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Summary 

The purpose of this thesis is to investigate the properties of free products of C*-algebras 

and continuous bundles of C*-algebras. We also consider how these two areas are con- 

nected. 

In the first chapter we present background material relevant to the thesis. We dis- 

cuss nuclearity, exactness and Hilbert C*-modules. Then we review the definitions and 

properties of bundles and free products of C*-algebras. 

The second chapter considers reduced amalgamated free products of C*-algebras. We 

show that, if the initial conditional expectations involved are all faithful, then the resulting 

free product conditional expectation is also faithful. 

In the third chapter we are interested in the properties of reduced free product C*- 

algebras. We introduce the orthounitary basis concept for unital C*-algebras with faithful 

traces and show that reduced free products of C*-algebras with orthounitary bases are, 

except in a few special cases, not nuclear. Building on this, we then determine the ideals 

in a certain tensor product C ®� C°r' of the reduced free product with its opposite C*- 

algebra. In the second half of the chapter, we use Cuntz-Pimsner C*-algebras to study 

reduced free products of nuclear C*-algebras with respect to pure states. We show that, 

if the G. N. S. representations of the C*-algebras involved contain the compact operators, 

then the reduced free product C*-algebra is also nuclear. 

Chapter four looks at the minimal tensor product operation on continuous bundles of 
C*-algebras. We construct, for any non-exact C*-algebra C, a continuous bundle A on the 

unit interval [0,1] such that A®C is not continuous. This leads to a new characterisation 

of exactness for C*-algebras. These results are then extended to allow for any compact 

infinite metric space as the base space. 

Finally, we introduce free product operations on bundles of C*-algebras in chapter five. 

Both full and reduced free product bundles are constructed. We show that taking the free 
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product (full or reduced) of two continuous bundles gives another continuous bundle, at 

least when the bundle C*-algebras are exact. 

iv 



Contents 

Statement i 

Acknowledgements ii 

Summary iii 

Introduction vii 

1 Preliminaries 1 

1.1 Nuclearity and exactness ............................. 2 

1.2 Hilbert C*-modules 
................................ 4 

1.3 Bundles of C*-algebras .... ... ......... ..... ...... ... 7 

1.3.1 Continuous fields of C*-algebras 
. ... .... ....... ..... 9 

1.3.2 C (X )-algebras 
.... ... ....... .... ..... .... ... 10 

1.4 Full and reduced free products of C*-algebras 
. ....... ...... ... 13 

1.4.1 Full free products .......................... 13 

1.4.2 Reduced free products .......................... 15 

2 Free product conditional expectations 19 

2.1 Introduction 
..... ..... ... . ..... ..... ...... ... 19 

2.2 Faithfulness of the free product conditional expectation ........... 20 

2.3 Some examples .................................. 25 

3 Nuclearity and other properties of reduced free product C*-algebras 29 

3.1 C*-algebras with orthounitary bases ..... . .... ... ......... 29 

3.1.1 Introduction ............................... 29 

3.1.2 The free product orthounitary basis .................. 30 

3.1.3 Non-nuclearity of the free product ... .... ... ...... ... 33 

V 



3.2 The ideals of C ®� COP .... ...... ... ..... ...... . .... . 37 

3.2.1 Introduction 
..... ...... . .... .... .... . .... . 37 

3.2.2 The results . ..... ...... . .... . .... ......... . 37 

3.3 Reduced free products using pure states .................... 41 

3.3.1 Introduction 
..... ... ...... ....... .... ..... . 41 

3.3.2 Nuclearity of the reduced free product ................. 41 

3.3.3 Examples ....... ... ... . ..... .... .... . .... . 50 

3.3.4 An alternative proof . ... ...... ..... ......... ... 
50 

3.3.5 The general result ............................ 
56 

4 The tensor product operation on continuous bundles of C*-algebras 57 

4.1 Introduction .................................... 
57 

4.2 Continuous bundles on the unit interval . ..... ..... ...... ... 
57 

4.3 Continuous bundles on infinite compact metric spaces ............ 
64 

5 Free product bundles 68 

5.1 Introduction 
.... ...... ... ...... . .... . .... ..... .. 68 

5.2 Multiplier algebra bundles and full free product bundles 
.... . .... .. 70 

5.3 Construction of reduced free product bundles 
................. 

73 

5.4 Continuity of C' 
.... ... ... ...... . .... ... ...... . .. 75 

5.5 Continuity of C" ................................. 79 

5.6 Concluding remarks ............................... 84 

Bibliography 86 

vi 



Introduction 

Here we discuss the main points of this thesis. We start with free products, then move on 

to bundles of C*-algebras. 

Free products are becoming increasingly important in the theory of operator algebras, 
C*-algebras in particular. There are essentially two kinds of free product, the full free 

product and the reduced free product. The full free product appears to be the most 

natural, being' defined by a universal property in the same way as free products of groups 

are defined. It has been a part of C*-algebra theory for a considerable time. Unfortunately, 

the full free product is not often very well behaved. In particular, it is rarely nuclear or 

exact, and hence cannot be approximated well by finite dimensional C*-algebras. 

More recently, the reduced free product of C*-algebras (and von Neumann algebras) 
has been defined. It was defined in certain special cases by Ching [11] and Avitzour [4]. 

However, the theory really took off with Voiculescu [61], who also introduced the reduced 

amalgamated free product for the first time. 

In order to define the reduced amalgamated free product of a family (A, ), EI of unital 

C*-algebras containing a common unital C*-subalgebra B, it is necessary to have condi- 

tional expectations q: A, -* B for every tEI. So we are really dealing with pairs (A, 0) 

where A is a unital C*-algebra containing a copy of B and 0: A -3 B is a conditional ex- 

pectation. Such a pair is known as a B-probability space, one reason for this terminology 

being the following. Suppose that (Q, E, Fi) is a probability space. Let A= L' (Q, E, it), 

B=C and q, (f) =ff dµ. With these definitions, (A, 0) is a C-probability space. This 

construction shows that, for a general C*-algebra A, any pair (A, 0) may be thought of 

as a non-commutative probability space. This leads to connections between C*-algebra 

theory and probability theory, though we do not go into this here. 

Given a family ((A,, q, )), EI of B-probability spaces, the reduced amalgamated free 
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product 
ýA, ýý = *4EI(AL, 0r, ) (1) 

is another B-probability space (see chapter 1 for the actual definition). One of the most 

obvious questions related to this construction is whether or not the free product conditional 

expectation 0 is faithful. Generalising techniques of Dykema [18], we show that 0 is faithful 

precisely when all the 0, are faithful. This is done in chapter 2. 

Next, we consider various properties of the reduced free product, restricting to the case 

where B=C. Then, all the conditional expectations become states. One question that 

might be asked is, when is the reduced free product an exact C*-algebra? Dykema [20] 

has shown that, in equation (1) above, A is exact if and only if all the A, are exact. This 

result is true for arbitrary B. 

However, nuclearity is certainly not preserved in the same way. We always have a 

conditional expectation A -* A, for every tEI. So if A is nuclear then every A, is 

nuclear. The converse is false. For example, C, *(Z) is nuclear (indeed commutative), but 

the reduced free product 

C (Z) *r Cr (Z) = Cr (Fa) 
(with respect to the canonical traces) is certainly not nuclear. 

In an attempt to generalise the above example of an exact but non-nuclear reduced 

free product, we introduce the orthounitary basis concept for a unital C*-algebra A with 

a faithful trace rr. An orthounitary basis is really a generalisation of a group. If 0 is an 

orthounitary basis for A then 0 is a subset of A such that, if al, a2 E0 then the product 

a, a2 = Aa3 for some a3 E0 and some AET, the unit circle. See chapter 3 for the details 

of this. Any orthounitary basis 0 has an underlying group G. The orthounitary basis 

corresponds to a unitary projective representation 

7r: G --º PU(H). 

This is just a group homomorphism from G into the quotient U(H)/T where U(H) is the 

group of unitary operators on H= L2(A, r) and T is the normal subgroup of complex 

numbers of modulus one. See chapter 9 of de la Harpe and Jones [36] for more on unitary 

projective representations of groups. 

We show that most reduced free products of C*-algebras with orthounitary bases are 

non-nuclear. This is done by showing that the reduced free product C also has an or- 

thounitary basis. Moreover, the orthounitary basis for C is of a special form. This enables 
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us to show that a certain tensor product C ®� C°1' (see chapter 3 for details) contains the 

compact operators, using methods based on those of Wassermann [65]. As C ®� C°' is 

therefore non-simple, and yet C itself is simple, it then follows that C cannot be nuclear. 

The natural question to ask following this is, which C*-algebras have orthounitary 

bases? Fortunately, there are plenty of examples. The reduced group C*-algebra of a 

discrete group is the most obvious example, but matrix algebras, U. H. F. algebras and 

irrational rotation algebras also have orthounitary bases. 

Following on from this work, we then investigate the tensor product C ®� C°P more 

deeply. We know that this tensor product contains the ideal of compact operators. Ake- 

mann and Ostrand [1] were able to show that this is actually the only non-trivial ideal, 

in the case when C=C, *. (F2). Using their ideas, we show that the compact operators 

constitute the unique non-trivial ideal of C ®� C°" when we start from C*-algebras whose 

orthounitary bases are either finite or free, i. e. the underlying groups are either finite or 

free. The methods fail to work in other cases, one problem being that it is difficult to 

define a suitable length function on a group that is neither finite nor free. 

In the second half of chapter 3, we consider reduced free products of nuclear C*-algebras 

with respect to pure states. It is suspected that all such reduced free products are nuclear. 

Certainly, Kirchberg [41] has shown that a reduced free product of matrix algebras with 

respect to pure states is nuclear. Here we show that the reduced free product is nuclear 

if in addition the G. N. S. representations of the C*-algebras involved contain the compact 

operators. 

This is done using Cuntz-Pimsner C*-algebras. Dykema and Shlyakhtenko [24] showed 

that the reduced free product A embeds into a certain Cuntz-Pimsner C*-algebra E(H). 

If we are taking a reduced free product of nuclear C*-algebras, then this Cuntz-Pimsner 

C*-algebra turns out also to be nuclear. Assuming further that the G. N. S. representations 

contain the compact operators, it is possible to construct a conditional expectation IF : 

E(H) -+ A. This shows that A is nuclear. An alternative proof of this result is then given, 

using Kirchberg's work on reduced free products of matrix algebras [41] and methods from 

the proof of the equivalence of nuclear embeddability and exactness. 

Now we move on to the second main topic of this thesis, namely continuous bundles of 

C*-algebras. These have been a part of C*-algebra theory for a long time. They are often 

known as continuous fields of C*-algebras. More recently, the framework of C(X)-algebras 
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has provided another viewpoint on the theory of continuous bundles of C*-algebras. For 

this thesis, we are primarily interested in operations on bundles. The main question is 

whether or not continuity of the bundle is preserved by the operation in question. 

Chapter 4 looks at the minimal tensor product operation on continuous bundles. If we 

have a continuous bundle A on the space X, and B is a fixed C*-algebra, then there is an 

obvious minimal tensor product bundle A®B on the same space X. It is certainly not 

obvious that A®B is also continuous. This is true when B is exact. However, Kirchberg 

and Wassermann [44] showed that, if B is not exact, then there exists a continuous bundle 

A on the one point compactification N such that A®B is not continuous. The space N is 

the most simple non-discrete space. 

Here, given a non-exact C*-algebra B, we construct a continuous bundle A on the 

unit interval [0,1] such that A0B is not continuous. This is done by embedding N into 

[0,1], then modifying the methods of Kirchberg and Wassermann to produce a bundle 

on the space [0,1] instead of N` . This construction results in a new characterisation of 

exactness in terms of continuous bundles of C*-algebras with base space [0,1]. After this, 

we extend this bundle construction to bundles over any infinite compact metric space 
(X, d). Such bundles are constructed via the induced bundle construction, which is a 

well-known construction in the context of topological fibre bundles. We fix a non-isolated 

point xEX and define r?: X --> R+ by 

, q(y) = d(x, y)" 

As X is compact we can assume that ? I(X) C [0,1]. This enables us to use the bundle 

constructed on [0,1] to create a bundle on X. 

In the final chapter of this thesis we attempt to combine free products and continuous 

bundles, by considering free product operations on continuous bundles of C*-algebras. This 

is done in an attempt to perhaps obtain new characterisations of exactness or nuclearity, 

as in chapter 4. We first consider the full free product. Given a bundle A= (X, 1rß :A -+ 

Ax, A) and a fixed C*-algebra B, a full free product bundle A*B is constructed. This 

has fibres A., * B, as you might expect. Using results of Blanchard [9] (and Kirchberg) we 

show that, for any continuous bundle A (on a compact metric space with unital separable 

exact bundle C*-algebra), the bundle A*B is also continuous, regardless of B. The reason 

for this is that the assumed conditions imply that A is subtrivial. This in turn implies 

that A*B is also subtrivial, hence certainly continuous. 
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The situation for the reduced free product is more complicated. To construct a reduced 

free product bundle A *, B, we first need to attach a state to B and a continuous field of 

states to the fibres of A. We are then left with two possible definitions for the reduced free 

product bundle. There is the upper semicontinuous bundle C" and the lower semicontin- 

uous bundle C1. C" is the most natural from the C(X)-algebra point of view. However, 

it is not clear that the fibres are always A., *,. B. The bundle Ci has the advantage that 

its fibres are always Ax *,. B, which is what you would expect from a reduced free product 

bundle. 

We discuss possible methods for proving that Ct is continuous. It turns out that Cr 

is continuous precisely when the bundles Cu and C1 coincide. Using methods inspired 

by a result of Efros and Haagerup [25] we show that Cl is indeed continuous, at least in 

certain special cases. The main idea is to construct a unital completely positive lifting 

p: Ax -+ A. This is complicated by the requirement that p must respect the state on A. 

and the conditional expectation on A (in a sense made precise in section 5.4). 

Finally, we consider the continuity of C`. We show that, if A is continuous and has 

exact bundle C*-algebra then CL is continuous, regardless of B. This is done using the 

work of Dykema and Shlyakhtenko [24]. Interestingly, this is the same work that was 

used in showing the nuclearity of certain reduced free products in section 3.3. We embed 

C" into a Cuntz-Pimsner C*-algebra E(H), where H is a Hilbert D-bimodule, D being 

the bundle C*-algebra of the minimal tensor product bundle A®B. The Cuntz-Pimsner 

C*-algebra is also a bundle, and we use the structure of the Cuntz-Pimsner C*-algebra 

E(H) to show that it is actually a continuous bundle. We start from the fact that E(H) 

contains the minimal tensor product bundle D, which is continuous because A has exact 

bundle C*-algebra. From the continuity of E(H) , it 
follows that C" itself is continuous. 

Unfortunately, it is not clear if continuity of C" implies anything about the continuity of 

Cl. 
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Chapter 1 

Preliminaries 

This Chapter brings together background material which is relevant to this thesis. We first 

detail the notation and conventions used. Then Section 1.1 provides the definitions and 

some properties of the important concepts of nuclearity and exactness. These ideas are 

used heavily in the rest of the thesis, with Chapter 3 focussing on nuclearity and Chapter 

4 providing new characterisations of exactness. Exactness appears again in Chapter 5. 

Section 1.2 looks at Hilbert C*-modules, especially the interior tensor product, which 

appears throughout the rest of this thesis. In Section 1.3 we define continuous bundles 

of C*-algebras. We note the alternative viewpoints provided by continuous fields of C*- 

algebras and C(X)-algebras. Finally, in Section 1.4 we define free products of C*-algebras. 

We consider the full and reduced cases, as well as amalgamated free products. 

Notation and conventions 

If A and B are C*-algebras then A®B denotes the minimal or spatial tensor product, 

while A(&,,,.,, B denotes the maximal tensor product. Generally, AOB denotes the 

algebraic tensor product. All ideals are closed and two-sided, unless stated otherwise. The 

C*-algebra of bounded linear operators on a Hilbert space H is denoted by B(H). The 

C*-algebra of nxn matrices over the complex numbers is denoted M,,. Other notation 

will be introduced in later sections of this chapter. 
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1.1 Nuclearity and exactness 

Nuclearity and exactness are two of the most important ways of approximating an infinite 

dimensional C*-algebra by finite dimensional ones. Much information about these concepts 

can be found in Wassermann's monograph [66]. Their definitions are as follows. 

Definition 1.1.1. A C*-algebra A is nuclear if, for every C*-algebra B, there is a unique 
C*-norm on the algebraic tensor product AOB. 

Definition 1.1.2. A C*-algebra A is exact if 

0-A®J-3A®B-+A®(B/J) -+0 

(with the canonical maps) is an exact sequence for every C* -algebra B and for every ideal 

1 of B. 

The above definition of nuclearity is not always easy to work with,, so other char- 

acterisations in terms of approximation properties have been considered. The following 

definition makes use of completely positive maps. For more information on these, and the 

related completely bounded maps, see Paulsen [51]. 

Definition 1.1.3. A Unital C*-algebra A has the completely positive approximation 

property if there are nA EN and nets of unital completely positive maps ipa :A -+ M,, 
A, 

Oa : M�a --* A such that 

limAOa a(a) =a VaEA. 

If A is not unital, the approximating maps are required to be complete contractions. 

It is not too difficult to show that, if A has the completely positive approximation 

property, then A is nuclear. The converse was proved by Kirchberg [39] and by Choi and 

Effros [13], thus giving the following. 

Theorem 1.1.4. A C*-algebra is nuclear if and only if it has the completely positive 

approximation property. 

It is now more clear from the above theorem that nuclearity is a form of approximation 

by finite dimensional C*-algebras. All finite dimensional C*-algebras are nuclear, as are 

all commutative C*-algebras. 

Furthermore, the class of nuclear C*-algebras is closed under the taking of inductive 

limits and quotients. Another important property, which follows from Theorem 1.1.4, is 
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the following. Suppose B is a C*-subalgebra of the nuclear C*-algebra A and that there 

exists a conditional expectation from A onto B. Then B is also nuclear. This property 

is essential in Section 3.3. Perhaps surprisingly, there are examples of C*-subalgebras of 

nuclear C*-algebras which are not nuclear: see section 3.1.1. 

Moving on, it is natural to ask if exactness can also be reformulated in a similar way to 

the reformulation of nuclearity given in Theorem 1.1.4. This is indeed the case. A unital 

C*-algebra A is said to be nuclearly embeddable if for some Hilbert space H, there is a 

nuclear embedding t: Ay B(H). That is, there are na EN and nets A -+ MnA, 

Oa : Mla -* B(H) of unital completely positive maps such that 

1imac5aiia(a) = c(a) Va E A. 

In the non-unital case, the unital completely positive maps are replaced by completely 

positive contractions. We have the following result. 

Theorem 1.1.5. A C*-algebra is exact if and only if it is nuclearly embeddable. 

Proof. See Theorem 4.1 of [42] and chapter 7 of [66]. 0 

This result makes it clear that exactness is also a form of approximation by finite 

dimensional C*-algebras. Comparing with Theorem 1.1.4, it is obvious that any nuclear 

C*-algebra is exact. We also have that any C*-subalgebra of an exact C*-algebra is exact. 

This means that a C*-subalgebra of a nuclear C*-algebra is always exact. 

Not all C*-algebras are exact. An example is the full group C*-algebra of the free 

group on two generators, C*(F2) (see example 1.4.1). In fact, B(H) is not exact when H 

is infinite dimensional. 

Another property of some importance is the following. A C*-algebra is said to be resid- 

ually finite-dimensional if it has a separating family of finite dimensional representations. 

As with nuclearity and exactness, all commutative and finite-dimensional C*-algebras 

are residually finite-dimensional. However, the class of residually finite-dimensional C*- 

algebras is also closed under taking full free products, unlike the classes of nuclear C*- 

algebras and exact C*-algebras (see section 1.4). In this thesis, though, we will mostly be 

concerned with the concepts of nuclearity and exactness. 
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1.2 Hilbert C*-modules 

In this section we provide an overview of the most basic features of Hilbert C*-modules. 

Further information can be found in [47] or [67]. 

Suppose that A is a C*-algebra. An inner-product A-module is a complex vector space 

E which is also a right A-module and has an inner-product map(, ): Ex E -+A satisfying 

" (x, Ay + µz) = A(x, y) + µ(x, z) V x, y, zEE VA, µEC 

" (x, ya) = (x, y)a d x, yEE `d aEA 

" (y, x)=(x, y)*Vx, yEE 

" (x, x) >0 and (x, x) =0 implies x=0. 

This definition implies that the inner-product map is conjugate-linear in the first vari- 

able and linear in the second variable. Occasionally, in this thesis, we may make use of 

C-valued inner products which are linear in the first variable, but this should not cause 

any confusion. 

Definition 1.2.1. Let A be a C*-algebra. An inner-product A-module E is said to be a 

Hilbert A-module if it is complete with respect to the norm defined by setting jjxj) _ 

11 (x, x)111/2 for xEE. 

The theory of such modules really took off with the work of Paschke [50]. We now 

provide some simple examples of Hilbert C*-modules. 

Example 1.2.1. Taking A=C, we obtain the usual Hilbert spaces. Also, any C*-algebra 

A can be made into a Hilbert A-module over itself in an obvious way. If H is a Hilbert 

space and A is a C*-algebra, then we can form the Hilbert A-module H®A, which is the 

closure of the algebraic tensor product of H and A, with inner-product given by 

(e®a, i®b)=(e, 17)a*b VC, I7EH, Va, bEA. 

A closed submodule F of a Hilbert A-module E is said to be complemented if E= 

F® Fl where F-L is defined as for Hilbert spaces. In contrast to the theory of Hilbert 

spaces, closed submodules may not in general be complemented. 

Given a Hilbert A-module E, we shall be interested in the set L(E) of adjointable 

maps on E. This is the set of maps t: E -3 E such that there exists a map t* :E -> E 
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with 

(tx, y) = (x, t*y) V x, yEE. 

Such maps t are automatically A-linear and bounded. If A happens to be C we get the 

usual set of bounded linear operators on a Hilbert space. In general, L(E) shares many of 
the properties of B(H), but not everything. For example (as noted in chapter 2), we might 

expect that for tE L(E) we would have (imt)1 = kert*. However, whilst (imt)1 C kert* 

always holds, the equality fails in general. 
Contained inside L(E) is the ideal of compact operators K(E). This is the closed span 

of {9.,, 
y : x, yE E} where 0.,, y 

(z) = x(y, z) for zEE. When E=A, K(E) is isomorphic 

to A and L(E) is isomorphic to the multiplier algebra of A. 

