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Abstract  

Walking is a fundamental human activity [1]. Rehabilitation of walking is one of the 

essential goals for patients with spinal cord injury (SCI) or other neurological 

impairments [2, 3]. Early rehabilitation is desirable to maximise the beneficial effects, 

so training programmes should be initiated even when patients are still on bed rest. In 

order to promote early rehabilitation of patients with incomplete spinal cord injury who 

cannot maintain an upright posture, a Gait Orthosis for Early Rehabilitation (GOER) of 

walking was designed [2] and evaluated in this PhD work.  

This research started with a gait analysis experiment, through which the kinematics and 

kinetics of overground walking were investigated. Based on experimental walking data 

from able-bodied subjects, a least squares algorithm was developed to approximate the 

foot trajectories with circles. The determination of the best-fit circle for the toe 

trajectory over the whole gait cycle provided the basis for inducing toe movement by 

a rigid bar. Therefore a model of a two-bar mechanism was developed in 

Matlab/SimMechanics to simulate supine stepping. The simulated kinematics, 

including the angles of the hip, knee and ankle joints, showed comparable ranges of 

motion (ROMs) to the experimental walking performance in able-bodied subjects. This 

two-bar model provided the basis for the development of the GOER system. 

The intersegmental kinetics of the lower limb motion during supine stepping were 

investigated through computer simulation. A model of a leg linkage was firstly 

developed to simulate upright walking. After the model was validated by successful 

simulation of dynamic performance similar to experimental overground walking, the 

model was rotated by 90
o
 to simulate stepping movement in a supine posture. It was 
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found that the dynamics of the hip joint were significantly influenced by the position 

change from upright to supine, which highlighted the importance of a leg-weight 

support during supine stepping. In contrast, the kinetics of the ankle joint were much 

influenced by the forces applied on the foot sole which mimicked the ground reaction 

occurring during overground walking. Therefore a suitable force pattern was required 

on the foot sole in order to train the ankle joint during supine stepping.  

The simulated kinematic and kinetic results provided the basis for the design process 

of the GOER system. A GOER prototype with mechanisms for one leg was 

manufactured, which included a bar linkage to move the leg frame upwards and 

downwards and a cam-roller mechanism to rotate the shoe platform. The bar-cam 

GOER prototype achieved coordinated movements in the leg frame through constant 

rotation of an electric motor. Preliminary tests were carried out in three able-bodied 

subjects who followed the movements produced by the GOER prototype. The subjects 

felt walking-like stepping movement in the lower limb. Synchronised motion in the 

hip, knee and ankle joints was obtained, with the ROMs in the physiological ranges of 

motion during overground walking. The experimentally obtained joint profiles during 

supine stepping matched the simulated supine stepping and were close to the profiles 

during overground walking.  

Apart from inducing proprioceptive feedback from the lower limb joints, the GOER 

system required dynamic stimulation from the shoe platform to mimic load occurring 

during the stance phase of overground walking. Activated by pneumatic components, 

the shoe platform managed to apply forces on the foot sole with adjustable amplitudes. 

The pneumatic shoe platform was evaluated in ten able-bodied subjects and managed 

to induce walking-like pressure sensation on the foot sole with physiological 
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responses from the leg muscles.  

In summary, this thesis developed and evaluated a new gait training robotic system 

targeting supine stepping for patients who are still restricted to a lying position. The 

conceptual design process was developed through computer modelling and it was 

implemented as a prototype. Evaluation tests on able-bodied subjects proved the 

technical feasibility of the robotic system for supine stepping and led to 

recommendations for further development. 

 

  



5 

 

 

Contents 

Abstract .................................................................................................................. 2 

Contents .................................................................................................................. 5 

List of Tables ................................................................................................................ 10 

List of Figures .............................................................................................................. 12 

Acknowledgements ...................................................................................................... 20 

Author’s Declaration .................................................................................................... 23 

Thesis Outline .............................................................................................................. 24 

Contributions................................................................................................................ 27 

Publications ................................................................................................................ 29 

Abbreviations ............................................................................................................... 30 

Chapter 1. Introduction ............................................................................................ 33 

1.1. Nervous System............................................................................................. 33 

1.1.1. Neurones and nerve fibre classification ................................................. 34 

1.1.2. The brain ................................................................................................ 36 

1.1.3. Spinal cord ............................................................................................. 40 

1.2. Somatic System ............................................................................................. 45 

1.2.1. Somatic sensory system ......................................................................... 45 

1.2.2. Somatic motor system ............................................................................ 47 

1.2.3. Muscle .................................................................................................... 49 

1.3. Spinal Reflex ................................................................................................. 51 

1.3.1. Monosynaptic reflex .............................................................................. 52 

1.3.2. Polysynaptic reflex................................................................................. 53 

1.4. Spinal Cord Injury ......................................................................................... 54 

1.4.1. Epidemiology of SCI ............................................................................. 55 

1.4.2. Causes of SCI ......................................................................................... 55 

1.4.3. Lesion types ........................................................................................... 56 

1.4.4. Lesion level ............................................................................................ 57 

1.4.5. Neurological classification..................................................................... 57 

1.4.6. Incomplete SCI syndromes .................................................................... 59 

1.5. Health Degeneration after SCI ...................................................................... 60 

1.5.1. Cardiovascular disorders ........................................................................ 60 

1.5.2. Pressure ulcers ....................................................................................... 61 

1.5.3. Musculoskeletal deterioration ................................................................ 61 

1.5.4. Bone fracture .......................................................................................... 62 

1.5.5. Neurological development after SCI ..................................................... 63 

1.6. Conclusions ................................................................................................... 64 



6 

 

 

Chapter 2. Literature Review................................................................................... 65 

2.1. Rehabilitation after SCI ................................................................................. 65 

2.1.1. Spontaneous recovery ............................................................................ 66 

2.1.2. Activity-dependent spinal cord plasticity .............................................. 68 

2.2. Theories for Rehabilitation of Walking ......................................................... 70 

2.2.1. Central pattern generator (CPG) in animals........................................... 71 

2.2.2. CPG in humans ...................................................................................... 73 

2.3. Rehabilitation of Walking ............................................................................. 75 

2.3.1. Conventional gait training...................................................................... 76 

2.3.2. Lower limb orthoses .............................................................................. 77 

2.3.3. Therapist-assisted BWSTT .................................................................... 80 

2.3.4. FES ......................................................................................................... 84 

2.3.5. FES orthoses .......................................................................................... 87 

2.3.6. Robotic gait orthoses.............................................................................. 89 

2.4. Early Rehabilitation Systems ........................................................................ 98 

2.5. Aims and Objectives of the PhD Research ................................................. 101 

Chapter 3. Gait Analysis Experiment .................................................................... 104 

3.1. Normal Walking .......................................................................................... 104 

3.2. Experiment Description............................................................................... 107 

3.2.1. Equipments and subjects ...................................................................... 108 

3.2.2. Experimental procedures ..................................................................... 109 

3.2.3. Data analysis ........................................................................................ 110 

3.3. Results ......................................................................................................... 113 

3.3.1. Kinematic performance ........................................................................ 114 

3.3.2. Ground reaction forces ......................................................................... 121 

3.3.3. Internal moments ................................................................................. 127 

3.4. Discussion ................................................................................................... 134 

3.5. Conclusions ................................................................................................. 135 

Chapter 4. Model Development............................................................................. 137 

4.1. Circle Fit Approximation of the Ankle, Heel and Toe Trajectories............. 137 

4.1.1. Introduction .......................................................................................... 137 

4.1.2. Methods................................................................................................ 139 

4.1.3. Results .................................................................................................. 144 

4.1.4. Discussion ............................................................................................ 152 

4.1.5. Conclusions .......................................................................................... 155 

4.2. Kinematic Modelling of the GOER System ................................................ 155 

4.2.1. Introduction .......................................................................................... 156 

4.2.2. Methods................................................................................................ 157 

4.2.3. Results .................................................................................................. 164 



7 

 

 

4.2.4. Discussion ............................................................................................ 172 

4.2.5. Conclusions .......................................................................................... 174 

4.3. Kinetic Analysis of Stepping in a Supine Position ...................................... 174 

4.3.1. Introduction .......................................................................................... 175 

4.3.2. Methods................................................................................................ 175 

4.3.3. Results .................................................................................................. 180 

4.3.4. Discussion ............................................................................................ 189 

4.3.5. Conclusions .......................................................................................... 191 

Chapter 5. Prototype Design of the GOER System ............................................... 192 

5.1. Actuation Configuration .............................................................................. 192 

5.1.1. Power requirements from the two-bar GOER model .......................... 192 

5.1.2. Concept development of Actuation 1 ................................................... 197 

5.1.3. Design of Actuation 1: a four-bar linkage ............................................ 199 

5.1.5. Design of Actuation 2: a cam mechanism............................................ 209 

5.1.6. Power requirements from the bar-cam GOER model .......................... 218 

5.1.7. Material selection ................................................................................. 220 

5.1.8. Electric motor selection ....................................................................... 223 

5.1.9. Conclusions .......................................................................................... 226 

5.2. Shoe Platform Design.................................................................................. 226 

5.2.1. Functional shoe requirements .............................................................. 226 

5.2.2. Shoe platform components .................................................................. 231 

5.3. Prototype Presentation................................................................................. 234 

5.4. Conclusions ................................................................................................. 236 

Chapter 6. Experimental Evaluation of the GOER Prototype: the Bar-cam System... 

 .............................................................................................................. 238 

6.1. Introduction ................................................................................................. 238 

6.2. Methods ....................................................................................................... 239 

6.2.1. The GOER system description............................................................. 239 

6.2.2. Experimental procedures ..................................................................... 243 

6.3. Results ......................................................................................................... 248 

6.3.1. Preliminary test .................................................................................... 248 

6.3.2. Test on subjects .................................................................................... 251 

6.4. Discussion ................................................................................................... 255 

6.5. Conclusions ................................................................................................. 259 

Chapter 7. Experimental Evaluation of the GOER Prototype: the Shoe Platform 260 

7.1. Introduction ................................................................................................. 261 

7.2. Methods ....................................................................................................... 262 

7.2.1. Equipment description ......................................................................... 262 

7.2.2. Subjects and measurement devices ...................................................... 264 



8 

 

 

7.2.3. Test procedures .................................................................................... 266 

7.2.4. Data analysis ........................................................................................ 269 

7.3. Results ......................................................................................................... 272 

7.3.1. Single-stimulus sub-test ....................................................................... 272 

7.3.2. Cyclic-stimulation sub-test .................................................................. 282 

7.4. Discussion ................................................................................................... 285 

7.5. Conclusions ................................................................................................. 291 

Chapter 8. Discussion ............................................................................................ 292 

8.1. Gait Data Requirements and Recording Process......................................... 292 

8.2. Computer Design of the GOER System ...................................................... 294 

8.2.1. Circle approximation of the toe trajectory ........................................... 294 

8.2.2. Kinematic simulation of supine stepping ............................................. 296 

8.2.3. Kinetic analysis of supine stepping...................................................... 297 

8.2.4. Simulation of the bar-cam GOER system ............................................ 298 

8.3. Evaluation of the GOER Prototype ............................................................. 299 

8.3.1. Joint angles induced by the bar-cam system ........................................ 299 

8.3.2. Foot sole stimulation induced by the shoe platform ............................ 300 

8.4. Overall Evaluation of the GOER System .................................................... 301 

Chapter 9. Conclusions .......................................................................................... 303 

Chapter 10. Future Work ......................................................................................... 305 

10.1. Gait Analysis Experiment............................................................................ 305 

10.2. The Bar-cam GOER Prototype for the Other Leg ....................................... 307 

10.3. Investigation of New Actuation Concepts ................................................... 308 

10.4. Electrical Stimulation for Sensory Feedback .............................................. 309 

10.5. Improvement of the Dynamic Shoe Platform ............................................. 310 

10.6. Conclusions ................................................................................................. 311 

Appendices .............................................................................................................. 312 

Appendix 1: Model of a two-bar system ........................................................... 313 

Appendix 2: Model of a leg linkage .................................................................. 315 

Appendix 3: The two-bar model for power analysis ......................................... 317 

Appendix 4: The cam-roller assembly ............................................................... 319 

Appendix 5: The model of the bar-cam GOER system ..................................... 320 

Appendix 6: The CAD drawings of the driven bar and leg frame ..................... 323 

Appendix 7: The model of the bar-cam GOER system with a counterweight .. 327 

Appendix 8: The CAD presentation of the motor and gearbox ......................... 331 

Appendix 9: The CAD drawings for the shoe elements .................................... 334 

Appendix 10: The controller electronics ............................................................ 340 

Appendix 11: Failure mode analysis .................................................................. 341 

Appendix 12: Question sheet ............................................................................. 342 



9 

 

 

Appendix 13: Feedback from the subjects ......................................................... 343 

Appendix 14: Question sheet ............................................................................. 346 

Appendix 15: Feedback from the subjects ......................................................... 347 

List of References ...................................................................................................... 357 

 

  



10 

 

 

List of Tables 

Table 1.1: Classification of nerve fibres (taken from [9]. M: motor fibres; S: 

sensory fibres). ............................................................................................. 35 

Table 3.1: Functions and contralateral leg positions of different sub-phases in the 

gait cycle [235]. ......................................................................................... 106 

Table 3.2: Subject information. .......................................................................... 109 

Table 3.3: Normalised mass and length of lower limb segments (taken from [1]).

.................................................................................................................... 112 

Table 3.4: Walking speeds for subjects (NC: normal cadence). ........................ 114 

Table 4.1: Relative error of four methods with respect to the leg length (%) for 

the ankle, heel and toe trajectories in three subjects walking at 100% of NC.

.................................................................................................................... 147 

Table 4.2: The X coordinates of the circle centres xc and radii r of best-fit circles 

with respect to the leg length (%) for the ankle, heel and toe trajectories in 

three subjects walking at various speeds. .................................................. 152 

Table 4.3: The difference (Mean±SD) of the phase shift (%) and ROM error (%) 

between the model and experimental data of all three subjects. ................ 171 

Table 5.1: Target performance of the rocker in the four-bar linkage for stepping 

at three speeds. ........................................................................................... 201 

Table 5.2: Configuration of bar linkages for leg motion at all three cadences. . 208 

Table 5.3: The mass and lengths of body segments for 5% to 95% of the 

population (taken from [275]). ................................................................... 221 

Table 5.4: Anthropometric data and target maximal force requirements of the 

shoe platform [281]. ................................................................................... 231 

Table 6.1: Subject information (all male). ......................................................... 246 

Table 7.1: Subject information. .......................................................................... 266 

Table 7.2: Force amplitudes at various pressures (manufacturer’s data). .......... 267 

Table 7.3: RMS during MVC and at rest (μV). ................................................. 272 

Table 7.4: Mean RMS at stimulation of 3.5 bar with a long rise time 

(%MVCRMS). .............................................................................................. 276 

Table 7.5: The ankle angle change (degrees) induced by the upward movement of 

the pressure plate during mechanical stimulation. ..................................... 276 

Table 7.6: Mean RMS for stimulation by a short rise time (%MVCRMS). ......... 280 

Table 7.7: Reflex latencies (ms) for stimulation by the pressure plate with a short 

rise time. NA means no reflex was observed. ............................................ 281 



11 

 

 

 

Table. A 1: Motor specifications (Maxon EC 45). ............................................. 332 

Table. A 2: Gearbox specifications (Maxon planetary gearhead GP 62). .......... 333 

Table. A 3: Failure mode analysis. ..................................................................... 341 

 

  



12 

 

 

List of Figures 

Figure 1.1: Lateral view of the brain: the division of the four lobes (taken from 

[5])................................................................................................................ 36 

Figure 1.2: Functional classification of the sensorimotor cortex (taken from [5]).

...................................................................................................................... 38 

Figure 1.3: Motor homunculus (taken from [11]). ............................................... 39 

Figure 1.4: Sensory homunculus (taken from [11]). ............................................ 39 

Figure 1.5: Spinal nerve classification (taken from [13]). ................................... 41 

Figure 1.6: The key sensory points of the human body (taken from [14]). ......... 42 

Figure 1.7: Dermatome maps (taken from [13]). ................................................. 42 

Figure 1.8: Structure of the spinal cord (taken from [5]). .................................... 44 

Figure 1.9: Descending and ascending spinal tracts (taken from [15]). .............. 46 

Figure 1.10: The ascending tracts (taken from [13]). .......................................... 46 

Figure 1.11: Lateral corticospinal tract (modified based on a picture from [16]).

...................................................................................................................... 48 

Figure 1.12: Muscle fibre structure and neurone innervation (from [18]). .......... 51 

Figure 1.13: Stretch reflex (from [22]). ............................................................... 52 

Figure 1.14: Flexor reflex (from [29]). ................................................................ 54 

Figure 1.15: Standard neurological classification of spinal cord injury (from 

[14]).............................................................................................................. 59 

Figure 2.1: Therapist-assisted BWSTT (from [155]). .......................................... 82 

Figure 2.2: The prototype of LOPES (from [194]). ............................................. 90 

Figure 2.3: The Lokomat. .................................................................................... 94 

Figure 2.4: The Lokohelp system. ....................................................................... 96 

Figure 2.5: The Erigo. ........................................................................................ 100 

Figure 3.1: Timing of gait phases (modified from [234] and [235]). ................ 105 

Figure 3.2: Marker placement. Subfigure (a) shows markers mainly for the left 

leg (from [238]) and subfigure (b) shows markers mainly for the right leg 

(from [235]). .............................................................................................. 108 

Figure 3.3: Free body diagram of the leg segments. .......................................... 111 

Figure 3.4: Joint angles for three subjects walking at 100% of NC. ................. 116 

Figure 3.5: Joint angles for three subjects walking at 75% of NC. ................... 119 

Figure 3.6: Joint angles for three subjects walking at 50% of NC. ................... 120 

Figure 3.7: Normalised ground reaction forces for three subjects walking at 100% 

of NC. ......................................................................................................... 123 

Figure 3.8: Normalised ground reaction forces for three subjects walking at 75% 



13 

 

 

of NC. ......................................................................................................... 125 

Figure 3.9: Normalised ground reaction forces for three subjects walking at 50% 

of NC. ......................................................................................................... 126 

Figure 3.10: Normalised internal joint moments for subjects walking at 100% of 

NC. ............................................................................................................. 129 

Figure 3.11: Normalised internal joint moments for three subjects walking at 75% 

of NC. ......................................................................................................... 131 

Figure 3.12: Normalised internal joint moments for three subjects walking at 50% 

of NC. ......................................................................................................... 133 

Figure 4.1: Leg position in the new reference system. The X-Y reference centre 

(0, 0) is at the hip joint axis. Black dots at the lateral malleolus, calcaneus 

and second metatarsal head indicate the ankle, heel and toe, respectively. 

The distances from the hip centre to the ankle, heel and toe are represented 

respectively by dashed lines as lA, lH and lT. A dash-dot line L represents the 

vertical distance from the hip to the ground. ............................................. 140 

Figure 4.2: Circle fit approximation of the foot trajectories of S1 walking at 100% 

of NC. Circles in solid, dashed, dotted and dash-dot lines are fit circles from 

Methods 1 to 4 (marked as M1, M2, M3 and M4), respectively. The centres 

are marked with stars, dots, crosses and plus signs, respectively. The foot 

trajectories (relative to the hip) considered for circle approximation are 

shown as thick solid lines, while those not involved in the approximation 

(the ankle and heel trajectories during swing) are thick dotted lines. ........ 146 

Figure 4.3: Circle fit approximation (Method 1) of the ankle (upper) and heel 

(lower) trajectories (relative to the hip) in the stance phase of S1 walking at 

100% of NC. The best-fit circles are shown as dash-dot lines, with the 

radius represented as an arrow. The ankle and heel trajectories in the stance 

phase are shown as solid lines, while those in the swing phase are dotted 

lines. ........................................................................................................... 148 

Figure 4.4: Circle fit approximation (Method 1) of the toe trajectory (relative to 

the hip) in the whole gait cycle of S1 walking at 100% of NC (upper). The 

best-fit circle is represented by a dash-dot line, with the radius shown as an 

arrow. The toe trajectories (both the stance and the swing phases) are shown 

as solid lines. A zoomed view is presented in the lower subfigure. ........... 149 

Figure 4.5: Ankle trajectories and the best-fit circles in S1 walking at 100% 

(solid line), 75% (dashed line) and 50% (dotted line) of NC. ................... 150 

Figure 4.6: Mean errors from the best-fit circle approximation (Method 1) error 

of three subjects walking at three speeds. Bars in black, grey and white refer 

to 100%, 75% and 50% of NC, respectively. All errors are normalised to 

their respective leg length. ......................................................................... 151 



14 

 

 

Figure 4.7: Development of the two-bar model. ................................................ 159 

Figure 4.8: Schematic diagram of the model. .................................................... 161 

Figure 4.9: Two actuators profiles to simulate S1 walking at 100%, 75% and 50% 

of NC. ......................................................................................................... 164 

Figure 4.10: A sequence of eight positions over one gait cycle, showing every 

12.5% of the gait cycle. The leg is shown as solid lines while dashed lines 

represent Bar 1. Bar 2 coincides with the foot sole. T is the duration of the 

whole gait cycle. ........................................................................................ 165 

Figure 4.11: Kinematics in S1 walking at different speeds. Dashed lines represent 

the simulated angles while solid lines with shaded areas represent 

experimental mean angles ±SD. ................................................................ 167 

Figure 4.12: Kinematics in S2 walking at different speeds. Dashed lines 

represent the simulated angles while solid lines with shaded areas represent 

experimental mean angles ±SD. ................................................................ 169 

Figure 4.13: Kinematics in S3 walking at different speeds. Dashed lines 

represent the simulated angles while solid lines with shaded areas represent 

experimental mean angles ±SD. ................................................................ 170 

Figure 4.14: Free body diagram of the leg segments in an upright position. .... 176 

Figure 4.15: Free body diagram of the leg segments in a supine position......... 177 

Figure 4.16: Trajectory of the centre of pressure from the heel to the toe in S1 

walking at 100% of NC. The foot length of S1 is 0.25 m. ......................... 181 

Figure 4.17: Internal joint moments in three subjects walking at 100% of NC: 

solid, dashed, dotted and dash-dot lines are respectively the moments during 

experimental overground walking, simulated upright walking, simulated 

supine stepping with full ground forces and simulated supine stepping with 

30% of upward ground force. .................................................................... 183 

Figure 4.18: Internal joint moments in three subjects walking at 75% of NC: 

solid, dashed, dotted and dash-dot lines are respectively the moments during 

experimental overground walking, simulated upright walking, simulated 

supine stepping with full ground forces and simulated supine stepping with 

30% of upward ground force. .................................................................... 185 

Figure 4.19: Internal joint moments in three subjects walking at 50% of NC: 

solid, dashed, dotted and dash-dot lines are respectively the moments during 

experimental overground walking, simulated upright walking, simulated 

supine stepping with full ground forces and simulated supine stepping with 

30% of upward ground force. .................................................................... 187 

Figure 5.1: Torque requirements. ....................................................................... 196 

Figure 5.2: Power requirements. ........................................................................ 196 

Figure 5.3: Three options for Actuation 1. ......................................................... 197 



15 

 

 

Figure 5.4: A bar linkage ABCD. Bar AB is the crank and Bar CD is the rocker. 

The trajectory of the rocker tip is shown as a dash-dot curve. Three typical 

positions ABCD, AB1C1D and AB2C2D are presented. γ1: ∠CDH; γ2: ∠

BAB1; γ3 : ∠C1DH; γ4 : reflex angle ∠B1AB; γ5: ∠CAC1; γ6 : ∠B2C2D.

.................................................................................................................... 200 

Figure 5.5: Four-bar linkage design. The rocker is lengthened at the other end, 

with triangles showing the points of foot attachment. ............................... 202 

Figure 5.6: Bar lengths as a function of γ7, which describes the position of the 

crank base A. .............................................................................................. 205 

Figure 5.7: The transmission angle as a function of γ7, which describes the 

position of the crank base A. ...................................................................... 206 

Figure 5.8: The setup of the bar linkage to move the driven bar (ABCD achieves 

the lowest position of the driven bar for toe off, while AB1C1D produces the 

upmost position of the driven bar for heel strike). ..................................... 206 

Figure 5.9: The driven bar performance induced by the bar linkage and the target 

model.......................................................................................................... 208 

Figure 5.10: The cam-follower mechanism. The solid curve represents a cam, 

which rotates at the point B. The solid straight line represents the follower, 

pivoting at the point A. The follower contacts the cam initially at the point C. 

If an arbitrary point D1 is to contact with the follower, the cam should rotate 

from the point D1 to D, so that the follower contacts with the cam at the 

point D, with the position of the follower as the straight dashed line AD. 

The thick dash-dot circle A is the trajectory of the follower, while the thin 

dash-dot circle B is the trajectory of the point D1 during rotation of the cam.

.................................................................................................................... 210 

Figure 5.11: The cam and four representative positions of the followers (AB, 

A1B1, A2B2 and A3B3): the thick solid curve is the cam profile. Circle O 

(thick dash-dot curve) is the potential trajectory of the pivot of the follower. 

Circle B1 (thin solid curve) is the potential trajectory of the tip of the 

follower for contact of the point B1. The straight lines BD, B1D1, B2D2 and 

B3D3 represent the common nominal lines. The arrow lines BC, B1C1, B2C2 

and B3C3 show the directions of the followers, which are normal to the 

corresponding lines AB, A1B1, A2B2 and A3B3. Four pressure angles, ∠

CBD, ∠C1B1D1, ∠C2B2D2 and ∠C3B3D3 are shown as θ, θ1, θ2, and θ3.

.................................................................................................................... 213 

Figure 5.12: The maximal pressure angle according to various follower lengths.

.................................................................................................................... 215 

Figure 5.13: The cam for walking at 100% of NC (Rb = 0.08 m, Lf = 0.05 m). 216 

Figure 5.14: Cams for slower walking. .............................................................. 217 



16 

 

 

Figure 5.15: The cam-bar linkage setup of the GOER system. The segment 

ABCD is the bar linkage. The cam is mounted at the point E. The leg 

segment is represented by EFGH. .............................................................. 219 

Figure 5.16: The simulated torque and power of the bar-cam GOER system 

stepping at 100% of NC. ............................................................................ 220 

Figure 5.17: The simulated power for the bar-cam GOER system with the leg 

frame in three different conditions. ............................................................ 223 

Figure 5.18: Ground reaction force during the stance phase (COP: centre of 

pressure). .................................................................................................... 227 

Figure 5.19: The simplified upward force profile on the foot sole to simulate 

walking at 100% of NC: the dashed line is the force for the heel (HL) while 

the solid line is for the forefoot (FF). The left Y axis shows the amplitude of 

the force taking place during overground walking, while the right Y axis 

shows the target amplitude for the shoe platform (30% of ground reaction 

force). ......................................................................................................... 228 

Figure 5.20: The simplified upward force profile on the foot sole to simulate 

walking at 75% and 50% of NC: the dashed line is the force for the heel 

(HL) while the solid line is for the forefoot (FF). The left Y axis shows the 

amplitude of the force taking place during overground walking, while the 

right Y axis shows the target amplitude for the shoe platform (30% of 

ground reaction force). ............................................................................... 230 

Figure 5.21: Pneumatic shoe platform. .............................................................. 232 

Figure 5.22: The GOER prototype. The user places the leg in the leg frame (1) 

and the foot on the shoe platform (2). The leg is moved by a driven bar (3), 

which is moved via a bar linkage (4). The foot is rotated by a cam (5). The 

electric DC motor (6) rotates the bar-linkage and transmits rotation to the 

cam via a chain (7). .................................................................................... 235 

Figure 5.23: The shoe platform. ......................................................................... 235 

Figure 5.24: The prototype performance. .......................................................... 236 

Figure 6.1: The GOER prototype. The user places the leg in the leg frame (1) and 

the foot on the shoe platform (2). The leg is moved by a driven bar (3), 

which is actuated by a rotary bar linkage (4). The foot is rotated by a cam 

(5). The DC motor (6) rotates the bar-linkage and transmits rotation to the 

cam via a chain (7). The trajectories of the leg frame (including the joints of 

the hip (A), knee (B) and ankle (C)) and the driven bar (including the tip (D) 

and the pivot point (E)) are recorded to investigate the motion induced by 

the GOER prototype. ................................................................................. 240 

Figure 6.2: FCIV motor controller platform. ..................................................... 241 

Figure 6.3: The controller panel. ........................................................................ 242 



17 

 

 

Figure 6.4: The control loop. ............................................................................. 242 

Figure 6.5: The test setup with a subject. ........................................................... 247 

Figure 6.6: The motor speed with an empty leg model (leg frame). The 

downward and upward arrows show the time when the disturbance was 

added and removed from the leg frame. The stars mark the observed 

jittering. ...................................................................................................... 249 

Figure 6.7: The performance (mean ± SD) of the driven bar. The solid line is the 

performance from the test while the dashed line shows the model simulation 

of the bar-cam system as described in Figure 5.9. ..................................... 249 

Figure 6.8: The joint performance of the leg frame. The solid lines show 

experimental mean values while the shaded areas are standard deviations. 

The dashed lines are model simulation results. ......................................... 250 

Figure 6.9: The leg performance of S1. The solid lines show experimental mean 

values while the shaded areas are standard deviations. The dashed lines are 

model simulation results. ........................................................................... 252 

Figure 6.10: Stick diagram of movement in S1. ................................................ 253 

Figure 6.11: The leg performance of S2 and S3. The solid lines show 

experimental mean values while the shaded areas are standard deviations. 

The dashed lines are model simulation results. ......................................... 255 

Figure 7.1: The shoe platform structure. ............................................................ 263 

Figure 7.2: The pneumatic system for mechanical force stimulation. ............... 264 

Figure 7.3: Force profile for walking simulation. .............................................. 269 

Figure 7.4: Heel stimulation at 2 bar in S3 with a long rise time. The dashed lines 

show the mechanical stimulation periods with the amplitudes as the reflex 

thresholds. .................................................................................................. 273 

Figure 7.5: Heel stimulation at 3.5 bar in S3 with a long rise time. The dashed 

lines show the mechanical stimulation periods with the amplitudes as the 

reflex thresholds. ........................................................................................ 274 

Figure 7.6: Forefoot stimulation at 3.5 bar in S3 with a long rise time. The 

dashed lines show the mechanical stimulation periods with the amplitudes 

as the reflex thresholds............................................................................... 274 

Figure 7.7: Heel stimulation in S3 with a short rise time. The dashed arrow 

shows reflex-induced ankle perturbation. The dashed lines show the 

mechanical stimulation periods with the amplitudes as the reflex thresholds.

.................................................................................................................... 278 

Figure 7.8: Heel stimulation in S6 with a short rise time. The dashed arrow 

shows reflex-induced ankle perturbation. The dashed lines show the 

mechanical stimulation periods with the amplitudes as the reflex thresholds.

.................................................................................................................... 279 



18 

 

 

Figure 7.9: Forefoot stimulation in S6 with a short rise time. The dashed lines 

show the mechanical stimulation periods with the amplitudes as the reflex 

thresholds. .................................................................................................. 279 

Figure 7.10: Heel stimulation in S7 with a short rise time. The dashed arrow 

shows reflex-induced ankle perturbation. The dashed lines show the 

mechanical stimulation periods with the amplitudes as the reflex thresholds.

.................................................................................................................... 280 

Figure 7.11: Walking simulation responses of S7. The dashed lines show the 

mechanical stimulation periods with the amplitudes as the reflex thresholds.

.................................................................................................................... 283 

Figure 7.12: Zoomed version of Figure 7.11. The upward and downward arrows 

show the start and end times of stimulation on the foot sole. The solid 

arrows represent the heel pressure plate and the dashed arrows indicate the 

forefoot pressure plate. The dashed lines show the mechanical stimulation 

periods with the amplitudes as the reflex thresholds. ................................ 283 

Figure 7.13: RMS values (relative to resting state) during walking simulation 

tests. ........................................................................................................... 284 

 

Figure A. 1: Model of a two-bar system. ........................................................... 313 

Figure A. 2: Model of a leg linkage. .................................................................. 315 

Figure A. 3: The model for torque and power simulation. ................................. 317 

Figure A. 4: The cam-roller mechanism. ........................................................... 319 

Figure A. 5: The model of the bar-cam GOER system. ..................................... 320 

Figure A. 6: The inner tube of the driven bar. .................................................... 323 

Figure A. 7: The outer tube of the driven bar. .................................................... 323 

Figure A. 8: The inner tube of the thigh frame. ................................................. 324 

Figure A. 9: The outer tube of the thigh frame. ................................................. 324 

Figure A. 10: The inner tube of the shank frame. .............................................. 325 

Figure A. 11: The outer tube of the shank frame. .............................................. 325 

Figure A. 12: The thigh support. ........................................................................ 326 

Figure A. 13: The calf support. .......................................................................... 326 

Figure A. 14: Model of the bar-cam GOER system with a counterweight. ....... 327 

Figure A. 15: CAD presentation of the Maxon motor EC 45. ........................... 331 

Figure A. 16: CAD presentation of the Maxon planetary gearhead GP 62. ...... 331 

Figure A. 17: Foot plate for the heel. ................................................................. 334 

Figure A. 18: Foot plate for the forefoot. ........................................................... 335 

Figure A. 19: Pressure plate for the heel. ........................................................... 336 

Figure A. 20: Pressure plate for the forefoot. ..................................................... 337 

Figure A. 21: Foot stop. ..................................................................................... 338 



19 

 

 

Figure A. 22: Toe connection. ............................................................................ 338 

Figure A. 23: Ankle connection. ........................................................................ 339 

Figure A. 24: The controller electronics. ........................................................... 340 

 

  



20 

 

 

Acknowledgements  

I would like to express my sincere thankfulness to Professor Kenneth J. Hunt for this 

exciting PhD work. I am much inspired by his knowledge and achievements in the 

field of mechanical design and system control. His suggestion and encouragement 

have helped me to start the research efficiently. I am very grateful for his suggestion 

on the thesis writing. I would like to thank Dr. Aleksandra Vuckovic for her support in 

this research. She is always ready to give me help when I need it. This work would not 

be finished if I had not been helped by Dr. Henrik Gollee. He taught me how to choose 

the actuator for my project and design the test. Many special thanks also go to 

Professor Bernard Conway: your support is precious. You advised me to attend 

biomechanics courses in the University of Strathclyde, which opened the research 

opportunity for my project. You advised me to carry out the gait analysis experiment in 

your advanced Biomehanics gait lab, which provided me with valuable experiment 

data. Many thanks to Dr. Sujay Galen, who is always ready to solve gait related 

problems for me. You helped me to carry out the gait experiment, from which I knew 

how to use the Vicon motion system, and more importantly, I knew the features of 

normal gait. Without your help I would not be able to finalise the target requirements of 

the robotic system described in this thesis. Sincere thanks go to the electronics 

specialist Mr. Calum Cossar from Scottish Power Electronics and Electric Drives 

Consortium. You lent me the power system and the controller for the electric motor, 

which allowed me to carry on the tests. I cannot imagine how far I could go without 

your help. 

My thanks go to all of my other colleagues in the Centre for Rehabilitation Engineering. 

Special thanks go to Colm Craven. You taught me how to use our lab facilities, showed 



21 

 

 

me how to record EMG signals and advised me how to analyse EMG data. Angus 

Mclachlan and Euan Mccaughey helped me with my experiments by developing 

Matlab model for data recording. Andrew Dunne gave me the chance to walk with the 

Lokomat, through which I knew how a rehabilitation device works. Thanks Dr. Sylvie 

Coupaud and Admanntia Mamma for sparing time talking with me to relieve stress. A 

special thank goes to my officemate Muhammad Abul Hasan who spent much time in 

my test, providing useful EMG data.  

My thanks go to the people at the Queen Elizabeth National Spinal Injuries Unit at the 

Southern General Hospital. Sincere thanks go to Mr. David Allan who allowed us to 

join in the Unit for my research and contributed to this work with helpful advice. A 

special thank goes to Jon Hasler for his physiological suggestion of training methods 

and the desirable features of the rehabilitation system from a physiotherapist view. 

Many thanks to Elaine McNamara, who helped me a lot to apply for this PhD research. 

Sincere thanks go to all the staff from the mechanical workshop who manufactured 

the GOER prototype for me. Mr. Brian Robb helped me choose the suitable structures 

and materials for the prototype. George Sylvie suggested me with the cam-chain 

concept, which enabled the prototype moved by a simple electric motor. Of course, 

the prototype would have been useless if no subjects had tried it. Thanks to all the 

subjects who participated in this research. Thank you for your patience during the test. 

I would like to acknowledge the China Scholarship Council for the financial support for 

this study and GU68 Engineer Trust for the funding of the motor purchase. 



22 

 

 

Last but not least, I would like to thank my family for the support all the four years. 

Special and sincere thanks go to my husband for his precious suggestion on my PhD 

and his economical and emotional support over the last few years. I wish to express my 

greatest gratitude to Mama, Papa and my Granny for their love to me. I would not be 

able to do this without your encouragement.  

  



23 

 

 

Author’s Declaration  

I hereby declare that this thesis is my own work and that, to the best of my knowledge 

and belief, it contains no material previously published or written by another person nor 

material which to a substantial extent has been accepted for the award of any other 

degree or diploma of the university or ther institute of higher learning, except where 

due acknowledgment has been made in the text. 

Juan Fang  

Glasgow, Scotland, 13 September 2012 

 

  



24 

 

 

Thesis Outline  

Chapter 1. This chapter describes the anatomy and physiology of the brain and the 

spinal cord. Functional impairments and neurological adaptations after spinal cord 

injury (SCI) are discussed. The pathophysiological consequences of SCI highlight the 

importance of rehabilitation strategies to alleviate health deterioration. 

Chapter 2: In this chapter theories for rehabilitation of walking after SCI are 

discussed, followed by an overview of rehabilitation programmes, including traditional 

physiotherapy and newly-developed robotics-assisted training. After a critical 

examination of the literature related to devices for early rehabilitation of walking, this 

chapter outlines the aims and objectives of the PhD work. 

Chapter 3: This chapter describes a gait analysis experiment to record the 

performance of overground walking in three able-bodied subjects. The general 

methodologies employed in the experiment are detailed. The kinematics and kinetics of 

overground walking at various speeds are presented. 

Chapter 4: This chapter describes modelling and simulation of supine stepping. Based 

on the results of gait analysis, a circle-fit algorithm was derived to approximate the foot 

trajectories. Then a model of a two-bar system was developed to simulate the 

kinematics of supine stepping at various speeds. Furthermore, the kinetics of supine 

stepping were analysed through a model of a leg linkage. These simulation results 

provided the basis for the conceptual development of the GOER system. 

Chapter 5: This chapter describes structural development of the GOER system, 
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including analysis of various actuation setups, design of a bar-cam mechanism and 

selection of materials for each component. This chapter concludes with a GOER 

prototype, which includes a bar-cam system for passive leg movement and a dynamic 

shoe platform for walking-like mechanical force stimulation on the foot sole.  

Chapter 6: This chapter evaluates stepping performance produced by the GOER 

prototype. The kinematics of supine stepping were investigated through a preliminary 

test of the GOER prototype with an empty leg frame, followed by an evaluation test on 

three able-bodied subjects whose legs were moved by the GOER prototype. The angles 

of the hip, knee and ankle joints during supine stepping were measured and compared 

with the results from model simulation and experimental overground walking. The 

bar-cam GOER prototype produced lower limb motion which was comparable to the 

physiological motion of overground walking. 

Chapter 7: This chapter evaluates the performance of the shoe platform in ten 

able-bodied subjects. The platform firstly produced single stimuli on the foot sole, to 

allow determination of the optimal force patterns based on EMG analysis. Then the 

platform implemented cyclic stimulation on the foot sole to simulate the ground 

reaction forces occurring during overground walking. Subjects experienced 

physiological responses from the tibialis anterior and soleus muscles and felt cyclic 

pressure from the platform which was reported to be similar to the ground reaction 

forces occurring during overground walking.  

Chapter 8: This chapter describes future work that has been identified in design and 

evaluation of the GOER prototype.  
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Chapter 9: This chapter summarises the main conclusions of this thesis.  
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Contributions 

1. Foot trajectories relative to the hip joint at various walking speeds were revealed 

to be curved, with the best-fit circles obtained using a least squares algorithm. It 

is confirmed that the ankle and heel move in circular paths in the stance phase. 

The toe is found to follow a circular trajectory in the whole gait cycle. This 

observation improved knowledge about normal gait, and provided a novel 

methodology for the design of lower limb orthoses.  

2. A model of a two-bar mechanical system was developed which succeeded in 

simulating supine stepping at various speeds with the movement of the lower 

limb joints similar to overground walking. The model provided the conceptual 

basis for the design of the robotic GOER system which produces stepping in 

users who are restricted to a supine position. 

3. A model of a leg linkage was developed to simulate the kinetics of upright 

walking and supine stepping, which was a useful testbed to investigate the 

dynamics of the lower limb during supine stepping in the GOER system. The 

computer modelling provided information for the mechanical design of the 

GOER system.  

4. The GOER prototype was manufactured and the control strategies of the GOER 

system were investigated, followed by preliminary tests of the GOER system on 

able-bodied subjects. The GOER prototype successfully produced lower limb 

motion similar to the physiological motion of overground walking. The 

manufacture and evaluation of the GOER prototype provided insights for further 
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development of a GOER system for early rehabilitation of walking.  

5. A shoe platform was designed and manufactured to apply dynamic forces on the 

foot sole for walking simulation. It produced walking-like sensation as well as 

physiological responses from the leg muscles in able-bodied subjects. The shoe 

platform can be incorporated in the GOER system to achieve dynamic simulation 

of supine stepping. It is also an important tool for investigation of the effect of 

mechanical stimulation on the foot sole. 
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Chapter 1. Introduction 

Summary: All movements and consciousness about movements of the different parts of 

the human body are coordinated by the central nervous system (CNS): the brain and the 

spinal cord [4]. The somatic system transmits sensory and motor information to and 

from the CNS through different pathways. The muscles and the innervated axons 

provide the basis for voluntary movement control as well as involuntary spinal reflexes. 

Damage to or disease of the spinal cord may result in loss of motor, sensory and 

autonomic function below the level of the lesion [5]. Functional impairments from 

spinal cord injury (SCI), combined with secondary complications, severely reduce 

quality of life [6]. Neurological adaptations after SCI, such as spasticity and muscle 

atrophy, reduce mobility and further deteriorate the daily life of people with SCI. The 

pathophysiological consequences of SCI highlight the importance of rehabilitation 

strategies to prevent muscle atrophy and to alleviate health deterioration [7]. 

1.1. Nervous System 

The nervous system is a network of neurones, which processes and transmits 

information by electrical and chemical signals. The human nervous system consists of 

the central and peripheral nervous systems. The central nervous system (CNS) refers to 

the neural network that is encapsulated within the bone: the brain and the spinal cord [5]. 

The remaining part of the nervous system outside the CNS is the peripheral nervous 

system (PNS). The PNS includes the visceral PNS and the somatic PNS. The visceral 

PNS, also called the autonomic nervous system, consists of the neurones that innervate 

the internal organs, blood vessels, and glands. In contrast, the somatic PNS, which 

includes nerves that innervate the skin, joints, and muscles, is under voluntary control 

http://en.wikipedia.org/wiki/Neuron
http://en.wikipedia.org/w/index.php?title=Signal_%28biology%29&action=edit&redlink=1
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[5]. The PNS and the CNS communicate mainly through the spinal cord. 

1.1.1. Neurones and nerve fibre classification 

The basic functional unit of the nervous system is a neurone (also called a nerve cell). A 

typical neurone has a cell body (or soma), dendrites, and an axon [8]. Dendrites are thin 

structures that arise from the cell body, often extending and branching to form a 

complex ‘dendritic tree’. An axon, which is a long, slender extension of a neurone, 

conducts electrical impulses away from the cell body so as to transmit those impulses to 

other neurones through synaptic processes. A neurone can have many dendrites, but it 

normally has only one axon. Neurones have different sizes and structures, resulting in 

different conduction velocities of the action potential [8]. 

Neurones are functionally classified into sensory neurones, motor neurones and 

interneurones [5]. Sensory neurones are activated by sensory input (such as touch or 

heat from the external environment) and transmit the sensation into the CNS, while 

motor neurones convey control commands to induce muscle contraction. Interneurones 

connect different types of neurones. The pathways for transmitting electrochemical 

impulses in the CNS are called tracts while those of the PNS are called nerves. Sensory 

nerves (also called afferent nerves) conduct signals from sensory receptors through 

ascending tracts to the brain, while motor nerves (efferent nerves) transmit signals from 

the brain to their target skeletal muscles through descending tracts [5]. 

Peripheral nerve fibres have two classification systems based on their diameters. 

Lloyd and Hunt classified sensory neurons into the groups Ia, Ib, II, III and IV [9]. As 

shown in Table 1.1, the sensory fibres in this classification have a corresponding 

http://en.wikipedia.org/wiki/Dendrite
http://en.wikipedia.org/wiki/Axon
http://en.wikipedia.org/wiki/Afferent_nerve
http://en.wikipedia.org/wiki/Afferent_nerve
http://en.wikipedia.org/wiki/Sensory_neuron
http://en.wikipedia.org/wiki/Muscle
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group in the other system defined by Erlanger and Gasser, which classifies both 

sensory and motor neurons as A, B and C [9]. Fibres of the A group have a large 

diameter and high conduction velocity, compared to groups B and C. B fibres mainly 

form the autonomic nervous system, while the A and C groups form the somatic 

nervous system, which is responsible for transmitting sensory information to and motor 

information from the CNS [5]. Motor fibres include A-α, A-β and A-γ motor neurones, 

which are involved in muscle contraction. Sensory fibres include A-α (Ia fibre or Ib 

fibres), A-β (II fibres), (A-σ) (III fibres) and C (IV fibres) fibres, which are responsible 

for detecting muscle tension and the senses of light touch, pain and temperature [9]. 

The motor and sensory fibres will be further discussed in Section 1.2. 

Table 1.1: Classification of nerve fibres (taken from [9]. M: motor fibres; S: sensory 

fibres).  

Lloyd and 

Hunt 

(Sensory) 

Erlanger and 

Gasser 

(Sensory and 

Motor) 

Diameter 

(μm) 

Velocity 

(m/s) 
Function 

Ia A-α 10-20 50-120 

M:  motor neurone (extrafusal 

muscle fibres, both slow and fast) 

S: muscle spindles 

Ib A-α 10-20 50-120 
S: Golgi tendon organs, touch, and 

pressure 

II       A-β 4-12 25-70 

M: motor neurones to 

intra/extrafusal muscle fibres 

S: secondary muscle spindle 

afferents, touch, pressure, 

vibration 

III 

A-γ 2-8 10-50 
M: small gamma motor neurones 

to intrafusal muscle fibres 

A-σ 1-5 3-30 
S: light touch, pain & temperature 

(acute) 

IV  B, C < 2 < 2 S: pain & temperature 

http://psychology.about.com/od/cindex/g/def_cns.htm
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1.1.2. The brain 

The smooth and accurate performance of various motor tasks involves combining 

information to the somatic sensory system and from the somatic motor systems, with 

important processes taking place in the high levels of the nervous system: the brain. 

Located entirely within the skull, the brain consists of three parts: cerebrum, 

cerebellum, and brain stem [5]. The large convoluted area in Figure 1.1 is the cerebrum. 

Below the cerebrum is the cerebellum, which is a centre for movement and balance 

control. The remaining part of the brain is the brain stem, which transfers information 

between the cerebrum, the cerebellum and the spinal cord.  

 

 

Figure 1.1: Lateral view of the brain: the division of the four lobes (taken from [5]). 

There are many convolutions on the surface of the cerebrum. The bumps are called gyri 

(singular: gyrus), while the grooves are called sulci (singular: sulcus), with especially 

deep grooves called fissures [5]. Sulci and fissures divide the human cerebrum into 

several lobes, as shown in Figure 1.1. At the back of the cerebrum lies the occipital lobe, 

Central sulcus 

Parietal lobe 

Occipital lobe 

Brain stem 

Cerebellum Temporal lobe 
Lateral fissure 

Frontal lobe 
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ventral to the deep lateral fissure is the temporal lobe, while the top areas are the frontal 

and parietal lobes, which are separated by the central sulcus [5]. Different brain regions 

take responsibility for different functions. The precentral gyrus controls voluntary 

movements, such as movement of the hands and legs, while the postcentral gyrus is 

related to somatic sensation, i.e. information allowing humans to recognize the 

environment (temperature, pain, etc.) [5].  

