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Abstract 

Many chemically important nuclei are quadrupolar with half-integer spin 

(i.e., spin I  =  32, 52, etc.) The presence of quadrupolar broadening for such 

nuclei can limit the information that may be extracted using NMR. MAS is able 

to remove first-order quadrupolar broadening but can only reduce the second-

order contribution to the linewidth. The MQMAS and STMAS techniques have 

enabled high-resolution NMR spectra of half-integer quadrupolar nuclei in the 

solid state to be obtained by two-dimensional correlation under MAS 

conditions. Both of these experiments have several well-known limitations. One 

is that the conversion pulses in particular are very inefficient and the other is 

that the longer acquisition times required for two-dimensional experiments can 

be a limiting factor. Both of these disadvantages are addressed in this thesis.  

For the former case, existing composite pulse schemes designed to 

improve the efficiency of the conversion of multiple-quantum coherences are 

compared using 27Al and 87Rb MQMAS NMR of a series of crystalline and 

amorphous materials. In the latter case, a new experiment, named STARTMAS, 

is introduced that enables isotropic spectra of spin I  =  32 nuclei to be obtained 

in real time. The theoretical basis of the technique is explained and its 

applicability demonstrated using 23Na and 87Rb NMR of a wide range of solids. 

The nuclear Overhauser effect (NOE) is one of the most widely exploited 

phenomena in NMR and is now widely used for molecular structure 

determination in solution. NOEs in the solid state are rare and those to 

quadrupolar nuclei rarer still, this being due to the general absence of motion 

on the correct timescale and the usual efficiency of quadrupolar T1 relaxation, 

respectively. In this thesis, 11B{1H} transient NOE results are presented for a 

range of solid borane adducts. A comparison is made of the 11B NMR 

enhancements observed under MAS and static conditions and a rationale is 

proposed for the behaviour in the latter case. 
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Chapter 1 

Introduction 

1.1 Thesis Overview 

Since the first measurement of nuclear magnetic moments in 1938 [1, 2] 

and the subsequent first demonstration in the bulk phase [3–6], where the 1H 

spectra of solid paraffin [3] and water [6] were acquired, nuclear magnetic 

resonance (NMR) has become one of the most widely used techniques for 

determining structure and observing dynamics. Virtually all elements in the 

Periodic Table possess nuclides that are accessible to NMR and, in addition, it 

can be used for solving a wide range of chemical problems prevalent in the 

three principal phases of matter. In the liquid state, the presence of rapid 

molecular motion typically leads to spectra featuring narrow, well-resolved 

lineshapes. The narrowness of these lineshapes is the result of the motional 

averaging of mechanisms that may be a source of line broadening, such as 

dipolar coupling and chemical shift anisotropy (CSA) [7]. The general absence 

of such motion in the solid state typically leads to anisotropically broadened 

lineshapes that are several orders of magnitude broader than their solution-

state counterparts. The existence of broadenings resulting from several 

mechanisms thus leads to broad, poorly-resolved lineshapes in solid-state NMR 

spectra. Such lineshapes are, however, a consequence of an abundance of 
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information rather than a lack of it. Consequently, the development of methods 

in solid-state NMR has focussed on ways of obtaining high-resolution isotropic 

spectra in which all anisotropic line broadening has been removed. 

The first technique devised to remove anisotropic line broadenings was 

magic angle spinning (MAS) in 1958 [8–10], in the first example of which line 

narrowing was observed in the 23Na NMR spectrum of a single crystal of 

sodium chloride [8]. In MAS, the sample is spun in a rotor inclined at an angle 

of 54.74 with respect to the applied magnetic field, B0. This introduces a time 

dependence to the anisotropic interactions that mimics the effects of the motion 

observed in liquids. MAS is able to removing broadenings resulting from 

heteronuclear dipolar couplings and CSA. Similar success is not seen for the 

case of homonuclear dipolar couplings, however. This has posed particular 

problems for the case of homonuclear dipolar couplings involving 1H and 19F 

nuclei, which commonly have a magnitude in excess of 30 kHz. The different 

capabilities of MAS when removing line broadenings arise because interactions 

such as CSA and heteronuclear dipolar coupling are "inhomogeneous" 

interactions [11], whilst homonuclear dipolar coupling is a "homogeneous" 

interaction [11]. This distinction may be explained as follows: for 

inhomogeneous interactions such as heteronuclear dipolar coupling, the 

Hamiltonian describing the coupling between a particular pair of spins 

commutes with that describing the coupling between a different pair. In the 

case of homogeneous interactions, this commutation relation does not hold. 

The inability of MAS to remove large homonuclear dipolar couplings led 
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to the development of the Lee-Goldburg experiment [12] in which the spins are 

irradiated by a radiofrequency field inclined at the magic angle in the rotating 

frame. This has the effect of averaging the homonuclear dipolar interaction, to a 

first-order approximation, to zero. The heteronuclear dipolar coupling and CSA 

are scaled by this experiment. In 1968, Waugh and co-workers devised a 

multiple-pulse method that averages the homonuclear dipolar coupling, to a 

second-order approximation, to zero [13, 14]. This experiment, referred to as 

WAHUHA, consists of repeated cycles of four on-resonance 90 pulses, with 

relative phases of +x, +y, x and y in the rotating frame. A vast array of 

multiple-pulse methods have since been developed and a combination of these 

with MAS, in a technique known as combined rotation and multiple-pulse 

sequence (CRAMPS) [15], has enabled high-resolution 1H [16] and 19F [15] 

spectra to be obtained. 

In 1972 it was shown that the signal from a dilute spin such as 13C may be 

enhanced by cross polarisation (CP) from an abundant spin such as 1H [17, 18]. 

CP NMR has since been widely used under both static [17, 19] and MAS 

conditions [20–23]. The combination of MAS and proton decoupling [24, 25] to 

remove broadening due to 1H-13C heteronuclear dipolar couplings, with cross 

polarisation, has greatly facilitated the acquisition of high-resolution 13C spectra 

at natural abundance. Whilst cross-polarisation was developed initially to 

enhance the signal of dilute spin I  =  12 nuclei, the technique has now been 

applied to a variety of quadrupolar nuclei [26, 27], such as 11B [28], 17O [29, 30], 

23Na [31, 32], 27Al [33], 43Ca [34] and 95Mo [35], although the variation in 
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nutation frequency observed for the range of crystallite orientations present in a 

powder means that the resultant lineshapes are often very distorted [33, 36]. 

The methods described above have all been devised to narrow spectral 

lines of spin I  =  12 nuclei. For many elements, the only NMR-accessible nuclei 

are quadrupolar, i.e., they have a spin quantum number I  >  12. Common 

examples are oxygen (17O is spin I  =  52), sodium (23Na is spin I  =  32) and 

aluminium (27Al is spin I  =  52), with all of these elements being prevalent 

amongst a wide range of inorganic materials and oxygen being present 

amongst an even greater range of compounds. The success of MAS as a line-

narrowing method for spin I  =  12 nuclei [37] led to its application to half-

integer quadrupolar nuclei (those with I  =  n2, where n can take odd-integer 

values greater than 1). The inability of MAS to remove, to a second-order 

approximation, line broadening due to the quadrupolar interaction [38, 39] 

means that the resultant spectra still possess significant residual second-order 

quadrupolar broadening of the central transition. In the cases where there are 

several crystallographically inequivalent sites present and/or where the 

quadrupolar interaction is large, the resolution and signal intensity observed 

under MAS can be very poor. 

In 1988, a study by Llor and Virlet of the effect of sample spinning with a 

time-dependent spinning angle led to the development of two methods that 

achieve complete removal of second-order quadrupolar broadening [40]. These 

techniques, known as double rotation (DOR) [41, 42] and dynamic angle 

spinning (DAS) [43–45], involve spinning the sample about two angles either 
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simultaneously (DOR) or sequentially (DAS). DOR is a one-dimensional 

experiment and so has the advantage over DAS (a two-dimensional 

experiment) that isotropic spectra may be obtained in a much shorter 

acquisition time, although the resultant spectra possess an abundance of 

spinning sidebands as a consequence of the slow spinning speed of the outer 

rotor. Both experiments have significant limitations. The requirement for 

specialist hardware and the technical demands of both techniques has meant 

that they have found limited use as methods for obtaining high-resolution 

NMR spectra of half-integer quadrupolar nuclei.  A more general technique, 

known as variable angle spinning (VAS) was also devised [46, 47]. In this 

experiment, in which the sample may be spun at any angle with respect to B0, a 

substantial reduction in the quadrupolar broadening observed under MAS may 

be obtained. This is only observed, however, if CSA and dipolar coupling 

effects are negligible, and given the fact that this is typically not the case, VAS 

has not been widely used. 

In 1995, a method was introduced that enables high-resolution NMR 

spectra of half-integer quadrupolar nuclei to be obtained using conventional 

MAS hardware [48, 49]. This experiment, known as multiple-quantum magic 

angle spinning (MQMAS), is a two-dimensional method in which multiple-

quantum coherences are correlated with single-quantum coherences under 

MAS conditions. The resultant increase in resolution enables the facile 

differentiation of crystallographically inequivalent sites in a solid. The ease with 

which this experiment may be performed has led to it being used to study a 
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wide range of crystalline and amorphous materials. 

In 2000, Gan introduced a two-dimensional technique which, like 

MQMAS, enables the acquisition of high-resolution spectra of half-integer 

quadrupolar nuclei under MAS conditions [50–53]. In this method, known as 

satellite-transition magic angle spinning (STMAS), single-quantum (satellite-

transition) coherences are correlated with single-quantum (central-transition) 

coherences. This experiment has not been used to the same extent as MQMAS, 

although it has been shown to possess great potential for the study of low- 

nuclei [54] and to be a very sensitive probe of dynamics [55]. 

One of the major limitations of the MQMAS and STMAS methods is that 

the mixing or conversion step in each case, namely the conversion of multiple-

quantum coherences to central-transition coherences in MQMAS [56], and of 

satellite- to central-transition coherences in STMAS [53, 54], is a very inefficient 

process. Consequently, the sensitivity of these experiments can be poor. Several 

methods have been developed to address this weakness, focussing mainly on 

MQMAS. Amongst these methods are fast amplitude-modulated (FAM) [57] 

and soft-pulse added mixing (SPAM) [58] pulses, which have been successfully 

used to increase the efficiency of the conversion step in MQMAS. FAM pulses 

have been applied to a range of half-integer quadrupolar nuclei, although the 

enhancements reported for nuclei with higher spin-quantum numbers have 

been much less than those observed for spin I  =  32 nuclei. FAM pulses have 

been used more widely than other techniques devised to enhance multiple-

quantum to single-quantum coherence transfer, primarily as a consequence of 
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the ease with which they may be implemented. 

The observation by Overhauser in 1953 of the polarisation of nuclear spins 

in a metal by the saturation of the electron resonances [59] led to the discovery 

of the nuclear Overhauser effect (NOE) [60–62]. The NOE occurs as a result of 

spin-lattice relaxation that is driven by random modulation of the dipole-dipole 

interaction between two nuclear spins. The increase or attenuation in signal 

intensity observed for one spin upon inversion or saturation of the populations 

of the nuclear spin energy levels of a spin with close spatial proximity has led to 

this effect becoming a very useful probe of internuclear distances. The NOE is 

now a widely used method for structure determination for molecules in 

solution [63]. In the solid state, however, NOEs are rarely observed [64–66], 

primarily as a consequence of a lack of motion on the required timescale. NOEs 

to quadrupolar nuclei are not usually observed either, as quadrupolar spin-

lattice relaxation is typically much more efficient than dipole-dipole cross-

relaxation [67]. 

This thesis is concerned with (i) methods for obtaining high-resolution 

NMR spectra of half-integer quadrupolar nuclei and (ii) the use of NMR as a 

probe of molecular motion in solids, via the nuclear Overhauser effect. Chapter 

2 describes the NMR phenomenon and the Fourier transform method used in 

all modern-day NMR experiments. The density operator and tensor operator 

formalisms are introduced and the major mechanisms that lead to line 

broadening in NMR spectra are described. Finally, a description of two-

dimensional NMR is given and the types of experiment commonly used are 
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explained. 

In Chapter 3, the theoretical basis of the quadrupolar interaction is given 

and its effect on NMR spectra of quadrupolar nuclei is shown. Techniques are 

described that may be used to obtain high-resolution spectra of half-integer 

quadrupolar nuclei. Particular attention is given to the MQMAS and STMAS 

methods and to the information contained within the two-dimensional spectra 

that they produce. 

The efficiency of coherence transfer processes is considered in Chapter 4. 

Selective and non-selective pulses are introduced and their behaviour in the 

presence of a quadrupolar interaction is shown. The efficiency of multiple-

quantum excitation and conversion is then demonstrated and coherence 

transfer enhancement schemes designed to improve the efficiency of the latter 

process are introduced. A comparison is then made of the utility of FAM and 

SPAM pulses for enhancing the conversion step in MQMAS experiments of 

spin I  =  32 and spin I  =  52 nuclei, using 87Rb NMR of rubidium nitrate, 27Al 

NMR of aluminium acetylacetonate and 27Al NMR of bayerite as examples. In 

addition, the performance of FAM and SPAM pulses in enhancing the +2  +1 

coherence transfer step in DQF-STMAS is considered. 

Chapter 5 introduces a new technique, known as STARTMAS, as a 

method for acquiring isotropic spin I  =  32 NMR spectra in the solid state. The 

experiment is described and computer-simulated spectra that illustrate the data 

sampling schemes that may be used are presented. Experimental spectra are 
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presented using examples from four powdered solids, namely the 87Rb 

STARTMAS NMR of rubidium nitrate, and the 23Na STARTMAS NMR of 

dibasic sodium phosphate, sodium citrate dihydrate and sodium oxalate. The 

ability of STARTMAS to produce "ultrafast" NMR spectra is illustrated using 

rubidium nitrate as an example and the potential of the technique to produce 

isotropic-isotropic correlation spectra is also shown. 

In Chapter 6, a 11B (spin I  =  32) NMR study of NOEs of a series of borane 

adducts in the solid state is presented. The nuclear Overhauser effect is 

described in detail and 11B{1H} NOE enhancements are shown for a range of 

borane adducts. Enhancements to the central, satellite and triple-quantum 

transitions of 11B are given and a comparison of the increase in signal intensity 

observed under static and MAS conditions is made. A rationale for the 

differences observed is then proposed with theoretical calculations being used 

to consider the effect of rapid rotation of the BH3 group on the 11B{1H} dipolar 

coupling and the 11B{1H} NOE. Variable-temperature 11B NMR studies of the 

11B{1H} NOE in borane triphenylphosphine are also shown and the significance 

of this for the molecular motion present in these borane adducts is considered. 

 

1.2 Experimental Details 

The experimental results presented in this thesis were acquired using 

Bruker Avance 200 and Bruker Avance 400 spectrometers, equipped with 4.7 T 

and 9.4 T superconducting magnets, respectively. Some of the spectra in 
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Chapter 5 were acquired with the assistance of Dr S. Steuernagel (Bruker 

BioSpin GmbH, Rheinstetten, Germany), using a Bruker Avance II spectrometer 

equipped with a widebore 11.7 T magnet. All static and MAS NMR experiments 

were performed using conventional MAS probes, with the samples packed into 

2.5- or 4.0-mm rotors. Rotation speeds of 10–33 kHz were typically used. 

Radiofrequency field strengths were calibrated independently on a range of 

samples and only approximate values are quoted. All samples were obtained 

from commercial suppliers and used without further purification. 

In-house computer programs, some written and developed by myself, 

were used for generating simulated spectra, and for processing some of the 

spectra shown in this thesis. Many of the spectra shown in Chapter 5 were 

generated and/or processed using MATLAB software written by Dr M. J. 

Thrippleton.  Source codes of the Fortran, Mathematica and MATLAB 

programs used for simulating and processing NMR data are included in a 

folder which accompanies this thesis. In two-dimensional contour plots, 

positive and negative contours are shown using bold and dashed lines, 

respectively, and the contour levels used are given in the figure captions.
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Chapter 2 

Fundamentals of NMR 

2.1 The Zeeman Interaction 

Atomic nuclei possess an intrinsic angular momentum, known as spin. 

This angular momentum has a magnitude,   I , given by 

           I  h I(I  1)  , (2.1) 

where I is the magnetic quantum number. I can be zero, or take positive integer 

or half-integer values. Nuclei with spin I  =  0 are unobservable by NMR. The 

projection of this angular momentum onto an axis, typically the z axis, is 

quantized in units of : 

       Iz  mIh  . (2.2) 

The azimuthal quantum number, mI, can take 2I + 1 values, varying from I to 

+I in integer steps. These values correspond (in the absence of a magnetic field) 

to the 2I + 1 degenerate states for the spin angular momentum. 

For nuclei with spin I  >  0, there is an associated magnetic dipole moment, 

. This dipole moment is directly proportional to the spin angular momentum, 

I: 
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     I , (2.3) 

where the constant of proportionality is , the gyromagnetic ratio (units rad s1 

T1). When an external magnetic field, B0, is applied, the degeneracy of the 2I + 

1 states is removed. The interaction of the magnetic dipole moment with the 

applied magnetic field is known as the Zeeman interaction. The energy of this 

interaction is given by (assuming that B0 is applied along the z axis): 

     E  zB0  , (2.4) 

and the 2I + 1 states now have energies,     E m I
, given by 

 
      

E m I
 IzB0

 mIh B0

 . (2.5)  

For a spin I  =  12 nucleus, the two states with mI  =  +12 and 12 thus have 

energies given by (12)B0 and +(12)B0 and are commonly labelled  and , 

respectively. The energy of a transition, E, between these states is thus B0 

and this may be expressed in terms of the frequency 0 (in units of Hz) as 

 
    
0 

B0

2
 . (2.6) 

This frequency is known as the Larmor frequency and it may also be expressed 

in angular frequency units (rad s1) as 0, where 0  =  20. The effect of the 

Zeeman interaction is shown in Fig. 2.1 for spin I  =  12 and spin I  =  32 nuclei. 

At thermal equilibrium, the nuclear spin energy levels are populated 
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Figure 2.1. The effect of the Zeeman interaction on the energy levels of (a) a spin I  =  12 

nucleus and (b) a spin I  =  32 nucleus. 

according to the Boltzmann distribution, leading to a slight excess of spins in 

the lower energy  state (assuming   >  0). This leads to a greater number of 

dipole moments aligned parallel to the field and, consequently, a bulk 

magnetization, M, is present in the sample. It is this magnetization which is 

manipulated in NMR. 

 

2.2 The Vector Model 

Whilst quantum mechanics is required to describe the behaviour of 

isolated spin-12 nuclei, classical mechanics may be used to describe the 

behaviour of an ensemble of spins that is present in a macroscopic sample. This 

may be achieved, at least in the case of simple NMR experiments, by using the 

"vector model" [68]. 
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The bulk magnetization, M, present in a macroscopic sample at thermal 

equilibrium may be conveniently represented by a vector M oriented parallel to 

the z axis. When a radiofrequency (rf) pulse is applied, a linearly oscillating B1 

field exists in the transverse (xy) plane. This field oscillates at a frequency, rf, 

chosen to be close to the Larmor frequency of the spins being observed. In a 

static reference frame, known here as the laboratory frame, the B1 field may be 

considered to be the sum of two fields, one rotating at a frequency of +rf and 

the other at rf. The field rotating at a frequency of rf is far away from the 

Larmor frequency of the spins and so its effects may be disregarded. The effect 

on the bulk magnetization that results from its interaction with both the B0 and 

B1 fields is difficult to visualise in the laboratory frame. Consequently, this 

effect is visualised by changing to a coordinate system that is rotating about the 

z axis at a frequency rf. In this frame of reference, known as the rotating frame, 

the +rf part of the B1 field appears static. 

In the rotating frame, the apparent Larmor frequency of precession is 

given by   =  0  rf, where  is known as the offset frequency. Consequently, 

the field present along the z axis in the rotating frame, known as the reduced 

field, B, is given by 

 
  
B  




 . (2.7) 

There are thus two orthogonal fields to consider in the rotating frame, B and 

B1. Whereas in the laboratory frame the magnetization precesses at its Larmor 
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Figure 2.2.  Vector model depiction of (a) the magnetic fields present in the rotating frame and 

(b) and (c) the effect of an rf pulse applied about the x axis with B  =  0 for the values of  

indicated. 

frequency about the B0 field, in the rotating frame the magnetization precesses 

about the effective field, Beff, which is defined as the resultant of the B and B1 

fields and has a magnitude given by: 

     Beff  B 2  B1 2  . (2.8) 

The presence of these fields in the rotating frame is depicted in Fig. 2.2a, where 

the angle , known as the tilt angle, is given by 

 
    
  tan 1 B1

B








 . (2.9) 

When viewed in the rotating frame, the effect of a radiofrequency pulse 

applied along the x axis is that the magnetization nutates in the yz plane until it 

is switched off. The angle through which the magnetization nutates during the 

pulse is known as the flip angle, , defined (in radians) as 
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     rf  , (2.10) 

where  is the duration of the pulse (in seconds). For an on-resonance pulse, 

that is, one for which the offset frequency is zero, the effective field is coincident 

with the B1 field (  =  2). In such a case, a pulse applied along the rotating 

frame x axis with   =  2 will cause a nutation of the magnetization in the yz 

plane, onto the y axis, whilst one with   =   (known as an inversion pulse) 

will lead to the magnetization nutating to the z axis. This is illustrated in Figs. 

2.2b and 2.2c, respectively. 

After a pulse has been applied, the magnetization precesses about the 

rotating frame z axis at a frequency  (with the exception of an inversion pulse, 

which leaves the magnetization vector aligned along the z axis). This 

precession does not continue indefinitely, however, and it is damped by 

relaxation processes which return the magnetization vector to its orientation at 

thermal equilibrium, along the z axis. The loss of magnetization from the xy 

plane (the return to its equilibrium value of zero) is known as transverse 

relaxation and is quantified by an exponential time constant T2, whilst the 

return of the z-magnetization to its equilibrium value is known as longitudinal 

relaxation and is described by an exponential time constant T1.  

As the magnetization precesses about the z axis a current is induced in a 

receiver coil oriented in the xy plane. This decaying current is referred to as the 

free induction decay (FID) and it is this which forms the time-domain signal 

that is detected in an NMR experiment. The FID is subjected to a Fourier 



17 

transform, which, as described in the next section, produces a frequency-

domain signal. 

 

2.3 Fourier Transform NMR 

The FID acquired in NMR, denoted s(t), typically takes the following form 

for a simple one-pulse experiment: 

     s(t )  C exp( it) exp(t / T2 )  , (2.11) 

where C represents the amplitude of the time-domain signal. A single detector 

is unable to determine the sense of precession (i.e., the sign of ) in the rotating 

frame. To overcome this problem, a method known as quadrature detection is 

used [69]. In this method, two datasets are collected for each FID that are 2 

radians out of phase with respect to one another. This method yields signals of 

the form cos(t) and sin(t); these correspond to the x- and y- (real and 

imaginary) components of the transverse magnetization in the rotating frame. 

When quadrature detection is used, the FID is sampled at intervals of   

seconds, such that, in accordance with the Nyquist theorem [70], the resultant 

spectrum covers a frequency range given by SW  =  1, where SW is the 

spectral width in units of Hz. 

A Fourier transform [71, 72] may be used to convert a time-dependent 

signal, s(t), into one which is frequency dependent, S(), where 



18 

 
    
S()  s(t ) exp( it)d t

0


  . (2.12) 

This method converts a dataset that is a function of time to one which is a 

function of frequency and so, assuming T2  =  ∞, produces a frequency-

dependent spectrum that has an amplitude proportional to C when   =   and 

that is zero for all other frequencies.  

The FID consists of real and imaginary components and hence, Fourier 

transformation of this signal will produce a spectrum that contains real and 

imaginary parts. The expression for S() yielded by the Fourier transform of Eq. 

(2.12) takes the form 

   S()  C(A()  iD())  , (2.13) 

where A() and D() consititute the real and imaginary parts of the spectrum 

and represent absorptive and dispersive Lorentzian functions, respectively: 

 

  

A()  R
R2  (  )2

D()   (  )
R2  (  )2

 , (2.14) 

where R  =  1T2 is the rate constant for transverse relaxation expressed in units 

of Hz. The C factor merely leads to a scaling of the spectrum and so is omitted. 

These functions are shown in Fig. 2.3, where the absorptive lineshape shown in 

Fig. 2.3a has a peak intensity of 1R and a width at half-height, 12, of 2R rad 

s1 (or R Hz), whereas the dispersive lineshape in Fig. 2.3b has an intensity of 
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Figure 2.3. The (a) absorptive and (b) dispersive Lorentzian lineshapes that comprise the real 

and imaginary parts of the spectrum obtained by Fourier transformation of a signal acquired 

using quadrature detection.  The spectral width is 10 kHz and the linewidth at half-height, 12, 

is 200 Hz. 

12R and a width at half-height of ~7.5 R rad s1. The reduced intensity and 

greater breadth of the dispersive lineshape makes it much less desirable in 

NMR spectra and so usually only the real part of the spectrum, i.e.,  that 

comprising the absorptive Lorentzian, is shown. 

 

2.4 Density Operator Formalism 

The theory of quantum mechanics states that individual spins may be 

described by a wavefunction, (t) [73], which can be written as the linear 

combination of an orthogonal set of basis functions, n: 

 
    
(t)  cn (t )n

n
  , (2.15) 

where cn(t) are time-dependent coefficients. In a macroscopic sample there are 
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many such spins present and so computing the wavefunction for every spin 

quickly becomes rather laborious. Conveniently, there exists a method that 

overcomes this difficulty. This uses the density operator, , which is defined as 

[74] 

       (t) (t)  , (2.16) 

where the overbar indicates an ensemble average. If, for a nucleus with spin I  =  

12 it is assumed that each spin has a wavefunction that is a superposition of the 

 and  eigenstates in the Zeeman basis set, then     (t)  and     (t )  are given 

by: 

 
    

(t)  c (t )   c(t) 

(t )  c (t )   c (t) 
 , (2.17) 

where     c
 (t)  and     c

 (t)  are complex conjugates of the coefficients c(t) and c(t). 

An operator Q may be expressed in matrix form using a set of basis 

functions such that the element in row i and column j is given by the integral 

    tdQQ jiij  , (2.18) 

which may also be written in Dirac notation as 

   Q ij  i Q j  . (2.19) 

In the case that Q  =  , the density operator thus has a matrix representation 
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whose elements, ij, are given by: 

     ij  ci
(t)cj(t) . (2.20) 

The density operator may thus be expressed in matrix form as: 

 

  

 
     

     
















11 12

21 22











 . (2.21) 

Note that the use of two basis functions yields a 2  2 matrix representation of 

the density operator. The diagonal elements, 11 and 22, correspond to the 

probabilities of the spins being found in the  and  states of the Zeeman 

Hamiltonian and so simply represent the relative populations of these states. 

The off-diagonal elements correspond to coherent superpositions of the  and  

eigenstates and are termed coherences. At thermal equilibrium, the density 

matrix, eq, is directly proportional to Iz, the z-component of the spin angular 

momentum operator, and so is given by [74]: 

 

    

eq  Iz 

1
2

0

0 
1
2
















 . (2.22) 

In the case of a spin I  =  12 nucleus, the off-diagonal elements correspond to 

coherences that have mI  =  ±1 (they are said to have coherence order p  =  ±1) 

and are the only coherences observed directly in NMR. By convention, 
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however, only p  =  1 coherences are observed when quadrature detection is 

used. The equilibrium density matrices of nuclei with larger spin quantum 

numbers contain off-diagonal elements corresponding to coherences with p > 

1. Whilst such coherences are not directly observable in NMR, they form a 

crucial part of many experiments, some of which are described in Chapter 3. 

In order to obtain the value of an observable, the expectation value of the 

corresponding operator, Q, is needed. This is given by 

 
iQjji

iQj)(c)(c)(Q)(Q

i j

i j
ji

  

   tttt

 . (2.23) 

This can be shown to be equal to the trace (the sum of the diagonal elements) of 

the matrix product of the operator with the density operator: 

     (t ) Q (t)  Tr{Q} . (2.24) 

As was described in Section 2.3, the real and imaginary components of the 

observed signal in an NMR experiment correspond to the x- and y-components 

of the magnetization vector in the rotating frame. These are proportional to Ix 

and Iy, the x- and y-components of the spin angular momentum, the matrix 

representations of which are given in Appendix A. Consequently, the trace of 

the product of  with Ix and Iy will yield the real and imaginary components of 

the observable signal. 
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To use the density operator to predict the course of an NMR experiment, 

its evolution with time needs to be considered. This is achieved using the 

Liouville-von Neumann equation [75], which is derived from the time-

dependent Schrödinger equation: 

 

    

d(t )
d t

 i H(t ), (t ) 

 i H(t )(t)  (t)H(t ) 
 , (2.25) 

where (t) is the density operator at time t and H(t) is the Hamiltonian 

describing the spin system at time t. If the Hamiltonian is, or can be made to 

appear, time-independent then the solution to Eq. (2.25) is given by: 

     (t)  exp iH t (0) exp  iH t  , (2.26) 

where (0) is the value of the density operator at time  t  =  0. The Hamiltonian 

under which the spin system is evolving can be chosen to represent a range of 

interactions, such as the resonance offset, chemical shift, and quadrupolar 

interactions. The Hamiltonian describing a particular interaction may, like the 

density operator, be described in matrix form, and so determining the value of 

(t) simply involves the multiplication of three matrices. 

Take, for example, the effect of a 2 pulse aligned along the rotating 

frame x axis on the equilibrium magnetization of a spin I  =  1 nucleus. The 

equilibrium density matrix, defined to be the density matrix at time t  =  0, is 

given by: 
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(0)  Iz 
1 0 0
0 0 0
0 0 1
















 . (2.27) 

The pulse Hamiltonian is given by H(t)  =  1Ix and, as the flip angle of the 

pulse is equivalent to 1, Eq. (2.26) becomes 

 
    
()  exp i 

2
Ix









Iz exp i 

2
Ix









 . (2.28) 

The density matrix at time zero is diagonal, that is, only its diagonal elements 

are non-zero. The matrix representation of the operator Ix is diagonalised using 

a matrix U and its transpose, UT, given, in this case, by: 

 

  

U  UT 
1
2

1
2

1 1
2

1 0 1
1
2

1 1
2





















 , (2.29) 

which leads to 

  

    

UI xUT 
1 0 0
0 0 0
0 0 1
















 Iz  . (2.30) 

Now that the pulse Hamiltonian has been diagonalised, Eq. (2.28) becomes 

 
    
()  U exp i 

2
Iz









UTIzU exp  i 

2
Iz









UT  . (2.31) 
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The exponential of a diagonal matrix is simply a matrix consisting of the 

exponentiated diagonal elements and so it is then a simple matter to arrive at 

the solution: 

 

    

() 
i
2

0 1 0
1 0 1
0 1 0
















 Iy  . (2.32) 

This result shows that the effect of a 2 pulse aligned along the x axis on the z-

component of the bulk magnetization is to convert it into the y-component of 

the magnetization. This is equivalent to a rotation of the bulk magnetization 

vector M from the z axis onto the y axis, and so is in accordance with the 

vector model description in Section 2.2. 