The usual G. N. S. construction for a state on a C*-algebra gives rise to a representation 

of the C*-algebra as operators on a Hilbert space (see section 3.4 of Murphy [49]). We 

will often be interested in the situation where A is a unital C*-algebra, B is a unital C*- 

subalgebra of A, and 0: A -+ B is a conditional expectation. The conditional expectation 

gives rise to a kind of generalised G. N. S. construction, where A is represented as operators 

on a Hilbert B-module. This generalised G. N. S. construction is described in chapter 5 of 

Lance [47] and section 1 of Dykema [20]. Here we give a brief description of the details of 

the construction, sufficient for our purposes. 

We let E= L2 (A, 0) be the Hilbert B-module obtained from A by separation and 

completion with respect to the seminorm 

IIaII = II0(a*a)111/2 

There is a canonical map A --> E, which we denote by a i-+ ä. By construction, A is 

dense in E, and the inner-product map is defined on E by 

(äi, ä2 '= 4(aia2) 

for al, a2 E A. We represent A on E via it :A -3 L(E), where ir(a) (al) = äa1 for a, al E A. 

There is a vacuum vector E=1EE. This is the generalisation of the G. N. S. construction 

that we shall require. When taking reduced amalgamated free products of C*-algebras, we 

will require, for the pair (A, 0), that the corresponding G. N. S. representation is faithful. 

By this, we mean that we require 7r to be faithful. This is equivalent to asking that, for 

all aEA with a :A0, there is some al EA such that 0(aia*aal) 0 0. 
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We shall be particularly interested in tensor products of Hilbert C*-modules. There 

are basically two kinds of tensor product. Suppose E is a Hilbert A-module and F is 

a Hilbert B-module, where A and B are C*-algebras. Then the exterior tensor product 

E®F is a Hilbert A® B-module. It is defined to be the completion of the algebraic tensor 

product of E and F with respect to the norm induced from 

(xi ®yi, x2 (Dy2) _ (xl, x2) (D(yi)y2) 

where xi, x2 EE and y1 i y2 E F. Taking B=C and E=A, so that F is a Hilbert 

space, we obtain the tensor product of a Hilbert space and a C*-algebra, as considered 

previously. 

Although the exterior tensor product would appear to be the most natural construction, 

we will rarely consider it. Instead we shall use the interior tensor product of E and F 

most of the time. For this we require a *-homomorphism 0: A -º L(F). This makes F 

into a left A-module, so we can form the algebraic tensor product of E and F over A. We 

complete this with respect to the norm induced by 

(xi 0 Yl, X2 ® Y2) _ (Yi, 0((xi, x2))y2) 

where xl, x2 EE and yl, yz E F. The resulting interior tensor product is denoted by 

E ®0 F. It is a Hilbert B-module in the obvious way. Usually the *-homomorphism -0 will 

be obvious in any given context, so we will avoid explicitly mentioning it. 

Example 1.2.2. Perhaps the simplest example is when F=B and A=C. The *- 

homomorphism 0: C -+ M(B) is the usual unital embedding, and the interior tensor 

product then becomes the tensor product of a Hilbert space and a C*-algebra, as consid- 

ered previously. 

Example 1.2.3. A more interesting example is the following. Suppose that X is a compact 

Hausdorff space. Then we can consider a Hilbert C(X)-module E. Suppose that xEX. 

Then we have the evaluation map eve : C(X) -+ C. So we can form the interior tensor 

product Ex =E ®evx C, which is actually a Hilbert space. We think of E as a continuous 

field of Hilbert spaces over the base space X, with E,,,, being the Hilbert space attached to 

the point xEXX. In the case where E=H® C(X), H being a Hilbert space, we do of 

course get E. =H for every xEX. 

The above example can also be viewed in terms of the concept of localisation. This is 

discussed at the end of chapter 5 of Lance [47]. Suppose that E is a Hilbert A-module 
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with inner product (, )A, where A is a unital C*-algebra. Suppose that A contains a unital 

C*-subalgebra B and that there is a conditional expectation 0: A -* B. Then E can be 

made into a semi-inner-product B-module by defining 

(xi y)B = &((x, Y)A)" 

The usual completion process results in a Hilbert B-module E. 0, known as the localisation 

of E with respect to 0. 

This is useful because it is possible to define a *-homomorphism it : L(E) -> L(Eo). 

This is defined in the obvious way. It is injective if is faithful. To obtain the above 

example, take A= C(X ), B=C and 0= ev, for some xEX. 

Finally, we consider what is generally known as Kasparov's stabilisation theorem. Let 

H= £2(N) and denote by HA the Hilbert A-module H®A discussed earlier. It turns out 

that HA has the following remarkable properties. For proofs, see chapter 6 of [47] or the 

original paper of Kasparov [38]. A Hilbert A-module E is said to be countably generated 

if there is a countable set SCE such that the smallest closed submodule of E containing 

S is the whole of E. 

Theorem 1.2.2. Suppose that A is a C*-algebra and that E is a countably generated 

Hilbert A-module. Then E® HA ^_' HA. 

Corollary 1.2.3. Suppose that E is a countably generated Hilbert A-module. Then E is 

(unitarily equivalent to) a fully complemented submodule of HA. 

1.3 Bundles of C*-algebras 

In this section we consider bundles of C*-algebras. Bundles are very important in chapters 

4 and 5 of this thesis. They have been prominent in C*-algebra theory for some time. As 

algebras of operator fields, they were studied by Fell [29]. As continuous fields of C*- 

algebras, they were studied extensively by Dixmier [16]. 

Definition 1.3.1. Let X be a locally compact Hausdorff space. Then a bundle of C*- 

algebras over X is a triple A= (X, 1,, :A -} A, A) where A is the bundle C* -algebra, 

and A., is the fibre C*-algebra at xEX. The maps ir2, are surjective *-homomorphisms 

such that 

" the family {ire, :xE X} is faithful. 
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9A is a left Co(X)-module with i., (fa) =f (x)ir, (a) for xEX, fE Cc(X), aEA. 

We often write a. for ira, (a). The bundle is said to be continuous if, for every aEA, 

the function x ý---+ 11a. 11 is in Co(X). 

Example 1.3.1. There are two motivating examples for the above definitions. First there is 

the trivial bundle with fibre A (a C*-algebra) on the space X. This has bundle C*-algebra 

Co (X, A), with fibre A at every xEX. The maps 7r., are just the evaluation maps. Such 

a bundle is clearly continuous. 

Now suppose that X is a discrete space and that for every xEX we have a C*-algebra 

A. Then e EXA., can be made into a continuous bundle of C*-algebras over the space 

X, with fibre A,, at xEX and the obvious maps. 

In general, the bundle A= (X, 1r :A -+ Ate, A) is said to be trivial if there are a 

C*-algebra B and *-isomorphisms B,,, : A, -+ B, 0: A -} C0(X, B) such that, for every 

xEX, we have Ox o 1rx = ev,, o B. The bundle A is subtrivial if the maps B, 9, are not 

necessarily surjective. 

Example 1.3.2. An interesting example of a continuous bundle is given by Elliott, Natsume 

and Nest in [27]. This paper proves the Bott periodicity theorem via a description of the 

C*-algebra of the Heisenberg group as a continuous bundle of C*-algebras. The base space 

is R. The fibre at 0 is Co(R2), whilst every other fibre is K(L2(R)). 

Recently, Blanchard [9] has obtained some remarkable results on the subtriviality of 

continuous bundles of C*-algebras. These are best described within the framework of 

C(X)-algebras: see section 1.3.2. 

In this thesis, we shall be particularly interested in operations on continuous bundles 

of C*-algebras. Let A= (X, 1., :A -4 A, A) be a continuous bundle of C*-algebras and 

fix a C*-algebra B. Then the minimal tensor product bundle 

A®B= (X, ir�0id: A®B--+A, ®B, A®B) 

can be constructed. There is also the maximal tensor product bundle 

.Q Oma� B= (X, 7rm ®max id :A ®max B -+ Ax Omax B, A ®max B) 

The constructions of both these bundles are explained in [44]. 
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In [44] Kirchberg and Wassermann obtained a new characterisation of exactness of C*- 

algebras in terms of minimal tensor product bundles over the one-point compactification 

of the natural numbers N. 

Theorem 1.3.2. Suppose that B is a C*-algebra. Then B is exact if and only if for any 

continuous bundle A of C*-algebras over N (with separable bundle C*-algebra), A®B is 

continuous. 

They also found a similar characterisation of nuclearity in terms of maximal tensor 

product bundles over 1\Y. 

Theorem 1.3.3. Suppose that B is a C*-algebra. Then B is nuclear if and only if for any 

continuous bundle A of C*-algebras over ICY (with separable bundle C*-algebra), A ®�ýax B 

is continuous. 

In the above results, B is regarded as fixed and the initial bundle is allowed to vary. 

Fixing the bundle and allowing B to vary, we get a characterisation of exactness of the 

bundle C*-algebra. The following appears as part of Theorem 4.6 in [44]. 

Theorem 1.3.4. Let A= (X, i., :A -4 A, A) be a continuous bundle of C*-algebras 

with exact fibres. Then the bundle C*-algebra A is exact if and only if for any C*-algebra 

B, A®B is continuous. 

1.3.1 Continuous fields of C*-algebras 

Here we mention an alternative viewpoint for the theory of continuous bundles. We make 

the following definition. 

Definition 1.3.5. Let X be a locally compact Hausdorff space. A continuous field of C*- 

algebras A= ((A(x))xEx, r) consists of a family of C`-algebras A(x), indexed by the set 

X, together with a subset rc IIXEX A(x). The subset r satisfies the following: 

"F is a *-subalgebra of r[x¬x A(x). 

9 For every xEX, {s(x) :sE I'} is dense in A(x). 

" For every sEF, x '--* Ils(x)ll is continuous. 

" Suppose tE HXEX A(x). If, for every xEX and c>0 there exists s ET such that 

Ils(z) - t(z)It <E for z in some neighbourhood of x, then tE IF. 
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The subset IF is the set of continuous sections for A. If X is compact then r is a 

C*-algebra in the obvious way. If X is not compact then Fo c I', the subset of continuous 

sections which vanish at infinity, is a C*-algebra. 

As explained in the introduction of [44], the concepts of continuous field and contin- 

uous bundle are essentially equivalent and it is easy to pass between the two concepts. 

Sometimes continuous bundles are more useful in the context of a particular problem, 

other times continuous fields seem more natural. 

For further information on continuous fields of C*-algebras, see chapter 10 of Dixmier 

[16]. Continuous fields are also used extensively by, for example, Kirchberg and Phillips 

[43). 

1.3.2 C(X)-algebras 

This section considers the point of view provided by C(X)-algebras. First, recall the 

definition of a bundle of C*-algebras. We required the bundle C*-algebra A to be a 

left Co(X)-module with irý(fa) = f(x)i., (a). As explained in [3], this can be replaced 

by assuming the existence of a *-homomorphism 0: Co(X) -4 ZM(A) (where , AM(A) 

denotes the centre of the multiplier algebra of A) such that 

i,, (0(f)a) = f(x)i,, (a). 

This motivates the following definition, taken from section 2.2 of Blanchard [8]. 

Definition 1.3.6. Let X be a locally compact Hausdorf space. A CO (X) -algebra consists 

of a C*-algebra A together with a non-degenerate *-homomorphism Co(X) -+ , 
AM(A). 

We are usually interested in the case where X is compact and the non-degenerate *- 

homomorphism is actually an embedding. In this case, the non-degeneracy is equivalent 

to asking that the *-homomorphism is unital. 

Now consider 

Cý(X)A={fa: f ECC(X), aEA}. 

By [8] Corollary 1.9 this is a closed vector subspace of A and hence it is an ideal. Define 

A, to be the quotient A/Cx(X )A. It is now clear how a Co(X)-algebra can be made into a 

bundle over X. By [8] Proposition 2.8 the family of quotient maps {A -+ A/C3, (X )A},, Ex 
is faithful. So we do indeed obtain a bundle of C*-algebras over X. Moreover, the definition 

implies that this bundle is automatically upper semicontinuous (this is explained in, for 

example, section 1.1 of [9]). 
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Going in the other direction, suppose that we have a bundle of C*-algebras. Then, as 

remarked at the beginning of this section, we get a *-homomorphism Co(X) -+ . 
AM(A) 

in a natural way. Using this *-homomorphism, we obtain a new bundle over X with the 

same bundle C*-algebra as the original bundle but with possibly different fibres. By [44] 

Lemma 2.3, the new and original bundles coincide precisely when the original bundle is 

upper semicontinuous. 

It will be useful to consider representations of Co(X)-algebras on Hilbert Co(X )- 

modules. We use the following definition from section 2.3 of [8]. 

Definition 1.3.7. Suppose that A is a Co(X)-algebra. A Co(X) -representation 7r 

A -+ L(E) is a Co(X)-linear *-homomorphism from A into the adjointable operators on 

some Hilbert Co(X) -module E. 

This means that, for every xEX, it induces a Hilbert space representation ir, : Ax --> 
L(£,, ) where E., =£ ®ev,, C. If every 7ra, is faithful, 7r is said to be a field of faithful 

representations. As remarked in [8] section 2.3, the function x ý-+ jj7rx(a,,, )jj is always 

lower semicontinuous. 

A Co(X)-algebra is said to be a continuous field of C*-algebras if the bundle which it 

defines is continuous. In this situation, we will often simply say that the Co(X)-algebra is 

continuous. 

Given a Co(X)-algebra A, we let S (A) be the state space of A and we denote by SX (A) 

the set of states 0 such that OICo(X) is pure (and hence a character on Co(X)). So there 

is an obvious map p: SX(A) --3 X. We have the following theorem: see section 3.1 of [8]. 

Theorem 1.3.8. Let X be a locally compact Hausdorff space. Suppose A is a separable 

Co(X)-algebra with every A. non-zero. Then the following are equivalent: 

(1) A is a continuous field of C* -algebras. 

(2) p: Sx (A) -* X is open. 

(3) There is a family {4a} of continuous fields of states on A such that for every xEX, 

{evx o 4a} is a faithful family of states on A,,. 

(4) A admits a field of faithful representations. 

Here a continuous field of states on A is simply a Co(X)-linear positive map A --* 
Co(X) such that for every xEX, 4:,: = eva, o0 is a state on A,. 
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By Lemma 3.8 of [8], if X is compact and A is unital (a case we will often be interested 

in) then item (3) above may be replaced by 

(3') There is a continuous field of faithful states on A. 

The existence of such a continuous field of faithful states can also be seen from [6], in the 

case where X is a metric space as well as being compact. 

This theorem will be of use in chapter 5, where we consider the reduced free product 

operation on continuous bundles of C*-algebras. 

Next, we mention tensor products in the context of C(X)-algebras. Just as there are 
(maximal and minimal) tensor product operations on bundles of C*-algebras, so it also 

possible to take tensor products of C(X)-algebras. We will rarely consider such tensor 

products. For more details, see the work of Blanchard [7], [8]. 

Finally, we mention the following result of Blanchard [9]. 

Theorem 1.3.9. Suppose that X is a compact metric space and that A is a Unital separa- 

ble C(X)-algebra with unital embeddingC(X) -+ Z(A). Then the following are equivalent: 

(1) A is a continuous field of nuclear C* -algebras over X. 

(2) There is a unital C(X)-linear monomorphism ce :A C(X, 02) and a unital C(X)- 

linear completely positive map E: C(X, 02) -3 A such that Eoa= idA. 

Here, of course, 02 is the Cuntz algebra on two generators. Basically, this theorem 

says that any continuous bundle of nuclear C*-algebras is subtrivial. 

Kirchberg (in an appendix to [9]) showed that a continuous field of C*-algebras with 

exact bundle C*-algebra is subtrivial in the same way as in the above theorem (but of 

course the map E need not exist). 
Kirchberg and Phillips obtained similar results in [43]. They obtained more information 

about the embedding a (see the statement of the theorem above). However, they had to 

restrict the base space somewhat more than in Blanchard's result. 

Example 1.3.3. An interesting example of a bundle is given by the rotation C*-algebras. 

Let 0 be a real number between 0 and 1. Then, by definition, the rotation C*-algebra AB 

is the universal C*-algebra generated by a pair of unitaries u, v satisfying vu = e2ri9uv. 

See example 3.1.2 later in this thesis. 
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Elliott [26] showed that the family of rotation C*-algebras is actually a continuous 

field. That is, there is a C*-algebra A and surjective *-homomorphisms ne :A -4 AB such 

that 0 i--+ 117re(a)I) is continuous for every aEA. 
Haagerup and Rordam [35] were able to show that the rotation C*-algebras form a 

subtrivial continuous bundle. This was done as follows. Suppose H is a separable infinite- 

dimensional Hilbert space. Then they obtained continuous paths u, v: [0,1] -+ U(H) 

with u(0) = u(1), v(0) = v(1) and a(O)v(O) = e2'x%Ov(B)u(O) for every 0E [0,1]. This 

subtriviality is not surprising, given Theorem 1.3.9 above and the fact that all the rotation 

C*-algebras are nuclear. 

1.4 Full and reduced free products of C*-algebras 

There are basically two types of free products of C*-algebras, full free products and reduced 

free products. Both types will be of some importance in this thesis. 

1.4.1 Full free products 

Full free products of C*-algebras are defined in chapter 1 of Voiculescu, Dykema and Nica 

[62]. See also Blackadar [5]. For unital C*-algebras (these are our main concern) we have 

the following definition. 

Definition 1.4.1. Let (A, )', Ei be a family of Unital C*-algebras. The free product C*- 

algebra *LEIA, is the unique Unital C*-algebra A with Unital embeddings 1, : A, -A such 

that, given any unital C*-algebra B and unital *-homomorphisms 0, : A, -+ B there exists 

a unique unital *-homoinorphism (P :A -+ B such that q= 4) o o, for every tEI. That 

is, extends all the cL. 

Non-unital free products are defined in an analogous manner. 

It is necessary to show that the free product A actually exists. To do this, we consider 

the algebraic free product Ao, which is a *-algebra. Define the following norm for xE A0: 

IxII = sup{1'7r(x)'I : it a unital *-representation of AO on a Hilbert space} 

Completing Ao with respect to this norm, we obtain the free product A. 

Full free products relate very nicely to free products of groups. 

Proposition 1.4.2. Let (G,, )', EI be a family of groups. Then C*(*IEIG, ) _ *LEIC*(G, ). 
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Proof. See Proposition 1.4.3 of [62]. r-l 

Another important property of the full free product is the following. Suppose A and 
B are unital C*-algebras with ACB unitally. Then, if C is another unital C*-algebra, 

we have a canonical inclusion A*CCB*C. The minimal tensor product of C*-algebras 

satisfies a similar property. However, the maximal tensor product of C*-algebras does not 

have this kind of property in general. 

Full free products also satisfy the following. Recall the residually finite-dimensional 

property from section 1.1. 

Theorem 1.4.3. Let A and B be unital C*-algebras. Then the unital full free product A*B 

is residually finite-dimensional if and only if A and B are residually finite-dimensional. 

Proof. See Theorem 3.2 of Exel and Loring [28]. Q 

Unfortunately, taking full free products does not preserve exactness or nuclearity. 

Example 1.4.1. Consider C(T) where T is the unit circle. Now C(T) is commutative so is 

certainly nuclear and exact. But C(T) ^_' C*(Z) so 

C(T) * C(T) N C*(Z) * C* (Z) ý-2- C* (F2). 
In [63] and [64] Wassermann showed that C*(F2) fails even to be exact. Indeed, letting J 

denote the kernel of the canonical *-homomorphism C*(F2) -º C, *. (F2), the sequence 

o-ýC*(F2)®J_*C*(F2)®C*(F2) - C*(F2)®C (F2) -> 0 

is not exact. 

Finally, note that there is also the concept of a full amalgamated free product of 

C*-algebras. This involves amalgamating over a common C*-subalgebra. The defini- 

tion is very similar to Definition 1.4.1. Essentially the difference is that we only take 

*-homomorphisms q: A, -3 B which agree on the common C*-subalgebra. 

In fact, the unital full free product of C*-algebras that we have been considering is, 

strictly speaking, an amalgamated free product. We are amalgamating over the common 

C*-subalgebra C1. Full amalgamated free products will also be considered in chapter 5 of 

this thesis. 
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1.4.2 Reduced free products 

Reduced free products of C*-algebras have been important recently, both in C*-algebra 

theory and in free probability theory (see the book [62] for more on this). Reduced free 

products were introduced by Voiculescu [61]. Earlier they had been constructed in a less 

general manner by Avitzour [4] and Ching [11]. As we are particularly interested in reduced 

amalgamated free products, we shall define and construct the reduced amalgamated free 

product. See chapter 1 of [62] for the unamalgamated case, chapter 3 of [62] for the 

amalgamated case. Here we follow the notation and conventions of Dykema [20]. 

The concept of freeness (a non-commutative analogue of independence) is important. 

for the definition of reduced free products. 

Definition 1.4.4. Let A be a unital C*-algebra with Unital C*-subalgebra B and a condi- 

tional expectation 0: A -4 B. Consider a family of intermediate C*-subalgebras BCA, C 

A. The family (A,, ), Ej is said to be free with respect to 0 if 0(ala2 """ a�) =0 whenever 

aj E A,,, 0(aß) =0 and ai # c2 # ... 0 cn. 

We now define the reduced amalgamated free product. 

Definition 1.4.5. Suppose B is a urvital C*-algebra and that for every tEI, A, is a unital 

C*-algebra containing B and with a conditional expectation 0z : A, --3 B. Assuming that 

the corresponding G. N. S. representations are faithful, the reduced amalgamated free product 

C*-algebra is the unique unital C*-algebra A containing B, with conditional expectation 

0: A --> B and embeddings A, *A restricting to the identity on B, such that 

(1) 0 extends all the ¢,; 

(2) the family (A)EI is free with respect to 0; 

(3) A is generated by the union of the A,; 

(4) the G. N. S. representation of 0 is faithful on A. 

The reduced amalgamated free product is written 

ýAý 0) _ tEI (A� 0d). 

Sometimes the reduced free product (using states) of two C*-algebras A and B is written 

A *r B if it is obvious which states are involved. 
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A C'-algebra A with the above properties is unique. The question is, does there exist 

such an A? The construction goes as follows. Recall section 1.2 on Hilbert C*-modules. 

Let E, = L2(A,, q, ) be the Hilbert B-module obtained (via the generalised G. N. S. 

construction described in section 1.2) from the pair (A,,, q6). As usual, we denote the 

canonical map A, -+ E, by a º-- ä. Let irs, : A, -* L(E, ) be the corresponding (generalised) 

G. N. S. representation. We are assuming that every Ire. is faithful. 

Now consider the vacuum vector ýý =IEE, The subspace E, B is a complemented 

submodule of E,. Indeed, Off, F, is the projection onto &B. Let E° be the complementing 

submodule. That is, E° = {x E Ei. : (x, ý, ) = 0}. Note that this is just the closure of A° 

in E,, where A° = kerq,. Define 

E= ýB ®® Eý ®B Ez ®B ... ®B En 
nEN 

tl,..., cnEI 
1-1561,20-961-n 

where ýB is just a copy of B, considered as a Hilbert B-module, with ý=1. The tensor 

products are interior tensor products arising from restricting the maps it to B. The 

Hilbert B-module E is known as the free product Hilbert B-module, and we write 

(E, e) = *, EI (E, &). 

