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Abstract

The Large Eddy Simulation (LES) technique with the Smagorinsky-Lilly dynamic
subgrid model and two-equation Standardk-ω Transitional turbulence model are
applied to investigate non-spiral and spiral blood flow through three dimensional
models of arterial stenosis and aneurysm. A spiral pattern of blood flow is thought to
have many beneficial effects on hemodynamics. Previous computational studies on
spiral blood flow involve only steady spiral flow in a straightstenosed pipe without
considering an upstream curved section of the artery. But a spiral pattern in the
blood flow may exist due to the presence of an upstream curved section in the artery.
On the other hand, pressure is generally considered a constant quantity in studies on
pulsatile flow through either arterial stenosis or aneurysm; however, blood pressure
is a waveform in a physiological flow.

Although cosine-type or smooth regular stenoses are generally taken in inves-
tigations of blood flow in a three-dimensional model of arterial stenosis, in reality,
stenoses are of irregular shape. Besides stenosis and aneurysm, another abnormal
condition of the artery is the presence of stenosis with an adjacent aneurysm in the
same arterial segment, especially in the posterior circulation. A study on (steady or
pulsatile) flow through such arterial stenosis with an adjacent aneurysm in the same
arterial segment is not available so far.

Therefore, taking above things into consideration, thorough investigations of
steady and unsteady pulsatile non-spiral and spiral blood flow in three-dimensional
models of stenosis and aneurysm are needed to give a sound understanding of the
transition-to-turbulence of blood flow due to stenosis and aneurysm and to study the
the effects of spiral velocity on the transition-to-turbulence.

The LES technique has mostly been used to investigate turbulent flow in engi-
neering fields other than bio-fluid mechanics. In the last decade, LES has seen its
excellent potential for studying the transition-to-turbulence of physiological flow in
bio-fluid mechanics. Though thek-ω Transitional model is used in few instances,
mainly LES is applied in this study.

Firstly, investigations of steady non-spiral and spiral blood flow through three-
dimensional models of cosine-type regular stenosed tube without and with upstream
curved segment of varying angles of curvature are performedby using thek-ω Tran-
sitional model and LES. A fully developed Poiseuille velocity profile for blood is
introduced at the inlets of the models. To introduce a spiraleffect at the inlet, one-
sixth of the bulk velocity is taken as the tangential velocity at the inlet along with
the axial velocity profile there.

Secondly, physiological pulsatile non-spiral and spiral blood flow through a
three-dimensional model of a straight tube having cosine-type regular stenosis are



investigated by using mainly LES. A two-equationk-ω Transitional model is also
used in one non-spiral flow case. The first four harmonics of the Fourier series of
pressure pulse are used to generate physiological velocityprofiles at the inlet. At the
outlet, a pressure waveform is introduced. The effects of percentage of area reduc-
tion in the stenosis, length of the stenosis, amplitude of pulsation and Womersley
number are also examined.

Thirdly, transient pulsatile non-spiral and spiral blood flow through a three-
dimensional model of irregular stenosis are investigated by applying LES and com-
parison is drawn between non-spiral flow through a regular stenosis and that through
an irregular stenosis.

Lastly, pulsatile non-spiral and spiral blood flow through athree-dimensional
model of irregular stenosis with an adjacent post-stenoticirregular aneurysm in the
same arterial segment are studied by applying LES and thek-ω Transitional model.
The effects of variation in spiral velocity are also examined.

The results presented in this thesis are analysed with relevant pathophysioloical
consequences. In steady flow through the straight stenosed tube, excellent agree-
ment between LES results forRe = 1000 and2000 and the corresponding exper-
imental results are found when the appropriate inlet perturbations are introduced.
In the models with an upstream curved segment, no significanteffect of spiral flow
on any flow property is found for the investigated Reynolds numbers; spiral pattern
disappears before the stenosis – which may be due the rigid wall used in the models
and/or a steady flow at the inlet. The effects of the curved upstream model can be
seen mainly in the maximum turbulent kinetic energy (TKE), the maximum pres-
sure drop and the maximum wall shear stress (WSS), which in the curved upstream
models generally increase significantly compared with the corresponding results in
the straight stenosed tube.

The maximum contributions of the SGS motion to the large-scale motion in both
non-spiral and spiral flow through a regular stenosis, an irregular stenosis and an ir-
regular stenosis with an adjacent post-stenotic irregularaneurysm are50%, 55% and
25%, respectively, for the highest Reynolds number investigated in each model. Al-
though the wall pressure and shear stress obtained from thek-ω Transitional model
agree quite well with the corresponding LES results, the turbulent results obtained
from thek-ω Transitional model differ significantly from the corresponding LES
results – this shows unsuitability of thek-ω model for pulsatile flow simulation.
Large permanent recirculation regions are observed right after the stenosis throat in
both non-spiral and spiral flow, which in the model of a stenosis with an adjacent
post-stenotic aneurysm are stretched beyond the aneurysm and the length of the
recirculation regions increases with spiral velocity. This study shows that, in both
steady and unsteady pulsatile flow through the straight tubemodel having either a
stenosis (regular or irregular) or an irregular stenosis with an adjacent post-stenotic
irregular aneurysm, the TKE rises significantly at some locations and phases if a



spiral effect is introduced at the inlet of the model. However, the maximum value
of the TKE in a high spiral flow drops considerably compared with that in a low
spiral flow. The maximum wall pressure drop and shear stress occur around the
stenosis throat during all the phases of the pulsatile cycle. In the model of a stenosis
only, the wall pressure rises in the immediate post-stenotic region after its drop at
the stenosis throat. However, in the model of a stenosis withan adjacent aneurysm,
the wall pressure does not rise to regain its undisturbed value before the start of the
last quarter of the aneurysm. The effects of the spiral flow onthe wall pressure and
WSS are visible only in the downstream region where they takeoscillatory pattern.
The break frequencies of energy spectra for velocity and pressure fluctuations from
−5/3 power slope to−10/3 power slope and−7/3 power slope, respectively, are
observed in the downstream transition-to-turbulence region in both the non-spiral
and spiral flow. At some locations in the transition region, the velocity spectra
in the spiral flow has larger inertial subrange region than that in non-spiral flow.
The effects of the spiral flow on the pressure spectra is insignificant. Also, the
maximum wall pressure drop, the maximum WSS and the maximum TKE in the
non-spiral flow through the irregular stenosis rise significantly compared with the
corresponding results in the non-spiral flow through the regular stenosis.

When the area reduction in the stenosis is increased, the maximum pressure
drop, the maximum WSS and the TKE rise sharply. As for the effects of the length
of the stenosis, the maximum WSS falls significantly and the maximum TKE rises
sharply due to the increase in the length of the stenosis; butthe maximum pressure
drop is almost unaffected by the increase in the stenosis length. The increase in
the amplitude of pulsation causes both the maximum pressuredrop and the max-
imum WSS to increase significantly under the inlet peak flow condition. While
the increased amplitude of pulsation decrease the maximum TKE, it is nonetheless
responsible for the sharp rise in the TKE found at some placesin the transition-to-
turbulence region. The decrease in the Womersley number causes the maximum
TKE to increase dramatically; however, the maximum pressure drop and the max-
imum WSS decrease slightly under the inlet peak flow condition as a result of the
decrease in the Womersley number.

The author does believe that the present study makes a breakthrough in under-
standing the non-spiral and spiral transient blood flows through arteries having a
stenosis and a stenosis with an adjacent post-stenotic aneurysm. The findings of the
thesis would, therefore, help the interested groups such aspathologists, medical sur-
geons and researchers greatly in gaining better insight into the transient non-spiral
and spiral blood flow through models of arterial stenosis andaneurysm.
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Chapter 1

Introduction

Arterial stenosis is an abnormal condition in arteries having vascular disease named

atherosclerosis, which alters the hemodynamics in the diseased arteries. Atheroscle-

rosis, a progressive cardiovascular disease caused by the accumulated fatty mate-

rials like cholesterol and lipids beneath the intima (innerlining) of arterial wall, is

one of the main causes of heart disease and stroke (Lusis [1]). A sudden increase

of connective tissue occurs with the accumulation of the fatty materials and a thick-

ened area called plaque is developed in the arterial wall. The arterial wall reshapes

itself to accommodate the plaque, but the arterial cross-sectional area narrows even-

tually due to the increasingly complex pattern of the deposited plaque, which can

potentially dangerously blocks blood flow in the circulatory system ( [1]) mostly in

aorta, coronary and carotid arteries. This local narrowingof arterial cross sectional

area is known as arterial stenosis.

Severity of stenosis is determined by the percentage reduction in diameter or

cross-sectional area of the stenosed vessel and therapeutic measures is taken if

area reduction is greater than75% as it is clinically important (Young [2];Ku [3]).

Reynolds number found in human artery ranges normally between 1 and 4000

(Ku [3]). Blood viscosity is not constant at all flow rates. Blood exhibits non-

Newtonian behaviour in the microcirculatory system, smallbranches and capillar-

ies. Blood behaves like a Newtonian fluid in most arteries, however (Ku [3]).

Cyclic motion of the heart pumping makes the blood flow through arteries in-

herently pulsatile. Blood flow in the circulatory system is mostly pulsatile laminar.

But blood flow through severely stenosed vessel can lead to periodic transition to

turbulence in the post stenotic regime as a combined effect of flow pulsatility with

strong shear layers, flow separation, recirculation, and reattachment generated by

the stenotic flow. Accordingly, blood flow through arterial stenosis in critical ter-
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ritories, e.g. one of the major vessels carrying blood to thebrain, can result in a

cerebral stroke as critical stenosis causes flow choking andnon-recoverable head

loss which in turn reduce flow rate (Young [2], Varghese et al.[4]). Higher veloc-

ities across the stenosis as the flow passes through the occlusion at increasing rate

result in lower lateral pressure acting on the plaque and high shear stresses at the

stenosis throat and low, oscillatory shear stress in the post stenotic area. The high

shear stresses contribute to platelet build-up and cause thrombosis (blood clotting)

by exposing the lipid plaque core to the blood flow, resultingin arguably plaque

fissure, rupture and total occlusion of the vessel. Non-occlusive atherothrombo-

sis is also clinically significant, especially in the extracranial carotid arteries as a

source of stroke, as the accumulated thrombotic material iscommonly unstable and

a source of distal embolism (Ku and McCord [5], Wootton and Ku[6], Ku [3],

Nichols and O’Rourke [7]). Low, oscillatory shear stressesin the post stenosis area

have been considered as the major cause of progression of arterial wall thickening

and atherosclerotic disease (Ku [3], Wootton and Ku [6]). The pressure drop across

the plaque is increased if the velocity is increased by any increase in systematic

pressure or further decrease in cross-sectional area of thevessel. Though the rup-

ture of the plaque has long been ascribed to the local high Wall Shear Stress (WSS),

pressure drop may be the main mechanical trigger for plaque rupture as the magni-

tude of WSS is extremely small compared to the overall loading of the plaque (Li

et al. [8], Wootton and Ku [6]).

Stenosis in a coronary artery may induce heart attack as it restricts the blood

flow. Blood clot in the flow, caused either by the stenosis-surface damage or by

stagnant blood in the post-stenosis recirculation region,may choke the blood flow

in cerebral and coronary artery. Also, it may be transportedto the lung (Wootton and

Ku [6]). The sites of low wall shear stresses such as cerebraland coronary artery

are liable to accumulating lipids and hence developing plaque as low wall shear

stress stimulates an atherogenic phenotype in the endothelial cells or vessels lining,

Malek et al. [9]. Moreover, the pulsatility of the flow and theoscillating shear index

are increasingly being implicated in the plaque formation as has been shown in 4D

MRI (Magnetic Resonance Imaging) experiments, Frydrychowicz et al. [10]. Ve-

locity/acceleration at/beyond the stenosis is also an important quantity as the quan-

tification of arterial stenosis by both duplex ultrasound and quantitative flow MRI

2



Chapter 1 Introduction

techniques relies on it to deduce the the degree of underlying stenosis (Frydrychow-

icz et al. [10]).

Another abnormality of artery is aneurysm, which is localized, blood-filled

balloon-like bulge in an artery due to weakness in the arterial wall. Aneurysm may

rupture if it grows large. Blood velocity, wall pressure andwall shear stress can

induce progression and rupture of aneurysm. Internal pressure can also influence

the burst of aneurysm, causing severe pathological disorder, even death (Kumar

and Naidu [11]). Blood flow through aneurysm may become transition-to-turbulent

because of large recirculation zone inside the bulge.

In addition, the re-circulated blood inside aneurysm induces high shear stress,

which is potentially harmful to the blood cells and arterialwall. Aneurysm may

also pose risks of blood clotting and rupture of artery whichmay result in sudden

death or severe disability (Lasheras [12]).

In addition to stenosis and aneurysm, one further compelling abnormal con-

dition of artery is stenosis with adjacent aneurysm in the same arterial segment.

Although severe stenoses with adjacent aneurysms are rare,they are more common

in the posterior circulation (In et al. [13]). Flow physics of blood flow through such

arterial stenosis with an adjacent aneurysm in the same arterial segment is unknown

thus far.

A striking feature of blood-flow is its spiral or helical pattern, which could be

due to twisting of the heart on its own axis and/or anatomy of the arterial tree

(curved section, bifurcation), Stonebridge and Brophy [14], Stonebridge et al. [15].

Effects of spiral pattern of blood velocity is poorly understood, although they can

be both beneficial and detrimental to artery. Spiral flow through stenoses gener-

ates lower laterally directed forces, arguably reduces near wall turbulence energy

caused by stenosis and induces rotational stability (Stonebridge and Brophy [14],

Stonebridge et al. [15; 16]), which are beneficial to circulatory system. On the other

hand, oscillatory shear stress and strong circulation caused by the spiral flow in the

post-stenosis region are harmful to the artery (Paul and Larman [17]).

Thus comprehending the complicated flow features of non-spiral and spiral

blood flow through stenosis and stenosis with adjacent aneurysm is central to com-

prehending the possible causes that induce disease progression.
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Chapter 2

Review of Previous Works

An overall review of previous studies pertaining to this thesis has been done in this

chapter. Extensive reviews of experimental and computational studies on arterial

stenosis are made in§ 2.1 and§ 2.2, respectively, which are followed by a brief

review of the works on arterial aneurysm in§ 2.3 and the previous studies related

to spiral blood flow in arterial stenosis are reviewed in§ 2.4. The objectives and

outline of the thesis are presented at the end of this chapter.

2.1 Experimental Works on Stenosis

Most of the experimental works on the steady and pulsatile turbulent flow in model

arterial stenosis or constricted tube investigated the impact of post stenotic turbulent

flow on the blood cells and inner wall of the blood vessels. Some experimental

researchers studied effects of the shear stress and turbulence on blood cells and

arterial wall in the post stenotic region, while others studied the post-stenotic flow

physics along with the effects of the various shapes and percentages of the stenosis

on the flow downstream of the stenosis. There are also some experimental studies

of spiral blood flow through stenosis.

2.1.1 Post-stenotic Flow Characteristics

Young and Tsai [18; 19] studied flow characteristics of steady and unsteady flow

through axisymmetric and nonsymmetric stenosis models of different sizes. They

found that the shape of the stenosis influences the flow characteristics e.g., pres-

sure losses in the nonsymmetric models are considerably higher than the losses

in the corresponding axisymmetric models. They also reported that, for the more
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severely constricted models, the critical Reynolds numberfor unsteady or pulsatile

flow is lower than that for steady flow. Highly disturbed flow after the stenosis

was observed by Clark [20; 21] in his studies of both steady and pulsatile flow

through nozzle type stenosis. He also pointed out that the higher the flow Reynolds

number, the greater the intensity of disturbances of velocity. Cassanova and Gid-

dens [22], on the other hand, focused on two aspects of the flowphysics of post

stenotic flows: the characterisation of flow disorder over a transitional Reynolds

number ranging from318 to 2540 and a pulsatile flow frequency parameterα = 15

for mild and moderate degrees of sharp edged and smoothly configured occlusion;

and the relationship between steady and pulsatile flow through such constrictions.

They reported that the more abrupt, sharp edged stenoses generate a much greater

flow disturbance at a given Reynolds number than the smoothlycontoured config-

uration. Furthermore, for steady flow the visualisation studies and measurements

indicate that, for the smoothly contoured stenosis, approximately50% occulusion

is required to cause substantial disturbances at the Reynolds numbers studied. For

the pulsatile flow, however, the disturbances are generatedwith a mild25% stenosis

during the deceleration phase of a cycle. It is evident from this study, therefore, that

the transition-to-turbulence in the post-stenosis regionis strongly dependent on the

flow pulsatility. This result is similar to that of Young and Tsai [19] for pulsatile

flow.

Yongchareon and Young [23], motivated by the above mentioned studies, in-

vestigated the development of turbulence for both steady and pulsatile flow through

the models of arterial stenoses. The results of their research can be summarised as

follows: first, the critical Reynolds number for the development of turbulence in

pulsatile flow through the stenosis depends on several factors, including the shape

and size of the stenosis and the type of the inlet-flow waveform, which is similar to

the findings reported by Young and Tsai [18; 19]; second, the turbulence develops at

Reynolds numbers well below the critical value for an unobstructed tube; third, the

critical Reynolds number reduces as the stenosis shape becomes more abrupt and

the inlet flow frequency parameter increases; and, fourth, the axial location (crit-

ical length), at which turbulence was first observed, is a function of both stenosis

shape and frequency parameter. Furthermore, the critical length tends to decrease

as the frequency parameter increases, and the location of the most intense turbulent
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fluctuations moves upstream if the Reynolds number increases beyond the critical

value.

Khalifa and Giddens [24; 25] studied the evolution of post-stenotic flow distur-

bances of a sinusoidal type waveform using a laser Doppler anemometer (LDA) for

the centreline velocity measurement of a Plexiglas (Perspex, PMMA) tube. The pul-

satile frequency parameter and the peak Reynolds number were typical of the dog

aorta and the nature post-stenotic flow disturbances were determined by employing

ensemble averaging and Fourier transform techniques for the degrees of stenosis

ranging from zero to severe. They have identified three typesof flow disturbances:

(i) a coherent structure associated with the initiation of each flow cycle, present in

the mild stenosis; (ii) a periodic disturbance arising fromthe shear layer distal to

the constriction; and (iii) a non-stationary turbulence generated after the stenosis.

A similar study, detecting the vortex shedding and coherentstructures under steady

and pulsatile flow condition, was done by D’Luna et al. [26]. He used a pulsed RF

directional Doppler system together with high resolution temporal auto regression

spectral analysis for the study.

Additionally, flow disturbances in steady flow through axisymmetric stenoses of

rigid tube using laser Doppler anemometry and a flow visualisation technique was

investigated by Ahmed and Giddens [27; 28]. The degree of stenosis ranged from

mild to severe and Reynolds numbers were of500, 1000 and2000. They reported

that for the75% stenosis the flow field is transitional-to-turbulent whenRe ≥ 1000

and for the50% stenosis transition-to-turbulence takes place whenRe = 2000 and

the maximum centreline velocity occurs at the centre of the stenosis. They also

found that the length of the re-circulation zone or the reattachment point reduces

as the Reynolds number increases. These findings are very similar to that of Back

and Roschke [29], who found three distinct regimes of flow re-attachment in the

post-stenosis region. In the first regime, at low Reynolds numbers re-attachment

is governed by the growth of the laminar shear layer and the re-attachment point

moves downstream with increasing flow rate. In the second regime, as instabilities

develop in this shear layer, the re-attachment point moves back towards the steno-

sis. In the third regime, which (for an85% stenosis) exists above a flow Reynolds

number of approximately325, the shear layer is highly disturbed, the re-attachment

point is near the stenosis and very slowly moves downstream with increasing flow
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rate.

Ahmed and Giddens [30] also did a follow-up investigation tothe above by

studying the post-stenotic flow characteristics under sinusoidal pulsatile inflow con-

ditions at a frequency parameter,α = 7.5 and mean Reynolds number of600. They

concluded that a permanent region of post-stenotic flow separation does not ex-

ist even for the severest degree of stenosis, in contrast to results for steady flow.

Turbulence was found only for75% stenosis model and was generated only dur-

ing a part of the cycle. By employing a two-component laser Doppler velocimeter

(LDV), Ahmed [31] re-investigated the pulsatile flow through a smooth constriction

fourteen years after his work with Giddens [30]. His findingsfor the post-stenotic

turbulent flow physics are similar to those of Yongchareon and Young [23]. In a

different kind of study, Back et al. [32] investigated effect of mild atherosclerosis

on flow resistance in a coronary casting of man i.e., in an irregular stenosis with a

48% area occlusion. They reported that, for a Reynolds number greater than200,

flow resistance and hence pressure drop of the casting of the mild atherosclerosis

(irregular stenosis) become gradually larger than the corresponding values from the

axisymmetric model of the casting.

2.1.2 Pathophysiological Implications

High pressure drop and abnormal wall shear stress around thestenosis may weaken

and even damage the internal arterial wall in the post-stenotic turbulent region. For

example, the damage to the blood cell materials of a diseasedartery could be caused

by the presence of high wall shear stress in that artery. Additionally, the main di-

agnostic tool in the clinical practice for diagnosing the cardiovascular diseases is

the qualitative interpretation of cardiovascular sounds and murmurs generated ap-

parently by turbulence in blood flow in the diseased artery. This fact motivated

many researchers to study sound generation, murmur characteristics, and transmis-

sion of energy of turbulence in diseased arteries for getting better understanding of

hemodynamics in them.

Bruns [33] reported that the bulk of acoustic energy in murmurs is generated by

the nearly periodic fluctuations in the wake of downstream ofany appropriate obsta-

cle. He also maintained that a significant amount of localised acoustic energy might
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be generated in the physiological range of blood velocities. Yellin [34] studied the

hydraulic noise of a bounded jet in a model with an intrafluid having less friction.

Using spectral analyses he, however, proved that an insignificant amount of local

turbulent pressure fluctuations was converted into sounds.To calculate the percent-

age of area reduction of a stenosis from the arterial sound created by turbulence,

Lees and Dewey [35] offered a non-invasive diagnostic method (phonoangiogra-

phy). They associated the local turbulence intensity with wall pressure fluctuations,

the flow velocity and the arterial diameter, and these independent parameters pro-

vide enough information about the severity of stenosis.

As regards the effects of shear stress, Fry [36] found that the high shear stress

produced by turbulence might be an important factor in causing endothelial cell

degeneration in a atherosclerotic vessel. He also mentioned a critical value of wall

shear stress> 379±85 (SD) dynes/cm2 (or37.9±8.5(SD) Pa) contribute to endothe-

lial cell damages in the artery. In addition, Sutera and Mehrjardi [37] showed that

high wall shear stresses generated due to turbulent flow may lead to deformation and

fragmentation of red blood cells. Additionally, Folts et al. [38] and Stein et al. [39]

have pointed out that high wall shear stress could overstimulate platelet thrombosis

which, in turn, expedite atherosclerosis. However, some researchers like Friedman

et al. [40], Ku et al. [41] and Salam et al. [42], have reportedthat low shear stresses

at the throat of the stenosis may stimulate the intimal thickening, resulting in re-

modelling of the stenosis. The most intimal thickening, in He and Ku’s [43] view,

occurs where the average wall shear stress is less than10 dynes/cm2 (or 1 Pa).

2.1.3 Turbulence Energy Spectra

Spectral analysis of turbulent flow quantities could be usedto grasp how the tur-

bulent fluctuations downstream of stenosis behave and interpret the sounds asso-

ciated with pulsatile post-stenotic blood flows. Kim and Corcoran [44] reported

turbulence spectra in the downstream of a stenosis using a hot-film anemometer

technique. As can be seen from their findings, the turbulencespectra are quite dif-

ferent from the sound spectra measured at the centre of the tube for the same flow

rate and orifice diameter. According to Clark [45; 46], the energy spectrum for

the velocity and pressure fluctuations follow the−5/3 power slope – this confirms
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the existence of a turbulent inertia subrange region, independent of the viscous ef-

fect. Non-dimensional power spectra of the maximum r.m.s. wall pressure showed

no Reynolds number dependence and were almost independent of nozzle area ratio

and shape. The spectrum from a pulsatile flow test was very similar to the corre-

sponding spectrum from steady flow case.

Lu et al. [47] studied the intravascular pressure and velocity fluctuations in pul-

monic arterial stenosis using a Laser Doppler Anemometer system. Spectral anal-

ysis of the simultaneously measured pressure and velocity fluctuations showed a

region of−5/3 power slope in the flow energy spectra which break into−10/3

power slope at a ‘break’ frequency approximatelyfb = 100 Hz. But, in a later

study, Lu et al. [48] reported the differences between peak frequencies of the spectra

of pressure fluctuations and the characteristic frequencies of the spectra of veloc-

ity fluctuations vary with positions downstream from the nozzle. It is possible for

both spectra to have coincident characteristic frequencies only in the region where

shear noise is so strong that it dominates the flow field over the contributions of all

other noise sources. His other findings are: no universal spectrum for velocity exists

within sections between the nozzle and 9 diameters downstream; the spectra ofu

andv velocity fluctuations at the same point are different, indicating non-isotropic

turbulence.

Tobin and Chang [49] have investigated the scaling of wall pressure spectra

downstream of axisymmetric stenoses thoroughly in steady tube flow. Their find-

ings can be summarised as follows: first, the position of maximum r.m.s. wall

pressure fluctuations is just upstream from the re-attachment point and at this posi-

tion, the centreline flow velocity, even though the jet has been diverging, is roughly

equal to the flow velocity within the stenosis; second, to characterise the frequency

content of the spectra, they have defined a break or corner frequency,fb, as the in-

tersection of the two lines drawn parallel to the two major sloping portions of the

recorded spectra. For fully developed turbulent pipe flow and Reynolds number be-

tween1000 and4000, they have evaluated a constant value for the Strouhal number,

Sr = fbD
uj

∼= 0.578, characterising the spectra taken at the position of maximum

r.m.s. wall pressure. HereD is the tube diameter,uj is the mean jet velocity. They

have given a formula for the degree of stenosis in terms of this constant value as,

1 −
(

d
D

)2
= 1 − 0.578

(
fbD
U

)−1
. Hered is the diameter of the orifice andU is the
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cross-sectional mean velocity in the unobstructed part of the artery. Hence, the de-

gree of stenosis can be predicted under steady flow conditions with a wall pressure

spectrum at the position of maximum root mean square wall pressure and a knowl-

edge ofD andU ; and third, they made a comparision of their wall pressure spectra

with the corresponding turbulent pipe flow spectrum used by Lees and Dewey [35]

and found significant mismatch in the slope of the spectra beyond the corner fre-

quency. Additionally, Giddens et al. [50] did not find any such break frequency

in their study of measurements of disordered blood flows distal to externally en-

forced, subtotal vascular stenoses in the descending thoracic aortas of dogs during

open-chest surgery.

Jones and Fronek [51] analysed break frequencies downstream of a constric-

tions in an axisymmetric geometry under steady inflow conditions for the range of

Reynolds numbers from600 to1500 and found a relationshipfbd
uj

= Re0.72(d/D)0.26

between the contraction ratio(d/D), break frequencyfb and the Reynolds number

Re. The above relation can be expressed asfbD
U

= Re0.72(d/D)−2.74, with the help

of continuity equation,UD2 = ujd
2. This expression can now be compared with

the corresponding scaling of Lees and Dewey [35] and Tobin and Chang [49]. It

is obvious from these studies that all three scalings are quite different. So further

studies are needed to have a better understanding of the flow physics and scaling of

spectra in the post-stenosis region.

2.2 Computational Investigations on Stenosis

Many computational fluid dynamics (CFD) researchers take great interest in getting

better understanding of the post-stenotic flow field as it is clear from the experimen-

tal literature review that accurate depiction of the flow physics of post-stenotic blood

flow help diagnose the arterial disease. With the state of artcomputing facilities,

CFD plays an important role in getting accurate results and visualising the flow

field properly. Reviews of relevant computational studies on steady and pulsatile

flow through model arterial stenoses are presented below. Laminar flow studies are

discussed first, which is followed by reviews of turbulent flow studies.
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2.2.1 Laminar Flow

Lee and Fung [52] and Deshpande et al. [53] studied 2D steady laminar flow in ar-

terial stenoses in 70s. Lee and Fung [52] developed the constriction in the model

artery by using Gaussian normal distribution curve and Reynolds number range

they studied is very low, from zero to25. On the other hand, a cosine shape steno-

sis, which closely resembles the biological type stenosis,was formed by Deshpande

et al. [53] for their model stenosis. Their results show thatthe maximum wall pres-

sure drop and vorticity occur near the centre of the stenosis. For severe stenosis,

Deshpande et al. [53] investigated the Reynolds number range from zero to300.

Deshpande et al. [53] also reported extended regions of flow recirculation and large

values of wall shear stresses along the proximal wall of the stenoses.

Pulsatile laminar flows through the model arterial stenoseswere investigated by

Cheng et al. [54], Daly [55] and O’Brien and Ehrlich [56]. Cheng et al. [54] took

a channel with square shape of stenosis for their pulsatile flow study. However, an

axisymmetric cosine shape stenosis was developed by Daly [55] and O’Brien and

Ehrlich [56]. A physiological pulsatile flow was used at the inlet in Daly’s [55]

study. On the other hand, a simple sinusoidal pulsatile flow was taken at the inlet

by Cheng et al. [54] and O’Brien and Ehrlich [56]. Cheng et al.[54] and Daly [55]

showed that the maximum pressure gradient and the shear stress drops occur at the

centre of the stenosis. However, O’Brien and Ehrlich [56] reported that at each

time-step the peak wall vorticity is found just prior to the stenosis throat and is

proportional to the wall shear stress.

Much later on, by employing physiologically realistic pulsatile inlet conditions

Cavalcanti [57] investigated hemodynamics of an artery in the early stages of the

atherosclerosis or stenotic process with just2% area reduction stenosis. He found

that the flow velocity and the wall shear stress increase in the post-stenotic regime

even for this very mild stenosis. Zendehbudi and Moayeri [58] have made a compar-

ative study of physiological and simple pulsatile laminar flows through axisymmet-

ric stenosed arteries and reported that for thorough understanding of pulsatile flow

behaviour in stenosed arteries, the actual physiological flow should be simulated.

Recently, a simulation of laminar physiological pulsatileblood flow in a model ax-

isymmetric stenosis was carried out by Marques et al. [59]. They have shown that

the effect of pulsatile flow is more significant near vessel wall, within the Stokes
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layer. In this region, flow direction is changed due to a reversal of pressure gradient

which is again due to the effect of viscous forces near the wall, with the changes in

velocity being slightly delayed compared to the pressure gradient.

All the articles discussed above are on stenosis of regular shape. However there

are few studies on irregular stenosis, though limited to two-dimensional study only.

Following Back et al. [32], Johnston and Kilpatrick [60] andAndersson et al. [61]

have studied steady flow through an irregular stenosis with48% area occlusion for

Reynolds numbers ranging from10 to 1000. They found that the pressure drop

across a stenosed artery is practically unaffected by surface irregularities at low

Reynolds numbers, while an excess pressure drop up to10% above that for a smooth

stenosis is observed at higherRe. Pulsatile flow through stenoses was investigated

by Yakhot et al. [62]. They observed that surface irregularities may affect the dy-

namics of the near-wall vortices that might be important forestimating the near-wall

residence time of blood cells. Furthermore, Chakravarty etal. [63] and Sarifuddin

et al. [64] have studied the effects of surface irregularities on unsteady pulsatile flow

through distensible irregular arterial stenoses. They have demonstrated that the ex-

cess pressure drop across the cosine and smooth stenosis is neither caused by its

smoothness nor by its higher degree of symmetry relative to the irregular stenosis

but is rather an effect of area cover compared with the irregular stenosis.

Some relevant three-dimensional studies of laminar flow through stenoses are

discussed below. Melaaen [65] investigated the steady flow in a constricted tubes

and ducts forRe = 200. Additionally, analysis of the steady flow pattern for a

stenosed coronary bypass for a Reynolds number of250 was done by Bertolotti and

Deplano [66]. However, Stroud et al. [67] studied the influence of stenosis mor-

phology on pulsatile laminar flow through stenotic vessels for Reynolds number

ranging from200 to 1200. Dvinsky and Ojha [68] investigated the sinusoidal pul-

satile laminar flow through an asymmetric stenosis. Furthermore, Long et al. [69]

studied physiologically realistic pulsatile laminar flow through axisymmetric and

asymmetric arterial stenoses for a Reynolds number of300. Their results show that

for severe stenoses, the stenosis influence length is shorter in asymmetrical models

than in axisymmetrical cases. Long et al. [69] approximatedthe shape of the steno-

sis by two integrated Gaussian functions at each of the proximal and distal ends

together with a straight segment in between, whereas Dvinsky and and Ojha [68]
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developed a cosine shape asymmetric stenosis.

2.2.2 Turbulent Flow

As seen, computational studies reviewed above are laminar flow through steno-

sis. However, experimental findings demonstrate that flow through even moderately

stenosed arteries is transitional-to-turbulent for high Reynolds number. Computa-

tional studies on the transition-to-turbulent flow throughstenoses available in the

literature are discussed below.

By employing the Reynolds-Average Navier-Stokes (RANS) approach, namely,

the k-ω turbulence model, Ghalichi et al. [70], Varghese and Frankel [71], Lee

et al. [72; 73] and Li et al. [74] have studied axisymmetric two-dimensional laminar

to turbulent flow in stenosis. But Scotti and Piomelli [75] have found some limita-

tions in the use of RANS turbulent models in modelling pulsatile flows where the in-

let velocity profile/pressure gradient oscillates with time. They made a comparative

study of results from experiment, DNS and LES and four different RANS models

(one-equation Spalart-Allmaras [76],k-ǫ andk-ω2 of Saffman and Wilcox [77], and

k-ǫ-v2 of Durbin [78]) in a channel flow driven by an oscillating pressure gradient.

They observed that the RANS models give good agreement for the velocity results,

but the predictions were unacceptable for the key turbulentresults such as Reynolds

shear stresses (important results from pathological aspect), turbulent kinetic energy

and dissipation rate. Additionally, RANS models are incapable of simulating in-

stantaneous pulsatile turbulent flows as the governing equations of motion are time-

averaged. Moreover, Ryval et al. [79] have investigated three-dimensional pulsatile

flow in stenosed tube by employing variousk-ω models. They also concluded that

if the fine details of transitional activities are of interest, then more computationally

intensive large eddy or direct numerical simulations of turbulence may be unavoid-

able.

