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Summary

The purpose of this thesis is to investigate the properties of free products of C*-algebras
and continuous bundles of C*-algebras. We also consider how these two areas are con-

nected.

In the first chapter we present background material relevant to the thesis. We dis-
cuss nuclearity, exactness and Hilbert C*-modules. Then we review the definitions and
properties of bundles and free products of C*-algebras.

The second chapter considers reduced amalgamated free products of C*-algebras. We
show that, if the initial conditional expectations involved are all faithful, then the resulting
free product conditional expectation is also faithful.

In the third chapter we are interested in the properties of reduced free product C*-
algebras. We introduce the orthounitary basis concept for unital C*-algebras with faithful
traces and show that reduced free products of C*-algebras with orthounitary bases are,
except in a few special cases, not nuclear. Building on this, we then determine the ideals
in a certain tensor product C ®, C°? of the reduced free product with its opposite C*-
algebra. In the second half of the chapter, we use Cuntz-Pimsner C*-algebras to study
reduced free products of nuclear C*-algebras with respect to pure states. We show that,
if the G.N.S. representations of the C*-algebras involved contain the compact operators,
then the reduced free product C*-algebra is also nuclear.

Chapter four looks at the minimal tensor product operation on continuous bundles of
C*-algebras. We construct, for any non-exact C*-algebra C, a continuous bundle A on the
unit interval {0, 1] such that A® C is not continuous. This leads to a new characterisation

of exactness for C'*-algebras. These results are then extended to allow for any compact

infinite metric space as the base space.
Finally, we introduce free product operations on bundles of C*-algebras in chapter five.

Both full and reduced free product bundles are constructed. We show that taking the free
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product (full or reduced) of two continuous bundles gives another continuous bundle, at

least when the bundle C*-algebras are exact.
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Introduction

Here we discuss the main points of this thesis. We start with free products, then move on

to bundles of C*-algebras.

Free products are becoming increasingly important in the theory of operator algebras,

C™-algebras in particular. There are essentially two kinds of free product, the full free
product and the reduced free product. The full free product appears to be the most
natural, being defined by a universal property in the same way as free products of groups
are defined. It has been a part of C*-algebra theory for a considerable time. Unfortunately,
the full free product is not often very well behaved. In particular, it is rarely nuclear or
exact, and hence cannot be approximated well by finite dimensional C*-algebras.

More recently, the reduced free product of C*-algebras (and von Neumann algebras)
has been defined. It was defined in certain special cases by Ching [11] and Avitzour [4].
However, the theory really took off with Voiculescu [61], who also introduced the reduced
amalgamated free product for the first time.

In order to define the reduced amalgamated free product of a family (A,).er of unital
C*-algebras containing a common unital C*-subalgebra B, it is necessary to have condi-
tional expectations ¢, : A, — B for every ¢ € I. So we are really dealing with pairs (A, ¢)
where A is a unital C*-algebra containing a copy of B and ¢ : A = B is a conditional ex-
pectation. Such a pair is known as a B-probability space, one reason for this terminology
being the following. Suppose that (Q, %, ) is a probability space. Let A = L*®(Q, I, u),
B = C and ¢(f) = [ fdu. With these definitions, (A4, @) is a C-probability space. This
construction shows that, for a general C*-algebra A, any pair (A, ¢) may be thought of
as a non-commulalive probability space. This leads to connections between C*-algebra
theory and probability theory, though we do not go into this here.

Given a family ((A,, ¢.)).er of B-probability spaces, the reduced amalgamated free
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product
(4, ¢) = *xc1(A,, ) (1)

is another B-probability space (see chapter 1 for the actual definition). One of the most
obvious questions related to this construction is whether or not the free product conditional
expectation ¢ is faithful. Generalising techniques of Dykezﬁa 18], we show that ¢ is faithful
precisely when all the ¢, are faithful. This is done in chapter 2.

Next, we consider various properties of the reduced free product, restricting to the case
where B = C. Then, all the conditional expectations become states. One question that
might be asked is, when is the reduced free product an exact C*-algebra? Dykema [20]
has shown that, in equation (1) above, A is exact if and only if all the A, are exact. This

result is true for arbitrary B.

However, nuclearity is certainly not preserved in the same way. We always have a
conditional expectation A — A, for every ¢« € I. So if A is nuclear then every A, is
nuclear. The converse is false. For example, C*(Z) is nuclear (indeed commutative), but
the reduced free product

C2(Z) %, C}(Z) = Cx(Fy)
(with respect to the canonical traces) is certainly not nuclear.