Next, take tEI and define 

E(t)=r7, BED ® E, OBEN®B... ®BEn 
nEN 

ýlr"" EI 

il 0i2 0.. "0ýn 
Ll #L 

where rj, B is another copy of B with tj, = 1. Let V, : E,, ®B E(t) -* E be the natural 

unitary operator defined by 

Eb 0 176ýý 

C ®77, '--+ C 

bý®ýý1®... ®ýný ý"_ýý1®... ®ýn 

(0«10 0W (OG0 ®(n 

cam. where (E E°, (i E E°, with 10 1,1 0 12 0""" -0 
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The unitary VV enables us to define a representation of A, on E rather than E4. That 

is, we get a *-homomorphism A, : A, -+ L(E) given by 

Ar(a) = V, (7r, (a) ® 1) V, *. 

We then define the reduced amalgamated free product A to be the C*-algebra generated 

by U, 
EI A (A, ). We let 0: A -+ B be the conditional expectation q(a) = (ae, E). Note 

that in the case where B=C, all the Hilbert C*-modules become Hilbert spaces and the 

conditional expectations become states. (We also tend to write H, for the Hilbert space E. 

in this special case. ) But, for a general reduced amalgamated free product, it is necessary 

to use the theory of Hilbert C*-modules. 

It is not difficult to check that (A, 0) satisfies the desired properties. Consider, 

for example, the property of freeness. Suppose that aj E A,, and ct , 
(aj) =0 for 

j=1,2,... , n. This means that (ajC,,,, &, ) = 0. Direct calculation reveals that, assuming 

40 L2 ... 0 bn ) 

ala2... aný=a ®a2®... ®an 

where we have omitted the representations A, Clearly. the right-hand side of the above 

equation is orthogonal to ý, hence 0(al a2 """a,, ) = 0. This proves that the freeness condi- 

tion is satisfied. 

This completes our review of the construction of the reduced amalgamated free product. 

Note that A is the closed span of B together with all reduced words. These are words of 

the form a, a2 """a,, where aj E Ate, 0., (aj) = 0, ti # ... # c� and nEN. We will often 

write A° for A, fl kero,. 

The canonical example of a reduced amalgamated free product is the one associated to 

an amalgamated free product of groups. See Example 2.3.1 for details of the construction. 

We also have the following interesting result due to Dykema [20]. 

Theorem 1.4.6. Suppose B is a unital C*-algebra, I is a set, and for cEI we have a 

Unital C*-algebra A, containing B and having a conditional expectation 0, : A, -B whose 

G. N. S. representation is faithful. Let 

(A, 0) = *ýEI (Ai, 01) 

be the reduced amalgamated free product. Then A is exact if and only if all the A, are 

exact. 
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So reduced amalgamated free products preserve exactness. The extent to which they 

preserve nuclearity is one of the questions asked in this thesis. 

Finally we mention the K-theory of free products of C*-algebras. Germain has inves- 

tigated the K-theory of both full [32] and reduced [30] free products of unital C*-algebras 

(amalgamating only over the units). See also Dykema and Rordam [23] for more on the 

K-theory of the free product. 
It turns out that, at least if the C*-algebras involved are nuclear, then the K-theory 

is the same for both the reduced and full free products. Moreover, the K-groups can be 

calculated from a simple six-term exact sequence. For details of this, see Germain [32], 

[30]. 

Example 1.4.2. Consider the reduced free product A of M, ti and M, (with respect to 

chosen states) for n, mEN. The results of Germain imply that Kl (A) is always zero. On 

the other hand, K0(A) =Z® Z/imce where the group homomorphism a: Z -4 Z®Z is 

given by 1'--p n® (-in). It follows that Ko(A) ^' Z$ Zk where k is the highest common 

factor of in and n. The K-theory of the full free product of M,,, and Mn will be exactly 

the same. 

So, K-theory is of some use in understanding free products, though we do not consider 

such methods in the remainder of this thesis. 
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Chapter 2 

Free product conditional 

expectations 

2.1 Introduction 

In this chapter we consider the faithfulness of the free product conditional expectation 

obtained in the construction of the reduced amalgamated free product of a collection of 

C*-algebras. First we review the case where amalgamation takes place only over the 

complex numbers. We then go on to show that the free product conditional expectation 

is faithful precisely when the initial conditional expectations are faithful. Following this, 

we consider some examples of reduced amalgamated free products and their associated 

conditional expectations. 

As in Section 1.4, let I be a set and, for tEI, let AL be a unital C*-algebra. We 

suppose that each A, contains the unital C*-subalgebra B and that we have conditional 

expectations q: A, -+ B with faithful G. N. S. representations. Let 

(A, 0) = *�EI(A� 4, ) 

be the reduced amalgamated free product C*-algebra. 

Consider first the case where B is the complex numbers. Then the conditional ex- 

pectations are states. It is clear that the state 0 inherits certain properties of the initial 

states 0,. From the reduced free product construction, it follows that 0 has faithful G. N. S. 

representation if all the 0, have faithful G. N. S. representations. It is easy to show that 0 

is a trace if every 0, is a trace. It is also true that 0 is pure precisely when every 4 is 

pure (see Section 3.3). 
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Voiculescu proved that the free product state in the reduced free product of von Neu- 

mann algebras is faithful, if the initial states are faithful. It follows that, in the C*-algebra 

case we are dealing with, 0 is faithful if for all L. EI the vacuum vector is cyclic for the 

commutant of A, (in the G. N. S. representation for (A,, 0, )). This is always true when 0, is 

a faithful trace. However, in [18] Dykema has constructed an example where ¢, is faithful, 

not a trace, and with the vacuum vector not cyclic for the commutant of A,,. 

Despite this, it is shown in [18] that 0 is faithful if all the initial states are faithful. 

In view of this, it is natural to ask whether the same result is true for the conditional 

expectations when amalgamating over an arbitrary common C*-subalgebra. This is indeed 

the case. Sakamoto [56] states this without proof, in the case when the common C*- 

subalgebra involved has a faithful state. Here we make no assumptions on the common 

C*-subalgebra over which we are amalgamating. 

The methods used in what follows are based on but at the same time generalise those 

found in [18]. The generalisation provides some clarification of the calculations and defini- 

tions of [18]. We use standard reduced amalgamated free product notation, as contained 

in Section 1.4. 

2.2 Faithfulness of the free product conditional expectation 

In the following, we assume that A, B for every tEI, in order to avoid the consideration 

of trivial cases. As remarked in [18], this is not really a restriction. 

Let nEN with n>2 and take indices cl 0 c2 #"""# to in I. For 1<jKn-1 let 

ýý = ä,,, EEC . Define V: E� --- Eby 

y=a,, a, 2 ... a,,, _, 
I E,,,. 

For n=1 we define V to be simply the canonical embedding of E� into E. This embedding 

EB B=E, 
�tox®ýbEE. sends xED E bEE°nn 

This is equivalent to the definition of V given in [18], when B=C. V is adjointable, 

with adjoint 

y* po(a41a42... a, n_1)*: 
E- E, 

� 

where P is the orthogonal projection onto E,,,, which is considered as a submodule of E 

via the canonical embedding defined above. 
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These maps V will be very useful in what follows. Note that V is not necessarily an 

isometry (unlike in [18] ), but this does not matter for our purposes. In fact, we have 

V*V = 0(a�_1 a., a,, ... a 

With V defined as above, we now perform some calculations involving V. The results 

are as follows. 

Lemma 2.2.1. Suppose mEN and kl 0 k2 #"""# km, with di E Akj for 1<j<m. 

Then: 

9 If m= 2p -1 where l<p<n, and k.,, = cl = kl, kii_1 = t2 = ka, ... , kp+i = 

tp_1 = kp-1i kp = t, then 

V*dl ... dmV = 0(a4,, 
_1 ... 

a r+, ä, bdpb'a,, a, p+l ... a, n_1) 
1 

where b, b' EB are given by 

b= 0(äP-1qua p-Z 
(... 0(a ; di) ... )dp-2)dn-1) 

b' _ 0(dv+, O(... c(dm_i4(dvnail)a,, 
z) 

" If m= 2n- l and km = tl = ki, km-1 = 1-2 = k2, 
... , kn+i = to-i = kn-i, kn = Ln 

then 

V*dl"""d�nV=bdnb' 

where b, b' EB are given by 

b=n-2.. ý(aýl dl) ... ) do-2) do-, ) 

b' _ 0(d,, +10(... 4(dm-l4(d+r+aal )aal) ... )ain-, ) 

. Otherwise 

V*dl ... d�mV = 0. 

Proof. This is similar to the corresponding proof in [18]. We use induction on n. 

First consider the case n=1. Here V is just the inclusion of Hilbert B-modules 

Eil -+ E. If m=1 and k,,, = tl then V*d1V = dl. If kn 0q and m>1 then 

di ... dmý=d1®... ®dm ItB®Ei (1) 
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and 

di ... dmE,, =d1®... ®dni®E° 1ýB®E, ',. 

So V*d1 ... dmV = 0. 

If km. = Ll and m>2 then (1) holds and we find that 

di ... dmEi C (dl®... (9 dm-1)B+d1®... ®dm. -1®E° J (D E,,. 

So again V*dl """ d41V = 0. Hence the statements of the lemma are valid in the case n=1. 

Now suppose that n>1. As V is an operator on Hilbert B-modules, we can no longer 

be certain that (imV)1 = kerV*. However, (imV)1 C kerV* is still valid, and this is all 

that we shall need. 

If k,,, cl then we obtain 

di... d,,, z 
(Cl 0 ... ®Cn - i) 

1imV 

dl ... dm(Si ®... ®Cn-ý 0 En) 1 imV 

since there cannot be any reduction of words. Hence V*dl " d, V = 0. Taking adjoints 

implies that the same is true if k, # t1. So let us assume that km = cl = k1. This implies 

that either m=1 or m>3. 

If n=2 then we obtain 

dl ... dm((1) = dl 0 ... ® CL-l 

+dl ... dm-1c6(dma41)ý 

and VC =ii EEOý, 

d1 
... 

dm (Ci 0 () =Z®... 0 dm_1 ®(dm(l - 
ýc, 0(dma, 

i)) 
®S 

(2) 

+dl ... 4-ic1(dmaj (3) 

If n>2 we obtain 

dl ... dm ((10 0 (n-t ) 

= di 0 ... 0 d,,,, -i 0 (dm(i - X41 ý(d+rºaýi )) ® (2 0 0(, -1 

+dl ... dm-1q5(d'ýýý, a, 1 
)aua ... a, n_1ý 

(4) 

and VC =ii EE°,, 
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dl ... dm ((1 ®... ®(n-1 ®() 

... ® Cri-i = di 0 ... 0 dm_i 0 (d,,,, (i - eil 0(dma,,, )) 0 (2 0 

+dl ... d,, º-i4(dma,,, )a,, ... a4n-1 < ý5) 

If m=1 then the second term of the right hand sides of equations (2), (3), (4) and (5) 

is orthogonal to imV. We can now apply V*. For example, applying V* to equation (5) 

gives 

p(a n_1 ... a 2ai(dia,, - 0(dia,, )1)a, ... aln_1a) 

= p(aýn_1 ... aua ail d1a41 a42 ... a,,,, -, 
a) 6 

Now, if x= a* """a, d1 a, " ", " aý then 
n-1 11 n-I 

x- q5(x)1 E ker-O 

so 

(x - q(x)1)Z 14 

and hence, x- O(x)1 is a sum of reduced words, all of which must end in some element of 

A°, 
_, . 

Since aE A°, and cß_1 # t, it follows that 

P((x - 0(x)1)<) = o. 

Hence (6) becomes 

p(O(a, 
n_1 a61 dta, 

1... a, n_, 

_ 0(a*_ 
1 ... a*1 dla,, ... a, n_1) 

Very similar things happen on applying V* to equations (2), (3) and (4), the result being 

that 

V*dlV= «ain_1 ... a idla, 
f ... alR_I)1. 

If in > 3, the first term in the right hand sides of equations (2), (3), (4) and (5) is 

orthogonal to imV. Hence we see that 

V*dl ... dmV = V*dl ... dm-2dtn-, q5(d.. at1)U 

where U is defined in the same way as V but using only the vectors (2,... 
, 
(, 

_1, not (I. 

For a moment, consider the calculation of U*dl """d,, V where m>2 and k,,,, = ci. 

We get the same equations (2), (3), (4) and (5): although there is a possibility that the 

23 



condition kl = t1 is not satisfied, this is not relevant to these calculations. We now want to 

apply U*. Since m>2 the first term on the right hand side of each equation is orthogonal 

to im U. So we obtain 

U*dl ... d, nV = U*dl ... dm-, Q(dinar, 1) U. 

The above paragraph shows that, letting dn, 
_l = dm_lgi(d,, a,, ), we have 

'T*di ... dýýiV _ V*di ... dm-2dm-lU 

_ (U*dm-id ; 
-Z ... 

d*V)* 

(U*J _1d; 
ß-2 ... 

d2O(dla, l 
)U)* 

= U*q(a`l dl)d2 

Now apply the inductive hypothesis to finish the proof. To give an idea of how the 

elements b, b' EB from the statement of the Lemma build up, consider the situation where 

m>5andn>3. Then 

V*dl ... dmV = U*ct(a, *ldi)d2 ... dm-2dm-1O(dma, 
1)U 

T*O(a 20(aids)d2)d3 ... dm-2q! (dm-IO(dmaLi )a,, )T 

where T is defined as for V but using the vectors (3,. .., (n_1. Q 

It is not clear that Lemma 1.3 of [18], which states that V*AV = A,,,, holds in this 

generality. However, it is clear from the proof that we still have V*AV C A,,,,, given the 

calculations performed in Lemma 2.2.1 above. This allows us to prove the following. 

Theorem 2.2.2. Let 

(A, 0) = *4E1(Ac� 0c) 

be the reduced amalgamated free product of C*-algebras. Assume that for every tEI, 

A, 0B and that the conditional expectation 0, is faithful. Then the free product conditional 

expectation 0 is faithful on A. 

Proof. Suppose that aEA, a>0, a0 and q(a) = 0. Then (ý, aý) = 0. Let p,,,... "'. 
denote the projection from E 'onto its direct summand E° 0"""0 E°,, where of course 

t1 #127-[.. 
"e Gm. 
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Since a>0 but a :A0 it follows that for some 411 12 , ... ,cy we have 

P�,... ��ap�,... tbn 
:0 

Let n be the smallest such that this holds. Then we can find 

z=(1®(20 ... 0 C� E E° ®... ®E°, 

such that 

(Z) Ptis..., 6napi-,,..., t�z) 0 0. 

In fact, since A, is dense in E° for all c, we can assume ätj for some a, E A°9 
, 

for all 

1<j<n. Now define V using the vectors (1, (2i ... , Cn_1. Then (ß't1, V*aV(,,, ) 0 0, so 

V*aV 0 but is > 0. Now we know V*aV E A, 
� so, because 0, 

� 
is faithful, we have 

Z V*aV )= 
cb 

( *aY) 10 but # 0. 

If ii=1then 

O(a) = 

which is a contradiction. If n>1 then 

(Ci ®... 0 (n-i, a((i 0 ... 0 (n-i)) = (ýý� V*aVF, 
�) 

>0 but # 0. 

It follows that 

pil,..., in_lapil,..., a»_1 
# 0. 

This contradicts the minimality of n. Hence we conclude that 0 must be faithful. Q 

2.3 Some examples 

In this section we consider some examples of reduced amalgamated free products and 

the related C*-algebras. 

Example 2.3.1. This is the main motivating example for reduced amalgamated free prod- 

uct C*-algebras. We suppose that for every t in some index set I, we have a discrete group 

G,. Suppose further that these groups all possess a common subgroup H. Then we can 
define the amalgamated free product of groups G= (*H)i. EIG, in the usual way. This is 
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a standard construction in group theory: see, for example, Chapter 4 of Magnus, Karrass 

and Solitar [48] for details. 

Define A=C, *. (G) C B(f2 (G)) and let B= span A(H) C A, where A is the left regular 

representation of G. If we let A, = span A(GB) C A, then B C* (H) and A, ^_' CT (GL). 

For cEI we define the conditional expectation r HG, : A, -+ B via 

G, A. for gEH 
rH (iýg) = where gEG,. 

0 forgOH 

We similarly define the conditional expectation T-H :A -+ B. 

It can easily be shown that 

(CC (G), r)- *1, EI (Cr (x''1)1 TH`). 

Letting TG :A -4 C and TH :B -+ C denote the canonical faithful traces, we have 

TG = TH o TH. So in this case the free product conditional expectation is faithful, as are 

all the initial conditional expectations. This is compatible with the results of Section 2.2. 

As a concrete example, suppose we have the two groups Z4 = (a; a4 = 1) and Z6 = 

(b; b6 = 1). Then Z4 contains {1, a2} = Z2 and Z6 contains {1, b3} ^_' Z2. Hence we can 

define the free product G of Z4 and Z6, amalgamating over the common subgroup Z2. 

Clearly G= (a, b; a4 = 1, a2 = b3). It is well known that in fact G SL2(Z) where a can 

0101 
be identified with and b can be identified with 

-1 0 -1 1 
In terms of C*-algebras we have 

C (SL2(Z)) =C (Z4) *C*(Z2) Cr (Z6). 

This is significant because, even though Cr (Z4) and C, *. (Zs) are finite dimensional (com- 

mutative even), the reduced amalgamated free product is not even nuclear. We will have 

more to say about this in Chapter 3. 

Example 2.3.2. Here we consider an important class of C*-algebras, namely the Cuntz- 

Pimsner C'-algebras. These will be of use in later chapters, so we review their construction. 

They were first considered in [52]. We use the same notation as in [24]. 

First take a unital C*-algebra B and let H be a Hilbert B-bimodule. That is, H is 

a right Hilbert B-module with an (injective) *-homomorphism B -+ L(H). We assume 
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H is full, so that the image of the B-valued inner product map on H generates B as a 

C*-algebra. Let 
. 
F(H) =B ED ®nýl H(®B) l be the Fock space over H, where H(®B) 

refers to the canonical n-fold interior tensor product of H with itself. Clearly 
. 
1(H) is also 

a Hilbert B-bimodule in a natural way. 
For hEH define the corresponding creation operator £(h) E L(. T(H)) by 

Q(h)hl®... ®h, =he hi ®... ®h, h1,... Ih, EH 

Q(h)b = hb, bEB 

These operators are clearly adjointable. Indeed the adjoint of £(h) is given by 

£(h)*h1®... ®hn=(h, h1) h2®... ohn, h1,..., h, EH 

g(h)*b = 0, bEB. 

Moreover, 

f(h)*Q(g) _ (h, g), h, g EH 

bi¬(h)b2 = £(blhb2) hEH, b1, b2 E B. 

We shall be mostly interested in the extended Cuntz-Pimsner algebra E(H), which is 

defined to be the C*-algebra generated by {¬(h) :hE H} in L(. F(H)). The fullness of H 

implies that E(H) contains a canonical copy of B. We also have a canonical conditional 

expectation E: E(H) -* B given by 

OF(X) _ (1B) x1B) xE E(H). 

The Cuntz-Pimsner C*algebra 0(H) is defined to be the image of E(H) in the quotient 

L(. F(H))/J where the ideal J is the C*-algebra generated by {L(®n=oH(®B)n) :kE N}. 

It turns out that J is the ideal K(. T(H)) of compact operators if H is finitely generated 

as a right B-module. Taking B=C and H to be a finite-dimensional Hilbert space, O(H) 

becomes one of the Cuntz algebras introduced in [14]. Taking B to be finite-dimensional 

and commutative, with H finitely generated, 0(H) becomes one of the Cuntz-Krieger 

algebras considered in [15]. 

In [58] Speicher has shown that, if we take two Hilbert B-bimodules H1, H2, then 

(E(Hi ®H2), EHi(DHz) 5-'-j (E (H1), CH, ) * (E(H2), EH2) 

where the conditional expectations are the canonical ones mentioned above. In contrast 

to our first example of an amalgamated free product, none of the conditional expectations 
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involved here are faithful. Indeed, for hEH we have E(1(h)e(h)*) = 0. Looking at the 

case where B=C we find that these conditional expectations become pure states. Note 

that pureness and faithfulness are mutually disjoint properties for states defined on a C*- 

algebra of dimension > 2: this follows easily from Theorem 5.3.4 of Murphy [49], which 

states that a state r on a C*-algebra A is pure if and only if 

kern=NT+N, r 

where NT = {a EA: T(a*a) = 0}. 

We shall have more to say about the Cuntz-Pimsner algebras in Chapter 3. 
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Chapter 3 

Nuclearity and other properties of 

reduced free product C*-algebras 

In this chapter we consider certain classes of reduced free product C*-algebras. We are 

particularly interested in the nuclearity of these reduced free products, but we also consider 

other properties. 

Section 3.1 looks at reduced free products of C*-algebras with orthounitary bases, using 

faithful traces. Most such free products turn out to be non-nuclear (although simple). 

Section 3.2 builds on these results. We consider the ideals in a certain tensor product 

C ®,. C°p of the reduced free product C with its opposite C*-algebra C°P. The methods 

used are based on ideas in a paper of Akemann and Ostrand [1]. 

Finally, in Section 3.3 we look at reduced free products of nuclear C*-algebras, using 

pure states. Many of these reduced free products are found to be nuclear (and not simple). 

There is a close connection here with the results on Cuntz-Pimsner C*-algebras contained 

in [24]. The results of this section contrast sharply with those of Section 3.1. 

3.1 C*-algebras with orthounitary bases 

3.1.1 Introduction 

This section considers the reduced free product of C*-algebras with orthounitary bases, 

using faithful traces. Recall that Takesaki [60] gave the first example of a non-nuclear 

C*-algebra, namely C, *. (lF2). Subsequently, Choi [12] gave an example of a non-nuclear C*- 

algebra embedded into a nuclear C*-algebra. Indeed, he was able to show that Cr* (Z2 * Z3) 
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is not nuclear and yet it can be embedded into the Cuntz algebra 02. 

Later, Wassermann [65] gave an explicit proof of the non-nuclearity of Cr (FZ) _ 

C; (Z) *r C, *. (Z). Here we show that many other reduced free product C*-algebras are 

in fact non-nuclear. The proofs are based on the methods in [65]. We construct a C*- 

norm v on CO C°P, where C is the reduced free product C*-algebra, such that v differs 

from the spatial norm. Clearly, this implies non-nuclearity of the reduced free product in 

question. 