The brain has a clear mapping for each body segment. Research in the latter 19th 

century localized specific brain regions which are responsible for specific motor or 

sensory functions [10]. The surface of the cerebrum (called the cerebral cortex) is 

divided into motor, sensory and association areas, as shown in Figure 1.2. Based on the 

concept that anatomical divisions of the brain correspond to functional divisions of the 

human body, the cortical architecture has been mapped into Brodmann areas (BA) [10]. 

Various cerebral areas are referred to by different BA numbers according to their 

function and structure. For example, BA4 is the primary motor cortex while BA 3, 1 

and 2 are the sensory areas [5]. 

The major motor areas are located in the posterior portion of the frontal lobe. The motor 

cortex includes BA4 (the primary motor cortex, also called M1) and BA6 (the 

supplementary motor area in the middle and the premotor area laterally). M1 contains 

large neurones, which control muscles through the spinal cord. The premotor area plans 

actions and refines movements based upon sensory inputs. The major sensory areas 

include BA 17, 18 and 19 (visual cortex) in the occipital lobe, BA 41 and 42 (auditory 

cortex) in the temporal lobe and BA 3, 1 and 2 (somatosensory cortex) in the parietal 

lobe.   

 

http://en.wikipedia.org/wiki/Frontal_lobe
http://en.wikipedia.org/wiki/Spinal_cord
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Figure 1.2: Functional classification of the sensorimotor cortex (taken from [5]). 

The cerebral cortex has a corresponding somatotopic representation for processing 

information from each body segment. In the primary motor cortex M1, this 

somatotopic map is called a motor homunculus (shown in Figure 1.3), which illustrates 

the location and amount of cortical area associated with movement control of a 

particular segment. Although it represents each segment in an orderly way, the 

homunculus map is not scaled to the human body in size. The leg area located around 

the midline is small compared to the face and mouth areas which are located laterally on 

the cerebral hemisphere. The amount of cortical surface dedicated to a body segment is 

related to the degree of the required motor control [11]. Therefore, a large area of M1 is 

dedicated to moving the dexterous fingers. Due to their relatively large area in the 

motor cortex, the hands can make accurate and complex movements. 
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Figure 1.3: Motor homunculus (taken from [11]). 

 

Figure 1.4: Sensory homunculus (taken from [11]). 
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In contrast to the motor area located in the frontal lobe, the part of the cortex concerned 

with the somatic sensory system is located in the parietal lobe. Brodmann area 3b, 

located on the postcentral gyrus, is regarded as the primary somatosensory cortex 

(called S1) [11]. It is responsive to somatosensory stimuli. Similar to M1, the receptive 

fields of S1 also produce an orderly map of the body on the cortex, which is called the 

sensory homunculus, as Figure 1.4 shows. The sensory homunculus illustrates the 

location and amount of cortical area receiving sensory information from a particular 

segment. Obviously the sensory homunculus map is not scaled to the human body 

either. The mouth, tongue, and fingers have the largest area, while the trunk and arm 

areas are small. The degree of innervation from each segment determines its mapping 

size on the brain [11]. For example, the sensory receptive field for the hands occupies a 

larger area than that for the shoulder. 

The motor and sensory mapping helps to understand how the brain sends commands to 

and interprets feedback from each body segment. The brain controls the whole body 

through three levels [5]. First of all, the forebrain sets the movement patterns and plans 

strategies of how to achieve the target movements. Then mechanisms such as the motor 

cortex and cerebellum figure out when and how to contract the muscles smoothly and 

accurately. The last level of control involves the brain stem and more importantly the 

spinal cord. They are combined to activate appropriate motor neurones and 

interneurone pools to achieve target movements and make any necessary adjustments 

of posture, based on the sensory feedback.  

1.1.3. Spinal cord 

Located in the bony vertebral column, the spinal cord has spinal nerves which 

innervate the body. The spinal cord is the vital mechanism which transmits information 
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between the brain and parts of the body, such as the skin, joints, and muscles [12].  

The spinal cord, as shown in Figure 1.5, is a long tubular bundle of nervous tissue that 

extends from the brain. The longitudinally distributed nervous tissues primarily 

transmit the signals between the PNS and the brain. Sensory signals enter and motor 

information exits from the spinal cord via segmental root nerve pairs [13]. The spinal 

nerve roots are classified based on the vertebrae between which they exist. Within the 

spinal vertebrae exist 31 spinal nerve pairs associated with four sections [13], as shown 

in Figure 1.5. 

 

Figure 1.5: Spinal nerve classification (taken from [13]). 
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Figure 1.6: The key sensory points of the human body (taken from [14]). 

 

Figure 1.7: Dermatome maps (taken from [13]). 
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Spinal roots have sensory and motor fibres. A skin area innervated by sensory fibres of 

a single nerve root is known as a dermatome, while the group of muscles primarily 

innervated by motor fibres of a single nerve root is defined as a myotome. The 

distribution patterns of dermatomes and myotomes are relatively consistent from 

person to person. The dermatomes cover the whole body, with the key sensory points of 

the human body demonstrated in Figure 1.6 [14]. The organization of the dermatomes 

and the corresponding body segments for each section can be depicted when one bends 

over to stand on both hands and feet, as Figure 1.7 shows. Cervical nerve pairs (C1-C8) 

innervate the muscles and glands of the neck, shoulder and upper limbs; thoracic nerves 

(T1-T12) innervate the chest and abdominal organs; lumbar nerves (L1-L5) innervate 

the lower limbs; sacral nerves (S1-S5) take account of the genitals, lower digestive tract 

and bladder while coccygeal nerve (Co) is distributed to the skin over the tailbone [13].  

Spinal nerves enter and exit the spinal column through notches between each vertebra 

of the vertebral column. As shown in Figure 1.8, each spinal nerve inside the vertebrae 

attaches to the spinal cord by means of two branches: the ventral root and the dorsal 

root [13] . The ventral root contains motor axons, which carry information away from 

the spinal cord, while the dorsal root contains sensory axons, which bring sensory 

information into the spinal cord. Sensory axons which carry information from the 

somatic sensory receptors to the spinal cord are called primary afferent axons, such as 

axons innervating the skin. The primary afferent axons enter the spinal cord through the 

dorsal roots, with the cell bodies lying in the dorsal root ganglia [13]. 

The spinal cord is protected by three layers of tissue, with the dura mater in the 

outermost, the arachnoid mater in the middle and the pia mater in the innermost layer 

[5]. A cross-section of the spinal cord displayed in Figure 1.8 shows that the central 

http://en.wikipedia.org/wiki/Dura_mater
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grey matter is surrounded by the white matter. The butterfly-shaped grey matter 

contains neuronal cell bodies. Each half of the spinal grey matter is divided into the 

dorsal, lateral and ventral horns. The lateral horn has visceral neurones that innervate 

the internal organs, blood vessels, and glands. The ventral horn contains the somatic 

motor neurones while the dorsal horn has the somatic sensory neurones. In contrast to 

the dorsal root ganglia which contain primary sensory neurones, the dorsal horn mainly 

contains second-order sensory neurones, which receive sensory inputs from the 

primary afferents. The white matter, which is located in the peripheral region of the 

spinal cord, contains the long axons that run up and down the cord to generate 

ascending (sensory), descending (motor) and transverse fibre tracts (opposite sides of 

the cord). The white matter is divided into three columns: the dorsal, lateral and ventral 

columns, with spatial distribution as shown in Figure 1.8. 

 

Figure 1.8: Structure of the spinal cord (taken from [5]). 
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1.2. Somatic System 

As described above, the nervous system apart from the brain and spinal cord is the PNS, 

while the somatic system, as one part of the PNS, has nerves innervating the skin, joints, 

and skeletal muscles [5]. The somatic system includes sensory and motor systems, 

which carry sensory and motor information both to and from the CNS. Accurate motor 

control cannot be achieved without feedback from the somatic sensory system or 

voluntary control by the somatic motor system. This complicated process involves 

different pathways for transmission of motor and sensory information. 

1.2.1. Somatic sensory system 

The somatic sensory system includes all the somatic receptors and the innervated axons. 

The skin is innervated by many primary afferent axons, which bring stimuli from the 

somatic sensory receptors to the spinal cord or to the brain [13]. Existing all over the 

body, somatic receptors detect sensations such as touch, temperature, pain, and body 

position [13]. Three types of the sensory receptors are the most important in the 

somatic sensory system [13]. The first type is mechanoreceptors, which are sensitive to 

mechanical stimuli, such as vibration, touch or pressure. The second type is nociceptors, 

which transmit the sensations of pain and temperature. They respond to mechanical, 

thermal and chemical stimuli. The last type of receptor in the body is proprioceptors, 

which provide information on the position and movements of the body segments.  

To ensure accurate and smooth motor control, the brain receives sensory feedback 

continuously from the spinal cord via many ascending tracts. The cerebellum receives 

the sensory information for balance control through the ipsilateral spinocerebellar tract, 
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which can be seen in the cross-section diagram of the spinal cord shown in Figure 1.9 

[15]. The cerebral cortex receives various afferent inputs from the limbs and trunk from 

ascending tracts, as marked blue in Figure 1.9. Such ascending tracts transmit sensory 

information in two ascending pathways, as shown in Figure 1.10.  

 

Figure 1.9: Descending and ascending spinal tracts (taken from [15]). 

 

(a) Dorsal column-medial lemniscal pathway.           (b) Spinothalamic tract. 

Figure 1.10: The ascending tracts (taken from [13]). 
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The sensations of light touch, pressure and proprioception are transmitted by 

large-diameter dorsal root ganglion axons. Such large axons ascend in ipsilateral dorsal 

columns to the junction of the spinal cord and medulla, and then cross (or decussate) to 

the contralateral side and finally project to specific regions of S1 in the contralateral 

cerebral hemisphere [13]. This cross-over process is called decussation and this tract is 

called the dorsal column-medial lemniscal pathway, as shown in Figure 1.10(a). Other 

types of sensation, such as pain and temperature, are transmitted through second-order 

neurones in the dorsal horn of the spinal cord. The axons of these neurones cross to the 

contralateral side immediately after they enter the spinal cord, then ascend through the 

thalamus and terminate at S1. This forms the spinalthalamic tract (see Figure 1.10(b)) 

[13]. The existence of two different ascending pathways results in the situation that 

some sensory information, such as light touch, ascends ipsilaterally, while other 

afferent input, such as pain and temperature, ascends contralaterally.   

1.2.2. Somatic motor system 

Similar to the definition of the somatic sensory system, the somatic motor system 

includes motor neurones and the corresponding innervated skeletal muscles [15]. The 

somatic motor system receives commands from the brain through many descending 

tracts, as marked red in Figure 1.9.  
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Figure 1.11: Lateral corticospinal tract (modified based on a picture from [16]). 

Among the many tracts demonstrated in Figure 1.9, the reticulospinal, vestibulospinal 

and tectospinal tracts are related to activities of balance-keeping and locomotion, which 

are under control of the brain stem. The lateral pathways (rubrospinal and corticospinal 

tracts) are involved in voluntary movement of the distal musculature and are under 

direct cortical control [17]. As shown in Figure 1.11, the axons originating in the motor 

cortex travel through the thalamus and form the pyramidal tract at the junction of the 
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medulla and spinal cord. Then the pyramidal tract crosses at the pyramidal decussation, 

terminates in the lateral column of the spinal cord and forms the lateral corticospinal 

tract. The lateral corticospinal tract transmits information from the motor cortex to the 

ventral horns, and thereby controls the segmental muscles. This results in the situation 

that the right motor cortex directly commands the movement of the left side of the body, 

and vice versa [16].  

1.2.3. Muscle 

As described in Section 1.2.2, one of the most important components in the somatic 

system is skeletal muscle. Muscle is a contractile tissue within the human body which 

produces force and movement. The muscles in the body can be generally classified into 

striated and smooth muscle [18]. Smooth muscle is mainly found in visceral organs, 

such as the bronchus, the intestine, and blood vessels. Striated muscle has two 

subcategories: cardiac and skeletal. Innervated by the autonomic nervous system, 

cardiac muscle is mainly involved in heart contraction [18]. Skeletal muscle, which is 

mostly connected to bone through tendons, achieves skeletal movements such as 

locomotion and maintenance of posture [18]. For an average adult, skeletal muscle 

takes up about 42% of body mass for males and 36% for females [19].  

In contrast to involuntary cardiac and smooth muscle, skeletal muscle can be 

voluntarily controlled. As Figure 1.12 shows, skeletal muscle consists of extrafusal 

muscle fibres, which are innervated by the lower motor neurones with their cell bodies 

in the anterior horn of the spinal cord [18]. Motor neurones are classified into upper and 

lower motor neurones according to their positions. Upper motor neurones refer to the 

nerve tracts in the neural pathways between the brain and the anterior horn cells of the 

http://en.wikipedia.org/wiki/Muscle_contraction
http://en.wikipedia.org/wiki/Force
http://en.wikipedia.org/wiki/Motion_%28physics%29
http://en.wikipedia.org/wiki/Tendon
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spinal cord. The nerve fibres connecting the anterior horn of the spinal cord to the 

relevant muscle are the lower motor neurones [20]. Extrafusal muscle fibres are 

innervated by α motor neurones. α motor neurones mainly participate in muscle force 

generation. One α motor neurone and the muscle fibres it innervates make up a motor 

unit. Each motor unit is innervated by a single motor axon branch from the CNS. The 

individual motor unit or the combined action of these motor units induces muscle 

contraction. The collection of motor neurones that innervates a single muscle is called a 

motor neurone pool [18].  

In parallel with extrafusal muscle fibres are muscle spindles, which encapsulate 

intrafusal fibres. A muscle spindle is innervated by group Ia and II afferent fibres. 

Group Ia fibres are capable of detecting changes of muscle length and velocity, 

whereas group II fibres detect changes in muscle length. As the zoomed area in Figure 

1.12 shows, intrafusal fibres are innervated by γ motor neurones, which help to ensure 

the sensitivity of a muscle spindle [18]. The muscle spindle combined with the 

innervated sensory axons forms a stretch receptor. If the muscle is stretched, the 

muscle spindle will be excited and activates both α and γ motor neurones, which 

results in muscle contraction (stretch reflex). 

Stretch receptors are one type of proprioceptors. Another type of proprioceptor are 

Golgi tendon organs. Innervated by group Ib sensory axons, Golgi tendon organs 

mainly detect the tension inside the muscle [18]. In contrast to stretch receptors, which 

are in parallel with muscle fibres, Golgi tendon organs are located in series at the 

junction of muscle and tendon.  
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Figure 1.12: Muscle fibre structure and neurone innervation (from [18]). 

Muscle spindles and Golgi tendon organs detect body movement and provide feedback 

for accurate voluntary control of the human body. Apart from muscle control and 

sensory information processing, the somatic system is involved in reflex activity, which 

is an involuntary and rapid movement in response to a stimulus [21].  

1.3. Spinal Reflex 

Involuntary muscle movement without conscious input from the brain is defined as a 

reflex [21]. The reflex that is mediated by neural circuits entirely confined to the spinal 

cord is the spinal reflex. The spinal reflex is elicited by the activation of the spinal 

reflex arc, which includes the muscle as well as the innervated sensory and motor axons 

passing between the vertebrae at the same spinal level [21]. A spinal reflex is classified 

into a monosynaptic or polysynaptic spinal reflex [21].    
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1.3.1. Monosynaptic reflex 

A monosynaptic reflex involves direct connections between sensory and motor 

neurones in the spinal cord. Knee jerk and the stretch reflex are typical examples of 

monosynaptic reflexes. As shown in Figure 1.13, muscle stretching because of tapping 

on the patellar tendon or any other mechanical force activates Ia sensory axons in the 

muscle spindle. Ia afferents then transmit such stretch induced biological signals to 

their cell bodies in the dorsal root ganglia. Then α motor neurones in the spinal cord are 

activated and send efferent impulses back to the muscle for contraction. Such muscle 

contraction in response to the muscle stretch is called the stretch reflex [22]. The 

muscle contraction involves only one synaptic process in the activation of the Ia 

sensory and the α motor neurones. Therefore the latency (the time between the stimulus 

initiation and the reflex response) of the monosynaptic reflex is very short, ranging 

from 35-50 ms for soleus [23]. As a result, the stretch reflex is a quick reaction to 

unexpected disturbances, resulting in maintenance of the muscle at a constant length. 

 

Figure 1.13: Stretch reflex (from [22]). 
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1.3.2. Polysynaptic reflex 

Most other spinal reflexes involve polysynaptic circuits. Compared to the 

monosynaptic reflex, polysynaptic reflexes respond more slowly to the stimulus, 

resulting in a longer latency ranging from 50-120 ms for lower leg muscles [24-26]. A 

cutaneous reflex is a polysynaptic reflex in response to a cutaneous stimulus. 

Cutaneous receptors such as mechanoreceptors detect such a stimulus as a touch, a 

scratch or mechanical pressure and induce a cutaneous reflex [21]. A typical example of 

the cutaneous reflex in the lower limbs is the corrective reaction to stumbling over 

unexpected objects during walking [27] or running [28].  

High stimulation intensity induces a cutaneous flexor reflex with movements such as 

ipsilateral flexion and/or the concomitant contralateral extension [28]. When a person 

steps on a sharp tack as shown in Figure 1.14, the nociceptors in the skin detect the 

noxious information and transmit signals through afferent fibres to the spinal cord, 

where the information is distributed to interneurones. A branch of the afferent pathway 

excites interneurones in the lumbar region of the spinal cord, resulting in contraction of 

the thigh flexor muscle. One branch also continues upward to the L2 segment, exciting 

the hip flexor muscles. This process finally induces the coordinated activity of two 

muscle groups to withdraw the whole leg away from the painful stimulus [29].  

Cutaneous flexor reflexes work not only at a single joint but coordinate the activity of 

multiple joints simultaneously. Similar to the stretch reflex, the flexor reflex takes place 

without conscious intervention of the brain. However, the flexor reflex can be modified 

by the brain’s participation. People can inhibit the withdrawal response by voluntary 

brain control [30]. 
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Figure 1.14: Flexor reflex (from [29]). 

The spinal reflexes described above interact with human movement. The stretch reflex 

prevents muscle overstretching and maintains postural balance while the cutaneous 

flexor reflex produces coordinated patterns of muscle contraction to withdraw from 

noxious stimuli [11]. Reflexes of various types serve as the basic units for human 

movements [21]. 

1.4. Spinal Cord Injury 

Damage to or disease of the spinal cord may interrupt the neural pathways between the 

brain and the muscles. Spinal cord injury (SCI) results in impairment of motor, sensory 

and autonomic function below the level of the lesion, which brings disability of varying 
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severity to the patients. 

1.4.1. Epidemiology of SCI 

SCI is a global phenomenon with annual reported incidences for different countries and 

regions ranging from 10.4 per million in the Netherlands, to 83 per million in Alaska, 

USA in the early 1990s [31]. The highest incidence of SCI occurs in North America, 

followed by Asia. The incidence is estimated to be 40 per million in the United States, 

with approximately 12,000 new cases each year [32]. The global prevalence of SCI per 

million inhabitants ranges from 223 in Stockholm and 280 in Helsinki to 681 in 

Australia and 755 in the USA [31]. The incidence is approximately 10-15 per million in 

the UK [33]. There were an estimated 40,000 individuals with SCI in the United 

Kingdom, with 745 new admissions to spinal injuries units in 2001 [34]. 

1.4.2. Causes of SCI 

SCI can result from traumatic and nontraumatic causes. It is estimated that two thirds of 

all patients with SCI have traumatic injury. Events such as traffic accidents, falls, sports 

and recreational activities induce fracture or dislocation of vertebral segments and 

damage of the spinal cord tissue [35, 36]. Combined with haemorrhage, the initial 

traumatic injury triggers inflammation, which results in further damage to spared white 

matter located at the site of injury [37, 38]. Young healthy male individuals are more 

likely to suffer traumatic injury than female individuals [33].  

Nontraumatic injury mainly comes from multiple sclerosis [39], vertebral spondylosis, 

tumorous compression and some congenital diseases [40]. People with nontraumatic 
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SCI are reported to be significantly older than those with traumatic SCI (55 versus 39 

years) [39]. Females have a higher proportion of nontraumatic SCI than traumatic SCI 

[41]. 

1.4.3. Lesion types 

Damage to the motor and/or sensory neurones results in various degrees of dysfunction 

of movement control [18] and may cause complete or incomplete paralysis. Paralysis 

does not mean that the muscles cannot function but that they cannot be controlled by the 

brain. Any damage to the motor-sensory spinal circuits located in the lower motor 

neurones destroys signal transmission for the spinal reflex. Therefore lower motor 

neurone lesions induce flaccid paralysis due to the disruption of the basic movement 

unit of spinal reflexes. Any damage to the upper motor neurones spares the reflex arc 

but interrupts the interaction between central control and the spinal reflex. Upper motor 

neurone lesions result in spastic paralysis with exaggerated and uninhibited 

sensorimotor reflexes below the lesion level [20].  

Spinal cord lesions are generally classified anatomically and clinically. A transection of 

the spinal cord results in loss of sensation and paralysis of the muscles in parts of the 

body caudal to the lesion. Such anatomical lesions often occur to experimental animal 

models through special preparation. Unless penetrated by a sharp object, the spinal cord 

is rarely hemisected or transected in humans. Lesions often include infarction or 

mechanical deformation caused by swelling or contusion, which interrupts normal 

neural transmission [42].  
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1.4.4. Lesion level 

Spinal cord lesions can occur at different levels and induce impairments with varying 

severity. Injuries are normally classified based on the affected vertebral segments [15].  

Cervical SCI is most common in the elderly [43]. Injuries to the cervical regions of the 

spinal cord are defined as tetraplegia, which normally causes impairment or loss of 

motor and/or sensory function in all four limbs as well as the trunk and pelvis. Based on 

the correspondence between the spinal segments and the controlled body areas as 

depicted in Figure 1.7, lesions at different spinal segments induce function impairments 

at different locations. A cervical lesion above C4 results in paralysis of all torso 

muscular systems. Patients with SCI at C3 or above need ventilation assistance to 

achieve breathing. Lesions between C4 and T1 have various degrees of sensorimotor 

sparing in the shoulder and/or the arm. Lower injuries in the thoracic, lumbar or sacral 

regions are called paraplegia, where the trunk, pelvis and lower limbs usually have 

impaired function and/or sensation [33]. As the most common locations within the 

spinal cord for tumorous invasion and vertebral spondylosis are in the thoracic and 

lumbosacral regions, people with nontraumatic SCI are more likely to suffer from 

paraplegia than from tetraplegia [40]. 

1.4.5. Neurological classification 

Variation in the level and severity of the lesion results in substantial variation in 

neurological deficits. In order to assess sensorimotor function, the Neurological 

Standards Committee of the American Spinal Injury Association (ASIA) designed a 

system to classify the neurological impairment of people with SCI [14].  
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SCI normally affects transmission of sensory and motor signals across the lesion site. 

The extent of damage determines the severity of the motor deficit and loss of sensation. 

By examining the dermatomes and myotomes, the severity of SCI can be classified into 

five ASIA classes as follows:  

A= complete. No motor or sensory function is preserved in the sacral segments S4-S5;  

B= incomplete. Sensory but no motor function is preserved below the neurological 

level and includes the sacral segments S4-S5; 

C= incomplete. Motor function is preserved below the neurological level, and more 

than half of key muscles below the neurological level have a muscle grade less than 3;  

D= incomplete. Motor function is preserved below the neurological level, and at least 

half of key muscles below the neurological level have a muscle grade greater than or 

equal to 3; 

E= Normal. Sensory and motor function is normal.  

In the above classification, the muscle grade is a scale for a patient's physical muscle 

strength. A muscle grade of 3 means the patient can hold the test position against 

gravity but can tolerate no additional pressure [44]. 

The neurological classification scales are presented in Figure 1.15. An injury inducing 

complete loss of sensory and motor function including the sacral segments S4-S5 is 

defined as clinically complete SCI while any situation with partial preservation of 

sensory and/or motor function below the neurological level, including the sacral 

segments S4-S5, is classified as incomplete SCI (iSCI). Incomplete injury is more 

prevalent than complete, with 91% of nontraumatic injury and 58% of traumatic injury 

classified as incomplete [40]. 
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Figure 1.15: Standard neurological classification of spinal cord injury (from [14]). 

1.4.6. Incomplete SCI syndromes 

Incomplete SCI (iSCI) partially damages the spinal cord with some function spared, 

which results in various SCI syndromes. Incomplete SCI syndromes can be 

characterized into central cord syndrome, anterior cord syndrome and Brown-Séquard 

syndrome. Other syndromes such as conus medullaris syndrome and cauda equina 

syndrome may also result from incomplete injury [39]. The most common syndrome is 

central cord syndrome. As the name implies, it refers to an injury at the centre of the 

spinal cord [15]. Central cord syndrome affects the upper extremities more than the 

lower extremities [39]. Anterior cord syndrome has a lesion at the anterior two thirds of 

the spinal cord but the function of the posterior cord is spared [15]. This results in 

various losses of motor function and sensation to pain, temperature and pinprick, with 

preservation of proprioception and light touch. Brown-Séquard syndrome constitutes 

2-4% of all traumatic SCI [15]. The senses of light touch, deep pressure, and 
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proprioceptive information are disrupted on the same side as the injury, while the 

senses of pain and temperature are impaired on the opposite side [39]. Conus 

medullaris syndrome and cauda equina syndrome result from injury to the sacral cord 

and lumbar nerve roots within the spinal canal, which usually causes areflexic bladder 

and bowel as well as flaccid paralysis [15]. Compared to cauda equina syndrome, 

which has no sacral reflex preserved, conus medullaris syndrome results from lesions 

localized proximal to the sacral cord, which occasionally shows a sacral reflex [39]. 

1.5. Health Degeneration after SCI  

People with SCI suffer from loss of sensation and/or motor function, and disruption of 

autonomic function. Apart from the primary effects of the injury, patients suffer further 

health degeneration as secondary complications, which raise the need for suitable 

rehabilitation and care strategies. 

1.5.1. Cardiovascular disorders 

Lesions above T5 generally affect autonomic innervation of the heart and lungs, which 

results in weakened cardiac control [45]. This is because sympathetic outflow to the 

heart and lungs comes from levels T1-T5 [46]. Due to lack of venous muscle pump 

activity, people with SCI commonly suffer orthostatic hypotension (OH), which is a 

clinical condition defined as a significant decrease in blood pressure during position 

change, such as head-up tilt from lying, or sitting to upright standing [47]. OH elicits a 

passive shift of blood away from the thoracic area and toward the distensible veins of 

the splanchnic region and lower extremities [48]. Patients with SCI have episodes of 

dizziness, light headedness (pre-syncope) or loss of consciousness if OH occurs. 
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Approximately 50% of paraplegics and 80% of tetraplegics suffer OH, with the greatest 

severity occurring in patients with complete tetraplegia [47]. Due to impaired motor 

function, most individuals with SCI have sedentary life patterns. They are susceptible 

to cardiopulmonary deconditioning as well as metabolic disturbance [49]. 

1.5.2. Pressure ulcers 

Prolonged compression over a bony prominence combined with decreased tissue 

perfusion and ischemia induces pressure ulcers. Increased friction between the skin and 

the support is an additional factor for pressure ulcers [39]. The loss of sensation 

prevents early detection of such skin problem. Skin care is a critical component of 

health maintenance for patients with SCI. Pillows and cushions should be employed to 

create a comfortable soft seat. The patients should be taught how to change position 

regularly. Close attention should be given to minimizing friction over the skin when 

patients are to be moved [39]. 

1.5.3. Musculoskeletal deterioration 

Individuals with SCI experience various degrees of musculoskeletal deterioration [50]. 

The musculoskeletal system retains a remarkable degree of load-dependent plasticity, 

with structure gradually adapted according to physical demands. Regular physical 

training increases muscle volume, while reduced activity results in muscle atrophy and 

weakness. As a result of disuse, patients with SCI demonstrate rapid atrophy of the 

paralysed muscles, with the lower-limb muscles being 45% smaller six weeks after 

injury [51].  
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Apart from muscle weakness, SCI triggers a transformation of muscle composition. 

Skeletal muscle broadly constitutes two subtypes of muscle fibres: Type I (slow twitch 

fibres) and Type II (fast twitch fibres) [18]. Red Type I fibres can utilise more oxygen 

and sustain aerobic activity, resulting in fatigue resistance. Type II is further divided 

into IIa with high oxidative capacity, and IIb as anaerobic, glycolytic, “white” muscle. 

Type IIa fibres are red fibres and fatigue resistant while anaerobic Type IIb are white 

and quicker to fatigue. The healthy population has various types of muscles composed 

of fast and slow twitch muscle fibres. Spinal cord injury can affect the proportion of the 

different fibre types present in muscle tissue, with the consequence that muscle fibres 

change from slow-twitch, fatigue-resistant muscle to fast-twitch, fatiguable muscle 

[52]. This muscle transformation affects the potential endurance capacity of patients 

with iSCI who have some motor function [53]. 

1.5.4. Bone fracture 

Similar to the load-dependent plasticity of muscle, bone responds to mechanical stimuli. 

Paralysis or a long term sedentary lifestyle leads to reduced loading in the skeletal 

system, which brings an imbalance in bone metabolism. Patients with SCI usually 

experience bone demineralization after injury. Bone mineral density decreases at a rate 

of 2–4% a month, and reduces to only half of the normal density in the paralyzed limbs 

within the first 3 years after SCI [54, 55]. The reduction of strain applied on the bone is 

thought to be an important contributor to bone demineralization [56]. Due to 

osteoporosis, fractures may easily occur during daily activities such as bed-wheelchair 

transfer [57], which further restricts the mobility of patients with SCI and increases the 

chance of rehospitalisation. The annual incidence of fracture is about 2% in patients 

with motor complete SCI and the incidence increases over time, with the average time 
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of first fracture being 9 years after injury [58]. It is thought that there may be some 

benefit to regular intensive loading activities in the early stage of rehabilitation [59]. 

1.5.5. Neurological development after SCI  

Apart from physiological degeneration, SCI-induced sensorimotor interruption 

generates neurological adaptations, which are often presented as spinal shock initially 

followed by spasticity. 

The characteristics of spinal reflexes change according to the time after SCI [60]. 

Within 24 hours after injury, patients experience areflexia/hyporeflexia, where normal 

spinal reflex responses, such as the stretch and flexor reflexes are absent. The tibial 

H-reflex (a reflex after electrical stimulation of sensory fibres, which is analogous to 

the mechanically induced spinal stretch reflex) returns by about 24 hours. The 

cutaneous reflex becomes stronger during the period between 1 to 3 days after injury. 

Most tendon reflexes first reappear from approximately 4 days to 1 month after injury 

[60].  

Within one month to one year after injury, patients with upper-motor-neurone SCI 

suffer from spasticity/hyperreflexia. Cutaneous reflexes and deep tendon reflexes 

become hyperactive and may respond to minimal stimuli, such as light touch. Spasticity 

refers to involuntary, uncontrolled muscle spasms and increased tone due to increased 

spinal reflexes. Spasticity normally presents as spastic hypertonia, which is a motor 

disorder characterized by a velocity-dependent increase in tonic stretch reflexes 

(muscle tone) with exaggerated tendon jerks, and increased muscle tone resulting from 

hyperexcitability of the stretch reflex [61]. Following recovery from spinal shock, 
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spasticity appears with spasms such as extensor spasms, flexor withdrawal spasms and 

clonus, in individuals with upper motor neurone lesions, especially in patients with 

iSCI [62, 63]. In order to prevent any potential injury to the patient, spasm may be 

reduced through pharmacological interventions targeted at the central or peripheral 

neuromuscular mechanism [64]. 

In summary, people with SCI suffer not only from the primary consequences of the 

injury, such as paralysis or loss of sensation, but also from a number of secondary issues. 

Complications, including metabolic disorders and musculoskeletal deterioration, tend 

to reduce mobility and further deteriorate the daily life quality of people with SCI [6].  

1.6. Conclusions  

In summary, damage to or disease interrupting communication between the brain and 

the spinal cord may result in impairments of motor, sensory and autonomic functions. 

As a consequence of the physiological problems associated with SCI, many individuals 

have neurological impairments and functional deficits. This highlights the importance 

of suitable rehabilitation programmes, to reverse or to alleviate health degeneration [7]. 

Rehabilitation technology has been used in an attempt to restore walking function of 

patients with SCI in clinical settings with encouraging results. The following chapter 

briefly discusses the basic theory of SCI rehabilitation. The available literature relating 

to the research and use of various kinds of rehabilitation systems for recovery of 

walking in people with SCI is then examined and discussed with particular emphasis 

on early rehabilitation of walking.   
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Chapter 2. Literature Review 

Summary: SCI disrupts signal transmission between the brain and the spinal networks, 

resulting in varying degrees of function impairment below the injury level. Neural 

plasticity provides a basis for rehabilitation after SCI. Research on the central pattern 

generator (CPG) gives evidence for restoration of locomotion. For patients with iSCI 

where some function is preserved in the lower extremities, intensive task-specific 

locomotor training has been shown to promote gait restoration [65]. An overview of 

rehabilitation programmes of walking, including traditional physiotherapy and the 

newly developed robotic-assisted training, is given, followed by a critical examination 

of the literature related to early rehabilitation programmes for walking. The aims and 

objectives of the research described in this thesis are then given based on these 

findings.  

2.1. Rehabilitation after SCI 

SCI brings various impairments which severely reduce the quality of life of patients. 

However, due to neural plasticity, various degrees of recovery can be obtained after 

injury. Neural plasticity refers the capacity of neurones to rearrange anatomical and 

functional connectivity according to environmental circumstances, resulting in new or 

modified features and behaviours [66]. The central nervous system (CNS), based on 

neural plasticity, is capable of continuous alteration of neural pathways and synapses. 

Such plasticity exists in both healthy and injured situations, which enables variable 

degrees of recovery both in the brain and the spinal cord. Recovery occurs both 

spontaneously after injury and in response to rehabilitative therapies.   
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2.1.1. Spontaneous recovery 

Neurones can spontaneously increase their plasticity after injury and construct new 

networks, which provides the basis for recovery and compensatory behaviours [67]. 

Some spontaneous recovery can be observed within a few days after injury [68]. In 

response to disrupted axonal pathways and/or segmental spinal cord circuits, biological 

systems renew themselves for functional compensation. Anatomically spontaneous 

plasticity induced by SCI includes sprouting, axon elongation and synaptic remodelling 

[69]. Both the damaged and the intact neurones can grow dendrites and/or lengthen 

axons to project into the damaged area. Research on rats [68] demonstrates that SCI 

leads to a remodelling of synaptic structures in the motor cortex. Rats with a right 

cervical overhemisection injury at the C4 level show dendritic spines (small 

membranous protrusions from a neurone’s dendrite that typically receives input from a 

single synapse of an axon) in the motor cortex with increased diameters. SCI leads to a 

higher proportion of longer spines [68]. Apart from anatomical modulation of neurones, 

the cells around the lesion are stimulated by the injury to proliferate spontaneously. The 

new cells replace some of the damaged cells [38, 70], resulting in novel pathways to 

re-establish the lost supraspinal control [71].  

As injured axons in the mature CNS have relatively limited regeneration capability, 

spontaneous recovery of motor function is mainly mediated by structural 

reorganization of the spared motor system. Research on animals demonstrates that 

substantial brain mapping reorganization occurs spontaneously in response to SCI. 

Compensatory remodelling mechanisms such as synaptic plasticity, axonal sprouting 

and cellular proliferation trigger CNS reorganization, which occurs at multiple levels of 

the neuraxis including the motor cortex, the brainstem, spinal cord centres as well as
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descending supraspinal tracts [68]. 

Research on monkeys suggested that sensorimotor cortex organization could be 

modified after SCI [72, 73]. After a partial section of the dorsal columns in the cervical 

region, hand stimulation still activated the hand territory in BA 3b (which can be seen in 

Figure 1.2) because of the remaining dorsal column afferents. After about one month 

the area of activation was greatly expanded. After half a year, large reorganization 

occurred such that the hand territory became responsive to afferent inputs from the face 

[73]. The capacity for dynamic modulation of representational maps is not limited to 

the sensory neocortex, but is also evident in the motor maps of the adult primary motor 

cortex [74, 75]. 

A large degree of reorganization of sensorimotor cortical maps has been revealed in 

adult mammals following SCI, and such cortical plasticity is gradually being detected 

in humans as well. Studies with transcranial magnetic stimulation demonstrated motor 

cortex plasticity in both chronic and acute patients with SCI [76, 77]. Patients with 

complete SCI at low thoracic levels showed a larger fraction of the motor neurone pool 

activated by magnetic stimulation, with motor evoked potentials from a larger number 

of scalp positions than healthy subjects [76]. An expanded cortical motor map of the 

preserved segments (such as biceps muscle) was also detected in patients as early as 6 

days after SCI [77]. The area of expansion depends upon the degree of intact motor 

function following SCI at different spinal levels. Paraplegics showed a stronger and 

more widespread cortical activation compared with tetraplegics [78]. It is suggested 

that spontaneous reorganization of neuronal activity occurs within these supraspinal 

sensorimotor centres, most probably as a consequence of reduced and altered afferent 

input from the spinal cord [78]. 
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Spontaneous cellular, structural, and electrophysiological changes occur in the brain 

and spinal cord [79]. Some of these spontaneous changes promote recovery, while 

some appear to be maladaptive, such as inter-limb reflex activity. Stimulation of lower 

limb nerves or the skin in persons with injury to the cervical spinal cord induces 

contraction of the distal upper limb, due to new synaptic interconnections between 

lower limb sensory afferents and motor neurones in the cervical region [80]. Such 

contacts between ascending afferents and cervical motor neurones do not appear to 

provide any functional benefit. Rehabilitative strategies could be used to enhance 

adaptive plasticity and/or mitigate maladaptive plasticity to enhance recovery after 

SCI. 

2.1.2. Activity-dependent spinal cord plasticity 

Plasticity occurs in the CNS and it can be shaped by physical activity. The CNS 

possesses the capacity to acquire new function based on use and activity. The brain’s 

activity-dependent plasticity is commonly seen, for example, in that right-handed 

people have a more dexterous right hand, but continuous practice and usage of the left 

hand can make both hands similarly dexterous. The spinal cord, like the brain, shows 

activity-dependent plasticity [81-84]. Peripheral inputs or central outputs from the 

brain can cause lasting changes in the spinal cord. Cats with complete spinal cord 

transection with preserved forelimb function could be trained in standing or stepping, if 

specific training was carried out. However, step-trained cats could not stand while 

stand-trained cats could not step [81]. Activity-dependent spinal cord plasticity is 

important for motor skill learning [85], which is also demonstrated in humans. 

Numerous clinical studies have clearly demonstrated that rehabilitation can be 

improved by task-specific training. For example, patients who underwent locomotor 
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training with adequate sensory input had greater mobility than those without gait 

training [82-84], while intensive hand training showed significant improvements in 

hand function [86-88]. 

The mechanism of activity-dependent plasticity can be explained by cellular and 

molecular function improvement. Physical training, including active or passive training, 

increases neurotrophins, a bundle of proteins which promote neuronal survival, 

differentiation and growth [66]. Brain-derived neurotrophic factor mediates learning 

and memory, alleviating cognitive decline. Physical exercise regulates the levels of the 

neurotrophic factor, decreases lesion size and enhances cognitive and motor function 

[66]. Furthermore, physical activity promotes regenerative sprouting in various tracts 

after SCI. It was shown that wheel running stimulated fibre growth caudal to the lesion 

in mice [89], while treadmill training increased axonal regrowth and collateral 

sprouting proximal to the lesion site [90]. Activity induced cellular change modulates 

axon connectivity in interneurones, which in turn correlates with functional recovery 

[91]. 

Apart from cellular function, activity produces lasting change in the spinal cord via 

sensory inputs with impact on motor function. The function of spinal circuits can be 

modulated by physical activity. Sensory input to the spinal cord changes the motor 

neurone excitability, which is revealed by research on spinal reflexes. For example, 

afferent input related to C-fibre stimulation can induce habituation and sensitization of 

flexion withdrawal reflexes [92]. Epidural electrical stimulation in motor-complete 

patients induced rhythmic lower limb motion. This revealed that the physiological state 

of spinal networks can be modulated by sensory information into a source of control for 

movement in the absence of supraspinal input [93, 94]. Assisted stepping with sensory 
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input activated the motor neurone pool resulting in a reciprocal pattern of activity in the 

lower limbs of patients with iSCI, with activation of some muscles which could not be 

recruited during their voluntary contraction of individual joints [95]. Such observations 

provide evidence that activity dependent plasticity can be manipulated to induce 

therapeutic effects.  

CNS plasticity provides important neurochemical foundations for rehabilitation. 

Although CNS plasticity remains throughout life, it should be activated in an 

appropriate manner at an appropriate time. Task-specific rehabilitation should be 

started as soon as is safely possible [66]. Patients with SCI show a gradually decreased 

flexor reflex amplitude over time, which might imply a gradual loss of activity from 

spared neurones following SCI, most probably due to immobility [96]. Early 

rehabilitation training should be organized to maximize positive neurological 

adaptations.  

2.2. Theories for Rehabilitation of Walking 

Neural plasticity theory highlights the importance of a suitable rehabilitation 

programme. Advances in acute medical management of SCI have improved survival 

rates. The mean life expectancy of people with SCI ranges from 70% to 92% of the 

normal population [97]. Given that the mean age of patients sustaining their injury is in 

the early thirties [31], individuals with SCI live many years with their disability and the 

associated morbidity. When asked about their priorities during rehabilitation, patients 

with SCI consider restoration of walking as one of their most important goals [98, 99]. 

There are some theories and evidence which support rehabilitation of walking after 

SCI. 
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2.2.1. Central pattern generator (CPG) in animals 

Many animals models have demonstrated that the adult mammalian lumbosacral spinal 

cord can achieve stepping in the absence of supraspinal input as long as adequate 

sensory information is provided periodically and balance is secured [100-105]. Such 

spinal networks for generation of rhythmic patterned locomotion are now called the 

central pattern generators (CPGs).  

There are many reports of locomotion recovery after spinal transection in lower 

vertebrates and mammals [101, 103, 105]. Without any central control, rhythmic 

patterned locomotion can be achieved by the CPGs. At the start of the last century, the 

intrinsic capability of the spinal cord to produce rhythmic movements was discovered 

from classical experiments on dogs [106]. After various investigations on rodents and 

other vertebrates including turtles [107], chickens [108] and cats [109], CPGs in 

animals were found to be comparatively autonomous neural networks located from the 

lower thoracic (T11 to T13) through the lumbar regions of the spinal cord [110].  

In the early 1900s, stepping movement was induced in a spinal cat with a complete 

lesion [106]. Modern evidence of CPGs came from an experiment on kittens carried out 

by Forssberg and colleagues [111]. Fourteen kittens had spinal cord transection 

between T10 and T12. Some muscle tone appeared in the hindlimbs one or two days 

after the spinal cord transection. When the trunk was held, there was alternating flexion 

and extension in the hindlimbs. As the kittens got older, they could walk without 

assistance for several steps. When the hindlimbs were placed on a treadmill, the kittens 

could adjust to walk at a wide range of speeds. If the speed increased sufficiently, the 

stepping could switch into a gallop. The shape and duration of EMG bursts from the 
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flexors and extensors in the lower limbs during treadmill locomotion were quite similar 

to those from healthy cats [111]. These behaviours were not restricted to the hindlimbs. 

Similar methods have been utilized successfully to induce stepping or fictive 

locomotion in the forelimbs [112, 113].  

CPG networks provide the essential mechanism of spinal locomotion on the treadmill. 

However, adequate sensory inputs appear indispensable so as to adapt the spinal 

locomotion pattern to external conditions [114]. Studies on disturbed locomotion 

showed that cutaneous inputs played important roles in adapting locomotion to 

disturbances. For example, if one swinging hindlimb was transiently halted by an 

object, this limb would rise higher above the object to avoid the disturbance [115]. 

Afferent input from the skin around the feet contributes to EMG patterns [114]. After 

various degrees of denervation of cutaneous nerves at the ankle level of the hindlimbs, 

cats with partial denervation recovered locomotion, while completely denervated cats 

with no cutaneous inputs never recovered walking, regardless of training [101, 116]. 

Limb load and hip extension were revealed to be of great importance for locomotion 

coordination. The load function during locomotion was first proposed by Duysens et al. 

based on their observations on denervated cats [117]. The ankle flexor activity is 

inhibited after the ankle extensor is loaded, which results in a delayed swing phase. 

Limb loading largely influences locomotor activity in the walking cat [117]. Conway et 

al. further observed that proprioceptive input from the load resets central locomotor 

rhythm in spinal cats [118]. The importance of hip position in the initiation of flexion 

was discovered in an experiment in spinal cats walking on a treadmill [119]. When one 

leg’s paw was supported off the treadmill, the contralateral limb continued walking, 

with rhythmic flexion and extension in the walking leg. It was only when the lift-off 
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limb was brought to a specific extension position that it initiated the swing phase. The 

extended hip position had a critical effect while the position of the ankle and knee 

failed to induce any effect. In conclusion, a certain extended hip position and a 

consequent small load applied on the limb activates the CPG networks to induce 

locomotion in animals. 

2.2.2. CPG in humans 

CPG networks contain adequate neuronal elements to produce rhythmic outputs which 

are quite close to normal motor patterns [103]. Positive evidence of CPGs in lower 

mammals has encouraged investigation of CPGs in humans [120]. In marked contrast 

to the abundance of evidence in animals, firm evidence of CPGs for stepping in the 

human is not so easy to obtain. One reason is that the healthy human has increased 

supraspinal control of walking from the mature nervous system [121]. Locomotion 

control from the developed brain might override the coordination functions from the 

spinal circuit. Another reason is that intense research in decerebrated or spinal humans 

so as to investigate direct evidence of CPGs is difficult [122]. There are some 

individuals falling into these categories, due to accidents or illness. But investigation 

on such populations is limited because stepping movement is hard to induce due to 

physical weakness [123]. In spite of many difficulties in CPG research on humans, 

many clues of the CPG’s existence in humans have been captured by scientists.  

Firm evidence was obtained from individuals whose brains were not fully developed. 

Human infants serve as good subjects for the study of generator networks in human 

walking. This innate stepping movement in infants between the ages of ten days and 

ten months was investigated by Yang et al. [122, 124]. Most infants displayed 
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apparent muscle activity of the flexor and extensor muscles when supported to step on 

a treadmill. By changing activity duration of the extensor muscles, infants achieved 

stepping at various speeds on the treadmill [122]. Evidence of CPGs in adults was 

revealed by Bussel et al. based on long-latency, late-flexion reflex responses in 

paraplegics [24]. Later hints of CPGs were obtained from rhythmic myoclonic 

movements of the trunk and lower limbs in a patient with clinically complete cervical 

spinal cord transection [125].  

Epidural electrical stimulation in humans offers further evidence of CPG networks. 

Electrical stimulation on the lumbar spinal cord of a chronic patient with complete 

SCI induced rhythmic motion in the lower limbs when the subject was in a lying 

position [93]. Stepping sensory epidural stimulation of a chronic paraplegic with no 

motor but partial sensory function resulted in locomotor-like patterns in the leg 

muscles during manually assisted leg movement on a treadmill [94]. The muscle 

activity displayed a similar pattern to that in healthy subjects, as far as duration was 

concerned. This observation proved that CPG networks exist in the human spinal cord, 

and that it can be activated by appropriate sensory stimulation.  

Similar to results from animals, CPG networks in humans are largely affected by the 

hip joint position and the load afferents on the foot sole. When complete paraplegics 

were supported to walk on a treadmill, the initiation of the complex bilateral leg 

muscle activity was found to be related to the hip joint angle [126, 127]. Further 

research suggested that the human spinal cord could modulate motor pool output in 

response to the load inputs [128]. The muscle activity of the lower limbs was directly 

related to peak limb load, and the response was similar in all subjects independent of 

the level of available supraspinal input.  