 

2.5 Tensor Operators 

Whilst the density matrix formalism is a convenient way of observing the 

effect on the magnetization of, for example, an rf pulse, it can become rather 

unwieldy for larger spin quantum numbers, as the density matrix of a single 

spin I nucleus (which has dimensions of 2I + 1  2I + 1) quickly increases in size. 

This problem may be alleviated by instead expressing the density operator as 

the linear combination of a sum of operators, Ai: 

  
    
(t )  a i (t )A i

i
  . (2.33) 
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For a pair of spin I  =  12 nuclei, operators derived from the products of 

Cartesian spin angular momentum operators have been used very successfully 

[76]. For quadrupolar nuclei, however, the density operator is commonly 

expressed in terms of irreducible spherical tensor operators, Tl,p [77]: 

 
    
(t )  a l,p(t )Tl,p

p  -l

l


l 0

2I
  , (2.34) 

where Tl,p is a spherical tensor of rank l which can take the values 0, 1, 2, ..., 2I 

and where p, the coherence order, can take the values l, l + 1, ..., +l. The 

matrix representations of these operators are given in Appendix B. T1,0 

represents a state with coherence order zero, that is, it describes a population 

state [77]. This operator is proportional to the z-component of the spin angular 

momentum: 

     T1,0  Iz  . (2.35) 

Likewise, the x- and y-components of the spin angular momentum, described 

using the angular momentum operators Ix and Iy, may be expressed in terms of 

tensor operators of rank 1 and coherence order +1 and 1: 

 
    

Ix  T1,1  T1,1 
Iy  (T1,1  T1,1)

 . (2.36) 

The behaviour of tensor operators when evolving under the effects of an 

offset frequency , a quadrupolar splitting Q and an rf pulse may be simply 
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expressed. In the presence of an offset, tensor operators evolve for a time  

according to [77] 

     Tl , p
  Tl , peip  , (2.37) 

Evolution under an offset thus has the effect of altering neither the rank nor 

coherence order of the tensor operator, instead changing the phase. In many 

modern experiments the effect of the offset can be ignored as the presence of a  

pulse refocuses the chemical shift interaction.   

Under the influence of a pulse, tensor operators evolve according to [77] 

 
    
Tl , p

(Iy cos   Ix sin )
  Tl , p 

p 
 d p ,p

l ()eip  , (2.38) 

where  is the flip angle of the pulse,  is the phase of the pulse (zero for a pulse 

aligned along the y axis), and   p  p  p is the change in coherence order. 

Reduced Wigner rotation matrix elements are represented by     d p , p
l ()  and their 

values may be found in Appendix C for l  =  1, 2 and 4. Eq. (2.38) reveals that a 

pulse changes the coherence order, but not the rank, of a tensor operator. 

Consider, for example, the effect on the z-magnetization of a 2 pulse aligned 

along the rotating frame y axis. The z-magnetization, described by the tensor 

operator T1,0, evolves as follows: 

 
    
T1,0

( / 2)y 
1
2

{T1,1  T1,1} . (2.39) 
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The combination of tensor operators of rank 1 and coherence order +1 and 1 is 

proportional to the x-component of the spin angular momentum, Ix. This result 

thus agrees with that predicted by the vector model. 

In the presence of a first-order quadrupolar interaction, tensor operators 

evolve in the following way for a time, : 

   





I

l l
pl

p
l,lpl

2
,

Q
, T)(cT  , (2.40) 

where Q is the quadrupolar splitting parameter and the values of the 

coefficients     c l ,l
p () are given in Appendix D. Free precession in the presence of a 

quadrupolar interaction thus changes the rank, but not the coherence order, of a 

tensor operator. It is the combination of this evolution and that under an rf 

pulse that can lead to the creation of multiple-quantum coherences. In the case 

of triple-quantum coherence, the operators T3,1, T3,+1, T3, 3 and T3,+3 are created 

and are present (with the exception of T3,1 and T3,+1, which are removed by 

phase cycling) during the t1 period of the triple-quantum MAS experiment 

described in Chapter 3. 

Using the tensor operator formalism, it is thus easy to show the effect of a 

pulse and of evolution under a quadrupolar splitting or offset. The well-defined 

behaviour of tensor operators under these conditions provides a convenient 

way in which to consider the effects of the more complex NMR experiments for 

which a vector model description is inadequate. 
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2.6 Line Broadening Mechanisms 

There exist several mechanisms that can lead to line broadening in NMR 

spectra in the solid state. Two of the most significant, the chemical shift and 

dipolar coupling, are introduced in this section and their effect on solid-state 

NMR spectra is described. Another major source of line broadening in the case 

of quadrupolar nuclei is the quadrupolar interaction. This will be described in 

detail in Chapter 3. 

 

2.6.1 Chemical Shift 

When a magnetic field is applied, electrons begin a circulatory motion 

about a nucleus. This motion creates a magnetic field that can either increase or 

decrease the magnetic field experienced by the nucleus. This shielding is the 

origin of the chemical shift and has the effect of modifying the Larmor 

frequency defined in Eq. (2.6) to [78]: 

     0  B0 (1  ) . (2.41) 

In Eq. (2.41),  is the chemical shielding tensor. The chemical shielding has 

the properties of a second-rank Cartesian tensor and as such may be 

represented by a 3  3 matrix. This is also the case for the dipolar interaction 

(described in Section 2.6.2) and the first-order quadrupolar interaction 

(described in Chapter 3) and in each case, the tensor is defined with respect to a 

frame of reference such that this matrix is diagonal. This reference frame is 
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known as the principal axis system (PAS). In such a reference frame, the tensor 

is defined by three quantities, referred to as the principal values describing the 

interaction. For chemical shielding, these are defined as   XX
PAS ,   YY

PAS  and   ZZ
PAS  

and correspond to the principal values of the interaction associated with the 

PAS X, Y and Z axes, respectively. The chemical shielding tensor may thus be 

represented by the following matrix in its PAS: 

 

  

 
XX

PAS 0 0
0 YY

PAS 0
0 0 ZZ

PAS
















 , (2.42) 

where these principal values may be used to define an isotropic value of the 

chemical shielding tensor, iso, an anisotropy, , and an asymmetry, : 

 

  

iso  1
3

XX
PAS  YY

PAS  ZZ
PAS 

  ZZ
PAS  iso

 
XX

PAS  YY
PAS



 . (2.43) 

 In NMR, absolute frequencies are not measured; instead, frequencies are 

quoted as chemical shifts with respect to a reference material. The chemical 

shift, iso, is thus defined as follows [79]: 

 
  
iso 

0  0 (ref )
0 (ref )


iso (ref )  iso 

1  iso (ref )
 , (2.44)  



31 

where 0(ref) and iso(ref) are the Larmor frequency and isotropic value of the 

chemical shielding tensor of the reference sample, respectively. The chemical 

shift, defined in Eq. (2.44), also has the properties of a second-rank Cartesian 

tensor and as such may be defined by three principal values in its PAS, PAS
XX , 

PAS
YY  and PAS

ZZ . Using these principal values, the isotropic chemical shift, iso, 

the chemical shift anisotropy, CS, and the chemical shift asymmetry, CS, are 

defined as 

 

 

CS

PAS
YY

PAS
XX

CS

iso
PAS
ZZCS

PAS
ZZ

PAS
YY

PAS
XXiso 3

1










 . (2.46) 

The observed chemical shift, , is defined as the sum of isotropic and 

anisotropic contributions: 

 
  
  iso 

1
2
cs {3 cos2   1  cs sin 2  cos 2} , (2.47) 

where  and  are polar angles that define the orientation of the B0 field in the 

PAS of the chemical shielding tensor. In the solution state, rapid molecular 

tumbling averages the anisotropic component of the chemical shift to zero and 

so only the isotropic component is observed. In the solid state, however, the 

general lack of motion means that the anisotropic component of the chemical 

shift is no longer averaged to zero. This means that, due to the range of 

orientations observed in a powder, each crystallite has a different chemical shift 
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and so a ''powder pattern'' is observed in the spectrum. 

 

2.6.2 Dipolar Coupling 

There exists an interaction between the magnetic moments of nuclei that 

are close in space. This through-space interaction is referred to as the dipolar 

interaction and, for the case of a homonuclear IS spin pair, is defined by the 

following first-order average Hamiltonian,   H dd
hom , expressed in the rotating 

frame [80]: 

     H dd
hom  D(3IzSz  I  S) , (2.48) 

where   I  S  =  IxSx + IySy + IzSz and D is the dipolar coupling parameter, given 

by: 

 
  
D 

D
PAS

2
3 cos2   1  , (2.49) 

where  is the angle between the I-S internuclear vector and B0.   D
PAS  is the 

dipolar coupling parameter in the principal axis system of the dipolar coupling 

tensor and is defined as [81, 82]: 

 
    
D

PAS  
0ISh

4rIS
3  , (2.50) 

with I and S being the gyromagnetic ratios of the I and S spins and rIS their 

internuclear distance. 
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Like the chemical shielding interaction described in Section 2.6.1, the 

dipolar coupling has the properties of a second-rank Cartesian tensor. In 

contrast to the chemical shielding, however, the dipolar coupling tensor is 

traceless and so its isotropic value, Diso, is zero. In addition, the dipolar 

coupling tensor is always axially symmetric (  =  0). 

In the solution state, the presence of molecular motion averages the 

dipolar coupling to its isotropic value. This means that, if residual linewidths 

are ignored, no evidence of the presence of the dipolar coupling is seen in the 

spectrum. In the solid state, however, the general lack of motion means that the 

averaging seen in the solution state is not observed. The angular dependence of 

D means that, in a powdered solid, a range of dipolar couplings exists, so 

producing a powder pattern in the NMR spectrum. 

As shown in Eq. (2.50), the strength of the dipolar interaction between two 

nuclei I and S is proportional to IS. The effect of the Hamiltonian in a multi-

spin homonuclear system is to remove the degeneracy of the many Zeeman 

levels that have the same net azimuthal quantum number. This arises because 

of the homogeneous nature of this interaction [11] and leads to a very large 

range of transition frequencies in the NMR spectrum of such a spin system. For 

homonuclear dipolar couplings between nuclei such as 1H and 19F, this means 

that the resultant spectra commonly contain linewidths of up to 30kHz. 

The dipolar interaction between two non-equivalent spin species I and S is 

characterised by the following first-order rotating frame average Hamiltonian: 
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 zzmm SI2H SID
het
dd   . (2.51) 

If the I and S spins are assumed to be spin I  =  12 nuclei, then this has the effect 

of shifting the energies of the four Zeeman levels by ±D2. The two transitions 

of each of the I and S spins, that have equal frequencies in the absence of a 

dipolar coupling, are thus shifted by ±D. The orientational dependence of D 

leads to a powder pattern in the spectrum, and as the dipolar coupling has, like 

the chemical shift, the properties of a second-rank Cartesian tensor, this powder 

pattern consists of two overlapping axially symmetric CSA patterns (one for 

each transition) that are mirror images of one another. Line broadening due to 

heteronuclear dipolar coupling can be removed by, in addition to MAS [37], a 

technique known as decoupling [25]. This involves applying high-power 

continuous irradiation at the Larmor frequency of the spin that is being 

decoupled (typically the S spin). This causes rapid transitions between the S-

spin Zeeman states such that the observed (I) spin transitions are once again 

degenerate and a single peak at the I-spin frequency, from which anisotropic 

line broadening due to the dipolar interaction has been removed, is observed. 

 

2.7 Two-Dimensional NMR 

Many routine NMR experiments are two-dimensional in nature. They 

differ from their one-dimensional counterparts in that they comprise two time 

periods during which the magnetization evolves, conventionally labelled t1 and 

t2. The typical form of a two-dimensional NMR experiment [83, 84] is shown in 
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 Fig. 2.4. 

An initial pulse of phase 1 excites transverse magnetization that is then 

allowed to evolve during the t1 period. Another pulse (or commonly, a 

sequence of pulses) of phase 2 then converts this magnetization to p  =  1 

central-transition coherence that is detected during the t2 period. This process is 

typically repeated 64–256 times, with the t1 period being incremented each time. 

This yields a time-domain signal, s(t1, t2), that is a function of two time 

periods, and that commonly (though not always) is cosine modulated during 

the t1 period: 

     s(t1 , t2 )  cos 1t1 exp(R1t1) exp( i2t2 ) exp( R2t2 )  , (2.52) 

where R1 and R2 are transverse relaxation rate constants during the t1 and t2  

periods, respectively. Performing a Fourier transformation in both dimensions 

then yields a two-dimensional spectrum that, like its one-dimensional 

analogue, contains real and imaginary components. The two dimensions, 2 

and 1, are known as the direct and indirect dimensions, respectively. For two- 

dimensional experiments to be useful, it is a necessity that the real part of the 

spectrum contains lineshapes that are purely absorptive in both dimensions; 

that is, they contain none of the highly undesirable dispersive character that 

was described in Section 2.3. 
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Figure 2.4. The typical form of a two-dimensional NMR experiment. The t1 period is 

incremented in successive one-dimensional experiments such that a signal is produced in which 

the magnetization has evolved during two time periods.  

 

2.7.1 Phase Modulation 

In Section 2.3 it was shown how the Fourier transform converts a dataset 

that is a function of time to one which is a function of frequency: 

     s(t ) FT  S() , (2.53) 

where S() may be expressed as the sum of its absorptive and dispersive 

Lorentzian components: 

   S()  A()  iD() . (2.54) 
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Figure 2.5. Pulse sequence and coherence transfer pathway for the N-type COSY experiment. 

Consider, for example, a simple two-pulse N-type COSY experiment [85]. 

The coherence transfer pathway and pulse sequence for this experiment are 

shown in Fig. 2.5. As is now customary for many modern two-dimensional 

experiments, phase cycling is used to ensure the correct coherence transfer 

pathway is selected [86, 87]. A two-dimensional experiment of this form, in 

which only one coherence transfer pathway is selected during the t1 period, 

yields a time-domain signal of the form: 

     s(t1 , t2 )  exp(i1t1) exp(R1t1) exp( i2t2 ) exp(R2t2 )  . (2.55) 

A function of the form exp(it) is not an even function, that is, exp(it)  ≠  

exp(it). Consequently, a time-domain dataset of the form in Eq. (2.55) is 

sensitive to the sign of the offset and is said to be frequency discriminated. 

Fourier transformation in the t2 dimension leads to the following dataset: 

     s(t1 , 2 )  exp(i1t1) exp(R1t1){A(2 )  iD (2 )} . (2.56) 

Inspection of the spectrum obtained in the 2 dimension reveals that the phase 
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of the lineshape varies as a function of t1. Two-dimensional experiments 

producing time-domain data in the form of Eq. (2.55) are thus said to be phase 

modulated. 

A second Fourier transformation, in the t1 dimension, leads to the two-

dimensional dataset 

 

  

S(1 , 2 )  {A(1)  iD(1)}{A(2 )  iD(2 )}

 [A(1)A(2 )  D(1)D(2 )]

i[D(1)A(2 )  A(1)D(2 )]

 . (2.57) 

Equation (2.57) reveals that the real part of the spectrum contains a mixture of 

doubly-absorptive and doubly-dispersive contributions. The lineshape arising 

from such contributions is known as a phase-twist lineshape, and, on account of 

it having both positive and negative parts, it is thus unsuitable for high-

resolution NMR. Performing an experiment in which p  =  1 coherences are 

selected during the t1 period (known as a P-type COSY experiment [85]) 

produces a time-domain signal, which, after Fourier transformation in both 

dimensions, yields a dataset that differs from that in Eq. (2.57) only in the sign 

of the frequency in the 1 dimension. Phase-modulated experiments thus 

achieve the desired frequency discrimination, but have the undesirable by-

product of a phase-twist lineshape. 
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2.7.2 Amplitude Modulation 

Many two-dimensional NMR experiments involve the selection of more 

than one coherence transfer pathway during the t1 period. An example of this is 

the double-quantum filtered (DQF)-COSY experiment [88], the pulse sequence 

of which is shown in Fig. 2.6. Experiments such as this yield a time-domain 

signal of the form 

 

    

s(t1 , t2 ) 
1
2

{exp(i1t1)  exp( i1t1)}

 exp( R1t1) exp( i2t2 ) exp( R2t2 )

 cos(1t1) exp( R1t1) exp( i2t2 ) exp( R2t2 )

 . (2.58) 

Such a signal is said to be amplitude modulated, as variation of t1 modifies only 

its amplitude, and not its phase. The Fourier transform of a function of the form 

cos(t)exp(Rt) (a cosine Fourier transform) yields an absorptive Lorentzian, 

A(). The resulting spectrum thus contains, in contrast to the Fourier transform 

of a complex exponential function, only real components. Consequently, a two-

dimensional Fourier transform of the time-domain signal in Eq. (2.58) yields a 

dataset of the form: 

   S(1 , 2 )  A(1){A(2 )  iD(2 )} . (2.59) 

The real part of this signal is of the form A(1)A(2) and so yields a doubly-

absorptive lineshape. Amplitude-modulated experiments thus produce spectra 

containing not the phase-twist lineshapes observed with phase-modulated 

experiments, but lineshapes whose doubly-absorptive nature makes them far 
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Figure 2.6. Pulse sequence and coherence transfer pathway for the DQF-COSY experiment. 

more conducive to high-resolution NMR. However, amplitude-modulated data 

lack the frequency discrimination possessed by phase-modulated data. This is a 

direct consequence of the relations 

 
    

cos(1t1)  cos(1t1)

sin(1t1)   sin( 1t1)
 . (2.60) 

This lack of frequency discrimination is a drawback of acquiring amplitude-

modulated data. The following section describes methods that allow both 

frequency discrimination to be achieved and doubly-absorptive lineshapes to 

be obtained. 

 

2.7.3 States-Haberkorn-Ruben and TPPI Methods 

A phase shift of 2 radians of a cosine function yields a sine function. The 

States-Haberkorn-Ruben (SHR) method [89] achieves frequency discrimination 
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by using both cosine- and sine-modulated time-domain signals. When a Fourier 

transform is performed in the t2 dimension, time-domain signals that have sine 

and cosine modulation in t1, denoted Ssin(t1, 2) and Scos(t1, 2)  respectively, are 

obtained: 

 
    

Scos (t1 , 2 )  cos(1t1) exp( R1t1){A 2 )  iD(2 }
Ssin (t1 , 2 )  sin(1t1) exp( R1t1){A(2 )  iD(2 )}

 . (2.61) 

In the SHR method, a new dataset is formed, SSHR(t1, 2), in which the real 

and imaginary components are the real parts of the cosine- and sine-modulated 

datasets, respectively: 

 
)(A)Rexp()sin(i

)(A)Rexp()cos(),(S

21111

2111121SHR





tt

ttt
 . (2.62) 

This may also be expressed as: 

     SSHR (t1 , 2 )  exp( i1t1) exp(R1t1)A(2 )  , (2.63) 

which, after Fourier transformation in the indirect dimension gives: 

 
  

SSHR (1 , 2 )  {A(1)  iD (1)}A(2 )

 A(1)A(2 )  iD(1)A(2 )
 . (2.64) 

The real part of this signal is doubly absorptive and so is of the required form 

for high-resolution two-dimensional NMR. 

There exists an alternative technique for achieving frequency 
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discrimination, known as time proportional phase incrementation (TPPI) [90]. 

This method is similar to the SHR method and operates by shifting the phase of 

the pulse, or group of pulses, that preceed the t1 period, for each increment of t1. 

This phase shift, equal to (2p), where p is the order of coherence evolving 

during the t1 period, leads to the following dataset, after Fourier transformation 

in the t2 dimension: 

   )(A)Rexp())2/)(2((cos),(S 21111121TPPI  ttSWt  , (2.65) 

where 1SW1 is equal to the t1 increment. In this method, the spectral width in 

the 1 dimension is doubled and so, in accordance with the Nyquist theorem, 

the sampling interval in the indirect dimension (the t1 increment) is halved.
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Chapter 3 

Quadrupolar Interaction 

3.1 Introduction 

The dominant interaction for nuclei with spin I  >  12 is usually that 

which arises between the nuclear electric quadrupole moment and the electric 

field gradient [91–93]. This quadrupolar coupling commonly has a magnitude 

of the order of megahertz and is responsible for the large quadrupolar splittings 

observed in solid-state NMR spectra of quadrupolar nuclei. In liquids, the 

quadrupolar interaction is also responsible for efficient quadrupolar relaxation. 

The major source of line broadening for quadrupolar nuclei is the 

inhomogeneous contribution arising from the quadrupolar coupling and it is 

this which determines the appearance of the resultant NMR spectra in the solid 

state. In this section, the origin of this quadrupolar broadening will be 

described, as will the equations describing its effects and the implications for 

the appearance of the spectra. 

 

3.2 The Quadrupolar Coupling 

In addition to the magnetic dipole moment that is characteristic of all 

NMR-active nuclei, nuclei with spin I    12 possess an electric quadrupole 
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moment, eQ. The electric quadrupole moment takes a fixed value and is 

characteristic of the nucleus. The presence of a non-spherical distribution of 

electrons around a nucleus leads to an electric field gradient (EFG). The electric 

field gradient is a three-dimensional entity which can be described using the 

EFG tensor, V. This tensor can be described by three components in its PAS. 

These are denoted   VXX
PAS ,   VYY

PAS  and   VZZ
PAS  and correspond to the principal values 

of the electric field gradient associated with the X, Y and Z PAS axes, 

respectively. These components satisfy the conditions 

 
PAS
YY

PAS
XX

PAS
ZZ

PAS
ZZ

PAS
YY

PAS
XX

VVV

0VVV




 . (3.1) 

The EFG tensor is traceless and so its isotropic value is zero. This means 

that its anisotropy is equal to   VZZ
PAS and so is given by eq, where e is the 

magnitude of the electron charge. The coupling of the quadrupole moment (eQ) 

and the EFG (eq) leads to an interaction that is quantified, in units of Hertz, 

using a quadrupolar coupling parameter CQ [94]: 

 
    
CQ 

e2qQ
h

 , (3.2) 

and the cross-sectional shape of the EFG tensor parallel to the XPASYPAS plane is 

characterised by an asymmetry parameter, , which can take values between 0 

and 1, and is given by: 
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 

VXX
PAS  VYY

PAS

VZZ
PAS  . (3.3) 

 

3.3 The Quadrupolar Interaction 

3.3.1 The First-Order Quadrupolar Interaction 

The Hamiltonian describing a quadrupolar nucleus can be expressed, 

neglecting the effects of CSA and any homonuclear and heteronuclear dipolar 

couplings, as follows: 

   H  H Z  H Q  , (3.4)  

where the Hamiltonian HZ (equal to 0Iz) expresses the effect of the Zeeman 

interaction and HQ that of the quadrupolar interaction. Whilst the quadrupolar 

interaction can in some cases be very large, it is typically at least an order of 

magnitude smaller than the Zeeman interaction. This means that its effect on 

the energy levels can be considered as a perturbation of the dominant Zeeman 

term and so time-independent perturbation theory may be used [95]. The 

quadrupolar Hamiltonian is given by the following equation, expressed in the 

PAS of the EFG tensor [96]: 

 
    
H Q

PAS  Q
PAS IZ

2 
1
3

I I  1   
3

IX
2  IY

2 





 , (3.5) 

where IX, IY and IZ are analogous to the operators Ix, Iy and Iz defined in Chapter 
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2.   Q
PAS  is defined as the magnitude of the quadrupolar interaction in the PAS 

of the EFG tensor and is given, in units of rad s1, by 

 
    
Q

PAS 
3CQ

2I(2I  1)
 . (3.6) 

In the laboratory frame, a quadrupolar splitting parameter, Q, is defined, in 

units of rad s1: 

 
  
Q 

Q
PAS

2
(3 cos2   1   sin 2  cos 2)  , (3.7) 

where  and  are angles relating the PAS of the EFG tensor to B0. Equation (3.7) 

reveals the quadrupolar splitting to be orientationally dependent. For a 

powdered solid, this means that each crystallite orientation will experience a 

different quadrupolar splitting, so giving rise to a powder pattern. 

Equation (3.5) may also be expressed using spherical tensor operators (for 

a spin I  =  32 nucleus) as: 

 
  
H Q

PAS  2Q
PAS T2 ,0 


6

T2 ,2  T2,2 








 , (3.8) 

or in matrix form as: 
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H Q
PAS  Q

PAS

1 0 
3

0

0 1 0 
3


3

0 1 0

0 
3

0 1





























 . (3.9) 

To determine the effects of the quadrupolar interaction, the Hamiltonian 

must first be transformed to the laboratory frame. As tensor operators have 

well-defined properties under rotation, the quadrupolar Hamiltonian defined 

in Eq. (3.8) is used. A tensor of rank l and coherence order p, denoted Tl,p, 

transforms from one frame of reference to another via a rotation R(, , ) as 

[97]:   

 
    
R(, , )Tl,pR1( , , )  D p , p

l , ,  
p  l

l
 Tl, p  ,  (3.10) 

where ,  and  are the Euler angles [98] that relate the two frames of reference 

and   R
1(, , )  is the inverse of the rotation operator   R(, , ). The Euler 

angles, ,  and , are defined as rotations of  about the laboratory frame x 

axis, of  about the laboratory frame y axis and of  about the laboratory frame z 

axis, respectively.     D p ,p
l (, , )  are Wigner rotation matrix elements  and are 

defined as [99] 

 )}(iexp{)(d),,(D ppl
p,p

l
p,p    , (3.11) 

where     d p , p
l () are reduced rotation matrix elements [100]. Consequently, in the 
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laboratory frame the quadrupolar Hamiltonian, HQ, is expressed as:  

 

    

H Q  2Q
PAS [

p  2

2
 (D p ,0

2 ( , , )  
6

{D p ,2
2 (, , )

D p ,2
2 ( , , )}]T2, p 

 , (3.12) 

which may also be expressed in matrix form: 

 

  

H Q  2Q
PAS

A B C 0
B A 0 C

C 0 A B

0 C B A



















 , (3.13) 

where 

 

  

A 
1
2

D00
2 (, , )  

2 6
(D0,2

2 (, , )  D0,2
2 (, , ))











B 
1
2

D1,0
2 (, , )  

12
D1,2

2 (, , )  D1,2
2 (, , ) 









B 
1
2

D1,0
2 (, , )  

12
D1,2

2 (, , )  D1,2
2 (, , ) 









C 
1
2

D2 ,0
2 (, , )  

12
D2,2

2 ( , , )  D2 ,2
2 ( , , ) 









C 
1
2

D2 ,0
2 (, , )  

12
D2,2

2 (, , )  D2,2
2 (, , ) 









 . (3.14)  

The first-order perturbation to an energy level,     E m I

(1) , is given by [95] 

     E m I

(1)  mI HQ mI  . (3.15) 

Hence, taking the example of the energy level with mI  =  32, this is equivalent 
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Figure 3.1. The first-order perturbation to the energy levels of a spin (a) I  =  1 and (b) I  =  32 

nucleus by the quadrupolar interaction. 

to the element in the first row and first column (i.e., the first diagonal element) 

in the matrix representation of the quadrupolar Hamiltonian. The four Zeeman 

states of a spin I  =  32 nucleus are thus perturbed as follows: 

 

  

E3 / 2
(1)  E3 / 2

(1) 
Q

PAS

2
3 cos2   1   Q

E1/ 2
(1)  E1 / 2

(1)  
Q

PAS

2
3 cos2   1   Q

 , (3.16) 

The first-order perturbation to the energies of the Zeeman states is shown in 

Figs. 3.1a and 3.1b for the case of spin I  =  1 and spin I  =  32 nuclei, 

respectively. 

Figure 3.1 reveals that, for a spin I  =  1 nucleus, the frequency of the (mI  =  

+1  1) transition (the double-quantum (DQ) transition) is unaffected to first 



50 

order by the quadrupolar interaction. For a spin I  =  32 nucleus, the 

frequencies of the (mI  =  +12  12) and (mI  =  +32  32) transitions, 

known as the central (CT) and triple-quantum (TQ) transitions respectively, are 

unaffected to first order. In general, all symmetric transitions are unperturbed 

by the first-order quadrupolar interaction. Figure 3.1b shows that for a spin I  =  

32 nucleus, the frequencies of the (mI  =  +32  +12) and (mI  =  12  32) 

transitions, the so-called satellite transitions (ST), are given by 0  2Q and 0 

+ 2Q, respectively. For half-integer nuclei with spin I  >  32, there is more than 

one set of satellite transitions and these are labelled ST1 (the mI  =  ±32  ±12 

transitions), ST2 (the mI  =  ±52  ±32 transitions), and so on. The orientational 

dependence of Q means that, in a powdered solid, a powder pattern is 

observed in the NMR spectrum. The absence of an isotropic component in Eq. 

(3.16) means that the powder pattern remains centred about 0. Owing to the 

absence of a first-order perturbation to the frequency of the central transition, 

the resultant powder pattern features a narrow line and it is for this reason that 

much solid-state NMR of quadrupolar nuclei has focussed on observation of 

solely this transition. The central transition is, however, affected by a smaller 

second-order perturbation and so the magnitude of this effect needs to be 

determined. 

 

3.3.2 The Second-Order Quadrupolar Interaction 

Time-independent perturbation theory states that the second-order 
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Table 3.1. Values of the zeroth-, second- and fourth-rank coefficients in Eqs. (3.22) and (3.23) for 

the mI  =  ±q  q  transitions of a spin I  =  32 nucleus. 

perturbation to an energy level,     E m I

(2 ) , is given by [95] 

 
    
E m I

(2) 
m H Q n n HQ m

E m
(0 )  En

(0 )
n  m
  , (3.17) 

where m and n take the values (for a spin I  =  32 nucleus) +32, +12, 12 and 

32.      E m
(0 )  En

(0)  is the energy of the transition between energy levels m and n 

when these energy levels are perturbed solely by the Zeeman interaction. To 

proceed with this calculation, the multiplication of Wigner rotation matrix 

elements is required, the result of which is described by [98] 

 )),,(D,,),,(D),,(D ,,,   
c

c
rr

b
qq

a
pp rcqbpacrbqap  ,(3.18) 

where c takes the values a  b, a  b + 1, ..... a + b, r' =  p' + q', r  =  p + q 

and rcqbpacrbqap ,,  are Clebsch-Gordon coefficients [100]. For the 

energy level of a spin I  =  32 nucleus with mI = 12, Eq. (3.17) is thus 

 
0

QQ

0

QQ)2(
2/1

4H22H41H22H1
E





  , (3.19) 

q A0(I, q) B2(I, q) C4(I, q) 

12  

32 

25 

65 

87 

0 

5435 

65 
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which is equal to 

 
  
E1 / 2

(2)  
BB

0


CC

0
 . (3.20) 

Using Eq. (3.18) this can be shown to be equal to 

 
  
E1 / 2

(2) 
(Q

PAS )2

20


2
5


8
7

D0 ,0
2 (, , )  54

35
D0 ,0

4 (, , )






 , (3.21) 

which may be expressed more generally as: 

 

    

E m I

(2) 
(Q

PAS )2

20
A0 (I, q)Q0 ()  B2 (I , q)Q2 (, , , )

C4 (I , q)Q4 (, , , )
 , (3.22) 

and consequently, the second-order perturbation to the frequency of a 

transition mI  mI is given by 

 

    

E m I m I

(2) 
(Q

PAS )2

0
A0 (I , q )Q0 ()

B2 (I , q)Q2 (, , , )  C4 (I, q)Q4 (, , , )
 , (3.23) 

where 
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Figure 3.2. The energy levels of a spin I  =  32 nucleus when successively perturbed by the (a) 

Zeeman, (b) first-order quadrupolar and (c) second-order quadrupolar interactions.  
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18 70
{D0,4

4 (, , )  D0 ,4
4 (, , )}

 , (3.24) 

and A0(I, q), B2(I, q) and C4(I, q) are zeroth-, second- and fourth-rank coefficients 

that depend on I and mI. The values of these coefficients for the central and 

satellite transitions of a spin I  =  32 nucleus are shown in Table 3.1; a complete 

listing of these coefficients for spin I  =  32 and spin  I  =  52 nuclei is given in 

Appendix E. It should be noted that, as a consequence of Eq. (3.11) and the fact 
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that all the Wigner rotation matrix elements,     D p ,p
l (, , ) , in Eq. (3.24) have p'  

=  0, only the  and  angles are required to describe the rotation of the PAS of 

the EFG tensor into the laboratory frame.  If the further simplification that the 

asymmetry parameter   =  0, is made, then only Wigner rotation matrrix 

elements with p  =  0 are needed and so only the angle  is required. 