Mallinger and Drikakis [80; 81] have studied instabilitiesin three-dimensional

pulsatile flow through stenosis. Their results demonstratethat the circumferential

wall shear stress (WSS) drops just after the centre of the stenosis and then takes an

oscillating form and the maximum longitudinal WSS occurs just before the centre of

the stenosis. Three-dimensional instabilities and transition-to-turbulence of steady
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and pulsatile flows through axisymmetric stenotic tube was studied by Sherwin and

Blackburn [82; 83]. They applied Direct Numerical Simulation (DNS) based on the

spectral method and took a simple sinusoidal pulse for pulsatile inlet velocity for

the Reynolds number ranging from250 to 800 in their studies.

In addition, by employing DNS, Varghses et al. [4; 84] have studied steady and

pulsatile flow in axisymmetric and eccentric stenoses. Their findings demonstrate

that, for pulsatile flow, transition-to-turbulence takes place even for a relatively low

mean Reynolds number of300. They observed highly oscillating wall shear stress

in the post stenotic region due to occurrence of transition-to-turbulence flow there.

However, DNS is a right approach only for small Reynolds number flow and

it may be computationally very expensive for the typical large Reynolds numbers

found in circulatory system because in DNS all eddies (largeor small scale) are

resolved fully. In contrast, LES is suitable equally for small and large Reynolds

number flows and it requires less mesh and time as in LES only the large scale

eddies (turbulence energy-containing scales), are resolved in space and time while

the smaller scale, sub-grid scale (SGS) eddies are modelled. In this thesis, mostly

LES is applied due to its suitability for physiological flow simulation which is clear

from the following studies.

Varghese et al. [85] and Tan et al. [86] made a comparison of LES of steady flow

through stenosed pipe with other turbulence models. They suggested that LES can

predict transitional stenotic flows more accurately than others. LES of transition

to turbulence of pulsatile flow in a constricted channel was investigated by Mittal

et al. [87; 88]. Their study is the extension of the study of Tutty [89] into three-

dimension. They used semi-circular constriction in the upper wall of the channel,

which is not a good representation of biological stenosis. Additionally, Molla [90],

Paul et al. [91], Molla et al. [92] and Paul and Molla [93] alsohave investigated

LES of various pulsatile flows through a three-dimensional channel with cosine

type constriction on the upper wall. But channel is not a reasonable representation

of artery. They have done spanwise average of flow variables in data processing,

and hence, accurate depiction of flow field of pulsatile flow through arterial stenosis

is not available from their studies. Recently, Gårdhagen et al. [94; 95] have studied

wall shear stress (WSS) in steady and pulsating flow through stenotic pipe, which

is a good representation of arterial stenosis, using LES. They used commercial soft-
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ware ANSYS Fluent6.3 and introduced a suitable amount of perturbations at the

inlet to predict experimental data. Their results show thatoscillatory WSS is present

from the end of the stenosis to the exit. Furthermore, very recently, Barber and Sim-

mons [96] have investigated LES of a femoral artery pulsatile flow in a rigid stenotic

pipe. The inlet velocity profile they used varies only with time and they have shown

only instantaneous vorticity and WSS at different phases ofa cycle. No result on

other important flow characteristics such as turbulent quantities and wall pressure

is available from the above studies on LES of pulsatile flow through model arterial

stenosis (see Gårdhagen et al. [95], Barber and Simmons [96]). Therefore, to get a

good insight into the flow physics of transition-to-turbulence of pulsatile blood flow

in arterial stenosis, further study is required.

2.3 Previous Works on Aneurysm

This thesis investigates flow in a stenosis with adjacent aneurysm in the same ar-

terial segment (see In et al. [13]). No study on flow in a stenosis with adjacent

aneurysm is available in the literature. So, a brief review of experimental and com-

putational studies of aneurysm is given below.

2.3.1 Experimental Works

Scherer [97] observed, in his study of steady flow in rigid glass models of axisym-

metrical spherical aneurysms, that the critical Reynolds number isRe = 2900 for

the onset of turbulence inside the aneurysms and critical Reynolds number must de-

pend on a dimension of the aneurysm itself since otherwise itwould be possible to

have identical flow conditions and identical Reynolds numbers upstream and down-

stream from aneurysms of greatly different size and shape, in which flow conditions

are not at all similar. Egelhoff et al. [98] have investigated physiological pulsatile

flow through asymmetric and axisymmetric aneurysms for peakReynolds number

ranging from3308 to 5696 and Womersley number,16.4 < α < 21.2. They have

also reported turbulent flow inside the aneurysm.

Recently, Salsac et al. [99] have carried out experimental study on the wall shear

stress in physiological pulsatile flow through a cosine shaped model aneurysm and
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observed higher wall shear stresses in the systolic phase than in the diastolic phase.

They also mentioned that the decrease in the average magnitude of the WSS be-

comes larger as the dilatation ratio increases and the number of re-circulation zones

increases as the length of aneurysm increases. Additionally, Deplano et al. [100]

reported that vortices within the balloon like abdominal aortic aneurysm (AAA) are

highly dependent on the flow waveforms and vortices impacts can increase the local

pressure on AAA walls and thus increase the wall shear stresses.

2.3.2 Computational Works

In early 80s, Wille [101] did a numerical study of pulsatile laminar flow in arterial

aneurysm using the finite element method (FEM). Perltold et al. [102; 103] later

studied the paths of the fluid particles in pulsatile flow through an axisymmetrical

balloon like aneurysm forRe = 100 using FEM and observed that a large re-

circulation zone occurs inside the aneurysm and the centre of this re-circulation

changes with the time phase. Additionally, Kumar and Naidu [11] found that time-

dependent re-circulation region in the concavity of the dilation are sensitive to the

degree of dilation of the vessel. Furthermore, Kumar [104],in his numerical study

of three-dimensional pulsatile flow through two asymmetricaneurysms using the

finite volume method, observed that high wall shear stressesand high wall pressures

are seen at the distal end of the aneurysm during the systolicphase and multiple re-

circulation zones during the diastolic phase during which the magnitudes of the flow

velocities are markedly low can trigger thrombus formation.

Some researchers have studied the relation between the hemodynamics and

pathophysiological issues like rupture risk and thrombus formation in aneurysm.

Utter and Rossmann [105], in their numerical study of aneurysm hemodynamics,

have identified regions of extreme and alternating shear stress as sites potential for

aneurysm rupture. Numerical simulations of the flow in threepatient-specific in-

tracranial aneurysm models, carried out by Rayz et al. [106], indicate that regions

of thrombus formation correspond to slow flow and low wall shear stress regions.

Additionally, Chatziprodromou et al. [107], in their studyof hemodynamics and

wall-remodelling of a growing cerebral aneurysm, have observed that fiber-related

remodelling caused by very low shear stress is pivotal for the formation of fully
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grown saccular aneurysm. Furthermore, Valencia et al. [108; 109] have reported

that the abnormal (high and low) wall shear stresses are directly associated with the

growth and rupture of the aneurysm.

All the numerical studies on aneurysm discussed above are restricted to lami-

nar flow. Using thek-ω transitional variation of RANS model, Khanafer et al. [110]

have done a numerical investigation of the turbulent pulsatile flow in an axisymmet-

ric aortic aneurysm. Their results show that peak wall stress and peak deformation

occur shortly after systolic peak flow velocity. Moreover, Molla [90] investigated

physiological pulsatile flow through an asymmetric aneurysm in a channel using

LES. He concluded that pressure drop occurs just at the end ofthe aneurysm and

large re-circulation region is seen inside the aneurysm.

2.4 Spiral Blood Flow in Stenosis

An interesting feature of blood-flow is its spiral or helicalcharacteristic. Blood-

flow may exhibit spiral pattern as a normal physiological process i.e., because of

the twisting of the heart on its own axis and/or because of theanatomy of the arte-

rial tree such as the presence of bifurcation, tapered or curved section in an artery

(see Stonebridge [14], Stonebridge et al. [15]). There is very little work available on

spiral blood-flow through stenosis. Stonebridge et al. [16]investigated steady spiral

flow in moderately stenosed (43.75% area reduction) conduit using MRI and CFD

software STAR-CD. They reported that spiral flow through75% cross-sectional area

stenosed conduit produces700% less near-wall turbulence. This result is ambiguous

as the internal diameters of the non-stenosed and stenosed section of the conduit in

their study are8 mm and6 mm, respectively, which is equivalent to43.75% cross-

sectional area reduction. They mentioned that near-wall turbulent kinetic energy in

spiral and non-spiral flow are0.025 m2/s2 and0.16 m2/s2, respectively – this does

not represent700% less TKE in spiral flow rather approximately84% less. Addi-

tionally, they characterised the turbulence kinetic energy by Reynolds stresses and

did not specify the near-wall, i.e. the location of the near-wall. On the other hand,

Paul and Larman [17] studied steady spiral blood flow througha rigid stenosed

pipe with75% area reduction stenosis for Reynold number500 and1000 usingk-ω

model and showed most of the results including the turbulentkinetic energy along
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the centreline. They found spiral flow generates less turbulent kinetic energy (TKE)

than non-spiral flow forRe = 500 and no difference between the spiral flow TKE

and non-spiral flow TKE forRe = 1000. But maximum turbulence intensities occur

in the shear layer rather than along the centreline (Deshpande and Giddens [111]).

Moreover, their other results (centreline total pressure and wall shear stresses) show

that differences between spiral and non-spiral flow exist mostly forRe = 500, not

for Re = 1000. Hence, further thorough studies are required for getting aclear

understanding of hemodynamics associated with spiral flow through stenosis.

2.5 Objectives of the Project

The LES technique has mostly been applied to turbulent flow modelling in engi-

neering fields other than bio-fluid mechanics. It is only recently that LES has seen

its excellent potential for studying the transition-to-turbulence of physiological flow

in bio-fluid mechanics. The originality in this thesis is thestudy of the transition-to-

turbulence of steady and unsteady physiological pulsatilespiral blood flow through

three-dimensional models of a cosine-type arterial stenosis, physiological pulsatile

non-spiral and spiral blood flow through three-dimensionalmodels of an irregular

stenosis and an irregular stenosis with an adjacent post-stenotic irregular aneurysm

in the same arterial segment by applying mainly LES.

All the articles on spiral blood flow cited in§ 2.4 are on steady spiral flow in a

straight stenosed pipe without considering upstream curved section of the artery. It

would be of great interest to study steady spiral flow in stenosed pipe with upstream

curved section as spiral pattern may come from upstream curved segment.

Pressure was considered a constant quantity in the studies on pulsatile flow

through either arterial stenosis or aneurysm reviewed above. Whereas, blood pres-

sure is a waveform in a physiological flow (see McDonald [112], Nichols and

O’Rourke [7] and Lam et al. [113]). So, LES of pulsatile non-spiral and spiral

blood flow in a three-dimensional model of a cosine-type arterial stenosis using a

pressure waveform at the outlet would help gain better insight into the transition-to-

turbulence of the pulsatile flow and the effects of the spiralvelocity on the pulsatile

flow through a stenosis.

Although stenoses taken in most studies are cosine-type or smooth stenoses, but
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Chapter 2 2.5 Objectives of the Project

in reality, they are of irregular shape (See Back et al. [32]). There are some studies

on flow in irregular stenosis, limited to two-dimensional laminar, however, as dis-

cussed in the penultimate paragraph of§ 2.2.1. Hence using the LES for modelling

the physiological pulsatile non-spiral and spiral blood flow in a three-dimensional

model of an irregular arterial stenosis with an outlet pressure waveform would pro-

vide more accurate understanding of the hemodynamics in an atherosclerotic artery.

Besides stenosis and aneurysm, another abnormal conditionof artery is the

presence of stenosis with an adjacent aneurysm in the same arterial segment. Al-

though this condition is rare, but more common in the posterior circulation (see In

et al. [13]). Study on (steady or pulsatile) flow through suchan arterial stenosis with

an adjacent aneurysm in the same arterial segment is not available so far. Therefore,

it would be of paramount importance to study pulsatile non-spiral and spiral blood

flow in such a model with an outlet pressure waveform using LES.

So, in the light of above potential for studies we set out the aims of the project,

which are given below in bullet points, and the outlines of the thesis is presented in

the next section sketching how these aims are achieved.

• To investigate the transition-to-turbulence phenomena ofsteady non-spiral

and spiral blood flow through three-dimensional models of anaxisymmetric

cosine-type arterial stenosis with and without an upstreamcurved section of

varying angles of curvature.

• To investigate the transition-to-turbulence of physiologically realistic pul-

satile non-spiral and spiral blood flow in the model arterialstenosis without

upstream curved section i.e., straight tube having an axisymmetric cosine-

type constriction with a physiologically realistic pressure waveform at the

outlet. And to investigate how the important results are influenced by differ-

ent percentages and lengths of the stenosis. Also to study the effects of the

Womersley number,α, and the amplitude of pulsation in the inflow velocity

on the flow results.

• To investigate the physiological pulsatile non-spiral andspiral blood flow

through a model of an irregular arterial stenosis with an outlet pressure wave-

form.

19



Chapter 2 2.6 Thesis Outline

• Finally, to investigate how the physiological pulsatile non-spiral and spiral

blood flow affect the flow transition in a model of an irregulararterial stenosis

with an adjacent post-stenotic irregular aneurysm having apressure waveform

at the outlet. And to study how the results are influenced by the variation in

the spiral velocity.

The walls of the arterial models were considered rigid in allthe simulations

in this thesis. As development of atherosclerosis in arteries leads to considerable

reduction in the elastic property of the arterial wall, the assumption of rigid wall

may not affect the simulation results in a big way (Zendehbudi and Moayeri [58]).

Futhermore, many researchers take the view that the primaryeffect of wall de-

formability is on the shape of pressure and flow waveforms. Therefore, when the

physiological waveform is simulated, the wall can be assumed rigid (Nerem [114]).

2.6 Thesis Outline

In Chapter 3, the governing equations for incompressible flow, two-equation turbu-

lence models, namelyk-ω standard transitional,k-ω-SST transitional models and

Large Eddy Simulation (LES) technique are presented for investigating transition-

to-turbulence of non-spiral and spiral blood flow in three-dimensional models of

axisymmetric cosine-type arterial stenosis, irregular arterial stenosis and an irregu-

lar arterial stenosis with an adjacent aneurysm by using commercial Computational

Fluid Dynamics (CFD) software, Fluent6.3.

In Chapter 4, steady non-spiral and spiral blood flows through three-dimensional

models of axisymmetric cosine-type arterial stenosis withand without an upstream

curved section of varying angles of curvature are studied byapplying mainlyk-ω

standard transitional model and LES technique. However,k-ω-SST is applied to

straight stenosed tube and the axial velocity results are compared with the available

experimental data and corresponding results fromk-ω Standard Transitional model

and its performance is assessed. A steady parabolic profile and a constant multiple

(one-sixth) of the bulk velocity have been used at the inlet as the streamwise axial

velocity and tangential velocity (for introducing a spiraleffect at the inlet of the

models), respectively. Reynolds numbers representative of those present in human
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Chapter 2 2.6 Thesis Outline

large artery are chosen in the study. In LES, only the large scale i.e., turbulence

energy scale flows are resolved fully, while the unresolved smaller (sub-grid) scales

SGS flows are modelled using the Germano-Lilly [115; 116] dynamic model. Spi-

ral effects coming from the presence of an upstream curved section in the arterial

stenosis and from the heart pumping on the downstream flow physics are examined.

In Chapter 5, physiological pulsatile non-spiral and spiral blood flows in straight

tube having an axisymmetric cosine-type constriction (without upstream curved

section) are investigated by using the LES technique with the Germano-Lilly [115;

116] dynamic subgrid model andk-ω standard transitional model. The physiolog-

ical pulsation is generated at the inlet using the first four harmonics of the Fourier

series of pressure pulse and a pressure waveform is used at the outlet. To intro-

duce spiral velocity at the inlet, along with physiologicalpulsatile axial velocity,

a constant multiple (one-sixth) of the bulk physiological pulsatile profile has been

used as tangential velocity at the inlet. A grid resolution test is done and the effects

of different time-steps on the simulated results are also investigated. The effects

of different percentages and lengths of the stenosis on the results of wall pressure,

wall shear stress (WSS) and turbulent kinetic energy are investigated. In addition to

these, the effects of Womersley number,α and amplitude of pulsation in the inflow

velocity on the flow results are studied as well. Moreover, comparison of the LES

results of non-spiral flow with those ofk-ω standard transitional model is shown in

this chapter and the agreement found is good indeed. Furthermore, how the spiral

blood flow affects the transition-to-turbulence process ascompared to non-spiral

blood flow for different Reynolds numbers is also studied.

In Chapter 6, transition of physiological pulsatile non-spiral and spiral blood

flow through a model of irregular arterial stenosis for different Reynolds numbers

is studied by applying LES technique with the Germano-Lilly[115; 116] dynamic

subgrid model. A comparative study is also made between the corresponding results

of Chapter 5 and Chapter 6 to understand how the irregular stenosis affects the

downstream flow physics as compared to cosine-type regular stenosis.

In Chapter 7, non-spiral and spiral effects of physiological pulsatile blood flow

in a model of irregular arterial stenosis with an adjacent post-stenotic irregular

aneurysm in basilar artery is studied using the LES technique with the Germano-

Lilly [115; 116] dynamic subgrid model and the results are compared. The effects of
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different Reynolds numbers and and variation in spiral velocity are also examined.

In addition,k-ω standard transitional model is applied to non-spiral physiological

pulsatile blood flow and results are compared with corresponding results of LES to

show reliability of the results.

In Chapter 8, the findings of the above investigations are summarised and some

suggestions made for future research in this area.
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Chapter 3

Numerical Methods

3.1 Governing Equations

Blood exhibits non-Newtonian effects only in small arteries and capillaries. Hence,

blood flow in large arterial vessel may be modelled as a Newtonian fluid (Ku [3],

Pedley [117] and Fung [118]). So the blood flow through the arterial stenosis can be

described completely by the Navier-Stokes equations of motion. Blood in this study

was assumed to be homogeneous, incompressible and Newtonian with a density

of ρ = 1060 kg/m3 and a constant dynamic viscosity ofµ = 3.71 × 10−3 Pa s.

Therefore, the governing equations for a Newtonian and constant density blood

flow can be written as the continuity equation,

∂ui

∂xi

= 0, (3.1)

and the momentum equations,

∂ui

∂t
+
∂uiuj

∂xj

= −1

ρ

∂p

∂xi

+
∂

∂xj

[
ν

(
∂ui

∂xj

+
∂uj

∂xi

)]
. (3.2)

Cartesian tensor notation is used in the above equations, wherexi is the coordinate

system andui is the corresponding velocity components,p is the pressure,ρ is the

density andν is the kinematic viscosity of the fluid.

It should be noted that the above equations define both incompressible laminar

and turbulent flow. Analytical solutions of the Navier-Stokes equations exist for

only a few laminar flow cases, such as pipe and annulus flows or boundary layers.

Turbulent flows are modelled by using various turbulence modelling schemes. In

this study, two-equationk-ω Transitional models and LES, which are described
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Chapter 3 3.2 Standardk-ω Transitional Model

below in brief, are employed for turbulence analysis.

3.2 Standardk-ω Transitional Model

By using Reynolds decomposition, any flow propertyφ can be defined as the sum

of a time-average component〈φ〉 and a time varying fluctuating componentφ′ i.e.,

φ = 〈φ〉+φ′. Rules for time averages of the fluctuating propertiesφ = 〈φ〉+φ′ and

ψ = 〈ψ〉 + ψ′ and their summation, derivatives and integrals can be summarised as

follows:

〈φ′〉 = 〈ψ′〉 = 0; 〈〈φ〉〉 = 〈φ〉. (3.3)

〈∂φ
∂s

〉 =
∂〈φ〉
∂s

; 〈
∫
φ ds〉 =

∫
〈φ〉 ds. (3.4)

〈φ+ ψ〉 = 〈φ〉 + 〈ψ〉; 〈φψ〉 = 〈φ〉〈ψ〉 + 〈φ′ψ′〉. (3.5)

〈φ〈ψ〉〉 = 〈φ〉〈ψ〉; 〈φ′〈ψ〉〉 = 0. (3.6)

The above rules can be extended fordiv andgrad of a fluctuating vector quantity

a = 〈a〉 + a
′ and its combination with a fluctuating scalarφ = 〈φ〉 + φ′:

〈div a〉 = div 〈a〉; 〈div grad φ〉 = div grad 〈φ〉. (3.7)

〈div(φa)〉 = div(〈φ〉〈a〉) + div(〈φ′
a
′〉). (3.8)

Employing above rules (3.3)-(3.8) for time averaging, Reynolds time-averaged

continuity and momentum equations can be written by

∂〈ui〉
∂xi

= 0, (3.9)

∂〈ui〉
∂t

+
∂〈ui〉〈uj〉
∂xj

= −1

ρ

∂〈p〉
∂xi

+
∂

∂xj

[
ν

(
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

)]
− 1

ρ

∂〈ρu′iu′j〉
∂xj

, (3.10)

where〈ui〉 are the time-averaged velocities,〈p〉 is the time-averaged pressure and
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Chapter 3 3.2 Standardk-ω Transitional Model

〈ρu′iu′j〉 are the time-averaged Reynolds stress tensors. In thek-ω two-equation

turbulence model, Reynolds stress terms are approximated by using the Boussinesq

hypothesis for incompressible flow as

−〈ρu′iu′j〉 = µT

(
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

)
− 2

3
ρkδij , (3.11)

whereµT is the turbulent eddy-viscosity andk is the turbulent kinetic energy. The

eddy-viscosity is modelled as

µT =
ρk

ω
, (3.12)

whereω is the specific dissipation rate. The following modelled transport equations

(Wilcox [119]) are solved to obtaink andω:

∂k

∂t
+
∂k〈uj〉
∂xj

= −1

ρ
〈ρu′iu′j〉

∂〈ui〉
∂xj

− β∗kω

+
∂

∂xj

[
1

ρ
(µ+ σ∗µT )

∂k

∂xj

]
, (3.13)

and

∂ω

∂t
+
∂ω〈uj〉
∂xj

= −α1
ω

ρk
〈ρu′iu′j〉

∂〈ui〉
∂xj

− βω2 +
∂

∂xj

[
1

ρ
(µ+ σµT )

∂ω

∂xj

]
, (3.14)

whereσ∗ = 0.5, β∗ = 0.072, σ = 0.5, α1 = 1.0 andβ = 0.072.

Equations (3.11)-(3.14) describe the standardk-ω model. The transitional vari-

ant of the standardk-ω model is used in the study because flow under investigation

is not fully turbulent in the entire domain or throughout thepulse. Some modi-

fications are applied to the standardk-ω model to obtain the transitional model.

The low-Re correction factor is applied to the eddy-viscosity, seemedas the most

important modification,

µT = α∗
ρk

ω
, (3.15)

which affects the entire closure as it appears in the momentum and turbulence equa-

25



Chapter 3 3.3 Shear-Stress Transport (SST)k-ω (or k-ω-SST ) model

tions. The low-Re correction factor is obtained from

α∗ = α∗

∞

(
α∗

0 +Ret/Rk

1 +Ret/Rk

)
, (3.16)

whereRet = ρk/µω, Rk = 6, α∗

0 = βi/3, βi = 0.072 andα∗ = α∗

∞
= 1. The

coefficient on the dissipation term in thek equation takes the form:

β∗ = β∗

∞

[
4/15 + (Ret/Rβ)4

1 + (Ret/Rβ)4

]
, (3.17)

whereRβ = 8 andβ∗

∞
= 0.09. The production coefficient in theω equation be-

comes

α1 =
α∞

α∗

(
α0 +Ret/Rω

1 +Ret/Rω

)
, (3.18)

whereRω = 2.95, α∞ = 0.52 andα0 = 1/9.

3.3 Shear-Stress Transport (SST)k-ω (or k-ω-SST )

model

SSTk-ω, denoted byk-ω-SST , model was developed by Menter [120]. This model

acts like the standardk-ω model in the near-wall region and becomes the standard

k-ǫ model in the far field. The transport equation fork andω are:

∂k

∂t
+
∂k〈uj〉
∂xj

= −1

ρ
〈ρu′iu′j〉

∂〈ui〉
∂xj

− β∗kω +
∂

∂xj

[
1

ρ
(µ+ σ∗µT )

∂k

∂xj

]
, (3.19)

and

∂ω

∂t
+
∂ω〈uj〉
∂xj

= −α1
ω

ρk
〈ρu′iu′j〉

∂〈ui〉
∂xj

− βω2 +
∂

∂xj

[
1

ρ
(µ+ σµT )

∂ω

∂xj

]

+ 2 (1 − F1) σω,2
1

ω

∂k

∂xj

∂ω

∂xj

, (3.20)
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where

σ∗ = F1/σk,1 + (1 − F1)/σk,2, (3.21)

and

σ = F1/σω,1 + (1 − F1)/σω,2. (3.22)

Turbulent eddy-viscosity,µT , is obtained from:

µT =
ρk

ω

1

max

[
1

α∗
, SF2

a1ω

] , (3.23)

whereS is the strain rate magnitude andα∗ is defined in Equation (3.16).

F1 andF2 are the blending functions and defined by

F1 = tanh
(
Φ4

1

)
, (3.24)

and

F2 = tanh
(
Φ2

2

)
, (3.25)

where

Φ1 = min

[
max

( √
k

0.09ωy1
,
500µ

y2
1ωρ

)
,
4ρσω,2k

D+
ω y

2
1

]
, (3.26)

Φ2 = max

(
2

√
k

0.09ωy1
,
500µ

y2
1ωρ

)
, (3.27)

D+
ω = max

[
2ρσω,2

1

ω

∂k

∂xj

∂ω

∂xj

, 10−10

]
, (3.28)

y1 is the distance to the nearest wall andD+
ω is the positive portion of the cross-

diffusion term in Equation (3.20). The blending function,F1, is unity near the walls,

thus Equation (3.20) results in the standardω equation. The blending function is

zero in the far field and thus corresponds to the standardǫ equation there. Instead

of a having a constantβ in Equation (3.20),βi is defined by

βi = F1βi,1 + (1 − F1)βi,2. (3.29)

The model constants areσk,1 = 1.176, σω,1 = 2.0,σk,2 = 1.0, σω,2 = 1.168,

27



Chapter 3 3.4 Large Eddy Simulation

a1 = 0.31, βi,1 = 0.075 andβi,2 = 0.0828.

3.4 Large Eddy Simulation

3.4.1 Filtered Governing Equations

Sub-grid scale (SGS), smaller than the filter width used in the computations, eddies

are effectively filtered out through a filtering operation inLES. If g(x) is a generic

variable, its corresponding filtered variable, also known as the resolvable compo-

nent ofg(x), is denoted bȳg(x). It is defined as the convolution ofg(x) with a filter

functionG, that establishes the scale of the resolved eddies, as (Leonard [121])

ḡ(x) =

∫

D

g(x′)G(x,x′) dx′, (3.30)

whereD is the blood domain. Filter function used is defined as

G (x,x′) =

{
1

dV
if x

′ ∈ dV

0 x
′ otherwise,

(3.31)

wheredV is the volume of a computational cell. The finite-volume discretisation

itself implicitly performs filtering operation:

ḡ(x) =
1

dV

∫

dV

g(x′) dx′,x′ ∈ dV. (3.32)

The governing equations for LES are obtained by applying theabove spatial fil-

ter function (3.31) to the Navier-Stokes equations of motion (3.1)-(3.2). The filtered

continuity and momentum equations are:

∂ūi

∂xi
= 0, (3.33)

∂ūi

∂t
+
∂ūiūj

∂xj
= −1

ρ

∂p̄

∂xi
+

∂

∂xj

[
ν

(
∂ūi

∂xj
+
∂ūj

∂xi

)]
− ∂τij
∂xj

, (3.34)
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where the effects of the subgrid-scale stress tensor,

τij = uiuj − ūiūj, (3.35)

are modelled using the dynamic Smagorinsky-Lilly model ([122; 115; 116; 123])

and are discussed below.

3.4.2 Smagorinsky-Lilly Subgrid-scale Model

The model was first developed by Smagorinsky [122] and is based on the eddy

viscosity formulation as

τij −
1

3
δijτkk = −2νsgsS̄ij, (3.36)

whereνsgs is the subgrid kinetic eddy-viscosity (related to the subgrid dynamic eddy

viscosity,µsgs, asρνsgs = µsgs), τkk, very small for incompressible flow and thus

neglected (Erlebacher et al. [124]), is the isotropic part of the SGS stress tensor,

δij is the Kronecker delta and̄Sij is the rate-of-strain tensor for the resolved scale

which is defined by

S̄ij = 1
2

(
∂ūi

∂xj
+
∂ūj

∂xi

)
. (3.37)

In the Smagorinsky-Lilly model, the turbulent eddy-viscosity, νsgs is modelled as

νsgs = L2
s|S̄|, (3.38)

whereLs is the mixing length and and|S̄| =
√

2S̄ijS̄ij is the magnitude of the

large scale strain rate tensor. The mixing lengthLs is calculated using the following

equation

Ls = min (κd, Cs△) , (3.39)

whereκ is the von Kármán constant, which is a dimensionless number in a

turbulent flow describing the logarithmic velocity profile near a boundary with a

no-slip condition,d is the distance to the closest wall,Cs is the Smagorinsky con-

stant and△ is the cubic root of the volume of the computational cell. Hence the
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Smagorinsky-Lilly model takes the form

τij −
1

3
δijτkk = −2L2

s|S̄|S̄ij. (3.40)

A universal value for Smagorinsky constantCs is not suitable for transition-to-

turbulent flow asCs varies at different locations inside the full flow domain. Hence

Cs is computed dynamically ([115; 116; 123]) using the information obtained from

the resolved scales of motion.

3.4.3 Dynamic Smagorinsky-Lilly Subgrid-scale Model

The dynamic subgrid model was first proposed by Germano et al.[115]. In this

model, the Smagorinsky constant is computed as a function oftime and position.

Following Germano et al. [115], atest-filter having larger filter width than the origi-

nal filter, (△̃ > △), is applied to the filtered Navier-Stokes Equations. (3.33)-(3.34),

leading to the subgrid-scale stress tensor,Tij , similar toτij of (3.35) as

Tij = ũiuj − ˜̄ui ˜̄uj. (3.41)

The relationship between the two stress tensors,τij andTij, can be expressed by the

following Germano identity,

Lij = Tij − τ̃ij (3.42)

Assuming the similar functional form to the Samgorinsky model, the deviatoric part

of Tij yields

Tij −
1

3
δijTkk = −2(Cs△̃)2| ˜̄S| ˜̄Sij, (3.43)

with the test-scale shears defined similarly to those of the grid scale.

The elements ofLij in Equation (3.42) are the resolved components of the stress

tensor associated with the test and grid scales of motion. When Ls = Cs△ in

Equation (3.39), the right hand side of Equation (3.42) can be calculated explicitly

by subtracting (3.40) from (3.43),

La
ij = Lij −

1

3
δijLkk = 2C2

sMij , (3.44)
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where

Mij = −△̃2| ˜̄S| ˜̄Sij + △2 ˜|S̄|S̄ij. (3.45)

A least square approach is employed, as Lilly [116] suggested, to evaluate the values

of C∗

s ,

C2
s = C∗

s =
1

2

La
ijMij

M2
ij

. (3.46)

The Smagorinsky coefficientCs is calculated iteratively. To avoid numerical insta-

bility, the Smagorinsky coefficientCs is clipped at zero when it is negative and0.23

when it exceeds this value ([125]).

3.5 Boundary Conditions

The following boundary conditions have been applied to solve the governing time-

averaged Equations (3.9-3.10) and the filtered Equations (3.33-3.34). Furthermore,

in thek-ω Transitional models turbulence is specified by percentage of turbulence

intensity and hydraulic diameter which is the diameter of the tube.

3.5.1 Velocity Inlet

Flow velocity at the inlet, which influences the transition-to-turbulent of the stenotic

flow, is defined by employing velocity inlet boundary condition. It will be described

in the relevant chapters.

3.5.2 Wall

A no-slip condition can generally be applied if the domain boundary coincides with

a rigid impermeable surface. This no-slip boundary condition is used for the pipe

surface, which is defined as

ūi(x; t)|Γ = 0. (3.47)

The prescription for a no-slip condition in the proximity ofthe wall for LES of

a turbulent flow is not straight forward. LES match up with DNSin the vicinity

of the wall as all important energy levels containing scalesof LES must include all
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viscous scales in the sublayer. Acceptable standard results are ensured by using fine

grid resolution near the wall, needed to capture the viscousscales in the sublayer.

For all cases in this study, the first grid point off the wall lies in the regiony+≈1.

3.5.3 Pressure Outlet

In the pressure outlet boundary condition, only the static pressure at the outlet is

specified either by a fixed pressure quantity (for steady flow)or by a pressure wave

(for pulsatile flow) and all other quantities are extrapolated from the interior so-

lution. An overall mass balance correction is performed at this boundary and the

diffusion fluxes in the direction normal to the exit plane areassumed to be zero,

however gradients may exist in the cross-stream direction.Outlet static pressure

(wave) will be described in the relevant chapter.

Convergence difficulties arising from reverse flow at the outlet during solution

process are minimised by specifying a realistic backflow condition. When backflow

occurs during iteration, the use of a pressure outlet boundary condition instead of

an outflow condition gives a better convergence rate.

3.6 Overview of Numerical Procedures

An outline of the solution procedure used this study is laid out in this section. The

commercial cell-centred finite volume fully implicit and second order accurate in

both space and time code, Fluent6.3, with its turbulent models namely the two-

equationk-ω Transitional model and LES with Smagorinsky-Lilly dynamicsub-

grid model was employed to solve the incompressible governing equations for both

steady and physiological pulsatile non-spiral and spiral blood flow through models

of arterial stenosis and aneurysm. Fluent with above mentioned turbulent models

has previously been exploited to investigate pulsatile andsteady flow in arterial

stenosis by Ryval et al. [79], Varghese et al. [85], Paul and Larman [17], Barber and

Simmons [96] and Gårdhagen et al. [94; 95].

Pressure-based fully implicit solver was chosen for this study. Finite-volume

approach is used to discretise the governing equations to construct a system of lin-

ear equations. For thek-ω Transitional model, the diffusive and convective terms
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of the momentum equations and the equations of turbulent kinetic energy (k) and

specific dissipation rate (ω) were discretised by using second-order upwind scheme.

However, in LES, a second-order-accurate bounded central differencing scheme is

used to discretise the diffusive and convective terms of themomentum equations.