In an attempt to generalise the above example of an exact but non-nuclear reduced

free product, we introduce the orthounitary basis concept for a unital C*-algebra A with

a faithful trace 7. An orthounitary basis is really a generalisation of a group. If O is an

orthounitary basis for A then O is a subset of A such that, if a;,a; € O then the product
aia; = Aas for some az € O and some A € T, the unit circle. See chapter 3 for the details

of this. Any orthounitary basis O has an underlying group G. The orthounitary basis

corresponds to a unitary projective representation
m:G — PU(H).

This is just a group homomorphism from G into the quotient ¢/ (H)/T where Y (H) is the
group of unitary operators on H = L?(A,7) and T is the normal subgroup of complex

numbers of modulus one. See chapter 9 of de la Harpe and Jones [36] for more on unitary

projective representations of groups.
We show that most reduced free products of C*-algebras with orthounitary bases are
non-nuclear. This is done by showing that the reduced free product C also has an or-

thounitary basis. Moreover, the orthounitary basis for C is of a special form. This enables
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us to show that a certain tensor product C' ®, C°? (see chapter 3 for details) contains the
compact operators, using methods based on those of Wassermann [65]. As C @, C? is
therefore non-simple, and yet C itself is simple, it then follows that C' cannot be nuclear.

The natural question to ask following this is, which C*-algebras have orthounitary
bases? Fortunately, there are plenty of examples. The reduced group C*-algebra of a
discrete group is the most obvious example, but matrix algebras, U.H.F. algebras and
irrational rotation algebras also have orthounitary bases.

Following on from this work, we then investigate the tensor product C ®, C°? more
deeply. We know that this tensor product contains the ideal of compact operators. Ake-
mann and Ostrand [1] were able to show that this is actually the only non-trivial ideal,
in the case when C = C}(FF;). Using their ideas, we show that the compact operators
constitute the unique non-trivial ideal of C' ®, C°? when we start from C*-algebras whose
orthounitary bases are either finite or free, i.e. the underlying groups are either finite or

free. The methods fail to work in other cases, one problem being that it is difficult to

define a suitable length function on a group that is neither finite nor free.

In the second half of chapter 3, we consider reduced free products of nuclear C*-algebras
with respect to pure states. It is suspected that all such reduced free products are nuclear.
Certainly, Kirchberg {41] has shown that a reduced free product of matrix algebras with

respect to pure states is nuclear. Here we show that the reduced free product is nuclear

if in addition the G.N.S. representations of the C*-algebras involved contain the compact

operators.

This is done using Cuntz-Pimsner C*-algebras. Dykema and Shlyakhtenko [24] showed
that the reduced free product A embeds into a certain Cuntz-Pimsner C*-algebra E(H).

If we are taking a reduced free product of nuclear C*-algebras, then this Cuntz-Pimsner
C*-algebra turns out also to be nuclear. Assuming further that the G.N.S. representations
contain the compact operators, it is possible to construct a conditional expectation ¥ :
E(H) — A. This shows that A is nuclear. An alternative proof of this result is then given,
using Kirchberg’s work on reduced free products of matrix algebras {41] and methods from

the proof of the equivalence of nuclear embeddability and exactness.

Now we move on to the second main topic of this thesis, namely continuous bundles of
C*-algebras. These have been a part of C*-algebra theory for a long time. They are often

known as continuous fields of C*-algebras. More recently, the framework of C'(X )-algebras
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has provided another viewpoint on the theory of continuous bundles of C*-algebras. For
this thesis, we are primarily interested in operations on bundles. The main question is
whether or not continuity of the bundle is preserved by the operation in question.

Chapter 4 looks at the minimal tensor product operation on continuous bundles. If we
have a continuous bundle A on the space X, and B is a fixed C*-algebra, then there is an
obvious minimal tensor product bundle A @ B on the same space X. It is certainly not
obvious that A ® B is also continuous. This s true when B is exact. However, Kirchberg
and Wassermann [44] showed that, if B is not exact, then there exists a continuous bundle
A on the one point compactification N such that A ® B is not continuous. The space N is
the most simple non-discrete space.

