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Abstract

Functional, electrically stimulated (FES) cycle training can improve the cardiorespiratory

fitness of spinal cord injured (SCI) individuals, but the extent to which this can occur

following high volume FES cycle endurance training is not known. The effect of training

on aerobic endurance capacity, as determined by the appearance of respiratory gas exchange

thresholds, is also unknown. The oxygen cost (O2 cost) of this type of exercise is about 3.5

times higher than that of volitional cycling, but the source of this inefficiency, and of the

variation between subjects, has not yet been investigated. The electrical cost of FES cycling,

measured as the stimulation charge required per Watt of power produced (stim/P t), has

neither been calculated nor investigated before. It is also not known whether a period of FES

cycling can alter the O2 cost or the stim/P t of this unique form of exercise. Additionally, the

acute metabolic responses to prolonged, high intensity FES cycling after a 12-month period

of high-volume training have not yet been characterised for this subject group.

Accordingly, these parameters were investigated over the course of a 12-month home-

based FES cycle training programme (up to 5 x 60 min per week) in 9 male and 2 female

individuals with paraplegia. Outcomes were investigated using a novel, sensitive test bed that

accounted for both internal and external power production (P t). The test protocol permitted

high resolution analyses of cycling power and metabolic thresholds, and a sensitive training

dose-response analysis, to be performed for the first time in FES cycling. Efficiency estimates

were calculated within a new theoretical framework that was developed for those with severe

disability, and the stim/P t was determined using a novel measure designed for this study.

The current training programme resulted in significant improvements in cardiorespiratory

fitness and peak cycling power, but only over the first 6 months when training was progressive.

These improvements were positively related to the number of training hours completed during

this time. It is not known whether the plateau in training response that was found after this

time was due to a physiological limitation within the muscles, or to limitations in the current

stimulation strategy and of the training protocol used.

The efficiency of FES cycling was not significantly altered by any period of training.

However, the stim/P t of cycling had reduced over the first 6 months, probably as a result

of a fibre hypertrophy within the stimulated motor units. The relationship that was found

between variables after this time suggest that differences in the efficiency of FES cycling
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between subjects and over time related primarily to the stim/P t, which determined the

number of motor units recruited per unit of power produced, rather than to metabolic changes

within the muscle itself.

The aerobic gas exchange threshold (GET) was detected at an oxygen uptake (V̇O2)

equivalent to that normally elicited by very gentle volitional exercise, even after training. This

provided metabolic evidence of anaerobic fibre recruitment from the outset, as a consequence

of the non-physiological motor unit recruitment pattern normally found during FES.

The cardiorespiratory stress of training was found to be significantly higher than that

elicited by the incremental work rate tests, calling into question the validity of using

traditional, continuous incremental work rate tests for establishing the peak oxygen uptake

(V̇O2peak) of FES cycling. The respiratory exchange dynamics observed over a 60 min training

session were characterised and provide a unique insight into the remarkable aerobic and

anaerobic capacity of trained paralytic muscles.

For this particular highly motivated subject group, training for 60 min per day on more

than 4 days of the week was demonstrated to be feasible, but not able to be sustained. Further

work is therefore recommended to develop and to evaluate different stimulation patterns

and parameters, loading strategies and training protocols. The aim would be to determine

the optimal combination of training parameters that would maximise favourable training

responses within a more viable and sustainable lower volume, training programme for this

subject group.

In conclusion, the outcomes of this multi-centre study have demonstrated the clinical

significance of using otherwise redundant, paralytic leg muscles to perform functional,

regular physical exercise to improve cardiorespiratory and musculoskeletal health after SCI.

Additionally, the significant increases in cycling power and endurance that were achieved

opened up new mobility and recreational possibilities for this group of individuals. These

findings highlight the clinical and social relevance of regular FES cycle training, and the

importance of integrating FES cycling into the lives of those affected by SCI. The early and

judicious implementation of this form of exercise is strongly recommended for the maintenance

of a healthy body, wellbeing, and of an active lifestyle after SCI.
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Thesis outline

Chapter 1 The epidemiology, etiology and pathophysiology of SCI is briefly described, followed

by an examination of the current general recommendations regarding regular physical

activity for the maintenance or improvement in health and fitness. The exercise options

and specific challenges facing those with a spinal cord injury are then discussed and

this forms the motivation for this thesis.

Chapter 2 An overview of traditional cardiorespiratory exercise stress testing is given, followed

by a critical examination of the literature relating to FES cycle training and

cardiorespiratory testing. The aims and objectives of the FES cycle training programme

are then given based on these findings and these form the fundamentals of this thesis.

Chapter 3 The subjects and general methods employed in the FES cycling study are detailed in

full in this chapter, including details of the equipment and materials used in training

and testing. A general description of the statistical analysis employed concludes this

chapter.

Chapter 4 The effects of the FES cycle training programme on peak cardiorespiratory and power

capacity during and after training are presented and discussed.

Chapter 5 The metabolic and electrical costs of stimulated work were estimated during FES cycling

and the effects of training on these parameters was also investigated. Possible sources of

influence on these variables were also examined and the results are given and discussed

in this chapter.

Chapter 6 The physiological basis of the metabolic threshold analysis paradigm is briefly examined.

This is followed by an investigation into the existence of such thresholds during

incremental FES cycling tests, and the effect of training on the appearance of these

thresholds. The validity and utility of threshold intensity prescription for FES cycle

training is critically discussed.

Chapter 7 This chapter briefly outlines the principles underpinning traditional, volitional maximal

aerobic capacity tests and questions their use as valid measures of the peak cardiores-

piratory stress of FES cycling. This was based upon comparisons made between the
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responses elicited by a traditional incremental work rate test (IWRT) and those elicited

during an FES home training session (HTS).

Chapter 8 The conclusions from this thesis are drawn together and presented in this chapter.

Chapter 9 This final chapter includes a discussion of areas of interest for future research within

the field of FES cycling.
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Original contributions

• This thesis has made an important contribution towards the clinical uptake of regular

FES exercise prescription after SCI. The cardiorespiratory and musculoskeletal stresses

that can be sustained over prolonged periods by FES cycling provide compelling

evidence for the substantial health benefits that can be gained by this mode of exercise

alone. The strong evidence base provided here can be used for health promotion

purposes, exercise training prescription, to inform future training studies, and for the

encouragement of regular exercise participation throughout the entire SCI community.

• This thesis is the first to examine the cardiorespiratory adaptations to a high-volume,

12-month longitudinal FES exercise training programme. All previous studies have

been clinic based and subject to time and resource availability constraints which has

resulted in low training frequencies and session durations. Here, a home-based training

programme was designed that allowed subjects to optimise their time management in

order to maximise their training volume within the prescribed limits of the programme.

This enabled a higher volume of FES training to be performed than ever before.

• A sensitive training dose-response analysis of peak power (P t
peak) gains and V̇O2peak

gains was made for the first time during an FES cycle training programme. This

provided a unique insight into the dynamics of this relationship over time and to the

limits of this type of training. This is the first study where each subject kept a detailed

training diary over the course of the training programme and this information, combined

with the high resolution power and metabolic analyses formed the basis for this analysis.

• The power and cadence controlled exercise tests used in this study, permitted high

resolution respiratory gas exchange analyses to be performed for the first time in

electrically stimulated (ES) exercise. This was also the first ES training study in

which the raw breath by breath data were systematically and consistently edited by a

computerised system prior to analysis. This avoided the relative subjectivity of manual

data editing, and of data distortion that can occur when outlier values are included in

the analysis, especially where the noise to signal ration is high.

• This thesis has examined the effects of exercise training on the metabolic and electrical
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costs of FES cycling for the first time. FES cycling efficiency was estimated using a

recently developed theoretical framework developed for those with severe disability, and

a novel measure of the electrical cost of FES cycling power production was devised and

used here for first time in FES cycling.

• This thesis is the first to examine and characterise the acute cardiorespiratory responses

to a 60 min FES cycle training session, conducted against a maximal resistance and at

a variable cadence. This has provided a novel insight into the respiratory gas exchange

dynamics and the energy metabolism of this unique exercise modality after 12 months of

high-volume training. The outcomes provide strong metabolic evidence for the unique

non-physiological recruitment, and training, of anaerobic muscle fibres throughout the

entire FES cycle training session. Based on observations from this study, the use of

traditional incremental exercise tests for V̇O2peak testing during ES exercise was called

in to question.
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Chapter 1

Introduction

Lack of activity destroys the good condition of every human being, while

movement and methodical physical exercise save it and preserve it.

Plato

The epidemiology, etiology and pathophysiology of SCI is briefly described here, with

particular attention given to the effect of reduced neuromuscular activity on physical activity

levels and physiological health and integrity. This is followed by an examination of the

current general recommendations regarding regular physical activity for the maintenance or

improvement in health and fitness with particular focus given to the unique challenges facing

those with SCI. The development and use of FES exercise systems for the improvement of

cardiorespiratory health after SCI is then discussed and forms the motivations for this thesis.

1.1 Spinal cord injury

SCI is a devastating and debilitating condition that affects most aspects of a sufferer’s life.

Muscular paralysis, sensory loss and homeostatic disfunction normally ensue to varying

degrees and carry substantial physiological, psychological, emotional, financial and social

costs [70].

Quality of life is often greatly reduced and secondary complications tend to increase mor-

bidity and mortality. Respiratory disease, septicemia, pulmonary emboli and cardiovascular

disease are the most dangerous secondary complications of SCI [47] and cardiovascular disease

is now the leading cause of death post injury [126] (notwithstanding suicide in the under 25

age group within five years of injury) [48].

Urinary tract infections, decubitus ulcers (pressure sores), severe spasticity and a

propensity towards chronic pain and stress also constitute major secondary complications

of SCI and add to the management and care burden. Complete injury, tetraplegia (high

spinal level injury), older age, concomitant illness and violent injury have been identified as
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important risk factors in the development of secondary complications [47, 116].

In the more developed countries, where health expenditure per capita is up to 380 times

that of less developed countries, advances in understanding and knowledge of SCI and

judicious early management of injury have reduced mortality rates and the prevalence of

complete spinal cord damage. Improved care and management of secondary complications

has also improved life expectancy after injury to levels approaching that of the able bodied

population, the prognosis being better for young patients than for older patients [47, 70].

The SCI population is nonetheless predominantly very sedentary, and this brings with it

the many co-morbidities associated with inactivity including: obesity, hypertension, impaired

glucose metabolism and an atherogenic lipid profile,1 leading to diabetes mellitus and

cardiovascular disease [59, 126]. Physical activity is recognised as a potent preventative and

therapy for these conditions and as a tool for successful ageing in the able bodied population

[115, 170]. Little has been done in terms of exercise programme development and research in

an attempt to improve cardiorespiratory fitness or to mitigate the incipient age and condition

related physiological and neurological decline after SCI [90, 133].

1.1.1 Epidemiology and etiology of injury

Traumatic SCI is a global phenomenon with annual reported incidences for different countries

ranging from 14.5 per million people in Australia to 57.8 per million in Portugal [1]. Full

worldwide epidemiological studies are scarce and most figures are estimates. It appears,

however, that the incidence of SCI is higher in the developing world than the western world

and etiology varies dependent on the country’s socio-economic status [156].

There are an estimated 40,000 SCI individuals in the United Kingdom, with 745 new

admissions to spinal injuries units in 2001. This figure includes 155 admissions due to other

non-traumatic causes including cancer, infection, arthritis and inflammation of the spinal

cord (the worldwide incidence is not known but thought to equal or exceed that of traumatic

SCI). These figures, however, do not include spinal injury admissions to general hospitals

[157]. Young healthy male individuals are most likely to suffer traumatic injury with male

to female ratios of 1.6:1 in the UK [1], 8.1:1 in Zimbabwe and 10:1 in Nigeria [156]. Injury

is most likely to be caused by a motor vehicle collision in countries such as France (57.9%),

Portugal (57.3%) and Western Canada (54%) or by a fall in Bangladesh (63%) and Eastern

Canada (47%) [1]. Figures for the United kingdom (2001) show that 45.5% of injuries occur

as a result of falling and 39.2% from motor vehicle accidents [157].

Similar epidemiological features are found in nations with similar economies: age at

time of injury is likely to be higher in more developed countries, perhaps due to longer

life expectancies, and females are likely to be older than males at time of injury with the
1Having a tendency toward fatty plaque or scar formation on the walls of arteries, eventually causing

narrowing of the arteries or atherosclerosis [105].
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male:female ratio also likely to be lower [1].

The site of injury is most likely to be the cervical spinal cord (between head and shoulders)

in the more developed countries (United States 76%, Japan 74.3%, Western Canada 61.5%

and 53% in the United Kingdom), and thoracic spinal cord (between shoulders and base

of rib cage) in less developed countries (Turkey 85%, South Africa 75%, Brazil 64.9% and

Bangladesh 60%) [156, 1].

The high incidence of young male sufferers in poorly developed countries adds an extra

burden to the domestic financial situation, since they are often the sole earner in a household.

Emergency first aid service and post-traumatic care are also likely to be insufficient in less

developed countries leading to higher death rates in both the acute and the long term post-

trauma stages [156].

1.1.2 Spinal injury classification

SCI affects volitional motor control, sensation and autonomic control of body systems. The

extent to which this occurs is determined by the level and completeness of injury and the

nerves affected. Spinal nerves are designated according to the vertebral level from which they

exit: cervical (8 pairs, C1-C8, serving the muscles and glands of the neck, shoulder, arm and

hand), thoracic (12 pairs, T1-T12, serving the chest and abdominal walls) lumbar (5 pairs,

L1-L5, associated with the hip and leg), sacral (5 pairs, S1-S5, associated with the genitals,

lower digestive tract and bladder) and coccygeal (1 pair, Co, associated with the tailbone)

[176].

Trauma is classified by assessment of retained sensorimotor function and designated an

associated nomenclature according to the International Standards for Classification of Spinal

Cord Injury (revised 2002). This system, written by the Neurological Standards Committee

of the American Spinal Injury Association (ASIA) is endorsed by the International Spinal

Cord Society and is regarded as the definitive clinical guide to SCI classification [114].

Lesion level

Upper motor neurones consist of the long ascending and descending nerve tracts or axons

of the spinal cord. These synapse within the central nervous system (CNS) and with lower

motor neurones permitting central integration and processing of peripheral impulses. Lower

motor neurones consist of a motor-sensory reflex arc, where a motor nerve root and a sensory

nerve root enter, synapse within and leave the intervertebral foramen at the same spinal level

(Fig. 1.1) [70, 176].

Upper motor neurone lesions cause a decentralisation of impulses, resulting in spastic

paralysis with exaggerated and uninhibited sensorimotor reflexes below or caudal to the lesion

level (see section 1.1.3). Lower motor neurone lesions result in sensorimotor decentralisation

and areflexic, flaccid paralysis due to the disruption to the reflex arcs. Muscle tissue normally
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(a) Spinal nerves passing through the vertebral foramen

(b) Spinal transection showing vertebral canal and nerve organisation

Figure 1.1: Thoracic level spinal vertebrae showing both somatic (spinal) and autonomic (visceral)
nerves. (Adapted from [49])

innervated by the damaged segment is no longer subject to reflex contraction or neurotrophic

effects,2 and becomes severely atrophied. Injury to any level of the cord can result in an

isolated areflexic segment within segments retaining functional reflex arcs [90].

Unless penetrated by a sharp object, or by the vertebral bone itself, the spinal cord

is rarely transected (anatomical lesion). Interruption to the communications pathway is

normally caused by infarction3 or mechanical deformation caused by swelling or contusion

(clinical lesion). Consequently, there is a great deal of intra- and inter-individual variation

in neurological completeness of injury and in sensorimotor sparing both acutely and in the

long term after the injury has stabilised [70].

Plegias

Where there is any degree of sensorimotor loss or impairment in the cervical segments of the

spinal cord, the resultant plegia or paralysis is termed tetraplegia (Fig. 1.2). This affects the

functioning of the arms, trunk, legs and pelvic organs, but does not include damage caused

by injury to peripheral nerves outwith the spinal canal or to the brachial plexus.4 Spinal

lesion above C4 results in complete paralysis of all torso musculature where breathing is not

possible without the use of a ventilator and individuals are reliant on total assistance for all

activities of daily living (ADL). Lesions between C4 and T1 will result in varying degrees

of shoulder and arm sensorimotor sparing, but all cervical lesions will disrupt sympathetic

outflow. Autonomic control and cardiovascular homeostasis is affected by the imbalance in

autonomic outflow (see Fig. 1.3) [70].
2The maintenance of neuronal integrity through axonal transport of structural elements, proteins and

amino acids [50].
3The death of a small area of tissue as a result of inadequate blood supply [111].
4Complex network of nerves composed of the anterior branches of the lower four cervical and the first two

thoracic nerves [49].
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Figure 1.2: The vertebral canal with spinal cord and spinal nerves (numbered). (Adapted from [49])

Paraplegia refers to paralysis due to lesions in the thoracic, lumbar or sacral areas.

Lesions between T1 and T4 will result in compromised upper body strength and balance

commensurate with lesion level, with higher level injuries most affected. Sympathetic

innervation is affected and autonomic dysreflexia or hyperefexia is possible (see section 1.1.3).

T5 to L1 injuries will also result in some upper body weakness and balance loss, the severity

of which will also depend on lesion level. Autonomic cardiovascular control is however not

affected. Lesions below L1 will retain full upper body strength and balance and varying

degrees of lower limb function and control, also commensurate with lesion level [49] (Fig. 1.2).

Figure 1.3: Sympathetic and parasympathetic divisions of the autonomic (visceral) nervous system.
(Adapted from [49])

Variations in neurological symptoms may prevent accurate diagnoses from being made

and the neurological level of injury may not be immediately clear. In such cases, the

patterns of injury are examined in combination with the neurological symptoms and the

resultant conditions designated according to the area of the cord most affected, e.g. after

a flexion-rotation force to the spine that results in a dislocation or compression fracture of

the vertebrae, there is often ischaemia or trauma to the motor and sensory nerves below the

lesion and the condition is termed anterior cord syndrome.

1.1.3 Pathophysiology of complete spinal cord injury

Body composition changes after SCI in response to reduced physical activity, immobilisation

or disuse. The body minimises unnecessary expense on redundant body systems or systems

subject to reduced stresses such as the musculoskeletal system and the cardiovascular system.

This causes a reduction in metabolically active tissue and an increase in adiposity levels as

energy balance becomes more difficult to maintain. In a cross sectional study of 133 SCI men,

Spungen et al. [158] found that body composition changes were exaggerated with advancing

age and resulted in adiposity levels and loss of lean body mass significantly greater than those
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of an ethnicity-matched able bodied cohort. These factors, in addition to the lack of volitional

control below the level of the lesion and the disruption to systemic autonomic control, provide

unique challenges to the individual who wishes to maintain or improve physical fitness after

SCI.

Musculoskeletal system

Muscle atrophy Skeletal muscles exhibit an activity and load dependent adaptive or

plastic response whereby structural and metabolic proteins chronically alter their expression

both qualitatively and quantitatively to meet changing demands [50, 139]. Paralysed muscle

responds to the reduced neuromuscular activity and reduced mechanical loading by reducing

its protein synthesis turnover rate and increasing proteolysis (protein degradation). This

leads to muscle atrophy (wasting) which is more pronounced where muscles are denervated

and areflexic, and results in loss of potential muscle strength. The muscle fibres change

their phenotype (structure and function) from slow, fatigue resistant and oxidative (aerobic)

to fast, fatiguable and glycolytic (anaerobic), which will affect their potential endurance

capacity [159, 94, 139].

Osteoporosis Bone also exhibits an activity and load dependent adaptive response: bone

density below the level of SCI, of the femur and tibia in particular, responds to the reduced

dynamic biomechanical stress very quickly and reduces to reach a steady state after 3-8 years

post injury. In a cross sectional study of eighty-nine motor complete SCI men, Eser et al.

[51] found that bone loss was greatest in the epiphyses5 and was reduced by 50% in the

femur and 60% in the tibia. Losses at this site were attributed to reductions in bone mineral

density. Shaft bone mass loss was 35% in the femur and 25% in the tibia. Losses here were

attributed to reductions in cortical wall thickness. The risk of fractures resulting is high and

may influence an individual’s subsequent chosen activity levels.

Spasticity Spasticity refers to involuntary, uncontrolled muscle spasms which occur

as a result of uninhibited excitatory spinal reflexes resulting from nociception6 or by

proprioception7. This only occurs where spinal reflex arcs are intact below the lesion

level. In the absence of supraspinal input, there is no descending inhibition to minimise

or prevent reflex contraction of the muscle and a spasm results [50]. Individuals with severe

spasticity and an agonist/antagoinist imbalance tend to develop contractures, which may

cause deformity and worsen the existing levels of spasticity. Spasticity can maintain muscle
5The terminal portion of a long bone [105].
6The reception of pain or injury [105].
7The reception of stimuli generated from within the body such as movement, stretch or mechanical

deformation [105].
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bulk and improve venous return but can also seriously impact on ADLs and may increase the

risk of fracture as a muscle/bone strength imbalance develops [71].

Bowel, bladder and sexual function Loss of bowel and bladder control and sexual

function after SCI is probably the most devastating effect of injury. Neural control of

the pelvic organs is under both somatic and autonomic control and relies on a complex

integration of lumbo-sacral reflexes. Lesions occurring above the sacral spinal level will

interrupt the pathways that coordinate sphincter control in both the bladder and the bowel

and can cause incontinence. Ejaculatory function and spermatogenesis can also be impaired

in men. Reflexes can become hyperreflexic (bladder hyperreflexia) or work out of synchrony

(sphyncter dyssynergia), but can be modified by volitional modulation techniques (upper

motor lesion only) to give some degree of control over micturation (urination), voiding and

ejaculation [121, 36].

Cardiorespiratory system

Cardiovascular control Those with lesions above T5 generally have compromised sym-

pathetic innervation to the heart (see Fig. 1.3) and can experience diminished chronotropic

and inotropic cardiac control via noradrenaline mediated mechanisms. This can result in

hypotension (low blood pressure) and hypokinesis (reduced blood flow) [89], a delayed increase

in cardiac output [124], a blunted blood pressure response [79, 99], cardiac output hyperkinetic

to V̇O2 [145] or abnormal hyper or dysreflexic [4] responses to exercise (see below). After SCI,

humeral (blood borne) feedback seems to be the main influence in circulatory haemodynamic

(flow and pressure) control below the level of the injury [99].

The cardiovascular system loses its central and peripheral haemodynamic functional

integrity and there is often a degree of circulatory insufficiency augmented by reduced venous

muscle pump assisted cardiac return. The left ventricle of the myocardium (heart muscle)

becomes atrophied due to decreased internal shear stresses, and peripheral capillarisation and

vascular tone are reduced [82, 83, 98, 89]. In the acute stages of injury, the venous stasis that

occurs as a result of lack of venous muscle pump activity, and alterations in blood clotting

mechanisms predispose sufferers to deep vein thrombosis [143].

Decubitus ulcers Decubitus ulcers occur mainly over bony areas such as the ischial

tuberosity, greater trochanter, and sacrum that are subject to periods of unrelieved body

weight pressure. They are a result of tissue ischaemia caused by blood vessel compression

during inactivity and can affect all underlying tissues depending on the severity of the

condition. The ischaemic tissue gradually dies and, if left untreated, can spread and infect

blood and bone [70].
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Thermal control Thermoregulatory capacity is limited by impaired secretion by sweat

glands and impaired haemodynamic control. This can lead to an overheating response in the

upper body and a cooling of the paralysed lower body during exercise [90].

Metabolic changes Reductions in lean body mass are associated with a reduced basal

metabolic rate and reductions in anabolic hormone production such as testosterone and

growth hormones [15]. Increased adiposity is likely to be accompanied by insulin resistance

and hyperinsulinemia is more likely to occur. Elevated blood insulin levels contribute to

changes in blood lipids resulting in dislipidemia and hypertension which lead to an atherogenic

lipid profile that is associated with an increased risk of coronary heart disease (CHD). The

associated changes in glucose tolerance and handling result in an increased prevalence of

diabetes mellitus (type 2 diabetes) [14].

Respiratory disease High lesion sufferers are at most risk of suffering respiratory disease

which has a high morbidity and mortality risk. Impairment of respiratory muscles, a reduction

in chest wall compliance, ineffective cough and reduced vital capacity combine to increase

the risk of pneumonia via retained secretions. Those requiring ventilation may also have

problems with speech production [21].

Autonomic dysreflexia In individuals with cervical cord injuries above the sympathetic

outflow (see Fig. 1.3), and sometimes in individuals with high thoracic injuries (above T6),

there is a disruption in the autonomic signalling response to nociception, which can result

in a phenomenon known as autonomic dysreflexia. This potentially lethal condition presents

as severe systemic hypertension (high blood pressure), bradycardia (slow heart rate), profuse

sweating, anxiety and headache.

Intact nociceptors below the lesion level fire in response to stimuli such as bladder

distention, constipation or pain. Electrically stimulated (ES) exercise (see section 1.3) has

also been found to cause nociception [78]. The response is a reflex splanchnic (T5–L2)

sympathetic outflow that causes vasoconstriction in the peripheral arterioles, causing an

increase in systemic blood pressure [70]. In response to the increase in blood pressure, a

counteractive parasympathetic response is elicited to reduce heart rate (bradycardia) and

cause vasodilation in an attempt to reduce pressure. Sympathetic activity is also suppressed

in a negative feedback manner, but these counteractive measures are effective only above the

lesion level and therefore unable regain systemic homeostasis [4, 176].

Treatment is by removal of the precipitating cause, and if hypertension is persistent,

by administration of vasodilatory drugs. Inadequate treatment can, however, lead to

sensitisation where further attacks may then occur with minimal stimulus [70].

A dysreflexic response can sometimes be induced on demand and has been used as an

ergogenic aid to performance in wheelchair sports. ‘Boosting’ was recognised by sports
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authorities as being both extremely dangerous and unsportsmanlike and it is now banned

by the International Paralympic Committee [19].

The pathophysiology of SCI and its associated psychological and sociological sequelae

provide unique challenges to the individual with SCI who wishes to mitigate or indeed reverse

the physiological decline that inevitably occurs as a result of their injury.

1.2 Exercise for health and fitness

In a recent review by Warburton et al [170], physical inactivity was identified as a modifiable

risk factor for not only cardiovascular disease, but a great variety of other chronic diseases

including diabetes mellitus, colon and breast cancer, obesity, hypertension, osteoporosis,

osteoarthritis and depression. The mechanisms responsible for the exercise induced reductions

in these health risks, appear to be due to a combination of favourable physiological

adaptations including changes in body composition, lipid profile, glucose homeostasis, insulin

sensitivity, central and peripheral hemodynamics, enhanced endothelial function, improved

autonomic tone, reductions in blood pressure and reductions in systemic inflammation.

Physical activity is also associated with reduced stress, anxiety and depression, which will

impact on the prevention and management of other chronic diseases.

Physical activity leads to improvements in cardiovascular and respiratory function:

maximal oxygen uptake (V̇O2max) is increased as a result of both peripheral and central

adaptations, and at a given sub-maximal intensity, minute ventilation is reduced and the

myocardium itself works at a reduced oxygen cost. Heart rate and blood pressure are also

reduced, there is an increase in skeletal muscle capillarisation, and the exercise intensity at

which the threshold for blood lactate accumulation occurs is increased [6]. Nonetheless, a

lack of physiological research relating to the benefits of exercise training in chronic disease

conditions has recently been identified [133].

1.2.1 Exercise prescription

Background

The current recommended prescription for exercise as a preventative therapy for several pri-

mary and secondary chronic diseases comes from a review of the evidence from observational

and randomised studies on the effects of physical activity on health [171]. The consensus of

opinion is that an energy expenditure of about 1000 kcal (4200 kJ) per week is associated with

significant health benefits, with additive benefits gained from increased levels of expenditure.

