a multi-agent system is inherently more

25 Chapter 2

complex that a single agent. A number of key questions must be addressed when

developing a coherent and useful multi-agent system. The level of cooperation

and why the agents need to cooperate must be addressed. Often this is due to

insufficient computational resources or insufficient problem solving capabilities

on a single agent. How the agents cooperate or compete must also be decided.

This means making design decisions on how agents communicate, how

specialised each agent is, how resources and tasks are shared, how actions are

coordinated and synchronised and how any conflicts or clashes are resolved. In

any MAS communication is a key factor and how messages are constructed and

checked by agents must be resolved. The organisational structure of the agents

must also be designed and this factor alone can have a wide reaching impact on

the performance of the individual agents and the multi-agent system as whole.

Organisational relationships describe the different relationships that occur

between agents and different classes of agents. If an agent has another agent as

an acquaintance then that means that the Agent A has a representation of the

other agent, Agent B. This representation or knowledge of the agent could just

be simple identification data or a detailed representation of its internal systems

and processes. A step up from being purely an acquaintance is actual

communication between agents. For this to happen the agents must be at least

acquaintances as they must know the other exists and agent A sends messages to

agent B. An operative relationship means that an agent needs information from

another agent in order to perform the given task, meaning to perform a task,

agent A needs information from agent B. A subordinate relationship means that

tasks are delegated by an agent, agent A, to another agent, agent B, to be

competed. The introduction of subordinate relationships introduces a level of

hierarchical control in the multi-agent system. Hierarchical control introduces a

branching structure with agents passing tasks from root to leaves, that is, agents

higher up the hierarchy may pass messages to one or more agents lower in the

hierarchy.

The coupling between agents dictates the level that agent organizations can

modify themselves. If the coupling between the agents is fixed then the agents’

role and relationships will not change over time. If the coupling between agents

26 Chapter 2

is variable the relationships and thus the organisational structure can evolve

over time although only within predetermined limits.

As well as the structure and organisational concerns, which task a given agent

can perform within the group and how different tasks may be achieved is an

important consideration in the design of a multi-agent system. Within this

framework, specialisation can be thought to describe the number of actions an

agent can perform in relation to all of the actions needed to be carried out by

the multi-agent system. Redundancy indicates the number of agents that can

perform any given task.

With a high level of redundancy and unspecialised agents we have a redundant

generalist type organisation. In this organisation, agents can perform many

actions and each action can be performed by many agents. With high

redundancy and highly specialised agents we get a redundant specialist

organisation where each agent can only perform a limited number of actions but

many agents perform each action. With low levels of redundancy and

unspecialised agents we get non-redundant generalist organisation where agents

can perform many actions and each action is only performed by a few agents. If

we have a high level of specialisation and low level of redundancy we get a non-

redundant specialist organisation where each agent can only perform a few

actions and each action can only be performed by a few agents.

Many multi-agent systems are designed to be deployed in dynamic environments

where traditional architectures may be less successful. In order to operate in a

dynamic environment the organisational structure of the multi-agent system

must be flexible. The problem arises that as the organizational structure

becomes more flexible then it becomes more difficult to predict what another

agent will do.

To try and overcome this problem multiple coordination frameworks have been

developed to make sure that agents within a multi-agent system interact

effectively and operate as team to reach their complex team oriented goals. The

main purpose of these coordination frameworks is to make sure that the agent’s

27 Chapter 2

plans do not conflict with each other while ensuring the successful pursuit of

goals, both individual and societal.

There are two broad strategies for ensuring coordination in a system like this. In

the first method there is full collaboration between the agents in pursuit of the

common goal. Rewards are shared between agents and resources are shared to

try to maximise group performance. In the second method the agents work for

their own individual gain, even at the expense of others and most interactions

involve conflict resolution, bidding for resources or tasks and negotiations.

Regardless of the organisational structure chosen, the ultimate objective of any

multi-agent system is to work towards a set of goals by achieving globally

coherent behaviours. Key to making a system like this efficient is the ability of

any given agent to reason about the actions and state of other agents within the

system.

How agents are grouped to carry out tasks, how intelligence and knowledge are

distributed through these groups, how decisions are made and how these

decisions are distributed within the system contribute to the overall

effectiveness of a multi-agent system.

2.2.1 Levels of Distributed and Local Intelligence

Within a multi-agent system the level of intelligence of the individual agents can

vary greatly depending on the need for reactive type or deliberative behaviours

and agents. The desired level of group intelligence however can be achieved in a

number of different ways using different levels of individual agent intelligence

and different distribution strategies. The level of intelligence of one agent (local

intelligence) and the level of intelligence of the group as a whole (distributed

intelligence) has a large impact on the way decisions are made and the time-

scales in which they are made. This distribution affects how goals and tasks are

assigned as well as performance criteria such as response time and redundancy.

28 Chapter 2

Agents can be extremely simplistic and only react to a single input from the

environment or a specific prompt form another agent but in a well designed

multi-agent system with a coherent and efficient society, high levels of

intelligence can emerge as the carefully choreographed interactions between

the agents enable high level operations.

Agents that have the capacity to plan are a level above the simple reactive

agents and can be thought of as locally intelligent in they have at least some

knowledge of their surrounding environment and that they use this knowledge to

formulate their plans of action. Interactively intelligent agents can utilise the

knowledge of others within the system to generate their plans, giving them

access to knowledge outside of their own local group.

Agents can not only generate plans for themselves but also for other agents. This

ability is key to many multi-agent systems and especially the master-slave

architecture. In a master-slave architecture a single agent has direct control

over a number other agents and commands are only ever sent from master to

slave, as shown in Figure 2-6.

If the decision making and command ability is instead spread throughout the

multi-agent system then the architecture can be described as distributed. There

are a number of different variations on the distributed architecture. A common

approach is to have a peer to peer command hierarchy where commands may

travel to any combination of peers, as shown in Figure 2-6.

Figure 2-6 Communication strategies

29 Chapter 2

2.2.2 Communication Process and Architecture

All multi-agent systems, be they purely tasked with information retrieval or

controlling autonomous robots have the need to communicate, with each other

and with any users. Many attempts have been made to standardise the methods

for this type of communication, agent communication languages (ACL).

A Defense Advanced Research Projects Agency (DARPA) knowledge sharing

project led to the introduction of the Knowledge Query Manipulation Language

(KQML) [31]. KQML is a language that is designed to facilitate the exchange of

knowledge and information within software systems. This need to transfer

knowledge is what differentiates KQML and its ilk from simpler and more widely

used data exchange protocols. The language was initially developed for the

construction and operation of large software knowledge bases which could be

easily shared and reused. It was however, soon re-purposed as an agent

communication language. KQML is both a message format and a communications

protocol that allows agents to communicate and share knowledge in real time

between each other and users. KQML can be used as an application layer to

allow users to interact with an intelligent system (or agent) or for two or more

intelligent systems/agents to communicate with each other.

KQML gained popularity, especially in academia but was eventually superseded

by the Foundation for Intelligent Physical Agents (FIPA) agent communication

language that was designed from the ground up to describe both how agents

would interact with each other and how they would be executed in an agent

platform. The FIPA standard has been employed in a number of agent platforms

and was made a formal Institute of Electrical and Electronics Engineers (IEEE)

standard in 2005.

The FIPA-ACL is based on speech-act theory [32] which states that messages

represent actions. These actions can be communicative acts and are known as

speech acts or performatives.

There are four base performatives in the FIPA ACL:

30 Chapter 2

• Inform an agent of a proposition

• Request an action of an agent

• Confirm a belief

• Disconfirm a belief

As stated earlier the ability for agents to communicate with each other

effectively has a large bearing on the performance of the system as a whole.

The content of the language must be suitably expressed in a content language

such as the FIPA- Semantic language (SL) [33] or FIPA-Knowledge Interchange

Format (KIF) [34] and then encoded to allow it to be effectively transmitted.

There are two other mandatory structures for an agent system to meet the FIPA-

ACL standards. The agent system must have both an agent directory and a

service directory accessible to the agents. The agent directory is a shared

information repository where each agent publishes data about themselves to

allow for effective communication. The service directory is a repository in

which agents and other services can find applicable services. Such services

could include message transport services, agent directory services and

application specific services.

When describing an agent’s communication languages there are also other

features that must be taken into account. Most agent communication languages

like the one above are prescriptive, that is they describe actions to be

undertaken by other agents but they could also be descriptive and be based on

describing what is occurring.

Any meaning within the agent’s messages must also be as unambiguous as

possible and as such conventions for messaging must be put in place. Any

subjectivity in the messages sent or received must be accounted for and this is

frequently done by introducing societal norms to the system [35]. These societal

norms are in place so that all of the agents know how to react to any given

message and as importantly how others will react to any given message.

The pragmatics of the communication, that is how it is structured, must also be

considered [36].

31 Chapter 2

The system must also be developed to take into account that messages may not

be received and interpreted in isolation but are instead received in the context

of the environment, other agents and other messages. The language used by the

agents must also be large and complete enough to meet all of its requirements

but still be of manageable size.

2.2.3 Autonomy and Representations

The nature of autonomy is described with great clarity in [37]. We talk a lot

about agents and autonomy but our definitions must be clear to avoid confusion

as the architectures and different types of constructs we design become more

numerous. Agency as used in our domain describes a system whose actions lead

to some other state in the world. The goal oriented action can however cover a

wide range of systems from the complex such as a human to the relatively

simplistic such as a chemical compound reacting with an oxidising agent.

Obviously we have to further refine our definition of an agent, and this can be

done by having an internal representation which stores its goal and may have the

ability to self-regulate. "Self-regulated agents are goal governed agents, who

given a certain goal are able to achieve it by themselves: planning, executing

actions, adapting and correcting actions" [21] This definition more succinctly

describes the type of "cognitive" agent that we will be working with but it must

be noted that for any agent definition there will always be counter intuitive

systems that meet the description but may not to our eyes seem to meet them,

such as a simple thermostat more or less meeting our previous requirements of a

basic cognitive agent. This description of an autonomous agent is building

towards a usable definition for our domain but still has limitations and must be

further refined. In our case an agent is not truly autonomous unless it has

autonomous goal setting abilities. The impact that autonomy has on the

definition of an agent is vast and the definition of autonomy must also be set

before work on designing an autonomous agent system begins.

At its most basic level autonomy of a system is defined by its relationship with

others, that is, a system can only be autonomous with respect to another

32 Chapter 2

system. Agent autonomy is frequently defined as being able to carry out its own

wishes but for clarification we will use the term executive autonomy for this

kind of autonomous nature. Executive autonomy defines the ability to achieve

goals by itself.

So if an agent is to be autonomous this autonomy must be defined by its

relationships to some other system. The autonomy may be from some physical

system or structure or it may be from some other agent or agent structure. We

can now look at our agents and try to decide if they are autonomous by the

physical or societal context. We can think of some interesting examples of agent

autonomy by thinking of a generic multi satellite mission which is controlled by a

distributed autonomous system. It can be envisaged that most of the agents will

be societally autonomous from the other agents in the system but this intuitively

will almost always be the case, otherwise why would we not just make a

monolithic system?

When we talk about autonomy in space missions we mostly mean that the system

is autonomous from ground control. An autonomous systems does not always

have to act alone however. In this case the autonomy is both societal, as the

system is autonomous with respect to the human agents on the ground and

physical as the system is autonomous with respect to the physical connections

and data from the ground as well. Agents within a distributed spacecraft

missions can also be physically autonomous in another way. The agents may not

be tied to a particular piece of hardware and are thus able to move from

spacecraft to spacecraft or node to node. This gives the agent the ability to

change its environment and operate independently of certain hardware

constraints.

Agents must operate within some defined environment (even if the definition

changes) and as such they are limited to operating and being autonomous within

this environment. An agent must therefore operate at some level based on the

environment it is situated in and cannot be autonomous if it receives no inputs

from its environment at all.

33 Chapter 2

An interesting issue arises however in that although the relationship with the

environment is vital to the overall functionality of an autonomous agent it may

not directly affect it. That is by operating in an environment the environment

may influence the agent but not cause its goals to change directly. This is known

as the Descartes problem [38], how do we ensure that our autonomous system is

neither entirely dictated by the environment (non-autonomous) but also not

oblivious to the environment (non-situated).

2.2.4 Social Autonomy

We previously discussed the fact that agents can be socially autonomous, that is

they operate independently of other agents. This concept is key to multi-agent

systems but must first be further defined to avoid confusion. One definition of

social dependence is that the agent is dependent on another agent; that is it

relies on another agent to operate. This level of dependence will vary greatly

between agents but it can thought that each agent within an operational multi-

agent system will be dependent on many others otherwise our time would be

better spent developing multiple monolithic systems. This way of looking at

social autonomy basically equates to self-sufficiency and can be quantified by

looking at how many of a given agent’s actions are dependent on other agents.

Another definition of social autonomy is the relationships and interdependency

between the goals of the agents in the multi-agent system. This definition makes

the goals of the agents the key driver for autonomy which makes sense for a

space based systems, as goals must be generated, coordinated and distributed

throughout the system in order for it to operate effectively. How the goals are

spread and the relationships between them define the social autonomy of the

system.

34 Chapter 2

2.3 Transition from a traditional to an agent based

architecture

An approach to transitioning to multi-agent systems must be carefully considered

to allow for a smooth modular transition from traditional architectures. Having

a more structured progression or roadmap from traditional to agent based

systems would hopefully increase adoption and acceptance of these systems.

A simplified roadmap for this progression can be described using the following

two steps. Firstly we can enhance the traditional architecture. We would

achieve this by replacing components in the architecture with agent based

components but still use the traditional interfaces. In this case components can

be swapped out and improved while still allowing for verification using the tools

that already exist for that architecture. As more components are replaced there

should be provision for allowing agent based interaction between these replaced

components to enhance performance gains. Most importantly, at this stage not

all of the components are replaced so mission critical or problematic

components can be left as is and the system will still operate, hopefully at a

higher level due to the inclusion of agent based components. Some of the

initiatives in this respect are covered by [39, 40].

The second step is then to transition to goal based mission operations which fully

exploit the social and intelligent features of the agents to again increase

performance over traditional systems.

Appendix A - Traditional Spacecraft Control Structure describes in more detail

the traditional approach and structure of a spacecraft control system.

2.4 System Architectures

In the discussion of multi-agent systems and multi-agent design the term "agent

architecture" can sometimes have a number of different meanings and

connotations. When working with multi-agent systems we are frequently looking

35 Chapter 2

at both the structure of the agents themselves and the structure of the multi-

agent system as a whole. To try and avoid any ambiguity we will use the term

“agent architecture” to define the internal structure of the agents and "system

architecture" to describe how the agents are organised and interact with each

other to create a cohesive multi-agent system.

A number of different agent paradigms have been introduced. These paradigms

include deliberative and reactive agents and the whole spectrum of hybrid

agents in between. The different approaches to autonomy are extremely helpful

in trying to define different types of agents but there are other classes of agent

that may be better described by their internal organisation. These internally

defined agents offer more options and potential considerations for the agent

architecture we want to define for autonomous space missions.

2.4.1 Internally Defined Agents

There are five main categories of internally defined agents, Modular,

Subsumption, Blackboard, Production System and Layered. The simplest and

conceptually the most simple is the modular architecture [41].

2.4.1.1 Modular Architecture

In the modular architecture the agent consists of multiple modules that each

correspond to a particular action associated with that agent, be it planning,

negotiation, perception, execution etc.

2.4.1.2 Blackboard Architecture

The blackboard architecture as introduced in [42] was designed for use in single

intelligent agent systems. The basic idea behind the blackboard structure is that

there is central store for all of the data needed by the agent. The blackboard

contains all of the current system states and solution data. This blackboard

approach has been applied to multi-agent systems where a central data store

36 Chapter 2

accessible by all the agents but independent of all of them may be desirable but

the problems of a single central point of failure means that a more distributed

system may be more desirable.

2.4.1.3 Production System

The production system approach [43] takes its structure from the system

developed for controlling industrial production processes and has an agent acting

as the production system within the larger multi-agent system. The production

system approach offers some intriguing possibilities. Looking at our distributed

multi-agent system as a collection of products and processes allows us to design

a MAS tuned to the safe and efficient production of our desired product,

scientific data.

2.4.1.4 Layered Architectures

Layered architectures [44] allow for a mix of reactive and deliberative

components within a single cohesive whole. Typically the more deliberative

components are at the top of the hierarchy and commands flow down towards

the more reactive components and data or results flow back up to the

deliberative components to inform their future decisions.

2.4.1.5 Subsumption Architecture

The subsumption architecture [28] consists of a number of finite state machines

grouped together on layers. These finite state machines are purely reactive and

a key part of the subsumption architecture is that there is no environmental

model in the agent. Instead the environment itself acts as the model as the

agent only reacts to the world around it.

37 Chapter 2

2.5 Types of System Architecture

The internal agent architecture can be taken by itself to help to define any

given single agent or single agent system. Whenever two or more agents are

working in concert or in competition however, then great care must be taken to

design their interactions so that they can effectively carry out their tasks.

Multi-agent systems are defined by their hierarchy, be it homoarchical or

heterarchical. In the homoarchical case (Figure 2-7) there is only one possible

way that the agents may form a hierarchy whereas in the heterarchical case

(Figure 2-8) there are many different possible hierarchical structures the system

can take depending on its circumstances, the task in hand or its operating

constraints.

Figure 2-7 Homoarchical structure

Figure 2-8 Heterarchical structure

38 Chapter 2

Figure 2-9 Non-hierarchical structure diagram

Much of the early work on heterarchical or non-hierarchical systems such as

Figure 2-9 (although heterarchical is not the same as non-hierarchical they do

share many of the same features) was based on distributed data processing

which led to work on cooperation between agents and then to distributed sensor

networks [45, 46, 47] This work led to many communication protocols, of which

the Contract-Net is probably one of the most well-known [48].

The benefits of a non-hierarchical or heterarchical approach to distributed

computing are mainly in flexibility and redundancy in the case of changing

conditions or component failure. There are disadvantages to this system

architecture however, most importantly there are issues with heterarchical

systems not being able to find global optima for any given problem space and as

the systems become more complex and the possible interactions between them

more varied the system as a whole can only be predicted at a very high level.

This reduction in predictability means that these systems are not seen as

suitable for mission critical tasks or processes.

The hierarchical or homoarchical systems lie at the other end of the spectrum.

The strict nature of the hierarchy and its inflexibility means that it is more

predictable and therefore easier to coordinate. The disadvantage of this type of

agent system architecture however is that it is somewhat inflexible and in return

for increased coordination there is a reduction in the reliability gains from

redundancy in the heterarchical designs. In order to try and overcome the

39 Chapter 2

limitations of operating at either end of the heterarchical/homoarchical

spectrum a set of compromise architectures have been developed, collectively

known as the federated architectures [49].

These federated architectures (Figure 2-10) tend to have no central data storage

and instead operate through the passing of messages between agents. This is

different however from a purely distributed approach as there are specific

agents tasked with undertaking very particular roles in these system

architectures. There are four main types of federated architecture and we will

discuss each, they are the facilitator, broker, matchmaker and mediator

approaches.

Figure 2-10 Federated Architectures

The facilitator approach uses facilitator agents that enable communication and

coordination between agents. The key aspect of this system architecture is that

agents may only communicate to each other though the facilitator agents and no

direct communication is allowed. This constraint allows for a much more

controlled system while still being able have the benefits of a distributed system

[50]. The facilitator agents do not just pass messages on to other agents but also

check the messages, translating them if necessary ensuring that all of the agents

40 Chapter 2

operate as an efficient whole. This facilitator approach is found in the GMES

agent architecture design, but in the GMES case it takes second place to the

broker system which is much more suited to the transactional requirements of

GMES.

The facilitator approach, while enabling the communication between agents to

be carried out in a separate layer, does not inherently have the capacity for

more complex societal structures. In the facilitator approach a single agent

talks only to a single facilitator agent who takes on the responsibilities for

communication with the other facilitators. In some societal structures that are

particularly suited to use in multi-agent systems a many-to-many communication

approach is desirable rather than one-to-one. A broker agent is an example of

this many-to-many communication strategy. In a broker approach to multi-agent

systems there a number of broker agents which act as facilitators. The agents in

the multi-agent system advertise their services and make requests through any

number of brokers. The broker agents then match the requests to the services

as best they can. Broker agents can include functionality to not only make

direct matches between services and requests but also to serve as a mediator in

negotiations between services and requests. This can also involve the instigation

of collaboration between agents to meet a particular request or to create

combined requests that make better use of the advertised service.

The matchmaker approach is similar to the broker framework but instead of

acting as the middle man for all communications between the agents it brings

together the agents making the requests and offering the services then leaves

the agents themselves to carry out any required negotiation. This approach is

best suited to systems where there is less negotiation and collaboration between

agents and where the performance of the system as a whole may be improved by

the removal of the superfluous intermediary agents. The matchmaker approach

can lead to the creation of a yellow-pages type structure. In this case the

services of the agents are advertised in a single location and the agents making

the requests all look in this location for their desired services. The mediator

approach is aimed at better coordinating the actions of the agents in the multi-

agent system. The mediator agent uses the techniques of brokering and

matchmaking to try and create groups of agents that collaborate within the sub

41 Chapter 2

group or cluster. This clustering is carried out during execution and is not

strictly predefined in the system level architecture. Once the mediator agent

has created the desired collaborative cluster it must then ensure that it operates

in an effective manner. This will involve more complex behaviours such as

mediation to reduce or combat deadlock scenarios between agents in the group

and to increase the operating efficiency of the group where possible.

Many modern agent systems incorporate aspects from many or all of the

federated structures as well as having a mix of reactive and deliberative agents.

Real time distributed control applications lend themselves to multi-agent

systems that have a wide range of components which add intelligence to the

system. The intelligence arising from the interactions between the agents on a

societal level is where a multi-agent system differs from other intelligent control

techniques.

42 Chapter 3

Chapter 3 An Agent Architecture for Space

Missions

3.1 The need for a new architecture

3.1.1 GMV Architecture

The DAFA architecture design document [51] from GMV describes the

architecture and implementation of a MAS for GMES. The DAFA project was

focused on building a proof of concept for a MAS for an ESA space mission. The

architecture that is discussed in this work is highly implementation focused and

does not try to describe the MAS in any consistent way that may allow for reuse

in other space missions. This is an extremely common approach. The

architecture itself is basically the default generic architecture used by the

SeSam [52] software that is used in the implementation of the MAS. As shown in

the implementation of the DARWIN MAS SeSam can be used to implement any

architecture but in the DAFA GMES case no real architecture is specifically

outlined or used. This lack of a clear and definitive architecture was a key

reason for developing a new multi-agent architecture in this work to allow

future DAFA like projects to be more easily described and for common elements

to be transferred.

A discussion of the generic architecture used for the completion of the DAFA

project by GMV can be found here [15].

3.1.2 General Architectures

A look at a number of multi-agent architectures follows and their suitability as a

basis for a space mission architecture is discussed.

Alami [53] posits a general architecture for autonomy comprising two layers, a

decision layer and an execution layer. Each layer can be composed of a number

of sub-layers depending on its application. The actual architecture is a basic

43 Chapter 3

layered structure and the authors description of an architecture is in fact a

description of the tools that were developed to implement the architecture.

This is a key distinction that has to be made. An architecture describes the

structure and relationships required by the system but does not specify explicitly

their implementation. This architecture does utilise the idea of a generic

module that is then specialised. This use of templates is useful as it allows for

flexibility and heterogeneity between component parts but forces the modules

to have certain similarities. The idea of a specific executor module/agent/layer

is also a useful one and allows for the system to be decomposed based on its

operating time frame as well as its role.

The Cougaar architecture [54] consists of a collaborative workflow of

coordinated agents. Again the architecture is relatively simple, this time based

on a blackboard for communication and agents that accept a number of modular

plugins. The line where the architecture finishes and the implementation begins

is especially blurred in the case of Cougaar. The designers have created a very

capable multi-agent framework based on a simple architecture but the

architecture itself is still very general and relies on the addition of extra

components in order to be specialised to a particular task or problem.

The work by Criado [55] extends the BDI architecture to allow for the use of

normative contexts, primarily with the aim of agents acquiring norms from the

environment. The work offers a concise description of the architecture but its

generality makes it hard to apply this to the very specific requirements of a

space mission.

Of the more general architectures in the literature the ANA architecture [13]

best encapsulates the approach to architecture definition that is required for

real progress with autonomous agents in space. Although it is relatively general

it still describes a novel structure for agent interaction and the agents

themselves.

Another problem with current MAS architectures is demonstrated in the Hilaire

[56] paper on adaptive agent architectures for holonic multi agent systems. The

paper makes a compelling case for the use of a holonic structure as the basis for

44 Chapter 3

an agent architecture. The specifics of the architecture however are based on

the conceit of describing the system in terms of an immune system. This is a

common problem and the terminology used only works to obfuscate an otherwise

very powerful architecture.

3.1.3 Robotic Architectures

Architectures developed specifically for robotics can offer insights into the

requirements of how autonomy and actuation can be handled within a multi

agent architecture. The CLARAty architecture [57] for instance is typical in that

it encapsulates a layered autonomous design and makes the development of

autonomous robotics platforms more standardised. The problem with using an

architecture like this one in multi-agent systems is that any communication and

cooperation between agents and robots has to be added on as a an extra layer

rather than being included and integrated at an architectural level.

3.1.4 Space architectures

In the Ghallab paper [58] they make a case for the suitability of the LAAS

architecture as described in the Alami paper for space missions. Again the

architecture strictly defines the implementation of its components and the

underlying structure and does not take into the account the special

requirements of a distributed space mission. This focus on implementation and

individual autonomy means that the architecture could be implemented fairly

rapidly for a given mission but it might not give all of the benefits of an

architecture developed with distributed space systems in mind.

The AGATA architecture outlined in the Verfaille paper [59] describes a highly

modular architecture based on four key components, state tracking, object

tracking, decision making and decision execution. The architecture take a very

control oriented approach and makes the system highly modular. The downside

of the approach is again not taking the opportunity when designing a multi-agent

architecture to really incorporate all of the advantages of multi agent systems

45 Chapter 3

such as communication and cooperation. The architecture does include a robust

description of the decomposition of the agents into smaller and smaller modules

which enables the MAS to be viewed at multiple levels of abstraction.

Much of the work on multi-agent architectures for space has been highly specific

to a single task within the overall space mission. An example of this is the

OCAMS project [60] which designed and created an agent architecture for

mission control. A robust architecture was developed but it is only really

applicable to mission control tasks and could not be easily adapted to other

tasks.

3.1.5 Manufacturing architectures

The architectures developed for the manufacturing industry, especially the

holonic architectures [61, 62], offer some innovative approaches to coordinating

and optimising multi-agent systems. The concept of the product being

encapsulated as an agent with its own autonomy is one that has not been

implemented in the space domain but offers potential for a logical and flexible

structure as all of a space missions science and formation tasks can be thought

of as products. Adopting some of the paradigms from the manufacturing

architectures enables a new space architecture to make the most of the

manufacturing sectors focus on reliability and modularity. Unfortunately there

are number of reasons that the architectures cannot be used wholesale. The

environment of the manufacturing MAS is basically static when compared to that

required by a space mission. That is, there are discrete inputs and outputs to

the system but the environment that the agents operate in is not continuous or

liable to fundamentally change. The manufacturing architectures also take a

very different view of real-time control. In the manufacturing architectures the

actual actuation and control of the equipment is handled by the controllers of

the equipment themselves whereas in a space mission the real time control must

be handled by the agents in the MAS.

46 Chapter 3

3.2 Holonic Control Architectures

A holonic control system consists of a number of holons, each holon is identified

as a discrete autonomous agent, in a similar way to an agent as previously

described. Holonic Systems have a recursive structure so that they can be

thought of as an agent architecture as well as an agent system architecture [63].

In this way holonic systems are very similar to certain multi-agent systems and in

some respects can be thought of as a subset of multi-agent systems, or at least

another way to describe these autonomous distributed systems. The individual

holons within a holonic system collaborate to achieve a common goal. The key

difference between a holonic system and software agent system is that the

holons themselves can be decomposed into an information processing part

(which is akin to the software agents in a typical software agent MAS) but also a

physical processing part. This close coupling of software and hardware makes

holonic architectures very well suited to describing systems charged with

distributed control of physical devices. These physical devices can vary in

complexity and have varying software control requirements, the flexibility of the

holonic architecture enables us to model a variety of space missions.

Holonic systems make use of functional decomposition in order to divide a larger

system into many more simple parts. The observation was made in [64]

“systems evolve much more readily from simple systems if there are stable

intermediate forms than if there are not", this means that if the system has

many different layers of aggregation then a complex system can be easily built

up from simple components in subsystems which are themselves complete.

Since the holonic architecture is built on the idea of decomposition of a problem

into smaller parts that have themselves purely informational or informational

and physical components we are also able to define holons as comprising of a

number of sub-holons that still meet the full definition of a holon. This

recursive structure allows for the system to be fully defined at a number of

different levels using the same nomenclature and provides us with many

stepping stones as we build our autonomous control system.

47 Chapter 3

Holonic systems are a bottom up approach to system control but as they can be

thought of a subset of multi-agent systems that have a bias towards physical

integration many of the techniques and architectures that have been developed

for multi-agent systems can also be applied to holonic systems.

Certain strategies however have been developed specifically for holonic systems.

Cooperation in holonic systems can be achieved by using a "cooperative domain"

(CD) [65]. The CD is defined as "a logical space in which holons communicate

and operate, that provides the context where holons may locate, contact and

interact with each other". Two different types of cooperation can occur within

this CD. Simple cooperation means that a given holon must respond to the

requests of another holon (even if the response is negative). Complex

cooperation is where holons work to achieve a joint goal.

In the complex cooperation paradigm the higher level deliberative software level

must be sufficiently integrated with the lower level physical devices(s). This can

be thought of as the classic distinction between high level and low level control.

In the low level control domain, functions are kept as simple as possible with the

view to reducing response times as much as possible. It is also at the low level

that processes or actions can be simply automated to negate the need for higher

level control over certain functions. This low level of control is based around

the optimal use of any given hardware component and a great deal of highly

applicable work has been carried out in intelligent process and manufacturing

control of low-level hardware that can be successfully applied to the control of

spacecraft hardware. The higher level control will, by its very nature, be more

specialised to its particular domain. However, although its implementation may

differ by domain the key tasks of ensuring inter-holon cooperation, collaboration

and negotiation will be found in most intelligent controllers. As the holon

control architecture can be thought of as a subset of agents as a whole we can

use the standard agent descriptions and definitions, such as FIPA to define the

deliberative layer of the holons. There are many international standards for

defining the low level control aspect of the holon although the majority of these

are designed for use in manufacturing and process systems. They can however

act as a good starting point for defining an agent architecture for any

application.

48 Chapter 3

3.2.1 Standards

One of the benefits of looking at the process and manufacturing domain for

inspiration is the desire for these systems to adhere to standards. The standards

in industry are in place to ensure interoperability and to provide a level of

confidence as to any given system performance. They also provide a series of

requirements that a system must meet to not only be safe but also to operate

effectively in the desired environment. For instance the International

Electrotechnical Commission (IEC) 61499 standards for distributed industrial

automation have the following as requirements and many of these can be

directly applied to a distributed autonomous space control system with the

exception of the intellectual property based requirements.

• Component-Based

• Support encapsulation/protection of Intellectual Property (IP)

• IP Portable across Software Tools and Runtime Platforms

• Distributed

• Map IP modules into distributed devices

• Integrate IP Modules into distributed applications

• Functionally Complete

• Control/Automation/Diagnostics components

• Machine/Process Interface components

• Communication Interface components

• Human/Machine Interface (HMI) components

• Software Agent ("Holonic") components

• Extendable

• Encapsulate new types of IP

• Create new IP through Functional Composition of existing IP modules

• Multiply the value of IP through widest possible deployment

• Benefits available to all market players

49 Chapter 3

3.2.2 High-level vs. Low-Level Control

In [66] Deen provides an architecture that links the high-level and low-level

control layers. The PROSA (Product Resource Order Staff Architecture)

reference architecture ([62]) uses concepts designed for the manufacturing

applications and is based on the idea of creating products using resource and

ordering holons. This approach is applied to scientific space missions in the

architecture developed in this work where a product must be created based on

user requirements while being closely observed and controlled autonomously.

3.2.3 Requirements for intelligent control

In [67] Balasubramanian outlines four key requirements for a distributed

intelligent control architecture (in this case for manufacturing but this also

applies in the more general case). Firstly the control system must be able to

operate, at least to some level, in real time and must be able to satisfy

deadlines with real-time constraints. The control system must also be

distributed, have a consistent communication strategy and be consistent across

physically separated nodes. The control system must be able to supply support

for event driven control so that it can react autonomously to the occurrence of

events. The controller must also offer intelligent control in the form of reactive

behaviours at lower levels and deliberative behaviours at higher levels.

The common theme of the distinction between the higher level software

functions and the lower level hardware can be seen in the frameworks outlined

and there are many more agent/holon based architectures that show this

layered structure. As such the designs for the multi-agent architecture will be

layered and will be fully outlined in section 3.3.

3.2.4 Reconfiguration of Multi-agent Systems

Reconfiguration has to occur whenever the hardware or software of the system

being controlled changes. From the software viewpoint a multi-agent system

50 Chapter 3

can be seen as a highly dynamic system and in many cases change will be

desirable and should be able to be accomplished with minimal adverse effects.