Here, given a non-exact C*-algebra B, we construct a continuous bundle A on the
unit interval [0, 1] such that .A ® B is not continuous. This is done by embedding N into
0, 1}, then modifying the methods of Kirchberg and Wassermann to produce a bundle
on the space [0, 1] instead of N. This construction results in a new characterisation of
exactness in terms of continuous bundles of C*-algebras with base space [0,1]. After this,
we extend this bundle construction to bundles over any infinite compact metric space
(X,d). Such bundles are constructed via the induced bundle construction, which is a
well-known construction in the context of topological fibre bundles. We fix a non-isolated

point £ € X and define n: X — R4 by

n(y) = d(z,y).

As X is compact we can assume that #(X) C [0,1]). This enables us to use the bundle

constructed on [0, 1] to create a bundle on X.

In the final chapter of this thesis we attempt to combine free products and continuous
bundles, by considering free product operations on continuous bundles of C*-algebras. This
is done in an attempt to perhaps obtain new characterisations of exactness or nuclearity,

as in chapter 4. We first consider the full free product. Given a bundle A = (X,7,: A —
Az, A) and a fixed C*-algebra B, a full free product bundle A * B is constructed. This

has fibres A * B, as you might expect. Using results of Blanchard [9] (and Kirchberg) we
show that, for any continuous bundle A (on a compact metric space with unital separable

exact bundle C*-algebra), the bundle A * B is also continuous, regardless of B. The reason

for this is that the assumed conditions imply that A is subtrivial. This in turn implies

that A x B is also subtrivial, hence certainly continuous.
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The situation for the reduced free product is more complicated. To construct a reduced
free product bundle A %, B, we first need to attach a state to B and a continuous field of
states to the fibres of A. We are then left with two possible definitions for the reduced free
product bundle. There is the upper semicontinuous bundle C* and the lower semicontin-
uous bundle C*. C* is the most natural from the C(X)-algebra point of view. However,
it is not clear that the fibres are always A, x, B. The bundle C! has the advantage that

its fibres are always A, *, B, which is what you would expect from a reduced free product
bundle.

We discuss possible methods for proving that C' is continuous. It turns out that C’
is continuous precisely when the bundles C* and C' coincide. Using methods inspired
by a result of Effros and Haagerup [25] we show that C' is indeed continuous, at least in
certain special cases. The main idea is to construct a unital completely positive lifting

p: Az = A. This is complicated by the requirement that p must respect the state on A;

and the conditional expectation on A (in a sense made precise in section 5.4).

Finally, we consider the continuity of C*. We show that, if A is continuous and has
exact bundle C*-algebra then C* is continuous, regardless of B. This is done using the
work of Dykema and Shlyakhtenko [24]. Interestingly, this is the same work that was
used in showing the nuclearity of certain reduced free products in section 3.3. We embed
C* into a Cuntz-Pimsner C*-algebra E(H), where H is a Hilbert D-bimodule, D being
the bundle C*-algebra of the minimal tensor product bundle A ® B. The Cuntz-Pimsner
C*-algebra is also a bundle, and we use the structure of the Cuntz-Pimsner C*-algebra
E(H) to show that it is actually a continuous bundle. We start from the fact that E(H)
contains the minimal tensor product bundle D, which is continuous because .4 has exact
bundle C*-algebra. From the continuity of E(H) , it follows that C* itself is continuous.

Unfortunately, it is not clear if continuity of C* implies anything about the continuity of
o
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Chapter 1

Preliminaries

This Chapter brings together background material which is relevant to this thesis. We first
detail the notation and conventions used. Then Section 1.1 provides the definitions and
some properties of the important concepts of nuclearity and exactness. These ideas are
used heavily in the rest of the thesis, with Chapter 3 focussing on nuclearity and Chapter
4 providing new characterisations of exactness. Exactness appears again in Chapter 9.
Section 1.2 looks at Hilbert C*-modules, especially the interior tensor product, which

appears throughout the rest of this thesis. In Section 1.3 we define continuous bundles

of C*-algebras. We note the alternative viewpoints provided by continuous fields of C*-

algebras and C(X)-algebras. Finally, in Section 1.4 we define free products of C*-algebras.

We consider the full and reduced cases, as well as amalgamated free products.

Notation and conventions

If A and B are C*-algebras then A ® B denotes the minimal or spatial tensor product,
while A ®,qe B denotes the maximal tensor product. Generally, A ® B denotes the
algebraic tensor product. All ideals are closed and two-sided, unless stated otherwise. The
C*-—algebf& of bounded linear operators on a Hilbert space H is denoted by B(H). The
C*-algebra of n X n matrices over the complex numbers is denoted M,. Other notation

will be introduced in later sections of this chapter.