This energy expenditure is approximately equivalent to walking for 1 hour on 5 days of the

week. Nonetheless, physical activity does not have to be structured: energy expenditure can

be accumulated by performing short 10 min bouts of any form of physical activity on most

days of the week to achieve the recommended levels for health, with the greatest benefits being
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gained from the least active as they become active. An increase in physical fitness, measured

as a change in V̇O2max of about 1 MET8. This equates to an increase in V̇O2max of about 250

mL/min for men and 200 mL/min for women and is associated with a mortality benefit of

20%. Exercise performed at an intensity of between 3–5 METs is thought to represents the

lowest intensity of work required to minimise health risks [171].

Current recommendations

Previously, recommendations for improvements in health were focused on improving car-

diorespiratory fitness, body composition and strength. However, in light of the increasing

body of research, and to address the needs of sedentary individuals who do not wish to

participate in structured exercise programmes, the American College of Sports Medicine

(ACSM) revised their physical activity recommendations. They advised that adults aged

18–65 yrs should perform either a minimum of 30 min of moderate physical activity on 5

days of the week (this can be an accumulation of 10 min periods of exercise), or 20 min of

vigorous exercise on 3 days of the week. These can be combined to include 2 days of moderate

exercise and 2 days of vigorous exercise per week [73]. The recommendations for older adults

included similar exercise durations, but of lower intensity. Balance and flexibility exercises

were also recommended for this age group [127].

Warburton et al. [170] formulated a general 4 strategy approach to physical activity

prescription, encompassing the four modifiable components of exercise: frequency, intensity,

time, type (easily remembered as FITT) designed to be adapted to the individual and to their

requirements. Each strategy will fulfil the energy requirements recommended for health on

its own, or in combination with each other, the time being devoted to each being dependent

on the FITT combination employed, i.e. the higher the intensity of exercise, then the less

time required to achieve the recommended energy expenditure. Nonetheless, lower intensity

exercise may be more appropriate and acceptable for previously sedentary and unfit or for

older people, where health benefits will be conferred even where there is little or no increase

in fitness measured as V̇O2max.

The recommended types and levels of physical activity required to improve physiological

well being and fitness levels over all age ranges are as follows [171]:

Low intensity (light effort) aerobic exercise

• 2-4 METs

• About 60 min per day

• Most (preferably all) days of the week
81 MET is the metabolic equivalent of the body at rest which has an oxygen uptake value of 3.5 mL per

kg body mass, per minute.
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• Examples: weeding, strolling

Moderate intensity aerobic exercise

• 4-6 METs

• 20-60 min per day

• 3-5 days per week

• Examples: brisk walking (15-20 min per mile), dancing

High intensity aerobic exercise

• 6-8 METs

• 20-60 min per day

• 3-5 days per week

• Examples: jogging, swimming or cycling

Resistance and flexibility exercise

• 1-2 sets of 8-12 repetitions.

• 8-10 different large muscle group resistance exercises of moderate intensity (older or

frail people should use 10-12 reps at lower resistance)

• 2-4 days per week

• Gentle reaching, bending and stretching exercises of the major muscle groups to improve

flexibility (hold stretches for 10-30 seconds) 2-7 days per week

Each exercise should begin with a warm up to gradually raise the heart rate and body

temperature and end with a cool down to return the heart rate and body temperature to

normal. The recommended METs would be lower for elderly, and higher for younger adults

[171].

1.2.2 Exercise and spinal cord injury

ADLs require great upper body strength, but are not normally sufficient to provide an

adequate or effective cardiorespiratory stress for health benefits. This is due to the relatively

small muscle mass employed, and the fatiguing nature of upper body work [183]. Arm

cranking or wheelchair exercise represent two of the possible volitional exercise modalities

for SCI individuals and both have been used to assess the cardiorespiratory fitness levels of
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both trained and untrained SCI individuals. A true systemic V̇O2max cannot be achieved with

upper body exercise alone, so the term peak oxygen uptake (V̇O2peak) is used instead (see 2.3)

to reflect the peripheral limitations of this type of exercise. The risk of overuse injury and

shoulder pain is also a very real issue for this population as it could seriously affect ADLs

[24].

Peak exercise capacity

Table 1.1 outlines the outcomes of two studies that examined the V̇O2peak elicited by maximal

volitional upper body exercise in SCI individuals [23, 41], and of a review of 20 wheelchair

athlete physiology studies [19].

Table 1.1: V̇O2peak values in untrained and trained male and female tetraplegic (T) and
paraplegic (P) individuals.

Study Year Mode n Plegia V̇O2peak L/min V̇O2peak L/min
male female

Untrained

Burkett et al. 1990 WCE 4 T 0.55 na
Bhambhani 2002 ACE/WCE 35 T 1.04 na
Davis & Shephard 1988 ACE 15 P 1.56 na
Burkett et al. 1990 WCE 12 P 1.57 0.87
Bhambhani 2002 ACE/WCE 88 P 1.75 0.99

Trained

Bhambhani 2002 ACE/WCE 31 T 1.15 0.92
Davis & Shephard 1988 ACE 15 P 2.24 na
Burkett et al. 1990 WCE 4 P 2.12 na
Bhambhani 2002 ACE/WCE 226 P 2.3 1.96

Tests were performed by either arm crank exercise (ACE) or wheelchair ergometry (WCE). na, data
not available. [23, 41, 19].

V̇O2peak measured using wheelchair ergometry was found to be significantly related to

level of injury, with tetraplegics having V̇O2peak values lower than that of untrained female

paraplegics, untrained male paraplegics and trained male paraplegics. The V̇O2peak for

untrained and trained paraplegics were very similar for both exercise modalities across studies

[23].

In a re-analysis of data from five different studies that assessed V̇O2 during maximal

wheelchair exercise tests, it was concluded that V̇O2 capacity is largely determined by fixed

factors such as lesion level, age and gender and to a lesser extent by changeable factors such

as activity level and body mass. From this, normative values for physical capacity during
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wheelchair exercise were determined, based on percentiles, where they deemed an average (40–

60%) capacity for tetraplegics to be 0.8–0.96 L/min and 1.73–2.00 L/min for paraplegics. An

excellent (>80%) capacity is regarded as >1.19 L/min for tetraplegics and >2.31 L/min for

paraplegics [91].

A more recent review of 37 articles relating to the physical capacity of wheelchair-

dependent persons with SCI found that, similar to the findings of Janssen et al. [91],

the weighted mean V̇O2peak in tetraplegia to be 0.89 L/min and 2.10 L/min in paraplegia

during wheelchair exercise tests [72]. The values given for both reviews were calculated from

data taken from a wide range of subjects including sedentary and athletic individuals and

those with incomplete injuries. It is, therefore, likely that these normative values slightly

overestimate the physical capacity of the SCI population as a whole where a high proportion

probably fall into the lower categories.

The lowest level of cardiorespiratory fitness required to reduce or minimise the health

risks associated with inactivity often exceeds the peak values observed in both trained and

untrained individuals with paraplegia. For untrained tetraplegics, the daily exercise intensity

required to achieve and maintain the required fitness level exceeds their maximal aerobic

capacity [23].

The well documented health benefits of regular physical activity to the general population

are no less important for individuals with SCI where physical activity levels are likely

to be much lower. Regular exercise training of the paralysed muscle mass will not only

improve cardiorespiratory health and fitness, but will help to mitigate the inactivity related

musculoskeletal decline that inevitably follows injury [?].

1.3 Functional Electrical Stimulation

Electrical stimulation is used therapeutically in SCI for control of spasticity, prevention of

pressure sores, improving bowel and bladder control and restoring sexual function. It can also

be used to temporarily restore useful function to paralysed muscle, where it can supplement or

replace compromised voluntary function to permit standing and balance or allow rhythmical

or cyclical exercise to be performed [?]. Used in this way it is commonly known as FES.

1.3.1 Motor unit stimulation

All of the muscle fibres within a motor unit will contract in response to a motor neurone action

potential. An action potential can be achieved artificially by either implanted stimulation of

the motor neurone nerve root or by transcutaneous, percutaneous or implanted stimulation

of its axon [88]. During transcutaneous stimulation, an electric current is passed between

pairs of bipolar surface electrodes which are placed on the skin, over the motor point of a

muscle. The current creates an electrical field within an area of tissue determined by the
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magnitude of the applied charge. This causes voltage gated ion channels to open across the

membrane or axolemma of many nerve fibres causing action potentials to conduct in both

an unnatural, antidromic direction (towards the soma) and a natural, orthodromic direction

(towards the terminal boutons) along the nerve axon and its terminal branches [149].

Muscle groups are stimulated indirectly in this way, since the applied current depolarises

the axolemma of the motor unit more readily than the muscle membrane or sarcolemma by

a factor of about 100. This is because the axolemma has voltage gated ion channels whereas

the sarcolemma has transmitter gated channels. ES is only effective in this way where the

entire nerve is intact and still subject to neurotrophic factors i.e. still metabolically active

[50, 176].

The motor unit

Motor units vary in size according to muscle function: muscles that are required to produce

low force with fine motor control have the smallest motor units and those required to produce

high force with little fine motor control have the largest. The physiological classification of

human motor units is based on differences in tetanic force production and fatigue resistance,

not by differences in contraction speed since no evidence of a strong relationship between

force and contraction speed has been found in human motor units [50]. Large motor units

tend to have a high fibre innervation ratios9 (up to about 1:2000) resulting in high tetanic

force production but they fatigue rapidly. Small motor units tend to have low innervation

ratios (as small as 1:6) which produce less force but allow fine motor control, and are fatigue

resistant (Fig. 1.4). Fast and slow twitch motor units are nonetheless both found human

muscle where differences in speed are seen to be due to the muscle fibre’s different myosin

ATPase10 enzymes and sarcoplasmic reticulum calcium release and uptake rate [139].

Figure 1.4: Motor units classified by size. Larger motor units tend to innervate a greater number
of fibers than smaller motor units, resulting in a greater individual twitch tension production. They
also have larger cell bodies and larger diameter axons (Adapted from http://www.lib.mcg.edu.)

Motor units also vary in characteristic according to their excitability (input resistance and

rheobase), morphology and distribution of input. Excitability depends on cell morphology:

large motor neurones have high cell capacitance, large soma (cell bodies), an extensive surface
9The number of muscle fibres innervated by each motor neurone

10An integral contractile protein enzyme that hydrolyses adenosinetriphosphate (ATP) and causes a
conformational change in contractile protein shape that causes the fibres to slide past each other and contract
the muscle [94].
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area with numerous dentrites (areas for synaptic contact) and a large axon diameter. Under

voluntary control, they are high threshold and require much greater central drive (willpower)

to depolarise than smaller motor units [94].

Muscle fibre types

Within each motor unit, fibre types are classified according to their biochemical or molecular

properties. Human fibres classified according to ATPase enzyme activity, and therefore

contractile speed, are distinguished as type I (slow), or type IIA and type IID(x)11(fast).

When distinguished by a combination of ATPase, aerobic and anaerobic enzyme activity,

fibres are classified as either slow twitch, oxidative (SO), fast twitch, oxidative-glycolytic

(FOG) or fast twitch, glycolytic (FG). Differentiation based on myosin heavy chain isoforms

have identified three different types: MHC-I, MHC-IIa and MHC-IIdx in humans. These

correspond highly with the three biochemically determined types. The cost of tension

production (ATP turnover rate) in fast fibres is up to four times that of slow fibres [39]

and the associated oxygen cost of ATP regeneration is high. Fibres can be hybrid mixes of

different fibre types along their length at any given time [139].

1.3.2 Motor unit recruitment

Voluntary motor unit recruitment normally follows an orderly progression, according to

Henneman’s orderly recruitment principle, from easily recruited, low threshold small units

up to higher threshold large units. Because size determines the peak force of the motor

unit, force is normally graded systematically in this way12 [50]. In contrast to this, studies

investigating direct stimulation of the motor nerve have observed this order to be reversed.

It was observed that the larger motor units which generally have large, fast conducting axons

depolarised more readily than the small diameter slow conducting axons of smaller motor

units. However, transcutaneous stimulation appears to result in a more random motor unit

recruitment pattern determined by charge level, the extent of axonal branching, nerve fibre

geometry within the muscle, tissue impedance and motor unit type predominance [100, 53],

notwithstanding the preferential recruitment of larger motor units still observed [165].

Action potentials that propagates toward the synaptic terminal will result in muscle

action potentials, whereas antidromic impulses will dissipate at the soma, or possibly lead

to synaptic potentiation13 [31]. Sensory nerves are also activated which can cause reflexive

spasms, autonomic dysreflexia (see section 1.1.3) or pain responses to occur.
11These fibres were previously classified as type IIB but have been renamed according to their myosin heavy

chain complement [139].
12Motor unit recruitment is often disordered during all-out exercise or during certain pain reflex responses,

where large high force motor units are selectively activated first [50].
13Where the SCI is partial, orthodromic impulses may cause a degree of synaptic potentiation that permits

any weak residual voluntary presynaptic impulses to reach threshold level, resulting in a degree of restored
voluntary movement [149].
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Transcutaneous electrical stimulation appears to result in the synchronous recruitment

of spatially fixed, nonspecific, equivocally nonselective motor units. This permits exercise

training of all fibre types within the stimulated area at relatively low force levels, which is

particularly useful for atrophied paralysed muscle, that consist of predominantly FG fibres

[69]. Repeated stimulation of these fibres during ES exercise training has been found to

cause fibre transformations towards more FOG phenotypes in humans and a reversal to SO

phenotypes in animals after periods of training (see [154] and [143] for reviews).

1.4 FES exercise training

Volitional upper body exercise would appear to confer health protection only to trained

wheelchair athletes with paraplegia [91]. Untrained subjects would achieve this protection

only if they were to exercise regularly at maximal intensity, but this is likely to bring with

it an increased risk of injury or upper limb pain from overuse [24]. Injuries sustained during

wheelchair exercise will have a serious negative impact on the ease with which ADLs are

carried out and therefore alternative ways to increase fitness levels have been investigated

including FES exercise systems for the lower limbs.

1.4.1 FES exercise systems

It has been observed that most cardiorespiratory exercise training benefits are derived by

performing rhythmic dynamic exercise utilising a large muscle mass to ensure that the

cardiorespiratory system is maximally and effectively taxed [6]. Accordingly, various FES

exercise systems have been developed to enable regular ES training of the paralysed muscle

mass of the lower limbs, either on their own, or with upper body assistance. Walking, cycling

and rowing systems have been developed with varying degrees of success, where it has been

found that regular training can have therapeutic physiological benefits (see [90] for a review).

Although the power and endurance capacity of paralysed muscle is very limited, the

metabolic stress of FES cycling has been found to be around 3.5 times higher than volitional

cycling at the equivalent power output [98, 85]. This is particularly beneficial for attempting

to achieve a sustained cardiorespiratory stress, especially where muscle power is limited.

This is also especially important to those individuals with tetraplegia or other arm weakness

that would limit their ability to exercise with the upper body. Very limited but clinically

significant FES walking function, supported by a walking frame, is possible. However, even

though a system is commercially available for functional use, the limitations and cumbersome

nature of the system are such that FES walking is unlikely to be used for exercise training

in the near future.

FES cycle ergometer systems, hybrid FES rowing systems14 [175] and hybrid FES cycle
14Hybrid systems combine FES lower limb exercise with voluntary upper body exercise.
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systems [75] have all been studied and shown to be safe and effective for regular use in

improving cardiorespiratory fitness. The most commonly studied and widely available system,

FES cycling, provides a relatively simple, safe and effective cardiorespiratory exercise training

modality that avoids the pain and injury risks associated with volitional upper body exercise.

1.4.2 FES cycling

FES cycling has been studied in clinical settings since the early 1980s when Petrofsky et al.

first developed a cycling ergometer for the safe rehabilitation of spinal cord injured (SCI)

patients. Technical advances in feedback control, and FES stimulation parameters have

since resulted in the development of feedback control systems that permit both stationary

and mobile exercise training [136, 137] and high-sensitivity testing on recumbent tricycle

ergometers [86, 55].

FES tricycle ergometry has the potential to enhance quality of life by expanding mobility

and recreational possibilities, in addition to mitigating the cardiorespiratory, cardiovascular

and musculoskeletal decline that follows SCI. The physiological benefits of this exercise

modality over those of volitional upper body exercise such as wheelchair ergometry or arm-

cranking are mainly due to the greater muscle mass employed, the involvement of the venous

muscular pump, and the more biomechanically effective movement patterns involved [169].

Physiological benefits

The physiological benefits reported from previous FES leg training studies have included

improved lower body haemodynamic function, leading to improved tissue oxygenation;

effective cardiac stress from increased pre-load/diastolic filling due to circulatory assistance

by the skeletal venous muscle pump [40, 141, 154]; improved gas exchange kinetics [11]; load

dependant changes in muscle morphology and metabolism [37]; enhanced lower leg bone

mineral density [120, 57]; improved body composition [78] and increases in metabolically

active tissue [153].

Cardiorespiratory adaptations

Studies investigating cardiorespiratory responses to training have been encouraging. Signif-

icant, but extremely variable, improvements in V̇O2peak, peak (external only) power output

(POpeak) and aerobic endurance have been reported after progressive FES cycling training

regimes ranging from only 6 weeks to 12 months.

Mean V̇O2peak values reported prior to training have ranged from only 309 mL/min [3]

to up to 1295 mL/min [125] and post-training values of between 822 mL/min [144] and

2500 mL/min [138] have been reported after various periods of training. The differences

may not only reflect differences in the individual responses to training, but may be due to



CHAPTER 1. INTRODUCTION 18

inconsistencies in the methods employed for training and testing and for subsequent data

analysis across studies.

1.5 Conclusion

As a consequence of the physiological problems associated with SCI, many individuals become

more sedentary than they were previously. This increases their risk of developing the

various co-morbidities associated with inactivity, including cardiovascular disease, reduced

bone density and unfavourable changes in body composition. These will have secondary

implications such as an increased risk of bone fracture, decubitus ulcers, metabolic disorders,

difficulty in performing ADLs and increased mortality. Increasing levels of physical activity

have been shown to improve the health and mortality in previously sedentary, able bodied

individuals. ES exercise, and FES cycling in particular, have been used in an attempt to

improve the cardiorespiratory health of SCI individuals in clinical settings with encouraging

but very variable results.

The following chapter briefly discusses cardiorespiratory exercise stress testing and

analysis in the context of volitional exercise. The available literature relating to the research

and use of FES cycling for improving cardiorespiratory fitness in the SCI population is then

examined and discussed with particular reference to the test protocols and analysis methods

employed. The key markers of cardiorespiratory fitness, normally associated with volitional

exercise, are also examined and discussed in relation to FES cycling and FES cycling exercise

testing.
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Chapter 2

FES cycle training and testing

Physical fitness is not only one of the most important keys to a healthy body, it

is the basis of dynamic and creative intellectual activity.

John Fitzgerald Kennedy

Traditional exercise stress testing is briefly described here and the underlying physiological

basis for these tests and their key outcomes as markers of cardiorespiratory fitness is outlined.

A critical review of the available literature pertaining to FES cycle training programmes and

the reported effects of these programmes on these key markers of cardiorespiratory fitness in

complete SCI individuals follows. FES cycle training programmes will be examined in the

context of the traditional FITT principles of frequency, intensity, time and type of exercise.

The test outcomes and the cardiorespiratory stress test protocols, data treatment and analysis

methods employed will also be examined and discussed. The conclusions from this review

will inform the aims and objectives of the present FES cycle training study and form the

fundamentals of this thesis.

2.1 Introduction

The cardiorespiratory responses and adaptations to differing periods of FES cycle training

by individuals with complete SCI have been examined and reported in the literature since

the early 1980s. The criterion outcome measures chosen for these studies have been based

on knowledge of those commonly used in traditional, volitional exercise tests.

To assess the effects of any exercise training programme on key markers of cardiores-

piratory fitness, the criterion tests must provide accurate and reliable information. The

contextual analysis of this information must be based on a sound understanding of the specific

physiological responses that are elicited. Traditional cardiorespiratory stress tests have been

devised and validated for use during volitional exercise, but their use and validity during FES

exercise has not yet been fully investigated nor subjected to adequate critical scrutiny.
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2.2 Conventional Exercise Stress Testing

Exercise stress tests and assessment during volitional exercise provide information on muscle

power and endurance, cardiovascular control and cardiorespiratory fitness. Cardiovascular,

ventilatory and gas exchange parameters can be used for diagnostic analysis in both clinical

and research settings. They can be used to identify respiratory disorders and limitations, or to

assess peak cardiorespiratory performance, or gas exchange thresholds and kinetics for fitness

assessment [173]. Breath by breath respiratory measures at the mouth reflect gas exchange

in the lungs with high temporal resolution and indicate the respiratory and metabolic stress

for a given exercise modality and intensity of work [16].

2.2.1 Cardiorespiratory exercise stress tests

Tests can be maximal or sub-maximal, direct or indirect. Subjects are normally required to

perform rhythmic dynamic whole body exercise to ensure that the cardiorespiratory system

is effectively taxed at the required intensity [6]. Maximal, direct testing, which requires a

high level of subject motivation and specialised equipment, is suitable only in clinical and

research settings but gives a reliable and accurate measure of V̇O2max. Sub-maximal tests can

predict V̇O2max by using equations based on heart rate during or immediately after exercise

at a given intensity, or by walking or running performance over a set distance. These tests

are subject to prediction error and are normally suited to non-clinical environments, such as

sports clubs and schools [115].

Breath by breath respiratory exchange data is subject to an inherent scattering of data

points and to outliers caused by non-metabolic fluctuations in ventilation, especially in

diseased or very unfit individuals [104]. This can make data interpretation and comparison

very difficult, especially where data has not first been systematically edited to identify and

exclude outlier breaths [147].

Data treatment is determined by whether the data is required to be analysed with a

high degree of temporal resolution for kinetic or threshold analysis, or whether it is to be

averaged for mean or peak response analysis. The use of a moving average is recommended

for V̇O2max analysis, with the averaging window being determined by the level of data noise;

15 to 30-second windows may be considered adequate where data has little scatter and larger

windows may be required for more noisy data. Raw, edited, but unsmoothed data is more

appropriate for analyses that require a high temporal resolution [147].

2.2.2 Oxygen uptake capacity

The upper limit in systemic oxygen uptake, or V̇O2max, has traditionally been regarded as

the standard criterion indicator of cardiovascular and respiratory functional capacity and

of maximal aerobic performance potential for whole body exercise [5, 173]. The V̇O2max of
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an individual at any given time is exercise mode specific and can be increased by a period

of training to a predominantly genetically determined ceiling level. Capacity will however

diminish after a period of inactivity or bed rest [32].

V̇O2 will depend upon the aerobic capacity of the working muscle, and the muscle mass and

fibre type employed (see section 1.3). The efficacy with which oxygen (O2) can be delivered,

extracted and utilised by the working musculature depends on the capacity and degree of

functional integration between the central nervous, the cardiopulmonary, the cardiovascular,

and the neuromuscular systems [150, 5, 173, 13, 123].

The potential upper limit for both systemic and peripheral V̇O2max is dependent on many

interacting factors such as the extent of tissue capilliarisation, cellular mitochondrial1 density

and oxidative enzyme activity in the working muscles, the myocardium and the lungs [128,

129]. It is also dependent on pulmonary diffusing capacity, cardiac output capacity and local

and neural hemodynamic control [5, 13].

During maximal exercise utilising only a small muscle mass, e.g. single arm cycling, a

greater proportion of cardiac output is available to this isolated area, resulting in a localised

V̇O2 2–3 times greater than that measured in the same muscle groups during maximal

whole body exercise. This would indicate that V̇O2max is subject to a central rather than a

peripheral limitation, as postulated by A.V. Hill et al. in the 1920s [13]. This was further

explained by Noakes as the upper limit being reached in the oxidative capacity, and therefore

pumping capacity, of the myocardium itself [128]. Maximal, small or isolated muscle group

exercise will, however, achieve an overall lower systemic V̇O2 value due to the relatively low

cardiorespiratory demand and the term V̇O2peak is used instead of V̇O2max.

Exercise tests should be progressive and specific to the training mode used and incorporate

work increments of a uniform magnitude and duration. These can be either continuous,

allowing the subject to reach their maximum tolerable level within about 8 to 12 minutes, or

discontinuous with several minutes of recovery between exercise bouts [22, 173].

The criteria, taken from the ACSM guidelines, for establishing V̇O2max in adult subjects

[6] requires that they should:

• Reach a plateau in the V̇O2/exercise intensity relationship.

• Have a final respiratory exchange ratio (RER)2 of 1.15 or above (this is discussed in

full in chapter 6)

• A heart rate of within 10 beats per minute of the age-related predicted maximum

(estimated by subtracting subject’s age from 220).

• A blood lactate concentration of 8 mmol per litre or more, 4–5 minutes post-exercise.

1Mitochondrion are the sites of aerobic metabolism within a cell.
2The RER is the ratio of carbon dioxide output (V̇CO2) to V̇O2 .
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Day et al. [43] observed that a plateau in V̇O2 response, despite an increase in metabolic

demand, was not obligatory as a definitive marker of V̇O2max, since when compared to a range

of progressively heavier constant load tests, similar maximal values were consistently found.

This has recently been corroborated by Hawkins and colleagues [74].

If a subject terminates an exercise test before it is apparent that V̇O2max has been reached,

due to factors such as lack of motivation, peripheral muscular fatigue, breathing difficulties

or chest or limb pain, the term V̇O2peak is used instead of V̇O2max [173].

2.2.3 Aerobic endurance capacity

As exercise increases in intensity from light to very heavy or severe, then the proportion of

the total energy produced by anaerobic respiration increases. This phenomenon permits the

determination of aerobic endurance capacity from an incremental work rate exercise test,

either by measuring the anaerobic metabolite lactate (La−) in the blood, or by examining

the respiratory exchange at the mouth.

The V̇O2 at which the anaerobic contribution to energy production first becomes

measurable is regarded as the GET and demarcates the moderate and heavy work intensity

domains. The V̇O2 at which the anaerobic energy contribution to work causes the isocapnic

buffering3 capacity of the blood to become saturated signals the threshold from heavy

to severe work intensity. The subsequent respiratory compensation that is made for the

resulting metabolic acidosis can be observed from respiratory exchange measures and signals

the threshold beyond which further work is very limited (severe to extreme exercise). This

threshold is termed the respiratory compensation point (RC) [117]. Metabolic thresholds are

described and discussed in full in chapter 6.

2.2.4 Metabolic gas exchange kinetics

At the onset of exercise or activity, or where exercise is increased or intensified, there is a

period of metabolic adjustment during which time physiological systems adapt to meet the

increased energy demands [109]. The rate of V̇O2 adjustment and the temporal delay in

achieving a match between V̇O2 and O2 requirements have been seen to reflect, equivocally,

the systemic and peripheral O2 delivery capacity, local muscular perfusion, and metabolic

inertia [179]. The time constant or τ for this response has been found to be inversely

proportional to fitness and cardiopulmonary health levels [109].

Ventilatory adjustments are influenced not only by changing metabolic demands, but by

a complex interaction between supra-spinal (anticipatory), spinal (peripheral chemical and

mechanical reflex) and humeral (chemical) stimuli. The rate of adjustment in gas exchange

and ventilation (V̇E) follows a more or less exponential time course, where adjustment
3The maintenance of a constant arterial carbon dioxide (CO2) pressure.
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becomes proportionately smaller as V̇O2 reaches its new asymptote [162]. The responses can

occur over 3 possible phases, depending on the change in exercise intensity. A full discussion

on respiratory gas exchange kinetics is given in chapter 7.