And the pressure at a cell face was computed using second-order scheme for both

LES andk-ω Transitional model. Three-point backward difference scheme is used

to discretise time derivatives. A uniform time step was applied in the simulation

and stability of the solution is ensured.

A segregated pressure correction algorithm, SIMPLEC (SIMPLE-Consistent)

(Vandoormaal and Raithby [126]) for thek-ω Transitional model and PISO (Pressure-

Implicit with Splitting of Operators) (Issa [127]) for LES,is employed to couple

pressure with the velocity components and results are stored at the cell centres as

Fluent uses co-located scheme. To prevent unphysical checker-boarding of pres-

sure, the Poisson like pressure-correction equation is discretised by using a pro-

cedure similar to Rhie and Chow [128] pressure smoothing approach. The pres-

sure correction equation is solved by using the algebraic multigrid (AMG) method.

Splitting error, introduced by segregated solution process, is controlled by using an

iterative-time advancement scheme.

A point implicit (Gauss-Seidel) solver in conjunction withalgebraic multigrid

(AMG) method is used to solve the discretised system of linear equations. For

all the computations, convergence is assumed to have achieved when the residuals

become less than10−5 at each time-step.

3.7 Data Processing and Flow Statistics

Data processing for steady flow and unsteady pulsatile flow isdone by using a time-

averaging and a phase-averaging technique, respectively,on the solutions obtained

from LES model. For a generic flow filtered variable,ḡ, the time averaged mean

over the total number of time-stepNt is computed as

〈ḡ〉(x, y, z) =
1

Nt

Nt∑

i=1

ḡ(x, y, z, ti), (3.48)
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wheret1 is the time at which averaging process is initiated. In steady flow, the

random turbulent fluctuations, deviation from the time averaged mean, is defined as

g′(x, y, z, t) = ḡ(x, y, z, t) − 〈ḡ〉(x, y, z). (3.49)

A phase-averaging technique (Varghese et al. [84], Lieber and Giddens [129],

Scotti and Piomelli [75] and Mittal et al. [88]) is employed to differentiate the

pulsatile fluctuations from the random turbulent fluctuations. The phase-averaged

mean over a periodTf = NT , whereN is the number of time-period cycles over

which phase-averaging is performed andT is the time period of each pulsatile cycle,

can be calculated as

〈〈ḡ〉〉(x, y, z, t) =
1

N

N−1∑

n=0

ḡ(x, y, z, t+ nT ). (3.50)

The pulsatile phase-average turbulent fluctuations are defined as

g′′(x, y, z, t) = ḡ(x, y, z, t) − 〈〈ḡ〉〉(x, y, z, t). (3.51)

Hence, the root mean square (rms) values of the pulsatile turbulent fluctuations are

computed as

〈g′′〉rms =
√

〈〈g′′2〉〉. (3.52)

The energy spectra,E, of the pulsatile turbulent fluctuations are defined as

E =

L∑

j=1

g′′
2
e−2iπ(j−1)(k−1) , k = 1, 2, · · ·, L, (3.53)

whereL is the number of time-steps. The energy spectra of the pulsatile turbulent

fluctuations and the vortex shedding frequency from the sampling frequency are

computed by using MATLAB (MATLAB 7.6 [130]). The algorithm for finding the

energy spectra is as follows

• Load the data sets ofg′′ andL and computeg′′2 for the energy spectra.

• Use MATLAB FFT (Fast Fourier Transform) algorithm ong′′2 and save the

data asX.
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• Use MATLAB Nyquist frequency algorithm onL and save the data as the

vortex shedding frequencyfs.

• Lastly, compute the energy spectra,E, taking the absolute value ofX.
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Chapter 4

A Computational Study on Spiral

Blood Flow in Stenosed Arteries with

and without an Upstream Curved

Section

4.1 Introduction

Computational study of spiral blood flow in arterial stenosis is relatively new. Among

all the investigations of spiral blood flow, only two studies, namely Stonebridge

et al. [16] and Paul and Larman [17], involve turbulence analysis of the flow in

stenosed artery. As pointed out in§ 2.4 of Chapter 2, Stonebridge et al. [16] used

an ambiguous approach to study spiral flow through stenosis and their findings are

open to doubt. On the other hand, Paul and Larman [17] showed turbulent kinetic

energy only on the central line forRe = 500 and1000. But maximum turbulence

occurs in the shear layer, not along the central line. Apart from the twisting of

the heart on its own axis, spiral pattern in blood flow may alsobe generated due

to the presence of a curved section in the upstream. Above mentioned two stud-

ies were only on a straight stenosed tube. Therefore, to get agood insight of the

transition-to-turbulence of spiral blood flow through arterial stenosis, more numer-

ical investigations are needed.

In this chapter, transition of steady spiral blood flow through models of arterial

stenosis with and without an upstream curved section is studied by applying two-

equation standardk-ω transitional turbulence model and LES technique. Straight
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tubes having axisymmetric cosine-type stenosis with and without upstream curved

segment of varying angles are taken as the computational domains. A parabolic pro-

file for axial velocity was introduced at the inlet. And for generating spiral effect at

the inlet, one-sixth of the bulk velocity was taken as the tangential velocity, as sug-

gested by Stonebridge et al. [15; 16] that spiral velocity isone-sixth of the forward

velocity within the artery. At the outlet, a constant staticpressure of80 mmHg (or

10665.6 Pa) was imposed. In this study, the focus is on the effects of spiral pattern

on the flow physics in the downstream region of the stenosis.

As discussed in Chapter 2, the filtering operation in LES divides the flow field

up into large scale eddies and small scale (Sub-grid scale orSGS) eddies. The

turbulence energy containing large scale eddies are resolved directly while the un-

resolved small scale eddies are modelled using Smagorinsky-Lilly dynamic subgrid

model (Germano [115], Lilly [116] and Kim [123]), as described in Chapter 3. The

commercial code Fluent6.3 is validated for axial velocity profiles in the non-spiral

blood flow in a model arterial stenosis for Reynolds numbersRe = 1000 and2000

against available corresponding experimental data of Ahmed and Giddens [28; 27].

The performance ofk-ω-SST transitional model in comparison with standardk-ω

transitional model is also assessed by comparing the axial velocity profiles obtained

from using them against the available corresponding experimental data. In addi-

tion, it is also examined how much inlet turbulence intensity can be introduced in

LES andk-ω transitional model to control transition and hence benchmark against

experimental data.

The layout of this chapter is as follows: a description of themodel geometries

and mesh distribution is given in§ 4.2, inflow boundary condition is presented in

§ 4.3, validation with experiment and results and discussionare presented in§ 4.4

and§ 4.5, respectively, and finally a general conclusion of this chapter is drawn in

§ 4.6.

4.2 Flow Models and Meshing

Solid models of stenosed arteries with and without upstreamcurved section of vary-

ing angles were built using GAMBIT2.4 (Fluent Inc.) and are shown in Figure 4.1.

Diameter of the unstenosed section of the arterial models isD = 0.02m and the
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angle of curvature for the upstream curved sections are:60◦, 90◦ and120◦. Axial

direction is alongz-coordinate axis. For the straight tube (without upstream curved

section), stenosis is centred atz = 0. Lengths of the stenosis, upstream and down-

stream section of the model arteries are2D, 3D and22D, respectively, as measured

from the stenosis throat. Vessels with curved upstream section are further extended

to 10D in the upstream as shown in Figure 4.1. Degree of a stenosis isgenerally

measured by a percentage reduction in diameter or cross-sectional area at the throat

of the stenosis. For our study throughout the thesis75% stenosis by area reduction,

corresponding to a50% diameter reduction was used as it is clinically significant

when the area reduction is greater than75% (Young [2] and Ku [3]). Furthermore, a

75% stenosis has also been used in many previous experimental and computational

studies.

The stenosis is formed using the following cosine-type relation

r0 (z)

R
=

{
1 − δc

2

(
1 + cos zπ

D

)
, −D ≤ z ≤ D

1, elsewhere
(4.1)

wherer0 andR are the cross-sectional radius and radius of the unaffectedsec-

tion of models, respectively. The parameterδc determines the cross-sectional area

reduction of the stenosis and it is fixed at1
2
, giving a75% reduction of the cross-

sectional area at the centre of the stenosis. The cosine-type realistically shaped

constriction/stenosis developed in the model arteries using above the relation (4.1)

provides a quite reasonable representation of an arterial stenosis, see Ahmed and

Giddens [27].

Meshing of the flow domains was done using the meshing software GAM-

BIT 2.4 (Fluent Inc.). As no-slip condition is applied to the wall, aboundary layer

is developed inside the wall to increase the resolution in the sublayer. A gradient

scheme is also applied along the axial direction of the models to ensure the finest

mesh at the centre and immediate downstream of the stenosis because high level of

vortices and turbulent fluctuations occur in these regions.And in the further down-

stream region of the stenosis a gradually coarsening mesh help keep computational

cost to a minimal.
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Table 4.1: Parameters of stenosed arteries with and withoutupstream curved section
models.

Model θ (angle of curvature) Re
A1 0◦ 500
A2 60◦ 500
A3 90◦ 500
A4 120◦ 500
B1 0◦ 1000
B2 60◦ 1000
B3 90◦ 1000
B4 120◦ 1000
C1 0◦ 1500
C2 60◦ 1500
C3 90◦ 1500
C4 120◦ 1500
D1 0◦ 2000
D2 60◦ 2000
D3 90◦ 2000
D4 120◦ 2000

4.3 Inflow Boundary Condition

A parabolic velocity profile along the axial direction:

w(x, y) = 2V̄

[
1 −

( r
R

)2
]
, (4.2)

whereV̄ is the bulk axial velocity which depends on the blood flow Reynolds num-

ber defined asRe = ρV̄ D
µ

, is imposed at the inlet of the models. And for introducing

spiral property, a tangential velocity profile:

vt(x, y) =
V̄

6

( r
R

)
, (4.3)

is applied at the inlet. These inlet boundary conditions were coded in C-language

using the User Defined Function (UDF) interface of Fluent andlinked with the

solver. In this chapter, each model is investigated for fourReynolds numbers namely

Re = 500, 1000, 1500 and2000. The parameters of the models are presented in
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Table 4.1 and models will be referred by their names in the following sections of

the chapter.

Inlet turbulence characteristics are defined by inlet turbulence intensities and

diameter of the model. For thek-ω models, inlet turbulence intensity of3.8%,

1.5%, 1.0% and0.7% are found to give acceptable results forRe = 500, 1000,

1500 and2000, respectively, as it is clear from the experimental validation for two

Reynolds number in§ 4.4. LES is applied to only modelD1 for both non-spiral

and spiral blood flow and modelB1 for non-spiral blood flow. Three different

inlet turbulent intensities:0% i.e., no inlet perturbation,1% and5% are considered

for experimental validation. The inlet perturbations in LES were generated using

the vortex method ([125]) and the magnitude of these artificial intensities adjust

downstream from the inlet. A time-step size of1.0 × 10−3 s is taken for temporal

advancement in LES. Instantaneous axial velocity at several points on the centreline

is recorded for each time-step and sampling for time statistics is initiated when the

initial transients has vanished. A total time-steps of15000 are used to get statistical

convergence when the time averaged values has levelled off.Results presented in

this chapter are mainly ofk-ω model unless it is mentioned otherwise.

4.4 Validation with Experiment

Before discussing the main results, it would be interestingto see how the simulation

results obtained from using different turbulence models match available experimen-

tal results of Ahmed and Giddens [27; 28]. Figures 4.2 and 4.3show a comparison

of axial velocity profiles at various locations downstream of the stenosis modelsB1

andD1, respectively, for non-spiral flow, i.e. straight tube with75% cross-sectional

area reduction stenosis for Reynolds numbersRe = 1000 and2000, respectively.

Velocity profiles in modelsB1 andD1 obtained by usingk-ω models with inlet

intensity1.5% and0.7%, respectively, closely follow corresponding experimental

data, though they over-predict in the further downstream region. For thek-ω mod-

els, any inlet intensity lower than above intensities for a corresponding geometric

model gives unconvincing velocity profiles as it is clear from Figures 4.2 and 4.3.

It is to note from the above figures that the standardk-ω transitional andk-ω-SST

transitional models give almost the same results, i.e., none of the twok-ω models
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matches experimental data better than the other. So, the standardk-ω transitional

model will be used in this thesis in preference to thek-ω-SST transitional model.

Three distinct inlet perturbations:0%, 1% and5% were introduced in LES for

both geometric modelsB1 andD1. It appears from the above figures that LES with

0% inlet intensity agrees better with the experimental results than the other two

inlet intensities for modelB1. However, for modelD1, LES with5% inlet intensity

matches experimental data better. Therefore for modelD1, 5% inlet intensity will

be used in this study. Furthermore, performance of LES is obviously better than the

k-ω transitional model as it can be seen that the blunt turbulentvelocity profiles in

the downstream region from experimental data matches only LES results. In spite

of small disagreements with experimental results of Ahmed and Giddens [27; 28],

which are also present in the studies of Ryval et al. [79] and Gårdhagen et al. [95],

overall agreement of the present simulation results with experimental results is very

good.

4.5 Results and Discussion

Although all the geometric models are studied for spiral blood flow, results from

modelsD1, D2, D3 andD4 are presented in detail while the findings from all

the models are summarised in bar charts at the end. As the focus is on the effects

of spiral pattern on the flow field in the downstream of the stenosis, results in the

curved section of all the models having upstream section areignored to compare the

results in the remaining section with corresponding results in the stenosed straight

tube without upstream curved section.

Grid resolution tests are done for spiral flow in two models namelyD1 andD3

by applying LES and standardk-ω transitional model, respectively, to ensure sim-

ulation results are independent of grid arrangements employed. The test results are

shown in Figures 4.4 and 4.5 for axial velocity profiles at different locations along

the axial directions. In Figure 4.4 for modelD1, Grid 1 corresponds to a total of

≈ 500, 000 control volumes which is increased by40% for Grid 2 to get≈ 700, 000

control volumes. Grid3 consists of huge control volumes i.e.,≈ 1, 260, 000 which

is further an increase of80% on Grid 2. However, in Figure 4.5 for modelD3,

Grid 1, Grid 2 and Grid3 consist of≈ 750, 000 , 950, 000 and1, 500, 000 control
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volumes, respectively, keeping almost the same ratio of control volumes as in model

D1. The grid resolution studies in Figures 4.4 and 4.5 clearly show that resolution

of Grid 2 is good enough to get high level accuracy in the simulation while keeping

the computational cost to a minimum.

4.5.1 Flow Visualization

To see how the flow field in the downstream of the stenosis in non-spiral flow differs

from that in the spiral flow, cross-sectional streamlines are appended on the contour

plot of axial velocity at various locations along the flow directions in Figures 4.6-

4.13 for modelsD1, D2, D3 andD4. As a result of an adverse pressure gradient

in the downstream region of the stenosis, reverse flow occursnear the wall, causing

recirculation of blood there. Figure 4.6 demonstrates thatthe re-circulation region

for non-spiral flow in modelD1 is between2D (frame e) and4D (frame g). The

reverse flow or negative axial velocity is stretched from2D (frame e) to4D (frame

g) in Figure 4.6, which makes the blood there to recirculate near the wall. While

in Figure 4.7 for spiral flow in the same model, the re-circulation region is larger

and lies between2D (frame e) and5D (frame h) as the reverse flow near the wall

is stretched up to5D. Also the twisting pattern of the spiral flow in this region

is much stronger than that found in the further downstream region. In the further

downstream region, the spiral property tries to stabilise the flow. The “twisted”

pattern found in the downstream of spiral flow in modelD1 as seen in Figure 4.7

is similar to the “corkscrew” pattern found in the MRI measurements of the blood

flow in a thrombosed artery by Frydrychowicz et al. [10].

However, the length of the recirculation zone for non-spiral and spiral flow in

modelD3 is same and lies between2D (frame e) and5D (frame h), as it is clear

from Figures 4.8 and 4.9. It is to note that unlike spiral flow in modelD1 as in

Figure 4.7, no spiral pattern is seen in the upstream region and at the throat of the

stenosis for either non-spiral or spiral flow in modelD3. But for spiral flow in

modelD3 as in Figure 4.9, a rotational pattern is visible in the further downstream

region. Moreover, two distinct recirculations of secondary flow can be observed for

both non-spiral and spiral flow in modelD3 at−3D (frame a) in the upstream of

the stenosis due to the presence of a curved section there. For both spiral and non-
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spiral flow in modelsD1 andD3, the velocity vectors move towards the centre at

the throat of the stenosis where the axial velocity is maximum, forming a narrow jet

from throat of the stenosis. At the onset of turbulence at2D (frame e), direction of

the vectors reverses from their previous direction at1D (frame d) where they start

to break away from the centre as it is clear from Figures 4.6, 4.7, 4.8 and 4.9.

No spiral pattern is seen anywhere in the flow domain for either non-spiral or

spiral flow in modelsD2 andD4 from Figures 4.10, 4.11, 4.12 and 4.13, respec-

tively. For both non-spiral and spiral flow in these two modelsD2 andD4, velocity

vectors between1D (frame d) and5D (frame h) downstream of the stenosis, which

is the region of most turbulence activities, move towards a ring formed in the cross-

sections where axial velocity changes from positive to negative near the wall and

elsewhere in the flow domain the vectors move from wall to wall. These large

recirculation zones for both non-spiral flow and spiral flow in the models are clini-

cally harmful as these may cause potential damage to blood cells and intima of the

stenosed artery (Paul and Larman [17], Molla [90]).

Furthermore, it can also be seen from the pathlines for spiral flow in model

D2 as presented in Figure 4.14 that the flow enters the stenosis without any spiral

pattern. The absence of spiral pattern in the immediate upstream of the stenosis and

at the throat of the stenosis for spiral flow in modelsD2, D3 andD4 may be due

to the constraints imposed in the simulations such as rigid wall of the models and

steady flow. But in reality, the arterial wall is distensibleand the arerial blood flow

is unsteady pulsatile due to the heart pumping.

The effects of spiral pattern are more clear from the contourplot of tangential

velocity in Figures 4.15-4.22 for both non-spiral and spiral flow in modelsD1,D2,

D3 andD4. Among all the contour plots of tangential velocity, it is ofrotational

pattern at the upstream region and the throat of the stenosisonly in Figure 4.16 i.e.,

for spiral flow in modelD1. Fig. 4.15 shows that maximum and minimum tan-

gential velocity for non-spiral flow in modelD1 occurs at1D (frame d) i.e. at the

post-lip of the stenosis. However, maximum and minimum tangential velocity for

spiral flow in the same modelD1 occur at the throat of the stenosis and4D (frame

g) downstream, respectively, as seen from Figure 4.16. Figures 4.17-4.22 demon-

strate that, for both non-spiral and spiral flow in other models namelyD2, D3 and

D4, tangential velocity has its maximum and minimum at the throat of the steno-
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sis where it forms two crescent-like shapes of positive and negative values. Unlike

contour plots of tangential velocity for spiral flow in modelD1, no rotational pat-

tern at the upstream or at the throat of the stenosis is seen for spiral flow in models

D2, D3 andD4 (see Figures 4.18, 4.20 and 4.22), which is again an indication of

the loss of spiral pattern before the stenosis in the models with an upstream curved

section as discussed in the above paragraph. As discussed above, this may be due

to the rigid wall of the models and/or the treatment of blood flow as steady flow

in the simulations. For all the cases, a ring of negative tangential velocity can be

observed around the centre of the cross-sections in the recirculation zones, which

takes a semicircular shape in the further downstream region.

4.5.2 Flow Velocity

The mean axial velocity,〈w〉, profiles for both non-spiral and spiral flow at different

locations in the modelsD1 andD2, D3 andD4 are presented in Figures 4.23 and

4.24, respectively. Note that the corresponding LES results in modelD1 are also

appended in Figure 4.23. As blood enters the stenosis, it accelerates through the

constriction, generating a plug-shaped velocity profile within the stenosis and a flow

separation region immediately downstream of the stenosis.No substantial effect of

spiral flow on the axial velocity is observed from the above figures. However, the

axial velocity in modelD1 increases for spiral flow near the wall and decreases

around the centre between2D (frame d) and4D (frame f) which can be seen from

the LES results. In the further downstream region, i.e. after 8D (frame j), it is

almost same for all models. Magnitude of the axial velocity around the centre is

maximum in modelD1 in the immediate downstream region and it falls slightly

from this maximum value in modelD3. While it is minimum in modelsD2 and

D4. Though the axial velocity is almost same in modelsD2 andD4, it decreases in

modelD4 around the mid-region between the wall and the centre in the downstream

between3D (frame e) and4D (frame f). All these differences in the axial velocity

profiles in the different models are due to the effect of an upstream curved segment

of varying angles of curvature.

Figure 4.25 and 4.26 show the meanx-velocity, 〈u〉, profiles at different loca-

tions in modelsD1 andD2,D3 andD4, respectively. The LES results for the mean
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x-velocity differ significantly from the correspondingk-ω model results, which can

be seen from Figure 4.25. Also in modelD1, the spiral effect on〈u〉 is distinctly

visible, especially up to9D (frame k) as the〈u〉 profiles in non-spiral flow vary

in magnitude and pattern from those in spiral flow. However, in other models, the

effect of spiral flow is not significant on〈u〉, as it is clear from Figure 4.26. The

magnitudes of〈u〉 are almost same in modelsD1 andD3 at all corresponding lo-

cations, however, they are maximum in modelD2 and of opposite pattern in model

D4 which can be attributed to the existence of an upstream curved segment of dif-

ferent angles of curvature. The meany-velocity profiles,〈v〉, in modelsD1 andD2,

D3 andD4 are shown in Figures 4.27 and 4.28, respectively, to see the influence of

spiral flow and an upstream curved section on〈v〉. As seen in〈u〉 profiles, the LES

results for〈v〉 do not match the correspondingk-ω model results, which is clear

from Figure 4.27. Due to the effect of spiral velocity introduced at the inlet, the〈v〉
profiles for spiral flow at different locations differ from the corresponding results

for non-spiral flow in modelD1, which can also be seen from this figure, especially

from LES results. But〈v〉 profiles for spiral and non-spiral flow are almost same

in other models at all corresponding locations, as can be seen from Figure 4.28.

However, the effect of an upstream curved section on〈v〉 is distinctly visible from

the figure. At some places in the downstream region up to5D (frame g),〈v〉 is

maximum in modelD4 which is follwed by its corresponding value in modelsD3

andD2. In the further downstream region, the〈v〉 profiles are almost same in all

models.

4.5.3 Turbulent Kinetic Energy (TKE)

The effects of spiral flow and un pstream curved segment on theturbulent kinetic

energy (TKE) at different locations in the flow domain in modelsD1 andD2, D3

andD4 are presented in Figures 4.29 and 4.30, respectively. The LES results in

Figure 4.29 clearly show that in modelD1 at some places between2D (frame d) to

5D (frame g) i.e., in the core turbulence region, the TKE increases greatly for spiral

flow though it may decrease along the centreline as shown by Paul and Larman [17].

Also the TKE in modelD2 increases at some places when a spiral effect is intro-

duced at the inlet of the model as can be seen from Figure 4.30(d-f). No influence
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of spiral flow or an upstream curved segment on the TKE in othermodels can be

seen from Figure 4.30. It remains same in the other models at the corresponding

locations, however, the TKE is high in the post-stenotic region between2D (frame

d) and6D (frame h). The high TKE in the post-stenotic region for spiral flow in

modelSD1 andD2 has even more serious detrimental effect on the human circula-

tory system because large TKE damages the red blood cell materials and activates

the platelets in the blood leading to many pathological diseases (Ku [3]).

4.5.4 Wall Pressure and Shear Stress

Figures 4.31 and 4.32 present the circumferential average wall pressure in mod-

elsD1 andD2, D3 andD4, respectively. And the circumferential average wall

shear stress (WSS) in modelsD1 andD2, D3 andD4 are shown in Figures 4.33

and 4.34, respectively. Note that the corresponding LES results for both non-spiral

and spiral flow in modelD1 are also shown in Figures 4.31 and 4.33. The spiral

flow does not affect the wall pressure and WSS in modelD1, D2, D3 andD4 as

it is clear from the above figures. The large velocities at thethroat of the stenosis

cause a steep drop in pressure at the stenosis throat in each model. Figures 4.31

and 4.32 show that the pressure drop around the stenosis throat is greater in models

D1 andD3 than other two modelsD2 andD4. The Pressure drop is maximum in

modelD3 and it is same and minimum in modelsD2 andD4. The LES results in

Figure 4.31 shows that the pressure in modelD1 recovers earlier than other mod-

els after its drop. This high Bernoulli-type pressure drop at the stenosis throat can

cause local collapse of the stenosis in severe stenoses (Wootton and Ku [6]). Conse-

quently, choking can restrict the flow rate and generated compressive loading may

rupture the plaque, a precipitating event in most heart attacks and stroke (Wootton

and Ku [6], Li et al. [8]).

The WSS increases to an extremely high magnitude just prior to the throat of

the stenosis in each model because of high velocity at the throat as can be seen in

Figures 4.33 and 4.34. It drops just after the throat where itis almost zero and takes

an oscillatory form in the post-stenotic region. Like the pressure drop, the WSS

increase just before the throat is maximum (31 Pa) and almost same in modelsD1

andD3 while in modelsD2 andD4, the WSS is of same value and its rise before
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the throat is (25 Pa) less than that in other two models. This high increase in the

WSS just before the throat has many pathological significances. Malek et al. [9]

reported that shear stress higher than70 dynes/cm2 (or 7 Pa) may induce thrombo-

sis. According to Fry [36], high WSS (> 379 ± 85 (SD) dynes/cm2 or 37.9 ± 8.5

(SD) Pa) around the throat may damage endothelial cells and fissure plaque. And

it may also overstimulate platelet thrombosis (Ku [3]), leading to total occlusion

(Folts et al. [38]). Additionally, high shear stress (≥ 100 dynes/cm2 or 10 Pa) is

also responsible for deformation of the red blood cells (Sutera and Mehrjardi [37]).

Moreover, the abnormal oscillatory shear stress found in the downstream of the

stenosis in all the models may cause potential damage to the red blood cells and the

inner lining of a post-stenotic blood vessel (Paul and Molla[93]).

4.5.5 Summary of the other models

Bar charts in Figure 4.35 summarises the effects of spiral flow and upstream curved

segments on maximum (derived from the whole domain) TKE in all the models.

Spiral flow has no significant effect on the maximum TKE as it isclear from the

Figure 4.35. The maximum TKE increases slightly for spiral flow in modelsA1,

B1, B3, C2, D1 andD2, while for spiral flow in modelsA2, A3, A4, B2, B4,

C4 andD4, it decreases a little and its change in the remaining modelsis very

insignificant. Particularly, for spiral flow, a maximum increase of≈ 6%, ≈ 2%,

≈ 3% and≈ 5% in the maximum TKE forRe = 500 in straight stenosed tube,

Re = 1000 in straight stenosed tube,Re = 1500 in 60◦ curved upstream model

andRe = 2000 in 60◦ curved upstream model, respectively, can be observed. And

a maximum decrease of≈ 7%, ≈ 3%, ≈ 2% and≈ 2% in the maximum TKE

for Re = 500 in 60◦ curved upstream model,Re = 1000 in 60◦ curved upstream

model,Re = 1500 in 120◦ curved upstream model andRe = 2000 in 120◦ curved

upstream model, respectively, can also be found for spiral flow.

The influence of an upstream curved segment on the maximum TKEcan be seen

for all the investigated Reynolds numbers. For Reynolds numbersRe = 1000, 1500

and2000, the maximum TKE increases most in the model with120◦ curved up-

stream segment which is followed by the maximum TKE in60◦, 90◦ and0◦ curved

upstream segment model consecutively; but forRe = 500, the maximum TKE de-
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creases most in120◦ curved upstream segment model. It is interesting to note that

the maximum TKE in90◦ curved upstream segment model drops compared with60◦

curved upstream segment model, especially forRe = 1500 andRe = 2000. Fur-

ther investigations involving more models with a curved upstream segment close

to (less than and greater than)90◦ curved upstream segment and different efficient

numerical approach such as LES for the simulations are needed to comprehend this

sudden drop of the maximum TKE in90◦ curved upstream segment model. The

maximum TKE rises by18%, 18% and19% in 120◦ curved upstream model com-

pared with its minimum value in straight stenosed tube forRe = 1000, 1500 and

2000, respectively; however, forRe = 500, it rises by34% in 60◦ curved upstream

model compared with its minimum value in120◦ curved upstream model. As men-

tioned earlier, this extreme rise in TKE in curved models maypotentially harm the

red blood cells and activate the platelets in the blood, resulting in many pathological

diseases (Ku [3]).

Additionally, contour plot of TKE for both non-spiral and spiral flow in model

A1 in Figure 4.36 also shows that (maximum) TKE increases for spiral flow (frame

b), though it decreases along the centreline for spiral flow as reported by Paul and

Larman [17]. Therefore, taking only the centreline data forTKE would provide an

incomplete description of the spiralling effects.

As to the effect of spiral flow on WSS, WSS at different phases of the wall in

modelA1 in Figure 4.37 for both non-spiral and spiral flow further clarifies that

the influence of spiral flow on WSS is negligible. Furthermore, it can be observed

that the effect of spiral flow on the maximum pressure drop (Figure 4.38) and the

maximum WSS (Figure 4.39) in any model for all the Reynolds numbers is very

insignificant. However, the effect of upstream curved segment on the maximum

pressure drop and the maximum WSS is clearly seen. The maximum pressure drop

increases by≈ 7% in 120◦ curved upstream model compared with its minimum

value in straight stenosed tube for all the investigated Reynolds numbers. On the

other hand, the maximum WSS increases by≈ 3%, ≈ 1.5%, ≈ 3% and≈ 4% in

120◦ curved upstream model compared with its minimum value in straight stenosed

tube forRe = 500, 1000, 1500 and2000, respectively. Thus, the stenosis in an

artery with a curved upstream segment increases the risk of potential rapture of the

plaque and thrombosis formation, as discussed in§ 4.5.4, compared with a straight
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stenosed artery.

4.6 Conclusion

The standardk-ω transitional model and LES were applied to study the effectsof

steady spiral blood flow in75% area reduction arterial stenosis models without and

with upstream curved segments of60◦, 90◦ and120◦ angle of curvature for Reynolds

numbersRe = 500, 1000, 1500 and2000. LES results for non-spiral flow in the

straight stenosed tube for Reynolds numbersRe = 1000 and2000 with appropriate

inlet perturbation match the corresponding experimental data closely. Spiral blood

flow increases the recirculation zone in the straight stenosed tube which is poten-

tially harmful as it can induce blood clot, a potential source of stroke.

The effect of spiral velocity on any flow property in the models with an up-

stream curved segment for the investigated Reynolds numbers is insignificant. In

the models with an upstream curved segment, spiral pattern is lost before the steno-

sis, which may be due to the rigid wall of the models taken in the simulations and/or

assumption of steady flow of blood in the simulations. Contrary to the reports of

Paul and Larman [17] and Stonebridge et al. [16], the influence of spiral blood flow

increases the TKE in the straight stenosed tube for the investigated Reynolds num-

bers, whereas it does not affect WSS or wall pressure. Although spiral pattern

has many beneficial effects on hemodynamics in unstenosed arteries as reported by

Stonebridge et al. [15], its detrimental effects are observed in stenosed arteries.

As for the effects of upstream curved segment, the results inthe straight stenosed

tube at different locations are almost same as the corresponding results in the model

with 90◦ curved upstream segment at corresponding locations and greater than the

corresponding data in the other two models. In addition, theother two models, i.e.

60◦ and120◦ curved upstream models give almost same results at corresponding

locations. However, the effect of curved upstream segment on the maximum TKE

is prominent as the maximum TKE increases significantly in120◦ curved upstream

model from its minimum value in straight stenosed tube forRe = 1000, 1500

and 2000 and it decreases dramatically in120◦ curved upstream model from its

maximum value in60◦ curved upstream model forRe = 500. Additionally, the

maximum pressure drop and the maximum WSS increase in120◦ curved upstream
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model from their corresponding minimum values in straight stenosed tube for all

the Reynolds numbers.

Blood flow is physiologically pulsatile. The study in this chapter was simplified

by considering steady flow in the arterial stenosis models. Athorough numerical

investigation of physiologically pulsatile spiral blood flow in a straight stenosed

tube will be done as a natural extension of this chapter.
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Figure 4.1: Three dimensional view of model arteries without and with an upstream
curved section of varying angles of curvature. Angles of curvature in frame (a), (b),
(c) and (d), are0◦, 60◦, 90◦ and120◦, respectively.
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Figure 4.2: Axial velocity comparison with the experimental data of Ahmed and
Giddens [28] for non-spiral flow in modelB1 at (a)z/D = 0, (b) z/D = 1, (c)
z/D = 2.5, (d)z/D = 4, (e)z/D = 5 and (f)z/D = 6.
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Figure 4.3: Axial velocity comparison with the experimental data of Ahmed and
Giddens [27] for non-spiral flow in modelD1 at (a)z/D = 0, (b) z/D = 1, (c)
z/D = 2.5, (d)z/D = 4, (e)z/D = 5 and (f)z/D = 6.