The effect of the quadrupolar interaction on the energy levels of a spin I  =  

32 nucleus is shown in Fig. 3.2. Figure 3.2 shows that the central transition 

experiences a second-order perturbation (proportional to ( PAS
Q )20) that is 

considerably smaller than the first-order interaction (proportional to   Q
PAS ) that 

affects the satellite transitions. 

 

3.3.3 Effect of Sample Spinning 

 The expressions derived in Sections 3.3.1 and 3.3.2 that describe the 

perturbations arising from the first- and second-order quadrupolar interactions 

are applicable under "static" (non-spinning) conditions. It has been well 

documented that magic angle spinning (MAS) is able to considerably reduce 

the anisotropic broadening present in solid-state NMR spectra of quadrupolar 

nuclei [8–10]. This leads to improved resolution and so facilitates spectral 

interpretation when there are overlapping powder patterns from inequivalent 

sites present. In this section, the origin of the line-narrowing effect of MAS is 

shown. The implications of MAS for the perturbation of the energy levels is 

described and the way that these effects manifest themselves in second-order 
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quadrupolar broadened MAS spectra is considered. 

 In deriving Eq. (3.12), the quadrupolar Hamiltonian in the laboratory 

frame, transformation of the Hamiltonian between two frames of reference was 

required. This transformation, from the PAS of the EFG tensor to the laboratory 

frame, needed just a single set of Euler angles, ,  and . Under conditions of 

sample spinning, the transformation proceeds via an intermediate frame of 

reference, known as the rotor-fixed frame. In this frame of reference, the z axis 

is coincident with the sample rotation axis. Two sets of angles are thus required 

to define the rotation from the PAS of the EFG tensor to the laboratory frame: 

 Lab),,0(RRotor),,(RPAS R      t  , (3.25) 

where ', ' and ' are angles relating the PAS of the EFG tensor to the rotor-

fixed frame, and (Rt + ) and  are the angles describing the rotation of the 

rotor frame onto the laboratory frame, where  is the angle between the 

spinning axis and B0 and  indicates the crystallite orientation relative to the 

rotor axis at time t  =  0. R is the spinning frequency (in units of rad s1), which 

may also be expressed in units of Hertz as R, where R  =  R2. The 

transformation from the rotor-fixed frame to the laboratory frame is seen to 

require only 2 angles, which is due to the same reason as in the case of the static 

second-order quadrupolar interaction described at the end of the previous 

section. By splitting the transformation from the PAS to the laboratory frame of 

reference into two rotations, the Wigner rotation matrix elements given in Eq. 
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(3.24),     D0, r
c (, , ) , are modified to 

  


c

cm

c
rm

c
m

c
r t ),,(D),,0(D),,(D ,R,0,0  , (3.26) 

where c  =  2 or 4. Sample spinning has thus introduced a time dependence that 

conflicts with the time-independent perturbation theory that was used in the 

previous sections. However, this theory remains valid if an integer number of 

rotor periods is assumed. Using Eq. (3.11), the Wigner rotation matrix elements 

    D0, m
c (0, , Rt  )  may be written as 

     D0, m
c (0, , Rt  )  d 0 , m

c () exp( imRt) exp( im) . (3.27) 

The presence of Wigner rotation matrix elements with p'  =  0 means that, as in 

the case described in the previous section, only two angles are required for the 

transformation from the rotor-fixed frame to the laboratory frame. Over the 

course of an integer number of rotor periods, t will vary from 0 to (2nR) s, 

where n is the number of rotor periods, and under such conditions, the integral 

of the term exp(imRt) is only non-zero when m  =  0. Consequently, only 

Wigner rotation matrix elements of the form     D0,0
c (0, , Rt  )  and 

),,(D ,0 c
r  are required and so Eq. (3.26) may be simplified to 

 ),,(D)(d),,(D 00,0,0  c
r,

cc
r  , (3.28) 

and in so doing is made time-independent. Assuming an integer number of 

rotor periods, Eq. (3.23) thus becomes: 
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E m I m I

(2 ) 
(Q

PAS )2

0
A0 (I , q )Q0 ()  B2 (I , q)d 0 ,0

2 ()Q2 ( , , )

C4 (I , q)d 0 ,0
4 ()Q4 ( , , )

 , (3.29) 

where 
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4 ( ) cos 4 

 . (3.30) 

Notice that the second- and fourth-rank contributions in Eq. (3.29) are 

independent of '. If the assumption of axial symmetry is made, then the angle 

' is no longer required. 

The dependence of the reduced rotation elements in Eq. (3.30) on  is 

given by 

 
  
d 0,0

2 () 
1
2

3 cos2   1  , (3.31) 

and 

 
  
d 0,0

4 () 
1
8

35 cos4   30 cos2   1  . (3.32) 
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These elements equal zero when   =  54.74° in Eq. (3.31) and 30.56° or 70.12° in 

Eq. (3.32). This means that spinning at the magic angle completely removes the 

second-rank contribution to the anisotropic broadening, but only reduces the 

fourth-rank contribution. The absence of a common root to the equation 

     d 0 ,0
l ()  0  , (3.33) 

for the cases of l  =  2 and l  =  4 means that spinning about a single angle  is 

incapable of removing both second- and fourth-rank anisotropic broadenings. 

 

3.3.4 Second-Order Quadrupolar Broadened Spectra 

Inspection of Eq. (3.29) reveals that the second-order perturbation to the 

frequency of the transitions of a quadrupolar nucleus contains both isotropic 

and anisotropic components. The zeroth-rank component, A0(I, q)Q0(), leads to 

an isotropic shift in the spectrum, whilst the second- and fourth-rank 

anisotropic terms, B2(I, q)Q2(, , ) and C4(I, q)Q4(, , ), are responsible for 

anisotropic line broadening. Figure 3.3 shows simulated central-transition 

lineshapes under MAS conditions for a spin I  =  32 nucleus, simulated with  

=  0, 0.5 and 1, respectively. The orientationally dependent second- and fourth- 

rank terms in Eq. (3.29) lead to the observed broadening and the effect of the 

zeroth-rank term is evident in the shift of the powder pattern (in this case to 

lower frequency) from the centre of the spectrum. 
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Figure 3.3. Computer-simulated MAS second-order quadrupolar central-transition lineshapes 

of a spin I  =  32 nucleus, simulated using   =  (a) 0, (b) 0.5 and (c) 1, respectively. The 

quadrupolar coupling parameter CQ  =  2 MHz, the Larmor frequency is 100 MHz and the 

spectra were generated by averaging over 5760 values of the angles  and  The MAS rate is 40 

kHz. 

 

3.3.5 Spinning Sidebands 

 The assumption made in Section 3.3.3 was that sampling over an integer 

number of rotor periods and spinning at the magic angle leads to complete 

removal of second-rank anisotropic broadening. This method of data sampling, 

in which the free induction decay is sampled at the start of every rotor period, 

("rotor-synchronization"), is not the usual method of data acquisition in NMR. 

Consequently, the time dependence of the rotation matrix elements given in Eq. 

(3.26) needs to be considered. If axial symmetry is assumed, then only the 

elements with r  =  0 are required and so Eq. (3.23) becomes: 
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where the following relations have been used for deriving the second- and 

fourth-rank contributions to Eq. (3.34): 
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 . (3.35) 

If the Wigner rotation matrix elements are expanded according to Eq. (3.11), the 

second-rank contribution is thus given by 

 

    

D0,0
2 (, , )  d 0 ,0

2 ()d 0 ,0
2 ( )  2d 0,1

2 ()d 0 ,1
2 ( ) cos R t cos 

 sin Rt sin   2d 0,2
2 ()d 0,2

2 ( ) cos 2Rt cos 2
sin 2Rt sin 2

 , (3.36) 

whilst the fourth-rank contribution is given by 

    

D0,0
4 (, , )  d 0 ,0

4 ()d 0 ,0
4 ( )  2d 0 ,1

4 ()d 0 ,1
4 ( ) cos R t cos 

 sin Rt sin   2d 0 ,2
4 ()d 0 ,2

4 ( ) cos 2Rt cos 2
sin 2Rt sin 2  2d 0 ,3

4 ()d 0 ,3
4 ( ) cos 3Rt cos 3

sin 3Rt sin 3  2d 0,4
4 ()d 0 ,4

4 ( ) cos 4Rt cos 4
sin 4Rt sin 4

 . (3.37) 

As a consequence of the presence of the Wigner rotation matrix elements with p  

=  0 (i.e., ),,0(D2
0, m  and ),,0(D4

0, m  in Eq. (3.35)), the angle ' does not 

appear in Eq. (3.37). 

The implication of Eq. (3.37) is that the static powder pattern, to which the 
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time-independent term in these equations contributes, is broken up into a series 

of spinning sidebands [101] that have the same phase [102] and that are 

separated by the spinning frequency, R. The spinning sidebands are a 

consequence of the time-dependent terms in Eqs. (3.36) and (3.37). If the sample 

is spun at a frequency which is small with respect to the width of the static 

powder pattern (i.e., small with respect to the anisotropy of the quadrupolar 

interaction) then the spinning sideband manifold closely resembles the 

envelope of the powder pattern. As the spinning rate is increased, this 

similarity is lost to the point where, in the case that the spinning frequency 

greatly exceeds the width of the powder pattern, a centreband is observed at 

the isotropic frequency [37]. 

The time-independent terms in Eqs. (3.36) and (3.37) represent the 

narrowing of the anisotropically-broadened static powder pattern that can be 

achieved by spinning. As shown in Section 3.3.3, spinning at the magic angle 

removes second-rank broadening as     d 0,0
2 (54.7o )  =  0, whilst the fourth-rank 

contribution is not removed by MAS as     d 0,0
4 (54.7o )  ≠  0. This means that, under 

MAS conditions, any static powder pattern that arises from an interaction that 

is solely second-rank in nature will be split into a centreband and series of 

sidebands whose linewidth has no inhomogeneous contribution. For the case of 

a second-order quadrupolar interaction, there will thus be a fourth-rank 

contribution to the linewidth of the centreband and sidebands. 

The effect of MAS on the powder patterns of second-order quadrupolar 

broadened central-transition spectra of half-integer quadrupolar nuclei is 
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Figure 3.4. Simulated central-transition second-order quadrupolar broadened powder patterns 

for a spin I  =  32 nucleus, shown for when the spinning frequency is (a) 0, (b) 1 kHz, (c) 2 kHz 

and (d) 40 kHz. The quadrupolar coupling parameter CQ  =  2 MHz, the Larmor frequency is 

100 MHz and axial symmetry is assumed. In (a) the spectrum was generated using 500 equally-

spaced values of the angle , whilst in (b)–(d) the spectra were simulated by averaging over 720 

values of the angles  and . 

demonstrated in Fig. 3.4, where simulated spectra of a spin I  =  32 nucleus are 

shown. The spectra show how, at low spinning frequencies, the sideband 

envelope remains similar to the static powder pattern. However, as the 

spinning rate increases, these sidebands are spaced further apart and 

progressively lose intensity until, at a spinning speed much greater than the 

width of the static powder pattern, a centreband containing fourth-

rankanisotropic broadening remains. Note that the centreband is not always the 

most intense peak. It should also be noted that the spectra in Figs. 3.4b–3.4d are 
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not normalised relative to each other so as to enable the structure of the 

spinning sidebands to be clearly seen; the integrated areas of these spectra are, 

of course, identical and independent of the spinning frequency. 

 

3.4 High-Resolution Methods  

3.4.1 Introduction 

 It was shown in the previous section that MAS removes line broadening 

arising from interactions which have solely second-rank contributions and in so 

doing improves considerably the resolution of solid-state NMR spectra. 

Interactions such as CSA, dipolar coupling and the first-order quadrupolar 

interaction are described in terms of second-rank components alone and so 

MAS is able to split the static powder patterns into a manifold of narrow 

spinning sidebands. The failure of MAS to have the same effect on interactions 

containing a fourth-rank contribution is arguably its greatest limitation and the 

methods developed to overcome this are introduced in the next section. 

 

3.4.2 Double Rotation and Dynamic Angle Spinning 

The inability of MAS to completely remove broadening due to the fourth-

rank component of the second-order quadrupolar interaction means that, in 

cases where there is an overlap of the powder patterns of inequivalent sites, 

unambiguous spectral assignment becomes very difficult. Several methods 
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have been proposed to remove completely the residual effects of the 

quadrupolar interaction, amongst them double rotation (DOR) [41, 42] and 

dynamic angle spinning (DAS) [43–45]. As mentioned in Section 3.3.3, no single 

angle can simultaneously remove the second- and fourth-rank contributions to 

the quadrupolar broadening. For this to be achieved, the following condition 

needs to be satisfied: 

   d 0,0
2 ()  d 0 ,0

4 ()  0  . (3.38) 

DOR and DAS satisfy this condition by spinning about two angles. 

In DAS, a two-dimensional experiment is performed in which the sample 

is spun sequentially about two angles during the two time periods, t1 and t2. 

The rotor angle is switched between these two periods, during which time the 

magnetization is stored as a population state. In this experiment, the angles 1 

and 2 need to be chosen such that the following equations are fulfilled: 

   ad 0,0
2 (1)  bd 0,0

2 (2 )  0  , (3.39) 

   ad 0,0
4 (1)  bd 0,0

4 (2 )  0  , (3.40) 

and 

 a + b  =  1 . (3.41) 

There are many solutions to Eqs. (3.39–3.40), but the most commonly used sets 
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Figure 3.5. Pulse sequence for dynamic angle spinning. The acquisition of both p =  +1 and p  =  

1 pathways during t1 ensures purely absorptive lineshapes are obtained. 

of angles are 1  =  37.38° and 2   =  79.19°, with a  =  b  =  0.5. 

The inhomogeneous broadening is refocussed at a time t2  =  (ab)t1 and 

this yields a two-dimensional spectrum possessing anisotropically broadened 

lineshapes that have a gradient of ab. An "isotropic" spectrum that is free of 

inhomogeneous quadrupolar broadening may then be obtained by a projection 

onto an axis orthogonal to the ridge; this may be accomplished using a shearing 

transformation. The pulse sequence for DAS is shown in Fig. 3.5. There have 

been several variants of this sequence devised, with one removing the need for 

a shearing transformation. This modification, which also involves a second 

angle hop to 54.74°, has the consequence that the quadrupolar interaction is 

refocussed at t2  =  0 for all values of t1. The resultant spectrum thus contains 

ridges that are not only parallel to the 2 axis, but that are free of broadenings 

due to CSA and dipolar couplings. 

 DAS has two major limitations. One is that the periods in which the 
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Figure 3.6. The arrangement of rotors that forms the basis of the double rotation experiment. In 

this experiment, 1  =  54.74 and 2  =  30.56.  

magnetization is stored as a population state require long T1 relaxation times, so 

making it unsuitable for the many cases in which the T1 relaxation of a 

quadrupolar nucleus is very efficient. This has a particularly large effect when a 

second angle hop is required for acquisition under MAS conditions. The other 

drawback of DAS is that specialist hardware is required for its implementation, 

a fact which has limited the applicability of the technique. Nevertheless, several 

examples of its utility in 11B [103] and 17O [104–109] NMR have been reported. 

In DOR, refocussing of the quadrupolar interaction is achieved by 

spinning simultaneously about two angles. This is usually achieved by spinning 

the sample in an inner rotor that is itself inside an outer rotor. The outer rotor is 

inclined at the magic angle whilst the inner rotor is inclined at an angle of 

30.56° to the outer rotor axis. This is shown in Fig. 3.6. 

 In contrast to DAS, DOR is a one-dimensional experiment. The technique 

has major limitations, however. The most significant one arises from the fact 

that the outer rotor can usually only be spun at speeds of 1–2 kHz and so the 

resultant spectrum is crowded with spinning sidebands that can greatly hinder 
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interpretation. In addition, DOR requires a specialist probe which, as in the case 

of DAS, is prone to mechanical problems. In spite of this, DOR has been 

successfully applied in 17O [110–115], 23Na [116–123] and 27Al [124–127] NMR. 

 

3.4.3 Multiple-Quantum MAS 

3.4.3.1 Introduction 

 A method was developed in 1995 that achieves complete refocusing of 

the second-order quadrupolar interaction [48, 49], and which, unlike DOR and 

DAS, may be performed using conventional MAS hardware. This experiment, 

known as MQMAS, operates by taking advantage of the fact that the fourth-

rank coefficients of the second-order quadrupolar interaction perturbing the 

central and multiple-quantum (usually mI  =  +32  32) transitions of a half-

integer quadrupolar nucleus differ by a scaling factor. Consequently, a two-

dimensional experiment correlating single-quantum central-transition 

coherences and multiple-quantum (MQ) coherences, performed under MAS 

conditions, will lead to complete removal of the effects of the quadrupolar 

interaction to second order. This is achieved by an experiment in which MQ 

coherences are excited and then allowed to evolve in the t1 period before 

subsequent conversion to observable central-transition coherences that evolve 

during the t2 period. The resultant two-dimensional spectrum contains, after 

shearing, a second-order quadrupolar broadened central-transition powder 

lineshape parallel to the 2 axis and an isotropic spectrum devoid of 
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quadrupolar broadening parallel to the 1 axis (although fourth-rank 

broadenings that are not quadrupolar in origin remain in 1) [128, 129]. 

 

3.4.3.2 Non Pure-phase Methods 

 The original MQMAS experiment involved excitation of either p  =  3 or 

p  =  +3 coherences that evolve during the t1 period before their subsequent 

conversion to observable central-transition coherence (p  =  1) [49]. The pulse 

sequence for this experiment is shown in Fig. 3.7, where the two coherence 

transfer pathways that may be selected are indicated. In this experiment, single-

pulse excitation has been shown to be better than the two-pulse method [49, 

130, 131] used in solution-state NMR [84]. 

The time-domain signal acquired by the experiment in Fig. 3.7, when 

performed on a spin  I  =  32 nucleus, neglecting chemical shift effects, and 

using the solid coherence transfer pathway, is given by: 

 

    

s(t1 , t2 )  exp i
Q
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 . (3.42) 

Equation (3.42) thus shows that the fourth-rank contribution to the second- 

order quadrupolar broadening is refocussed with the formation of an echo 

when 
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Figure 3.7. Pulse sequence and corresponding coherence transfer pathways for the two-pulse 

triple-quantum MAS experiment. The +3  1 and 3  1 pathways correspond to the 

antiecho and echo pathways for a spin I  =  32 nucleus, respectively. 

 
    


6
5

t1 
54
35

t2








  0 , (3.43) 

i.e., when t2  =  (65)(3554)t1  =  (79)t1. The position in t2 at which the echo 

forms thus depends on the ratio of the fourth-rank coefficients defined in Eq. 

(3.22), this is referred to as the MQMAS ratio, R(I, q), and is defined as: 

 
    
R(I, q) 

C4 (I , q)
C4 (I, 1 2)

 , (3.44) 

where q is the coherence order of the transition evolving during the t1 period 

and so takes the value ±32 for a triple-quantum MAS experiment. 

When t1  =  0, the quadrupolar interaction is refocussed as a half-echo, i.e., 

its signal decreases from its maximum to zero. As t1 increases, the echo moves 

progressively forward in t2 until, at a sufficient value of t1, a whole echo is 
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formed. The 3  1 pathway is, for a spin I  =  32 nucleus, referred to as the 

echo pathway because the echo formed by the refocussing of the residual 

second-order quadrupolar interaction moves forward in t2 as t1 increases. 

Conversely, the +3  1 pathway is known as the antiecho pathway, in which 

case the echo moves backwards in t2 as t1 increases. For a spin I  =  52 nucleus, 

the situation is reversed. More generally, if the MQMAS ratio is negative, then 

the 3  1 coherence transfer pathway is the echo pathway, whilst if it is 

positive, then the +3  1 pathway is the echo pathway. The MQMAS ratios for 

triple-quantum MAS experiments of spin I  =  32, 52 and 72 nuclei are given in 

Appendix F. 

Two-dimensional Fourier transformation of the data in Eq. (3.42) yields a 

two-dimensional spectrum containing an anisotropically broadened ridge 

lineshape inclined at a gradient of 79 with respect to the 2 axis. The spectrum 

obtained by Fourier transformation of the signal arising from the +3  1 

(antiecho) pathway contains a ridge lineshape inclined at a gradient of 79. In 

each case, an isotropic spectrum may then be obtained by projection onto an 

axis orthogonal to this ridge, in a manner exactly analogous to DAS that was 

described earlier. 

Inspection of Eq. (3.42) shows that the signal yielded from these two-pulse 

MQMAS methods is phase modulated and hence, the resultant two-

dimensional spectrum contains lineshapes that are not pure-phase (i.e., they 

contain the highly undesirable phase-twist). Consequently, these experiments 

are not suitable for modern NMR spectroscopy and are no longer routinely 
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used. 

 

3.4.3.3 Pure-phase Methods 

It has been observed that for a spin I  =  32 nucleus, the 3  1 and +3  

 1 conversions are equally efficient when a hard pulse with an inherent flip 

angle of   =  90 is used [132]. By performing a two-dimensional experiment in 

which the 3  1 and +3  1 coherence transfer pathways are 

simultaneously selected such that p  =  3 and p  =  + 3 coherences evolve 

during the t1 period, a spectrum containing absorption-mode lineshapes may be 

obtained [132]. There is, however, no pulse flip angle which can perform these 

coherence transfer processes with equal efficiency for nuclei with spin I  >  32 

and consequently, such an experiment has not been widely used. 

A modification of the experiment described above that can lead to absorption-

mode two-dimensional lineshapes for all values of I was suggested in 1996. This 

experiment also involves simultaneous evolution of p  =  +3 and p  =  3 

coherences during the t1 period, but their conversion to observable central-

transition coherences is achieved using two pulses that proceed via a 

population state (p  =  0). This method, known as a z-filter [133–135], achieves 

the acquisition of purely absorption-mode lineshapes by utilising the fact that 

the +3  0 and 3  0 conversions are always equally efficient. The pulse 

sequence and coherence transfer pathway is shown in Fig. 3.8a, where the last 

pulse is a 90 pulse selective for the central transition. The acquisition of both p  
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Figure 3.8. Pulse sequence and coherence transfer pathways for the (a) z-filter and (b) split-t1 

whole-echo triple-quantum MAS experiments. The  interval in (a) is of short duration 

(typically 3 s). 

=  +3 and p  =  3 coherences during t1 leads to an increase in signal intensity 

with respect to the original experiment of Frydman and Harwood, and this 

signal intensity is maximised by reducing the radiofrequency field strength of 

the final pulse. 

Another route to obtaining purely absorptive two-dimensional lineshapes 

in MQMAS spectra was devised that involves the appendage of a spin-echo 

unit, consisting of an inversion pulse that is selective for the central transition. 

In the resultant experiment, known as a "shifted-echo" or "whole-echo" 

experiment [136–138], when the echo pathway is selected, the echo is shifted 
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forward in t2 by a time , where  is the echo interval. This means that, 

assuming a sufficiently long value of  is chosen, the residual second-order 

quadrupolar interaction is refocussed as a whole echo for every value of t1. In 

addition, the echo is no longer formed at t2  <  0 for the antiecho pathway. 

The fact that a choice of echo interval can be made such that the 

quadrupolar interaction is refocussed as a whole echo for all values of t1 means 

that this experiment yields a spectrum containing purely absorptive two-

dimensional lineshapes. This occurs as a result of the properties of whole 

echoes. Whole echoes contain real and imaginary components that are 

symmetric and anti-symmetric about the midpoint, respectively. The Fourier 

transform of such a time-domain signal yields a lineshape in which the real part 

is purely absorptive and the imaginary part is zero. It is for this reason that such 

a modification to the experiment has become routine as a way of obtaining 

pure-phase two-dimensional lineshapes in MQMAS. It should be noted that the 

symmetry properties of a whole echo only hold in cases where the 

inhomogeneous broadening exceeds the homogeneous broadening [136]. This is 

typically the case for crystalline materials but in amorphous or disordered 

materials this is often not observed and, in such cases, whole-echo methods are 

not the optimum choice. 

It was shown in Section 3.4.3.2 that the residual fourth-rank quadrupolar 

broadening is refocussed, when the echo pathway is selected, when t2  =  (C4(I, 

32)C4(I, 12))t1, so leading to a spectrum with an anisotropically broadened 

ridge aligned along a gradient equal to the MQMAS ratio. To obtain an 
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isotropic spectrum it is necessary to perform a shearing transformation; this 

produces a spectrum in which the ridge is parallel to the 2 axis and an 

isotropic spectrum is then obtained directly from a projection onto the 1 axis 

[139]. However, a further modification to the MQMAS experiment has been 

devised which directly produces a spectrum in which the quadrupolar 

broadened ridge is parallel to the 2 axis, so avoiding the need for a shearing 

transformation. This is achieved by performing a shifted-echo experiment in 

which the t1 period is split into periods of multiple-quantum and central-

transition evolution [134, 137, 138]. In such an experiment, the inhomogeneous 

broadening is refocussed at the end of the t1 period and a whole echo formed at 

t2  =   for all values of t1. To illustrate this, consider the example of a spin I  =  

32 nucleus. The MQMAS ratio in this case has the value 79; that is, the fourth-

rank contribution to the inhomogeneous broadening from the triple-quantum 

transition is 79 of that arising from the central transition. Consequently, if the 

t1 period is split into periods of triple-quantum and central-transition evolution 

in the ratio 9:7, the fourth-rank contribution to the second-order quadrupolar 

interaction will be refocussed at the end of t1 for all values of t1. 

The division of the t1 period into periods of triple-quantum and central-

transition evolution is the basis of so-called "split-t1" acquisition in MQMAS 

experiments. The pulse sequence for these experiments is shown in Fig. 3.8b. 

Split-t1 acquisition is usually combined with the shifted-echo method so as to 

produce an experiment that yields both ridge lineshapes parallel to the F2 axis 

and pure-phase two-dimensional lineshapes. The experiment shown in Fig. 3.8b 
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is thus referred to as a split-t1 whole-echo MQMAS experiment and is 

applicable to all the multiple-quantum transitions of every half-integer 

quadrupolar nucleus. The values of the constants k, k’ and k’’ in Fig. 3.8b are 

given, for spin I  =  32, 52 and 72 nuclei, in Appendix G. For nuclei possessing 

triple-quantum transitions with a positive MQMAS ratio, the period of central-

transition evolution during t1 has p  =  1 (i.e., k’  =  0), as in such cases, a 

correlation between triple-quantum and single-quantum transitions of opposite 

sign is required for refocussing of the fourth-rank inhomogeneous broadening 

to occur at t2  >  0. 

The MQMAS experiment is now a routine method for obtaining high-

resolution NMR spectra of quadrupolar nuclei and there have been numerous 

examples demonstrating its applicability to nuclei with a range of spin 

quantum numbers, such as 11B [140–145], 17O [146–161], 23Na [162–173], 25Mg 

[174, 175], 27Al [176–194], 43Ca [195–198], 45Sc [199, 200], 51V [201, 202], 55Mn 

[203], 59Co [204, 205], 63Cu [206], 87Rb [136, 207, 208] and 93Nb [209–214]. 

 

3.4.4 Satellite-Transition MAS 

Another method that facilitates the acquisition of isotropic spectra of 

quadrupolar nuclei is the STMAS experiment, introduced in 2000 [50]. This 

experiment operates in an analogous manner to MQMAS, but instead uses a 

correlation of satellite-transition coherences with central-transition coherences 

to achieve refocussing of the residual fourth-rank quadrupolar broadening. The 
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Figure 3.9. Pulse sequence and coherence transfer pathway for the phase-modulated whole-

echo STMAS experiment. Split-t1 acquisition is used and the constants k, k’ and k” are given in 

Appendix G. 

acquisition of whole echoes is typically used to ensure the acquisition of 

absorption-mode two-dimensional lineshapes. The resultant two-dimensional 

spectrum, if obtained using split-t1 acquisition, consists of an ST  

CTcorrelation ridge for each inequivalent site in the solid, each of which is 

broadened by the residual second-order quadrupolar interaction parallel to the 

2 axis and that is free from quadrupolar broadening parallel to the 1 axis. 

In Section 3.3.3 it was shown that rotor-synchronized MAS removes the 

effects of any second-rank interaction, such as the first-order quadrupolar 

interaction. Consequently, as the satellite transitions in a quadrupolar nucleus 

are subject to a large first-order quadrupolar perturbation, very accurate rotor-

synchronization is required during the t1 period. To fully remove the effects of 

the first-order quadrupolar interaction, the magic angle must also be set very 

precisely (within 0.003) [53]. 

STMAS spectra are typically acquired using the phase-modulated split-t1 

whole-echo pulse sequence in Fig. 3.9. This experiment yields a two-
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dimensional spectrum containing pure-phase two-dimensional lineshapes that 

are anisotropically broadened along an axis parallel to the 2 axis in an 

analogous manner to the MQMAS experiment shown in Fig. 3.8b. STMAS 

spectra also feature an additional peak not observed in their MQMAS 

analogues which arises from CT  CT transfer. This peak is aligned along a 

gradient of +1 and is an inevitable consequence of an experiment involving 

excitation of solely single-quantum coherences and it cannot be removed by 

phase cycling alone. This peak may overlap with ST  CT correlation peaks of 

sites with small quadrupolar interactions and so hinder spectral interpretation. 

It has been shown that STMAS can offer significant sensitivity advantages 

over MQMAS [53] and the technique has been widely used for a variety of 

quadrupolar nuclei such as 11B [53], 17O [53], 23Na [50, 51, 53, 215], 27Al [52, 53, 

216, 217], 45Sc [52, 53], 59Co [52, 53, 218], 87Rb [52, 53, 215] and 93Nb [52]. This 

gain in sensitivity has been shown to hold also for low- nuclei (for which the 

achievable radiofrequency field strengths are much less) and has been 

demonstrated in the acquisition of STMAS spectra of 25Mg (spin I  =  52) and 

39K (spin I  =  32) at natural abundance [54]. The ability of STMAS to yield 

high-resolution NMR spectra of low- quadrupolar nuclei has been 

demonstrated extensively for 17O in a wide range of minerals [53, 55, 190, 194, 

219, 220]. 
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Figure 3.10. (a) Two-dimensional 87Rb STMAS NMR spectrum of rubidium nitrate recorded at 

B0  =  9.4 T and a MAS rate of 10 kHz. (b) Cross-sections taken parallel to the 2 axis of the 

spectrum in (a) for each of the three 87Rb sites. Contours are shown at 8, 16, 32 and 64% of the 

maximum intensity. 