In order to determine these parameters with a high degree of confidence, especially where

the signal to noise ratio is low, multiple exercise transitions are normally performed and the

average of these responses is used for the final analysis [101].

2.3 FES cycle training and testing

To attain true systemic V̇O2max, the cardiorespiratory system must be maximally stressed

by performing rhythmic dynamic exercise using as large a muscle mass as possible [6]. For

SCI subjects performing FES cycling, the leg muscle mass employed is limited by stimulation

charge, the degree of tissue impedance, and by the degree of muscle disuse atrophy and fibre

fatigue resistance. This will limit the P t
peak of the legs and the cardiorespiratory stress that

can be elicited, especially prior to training.

Consequently, FES cycling cardiorespiratory stress tests will only provide an indication

of the maximal oxidative capacity of the stimulated muscle mass itself, not of the systemic

cardiorespiratory capacity. This is evident where volitional upper body exercise is performed

in conjunction with FES cycling exercise and the combined exercise elicits a higher V̇O2peak

than FES cycling alone [125].

Nonetheless, changes in FES cycling P t
peak and V̇O2peak over time will provide a good

indication of the training induced metabolic adaptations that can be achieved by this means

alone. Tables 2.1 and 2.2 give summary accounts of the cardiorespiratory and power output

values taken from previous FES cycling studies.

2.3.1 Muscle conditioning

A period of muscle conditioning is often required prior to cycle training or testing to

ensure that the subjects are powerful enough to move their legs on the unloaded ergometer

with enough fatigue resistance to complete the initial exercise stress tests and progress to

cycle training. Prior strength training has been found to significantly increase FES cycling

endurance capacity at a much greater rate than with no prior strength training [135].

Ten of the twelve cardiorespiratory training studies reviewed here included a preparatory

period of muscle conditioning [3, 11, 67, 138, 142, 144] or cycling habituation [78, 80, 119, 125]

prior to the initial baseline tests (Table 2.1). Of the seven studies investigating the acute

cardiorespiratory responses to FES cycling, most included experienced FES cyclists [56, 64,

79, 145, 161], and one study examined the responses of anaesthetised able bodied subjects

performing FES cycling [98]. The training status of one subject group was not detailed [10]

(Table 2.2).
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Table 2.1: A summary of cardiorespiratory and power output values taken from previous
FES cycle training studies.

Plegia Training Pre train Post train Pre train Post train

Study Ref. T P (weeks) POpeak (W) POpeak (W) V̇O2peak (mL/min) V̇O2peak (mL/min)

Arnold et al. [3] 5 7 34 0 30 309 ± 255 1016 ± 495
Barstow et al. [11] 2 7 8 9.9 ± 5.6 14.5 ± 5.6 1280 ± 310 1420 ± 340
Faghri et al. [52] 0 6 12 *0 17.1 ± 3.5 *∼600 ∼800
Goss et al. [67] 2 3 26 ? ? 793 ± 228 1013 ± 246
Hjeltnes et al. [78] 5 0 8 6 22.4 ± 2.2 1 ∼539 1 ∼924
Hooker et al. [80] †10 †8 12 13.6 ± 0.4 19.7 ± 0.4 780 ± 10 950 ± 10
Krauss et al. [103] 1 7 6 16 114 510 ± 50 830 ± 60
Mohr et al. [119] 6 4 52 0 42 1200 ± 80 1430 ± 90
Mutton et al. [125] 2 9 ∼18 10.5 ± 4.8 14.4 ± 4.9 1295 ± 271 1424 ± 339
Petrofsky&Stacy [138] 0 8 26 0 55 ? 2500 ± 200
Pollack et al. [142] 7 4 12 ? ? 768 ± 148 1040 ± 128
Ragnarsson et al.[144] 12 7 12 0 ∼11 2716 2822

Data are mean ± SD for [11, 67, 138] and mean ± SE for [52, 80, 119, 142]. The error term was not defined

for [3, 78, 103, 125]. Individuals with either T, tetraplegia or P, paraplegia. POpeak peak external power

output, V̇O2peak peak oxygen uptake, train training programme. 0 W is unloaded cycling. *Results are from

sub-maximal tests conducted at 0 W. 1Values are estimated from data presented in graph form. 2Mean

values (no error term given) taken from arm-crank stress tests. †Individuals with incomplete lesion were

included. ?Data not given.

2.3.2 Training programmes

All of the training programmes were clinic based and varied in their FITT parameters.

Training frequencies ranged from 2 to 3 sessions per week (s/w) for most studies. One

study included 7 training s/w over 5 days of the week: their subjects trained once per day

for 3 days, and twice per day for 2 days of the week [78]. Work intensities were progressive in

load (5 or 6 W increments) and normally set at the maximally tolerated external work rate

for each session which ranged between 0 and 55 W. Training session times ranged from 5 to

60 minutes and comprised either interval [78, 103, 142, 144] or continuous cycle training, at

pedal cadences of between 35 and 50 rpm.

2.3.3 FES systems and stimulation parameters

The most commonly used systems for training and testing have been the Regys 1 or the

Ergys 1 or 2 systems4. These systems permit semi-recumbent FES cycling via computer

controlled, sequential, surface neuromuscular stimulation. The stimulation parameters were

programmed to provide monophasic rectangular wave stimulation with a maximum current

of about 130 mA with a pulse duration of either 350 or 375 µs at a frequency of 30 Hz.
4Therapeutic Alliances Inc. 333 North Broad Street, Fairborn, OH 45324 USA.
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Table 2.2: A summary of the acute cardiorespiratory and power output values taken from
previous FES cycling studies.

Plegia
Study Ref. T P Test Power (W) V̇O2 (mL/min) POpeak (W) V̇O2peak (mL/min)
Barstow et al. [10] 0 8 I&C 0 930 ± 190 12.2 ± 5.6 1270 ± 270
Figoni et al. [56] 0 13 I - - 15 ± 7 857 ± 355
Glaser et al. [64] 9 11 I - - 1 ∼14.1 1 ∼863
Hooker et al. [79] 0 7 C 6.1 ± 0.9 1 ∼800 - -
Kjaer et al. [98] * * C 1 ∼38 1900 ± 130 - -
Raymond et al.[145] 0 6 I - - 9.2 ± 2.4 750 ± 110
Theisen et al. [161] 0 5 S 28.2 ± 1.8 2 ∼500 - -

Data are mean ± SD for [10, 56, 145, 161] and mean ± SE for [64, 79, 98]. POpeak peak external
power output values, V̇O2peak peak oxygen uptake. 0 W is unloaded cycling. 1Values are estimated
from data presented in graph form. 2Values as given or (∼) estimated from steady state period of
exercise during test. *Subjects were able bodied. Individuals with either T, tetraplegia or P,
paraplegia. I, incremental test, C, constant work rate test and S, constant stimulation test.

The current amplitude was adjusted automatically to keep the pedal cadence within the pre-

determined range of 35–50 rpm and stopped automatically if the cadence dropped below 35

rpm.

Ragnarsson et al. [144] used a modified Monark ergometer5 with a Regys 1 FES system

and Petrofsky & Stacy [138] used a Monark ergometer with a custom FES system. For

this system, biphasic square-wave stimulation was applied at a pulse duration of 350 µs and

frequency of 35 Hz. The current was varied by adjusting the amplitude between 0–180 mA.

Theisen et al. [161] used a customised MOTOMed Viva cycle ergometer6 that was able to

measure the power output during a constant stimulation test. The monophasic stimulation

was applied at a pulse duration of 250 µs and a frequency of 35 Hz with the amplitude

increased to a maximum of 120–140 mA.

2.3.4 Exercise stress testing

Incremental work rate tests Most of the incremental FES cycling stress tests have

consisted of either 3 or 5-min stages of exercise performed either continuously or with 3–

5 min of passive recovery and/or rest between each. A test protocol consisting of 12 min

discontinuous stages (over 2 test sessions with at least 2 days separating each) was used

in one study for V̇O2peak testing, where outcome variables were measured once a response

“steady state” had been reached [145]. Work rate increments have typically been of 6.1 W

(1
8 kp at a cadence of 50 rpm). For one study, the rate of increase in work rate was varied

5Grimaldi Industri AB, Hovslagargatan 5B, 2nd fl., SE-111 48 Stockholm, Sweden.
6RECK-Technik GmbH & Co. KG Reckstrasse 1-4 88422 Betzenweiler, Germany



CHAPTER 2. FES CYCLE TRAINING AND TESTING 26

according to the subject but the actual protocol details were not provided [119].

Constant work rate tests Barstow et al [10] tested subjects over “at least” 10 min

of unloaded cycling and for one study, constant work rate responses were assessed from

submaximal 12 min exercise stages that formed part of a discontinuous POpeak test to

determine steady state values [145].

Respiratory gas exchange A range of breath by breath metabolic cart systems were used

to assess cardiorespiratory parameter outcomes. For all but one of the studies reviewed here

[10], there was no information given regarding data treatment prior to analysis, such as the

removal of outlying data. There was no information given regarding data averaging for 11 of

the studies but where this information was noted, the raw data were automatically averaged

by the metabolic system over either a 15, 20 or 30-second window. Peak values were given

as the absolute highest value measured during the final exercise stage [119], or as the average

of the last two 15, 20 or 30-min mean values.

Steady state exercise values were given as the average of the last 2 min of each 12 min

exercise stage [145], the average of the last min of each of the incremental 4-min [138] or

5-min stages [56, 64], or not explicitly stated [10].

These methods could lead to erroneous estimates of mean or peak values where there is

likely to be some distortion from unedited outlier values, especially where the noise to signal

ratio is high.

2.3.5 Statistical analysis

Data has been subject to parametric and non-parametric analysis for testing the effects

of training on the various outcome parameters. Five of the studies reviewed here used a

conventional repeated measures ANOVA for their analysis [11, 52, 103, 142, 80] with only

one stating the factor levels used [103]. There can be problems using such methods for

time series analysis where data groups are, inherently, not independent of each other or

where individuals respond differently to the intervention [68, 81]. Other suitable parametric

time series analysis that circumvent these problems include multivariate ANOVA, adjusted

univariate ANOVA, mixed modelling or simple paired t-tests [81] and three of the studies

here used paired t-tests for analysis [3, 67, 145]. One study erroneously used paired t-tests

to compare differences between independent groups of subjects under study [64], and two

studies wrongly used independent t-tests for comparisons of the same subject groups over

time [56, 138]. Additionally, it is not known whether the t-tests used in each study were one

or two tailed. Although all studies set the level of significance to P ≤ 0.05, it is difficult to

compare effects of these training programmes on the basis of their statistical outcomes.
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2.4 Acute and trained responses to FES cycling

2.4.1 Peak power output

Able-bodied FES cycling Kjaer et al. found that anaesthetised healthy male subjects

were able to maintain a pedalling cadence of 35–50 rpm for about 23 min during an FES

cycling trial. Resistance and stimulation were applied gradually over the first 15 min to

allow the power to increase from ∼20 W to ∼38 W (previously determined sustainable power

output). Stimulation and Power were then held constant until fatigue caused the cadence

to reduce to below 35 rpm, when stimulation was automatically stopped [98] (Table 2.2).

Considering that these subjects were able bodied and of normal muscle mass, then it would

appear that this is likely to be the highest sustainable power output that can be expected

with FES cycling by SCI individuals. However, it is unknown whether a period of FES cycle

training would enable these able bodied subjects to increase their FES cycling power output

by any degree.

Pre-training muscle conditioning Prior muscle conditioning appeared to have given

individuals a large advantage in terms POpeak production for some studies but not for others;

pre-training POpeak values ranged from unloaded cycling, or 0 W, to ∼14 W. It is likely that

the high mean baseline POpeak value recorded by Hooker et al. [80] is due to the inclusion of

incomplete lesion subjects in their study group. Their pre-training value was not dissimilar

to the post-training values recorded by other studies after 6, 8 and 18 months of training

(Table 2.1).

Highest measured work rates Considering the results presented by Kjaer et al. [98]

(Table 2.2), then it seems quite remarkable that Petrofsky & Stacy found that all 8 of their

paraplegic subjects could cycle at 40 W for 30 min after 3 months of training from an initial

cycling capacity of only 8 min at 0 W. After a further 3 months of training all subjects were

able to cycle at 55 W for 30 min (Table 2.1). It should be noted that this was the only study

where the subjects trained for prolonged, 60 min sessions. This remarkable accomplishment

has, nonetheless, not been replicated by any other FES study to date.

Most of the significant training gains achieved during the 52 weeks study by Mohr et al.

[119] were reported to have occurred within the first 6 months of training. After 52 weeks

of training, the highest individual peak training work rate that could be sustained by any

individual was 42 W, which could be tolerated for 7 min only. One subject still cycled mostly

at 0 W, three at 6 W and three at 18 W during training sessions.

In the only 2 studies where it was possible to calculate the coefficient of variation (CV)

in POpeak [11, 80], it was found to be 57% and 53% prior to FES training and 39% and 37%

after training respectively. This illustrates the degree of inhomogeneity in this particular
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population, making generalisations in outcome difficult if not invalid, especially where studies

include small numbers of subjects [11], or a mix of partial and complete lesion subjects [80].

Gains in POpeak relative to training duration It is difficult to find any correlation

between training FITT parameters and POpeak outcomes. However, when the mean

improvement in POpeak is expressed as gains in power per week of FES training completed

(W/w), then it appears that session duration and training frequency were the most important

factors for POpeak gains: the highest gain of 2.12 W/w [138] was achieved over 26 weeks

of prolonged (60 min per session) training of unknown frequency. The next highest gain

of 2.05 W/w was attained after 8 weeks of intensive (7 s/w) training [78]. Interestingly,

the studies that reported the highest pre-training POpeak values also recorded the lowest

improvements in POpeak after training: gains of only 0.21 W/w [125], 0.5 W/w [80] and

0.58 W/w [11], were achieved over 2–3 s/w of 30 min training over ∼18, 12 and 8 weeks

respectively. This suggests that most of their gains in leg power were achieved during the

cycling habituation or muscle conditioning phases prior to baseline tests being performed.

The power response to constant stimulation There has been only one study to

date that has investigated the power response to constant stimulation, FES cycling over

a prolonged 40 min session [161] (see Table 2.2). Stimulation was ramped up to its maximum

permitted level over the first 5 min of exercise and held constant thereafter. Power output

responded by rising rapidly to reach a peak after 2 min. It then dropped sharply over the next

4 min, followed by a slow recovery to reach another lower peak value by 20 min of exercise

(information was not given regarding whether the power response was due to changes in pedal

force or in pedalling cadence which ranged from 35–50 rpm). This pattern of response is very

similar to that found during 3-min volitional all-out cycling tests [166], where power was

observed to rise sharply from the outset and then fall rapidly to reach, and then plateau at,

the critical power point7. The notable difference between the two tests is that power tends

not to recover at any point during an all-out volitional cycling test and the responses occur

over only 3 min of exercise. This led the authors to question the notion of ‘steady state’

during FES cycling.

2.4.2 Peak oxygen uptake

For two of the studies, the low baseline V̇O2peak values of ∼309 mL/min [3] and ∼510 mL/min

[103] are most likely to have reflected an early termination of the exercise test due to low

muscle power and rapid muscular fatigue, since the tests were performed prior to any prior

muscle conditioning or cycling habituation.
7The maximum sustainable (aerobic) power level
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V̇O2peak values The highest and quite remarkable post-training mean value of∼2500 mL/min

was recorded for 8 subjects by the study that also had the highest absolute POpeak and gains

in POpeak per week of training, but since pre-training V̇O2peak values were not given, it is

difficult to gauge the level of improvement that occurred over time [138]. This mean peak

value, which has not since been replicated, is substantially higher than the ∼1900 mL/min

reported for 8 able bodied FES cyclists with no known cardiovascular or muscular limitations

[98].

The next highest mean V̇O2peak value reported in the literature of 1430 mL/min was

subject to a large CV of 63% [119]. This may be, in part, due to the data analysis methods

adopted by Mohr et al., rather than merely to the inhomogeneity of subject group responses;

they took the highest V̇O2 value recorded during the last 2 minutes of the test as V̇O2peak

and it appears that these values were absolute, unedited values.

Gains in V̇O2peak relative to training duration Arnold et al. [3] achieved a mean

improvement in POpeak of only 0.88 W/w but saw the greatest absolute and relative

improvements in V̇O2peak of 707 mL/min and 229% respectively. However, when this

improvement is calculated per training week completed (mL/w), it equates to only 21 mL/w,

which was not the highest gain achieved over the studies reviewed here. The highest gains,

achieved over the shortest training periods, were 53 mL/w [103] and 48 mL/w [78]. These

studies reported relatively low post-training V̇O2peak values, but two of the four highest W/w

values (1.33 W/w and 2.05 W/w respectively).

Accordingly, the high absolute improvement, recorded by Arnold et al., appears more

likely to be due to the very low, pre-conditioning baseline values, rather than to superior

training gains, since mL/w gains were not the highest calculated across studies.

Pre-test training status The post-training V̇O2peak values recorded by three of the studies

of about 800–830 mL/min [52, 103, 144] were much lower than three of the initial baseline

values of around 1200–1295 mL/min recorded in other studies [119, 11, 125]. This illustrates

the difficulty in comparing V̇O2peak or the absolute and relative improvements in V̇O2peak after

training, to assess the performance merits of any particular training protocol or programme.

This is especially true where baseline values are measured after varying periods of different

types of muscle training or cycle habituation.

Where baseline values were given after a period of muscle conditioning or cycle

habituation, it appears that the weekly gains in V̇O2peak diminished with the length of the

training programme. The greatest gains were found in studies of between 6 and 12 weeks

(14 mL/w–53 mL/w) and the lowest in studies of between 18 and 52 weeks (6 mL/w–9 mL/w).

This would indicate a limitation in peripheral metabolic adaptations over time.
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2.4.3 Cycling endurance capacity

Continuous pedalling capacity Cycling endurance capacity has been investigated in

terms of continuous pedalling duration and sustainable power output and not by metabolic

threshold analysis. This is because the exercise test bed previously available to researchers

in the field of ES exercise has lacked the measurement sensitivity required for a valid gas

exchange threshold analysis.

In the first study to examine endurance capacity in terms of single bout duration allowed

to extend beyond 30 min, it was found that bouts of cycling could be extended to a rather

remarkable 150 min after just 6 weeks of cycle training, providing that there had been an

initial 6 week period of prior muscle conditioning [135]. This indicates a very rapid and

positive adaptation to exercise.

Anaerobic contribution to work The acute physiological responses to constant load

FES cycling have been examined during bouts of continuous pedalling for periods of only 4

minutes [138] to periods of up to 40 min [161]. During the first 8 minutes of a 40 min test,

where stimulation was ramped up to its maximum level over the first 5 minutes, the RER

was seen to rise rapidly, reaching a peak of 1.3. It then dropped steadily over the following 30

minutes of exercise, to reach 0.9 by the end of exercise. This RER response occurred as V̇O2

increased steadily from ∼200 mL/min to ∼480 mL/min [161]. Since the power output also

rose to its peak during this time, the response indicates a large anaerobic component to the

energy production from the outset, consistent with the non-physiological muscle recruitment

found during ES exercise (see section 1.3.2).

When comparing peak La− accumulation and RER during FES leg cycling to that during

arm ergometry, Hjeltnes et al. [78] found La− accumulation to be higher (7± 7 vs. 4± 7

mmol/L) and to rise at a faster rate during FES cycling, but RER values not to be significantly

different between groups (1.25± 0.7 vs. 1.05± 0.7). Over 52 weeks of FES cycle training, one

study found La− values to be high and unchanged after training (9± 10 vs. 12± 10 mmol/L)

but the recorded RER values were disproportionately low and varied between 0.9 and 1.3

between subjects, but were most often below 1 [119].

Pollack et al. considered that since fatigue occurred in all of their subjects as RER reached

unity, then this was an indicator that the anaerobic threshold had been reached and that this

was a limiting factor for dynamic exercise in SCI [142]. Since this group also found V̇O2peak

to have increased after training, then it would appear that the anaerobic threshold, as defined

by this group, was also delayed as a result of training.

For two studies [11, 52], the RER during an unloaded cycling test exceeded unity both

before and after 8 and 12 weeks of training. After 12 weeks of training, however, the RER

was found to have significantly reduced (1.15 pre vs. 1.06 post) [11]. It is interesting that

such high RER values were found at such low work rates, especially when peak RER values
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have previously been reported to be as low as 0.89 after 6 months of FES cycle training [3].

RER fluctuations over time It is clear from the study by Theisen et al. [161] that the

RER response to stimulation and to prolonged exercise is very dynamic; RER was measured

as 1.3 with a V̇O2 of 800 mL/min after 8 min of exercise and as 0.9 with a V̇O2 of 990 mL/min

after 38 min. Accordingly, it would appear that the time that the RER is assessed during

a test is very important when making direct comparisons across studies. RER values will

also depend on the degree of substrate depletion,8 and muscle oxidative potential. This may

explain the disparity in RER values at a wide range of V̇O2 values found across studies, and

the apparent mismatch between La− values also observed.

2.4.4 Oxygen uptake kinetics

The relatively slow V̇O2 kinetics observed during FES cycling exercise have been attributed to

muscle atrophy and deconditioning rather than to impaired autonomic control. Barstow et

al. examined ventilatory, V̇O2 and heart rate responses to volitional upper body exercise

and to FES cycling in the same individuals, where they found normal heart rate and

ventilation kinetics for the voluntary exercise, but not for the electrically induced exercise

[10]. Nonetheless, gas exchange kinetics have been found to become significantly faster after

8 weeks of training and these changes did not correlate to changes in V̇O2peak, suggesting

that different mechanisms were responsible for these improvements [11].

2.4.5 Cardiovascular responses

The cardiovascular responses to exercise such as heart rate, blood pressure and cardiac output

have been investigated and found to be affected by autonomic system disfunction, the degree

to which this occurs is dependent on lesion level. SCI can cause severe disruption to, or loss

of, the neural feed forward and feedback mechanisms responsible for precise cardiovascular

control [98, 45].

Ragnarsson et al. failed to observe any detrimental effects as a result of compromised

haemodynamic control, either acutely or after a period of FES cycle training [144]. On

the contrary, this form of exercise has been seen to lead to cardiovascular and circulatory

improvements, both acutely [40, 145] and after training [140, 60].

2.4.6 Efficiency

FES cycling is an expensive mode of exercise as it provides a relatively high metabolic stress

at very low work rates. Glaser et al. found that, regardless of the precise definition or
8As glucose levels become depleted during prolonged exercise, then proportionately more energy is produced

from fat and protein. This will result in a reduction in the RER value [115].
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calculation, the efficiency of FES cycling is substantially lower than volitional cycling (2–

14% vs. 4–34%) [64]. Efficiency during FES cycling has recently been calculated by a new

method, appropriate for untrained subjects with severe physical impairment, where efficiency

was estimated to be 7.8 ± 2.1% (means ± SD) for 10 subjects. The corresponding oxygen

cost, at 38.8 ± 13.9 mL/min/W was very variable and about 3.5 times higher than that

normally measured during volitional cycling [85]. Additionally, healthy, anaesthetised, able

bodied individuals were observed to perform FES cycling at a similar absolute work rate and

with similar efficiency to untrained SCI individuals with severe muscle atrophy [98].

The electrical cost of work The mean electrical charge rate of stimulated work at a given

power output was calculated for one subject in a recent study that investigated the energetics

of FES cycling over periods of 5 min with two different stimulation patterns [84]. The

investigators observed that there was a significant difference in the electrical and metabolic

costs of power production between each of the muscle stimulation patterns for that subject.

It would therefore appear that the stimulation paradigm itself is likely to have a substantial

impact on the efficiency of FES cycling.

2.5 Aims and Objectives

For FES cycling to become successfully utilised as a exercise tool for improving health after

SCI, the metabolic stress of cycling needs to be optimised to allow the cardiorespiratory

system to become adequately and effectively stressed for the required duration. The

magnitude and extent of physiological adaptation required to impact on these parameters

will depend on many factors including level and type of injury, time since injury [29] which

will impact on the degree of muscle disuse atrophy [7]; bone demineralisation and therefore

fracture resistance [182]; fibre type transformation and metabolic adaptation, which will

affect the fatiguability of the muscle [139]. These factors are also compounded by hormonal

influence and by individual differences in training response [115]. Outcomes, as for able

bodied individuals, will also depend on the FITT parameters chosen for training [171].

The efficacy with which previous FES cycling training programmes have achieved

improvements in cardiorespiratory and musculoskeletal health is equivocal, and the practical

extent to which this can be achieved in a home-based setting is unknown. It is not clear

whether the key markers of cardiopulmonary fitness, attained by tests designed for volitional

exercise are relevant to the SCI population or to this unique exercise modality.

Accordingly, this thesis examined and characterised the cardiorespiratory and power

responses to 12 months of high-volume, home-based FES cycle training. A novel, sensitive

test bed and novel protocols were used for exercise testing and outcomes were systematically

and consistently analysed. Outcome measures were critically evaluated for their utility in
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determining key markers of adaptation to this unique type of exercise training.

2.5.1 The training programme

A brief overview of the FES cycle training programme is given here and full details of the

methods employed are given in chapter 3.

Subjects A multi-centre training programme was undertaken to enable sufficient numbers

of subjects to participate in this study. Due to the complex pathophysiology of SCI, only those

with complete thoracic lesion injuries were chosen to participate. This was to minimise the

possible effects of autonomic disruption during exercise and reduce the level of confounding

variability on study outcomes, thereby improving the statistical power of analysis.

To ensure that leg muscle atrophy was in a steady state, the subjects were required to be at

least 2 years post-injury. Additionally, distal tibia and femur trabecular bone densities were

required to be greater than 40 mg/cm−3.9 to minimise the possibility of muscle contraction

induced fractions.

Pre-training muscle conditioning Leg muscle strength training prior to starting an FES

cycle training programme has been observed to be beneficial in terms of subsequent gains

in FES cycling endurance capacity. Accordingly, to ensure that all subjects had sufficient

fatigue resistance to complete the first 8–12 min tests, a period of muscle conditioning was

performed prior to commencing the FES cycle training programme.

FES training FITT principles Exercise prescription for health related fitness in able

bodied individuals is based on the manipulation of FITT principles [171]. Exercise intensity

is normally described as either light, moderate, heavy, severe or extreme. These intensity

domains are determined by the level of cardiorespiratory stress elicited during exercise, which

is determined by the actual and associated metabolic costs of this work (this is discussed in

full in chapter 7). Accordingly, these traditional work intensity designations may not be

appropriate for FES exercise prescription, where a relatively small peripheral muscle mass

is maximally stimulated to contract at its maximum capacity against a maximally tolerated

external resistance (severe or extreme muscular work) over prolonged periods. The La− and

RER values are also consistent with severe or extreme intensity exercise, but the V̇O2 values

are normally only associated with exercise in the light to moderate work domains.

Since FES cycling is normally performed at 100% of the permitted min-max stimulation

intensity and at a maximally tolerated pedalling resistance, then training frequency,

time (duration) and type need to be manipulated to maximise the acute and chronic

cardiorespiratory stress. Training can be continuous or discontinuous (interval training) in
9bone density as measured by peripheral Quantitative Computed Tomography
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nature, but should be performed for between 20 and 60 min on 2 to 5 days (V̇O2 intensity

dependent) of the week to comply with the current recommended physical activity levels

[171, 73]. The V̇O2peak values that have been recorded in the literature suggest that sufficient

cardiorespiratory stress can be elicited throughout a 30 to 60 minute cycling session to

confer important cardiorespiratory health benefits. Considering that prolonged FES cycling

is possible [135] and appears to be safe, this study aimed to increase cycling endurance to

periods of up to 60 minutes at a maximally tolerated work rate.