Chapter 2                     Literature Review                                  75 

 

 

In summary, research on CPG networks in animal models provides promising results 

for locomotion rehabilitation. Peripheral sensory information is indispensable so as to 

get an adaptable locomotion [119]. Hip extension is revealed to be of great importance 

for locomotion coordination while load inputs from the lower limbs guide locomotion 

for various walking phases and conditions. Increasing evidence of CPG networks in 

humans provides a further basis for design of rehabilitation strategies. Sensory inputs 

including appropriate hip joint positions combined with adequate lower-limb loading 

serve as important requirements for rehabilitation of walking. 

2.3. Rehabilitation of Walking 

Rehabilitation aims to help patients become as functional as possible, while taking 

account of disabilities and personal needs. Restoration of the walking ability is 

considered as the hallmark of a rehabilitation programme [129]. Based on 

task-orientated neural plasticity, suitable physical training is required for patients with 

SCI so as to restore walking.  

Walking relearning after SCI is challenging, especially for those with a severe injury. 

Therefore a large multidisciplinary group of rehabilitation specialists, including nurses, 

physical therapists, physicians, and others, aims to develop effective strategies for 

ambulation. It has been well established in recent years that task-specific training is 

needed for function restoration, e.g. for gait training [129]. The most widely adopted 

approaches for neurological rehabilitation of walking include conventional overground 

training, training with orthoses, body weight support treadmill training (BWSTT), 

training with functional electrical stimulation (FES) and robotic orthosis technology 

[129].   
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2.3.1. Conventional gait training 

Depending on the patient’s physical condition, conventional gait training takes place 

overground with physical assistance provided largely by therapists [129]. Abnormal 

motor tone and postural reactions are typical phenomena in patients with neurological 

deficits and are considered as two key reasons for impaired motor function [63]. 

Therefore the muscle tone is initially addressed by such therapies as passive or active 

rotation of the patient’s leg segments. Conventional rehabilitation strategies for lower 

limb function enhancement after SCI aim to restore or maintain the normal range of 

motion of each joint and elicit selective muscle contraction patterns, and thereby help 

patients control posture and motion. 

Conventionally, gait training does not start until a patient has adequate strength and the 

necessary balance to support and maintain a standing position [129]. When the patient 

is physically too weak to maintain an upright position, some activities that can be 

implemented in a lying position are employed, including hip rotation, knee flexion and 

ankle massage. These passive training methods aim to maintain active joints for 

potential gait training [129]. Later on the patient is challenged to achieve various body 

positions, ranging from lying to sitting, and from sitting to standing. Position transfer is 

managed with physiotherapist assistance or the help of an external device, such as a tilt 

table for inclined lying. Supported standing training can be implemented with 

employment of a standing frame that locks the patient’s knees in extension. 

Conventional training ordinarily proceeds beyond supported standing only if the patient 

has adequate endurance and stability to stand in parallel bars [130]. Gait training starts 

with isolated motion within a gait cycle, e.g. weight shifting or limb loading. 
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Physiotherapists often help to adjust the trunk position and guide the leg movements. 

As the patient progresses in the single motion learning, physiotherapists introduce more 

complicated gait-targeted movements, such as heel strike and toe off [63]. By verbal 

instruction and tactile guidance, the physiotherapists assist the patient in loading the 

stance leg and mimicking the sense of ground force reactions. The physiotherapists also 

aim for at least 10 degrees of hip extension at the end of the stance phase and a correct 

position for heel strike at the initiation of stance [129].  

By providing appropriate physiological afferent stimuli to the patients, conventional 

rehabilitation has been confirmed to promote the functional abilities of patients with 

SCI, with incomplete patients benefiting the most [130, 131]. More than 90% of ASIA 

C and all ASIA D patients achieved walking with minimal assistance after a 

twelve-week conventional gait training period [132]. However, conventional training is 

labour intensive for the physiotherapists who provide manual assistance for control of 

the trunk, pelvis, hip, knee, and ankle simultaneously. Therefore, the duration and 

intensity of rehabilitation is restricted, among other factors, by the physical fitness and 

ability of the physiotherapists to offer suitable rehabilitation practice. 

2.3.2. Lower limb orthoses 

The physiotherapist’s working load can be partially reduced if some assistive orthoses 

are adopted. Furthermore, the use of bracing can ensure safe overground walking. 

Patients with SCI have many common motor deficits, such as a weak ankle joint, flat 

foot contact, knee collapse and excessive hip flexion. These factors have inspired many 

researchers to design bracing systems, also called orthoses, to aid foot clearance during 

the swing phase, to position the foot at the heel contact and to improve stability during 
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the stance phase [130].  

Working in parallel with the lower extremity, a lower-limb orthosis aims to improve leg 

function by providing additional support. Rigid orthoses are often utilized to 

immobilize weak segments, while flexible orthoses allow limited mobility in the 

sagittal plane and constrain motion in the frontal and transverse planes. Orthoses, 

unless otherwise defined, are normally passive devices without actuators. They should 

be adjustable to the size and muscle strength of the patient. Physiotherapists normally 

evaluate the patient’s limbs to see whether they are physically strong enough for 

adoption of orthoses [133]. There are several types of orthoses available to support 

standing and walking function [134], ranging from single-joint braces to whole-leg 

braces that extend from the lower back to the ankle.  

An Ankle-Foot Orthosis (AFO) is employed to support the ankle-foot complex and 

control motion of the ankle to assist walking [135]. A traditional AFO has an upright 

metal brace, while the current AFO is more often made from plastic materials to reduce 

the weight. Most AFOs control ankle motion with a posterior stop limiting 

plantarflexion and/or a spring assisting dorsiflexion. During early stance, the upright 

brace bends backwards slightly. Therefore during the late stance phase, the plastic brace 

recoils forward to lift the foot automatically for swing phase initiation [136].  

Patients with a weak knee joint may need a Knee-Ankle-Foot Orthosis (KAFO, also 

known as long-leg braces), which has an extra knee joint locking mechanism similar to 

the AFO [134]. The traditional KAFO fixes the knee and ankle in an appropriate 

standing position and allows ambulation with crutches. Walking with such a fixed knee 

joint is tiring, because the hip joint needs rising more than normal walking so as to 
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achieve ground clearance during the swing phase. This results in gait compensation 

skills, such as circumduction, hip hiking, and external rotation. To solve these problems, 

recent KAFOs are normally equipped with a pair of hinges that are locked to support 

constant extension of the knee during the stance phase, while the hinges are unlocked to 

allow bending during the swing or sitting phases [137, 138]. Such stance-control 

KAFOs allow knee flexion in the sagittal plane without medial-lateral rotation and 

hyperextension.  

The patient who requires more hip and trunk stability needs a Hip-Knee-Ankle-Foot 

Orthosis (HKAFO), which has an extra pelvic band and two hip-joint braces over the 

KAFO [139]. The simple HKAFO prevents abduction and adduction with limited hip 

rotation. Two typical HKAFOs are the Hip Guidance Orthosis (HGO) and the 

Reciprocating Gait Orthosis (RGO). The HGO has flexion and extension stops for 

walking and a release mechanism that allows 90
o
 flexion for sitting. The RGO allows 

reciprocal hip motion in the sagittal plane through the reciprocal link so that flexing 

one hip joint extends the contralateral hip. Depending on the power of the lower limb 

muscles, use of these gait orthoses typically requires substantial support from the upper 

limbs [139]. 

The use of orthoses provides better stabilization of the relevant joints, resulting in 

improved leg function. More importantly, orthoses reduce the strenuous physical 

demands on physiotherapists, and some orthosis users even achieve independent 

walking [129]. Many studies confirm the positive results of using orthoses, such as  

increased step length and compensated motor control [136, 140, 141]. Orthoses 

facilitate the ability to stand independently and to achieve some functional ambulation 

skills, such as stepping up on kerbs or climbing stairs with crutches. Patients with 
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incomplete SCI increase gait speed and endurance when walking with an AFO, 

compared to walking without [142]. Further therapeutic effects have been observed, 

including reductions in the incidence of pressure sores and bone fractures [143]. 

The successful use of orthoses/braces is, however, largely dependent on individual 

factors, including the injury level, age, motivation, upper extremity strength, as well as 

spasticity and contractures [144]. Patients with complete SCI require external 

assistance to achieve basic stepping without falling. Orthoses are more appropriate for 

patients who have good postural control and a good level of physical fitness. Although 

patients with iSCI may benefit from the use of othoses, in many cases the quality of 

walking is not sufficient for daily life. The speed is relatively slow, with a high energy 

cost [139, 145-147]. The maximum walking speed achieved with the use of orthoses 

ranges from 0.15 to 0.45 m/s [145, 148, 149], which is less than half of the optimal 

speed (1.1 m/s) required for successful daily ambulation.  

2.3.3. Therapist-assisted BWSTT 

In order to reduce the risk of falling for those who cannot keep balance, Body Weight 

Support (BWS) has been used to assist gait training [150]. Using an overhead harness, 

BWS unloads a proportion of body weight to assist patients in an upright position. 

BWS reduces excessive hip and/or knee flexion during the stance phase. More 

importantly, BWS provides a more secure environment for training, therefore the 

patient is confident and more motivated to practise walking. BWS also provides better 

balance control [151]. The harness provides support to the trunk without generating any 

compensatory asymmetry or forward trunk flexion. BWS relieves physiotherapists 

from labour-intensive work. It is challenging for them to simultaneously adjust posture, 



Chapter 2                     Literature Review                                  81 

 

 

balance and stepping, as in conventional therapy. With BWS holding the trunk and 

securing balance, physiotherapists can fully concentrate on improving the coordination 

of movement. As the BWS rehabilitation programme progresses, the amount of body 

weight support can gradually decrease, challenging the patient to support more weight 

during postural and balance control.  

BWS is sometimes used during overground walking [151]. However, those who have 

weak muscles in the lower limbs cannot create enough friction for overground forward 

progression if too much of their weight is supported by BWS. Practical rehabilitation of 

walking with BWS is usually carried out using a treadmill [152]. Initiated in a study by 

Barbeau et al. [153] in 1987, the training approach called Body Weight Supported 

Treadmill Training (BWSTT) opened new perspectives for patients with SCI. This gait 

training strategy was motivated by experiments on spinal animals which restored 

locomotion after treadmill training [65, 101, 153]. CPG theory implied that locomotion 

could be achieved by integrated afferent sensory inputs. In order to provide an adequate 

sensory stimulus for rehabilitation of walking, the gait pattern during locomotor 

training should be as close as possible to the gait pattern of able-bodied people during 

overground walking. 

BWSTT programmes use a harness to assist the patient in an upright position on a 

treadmill as shown in Figure 2.1. The moving treadmill belt translates the standing leg 

backwards, with adequate hip extension at the end of the stance phase. Suitable swing 

speeds and step lengths are adjusted manually by the physiotherapists. They place one 

hand above the patient’s popliteal fossa and the other hand above the patient’s heel to 

facilitate the swing phase, including foot clearance at toe off and foot stabilization at 

heel strike. BWSTT is carried out with help from one to three physiotherapists, 
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depending on the severity of the patient’s injury. One or two therapists sit by the side of 

the patient. One more assistant stands behind with the hands on the patient’s hips to 

facilitate trunk alignment, pelvic rotation, weight shifting, and hip rotation [154]. 

Furthermore, mirrors are placed in front of and at the side of the patient to provide 

visual feedback of body position and leg motion. BWSTT is designed to provide as 

much sensory feedback as possible, similar to that occurring during normal overground 

walking. 

 

Figure 2.1: Therapist-assisted BWSTT (from [155]). 
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Therapist-assisted BWSTT is considered as a safe and effective approach to facilitate 

locomotor rehabilitation after SCI [82]. Numerous studies have investigated the 

training effects of BWSTT in patients with SCI [82, 83, 156-160]. Patients with 

complete injury can achieve stepping with coordinated flexion/extension movements 

and phasic EMG activity during BWSTT [83, 156, 157]. Many patients with iSCI 

recover walking abilities to various degrees after BWSTT [158-160], with improved 

symmetry of load capacity and muscle activation patterns from the lower limbs [158, 

161]. Regular BWSTT (150-300 minutes per week, 3 to 23 weeks) enabled more than 

70% of wheelchair-bound patients to walk independently, and those who could already 

walk before BWSTT improved walking speed and endurance [82]. BWSTT is at least 

as efficient as conventional methods of gait restoration. Studies [82, 159] showed that 

more than 80% of subjects with iSCI who underwent BWSTT achieved improvements 

in functional ambulation compared to only 50% of the initially non-ambulatory 

subjects who improved functional ambulation after a conventional rehabilitation 

programme. The multicentre randomized Spinal Cord Injury Locomotor Trial [132, 

162] also reported notable improvements in walking function in patients with iSCI after 

12 weeks of BWSTT. Therefore, the efficiency of BWSTT has been affirmed by such 

extensive clinical trials. 

BWSTT, compared to conventional overground training and training with passive 

orthoses, secures postural stability through BWS and assists smooth forward 

progression. All three gait training interventions discussed so far involve extensive 

manual assistance from physiotherapists. The advantage of manual assistance is that 

the physiotherapist moves the patient’s body segments through direct contact. The 

experienced physiotherapist can recognize the level of assistance that the patient needs 

for basic stepping, and provides various amounts of assistance as required within each 
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step cycle. However, this assistance may be inconsistent, because it is a subjective 

judgement, resulting in different inputs from different physiotherapists, or variation 

when the same physiotherapist becomes fatigued as the training progresses [163]. It is 

labour intensive work for physiotherapists to act as the main source of power to assist 

training. In order to provide more assistance to patients and reduce the labour intensity 

of the physiotherapists, it would be beneficial if a training modality can be employed 

which provides additional energy for walking training. Such additional mechanisms 

can be “muscle actuators” induced by FES or mechanical actuators, achieved by 

additional mechanical devices.  

2.3.4. FES 

FES can be described as an active power system, capable of eliciting motor responses 

for standing and/or walking apart from a range of other functions. Functional electrical 

stimulation uses short bursts of electrical pulses to generate muscle contraction. The 

electrical stimulation intensity determines the muscle contraction level, thereby 

controlling motion. Stimulation intensity is adjusted by its pulse waveform, amplitude, 

duration and frequency [164]. By adjusting stimulation intensity, FES can reduce 

disability and produce functional activation of paralyzed muscles [165].  Electrical 

stimulation employs surface electrodes or implanted electrodes for better activation 

and mobility control [166].  

FES was initially employed to correct foot drop in stroke patients [167]. It was applied 

on the peroneal nerve to improve the swing phase by activating the tibialis anterior 

muscle for ankle dorsiflexion. The stimulation was triggered by hand or by foot 

switches using either force-sensing resistors or mechanical contacts. The utilization of 
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FES in patients with SCI has received substantial interest since the 1970s, when muscle 

contraction and the standing position were achieved in this population [164, 168, 169].  

Patients with complete SCI adopt FES as part of an assistive device for permanent use. 

With stimulation of muscles around the ankle and knee joints, paraplegic individuals 

with complete SCI regained a simple reciprocal locomotion pattern [169], and achieved 

basic stepping in parallel bars [170]. Long-term training improved maximal stimulated 

knee moment with symmetrical muscle responses from both legs [171]. However, in 

order to improve the walking pattern, extra stimulation channels on hip flexors, 

extensors and abductors were required for appropriate hip motion, which resulted in a 

complex multichannel stimulation strategy [172, 173]. Furthermore, the absence of all 

motor and sensory (in particular proprioception) function reduces the gait restoration 

efficiency. Without proprioceptive feedback, patients with complete SCI totally rely on 

visual observation of limb position to relearn walking [174]. Depending on muscle 

condition, patients with iSCI use different stimulation methods for walking 

rehabilitation. If the patient has a weak ankle, gait synthesis can be achieved by 

stimulation of ankle plantarflexors to assist push-off at the end of the stance phase and 

to enhance initiation of the swing phase. If the patient has an unstable knee joint, the 

knee extensors are stimulated to stabilize the stance leg. Extra stimulation is applied 

over the hip extensors for better position [174].  

FES-assisted walking systems induce simultaneous hip flexion, knee flexion and ankle 

dorsiflexion by activation of the withdrawal reflex. As discussed in Chapter 1, patients 

with SCI often exhibit exaggerated spinal reflexes that have negative effects on gait 

training [175]. The use of FES to induce complex withdrawal reflex movements is 

believed to restore normal spinal reflex activity, thereby decreasing the functional 
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impairments [175]. As expected, most studies showed that patients with iSCI improved 

their gait parameters (walking speed or distance) when FES was used [174, 176]. FES 

reduces the effort from the physiotherapist, and assists some patients in independent 

walking [176]. It is well established that repetitive movement training associated with 

afferent input facilitates recovery of motor function [177]. An EMG-induced FES 

system results in better motor control than non-triggered electrical stimulation because 

the muscle contraction and joint translation are coordinated with the patient’s cognitive 

intention [178]. 

Walking performance is influenced by how long and how actively the patient regularly 

practises. Long-term training with FES-assisted walking brings a significant increase in 

the strength of voluntary contraction [179]. One year’s usage of FES increases maximal 

overground walking speed [180]. The improvements in functional ambulation persist 

even when the stimulator is turned off (carry over), including increased walking speed, 

cycle length and frequency as well as stance time when the patients walk on their own 

[180]. FES modifies joint angular kinematic patterns in walking, but long-term training 

integrates these changes into functional gains [180]. Benefits of FES exercises are more 

than just a matter of walking distance or speed. FES produces therapeutic benefits, 

including reduced spasticity, less muscle atrophy and increased postural stability [179]. 

In spite of varying degrees of success in patients with different degrees of injury, FES 

succeeds in activating the weakened or paralyzed muscles for gait rehabilitation. 

Compared to passive motion guided by physiotherapists, FES-assisted motion is driven 

by the patient’s own muscle. FES has been investigated as an effective tool for muscle 

activation in gait training, and employed in conjunction with mechanical orthoses or 

BWSTT training, in the hope of reducing the need for manual assistance.  
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2.3.5. FES orthoses 

FES orthoses have been designed for patients with SCI, based on the high energy 

expenditure in walking assisted by conventional mechanical orthoses. FES is utilised to 

elicit a withdrawal reflex of the lower extremity with the goal of improving the gait 

pattern and reducing manual assistance. Furthermore, combination with orthoses can 

simplify the FES stimulation system, especially for those patients who do not have 

adequate balance. Given that mechanical orthoses are effective in stabilizing the lower 

limbs, the hybrid orthosis achieves mechanical stability from an orthosis with a 

prototype walking pattern induced by FES. Research has found additional positive 

effects of FES orthoses compared to FES or mechanical orthoses alone [142, 181-183]. 

FES hybrid orthoses increased gait speed and endurance, improved the gait pattern and 

reduced upper extremity exertion [142, 181]. FES may also be combined with bracing 

to stabilize the trunk and to facilitate forward progression [181-183]. 

In order to provide a more secure gait training environment for those who are 

physically weak, FES technology has been combined with BWSTT, reducing the need 

for manual assistance. The motorized treadmill assists propulsion of the stance limb, 

which promotes hip extension. The swing phase can be assisted with FES by using the 

flexion withdrawal response evoked by stimulation of the common peroneal nerve. The 

activation of reflexes provides further theoretical support for FES combined with 

BWSTT [99]. FES-assisted BWSTT has been tested with promising clinical results 

[184]. An overall enhancement of functional ambulation was achieved in patients with 

ASIA C SCI, demonstrating favourable outcomes when BWSTT was combined with 

FES [184]. After long term use of FES assisted treadmill training (1.5 hours a day, 3 

days a week for 3 months), chronic patients with iSCI who initially had asymmetrical 



Chapter 2                     Literature Review                                  88 

 

 

lower limb function demonstrated improved intra-limb coordination, with increased 

walking speed and lower extremity muscle strength [185]. Four weeks of BWSTT 

combined with FES (25 minutes a day, 5 days a week) increases walking endurance 

more than conventional therapy, resulting in a better effect on overground gait 

parameters [186]. 

Although laboratory studies reported the efficacy of FES systems in improving 

ambulatory function for patients with SCI, the effectiveness of FES technology varies 

between patients with different degrees of muscle strength and injury levels. Different 

stimulation parameters, such as pulse width, frequency, and duration need to be 

adjusted for each individual so as to attain an optimal training stimulus. It was reported 

that some patients found they could use the FES device easily on a regular basis and 

that they walked better with FES, while others reported difficulties in finding the best 

electrode positions and parameters for effective stimulation [187]. As is well 

established, muscle deconditioning after SCI is characterized by a reduction in the size 

of individual muscle fibres and changes of muscle fibre type [51]. These alterations 

result in a loss of strength and/or reduced endurance of muscular contraction. Such 

functional changes of the muscle indicate a need for FES to reverse muscle 

degeneration, but at the same time they present obstacles to implementation of FES. 

Because of muscle structure modification over time, contraction via FES in SCI is not 

as efficient as in able-bodied subjects. The reduced endurance of muscle contraction 

results in rapid fatigue, which restricts the general application of FES in people with 

SCI.  
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2.3.6. Robotic gait orthoses 

In contrast to FES orthoses, dynamic orthoses utilize mechanical actuation to induce 

motion of the human body. Mechanically actuated orthoses can provide consistent, 

repetitive and prolonged gait training. Many types of actuators, including electric 

motors [188, 189], torsion springs [190], and artificial pneumatic muscle [191-193], 

have been investigated with positive results in movement control. Apart from relatively 

simple orthoses for one or two segments of the lower limb described in [188-193], 

various complex robotic orthoses have been developed to guide the training of both 

lower extremities and to support body balance. Such systems include the Lower 

Extremity Powered Exoskeleton (LOPES) [194], the Active Leg Exoskeleton (ALEX) 

[195], the Ambulation-assisting Robotic Tool for Human Rehabilitation (ARTHuR) 

[196], the Pelvic Assist Manipulator and the Pneumatically Operated Gait Orthosis 

(PAM /POGO) [197], as well as three commercially available rehabilitation devices: 

Lokomat [198], Lokohelp [199] and the G-EO robotic gait system [200]. 

The LOPES device, designed by Asseldonk et al. at the University of Twente, includes 

an exoskeleton for each leg and a pelvic support, as shown in Figure 2.2 [194]. The 

pelvic support can translate freely back and forth and from left to right. A 

parallelogram device with bearings and weight compensation allows upward and 

downward motion of the trunk. Each leg exoskeleton has three rotational electric 

motors: two at the hip joint (for flexion/extension and abduction/adduction) and one at 

the knee (for flexion/extension), providing three degrees of freedom (DOFs). LOPES is 

designed to operate with a treadmill. The patient is balanced with supports around the 

pelvis and hip to reduce the skin irritation which may occur when using an overhead 

harness BWS system.  
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Figure 2.2: The prototype of LOPES (from [194]). 

The LOPES system has two modes of operation. The “patient-in-charge” mode allows 

the user to walk unconstrained by the device, while the “robot-in-charge” mode has the 

system guide the user to move in predetermined walking patterns. The intended 

application for most patients with iSCI lies between both modes, known as the 

“therapist in charge” mode, where appropriate corrective or supportive torques can be 

applied to the leg joints and the pelvis when patients try to walk with their own effort. 

The LOPES prototype has been tested on able-bodied persons in the “patient in charge” 

mode. The walking pattern in LOPES resembles treadmill walking [194]. However, a 

general clinical evaluation of LOPES on patients with various severities of SCI has to 

be undertaken. One limitation of the LOPES system is that the lower limb is guided in 
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the hip and knee joints, while the ankle and foot are left without any support. Patients 

who have weak ankle joints might have problems in achieving correct ankle rotation in 

LOPES. 

In contrast to LOPES, the ALEX system, which was developed by Scholz et al. at the 

University of Delaware in 2007, has additional bracing to secure the foot [195]. The 

foot brace passively holds the foot, but the ankle angle is constantly monitored using an 

encoder. ALEX has five components: the Walker, the trunk orthosis, and the segments 

of the thigh, knee and foot. The former two elements combine to support body weight 

but allow for vertical and lateral translations. The latter three components 

collaboratively move the lower extremities. The trunk is passively supported by a 

parallelogram mechanism called a gravity balancing orthosis, which alters the level of 

gravity load by adjusting the spring parameters. The leg orthoses are driven by linear 

servo motors at the hip and knee joints. ALEX applies forces on the foot, based on the 

“assist-as-needed” rule to help the leg move on a desired trajectory. Healthy subjects 

were found to relearn the newly-defined walking pattern during training with ALEX 

[195, 201]. Two chronic stroke survivors showed encouraging improvements in their 

locomotion ability after three five-day training sessions with ALEX. Improvements 

were reflected in an increase in mean walking speed (from 1.2 to 1.75 m/s) and 

improved gait patterns [202].  

While LOPES and ALEX have passive ankle rotation, the ARTHuR robotic system, 

developed by the Biomechatronics Lab at the University of California, guides leg 

motion through direct ankle control [203]. It makes use of a linear motor with two coils 

and a V-shaped two-bar linkage, which are connected to the subject’s ankle through a 

padded cuff [196]. ARTHuR can generate substantial forces for movements of the 
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ankle joint in the sagittal plane. Preliminary tests on healthy subjects with various 

heights demonstrated that the ankle trajectories during training with ARTHuR were 

very similar to their own normal walking trajectories [196]. A clinical trial on patients 

with chronic SCI showed ARTHuR could perform subject-specific assisted walking, 

resulting in reduced manual assistance from the physiotherapists [203]. However, the 

study investigated only the foot trajectories, while the hip joint motion was not 

reported. 

The robotic system PAM/POGO, also developed by the University of California, is a 

pneumatically actuated robot that allows a full range of natural motion of the legs and 

pelvis during treadmill walking [197]. PAM has two 3-DOF robotic segments, which 

allows free motion of the pelvis during stepping using a BWS system. PAM provides 

lateral and rotational pelvic movements. POGO, as an attachment to PAM, provides 

sagittal rotations for the hip and knee joints during the swing phase, and stabilizes the 

knee joint during the stance phase. Actuated by pneumatic cylinders, the PAM/POGO 

system is able to produce large forces with relatively lightweight moving parts. 

Preliminary experiments on five chronic patients (one ASIA C and four ASIA D) 

demonstrated that PAM/POGO could synchronise pelvic movement with leg motion. 

Muscle activity during PAM/POGO-assisted training was very similar to that during 

physiotherapist-assisted training [197]. The clinical efficacy of long-term training with 

PAM/POGO is yet to be investigated. 

In contrast to the robotic gait orthoses discussed above which use a treadmill, the 

WalkTrainer allows actual overground ambulation [204]. Initiated by the Swiss 

Foundation of Cyberthosis, the WalkTrainer has two leg exoskeletons, a pelvic orthosis 

and an active body weight support, which are assembled in a “deambulator” (frame of 
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the WalkTrainer) [3]. The deambulator is equipped with motorized rolling wheels, 

allowing overground translation. Each leg orthosis is fully actuated at the hip, knee and 

ankle joints, with motion of the whole lower limb in the sagittal plane. In order to 

provide pelvic support as physiotherapists do, the pelvic orthosis has six DOF with six 

motor-actuated axes. The WalkTrainer can generate natural walking patterns with 

normal pelvic motion. Another feature of the WalkTrainer is that muscular participation 

is enabled through closed-loop electrical muscle stimulation. With the combination of 

mechanical motors and muscle stimulation, the WalkTrainer aims to produce gait 

training which is as close as possible to natural overground walking, including leg 

motion, muscle activation, and visual and proprioceptive feedback. The WalkTrainer 

was used by six paraplegic subjects (ASIA A: 2, ASIA C: 1 and ASIA D: 3). Each 

training session started with a 10-minute warm-up via leg muscle stimulation (10 Hz) 

while the subjects stayed still in the WalkTrainer. This was followed by one-hour 

walking training and finally 10-minute cool-down via leg muscle stimulation (10 Hz). 

This test demonstrated the feasibility of  paraplegics walking in the system [204]. 

Clinical trials have yet to be undertaken to evaluate the rehabilitation potential. 

All the robotic gait rehabilitation systems described above are still under development 

and evaluation in the lab, although some have already been used to conduct clinical 

testing. There are some commercially available gait orthoses, such as the Lokomat 

shown in Figure 2.3. The Lokomat robotic gait-orthosis (Hocoma AG, Volketswil, 

Switzerland) consists of two lower extremity orthoses and a dynamic BWS system 

[198]. A parallelogram arrangement combined with a passive spring allows limited 

upward/downward pelvic motion [205]. The hip and knee joints are actuated in a 

gait-like pattern by small DC motors and linear ball screw assemblies. Both ankle joints 

are passively fixed by elastic straps. The dynamic control system can precisely 
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synchronise the treadmill speed with the speed of the lower extremity orthoses. The 

kinematic trajectories and training efficiency of the Lokomat have been extensively 

investigated. In spite of a greater range of motion (ROM) of the hip and ankle joints in 

the Lokomat, the overall kinematics in the Lokomat are similar to 

physiotherapist-assisted treadmill walking [205].  

 

Figure 2.3: The Lokomat
1
. 

                                                 

1
 Available from: http://www.hocoma.com/produkte/lokomat/. Accessed on 03/11/2011. 
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So far, the Lokomat, as the most widely used robotic gait orthosis, is the most clinically 

evaluated system. The efficiency of gait training using the Lokomat was confirmed in 

patients with iSCI [206]. In order to investigate the function of robot assistance in gait 

training, two small randomized control trials were started to compare functional 

ambulation outcomes between four strategies of gait training: BWSTT plus therapist 

assistance, BWSTT plus robot assistance (Lokomat), BWSTT plus FES, and 

overground gait training [207, 208]. Analysis of the quality of the gait pattern revealed 

that all these modes of gait training yielded improvements in overgound walking. Both 

studies demonstrated that these four modes of gait training gave positive results, with 

improved walking cadence and step length. Although it is hard to say which training 

modality is best [209], the observation of improved step symmetry in the 

therapist-assisted and robot-assisted BWSTT groups further confirms the efficacy of 

robotic technology in gait training [208].  

The LokoHelp system (LokoHelp Group, Germany) shown in Figure 2.4 is also 

commercially available. The Lokohelp is also operated with the assistance of BWS and 

a motor-driven treadmill system [199]. However, the treadmill acts as the driver of limb 

motion. The LokoHelp device is fixed at the central part of the treadmill surface and 

translates the treadmill movement into a walking-like foot trajectory. Gait is achieved 

by the fixed trajectory of the footplates positioned on both sides of the device [199]. 

Clinical trials with patients (two with thoracic ASIA C iSCI, two with traumatic brain 

injury, one with ischemic stroke and one with intracerebral haemorrhage) showed that 

six weeks of training on the LokoHelp reduced the external assistance required during 

walking in all subjects [199]. A randomized controlled cross-over trial was conducted 

on patients with neurological deficits to compare the training efficacy of the LokoHelp 

and locomotor training with manual assistance. The results demonstrated that the 
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LokoHelp system induced similar improvements to the manual locomotion training, 

but with reduced therapeutic assistance [210].  

 

Figure 2.4: The Lokohelp system
2
. 

In spite of these promising results, the LokoHelp system has limited ability to vary the 

gait pattern. Studies on animals suggested that high variability in robotic assistance 

promoted the recovery of the injured spinal cord compared to low variability training 

[211]. Although the LokoHelp system can adjust the velocity between 0–2.5 km/h, the 

step length and foot trajectory are always the same because the track is fixed to the 

footplate. 

The G-EO system, which was initially developed as an improvement of the gait trainer 

                                                 

2
 Lokohelp. Available from: http://www.lokohelp.net/en/products/movies-and-pictures/. 

Accessed on 13/11/2011. 
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[212], has been commercially available since 2009. The gait trainer controls the motion 

of two foot plates directly in a walking-like trajectory using rotary motors [213]. The 

actuator system for each lower limb consists of a fixed sun gear and a circulating planet 

gear. Each footplate bar, with one end eccentrically connected to the planet gears and 

the other end to a crank, follows an ellipsoid-like trajectory. The foot trajectory can be 

adjusted by selecting different gear sizes and eccentricities. Balance is secured through 

an overhead harness. The gait trainer controls leg motion directly as an end-effector, 

without the need of a treadmill.  

Tests on able-bodied subjects demonstrated that the foot trajectories induced by the gait 

trainer were very similar to normal walking during the major parts of stance and swing, 

although some differences existed in the transition periods, such as pre-swing and 

loading [98]. Four weeks of clinical research on patients with neurological deficits was 

carried out in two groups: a test group who received 20 minutes of locomotor training 

in the gait trainer plus 25 minutes of physiotherapy and a control group who had 45 

minutes of physiotherapy. The results showed that the gait trainer system produced 

locomotor improvement in 41 of 77 patients, which was significantly greater than in 

the control group (17 of 78 patients) [214]. As the gait trainer has no leg orthoses, 

electrical muscle stimulation is sometimes employed to stabilize the knee during the 

stance phase. Regular locomotor training on the gait trainer, combined with electrical 

stimulation (half an hour each day for 5 weeks) in addition to conventional therapy, 

resulted in improved walking ability in four patients with iSCI, with doubled gait speed 

and endurance [215]. 

Further to relearning walking in the plane, the gait trainer was upgraded with a fully 

programmable footplate [216, 217], becoming the current G-EO system [200]. The 
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footplate can be programmed to move in 3-DOF, so that in addition to walking with an 

individual pattern on a flat surface a patient can also practise stair climbing and descent. 

Research on eight able-bodied subjects [200] and six hemiplegics [218] confirmed that 

the G-EO system simulated the kinematics of stair climbing, with similar muscle 

activity to that during actual stair climbing [218]. Severely injured stroke patients, who 

cannot stand independently, achieved independent walking and stair climbing after 

about one month of training in the G-EO system (25-30 min every workday) [218]. The 

G-EO system appears to produce promising results in gait training. However, further 

studies are needed to investigate the kinematics of the lower limbs, including angle 

profiles of the hip, knee and ankle joints. 

2.4. Early Rehabilitation Systems 

The devices described above focus on upright locomotor training paradigms, many of 

which have demonstrated promising results. However, it is challenging for some 

physically weak patients to perform upright training. As discussed in Chapter 1, most 

patients with SCI suffer from orthostatic hypotension (OH) in the acute phase. 

Furthermore, some severely injured patients may require a period of bed rest for 

management of their spinal fracture [33]. In addition, pressure sores, which often 

develop in patients with SCI, can prevent use of BWS due to pressure over the sitting 

area. The resultant muscle weakness, complicated by OH, restricts the early adoption of 

an upright position for robotic walking as delivered via orthotic devices such as the 

Lokomat. There are alternative approaches for early rehabilitation for those who cannot 

maintain an upright position.  

Tilt table mechanisms have been adopted for early rehabilitation, e.g. the Erigo system 
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(Hocoma AG, Volketswil, Switzerland) [219]. The Erigo consists of a traditional tilt 

table with two thigh cuffs and two foot plates (see Figure 2.5). The upper body part of 

the tilt table can be continuously tilted from supine up to 80 degrees. Each thigh cuff is 

actuated to flex and extend the lower limb. Each foot is fixed on a foot plate by a strap. 

A special spring-damper mechanism under the foot plate applies load to the foot sole 

when the hip and knee joints are extended. The Erigo allows patients in the early 

post-injury phase to practise simple leg extension and flexion, although the lower limb 

kinematics are quite different from overground walking. 

Another type of rehabilitation intervention which can be used for those who cannot 

stand is training in a recumbent position, as exemplified in recumbent tricycles [220], 

the MotionMaker [221] and the MoreGait system [222]. A recumbent tricycle is an 

adapted tricycle with a tilted back support for patient training. Assisted by electric 

motors on the pedal crank, the recumbent tricycle induces cyclic leg motion to promote 

physical fitness [220]. The recumbent lower limb orthosis MotionMaker induces cyclic 

lower-limb motion as in recumbent cycling. Developed by the Swiss Foundation for 

Cyberthoses, the MotionMaker system is composed of a recumbent trunk plate and two 

leg orthoses with the hip, knee and ankle joints actuated by motors [221]. It can 

generate different patterns of leg extension and flexion with active ankle rotation, 

including tricycle-like motion. Furthermore, both the recumbent tricycle and the 

MotionMaker employ electrical muscle stimulation in order to create active and 

progressive muscle activation during exercise [220, 221]. Multi-channel 

electrostimulators are adopted and control units are designed to synchronise the 

electrical stimulation and the motor control.  
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Figure 2.5: The Erigo
3
.  

The MoreGait system was designed by the Orthopedic University Hospital (Heidelberg, 

Germany) for walking rehabilitation with the user in a recumbent position [222]. 

Driven by pneumatic muscles over the thigh and the shank, the device flexes and 

extends the lower limbs. Furthermore, stimulative shoes, equipped with pneumatic 

cylinders, provide walking-like cyclic mechanical stimulation on the foot soles to 

mimic the ground reaction forces that occur during overground walking [222, 223]. 

                                                 

3 
Available from: http://www.hocoma.com/en/products/erigo/. Accessed on 05/12/2011. 

http://www.hocoma.com/en/products/erigo/
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MoreGait thus provides important sensory inputs by moving the lower limbs and 

stimulating the foot soles.  

Clinical research confirmed that early rehabilitation systems such as the recumbent 

tricycle [224], the MotionMaker [221] and Moregait [225] could strengthen the 

muscles and develop muscle endurance as well as joint mobility for patients with SCI. 

These devices can prepare patients for gait training, but they do not specifically target 

gait training. The kinematics of the lower extremities are not similar to walking-like 

stepping [223, 226]. A system for early rehabilitation of walking is lacking. 

2.5. Aims and Objectives of the PhD Research 

Motivated by knowledge about activity dependent plasticity, rehabilitation should be 

carried out with a task-specific programme, i.e. in order to relearn walking, natural 

gait training should be practised. Based on the CPG theory of locomotion, there are 

currently many rehabilitation systems to assist walking training. However, a limitation 

of current gait rehabilitation technology is that patients are trained in an upright 

position. It is quite common for patients with SCI to require some time on bed rest. 

Physical weakness combined with OH makes it difficult to achieve standing for 

patients early after injury, resulting in a postponed initiation of rehabilitation.  

The outcome of gait restoration therapy is dependent on the initiation time of the 

rehabilitation programme [7], which should be early enough to prevent muscle 

weakness [227]. Most successful recovery of patients with SCI is normally obtained 

within the first 6 months [228, 229], while only modest improvement in motor 

function is obtained after this [39]. The rate of recovery is greatest in the first half year 
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after injury and then it begins to plateau [230, 231]. Research on the course of spinal 

neuronal activity following SCI emphasizes the need for early rehabilitation [7]. 

Prolonged immobilization leads to a gradual reduction in spinal activity, and may 

result in the situation that the spinal neurones can seldom be activated by training [66]. 

Patients with SCI require early and continued activity-targeted training to maintain 

normal neural excitability with possible benefits for locomotion as well as reduction 

of secondary complications.  

This literature review on rehabilitation technology has revealed that only few systems 

are designed for early rehabilitation. Furthermore, these systems are not specifically 

designed for walking restoration. A system which aims to promote early rehabilitation 

of walking is lacking. Therefore this PhD research aims to design a system to promote 

early neurological rehabilitation of walking for patients with iSCI who may still be 

restricted to a lying position.  

The robotic orthosis is emerging as a promising rehabilitation technology, because it 

reduces the physical effort from physiotherapists and allows more intensive repetitive 

training for patients. In order to promote early rehabilitation of walking, the research 

developed and tested a new generation of bar-linkage mechanisms which allow patients 

to generate natural stepping movements in a supine position. Based on the fundamental 

guidelines for early training, it was necessary to design a new Gait Orthosis for Early 

Rehabilitation of walking (GOER) with the following properties: 

1. The patient is able to perform stepping in a supine position; 

2. The ankle joint is activated to allow coordinated kinematics of the lower limbs; 

3. Different speeds can be accommodated to produce different training modalities; 

4. Haptic feedback on the foot sole is provided to mimic the ground reaction forces. 
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In spite of the benefits of FES, the GOER system utilizes mechanical actuators to 

obtain consistent, repetitive stepping motion and to minimize uncontrollable activation 

of reflex loops. The GOER is designed to promote early rehabilitation of walking in a 

lying position, where the required torque for a supine stepping leg is different from the 

torque during overground walking (see Chapter 3 and Chapter 5 for further 

information). The employment of FES for ankle rotation in the GOER system might 

train the muscles in a way that is different from the normal performance during 

overground walking. 

Dynamic modelling and simulation is an important tool for system analysis and an 

effective starting point for mechanical design, such as for exoskeletons reported in the 

literature [190, 232]. A starting point for this study was development of a computer 

model of bar-leg systems which simulate coordinated inter-limb kinematics of 

walking-like movements in a lying position. The model simulated lower-limb 

movements at different cadences with variable step lengths. Then a dynamic shoe 

mechanism was designed using pneumatic actuators and tested in able-bodied subjects. 

The purpose of the shoe mechanism was to mimic the forces experienced on the foot 

sole during overgound walking. The research concluded with a prototype of the GOER 

system and performance evaluation. All of these aspects are described in detail in the 

following chapters.  

The GOER system aims to promote recovery of neurological function by inducing as 

much sensory feedback as possible from the lower limbs while the legs move in a 

walking pattern. 
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Chapter 3. Gait Analysis Experiment 

Summary: In order to investigate the representative performance of overground 

walking, a gait analysis experiment was performed in three able-bodied subjects. The 

purpose of the experiment was to generate and record joint trajectories of the lower 

limbs and ground reaction forces, which would be used later in the design of the 

GOER system.  

3.1. Normal Walking 

Normal walking is a complicated sensory-motor task that involves synergistic 

movements of both lower limbs. Gait includes a series of repeated events such as heel 

strike and toe off. A gait cycle is defined as the time interval between successive 

instances of initial foot-to-floor contact for the same foot [233]. It includes a stance 

phase, during which the foot contacts the ground, and a swing phase, when the foot is 

off the ground. The stance phase starts with the heel striking the ground and ends with 

toe off. The stance phase lasts about 60% of a gait cycle at a self-selected normal 

walking speed (see Figure 3.1). The stance phase is normally divided into three 

sub-phases: initial double limb support, single limb support and later double limb 

support. The sub-phase of initial double limb support includes the time from initial 

contact (IC) to opposite toe off (OT). From OT to opposite initial contact (OI) is the 

sub-phase of the ipsilateral single limb support, when the ipsilateral foot is pivoted on 

the ground from the foot flat to heel rise (HR) position. The sub-phase of later double 

limb support starts from OI to ipsilateral toe off (TO). Similarly, the swing phase, 

which lasts about 40% of a gait cycle, has several typical leg positions, such as feet 

adjacent (FA) and tibia vertical (TV). The swing phase involves ankle rotation, which 
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lifts the toe off the ground. When the swing foot is adjacent to the other foot, the toe is 

at its lowest extent during the swing phase. Toe clearance is a key factor in ensuring 

normal gait. Therefore the FA position is also sometimes called the toe clearance 

position [234]. Then the swing leg gets the tibia vertical (TV) position and finally 

contacts on the ground for the next IC. Therefore the swing phase is also divided into 

three sub-phases: pre-swing (from TO to FA), mid-swing (FA to TV), and terminal 

swing (TV to IC). The function of each phase is described in Table 3.1.  

 

 

 

 

 

Figure 3.1: Timing of gait phases (modified from [234] and [235]). 

Walking events occur in a similar sequence, regardless of the actual walking speed and 

elapsed time. Therefore gait is often normalised as a percentage of the cycle instead of 

time, which allows intra- and inter-individual comparison of walking. A gait cycle is 

described with initial heel strike at 0% and the following ipsilateral heel strike at 100%. 

Left toe off Left initial contact Left toe off 

Left leg Left swing phase Left stance phase 

Double 

support Right single support 

Right leg 

Double 

support Left single support 

Double 

support 

Right stance phase Right swing phase 

Right initial contract Right initial contract Right toe off 

IC      OT     OI    HR    OI   TO     FA   TV      IC 
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Furthermore, normal subjects have a similar sequence of walking in both legs, with the 

legs a half cycle out of phase.  

Table 3.1: Functions and contralateral leg positions of different sub-phases in the gait 

cycle [235]. 

Sub-phase 
Period (% 

cycle) 
Function 

Position of the 

contralateral Limb 

Initial double limb 

support 
0-10 Loading, weight transfer 

Second double limb 

support 

Single limb support 10-50 
Support of entire body weight; 

centre of mass moving forward 
Swing 

Second double limb 

support 
50-60 

Unloading and preparing for 

swing 

Initial double limb 

support 

Pre-swing 60-75 Foot clearance Single limb support 

Mid-swing 75-85 Limb acceleration to the front Single limb support 

Terminal swing 85-100 
Limb deceleration, preparation for 

weight transfer 
Single limb support 

To describe walking, stride and step lengths are often adopted. Stride length is the 

linear distance in the plane of progression between two successive points of 

foot-to-floor contact from the same foot, while a step length is the distance between 

two successive points of foot-to-floor contact from two feet [233]. One stride equals 

two steps. Cadence is the number of steps within a given time period. Healthy subjects 

change their speed by varying both stride length and cadence. Walking speed largely 

depends on the duration of the swing phase [233]. Therefore, in slow walking, the 

swing phase is usually shorter than 40% of the gait cycle. 

Walking requires a suitable ground support for the standing leg. Various forces on the 

leg segments at different gait phases result in complicated kinetics of walking. 

Moments at the hip, knee and ankle joints, which are related to the ground reaction 

forces, provide the fundamental dynamic basis of locomotion. 
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In order to design a system for generation of normal walking pattern, a gait 

experiment was proposed using the Vicon motion analysis system to record the 

segment trajectories during overground walking. Although there are publications 

describing normal gait features (such as the hip, knee and ankle angles), walking data 

of the segment displacement trajectories, which is the key information for model 

development (to be described in Chapter 4), are not available. Treadmill walking 

might be possible to provide walking patterns, but overground walking was performed 

in this project, because: (i) people are most used to overground walking, while 

subjects generally require some time to learn how to walk normally on a treadmill; (ii) 

we have a standard gait lab available to record overground walking data of the 

segment movement and ground force reaction simultaneously, while the treadmill 

requires an additional force plate to measure the reaction forces during walking, 

which brings the additional difficulty of synchronising the recording of the movement 

pattern and the force reaction; (iii) overground walking is what I am trying to model in 

this project and therefore overground walking was preferred. The Vicon motion 

analysis system, which is the most widely adopted system for walking pattern 

investigation [236], was used in this work.  

3.2. Experiment Description 

In order to record performance of the lower limbs during overground walking at 

various speeds, a gait experiment was carried out. Ethical approval was obtained from 

the Bioengineering Departmental Ethics Committee at the University of Strathclyde, 

Glasgow, UK. Equation Chapter (Next) Section 1 
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3.2.1. Equipments and subjects 

Gait analysis was performed using a Vicon motion analysis system (Oxford Metrics 

Ltd., Oxford, UK). Eight infrared cameras, with a sampling frequency of 120 Hz, 

were used to capture the displacement of reflective markers which were placed on 

various bony segments of the lower limbs. In order to record the motion of both lower 

limbs during overground walking, the Vicon Clinical Manager (VCM) marker set for 

lower limb motion recording was adopted [237]. As shown in Figure 3.2, seventeen 

markers were arranged with one marker at the sacrum (SACR) and the other sixteen 

markers at eight bony points bilaterally: anterior superior iliac spine (LASI, RASI), 

greater trochanter (LGTR, RGTR), thigh (LTHI, RTHI), knee (LKNE, RKNE), tibia 

(LTIB, RTIB), lateral malleolus (LANK, RANK), heel (LHEE, RHEE) and second 

metatarsal phalangeal joint (LTOE, RTOE). Equation Chapter (Next) Section 1 

 

Figure 3.2: Marker placement. Subfigure (a) shows markers mainly for the left leg (from 

[238]) and subfigure (b) shows markers mainly for the right leg (from [235]). 
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Four Kistler force plates (Kistler Instruments AG, Winterthur, Switzerland) were used 

to record ground reaction forces and gait events such as heel strike and toe off. The 

analysis software BodyBuilder
 
(Oxford Metrics Ltd., Oxford, UK) was used to 

reconstruct the limb segments and estimate the joint kinematics and moments.  