52



Chapter 4 4.6 Conclusion

0 1 2 3 40

0.2

0.4

0.6

0.8

1

r/
R

w/V-

(f)

0 1 2 3 40

0.2

0.4

0.6

0.8

1

r/
R

w/V-

(e)

0 1 2 3 40

0.2

0.4

0.6

0.8

1

r/
R

w/V-

(d)

0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

Grid 1
Grid 2
Grid 3r/

R

w/V-

(a)

0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

r/
R

w/V-

(b)

0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

r/
R

w/V-

(c)

Figure 4.4: Grid resolution study for LES of spiral flow in modelD1 showing axial
velocity at (a)z/D = 0, (b) z/D = 1, (c) z/D = 2.5, (d)z/D = 4, (e) z/D = 5
and (f)z/D = 6.
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Figure 4.5: Grid resolution study for spiral flow in modelD3 with k−ω Transitional
approach showing axial velocity at (a)z/D = 0, (b) z/D = 1, (c) z/D = 2.5,
(d)z/D = 4, (e)z/D = 5 and (f)z/D = 6.
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Figure 4.6: Cross-sectional streamlines appended on the axial velocity contour for
non-spiral flow in modelD1 at (a)z/D = −3, (b) z/D = −1, (c) z/D = 0, (d)
z/D = 1, (e) z/D = 2, (f) z/D = 3, (g) z/D = 4, (h) z/D = 5, (i) z/D = 6, (j)
z/D = 7, (k) z/D = 8, (l) z/D = 9, (m) z/D = 10, (n) z/D = 12, (o) z/D = 16
and (p)z/D = 22.
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Figure 4.7: Cross-sectional streamlines appended on the axial velocity contour for
spiral flow in modelD1 at (a) z/D = −3, (b) z/D = −1, (c) z/D = 0, (d)
z/D = 1, (e) z/D = 2, (f) z/D = 3, (g) z/D = 4, (h) z/D = 5, (i) z/D = 6, (j)
z/D = 7, (k) z/D = 8, (l) z/D = 9, (m) z/D = 10, (n) z/D = 12, (o) z/D = 16
and (p)z/D = 22.
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Figure 4.8: Cross-sectional streamlines appended on the axial velocity contour for
non-spiral flow in modelD3 at (a)z/D = −3, (b) z/D = −1, (c) z/D = 0, (d)
z/D = 1, (e) z/D = 2, (f) z/D = 3, (g) z/D = 4, (h) z/D = 5, (i) z/D = 6, (j)
z/D = 7, (k) z/D = 8, (l) z/D = 9, (m) z/D = 10, (n) z/D = 12, (o) z/D = 16
and (p)z/D = 22.
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Figure 4.9: Cross-sectional streamlines appended on the axial velocity contour for
spiral flow in modelD3 at (a) z/D = −3, (b) z/D = −1, (c) z/D = 0, (d)
z/D = 1, (e) z/D = 2, (f) z/D = 3, (g) z/D = 4, (h) z/D = 5, (i) z/D = 6, (j)
z/D = 7, (k) z/D = 8, (l) z/D = 9, (m) z/D = 10, (n) z/D = 12, (o) z/D = 16
and (p)z/D = 22.
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Figure 4.10: Cross-sectional streamlines appended on the axial velocity contour for
non-spiral flow in modelD2 at (a)z/D = −3, (b) z/D = −1, (c) z/D = 0, (d)
z/D = 1, (e) z/D = 2, (f) z/D = 3, (g) z/D = 4, (h) z/D = 5, (i) z/D = 6, (j)
z/D = 7, (k) z/D = 8, (l) z/D = 9, (m) z/D = 10, (n) z/D = 12, (o) z/D = 16
and (p)z/D = 22.
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Figure 4.11: Cross-sectional streamlines appended on the axial velocity contour
for spiral flow in modelD2 at (a)z/D = −3, (b) z/D = −1, (c) z/D = 0, (d)
z/D = 1, (e) z/D = 2, (f) z/D = 3, (g) z/D = 4, (h) z/D = 5, (i) z/D = 6, (j)
z/D = 7, (k) z/D = 8, (l) z/D = 9, (m) z/D = 10, (n) z/D = 12, (o) z/D = 16
and (p)z/D = 22.
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Figure 4.12: Cross-sectional streamlines appended on the axial velocity contour for
non-spiral flow in modelD4 at (a)z/D = −3, (b) z/D = −1, (c) z/D = 0, (d)
z/D = 1, (e) z/D = 2, (f) z/D = 3, (g) z/D = 4, (h) z/D = 5, (i) z/D = 6, (j)
z/D = 7, (k) z/D = 8, (l) z/D = 9, (m) z/D = 10, (n) z/D = 12, (o) z/D = 16
and (p)z/D = 22.
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Figure 4.13: Cross-sectional streamlines appended on the axial velocity contour
for spiral flow in modelD4 at (a)z/D = −3, (b) z/D = −1, (c) z/D = 0, (d)
z/D = 1, (e) z/D = 2, (f) z/D = 3, (g) z/D = 4, (h) z/D = 5, (i) z/D = 6, (j)
z/D = 7, (k) z/D = 8, (l) z/D = 9, (m) z/D = 10, (n) z/D = 12, (o) z/D = 16
and (p)z/D = 22.
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Figure 4.14: Pathlines, coloured by the particle ID, for spiral flow in modelD2
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Figure 4.15: contour plots of tangential velocity for non-spiral flow in modelD1
at (a)z/D = −3, (b) z/D = −1, (c) z/D = 0, (d) z/D = 1, (e) z/D = 2, (f)
z/D = 3, (g) z/D = 4, (h) z/D = 5, (i) z/D = 6, (j) z/D = 7, (k) z/D = 8, (l)
z/D = 9, (m) z/D = 10, (n) z/D = 12, (o) z/D = 16 and (p)z/D = 22.
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Figure 4.16: contour plots of tangential velocity for spiral flow in modelD1 at (a)
z/D = −3, (b) z/D = −1, (c) z/D = 0, (d) z/D = 1, (e)z/D = 2, (f) z/D = 3,
(g) z/D = 4, (h) z/D = 5, (i) z/D = 6, (j) z/D = 7, (k) z/D = 8, (l) z/D = 9,
(m) z/D = 10, (n) z/D = 12, (o) z/D = 16 and (p)z/D = 22.
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Figure 4.17: Contour plots of tangential velocity for non-spiral flow in modelD2
at (a)z/D = −3, (b) z/D = −1, (c) z/D = 0, (d) z/D = 1, (e) z/D = 2, (f)
z/D = 3, (g) z/D = 4, (h) z/D = 5, (i) z/D = 6, (j) z/D = 7, (k) z/D = 8, (l)
z/D = 9, (m) z/D = 10, (n) z/D = 12, (o) z/D = 16 and (p)z/D = 22.
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Figure 4.18: contour plots of tangential velocity for spiral flow in modelD2 at (a)
z/D = −3, (b) z/D = −1, (c) z/D = 0, (d) z/D = 1, (e)z/D = 2, (f) z/D = 3,
(g) z/D = 4, (h) z/D = 5, (i) z/D = 6, (j) z/D = 7, (k) z/D = 8, (l) z/D = 9,
(m) z/D = 10, (n) z/D = 12, (o) z/D = 16 and (p)z/D = 22.

66



Chapter 4 4.6 Conclusion

(a) (b) 0.1
0.08
0.06
0.04
0.02
0.01
0

-0.01
-0.02
-0.04
-0.06
-0.1

(c) (d)

(h)(g)(f)(e)

(i)

(p)(o)(n)(m)

(l)(k)(j)

Figure 4.19: Contour plots of tangential velocity for non-spiral flow in modelD3
at (a)z/D = −3, (b) z/D = −1, (c) z/D = 0, (d) z/D = 1, (e) z/D = 2, (f)
z/D = 3, (g) z/D = 4, (h) z/D = 5, (i) z/D = 6, (j) z/D = 7, (k) z/D = 8, (l)
z/D = 9, (m) z/D = 10, (n) z/D = 12, (o) z/D = 16 and (p)z/D = 22.
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Figure 4.20: contour plots of tangential velocity for spiral flow in modelD3 at (a)
z/D = −3, (b) z/D = −1, (c) z/D = 0, (d) z/D = 1, (e)z/D = 2, (f) z/D = 3,
(g) z/D = 4, (h) z/D = 5, (i) z/D = 6, (j) z/D = 7, (k) z/D = 8, (l) z/D = 9,
(m) z/D = 10, (n) z/D = 12, (o) z/D = 16 and (p)z/D = 22.
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Figure 4.21: Contour plots of tangential velocity for non-spiral flow in modelD4
at (a)z/D = −3, (b) z/D = −1, (c) z/D = 0, (d) z/D = 1, (e) z/D = 2, (f)
z/D = 3, (g) z/D = 4, (h) z/D = 5, (i) z/D = 6, (j) z/D = 7, (k) z/D = 8, (l)
z/D = 9, (m) z/D = 10, (n) z/D = 12, (o) z/D = 16 and (p)z/D = 22.
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Figure 4.22: contour plots of tangential velocity for spiral flow in modelD4 at (a)
z/D = −3, (b) z/D = −1, (c) z/D = 0, (d) z/D = 1, (e)z/D = 2, (f) z/D = 3,
(g) z/D = 4, (h) z/D = 5, (i) z/D = 6, (j) z/D = 7, (k) z/D = 8, (l) z/D = 9,
(m) z/D = 10, (n) z/D = 12, (o) z/D = 16 and (p)z/D = 22.
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Figure 4.23: Mean axial velocity,〈w〉, profiles for both non-spiral and spiral flow in
modelD1 at (a)z/D = −1, (b) z/D = 0, (c) z/D = 1, (d) z/D = 2, (e)z/D = 3,
(f) z/D = 4, (g) z/D = 5, (h) z/D = 6, (i) z/D = 7, (j) z/D = 8, (k) z/D = 9,
(l) z/D = 10, (m) z/D = 12, (n) z/D = 16 and (o)z/D = 22. Note that LES was
also applied to this model.
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Figure 4.24: Mean axial velocity,〈w〉, profiles for both non-spiral and spiral flow in
modelsD2,D3 andD4 at (a)z/D = −1, (b) z/D = 0, (c) z/D = 1, (d) z/D = 2,
(e) z/D = 3, (f) z/D = 4, (g) z/D = 5, (h) z/D = 6, (i) z/D = 7, (j) z/D = 8,
(k) z/D = 9, (l) z/D = 10, (m) z/D = 12, (n) z/D = 16 and (o)z/D = 22.

72



Chapter 4 4.6 Conclusion

-0.05 0 0.05

(o)

(g) (h) (i) (j)

(d)

-1

-0.5

0

0.5

1

(f)

r/
R

(e)
(c)

-0.5

0

0.5

(a)

r/
R

D1 LES
D1 spiral LES
D1
D1 spiral

(b)

-0.05 0 0.05

(m)

-0.05 0 0.05

(l)

<u> (m/s)
-0.05 0 0.05

(n)

-0.05 0 0.05-1

-0.5

0

0.5

1

(k)

r/
R

Figure 4.25: Meanx-velocity, 〈u〉, profiles for both non-spiral and spiral flow in
modelD1 at (a)z/D = −1, (b) z/D = 0, (c) z/D = 1, (d) z/D = 2, (e)z/D = 3,
(f) z/D = 4, (g) z/D = 5, (h) z/D = 6, (i) z/D = 7, (j) z/D = 8, (k) z/D = 9,
(l) z/D = 10, (m) z/D = 12, (n) z/D = 16 and (o)z/D = 22. Note that LES was
also applied to this model.
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Figure 4.26: Meanx-velocity, 〈u〉, profiles for both non-spiral and spiral flow in
modelsD2,D3 andD4 at (a)z/D = −1, (b) z/D = 0, (c) z/D = 1, (d) z/D = 2,
(e) z/D = 3, (f) z/D = 4, (g) z/D = 5, (h) z/D = 6, (i) z/D = 7, (j) z/D = 8,
(k) z/D = 9, (l) z/D = 10, (m) z/D = 12, (n) z/D = 16 and (o)z/D = 22.
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Figure 4.27: Meany-velocity, 〈v〉, profiles for both non-spiral and spiral flow in
modelD1 at (a)z/D = −1, (b) z/D = 0, (c) z/D = 1, (d) z/D = 2, (e)z/D = 3,
(f) z/D = 4, (g) z/D = 5, (h) z/D = 6, (i) z/D = 7, (j) z/D = 8, (k) z/D = 9,
(l) z/D = 10, (m) z/D = 12, (n) z/D = 16 and (o)z/D = 22. Note that LES was
also applied to this model.
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Figure 4.28: Meany-velocity, 〈v〉, profiles for both non-spiral and spiral flow in
modelsD2,D3 andD4 at (a)z/D = −1, (b) z/D = 0, (c) z/D = 1, (d) z/D = 2,
(e) z/D = 3, (f) z/D = 4, (g) z/D = 5, (h) z/D = 6, (i) z/D = 7, (j) z/D = 8,
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Figure 4.29: Turbulent kinetic energy,k (m2/s2), for both non-spiral and spiral flow
in modelD1 at (a)z/D = −1, (b) z/D = 0, (c) z/D = 1, (d) z/D = 2, (e)
z/D = 3, (f) z/D = 4, (g) z/D = 5, (h) z/D = 6, (i) z/D = 7, (j) z/D = 8, (k)
z/D = 9, (l) z/D = 10, (m) z/D = 12, (n) z/D = 16 and (o)z/D = 22. Note that
LES was also applied to this model.
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Figure 4.31: Circumferential average wall pressure (Pa) for both non-spiral and
spiral flow in modelD1. Note that LES was also applied to this model.

-2 0 2 4 6 8 1010000

10200

10400

10600

10800

11000

11200

11400
D2
D2 spiral
D3
D3 spiral
D4
D4 spiral

C
irc

um
fe

re
nt

ia
lA

ve
ra

ge
W

al
lP

re
ss

ur
e

(P
a)

z /D

Figure 4.32: Circumferential average wall pressure (Pa) for both non-spiral and
spiral flow in modelsD2,D3 andD4.
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Figure 4.33: Circumferential average wall shear stress,τ (Pa), for both non-spiral
and spiral flow in modelD1. Note that LES was also applied to this model.
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Figure 4.34: Circumferential average wall shear stress,τ (Pa), for both non-spiral
and spiral flow in modelsD2,D3 andD4.
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Figure 4.35: Bar chart of maximum turbulent kinetic energy for both non-spiral and
spiral flow in all models for (a)Re = 500, (b)Re = 1000, (c)Re = 1500 and (d)
2000.
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Figure 4.37: Wall shear stress (Pa) at different phases of the wall in modelA1 for
both non-spiral and spiral flow.
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Figure 4.38: Bar chart of maximum pressure drop for both non-spiral and spiral
flow in all models for (a)Re = 500, (b)Re = 1000, (c)Re = 1500 and (d)2000.
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Figure 4.39: Bar chart of maximum wall shear stress for both non-spiral and spiral
flow in all models for (a)Re = 500, (b)Re = 1000, (c)Re = 1500 and (d)2000.
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Chapter 5

Simulation of Physiological Pulsatile

Non-spiral and Spiral Blood Flow in

a Regular Arterial Stenosis

5.1 Introduction

LES of physiological pulsatile flow through arterial stenosis is relatively new. No-

table studies on LES of pulsatile flow in models of stenosed artery include studies

of Paul and Molla [93], Gårdhagen et al. [95] and Barber and Simmons [96]. The

limitations of the available studies were highlighted in the last paragraph of§ 2.2.2

in Chapter 2. On the other hand, only steady spiral blood flow through a straight

stenosed tube was investigated by applying LES and two-equation k-ω Transitional

turbulence model in the previous Chapter. Therefore, LES ofphysiological pulsatile

non-spiral and spiral blood flow through straight stenosed tube would be performed

to get better insight of the transition-to-turbulence phenomena of the flows through

stenosis and the effects of spiral blood flow on the flow properties in the downstream

of the stenosis. Two-equationk-ω Transitional model was also applied to pulsatile

non-spiral flow to assess its ability to model the transient pulsatile flow. For LES,

the Smagorinsky-Lilly dynamic subgrid model (Germano [115], Lilly [116] and

Kim [123]) was used.

Following Womersley [131] solution, physiological pulsatile velocity profile

was introduced at the inlet using the first four harmonics of the Fourier series of

the pressure pulse. To create spiral effect, one-sixth of pulsatile bulk velocity was

taken as tangential velocity at the inlet according to Stonebridge et al. [15; 16].
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At the outlet, a physiological pulsatile pressure profile was generated according to

Nichols and O’Rourke [7].

Transition-to-turbulence of pulsatile non-spiral and spiral blood flow in the down-

stream of the stenosis is investigated in terms of various numerical quantities such

as velocity, streamlines, velocity vectors, vortices, wall pressure and shear stresses,

turbulent kinetic energy, pressure gradient, velocity andpressure fluctuations and

their energy spectra etc. Relevant pathophysiological implications of these results

are also discussed. Influence of stenosis percentage and length on the flow results

in non-spiral pulsatile flow is investigated in this Chapter. Additionally, the effects

of Womersley parameter,α, and amplitude of pulsation in the inflow velocity on the

non-spiral flow results are examined as well.

5.2 Problem Formulation

The model geometry was a straight stenosed tube with a75% area reduction cosine

type regular stenosis of length2D as shown in Figure 4.1(a) of Chapter 4. The gov-

erning equations are described in Chapter 3. For studying the effects of percentage

and length of stenosis on the flow results, stenoses with91% area reduction corre-

sponding to70% diameter reduction and lengths2D and4D were also considered

in the investigation. The inlet and outlet boundary conditions used in this chapter

are presented in the following sub-section.

5.2.1 Physiological Inlet and Outlet Conditions and Computa-

tional Parameters

The time-dependent physiological pulsatile velocity profile was introduced at the

inlet. It is generated by adding steady profile with the unsteady pulsatile profile,

which can be obtained from the analytic solution of one-dimensional form of the

Navier-Stokes equation in the streamwise direction takinga time-periodic pressure

gradientBei(ηt), whereB is a complex constant andη is the angular frequency of

pulsation (Womersley [131], Chandran [132] and Nichols andO’Rourke [7]). The

angular frequency,η, is defined asη = 2π
T

, with T = 0.6 s being the period of the

pulsation used in this study corresponding to100 heartbeats per minute (Barber and
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Simmons [96]). The Navier-Stokes equation in the streamwise direction becomes

∂2w̄

∂r2
+

1

r

∂w̄

∂r
− 1

ν

∂w̄

∂t
= −B

µ
eiηt, −R ≤ r ≤ R. (5.1)

Herer is the coordinate in the radial direction. As the consideredpressure gradient

is periodic in time, the solution of Equation (5.1) can be written as the sum of a

series of terms in the following form:

w̄(r, t) =

Nh∑

n=1

MnR
2

µα2
M ′

0 sin(nηt+ φn + ǫ0). (5.2)

HereR = 0.01 m is the radius of the straight tube. The constantNh is the to-

tal number of harmonics of the pulsatile flow.Mn andφn are the coefficient and

the phase angle, respectively, ofnth harmonic of the velocity profile; andα is the

non-dimensional unsteady Reynolds number or the Womersleyparameter which

is defined asα = R
√

ρη
µ

, ratio of oscillatory inertial force to viscous force. As

the blood in the investigations was assumed to be Newtonian with a density of

ρ = 1060 kg/m3 and a constant dynamic viscosity ofµ = 3.71 × 10−3 Pa s, hence

the Womersley number,α, was taken as17.3. It is to note that laminar profile de-

parts from quasi-steadiness whenα ≥ 3 (Varghese et al. [84]). The parametersM ′

0

andǫ0 are defined by the following equations

M ′

0 =
√

1 + h2
0 − 2h0 cos(δ0), (5.3)

and

tan(ǫ0) =
h0 sin(δ0)

1 − h0 cos(δ0)
, (5.4)

whereh0 =
M0( r

R)
M0

andδ0 = θ0 − θ0
(

r
R

)
. Again the moduliM0 andM0

(
r
R

)
and

phasesθ0 andθ0
(

r
R

)
are expressed in terms of Bessel function of order zero with

complex argument as follows

J0

(
α
r

R
i

3

2

)
= M0

( r
R

)
eiθ0(

r
R

), (5.5)

J0

(
αi

3

2

)
= M0e

iθ0 . (5.6)
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For any real variableζ , McLachlan [133] gave tables forM0(ζ) andθ0(ζ) and also

defined them in terms ofber(ζ) andbei(ζ) by the following

J0

(
ζi

3

2

)
= M0(ζ)e

iθ0(ζ) = ber(ζ) + i bei(ζ), (5.7)

where

ber (ζ) = 1 −
(

1
2
ζ
)4

(2!)2
+

(
1
2
ζ
)8

(4!)2
−
(

1
2
ζ
)12

(6!)2
+ . . . , (5.8)

and

bei (ζ) =

(
1

2
ζ

)2

−
(

1
2
ζ
)6

(3!)2
+

(
1
2
ζ
)10

(5!)2
−
(

1
2
ζ
)14

(7!)2
+ . . . . (5.9)

Therefore,M0(ζ) andθ0(ζ) can be written as

M0(ζ) =

√
ber(ζ)2 + bei(ζ)2, (5.10)

and

θ0(ζ) = arctan
bei(ζ)

ber(ζ)
, (5.11)

respectively. By adding the steady velocity profile to Equation (5.2), the physiolog-

ical pulsatile velocity profile may be written as

w̄(x, y, t) = 2V̄

([
1 −

( r
R

)2
]

+ A

Nh∑

n=1

MnR
2

µα2
M ′

0 sin(nηt + φn + ǫ0)

)
, (5.12)

and following the expression for flow rate given by Womersley[131], the physio-

logical pulsatile bulk velocity profile becomes

W̄ (t) = V̄

(
1 + A

Nh∑

n=1

MnR
2

µα2
M ′

10 sin(nηt+ φn + ǫ10)

)
, (5.13)

whereA is the amplitude of pulsation and forα ≤ 10, the values ofM
′

10

α2 andǫ10 can

be obtained from the table provided in [131]. Forα > 10, Womersley [131] gave

the following expressions:

M ′

10

α2

.
=

1

α2
−

√
2

α3
+

1

α4
, (5.14)
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ǫ10
.
=

√
2

α
+

1

α2
+

19

24
√

2α3
. (5.15)

To introduce spiral velocity, one-sixth of the pulsatile bulk velocity from Equa-

tion (5.13) was taken as the tangential velocity at the inlet, i.e.

vt(x, y, t) = W̄ (t)

(
Cr

R

)
, (5.16)

whereC = 1
6
. Four harmonics (Nh = 4) were taken in this study. The Reynolds

numbers investigated, based on the diameter of unstenosed section of the tube,D,

and steady inlet bulk velocity,̄V , wereRe = 438, 584 and876 with peak Reynolds

numbers,Repk = 1200, 1600 and2400, respectively, corresponding to a value of

A = 0.40 in Equation (5.12). To investigate the effects of Womersleynumber,α,

and amplitude of pulsation,A, on the non-spiral flow results, other values ofα =

15.5 andA = 0.67, withRepk = 2400 corresponding toRe = 741, were also taken

in the investigation. The resulting physiological pulsatile inlet velocity profiles,

derived from Equations (5.12)-(5.13), are shown in Figure 5.1 forα = 17.3, Re =

876 andA = 0.40. The velocity profile at the centre of the inlet plane and seven

phases in the pulsatile cycle at which results were obtainedare shown in frame (a),

while velocity profiles atr
R

= 0.5, 0.8 and0.95 are shown in frame (b). Frames (c)

and (d) present bulk velocity profile and velocity profiles along a diametric line at

different phases of a time cycle, respectively. It is interesting to note that due to

pulsation, back flow occurs close to the wall during the late decelerating systolic

phase, i.e. atP4 (t/T = 0.4).

A physiological 4th harmonic pulsatile pressure profile (Nichols and O’Rourke [7]),

shown in Figure 5.2, which can be defined by the following expression was taken at

the outlet.

p̄ = P +

Nh∑

n=1

Pn cos(nηt + ϕn), (5.17)

whereP is the steady pressure at the outlet;Pn andϕn are the coefficient and the

phase angle, respectively, ofnth harmonic of the pressure profile. To link with the

solver, these inlet and outlet boundary conditions were coded in C-language using

the User Defined Function (UDF) interface of Fluent.
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5.3 Grid Independence and Simulation Details

A mesh of comprising of≈ 700, 000 control volumes was taken for the simulation

of pulsatile non-spiral and spiral blood flow through the model. Grid independence

test was conducted in LES of non-spiral flow forRe = 741, A = 0.67, α = 17.3

and time-step,δt = 10−3 s by taking three grids, namely Grid1, Grid 2 and Grid3.

Grid 1 corresponds to a total of≈ 500, 000 control volumes which is increased by

40% for Grid 2 to get≈ 700, 000 control volumes. Grid3 consists of huge control

volumes i.e.,≈ 1, 260, 000 which is further an increase of80% on Grid2. Results

of the test are presented in Figures 5.3 and 5.4 in terms of phase-averaged stream-

wise velocity,〈〈w̄〉〉 (m/s), at different axial positions and wall shear stress (Pa),

respectively, during phaseP3. Note that the phase averaging of WSS was done

on the circumferential average WSS. The results show a good agreement and the

resolution of Grid2 is seemed to be adequate for the simulation, though the phase-

averaged streamwise velocity in Figure 5.3 in the further downstream region (frame

e-g) is slightly sensitive to the choice of grid –which is quite normal in LES. Both

the resolved scale and the SGS eddies are different, depending on the mesh reso-

lution. Therefore, LES results will show some dependence onthe grid resolution

until the LES grid resolution becomes fine enough to qualify as a DNS resolution

(Mittal et al. [88]; Paul and Molla [93]).

Time-step independence test was also carried out for Grid2 by taking two dif-

ferent time-steps ofδt = 10−3 s and1.5 × 10−3 s while keeping the other pa-

rameters same as in the grid resolution study and the resultsare compared in Fig-

ures 5.5 and 5.6 in terms of phase-averaged streamwise velocity,〈〈w̄〉〉 (m/s), at

different axial positions and wall shear stress (Pa), respectively, during phaseP3.

The results are quite independent of the time-step used which is clear from the

above two figures. However, the phase-averaged streamwise velocity in Figure 5.5

in the further downstream region (frame d-f) is sensitive slightly as seen previously

in the case of grid resolution test. These sensitivities arereasonable as one fixed

grid configuration was used. Time-step in the simulation of turbulent flow, how-

ever, depends on the grid size (Choi and Moin [134]). The smallest time-step of

10−3 s was chosen in all the investigations of this thesis to achieve stable solutions.

In the present study of pulsatile non-spiral and spiral blood flow through75%
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area reduction cosine-type stenosis, Reynolds numbers considered areRe = 438,

584 and876. LES was applied for all cases and two-equation standardk-ω transi-

tional model was also applied in non-spiral flow forRe = 438 to assess its suitabil-

ity for modelling pulsatile turbulence flow. In this study and all other subsequent

studies in this thesis, eight initial cycles were run and phase-averaged statistics, as

defined in§ 3.7, were collected over the last 12 time period cycles, following the

initial eight cycles. The phase-averaged statistics results are presented during phase

P3, i.e. during decelerating systolic phase when turbulence generation by pulsatil-

ity is greatest (Ku [3]).

Cycle-to-cycle development of instantaneous streamwise velocity, w̄, in non-

spiral flow forRe = 876 in the initial eight cycles during phaseP2, as shown in

Figure 5.7, shows that flow has developed well by this time andinitial transients

have disappeared from the computational domain. Figure 5.8shows the root mean

square (rms) of centreline streamwise velocity fluctuations,〈w′′〉rms (m/s), over the

last three cycles at different axial locations for both non-spiral and spiral pulsatile

flow while Re = 876. It can be observed from the figure that the rms velocity in

both non-spiral and spiral flow has reached time-periodic state in the considered 12

cycles for the calculation of phase-averaged statistics.

5.4 Results and Discussion

First, the contribution of the dynamic SGS model constantCs and eddy viscosity

are presented in§ 5.4.1. This is followed by the results of the instantaneous and

phase-averaged flow physics in§ 5.4.2 and§ 5.4.3 consecutively. The results of

the thorough investigations of the turbulent flow characteristics are summarised in

§ 5.4.4 and§ 5.4.5. Effects of percentage and length of stenosis are discussed in

§ 5.4.6 and finally, effects of Womersley number and amplitudeof pulsation flow

are given in§ 5.4.7.

5.4.1 Contribution of the SGS Model

Figure 5.9 depicts the contour plots of dynamic Smagorinskyconstant,Cs, in non-

spiral flow during phaseP3 in the z − x mid-plane forRe = 438, 584 and876.
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The effects of Reynolds number onCs is clear from the figure, i.e. the value ofCs

increases with Reynolds number. It is worth noting that the maximum value ofCs

occurs in the post-stenotic region where the flow may become turbulent. However,

the value ofCs in the upstream of the stenosis is very small and therefore negligible

as the flow is laminar there.

The contour plots of the corresponding normalised SGS eddy viscosity,µsgs/µ,

is presented in Figure 5.10. The maximum eddy viscosity is≈ 0.3 for Re = 438

(frame a), whereas it is≈ 0.5 forRe = 584 (frame b) and876 (frame c). Though the

maximum eddy viscosity is same forRe = 584 and876, but the difference between

the two plots is obvious as the maximum eddy viscosity occursat more locations

in frame (c) than in frame (b). This observation suggests that the SGS model add

up to50% extra dissipation into the flow, depending up on the Reynoldsnumber;

and less energy dissipated through the SGS for low Reynolds number, as expected.

Like Cs, the SGS dissipation is maximum in the downstream region where the flow

transients to turbulence. The values ofCs andµsgs/µ in the respective contour plots

in spiral flow remain almost same as those in non-spiral flow.

5.4.2 Instantaneous Flow Field

The y-vorticity, Ωy = (∂w̄
∂x

− ∂ū
∂z

) (1/s), in non-spiral and spiral flow at different

phases over the last pulsatile cycle forRe = 876, as presented in Figures 5.11 and

5.12, respectively, shows how and where the transition-to-turbulence takes place in

both flows. In both figures, two vortices, one anti-clockwise(red) and the other

clockwise (blue), are generated at the post-stenotic region near the wall as the shear

layers separate from the stenosis throat during phaseP1 (frame a). As the phase

increases, the vortex pair roll down further downstream in frame (b) and (c). With

the adverse pressure gradient, the unstable jet and shear layers break down atz ≈
4D andz ≈ 3D in non-spiral and spiral flow, respectively, apparently causing the

flow to experience transition to turbulence betweenz = 4D and6D in the non-

spiral case, and betweenz = 3D and 5D in the spiral case during phasesP1,

P2 andP3 (frame a, b and c). Due to jet breakdown and increased mixing in the

transition-to-turbulence region, flow reattachment occurs in non-spiral and spiral

flow by z ≈ 6D andz ≈ 5D, respectively, during the above first three phases. No
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vortex-ring is found beyond phaseP3 (frame d-g). Furthermore, the vortex pair in

frames (a-c) in non-spiral flow look very similar to that in spiral flow, i.e. no effect

of spiral velocity on vorticity development can be observed.

The effects of Reynolds number on the development of y-vortices in both non-

spiral and spiral flow during phaseP3 for Re = 438, 584 and876 are shown in

Figures 5.13(a-c) and 5.14(a-c), respectively. In both non-spiral and spiral flow, vor-

tices pattern generated in the post-stenotic region are quite similar in look, however,

the vortex-rings move further downstream as the Reynolds number is increased. In

addition, for Reynolds numbersRe = 438 and584, the shear layers break down at

z ≈ 4D in both non-spiral and spiral flow. However, for Reynolds number876, the

shear layers breakdown earlier (atz ≈ 3D) in spiral flow than in non-spiral flow (at

z ≈ 4D).

Further flow characteristics can be observed through velocity vectors and stream-

lines. Figures 5.15 and 5.16 show in-plane velocity vectorsappended on the stream-

wise velocity,w̄ (m/s), contours forRe = 876 during phaseP3 in non-spiral and

spiral flow, respectively, at different axial locations. Inboth flows, the stenotic jet is

maximum atz = 2D (frame c) and cross-sectional velocities directing fluid toward

the vessel wall. In non-spiral flow (Figure 5.15), the jet is relatively stable and flow

is laminar atz ≈ 3D (frame d); however, atz ≈ 4D (frame e ), the jet breaks

down and flow is re-circulated and becomes transitional. On the other hand, in spi-

ral flow (Figure 5.16), the jet breaks down atz ≈ 3D (frame d ), with flow being

re-circulating and transitional. The reattachment of the flow in non-spiral and spiral

flow takes place atz ≈ 6D (Figure 5.15(g)) andz ≈ 5D (Figure 5.16(f)), respec-

tively, as can be seen from the in-plane vectors. Additionally, though spiral pattern

in spiral flow (Figure 5.16) is visible at the throat and post-lip of the stenosis (frames

a-b), it is lost in the further downstream region (frames c-h) due to the occurrence

of strong turbulence activities there. From pathological point of view, the strong

re-circulations found in non-spiral (Figure 5.15(e-g)) and spiral (Figure 5.16(d-f))

flow is detrimental to blood cells and intima of the stenosed artery as pointed out

earlier in Chapter 4.

The instantaneousz − x mid-plane streamlines in non-spiral and spiral flow

during phaseP3 for (a)Re = 438, (b)Re = 584 and (c)Re = 876 are shown in

Figures 5.17 and 5.18, respectively. The corresponding streamlines in non-spiral
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and spiral flow are of similar pattern and no significant difference can be found be-

tween these two figures. As a result of reverse flow near the wall, large recirculation

regions are created around the post post-lip of the stenosis. Blood residence time

in these recirculation regions is increased as these are thesites of low shear stress,

which in turn increases the chances of heart attack and stroke (Molla [90]). Further-

more, the recirculation region in both non-spiral and spiral flow increases slightly

with Reynolds number which can be observed from the Figures 5.17 and 5.18, re-

spectively.

5.4.2.1 Instantaneous Wall Pressure and Shear Stress

Figure 5.19 depicts the instantaneous wall pressure,p̄ (Pa), in both non-spiral and

spiral flow during different phases of the last pulsatile cycle for Re = 438, 584

and876 at two circumferential locations (0◦ and90◦) of the wall. Note that the

corresponding wall pressures obtained from thek-ω model in non-spiral flow for

Re = 438 are also appended. It is clear from the figure that the effect of spiral ve-

locity on pressure drop is negligible. However, due to spiral flow, some variations

in the oscillating part of the pressure within2 ≤ z/D ≤ 6 can be observed, espe-

cially for higher Reynolds number. It is interesting to notethatk-ω results are in

good agreement with the corresponding LES results. No significant difference can

be observed between the profiles plotted at0◦ circumferential location and those

plotted at90◦ circumferential location. A Bernouilli-type pressure drop occurs at

the stenosis throat and in the immediate post-stenotic region where the streamwise

velocity is extremely high and this pressure drop increasesas the Reynolds num-

ber is increased. In addition, the pressure drop is extremely large during phases

P1 (late accelerating systole),P2 (systolic peak) andP3 (early decelerating sys-

tole) compared with the pressure drop during late decelerating systolic phaseP4 or

other diastolic phases; and it is maximum during psaeP1, which is≈ 685 Pa for

Re = 876. In the pathophysiological context, this extremely large pressure drop is

potentially harmful as this can cause local collapse of the stenosis, which in turn re-

sults in flow-choking and compressive stress, capable of buckling the structure. The

oscillations in compressive loading may lead to rupture of the plaque cap, a precip-

itating event in most heart attacks and strokes (Wootton andKu [6]; Li et al. [8]).

An extremely large pressure drop at the stenosis throat was also found in the steady
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case in Chapter 4 which was discussed there with the relevantclinical implications.