Training volume There appears to be no information available regarding the optimal FES

cycle training volume required to elicit maximal health or fitness related gains. However, it

appears that high-volume training is likely to achieve the greatest gains [78]. The present 52

week study was designed to maximise training within a practical and achievable progressive,

high training volume programme. This was designed to lead to a final training volume of 300

min per week after 16 weeks, comprising of 5 days of training per week, for up to 60 min per

session. A home-based exercise programme was chosen to enable subjects to optimise their

time management and maximise the training programme within the prescribed parameters.

Nonetheless, due to certain inevitable circumstances, it proved difficult for all subjects to

adhere strictly to the prescribed frequency and overall duration of training. Each subject

completed a weekly training diary for each home training sessions (HTS) and this permitted

a sensitive dose-response analysis to be performed from which the training frequency and

duration for maximum improvements in power and fitness could be determined.

2.5.2 Peak FES cycling capacity

All of the FES cycling studies reviewed here used relatively large power increments in their

exercise tests due to the experimental test bed that was available to them. This resulted in

a lack of measurement sensitivity and an inability to detect small improvements in power

over time. This study used a recently developed test bed and protocol that permitted the

continuous incremental application of arbitrarily small work rates during an IWRT. This

allowed the precise and consistent determination of peak cycling capacity across subjects and

over time.

The raw breath by breath data were systematically and consistently edited by a

computerised system prior to analysis. This avoided the the relative subjectivity of manual

data editing, and of data distortion that can occur with unedited outlier values, especially

where the noise to signal ration is high. V̇O2peak values were chosen as the average over a

60 s window to account for the relatively high data noise to signal ratio. This is, however,

likely to result in V̇O2peak values lower than those reported in previous studies where V̇O2peak

values were calculated from raw, unedited data, averaged over only 15–30 s [147].

The test protocols also permitted a sensitive training dose-response analysis and a precise
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metabolic threshold analysis to be performed for the first time in FES cycling.

2.5.3 Energetics of FES cycling

FES cycling power is very low and the associated metabolic cost of this work is relatively

high. The associated electrical (stimulation) cost of producing each W of power has not yet

been examined between SCI individuals or over time. In light of the findings to date, it

appears that the inefficiency of FES cycling is not the result of the chronic effects of SCI,

such as metabolic and haemodynamic alterations and muscle fibre transformation towards a

fatigable FG phenotype, but due to the stimulation paradigm employed. Nonetheless, there

have been no studies to date to examine the possible effect of periods of FES cycle training

on the metabolic or the stimulation costs of FES cycling. Accordingly, it was decided to

examine these parameters during a constant work rate test (CWRT), over the course of the

12 month training programme. Efficiency values were estimated using measures appropriate

for subjects with severe physical impairment [85], and the electrical cost of power production

was calculated using a novel measure, based on the stimulation charge rate [84], that gave the

total cost of stimulation for both legs, per minute, relative to each Watt of power produced.

2.5.4 Gas exchange threshold analysis

There have been no studies to date to investigate the existence of, or change in metabolic

gas exchange thresholds during incremental work rate FES cycling. The test protocols used

in this study enabled such an analysis to be performed, accordingly, a traditional V-slope

analysis [17] of respiratory gas exchange was employed for the first time during an FES cycling

study.

2.5.5 The cardiorespiratory responses to prolonged FES cycling

Only one study to date [161] has observed the power and V̇O2 response to prolonged (40 min)

maximally stimulated FES cycling, nonetheless the cyclists were not pedalling against an

imposed external load (other than the unloaded pedal friction). It was decided to periodically

monitor the cardiorespiratory responses during the HTSs, conducted against a maximally

tolerated external resistance at maximal stimulation, in an attempt to provide a better insight

into the physiological responses to FES cycling endurance exercise. During the final week of

the training programme, the cardiorespiratory responses elicited by a HTS were compared to

those elicited by the final IWRT to determine the training session work intensity relative to

V̇O2peak.



CHAPTER 2. FES CYCLE TRAINING AND TESTING 36

2.6 Conclusion

In summary, this project was designed to:

1. Implement, monitor and assess a progressive, intensive home-based, 52 week FES cycle

training programme for up to 15 thoracic lesion paraplegic individuals.

2. Measure and quantify the effects of training on peak cycling power output and various

markers of cardiorespiratory fitness before and after 12, 26, 39 and 52 weeks of training

using a novel, sensitive, test bed and test protocol.

3. Examine and quantify the stimulation cost of work over the training period and examine

the energetic and metabolic adaptations to training within a new theoretical framework

that accounts for both the useful internal and external work.

4. Perform respiratory gas exchange threshold analyses during incremental work rate FES

cycle tests and examine their relevance within the framework of the volitional exercise

metabolic threshold paradigm.

5. Examine and characterise the acute cardiorespiratory response to prolonged FES cycle

training and determine the relative work intensity as a percentage of V̇O2peak.
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Chapter 3

Cycle training project: methods

Traditional scientific method has always been at the very best, 20 - 20 hindsight.

It’s good for seeing where you’ve been. It’s good for testing the truth of what you

think you know, but it can’t tell you where you ought to go.

Robert M. Pirsig

The subjects and general methods employed in the FES cycling study are detailed in full in

this chapter. Details are given of the equipment and materials used in training and testing and

the protocols for the pre-training muscle conditioning phase and for the FES cycling training

phase. The cardiorespiratory tests are also fully described. Calculations and analyses specific

to a particular chapter topic are detailed in each chapter as appropriate. A general description

of the statistical analysis employed concludes this chapter.

3.1 Preparation for Training

3.1.1 Subjects

12 individuals with SCI (2 female and 10 male), all of whom were motor and sensory complete

lesion grade A on the ASIA impairment scale were recruited via the Queen Elizabeth National

Spinal Injuries Unit, Glasgow (GLA), Swiss Paraplegic Research, Nottwil (NOT), and King’s

College London (LON) (see Table 3.1 for full subject details). Each subject gave their written

informed consent to participate in the study which was approved by their respective centre’s

ethics committee: the ethics committees of the Southern General Hospital and of the Faculty

of Biomedical and Life Sciences at the University of Glasgow (GLA); the ethics commission of

Kanton Luzern (NOT); and the research ethics committee of Kings College Hospital (LON).

Subjects had no previous experience of stimulated leg cycling and were given a full physical

assessment prior to taking part. Inclusion criteria included:

1. Complete spinal cord lesion between thoracic level 3–12 (T3–T12), of at least 1 year

duration.
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2. Age between 18-65 years.

3. No significant medical or psychiatric complications (assessed by clinician).

4. Sufficient range of motion at the joints (assessed by therapist).

5. No excessive spasticity (assessed by therapist).

6. Distal tibia and femur trabecular bone densities greater than 40 mg/cm3, measured by

peripheral Quantitative Computed Tomography.

7. Ability to transfer safely between wheelchair and tricycle.

8. Willing to attend the clinic and to exercise at home according to the prescribed training

programme.

9. Having space and the support at home to set up the tricycle ergometer for frequent use.

One subject (GLA) dropped out of the study after baseline testing due to an adverse

autonomic response to stimulation and his data are therefore not included here.

Table 3.1: The Subjects

Subject Gender Age (yrs) Lesion level Years since injury Height (cm) Body mass (kg)

1 F 35 T7 15 162 64
2 M 43 T9 25 186 67
3 M 40 T4 11 184 70
4 F 45 T9 4 167 54
5 M 57 T4 9 173 85
6 M 44 T4 4 170 76
7 M 39 T3 8.5 177 83
8 M 38 T3 12 183 73
9 M 27 T6 3.5 173 59
10 M 48 T3 5.5 182 105
11 M 44 T9 20 175 74

Mean 41.8 5.5 10.7 175.6 73.6
SD 7.6 2.5 7 7.6 14

3.1.2 Muscle conditioning

To strengthen and increase the fatigue resistance of the leg muscles prior to cycle training,

subjects completed a minimum of 6 weeks (14.2 ± 6.9 weeks (mean ± SD)) of progressive,

(up to 60 min per session with 1 kg ankle weights added as required and tolerated thereafter)

dynamic, muscle conditioning at home on 5 days of the week.

Pairs of self adhesive surface electrodes1 were placed proximally and distally to the motor

point of the knee flexor and extensor muscle groups to be used during cycle training (detailed
1PALS Platinum, Nidd Valley Medical Ltd.
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in section 3.2.1. A Salisbury Odstock 4-channel stimulator (GLA) or an 8 channel Stanmore

electronic stimulator2 (LON and NOT) was used with a current controlled monophasic square

wave stimulation pattern. Parameters were preset individually for each subject to optimise

the muscle group contractions, using a pulse frequency of either 20 or 50 Hz and pulse duration

of between 300 and 400 µs. Intensity was controlled by altering the current amplitude between

80 and 150 mA. Stimulation was applied simultaneously to the flexors of one leg and the

extensors of the other with a 1:1 duty cycle set at 6 seconds on/off, before stimulating the

opposite muscle groups of each leg.

Subjects attended the laboratory for a cycling assessment after a minimum of 6 weeks

of muscle conditioning to determine readiness for progression to cycle training. This was

based on their ability to cycle continuously for at least 10 min with no external load applied.

They were also required to be proficient in the use of the training equipment, in chair to

tricycle transfer, and have enthusiasm and adequate support from those at home to be able

to commence with the training programme. Progression to cycle training was determined

on an individual basis and according to resource availability. Cycling equipment was then

installed in the subjects homes and inspected regularly throughout the study.

3.2 Home training

3.2.1 Training equipment

Tricycle All training was performed at home on a commercially available mobile recumbent

tricycle3 adapted for FES use. Fig. 3.1 shows some of the subjects preparing for an indoor

sports event on their bikes. For home training, the tricycle was mounted on an electronically

braked cycle trainer4 which supplied resistance to the rear wheel. Resistance at the pedals

was also adjusted by manually changing the gearing.

Legs and feet were secured firmly to the pedals by rigid ankle orthoses to prevent

movement around the ankle and constrain movement to the sagittal plane. Due to a

combination of relatively short limb length and low bone density, one subject (NOT) used

an adapted orthosis in conjunction with calf muscle stimulation. A throttle was attached to

the left hand grip and interfaced with the stimulator software to allow the user to manually

control stimulation intensity (as detailed in following paragraph). A shaft encoder mounted

on the crankshaft relayed feedback of crank arm position to the stimulator software to permit

angle specific muscle stimulation (see Table 3.2). Velocity compensation was incorporated

in the stimulator software to respond to changes in angular velocity as the cadence varied

during cycling. A hand held computerised interface was used to control the trainer resistance
2Salisbury, UK.
3Inspired Cycle Engineering Ltd., UK.
4Tacx Flow Ergotrainer, Wassenaar, Holland.
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Figure 3.1: Some of the subjects preparing for an indoor sports day in Salisbury 2005. These tricycles
were also used for home training purposes with the rear wheel mounted on an electronically braked
cycle trainer. The stimulators can be seen attached to the frames of the tricycles in the foreground of
the photograph.

and to display cycle cadence (pedal revolutions per minute).

Stimulator An 8-channel electronic stimulator5 was used with a monophasic square wave

pattern to stimulate the quadriceps, hamstrings and glutei muscle groups of each leg via

surface electrodes (detailed earlier). The triceps surae (calf) muscle groups were also

stimulated in the 5 LON subjects as this group considered that this might augment knee

flexion, and in one NOT subject as noted previously. The stimulator was programmed to

deliver charge to each individual muscle group to achieve a smooth pedalling action. The

current was individually predetermined (to achieve a palpable, smooth muscle contraction)

within the range of 0–150 mA at a frequency of 50 Hz. Stimulation intensity was then

controlled by adjusting the pulse duration, via the throttle, within the range of 0–510 µs [86].

An typical example of the stimulation profiles used is shown in Table 3.2.

3.2.2 Cycle training protocol

Following completion of the muscle conditioning phase, subjects proceeded to the cycle

training programme; for the first 8 weeks, subjects were required to train 3 times per week.

This was increased to 4 times from week 9 to week 16 and then up to 5 times per week

thereafter to an expected total of 236 sessions over 52 weeks. Individuals were also encouraged

to include sessions of mobile cycling on level tarmac as part of their training programme. A
5Stanmore stimulator, Salisbury, UK.
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Table 3.2: An example of muscle stimulation angles for one subject.

Stimulation angles Muscle groups stimulated
Right Left

Quadriceps Hamstrings Gluteals Quadriceps Hamstrings Gluteals

Start Angles (degrees) 55 188 90 235 8 270
Stop Angles (degrees) 155 265 180 335 85 360

The computer-controlled, angle-specific and velocity compensated [86], pattern of stimulation for
each muscle group was synchronised with respect to the crank position of the cycle or ergometer:
0 ◦ = the right crank arm centrally positioned at the top.

number of subjects on this study participated in the first FES sports day in September 2005

in Salisbury, and the first international FES sports festival in June 2006 in Cardiff.

During each session, stimulated cycling normally commenced after a period of one or two

minutes of manually assisted, passive leg pedalling. This was to help minimise the occurrence

of muscle spasms at the onset of stimulation. Stimulation was than applied fairly rapidly to

SS point (over ∼60 s) to enable the legs to turn the pedals.

Training started with no trainer resistance applied to the back wheel at a cadence of 50

rpm, pedalling for as long as possible up to 60 min, or until cadence dropped to about 30–

35 rpm, when cyclists were then permitted to assist the stimulated legs using their hands to

complete the session. When subjects were able to complete three 60-min sessions of unloaded,

unassisted cycling, trainer resistance was applied to the back wheel from the start of the next

session. Subjects were advised to revert to unloaded cycling should they experience feelings

of nausea following the large step between unloaded cycling and the first resistance level.

Resistance was than reintroduced after a suitable recovery period.

The electronically braked cycle trainer did not give an accurate measure of the training

work rate in Watts (unlike the motorised cycle used in testing) during the HTS, nonetheless

the trainer was always set to the highest resistance level that the subjects could pedal against

at 50 rpm (HRL). Resistance was lowered or removed when cadence dropped to about 30–

35 rpm to complete the session. Once subjects were able to complete 10 min of continuous

pedalling against their HRL on 3 consecutive sessions (the subsequent 50 min of these sessions

were completed at a reduced load or unloaded), the trainer resistance was increased by one

increment at the start of the following session. The subjects were exposed to progressive

resistance in subsequent training sessions in this manner to ensure that maximum training

stimulus was always applied from the start of each session. If training was disrupted by

holidays or illness, then subjects resumed training as soon as possible thereafter. If they

subsequently found themselves unable to pedal against their last HRL, they resumed training

at lower resistance until they regained their lost fitness.
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3.3 Physiological testing

An IWRT to stimulation saturation (SS) point (100% of the min-max range) was performed

in the week prior to commencing cycle training and then after 3, 6, 9 and 12 months, where

peak values for outcome measures (detailed later) were estimated. A CWRT, set at 70% of

the initial P t
peak was then performed for up to 20 min at least 24 hours after the IWRT and

after 3, 6, 9 and 12 months of training. The development and pilot testing of these protocols

is fully described in [55]. A HTS was also monitored for 8 of the subjects after 12 months of

training, where heart rate and gas exchange variables were recorded continuously.

All subjects were familiarised with each test at least one week prior to the baseline tests.

Subjects reported for testing rested and in good health. They were instructed to refrain from

strenuous exercise or alcohol consumption in the preceding 24 hours, and from consuming

food or caffeine in the preceding 2 and 4 hours respectively.

3.3.1 Testing equipment

Laboratory Tricycle Subjects were tested in the laboratory on a motorised trike6 adapted

for FES use (Fig. 3.2). It was fitted with a crankshaft mounted power sensor7 which was

integrated with control software run on a laptop PC to allow accurate control of cycling

cadence and quantification of total leg power output, including the internal work required

to rotate the legs (P t). Power output was feedback controlled via automatic adjustment of

stimulation intensity (this system is fully described in [86]). The tricycle boom length was

individually adjusted to permit a comfortable recumbent cycling motion and this was kept

constant during training and from test to test.

Figure 3.2: A schematic representation of the tricycle used for laboratory testing [85]

6Inspired Cycle Engineering Ltd., UK.
7SRM Powermeter, Schoberer Rad Messtechnik GmbH, Germany.
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Metabolic cart Breath by breath and intra breath respiratory gas exchange measures were

recorded using a low dead-space portable system in GLA and LON8 and a stationary system

in NOT9. Prior to each test, the analyser was calibrated to a known volume and to certified

calibration gas and ambient air according to the manufacturers instructions.

Blood lactate analysis systems Fingertip sample blood La− enzymatic analysis was

performed on samples taken during each test using a Lactate II Champion analyser10 (GLA)

or a Super GL easy system11 (LON). Earlobe samples were analysed using a Super GL

Ambulance system12 (NOT).

Pulse oximeter Heart rate (HR) and oxygen saturation were monitored continuously and

recorded every minute using a fingertip sensor linked to a Datex-Ohmeda 3000 pulse oximeter

system13.

Exercise perceptions ratings Ratings of perceived exertion (Borg 6–20 scale) and

perceived breathlessness (Borg 0–10 scale) were assessed by presenting a card to the subject

marked with the appropriate scale. The subject indicated their rating by pointing at the

relevant number on the card.

3.3.2 Test protocol

Both the IWRT and the CWRT were conducted at a cadence of 50 rpm. A warm up of 7

min cycling at the lowest stimulated work rate (the lowest rate of stimulation that permitted

the legs to turn the pedals) was followed by a rest period of a minimum of 10 min where

respiratory gases were required to stabilise and the respiratory quotient (RQ) was required to

be between 0.75 and 0.9. Rest was continued until these criteria were met. This was followed

by a minimum of 4-min passive (non-stimulated) motor-controlled cycling where variables

were required to stabilise as for the rest period.

Incremental work rate test

After the period of passive cycling, stimulation was applied to allow the power output to

increase at a rate of 1 or 2 W/min until SS point (pulse duration 510µs) was reached. The

rate was chosen for each subject to allow the test to be completed within 8–12 min [22]. The

test ended with a recovery period where stimulation was reduced to the lowest stimulated
8Metamax II, CORTEX Biophysik GmbH, Leipzig, Germany.
9Oxycon alpha, Jaeger, Hoechberg, Germany.

10Analox Instruments Ltd., UK, Hammersmith, London,W6 OBA.
11Diasys Diagnostic systems, GmbH, Germany.
12Ruhrtal Labor Technik, Möhnesee-Delecke, Germany.
13Datex-Ohmeda Inc., P.O. Box 7550, Madison, USA.
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work rate for approximately 6 min to assist cardiac return and minimise the risk of peripheral

venous pooling.

Constant work rate test

After the required minimum period of passive cycling, stimulation was applied to allow the

power output to reach 70% of the IWRT P t
peak. Stimulation was then adjusted continuously

to allow the cycling power to be kept constant for 20 min or until the required power output

could not be maintained. This was followed by a recovery period consisting of approximately

8 min passive cycling. This slightly extended recovery period was chosen for the passive

recovery during this test since there was no active skeletal muscle pump to assist venous

return.

Blood sampling and exercise perception ratings

Fingertip samples (GLA and LON) Arterialised blood samples were collected from the

fingertip of a warm hand. This was warmed before the start of the test by immersing the

hand in warm water (∼40◦C). The finger was then prepared by wiping with a sterile alcohol

wipe14 before lancing with a disposable lancet. Approximately 15µl of blood was collected

and stored in a capillary tube. Tubes were stored in ice for about 3 hours (analysis was

conducted in a different location to the tests) and returned to room temperature prior to

analysis.

Earlobe samples (NOT) The earlobe was prepared by wiping with a sterile alcohol wipe

and then lanced with a disposable lancet. Blood samples were collected, stored and analysed

according to the system manufacturer’s instructions15.

Blood samples were taken at the following stages of the IWRT and the CWRT:

- Rest, prior to warm-up

- Rest, in the first minute post warm-up

- Rest, 1 min prior to onset of passive exercise

- Passive, 1 min prior to onset of first work load

- IWRT, in the first minute of exercise and every 3 minutes (15 seconds prior to work

load increase) and then at SS point

- CWRT, after 10 min of exercise and then at 15 and end exercise

- Recovery, after 1, 3 and 5 minutes of recovery
14Professional Disposables International, Flint UK.
15Super GL Ambulance system, Ruhrtal Labor Technik, Möhnesee-Delecke, Germany.
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Borg scale ratings of perceived exertion and breathlessness were noted 15 s prior to each

blood sampling event for both tests.

3.4 Outcome measures and analysis

3.4.1 Outcome measures

Metabolic gas exchange The following variables were recorded continuously during each

test:

Oxygen uptake (V̇O2)

Carbon dioxide production (V̇CO2)

End tidal oxygen pressure (PET O2)

End tidal carbon dioxide pressure (PET CO2)

Respiratory exchange ratio. (V̇CO2/V̇O2) (RER)

Minute ventilation (V̇E)

Tidal volume (VT )

Breathing frequency (Bf )

Duration of inspired breath (ti)

Duration of expired breath (te)

Fraction of oxygen in inspired air (FiO2)

Prior to analysis, the raw data were systematically edited to remove outlier data that were

likely to have been caused by non-metabolic fluctuations in respiratory exchange [147]. Using

a custom made graphical user interface programmed in Matlab (The MathWorks inc.), the

raw breath by breath data were first re-sampled to provide at least 4 regular sample intervals

between each breath. The evenly spaced data were then filtered by a non-phase-shifting low

pass filter to give a second data set. This was then subtracted from the actual data values

to give an error (residuals) data set, which was edited to remove any data points that lay

beyond 3 standard deviations (a histogram of the residuals was generated to check that the

normal Gaussian distribution had not been unduly truncated by the removal of this data).

The edited raw data sets were then used in the subsequent data analysis.

The Peak (IWRT) or highest (CWRT and HTS) values were determined over a 60 second

rolling average (the averaging window chosen reflects the relatively high data ‘noise’ observed
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[147]) and steady state mean values for the rest and passive phases were taken as the average

of the last 2 min of each stage. Exercise steady state values for the CWRT were the average

of the last 5 min of this phase. Mean values during the HTS were taken over the last 57 min

of exercise.

Cycling power output Power data were filtered with a non-phase-shifting low pass filter

with a bandwidth of 25/60 Hz (half of the pedal cadence frequency) to ensure that any noise

or disturbances occurring more regularly than this frequency were ignored.

During passive cycling (i.e. cycling with stimulation switched off) the legs were turned

at a constant cadence by the motor alone, resulting in measurement of a negative work rate

at the crankshaft . This corresponded to the rate of work required just to rotate the passive

legs and was included in P t [86]. P t
peak was measured as the highest P t value reached, which

always occurred either before or at SS point.

Blood lactate sampling The La− reagent, Lactate Oxidase was mixed with 5 µL of

blood within the analyser. In the presence of molecular oxygen, La− is oxidised by the

enzyme Lactate Oxidase to pyruvate and hydrogen peroxide. Under the conditions of the

assay, oxygen consumption is directly proportional to lactate concentration (GLA and LON).

Samples were prepared and analysed according to the system manufacturer’s instructions

(NOT). Each sample was analysed at least twice. Values given are millimoles per litre

(mmol/L).

Incremental work rate test

Peak values for all outcome variables were determined at SS point to allow valid test-to-

test comparisons to be made, since tests ended at arbitrarily differing time points and often

before V̇O2 had reached a plateau. Accordingly, the true peak values were not determined

here. Outcome variables of interest during this test were: P t
peak, V̇O2peak, netV̇O2peak (the

V̇O2peak of stimulated work only, calculated by subtracting mean passive exercise V̇O2 from

V̇O2peak), peak heart rate (HRpeak), peak oxygen pulse (O2 pulse, calculated by dividing

V̇O2peak by HRpeak) and the dynamic oxygen cost (∆V̇O2/∆P t), calculated as the slope of

the linear fit of the V̇O2/P t relationship.

Constant work rate test

Mean values were taken as the average over the last 5 min of the exercise phase and were:

P t, V̇O2 , netV̇O2 (the V̇O2 of stimulated work only, calculated by subtracting mean passive

exercise V̇O2 from mean V̇O2), V̇E/V̇O2 (the ratio of V̇E to V̇O2), RER16), and La−. The

16Due to the uncertainty regarding the degree of V̇CO2 produced as a consequence of anaerobic respiration,
and tissue O2 and CO2 storage, the term RER was used here in preference to RQ, which is commonly used
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highest RERhigh was taken as the highest value of a 60 s rolling average at any time during

the exercise phase.

The electrical cost of stimulation (stim/P t) was calculated and is a development of the

recently devised measure of the stimulation charge rate during FES cycling [84]. This was

extended to relate the cost of stimulation to each W of P t power produced and was determined

by first calculating the charge applied to each muscle group per stimulation pulse: this was

calculated as the product of the mean instantaneous pulse duration and current amplitude.

Account was then taken of the on/off stimulation angles for each muscle group during each

pedal rotation, and of the pedalling cadence (50 rpm). The mean values for each muscle

group over the last 5 min were summed to give the total stimulation charge applied to the

leg muscles per minute. The total charge was then expressed relative to P t as µC/min/W.

Final home training session

Outcome variables of interest during the final HTSs were the mean values over the last 57

min of exercise, and the highest 60 s rolling average values for: V̇O2 , RER, V̇E/V̇O2 , and HR.

3.4.2 Statistical analysis

Using Minitab 13 software (Minitab Inc., USA), all data and model residuals were examined

for normality of variance and distribution (Anderson-Darling test) prior to analysis to

validate parametric testing methods. They were found not to be different from normal

(P > 0.05). Due to the differences in individual response to training, and because the

analysis was a time series analysis of non-independent data, within-subject modeling was

used here in preference to a repeated measures analysis (other suitable methods include

multivariate ANOVA, adjusted univariate ANOVA or mixed models) [81]. Paired t-tests (2-

tailed) were performed between each consecutive test and between each test and baseline

values. Bonferroni adjustments were not applied because the t-tests were not independent

of each other [81]. Where differences reached significance (P ≤ 0.05), the delta values

were further analysed adopting a summary approach to preserve independence of data [68].

Multiple Pearson product-moment correlations were run between absolute and delta values

and possible sources of variance. These included subject age, weight, height, years post-injury,

lesion level and training duration. Regression analyses or general linear models (GLM) were

then performed where associations were found to be significant. Differences are expressed in

mean absolute terms with the standard deviation (mean SD) and the mean of all individual

changes relative to baseline (mean %) where appropriate.

where exercise is primarily oxidative and the ratio is indicative of substrate use [173]
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Chapter 4

Adaptations in peak responses after

training

Learn from yesterday, live for today, hope for tomorrow. The important thing is

not to stop questioning.

Albert Einstein

The effects of a 12-month, high-volume, FES cycle training programme on peak

cardiorespiratory and power capacity in 11 individuals with paraplegia was examined in

this chapter. These outcomes were presented at an international conference in July 2007 as

detailed below and this work forms the basis of a paper that has been accepted for publication

in September 2008 by the ACSM’s peer reviewed journal, Medicine & Science in Sports &

Exercise, also detailed below:

H.R. Berry, C. Perret, B.A. Saunders, T.H. Kakebeeke, N.De N. Donaldson, D.B.

Allan and K.J. Hunt, “Cardiorespiratory and power adaptations to stimulated

cycle training in paraplegia,” Medicine and Science in Sports and Exercise, vol.

40, no. 9, 2008, in press.

H.R. Berry, K.J. Hunt, C. Perret, N. Donaldson, T.H. Kakebeeke and D.B. Allan,

“Cardiorespiratory adaptations to 12 months of high volume functional electri-

cally stimulated (FES) cycle training in paraplegic subjects.”46th International

Spinal Cord Society Annual Scientific Meeting, Reykjavik, Iceland, 27 June to 1st

July, 2007.