In the cases of space missions which can be comprised of multiple spacecraft

then the hardware can change as well. This ability to reconfigure hardware can

be useful in a number of ways. In the GMES mission the spacecraft are highly

heterogeneous and operated by different bodies. It can be expected that

spacecraft will be added to the system as well as retired. The multi-agent

system has to be able to handle all of these possibilities. In the DARWIN mission

it is expected that the hardware will be largely homogeneous between the space

telescopes, the only exception is the collector hub that will differ from the

other telescopes. A hardware level reconfiguration can still occur in this

scenario though as failures of specific modules may require a reconfiguration of

the system to make up for the lost hardware. Distributed telescope missions

such as Darwin are inherently expandable and it can be envisaged that in such a

mission the number of telescope satellites could be increased to enhance the

scientific return. Any multi-agent control system should be able to handle this

addition of new hardware.

The work of Labeyrie [68] in particular outlines the possibilities of a great many

interferometric telescopes together in a large coordinated formation. These

“hyper-telescopes” would contain up to hundreds of separate craft but offer

unprecedented imaging abilities and have a high level of redundancy within the

formation.

The reconfiguration of software, especially as it consists of independent

autonomous entities will be much more common. The ability for multi-agent

systems to reconfigure is one of their main strengths and can be a natural

product of their ability to share knowledge and tasks and create local groupings

to provide a required service or make a request. In more traditional software

control systems reconfiguration can require the whole control system to be

replaced, even if the change is only to a small part. If the control system

implements a truly object oriented approach then this can be avoided to some

extent by simply replacing the objects that need to be changed but this still

requires the control system to be shut down, the changes inserted and then

restarted. This forced restart can cause many problems on an operating

51 Chapter 3

platform. In a multi-agent system however a new or modified agent can be

uploaded to a given node and accepted as part of the multi-agent system. Even

if this step requires a restart, the other nodes will continue to operate and once

the updated node is back on-line the new agents can propagate through the

multi-agent system. This desire to keep the system online as much as possible is

another benefit of using aspects of manufacturing control systems in our

architecture.

Early work such as that by Kramer [69] postulated that reconfiguration should be

split across a number of operating layers. In this way the reconfiguration

commands are introduced at a high level and then decomposed by the system

itself at a lower level. This lower level decomposition is handled by the

components or at least groups of components. This approach is taken because it

is assumed that in a hierarchical structure problematic interactions may only

become apparent at particular levels of abstraction so a step by step

implementation of the reconfiguration process allows the system to check for

possible problems with the reconfiguration. In this early work reconfiguration

was decomposed into multiple "change transactions" that specified the creation

and removal of nodes and relationships within the system.

For the development of reconfiguration ability for our space mission control

system the ideas of separation and the implementation of layers are used. A

multi-agent system (whether it is based on the holonic model of coupled physical

and software entities or not) is easily made into a layered structure as it is by its

very nature comprised of many different components working on different levels

of task. It is therefore desirable that any reconfiguration ability works with this

structure rather than against it. One possible approach is that taken by Leveson

[70] where the different requirements of system control and system recovery are

catered for by the separation of the control components and the recovery

components into independent layers in the system. This approach makes sense

as it separates the top down control sequence where commands are sent

towards the lower reactive levels for execution from the bottom up safety

process where faults and clashes are sensed at a low level first and then

propagated up to the deliberative layers.

52 Chapter 3

3.3 HASA

The holonic architecture developed as part of this thesis is an extension of and

reworking of the PROSA architecture [62]. The PROSA architecture is a holonic

agent architecture developed for manufacturing systems. Its central paradigm is

that of creating products based on customer orders. The whole manufacturing

and control system is modelled and the PROSA architecture offers a generic

holonic architecture that does not proscribe any hierarchy. The PROSA

architecture was chosen as starting point for the Holonic Agent Space

Architecture (HASA) outlined herein for a number of reasons. The key drivers in

the manufacturing systems that PROSA was deployed to control are safety,

extensibility and autonomy but above all else the ability to reliably create a

given product. These concepts are also key drivers in many scientific space

missions. The PROSA architecture is very general architecture and as such acts

only as a starting point for the development of the HASA architecture.

The fundamental differences between HASA and PROSA are:

• Replacement of the order holon in PROSA with an executor and planner

holon in HASA to enable the better modelling of the structure of space

missions.

• An emphasis on real-time control rather than the completion of orders.

• Continuous rather than discrete time operation.

Thinking about space missions as a manufacturing process can also give us added

insight in how a multi-agent controller may be designed. It is quite logical to

think of any given space mission as creating a product. Often the product will

be data of some sort, most likely scientific readings or images. The product

could also be movement of the spacecraft or the provision of a certain resource

in the case of communication link. As such, in the HASA architecture, a product

can be defined as belonging to one of three groups, data, actuation or resource.

53 Chapter 3

There are four basic types of holonic agent in the HASA architecture as shown in

Figure 3-1. They are planner agents, executor agents, resource agents and

product agents.

Figure 3-1 Basic types of holonic agents in HASA

At its most basic level the resource agent consists of a resource that is used to

construct some product. An executor agent monitors the creation of a product

and the planner agent decides where and when any given product will be

created. The product agent encapsulates a model of the product, how it must

be created and to what specifications.

A resource agent can take many forms. It can be thought of as a traditional

resource, as in a computational resource to be utilised or a resource that is

expended, such as energy. The resource could also be an actuator or a sensor or

at a higher level a specific spacecraft in a formation. It should be noted that

the key concepts of planner, executor, resource and product apply at many

levels of aggregation of the system and this vertical self-similarity or recursive

nature of the architecture is a key benefit of the holonic architecture.

54 Chapter 3

A planner agent is an abstraction of the deliberative aspects of the systems.

Again it is used to describe entities at many different levels of aggregation so a

planner agent could be an agent deciding how to schedule and organise the

acquisition of a certain formation or at a much lower level, deciding what data

to pass on from a single sensor.

An executor agent is an agent that manages the execution of processes in real

time. The processes to be undertaken will be decided by a planner agent and

the executor agent will work with one or many resources to carry out these

processes as dictated by the planner agent.

A product agent encapsulates what exactly a given product is and how it is to be

produced. This can include processes and required resources as well as sub-

products it needs to create its product. The holonic nature of the HASA

architecture is fully recursive so a product can quite validly be made of many

sub-products, each of which is a fully operational product agent.

3.3.1 Aggregation

A number of different agents will be grouped together in a given hierarchy

dependant on what product they will be constructing or generating. This

hierarchical group can be thought of as a bigger agent with its own identity. The

recursive nature of the architecture is here the key element and allows us to

view the systems as a whole over many different levels of detail (Figure 3-2). In

the HASA architecture the hierarchy is one where an agent’s membership to an

agent group is not fixed. Agents can belong to many different groups and due to

the recursive structure each group is comprised of sub-groups. Aggregate agents

may be specifically designed but scenarios can be envisaged where aggregate

agents may emerge as a result of the self-organisational abilities of some agents.

The multiple levels of aggregation apply to the four types of agents in the

architecture where, for example, a given planner agent can be thought of as

consisting of a number of smaller planner agents undertaking certain tasks, some

executor agents overseeing the planning process and resource agents

representing the knowledge or algorithms needed to create the plan. A product

55 Chapter 3

can be thought of as consisting of a number of sub products, each of which may

consist of other products, until the product can be fully described.

Figure 3-2 Aggregation of holonic agents in HASA

3.3.2 Specialisation

The four core types of agent can also be sub divided into a set of more

specialised agents, defined by their individual characteristics and the sub agents

that they are composed of, as shown in Figure 3-3 which represents the attitude

control system of a spacecraft and Figure 3-4 which shows a resource holon.

56 Chapter 3

Figure 3-3 Possible sub-agents of an Attitude Control Agent

Figure 3-4 Specialisation in holonic agents

3.3.3 Data managed by basic agents.

A planner agent’s key data structure is a plan. This is defined as set of processes

that lead to the creation of a product. As the planner agent encapsulates the

57 Chapter 3

deliberative aspect of an intelligent system. Characteristics such as goals are

also stored and manipulated in a planner agent.

An executor agent’s key data structure is a set of processes. These may be the

set of processes currently running, the set of processes need to create a product

or a set of processes carried out in the past. The executor agent will also

contain knowledge about each process that it has undertaken, is undertaking or

plans to undertake. This allows the planner to use data on past performance

and predicted utilisation when creating a plan for the present.

A resource’s key data structure is a set of limits or rules to its use. This could be

used to describe a finite resource’s capacity or the rules that govern the physical

actions of an actuator.

A product’s key data structure is the model of a product and its associated

quality requirements. This product model can take many forms. If the product is

something like a scientific image, the product model will include all of the

requirements needed for that image such as time constraints, resources and

target data needed. If the product was a manoeuvre for the formation then the

product model would encapsulate the dynamical model of the formation and the

individual spacecraft, thus allowing a specific product to be created.

3.3.4 Functions performed by basic agents.

The planner agent creates and manipulates plans based on the state of the

current resources and running processes, the executor agent executes these

plans using the available resources and the state of other processes.

3.3.4.1 Knowledge exchange

• The resource and planner agents exchange product knowledge. That is

how a product was create/achieved and if it was fit for purpose.

• The planner and executor agents exchange plan knowledge.

58 Chapter 3

• The executor and the resource agents exchange process execution

knowledge. That is how to achieve a given process.

• The resource and the product holon exchange process knowledge, that is,

how to perform a process on a resource.

• The planner and the product holon exchange product performance

knowledge. This is based on the quality metrics from both the product

and the planner.

• The executor and the product holons exchange production knowledge.

That is how to produce a certain product.

Figure 3-5 below shows how knowledge moves through the system and which

types of holon produce and consume what type of knowledge. This in turn shows

the key structures of the HASA architecture.

Figure 3-5 Functions and Knowledge exchanged by each holonic agent type

59 Chapter 3

3.3.5 Self-Similarity in HASA

Horizontal self-similarity means that at a given level of aggregation all of the

agents of given core type are similar to each other. This means that they

operate in a standard way using standard interfaces. This allows for complex

structures to be designed but still permits standard interaction. This self-

similarity applies to the key communication strategies and data structures of the

agent but is not designed to hinder specialisation.

Vertical self-similarity means that the basic types of agents share common

aspects regardless of the level of aggregation. This means that the multiple

smaller planning agents that go to create a single larger planning agent will all

share the same methods of communication and data structures. This allows for

the recursive nature of the HASA architecture.

3.3.6 Agent Environment

As discussed previously the environment of a multi-agent system is the key

factor in its operation. In the HASA architecture the environment is a

specialised type of resource agent that can be utilised to aid in creation of

products. Manipulation of the environment is classed as a product in this

architecture.

3.3.7 Benefits of the HASA architecture

The key benefits of the HASA architecture when compared to the other

architectures available are:

• Recursive: The holonic structure allows for a complex system to be

described at varying levels of abstraction, allowing for development of

the system using a top down or bottom up approach. This recursive

60 Chapter 3

nature also facilitates the use of external modules in the system as they

can be easily described in the architecture.

• Real-time: The specific executor agent handles real-time operations and

acts as a bridge between the more deliberative and reactive aspects of

the system and is rarely found in the manufacturing architectures.

• Product-oriented: An emphasis on creating a viable product is paramount

for space missions and this concept has never been used in the

robotics/space domain previously.

61 Chapter 4

Chapter 4 Multi-agent system for DARWIN

4.1 Introduction

In the previous chapter the design of a multi-agent architecture was discussed.

In this chapter a design for a multi-agent control system using the HASA

architecture for a formation flying mission is developed. This is for two main

reasons, firstly to show that the architecture can be applied to a wide range of

missions and secondly to show that a control system, that requires a set of

relatively complicated simulation models, developed using this architecture can

be adequately tested.

In the first part of this chapter the DARWIN mission will be outlined as well as

the current expected baseline for its level of autonomy, formation flying in the

domain of space missions will be discussed before the design of a multi-agent

system to control this type of mission is described in detail.

The design of a multi-agent testing suite is developed and the testing suite

implemented in order to test the multi-agent control system. The multi-agent

system described herein is an extension of the work presented here [71]. A

more comprehensive look at the ESA missions that were considered for multi-

agent control can be found here [14].

4.1.1 The DARWIN mission

The DARWIN mission concept offers an excellent example of a formation flying

mission that could also benefit from on board autonomy to improve its science

return and operational reliability.

The DARWIN mission's primary purpose is to detect and characterise Earth-like

extra-solar planets (exoplanets) and search for signs of life in the exoplanet's

atmosphere. This is to be achieved by the use of a formation of interferometric

62 Chapter 4

space telescopes. DARWIN would operate in the mid infra-red band and by using

nulling interferometry between the telescopes be able to compensate for the

massive differences in light intensity between the exoplanet and the star it is

orbiting [72].

The DARWIN mission’s implementation of nulling interferometry requires that a

number of independent space telescopes all observe the same point in space, in

this case the candidate star, simultaneously. The light from the star is collected

at each telescope and then transmitted to a central hub. Precise phase shifts are

applied to the light coming from each telescope with the aim to cause

destructive interference on the light coming from the star but constructive

interference on the light coming from the faint exoplanet [73, 74].

Figure 4-1 Artists impression of the DARWIN mission. Credit: ESA

As such the mission concept comprises of a number of space telescopes, (3 or 4

is the current baseline) and one central hub collecting the light from the

63 Chapter 4

telescopes, processing the data and providing communications back to Earth.

The current mission concept baseline suggests that the spacecraft would be

launched by either a single Ariane-5 launch or two separate launches by Soyuz-

Fregat launchers [75]. After separation from the launcher the flotilla of

spacecraft will acquire a coarse formation and proceed on their planned

trajectory to the second Sun-Earth Lagrangian point (L2). Once the flotilla

arrives at the L2 point the imaging formation will be acquired. Once the

spacecraft are very close to their final position they will acquire the final

formation with sub millimetre accuracy using radio frequency and laser

metrology devices on each spacecraft and the hub. The formation will need to

be able to perform manoeuvres to reconfigure and rotate the formation to image

new stars without losing the relative positional accuracy gained from using the

metrology devices.

The DARWIN space telescope concept is based on the Bracewell nulling

interferometer concept but with key changes. The Bracewell nulling

interferometer [76] operates when two small physically separated telescopes

both point towards a star and collect light. The light hits the telescopes as a

wave front and if the optical paths are exactly equal, constructive interference

occurs when the two beams are combined. If a phase shift of half a wavelength

is added to one of the beams (the phase shift must be achromatic in order not to

lose any information in the resulting image) then destructive interference occurs

and the light from the star is cancelled. If the telescopes are then rotated

around an axis pointed towards the target star they will constantly keep the

stars light in destructive interference as it is at the centre of the field of view

but periodically allow the light from the exoplanet to be visible.

The DARWIN system builds upon this basic premise but is significantly more

complex. The Bracewell concept does not take into account the possibility of a

zodiacal cloud around the target star which produces what is known as extra-

zodiacal light [77]. This exo-zodiacal light is not negligible when trying to image

such a faint target as the exoplanet. For example the integrated zodiacal light

emitted from the Sun’s zodiacal cloud is equal to three hundred times the

brightness of the Earth in the near infra-red band in which DARWIN will operate.

The concepts required to minimize or eliminate the exo-zodiacal light require at

64 Chapter 4

least 3 telescopes. The rotation of the interferometer in the Bracewell design is

a relatively slow way to modulate the signal coming from the exoplanet and

requires a constant rotation of each telescope. This rotation adds another layer

of complexity to an already complex formation flying and attitude control

problem. The DARWIN concept includes the partial recombination of the light

beams within sub-interferometers and movable mirrors permit the internal

modulation of the signal. This kind of modulation is faster and easier in terms of

configuration control

A DARWIN/Terrestrial Planet Finder (TPF) type mission will allow for direct

observation and spectral analysis of an exoplanet but in order to directly image

the planet an interferometric mission with much larger baselines and light

collecting abilities would be needed. DARWIN is however a step on this road and

would provide priceless scientific data as well as paving the way for future

interferometric missions [78].

During the transit to the L2 point it is envisaged that the DARWIN formation will

fly in a sphere of roughly 30km diameter holding a loose formation. The

maximum inter-satellite distance is limited by the operational range of the

satellites relative position sensors. The control system at this point will aim to

keep to the target trajectory while minimizing any risk of collision between the

spacecraft. The acquisition of the final formation will be carried out by the

mission’s on board autonomous control systems. The autonomous systems will

utilise all of the available metrology data and other sensor data to be able to

compute the set of manoeuvres to be carried out in order for the spacecraft to

acquire the particular formation needed for the mission.

4.1.2 Baseline for DARWIN mission autonomy

The DARWIN mission from its very conception has required a high degree of

autonomy in order to operate effectively. The exact nature of many of the

autonomous systems that would help to operate DARWIN has not been finalized.

What has been envisaged at this early stage of mission development is an

architecture encompassing differing levels of autonomy which are encapsulated

65 Chapter 4

into 3 distinct levels, a decision level, an execution level and functional level.

The exact nature or architecture of the planning, execution and FDIR systems

has not been finalized. This requirement for a high level of autonomy but no

hard definition of how it should be achieved offers a very good opportunity to

design and develop an autonomous system based on newer technologies such as

multi-agent systems for this mission.

The DARWIN mission has many different requirements for autonomy throughout

its many components and subsystems. An autonomous navigation system is

required to allow the mission to undertake the complex formation flying aspects

of the mission and to enable a fast enough response for retargeting and

formation reconfiguration. In order to operate autonomously for long periods, an

autonomous FDIR may be required and in order to operate effectively and will

need to be connected to all of the mission subsystems. The nature of the

distributed telescope mission means that many tasks will have to be undertaken

in parallel aboard different spacecraft, in order to be able to carry out these

tasks concurrently and still successfully synchronise the spacecraft’s operations

an autonomous task execution system must be developed and can be thought of

as part of the higher level autonomous planning system. The execution level

must be able to respond to requests in an expedient manner and the planning

system must also be tightly linked with the FDIR subsystem.

DARWIN’s architecture and use of autonomy, and thus its feasibility, will depend

heavily on the results from the European Space Agency’s Project for Onboard

Autonomy (PROBA) series of spacecraft, most notably PROBA-3.

PROBA-3 is the third in a series of spacecraft developed and deployed to validate

novel technologies in space systems. It is focused on the system’s need to

perform reliable and precise formation flying and will test hardware and

techniques using two micro satellites. The technologies under scrutiny involve

autonomous formation flying, autonomous FDIR and the use of RF and optical

metrology for formation control. In PROBA-3 the guidance, navigation and

control systems and the formation flying systems will operate autonomously and

be entirely space based but with ground based verification. This allows the

ground team to oversee the formation flying sequences and to intervene if a

66 Chapter 4

problem occurs. In the PROBA-3 mission there are only two vehicles making up

the formation so it only has a single axis. This formation allows for simpler

autonomous formation flying controllers but is considerably less complex than

the multi satellite formation envisaged in the DARWIN mission concept [79].

PROBA-3 is expected to launch in 2015-2016 timeframe [80].

The baseline for the DARWIN mission states that the mission should be

autonomous in the following ways:

• The mission should be able to autonomously undertake the coarse

navigation to its final destination orbit. This aspect will be continuation

of the work carried on PROBA-3 in autonomous collision avoidance along

with autonomous loose formation flying.

• The mission should also be able to autonomously make science

observations from a plan and modify the observation plan if necessary. It

is envisaged that high level plans will be uploaded from the ground but

the mission must have the facility to autonomously modify the plan to

either re-factor the plan based on the current state of the mission or to

optimise the plan further.

• It is also envisaged that the mission will have an autonomous guidance,

navigation and control (GNC) system capable of carrying out the

formation flying manoeuvres required for successful operation of the

mission. The GNC system must, as well as operating autonomously, be

able to accept high level commands from the ground such as acquire a

specific formation, slew formation, resize formation etc.

• The mission must also have an autonomous failure detection, isolation and

recovery (FDIR) system capable of handling any potentially harmful

scenarios to the mission as a whole or to individual subsystems. To

operate effectively the FDIR must have a fast and accurate fault

detection and diagnosis system as well as a robust decision making system

for computing solutions or repairs in response to failures.

The autonomous formation flying control will be decentralised for transit and

will then transition to a centralised structure when operations begin. Overall

67 Chapter 4

formation control will be assigned to a single central agent which is in

communication with all of the other agents in the system. The collision

avoidance agents however will be fully decentralised and Independent from the

formation flying agents.

4.1.3 Formation flying

When operating as a formation a consensus must be reached between the

constituent satellites. This consensus is vital as all of the spacecraft must agree

on how they share information such as position, velocity etc. For further reading

on this topic see [81, 82]

There has been a significant amount of work carried out on the use of consensus

schemes to allow for the more efficient creation and maintenance of vehicle

formations. Some of the findings in this body of work are only applicable to the

specific type of vehicle that is being studied, such as wheeled vehicles,

terrestrial unmanned aerial vehicles etc. but a lot of the general ideas can be

applied to spacecraft flying in formation. The ability of an algorithm to find a

consensus and the benefits of this are different depending on the topology of the

formation in question. For example in the case of a circular pursuit formation

which is favoured for many space missions the topology itself is greatly

simplified into a uni-directional ring which allows for very efficient formation

flying manoeuvres [83]. A common approach is to find the consensus of the

whole formation and then use this point as the equivalent to a single vehicle and

the other vehicles in formation just try to achieve a certain offset from this

point. In [84] an approach that allows for the analysis of consensus problems

and stabilization problems is outlined.

As well as finding a consensus between agents and thus between spacecraft, the

spacecraft must also be correctly aligned and positioned with respect to each

other. For a mission such as DARWIN this is of vital importance as the optical

interferometry system relies on extremely accurate inter-spacecraft distances

and that all of the spacecraft are observing the exact same point on the target,

in this case the candidate star that is hoped to have an exoplanet in orbit around

68 Chapter 4

it. It can be envisaged that a fully connected topology would be able to achieve

a synchronised attitude of the spacecraft but this may be expensive to operate

in terms of communication packets sent and received and thus time. A sparser

communication topology with spacecraft only communicating with its direct

neighbour or neighbours to synchronise attitude may be simpler [85].

As well as being able to effectively acquire the formation position and attitude,

there may be time constraints on the system in which a synchronised arrival at

the desired target may be beneficial. If not required implicitly by the mission, a

synchronised approach to acquiring and changing formation may well simplify

the problem and reduce the communication and computational load.

Using a consensus and other explicit topologies is not limited to just the

formation flying problem. The design decision as to how distributed to make the

decision making system as a whole is dependent on how much confidence the

designer can put in the system’s ability to reach a consensus on any given

problem. Decentralised decision making has a number of advantages over

centralised decision making, namely that there is redundancy if something goes

awry and there is no single point of failure for the system. The disadvantage is

that in reality it relatively difficult to guarantee that consensus will be reached

within any given time frame. If the topology of the system is simplified without

damaging the speed or reliability of the system then certain assumptions may be

proved and time-scales given for normal operations.

The DARWIN structure is relatively simple so a simple completely connected

topology can be implemented so that all of the agents in the system can

communicate with each other.

The idea of using highly simplified control laws and each agent only acting

locally to produce coherent large scale behaviour [86] is very appealing for multi

satellite space missions. These flocking laws are typically based on very little

data, most famously that of the inter-craft distance and the current velocity of

the spacecraft and the adjacent spacecraft. All of these variables can be

calculated at a high rate and thus a flock of spacecraft might be seen as very

attractive. The downside of these flocking laws is in their behaviour under a

69 Chapter 4

wide range of conditions, their stability and their efficiency. A lot of work must

be carried out to understand how perturbations to the system are propagated

through the flock and it is entirely reasonable to assume that certain types of

disturbances will cause unexpected consequences. In this case the very simple

laws that govern the flocking may not have the ability to avoid collisions or other

adverse events. These events would be catastrophic for a space mission and the

uncertainty inherent in these methods makes them unlikely to be used in their

most basic state, which is most suitable for terrestrial unmanned aerial vehicle

(UAV) systems.

4.2 DARWIN MAS design

The following multi-agent system design was designed for a DARWIN [87] type

mission but can be thought of as an example implementation of the previously

discussed HASA architecture that implements general formation flying abilities.

In this multi-agent system there are a number of different agent types: the

Planning agent, the Formation Flying Command agent, the Formation Flying

execution agent, the Feedback agent and the Negotiation agent. We will briefly

outline their operation here before defining them in more detail as part of our

architecture in the next section.

4.2.1 Planning Agent

The planning agent is one of the most important agents in the multi-agent

system as it contains and is in charge of all the primary deliberative and decision

making processes for the mission. Whereas in the other agents the tasks that

will be performed are fairly standard in the spacecraft control domain and a fair

amount of reuse from other systems can be envisaged the planning agent will

have to be developed uniquely for this multi-agent system. This is because the

decision making processes must be designed to exactly make use of the structure

of the physical mission (multi-satellite) and the architecture of the multi-agent

system, as no system of this type has been developed before then the planning

agent must be developed from the ground up to fully take advantage of the

70 Chapter 4

system. This also means that the planning agent will also need a lot of

developmental time compared to the other agents and must also be more

thoroughly tested as it is more deliberative and thus more unpredictable in

operation than the more common reactive components. In this agent, plans are

developed from overall mission goals and objectives which are supplied from the

ground and should not really change over time. The planner then uses the

environmental model to decide which actions out of all of the actions that would

lead to the completion of its objectives are feasible. The format of the plans

must take into account the fact that the planning process itself will be a

distributed activity and as such the plans will be fragmented and provision must

be made to allow for the recombination of the individual plans into a coherent

global plan. The plans will be object based and can also be further optimised

for the mission itself, for example in this case the plan is primarily concerned

with controlling the relative position, attitude and speed of the all the

spacecraft in the formation. As such the main plan types will be to acquire

formation, acquire a target, test plans for validation and verification purposes

and high level emergency actions that come outside remit of the lower level

reactive emergency procedures and the collision avoidance mechanisms (CAM).

4.2.2 The Formation Flying Command agent

The next agent in the hierarchy is the formation flying command agent. This

agent can be thought of as an intermediate step between the high level plans

that are generated in the planning agent and the actual execution of a formation

flying manoeuvre. The formation flying command agent takes as its inputs the

plans that have been ratified at the planning level by all of the planning agents

on all of the spacecraft. This is a key requirement as the formation flying

command agent can only undertake to achieve a given formation as long as all of

the spacecraft are in agreement. This should not be taken to mean however that

there is no possibility of altering the formation once the acquisition has started,

only that that the commencement and any change to the formation has to be

agreed at the highest level by all the spacecraft. The level of abstraction used

by the formation flying command agent is different to that used at the lower

level and is not purely comprised of the requisite thruster profiles and timings.

71 Chapter 4

Instead the formation change is encoded in its entirety to include not just the

exact positions that are to be attained but possible alternate positions and

emergency procedures for the different legs of the formation acquisition. It is

also important to note that it is not a particular formation that is encoded but a

change between two specific formations that relies on specific starting point for

each spacecraft and that each spacecraft be operating correctly in the desired

state. These formation changes can be manipulated at the highest level and

exchanged between different agents allowing for them to be suggested,

negotiated, refined and then, if consensus is reached, enacted. In order to

generate the formation change profile with sufficient accuracy the formation

flying command model has a number of specific requirements. It must have full

access to the spacecraft's system status information so that it can gauge the

relative performance of each spacecraft and must also have a more accurate

physical model of the spacecraft and their environment in order to compute

exactly how to achieve a given formation.

4.2.3 The Formation Flying Execution agent

The formation flying execution agent takes care of the aspects of the formation

change not covered by the formation flying command agent, most notably the

tasks associated with the execution of and real time monitoring of the formation

change. At an abstract level the formation flying execution agent converts the

formation change plan generated by the formation flying command agent into

specific manoeuvres that are broken down to the individual thruster level.

The formation flying execution agent also has the responsibility for the real time

monitoring and control of the formation change. Whereas the formation flying

command agent is a highly deliberative agent that accepts plans and creates and

manipulates formation change procedures the formation execution agent is

much more reactive. The structure of this type of real-time operation agent will

be very different to that of the higher level agents in that it must be able to

constantly monitor a wider range of inputs and be able to react reliably within a

very short period of time if required in an emergency or if a change of desired

72 Chapter 4

formation is necessary. Where the formation flying command agent creates a

formation change procedure for the formation as a whole the formation flying

execution agent instead concentrates on meeting the requirements outlined in

the formation change procedure but only for its own spacecraft. This extra level

of granularity allows the agent to more effectively use spacecraft specific

constraints and resources as well as taking into account the spacecraft's

performance history in its processes. Again a slightly different physical model

will be required with more detail of the physical characteristics of the single

spacecraft as at this level the control of the formation as whole is not

considered and is carried out at the formation command level.

It can be seen that the physical and environmental models used by the formation

flying execution agents is very similar to that used by the agents above it in the

hierarchy but with smaller scope and higher level of fidelity. It can therefore be

envisaged that instead of having many different models (if our structure is

suitably modular) we can use the same models for all levels as long as certain

portions are accessed and taken into account by the correct agents. This ability

to share resources between agents but only access and compute on the required

parts offers real advantage to the system designer as fewer individual modules

and models have to be developed.

As well as receiving commands from the planning agent through the formation

flying command agent there must also be the capability of the formation flying

execution agent to execute commands directly, these low level commands will

be mainly used in the testing of the system within the simulation as part of the

extensive unit testing of the system but this direct line to the actuators may also

be used by the emergency components of the systems. These two lines of

communication however must be kept separate as the availability of direct

control of the spacecraft introduces more possibility for unchecked manoeuvres

to be carried out.

73 Chapter 4

4.2.4 Feedback agent

The feedback agent and the negotiation agent that will be discussed later are

part of the "checks and balances" in the system that monitor the system from a

level at least once removed from the operation but retain the ability to act at

any level of the system if intervention is necessary. As previously discussed a

clear distinction between the more deliberative components such as planning

and the execution of manoeuvres is present in the system. The feedback agent is

in charge of monitoring and finding any problems that may occur or may have

occurred in the real-time portion of the system. In order to carry out this task it

must have complete access to the other agents but has different needs when it

comes to environmental and physical models.

A decision must be made as to whether the feedback agent has its own models

of the physical spacecraft and the environment or relies on the models in the

agents it is checking or both. An advantage of the feedback agent having its

own versions of the environment model and physical models for checking is that

the feedback agent can act as an independent checking mechanism, the

disadvantage of this approach however is that the feedback agent will need

models that equate to each agent that it will be monitoring. The problem arises

however if the models in both the active agent and the feedback agent are the

same as any errors could occur equally in both as a common mode failure so the

feedback agent will offer no real insight. At the other extreme the feedback

agent can have no real environmental or physical models itself but instead just

have a set of checks and criteria that the agents it monitors must adhere to.

This process would be much faster than computing the calculations of another

agent in parallel and would give the feedback agent the level of independence

required to find errors occurring in other agents. This second approach can be

further extended to not just operating with hard coded checks on the other

agent but also, if the need arises, the agent can perform test calculations using

the agent’s models to test if a particular error is caused by the models used or

the agent structure. It may also ask other agents of the same type as the

monitored agent to carry out these checks to see if the failure is common to all

of the agents. As well as these more deliberative actions the feedback agent

74 Chapter 4

will also encompass the traditional collision avoidance mechanism (CAM) system

found in spacecraft which is a highly reactive system. This means that the

feedback agent will have to decide in a very short time-scale to take action if it

deems that a collision between any of the spacecraft is likely. In order to be

enacted in the quickest possible time these collision avoidance actions must be

very simple and as standard as possible as the mission’s reliability greatly relies

on these commands being executed and their ability to reduce the probability

and potential severity of a collision.

As well as working on very small time-scales the feedback agent will also work to

try to determine if any errors emerge in the system over time. With a highly

complex interacting system such as the multi-agent system in question it is likely

that there will be certain drifts in the performance of the sub components and

agents. The Feedback agent must be able to notice these longer term changes

and inform the sub system or agent of its error or take further action to stop it if

necessary. This process will be carried out by the agent starting with hard

coded bounds of the system’s expected performance in the chosen metrics, it

will allow for some drift but this will always be monitored and taken into

account throughout the system.

4.2.5 Negotiation agent

The negotiation agent is the non-real-time partner of the feedback agent and

has a similar general remit in that it is designed to facilitate the smooth

operation of the multi-agent system but instead of trying to mitigate the

technical faults like the feedback agent the negotiation agent is instead

designed to stop and recover from any social faults in the multi-agent system.

These social faults are unique to autonomous agents and agent based systems

where each agent undertakes its own actions as part of a larger system towards

a common goal. In this design each spacecraft has a full suite of agents to allow

for independent operation and facilitate independent error detection and

resolution. The negotiation agent is needed in order for these local groups of

75 Chapter 4

agents to work together and to overcome any deadlocks or disagreements about

the higher level goals and plans of the system.