The corresponding wall shear stress in both non-spiral and spiral flow is shown

in Figure 5.20. No significant influence of spiral velocity onwall shear stress is

observed; wall shear stress in spiral flow for the investigated Reynolds numbers

match that in non-spiral flow in the critical region of stenosis, i.e. around the throat

and immediate post-stenotic region during all the phases, though they vary slightly

in the further downstream region (z ≥ 2D). Additionally, it should be noted that

shear stress obtained fromk-ω model match well the corresponding LES results,

as seen previously in the results of wall pressure. For all the Reynolds numbers,

shear stress rises sharply just before the stenosis throat during all the phases due

to the extremely high velocities at the throat, it then takesoscillatory form in the

downstream region with some smaller peaks than that around the throat. During

late decelerating systolic phaseP4, the second peak is bigger than the first one

around the throat except for the case of spiral velocity withRe = 876 in which the

peak aroundz ≈ 3.5D is bigger than the first peak. It is interesting to note that

during phaseP3 for Re = 876, the second peak atz = 2D is also quite large.

The oscillatory pattern of shear stress, which is prominentbetween2D ≤ z ≤ 6D

from phaseP4 to the end of the pulsatile cycle, is responsible for arterial disease

progression as this has detrimental effect on red blood cells and inner lining of the

blood vessel (Ku [3]; Paul and Molla [93]).

It is clear from the figure that the wall shear stress is dependent on Reynolds

number, i.e. it increases with Reynolds number. Shear stress reaches maximum

value during phaseP2 (frame c-d) just before the throat for all the investigated

Reynolds numbers; and this maximum shear stress is closely followed by its value

duringP1 (frame a-b) andP3 (frame e-f). ForRe = 876, the wall shear stresses

are≈ 20 Pa,≈ 20 Pa and≈ 16 Pa duringP1, P2 andP3, respectively. According

to Malek et al. [9], as mentioned in the previous chapter, shear stress> 7 Pa may

induce thrombosis. On the other hand, Sutera and Mehrjardi [37] reported that

higher shear stress (≥ 10 Pa) cause deformation of the red blood cells. Hence, it is

clear from the figure that shear stress for the Reynold numberRe = 876 reaches the

harmful level during all phases except the last phaseP7; however, forRe = 584,

it reaches the clinically dangerous level only during phasesP1, P2 andP3 and it

remains in the normal range during all the phases forRe = 438.
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5.4.3 Phase-averaged Flow Characteristics

The phase-averaged streamwise velocity obtained at different axial locations dur-

ing phaseP3 in both non-spiral (NSp) and spiral flow is shown in Figure 5.21(a-l)

for different Reynolds numbers along with the corresponding k-ω results. The pro-

file, which resembles fully developed Poiseuille flow at the pre-lip of the stenosis,

becomes plug-shaped jet at the throat of the stenosis and in the immediate post-

stenotic region (frames b-d) as the flow passes through the stenosis with extremely

high velocity. The negative values of the velocity found near the wall in frames (c-

d) correspond to the occurrence of the permanent re-circulation region observed in

Figures 5.17 and 5.18. The effect of Reynolds number on the streamwise velocity is

distinctive in the figure. The influence of spiral flow is seen only in the turbulent re-

gion, fromz = 3D to 6D (frames e-h), where the velocity profiles corresponding to

both the non-spiral and spiral flow begins to lose their jet-like character and tend to

uniformity. In this region, the profiles corresponding to spiral flow differ from non-

spiral flow profiles; and specifically forRe = 438 and584, the streamwise velocity

in spiral flow increases slightly at some places from its value in non-spiral flow,

whereas it decreases in spiral flow at some places forRe = 876. It should be noted

that in the turbulent region, the phase-averaged velocity profiles obtained fromk-ω

model do not match the corresponding LES profiles becausek-ω model provides

time-averaged information instead of time-accurate or instantaneous information.

The blunt-type profiles seen afterz = 6D are common to turbulent flow and in the

far downstream region (frame l), the profiles regain the upstream parabolic shape –

an indication of laminar flow field.

Though the instantaneous wall shear stress during different phases was shown

in Figure 5.20 and discussed in detail in§ 5.4.2.1, it is interesting to notice how

the phase-averaged wall shear stress behaves around the throat of the stenosis and

in the downstream region. Figure 5.22 shows the phase-averaged wall shear stress

at two circumferential locations (0◦ and90◦) during phaseP3 for the investigated

Reynolds numbers in both non-spiral and spiral flow. The pattern and magnitudes

of phase-averaged wall shear stress are largely same as those of the instantaneous

wall shear stress in Figure 5.20(e-f), however, the highly oscillatory pattern that was

found in the downstream region in the instantaneous shear stress has almost disap-

peared in the phase-averaged shear stress. As the oscillatory nature of WSS in the
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downstream region disappears due to phase-averaging, hence to get the real picture

of WSS, the instantaneous results should be considered. As seen in Figure 5.20(e-

f), the phase-averaged shear stress increases sharply justbefore the throat of the

stenosis; and this extreme rise is follow by smaller peaks inthe downstream region.

This finding is quite similar to the WSS results of Mittal et al. [88] and Varghese

et al. [84]. It is to note that phase-averaged shear stressesfor Re = 438 obtained

from k-ω model are in excellent agreement with the corresponding LESresults.

5.4.4 Turbulent Characteristics

A quantitative measure of turbulence can be obtained from the root mean square

(rms) of velocity fluctuations. Profiles of the root mean square (rms) of the stream-

wise velocity fluctuations,〈w′′〉rms (m/s), as defined in§ 3.7, recorded at different

axial locations are shown in Figure 5.23 for the Reynolds numbersRe = 438, 584

and876 in both non-spiral (NSp) and spiral flow during phaseP3. Figures 5.24,

5.25 and 5.26 present the turbulent kinetic energy (TKE),1
2
〈u′′ju′′j 〉 (m2/s2), for

Reynolds numberRe = 438, 584 and876, respectively, in both non-spiral (NSp)

and spiral flow during phaseP3 at different axial locations. The values of both

〈w′′〉rms and TKE at the post-lip of the stenosis and the immediate post-stenotic

region are very small as the flow is still laminar in this region and the transition-

to-turbulence is yet to start; they are extremely large in the downstream region,

from z = 3D to 6D, where transition-to-turbulence takes place with jet breakdown

and they gradually decrease afterz = 6D, indicating a relaminarised flow field in

the further downstream region. The influence of spiral flow onboth 〈w′′〉rms and

TKE can be observed for all the investigated Reynolds numbers; the values of both

〈w′′〉rms and TKE rises extremely at some axial locations in spiral flows from their

corresponding values in non-spiral flows – this finding is in direct contradiction to

the claims of Paul and Larman [17] and Stonebridge et al. [16]. Both groups stud-

ied steady spiral flow through arterial stenosis and claimedthat spiral flow decreases

TKE. But blood flow is unsteady and pulsatile. Also, our TKE results in steady spi-

ral flow in Chapter 4 contradicted the above claim made by Pauland Larman [17]

and Stonebridge et al. [16]. The limitations of their studies were highlighted in

Chapter 4 and discussed in detail in§ 2.4 of Chapter 2.
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The effect of Reynold number on both the rms of the streamwisevelocity fluc-

tuations and the turbulent kinetic energy is clearly visible from the figure; both

〈w′′〉rms and TKE generally increase with Reynolds number though thisrule is bro-

ken at some axial locations . For example,〈w′′〉rms forRe = 876 atz = 3D and4D

is smaller than its corresponding value forRe = 584 at those positions and TKE

for Re = 876 in non-spiral flow atz = 4D decreases from its corresponding value

for Re = 584 in non-spiral and spiral flow at that location. The clinical impact

of extreme velocity fluctuations or high level of TKE found inthe transition-to-

turbulence region in both non-spiral and spiral flow is severe as they may damage

blood cells and the tissues inside a blood vessel (Ku [3]; Paul and Molla [93]).

Figure 5.27 depicts the rms of wall pressure fluctuations,〈p′′〉rms (Pa), in both

non-spiral and spiral flow for the investigated Reynolds numbers during phaseP3

at two circumferential locations (0◦ and90◦). In both non-spiral and spiral flow for

Re = 876, 〈p′′〉rms rises at aroundz = 2D and in the downstream region of3D ≤
z ≤ 7D and maximum〈p′′〉rms in non-spiral flow occurs at aroundz = 5D, whereas

in spiral flow,〈p′′〉rms is maximum at aroundz = 2D. ForRe = 584, 〈p′′〉rms rises

only in the downstream region of3D ≤ z ≤ 5.5D and maximum〈p′′〉rms in spiral

flow is larger than that in non-spiral flow. However, the change in 〈p′′〉rms along the

axial direction is very small forRe = 438. Furthermore, the high level of SGS eddy

viscosity, which was also found at the immediate downstreamregion at aroundz =

2D and in the downstream region fromz = 3D to 6D, shows its strong correlation

with the high level of〈p′′〉rms, TKE or 〈w′′〉rms. In the pathophysiological context,

the high level of〈p′′〉rms is potentially harmful as it may affect the arterial wall,

resulting in post-stenotic dilation and arterial murmurs,which is a key diagnostic

condition of arterial stenosis through bio-acoustic techniques (Ask et al. [135]).

The correspondingk-ω turbulent results in non-spiral flow forRe = 438 are

also appended in the above figures. It is to note thatk-ω turbulent results in Fig-

ures 5.23, 5.24 and 5.27 are in disagreement with the corresponding LES turbu-

lent results – shows the inability ofk-ω model to simulate transition to turbulence

of pulsatile blood flow because the model is not capable of giving instantaneous

or time-accurate results, instead, it gives time-averagedresults arising from the

time-averaged governing equations of motion (Scotti and Piomelli [75]). Both the

pulsatile nature of the blood flow and the relatively low Reynolds number make
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URANS turbulence models such ask-ω andk-ǫ models, which are designed pri-

marily for simulating well-developed high-Reynolds-number turbulent flows, un-

suited for these arterial flows. On the other hand, LES can provide time-accurate

information about a wide range of dynamically important scales in the flow. Hence

the various turbulence results in a pulsatile flow can be accurately calculated from

the LES time-accurate results – which is not possible by using URANS (Mittal

et al. [88]) results.

5.4.4.1 Cycle-to-cycle variations

Cycle-to-cycle variations of important flow quantities reveal further information

about transition to turbulence of physiological pulsatilenon-spiral and spiral blood

flow. In this section, cycle-to-cycle variations of centreline streamwise velocity,

wall pressure gradient, centreline velocity fluctuations,centreline TKE and wall

pressure fluctuations in both non-spiral and spiral flow forRe = 876 are presented.

Figure 5.28 shows that the centreline streamwise velocity,w̄ (m/s), in both non-

spiral and spiral flow increases at the throat of the stenosisfrom its upstream value

due to presence stenosis and remain almost undisturbed in every pulsatile cycle even

at z = 2D and the flow becomes completely chaotic in the downstream region of

3D ≤ z ≤ 9D, where the jet starts to break and mixing of the fluid takes place; how-

ever, the flow tries to regain its upstream pattern in the further downstream region.

The magnitude of the flow velocity in the disturbed region is different at every cycle

and axial location and its cycle-to-cycle variation is non-periodic; it drops gradually

in the downstream region to its upstream value as the flow passes along the artery.

It should be noted that the effects of spiral flow on the streamwise velocity can be

seen only in the turbulent region as the spiral flow causes thestreamwise velocity at

different locations in this region to be in disagreement with its corresponding value

in non-spiral flow, however they match well elsewhere.

Figure 5.29 illustrates cycle-to-cycle variation of the wall pressure gradient ob-

tained at0◦ circumferential locations in both non-spiral and spiral flow at different

axial locations. The extremely oscillating wall pressure gradient observed in the

downstream region of3D ≤ z ≤ 7D is closely associated with arterial murmurs

that was discussed in the previous section. In addition, thewall pressure gradient in

non-spiral flow differs from that in spiral flow in this oscillating region as seen in
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the case of streamwise velocity.

Cycle-to-cycle variations of the cross-stream velocity fluctuations,u′′/u′′max and

v′′/v′′max, and the streamwise velocity fluctuations,w′′/w′′

max, at different axial loca-

tions on the centreline in both non-spiral and spiral flow areshown in Figure 5.30.

The fluctuations in all the velocities beforez = 3D are negligible as the flatness

of them even atz = 2D can be seen clearly in the figure. The magnitudes of the

velocity fluctuations increase afterz = 2D; and the velocity fluctuations in spiral

flow are large in the region of3D ≤ z ≤ 5D, whereas in non-spiral flow, extreme

velocity fluctuations can be found within3D ≤ z ≤ 6D. As seen in the streamwise

velocity in Figure 5.28, the velocity fluctuations are non-periodic. The fluctuat-

ing quantities in both non-spiral and spiral flow decrease inthe further downstream

region and become almost flat as the effect of the stenosis vanishes there and relam-

inarisation takes place. Furthermore, Figure 5.31 illustrates the effect of spiral flow

on TKE, 1
2
〈u′′ju′′j 〉 (m2/s2), over last three pulsatile cycles considered for turbulence

calculation at various axial locations on the centreline. TKE in spiral flow increases

significantly during various phases of the cycle at some locations on the centreline,

especially within2D ≤ z ≤ 5D, from its corresponding magnitude in non-spiral

flow.

Again, the non-periodic wall pressure fluctuations,p′′ (Pa), in both non-spiral

and spiral flow as shown in Figure 5.32, which are large in the downstream region

of 2D ≤ z ≤ 6D, are strongly correlated with the arterial murmurs createddue

to arterial stenosis. The effects of spiral flow on the wall pressure fluctuations are

prominent at some phases of the pulsatile cycle, especiallyduring systolic and early

diastolic phase in the downstream region of2D ≤ z ≤ 6D.

5.4.5 Turbulent Energy Spectra

Additional information about the nature of random turbulent fluctuations in both

non-spiral and spiral flow seen in the post-stenotic region can be obtained from the

turbulent energy spectra presented in Figures 5.33 and 5.34for Re = 876. Follow-

ing the convention used by Cassanova and Giddens [22], Khalifa and Giddens [25]

and Varghese et al. [84], the normalised energy spectra,Eg′′g′′ = (E(f)wp) / (2πDm),

(whereg is a generic fluctuating variable for either streamwise velocity, w or pres-
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sure,p) and the Strouhal number,Sr = 2πfDm/wp, have been defined and plot-

ted in the above two figures.Dm = 0.5D is the minimum stenosis diameter,f

is the frequency of the fluctuation andwp is peak cross-sectional average velocity

at the stenosis throat. For the energy spectra of the centreline streamwise veloc-

ity fluctuations,w′′, in both non-spiral and spiral flow in Figure 5.33,E(f) is the

frequency spectrum of the normalised centreline streamwise velocity fluctuations,

(w′′/〈w′′〉rms)
2, whereas for the for the energy spectra of the wall pressure fluc-

tuations,p′′, in Figure 5.34,E(f) is frequency spectrum of the normalised wall

pressure fluctuations,(p′′/〈p′′〉rms)
2. Cassanova and Giddens [22] postulated that

Dm andwp are effective scaling parameters for the spectra as the peakstenotic jet

velocity causes the transition to start in the downstream region. The FFT (Fast

Fourier Transform) scheme was employed to compute the frequency spectra,E(f).

The lines corresponding to(Sr)−5/3 and (Sr)−7, describing the inertial sub-

range (or the broadband frequency region), where energy transfers from the large

eddies to smaller ones with very small energy dissipation, and the viscous dissi-

pation range, respectively, are shown in Figure 5.33 (Tennekes and Lumley [136];

Hinze [137]; Wilcox [119]; Varghese et al. [84]). In addition, another line cor-

responding to(Sr)−10/3 is also shown in the figure. Gross et al. [138] and Lu

et al. [47] observed thatin vivo velocity spectra of−5/3 power slope break into

−10/3 power slope at a frequency closely connected with arterial murmurs. The

inertial subrange region in both non-spiral and spiral flow is very small atz = 1D

andz = 2D (frames a-b) as the flow is relatively undisturbed. But in thetransition-

to-turbulence region of3D ≤ z ≤ 5D (frame c-e), the inertial subrange region is

large and−5/3 power slopes break into−10/3 power slope at higher frequencies.

The viscous dissipation range is almost absent in this region. These results agree

quite well with the experimental findings of Gross et al. [138] and Lu et al. [47].

In both non-spiral and spiral flow, the inertial subrange region decays gradually in

the further downstream region ofz ≥ 6D (frame f-i) and the spectra roll off to

viscous dissipation range at lower frequencies as the turbulence intensity becomes

weaker and relaminarisation takes place. It is interestingto note that atz = 5D

and6D, the inertial subrange in the velocity spectra in spiral flowhas larger range

of frequencies than that in non-spiral flow (frame e-f), however at z = 4D, the

velocity spectra in non-spiral flow has larger range of frequencies constituting the
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inertial subrange than that in spiral flow; and−10/3 power slope is almost absent

in non-spiral flow at this location (frame d). Additionally,in the regionz ≥ 8D, the

velocity spectra of−10/3 power slope in spiral flow break into−7 power slope, i.e.

the viscous dissipation range at lower frequencies compared with the correspond-

ing break frequencies in non-spiral flow; and the viscous dissipation range in spiral

flow is smaller than that in non-spiral flow as the spectra in spiral flow immediately

changes from−7 power slope to another slope inclining towards horizontal line

(frame g-i).

Figure 5.34 depicts the normalised energy spectra of normalised pressure fluc-

tuations,Ep′′p′′ , along with lines corresponding to(Sr)−5/3, (Sr)−7/3 and(Sr)−7.

Note that unlike velocity spectra,−10/3 power slope is absent in wall pressure

spectra (Paul and Molla [93]). In frames (a-b), the inertialsubrange (or broad-

band) region is very small as it was seen in frames 5.33(a-b) of velocity spectra. In

3D ≤ z ≤ 5D (frames c-e), a relatively large range of frequencies fall under the

broadband range; and the broad band region becomes small again atz = 6D (frame

f) as the turbulent intensity is relatively low here. It is tonote that the viscous dis-

sipation range is observed clearly only atz = 2D (frame b),z = 3D (frame c) and

z = 5D (frame e); and it is almost absent elsewhere. The energy spectra of pressure

fluctuations roll off from−5/3 power slope to−7/3 power slope at frequencies

which transfer the energy from pressure fluctuations spectra to the sound spectra,

a potential source of arterial stenosis murmurs (Paul and Molla [93]). As to the

effect of spiral flow on energy spectra of wall pressure fluctuations, no significant

change in the spectra breaking into a power slope of interestdue to spiral flow can

be observed.

5.4.6 Effects of Percentage and Length of the Stenosis

It is interesting to see how the increase in the percentage ofarea reduction of the

stenosis and the length of the stenosis affect the importantresults of pulsatile non-

spiral blood flow in the stenosis forRe = 876. Figure 5.35 shows instantaneous

wall pressure (Pa) for non-spiral flow in75%, 91% and91% area reduction stenosis

with length= 2D, 2D and 4D, respectively, at0◦ and 90◦ circumferential loca-

tions during phaseP2 andP3 while Re = 876 andA = 0.40. Pressure drop
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increases with stenosis percentage; the maximum pressure drops for91% stenosis

with length= 2D during phaseP2 andP3 are≈ 5206 Pa and≈ 3769 Pa, respec-

tively, whereas for75% stenosis with length= 2D, the maximum pressure drops are

≈ 661 Pa and≈ 426 Pa during phaseP2 andP3, respectively. That is, the max-

imum pressure drops increase by≈ 688% and≈ 785% during phaseP2 andP3,

respectively, in91% stenosis compared with its corresponding value in75% steno-

sis. It is clear from the figure that the effect of the length ofstenosis on pressure drop

is very insignificant. The maximum pressure drop increases by ≈ 0.5% in stenosis

with 4D length during phaseP2 compared with its corresponding value in stenosis

with 2D length, whereas during phaseP3, the maximum pressure drop decreases

by ≈ 1.6% in stenosis with4D length compared with its corresponding value in

stenosis with2D length. Additionally, when the stenosis percentage is increased,

pressure rises in the further downstream region to regain its normal undisturbed

value after dropping at the stenosis throat. These extreme pressure drops has severe

clinical consequences including flow-choking and rupture as discussed in§ 5.4.2.1.

Therefore,91% area reduction is a very severe stenosis case which calls foran im-

mediate therapeutic measure.

The corresponding instantaneous wall shear stress (WSS) (Pa) is presented in

Figure 5.36. The maximum WSS increases when the stenosis percentage is in-

creased, however it decreases if the length of the stenosis is increased as can be

observed from the figure. In addition, shear stress becomes increasingly oscillatory

in the downstream region of3D ≤ z ≤ 6D with the increase in area reduction

in stenosis. The maximum WSS in91% stenosis with length= 2D are≈ 116 Pa

and≈ 93.3 Pa during phaseP2 andP3, respectively; and in91% stenosis with

length= 4D, it is ≈ 81 Pa and≈ 65 Pa during phaseP2 andP3, respectively,

whereas in75% stenosis with length= 2D, the maximum WSS are≈ 20 Pa and

≈ 16 Pa during phaseP2 andP3, respectively. Hence, the maximum WSS in91%

stenosis rise by≈ 480% and≈ 481% during phaseP2 andP3, respectively, com-

pared with its corresponding value in75% stenosis; and the the maximum WSS

decreases by≈ 30% in stenosis with length= 4D during phaseP2 andP3 both

compared with its corresponding value in stenosis with length= 2D. The patho-

physiological impacts of these extremely high WSS were discussed in§ 5.4.2.1. In

addition to those implications, high WSS (> 37.9±8.5 (SD) Pa) can cause endothe-
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lial cells damage (Fry [36]) as well.

Figure 5.37 shows that the TKE,1
2
〈u′′ju′′j 〉 (m2/s2), like the maximum pressure

drop and the maximum WSS, increases with the area reduction in stenosis. More-

over, TKE also rises sharply when the length of the stenosis is increased fixing the

stenosis percentage. The maximum TKE found in the figure for75% stenosis with

length= 2D, 91% stenosis with length= 2D and91% stenosis with length= 4D

are0.023 m2/s2 (frame e),0.37 m2/s2 (frame e) and0.496 m2/s2 (frame d), respec-

tively; i.e. the maximum TKE increases by≈ 1509% in 91% stenosis compared

with its corresponding value in75% stenosis and it increases by≈ 34% in the

stenosis with length= 4D compared with its corresponding value in the stenosis

with length= 2D. The physiological consequences of extremely high TKE was

discussed earlier and will not be repeated here. It is clear from the above discussion

that the91% area reduction stenosis has devastating effects on cardiovascular health

and therapeutic measure, therefore, should be taken immediately in this case.

5.4.7 Effects of amplitude of pulsation and Womersley number

The effect of the amplitude of pulsation,A, and the Womersley parameter,α, on the

instantaneous wall pressure in non-spiral flow during phaseP2 andP3 at 0◦ and

90◦ circumferential location of the vessel wall is illustratedin Figure 5.38 for (i)

Re = 876,A = 0.40 andα = 17.3, (ii) Re = 741,A = 0.67 andα = 17.3 and (iii)

Re = 741, A = 0.67 andα = 15.5 while the peak Reynolds number is same in all

three cases, i.e.Repk = 2400. The maximum pressure drop rises by≈ 17% during

phaseP2 if the amplitude of pulsation is increased fromA = 0.40 to 0.67 and it

remains almost same during phaseP3 for both amplitudes of pulsation. However,

when the Womersley number is decreased fromα = 17.3 to 15.5, the maximum

pressure drop falls by≈ 2% during phaseP2 and it grows by≈ 2% during phase

P3. Additionally, the pressure drop occurs over a relatively larger region in the

small Womersley number case.

Figure 5.39 shows the corresponding instantaneous WSS. Like the maximum

pressure drop, the maximum WSS increases by≈ 15% during phaseP2 if the

amplitude of pulsation is increased fromA = 0.40 to 0.67. And if the Womersley

number is decreased fromα = 17.3 to 15.5, the maximum WSS decreases too
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during phaseP2, though insignificantly (by≈ 1%). However, during phaseP3, the

maximum WSS is insensitive to the change either in the amplitude of pulsation or

in the Womersley number, though differences can be observedin the smaller peaks

downstream of the stenosis.

For higher amplitude of pulsation,A = 0.67, transition-to-turbulence takes

place within3D ≤ z ≤ 5D, whereas forA = 0.40, it takes place in the further

downstream region,4D ≤ z ≤ 6D, as it can be seen from the TKE results in Fig-

ure 5.39. Though the maximum TKE decreases by≈ 45% when the amplitude of

pulsation is increased fromA = 0.40 to 0.67, TKE rises sharply at some places

in the transition region inA = 0.67 case from its corresponding value at those

locations in the case ofA = 0.40 (frame c-e). Furthermore, when the Womersley

number is reduced fromα = 17.3 to 15.5 keeping the Reynolds number and the am-

plitude of pulsation fixed, the maximum TKE increases by≈ 36%. Additionally, the

transition-to-turbulence occurs in the further downstream region,4D ≤ z ≤ 6D, in

the low Womersley number case.

5.5 Conclusion

The physiological pulsatile non-spiral and spiral blood flow in a straight stenosed

tube having75% area reduction stenosis has been studied forRe = 438, 584 and

876 by employing Large Eddy Simulation with Smagorinsky-Lillydynamic sub-

grid model (Germano [115], Lilly [116] and Kim [123]). A maximum of50% extra

energy dissipation into the flow through the SGS model forRe = 876 found in the

intense turbulence region justifies using LES in the study. The SGS contribution

increases with Reynolds number as the turbulence intensityin the downstream of

the stenosis rises if the Reynolds number is increased. The two-equation Standard

k-ω Transitional model was also applied to non-spiral flow through the model for

Re = 438 to assess its suitability for pulsatile flow simulation. Some of the re-

sults obtained fromk-ω model, especially the wall pressure and WSS are in good

agreement with the corresponding LES results; the turbulent results, however, dif-

fer from the corresponding LES results which is expected because thek-ω model

gives time-averaged results rather than instantaneous results. Grid resolution and

time-step resolution seem to have been achieved through a quite good agreement in
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phase-averaged results for different grid resolutions andtime-steps. The number of

pulsatile cycles taken for the phase-averaged statistics seems to be enough for the

rms velocity to reach a time-periodic state by that time.

Extremely large pressure drop in both non-spiral and spiralflow occurs at the

throat of the stenosis during phasesP1, P2 andP3 compared with other phases

which can lead to flow-choking and even rupture of the plaque in pulsatile flow.

Additionally, the sharp rise of the WSS just before the stenosis throat, that is also

extremely high during phasesP1, P2 andP3, has many pathological consequences

including thrombosis and deformation of red blood cells. The effect of spiral flow

on both the maximum pressure drop and maximum WSS which occuraround the

throat of the stenosis is found to be insignificant as it was seen in Chapter 4. How-

ever, spiral flow affects the wall pressure and WSS slightly in the downstream region

where they take the oscillatory pattern, i.e. within2 ≤ z/D ≤ 6.

All the results in both non-spiral and spiral flow are heavilydependent on the

flow Reynolds number, e.g. the maximum pressure drop, the maximum shear stress,

TKE, the rms of turbulent fluctuations, etc. increase with Reynolds number. In

spiral flow, the transition-to-turbulence takes place in the downstream region (3 ≤
z/D ≤ 5) of the stenosis, whereas it occurs in the further downstream region (4 ≤
z/D ≤ 6) in non-spiral flow. The TKE in pulsatile spiral flow rises extremely at

some places and phases compared with its corresponding value in pulsatile non-

spiral flow – similar results were seen in Chapter 4. This result contradicts the

claim made in similar studies (Paul and Larman [17]; Stonebridge et al. [16]) that

spiral flow decreases turbulent kinetic energy. The drawbacks of the claim made

in those studies were discussed in detail in§ 2.4. The clinical impacts of the high

level of turbulent fluctuations observed in the post-stenotic region in both non-spiral

(4 ≤ z/D ≤ 6) and spiral (3 ≤ z/D ≤ 5) flow are profound as it may activate the

blood platelets and also harm the blood cell materials, leading to many pathological

diseases (Ku [3]; Paul and Molla [93]).

Additionally, the change of power slope of energy spectra for velocity and pres-

sure fluctuations from−5/3 to −10/3 and−7/3, respectively, at the break fre-

quencies which are closely connected with the arterial murmurs is clearly found in

the transition-to-turbulence region in both non-spiral and spiral flow. The distinct

viscous dissipation range corresponding to−7 power slope is also observed in the
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further downstream region where the turbulent intensity becomes weaker and re-

laminarisation occurs. The velocity spectra of−5/3 power slope in spiral flow has

larger range of frequencies atz = 5D and6D than that in non-spiral flow at those

locations, while atz = 4D, the opposite is found, i.e. the broadband frequency

region in non-spiral flow is larger than that in spiral flow. Furthermore, in the re-

gion z ≥ 8D, the velocity spectra in spiral flow roll off into the viscousdissipation

range at lower frequencies compared with the correspondingbreak frequencies in

non-spiral flow; and the viscous dissipation range in spiralflow has smaller range of

frequencies than that in non-spiral flow. On the other hand, as for the effect of spiral

flow on the wall pressure spectra, no significant difference between non-spiral and

spiral flow in the spectra rolling off into a power slope of interest can be found.

As to the effects of the area reduction of stenosis, the important results, such as

the maximum pressure drop, the maximum WSS and the TKE increase dramatically

when the area reduction of the stenosis is increased from75% to 91%. On the other

hand, the increase in the length of the stenosis cause the maximum WSS to drop

significantly and the maximum TKE to rise sharply; but the change in the maximum

pressure drop due to the increase in the stenosis length is insignificant.

Furthermore, the increase in the amplitude of pulsation causes both the max-

imum pressure drop and the maximum WSS to rise significantly under the inlet

peak flow condition, i.e. during phaseP2; whereas during phaseP3, the maximum

pressure drop and the maximum WSS remain almost unaffected by the increase in

the amplitude of pulsation. While the increased amplitude of pulsation decrease the

maximum TKE, it is nevertheless responsible for the sharp rise in TKE found at

some places in the transition-to-turbulence region.

The Womersley number has a very weak influence on the maximum pressure

drop and the maximum WSS as they fall slightly during phaseP2 only when the

Womersley number is decreased fromα = 17.3 to 15.5. However, the decrease in

the Womersley number causes the maximum TKE to rise extremely.

The stenosis used in the studies done so far is cosine-type regular stenosis. How-

ever,in vivo arterial stenoses are of irregular shape (Back et al. [32]).In Chapter 6,

pulsatile non-spiral and spiral blood flow through irregular stenosis will be investi-

gated by using LES.
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Figure 5.1: Inlet physiological 4th harmonic pulsatile velocity profiles,̄w (m/s),
for a time cycle (a) at the centre of the tube, (b) at differentlocations between the
wall and the centre, (c) bulk velocity profile and (d) during different phases of a
time cycle whileA = 0.40, Re = 876 and the Womersley parameterα = 17.3.
Reference phases at which results are obtained are also marked.
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Figure 5.2: Outlet physiological 4th harmonic pulsatile pressure profiles,p̄ (mmHg),
for a time cycle whileA = 0.40,Re = 876 and the Womersley parameterα = 17.3.
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Figure 5.3: Grid resolution study for phase-averaged streamwise velocity,
〈〈w̄〉〉 (m/s), in non-spiral flow during phaseP3 at different indicated axial loca-
tions whileA = 0.67,Re = 741 and the Womersley parameterα = 17.3.
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Figure 5.4: Grid resolution study for phase-averaged axialwall shear stress (Pa) in
non-spiral flow during phaseP3 while A = 0.67, Re = 741 and the Womersley
parameterα = 17.3. Phase averaging was done on the circumferential average
WSS.
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Figure 5.5: Time-step resolution study for phase-averagedstreamwise velocity,
〈〈w̄〉〉 (m/s), in non-spiral flow during phaseP3 at different indicated axial loca-
tions whileA = 0.67,Re = 741 and the Womersley parameterα = 17.3.
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Figure 5.6: Time-step resolution study for phase-averagedaxial wall shear
stress (Pa) in non-spiral flow during phaseP3 whileA = 0.67, Re = 741 and the
Womersley parameterα = 17.3. Phase averaging was done on the circumferential
average WSS.
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Figure 5.7: Streamwise velocity,̄w, in non-spiral flow during phaseP2 of the first
eight cycles i.e. (a)t/T ≈ 0.223, (b) t/T ≈ 1.223, (c) t/T ≈ 2.223, (d) t/T ≈
3.223, (e) t/T ≈ 4.223, (f) t/T ≈ 5.223, (g) t/T ≈ 6.223 and (h)t/T ≈ 7.223
whileRe = 876,A = 0.40 and the Womersley parameterα = 17.3.
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Figure 5.8: Time history of rms of centreline streamwise velocity fluctuations,
〈w′′〉rms (m/s), at different axial locations for both non-spiral andspiral pulsatile
flow while Re = 876. The red coloured solid line denotes velocity fluctuations
for non-spiral flow while the green coloured dashed line corresponds to velocity
fluctuations for spiral flow.
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Figure 5.9: Dynamic Smagorinsky constant,Cs, in non-spiral flow during phase
P3 for (a)Re = 438, (b) Re = 584 and (c)Re = 876 while A = 0.40 and the
Womersley parameterα = 17.3.
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Figure 5.10: Normalised SGS eddy viscosity,µsgs/µ, in non-spiral flow during
phaseP3 for (a)Re = 438, (b)Re = 584 and (c)Re = 876 while A = 0.40 and
the Womersley parameterα = 17.3.
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Figure 5.11: Instantaneous y-vorticity,Ωy (1/s), in non-spiral flow at different
phases of the last cycle (a)P1, (b) P2, (c) P3, (d) P4, (e) P5, (f) P6 and (g)
P7 whileRe = 876,A = 0.40 and the Womersley parameterα = 17.3.