Our results always assume the existence of orthounitary bases, a concept first intro- 

duced by Ching in [11]. Note that Dykema's results on various reduced free products [17] 

can also be used to show that certain C4-algebra free products (including many that we 

consider here) are not nuclear. However, our approach here is quite different and perhaps 

more elementary. 

3.1.2 The free product orthounitary basis 

Consider unital C*-algebras Al, A2 with faithful traces 7-1i r2 respectively. We take the 

reduced free product (C, T) _ (Al, rl) * (A2i rr2) as defined in Section 1.4. Our main 

purpose at the moment is to show that, if Al and A2 have orthounitary bases, then the 

reduced free product C also has an orthounitary basis. 

For i=1,2 we let Ai act on the G. N. S. Hilbert space Hi, via the representation 7rt and 

with vacuum vector Ci. If aE Ai, we write ä for the corresponding element of Hi. Let the 

free product Hilbert space be (H, e) _ (Hl, E1) * (H2, ý2). The trace is defined by 

T(c) = (cý, E) cEC. 

r-1 and r2 are faithful traces, so r is also a faithful trace. 

We make the following definition, which is adapted slightly from that found in [11]. 

Let U(A) denote the unitary group of the unital C*-algebra A. 

Definition 3.1.1. Let A be a Unital C*-algebra with faithful trace. We suppose A to be 

acting on the associated G. N. S. Hilbert space with vacuum vector ý. We say that 0_ 

(ua)aEJ is an orthounitary basis for A if 0C U(A) and 

1. (ua, e, u«2e) =0 if al, a2 EI and eel 0 a2i 

2. u, *, = c(a)u, (,, ) for some u�((, ) E0 and c(a) E T, where T is the unit circle, 

3. u«, u«a = c(ai, a2)u,, («, ý, 2) 
for some uµ(Q(1, a2) E 0, some c(al, 02) E T, 
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4. span 0=A. 

Note that some related objects, standard orthonormal bases, are used extensively in 

[21). These are similar to orthounitary bases, except that we only insist on the first and 

fourth conditions to be satisfied (and the condition 0C U(A) is also removed). 

The question of existence of an orthounitary basis seems to be quite difficult. Zorn's 

Lemma always gives a maximal (with respect to inclusion) subset of U(A) satisfying the 

first three conditions of the definition, but such a subset need not satisfy the fourth condi- 

tion. In fact, CC with a non-canonical trace does not even have any zero-trace unitaries 
(this example is mentioned in [4]). However, C, *. (G), with the canonical faithful trace, 

clearly has an orthounitary basis when G is discrete. This is given by the set of unitaries 

obtained from the left regular representation of G. We also have the following example. 

Example 3.1.1. Consider M�(C) with the canonical trace. Let WE M1, (C) be the matrix 

with 

Wn, i=Wl, 2=w2, s=... =Wn-1, n=1 

and all other entries zero. Let vE MM(C) be the matrix with 

vj, j =< n) 

and all other entries zero. Clearly v and to are both unitaries. Let 0_ {wkvi :1<j, k< 

n}. 

It can easily be checked that these unitaries are pairwise orthogonal (with respect to 

the trace). Using the relation vw = e21r("-1)i/nwv, it can be checked that 0 is actually an 

orthounitary basis for .,, 
(C) (see [11]). 

Now, suppose that Al has orthounitary basis 01 = (Ua)«EI and A2 has orthounitary 
basis 02 = (va)ßEJ. We may as well suppose that each orthounitary basis contains 1. This 

is because the fourth condition for an orthounitary basis implies that it is non-empty. The 

second and third conditions then imply that there is an element in the orthounitary basis 

of the form Al for some AET. The first condition implies that there is a unique such 

element. Multiplying every element of the orthounitary basis by ý gives an orthounitary 
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basis containing 1. So, fix cao EI such that uao =1 and fix go EJ such that vß0 = 1. 

We wish to construct an orthounitary basis for the free product C, following the same 

approach as in Ching's paper [11]. 

Define 

0= U{u«, vp, """ua�vp�: ai0aofor i>1, ßi5 ßofori<n}. 
n>1 

Lemma 3.1.2.0 is an orthounitary basis for the reduced free product C. 

Proof. The second and third conditions are easily seen to be satisfied since, for example, 

(uaivßl 
... tanVQn) = 1'U0. 

anllan_1 ... u«llý 

which is again of the required form once any unnecessary 1's have been eliminated. 

For the first condition, consider two distinct elements of 0, 

ul = UalVQ1 ... uanVß , 

U2 = U« Vol ... Ual Vol 

We suppose that m>n. Clearly 

(u1S 
i u2S) - 

(vs, ua, ... v*ýý ýuäý mal )Vßi 
. UanvAnýý Sý- 

mm11 

Consider first the pair al, ai. If cal = ai then uä, ual =1 so we move on to the next pair 

of indices. If al # al then, since 01 is an orthounitary basis, 

7 (uä1 
1 

ua, ) = (ua; 
S, aale) = 0. 

Assuming also vß� 1, vp, # 1, we know that 
in 

T(vß )=T(ua, )_... =T(vQi)=T(v$1)=... =T(u, j=T(vßn)=O. 

So, by freeness, 

T(Vß, 2Gä, "" v*, ('t * u2 
1)Vß, ... uýnvßn) = 0. 

mm 
ßi 

1 

Hence (ule, u2C) = 0. Very similar things happen if vp� =1 or vpý = 1. Now, either we 

meet a pair of indices which are not the same (and then the above shows that (uk', u2C) = 

0) or (if all of ul is `used up') we obtain (ulk, u2C) = (u3ý, C) where u3 is an end-portion 

of u2. A similar calculation to the one above then gives (u*C, C) = 0. So the first condition 

is satisfied. 

Finally, note that the span of 0 contains the span of all products from 01 and 02. It 

follows that the fourth condition is satisfied. Hence 0 is an orthounitary basis for the free 

product C. 0 
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3.1.3 Non-nuclearity of the free product 

Here we show that the free products we have been considering are not nuclear. In order 
to do this, we must first consider the G. N. S. representations of the free product C and its 

opposite C*-algebra C°p. There is an injection 

Cc_*H ; c'- +cý 

with dense image, so we may consider H to be the G. N. S. Hilbert space associated with 

(C, r) and ý to be the associated vacuum vector. 
We have the G. N. S. representation of C, given by 

.ý: C --ý B(H) ; A(c)(aý) = cad for aEC. 

In other words, A= id. There is also the G. N. S. representation of C°P, 

p: C°P --*B(H) ; p(c)(aý) = ace for aEC 

where COP is the same C*-algebra as C but with the multiplication reversed. As usual, 

(A(c), P(c°P)J = 0. 

Write the orthounitary basis 0= (ei, )«ES for some indexing set S. Since CT = H, 

(eaý)aES is an orthonormal basis for H. So, if cEC and we define ca = (ce, ea4) then 

cý =E aES caea . 
Applying p(a) to both sides of this equation for aEC shows that 

E-ES Cae« converges strongly to c on the dense subspace CE of H. In fact, this is valid 

for any c in the double commutant of C. This enables us to use the proof of Theorem 1 

from [11], something we do in Proposition 3.1.4. 

Lemma 3.1.3. The mapping F x; ®y; E )t(x; ) p(y; ) is an embedding of C ®C°P into 

B(H) if dimAl >2 and dimA2 > 3. 

Proof. To show that the mapping is injective, it suffices to show that CO Cop is simple. 

A standard algebraic result (see, for example, Theorem 4.1.1 of [37]) states that this is 

the case so long as C itself is simple. The dimension assumptions and the existence of 

orthounitary bases imply that the Avitzour conditions are satisfied, so by [4] C is simple. 

Hence the mapping is indeed injective. 13 
From now on we assume that the dimension conditions in the above Lemma are in 

force. The embedding allows us to define a C*-norm v on CO C°p. Let the resulting 

tensor product C*-algebra be denoted C& COP. We wish to show that v is not the spatial 
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norm, which is done as in [65] by making use of the '14c lemma'. First, recall the following 

from [11]. 

The indexing set S for 0 can be made into a group, multiplication being given 
by a102 = p(al, a2) where µ(ai, a2) is such that ea, ea2 = c(a1102)eu(a, a2) 

for some 

c(al, a2) E T. The identity is t, where e, = 1. 

Define FCS to be the set of a such that ea ends in a non-trivial vQ (recall the 

definition of 0). Choose non-trivial v, Q E 02 and let err = lvp. Then FUr0FrO1 = S\{i}. 

Next, choose distinct non-trivial Ua� ua2 E 01 and let e,, = ua, 1, e12 = ua21. Then 

F, r1Fri', r2Fr21 are pairwise disjoint subsets of S\{t}. We are now ready to prove the 

following. 

Proposition 3.1.4. C®�C°P C B(H) contains the compact operators K(H) if dimAl >2 

and dimA2 > 3. 

Proof. We first show that C ®,. C°" contains a rank 1 projection, obtained by applying 

the continuous functional calculus to xEC ®� C°P given by 

X= 
1(X(e+'o)P(ero) 

+ \(e, * )P(ero) + 2. A(e�)P(erl) 

+2A(er, )P(er1) + A(e12)P(er2) + A(er2)P(erz))" 

In the same way as in Lemma 2 of [65], we take (E (C)1 of norm 1 and define 

K= 11C - x(JI. We hope to get a numerical lower bound on K. If 

xi = 2('\(ero)P(ero) + )(ero)P(ero)) 

02 = 
2(A(e,, 

)P(erl) + \(eri)p(ert)) 

X3 =2 (A(er2)P(er2) + A(er2)P(er2)) 

then x=4 (xl + 2x2 + x3) so 

III - 
1(x, 

+ 2X2 + X3)CII = K. 

Applying Lemma 1 of [65] twice gives, for i=1,2,3 

jjxjC - (II < 3K1/4. 

Applying Lemma 1 again gives 

II A(er, )P(er, )C - (11 < 4K1"8 
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fori=0,1,2. 

Now we wish to apply the '14¬ lemma', stated as Lemma 4 of [11], in order to obtain 

an upper bound on ýI(Il. Decompose ( with respect to the orthonormal basis (e«ý)«ES: 

C_ E f(a)eae" 

aES 

Then fE £2(S), and since (E (Ce)l, it follows that f (ao) = 0, where ao is such that 

e«o=1. 

We have 

4K"8 > IIS 
- 

A(e*o)P(ero)(l j 

_ f(c)(ec 
- eroeaero 

aES 

= 
II1: f (a)eaý 

-Ef 
(a)Caeroaro 1 

aES aES 

_I (roßro 1)eroßrQ 1S -Ef 
(a)Caeroaro 

1S 

ßES aES 
1/2 

_ If (roar') - ca. f (a) I2 
aES 

Here c« ET is defined by e,. oeae, *,, = c«eroar0' 

Similar calculations work for e,., and ere, so Lemma 4 of [11] now gives II(II < 56K1/8 

As ( is of norm 1, it follows that K> 56-8. 

As in Lemma 2 of [65], this shows that x= x* is a contraction with xlC =1 and 

o (xI (CC) -L) C [-1,1- 56-8]. If f: [-1,1] --+ [0,1] is a continuous function with f (1) =1 

and f (t) =0 for t<1- 56-8, then f (x) is the rank 1 projection onto Q. So C ®, COP 

contains a rank 1 projection. 

Finally we must show that CO C°P acts irreducibly on H. Suppose E is a closed 
invariant subspace of H and let p be the projection onto it. Then PE (C (D C°p)l so 

PE \(C)' n p(C°P)' = a(C)' fl A(C)" = Z(A(C)"). 

But the proof of Theorem 1 in [11] shows that Z(A(C)") is trivial, so p=0 or p=1. 

Hence CO C°T' acts irreducibly on H and C ®� C°P contains the compact operators. Q 

Corollary 3.1.5. If dimA1 >2 and dimA2 >3 then the reduced free product C is not 

nuclear. 
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Proof. C is simple so C®C°p is also simple. But C®�C°p contains the compact operators 

and hence cannot be simple. So v cannot be the spatial norm. Q 

Note that Lemma 1.1 of [10] shows that there is a conditional expectation from the free 

product C onto each of Al and A2. So nuclearity of C implies nuclearity of both Al and 

A2. Hence the above Corollary is only really interesting when Al and A2 are nuclear. It 

also means that there is no interest in extending the statement of the Corollary to reduced 

free products of more than two C*-algebras. 

Recall from [20] that reduced free products of exact C*-algebras are exact. So, in the 

case where Al and A2 are nuclear, it is always the case that C is exact. 

Finally, note that Theorem 3.8 of [21] implies, in particular, that all the reduced free 

products we consider here are of stable rank 1. 

Which C*-algebras can we take for Al and A2 ? We have assumed that AI and A2 

have faithful traces, orthounitary bases, and have dimA1 > 2, dimA2 > 3. So either Al 

or A2 can be M,, (C) (n > 2) or C, (G) for some discrete amenable group G with at least 

3 elements. Another example is the following. 

Example 3.1.2. Consider the irrational rotation algebra AB, where 0 is an irrational num- 

ber between 0 and 1. AB is the universal C*-algebra generated by a pair of unitaries u, v 

satisfying vu = e2r'Buv. AB turns out to be simple and nuclear. These algebras were 

extensively studied by Rieffel [55]. 

Given (A, µ) E T2 there is an automorphism ßa, µ of AB sending u to Au and v to µv. 

This enables us to define a (unique) faithful trace r on AB via 

(x) d. \dµ xE A8. rr(x)1 = IL2 a 

With respect to this trace, the elements of 0= {uY : i, jE Z} are pairwise orthogonal. 

It then easily follows that 0 is an orthounitary basis for AB. Hence, either Al or A2 can 

be an irrational rotation algebra in Corollary 3.1.5 above. 

The following example is also of some interest. 
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Example 3.1.3. Let M be a UHF algebra. Then M= ®°_1 M3() for some positive integers 

s(i). Let O; be the usual orthounitary basis for M8! (j) (see Example 3.1.1), where 

s! (i) = s(1)s(2) s(i). 

We have Chi C 0; +l for every i, so let 0= U9010j. It is easy to see that 0 is an 

orthounitary basis for M, with respect to the usual faithful trace. Hence, either Al or 

A2 can be a UHF algebra in Corollary 3.1.5. Reduced free products of hyperfinite von 

Neumann algebras were considered by Dykema: see Theorem 4.6 of [17]. 

3.2 The ideals of C 0, C°' 

3.2.1 Introduction 

This section is closely related to Section 3.1. Here we continue to look at the C*-algebra 

C ®v C°T' defined in the previous section. Proposition 3.1.4 showed that this C*-algebra 

contains the compact operators as an ideal, when dimA1 >2 and dimA2 > 3. We show 

that K(H) is actually the unique ideal of C ®� C°7', generalising a result of Akemann and 

Ostrand in [1]. However, it seems necessary to assume that the underlying groups of the 

orthounitary bases for Al and A2 are either finite or free. 

First let us review the case where C= Cr (F2) = C, *. (Z) *r C, *(Z). Theorem 1 of [1] 

shows that in this case the compact operators are contained in C ®,. C°P. The proof of 

this uses the results of the extensive calculations done in [2]. However, Wassermann [65] 

showed how to obtain this result without referring to the calculations of [2], and we have 

used similar methods to prove the generalisations of Section 3.1. 

Theorem 3 of [1] states that the compact operators are the only non-trivial ideal of 

C ®,. C°P when C=C, *. (F2). The proof makes no use of the calculations of [2] or the proof 

of Theorem 1, and as mentioned above, the result can be generalised to certain other 

situations where C is not C, *, (1F2). 

3.2.2 The results 

Let Al and A2 satisfy the conditions required in Section 3.1, so that the compact operators 

is an ideal of C ®� C°p. We consider the case where Ai and A2 are finite dimensional, 

which is equivalent to asking that the orthounitary bases of Al and A2 are finite. We now 
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use similar methods to those in [1] to show that the compact operators form the unique 
ideal of C ®� C°'. 

Let 0 be the embedding of Lemma' 3.1.3. Consider the inverse mapping 0. This is a 

*-isomorphism from a dense *-subalgebra of C®�C°P onto a dense *-subalgebra of C®C°P, 

with norm 1. Hence 0 extends to a surjective *-homomorphism 0: C ®� C°P -- C® C°p, 

where C®�C°P is considered as a C*-subalgebra of B(H). The following lemma is required. 

Lemma 3.2.1. The kernel of 0 is precisely the compact operators K(H). 

Proof. First show that K(H) C kerq5. We know that kerq5 fl K(H) must be 0 or K(H) 

since K(H) is simple. If the intersection is K(H) then we are done. If it is zero, then 

O(K(H)) is an ideal of C® C°p, which is simple as remarked in Section 3.1. So either 

O(K(H)) = 0, which is what we want, or c5(K(H)) =C® C°p. This last equality leads 

to a contradiction, since q(K(H)) is non-unital, but C0 C°P is unital. So the conclusion 

must be that K(H) C keri. 

Next we show that kerq C K(H). Suppose aE ker5 and take c>0. Choose b= 

E1 b1A(xi)p(y; ) such that IIa- bit < e. Here xi, yj E 0, the orthounitary basis for C, 

whilst bi E C. Since 4(a) =0 and 11011 =1 we have I10(b)II < E. We will find a compact 

operator c with IIb - cit < v110(b)II < v/2-c, in order to show that a is compact. 

In order to define c, we need to consider a length function £ defined on the orthounitary 

basis for C. This function is defined in the obvious way, with Q(ua, vßl " ua�vp�) = 2n, 

t(ual) = 1, and so on. This is just the `block length' for reduced words in the free product 

C. Define Si = {x E0: £(x) < i} and Ti =0- Si. 

Let p be the maximum length of all elements of 0 appearing in the expression for b. 

Let q denote projection from H onto (spanS61, )ý. Since Al and A2 are finite dimensional, 

q is finite rank. So c= bq is compact. Also, 

Ilb - cal = sup f llbx112 :xE CT6pý with IIXI12 = 1}. 

Fix x= Eß_1 ajwjý in CT6 e, with the wj distinct. 

For zE0, let 

I(z)={(i, j): 1<i<n, 1< j <tand9cij ETsuch that xiw3yti=c12z}. 

Then let H= {z E0: I (z) # o}. Clearly H is a finite set. For zEH we let µz = 

E(, j)EI(Z) b; vjc, j. Then 

bx = bi0'jxi'fvjYj = NzZý" 

i, j ZEH 
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Hence 11bx112 = (E 
¬H 

IµzI2)1/2. 

We claim that there is ( in the algebraic tensor product COQ ® COe with £2-norm 1 

and such that 11bx112 < V2-110(b)(112, Clearly, if this is the case, then the Lemma will be 

proved. 

To define (, we need to define certain truncation functions. Let h= h1h2 ." h�b E 0, 

so that each hi, for 1<i<m, is either in 01 or 02 (the orthounitary bases for Al 

and A2). We define, for 1<i<m, f; (h) = hlh2 "hi. We let fo(h) = 1. Define also 

g (h) = fj (h) -'h. 

Decompose C0ý ® C0ý into orthogonal subspaces K, z for zE0, where K, z has or- 

thonormal basis 

{uC 0 ve : uvz-l E ý'1}. 

For j<t define (j EK by 

6n-1 
ý9 =E fk(w. l)b 0 gk(w. 1)ý" 4p 

k=p 

Then let _ Zý=1 Qj(j. Since 1 for all j, and the subspaces K,,,, are orthogonal, 

we have 11(112 = (E 1 I°jI2)1/2 =1. 
Let zEH and (i, j) EI (z). Then 

bp-1 
(xi 0 yi)(9 =1E xifk(Wj)S ® 9k(wj)yi.. 4p 

k=p 

Now xiwjyi = c, jz and £(wj) > 6p. So for p<k< 5p - 1, x; fk(wj) is, up to an element 

of T, an `initial portion' of z. Moreover, it is clear that the element of T is independent of 

k, as is the amount of cancellation between xi and fk(w, ). So xifk(wi) = sijfk+r(i, )(z) 
forp<k<5p-1, where I r(i, j)I <p and sjj E T. 

We also obtain 

9k(wj)Yi = fk('wj)-iwjYi 

= fk (wg xi cz 

= Sijfk+*('º, j)(Z) 
iCijz 

C+js Jgki-r(i, j)(z) 

Therefore 
6p-1+r(i, j) 

(xi 0 yi)(j = 
c_ q fk(z)ý®9k(z)e 

v Zp k=p+r(i, j) 
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and this is an element of Kz for every (i, j) EI (z). 

Now let QZ denote the orthogonal projection from Kz onto the subspace spanned by 

{ fk (z)ý 0 gk(z)ý : 2p <k< 4p - 1}. Define 

4p-1 

oz =E fk(z)ý 0 gk(Z)ý" 4p 
k-2p 

We have IIOZ112 =ä and Qz((x; ® y; )(j) = c; jLz for all (i, j) E I(z). 

Finally, we use the projections Qz to estimate 110(b)(II2. We get 
nt 

O(b)( = bi1: aj (xi0yi)Ci 

_ btiaj (xi ® y4)(ß 
zEH (i, j)EI(z) 

Now (xi 0 yz)(i E Kz so 

II0(b) (112 =E 11 biaj(zi (9 (jjj' 

zEH (i, j)EI(z) 

IýQzý biQj(xi 0 Y, )2 

zEH (i, j)EI(z) 

biajcijLzll2 

zEH (i, j)EI(z) 

_ 
II%IzOzll2 

zEH 

1 1: 11, z12 
zEH 

= 2IIbxl)2" 

This proves the Lemma. 

C3 

Proposition 3.2.2. Let Al and A2 be finite-dimensional C*-algebras with faithful traces 

and orthounitary bases, and dimAI > 2, dimA2 > 3. Then, if C is the reduced free product, 

K(H) constitutes the unique ideal of C ®� COP. 

Proof. Let I be an ideal of C ®� C°p. Then 0(1) is an ideal of C® C°P, which is simple, 

so either 0(I) =0 or 0(I) =C® C°P. If 0(I) =0 then I is an ideal of K(H) (by the 

previous Lemma), so I is either zero or K(H). If 0(I) =C0 C°l' then 10 0. So 

0: 0 K(H) ICIn K(H). 
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As I fl K(H) 0 0, we must have In K(H) = K(H) and this implies that I=C ®� C°P. 

Thus K(H) is the only non-trivial ideal of C ®v C°". Q 

This result can also be obtained in the case when the groups underlying the orthouni- 

tary bases of Al and A2 are both free. Indeed, Akemann and Ostrand look at the case 

where the underlying groups are both Z. The freeness of the groups involved ensures that 

a suitable definition of length can be obtained (more refined than the `block length' con- 

sidered in the Lemma above). For more general groups (ones that are neither finite nor 

free), it is not clear how to obtain a similar result. 