The fact that many of the agents are repeated throughout the system allows for

the system to operate with a high level of redundancy, this is only true however

if errors can be detected and consensus reached by the agents if one of their

kind has failed or is operating incorrectly. The simple way for this to be

achieved is for the negotiation agent to operate as mediator and allow for voting

between agents to discern which agents views are to be incorporated into any

action. This sort of process works for the lower level agents but the higher level

agents will work in a slightly different way. The higher level agents will select

from amongst themselves a prime agent (or the negotiation agent will choose

one if no consensus is reached) and then the prime agent will operate for the

whole formation. The planning agent is an example of this approach where one

planning agent will have to take overall responsibility for combining all of the

disparate plans generated within the multi-agent system and then creating a

single comprehensive plan. The other planning agents however will also be

constantly running the same calculations to check the prime agents operation is

correct and the negotiation agent will revoke an agent’s prime status if the

other agents disagree with its results.

The negotiation agent will also be used by many of the other agents in the

system to break deadlocks and enable the system to operate effectively. It can

be easily envisaged that two spacecraft may disagree about their position in the

formation and this disagreement would stall any efforts to compute and enact a

formation acquisition procedure. In this case the negotiation agent would have

to consult with any non-involved formation flying agents and decide which agent

is correct. If none can be chosen in this way the negotiation agent will have to

try to take into account other factors such as the historical reliability of the

agents in question and their past performance and then make a decision based

on this data. This agent has the most deliberative aspects after the planning

agent but also shares the most with traditional informational agents as some of

the most common problems with all agent systems is social deadlocks and similar

problems [88–90].

76 Chapter 4

4.3 Agent Structure and Interaction

Figure 4-2 shows a general overview of how the agents on each craft interact

with each other.

Figure 4-2 Agents on a single DARWIN spacecraft

The agents for the DARWIN mission were initially prototyped in the SeSam [52]

multi-agent simulation environment. This approach offered a number of

benefits over proceeding straight to coding the agents in the target programming

language, firstly that the structure and interaction of individual components can

be easily seen and modified and secondly that these designs can be used to

create skeleton code structures in Java removing some of the work needed for

implementation. The following figures (4-2 to 4-7) show the structure of the

agents in SeSam.

77 Chapter 4

Figure 4-3 Planning Agent Level 2

Figure 4-4 Planning Agent Level 2

78 Chapter 4

Figure 4-5 Formation Flying Command Agent

Figure 4-6 Formation Flying Execution Agent

79 Chapter 4

Figure 4-7 Feedback Agent

Figure 4-8 Negotiation Agent

80 Chapter 4

4.3.1 Quantification of multi-agent system attributes

As well as measuring the performance of the system in the simulation testing

suite the systems should also be characterised beforehand so we can try to find

some correlation between system parameters and system performance. One of

the key measures we want to make is that of system autonomy. We can grade

autonomy using levels such as those used by [91] which are fully autonomous,

boss, cooperative, underling, instructable and remote control. Using this

approach we can use the rank of the agents within a given multi-agent system to

uniquely identify the system.

Another useful metric that is very important is the amount of resource sharing

that a given agent or component undertakes. One of the key reasons why multi-

agent systems can operate is that they can share and use finite resources. An

example given in [91] is that of a vision system that could easily apply to many

resources in our distributed space mission. Let us say that we have two

behaviours using the same vision system, � and �. � can be a collision
avoidance behaviour that is part of the larger collision avoidance system and � is
a scientific event detection behaviour. Let us, for this example, assume that

the behaviours are mutually exclusive. This means that the behaviours must

share the resource (in this case the vision system). Let us say that a system has

a certain capacity, in the vision system’s case this can be thought of as the

frequency capacity or how many times it can be used in a given time. If for this

simple example we assume the cost of switching between behaviours is

negligible and the minimum operating frequency for � is �� and for � is ��. If �
is less than �� + �� then the capacity of the vision system must be increased. If � is greater than �� 	+ �� then the two behaviours can operate together without
penalty. If the actual operating frequency achieved can be written as ��� and ���
then we can use

�	
�	
��	��
��
��� 	 as our resource sharing metric.

81 Chapter 4

4.4 Development of a multi-agent simulation suite

4.4.1 Simulation

When trying to determine the validity of a multi-agent system it is not just the

lower level actions that must be considered. One of the key benefits of

distributed intelligent systems is the ability for emergent behaviour to arise. It

is this emergent behaviour however which cannot be adequately validated using

most formal methods. Instead the system has to be tested in order to adequately

gauge its response for any given scenario. Ideally the software would be tested

on the final hardware and within the final environment in which it will operate

but in practice this is rarely feasible, especially in the case of space missions.

The field of simulation is a particularly broad one and encompasses many

different areas. The many different variations of simulation have usually been

developed to try to simulate particular systems and as such there is very little

work on "general" simulators as for worthwhile simulation of a system to be

carried out it must be tailored to that specific system.

4.4.2 Test suites

In the development of simulation test suites there are a number of approaches

the system designer can make in order to try and simulate his system. The

system can be simulated entirely in software or with some components modelled

in actual hardware. The latter is known as simulating with "hardware in the

loop" and is frequently seen as an effective middle ground between 100%

software simulations and testing the control system on the actual hardware.

Most simulation begins by being carried out completely in software for a number

of reasons, the main one being the ease of deployment and the ease of

modification of the simulation and the second is the reduced cost this ease of

use entails and the zero risk it poses to expensive hardware. If the simulation is

developed following a modular structure then the designer has the ability to

82 Chapter 4

introduce hardware in the loop to the system while not having to change the

entire simulation system. This approach entails simulating the individual

hardware components that make up the system as accurately as possible so the

control system is tested using sensor values and executes its action through the

appropriate actuators. It is then easier to bring real hardware into the

simulation by replacing those individual software components with their

respective hardware part where appropriate and feasible. The approach taken

in this work is based on a 100% software approach but with multi language and

multi-platform compatibility which allows for the easier hardware integration in

the future.

The evolution of this concept is the development of hardware test beds. Where

the hardware for a given domain can be thought of as relatively standard across

a given problem domain then a generic hardware test bed that can test multiple

different types of control systems can be created. A good example would be a

motor car which is modified to allow full software control over the steering,

acceleration, brakes, gears etc. If the interfaces to these actuators are

correctly developed then many different kinds of automated driving software

could be tested on this one piece of hardware. Similar hardware test beds have

been developed for space missions: these range from the generic which have

typical spacecraft subsystems such as power, thermal, etc. to formation flying

test beds where robots or spacecraft analogues operate to acquire their

formation in an environment specifically designed to test the formation flying

algorithms using close to real hardware (cold gas thrusters, real sensors etc.) but

in a reduced degrees of freedom environment such as on a "frictionless" two

dimensional plane.

Much like multi-agent systems themselves simulation systems can be distributed

or centralised. A centralised simulation system is better suited to single

spacecraft whereas a distributed system is obviously more suited to a multi

satellite or formation flying type mission. A centralised simulation system works

by having all of the modules comprising the simulation environment, the sensors,

the actuators etc. all in one place. This approach allows for a more easily

tested simulation suite and also makes development, maintenance and

modification easier. The downside is that this sort of system is not suited to

83 Chapter 4

modelling distributed systems where multiple satellites and multiple processes

are concurrently operating. For this type of mission a distributed simulation

system makes more sense. In this case the simulation is run on multiple nodes,

roughly equating to the number of nodes on the system being tested. In this way

the abilities and characteristics of the distributed system can be ascertained and

any benefits over a centralised system hopefully quantified. Communication

between the nodes should be in the protocols that will be used in the hardware

where possible, frequently these protocols are wrapped in a standard

transmission control protocol/internet protocol (TCP/IP) layer and the

simulation runs over a distributed computing network. The benefits of this

approach are that any improvements arising from the distribution of the system

can be gauged and that for complex system the computational load of the

simulation can be distributed. The simulation suite developed in this work is

decentralised.

4.4.3 Basic types of simulation

Simulations can be further grouped as:

• Containing Static or Dynamic Models

• Containing Stochastic or Deterministic

• Containing Discrete or continuous time models

• As modelling aggregates or individuals

Dynamic models are models that change over time. This type of model is

obviously used for the simulation of space systems that involve movement

through space and thus orbital dynamics or any states that change over time.

This includes all autonomous agent based systems (as these must inherently

operate over time in order to be autonomous). Static simulation models are

used when modelling a single point in time for a system. This type of simulation

is used for the optimisation of models and statistical simulations such as Monte

Carlo analysis or for statistical learning techniques such as neural networks or

support vector machines. Dynamic models are used for the core of the test suite

84 Chapter 4

but static models can be introduced to increase the agent’s functionality, for

instance by introducing a learning model for some agent or agents.

The type of model in the simulation can also be further categorised. A

stochastic model is a model whose behaviour cannot be entirely predicted as it

involves the interaction between the models previous state and some

randomised elements. A deterministic model on the other hand can be entirely

predicted based on the current or previous states of the system. A chaotic

model can be thought of as a deterministic model but with a resulting behaviour

that cannot be entirely predicted and which is highly sensitive to initial

conditions [92].

The key modules in this suite are deterministic but stochastic processes are

introduced by some aspects of the agent’s interactions so depending on the

scenario and the agents involved the system can be either deterministic or

stochastic.

Another key differentiator between models is whether they operate over

continuous or discrete time. Discrete models operate by changing their state or

variables only at certain (discrete) points in time. These discrete time points

can be regular intervals or only coincide with the occurrence of certain event.

In a continuous model the system states and variables change constantly and

may have one of an infinite number of values. This is the desired approach for

modelling the physical world but a discrete model is much more practicable

when taking into account computing constraints and the difficulty of modelling

complex systems on analogue computers. The models in this system are based

on discrete models with the simulator numerically integrating between epochs.

Another choice that has to be made is whether the simulation simulates every

entity to its fullest extent or instead simulates groups or aggregates of entities.

Cases where both would be applicable can be imagined. In a relatively small

scale system with a limited number or agents or modules then a full simulation

can be carried out in a reasonable time frame. If the system was much larger a

full simulation could still be carried out but the decision would have to be made

as trade-off between simulation fidelity and computational time. At the other

85 Chapter 4

extreme in the case of a simulation that involves a large number of human

protagonists that interact with each other and the system it can be useful to

model these as groups or in aggregate in order to reduce complexity with limited

impacts on the fidelity of the simulation as a whole. The impact of using

aggregates and groupings on increase computational speed at the cost of fidelity

should be measured by conducting small scale simulations using the individual

entities and the aggregates and comparing results. It may be hard however to

carry these results over to larger scale simulations as the effects of individual

interactions at the larger scale may have more impact than at a smaller scale.

As one of the key aspects of the work is the inter-agent interaction the

simulation suite will simulate every agent to its fullest extent.

The question raised above regarding the relationship between the fidelity of the

simulation and the computational cost of the simulation is the key question in

the field of simulation. It is relatively easy to create simulation systems that

model the extremely low level behaviour of a system and each of its individual

components, but frequently the computational cost is too large. With the

constant increase in computing power available to the average user the number

of simulations that can be run in a reasonable time increase but it is still highly

desirable to instead optimize the simulations and run as many as possible within

a particular time frame. There are number of different strategies for making a

simulation more efficient. In this work the highly parallel nature of the system

being simulated is used to our advantage as it naturally allows large parts of the

simulation to be run in parallel, hardware permitting.

4.4.4 Simulation Structure

The actual structure of simulation is extremely important to its efficiency. At

the most basic level the simulation is either run in series or in parallel. In series

the answer to a calculation is fully computed before moving onto the next step.

In the parallel case multiple calculations are carried out at the same time. With

the proliferation of multi-core and multi-threaded processors the parallel

approach is much faster but many systems cannot be simulated entirely in this

way as many simulations require the previous answer to a calculation before

86 Chapter 4

being able to perform the next calculation. Distributed control systems and

especially multi-agent control systems do however lend themselves to parallel

computation. In operation the actions of the agents are carried out in parallel so

it stands to reason that they should be able to be carried out in parallel in the

simulation. There has been a great deal of work on multi-agent simulation [93–

96] and this is especially important when there is a mix of software, hardware

and human agents. In our planned autonomous multi-agent control system there

are no human agents in the autonomous phase and the hardware is under direct

control of the software agents.

Instead of taking a step back and trying to abstract and simulate a software

agent system the system designer can omit the development of this extra

simulation layer and gain a more accurate insight into the multi-agent systems

operation and performance. This is carried out by not simulating the multi-agent

system but instead coupling the actually running multi-agent system to a

simulation that constitutes its external environment. In this way the multi-agent

system’s performance can be more accurately gauged while still having full

control of the simulation environment.

4.5 Simulation Suite Architecture

The following work was based on the work presented in “Design and Testing of

an Autonomous Multi-Agent Based Spacecraft Controller” [97].

Any agent that has some deliberative aspect, that is it deduces outcomes or

solves problems about its environment, must by implication have some sort of

environmental model. The environmental model for a multi-agent system can

take many different guises but all environmental models share certain key

features. It helps to define the environment as that in which the agent will be

operational. In the robotics domain and thus similarly the space domain this

includes the "outside world" but must also contain the hardware that the agents

operate on and the agents themselves. The fact that a multi-agent system’s

environment can include both hardware and software components as well as

some definition of the external world can make definition of these environments

87 Chapter 4

difficult. As with most of the more complex ideas and constructs in multi-agent

systems the environment itself can be split into sub-sections but they must all

have the same basis. The agents obviously have relationships with the other

agents in the Multi-agent system but may also have relationships with agents or

entities outside the MAS such as ground controllers. The ground controllers in

this case should also be included in the environment. The agents also have

relationships with the hardware on the mission, at the most basic level they

have a controlling relationship with the actuators and an observant relationship

with the sensors. The agents also have relationships to the outside world in that

environmental disturbances such as atmospheric drag, gravity fields, etc. can

alter the orbital parameters of the satellite.

The agent’s relationships with the outside world may not be as literal as those

found in the classic mobile robotics literature in that they are not pushing boxes

or (at least we hope) not directly physically interacting with each other. Instead

the relationship is more that the outside world acts as a set of modifiers on the

agent’s actions and the agent must understand these modifiers in order to

successfully deliberate about what actions to take or gain insight into what has

happened in the past.

For example the relationship an agent has with the external world may define

certain constants or sub-relationships that affect for instance the motion of the

robot. For a simple wheeled robot these may include the coefficient of friction

or the way that momentum is calculated. They are not restricted to purely

modelling the physics of the situation but can also include data about the

scenario, so if the wheeled robot relied on solar power then the agent will have

some relationship that tells it the light levels in different areas or at different

times that will allow it to deliberate about what is the best course of action to

take.

This idea of defining a multi-agent systems environment as a series of

relationships is extremely flexible and can be applied to both pure software

agents as well as situated (robotic etc.) agents. The level of abstraction gained

by the definition in terms of relationships has another key benefit. A well-

88 Chapter 4

defined modular structure with many common components between systems

makes for a much greater ease of implementation into an actual system.

In this way relationships between agents equate to interfaces between methods

and behaviours and act as a good starting point for the design of the control

software. An interesting by-product is that if we are defining our environment

for the agent system in a clear and modular way, this can help us with the

simulation of the multi-agent system. If we are sensible with our development

then it stands to reason that the set of relationships that are used to define the

outside world in the agent’s domain can be used as an environment in which to

simulate the multi-agent system. At its most simple, instead of a multi-agent

system having knowledge of the real world through sensors and then operating in

the real world through its actuators the relationship model developed for the

agent can be used to model the outside world. This can be summarise succinctly

by the statement, "if we already have a model of the external world to allow

the agent to reason then why don't we use the same model to replace the

external world in our simulations?"

The description and similarity between the environmental models can lead to

confusion so a nomenclature has been devised to ease the description of these

types of models. At its most basic we can think of three different models, the

intelligence model ��, the simulation model �� and the agent model ��. For an
agent controlled robotic platform operating in some environment we can model

it by a number of agent models which are coupled to one or more intelligence

models. These then operate within the external world when the robot is

operating. These intelligence models contain the relationships that describe the

external environment. We can then think of replacing the real world in the first

example with a simulation model which encapsulates the nature of the real

world through description of its relationships with the agents. As such it can be

seen that the �� and �� will have very similar structures and will share a
common basis.

Formally we can say the simulation model, �� can be defined as:

89 Chapter 4

 �� 	=< �, �� > (4-1)

where � is a dynamical model comprised of the agent’s relationships with the
outside world (friction, momentum, equations of motion etc.) and �� is a sensor
data generator that is required to convince the multi-agent system that it is

operating in the real world and not in a simulation. The agent model, �� can be
described as:

 �� 	=< �,��, �� , �� > (4-2)

where � are the agent’s goals, �� is the agent’s knowledge, � is the agents
memory and �� is a coupling with an intelligence model ��. The intelligence
model �� can be defined as:

 �� =< �,�� , �� ,�� , �� >	

(4-3)

where � is an intelligent behaviour,	�� is the dynamical model used by the
behaviours (it can have exactly the same structure as the dynamical model in

the ��), �� is the knowledge required by the behaviour � and �� is the
behaviour model itself.

So the �� equates to the dynamical model required by the intelligent behaviour
and is thus very similar to the dynamical model � that is used in the simulation
model ��. This requirement for a dynamical model as part of the greater
intelligent behaviours of the agent can be made due to the fact that all our

agents will be situated. That is, they will operate on real hardware that

interacts with the outside world. Even though not all agents will require direct

constant access to a dynamical model go their environment in order to operate,

such as the agents in charge of formation flying or manoeuvre execution it can

be envisaged that there will be occasions where nearly all agents may have use

of predictions based on the dynamical model or may need to reason about the

events of the past by using the dynamical model. As such, although it is not

90 Chapter 4

strictly necessary it is deemed prudent to have the dynamical model as part of

the intelligent behaviour model �� definition.

Any agent can therefore be described as:

 � =< �� , ��, �� >	 (4-4)

where �� is the behaviour model, �� is a coupling between the agent and a
simulation model and �� is a coupling between the agent and intelligence models
where |��| 	= 	1 and |��| 	>= 	1. This structural definition allows for a given
agent to access multiple intelligence models depending on its requirements.

With a set of properly defined agents utilising a number of intelligence models,

all operating with a single simulation model then testing can commence. The

simulation model itself consists of a dynamical model and sensor data generator

and can be used by the system designer or tester to create a set of scenarios

that will be tested. As well as the scenario definition the relationships between

all the agents and the structure of the agents themselves is also pre-defined and

allows for many different tests to be carried out.

4.5.1 Describing Scenarios

During the early design stages of a multi-agent controlled system the designer

wants to be able to use the test suite to quickly and easily evaluate possible

multi-agent system configurations. As explained before, the multi-agent system

itself can be defined in many ways; the structure and architecture of the system

as a whole and of individual agents can have a massive effect on the success of a

given multi-agent system so testing variations of the same multi-agent system at

an early stage can be highly beneficial.

As well as changing the configuration of the agents and the multi-agent system

the designer can also use the dynamical models and the structure of the

simulation and intelligence models to gain a deeper insight into some specific

91 Chapter 4

traits of autonomous systems. This can be achieved by introducing and managing

a particular disparity between the simulation model and the behavioural model.

To take a step back we can see the benefit of sharing the dynamical model

between the simulation model and the intelligence model. In this case the

simulation model is acting as our replacement for the real world. As such the

simulation model as a whole and thus the dynamical model at its heart must

have a fidelity as high as is practicably possible to make the simulation results as

accurate as possible.

If we reuse this high fidelity dynamical model for the intelligence model, and

thus the intelligence of the agents, then we are saying that the agents have

access to this high fidelity model when operating the real world. In reality the

hardware constraints of the real space mission will be orders of magnitude more

restrictive than that of the desktop hardware and computing clusters available

for the simulation of the mission. As such we may choose to purposefully lower

the fidelity of the model used by the agent’s intelligent behaviours in order to

more closely match that which we will be able to deploy in the real spacecraft.

As well as modifying the dynamical model used by the agents to match the

available hardware we also modify the dynamical model in other ways to allow

us to gain specific insights into the operation of the multi-agent system.

We can lower the fidelity of the dynamical model used by the agents in a

number of ways. Most intuitively we can think about applying another layer to

the model in which the values generated are rounded or errors introduced from

some external random number generator. The highly structured and modular

construction of our dynamical models however also allows us to quite simply

reduce the number of terms used in any given calculation, so for instance terms

in the higher fidelity models dealing with other bodies or higher order harmonics

may be excluded in order to better reflect the type of model available to the

spacecraft in operation.

In conjunction with the sensor data generator the dynamical model can also be

manipulated to help with the definition of more complex scenarios for the test

suite. For instance the dynamical model can be modified to model the failure of

92 Chapter 4

any of the actuators on the spacecraft or indeed any of the sensors of the

spacecraft. As well as modelling complete failure partial failure of components

can also be modelled and subsequently the design’s ability to deal with these

errors ascertained.

As we can use the test suite at the preliminary stage of the design we can also

use it to make decisions about what level of fidelity we need for the different

agents by running the simulation repeatedly with different fidelity models and

comparing performance between the systems on a the same suite of test

scenarios.

The design of multi-agent simulation system has to take into account many

different aspects. One of the key decisions to be made is whether the simulation

should be generic or domain specific. One of the key reasons for building a

multi-agent simulation system should be the time it saves future users when it

comes to simulating their own multi-agent systems. As such the more multi-

agent systems that can be modelled the more utility it offers future users. On

the contrary however it takes a not inconsiderable amount of work to develop a

multi-agent simulation for any given domain and although the kernel of generic

multi-agent simulation system may be small, there will be requirement for

domain specific libraries. Another disadvantage of generic simulation systems is

that they will not, by their very nature, be optimised for one particular domain.

It is desirable of course to find some middle ground and try to make our

simulation system as generic as possible while still being able to adequately

carry out the simulations we require. In our case we want to be able to

effectively simulate spacecraft and in particular formation flying spacecraft.

This domain has widely divergent needs when compared to purely informational

agents but our simulation system could be easily applied to more situated

agents, in particular mobile robotics. The clear design philosophy behind the

development of this simulation system, that is modularity and good object

oriented design, means that without any extra work the simulation system can

be used on other mobile robotics applications or seemingly different domains

such as operational analysis which can be modelled with only a change to

simulation and intelligence models of the agents.

93 Chapter 4

The idea of trying to pursue a more generic structure for simulation models can

however provide benefits. The development of a more generic system means

that the designer must try to make the system as transparent as possible and

maximise the ability of future users to add components or even change large

portions of the system to suit their needs. Striving for extra clarity and

extensibility in this way will inevitably improve the interfaces and construction

of the code being generated. One of the most common problems, and indeed

one that our system is trying to address is that a great deal of the work carried

out in the scientific community is opaque to other researchers either because

they do not have access to the code in question to repeat the tests carried or

more commonly that the code produced has been developed with the specific

purpose of carrying out a very well defined test and is totally impenetrable to

any other user. This impenetrability usually comes from the software's non-

existent or badly reduced documentation and the use of non-standard interfaces

to other libraries.

One of the aims of our simulation system is to allow the user to use external

libraries for certain parts of the system. At its most general this means that

simulation models and intelligence models can be externally developed and

plugged in to the system. The reason for this is that it is envisaged that our

simulation system will be used at an early stage and primarily in the comparison

of different architectures or intelligence approaches for the autonomous control

system. One of the key aspects of the system developed here that is different to

many others is that it is designed from the ground up to support multiple

different platforms. The idea behind this was not to preclude using libraries or

modules that a user may want to test purely because they were developed in

another system or using a different programming language.

In order to carry out simulations using different libraries on different platforms

we have to use a fairly specialised structure to enable all of the component

parts to talk to each other. The structure however is perfectly compatible with

multi-agent systems. In our simulation system communication between the

different modules or libraries (not the agents themselves) is carried out by

simple client server structure. This structure allows us to interface disparate

94 Chapter 4

technologies while still having full control over the communication and the

interfaces. It also allows us to easily deploy the system over multiple nodes as

the client server structure is already there to allow this.

4.5.2 Discrete versus Continuous simulation systems

The client server structure allowing heterogeneous modules and components to

interact with the simulation does however force our hand into making one

specific decision; that is the decision of whether to make the simulation

continuous or discrete in time. The asynchronous and heterogeneous nature of

our system means that continuous real time simulation is not possible, but with a

successfully developed discrete time system the simulation system can perform

extremely varied simulations on differing hardware while still producing useful

results.

One such discrete multi-agent simulation system is the Swarm system, originally

developed in the mid-nineties [95]. Swarm has many interesting features but is a

generic simulation tool and is able to model purely informational agents as well

as situated agents and everything in between. The modelling formalism that the

Swarm system adopts is to model independent agents interacting via sets of

discrete events. Another interesting aspect of the Swarm system is its ability to

define agents recursively. In the Swarm system groups of agents are known as

swarms. Each agent in any given swarm can however itself be a swarm (sub-

swarm) and consist of may sub agents itself. This recursive nature of the system

allows for high level structures to be defined and the detailed structure of the

system defined by replacing components parts of the high level swarms with sub

swarms that add more fidelity to the model. The recursive nature can also be

multi layered and can go any number of levels deep. The Swarm system is also

able to dynamically create and destroy swarms which would allow for the

dynamic increase or reduction in fidelity of the model or computational time as

the simulation demands it. The recursive nature of the HASA architecture allows

us to gain these benefits in our simulation suite.

95 Chapter 4

4.6 Formation Flying for DARWIN

One of the problems facing the designers of future formation flying missions is

the problem of how to adequately control multiple spacecraft in close proximity.

Formation flying missions vary greatly and multiple satellite missions can have

both scientific and commercial objectives. A current example of operating

formation flying mission is the TerraSAR-X and TanDEM-X mission which uses

interferometry to precisely control a close formation mapping of the earth to

produce a more accurate digital elevation model for geophysical and

environmental science [98, 99]. Another example is the PRISMA mission [100]

which is designed as a formation flying and in orbit servicing technology

demonstrator. As can be seen it is not just test beds and technology trials for

formation flying that are being developed and flown and the technology is

rapidly improving. The hardware is also already in place for interferometric

formation flying which means that the main stumbling blocks for mission such as

DARWIN is the obvious financial and political support and the development of

sufficiently reliable autonomous control system.

As touched on previously the control requirements for a multi satellite mission

greatly exceed those of a single satellite mission. As well as the development

and implementation of more complex control laws a great deal of consideration

must be given to the communication structure and to the decision making

abilities of the system. To summarise the problem of multi spacecraft control

does not rely solely on the development of the correct control laws but also on

other factors. Luckily all of these factors can be described and implemented by

using a multi-agent control system in coherent way. The communication

abilities are inherent to a multi-agent system and as previously discussed

decision making processes can also be developed to give the agents and the

system as a whole the desired level of autonomy. The control laws will be

encoded in the agents themselves as knowledge and enacted by the reactive

parts of the system.

96 Chapter 4

Understandably there has been great deal of work carried out in the field of

controlling a formation of spacecraft. This work varies from classical control

work [101] to extensive work on an agent based approach to formation flying

[102, 103].

4.7 Testing the simulation suite

The simulation suite that we have developed allows for the testing of different

formation flying strategies. As the system is modular any given multi-agent

system can be coupled with any formation flying control components and tested.

The simulation system also allow the components to be run on different nodes or

to have been developed in different programming languages so if the software

for the given formation flying strategy has already been developed it can be

easily integrated into the system without re-writing it.

4.7.1 Artificial Potential fields

One such formation flying strategy that has been tested is that of using artificial

potential fields to govern the motion of the spacecraft in the formation. The

use of artificial potential fields is extremely popular in the field of mobile robots

in general and in spacecraft control. Good examples of the current work can be

found in [104–107]. At its most general the method works by setting up a series

of attractor and repulsor nodes in the spacecraft state space. A set of heuristics

are then chosen to determine how the spacecraft reacts to the attractors and

repulsors. The influence of the attractor and repulsor nodes are governed by set

of shaping parameters that vary the effect of the nodes over distance to achieve

the desired control response.

The artificial potential functions implemented were those found in [108] and are

described below.

Suppose we have a set of spacecraft 	1	 ≤ " ≤ #	$ that are interacting by an
artificial potential function, %. The gradient of the artificial potential function

97 Chapter 4

defines a virtual force acting on each individual spacecraft. With a spacecraft

mass, &, spacecraft position,'� and a spacecraft velocity, (� the dynamics can
be described as:

)xxxx�)+ = 	 vvvv�

(4-5)

 &)vvvv�)+ = ∇�%� xxxx�$ − ∇�%/0xxxx�12 − 3vvvv�

(4-6)

The virtual force experienced by the spacecraft is therefore dependent on two

artificial potential functions and a dissipative term. The first artificial potential

function is the steering potential:

 %� xxxx�$ = 	− 12 5 6 '�7 + 8�7$97 − :;7 +	14 6 '�7 + 8�7$97 − :;=

(4-7)

The second is the repulsive potential:

 %�1> = ? �/exp��BCD�/FG
1,1H� (4-8)

In this example we used 3 types of nodes. The attractive ‘gather’ type node has

a relatively low intensity but a large radius and is used to guide the spacecraft

from their starting points to the general area of the final formation. The exact

formation itself is governed by attractive ‘dock’ nodes that have a high intensity

but low radius. These are designed to guide the spacecraft to an exact position.

There are also repulsive ‘avoid’ nodes which are used in the potential field to

stop the spacecraft stopping at centre of the gather node for instance. Each

spacecraft is treated as an avoid node by all the other spacecraft to avoid

collisions.

98 Chapter 4

The agents on any given spacecraft have access to their �� as well as data about
the position and state of the other spacecraft in the formation. All of the

communication between the agents is carried out within the MAS and consists of

the agents passing simple FIPA/ACL messages to one another in a peer-to-peer

fashion.

The functions governing the artificial potential fields are encapsulated within

each Mi and as such are repeated across all of the spacecraft. In the case

outlined in this paper the structure of the �� for each spacecraft is identical but
this need not always be the case and changing this would allow us to test the

negotiation and conflict resolution abilities of the MAS.

As a proof of concept the artificial potential field controller was combined with

the DARWIN MAS and tested in a 2D simulation with no gravity. As a test scenario

the spacecraft have random starting points within a set radius of the desired

formation. The problem for the agents is to acquire the desired formation from

their relative starting points. The agents use the distributed artificial potential

field to move towards the target positions while avoiding each other as shown in

Figure 4-9. In this example there is one centred ‘gather’ node with a radius of

200km and a normalised magnitude of 0.5 and one ‘avoid’ node with a radius of

20km and a normalised magnitude of -1 (the magnitude is always negative for

repulsors). Defining the desired formation are three ‘docking’ nodes with a

radius of 30km and a normalized magnitude of 1. Each agent is also viewed as

an ‘avoid’ node with a radius of 30km and a normalised magnitude of -1.

99 Chapter 4

Figure 4-9 3 spacecraft start from random locations within the area of interest
shown (200km by 200km) and successfully acquire their formation.

This scenario was run 500 times and the results of all the successful tests sorted

by duration are shown in Figure 4-10. The MAS controlled spacecraft successfully

acquired their desired formation within the time limit (48 hours) in 69.5% of

these tests. This time limit was chosen as a realistic time frame for acquiring or

changing a formation on the order of 10s of kilometres. Figure 4-11 shows a

heat map of the final position of the spacecraft which did not successfully get to

their desired position. This was generated to show the most common areas

where a spacecraft ends up when it fails to acquire its desired position.

100 Chapter 4

Figure 4-10 Distribution of times for spacecraft to acquire formation, ordered
from lowest time to highest time.

Figure 4-11 Plot showing the distribution and density of the final position of
spacecraft that failed to acquire the formation

101 Chapter 4

The success of a testing suite is independent however of any success of the

controller. The success of the testing suite is based on its ability to help us find

scenarios where the MAS fails to achieve the desired formation. In this case

whenever the simulation failed the parameters are stored so we can investigate

these failures and what might have caused them.

The most common failure mode in this scenario was two of the agents acquiring

the correct position but the third agent stopped when it found the equilibrium

point created by the other agent’s repulsive forces rather than its intended

destination .

Figure 4-12 Local equilibrium point leading to incorrect final position for the red
agent

The test suite has proven useful even in this simplified case when trying to find

failure modes for an autonomous multi-agent system. As the system under test

increases in complexity the number of unknown failure modes will increase and

we hope this tool will aid us in finding them and helping us to validate the

system.

Grouping and identifying the different failure modes of the formation raises

some interesting issues. In this simplistic case the failure modes can be grouped

102 Chapter 4

as either in formation or out of formation errors. In formation errors can then

be grouped based on rotational, reflectional and translational symmetry. Out of

formation errors are those in which the formation is no longer valid (Figure

4-13).

Figure 4-12 shows the artificial potential field as a surface where peaks are

repulsive nodes and troughs are attractive nodes. In this figure the spacecraft

can be thought of marbles rolling on this surface under the effect of gravity.

Two of the spacecraft quickly enter two of the attractive nodes but one instead

finds a position at a local minimum from which it can’t escape.

103 Chapter 4

Figure 4-13 3 agent failure modes

104 Chapter 4

4.7.2 CRTBP

The next step was to implement a more realistic dynamical model. The circular

restricted three body problem (CRTBP) involves a coordinate system that rotates

around the centre of mass (the barycentre) of the system comprising the two

main bodies, in this case the Sun and the Earth. In this rotating frame the

position of the Sun and the Earth appear static from the point of view of the

satellite as their orbits are presumed to be perfectly circular. In order to

further simplify the model the problem is formulated in non-dimensional units

chosen for our convenience. In this problem it us useful to define the unit of

length as the distance between the Sun and the Earth (as the Earth’s orbit

around the sun is defined as circular this stays constant). The unit of time is

chosen so that the Sun and the Earth have an angular velocity about the centre

of mass that is equal to one. This means that one full orbit of the earth has a

period of 2I.