114



Chapter 5 5.5 Conclusion

-2 0 2 4 6 8 10 12 14

(a)

-2 0 2 4 6 8 10 12 14

(c)
-2 0 2 4 6 8 10 12 14

(b)

-2 0 2 4 6 8 10 12 14

(d)

-2 0 2 4 6 8 10 12 14

(e)

-2 0 2 4 6 8 10 12 14

(f)

-2 0 2 4 6 8 10 12 14

-350 -200 -100 -50 -25 -10 10 25 50 100 200 350

(g)

z/D

Figure 5.12: Instantaneous y-vorticity,Ωy (1/s), in spiral flow at different phases
of the last cycle (a)P1, (b) P2, (c) P3, (d) P4, (e) P5, (f) P6 and (g)P7 while
Re = 876,A = 0.40 and the Womersley parameterα = 17.3.
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Figure 5.13: Instantaneous y-vorticity,Ωy (1/s), in non-spiral flow during phase
P3 for (a)Re = 438, (b) Re = 584 and (c)Re = 876 while A = 0.40 and the
Womersley parameterα = 17.3.
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Figure 5.14: Instantaneous y-vorticity,Ωy (1/s), in spiral flow during phaseP3 for
(a)Re = 438, (b)Re = 584 and (c)Re = 876 whileA = 0.40 and the Womersley
parameterα = 17.3.
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Figure 5.15: Instantaneous cross-sectional vectors appended on the contours of
streamwise velocity,̄w (m/s), in non-spiral flow during phaseP3 at (a)z/D = 0,
(b) z/D = 1, (c) z/D = 2, (d) z/D = 3, (e) z/D = 4, (f) z/D = 5, (g)
z/D = 6 and (h)z/D = 8 while Re = 876, A = 0.40 and the Womersley pa-
rameterα = 17.3.
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Figure 5.16: Instantaneous cross-sectional vectors appended on the contours of
streamwise velocity,̄w (m/s), in spiral flow during phaseP3 at (a)z/D = 0, (b)
z/D = 1, (c) z/D = 2, (d) z/D = 3, (e)z/D = 4, (f) z/D = 5, (g) z/D = 6 and
(h) z/D = 8 whileRe = 876,A = 0.40 and the Womersley parameterα = 17.3.
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Figure 5.17: Instantaneous mid-plane streamlines in non-spiral flow during phase
P3 for (a)Re = 438, (b) Re = 584 and (c)Re = 876 while A = 0.40 and the
Womersley parameterα = 17.3.
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Figure 5.18: Instantaneous mid-plane streamlines in spiral flow during phaseP3 for
(a)Re = 438, (b)Re = 584 and (c)Re = 876 whileA = 0.40 and the Womersley
parameterα = 17.3.
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Figure 5.19: Instantaneous wall pressure,p̄ (Pa), in both non-spiral and spiral flow
for the different Reynolds numbers during different phasesof the last cycle at the
two indicated circumferential locations. Note that the correspondingk-ω results for
Re = 438 are also appended.
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Figure 5.20: Instantaneous wall shear stress (Pa) in both non-spiral and spiral flow
for the different Reynolds numbers during different phasesof the last cycle at the
two indicated circumferential locations. Note that the correspondingk-ω results for
Re = 438 are also appended.
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Figure 5.21: Phase-averaged streamwise velocity,〈〈w̄〉〉 (m/s), in both non-spiral
(NSp) and spiral flow for the different Reynolds numbers during phaseP3 at differ-
ent axial locations. Note that the correspondingk-ω results forRe = 438 are also
appended.
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Figure 5.22: Phase-averaged wall shear stress (Pa) in both non-spiral and spiral flow
for the different Reynolds numbers during phaseP3 at the two indicated circum-
ferential locations. Note that the correspondingk-ω results forRe = 438 are also
appended.
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Figure 5.23: rms of the streamwise velocity fluctuations,〈w′′〉rms (m/s), in both
non-spiral and spiral flow for the different Reynolds numbers during phaseP3 at
different axial locations. Note that the correspondingk-ω results forRe = 438 are
also appended.
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Figure 5.24: Turbulent kinetic energy,1
2
〈u′′ju′′j 〉 (m2/s2), for Reynolds numberRe =

438 in both non-spiral (NSp) and spiral flow during phaseP3 at different axial
locations. Note that the correspondingk-ω results are also appended.
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Figure 5.25: Turbulent kinetic energy,1
2
〈u′′ju′′j 〉 (m2/s2), for Reynolds numberRe =

584 in both non-spiral (NSp) and spiral flow during phaseP3 at different axial
locations.
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Figure 5.26: Turbulent kinetic energy,1
2
〈u′′ju′′j 〉 (m2/s2), for Reynolds numberRe =

876 in both non-spiral (NSp) and spiral flow during phaseP3 at different axial
locations.
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Figure 5.27: rms of wall pressure fluctuations,〈p′′〉rms (Pa), in both non-spiral and
spiral flow for the different Reynolds numbers during phaseP3 at the two indicated
circumferential locations. Note that the correspondingk-ω results forRe = 438 are
also appended.
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Figure 5.28: Time history of centreline streamwise velocity, w̄ (m/s), at different
indicated axial locations for both non-spiral and spiral pulsatile flow whileRe =
876. The red coloured solid line denotes̄w for non-spiral flow while the green
coloured dashed line corresponds tow̄ for spiral flow.
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Figure 5.29: Time history of wall (0◦ circumferential location) pressure gradient,
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Figure 5.30: Time history of the centreline velocity fluctuations, (a)u′′/u′′max, (b)
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max at different axial locations for both non-spiral and spi-
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Figure 5.32: Time history of wall (0◦ circumferential location) pressure fluctuations,
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Figure 5.33: Energy spectra of the centreline streamwise velocity fluctuations,w′′,
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Chapter 6

LES of Physiological Pulsatile

Non-spiral and Spiral Blood Flow

through a Model of Irregular

Arterial Stenosis

6.1 Introduction

All the available three-dimensional computational studies on blood flow through a

model of arterial stenosis have been done using a stenosis ofregular shape only,

to the best of our knowledge. However, it is clear from thein vitro study of Back

et al. [32], who used mildly atherosclerotic (about50% area reduction) main coro-

nary casting of man, that stenoses, in reality, are of irregular shape. Although an

arterial stenosis generally tends towards a smooth curve, it has many small val-

leys and ridges (Sarifuddin [64]). Johnston and Kilpatrick[60] and Andersson

et al. [61] have studied two-dimensional steady flow throughan irregular steno-

sis with48% area reduction for Reynolds numbers ranging fromRe = 10 to 1000.

Two-dimensional unsteady pulsatile flow through an irregular stenosis was investi-

gated by Yakhot et al. [62], Chakravarty et al. [63] and Sarifuddin et al. [64]. The

findings of these studies have been discussed in§ 2.2.1 of Chapter 2. Simulation

of blood flow through an irregular arterial stenosis model, which closely resembles

real stenosis in artery, would, therefore, understandablyprovide better insight into

transition-to-turbulence phenomena of blood flow through atherosclerotic artery.

In this Chapter, we investigate three-dimensional physiological pulsatile non-
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spiral and spiral blood flow through a straight stenosed tubehaving a75% area

reduction irregular stenosis by applying Large Eddy Simulation technique with

the Smagorinsky-Lilly dynamic subgrid model (Germano [115], Lilly [116] and

Kim [123]). The irregular stenosis was formed by shifting the cross-sections of a

cosine-type stenosis randomly to eitherx or y-direction. The first four harmonics of

the physiological pulsatile flow and pressure pulse, as described in Chapter 5 were

used at the inlet and outlet, respectively, to introduce pulsatile velocity profile at the

inlet and pressure waveform at the outlet. In addition, likeChapter 5, one-sixth of

physiological pulsatile bulk velocity was taken as tangential velocity at the inlet for

generating spiral effect there.

The Smagorinsky-Lilly dynamic subgrid model is assessed interms of the re-

sults of the Smagorinsky constant and the normalised SGS viscosity. The numerical

results are presented in terms of streamlines, velocity vectors, vortices, wall pres-

sure and shear stresses, turbulent kinetic energy, velocity and pressure fluctuations

and their energy spectra to study the transition-to-turbulence of pulsatile non-spiral

and spiral blood flow in the downstream of the irregular stenosis. The effects of

the irregular stenosis on the pressure drop, wall shear stress and turbulent intensity

are also assessed by comparing the flow results obtained fromthe pulsatile non-

spiral blood flow through the irregular stenosis with the corresponding results from

Chapter 5, i.e. from the flow through a cosine-type regular stenosis.

6.2 Problem Formulation

6.2.1 Model Geometry and Mesh arrangement

The model of arterial stenosis of irregular shape with rigidwall was developed by

using GAMBIT 2.4 (Fluent Inc.) and is shown in Figure 6.1. The diameter of

the model, the length of the stenosis, the upstream and downstream lengths from

the stenosis centre were kept same as they were in Chapter 5. First a cosine-type

regular stenosis of75% area reduction was developed, then the cross-sections of the

cosine-shaped stenosis were shifted maximum0.5 mm randomly to eitherx or y-

direction (positive or negative) to get the irregular stenosis of circular cross-section.

Like previous chapters, a boundary layer was introduced inside the wall to have fine

136



Chapter 6 6.3 Results and Discussion

resolution in the sublayer and also the finest mesh resolution was ensured at the

centre and immediate downstream of the stenosis.

6.2.2 Governing Equations and Boundary Conditions

The filtered Navier-Stokes governing equations, which are given in§ 3.4.1 of Chap-

ter 3, were solved assuming the blood used in the study to be homogeneous, incom-

pressible and Newtonian. The physiological pulsatile non-spiral and spiral blood

flows at the inlet and the pressure waveform at the outlet remain same as in Chap-

ter 5.

6.3 Results and Discussion

The simulations were run for Reynolds numbers,Re = 438, 584 and876 while the

Womersley number,α, and the amplitude of pulsation,A, were chosen as17.3 and

0.40 respectively. Following the results in the previous chapters, the time-step,δt,

was fixed at10−3 for all the computations. As in Chapter 5, the simulations were

carried out for20 pulsatile cycles; the initial eight cycles were ignored andthe last

12 cycles were taken for phase-averaged statistics. The same phases will be chosen

to present and analyse the results as they were referred to inChapter 5.

The layout of this section is as follows. Firstly, the results of the grid resolution

study are presented in§ 6.3.1. This is followed by the contribution of the subgrid

model to the large scale motion in§ 6.3.2. The instantaneous flow physics and the

phase-averaged flow characteristics are presented in§ 6.3.3 and§ 6.3.4 respectively,

while the turbulent flow characteristics are given in§ 6.3.5. Lastly, the findings are

summarised in§ 6.4 under ‘conclusion’.

6.3.1 Grid Resolution Study

A grid resolution study was done forRe = 876 in non-spiral flow taking three

grids, namely Grid1, Grid 2 and Grid3. Grid 1 consists of≈ 550, 000 control

volumes which is increased by about45% in Grid 2 so that Grid2 has≈ 800, 000

control volumes. The number of control volumes in Grid3 was further increased

by about75% compared with Grid2, resulting in≈ 1, 400, 000 control volumes in
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Grid 3. Figures 6.2 and 6.3 show grid resolution results during phaseP3 in terms

of phase-averaged streamwise velocity,〈〈w̄〉〉 (m/s), at different axial positions and

wall shear stress (Pa), respectively. Note that the circumferential-averaged WSS

was used for the phase averaging of WSS in Figure 6.3. The overall agreement

between the results obtained for three different grids is quite good, given that LES

results are dependent on the mesh resolution until LES grid resolution becomes

fine enough to be used for DNS (Mittal et al. [88]; Paul and Molla [93]). Further,

results for Grid2 agree better with Grid3 results compared with Grid1. Hence the

resolution of Grid2 was used for the simulation of pulsatile non-spiral and spiral

blood flow through the irregular stenosis model as its resolution seems adequate to

resolve the transient flow in the model.

6.3.2 Contributions of the SGS Dynamic Model

Figure 6.4 presents the contour plots of the dynamic Smagorinsky constant,Cs, in

non-spiral flow during phaseP3 in thez−x mid-plane forRe = 438, 584 and876.

The maximum value ofCs here is≈ 0.05, whereas it was≈ 0.045 in Chapter 5,

i.e. the maximum value ofCs has increased due to the effects of irregular stenosis.

Also, the locations of non-zeroCs increase in the downstream region of the stenosis

when the Reynolds number is increased. It should be noted that the value ofCs in

the upstream of the stenosis is very insignificant as compared with its downstream

value where the flow is predicted to be turbulent.

The contribution of the SGS dynamic model to the large scale motion can be

observed clearly from Figure 6.5, which shows the contour plots of normalised

SGS eddy viscosity,µsgs/µ, in non-spiral flow during phaseP3 for the investigated

Reynolds numbers in thez−xmid-plane. Though the maximum (normalised) eddy

viscosity, which is also found in the downstream transition-to-turbulence region, for

all the Reynolds numbers is same, i.e.≈ 0.55, the effects of Reynolds number on

it can be distinctly seen as the maximum eddy viscosity occurs at more places for

higher Reynolds number (frame b-c). That means a maximum of55% contribution

is received from the SGS model forRe = 438, 584 and876. Additionally, likeCs,

the maximum eddy viscosity increases in the irregular stenosis model compared

with its corresponding value in the regular stenosis model which was0.5. Thus, the
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SGS dynamic model in the irregular stenosis model contributes5% more energy

diffusion into the flow than that in the regular stenosis model. In spiral flow through

the irregular stenosis model, the values ofCs andµsgs/µ are almost same as that in

non-spiral flow.

6.3.3 Instantaneous Flow Physics

The contour plots of the instantaneous y-vorticity,Ωy = (∂w̄
∂x

− ∂ū
∂z

) (1/s), in non-

spiral and spiral flow through the irregular stenosis duringphaseP3 of 20th cycle

for (a) Re = 438, (b) Re = 584 and (c)Re = 876 are shown in Figures 6.6(a-

c) and 6.7(a-c), respectively. Note that the correspondingy-vorticity in both non-

spiral and spiral flows through the regular stenosis forRe = 876 is appended in

frame (d). Two vortices, one clockwise (blue) and the other anti-clockwise (red),

are developed in the downstream region near the wall as the shear layers separate

from the stenosis throat. The vortex-rings in non-spiral flow for a given Reynolds

number resemble their counterparts in spiral flow. However,they become larger and

move further downstream when the Reynolds number is increased. ForRe = 438

in both non-spiral and spiral flow, the jet and shear layers break down atz ≈ 3D;

evidently, the flow undergoes transition to turbulence betweenz = 3D and4D with

the flow reattachment byz ≈ 4D (frame a). The transition-to-turbulence region

changes if the Reynolds number is increased. ForRe = 584 in both non-spiral

and spiral flow, the transition-to-turbulence region is within 3D ≤ z ≤ 5D (frame

b), however, forRe = 876, apparently the flow transients to turbulence in non-

spiral and spiral flow within4D ≤ z ≤ 6D (Figure 6.6(c)) and3D ≤ z ≤ 6D

(Figure 6.7(c)), respectively.

In both non-spiral and spiral flows forRe = 876, the vortex-rings are stronger

and stretch as far asz/D ≈ 2.5 in frame (c) due to the effects of the irregular

stenosis as compared with their counterparts in the regularstenosis in frame (d)

where they stretch up toz/D ≈ 2.25. Additionally, in spiral flow, though the

shear layers break down atz/D ≈ 3 in both the irregular and regular stenoses, the

flow reattachment occurs at further downstream region byz ≈ 6D in the irregular

stenosis (Figure 6.7(c)) ; whereas in the regular stenosis,the flow reattachment

occurs byz ≈ 5D (Figure 6.6(d)). In non-spiral flow through both the irregular
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and regular stenoses (Figure 6.6(c-d)), the shear layers breakdown and the flow

reattachment occur atz ≈ 4D andz ≈ 6D, respectively.

Figures 6.8(a-c) and 6.9(a-c) depict the instantaneousz − x mid-plane stream-

lines in non-spiral and spiral flow, respectively, through the irregular stenosis during

phaseP3 for (a)Re = 438, (b)Re = 584 and (c)Re = 876. The corresponding

streamlines in both flows through the regular stenosis forRe = 876 are appended

in frame (d). In both non-spiral and spiral flow for all the Reynolds numbers, large

recirculation regions are developed near the wall, right after the stenosis throat due

to the occurrence of back flow there. The length of the recirculation region grows if

the Reynolds number is increased. As mentioned in the previous chapter, these re-

circulation regions increase the blood residence time as the blood is recirculated in

these regions during each cycle for a significant time, posing a potential risk of heart

attack and brain stroke (Molla [90]). The corresponding streamlines in non-spiral

and spiral flow resemble each other and the effect of spiral flow on the streamlines

is negligible. The only difference in the pattern of streamlines in non-spiral and

spiral flow which can be observed forRe = 876 (frame c) is the existence of an

additional small recirculation region in non-spiral flow after z = 4D (at the bottom

wall), which is absent in the spiral flow case. However, the effects of the irregular

stenosis on the recirculation region is obvious from frames(c-d) in both the figures.

The recirculation region in the irregular stenosis is stronger than that in the regu-

lar stenosis; the flow reattachment in the irregular stenosis occurs atz/D ≈ 2.6,

whereas in the regular stenosis, it occurs atz/D ≈ 2.25. It is clear from the above

discussion that results in the irregular stenosis vary significantly from that in the

regular stenosis and irregular stenosis should, therefore, be considered for getting

clear picture of the flow physics in the downstream of the stenosis.

Further information on the flow characteristics of non-spiral and spiral flow

through the irregular stenosis is revealed through cross-stream velocity vectors. The

in-plane velocity vectors appended on the streamwise velocity, w̄ (m/s), contours at

different axial locations forRe = 876 during phaseP3 in non-spiral and spiral flow

are presented in Figures 6.10 and 6.11. The flow is apparentlylaminar at the throat

of the stenosis (frame a) andz = 1D (frame b) in both non-spiral and spiral flow;

the streamwise velocity attains its maximum value atz = 1D (frame b) andz = 2D

(frame c). However, in both non-spiral and spiral flow, the stenotic jet breakdown
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starts atz = 2D (frame c), resulting in the onset of transition-to-turbulence and

the flow is very chaotic within2 ≤ z/D ≤ 6 (frame c-g). Relaminarisation pro-

cess takes place subsequently, which is more obvious atz = 8D (frame h) where

the flow is almost undisturbed. It is interesting to note thatthe spiral pattern of

the velocity vectors is found only up to the throat of the stenosis (Figure 6.11(a))

and it is lost subsequently as a result of intense turbulenceactivities in the further

downstream region.

6.3.3.1 Instantaneous Wall Pressure

The instantaneous wall pressure,p̄ (Pa), profiles at two circumferential locations (0◦

and90◦) of the wall during different phases of the last pulsatile cycle forRe = 438,

584 and 876 in both non-spiral (NSp) and spiral flow are shown in Figure 6.12.

The corresponding wall pressure results forRe = 876 in non-spiral flow through

the regular stenosis are also appended in the figure. It is important to note that the

effects of spiral flow on the wall pressure is found only at some locations within

2 ≤ z/D ≤ 6 where the pressure is of oscillating nature forRe = 584 and876

and the maximum pressure drop remains almost unaffected by the spiral flow. As

seen in the previous chapters, the pressure drops sharply atthe stenosis throat and in

the immediate post-stenotic region where the streamwise velocity is extremely high

and the pressure drop increases with Reynolds number. The maximum pressure

drop occurs during phaseP1 and it is extremely high during phasesP2 andP3

compared with the corresponding pressure drop during otherphases.

Due to the effect of irregular stenosis, the pressure drop at0◦ circumferential

location differs significantly from that at90◦ circumferential location, e.g. for

Re = 876 in non-spiral flow, excess pressure drops (around the throatof the steno-

sis) of≈ 132 Pa,≈ 198 Pa and≈ 125 Pa during phasesP1, P2 andP3, respec-

tively, are found at0◦ circumferential location compared with the correspondingre-

sults at90◦ circumferential location. Also the ridges in the profiles found between

z = −1D andz = 1D are caused by the influence of the irregular stenosis. Further-

more, the maximum pressure drop increases significantly in the irregular stenosis

compared with that in the regular stenosis. For example, themaximum pressure

drops in non-spiral flow through the irregular stenosis during phasesP1, P2 and

P3 for Re = 876 are≈ 883 Pa,≈ 864 Pa and≈ 567 Pa, respectively, whereas the
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corresponding maximum pressure drops for the regular stenosis during phasesP1,

P2 andP3 are≈ 685 Pa,≈ 661 Pa and≈ 426 Pa, respectively – which are equiv-

alent to≈ 29%, ≈ 31% and≈ 33% increase in the maximum pressure drop in the

irregular stenosis during phasesP1,P2 andP3, respectively, compared with the the

corresponding maximum pressure drops in the regular stenosis. The pressure drop

agrees with the corrsponding results of in the similar studies of Johnston and Kil-

patrick [60], Andersson et al. [61], Chakravarty et al. [63]and Sarifuddin et al. [64],

but the magnitude of the pressure drop in the irregular stenosis in this study is higher

than that in the regular stenosis. However, they reported that the pressure drop in

a cosine-type regular stenosis increases (by10% to 16%) compared with the corre-

sponding pressure drop in an irregular stenosis – this is possibly due to the fact that

their studies were limited to two-dimensional laminar flow through relatively mild

stenosis (48% area reduction). The clinical implications of these extremely high

pressure drops are potentially dangerous which, were also discussed in the previous

chapters, include flow choking and rupture of the plaque cap (Wootton and Ku [6];

Li et al. [8]).

6.3.3.2 Instantaneous Wall Shear Stress

Figures 6.13, 6.14 and 6.15 illustrate the instantaneous wall shear stress (WSS)

in both non-spiral and spiral flow forRe = 438, 584 and 876, respectively, at

0◦ and90◦ circumferential locations of the wall during different phases of the last

pulsatile cycle. Note that the corresponding wall shear stresses in non-spiral flow

through the regular stenosis for the investigated Reynoldsnumbers are appended

in the figures. For all the Reynolds numbers during all the phases, the WSS starts

to rise at the pre-lip of the stenosis with sharp ridges due toeffects of the irregular

stenosis; and it attains its maximum value just before the stenosis throat. After this

sharp rise it drops to almost its upstream value at the stenosis throat and continues

with slightly decreasing value almost up to the post-lip of the stenosis; in the fur-

ther downstream region the WSS takes oscillatory pattern. As seen in the results

of wall pressure, the effects of spiral flow on the WSS can be observed only in the

downstream region betweenz ≈ 1.25D and7D where the WSS is of oscillating

nature. The oscillatory WSS is implicated in arterial disease progression (Ku [3];

Paul and Molla [93]). Throughout the pulsatile cycle, the WSS is heavily depen-
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dent on Reynolds number; it increases significantly when theReynolds number is

increased.

For all the investigated Reynolds numbers in Figures 6.13, 6.14 and 6.15, the

maximum value of WSS occurs during phaseP2 at 90◦ circumferential location

of the wall (frame d); the maximum shear stresses around the stenosis throat dur-

ing phaseP2 (at 0◦ circumferential location) (frame c),P1 (frame a-b) andP3

(frame e-f) are also extremely large. ForRe = 438, 584 and876, the maximum

shear stresses are≈ 17 Pa (Figure 6.13(d)),≈ 25 Pa (Figure 6.14(d)) and≈ 48 Pa

(Figure 6.15(d)), respectively. It is interesting to note that due to the effects of the

irregular stenosis, the maximum value of the WSS at90◦ circumferential location

significantly differs from that at0◦ circumferential location during a given phase,

more specifically, it is greater at90◦ circumferential location than that at0◦ circum-

ferential location. For example, the maximum shear stresses forRe = 876 during

phasesP1, P2 andP3 at 90◦ circumferential location are≈ 47 Pa,≈ 48 Pa and

≈ 38 Pa, respectively, whereas their counterparts at0◦ circumferential location are

≈ 41 Pa,≈ 41 Pa and≈ 32 Pa, respectively. Furthermore, it is clear from the

figures that for all the Reynolds numbers during all the phases, the maximum WSS

increases in the irregular stenosis compared with the corresponding WSS in the reg-

ular stenosis. The maximum shear stresses (frame d) in the irregular stenosis rise by

≈ 126%, ≈ 126% and≈ 140% for Re = 438, 584 and876, respectively, compared

with that in the regular stenosis. This result agree with thecorresponding findings

in the studies of Johnston and Kilpatrick [60], Andersson etal. [61], Chakravarty

et al. [63] and Sarifuddin et al. [64], who also reported thatWSS rises significantly

in the irregular stenosis compared with that in the cosine-type regular stenosis.

The pathophysiological impacts of high WSS, as discussed inthe previous chap-

ters, are profoundly detrimental to cardiovascular health. According to Ku [3], high

WSS may overstimulate platelet thrombosis, resulting in total occlusion of the ves-

sel (Folts et al. [38]). Fry [36] reported that high WSS> 37.9 ± 8.5 (SD) Pa may

harm endothelial cells. Shear stress≥ 10 Pa lead to deformation of the red blood

cells (Sutera and Mehrjardi [37]) and> 7 Pa, according to Malek et al. [9], may in-

duce thrombosis. It is, therefore, clear from the above three figures that wall shear

stress reaches the clinically harmful level during all the phases forRe = 876, how-

ever, forRe = 584 and438, it reaches the dangerous level only during phasesP1,
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P2 andP3.

6.3.4 Phase-averaged Flow Characteristics

It would be interesting to present some phase-averaged results and see how they

behave. The phase-averaged streamwise velocity during phaseP3 in both non-

spiral (NSp) and spiral flow at different axial locations is presented in Figure 6.16(a-

l) for Reynolds numbersRe = 438, 584 and876. The corresponding results in

non-spiral flow through the regular stenosis forRe = 876 are also appended in

the figure. The streamwise velocity increases with Reynoldsnumber. Its pattern

is similar to that of fully developed Poiseuille flow at the pre-lip of the stenosis;

it increases dramatically at the throat and in the immediatepost-stenotic region

(frames b-d). Due to the existence of the permanent re-circulation region observed

in Figures 6.8 and 6.9, negative values of the streamwise velocity is observed near

the wall in frames (c-d). As seen in the phase-averaged streamwise velocity profiles

in Chapter 5, the effect of spiral flow is visible only in the transition-to-turbulence

region, betweenz = 2D and6D, where the profiles lose their jet-like character and

tend to uniformity. The streamwise velocity in spiral flow increases at some places

compared with that in non-spiral flow, e.g. forRe = 876, due to spiral flow, it

increases at some places in frames (e-h) and decreases in frames (d, h). Flow tries

to regain its upstream character in further downstream region as the relaminarisation

process takes place. The effects of the irregular stenosis on the streamwise velocity

is observed only between the throat andz = 6D. In the further downstream region,

the velocity profiles in the regular stenosis match that in the irregular stenosis. The

streamwise velocity in the irregular stenosis increases inframes (b-e, h ) compared

with that in the regular stenosis, however, the opposite happens atz = 4D and5D

(frames f-g).

Figure 6.17 depicts the phase-averaged wall shear stress at0◦ and90◦ circum-

ferential locations of the wall during phaseP3 in both non-spiral and spiral flow

for Re = 438, 584 and876. Note that the corresponding phase-averaged results in

non-spiral flow through the regular stenosis are also appended. As seen in Chap-

ter 5, the phase-averaged wall shear stresses closely resemble the corresponding

instantaneous results in Figures 6.13(e-f), 6.14(e-f) and6.15(e-f) in both magni-
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tude and pattern. The oscillating nature of the WSS, which was observed in the

downstream region in the instantaneous results, is absent here as a result of phase-

averaging. Therefore, instantaneous WSS is important for accurate description of

its profile. The effect of spiral flow on the phase-averaged WSS is negligible. Like

the instantaneous WSS in the irregular stenosis, the phase-averaged WSS in the ir-

regular stenosis increases dramatically compared with thecorresponding result in

the regular stenosis. For example, the maximum phase-averaged shear stresses at

90◦ circumferential location in the irregular stenosis increase by≈ 116%, ≈ 122%

and≈ 137% for Re = 438, 584 and876, respectively, compared with the corre-

sponding results in the regular stenosis.

6.3.5 Turbulent Characteristics

In this section, the effects of the irregular stenosis on both non-spiral and spiral tur-

bulent flows are presented in terms of the root mean square (rms) of the streamwise

velocity and pressure fluctuations, turbulent kinetic energy (TKE) and the energy

spectra of the streamwise velocity and pressure fluctuations.

Figure 6.18 shows the root mean square (rms) of the streamwise velocity fluctu-

ations,〈w′′〉rms (m/s), at different axial locations during phaseP3 in both non-spiral

(NSp) and spiral flow forRe = 438, 584 and876. Note that the corresponding re-

sults in non-spiral flow through the regular stenosis forRe = 876 are also appended.

The maximum〈w′′〉rms occurs at different places for different Reynolds numbers.

ForRe = 438 and584, the maximum〈w′′〉rms is found atz = 4D, whereas for

Re = 876, it occurs atz = 5D. The magnitude of the maximum〈w′′〉rms increases

with Reynolds number. The streamwise velocity fluctuationsat some places in spi-

ral flow rises compared with that in non-spiral flow. Additionally, the maximum

〈w′′〉rms in the irregular stenosis is larger than that in the regular stenosis.

Further information on the effects of the irregular stenosis and spiral flow can be

obtained from the TKE results. Figures 6.19, 6.20 and 6.21 illustrate the turbulent

kinetic energy (TKE),1
2
〈u′′ju′′j 〉 (m2/s2), at different axial locations during phase

P3 in both non-spiral (NSp) and spiral flow through the irregular stenosis along

with the corresponding results in non-spiral flow through the regular stenosis for

Re = 438, 584 and876, respectively. The TKE is very small at the post lip for all the
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Reynolds numbers, it increases in the downstream region where the flow transients

to turbulence and die away in the further downstream region as the relaminarisation

process begins. It is clear from the above figures that the transition-to-turbulence

region increases when the Reynolds number is increased; andthe transition starts in

the immediate downstream region for high Reynolds number, while it starts in the

further downstream region for low Reynolds numbers. For example, the transition-

to-turbulence regions forRe = 438, 584 and 876 are within 3D ≤ z ≤ 4D,

3D ≤ z ≤ 5D and2D ≤ z ≤ 6D, respectively.

Like 〈w′′〉rms, the maximum TKE increases when the Reynolds number is in-

creased. Moreover, for all the Reynolds numbers, the maximum TKE in spiral

flow (Figures 6.19(b), 6.20(d) and 6.21(e)) increases significantly compared with

that in non-spiral flow. Also TKE at some other places rises sharply due to the

effects of spiral flow. As observed in the previous chapters,this result contradicts

the claims of Paul and Larman [17] and Stonebridge et al. [16]. The drawbacks of

their studies will not be repeated here as they were discussed in detail in§ 2.4 of

Chapter 2. As for the effects of the irregular stenosis on TKE, the values of TKE

at some locations in the irregular stenosis increase significantly compared with the

corresponding results in the regular stenosis. In the pathological context, the large

TKE in the transition-to-turbulence region may lead to the damage of the blood cell

tissues inside a blood vessel (Ku [3]; Paul and Molla [93]).

The rms of wall pressure fluctuations,〈p′′〉rms (Pa), in both non-spiral and

spiral flow for Reynolds numbersRe = 438, 584 and 876 during phaseP3 at

0◦ and90◦ circumferential locations of the wall are shown in Figure 6.22. The cor-

responding results in non-spiral flow through the regular stenosis forRe = 876 are

also appended in the figure. ForRe = 438, the rms of wall pressure fluctuations in

both non-spiral and spiral flow is very small as the wall pressure does not fluctuate

much for low Reynolds number. The value〈p′′〉rms increases when the Reynolds

number is increased. In both non-spiral and spiral flow forRe = 584 and876,

〈p′′〉rms increases significantly at aroundz = 2D; and in the further downstream

region betweenz ≈ 3D and7D, its rise is of oscillatory pattern. The maximum

〈p′′〉rms, which occurs at aroundz = 2D at0◦ circumferential location forRe = 584

and876, in non-spiral flow increases as compared with that in spiralflow. Addi-

tionally, the maximum〈p′′〉rms in non-spiral flow through the regular stenosis for
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Re = 876, which occurs at aroundz = 5D, is much less than the corresponding re-

sult through the irregular stenosis. As discussed in Chapter 5, high level of pressure

fluctuations are the main source of arterial murmurs, a key diagnostic condition of

arterial stenosis detected by bio-acoustic techniques (Ask et al. [135]). As the value

of pressure fluctuations in the irregular stenosis increases compared with that in the

regular stenosis, the intensity of the arterial murmurs in the irregular stenosis would

be higher than that in the regular stenosis. the same observation can be made for

non-spiral and spiral flow, i.e. the intensity of arterial murmurs in spiral flow is less

than that in non-spiral flow.

6.3.5.1 Cycle-to-cycle variations

Figure 6.23 presents cycle-to-cycle variations of the centreline cross-stream velocity

fluctuations,u′′/u′′max andv′′/v′′max, and the centreline streamwise velocity fluctu-

ations,w′′/w′′

max, at different axial positions in both non-spiral and spiralflow for

Re = 876 over the last three cycles used for phase-averaged statistics. The magni-

tudes of the velocity fluctuations beforez = 2D are very small and not shown in

the figure. It is clear from the figure that the centreline velocity fluctuations in both

non-spiral and spiral flow are non-periodic and very big in magnitude in the down-

stream region of3D ≤ z ≤ 6D; they fade away in the further downstream region

due to the decreasing influence of the stenosis there. Also the effects of the spiral

flow on the centreline velocity fluctuations are clearly visible within3D ≤ z ≤ 6D.

The cycle-to-cycle variations of the TKE,1
2
〈u′′ju′′j 〉 (m2/s2), at different axial

locations on the centreline in both non-spiral and spiral flow for Re = 876 are

shown in Figure 6.24. Note that the corresponding results innon-spiral flow through

the regular stenosis are also appended in the figure. As seen in the previous chapter,

the centreline TKE in spiral flow rises significantly during some phases at some

locations compared with the corresponding result in non-spiral flow. In addition,

due to the effects of the irregular stenosis, the maximum TKEin non-spiral flow

through the irregular stenosis increases by≈ 55% compared with that through the

regular stenosis. Hence the irregular stenosis should be considered in the simulation

of blood flow through stenosis to accurately predict the turbulent characteristics in

the post-stenotic region.
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6.3.5.2 Turbulent Energy Spectra

Energy spectra,Ew′′w′′ of the normalised centreline streamwise velocity fluctu-

ations, (w′′/〈w′′〉rms)
2, andEp′′p′′ of the normalised wall pressure fluctuations,

(p′′/〈p′′〉rms)
2, in both non-spiral (red coloured line) and spiral (green coloured line)

flow at different axial positions forRe = 876 are shown in Figures 6.25 and 6.26,

respectively. Along withEw′′w′′, the lines of(Sr)−5/3, (Sr)−10/3 and(Sr)−7 are

also included in Figure 6.25, whereas forEp′′p′′ , the lines of(Sr)−5/3, (Sr)−7/3 and

(Sr)−7 are included in Figure 6.26. The calculation methods for theenergy spectra

have already been explained in§ 5.4.5 of Chapter 5.