1.1 Nuclearity and exactness

Nuclearity and exactness are two of the most important ways of approximating an infinite
dimensional C*-algebra by finite dimensional ones. Much information about these concepts

can be found in Wassermann’s monograph [66]. Their definitions are as follows.

Definition 1.1.1. A C*-algebra A is nuclear if, for every C*-algebra B, there is a unique

C*-norm on the algebraic tensor product A ® B.

Definition 1.1.2. A C*-algebra A is exact if
0+AQJ 2 A®RB—+A®(B/J) =0

(with the canonical maps) is an exact sequence for every C*-algebra B and for every ideal

.J of B.

The above definition of nuclearity is not always easy to work with,.so other char-

acterisations in terms of approximation properties have been considered. The following
definition makes use of completely positive maps. For more information on these, and the

related completely bounded maps, see Paulsen [51).

Definition 1.1.3. A unital C*-algebra A has the completely positive approzimation
property if there are ny € N and nets of unital completely positive maps ) : A = M,,,

®x : My, = A such that
limx¢rva(a) =a Va € A.

If A is not unital, the approximating maps are required to be complete contractions.

[t is not too difficult to show that, if A has the completely positive approximation
property, then A is nuclear. The converse was proved by Kirchberg [39] and by Choi and
Effros [13], thus giving the following.

Theorem 1.1.4. A C*-algebra is nuclear if and only if it has the completely positive

approzrimation property.

It is now more clear from the above theorem that nuclearity is a form of approximation

by finite dimensional C*-algebras. All finite dimensional C*-algebras are nuclear, as are

all commutative C™*-algebras.
Furthermore, the class of nuclear C*-algebras is closed under the taking of inductive

limits and quotients. Another important property, which follows from Theorem 1.1.4, is



the following. Suppose B is a C™*-subalgebra of the nuclear C*-algebra A and that there
exists a conditional expectation from A onto B. Then B is also nuclear. This property
is essential in Section 3.3. Perhaps surprisingly, there are examples of C'*-subalgebras of
nuclear C*-algebras which are not nuclear: see section 3.1.1.

Moving on, it is natural to ask if exactness can also be reformulated in a similar way to
the reformulation of nuclearity given in Theorem 1.1.4. This is indeed the case. A unital
C*-algebra A is said to be nuclearly embeddable if for some Hilbert space H, there is a
nuclear embedding ¢ : A — B(H). That is, there are n) € N and nets 9 : A = M,,,
¢y : Mp, = B(H) of unital completely positive maps such that

limAdJ)"gbA(;l,) = t(a) Va € A.

In the non-unital case, the unital completely positive maps are replaced by completely

positive contractions. We have the following result.

Theorem 1.1.5. A C*-algebra 1s exact if and only if it is nuclearly embeddable.
Proof. See Theorem 4.1 of [42] and chapter 7 of [66]. ]

This result makes it clear that exactness is also a form of approximation by finite
dimensional C*-algebras. Comparing with Theorem 1.1.4, it is obvious that any nuclear
C*-algebra is exact. We also have that any C*-subalgebra of an exact C*-algebra is exact.
This means that a C*-subalgebra of a nuclear C*-algebra is always exact.

Not all C*-algebras are exact. An example is the full group C*-algebra of the free
group on two generators, C*(F;) (see example 1.4.1). In fact, B(H) is not exact when H

is infinite dimensional.

Another property of some importance is the following. A C*-algebra is said to be resid-
ually finite-dimensional if it has a separating family of finite dimensional representations.
As with nuclearity and exactness, all commutative and finite-dimensional C*-algebras
are residually finite-dimensional. However, the class of residually finite-dimensional C*-
algebras is also closed under taking full free products, unlike the classes of nuclear C*-

algebras and exact C™*-algebras (see section 1.4). In this thesis, though, we will mostly be

concerned with the concepts of nuclearity and exactness.



1.2 Hilbert C*-modules

In this section we provide an overview of the most basic features of Hilbert C*-modules.
Further information can be found in [47] or [67].
Suppose that A is a C*-algebra. An inner-product A-module 1s a complex vector space

E which is also a right A-module and has an inner-product map (,) : EXE — A satisfying
o (z, y+ p2) =Mz, y)+pl{z,2)Ve,y,z€ EVAueC
¢ (z,ya)=(z,y)aVz,ye EVac A
e (y,2)=(z,y)"Ve,y € E
e {(z,z) > 0 and (z,z) = 0 implies z = 0.