3.2.2. Experimental procedures 

Three able-bodied subjects were recruited with detailed information on the subjects 

summarized in Table 3.2. The subjects’ weight and lengths of leg segments were 

measured in the upright position. Leg length was measured as the distance between the 

anterior superior iliac spine and the medial malleolus.  

Table 3.2: Subject information. 

Subject S1 S2 S3 

Gender Male Female Female 

Age (years) 24 42 33 

Mass (kg) 94.70 74.40 67.80 

Thigh length (m) 0.51 0.49 0.45 

Shank length (m) 0.49 0.42 0.43 

Ankle joint height (m) 0.08 0.07 0.06 

Foot sole length (m) 0.25 0.2 0.18 

Leg length (m) 1.00 0.91 0.88 

The gait experiment started with a static trial so that the system could estimate the joint 

centres and axes. Then subjects had five minutes of free walking for familiarization. 

Subjects walked barefoot along a 10-metre walkway so as to determine their 

self-selected normal cadence (NC) and suitable starting points for a full step on the 

force plate. In order to record walking performance at various speeds, subjects walked 

at 100%, 75% and 50% of their NC, with the actual stepping rate guided by the beats of 
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an electronic metronome. Each subject walked three times for each walking speed so as 

to obtain a mean performance. Data for a single stride were collected when subjects 

passed the centre area of the walkway. Equation Chapter (Next) Section 1 

3.2.3. Data analysis 

Using a metronome to guide the walking cadence is an accepted method of 

controlling walking speed [239-241]. With guidance of a metronome, the subjects 

managed to walk at a constant cadence during each trial. Experimental data over one 

gait cycle were analysed, commencing with heel strike on the force plate and ending 

with the next heel strike of the same foot. Calculation of the joint moment requires 

segment speed and acceleration by differentiation of the segment trajectories. The first 

derivative of segment trajectory was visually observed to remove outliers, and was 

then smoothed with the loess or rloess Matlab functions, before further differentiation 

for the segment acceleration, because outliers or noise makes the second derivative 

too noisy to carry on further calculation of moment. The embedded Matlab function 

loess uses a quadratic polynomial to fit the data with a regression weight function. The 

smoothed value is determined by neighbouring data points defined within the span. The 

function rloess is a robust version of the loess smoothing method, after an additional 

calculation of robust weights, which is resistant to outliers (the MathWorks, Inc.). The 

duration of one gait cycle was normalised to 100%, with heel strikes at 0 and 100%. In 

defining the kinematic and kinetic features, only mechanical variables in the sagittal 

plane were considered. Hip, knee and ankle joint angles in the sagittal plane were 

defined as zero at a neutral still standing position with flexion as positive and extension 

as negative. Vertical forces, displacements and accelerations in the upward direction, 

horizontal forces, displacements and accelerations in the forward direction and 
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moments in the clockwise direction were denoted as positive. Dimensionless scaling 

strategies [242] were used to minimise the inter-subject variation of gait outcomes. 

Ground reaction forces were normalised by body weight, while moments were 

normalised by body mass.            

             

Figure 3.3: Free body diagram of the leg segments. 

The BodyBuilder software was used to calculate the joint moments using the inverse 

dynamics method [1]. The foot was considered as a rigid segment connected to the 

ankle joint. As depicted in Figure 3.3, the mass of the foot is denoted by mf. The 

internal forces and moment in the ankle joint with respect to the foot Fax, Fay and Ma 

were calculated as:  
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 ax gx f fxF F m a 
 (3.1) 

 gy ay f f fyF F m g m a  
 (3.2) 

 a gy cop gx m ay aop ax a f fM F L F H F L F H I     
 (3.3) 

where Fgx and Fgy are the horizontal and vertical components of the ground reaction 

forces. The displacement of the centre of pressure (marked with a star in Figure 3.3) 

from the centre of mass in the horizontal and vertical directions are Lcop and Hm, 

respectively. The displacement of the ankle from the centre of mass in the horizontal 

and vertical directions are Laop and Ha, respectively. afx and afy are the horizontal and 

vertical components of the displacement acceleration of the foot. If is the moment of 

inertia of the foot and αf is its angular acceleration. These variables can be determined 

experimentally or looked up from anthropometric data in Table 3.3. It should be noted 

that the lever arms in upward and right directions were defined positive. 

Table 3.3: Normalised mass and length of lower limb segments (taken from [1]). 

Segment Segment mass/total body mass 

Centre of mass/ segment length 

Proximal Distal 

Foot 0.0145 0.5000 0.5000 

Shank 0.0465 0.4330 0.5670 

Thigh 0.1000 0.4330 0.5670 

Total Leg 0.1610 0.4470 0.5530 

The internal forces and moment in the knee joint with respect to the shank Fkx, Fky and 

Mk were calculated as: 

 kx ax s sxF F m a 
 (3.4) 

 ay ky s s syF F m g m a  
 (3.5) 

cos( ) sin( ) (1 )cos( ) (1 )sin( )k kx s s k ky s s k ax s s k ay s s k a s sM F l F l F l F l M I               
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 (3.6) 

where asx and asy are the horizontal and vertical components of the displacement 

acceleration of the shank. θk is the angle between the shank and the vertical axis, with 

clockwise as positive. ms, ls, αs and Is are the mass, length, angular acceleration and 

moment of inertia of the shank. λs is the distance between the centre of mass of the 

shank and the knee joint divided by the shank length. The internal forces and moment 

in the hip joint with respect to the thigh Fhx, Fhy and Mh were calculated as:  

 hx kx t txF F m a 
 (3.7) 

 ky hy t t tyF F m g m a  
 (3.8) 

cos( ) sin( ) (1 )cos( ) (1 )sin( )h hx t t h hy t t h kx t t h ky t t h k t tM F l F l F l F l M I               

                                      (3.9) 

where θh is the angle between the thigh and the vertical axis, with clockwise as positive. 

mt, lt, αt and It are the mass, length, angular acceleration and moment of inertia of the 

thigh. λt is the distance between the centre of mass of the thigh and the hip joint divided 

by the thigh length. 

3.3. Results 

Experimental data over one gait cycle were analysed, and duration of one gait cycle 

was normalised to 100%, with heel strike at 0 and 100%. Detailed results for three 

subjects walking at 100%, 75% and 50% of NC are presented here. The joint angles, 

ground reaction forces and the internal joint moments are displayed as means with the 

shaded areas representing the standard deviations. As the moments in the clockwise 

direction are denoted as positive, a positive internal moment at the hip, knee and ankle 

joints with respect to the thigh, shank and foot in the moment figures (Figs 3.10-12) 
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means a moment from hip extensors, knee flexors and plantarflexors, respectively. 

3.3.1. Kinematic performance 

Locomotion involves rotation of the hip, knee and ankle joints, as can be seen in Figure 

3.4. The hip joint starts with flexion at heel strike and then enters extension. Maximal 

extension is achieved before the end of the stance phase. Then the hip joint flexes to 

enter the swing phase, with maximal flexion achieved before heel strike. The knee has 

flexion and extension twice within one gait cycle. The knee joint is almost fully 

extended around initial ground contact, followed with flexion after heel strike. This 

process forms the first “hump” in the knee angle profile. After loading, the leg becomes 

extended during the mid-stance phase, followed by flexion in the swing phase, which 

forms the second “hump” in the knee angle profile. In contrast to the hip and knee joints, 

the ankle starts the gait cycle in a neutral position. After heel strike, the ankle joint 

extends the foot slightly downwards (plantarflexion) so as to place the whole foot sole 

on the ground. As walking proceeds, the ankle joint rotates gradually into dorsiflexion. 

In the second half of the stance phase, the ankle joint pushes the whole leg in 

preparation for the swing phase by plantarflexion. In the swing phase, the ankle has a 

small amount of dorsiflexion for toe clearance.  

Table 3.4: Walking speeds for subjects (NC: normal cadence). 

Walking speed S1 S2 S3 

NC (steps/min) 107 93 112 

100% of NC (m/s) 1.42 1.16 1.44 

75% of NC (m/s) 0.81 0.79 0.95 

50% of NC (m/s) 0.43 0.528 0.61 

Individuals with different heights have different cadences. The estimated walking 

speeds for all subjects are presented in Table 3.4. It should be noted that S3 had the 
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highest normal cadence (112 steps/min). S2 has a similar leg length to S3 (see Table 

3.2), but had a much lower normal cadence (93 steps/min). As the normal walking 

speeds were defined by the subjects, it is expected that their normal cadences varied.  
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(b) S2. 

 

(c) S3. 

Figure 3.4: Joint angles for three subjects walking at 100% of NC. 
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Figure 3.4 shows the mean angles of the hip, knee and ankle joint for the three subjects 

walking at 100% of NC, from which the typical features of normal walking can be 

easily observed, such as hip extension and flexion, “double-hump” knee profiles and 

ankle plantarflexion. S1 has the longest leg length, resulting in the smallest range of 

motion (ROM) in the hip joint. S2, in contrast to the other two subjects, had a large 

ROM (50
o
) in the ankle joint. She walked with a flexed knee throughout the cycle with 

20
o
 flexion even in the mid-stance phase (see Figure 3.4(b)). This resulted in reduced 

hip extension at toe off and increased knee flexion during the swing phase. Among the 

three subjects, S3 had the smallest ROM in the ankle joint (20
o
), but her knee joint 

flexed most during the first-hump flexion at about 15% of the gait cycle. In spite of 

the small inter-individual differences, all subjects had consistent joint trajectories 

during overground walking at 100% of NC, which can be seen from the low 

variability in the angle performance in Figure 3.4. The mean ROMs of the hip, knee 

and ankle joints for all three subjects were 34
o
, 50

o
 and 31

o
, respectively, which are 

within the physiological ROMs of lower limb joints during overground walking [235].  

The mean ROMs of all three joints reduced at lower speeds. The joint angle profiles of 

three subjects walking at 75% and 50% of NC are displayed in Figures 3.5-3.6. Knee 

flexion was smaller during the swing phase, and the first flexion hump, which usually 

occurred at around 15% of the gait cycle during walking at 100% of NC, became weak 

at 75% of NC, and was hardly observe at 50% of NC. Furthermore, the gait phase ratio 

(the duration ratio of the stance phase to the swing phase) during slower walking was 

different from normal walking speed. The mean duration of the stance phase for the 

three subjects was prolonged from 60% of the gait cycle at 100% of NC to about 74% 

of the gait cycle at 50% of NC. The maximal ankle extension for S1, which occurred at 

around 62% of the gait cycle at normal speed, was delayed until 77% of the gait cycle at 

50% of NC. The variance increased when the speed reduced. 
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(a) S1. 

 

(b) S2. 
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(c) S3. 

Figure 3.5: Joint angles for three subjects walking at 75% of NC. 
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(b) S2. 

 

(c) S3. 

Figure 3.6: Joint angles for three subjects walking at 50% of NC. 
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3.3.2. Ground reaction forces 

During walking, the ground produces an upward force for body weight support, and 

horizontal friction for propulsion or braking [235]. The ground reaction forces of all 

three subjects at 100% of NC are shown in Figure 3.7. Similar to the general 

description of ground reaction forces in the literature [234], the upward supporting 

force, shown in the upper figure, demonstrates a double-hump pattern. The upward 

force increases from heel strike until around 20% of the gait cycle to achieve its first 

peak. During the latter single-support phase, the upward force reduces slightly and then 

increases to the second peak around heel off. The double-hump pattern was most 

pronounced in S3. This was because she walked at the highest cadence among the three 

subjects, resulting in the largest vertical motion of the centre of body mass. Variations 

in the upward force profile were observed at around 10% of the gait cycle in S2 and S3. 

These variations were from the loading of heel strike. Compared to the upward force, 

the horizontal force showed large variation. This was because different subjects used 

different walking strategies, producing different levels of friction between the foot and 

the ground. It is interesting to note that S1 and S2 required more forward propulsion 

before toe off (see Figures 3.7(a)-(b)) while S3 showed more braking at heel strike 

(Figure 3.7(c)).  
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(a) S1. 

 

0 20 40 60 80 100
-0.5

0

0.5

1

1.5

U
p

w
a
rd

 f
o

rc
 r

a
ti

o

0 20 40 60 80 100

-0.4

-0.2

0

0.2

0.4

0.6

Gait cycle (%)

H
o

ri
z
o

n
ta

l 
fo

rc
e
 r

a
ti

o

0 20 40 60 80 100
-0.5

0

0.5

1

1.5

U
p

w
a

rd
 f

o
rc

 r
a

ti
o

0 20 40 60 80 100

-0.4

-0.2

0

0.2

0.4

0.6

Gait cycle (%)

H
o

ri
z
o

n
ta

l 
fo

rc
e

 r
a

ti
o



Chapter 3                        Gait Analysis Experiment                     123 

 

 

(b) S2. 

  

(c) S3. 

Figure 3.7: Normalised ground reaction forces for three subjects walking at 100% of NC. 
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(a) S1. 

 

(b) S2. 
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(c) S3. 

Figure 3.8: Normalised ground reaction forces for three subjects walking at 75% of NC. 
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(b) S2.  

 

(c) S3. 

Figure 3.9: Normalised ground reaction forces for three subjects walking at 50% of NC. 
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The vertical movements of the centre of body mass were reduced at lower speeds, 

resulting in the gradual disappearance of the double-hump pattern of the upward force, 

as depicted in Figures 3.8-3.9, which show forces of three subjects walking at 75% and 

50% of NC. When the walking speed reduced to 50% of NC, the upward force was 

almost constant and equal to the whole body weight (Figure 3.9). The friction was 

substantially reduced. The ground reaction force duration was obviously prolonged for 

all subjects in slower walking. The stance phase lasted approximately 75% of the gait 

cycle in S1 walking at 50% of NC (Figure 3.9(a)). The ground reaction forces at 

various speeds agree with the description in the literature [243]. 

3.3.3. Internal moments 

The internal joint moments of the hip (positive values mean extension moments), knee 

(negative values mean extension moments) and ankle (positive values mean 

plantarflexion moments) in the sagittal plane during a single gait cycle at normal 

cadence were calculated using Equations (3.9), (3.6) and (3.3), respectively, and are 

presented in Figure 3.10. The moment patterns in this study are similar to the general 

description of moment from the gait literature [234, 244]. During the stance phase the 

ankle joint produced plantarflexion moment to support the body weight. The upright 

force increased when the body weight transferred to the standing foot. Therefore the 

moment in the ankle joint increased in this period, as shown in the lowest plot in 

Figure 3.10. Around heel off, the ankle provided the maximal moment to propel the leg 

forward. As the foot entered the swing phase, the ground reaction forces were removed, 

resulting in a rapid reduction in the ankle joint moment. Therefore the ankle moment 

was quite small in the swing phase, where the ankle joint was in slight dorsiflexion to 

swing forward. 
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(a) S1. 

 

(b) S2. 
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(c) S3. 

Figure 3.10: Normalised internal joint moments for subjects walking at 100% of NC. 

At heel strike, the ground reaction forces extended the knee joint. Therefore the flexion 

moment at the knee joint increased to avoid hyperextension, as shown in the middle 

plot of Figure 3.10. Following the heel strike, an extension moment of the knee joint 

was produced, so that the leg entered the mid-stance phase. As the body moved forward, 

the ground reaction forces moved rapidly to the forefoot during the double support 

phase, resulting in an flexion moment in the knee joint. From toe-off to the mid-swing 

phase, an extension moment of the knee joint was produced for forward propulsion. 

During the late swing phase, the knee joint produced a flexion moment so as to reduce 

the speed of the swing leg and to prepare for the next heel strike. 

The hip joint produced an extension moment during the stance phase so as to maintain 

an upright position and a flexion moment during the early swing phase to move the 

0 20 40 60 80 100
-1

0

1

H
ip

 (
N

m
/k

g
)

F
L

E
  
  
  
E

X
E

0 20 40 60 80 100

-1

0

1

  
  
K

n
e
e
 (

N
m

/k
g

)

  
  
  
E

X
E

  
  
 F

L
E

  

0 20 40 60 80 100

0

1

2

3

A
n

k
le

 (
N

m
/k

g
)

P
L

A
N

Gait cycle (%)



Chapter 3                        Gait Analysis Experiment                     130 

 

 

whole leg forward (see the top plot in Figure 3.10). The induced kinetic energy from 

hip flexion was partly transferred to the trunk, resulting in forward motion of the whole 

body. As the swinging leg was decelerated by the knee flexion moment at the end of the 

swing phase, the hip joint produced an extension moment to prepare for heel strike and 

to reduce the forward speed of the whole trunk [234]. 

Regarding the moments of the three subjects walking at 100% of NC (Figure 3.10), a 

large standard deviation was observed in the hip around heel strike because of the strike 

loading. S2, compared to other subjects, had a higher knee extension moment during 

the stance phase. This was because S2 walked with a more flexed knee joint, as can be 

seen in the knee angle profile in Figure 3.4(b). S3 had a “flatter” ankle moment 

(25%-35% of the gait cycle). This was because she had ground forces with the most 

pronounced double-hump pattern. The ground reaction forces reduced more compared 

to the other subjects during 25%-35% of the gait cycle, which resulted in a flatter (a 

lower increase) moment at the ankle joint. 

 
(a) S1. 

0 20 40 60 80 100
-1

0

1

H
ip

 (
N

m
/k

g
)

F
L

E
  
 E

X
E

  

0 20 40 60 80 100

-1

0

1

  
  
K

n
e
e
 (

N
m

/k
g

)

  
  
 E

X
E

  
 F

L
E

0 20 40 60 80 100

0

1

2

3

A
n

k
le

 (
N

m
/k

g
)

P
L

A
N

Gait cycle (%)



Chapter 3                        Gait Analysis Experiment                     131 

 

 

 

(b) S2. 

 

(c) S3. 

Figure 3.11: Normalised internal joint moments for three subjects walking at 75% of NC. 
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(a) S1. 
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(b) S3. 

Figure 3.12: Normalised internal joint moments for three subjects walking at 50% of NC. 
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substantially reduced and was not oscillatory compared to walking at 100% of NC. 
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phase and had a much reduced flexion in the swing phase at slower walking (as can be 

seen in Figures 3.5-3.6). The reduced ROM of the knee joint resulted in a lower 

moment in the knee joint. Furthermore, the ground reaction forces were substantially 

reduced, especially during walking at 50% of NC, which resulted in a reduced moment 

in the ankle joint.   
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3.4. Discussion 

The gait experiment recorded walking data at various speeds, to be used for the model 

development of the GOER system. The joint trajectories and the ground reaction 

forces from the experiment were selected as the target stepping performance for the 

GOER system. The joint moments during upright walking were considered as 

references for the kinetic performance of stepping in the GOER system.  

Overground walking at normal speed is a rhythmic sensory-motor task, which does not 

require much conscious control from the brain [120]. Each of the three subjects could 

repeat their walking patterns at their self-selected normal walking speeds with small 

variation (see Figure 3.4). However, it was found challenging for them to walk at a 

lower speed with a consistent pattern, even though walking was guided by an 

electronic metronome. A higher standard deviation was observed in the three repeats of 

each walking session when the speed was further reduced. In contrast to walking at 

100% of NC, subjects required voluntary input from the brain to reduce the speed 

during the subsessions of slower walking, therefore the variance of slow walking 

increased, especially for the swing phase. In spite of large variance, all three subjects 

showed coordinated motion in the lower limbs during slow walking. 

The peak ground reaction forces reduced at slower walking speeds. Compared to 

walking at 100% of NC where two large peaks of upward ground force were observed, 

the force was almost equal to body weight when the subjects walked at 50% of NC. 

The joint moments, which depend strongly on the reaction forces, achieved their 

largest peak amplitudes at 100% of NC, compared to the two slower speeds. The 

moment demonstrates larger variance compared to the kinematic performance, which 
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is in accordance with previous research studies [243, 245]. Different individuals 

employ different dynamic skills to achieve the same walking pattern [235]. Therefore, 

in design of the GOER system, the kinematics patterns such as the joint trajectories 

were selected as the key criteria to reproduce, while the joint moments were 

considered as auxiliary features to provide a view of the kinetics of stepping. 

The gait analysis described here improved our understanding of overground walking. 

Moreover, these walking data were able to be utilized for the design of the GOER 

system. The low variance in kinematics and ground reaction forces justifies their use as 

the target requirements of stepping in the GOER system. The joint moments could also 

be compared with those from supine stepping in the GOER system, which provides 

dynamic differences between upright walking and supine stepping.  

One limitation of the experiment is that only three subjects were recruited to walk at 

three speeds. Although the subjects showed a large range of body mass (68–95 kg) and 

leg length (0.88-1 m), more subjects should be tested to obtain a general walking 

pattern. Walking data at slower speeds are desirable for design of a rehabilitation 

device. However, large variance observed in the walking data at 50% of NC made it 

challenging to obtain the general features of walking at such a slow speed. Based on 

the low variance observed at 75% of NC, it is suggested that speeds ranging between 

100% and 75% of NC are more suitable for future gait experiments.  

3.5. Conclusions 

The gait experiment recorded intra- and inter-subject variability in the kinematics and 

kinetics of overground normal walking for able-bodied subjects. The experimental 
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performance, such as angle trajectories of the lower-limb joints and the ground 

reaction forces, can be regarded as the targets for the GOER system. The experimental 

data can be used in the model development of the GOER system, as discussed in 

Chapter 4.  
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Chapter 4. Model Development 

Summary: This chapter describes the modelling and simulation of supine stepping. 

Based on the results of the gait analysis, a circle-fit algorithm was derived to 

approximate the foot trajectories. A model of a two-bar system was developed to 

simulate the kinematics of supine stepping at various speeds, which were in similar 

ranges of motion (ROMs) to experimental overground walking. Furthermore, the 

kinetic features of supine stepping were analysed through a model of a leg-linkage. 

These simulation results provide the basis for the design of the GOER system. 

4.1. Circle Fit Approximation of the Ankle, Heel and 

Toe Trajectories 

Summary: This study derives a least squares approximation algorithm for analysis of 

foot trajectories relative to the hip joint in three able-bodied subjects walking 

overground at various speeds, with focus on three different foot landmarks: the ankle, 

the heel and the toe. While the study confirmed that the ankle and the heel moved in 

circular paths in the stance phase, it demonstrated that the toe followed a circular 

trajectory during the whole locomotion phase. The configuration of these 

approximated circles was determined, including the circle centre and the radius. This 

observation provided the basis for model development of the GOER system. 

4.1.1. Introduction 

Within the biomechanics community, there is a rhetorical hypothesis that the human



Chapter 4                         Model development                        138 

 

 

performs locomotion through a pendulum strategy. A pendulum concept of walking 

seems to be a relatively simple and convenient model for analysing the dynamic 

features of walking. However, there are great variations among the published studies 

in the configuration of the pendulum, such as the total number of pendula within the 

model, and the exact locations of the base and the tip of the pendulum. Likewise, 

while the model is commonly used to describe the stance phase, some studies use it to 

describe the swing phase.   

The centre of the reference system (i.e. the base of the pendulum) can be located on 

the ground [246, 247], or in some leg segments [248, 249]. Based on the phenomenon 

that the centre of mass of the human body rises and falls in an arc shape during each 

stride, Alexander and colleagues developed a simple inverted pendulum model with 

the base on the ground to describe a leg in the stance phase [246, 247]. The hip joint is 

chosen as the base of the pendulum models in some other studies such as [248] to 

simulate overground locomotion. Furthermore, the pelvis was also considered as the 

base of a pendulum model [249], where the leg was represented by two pendula 

connected by a hinge at the knee joint.  

Most often, the pendulum model was used to describe the stance phase. For example, 

studies [246, 247] employed a pendulum model to describe the process of a straight 

leg rolling from the heel to the toe. However, the pendulum concept was sometimes 

used to describe the swing phase. Study [250] developed a double-pendulum model 

which simulated the performance of a swinging leg at variable speeds.   

In addition to the variability in the pendulum setup, the tip of the pendulum, which is 

often represented by the foot, is also vaguely defined. Although the foot is a complex 
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multi-segment structure [251], the pendulum model often regards its tip (the foot) as 

one segment: a rolling-rocker [249, 251, 252]. The foot is described in the literature 

[253] to move as ankle, heel and toe rockers during the stance phase. However, this 

concept does not formally question whether the rocker shape correctly represents the 

actual foot trajectories.  

The typically adopted assumption of the foot as a rigid rocker questions the accuracy 

of the pendulum model. An often neglected problem is: which points of the foot move 

along circular trajectories during locomotion? If there are such points moving in 

circular paths, which can serve as the tips of pendulum models, then what is the 

configuration of the pendulum, such as the location of its base and the pendular length, 

or rather the centre and the radius of the circle? Could the assumption about the 

circular trajectory be extended over the whole gait cycle, rather than only one specific 

phase? The objective of the study described in this section was to address the exact 

geometry of the pendulum, i.e. the location of its base and its tip, by finding the 

best-fit circles of trajectories of the ankle, the heel and the toe at variable walking 

speeds. As this PhD project aimed to design a system for supine stepping, where the 

trunk is lying on a bed and the whole leg moves around the hip joint, this study 

investigated the foot trajectory relative to the hip joint. In this supine position, the foot 

trajectory is modelled as a normal rather than an inverted pendulum.  

4.1.2. Methods 

The gait data collected in the experiment described in Chapter 3 were analysed (refer 

to chapter 3 for a detailed description of the methods and the recorded data). Based on 

overground walking data from three able-bodied subjects, an algorithm was 
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developed to find the optimal geometries of circles that could approximate trajectories 

of the ankle (in the stance phase), the heel (in the stance phase) and the toe (over the 

whole gait cycle). 

4.1.2.1. Gait analysis 

The gait experiment captured the moving trajectories of the lower limbs, by recording 

X and Y coordinates relative to the ground. Among the recorded data, only data of the 

hip joint, the ankle, the heel and the toe shown in Figure 4.1 were of interest in this 

study. A new reference system was defined in this study with the centre (0, 0) at the hip 

joint. Coordinates of the ankle, the heel and the toe in this reference system were 

obtained by subtracting X and Y coordinates of the hip from their respective 

coordinates recorded in the experiment. Foot data over one gait cycle were analysed 

and the duration of one gait cycle was normalised to 100%, with heel strike at 0 and 

100%. 

 

Figure 4.1: Leg position in the new reference system. The X-Y reference centre (0, 0) is 

Y 

X 

lA 

lT 

lH 

L 
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at the hip joint axis. Black dots at the lateral malleolus, calcaneus and second 

metatarsal head indicate the ankle, heel and toe, respectively. The distances from the 

hip centre to the ankle, heel and toe are represented respectively by dashed lines as lA, 

lH and lT. A dash-dot line L represents the vertical distance from the hip to the ground. 

4.1.2.2. Circle-fit algorithm 

The pendulum model could be determined by searching out circles which 

approximated the trajectories of the ankle, heel or toe. It was hypothesized that the 

centre of the fit circle (xc, yc) was near to the hip joint (0, 0) and that its radius r was 

approximately equal to the segment distance l measured from the hip joint (l refers to lA, 

lH and lT for the ankle, the heel and the toe, respectively). 

There were three parameters that could be optimized in order to obtain the best-fit circle: 

coordinates of the centre of the circle xc, yc, and the radius r. Four methods were 

developed to search for the circular trajectory which approximated the trajectory of the 

ankle, the heel or the toe with the smallest error: 

(1) For the Y coordinate of the pendulum base fixed at the hip (yc = 0), search for the 

optimal xc and r; 

(2) For the X coordinate of the pendulum base fixed at the hip (xc = 0), search for the 

optimal yc and r; 

(3) For both X and Y coordinates of the pendulum base fixed at the hip (xc = 0, yc = 0), 

search for the optimal radius r; Equation Chapter (Next) Section 1 

(4) For the radius r of the pendulum equal to the segment distance measured from the 

hip joint (lA, lH or lT), search for the optimum location for its base xc and yc. 



Chapter 4                         Model development                        142 

 

 

It was assumed that each segment analysed had Q data points (xi, yi) (i = 1, 2, 3…Q). 

The distance between each data point (xi, yi) and the circle (xc, yc, r) was calculated as  

 
       

2 2
,     ; 1,2,3... .i i i c i cD x y x x y y r i Q     

 (4.1) 

With a least squares algorithm [254], the difference between each data point (xi, yi) 

and the circle can also be represented by 

 
       

0.5
2 2 2,      ; 1,2,3... .i i i i c i cf x y x x y y r i Q     

 (4.2) 

The mean difference between the actual foot trajectories and the circle (xc, yc, r) was 

calculated as 

 
1

1
( ,  ) ( ,  ).

Q

i i i i i

i

F x y f x y
Q 

   (4.3) 

The objective of the best-fit circle was to determine the values of xc, yc and r which 

solved the problem 

 , ,
min ( , ).
c c

i i
x y r

F x y
 (4.4) 

The first derivative of Equation (4.3) over r, xc and yc yielded the optimal parameters for 

the best-fit circle:                                                         

 
( ( ,  )) / 0i id F x y dr 

 (4.5) 

 
( ( ,  )) / 0i i cd F x y dx 

 (4.6) 

 
( ( ,  )) / 0i i cd F x y dy 

 (4.7) 

The previously described methods to search for the best-fit circle are therefore: 

(1) For yc = 0, find
, ,

min ( , )
c c

i i
x y r

F x y . 

Equations (4.5)-(4.6) yield: 

 
2 2 2

1

[( ) ] 0
Q

i c i

i

x x y r


     (4.8) 
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      (4.9) 

(2) For xc = 0, find
, ,

min ( , )
c c

i i
x y r

F x y . 

Equations (4.5) and (4.7) yield: 
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(3) For x c= 0, yc = 0, find
, ,

min ( , )
c c

i i
x y r

F x y : 
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1
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Q

i i

i

x y r


    (4.12) 

(4) For r = l, find
, ,

min ( , )
c c

i i
x y r

F x y : 
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Q

i c i c i c

i

x x x x y y l
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2 2 2

1

( )[( ) ( ) ] 0
Q

i c i c i c

i

y y x x y y l


       (4.14) 

Solutions of Equations (4.8)-(4.14) give optimal values for xc, yc and r for each method. 

These four methods were applied to the trajectories of the ankle, heel and toe separately, 

giving the approximated circle for each foot trajectory. The mean approximation error 

for each method was calculated using Equations (4.2)-(4.3). In order to keep the 

results as general as possible, all the equations were normalised with respect to the leg 

length or the natural gait cycle. 
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4.1.2.3. Statistical analysis 

A one-way ANOVA test was performed in SPSS to see whether there was a 

significant difference within the four methods (p = 0.05). A Bonferroni post-hoc test 

was performed for each pair of methods to test for differences. An independent 

one-sided t-test was used to compare whether the mean error of Method 1 is the 

lowest among the four methods. The method with the smallest error and significant 

difference from other methods was deemed the best-fit circle algorithm. 

4.1.3. Results 

Numerical values of foot trajectories are related to the height. However, the shapes of 

the trajectories are quite similar for most able-bodied adults [255]. The ankle, heel and 

toe trajectories relative to the hip joint for a representative subject S1 at a normal 

cadence (NC) of 107 steps/min are shown as thick solid lines in Figure 4.2.  

It can be seen that the ankle and heel trajectories, as shown by thick solid lines in 

Figures 4.2(a) and (b), are similar and have a curved stance phase. Therefore best-fit 

circles for the ankle and heel trajectories in the stance phase were searched for. The toe 

trajectory displayed as a thick solid line in Figure 4.2(c) has similar stance and swing 

phases with a curved shape. Therefore a best-fit circle for the toe trajectory in the 

whole gait cycle was searched for.  

Applying the four algorithms yielded four approximating circles for these three foot 

landmarks. Figures 4.2 (a)–(c) show the approximation results for S1 walking at 100% 

of NC. Circles represented by solid, dashed, dotted and dash-dot lines are fit circles 
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from Methods 1 to 4, respectively. The centres are marked with stars, dots, crosses 

and plus signs, respectively. It can be seen that Methods 1, 3 and 4 give similar results 

regarding the centres and the radii of the circles, while Method 2 gives circles 

(represented as dashed lines) with radii being much smaller (in Figures 4.2 (a)–(b)) or 

much larger (in Figure 4.2(c)) than the segment distance from the hip. This is because 

trajectories of the ankle, the heel and the toe have different curvatures. The curvatures 

of the heel and ankle trajectories at (xi = 0) are in general larger than the curvature of a 

circle with r = l (l = lA for the ankle and l = lH for the heel), so the radius of the fit circle 

(when only the Y coordinate can vary) is smaller than the segment distance from the hip. 

Conversely, the curvature of the toe trajectory is smaller than the curvature of a circle 

with r = l (l = lT for the toe), so the fit circle has a radius much larger than the segment 

distance from the hip.  
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(b) Heel 

 

(c) Toe 

Figure 4.2: Circle fit approximation of the foot trajectories of S1 walking at 100% of NC. 

Circles in solid, dashed, dotted and dash-dot lines are fit circles from Methods 1 to 4 

(marked as M1, M2, M3 and M4), respectively. The centres are marked with stars, dots, 

crosses and plus signs, respectively. The foot trajectories (relative to the hip) 

-150 -100 -50 0 50 100 150
-100

-50

0

50

100

x (%)

y
 (

%
)

 

 
M

1

M
2

M
3

M
4

-200 -100 0 100 200 300
-100

-50

0

50

100

150

200

250

300

350

x (%)

y
 (

%
)

 

 

M
1

M
2

M
3

M
4



Chapter 4                         Model development                        147 

 

 

considered for circle approximation are shown as thick solid lines, while those not 

involved in the approximation (the ankle and heel trajectories during swing) are thick 

dotted lines. 

Using the four circle-fit searching algorithms, the approximating circles for the foot 

trajectories from the other two subjects were also obtained. The normalised errors 

between each foot trajectory at 100% of NC and their respective approximating circles 

are summarized in Table 4.1. The mean and standard deviation (SD) of errors from 

each method are presented as well.  

Table 4.1: Relative error of four methods with respect to the leg length (%) for the ankle, 

heel and toe trajectories in three subjects walking at 100% of NC. 

  
Method 1 Method 2 Method 3 Method 4 

S1 

Ankle 0.42 1.68 1.74 0.65 

Heel 0.77 1.31 1.50 0.12 

Toe 1.21 1.53 2.69 1.76 

S2 

Ankle 0.52 1.01 1.13 0.93 

Heel 0.82 0.91 1.02 0.99 

Toe 1.44 1.61 2.43 1.74 

S3 

Ankle 0.59 0.63 1.10 0.83 

Heel 1.05 1.24 1.29 1.17 

Toe 1.56 1.84 2.10 1.91 

Mean±SD 0.93±0.41 1.31±0.40 1.67±0.61 1.12±0.59 

In all three subjects and for all four methods (12 measurements in total), the trajectory 

of the ankle, compared to the heel and the toe, had the smallest circle-fit error. Among 

all the four methods, Method 3, which has the centre of the circle (xc, yc) fixed to the hip 

(0, 0), had the largest approximation error. Method 1, which fixes yc to the hip and 

allows xc and r to vary, had the smallest mean error. A one-way ANOVA test 

performed in SPSS showed at least one method was significantly different from the 

other methods (p = 0.031). A Bonferroni post-hoc test showed that Method 1 was 
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significantly different from Method 3 (p = 0.028). An independent one-sided t-test 

showed the mean error for Method 1 to be significantly lower than that of Method 2 (p 

= 0.03). There was no significant difference between Method 1 and Method 4. However, 

Method 1 yielded errors smaller than Method 4. Therefore Method 1 was selected to 

search for the best-fit circle forthwith. 

 

Figure 4.3: Circle fit approximation (Method 1) of the ankle (upper) and heel (lower) 

trajectories (relative to the hip) in the stance phase of S1 walking at 100% of NC. The 

best-fit circles are shown as dash-dot lines, with the radius represented as an arrow. 

The ankle and heel trajectories in the stance phase are shown as solid lines, while those 

in the swing phase are dotted lines. 

The approximation results of Method 1 for the foot trajectories of S1 are displayed in 

Figures 4.3-4.4. Detailed information about the best-fit circle, including the centre and 

radius, is also presented. For the foot trajectories in these figures, the parts that were 

approximated by circles, which are the trajectories in the stance phase for the ankle and 

heel in Figure 4.3 and the toe trajectory over the whole gait cycle in Figure 4.4, are 
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represented as solid lines. The parts that were not involved in the circle approximation, 

which are the swing phase of the ankle and the heel trajectories in Figure 4.3, are 

displayed as dotted lines. The curved trajectories of the ankle and the heel during the 

stance phase are fit by the circles (dash-dot lines) closely. The circle approximation of 

the toe trajectory shown in Figure 4.4 has a larger difference, but it should be noted 

that this circle quite well approximates both the stance and swing phases of the toe 

(see zoomed plot in Figure 4.4). The distance between the toe and the hip joint lT for 

S1 was 1 m. The centre of the best-fit circle of the toe trajectory was at the point 

(0.095, 0), which was 9.5% of lT from the hip joint (0, 0). The radius of the circle was 

0.99 m, which was 1% shorter than lT. 

 

Figure 4.4: Circle fit approximation (Method 1) of the toe trajectory (relative to the hip) in 

the whole gait cycle of S1 walking at 100% of NC (upper). The best-fit circle is 

represented by a dash-dot line, with the radius shown as an arrow. The toe trajectories 

(both the stance and the swing phases) are shown as solid lines. A zoomed view is 

presented in the lower subfigure. 
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The foot trajectories during slower walking were also curved, which allowed circle 

approximation as well. The ankle trajectories of S1 walking at 100%, 75% and 50% 

of NC are displayed in Figure 4.5. The step length was shortened as the speed 

decreased. It can be seen that the ankle trajectories in the stance phase at different 

speeds are similarly curved. The best-fit circles obtained by Method 1 are displayed in 

Figure 4.5 and are of similar radius. 

 

Figure 4.5: Ankle trajectories and the best-fit circles in S1 walking at 100% (solid line), 

75% (dashed line) and 50% (dotted line) of NC. 

Method 1 was used to find the optimal circles to approximate foot trajectories for 

slower walking at 75% and 50% of NC for all three subjects. The normalised mean 

errors of approximation for the trajectories of the ankle (the stance phase), the heel 

(the stance phase) and the toe (the whole gait cycle) are presented in Figure 4.6, with 

the centres and radii summarized in Table 4.2. It can be seen that the foot trajectories 

can be approximated by semicircles with a mean error less than 0.2% of leg length at 
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variable speeds. The ankle and heel trajectories (in the stance phase) are fit by the 

circular trajectory with a smaller error than the toe trajectories (in both the stance and 

swing phases). The circle fit approximation of the ankle trajectory has the smallest 

error. When the speed decreases, the error reduces as well. Table 4.2 shows that the 

best-fit circles for the foot trajectories at 100% of NC have the centres closest to the 

hip while those at 50% of NC have the radii closest to the segment distance from the 

hip.  

 

(a) S1                   (b) S2                  (c) S3 

Figure 4.6: Mean errors from the best-fit circle approximation (Method 1) error of three 

subjects walking at three speeds. Bars in black, grey and white refer to 100%, 75% and 

50% of NC, respectively. All errors are normalised to their respective leg length. 
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Table 4.2: The X coordinates of the circle centres xc and radii r of best-fit circles with 

respect to the leg length (%) for the ankle, heel and toe trajectories in three subjects 

walking at various speeds. 

Subject Segment 

100% of NC 75% of NC 50% of NC 

xc r xc r xc r 

S1 

Ankle 9.80 97.70 10.16 97.85 10.11 97.96 

Heel 8.90 99.25 9.73 99.76 9.59 99.94 

Toe 9.50 99.17 10.10 99.23 11.90 99.00 

S2 

Ankle 3.87 98.51 5.26 99.15 4.50 99.20 

Heel 3.35 101.17 5.22 101.94 4.35 101.92 

Toe 5.26 101.87 2.61 102.34 3.86 102.28 

S3 

Ankle 5.82 96.68 5.64 96.81 8.05 98.13 

Heel 4.86 99.68 5.08 99.82 8.03 99.03 

Toe 5.89 100.33 4.16 100.88 5.16 100.55 

Mean 6.36  99.37  6.44 99.75 7.28 99.78 

4.1.4. Discussion 

Locomotion can be described by pendulum models [247, 248]. This study defined the 

optimal geometry of a pendulum (best-fit circle) which described overground walking 

by systematically varying the location of its centre and tip. The location of the 

pendulum centre varied around the hip, while the tip of the pendulum was defined at 

three different locations on the foot: the ankle, the heel and the toe. Introducing the 

hip as the reference point was an intuitive choice, but neither of the anatomical points 

chosen as the tip ideally aligned in the vertical direction with the location of the hip. 

Therefore the methods which allowed a small variation of the centre of the pendulum 



Chapter 4                         Model development                        153 

 

 

around the hip (Methods 1, 2 and 4) outperformed the method which assumed a fixed 

circle centre at the hip (Method 3).  

It is interesting to note that Method 2 yields that the foot trajectories can be fit by 

circles with radii much larger (the toe trajectory in Figure 4.2(c)) or much smaller (the 

ankle and heel trajectories in Figures 4.2 (a) and (b)) than the segment length from the 

hip. These results are in accordance with previous studies in which the inverted 

pendulum model has a length longer than the leg in study [256], or a much shorter 

length in study [257]. The differences in the pendula dimensions resulted from 

different foci of these studies: study [256] investigated the vertical excursion of the 

trunk, while study [257] developed a model based on the trajectory of the centre of 

pressure. The current study focused on the segment trajectories and determined the 

optimal configuration of the pendula to approximate different segments walking at 

various speeds. The best-fit circles were found centred close to the hip joint with radii 

almost equal to the leg length. 

All four methods approximated the foot trajectories fairly well. This provided the 

basis for the simple definition of a pendulum with its centre at the hip and radius 

equal to the leg length. However, Method 1, which allows horizontal adjustment of 

the circle centre, obtained the best-circle approximation with the smallest error. The 

basis for Method 1 is the observation that the lengths of the foot trajectories (step 

lengths) are not equally divided by the line L, which goes vertically from the hip (xc = 

0, yc = 0) to the ground, but is rather horizontally displaced (see Figures 4.2-4.4). The 

ankle trajectory has the smallest difference from its best-fit circle, compared to the heel 

and the toe. This is probably because the only joint between the ankle and the hip (the 

knee) is almost in constant extension during the stance phase (especially during slow 
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walking), making the thigh and the shank behave as a bar with a fixed length, while 

the heel and the toe involves more joints (such as the ankle and subtalar joints) which 

are rotating slightly during the stance phase. It should be noted that the knee flexion 

was not ignored during analysis of the foot trajectory. The foot trajectories were 

experimentally recorded when subjects walked overground with their natural walking 

patterns, i.e. they could flex their knee joint as much as they normally do. The ankle 

trajectory during the stance phase relative to the hip joint was found to be well-fit by a 

circle. This means that the knee joint during this phase was only slightly flexed and 

could be neglected. This observation was further confirmed by the knee angle during 

overground walking, which was slightly flexed at normal speed (the middle plot in 

Fig. 3.4) and hardly flexed at slow speed (the middle plot in Figs. 3.5-3.6). 

A novel result of the study was the demonstration that the toe trajectory could be 

approximated by a circle in both the stance and swing phases. Previous studies 

commonly assumed that the foot could be approximated with one rigid segment [249, 

258] with a semicircle shape [259, 260], and employed the pendulum model for the 

stance phase only. This study provides the basis for modelling the toe motion within a 

whole gait cycle using a rigid pendulum. This novel observation could potentially 

provide a new design approach for gait robots such as the GOER system.  

While the exact radius of the optimal circle of the foot obtained in our study might vary 

among individuals, the conclusion of circle-fit approximation was general, as it 

depended on typical trajectories of the ankle, heel and toe. The current study also 

supported the pendulum model concept and foot rocker model at variable speeds, 

showing that variations in the pendulum model according to the speed change were 

negligible (error less than 0.2% of the leg length).  
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A limitation of this study is that only three points on the foot (the ankle, heel and toe) 

were investigated as the potential tips of the pendulum. There might be certain other 

points in the foot segment moving in circular paths. It should be noted that the toe 

trajectory in this study referred to the second metatarsal head. Trajectories of other 

positions, such as phalanges on the foot, require further investigation. A further 

limitation of the study is the small number of subjects. The configuration of the 

best-fit circles might be related to leg length. Although the limited data makes it 

difficult to generalize the results, all the major observations, such as (i) the circular 

trajectories of the ankle and the heel during the stance phase, and (ii) the circular 

trajectory of the toe during the whole gait phase, are consequences of the inherent 

kinematics of human walking and should be broadly applicable.  

4.1.5. Conclusions 

This study presented a least squares approximation algorithm for analysis of foot 

trajectories in normal gait with respect to three different segments: the ankle, heel and 

toe. It showed that different segments of the foot described different trajectories. This 

resulted in different configurations of pendula used to describe walking in the stance 

phase or during the whole gait cycle. Further understanding of the trajectories of 

different segments of the foot during normal walking might be useful in the design of 

the GOER system and other foot/lower limb orthoses. 

4.2. Kinematic Modelling of the GOER System 

Summary: Rehabilitation of walking is an essential element in the treatment of patients 

with incomplete spinal cord injury (iSCI). During the early period after injury, patients 
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find it challenging to participate in the training of upright walking. Practising stepping 

movement in a supine position may be easier and may promote effective rehabilitation 

earlier. The study described in this section investigated and modelled a Gait Orthosis 

for Early Rehabilitation (GOER) that does not require the patient to be in an upright 

position. The model comprised a two-bar mechanical system to provide limb 

kinematics that approximated normal overground walking. The modelling was based 

on gait analysis performed on able-bodied subjects walking at 100%, 75% and 50% of 

normal cadence (NC). Simulated angles of the hip, knee and ankle joints showed 

comparable ranges of motion (ROMs) to experimental walking data measured in 

able-bodied subjects. The model provided operating parameters for a prospective 

GOER system that could be used for early rehabilitation of walking. This study was 

published in the Journal of Engineering in Medicine [2]. 

4.2.1. Introduction 

Damage to or disease of the central nervous system may result in complete or 

incomplete loss of motor, sensory and autonomic function below the level of the lesion 

[261]. To promote restoration of walking in patients with motor impairment, the 

rehabilitation process should be started as early as possible [262]. Effective restoration 

of gait requires coordinated movement of the legs [263]. However, for various reasons 

including injury instability, orthostatic hypotension and muscle weakness, many 

patients require a period of bed immobilization. In order to promote walking for the 

patients who cannot maintain an upright position, a Gait Orthosis for Early 

Rehabilitation (GOER) was designed with the following features: 

(1) The patient is able to perform stepping in a supine position; 

(2) The ankle joint is activated so as to allow coordinated kinematics of the lower limbs; 
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(3) Different speeds are accommodated to produce different training modalities. 

(4) Haptic feedback on the foot sole is provided to mimic the ground reaction forces 

during the stance phase. 

This study developed a model for the potential GOER system which achieved the first 

three requirements, i.e. simulation of stepping movement of the lower limbs in a supine 

position. The fourth requirement will be discussed in Section 4.3. 

4.2.2. Methods 

The gait data collected in the experiment described in Chapter 3 were analysed. Based 

on overground walking data from three normal subjects, a model of a two-bar 

mechanism was developed using Matlab/SimMechanics software (the MathWorks, Inc.) 

to simulate stepping movement of the lower limb in a supine position.  

4.2.2.1. Gait analysis  

With the recorded data from the gait experiment, the angle trajectories of the hip, knee 

and ankle joints were obtained and served as the target performance for the GOER 

system. Hip, knee and ankle joint angles in the sagittal plane were defined as zero at a 

neutral still standing position with flexion as positive and extension as negative. The 

angle α between the line connecting the toe and the ankle and the line connecting the toe 

and the heel was calculated using the data of the heel, toe and ankle. Experimental data 

over one gait cycle were analysed, and the duration of one gait cycle was normalised to 

100%, with heel strike at 0%.  
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4.2.2.2. Model development 

Computer modelling is an important tool for system analysis and an effective starting 

point for system development, including exoskeleton design as reported in the 

literature [190, 232]. SimMechanics software is a modelling environment for 

mechanical design [264]. It represents physical systems with block diagrams which 

specify body elements and their mass properties in a coordinated system. The 

SimMechanics library includes blocks for bodies, joints, force elements, sensors and 

actuators, which allows simulation of rigid multibody physical systems and their 

movements. Using standard Newtonian dynamics of forces and torques, modelling in 

SimMechanics is a tool to present kinematics and kinetic performance directly [264]. 