3.3 Reduced free products using pure states 

3.3.1 Introduction 

Here we consider reduced free products of C*-algebras with respect to pure states. These 

were considered by Kirchberg in [41]. In the course of showing that reduced amalgamated 

free products of finite dimensional C*-algebras are exact, he showed that the reduced free 

product of some matrix algebra with itself (a finite number of times), using the same 

pure state on each copy of the matrix algebra, is in fact an extension of a Cuntz-Krieger 

algebra by the compact operators. It follows that such reduced free products are nuclear. 

In the following we exploit the connection between reduced free products and Cuntz- 

Pimsner C*-algebras which is described by Dykema and Shlyakhtenko in [24]. We show 

that many reduced free products of nuclear C*-algebras with respect to pure states are in 

fact nuclear. This includes all reduced free products of matrix algebras (with pure states 

attached). 

3.3.2 Nuclearity of the reduced free product 

Let (A, 0) = (A1,01) * (A2,02) be the reduced free product of two unital C`-algebras Al 

and A2. We assume that the states 01 and 02 are pure (and of course have faithful G. N. S. 

representations). We assume also that Al and A2 are nuclear, this being a necessary 

condition for the reduced free product to be nuclear. 

Now let 7ri : Ai -+ B(H; ) be the G. N. S. representation corresponding to O;, for i=1,2. 

Let the corresponding vacuum vectors be denoted fit. We can show the following. 
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Theorem 3.3.1. Suppose that K(H; ) C it (Ai) for i=1,2. Then the reduced free product 

A is nuclear (and not simple). 

The extra condition required in the above Theorem is automatic when Al and A2 are 

matrix algebras, it being equivalent to pureness of the corresponding state. The condition 

is in fact clearly satisfied for any type I C*-algebras Al and A2. So, this Theorem covers 

all reduced free products of matrix algebras, as well as many infinite dimensional examples 

(see later in this Section). 

We now show how to prove this theorem, by relating the reduced free product A to 

the Cuntz-Pimsner C*-algebras. These were introduced in Example 2.3.2. 

First note that, by Voiculescu's characterisation of the commutant of the reduced free 

product (see Theorem 1.6.5 in [62]), it follows that the free product state 0 is pure. 

Now let B= Al 0 A2 and let p be the tensor product state on B given by 01 0 c2. 

Let H be the Hilbert B-bimodule L2(B, p) ®c B, and let E(H) be the associated Cuntz- 

Pimsner C*-algebra. Finally, we let E: E(H) -> B be the canonical vacuum expectation. 

Proposition 4.2 in [24] shows that there is an embedding 

it: A-4 E(H) (1) 

which is state-preserving in the sense that poEo it = 0. The following result is essential. 

Lemma 3.3.2. The Cuntz-Pimsner C*-algebra E(H) is nuclear. 

Proof. The tensor product B is certainly nuclear. We can then use the proof of Theorem 

3.1 in [24] to give a proof of the nuclearity of E(H), using the usual closure properties of 

the class of nuclear C*-algebras. 

Alternatively, use Theorem 2.4 of [33]. 0 

Hence, to show nuclearity of the reduced free product A, it suffices to provide a con- 

ditional expectation E(H) -* A. 

The proof of Proposition 4.2 in [24] shows that 

(E(H), po E) = (C,, O) * (B, p) (2) 

where C is the C*-subalgebra of E(H) generated by the non-unitary isometry £(1® 1), 

1®1 being an element of H. The state 0 is the (scalar valued) restriction of £ to C. 
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Clearly, C is isomorphic to the Toeplitz algebra. By the Toeplitz algebra, we mean the 

universal C*-algebra generated by a non-unitary isometry (see, for example, section 3.5 of 

Murphy [49] for more details on this). 

Let 1-L be the free product Hilbert space corresponding to the free product (2), with 

vacuum vector ý. Now ir is defined by 

ir(al) = ualu-1 al E Al 

ir(a2) = u2a2u-2 a2 E A2 

where uEC is a Haar unitary, in other words zlb(uk) =0 for all k>0. 

So, K= 7r(A)6 is a closed subspace of W. Let P denote the orthogonal projection from 

i1 onto this subspace, and let 

T: E(H) -+ B(IC) 

be compression with respect to this projection P. 

(3) 

The embedding (1) is state-preserving, so we may identify IC with the G. N. S. Hilbert 

space L2(A, 0). In fact, it is easy to see that TI7r(A) is an isomorphism between 7r(A) 

and A. So, to show that 41 is the required conditional expectation, it suffices to prove the 

following. 

Lemma 3.3.3. The image of T is contained in IF(ir(A)) (which we identify with A). 

Proof. This is divided into parts as follows. 

A. Decomposition of elements of B 

Since 41(1) =1 it suffices to consider Q(x) where x is a reduced word in the free product 

(2). By linearity and continuity of IV, we can assume 

x= ci(ai 0 bi)c2(a2 (9 b2)... cn(a® 0 b,, )cn+i (4) 

where cj E C, aj E Al, bj E A2, p(aj ® bj) =0 Vj, and &(cj) =0Vj. (We could possibly 

have cl =1 or c,,, +l = 1, depending on what type of reduced word x happens to be. ) 

Write aj 0 bj = (01(aj)1-{- aý) 0 (02(bß)1-}- Fj). Here, if aE (A, 0) then by ä we mean 

a- ¢(a)1. Doing this allows us to assume that each tensor a? 0 bj is one of the following 

three types: 

(a) aj ® bj with 01(aß) = 02(bß) = 0. 

(b) ay®1=aj with 01 (aj) = 0. 

(c) 10 b3 = bj with 02 (bi) = 0. 
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B. Projections in the free product A 

By assumption, Al contains the finite rank projection PQ,. Hence Al also contains 

1- Pc, = PHA . Let P2 be the image of this projection under the canonical embedding 

Al - A. Then P2 EA is the projection from (H, e) _ (Hl, ý1) * (H2,42) onto 

ED H", 
l1®... ®HLn 

n>1 
L10t2 ... #ln 

1.1=1 

Doing a similar thing for A2 gives a projection P3 E A, from H onto 

H° ®... ®H°. 
n>1 

i1=2 

We also define PI = PQ =1- P2 - P3 E A. These three projections, contained in A, will 

be useful in what follows. 

C. Evaluation of P 

IF is defined as compression by P, so to understand 4' it is useful to know how P can be 

evaluated. Suppose we have a vector xý E il, where x is of the form (4) and each tensor 

is either of type (a), (b) or (c). 

First note that, since P projects onto ir(A)e, it follows that 

P(ir(a)xý) = n(a)P(xý) 

for all aEA. 

(5) 

Next, note that P(xý) =0 if x contains any tensors of type (a). This involves showing 

that (ir(a)xe, ý) =0 for all reduced words a in the algebraic free product of Al and A2 (as 

well as a= 1). To get a non-zero result for (ir(a)xý, e), we must have complete reduction 

of the word 7r(a)x. But this involves either al E Ai or bi E AZ meeting a tensor a, ® bj 

of type (a), the result of which is alai ® bj or aj ® blbj. These tensors, however, are still 

reduced. That is, p(alaj ® bj) =0 and p(aj (D blbj) = 0. This means that reduction 

between the words ?r (a) and x `stops' at a3 0 bß, hence complete reduction can never occur 

and we must have (ir(a)xe, e) = 0. 

So we can assume that all tensors in x are actually elements of Ai or A2, in other 

words of type (b) or (c). That is, 

x= clalc2a2... Cnanýn+1 (6) 
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where aj E An (i) and n(j) E {1,2}. Of course, consecutive integers n(j) could well be the 

same. 

If ci =1 then P(xý) = 0, regardless of c, +l. This is because the concatenation of ir(a) 

and x is already a reduced word (7r(a) always ends with a non-zero power of u). 

If b(cl) =0 and n(1) =1 then we claim that 

p(clal ... cn+tý) = ip(u lci)P(uai ... cn+10 " 
(7) 

For this, we need 

(7r(a)C1a1... Cntlb, C) - , O(u 1C1)(ir(a) 
ua1... Cnt1Sýbý 

where, as usual, a is a reduced word from the algebraic free product of Al and A2. If a 

ends with an element of A2, both sides are zero. On the other, hand, if a ends with an 

element of Ai then both sides are seen to agree. 

If n(1) =2 then we get the corresponding formula 

p(cial ... cn+le) = 'ºgu-2e1)P(u2a1 ... c, 1+, 
)" (7') 

in the same way. 

Once (7) or (7') has been used, we can then write (in the case n(1)=1) 

P(ualc2a2... cn+1ý) = P(ir(ai)uc2a2... cn+iý) 

= ir(al)P(uc2a2 ... cri+iS) 

by (5). Continuing this process allows us to evaluate P(xý). For example, if al 
'E 

Ai, 

bi E A2 and cl, c2, c3 are reduced then 

P(ciaic2bicse) _ IG(u-1cl)V(u-IC2)0(u2Ca)7r(aibi)C" 

It is apparent that, if two consecutive integers n(j) are equal, then the result will be 

zero. Also, we made no assumptions on cn+l. Clearly we again get zero if cn+l happens 

to be 1. So the use of (5), (7) and (7') allow us to evaluate P(xý) fully for any type of 

word x. 

D. Words containing tensors of type (a) 

Now consider 1 (x) where x is of the form (4). We are assuming here that all tensors in x 

are of types (a), (b) or (c). Suppose x contains a tensor of type (a). Then we claim that 

T(x) = 0. 
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Indeed, P(xý) =0 by the comments in part C above, since x contains a tensor of type 
(a). Now consider P(x7r(a)ý) where a is a reduced word in the algebraic free product of 

Al and A2. Consider the reduction of xir(a) into a sum of reduced words. Any words 

containing a tensor of type (a) will be sent to zero on application of P. The only chance 

of obtaining something non-zero is when a tensor from x meets an element, say al E Ai, 

from a. 

In this case we obtain the following sequence 

c(aj 0 bj)aluk ... 

where cEC, aj ® bj is a tensor of type (a) from x, and k= -1 if there is nothing after ai 
in a, while k=1 if there is something afterwards. 

Applying P gives 

P(... c(ajai 0 bj)uk " .. ) = 01(ajai)P(... cbjuk ... ) 

(see part C). Apply the process mentioned in part C to evaluate P(. "" cbjuk ... ) : after 

removing ir(bj) using (5), we evaluate iP(u2uk) (when k= -1) or O(u-2(u2uk)) (when 

k= 1). In either case we obtain zero. 

An. entirely analogous calculation works for the case where aj ® bj meets bi E A2. So 

W(x) = o. 

E. Unsymmetrical words 

Having dealt with any words containing tensors of type (a), we can now restrict to x of the 

form (6), where everything is reduced, except possibly cl and c�+1 (these are permitted 

to be 1). 

It is clear from part C that 'F(x) =0 when both cl and c,, +, are equal to 1. Now we 

consider the unsymmetrical words where one (but not both) of Cl and cti+l is equal to 1. 

Since WY(x) = (W(x*))*, it suffices to consider the case where c11+1 = 1. Suppose 

an E Ai (a very similar argument works for an E A2). Suppose a, a reduced word in the 

algebraic free product of Ai and A2, begins with ai E A. Then 

P(xir(a)ý) = P(cl ... a,, uaiv, k 
... ). 

Here k depends on whether there is anything after ai in a but is always non-zero. 

Using the usual evaluation process, after removing ir(a,, ) using (5) we have to evaluate 

j('(u-IU2) = 0. Similarly, in the case when a begins with an element of A2, we are required 
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to evaluate V(u 2u3) = 0, so again P(xir(a)C) = 0. Therefore, since P(xC) =0 also, we 

get T(x) = 0. 

F. Evaluation of IF(C) 

We now wish to determine 'Y(c) for cEC. In fact, 

T (C) = b(c)Pi + Ik (u-icu) p2 + (u-Zcu2) p3 (8) 

where P1, P2 and P3 are the projections from part B. As these projections are actually in 

A (which we identify with 7r(A)), it follows that (C) C IF7r(A). Note that, from now on 

in the proof of this Lemma, uk denotes a non-zero power of u in some reduced word. The 

actual value of k will be unimportant, and depends on the type of reduced word involved, 

but is always non-zero. 

To prove (8), note that flc)ý = P(ct) = &(c)ý (this is easy to check). Considering a 

word a beginning with ai E Ai as in part E, we obtain 

P(cir(a)C) = P(ciaiuk "" ý) 

= ip(u-lcu)P(uaiuk """) 

= ik(u-1cu)7r (a) ý 

= l/'(u-lcu)P27r(a)e. 

Similarly for a word a beginning with an element of A. Hence (8) is proved. 

G. Induction formula for evaluation of II 

We are considering words of the form 

x= c1 a1C2a2... CnanCn+1 ý9ý 

where every letter is reduced and aj E A°(, ), n(j) E {1,2}. Let w= c1a1c2a2 "" "cn, so 

that x= wac,, +l. We show that W(x) can be written in terms of IF (x') for various words 

x' of length less than that of x. Since NY(C) C Pir(A), it will then follow by induction that 

the entire image of 'P is contained in Tir(A). 

We claim that, if a,,, E Ai, then 

ýýx) _(t 
1)7r(a )(Y'(ucn+l)Pi + b(c. +1u)P2 +, O(ý icn+1u2)P3)" ý10) 

Note wu-1 does indeed have length less than that of x. To prove (10) we need to evaluate 

both sides at various points, and check that equality holds. 
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At ý, the L. H. S. of (10) is 

P(wa,, c l+ie) = (ucn+i)P(wanu-1ý) 

using the usual evaluation of P procedure from part C. But this is precisely what you 

obtain from the R. H. S. of (10). 

At ir (a', ) ý, ai E Ai) 

L. H. S. = P(wan, c,, +Iualu-'C) 

= i(cn+lu)P(wan, aiu-1C). 

It is easy to check that this is precisely the R. H. S. 

At ir(bi)ý, bi E A2, 

L. H. S. = P(wa,,, c,, +lu2biu-2ý) 

= P(wa+, 7cn+1u2blu 2ý) 

Using the usual evaluation procedure, after removing Tr(an) we obtain 

P(ucn+lu2biu- 2e) 
_ 

)(u-2ucn+lu2)7r(bi)S 

_ (u-lcn+lu2)7r(bi)ý. 

On the other hand, the R. H. S. gives 

'P(u-1Cn+iu2)T(wu 1)7r(anbi)ý= b(u-1cn+iu2)P(wanubiu-2ý), 

which by the previous comments can easily be seen to be equal to the L. H. S. 

At ir(aibi "" )ý (a' E Ai, V1 E A2), a word beginning with an element of Ai and of 

length > 2, we have 

L. H. S. = P(wa,, c,, +luaiabiuk "" .o 

_ ip(cn+iu)P(wanaiubiuk ... ) 

while 

R. H. S. = "+/)(cn+lu)4Y(wu-)uanaiubiuk "" "ý 

= O(c a+Iu)P(wa�alubluk ... 

= L. H. S. 
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At 7r(b1'a1 '"" ")ý (bi E A2, ai E Ai), a word beginning with an element of A2 and of 
length > 2, we have 

L. H. S. = P(wa�c, 1+lu2biu-Iaiuk "" "ý) 

= P(wa,, cn+lu2biu-laiuk ... a 

Evaluating this, after removing ir(a,, ) we obtain 

P(ucn+lu2biu`laiuk ... ý) _ 'O(u-lc, +iu2)r(bIa, ... )ýC 

On the other hand, 

R. H. S. = O(u-1cri+lu')xF(wu-')7r(a, blaI... )ý 

_ b(u-lc,, +iuz)P(wanubiu-'a uk ... o 

which is now seen to be precisely the same as the L. H. S. This proves (10). 

If we have an E A2 in (9), a similar formula is obtained by very similar methods: 

Xp(W14-2)ir(a )1Y (u2CnFl)Pl + (uCn-f-lu)P2 + t%(Cni 1U2)P3) 
(11ý 

So, (10) and (11), along with part F, can be used to give a proof (by induction on the 

length of words) that all words x of the form (9) satisfy 'Y(x) E '@ir(A). We have now 

considered all possible words in the free product. Hence the Lemma is proved. Q 

The above Lemma is of interest in itself, providing some insight into the structure of 

the reduced free product (2), as well as showing how the reduced free product A and the 

tensor product B (both contained in E(H)) interact. The Lemma also allows us to prove 
Theorem 3.3.1. 

Proof of Theorem 3.3.1. By Lemma 3.3.3, we have a conditional expectation IY : E(H) -+ 
A. By Lemma 3.3.2, E(H) is nuclear. Hence A is nuclear. In part B of the proof of Lemma 

3.3.3, we showed that the finite rank projection PQ was contained in A. As remarked 

earlier, the free product state <0 is pure so the corresponding G. N. S. representation ? rO : 

A -3 B(H) is irreducible. As nk(A) fl K(H) # 0, it follows that K(H) C it (A). So A is 

certainly not simple. 0 
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3.3.3 Examples 

Which C*-algebras are covered by Theorem 3.3.1 ? As already remarked, all matrix 

algebras are covered, in particular the reduced free products considered by Kirchberg in 

[41]. We can also consider any unital nuclear C*-algebra A. Let no :A -+ B(HO) be 

the G. N. S. representation corresponding to some state 0 on A. Then 7rs(A) + K(Hs) is a 

C*-algebra to which the Theorem can be applied. 

Let Öd denote the Cuntz-Pimsner C*-algebra for the Hilbert C-bimodule Cd (where 

d is finite), with corresponding vacuum expecation (actually a state) Of (see example 

2.3.2). Now Sd contains the compact operators K(J''(C)), and it is readily seen that 

Cad/K(. F(C)) ^_' (9d, the Cuntz algebra on d generators. Thus Cad is an extension of Od 

by the compact operators, and we have 

(Ödl, ýF) * (Öds, 
qt) 

_ 
(Ödl+da, ýE) 

where dl, d2 E N. This is a special case of Speicher's result (see Example 2.3.2). The states 

Ot are pure, so Theorem 3.3.1 is saying that 0di+d2 is nuclear and not simple, which is 

certainly true. 

Note that if Al and A2 satisfy the required conditions for the Theorem, then Al ® A2 

with the tensor product state does as well. Also, the reduced free product A of Al and 

A2 satisfies these same conditions. 

Reduced free products with respect to non-faithful states were also considered in [22]. 

Theorem 3.1 in this paper states that certain free products 

(21,0) = (A, OA) * (MN (C) 0 B, ON 0 OB) 

are simple (and purely infinite), where ON(ell) = 1. However, this conclusion is only valid 

for pairs A, B which satisfy the so-called property Q, which, roughly speaking, excludes 

the compact operators from the G. N. S. representations of A and B. So the conditions of 

Theorem 3.3.1 do not apply. 

3.3.4 An alternative proof 

Here we give an alternative proof of Theorem 3.3.1. The methods used are perhaps less 

elementary, since they use a fair amount of the existing theory. They are related to the 

proof of the equivalence of nuclear embeddability and exactness: see Theorem 4.1 of [42], 

chapter 7 of [66], as well as section 1 of [53]. 
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The method is, roughly speaking, as follows. We know that reduced free products of 

matrix algebras (with pure states attached) are nuclear [41]. Now Al and A2 are nuclear, 

so they can be approximated by matrix algebras. Hence we can show that A is nuclear if 

we can take the reduced free product of the approximating maps for Al and A2. For this, 

we need these approximating maps to be state-preserving (see [10]). Unfortunately, this 

is not necessarily the case, so we need to modify the approximating maps somewhat, in 

order to ensure that they are state-preserving. 

Remark 3.3.1. We obtain some inspiration for this alternative proof by looking at reduced 

free products of UHF algebras with pure states (of a certain special form) attached. 
Suppose that M is a UHF algebra, so that M= ®t_1M3() for some positive integers 

s(i). Let qt be a pure state on M, (). Then is a pure state on M. 

For nEN, define 4)n :M --> Ms! l,, l where s! (n) = s(l)s(2)... s(n). We let act as 

the identity on the first n factors. That is 4WMsiil = id for i<n. Then, for i>n, we 

let (DnIMs(i) = q;. Thus 4), i is a tensor product of unital completely positive maps, and is 

therefore a unital completely positive map. It is also clearly state-preserving, in the sense 

that _ (® 10j) o (P (q5 being the state on M, M 10i being the state on M I(,,, )). 

Now let 'J! : M3! (n) -ý M be the inclusion. Obviously this is also a state-preserving 

unital completely positive map, in the sense that ®i 1q; =¢o Tn. With the above 

definitions, we now obtain 

Ilriln-ºooýý 
nýnýxý - xll =0 Vx E M. 

Indeed, this is clearly true when x is in U- 1 M,! (,,, ), and such x are dense in M. 

So we have the equivalent of Proposition 3.3.6 for UHF algebras (with states of the 

above form attached). Now the alternative proof of Theorem 3.3.1 (see after Proposition 

3.3.6) shows that reduced free products of UHF algebras with pure states (of the above 

form) attached are nuclear. 

This kind of procedure has also been considered by Haagerup in [34]. Here a semidis- 

crete 111-factor is approximated by matrix algebras, and it is shown that the approximating 

maps can be taken to preserve the canonical traces involved. As the canonical trace on 

a matrix algebra is somewhat different in nature from the pure states on matrix algebras 

that we are considering, it turns out that the methods used in [34] are quite different. 

We start with the following simple Lemma. 
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Lemma 3.3.4. Suppose B, and B2 are unital C*-algebras, with states 'O; E S(B; ) for 

i=1,2, whpse G. N. S. representations are faithful. Let (B, &) be the reduced free product 

of Bl and B2. Then B may be embedded into 

(Bi ®B2) 'i ®'a) * (Bi 0 B2) 'ºbi 0 '02)" (1) 

Moreover, there is a conditional expectation from the reduced free product (1) onto B. 

Proof. Clearly Bl embeds into Bl 0 B2 via bl bl ®1, and (010 ' b2) (b1®1) = 01(bl) . 
Similarly, B2 embeds into Bl 0 B2 in a state-preserving manner. Hence by [10] Theorem 

1.3 there is an embedding of B into the reduced free product (1). 

On the other hand, the map idB1 ®02 : Bl ® B2 -+ Bl is unital completely positive 

and state-preserving (that is, IN 0 1'2 = 01 o (idB, 0 b2)), similarly for 01 0 idB2. So by 

[10]' Theorem 2.2 there exists a unital completely positive map from (1) to B, and it can 

readily be seen that this map is in fact a conditional expectation onto B. Q 

In order to carry out the previously mentioned process of modifying the approximating 

maps, we also need the following simple result. 

Lemma 3.3.5. Suppose e and p are projections and that E>0. If 11(epe)2 - epee <E 

then II [e, p] II < 2\. 

Proof. We have 

11(epe - pe)*(epe - pe)II = Ilepe - (epe)'Il < c. 

So Ilepe - pell </ and Ilepe - epIl < Vfc-. Hence Ilep - pell < 2/. Q 

Next we consider the approximation of a nuclear C*-algebra with matrix algebras, 

using maps which preserve the pure states involved. We let 4o E S(,,, ) be the pure state 

on M,, given by Oo(ell) = 1. 