This definition implies that the inner-product map is conjugate-linear in the first vari-
able and linear in the second variable. Occasionally, in this thesis, we may make use of
C-valued inner products which are linear in the first variable, but this should not cause

any confusion.

Definition 1.2.1. Let A be a C*-algebra. An inner-product A-module E is said to be a
Hilbert A-module if it is complete with respect to the norm defined by setting ]| =

(z, z)||}/2 forz € E.

The theory of such modules really took off with the work of Paschke {50]. We now

provide some simple examples of Hilbert C*-modules.

Ezample 1.2.1. Taking A = C, we obtain the usual Hilbert spaces. Also, any C*-algebra
A can be made into a Hilbert A-module over itself in an obvious way. If H is a Hilbert
space and A is a C*-algebra, then we can form the Hilbert A-module H ® A, which is the

closure of the algebraic tensor product of H and A, with inner-product given by

E®a,nQ@b) = (€,n)a*b Y&, neE H, Va,b € A.

A closed submodule F of a Hilbert A-module E is said to be complemented if £ =
F @ FL where F4 is defined as for Hilbert spaces. In contrast to the theory of Hilbert
spaces, closed submodules may not in general be complemented.

Given a Hilbert A-module F, we shall be interested in the set L(E) of adjointable
maps on E. This is the set of maps t : E — F such that there exists amapt* : E - E



with
(tz,y) = (z,t"y) Vz,y € E.

Such maps ¢ are automatically A-linear and bounded. If A happens to be C we get the
usual set of bounded linear operators on a Hilbert space. In general, L(E) shares many of
the properties of B(H), but not everything. For example (as noted in chapter 2), we might
expect that for ¢ € L(E) we would have (imt)*+ = kert*. However, whilst (imt)* C kert*
always holds, the equality fails in general.

Contained inside L(FE) is the ideal of compact operators K(E). This is the closed span
of {0:y : ¢,y € E} where 8,,(2) = z{y,2) for 2 € E. When E = A, K(FE) is isomorphic
to A and L(FE) is isomorphic to the multiplier algebra of A.

The usual G.N.S. construction for a state on a C*-algebra gives rise to a representation
of the C*-algebra as operators on a Hilbert space (see section 3.4 of Murphy [49]). We
will often be interested in the situation where A is a unital C*-algebra, B is a unital C*-
subalgebra of A, and ¢ : A — B is a conditional expectation. The conditional expectation
gives rise to a kind of generalised G.N.S. construction, where A is represented as operators
on a Hilbert B-module. This generalised G.N.S. construction is described in chapter 5 of
Lance [47] and section 1 of Dykema [20]. Here we give a brief description of the details of
the construction, sufficient for our purposes.

We let E = L%(A, ¢) be the Hilbert B-module obtained from A by separation and

completion with respect to the seminorm

lall = ll$(a*a)||*/2

There is a canonical map A — F, which we denote by a — @. By construction, A is

dense in F, and the inner-product map is defined on F by

"51:.'52)'= 9’5(0»?612)

for a;,a; € A. Werepresent Aon E vian : A = L(E), where n(a)(ay) = aaj for a, a; € A.
There is a vacuum vector £ = 1 € E. This is the generalisation of the G.N.S. construction
that we shall require. When taking reduced amalgamated free products of C*-algebras, we
will require, for the pair (A, ¢), that the corresponding G.N.S. representation is faithful.
By this, we mean that we require 7 to be faithful. This is equivalent to asking that, for

all a € A with a # 0, there is some a; € A such that ¢(aja*aa,) # 0.



We shall be particularly interested in tensor products of Hilbert C*-modules. There
are basically two kinds of tensor product. Suppose E is a Hilbert A-module and F is
a Hilbert B-module, where A and B are C*-algebras. Then the ezterior tensor product
EQ®F is a Hilbert A® B-module. It is defined to be the completion of the algebraic tensor

product of  and F with respect to the norm induced from

(1 @ Y1,22 @ ¥2) = (21,22) ® (N1, ¥2)

where 3,22 € F and v,y € F. Taking B = C and E = A, so that F is a Hilbert
space, we obtain the tensor product of a Hilbert space and a C*-algebra, as considered
previously.