 

3.4.5 Appearance of MQMAS and STMAS Spectra 

Both MQMAS and STMAS yield two-dimensional spectra that contain 

considerable information. By projecting the two-dimensional spectra onto an 

axis orthogonal to the ridge lineshapes, isotropic spectra that are free of 

inhomogeneous quadrupolar broadening may be obtained. These isotropic 

spectra enable the number of crystallographically inequivalent sites in a solid to 

be determined. Using these spectra to obtain information on the relative 

populations of these sites should be done with caution however — the non-

uniform excitation and conversion of multiple-quantum coherences (in 

MQMAS) [56] and of satellite-transition coherences (in STMAS) [52], means that 
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these techniques are not quantitative. This is discussed in greater detail in 

Chapter 4. A typical spectrum of a crystalline material obtained using these 

methods is presented in Fig. 3.10, where the 87Rb STMAS NMR spectrum of 

rubidium nitrate, RbNO3, is shown. The two-dimensional spectrum in Fig. 3.10a 

shows the expected ST  CT ridges for each of the three sites [221] present, 

along with the superfluous CT  CT correlation ridge. Cross-sections taken 

parallel to the 2 axis for each of the three sites yield second-order quadrupolar 

broadened lineshapes whose width, shape and position in the two-dimensional 

spectrum are dependent on the values of CQ and  of each of the sites in this 

material [136]. 

MQMAS and STMAS have the great advantage over one-dimensional 

high-resolution methods such as DOR that the resultant spectra possess two 

dimensions in which quadrupolar information is retained [136]. Quadrupolar 

parameters may be extracted from MQMAS and STMAS spectra by analysis of 

the position of the centre of gravity of each ridge lineshape in the 1 and 2 

dimensions. These positions depend on the isotropic chemical shift, CS, and Q, 

the isotropic second-order quadrupolar shift, which is given by 

 
  
Q 

Q
PAS 2
0

1 
2

3









 , (3.45)  

expressed as a ppm shift. It can be shown that for a spin I  =  32 nucleus the 

peak positions in the 1 and 2 dimensions of a sheared or split-t1 triple-

quantum MAS spectrum are given by: 
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1 

17
8

CS 
1
2
Q  , (3.46) 

and 

 
  
2  CS 

2
5
Q  , (3.47) 

and by rearranging: 

 
  
CS 

81  102

27
 , (3.48) 

and 

 
  
Q 

2161  4592

160
 . (3.49) 

The expressions in Eqs. (3.46) and (3.47) are different for spectra obtained 

by non-split-t1 methods or for those that have not been subject to a shearing 

transformation and these are shown, for both MQMAS and STMAS 

experiments of spin I  =  32 and I  =  52 nuclei, in Appendix H. If the peak 

positions in the two dimensions are known, then the quadrupolar parameters 

CS and Q may be determined. It is not possible to obtain CQ and  

independently from Q, however, the quadrupolar product PQ, defined as [107]: 

 
    
PQ  CQ 1 

2

3









 , (3.50) 



81 

may be determined from Q by 

 
    
PQ 

2I(2I  1)0 Q

3  103  . (3.51) 

 

3.4.5.1 Spectra of Amorphous Materials 

In unsheared MQMAS and STMAS spectra, or spectra acquired from non-

split-t1 methods, the anisotropically broadened ridge lineshapes lie along an 

axis given by the MQMAS or STMAS ratio, typically known as the anisotropic 

(A) axis. In amorphous and disordered materials, the lineshapes may be 

broadened along additional axes due to a distribution of isotropic chemical 

shifts and second-order quadrupolar shifts [222]. Where there is a distribution 

of isotropic chemical shifts, the ridges are broadened along an axis that has a 

gradient of +1 in the case of STMAS and +3 for triple-quantum MAS. This axis 

is usually referred to as the chemical shift (CS) axis. If there is also a range of 

second-order quadrupolar broadenings, then the lineshape will also be 

broadened along an axis with a gradient given by the ratio 

 
 2/1,A

),(A
0

0

I
qI

 , (3.52) 

where A0(I, q) and A0(I, 12) are the spin- and transition-dependent zeroth-rank 

coefficients introduced in Section 3.3.2. This axis is known as the quadrupolar 

shift (QS) axis. 
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The ability of MQMAS and STMAS to identify distributions of isotropic 

chemical shifts and isotropic second-order quadrupolar shifts demonstrates the 

great utility of these techniques when considering the structure of amorphous 

materials. 
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Chapter 4 

Coherence Transfer Enhancement 

4.1 Selective and Non-Selective Pulses 

An important parameter in NMR is the inherent nutation frequency, 1, 

related to the radiofrequency field strength, B1, by 1  =  B1. When an NMR 

experiment is performed, it is desirable to have a nutation frequency much 

greater than the range of resonance frequencies being studied. Under such 

conditions the effective field, Beff, experienced by all the spins whose 

frequencies are in the range being studied, is virtually constant. Using the 

vector model description of NMR described in Section 2.2, this means that the 

magnetization vectors of all the spins are rotated through the same flip angle by 

the pulse. A pulse that has this effect is known as a "hard" or non-selective 

pulse. In the context of quadrupolar nuclei, a hard pulse is one for which the 

following condition is satisfied: 

 1  >>  Q . (4.1) 

For half-integer quadrupolar nuclei in the solid state, however, this is rarely the 

case. In a powdered sample, Q takes values ranging from zero to   Q
PAS . 

Consequently, Eq. (4.1) is not satisfied for the majority of the crystallites, even 

with the highest radiofrequency field strengths currently attainable (typically 
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300 kHz), and so the following condition now applies: 

 1  <<  Q , (4.2) 

in which case the pulse is referred to as "soft" or selective and only the central 

transition is excited. For the majority of crystallites, the ratio Q1 is thus much 

greater than unity. In this section, the effect of the range of values of Q1 on 

single-pulse single-quantum coherence excitation is shown, whilst in the 

subsequent sections the coherence transfer processes present in MQMAS is 

considered. 

To consider the effect of pulses in the hard and soft regimes, the evolution 

of the density operator needs to be determined. The Liouville-von Neumann 

equation, introduced in Chapter 2, describes the evolution of the density 

operator. For a hard pulse along the rotating frame x axis, the Hamiltonian is 

given by 1Ix, and so for an initial density operator at thermal equilibrium this 

equation takes the form 

 

    

d(t )
d t

 i 1Ix , Iz 

 1Iy

 . (4.3) 

This equation describes the nutation of the magnetization from the z axis to the 

y axis at a rate 1. 

When a soft pulse is applied to a half-integer quadrupolar nucleus, only 

the central transition is excited. In such a situation, only two energy levels need 
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to be considered (those with mI  =  +12 and mI  =  12) and so half-integer 

quadrupolar nuclei may be treated like spin I  =  12 nuclei. In such cases, a 

convenient method for determining the effect of a soft pulse is the fictitious 

spin-12 operator formalism [223–226], which was introduced in 1977 for a spin 

I  =  1 nucleus [224]. In this formalism, the matrix representations of the 

operators     Ix
(1 / 2,1 / 2) and     Iy

(1 / 2 ,1 / 2) are given by, for a spin I  =  32 nucleus: 
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2
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
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







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

 . (4.4) 

The central 2  2 elements of these matrices are of course identical to the matrix 

representations of the angular momentum operators for a spin I  =  12 nucleus 

given in Appendix A. Using these operators, the evolution of the density 

operator can be shown to be, for a nucleus with spin quantum number I: 
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2
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





1Iy

(1/ 2 ,1 / 2)

 . (4.5) 

A comparison of Eqs. (4.3) and (4.5) reveals that the nutation frequency is (I + 
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Figure 4.1. The dependence of signal intensity on the flip angle of an on-resonance excitation 

pulse for a spin I  =  32 nucleus, shown for when Q1 is equal to 0 (solid line), 1 (dotted line) 

and 25 (dashed line). Simulations were performed assuming the sample to be static and 

assuming the presence of a second-order quadrupolar interaction with   =  0. The simulations 

were performed by assuming 90 equally-spaced values of the angle . The vertical scale is 

normalised with respect to the maximum single-quantum coherence obtained with a soft pulse. 

12) times greater for a selective pulse compared to a non-selective one.  

This variation in nutation frequency is demonstrated in Fig. 4.1 for a spin I  

=  32 nucleus, where the dependence of the central-transition signal intensity is 

shown as a function of the excitation pulse flip angle for ratios of Q1 equal to 

0, 1 and 25. The increase in nutation frequency for a soft pulse means that it 

leads to a maximum in signal intensity at a flip angle (for a spin I  =  32 

nucleus) of 45, half the 90 observed in the hard pulse case. In addition, this 

also means that there is a null in signal intensity observed for a soft pulse at a 

flip angle of 90, half the 180 observed for a hard pulse. The increase in 

nutation frequency shown in Fig. 4.1 also leads to an (I + 12) factor reduction in 

the signal intensity obtained when a pulse selective for the central transition is 
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used compared with a hard pulse. 

 

4.2 Excitation of Multiple-Quantum Coherence 

The excitation of multiple-quantum coherence [227, 228] plays an 

important role in a wide range of NMR experiments. Even though only single-

quantum coherence may be directly detected in NMR, excitation of multiple-

quantum coherence of spin I  =  12 nuclei in liquids is found in a variety of 

experiments such as DQF-COSY [229, 230], HMQC [231] and INADEQUATE 

[232]. The use of double- and triple-quantum filtration methods as a means of 

measuring the relaxation rates of spin I  =  32 nuclei in liquids and of 

differentiating between nuclear environments has also been shown [233, 234]. 

In the solid state, it was shown in 1981 that triple-quantum coherence may be 

excited for spin I  =  32 nuclei [235]. 

When working in the liquid state, multiple-quantum excitation is typically 

achieved via a two-pulse method [84]. Likewise, in the original MQMAS 

experiment, two-pulse excitation was used [48, 49]. It has been shown, 

however, that a single-pulse excitation is more efficient when 1  <    Q
PAS  [225] 

and excitation of triple-quantum coherence for spin I    32 nuclei has been 

shown [236, 237] and implemented into triple-quantum MAS [207] successfully 

using this method. Using the single-transition operator formalism, Wokaun and 

Ernst have shown that triple-quantum excitation in spin I  =  32 nuclei yields a 

signal that may be quantified in terms of the expectation value of the operator 
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    Iy
(3 / 2 ,3 / 2 )  [225]: 

 













 tty 2
Q

3
1)2/3,2/3(

8
3

sin
2
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and consequently, the duration of a triple-quantum excitation pulse that yields 

the optimum amplitude of triple-quantum coherence,   ex
max , is given by 

 
  
ex

max 
8
3

Q

1


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


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2

90
max  , (4.7) 

where the optimum signal amplitude obtained by a 90 pulse has a duration, 

  90
max , given by: 

 
  
90

max 


21
 . (4.8) 

It can also be shown that the excitation of single-quantum coherence reaches its 

maximum value when the duration of the pulse,     p 1
max , is 

 
      
p 1

max 
90

max

2
 45o  . (4.9) 

This is consistent with Section 4.1, in which it was shown that the nutation 

frequency of the central transition is (I + 12) times faster in the limit 1  <  Q.  

The dependence of triple-quantum excitation on the pulse flip angle is 

shown as a function of the ratio Q1 in Fig. 4.2, where the amplitude of triple- 
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Figure 4.2. Dependence of the triple-quantum signal intensity on the flip angle of the excitation 

pulse, shown for a spin I  =  32 nucleus for Q1 equal to 2 (solid line), 4 (dotted line) and 8 

(dashed line). The y axis scale is normalised as in Fig. 4.1 and all other simulation parameters 

are the same as those used in Fig. 4.1. 

quantum coherence excited is defined as the magnitude of the tensor operator 

T3,3 (p  =  3 coherence)  obtained when single-pulse excitation is performed on 

the operator T1,0. When Q1 is 2, triple-quantum excitation reaches its 

optimum at a flip angle of 218, whilst flip angles of 267 and 251 yield 

maximum triple-quantum signal intensity when this ratio is equal to 4 and 8, 

respectively. The triple-quantum amplitudes are comparable to the central 

transition amplitudes obtained in Fig 4.1, so indicating that triple-quantum 

excitation is a relatively efficient process. 

The three curves in Fig. 4.2 show that a factor of four increase in the ratio 

Q1 leads to an approximate 60% reduction in the triple-quantum signal 

intensity. Given that in a powder the quadrupolar coupling parameter Q can 

take values ranging from zero to   Q
PAS , this means that each crystallite in a 

powder does not lead to equal triple-quantum excitation. 
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The observations made using Fig. 4.2 have been considered in greater 

detail in the literature [56, 237], where the triple-quantum excitation behaviour 

of half-integer quadrupolar nuclei has been demonstrated [56]. In addition, the 

effect of MAS has also been considered [238]. 

 

4.3 Conversion of Multiple-Quantum Coherence 

The original MQMAS experiment [48, 49] consisted of two steps — the 

excitation of triple-quantum coherence and its conversion to observable central-

transition coherence. The signal intensity obtained from this experiment when 

either the 3  1 or +3  1 coherence transfer pathway is selected is shown 

in Figs. 4.3a and 4.3b respectively, as a function of the flip angle of the 

conversion pulse when the ratio Q1 is equal to 2, 4 and 8. Figure 4.3a shows 

that when the 3  1 pathway is selected, the maximum signal intensity is 

obtained when the conversion pulse has a flip angle close to 60. When the +3 

 1 pathway is selected, Fig. 4.3b reveals maximum signal intensity to occur 

at a flip angle of approximately 95. In both cases the reduction in signal 

intensity as the quadrupolar coupling parameter is increased, which was also 

observed for triple-quantum excitation in Fig. 4.2, is seen. 

One obvious feature evident in both Figs. 4.3a and 4.3b is that the signal 

intensity is greatly reduced with respect to Fig. 4.2. This indicates that the 

conversion of triple-quantum coherences is a far less efficient process than 

triple-quantum excitation. Closer inspection reveals that, for a spin I  =  32  
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a 

b 

Figure 4.3. Dependence of the signal intensity obtained for a spin I  =  32 nucleus in the (a) 3 

 1 and (b) +3  1 MQMAS experiments as a function of the flip angle of the conversion 

pulse, with the ratio Q1 equal to 2 (solid line), 4 (dotted line) and 8 (dashed line). The flip 

angle of the triple-quantum excitation pulse is 240; all other parameters are as in Fig. 4.2. 

nucleus, the conversion of triple-quantum coherences via the 3  1 and +3  

1 pathways is equally efficient when a pulse with a flip angle of 90 is used. 

This has the implication that, by performing an amplitude-modulated MQMAS 
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Figure 4.4. Dependence of the signal intensity on the quadrupolar coupling parameter, CQ, 

using the two-pulse MQMAS experiment in Fig. 3.7 (selecting the 3  1 pathway). The signal 

intensity is shown for the cases where the radiofrequency field strength is equal to 100 kHz 

(solid line), 200 kHz (dotted line) and 300 kHz (dashed line). The flip angles of the excitation 

and conversion pulses are 240 and 60, respectively; all other parameters are as in Fig. 4.2. 

experiment in which both p  =  +3 and p  =  3 coherences are selected during 

the t1 period (described earlier in Section 3.4.3.3), a two-dimensional spectrum 

may be obtained that contains pure- phase lineshapes [207]. Such behaviour is, 

however, only observed for spin I  =  32 nuclei and hence such an experiment 

has not found widespread application. 

The dependence of the signal intensity obtained from the MQMAS 

experiment used in Fig. 4.3a on the quadrupolar coupling is demonstrated in 

Fig. 4.4, where the signal intensity is shown as a function of the quadrupolar 

coupling parameter, CQ. Figure 4.4 shows how the maximum signal intensity 

obtained occurs at a higher value of the quadrupolar coupling constant as the 

hard-pulse field strength is increased; this is consistent with Eq. (4.6). It is seen 

that, for a radiofrequency field strength 12  =  100 kHz, the experiment is at 
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its most efficient when CQ is ~0.6 MHz. Clearly, for significant signal intensity 

to be obtained for nuclei with CQ greater than 2 MHz a much higher B1 field is 

required. The highest B1 field currently achievable with commercial MAS 

probes is ~300 kHz and as shown in Fig. 4.4, the maximum efficiency of the 

MQMAS experiment occurs when CQ ~1.7 MHz in this case. Clearly, MQMAS 

performs poorly in the presence of large quadrupolar interactions. It is also 

evident from Fig. 4.4 that a single pulse will fail to excite multiple-quantum 

coherences if the field strength is too large [225]. 

Figure 4.4 demonstrates what is arguably the greatest limitation of the 

MQMAS experiment, specifically the lack of sensitivity for nuclei with large 

quadrupolar interactions. This has the consequence that the intensities of 

resonances arising from crystallographically inequivalent sites do not 

accurately reflect the site populations predicted from the crystal structure. 

The non-uniform excitation and conversion of triple-quantum coherences 

also has the effect that it can lead to distortions in the quadrupolar lineshapes. 

The range of values of the quadrupolar coupling parameter Q observed in a 

powder means that the multiple-quantum filtered spectrum of a static sample 

exhibits significant distortions. In particular, crystallites with Q  =  0 do not 

yield any signal due to the failure to excite multiple-quantum coherence in the 

absence of a quadrupolar interaction. Under MAS conditions distortions are 

typically minimal as a result of the time dependence imposed on the 

quadrupolar interaction under spinning conditions, although they can be 

significant when the ratio Q1 is large. 
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Figure 4.3 demonstrates the inefficiency of the conversion step in the 

MQMAS experiment. In STMAS, the conversion of satellite-transition to 

central-transition coherences is also an inefficient process [53, 54] and so, like 

MQMAS, the experiment can suffer from poor sensitivity in the presence of 

large quadrupolar interactions. In addition, the excitation and conversion of 

satellite-transition coherences is dependent on the magnitude of the 

quadrupolar interaction and so, like MQMAS, STMAS is a non-quantitative 

technique. 

 

4.4 Methods for Enhanced Coherence Transfer 

It was shown in the previous section that the inefficiency of the excitation 

and conversion processes is one of the major weaknesses of the MQMAS (and 

STMAS) experiments. The first efforts to remedy this situation focussed on 

improving the efficiency of the excitation of triple-quantum coherences in 

MQMAS. The use of composite pulses has been shown to yield a 30% increase 

in signal intensity with respect to single-pulse excitation [239], whilst shaped 

pulses have also been shown to provide useful enhancements [240]. More 

recent efforts have predominantly focussed on addressing the inefficiency of 

the conversion step in MQMAS. This has led to the development of several 

methods that increase the signal intensity obtained from MQMAS, such as fast 

amplitude-modulated (FAM) pulses [57, 241–243], hyperbolic secant pulses 

(HS) pulses [244], double frequency sweeps (DFS) [245, 246], rotationally-
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induced adiabatic coherence transfer (RIACT) [247], shaped pulses [248] and 

soft-pulse added mixing (SPAM) pulses [58]. FAM pulses have been used most 

widely for enhancing the conversion of triple-quantum to single-quantum 

coherence in MQMAS of spin I  =  32 nuclei and have, in addition, been 

successfully implemented into triple-quantum MQMAS of spin I  =  52 [241, 

249] and spin I  =  72 [250] nuclei. SPAM pulses, which closely resemble FAM 

pulses, have only recently been introduced as a method of enhancing coherence 

transfer in the conversion step of MQMAS [58, 251, 252]. Their application in 

double-quantum filtered (DQF)-STMAS has also been reported [253, 254]. 

In this section, FAM and SPAM pulses are introduced and their 

implementation in MQMAS is discussed [255]. Computer-simulated spin I  =  

32 NMR spectra are shown and compared with 87Rb (spin I  =  32) NMR 

spectra of rubidium nitrate, RbNO3, and 27Al (spin I  =  52) NMR spectra of 

aluminium acetylacetonate, Al(acac)3, recorded using one-dimensional versions 

of the two-pulse MQMAS experiment. Two-dimensional 87Rb NMR spectra of 

rubidium nitrate and 27Al NMR spectra of bayerite, -Al(OH)3, acquired using 

two-pulse and whole-echo MQMAS methods with FAM and SPAM pulses are 

shown and the corresponding signal intensities and lineshapes are considered. 

Finally, the performance of FAM and SPAM pulses in STMAS and DQF-

STMAS is shown. 
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4.4.1 FAM and SPAM Pulses 

FAM pulses commonly come in two forms. FAM-I pulses involve a train 

of alternate phase hard pulses interleaved with delays; the pulses and delays 

being of equal duration [57, 241]. FAM-II pulses involve two alternate phase 

hard pulses of unequal duration, applied in succession [242]. These pulses may 

be used in enhancing the triple-quantum to single-quantum coherence 

conversion process if a change in coherence order p  =  2 (i.e., ±3  ±1) is 

required, although it has been reported that FAM-I pulses are more effective in 

enhancing coherence transfer where p  =  4 and that FAM-II pulses perform 

better when p  =  2 [241]. Only FAM-II pulses are considered in the 

experimental results shown in this chapter and so these will be referred to 

henceforth simply as FAM pulses. 

SPAM pulses are, like FAM pulses, composite pulses [256], consisting of a 

hard pulse followed immediately by a soft pulse that acts as a selective 90 

pulse on the central transition. The signal intensity yielded by SPAM pulses is 

at its maximum when the hard pulse duration is optimised to yield maximum 

3  0 transfer [58, 251], and so is identical to the optimum value found in a z-

filter experiment [135].  The relative phase of the two components of a SPAM 

pulse depends on whether the multiple-quantum coherence to central-

transition coherence conversion step involves a change in sign of coherence 

order [58, 251]. 

The implementation of FAM and SPAM pulses in MQMAS is shown in 
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Figure 4.5. (a) Two-pulse sequence for the (triple-quantum) MQMAS experiment. (b) Phase-

modulated version of the whole-echo (triple-quantum) MQMAS experiment. The shaded 

conversion pulse in (a) and (b) can either be a single hard pulse, a composite FAM pulse, or a 

composite SPAM pulse, as shown in (c). The two components of the SPAM pulse have the same 

phase for ±3  1 transfer and the opposite phase for ±3  ±1 transfer. 

Fig. 4.5. As seen in Fig. 4.5a, FAM and SPAM pulses may easily be inserted into 

the conversion step of the two-pulse MQMAS experiment. They are also ideally 

suited to insertion into the +3  +1 conversion step of phase-modulated split-t1 
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Figure 4.6. Dependence of the central-transition amplitude on the flip angle of the conversion 

pulse in the 3  1 MQMAS experiment for a spin I  =  32 nucleus. Plots are shown for when 

a single hard pulse is used (solid line) and for the first and second hard pulses in a FAM pulse 

(dotted and dashed lines, respectively). When the first FAM pulse is incremented, the second 

pulse has a flip angle of 43, whilst a flip angle of 88 is used for the first pulse when the second 

one is being varied. The y axis scale is normalised with respect to the signal intensity obtained 

when an optimised single hard pulse is used. Simulations were performed assuming a 

radiofrequency field strength of 100 kHz, a quadrupolar coupling constant of 2.0 MHz and a 

Larmor frequency of 100 MHz. The excitation pulse flip angle is 240. All other parameters are 

as in Fig. 4.2. 

whole-echo methods, as shown in Fig. 4.5b. Aside from providing signal 

enhancement, it has been reported that SPAM pulses, when used in the echo 

and antiecho versions of the two-pulse MQMAS experiment, yield very similar 

signal intensities [58, 251]. This has led to the suggestion that combining data 

obtained from the SPAM-echo and SPAM-antiecho experiments is an effective 

method for recording high-resolution MQMAS spectra with enhanced 

sensitivity [251]. 

Figure 4.6 shows the dependence of the signal intensity obtained, for a 
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Figure 4.7. Computer-simulated spin I  =  32 NMR spectra corresponding to one-dimensional 

versions of the two-pulse MQMAS experiment shown in Fig. 4.5a, using the conversion pulses 

and coherence transfer pathways indicated. Spectra were generated using the following 

parameters: 100 MHz Larmor frequency, 2.0 MHz quadrupolar coupling constant, 150 kHz 

hard-pulse radiofrequency field strength, 4.5 s excitation pulse, 1.0 s hard conversion pulse, 

1.3 s + 0.8 s FAM pulse and 1.2 s + 12.5 s (1  =  10 kHz) SPAM pulse. Spectra were 

generated with   =  0 and by summing over 500 equally-spaced values of the angle . 

 spin I  =  32 nucleus, from the two-pulse MQMAS experiment on the pulse flip 

angle when a FAM pulse is used for the conversion step, compared to when a 

single, hard pulse is used. The flip angles of the first and second pulses are seen 

to be in the ratio of approximately 2 : 1 and a signal enhancement of ~100% is 

observed. An analogous simulation (not shown) of the signal intensity observed 

in the 3  1 and +3  1 experiments when a SPAM pulse is used reveals a 

smaller signal enhancement of ~30% in the former experiment with respect to 

single-pulse conversion. In addition, a similar, but not identical, signal intensity 

is obtained when SPAM is implemented in these two experiments. Computer-

simulated spectra have been generated to demonstrate the performance of FAM 

pulses in the echo version and of SPAM pulses in the echo and antiecho 

versions, of the one-dimensional two-pulse MQMAS experiment. These spectra, 
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Figure 4.8. (a) 87Rb NMR spectra of RbNO3 and (b) 27Al NMR spectra of Al(acac)3 recorded using 

one-dimensional versions of the two-pulse MQMAS experiment in Fig. 4.5a using the coherence 

transfer pathways and conversion pulses shown. Experimental parameters: (a) 2.9 s excitation 

pulse (corresponding to a hard-pulse radiofrequency field strength of ~150 kHz), 0.9 s 

conventional conversion pulse, 1.3 s + 0.75 s FAM pulse, 1.3 s + 13.7 s (1    9.1 kHz) 

SPAM pulse; (b) 4.0 s excitation pulse (corresponding to a hard-pulse radiofrequency field 

strength of ~100 kHz), 1.1 s conventional conversion pulse, 1.6 s + 0.9 s FAM pulse, 1.7 s + 

21 s (1    4.0 kHz) SPAM pulse. 

shown in Fig. 4.7, reveal the expected signal enhancement from the FAM pulse 

and the lesser enhancement from the SPAM pulse, when used in the echo 
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version of the experiment. When implemented into the antiecho version, the 

SPAM pulse yields slightly less signal intensity than that obtained from the 

echo experiment. In the case of both FAM and SPAM pulses, minimal lineshape 

distortions are observed. 

The performance of FAM and SPAM pulses in enhancing coherence 

transfer in MQMAS has been considered using two crystalline materials. Figure 

4.8 shows one-dimensional MQMAS spectra of rubidium nitrate and 

aluminium acetylacetonate recorded using the conversion pulses and coherence 

transfer pathways indicated. 

For both spin I  =  32 and spin I  =  52 nuclei, FAM pulses are shown to 

yield the most signal intensity. SPAM pulses result in a smaller, but still very 

useful, enhancement with respect to a single hard pulse, whilst the two versions 

of the SPAM pulse yield very similar, but not identical signal intensities for the 

echo and antiecho pathways. These observations confirm the validity of the 

spin I  =  32 computer-simulated spectra in Fig. 4.7. 

 

4.4.2 Two-Dimensional MQMAS NMR 

The application of FAM and SPAM pulses to two-dimensional MQMAS 

NMR is now considered. Figure 4.9 presents two-dimensional 87Rb MQMAS 

NMR spectra of rubidium nitrate. The spectra shown in Figs. 4.9a and 4.9b were 

recorded using the whole-echo experiment in Fig. 4.5b with split-t1 acquisition, 

using either a single hard pulse (Fig. 4.9a) or a FAM pulse (Fig. 4.9b) for the  
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Figure 4.9. Two-dimensional 87Rb MQMAS NMR spectra of RbNO3 recorded using (a) a split-t1 

whole-echo experiment with a single hard conversion pulse, (b) a split-t1 whole-echo 

experiment with a FAM conversion pulse, (c) a two-pulse experiment with a 3  1 SPAM 

pulse, (d) a two-pulse experiment with a +3  1 SPAM pulse, and (f) a z-filter experiment. 

Spectrum (e) was obtained by the summation of (c) and (d). Experimental parameters: (a and b) 

96 transients (of 20.6 ms) averaged for each of 256 t1 increments; (c and d) 48 transients 

averaged for each of 256 t1 increments; (f) 48 transients averaged for each of 512 t1 increments 

(TPPI method). All pulse durations were as in Fig. 4.8a. Contour levels are shown at 4, 8, 16, 32 

and 64% of the maximum intensity in (a), (b), (e) and (f), 3, 9, 27 and 81% of the maximum 

intensity in (c) and 8, 24 and 72% of the maximum intensity in (d). 
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Figure 4.10. 2 projections of the spectra in Fig. 4.9, plus that of a spectrum recorded using a 

split-t1 whole-echo experiment with a SPAM conversion pulse. 

conversion step. A split-t1 whole-echo experiment with a SPAM conversion 

pulse was also performed (spectrum not shown) and yielded a similar result to 

that seen in Figs. 4.9a and 4.9b. Two-pulse MQMAS experiments with 3  1 

SPAM and +3  1 SPAM conversion pulses were also performed and the 

resultant spectra are shown in Figs. 4.9c and 4.9d, respectively. The spectrum in  
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Figure 4.11. 27Al NMR spectra of -Al(OH)3 recorded using one-dimensional versions of the 

two-pulse MQMAS experiment in Fig. 4.5a with the conversion pulses and coherence transfer 

pathways stated. Experimental parameters: 2.8 s excitation pulse (corresponding to a hard-

pulse radiofrequency field strength of ~150 kHz), 0.9 s single, hard conversion pulse, 1.5 s + 

0.8 s FAM pulse, 1.2 s + 12.0 s (1    6.9 kHz) SPAM pulse. 

Fig. 4.9e was obtained by adding the spectra in Figs. 4.9c and 4.9d, whilst the 

spectrum in Fig. 4.9f was recorded using a z-filter experiment. 

Figure 4.9 reveals that, as expected, absorption-mode two-dimensional 

lineshapes are generated by the whole-echo and z-filter experiments, as well as 

by the combination of the two SPAM experiments. The spectra in Figs. 4.9c and 

4.9d also show the phase-twist lineshapes expected for the SPAM-echo and 

SPAM-antiecho experiments, respectively; neither are suited to high-resolution 

NMR spectroscopy. 

Figure 4.10 shows 2 projections of the spectra in Fig. 4.9, plus that 

obtained from a split-t1 whole-echo experiment with a SPAM conversion pulse. 

The whole-echo experiments with either a FAM or SPAM conversion pulse are 

seen to yield the greatest signal intensity, though FAM pulses are, as 
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demonstrated in Fig. 4.8, superior to SPAM pulses in enhancing triple-quantum 

to single-quantum coherence transfer. The whole-echo experiment with a single 

hard conversion pulse and the sum of the SPAM-echo and SPAM-antiecho 

spectra yield considerably less signal, whilst the z-filter experiment yields 

spectra with the lowest signal intensity of all. 