Proposition 3.3.6. Let A be a separable nuclear C*-algebra and suppose qE S(A) is 

pure, but with faithful G. N. S. representation ir. Suppose ir(A) D K(H), where H is the 

G. N. S. Hilbert space. Then for every finite dimensional operator system XCA and E>0, 

there exist nEN and unital completely positive maps :A -+ Mn, T: M, y -1 A such that 

4>, IF are state-preserving (in the sense that Oo o=0, qo = 00) and 11 (1I`4) - id) Ix 11 < E. 

Proof. This is certainly true if A is finite dimensional. Indeed, since 0 is pure, ir(A)' = C1 

so A has trivial centre. Hence A ^_' M. for some pEN. Now 7r(MM) = ir(M, )" = B(H) 
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so H- 0'. So we have a *-isomorphism it : Mp -+ Mp such that 0= 00 o 7r (choosing an 

orthonormal basis for 0' whose first element is the vacuum vector). This means that we 

can take n=p, 1D =7r and i=1-1. 

If A is not finite-dimensional, we can suppose that H= Q2 (N), with orthonormal basis 

el, e21 .... Here we can assume that el is the vacuum vector ý. 

As in Lemma 2 of [53], let (Pn :A -* M, 1 be the unital completely positive map given 

by compression with respect to the projection onto span{e; :i< n}. As el = ý, these 

maps are also state-preserving. 

Now consider 4)�IX. For large enough n this is going to be injective. So if n> no say, 

then we have an inverse mapping W� : (D, ti(X) -+ X. The proof of Theorem 1 in [53] tells 

us that the W, are completely bounded and in fact 

limn- 
oo 

lI Wn l lcb = 1. 

So for some large n we can take IlWnllcb <1+E. 

We need to use the nuclearity of A. Nuclearity implies that there are mEN and unital 

completely positive maps U: A -4 Mm, V: M,,, -+ A with 

II(VU-id)IxII<E. 

Consider UW� : 4ý,, (X) -* Mm. As U is completely contractive, we have IIUWnIIcb < 

1+E. The Wittstock extension theorem (see Theorem 1.13 in [66] for example) implies that 

there is a completely bounded self-adjoint extension W: Mn -4 Mm, with IIWIIcb <1+E. 

Now Proposition 1.19 of [66] gives a unital completely positive map T: Mn -º M" with 

II T-W IJ, b < E. Let IIJ = VT : Mn -4 A. This is a unital completely positive map. 

Since ir(A) D K(H), we can assume that X contains the rank one projection ell E 

K(H). We want T, to be state-preserving. Now -c%(ell) = ell E M, 1, so we would like 

Tl(eil) to be ell. What we can say is that, letting c'1(ell) = z, we have Ilz - elill < 2e. 

Define 190: M -+Aby 

IJo(x) = e11i1(e11xe1i)e11 + eil '1(elixell)e11 + e11W1(ellxeli)eli + el1W1 (e11xe11)e11. 

Here e11 =1- ell. Certainly, To is completely positive. Also, since ell is rank one, we 

have 

To(ell) = eiizell = Aeii 

where A>0 satisfies 1A - 11 < 2E. Although 1I is not unital, we do have 

To(l) = eiizeii + eli(l - z)e11 = t, say. 
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Note that Ilt - 111 < 2E so t is positive and invertible. 

The result of this is that we can define a map' : M,, -+ A by Q(x) = t-1/2fo(x)t-1/2 

With this definition, 'Y is unital and completely positive. It can be seen that [t, ell] = 0, 

so [t1/2, ell] =0 and hence 

IF(ell) = t-1/2eiizeilt-1/2 = ell 

It follows that ell is in the multiplicative domain of IF. Hence if xE M� then 

xF(eilxeii) = eiiW(x)eii = O(T (x))eii" 

On the other hand, 

XF(eiixeii) = W(oo(x)eii) = Oo(x)eii. 

Thus I is state-preserving. 

So, define to be ý,,. Then and T are unital completely positive state-preserving 

maps. What is II(T4D - id) Ix II ? 

Well, T: M� -+ AC B(H) is unital completely positive. Hence Stinespring's theo- 

rem gives a representation a: M� -* B(K) (where K is a Hilbert space containing H) 

such that, letting E denote projection from K onto H, we have T1(x) = Ea(x)E. Now 

IlEQ(eil)E - eiiII < 2e so it follows that 

II(Ev(eli)E)2 - Eo(eii)EII < 6E. 

Lemma 3.3.5 now implies that 11 [E, a(ell)] 11 <2 6E. Also, 

11 [E, o(ei)] II = 11 [E, o(eii)] 11 <2 6e. 

Using these estimates and the expression defining t'o(x), we get 

II 
o(x) - IFl(x)II < (16E+ 16 6 )IIxjI" 

Hence, Il'Yo - T11) <f (E) say, where f (E) -4 0 as E -3 O. 

Since Ilt-111 < 2E, it follows (by functional calculus arguments) that lit-1/2 < g(E), 

where g (c) -4 0 as c -4 0. So 

ýjq, (x) - o(x)ll <_ I1 t-1,2Wo(x)t-1/2 _ Wo(x)t-1/211 + Illpo(x)t-1/2 _ Xjo(x)I) 

:5 (Ilt-1/2II9(E) +9(E))IlXpo(x)i 

((1 + g(E))g(E)+ g(¬))(1 + 2E)IIxII 

= h(E)Ilxll say, 
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where h(E) -+ 0 as E --* 0. 

Now put everything together. We know that Wj-ýD(X) = UWn, and that IIVT -VWJJ < 

E. So IIVTI-P(X) - VUWnI4(X)II < E. Hence 

II('Yl-ýb - VU)IxII = II (VTR - VUWW,, (D)Ixll < E. 

But 11 (VU - id)Ix1I <E so II('i - id)IxII < 2E. As tIIF1- X11 < f(¬) + h(¬), we can 
conclude that 

II (xP, D 
- 

id)lx II <f (E) + h(¬) + 2E. 

As c is arbitrary, the result follows. Q 

The above Proposition allows us to give an alternative proof of Theorem 3.3.1. 

Alternative proof of Theorem 3.3.1 Take x1, ... , x,, in the algebraic free product of Al 

and A2, and take b>0. We wish to show that there are a nuclear C*-algebra N and 

unital completely positive maps a: A -+ N, 0: N -+ A such that jjßa(x; ) - xj f<6 for 

every i<n. From this it will follow, by standard techniques, that A is nuclear. Indeed, 

as N is nuclear, Theorem 1.1.4 implies that N has the completely positive approximation 

property. So the identity map id :N --+ N may be approximately factorised as aov for 

some unital completely positive a: N -+ Mp, v: Mp -* N (and some pE N). Hence 

the identity map id :A --r A may be approximately factorised using aoa: A -+ Mp and 

0ov: Mp -4 A. It follows that A has the completely positive approximation property, 

and so by Theorem 1.1.4 A is nuclear. 

Each xi has an expression as a sum of reduced words plus a multiple of 1. We know 

that the maximum length L of all the words involved is finite. Let L' be the maximum 

number of reduced words appearing in an x;. Let FF be the set of elements of Aj appearing 

in the expressions for the x; (j = 1,2). Apply the above Proposition to Aj with E= 8/2LL' 

and with X being the operator system generated by Fj (j = 1,2). 

For j=1,2 we get unital completely positive state-preserving maps aj : Aj -4 M�2, 

pj : M�j -+ Ai with the properties stated in the Proposition. By [10] Theorem 2.2, 

we can take the reduced free product of these maps to get unital completely positive 

a: A -4 M,,, *,. M,, a, ýß : M�i *,. Mme, -+ A. We can certainly assume that the norms of all 

elements in Fi and F2 are < 1. Now a is defined via 

«(a1 ... ak) = an(1) (a1) ... an(k) (ak) 
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where (for 1<j< k) aj E An(j) and n(j) E {1,2} with n(1) # n(2) 74 """ n(k). As p is 

defined in a similar fashion, it can easily be seen that 

llßa(x; ) - xtll < LL'e <6 

for all i<n. 

Finally, Lemma 7.6 of [41] implies that all reduced free products Mk *r Mk (with pure 

states attached and k any positive integer) are nuclear. Lemma 3.3.4 then shows that the 

reduced free product Mn, *,. M,, 
z mentioned above is nuclear. This means that we can 

take the nuclear C*-algebra N mentioned in the first paragraph to be the reduced free 

product M,, 
1 *,. 

MM2. Now standard techniques show that A is nuclear. Q 

3.3.5 The general result 

It appears likely that any reduced free product of nuclear C*-algebras with pure states 

attached is also nuclear, but it is not obvious how to go about proving this. 

The original proof of Theorem 3.3.1 does not work when the G. N. S. representations 

involved fail to contain the compact operators. It may at first seem possible to prove the 

general result via a generalisation of Proposition 3.3.6, where we do not assume that the 

G. N. S. representation contains the compact operators. The problem is that, without the 

compact operators around, it is not clear how to ensure that the unital completely positive 

maps involved are state-preserving. 

Finally, another approach could be to modify the proof that nuclearity implies the 

completely positive approximation property (as contained in Kirchberg [39] or Choi and 

Effros [13]). This modification would attempt to ensure that the approximating maps 

A -+ M,, -4 A, where A is the nuclear C*-algebra concerned, are state-preserving with 

respect to the pure state on A and some canonical pure state on M. 

One of the problems with doing this is that the proofs in [39] and [13] depend on the 

fact that the set of compositions A -+ M� -4 A (where n can vary and the maps are unital 

completely positive) is a convex subset of the set of all unital completely positive maps 

from A to A. If we insist that we only allow state-preserving maps in these compositions, 

then convexity is lost. 
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Chapter 4 

The tensor product operation on 

continuous bundles of C*-algebras 

4.1 Introduction 

This chapter looks at continuous bundles of C*-algebras. See Section 1.3 for the necessary 

background material. We are particularly interested in the minimal tensor product opera- 

tion on bundles. The most important question is whether or not continuity of the bundle 

is preserved by this operation. As remarked by Kirchberg and Wassermann [44] it was at 

one time thought that continuity was always preserved. 

In [44] bundles with base space N` were constructed such that continuity was not always 

preserved. In Section 4.2, we construct a bundle on the unit interval [0,1] such that 

continuity is not always preserved. In Section 4.3, we extend this, giving a construction of 

a bundle on any fixed compact infinite metric space X such that continuity is not always 

preserved. These constructions give rise to new characterisations of exactness in terms of 

the continuity of certain minimal tensor product bundles. 

4.2 Continuous bundles on the unit interval 

Here we construct a continuous bundle on [0,1] such that continuity is not always preserved 

by the minimal tensor product operation. First of all we review the properties of the 

minimal tensor product bundle and the situation for the base space N. Then we provide 

a fairly general procedure for constructing a continuous bundle of C*-algebras on [0,1], 

starting from a sequence of C*-algebras. Finally we use this procedure to obtain a bundle 
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on [0,1] with the required discontinuity properties, thus giving a new characterisation of 

exactness for C*-algebras. 

Let A= (X, 7r., :A -> A, A) be a continuous bundle of C*-algebras, and fix a C*- 

algebra B. The minimal tensor product bundle A0B is given by 

(X, 7r, 0 id :A0B -} Aý, 0 B, A0 B). 

So if A has fibres A., then A®B has fibres A,, ® B. If A is continuous then A®B is 

always lower semicontinuous (see Lemma 2.5 of [44]). It turns out that, so long as A is 

exact, A®B is actually continuous (Theorem 4.6 of [44]). Also, if B is exact then A®B 

is always continuous (see Theorem 4.5 in [44]). 

However, if B is not exact then there exists a continuous bundle A on tY such that 

A0B fails to be continuous. This is described in Proposition 4.3 of [44]. The base space 

ICY is clearly the simplest metric space on which there exist discontinuous functions. The 

question is, can we replace N with the unit interval [0,1] ? This is certainly possible in the 

corresponding situation for maximal tensor product bundles (see Remarks 3.3 of [44]). 

Now we provide a fairly general procedure for constructing continuous bundles of C*- 

algebras on [0,1], starting from a sequence of C*-algebras. In fact, we always consider 

bundles on 15+, the one point compactification of the non-negative reals R+. As [0,1] is 

homeomorphic to R+, this can certainly be done. The main reason for doing it is to make 

the construction a bit easier. 

Start with a sequence Al, A2, A3, ... of separable C*-algebras. We let ®°_, A; denote 

the direct product of this sequence. That is, 

®O°1Ai xi E Ai Vi, sup lixill < oo 
l i>1 111 

We also assume we have embeddings A� -1 A�+i, and we suppose we have a separable 

C*-algebra A such that Io aAC ®°O_1Az, where Io is the ideal of sequences in ®°°_1A; 

tending to zero. 

Define B to be the set of f= (fn) E ®°° 1C([n - 1, n], An) such that 

" supnENllfnj) < oo (actually part of the definition of ® 1) 

9 fn (n)=f,, +l(n) VnEICY 

" (fn(n - a))%1 EA We E [0,1] 
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"a ý--+ (f,,, (n - a))°°_1 is a continuous function from [0,1] to A. 

We can (and will) think of elements of B as bounded functions on R+. To be explicit, 

to f= (fn) E B, we associate the function g on R+ given by 

s(x) = (x)" 

The second clause in the definition of B ensures that the definition of g is unambiguous 

at integer values. The first clause of the definition of B ensures that g is norm-bounded. 

The final clause of the definition of B implies that there is an embedding t: B -* 
C([O, 1], A). As C([O, 1], A) is separable, it follows that B must also be separable. Clearly 

B is a closed *-subalgebra of ®°° 1C([n - 1, n], An), in other words B is a C'-algebra. 

ForxER R+, l 

Bx=B/{f E B: fI[x, oo)=0}. 

We think of elements of B., as functions on R+ that are zero except possibly on the interval 

[x, oo). Also, define 

B,,,, = B/{ fEB: limz. ý Ilf (z) 11 exists and is zero}. 

There is an embedding j: Bc ®xEft+B,,, via the quotient maps 7rß :B -> B., 

7rß B -+ B. 

Note that, if fEB then 

illr"(f)II = limn-ºooIIf(z)II" 

The proof of this is similar to the proof that 11 ir(s)11 = Isn. I, where s= (sn) E t°° is 

a bounded sequence of complex numbers and ir is the quotient map corresponding to the 

ideal co of sequences s with s,, -* 0 as n -> oo. Now, this formula for 117r(s)II is obtained 

using truncations of a sequence s. That is, we consider sequences s' of the form s' = sn 

for n<N (and sn =0 for n> N) for some N. What we are really using is the fact that 

£°° is closed under multiplication by elements of co. 

In a similar way, in order to prove the formula for +'7r, (f) jj we need to show that B is 

closed under multiplication by elements of Co(R), where this multiplication is defined in 

the obvious way. So, if hE Co(R), we need to show that hf E B. 

The first clause in the definition of B is satisfied since his bounded. The second clause is 

satisfied since his continuous. For the third clause we need to show that ((h f) (n-a))�>1 = 
(h(n - a) f (n - a)), >1 is an element of A. It is certainly a member of Jo, so it must belong 
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to A. For the fourth clause we need to show that a i-+ (h(n-a) f (n-a)), 
ti>, is continuous. 

This is true because this is basically a product of two continuous functions. It follows that 

hf E B, and hence the required formula for 117roo(f)ll can indeed be proved. 

Denote by B' the image j(B). Now let v, : ®YEft+By -+ Bx denote the x'th coordinate 

map. Then 

BI ={yE®IBx: 3f E. Bwith irx(f)=a,, (y) Vx E1L }. 

We usually write -y,, for 

Any fE C(i ) acts on ®,, B,, by sending ^y E ®x B,, to fry where (f y), =f (x)-yam. 

Now B' is not necessarily invariant under this action, so we enlarge B' to B", the smallest 

C*-subalgebra of ®x Bx such that B' C B" and C (f +) B" C B". 

We can now define our continuous bundle on 1E8+. The bundle algebra is B" C 

®xEft+Bx. The fibre at xE R+ is Bx, with the fibre map B" -+ Bx being oTxIB". This 

definition means that the required module properties are trivially satisfied. Faithfulness 

is also clearly satisfied. The fibre maps are surjective since 

a, (8�) Do (B') = 7rx(B) = Ba,. 

Finally we must check continuity. 

Now B" is the closure of 

IE 
gjyj : 9: E C(ft+), ^y; E B', sum finite} 

. 

So first consider a typical E g; 7; where y; E B' and so (yt)x = 7rx (f=) for some f; E B. We 

wish to consider continuity of the function 

x '--H 
II(ýth )III 

_ IIE gi(X)7rx(fi) 11 
= 

II 
Týx(ý9i(x) fi)II 

SuP 
llEgi(X)fi(Y)II if x< oo 

All the functions involved are bounded continuous functions on R+, so this function is 

clearly continuous at all finite x. 

To show continuity at oo, we need to show that (as x -4 oo), 

sup 
IIE9$(x). fti(Y)ll -ý limZ 

->oo 
11E92(00)fz(z)l) 

Here, we're using the fact, discussed previously, that 11iroo (f) II = Tim. 
-+oollf 

(z) I) for fEB. 
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Now, g=(oo) fi EB so 

s up IE9'(°O)fi(Y)II -4limz-+oo 
I 

Y>X 
Asx -*oo, I9i(x)-9i(Oo)1-*0, so 

E9i(x)di(. 

Y)II - 

II1: 

9i(oo)fi(ö)lll -+0 

uniformly in y, which implies what we need to show. So we have continuity for the element 
E giy;. Now an E/3 argument shows that we have continuity for all elements of B". Hence 

the bundle is continuous. Thus we have now constructed a continuous bundle on R+ from 

an initial sequence of C*-algebras. 

The above construction does not contain any analogue of Lemma 4.1 in [44]. It appears 

that such an analogue is not necessary for the above construction. It can be shown that 

there exists a continuous function d: R+ -+ lt4. such that 

sup II f (y) II -+limzioc IIf (z) II asx --+ o0 VE[x, x+d(x)] 

for all fEB. This is in some sense a continuous analogue of Lemma 4.1 in [44]. However, 

this is not required in the above construction, where we have essentially taken d(x) = oo 
for all x. 

We are now in a position to prove the following. 

Proposition 4.2.1. Suppose that C is a non-exact C*-algebra. Then there exists a con- 

tinuous bundle of C*-algebras A on the unit interval such that A®C is not continuous. 

Proof. Non-exactness of C implies that the canonical sequence 

0-+Io®C-+M0C-+M/Io0C-+0 

is not exact (see Kirchberg [40]). Here M= ®t °1M; and Io is the set of sequences in this 

direct sum which tend to zero. Hence, denoting the quotient map from M to M/Io by 7r, 
there exists xEM0C with (zr 0 idc) (x) =0 but xý Io 0 C. 

Now we let A� = M� in the construction described above, with the usual embeddings 

Mn -+ Mn+i. Define A= C*(Io, {xnj}). Here we have chosen x, EM0C with xn -4 x, 

and we have then written x,, as the finite sum E3 x�j ® c�j. Note that A is separable, and 

that its definition ensures that xEA®C. 

The above construction gives a continuous bundle 

A= (R+' ox I Bar : B" -+ B, B"). 
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We wish to show that the bundle A®C is discontinuous. This entails finding a `bad' 

element in B" ®C which is somehow related to x. 

First note that B" 0CJj (B) ®C ^_' B®C. Also, we have an embedding t: B- 

C[O, 1] ®A and hence there is an embedding 

toidc: B®C-+ C[0,1]®A®C. 

Also, given a= (as) EA we can construct a corresponding element of B: if AE C[O, 1] is 

given by 

A(t) 
2t fort < 1/2 

2- 2t fort > 1/2 

then we can consider A0aE C[O, 1] ® A. Each xnj E A, so we obtain corresponding 

elements A®x, li E B. Then A®x,, j®cni E B®C, so summing over j gives A®xn E B®C. 

Taking the limit as n -4 oo we get A0xEB®C. 

We claim that A ®x, considered as an element of B" ®C, is the required `bad' element. 

That is, we claim (vom 0 id)(A 0 x) =0 while, 

limyE1 +II(Qy 0 id) (A 0 x) 11 > 0. 

We know that (ir 0 id) (x) =0 so (ir ®id) (x,, ) --* 0 as n -+ oo, hence 1im�lI rj 7r(x,, j) 0 

cnj 11 = 0. Consider the map a: A/Io -i B,, given by ir(a) i --* Q,,,, (A 0 a). This function 

is well-defined, linear and positive. In fact, it is easy to see that v is completely positive, 

which implies that a® idC is also completely positive, and hence bounded. Therefore 

ý 
a,, (A ®xni) ®cný - (a 0 idc) ? r(x. j) 0 c. j 

Il o idcll E 
ir(xn. 9)®cnj 

-} 0asn-4oo. 

So (Q.. 0 id) (A 0 x�) -+ 0 as n -+ oo. Hence, (vom 0 id) (A 0 x) = 0, which is the first part 

of what we wanted to show. 

Denote by i� :A -+ M,,, the coordinate map sending (a, ) EA to an E M. As 

xý Io ®C we have 

0< dist(x, Io (& C) = im-n11(7rn, 0 id)x11. 
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Consider the map (, : B, 
n_112 -> M,,, given by Qn_1/2(f) '--* f (n - 1/2) where fEB. 

This is a well-defined *-homomorphism. Now, 

0< limn11(7r,, 0 id)xI I 

= limnlimNII I: 7rn(xNj) ®CNjII 
j 

= limnlimNll E(n(0n-1/2(A ®XN, )) ®CNjII 

j 

= limnlimNII(Cn ®ldc) EQn_1/2(A ®xNj) 0 CNj II 

j 

< limnlimN ýn-1/2(A0XNj)0CNjI) 

= lim�limNII(Tf_i/2 ®idc)(A ®xN)II 

= 1imnll(Qn_1/2 0 idc)(A 0 x)11 
< IlM r=R+II(0'y®idc)(A®x)II. 

Thus y'--+ 11(o, 0 idc) (A 0 x)II is discontinuous at y= oo. Hence the bundle A®C is 

not continuous. Q 

Corollary 4.2.2. Fix a C*-algebra B. Then B is exact if and only if for any continuous 

bundle A of C*-algebras on [0,1] (with separable bundle C*-algebra), A® B is continuous. 

Proof. This follows from Theorem 4.5 of [44], together with the above Proposition. Q 

So, we now have a new characterisation of exactness of C*-algebras, in terms of the 

continuity of bundles with base space [0,1]. The bundle obtained in the above Proposition 

can also be modified to give examples of other bundles on [0,1] with interesting properties. 