The x and y coordinates of the Sun and the Earth are:

 '�JK = −5						8�JK = 0		
'M�/�N = 1 − 5						8M�/�N = 0

(4-9)

		
The gravitational potential that the satellite experiences due to the mass of m1

and m2 in our normalised units is:

 % = 59:9 −	57:7 − 125957 (4-10)

Where the normalised mass of the three body system is:

105 Chapter 4

 	5 = &7&9 + &7
(4-11)

We can safely assume that as &9 	>> 	&7 then in our normalised system:
 59 = 1 − 5

57 = 5
(4-12)

The primary-spacecraft distance, :9, and the secondary-spacecraft distance, :7,
can be defined as follows:

 :97 = ' + 57$7 + 87 + O7 (4-13)

 :77 = ' − 59$7 + 87 + O7 (4-14)

If we then define C1 and C2 as:

 P9 = −57:7 (4-15)

 P7 = −59:9 (4-16)

The equations of motion in the rotating frame are given by [109]:

 'Q = 28R + ' + P9 ' − 57$ + P7 ' − 59$ (4-17)

 8Q = −2'R + 8 + P9 + P7$8 (4-18)

 OQ = P9 + P7$O (4-19)

106 Chapter 4

Now that we have the equations of motion of a spacecraft interacting with the

Sun and the Earth we must find a suitable orbit.

Figure 4-14 CRTBP

4.7.3 Halo Orbit

For our example of the DARWIN mission we need to model our spacecraft

formation in orbit around the second Sun-Earth Lagrangian point (L2). There are

5 Lagrangian points in the Earth-Sun system as shown below. They are points

where a third body (our satellite) would experience zero net force as it followed

the orbit of the Earth.

107 Chapter 4

Figure 4-15 Gravitational potental in the rotating Earth-Sun system

In Figure 4-15 the x and y dimensions equate to those in the CRTBP and z shows

the magnitude of the gravitational potential. The Lagrangian points are situated

at local minima and maxima of this surface.

The L2 point has been chosen for missions such as DARWIN and the terrestrial

planet finder (TPF) for a number of reasons [110, 111]. An orbit near L2 is easy

and inexpensive to get to from Earth. A halo orbit around L2 also offers the

spacecraft a near constant geometry with the Sun the Earth and the Moon always

behind the spacecraft which is of great benefit when the mission has very heat

sensitive instruments and fine tolerances to operate within. A halo orbit will

also provide a near constant communications geometry with Earth due to its

constant distance at around 1.5 million km. The slightly lower energy required

when inserting a satellite into a halo orbit when compared to a heliocentric orbit

as well as the ease with which additional or replacement satellites could be sent

to the halo orbit makes it highly appealing for interferometric telescope array

missions.

108 Chapter 4

Figure 4-16 Halo orbit relative to the earth and lunar orbit, isometric view

109 Chapter 4

Figure 4-17 Halo orbit relative to the earth and lunar orbit, top view

Figure 4-18 Halo orbit relative to the earth and lunar orbit, front view

110 Chapter 4

Figure 4-19 Halo orbit relative to the earth and lunar orbit, side view

Figure 4-16-Figure 4-19 show a typical halo orbit (in red) around the L2 point.

For scale an Earth geosynchronous orbit is shown in green and the orbit of the

moon is shown in black.

The disadvantages of a halo orbit are that the orbit is unstable and will thus

require station keeping manoeuvres and its distance from the Earth may lead to

own communications issues.

111 Chapter 4

4.7.4 Generation of the Halo orbit

Figure 4-20 Halo orbit family

The procedure described in [112] and in [113] was used to generate the Halo

orbits used for the simulation of the DARWIN mission. The process works by

refining an initial estimate of an orbit by using the Newton method. The initial

estimate for an orbit is defined by its initial position, initial velocity and its

period: 'S, 8S, OS, 'RS, 8RS, ORS, T$. We will hold the 'S coordinate fixed and search
for OS∗, 8RS∗ and T∗ such that 'R ∗ T∗$, OR∗ T∗$ and 8∗ T∗$ are all zero.
Define V ∶ 	ℝY →	ℝY by

 V O, 8, T$R = [\= 'S, 0, O, 0, 8R , 0, T$\] 'S, 0, O, 0, 8R , 0, T$\7 'S, 0, O, 0, 8R , 0, T$	^
(4-20)

112 Chapter 4

Where

V O, 8, T$R =
_̀
`̀
à
	
\9 ', 8, O, 'R , 8R , OR, T$\7 ', 8, O, 'R , 8R , OR, T$\Y ', 8, O, 'R , 8R , OR, T$\= ', 8, O, 'R , 8R , OR, T$\b ', 8, O, 'R , 8R , OR, T$\] ', 8, O, 'R , 8R , OR, T$

	
cd
dd
de

(4-21)

To find the initial conditions for the halo orbit it is sufficient to find '∗ = OS∗, 8RS∗, T∗$f satisfying the equation
 V OS∗, 8RS∗, T∗$ = 	 g	000	h

(4-22)

The Newton method for refining the orbit can be expressed as:

 xK9 = xK − i�V xK$j�9V xK$ (4-23)

With x = O, 8R , T$ and xS = OS, 8RS, TS$ and the differential equal to:

�V '$ = 	
_̀
`̀
`̀
a kkO \=kkO\]kkO\7

kk8R \=kk8R \]kk8R \7

kkT \=kkT \]kkT \7cd
dd
dd
e

=	 [Φ =,Y$Φ],Y$Φ 7,Y$
Φ =,b$Φ],b$Φ 7,b$

m= 'S, 0, O T$,0, 8 T$R , 0$m] 'S, 0, O T$,0, 8 T$R , 0$m7 'S, 0, O T$,0, 8 T$R , 0$^

(4-24)

Where m:% ⊂ ℝ] → ℝ] is the vector field of the CRTBP.

113 Chapter 4

m ', 8, O, 'R , 8R , OR$ =
_̀
`̀
`̀
am9 ', 8, O, 'R , 8R , OR$m7 ', 8, O, 'R , 8R , OR$mY ', 8, O, 'R , 8R , OR$m= ', 8, O, 'R , 8R , OR$mb ', 8, O, 'R , 8R , OR$m] ', 8, O, 'R , 8R , OR$cd

dd
dd
e
		= 	

_̀
`̀
à 'R8ROR28R + �B%−2'R + �p%�q% cd

dd
de

(4-25)

With the newton method set up as described then if the initial xS is close to a
halo orbit then 'K → '∗	as	t → ∞.

Once a periodic Halo orbit has been obtained further Halo orbits are found by

incrementing parameters of the known halo orbit and re-running the Newton

method to find a new periodic orbit.

The initial orbit was taken to be a Lyapunov orbit (that is, an orbit that is planar

in x-y and has no z component) and its initial conditions ', 8, O, 'R , 8R , OR$ are shown
below.

xS =
_̀
`̀̀
a
	
1.006751377554280000.018673230929960

	
cd
ddd
e
	

The initial conditions of this orbit are then given a slight out of plane (z)

component and refined using the Newton method to produce the following

orbital initial conditions.

xS∗ =
_̀
`̀̀
a
	
1.0084281556544400.000100.009810393065200

	
cd
ddd
e

To produce a family of Halo orbits the initial z position is decremented by

0.00002AU and then the orbit is refined again. This process is repeated as many

times as required to get the desired family of orbits.

114 Chapter 4

4.7.5 Multi-agent control

Multi-agent controlled formation flying for a DARWIN type mission was

investigated by coupling the MAS outlined previously and running it in the Java

agent development framework (JADE) [114, 115] with the CRTBP model. The

structure of the simulation suite allows for easy replacement of one simulation

model with another.

Figure 4-21 Agent test suite structure

Figure 4-21 shows the agents for the DARWIN multi-agent system running with

JADE interacting with intelligence and simulation models running on another

process, in this case Matlab.

115 Chapter 4

The station keeping of the spacecraft was achieved by writing a Proportional-

Integral-Derivative (PID) type feedback controller to counteract any drift due to

the fact that halo orbit is unstable. The PID controller was written in Java as a

pure Java object. This was to show the compatibility in the test suite between

the Jade agents, Matlab models and pure Java objects.

4.7.6 PID Controller

A PID controller is a type of feedback controller made of three constituent parts.

The controller takes in the desired output of the system as an input (known as

the reference signal). The difference between the reference signal and the

output of the process is known as the error and it is this error value that is fed

into the controller. The controller then generates a signal based on this error

and outputs it to the process. This closed loop runs continuously.

Figure 4-22 Feedback Controller

In the proportional (P) part of the controller the error signal is multiplied by

some value �} before being output. In the integral (I) part of the controller the
past error values are integrated over time and then multiplied by a gain ��
before being output. In the derivative (D) part of the controller the rate of

change of the error is multiplied by a gain �� before being output [116]. The
equation of a generic PID controller is:

 ~� +$ = �}� +$ + �� � � T$)T�
S + ��)�)+ (4-26)

116 Chapter 4

A complete PID controller diagram is shown below.

Figure 4-23 PID feedback controller

Control Term Reference Tracking
 Transient Steady state
P Increasing Kp > 0 speeds

up the response
Increasing Kp > 0 reduces
but does not remove
steady state offset

I Introducing integral
action, Ki > 0, gives a
wide range of response
types

Introducing Ki >0
eliminates offset in the
reference response

D Derivative action Kd > 0
gives a wide range of
responses and can be
used to tune response
damping

Derivative action has no
effect on steady state

Table 4-1 Effects of individual terms of a PID controller

It was this PID controller that was implemented in the test suite for orbital
maintenance and individual spacecraft control.

117 Chapter 4

4.7.7 Simulation Models

In order to show the workings of the multi-agent testing suite two different

simulation models were developed. In the first the dynamics of the system were

modelled in Matlab and propagated by the testing suite using Matlab’s own built

in ordinary differential equation (ODE) solver (ODE113).

In the second simulation model the CRTBP dynamics are modelled using

Simulink. The Simulink model is shown in appendix C. This approach may seem

counter-intuitive compared to implementing the equations of motion as simple

Matlab function but it offers up some interesting possibilities. One benefit of

using Simulink is that high level coding knowledge is not required and complex

models can be constructed piece by piece in a relatively intuitive way.

The other benefit of using Simulink is that the simulation model designer has

access to a highly developed suite of tools in Simulink. To illustrate this point

the station keeping controller was implemented as a single PID controller control

block in the Simulink model and its gains automatically tuned using the built in

tools.

Both models interact with the MAS in the same manner and use the same

mathematical model.

During the construction of the JADE/Java/Matlab model it became apparent that

the level of numerical precision was an important limiting factor in determining

the accuracy of the discrete time based simulation suite such as this. For most

models the key variables can be expressed precisely enough using Javas built in

double variable type but the normalised non-dimensional units used in the

CRTBP required a higher level of precision in order to avoid injecting errors and

propagating them. As such the BigDecimal class was used to represent all of the

variables in the system. The BigDecimal class offered the required precision at a

higher computational cost.

The velocities and accelerations acting on a craft following of L2 Halo reference

orbit (from here on referred to as the 'reference orbit') are shown below (Figure

118 Chapter 4

4-24 and Figure 4-25) and show the unsurprising cyclical nature of the velocities

and accelerations in our rotating frame (deviations in x are dark blue, y are

green and z is red).

Figure 4-24 Accelerations during Halo orbit

119 Chapter 4

Figure 4-25 Velocities during Halo orbit

In Figure 4-26 a craft is placed a given distance in one axis away from the

reference orbit and the model propagated through time. The results show the

craft drifting away from the reference orbit when no orbital correction

manoeuvres are proscribed.

120 Chapter 4

Figure 4-26 Absolute distance from reference orbit over one orbital period

It should be noted that the station keeping manoeuvres required to keep the

spacecraft on the desired orbit around the L2 point are relatively small (15.55

ms-1) and can be easily accounted for in a mission’s Vv budget. In this simulation

the station keeping thrusts are modelled as instantaneous and carried out at

each time step. It is noted that a continuous thrust strategy would give better

results in a real mission but that method is not implemented here and does not

detract from the conclusion that are made about the test suite and the multi-

agent system for controlling the DARWIN mission.

121 Chapter 4

Figure 4-27 Thrust of spacecraft during station keeping on a single orbit

4.7.8 Test scenarios

In order to try to demonstrate that the multi-agent test suite can be used to

help efficiently model and test multi-agent controlled space missions a number

of test scenarios have been developed. These test scenarios are designed to

serve a number of purposes, their primary purpose is to demonstrate that the

architecture of the test suite is robust enough to handle multiple agents and

simulation models and to show its ability to scale to progressively larger and

simulation structures with many agents and simulations running in concert.

The test scenarios were designed to test the multi-agent test suites full range of

modes, most notably the ability of the test suite to allow for the seamless

interoperation between the autonomous agents and components running in Java,

C++ and Matlab.

122 Chapter 4

The philosophy behind designing these tests was to start at a very basic level and

then add one component or change at each level and observe how the simulator

coped with the slowly increasing complexity of the simulation.

The scenarios were built up starting from simple validation tests with one agent

interacting with its associated environment model. In all of the test cases

developed, the environmental model used was the CRTBP model previously

outlined. The first test case comprised a single satellite following the previously

mentioned Halo orbit around the second Lagrangian point. The agent was not

able to produce any actuation and was just tasked with recording to its local

data store pertinent information about its state at any given time. This test was

run to check that there was a consistent flow of data from the simulation to the

agent and that all of the basic simulation parameters were correctly applied

such as time step and simulation to agent communication protocols.

In the second test case the setup is the same as the previous case but the agent

was now tasked with orbital correction manoeuvres to maintain it on its desired

orbit. This was the only addition to this test case and this allowed for the

testing of the external controller used by the agent, in this case a closed loop

proportional, integrator derivative controller written in Java.

Three examples of code used in the test cases are shown in appendix B. The

code is taken from the test cases where the satellites are in an icosahedron

formation.

The next logical step is to increase the number of agents in the simulation, as

such another spacecraft as added and placed in an offset orbit from the

reference orbit, the agent controlling the spacecraft has access to an instance of

the same orbital maintenance PID controller as in the previous test.

This test was also successfully completed. These first tests prove that the

simulator can handle more than one agent operating within a shared

environment while using identical controllers.

123 Chapter 4

4.7.8.1 Numerical integration

ode45 is based on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince

pair. It is a one-step solver in computing 8 +K$, it needs only the solution at the
immediately preceding time point, 8 +K − 1$. In general, ode45 is the best
function to apply as a "first try" for most problems [117].

ode113 is a variable order Adams-Bashforth-Moulton PECE solver. It may be more

efficient than ode45 at stringent tolerances and when the ODE file function is

particularly expensive to evaluate. ode113 is a multistep solver - it normally

needs the solutions at several preceding time points to compute the current

solution [118].

A related test was also developed to show that the simulation model was not

limited to pure Matlab and was generally software independent. In this test the

simulator and controller were written in Matlab’s Simulink package (See

appendix C). The Simulink package is frequently used to design controllers due

to its abundance of advanced built in controller ‘blocks’ and features. The

equations of motion were implemented using blocks and feedback loops and a

PID controller added to control the spacecraft. The benefit of using Simulink is

apparent because it allows the PID controller block to ‘self-tune’ depending on

the users requirements. This facility was utilised and the controller tested in

the simulation.

A number of other position hold type scenarios were developed. The first was

with 4 spacecraft in a square formation, equidistant from the reference orbit

again using the basic Matlab PID controller.

A test was then developed to try to push the test suite. In this case 12 satellites

were placed at the vertices of an icosahedron and required to maintain their

positions relative to the reference orbit for a full orbit of the Lagrangian point.

This is a more interesting test as instead of being limited to a single plane as in

the previous square formation the formation of spacecraft spans all 3 axes and

allows the user to observe the changing forces and required corrections over a

significant number of spacecraft.

124 Chapter 4

Figure 4-28 Icosahedron structure, can be thought of 3 sets of 4 agents, located
on the x, y and z axis in CRTBP frame

x y z
0 -1 -1.6180

0 -1 1.6180
0 1 -1.6180
0 1 1.6180

-1 -1.6180 0
-1 1.6180 0
1 -1.6180 0

1 1.6180 0
-1.6180 0 -1
-1.6180 0 1

1.6180 0 -1
1.6180 0 1

Table 4-2 Positions of points on an icosahedron

A number of scenarios were developed utilising the icosahedron structure (Figure

4-28 and Table 4-2).

125 Chapter 4

The first started with the 12 satellites at the vertices of the icosahedron and had

as a target an icosahedron that had been deformed in the x axis as shown in .

Figure 4-29 Icosahedron formation deformed in x axis

126 Chapter 4

Figure 4-30 The track of the individual satellite orbits in the CRTBP frame and
each agents deviation from the reference halo orbit in the icosahedron reduction

in x scenario

 Initial Positions (km) Final Positions (km)

Spacecraft X Y Z X Y Z

1 0.0000 -3.0000 -4.8541 0.0000 -2.9996 -4.8533

2 0.0000 -3.0000 4.8541 -0.0001 -2.9996 4.8533

3 0.0000 3.0000 -4.8541 0.0001 2.9996 -4.8533

4 0.0000 3.0000 4.8541 0.0000 2.9996 4.8533

5 -3.0000 -4.8541 0.0000 -1.4923 -4.8561 0.0000

6 -3.0000 4.8541 0.0000 -1.4923 4.8508 0.0000

7 3.0000 -4.8541 0.0000 1.4923 -4.8508 0.0000

8 3.0000 4.8541 0.0000 1.4923 4.8561 0.0000

9 -4.8541 0.0000 -3.0000 -2.4146 -0.0042 -2.9995

10 -4.8541 0.0000 3.0000 -2.4146 -0.0042 2.9995

11 4.8541 0.0000 -3.0000 2.4146 0.0042 -2.9995

12 4.8541 0.0000 3.0000 2.4146 0.0042 2.9995

Table 4-3 Table of values at beginning and end of icosahedron deformation in x
axis.

127 Chapter 4

The next scenario again saw 12 satellites on the vertices of an icosahedron but

its target icosahedron had been reduced in size in all 3 dimensions.

Figure 4-31 Icosahedron formation deformed in all three axes

128 Chapter 4

Figure 4-32 The track of the individual satellite orbits in the CRTBP frame and
each agents deviation from the reference halo orbit in the icosahedron reduction

in 3 dimensions scenario

 Initial Positions (km) Final Positions (km)

Spacecraft X Y Z X Y Z

1 0.0000 -3.0000 -4.8541 0.0026 -1.4914 -2.4130

2 0.0000 -3.0000 4.8541 0.0026 -1.4914 2.4130

3 0.0000 3.0000 -4.8541 -0.0026 1.4914 -2.4130

4 0.0000 3.0000 4.8541 -0.0026 1.4914 2.4130

5 -3.0000 -4.8541 0.0000 -1.4881 -2.4157 0.0000

6 -3.0000 4.8541 0.0000 -1.4965 2.4105 0.0000

7 3.0000 -4.8541 0.0000 1.4965 -2.4105 0.0000

8 3.0000 4.8541 0.0000 1.4881 2.4157 0.0000

9 -4.8541 0.0000 -3.0000 -2.4146 -0.0042 -1.4913

10 -4.8541 0.0000 3.0000 -2.4146 -0.0042 1.4914

11 4.8541 0.0000 -3.0000 2.4146 0.0042 -1.4914

12 4.8541 0.0000 3.0000 2.4146 0.0042 1.4913

Table 4-4 Table of values at beginning and end of icosahedron deformation in all
three axes.

129 Chapter 4

In the next scenario the same starting point was used but the target formation

was a ring aligned to the x-axis.

Figure 4-33 Icosahedron formation changing to ring formation

130 Chapter 4

Figure 4-34 The track of the individual satellite orbits in the CRTBP frame and
each agents deviation from the reference halo orbit in the icosahedron to ring

scenario

 Initial Positions (km) Final Positions (km)

Spacecraft X Y Z X Y Z

1 0.0000 -3.0000 -4.8541 0.0039 -0.8327 -2.8667

2 0.0000 -3.0000 4.8541 0.0024 -1.6138 2.5100

3 0.0000 3.0000 -4.8541 -0.0038 0.8327 -2.8667

4 0.0000 3.0000 4.8541 -0.0025 1.6138 2.5100

5 -3.0000 -4.8541 0.0000 0.0205 -2.7217 1.2532

6 -3.0000 4.8541 0.0000 0.0129 2.7110 1.2532

7 3.0000 -4.8541 0.0000 -0.0134 -2.9529 -0.4293

8 3.0000 4.8541 0.0000 -0.0200 2.9636 -0.4293

9 -4.8541 0.0000 -3.0000 0.0230 -2.2885 -1.9583

10 -4.8541 0.0000 3.0000 0.0270 -0.0086 2.9995

11 4.8541 0.0000 -3.0000 -0.0230 2.2885 -1.9583

12 4.8541 0.0000 3.0000 -0.0271 0.0086 -0.0172

Table 4-5 Table of values at beginning and end of icosahedron changing to ring
formation.

131 Chapter 4

A key aspect of the above results is the fact that the agents were only ever

modifying their position relative to the reference orbit. In reality the difficulty

of formation flying and multi spacecraft missions comes from the requirement

for interaction between the spacecraft themselves.

The logical next step was to test the addition of intelligence models in the

agents, giving them decision making abilities in the context of the scenario, and

observe the results. As such the next set of test scenarios reduced the number

of satellites but now tested the collision avoidance abilities of the multi-agent

control system. The first collision avoidance test consisted of 2 satellites either

side of the reference orbit. After a certain period of time one of the craft

moved towards the reference orbit position which was inside the radius of the

second crafts collision avoidance mechanism, making it move away from its

initial orbit. It should be noted in this first test only the second spacecraft had a

collision avoidance mechanism and the first satellite could be thought of as non-

operational in that it was not responding to any communications between the

agents.

Figure 4-35 Collision avoidance test 1

132 Chapter 4

In the second of the collision avoidance tests the same initial set up was used

but both satellites had the CAM activated so they both reacted equally to each

other’s presence.

Figure 4-36 Collision avoidance test 2

The next series of collision avoidance tests were with the 12 satellites flying in

the icosahedron formation. The first of these involved the 3 adjacent satellites

on the icosahedron simultaneously swapping places in a circular fashion: i.e. the

first goes to the position of the third, the second goes to the position of the first

and the third goes to the position of the second. This meant that there was no

direct conflict so the CAM should not have to be utilised.

133 Chapter 4

Figure 4-37 Icosahedron 3 way postion swap

134 Chapter 4

Figure 4-38 The track of the individual satellite orbits in the CRTBP frame and
each agents deviation from the reference halo orbit in the icosahedron 3 way

position swap scenario

 Initial Positions (km) Final Positions (km)

Spacecraft X Y Z X Y Z

1 0.0000 -3.0000 -4.8541 0.0107 3.0340 -4.8533

2 0.0000 -3.0000 4.8541 -0.0001 -2.9996 4.8533

3 0.0000 3.0000 -4.8541 -4.8882 -0.0086 -2.9888

4 0.0000 3.0000 4.8541 0.0000 2.9996 4.8533

5 -3.0000 -4.8541 0.0000 -3.0011 -4.8534 0.0000

6 -3.0000 4.8541 0.0000 -3.0011 4.8534 0.0000

7 3.0000 -4.8541 0.0000 3.0011 -4.8534 0.0000

8 3.0000 4.8541 0.0000 3.0011 4.8534 0.0000

9 -4.8541 0.0000 -3.0000 0.0218 -3.0254 -4.8639

10 -4.8541 0.0000 3.0000 -4.8559 0.0000 2.9996

11 4.8541 0.0000 -3.0000 4.8559 0.0000 -2.9996

12 4.8541 0.0000 3.0000 4.8558 0.0000 2.9994

Table 4-6 Table of values at beginning and end of a 3 way position swap

135 Chapter 4

The next icosahedron test was two agents at opposite sides of the sphere

encompassed by the shape swapping places. In this case the two satellites could

collide at the centre of the formation if no CAM is deployed so this is test of the

CAM in larger formation but with only one possible collision scenario.

The next test was each of the craft trying to swap places with its oppositely

positioned counterpart. In this case the PID does not perform well and collisions

are highly likely. The simple PID based controllers are effective in simple cases

but with more complex agent interactions a more sophisticated avoidance

approach may be needed. A more complicated collision avoidance test allowed

us to further test the ability of the test suite to utilise external libraries.

4.7.9 ORCA

In this case the external library used was the reciprocal collision avoidance

(RVO2) library for collision avoidance among multiple agents. The RVO2 library

is based on the idea of reciprocal n-body collision avoidance. A distinction must

be made between collision avoidance and motion planning (which assume the

environment of the agent is known) and collision detection which is purely the

detection of the intersection of geometrical objects. Collision avoidance aims to

control agents to avoid obstacles in a complex environment involving other

mobile agents.

The RVO2 library is based on the theory of optimal reciprocal collision avoidance

(ORCA) [119]. ORCA does not require communication between agents although

it does assume perfect sensing. In our multi-agent environment perfect sensing

is assumed and is achieved through communication between agents. ORCA also

assumes that the agents are fully holonomic (not to be confused with holonic),

that is they are free to move in any direction at any time. This constraint is not

very onerous in a spacecraft formation flying scenario. ORCA is found to be

sufficient for collision avoidance if every other agent in the simulation also

implements ORCA. The ORCA algorithm finds a solution in the velocity space

that guarantees collision avoidance, if no are found then the safest possible

velocity is found.

136 Chapter 4

4.7.9.1 ORCA Basics

The following description of the ORCA algorithm is taken from [119]. For two

robots A and B, the velocity obstacle for A induced by B for a given time window

is a set of all relative velocities of A with respect to B that will result in a

collision between A and B at some moment before the end of the time window.

It is formally defined as follows. Let � �, :$ denote an open disc of radius :
centred on �;

 � �, :$ = � � ∣∣∥ � − � ∥< : �, (4-27)

 ��	∣�� = �� ∣ ∃+ ∈ i0, Tj ∷ +� ∈ � �� − �	, :	 + :�$� (4-28)

Figure 4-39 Velocity obstacle in the velocity space

The geometric interpretation is shown in Figure 4-39. The definition of the

velocity obstacle implies that if �	 − �� ∈ ��	∣�� , or �� − �	 ∈ ��	∣�� then A and

B will collide at some point before τ if they continue moving at their current

velocity. Conversely if �	 − �� ∉ ��	∣�� , robot A and robot B are guaranteed

collision free at least for τ time.

137 Chapter 4

Let X ⊕	Y	denote the Minkowski sum of sets X and Y [120];

 � ⊕ � = �' + 8 ∣ ' ∈ �, 8 ∈ �� (4-29)

Then for any set ��, if (� ∈ ��and		(∉ ��	∣�� ⊕ ��	then A and B are guaranteed
to be collision free at their current velocities for at least τ time. The set of

collision avoidance velocities for A given the velocity set of B is:

 ��	∣�� ��$ = �� ∣ � ∉ ��	∣�� ⊕ ��� (4-30)

Figure 4-40 Minkowsky sum of robot velocity and a velocity obstacle

The velocities of A and B are reciprocally collision avoiding if:

 �	 ⊆ ��	∣�� ��$ and �� ⊆ ��	∣�� �	$ (4-31)

138 Chapter 4

The optimal reciprocal collision velocities ����	∣�� and �����∣	� are designed to

maximise the velocities closer to a desired optimisation velocity (�	�}� and ���}�)
which in general is the robots current velocity. The set is defined as follows for

all radii > 0:

 ∣ ����	∣�� ∩ �0�	�}�, :2 ∣=∣ 	�����∣	� ∩ �0���}�, :2 ∣	≥
min	 ∣ �	 ∩ �0�	�}�, :2 ∣, ∣ �� ∩ �0���}�, :2 ∣$

(4-32)

In practice the robot acquires the radius, position and optimisation velocity of

all of the other robots and computes ����	∣�� with respect to each other robot

B. The set of velocities permitted for A with respect to all robots is the

intersections of the permitted velocities induced by each other robot. All of this

is carried out in real time and was successfully integrated into the multi-agent

test suite.

Traditionally the fact that the library is written in C++ for the windows platform

would pose a serious problem for the test suite designers but as our multi-agent

test suite is built from the ground up to allow heterogeneous modules to

communicate with the agents it was a fairly trivial exercise to get it working.

This test was run twice with different settings for the collision avoidance

algorithm, the first giving the spacecraft very little tolerance for proximity to

another spacecraft resulting in many of the craft leaving the formation in order

to return at a later time (Figure 4-41). The second test case allowed the agents

to have a higher tolerance and the satellites moved towards the opposite corner

but performed the required manoeuvres as they approached the centre of the

formation (Figure 4-42).

139 Chapter 4

Figure 4-41 RVO collision avoidance with low tolerance for proximity

140 Chapter 4

Figure 4-42 RVO collision avoidance with high tolerance for proximity

The system seemed to cope well with using this library for twelve agents so a

similar but more computationally taxing scenario was developed to really test

the testing suites scalability at the cost of drastically reduced realism.

4.7.10 Scalability

A test was developed to show the scalability of the multi-agent suite. In the

final test 812 spacecraft were positioned at points on an imaginary sphere and

required to go to the opposite point on the sphere. Similarly to the previous

tests this would lead to a large number of collisions in the centre of the sphere.

This produced a massive data set (Figure 4-43) and it was particularly

informative to single out a subset of agents and track their progress to monitor

the success of the collision avoidance algorithm (Figure 4-44).

141 Chapter 4

Figure 4-43 812 spacecraft swapping posotions across a sphere

Figure 4-44 The trajectory of 9 of the 812 spacecraft

142 Chapter 4

The use of the ORCA library in this scenario was a success and all of the agents

avoided collisions. This ability of the test suite to accommodate novel models

and algorithms regardless of platform is one of its key strengths. It also shows

that the DARWIN MAS can utilise a variety of different intelligence models in

order to carry out its tasks.

4.8 Chapter Summary

This chapter introduced the DARWIN mission and developed a multi-agent system

to control it from first principles using the HASA architecture. A simulation suite

was developed to try and test the MAS. Three different control methods were

implemented, artificial potential fields in a limited two dimensional context and

a PID and ORCA controller utilising the full three dimensional dynamics form the

CRTBP.

Unfortunately the implementation of the control system in a more traditional

way was outside of the scope of this work. As such no direct comparisons can be

made between the traditional architectures performance and the multi-agent

systems performance. This work does however clearly show that a multi-agent

system can be used to control such a formation flying mission and that it is

extremely flexible as to how the environment is modelled and how its control

laws are implemented.

143 Chapter 5

Chapter 5 Multi-agent System for GMES

5.1 Introduction

In Chapter one I covered what agents are, how they interact as part of larger

multi-agent systems and the different variations of these systems. In Chapter

three I introduced a new agent architecture based on the idea of holonic or

recursive agents specifically designed to meet the demands of space missions.

In this thesis two missions were chosen as candidates for the development of an

autonomous agent based control system, specifically the HASA architecture

outlined in the Chapter three. The HASA architecture has the flexibility to

enable its deployment to missions with different hardware and software systems

and varying autonomy requirements.

In this chapter the focus turns to the GMES [121] mission. As outlined in Chapter

one, agents can be broadly characterised as software/informational agents or

hardware/embedded agents. Software agents have no real physical presence

and operate autonomously by manipulating data and information rather than

manipulating a physical environment. Hardware agents operate in and act upon

a physical environment. An interesting aspect of the GMES mission is that both

types of agents are implemented side by side with slightly higher number of

software agents.

There are many different scenarios where a more autonomous approach to data

management would be of benefit. Data management in this context involves

creating, moving and prioritising data. Data must be managed in this way in all

space missions and especially in the scientific missions which are the focus of

this work. GMES was chosen as part of the work on the ESA contract

“Distributed Agents for Autonomy”, a collaboration between the University of

Glasgow and GMV, SA.

144 Chapter 5

The GMES mission was chosen as a good example of mission where autonomous

software agents could greatly assist the mission’s key role of data management

but also where autonomous hardware agents could help in the acquisition of the

primary scientific data as well.

The GMES mission itself will be described in detail followed by a discussion of

what a multi-agent system for GMES could look like, this is based on the work by

GMV [14, 15, 18]. The multi-agent system is then defined using the HASA

architecture defined in Chapter three. As the basic MAS was developed by GMV

a complementary image selection algorithm that runs alongside the MAS to

provide relevant data to the end users was developed. The image selection

algorithm includes global optimisation methods to aid the user in making an

informed choice and is described with the operation of the whole system

explored for a number of test cases.

5.2 GMES mission

5.2.1 GMES services overview

GMES (Global Monitoring for Environment and Security) is a European Space

Agency led program to design and build information services to deal with the

scientific and security data generated by the European Union. GMES will be

based on the information gathered from Earth observation satellites as well as

data gathered on the ground. GMES will enable greater access to this data as

well as preparing, coordinating and analysing data for end users. By utilising the

GMES system the European Union will be able to make better informed decisions

on our environmental future in the short, medium and long term. The overall

aim is to improve the quality of life for European citizens by using both

environmental and security data.

145 Chapter 5

Figure 5-1 The GMES mission will consist of a number of earth observation
missions working in concert. Credit: ESA

GMES has been a continuous project for number of years now and is now in its

7th framework program. As such it is hoped that GMES will be operational and

able to meet user’s requirements in 2013 [121].