To demonstrate the use of FAM and SPAM pulses in MQMAS NMR of 

amorphous or disordered materials [257], 27Al NMR spectra of bayerite, -

Al(OH)3, were recorded. In this material there exists aluminium in an 

octahedrally coordinated environment, with a single 27Al peak at  ~0 ppm 

[179, 258]. The essentially featureless lineshape, possessing a "tail" to low 

frequency, is characteristic of the presence of distributions of both chemical 

shift and quadrupolar parameters [259–261]. Figure 4.11 shows spectra obtained 

using the same one-dimensional experiments used in Fig. 4.8 for the crystalline 

materials. As shown for both rubidium nitrate and aluminium acetylacetonate, 

the 3  1 FAM pulse yields a greater signal enhancement than the 3  1 

SPAM pulse. There is, however, a greater disparity observed in the signal 

intensities obtained when SPAM is used in the 3  1 and +3  1 

experiments than is seen with the crystalline materials. This most likely arises 

due to the presence of aluminium with a very small quadrupolar coupling 

constant, (a fact confirmed by the very similar signal intensities obtained from 

the 3  1 and +3  1 experiments (not shown) with a single hard 

conversion pulse), on which the selective 90 pulse in the SPAM composite 

pulse would have no effect. 
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Figure 4.12. Two-dimensional 27Al MQMAS NMR spectra of -Al(OH)3 recorded using (a) the 

two-pulse experiment with a 3  1 SPAM conversion pulse, (b) the two-pulse experiment 

with a +3  1 SPAM conversion pulse, and (d) a z-filter experiment. Spectrum (c) was 

obtained by adding (a) and (b). Experimental parameters: (a and b) 96 transients (of 7.3 ms) 

averaged for each of 48 t1 increments; (d) 96 transients averaged for each of 96 t1 increments 

(TPPI method). All pulse durations were as in Fig. 4.11. The gradients of the A, CS and QS axes 

are shown. Contour levels are shown at 10% increments in the range of 6–96% of the maximum 

value in (a) and (b) and at 10% increments in the range of 12–92% of the maximum value in (c) 

and (d). 

Figure 4.12 shows two-dimensional 27Al NMR spectra of bayerite. The 

spectra in Figs. 4.12a and 4.12b were obtained using the two-pulse MQMAS 

experiment with a 3  1 SPAM and a +3  1 SPAM pulse, respectively, and  
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the spectrum in Fig. 4.12c was obtained by adding Figs. 4.12a and 4.12b. The 

spectrum in Fig. 4.12d was obtained using a z-filter experiment. The spectrum 

in Fig. 4.12d reveals greatest broadening along the CS axis, which indicates that 

a distribution of chemical shifts makes the dominant contribution to the 

linewidth. 

Whole-echo experiments analogous to those performed on the crystalline 

materials were also performed on bayerite (results not shown). The resultant 

spectra contain distorted two-dimensional lineshapes and greatly reduced 

signal intensities compared to that obtained from the z-filter experiment and so 

these results are not considered here. 

As seen in Fig. 4.9, the SPAM-antiecho (3  1) and SPAM-echo (+3  

1) experiments yield highly phase-twisted lineshapes. The combination of the 

two SPAM experiments and the z-filter experiments both appear to yield two-

dimensional spectra containing purely absorption-mode lineshapes, although 

there are some small differences. It is very difficult to say which of the 

lineshapes in Figs. 4.12c and 4.12d are closest to the "true" lineshape, but, given 

the difference in signal intensities observed between the two pathways in Fig. 

4.11, it would seem likely that, despite its reduced signal-to-noise ratio, the z-

filter spectrum is a more accurate representation. 

 

4.4.3 FAM and SPAM Pulses in STMAS 

The use of FAM and SPAM pulses in STMAS and DQF-STMAS [253, 254] 
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Figure 4.13. Pulse sequence and coherence transfer pathway for the phase-modulated whole-

echo DQF-STMAS experiment. Phase cycling is used to ensure only double-quantum 

coherences evolve immediately after the second pulse. 1 is the period of double-quantum 

evolution and 2 is the echo interval. 

has also been considered. The DQF-STMAS experiment [262] is a modification 

of the usual phase-modulated split-t1 whole-echo method shown in Fig. 3.9 that 

enables the removal of the unwanted CT  CT autocorrelation signal. This is 

particularly useful for nuclei with spin I  >  32, for which the separation 

between the CT  CT and ST  CT ridges is reduced. The pulse sequence, 

shown in Fig. 4.13, involves the insertion of a soft 180 pulse selective for the 

central transition between the satellite-transition excitation and conversion 

pulses. Phase cycling [86] is used to ensure that only double-quantum 

coherences evolve after the second pulse and the period of double-quantum 

evolution (1) is typically only a few microseconds duration, to allow for pulse 

phase-shifting. DQF-STMAS typically yields ~80% of the signal intensity 

obtained from STMAS [53]. It has been reported that SPAM pulses, when 

implemented in the +2  +1 conversion step of DQF-STMAS yield enhanced 

signal intensity [253, 254]. In particular, it has been shown that a signal 

enhancement of 100% can be achieved by the combination of echo and antiecho 
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Figure 4.14. 1 projections obtained from two-dimensional 87Rb STMAS NMR spectra of RbNO3, 

recorded using (a–c) split-t1 whole-echo STMAS and (d–e) split-t1 whole-echo DQF-STMAS 

experiments, respectively. The ST  CT and DQ  CT conversion pulse is a single, hard pulse 

in (a) and (d) and a SPAM pulse in (c) and (e), respectively. A FAM pulse is used for ST  CT 

conversion in (b). Experimental parameters: 2.1 s excitation pulse, 1.9 s ST  CT conversion 

pulse, 1.2 s DQ  CT conversion pulse, 2.0 s + 0.7 s FAM pulse, 2.5 s + 17 s SPAM pulse 

in (c) and 1.5 s + 17 s SPAM pulse in (e). 

experiments where SPAM pulses are used in the conversion step, compared 

with a combination of the echo and anitecho signals obtained by using a 

conventional hard pulse [254]. To compare the performance of FAM and SPAM 

pulses in STMAS and DQF-STMAS, two-dimensional experiments were 

performed on rubidium nitrate. 87Rb NMR spectra of rubidium nitrate were 

acquired using the split-t1 whole-echo STMAS and DQF-STMAS methods, 
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using a hard pulse, a FAM pulse and a SPAM pulse for ST  CT conversion, 

and a hard pulse and a SPAM pulse for DQ  CT conversion, respectively. The 

1 projections obtained from these experiments are shown in Fig. 4.14. When 

implemented in STMAS, a FAM pulse yields approximately 10% greater signal 

intensity (Fig. 4.14b) than a hard pulse (Fig. 4.14a), whilst SPAM pulses are 

ineffective and lead to a marked decrease in signal intensity (Fig. 4.14c). In 

DQF-STMAS, however, SPAM pulses are shown to yield about 40% more signal 

(Fig. 4.14e) than a hard pulse (Fig. 4.14d), whilst FAM pulses are ineffective (not 

shown). Given the loss of signal intensity that results from double-quantum 

filtration [53, 262], the signal-to-noise ratios obtained from STMAS with FAM 

and DQF-STMAS with SPAM are thus almost identical. 

 

4.4.4 Conclusions 

It has been shown that FAM and SPAM pulses are composite pulses that 

improve the efficiency of ±3  ±1 coherence transfer and, in the case of SPAM, 

also that of ±3  1 transfer. Experimental results and computer simulations 

have confirmed that FAM pulses consistently yield greater signal enhancements 

than SPAM pulses for spin I  =  32 and spin I  =  52 nuclei in a series of 

crystalline and amorphous materials. SPAM pulses have been shown to be a 

useful addition to the array of techniques available for enhancing the 

conversion step in MQMAS. They have the advantage over FAM pulses (where 

iterative optimization of two hard pulses is needed) that no additional 
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experimental optimization is required as the calibration of a soft pulse is 

performed elsewhere for use in z-filter and whole-echo methods. SPAM pulses 

have been shown to yield very similar, but not identical signal intensities when 

used for ±3  ±1 and ±3  1 coherence transfer.  

When SPAM pulses are used in echo and antiecho two-dimensional 

MQMAS experiments, the summation of the resultant spectra yields 

approximately absorption-mode two-dimensional lineshapes, although the 

unequal signal intensities obtained from the two pathways means that caution 

should be exercised in their interpretation. SPAM pulses and ±3  ±1 FAM 

pulses have been shown to work effectively when implemented into phase-

modulated whole-echo methods and, when used in this way, lead to spectra 

exhibiting absorption-mode lineshapes and a significantly higher signal-to-

noise ratio than is obtained by the combination of SPAM-echo and SPAM-anti–

echo spectra. SPAM pulses have also been demonstrated to be an effective 

method for enhancing the ±2  ±1 coherence transfer step in phase-modulated 

whole-echo DQF-STMAS, although they offer no greater signal intensity than is 

obtained when FAM pulses are implemented in the ±1 (ST)  ±1 (CT) 

conversion step of conventional STMAS. 

The optimum use of FAM and SPAM pulses would appear to be in the 

phase-modulated whole-echo versions of the MQMAS and (DQF)-STMAS 

experiments, where, like DFS and HS pulses, they can easily be used. In 

amorphous and disordered materials (for which pure-phase two-dimensional 

lineshapes are of the utmost importance), the unequal efficiency of ±3  ±1 
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SPAM and ±3  1 SPAM coherence transfer may lead to distorted lineshapes. 

For such materials, the z-filter experiment is thus preferred, despite its lower 

signal-to-noise ratio with respect to the addition of SPAM-echo and SPAM-

antiecho spectra. 
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Chapter 5 

STARTMAS 

5.1 Introduction 

The DOR, DAS, MQMAS and STMAS techniques enable the acquisition of 

high-resolution NMR spectra of half-integer quadrupolar nuclei. The latter 

three techniques involve the acquisition of a two-dimensional dataset, whereas 

DOR yields isotropic spectra in real time, i.e., through acquisition of a one-

dimensional dataset. The need for an entire phase cycle to be completed for 

each increment of the indirect (t1) time period means that the acquisition of two-

dimensional datasets is typically longer than that of one-dimensional datasets 

and hence is often the limiting factor on the duration of the experiment [263]. In 

this chapter, a new method will be introduced that, like DOR, enables 

acquisition of isotropic spin I  =  32 NMR spectra in real time. In contrast to 

DOR, however, it may be performed on standard MAS probes and fast 

spinning rates and high radiofrequency field strengths may be achieved. This 

method involves, like the CRAMPS [15] and Carr-Purcell Meiboom-Gill 

(CPMG) [264] techniques, multiple-pulse sequences interleaved with real-time 

data acquisition. 
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5.2 Theoretical Basis 

It was shown in Chapter 3 that by spinning at the magic angle, the second-

rank contribution to second-order quadrupolar broadening is removed, whilst 

the fourth-rank contribution is only reduced. The DOR and DAS techniques 

achieve complete removal of the second-order quadrupolar interaction by 

exploiting the   d 0 ,0
2 () and   d 0 ,0

4 () terms in Eq. (3.29). The MQMAS and STMAS 

experiments achieve complete removal of residual second-order quadrupolar 

broadening by utilising the fourth-rank coefficients,     C
4 (I, q), via coherence 

transfer. These coefficients correspond, in the t1 period of an MQMAS 

experiment, to transitions with mI  =  ±q    q and so q thus takes the value 

+32 for a triple-quantum MAS experiment. In an STMAS experiment, the 

fourth-rank coefficient pertaining to evolution in the t1 period corresponds to a 

transition with mI  =  ±(q 1)   ±q and so q is equal to +32 (for a spin I  =  32 

nucleus and for the inner satellite transitions of nuclei with spin I  ≥  52). 

Taking the example of MQMAS, by performing a two-dimensional 

experiment in which multiple- (usually triple-) quantum coherences and single-

quantum central-transition coherences are allowed to evolve during two 

successive time periods, t1 and t2, the residual second-order quadrupolar 

broadening is refocussed as an echo when 

 
    
t2  

C4 (I, 3 / 2)
C4 (I, 1 / 2)









t1  . (5.1) 

This leads to the question as to whether such a correlation could work in 
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Figure 5.1. Energy-level diagram of a spin I  =  32 nucleus demonstrating the interconversion 

between p  =  1 ST coherences and p  =  2 DQ coherences achieved by the application of a CT-

selective 180 pulse. 

real time. As in CPMG, in which a train of multiple echoes is acquired as a 

function of a single time variable, an experiment comprising excitation of 

multiple-quantum coherence and successive interconversion with central-

transition coherence could be envisaged. For such an experiment to be 

successful, the pulses performing the excitation of triple-quantum coherences 

and their conversion to central-transition coherences need to be highly efficient. 

As shown in Chapter 4, both pulses are very inefficient, with the conversion 

pulse being particularly poor. Consequently, performing such an experiment 

would lead to a very large loss of signal intensity between successive echoes 

and hence an intolerably large line-broadening in the isotropic spectrum. 

It is known that central-transition-selective pulses are highly effective and 

it has been reported that a selective inversion pulse applied to the central 

transition leads to the transfer of the adjacent satellite-transition coherences 

(±32  ±12) into double-quantum coherences (±32  12) with nearly 100% 

efficiency [262]. This coherence transfer, illustrated in Fig. 5.1, has been 
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exploited in the DQF-STMAS and DQF-SATRAS techniques [262, 265]. 

Considering the     C
4 (I, q) coefficients of the satellite-transition and double-

quantum coherences of a spin I  =  32 nucleus, these take the values 4835 and 

+635, respectively. These coefficients are given in Appendix E; the latter is 

obtained by a summation of the values for the central and satellite transitions 

(5435 and 4835, respectively). This means that an experiment in which 

selective central-transition conversion pulses are used for coherence transfer 

between satellite and double-quantum transitions will lead to refocussing of the 

residual second-order quadrupolar broadening for a spin I  =  32 nucleus if the 

periods of evolution are in the ratio 6:48  =  1:8. This is the principle of the 

STARTMAS (satellite transitions acquired in real time MAS) experiment [266, 

267], the details of which are given in the next section. 

 

5.3 Pulse Sequence 

The pulse sequence and coherence transfer pathway for the new 

STARTMAS experiment are shown in Fig. 5.2. The first pulse is a hard pulse 

optimized for excitation of satellite-transition coherences. Pairs of CT-selective 

inversion pulses then interconvert the satellite-transition and double-quantum 

coherences and, by spacing the pulses such that the periods of satellite-

transition and double-quantum evolution are in the ratio 1:8, the residual 

second-order quadrupolar broadening is refocussed at the end of each  period 

(the STARTMAS cycle). The  period is rotor-synchronized,   =  nR  =  nR and 
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Figure 5.2. Pulse sequence and coherence transfer pathway for the STARTMAS experiment for 

spin I  =  32 nuclei. The first two pulses are cycled with phase1  =  0, 45, 90, 135, 180, 225, 

270, 315 and the receiver cycled with phase rx  =  0, 90, 180, 270; this enables the 

suppression of central-transition coherences excited by the first pulse [268]. The subsequent 

180 pulses are cycled with phases 2  =  180 and 3  =  0, respectively. 

this ensures that the first- and second-order quadrupolar interactions are 

refocussed at the same point and that an isotropic echo is formed. 

Consequently, data sampling with a period equal to  will ensure removal of 

quadrupolar broadening to second order. The number of rotor periods per  

period, n, is usually chosen to be either 9 or 18, the effect of a variation of this 

parameter is considered in Section 5.5.3. As in STMAS, the use of MAS to 

remove the effects of the large first-order quadrupolar interaction dictates the 

requirement for very accurate timings of the free precession intervals and, 

consequently, a stable spinning speed and accurately adjusted spinning angle 

are required. The excitation of central-transition coherences may occur, like in 

STMAS, as an unwanted by-product of the initial pulse; however, judicious 
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Figure 5.3. Computer-simulated spin I  =  32 isotropic STARTMAS NMR spectra illustrating 

the spinor behaviour observed when the two inversion pulses in each STARTMAS unit are 

applied with (a) the opposite phase and (b) the same phase. 

phase cycling of the first two pulses and of the receiver is sufficient to remove 

this [262, 265]. It should be noted that if the two CT-selective inversion pulses in 

each STARTMAS unit are applied with the same radiofrequency phase then 

alternate isotropic echoes are of opposite phase despite a net pulse flip angle of 

360 being applied. This leads to an unwanted frequency shift of (R2n) Hertz 

in the isotropic STARTMAS spectrum, as shown in Fig. 5.3, and is known as 

spinor behaviour [268]. This property is not exhibited by central-transition 

coherences, for which the application of two inversion pulses of the same phase 

does not effect a sign change. This difference in behaviour of the central and 

satellite transitions is a consequence of the former transition sharing two energy 

levels with the transition across which the inversion pulses are being applied 

and the latter only one. For satellite-transition coherences, the undesirable 

frequency shift that arises from spinor behaviour may be circumvented by 

applying two pulses with opposite phases, resulting in a net flip angle of 0. 
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5.4 Data Sampling Schemes 

There are several data sampling schemes that may be envisaged for 

STARTMAS, as illustrated in Fig. 5.4. Data points may be acquired by scheme 

(i), in which data is sampled continuously throughout the experiment over the 

wide spectral width needed for observation of spin  I  =  32 satellite transitions, 

by scheme (ii), sampling over the same large spectral width but only during the 

periods in which the satellite-transition signal is present and the first- and 

second-order quadrupolar interactions are refocussed, or by scheme (iii), 

sampling solely the points at the top of the isotropic echoes. Scheme (iii) yields 

a spectrum with a much smaller spectral width than schemes (i) and (ii) that is 

equal to the ratio of the MAS rate and the number of rotor periods in a  period, 

i.e., SW  =  Rn. These schemes are illustrated in Fig. 5.4, in which computer-

simulated time-domain signals and their Fourier transforms are shown. 

As shown in Fig. 5.4a for the case of n  =  18, scheme (i) produces a 

truncated time-domain signal and this leads to a spectrum containing the 

expected "sinc wiggles" [269]. Scheme (ii) yields a DOR-like spectrum 

containing isotropic sidebands whose manifold is given by the static spin I  =  

32 satellite-transition lineshape (Fig. 5.4b). It should be noted that, if the 

sideband spacing is given by SW  =  Rn, the spectral width is scaled by a factor 

of x9, where x is the fraction of the satellite-transition acquisition window that 

is sampled. As shown in Fig. 5.4c, scheme (iii) yields an isotropic spectrum [270] 

that is devoid of sideband structure. 
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Figure 5.4. Computer-simulated time-domain and frequency-domain signals arising from four 

possible STARTMAS data sampling schemes. (a) Scheme (i) produces a highly truncated time-

domain signal and spectrum. (b) Scheme (ii) yields a spectrum consisting of a series of isotropic 

spinning sidebands. The satellite-transition centrebands are indicated by asterisks. (c) Scheme 

(iii) yields an isotropic spectrum without a sideband manifold. (d) In scheme (iv) the whole 

echoes in (b) are reordered into a two-dimensional array which upon Fourier transformation 

yields an anisotropic-isotropic correlation spectrum. Spectra were simulated with the 

parameters: 0  =  100 MHz, R  =  33333 Hz, and in (b) and (d), x  =  0.5. Two inequivalent sites 

with 2 : 1 relative populations were simulated, with the parameters CQ  =  1.6 MHz,   =  0 and 

CS  =  1.0 ppm (site 1) and CQ  =  2.0 MHz,  = 0 and CS  =  3.0 ppm (site 2). In the spectrum in 

(d) contour levels are shown at 4, 8, 16, 32 and 64% of the maximum intensity. 
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Of the schemes described above, (ii) and (iii) appear to be the most useful. 

Scheme (ii) enables the extraction of quadrupolar parameters from the envelope 

of the spinning sideband pattern, whilst scheme (iii) benefits from the 

sensitivity gain obtained when aliasing sideband intensity onto the satellite-

transitions centreband. Scheme (iv), shown in Fig. 5.4d, involves using the train 

of echoes acquired in scheme (ii) to construct a two-dimensional array. This 

scheme is, of course, not a different method of data sampling, but is rather a 

different way of processing the data acquired using scheme (ii). The first 

STARTMAS whole echo forms the first row of the two-dimensional dataset, the 

second echo the second row, and so on. Two-dimensional Fourier 

transformation of this time-domain signal then yields the two-dimensional 

spectrum shown in Fig. 5.4d in which the static satellite-transition lineshape 

appears in the F2 dimension (analogous to the 2 dimension defined in Section 

2.7) and the isotropic spectrum in the F1 dimension (analogous to the 1 

dimension defined in Section 2.7). This method of data sampling (essentially 

analogous to methods reported for obtaining J spectra [271] and two-

dimensional one-pulse (TOP) spectra [272]) would seem to be the optimum 

approach for acquiring STARTMAS NMR spectra, as it combines the 

information found in the spectra yielded by schemes (ii) and (iii). 

Whilst STARTMAS suppresses the first- and second-order quadrupolar 

broadening, the isotropic chemical shift and second-order quadrupolar shift are 

not refocussed. Consequently, the isotropic STARTMAS shift, that is, the 

position of a given peak in the isotropic spectrum yielded by scheme (iii) and in 
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the F1 dimension of the two-dimensional spectrum shown in Fig. 5.4d, 1, is 

given by: 

 
  
1 

17
9

CS 
4
9
Q  , (5.2) 

where CS is the isotropic chemical shift and Q is the quadrupolar shift, 

  [((Q
PAS )2 / 0 )(1  2 / 3)], expressed as a ppm shift. 

In the isotropic dimension of an STMAS or MQMAS spectrum obtained 

using either a shearing transformation, or by recording a split-t1 experiment, 

both the isotropic chemical shift and quadrupolar shift are scaled. The isotropic 

chemical shift is scaled by a factor, xCS, defined as [200]: 

 
    
xCS  

q  R(I, q)
1  R(I , q)

 , (5.3) 

where R(I, q) is the MQMAS (or STMAS) ratio defined in Chapter 3. The 

coherence order of the transition evolving during the t1 period of MQMAS or 

STMAS is again given by q and so takes the value ±32 for e.g., a triple-quantum 

MAS experiment. The quadrupolar shift is scaled by a factor, xQ, given by [200] 

 
),(R1

),(R))21,(A),(A( 00

Q qI
qIIqI

x



  . (5.4) 

For a split-t1 STMAS experiment performed on a spin I  =  32 nucleus, xCS  

and xQ thus take the values 1 and 1017, respectively. Generally, these 
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 quantities are related through the ratio 

 
    

xCS

xQ
 

17
10

 . (5.5) 

The chemical shift in the F1 dimension of a split-t1 MQMAS or STMAS 

spectrum may be expressed in the form [53] 

     1  xCSCS  A0 (I , 1 2)xQQ  , (5.6) 

and so, by comparison with Eq. (5.2), xCS and xQ thus have the values 179 and 

109, respectively, for STARTMAS. The ratio xCSxQ is thus equal to 1710, the 

same as is observed for MQMAS and STMAS. Consequently, the isotropic 

spectra produced by STARTMAS are related by a simple scaling factor to those 

obtained by MQMAS and STMAS. 

 

5.5 Experimental Results 

The results presented in this and the next section were processed using 

MATLAB programs written by Dr M. J. Thrippleton. The simulated spectra 

were also generated in MATLAB, by a stepwise integration of the Liouville-von 

Neumann equation with a summation over 3722 orientations according to the 

ZCW algorithm [273]. The spectra in Figs. 5.5a, 5.5b, 5.6, and 5.7 were recorded 

with the assistance of Dr S. Steuernagel (Bruker Biospin GmbH, Rheinstetten, 

Germany). 
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5.5.1 STARTMAS at High MAS Rates 

STARTMAS NMR data were acquired at high spinning rates for four 

powdered solids, namely sodium oxalate, Na2C2O4, sodium citrate dihydrate, 

Na3C6H5O7·2H2O, dibasic sodium phosphate, Na2HPO4, and rubidium nitrate. 

RbNO3. Time-domain signals acquired with 87Rb STARTMAS NMR of 

rubidium nitrate and 23Na STARTMAS NMR of sodium citrate dihydrate are 

shown in Figs. 5.5a and 5.5b, along with their corresponding Fourier transforms 

(Figs. 5.5c  and 5.5d), respectively. The one-dimensional DOR-like spectra 

shown in Figs. 5.5c and 5.5d have the expected appearance, consisting of an 

array of spinning sidebands which, for each crystallographically inequivalent 

site present in each solid (three in both rubidium nitrate [221] and sodium 

citrate dihydrate [164]), have an envelope corresponding to the static satellite-

transition first-order quadrupolar broadened lineshape. It should be noted that 

in Fig. 5.5c, two of the sites in rubidium nitrate are coincident at this magnetic 

field strength due to the combined effect of the isotropic chemical shift and the 

second-order quadrupolar shift. The areas of intensity that fall below the 

baseline in Figs. 5.5c and 5.5d are consistent with the zero total integral of these 

spectra, this being a consequence of pulse-ringdown effects that preclude 

acquisition of the first half echo and so lead to a zero first point. Inspection of 

Figs. 5.5c and 5.5d reveals that the spinning sidebands are not spaced by the 

spinning speed, 33333 Hz. Owing to the non-continuous data sampling (points 

are collected only during part of the satellite-transition acquisition window), 

the sideband spacing is scaled by a factor 12x (where x is the fraction of the 
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Figure 5.5. Time-domain data acquired using (a) 87Rb STARTMAS NMR of rubidium nitrate 

and (b) 23Na STARTMAS NMR of sodium citrate dihydrate and the corresponding one-

dimensional spectra (c) and (d), respectively. Experiments were performed at B0  =  11.7 T and a 

MAS rate of 33333 Hz. The n  =  18 STARTMAS condition was used with x  =  0.133, and 1584 

and 1024 transients were averaged for rubidium nitrate and sodium citrate dihydrate, 

respectively. The initial excitation pulse had duration in the range 1.2–1.5 s and the selective 

inversion pulses had duration 20 s. Computer-simulated spectra in (e) and (f) were generated 

using literature NMR parameters [53, 164] for rubidium nitrate and sodium citrate dihydrate, 

respectively. The centrebands are indicated by asterisks. 

satellite-transition acquisition window that is sampled, defined previously in 

Section 5.4), such that the separation of the sidebands is now 125 kHz. The 

computer-simulated spectra shown in Figs. 5.5e and 5.5f broadly agree with the 

experimental data. 
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It should be noted that the spectra in Figs. 5.5c–f are poorly suited to 

quantitative analysis, as a consequence of the baseline dip that results from the 

zero first point in the time domain data in Figs. 5.5a and 5.5b. This may be 

circumvented by a left shift of the time-domain data such that it begins at the 

top of the first whole echo. After one-dimensional Fourier transformation a 

large first-order phase correction is required, but this can easily be performed. 

This yields a spectrum like that shown in Fig. 5.4b, although the spectrum 

shown there was simulated by making the (experimentally unrealistic) 

assumption of infinitely short pulses, such that the first half echo could be 

acquired. 

Figure 5.6 presents the two-dimensional 87Rb STARTMAS NMR spectra of 

rubidium nitrate, generated by Fourier transformation of data acquired using 

the scheme shown in Fig. 5.4d. The simulated spectrum in Fig. 5.6a matches 

well the experimental spectrum in Fig. 5.6c, where the two coincident sites are 

seen to be partly aliased. Projections along the F1 dimension of each spectrum 

are shown in Figs. 5.6b and 5.6d, where the isotropic spectral width equals R18  

=  1852 Hz. The three crystallographically inequivalent sites in rubidium nitrate 

have the quadrupolar parameters [53]: CQ  =  1.70 MHz,   =  0.6, CQ  =  1.70 

MHz,   =  0.2 and CQ  =  2.00 MHz,   =  0.9 and are labelled 1, 2 and 3 in Fig. 

5.6, respectively. The corresponding peaks of each site in the isotropic spectra 

have intensities that are consistent with their 1 : 1 : 1 population ratio [221]. 

Two-dimensional 23Na STARTMAS NMR spectra of sodium citrate 

dihydrate are shown in Fig. 5.7, obtained via the data sampling scheme in Fig. 
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Figure 5.6. (a) Computer-simulated and (c) experimental two-dimensional 87Rb STARTMAS 

NMR spectra of rubidium nitrate. The spectrum in (a) was generated using literature NMR 

parameters [53] and (c) was obtained from the one-dimensional time-domain data in Fig. 5.5a. 

The asterisked peak is present as a consequence of imperfections associated with the 

experimental implementation. Corresponding F1 projections are shown in (b) and (d). Contour 

levels in (a) and (c) are shown at 20, 35, 50, 65, 80 and 95% of the maximum intensity. 

5.4d. The three inequivalent 23Na sites present in this material are seen to be 

well-resolved in the F1 projections in Figs. 5.7b and 5.7d and have values of the 

quadrupolar product, PQ [107], equal to 1.87 MHz, 1.65 MHz and 1.90 MHz for 

sites 1, 2 and 3, respectively [274]. As in rubidium nitrate, the relative peak 

intensities concur well with the 1 : 1 : 1 population ratio [164] for the three sites 

in the solid. 
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Figure 5.7. (a) Computer-simulated and (c) experimental two-dimensional 23Na STARTMAS 

NMR spectra of sodium citrate dihydrate. The spectrum in (a) was generated using literature 

NMR parameters [274] and (c) was obtained from the one-dimensional time-domain data in Fig. 

5.5b. Contour levels in (a) and (c) are shown at 20, 35, 50, 65, 80 and 95% of the maximum 

intensity. The "spike" marked with an asterisk arises due to imperfections in the experimental 

implementation. Corresponding F1 projections are shown in (b) and (d). 

23Na STARTMAS NMR spectra of sodium oxalate and dibasic sodium 

phosphate were also acquired and are shown in Figs. 5.8a and 5.8c, 

respectively. The two-dimensional spectra and corresponding F1 projections 

shown in Figs. 5.8b and 5.8d are consistent with the presence of one [275] and 

three [276] inequivalent sites, respectively. The three inequivalent sites in 

dibasic sodium phosphate have CQ values of 3.8, 1.3 and 2.0 MHz for sites, 1, 2 

and 3, respectively [248]. The odd F1 chemical shift scale in Figs. 5.8c and 5.8d 
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Figure 5.8. Two-dimensional 23Na (n  =  18) STARTMAS NMR spectra of (a) sodium oxalate and 

(c) dibasic sodium phosphate. Spectra were acquired at B0  =  9.4 T and a MAS rate of (a) 30000 

Hz and (c) 28125 Hz, so leading to isotropic spectral widths equal to 1666 Hz and 1562 Hz, 

respectively. F1 projections are shown in (b) and (d). Satellite-transition excitation pulses of 2.0– 

2.2 s were used and the CT-selective pulses had duration 30 s. Contour levels in (a) and (c) 

are shown at 20, 35, 50, 65, 80 and 95% of the maximum intensity. 

arises as a consequence of one of the peaks being at the edge of the spectral 

width such that half of it is aliases. Rearranging the spectrum in this way 

enables the 3 sites to be clearly seen. 