Let A= ([0,1], lrt :A -4 At, A) be the continuous bundle defined in the proof of the 

above Proposition, except that we assume the base space to be [0,1]. Now define a new 

bundle B on [0,2]. We suppose that B has bundle C*-algebra 

B= {a ED a' EAED A: ir1(a)=ir1(a')}. 

For yE [0,2] we define the fibre map ay :B-B. as follows: 

o, (a ® a') - 
i,, (a) for y<1 

ir2_y(a') for y>1 

For fE C[0,2] and a® a' E B, the module action is defined via 

f(aED a') =. fia®. f2ä 
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where fl E C[O, 1] is given by fl (t) =f (t) and f2 E C[O, 1] is given by f2 (t) =f (2 - t). 

With these definitions, it is easy to see that B is a continuous bundle on [0,2]. 

If C is a non-exact C*-algebra, then A0C is discontinuous at oo E 1E8+, which cor- 

responds to 1E [0,1]. So B®C is discontinuous at 1E [0,2]. Since any two bounded 

closed intervals are homeomorphic, this means that for any tE [0,1] we can construct a 

continuous bundle of C*-algebras A(') on [0,1] such that AM ®C fails to be continuous 

at t. 

Taking finite direct sums of these bundles A('), we can construct a continuous bundle 

on [0,1] such that, on tensoring with C, the bundle is discontinuous at any chosen finite 

set of points in [0,1]. 

In fact, we can also take countable direct sums. Suppose that we have a sequence 

(t�) 1 in [0,1]. Letting An be the bundle C*-algebra corresponding to the bundle A(t, ), 

we can then form a bundle from the restricted direct sum of these bundle C*-algebras. 

This consists of sequences (an)d 1 where an E An for every n, and 11anil -3 0 as n -4 oo. 

Using the restricted direct sum gives a bundle that is still continuous and yet, on 

tensoring with C, gives a bundle that is discontinuous at every to E [0,1]. The reason that 

the restricted direct sum bundle is continuous is as follows. If fn E C[0,1] is positive for 

every nEN, then f= supTEN fn is not necessarily continuous. However, if we also insist 

that Jjf 
aýj,,,, -+ 0 as n -+ oo (which is the condition imposed by the restricted direct sum), 

then f is guaranteed to be continuous. 

It would be interesting to know if there was a continuous bundle B on [0,1] such that 

B0C is discontinuous at every point of [0,1]. 

4.3 Continuous bundles on infinite compact metric spaces 

In this Section we construct a continuous bundle of C*-algebras on any fixed infinite com- 

pact metric space with properties analogous to those of the bundles on [0,1] constructed 

above. This is done via the induced or pullback bundle construction. We first review this 

induced bundle construction. Then we use it to construct continuous bundles on any fixed 

infinite compact metric space. Finally we show how this leads to new characterisations of 

exactness for C*-algebras. 

First we look at the induced bundle construction. This is a well-known construction 

in the context of topological fibre bundles (see, for example, page 47 of [59]). Kirchberg 
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and Phillips consider this construction in the context of continuous fields of C*-algebras 

(see Lemma 1.3 of [43]). Here we consider these ideas from the point of view of bundles 

of C*-algebras. 

Suppose A= (X, 7r,, :A -1 Ax, A) is a continuous bundle of C*-algebras and that 

77: Y -* X is a continuous map. Here we assume for simplicity that X and Y are compact 

metric spaces. We wish to define a bundle Pn (A) on Y, the pullback of A via n. For yEY 

define B. = A,, (, ). Define v$ :A -+ By by a 7r,, iyl(a). If we assume that i is surjective 

then 

vy(a)=0 VyEY=a=O. 

So there is an embedding j: A -+ ®. EyBy which sends a to (o- (a)), Ey. 
Now enlarge j(A) to B, the smallest C*-subalgebra of ®yEyBy such that ACB and 

B is closed under the obvious action of C(Y) on ®YEyBy. We define the pullback of A to 

be (Y, r-y :B -* By, B) where Ty : ®ZEyBz -> By is the usual coordinate map. Faithfulness 

and the C(Y)-module properties are clear for this bundle. Is the bundle continuous? 

If aEA then yH 11 Ty (j (a)) Il is continuous, from the continuity of the bundle A and 

the continuity of the map q. Now B is the closure of the set of finite sums gi j (a; ) where 

a; EA and gi E C(Y). So to show that the bundle is continuous, it suffices to show that 

y'--4 IIr (Egtij(aj))i = jjay(E9i(y)ati)j) is continuous. 

Fixing yEY and e>0, consider 

I- Ilo*v'(I: 
9=(y')ai)III 

which is 

Illay(E9j(y)ai)II - IIay-(j: 9j(y)aj)III + IIIayi(Egi(y)ai)II -I 
Continuity of z jjQ, z(Egti(y)ai)jj (z E'Y) at z=y shows that the first term is < E/2 
for y' suitably close to y. For even closer y' we can assume that, for every i, we have 

I9; (y) - 9: (Y, ) I<E 
2(l F, Ila: It) 

Then the second term is 

Ilay'(j, 
9%(y)at) - vy, (I: gi(y')ai)II 

I- 
9t(y'))a=ll 

< E/2. 
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This shows that the pullback bundle is indeed continuous. 

We also require the notion of restricting a bundle. Suppose that A= (X, zr,, :A -+ 
A, A) is continuous and that Z is a closed or open subset of the compact metric space 

X. We can then define the continuous bundle AIZ = (Z, oz : A' -3 A2, A'). Here 

A' = A/{a EA: 7rz(a) =0 'dz E Z} while o (ä) = 7r2(a). The module action is given 

by fa= fl a where fl is any continuous extension of fE Co(Z) to X (which exists by 

Tietze's extension theorem). 

We can now prove the following. 

Proposition 4.3.1. Suppose that (X, d) is an infinite compact metric space and that C 

is a non-exact C*-algebra. Then there exists 'a continuous bundle B on X such that 13 0C 

is not continuous. 

Proof. As X is not discrete, there exists a sequence x,, (n E N) and XEX such that, if 

d� = d(xn, x), then the d ti are distinct non-zero and satisfy d, 
, 
j. 0. In particular xn -4 x 

asn -00. 
We know that there exists a continuous bundle B= ([0,1], o: B --4 B, ', B) such 

that B0C is not continuous. As remarked in Section 4.2, we can allow the point of 

discontinuity to be any point of [0,1]. It is simplest to suppose that the discontinuity 

occurs at 0. The proof of Proposition 4.2.1 then gives zE BE) C for which (co ®idc) z=0 

but limy. (Qr 0 ida)zll > 0. 

There is also a map 77 :X -º RE defined by yý d(x, y). By scaling we can assume 

that i7(X) C [0,1] since X is compact. So we have rý :X -+ [0,1]. In order to pullback we 

need 17 to be surjective so we consider the map X -+ i7(X). Now rl(X) is a compact 

subset of [0,1] so we may define the restriction bundle Bjq(X ). This is a continuous bundle 

on r7(X ). Let the bundle algebra be denoted by B' and let the fibre maps be denoted by 

oýforyE17(X). 

Clearly 0E 77(X) and we claim that (ßjri(X)) 0C is not continuous at 0. The `bad' 

element is (q 0 ida)z = z' say, where q is the quotient map B -+ B'. Indeed, 

(ab0ida)z'= (aö9®idc)z= (Qo®idc)z= 0. 

On the other hand, we have the sequence x� EX with x, a -+ x. Let y, ý = q(x, ) so that 

yn -+ 0. Then 

IIlý3ln ®1dc)z'll = II(cT1Jn ®idc)zll 
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and limnýýýý(Qy� 0 ida)zll > 0, looking back at the proof of Proposition 4.2.1. (Here we 

have implicitly used a homeomorphism R+ ^' (0,1]. We must make sure that the sequence 

(n-1/2)nEN in R+ is mapped onto the sequence (Yn)nEN in (0,1] by this homeomorphism. ) 

So the bundle (ßl ii(X )) ®C is not continuous at 0. 

Now consider the pullback bundle P, 7(BIq(X)), which is continuous. Let the bundle 

algebra be B" and let the fibre maps be r: B" -+ Bz for zEX. Recall the embedding 

j: B' `-> ®zEX BZ' from the pullback construction. We now have the `bad' element 

z" _ (j 0 idc)z' E B" ® C. Now 

(Te, 0 idc)z" = (cr (xi 0 idc)z' = (c 0 idc)z' = 0. 

On the other hand, 

lim�-ýý,, 11(rý� ®idc)z"11= Im II(o 0 idc)z'1) > 0. 

So (P, 7(Birl(X))) 0C is not continuous at xEX. This proves the Proposition. 0 

This construction provides the following characterisation of exactness of C*-algebras. 

Corollary 4.3.2. Fix an infinite compact metric space X and a C*-algebra B. Then B 

is exact if and only if for any continuous bundle A of C*-algebras on X (with separable 

bundle C*-algebra, A0B is continuous. 

Proof. This follows from Theorem 4.5 of [44], along with the above proposition. Note that 

if a bundle has separable bundle C*-algebra then so does any restriction or pullback of it. 

Hence the statement about separability is valid in the above Corollary. Q 

This result can probably be extended to more general spaces X. 
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Chapter 5 

Free product bundles 

5.1 Introduction 

In this chapter we look at free product bundles. To be more precise, we look at free 

product operations on continuous bundles of C*-algebras, in the same way that Chapter 

4 considered tensor product operations on continuous bundles of C*-algebras. 

Why consider free product operations on continuous bundles? Well, in Chapter 4 

we looked at the minimal tensor product operation on continuous bundles, and in doing 

so we obtained new characterisations of exactness in terms of the continuity of certain 

bundles. In [44] maximal tensor product bundles were also considered, giving a new 

characterisation of nuclearity. So it is natural to consider other operations which can 

be applied to continuous bundles of C*-algebras, perhaps in the hope of obtaining new 

characterisations of such properties as nuclearity and exactness. 

The crossed product operation has been considered by Kirchberg and Wassermann 

in [45]. In fact there are two crossed product operations, corresponding to the full and 

reduced crossed products. Continuity of the full crossed product bundle is closely related 

to amenability of the group involved, whereas continuity of the reduced crossed product 

bundle is closely related to the exactness of the group. As remarked in [46], although it 

is not obvious that the reduced crossed product bundle is continuous, there is no known 

example where continuity fails. This underlines the interesting nature of the bundles 

constructed in Chapter 4. 

This Chapter considers other operations on continuous bundles of C`-algebras. In 

Section 5.2 we first look at a very simple operation, namely taking the multiplier algebra 

of a continuous bundle. This multiplier algebra is again a bundle, but continuity is not 
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preserved in general. We also look at full free product bundles and consider when continuity 
is preserved under this operation. 

Neither of the above constructions seems to lead to characterisations of exactness or 

nuclearity, so we then turn our attention to reduced free product bundles. Study of these 

combines reduced free products, as studied in Chapters 2 and 3, with the continuous 

bundles studied in Chapter 4. Recall that nuclearity and exactness are concepts defined in 

terms of C*-algebra tensor products. So it is not surprising that these concepts should be 

related to continuity of the minimal and maximal tensor product operations on continuous 

bundles of C*-algebras. 

Why should these concepts be related to some reduced free product operation on 

continuous bundles? Well, it is certainly not obvious why this should be so. However, it is 

certainly known now that exactness is in some way connected with reduced free products. 

Most importantly, it was shown by Dykema [20] that a reduced amalgamated free product 

C*-algebra is exact precisely when all the factors are exact C*-algebras, a result which fails 

to hold in the case of full free products. This gives us some reason to expect a connection 

between exactness and a reduced free product operation on continuous bundles. 

In Section 5.3 we construct a suitable definition of a reduced free product bundle. 

It turns out that there are two bundles which may reasonably be called a reduced free 

product bundle. These are denoted by Cu and C'. Section 5.4 considers the continuity of 

C'. This bundle is always lower semicontinuous. We show that, at least in certain special 

cases, it is actually continuous. 

Section 5.5 considers the continuity of Cu, which is always upper semicontinuous. 

Assuming exactness of the C*-algebras involved, we show that this bundle is actually 

continuous. The proof makes use of the Cuntz-Pimsner C*-algebras. These C*-algebras 

were important in Chapter 3, so this work provides an interesting connection between 

Chapter 3 and Chapter 5. 

Finally, in Section 5.6 we consider the relationship between continuity of Cu and con- 

tinuity of C'. We look at possible applications of these results, such as the embedding of 

a continuous bundle into a larger continuous bundle whose fibres are simple. 

Note that free products of C(X)-algebras, amalgamating over C(X), have been con- 

sidered before by Germain [31]. However, Germain considered these free products from a 

somewhat different viewpoint and, for example, there is no reference to the continuity of 
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the C(X)-algebras involved. 

5.2 Multiplier algebra bundles and full free product bundles 

In this Section we first look at the construction and continuity of the multiplier algebra 
bundle, before moving on to the full free product bundle. 

Let (X, 1rß :A -* A, A) be a continuous bundle of C*-algebras on a locally compact 

Hausdorff space X. Consider the multiplier algebra M(A). We show how this can be 

made into a bundle. We use the double centraliser interpretation of M(A), as contained 

in Wegge-Olsen [67] for example. 
Assume the bundle algebra A is separable. Then the surjective *-homomorphism 7r., : 

A -+ A,.,, can be extended to a *-homomorphism ýrý : M(A) -+ M(A., ) which is also 

surjective. 

Suppose (L, R) E M(A) and 5rx((L, R)) =0 for all xEX. If (Lw, Rte) = Fý, ((L, R)) E 

M(Ax) then 

Va EA`dxEX L., (a. )=irx(L(a))=0. 

So L(a) =0 for all aEA. Hence L=0, and similarly R=0. Hence {f,, :xE X} is 

faithful. 

Now we check that the required module property is satisfied. Since A is a bundle over 

X, we have Co(X) C Z(M(A)). Let fE Co(X). Write f= (L f, R f) E M(A), where 

Lf (a) =fa and Rf (a) =af. If ire (f) = (Lx, R,, ) then 

L,, (aý) = i., (L1(a)) = irx(fa) = f(x)a:,; 

and similarly R., (a.. ) = f(x)a, Hence 5F., (f) = f(x)1. So, if mE M(A), then 

f (fm) = F. (f)'i. (m) =f (x)i. (m). 

So (X, irx : M(A) -+ M(A., ), M(A)) is a bundle of C*-algebras on the space X. Is it 

continuous if the original bundle is continuous? Of course, if A is unital then the answer 
is trivially yes. In general, the answer is no. 

Proposition 5.2.1. The multiplier algebra bundle operation does not preserve continuity 

of bundles. 

Proof. Consider the trivial bundle C(IY, K(t2(N))), which is certainly continuous. It can be 

seen that the multiplier algebra of this is Cb(N, B(P2)ß) where ß denotes the strict topology 
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on B(P2). (Indeed this is an exercise in [67]. ) This is the set of functions lY -* B(QZ)p 

which are continuous and norm-bounded. The fibre maps are given by evaluations at each 

point of R. 

Another exercise in [67] considers the projections Qn E B(t2), where Qn projects onto 

Ce,,. Here e,, is the n'th element of the usual orthonormal basis for £2. Now JJQnI) =1 

for all n, but Qn -4 0 in the strict topology. So define f: R 
-+ B(t2)0 via n 1. --* QT, 

and oo 0. With this definition, fE Cb(N, B(e2)$) but n i--+ 11f (n) 11 is clearly not 

continuous at oc. That is to say, the multiplier algebra bundle fails to be continuous, even 

though we started off with a trivial bundle. Q 

We now move on to the construction of full free product bundles. Let A= (X, irx : 

A -+ A, A) be a continuous bundle of C*-algebras. For simplicity we assume that A is 

unital and that X is compact Hausdorff. Let B be a fixed unital C*-algebra. We wish to 

define a full free product bundle A*B over the same space X. 

We let the bundle algebra be C=A *c(X) C(X, B), while the fibre at xEX is given 

by C.,: = Ax * B. How do we obtain the fibre maps? The universal property of the full 

amalgamated free product implies that there is a surjective *-homomorphism 

vx=7x*ev.: C-+Aý*B 

such that cIA= ir., and oI C(X, B) = eve. 

Now we check the module property. As C(X) C Z(A) and C(X) C Z(C(X, B)), it 

follows that C(X) C Z(C). So the maps o clearly satisfy the required module property 

for a bundle: 

olx(fc) = ax(f)cx(c) = f(x)Olx(c) Vf E C(X), `dc E C. 

Now consider the quotient C/C,,, (X)C. Note A., and B both embed in this quotient, 

and that C*(A,,,, B) = C/CC(X )C. It is easily checked that C/CX(X )C satisfies the 

universal property required of Ax * B. Hence C/CC(X)C '= Aý *B canonically. This 

means that C has the structure of a C(X)-algebra, and the maps v,, may be thought of 

as quotient maps C -+ C/CC(X)C. Proposition 2.8 of [8] then implies that the family 

{az}XEX is faithful. Hence C is indeed a bundle over X. 

It also follows from the above paragraph that C is always upper semicontinuous. When 

is it continuous? 
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First note that, if A and B are C*-algebras, then 

C(X, A) *c(X) C(X, B) ^' C(X, A* B). 

It follows that if A is a trivial bundle over X, with fibre A, then A* B is the trivial bundle 

over X with fibre A*B. Thus the full free product operation preserves the triviality of 

bundles. In fact, it preserves the subtriviality of bundles too, and this enables us to prove 

the following. 

Proposition 5.2.2. Let A= (X, 1r., :A -3 Ax, A) be a continuous bundle of C*-algebras 

with A unital separable and Xa compact metric space. If A is exact, then the full free 

product bundle A*B is continuous, regardless of B. 

Proof. The results of [9] imply that there is a C(X)-linear embedding a: A C(X, 02). 

In particular, A is subtrivial. 

We consider a as a map a: Ay C(X, 02 * B). We also have the obvious embedding 

id : C(X, B) + C(X) 02 * B). The universal property of the full amalgamated free 

product then provides a *-homomorphism a* id :C -º C(X, 02 * B). We claim that this 

is isometric, or equivalently injective. 

Recall that if 0: E -+ F is a C(X)-linear *-homomorphism between C(X)-algebras, 

then 0 is injective precisely when all the induced maps ß., : Ex -> F., are injective. So, to 

prove the claim, it suffices to show that any map (a * id), : Cx -3 02 *B is injective. 

Now, (a * id)ý, =o* idB. Both ax and idB are injective, hence their free product is 

too. So (a * id), is injective for any x, and the claim is true. 

Note also that (a * id),, o a., = ev, o (a * id) on C. This is because C= C*(A, C(X, B)) 

and it is easily seen that the two *-homomorphisms agree on A and C(X, B). 

Therefore, for cEC, the function 

x '-4 Ilo (c)I 

_ 1I(a*id)xoa,, (c)II 

= IIevxo(a*id)(c)II 

is certainly continuous. Hence, the full free product bundle is continuous. Q 

Clearly the proof of the above result depends only upon the subtriviality of the bundle 

A. So it can be seen that any subtrivial continuous bundle A will have its continuity 

preserved by the full free product operation. This is in contrast to the situation for maximal 
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tensor products. Kirchberg and Wassermann [44] construct a subtrivial continuous bundle 

D such that D ®ma C is not continuous, where C is a non-nuclear C*-algebra. 

One reason for this difference is that if Al C A2 and B is another C*-algebra, then 

Al *BC A2 *B but Al ®max B is not necessarily contained in A2 B. So full free 

product bundles are better behaved than you might at first expect. It seems unlikely that 

continuity is always preserved by the full free product operation, and it would be interesting 

to obtain an example of a continuous bundle for which continuity is not preserved. Such 

a bundle would necessarily be non-subtrivial. 

5.3 Construction of reduced free product bundles 

Here we construct the two reduced free product bundles C" and C'. Suppose that A= 

(X, it :A -+ Ax, A) is a continuous bundle of C*-algebras. We assume that A is Unital 

and that X is compact Hausdorf. We wish to take the reduced free product of A with 

some fixed unital C*-algebra B. For the construction, we need to assume that A and B 

are separable. 

To define a reduced free product, it is necessary to attach states (or conditional ex- 

pectations) to the C*-algebras involved. For this reason, we assume the existence of a 

continuous field of faithful states on A. That is, we assume the existence of faithful 

f, E S(A. ) for all a, E X, imposing the condition that x i---* fý(a. ý) is continuous for every 

aEA. The existence of such states is guaranteed by results in section 3 of Blanchard's 

thesis [8]. 

The continuous field of faithful states gives in particular a faithful conditional expec- 

tation f: A -> C(X) where f (a) (x) = f(ax). We suppose we have a faithful state 

0E S(B). As B is separable, such a state is guaranteed to exist. Now we get a faithful 

conditional expectation RO : C(X, B) -+ C(X) where Rk(g) =0og. Using the reduced 

amalgamated free product construction (see section 1.4) we obtain 

(Cý) _ (A, 
. 
f) *c(x) (C(X, B), Re) 

The properties of the reduced amalgamated free product imply that, as A is a C(X)- 

algebra, C is also a C(X)-algebra in the obvious way. 

Theorem 2.2.2 implies that the conditional expectation 0 is faithful. This can also be 

seen in a more direct way: see the construction of C1. We now consider the two possible 

reduced free product bundles. 
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Construction of the bundle C" 

As C is a C(X)-algebra, we can make it into a bundle in the usual way. That is, we 
let 

c/C (X)c, c) 

where q..,, is the quotient map. By construction, this bundle is automatically upper semi- 

continuous. The fibres are C/CV(X )C for xEX. For a reduced free product bundle, we 

would like the fibres to be Ax *r B (recall from Section 1.4 that this notation is used as a 

shorthand for (Ax, ff) * (B, 4)) for xEX. This requirement motivates a second possible 

construction. 

Construction of the bundle Cl 

Consider the reduced free products (Cx, 0, ) = (As, fa, ) * (B, 0). We want Cl to have 

fibres C. for xEX, so we need a *-epimorphism C -* C.. Now C acts on the free product 

Hilbert C(X)-module E, so we have a C(X)-representation P: C --> L(E). 

We have a representation P., =P0 eve :C -+ L(EA), where EE is the interior tensor 

product E ®eis C. Can we identify the Hilbert space Ems? 

Well, suppose that El = L2 (A, f) and E2 = L2(C(X, B), R, ). We then have E1 = 

El ®ev5 C= L2 (A, fý) and E2. = E2 ®evx C= L2 (B, 0) for xEX. Then 

E=eC(X) ®® Eý ®... ®E, 
n. n>1 

96 _ 
i otý 

Now E ®" ""® E°ý ®ev. C is canonically isomorphic to EO. ®" ""®E. Indeed, 

E° ®0 E°n ®evy C is spanned by elements aL, "" aL�ý ®1 where a,, E A° or a,, E 

C(X, B)° according as cj =1 or tj = 2. This corresponds to 

äýlý®... ®aýný E E°ý®... ®ETA, 

So 

Eý = ýC(X) ®ev., C®Ei®... 0 Eon 0ev C 
tt>1 

61 96 "-#6n 

_ ýC® ® E, '.,,; ®... 0E°, ß 
n>1 

11 0'_ #tn 

= L2(C" W, ). 
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Thus Ex is the G. N. S. Hilbert space for the pair (Cs, ip,, ). 