Human walking can be described using a pendulum model [258] (see Section 4.1), 

where the toe is considered to have a semi-circular trajectory with the circle radius 

approximately equal to the leg length (Figure 4.7(a)). Based on the circle-fit 

approximation of the toe trajectory described in Section 4.1, a model including a 

two-bar system and the leg, shown in Figure 4.7(b), was developed using 

SimMechanics, with the model blocks and parameters presented in Appendix 1. Bar 1 

is assumed to rotate at its proximal end P1, with the distal end (P2) connected to Bar 2. 

The foot is placed on Bar 2 with the toe (the second metatarsal phalangeal joint) 

coincident with P2. The point P1 is the centre of the semicircle (dash-dot line) used to 

approximate the toe trajectory.  
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(a) Circle fit approximation of the toe trajectory (in S1 walking at 100% of NC) with the 

centre at P1 (xc,yc). The hip is at the reference centre (0, 0). The experimental toe 

trajectory is shown as a solid line and the dash-dot line represents the best-fit 

semicircle. 

(b) The two thick lines represent Bar 1 and Bar 2. The thin lines represent the thigh and 

the shank in a supine position. The two bars, thigh, shank and foot are connected 

through revolute joints, marked with black dots. Actuator 1 is attached to Bar 1 at P1. 

Actuator 2 is attached to Bar 2 at P2. θ1 and θ2 are the angles describing the motion of 

Bar 1 and Bar 2 (θ2 is the angle between Bar 1 and Bar 2). The dash-double-dot line is 

the approximated toe trajectory (best-fit semicircle) in Subfigure (a). 

Figure 4.7: Development of the two-bar model. 
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In order to generate the desired toe trajectory, Actuator 1 is mounted on P1 to control θ1, 

the angle between Bar 1 and the horizontal axis. Furthermore, Actuator 2 is attached at 

P2 to control foot movement θ2. The target performance of Actuators 1 and 2 can be 

obtained from the experimental data of the toe and heel as: 

 1 arctan ; ( 1,2,3... )
Tj c

j

Tj c

Y y
j Q

X x



 

  (4.15) 

 
 3 arctan ; 1,2,3...
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Y Y



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  (4.16) 

 2 3 190    
 (4.17) 

where P1(xc, yc) is the centre of the best-fit circle. (XTj, YTj) and (XHj, YHj) are the 

experimentally obtained toe and heel coordinates within one gait cycle. θ3 is the angle 

between the foot sole and the vertical axis, which is obtained from the experimental 

data. Angles θ1, θ2 and θ3 are defined as zero when they are aligned with the X axis, Bar 

1 and the Y axis, respectively. Positive values are defined in an anti-clockwise direction. 

Combined control of two actuators induces the stance and swing phases with ankle 

plantarflexion and dorsiflexion, which results in coordinated angle profiles of the lower 

limb joints. A fixed step solver method ODE3 (Bogacki-Shampine) [265] with a fixed 

step size of 0.01s was used to simulate the model. The ranges of motion (ROMs) of the 

hip, knee and ankle joints in the model were constrained within 50
o
, 90

o
 and 50

o
, 

respectively, to prevent excessive flexion or extension [1]. The knee joint angle was 

constrained as positive to prevent hyperextension. 

4.2.2.3. Algorithms for model performance calculation 

Once the desired trajectories of Bar 1 and Bar 2 are defined, it is possible to predict the 

kinematics of the leg driven by the two-bar system. Kinematics of the leg are defined by 
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trajectories and angles of the hip, knee and ankle joints. The schematic diagram shown 

in Figure 4.8 is used to demonstrate the calculation algorithm.  

 

Figure 4.8: Schematic diagram of the model. 

The location of the centre P1 (xc, yc) and radius r are obtained using the least squares 

algorithm described in Section 4.1. Lengths lHA, lHK, lKA, lKT and lTA are the distances 

between the hip and the ankle, the hip and the knee, the knee and the ankle, the knee and 

the toe, and the toe and the ankle, respectively. Lengths lHK, lKA and lTA can be measured 

experimentally. 1 and 2 are angles of Bar 1 and Bar 2, achieved through Actuator 1 

and Actuator 2 in the model, and can be calculated from Equations (4.15)-(4.17). The 

toe coordinates (xT, yT) in the model can be obtained as: 

 1cos( )T cx r x 
 (4.18) 

 1sin( ) .T cy r y 
 (4.19) 

The ankle coordinates (xA, yA) in the model can be obtained as:                                   

 3sin( )A T TAx x l    
 (4.20) 

 3cos( )A T TAy y l    
 (4.21) 

where α is the angle between the line connecting the toe and the ankle and the line 

connecting the toe and the heel, which is a subject-specific parameter and is calculated 

from the data collected during quiet standing. With the ankle position determined, 
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length lHA can be calculated as  

 
2 2 2.HA A Al x y 

 (4.22) 

The law of cosines in the triangle of the hip, knee and ankle joints yields:  

 
2 2 2 2 cos( )HA HK KA HK KA Kl l l l l   

 (4.23) 

 

2 2 2-
arccos( )

2

HK KA HA
K

HK KA

l l l

l l





 (4.24) 

 

2 2 2

1

-
arccos( )

2

HA KA HK

HA KA

l l l

l l





 (4.25) 

 

2 2 2

2

-
arccos( )

2

HA HK KA

HA HK

l l l

l l





 (4.26) 

 3 arctan A

A

y

x
 

 (4.27) 

 2 3H   
 (4.28) 

where φK and φH are the knee and hip angles, respectively. φ1, φ2 and φ3 are the related 

angles in the triangle of the hip, knee and ankle, as shown in Figure 4.8. The knee 

coordinates (xK, yK) in the model can be calculated using Equations (4.29) and (4.30). 

 2 3cos( )K HKx l   
 (4.29) 

 2 3sin( )K HKy l   
 (4.30) 

In the triangle of the knee, ankle and toe, the law of cosines yields the angle φa as 

 

2 2 2

arccos( )
2

KA TA KT
a

HA TA

l l l

l l


 


 (4.31) 

with  

 
2 2 2( ) ( )KT K T K Tl x x y y   

 (4.32) 

The ankle joint angle φA was defined as zero at a neutral still standing position. 
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Therefore φA can be calculated as 

 
90 .o

A a    
 (4.33) 

The kinematics of the leg are defined by angle profiles of the hip φH (Equation (4.28)), 

the knee φK (Equation (4.24)) and the ankle φA (Equation (4.33)).

 

 

4.2.2.4. Comparison between experimental and simulated results 

Using the experimental data, trajectories of the ankle, knee and hip joints at various 

speeds were simulated. To compare the simulated and experimental angle profiles of 

the lower limb joints, their ROM differences and phase shifts were calculated. For the 

hip joint, the experimental and simulated ROMs are REH and RSH. The relative 

differences between the experimental and simulated ROM of the hip joint, RerrorH, were 

obtained as:  

 

| |
100%SH EH

errorH

EH

R R
R

R


 

 (4.34) 

The onsets of maximal hip extension in the experiment and the model within one gait 

cycle T are TEH and TSH respectively. The phase shift of the simulated and the 

experimental maximal extension relative to the whole gait cycle T, TerrorH, were 

obtained as:  

 

| |
T 100%SH EH

errorH

T T

T


 

 (4.35) 

Similar procedures were adopted to compare the knee and ankle angle profiles from the 

model and the experiment. In order to obtain the phase shift of the knee joint, the onset 

of maximal knee flexion was analysed. 
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4.2.3. Results  

Representative angle profiles for Bar 1 and Bar 2 over one gait cycle to achieve 

stepping at various speeds are shown in Figure 4.9.  

 

(a) Target angles for Actuator 1. 

 

(b) Target angles for Actuator 2. 

Figure 4.9: Two actuators profiles to simulate S1 walking at 100%, 75% and 50% of NC. 
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These are calculated based on walking data of S1 at 100%, 75% and 50% of NC with 

Equations (4.15)–(4.17). The angle profiles of Bar 1 and Bar 2 for S2 and S3 are similar 

to those of S1 shown in Figure 4.9, but the ROMs vary by 1-3
o
 to achieve different step 

lengths.   

 

(a) The stance phase (60% of T). Bar 1 moves the leg in a clockwise direction from 

position 1 (heel strike) to position 5 (toe off). 

 

(b) The swing phase (40% of T). Bar 1 moves the leg in an anti-clockwise direction 

from position 5 (toe off) to position 8. 

Figure 4.10: A sequence of eight positions over one gait cycle, showing every 12.5% of 

the gait cycle. The leg is shown as solid lines while dashed lines represent Bar 1. Bar 2 

coincides with the foot sole. T is the duration of the whole gait cycle. 
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Figure 4.10 shows a sequence of leg positions over one gait cycle, simulating S1 

stepping at 100% of NC. Note that unlike overground walking where the hip moves 

forwards, supine stepping has the hip fixed and the toe moving in the same 

semi-circular trajectory during the stance and the swing phases. The simulated angle 

profiles of the hip, knee and ankle joints can be obtained using Equations (4.18)-(4.33). 

 

(a) 100% of NC. 
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(b) 75% of NC. 

 

(c) 50% of NC. 

Figure 4.11: Kinematics in S1 walking at different speeds. Dashed lines represent the 

simulated angles while solid lines with shaded areas represent experimental mean 

angles ±SD. 
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(a) 100% of NC. 

 

(b) 75% of NC. 
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(c) 50% of NC. 

Figure 4.12: Kinematics in S2 walking at different speeds. Dashed lines represent the 

simulated angles while solid lines with shaded areas represent experimental mean 

angles ±SD. 
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(b) 75% of NC. 

 

(c) 50% of NC. 

Figure 4.13: Kinematics in S3 walking at different speeds. Dashed lines represent the 

simulated angles while solid lines with shaded areas represent experimental mean 

angles ±SD. 
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Table 4.3: The difference (Mean±SD) of the phase shift (%) and ROM error (%) between 

the model and experimental data of all three subjects. 

                    

100% of NC 75% of NC 50% of NC 

Phase 

shift 

(Terror) 

ROM 

deviation 

(Rerror) 

Phase 

shift 

(Terror) 

ROM 

deviation 

(Rerror) 

Phase 

shift 

(Terror) 

ROM 

deviation 

(Rerror) 

S1 

Hip 4.3±0.4 2.3±1.2 5.2±1.4 3.5±1.6 10. 6±0.9 7.7±2.5 

Knee 2.5±1.1 3.7±1.3 1.7±0.7 3.6±1.9 6.7±0.6 6.2±3.9 

Ankle 4.0±0.8 4.5±2.1 2.6±0.4 10.6±5.9 5.6±1.4 8.4±3.5 

S2 

Hip 2.0±1.3 3.6±1.9 3.4±1.2 4.3±1.7 3.6±0.9 20.3±3.3 

Knee 5.0±0.3 7.1±1.3 7.6±0.5 1.2±0.6 2.9±1.4 2.6±1.1 

Ankle 6.9±0.1 9.6±3.9 2.9±0.4 2.9±2.1 7.9±1.8 6.15±3.9 

S3 

Hip 4.4±0.6 5.3±2.3 3.2±0.7 5.9±1.5 9.5±1.1 7.8±3.5 

Knee 6.7±0.9 1.2±0.4 1.7±0.5 1.4±0.8 8.0±0.4 5.1±1.2 

Ankle 8.2±0.2 13.6±3.3 8.5±0.8 4.1±2.3 9.6±1.2 3.7±2.1 

Figure 4.11 shows the experimental and simulated angle profiles of S1, walking at 100% 

of NC (Figure 4.11(a)), 75% of NC (Figure 4.11(b)) and 50% of NC (Figure 4.11(c)). It 

can be seen that the experimental variability, shown as shaded areas in Figure 4.11, 

increases with reduction in walking speed. Likewise the deviation between the 

experimental and modelling data increases with reduction in speed (e.g. the angles of 

the hip and knee joint), probably due to increased intra-subject experimental variability 

in these gait parameters. Results from the other two subjects, S2 and S3, stepping at 

various speeds are shown in Figures 4.12-4.13. Individualized simulated angle profiles 

for all three subjects closely match the experimental results. The mean values of phase 

shift and ROM deviation between the simulated and experimental results for all three 

subjects at the three speeds are summarized in Table 4.3.   
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4.2.4. Discussion 

Dynamic modelling is widely adopted to test the function of gait training devices [190, 

232]. However, modelling studies rarely take into account analysis of movement of the 

foot and the ankle joint. In the current study, simulated and experimental results with 

detailed analysis of foot trajectories were presented. This study described model 

development and validation based on experimental data obtained from overground 

walking. The model successfully simulated supine stepping at three different speeds in 

three able-bodied subjects.  

Based on the approximation of the toe trajectory with a semicircle, a two-bar model was 

developed and validated by simulation of the angle profiles of the hip, knee and ankle 

joints, which closely followed the experimental results. The desired toe trajectory is 

achieved with Actuator 1, placed close to the hip. Actuator 2, located at the toe, moves 

the foot to simulate the ankle trajectory. The simulated movement of the lower limb is 

in phase with and have a comparable ROM to the experimental performance at three 

different speeds, with the best simulation achieved at normal cadence. The joint angles 

from the model are very close to the experimental results, especially in the stance phase. 

Some differences can be seen in the swing phase, for example, in the hip joint. This is 

because the model simulated all human joints as one-dimensional in the sagittal plane, 

while human walking actually involves three-dimensional joint rotations, especially in 

the hip. The lack of abduction/adduction simulation in the model induced a minor 

discrepancy in the joint angles of the model and the experimental results. The simulated 

joint kinematics at different speeds (Table 4.3) show that there is a small phase 

variation with variation of speed. Similarly, when the speed reduces, the difference 

between experimental and simulated ROM increases. This is to be expected because the 
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kinematic variability during real walking increases with reduction in walking speed 

[258].  

It is believed that repetitive training of coordinated movements of the lower limbs 

improves neurological recovery following spinal cord injury [66]. Although repeatable 

movements are essential for recovery, a small degree of kinematic variability might be 

necessary to prevent training habituation to a fixed pattern of locomotor [211, 266]. In 

the current study the adaptable kinematics of the lower limbs at variable speeds were 

achieved through modification of the actuators’ parameters. The model provided the 

control parameters of the actuators necessary to achieve the target profiles of the 

two-bar linkage system. 

The model was validated using data from three subjects. In order to obtain better 

validity of the model, data from a larger number of subjects is needed. Nevertheless, 

based on the similarity of simulated results from these subjects, it is expected that the 

modelled two-bar system would successfully simulate walking of a variety of subjects 

with different step lengths and walking speeds.  

The main scope of this study was kinematic modelling of walking. There were, 

however, several important issues to be considered to gain a complete picture of 

robot-assisted walking in a supine position. Coordinated motion of the hip, knee and 

ankle modelled in this study is only one prerequisite for successful rehabilitation of 

walking. Another important element is to include simulation of the ground reaction 

forces during the stance phase [261], which will be investigated in the following 

section.  
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Although the motivation for this study came from spinal cord injury, it is believed that 

the modelled device would be applicable to the other group of patients with injuries to 

the central nervous system. This modelling study is an important first step towards 

design of the GOER system, demonstrating technical feasibility of a two-bar 

mechanism to provide natural walking patterns in a supine position.  

4.2.5. Conclusions  

A model incorporating a two-bar system which had the capability to simulate stepping 

with variable kinematics was developed. The model was validated using experimental 

overground gait data. Simulated results were in good agreement with experimental data 

for normal and slower walking speeds. The model provided a useful testbed for the 

conceptual design of the GOER system, which could be used for early neurological 

recovery of walking, in patients who are still restricted to a supine position.  

4.3. Kinetic Analysis of Stepping in a Supine Position 

Summary: In order to promote walking in patients who cannot maintain an upright 

position in the early post-injury phase, a Gait Orthosis for Early Rehabilitation (GOER) 

was designed to provide stepping training in a lying position. The computer model 

study described in this section focused on kinetic analysis of supine stepping. A model 

of leg linkage in an upright position was developed and was validated by simulating 

dynamic walking which was similar to experimental overground walking. The model 

was then rotated by 90
o
 to simulate stepping movements in a supine position, which 

was a useful testbed to investigate the dynamic performance of the GOER system.  
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4.3.1. Introduction  

In our previous study described in Section 4.2 [2], a computer model of a Gait 

Orthosis for Early Rehabilitation (GOER) was developed. The kinematics of the lower 

limb were in phase with overground walking, i.e. sharing a similar time for joint 

flexion or extension. The simulated range of motion (ROM) were similar to normal 

walking [2]. However, study of locomotion involves not only moving trajectories, but 

also the dynamic mechanics of progression [267]. As kinetic analysis reveals the 

cause of the movement, joint kinetics are fundamental for understanding motor 

patterns of walking. The complex interaction of the leg segments, revealed by the 

moment of force at each joint, becomes an important issue for investigation.  

Dynamic analysis on the motion of the lower limb during supine stepping will be 

useful for the design process of the GOER system. This study developed computer 

models to simulate joint dynamics during overground walking and supine stepping, 

providing an insight into the dynamics of supine stepping in the GOER system. 

4.3.2. Methods 

A gait experiment was carried out on three able-bodied subjects walking overground at 

variable speeds as described in Chapter 3. The classical techniques of motion capture 

and force plate measurement were employed to record dynamic performance: detailed 

information can be found in Chapter 3. A leg linkage model was developed to simulate 

upright walking. After the model was validated using experimental walking data, the 

same model was rotated by 90
o
 to investigate the dynamics of supine stepping. 
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4.3.2.1. Model development 

The human leg can be represented as a linkage system [258]. The leg linkage shown 

in Figure 4.14 was developed using the SimMechanics toolbox in Matlab (the 

MathWorks, Inc.), with the actual model shown in Appendix 2.  

 

Figure 4.14: Free body diagram of the leg segments in an upright position. 

The segments of the thigh, shank and foot are connected through revolute joints, with 

the centres of mass marked as black dots. Anthropometric data, such as the centre of 

mass and length of each segment can be found in Table 3.3. In order to simulate 

human locomotion, three actuators were implemented at the hip, knee and ankle joints. 

The target angles for these joints were calculated based on experimental data (see 
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Figures 3.3-3.5). In order to analyse the dynamics of stepping in a supine position, the 

model was rotated by 90
o
 as displayed in Figure 4.15, with gravity acting downwards. 

A fixed step solver method ODE3 (Bogacki-Shampine) [265] with a fixed step size of 

0.01s was used to simulate upright walking and supine stepping. 

 

Figure 4.15: Free body diagram of the leg segments in a supine position. 

4.3.2.2. Moment calculation algorithm 

Using the data collected in Chapter 3, the joint moments at the hip, knee and ankle 

during upright overground walking can be calculated by the inverse dynamics 

approach [1]. The gait data were visually observed to remove outliers, and were then 

smoothed with the loess or rloess Matlab functions. This section presents algorithms to 

calculate moments of force at the ankle, knee and hip during supine stepping as 

shown in Figure 4.15. Vertical forces and displacements in the upward direction, 

horizontal forces and displacements to the forward and moments in the clockwise 

direction were denoted as positive. Moments were normalised by body mass. 
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Experimental data over one gait cycle were analysed, and the duration of one gait cycle 

was normalised to 100%, with heel strike at 0% and 100%.  

The mass of the foot is denoted by mf. The internal forces and moment in the ankle joint 

with respect to the foot Fax, Fay and Ma were calculated as:  

 ax gy f fxF F m a 
 (4.36) 

 ay gx f f fyF F m g m a  
 (4.37) 

 a gy cop gx m ax aop ay a f fM F L F H F L F H I     
 (4.38) 

where Fgx and Fgy are the forces applied in the model to simulate the ground reaction 

forces. The displacement of the ankle from the centre of mass in the horizontal and 

vertical directions are Ha and Laop, respectively. afx and afy are the horizontal and 

vertical components of the displacement acceleration of the foot. If is the moment of 

inertia of the foot and αf is its angular acceleration. The displacement of the centre of 

pressure (marked with a star in Figure 4.15) from the centre of mass in the horizontal 

and vertical directions are Hm and Lcop, respectively. These variables can be determined 

experimentally or looked up from anthropometric data in Table 3.3. It should be noted 

that the lever arms in upward and right directions were defined positive. Lcop can be 

calculated using the experimental moment at the ankle joint Mae during stance phase 

of overground walking. During the stance phase, αf = 0, the weight of the foot mf, 

compared to the ground forces (Fgx, Fgy), is negligible. Mae during the stance phase 

can be calculated as [268]: 

 
'.ae gy cop gx aM F L F H 

 (4.39) 

where Ha’ is the distance of the ankle joint off the ground. Therefore Lcop can be 

obtained as 
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ae gx a

cop

gy

M F H
L

F




 (4.40) 

The ankle moment during supine stepping Ma can be calculated using Equations (4.36)

-(4.40). The internal forces and moment in the knee joint with respect to the shank Fkx, 

Fky and Mk were calculated as: 

 kx ax s sxF F m a 
 (4.41) 

 ky ay s s syF F m g m a  
 (4.42) 

sin( ) cos( ) (1 )sin( ) (1 )cos( )k kx s s k ky s s k ax s s k ay s s k a s sM F l F l F l F l M I               

 (4.43) 

where asx and asy are the horizontal and vertical components of the displacement 

acceleration of the shank. θk is the angle between the shank and the vertical axis, with 

clockwise as positive. ms, ls, αs and Is are the mass, length, angular acceleration and 

moment of inertia of the shank. λs is the distance between the centre of mass of the 

shank and the knee joint divided by the shank length. The internal forces and moment 

in the hip joint with respect to the thigh Fhx, Fhy and Mh were calculated as: 

 hx kx t txF F m a 
 (4.44) 

 hy ky t t tyF F m g m a  
 (4.45) 

sin( ) cos( ) (1 )sin( ) (1 )cos( )h hx t t h hy t t h kx t t h ky t t h k t tM F l F l F l F l M I               

 (4.46) 

where θh is the angle between the thigh and the vertical axis, with clockwise as positive. 

mt, lt, αt and It are the mass, length, angular acceleration and moment of inertia of the 

thigh. λt is the distance between the centre of mass of the thigh and the hip joint divided 

by the thigh length. 
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Using the experimentally recorded ground reaction forces and proceeding along the 

lower limb from the ankle to the hip, the leg linkage model shown in Figure 4.15 

yielded the moments at the hip, knee and ankle joints during stepping in a supine 

position. For the sake of safety and in order to avoid eliciting a withdrawal reflex, 

typically a fraction of force was applied to simulate the ground reaction [261]. 

Furthermore, it was feasible to apply pressure on the foot sole, while it was impractical 

to implement friction on the foot physically. Therefore a 30% of upward force was 

applied on the foot to simulate the kinetics of leg during supine stepping in the GOER 

system. 

4.3.3. Results 

Based on the experimentally obtained ground reaction forces and moments at the ankle 

joint (see Figures 3.6 and 3.9), the COP can be calculated using Equation (4.40). A 

representative profile of the COP in S1 walking at 100% NC is shown in Figure 4.16. 

The centre of pressure moves from the heel (0% of the foot length) to the toe (100% 

of the foot length) during the stance phase. As there is no ground force during the 

swing phase, the centre of pressure only covers 60% of the gait cycle. The COP 

profile obtained in this study is similar to the description in the literature [234, 269]. A 

minor difference can be seen at heel strike (marked with an arrow). This is because of 

the quick force increase coming from the heel strike loading.  

In the simulation of upright walking in S1, the forces, with amplitudes equal to the 

experimental ground reaction forces (see Figure 3.7(a)), were applied on the foot sole, 

moving as the experimentally obtained path of the centre of pressure (Figure 4.16). The 

simulated moments at the hip, knee and ankle joints in S1 walking at 100% of NC are 
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represented as dashed lines in Figure 4.17(a). The experimental moments are plotted as 

solid lines for comparison. Similarly the joint moments from the other two subjects 

can be simulated and presented in Figures 4.17(b) and (c). It can be seen that the 

simulated moments during upright walking were quite close to the experimental results 

of overground walking. Minor differences were seen in the stance phase at the knee 

joint. This might result from approximation error in the centre of pressure and/or the 

moment of inertia. In spite of these differences, the pattern similarity of the moment 

profiles at the three joints during upright walking between the model and the 

experiment satisfactorily validated the model.  

 

Figure 4.16: Trajectory of the centre of pressure from the heel to the toe in S1 walking at 

100% of NC. The foot length of S1 is 0.25 m. 
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force induced by gravity was taken to act downwards. The ground reaction forces 

during overground walking were applied on the foot sole of the supine leg with the 

same amplitudes, but the upright force was changed into the left direction and the 

friction was applied vertically. The simulated moments at the ankle, knee and hip joints 

during supine stepping with full ground reaction forces are shown in Figure 4.17 as 

dotted lines. The results of 30% of the experimental upward ground reaction force 

applying on the foot are presented in Figure 4.17 as dash-dot lines. Using similar 

methods, the joint moments in the three subjects stepping at 75% and 50% of NC were 

calculated and presented in Figures 4.18-4.19. 

 

(a) S1. 
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(b) S2. 

 

(c) S3. 

Figure 4.17: Internal joint moments in three subjects walking at 100% of NC: solid, 

dashed, dotted and dash-dot lines are respectively the moments during experimental 

overground walking, simulated upright walking, simulated supine stepping with full 

ground forces and simulated supine stepping with 30% of upward ground force. 
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(a) S1.  

 

(b) S2.  
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(c) S3.  

Figure 4.18: Internal joint moments in three subjects walking at 75% of NC: solid, 

dashed, dotted and dash-dot lines are respectively the moments during experimental 

overground walking, simulated upright walking, simulated supine stepping with full 

ground forces and simulated supine stepping with 30% of upward ground force. 
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(a) S1.  

 

(b) S2.  
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(c) S3.  

Figure 4.19: Internal joint moments in three subjects walking at 50% of NC: solid, 

dashed, dotted and dash-dot lines are respectively the moments during experimental 

overground walking, simulated upright walking, simulated supine stepping with full 

ground forces and simulated supine stepping with 30% of upward ground force. 
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However, the differences in joint moments induced by body position became apparent 
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walking. This can be observed by the dotted lines being lower than the solid and dashed 

lines in the top and middle plots of Figures 4.17-4.19. 

In contrast to position changes, which influenced the hip joint moment most, the 

ground reaction forces had significant influence on the ankle joint moment. When the 

force applied on the foot reduced to 30% of upward ground forces during overground 

walking, the moment at the ankle joint (the dash-dot line in the lowest plots of Figures 

4.17-4.19) reduced to approximately 30% of that during stepping with the whole body 

weight (the solid, dashed and dotted lines in the same figure). This is as expected, 

keeping in mind that the ankle joint moment is closely related to the ground reaction 

forces (Equations (4.38) and (4.39)).  

As described in Section 3.3.3, the knee joint produced additional extension moment in 

the early stance phase (around 15% of the gait cycle) during normal overground 

walking, which was most pronounced at 100% of NC. This additional extension 

moment was still observed during supine stepping with full ground reaction forces, 

but was much alleviated during supine stepping when the ground reaction force was 

replaced with a value of only 30%. This was because the addition extension came 

from the heel strike loading. It was expected that the knee joint required less internal 

extension moment after reduction of the ground reaction forces. Therefore the moment 

at the knee joint in supine stepping with 30% of upward force was much reduced, 

based on the observation that dash-dot lines in the middle plots of Figures 4.17-4.19 

are close to the neutral position. However, the moment at the hip joint still showed 

large flexion moment, in spite of a much reduced ground force. As the ground reaction 

forces only existed during the stance phase, the reduction of force only influenced the 

joint moments in the stance phase, while those during the swing phase were the same as 
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those during supine stepping with full ground reaction forces.  

When the speed reduced, the differences in the hip moments between supine stepping 

and upright walking were quite similar to those occurring during walking at 100% of 

NC. The moments at the ankle and knee joints had a smaller change compared to 

walking at 100% of NC.  

4.3.4. Discussion 

In order to investigate the technical feasibility of the proposed GOER device, the 

kinetic features of supine stepping should be taken into account. Computer modelling is 

a useful tool for visualization of the dynamic performance at various positions with 

different levels of ground reaction forces. One of the important elements of this study 

was the modelling of force transmission between the links (foot, shank and thigh). The 

moments at the ankle, knee and hip joints were calculated simultaneously using inverse 

dynamics. The study firstly developed a model to simulate upright walking. The 

simulated moments at the joints were similar to the experimental data, which 

confirmed the accuracy of the leg linkage model. Keeping a similar configuration, the 

model was rotated to simulate stepping in a supine position. Although the same amount 

of forces as the recorded ground reaction were applied on the foot sole in the supine 

position, there were differences in the joint moments due to the position change. 

Differences were closely dependent on the weight of the segments that the joint 

supports, with the largest difference in the hip joint, which supports the heaviest 

segments (the thigh, shank and foot), and the smallest difference in the ankle joint.  

Joint moments in the lower limbs can be used to quantify forces generated by patients 
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(reflecting muscle strength) and to assess the clinical rehabilitation process. For 

patients’ safety, only a small force is clinically applied on the foot to stimulate the 

sensory motor system [261]. Moreover, a low force is selected to prevent reflexes in 

patients who are more sensitive to stimuli and vulnerable to reflexes compared to 

able-bodied people [25]. Compared to the simulated moment in the supine position 

with 100% of body weight applied on the foot sole, the simulated moment at the ankle 

joint during 30% of upward ground reaction force was significantly reduced. As the 

foot was not heavy compared to the thigh and shank, the ankle joint moment was 

closely related to the ground reaction forces. It was expected that a reduced ground 

reaction force induced a reduced ankle joint moment.  

The moment change in the hip joint, which was mainly caused by the position, did not 

substantially vary at various speeds. However, the knee joint moment during supine 

stepping during the early stance phase had a smaller difference in slower walking 

compared to walking at 100% of NC. This might result from the fact that the ground 

reaction forces during slower walking were lower with less strike loading and were not 

as dynamically variable as that during normal walking (see Figures 3.7-3.9). Such a 

reduced force profile induced smaller changes in the moments at the ankle and knee 

joints, which were more influenced by the ground forces, as discussed above. 

It was observed that the hip joint was most sensitive to the change of position while the 

ankle joint was most sensitive to the forces applied on the foot. The position change 

from upright walking to supine stepping resulted in a different distribution of forces 

and a change in the effect of gravity. To avoid excessive forces on the leg joints and to 

stabilize the leg, the proposed GOER system requires a robust frame which can support 

the weight of the leg. For the ground reaction force simulation, the system should be 
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capable of producing a force with an adjustable amplitude, so that the GOER system 

can initiate the training with a very small force to ensure patient safety, then increase 

the force amplitude based on the physical condition of the patient, so as to train the 

ankle joint.  

4.3.5. Conclusions 

A model of the leg linkage was developed which simulated overground walking with 

similar dynamics to experimental walking. It utilized experimental gait patterns, such 

as trajectories and ground reaction forces. The patterns were shown to influence the 

moments in joints that occur during locomotion. The rotated model allowed analysis 

of supine stepping with different ground reaction forces. The model proved a useful 

testbed to investigate the dynamics of supine stepping in the proposal GOER system. 
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Chapter 5. Prototype Design of the GOER 

System 

Summary: The model of the GOER system with two rotary actuators has a high power 

requirement for supine stepping, therefore several options for the potential actuation 

are presented and compared, resulting in a detailed conceptual design of a bar-cam 

system. The GOER design is then finalised, after suitable materials are selected for 

each component and a power unit consisting of an electric motor and a gearbox is 

specified. Furthermore, a pneumatic shoe platform is designed to mimic the ground 

reaction forces, including analysis of the shoe structure for mechanical stimulation and 

selection of commercially available pneumatic elements. This chapter ends with a final 

specification of the GOER prototype. Equation Chapter (Next) Section 1 

5.1. Actuation Configuration 

Actuation analysis is an important part of system design. This section investigates 

conceptual design of different actuation configurations for the GOER system. 

5.1.1. Power requirements from the two-bar GOER model  

Supine stepping was simulated with a model of a two-bar linkage as shown in Figure 

4.7. This model employs two rotary actuators to move the bars in semi-circular 

trajectories periodically. A system with such an actuation setup requires relatively high 

power input. Supine stepping demands higher peak power than upright walking, 

because the supine leg needs to accelerate against gravity during the swing phase. It is
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expected that the high load combined with the long moment arm of the leg weight 

results in high power requirements from the two rotary actuators for the two-bar GOER 

system.  

As shown in Chapters 3 and 4, one of the advantages of modelling in SimMechanics / 

Matlab is that information such as the torque and power can be calculated through the 

inverse linkage algorithm. The material properties, such as the mass, the length and the 

moment of inertia of each segment in the model have to be specified, so that 

SimMechanics model can simulate the dynamics [264]. The properties of the human 

body segments, including the thigh, the shank and the foot, can be calculated using 

Table 3.3. The other segments involved in this model are the two bars. The length of the 

driven Bar 1, as described in Section 4.1.2, is approximately equal to the leg length. Bar 

2, which supports the foot, has a length equal to the foot length. The material for these 

two bars should be selected based on the target performance, which will be discussed in 

Section 5.1.6. At the current stage of model simulation, the material is provisionally 

defined as carbon steel with a hollow square cross section (0.0250.025 m
2
 with 

thickness of 0.003 m).  

After the materials of the bars are defined in the model (presented in Appendix 3), the 

torque of the two-bar GOER system can be calculated as: 

 k t t tT T I  
  (5.1) 

 a k s s sT T T I   
  (5.2) 

 2 a f f fT T T I   
  (5.3) 

 1 2 b b bT T T I   
  (5.4) 
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where Tk, Ta, T2 and T1 are, respectively, the torque at the knee, the ankle, Actuator 2 

and Actuator 1. Parameters It, Is, If, and Ib are, respectively, the moment of inertia of the 

thigh, the shank, the foot and Bar 1. Variables αt, αs, αf and αb are, respectively, the 

angular acceleration of the thigh, the shank, the foot and Bar 1. Tt, Ts, Tf and Tb are the 

torques induced by the intersegmental forces with respect to the centre of mass of the 

thigh, the shank, the foot and Bar 1, respectively. As Bar 2 is relatively short and light 

(0.25 m in length and 0.5 kg in mass, as can be seen from Section 5.2.2), the torque 

induced by Bar 2 is negligible in the above torque calculation. The potential user of the 

GOER system is assumed to have a maximum body mass of 135 kg, which is the upper 

limit of the user’s weight for the Lokomat system
4
. The normal stepping speed of the 

user in the GOER system is taken to be 1.34 m/s (4.8 km/h), which is an experimentally 

obtained value from Chapter 3. With all these parameters defined in the model, the 

movement trajectory of each segment can be simulated, which results in the angular 

velocity, angular acceleration, torque and power in each joint. Furthermore, the power 

P can be calculated based on the torque T and the angular velocity w: 

 
*P T w

 (5.5) 

The required torque and power for Actuators 1 and 2 for a user with a body mass of 135 

kg performing supine stepping at a normal speed of 1.34 m/s are presented in Figures 

5.1-5.2. The power from Actuators 1 and 2 are up to 1500 W and 600 W, respectively. 

In contrast to normal overground walking with power from the hip, the knee and the 

ankle joints, foot rotation in the GOER system is mainly generated by Actuator 2, 

which is attached to the tip of the toe. During the heel-off phase, the foot has the largest 

                                                 

4
 Technical Data Lokomat System. http://www.hocoma.com/en/news-events/downloads/. 

Accessed on 03/01/2012. 
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plantarflexion and the leg changes from downward movement to upward lifting. As the 

whole leg is fairly heavy (up to 22 kg for a subject with a mass of 135 kg), the system 

requires high power to achieve the target performance. When the leg enters the swing 

phase, the foot moves back into the neutral position. The weight of the horizontally 

flexed leg tends to push the foot into dorsiflexion. Therefore Actuator 2 works like a 

generator and provides braking force to prevent further dorsiflexion. 

Actuator 1, which moves the whole leg upwards and downwards, has to provide higher 

power than Actuator 2. During the stance phase when the leg moves downwards, the 

leg descends by gravity. Actuator 1 works in generator mode so as to slow down the 

system. However, Actuator 1 has its peak torque at toe off, when it moves the bar and 

the leg upwards against gravity at a high acceleration (the mean maximal acceleration 

at 100% of normal cadence for the three subjects during the gait experiment described 

in Chapter 3 is up to 33.4 m/s
2
). It is reasonable that the two-bar GOER system requires 

high power, especially during the swing phase (1500 W from Figure 5.2). 

The high power requirements of the two actuators described above highlight the 

necessity to reconfigure the drive system. The selection of rotary actuators in the 

two-bar model is based on the advantage that the target angle profiles for the actuators 

are easy to obtain from the experimental results (see Section 4.2). However, in the 

actual physical system, there are many ways to achieve the semi-circular upward and 

downward movements required in the GOER system. 
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Figure 5.1: Torque requirements. 

 

Figure 5.2: Power requirements. 
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5.1.2. Concept development of Actuation 1 

Figure 5.3 displays three configurations for Actuation 1 to achieve semi-circular 

periodic movements. The simplified diagram in Figure 5.3 presents a pivoted driven 

bar, with an arrow marking the position of the foot attachment. No information 

regarding the leg and Actuator 2 is displayed.  

 

(a) Linear actuation.  

 

(b) Rotary bar linkage system. 

 

(c) Rotary bar linkage system with a counterweight. 

Figure 5.3: Three options for Actuation 1. 
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The target performance for Actuator 1 is to move the leg up and down repetitively. 

Linear actuation is an easy method to achieve these periodic movements, as Figure 

5.3(a) shows. The linear actuator (marked as a cylinder in Figure 5.3(a)) can induce 

periodic movements with flexible ranges of motion (ROMs), by changing the stroke. 

However, linear actuators are often more expensive than rotary actuators. Therefore 

some relatively cheap options with employment of rotary actuators were further 

investigated. 

A bar linkage is one of the most widely used mechanisms for production of 

semi-circular trajectories via a rotary actuator [270], which can be seen in Figures 5.3 

(b) and (c). Two additional bars are included to move the driven bar, compared to 

Figure 5.3(a). In contrast to the setup in Figure 5.3(b), the system in Figure 5.3 (c) has 

the driven bar extended and installs the actuator at the other side of the pivot. Due to 

the leg attachment, the driven bar in Figure 5.3(b) is out of balance. Extending the 

driven bar allows attachment of a counterweight (marked as a square in Figure 5.3 (c)) 

to balance the leg on the other side, resulting in a reduced power requirement.  

The bar linkage is a reliable solution to produce periodic movements through constant 

rotation. Although the GOER system requires a flexible ROM of the driven bar so as to 

produce stepping at various speeds, a bar linkage can be designed to achieve one 

ROM for walking at one speed, for example, at 100% of NC, so as to evaluate the 

design concept of the GOER system. Therefore the bar linkage with a counterweight 

shown in Figure 5.3(c) is selected as the final setup of Actuation 1.  
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5.1.3. Design of Actuation 1: a four-bar linkage  

Bar linkages can produce different performance with different setups. However, 

complicated performance requires a complex design. Therefore the target performance 

for Actuation 1 was simplified based on the simulation performance required by the 

two-bar model (see Figure 4.9(a)). This section describes synthesis techniques to 

design a four-bar linkage, which achieves a target ROM of the driven bar with a target 

phase ratio between the stance and swing phases, i.e. the duration ratio of downward 

and upward movements. 

5.1.3.1. Design parameters of a four-bar linkage 

Design of a four-bar linkage requires determination of optimal lengths of the bars so 

as to achieve the target periodic movement of the rocker from the constant rotation of 

the crank. As shown in Figure 5.4, a four-bar linkage ABCD is usually based on a 

fixed frame DA (a thick dash-dot line) and often has a rotational crank AB to move a 

rocker CD through a coupler BC. The dash-dot line HH’ is the horizontal axis. In order 

to ensure the crank AB performs full rotation, the bar lengths should fulfill [270]: 

 1 2    s ll l l l  
  (5.6) 

where ls and ll are the lengths of the shortest and the longest bars, while l1 and l2 are 

the lengths of the other two bars. 

The bar lengths define the rocker movement: the ROM and the duration ratio of the 

downward and upward movement. Position ABCD in Figure 5.4 shows that the 

coupler is aligned with the crank, which allows the rocker tilted at γ1 (∠CDH) to reach 

the upper limit CD. When the crank rotates clockwise by γ2 (∠BAB1) until it is aligned 



Chapter 5                Prototype Design of the GOER System                 200 

 

 

with the coupler again, the rocker is tilted at γ3 (∠C1DH) to its lower limit C1D. If the 

crank further rotates by γ4 (reflex angle B1AB, γ2+γ4 = 360
o
), the rocker moves upward 

back to its upper limit CD. Therefore the ROM of the rocker is (γ1+γ3), with the 

duration ratio of the downward and upward movements as (γ2:γ4). The ROM of the 

coupler, which is the angle between Bars BC and B1C1, is denoted as γ5 (∠CAC1). 

 

Figure 5.4: A bar linkage ABCD. Bar AB is the crank and Bar CD is the rocker. The 

trajectory of the rocker tip is shown as a dash-dot curve. Three typical positions ABCD, 

AB1C1D and AB2C2D are presented. γ1: ∠CDH; γ2: ∠BAB1; γ3 : ∠C1DH; γ4 : reflex angle 

∠B1AB; γ5: ∠CAC1; γ6 : ∠B2C2D. 

Bar linkages with different lengths produce different energy transmission efficiencies. 

The transmission ratio of the input power of the crank to the output power of the rocker 

is related to the angle between the coupler and the rocker [270]. This angle changes 
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according to the crank position, such as ∠BCD and ∠B1C1D in positions ABCD and 

AB1C1D, which results in different transmission ratios. When the crank is aligned with 

the frame DA, as shown in position AB2C2D of Figure 5.4, the angle of the coupler and 

the rocker has its minimum value, which is defined as the transmission angle γ6 

(∠B2C2D in Figure 5.4). The transmission ratio of the bar linkage is proportional to the 

sine of the transmission angle γ6 [270]. An optimal bar linkage should make the 

transmission angle γ6 as large as possible to ensure high power efficiency.  

Table 5.1: Target performance of the rocker in the four-bar linkage for stepping at three 

speeds. 

 100% of NC 75% of NC 50% of NC 

 ROM (deg) Phase ratio ROM (deg) Phase ratio ROM (deg) Phase ratio 

S1 -22.0 to 26.0 6.0 : 4.0 -18.0 to 25.0 7.1 : 2.9 -13.1 to 15.9 7.7 : 2.3 

S2 -23.0 to 28.0 6.0 : 4.0 -21.0 to 26.0 7.1 : 2.9 -19.6 to 27.1 7.3 : 2.7 

S3 -25.0 to 28.0 6.0 : 4.0 -23.0 to 27.0 6.7 : 3.3 -22.7 to 25.8 7.1 : 2.9 

Mean -23.0 to 27.0 6.0 : 4.0 -21.0 to 26.0 7.0 : 3.0 -18.5 to 23.0 7.4 : 2.6 

The ROM and the duration ratio of the rocker combined with the transmission angle 

are the main parameters for determining the optimal lengths of the bar linkage for the 

GOER system. The GOER is designed to produce leg movement at variable speeds. 

The ROMs of the driven bar and the phase (duration) ratios at 100%, 75% and 50% of 

NC are summarized in Table 5.1, based on the experimental data in Chapter 3. 

5.1.3.2. Design of a bar linkage for the GOER system stepping at 100% 

of NC 

Linkage synthesis techniques are described in this section so as to obtain the simplified 

target performance of Actuator 1 for the GOER system, with stepping at 100% of NC 
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as an example. According to the requirements of stepping at 100% of NC presented in 

Table 5.1, the following equations can be derived: 

 1 323; 27  
  (5.7) 

 2 4 360  
  (5.8) 

 2 4/ 2 / 3  
  (5.9) 

 2 5 180  
  (5.10) 

The law of cosines results in the transmission angle γ6 
as: 

 

2 2 2

6

( )
arccos

2

b c d a

b c

l l l l

l l


  


  (5.11) 

where la, lb, lc and ld are the lengths of bars AB, BC, CD and DA, respectively. 

Equations (5.8)-(5.10) yield γ2 = 144°, γ4 = 216° and γ5 = 36°.  

 

Figure 5.5: Four-bar linkage design. The rocker is lengthened at the other end, with 

triangles showing the points of foot attachment. 
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Figure 5.5 shows a rocker rotating at a point D between the range of C1D and C2D. The 

rocker is extended at the other end to represent the driven bar required in the GOER 

system, with triangles showing the points of foot attachment. In order to ensure the 

phase ratio of 3:2, i.e. γ5= 36°, the possible locations of the crank base A should be part 

of a circle M, which can be obtained in the following steps: 

(1) Choose a point P, which constructs a right triangle C1C2P with ∠C1PC2 = γ5 = 36°.  

(2) Draw a circumscribed circle M with the hypotenuse C1P as the diameter. 

This circumscribed circle M, which is shown in Figure 5.5 as a solid curve, is the 

potential trajectory for the crank base A to ensure γ5 = 36°.  

As the minor arc C1C2 is the movement of the rocker, it is not suitable for the crank base 

A. The crank base, which will have an actuator, is better positioned in a low place, such 

as the lower half circle C2P, rather than in the upper half circle C1P. Furthermore, the 

user of the GOER system aligns the hip joint with the point D for training. Fixing the 

crank in the minor arc VP will make the training inconvenient (V is the intersection 

between the circle M and the vertical line starting at the point D). After consideration of 

the practical setup of the GOER system, the potential trajectory for the crank base A to 

ensure the phase ratio of 3:2 is only a small part of the circle M: the minor arc C2V.  

Assuming the rocker with a length of lc is fixed at D (0, 0), the points C1 (
1Cx ,

1Cy ), C2 

(
2Cx ,

2Cy ) and the distance C1C2, 
1 2C Cl , can be calculated as: 

 
 

1 1cos 180C cx l   
  (5.12) 

 
 

1 1sin 180C cy l   
  (5.13) 

 
 

2 3cos 180C cx l   
  (5.14) 
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 

2 3sin 180C cy l   
  (5.15) 

 1 2 2 21 1

2 2( ) ( ) .C C C C CCl x x y y   
  (5.16) 

Therefore the possible positions for the crank base A lie on a circle with radius RA and 

centre (xM, yM) as: 

 
1 2

52sin( )

C C

A

l
R




  (5.17) 

 1 1

2 2 2( ) ( )M AC M Cx x y y R   
  (5.18) 

 2 2

2 2 2( ) ( )M AC M Cx x y y R   
  (5.19) 

Based on the size of the GOER system, the length of the rocker is defined as lc = 0.40 m. 

Then the parameters above can be obtained as: 

RA = 0.287; xM = -0.13; yM = 0.045. 

The position A (xA, yA) can be defined via some angle γ7, which has the zero position 

aligned with X axis with positive value in anti-clockwise direction, as: 

 
 7cos   0.287 0.13Ax  

  (5.20) 

 
 7sin0.287 0.04 . 5  Ay  

  (5.21) 

As the pivot A lies in the arc C2V, the limits of γ7, γ7_1 and γ7_2, can be calculated as: 

  
27_1cos  0.287 0.13 Cx  
  (5.22) 

  7_ 2cos   00.287 .13 Vx 
  (5.23) 

which yields γ7_1 = 214° and γ7_2 = 297°. Therefore the crank base A is in the minor arc 

C2V when γ7 is between 214
o
 and 297

o
. 

The next task is to find the optimal position on the minor arc C2V for the crank base A 
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which yields the largest value of the transmission angle. The bar lengths of the four-bar 

linkage can be defined as: 

 1 1 1

2 2( ) ( )AC C A C Al x x y y   
  (5.24) 

 2 2 2

2 2( ) ( )AC C A C Al x x y y   
  (5.25) 

 
1 2

2

AC AC

a

l l
l




  (5.26) 

 
1 2

2

AC AC

b

l l
l




  (5.27) 

 
2 2

d AAl x y 
  (5.28) 

When γ7 is between 214
o
 and 297

o
, the length of the crank AB, la, the coupler BC, lb, 

and the frame DA, ld, can be calculated as shown in Figure 5.6. The corresponding 

transmission angle γ6 can also be calculated using Equation (5.11), as presented in 

Figure 5.7. It can be seen that the largest transmission angle is obtained when γ7 = 245
o
. 