It was shown in Chapter 4 that, for the case ofMQMAS, the efficiency of 

both the excitation and conversion pulses varies with Q. STMAS shows a 

similar, although less pronounced, variation in signal intensity with CQ [53] 
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and, like MQMAS, is a non-quantitative technique. This has been illustrated 

using dibasic sodium phosphate, where the intensity ratio 1.1 : 1.0 : 0.7 

(observed in STMAS) and 0.4 : 1.0 : 0.5 (in MQMAS) [53] does not concur with 

the 2 : 1 : 1 relative site population predicted from the crystal structure [275]. 

The F1 projection of dibasic sodium phosphate shown in Fig. 5.8d reveals that 

the three sites yield peaks in the approximate intensity ratio 0.8 : 1.0 : 0.9. Given 

that STARTMAS involves the excitation of satellite-transition coherences, the 

similarity of this ratio to that obtained using STMAS is not surprising. 

 

5.5.2 Ultrafast STARTMAS NMR 

Under conditions of high sensitivity, such as at very high static magnetic 

fields or with large sample volumes, STARTMAS may be described as 

"ultrafast". In contrast to two-dimensional methods like MQMAS and STMAS, 

STARTMAS is not limited by data sampling requirements (such as that of the t1 

period in the former two techniques) and so is limited only by sensitivity 

considerations. To demonstrate the ability of STARTMAS to produce ultrafast 

spectra, 87Rb STARTMAS NMR spectra of rubidium nitrate were recorded 

using a 4.0-mm MAS probe to maximise sample volume. As the achievable 

spinning speeds are much lower on this probe than on the 2.5-mm probe used 

for obtaining the spectra in Figs. 5.5–5.7, the n  =  9 condition was used to 

maximise the isotropic spectral width. The two-dimensional spectra and 

corresponding F1 projections are shown in Fig. 5.9 with that in Fig. 5.9a 
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Figure 5.9. Two-dimensional 87Rb STARTMAS NMR spectra of rubidium nitrate recorded at B0 

=  9.4 T with (a) 1024 transients and (c) 1 transient. The MAS rate was 14286 Hz and the n  =  9 

STARTMAS condition was used, so producing an isotropic spectral width of 1587 Hz. Inversion 

pulses of 30 s were used and the satellite-transition excitation pulse had duration 1.8 s. 

Corresponding F1 projections are shown in (b) and (d), where the 3 sites are indicated by 

asterisks. Contour levels in (a) and (c) are shown at 15, 25, 45, and 85% of the maximum 

intensity. 

recorded with 1024 transients and that in Fig. 5.9c recorded with a single 

transient. The spectrum in Fig. 5.9a reveals the expected three sites (labelled 1, 2 

and 3, in the same way as in Fig. 5.6) present in rubidium nitrate (two of them 

no longer being coincident due to the experiment being performed at a different 

magnetic field strength than in Figs. 5.5 and 5.6). In Fig. 5.9c, these two sites 

again appear as one peak, this being due to the line broadening resulting from 
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the severe processing that was required to maximise the signal-to-noise ratio in 

this spectrum. Despite this, peaks are observed at the expected frequencies and 

so clearly STARTMAS can be used, under the right conditions, to produce 

ultrafast NMR spectra of spin I  =  32 nuclei. 

 

5.5.3 STARTMAS with n  18 

All of the STARTMAS spectra presented so far were obtained using either 

n  =  9 or 18. It is highly desirable to rotor-synchronize pulses in experiments 

involving satellite transitions, as this ensures complete removal of the first-

order quadrupolar broadening. The requirement for rotor-synchronization in 

STARTMAS limits the minimum value of n to 18 (for rotor-synchronization of 

all pulses) or to 9 (for the selective inversion pulses only). 

Whilst all values of n between 1 and 18 are theoretically possible, no lower 

than n  =  5 is realistically achievable. Commonly achievable MAS rates do not 

currently exceed ~35 kHz, leading to a STARTMAS cycle duration, nR  =  143 

s, for n  =  5. Any shorter duration of the STARTMAS cycle is likely to lead to 

pulse-ringdown effects affecting the acquisition windows and, whilst this may 

be alleviated by using slower MAS rates, the isotropic spectral width will be 

reduced. Consequently, higher MAS rates are to be preferred and so n should 

be no less than 5. 

Two-dimensional STARTMAS NMR spectra of rubidium nitrate were 

acquired for different values of n and are shown in Fig. 5.10. The F1 projections 
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Figure 5.10. 87Rb STARTMAS NMR spectra of rubidium nitrate, acquired using different values 

of n. (a) F1 projection of the STARTMAS spectra recorded using (a) n  =  9 and (b) n  =  18. (c) 

Two-dimensional spectrum recorded with n  =  5 and (d) the corresponding F1 projection. The 

spectra were obtained at B0  =  9.4 T, using MAS rates of (a) 14286 Hz, (b) 30000 Hz and (c) 7937 

Hz. CT-selective pulses of duration 30 s were used and the satellite-transition excitation pulse 

had duration 2.0–2.2 s. Contour levels in (c) are shown at 20, 35, 50, 65, 80 and 95% of the 

maximum intensity. 

obtained from the spectra acquired using n  =  9 and 18 are shown in Figs. 5.10a 

and 5.10b, respectively. These two conditions, corresponding to complete  (n  =  

18) and partial (n  =  9) rotor-synchronization lead to isotropic STARTMAS 

spectra of comparable resolution and linewidths. The n  =  9 condition appears 

to resolve the two 87Rb sites that have very similar positions in the F1 

dimension, whilst in the n  =  18 case, these two sites are not separated. There is 
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no obvious reason for this differing resolution, other than the different 

characteristics of the 2 different probes used for acquiring the n  =  9 and n  =  18 

data. In both cases, good signal-to-noise ratios are obtained and peaks appear at 

the expected positions, so clearly, using either n  =  9 or 18 is an acceptable way 

of recording STARTMAS spectra. In Fig. 5.10c, however, the spectrum acquired 

using n  =  5 possesses a worse signal-to-noise ratio than the n  =  9 and 18 

spectra. This is clearly seen in the projection in Fig. 5.10d, where much broader 

and more distorted lineshapes are observed. It would thus seem that the 

performance of STARTMAS is optimum when rotor-synchronization (n  =  9 or 

18) is used. 

 

5.5.4 Extraction of Quadrupolar Parameters 

As is the case for MQMAS and STMAS, F2 projections of two-dimensional 

STARTMAS spectra yield lineshapes whose width and shape are indicative of 

the size and asymmetry of the quadrupolar tensor. In contrast to MQMAS and 

STMAS, where the lineshapes typically have widths ~kHz, those obtained from 

STARTMAS are usually ~MHz wide. Consequently, F2 lineshapes obtained 

from STARTMAS spectra are susceptible to probe bandwidth distortions and so 

quadrupolar parameters obtained using this method are likely to be less 

accurate than those obtained using other methods.  

F2 lineshapes extracted from the two-dimensional 87Rb STARTMAS NMR 

spectrum of rubidium nitrate from which the F1 projection in Fig. 5.10b was 
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Figure 5.11. (a) Experimental and (b) simulated F2 lineshapes from 87Rb STARTMAS NMR 

spectra of rubidium nitrate. The lineshapes in (a) were obtained from the spectrum used for the 

F1 projection in Fig. 5.10b. 

extracted are shown in Fig. 5.11a. Computer-simulated spectra are shown in 

Fig. 5.11b for each site, labelled 1, 2 and 3. These sites have been previously 

found to have asymmetry parameters of 0.6, 0.2 and 0.9, respectively [53]. The 

experimental cross sections are seen to match well with the simulated spectra, 

although there are distortions evident in the former. A possible source of these 

distortions is the finite bandwidths of the probes used. 

For the extraction of quadrupolar parameters, F2 cross sections were 

simulated for a range of CQ and  values for the rubidium nitrate n  =  9 
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Figure 5.12. Experimental (solid line) and best-fit (dashed line) F2 cross sections of rubidium 

nitrate n  =  9 STARTMAS data used in Fig. 5.10a. 

STARTMAS NMR data from which the F1 projection in Fig. 5.10a was obtained. 

The spectra were generated using the experimental parameters, including finite 

pulse widths, and by applying an absorptive Lorentzian function (0.65 MHz 

linewidth at half-height) to simulate bandwidth effects. The resultant best-fit 

cross sections are shown in Fig. 5.12. 

The best-fit spectra in Figs. 5.12a–c yield quadrupolar coupling constants 

of 1.75, 1.50 and 1.88 MHz, which compare favourably (with the exception of 

Fig. 5.12b) with the literature values [136] of 1.68, 1.94 and 1.72 MHz, 

respectively. The asymmetry parameters obtained from these cross sections 

have the values of 0.2, 0.85 and 0.55, which agree well with the literature values 

[136] of 0.2, 1.0 and 0.5, respectively. As in MQMAS and STMAS spectra, the 

peak positions in each dimension of a STARTMAS spectrum depend on CS and 

Q, from which the quadrupolar product, PQ, may be obtained. Given the 

distortions that may exist in the broad F2 lineshapes obtained from STARTMAS 

spectra, it would seem likely that extraction of quadrupolar parameters from a 

knowledge of the F1 and F2 peak positions (as shown in Chapter 3 for MQMAS 
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 and STMAS) is a preferable method to the fitting procedure shown in Fig. 5.12. 

 

5.6 Applications of STARTMAS 

5.6.1 Isotropic-Isotropic Correlation 

There have been several reports in the literature of experiments that 

enable connectivity information for quadrupolar nuclei in the solid state to be 

obtained [127, 277–281]. Magnetization transfer between inequivalent sites can 

provide site-specific information and this has enabled the relative orientation of 

quadrupolar tensors to be obtained via two-dimensional triple-quantum 

NOESY experiments [277, 280]. In addition, MQMAS has been incorporated 

into three-dimensional experiments and CSA and dipolar coupling parameters 

have been obtained [279]. The experiments detailed in Refs. [277–280] yield 

spectra in which there is an absence of anisotropic broadening (CSA, dipolar or 

quadrupolar in origin) in only one dimension. In Refs. [127] and [281], however, 

a two-dimensional correlation experiment derived from DOR is introduced that 

produces a spectrum that is isotropic in both dimensions. This is useful in cases 

where the overlap of peaks from inequivalent sites can limit the information 

that may be obtained from correlation spectra. Given the fact that STARTMAS 

can, like DOR, produce isotropic spectra in real time, a homonuclear correlation 

experiment derived from STARTMAS could thus prove a useful technique for 

establishing connectivities between quadrupolar nuclei in the solid state. Such 

an experiment would also not be hindered by the technical requirements that 
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Figure 5.13. Pulse sequence and coherence transfer pathway for the STARTMAS isotropic-

isotropic correlation experiment. The SHR method is used to ensure frequency discrimination 

in the F1 dimension. The repeat STARTMAS unit during the t2 period is denoted "SL". 

limit the applicability of DOR. 

The pulse sequence for a homonuclear correlation experiment is shown in 

Fig. 5.13. In this experiment, STARTMAS evolution during both time periods of 

a two-dimensional experiment yields a two-dimensional spectrum that is 

isotropic in both dimensions and so is akin to NOESY [282] spectra observed in 

solution-state NMR. The t1 and t2 periods sandwich a mixing time, m, during 

which magnetization transfer between inequivalent sites can occur. 

Two-dimensional 23Na STARTMAS NMR correlation spectra of sodium 
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citrate dihydrate are shown in Fig. 5.14, recorded using the pulse sequence in 

Fig. 5.13. 1H decoupling was applied during the t1 and t2 periods, but not 

during the mixing time, so as to enable proton-driven spin diffusion [283] to 

occur between the 23Na nuclei. The spectrum in Fig. 5.14a, recorded with a zero 

mixing time, shows the expected 3 diagonal peaks for the 3 inequivalent sites in 

this material. In Fig. 5.14b, where the mixing time is 245 ms, there appears to be 

a cross peak between the two lowest frequency sites. F2 cross sections taken at 

the F1 frequency of this cross peak are shown alongside the spectra in Figs. 

5.14a–d. It should be noted that these cross sections are not shown with the 

correct relative intensities; these have been adjusted so that the diagonal peak 

intensity appears constant and so that any changes in cross peak intensity may 

be more clearly observed. There is, of course, a significant loss of intensity 

between the experiments in Fig. 5.14a and 5.14d due to 23Na T1 relaxation. 

The spectra in Fig. 5.14c and 5.14d, acquired at mixing times of 490 ms and 

980 ms, respectively, reveal a continual growth in cross peak signal intensity, 

although in Fig. 5.14d this peak has an intensity not much greater than the 

background noise signal. A cross peak partner at a position obtained by 

reflection about the diagonal spectral axis is virtually absent, until the spectrum 

in Fig. 5.14d, where it appears with much lesser intensity. This feature is 

unsurprising if the intensity of the diagonal peaks in Fig. 5.14a is considered. 

The diagonal peak shown in the F2 cross sections alongside Figs. 5.14a–d has 

much greater intensity than that arising from the 2 other sites in sodium citrate 

dihydrate, this of course being a consequence of the non-quantitative nature of 
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Figure 5.14. Two-dimensional 23Na STARTMAS NMR correlation spectra of sodium citrate 

dihydrate recorded with a mixing time of (a) 0, (b) 245 ms, (c) 490 ms and (d) 980 ms. Alongside 

each spectrum is the F2 cross section corresponding to the most intense diagonal peak. All 

experiments were performed at B0  =  9.4 T, a MAS rate of 14286 Hz and with n  =  9. The CT-

selective, satellite-transition excitation and z-filter pulses had duration 30 s, 2.0 s and 2.0 s, 

respectively. Contour levels in (a–d) are shown in 10% increments in the range of 5–95% of the 

maximum intensity. 



 141

satellite-transition excitation. Given that the intensity of the cross peaks is 

dependent on the amount of magnetization present at the end of the t1 period 

on the spin from which the magnetization was transferred during the mixing 

time, the greater intensity of cross peaks arising from transfer from the spin 

yielding the most intense diagonal peak is not surprising.  

This experiment was repeated on rubidium nitrate and sodium 

metasilicate pentahydrate, Na2SiO3·5H2O, (results not shown). No cross peaks 

were observed for rubidium nitrate; this is most likely a consequence of (i) the 

relatively short T1 relaxation times in this material (less than 200 ms for all 3 

sites), (ii) the 40% natural abundance of 87Rb nuclei that increases the average 

distance between adjacent 87Rb nuclei and (iii) the absence of 1H nuclei that 

removes the possibility of enhanced spin diffusion between 87Rb nuclei. In 

sodium metasilicate pentahydrate, for which exchange peaks between the two 

inequivalent sites have been reported previously [280], a pair of cross peaks 

was observed. As in the case of sodium citrate dihydrate, a significant disparity 

in the intensity of the cross peaks was observed, this most likely being 

attributable once again to the non-quantitative nature of satellite-transition 

excitation.  

Reports of magnetization transfer between quadrupolar nuclei have 

generally yielded cross peaks of low intensity [277–280], although the absence 

of anisotropic broadening in correlation spectra obtained using STARTMAS 

would suggest that any cross peaks observed would have greater relative 

intensity. The spectra shown in Fig. 5.14 do not confirm this view, although 
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they do demonstrate the ease with which isotropic-isotropic correlation spectra 

may be obtained. In the absence of real-time data acquisition, such spectra may 

only be obtained via three-dimensional experiments, which, in many cases, may 

require a prohibitively long duration. 

 

5.7 Conclusions 

The new STARTMAS experiment has been shown to produce isotropic 

spectra of spin I  =  32 nuclei in real time; this could only previously be 

achieved using specialist DOR probes. STARTMAS has been demonstrated on a 

range of powdered solids and, in cases of high sensitivity, spectra may be 

obtained using very few transients, or even just a single transient. It has been 

shown that STARTMAS can be performed at any value of n  ≥  5 but, for 

optimum results, the n  =  9 or 18 conditions should be used. In addition, 

lineshape fitting procedures have been used to demonstrate the utility of 

STARTMAS spectra in obtaining quadrupolar parameters, although the 

susceptibility of the lineshapes to distortions due to probe and filter bandwidth 

effects means that such parameters are likely to be less reliable than those 

obtained by other means. The ability of STARTMAS to produce isotropic-

isotropic correlation spectra has been shown and this application of the 

technique would appear to offer much promise. 

One of the greatest challenges remaining for STARTMAS is to extend the 

method to spin I  =  52 nuclei. The fourth-rank coefficients, A4(I, q), for the 
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inner satellite (mI  =  ±12  ±32) and inner double-quantum (mI  =  ±32  

12) transitions of all nuclei with spin I  >  32 are of the same sign and so the 

current approach to STARTMAS will fail in such cases. For nuclei with spin I  >  

32, interconversion of satellite and double-quantum coherences of opposite 

sign is thus needed. There are currently no known pulse schemes that can 

perform this conversion with the high efficiency required for real-time data 

acquisition.  

The isotropic spectral width obtained in STARTMAS is small compared to 

that typically seen in MQMAS and STMAS spectra. This can, in many cases, 

lead to considerable aliasing and unwanted peak overlap may occur. Another 

improvement which would prove useful for STARTMAS is thus an increase in 

spectral width, which is constrained by the spinning frequency, the length of 

the selective pulses and the rotor-synchronization requirements. Finally, the use 

of MAS probes with larger bandwidths would enable extraction of F2 

lineshapes that are a more accurate reflection of the quadrupolar tensors 

characterising the satellite transitions. 
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Chapter 6 

NOE Studies of Borane Adducts 

6.1 Introduction 

The nuclear Overhauser effect (NOE) [59, 61] is one of the most widely 

exploited phenomena in NMR and is well known as a means of determining 

molecular structure in solution. The effect arises through cross-relaxation 

driven by the modulation of the dipolar interaction between two spatially 

proximate spins, conventionally labelled I and S. Upon perturbation of the 

populations of the S-spin energy levels, cross-relaxation processes act to return 

the populations of the energy levels to their equilibrium values. This has the 

simultaneous effect of altering the population differences across the I-spin 

transitions, so leading to the observed increase or decrease in I-spin signal 

intensity. 

Modulation of the dipole-dipole interaction arises due to the presence of 

molecular motion on the correct timescale. In the solution state, this motion 

exists as a result of the rapid, random tumbling. In the solid state, such motion 

is rarely observed due to the structural rigidity imposed on the molecules and 

consequently NOEs are typically not observed. The exceptions to this have 

mainly been in polymeric hydrocarbon derivatives, where the rapid rotation of 

methyl groups about their C3 axes leads to 13C{1H} NOEs [64–66], and in the 
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case of adamantane and other "plastic crystals", where modulation of the 

heteronuclear dipolar interaction by isotropic molecular tumbling leads to 

enhancement of the 13C signal intensity. 

NOEs to quadrupolar nuclei are rarely observed, this being due to the 

typically much greater efficiency of quadrupolar relaxation than dipolar cross-

relaxation. Given that quadrupolar spin-lattice relaxation is proportional to the 

square of CQ,  solution-state NOEs are only likely to be observed for nuclei with 

small quadrupole moments (e.g., 2H and 6Li, both with spin I  =  1), or for 

quadrupolar nuclei in highly symmetric environments. Reports of NOEs to 

quadrupolar nuclei have been mainly confined to 6Li [67, 284, 285] and 7Li (spin 

I  =  32) [286] nuclei. 

Unusually, the presence of a 11B{1H} transient NOE in solid borane 

triphenylphosphine, BH3·PPh3, has recently been reported in an MAS NMR 

experiment [287]. The existence of an NOE in this case has been attributed to 

the presence of rapid rotation of the BH3 group about its C3 axis that modulates 

the 11B{1H} dipolar interaction. The absence of strong quadrupolar relaxation in 

this case is most likely due to the coincidence of the 11B quadrupolar tensor and 

the C3 symmetry axis. This has the effect that rotation of the BH3 group leads to 

very little modulation of the 11B quadrupolar interaction and thus inefficient 

quadrupolar relaxation. 

In this chapter, 11B{1H} NOE results are presented for a series of borane 

adducts. 11B{1H} transient NOE experiments are used to obtain 11B NMR 
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enhancements in a range of phosphine- and amine-derived borane adducts 

under MAS conditions and the results are compared and a rationale proposed 

for the trends seen. The 11B{1H} enhancement of the 11B satellite transitions is 

obtained and a triple-quantum filtered transient NOE experiment is used for 

the analogous measurement for the 11B triple-quantum transition. Variable-

temperature NMR results are presented that demonstrate the variation of the 

11B{1H} NOE enhancement in borane triphenylphosphine and the results 

obtained are considered in terms of the measured spin-lattice relaxation times 

and with the aid of theoretical calculations. A comparison of the NOE 

enhancements observed under static and MAS conditions is also made and 

theoretical arguments are used to rationalise the behaviour in the former case. 

 

6.2 Theory 

6.2.1 The Heteronuclear NOE 

The nuclear Overhauser effect may be explained simply by considering 

the nuclear spin energy levels involved. Take, for example, the case of a 

heteronuclear IS dipolar-coupled spin pair, where I  =  13C (spin I  =  12) and S 

= 1H (spin I  =  12). The energy levels of such a system are shown in Fig. 6.1, 

where the numbers shown above each energy level signify the relative 

deviations of their populations from a fully saturated state by assuming that 

SI  =  4. Shown in Fig. 6.1a are the energy levels at thermal equilibrium with 

the I- and S-spin transitions indicated. In Fig. 6.1b the energy levels are shown  
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Figure 6.1. Energy levels of an IS heteronuclear spin pair for the case where I  =  13C and S  =  
1H, depicted at (a) thermal equilibrium, (b) after inversion of the populations of the S-spin 

energy levels and (c) after cross-relaxation via the double-quantum (W2
IS) pathway has restored 

the population difference between the energy levels indicated. 

for the case where the populations of the S-spin energy levels are inverted (as in 

a transient NOE experiment). After perturbation of the populations of the S-

spin energy levels, which leaves the population difference across the I-spin 

transitions unaffected, relaxation pathways act to return the populations of 

certain energy levels to their equilibrium values, as indicated in Fig. 6.1b. The 

W1
I and W1

S pathways correspond to a transition between the I- and S-spin 

energy levels, respectively, with the one subscript indicating that the transition 

involves a net change of magnetic quantum number, mI, of one. Relaxation 

via this pathway simply corresponds to spin-lattice relaxation of the I and S 
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spins and so leads to the energy levels being populated as in Fig. 6.1a. There are 

two other pathways that can restore populations of the energy levels and these 

are denoted W0
IS and W2

IS, as they involve a net change in magnetic quantum 

number of zero and two, respectively. Relaxation via these pathways is known 

as cross-relaxation as it involves a simultaneous change of the populations of 

the energy levels of both spins. By restoring the populations of the energy levels 

indicated to their equilibrium values, relaxation via these two pathways leads 

to a simultaneous change of the population difference across the I-spin 

transitions. This is shown in Fig. 6.1c, where the populations of the energy 

levels are shown after hypothetical cross-relaxation solely via the W2
IS pathway 

has occurred. It is shown that the population difference across the I-spin 

transitions, nI, has increased to 10 from its value of 2 at thermal 

equilibrium. This increase in I-spin signal intensity is referred to as the NOE 

enhancement. The effect of cross-relaxation via the zero-quantum, W0
IS 

pathway is not indicated in Fig. 6.1. This is because, for small molecules in 

solution, this pathway makes a very small contribution to cross-relaxation. This 

will be explained further in the next section. 

 

6.2.2 The Solomon Equations 

It was shown by Solomon [61] that the behaviour of the I- and S-spin 

magnetizations after perturbation of the populations of the S-spin energy levels 

may be expressed using the following rate equations: 
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where     Iz (t )  and     Sz (t ) are ensemble averages of the expectation values of the 

z-components of the spin angular momentum operators at time t of the I and S 

spins, respectively. 0I z  and 0S z  are the expectation values of the same 

operators at equilibrium. Equation (6.1) is often simplified such that the 

expectation value and ensemble average are implied, which yields: 
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 , (6.2) 

where 0Iz   =  0I z  and 0S z   =  0S z . Equation (6.2) would seem to imply that 

the operators are time dependent. This of course is not the case, as it is actually 

the populations and wavefunctions of the spin systems that are changing. 

In Eqs. (6.1) and (6.2) the cross-relaxation rate constant is denoted IS, 

whilst the self-relaxation rate constants for the I and S spins are given by I and 

S, respectively. These equations show that the behaviour of the I- and S-spin 

magnetizations is dependent on both the spin-lattice relaxation of each spin, 

and on the cross-relaxation. Note that the term involving  is directly 

proportional to the change in the magnetization of the coupled spin in each case 

— this shows that the evolution of the I-spin magnetization is dependent on the 
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perturbation of the S-spin magnetization (and vice versa) and so is an 

equivalent way of describing what was shown in Fig. 6.1. 

In the transient NOE experiment, shown in Fig. 6.2, the populations of the 

S-spin energy levels are inverted by the application of a 180 pulse to the S 

spins. Cross-relaxation then occurs during the NOE build-up interval, , before 

a 90 pulse on the I spin excites I-spin single-quantum coherence. The 

experiment is repeated using different values of  and the change in I-spin 

signal intensity is observed. In such an experiment, directly after the S-spin 

inversion pulse (  =  0) the I- and S-spin magnetizations take the values: 

 
    

Iz (0)  Iz
0

Sz (0)  Sz
0
 . (6.3) 

If the approximation is made that the I- and S-spin magnetizations take 

the values given in Eq. (6.3) (the initial rate approximation), then these 

boundary conditions may be used to obtain the following behaviour of the I-

spin magnetization, where t is now replaced by : 

 
    
dI z ()

d
 2ISSz

0  , (6.4) 

which yields the following solution: 

     Iz ()  2 ISSz
0  Iz

0  . (6.5) 

Equation (6.4) states that the I-spin magnetization is dependent on  and on the 
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cross-relaxation rate constant IS, the latter of course being responsible for the 

NOE. 

The behaviour of the S-spin magnetization may also be obtained by 

solving the second part of Eq. (6.1), which yields the equation:  

     Sz ()  2SSz
0  Sz

0  . (6.6) 

The S-spin magnetization thus returns to its equilibrium value at a rate 

characterised by its self-relaxation rate constant. 

Using Eq. (6.5), an NOE enhancement, , is defined as: 
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z

z

z

zz

 . (6.7) 

Given that  is directly proportional to the gyromagnetic ratio of the S spin, this 

nucleus is typically chosen to be high-, i.e., 1H or 19F. 

Equations (6.1–6.7) are only valid in the initial rate approximation, in 

which the NOE does not reach its maximum, and the conditions IS  <<  1 and 

S  <<  1 are satisfied. At longer mixing times, the solutions of Eq. (6.1) are 

more difficult to obtain, but nevertheless, the following expressions may be 

obtained for the time dependence of the I- and S-spin magnetizations, assuming 
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Figure 6.2. Pulse sequence and coherence transfer pathway for the transient NOE experiment 

that measures the heteronuclear NOE enhancement experienced by the central transition of spin 

I upon inversion of the populations of the S-spin energy levels. The NOE build-up interval is 

denoted . 

that IS  =  SI (an assumption that holds when the spin quantum numbers of 

the I and S spins are equal) [288]: 
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 , (6.8) 



 153

where 

 

  

A  I S 2  4IS
2

B  I  S   I S 2  4IS
2

C  I  S   I S 2  4IS
2

 , (6.9) 

from which the NOE enhancement becomes: 

 
  
 

2SIS

AI
exp(  C 2)  exp( B 2)  . (6.10) 

The value of  for which the I-spin signal intensity has its greatest value, 

max, may easily be obtained from Eq. (6.8) and is given by: 

 
  
max 

1
A

ln B
C









 , (6.11) 

When the I-spin signal intensity has its greatest value,   =  max and so, by 

substituting Eq. (6.11) into Eq. (6.10), the following expression for the maximum 

NOE  enhancement, ���, is obtained: 
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For the case of a homonuclear spin pair, Eq. (6.12) reduces to 
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and likewise the I-spin signal intensity reaches its maximum value when  

 
  
max 

1
2 
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   
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
 , (6.14) 

where I  =  S  =   and IS  =  . 

The self-relaxation and cross-relaxation rate constants for a heteronuclear 

IS spin pair (both with spin I  =  12), I, S and IS, are directly related to the 

rate constants defined in Section 6.2.1, W0
IS, W1

I, W1
S and W2

IS, as follows: 

 

    

 IS 
K2

20
6j( I  S)  j(I  S) 

 W2
IS  W0
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 , (6.15) 

and 

 

    

I 
K2

20
6j( I  S)  3j( I)  j( I  S) 

 W2
IS  2W1

I  W0
IS

S 
K2

20
6j( I  S)  3j(S)  j( I  S) 
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IS  2W1

S  W0
IS

 , (6.16) 

where  
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j(I  S)

W1
I 
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40
j(S)

W2
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3K2

10
j( I  S)

 , (6.17) 

and 

 
    
K  

0ISh
4rIS

3  , (6.18) 

where j() are reduced spectral density functions, defined as: 

 
  
j() 

2c

1  (c )2  . (6.19) 

Non-reduced spectral-density functions are usually expressed in the form [289] 

 2
c

c2
loc )(1

2)(B)(J



 t , (6.20) 

where )(B2
loc t  is the average of the square of a time-dependent local magnetic 

field experienced by a given spin, in this case given by: 
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K)(B 
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ht . (6.21) 

Generally )(B2
loc t  can take positive integer or half-integer values which are 
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equally distributed about zero, such that the average over the entire sample is 

zero. 

In Eqs. (6.19) and (6.20), c is the correlation time (in seconds); this is 

defined as the time constant characterising the decay rate of the correlation 

function, G(t) [289]: 

 )/exp()(B)(G c
2
loc  ttt . (6.22)  

The correlation function describes the variation over time of the average of the 

square of the local magnetic field, )(B2
loc t , and its Fourier transform yields the 

spectral density function in Eq. (6.20). 

For small molecules in solution, the correlation time is typically very 

short, such that the condition 0c  <<  1 is satisfied. This condition is known as 

the fast-motion or extreme-narrowing limit. Conversely, for large molecules in 

solution the correlation time is usually much longer and so the condition 0c  

>>  1 is satisfied. This limit is referred to as the slow-motion or spin-diffusion 

limit. For the results to be presented in this Chapter, only the fast-motion limit 

is applicable and so the slow-motion limit will not be considered further here. 

In the fast-motion limit, the reduced spectral density function defined in 

Eq. (6.19) becomes independent of frequency and is given by 

 j()  =  2c , (6.23) 
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and so the cross-relaxation rate constant becomes 

 

  

 IS 
K2

20
12c  2c 


K2c

2

 , (6.24) 

and hence W0
IS and W2

IS are given by 

 

    

W0
IS 

K2c

10

W2
IS 

3K2c

5

 . (6.25) 

For small molecules in solution, the double-quantum pathway thus makes 

the dominant contribution to cross-relaxation, as was stated in Section 6.2.1. The 

self-relaxation rate constants are also simplified to: 

 I  =  S  =  K2c , (6.26) 

and so, in the fast-motion limit, the cross- and self-relaxation rate constants are 

related by 

   =  2 . (6.27) 

Figure 6.3 shows the behaviour of the I- and S-spin magnetizations in a 

transient NOE experiment, directly after an inversion pulse has been applied to 

the S spins. A homonuclear spin system (spin I  =  12) in the fast-motion regime 

is assumed and so, using Eq. (6.26), the maximum NOE enhancement in Eq. 
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Figure 6.3. The behaviour of the (a) I-spin and (b) S-spin magnetizations in a transient NOE 

experiment during the NOE build-up interval  for a pair of homonuclear spin I  =  12 nuclei. 