4.1 Introduction

As discussed in chapter 1, people with spinal cord injury (SCI) often become very sedentary,

which leads to low cardiorespiratory fitness levels and many of the many co-morbidities
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associated with inactivity, including obesity, type 2 diabetes, and cardiovascular disease

[126]. Physical activity has been found to have a preventative and therapeutic role for these

conditions, with the greatest improvements in health being gained by the least fit when they

become physically active. Thirty minutes of moderate daily activity, performed at a V̇O2 of

around 1000–1500 mL/min for men or 700–1100 mL/min for women, is reported to be the

minimum requirement for minimising health risks [170]. However, the V̇O2peak of untrained

SCI wheelchair users rarely meets the minimum V̇O2 required to be sustained for this duration

of activity (see section 1.2.2).

4.1.1 Electrically stimulated cycling

The relatively small muscle mass used during upper body exercise, the risk of shoulder pain

from overuse [24], and the deleterious effects of possible injury on ADLs have led to the

research and development of FES lower limb exercise systems [75, 86, 134, 137]. These

systems allow temporary restoration of function to the paralysed lower limb muscles where

stationary or mobile exercise training can then be performed.

4.1.2 FES cycle training programmes

In addition to the many diverse physiological benefits reported to have been gained

by complete lesion SCI subjects after periods of FES cycling, significant, but variable,

improvements in V̇O2peak, peak power output (P t
peak) and endurance have also been reported.

Studies to date have investigated the responses of individuals with SCI during clinic-based

FES cycle training studies of between 6 weeks and 12 months duration. Training regimes have

varied in work rate (0–42 W), duration (5–60 min), frequency (two to three times per week),

and test protocol (continuous or discontinuous), with some studies including a preparatory

muscle conditioning period before or after baseline testing (see section 2.4).

4.1.3 Peak power and cardiorespiratory tests

A lack of consistency in methodology, test protocol, data treatment and analysis across studies

was identified in chapter 2. This has made the direct comparison of results across studies

difficult if not invalid. Additionally, the relatively large power increments (∼6 W) used in all

previous tests resulted in a lack of measurement sensitivity and ability to detect small but

perhaps clinically important changes in power and V̇O2peak over time.

4.1.4 Study aims and objectives

As an advance on the pedalling drive torque measurement test bed developed by Gföhler et

al. [61], a recently developed integrated feedback system was used for exercise testing that

allowed simultaneous feedback control of power via automatic adjustment of stimulation and
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electrical motor control of cadence. This permitted the application of arbitrarily small work

rate increments and accurate quantification of power output even during unloaded cycling

[55, 86]. Unlike other FES training studies, the home-based training programme followed in

the present study allowed individuals to optimise their time management and maximise their

training within the prescribed high volume limits. The relationships between the training

hours completed for each subject, and the magnitude of change in peak cycling power (P t
peak)

and V̇O2peak that they achieved were able to be examined.

The aim of this part of the study was therefore to investigate the power and the

cardiorespiratory adaptations to a progressive, high-volume, home-based 12-month FES

cycle training programme using a novel, sensitive test bed. This permitted high resolution,

systematic and consistent power and respiratory gas exchange analyses to be performed for

the first time in FES cycling. From this a training dose-response analysis was performed,

and the feasibility and the viability of home-based FES cycle training for improving and

maintaining cardiorespiratory fitness by individuals with paraplegia was examined.

4.2 Methods

Please refer to chapter 3 for a full and detailed description of the methods and of the statistical

analysis employed here.

Subjects The data for all 11 subjects that completed the training study were used for this

analysis. Subject details are given in Table 3.1 on page 38.

Tests An IWRT was performed before and after 3, 6, 9 and 12 months of FES cycle training.

Outcome variables Outcome variables of interest during this study were: P t
peak, V̇O2peak,

netV̇O2peak, HRpeak, O2 pulse.

4.3 Results

4.3.1 Training

Total training hours completed were 189 ± 36 h, which comprised a total of 197 ± 34 training

sessions of 57.6 ± 5.0 min, 3.7 ± 0.6 times per week for 53.3 ± 3.9 wk over a period of 57.3

± 6.2 wk. Training frequency compliance (s/w) was at its highest at 91% during the first

3 months of training and declined to 85%, 78%, and 75% during the last three quarterly

training periods. Total training duration compliance (h completed) for each training period

was 85%, 95%, 78%, and 78% (the target and mean recorded values for training frequency

and duration are given in Fig. 4.1). Continuous cycling capacity increased from 10–60 min

of pedalling over the course of the study for all subjects.
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Figure 4.1: Training frequency (s/w) and (a) the total number of hours completed during each
training period (b). The open circles represent the target values for each period, and filled circles are
the mean recorded values, with the error bars indicating the SD.

4.3.2 Peak power output

Outcomes are summarised in table 4.1 and given in Fig. 4.3. A graphic representation of the

power response to stimulation is given in Fig. 4.2. P t
peak was measured as the highest filtered

power value reached which occurred either before or at SS point, after which time power often

dropped in level (Fig. 4.2). The greatest increase in P t
peak occurred within the first 3 months

of training (P = 0.02) with a further increase measured between 3 and 6 months (P = 0.009;

Fig. 4.3(a)). Changes after this time were not significant, resulting in a significant mean

relative increase of 132% (P = 0.001) after 12 months. Individual responses ranged from a

loss of power of 0.7 W to an increase of 25.8 W with final values ranging from 6.7 to 35.6 W

(for mean values, see Table 4.1).

The increases in P t
peak between 0 and 6 months of between 0.77 and 20.82 W were

significantly related to total training hours completed during this time, which ranged from 59

to 114 hours. This relationship (r2 = 0.84, P < 0.001; Fig. 4.4(a)) was not found thereafter

(r2 = 0.03, P = 0.60). Additional calf muscle stimulation did not affect P t
peak differences

between tests or overall (P = 0.36). Variance in pre training P t
peak was explained by sex

(P = 0.043), where female values were lower, but this did not account for any of the variance

in the magnitude of change (P = 0.46) or absolute values after training (P = 0.14).
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Figure 4.2: The power and V̇O2 response for one subject from the application of stimulation to
SS point (100% of stimulation min-max range) and during recovery. Vertical dotted lines indicate
SS point and vertical dashed line indicates the time at which stimulation was reduced to the lowest
stimulated work rate. Panel (a) shows the reference power (black line) and the actual power response
to stimulation (grey). Note the slight dip in power just after SS point was reached. Panel (b) shows
the stimulation pulse-duration as a percentage of its min-max range. Panel (c) shows the V̇O2 response
to the incrementing load (a 9-breath average is used here for clarity.)

4.3.3 Cardiorespiratory adaptations

All significant change in V̇O2peak occurred between 3 and 6 months (P = 0.003). However,

when expressed net of passive V̇O2 , net V̇O2peak had significantly increased between 0 and 3

months (P = 0.023; Fig. 4.3(c)) with a mean relative increase of 168% overall (P < 0.001; for

mean values, see Table 4.1). The changes over the first 6 months were significantly related to

total training hours completed (r2 = 0.52, P = 0.012; Fig. 4.4(b)). The relationship revealed

that between ∼80 and 90 h or ∼3 to 3.5 h of training per week were required to have been

completed over this time to achieve an improvement in V̇O2peak of 1 MET.

HRpeak (Fig. 4.3(c)) increased by 13% after 6 months (P = 0.008), but by 12 months the

increase just failed to reach significance (P = 0.057; Table 4.1). Peak O2pulse had increased
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Table 4.1: Summary of incremental work-rate test outcomes.

Outcome variables 0 months 3 months 6 months 9 months 12 months
V̇O2peak, mL/min 543±148 651±271 **††819±267 ††802±277 ††820±226
netV̇O2peak, mL/min 247±125 †374±240 **††510±241 ††530±243 ††524±217
P t

peak, W 8.5±3.3 †13.5±7.6 **††17.8±8.5 ††18.7±7.6 †18.2±8.8
HRpeak, bpm 82.3±8.1 †88.2±12 *†90.9±13.2 ††93.6±13 92±16.3
O2 pulse, mL/beat 6.70±1.65 †7.17±2.15 *††8.80±1.95 †8.47±2.37 ††9.37±1.11

Data are means ± SD. Peak values were taken at SS point (100% of stimulation min-max range).
V̇O2peak peak oxygen uptake, netV̇O2peak peak oxygen uptake net of passive, P t

peak peak power,
HRpeak peak heart rate, O2 pulse pulse oxygen uptake per heart beat, Paired t-tests were performed
between each consecutive test and between each test and baseline. * Significantly different from
preceding test-point, or † from baseline at P <0.05, ** Significantly different from preceding test or
†† from baseline at P < 0.005).

(P = 0.002) by 6 months, with no significant change thereafter (P = 0.85; Fig. 4.3(d)),

leading to a mean relative increase of 35% after 12 months (P = 0.002; Table 4.1).

None of the variance in any of the outcome variables was significantly explained by

stimulation protocol, years post-injury, lesion level, or age.

4.4 Discussion

The aim of this study was to examine the extent to which progressive, high-volume, home-

based FES cycle training could improve V̇O2peak and cycling power in paraplegic individuals.

Due to substantial muscle disuse atrophy after SCI, internal work may represent a relatively

large proportion of total work done, and in some cases subjects may not even be capable

of sufficient internal work to overcome frictional losses and to move the legs [85]. This is

the first longitudinal study to measure and account for this work when quantifying total

power output during FES cycling tests. Furthermore, work rate was able to be increased

by arbitrarily small increments (here, 1 or 2 W) during the IWRTs unlike the 1
8 kp or

approximately 6.1 W increments (assuming a cadence of 50 rpm) used during all previous

FES cycling studies. This permitted a sensitive training dose-response analysis to be made

for the first time in ES exercise. This type of protocol is also particularly important for

examining cardiorespiratory responses such as gas exchange thresholds that require analysis

with a high temporal resolution. Although the absolute magnitude of any change in power

of less than 6.1 W is small, the relative change for these individuals is substantial and may

reflect clinically significant adaptations.
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Figure 4.3: IWRT results showing the delta (∆) values between each consecutive test for (a) P t
peak,

(b) net V̇O2peak, (c) peak HR, and peak O2 pulse. The horizontal dashed line represents no change.
Data are presented as mean ± SEM (shown here in preference to SD to account for the n compared
during each test point). Peak values were taken at SS point (100% of stimulation min-max range).
Two-tailed paired t-tests were performed between each consecutive test. *Significantly different where
P ≤ 0.05; **significantly different where P ≤ 0.001.

4.4.1 Peak power output

The highest individual P t
peak value of 35.6 W (internal plus external work rate) achieved in

this study after 12 months of training is similar to that measured by the same technique in

a case study subject with tetraplegia after a similar training programme [95]. Nonetheless,

there appear to have been no greater gains in power by training more frequently for longer

durations than that in previous studies: The P t
peak value here is also similar to the highest

work rate (external work measured only) achieved by Ragnarsson et al. [144] during training

after only 36 sessions over 12 wk. They found that their subjects (N = 19) could cycle within
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Figure 4.4: Regression plots showing the relationship between total training duration and changes
in (a) P t

peak between 0 and 6 months where r2 = 0.84, P < 0.001; and (b) changes in net V̇O2peak

between 0 and 6 months where r2 = 0.52, P = 0.012. The equations for each regression line are shown
on each plot. Data are for 11 subjects.

a range of 0 to 36 W for 15 min, most of whom (n = 17) cycled at between 0 and 12 W. After

only twenty-four 30-min sessions of exercise (∼ 8 wk) Barstow et al. [11] reported a mean

POpeak of 14.5 ± 5.6 W similar to the P t
peak value of 13.5 ± 10.7 W found in this study after

thirty-nine 60-min sessions (∼12 wk).

Test protocol Studies have used either continuous [11] or discontinuous [56] test protocols

using 5-min work rate increments of ∼6 W (1
8 kp at 50 rpm) to peak exercise tolerance. The

protocol adopted by Figoni et al. [56] interspersed four 5-min bouts of FES cycling with 4

min of passive exercise and rest. In addition to having many complete lesion subjects, their

protocol, in contrast to that used by Barstow et al. [11] and by this study, may have allowed

for sufficient muscle recovery during the rest and the passive exercise intervals to account

for the relatively high power output values recorded by their untrained subjects (15 ± 7
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W). The methods or the calculations used for determining POpeak are not detailed in these

studies, where it is not clear whether POpeak values were estimated by linear extrapolation

between the 6-W increments during the final 5-min increment or given as the final work

rate tolerated. The combination of differences in subject group, test protocol, and POpeak

calculation methods makes direct comparisons between studies difficult, if not invalid.

Motor unit recruitment There are two substantial differences between voluntary

activation in able-bodies subjects and transcutaneous electrical stimulation of persons with

SCI. First, the axons are recruited in a disorderly way [69], neither orderly according to the

Henneman size principle (small to large) nor the reverse as if the electrodes were close to the

nerve trunk. Second, most muscle fibres become FG [139], and although some may convert

towards slower phenotypes as a result of the training, the pre-injury relationship between

axon diameter and muscle type will not be restored. We should therefore expect that as the

stimulation intensity increases towards SS point, more and more muscle fibres will be recruited

but the proportion of the types will remain constant (and probably predominantly FG). The

combination of stimulation application rate and muscle fibre fatigue rate will determine the

momentary cross-sectional area of recruited muscle mass available for power production;

during cycle training, the rapid stimulation application rates (∼60 s to SS) and the initial

HRL would result in a relatively high short-term anaerobic power output followed by fatigue

to a sustainable power output. This would reflect the mean balance between fibre fatigue

and recovery rates and the muscles oxidative capacity, notwithstanding the effects on power

of possible antagonist co-contraction or muscle spasms. The power profile would be similar

to that observed during volitional all-out cycling [166], and indeed this has been observed by

Theisen et al. [161], except that they found power to recover slightly after the initial drop

from the highest power output.

Point of measurement During the IWRT, however, stimulation and load application rates

were progressive over 8 to 12 min, by which time a degree of muscle fatigue is likely to have

already occurred. Power values at this time are then likely to be lower than those that could be

produced at the start of a training session when muscles are fresh and stimulation application

rate is rapid. This could also explain some of the differences in POpeak values measured across

studies where load and stimulation application rate have either varied between subjects [119]

or not been detailed, and the time of POpeak measurement has not been given. Therefore, for

future studies, the test protocol and the manner and time at which POpeak is measured should

be clearly stated to clarify which type of power is being measured, that is, peak explosive

power, peak IWRT power, or endurance power.

Loss of P t
peak The overall loss in power of 7% for one individual was explained by an

examination of his training diary: after a successful training period between 3 and 6 months
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where he recorded an increase in P t
peak, his training became erratic and he took a 5 wk

holiday in the 6 wk before his 9 month test and then completed only 27 of the expected 65

final training sessions. Discounting possible measurement error, this degree of reversibility in

training adaptations is nonetheless quite remarkable.

4.4.2 Peak cardiorespiratory responses

Oxygen uptake The V̇O2peak tests provide an indication of the maximal oxidative capacity

of the stimulated muscle mass, not of maximum systemic V̇O2max (see section 2.3), but

provide a valuable insight into the metabolic stress that can be achieved by FES cycling

alone nonetheless.

The mean improvement in IWRT V̇O2peak equated to just over 1 MET. Considering that

an increase in V̇O2peak of only 1 MET is associated with a mortality benefit of about 20% [170],

then it would appear that it is possible for 3 to 3.5 hours each week of FES cycling alone to be

sufficient to reduce the health risks associated with inactivity and promote health benefits,

especially because cycling sessions were sustained for twice as long as the recommended

duration for this MET intensity of work [170, 73]. This is particularly important for previously

sedentary individuals as they become active, but the plateau reached in V̇O2peak values (which

are substantially lower than those that can be expected after similar periods of volitional

cycling or running) illustrates the serious limitations of this type of exercise for further

improvements in aerobic capacity for this subject group.

Data treatment The highest V̇O2peak value of 1.17 L/min found here is not dissimilar to

those previously reported after training regimes of much lower frequencies and durations. The

comparatively low V̇O2peak values attained in this study may be explained by the differences

in data treatment and analysis found across studies rather than to a poorer exercise response;

Mohr et al. [119] reported a mean V̇O2peak of 1.43 ± 0.09 L/min for 10 subjects and a highest

individual value of 1.48 L/min, but it appears that, unlike this study, the breath by breath

data were neither edited nor averaged before analysis, with peak values given as the highest

absolute values within a 2 min period. This could lead to erroneously high estimates of peak

values, distorted by outlier values, specially where the noise to signal ratio is high [147]. The

mean sustainable V̇O2 during training may provide another, more meaningful, indicator of

aerobic capacity for this subject group and for this type of exercise. This is examined and

discussed in full in chapter 7.

Endurance capacity The increase in cycling endurance capacity from 10 to 60 min reflects

improvements in muscle fatigue resistance and in oxidative capacity, with muscle fibres likely

to have transformed from FG towards FOG isoforms [139]. Further investigations, including

histological examinations of changes in muscle mass and phenotype, are needed in an attempt
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to understand the underlying physiological adaptations to this unique exercise modality.

Heart rate Although HRpeak increased by 13% after 6 months, it was not significantly

different from pre training levels by the end of the training programme and the post-training

HRpeak of 92 ± 16 bpm equated to only 53% of the mean age predicted maximum, suggesting

that exercise limitations are more likely to be peripheral rather than central in nature:

parasympathetic innervation of the heart is unaffected by thoracic level SCI and so the

normal reduction in outflow that occurs during exercise would enable the HR to increase to

100 bpm, even in the presence of a compromised sympathetic outflow (see Fig. 1.3 on page 5)

[176].

Oxygen pulse The overall 35% increase in O2 pulse indicates improvements in tissue O2

extraction or to an increase in stroke volume (SV) or to both. Increased SV, which provides

a more beneficial myocardial stress than an increase in HR, occurs during ES leg exercise due

to the activation of the venous muscle pump [56] and has been found to be greater after FES

leg cycle training than after arm cycle training [125]. The mean post-training O2 pulse value

was similar to the value observed by Barstow et al. [11] after only 24 exercise sessions, but

again, direct comparisons are difficult because V̇O2 data treatment was not detailed.

4.4.3 Training dose-response

This is the first study to report a significant and robust relationship between the magnitude of

change in P t
peak and V̇O2peak, and the total duration of training, however, this relationship was

found only during the first 6 months of training. During this time, when training resistance

and volume were both progressive, the greatest training duration of 114 h saw the greatest

improvements in P t
peak of 20.8 W and in V̇O2peak of 555 mL/min. Kakebeeke et al. [95] and

Mohr et al. [119] also observed that significant increases in power and V̇O2peak occurred only

within the first 6 months of training. In the present study, although training was always

performed against the a maximally tolerated trainer load, training diaries revealed this was

not able to be increased after about 6 to 9 months of training. This limitation could be

physiological in nature or perhaps due to the training protocol or the stimulation strategies

used and merits further investigation.

4.4.4 Feasibility of high-volume training

This is the first FES cycling study where subjects were required to train for 60 min per session

for up to five s/w for 52 wk. Similar to the findings of an earlier case study where a subject

with tetraplegia followed a similar training programme [95], training frequency and duration

reached a peak between 3 and 6 months and then declined slightly thereafter. It appears that

this high frequency duration and therefore overall volume of training, higher than any other
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FES study to date, was neither feasible nor sustainable in the long term. The time taken to

prepare for and complete each training session (∼2 h) represents a substantial weekly time

commitment, especially for those working full time or those with family responsibilities, and

requires a great deal of motivation and family support to complete. The training plateau

reached by 6–9 months may have affected motivation levels.

4.5 Conclusion

The current training resulted in significant, training volume-dependent cardiorespiratory

and cycling power output adaptations during the first 6 months of training when training

frequency, duration, and load were progressive. The upper limits in load tolerance were met

during this programme, and it is not known whether this is due to a physiological limitation

or to limitations in the stimulation strategy and the training protocol used. Further study

is merited to develop and to evaluate different stimulation, loading and training strategies

specific to ES exercise to optimise favourable training responses with lower training volumes

for this subject group.



60

Chapter 5

The energetics of FES cycling:

adaptations to training

The most exciting phrase to hear in science, the one that heralds new discoveries,

is not Eureka! (I found it!) but rather, “hmm . . . that’s funny . . . ”

Isaac Asimov

The metabolic and the electrical costs of stimulated work were estimated during FES

cycling and the effects of training on these parameters are given and discussed in this chapter.

The results from the preliminary study have been published in the European Journal of

Applied Physiology and the work in this chapter is currently in preparation for submission

as a journal article:

K.J. Hunt, B.A. Saunders, C. Perret, H. Berry, D.B. Allan, N. Donaldson and T.H.

Kakebeeke, “Energetics of paraplegic cycling: a new theoretical framework and

efficiency characterisation for untrained subjects”.European Journal of Applied

Physiology, vol. 101, pp.277–285, 2007.

H.R. Berry, T.H. Kakebeeke, N. Donaldson, D.B. Allan and K.J. Hunt. Energetics

of paraplegic cycling: adaptations to 12 months of high volume training. European

Journal of Applied Physiology, in preparation.

5.1 Introduction

It is clear from the previous chapter that FES cycling can induce significant and important

gains in V̇O2peak, even where absolute cycling power is extremely low. This is due to the

relatively high metabolic cost of FES cycling: where the purpose of FES cycling is to improve

V̇O2 capacity, then this low work efficiency is advantageous, especially where initial power

output is low. However, where mobility and recreation are the objectives, a higher level of

work efficiency would be desirable.
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5.1.1 FES cycling efficiency in untrained subjects

The efficiency of FES cycling was estimated and quantified during a preliminary study

which investigated the energetics of 10 untrained individuals with paraplegia during constant

work rate FES cycling. For this, a new extended theoretical framework was developed and

specifically tailored to impaired subject groups with very little muscular power [85]. The new

framework enabled a quantification of total work efficiency in the SCI individuals, based on

calculations of the total internal and external work associated with turning the pedals at a

constant motorised cadence, against an external resistance [86].

Despite the very low power output of only 6.2 ± 2.9 W (mean ± SD) that was sustained

over 10–20 min, the efficiency of FES work was able to be calculated. The O2 cost of 38.8 ±
13.9 mL/min/W corresponded to an estimated total work efficiency of 7.6 ± 2.1%, which is

approximately one third of that expected during volitional cycling [85].

5.1.2 Sources of inefficiency

Estimates of the efficiency of ‘useful’ internal and external mechanical work will be influenced

by the degree of extraneous ‘non-useful’ metabolic and muscular work also being done. This

will depend on morphological, ergonomic, biomechanical and psychogenic factors including

body frame size and mass, external drag factors, limb muscle and tendon architecture, skin

surface to body volume ratio, external and internal mechanical effectiveness, metabolic

coupling [30], skill and technique, and perceived exertion and cognition [122]. Internal

mechanical effectiveness is dependent on the degree of muscle-tendon elastic energy storage

and re-use, and metabolic coupling is influenced by genetic, physiological and biochemical

factors such as muscle fibre type, the hormonal milieu and the efficiency with which ATP

hydrolysis is coupled to muscular contraction [30, 35, 118].

5.1.3 Modifiable factors

Non-useful, extraneous work can be minimised in many ways: training and practice can

improve technique and motor skills, and external mechanical effectiveness, or the relationship

between the applied ‘used’ and ‘wasted’ forces, can be improved by reducing overall frictional

losses, for example by reducing drag in swimming and running or changing the pedal

trajectory or transmission systems in cycling [30, 112]. These adaptations and alterations

can improve total work efficiency by increasing the proportion of the total V̇O2 that is used

for useful, measured work.

5.1.4 Training and efficiency

Endurance and strength training can modify muscle-tendon architecture and alter body

composition [152, 107] but it is unclear as to whether endurance training can improve work
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efficiency. Cross sectional studies that have examined the effect of endurance training status

on work efficiency have been equivocal, showing training to have opposing or no effects.

There is some evidence that type I muscle fibres exhibit higher efficiency than type II [35],

but other studies suggest that efficiency is unrelated to fibre type [87]. Yet others have found

efficiency to be cadence-dependent for both fibre types [54, 108]. The higher efficiencies found

in some endurance trained subjects may possibly be due to their higher percentage of type I

fibres [118] or to improved substrate usage [160]. Longitudinal studies involving short term

volitional cycle endurance training (6 weeks) have also found conflicting results [44, 77].

It is unknown whether long-term, high-volume FES cycle training can induce fibre type

adaptations that are sufficient to increase the efficiency of this type of work. Observation

of the changes in the anaerobic metabolite La− and in the V̇E/V̇O2 and RER over time,

measured at the same absolute work rate, may provide valuable insights into any biochemical

or physiological change in muscle that may affect the metabolic cost of work.

5.1.5 Sources of FES inefficiency

The very low work efficiency of untrained paraplegic cyclists is similar to that measured

in anaesthetised able-bodied cyclists performing FES cycling [98]. This would suggest that

the chronic effect of SCI, such as muscle atrophy, fibre type transformation towards a FG

phenotype and reduced vascularisation are not particularly important factors in determining

efficiency. The poor efficiency of FES cycling must then be attributable to the acute affects

relating to muscle recruitment, stimulation timing and muscle activation patterns: muscle

groups are not recruited in a physiological manner, but are recruited in a synchronous and

non-selective manner [69]. Due to the stimulation paradigm, there is also a likelihood of

antagonistic muscle group recruitment during ES exercise, particularly at high stimulation

intensities. Additionally, the timing of muscle group activation is not usually adapted to

cadence and power level, which it should be for maximum mechanical effectiveness.

Indeed, in a recent study that investigated the power-cost relationship between two

different muscle activation patterns in one subject performing FES cycling, the metabolic

and electrical cost of power production was found to differ for each activation pattern [84].

Although definitive conclusions cannot be drawn from data obtained from only one SCI

subject, this lends support to the idea that the stimulation paradigm itself is a limiting

factor in FES cycling efficiency.

The electrical (stimulation) cost of FES cycling has not yet been investigated between

subjects or over time in any FES cycling study to date. The electrical cost of power production

may give important insights into motor unit adaptations that may occur as a result of training.

This cost is likely to be governed by the factors that determine motor unit recruitment, such

as tissue impedance, nerve axon geometry and location within the muscle (see section 1.3.2)

and by muscle contraction rate (pedalling cadence) [18]. Muscle and tendon architecture,
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and the cross sectional area (CSA) of muscle mass within each motor unit will determine

the power output capacity of each stimulated motor unit, and this may alter with a training

induced fibre hypertrophy [94]. It is not known whether a period of progressive, high-volume

FES cycle training can elicit such physiological adaptations within the motor unit that could

potentially alter the electrical cost of stimulated exercise.

The aim of this study was therefore to investigate the effects of FES training on total

work efficiency and on metabolic markers of anaerobic metabolism such as blood La−

concentrations and the RER. Efficiency was calculated within the newly developed energetics

framework that accounts for both the useful internal and external work associated with

turning the pedals. The relative electrical cost of stimulated work was also investigated for

the first time during FES cycling by calculating the total electrical cost of muscle stimulation

per Watt of total power produced (stim/P t) and investigating the effects of regular training

thereon.

5.2 Methods

Please refer to chapter 3 for a full and detailed description of the methods and of the statistical

analysis employed here. Methods peculiar to this part of the study are given below.

5.2.1 Subjects

All 11 subjects that completed the 12-month cycle training programme were included in this

study. Their details are given in Table 3.1 on page 38. For various technical reasons, full data

sets were not available for all subjects at each test point. The number (N) of data points in

each set is indicated in Table 5.1.