It is expected that GMES will be used by both the public and private sectors

within the European Union. GMES could help in areas that concern the greater

public good and the correct response to natural events such as earthquakes,

forest fires and flooding or it could enable European firms to gain a competitive

advantage by utilising this observational data. Decision making in this sense is

based around the three concepts of anticipating events, intervening in events

and controlling events. The GMES system will enable decision makers to acquire

data in a reliable manner and make this information available to end users so

events can be better anticipated, intervention can be swifter. As a result the

end user has more control over a situation. All of the possible clients of GMES,

146 Chapter 5

both private and public will have customised data services which will help them

to make informed decisions in their own fields and areas of interest.

At a high level GMES observes the Earth's main environmental subsystems, the

land, sea and air. A multitude of services will be built on top of this base data

structure to service the wide range clients envisaged for the system, services

that add value to the data gathered by GMES by fusing it with other data sources

and tailoring the final product to the individual customer. In general terms the

GMES services can be grouped into three main categories.

• Mapping: Mapping services will include both topographic data and road

mapping but also data that can help build a better picture of our

environment such as land use, forestry monitoring and mineral and water

resources. This mapping service typically involves a highly exhaustive

coverage of the Earth's surface and periodic archiving of data.

• Support: Support services for emergency management such as natural

disasters but also for civil protection of the population and property. In

this service the data must be as up to date as possible if intervention is

going to be successful.

• Forecasting: Forecasting services can be applied to fields such as

fisheries, air quality or crop yields. This service would have to provide a

systematic set of data from a selected area over a long period of time to

support the development of the models of these systems that are required

for accurate forecasting.

It is hoped that the wide scope and fast response of the proposed GMES system

will allow for more efficient use of human resources and infrastructure. Some of

the proposed services that will be included in GMES are monitoring of:

• Coastal water quality

• Land use

• Area and density of forests

147 Chapter 5

• Land use globally to predict food shortages and to increase the European

Union’s food security

• Risks of flooding and fire,

• The oceans to enable early detection of oil leakages and to aid clean-up

• Soil movements to predict landslides and track erosion and top soil

migration

• The levels of ice in glaciers, icebergs and the ice in the sea, lakes and

rivers

Three GMES services have been put forward for early development and

deployment, they were chosen based on their maturity, the level of demand for

the service (both long and short term) and the speed at which the user

community would start using the services.

The Emergency Response Core Service (ERCS) will focus on providing rapid

mapping and infrastructure assessment services to users. This service is primarily

aimed at humanitarian groups and relief agencies and will provide access to geo-

spatial databases for the region concerned to get the client up to speed. It will

also offer assessment of any events that have taken place or are predicted to

take place and any possible impacts arising from them. It will give the client

access to real time monitoring tools for the duration of the crisis.

The Land Monitoring Core Service (LMCS) will provide both regular and complete

satellite coverage of the European Union and will provide an up to date land

cover database covering the entire region. This will include mapping at the

European scale to enable the implementation, review and monitoring of

different EU policies such as water directives, biodiversity strategies, common

agricultural polices as well as adherence to international treaties such as the

Kyoto protocol. The service will also provide mapping at a local scale for city

planning, construction, noise monitoring etc. as well as looking for hotspots

where there are rapid changes in construction, land use or agriculture.

The Marine Core Service (MCS) will meet the requirements for oceanic

environment data required for national monitoring, European directives and

148 Chapter 5

international treaties. The MCS will hopefully lead to better management and

exploitation of oceanic resources, improvement in safety and efficiency of

maritime transport with the monitoring of shipping lanes and naval operations,

anticipating and mitigating against possible man-made environmental disasters,

enhancements in basic marine research including both the climate and the

ecosystem for seasonal climate prediction and implementation of specific

policies regarding coastal management.

5.3 Current Status of GMES

The overall mission architecture consists of four major elements:

The Space Component comprises both space and ground elements. The GMES

space component will consist of both existing missions provided by ESA, ESA

partners and Eumetsat as well as new missions which are known as the five

sentinel satellites.

The in-situ component comprises the development and operation of the ground

based and airborne data gathering networks.

The Data Integration component comprises the data assimilation infrastructure

which is charged with data fusion tasks, processing the data in a standardised

manner and all the functions associated with cataloguing and archiving the GMES

data.

The service segment provides services such as data procurement for clients,

information generation and delivery as well as services to monitor compliance

with requirements and to be able to meet the necessary quality assurance

targets.

GMES can be broadly thought of as comprising an infrastructure component and

a services component. These two broad components will be expanded on in the

next section.

149 Chapter 5

5.3.1 GMES Space infrastructure

The GMES infrastructure will comprise of a large (approximately twenty) number

of heterogeneous satellites designed and operated by a wide range of entities.

The satellites within the GMES system will also change over time as older

platforms are retired and new platforms are launched. The two main groups of

Earth observation satellites are polar and geostationary satellites. These two

types of Earth observation platforms are seen as generally complimentary due to

their individual advantages and disadvantages. Geostationary satellites offer

nearly full world coverage expect for the polar regions and offer data of a region

in a continuous way by sampling at a high rate (in the order of minutes). The

high orbit needed for geostationary satellite however means that the resolution

of the produced images may not be high enough. For instance the geostationary

Meteosat satellite has an imaging resolution of between 2km and 5km depending

on the sensor and latitude of the target [122] . Polar satellites orbit at much

lower altitudes and this enables them to achieve much higher resolutions of

between 30m and 150m in the case of the Envisat advanced synthetic aperture

RADAR (ASAR) [123].

A polar satellite’s path will also cover the entire surface of the Earth, including

the polar regions, but this could take at least a few tens of orbits. The

disadvantages of polar satellites are that because of their rapid progression over

the surface of the Earth they cannot provide continuous data for one particular

area of the Earth’s surface.

5.3.2 GMES satellites

A number of new satellites have been suggested to enhance the capability of

GMES as a whole, these are the sentinel satellites. The proposed nature of the

sentinel satellites are listed below [124].

Sentinel-1 - The Sentinel-1 spacecraft will operate in a Sun synchronous

dawn/dusk orbit. It will carry a synthetic aperture radar (SAR) which will

150 Chapter 5

operate in the C-band and will offer wide swath medium resolution coverage. It

is proposed that Sentinel-1 will also be able to support emergency observation

requests.

Sentinel-2 - The Sentinel-2 space craft will have a Sun synchronous orbit which

will pass the equator between 10-14h in ascending or descending passes. It will

observe the Earth in multiple spectral bands within the solar part of the

spectrum. It will offer wide swath on the order of 100kms and a medium spatial

resolution. Sentinel 2 will also be able to support emergency requests.

Sentinel-3 - Sentinel 3 will operate in a sun synchronous orbit and provide

optical data for imaging sea colour, sea temperature and global land monitoring

at a coarse resolution. No support for emergency requests is envisaged.

Sentinel-4 /5 - Sentinel 4 will be in a geostationary orbit and will be equipped

with a payload for monitoring the composition and state of the atmosphere.

Requirements for Sentinel-4 have still to be confirmed but it likely that it will

have sensor operating in the ultraviolet or the visible range of the spectrum.

The composition of the sentinel 5 has still not been decided but it will operate in

low earth orbit. [125]

Figure 5-2 GMES Space components timeline

151 Chapter 5

5.3.3 Sensors

There are two broad groups of sensors used in planetary observation satellites,

radar sensors and optical sensors.

Radar sensors transmit energy towards the surface of the Earth and record the

reflections. Radar operates both day and night and has a high tolerance to

atmospheric conditions such as cloud cover or dust storms. There are three

types of radar sensor. Synthetic aperture radar sensors allow for very high

resolution imaging. Using techniques such as interferometry (the phase change

of the reflection) and polarimetry (the polarisation change of the reflection)

very accurate images can be acquired. SAR sensors are widely used for object

recognition and detecting variations on the ground. Radar altimeters measure

the height of the surface of the Earth or sea and are used for land and ocean

topography. Wind scatterometers utilise radar to measure wind speed and

direction. Radars are extremely useful for Earth observation because of their

near independence to atmospheric conditions as well as their day and night

availability however they are functionally limited to detect only shapes and

surface variations.

Optical sensors utilise receptors that are sensitive to certain frequencies of the

electromagnetic spectrum. Often the sensors are tuned to the visible light

spectrum but many worthwhile Earth observation can be obtained by using

frequency ranges in the ultraviolet or infra-red bands, for instance monitoring

sea temperature using thermal infrared and monitoring the atmospheric ozone

using the ultraviolet band [126]. Different spectral bands can also be combined

on the spacecraft to provide a range of data applicable to the spacecraft's

mission. A hyper-spectral sensor is a sensor that senses many spectral bands

simultaneously and uses the reflections or transmissions received to identify

elements by their spectrum, not their shape.

Optical sensors offer the possibility for very high resolution images and a wide

variety of products can be created by combining the data from a number of

different bands. Optical sensors are however extremely weather dependant and

152 Chapter 5

any atmospheric phenomena such as clouds, rain or dust can severely alter or

entirely preclude the ability to obtain good results. Optical sensors must also

have daylight to operate as they do not transmit any light and are of limited use

at night.

5.3.4 GMES products and Image Processing

Raw data from the satellites must be processed before it meets the

requirements of the users. Typically the data is passed through a number of

different levels, each extracting more information before it is ready for the

user. For instance, in the determination of land cover the data may go through

the following stages [127] :

• Geometric Corrections

• Radiometric Corrections

• Geographical/Algorithmical Scale

• Temporal Scale

• Change Detection

5.3.5 GMES Service Provision

The services provided by GMES can be thought of as either core services or

downstream services. Core services are the collection of services providing raw

data such as sea temperature data whereas downstream services reflect some

added value on the information such as tracking a feature over time. There are

a number of different operational modes in GMES.

In the routine imaging operational mode an imaging schedule is produced well in

advance by the GMES management personnel. This plan is then checked on the

ground and if it meets the quality requirements uploaded to the spacecraft

roughly every two weeks. The images are received through the x-band antennas

of the ground stations covering the spacecraft's orbit and are then sent to the

153 Chapter 5

central control where they are available for download by users roughly 24 hours

after they were received on the ground.

The emergency operational mode allows for emergency requests to take

precedence over the routine imaging operations. An emergency request would

contain a list of images that must be obtained in the shortest possible time. The

emergency request image acquisition plan is uploaded outwith the usual routine

image schedule. Images are only acquired once and downlinked to the ground

as soon as the spacecraft becomes visible to a ground station or an inter-

satellite link becomes available. The target is to have the emergency request

uploaded to the appropriate satellite within 12 hours of receipt.

Most providers of Earth observation data subscribe to the "charter on

cooperation to achieve the coordinated use of space facilities in the event of

natural or technological disaster" [128]. The charter outlines the provider’s duty

to deliver timely data to aid those afflicted by a natural or man-made disaster.

In the near real time (NRT) operational mode a plan for both image acquisition

and image downlink are uploaded giving priority to both. The image once

downlinked to the ground is given high priority of processing, thus allowing

acquisition to delivery times in the region of 3 hours.

In the direct downlink operational mode the image data is downlinked as it is

being acquired. This operational mode offers the lowest latency possible but

with little or no processing of the data. It will also only be available when a

ground station is in sight of the satellite for low Earth orbiters (LEO).

The price of Earth observation data products is largely governed by the

operational level, with library imagery being the cheapest to acquire and direct

downlink the most expensive. For example the cost of a particular Système Pour

l'Observation de la Terre (SPOT) image is increased by €3900 if it is required in

the next 24 hours [129]

154 Chapter 5

5.3.6 Earth Observation Service Providers

There are a large number of different service providers of Earth observation (EO)

data and no easily accessible central repository for data regarding availability of

services as each private company or public body has its own policies and

procedures for getting images. As this is the case it is only possible to be

confident of knowing where to look for EO data if the client is well versed with

this field and knows which catalogues to search. It is therefore desirable to

open up the access to EO data to a wider range of users and to allow them

access to large amounts of data.

Currently GMES and the GMES service element are designed to try and widen

access to EO data but there is also the Earth observation market development

(EOMD) programme which aims to promote the use of EO data to new customers

and promote partnerships and the Data User Element (DUE) which aims to foster

a strong relationship between the EO data providers and the EO data clients.

EO data providers can be classed as either image providers who allow clients to

access the raw image data or operations providers who process the images from

the image providers into new products. Providers are more frequently allowing

users to access their images through web based interfaces but images are also

still distributed by email, file transfer protocol (FTP) or physical media.

Two examples of web based catalogues are the EOLI catalogue [130] and the

CREPAD [131] catalogue. The EOLI catalogue is an interactive tool for accessing

ESA's earth observation data. CREPAD allows access to the EO data collected by

the Instituto Nacional de Técnica Aeroespacial in Spain. In other cases the

requests are not automated and must be submitted in writing. The fact that the

request has to go through another layer of bureaucracy obviously reduces the

system’s response time substantially.

Increasingly there have been new initiatives to try to improve the provision and

distribution of EO data. This can be achieved through easier access, improved

processing time/algorithms or more specialised and targeted services. The

155 Chapter 5

fusion of multiple data sources has also enabled for more effective products to

be created. Portals such as ESA's Service Support Environment have been

deployed to provide a common platform for image and service providers to

distribute their current products and promote future products [132]. Some of

the common services found in the newer generation of EO services are:

Clipping services are where a desired area is described by the user (typically as a

polygon) and then the area described is clipped from a supplied image. In this

way the desired image data is kept by the user and any unwanted data masked

out. Clipping is frequently used to reduce the amount of data in an image

before a time intensive processing step or to highlight information about only a

specific area.

Conversion services allow for the conversion of a raster image in to a format that

is compatible with a client’s system. This is useful for outreach purposes in the

case of conversion to a common format or to allow the image data to be

processed using an external provider who only accepts certain file formats.

Services also exist for the re-sizing of images to more convenient resolution for

dissemination etc. Images may be re-projected if a user or process requires a

non-standard projection.

More complex products include forest monitoring services in which EO data is

combined with GIS (Geographic Information Systems) to give a more objective

view of forest management. The same process can be applied to land

management in general but can include data such as land use, soil moisture, leaf

cover etc. which can be useful for studying the effects of global environmental

change. Urban land use can be monitored in the same way.

The use of intelligent agents aims to combine and improve the ease of access to

this wide range of products and is the focus of this work on GMES.

156 Chapter 5

5.4 Current GMES baseline operations concept

The GMES system architecture consists of the space segment, the flight

operations segment, the payload data segment, the GMES service segment, a

data access integration layer and interfaces to any external systems.

The GMES service segment acts as the primary interface between the GMES

system and the end users. The GMES service segment handles the user requests

as its input. These user requests will contain one or more data requests which

can either be for products that are already available, in which case the products

are given to the user or they can be for products that have not yet been

captured in which case the data request must be added to the acquisition plan

for the next cycle. Requests may be sent directly to certain spacecraft's

ordering systems or instead assigned to the GMES service segment to acquire.

The output of the service segment is the data products themselves that have

been acquired and processed by GMES and these are made available to users

through the service segment or through the sentinel ordering service. The GMES

service segment provides users with access to all of the available services which

usually consist of either a set of raw images or a set of images with some post

processing steps applied to add value.

The Data Integration layer is charged with handling the interface between the

GMES system and any external systems. These systems can include, but are not

limited to, third party missions and in-situ data sources.

The GMES payload data segment consists of a number of sub units. The multi

mission planning unit is at the heart of the payload data segment and the heart

of the GMES system itself. The multi-mission planning component gathers

information on user requests, ground station availability, spacecraft availability

(including flight dynamics information) and generates an acquisition plan in

concert with the mission specific planning components in order to meet the

GMES global objectives. The planning process for different spacecraft will be

heterogeneous as to levels of autonomy or interface and the multi-mission

157 Chapter 5

planner must take this into account. The mission planning interface to third

party mission will take place through the data access integration layer.

The data processing unit is charged with taking in raw image data and

generating the desired products. It is intended that the data processing unit is

data driven so that rather than carry out tasks at pre allocated times the data

processing takes place as soon as the data for that processing is made available.

Emergency and near real-time requests will be given priority for data processing

over routine image requests. Processing power will be dynamically allocated to

the tasks on a priority basis.

The sentinel ordering unit takes orders for the sentinel craft directly from the

users and propagates them through the system as a whole.

For each mission in the GMES system there is a flight operations segment. The

typical flight operations segment will consist of a monitoring and control unit, a

flight dynamics unit and a ground station unit. The monitoring and control units

act as an interface between the GMES and the spacecraft hardware. The flight

dynamics unit manages all activities pertaining to the spacecraft's orbit and

attitude. As such it will compute the manoeuvres required for orbital

maintenance and for achieving mission goals. It will also propagate the

spacecraft's orbit and flag any possible future orbital events. The ground station

unit is in charge of transmission of all telecommands to the spacecraft and the

receipt of telemonitoring data from the spacecraft. Another key task of the

ground station unit is the management of ground station availability and the

creation of plans to maintain contact with the spacecraft. The ground station

unit will also have to interface with existing systems for scheduling of ground

stations to ensure there are no clashes with other missions.

To further clarify the structure of the GMES baseline the following example of an

emergency data request is outlined. In this scenario the user makes an

emergency request. This request will usually consist of a geographical area to

be imaged, a specific date and time for the first acquisition, date and time

information about any subsequent imaging as users will often want images at set

intervals to monitor a changing problem or monitor an evolving situation. The

158 Chapter 5

type of image will also be selected (infra-red, synthetic aperture radar image,

visible etc.). For the fulfilment of an emergency order it is envisaged that

multiple spacecraft will work in concert to fulfil the user’s request in the

timeliest manner possible. This differs from the usual scheduled approach and

will require a significant amount of cooperation between the spacecraft.

Once the emergency request has been gathered it is passed to the multi-mission

planning component which will then, in collaboration with the flight operations

segments generate a plan to acquire the product that has been requested.

Depending on the current status of the GMES system and the nature of the

request the plan may involve the acquisition of images at the next possible

opportunity or possibly the start of a near real-time feed of data to the end

user. There may also be a combination of scheduled, near real-time and real-

time tasks depending on the request. It can be envisaged that the initial imaging

may be taken in near real time but subsequent follow up imaging can be

scheduled as normal. For an emergency request, priority will also be given when

it comes to the data processing of the images, be they scheduled or near real-

time.

Once the data processing step has been finished, the product generated and

made available to the ground segment the user is informed of its completion.

The product will then be given to the user as per the service level agreements

that are in place for that particular product. Service level agreements are

guarantees between the users and the providers of the data to ensure that the

user gets the products they subscribe to or pay for.

The service level agreements provide guarantees of service availability from the

provider to the customer. The provider also sets limits on the response time and

uptime of the service. The client has some recourse if the provider fails to meet

any of these limits.

The previous example of a request for imagery and the response of the GMES

system was used to illustrate two main points. Firstly any emergency requests

are fed through the multi-mission planner as not all spacecraft can respond to

emergency requests directly. If the spacecraft that can respond to emergency

159 Chapter 5

requests cannot fulfil the entire request then the multi-mission planner updates

the plans of the other spacecraft to cover the shortfall. Secondly it is expected

that many emergency requests will require imagery for an area over time at a

frequency supplied by the client. Given that for example the sentinel spacecraft

revisit time is 12 days then there will have to be significant cooperation between

spacecraft to offer updated imagery in timely manner. The level of cooperation

needed to achieve the desired products, particularly in the case of near real

time products, and the broad range of demanding requests that can be made

makes the GMES system an ideal candidate for the introduction of a multi-agent

system.

5.5 Distributed Agent Approach to the GMES system

The following approach was developed in [15, 51].The baseline GMES system as

outlined in the previous section incorporates a high level of automation but a

low level of autonomy. It is this kind of scenario where it is envisaged that

autonomous distributed agents can improve system performance. When

developing a multi-agent control system for a given mission it may be seen as

preferable to replace the entirety of the previous control system. One of the

benefits of using an agent oriented design is that it can be compatible with

existing systems, especially those based on the service oriented architecture.

The baseline system for GMES is based on a service-oriented architecture and as

such for the sake of achievability of the implementation only certain aspects of

the system have been replaced with agent based systems. This approach

increases the likelihood of adoption by reducing the amount of work needed to

create the agent based systems as they are smaller but also from a political

standpoint as a mission like GMES naturally has a wide range of stakeholders and

many of the mission will be operated by different entities meaning that

cooperation on the scale needed to rewrite the control system for each would be

impractical.

As GMES is a long term project working with a wide range of spacecraft both

operating and under development, a categorisation of the types of spacecraft is

beneficial as the different classes of spacecraft bring with them different

160 Chapter 5

capabilities and restrictions. As such the spacecraft envisaged for GMES can be

classed in one of three categories. Class one spacecraft such as the sentinel

spacecraft have predefined planning that cannot be modified and users can only

get information by subscribing to the imagery from that particular satellite.

Class two spacecraft have planning systems so that their planning can be

modified to adapt to user requirements in a near real time acquisition case

where re-planning is required. Class three spacecraft have the next level of

autonomy on board in that they can autonomously detect scientific events or

events of interest over particular areas and modify their own planning to better

acquire the data of interest. The most taxing scenarios envisaged for GMES

require near real time data from a number of different spacecraft of different

classes. In the next sections two typical cases are described in detail. The first

is to provide the best possible data product in a near real-time time frame by

taking into account the capabilities of the different spacecraft involved (which

may well be of differing classes of autonomy) and the restrictions on the product

required. In this scenario an agent based system that allows for competitive

bidding on data products with the aim of reducing response time and reducing

mission costs due to re-planning of missions is outlined. The second use case is

the autonomous detection of scientific events in which multiple class three

autonomous spacecraft cooperate to improve the chance of detection of a

scientific event.

5.5.1 Generation of data products in near real time scenario

In this scenario we will look at the GMES response to a near real-time emergency

request. In this type of request it is envisaged that many different data

products could be required to meet the needs of different clients involved with

responding to the emergency, these could include land or sea based civilian

responders or governmental groups.

In this scenario all of the different classes of spacecraft will compete to give the

best possible product for the user once the specific request has been made. The

desired product will have many parameters that must be assessed such as

deadline, resolution, area of interest, etc. For simplicity at this stage only the

161 Chapter 5

data service has been modelled as an agent based system and the customer

facing services left as they are. It can be assumed for the specifics of this case

that the service providers generate and deliver the correctly formatted requests

and the actual heavy lifting is carried out by the data provision service.

This scenario has a number of key actors. There will be number of users or a

user that makes the actual emergency request. The request itself will consist of

number of variables that the user wants met and level of priority given to each

variable. In this case alternative products that meet some of his desired

variables and not others using this fuzzy definition of his requirements can be

suggested. Each user or user group, depending on how they access the system,

will be represented by an interface agent that will negotiate on its behalf. A

multi-mission broker agent is tasked with negotiating with the mission agents on

behalf of the user agents and will generate requests, based on the user’s

requirements, that are compatible with the spacecraft.

Both the Sentinel type mission developed specifically for a GMES type scenario

and third party missions will need proxy agents to act on their behalf. These

proxy agents will represent their respective mission in negotiations with the

multi-mission broker agent. The proxy agents will have a standard interface for

communication with the broker agent but allow for different architectures and

baselines on the different spacecraft in the system. The Sentinel missions

depending on the final level of autonomy may well have the capability to

interact directly with the broker but the implementation of proxy agents despite

this makes for a system that is easier to develop and maintain as new missions

are added.

The multi-agent approach to GMES aims to improve the responsiveness and

availability of the system. The interaction between the multi mission broker

agent and the proxy agents representing each spacecraft will be designed as a

cooperative system which can be thought of as a number of consumers

(represented by the broker agent) negotiating for the use of a finite set of

resources represented by the proxy agents of the spacecraft. The cooperation

between the agents needed for this strategy to work is based on both the local

intelligence of the individual agents tasked with autonomous planning and

162 Chapter 5

autonomous on board science as well as the distributed intelligence that arises

from a successful negotiation structure. The distribution of decision making in

this design raises the possibility of maximising the social welfare within the

system while reaping the robustness benefits of a fully distributed system.

Within this system design where agents negotiate the use of limited resources

for the collective good there are two possible scenarios that would require full

use of the distributed problem solving abilities inherent in the multi-agent

system. The first is the situation where a number of different consumers make

incompatible requests for the use of a spacecraft resource. Through a

negotiation sequence where the multi mission broker agent takes into account

the different consumers priorities, the history of a given consumer and the

possibility of finding any alternatives that satisfy the consumers, the distributed

agent system can find a result that satisfies the greater good. The second

situation is that of a request being made by a consumer for information that

requires the collaboration of 2 or more proxy agents (and thus spacecraft) in

order to fulfil its request. As such, the negotiating multi-agent system needs to

parametrise a number of variables to be able to effectively find an optimal

solution. It must parametrise the different needs of all its consumers so that

they may be compared as well as parametrising the capabilities of its resources

in such a way that an agent is not only aware of its own resources but also of the

resources available through other proxies. The resources available to and

required by an agent are typically resources related to the payload of a given

satellite, computational resources on a spacecraft or on the ground and services

supplied by other agents.

The constraints and interrelations between different elements in the system

must also be parametrised along with the priorities of the system and any

expected results in order to get a meaningful result from the negotiation step.

This system involving the negotiation of consumers who compete to utilise

resources is well suited to an agent based solution. As the decisions made by

the multi-agent system are based on deep knowledge of each element’s

priorities, restrictions, resources and interlinks it is envisaged that the system

would be able to provide a higher quantity of useful data to users as a whole

versus the traditional undistributed approach. If such a multi-agent system is

163 Chapter 5

successfully implemented then it can be hoped that the system would see an

improved success rate of acquisition requests, a higher level of resource

utilisation, a clear and transparent planning system for serving data to users on a

scheduled basis and an ability to combine data from a number of sensors to

provide data for emergency services in a more timely manner.

Examples of the multi-agent based negotiation system will now be described to

clarify its operation.

In the first simple case a user requests a product which is then negotiated with

the GMES proxy agents. For this example the user must be logged into the GMES

system in a way that complies with the appropriate service level agreements as

well as all missions that are capable of providing data to the user taking part in

the selection process. Initially the user will select an area of interest for his

desired data product. After the region is selected a number of image and data

characteristics must be chosen from a set of predefined values and ranges

appropriate to the systems as whole. These characteristics and fuzzy

requirements are defined in more detail in the section on implementing the

image sorting algorithm for GMES. Based on these requirements the multi

mission broker agent will initiate communication with each proxy agent about its

ability to provide data that meets the requirements of the user. The proxy

agents response will be based on the spacecraft’s current status including the

current capabilities of its instruments, its current mission planning status (is it

currently engaged in other activities?) the status of its sub-systems and other

local parameters. The possibilities or bids generated by each proxy will then be

displayed to the user with the system itself prioritising the prospective images

based on the image meta data (This is expanded on in the image selection

algorithm). The user can then choose the image or set of images they wish to

have acquired. At this point the missions associated with the images the user

wants taken will be informed and a request for specific images uploaded to the

spacecraft's plan. Once the data products have been acquired they will be

delivered to the customer, either as they are ready or when all of the data in a

given dataset has been acquired. If the user’s requests cannot be met by any of

the spacecraft then the multi mission broker agent informs the user of this at

the earliest possible juncture. If a malfunction occurs and the requested image

164 Chapter 5

if not taken or the image request is de prioritised due to an emergency request

the user is also notified at the earliest possible juncture.

5.5.2 Detection of an event

In this example a heterogeneous group of spacecraft are tasked with monitoring

a particular geographical area for a particular event. The event to be detected

will be pre-programmed into the system by way of a number of parameters that

the spacecraft are observing for particular changes. The aim of the spacecraft is

to work collaboratively to reduce as much as possible the response time from

the given event occurring to the user being notified. To help explain how event

detection could work we will discuss how events could be detected using generic

examples. An interface that allows the user to specify to the spacecraft exactly

what scientific event they are looking for and in which area, is envisaged. The

spacecraft used for scientific event detection will be class three spacecraft as

these are the only spacecraft that have the ability to autonomously change their

status in response to specific sensor readings.

This type of event detection can only be carried out using the latest autonomous

spacecraft as envisaged for future GMES missions. As such no direct comparison

can be made between this specific case and the GMES baseline. The key

difference is that in using the class three spacecraft the events can be detected

and changes instigated all without the intervention of a ground station whereas

in the closest comparable baseline scientific event detection scenario no event

can be detected until the data is downloaded and analysed on the ground. For

comparison between the autonomous and the baseline cases it is assumed that

the users in the baseline case will process data acquired though the standard

scheduled planning process to see if any scientific event has been detected.

In this case the three main actors are a set of users, the multi mission broker

agent and a number of third party missions. Each user in the process will be

represented by an interface agent who will forward any requests, negotiate on

behalf of the user and update the user on progress or results delivery. The

requests sent by the user will include a detailed description of the parameters

165 Chapter 5

associated with the triggering of the scientific event along with data as to the

priority of the event (this is of increased importance where multiple users are

making science event requests), the area to be searched for the described event

and times for validity periods or deadlines.

As in the previous example the multi mission broker agent will have the task of

negotiating with the mission proxy agents on behalf of the users taking into

account the availability and capability of each mission as related to the user

request. The negotiation will attempt to satisfy all of the user interface agents

while maximising utilisation of the spacecraft via the proxy agents.

The other key actors in this case are the third party missions with autonomous

science detection abilities. Earth observation spacecraft with these autonomous

capabilities are not yet common place but it is foreseen that future mission will

have increasing levels of autonomy, enabling this type of autonomous science

detection through GMES.

The pre-conditions for this scenario is that the users involved are logged into the

system in a manner compatible with the service level agreements describing

interface and privileges etc. There must also be at least one class three

spacecraft available for selection by the user and only those missions that are

able to meet these requests are available (in that they are not undertaking some

other higher priority task).

The normal flow of this specific test will be as follows. The user through the

appropriate user interface agent selects a region of interest in which a search

for a given scientific event will be undertaken. Once the region has been

selected the event is defined using a number of parameters depending on the

characteristics of the event under observation. It is envisaged that there will be

a number of predefined events that the user can select but that the user will

also have the ability to define their own scientific events based on a

combination of parameters. The system will then show the user what spacecraft

will be able to collaborate on this task (if any). This selection is created through

the multi mission broker agent and is based on the projected orbital paths and

capabilities of each class three spacecraft. The users will then select from these

166 Chapter 5

spacecraft the individual satellite that they want to collaborate with on this

request and the selected mission will be asked to begin the detection of the

described scientific event. Once the triggering conditions are met on any

spacecraft the spacecraft will autonomously alter its plan to start analysing the

corresponding in data and a notification will be sent to the ground segment that

detection has occurred. The payload data will then be downloaded from the

spacecraft when appropriate, with class three spacecraft this will be relatively

soon after first detection. The data is then analysed on the ground and if the

event is confirmed the user is informed and given the data regarding the

scientific event. There are a number of alternatives to successful completion of

the request as described above. There is the possibility of a false positive from

the spacecraft and it is up to the ground control analysis to make sure this is not

passed to the end user. With the limited number of autonomous class three

spacecraft available it is likely that the situation where there are no available

autonomous spacecraft available to undertake the request will be common.

Checks will also have to be made on the criteria used to define given scientific

event.

5.6 Multi-agent system design for the GMES mission

As previously described the GMES mission can be seen as a good candidate for

introducing autonomy in order to improve performance over the baseline design.

In the previous section a brief outline was given of a distributed multi-agent

system design for GMES. In this section we will propose our distributed multi-

agent system for GMES in full before describing the novel image selection

algorithm and graphical user interface that completes the link between the

GMES users and the GMES spacecraft constellation. Again this work is a

continuation of [15, 51].

The multi-agent system (MAS) designed for GMES has two primary functions, to

enable the flow of requests for data to the correct spacecraft and to enable the

flow of the desired data back to the proper user. The MAS in this design is

always on and in contact with the spacecraft through their appropriate proxies

as well as any active users through their user proxy agents. The structure of the

167 Chapter 5

MAS is based on the spacecraft proxies being informed of a user’s request and

then making bids comprising a set of images from that spacecraft that best meet

the user’s criteria. The multi-mission broker agent collects all of these bids and

resolves any conflicts so that only those images that can be acquired remain.

This set of images is then sent to the user. We will discuss our proposed method

for displaying and ranking the images in the next section.

5.6.1 Ground Segment

5.6.1.1 Multi-Mission Layer

The MAS ground segment can be thought of as consisting of two layers, the

mission layer and the multi-mission layer. The multi-mission layer consists of

the agents that coordinate the flow of requests and data and instigate any

collaboration or resolve conflicts between spacecraft. The user proxy agent is

the first point of contact between the user and the GMES MAS. The user proxy

agent gathers the image requirements from the user. These requirements will

consist of information such as the desired time of acquisition, the deadline for

acquisition, the frequency of updates to the imagery (if at all), resolution,

spectrum etc. The user proxy agent may operate through any number of

different interfaces including but not limited to, request forms, web based user

interfaces or direct access via a workstation. The user proxy agent may not

gather all of the information it needs from the user whether through a limitation

in the interface or through lack of knowledge of the user. In this case the user

proxy agent must be able to make assumptions as to the missing parameters and

this will be achieved by making intelligent choices based on similar results and

standard values for any given characteristic.