 

Figure 5.6: Bar lengths as a function of γ7, which describes the position of the crank 

base A. 
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Figure 5.7: The transmission angle as a function of γ7, which describes the position of 

the crank base A. 

 

Figure 5.8: The setup of the bar linkage to move the driven bar (ABCD achieves the 

lowest position of the driven bar for toe off, while AB1C1D produces the upmost position 

of the driven bar for heel strike). 
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The final setup of the bar linkage system to simulate stepping at 100% of NC can be 

determined as shown in Figure 5.8, with the lengths as:  

la = 0.15 m; lb = 0.30 m; lc = 0.40 m; ld = 0.36 m. 

The sum of lengths of the shortest and longest bars (0.55 m) is shorter than the 

combination of the other two bars (0.66 m), which meets the inequality (5.6), 

allowing full rotation of the crank. The coordinates of ABCD shown in Figure 5.8 are: 

A(-0.25, -0.26); B(-0.29, -0.11); C(-0.36, 0.18); D(0, 0). 

Using the bar linkage, the target periodic performance can be achieved through 

constant rotation of the crank, where an electric rotary motor can be used. The final 

performance of the driven bar induced by the bar linkage is presented in Figure 5.9 as a 

solid line. The theoretical target angle of Actuation 1 obtained from the two-bar model 

is shown as a dashed line for comparison. The motion produced by the bar linkage is 

designed to approximate the target motion by achieving the same ROM and phase ratio. 

It can be seen that the ROM achieved from the bar linkage is 50
o
, and the phase ratio 

between downward and upward movement is 3:2, which meets the target performance 

of Actuator 1. However, the angle profile produced by the bar linkage is different from 

the target angle profile of Actuator 1 during the simulation of the mid-stance and 

mid-swing phases. These differences occur because the speed is lower at heel strike and 

higher during the mid-stance and mid-swing phases in the bar linkage setup than the 

theoretical speeds at the corresponding phase required by the two-bar model. However, 

these differences are satisfactory as far as the power is concerned. The bar linkage 

allows the driven bar to change the speed gradually at heel strike, which requires less 

acceleration, resulting in a reduced power requirement. 
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Figure 5.9: The driven bar performance induced by the bar linkage and the target model. 

A similar design approach can be employed to obtain the setups of bar linkages for slow 

walking at 75% and 50% of NC, as defined in Table 5.1. The optimal lengths of the bar 

linkages for stepping at all three cadences were calculated and are summarized in Table 

5.2.  

Table 5.2: Configuration of bar linkages for leg motion at all three cadences. 

Length (m) 100% of NC 75% of NC 50% of NC 

la 0.15 0.13 0.07 

lb 0.30 0.20 0.13 

lc 0.40 0.40 0.40 

ld 0.36 0.34 0.34 
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5.1.5. Design of Actuation 2: a cam mechanism 

The model in Figure 4.7(b) shows that the foot segment moves at a high speed (up to 

2.2 m/s during the swing phase of walking at 100% of NC). In order to ensure the 

safety of the drive system, Actuation 2 should be reconfigured so that the power unit is 

installed in a fixed support, instead of on the moving foot. 

The GOER system needs accurate control of the foot movement. The ankle joint 

changes its rotational direction twice within a gait cycle (from a neutral position to 

dorsiflexion, plantarflexion and back to the neutral position), which results in a 

complicated angle profile of Actuator 2, as shown in Figure 4.9(b). In order to generate 

complex motion, noncircular gears or cams are often adopted [271-273]. Cam devices 

can provide many arbitrarily-specified movements [274]. The advantage of choosing a 

cam mechanism to rotate the foot in the GOER system is that a complex trajectory can 

be achieved through constant rotation, which allows both Actuations 1 and 2 to share 

the same power unit: a rotary motor. The motor actuates the leg through a four-bar 

linkage, while it transmits the power to the foot via a chain and rotates the foot through 

the cam mechanism. Therefore the synchronisation of Actuators 1 and 2 in the GOER 

system can be achieved mechanically through a bar linkage and a cam mechanism. 

Another advantage of the cam system is that the cam limits the motion, thus being safer 

for the patient. 

5.1.5.1. Design techniques for the cam mechanism 

A cam usually consists of two moving elements: a cam and a follower. The cam fully 

rotates at its centre, while the follower rotates in a semi-circle at the pivot. In order to 
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investigate the function of the rotation angles of the follower and the cam, a 

cam-follower mechanism is employed as shown in Figure 5.10. The cam, which is 

represented by a solid curve, rotates at its centre B. It is assumed that the follower (the 

solid straight line in Figure 5.10) pivots at the point A, and has a length Lf equal to the 

distance AB. The follower contacts the cam rim initially at the point C. There is a 

corresponding position of the follower so as to ensure contact with each point on the 

cam rim. In order to explain the motion of the cam and the follower, an example is 

given to search for the position of the follower which contacts at an arbitrary point D1 

on the cam rim (see Figure 5.10).  

  

Figure 5.10: The cam-follower mechanism. The solid curve represents a cam, which 

rotates at the point B. The solid straight line represents the follower, pivoting at the 

point A. The follower contacts the cam initially at the point C. If an arbitrary point D1 is to 

contact with the follower, the cam should rotate from the point D1 to D, so that the 

follower contacts with the cam at the point D, with the position of the follower as the 

straight dashed line AD. The thick dash-dot circle A is the trajectory of the follower, 

while the thin dash-dot circle B is the trajectory of the point D1 during rotation of the 

cam. 
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Suppose the point D1 has a distance LD1 from the cam centre (BD1 = LD1). As the cam 

rotates at the point B while the follower rotates around the point A, the new contacting 

position of the follower can be determined as follows: 

(1) Draw a circle A (the thick dash-dot curve in Figure 5.10), with radius Lf, which is 

the potential trajectory of the follower. 

(2) Draw a circle B (the thin dash-dot curve in Figure 5.10), with radius LD1, which is 

the trajectory of the target contacting point D1 during cam rotation. 

(3) Find the intersection point of circle A and circle B, which is the new contacting 

point D for the follower on the cam. 

Assuming in the initial position, ∠BAC is denoted as α, ∠ABC and ∠ACB are equal to 

β while the distance between the initial contacting point C and the cam centre B, LBC, is 

Rb. Assume the follower rotates by an angle ϕ (∠CAD) from the position AC to the new 

position AD. ∠ABD is defined as δ. Then the relationship between the rotational angle 

of the follower ϕ and the distance of the cam rim from the cam centre LH can be 

described analytically as: 

 
cos( )

2

b

f

R

L
 

  (5.29) 

 
180 2  

  (5.30) 

 
cos( )

2

H

f

L

L
 

  (5.31) 

 
180 2    

  (5.32) 

Equations (5.32), (5.30) and (5.29) yield 

 

2arccos( )
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  (5.33) 
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Equation (5.31) yields 

 
arccos

2

H

f

L

L
 

  (5.34) 

Equations (5.33) and (5.34) yield 

 
2 cos(arccos( ) )

2 2

b
H f

f

R
L L

L


 

  (5.35) 

Therefore LH can be calculated based on the target ϕ if Rb and Lf are known.  

The transmission efficiency of a cam is related to the pressure angle, which is defined 

as the angle between the motion direction of the follower and the force between the cam 

and the follower (common nominal line). The transmission efficiency is proportional to 

the cosine of the pressure angle [274].  

Figure 5.11 shows a cam rotating at a point O, with the rim as a thick solid curve. The 

follower in the position AB can rotate with the point A and contact the cam rim at the 

point B. For this initial position OAB, the speed of the follower can be represented with 

the arrow BC. The common nominal line from the cam at the point B is represented as 

the thin solid line BD. Therefore ∠CBD is the pressure angle θ at the point B. In a 

cam-follower system, the cam generally rotates (e.g. clockwise direction), while the 

follower has the pivot A fixed. However, in the analysis of the pressure angle, it is 

better to fix the cam and move the point A in the opposite direction (e.g. anti-clockwise). 

Under these circumstances the follower has the pivot A moving along the dash-dot 

circle O in Figure 5.11, with the radius as the length of follower AB Lf (keep in mind 

that the length of OA1 = AB = Lf).  
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Figure 5.11: The cam and four representative positions of the followers (AB, A1B1, A2B2 

and A3B3): the thick solid curve is the cam profile. Circle O (thick dash-dot curve) is the 

potential trajectory of the pivot of the follower. Circle B1 (thin solid curve) is the 

potential trajectory of the tip of the follower for contact of the point B1. The straight lines 

BD, B1D1, B2D2 and B3D3 represent the common nominal lines. The arrow lines BC, B1C1, 

B2C2 and B3C3 show the directions of the followers, which are normal to the 

corresponding lines AB, A1B1, A2B2 and A3B3. Four pressure angles, ∠CBD, ∠C1B1D1, 

∠C2B2D2 and ∠C3B3D3 are shown as θ, θ1, θ2, and θ3.  

In order to find the position of the pivot A for each contacting point on the cam rim, 

such as the point B1, we firstly draw a circle B1 with radius Lf, which is shown by a 

dash-dot curve in Figure 5.11. Then the intersection point of circle B1 and circle O is 

the pivot point A1 for the contacting point B1. The speed of the follower at the new 

position A1B1 can be represented by the arrow line B1C1. The common nominal line 

from the point B1 is represented as line B1D1. Therefore ∠C1B1D1 is the pressure angle 
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θ1 at the point B1, which can be calculated as  

 1 1 1 1 1 1 1 1 12
2

C B D AOB AOB D B E


      
  (5.36) 

where the straight line B1E1 is in a horizontal position. Using the same technique, the 

pressure angle of any point at the whole cam rim (such as positions B2 and B3) can be 

calculated (e.g. θ2 and θ3). In order to ensure high transmission efficiency, the optimal 

cam should make the maximal pressure angle as small as possible.   

5.1.5.2. Design of a cam for the GOER system stepping at 100% of NC 

The cam design techniques, including Equations (5.35) and (5.36), enable the design 

of a suitable cam to rotate the foot as required in the GOER system. As shown in 

Figure 4.9(b), the GOER system requires three angle profiles of Actuator 2 to achieve 

leg performance at three cadences. This section describes the design process for the 

cam to achieve the target angle profile ϕ at 100% of NC as an example.  

The parameters in the function (5.35), such as Rb and Lf, should be determined 

according to the size of the GOER system. It should be noted that Rb defines the size of 

the cam. The cam, which is mounted at the tip of the driven bar, should be small and 

light, so as to reduce the additional load on Actuator 2. Based on a GOER system with 

a potential foot length of 0.25 m, Rb is defined to be 0.08 m. Therefore the optimal 

length of follower Lf should be determined to yield the largest transmission efficiency: 

this makes the maximal pressure angle as small as possible. 

In the triangle ABO,  

 
.OA AB OBl l l 
  (5.37) 

The follower should be as short as possible to reduce the power. Therefore the follower 
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pivot is designed to be inside but over the cam area:  

 OA OBl l
   (5.38) 

Equations (5.37)and (5.38) yield the length of follower Lf as 

 
0.04 0.08.fL 

  (5.39) 

When the follower length Lf varies between 0.04 and 0.08 m, the maximal pressure 

angle is calculated using Equation (5.36) to be from 71.6
o
 to 78.8

o
, as shown in Figure 

5.12. The optimal Lf would be the one giving the smallest maximal pressure angle, 

which is Lf = 0.05 m. With the parameters Rb = 0.08 m and Lf = 0.05 m, the cam shape 

can be determined using Equation (5.35) to get the target angle profile ϕ (Figure 4.9(b)) 

of Actuator 2.  

 

Figure 5.12: The maximal pressure angle according to various follower lengths. 
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Figure 5.13: The cam for walking at 100% of NC (Rb = 0.08 m, Lf = 0.05 m). 

Cam-follower systems often adopt a roller at the tip of the follower to reduce friction 

during cam transmission. Suppose the roller is 0.01 m in diameter. The final cam takes 

the shape of a plate with the roller in a groove. The groove follows the cam rim 

designed with Equation (5.35), but with an offset of 0.005 m on the inner and outer 

sides of the cam rim. The final cam-roller mechanism has a groove with a width of 0.01 

m, as Figure 5.13 shows. The Solidworks presentation of the cam-roller assembly can 

be found in Appendix 4. The target ϕ for walking at 75% and 50% of NC can be 

obtained from the experimental data (see Figure 4.9(b)). With similar cam design 

techniques as described for stepping at 100% of NC, the cams for slower walking can 

be obtained, as Figure 5.14 shows. 
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(a) 75% of NC (Rb = 0.08 m, Lf = 0.054 m). 

 

(b) 50% of NC (Rb = 0.08 m, Lf = 0.063 m). 

Figure 5.14: Cams for slower walking. 
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5.1.6. Power requirements from the bar-cam GOER model  

The new setup of the GOER system incorporates a bar linkage and a cam mechanism, 

as Figure 5.15 shows. The motor (installed at the point A) rotates the bar linkage ABCD, 

inducing upward and downward movement of the rocker CD. Therefore the driven bar 

DE, which is an extension of the rocker CD, produces downward and upward 

semi-circular movement of the leg. The cam, mounted at the point E, rotates the foot EF 

to achieve dorsiflexion and plantarflexion. The bar-cam GOER system produces 

heel-strike (Figure 5.15(a)) and toe-off (Figure 5.15(b)) in a supine leg, with the angles 

of the hip (H), knee (G), and ankle (F) joints in phase with those during overground 

walking.  

The GOER system with the bar-cam mechanism can be simulated in SimMechanics 

/Matlab, with the model presented in Appendix 5. The newly included bar linkage and 

cam mechanism are both initially selected as carbon steel, which is the same as the 

two-bar model in Section 5.1.1 (the material selection will be discussed in Section 

5.1.6). The simulated torque and power for a subject of 135 kg stepping at 100% of NC 

(crank speed of 50 rpm) is presented in Figure 5.16. It can be observed that the 

bar-cam GOER system still requires the maximal power at toe off, as in the two-bar 

setup. Compared to Figures 5.1-5.2, the torque is reduced from 500 Nm to about 150 

Nm. The required power is reduced to 670 W, which is only 32% of the power in the 

two-bar setup (a maximum of 2100 W as can be seen Section 5.1.1). It should be noted 

that the bar-cam GOER system requires more power in the swing phase (670 W) than 

in the stance phase (330 W). Therefore a counterweight can be attached on the 

extended side of the driven bar (the rocker tip C of the bar linkage) to balance the 
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system. The mass of the counterweight is dependent on the mass of the whole system, 

which requires determination of the component materials of the GOER system. 

 

(a) Heel strike.  

 

(b) Toe off.  

Figure 5.15: The cam-bar linkage setup of the GOER system. The segment ABCD is the 

bar linkage. The cam is mounted at the point E. The leg segment is represented by 

EFGH.  
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Figure 5.16: The simulated torque and power of the bar-cam GOER system stepping at 

100% of NC. 

5.1.7. Material selection 

In order to simulate the final power requirements of the bar-cam GOER system, the 

materials and the dimensions of components, including the driven bar, the bar linkage 

and the cam, should be determined. So far the length of the driven bar, which is 

determined by the user’s leg length, was determined with the least squares algorithm 

described in Section 4.1. The lengths of the bar linkage and the cam-follower sizes 

were calculated in Sections 5.1.3 and 5.1.4 respectively. The cross section of the bars 

and the thickness of the cam (Tc) are to be determined. As described in the dynamic 

analysis in Section 4.3, a leg frame is important for support of the leg weight. The leg 

frame consists of a thigh support, a shank support as well as a shoe platform. Each 

segment length of the leg frame is dependent on the user’s leg length and can be 
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determined based on the anthropometric data in Table 5.3. The length of the leg frame 

should be adjusted within a range of 0.90-1.20 m so as to fit most people. The cross 

section of the thigh and the shank bars need to be defined in this section, while the shoe 

platform will be further analysed in Section 5.2.  

Table 5.3: The mass and lengths of body segments for 5% to 95% of the population 

(taken from [275]). 

Segments 
Length (m) 

Male Female 

Height 1.65-1.87 1.50-1.70 

Thigh 0.50-0.61 0.46-0.56 

Lower leg 0.41-0.50 0.38-0.46 

Foot 0.07-0.09 0.06-0.08 

The bar segments in the GOER system, such as the driven bar, the bar linkage as well as 

the leg frame, are designed as hollow square cross sections. In order to choose the 

materials, the width (Wb) and thickness (Tb) of the cross sections of the bars described 

above are defined as: Wb = 0.025 m; Tb = 0.003 m. 

The driven bar and the bars for the leg frame in the GOER system are up to 1 m in 

length, therefore bending is a potential cause of failure of these components. The top of 

the bars has compressive stress, the bottom of the bars has tensile stress, while the 

neutral plane of the bar has no stress [276]. The bending stress increases proportionally 

with bending moment, but is also related to the second moment of area of the 

cross-section of the structural element J. The maximal bending stress σb, which takes 

place at the surface of the bars (the top or the bottom), can be calculated as [277]: 

 2

b b
b

b

M W

J
 

  (5.40) 
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where Mb is the maximal bending moment, which occurs at the middle of the bars, and 

is equal to half of the maximal moment on the bars. Jb is the second moment of area of 

the hollow square cross section, which can be calculated as 

 

4 4( 2 )
.

12

b b b
b

W W T
J

 


  (5.41) 

The maximal moment in the driven bar, the thigh and the shank bars are 140 Nm 

(Figure 5.16), 135 Nm (dotted line in the top plot of Figure 4.17) and 108 Nm (dotted 

line in the middle plot of Figure 4.17), respectively. Equations (5.40) and (5.41) yield 

the bending stresses σb 
of the driven bar, thigh bar and shank bar as 80.65 MPa, 77.77 

Mpa and 62.22 Mpa, respectively, which justifies the use of carbon steel AISI1020 

(allowable stress for safety is 275MPa) as a suitable material for the driven bar and the 

leg frame of the GOER system [278]. The CAD drawings of the manufactured driven 

bar and the leg frame are shown in Appendix 6. 

In contrast to the bars, the cam tends to have compressive failure, because it has high 

pressure on the rim from the roller. The maximal force on the rim Fc can be calculated 

as  

 
2a

c

f

T
F

L


  (5.42) 

where Ta2 is the torque required to move the foot, with a maximum of 140 Nm (see 

Figure 5.1). The length of the roller, Lf, equal to 0.05 m. Therefore the maximal force 

on the cam rim Fc is 2800 N. It is assumed that the cam has a groove with a depth Tc = 

0.05 m. The cam and the roller are theoretically linear with contact area equal to 0. 

However, in order to estimate the pressure on the rim, the contact width Tw is assumed 

to be 0.001 m. Therefore the contact area Ac and the compressive strength σc can be 

obtained as: 



Chapter 5                Prototype Design of the GOER System                 223 

 

 

 c c wA T T 
  (5.43) 

 
.c

c

c

F

A
 

  (5.44) 

The compressive strength of the cam is 56 MPa. Carbon steel, as mentioned before, can 

afford such strength. However, due to limited availability of resources, the cam plate 

was manufactured in plastic. The compressive strength of plastic lies from 150-500 

MPa [279]. 

5.1.8. Electric motor selection 

After the materials are determined, the model can be developed with the leg frame 

included, as shown in Appendix 7. The simulated power of the bar-cam system with the 

leg frame is shown in Figure 5.17(a).  

 

Figure 5.17: The simulated power for the bar-cam GOER system with the leg frame in 

three different conditions. 
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Compared to Figure 5.16, the power increased from 670 to 730W (increase of 9%), due 

to inclusion of a leg frame. A counterweight can be attached on the extended side of the 

driven bar to balance the system, which reduces the power requirement. Assume the 

counterweight is mounted at the rocker tip of the bar linkage, which is 0.4 m from the 

pivot (lc = 0.4, see Table 5.2). The mass of the counterweight Mcw to balance the 

motionless GOER system can be calculated as  

 
M

2 2 2

c l b
r cw cw lf l l b

l L L
M g M gL M g g L M g   

 (5.45) 

where Mr, Mlf, Ml and Mb are respectively the weight of the rocker, leg frame, human 

leg and driven bar. Lengths lc, Lcw, Ll and Lb are respectively the length of the rocker, 

the distance of the counterweight from the pivot, the leg length and the length of the 

driven bar. The variable λ is the ratio of the centre of mass of the leg to the whole leg 

length, which can be obtained from the anthropometric data in Table 3.3 as 0.447. 

Assuming the subject has a mass of 135 kg, the weight of the leg Ml can be estimated to 

be 21.74 kg (1350.161) based on the anthropometric data in Table 3.3. The mass of 

the leg frame Mlf is calculated as: 

 lf cs cslM V
  (5.46) 

 
2 2( ( 2 ) )csl l b b bV L W W T  

  (5.47) 

where ρcs can be taken to be 7850 kg/m
3
 [279]. Vcsl is the volume of the leg frame. 

Equations (5.46) and (5.47) yield the leg frame mass Mlf = 2.1 kg. The mass of the 

driven bar Mb and the rocker Mr can be calculated as: 

 b cs csbM V
  (5.48) 

 
2 2( ( 2 ) )csb b b b bV L W W T  

  (5.49) 

 r cs csrM V
 (5.50) 

 
2 2( ( 2 ) ).csr r b b bV L W W T  

 (5.51) 
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The driven bar length Lb is almost equal to the leg length Ll, based on the results from 

Section 4.1. Equations (5.48)-(5.51) yield Mb = 2.1 kg; Mr = 0.8 kg. With the mass of 

the human leg, the leg frame and the driven bar, the initial mass of the counterweight 

Mcw can be calculated as 29.1 kg using Equation (5.45).  

Simulation of the model with a counterweight Mcw = 29.1 kg in SimMechanics/Matlab, 

results in a power profile as in Figure 5.17(b). It can be seen that the maximal required 

power for 100% of NC decreased from 730 W to 500 W (30% reduction) with the 

counterweight. However, a power of 500 W is still fairly large. Therefore the crank 

speed was reduced to half of that at 100% of NC, which becomes 25 rpm, giving a 

power as in Figure 5.17(c). It should be noted that the ROM of the GOER system is 

determined by the size of the cam-bar linkage. The current setup is designed to induce 

stepping performance (ROMs of the joint angles) at 100% of NC, regardless of the 

speed of the electric motor. Even when the speed reduces to 25 rpm, the simulated 

stepping performance is the same as that during overground walking at 100% of NC. 

The simulated power at the slower speed of 25 rpm is 120 W, which is 24% of the 

power at 50 rpm.  

The models aimed to simulate the target trajectory, while the friction between 

mechanical components was not considered. As the friction in the physical system had 

potential to increase the power requirements, a Maxon EC 45 motor (with a maximal 

power of 250 W) and a planetary gearhead GP (a ratio of 236:1) were selected (Maxon 

motor AG, Switzerland). The CAD drawing of each component and specifications can 

be found in Appendix 8.  
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5.1.9. Conclusions 

A bar linkage was designed to achieve periodic upward and downward semi-circular 

movement of the driven bar from continuous rotation of the crank. A cam mechanism 

was designed to translate constant rotation into semi-circular foot movement 

mimicking dorsiflexion and plantarflexion. Through computer model simulation a 

counterweight was determined to balance the system. Slowing down the stepping 

speed further reduces the required maximal power of the GOER system. The 

combination of a bar linkage and a cam-roller system enables the GOER system to be 

driven by only one DC rotary motor. 

5.2. Shoe Platform Design  

Apart from coordinated movements of the lower limbs, the GOER system aims to 

stimulate the foot sole to mimic the ground reaction forces which take place during the 

stance phase of overground walking. As the ground friction is small and is impractical 

to apply physically on the foot sole, only the upward pressure was considered for 

simulation of the ground reaction force. Therefore a pneumatic shoe platform was 

designed as described in this section.  

5.2.1. Functional shoe requirements 

The target performance of the dynamic shoe platform was determined based on the 

gait analysis results described in Chapter 3. Figure 5.18 presents the trajectory of the 

centre of pressure moving along the foot sole (excluding the toe) and the force 

amplitude profile when a representative subject (S1) walked at 100% of NC. The two 
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dashed lines in Figure 5.18(a) divide the foot sole into the heel, the arch and the 

forefoot based on the assumption that these three parts are of the same length. Figure 

5.18(b) shows the upward force amplitude applied on the corresponding area of the 

foot over the gait cycle (GC). 

 

Figure 5.18: Ground reaction force during the stance phase (COP: centre of pressure). 

As the foot arch seldom contacts the ground, the arc area does not share the ground 

force. From heel contact to 25% of GC, the ground reaction force is mainly applied on 

the heel, with a first peak of 1.04 times body weight, occurring at around 15% of GC. In 

mid-stance (25% to 35% of GC), the centre of pressure moves from the heel through 

the arch to the forefoot. The resultant force on the foot sole reduces from 1.04 to 0.85 

times body weight. The force on the heel reduces from 1.04 times body weight to 0, 

while the force on the forefoot increases from 0 to 0.85 times body weight. From 35% 
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to 45% of GC, the force is mainly applied on the forefoot and increases to 1.2 times 

body weight. From 45% to 60% GC, the force on the forefoot reduces quickly from 1.2 

times body weight to 0.  

Based on the force data in all three subjects walking at 100% of NC (Figure 3.7), the 

force profile during overground walking is simplified as in Figure 5.19, with the left Y 

axis as the amplitude. The force on the heel, as the dashed lines show, increases to a 

maximal value of 1.2 times body weight at 5% of GC. This force maintains its maximal 

value until 20% of GC, and then reduces to 0 at 35% of GC. The force on the forefoot, 

on the other hand, increases from 0 to 1.2 times body weight from 25% to 40% of GC, 

maintains the maximal amplitude until 55% of GC, and then reduces to 0 at around 60% 

of GC.  

 

Figure 5.19: The simplified upward force profile on the foot sole to simulate walking at 

100% of NC: the dashed line is the force for the heel (HL) while the solid line is for the 

forefoot (FF). The left Y axis shows the amplitude of the force taking place during 

overground walking, while the right Y axis shows the target amplitude for the shoe 

platform (30% of ground reaction force). 
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As the dynamic shoe platform is designed for patients who are vulnerable to injury, the 

force amplitude should be carefully designed to avoid activation of reflexes and 

uncontrolled spastic movements of the leg [280], to ensure safe usage. Upright walking 

rehabilitation programmes typically use body weight support to reduce the load on the 

patient’s foot according to the physical condition of each patient. 30% of body weight 

is often adopted to activate the loading receptors on the foot soles of the patient [7, 

261]. Therefore the force amplitude produced by the shoe platform is designed to be 

limited to 30% of that taking place during overground walking. The target force 

amplitude for the shoe platform is shown in the right Y axis in Figure 5.19, with the 

maximum as 0.36 times body weight. 

 
(a) 75% of NC. 
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(b) 50% of NC. 

Figure 5.20: The simplified upward force profile on the foot sole to simulate walking at 

75% and 50% of NC: the dashed line is the force for the heel (HL) while the solid line is 

for the forefoot (FF). The left Y axis shows the amplitude of the force taking place during 

overground walking, while the right Y axis shows the target amplitude for the shoe 

platform (30% of ground reaction force).  

The force profiles for slower walking, based on the experimental data in Chapter 3, are 

quite similar to that during 100% of NC, but the amplitudes of double peaks reduce as 

the speed reduces. Furthermore, the force during the mid-stance phase is close to the 
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0.99 and 1.05 times body weight during mid-stance at 75% and 50% of NC. 

According to the anthropometric data in Table 5.4, body weight for 95% of men is 

below 94 kg and that for 95% of women is below 81 kg [281]. Thus, 30% of maximum 

force is 332 N for 95% of men and 286 N for 95% of women. The target forces for the 

shoe platform simulating stepping at three speeds are summarized in Table 5.4. 

Table 5.4: Anthropometric data and target maximal force requirements of the shoe 

platform [281]. 

 

Anthropometric data for 95% of population Target maximal force (N) 

Foot length (m) 

(without the toe) 

Foot 

breadth (m) 

Maximal 

mass (kg) 

100% of 

NC 

75% of 

NC 

50% of 

NC 

Men 0.21 to 0.25 0.08 to 0.11 94 332 310 290 

Women 0.17 to 0.22 0.07 to 0.10 81 286 267 250 

 

5.2.2. Shoe platform components 

The anthropometric data in Table 5.4 show that the length of the shoe should be 

adjustable from 0.17 to 0.25 m. The shoe width varies by only 0.04 m among 95% of 

the population. Therefore the shoe width is designed with a mean value of 0.09 m to 

suit most of the population. As shown in Figure 5.21(a), the shoe platform is made of 

two foot plates (grey) and two pressure plates (purple). The two foot plates can be 

connected using different nut positions, resulting in an adjustable total length. The two 

pressure plates, one for the heel and the other for the forefoot, can be moved up and 

down by two pneumatic cylinders (see Figure 5.21(b)), which are fixed at the bottom of 

the shoe (see Figure 5.21 (c)).  
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(a) Exploded view.          (b) Cylinders.           (c) Bottom view. 

Figure 5.21: Pneumatic shoe platform.  

We assume each pressure plate is 0.002 m in thickness (Tp) and 0.07 m in length (Lp). 

The pressure plate can endure a force up to 330 N. The compressive stress of the 

pressure plate σp can be calculated to be 2.36 MPa with the following equation: 

 
p

p

p p

F

L T
 

  (5.52) 

Such a small value of σp 
allows aluminium alloy (the compressive strength of 

Aluminum 2014-T6 is 470 MPa
5
) to be used as potential materials for the shoe 

platform. The CAD drawing of each component can be found in Appendix 9.  

                                                 

5
 Available from http://www.matweb.com/. Accessed on 16/05/2012. 



Chapter 5                Prototype Design of the GOER System                 233 

 

 

The technical specifications and geometries of the foot platform enable selection of 

pneumatic components. The upward and downward movement of the foot induced by 

the mechanical motion of the pressure plate should be as small as possible, to reduce 

influence on the target motion profile of the ankle joint. Therefore pneumatic cylinders 

with a short stroke of 10 mm are desirable. The available compressor can provide a 

constant pressure (Pp) of 0.6 MPa. Therefore two cylinders which can induce forces up 

to 330 N at 0.6 MPa are required. 

Two types of cylinder (FESTO Ltd., Germany) had specifications meeting our target. 

Cylinder One was 32 mm in piston diameter and 20 mm in stroke, which can normally 

generate forces up to 483 N at 0.6 Mpa. This cylinder could achieve the target force 

amplitude (maximum of 332 N), but the stroke of 20 mm was very long, which might 

induce too much movement on the foot and disturb the target ankle rotation. Cylinder 

Two, which was one size smaller than Cylinder One, had a piston with 25 mm in 

diameter and 10 mm in stroke. It could normally generate forces up to 295 N at 0.6 

MPa, which was 11% lower than the target maximal amplitude. Currently no study 

confirms how much force is required on the foot sole to mimic the sensation of ground 

reaction forces without activation of a withdrawal reflex. The theoretical basis is 

lacking regarding how much stroke is acceptable for mechanical stimulation of the foot 

without inducing measurable disturbances to the ankle angle. Therefore, a Cylinder 

One and a Cylinder Two were chosen, which allows investigation of suitable force 

amplitude and acceptable stroke for mechanical stimulation of the foot.  
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5.3. Prototype Presentation 

In order to prove the design concept, the GOER mechanism with a shoe platform was 

manufactured. Theoretically the GOER system should have mechanisms for both legs. 

However, a simplified mechanism for one leg only was manufactured to test the design 

concept. 

The GOER prototype, as shown in Figure 5.22, included a leg frame (1) to fix and 

support the user’s leg. The leg frame was made of carbon steel and weighed 2.1 kg. The 

shoe platform (2), which was made of aluminium alloy and weighed 0.5 kg, was 

connected to the leg frame through a hinge around the ankle joint and to the driven bar 

(3) around the toe area. The bar linkage (4), mounted on the other end of the driven bar, 

moved the leg upwards and downwards. Foot rotation (plantarflexion and dorsiflexion) 

was achieved by a cam (5). The compound movements of the bar and the cam, as 

shown in Figure 5.24(a), produced walking-like stepping movements of the lower limb 

in a supine position. The shoe platform, as shown in Figure 5.23, had a foot plate and 

two pressure plates connected through two cylinders. Solenoid valves were employed 

to provide air through the blue air supply tube, so as to apply mechanical force 

stimulation on the foot sole, with force profiles shown in Figure 5.24(b). 
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Figure 5.22: The GOER prototype. The user places the leg in the leg frame (1) and the 

foot on the shoe platform (2). The leg is moved by a driven bar (3), which is moved via a 

bar linkage (4). The foot is rotated by a cam (5). The electric DC motor (6) rotates the 

bar-linkage and transmits rotation to the cam via a chain (7). 

 

      (a) The foot plate.           (b) The two pressure plates rise for           

mechanical simulation. 

Figure 5.23: The shoe platform. 
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Figure 5.24: The prototype performance. 

The GOER prototype has an adjustable length of the driven bar and the leg frame. 

However, the cam and the motor are connected by a chain with a fixed length for 

motion transmission. Therefore the distance between the cam and the fixing point of the 

driven bar is set at 1 m, which constrains the potential users of the GOER prototype to a 

leg length of 1 m. Nevertheless, the GOER prototype with a fixed leg performance 

(joint angles targeting those occurring at normal walking speed only) can still be used 

to investigate the design concept of the GOER system.  

5.4. Conclusions  

Computer simulation showed a high power requirement for the simple two-bar GOER 

system. After a bar linkage and a cam-roller mechanism were designed, the simulation 
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results showed a reduction in the power requirement for the system. The dynamic shoe 

platform was designed with pneumatic elements selected for force application. These 

design concepts allowed manufacture of the prototype for further experimental 

evaluation, as detailed in Chapter 6.  
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Chapter 6. Experimental Evaluation of the 

GOER Prototype: the Bar-cam System 

Summary: The GOER prototype has two main elements: a bar-cam system to move the 

lower limbs in the coordinated manner of walking and a dynamic shoe platform to 

provide mechanical stimulation on the foot sole for imitation of the ground reaction 

forces. This chapter evaluated the performance of the first element. The second aspect 

is evaluated in Chapter 7. Driven by an electric motor, the GOER prototype produced 

supine stepping performance. The kinematics of stepping were investigated through a 

preliminary test of the GOER prototype with an empty leg frame, followed by a test on 

three able-bodied subjects whose legs were moved by the GOER prototype. The angles 

of the hip, knee and ankle joints during supine stepping were measured and compared 

with the corresponding target values during overground walking. The ranges of motion 

(ROMs) of the lower limb joints were found to be within the physiological ranges of 

overground walking. Equation Chapter (Next) Section 1 

6.1. Introduction 

Patients with spinal cord injuries often have impaired function in the lower limbs. With 

the aim of improving walking ability, they participate in rehabilitation programmes to 

practise synergistic walking. It is contended that practising movement within the 

physiological range of motion (ROM) promotes the integrated function of locomotion 

control [235]. The GOER system was designed to promote early rehabilitation of 

walking with patients in a supine position. Computer simulation showed that the 

GOER model induced physiological ROMs in the joints of the lower limb [2], which 
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provided a basis for the design and manufacture of a GOER prototype.  

This experimental study evaluated performance of the GOER prototype, with focus on 

the leg motion. The performance of the prototype was initially investigated with an 

empty leg frame which served as a mechanical model of the leg. After the prototype 

was able to induce physiologically acceptable ROMs of the joint kinematics in the leg 

frame, three able-bodied subjects were recruited to use the GOER prototype for 

passive supine stepping. The ROM of the hip, knee and ankle joints were compared 

with overground walking. 

6.2. Methods 

The mechanical components, especially the drive system, of the GOER prototype are 

described, followed by a description of the experimental procedure for the evaluation 

of the lower limb motion.  

6.2.1. The GOER system description  

The GOER prototype, as shown in Figure 6.1, includes a leg frame (1) and a foot 

platform (2). The upward and downward periodic movement of the leg is produced by 

the driven bar (3), which is rotated via a bar linkage (4). The ankle rotation is driven 

by a cam (5). The main driver is an electric motor (6), which rotates the bar linkage 

and transfers power to the cam via a chain (7). The user puts the leg in the leg frame, 

with the hip, knee and ankle joints aligned at positions A, B and C. The leg frame is 

attached to the tip of driven bar D. The bar linkage is arranged to induce 50
o
 rotation 

of the driven bar at the point E, resulting in fixed ROMs in the leg (frame) joints 
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which correspond to the ROMs occurring during walking at normal speed, which are 

34
o
, 51

o
 and 30

o
 in the hip, knee and ankle joints, respectively (see Chapter 3 for 

mean ROM of each joint). As the distance between the cam and the fixing point of the 

driven bar is set at 1 m, the GOER prototype is best suited to users with a leg length of 

1 m to practise stepping with a fixed step length of 0.85 m (normal speed of 1.42 m/s 

from Table 3.4). A detailed description of the GOER prototype is in Section 5.3. 

 

Figure 6.1: The GOER prototype. The user places the leg in the leg frame (1) and the foot 

on the shoe platform (2). The leg is moved by a driven bar (3), which is actuated by a 

rotary bar linkage (4). The foot is rotated by a cam (5). The DC motor (6) rotates the 

bar-linkage and transmits rotation to the cam via a chain (7). The trajectories of the leg 

frame (including the joints of the hip (A), knee (B) and ankle (C)) and the driven bar 

(including the tip (D) and the pivot point (E)) are recorded to investigate the motion 

induced by the GOER prototype. 

The drive system in the GOER prototype includes a Maxon motor and a gearbox 

(Maxon motor AG, Switzerland), with specifications provided in Appendix 8. The 

motor incorporates a speed measurement device: an encoder HEDL 9140, which has 

three channels with a maximal operational frequency of 100 kHz. The motor controller 

system was provided by Mr. Calum Cossar from the SPEED Laboratory, University of 
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Glasgow
6
. The controller FCIV (FC represents the flexible controller and IV means the 

fourth generation), as shown in Figure 6.2, consists of a hardware control unit 

connected to a PC with a standard RS 232 serial interface. A control panel (Figure 6.3) 

is designed with Visual Basic software, which allows input of the target speed, and 

displays the actual motor speed. The controller system and the power electronics are 

described in Appendix 10. 

 

Figure 6.2: FCIV motor controller platform. 

                                                 

6
 SPEED lab. Scottish Power Electronics and Electric Drives Consortium. Available from: 

http://www.gla.ac.uk/departments/speed/. Accessed on 15/05/2012. 
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Figure 6.3: The controller panel. 

 

 

 

Figure 6.4: The control loop. 

The speed controller algorithm, which is programmed with Code Composer Studio 

software, includes a speed loop and a current loop (see Figure 6.4). Based on the 

actual position measured by the encoder in the motor unit, the speed loop gives out 

the reference current by calculating the difference between the actual speed and the 

reference speed. Then, the current loop calculates the current input for the motor by 

comparing the difference between the reference current and the actual current 

measured by the current sensor [282]. The control loops adopt PI control algorithms, 

with parameters Speed K1, Speed K2 for the speed loop and iK1, iK2 for the current 
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loop. The parameters Speed K1 and Speed K2 are constant at 18 and 15. Parameter 

iK1 adjusts the speed rise time, while the difference between the two parameters iK1 

and iK2 modifies the steady-state error, i.e. the smaller the value of (iK1-iK2), the 

closer the actual speed approaches the reference speed. The two parameters iK1 and 

iK2 are tuned through testing to achieve constant speed rotation, which is documented 

in the next section.  

6.2.2. Experimental procedures 

In order to control the GOER prototype, the controller parameters iK1 and iK2 were 

tuned to achieve constant-speed rotation. Then evaluation procedures were initiated 

which included two parts: a preliminary test on the GOER system with a leg frame 

model (model-leg-only) and an experiment with three able-bodied subjects using the 

GOER system without employment of the leg frame (subject-leg-only). Ethical 

approval was obtained from the Ethics Committee for Non Clinical Research, Faculty 

of Biomedical & Life Sciences, University of Glasgow. 

Tuning of the controller parameters 

Given the requirements for the GOER prototype, the controller performance was 

defined to achieve the reference speed in less than 10 s with an error less than 1%. 

Two reference speeds of 1000 rpm and 1500 rpm were tested. During the parameter 

tuning, the GOER prototype was connected to an empty leg frame. As the GOER 

system was designed for users with incomplete SCI, who might produce voluntary 

movements during training, the controller of the GOER prototype needs to be robust 

to such disturbances. A 2 kg object was added to the knee joint of the frame at a 

random phase of the gait cycle so as to simulate a disturbance on the GOER system.  
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Preliminary test on the model-leg-only system 

A leg frame as shown in Figure 5.22 was used to simulate a human leg with a thigh 

length of 0.56 m and a shank length of 0.53 m. In order to prevent hyperextension of 

the knee joint, which could easily take place in a supine position because of gravity, 

the length of the leg frame (1.09 m) was arranged to be larger than the target leg 

length (1 m), so that the whole leg frame was slightly flexed throughout the gait cycle.  

As discussed in Chapter 5, the GOER system needs a counterweight, the mass of 

which needs to be determined for the model-leg-only system. As discussed in Section 

5.1.7, the counterweight for the model-leg-only system Mcwm can be determined as 

 2 2 2

lfc b
r cwm cw lf b

Ll L
M g M gL M g M g  

  (6.1) 

where Lcw is the distance between the counterweight and the supporting point of the 

driven bar, which is 0.4 m. Mr is the mass of the rocker, which is 0.8 kg, while Mlf is 

the mass of the leg frame, which is 2.1 kg (see Section 5.1.7). Ll is the leg length, which 

is 1 m. Lb is the length of the driven bar, which is almost equal to the leg length, while 

Mb is the mass of the driven bar, which is 2.1 kg. Therefore Mcwm is calculated to be 4.78 

kg for the model-leg-only system. 

After balancing with the counterweight, the GOER prototype with an empty leg frame 

was actuated to produce motion. The ROMs of the driven bar and the leg frame were 

measured by an ultrasound system (zebris Medical GmbH, Allgäu, Germany), which 

is a commonly used device for motion capture based on the travel time of ultrasound  
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waves
7
. As shown in Figure 6.1, the marker placements of the zebris system were at 

the joints of the hip (point A), the knee (point B) and the ankle (point C) on the leg 

frame as well as at the tip of the bar near the toe area (point D) and the pivot (point E) 

on the driven bar. Furthermore, potential failure modes of the GOER prototype were 

investigated and are described in Appendix 11. 

Subject-leg-only sub-test 

After the GOER prototype was confirmed to induce safe ROMs in the leg joints, three 

male able-bodied subjects (detailed information provided in Table 6.1) were recruited 

to use the GOER prototype. Although a leg frame was designed in the GOER system 

to support the user’s leg weight, this sub-test was performed without the frame so that 

the overall load on the GOER prototype was reduced to avoid damage to the plastic 

cam.  

This subject-leg-only system required readjustment of the mass of the counterweight, 

denoted now as Mcws. The leg frame was not included. Furthermore, the human leg, 

which was actively supported by the subjects, was assumed not to put additional load 

on the system. Therefore the mass of the counterweight Mcws can be calculated as  

 2 2

c b
r cws cw b

l L
M g M gL M g 

  (6.2) 

which gives Mcws = 2.19 kg for the counterweight adopted in the subject-leg-only 

system. 

                                                 

7
 Zebris system: Available from: http://www.zebris.de/. Accessed on 18/05/2012. 
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Table 6.1: Subject information (all male).  

Subject 
Age 

(years) 

Thigh length 

(m) 

Shank length 

(m) 

Foot sole length 

(m) 

Body mass 

(kg) 

S1 26 0.48 0.52 0.26 85 

S2 24 0.51 0.55 0.28 84 

S3 23 0.52 0.58 0.28 86 

During the test, the subject lay down on a mattress, as shown in Figure 6.5. The 

subject supported himself with the right leg on the ground. The left foot was attached 

to the foot platform using Velcro straps. The subject was encouraged to support the 

weight of the left leg voluntarily, but to follow the motion induced by the GOER 

prototype. In order to record the motion of the driven bar, the first zebris marker was 

placed at the pivot point E. As the presence of the foot on the foot plate would disrupt 

ultrasound recording of the toe point, the second zebris marker was placed at the point 

D on the driven bar, which was 0.9 m away from the pivot point E. In order to record 

the leg motion produced by the GOER prototype, zebris markers were placed at the 

joints of the knee B and the ankle C on the subject’s leg, as shown in Figure 6.5. In 

order to estimate the position of the hip joint, a fixed point A on the frame, which was 

0.13 m above the hip joint, was selected to place a further zebris marker.  

The sampling frequency of the zebris system was set to be 100 Hz in all experiments. 

Two different motor speeds of 1000 and 1500 rpm were tested for the GOER 

prototype, resulting in stepping cadences of 4 strides/min and 6 strides/min, and 

stepping speeds of 0.41 km/h and 0.61 km/h, respectively. Each stepping session was 

repeated three times to calculate the mean performance. The subjects filled out a form 

describing their experience of using the prototype (see Question Sheet in Appendix 

12). 
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Figure 6.5: The test setup with a subject. 

The angle trajectories of the hip, knee and ankle joints within a stepping cycle were 

analysed. The recorded data were visually observed to remove outliers, and were 

filtered with a window size of 5 to remove noise, and were finally smoothed with the 

loess or rloess Matlab functions. In order to make the joint performance easier to 

interpret, stick diagrams were plotted to show the stepping performance of Subject S1. 

The supine stepping was rotated 90
o
 to be upright in the diagram so as to be 

comparable with overground walking. The performance of the same subject walking 

overground (collected in the gait analysis experiment in Chapter 3) is provided for 

comparison. The kinematics of the leg frame and subjects’ legs in the GOER system 

were simulated with the bar-cam model developed in Section 5.1.5. The simulated 

results are presented for comparison. 
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6.3. Results 

Results of the preliminary test with an empty leg frame are presented, followed by the 

experimental results on three male able-bodied subjects. Model simulation results are 

presented for reference. 

6.3.1. Preliminary test 

With a counterweight of 4.78 kg, the model-leg-only system was balanced. It was 

observed that when iK1 = 100 and iK2 = 90, the controller criteria were met, i.e. the 

motor reached the reference speed in less than 10 s and followed the reference speed 

with an error less than 1%, regardless of the disturbance to the GOER system. As 

shown in Figure 6.6, the motor achieved constant rotation speed for the reference 

speeds of 1000 rpm and 1500 rpm after acceleration for 5 s and 7.3 s respectively. The 

motor rotated at 998 rpm and 1495 rpm during the steady state, with errors of 0.2% 

and 0.33% for their reference speeds. The downward and upward arrows in Figure 6.6 

showed the time when the disturbance (an object of 2 kg) was added and removed 

from the prototype. The disturbance did not affect the constant speed rotation. The 

speed profile at 1000 rpm in Figure 6.6(a) is smooth, while that at 1500 rpm has 

regular jitterings, which are marked with stars in the speed curve of 1500 rpm in 

Figure 6.6(b).  
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Figure 6.6: The motor speed with an empty leg model (leg frame). The downward and 

upward arrows show the time when the disturbance was added and removed from the 

leg frame. The stars mark the observed jittering. 

 

Figure 6.7: The performance (mean ± SD) of the driven bar. The solid line is the 

performance from the test while the dashed line shows the model simulation of the 

bar-cam system as described in Figure 5.9.  
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The mean performance of the driven bar at motor speeds of 1000 rpm and 1500 rpm is 

displayed in Figure 6.7, with the standard deviation (SD) shown as a shaded area. The 

simulated performance from the bar-cam model (the solid line in Figure 5.9) is shown 

in Figure 6.7 as a dashed line for comparison. The mean ROM from the GOER 

prototype was 50
o
, which was similar to the simulated target performance from the 

model. The GOER prototype moved the driven bar slightly faster during the stance 

phase, but it did not interrupt the target phase ratio of 3:2.  

 

Figure 6.8: The joint performance of the leg frame. The solid lines show experimental 

mean values while the shaded areas are standard deviations. The dashed lines are 

model simulation results. 