Motion in the extreme-narrowing limit has been assumed and   =  1.0 s1 and   =  0.5 s1. 

(6.13) reduces to 

 

  

max 
2

3 3

 0.385

 . (6.28) 

More generally, the maximum transient NOE enhancement in the fast- 

motion limit for a pair of spin I  =  12 nuclei is given by 

 
  
max 

2
3 3

S

I









 . (6.29) 

For an IS spin pair where I  =  11B and S  =  1H, the maximum NOE 
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enhancement is, by treating 11B as a spin I  =  12 nucleus (a valid 

approximation, as the quadrupolar interaction renders the satellite transitions 

virtually unobservable in an MAS experiment), 1.20. 

Figure 6.3a shows that the I-spin signal intensity increases until   =  max, 

at which point the maximum NOE enhancement for a homonuclear spin pair of 

0.385 is achieved, before I-spin self-relaxation then returns it to its equilibrium 

value. The curve shown in Fig. 6.3a is referred to as an "NOE build-up" curve. 

The recovery of the S-spin magnetization to its equilibrium value after the 

inversion pulse has been applied is shown in Fig. 6.3b. 

 

6.3 NOEs to Quadrupolar Nuclei 

As described in Section 6.1, NOEs to quadrupolar nuclei are rarely 

observed as a consequence of the quadrupolar contribution being by far the 

most dominant one to spin-lattice relaxation. This can be illustrated by 

considering the NOE build-up curves when cross-relaxation is achieved via just 

a dipolar mechanism, and when both dipolar and quadrupolar mechanisms are 

operative. 

NOE build-up curves may be obtained by calculating the Redfield 

relaxation matrix [290]. This calculation may be illustrated with the simple case 

of a homonuclear spin I  =  12 pair. The equation of motion describing such a 

system is given by [290]: 
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 , (6.30) 

where R is the relaxation matrix and Rabcd (1  ≤  a, b, c, d  ≤  4) the corresponding 

matrix elements. The vector elements 11, 22, 33 and 44 correspond to the 

relative populations of the four Zeeman states with mI, mS  =  +12, +12; 12, 

+12; +12, 12 and 12, 12; labelled 1, 2, 3 and 4, respectively. The off-

diagonal relaxation matrix elements may be calculated using the equation 

  


2

2
ISISacabcd bVdcVa)(J2R

q

qq  , (6.31) 

where the spectral density function J(ac) is defined according to: 
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and where the frequencies ac take the values (for a homonuclear spin pair) 0 

(for 23); 0 (for 12, 13, 24 and 34) and 20 (for 14) and where the relation 

ac  =  ca is satisfied. The summation of the elements in each row and column 

of the relaxation matrix is zero and so the diagonal elements can be obtained 

through knowledge of the off-diagonal elements. q
ISV  are tensors and cVa IS

q  
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and bVd IS
q  their corresponding matrix elements; these tensors are defined 

according to 

 

 

 
SI2

IS

SISI1
IS

SISISI2
1

0
IS

IIV

IIIIV

IIIIII4
6
1V





















zz

zz

 , (6.33) 

in terms of the Cartesian operators, Iz and the raising and lowering operators I+ 

and I, respectively: 
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The relaxation matrix R is thus: 
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The matrix now needs to be transformed into a suitable basis set. For a pair of 

spin I  =  12 nuclei, products of Cartesian spin angular momentum operators 

(so-called "product operators" [76], referred to in Section 2.5 of Chapter 2) are 

particularly useful. In this case, the 4 operators E, Iz, Sz and 2IzSz are required, 
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where E is the unity operator. A transformation matrix, U, is then formed 

where each row is derived from the diagonal elements of the 4 basis operators 

(note that E, Iz and Sz have to be multiplied by E to yield the required 4  4 

matrices): 
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and a new relaxation matrix R’ in the Zeeman order basis set is now obtained 

by multiplying R by U and its transpose UT (where U  =  UT): 
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The equation of motion is now modified to: 
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where the expectation values of these operators have the same meaning as 

those in Eq. (6.1).  
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Equation (6.38) can be easily solved to yield expressions for the 

expectation values of the operators Iz and Sz: 
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 , (6.39) 

where c is a constant of integration. If the boundary conditions given in Eq. (6.3) 

are assumed (i.e., the initial rate limit), then the expressions in Eq. (6.39) are 

identical to those in Eqs. (6.5) and (6.6).  

For the case of a spin I  =  32, spin I  =  12 pair the relaxation matrix was 

constructed using a basis set consisting of the products of 2 spherical tensor 

operators (T0,0 and T1,0)  for the spin I  =  12 nucleus (spin S) and 4 spherical 

tensor operators (T0,0, T1,0, T2,0 and T3,0) for the spin  I  =  32 nucleus (spin I). 

This resulted in 8 operators (T0,0(S)T0,0(I), T0,0(S)T1,0(I), T0,0(S)T2,0(I), T0,0(S)T3,0(I), 

T1,0(S)T0,0(I), T1,0(S)T1,0(I), T1,0(S)T2,0(I) and T1,0(S)T3,0(I)) and a relaxation matrix 

of dimensions 8  8 was obtained with the aid of the MathNMR Mathematica 

program [291]. The matrix was calculated directly in the spherical tensor 

operator basis set (i.e., without the need for any transformation as described in 

the case of a homonuclear spin I  =  12 pair) and, due to the block diagonal 

nature of 4 operators in the matrix (i.e., these 4 operators showed correlations 
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only with each other), the equation of motion was modified to one containing a 

relaxation matrix of dimensions 4  4. This equation can then easily be solved 

with the boundary condition )0(S z   =  0S z . 

The modified equation of motion describes the time dependence of the 

expectation values of the operators T0,0(S)T1,0(I), T0,0(S)T3,0(I), T1,0(S)T0,0(I) and 

T1,0(S)T2,0(I). The expectation values of these tensors are defined as T , the 

deviation of these tensors from their equilibrium values: 

 0T)(TT   . (6.40) 

The evolution of the I-spin magnetization is represented by the operator 

T0,0(S)T1,0(I); the magnitude of the expectation value of this operator 

(<T0,0(S)T1,0(I)>) is plotted in Fig. 6.4 for the case of an IS spin pair, where I  =  

11B and S  =  1H. 

NOE build-up curves are shown in Fig. 6.4 when just dipolar and a 

combination of dipolar and quadrupolar mechanisms are present to effect 

cross-relaxation. Motion in the extreme-narrowing limit is assumed. In Fig. 6.4a, 

the maximum NOE enhancement of 0.43 is achieved when solely dipolar 

contributions are incorporated into the calculation of the relaxation matrix 

(solid line), whilst the addition of the quadrupolar mechanism with a 

quadrupolar coupling parameter, CQ, equal to 0.5 MHz, leads to a significant 

reduction of the enhancement to just 0.04 (dashed line). The strong effect of a 

quadrupolar coupling is demonstrated further in Fig. 6.4b, where the presence 
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Figure 6.4. NOE build-up curves for an I  =  11B, S  =  1H spin pair shown for when the 

mechanism for cross-relaxation is (a) solely dipolar (solid line) and dipolar and quadrupolar 

(dashed line, CQ  =  0.5 MHz) in origin and (b) when both dipolar and quadrupolar 

contributions are present and CQ  =  0.5 MHz (solid line), 1.0 MHz (dashed line) and 1.5 MHz 

(dot dashed line). The MathNMR Mathematica program [291] was used for calculating the 

curves when a quadrupolar contribution was included. The correlation time c  =  100 ps. 

of a quadrupolar interaction with CQ  =  0.5 MHz (solid line), 1.0 MHz (dotted 

line) and 1.5 MHz (dot dashed line) is shown. The increase in CQ continues to 

decrease significantly the enhancement to the point where, at CQ  =  1.5 MHz, 

an enhancement of just 0.006 is expected. The magnitude of this effect, even 

when CQ is modest, is thus so great that NOEs to quadrupolar nuclei are 

typically too small to be detected. 
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6.4 Transient NOE Enhancement of Borane Adducts 

6.4.1 Central Transition 11B{1H} NOE 

Transient NOE experiments have been performed on a series of solid 

borane adducts, using the pulse sequence shown in Fig. 6.2 under MAS 

conditions. This experiment is used instead of the steady-state NOE method 

commonly used in the solution state as the long periods of high-power 

decoupling needed make it unsuitable for use in solid-state NMR. In each case, 

a range of  values was used such that an NOE build-up curve like that shown 

in Fig. 6.3a was obtained. For each material, the maximum enhancement was 

obtained and the value of  for which the maximum 11B signal intensity was 

seen, max, was determined. In these results, the NOE enhancement is expressed 

as a percentage and so is defined as 

 
    
fI {S} 

I(max )  I0

I0
 100  , (6.41) 

where I(max) and I0 are the I-spin signal intensities at   =  max and   =  0, 

respectively. Figure 6.5 shows 1H-decoupled 11B MAS spectra of borane 

triphenylphosphine for the cases of   =  0 and   =  max  =  650 ms. The 11B 

central transition MAS lineshape is broadened by the residual second-order 

quadrupolar interaction (the quadrupolar coupling parameter, CQ  =  1.2 MHz 

and the asymmetry parameter,   =  0 [293]) and also shows evidence of 11B-31P J 

coupling (J11B-31P  =  60 Hz [293]). The increase in signal intensity in Fig. 6.5 is 

evidence of a heteronuclear NOE with an NOE enhancement fI{S}  =  155%. 
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Figure 6.5. 1H-decoupled 11B MAS spectra of borane triphenylphosphine acquired using the 

transient NOE experiment in Fig. 6.2, shown for values of (a)   =  0 and (b)   =  650 ms. The 

experiment was performed at B0  =  9.4 T and the MAS rate was 10 kHz. The chemical shift scale 

is referenced to solid BPO4 at 3.3 ppm [292]. The 11B 90° pulse had duration 1.1 s and the 1H 

inversion pulse was 2.9 s. The 1H decoupling field strength was ~65 kHz. 

When this experiment is performed on the same material in the solution state, 

no NOE is observed [287]. 

The presence of a transient NOE in this material is intriguing given that 

11B is a quadrupolar nucleus and that an enhancement is observed only in the 

solid state. A likely source of motion on the fast timescale is the rapid rotation 

of the BH3 group about its C3 axis that causes a random modulation of the 1H-

11B dipole-dipole interaction. The close proximity of the 11B and 1H nuclei (rIS  =  

0.117 nm in borane ammonia complex, BH3·NH3 [294]) leads to a strong dipolar 
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interaction and hence a large NOE enhancement. T1 relaxation of quadrupolar 

nuclei is often very efficient and usually takes effect more rapidly than any 

dipolar-driven cross-relaxation. The presence of an NOE in this material is thus 

likely to be due to the absence of a modulation of the 11B quadrupolar 

interaction that would lead to efficient quadrupolar relaxation. This arises 

because, as the 11B quadrupole tensor is axially symmetric, it is aligned along 

the BH3 C3 axis and so rapid reorientation of the BH3 group about this axis 

alters very little the 11B quadrupolar interaction. The validity of this rationale is 

demonstrated with the absence of a transient 11B{1H} NOE in solid ortho-

carborane, B10H10C2H2. Rapid isotropic tumbling of this cage molecule [295] 

causes the modulation of the 1H-11B and 1H-13C dipole-dipole interactions that 

is required for NOE enhancement of the 11B and 13C nuclei, respectively. 

However, whilst a 13C{1H} NOE enhancement of 63% is observed [287], a 

11B{1H} NOE enhancement is not. This is because the isotropic tumbling also 

modulates the 11B quadrupolar interaction, so leading to efficient quadrupolar 

relaxation and hence no 11B{1H} NOE. The absence of a transient 11B{1H} NOE of 

borane triphenylphosphine in the solution state may be similarly explained. In 

this case, the rapid tumbling about all Cartesian axes seen in solution 

modulates the 11B quadrupolar interaction and destroys the NOE. 

Equation (6.29) reveals that a maximum 11B{1H} transient NOE 

enhancement of 1.20 would be expected (if 11B is treated as a spin I  =  12 

nucleus). Expressed as a percentage according to Eq. (6.41), the maximum NOE 

enhancement of 120% is less than the 155% observed experimentally in borane 
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Figure 6.6. 1H-decoupled 31P MAS spectra of borane triphenylphosphine recorded (a) without 

an NOE enhancement and (b) with   =  2.75 s in the sequence in Fig. 6.2. The experiment was 

performed at B0  =  9.4 T and the MAS rate was 10 kHz. The 31P 90° pulse had duration 2.5 s 

and the 1H inversion pulse was 2.9 s. 

triphenylphosphine. In contrast to the steady-state NOE, however, the 

maximum transient NOE enhancement increases with the number of S spins 

equidistant from the I spin. It can be shown that, for three non-interacting S 

spins, all equidistant from the I spin (where I and S both have spin I  =  12), the 

maximum transient NOE enhancement in the fast-motion limit is given by fI{3  

S}  =  0.601(IS)  100  =  187% if I  =  11B and S  =  1H [287]. The discrepancy 

between this value and that observed experimentally most likely arises as a 

result of enhanced 1H spin-lattice relaxation resulting from 1H-1H dipolar 

interactions that are ignored in the theoretical calculation. In addition, there is 

likely to be a quadrupolar contribution to the 11B spin-lattice relaxation. 

1H-decoupled 31P MAS spectra of borane triphenylphosphine with and 

without an NOE are shown in Fig. 6.6. At   =  2.75 s, the 31P signal intensity 
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Table 6.1. Fractional NOE enhancements of 11B and 31P in a series of phosphine- and amine-

derived adducts of borane, along with T1 times of the 1H, 11B and 31P nuclei. All experiments 

were performed at either B0  =  4.7 T or 9.4 T and a MAS rate of 10 kHz. 

reaches its maximum and a heteronuclear NOE enhancement of 8.5% is 

observed. The much smaller enhancement observed for 31P compared with 11B 

is, given the r6 dependence of the NOE, consistent with the greater distance to 

the protons in the BH3 group (rIS  ≈  0.25 nm [296]). In contrast to the case of 11B, 

performing this experiment in the solution state yields an NOE enhancement of 

fI{S}  =  53%. 

Adduct fI{S} 

(%) 

I  =  11B 

max 

/ms 

fI{S} 

(%) 

I  =  31P 

max 

/ms 

T1(1H) 

/s 

T1(11B) 

/s 

T1(31P) 

/s 

BH3·PPh3 

BH3·PHPh2 

BH3·NMe3 

BH3·NHtBu2 

BH3·NH2
tBu 

BR3·NH3 

(R  =   p-

MeOC6H4) 

155 

128 

34 

32 

32 

8.9 

600 

300 

750 

400 

350 

3000 

8.6 

8.5 

— 

— 

— 

— 

2750 

1500 

— 

— 

— 

— 

1.28 

0.54 

1.67 

1.10 

0.94 

7.01 

0.62 

0.32 

0.38 

0.24 

0.21 

0.99 

 

20.28 

12.69 

— 

— 

— 

— 
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Transient NOE results for borane triphenylphosphine and a series of other 

phosphine- and amine-derived borane adducts are summarised in Table 6.1. T1 

relaxation times for 1H, 11B and 31P nuclei are also shown. The 11B{1H} NOE 

enhancement of borane diphenylphosphine, BH3·PHPh2, is smaller than that 

observed in borane triphenylphosphine. This concurs with the more efficient 1H 

and 11B spin-lattice relaxation shown by the T1 values in Table 6.1. 

The 11B{1H} NOE enhancements observed for borane trimethylamine, 

BH3·NMe3, borane tert-butylamine, BH3·NH2
tBu, and borane di-tert-

butylamine, BH3·NHtBu2, are very similar, which is not surprising given the 

chemical similarity of these materials. The slightly smaller enhancements 

observed with the tert-butylamine and di-tert-butylamine adducts are consistent 

with the more efficient 1H and 11B T1 relaxation observed in these solids. The 

much smaller enhancement observed for borane tri-para-methoxyphenylamine, 

B(p-MeOC6H4)3·NH3, is consistent with the source of the NOE being the more 

distant protons attached to the nitrogen atom. 

 

6.4.2 Satellite and Triple-Quantum Transition 11B{1H} NOE 

The results shown in the previous section were concerned with the 11B{1H} 

NOE enhancement of the 11B central transition. By performing the transient 

NOE experiment in Fig. 6.2 over a large spectral width and by modifying the 

technique to incorporate triple-quantum filtration, the enhancement of the 

satellite and triple-quantum transitions may be obtained, respectively. The 
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Figure 6.7. Pulse sequence and coherence transfer pathway for the transient NOE experiment 

that measures the heteronuclear NOE enhancement experienced by the triple-quantum 

transition of spin I upon inversion of the populations of the S-spin energy levels. The NOE 

build-up interval is denoted . 

pulse sequence for the triple-quantum filtered transient NOE experiment is 

shown in Fig. 6.7. 

1H-decoupled 11B MAS spectra of borane triphenylphosphine recorded 

with a spectral width of ~1 MHz are shown in Fig. 6.8, both in the absence of an 

NOE (Fig. 6.8a) and with   =  550 ms (Fig. 6.8b), when the maximum NOE 

enhancement was obtained. The spectra show the expected manifold of 

spinning sidebands whose envelope approximately corresponds to the axially 

symmetric static satellite-transition lineshape expected for this material. The 

maximum NOE enhancement is obtained at   =  550 ms (Fig. 6.8b), where an 
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Figure 6.8. 1H-decoupled 11B MAS spectra of borane triphenylphosphine recorded using the 

pulse sequence in Fig. 6.2 with (a)   =  0 and (b)   =  550 ms. Spectra were acquired at B0  =  9.4 

T and a MAS rate of 10 kHz. A pulse length of duration 2.25 s, optimised for 11B satellite-

transition excitation, was used, and accounts for the partly dispersive nature of the central-

transition centreband. 

increase in signal intensity of 155% is observed, as was seen for the central 

transition in Fig. 6.5. Closer analysis of a range of sidebands in the spectrum 

reveals that the enhancement is uniform across the entire powder pattern. 

Figure 6.9 shows 1H-decoupled 11B MAS spectra of borane triphenyl- 

phosphine obtained using the triple-quantum filtered transient NOE 

experiment in Fig. 6.7. The spectra show, as expected, minimal distortion from 

triple-quantum filtration, although the 11B-31P J coupling is more apparent than 

in the central transition lineshapes shown in Fig. 6.5. Comparison of the 
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Figure 6.9. 1H-decoupled 11B MAS spectra of borane triphenylphosphine, recorded using the 

triple-quantum filtered transient NOE experiment in Fig. 6.6, shown for values of (a)   =  0 and 

(b)   =  650 ms. Experiments were performed at B0  =  9.4 T and a MAS rate of 10 kHz. The 

triple-quantum excitation and conversion pulses had durations 4.75 s and 1.5 s, respectively. 

spectrum obtained with   =  0 (Fig. 6.9a) and that obtained with   =  650 ms 

(Fig. 6.9b) reveals a maximum NOE enhancement of 155%, as is observed for 

the central and satellite transitions. The uniform enhancement observed for the 

central, satellite and triple-quantum transitions has also been observed in 

borane tert-butylamine (results not shown). 

The uniform enhancement of the three 11B transitions shown in Figs. 6.5, 

6.8 and 6.9 is, at first glance, rather surprising. Given the different population 

differences that exist across these transitions, it may have been expected that 

different NOE enhancements would result. Consider the energy levels of a 

dipolar-coupled spin I  =  32 (spin I), spin I  =  12 (spin S) pair, shown in Fig. 
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Figure 6.10. Energy level diagram for a dipolar-coupled heteronuclear spin pair consisting of a 

spin I  =  32 nucleus (I) and a spin I  =  12 nucleus (S) shown (a) at thermal equilbrium, (b) after 

a 180° pulse has been applied to the S spins and (c)  after cross-relaxation via solely the double-

quantum pathway. The energy levels are marked with their relative populations with the 

assumption that SI  =  3. 
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6.10. In Fig. 6.10a, the energy levels are shown with their relative populations at 

thermal equilibrium. By making the approximation that SI  =  3 (on the basis 

that spin I is 11B and spin S is 1H), the I and S spins have relative population 

differences, nI and nS, of 2 and 6, respectively. The relative populations 

after an inversion pulse has been applied to the S spins are shown in Fig. 6.10b. 

Indicated in Fig. 6.10b, by the rate constant W2
IS, are double-quantum pathways 

that may be utilised by cross relaxation to return the populations of the energy 

levels involved to their equilibrium values. The zero-quantum pathways are not 

shown as they make, for small molecules in solution, a minor contribution to 

cross-relaxation when there is motion present in the extreme-narrowing limit. 

Figure 6.10c shows the energy levels after hypothetical cross-relaxation (solely 

via the double-quantum pathway) has acted between the levels indicated in Fig. 

6.10b. The population differences across the central, triple-quantum and two 

satellite transitions are shown in Fig. 6.10c and reveal that the population 

difference across the central transition remains the same at 2, the triple-

quantum transition population difference increases from 6 to 12 and the 

difference across the two satellite transitions remain the same at 2 and increase 

to 8, respectively. 

The perturbations to the populations of the energy levels in an I  =  11B, S  

=  1H spin pair shown in Fig. 6.10 suggest that an NOE enhancement is 

expected for neither the central transition nor one of the satellite transitions, 

whilst enhancements of 300% and 100% are expected for the other satellite 

transition and the triple-quantum transition, respectively. Whilst the energy 
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level illustration in Fig. 6.10 of such a spin system is only intended as a 

qualitative guide to the outcome of transient NOE experiments of the various 

11B transitions, the uniform enhancements observed experimentally are still 

surprising. A possible reason for this discrepancy is the presence of MAS-

induced spin diffusion [297]. Under MAS, the energies of the 2I + 1 spin angular 

momentum states of a given spin vary with time, and, assuming that these 

energies are not changing too rapidly, different spins can interact such that, in 

this case, the different perturbations to the population differences across the 

central, triple-quantum and satellite transitions shown in Fig. 6.10 are averaged 

to a common value. This is the basis of the spin diffusion effect. This interaction 

can be mediated by, for example, the strong 1H-1H and 1H-11B dipolar 

interactions. One possible way of observing different NOE enhancements under 

MAS conditions is to use a more selective (lower rf field strength) excitation 

pulse. 11B{1H} transient NOE experiments on borane triphenylphosphine were 

performed using a series of central-transition excitation pulses with rf field 

strengths in the range 13–89 kHz (spectra not shown). The absence of any 

significant changes in NOE enhancement, seen also when a similar analysis was 

performed using variable-field strength triple-quantum excitation pulses in the 

triple-quantum filtered transient NOE experiment, supports further the 

suggestion of spin diffusion effects. Such effects are absent under static 

conditions and so nonequivalent NOE enhancements for the different 

transitions would be expected in such cases. Transient NOE results obtained 

under static conditions are presented in Section 6.6. 
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6.5 Variable-Temperature NOE Studies 

Variable-temperature 11B{1H} transient NOE experiments were performed 

on borane triphenylphosphine. By increasing the temperature, it would be 

expected that the correlation time describing the rotation of the BH3 group 

about its C3 axis would decrease, so enhancing the efficiency of dipolar-driven 

cross-relaxation and increasing the NOE enhancement. Conversely, reducing 

the temperature would be expected to increase the correlation time and so 

result in a decrease in the enhancement. 

Transient NOE enhancements for borane triphenylphoshine over the 

temperature range 223–353 K are shown in Fig. 6.11a. At temperatures of 293 K 

and above, the enhancement is essentially constant with fI{S} ~155%. Below 

room temperature, the enhancement remains constant until 273 K, beyond 

which point the enhancement decreases such that, at 223 K, it is substantially 

reduced to 94%. The max values obtained from these experiments are shown in 

Fig. 6.11b and show a steady decrease as the temperature is reduced. 

In the theoretical derivation of the NOE in Sections 6.2.2 and 6.3 the 

simplification that the correlation time, c, is in the fast-motion limit (0c  <<  1) 

was made. This typically corresponds to values of c in the range 1012–109 s. 

Given that a variation in temperature causes a change of the correlation time 

and hence a change of the NOE enhancement, a comparison of the NOE build-

up curves for a range of values of c should enable an estimate of its value to be 

made. NOE build-up curves for a range of values of c between 50 ps and 100 ns 
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Figure 6.11. (a) 11B{1H} transient NOE enhancements of borane triphenylphosphine as a function 

of temperature obtained by performing the transient NOE experiment in Fig. 6.2 at 10 K 

increments in the range 223–353 K (except at T  =  303 K). All experiments were performed at B0  

=  9.4 T and the MAS rate was 10 kHz. (b) max values corresponding to the experiments in Fig. 

6.11a. 

are shown in Fig. 6.12. These curves were generated using the method 

described in Section 6.3, assuming only a dipolar contribution to cross-

relaxation. The I-spin signal intensity is thus again expressed as the magnitude 

of the expectation value of the tensor operator T0,0(S)T1,0(I). Figure 6.12 reveals 

that, in the fast-motion limit, the NOE enhancement reaches its maximum value 

and remains constant for shorter c. By noting that in this same range of 

correlation times max continues to increase, a comparison of Figs. 6.11a and 6.12 

confirms that, at temperatures of 283 K and above, there is motion present in 
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Figure 6.12. NOE build-up curves for an I  =  11B, S  =  1H spin pair for a range of correlation 

times. The 11B nucleus is treated as a spin I  =  12 nucleus (CQ  =  0). The MathNMR 

Mathematica program was again used for calculating these curves. Due to the large number of 

curves shown, each one is individually labelled with the correlation time with which it was 

obtained. 

the extreme-narrowing limit. In addition, the decrease in NOE enhancement 

seen at longer correlation times qualitatively matches the trend seen in Fig.  

6.11a. 

The variation in NOE enhancement shown in Fig. 6.11 may also be 

rationalised by considering the I- and S-spin self-relaxation rates. The 1H and 

11B T1 relaxation times in borane triphenylphosphine are shown in Fig. 6.13. 

Both nuclei show the same trend of decreasing T1 times as temperature is 

decreased, although there is a much greater change in the case of the protons. 

The enhanced self-relaxation of the 1H and 11B nuclei takes effect progressively 

more rapidly than cross-relaxation as the temperature is decreased and so 

accounts for the decrease in NOE enhancement shown in Fig. 6.11a. 
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Figure 6.13. 1H (solid line) and 11B (dashed line) T1 relaxation times as a function of temperature 

in borane triphenylphosphine. 

 

6.6 NOE Enhancement under Static Conditions 

The transient 11B{1H} NOE experiment was performed on borane 

triphenylphosphine under  non-spinning (static) conditions. The 11B spectrum 

of this material is shown in Fig. 6.14, recorded at applied magnetic field 

strengths of 4.7 T and 9.4 T. As expected, the spectrum in Fig. 6.14b, obtained at 

B0  =  4.7 T, features a second-order quadrupolar broadened central-transition 

lineshape with a width of ~100 ppm, twice the 50 ppm width seen in the 

spectrum in Fig. 6.14a, recorded at B0  =  9.4 T. Neither of the spectra in Fig. 6.14 

appear like the static central-transition lineshape shown in Fig. 3.4a in Chapter 

3. This is because the presence of the 11B-31P dipolar coupling (  D
PAS  ~1 kHz), 

combined with the second-order quadrupolar interaction, yields a spectrum 

consisting of two overlapping central-transition powder patterns, one narrowed 

and the other broadened with respect to the single powder pattern that would 

be obtained if only quadrupolar broadening was present. The broader powder 
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Figure 6.14. 1H-decoupled 11B NMR spectra of borane triphenylphosphine at B0  =  (a) 9.4 T and 

(b) 4.7 T. In each case a spin-echo sequence was used to remove unwanted signal from the 

stator block in the probe. The excitation and inversion pulses had duration 1.4 s and 19 s in 

(a) and 1.8 s and 21 s in (b), respectively. 

pattern arises from a simultaneous increase in the splitting of the central-

transition energy levels from both the second-order quadrupolar interaction 

and the 11B-31P dipolar coupling. In the case of the narrower pattern, there is a 

simultaneous decrease in the splitting of the central-transition energy levels by 

the second-order quadrupolar interaction and an increase in the splitting by the 

11B-31P dipolar coupling (and vice versa). Under MAS, line broadening due to 

heteronuclear dipolar couplings is removed and so this effect is not observed. 

In the spectrum in Fig. 6.14a, the narrowed powder pattern, centred at ~40 

ppm, is narrowed to the extent that the characteristic second-order quadrupolar 

broadened lineshape is not observed. For the purposes of observing the 

transient NOE, performing the experiment at B0  =  4.7 T is preferable as, given 
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Figure 6.15. 1H-decoupled 11B NMR spectra of borane triphenylphosphine, recorded using the 

transient NOE experiment in Fig. 6.2 at B0  =  4.7 T with (a)   =  0 and (b)   =  700 ms. The 

numbers indicated correspond to the maximum transient NOE enhancements observed at these 

points of the powder pattern. 

the greater breadth of the spectrum at this magnetic field strength, it enables the 

enhancement across the powder pattern to be more closely analysed. 

11B NMR spectra of borane triphenylphosphine recorded using the 

transient NOE experiment are shown in Fig. 6.15. In Fig. 6.15a the spectrum 

obtained without an NOE is shown, whilst the spectrum recorded with =  700 

ms is shown in Fig. 6.15b. The maximum signal intensity is obtained across the 

entire powder pattern at this value of  and, clearly, a non-uniform 

enhancement is observed. The enhancements observed at the extremities of 

each of the two overlapping powder patterns are indicated in Fig. 6.15b and 

vary strongly in the range fI{S}  =  67–175%, compared with the uniform 



 184

Figure 6.16. 1H-decoupled 11B NMR spectra of borane di-tert-butylamine recorded at B0  =  4.7 T 

using the transient NOE experiment in Fig. 6.2 with (a)   =  0 and (b)   =  300 ms. The numbers 

indicated correspond to the maximum transient NOE enhancements observed at these points of 

the powder pattern. 

enhancement of 155% observed under MAS conditions. The NOE build-up 

curves seen for these four features of the lineshape (not shown) reveal, 

unsurprisingly, that the signal intensity increases at a greater rate the larger the 

enhancement. 

This variation in transient NOE enhancement under static conditions is 

also seen in the 11B NMR spectrum of borane di-tert-butylamine, shown in Fig. 

6.16. The lower gyromagnetic ratios of 14N and 15N compared to 31P, and the 

low natural abundance of 15N (0.37%), means that the significant dipolar 
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Table 6.2. 11B{1H} transient NOE enhancements observed under static conditions for borane 

triphenylphosphine for the transitions indicated. The experiments were performed at B0  =  4.7 

T and the enhancements, fI{S}, are given in the sequence of decreasing chemical shift and 

correspond to the four singularities indicated in Fig. 6.15b. 

coupling seen in borane triphenylphosphine is not present and that the 

expected static central-transition lineshape is observed, as shown in Fig. 6.16a. 

A distorted lineshape is again observed at   =  max  =  300 ms, as shown in Fig. 

6.16b. As indicated in Fig. 6.16b, the NOE enhancement varies within the range 

fI{S}  =  23–32%, compared with the enhancement under MAS conditions of 

34%. The enhancement observedfollows the same trend as was observed for 

borane triphenylphosphine, namely that it increases with decreasing chemical 

shift. 