All of the now complete and formatted request data is then sent from the user

proxy agent to the (multi-mission) broker agent. The broker agent’s primary

goal is to negotiate the provision of image data from the mission proxies to the

end users. The broker agent will communicate the requirements from the user

and will negotiate a set of images from each mission proxy that the associated

168 Chapter 5

spacecraft can acquire based on its current plans, capabilities and other

requests on the system from the same user or other users.

5.6.1.2 Mission Layer

At the mission layer we have all of the agents that enable the system to act on

image requests and determine if request for image acquisition in the future is

feasible.

A mission proxy agent will be associated with each mission within the GMES

constellation. The mission proxy will negotiate with the broker agent to try to

provide a set of images that best meet the user’s requirements but also make

best use of the system resources (Payloads, Computation, Communication, etc.)

as a whole. The negotiation will be based on the spacecraft's parameters such

as when it can record a given image, the constraints on its payload and its

commitments to other users in the meantime. Each mission proxy will be

tailored to its individual mission in order to take into account its individual

capabilities and constraints. The mission proxy agent is also tasked with

coordinating with the other mission proxies to provide products that meet the

user’s requirements. There may be requests that require imagery of an area at

intervals that cannot be achieved by single spacecraft. In this case the

spacecraft must collaborate to accomplish the goal. As such each mission proxy

agent must have knowledge of the status and abilities of all of the other mission

proxy agents in the system. It is in this way that a multi-agent system really

benefits GMES as it allows for more stable and fast creation of coalitions

between agents. The proxy agents must work together in order to provide the

decision making capabilities required to meet the user demands while

maintaining availability and performance for other users. The mission proxy

agent is also tasked with providing and requesting information from the other

mission level agents such as requesting orbital position predictions form the

flight dynamics agent or coordinating the planning agents of its own mission and

that of another to provide adequate coverage.

169 Chapter 5

There are a number of other agents at the mission level that support the

decision making capabilities of the proxy agent and thus the MAS as a whole.

The flight dynamics agent provides information about the spacecraft's orbit and

attitude at the current time and predictions of its state into the future. This

allows plans that incorporate the satellites predicted fly over time to be

created. It will also allow the mission proxy agent to determine if the

spacecraft’s current orbit and attitude allow for any given collaborative set of

images to be taken.

Each spacecraft also has a dedicated ground based planning and scheduling

agent. As discussed previously the planning agent constructs a plan for the

spacecraft which consists of a detailed time line listing the activities that the

spacecraft should carry out. As with the other agents at the mission level there

will be close negotiations in order to satisfy each agent. The planning agent

receives instructions from the mission proxy and takes into account data from

the other mission agents such as the flight dynamics agent. The negotiation

between the planning agent and the mission proxy with full access to the

appropriate data can lead to the creation of a plan that respects all of the

constraints of the system but also tries to maximise utility to the user. There

are also specific agents tasked with coordinating uplink to the spacecraft and

coordination of communications with the ground stations, these agents must also

collaborate and negotiate with their counterparts for each spacecraft. The data

processing agent is tasked with generating the science products at the correct

time and with sufficient quality to meet the service level agreements

requirements. The data processing agent has contact with the user interface

agent and the agents at the mission level. The data processing agent will

negotiate with other agents for resources to reduce the time it takes to produce

any given data set.

5.6.2 Space Segment

Many of the agents in the space segment are counterparts to the ground based

agents. They could be abstracted into individual components that span both

170 Chapter 5

ground and space segments but for clarity they have been separated. The

communications agents on each of the spacecraft operate with the single ground

station agent which resides at a multi-mission level. The on-board

communication agents is only concerned with the communication from its own

spacecraft and its primary functions are to gather the data that is to be

transmitted, transmitting the data and receiving and passing on requests or

commands from the ground segment.

Likewise the on-board planner agent complements the ground based mission

planner. In this case there is one mission planner per mission so the ground and

space based planners form a pair specifically for that mission. The on-board

planner takes the high level instructions from the ground based planner and

creates plans for execution on the spacecraft. When making these plans it can

take into account data from the other on board agents such as the monitoring

agent or execution agent that may not have been available to the mission

planner agent. This behaviour also allows for the detection of scientific events

as the on board science agent can directly influence the spacecraft plan without

intervention for the ground.

The executor agent executes the plans generated by the mission planner and

refined by the on board planner. The executor agent decomposes the plan into

a series of actions that it finds can meet the current constraints of the system.

The on board monitoring agent is tasked with monitoring the spacecraft for any

anomalous changes in state that could indicate a failure or a reduction in

capability. The complexity and design of the spacecraft making up the GMES

constellation will vary greatly and the monitoring agent will be specialised

accordingly. The monitoring agent will collect this data and will notify other

agents of the spacecraft's ability to acquire a given image or even operate as

planned.

The on board payload agent is tasked with actually acquiring the data to meet

the users initial requests. As well as having access to the payload sensors it

must also cooperate with the communications agent in order to get the data to

the ground.

171 Chapter 5

The on board science agent allows the spacecraft to acquire data when a

scientific event is detected without any intervention from the ground. The on

board science agent is described in more detail later in this section.

5.7 Definition of the GMES MAS using the HASA

architecture

In the following section the design for a GMES MAS will be outlined. This design

is based on the HASA architecture outlined in Chapter three. As previously

described the agents in the HASA architecture can be of one of 4 types: Product,

Executor, Planner and Resource. Below the high level agents are defined and

grouped based on their segment (ground or space) and their mission level.

Figure 5-3 GMES HASA ground multi-mission level agents

172 Chapter 5

Figure 5-4 GMES HASA ground mission level agents

173 Chapter 5

Figure 5-5 GMES HASA space segment agents

Figure 5-6 shows the distribution of the agents more clearly between the ground

and space segments and the mission and multi-mission layers.

174 Chapter 5

Figure 5-6 Distribution of agents in HASA GMES

5.8 Limitations and constraints on spacecraft autonomy

There are number of constraints and issues that must be understood in order to

successfully design an autonomous space system [133]. For a typical spacecraft

in Low Earth Orbit (many of GMES spacecraft will be of this ilk) there are severe

limitations on communication with the ground. For example a typical LEO

spacecraft has approximately eight to ten minute communication windows. The

communication opportunities for the spacecraft that will constitute GMES are

not as severe as those applying to deep space missions (such as the DARWIN

mission for example) which sometimes means that there is no communication for

weeks rather than hours but even for the LEO case regular communication

cannot be guaranteed. This lack of communication opportunities is the reason

that on-board autonomy is so valuable.

Another challenge with implementing an autonomous control system or any

autonomy on a spacecraft is the spacecraft's inherent complexity. The

spacecraft that will be used for the GMES mission contains thousands of

175 Chapter 5

components and even with the push towards using more commercial off the shelf

components there will still be one of a kind, or mission specific components and

relationships in for example a specialised payload sensor. This complexity leads

to many intricate interrelationships between components and systems. These

must all be characterised and understood by any autonomous control system.

The complexity of the spacecraft and the limited resources available means that

there is limited observability of the spacecraft. This means that any

autonomous control system must be able to operate with only partial

information about the state of the spacecraft. It is important that key

spacecraft parameters (temperature, power, storage etc.) are monitored but

continual monitoring of every single spacecraft components down to the nut and

bolt level would be a waste of on-board resources. An autonomous control

system does however have more information than a ground controller due to the

elimination of the downlink communication bottle neck.

As stated before the resources available to any autonomous control system are

limited. One of the biggest limitations is that of computing resources. A typical

spacecraft processor offers roughly 25 million instructions per second and small

amount of random access memory (RAM) (usually 128-256 megabytes). This is

far less than is available on even the simplest computer on the ground. To

compound matters, most of this computer power is used in the day to day

operation of the spacecraft and only a small amount is allocated to any

autonomous system (in the case of Earth Observing Mission 1 (EO-1) about 4 MIPS

or about 16% of the total computing resources [134]).

One of the primary challenges that an autonomous system must overcome is the

additional risk of operating without human intervention. This risk stems from not

only the uncertainty that comes with using a novel autonomous system but also

from the extremely high value of the spacecraft and the overall mission cost.

Any failure by the autonomous system could lead to severe recriminations.

Obviously a fault leading to a catastrophic failure of the mission is the worst

case and even a failure that leads to a delay could cost the operators of the

satellite enough money to dissuade them from deploying an autonomous system

in the first place.

176 Chapter 5

5.9 Autonomous science agent in operation

Previously the need and possible operation of an autonomous science agent in

the context of GMES was discussed. As a baseline the autonomous science

system that has been deployed EO-1 will be outlined.

The autonomous system on the EO-1 mission is called the autonomous science

experiment (ASE). The ASE is equipped with a set of high level goals that are

supplied form the ground and these correspond to the science targets that it

should be monitoring. The on-board planner for the EO-1 mission, CASPER

generates and operations plan based on these high level targets. CASPER is

based on a model based planning algorithm [133] which enables it to plan for a

wide range of operational scenarios but still be able to respond effectively to

unforeseen events. The operational plan in this case consists of a plan to

monitor scientific targets on the ground using the on board instrumentation. If

during these planned operations any new science event, as defined in the high

level instructions for the spacecraft, is detected then a new science goal is

autonomously generated. The planning system, CASPER, must then integrate

this new science objective into the operational plan in order to re-image or

reacquire the event depending on the nature of the science event itself. The

plan is then executed to acquire the newly prioritised science data. This cycle is

then repeated as the spacecraft works through the current operational plan.

The key difference between the autonomous science detection used in EO-1

[133] and that proposed in this work is the use of multiple science agents

distributed throughout the GMES constellation.

The benefits of an autonomous science agent are made clear in the EO-1 data

shown in Table 5-1 [135].

Process Total Process

Data Acquired

(MB)

Data returned

by ASE (MB)

Savings Factor

Volcanism 33750 294 115

177 Chapter 5

Cryosphere 38100 304 125

Flooding 25500 239 106

Total 97350 837 116

Table 5-1 Data reduction from EO-1 autonomous agent

The key factor in which a distributed approach can improve on a single

autonomous science agent is in the speed of acquisition and monitoring of new

events. In the EO-1 case once the anomaly is detected the agent adds a

monitoring task to its plan for its next pass. In the distributed case once a

spacecraft detects an event it can be added to its own queue but also

propagated to other spacecraft who may decide to add it to their own queue.

This means that multiple spacecraft can be autonomously tasked with

monitoring the science event leading to improvements in response time and

update rate.

A key aspect of this type of distributed system is that it will improve with scale.

As more autonomous science agents run on more spacecraft, events will be

detected faster and will be covered more completely by more spacecraft.

The key requirement for the operation of this type of distributed autonomous

science agent is autonomous communication between the science agents on all

of the spacecraft.

This will be carried out by passing all possible science targets from the

spacecraft’s science agent to its on-board planner and to the mission planner

and from there to the multi-mission planner from where they can be

disseminated to the other spacecraft through the normal tasking process.

5.10 Image Selection Algorithm

The following image selection algorithm is an extension of the work presented

here [136]. As the basic MAS for GMES was implemented by GMV a novel image

178 Chapter 5

selection algorithm was developed to interface to the MAS in order to build on

their work.

In this system the images supplied by the GMES constellation themselves are not

used; instead we use a set of variables to describe the images. This allows us to

describe images that have been acquired and that may be acquired in the

future. These variables or metadata describe the images key characteristics

from the customer point of view.

The variables describing the image products are:

• Desired area of the image - n-sided polygon describing the desired area of

the image

• Cloud cover - percentage of the area of the image occluded by cloud

• Hard deadline for the image – the latest possible time for the image to be

captured

• Desired time for the image - target time for the image to be captured

• Resolution - the size of the area described by one pixel in the image or

Ground Sample Distance (GSD)

The images that most closely match the user request form each spacecraft’s bids

within the MAS. Each bid has values for each of the above variables and it is the

algorithm's task to sort these bids into a preferred order for the customer.

The image sorting algorithm consists of two main parts. The first part uses the

customers’ criteria to find the five images that most closely match the desired

variables. The deadline is used as a hard limit and if an image exceeds it it is

excluded. In the case of all other variables the closer the variable is to the

desired value the better.

The area variable is treated differently. The desired area is supplied by the

customer as the points of an t-sided polygon made up of longitude and latitude
coordinates. The area covered by the images is also an t-sided polygon ('t'
doesn't have to be the same). The algorithm calculates the overlap between the

179 Chapter 5

polygons to generate a value which is then used to help rank the images (larger

value for overlap is ranked higher).

Once all of the images have been received they are ranked or excluded based on

their metadata. If no images are left after this step then the second part of the

algorithm comes into play. In reality this will be quite a common occurrence

because the set of images available may be quite small and the user may

unknowingly set too stringent requirements for the exclusion of images based on

deadline or cloud cover.

The algorithm operates as follows. The user defined inputs are collected from

the user through the graphical user interface (GUI). These inputs are:

• Area Threshold

• Deadline

• Desired Observation Time

• Resolution

• Cloud Cover Threshold

• Area Weight

• Desired Observation Time Weight

• Resolution Weight

• Desired Area (As polygon coordinates)

The other input to the algorithm is the set of images supplied by the broker

agent.

A first pass is carried out on the image data before any images that do not meet

the thresholds are excluded. This step involves calculating the area of overlap

between the desired image and images in the dataset. The images and the

desired area are encoded as t-sided polygons with latitude and longitude
coordinates for each point. To calculate the overlap we first find out if any of

the vertices of either polygon lie within the other polygon. Secondly we check

each side of the image polygon to see if it crosses a side of the desired polygon.

Once these enclosed vertices and crossing vertices have been identified, the

180 Chapter 5

overlap polygon can then be determined by finding the convex hull of the

vertices as shown in Figure 5-7.

Figure 5-7 calculating the overlap of polygons using the convex hull

Each proposed image is then compared against the thresholds for area overlap,

the deadline, the cloud cover and the resolution. Rather than remove the images

that do not meet the thresholds, the images are kept but excluded from the

subsequent steps as we want to include them in the secondary global

optimisation step.

For each image in the set the difference between the desired time and the

image time and the difference between the desired and image resolution are

calculated. These values along with the area overlap which was previously

calculated are normalised and then multiplied by the user supplied weightings

These weighted values are then summed and the remaining images sorted on

these values. The top five images are then presented to the user.

181 Chapter 5

5.10.1 Global optimisation step

If no suitable images are found a multi-dimensional global optimisation on the

images is performed by the algorithm. This optimisation is not to find images

per se but to suggest to the user which variables could be changed and by what

amount in order to find suitable images. In this way the customer can decide

which constraints to relax. This approach gives the user results outwith the

initially supplied thresholds. This therefore allows the agent to suggest inclusive

threshold values to the user. Any global optimisation algorithm requires an

objective function, that is a function that produces a scalar value that

summarizes the performance of the system for a given value of the variables

that are being optimised. That is the aim of the global optimisation algorithm is

to minimise the objective function � �$ where � is a vector of system variables. � ∈ Θ where Θ is the domain of allowable variables for �.

In our case

 � = i��, �, ��, ���j (5-1)

where: �� = Image area � = Image time �� = Image resolution ��� = Percentage cloud cover in image

The objective function is:

 � �$ = � �� , �J$�¡ + � − J$ ¡ + �� − �J$�¡
+ ��� − ��J$��¡$	

(5-2)

Where: � ��, �J$ = Overlap function of the current image and the user’s desired area �J J =Users desired time �J = Users desired resolution ��J = Users desired percentage cloud cover in image

182 Chapter 5

This objective function is used for comparison with a number of global

optimisation methods.

5.10.2 Comparison of Global Optimisation techniques

Global optimisation methods are mathematical approaches that aim to find the

minimum of any given function. In most cases this is the global minimum of a

multi-variable function or set of functions. There are a great many different

global optimisation methods with distinct advantages and disadvantages when it

comes to different optimisation problems. In general though, all of the methods

aim to find the global minima as quickly as possible without becoming stuck at

one or more local minima.

Global optimisation techniques can be broadly grouped into 3 categories,

deterministic, stochastic and meta-models.

Deterministic global optimisation methods utilise methods that have no random

aspect and given the same data and initial set of conditions will always reach

the same optimum value. These methods commonly operate based on the local

gradient of the function at any given point. An example of this approach is the

Lipschitzian method [137]. A method such as the Lipschitz method requires a

constant, the Lipschitz constant which determines the extent of the search and

thus determines whether the search favours local search or global search. For

many optimisation problems a suitable value for this constant cannot be

specified beforehand so the search may not be truly global. To overcome this

possible problem, a modified deterministic global optimisation method was

developed based on the Lipschitzian model but without the requirement for a

Lipschitz constant. This new method was named the DIRECT method [138] and

works by searching and using all values of the Lipschitz constant simultaneously.

5.10.2.1 Simulated Annealing

Stochastic methods all utilise some random factors in their search. This makes

the methods non-deterministic in that for any given set of initial conditions and

183 Chapter 5

a given data set the stochastic methods may not produce the same answer. The

stochastic methods utilise the random variables in order to “climb out” of local

minima and proceed to the global minimum. A good example of a stochastic

method is the simulated annealing (SA) method. Simulated annealing takes its

name from the approach used in metallurgy and thermodynamics where a

material is heated to a high temperature then the temperature is slowly

reduced. As the temperature is reduced, the internal elements of the material

naturally try to find lower levels of internal energy. In this analogy the global

optimum is the lowest internal energy possible for the material. The stochastic

nature of the method allows for small movements away from the current

position, even “uphill”, i.e. away from the local minima. In this way the method

may be able to escape local minima and search the entire function space.

5.10.2.2 Genetic Algorithms

Heuristic or meta-heuristic based global optimisation methods operate by trying

to maximise some objective function. This is done by measuring the “quality” of

candidate solutions and then aiming to improve the candidate solution and again

testing its “quality” using the objective function. The actual method used to try

and improve the candidate results is at the core of the heuristic or meta-

heuristic. A well-known meta-heuristic method is the genetic algorithm (GA)

method. In this method a set of candidate solutions are generated. Each

candidate is then given a fitness value based on its parameters (which map to

the variables needed to be optimised). The candidates with the highest values

of fitness breed and produce new offspring based on their parents. This process

is repeated over many generations to try to find the solution with the highest

possible fitness value. The genetic algorithm method is also stochastic as at each

generation a certain amount of mutation of the offspring occurs allowing for

variation within population and the discovery of solutions outside the area

described by the initial candidate set.

5.10.3 Comparison of algorithms

184 Chapter 5

Four different global optimisation methods were compared for inclusion as part

of the image selection algorithm. As a baseline a standard sort algorithm was

also run to show any improvement in calculation time if any over the method

used to initially rank the images. The four methods chosen for comparison

were, DIRECT, general pattern search (GPS) [139], simulated annealing (SA) and

genetic algorithms (GA).

As is shown in Figure 5-8 the global optimisation methods are all outperformed

by the standard sort on small data sets. This was to be expected and it is the

algorithms performance on larger datasets, like those to be expected from GMES

that is of interest. The two deterministic methods show the lowest computation

time by some margin, followed by the meta-heuristic genetic algorithm and

lastly by the stochastic simulated annealing. In terms of problems that global

optimisation methods are applied to, this is quite simplistic and as such the

simpler deterministic methods perform better. Of the two deterministic

methods, DIRECT was chosen for its slightly superior performance in large

datasets as shown in the figures below.

Figure 5-8 Comparison of global optimisaton techniques computation time for
varying dataset size

185 Chapter 5

For the sake of this comparison each global optimisation method was run five

times to find the five optimal images within the set. The sort only had to be run

once as the best five images can be accessed directly once the sort is complete.

Each method was implemented as shown in Appendix D and without significant

optimisation. Even though this is the case a clear performance improvement

over the basic sort for large datasets is shown.

5.10.4 GUI

In this section the graphical user interface that was developed to demonstrate

the image selection algorithm is presented.

The GUI itself allows the user to easily set the thresholds and variables required

by the algorithm and to either see the top results or the suggestions for

threshold corrections.

The GUI was built using Java and a number of other tools. These included the

Google App Engine platform for running the server side tasks, the Google web

toolkit for creating the browser based client side and the Google Maps API for

generating the maps presented to the user.

The matrix manipulation of the sorting algorithm’s first pass and especially the

multi-dimensional global optimisation step can be computationally expensive

depending on how many images are being sorted. In order to distribute the

workload away from the end user a client server model is used as shown in

Figure 5-9.

186 Chapter 5

Figure 5-9 Client server interface structure betwee GMES MAS and GUI

The Google Web Toolkit (GWT) [140] was employed, as it allows a lightweight

web based front end to make calls to a server running the native code of the

algorithm which is in turn coupled to the MAS. On the front end we wanted the

interface to be as easy to use and as instantly accessible as possible. To this end

all selection of geographical areas and the display of results is handled by using

the GWT interface with the Google Maps application programming interface

(API). This offers the users a familiar interface and allows us to easily acquire all

latitude and longitude data from the user. To further improve the ease of use of

the interface, variables are entered where possible through calendar pop ups

and sliders to minimise the use of text boxes and to show the user realistic and

sensible ranges for a given variable.

The web based GUI is delivered to the user entirely using standards compliant

HTML, CSS and JavaScript. This will allow any user on any platform that runs a

modern web browser to use the GUI while all of the computationally intensive

calculations are carried out on the remote server. The use of Java and open

frameworks will also allow easy integration with the GMES MAS.

In this test of the GUI and algorithm the image data is not supplied by the MAS

but instead generated within the server. This allows us to test the algorithm

easily for different data sets to ensure it is operating correctly. After the

187 Chapter 5

generation of the image data set the user sets the hard thresholds for area

coverage, maximum cloud cover and the deadline for the image.

Next, the user sets the variables for the desired image, this includes the

longitude and latitude points of the desired area. This is done in a pop up

showing a scalable map of the Earth and the points of the polygon are selected

by simply clicking on the desired points on the map.

The user also sets the desired resolution of the image and the desired time of

the image. All of these variables also have accompanying weighting sliders which

will increase or decrease their influence on the overall ranking of resulting

images. See Figure 5-10.

188 Chapter 5

Figure 5-10 The complete GUI for image selection

189 Chapter 5

Once all the thresholds, variables and weightings have been set, the user

initiates the algorithm to calculate the ranking of the images. Any image that

meets the threshold criteria it is displayed in ranked order on the right hand side

of the GUI. The result shows the area covered by the image, the desired area

and the overlap between the two (Figure 5). The values for the area, resolution

and cloud cover are also shown. Cloud cover for future dates is currently

modelled by a simple probability function but could be extended to encompass a

more accurate meteorological model.

If an image is not available then no data is displayed in the results section.

Instead a set of suggested threshold changes are displayed to the user as shown

in Figure 5-11. These are generated by the algorithm's global optimisation step

but are displayed to the user as suggestions. The user may choose which variable

they would like to change and then re-run the algorithm knowing that at least

one result will be presented as the new threshold values generated by the global

optimisation step ensure this.

Figure 5-11 Sample results screen showing suggestions to the user

The GUI that has been implemented here could further be extended in the

future by incorporating more data from outside sources, for instance using

semantic links to other GIS data sources [141] .

190 Chapter 5

5.10.5 Test Cases

In the first example we will show how the system can be used to acquire data for

monitoring crop coverage over a large area. In this example we will use the

monitoring of rice crops in the Kunming area of China. Rice crops can be

monitored in a number of ways including using the visual spectrum and by

synthetic aperture radar (SAR). Accurate image data allows the user, in this case

most likely a government agency, to predict future yields and thus supply and

price of future crops.

In this case the deadline for the images can be easily defined as the end of the

growing season as the crops growth cycle is well established and growing seasons

known for each region. The Area threshold will be set at 70% as multiple images

can be combined for full coverage. The cloud cover threshold will be relatively

tight and set at a maximum of 25%. Any images taken with SAR will not have to

meet this requirement as cloud cover is invisible to SAR sensors. Images taken in

different spectral bands are distinguished by tags in the image metadata.

With the desired area chosen as shown in Figure 5-12 the desired resolution must

be selected to give enough detail to identify areas where the crop is being

grown. The desired date of the image is chosen but is weighted less strongly

than the area and resolution variables as the exact day of the image is not

important as long as it is close to the desired date.

191 Chapter 5

Figure 5-12 Area selection in the GUI

The data set supplied by GMES for this request would be large due to the

relatively lax threshold values and thus probably not require anything more than

the algorithms initial sort.

In the second example we will show how the GMES MAS could be used to provide

images for a rapidly changing time critical such as that in a natural disaster or

emergency. The response of systems to natural disasters is major area of

research [142, 143, 144]

In a natural disaster scenario the deadline for images will be in the order of a

few days, if not even a few hours. The further forward the deadline is brought

the more chance that there will be no images available. At this point the global

optimisation step is carried out and the best images selected, essentially telling

the user when the first image that meets their criteria is available.

192 Chapter 5

The area threshold will be set at 50% as any data on the area will be more useful

if it can be supplied quickly, for the same reason the cloud cover threshold is at

25% as some occlusion can be accepted as long as there is data for the majority

of the image.

The desired date variable will be given the highest weighting followed by the

desired area and resolution. In this case the data set could be fairly small

depending on the area and response time required. With a smaller data set the

need for the global optimisation step is more likely. Scenarios where the

algorithm cannot supply an image of the desired area but can supply an image of

another affected area can be envisaged and the global optimisation step allows

the system to suggest such opportunities to the user through suggested threshold

settings. The results are shown to the user as in Figure 5-13.

193 Chapter 5

Figure 5-13 Display of results in the GUI

194 Chapter 5

5.10.6 Algorithm Performance

The two part structure is important because if images are not found using an

exhaustive search by means of the first algorithm then we must very quickly tell

the user how to proceed. We could run a slightly modified version of the first

algorithm to try to give us answers instead of the global optimisation algorithm

but there are a number of issues with this. The global optimisation step gives us

a different insight into the data set when compared to our initial sort and

supplies us with revised threshold suggestions in a very simple and timely

manner.

For our initial image sorting algorithm the time taken to sort the data increases

roughly linearly with the size of the data set, this is shown for up to 5000 images

in Figure 5-14.

Figure 5-14 Global optimisation vs algorithmic sort, up to 5000 images

195 Chapter 5

Figure 5-15 Global optimisation vs algorithmic sort, up to 200 images

The system can afford to take its time with the initial sorting as the user will

expect this but to take the same time again just to make suggestions may force

the user to wait for an unnecessarily long time depending on the size of the data

set.

The time taken for the global optimisation step to compute is roughly constant

for the datasets utilised in this case and of the order of 50ms as shown in figures

5-13 and 5-14. There is some increase in calculation time when performing the

global optimisation step on very small datasets as shown in Figure 5-15. This is

due to the algorithm being configured for the larger datasets it is much more

likely to encounter.

As one of the aims is to have this system easily accessible by the end user the

total response time of the system is important. It consists of the communication

time between the client and the server and the time it takes to execute the

algorithm or algorithms (depending on whether the first sort was successful).

Miller proposed [145] that there are 3 broad time frames to take into account

when designing a user interface. If the response time is less than 0.1 seconds

then the response is judged by the user to be immediate, if less than 1 second

196 Chapter 5

then the user will notice the delay but not require specific feedback to notify

them of the delay, up to ten seconds the user will wait as long as adequate

feedback is given but if the delay is over 10 seconds, whatever the feedback

given the user will want to perform other tasks and will assume that the system

has failed. As such we strive to keep our overall response time under 10 seconds

and this is greatly helped by the fast response of the global optimisation step.

The time taken for the response to get back to the user is based both on the raw

computational time needed as shown in figures 5-13 and 5-14 but also on the

speed and more importantly latency of the users’ internet connection. The

client server structure allows all of the algorithm computation to be done on the

server, thus putting very few hardware constraints on the user. The downside of

this is that the requests and results must be sent to the server and this takes

time. As the server acts as the link to the GMES MAS the full set of image data

itself is not sent between client and server. Instead only the requests and the

resulting images are transferred between the client and server. This means that

the user will not require much bandwidth but the latency of the connection will

dominate. Typical values of round trip latency are below 500ms [146]. The round

trip latency however will be dwarfed by the time taken for the algorithm to run

on the server in all but the most trivial of data sets.

5.10.7 Conclusions on the Image Selection Algorithm

In conclusion, an algorithm was developed to rank the images supplied by the

GMES multi-agent system. This algorithm has been incorporated into a functional

GUI that will allow users to easily set their desired image variables such as the

desired area and hard thresholds such as the deadline for the image to be taken.

The use of a global optimisation step allows the algorithm to quickly suggest

changes to the user supplied thresholds in the event that the users desired

images cannot be acquired. The algorithm is still in the early stages of

development and much work can be done to further increase its functionality

and speed. For instance both the simple sort and global optimisation steps can

be optimised for the specific structure of the data as the data structure is set

197 Chapter 5

and relatively simple, this would further increase the speed of the algorithm.

Different global optimisation techniques could be tested as they may offer

increases in speed and accuracy over the current Lipschitzian Optimization. The

prototype GUI is written in Java and presents a simple to understand web based

interface to the user. Overall this work demonstrates that working algorithms

and interfaces can be developed for complex multi-agent systems in order to

hide that complexity from the user while still providing data or suggestions to

the user rapidly.

5.11 Chapter Summary

In this chapter the GMES mission was introduced and the MAS developed with

GMV outlined. This MAS was then converted into the HASA architecture for

clarity. As the MAS was implemented by GMV an image selection algorithm as

developed to complement this work and round out the system.

198 Chapter 6

Chapter 6 Conclusions

6.1 Summary and findings of the thesis

This thesis addressed the hypothesis “can multi-agent control enable more

autonomous space missions?”. This resulted in three main contributions. The

first was the definition of a novel recursive multi-agent architecture for space

missions named HASA. The second contribution was the design of a multi-agent

control system based on the HASA architecture for the DARWIN mission as well as

the design and implementation of a multi-agent simulation suite which was used

to extensively test the formation flying capabilities of the DARWIN multi-agent

system. The third was the design of a multi-agent control system for the GMES

mission based on the HASA architecture which utilised both embodied agents and

purely software agents. It also included a novel image selection algorithm.

In Chapter two the key concepts of autonomy, agents and agent architectures

were introduced. The difference between deliberative and reactive

architectures was defined and the idea that they can be combined in order to

mitigate their respective shortcomings (in layered architectures for example)

was discussed. The concept of distributed architectures was described along

with how this approach addresses the needs of multi satellite space missions.

The idea that a distributed architecture could also be recursive was discussed

and this was taken as the starting point for the development of the HASA

architecture in the following chapters. The design choices that need to be made

were also outlined, specifically how knowledge, intelligence and decision making

is distributed within a system. This led naturally on to the issue of how

knowledge, intelligence and decisions are managed and communicated through

199 Chapter 6

the system and possible communication processes and architecture were

outlined.

In Chapter two the basic concepts of a space based autonomous system are

discussed. The ground station is where most of the current level of automation

and autonomy is found and the difference between these current systems and an

agent based approach would not be as great as in other mission components.

Pure software agents, that is, agents with no physical basis, can also take over

the data processing and product ordering tasks normally carried out for the

missions and allow for parallel, robust processing of the data produced by the

mission. An agent approach would also enable new ways of receiving requests

and disseminating results to users, more fully described in Chapter five. The

idea of replacing the monitoring and control components of traditional system

with an autonomous agent based system is particularly applicable to formation

flying missions where the control of all of the satellites from the ground may be

prohibited by communication delays or the complexity and accuracy required by

the particular mission. These ideas were further discussed in Chapter four with

respect to the DARWIN mission and its formation flying requirements. The

responsibilities of the attitude and orbital control system along with the failure

detection, isolation and recovery components were discussed. These

components would have to work in fundamentally different ways within a multi-

agent system and monitor many more systems and the links between them.

In Chapter two the concept of agent system architectures, the way agents are

organised and operate as a group, is introduced. Traditional agent system

architectures are described including the blackboard, modular, layered and

production architectures. The key concepts to be considered when designing a

system architecture are then introduced. The difference between homoarchical

(where the hierarchy of agents is fixed) and heterarchical (where the hierarchy

of agents can change to suit the problems encountered) systems is outlined as

well as the level of federation within a structure, that is the ability of a local

group to solve a local problem.

In Chapter three the key concept introduced in this chapter is that of the holonic

agent and system architecture. This is based on the idea that a system with

200 Chapter 6

many intermediate levels of abstraction leads more easily to a robust solution to

a complex problem. This recursive nature allows the agents themselves and the

system architecture to be defined in one unified language and is used to create

the novel HASA architecture for distributed space missions. The ability of

holonic agents to abstract away complexity allows each agent to have both

physical and software agent components which makes it ideal for space missions

where a common language for defining hardware and software components can

be extremely useful.

The next part of Chapter three deals with the key problems which an agent

system architecture must solve. Intelligent control and the difference between

high level and low level control is discussed. The idea of designing with safety in

mind from the outset is also put forward along with details of some applicable

standards and discussion of safety in real time systems and which systems are

critical to operation. The safety related themes of heterogeneous versus

homogeneous redundancy were discussed as well as the verification and

validation of a complex agent based control system.

The key contribution of this chapter is the description of HASA the holonic agent

space architecture. Based upon the idea of multiple levels of abstraction

allowing intermediate stages between agent architecture and agent system

architecture while allowing all levels to be described using the same language.