The GOER prototype induced coordinated motion of the leg frame, with the joint 

angles (mean ± SD) presented as solid lines and shaded areas in Figure 6.8. The 

model simulation results are shown as dashed lines. The hip and the knee joints of the 
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leg frame in both the experiment and the model were always in flexion. The knee and 

ankle joints of the leg frame showed jerky motion around maximal ankle 

plantarflexion. The experimental ROMs of the hip, knee and ankle joints were 

respectively 34
o
, 57

o
 and 34

o
, which were of similar ranges to the simulated results, 

but the experimental ankle plantarflexion happened later than the simulated ankle 

trajectory. 

6.3.2. Test on subjects 

In order to reduce the load on the cam of the GOER prototype, the subjects were 

encouraged to follow but not to disturb the shoe position by actively supporting their 

own leg weight. Due to lack of leg support, subjects reported the pelvis was not very 

comfortable during supine stepping (see subjects’ feedback in Appendix 13). It was 

reported that the leg motion produced by the GOER prototype was 70% similar to 

walking (0 means not similar at all while 100% means identical). In contrast to joint 

motion measured on the empty leg frame, the tests with subjects demonstrated smooth 

leg movement but with large variation. 

Figure 6.9 shows the joint angles (mean ± SD) of Subject S1 as solid lines and shaded 

areas. The model simulation results are shown as dashed lines. S1 is the same subject 

S1 as in the gait analysis experiment described in Chapter 3. This study took place two 

years after the study in Chapter 3. This subject lost weight within these two years, 

resulting in different masses. The stepping performance can be compared with that 

during overground walking. As shown in Figure 6.9, the GOER prototype induced 

ROMs of 29
o
, 47

o
 and 25

o
 respectively in the hip, knee and ankle joints of S1, which 

were similar to the ROMs during overground walking (see Figure 3.4(a)). Walking 

performance in these two conditions is further presented in Figure 6.10.  
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Figure 6.9: The leg performance of S1. The solid lines show experimental mean values 

while the shaded areas are standard deviations. The dashed lines are model simulation 

results. 

Stick diagrams presented in Figure 6.10 show five different phases of a whole gait 

cycle through six sticks. The performance of supine stepping is presented in Figure 

6.10(a) while that of overground walking in the same subject (results collected in the 

gait analysis experiment in Chapter 3) is plotted in Figure 6.10(b) for comparison. The 

stick diagrams start and end with heel strike, with the first four sticks as four typical 

positions during the stance phase, while the remaining two sticks are the swing phase. 

The red lines represent the thigh and shank segments, with the black circles as the 

centres of gravity. The red triangle at the bottom is the foot. The black circle in the 

middle of the foot sole represents the centre of mass, while the other one denotes the 

centre of pressure, which moves from the heel at heel strike to the toe during toe off. As 

there is no ground pressure during the swing phase, the centre of pressure is not marked 

in Stick 5 in either diagram of Figure 6.10.  
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(a) Stepping in the GOER system. 

 

(b) Overground walking. 

Figure 6.10: Stick diagram of movement in S1. 

In spite of the similar ROMs, some differences between supine stepping in the GOER 

prototype and overground walking were observed in the hip and ankle joints. Figure 

6.10 shows that supine stepping had 8
o
 more flexion in the hip joint at heel strike (Stick 

1) than overground walking. Furthermore, the hip joint in the GOER prototype was 

hardly in extension during the toe off phase (Stick 4) compared to 9
o
 extension during 

overground walking. In contrast to the maximal extension taking place around toe off 

during overground walking, the GOER prototype delayed the maximal plantarflexion 
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into the mid-swing phase (Stick 5). All these differences between the motion induced 

by the GOER system and overground walking were also observed in Figure 6.9, by 

comparing the difference between experimental and simulated results. 

The stepping performance of S2 and S3 in the GOER system is displayed in Figure 6.11, 

with simulated results presented as well. Both subjects had the hip joint in flexion 

throughout the gait cycle. Regarding the knee joints of all three subjects, S1 showed 

double-hump flexion in the knee joint with 20
o
 flexion in the mid-stance phase, while 

S2 and S3 showed flexion in the knee joint over the whole gait cycle, with about 30
o
 

flexion even in the mid-stance phase for S3. The delay in ankle plantarflexion was 

more pronounced in S2 and S3 than S1.  

 
(a) S2 (mean ± SD). 
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(b) S3 (mean ± SD).  

Figure 6.11: The leg performance of S2 and S3. The solid lines show experimental mean 

values while the shaded areas are standard deviations. The dashed lines are model 

simulation results. 

6.4. Discussion 

The aim of this study was to investigate the performance of the GOER prototype and to 

analyse the technical feasibility of the GOER system as a rehabilitation device. The 

GOER system should have mechanisms to coordinate stepping of both legs. Here, the 

prototype was manufactured for only one leg stepping. However, the prototype under 

study with one stepping leg allowed evaluation of technical feasibility of the overall 

GOER system. 

Balanced with a counterweight of 4.78 kg, the GOER prototype with an empty leg 
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frame was actuated with a DC motor rotating at a constant speed. These preliminary 

results firstly confirmed the methods of counterweight calculation (Equation (6.1)), and 

secondly validated the tuned controller parameters iK1 and iK2. Two different rotation 

speeds (1000 rpm and 1500 rpm) were tested, which resulted in different stepping 

speeds of 0.41 km/h and 0.61 km/h in the GOER prototype. The selection of these slow 

speeds was based on the properties of the weak plastic cam. Higher speeds would 

induce larger power transmitted from the electric motor to the leg via the cam, which 

would give higher load on the cam. Furthermore, low speeds are usually adopted in the 

early phase of walking rehabilitation. Therefore low speeds were selected in this study 

for the GOER prototype. 

The motor achieved rotation at constant speeds of 1000 rpm and 1500 rpm. However, 

the speed profile at 1500 rpm demonstrated jittering (marked with stars in Figure 6.6). 

Compared to rotation at 1000 rpm, the motion at 1500 rpm demanded much higher 

power, especially at heel off, which can be seen from the power requirements of the 

GOER system at different speeds presented in Figures 5.17(b) and (c). Therefore the 

demand of a fast power increase in this phase disturbed the system, resulting in regular 

jittering phenomena in the speed curve at 1500 rpm. By reducing the speed to 1000 rpm, 

the motor rotated without jittering. The prototype was manufactured with the bar 

linkage and the cam to induce ROMs in the leg joints approximating those during 

walking at 100% of NC only. Although two different speeds were tested in the 

experiments, the ROM of the driven bar was theoretically the same, and was close to 

the simulation result, as shown in Figure 6.7.  

The GOER system aimed to induce sensory inputs to the leg joints so as to promote the 

rehabilitation process. Therefore achieving physiological ROMs of the leg joints and 
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coordination of the leg segments during supine passive movements were the key 

objectives of this study. The preliminary test of the GOER prototype induced 

synchronised movements in the leg frame, with ROMs similar to simulated 

performance. Due to the presence of gravity, the supine leg frame tended to fall into 

hyperextension. Therefore the leg frame was purposely designed with a length (1.09 m) 

larger than the target leg length of 1 m. Keeping this in mind, it was expected to observe 

flexion in the hip and knee joints of the leg frame throughout the gait cycle, as shown 

in Figure 6.8.  

The leg frame showed a jerky period in the swing phase, which was demonstrated with 

pointed angle curves of the knee and ankle joints at heel off (see Figure 6.8). This was 

because the high load applied on the weak cam disturbed constant rotation of the cam. 

In contrast to the bar linkage which had a counterweight to reduce the power 

requirement, the cam system, which did not have any specific power reduction 

mechanism, endured high load from the leg frame. As discussed above, the highest 

power requirement taking place at heel off caused a jerky rotation of the cam at this 

time. Largely dependent on the cam rotation, the ankle joint showed a pointed angle 

trajectory (jerky plantarflexion) in Figure 6.8. This problem could be alleviated by 

reducing the load on the cam, i.e. by reducing the leg weight. In spite of these problems, 

the ROMs of the hip, knee and ankle joints in the physical leg frame were within the 

physiological ROMs during overground walking [235], which provides a basis for safe 

usage.  

In order to reduce the jerk problem caused by cam rotation, the test with subjects was 

carried out without the leg frame. Therefore the joint angles in subjects showed a 

smooth profile, as can be seen in Figures 6.9 and 6.11. However, reduction of load was 
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not a satisfactory solution, because the load, although reduced, still disturbed the cam 

rotation, which resulted in delayed ankle plantarflexion in all three subjects, compared 

to the simulated results (see Figures 6.9 and 6.11). Replacing the material of the cam 

with aluminium alloy might remove the jerky rotation. Compared to preliminary results 

of the leg frame in Figure 6.8, large variation was observed in the kinematics of the 

human leg, which came from the voluntary input of the subjects. It was challenging for 

the subjects to support their own leg weight and to follow the rotation of the shoe 

platform. The voluntary support of the leg weight inevitably affected the final joint 

motion, which resulted in large standard deviations. S1 had the best knee performance 

among the three subjects with double-hump flexion, mainly because his leg length was 

1 m, which fitted the user requirement of the GOER prototype. S3 had a leg length 0.1 

m longer than the required leg length, which resulted in flexion in the knee joint 

throughout the gait cycle, even during the mid-stance phase. In spite of these 

differences, all three subjects achieved coordinated motion of the leg, with ROMs 

similar to physiological motion during overground walking [235]. 

A limitation of this study is that the subjects were asked to support their leg weight by 

themselves, which caused voluntary interference to the target joint angles. Due to the 

simplified structure of the GOER prototype, which is best suited to people with a leg 

length of 1 m, three people with long leg length were recruited in this study and only 

one of them had exactly the right leg length. Results from more subjects would be 

needed for an extensive evaluation. Further testing is required in subjects with SCI.  

The cam mechanism of the GOER prototype, which enabled the prototype to be driven 

by only one DC motor, had some drawbacks. The cam induced jerky motion at high 

load (see Figure 6.8) and delayed the ankle plantarflexion (see Figures 6.9-6.11). 
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Although the cam-chain method is a simple way to induce foot movement, a new 

actuation setup, such as a linear actuator, needs to be employed for a flexible and 

smooth ankle rotation. Furthermore, a flexible pelvic support should be used in the 

GOER system, which supports the bottom, but does not interrupt hip extension. In 

order to create an easy usage environment, a stronger system for two-leg stepping with 

a proper pelvic support needs to be developed. 

6.5. Conclusions 

This study investigated the passive leg movements produced by the GOER prototype. 

Test results from three subjects showed that the GOER prototype was capable of 

inducing coordinated leg motion with ROMs of the leg joints similar to those during 

overground walking at normal speed (a normal speed for a subject with a leg length of 

1 m is 1.42 m/s from Table 3.4). The combination of the bar linkage, counterweight 

balance and the cam transmission enabled the GOER prototype to be driven by only 

one electric motor. The experimental results of leg motion confirmed the model 

development process of the GOER system in Matlab, and proved the technical 

potential and feasibility of the GOER system as a device for early rehabilitation of 

walking.  
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Chapter 7. Experimental Evaluation of the 

GOER Prototype: the Shoe Platform  

Summary: This study presents experimental results for the shoe platform which was 

designed for users in a lying position to mimic the ground reaction forces occurring 

during overground walking. Mechanical stimulation of the foot sole produces pressure 

sensation as well as reflexes. Stimulation with high intensity produces strong reflexes, 

which induces additional perturbations in the ankle joint. This should be prevented to 

ensure safe usage of the shoe platform. The aim of this study was firstly to determine 

the parameters of the dynamic shoe platform which avoided activation of 

reflex-induced perturbations and secondly to collect users’ feedback about the 

sensation produced by the shoe platform. The experiment had two sub-tests: single 

stimulus and cyclic walking simulation. The shoe platform firstly produced single 

mechanical stimulation forces on the heel or on the forefoot to investigate the effect of 

mechanical forces on the reflex response and the ankle angle. Stimulation parameters 

which did not generate reflex-induced ankle perturbations were determined in the 

single-stimulus sub-test and were used in the second sub-test for cyclic walking 

simulation, where both the heel and the forefoot were stimulated. The platform 

produced pressure sensation in able-bodied subjects which was similar to the ground 

reaction occurring during upright walking. Weak reflexes were observed in the tibialis 

anterior (TA) and soleus (SOL) muscles. It is concluded that the dynamic shoe 

platform has the potential to be incorporated with the GOER system to provide 

walking-like load sensation on the foot sole during stepping rehabilitation of patients 

in a supine position. 
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7.1. Introduction 

The GOER prototype was manufactured to produce stepping movement in a supine 

position for those who cannot maintain an upright position during rehabilitation. Apart 

from coordinated leg movement described in Chapter 6, suitable stimulation of the 

load receptors in the lower limbs is another key factor for successful neurological 

recovery [84]. Equation Chapter (Next) Section 1 

Load can be detected by a wide variety of receptors, including cutaneous receptors on 

the foot sole and stretch receptors in the muscles [283]. Loading input derived from 

cutaneous and proprioceptive afferents is important for regulation of stepping [118]. 

Load receptors in the soleus and gastrocnemius muscles are thought to detect changes 

in the body’s centre of mass with respect to the feet, which provides proprioceptive 

feedback for maintenance of balance during walking [284]. The cutaneous load 

receptors detect support surfaces [283], which enables modulation of the kinematic 

performance of human walking, such as corrective reactions to stumbling [285]. In 

order to practise stepping in a supine position in the GOER system [2], an appropriate 

loading input should be implemented in the lower limbs to mimic the ground reaction 

forces occurring during overground walking. Therefore a dynamic shoe platform was 

designed using pneumatic components to stimulate the foot sole, so that users of the 

GOER system sense their feet moving in the air during the swing phase and contacting 

the ground during the stance phase.  

The shoe platform stimulated the foot sole by small movements of the pressure plates 

(see Section 7.2.1), which changed the ankle angle. In addition to pressure sensation, 

mechanical stimulation on the foot soles produced reflexes [23, 29, 286]. Strong 
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reflexes induced additional observable movements in the ankle joint [29]. Due to the 

lack or reduction of control from the brain, patients with upper motor neurone lesions 

often have exaggerated reflexes in response to stimulation, which might interrupt 

training or ambulation [62, 63, 280]. The GOER system should avoid these observable 

reflex-induced movements to facilitate training and to prevent injuries to potential 

users (acute patients), whose legs are fixed in the leg frame while the motion is guided 

by the bar linkage.  

The first aim of this study was to define the shoe parameters which prevent strong 

reflexes. The motivation of EMG recording in this study was to investigate muscle 

responses, thereby determining the mechanical stimulation intensities which were not 

high enough to activate strong reflexes. The second aim of the study was to record the 

sensation in the leg induced by the dynamic shoe platform.  

7.2. Methods 

This section introduces the structure of the shoe platform and gives a detailed 

description of the experiment. The shoe platform firstly applied single mechanical 

stimulation forces with different patterns on the heel or on the forefoot, and then 

produced cyclic mechanical stimulation on both the heel and the forefoot to mimic the 

forces occurring during overground walking. EMG signals and the ankle angle were 

investigated and users’ sensation feedback was documented. 

7.2.1. Equipment description 

Figure 7.1 shows the shoe platform under study. A detailed description of the shoe 
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design can be found in Section 5.2. Although not all the gait analysis results in 

Chapter 3 show that the heel endured larger force than the forefoot, most publications 

show the heel has higher force than the forefoot during normal gait [253, 269]. 

Furthermore, the heel has thick skin, which makes it less sensitive to stimulation than 

the forefoot [25], therefore it is desirable to induce higher force stimulation on the heel 

than on the forefoot, so as to produce the heel-strike sensation for overground walking 

simulation [234]. The pressure plate for the heel is actuated by a cylinder with a piston 

stroke of 20 mm and a diameter of 32 mm, while the forefoot pressure plate is actuated 

by a cylinder with a stroke of 10 mm and a diameter of 25 mm. Each cylinder is 

controlled by a solenoid valve (see Figure 7.2) to control the movement of the pressure 

plate. If the solenoid valve is activated, the air is transmitted to the cylinder, resulting in 

upward movement of the pressure plate. If the solenoid valve is deactivated, the 

cylinder retracts, producing downward movement of the pressure plate.  

 

      (a) The foot plate.               (b) The two pressure plates rise for           

mechanical simulation. 

Figure 7.1: The shoe platform structure. 

As shown in Figure 7.2, the laptop produces voltage signals via a DAQ card to activate 

or deactivate the solenoid valve, thereby controlling the movement of the pressure 
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plate. This achieves mechanical stimulation of the foot sole. A one-way flow control 

valve is employed to regulate the rise time of each pressure plate. Both pressure plates 

can be controlled independently, so that the timing of mechanical stimulation can be 

adjusted to mimic the dynamics of the ground reaction forces which occur during 

overground walking. The force stimulation in this study focused more on the timing of 

the force, i.e. controlling the displacement of the pressure plate rather than the actual 

force amplitude, as the rise time of the mechanical stimulation has a larger influence 

on the muscle response than the actual force amplitude (see Section 7.3).  

 

Figure 7.2: The pneumatic system for mechanical force stimulation. 

7.2.2. Subjects and measurement devices 

In order to evaluate the effect of mechanical stimulation on the foot sole, ten 

able-bodied subjects were recruited (Table 7.1). Ethical approval was obtained from the 

Ethics Committee for Non Clinical Research, Faculty of Biomedical & Life Sciences, 

University of Glasgow.  

Pressure gauge Compressor 

Laptop DAQ card 
Solenoid valve 

Cylinder 

Flow control 

 valve 
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Bipolar EMG signals from the tibialis anterior (TA) and soleus (SOL) muscles were 

recorded by a GTEC amplifier (Guger technologies, Austria) via Matlab/Simulink (the 

MathWorks, Inc.). The sampling frequency of the EMG recording was 1200 Hz. An 

ultrasound system (zebris Medical GmbH, Allgäu, Germany) was employed to record 

foot motion at a frequency of 100 Hz. Two zebris markers were used to measure the 

coordinates of the medial knee joint (xk, yk) and the medial ankle joint (xa, ya) of the 

right leg. The right foot was fixed to the shoe platform using Velcro straps. Subjects 

gave feedback whether the Velcro was strapped tightly enough while remaining 

comfortable. In order to record foot motion, a third zebris marker was fixed on the 

Velcro strap over the first metatarsal head (xm, ym). The ankle angle θa, which was 

defined as the angle between the shank and the dorsum of the foot, is calculated as:  

 
2 2( ) ( )ka k a k aL x x y y   

  (7.1) 

 
2 2( ) ( )am a m a mL x x y y   

  (7.2) 

 
2 2( ) ( )km k m k mL x x y y   

  (7.3) 

 

2 2 2
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2
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a

ka am

L L L

L L


 
 

  (7.4) 

where Lka, Lam 
and Lkm 

are the lengths between the knee and the ankle, the ankle and the 

first metatarsal head and the knee and the first metatarsal head, respectively. To ensure 

synchronous recording of the stimulation signal and the EMG response, the voltage 

signals for controlling the movement of the pressure plates were delivered through a 

digital output port of a DAQ card to a digital input port of the GTEC amplifier. In this 

way the command signals for mechanical stimulation and muscle activity were 

synchronised and recorded in the same file.  
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Table 7.1: Subject information. 

Subject Mass (kg) Height (m) Foot length (m) 

S1 47 1.54 0.18 

S2 53 1.60 0.20 

S3 54 1.59 0.18 

S4 56 1.62 0.18 

S5 60 1.68 0.23 

S6 72 1.70 0.23 

S7 72 1.73 0.20 

S8 72.5 1.82 0.24 

S9 74 1.76 0.24 

S10 88 1.94 0.25 

7.2.3. Test procedures 

Subjects wore the dynamic shoe platform on the right foot. After the EMG sensors 

were fixed on the TA and the SOL of the right leg, the subject lay down on a mattress. 

The subject firstly performed maximal dorsiflexion and plantarflexion of the right foot 

three times to produce reference EMG signals during maximal voluntary contraction 

(MVC). The subject was then asked to lie relaxed. A pillow was put under the right leg 

to flex the knee joint at approximately 30
o
. The angle of the foot sole and the shank was 

about 150
o
. Minor adjustments were made to ensure that the subject lay comfortably on 

the mattress during the whole test.  
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Table 7.2: Force amplitudes at various pressures (manufacturer’s data
8
). 

Pressure (bar) Force on the heel (N) Force on the forefoot (N) 

2 160 100 

2.5 200 125 

3 240 150 

3.5 280 175 

Four different pneumatic pressures were tested, with the corresponding force 

amplitudes presented in Table 7.2. The maximum force generated by the cylinder was 

280 N (3.5 bar80 N/bar). This force amplitude corresponds to approximately 30% to 

60% of the body weight of the subjects tested. The force range of 30% to 60% of the 

body weight is similar to the force experienced by patients practising treadmill walking 

with body weight support [261].  

Mechanical stimulation was firstly applied in the single-stimulus sub-test (on either the 

heel or the forefoot) to investigate the reflex responses, and then in the 

cyclic-stimulation sub-test (on both the heel and the forefoot) for walking simulation to 

record users’ sensation.   

(a) Single-stimulus sub-test 

This sub-test evaluated the influence of different parameters of the mechanical stimulus, 

including the rise time of the pressure plates (long (0.20 s) and short (0.05 s)), location 

of the mechanical stimuli (the heel and the forefoot) and the pressure amplitude (2, 2.5, 

                                                 

8
Available from: http://www.festo.com/cms/de_de/index.htm. Accessed on 20/06/2012. 
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3 and 3.5 bar). All of these parameters were combined, resulting in 16 types of 

stimulation taking place in a random order. Each type of stimulation was performed 

four times for averaging purposes. Each of these 64 stimuli was applied every 30 s and 

lasted for 0.8 s. The subjects had 5 minutes of rest after 32 stimuli to prevent 

habituation. This single-stimulus sub-test lasted for about 45 min.  

(b) Cyclic-stimulation sub-test 

In order to mimic dynamic ground reaction forces during walking, cyclic stimulation 

was applied on both the heel and the forefoot in this sub-test. The pressure plates used 

the long rise time of 0.20 s for full extension, which meant the force took 0.20 s to 

achieve the target amplitude for stimulation of the foot sole. Two gait cycles of 2 s and 

5 s were chosen to simulate walking at fast and slow speeds. For a person with a height 

of 1.80 m and a step length of 0.85 m, these two selected gait cycles corresponded to 

walking speeds of 3 and 1.2 km/h respectively, which are close to normally adopted 

walking speeds for patients during treadmill training [129].  

The shoe mechanism induced the force pattern in Figure 7.3 to simulate walking. The 

heel had mechanical stimulation for 40% of the gait cycle, and the forefoot was 

stimulated during 20-60% of the gait cycle. The heel and the forefoot were stimulated 

together for 20% of the gait cycle to simulate the mid-stance phase. Four pressures 

mentioned above (2, 2.5, 3 and 3.5 bar) combined with two cycle periods resulted in 8 

cyclic-stimulation tests. Each test started with 5-second rest, followed by 9 

stimulation sequences (9 strikes).  
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Figure 7.3: Force profile for walking simulation. 

After the whole test, the subject filled out a questionnaire (Appendix 14) about the 

sensation on the sole induced by cyclic walking simulation. The sensation focuses 

more on the timing of the force and location of stimulation rather than the actual force 

amplitude. 

7.2.4. Data analysis 

EMG signals, which were recorded with a band-pass filter (5-500 Hz) and a notch 

filter at 50 Hz, were full-wave rectified and saved synchronously with the trigger 

signal for the pressure plate stimulation. The EMG data and zebris recordings were 

visually observed to remove outliers. The EMG data with high background noises 

were discarded. The zebris data were further filtered with a window size of 5 to 

remove noise, and were finally smoothed with the loess or rloess Matlab functions. 

Muscle activity during MVC was collected mainly for normalisation of EMG signals 
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from different subjects. The raw EMG signals during MVC are usually processed by 

calculating root mean square (RMS) values to remove the non-reproducible 

information in the raw EMG recordings [287, 288]. For the EMG data during MVC, 

the RMS amplitude in a 500 ms time window centred at the maximal peak of the EMG 

signals was calculated [287, 288]. The maximal MVCRMS (RMS during MVC) within 

the three repetitions was used as the reference for EMG normalisation. For the EMG 

data from the single-stimulus sub-test, the RMS value during the mechanical 

stimulation (0.8 s) was calculated to investigate EMG responses. For the cyclic 

walking simulation data, the mean RMS amplitude of the total duration of the 

mechanical stimulation on the foot sole was calculated and compared to that of a 5 s 

pre-stimulation period to investigate the effect of walking simulation on muscle 

response.  

As reported in Section 7.3, large EMG bursts were observed in the single-stimulus 

sub-test. As the subjects were told to relax without exerting voluntary movement during 

the whole test, these large bursts were considered as reflexes, and their latencies were 

investigated. In contrast to the RMS representation of muscle activity during MVC, a 

reflex is often represented by the raw EMG signal instead of the RMS value, because 

calculation of the RMS value employs a moving window, which introduces a delay in 

the EMG signals, thereby affecting determination of the reflex onset. The mean 

amplitude and standard deviation (SD) of the baseline raw EMG signals during 0.8 s 

pre-stimulation were calculated and the reflex threshold was defined as mean + SD of 

the baseline EMG [289]. The reflex latency was initially searched for by computer 

programming, where the onset of each EMG burst was determined as the first signal 

component larger than the reflex threshold and with a duration longer than 10 ms [289]. 

As automatic computer programming cannot account for artefacts [290], visual 
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observation is often employed to detect the onset of reflexes [23, 291]. This method is 

proven to be accurate and reliable [289, 292, 293]. Visual observation was performed 

through an interactive graphics method [292, 293], where the EMG signals during the 

mechanical stimulation (0.8s) along with the values mean + SD and mean + 2SD were 

plotted and zoomed. The onset of the reflex was visually determined as the earliest 

detectable increase in the EMG signal which stayed continuously above the resting 

state [294]. The results from the visual observation were determined as the final 

latencies. 

In the results below, all EMG data are normalised with respect to MVCRMS to enable a 

valid comparison of stimulation responses from different subjects. This resulted in the 

reflex amplitude expressed by the raw EMG signal as a percentage of MVCRMS. 

Although different representations of EMG signals are used, this is an often adopted 

method of EMG normalisation [288]. For the single-stimulus sub-test, EMG signals 

during the pre-stimulation period (0.8 s) and the mechanical stimulation (0.8 s) are 

presented. The mechanical stimulation periods are marked as dashed lines in the EMG 

figures. The amplitudes of the dashed lines are the reflex thresholds. It is defined that 

a reflex with a raw EMG amplitude lower than 100% of MVCRMS is called a weak 

reflex, while that larger than 100% of MVCRMS is called a strong reflex. An 

independent t-test was performed in SPSS to see whether the stimulation with a long 

and short rise time produced significantly different EMG responses (p = 0.05). For the 

cyclic walking simulation, the responses of each sub-test are presented, including 5 

seconds of rest and 9 repetitions of stimulation. In order to make the EMG figure for 

the cyclic-walking sub-test readable, the data were resampled at 100 Hz. 

In order to test whether the mechanical stimulation caused ankle movement, the ankle 



Chapter 7    Experimental Evaluation of the GOER Prototype: the Shoe Platform    272 

 

 

angle is presented together with the EMG signals. If reflex-induced ankle movement 

is observed, the ankle perturbation is marked with a dashed arrow.  

7.3. Results 

The RMS amplitudes during MVC and rest are presented in Table 7.3. Subjects had 

large variance in MVCRMS but had similar values at rest.  

Table 7.3: RMS during MVC and at rest (μV). 

Subject 
MVC Rest 

TA SOL TA SOL 

S1 162.81 126.52 1.16 1.11 

S2 347.23 91.43 1.24 1.46 

S3 211.12 54.08 1.86 1.52 

S4 69.16 74.23 1.29 1.75 

S5 255.32 31.28 1.07 1.03 

S6 100.04 66.12 1.01 1.05 

S7 220.45 115.57 1.15 1.58 

S8 109.36 31.91 1.35 1.05 

S9 97.78 50.26 1.04 1.18 

S10 318.28 47.53 1.41 1.49 

Mean±SD 189.16±97.33 68.89±33.08 1.26±0.25 1.32±0.27 

Different mechanical stimulation patterns produced different EMG responses. The 

results from single-stimulus tests and cyclic walking simulation are presented 

separately in the following two subsections.  

7.3.1. Single-stimulus sub-test 

Sixteen stimulation patterns as described above were applied in this sub-test. Weak and 

strong reflexes were observed corresponding to stimulation with the long and short 
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rise times.   

(a) Stimulation by the pressure plate with a long rise time  

When the pressure plate took 0.2 s to reach full extension for mechanical stimulation, 

reflexes were observed in one or both of the lower leg muscles. Figure 7.4 shows the 

responses of Subject S3 after heel stimulation at 2 bar. The stimulation produced a 

weak reflex in the SOL with a raw EMG (peak) amplitude of 20.2% of MVCRMS and 

a latency of 55 ms.  

 

Figure 7.4: Heel stimulation at 2 bar in S3 with a long rise time. The dashed lines show 

the mechanical stimulation periods with the amplitudes as the reflex thresholds. 
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Figure 7.5: Heel stimulation at 3.5 bar in S3 with a long rise time. The dashed lines show 

the mechanical stimulation periods with the amplitudes as the reflex thresholds. 

 

Figure 7.6: Forefoot stimulation at 3.5 bar in S3 with a long rise time. The dashed lines 

show the mechanical stimulation periods with the amplitudes as the reflex thresholds. 
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When the pressure increased, a higher EMG amplitude was observed. Figure 7.5 shows 

the responses when the pressure of the heel stimulation increased to 3.5 bar. 

Compared to Figure 7.4, a weak reflex of about 54% of MVCRMS in peak amplitude 

with a latency of 78 ms was observed in the SOL. The ankle angle of S3 reduced by 

about 0.9
o
 in response to heel stimulation, regardless of the pressure amplitude. As the 

piston rose slowly, the ankle angle changed gradually. It was observed by comparing 

Figures 7.4(c) and 7.5(c) that the ankle angle changed more slowly at 2 bar than at 3.5 

bar. The rising movement of the pressure plate at 2 bar was more easily reduced, 

probably because the upward force at 2 bar was lower (160 N) than at 3.5 bar.  

Stimulation on the forefoot induced similar reflex responses in the lower leg muscles, 

but increased the ankle angle. Figure 7.6 shows the results of S3 in response to slow 

forefoot stimulation at a pressure of 3.5 bar. Compared to Figure 7.5(b), forefoot 

stimulation induces a 36% higher reflex in the SOL than heel stimulation in S3. 

Forefoot stimulation increased the ankle angle gradually by 0.8
o
. 

Stimulation with a long rise time produced weak reflexes in six out of ten subjects. 

Subject S1, S3 and S7 had reflexes in the SOL only, S4 and S10 had EMG increase in 

the TA only, while S2 had reflexes in both muscles. Each type of stimulus was 

repeated four times. The mean RMS amplitudes during mechanical stimulation at 3.5 

bar with a long rise time for all subjects are presented in Table 7.4. It can be seen that 

all subjects had small RMS amplitudes (less than 4.5% of MVCRMS).  

The movement of the ankle joint during stimulation with a long rise time was induced 

by upward physical movement of the pressure plate, and did not change with the 

pressures. The mean ankle angle changes are presented in Table 7.5. The slow 

movement of the pressure plate during mechanical stimulation induced a mean change 
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of about 1.33
o
 in the ankle angle, with a maximal change of 2.45

o
.  

Table 7.4: Mean RMS at stimulation of 3.5 bar with a long rise time (%MVCRMS). 

Subject 
Heel stimulation Forefoot stimulation 

TA SOL TA SOL 

S1 0.91 1.14 0.89 1.05 

S2 0.46 3.12 0.89 2.30 

S3 1.19 3.42 1.20 4.02 

S4 3.21 2.77 2.48 2.21 

S5 1.70 2.37 1.07 2.06 

S6 4.41 2.02 3.26 2.10 

S7 2.89 2.41 2.98 1.33 

S8 1.51 2.73 1.53 2.38 

S9 1.38 1.19 1.31 1.22 

S10 3.50 1.85 0.52 1.01 

Mean±SD 2.12±1.30 2.30±0.76 1.61±0.95 1.97±0.90 

Table 7.5: The ankle angle change (degrees) induced by the upward movement of the 

pressure plate during mechanical stimulation. 

Subject Heel stimulation Forefoot stimulation 

S1 -1.98 2.37 

S2 -1.41 0.51 

S3 -1.08 0.89 

S4 -1.15 1.42 

S5 -0.46 0.61 

S6 -2.45 0.89 

S7 -1.81 1.15 

S8 -1.44 1.14 

S9 -0.97 0.91 

S10 -0.51 0.82 

Mean±SD -1.33±0.63 1.07±0.53 
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(b) Stimulation by the pressure plate with a short rise time 

When the pressure plate was adjusted to achieve full extension within 0.05 s, reflexes 

with various amplitudes were observed in nine out of ten subjects, when either the heel 

or the forefoot was stimulated. Some subjects had strong reflexes with raw EMG 

amplitudes larger than 100% of MVCRMS. Stimulation with a high pressure induced a 

reflex with a large amplitude, therefore the responses at a pressure of 3.5 bar are 

presented in this section.   

Figure 7.7 shows the responses of S3 to heel stimulation at 3.5 bar. Similar to 

stimulation with a long rise time, the SOL was more active than the TA during 

stimulation with a short rise time. A strong reflex was produced in the SOL with the 

raw EMG (peak) amplitude up to 120% of MVCRMS and a latency of 44 ms, while a 

weak reflex was observed in the TA with a latency of 115 ms. The ankle angle 

reduced by 1.2
o
. As the pressure plate rose quickly, the ankle angle should reduce 

quickly. However, the ankle angle was disturbed as the dashed line shows. This 

disturbance was considered as an additional ankle perturbation induced by the strong 

reflex. 

Reflexes had large variance between different subjects. Subject S6, in contrast to S3, 

had more activity in the TA in response to stimulation. Figure 7.8 presents responses 

of S6 to heel stimulation at 3.5 bar. This stimulation pattern induced a strong reflex in 

the TA with a raw EMG (peak) amplitude up to 200% of MVCRMS and a latency of 66 

ms, while no obvious reflex was observed in the SOL. The heel pressure plate reduced 

the ankle angle in S6 by about 2.3
o
. An additional change of 1

o
 in the ankle angle 

(marked with a dashed arrow) was observed and was also considered as an additional 
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perturbation induced by the strong reflex. Figure 7.9 displays the results of S6 for 

forefoot stimulation. An even stronger reflex was induced in the TA with a latency of 

46 ms, while no additional ankle angle change was observed. 

Figure 7.10 shows the responses of Subject S7 after heel stimulation. In contrast to the 

responses of S6 in Figure 7.8, S7 had activity in both lower leg muscles in response to 

heel stimulation: a strong reflex in the TA and an observable weak reflex in the SOL. 

The heel stimulation reduced the ankle angle by 1.89
o
. A reflex-induced ankle 

perturbation of 0.3
o
 was observed in S7, as shown by the dashed arrow.  

 

Figure 7.7: Heel stimulation in S3 with a short rise time. The dashed arrow shows 

reflex-induced ankle perturbation. The dashed lines show the mechanical stimulation 

periods with the amplitudes as the reflex thresholds. 
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Figure 7.8: Heel stimulation in S6 with a short rise time. The dashed arrow shows 

reflex-induced ankle perturbation. The dashed lines show the mechanical stimulation 

periods with the amplitudes as the reflex thresholds. 

 

Figure 7.9: Forefoot stimulation in S6 with a short rise time. The dashed lines show the 
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mechanical stimulation periods with the amplitudes as the reflex thresholds. 

 

Figure 7.10: Heel stimulation in S7 with a short rise time. The dashed arrow shows 

reflex-induced ankle perturbation. The dashed lines show the mechanical stimulation 

periods with the amplitudes as the reflex thresholds. 

Table 7.6: Mean RMS for stimulation by a short rise time (%MVCRMS). 

Subject 
Heel stimulation Forefoot stimulation 

TA SOL TA SOL 

S1 1.17 2.11 8.82 6.58 

S2 0.49 6.68 0.46 2.63 

S3 3.52 13.34 1.32 8.02 

S4 7.86 6.75 3.31 2.65 

S5 6.52 3.23 2.88 4.61 

S6 13.78 2.16 17.00 1.96 

S7 11.67 4.83 1.58 1.95 

S8 1.73 4.87 1.65 4.39 

S9 1.47 1.27 1.45 1.29 

S10 11.19 8.36 0.67 1.88 

Mean±SD 5.94±4.97 5.36±3.64 3.33±4.90 3.22±2.00 
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Strong reflexes were observed in five subjects (S1, S3, S6, S7 and S10). Three of 

them (S3, S6 and S10) had strong reflexes at four test pressures. Additional 

reflex-induced perturbation in the ankle joint was observed in three subjects (S3, S6 

and S7). The mean RMS amplitudes during mechanical force stimulation at 3.5 bar 

for all subjects are presented in Table 7.6. Compared to the stimulation with a long 

rise time (Table 7.4), much higher RMS amplitudes were observed if the pressure 

plate rose quickly, with the maximal RMS amplitude up to 17% and 13% of MVCRMS 

in the TA and the SOL respectively. An independent t-test on the data of Table 7.4 and 

7.6 showed the RMS values from the stimulation with a long and short rise time were 

significantly different (p = 0.003). 

Table 7.7: Reflex latencies (ms) for stimulation by the pressure plate with a short rise 

time. NA means no reflex was observed. 

Subject 
Heel stimulation Forefoot stimulation 

TA SOL TA SOL 

S1 93.33 95.42 94.79 90.00 

S2 73.33 38.13 101.67 35.52 

S3 98.12 45.83 106.87 47.08 

S4 40.63 49.38 57.71 81.67 

S5 62.50 59.37 132.92 92.08 

S6 65.83 NA 46.46 NA 

S7 66.87 76.04 98.13 81.04 

S8 57.71 43.54 115.00 53.33 

S9 NA NA NA NA 

S10 88.96 104.58 68.75 NA 

Mean±SD 71.92±18.61 64.04±25.16 91.37±28.17 68.67±22.82 

In order to investigate the origin of the reflexes, the reflex latencies were calculated. 

Each stimulus was repeated four times, resulting in 64 stimuli in the whole 

single-stimulus sub-test for each subject. Although some subjects had strong reflexes 

in some stimuli, most subjects showed very limited reflexes. Subjects S5 and S8 had 
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very weak reflexes even at a high pressure of 3.5 bar. S9 had no reflex throughout the 

test, although he felt obvious sensations of stimuli. The mean latencies of reflexes 

induced by the stimulation of a short rise time at 3.5 bar are presented in Table 7.7. 

The subjects showed latencies ranging from 36 to 133 ms. 

7.3.2. Cyclic-stimulation sub-test 

During walking simulation, the piston was adjusted to fully extend within 0.20 s (long 

rise time). Cyclic stimulation was applied with two cycle times of 2 s and 5 s in each 

subject to simulate walking at fast and slow speeds. Figure 7.11 shows responses in 

S7 during the simulation of fast walking at 3.5 bar. Weak reflexes were observed in 

the TA and the SOL, but no additional ankle perturbation was produced by the 

reflexes as shown in the enlarged Figure 7.12. The ankle angle changes induced by the 

cyclic mechanical stimulation were 1.7
o
 from heel stimulation and 0.9

o
 from forefoot 

stimulation, which were similar to those during single stimuli with a long rise time of 

the pressure plate (Table 7.5).  

Cyclic stimulation induced neither strong reflexes nor additional ankle perturbations in 

any of the subjects. Weak reflexes were observed in nine out of ten subjects. Muscle 

activity during stimulation was increased compared to the resting situation. The RMS 

amplitudes relative to the resting state for all ten subjects at variable pressures are 

presented in Figure 7.13. It can be seen that higher pressures induced larger reflexes, 

with the largest amplitudes occurring in the SOL during simulation of fast walking, 

and the smallest amplitudes observed in the TA during slow walking simulation. 
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Figure 7.11: Walking simulation responses of S7. The dashed lines show the 

mechanical stimulation periods with the amplitudes as the reflex thresholds. 

 

Figure 7.12: Zoomed version of Figure 7.11. The upward and downward arrows show 

the start and end times of stimulation on the foot sole. The solid arrows represent the 
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heel pressure plate and the dashed arrows indicate the forefoot pressure plate. The 

dashed lines show the mechanical stimulation periods with the amplitudes as the reflex 

thresholds. 

 

Figure 7.13: RMS values (relative to resting state) during walking simulation tests. 

Subjects provided subjective feedback of using the shoe platform (see Appendix 15). 

All ten subjects felt cyclic force patterns on the foot sole. Nine subjects thought the 

shoe platform had the right location of stimulation for walking simulation, while one 

thought the pressure on the top of the foot caused by the Velcro straps made the 

feeling different from walking. Six subjects thought the stimulation had similar force 

timing to walking. Among the four subjects who perceived different timings from 

walking, two subjects thought the delay between the heel and forefoot stimulation was 

too long, while the other two subjects did not give a reason why they felt different. 

Seven of the ten subjects considered the rising speed of force on both the heel and the 

forefoot to be similar to overground walking, two thought the force on the heel had a 

better feeling than on the forefoot, while one subject thought the force on the forefoot 

had a better feeling. Seven subjects thought the shoe platform was comfortable to use 
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while the other three subjects were neutral (neither comfortable nor uncomfortable). 

Six subjects described the stimulation as pressing, two subjects described it as punching 

and two subjects described it as walking. 

7.4. Discussion 

The pneumatic shoe platform applied mechanical stimuli on the foot sole of users in a 

supine position. Accompanied with pressure sensation, mechanical stimulation 

produced reflexes in the leg muscles. As strong reflexes had potential to induce ankle 

perturbation, the reflex amplitudes were investigated in the single-stimulus sub-test, 

through which the parameters of the shoe platform were determined to produce 

mechanical stimulation without reflex-induced perturbation in the ankle joint. Then in 

the cyclic walking simulation, the shoe platform provided dynamic mechanical 

stimulation on the heel initially to simulate heel strike, and then on both the heel and 

the forefoot to mimic mid-stance and finally on the forefoot only to represent heel off, 

which succeeded in producing walking-like sensations.  

Stimulation achieved by upward movement of the pressure plate changed the ankle 

angle by about 1.3
o
 on average regardless of pressures, which represents less than 5% 

of the target ROM of an ankle joint that goes between –20
o
 (plantarflexion) and +10

o 

(dorsiflexion) (see Chapter 3). Heel stimulation changed the ankle angle more than 

forefoot stimulation, because the piston under the heel has a longer stroke (20 mm) 

than that under the forefoot (10 mm). Six out of ten subjects experienced weak 

reflexes during stimulation with a long rise time. When the rising speed of the 

pressure plate increased, nine out of ten subjects experienced reflexes. Five subjects 

had strong reflexes, and three of them had additional ankle perturbation induced by 



Chapter 7    Experimental Evaluation of the GOER Prototype: the Shoe Platform    286 

 

 

the strong reflexes.  

The reflexes recorded in the single-stimulus sub-tests had latencies ranging from 

36-133 ms, which implies that the reflexes are spinal in origin [26]. The shoe platform 

stimulated the cutaneous mechanoreceptors by dynamic forces. The movement of the 

pressure plate changed the ankle angle, resulting in stretch of the TA and the SOL 

muscles. The dynamic pressure induced polysynaptic cutaneous reflexes while the 

muscle stretch generated monosynaptic reflexes. Studies on stretch reflexes in the SOL 

displayed latencies of 35-50 ms due to ankle angle disturbances [23, 295]. The 

latencies of stretch reflexes in the SOL were found to be related to the ankle angle, 

and could be prolonged up to 80 ms with an ankle joint in plantarflexion
 
[296]. 

Research on cutaneous reflexes through non-nociceptive electrical stimulation on 

different areas of the sole reported latencies of cutaneous reflexes ranging from 50-90 

ms [286, 297] and normally prolonged at weak stimulation [26]. The reflexes induced 

by the shoe platform in the current study are likely a combination of both stretch and 

cutaneous reflexes as described above, given the latency range from 36-133 ms. Both 

of these responses act as protective strategies: to prevent overstretching by stretch 

reflexes and to withdraw the foot after stimulation of cutaneous reflexes.  

The SOL generally has a higher occurrence of stretch reflexes than the TA [296]. This 

agrees with the observation in S3 (see Figure 7.7), who had more reflexes in the SOL 

than the TA. S6 produced double-burst reflexes in the TA (see Figures 7.8-7.9), which 

agrees with previous descriptions of cutaneous flexor reflexes [26]. Cutaneous flexor 

reflexes are often observed in the TA [298], therefore it is not surprising to see that S6 

had reflexes with peak amplitudes twice MVCRMS in the TA, while no reflex was 

observed in the SOL. However, it is not unexpected to see reflexes in both the TA and 
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the SOL as shown in S4 and S7, which is in accordance with study [297]. Although 

the same pressure was employed during heel and forefoot stimulation, S3 and S6 had 

higher reflex amplitudes during forefoot stimulation than heel stimulation (see Figures 

7.5-7.6 and Figures 7.8-7.9). This might be because the forefoot is usually more 

sensitive to stimulation than the heel [25]. Reflexes have a tendency towards a 

decrease in latency for increasing stimulus intensity [26, 297, 299], which explains 

the shorter mean latency in the TA of S6 for forefoot stimulation than for heel 

stimulation (see Table 7.7). It was also expected that the limited weak reflexes 

observed in the TA of S5 and S8 during forefoot stimulation had long latencies (up to 

133 and 115 ms, respectively).  

The rising speed of the pressure plate combined with the pressure amplitudes had a 

large influence on the reflex amplitudes. Stimulation with a short rise time at 3.5 bar 

produced a reflex with a raw EMG amplitude larger than 100% of MVCRMS. It should 

be noted that the MVCRMS value is smaller than the raw maximal EMG value during 

MVC (about 75% smaller in this study). Therefore a reflex with a raw EMG amplitude 

larger than 100% of MVCRMS does not mean that the reflex is larger than MVC, rather it 

is observed to be strong enough to perturb the ankle joint in some subjects. Strong 

stretch reflexes in the SOL are considered to cause ankle plantarflexion (increase the 

ankle angle). The EMG burst in Figure 7.7 after heel stimulation by a pressure plate 

with a short rise time was considered to be a stretch reflex, based on the short latency 

of 46 ms. Therefore the reflex-induced plantarflexion reduced the dorsiflexion caused 

by the upward movement of the heel pressure plate, resulting in the ankle perturbation 

as seen in Figure 7.7. Ankle flexion (ankle angle reduction) is reported to be the 

dominant flexor reflex [297], therefore it is expected to see ankle dorsiflexion during 

strong flexor reflexes, as shown in Figure 7.8 and Figure 7.10. Comparing Figure 7.8 
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and Figure 7.9, it can be seen that forefoot stimulation produced stronger flexor 

reflexes, but induced no additional perturbation in the ankle angle. This might be 

because the potential reflex-induced dorsiflexion was reduced by the ankle 

plantarflexion caused by the upward movement of the forefoot pressure plate. In 

summary, the cause and effect of reflex and ankle angle are: (i) the movement of the 

pressure plate changed the ankle angle, which caused a stretch reflex. The shoe 

platform stimulated the cutaneous mechanoreceptors by dynamic forces; (ii) when the 

stimulation intensity was high, the reflex became strong enough to induce a 

withdrawal reflex; (iii) the stretch reflex increased the ankle angle, while the 

withdrawal reflex decreased the ankle angle. 

Weak reflexes in the muscles are considered to be a satisfactory reaction to stimulation 

induced by the shoe platform. However, strong reflexes that induce additional ankle 

perturbation might cause injury to users (especially for patients with spinal cord injury 

who often have spasticity) and should be avoided in the GOER system. Walking 

simulation by the dynamic shoe platform delivered the force gradually by adopting the 

pressure plate with a long rise time. The mechanical stimulation under these 

circumstances still changed the EMG activity from the lower leg muscles in 

able-bodied subjects, with increased EMG amplitudes during stimulation compared to 

the resting period. A higher pressure produced stimulation with a higher intensity, 

resulting in higher EMG signals in the lower leg muscles. No additional ankle 

perturbation was observed. Six subjects thought the stimulation had similar force 

timing to walking, and seven subjects considered the rising speed of force on both the 

heel and the forefoot to be similar to overground walking.  