In the downstream region betweenz = 2D and6D in both non-spiral and spiral

flow where the flow transients to turbulence, the inertial subrange region of−5/3

power slope in the velocity spectra in Figure 6.25 break into−10/3 power slope

at higher frequencies, resulting in large range of broadband frequencies and very

small viscous dissipation range of−7 power slope for this region (frame b-f). The

broadband frequency range is very small at the post-lip and in the down stream

regionz > 6D (frame a, g-i). The spectra changes from−10/3 power slope to

−7 power slope at lower frequencies in the down stream regionz > 6D (frame g-

i) as a result of weak turbulence intensity there, giving a large range of viscous

dissipation frequencies. These findings are consistent with the experimental results

of Gross et al. [138] and Lu et al. [47]. Additionally, it should be noted that at

z = 2D and6D, the broadband frequency range in the velocity spectra in non-spiral

flow has larger range of frequencies than that in spiral flow (frame b,f), however in

frames (c-e), the opposite happens, i.e. the inertial subrange in the velocity spectra

in spiral flow has larger range of frequencies than that in non-spiral flow. In the

regionz ≥ 8D, the viscous dissipation range in non-spiral flow is smallerthan that

in spiral flow as the spectra of−7 power slope in non-spiral flow roll off to another

power slope inclining toward horizontal line at lower frequencies than that in spiral

flow.

As seen in the velocity spectra, the pressure spectra in bothnon-spiral and spiral

flow in Figure 6.26 has larger range of frequencies constituting the inertial subrange

in the downstream region betweenz = 2D and6D (frame b-f). And atz = 1D

(frame a), the inertial subrange region in the pressure spectra is very small as well.

The pressure spectra change from the broadband range of−5/3 power slope to the

148



Chapter 6 6.4 Conclusion

break frequency region of−7/3 power slope at frequencies which represent the

energy transfer from the pressure spectra to the sound spectra, a possible source of

arterial stenosis murmurs (Paul and Molla [93]) which was also discussed in the

previous chapter. Due to the effect of spiral flow on the pressure spectra, apart from

the absence of the viscous dissipation range in non-spiral flow atz = 3D (frame c),

the change in the spectra rolling off to a power slope of interest is negligible.

It is to note that these findings on the turbulence power spectra in non-spiral

and spiral flow through the irregular stenosis are quite similar to the corresponding

results through the regular stenosis in Chapter 5.

6.4 Conclusion

In this chapter, Large Eddy Simulation with Smagorinsky-Lilly dynamic subgrid

model (Germano [115], Lilly [116] and Kim [123]) has been employed to investi-

gate the physiological pulsatile non-spiral and spiral blood flow through a straight

tube having an irregular stenosis of75% area reduction forRe = 438, 584 and

876. The results of non-spiral flow through the irregular stenosis are also compared

with the corresponding results through a regular stenosis from Chapter 5 to assess

the effects of the irregular stenosis. Although the maximumcontribution from the

SGS model is55% in both non-spiral and spiral flow for all the Reynolds number,

the maximum SGS contribution occurs at more places when the Reynolds number

is increased. And due to the effect of the irregular stenosis, the maximum SGS

contribution increases significantly.

The permanent recirculation regions near the wall after thethroat of the stenosis

found in both non-spiral and spiral flow are quite strong and increase due to the

effects of the irregular stenosis. As seen in the previous chapter, the maximum

wall pressure drop increases with Reynolds number; the effect of spiral flow on the

wall pressure is found only in the downstream region within2 ≤ z/D ≤ 6 where

the pressure is of oscillating form and the effect of spiral flow on the maximum

pressure drop is negligible. The maximum pressure drop at one circumferential

location of the wall differs significantly from that at othercircumferential location

as a result of the irregular stenosis. Also the maximum pressure drop through the

irregular stenosis greatly increases compared with that through the regular stenosis.
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For example, the maximum pressure drop during phaseP2, i.e. under the inlet peak

flow condition, forRe = 876 through the irregular stenosis increases by≈ 31%

compared with that through the regular stenosis. Furthermore, the findings on WSS

are quite similar to the wall pressure results. The effect ofspiral flow is found only

in the downstream region where the WSS is of oscillatory nature and the maximum

WSS in the irregular stenosis rises sharply compared with the corresponding result

in the regular stenosis. For example, the maximum WSS duringphaseP2 for Re =

876 in the irregular stenosis rises by≈ 140% compared with the corresponding

result in the regular stenosis.

The transition-to-turbulence region and the TKE in both non-spiral and spiral

flow increases with Reynolds number; the flow transients to turbulence in the im-

mediate downstream region for high Reynolds number, whereas for low Reynolds

number, the flow transition begins in the further downstreamregion. As seen in

the previous chapter, the TKE increases significantly at some locations and phases

due to spiral effect. This finding contradicts the claim madein similar studies (Paul

and Larman [17]; Stonebridge et al. [16]) which was also discussed in the previous

chapters. In addition, the maximum TKE in the non-spiral flowthrough the irreg-

ular stenosis rises sharply compared with corresponding result in non-spiral flow

through the regular stenosis. In the pathological context,the irregular stenosis has

devastating effects on the cardiovascular health of the patients. In the simulation of

blood flow through stenosed artery, irregular stenosis should, therefore, be taken for

accurate prediction of the flow field. As seen in the previous chapter, in both veloc-

ity and pressure spectra in non-spiral and spiral flow, the large broadband frequency

range exists in the transition-to-turbulence region and the well-defined viscous dis-

sipation range can be found in the further downstream regionas the relaminarisation

process starts there. At some locations in the transition region, the velocity spectra

in spiral flow has larger range of broadband frequencies thanthat in non-spiral flow.

The effects of spiral flow on the pressure spectra is negligible.

So far, we have studied non-spiral and spiral flow through stenosis only. But

stenosis may be followed by an adjacent aneurysm in the same arterial segment (In

et al. [13]). Hence it would be interesting to study physiological pulsatile non-spiral

and spiral blood flow through a model of arterial stenosis with adjacent aneurysm

in the next chapter.
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Figure 6.1: Three dimensional view of model artery having irregular stenosis: (a)
the whole domain and (b) zoomed-in section on irregular stenosis.
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Figure 6.2: Grid resolution study for phase-averaged streamwise velocity,
〈〈w̄〉〉 (m/s), in non-spiral blood flow during phaseP3 at different indicated axial
locations whileRe = 876.
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Figure 6.3: Grid resolution study for phase-averaged axialwall shear stress (Pa) in
non-spiral blood flow during phaseP3 whileRe = 876. Phase averaging was done
on the circumferential average WSS.
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Figure 6.4: Dynamic Smagorinsky constant,Cs, in non-spiral blood flow during
phaseP3 for (a)Re = 438 and (b)Re = 584 and (c)Re = 876.
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Figure 6.5: Normalised SGS eddy viscosity,µsgs/µ, in non-spiral blood flow during
phaseP3 for (a)Re = 438 and (b)Re = 584 and (c)Re = 876.
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Figure 6.6: Instantaneous y-vorticity,Ωy (1/s), in non-spiral flow during phaseP3
for (a) Re = 438, (b) Re = 584 and (c)Re = 876. The correspondingΩy in
non-spiral flow through the regular stenosis forRe = 876 is also appended in frame
(d).
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Figure 6.7: Instantaneous y-vorticity,Ωy (1/s), in spiral flow during phaseP3 for
(a)Re = 438, (b) Re = 584 and (c)Re = 876. The correspondingΩy in spiral
flow through the regular stenosis forRe = 876 is also appended in frame (d).
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Figure 6.8: Instantaneous mid-plane streamlines in non-spiral blood flow during
phaseP3 for (a)Re = 438, (b)Re = 584 and (c)Re = 876. Note that the corre-
sponding streamlines in non-spiral flow through the regularcosine-type stenosis for
Re = 876 are also appended in frame (d).
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Figure 6.9: Instantaneous mid-plane streamlines in spiralblood flow during phase
P3 for (a)Re = 438, (b)Re = 584 and (c)Re = 876. The corresponding stream-
lines in spiral flow through the regular stenosis forRe = 876 are also appended in
frame (d).
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Figure 6.10: Instantaneous cross-sectional vectors appended on the contours of the
streamwise velocity,̄w, in non-spiral flow during phaseP3 at (a)z/D = 0, (b)
z/D = 1, (c) z/D = 2, (d) z/D = 3, (e)z/D = 4, (f) z/D = 5, (g) z/D = 6 and
(h) z/D = 8 whileRe = 876.
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Figure 6.11: Instantaneous cross-sectional vectors appended on the contours of the
streamwise velocity,̄w, in spiral flow during phaseP3 at (a)z/D = 0, (b)z/D = 1,
(c) z/D = 2, (d) z/D = 3, (e) z/D = 4, (f) z/D = 5, (g) z/D = 6 and (h)
z/D = 8 whileRe = 876.
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Figure 6.12: Instantaneous wall pressure,p̄ (Pa), in both non-spiral (NSp) and spiral
flow for the different Reynolds numbers, namelyRe = 438, 584 and876, during
different phases of the last cycle at the two indicated circumferential locations. Note
that the corresponding wall pressures forRe = 876 in non-spiral flow through the
regular stenosis are also appended.
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Figure 6.13: Instantaneous wall shear stress (Pa) forRe = 438 in both non-spiral
and spiral flow during different phases of the last cycle at the two indicated circum-
ferential locations. Note that the corresponding wall shear stresses forRe = 438 in
non-spiral flow through the regular stenosis are also appended.
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Figure 6.14: Instantaneous wall shear stress (Pa) forRe = 584 in both non-spiral
and spiral flow during different phases of the last cycle at the two indicated cir-
cumferential locations. The corresponding wall shear stresses forRe = 584 in
non-spiral flow through the regular stenosis are also appended.

158



Chapter 6 6.4 Conclusion

-2 0 2 4 6 8
0

10

20

30

40 P1(b) 90°

-2 0 2 4 6 8
0

2.5

5

7.5

10 P7(n)

-2 0 2 4 6 8
0

3

6

9 P7(m)

z/D

-2 0 2 4 6 8
0

5

10

15

20 P6(k)

-2 0 2 4 6 8
0

7

14

21 P6(l)

-2 0 2 4 6 8
0

6

12

18 P5(j)

-2 0 2 4 6 8
0

5

10

15 P5(i)

-2 0 2 4 6 8
0

3

6

9

12 P4(g)

-2 0 2 4 6 8
0

5

10

15 P4(h)

-2 0 2 4 6 8
0
6

12
18
24
30
36 P3(f)

-2 0 2 4 6 8
0

10

20

30

40
876 Non-spiral
876 Non-spiral
876 Spiral

P1

W
S

S
(P

a)

0°

(a) Re
Regular

-2 0 2 4 6 8
0

6

12

18

24

30 P3(e)

-2 0 2 4 6 8
0

10

20

30

40 P2(c)

-2 0 2 4 6 8
0

10

20

30

40

50
P2(d)

Figure 6.15: Instantaneous wall shear stress (Pa) forRe = 876 in both non-spiral
and spiral flow during different phases of the last cycle at the two indicated cir-
cumferential locations. The corresponding wall shear stresses forRe = 876 in
non-spiral flow through the regular stenosis are also appended.
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Figure 6.16: Phase-averaged streamwise velocity,〈〈w̄〉〉 (m/s), in both non-spiral
(NSp) and spiral flow for the different Reynolds numbers, namely Re = 438, 584
and876, during phaseP3 at different axial locations. Note that the correspond-
ing 〈〈w̄〉〉 in non-spiral flow through the regular stenosis forRe = 876 are also
appended.
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Figure 6.17: Phase-averaged wall shear stress (Pa) in both non-spiral and spiral flow
during phaseP3 at the two indicated circumferential locations for (a)Re = 438,
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Figure 6.18: rms of the streamwise velocity fluctuations,〈w′′〉rms (m/s), in both
non-spiral (NSp) and spiral flow for the different Reynolds numbers, namely
Re = 438, 584 and876, during phaseP3 at different axial locations. Note that
the corresponding〈w′′〉rms for Re = 876 in non-spiral flow through the regular
stenosis are also appended.
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Figure 6.19: Turbulent kinetic energy,1
2
〈u′′ju′′j 〉 (m2/s2), for Reynolds number

Re = 438 in both non-spiral (NSp) and spiral flow during phaseP3 at different
axial locations. The corresponding1

2
〈u′′ju′′j 〉 in non-spiral flow through the regular

stenosis forRe = 438 are also appended.
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Figure 6.20: Turbulent kinetic energy,1
2
〈u′′ju′′j 〉 (m2/s2), for Reynolds number

Re = 584 in both non-spiral (NSp) and spiral flow during phaseP3 at different
axial locations. The corresponding1

2
〈u′′ju′′j 〉 in non-spiral flow through the regular

stenosis forRe = 584 are also appended.
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Figure 6.21: Turbulent kinetic energy,1
2
〈u′′ju′′j 〉 (m2/s2), for Reynolds number

Re = 876 in both non-spiral (NSp) and spiral flow during phaseP3 at different
axial locations. The corresponding1

2
〈u′′ju′′j 〉 in non-spiral flow through the regular

stenosis forRe = 876 are also appended.
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Figure 6.22: rms of wall pressure fluctuations,〈p′′〉rms (Pa), in both non-spiral and
spiral flow for the different Reynolds numbers, namelyRe = 438, 584 and876,
during phaseP3 at the two indicated circumferential locations. The correspond-
ing 〈p′′〉rms for Re = 876 in non-spiral flow through the regular stenosis are also
appended.
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Figure 6.23: Time history of the centreline velocity fluctuations, (a)u′′/u′′max, (b)
v′′/v′′max and (c)w′′/w′′

max at different axial locations for both non-spiral and spiral
pulsatile blood flow whileRe = 876. The red coloured solid line denotes velocity
fluctuations for non-spiral flow while the green coloured dashed line corresponds to
velocity fluctuations for spiral flow.
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Figure 6.24: Time history of centreline turbulent kinetic energy (TKE),
1
2
〈u′′ju′′j 〉 (m2/s2), at different indicated axial locations for both non-spiral (red

coloured dashed line) and spiral (green coloured dash-dot-dot line) pulsatile blood
flow whileRe = 876. Note that the corresponding1

2
〈u′′ju′′j 〉 for Re = 876 in non-

spiral flow through the regular stenosis (blue coloured solid line) are also appended.
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Figure 6.25: Energy spectra of centreline streamwise velocity fluctuations,w′′, at
different axial locations normalised by centreline〈w′′〉rms at the same locations,
for both non-spiral and spiral pulsatile flow whileRe = 876. The red and the
green coloured lines correspond to the energy spectra of velocity fluctuations for
non-spiral and spiral flow, respectively.
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Figure 6.26: Energy spectra of wall pressure fluctuations,p′′, at different axial lo-
cations normalised by wall〈p′′〉rms at the same locations, for both non-spiral and
spiral pulsatile flow whileRe = 876. The red and the green coloured line corre-
sponds to the energy spectra of wall pressure fluctuations for non-spiral and spiral
flow, respectively.
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Chapter 7

Physiological Pulsatile Non-spiral

and Spiral Flow in a Model of a

Stenosis with an Adjacent Aneurysm

in Basilar Artery

7.1 Introduction

Atherosclerotic artery rarely has both stenosis and aneurysm in the same arterial

segment. Until recently no reports on intracranial stenoses associated with adja-

cent aneurysms have been found (In et al. [13]). In et al. [13]reported the exis-

tence of a severe stenosis with an adjacent (pre-stenotic ‘saccular’ or post-stenotic

‘fusiform’) aneurysm in basilar artery. They defined a ‘saccular’ aneurysm as an

aneurysm which has a smooth berry-shaped body and a neck and an ‘atheroscle-

rotic fusiform’ aneurysm as an aneurysm having a dilated arterial segment with-

out definite neck formation. Aneurysm has the potential for rupture of the vessel

wall, which may lead to haemorrhage, complications to localorgan function, and

even death as aneurysm ruptures have high mortality and morbidity rates (Kassell

et al. [139]). Hence, like severe stenosis, aneurysm could prove fatal if left with-

out taking any therapeutic measures. When both stenosis andaneurysm exist in the

same arterial segment, it would pose more danger to the patient than the existence

of either of them in an artery. Therefore, it would really be interesting to study

blood flow through a model of an arterial stenosis with an adjacent (post-stenotic)

aneurysm in the same arterial segment as no studies (laminaror turbulence) have
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been done on it, to the best of the author’s knowledge.

In this Chapter, mainly Large Eddy Simulation (LES) with theSmagorinsky-

Lilly dynamic subgrid model (Germano [115], Lilly [116] andKim [123]) was

applied to study physiological pulsatile non-spiral and spiral blood flow through

a three-dimensional model of an irregular stenosis with an adjacent post-stenotic

fusiform irregular aneurysm in basilar artery. The stenosis and the aneurysm were

of 75% area reduction and126% area enlargement, respectively, at their centres.

The cross-sections of both cosine-type stenosis and aneurysm were shifted ran-

domly to eitherx or y-direction to form irregular shape of them. Two-equation

k-ω Transitional model was also applied to pulsatile non-spiral flow for the highest

Reynolds number investigated. As described in Chapter 5, the first four harmonics

of the physiological pulsatile flow and pressure pulse were employed at the inlet

and outlet, respectively, to generate pulsatile velocity profile at the inlet and pres-

sure waveform at the outlet. To introduce spiral velocity atthe inlet, one-sixth of

physiological pulsatile bulk velocity was taken as tangential velocity at the inlet, as

seen in Chapters 5 and 6. Moreover, to investigate the effectof the magnitude of

spiral velocity, spiral velocity was increased by taking one-fourth of physiological

pulsatile bulk velocity as tangential velocity at the inlet.

The numerical results are presented in terms of velocity, vectors, streamlines,

wall pressure and shear stress distributions, turbulent kinetic energy, velocity and

pressure fluctuations and the energy spectra of the centreline streamwise velocity

fluctuations to investigate the transition-to-turbulenceof pulsatile non-spiral and

spiral blood flow in the downstream of the irregular stenosiswith the adjacent post-

stenotic irregular aneurysm.

7.2 Problem Formulation

7.2.1 Model Geometry and Mesh arrangement

Figure 7.1 depicts the geometry of the model of an arterial stenosis with an adjacent

post-stenotic aneurysm of irregular shape with rigid wall which was developed by

using GAMBIT 2.4 (Fluent Inc.). The existence of a severe stenosis with an ad-

jacent (pre- or post-stenotic) aneurysm is commonly found in basilar and vertebral
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artery (In et al. [13]). Our model resembles basilar artery as it is a straight tube

like basilar artery. Thein vivo study of Pico et al. [140] shows that the diameter of

basilar artery varies between2.6 mm and35 mm and the mean diameter of it in159

subjects is8 mm. The diameter of the unaffected section of the model was, there-

fore, taken asD = 8 mm. As seen in the previous chapters, the stenosis is centred

at z = 0 and of length= 2D. As for aneurysm length, Neofytou et al. [141] and

Molla [90] took four times diameter of the model tube and fourtimes height of the

channel, respectively, as the aneurysm segment length. So the adjacent aneurysm

is taken of length= 4D and centred atz = 3D. The upstream and downstream

lengths of the model from the stenosis centre are3D and15D, respectively, giving

a total length of the model18D.

First a cosine-type stenosis of75% area reduction with an adjacent post-stenotic

cosine-type aneurysm of126% area enlargement corresponding to≈ 50.33% diam-

eter dilation was developed using the following relation:

r0 (z)

R
=





1 − δ1
c

2

(
1 + cos zπ

D

)
if −D ≤ z ≤ D

1 + δ2
c

2

(
1 + cos (z−3D)π

2D

)
if D ≤ z ≤ 5D

1 elsewhere

(7.1)

wherer0 andR are the cross-sectional radius and radius of the unaffectedsection of

the model, respectively. Hereδ1
c andδ2

c are the parameters that control the percent-

age of the area reduction in the stenosis and the area enlargement in the aneurysm,

respectively. The values ofδ1
c andδ2

c were fixed at0.5 and
√

2 − 1, respectively, to

obtain a75% reduction and126% enlargement of the cross-sectional area at the cen-

tres of the stenosis and aneurysm, respectively. And then the cross-sections of both

the stenosis and the aneurysm were shifted maximum0.25 mm randomly to either

x or y-direction (positive or negative) to get the irregular shape. It is to note that In

et al. [13] defined aneurysm as an artery diameter greater than 1.5 times that of the

adjacent normal lumen, which corresponds to greater than125% area enlargement.

As in previous chapters, a boundary layer was applied to the inside of the wall to

get fine resolution in the sublayer; and the finest grid resolution was also ensured

in the region from the centre of the stenosis to the immediatedownstream region of

the aneurysm.
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7.2.2 Boundary Conditions

The equations for the inlet and outlet boundary conditions were described in§ 5.2.1

of Chapter 5. The values of the angular frequency,η, density,ρ, and dynamic

viscosity,µ, remain same as they were in Chapters 5 and 6. However, the Wom-

ersley number,α = R
√

ρη
µ

, becomes6.92 asR = 0.004 in this chapter. The

Reynolds numbers investigated, based on the diameter of theunaffected section of

the tube,D, and steady inlet bulk velocity,̄V , wereRe = 366 and440 with peak

Reynolds numbers,Repk ≈ 1000 and1200, respectively, corresponding to a value

of A = 0.40 in Equation (5.12). Note that the two-equationk-ω Transitional model

was applied to non-spiral flow for Reynolds numberRe = 440 only. To assess the

effect of the magnitude of the spiral velocity, the spiral velocity was increased for

Re = 440 by increasing the value of the control parameter for spiral velocity,C,

in Equation (5.16) from1
6

to 1
4
. The inlet velocity profiles at different positions and

phases and the outlet pressure profile are presented in Figures 7.2(a-d) and 7.3, re-

spectively. The phases in the pulsatile cycle at which the results were obtained are

indicated in Figure 7.2(a).

7.3 Results and Discussion

As in previous chapters, the time-step,δt, for all the computations in this chapter

was also fixed at10−3. The simulations were performed for20 pulsatile cycles; the

last12 cycles were used for phase-averaged statistics while the initial eight cycles

were set aside for the flow development. A grid resolution study was done only in

non-spiral flow and the chosen grid was deemed sufficient for both non-spiral and

spiral flow.

7.3.1 Grid Resolution Study

Three grid arrangements, namely Grid1, Grid 2 and Grid3 were used in grid res-

olution study forRe = 440 in the non-spiral flow. Grid1 has≈ 500, 000 control

volumes, whereas Grid2 consists of≈ 750, 000 control volumes, which is an in-

crease of about50% on Grid1. Grid 3 is a further refinement of Grid2 which has

≈ 1, 350, 000 control volumes, i.e. a massive increase of about80% on Grid 2.
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Grid resolution results are shown in terms of phase-averaged streamwise velocity,

〈〈w̄〉〉 (m/s), at different axial positions and wall shear stress (Pa) during phaseP3

in Figures 7.4 and 7.5, respectively. It is to note that the phase averaging of WSS

in Figure 7.5 was done on the circumferential-averaged WSS.The agreement of the

results for Grid2 and Grid3 are good indeed, considering the fact that LES results

cannot be fully grid independent unless LES grid resolutionbecomes fine enough

to be qualified for DNS (Mittal et al. [88]; Paul and Molla [93]). The resolution of

Grid 2 appears to be adequate for resolving the transient flow in themodel and it

was, therefore, chosen for all the simulations in this chapter.

7.3.2 Contributions of the SGS Dynamic Model

The contour plots of the dynamic Smagorinsky constant,Cs, in non-spiral flow

during phaseP3 in the z − x mid-plane forRe = 366 and440 are depicted in

Figure 7.6. The maximum value ofCs found in the downstream of the aneurysm

which is ≈ 0.04. The locations of non-zeroCs inside the aneurysm and in the

downstream region of the aneurysm increase with Reynolds number. Additionally,

for both the Reynolds numbers, the value ofCs in the upstream of the stenosis is

very small as the flow is laminar there.

Figure 7.7 presents the corresponding contour plots of the normalised SGS eddy

viscosity,µsgs/µ. It is clear from the figure that the maximum contribution of the

SGS dynamic model to the large scale motion for both the Reynolds numbers is

≈ 25% and it is found in the downstream region of the aneurysm, where the flow

is predicted to be turbulent. LikeCs, the non-zeroµsgs/µ is found at more places

for higher Reynolds number. The characteristics ofCs andµsgs/µ in spiral flow

through the model are almost same as that in non-spiral flow.

7.3.3 Instantaneous Flow Field

The contour plots of the instantaneous streamwise velocity, w̄ (m/s), in both non-

spiral and spiral flow forRe = 440 during phaseP2, i.e. peak inlet flow condition,

are shown in Figure 7.8 . In both non-spiral and spiral flow, the flow reverses near

the wall from the centre of the stenosis to the immediate downstream region of the

aneurysm. The stenotic jet becomes weaker at around the post-lip of the aneurysm,
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i.e. atz ≈ 5D, and starts to break down; the flow appears to be very chaotic in the

downstream region betweenz ≈ 5D andz ≈ 10D. The effect of spiral flow on the

instantaneous streamwise velocity during phaseP2 is insignificant.

Figures 7.9(a-b) and 7.10(a-b) present the contour plots ofthe instantaneous

streamwise velocity,̄w (m/s), in non-spiral and spiral flow, respectively, during

phaseP3 for Re = 366 and440. Note that the corresponding results from non-

spiral flow with k-ω Transitional model and increased spiral flow (C = 1/4) are

also appended in Figures 7.9(c) and 7.10(c), respectively.As seen during phase

P2 in Figure 7.8, during phaseP3, the reverse flow near the wall occurs after the

throat of the stenosis which is stretched up to the immediatedownstream region of

the aneurysm and the jet breaks down atz ≈ 5D in non-spiral and spiral flow for

both the Reynolds numbers. The effects of Reynolds number onvelocity magni-

tudes can be clearly seen from the figures; also the flow reattachment takes place by

z ≈ 8D for Re = 366, whereas for Reynolds numberRe = 440, it occurs in the

further downstream region byz ≈ 10D. It is interesting to note that in Figure 7.9,

the velocity jet fromk-ω Transitional model (frame c ) is weaker than that from

LES (frame b), though the streamwise velocity ink-ω Transitional model increases

at some places in the region afterz = 8D compared with the corresponding LES

results. As for the effects of spiral flow during phaseP3, the magnitudes of the

streamwise velocity in the downstream region, e.g. atz = 6D for Re = 366 and

at z = 8D for Re = 440, decrease in spiral flows (7.10(a-b)) compared with those

in non-spiral flows (7.9(a-b)). Moreover, when the magnitude of the spiral velocity

is increased (7.10(c)), the jet in the region afterz = 6D becomes weaker and the

magnitude of the streamwise velocity decreases compared with that in low spiral

flow (7.10(b)).

Further information on the flow physics of non-spiral and spiral flow through the

model can be obtained from cross-stream velocity vectors. Figures 7.11 and 7.12

depict the in-plane velocity vectors appended on the streamwise velocity,w̄ (m/s),

contours at different axial locations in non-spiral and spiral flow, respectively, dur-

ing phaseP3 for Re = 440. In both non-spiral and spiral flow, the stenotic jet

appears to be stable, i.e. the flow is laminar up toz = 4D (frames a-e) and the

streamwise velocity is maximum atz = 4D (frame e); the jet breaks down at

z = 5D (frame f), causing the flow to become recirculating and transitional. The
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flow reattachment occurs byz = 10D (frame k) and relaminarisation process starts

subsequently in both the flows. It should be noted that the spiral pattern of the

flow in Figure 7.12 disappears after the post-lip of the stenosis (frame b) due to the

occurrences of disturbances in the flow in the further downstream region.

The instantaneous mid-plane streamlines in non-spiral andspiral (C = 1/6)

flow during phaseP2 for Re = 440 are presented in Figure 7.13. In both non-spiral

and spiral flow, extremely large primary recirculation regions are created near the

wall after the throat of the stenosis which are stretched up to z ≈ 6D and occupy

almost half of the diameter of the model due to the existence of reverse flow or

adverse pressure gradient in this region. Secondary recirculation regions are also

found betweenz ≈ 6D andz ≈ 7D. The effect of spiral flow on the streamlines

during this phase is invisible.

Figures 7.14(a-b) and 7.15(a-b) show the streamlines in non-spiral and spiral

flow, respectively, during phaseP3 for Re = 366 and 440. Note that the cor-

responding streamlines forRe = 440 in non-spiral flow withk-ω Transitional

model and in increased spiral (C = 1/4) flow are also included in Figures 7.14(c)

and 7.15(c), respectively. During phaseP3, the recirculation regions in both non-

spiral (7.14(b)) and spiral (7.15(b)) flow appear to be less severe than those during

phaseP2 (Figure 7.13), however, the recirculation regions during phaseP3 increase

compared with those during phaseP2. The recirculation region also increases when

the Reynolds number is increased. Along with primary and secondary recirculation

regions, tertiary recirculation region is also observed for higher Reynolds number.

It is interesting to note that, the recirculation regions observed ink-ω Transi-

tional model (7.14(c)) are larger than those in LES (7.14(b)). As k-ω model gives

time-averaged results, we can, therefore, safely say that the recirculation regions in

the above figures are permanent. During phaseP3 in spiral flow (7.15(a-b)), the

primary recirculation regions become weaker and the secondary and tertiary recir-

culation regions become stronger than those in non-spiral flow (7.15(a-b)) while the

total length of the regions remain almost same in both the flows. Furthermore, when

the spiral velocity is increased (7.15(c)), the secondary and tertiary recirculation re-

gions increase, causing the total length of the recirculation regions to be larger than

that in low spiral flow (7.15(b)). In the pathological context, these extremely large

recirculation regions are very harmful as they increase theblood residence time with
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potential risk of stroke; and also they may induce blood clotor thrombosis inside

the aneurysm (Molla [90]; Rayz et al. [106]).

7.3.3.1 Instantaneous Wall Pressure

The instantaneous wall pressure,p̄ (Pa), distributions at two circumferential loca-

tions (0◦ and90◦) of the wall in both non-spiral (NSp) and spiral flow during dif-

ferent phases of the last pulsatile cycle forRe = 366 and 440 are presented in

Figure 7.16. The corresponding pressure results forRe = 440 in non-spiral flow

with k-ω Transitional model and in high spiral (C = 1/4) flow are also appended

in the figure. For all the cases of the flows during all the phases and circumferen-

tial locations, the wall pressure drops sharply at the throat of the stenosis as seen

in Chapters 5 and 6. However, it rises a little immediately after the stenosis throat

and continues steadily with almost the same value up toz ≈ 4D, where it starts to

rise as the magnitude of the streamwise velocity decreases gradually in the further

downstream region; and the pressure regains its undisturbed value byz ≈ 8D even-

tually. The ridges found in the pressure profiles around the stenosis throat are due

to the effect of the irregular shape of the stenosis.

Additionally, the wall pressure drop varies considerably with the circumferen-

tial location as a result of the irregular shape of the model stenosis and aneurysm,

e.g. forRe = 440 in non-spiral flow, excess pressure drops of≈ 30 Pa,≈ 28 Pa and

≈ 24 Pa during phasesP1, P2 andP3, respectively, are observed at at0◦ circum-

ferential location compared with the corresponding pressure drops at90◦ circum-

ferential location. The pressure drops, for all the cases ofthe flows, are maximum

during phaseP1 at 0◦ circumferential location as seen in Chapter 6. They are ex-

tremely large during first three phases, i.e. duringP1, P2 andP3, compared with

the corresponding results during other phases. The pressure drop rises significantly

if the Reynolds number is increased, e.g. the maximum pressure drops at0◦ circum-

ferential location in non-spiral flow during phasesP1, P2 andP3 for Re = 366 are

≈ 900 Pa,≈ 854 Pa and≈ 588 Pa, respectively, whereas forRe = 440, the corre-

sponding maximum pressure drops during phasesP1, P2 andP3 are≈ 1280 Pa,

≈ 1231 Pa and≈ 859 Pa, respectively.

It is clear from the figure that the effect of spiral flow on the maximum pressure

drop is very insignificant, e.g. the maximum pressure drop inhigh spiral (C =
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1/4) flow decreases by only≈ 0.23% compared with that in non-spiral flow and

this decrease in the maximum pressure drop in low (C = 1/6) spiral flow is even

less than that in high (C = 1/4) spiral flow. However, the effects of spiral flow

on the wall pressure can be observed clearly in the region betweenz ≈ 4D and

z ≈ 10D where the pressure is of oscillating form, especially during phasesP3,

P4 andP7. It is interesting to note that an excellent agreement is found between

the k-ω pressure results and the corresponding LES results. As described in the

previous chapters, these extremely large pressure drops have severe impacts on the

pathophysiology of the artery, such as flow choking and rupture of the plaque cap

(Wootton and Ku [6]; Li et al. [8]).

7.3.3.2 Instantaneous Wall Shear Stress

Figures 7.17 and 7.18 depict the instantaneous wall shear stress (WSS) in both non-

spiral and spiral (C = 1/6) flow through the model at0◦ and90◦ circumferential

locations of the wall during different phases of the last pulsatile cycle forRe =

366 and440, respectively. The corresponding WSS results forRe = 440 in non-

spiral flow withk-ω Transitional model and in high spiral (C = 1/4) flow are also

appended in Figure 7.18. For all the cases of the flows during all the phases and

circumferential locations, as seen in the previous chapter, the WSS begins to rise at

the pre-lip of the stenosis and reaches its maximum value just before the stenosis

throat; it then falls to its upstream value right after the stenosis throat and continues

with slightly decreasing value up toz ≈ 3D. The WSS takes on oscillating form

after the centre of the aneurysm, which is prominent during phasesP3 andP4

(frames e-h) in the region betweenz ≈ 4D andz ≈ 8D. The sharp ridges in the

WSS distributions found in the stenosis region and in the last half of the aneurysm

and the discrepancy in the magnitudes of WSS at different circumferential locations,

e.g. the maximum value of the WSS at90◦ circumferential location is greater than

that at0◦ circumferential location, are due to the effects of the irregular shapes of

the stenosis and aneurysm.

The maximum WSS around the throat of the stenosis increases with Reynolds

number. For both the Reynolds numbers, the cycle maximum andminimum of

the maximum WSS around the throat of the stenosis occur at90◦ circumferential

location during phaseP1 and0◦ circumferential location during phaseP7, respec-
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tively. For example, the cycle maximum of the maximum WSS around the throat

of the stenosis in non-spiral flow forRe = 440 is ≈ 98 Pa (Figure 7.18(b)) and

the corresponding cycle minimum of the maximum WSS forRe = 366 is ≈ 16 Pa

(Figure 7.17(m)).