The HASA architecture is made up of 4 holons, units that can be combined or

separated into more holons. They are the Executor, Planner, Resource and

Product holons. More details are then given of how holons are aggregated to

create the different levels of abstraction, how specialisation is handled and the

data and functions of each holon.

Advantages of HASA for space applications

• Holonic architecture allows for the system to be described on many

different levels of abstraction.

• Focused on the creation and maintenance of ‘products’ brings with it a

production, safety and reliability centric view of multi-agent systems.

Ideal for space applications.

201 Chapter 6

• Holons specifically tasked with real time execution mean it can be used

for complex control problems that are found in the space domain and not

in the manufacturing domain.

Disadvantages of HASA for space applications

• Novelty of the architecture requires designers to rethink how their

mission will be controlled.

• Has not yet been fully implemented for a space mission so no common

modules to be reused.

Chapter four describes the development of a MAS for the DARWIN mission. The

DARWIN MAS must be tested by using a physical simulation of the environment.

This is due to the fact that the technical challenge in DARWIN is the fact that it

is a formation flying mission with very tight constraints. The distributed nature

of the hardware must also be utilised by any MAS and it was chosen because it

would require a very specific structure in its multi-agent system. The ability of

the HASA architecture to model a variety of missions control systems shows its

versatility in the space domain.

The DARWIN mission itself comprises a number of space telescopes flying in

formation, a central hub then collects the light collected by each telescope and

through selective interferometry aims to stop the light from the star swamping

the light of the exoplanet being imaged. Formation flying and formation control

is covered and the MAS design for the DARWIN mission described. The design of

the MAS consists of 5 different types of main agents, the planning agent, the

formation flying command agent, the formation flying execution agent, the

feedback agent and the negotiation agent. They are homoarchical on the

spacecraft scale but on the formation scale the hierarchy can change to suit the

needs of the mission as agents take turns in verifying others actions and certain

craft take the lead. The MAS was then described using the HASA architecture for

clarity. The issue of how to measure the performance of multi-agent systems is

discussed and the outcome is that the best way to measure their performance is

to simulate their operation in an environment as close to reality as possible. As

such, a novel multi-agent testing suite was developed to see how the DARWIN

MAS would operate in a number of operational scenarios. The simulation suite

202 Chapter 6

itself acts as an interface between the running MAS on its own hardware and

models of the agents external environment, internal knowledge and their

intelligent behaviours. Utilising these fundamental models in this way allows for

them to be changed and compared at will without affecting the underlying

structure of the MAS or rewriting the agent code. In all of the tests carried out

on the DARWIN MAS using the multi-agent simulation suite the agents were

running in Java and the simulation, internal knowledge and intelligence models

were written in a combination of Matlab, C++ and Java. This ability to easily

integrate models written in any language was the major innovation in the multi-

agent simulation suite.

A number of test scenarios were developed to ascertain the performance and

feasibility of the multi-agent formation flying design. All of the formation flying

scenarios were carried out in predefined halo orbit at the second Lagrangian

point. The dynamics of the system were modelled using a standard approach to

modelling the circular restricted three body problem. The initial scenarios

showed the station keeping requirements of a single satellite on the defined

reference halo orbit. Other craft were then added to show how the relative

distances between spacecraft changed over the course of an orbit. The collision

avoidance mechanism of the MAS was then tested using scenarios where all of

the craft used the CAM and a scenario where one of the crafts control system

had failed and was not responding in the usual way. The primary formation that

was tested was 12 satellites, one each on the vertices of an icosahedron. This

formation had four satellites each on orthogonal planes and was complex enough

to model the changes in formation and common problems found in formation

flying missions. The underlying controller used in the formation flying scenarios

was a proportional-integral-derivative feedback controller and this coupled with

the information shared by each of the satellites was enough to hold the

satellites in the icosahedron formation. A number of formation changes were

also tested. A change in size of the formation in only one dimension was the

simplest, followed by a change in formation size in all three dimensions. A

change from the icosahedron formation to a ring was also tested as well as

satellites changing positions within a formation without affecting the other

satellites. Another simulation model was developed and while using the same

equations of motion from the CRTBP it was implemented using the Matlab

203 Chapter 6

Simulink tool which used a different interface to the test suite and allowed the

use of Simulink specific tools, such as an automatic PID gain tuner. Another

major benefit of this approach and this test suite is the user's ability to easily

change intelligence models. To demonstrate this, the PID based avoidance

algorithm was replaced with a model based on ORCA. This was implemented in

a different language to that of the agents but as it used the standard interfaces

that are part of the test suite this was not a problem. The ORCA based

controller was tested using the same agents in the icosahedron and it was shown

that it allowed for collision avoidance in otherwise dangerous scenarios. To

demonstrate the scalability of the test suite another scenario was created

involving 812 satellites all crossing through a single point, the test was

successfully carried out and the results show that collision were avoided.

There are a number of steps that would be required in order to fully realise this

architecture for a real DARWIN type mission. The recursive nature of the HASA

architecture means that it is ideally suited to building up the system from sub-

systems up. The logical place to start would be to fully implement the control

aspects of the mission on a hardware test bed. It is much more likely that HASA

subsystems will be flown before an entirely HASA space mission so the hardware

test bed validated control system could be used on missions to prove the utility

in the architecture.

In Chapter five the GMES mission is introduced. Special attention is paid to the

services that GMES is designed to provide and the hardware and software

components of the mission. The role of the customer is extremely important in

this mission and the flow of customers requesting products and the mission

delivering them is discussed. The hardware side of the mission is also discussed,

the key issues being the heterogeneity of the constellation and the possibility for

some satellites to have the capability for full autonomy. The possibilities

offered by fully autonomous Earth observation satellites and how an autonomous

science agent could operate, are outlined. What follows is the description of a

multi-agent system for GMES and a definition of this MAS using the HASA

architecture.

204 Chapter 6

The MAS can be thought of as comprising four main components, a ground

segment tasked with acquiring user requests and acting as a central negotiator,

a multi-mission layer which acts as a proxy for the satellites combined, a mission

layer which interacts with only one satellite and acts as its proxy during

negotiations and finally the space segment which are the agents that reside on

the satellites themselves. This proposed MAS for GMES is then implemented

using the HASA architecture which illustrates how a complex MAS can be defined

succinctly.

The final section of Chapter five describes the work on creating a novel image

selection algorithm for GMES using global optimisation techniques. The

algorithm itself is described and its key features are the fact that the user

supplies a set of constraints with which to sort the images which can be

generated by the constellation. If the constraints supplied by the customer

return no images then a global optimisation step on the data set, which suggests

changes to the customer's constraints, is performed. This relaxes the customer's

constraints enough to return images while still maintaining their original intent.

This global optimisation step returns results significantly faster than using

conventional sorting algorithms on what would be an extremely large global

dataset. Finally the user interface and client server infrastructure for using this

algorithm is demonstrated with case studies showing its use in practice on a test

dataset.

6.2 Fulfilled Objectives

The aim of this thesis was to see if the control of multi satellite space mission

could be improved by the use of distributed multi-agent systems. This

hypothesis was explored by the creation of a novel multi-agent architecture,

HASA, which was then used to design multi-agent system for two contrasting

multi satellite missions. The DARWIN MAS design had to be able to cope with the

challenges presented by formation flying. In order to test the DARWIN MAS a

multi-agent test suite was built and the MAS run through a series of increasingly

challenging scenarios using a variety of simulation and intelligence models. The

GMES MAS design needed to deal with complex user requests and did so using a

205 Chapter 6

novel image selection algorithm and interface. It also had to successfully bridge

the gap between the ground and space segment and allow for a complex bidding

and negotiation framework.

6.3 Limitations and Further Research

The clear next step for this work is to further implement both of the MAS designs

and design MAS for other missions. This work would feedback valuable

knowledge which can be used to improve the HASA architecture. As multi-agent

systems are developed for more missions, be it using HASA or not, the more

compatible intelligence and simulation models become available. This will help

multi-agent systems make the leap from theory and technology demonstration

missions to enabling wholly new types of mission that would be not be possible

with existing technologies.

The creation of a set of standard HASA agents that are able to carry out most

generic spacecraft functions would be worthwhile as this would allow more time

to be dedicated to the tasks and subsystems that can benefit the most from

more autonomy. In this work development effort had to be concentrated on a

subset of possible MAS applications (autonomous order/request management and

autonomous formation flying). One of the main limitations of this work was thus

the fact that the full set of spacecraft sub-systems were not included in the

simulations.

Larger scale simulations of both the GMES and DARWIN MAS would be of great

benefit in both fleshing out the agents themselves and offering insights into the

operation of these types of missions which will become more prevalent in the

future.

Overall I believe this work best acts a foundation for future work on multi-agent

systems and spacecraft autonomy by providing a flexible agent architecture,

multi-agent system designs based on this architecture and the development of a

multi-agent simulation suite specifically for space missions.

206 References

References

[1] M. A. Swartwout, “Engineering data summaries for space missions,” in
Proceedings of the IEEE Aerospace Conference, 1998, vol. 2, pp. 391–401.

[2] J. Wyatt, R. Sherwood, M. Sue, and J. Szijjarto, “Flight validation of on-
demand operations: the deep space one beacon monitor operations
experiment,” NASA JPL Report, 1999.

[3] R. L. Ticker and D. McLennan, “NASA’s new millennium space technology 5
(ST5) project,” in Proceedings of the IEEE Aerospace Conference, 2000,
vol. 7, pp. 609–617.

[4] A. S. Driesman, B. W. Ballard, D. E. Rodriguez, and S. J. Offenbacher,
“STEREO observatory trade studies and resulting architecture,” in
Proceedings of the IEEE Aerospace Conference, 2001, vol. 1, pp. 1–63.

[5] W. Truszkowski, M. Hinchey, J. Rash, and C. Rouff, “NASA’s swarm
missions: The challenge of building autonomous software,” IT professional,
vol. 6, no. 5, pp. 47–52, 2004.

[6] J. J. Guzmán and A. Edery, “Mission design for the MMS tetrahedron
formation,” in Proceedings of the IEEE Aerospace Conference, 2004, vol.
1, pp. 533–540.

[7] IBM, “An architectural blueprint for autonomic computing.,” white paper,
2004.

[8] S. Franklin and A. Graesser, “Is it an agent, or just a program? A taxonomy
for autonomous agents,” in Proceedings of the Third International
Workshop on Agent Theories, Architectures, and Language, 1996.

[9] M. Wooldridge, An Introduction to MultiAgent Systems. John Wiley & Sons,
2009, p. 484.

[10] B. L. Tapscott, Elementary Applied Symbolic Logic. University Press of
America, 1986, p. 532.

[11] D. Dennett, The Intentional Stance. MIT Press, 1989, p. 400.

[12] W. Brenner, R. Zarnekow, H. Wittig, and C. Schubert, Intelligent Software
Agents: Foundations and Applications. Springer-Verlag, 1998, p. 326.

[13] P. Maes, “The agent network architecture (ANA),” ACM SIGART Bulletin,
vol. 2, no. 4, pp. 115–120, 1991.

[14] L. Strippoli and G. Radice, “Distributed agents for autonomy technical
note 1: Identification of mission scenarios,” 2008.

207 References

[15] L. Strippoli, G. Radice, J. Ocon, and S. Grey, “Distributed agents for
autonomy technical note 2: Identification of Distributed Agents
Architecture and Selection of Reference Mission Scenario,” 2008.

[16] A. Cesta, J. Ocon, R. Rasconi, and A. Montero, “Simulating On-Board
Autonomy in a Multi-Agent System with Planning and Scheduling,” in
Proceedings of the 20th International Conference on Automated Planning
and Scheduling, 2010, pp. 15–20.

[17] J. Ocon, E. Rivero, L. Strippoli, and M. Molina, “Agents for Space
Operations,” in Proceedings of the SpaceOps Conference, …, 2008.

[18] J. Ocon, “DAFA - Distributed Agents for Autonomy - Final Report,” 2009.

[19] M. Genesereth and N. Nilsson, Logical foundations of artificial
intelligence. Morgan Kaufmann, 1987.

[20] S. Russell and P. Norvig, “Artificial intelligence: a modern approach,”
Pearson, 2009.

[21] C. Castelfranchi, F. Dignum, C. Jonker, and J. Treur, “Deliberative
normative agents: Principles and architecture,” in Proceedings of the 6th
International Workshop on Intelligent Agents, Agent Theories,
Architectures, and Languages, 2000, pp. 364–378.

[22] H. Dreyfus, “From Socrates to expert systems The limits of calculative
rationality,” Technology in Society, vol. 6, no. 3, pp. 217–233, 1984.

[23] M. Dastani, F. Dignum, and J. J. Meyer, “Autonomy and agent
deliberation,” Agents and Computational Autonomy, pp. 114–127, 2003.

[24] E. H. Durfee and J. S. Rosenschein, “Distributed problem solving and
multi-agent systems: Comparisons and examples,” AAAI Technical Report,
1994.

[25] M. E. Pollack and M. Ringuette, “Introducing the Tileworld: Experimentally
evaluating agent architectures,” in Proceedings of the eighth National
conference on Artificial intelligence, 1990, pp. 183–189.

[26] M. Wooldridge and N. R. Jennings, “Intelligent agents: Theory and
practice,” The knowledge engineering review, vol. 10, no. 02, pp. 115–
152, 2009.

[27] D. Kinny and M. Georgeff, “Commitment and effectiveness of situated
agents,” in Proceedings of the twelfth international joint conference on
artificial intelligence, 1991, pp. 82–88.

[28] R. A. Brooks, “Intelligence without representation,” Artificial intelligence,
vol. 47, pp. 139–159, Oct. 1991.

[29] J. Müller, “The Design of Autonomous Agents: A Layered Approach,”
Lecture Notes in Artificial Intelligence, vol. 1177, 1997.

208 References

[30] A. Giret and V. Botti, “Towards a recursive agent oriented methodology
for large-scale MAS,” in Agent-Oriented Software Engineering IV, Springer,
2003, pp. 135–161.

[31] T. Finin, R. Fritzson, D. McKay, and R. McEntire, “KQML as an agent
communication language,” Proceedings of the third …, pp. 456–463, 1994.

[32] Foundation for Intelligent Physical Agents, “FIPA ACL Message Structure
Specification,” 2002.

[33] Foundation for Intelligent Physical Agents, “FIPA SL Content Language
Specification,” 2002.

[34] Foundation for Intelligent Physical Agents, “FIPA KIF Content Language
Specification,” 2003.

[35] R. Axelrod, The complexity of cooperation: Agent-based models of conflict
and cooperation. Princeton University Press, 1997.

[36] P. Pasquier and B. Chaib-draa, “The cognitive coherence approach for
agent communication pragmatics,” in Proceedings of the second
international joint conference on Autonomous agents and multiagent
systems, 2003, pp. 544–551.

[37] C. Castelfranchi, “Guarantees for autonomy in cognitive agent
architecture,” in Lecture Notes in Computer Science, vol. 890, M.
Wooldridge and N. R. Jennings, Eds. Springer, 1995, pp. 56–70.

[38] N. Chomsky, Language and Problems of Knowledge: The Managua
Lectures. MIT Press, 1987.

[39] D. E. Bernard, E. B. Gamble, and N. F. Rouquette, “Remote Agent
Experiment DS1 Technology Validation Report,” NASA JPL Technical
Report, 2000.

[40] G. Rabideau, D. Tran, and S. Chien, “Mission Operations of Earth
Observing-1 with Onboard Autonomy,” NASA JPL Technical Report, 2006.

[41] G. Weiss, Multiagent systems: a modern approach to distributed artificial
intelligence. MIT Press, 2000.

[42] B. Hayes-Roth, K. Pfleger, and P. Lalanda, “A domain-specific software
architecture for adaptive intelligent systems,” IEEE Transactions on
Software Engineering, vol. 21, no. 4, pp. 288–301, Apr. 1995.

[43] T. Ishida, “Parallel, distributed and multi–agent production systems–A
research foundation for distributed artificial intelligence,” in Proceedings
of the First International Conference on Multi-Agent Systems, 1995, pp.
416–422.

[44] R. Brooks, “A robust layered control system for a mobile robot,” IEEE
Journal of Robotics and Automation, vol. 2, no. 1, pp. 14–23, 1986.

209 References

[45] P. H. Enslow, “What is a ‘Distributed’ Data Processing System?,”
Computer, vol. 11, no. 1, pp. 13–21, Jan. 1978.

[46] T. Vamos, “Cooperative Systems- An Evolutionary Perspective,” IEEE
Control Systems Magazine, vol. 3, no. 3, pp. 9–14, 1983.

[47] J. Hatvany, “Intelligence and cooperation in heterarchic manufacturing
systems,” Robotics and Computer-Integrated Manufacturing, vol. 2, no. 2,
pp. 101–104, 1985.

[48] R. G. Smith, “The Contract Net Protocol : High-Level Communication and
Control in a Distributed Problem Solver,” IEEE Transactions on computers,
vol. C–29, no. 12, pp. 1104–1113, 1980.

[49] M. Genesereth and S. Ketchpel, “Software agents,” Stanford University,
1994.

[50] J. G. Mcguire, D. R. Kuokka, and J. C. Weber, “SHADE : Technology for
Knowledge-Based Collaborative Engineering,” Journal of Concurrent
Engineering: Applications and Research, vol. 3, pp. 1–17, 1993.

[51] A. M. Sanchez-Montero, “DAFA Architecture Design Document,” 2008.

[52] “SeSam - Multi-Agent Simulation Environment.” [Online]. Available:
http://www.simsesam.de/. [Accessed: 25-Apr-2012].

[53] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand, “An
architecture for autonomy,” The International Journal of Robotics
Research, vol. 17, no. 4, p. 315, 1998.

[54] BBN-Technologies, “Cougaar Architecture Document,” 2004.

[55] N. Criado, E. Argente, and V. Botti, “A BDI architecture for normative
decision making,” … of the 9th International Conference on …, pp. 1383–
1384, 2010.

[56] V. Hilaire, A. Koukam, and S. Rodriguez, “An adaptative agent
architecture for holonic multi-agent systems,” ACM Transactions on
Autonomous and Adaptive Systems, vol. 3, no. 1, pp. 1–24, Mar. 2008.

[57] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das, “The
CLARAty architecture for robotic autonomy,” In Aerospace Conference,
vol. pages, pp. 121–132, 2001.

[58] M. Ghallab, F. Ingrand, S. Lemai, and F. Py, “Architecture and tools for
autonomy in space,” ISAIRAS, Montreal, 2001.

[59] G. Verfaillie and M. C. Charmeau, “A generic modular architecture for the
control of an autonomous spacecraft,” in 5th International Workshop on
Planning and Scheduling For Space. USA, Baltimore, 2006.

210 References

[60] M. Sierhuis and W. Clancey, “NASA’s OCA Mirroring System An application
of multiagent systems in Mission Control,” … Agents and Multi Agent …,
pp. 85–92, 2009.

[61] P. Leitao and F. Restivo, “ADACOR: A holonic architecture for agile and
adaptive manufacturing control,” Computers in Industry, vol. 57, no. 2,
pp. 121–130, Feb. 2006.

[62] H. Van Brussel, J. Wyns, and P. Valckenaers, “Reference architecture for
holonic manufacturing systems: PROSA,” Computers in industry, vol. 37,
no. 3, pp. 255–274, 1998.

[63] A. Koestler, The ghost in the machine. Macmillan, 1968.

[64] H. Simon, Sciences of the Artificial. MIT Press, 1996.

[65] M. Fletcher, E. Garcia-Herreros, and J. H. Christensen, “An open
architecture for holonic cooperation and autonomy,” Proceedings of the
11th International Workshop on Database and Expert Systems
Applications, pp. 224–230, 2000.

[66] S. M. Deen, Agent-based manufacturing: advances in the holonic
approach. Springer, 2003.

[67] S. Balasubramanian and R. Brennan, “An architecture for metamorphic
control of holonic manufacturing systems,” Computers in Industry, vol. 46,
no. 1, pp. 13–31, Aug. 2001.

[68] A. Labeyrie, H. Coroller, and J. Dejonghe, “Luciola hypertelescope space
observatory: versatile, upgradable high-resolution imaging, from stars to
deep-field cosmology,” Experimental Astronomy, vol. 23, no. 1, pp. 463–
490, Sep. 2008.

[69] J. Kramer, “Dynamic configuration for distributed systems,” IEEE
Transactions on Software Engineering, no. 4, pp. 424–436, 1985.

[70] N. Leveson, System safety engineering: Back to the future. MIT Press,
2002.

[71] S. Grey, G. Radice, M. Vasile, and Q. Wijnands, “Design of a Multi-Agent
System for Cost Reduction in Multi-Craft Space Missions,” in Proceedings of
the 60th International Astronautical Congress, 2009, pp. 7072–7078.

[72] G. Lund and H. Bonnet, “Darwin-the Infrared Space Interferometer,”
Comptes Rendus de l’Académie des Sciences - Series IV - Physics, vol. 2,
no. 1, pp. 137–148, 2001.

[73] M. Ollivier, J. M. Mariotti, A. Léger, P. Sékulic, J. Brunaud, and G. Michel,
“Nulling interferometry for the DARWIN space mission,” Comptes Rendus
de l’Académie des Sciences - Series IV - Physics, vol. 2, no. 1, pp. 149–156,
2001.

211 References

[74] A. Léger, “Strategies for remote detection of life–DARWIN-IRSI and TPF
missions–,” Advances in Space Research, vol. 25, no. 11, pp. 2209–2223,
2000.

[75] M. Hechler, M. Mora, M. Sancheznogales, and A. Yanez, “Orbit concepts at
L2 for Soyuz launches from Kourou,” Acta Astronautica, vol. 62, no. 2–3,
pp. 140–150, Jan. 2008.

[76] R. N. Bracewell, “Detecting nonsolar planets by spinning infrared
interferometer,” Nature, vol. 274, pp. 780–781, 1978.

[77] D. Savransky, N. J. Kasdin, and R. J. Vanderbei, “An evaluation of the
effects of non-uniform exo-zodiacal dust distributions on planetary
observations,” Proceedings of SPIE, Techniques and Instrumentation for
Detection of Exoplanets IV, vol. 7440, 2009.

[78] M. Ollivier, “Towards the spectroscopic analysis of Earthlike planets: the
DARWIN/TPF project,” Comptes Rendus Physique, vol. 8, no. 3–4, pp. 408–
414, Apr. 2007.

[79] J. Bermyn, “PROBA-project for on-board autonomy,” Air & Space Europe,
vol. 2, no. 1, pp. 70–76, 2000.

[80] “ESA - Proba Missions - About Proba 3.” [Online]. Available:
http://www.esa.int/SPECIALS/Proba/SEMG2R4PVFG_0.html.

[81] W. Ren, “On Consensus Algorithms for Double-Integrator Dynamics,” IEEE
Transactions on Automatic Control, vol. 53, no. 6, pp. 1503–1509, Jul.
2008.

[82] R. W. Beard and E. M. Atkins, “A survey of consensus problems in multi-
agent coordination,” Proceedings of the American Control Conference, pp.
1859–1864, 2005.

[83] J. Marshall and M. Brouke, “A pursuit strategy for wheeled-vehicle
formations,” in Proceedings of the IEEE conference on Decision and
Control, 2003, pp. 2555–2560.

[84] V. Gupta, “Stability analysis of stochastically varying formations of
dynamic agents,” in Proceedings of the IEEE Conference on Decision and
Control, 2003, pp. 504–509.

[85] J. R. Lawton and R. W. Beard, “Synchronized multiple spacecraft
rotations,” Automatica, vol. 38, no. 8, pp. 1359–1364, 2002.

[86] P. Gurfil and E. Kivelevitch, “Flock properties effect on task assignment
and formation flying of cooperating unmanned aerial vehicles,”
Proceedings of the Institution of Mechanical Engineers, Part G: Journal of
Aerospace Engineering, vol. 221, no. 3, pp. 401–416, Jan. 2007.

[87] C. V. M. Fridlund, “Darwin-the infrared space interferometry mission,” ESA
Bulletin 103, pp. 20–63, 2000.

212 References

[88] A. Altman, A. Procaccia, and M. Tennenholtz, “Nonmanipulable selections
from a tournament,” in Proceedings of the international joint conference
on Artifical intelligence, 2009, pp. 27–32.

[89] P. Faliszewski, E. Hemaspaandra, and L. A. Hemaspaandra, “Multimode
control attacks on elections,” in Proceedings of the international joint
conference on artifical intelligence, 2009, pp. 128–133.

[90] A. Procaccia, “Thou shalt covet thy neighbor’s cake,” in Proceedings of
the international joint conference on artificial intelligence, 2009, pp.
239–244.

[91] H. Hexmoor, “Autonomy in Spacecraft Software Architecture,” in
Proceedings of the international FLAIRS conference, 1999, pp. 69–72.

[92] S. Boccaletti, C. Grebogi, and Y. Lai, “The control of chaos: theory and
applications,” Physics Reports, vol. 329, pp. 103–197, 2000.

[93] J. Klein, “Breve: a 3d environment for the simulation of decentralized
systems and artificial life,” Proceedings of the 8th International
Conference on the Simulation and Synthesis of Living Systems, p. 329,
2003.

[94] S. Luke, “MASON: A Multiagent Simulation Environment,” Simulation:
Transactions of the society for Modeling and Simulation, vol. 81, no. 7,
pp. 517–527, Jul. 2005.

[95] N. Minar, R. Burkhart, and C. Langton, “The swarm simulation system: A
toolkit for building multi-agent simulations,” Santa Fe Institute Working
Paper, pp. 1–11, 1996.

[96] G. Sohl and J. L. Kellogg, “Distributed Simulation for Formation Flying
Applications,” NASA JPL Technical Report, 2005.

[97] S. Grey and G. Radice, “Design and Testing of an Autonomous Multi-Agent
Based Spacecraft Controller,” in Proceedings of the 61st International
Astronautical Congress, 2010.

[98] R. Werninghaus, “The TerraSAR-X Mission,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 48, no. 2, pp. 606–614, 2006.

[99] G. Krieger, A. Moreira, and H. Fiedler, “TanDEM-X: A Satellite Formation
for High-Resolution SAR Interferometry,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 45, no. 11, pp. 3317–3341, 2007.

[100] H. Hellman, S. Persson, and B. Larsson, “PRISMA – a formation flying
mission on the lanchpad,” in Proceedings of the International
Astronautical Congress, 2009.

[101] D. P. Scharf, F. Y. Hadaegh, and S. R. Ploen, “A survey of spacecraft
formation flying guidance and control (part II): control,” Proceedings of
the American Control Conference, pp. 2976–2985, 2004.

213 References

[102] K. Thanapalan and S. M. Veres, “Agent Based Controller for Satellite
Formation Flying,” in Proceedings of the International Conference on
Intelligent Sensors, Sensor Networks and Information Processing, 2005, pp.
385–389.

[103] R. W. Beard, J. Lawton, and F. Y. Hadaegh, “A coordination architecture
for spacecraft formation control,” IEEE Transactions on Control Systems
Technology, vol. 9, no. 6, pp. 777–790, 2001.

[104] R. Olfati-saber and R. M. Murray, “Distributed cooperative control of
multiple vehicle formations using structural potential functions,”
Proceedings of the World Congress of the International Federation of
Automatic Control, 2002.

[105] E. M. C. Kong, “Spacecraft formation flight exploiting potential fields,”
Massachusetts Institute of Technology, 2002.

[106] F. E. Schneider and D. Wildermuth, “A potential field based approach to
multi robot formation navigation,” Proceedings of the IEEE International
Conference on Robotics, Intelligent Systems and Signal Processing, pp.
680–685, 2003.

[107] A. Pereira and L. Hsu, “Adaptive formation control using artificial
potentials for Euler-Lagrange,” Proceedings of the World Congress of the
International Federation of Automatic Control, pp. 10788–10793, 2008.

[108] D. J. Bennet and C. R. Mcinnes, “Pattern transition in spacecraft formation
flying via the artificial potential field method and bifurcation theory,”
Proceedings of the International Symposium on Formation Flying, Missions
and Technologies, 2008.

[109] G. Wie, Space Vehicle Dynamics and Control. AIAA, 1998, p. 661.

[110] C. Simo, G. Gomez, and J. Llibre, “On the optimal station keeping control
of halo orbits,” Acta Astronautica, vol. 15, no. 6–7, pp. 391–397, Jun.
1987.

[111] G. Gómez, M. Lo, J. Masdemont, and K. Museth, “Simulation of Formation
Flight Near L2 for the TPF Mission,” NASA Technical Report, 2001.

[112] J. D. M. James, “Celestial Mechanics Notes Set 5: Symmetric Periodic
Orbits of the Circular Restricted Three Body Problem and their Stable and
Unstable Manifolds.” 2006.

[113] G. Gómez, À. Jorba, C. Simó, and J. Masdemont, Dynamics And Mission
Design Near Libration Points, Volume III: Advanced Methods for Collinear
Points. World Scientific, 2001.

[114] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa, “JADE, a white paper,”
Telecom Italia report, 2003.

214 References

[115] F. L. Bellifemine, G. Caire, and D. Greenwood, Developing Multi-agent
Systems with JADE. Wiley-Blackwell, 2007.

[116] D. J. Wilkie, P. M. Johnson, and D. R. Katebi, Control Engineering.
Palgrave Macmillan, 2001, pp. 277–311.

[117] J. R. Dormand, “A family of embedded Runge-Kutta formulae,” Journal of
computational and applied mathematics, vol. 6, no. 1, pp. 19–26, Mar.
1980.

[118] L. Shampine and M. Gordon, Computer solution of ordinary differential
equations: the initial value problem. W.H.Freeman & Co Ltd, 1975.

[119] J. Van Den Berg, S. Guy, M. Lin, and D. Manocha, “Reciprocal n-body
collision avoidance,” in Proceedings of the International Symposium of
Robot research, 2009.

[120] E. Oks and M. Sharir, “Minkowski Sums of Monotone and General Simple
Polygons,” Discrete & Computational Geometry, vol. 35, no. 2, pp. 223–
240, Dec. 2005.

[121] “GMES Official Site,” 2011. [Online]. Available: http://www.gmes.info/.
[Accessed: 13-Jan-2011].

[122] J. Schmetz, P. Pili, and S. Tjemkes, “An Introduction to Meteosat Second
Generation (MSG),” Bulletin of the American Meteorological Society, vol.
83, no. 7, pp. 991–991, Jul. 2002.

[123] Y. Desnos, C. Buck, and J. Guijarro, “The ENVISAT advanced synthetic
aperture radar system,” in Proceedings of the international geoscience
and remote sensing symposium, 2000, no. 39, pp. 991–991.

[124] J. Aschbacher and M. P. Milagro-Pérez, “The European Earth monitoring
(GMES) programme: Status and perspectives,” Remote Sensing of
Environment, vol. 120, no. 2012, pp. 3–8, May 2012.

[125] P. F. Levelt and R. Noordhoek, “CAMELOT Final Report Issue 1,” ESA, 2009.

[126] H. J. Kramer, Observation of the Earth and Its Environment: Survey of
Missions and Sensors. Springer, 2001.

[127] M. C. Hansen and T. R. Loveland, “A review of large area monitoring of
land cover change using Landsat data,” Remote Sensing of Environment,
vol. 122, pp. 66–74, Feb. 2012.

[128] “Charter on cooperation to achieve the coordinated use of space facilities
in the event of natural or technological disaster.” [Online]. Available:
http://www.disasterscharter.org/web/charter/charter.

[129] Astrium, “Astrium GEO-Information Services SPOT International Price List,”
2012.

215 References

[130] VEGA, “EOLI-SA 9.1.0 - User Guide,” 2011.

[131] “CREPAD: centro de recepción, proceso, archivo y distribución.” [Online].
Available: http://crepadweb.cec.inta.es/en/index-en.html. [Accessed:
03-Apr-2012].

[132] “EO Portal.” [Online]. Available: http://services.eoportal.org. [Accessed:
05-May-2012].

[133] S. Chien, R. Sherwood, and D. Tran, “The EO-1 Autonomous Science
Agent,” in Proceedings of the international conference on autonomous
agents and multi-agent systems, 2004.

[134] D. Tran, S. Chien, and R. Sherwood, “The autonomous sciencecraft
experiment onboard the EO-1 spacecraft,” in Proceedings of the
conference on artifical intelligence, 2004.

[135] R. Sherwood, S. Chien, D. Tran, and B. Cichy, “Intelligent systems in
space: the EO-1 Autonomous Sciencecraft,” NASA JPL Technical Report,
2005.

[136] S. Grey, G. Radice, M. Vasile, and Q. Wijnands, “Image selection algorithm
for GMES mission,” in Proceedings of the 60th International Astronautical
Congress, 2009, pp. 2382–2387.

[137] D. R. Jones, C. D. Perttunen, and B. E. Stuckman, “Lipschitzian
optimization without the Lipschitz constant,” Journal of optimization
theory and application, vol. 79, no. 1, pp. 157–181, 1993.

[138] Y. Brise, “Lipschitzian Optimization , DIRECT Algorithm and Applications,”
Author’s Presentation, 2008.

[139] C. Audet and J. E. Dennis, “Analysis of Generalized Pattern Searches,”
SIAM Journal on Optimization, vol. 13, no. 3, p. 889, 2002.

[140] “Google Web Toolkit.” [Online]. Available:
http://code.google.com/webtoolkit/. [Accessed: 24-Mar-2009].