This study evaluated the performance of the shoe platform, which was confirmed to 
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be an effective device to produce walking-like sensation. The limitation of this shoe 

platform is that the mechanical stimulation changes the ankle angle, which is 

unavoidable if a pneumatic cylinder is employed for stimulation, but can be further 

reduced by choosing a cylinder with a piston shorter than 10 mm. Another limitation of 

the shoe platform is that the timing of the force on the heel and the forefoot as shown 

in Figure 7.3 is different from the target profiles displayed in Figure 5.19. During the 

design stage, it was thought that a fast rising speed of force should be applied on the 

heel to simulate the large loading at heel strike. Therefore, only two one-way control 

valves were employed, which were intended to regulate the downward speeds of the 

two pressure plates. However, the observation of reflexes during the tests revealed the 

requirement of reducing the upward speed of the pressure plates to prevent 

reflex-induced ankle perturbation. Therefore the final force patterns in the walking 

simulation had a slow increase and fast decrease in amplitude (see Figure 7.3). 

Although most subjects reported that the force profile was similar to the ground 

reaction forces occurring during walking, two more control valves would be required 

to reduce the downward speed of the pressure plates for a better simulation of 

walking-like performance. The pneumatic system was easy to control, but noise should 

be reduced by adopting noise silencers.  

One limitation of this study relates to the measurement of the ankle angle. The right 

foot was fixed to the shoe platform using Velcro straps. In order to record the ankle 

motion produced by the shoe platform, especially the ankle perturbation induced by 

strong reflexes, the foot as well as the shoe platform was not fixed to allow free 

rotation. Subjects gave subjective feedback whether the Velcro was strapped tightly 

enough while remaining comfortable. During the mechanical stimulation, the rising 

pressure plate rotated the foot, and also pushed the shoe platform away from the foot. 
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The distance the shoe platform should be pushed away was influenced by how tight 

the Velcro straps are, i.e. the tighter the straps are, the shorter distance the shoe moves. 

The tightness of the Velcro was not specifically controlled but was determined to such 

that the subjects remained comfortable. Therefore, the recorded ankle angle was a 

combination of movements from the foot and the platform. The extension of the 

pressure plate pushed the footplate further from the foot sole, which reduced the ankle 

angle at heel stimulation and increased the ankle angle at forefoot stimulation. 

Another limitation is that the shoe mimicked the force by controlling the displacement 

of the pressure plate instead of the actual pressure applied on the foot. The four 

pressures were read from the pressure gauge as shown in Figure 7.2 while the actual 

pressure/force on the foot was not measured. To overcome this shortcoming, pressure 

sensors are required to be inserted between the pressure plates and the foot sole so as 

to record how much pressure is actually applied by the shoe platform. Proportional 

valves should be adopted to control the pressure amplitude.  

This study also evaluated sensation from users’ feedback. Reflexes, to some extent, 

reflect the stimulation intensity, which is believed to be related to sensation intensity. 

However, reflexes have large individual variance. A better quantitative measurement 

of sensation is required. 

The current study demonstrated technical feasibility of the dynamic shoe platform for 

ground force simulation and investigated the influence of different stimulation 

parameters on physiological responses from able-bodied subjects. The target users of 

the shoe platform are patients with incomplete spinal cord injury, who are more 

sensitive to stimuli and more vulnerable to reflexes than able-bodied subjects. Further 

tests should be carried out in patients in order to investigate the potential clinical usage. 
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7.5. Conclusions 

The study demonstrated the technical feasibility of a dynamic shoe platform applying 

walking-like mechanical force stimulation on the foot sole of able-bodied subjects in a 

supine position. The shoe platform applied cyclic mechanical forces on the foot sole, 

which induced physiological responses in the lower leg muscles and produced 

pressure sensation which was similar to overground walking. The shoe platform is a 

useful tool to stimulate the foot sole. It can be incorporated in the GOER prototype to 

stimulate load receptors, thereby promoting the rehabilitation process of patients with 

impaired lower limb function.   
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Chapter 8. Discussion 

Summary: With experimental walking data, the circle approximation approach for the 

toe trajectory was developed. The kinematics and kinetics of supine stepping were 

analysed through model simulation. The performance of the GOER prototype was 

evaluated in able-bodied subjects and was proved to be a promising device for early 

rehabilitation of walking. This section provides an overall discussion (advantages and 

limitations) of this work regarding the gait data analysis, model development, the 

general features and the potential application of the GOER prototype compared with 

current early rehabilitation devices.  

In order to promote walking restoration for patients who cannot maintain an upright 

position, a Gait Orthosis for Early Rehabilitation (GOER) was developed in this 

project with the following target requirements: 

1. Patients are able to perform stepping in a supine position; 

2. The ankle joint is activated so as to allow coordinated kinematics of the lower limb; 

3. Different speeds are accommodated to produce different training modalities; 

4. Haptic feedback on the foot sole is provided to mimic the ground reaction forces. 

The detailed performance requirements of the GOER system, including the ROMs of 

the lower limb joints and the force patterns on the foot sole, were defined using the 

overground walking performance from able-bodied subjects.  

8.1. Gait Data Requirements and Recording Process 

A gait analysis experiment was performed to record the kinematic and kinetic features 

of overground walking, as described in Chapter 3. Apart from providing target motion 
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of the GOER system, the walking data, especially the segment trajectories and ground 

reaction forces, were indispensable for model development in Chapter 4, because the 

walking performance was required to define the actuation profiles in the model for 

supine stepping. Therefore the requirements for input gait data to design an adequate 

system are the segment trajectories and the ground reaction forces during overground 

walking. As these required data are not available in the literature on gait performance, 

a gait experiment was performed, where three able-bodied subjects walked 

overground at three different speeds. 

Treadmill walking is not suitable to produce the target gait data in this project, 

because (i) it is a matter of contention whether treadmill walking produces a normal 

gait pattern or not and (ii) the treadmill requires an additional force plate to measure 

the reaction forces during walking, which brings additional technical work. Therefore 

overground walking rather than treadmill walking was recorded in a standard gait 

laboratory using the Vicon motion analysis system in this project.  

The three subjects recruited in the gait analysis experiment had a large range of body 

mass (68–95 kg) and leg length (0.88-1 m). We believe they represent the general gait 

pattern for healthy people. With a metronome guiding their cadence, three different 

speeds were tested: 100%, 75% and 50% of normal cadence (NC). Although the test 

results show large variability in the walking pattern at 50% of NC, walking at a slow 

speed is of great interest for rehabilitation devices. Since the recommended starting 

speed of initial clinical gait training is 1.5 km/h
9
 (0.42 m/s), walking at 50% of NC 

                                                 

9 
Available from: http://www.hocoma.com/stroke/. Accessed on 27/11/2012. 
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was specially arranged in the gait analysis experiment, which managed to generate 

walking performance at a speed of 0.43 m/s (see Table 3.4) 

The use of cadence control, which is a widely adopted method for gait analysis 

[239-241], was a good way to collect data in this project. The metronome helped the 

subjects walk at a constant speed during each trial. Subjects generated a constant 

movement pattern when walking at their preferred normal speed. They did not report 

any difficulty in following the metronome rhythm during slow walking.  

8.2. Computer Design of the GOER System  

The design process of the GOER system was achieved through computer simulation 

as documented in Chapters 4 and 5. Analysis of the foot trajectory during normal gait 

revealed a circular feature of the toe trajectory. Therefore computer models were 

developed to investigate kinematics and kinetics of supine stepping. The final 

structure of the GOER prototype was implemented as a bar-cam system. 

8.2.1. Circle approximation of the toe trajectory  

Analysis of overground walking at various speeds revealed that the foot trajectories 

relative to the hip joint centre were curved. It was hypothesized that the foot trajectories 

could be approximated by semi-circles. A least squares algorithm was developed, 

which managed to calculate the centre and the radius of the best-fit circles for the foot 

trajectories. This algorithm can be universally adopted to find the best-fit circle of any 

curved trajectory.  
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We focused on the novel approach of approximating the toe trajectory with a circle 

because: (i) there is a theoretical basis that walking is often described by a pendulum; 

(ii) the toe trajectory within the whole gait cycle is similarly curved; and (iii) the 

circle approximation provides a practical approach of producing the toe trajectory. 

Although the toe is on the ground during the stance phase, the toe trajectory relative to 

the hip joint is far from a straight line, as the hip joint centre moves like an inverted 

pendulum during the stance phase [235, 256]. Therefore it is feasible to simulate the 

toe trajectory relative to the hip in the stance phase using a pendulum or a circle. 

During the swing phase the toe lifts off the ground with a minimal distance of 5 cm 

[255] while the hip joint rises about 4 to 5 cm [256]. There is a limited change in the 

distance between the toe and the hip during the swing phase as well. These 

observations justify the approach in this work to approximate the toe trajectory over 

the whole gait cycle with a circle. The toe trajectory might be well-fit by a parabola or 

a complicated polynomial function, but we choose circle approximation because this 

method yields a small approximation error and more importantly, allows us to use a 

swaying rigid bar to generate the toe movement.  

The circle successfully models the toe trajectories during locomotion at variable 

speeds, with negligible variations in the circle setup. As data from only three subjects 

walking at three different speeds were used to develop the circle approximation 

methodology, the circle configuration cannot be claimed to be general. However, after 

being tested using these data, we believe that the circular trajectory of the toe during 

the whole gait phase is a consequence of the inherent kinematics of human walking 

and should be broadly applicable. 
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8.2.2. Kinematic simulation of supine stepping 

The circle approximation concept for the toe trajectory provided the basis for 

development of a two-bar model to simulate walking in a supine position. One actuator 

was employed to move the rigid bar upwards and downwards to produce the toe 

trajectory while a second actuator was used to control ankle dorsiflexion and 

plantarflexion. The combined actuation managed to produce the target foot trajectory. 

Although three joints (hip, knee and ankle) are active during normal walking, we 

focused on this two-bar model, because two actuators are enough to produce the target 

leg motion. According to the end-effector control method [212], if the foot follows the 

target trajectory relative to the hip, the leg linkage can produce a synchronised 

walking pattern in the lower limbs. Therefore the two-bar model provided an efficient 

structure for supine stepping.  

The model simulated kinematics at various walking speeds, which were in good 

agreement with the experimental data. The kinematic simulation results demonstrated 

that it was feasible to approximate the toe trajectory with a semi-circle, thereby 

confirming the hypothesis of semi-circular foot trajectories. The experimental gait data 

on kinematic features of walking helped develop the model and are useful in 

confirming the accuracy of the two-bar model for supine stepping.  

The model results implied that the two-bar system was capable of inducing supine 

stepping, which met the first three target requirements of the GOER system. The 

two-bar model was validated using data from only three subjects walking at three 

different speeds. Due to the limited data, the model cannot be claimed to be general. 

However, we believe that the model has potential to simulate walking patterns for a 
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large population, since the model basis, i.e. circular toe trajectory, is an inherent 

feature of human walking. The methodology of the two-bar model was confirmed to 

have potential application in gait rehabilitation systems such as the GOER system.  

8.2.3. Kinetic analysis of supine stepping 

The fourth requirement of the GOER system was investigated by computer modelling 

of a leg-linkage model, which was capable of simulating stepping at various positions 

with different amplitudes of the ground reaction forces.  

In contrast to the kinematics of walking which are directly recorded from the gait 

experiment, the kinetic modelling used the estimated values of segment properties, 

including the moment of inertia and centre of mass, to calculate the joint moments. 

However, the estimation of segment properties does not influence the general patterns 

of moments, because the moment patterns are closely related to the ground reaction 

forces. The forces, which were directly recorded from the gait experiment, agree with 

the general description of ground reaction forces from the gait literature [243]. 

Therefore the moment patterns in this work were similar to the general patterns from 

the gait literature [243]. 

The kinetic model used the same data as in the experimental kinetic calculation to 

define the segment properties, such as the centre of mass and moment of inertia. The 

model was simulated using the experimental data, including the joint angle profiles 

and the ground reaction forces. The model reproduced the joint moments during 

upright walking. This confirmed the assumption of model segment properties and 

validated the accuracy of the leg-linkage model for kinetic analysis.  
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After the model with the same segment properties was rotated by 90
o
, it became a 

useful tool for investigation of the kinetics of supine stepping. It was observed that the 

position change from upright to supine altered the moment of the hip joint during 

locomotion. It was observed that a simplified ground reaction force reduced the 

moment at the ankle joint. The position change and a simplified application of load on 

the model for supine stepping resulted in different moment patterns in the lower limb. 

These simulation results highlighted the importance of a leg frame with a dynamic 

shoe platform in the GOER system.  

The observation of kinetic differences during supine stepping also provides important 

clinical guidelines for training programmes for patients, especially the strategies for 

training the muscles at the hip and ankle joints for patients on bed rest. 

8.2.4. Simulation of the bar-cam GOER system 

These computer modelling studies provided a useful basis for the conceptual design of 

the GOER system, as they allowed determination of the important structures and 

components including the bar-leg setup, the leg frame and proper mechanical force 

stimulation on the foot sole. In order to obtain a GOER system with efficient power 

transmission, a synthesis process was carried out for the design of a four-bar linkage 

and a cam-roller mechanism, which succeeded in generating target periodical 

movements of the driven bar and the foot using a constantly-rotating motor. Another 

advantage of using the bar-cam structure is that the cam limited the motion range, thus 

making the system safer for potential users, especially SCI patients. Employment of a 

counterweight reduced the power requirements of the bar-cam GOER system.  
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These simulation results confirmed the design process of the cam-bar mechanism and 

provided the basis for the prototype manufacture. The design techniques of the 

bar-cam mechanisms and the counterbalance concept were successfully applied in the 

GOER system and have potential application in general mechanical design.  

8.3. Evaluation of the GOER Prototype 

The performance of the GOER prototype was evaluated in able-bodied subjects, as 

shown in Chapters 6 and 7. Specific attention was paid to the joint angles and foot 

sole stimulation. 

8.3.1. Joint angles induced by the bar-cam system  

By controlling one electric motor, a combined motion in the bar linkage and the cam 

was achieved, which enabled the GOER prototype to produce supine stepping. 

Preliminary investigation of the passive leg movements in the users showed that the 

GOER prototype was capable of inducing coordinated leg motion in a supine position 

with ROMs of the leg joints similar to overground walking at normal speed. The GOER 

prototype was manufactured after analysis on the suitable materials. Based on the 

calculation of bending failure mode, the material of the driven bar was carefully 

selected to prevent elastic deformation. Furthermore, the test did not include a leg 

frame and the subjects were encouraged to support their leg weight voluntarily, 

therefore the load on the GOER prototype was fairly small. The driven bar did not 

show elastic deformation during the tests.  

These experimental results confirmed the efficacy of the model development of the 
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GOER system in computer simulation in Chapter 4 and 5, and demonstrated that the 

prototype met the first two requirements of the GOER system. Although the fixed foot 

path generated by the bar-cam mechanism kinematically limited ROMs in the hip, knee 

and ankle joints, different stepping speeds were produced in the GOER prototype by 

changing the rotation speed of the motor. The third requirement of the GOER system, 

i.e. different training modalities such as adaptable ROMs of the lower limb joints, can 

be achieved by further investigation of new actuation concepts, where linear actuators 

serve as a potential solution. 

8.3.2. Foot sole stimulation induced by the shoe platform  

A pneumatic shoe platform was developed to apply forces on the foot sole with users in 

a supine position for simulation of the ground reaction forces. Preliminary tests results 

in Chapter 7 showed that the shoe platform managed to apply cyclic mechanical forces 

with adjustable amplitudes on the foot sole, and produced walking-like sensation (force 

timing) in able-bodied subjects with physiological responses from the lower leg 

muscles. The force profile can be further improved by adopting more cylinders, so that 

different forces can be applied on different areas of the foot sole, so as to mimic the 

load as seen in the gait cycle. The shoe platform should incorporate force sensors to 

record interaction forces between the shoe platform and the foot sole, thereby 

providing feedback for the force control.  

The mechanical pressure deformed the soft tissues on the foot sole, which resulted in 

loading (pressure) that was sensed by the subjects. Although the actual force applied 

on the foot sole was not measured, the maximum force that can be generated by the 

cylinder is 280 N. This force amplitude corresponds to approximately 30% to 60% of 
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the body weight of the subjects tested. We believe the system is safe for load 

application to the foot when constrained by Velcro strapping.  

The shoe platform met the design target and is a useful tool for application of 

mechanical stimulation on the foot soles. It can be incorporated in the GOER prototype 

to fulfill the fourth requirement of load stimulation. 

8.4. Overall Evaluation of the GOER System 

There are currently several rehabilitation devices focusing on lower-limb training 

which do not require the user to be in an upright position, including recumbent tricycles 

[220], the MotionMaker [221],  the MoreGait system [222] and the commercially 

available Erigo device [219]. However, none of these devices can produce coordinated 

walking-like movement in the lower limbs. Furthermore, the first two devices have no 

dynamic loading on the foot sole. The Erigo implements force on the foot sole via 

gravity, but the force patterns are different from walking. The MoreGait system 

provides walking-like stimulation on the foot sole, but like many other rehabilitation 

devices such as the Lokomat, the ankle joint is not actuated in the way required during 

walking.  

Stepping of the lower limbs in a walking manner is therefore a key novel feature of the 

GOER system and is believed to promote recovery of locomotion by inducing 

proprioceptive feedback from the leg joints [65]. Cyclic mechanical stimulation on the 

foot sole with cutaneous sensation similar to walking, as demonstrated by the shoe 

platform of the GOER prototype, is considered to promote the integrated functions of 

the neuromuscular and musculoskeletal systems [1]. The GOER system, which 
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combines coordinated walking-like supine stepping in the lower limbs with 

synchronised cyclic force stimulation on the foot sole, has been demonstrated to be a 

technically promising system for rehabilitation of walking for users who are restricted 

to a supine position, and it provides functionality not available in current rehabilitation 

devices.   
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Chapter 9. Conclusions 

With an activated ankle joint, the GOER system was developed, which allows users to 

practice walking in a supine position with synchronised mechanical stimulation on the 

foot sole for ground force simulation. 

Analysis of overground walking at various speeds revealed that the foot trajectories 

relative to the hip joint centre were curved, which inspired approximation of the foot 

trajectories by a circle via least squares optimisation. The ankle and the heel move in 

circular paths in the stance phase, which agrees with the pendulum concept of 

locomotion described in [246, 247]. Furthermore, a novel demonstration was that the 

toe trajectory relative to the hip joint centre followed a circular path in the whole gait 

cycle. This observation justified simulation of the toe motion over the whole gait cycle 

using a rigid bar, which provided a new approach for the design of gait robots.  

Based on the circle-approximation of the toe trajectory, a computer model of a 

two-bar mechanical system was developed, which produced supine stepping at 

various speeds. Kinetic analysis on a leg linkage model revealed that a leg frame was 

required to compensate the position change during supine stepping and a dynamic 

shoe platform was indispensable for simulation of ground reaction forces.  

With information on mechanical design obtained from computer modelling, a bar-cam 

GOER prototype was manufactured with a pneumatic shoe platform. The GOER 

prototype induced synchronised motion in the hip, knee and ankle joints in three 

able-bodied subjects, which was similar to overground walking. The dynamic shoe 

platform produced walking-like sensation on the foot sole and physiological responses



Chapter 9                           Conclusions                             304 

 

 

from the leg muscles in ten able-bodied subjects. Therefore the GOER prototype was 

proven to be technically feasible for supine stepping.  

In conclusion, we have developed the GOER system which combines coordinated 

walking-like supine stepping in the lower limbs with synchronised force stimulation 

on the foot sole. This research demonstrated technical feasibility of the GOER system. 

It is a promising device for early rehabilitation of walking. 
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Chapter 10. Future Work 

Summary: Future development of the GOER system is discussed based on the design of 

and experimental evaluation of the GOER prototype. A gait analysis experiment 

recruiting more subjects walking at a new speed range is desirable so as to further 

validate the circle-fit approximation algorithm and generalise the target performance 

of the GOER system. Manufacture of the second leg for the GOER prototype and 

employment of a powerful electric motor are required so as to investigate coordinated 

movement of two legs with synchronised mechanical stimulation of the foot soles. An 

improved GOER system with new actuation concepts has been proposed to obtain a 

multifunctional mechanism. Potential employment of sensory electrical stimulation is 

discussed. Moreover, some recommendations are given for improvement of the 

dynamic shoe platform. With these modifications and the evaluation, the GOER 

system can be further developed to produce adaptable stepping in various positions 

with synchronised loading on the lower limbs for patients who cannot maintain an 

upright position. 

10.1.  Gait Analysis Experiment 

Upright walking is a challenging task which involves sensing the dynamic ground 

reaction forces on the foot soles for maintenance of balance and synchronising 

complex intersegmental motion of the lower limbs for forward progression [300]. A 

gait analysis experiment was performed in three able-bodied subjects to record the 

kinematic and kinetic features of overground walking in three able-bodied subjects. A 

further gait analysis experiment is desirable with more subjects. Foot trajectories, 

especially the toe trajectory from a large subject group with different leg lengths, 

should be investigated so as to obtain general results for the best-fit circle: the circle
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configuration (the circle centre and radius) as a function of the leg length. Under these 

circumstances, applicability of the two-bar GOER model can be generalised. 

Walking parameters such as the step lengths, ranges of motion (ROMs) of the lower 

limb joints and intersegmental dynamics vary according to the speed. Therefore future 

gait experiments should also investigate walking performance at various speeds. Most 

patients cannot perform training of high intensity due to their physical weakness. 

Therefore slow walking is of great interest in designing robotic rehabilitation devices. 

However, the speed of walking during the experiment should not be as slow as 50% 

of normal cadence (NC). The human performs overground locomotion at normal 

speed subconsciously, resulting in a walking pattern at 100% of NC with high 

consistency and reproducibility (see Figures 3.3 and 3.6). However, the performance 

variance increases when the speed reduces. This is because the human produces 

conscious voluntary input to purposely reduce the speed and this voluntary input has 

intra- and inter-individual variability. Therefore the gait experiment described in 

Chapter 3 showed that walking at 50% of NC, which is equivalent to only one third of 

normal walking speed (see Table 3.4), had high variability (see Figures 3.5 and 3.8). 

Based on the relatively low variance observed at 75% of NC, the speed range for 

further gait experiments is suggested to be between 75-100% of NC. Slow walking 

can be guided by an electronic metronome, and the speed can be reduced by 10 or 20 

steps/min for each session, such as in the study [243]. Then the changing trend of 

walking performance within the speed range of 75-100% of NC will be obtained and 

can be used to predict walking patterns at an even slower speed. Regression analysis 

serves as a good method for prediction, judging by its successful application in 

predicting walking performance in children who have different normal walking 

speeds [236].  
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10.2.  The Bar-cam GOER Prototype for the Other Leg  

The current GOER prototype allowed preliminary evaluation of the performance of 

one leg only. However, the whole bar-cam GOER system for two legs needs to be 

manufactured for extensive functional investigation. The combination of the bar and 

cam mechanisms in the GOER prototype managed to generate target motion in the 

lower limb, which confirmed the accuracy of the design process and provided the 

basis for the manufacture of the robotic system for the other leg. The relevant systems 

for the other leg, such as the driven bar, shoe platform and bar-cam mechanism, are of 

the same specification documented in Chapter 5. 

This bar-cam setup reduces the complexity of motor control, because movement 

synchronisation of the hip, knee and ankle joints is achieved through the mechanical 

systems of the bar linkage and the cam mechanism, which are driven by a 

constantly-rotating motor. The potential bar-cam system for the other leg can be 

driven by the same electric motor, as long as the motor is powerful enough to move 

two legs. However, the selection of materials requires further investigation. The 

plastic cam was observed to wear down gradually during the experimental evaluation 

of the prototype. Therefore the cam should be manufactured with a strong but light 

material, such as aluminium alloy, to rotate the highly-loaded foot via the shoe 

platform. Furthermore, subjects reported the pelvis was not comfortable at hip 

extension during the preliminary test of the GOER prototype (see Chapter 6). 

Therefore a soft and rotatable pelvic support is desirable to allow clinical application.  

Driven by a powerful motor unit, the updated GOER prototype would allow 

attachment of the leg frames and the shoe platforms for both legs. This provides the 
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opportunity to evaluate supine stepping with synchronised mechanical stimulation on 

the foot sole when the users are supported in a comfortable position.  

10.3.  Investigation of New Actuation Concepts  

By employing only one constantly-rotating electric motor, the bar-cam GOER 

prototype described in Chapter 6 reduced the complexity of the movement control 

strategies. The disadvantage of the prototype is that the fixed foot path limits the 

adaptability of the stepping pattern, i.e. the step length and ROMs of the lower limb 

joints cannot change according to the stepping speed. Although intensive repeatable 

movements are essential for recovery, training with a small degree of kinematic 

variability in different modalities might be necessary to prevent training habituation to 

a fixed locomotor performance [211, 266]. Therefore, alternative actuation concepts 

should be investigated to increase the potential for clinical application.  

Linear actuators, as shown in Figure 5.3(a), serve as good options to produce 

adaptable kinematics of the lower limbs. Continuous walking at various speeds with 

adjustable ROMs can be achieved by changing the stroke length of the linear 

actuators. Furthermore, an additional linear actuator can be adopted to change the bed 

position as in adjustable tilt tables, so that different training positions can be achieved.  

A linearly-actuated GOER system could produce adaptable stepping with various 

training positions, which could serve as a device to progress patients from supine to 

upright walking training. 
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10.4.  Electrical Stimulation for Sensory Feedback 

Electrical stimulation can be implemented in the GOER system. Functional electrical 

stimulation (FES) is a widely used modality for muscle training [301] and movement 

control of weak or paralysed limbs [220]. FES has been applied on the muscles around 

the ankle joint to assist ankle rotation during upright walking [168]. Apart from 

providing additional power for walking, FES trains the muscles in the way required 

during overground walking, which is believed to promote walking restoration [180]. 

However, FES was not adopted to move the leg in the GOER system, because the 

required torque profile to move the leg in the GOER system (Figure 5.1(b)) is 

different from the torque in the ankle joint during overground walking (Figure 3.10), 

especially during the swing phase. Overground walking requires low torque to 

dorsiflex the foot for toe clearance, while supine stepping requires plantarflexion 

torque to prevent hyperflexion of the ankle joint (see Section 5.1.1). The use of FES 

to rotate the ankle in the GOER system might train the muscles in a way that is 

different from the normal performance during overground walking. 

Nevertheless, electrical stimulation can be employed in the GOER system to provide 

sensory feedback. Patients might perform passive training in the GOER system due to 

physical weakness in the early phase after injury. As visual and vestibular sensory 

organs do not provide feedback of stepping training, additional methods such as 

cutaneous and proprioceptive feedback should be exploited to indicate the leg motion. 

Sensory electrical stimulation can be employed in the GOER system by stimulating 

muscles which synchronise walking at different gait phases, thereby providing benefit. 

The application of electrical stimulation is of interest and requires further research. 
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10.5.  Improvement of the Dynamic Shoe Platform  

Ground reaction forces provide important information related to walking. A pneumatic 

shoe platform was designed in this PhD work to stimulate the foot sole for cutaneous 

feedback of walking. Evaluation of the shoe platform described in Chapter 7 revealed 

several issues for further research. 

The shoe platform adopted two one-way control valves to adjust the rising speed of 

the two pressure plates (one for the forefoot and one for the heel). Although 

walking-like sensations were induced in able-bodied subjects, the shoe platform 

requires two additional one-way control valves for regulation of the descending speed 

of the pressure plates. By reducing both the rising and descending speeds of the 

pressure plates, the final force patterns generated by the shoe platform will be close to 

the ground reaction forces as shown in Figure 5.18(b). The force profile can be further 

improved by adopting more cylinders, so that different forces can be applied on 

different areas of the foot sole, thereby mimicking the moving path of the centre of 

pressure on the foot sole (see Figure 5.18(a)). Proportional valves should be adopted 

to control the force amplitude and to coordinate the force with the leg motion. The 

shoe platform should incorporate force sensors to record interaction forces between the 

shoe platform and the foot sole, thereby providing feedback for the force control. 

After further development the shoe platform would finally be able to produce 

adaptable forces initially on the heel and lastly on the toe, which resemble the ground 

reaction forces occurring during overground walking.  

Research on active usage of the shoe platform is of great interest. Able-bodied 

subjects reported pressure on the foot sole when using the shoe platform in a relaxed 
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situation (see Chapter 7). It is believed that active resistance against the mechanical 

stimulation will transmit the load to the lower limb joints, resulting in a similar 

loading situation during the stance phase of overground walking. Last but not least, 

the updated shoe platform should be safe to use in patients. Muscle activity at different 

stimulation intensities, including different force amplitudes and force rising rates, 

should be investigated. The clinical response should be evaluated before it is 

incorporated in the GOER system. 

10.6.  Conclusions 

Further research will allow the GOER system to induce adaptable stepping patterns at 

various positions with increased functional potential, especially in clinical application. 

The GOER system will have wider applicability through an expanded target 

performance after a further gait analysis experiment. The GOER prototype with both 

legs will allow further functional evaluation. A new GOER system incorporating 

electrical stimulation will bring more training modalities and sensory feedback. With 

new actuation concepts and improved shoe platforms, the GOER system can 

eventually be developed to induce coordinated motion of both legs with adjustable 

stepping patterns and synchronised ground reaction forces for users in a supine 

position.  

Due to the close research collaboration with the Queen Elizabeth National Spinal 

Injuries Unit, the GOER system was initially intended to be designed for patients with 

spinal cord injury. However, it is believed that the improved GOER system is 

generally applicable to patients with a range of neurological impairments who undergo 

therapy for rehabilitation of walking.  
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Appendix 1: Model of a two-bar system 

 

Figure A. 1: Model of a two-bar system. 

All blocks use default units. The parameters of each block are as follows: 

Machine Environment: 

Gravity vector: [0 -9.81 0]; 

Ground:  

Location: [0, 0.98, 0]; 

Driven bar: 

Mass: 0.8; 

Inertia: [2.7e-5 0 0; 0 0.025 0; 0 0 0.4084]; 

CG: [0.44 0.32 0]; world; world; 

CG1: [0.44 0.32 0]; world; world; 

CG2: [0 0 0]; adjoining; adjoining; 
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Foot:  

Mass: 1.1; 

Inertia: [2.69e-3 0 0;0 2.69e-3 0;0 0 2.69e-3]; 

CG: [0 0 0]; CS3; CS3; 

CG1: [0 0 0]; CS2; CS2; 

CG2: [0 0 0]; adjoining; adjoining; 

CG3: [0.93 0.38 0]; world; world; 

CG4: [0.97 0.35 0]; world; world; 

CG5: [0.93 0.38 0]; world; world; 

Shank:  

Mass: 6.28; 

Inertia: [0.013 0 0; 0 0.14 0; 0 0 0.14]; 

CG: [0 0 0]; CS3; CS3; 

CG1: [0 0 0]; adjoining; adjoining; 

CG2: [0 0 0]; world; world; 

CG3: [0.46 0.22 0]; world; world; 

Thigh: 

Mass: 13.5; 

Inertia: [0.052 0 0; 0 0.338 0; 0 0 0.338]; 

CG: [0 0 0]; CS1; CS1; 

CG1: [0 0 0]; adjoining; adjoining; 

CG2: [0 0 0]; adjoining; adjoining; 

Hip support:  

Location: [0, 0, 0]; 

Angle 1: the solid curve in Figure 4.10 (a). 

Angle 2: the solid curve in Figure 4.10 (b). 
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Appendix 2: Model of a leg linkage 

 

Figure A. 2: Model of a leg linkage. 

All blocks use default units. The parameters of each block are as follows: 

Machine Environment: 

Gravity vector: [0 -9.81 0]; 

Ground:  

Location: [0, 0, 0]; 

Force plate 

Mass: 0.1; 

Inertia: [2.69e-3 0 0; 0 2.69e-3 0; 0 0 2.69e-3]; 
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CG: [0 0 0]; adjoining; adjoining; 

CG1: [0 0 0]; CG; CG; 

CG2: [0 0 0]; CG; CG; 

Foot:  

Mass: 1.1; 

Inertia: [2.69e-3 0 0; 0 2.69e-3 0; 0 0 2.69e-3]; 

CG: [0 0 0]; CS3; CS3; 

CG1: [0 0 0]; CS2; CS2; 

CG2: [0.237 -0424 0]; world; world; 

Shank:  

Mass: 6.28; 

Inertia: [0.013 0 0; 0 0.14 0; 0 0 0.14]; 

CG: [0 0 0]; CS3; CS3; 

CG1: [0 0 0]; adjoining; adjoining; 

CG2: [0.237 -0424 0]; world; world; 

Thigh: 

Mass: 13.5; 

Inertia: [0.052 0 0; 0 0.338 0; 0 0 0.338]; 

CG: [0 0 0]; CS1; CS1; 

CG1: [0 0 0]; adjoining; adjoining; 

CG2: [0 0 0]; adjoining; adjoining; 

Base: Location: [0, 0, 0]; 

Hip angle: the solid curve in the upper plot in Figure 3.4; 

Knee angle: the solid curve in the middle plot in Figure 3.4; 

Ankle angle: the solid curve in the bottom plot in Figure 3.4. 
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Appendix 3: The two-bar model for power analysis 

 

Figure A. 3: The model for torque and power simulation. 

All blocks use default units. The parameters of each block are as follows: 

Machine Environment: 

Gravity vector: [0 -9.81 0]; 

Ground:  

Location: [0, 0.98, 0]; 

Driven bar: 

Mass: 2; 

Inertia: [2.7e-5 0 0; 0 0.025 0; 0 0 0.4084]; 

CG: [0.44 0.32 0]; world; world; 

CG1: [0.44 0.32 0]; world; world; 

CG2: [0 0 0]; adjoining; adjoining; 
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Foot:  

Mass: 1.1; 

Inertia: [2.69e-3 0 0; 0 2.69e-3 0; 0 0 2.69e-3]; 

CG: [0 0 0]; CS3; CS3; 

CG1: [0 0 0]; CS2; CS2; 

CG2: [0 0 0]; adjoining; adjoining; 

CG3: [0.93 0.38 0]; world; world; 

CG4: [0.97 0.35 0]; world; world; 

CG5: [0.93 0.38 0]; world; world; 

Shank:  

Mass: 6.28; 

Inertia: [0.013 0 0; 0 0.14 0; 0 0 0.14]; 

CG: [0 0 0]; CS3; CS3; 

CG1: [0 0 0]; adjoining; adjoining; 

CG2: [0 0 0]; world; world; 

CG3: [0.46 0.22 0]; world; world; 

Thigh: 

Mass: 13.5; 

Inertia: [0.052 0 0; 0 0.338 0; 0 0 0.338]; 

CG: [0 0 0]; CS1; CS1; 

CG1: [0 0 0]; adjoining; adjoining; 

CG2: [0 0 0]; adjoining; adjoining; 

Hip support: Location: [0, 0, 0]; 

Angle 1: the solid curve in Figure 4.9(a);  

Angle 2: the solid curve in Figure 4.9(b). 
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Appendix 4: The cam-roller assembly 

 

 

Figure A. 4: The cam-roller mechanism. 
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Appendix 5: The model of the bar-cam GOER system  

 

Figure A. 5: The model of the bar-cam GOER system. 

All blocks use default units. The parameters of each block are as follows: 

Machine Environment: 

Gravity vector: [0 -9.81 0]; 

Position of driven bar: 

Location: [0, 0, 0]; 

Driven bar: 

Mass: 2; 

Inertia: [2.7e-5 0 0; 0 0.025 0; 0 0 0.4084]; 

CG: [0.44 0.32 0]; world; world; 
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CG1: [0.44 0.32 0]; world; world; 

CG2: [0 0 0]; adjoining; adjoining; 

Connecting bar:  

Mass: 1.6; 

Inertia: [2.16e-3 0 0;0 2.16e-3 0;0 0 6.69e-4]; 

CG: [0 0 0]; CS3; CS3; 

CG1: [0 0 0]; CS2; CS2; 

CG2: [0.003 0.4 0]; world; world; 

CG3: [-0.34 -0.2732 0]; world; world; 

Crank:  

Mass: 0.6; 

Inertia: [1.96e-3 0 0; 0 1.96e-3 0; 0 0 3.07e-4]; 

CG: [0 0 0]; CS3; CS3; 

CG1: [0 0 0]; CS2; CS2; 

CG2: [0.003 0.4 0]; world; world; 

CG3: [-0.926 -0.522 0]; world; world; 

Ground:  

Location: [0.926 -0.522 0]; 

Follower:  

Mass: 0.7; 

Inertia: [6.9e-5 0 0; 0 1.4e-3 0; 0 0 3.69e-3]; 

CG1: [0.06 0.18 0]; adjoining; adjoining; 

CG2: [0.27 0.35 0]; CG1; CG1; 

Foot:  

Mass: 1.1; 

Inertia: [2.69e-3 0 0; 0 2.69e-3 0; 0 0 2.69e-3]; 
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CG: [0 0 0]; CS3; CS3; 

CG1: [0 0 0]; CS2; CS2; 

CG2: [0 0 0]; adjoining; adjoining; 

CG3: [0.93 0.38 0]; world; world; 

CG4: [0.97 0.35 0]; world; world; 

CG5: [0.93 0.38 0]; world; world; 

Shank:  

Mass: 6.28; 

Inertia: [0.013 0 0; 0 0.14 0; 0 0 0.14]; 

CG: [0 0 0]; CS3; CS3; 

CG1: [0 0 0]; adjoining; adjoining; 

CG2: [0 0 0]; world; world; 

CG3: [0.46 0.22 0]; world; world; 

Thigh: 

Mass: 13.5; 

Inertia: [0.052 0 0; 0 0.338 0; 0 0 0.338]; 

CG: [0 0 0]; CS1; CS1; 

CG1: [0 0 0]; adjoining; adjoining; 

CG2: [0 0 0]; adjoining; adjoining; 

Hip support:  

Location: [0, 0, 0]; 

Cam fixing point: 

X, Y component: see Figure 5.13; 

Constant rotation: 50 rpm. 
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Appendix 6: The CAD drawings of the driven bar and leg frame 

The driven bar is designed with one tube (Figure A. 6) inside the other tube (Figure A. 

7), which achieves an adjustable total length of the driven bar.  

 
Figure A. 6: The inner tube of the driven bar. 

 

Figure A. 7: The outer tube of the driven bar. 
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The leg frame is made of a thigh and a shank frame. Similar to the driven bar, both the 

thigh and shank frames have one tube inside the other, resulting in a leg frame with an 

adjustable length. Furthermore, the thigh and the calf supports are designed as well. 

 

Figure A. 8: The inner tube of the thigh frame. 

 

Figure A. 9: The outer tube of the thigh frame. 
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Figure A. 10: The inner tube of the shank frame. 

 

Figure A. 11: The outer tube of the shank frame. 
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Figure A. 12: The thigh support. 

 

Figure A. 13: The calf support. 
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Appendix 7: The model of the bar-cam GOER system with a 

counterweight 

 

Figure A. 14: Model of the bar-cam GOER system with a counterweight. 

All blocks use default units. The parameters of each block are as follows: 

Machine Environment: 

Gravity vector: [0 -9.81 0]; 

Position of driven bar: 

Location: [0, 0, 0]; 

Driven bar: 

Mass: 2; 

Inertia: [2.7e-5 0 0; 0 0.025 0; 0 0 0.4084]; 
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CG: [0.44 0.32 0]; world; world; 

CG1: [0.44 0.32 0]; world; world; 

CG2: [0 0 0]; adjoining; adjoining; 

Counterweight: 

Mass: 29.3; 

Inertia: [7.2e-3 0 0; 0 7.2e-3 0; 0 0 0.4084]; 

CG: [0.5 0 0]; adjoining; adjoining; 

CG1: [0.74 1.72 0]; world; world; 

CG2: [0 0 0]; adjoining; adjoining; 

Connecting bar:  

Mass: 1.6; 

Inertia: [2.16e-3 0 0; 0 2.16e-3 0; 0 0 6.69e-4]; 

CG: [0 0 0]; CS3; CS3; 

CG1: [0 0 0]; CS2; CS2; 

CG2: [0.003 0.4 0]; world; world; 

CG3: [-0.34 -0.2732 0]; world; world; 

Crank:  

Mass: 0.6; 

Inertia: [1.96e-3 0 0;0 1.96e-3 0;0 0 3.07e-4]; 

CG: [0 0 0]; CS3; CS3; 

CG1: [0 0 0]; CS2; CS2; 

CG2: [0.003 0.4 0]; world; world; 

CG3: [-0.926 -0.522 0]; world; world; 

Ground:  

Location: [0.926, -0.522, 0]; 

Follower:  
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Mass: 0.7; 

Inertia: [6.9e-5 0 0; 0 1.4e-3 0; 0 0 3.69e-3]; 

CG1: [0.06 0.18 0]; adjoining; adjoining; 

CG2: [0.27 0.35 0]; CG1; CG1; 

Foot:  

Mass: 1.1; 

Inertia: [2.69e-3 0 0;0 2.69e-3 0;0 0 2.69e-3]; 

CG: [0 0 0]; CS3; CS3; 

CG1: [0 0 0]; CS2; CS2; 

CG2: [0 0 0]; adjoining; adjoining; 

CG3: [0.93 0.38 0]; world; world; 

CG4: [0.97 0.35 0]; world; world; 

CG5: [0.93 0.38 0]; world; world; 

Shank:  

Mass: 6.28; 

Inertia: [0.013 0 0; 0 0.14 0; 0 0 0.14]; 

CG: [0 0 0]; CS3; CS3; 

CG1: [0 0 0]; adjoining; adjoining; 

CG2: [0 0 0]; world; world; 

CG3: [0.46 0.22 0]; world; world; 

Thigh: 

Mass: 13.5; 

Inertia: [0.052 0 0; 0 0.338 0; 0 0 0.338]; 

CG: [0 0 0]; CS1; CS1; 

CG1: [0 0 0]; adjoining; adjoining; 

CG2: [0 0 0]; adjoining; adjoining; 
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Hip support:  

Location: [0, 0, 0]; 

Cam fixing point: 

X, Y component: see Figure 5.13. 

Constant rotation: 50 rpm. 
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Appendix 8: The CAD presentation of the motor and gearbox 

 

Figure A. 15: CAD presentation of the Maxon motor EC 45. 

 

Figure A. 16: CAD presentation of the Maxon planetary gearhead GP 62. 
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Table. A 1: Motor specifications (Maxon EC 45). 

Assigned power rating W 250 

Nominal voltage V 48 

No load speed rpm 6500 

Stall torque mNm 3250 

Max. continuous torque at 5000rpm mNm 306 

Speed / torque gradient rpm / mNm 2.00 

No load current mA 290 

Starting current A 47.7 

Terminal resistance Ohm 1.04 

Max. permissible speed rpm 12000 

Nominal current (max. continuous current) A 4.82 

Max. efficiency % 84.9 

Torque constant mNm / A 71.0 

Speed constant rpm / V 135 

Rotor inertia gcm² 209 

Motor length mm 144 

Mass g 1150 
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Table. A 2: Gearbox specifications (Maxon planetary gearhead GP 62). 

Reduction  236:1 

No. of stages  3 

Max. continuous torque Nm 50 

Intermittently permissible torque at gear output Nm 75 

Sense of rotation, drive to output  2 

Maximal efficiency % 70 

Average backlash no load degree 2 

Mass inertia gcm² 0.09 

Gearhead length L1 mm 104.2 

Mass g 1540 

Max. motor shaft diameter mm 8 
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Appendix 9: The CAD drawings for the shoe elements 

The shoe is made of two sets of foot-pressure plates: one set for the heel (Figures A.17 

and A.19) and the other set for the forefoot (Figures A.18 and A.20). The two foot 

plates are connected with nuts, resulting in a flexible foot length. The two pressure 

plates are independent of the foot plates, which allows free upward and downward 

movement for mechanical stimulation. As the shoe platform is designed for users in a 

supine position, a foot stop (Figure A. 21) is designed and mounted behind the ankle 

joint to prevent the foot from falling off the shoes. The shoe platform connects to the 

driven bar through the toe connection (Figure A. 22) and connects to the leg frame 

through the ankle connection (Figure A. 23). 

 

Figure A. 17: Foot plate for the heel. 
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Figure A. 18: Foot plate for the forefoot. 
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Figure A. 19: Pressure plate for the heel. 
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Figure A. 20: Pressure plate for the forefoot. 
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Figure A. 21: Foot stop. 

 

Figure A. 22: Toe connection. 
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Figure A. 23: Ankle connection. 
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Appendix 10: The controller electronics 

 

Figure A. 24: The controller electronics. 
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Appendix 11: Failure mode analysis 

Table. A 3: Failure mode analysis. 

Mode of 

Failure 

Cause of 

Failure 

Effect of 

Failure 

Frequency 

of 

Occurrence 

(1-10) 

Degree of 

Severity 

(1-10) 

Detectio-

n Rating 

(1-10) 

Risk Priority 

(1-1000) 

Recommended 

Actions 

Mechani

cal 

failure 

Bar linkage 

deformation 

Subject's 

leg 

falling 

down 

1 5 2 10 

Manufacture a 

strong 

bar-linkage. 

Velcro 

becoming 

loose 

Unnatur-

al leg 

motion 

6 1 1 6 

Use several 

Velcro straps 

side by side. 

Cam 

deformation 

Unnatur-

al ankle 

rotation 

2 4 2 16 

Make the cam 

as strong as 

possible. 

Electrical 

failure 

DC motor 

breakdown 

The 

whole 

system 

fails 

3 9 1 27 

Before any test, 

double check 

the 

performance of 

the DC motor. 

During the test, 

follow the user 

manuals. 

Controller 

breakdown 

The 

whole 

system 

fails 

2 8 1 16 

Before any test, 

double check 

the 

performance of 

the DC motor. 

During the test, 

follow the user 

manuals. 
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Appendix 12: Question sheet 

Question Sheet 

 

Title of Project:  

Simulation of Coordinated Movements of Lower Limbs on People in a 

Supine Posture with GOER system 

Name of Researcher:  Juan Fang 

Volunteer:                                                                       

Date: 

Researchers will ask the questions below so as to collect feedbacks from the volunteer. 

1. How much is the movement of the leg similar to walking? Please tick the scale. 

 

2. Please tick any part which you feel uncomfortable during the test. 

 

 

3. Please give any other comments on this device.  
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Appendix 13: Feedback from the subjects 

13.1: Feedback from S1 
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13.2: Feedback from S2 
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13.3: Feedback from S3 
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Appendix 14: Question sheet 

Question Sheet 

 

Title of Project:  

Simulation of Ground Reaction Force and Testing of Its Biological Effects 

on People in a Supine Posture 

Name of Researcher:  Juan Fang 

Subject:                                                                       

Date: 

Researchers will ask the questions below so as to collect feedback from the subject. 

1. Are the positions of the pressure and force timing (between heel and forefoot) similar 

to those during overground walking?  

A: both very different;   B: timing is similar but not the location;            

C: the location is similar but not timing;      D. both very similar. 

2. Is your walking-like experience (speed of force) comparable on the heel and on the 

foot sole? 

A. comparable;                     B. better on heel then on the forefoot;  

C. better the forefoot than on the heel;   D: neither is comparable. 

3. Do you feel comfortable with the dynamic force application? 

  A. uncomfortable;     B.neutral;      C. comfortable.                            

4. In case you didn’t have a walking-like feeling on your foot sole please describe the 

main reason for this. 

5. Choose the word that best describes your sensation during mechanical force 

stimulation. 

A. Walking;  B. Pressing;  C. Punching;  D. Jumping ; E. None of these. 
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Appendix 15: Feedback from the subjects 

15.1: Feedback from S1 
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15.2: Feedback from S2 
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15.3: Feedback from S3 
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15.4: Feedback from S4 

 

 

 

  



Appendices                             351 

 

 

15.5: Feedback from S5 
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15.6: Feedback from S6 
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15.7: Feedback from S7 
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15.8: Feedback from S8 
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15.9: Feedback from S9 
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15.10: Feedback from S10 
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