Furthermore, it is clear from the above two figures that the effects of spiral flow

on the maximum WSS around the centre of the stenosis is very insignificant, e.g.

the maximum WSS around the stenosis centre forRe = 440 at 90◦ circumferen-

tial location during phaseP1 in high (C = 1/4) spiral flow rises by≈ 0.14%

(Figure 7.18(b)) compared with the corresponding result innon-spiral flow and this

increase in the maximum WSS in low (C = 1/6) spiral flow is even less than that

in high (C = 1/4) spiral flow. However, as seen in the wall pressure distributions,

the effects of spiral flow on the WSS can be seen distinctly in the oscillatory pattern

of the WSS in the region betweenz ≈ 4D andz ≈ 8D during phasesP3 andP4

(frames e-h). It should be pointed out that the overall agreement between thek-ω

WSS results and the corresponding LES results are quite goodindeed (Figure 7.18),

though the maximum WSS withk-ω Transitional model increases by≈ 2% com-

pared with the corresponding LES result (Figure 7.18(b)).

The clinical implications of high WSS, as discussed in the previous chapters,

include overstimulation of platelet thrombosis leading tototal occlusion of the ves-

sel (Ku [3]; Folts et al. [38]), endothelial cells damage forhigh WSS> 37.9 ±
8.5 (SD) Pa (Fry [36]), deformation of the red blood cells for Shear stress≥ 10 Pa

(Sutera and Mehrjardi [37]) and induced thrombosis for Shear stress> 7 Pa (Malek

et al. [9]). Owing to the above discussion, it is clear from the above two figures

that the maximum values of the WSS around the throat of the stenosis are above

the harmful level for both the investigated Reynolds numbers during all the phases.

Also the oscillatory WSS is responsible for arterial disease progression (Ku [3];

Paul and Molla [93]). Is is interesting to note that the WSS rises significantly in

the region betweenz ≈ 4D (beginning of the last quarter of the aneurysm) and

z ≈ 8D during phasesP3 andP4 (frames e-h). Salsac [142] observed that high

shear stress may activate platelets, which can be transported to the regions of low

shear stresses inside the aneurysm wall where they would build up, initiating the

formation of the endothelial thrombus. Lasheras [12] notedthat high shear stress

and other anomalous conditions resulting from the separated flow on the endothe-
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lial activity accelerates the expansion process of the aneurysm and an endoluminal

thrombus is developed early in the expansion process. This thrombus covers the

aneurysm’s wall and leads to the destruction of the endothelial layer by hypoxia – a

pathological condition in which a region of the body does notget adequate oxygen

supply.

7.3.4 Phase-averaged Flow Characteristics

Phase-averaged streamwise velocity and wall shear stresses during phaseP3 are

presented in this section. Figure 7.19 shows the phase-averaged streamwise veloc-

ity, 〈〈w̄〉〉 (m/s), during phaseP3 in both non-spiral (NSp) and spiral (C = 1/6)

flow at different axial locations for Reynolds numbersRe = 366 and440. It is

to note that the corresponding results forRe = 440 in non-spiral flow withk-ω

Transitional model and in high (C = 1/4) spiral flow are also appended in the fig-

ure. At the pre-lip of the stenosis, i.e. atz = −1D (frame a) , the velocity profile

is parabolic in shape as the flow is laminar there. When the flowpasses through

the centre of the stenosis, the velocity profile becomes plug-shaped jet and the jet

remains stable up toz = 4D (frame f). The break down of the jet starts at the

post-lip of the aneurysm, i.e. atz = 5D (frame g) and the profiles tend toward

uniformity in the region betweenz = 5D andz = 10D (frames g-k) where the

flow transients to turbulence. In the further downstream region the relaminarisa-

tion process starts and the velocity profiles incline to their inlet character (frame l).

The negative values of the streamwise velocity in the regionbetweenz = 1D and

z = 7D (frames c-i) near the wall, which covers almost half of the diameter of the

tube are due to adverse pressure gradient. The streamwise velocity increases signif-

icantly with Reynolds number. It is interesting to note thatk-ω Transitional results

do not agree with the corresponding LES results, especiallyin the turbulent region

becausek-ω model gives only time-averaged results instead of time-accurate results

(Scotti and Piomelli [75]) as mentioned in Chapter 5. Furthermore, the effects of

spiral flow becomes significant only afterz = 4D (frame f). The maximum value

of the phase-averaged streamwise velocity near the centre of the tube decreases in

the subsequent frames except in frame (l) (atz = 12D) when the spiral velocity is

increased. However, at some places near the wall, the streamwise velocity increases
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with spiral flow.

The corresponding wall shear stress at0◦ and90◦ circumferential locations are

shown in Figure 7.20. The phase-averaged wall shear stresses during phaseP3 for

Re = 366 in Figure 7.20(a)(i-ii) and forRe = 440 in Figure 7.20(b)(i-ii) closely re-

semble the corresponding instantaneous WSS in Figure 7.17(e-f) and Figure 7.18(e-

f), respectively. All the characteristics of the instantaneous WSS remain same in

the phase-averaged WSS except the oscillatory pattern in the downstream region,

which become less prominent in the phase-averaged WSS. Hence, as discussed in

Chapters 5 and 6, the instantaneous WSS should be consideredfor accurate repre-

sentation of WSS distributions.

7.3.5 Turbulent characteristics

The root mean square (rms) of the streamwise velocity fluctuations,〈w′′〉rms (m/s),

in non-spiral and spiral (C = 1/6 andC = 1/4) flow for Re = 366 and440 during

phaseP3 at different axial locations are presented Figure 7.21. Thecorresponding

rms velocity fluctuations in non-spiral flow forRe = 440 with k-ω Transitional

model are also included in the figure. The rms of the streamwise velocity fluctua-

tions at the pre-lip of the stenosis is almost zero; it increases with the axial distance

and is extremely high in the region betweenz = 4D and z = 10D (frames f-

l) where the flow transition-to-turbulence takes place. In the further downstream

region, the magnitude of〈w′′〉rms decreases again as the relaminarisation process

starts afterz = 10D. As seen in the phase-averaged streamwise velocity, the rms

of velocity fluctuations withk-ω model do not agree with the corresponding LES

results as only time-averaged results can be obtained fromk-ω model. It is clear

from the figure that the velocity fluctuations increase with Reynolds number. Ad-

ditionally, the magnitude of〈w′′〉rms in spiral flow increases significantly at some

locations compared with the corresponding result in non-spiral flow. But the ef-

fects of high (C = 1/4) spiral flow on〈w′′〉rms remain unclear as the magnitude of

〈w′′〉rms in low (C = 1/6) spiral flow rises at some places compared with the cor-

responding result in high (C = 1/4) spiral flow and the opposite happens at other

places.

Further information on the transition-to-turbulence of non-spiral and spiral flow
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can be obtained from the turbulent kinetic energy results. Figures 7.22 and 7.23

show the turbulent kinetic energy (TKE),1
2
〈u′′ju′′j 〉 (m2/s2), in non-spiral and spiral

(C = 1/6) flow during phaseP3 at different axial locations forRe = 366 and

440, respectively. Note that the corresponding TKE forRe = 440 in non-spiral

flow with k-ω Transitional model and in high (C = 1/4) spiral flow are also ap-

pended in Figure 7.23. The TKE behaves like〈w′′〉rms. That is the maximum TKE

increases dramatically with Reynolds number. The disagreement between thek-ω

and LES results show the unsuitability ofk-ω model for simulating pulsatile flow

as it gives only time-averaged results instead of time-accurate results (Scotti and

Piomelli [75]), which was also discussed in Chapter 5. At most of the locations,

the TKE in spiral flow rises sharply compared with that in non-spiral flow – sim-

ilar findings were observed in the previous chapters. Moreover, it is clear from

Figure 7.23 that the maximum TKE in high (C = 1/4) spiral flow occurs in the

further downstream region of the aneurysm atz = 8D with a slight (≈ 5.8%) drop

in its magnitude (frame j) compared with the maximum TKE in low (C = 1/6)

spiral flow atz = 7D (frame i). However, the TKE in high (C = 1/4) spiral flow

generally increases compared with that in low (C = 1/6) spiral flow.

The rms of the wall pressure fluctuations,〈p′′〉rms (Pa), in non-spiral and spi-

ral (C = 1/6) flow during phaseP3 at 0◦ and 90◦ circumferential locations of

the wall forRe = 366 and 440 are presented in Figure 7.24. The correspond-

ing 〈p′′〉rms results forRe = 440 in non-spiral flow withk-ω Transitional model

and in high (C = 1/4) spiral flow are also appended in the figure. It is interest-

ing to note that〈p′′〉rms is strongly oscillating in the transition-to-turbulence region

betweenz ≈ 4D and z ≈ 10D. Like other results, the maximum〈p′′〉rms in-

creases with Reynolds number, but it occurs in the further downstream region of

the aneurysm for high Reynolds number than that for low Reynolds number. As

seen in the other turbulent results, thek-ω Transitional model〈p′′〉rms results do not

agree with the corresponding LES results. Unlike the maximum pressure drop, the

maximum〈p′′〉rms occurs at90◦ circumferential location of the wall. Additionally,

the maximum〈p′′〉rms in spiral (C = 1/6) flow, which occurs atz/D ≈ 7.2, rises

by ≈ 117.2% compared with that in non-spiral flow, which occurs in the further

downstream region atz/D ≈ 7.7. Like the maximum TKE, the magnitude of the

maximum〈p′′〉rms in high (C = 1/4) spiral flow falls by≈ 5.8% compared with
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that in low (C = 1/6) spiral flow. The extreme pressure fluctuations are implicated

in arterial murmurs in the presence of arterial stenosis (Ask et al. [135]), which was

also discussed in Chapters 5 and 6.

7.3.5.1 Cycle-to-cycle variations

The cycle-to-cycle variations of the velocity fluctuationsand the TKE would be

presented in this section. Figure 7.25 illustrates cycle-to-cycle variations of the

centreline cross-stream velocity fluctuations,u′′/u′′max andv′′/v′′max, and the centre-

line streamwise velocity fluctuations,w′′/w′′

max, at different axial positions in both

non-spiral and spiral (C = 1/6) flow for Re = 440 over the last three cycles used

for phase-averaged statistics. The centreline velocity fluctuations beforez = 4D

are very small in magnitude and, therefore, are not shown in the figure. It can

be observed from the figure that the centreline velocity fluctuations in both non-

spiral and spiral flow are non-periodic and significantly large in the region within

5D ≤ z ≤ 10D; the magnitudes of these centreline velocity fluctuations keep de-

creasing in the further downstream region of the aneurysm asthe relaminarisation

process starts. In addition, the effects of spiral flow on thecentreline velocity fluc-

tuations can be distinctly seen in the figure.

The cycle-to-cycle variations of the centreline TKE,1
2
〈u′′ju′′j 〉 (m2/s2), at differ-

ent axial locations in non-spiral and spiral (both high and low, i.e. C = 1/4 and

C = 1/6) flow forRe = 440 are presented in Figure 7.26. It is clear from the figure

that in the region between4D ≤ z ≤ 7D, the magnitudes of the centreline TKE are

mostly significantly large during0.2 ≤ t/T ≤ 0.6 of the pulsatile cycle and zero

during other phases of the cycle; however, in the further downstream region, they

are generally very insignificant during0.4 ≤ t/T ≤ 0.7 of the pulsatile cycle. As

seen in Chapters 5 and 6, the centreline TKE in spiral (bothC = 1/6 andC = 1/4)

flow increases significantly during some phases. Also the maximum value of the

centreline TKE in spiral flow (frame e) is greater than that innon-spiral flow (frame

f). Furthermore, the maximum TKE in high (C = 1/4) spiral flow during the last

pulsatile cycle drops by≈ 12.8% compared with that in low (C = 1/6) spiral flow,

whereas this drop is≈ 33.3% when the last three cycles are considered (frame e).
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7.3.5.2 Turbulent Energy Spectra

Energy spectra,Ew′′w′′ of the normalised centreline streamwise velocity fluctua-

tions,(w′′/〈w′′〉rms)
2, in both non-spiral (red coloured line) and spiral (C = 1/6)

(green coloured line) flow at different axial positions forRe = 440 are depicted

in Figure 7.27. As seen in Chapters 5 and 6, the lines of(Sr)−5/3, (Sr)−10/3 and

(Sr)−7 are also appended in the figure. Atz = 4D, the inertial subrange region of

−5/3 power slope is very small while the viscous dissipation range of −7 power

slope is quite large. The velocity spectra changes from−5/3 power slope to−10/3

power slope at higher frequencies in the downstream region of 5D ≤ z ≤ 10D

(frames b-g), giving a large range of frequencies for the inertial subrange region

in the transition-to-turbulence region of the flow. In the further downstream region

(frames h-i), the inertial subrange region becomes smalleragain as the turbulence

intensity decreases there. In addition, afterz = 5D, the velocity spectra in spiral

flow has slightly larger range of frequencies constituting the inertial subrange re-

gion than the velocity spectra in non-spiral flow; and also inthe downstream region

after z = 8D, the viscous dissipation region in the velocity spectra in non-spiral

flow are almost absent.

7.4 Conclusion

Large Eddy Simulation with the Smagorinsky-Lilly dynamic subgrid model (Ger-

mano [115], Lilly [116] and Kim [123]) andk-ω Transitional model were employed

to investigate the physiological non-spiral and (both low and high) spiral blood flow

through a three-dimensional model of an irregular stenosiswith an adjacent post-

stenotic fusiform irregular aneurysm in basilar artery forRe = 366 and440. In

this chapter, the maximum contribution from the SGS model is≈ 25% in both non-

spiral and spiral flow, which is smaller than those in Chapters 5 and 6. The effects

of Reynolds number on all the flow results are observed, e.g. the recirculation re-

gions, the maximum pressure drop and the maximum WSS around the throat of

the stenosis, the TKE, etc. increase with Reynolds number. As seen in Chapter 5,

the turbulent results obtained from thek-ω Transitional model do not agree with

the corresponding LES results, though other results such aswall pressure and shear
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stress from thek-ω Transitional model agree quite well with the correspondingLES

results – this shows unsuitability ofk-ω model for pulsatile flow simulation.

In both non-spiral and spiral flow, large permanent recirculation regions are gen-

erated right after the throat of the stenosis which are stretched beyond the aneurysm.

The length of the recirculation regions increases when the spiral velocity is in-

creased. During all the phases in both non-spiral and spiralflow, the wall pressure

drops significantly at the throat of the stenosis and does notrise to get its undisturbed

value before the last quarter of the aneurysm, i.e.z = 4D. The maximum pressure

drop in non-spiral flow forRe = 440 is 1280 Pa, which occurs during phaseP1

at 0◦ circumferential location of the wall. The effect of (both low and high) spiral

flow on the pressure drop is very insignificant; the spiral effects on the wall pres-

sure can only be seen in the downstream region afterz = 4D where the pressure

takes oscillatory form. In both non-spiral and spiral flow, the maximum value of the

WSS, which is found around the throat of the stenosis, reaches clinically dangerous

level during all the phases of the pulsatile cycle for both the Reynolds numbers.

The cycle maximum WSS in both non-spiral and spiral flow occurs during phase

P1 at90◦ circumferential location of the wall, which is98 Pa in non-spiral flow for

Re = 440. As seen in the wall pressure, the effects of spiral flow on theWSS are

visible only in the oscillatory pattern of the WSS in the downstream region after

z ≈ 4D.

In both non-spiral and spiral flow, the transition-to-turbulence of the flow occurs

in the downstream region betweenz ≈ 4D and10D, i.e. the transition starts in the

last quarter of the aneurysm, not in the immediate downstream region of the stenosis

as seen in the previous chapters. The TKE is large in this region and it fades away

in the further downstream region as the relaminarisation process starts there. Due to

the influence of spiral flow, the TKE in spiral flow increases significantly compared

with that in non-spiral flow. However, the maximum value of the TKE in high spiral

flow drops considerably compared with that in low spiral flow.

Furthermore, the velocity spectra in the transition-to-turbulence region in both

non-spiral and spiral flow have large range of frequencies making up the inertial

subrange region. The inertial subrange regions in spiral flow have slightly larger

range of frequencies than that in non-spiral flow. Also the viscous dissipation region

in non-spiral flow is almost absent in the downstream region after z = 8D.
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Figure 7.1: Three dimensional view of model artery having irregular stenosis with
adjacent irregular aneurysm (a) the whole domain and (b) zoomed-in section on
irregular stenosis with adjacent irregular aneurysm.
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Figure 7.2: Inlet physiological 4th harmonic pulsatile velocity profiles,̄w (m/s),
for a time cycle (a) at the centre of the tube, (b) at differentlocations between the
wall and the centre, (c) bulk velocity profile and (d) during different phases of a
time cycle whileA = 0.40, Re = 440 and the Womersley parameterα = 6.92.
Reference phases at which results are obtained are also marked.
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Figure 7.3: Outlet physiological 4th harmonic pulsatile pressure profiles,p̄ (mmHg),
for a time cycle whileA = 0.40,Re = 440 and the Womersley parameterα = 6.92.
(1 mmHg= 133.32 Pa.)
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Figure 7.4: Grid resolution study for phase-averaged streamwise velocity,
〈〈w̄〉〉 (m/s), in non-spiral blood flow during phaseP3 at different indicated axial
locations whileRe = 440.
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Figure 7.5: Grid resolution study for phase-averaged axialwall shear stress (Pa) in
non-spiral blood flow during phaseP3 whileRe = 440. Phase averaging was done
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Figure 7.6: Dynamic Smagorinsky constant,Cs, in non-spiral blood flow during
phaseP3 for (a)Re = 366 and (b)Re = 440.
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Figure 7.7: Normalised SGS eddy viscosity,µsgs/µ, in non-spiral blood flow during
phaseP3 for (a)Re = 366 and (b)Re = 440.
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Figure 7.8: Contour plot of the instantaneous mid-plane streamwise velocity,
w̄ (m/s), forRe = 440 during phaseP2 in (a) non-spiral and (b) spiral blood flow
whileC = 1/6.
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Figure 7.9: Contour plot of the instantaneous mid-plane streamwise velocity,
w̄ (m/s), in non-spiral blood flow during phaseP3 for (a) Re = 366 and (b)
Re = 440 and (c) the correspondinḡw from k-ω Transitional model in non-spiral
flow for Re = 440.
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Figure 7.10: Contour plot of the instantaneous mid-plane streamwise velocity,
w̄ (m/s), in spiral blood flow during phaseP3 for (a)Re = 366 whileC = 1/6, (b)
Re = 440 whileC = 1/6 and (c)Re = 440 whileC = 1/4.
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Figure 7.11: Instantaneous cross-sectional vectors appended on the contours of the
streamwise velocity,̄w, in non-spiral flow during phaseP3 at (a)z/D = 0, (b)
z/D = 1, (c) z/D = 2, (d) z/D = 3, (e) z/D = 4, (f) z/D = 5, (g) z/D = 6,
(h) z/D = 7, (i) z/D = 8, (j) z/D = 9, (k) z/D = 10 and (l) z/D = 12 while
Re = 440.
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Figure 7.12: Instantaneous cross-sectional vectors appended on the contours of the
streamwise velocity,̄w, in spiral flow during phaseP3 at (a)z/D = 0, (b)z/D = 1,
(c) z/D = 2, (d) z/D = 3, (e)z/D = 4, (f) z/D = 5, (g) z/D = 6, (h) z/D = 7,
(i) z/D = 8, (j) z/D = 9, (k) z/D = 10 and (l)z/D = 12 whileRe = 440.
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Figure 7.13: The instantaneous mid-plane streamlines forRe = 440 during phase
P2 in (a) non-spiral and (b) spiral blood flow whileC = 1/6.
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Figure 7.14: The instantaneous mid-plane streamlines in non-spiral blood flow dur-
ing phaseP3 for (a)Re = 366 and (b)Re = 440 and (c) the corresponding stream-
lines fromk-ω Transitional model in non-spiral flow forRe = 440.
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Figure 7.15: The instantaneous mid-plane streamlines in spiral blood flow during
phaseP3 for (a)Re = 366 while C = 1/6, (b)Re = 440 while C = 1/6 and (c)
Re = 440 whileC = 1/4.

191



Chapter 7 7.4 Conclusion

-2 0 2 4 6 8 10 12
15300

15600

15900

16200

16500  P1
(b)

90°

-2 0 2 4 6 8 10 12

15600

16000

16400

16800  P2
(c)

-2 0 2 4 6 8 10 12

15600

16000

16400

16800  P2
(d)

-2 0 2 4 6 8 10 12
15000

15300

15600

15900  P3(e)

-2 0 2 4 6 8 10 12
15000

15300

15600

15900  P3(f)

-2 0 2 4 6 8 10 12

12400

12500

12600

12700  P4(g)

-2 0 2 4 6 8 10 12

12400

12500

12600

12700  P4(h)

-2 0 2 4 6 8 10 1212400

12500

12600

12700

12800

12900  P5(i)

-2 0 2 4 6 8 10 1212400

12500

12600

12700

12800

12900  P5(j)

-2 0 2 4 6 8 10 1211900
12000
12100
12200
12300
12400
12500  P6(l)

-2 0 2 4 6 8 10 1210500

10575

10650

10725

10800  P7(n)

-2 0 2 4 6 8 10 1210500

10575

10650

10725

10800  P7(m)

z/D

-2 0 2 4 6 8 10 1211900
12000
12100
12200
12300
12400
12500  P6(k)

-2 0 2 4 6 8 10 12
15300

15600

15900

16200

16500
Re=440 NSp
Re =440 Spiral, C=1/6
Re=440 Spiral, C=1/4
Re =440 NSp
Re=366 NSp
Re=366 Spiral, C=1/6

k-ω

 P1
 P

re
ss

ur
e 

(P
a)

0° (a)

Figure 7.16: The instantaneous wall pressure,p̄ (Pa), in both non-spiral and spiral
flow for Reynolds numbersRe = 366 (while C = 1/6) andRe = 440 (while
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Figure 7.17: The instantaneous wall shear stress (Pa) forRe = 366 in both non-
spiral and spiral (C = 1/6) flow during different phases of the last cycle at the two
indicated circumferential locations.
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Figure 7.19: Phase-averaged streamwise velocity,〈〈w̄〉〉 (m/s), in both non-spiral
and spiral flow for Reynolds numbersRe = 366 (while C = 1/6) andRe = 440
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Figure 7.21: rms of the streamwise velocity fluctuations,〈w′′〉rms (m/s), in both
non-spiral and spiral flow for Reynolds numbersRe = 366 (while C = 1/6) and
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also appended.
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Figure 7.22: Turbulent kinetic energy (TKE),1
2
〈u′′ju′′j 〉 (m2/s2), in both non-spiral

and spiral (C = 1/6) flow for Reynolds numbersRe = 366 during phaseP3 at
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Figure 7.23: Turbulent kinetic energy (TKE),1
2
〈u′′ju′′j 〉 (m2/s2), in both non-spiral

and spiral (C = 1/6 andC = 1/4) flow for Reynolds numbersRe = 440 during
phaseP3 at different axial locations. Note the correspondingk-ω results in non-
spiral flow forRe = 440 are also appended.
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Figure 7.26: Time history of centreline turbulent kinetic energy (TKE),
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2
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Chapter 8

Conclusions and Suggestions for

Future Research

In this chapter, the findings of the thesis are summarised in§ 8.1 and some sugges-

tions on future research are made in§ 8.2.

8.1 Conclusions

Large Eddy Simulation and two-equationk-ω Transitional model were employed to

investigate the transition-to-turbulence of non-spiral and spiral blood flow through

different models of arterial stenosis and aneurysm for different Reynolds numbers.

The findings of the thesis are summed up chapter-wise and are presented below.

In Chapter 4, the steady spiral blood flow in75% area reduction arterial steno-

sis models without and with upstream curved segments of60◦, 90◦ and120◦ angle

of curvature for Reynolds numbersRe = 500, 1000, 1500 and2000 by using the

standardk-ω Transitional model and LES with Smagorinsky-Lilly dynamicsubgrid

model (Germano [115], Lilly [116] and Kim [123]) has been numerically investi-

gated. Excellent agreement between LES results for non-spiral flow in the straight

stenosed tube forRe = 1000 and2000 and the corresponding experimental results

(Ahmed and Giddens [27; 28]) were found when the appropriateinlet perturbations

were introduced. In the models with an upstream curved segment, no significant

effect of spiral flow on any flow property was found for the investigated Reynolds

numbers. The spiral pattern of the flow introduced at the inlet disappears before the

stenosis in the models with an upstream curved segment, whicmay be due to the

constraints imposed in the simulations such as steady flow and rigid wall of the mod-
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els. Contrary to the claims of Paul and Larman [17] and Stonebridge et al. [16], the

TKE in spiral flow through the straight stenosed tube for the investigated Reynolds

numbers increases compared with the corresponding result in non-spiral flow. How-

ever, the effect of spiral flow on the WSS and wall pressure is negligible. The ef-

fects of the curved upstream model can be seen mainly in the maximum TKE, the

maximum pressure drop and the maximum WSS, which in curved upstream model

generally increase significantly compared with the corresponding results in straight

stenosed tube.

In Chapter 5, mainly LES with Smagorinsky-Lilly dynamic subgrid model was

applied to investigate the transition-to-turbulence of the physiological pulsatile non-

spiral and spiral blood flow through a straight stenosed tubehaving75% area reduc-

tion stenosis forRe = 438, 584 and876. ForRe = 438 in non-spiral flow through

the model, the two-equation Standardk-ω Transitional model was also employed

to assess its suitability for pulsatile flow simulation. ForRe = 876 in both non-

spiral and spiral flow, the maximum contribution from the SGSmodel to large scale

motion is50%. The turbulent results obtained fromk-ω model differ significantly

from the corresponding LES results which is expected because thek-ω model gives

time-averaged results rather than instant results. Flow-choking and even rupture of

the plaque in pulsatile flow can take place due to the occurrence of extremely high

pressure drop in both non-spiral and spiral flow at the throatof the stenosis during

phasesP1, P2 andP3 compared with other phases. In addition, the sharp rise of

the WSS just before the stenosis throat, which is also extremely large during phases

P1, P2 andP3, may induce thrombosis and deformation of red blood cells. The

effect of spiral flow on both the maximum pressure drop and maximum WSS is very

insignificant as seen in Chapter 4. The spiral effects on the wall pressure and WSS

can only be seen in their oscillatory pattern within2 ≤ z/D ≤ 6.

The transition-to-turbulence in non-spiral flow occurs in the further downstream

region than that in spiral flow. As seen in Chapter 4, the TKE inpulsatile spiral

flow also increases significantly at some places and phases compared with the cor-

responding result in pulsatile non-spiral flow. In both non-spiral and spiral flow,

the occurrence of the high level of turbulent fluctuations inthe downstream region

has serious pathological implications as it may activate the blood platelets and also

damage the blood cell materials, leading to many pathological diseases (Ku [3]; Paul
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and Molla [93]). The break frequencies of energy spectra forvelocity and pressure

fluctuations from−5/3 power slope to−10/3 power slope and−7/3 power slope,

respectively, are observed in the downstream transition-to-turbulence region in both

non-spiral and spiral flow. At some locations in the transition region, the velocity

spectra in spiral flow has larger inertial subrange region than that in non-spiral flow.

The effects of spiral flow on the pressure spectra is insignificant.

Additionally, we have also studied the effects of percentage of area reduction

in stenosis, length of stenosis, amplitude of pulsation andWomersley number,α,

in Chapter 5. The maximum pressure drop, the maximum WSS and the TKE rise

sharply when the area reduction in the stenosis is increased. As for the effects of

length of the stenosis, the maximum WSS falls significantly and the maximum TKE

rises sharply due to the increase in the length of the stenosis; but the maximum pres-

sure drop is almost unaffected by the increase in the stenosis length. The increase

in the amplitude of pulsation causes both the maximum pressure drop and the max-

imum WSS to increase significantly under the inlet peak flow condition, i.e. during

phaseP2. While the increased amplitude of pulsation decrease the maximum TKE,

it is nonetheless responsible for the sharp rise in TKE foundat some places in the

transition-to-turbulence region. The decrease in the Womersley number causes the

maximum TKE to increase dramatically; however, the maximumpressure drop and

the maximum WSS decrease slightly during phaseP2 as a result of the decrease in

the Womersley number.

In Chapter 6, LES was applied to investigate the physiological pulsatile non-

spiral and spiral blood flow through a straight tube having anirregular stenosis of

75% area reduction forRe = 438, 584 and876. The results of non-spiral flow

through the irregular stenosis are also compared with the corresponding results

through a regular stenosis from Chapter 5 to assess the influence of the irregular

stenosis. In both non-spiral and spiral flow, the maximum contribution from the

sub-grid scale to the large scale motion in the irregular stenosis for all the investi-

gated Reynolds numbers is55%, which is larger than that in the regular cosine-type

stenosis. The effects of spiral flow on the wall pressure and WSS are observed only

in the downstream region where the pressure and WSS are of oscillatory nature.

Due to the effects of the irregular stenosis, the maximum wall pressure drop and the

maximum WSS at one circumferential location of the wall differ significantly from
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those at other circumferential location of the wall. Also, the maximum wall pres-

sure drop, the maximum WSS and the maximum TKE in non-spiral flow through

the irregular stenosis rise significantly compared with thecorresponding results in

non-spiral flow through the regular stenosis. As seen in Chapters 4 and 5, the TKE

rises significantly at some locations and phases if the spiral effect is introduced at

the inlet. From the pathological point of view, the irregular stenosis has devastat-

ing impacts on the cardiovascular health of the patients. Inthe simulation of blood

flow through stenosed artery, irregular stenosis instead ofregular stenosis should,

therefore, be taken to accurately predict the flow field.

In Chapter 7, the physiological non-spiral and (both low andhigh) spiral blood

flow through a three-dimensional model of an irregular stenosis with an adjacent

post-stenotic fusiform irregular aneurysm in basilar artery have been studied for

Re = 366 and440 by applying LES. The two-equationk-ω Transitional model was

also applied in non-spiral flow forRe = 440 to crudely assess the LES results as no

experimental or computational study of blood flow through this kind of geometry is

available in the literature. The maximum contribution fromthe SGS model to the

large scale motion is≈ 25%, relatively small compared with those in Chapters 5 and

6. Although wall pressure and shear stress from thek-ω Transitional model agree

quite well with the corresponding LES results, the turbulent results obtained from

thek-ω Transitional model differ significantly from the corresponding LES results

– this shows unsuitability ofk-ω model for pulsatile flow simulation. Throughout

the pulsatile cycle in both non-spiral and spiral flow, the wall pressure falls signifi-

cantly at the throat of the stenosis and does not rise to regain its undisturbed value

before the start of the last quarter of the aneurysm, i.e.z = 4D. The maximum

value of the WSS in both non-spiral and spiral flow, which is found just before the

stenosis throat, attains clinically harmful level during all the phases of the pulsatile

cycle for both the Reynolds numbers. In both non-spiral and spiral flow, the cycle

maximum pressure drop and WSS occur during phaseP1 at 0◦ and90◦ circumfer-

ential location of the wall, respectively. The effects of (low or high) spiral flow on

the wall pressure and WSS are visible only in the downstream region afterz ≈ 4D

where they take oscillatory pattern. The transition-to-turbulence in both non-spiral

and spiral flow occurs in the downstream region betweenz ≈ 4D and10D, i.e.

the transition does not start before the last quarter of the aneurysm. The TKE in
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spiral flow rises significantly compared with that in non-spiral flow. However, the

maximum value of the TKE in high spiral flow drops considerably compared with

that in low spiral flow.

Modelling transitional blood flow through arterial stenosis and aneurysm is very

challenging. Accuracy of the simulation depends mainly on suitable numerical ap-

proach, realistic model geometry and boundary conditions.The suitability of LES

in this kind of investigations has been shown in the present study and also in similar

studies by Paul and Molla [93], Molla [90], Gårdhagen et al.[95], Mittal et al. [88],

Scotti and Piomelli [75] and Liang and Papadakis [143]. The present study was

simplified by taking rigid walls for the arterial models; even so, we do believe

that it makes a breakthrough in understanding the non-spiral and spiral transient

blood flows through arteries having stenosis and stenosis with adjacent post-stenotic

aneurysm. The results presented in the thesis would, therefore, help the interested

groups such as pathologists, medical surgeons and researchers greatly in gaining

better insight into transient non-spiral and spiral blood flow through models of ar-

terial stenosis and aneurysm.

8.2 Future Research

Only a handful of studies of transient non-spiral flow in models of stenosis or

aneurysm by applying LES are available and no report of LES oftransitional spiral

flow through stenosis and/or aneurysm can be found in the literature, which was also

discussed in Chapter 2. This thesis has shown that LES can be potentially applied to

investigate both non-spiral and spiral blood flow through various models of stenosis

and aneurysm. LES, in our view, can also be employed to study fluid-structure in-

teraction in transient non-spiral and spiral blood flow in various models of stenosis

and/or aneurysm. In the light of the findings of this project,the following proposals

are put forward for future research.

• The stenoses taken in this study are axisymmetric. Models ofeccentric steno-

sis of irregular shape could be taken for future investigation of non-spiral and

spiral transient blood flow through such models.

• We have studied non-spiral and spiral transitional flow in a model of basilar
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artery having both stenosis and adjacent post-stenotic fusiform aneurysm. So,

LES of non-spiral and spiral blood flow through models of artery having both

stenosis and adjacent pre-stenotic fusiform or saccular aneurysm would be an

interesting investigation in future.

• Unlike compliant arterial wall in real biological system, the arterial wall in

this project was considered rigid. Arterial murmurs in the presence of an ar-

terial stenosis are produced due to vibration of the arterial wall, which is again

associated with the pressure fluctuations in the transient blood flow. Also, the

velocity profiles at the inlet and the pressure profile at the outlet were theoret-

ically derived. Therefore, the more realistic approach would be investigation

of transient non-spiral and spiral blood flow through patient based compliant

model geometry with patient based velocity and pressure waveform. Hence

a potential future study would be simulation of fluid-structure interactions in

diseased arteries using the LES technique.

• Bifurcated arteries are commonly associated with stenosisand spiral flow. So,

it would be interesting to employ LES for studying transition-to-turbulence of

non-spiral/spiral flow through models of bifurcation stenosis.
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