[141] N. Athanasis, K. Kalabokidis, M. Vaitis, and N. Soulakellis, “Towards a
semantics-based approach in the development of geographic portals,”
Computers & Geosciences, vol. 35, no. 2, pp. 301–308, Feb. 2009.

[142] D. Al-Khudhairy, “Geo-spatial information and technologies in support of
EU crisis management,” International Journal of Digital Earth, vol. 3, no.
1, pp. 16–30, Mar. 2010.

[143] J. . Bessis, J. Bequignon, and A. Mahmood, “Three typical examples of
activation of the International Charter ‘space and major disasters’,”
Advances in Space Research, vol. 33, no. 3, pp. 244–248, 2004.

[144] A. Ito, “Issues in the implementation of the International Charter on Space
and Major Disasters,” Space Policy, vol. 21, no. 2, pp. 141–149, May 2005.

216 References

[145] R. B. Miller, “Response time in man-computer conversational
transactions,” Proceedings of the fall joint computer conference, pp. 267–
277, 1968.

[146] M. E. Crovella and R. L. Carter, “Dynamic Server Selection in the
Internet,” in Proceedings of the Third IEEE Workshop on the Architecture
and Implementation of High Performance Communication Subsystems,
1995.

[147] G. Calzolari, T. Beck, and Y. Doat, “From the EMS concept to operations:
First usage of automated planning and scheduling at ESOC,” in Proceedings
of SpaceOps conference, 2008.

[148] J. Spall, Introduction to Stochastic Search and Optimization: Estimation.
Wiley, 2003.

217 Appendix A - Traditional Spacecraft Control Structure

Appendices

Appendix A - Traditional Spacecraft Control Structure

Ground station component

This component implements the interface between the ground and the space

segments. It provides monitoring data for both systems and allows the user to

execute any given plan or activity on the system. The ground station component

also provides tracking data and computes ground station availability. It requires

data on the antenna used for tracking as well as plans and activities from the

users. Its tasks include the planning and execution of ground based activities,

uplink and downlink from the space segment, processing and pre-processing of

data and data archival. The traditional approach such as the European Space

Agency’s (ESA) ESTRACK Management System (EMS) [147] calculates the

availability of different resources and schedules them accordingly. This

component can benefit from an autonomous agent approach by increasing its

ability to dynamically negotiate between components of the ground station

network.

Data Processing Component

The data processing component processes all of the mission data, generates the

mission products and then distributes these products to the users of the system.

The services it provides are the mission products themselves and interfaces to

allow for the generation of bespoke products to users specifications. The

component requires monitoring data to allow it to create the relevant products

with the relevant guarantees and is tasked with executing the appropriate

processing algorithms to create the right product, calibration and quality control

for these processing chains and consolidating and archiving the generated

products. The traditional approach for this component is to have linear string

processing steps, each step taking the output of the previous step as its input,

newer systems instead use a data driven approach and the processing step is

218 Appendix A - Traditional Spacecraft Control Structure

only carried out when all of its input data is available from all of its supplier

components. The data processing steps are computationally very intensive and

as such are usually distributed to a number of nodes within a larger computing

cluster. The agent approach to the data processing component offers the

possibility of increased performance due to dynamic resource utilisation and

cooperation between agents. For example the ability of an agent to move

within a heterogeneous computing environment will allow the data processing to

dynamically move to where most computation resources can be found and this

would greatly increase resource utilisation. Agents could also be involved at a

higher level, for instance in the dynamic creation of new products for users by

combining existing processing actions available to the agents.

Flight Dynamics Component

The flight dynamics component’s main functionality is concerned with orbit

determination, orbit control, attitude determination and attitude control. It

provides the facility to execute actions singly or as part of some larger orbital

determination procedure. It can make predictions of variables and states based

on its current position and historical data. It can execute manoeuvres and

manipulate manoeuvre data and plans. It also provides flight dynamics data

such as current orbit, current attitude, alerts for significant events and data

concerned with tracking and monitoring of the spacecraft to ensure

communications. The flight dynamics component requires monitoring data of

many of the other subsystems to aid in making the correct manoeuvres or

acquiring the correct orbit. It requires tracking data from the two way

communication link as, in order to achieve a given orbit or position, it must have

reliable data on its current position. The component requires sensor data both

when a manoeuvre is being executed and to confirm data and readings from the

ground. The flight dynamics component must also be privy to the long term plan

for the mission and the current operational plan in order to successfully meet its

requirements. In order to successfully operate the flight dynamics agent must

carry out a wide range of tasks. These include the determination of its current

orbit and attitude both with help from the ground and without. It must also be

able to predict a future orbit and compare orbital possibilities. It must also be

219 Appendix A - Traditional Spacecraft Control Structure

able to predict any future events that may arise from a change in orbit or from

the following the operational plan. The flight dynamics components must also

generate its own plans and activities to acquire the desired orbit or position and

also be able to generate the required flight dynamics data that may be required

by other components.

In the traditional approach the orbital and attitude of the spacecraft is

controlled through a combination of ground based and autonomous control on

board the spacecraft. The flight dynamics system (FDS) is tasked with orbital

determination and control with the on-board attitude and orbital control system

(AOCS) executing these commands and monitoring their progress. The on-board

AOCS is more autonomous than the ground based orbit determination and

control. The FDS is charged with producing a range of data products which are

used by many components including the AOCS such as restituted and predicted

orbit and attitude.

When designing a future autonomous agent based flight dynamics components

the logical conclusion would be to have a fully autonomous AOCS coupled with

extra components that would allow the spacecraft to autonomously carry out on-

board those tasks currently done on the ground. As we have seen before a more

gradual introduction of autonomy is desirable and as such it can be envisaged

that the services currently provided by the ground segment will continue to be

provided by the ground. Instead of the current ground systems there will be a

number of ground based agents who can interact more closely with the agents

present on the spacecraft. The flight dynamics agents would have to closely

work with mission planning, monitoring and control agents in order to operate

effectively. In both the fully autonomous agent case and the component

replacement case the flight dynamics agent would be given goals from the

mission planner. As a precursor level to the ground based agents the current

ground based components, instead of being replaced could just have some

agent-like capability added. This would allow them to be more tightly

integrated with the system and benefit from increased responsiveness and

interlinking with the other agents.

220 Appendix A - Traditional Spacecraft Control Structure

Monitoring and Control Component

The Monitoring and control agent’s primary task is that of controlling the mission

and in order to do this it must also fully monitor the current status of the

mission. This component works at a higher level than other executive

components and can be thought of as taking the global view. This component

also has the important task of supplying the mission control interface to the

users to allow for ground based control. The monitoring and control component

requires access to all of the services tasked with executing activities and

monitoring activities in order to give it a complete view of the current state of

the mission and to be able to make changes to this state as it sees fit. It must

also have access to the operational plan and will use this plan to make decisions

that it deems necessary in order to the complete the said plan. At a lower level

the monitoring and control component must monitor individual space system

elements and define their activities including any parameters needed for

execution. It must also carry out pre-execution validation steps for the desired

commands and procedures and then execute these activities based on the

schedule supplied from the plan or on an ad hoc basis when certain events

occur. Finally it must check that each action is successfully executed by the

correct component.

The traditional monitoring and control component is there to support the

telecommunication and telecommand loops between the ground based

operations and the spacecraft. Some adaptation is possible in the activities to

be carried out but any changes to the operations are usually carried out by the

planning component. The traditional monitoring and control component does

have some autonomy in carrying out closed loop actions and scheduling.

A fully autonomous agent based approach would see major changes to

monitoring and control component as all of the activities currently carried out

would instead be goals within the agent society and monitoring and control

would be an inherent feature of the agent organisation rather than an external

221 Appendix A - Traditional Spacecraft Control Structure

component. In a more conservative approach instead of replacing the

monitoring and control components outright the level of automation and the

number of automated procedures could be increased and agent layers of abilities

be added in order to foster more efficient and reliable communication between

the disparate components and any agents present in the system.

Mission planning component

The mission planning components main functions are to generate a mission plan

and then execute this mission plan. The only outputs of this component are the

mission plans it creates and the commands required to enable the plan to be

executed. The mission planning component takes in planning requests as its

inputs. These planning requests can originate from a number of sources, most

commonly from the end user or client but also from sources internal to the

system such as orbit determination, flight dynamics, etc. In order to create a

useful plan the mission planning component requires planning data. This data

will take the form of task descriptions linked with priorities, dependencies and

costs in both time and other resources. The mission planning component also

needs to have data regarding the successful completion or not of any task in

order to re-plan or proceed with the current plan or re-plan. There are number

of different plans that can be produced to enable the smooth and successful

running of the space mission. The long term plan must be generated based on

mission planning policies and this plan serves as a high level framework for the

more detailed plans that will be produced later. Lower level plans such as

operational plans must then be produced to allow the meeting of the higher

levels plans objectives. The operational plans must bring together the required

activities, their execution constraints and co-dependencies into a conflict free

whole. The mission planning component must also be able to re-plan at any

stage and this requires the execution of the plan to be closely monitored for any

failures or divergences. The plans at all levels must also be monitored and

controlled so that they continue to lead the mission within its constraints and

performance envelope.

222 Appendix A - Traditional Spacecraft Control Structure

In the traditional approach the mission planning component undertakes all of the

tasks related to processing the plan inputs and requests for action, creating

plans for on-board and ground activities as well as resolving any conflicts that

may arise in the system. The mission planning component must process a large

amount of data including user requests, ground station visibility and data

pertaining to the flight dynamics modules and the current state of the

spacecraft and mission as a whole. The plan is executed either from the mission

planning component directly or from the component tasked with carrying out the

specific task. The two main components charged with executing the plan are the

ground station component and the monitoring and control component. The data

processing component tends to be more event driven and as such is less

frequently called upon for execution by the plan.

The distributed autonomous agent approach has a radically different approach to

the centralised structure in the traditional mission planning module. In the

multi-agent system planning and the associated tasks of replanning are

distributed throughout the system and instead of being generated and corrected

by one component it treats planning as a societal problem and agents and

components cooperate to generate the plans needed for the mission.

Ordering component

The ordering components primary function is to transmit the data orders or

requests from the user to the system. The ordering component bridges the gap

between the user and the mission. It must generate and communicate data on

the current service level of the system including data availability and system

availability. It must also deliver mission data to the users when requested and

interface with external systems in order to publish the data for other users of

systems. The ordering component also provides a data request plan as well as

the results themselves from the mission planning component. The requirements

of the ordering component are limited only to the mission data of the mission so

that it can offer the correct products to the users and of course it needs inputs

from users or external systems. The ordering component extends the processing

223 Appendix A - Traditional Spacecraft Control Structure

capabilities of the data processing component and takes the processed data and

creates products for the end users. Once these end products have been created

the ordering component is also tasked with generating and maintaining the

requisite data catalogues to store the products for future use.

In the traditional architecture the ordering component takes all of the user

requests and passes them to the mission planner. It also determines what

constraints are to be put on any given request and what products can be offered

at any given time. The ordering component may have to bring together data

from a number of sources including external sources to create the given project.

There is large scope for improvement when using a distributed autonomous

agent approach for taking the duties of the ordering component. The main

advantage would be that agents could negotiate on behalf of users with the

system in order to better and more quickly provide the users their desired

products. This approach could help to improve overall efficiency and the agents

could be constrained to meet any relevant service level agreements or quality of

service metrics. The ability of agents to replicate, be mobile and cooperate also

offers the scope to increase service availability and further optimise resource

allocation.

Sensor Web Component

The sensor web component is charged with providing the data from the systems

sensors as a service to other components. As well as the data itself the sensor

web component must also provide availability and sensor capability data. The

sensor data must be supplied to its user components in the appropriate form be

it real-time, near real-time or archived/retrieved data. The sensor web might

also require some processing capability in order to give the other components

the data in a format they can utilise. The sensor web component must also allow

for the change in sensors in such that sensors may be added or removed for the

system during development. Sensor data may also be required to be published in

224 Appendix A - Traditional Spacecraft Control Structure

its relatively raw state to users or to the ground for checking of the system. As

such the sensor web component requires data from its sensors, interfaces to

allow for the operation and configuration of the sensors and monitoring data

from other components.

The sensor web component must also determine the capabilities of all the

sensors that are under its purview as well as undertaking simple data processing

tasks that are required to provide any data correlation and data fusion services.

This processing must also include some level of data quality analysis. This

metric is required by other components that will use the sensor data so they can

make informed decisions based on the perceived accuracy of the data they are

given. In order to give components access to retrieved data as well as real-time

and near real-time data the sensor web must instigate its own archiving

procedure of the raw or processed sensor data, whichever is more appropriate,

for the components that require it.

The sensor web component varies greatly from mission to mission and forms a

key component in a system such as Global Monitoring for Environment and

Security (GMES) which will be looked at in more detail in subsequent sections.

The traditional approach for a GMES type mission where the aim is to bring

multiple heterogeneous satellite sensing platforms together is to provide the

sensor data through different channels depending on whether the data is real-

time, near-real-time or retrieved.

The sensor web also provides multiple different mechanisms for users to access

the data such as immediate data provision, subscription based mechanisms,

sending out notification to users and allowing for data search and retrieval. In

the traditional approach the sensor web component also supplies services that

allow users to access data directly on the current service level which includes

the current capabilities and characteristics of any sensors as well as service

availability for the users and data availability which includes what data is being

225 Appendix A - Traditional Spacecraft Control Structure

acquired at any given time and in the immediate future. There must also be

services that allow for new sensors and platforms to be added to the system.

A distributed autonomous agent approach is a very good fit for the requirements

of the sensor web component. It allows for an easy interface between the

external user and system and a multi-agent system comes with inherent abilities

to manage availability and the flow of information that is key to the operation of

this component. This will be covered in much more detail where we outline our

design for a multi-agent system in later chapters.

Mission and Vehicle Management Component

The mission and vehicle management (MVM) component’s main function is to

command any spacecraft and spacecraft subsystems according to the available

mission plan, whether it is uploading from an external source or generated on

the spacecraft. The MVM must also have the ability to trigger a number of

subsystems such as payload and communications.

The MVM must provide commands to the AOCS in order to modify the

spacecraft’s physical state as well as supplying commands to the payload and

communication subsystems in order to carry out the mission tasks. To do this

the MVM needs an uploaded plan and access to the components charged with

failure detection and monitoring in order to be able to trigger any contingency

plan. Its typical tasks involve reading the plan uploaded from the ground or

generated on-board and then parsing this and sending the appropriate commands

to the AOCS, payload and communication components.

In the traditional approach, the plan is generated on the ground and then

uploaded to the MVM. These plans are usually static and cannot be adapted

once they have been uploaded. Often the planning is based on static look up

tables that contain directions on which guidance navigation and control,

226 Appendix A - Traditional Spacecraft Control Structure

communication or payload modes are to be triggered for any given event or on

pre-defined schedule. There is usually a number of such look up tables for the

different mission phases as well as tables for contingency operations.

In the distributed autonomous agent approach the MVM will be entirely replaced.

The use of static plans and look up tables can be replaced by a dynamic set of

autonomous agents which will enhance the capability of this component.

Examples of the agents that could be used are:

Spacecraft manager agent: This agent is a high level deliberative agent and the

main decisional component of the spacecraft control system. It provides plans

to the other agents, notably the AOCS agent and the payload agents based on

high level goals sent from the ground. The plan is dynamic and this allows the

agent to re-plan in the case of an unexpected event or error in the plan’s

execution. The plan can also be updated autonomously if new goals are

received from the ground or the scientific component in mid-execution. The

spacecraft manager agent will also negotiate with any communication agents to

try to optimise the data downlink and uplink process. In more complex systems

the agent can also interact with other spacecraft manager agents on other

spacecraft or multiple ground sites to try to optimise the overall mission plan for

the good of the collective. This agent will also have a close relationship with

the failure detection, isolation and recovery (FDIR) agent in order to manage any

emergency situations and will also have access to the reactive component of the

AOCS agent the same reason.

On board science agent: This agent monitors the payload of the spacecraft

system and autonomously detects unplanned scientific events. In the event of a

new science event being detected a goal is formulated, for example to observe

the phenomenon, and this is then sent to the spacecraft manager agent. This

agent will obviously be of most utility in scientific observation missions but may

also allow for mission to gather scientific data outwith their original

observational scope if the opportunity arises and they are able.

227 Appendix A - Traditional Spacecraft Control Structure

Data downlink agent: This agent is concerned with downloading data to the

ground, as such it will generate a plan to downlink as much of its data as

possible based on various priorities and then negotiate this plan with the

spacecraft manager agent as this plan may well conflict with the requirements

of the spacecraft as a whole. This method could help to improve the quality and

response time of the data being downloaded by having a dedicated agent

generating plans.

Resource manager agent: This agent builds a picture of all the available

resources of the spacecraft system as whole and negotiates the use of these

resources with the spacecraft manager agent in order to produce valid plans

based on actual availability of any spacecraft resources.

Attitude and Orbit Control System (AOCS) component

The main functionality of the AOCS is to send commands to the actuators of the

spacecraft in order to follow an orbital and attitude profile as supplied by the

spacecraft plan. It may also have secondary functionality such as computing

optimal attitude for communications and for proper alignment of the solar

panels. In order to operate effectively the AOCS must have a number of inputs.

It requires measurements from the spacecraft sensors in order to ascertain its

position and current state. It must also have guidance navigation and control

data such as the current GNC mode and other parameters. This is so that it

knows what orbit and attitude it should try to achieve. In order for the

spacecraft to recover from any failure the AOCS must have access to and

understand the commands coming from the FDIR so that recovery actions can be

undertaken.

The AOCS must know the spacecraft's current state in order to operate

effectively and this is derived from the spacecraft's sensor data. Once this state

is known, the AOCS must generate a mission profile which meets the

228 Appendix A - Traditional Spacecraft Control Structure

requirements of the mission plan and is feasible given its current requirements.

The AOCS must also be able to detect possible hazards to the space craft and

when the hazard involves a possible collision be able to take direct action to

avoid or mitigate the hazard.

In the traditional approach the AOCS is frequently non-autonomous. In this case

all of the AOCS tasks are carried out on the ground and then uploaded for

execution by the spacecraft. Thus the current state of the spacecraft is

deduced on the ground from sensor readings and the appropriate mission profile

is uploaded in order to make the spacecraft maintain or acquire the desired

states/orbit. The attitude guidance system has been a fertile area for the

development of autonomy and it is fairly common to have an autonomous

guidance system that works in conjunction with target profiles supplied from the

ground. Having both autonomous attitude guidance and autonomous orbital

navigation has proved more difficult due the complexity of the orbital guidance

algorithm and the lack of on-board knowledge of the spacecraft's full current

state.

In fully autonomous missions the area with a lot to gain is the AOCS. In fully

autonomous systems the guidance system autonomously generates an orbital

profile and manoeuvres which adhere to the mission profile. The current

attitude and trajectory are autonomously estimated based on the current sensor

readings. The AOCS is then charged with generating commands which the

actuators use to follow the reference profiles generated on the spacecraft. The

collision and hazard avoidance abilities of the AOCS are also autonomous in

many of today's systems and are able to compute their own navigation solution

to avoid the hazard autonomously. .

Using autonomous agents for the AOCS would allow for improvements over the

traditional systems by having a closer relationship with the spacecraft manager

agent. An autonomous agent based AOCS will be able to transform the high level

plan it receives and execute it robustly. The plan will be decomposed into steps

229 Appendix A - Traditional Spacecraft Control Structure

and its execution monitored in real-time within the agent community. This close

interaction between the planning and control could allow for more flexible

operation, allowing the spacecraft to react more effectively and quicker to

unknown events.

FDIR Component

The FDIR is tasked with monitoring all of the different sub-systems and

components within the spacecraft and then detecting, isolating and recovering

from these failures either by instigating action via some other system or

triggering the use of redundant systems. If a failure that cannot be resolved

satisfactorily is detected then the FDIR must be able to instruct the spacecraft

to adopt a "safe mode", this is achieved by close contact with the mission vehicle

manager component.

The FDIR must be able to provide commands to all of the components or system

it monitors in order to effect a change, this includes commands to instigate any

safe mode protocols. To do this it needs accurate status data for all of the

monitored components and systems. This status data must be analysed and

conclusions drawn about the health of any given system or component, even if it

does not itself know it has failed. For cases such as these the FDIR must have

the ability to forcibly shut down a unit and replace it with a redundant system,

this gives the FDIR a lot of power within the system and any errors in the FDIR

could lead to a total system shut-down. Likewise should FDIR send a safe mode

command in error this will greatly reduce the effectiveness of the spacecraft to

complete its mission as it may take a significant amount of time to recover from

the safe mode.

The traditional approach to FDIR is to monitor the space segment and make any

decisions on the ground. Sensor data and system state information is collected

on the ground and analysed to check for any errors and then changes uploaded

to the spacecraft to correct these errors. More autonomous FDIR systems have

230 Appendix A - Traditional Spacecraft Control Structure

been developed and deployed and are present in many modern spacecraft. They

have reactive components that allow for quicker and more decisive action when

faced with certain types of failure. The trend is towards increasingly more

sophisticated and autonomous FDIR systems which enable the spacecraft to

monitor and analyse more subsystems and thus detect and recover from more

failures.

An autonomous agent based approach is logical progression of this trend. An

agent based system allows for robust communication and negotiation between

the FDIR and the agents reporting systems status and this can reduce the time

taken to find faults and then recover from them. In the multi-agent case the

FDIR would take little action directly, instead it is envisaged that it would

receive the state of the systems under its domain and then negotiate with the

spacecraft control agent to undertake the specified recovery actions. In this

case recovery options that would conflict with current mission parameters could

be weighed up by the mission control agent and executed if prudent.

231 Appendix B – Code snippets

Appendix B – Code snippets

Below is part of a formation change instruction which is used in the testing of

the multi-agent system. It shows the type of information which is needed by all

of the agents to successfully change formation.

Formation change format example

<?xml version="1.0"?>

<!-- Formation definition for 12 craft in a ring in x-y plane

centred on reference orbit number 20 -->

<!-- Author: Stuart Grey -->

<formation>

 <formation_name>"Ring100km"</formation_name>

 <reference_orbit>L2Halo0020</reference_orbit>

 <number_of_craft>12</number_of_craft>

 <craft id=dw00>

 <desired_x_offset_km>0.00000<desired_x_offset_km>

 <desired_y_offset_km>100.00000</desired_y_offset_km>

 <desired_z_offset_km>0.00000</desired_z_offset_km>

 <neighbour>dw12<neighbour>

 <neighbour>dw01<neighbour>

 <child></child>

 <parent></parent>

 </craft>

 <craft id=dw01>

 <desired_x_offset_km>50.00000<desired_x_offset_km>

 <desired_y_offset_km>86.66025</desired_y_offset_km>

 <desired_z_offset_km>0.00000</desired_z_offset_km>

 <neighbour>dw00<neighbour>

 <neighbour>dw02<neighbour>

 <child></child>

 <parent></parent>

 </craft>

 <craft id=dw02>

232 Appendix B – Code snippets

 <desired_x_offset_km>86.66025<desired_x_offset_km>

 <desired_y_offset_km>50.00000</desired_y_offset_km>

 <desired_z_offset_km>0.00000</desired_z_offset_km>

 <neighbour>dw01<neighbour>

 <neighbour>dw03<neighbour>

 <child></child>

 <parent></parent>

 </craft>

 <craft id=dw03>

 <desired_x_offset_km>100.00000<desired_x_offset_km>

 <desired_y_offset_km>0.00000</desired_y_offset_km>

 <desired_z_offset_km>0.00000</desired_z_offset_km>

 <neighbour>dw02<neighbour>

 <neighbour>dw04<neighbour>

 <child></child>

 <parent></parent>

 </craft>

....

Agent declaration

This example shows how the individual agents are defined and gives examples of

agent ‘behaviours’. These behaviours are used to allow the agents to perform

tasks. The first behaviour is used to create other agents within the simulation.

In the simulation suite a single reference agent is created which then in turn

creates the other agents based on a given scenario. This also demonstrates the

ability of agents to create sub-agents or peers on demand.

Example Agent Declaration Code

/*Import required libraries to enable the agent to run on the

JADE platform import jade.core.Agent; etc etc*/

// Declare agents class

public class ReferenceAgentIcosahedron4 extends Agent

233 Appendix B – Code snippets

{

 //Set up initial values for variables

 Boolean ReceivedPrevious = false;

 int numberofagents = 13;

 int iterationnumber = 1;

 int totaliterations = 100;

 String messagecontent;

 int agentnumber = 0;

 //Start a connection between this JADE platform and Matlab

 MatlabClient connection = new MatlabClient();

 String result = "null";

 //Set up initial conditions for the reference orbit

 BigDecimal refX = new BigDecimal("1.008420601516730");

 BigDecimal refY = new BigDecimal("0.0");

 BigDecimal refZ = new BigDecimal("-0.00028");

 BigDecimal refXdot = new BigDecimal("0.0");

 BigDecimal refYdot = new BigDecimal("0.009835862759924");

 BigDecimal refZdot = new BigDecimal("0.0");

/*The setup() method is run when the agent is successfully

created and is used to describe what behaviours the agent is to

have. In this case the agent's main tasks are to create the

other agents required for the simulation and and then listen in

to all of the communication between the agents and write out a

communication log to a data file.*/

 protected void setup()

 {

/*The CreateAgents behaviour is defined elsewhere but is here

attached as a behaviour to our reference agent. It creates all

of the agents required by the simulation. Automatically

creating the required agents for the scenarion reduces the

effort required to set up and change scenarios.*/

 addBehaviour(new CreateAgents());

/*The EavesDropper behaviour repeats every 20 milliseconds and

records position data from all of the craft in the simulation*/

 addBehaviour(new EavesDropper(this, 20));

234 Appendix B – Code snippets

/*The log file is set up and title lines etc added. The

eavesdropper

behaviour adds data to this file as it receives it.*/

 String file_name1 = "log.txt";

 final FileWrite referencedata = new FileWrite(file_name1 ,

false);

 try {

 referencedata.writeToFile("%reftest");

 }

 catch (IOException e)

 {

 System.out.println(e.getMessage());

 }

}

Communication between agents and Matlab

This example shows how the agents communicate with Matlab. This is done by

passing of a defined set of strings to a given network port. This allows for

variables to be passed back and forth and Matlab methods to be called. This

example shows how the values for the satellites position and velocity are passed

to Matlab to be propagated using its numerical integration routines. A key

benefit of this string passing approach is that it is platform independent and the

simple interface can be written to connect the agent simulation with any

external resource for simulation, modelling or agent intelligence.

Communication between Matlab and the Agents

void propagatecraft(){

 try{

/*Using the connection to Matlab (connection) send the current

state of the craft to the method PropagationModel, assign the

resulting string to result.*/

result = connection.createJob(

235 Appendix B – Code snippets

 "PropagationModel" + " " + tempX + " " + tempY + " " + temp +

" " + tempXdot + " " + tempYdot + " " + tempZdot

);

/*Set up appropriate counter variables and arrays to hold the

series of strings after tokenization and the numerical values

of these strings*/

 int index=0; int tokenCount;

 String words[]=new String [100];

 BigDecimal numbers[] = new BigDecimal[100];

/*Tokenize the string, that is break up the single large string

returned by the Matlab method into the string array.*/

 String message=result;

 StringTokenizer st=new StringTokenizer(message);

 tokenCount=st.countTokens();

 while (st.hasMoreTokens())

 {words[index]=st.nextToken(); index++;}

/*For each element in the array os trings convert it into a

BigDecimal and place in the BigDecmimal array.*/

 for (index=0;index<tokenCount; index++)

 {

 numbers[index] = new BigDecimal(words[index]);

 }

/*Update the values for the crafts position and velocity using

the values computed in matlab */

 tempX = numbers[0];

 tempY = numbers[1];

 tempZ = numbers[2];

 tempXdot = numbers[3];

 tempYdot = numbers[4];

 tempZdot = numbers[5];

 }

 catch(Exception e) { System.err.println(e); }

}

236 Appendix B – Code snippets

Matlab function that can be called by agents

This example shows the other side of the communication between the agent

simulation and Matlab. This Matlab function is called by the simulation for each

satellite trajectory that is to be propagated.

Communication between Agent and Simulation

function [output] = PropagationModel(a,b,c,d,e,f)

G=1;

GM_sun=1.327*10^(11);

GM_earth=4.053*10^(5);

mu=GM_earth/(GM_sun+GM_earth);

period = 3.102523281056765;

timeinterval = period/10000;

referencex0=[a b c d e f];

options=odeset('RelTol',2.5e-14,'AbsTol',1e-22);

[t,reference]=ode113('CRTBP',[0:timeinterval/5:timeinterval],re

ferencex0,options,[],G,mu);

result=reference(end,1:6);

s0=result;

x = sprintf('%0.15g',s0(1));

y = sprintf('%0.15g',s0(2));

z = sprintf('%0.15g',s0(3));

xdot = sprintf('%0.15g',s0(4));

ydot = sprintf('%0.15g',s0(5));

zdot = sprintf('%0.15g',s0(6));

global orbit;

global counter;

orbit(1,counter) = s0(1);

orbit(2,counter) = s0(2);

237 Appendix B – Code snippets

orbit(3,counter) = s0(3);

orbit(4,counter) = s0(4);

orbit(5,counter) = s0(5);

orbit(6,counter) = s0(6);

counter = counter+1

class = 'java.lang.String';

text = [x ' ' y ' ' z ' ' xdot ' ' ydot ' ' zdot];

output = javaObject(class, text);

238 Appendix C

Appendix C – Simulink dynamic model

Simulink block diagram showing the CRTBP equations of motion implemented

using Simulink rather than written in Matlab code or Java.

239 Appendix D – Global optimisation methods

Appendix D – Global optimisation methods

DIRECT

The DIRECT algorithm search works by subdividing the parameter hypercube into

sub-rectangles and searching iteratively within those. The sub-algorithm for

dividing any subsequent sub rectangles of the hypercube is described below:

Step 1: Identify the set ¢ of dimensions with the maximum side length. Let k
equal one-third of this maximum side length.

Step 2: Sample the function at the points P ± k��	for all	"	 ∈ ¢, where c is the
centre of the rectangle and �� is the "th unit vector.

Step 3: Divide the rectangle containing c into thirds along the dimensions in ¢,
starting with the dimension with the lowest value of ¤� = &"t�V P + k��$, V P −k��$�, and continuing to the dimension with the highest ¤�.

The multivariate DIRECT algorithm can then be described as follows:

Step 1: Normalize the search space to be the unit hypercube. Let P9 be the
centre point of this hypercube and evaluate V P9$. Set V¥�K = 	V P9$, & = 1 and + = 0 (the iteration counter).

Step 2: Identify the set � of potentially optimal rectangles.

Step 3: Select any rectangle ¦ ∈ �.

Step 4: Using the sub-algorithm described above determine where to sample

within rectangle j and how to divide the rectangle into sub-rectangles. Update V¥�K and set & = & + §&, where §& is the number of new points sampled.

Step 5: Set � = � − �¦�. If � ≠ ∅ got to step 3.

240 Appendix D – Global optimisation methods

Step 6: Set + = + + 1. If + = , then stop; The iteration limit has been reached.

Simulated annealing

The simulated annealing algorithm implemented is as follows [148]:

Initialization: Set the initial temperature and initial parameter vector
�ªS = ��J// ∈ Θ; determine � ��J//$.

Step 1: Relative to the current value ��J//, randomly determine anew value of �,�KM¡ ∈ Θ and determine � �KM¡$.

Step 2: Compare the two L values above using the metropolis criterion (0-1). Let ¬ = � �KM¡$ − � ��J//$. If ¬ < 0, accept �KM¡. Alternatively, if ¬ ≥ 0, accept ¬KM¡
only if a uniform (0,1) random variable % satisfies % ≤ �'�i−¬/ P� $j. If �KM¡ is
accepted then ��J// is replaced by �KM¡. Otherwise ��J// remains.

Step 3: Repeat steps 1 and 2 for some period until either the budget of

function evaluations allocated for has been used or the system reaches a state
of equilibrium.

Step 4: Lower according to the annealing schedule and return to step 1.
Continue the process until the total budget for function evaluations has been

used or some indication of convergence is satisfied. The final estimate is �ªK
(taken as the most recent ��J//), representing the � value after t iterations (= t + 1 loss evaluations).

Metropolis criterion:

 exp	 − ε®¯° − ±�J//P� 	$ (0-1)

Where ±�J// is the current energy state of the system. ±KM¡ is the new energy
state of the system, P� is the Boltzmann constant and is the temperature of
the system.

241 Appendix D – Global optimisation methods

Genetic Algorithms

The genetic algorithm implemented was as follows [148]:

Initialisation: Randomly generate a population of # chromosomes and evaluate
the fitness function (an inverted � �$) for each of the chromosomes.

Step 1: (Parent Selection) Select the parents from the population. Those

parents with a higher fitness based on their chromosomes are selected more

often.

Step 2: (Crossover) For each pair of parents identified in step 1, perform

crossover on the parents at randomly selected splice points with a probability ²�.
If no crossover takes place then form two offspring that are exact copies of the

parents.

Step 3: (Replacement and mutation) Replace the parent population with the

offspring population. Perform a mutation on an element of the chromosome

with probability	²¥.

Step 4: (Fitness and end test) Compute fitness values for the new population of # chromosomes. Terminate the algorithm if the stopping criterion is met or if
the budget of fitness function evaluations is exhausted; otherwise return to step

1.