It can now be checked that, if aEA then Px(a) = ax where we consider a., as an 

element of the reduced free product C. Similarly Pi(g) = g(x) for gE C(X, B). Since P, 

is a *-homomorphism, it follows that the image of P,, can be identified with the reduced 

free product C. Hence it makes sense to define 

Cl=(X, Pý: C-iA., *rB, C). 

It is easy to check that C' satisfies the requirements for a bundle. Suppose cEC and 

P, (c) =0 for all xEX. This implies that b (c*c) (x) =0 Vx E X. Hence O(c*c) =. 0 

and so c=0 since 0 is faithful. The module property is also satisfied, because the ideal 

CV (X )C is contained in kerPP. Hence CI is indeed a bundle over X. 

Note that the above definition of Px implies that, for cEC, 0. (P. (c)) = ºlb(c)(x). 

That is, eve o jfb = jb., o P. Being a reduced free product of two faithful states, jb,, is also 

a faithful state for every xEX (by Dykema [18]). It then follows that -0 is a faithful 

conditional expectation, as remarked earlier in this Section. 

Clearly the above constructions can be extended to the case where we are taking the 

reduced free product of two continuous bundles of C*-algebras, Al and A2 say. If we 

attach continuous fields of faithful states fl, f2 to A1, A2 respectively, we can define 

(C, , O) = (Al, fl) *c(x) (A2, f2). 

The bundles Cu and Cl are then defined in exactly the same manner as above. 

5.4 Continuity of C' 

In this Section we consider the continuity of the reduced free product bundle C1. We 

discuss one possible method for showing that this bundle is continuous. Then we provide 

an example which uses this method. 

Since C' is constructed via a C(X) -representation of C, it follows (see remarks in 

section 2.3 of [8]) that C1 is automatically lower semicontinuous. 
As noted in the construction of C', Cý(X)C C kerPP. Are these two ideals equal? By 

Lemma 2.3 of [44], they are equal Vx EX precisely when C1 is upper semicontinuous. 

So, to show continuity of C', we need to show that CT(X)C = kerf! dx E X. It is 

perhaps reasonable to suggest that C' is continuous if the original bundle C*-algebra A is 
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exact, regardless of the C*-algebra B. We now describe a possible method for proving the 

continuity of C', inspired in part by the methods of Efros and Haagerup [25] 
. 

We suppose that A is exact. Fix xEX. Then, as explained in section 4.3, of [44], the 

sequence 

OýCx(X)A®B-*A®B-_Aý®B40 

is exact for arbitrary B. By results of Effros and Haagerup (see Theorem 3.2 of [251) 

it follows that 7r :A -+ A. is locally liftable. That is, given any finite dimensional 

operator system ZCA,, there is a unital completely positive isometry p: Z -4 A such 

that 7r, op=idz. 

In the following, the methods are inspired by the ideas of Effros and Haagerup: see 

[25] and the first part of the proof of Proposition 6.8 in [66]. As has already been noted, 

proving that C' is continuous is equivalent to showing that (for every xE X) the sequence 

0-+CC(X)C-+ C-+ Cx=Ax*, B-4 0 

(where Px provides the map from C to C. ) is exact. Now, as C, (X )C C kerPý, there is 

an induced *-homomorphism 

P.,,: C/Cx(X)C -a Ax *,. B. 

We want to show that P. is actually isometric. Take YE C/CX(X )C where y is represented 

by a finite sum of reduced words, plus possibly a multiple of the identity. We want to 

show that IIPý(y)II ? IIyI) because, as such y are dense in C/C,.,, (X)C, it will then follow 

that P,, is isometric as required. 

For simplicity of notation, assume that y is represented by a sum of the form E ajgja; 

where a;, aj' EA and gE C(X, B) are reduced. It will be clear that the methods apply 

whatever happens to be the form of y. 
Define a: B -4 C(X, B) by bH 10 b. Let Z be the finite dimensional operator 

system generated by the a;,,, a;. in A., where at, means 7rý(a; ) and so on. We know that 

there exists a unital completely positive isometry p: Z -+ A such that ir., op= idz. So 

we have 

Il II =I (X)C = 
Iq(P(atx)a(gi(x))P(ai. ))II 

C/C. (X)C 
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since 14, (p(ajx) - a; ) = 0, evx(g; - a(gi(x))) = 0, and so on. This is 

IIýPýaix)ýý9iýx))PýaZ Il 
c 

by definition of the quotient norm. We would like to show that this is 

<_ 
II ý, 

aýxgti(x)a2 
II 

Ax*, B 

To do this, we really want to consider a reduced free product map p*a. Unfortunately, 

there are two problems with this. Firstly, the domain of p is in general not a C"-algebra, 

so it is not even clear what the domain of such a free product map should be. Secondly, 

recall from [10] that, in order to take the reduced free product of two maps, it is necessary 

for them to preserve the states or conditional expectations involved. In this case, this 

would seem to require the following condition to be satisfied by p: 

f (p(z)) = ff(z)1 VzEZ. (1) 

The question is, when can (1) be satisfied? 
We consider the following example, where both these problems can be solved. 

Example 5.4.1. Take A= C([0,1], C2) to be the trivial bundle on [0,1] with fibre C2. So 

Ax = C2 for every xE [0,1]. We do not restrict the fixed C*-algebra B in any way. Whilst 

A may be trivial, we take a non-trivial continuous field of faithful states on A, defined by 

fx(zi ® z2) _ Axzl + (1 - Ax)z2 

where )=2 

Fix xE [0,1]. Note that as the fibres of A in this example are finite dimensional, the 

first problem mentioned above does not exist. To solve the second problem, we construct 

p: Ax = C2 -º A satisfying the requirements of equation (1). 

Define p by letting p(1 ® 1) =1 and p(1 (D 0) = g. Here, for YE [0,1], we have 

9(y) = 9(y)I ®9(y)2 where 
for y>x 

9(y)1 =y 
1 for y<x 

and 
0 fory>x 

fory<x 
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We now show that the map p satisfies the required conditions. Note that gEA, g>0 

and 1- g>0. Also g(x) = 1®0, so that p is a genuine lifting. We also have, for yE [0,1], 

. y9(Y)i+ 
(1 - Ay)9(Y)2 = Ax 

so fy(g(y)) = fx(1® 0). It follows that p satisfies equation (1). Clearly p is unital. Is it 

completely positive? As the domain C2 is a commutative C*-algebra, it suffices to show 

that p is positive. Suppose zl ® z2 >0 in V. Then 

P(zi ® z2) = z2P(1 ® 1) + (zi - z2)P(1 (D 0) 

= z2+(zi-z2)9 

= 

Next we describe how to construct the required free product map in the case (as in the 

above example) where each A,, is finite dimensional and a suitable map p can be found. 

First, note that there exists a *-homomorphism µ: C(X) ®A -+ A given by multi- 

plication, in other words µ(f ® a) =fa. Define B=µo (idc(x) (9 p) : A, ý ® C(X) -º A. 

Then B is a unital completely positive map. Since we're assuming that p satisfies equation 
(1), it follows that fx 0 idc(x) =foB on A,, 0 C(X). It is also easy to check that 0 is a 

C(X), C(X)-bimodule map. Let t: B0 C(X) -+ B® C(X) be the identity mapping. 

Theorem 2.2 of [10] shows that there exists a free product map 

: (A., 0 C(X ), f, 0 id) *c(x) (B 0 C(X ), 00 id) -+ C 

which extends both 0 and t. We also have that is unital completely positive. The 

domain of -b can clearly be identified as 

((As, fý) * (B, 4)) ® C(X). 

So, 

ýaýý9q(x)azxll 
Aý*. B 

I) (ýaaý9ý(x)a: 
ý) ®lll 

(Ax*,, B)®C(x) 
I) 01)Ilc 

= 
(Iý(ý(aix 0 1)(9i(x) 0 1)(aix ®1))IIC 

= 
IIý ý(a, x ®1) (9; (x) 01)ý(a; ý ®1) L 

IIý B(atý ®1)(9 (x) 01)6(a; x ®1)IIC 

= 
1lEp(aj. 

�)u(gi(x»p(as, 
)Il 

c 
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where the inequality is valid because (D must necessarily be contractive. Thus CI is cer- 

tainly continuous when the fibres of A are finite dimensional and there exist unital com- 

pletely positive liftings p: Aý, -> A satisfying equation (1). 

We now return to our example. 

Example 5.4.2. This is a continuation of Example 5.4.1. Note that even though A= 

C([O, 1], C2) is trivial, the fibres of the reduced free product bundle C, are not necessarily 

isomorphic. For example, take B= C2 with the trace defined by p(A, i) =2 (A + µ) 

for A, AEC. Then, by Proposition 2.7 of [19], the fibres of C' are isomorphic to either 

C2 ® C([0,1], M2) (at every x# 1/2) or 

If : [0,1] -+ M2 If continuous, f (0) and f (1) diagonal} 

at x= 1/2. The centres of the above two C*-algebras are C2 ® C[O, 1] and C[O, 1] respec- 

tively, so they are certainly not isomorphic. Despite this Cl is continuous. 

It would be interesting to know if the methods described in the above Section are more 

widely applicable. It would also be of interest to find an explicit example where continuity 

of C' fails. 

5.5 Continuity of Cu 

In this section, we consider the continuity of the bundle Cu, which is automatically upper 

semicontinuous. We consider the reduced free product (A1, fl) *o(X) (A2, f2) of two unital 

continuous bundles of C*-algebras over the compact Hausdorff space X, with continuous 

fields of faithful states attached. We show that, if Al is also exact, then C" is continuous. 

The strategy is as follows. First we obtain a C(X)-version of [24] Proposition 4.2. 

This enables us to embed C" in a Cuntz-Pimsner C*-algebra E(H) (which is also a C(X)- 

algebra). We then use the analysis of Cuntz-Pimsner C*-algebras provided in [24] to show 

that the Cuntz-Pimsner C*-algebra involved is actually a continuous field. It will then 

follow that C' is continuous. 

First we require a C(X)-version of [24] Lemma 4.1. 

Lemma 5.5.1. Let A1, A2 be Unital continuous bundles of C*-algebras over the compact 

Hausdorff space X, with continuous fields of faithful states fl, f2 respectively. Let (C, V)) 

be the reduced amalgamated free product. Let B= Al ®c(x) A2 (for the definition of this 
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see [44]) be the amalgamated minimal tensor product. Attach to B the tensor product 

conditional expectation p=fj0 f2. 

Let Dl be a Unital C(X)-algebra with C(X) -valued conditional expectation gl attached, 

such that the G. N. S. representation corresponding to (Dl, gi) is faithful. Suppose there is 

a Haar unitary in D1, i. e. there exists a unitary uE Dl such that gl(u") =0 for every 

non-zero integer n. Let (D, g) = (Dl, gl) *C(x) (B, p) be the reduced amalgamated free 

product. Denote by ark : Ak -+ D the C(X)-linear embedding given by irk(a) = ukau-k 

(k = 1,2). Then there is a C(X) -linear embedding ir :C -º D extending the Irk, such that 

goIr ='0" 

Proof. As u is a Haar unitary, it follows that u has full spectrum. That is, C* (u) C(T). 

This is because the Haar unitary condition implies that u acts as the bilateral shift operator 

on the G. N. S. Hilbert space L2 (C*(u)i91IC*(u)) ^_' £2(Z). 

The assumptions on Dl then tell us that 

0 (Di, 91) J 
(c(x)®c(T)idc(x)®f. 

dA) 

where f "dA denotes integration with respect to the Haar measure on T. The results of 

[10] allow us to assume that 

(Di, 9i) = 
(c(x) 

® C(T), idc(x) 0f "dA) . 

In (D, g), the family (ukBu_k)kEZ is free. Consider C*(UkEzukBu-k) C D. 

Conjugation by u gives the free shift on As BU Jul generates D, it follows that 

D=B >a Z. As g is a faithful conditional expectation, it is certainly true that the G. N. S. 

representation corresponding to (B, g1B) is faithful. Therefore 

('g1) = *kEZ(ukBu_k, 9l ukBU-k) 

where the right-hand side is a reduced free product, amalgamating over C(X). 

Now the embedding results of [10] imply that we have an embedding ir :C -+ BCD 

extending every Irk. This embedding preserves the conditional expectations on the C*- 

algebras involved, so we get go it = i%. It is also clear that it is C(X)-linear (because all 

the Irk are). 0 

The above lemma enables us to prove a C(X)-version of [24] Proposition 4.2. Note 

that, although we are working with amalgamated reduced free products here, we avoid use 

of section 5 in Dykema and Shlyakhtenko [24]. 
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Proposition 5.5.2. For i=1,2 let Ai be a unital C(X)-algebra where X is a compact 

Hausdorf space. Let q't : Ai -4 C(X) be a continuous field of faithful states (i = 1,2). 

Define (C, 0) to be the reduced amalgamated free product of Al and A2. We let B= 

Ai oc(x) A2, as in the above lemma, with p= 01 0 02 the tensor product conditional 

expectation. Then there exists a Hilbert B-bimodule H such that the Cuntz-Pimsner C"- 

algebra E(H) is a C(X)-algebra and there exists an injective C(X) -linear *-homomorphism 

r: C -+ E(H) such that p o. 6 or where £: E(H) -+ B is the canonical vacuum 

expectation. 

Proof. Consider the interior tensor product H= L2 (B, p) ®c(x) B where the left action 

of C(X) on B is given by the canonical inclusion of C(X) into B (recall that B is a 

C(X)-algebra). Also, since C(X) C Z(B), the left and right actions of C(X) on H are 

the same. This results in E(H) being a C(X)-algebra. 

Let ý be the element of H given by ý= 10 1. Let D be the C*-subalgebra of E(H) 

generated by C(X) and £(ý). Consider the conditional expectation 0= EID. It follows 

from the definition of E that EIC*(i(ý)) is C-valued. Thus 0 is a C(X)-valued conditional 

expectation. 

We claim that D and B are free with amalgamation over C(X), with respect to poE. 

This essentially follows from Shlyakhtenko [57] Theorem 2.3, but here we provide the 

details for this particular situation. 

Now D ^_' C(X) 0 C*(« )) and ker4 is the closed span of elements of the form f 

L"(L*)' where n, m>0, n+m>0, fE C(X) and L= £(e). So, to show freeness, it 

suffices to show that 

po E(bofi L" (L*)rn1 blf2L 2 (L*)12 ... fkLnk (L*) )=0 

where kEN and fj E C(X), bj E B, p(bj) = 0, nj, mj > 0, nj + mj >0 for every j. As 

p o. 6 is C(X)-linear, we can assume that every f2 = 1. If our word contains a subword of 

the form L*bjL then, since L*bjL = p(bi) = 0, we obtain the required result. If there are 

no such subwords then our word is necessarily of the form 

b, Lb2L " b, LbiL*b2 ""- L*b9+1 

where b3., bý EB for all j and p, q>0, p+q>0. However, it is readily seen that such 

words are contained in the kernel of E (from the definition of E). Hence we have the desired 

freeness and the above claim is true. 
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It follows that (E(H), po E) = (D, c) *a(X) (B, p). Now c JC*(Q(e)) is C-valued, and 

in the same way as in [24] Proposition 4.2 we get a unitary uE C*(f()) CD such that 

0(uk) =0 for every non-zero integer k. 

Applying Lemma 5.5.1 now gives the required C(X)-linear embedding of the reduced 

free product C into E(H). Q 

So, the above Proposition gives an injective C(X)-linear *-homomorphism ir :C -º 
E(H). As ir is C(X)-linear, the induced maps 7r., : CC -4 E(H)x are also injective. Hence 

there is an embedding of bundles Cu -4 E(H). So, in order to prove continuity of the 

reduced free product bundle C", it suffices to prove that the Cuntz-Pimsner C*-algebra 

E(H) mentioned above is continuous. In order to do this, we use the following lemma. 

Lemma 5.5.3. Suppose that 

0-}I-ýA--*B->0 

is an exact sequence of C(X)-algebras. We assume that A is Unital and that all the maps 

involved are C(X)-linear *-homomorphisms. We denote the quotient map from A to B by 

q. Suppose that I and B are continuous fields. Then A is also a continuous field. 

Proof. Blanchard's characterisation of continuous fields (as described in Theorem 1.3.8) 

implies that we have continuous fields of faithful representations 7r :B --º L(E) and 

a: I -+ L(F), where E and F are Hilbert C(X)-modules. 

We would like to extend a to A. For this, we need or to be non-degenerate. Let F' 

be o(I)F, the closed span of {v(z)i :zEI, rt E F}. Then a defines a representation 

Q: I -+ L(F'), which is still C(X)-linear. Suppose xEX and suppose (a). ý: (zz) =0 for 

some zEI. Then (a(z), q)x =0 for every E a(I)F. Taking an approximate unit for I, 

we get (a(z)rq)3, =0 for all 17 E. F. So vx(zý) =0 and zx = 0. Hence (Q)x is faithful. This 

means we can assume that a is non-degenerate. 

Proposition 2.1 in Lance [47] implies that a has a unique extension o: A -+ L(F). 

Also, of is C(X)-linear since a is. 

Now define v: A -+ L(E®F) via a'---> ir(q(a)) ®aj(a). This is C(X)-linear. Consider 

vx : A,, --* L(Ee (D. T,, ) for some xEX. Suppose that v.,, (a,, ) =0 for some a,, E Ate. 

Then irxq,, (a.. ) = 0. Now 7rß is faithful, so gx(ax) = q(a). = 0. Hence q(a) E CC(X)B. 

Therefore, we can write q(a) = fq(a') where fEC, (X) and a' E A. Then q(a - fa') =0 

so a- fa' E I. That is, a- fa' =z for some zEI. So 

0= (Qi)ý(aý) == (o (z))x = (Q(z))ý = Qý(zý). 
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As Qx is faithful, we find that ax = zx = 0. So v is a continuous field of faithful repre- 

sentations of A. Hence, using Theorem 1.3.8 again, we see that A is also a continuous 

field. Q 

We are now in a position to prove the following. 

Proposition 5.5.4. Let B be a unital separable C(X) -algebra which is actually a continu- 

ous field of C* -algebras over the compact Hausdorff space X. Suppose that H is a countably 

generated Hilbert B-bimodule, and that the left and right actions of C(X) on H are the 

same. Then the Cuntz-Pimsner C*-algebra E(H) is a continuous field of C*-algebras over 

X. 

Proof. As the left and right actions of C(X) on H are the same, it follows that E(H) is a 
C(X)-algebra. We must now show that this C(X)-algebra is continuous. 

As in the proof of [24] Theorem 3.1, let H=H®B. Since E(H) C E(H), it 

suffices to prove that E(H) is continuous. In the proof of [24] Theorem 3.1, various 

C*-subalgebras of E(H) are considered. In particular, an increasing sequence of C*- 

subalgebras A0, Al, A2, ... is defined. Here, AO =B and we have (split) exact sequences 

ýO 

for every n. It is easily checked that, in the present context, the maps involved are C(X)- 

linear. Also 1,, ^_' K(H(®B)n). 

Our separability assumptions imply that Hl®B)' is a countably generated Hilbert 

B-module. Hence the Kasparov stabilisation theorem (see Theorem 1.2.2) implies that 

FI(B)" is a closed complemented submodule of 12(N) 0 B. It follows that 

I,, C K(22 (N) & B) � K(t2(N)) 0 B. 

As K(¬2(N)) is exact and B is continuous, it is seen (see Theorem 4.5 of [44]) that In is 

actually a continuous field for every n. Using Lemma 5.5.3, we can now show that every 

An is a continuous field. 

The An are increasing, hence A= UnENAn is also a continuous field over X. It follows 

that the inductive limit fl described in section 2 of [24] is continuous. As Z is an amenable 

group, it follows (for example, see [44] Remarks 2.6) that any crossed product bundle ; [A Z 

is continuous. Hence the crossed product A >i N of [24] Theorem 3.1 is continuous, it 

being a C*-subalgebra of a crossed product of ýT by Z. But this crossed product AA4, N is 

isomorphic to E(H). Thus E(H) is continuous, and that is what we wanted to prove. Q 
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Corollary 5.5.5. Let C" denote the upper semicontinuous bundle (as constructed in sec- 

tion 5.3) arising from the reduced amalgamated free product (A1, fl) *C(X) (A2, f2) of two 

Unital separable continuous bundles of C*-algebras over the compact Hausdorf space X 

(with continuous fields of faithful states attached). Then, if Al is exact, Cu is continuous. 

Proof. By [44] Theorem 4.6, B= Al ®c(x) A2 is continuous. By Proposition 5.5.2, we 

have a C(X)-linear embedding of the reduced amalgamated free product C into some 

Cuntz-Pimsner C*-algebra E(H). By Proposition 5.5.4, this Cuntz-Pimsner C*-algebra 

is a continuous field of C`-algebras over X. Hence C must be a continuous field over X. 

That is, C' is a continuous bundle over X. 0 

It is interesting that, in the above proofs, we have used the same work on Cuntz- 

Pimsner C*-algebras as was used to show nuclearity of certain reduced free products in 

Section 3.3. 

5.6 Concluding remarks 

We have now considered the continuity of both Cu and Cl. The continuity of Cl is 

equivalent to asking for kerPý = CV(X)C for every xEX. So if C' is continuous, then 

Cu and C1 coincide, hence Cu is certainly continuous. On the other hand, it is not at all 

clear if the continuity of Cu implies anything about the continuity of C1. 

One thing we can say is the following. Assume that the reduced amalgamated free 

product C is separable (as we have been doing throughout). Then Proposition 2.12 of 

Blanchard [8] implies that the set of xEX for which kerPP = Cx(X )C is dense in X. It is 

perhaps reasonable to conjecture that, if C is exact, then C' and C, coincide, and hence 

by Corollary 5.5.5 C1 is continuous. 

Finally, we can mention one possible application of the above results. This is to the 

problem of embedding a continuous bundle into another continuous bundle whose fibres 

are simple. The work of Blanchard [9] shows that this is always possible if the bundle 

C*-algebra is exact. It has been clear for some time now that reduced free products are 

often simple (see for example the work of Powers [54], Avitzour [4] and Dykema [19]). So a 

way of embedding a continuous bundle into a continuous bundle with simple fibres would 

be to take the reduced free product of the continuous bundle with an appropriate fixed 

C*-algebra. We then have to show continuity of the resulting bundle C'. Unfortunately, 
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as remarked earlier, the results of Section 5.5 do not seem to provide any help in this 

direction. 
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