5.2.2 Exercise testing

A 20 min CWRT was performed prior to commencing the FES cycle training programme

and after 6 and 12 months of training. The software controller was set to produce a cycling

power output equivalent to 70% of the baseline IWRT P t
peak value.

5.2.3 Outcome measures and analysis

The following outcome variables were examined during the CWRT:

P t: the total mechanical work rate.

∆V̇O2: the increase in V̇O2 above passive V̇O2 .

O2 cost: the total oxygen cost of work.
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η: the total work efficiency.

V̇E/V̇O2: the ratio of V̇E to V̇O2 .

RER: the ratio of the V̇CO2 to V̇O2 .

La−: blood lactate concentration.

stim/P t: the electrical cost of work.

RERhigh: the highest RER value of a 60 sec rolling average during the exercise phase.

Mean values were calculated for each variable and these were taken as the average over

the last 5 min of the exercise phase of the CWRT.

Data were also obtained for thigh muscle and fat CSA by pQCT at each test point.

Measurements were taken bilaterally at 25% of total bone length, measured from the knee

joint gap (with permission from A. Frozler, Swiss Paraplegic Research, CH-6207 Nottwil,

Switzerland). The test protocol is fully explained in [51].

The theoretical framework underpinning the novel efficiency calculations used here,

appropriate for those with severe physical impairment, is fully explained in [85] and briefly

detailed here. The O2 cost of FES cycling was calculated as follows:

O2 cost =
∆V̇O2

P t
[mL/min/W] (5.1)

Efficiency was calculated as the total work efficiency, ηt
w i.e. the ratio of the total

mechanical work rate and the approximate net energetic cost of the exercise (i.e., the energetic

cost during cycling minus the cost during passive cycling):

ηt
w =

P t

P in − P p
× 100% =

P t

(V̇in
O2

Ein − V̇p
O2

Ep)
× 100 % (5.2)

Here, P in represents the total metabolic work measured and P p, the metabolic work of passive

exercise. V̇in
O2

is the average oxygen uptake rate during steady-state exercise over a given

time interval and V̇p
O2

is the average oxygen uptake rate during steady-state passive cycling.

Ein and Ep denote the energy equivalents of the oxygen in each state (exercise or passive,

respectively). The approximate energy equivalents are taken to be in the range 19.59–21.14

kJ · l−1, and are normally derived from the RQ where an RQ of 0.7 corresponds to an energy

value of 19.59, an RQ of 1.0 has an energy value of 21.14, and intermediate values are obtained

by linear interpolation. However, it should be noted that during transcutaneous nerve

stimulation, aerobic and anaerobic motor units are recruited in a simultaneous, synchronous

and non-selective manner, even at very low work rates [69]. This will result in an anaerobic

energy contribution to work that is not accounted for by the equation. Accordingly, the term
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RER is used here in place of RQ to reflect this uncertainty, where there will be a possible

underestimate of energy equivalents and a resultant overestimate of efficiency values.

The electrical cost of stimulation, the stim/P t, was also calculated. See section 3.4.1 for

full details.

5.2.4 Statistical analysis

Using Minitab 13 software (Minitab Inc., USA) all data were examined for normality of

variance and distribution (Anderson Darling test) and were not found to be different from

normal (P > 0.05). Paired t-tests (2-tailed) were performed between consecutive tests and

baseline values. Multiple Pearson product-moment correlations were run between possible

confounding variables and where associations were significant and relevant, a regression

analysis or general linear model (GLM) was then performed. Significance level was regarded

as (P ≤ 0.05). Absolute and delta values are expressed as means ± SD.

5.3 Results

5.3.1 The oxygen cost and efficiency of work

The O2 cost and the corresponding efficiency estimates after 6 months (P = 0.79 and P = 0.74

respectively) and 12 months of training (P = 0.77 and P = 0.83 respectively) were not

significantly different from pre-training values (see table 5.1). Individual efficiency values

ranged from 4–10% prior to training, to 4–15% after 12 months.

5.3.2 The electrical cost of work

There was a significant reduction (P = 0.008) in the stim/P t ratio over the course of training

which equated to a mean relative reduction of 37% (this ranged from a reduction of 59% to an

increase of 3%). Most of this change, equating to a mean relative reduction of 32%, occurred

during the first 6 months (P = 0.017). (Table 5.1). After 6 months of training, a positive

relationship was found between absolute stim/P t and O2 cost values (r2 = 0.54, P = 0.025),

and just under half of the variance in stim/P t values was accounted for by thigh fat CSA

(r2 = 0.44, P = 0.038). None of these variables were found to be related prior to training.

After 12 months of training absolute stim/P t were values were positively related to fat

CSA values (r2 = 0.66, P = 0.007) (Fig.5.1). No other significant associations were found

between variables after 12 months.

5.3.3 Individual changes in energetics variables

None of the changes in energetics values over the first 6 months were associated with changes

in any other measured variable. Between 6 and 12 months, changes in O2 cost were closely
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Table 5.1: A summary of the constant work rate test results

Outcome variables N 0 months N 6 months N 12 months
P t, W 10 5.8 ± 3.0 11 4.8 ± 2.1 10 4.7 ± 2.2
∆V̇O2 , mL/min 10 214 ± 99 9 172 ± 79 9 174 ± 97
O2 cost, mL/min/W 10 38.4 ± 14.5 9 36.9 ± 16.7 9 40.14 ± 17.3
η, % 10 7.7 ± 2.2 9 8.6 ± 3.1 9 8.1 ± 3.6
V̇E/V̇O2 , L/min 11 32.9 ± 5.3 11 †30.3 ± 2.9 10 31.6 ± 4.2
RER 11 0.98 ± 0.13 11 0.90 ± 0.12 10 0.94 ± 0.08
highest RER 11 1.12 ± 0.15 11 1.02 ± 0.17 10 1.07 ± 0.13
La−, mmol/L 9 5.1 ± 1.2 11 †3.2 ± 1.2 11 3.7 ± 1.4
stim/P t, µC/min/W 9 12.31± 5.35 10 †8.78± 5.58 9 †8.18± 3.7

Data are absolute mean values ± SD. Values were not established for all subjects for all variables
due to technical difficulties. Values are the average over the last 5 min of exercise, except for highest
RER which was the highest of a 60 sec rolling average over the course of the exercise. Paired t-tests
were performed between each consecutive test and between each test and baseline. * Significantly
different from preceding test-point or † from baseline at P ≤0.05.

Figure 5.1: Regression plot showing the significant relationship between absolute thigh fat CSA
values and stim/P t after 12 months of training (n = 9, r2 = 0.66, P = 0.007).

related to changes in stim/P t (r2 = 0.84, P = 0.001) (Fig.5.3), and changes in stim/P t were

in turn, related to changes in thigh fat CSA (r2 = 0.53, P = 0.026) (Fig.5.2).

5.3.4 Markers aerobic and anaerobic metabolism

The V̇E/V̇O2 had reduced after 6 months (P = 0.036), but was not different from pre-

training values after 12 months (P = 0.59). There was also a significant reduction in La after

6 months (P = 0.006) which just failed to reach significance by 12 months (P = 0.069). The

RER and the highest RER value tended to reduce after 6 months (P = 0.082 and P = 0.087

respectively) but remained no different from baseline values after 12 months (P = 0.27 and
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Figure 5.2: Regression plot showing the significant relationship between (∆) thigh fat CSA and ∆
stim/P t between 6 and 12 months (n = 9, r2 = 0.53, P = 0.026).

Figure 5.3: Regression plot showing the significant relationship between the magnitude of change (∆)
in stim/P t and ∆ O2 cost that occurred between 6 and 12 months of training (n = 8, r2 = 0.84, P =
0.001).

P = 0.26 respectively) (Table 5.1). The changes in RER and RERhigh that occurred between

6 and 12 months were positively related to changes in stim/P t (r2 = 0.56, P = 0.020 and

r2 = 0.62, P = 0.011 respectively).

5.4 Discussion

5.4.1 Adaptations in response to training

The aim of this investigation was to investigate the energetic and metabolic adaptations to

12 months of high-volume FES cycle training for the first time. Here it was found that there

was no significant mean difference in the O2 cost of work or efficiency at any time during

or after the training period. O2 cost and efficiency varied substantially between subjects, as

did any individual changes in value between tests: efficiency estimates varied between 4 and
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15% and between 6 and 12 months, the magnitude and direction of individual changes in O2

cost were related to the magnitude and direction of changes in stim/P t, which were in turn

linearly related to changes in thigh fat CSA. There was also a significant correlation found

between changes in RER and RERhigh, and changes in stim/P t over this time. There were,

nonetheless, significant reductions in stim/P t, V̇E/V̇O2 and La− over the first 6 months of

training, but these were not associated with changes in any other measured variable. The

absolute stim/P t values at 6 and 12 months were positively related to thigh fat CSA and, at

6 months only, with O2 cost.

5.4.2 Mechanical effectiveness

In this study, the power required for the motor to turn the passive, non-stimulated legs was

quantified as internal work in the efficiency calculations [85]. Nonetheless, it is possible

that only a certain proportion of the muscular contractions elicited by ES will produce

useful measured work at the pedals. Although there was no direct evidence of counteractive,

antagonistic co-contractions (via depolarisation of the antagonistic motor nerves by the ES

field, or by myotactic reflex spasms) during the tests, it is possible that some of the work

may have been wasted due to biomechanically unfavourable agonist and synergist stimulation

on/off angles [62].

Accordingly, the internal work values used in the calculations may underestimate the

muscular work actually performed whilst rotating the pedals by ES, and result in low efficiency

estimates. This poor mechanical effectiveness (if a constant consequence of the ES paradigm

employed) is likely to occur regardless of whether the stimulated muscle mass is paralysed

and atrophied, or healthy and fit [98] and could explain, in part, the continued low efficiency

of FES cycling, even after training.

5.4.3 Muscle adaptation and the electrical cost of work

As expected, there was no relationship found between total thigh muscle CSA and any of

the energetics measures; the CWRTs were conducted at sub-maximal intensities, which did

not rely on the total muscle CSA for power production. Nonetheless, significant increases in

P t
peak (see previous chapter) and in thigh muscle CSA were found over the first 6 months of

the study [57]. This provides a logical explanation for the significant decrease in the stim/P t

that was found over this time, in the absence of any significant change in O2 cost; a greater

muscle mass would have been available for power production per motor unit stimulated in

the hypertrophied muscle, resulting in a reduction in the level of stimulation required to

activate the same absolute muscle mass and to produce the same absolute power output. In

the absence of fibre type transformation that would affect ATP turnover rate, then O2 cost

would be expected to remain very similar.
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5.4.4 Thigh fat CSA and the electrical cost of work

The relationship between absolute stim/P t values and thigh fat CSA found at 6 and 12

months illustrates the significant effect of tissue impedance on the power-cost relationship.

Higher impedance (thigh fat CSA) required a higher level of stimulation charge to depolarise

the agonist motor nerve, resulting in a wider electrical field being generated. It is then

possible that more motor units were consequently and unnecessarily stimulated, regardless

of whether they were agonistic, synergistic or antagonistic and this may explain the positive

relationship found between stim/P t and O2 cost.

This would also explain the relationship found between the magnitude and direction of

changes fat CSA and in the stim/P t, and changes in stim/P t and energetics measures during

the last 6 months of training (after the time during which all other significant metabolic

training adaptations had occurred), and highlights the significant effect of underlying fat

tissue on impedance and on the subsequent electrical and metabolic cost of this type of

exercise.

5.4.5 Anaerobic adaptations

The reduction in the V̇E/V̇O2 over the first 6 months of training may suggest improvements

in oxygen transport and/or extraction at the tissue level. However, since values remained

significantly higher than the normal value of about 27 (P < 0.05) [173]), and the highest

RER remained at above 1 after training, then values are more likely to reflect the V̇E required

to eliminate the V̇CO2 from the buffering of lactic acid (HLa). This is supported by the

significant mean reduction in blood La− accumulation that was observed over this time, and

the slight tendency for mean and highest RER to reduce. These changes would suggest

that although there was still a relatively high anaerobic contribution to work, there were

proportionately greater improvements in blood La− transport and clearance capacity than

in its production [63]. Additionally, these findings may suggest improvements in humoral pH

buffering and in CO2 storage capacity.

5.4.6 Fibre type recruitment

These findings, in combination with the fatigue resistance that was observed over the course

of the training programme, provide evidence of a fibre type transformation from fatigable

FG towards more fatigue resistant FOG isoforms, rather than towards SO isoforms [38].

These adaptations, in addition to the non-physiological, disordered recruitment of motor

units normally observed during ES [69] will influence total work efficiency: there is an inherent

inefficiency with this type of metabolic coupling, where FG fibres are recruited to contract

synchronously from the outset. Fast fibres, regardless of whether glycolytic or oxidative, will

produce La−, even in the presence of oxygen, and they are also likely to retain their high and



CHAPTER 5. THE ENERGETICS OF FES CYCLING 70

costly glycolytic ATP turnover rate [2, 63]. This was evidenced here by the relatively high

V̇O2 and RER values attained at such low work rates, and by the high O2 cost of work, even

after training.

This, and the observation that efficiency values were not found to be different between

stimulated healthy, fit leg muscles and paralysed, atrophied muscles, supports the notion

that it is the stimulation paradigm itself that is the source of inefficiency, and not the chronic

effects of paralysis.

The linear relationship found between the changes in both the mean and highest RER

values and changes in stim/P t over the last 6 months of training suggest that there is a

quantitative link between the CSA of the predominantly fast muscle that is stimulated per

unit of power produced, and stim/P t. This, in addition to the relationship also found between

stim/P t and O2 cost, would suggest that changes in the O2 cost of work and therefore the

estimated efficiency measures, related to changes in the number of motor units stimulated per

unit of power produced, than to any change in the efficiency of internal metabolic coupling

per se.

5.5 Conclusion

For this relatively small group of SCI individuals, high-volume FES cycle training did not

significantly improve cycling efficiency at any time during or after training with efficiency

estimates ranging from only 4% up to 15%. However, metabolic adaptations had occurred by

6 months that permitted a significant reduction in stim/P t and improvements in anaerobic

capacity. After 6 months, by which time all significant metabolic adaptations to training

had occurred, the absolute values of, and the magnitude and direction of change in thigh fat

CSA and consequently in stim/P t, explained the individual changes in O2 cost of work that

occurred during this time. These findings, suggest that for this group the metabolic cost

and therefore the corresponding efficiency of FES cycling related primarily quantitatively, to

degree of muscle mass stimulated per unit of power produced, rather than qualitatively to the

metabolic status of the muscle. The electrical cost of work appeared to be determined by the

motor unit size and to the level of tissue impedance caused by the subcutaneous fat layer.

Controlling for these observed sources of variance, future investigations are recommended

that include larger subject groups, to examine work efficiency estimates at higher relative

work rates and different pedalling cadences, and for other non-cyclical ES exercise. This

would provide further interesting insights into the energetics of this unique type of exercise.
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Chapter 6

Metabolic gas exchange thresholds:

a paradigm of volitional exercise?

The important thing in science is not so much to obtain new facts as to discover

new ways of thinking about them.

Sir William Bragg

The physiological basis of the metabolic threshold analysis paradigm is briefly examined in

this chapter. This is followed by an investigation into the existence of such thresholds during

incremental, electrically stimulated cycling tests. The effect of training on the appearance

of these thresholds is discussed and, based on these findings, the validity, and utility of

metabolic threshold analysis as a tool for exercise intensity prescription in FES cycling is

critically discussed. This work forms the basis of a journal article that is in preparation and

detailed as follows:

H.R. Berry, T.H. Kakebeeke, N. Donaldson, D.B. Allan and K.J. Hunt. The

aerobic gas exchange threshold: a paradigm of volitional exercise? Medicine and

science in sports and exercise, in preparation.

6.1 Introduction

Although V̇O2max testing is the most frequently used method for identifying the upper reaches

of aerobic capacity, the methods employed require subjects to be highly motivated and to

give a maximal effort. Such tests may lack measurement precision at high intensities and

can fail to identify small but important changes in endurance capacity, especially in diseased

or disabled subjects [117]. Metabolic threshold analyses can provide valuable and reliable

indications of the work intensities at which the anaerobic contribution to work becomes

measurable, and the intensities up to which aerobic endurance can be sustained. These
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thresholds can be assessed either invasively by blood sample analysis, or non-invasively by

an analysis of pulmonary gas exchange at the mouth. Metabolic threshold analyses have

been used successfully as effective, analytical tools and for volitional exercise prescription in

clinical, scientific and sports training settings [92]. Periods of exercise training have been

found to delay the appearance of these thresholds, resulting in increased work and endurance

capacity. The GET and its response to training is also strongly influenced by genetics [117].

6.2 Metabolic threshold analysis

In the 1920s, Hill and colleagues recognised that as exercise intensity increased beyond a

certain level, proportionately more energy was produced by anaerobic metabolism [12]. This

is consistent with the orderly Henneman motor unit recruitment principle, whereby as the

work rate increases, motor units are progressively recruited according to the size principle

from small, low threshold, oxidative units up to larger, higher threshold, progressively more

glycolytic, units [50]. This results in an increase in the conversion of pyruvic acid (formed

during glycolysis) to HLa, leading to a measurable increase of the glucose metabolite La− in

the blood. The dissociated protons (H+) cause an acceleration in V̇CO2 giving a landmark

indicator of metabolic status and, therefore, of endurance capacity at a given intensity of

work or V̇O2 [17, 117].

6.2.1 Blood lactate analysis

HLa is more than 99% dissociated into H+ and La− ions at physiological pH (pH 7.4). Both

ions are transported out of the cell and into the blood by a co-transporter where depending

on the acid-base equilibrium, H+ is buffered by plasma proteins, especially deoxyhaemoglobin

(Hb−) and bicarbonate (HCO3
−) [63]. La−, bound to sodium (Na+), is transported to other

cells and tissues as a valuable fuel source for immediate oxidation, or to the liver where it is

converted to glucose and glycogen (gluconeogenesis) via the cori cycle. It is thought that as

adequate O2 becomes available during recovery from exercise or as exercise intensity reduces,

then most of the lactate formed (75-80%) is oxidised back to pyruvate by the reversible

actions of lactate dehydrogenase, providing a substrate for oxidative metabolism [115]. La−

is produced by FOG and FG muscle fibres, even in the presence of adequate O2, due to their

high glycolytic enzyme activity, their paucity of mitochondria and their lactate dehydrogenase

isoform that favours lactate formation over pyruvate reconversion [20].

Aerobic lactate threshold

The corresponding V̇O2 value at the first increase in the level of La− measured in capillary

blood during an IWRT of ≥4-min work rate increments [113] has often been regarded as the

aerobic lactate threshold. Small increases in workload close to this intensity produce small,
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non-exponential increases in La− [176]. Values of about 2.0 mmol/L to 2.5 mmol/L [113, 163],

or less than 1.0 mmol/L [115] above resting levels are used to determine the corresponding

V̇O2 at this transitionary threshold.

Anaerobic lactate threshold

When La− and H+ production and release into the bloodstream outweighs uptake or buffering

capacity, equilibrium or lactate steady state is lost and lactate levels are seen to rise

exponentially from levels of about 4.0 mmol/L, signalling the anaerobic lactate threshold

or onset of blood lactate accumulation (OBLA) [115]. This work rate at this threshold,

sometimes termed the maximal lactate steady state (MLSS) or critical power level [76], is

thought to represent the maximum exercise intensity that can be sustained for a prolonged

period of time. Beyond this point, metabolic acidosis disrupts contractile function and enzyme

activity, and exercise becomes increasingly more difficult to sustain [117, 94].

La− levels in the blood reflect the balance between total systemic La− accumulation and

clearance, but not specific clearance inadequacies due to local muscular haemodynamics, or

an imbalance between the rate of glycolysis and mitochondrial respiration in specific muscles

[115].

This two threshold model has been substantiated by many studies using CWRTs of 30-

45 min duration, but the La− concentration criterion of 2 and 4 mmol/L have been found to

over or under represent the thresholds in some individuals and to be influenced by the muscle

mass employed and by nutrient status [173, 115, 117].

6.2.2 Respiratory gas exchange analysis

The metabolic thresholds indicated by increased capillary lactate measures can also be

determined non-invasively by analysis of ventilation and of pulmonary gas exchange

[172, 174, 17]. These are best determined from a continuous graded exercise test consisting of

small work rate increments every minute. Interpretation of such data can be difficult where

data is unduly ‘noisy’ or when relating to diseased or unfit subjects [163].

During incremental exercise, the body fluid acid-base balance is disrupted by a combina-

tion of factors including the strong ion concentration balance (sodium (Na+) + potassium

(K+) + calcium (Ca2+)) − (chloride (Cl−) + lactate (La−)) [63] and increased H+ levels

as the ATP consumption to regeneration ratio is exceeded [165]. When the acid buffering

capacity of plasma proteins is exceeded, there is an increase in V̇CO2 as the H+, dissociated

from La−, is then buffered by HCO−
3 to form H2CO3 (carbonic acid), which dissociates to

form CO2 and H2O in the presence of the enzyme carbonic anhydrase [176] This is described
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by the following reversible chemical reaction:1

H+ + HCO−
3 ↔ H2CO3 ↔ CO2 + H2O

This results in an excess V̇CO2 in relation to V̇O2 , which can be detected by observation

of the breath by breath pulmonary gas exchange.

Aerobic gas exchange threshold

The excess V̇CO2 in relation to V̇O2 is normally evident as a nonlinear increase in V̇E or

V̇CO2 , or a disproportionate increase in the ratio of ventilation to V̇O2 : the slight increase in

CO2 partial pressure in the blood is detected by the carotid bodies which then stimulates a

compensatory increase in ventilatory drive to match CO2 production [174]. This metabolic

phenomenon represents the equivalent of the aerobic lactate threshold but is sometimes

termed the aerobic gas exchange threshold [96, 117] or period of isocapnic buffering [173],

often also referred to as the ventilatory or anaerobic threshold [174]. It occurs most often at

about 50-60% of V̇O2max and represents the boundary between moderate and heavy intensity

exercise. The term gas exchange threshold (GET) is now commonly used in the literature

[102, 93, 97] and will be used here.

Many criteria have been suggested in the literature to determine the GET, such as: the

first rise in the ventilatory equivalent for O2 (V̇E/V̇O2) without a concomitant increase in

the ventilatory equivalent for CO2 (V̇E/V̇CO2); an increase in the expiratory fraction of O2

as a consequence of CO2 driven hyperventilation or hyperpnea; and an increase in the RER

beyond unity [42, 174].

These criteria have normally been determined by visual observation and are subject to a

great deal of reviewer variability: Yeh et al. concluded that visual identification of evidence of

an increased lactate production from noninvasive gas responses was not suitable for clinical

use due to inter-reviewer variation of 16% [180]. However, attempts have been made to

automate the processes [130, 17, 96, 151], with variable outcomes.

An upward deflection in the linear relationship between both of the metabolic gases,

termed the V-slope by Beaver et al. [17], has been suggested as being the most reliable

metabolic marker for the aerobic threshold, since detection is not affected by ventilatory

variance as can be seen in subjects with impaired ventilatory chemoreception.2 [163, 176, 117],

or by other factors which could affect ventilation such as rising catecholamine or ammonium

levels which can occur at about 50% of V̇O2max [163, 115].

Beaver et al. [17] used a computerised regression analysis of the slopes of V̇CO2 (y-axis)

and V̇O2 (x-axis) to determine the onset of excess CO2 production from buffering of H+,
1For simplicity, the sodium ion exchange between sodium bicarbonate and sodium lactate has not been

included.
2Reception of changes in CO2 that drives ventilation in normoxic conditions [50].
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where they found that the first upward deflection in linearity corresponded closely with the

measured lactate threshold.

The effect of body CO2 storage capacity on V̇CO2 can also affect the time course for the

appearance of this threshold and there is a possibility of a hyperventilation induced alteration

of body CO2 stores at the start of incremental exercise that could result in a false, delayed

threshold measure due to a CO2 wash-in to depleted body stores [131].

Examination of the RER during incremental work has been shown disputably [174, 155] to

be a satisfactory marker of the aerobic gas exchange threshold, dependent on work duration,

but does not identify the precise point at which the ratio starts to increase disproportionately.

Nonetheless, it is possible that changes in substrate usage during an IWRT, which will affect

the RER, could be misinterpreted as the appearance of non-metabolic CO2 production.

Anaerobic gas exchange threshold

A second threshold, the respiratory compensation point (RC), normally occurs at about

80-90% of V̇O2max and is apparent as a hyperventilation disproportionate to V̇CO2 . This

threshold relates to the MLSS and results from respiratory compensation for metabolic

acidosis: bicarbonate buffering capacity in the blood becomes saturated and no more excess

CO2 can be produced. The decrease in blood pH is sensed by the carotid bodies which

stimulate an increase in ventilation. The CO2 pressure gradient increases down and away

from the blood to the alveoli and causes a reduction in end-tidal CO2 pressure and a

reduction in blood pH. This increase in the V̇E/V̇CO2 also causes an increase in V̇E/V̇O2

with a concomitant increase in expiratory O2 tension. This threshold demarcates the heavy

and severe exercise intensity domains and work capacity beyond this point is very limited

[92, 117].

Hyperventilation attributable to other reasons such as psychogenic hyperventilation,

hypoxemia, pain, rising catecholamine or ammonium levels that can also occur at lesser

exercise intensities (∼50% of V̇O2max) is sometimes erroneously attributed to this respiratory

compensation point, indicating the multifactorial nature of ventilatory control which could

affect the validity of ventilatory threshold analysis as a true marker of metabolic acidosis

[163, 117].

6.2.3 Metabolic thresholds and electrically stimulated exercise

The concept of a gradual shift from a predominantly oxidative energy metabolism toward a

mixed oxidative-glycolytic metabolism during progressive, incremental work rate ES exercise

is unlikely: transcutaneous ES motor unit recruitment does not follow the normal orderly size

principle found during volitional exercise [69] (see section 1.3.2). ES motor unit recruitment

is more random and determined by a combination of charge level, axonal diameter [165],

the extent of axonal branching, nerve fibre geometry within the muscle, tissue impedance
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and motor unit type predominance [100, 53]. Recruitment is synchronous and of spatially

fixed, nonspecific motor units. The proportion of energy supplied by anaerobic pathways will

be proportionate to the number and size of FOG and FG fibres within the recruited motor

units: after spinal cord injury (SCI), muscle fibres lose their aerobic capacity and tend to

atrophy and transform to a primarily FG phenotype [139]. Accordingly, there is likely to

be an anaerobic contribution to energy production from the initiation of the first muscular

contraction.

To date, there have been no metabolic gas exchange threshold analyses performed

during ES exercise that could provide evidence of this recruitment theory from a metabolic

perspective. The test bed that has been available to researchers to date has lacked the

measurement precision and temporal resolution required to identify the precise workload and

cardiorespiratory stress at which the anaerobic contribution to exercise becomes measurable.

Accordingly, the effects of 12 months of cycle training on the appearance of the GET will

be examined using a novel sensitive IWRT protocol; in a pilot study using this protocol,

it has been demonstrated that it is, in principle, possible to detect a GET in a trained SCI

subject performing FES cycling [55]. The utility of this exercise test parameter as a marker of

exercise endurance capacity and a valid prescriptive tool for this ES exercise with individuals

with paraplegia will be discussed.

6.3 Methods

Please refer to chapter 3 for a full and detailed description of the methods and statistical

analysis employed. Methods peculiar to this part of the study are given below.

6.3.1 Subjects

11 subjects were studied and are detailed in full in Table 3.1 on page 38. For one subject

(no. 5) the IWRT failed to elicit a measurable GET, or an RER in excess of unity during

any test. His data are therefore not included in the analysis here.