The triple-quantum filtered transient NOE experiment was also 

performed on borane triphenylphosphine under static conditions. The 

enhancements observed are given in Table 6.2 and refer to the same four 

singularities in the powder pattern indicated for the central-transition 

enhancements in Fig. 6.15b. As was seen for the central transition, the 

enhancements vary enormously, falling within the range 38–129%. In contrast 

Transition 1 / kHz fI{S} (%) 

CT 

TQ 

CT 

118 

118 

7 

67, 90, 138, 175 

38, 58, 113, 129 

52, 76, 115, 155 
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Figure 6.17. Computer-simulated static spin I  =  32 central-transition lineshape. The spectrum 

was generated with a quadrupolar coupling parameter CQ  =  2 MHz, a Larmor frequency 0  =  

100 MHz and by averaging over 500 equally-spaced values of the angle . Axial symmetry is 

assumed. 

to the trend observed under MAS conditions, the enhancements observed for 

the triple-quantum transition are thus significantly different to those observed 

for the central transition. This is in accordance with Fig. 6.10 and with the 

suggestion in Section 6.4.2 that spin diffusion effects, not present under static 

conditions, account for the identical enhancements observed for the central and 

triple-quantum transitions under MAS conditions. Performing the transient 

NOE experiment with a reduced rf field strength, 1, for the central-transition 

excitation pulse also causes the NOE enhancements to change. As shown in 

Table 6.2, when a field strength of 7 kHz is used the enhancements now cover 

the range 52–155%. Again, the absence of an analogous effect under MAS 

conditions would appear to indicate the presence of spin diffusion effects. 

It was shown in Chapter 3 that the characteristic static central-transition 
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lineshape arises as a consequence of the different perturbation experienced by 

each crystallite as a result of the second-order quadrupolar interaction. The 

powder pattern observed is thus the result of a summation of a range of 

frequencies that depend on the angles ,  and , as described by Eq. (3.23) in 

Chapter 3. In Fig. 6.17 the static spin I  =  32 central-transition lineshape is 

shown, annotated with values of the angle  (one of the Euler angles defined in 

Section 3.3.1) that give rise to the largest and smallest resonance frequencies. 

The greatest positive second-order perturbation to the central-transition 

frequency is observed when   =  90°, whilst the largest negative second-order 

perturbation is observed when   =  42°. The presence of an NOE enhancement 

that varies across the powder pattern is thus an indication that the NOE is 

dependent on crystallite orientation. This is considered using theoretical 

arguments in the next section. 

 

6.7 Theoretical Studies of Relaxation 

In attempting to rationalise the NOE enhancements shown in the previous 

section, an obvious comparison to be made is the T1 relaxation behaviour under 

static and MAS conditions. The anisotropy of spin-lattice relaxation is well-

known, with one of the first reported examples being the orientational 

dependence of 13C spin-lattice relaxation in powdered benzene under static 

conditions [298]. The presence of enhanced spin diffusion effects under MAS 

conditions has been used to demonstrate the observation of a common T1 value 
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Table 6.3. 1H and 11B T1 relaxation times in borane triphenylphosphine and borane di-tert-

butylamine measured under static and MAS conditions. The static 11B{1H} NOE enhancements 

are also shown. The multiple values shown for the 11B T1 times and maximum NOE 

enhancements for each molecule correspond, in order of decreasing chemical shift, to the same 

powder pattern features used to indicate the enhancements for borane triphenylphosphine and 

borane di-tert-butylamine in Figs. 6.15b and 6.16b, respectively. 

between inequivalent deuterons in 2H MAS NMR [297]. 1H and 11B relaxation 

times have been measured for borane triphenylphosphine and borane di-tert-

butylamine under static and MAS conditions and are shown in Table 6.3; the 

corresponding NOE enhancements under static conditions are also shown. The 

T1 values quoted in Table 6.3 refer to the four and two singularities in the 

spectra of these materials indicated in Figs. 6.15b and 6.16b, respectively, and so 

follow the sequence of decreasing chemical shift. For the case of borane 

triphenylphosphine, the general decrease of 11B T1 times does not concur with 

the increase in NOE enhancement; enhanced self-relaxation should reduce the 

contribution of cross-relaxation to the process of returning the 11B 

magnetization to its equilibrium value. For borane di-tert-butylamine, the 

reverse trend is observed and so the 11B T1 relaxation times under static 

Adduct 1H T1  

/ s 

static 

11B T1 

/ s 

static 

1H T1 

 / s 

MAS 

11B T1  

/ s 

MAS 

fI{S} 

(%) 

static 

BH3·PPh3 

BH3·NHtBu2 

1.28 

0.21 

0.42, 0.34, 0.37, 0.32 

0.85, 0.94 

1.28 

0.24 

0.62 

1.10 

67, 90, 138, 175 

23, 32 
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conditions are consistent with the NOE enhancements. For both materials, very 

little change is seen in the 1H T1 relaxation times measured under static 

conditions compared with those under MAS. Whilst T1 relaxation clearly has a 

role to play in the observed NOE enhancements, the trends observed under 

static conditions may not be explained by a consideration solely of the T1 values 

given in Table 6.3. 

To rationalise the static NOE enhancements, a consideration of all the 

sources of relaxation is needed. To do this, the Hamiltonian describing the 

dipolar interaction between two non-equivalent spins I and S, Hdd, is required. 

A convenient formalism with which to express this Hamiltonian is the spherical 

tensor form, where an interaction B is described by a Hamiltonian, HB:   

 
    
H B  (1)pA l ,p

B

l0

2


pl

l
 Tl , p

B  , (6.42) 

where     A l ,p
B  and     Tl , p

B  are referred to as the spatial and spin tensor components of 

the Hamiltonian, respectively. The latter are identical to the spherical tensor 

operators, Tl,p, introduced in Chapter 2. For the dipolar interaction, the only 

non-zero component of the tensor     A l ,p
B  is, when expressed in the PAS of the 

dipolar coupling tensor, PAS
0,2A . Terms with l  =  0 and ±1 are zero as a 

consequence of the dipolar coupling tensor being (like the electric field gradient 

tensor) traceless. Components of the spatial tensor with p  =  ±1 and ±2 are 

neglected as a consequence of the "high-field" approximation being made. In 

this approximation, the Zeeman interaction is assumed to be dominant and 



 190

only those terms which commute with the Zeeman Hamiltonian are considered; 

these terms are described as "secular". The component PAS
0,2A  is given by: 

 PAS
D

PAS
0,2 6A   , (6.43) 

where   D
PAS  is the dipolar coupling parameter in the PAS of the dipolar 

coupling tensor and is defined as in Eq. (2.50) in Chapter 2. Given the 

simplification described in Eq. (6.43), the first-order average Hamiltonian in the 

laboratory frame, Hdd, is thus 

 
  

H dd  A2,0
PAST2 ,0

 6D
PAS T2,0

 . (6.44) 

Equation (6.44) is only sufficient for describing the dipolar interaction 

experienced by the range of crystallite orientations in a powder if the IS 

internuclear vector is coincident with the laboratory frame z axis, i.e., if the 

dipolar coupling PAS and laboratory frames are coincident. Generally, this 

condition does not hold for the majority of crystallites and so the following 

transformation is required, where ,  and  are Euler angles relating the PAS 

and laboratory frames of reference and     D m , m
2 (, , ) are Wigner rotation 

matrix elements: 

  




2

2

PAS
,2

2
,

Lab
,2 A),,(DA

m
mmmm  , (6.45) 

and if only secular components of the dipolar coupling tensor in the high-field 
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approximation (i.e., m’  =  m  =  0) are used, this reduces to 

 PAS
0,2

2
0,0

Lab
0,2 A),,(DA   . (6.46) 

 Equation (6.44) thus becomes: 

 
  
H dd  6 D

PAS

2
(3 cos2   1)T2 ,0  . (6.47) 

Given that the tensor operator T2,0 may also be expressed in the form 

 
    
T2 ,0 

1
6

(3IzSz  I  S)  , (6.48) 

Eq. (6.47) is thus identical to the Hamiltonian in Eq. (2.48) in Chapter 2, where 

the former is expressed in spherical tensor operators and the latter in terms of 

Cartesian operators. 

The neglect of second-rank components of the spatial tensor with m, m’  ≠  

0 leads to the Hamiltonians in Eqs. (6.47) and, in Chapter 2, Eq. (2.48) being 

referred to as "truncated" or secular. In an attempt to rationalise the static NOE 

results in the previous section, these terms (i.e., those that do not commute with 

the Zeeman Hamiltonian and that are termed "non-secular") need to be 

considered. To do this, two rotations are needed to obtain the components of 

the dipolar coupling tensor in the laboratory frame,     A2, m
Lab , in terms of those 

defined in the dipolar coupling PAS,     A2, m
PAS . To perform this transformation, an 

intermediate frame of reference is used and is referred to as the molecular 
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Figure 6.18. Illustration of the angles  and  that relate the dipolar coupling PAS, molecular 

and laboratory frames of reference (shown for the case of a borane phosphine adduct). The 

angle  (not shown) is the azimuthal angle that the 1H nuclei subtend as they rotate about the 

BH3 C3 axis in the cone indicated. 

frame. The three frames of reference are shown in Fig. 6.18, where the 

molecular frame is defined such that its z axis is coincident with (in the case of 

borane triphenylphosphine) the BP axis, i.e., it is aligned along the BH3 C3 axis. 

The rotation from the PAS of the 1H-11B dipolar coupling tensor to the 

molecular frame is defined using the angles  and , where  is the (polar) angle 

between the BH internuclear vector and the BH3 C3 axis and  is the 

corresponding azimuthal angle. The transformation from the molecular frame 

to the laboratory frame is described solely by the angle , which is defined as 

the angle between the BP bond and the static magnetic field (i.e., the laboratory 

frame z axis). Given the reference frames shown in Figure 6.18, Eq. (6.46) thus 

becomes 

 
    
A2, m

Lab  D m ,n
2 (0, , )Dn , m

2 (0, , 0)A2, m 
PAS

m 2

2


n 2

2
  , (6.49) 
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and by remembering that in its PAS the dipolar coupling tensor has non-zero 

components only when m  =  0, this reduces to 

 
    
A2, m

Lab  D0 ,n
2 (0, , )Dn , m

2 (0, , 0)A2,0
PAS

n 2

2
  . (6.50) 

The angle  in Fig. 6.18 is analogous to the angle  used with the other 

Euler angles  and  to describe the transformation of the quadrupole tensor 

from its PAS to the laboratory frame in Chapter 3 and that is used in Fig. 6.17 to 

indicate the extremities of the static central-transition lineshape. Consequently, 

evaluation of Eq. (6.50) enables the modulation of the 1H-11B dipolar interaction 

for a range of crystallite orientations to be considered, so providing a possible 

rationale for the results in the previous section. 

Evaluation of Eq. (6.50) with m  =  0, ±1 and ±2 yields the following 

expressions for   A2,0
Lab ,   A2,1

Lab and   A2,2
Lab : 

 

  

A2,0
Lab  6Q

PAS 3
4








sin 2  sin 2  cos 2







1
4








3 cos2   1 3 cos2   1 

3 sin  cos  sin  cos  cos 

 , (6.51) 



 194

 

    

A2,1
Lab  6Q

PAS exp 2i  3
32

sin 2  sin  1  cos  

m exp i  3
8

sin  cos  sin  1 m 2 cos   1  cos  

m 3
8

3 cos2   1 sin  cos 

m exp i  3
8

sin  cos  sin  1  2 cos   1 m cos  

 exp 2i  3
32

sin 2  sin  1 m cos  






 , (6.52) 

and 

 

    

A2,2
Lab  6Q

PAS exp 2i  3
8

sin 2  cos4 
2










m exp i  3
8

sin  cos  sin  1  cos  


3

32
3 cos2   1 sin 2 

 exp i  3
8

sin  cos  sin  1 m cos  

 exp m2i  3
8

sin 2  sin 4 
2















 . (6.53) 

The inclusion of components of the dipolar coupling tensor with non-zero 

coherence order means that the Hamiltonian describing the interaction between 

spins I and S,   H dd
Lab , is given by: 

   H dd
Lab  A2 ,0

LabT2,0  A2 ,1
Lab T2,1  A2 ,1

LabT2 ,1  A2,2
Lab T2 ,2  A2,2

LabT2 ,2  . (6.54) 
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The physical interpretation of Eq. (6.54) and its meaning in the context of 

relaxation may be shown by considering the evolution of the density operator, 

(t), under a Hamiltonian, H. This may be accomplished by using the Liouville-

von Neumann equation, introduced in Chapter 2: 

 
    
d(t )

d t
 i H , (t)  . (6.55) 

The Hamiltonian is commonly expressed as the sum of a static part, H0, and a 

random time-dependent part, H1(t). For the case of two dipolar-coupled spins I 

and S, H0 and H1(t) are thus defined as: 

 
    

H 0  0Iz  0Sz

H1(t)  Hdd
Lab (t )

 . (6.56) 

The time dependence of     H dd
Lab (t ), whilst not stated in Eq. (6.54), is 

obviously the result of the rotation of the BH3 group about its C3 axis with a 

correlation time of 2c seconds such that the 1H nuclei subtend the azimuthal 

angle   =  2tc degrees. This is analogous to the definition of the angle Rt in 

Chapter 3 that was used for determining the effect of sample rotation on the 

second-order quadrupolar perturbation of the energy levels of half-integer 

quadrupolar nuclei. 

To consider the effect of an interaction such as dipolar coupling, 

perturbation theory is often used. In an analogous manner to the quadrupolar 

interaction in Chapter 3, the dipolar interaction is treated as a perturbation of 
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the dominant Zeeman Hamiltonian. A transformed density operator, T(t), and 

a transformed time-dependent Hamiltonian,     H1
T (t), are defined as 

 
    

T (t)  exp iH 0t  t exp iH 0t 
H1

T (t)  exp iH 0t H1 t exp iH 0t 
 , (6.57) 

in which case the equation of motion of T(t) is 

 
    
dT (t )

d t
 i H1

T t , T (t )  . (6.58) 

In this transformed representation, known as the interaction 

representation, (t) evolves under solely the action of the random Hamiltonian 

    H1
T t ; evolution under the much larger static Hamiltonian, H0(t), is factored 

out. 

The spherical tensor operators in Eq. (6.54), which make up the spin part 

of the dipolar Hamiltonian, may also be expressed in terms of Cartesian 

operators: 

 

      

T2,0 
1
6

3IzSz  I  S 


2
3

IzSz 
1
4

IS  IS 







T2 ,1  m 1
2

ISz  IzS 

T2 ,2 
1
2

IS

 , (6.59) 
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where the definitions of the operators Ix and Iy in terms of the raising and 

lowering operators I+ and I have been used: 

 

    

Ix 
1
2

I  I 

Iy  
i
2

I  I 
 . (6.60) 

The Cartesian operators in Eq. (6.59) evolve under the static Hamiltonian at 

characteristic frequencies, C; this is described by the equation 

     exp iH 0t C exp iH 0t   exp iCt C  , (6.61) 

for the general case of an operator C. The characteristic frequencies for the 

operators given in Eq. (6.59) are shown in Table 6.4, where the former are 

labelled   C
dd and the latter Cdd. Oscillations at the Larmor frequencies of the I 

and S spins, I and S, respectively, lead to spin-lattice relaxation of the I and S 

spins and so correspond to the W1
I and W1

S pathways indicated in Fig. 6.1b. The 

I+Sz and ISz terms thus lead to relaxation via the former pathway and the IzS+ 

and IzS terms relaxation via the latter. Table 6.4 shows that the terms I+S and 

IS+ lead to oscillations at frequencies of I + S and I  S, respectively, and 

so these terms are responsible for the zero-quantum cross-relaxation pathway 

indicated W0
IS in Fig. 6.1b. Finally, cross-relaxation via the double-quantum 

pathway W2
IS arises by oscillation at frequencies of (I + S) and (I + S) and 

so is due to the presence the terms IS and I+S+, respectively. The implications 

of these characteristic frequencies is that the T2,±1 tensor operators form the spin 



 198

Table 6.4. Characteristic frequencies at which the operators comprising the dipolar 

Hamiltonian, Cdd, evolve at under the effects of H0. 

part of the Hamiltonian that is responsible for I- and S-spin T1 relaxation, whilst 

the T2,0 and T2,±2 operators form the spin components of the parts of the 

Hamiltonian responsible for zero- and double-quantum cross-relaxation, 

respectively. Analysis of the corresponding spatial components of the 

Hamiltonian,   A2,0
Lab ,   A2,1

Lab  and   A2,2
Lab , will thus enable the orientational 

dependence of these relaxation processes to be determined and so enable the 

static 11B{1H} NOE results to be explained. Equations (6.51–6.53) reveal that  

Cdd   C
dd  

IzSz 

I+S 

IS+ 

I+Sz 

ISz 

IzS+ 

IzS 

I+S+ 

IS 

0 

I + S 

I  S 

I 

I 

S 

S 

 (I + S) 

(I + S) 
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Figure 6.19. Amplitude of the real part of the component indicated with increasing , shown for 

values of   =  42° (solid line) and 90° (dashed line). The angle  is fixed at 70.5°. 

these tensors are complex functions. In the subsequent discussion, only the real 

components of each will be considered. 

The amplitude of the component   A2,1
Lab  as  is incremented (i.e., as the BH3 

group rotates) is shown in Fig. 6.19, for values of   =  42° and 90°. As described 

in Section 6.6, these values of the Euler angle  yield the greatest negative and 

positive second-order quadrupolar perturbations to the central-transition 

frequency, respectively. It is clear that, over the course of a rotation, this 

component experiences a much greater modulation when   =  90° than when   

=  42°. Given that this component comprises the part of the Hamiltonian 

responsible for I (and S) spin T1 relaxation, Fig. 6.19 indicates that, by virtue of 

the greater modulation of this function when   =  90°, 11B T1 relaxation is more 

efficient at this crystallite orientation. More efficient T1 relaxation reduces the 

NOE and hence, this observation concurs with the experimental results in Figs. 

6.15 and 6.16. 
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Figure 6.20. Magnitude of the real part of the component indicated with increasing , shown for 

values of   =  42° (solid line) and 90° (dashed line). The angle  is fixed at 70.5°. 

A similar analysis may be performed for the   A2,2
Lab  components of the 

Hamiltonian. The amplitude of the   A2,2
Lab  operator is shown in Fig. 6.20, again 

for values of   =  42° and 90°. As shown earlier, this spatial tensor comprises 

the part of the Hamiltonian responsible for cross-relaxation via the double-

quantum pathway and so a consideration of the orientational dependence of 

this function enables further corroboration of the experimental NOE results to 

be obtained. Figure 6.20 shows that there is greater modulation of this function 

during a complete rotation of the BH3 group when   =  42° than when   =  90°. 

This corresponds to more efficient cross-relaxation at the former orientation and 

so agrees with the experimental results shown earlier. 

The orientational dependence of the   A2,1
Lab  and   A2,2

Lab  components of the 

dipolar Hamiltonian shown in Figs. 6.19 and 6.20 provide an explanation for 

the static 11B{1H} NOE results shown in the previous section. The   A2,0
Lab  

component, which could provide an insight into the orientational dependence 
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Figure 6.21. Amplitude of the real part of the component indicated when m  =  1 (solid line) 

and 2 (dashed line) as a function of the angle . 

of cross-relaxation via the zero-quantum pathway, is not considered here as this 

pathway makes (for small molecules in solution) only a minor contribution to 

the NOE in the fast-motion limit. 

A more complete consideration of the modulation of the   A2,1
Lab  and   A2,2

Lab  

components over the range of orientations present in a powdered solid is 

shown in Fig. 6.21. The modulation of each component is defined as 

     A2 , m
Lab  A2 , m

Lab max
 A2 , m

Lab min
 , (6.62) 

where     A2 , m
Lab max

 and     A2 , m
Lab min

 are the maximum and minimum values of these 

functions for 0  ≤    ≤  360°. Figure 6.21 reveals that the modulation of these 

functions repeat every 90° for the   A2,1
Lab  component and every 180° for the   A2,2

Lab  

component. Maximum and minimum values are reached in the former case at   
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=  0° and 90° and at   =  45° and 135°, respectively. Likewise, for the   A2,2
Lab  

components, maxima and minima are seen at   =  18° and 162° and at   =  90°, 

respectively. 

 

 6.8 Conclusions 

The presence of 11B{1H} NOEs in a range of borane adducts have been 

shown. NOEs in the solid state are rare and NOEs to quadrupolar nuclei are 

even more scarce; their observation here is due to the rapid rotation of the BH3 

group about its C3 axis that modulates very little the 11B quadrupolar 

interaction. 31P{1H} NOEs in a series of phosphine-derived borane adducts have 

confirmed the protons attached to the boron atom to be the source of the NOE; 

the resultant enhancements in these and a range of amine-derived adducts have 

been rationalised in terms of the measured 1H, 11B and 31P T1 relaxation times. 

11B{1H} central-transition, satellite-transition and triple-quantum transition 

NOE enhancements have been measured and been shown to be equivalent 

under MAS conditions. This unexpected result has been rationalised as being 

due to MAS-enhanced spin diffusion effects. The observation of an NOE to a 

quadrupolar nucleus in the solid state is a very interesting one, especially given 

its absence in the solution state. Whilst it may be that such an observation is 

limited to this particular group of materials, the presence of an NOE 

enhancement does, nevertheless, indicate that the nuclear Overhauser effect 

may be a useful source of insight into the dynamics of quadrupolar nuclei in the 
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solid state. 

Variable-temperature 11B{1H} transient NOE experiments have revealed a 

reduction in signal enhancement with decreasing temperature. Such an 

observation has been shown to be consistent with an increased correlation time 

and more efficient 1H and 11B T1 relaxation at lower temperatures. 

Transient NOE experiments performed under static conditions have 

revealed a variable enhancement across the powder pattern. In addition, 

different central-transition and triple-quantum enhancements have been 

observed. Calculations of the orientational dependence of the spatial tensor 

components of the dipolar Hamiltonian with coherence order ±1 and ±2 have 

been used to explain this behaviour. A consideration of the former has shown 

there to be more efficient T1 relaxation when the angle   =  90°, whilst analysis 

of the latter has demonstrated cross-relaxation to be more efficient when   =  

42°. Both of these observations concur with the trends observed experimentally. 
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Appendix A 

Matrix Representations of Spin Angular Momentum Operators 

Spin I  =  12 

    
Ix 

1
2

0 1
1 0









 

    
Iy 

i
2

0 1
1 0









 

    
Iz 

1
2

1 0
0 1









 

Spin I  =  32 

    

Ix 
1
2

0 3 0 0
3 0 2 0

0 2 0 3
0 0 3 0



















 

    

Iy 
i
2

0  3 0 0
3 0 2 0

0 2 0  3
0 0 3 0


















    

Iz 
i
2

3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 3



















 

Spin I  =  52 

    

Ix 
1
2

0 5 0 0 0 0
5 0 8 0 0 0

0 8 0 3 0 0
0 0 3 0 8 0
0 0 0 8 0 5
0 0 0 0 5 0

























 

    

Iy 
i
2

0  5 0 0 0 0
5 0  8 0 0 0

0 8 0 3 0 0
0 0 3 0  8 0
0 0 0 8 0  5
0 0 0 0 5 0

























  

 

  

Iz 
1
2

5 0 0 0 0 0
0 3 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 3 0
0 0 0 0 0 5
























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Appendix B 

Matrix Representations of Spherical Tensor Operators, Tl,p 

This appendix contains matrix representations of spherical tensor 

operators of spin I  =  12, spin I  =  1 and spin I  =  32 nuclei. Only second-rank 

operators are shown for spin I  =  32 nuclei, the remaining operators may be 

found in Ref. [76]. 

 

Spin I  =  12 

 
  
T0 ,0 

1
2

1 0
0 1









 

  
T1,1 

0 0
1 0









 

  
T1,0 

1
2

1 0
0 1









 

  
T1,1 

0 1
0 0









 

Spin I  =  1  

 

  

T0 ,0 
1
3

1 0 0
0 1 0
0 0 1
















 

 

  

T1,0 
1
2

1 0 0
0 0 0
0 0 1
















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T1,1 
1
2

0 0 0
1 0 0
0 1 0
















  

  

T1,1 
1
2

0 1 0
0 0 1
0 0 0
















 

 

  

T2 ,0 
1
6

1 0 0
0 2 0
0 0 1
















 

  

T2 ,1 
1
2

0 1 0
0 0 1
0 0 0

















T2 ,2 
1
2

0 0 0
0 0 0
1 0 0

















  

  

T2,1 
1
2

0 0 0
1 0 0
0 1 0

















T2 ,2 
1
2

0 0 1
0 0 0
0 0 0

















 

Spin I  =  32 

 

  

T2 ,0 
1
2

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



















 

  

T2 ,1 
1
2

0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0



















T2 ,2 
1
2

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0



















  

  

T2 ,1 
1
2

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



















T2 ,2 
1
2

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


















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Appendix C 

Reduced Rotation Matrix Elements,     d p ,p
l ()  

This appendix lists single-, second- and fourth-rank reduced rotation 

matrix elements. Only fourth-rank elements relevant to calculations in Chapter 

3 are shown. 

 

l  =  1 

  

d1,1
1  d 1,1

1 
1
2

(1  cos )

d1,1
1  d 1,1

1 
1
2

(1  cos )

d1,0
1  d 1,0

1  d 0 ,1
1  d 0 ,1

1   1
2

sin 

d 00
1  cos 

 

l  =  2 

  

d 2,2
2  d 2,2

2 
1
4

(1  cos )2

d 2,2
2  d 2 ,2

2  1
4

(1  cos )2

d 2,1
2  d 2 ,1

2  d1,2
2  d 1,2

2  
1
2

sin (1  cos )

d 2,1
2  d 2,1

2  d 1,2
2  d1,2

2  
1
2

sin (1  cos )

d 2,0
2  d 2,0

2  d 0,2
2  d 0,2

2 
3
8

(sin 2 )
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d11
2  d 1,1

2  
1
2

(1  2 cos )(1  cos )

d 1,1
2  d1,1

2 
1
2

(1  2 cos )(1  cos )

d1,0
2  d 1,0

2  d 0,1
2  d 0 ,1

2   3
2

sin  cos 

d 0,0
2 

1
2

(3 cos2   1)

 

l  =  4 

  

d 0,0
4 

1
8

(35 cos4   30 cos2   3)

d 0,2
4  d 0 ,2

4  
10

64
(7 cos4   4 cos2   3)

d 3,0
4  d 0 ,3

4  d 3,0
4  d 0,3

4  
35
4

cos  sin 3 

d 0,4
4  d 0 ,4

4  d 4,0
4  d 4 ,0

4 
70

128
(cos4   4 cos2   3)
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Appendix D 

Coefficients, 
    c l , l

p (), Quantifying the Evolution of Spherical 

Tensor Operators under a First-Order Quadrupolar Splitting 

Spin I  =  1 

  

c1,1
1 ()  c1,1

1 ()  c2,2
1 ()  c2 ,2

1 ()  cos Q 

c2,1
1 ()  c1,2

1 ()  c2 ,1
1 ()  c1,2

1 ()  i sin Q 
 

Spin I  =  32 

  

c1,1
1 ()  c1,1

1 () 
1
5

(2  3 cos 2Q )

c2 ,1
1 ()  c1,2

1 ()  c2 ,1
1 ()  c1,2

1 ()  i 3 5 sin 2Q 

c3 ,1
1 ()  c1,3

1 ()  c3,1
1 ()  c1,3

1 ()  i 6 5 (cos 2Q   1)

c2 ,2
1 ()  c2,2

1 ()  cos 2Q 

c3 ,2
1 ()  c2,3

1 ()  c3 ,2
1 ()  c2 ,3

1 ()  i 2 5 sin 2Q 

c3 ,1
1 ()  c1,3

1 ()  c3,1
1 ()  c1,3

1 ()  1 5 (2 cos 2Q   3)

c2 ,2
2 ()  c2,2

2 ()  c3,3
2 ()  c3,3

2 ()  cos 2Q 

c3 ,2
2 ()  c2,3

2 ()  c3 ,2
2 ()  c2 ,3

2 ()  i sin 2Q 
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Appendix E 

Zeroth-, Second- and Fourth-Rank Coefficients, A0(I, q), B2(I, q) 

and C4(I, q), for Spin I  =  32 and Spin I  =  52 Nuclei 

This appendix lists values of the zeroth-, second- and fourth-rank 

coefficients introduced in Chapter 3. These coefficients are labelled according to 

the transition they refer to. 

 

I q A0(I, q) B2(I, q) C4(I, q) 

32 12 (CT) 

32 (ST) 

32 (TQ) 

25 

45 

65 

87 

47 

0 

5435 

4835 

65 

52 12 (CT) 

32 (ST1) 

32 (TQ) 

52 (ST2) 

52 (5Q) 

1615 

215 

45 

5615 

203 

6421 

43 

407 

8021 

4021 

14435 

65 

22835 

26435 

607 
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Appendix F 

MQMAS and STMAS Ratios, R(I, q), for Spin I  =  32, Spin I  =  

52 and Spin I  =  72 Nuclei 

In this appendix values of the MQMAS and STMAS ratios are shown for 

the transitions indicated. 

 

I q R(I, q) 

32 32 (ST) 

32 (TQ) 

89 

79 

52 32 (ST1) 

32 (TQ) 

52 (ST2) 

52 (5Q) 

724 

1912 

116 

2512 

72 32 (ST1) 

52 (ST2) 

72 (ST3) 

2845 

2345 

125 
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Appendix G 

Coefficients k, k’ and k’’, for Split-t1 MQMAS and STMAS 

Experiments of Half-Integer Quadrupolar Nuclei 

 

 

I q k k’ k’’ 

32 32 (ST) 

32 (TQ) 

917 

916 

817 

716 

0 

0 

52 32 (ST1) 

32 (TQ) 

52 (ST2) 

52 (5Q) 

2431 

1231 

617 

1237 

0 

0 

1117 

2537 

731 

1931 

0 

0 

72 32 (ST1) 

52 (ST2) 

72 (ST3) 

4573 

4568 

517 

0 

2368 

1217 

2873 

0 

0 
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Appendix H 

The peak positions in the F1 and F2 dimensions, given by 1 and 

2, respectively, for MQMAS and STMAS experiments of spin I  =  

32 and spin I  =  52 nuclei in terms of the isotropic chemical shift, 

CS, and the isotropic second-order quadrupolar shift, Q. 

 

I q  Unsheared spectra Sheared / split-t1 spectra 

32 12 

32 (ST) 

32 (TQ) 

2 

1 

1 

CS  (25)Q 

CS + (45)Q 

3CS + (65)Q 

CS  (25)Q 

CS + (417)Q 

(178)CS +(12)Q 

52 32  

32 (ST1) 

32 (TQ) 

32 (ST1) 

52 (TQ) 

2 

1 

1 

1 

1 

CS  (1615)Q 

CS + (215)Q 

CS  (45)Q 

CS + (5615)Q 

CS + (203)Q 

CS  (1615)Q 

(1731)CS + (3293)Q 

(1731)CS +(3293)Q 

CS + (1617)Q 

(8537)CS +(160111)Q 
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