6.3.2 Exercise testing and analysis

An IWRT was performed prior to cycle training and after 12, 26, 39 and 52 weeks of training.

The following parameters were determined from these tests:

V̇O2 at GET: The GET was calculated from edited, but not averaged (unsmoothed) V̇CO2

and V̇O2 values to retain a high degree of temporal resolution [147]. The V-slope method [17]

was employed, using a computerised linear regression model. The results were corroborated by

comparing values against other gas exchange parameters including the V̇E/V̇O2 and V̇E/V̇CO2

vs. V̇O2 , and O2 and CO2 end tidal pressures vs. V̇O2 [173, 55].
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GET as percentage of V̇O2peak: The relative exercise intensity at which the GET appears

was calculated by expressing the GET as a percentage of the V̇O2peak. The methods for

V̇O2peak determination and the values for each test-point are presented in chapter 4. It should

be noted that due to the level of data ‘noise’, V̇O2peak values were calculated over a 60 sec

rolling average (low temporal resolution), and the GET values here are estimated from non-

averaged V̇O2 data (high temporal resolution) [147] (a full explanation for this data treatment

is given in 2.2.1). This will result in percentage values that may be disproportionately high.

V̇O2 at RC: This was determined by first finding the V̇CO2 value at the point of deviation

from linearity in the V̇CO2/V̇E plot. The corresponding V̇O2 was then determined by

examining the V̇O2/V̇CO2 and the V̇O2/V̇E plots. The RC values were also calculated from

un-smoothed data but are not presented here relative to V̇O2peak since they often exceeded

the 60 second averaged V̇O2peak values.

Power at GET: The cycling work rate at the GET was determined from the V̇O2/work

rate relationship.

The dynamic oxygen cost: The dynamic oxygen cost, determined over the linear phase

of the V̇O2/work rate relationship, was defined as ∆V̇O2/∆P t, where ∆V̇O2 represents the

increment in V̇O2 arising from an increment in ∆P t.

La−/P t
peak: The blood lactate value from a sample taken 1 min after the end of the ramp

phase was expressed relative to the P t
peak produced during the test. See chapter 3 for details

of blood sampling methods and analysis.

6.3.3 Statistical analysis

See chapter 3 for details of statistical analysis employed.

6.4 Results

Table 6.1 summarises the IWRT outcomes under investigation here. Due to technical

difficulties, not all data sets were complete and, therefore, the number of paired values (n)

used in each paired t-test are given where appropriate in the text.

6.4.1 The GET

Prior to cycle training, the GET was detected at a V̇O2 of 351 ± 103 ml/min (mean ± SD)

(Table 6.1). The V̇O2 values at GET were not found to be significantly different after 3

months (n = 8, P = 0.18), 6 months (n = 7, P = 0.11), 9 months (n = 8, P = 0.87) or 12
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Table 6.1: Summary of incremental work rate test outcome measures.

Outcome variables 0 months 3 months 6 months 9 months 12 months
GET V̇O2 , ml/min 351 ± 103 388 ± 56 409 ± 108 368 ± 97 392 ± 110
GET % of V̇O2peak 64.7 ± 10.6 61.0 ± 15.7 *54.1 ± 8.1 *48.7 ± 11.2 *49.2 ± 13.5
WR at GET, W 3.86 ± 1.76 4.64 ± 1.38 4.16 ± 2.63 4.64 ± 2.05 4.27 ± 2.26
RC point, ml/min 535 ± 107 623 ± 196 †774 ± 248 762 ± 258 744 ± 189
∆V̇O2/∆P t, ml/min/W 19.9 ± 12.9 22.8 ± 10.8 27.0 ± 9.9 21.0 ± 7.6 23.7 ± 10.4
La−/P t

peak, mmol/L/W 0.44 ± 0.18 0.43± 0.19 0.43 ± 0.32 *0.33± 0.12 0.39± 0.19

Data are absolute mean values ± SD. Values were not established for all subjects for all variables at
each test point due to technical difficulties. Two-tailed paired t-tests were performed between each
consecutive test and between each test and baseline (see main text for n compared at each test
point). *Significantly different from pre-training values, or †, from previous test-point at P ≤ 0.05.

months (n = 8, P = 0.15) of training. Figure 6.1 shows the ventilatory and gas exchange

parameters used to establish the RC and GET for 1 typical subject after 6 months of training.

Figure 6.1: Representative plots for one subject showing the aerobic gas exchange threshold (GET)
and the respiratory compensation (RC) point for metabolic acidosis after 6 months of training. (a)
shows the RC point as a hyperventilation with respect to V̇CO2 . Data beyond this point was then
eliminated from the V-slope analysis (c). (b) shows the ventilatory equivalents for both V̇O2 (+, grey)
and V̇CO2 (•, black) plotted against V̇O2 and (d) shows the end tidal gas pressures for both CO2

(•, black) and O2 (+, grey). The RC point, and the GET determined from the V-slope analysis are
indicated on the plots where appropriate.

The GET, expressed as a percentage of V̇O2peak, was found to be 64.7 ± 10.6 % at baseline.

This had decreased after 6 (n = 7, P = 0.02), 9 (n = 8, P = 0.016) and 12 months of training
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(n = 8, P = 0.02) (Table 6.1).

The GET was found at a work rate of 3.86 ± 1.76 W and this was not significantly different

after 3 months (n = 8, P = 0.10), 6 months (n = 7, P = 0.44), 9 months (n = 8, P = 0.45)

or 12 months (n = 8, P = 0.70) of training (Table 6.1).

6.4.2 The RC point

This parameter was only detected for 9 subjects during tests. See table 6.1 for mean values

and table 6.2 for absolute values. Prior to cycle training, an RC point was detected in only

4 of the subjects. For these 4 subjects, there was no significant difference in RC values after

3 (n = 4, P = 0.18), or 6 (n = 4, P = 0.104) months, but by 9 and 12 months, only 2 data

sets were available for comparison over time and were, therefore not statistically analysed. 7

data sets were able to be compared between 3 and 6 months, where it was found that the RC

point had significantly increased (n = 7, P = 0.04). There were no differences between 6 and

9 months (n = 5, P = 0.88). Values (n = 3) between 9 and 12 months were not compared.

Table 6.2: Absolute V̇O2 values (mL/min) at the respiratory compensation (RC) point during
the IWRTs. An RC point was not detected at any time for subjects 4 and 5.

Test point (months)
Subject 0 3 6 9 12

1 430 430 510 * 510
2 * 510 * 640 580
3 * 460 570 630 *
6 540 540 570 * *
7 * 520 620 400 *
8 680 920 850 820 820
9 * * 1130 * 950

10 * 910 1120 1120 860
11 490 690 820 960 *

6.4.3 Associated outcomes

The ∆V̇O2/∆P t value of 19.9 ± 12.9 ml/min/W (6.1) was not significantly different after 3

months (n = 10, P = 0.44) but had tended to increase over 6 months of training (n = 10, P =

0.08). Values after 9 months (n = 10, P = 0.82) and 12 months (n = 10, P = 0.37) were not

significantly different from pre-training values (Table 6.1).

La−/P t
peak values were not different from pre-training values after 3 (n = 9, P = 0.77)

and 6 (n = 10, P = 96) months, but by 9 months, the differences just reached significance

(n = 10, P = 0.05). Differences between baseline and 12 months were not significant (n =

10, P = 0.56).
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6.5 Discussion

This is the first study to investigate gas exchange thresholds during ES exercise in individuals

with paraplegia and to examine the effects of training thereon. The GET, detected for all but

one subject, occurred at very low work rates and at very low cardiorespiratory intensities,

which remained unchanged even after 12 months of training. Where an RC point was

identified, it was found to have significantly increased between 3 and 6 months of training but

not thereafter. The relative GET, which represented a respiratory intensity 65% of V̇O2peak

prior to training, became proportionately less over time, equating to only 49% of V̇O2peak

after 12 months, by virtue of an increase in V̇O2peak. The La−/P t
peak values had reduced

by 9 months, but by 12 months of training they were no different to pre-training values.

In addition, the dynamic oxygen cost remained high throughout training, at about 3 times

that normally found during volitional exercise (notwithstanding a slight tendency to for it to

increase over the first 6 months).

6.5.1 The GET

Typically, the GET is found at a volitional exercise intensity of about 1.3 L/min in untrained

healthy individuals, at about 1 L/min in chronically diseased individuals and at about 3.5

L/min in endurance trained individuals [117]. The GET, when expressed as a percentage of

V̇O2peak or V̇O2max, normally gives an indication of endurance capacity and of adaptations

to endurance exercise: even where V̇O2peak or V̇O2max remain similar between individuals,

or unchanged over time, the ability to sustain higher workloads over longer periods of time

is normally determined by the percentage of V̇O2peak or V̇O2max at which the GET and RC

occur. GET values of about 50–58% and RC values of ∼79% have been reported for healthy

sedentary adults, and of about 60% and 85–90%, respectively for trained (non-professional)

cyclists [117].

Notwithstanding the slight over-estimate due to the calculation methods, the mean pre-

training GET was found at 65% of V̇O2peak, which is higher than would be expected for

untrained individuals. However, when expressed in absolute terms, the GET exercise intensity

of only 351 ml/min is extremely low and equates to the typical metabolic stress of a 70kg

adult sitting playing cards, knitting or typing [115]. This V̇O2 is about one third of that

normally found at the GET in untrained diseased patients during volitional exercise [117].

The appearance of the GET at such low work and cardiorespiratory intensities, even after a

long period of endurance training, is consistent with the recruitment of FG fibres from the

application of stimulation and the consequent early anaerobiosis elicited.
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6.5.2 The dynamic oxygen cost

The dynamic oxygen cost was very variable between subjects, with values ranging from 7–

42 mL/min/W prior to training, and 8–41mL/min/W after 12 months of training (a CV

of 65% and 44% respectively). The ∆V̇O2/∆P t during a volitional IWRT of 8–12, 1-min

increments in work rate is normally linear and ∼9–11 mL/min/W for normal adults, with

slight differences in slope and linearity being due to age, fitness level or disease. Variance was

not found to be explained by age, lesion level nor time since injury for this group, but it is

possible that differences in levels of thigh fat and in stimulation cost (not investigated here)

may have accounted for some of the variance, similar to the findings in the previous chapter

for the oxygen cost of constant work (chapter 5).

The consistently high dynamic oxygen cost found here is likely to reflect, in part, the

oxygen cost of ATP replenishment in the FG fibres, which have a high ATP cost of force

production (see chapter 1). These fibres are recruited, especially in SCI individuals where

this fibre type predominates, regardless of ES exercise intensity. The findings would also

indicate that fibres are unlikely to have transformed towards a SO phenotype, but towards

more FOG fatigue resistant isoforms [106]. This finding is consistent with earlier observations

that FES cycling is about 3 times more costly and more inefficient than volitional cycling

[85] even after training (see chapter 5).

A 35% increase in thigh muscle cross sectional area (CSA) was recorded over the first

6 months of training and this did not significantly increase after this time [57]. Since

hypertrophy is known to occur due to an enlargement of the existing muscle fibres within a

motor unit [94], then a larger CSA of predominantly fast muscle would have been available for

power production per motor unit stimulated. The associated momentary metabolic cost of

power production in these inefficient fibres would be disproportionately high and may explain

the tendency for the dynamic oxygen cost to have increased slightly over the first 6 months,

notwithstanding any improvements in oxygen kinetics that may also have occurred [173].

6.5.3 Endurance capacity

The significant reduction in the GET as a percentage of V̇O2peak over time is contrary to what

would be expected after a period of volitional exercise endurance training, since improvements

in the GET are normally proportionately greater than those found in V̇O2peak [173, 92, 117].

Nonetheless, an increased capacity for heavy work was found over the first 6 months here: all

subjects were able to cycle continuously for 60 min and their P t
peak and V̇O2peak had increased

significantly (see chapter 4).



CHAPTER 6. METABOLIC GAS EXCHANGE THRESHOLDS 82

6.5.4 The RC point

The RC point was found to have significantly increased between 3 and 6 months. This, in

addition to the lack of change in the GET, is consistent with the improvements normally

only found after periods of high intensity (large anaerobic work element) exercise training,

where anaerobic buffering capacity is increased. Röcker et al. found that short session,

intense training delayed the appearance of the RC point only, indicating an increase in the

isocapnic buffering phase (GET to RC point), by improving anaerobic buffering capacity

[146]. Periods of long session, moderate intensity endurance training (primarily aerobic work)

normally increase the work rate at which both the GET and the RC appear as a result of

improvements in aerobic capacity [117]. The changes in gas exchange thresholds found in

this study are consistent with the changes that are normally elicited by periods of intense

anaerobic training.

6.5.5 Lactate production

Indeed, given the degree of anaerobiosis elicited by this form of exercise, the significant

reduction in the La−/P t
peak values after 9 months may suggest improvements in La− transport

and H+ buffering capacity, and oxidative potential [139]. It is interesting that these changes

were not apparent after 12 months of training. This could be due to the subjects having

reached their peak training frequency by 6 months (see chapter 4) and their highest cycling

resistance capacity after about 6–9 months (reported in training diaries). This may also

explain why the delay in RC point noted at 6 months was no different to pre-training values

after 12 months.

It is not clear why one subject (no. 5) failed to elicit a GET or an RER in excess of one

during the any IWRT. At 57 yrs old, this subject was the oldest in the group, but in all other

respects, this individual’s cardiorespiratory and power responses to stimulation were very

similar to the others and his La−/P t
peak values were very similar to the group mean values.

It is possible that his muscle fibres had retained a degree of oxidative capacity or that he

had a large capacity for CO2 storage. A histological investigation may help to explain this

phenomenon further.

It would appear, therefore, that the absolute or relative GET values attained during

FES cycling for individuals with paraplegia give no useful indication of their endurance work

capacity. This is because, for most, there is a degree of anaerobiosis from the outset of ES

exercise regardless of exercise intensity and training status, therefore, all ES exercise would

be regarded as being in the heavy work domain [173]. Knowledge of the RC point, however,

appears to give a useful indication of improvements in endurance capacity by changes in

isocapnic buffering capacity. Unfortunately, an RC point was not reached during each test

for all subjects, possibly due to peripheral limitations and is therefore of limited use.
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6.5.6 Threshold intensity exercise prescription

Given the findings here, and considering that individuals normally train at full stimulation

charge and at their highest cycling resistance load during training, then the use of gas

exchange thresholds for training intensity prescription would appear to have no utility during

ES exercise training. It may be more informative to examine continuous pedalling duration

and mean exercise V̇O2 during training as indicators of endurance capacity for this type of

exercise. An examination of the gas exchange kinetics and the RER responses during exercise

may also give more useful indications of changes in aerobic and anaerobic capacity over time

for these subjects and with this type of exercise and this is examined in the following chapter.

6.6 Conclusions

The GET, detected in all but one subject during the course of the study, was found at a

cardiorespiratory stress equivalent to that normally elicited by very gentle volitional exercise.

This appears to be due to the non-physiological recruitment pattern that normally occurs

during ES exercise, which causes an unnatural and measurable degree of anaerobiosis from

the start of exercise. The GET was not found to have delayed after training, probably due to

the continued recruitment of anaerobic muscle fibres from the outset of exercise. Favourable

adaptations appear to have occurred in anaerobic buffering capacity and in lactate handling,

similar to those normally associated with high intensity anaerobic training. These adaptations

had reversed by 12 months when training was no longer progressive. It appears that the use of

the gas exchange threshold paradigm in relation to the determination of exercise endurance

capacity or for training intensity prescription for ES exercise with the SCI population is

invalid. An examination of exercise capacity in terms of exercise duration and the highest and

sustained cardiorespiratory responses during ES training may provide more useful indicators

of changes in endurance capacity after ES exercise training.

Accordingly, the following chapter will examine the cardiorespiratory responses elicited by

a 60 min FES cycle training session in subjects that had trained for 12 months and examine

these responses in relation to those elicited by the corresponding IWRT tests.
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Chapter 7

A comparison between the

cardiorespiratory stresses elicited

by stimulated cycle training and

testing

. . .man will occasionally stumble over the truth, but usually manages to pick

himself up, walk over or around it, and carry on.

Winston S.Churchill

This chapter briefly outlines the principles underpinning traditional, volitional maximal

aerobic capacity tests and questions their use as valid measures of the peak cardiorespiratory

stress that can be elicited by FES cycling. This argument was based on comparisons made

between the cardiorespiratory responses elicited by a traditional IWRT and those elicited

during an FES HTS after a period of 12 months of high-volume training. The respiratory gas

exchange dynamics over the course of the HTS were also examined and characterised for the

first time during FES cycling. The preliminary outcomes of this study were presented as a

poster at an international conference in 2006 and the findings from this study are currently

in preparation as a journal article:

H. Berry, C. Perret, K.J. Hunt, S. Grant, B.A. Saunders, D.B. Allan, and T.H.

Kakebeeke, “Conventional incremental exercise test protocol underestimates peak

oxygen uptake during stimulated cycle ergometry in paraplegia” 11th Annual

Congress of the European College of Sport Science, Lausanne, Switzerland, 5-8th

July, 2006.

H.R. Berry, T.H. Kakebeeke, N. Donaldson, D.B. Allan and K.J. Hunt. The peak

cardiorespiratory stress elicited by stimulated cycle training and testing. Medicine
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and science in sports and exercise, in preparation.

7.1 Introduction

V̇O2 is normally regarded as the most important parameter in determining an individuals

capacity for and tolerance to exercise since oxidative (aerobic) metabolism is the principal

means by which the body generates energy during low to moderate intensity work. Non-

oxidative (anaerobic) metabolism supplements the energy supply as exercise becomes more

intense, or forms the principal energy source where exercise is performed at very high intensity

for short periods [5].

Volitional exercise testing Traditional whole body tests are based on this metabolic

paradigm, whereby during an incremental work rate exercise test, V̇O2 will increase linearly

with work rate until it reaches or plateaus at its highest level (see chapter 6). Providing

that there has been no peripheral limitation to work, this will normally indicate that the

cardiorespiratory system has reached its maximum aerobic power or V̇O2max. Any increase in

work intensity beyond this point, termed supra-maximal, is very limited and will not cause

an increase in V̇O2 but is fuelled by anaerobic metabolism and will lead to very rapid fatigue

and an early termination of exercise.

Gas exchange kinetics The respiratory gas exchange (Y ) response to a change in exercise

intensity (the on-transient kinetics) at any time (t) is phasic and exercise intensity dependent:

for light to moderate exercise transitions (< GET), V̇O2 normally display a bi-phasic response

(phase 1; cardiodynamic, reflecting an abrupt increase in V̇O2 as a result of increased

pulmonary blood flow [28], phase II; primary, reflecting the transient adjustment in oxidative

muscle metabolism to meet the increased energy demand). If exercise is continued at a

constant work rate, and this is in the heavy exercise domain (> GET), an additional

phase becomes evident after about 2 min (phase III, the slow component, reflecting a

disproportionate, time and work rate dependent, increase in oxygen demand). Exercise

intensities beyond V̇O2peak (severe work intensity) display kinetics that are best described

by a bi-phasic response only (phases I and II) [132].

Phase I can be best explained by the first part of equation (7.1), where Y (b1) is the

value before the step change in exercise, Ac is the asymptotic amplitude for the linear, first

order exponential term, which starts at the onset of exercise, or step change in exercise (time

(t) = 0), and τc is the time constant.

Phase II is described by the additional term indicated in equation (7.1), where the

exponential term starts after an independent time delay (TDp), with a value that corresponds

to the end of phase I (Ac + Y (b1)), and with the asymptotic amplitude Ap.



CHAPTER 7. CARDIORESPIRATORY STRESS OF FES CYCLE TRAINING 86

The kinetics of phase III are well defined by a further, additional term, as indicated

in equation (7.1) where, after a time delay (TDs), the value at the asymptote of phase II

(Ap+Ac+Y (b1)) is used as the starting point for the exponential term towards the asymptote

As. The magnitude of this slow component is dependent on exercise intensity and the time

of measurement. It is often quantified as the difference in V̇O2 between the value at the

asymptote of phase II and the end of exercise.

Y (t) = Y (b1) + Ac ∗
(
1− e

−t
τc

)
phase I

+ Ap ∗
[
1− e

− (t−TDp)

τp

]
phase II

+ As ∗
[
1− e−

(t−TDs)
τs

]
phase III (7.1)

V̇O2 will normally have reached a steady state by 3 min for healthy subjects during

constant work rate light and moderate intensity exercise. The τ for this phase is inversely

proportional to fitness and cardiopulmonary health levels with values for healthy individuals

ranging from 20 to 45 s, and up to 90 s in cardiac patients [93]. The slope of the increase in

V̇O2 and the τ is also affected by inactivity, age and pathological condition, but unaffected

by work rate with a gain of 9 to 11 ml/min/W normally seen [179].

The phase III slow component will either slow or prevent the attainment of V̇O2 steady

state during heavy exercise stages. Work intensities beyond the RC point, or critical power

level (see chapter 6) are regarded as severe and V̇O2 will not reach a steady state, but will

increase towards V̇O2peak. Providing that exercise is not in the extreme domain and limited

by peripheral fatigue (exercise duration < 140 s), then the higher the work intensity, the

shorter the time to reach V̇O2max at each stage [93].

Electrically stimulated exercise testing Our understanding of the unique motor unit

recruitment patterns that occur during surface stimulation (see section 1.3.2) has led us to

question the interpretation of cardiorespiratory responses that are elicited by an FES cycling

IWRT that has been designed to elicit responses according to the progressive oxidative-

glycolytic metabolic paradigm of volitional exercise (see chapter 6).

It appears that during FES cycling there is an unnatural and early, intensity independent,

contribution to overall energy production from anaerobic metabolism that does not seem to be

altered by training and which results in an O2 cost of work about 3.5 times that of volitional

exercise (chapters 5 and 6). The HTS was performed at a maximally tolerated resistance from

the outset and this was adjusted throughout the exercise session, as the muscles fatigued, to

enable the subjects to continue pedalling within the given cadence range. The gas exchange

response kinetics measured over the first 3 min of the training session will give valuable

insights into the oxidative-glycolytic responses to the imposed maximal cycling load. In light
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of the study findings from chapters 5 and 6, novel outcome measures were specifically designed

to measure these responses during the on-transients of a FES HTS for the first time during

FES cycling.

FES exercise testing The IWRTs performed in this study were achieved by gradually

increasing the stimulation pulse duration to enable the cadence controlled FES cycling power

to increment at a steady rate of either 1 or 2 W per minute until stimulation reached SS point

[55]. Cycling power had reached its highest level by this point and was regarded as P t
peak.

The protocol required that stimulation was then reduced to allow a period of recovery at the

lowest stimulated work rate. However, in some cases (for technical reasons), the stimulation

was not immediately reduced to the lowest stimulated work rate. In these instances, it was

noted that power often dipped slightly and that V̇O2 often continued to rise during this

period of maximum stimulation. Nonetheless, to ensure that valid test to test comparisons

were made, the V̇O2 at SS was taken as V̇O2peak. Accordingly, the true IWRT V̇O2peak was

not known.

Training sessions After the first 3 months of cycle training, it became apparent that the

IWRTs were not providing the same degree of cardiorespiratory stress that was provided

during the HTS. Subjective observations were that the HTS were far more intense and more

physically exhausting than the IWRTs where it was also found that breathing was heavier,

and it was common for individuals to perspire during training, but not during testing.

Accordingly, this chapter determined the training V̇O2 intensity in relation to V̇O2peak

to examine the validity of the current IWRT for the determination of maximal aerobic

performance during FES cycling. The cardiorespiratory responses to prolonged FES cycling

sessions of variable resistance and variable cadence were also examined and characterised

by examining the dynamic gas exchange responses over the first 3 minutes of exercise and

the mean cardiorespiratory stress over the final 57 min of the HTS. The highest and mean

cardiopulmonary response values were compared to the peak values that were recorded during

the final IWRT tests. The on-transient respiratory exchange was examined using novel

measures that were devised here specifically for FES exercise.

7.2 Methods

Please refer to chapter 3 for a full and detailed description of the methods and of the statistical

analysis employed in this study. Methods peculiar to this part of the study are given below.
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7.2.1 Subjects

8 of the 11 subjects that had completed 12 months of FES cycle training were studied for

this investigation. These subjects are detailed in table 7.1

Table 7.1: The Subjects

Subject Gender Age Lesion level Years since injury Height (cm) Body mass (kg)
1 F 35 T7 15 162 64
2 M 43 T9 25 186 67
3 M 40 T4 11 184 70
5 M 57 T4 9 173 85
6 M 44 T4 4 170 76
7 M 39 T3 8.5 177 83
8 M 38 T3 12 183 73
11 M 44 T9 20 175 74

Mean 42.5 5.4 13.1 176.3 74
SD 6.7 2.6 6.8 8.1 7.3

7.2.2 Testing

The equipment used for the HTS is fully detailed in chapter 3. Fig. 7.1 shows one subject

being monitored during her final HTS.

During the IWRT, stimulation was increased progressively to SS point over 8–12 min to

permit work rate to increment at an isokinetic steady rate of either 1 or 2 W per minute. The

exercise was terminated shortly after reaching SS point. Conversely, during the HTS, and

after one or two minutes of manually assisted passive cycling (to help minimise the occurrence

of muscle spasms at the onset of stimulation), stimulation was applied rapidly to SS point

(over about 60 s) with the trainer set at the session HRL. The HRL was chosen to provide

a maximal session training stimulus from the outset and to ensure that the muscles were

working against sufficient resistance to prevent the cadence from exceeding 50 rpm (for most

of the subjects, it was observed that the fresh, maximally stimulated, trained muscles were

capable of propelling the legs at cadences well in excess of 50 rpm). Stimulation was then

held constant over the remaining exercise period, during which time the trainer resistance

and gears were altered in an attempt to keep the cadence within the given range of 35–50

rpm.

Subjects’ breath by breath respiratory gas exchange and heart rate were monitored

during a HTS (60 min pedalling against HRL to maintain a target cadence of between 35

and 50 rpm) performed shortly after completing 12 months of FES cycle training. Each

subjects’ cardiorespiratory responses were examined and compared to those elicited by their

corresponding 12-month IWRT (as detailed in chapter 3).



CHAPTER 7. CARDIORESPIRATORY STRESS OF FES CYCLE TRAINING 89

7.2.3 Outcome measures

The following outcome measures were determined during the HTS:

V̇O2high: this was determined as the highest V̇O2 of a 60 second rolling average taken over

the exercise phase.

V̇O2mean: the average V̇O2 taken over the last 57 min of exercise.

HRhigh: the highest 60 second average heart rate over the exercise phase.

RERhigh: this was the highest 60 second rolling average value for the RER over the exercise

phase.

TRER1: the time from onset of stimulated exercise to where RER = 1.

RERmean: the average RER taken over the last 57 min of exercise.

V̇O2 τ0−3: the time constant for the increase in V̇O2 over the first 3 min of exercise.

RERτ0−3: the time constant for the rise in RER over the first 3 min of exercise.

For V̇O2 or RER (Y ) at any given time (t), the transition phase over the first 3 min of

exercise was best described by the mono-exponential term, as given for phase I in equation

(7.1). The RER appeared to display a mono-exponential response after recovery from the

expected slight dip immediately following exercise onset. Y (b1) is the pre-exercise value, Ac is

the amplitude for the exponential term at 3 min following start of exercise. The exponential

term started at the onset of exercise (V̇O2) or after values had regained their pre-exercise

values (RER) ((t) = 0), and τc is the time constant. The gain was not able to be calculated,

since the training work rate in Watts was not known.

7.3 Results

Full data sets (N = 8) were available for all but one subject (due to technical difficulties,

only heart rate and V̇O2 data were available for subject no. 11). A summary of outcomes are

given in table 7.2. Changes in pedalling cadence during the HTSs are shown in Figs 7.3(b)

and 7.4(b).

7.3.1 Cardiorespiratory responses

Oxygen uptake There was a significant difference between the IWRT V̇O2peak and the

HTS V̇O2high (a difference of 149 ± 78 mL/min, P = 0.001). The V̇O2mean, sustained over 57

min of FES cycling was not significantly different from the IWRT V̇O2peak value (a difference

of 4 ± 34 mL/min, P = 0.75) (Table 7.2). Fig. 7.2 shows a comparison between the V̇O2
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Figure 7.1: Monitoring cardiorespiratory responses during a FES cycle training session for one subject
in their home.

Table 7.2: Final training session and incremental work rate test outcome measures

Variable mean SD Min Max
HTS
V̇O2high (mL/min) 915 289 537 1381
V̇O2mean (mL/min) 762 253 431 1157
HRhigh (beats/min) 111 25 79 150
RERhigh 1.39 0.16 1.13 1.58
TRER1 (s) 78 10 64 91
RERmean 1.01 0.05 0.93 1.09
V̇O2 τ0−3 (s) 32 9 20 45
RERτ0−3 (s) 61 46 28 160
IWRT
V̇O2peak (mL/min) 766 240 447 1147
HRpeak (beats/min) 92 19 69 115
RERpeak 1.15 0.11 0.96 1.28

HTS, home training session; IWRT, incremental work rate test; V̇O2high, the highest 60 s average
oxygen uptake value; V̇O2mean, the mean V̇O2 over the last 57 min of exercise; HRhigh, the highest 60
s average heart rate; RERhigh, the highest 60 s average RER; RERmean, the mean RER over the last
57 min of exercise; V̇O2 τ0−3 and RERτ0−3 V̇O2 , time constants over the first 3 min of exercise.



CHAPTER 7. CARDIORESPIRATORY STRESS OF FES CYCLE TRAINING 91

responses measured during the IWRT (black dots) and final HTS (blue dots). Here it can be

seen that the HTS V̇O2 reached a level very similar to the IWRT V̇O2peak very early on during

the training session and continued to rise throughout, despite changes in training resistance.

Heart rate The HRhigh recorded during the HTS was significantly higher than the IWRT

HRpeak value (a difference of 21 ± 9 beats/min, P = 0.001) (Table 7.2).

Figure 7.2: A comparison between the V̇O2 response (a 9 breath average is shown for clarity) during
a home training session (blue dots) and the associated IWRT (black dots) for one subject after 12
months of training. The trainer resistance was set at the HRL at the start of training (600 s). The
subject removed his mask at 1620 s to take a drink. Resistance was reduced (HRL-1) and restored
(HRL) where indicated by the dotted vertical lines.

RER The HTS RERhigh was significantly higher than the IWRT RERpeak by 0.24 ±
0.12, P = 0.002 and the HTS RERmean was significantly lower than the IWRT RERpeak

(a difference of 0.14 ± 0.09, P = 0.006) (Table 7.2).

7.3.2 0-3 on transient kinetic response

Oxygen uptake The V̇O2 rose rapidly during the first three minutes, reaching an

asymptote within this time. The V̇O2 τ0−3 of 32.4 ± 9 s had a range of 20–45 s across

individuals. The rapid rise in V̇O2 can be seen clearly in Figs 7.2, 7.3(a) and 7.4(a).

Metabolic gas exchange The RER rose sharply in each case and reached unity within

only 64–91 s with a RERτ0−3 of 61 ± 46 s. This can be seen in Figs 7.3(a) and 7.4(a) and

detailed in Table 7.2. Data sets were examined for evidence of a hyperventilation in relation

to V̇CO2 during the rise and peak of RER and none was found for any of the training sessions.
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(a)

(b)

Figure 7.3: (a) Plots show the representative on-transient kinetic response curves (red) for subject
no. 7, fitted to raw breath by breath data from the onset of FES cycling during a home training session
(HTS). The top panel shows a curve fitted to the V̇O2 response and the lower panel shows the RER
response curve, fitted after the initial dip and recovery to pre-exercise value (delay). Y(b1) represents
the pre-exercise value, Ac is the value after 3 min of exercise and tau is the time constant. Plot (b)
shows the variations in pedalling cadence over the exercise session. The session was conducted at a
constant trainer resistance, but the gears were changed to adjust pedalling resistance in an attempt
to maintain a cadence of between 35 and 50 rpm.

7.4 Discussion

7.4.1 Cardiorespiratory stress

This study set out to compare the highest and mean cardiopulmonary responses measured

during an FES cycling HTS after 12 months of training to the peak values that were recorded
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(a)

(b)

Figure 7.4: Plot (a) shows the breath by breath gas exchange data for subject no. 2 during his
final HTS (9 breath averages are shown for clarity). The top panel shows the V̇O2 response and the
bottom panel shows the RER response over the training session. The first dotted vertical line indicate
the start of cycling at the HRL. Subsequent dotted lines indicate subsequent reductions in trainer
resistance level (HRL-n). 0 indicates that all trainer resistance was removed. Plot (b) shows the
cadence trace for each pedal rotation throughout the exercise. This subject was unable to pedal at a
cadence of 50 rpm, but found that his legs were able to pedal for extended periods at about 25 rpm
with a peak of about 40 rpm.

during an IWRT test. The cardiorespiratory responses to the HTSs of variable resistance

and variable cadence were also examined and characterised by examining the dynamic gas

exchange responses over the first 3 minutes of exercise and the mean cardiorespiratory stress

over the final 57 min of the HTS. The on-transient respiratory exchange response was also

examined for the first time using novel measures that were devised specifically for FES

exercise.

Here it was found that the HTSs were found to elicit a significantly higher cardiorespi-

ratory stress than that recorded during the associated IWRTs. For the HTS, the V̇O2high,
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HRhigh and RERhigh were 20%, 29% and 21% higher, respectively, than the associated IWRT

peak values for each variable. Additionally, the V̇O2mean, sustained over the last 57 min

of FES exercise was not significantly different to the V̇O2peak recorded during the IWRTs.

The reasons for this appear to be due to differences in the rate of stimulation and pedalling

resistance application, cadence and to the duration of maximally stimulated work for each

exercise.

Because of the disordered, synchronous motor unit recruitment pattern found during ES,

and the type II fibre type predominance after SCI, the total systemic V̇O2 will comprise of the

cost of muscle activation and relaxation, the cost of ATP replenishment in the FG and FOG

fibres, lactate transport and oxidation for re-use, lactate conversion to glycogen in the liver

(cori cycle), and the oxygen cost of trans-membrane ion pumping. The additional oxygen

cost associated with any unrelated muscular activity, the increase in ventilatory work and of

maintaining systemic homeostasis will also be included [173]. These factors are thought to

cause the time and work rate dependent reduction in efficiency (the V̇O2 slow component)

normally seen during volitional exercise in the heavy work domain [93]. Here, the anaerobic

contribution to work over the course of the 60 min training session will have produced a

V̇O2 slow component and this may explain why the V̇O2 intensity level was sustained and

sometimes even increased, even when the trainer resistance level was reduced (Figs. 7.2

and 7.4).

Accordingly, the V̇O2 during FES cycling would be expected to continue to rise beyond

SS point until fibre fatigue and recovery rates had reached an equilibrium level and the cost

of maintaining systemic homeostasis had reached its peak. This was not observed during the

IWRTs, because tests were terminated before V̇O2 had reached a peak value.

7.4.2 On-transient gas exchange

A curve was fitted to the first three minutes of the on-transient V̇O2 and RER response to

the HTS for each subject. From this it was clear that a maximal muscular metabolic stress

was elicited from the outset, that caused the V̇O2 and the RER to rise rapidly towards an

asymptote, which for the V̇O2 , was often near or at the V̇O2high value, with a τ0−3 of only

20 to 45 s. This range in values is no different to that expected in healthy able bodied

individuals performing volitional exercise and would suggest that there was no apparent

limitation in the central or peripheral response to the increase in metabolic demand. The

very rapid rise in the RER to reach 1 within only 60–90 s with a τ0−3 of between 28 and 160

indicates the recruitment of a high proportion of type II fibres from the outset. This also

provides strong metabolic evidence for a disordered motor unit recruitment which caused a

substantial anaerobic contribution to work from the outset of ES exercise [69].

In the only other study to examine the respiratory responses to prolonged FES cycling

[161], the RER was also observed to rise to a very similar peak of ∼1.3, but RER did not
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reach 1 until after about out 5 min of exercise. However, since stimulation was ramped up

to SS point over the first 5 min, the relative rate of rise in RER in relation to the rise in SS

was almost identical to that found here.

Theisen et al. [161] did not observe such a rapid rise in V̇O2 in their study. Instead,

they observed an steady rise in V̇O2 response as stimulation increased to SS point over the

first 5 minutes. During this time, power output rose rapidly to its peak value, before falling

and then recovering again to a lower, sustainable level. It appears that the main difference

between these two studies is that the variable power study did not impose a load on the

leg muscles, whereas, a maximal tolerated load was imposed on the leg muscles from the

start of the HTS. This meant that the power produced at the onset of work here was an

indistinguishable combination of peak anaerobic and aerobic power output. Whereas, during

the variable power study, peak anaerobic and peak aerobic power output were most likely

produced sequentially, as fibres fatigued and then recovered and were distinguishable by time,

in response to the gradual increase in stimulation and recruitment of motor units.

Interestingly, the swift application of maximal tolerated cycling load during the HTS is

not dissimilar to that applied at the outset of short-lasting maximum effort exercise [50] or

an ‘all out’ maximal intensity volitional cycling test (severe or extreme work intensity), such

as the Wingate Anaerobic Test [178]. These tests are designed to test maximum anaerobic

power capacity over only 30 s, and are normally terminated before the aerobic system has

had enough time to reach its maximum capacity.

In an attempt to find out whether V̇O2 could be increased to V̇O2max during this type of

test, two studies looked at the V̇O2 responses during longer maximal tests of 90 s in duration,

and it was found that this was long enough to elicit a maximal V̇O2 response in a group of

teenage boys and girls [177] and in a group of teenage boys, but not in middle aged men [27].

This was attributed to the significantly faster V̇O2 kinetics observed in the group of boys.

More recent, similar tests of 180 s duration have concluded that although it is possible to

achieve V̇O2peak during such tests, it is by no means certain, probably due to inter-individual

differences in V̇O2 dynamics and peripheral fatigability [25, 166].

The important difference between these short, all out tests, and the HTS sessions is that

the subjects on this study were, quite uniquely, able to produce a maximal muscular effort

from the outset and maintain this all out effort, albeit of diminishing power, beyond the

initial rapid fatigue phase and for the entire 60 min exercise session.

Maximum voluntary muscular efforts cannot normally be sustained for more than a couple

of minutes before contractile function is affected: Ca2+ handling becomes slower and muscle

relaxation times increase. Additionally, the excitability of the muscle membrane reduces

as K+ build up in the extracellular space [94]. The associated neurological feed back from

peripheral chemoreception and nociception that would normally influence ‘willpower’, and

provide a central limitation to maximal exercise performance, is not present after SCI. It
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appears, therefore, that FES cycling can continue for as long as the continuously stimulated

muscle fibres are physically able to contract and relax and produce sufficient power to

overcome the resistance at the pedals.

It is possible that the rapid application of stimulation during the HTS may have caused

stretch reflex contractions to occur in antagonistic muscle groups. This would increase overall

metabolic demand but reduce the ability of the legs to pedal against the HRL, causing the V̇O2

in increase rapidly during this time. Nonetheless, there appeared to be little or no evidence

of this since pedalling cadence appeared smooth and was not observed to slow during this

time. This phenomenon could also explain the slight drop in power often observed at SS

point during the IWRTs. However, the drop in power could also be adequately explained by

fibre fatigue in the last fibres to be stimulated, since no further fresh fast, high power motor

units were recruitable to increase or maintain this power output.

The higher HR observed during the HTSs is possibly due to a time dependent

cardiovascular drift, where reduced plasma volume1 caused a decrease in stroke volume and a

concomitant increase in heart rate, disproportionate to V̇O2 , to preserve cardiac output [115].

Hooker et al. [79] attributed the reductions in RER that were observed over an isokinetic,

30 min FES cycling exercise to substrate depletion. However, in this study, RERmean was

between 0.93 to 1.09, with values often seen to increase to beyond unity near the end of the

session as cadence increased as a result of changes in gearing, or as trainer resistance was

removed (see Figs. 7.3 and 7.4). These observed increases in RER after 60 min of cycling are

quite remarkable and would not be possible where there was a significant degree of glycogen

depletion.

7.5 Conclusions

It has been clearly demonstrated that the current IWRT is not a valid test for establishing

V̇O2peak during FES cycling, since the V̇O2 value at SS point was 20% lower than the V̇O2high

attained during prolonged constant stimulation FES cycling. It may be more appropriate

to conduct tests that extend beyond SS point, with longer durations at each power level.

Discontinuous, short duration incremental tests, conducted at higher pedalling cadences may

also elicit higher V̇O2 values and be more appropriate for this subject group and this very

unique exercise modality.

The on-transient kinetic gas exchange responses to FES cycling showed no apparent

peripheral or central limitation in response. The novel measures used here, TRER1 and

the RERτ0−3 gave a valuable insight into the on-transient kinetics of the oxidative-glycolytic

response to electrically induced maximal exercise for the first time. These measures indicated
1After about 15 to 20 min of prolonged constant work rate exercise in a thermoneutral environment, central

blood plasma volume becomes reduced as a result of the gradual redistribution to the periphery for cooling,
a fluid shift from plasma to body tissues and a progressive fluid loss through sweating [115].
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the absolute and relative rate of rise in non-metabolic CO2 production from the start of ES

exercise and provide strong metabolic evidence of a disordered, non-physiologic motor unit

recruitment pattern. The observed V̇O2 and RER dynamics over the entire exercise session

provide strong metabolic evidence for the continual recruitment and recovery of glycolytic

fibres throughout.

The remarkable ability of the paralysed, trained and predominantly FOG muscles to

produce ‘maximal’ exercise in the equivalent of the heavy or severe muscular work domain

during prolonged periods of FES cycling is unique and displays an extraordinary capacity for

fibre recovery and anaerobic power capacity. This is likely to explain the unique gas exchange

dynamics observed in this study. These outcomes provide compelling evidence to support

the design of effective ES exercise training programmes in the future and to inform valid test

protocol design for this type of exercise.
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Chapter 8

Conclusions

This multi-centre study has clearly demonstrated that regular home-based FES cycle training

can provide a cardiorespiratory and musculoskeletal stress that is sufficient to minimise

the health risks of inactivity, and significantly increase the health and physical fitness of

individuals with complete lower limb paralysis. The upper limits in load tolerance were

met by most subjects after 6 months of training, and by all subjects by 9 months during

this programme. It is not known whether this was due to a physiological limitation within

the stimulated muscles, or to limitations within the current stimulation strategy or the

training protocol. Nonetheless, the robust relationship that was found during the progressive

training period between training hours completed and improvements in P t
peak and V̇O2peak,

provide a unique and sound framework with which to guide and compare all future FES

cycle training programmes. The conclusions reached here are based upon the thorough,

methodical, consistent and systematic data acquisition, treatment and analysis that were

performed during this study. The relevance of these findings lie in the strong evidence base

that this study provides that can guide future FES cycling prescription and contribute towards

the widespread clinical uptake of FES cycling for the health and wellbeing of SCI individuals.

Important contributions have been made here toward the knowledge and understanding

of the physiology of ES exercise and to the acute and trained metabolic responses elicited

by prolonged, high intensity FES cycle training. The aerobic and anaerobic gas exchange

threshold analyses that were performed here provide metabolic evidence in support of the

non-physiological, disordered motor recruitment observed to occur during ES exercise. The

training session on-transient kinetic gas exchange responses revealed no apparent peripheral

or central limitation in meeting the relatively high FES energy demands of the HTS. The

novel measures used here, TRER1 and the RERτ0−3 gave unique and valuable insights into,

what appears to be, a very rapid oxidative-glycolytic response to electrically induced exercise

after 12 months of intensive FES cycle training. These findings, in combination with the

respiratory gas exchange threshold observations, the dynamic and steady state oxygen cost

of cycling, the blood La− levels, and the RER dynamics observed during the CWRTs provide
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a strong, unequivocal body of metabolic evidence in support of the immediate and continual

recruitment and training of fast anaerobic muscle fibres throughout an FES cycling session.

These observations highlights the uniqueness of the ES exercise response, and stress the need

for new training and testing methods and protocols, tailored specifically to this mode of

exercise.

A training-induced increase in aerobic capacity was observed over the course of the

training programme, evidenced by the increase in V̇O2peak and in continuous pedalling power

and endurance capacity over time. However, the most remarkable and unique observation

made here was of the high oxidative-glycolytic endurance capacity that was demonstrated in

this FES cycle training. In the few tests where an RC point was detected, it was found to

have delayed after 6 months of training, supporting the evidence gathered during the CWRTs

that lactate handling and anaerobic buffering capacity had improved during this time. These

adaptations have hitherto only been observed after periods of volitional, short-duration, high-

intensity anaerobic cycle training. Here, they appear to have permitted the trained paralytic

FOG muscle to contract repeatedly and over prolonged periods with a high degree of fatigue

resistance, and demonstrated a very high capacity for sustained glycolysis and fibre activation

and recovery in the predominantly redundant, paralytic muscle.

These findings would suggest that, for this particular population and exercise modality,

the use of GET analysis in determining exercise endurance capacity, or for training intensity

prescription purposes, is invalid. The RC point was not often observed and its analysis is

not likely to give any more information than can be gained from observing cycling endurance

capacity, and the highest and sustained cardiorespiratory responses during FES training.

Although the current IWRT enabled precise respiratory gas exchange thresholds to be

performed for the first time in ES exercise, comparisons between the cardiorespiratory stresses

of the final HTSs and IWRTs clearly demonstrated that the IWRT is not a valid test for

establishing V̇O2peak during FES cycling. Given that the anaerobic contribution to FES

exercise is likely to lead to the development of a time and intensity dependent slow aerobic

component, even at very low work intensities, it would seem more pertinent to conduct

tests that extend beyond SS point to allow this to develop. Accordingly, continuous or

discontinuous V̇O2peak tests that consist of longer cycling durations at each power level are

likely to elicit higher V̇O2 values than the current test protocol and may be more appropriate

for this subject group and this very unique exercise modality.

This was the first study to measure and quantify the electrical and metabolic costs of ES

exercise and observe the effects of training on these parameters. These findings here suggest

that the electrical cost of work was determined primarily by changes in motor unit size and

secondarily by the level of tissue impedance caused by the subcutaneous fat layer. Individual

changes in the metabolic cost of FES cycling after 6 months of training was strongly related

to changes in the electrical cost of work, suggesting that for this study, FES cycling efficiency
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was determined by the quantity of muscle mass activated per unit of power produced, rather

than to differences in the metabolic efficiency of the muscle mass itself. These findings suggest

that stimulation strategies that are able to target agonist and synergistic muscle groups with

more precision may improve the efficiency of this type of exercise.

Notwithstanding the social and psychological benefits that are often gained from engaging

in regular physical activity, the physiological benefits gained by the SCI individuals on this

FES cycle training study have been clearly demonstrated. The outcomes of this study provide

a compelling body of evidence with which to support the increased clinical uptake of FES

cycling prescription and to inform the future design of specific, effective, ES exercise training

programmes. Further investigations are merited to design, test and validate peak FES cycling

capacity test protocols, based on the unique metabolic characteristics of ES exercise that

have been identified here. Given the mobility and recreational possibilities of this form of

exercise, future work should also be aimed towards determining the optimal combination of

stimulation and loading strategies, and training protocols to maximise favourable training

responses within a more feasible, lower volume, home-based training programme for this

particular population.
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Chapter 9

Future work

Life is not merely to be alive, but to be well.

Marcus Valerius Martial

The CNS has demonstrated a capacity for neural plasticity that has the potential to

enable some recovery following spinal cord injury. Human and animal studies have both

shown physical exercise interventions to be effective in mediating these adaptations [8].

9.1 Exercise and neural plasticity

The effects of voluntary exercise During the 1990s, it was discovered from animal stud-

ies that voluntary exercise increased cell proliferation, synaptic plasticity and neurogenesis

in the brain along with improvements in learning and mood [164, 34]. These improvements

were found to be due to an exercise induced release of a number of neurotrophic factors by

the nerve cells in response to voluntary physical activity.

Neurotrophins These proteins protect the nerve cells and promote survival by causing

them to grow, multiply and form new dendritic sprouts. One protein in particular, brain-

derived neurotrophic factor or BDNF, was found to enhance learning, protect against

cognitive decline and improve mood state [33].

Mechanisms responsible Gómez-Pinilla et al. set out to investigate the potential

mechanisms by which exercise induced this neurotrophin mediated, neuronal plasticity in

the CNS of rats [66]. They found that after voluntary wheel running for 3–7 days, BDNF,

its receptor, response cascade proteins and growth-related proteins were all increased in the

lumbar spinal cord and and soleus muscles. By comparing control animals to sedentary and

exercised animals that had temporary, unilateral paralysis of the soleus muscle, they found

that basal levels of neuromuscular activity were required to maintain normal levels of BDNF

in the neuromuscular system.
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Further to this, in a similar study involving spinal cord isolation from supraspinal

(descending) and peripheral (ascending) input, but retaining neuromuscular connectivity

[65], it was concluded that the level of supraspinal and peripheral input determined the

modulation of levels of BDNF in the spinal cord. In 2003, Vaynman et al. observed that the

BDNF response cascade appears to operate via an exercise controlled positive feedback loop

enhancing its own transcription and that of other proteins responsible for neural transmission

and plasticity [167].

9.2 Neural recovery after injury

Ying et al. (2005) investigated the potential for voluntary exercise induced BDNF and its

associated factors to promote the recovery of locomotion in rats after partial spinal cord injury.

They found a wheel running dose-dependant increase in levels of BDNF, which compensated

for and indeed improved on the losses of this factor that had occurred after hemisection.

Associated effectors for the action of BDNF were also higher than sedentary hemisectioned

rats and similar to control rats after 28 days of exercise. The findings would suggest that the

synaptic pathways under the control of exercise induced BDNF production may have a role

in facilitating recovery after spinal cord injury [181].

Electrical stimulation An earlier study [58] with rats showed that increased, voluntary,

daily physical activity performed within the restrictions imposed by a lesion induced

neuromuscular deficit, was insufficient to produce any evidence of motoneurone sprouting

in the paralysed muscle. In contrast to this, when partial denervation was performed after

periods of intensive and prolonged daily activity and then the remaining intact neurones

were electrically stimulated for only one hour immediately following lesion, evidence of

enhanced motoneurone sprouting was found. It is unclear, however, whether this pointed

to an enhancement of neurotrophic factor production as a result of prior exercise, or whether

the effects of electrical stimulation per se were sufficient to cause this response.

FES potentiation of voluntary movement In an attempt to understand the ‘carry-

over’ affect in muscle activity sometimes observed in partially paralysed limbs after periods

of functional electrical stimulation (FES), Rushton (2003) [149] hypothesised that it was

due to the unique motor neurone firing pattern of FES and the plasticity of nerve synapses.

During transcutaneous electrical stimulation of the lower motor neurone, impulses travel

along the axon in both directions, causing an unnatural antidromic ‘backfiring’ of impulses

to the cell body. Rushton suggested that a plasticity, or strengthening of the upper and lower

motor neurone synapse would occur according to Hebb’s postulate; Hebb suggested that

the more successful a presynaptic impulse was in generating a postsynaptic action potential,

then the stronger that synapse would become. The residual innervation following stroke or
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partial upper motor neurone lesion is often insufficient to depolarise the motor axon hillock

to threshold level and would therefore lead to a weakening of the synapse.

During FES, the cell body of the motor neurone becomes depolarised by the repeated

‘backfiring’ of the motor neurone, permitting any weak residual presynaptic impulses to

reach threshold level more readily, resulting in a degree of restored voluntary movement.

9.3 Stem cell research

In order to achieve functional CNS axonal growth and regeneration after lesion, some form

of cell transplant or peripheral nerve graft will be required to provide the axons with a

framework for growth since there is usually a loss of neural tissue at the site of lesion [148].

Neural stem cell research has shown limited success in the capacity for embryonic and adult

brain neural stem cell transplants to remyelinate damaged neurones [26] and for immature

astrocytes to stimulate axon regeneration.

Autologous transplants Olfactory system glial cells circumvent the ethical issues that

accompany the use of embryonic or fetal tissues and provide a promising autologous

transplant-mediated repair source that avoids the need for immunosuppression; olfactory

ensheathing cells (OECs) are capable of remyelinating demyelinated axons and promoting

the restoration of function after injury.

However, although OEC transplantation causes axons to regenerate they do not cross the

lesion or form post-synaptic connections to any great extent. Functional recovery is most

likely to be due to the neuroprotection and sprouting from the intact axons [9]. The harvest

of OECs is a highly invasive procedure, therefore, researchers are now investigating the use of

readily accessible, olfactory epithelium (OE) cells which have a unique regenerative capacity

and have been found to generate populations of active neural progenitors [110].

BDNF and stem cells Deumens et al. (2006) found that adding BDNF to a stem cell

culture caused a dose-dependent enhancement of neurite outgrowth on immature astrocytes

and concluded that multi-factorial strategies should be adopted for stem cell transplantation

[46].

9.4 Future research Areas

In a recent review, Vaynman & Gómez-Pinilla (2005) [168] concluded that since exercise has

been found to impact on the molecular systems relating to the maintenance of neural function,

plasticity and repair, then exercise may be a powerful protective agent pre-injury and as a

tool for neural recovery after spinal cord injury, and may facilitate stem cell transplantation

therapies.
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9.4.1 Improvements in volitional function after partial SCI

FES exercise may be an especially important form of exercise for complete and partial

lesion SCI individuals, especially where a high level of physical deconditioning has taken

already taken place. Notwithstanding the increasing body of evidence, added to by this

thesis, that FES exercise can significantly impact the cardiorespiratory, cardiovascular and

musculoskeletal health of individuals with paraplegia and tetraplegia [90], the evidence of an

FES mediated potentiation and restoration of voluntary movement in humans, and of motor

neurone sprouting after periods of FES in animal studies merits further investigation.

The judicious use of FES exercise soon after SCI may help to maintain or increase the

resting levels of BDNF in the CNS and the peripheral nerves. Aside from the possible

mood enhancing benefits of exercise enhanced neurotrophin production, the FES induced

potentiation of any residual voluntary movement and the neurotrophic effects of BDNF

may provide a favourable molecular environment in which positive neurological adaptations

can occur, especially where any transplant therapies are being considered. Additionally, for

those individuals with a partial lesion or other chronic neurological deficit, any FES induced

improvements in residual function may improve quality of life by enhancing existing voluntary

motor control, sensation and autonomic responses, improving the efficacy with which ADLs

are carried out.

9.4.2 Optimisation of FES stimulation parameters and muscle recruitment

patterns

It is important that new FES cycling stimulation strategies are developed that can improve

mechanical effectiveness and increase cycling power and efficiency. Strategies could be

developed to account for time and intensity dependent changes in muscle fatigue, which

influences optimal muscle group contraction frequencies (pedalling cadence). During

volitional exercise, force modulation can be achieved beyond the upper limits of motor unit

recruitment by varying the activation frequency (rate coding) [94]. The effect of this will

depend on the force-frequency relationship of the fibre type employed and on the gradation

of force required. If stimulation strategies can be designed to control power in a more natural

way, by a combination of changes in contraction frequency, motor unit activation and in rate

coding (stimulation frequency), then we may have a more effective and efficient stimulation

paradigm that can lead to greater improvements in FES cycling power production.
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