Although the exterior tensor product would appear to be the most natural construction,

we will rarely consider it. Instead we shall use the interior tensor product of E and F

most of the time. For this we require a *-homomorphism ¢ : A — L(F). This makes F
into a left A-module, so we can form the algebraic tensor product of F and F over A. We

complete this with respect to the norm induced by

(1 @ y1,22 @ ¥2) = (Y1, ¢({Z1, Z2))y2)

where 1,22 € E and y;,y; € F. The resulting interior tensor product is denoted by
E®4 F. It is a Hilbert B-module in the obvious way. Usually the *-homomorphism ¢ will

be obvious in any given context, so we will avoid explicitly mentioning it.

Ezample 1.2.2. Perhaps the simplest example is when F = B and A = C. The *-
homomorphism ¢ : C =& M(B) is the usual unital embedding, and the interior tensor

product then becomes the tensor product of a Hilbert space and a C*-algebra, as consid-

ered previously.

Ezample 1.2.3. A more interesting example is the following. Suppose that X is a compact
Hausdorff space. Then we can consider a Hilbert C(X)-module E. Suppose that z € X.
Then we have the evaluation map ev; : C(X) — C. So we can form the interior tensor
product E; = E ®ev, C, which is actually a Hilbert space. We think of F as a continuous
field of Hilbert spaces over the base space X, with E; being the Hilbert space attached to

the point ¢ € X. In the case where F = H @ C(X), H being a Hilbert space, we do of
course get B, = H for every z € X.

The above example can also be viewed in terms of the concept of localisation. This is

discussed at the end of chapter 5 of Lance [47]. Suppose that E is a Hilbert A-module



with inner product (, )4, where A is a unital C*-algebra. Suppose that A contains a unital
C*-subalgebra B and that there is a conditional expectation ¢ : A = B. Then E can be

made into a semi-inner-product B-module by defining

(z,y)B = ¥((z,¥)4)-

The usual completion process results in a Hilbert B-module E,;, known as the localisation
of E with respect to 2.

This is useful because it is possible to define a x-homomorphism 7y : L(E) = L(Ey).
This is defined in the obvious way. It is injective if 1 is faithful. To obtain the above
example, take A = C(X), B = C and ¢ = ev, for some z € X.

Finally, we consider what is generally known as Kasparov’s stabilisation theorem. Let
H = ¢*(N) and denote by H4 the Hilbert A-module H ® A discussed earlier. It turns out
that H4 has the following remarkable properties. For proofs, see chapter 6 of [47] or the
original paper of Kasparov [38]. A Hilbert A-module F is said to be countably generated

if there is a countable set S C E such that the smallest closed submodule of E' containing

S i1s the whole of E.

Theorem 1.2.2. Suppose that A is a C*-algebra and that E is a countably generated
Hilbert A-module. Then E@ Hy = Hy.

Corollary 1.2.3. Suppose that E is a countably generated Hilbert A-module. Then E 1s

(unitarily equivalent to) a fully complemented submodule of H 4.

1.3 DBundles of C*-algebras

In this section we consider bundles of C*-algebras. Bundles are very important in chapters

4 and 5 of this thesis. They have been prominent in C*-algebra theory for some time. As
algebras of operator fields, they were studied by Fell [29]. As continuous fields of C*-
algebras, they were studied extensively by Dixmier [16].

Definition 1.3.1. Let X be a locally compact Hausdorff space. Then a bundle of C*-
algebras over X s a triple A = (X, 7, : A = Ag, A) where A is the bundle C*-algebra,

and A, is the fibre C*-algebra at * € X. The maps 7, are surjective x-homomorphisms

such that

o the family {m, :z € X} is faithful.



o A isa left Co(X)-module with m,(fa) = f(z)m,(a) forz € X, f € Co(X), a € A.

We often write a, for m;(a}. The bundle is said to be continuous if, for every a € A,

the function z — (|a;|| is in Co(X).

Fxample 1.5.1. There are two motivating examples for the above definitions. First there is
the trivial bundle with fibre A (a C*-algebra) on the space X. This has bundle C*-algebra
Co(X, A), with fibre A at every z € X. The maps 7, are just the evaluation maps. Such
a bundle is clearly continuous.

Now suppose that X is a discrete space and that for every £ € X we have a C*-algebra

A;. Then ®;cx Az can be made into a continuous bundle of C*-algebras over the space

X, with fibre A; at ¢ € X and the obvious maps.

In general, the bundle A = (X, 7, : A = A;, A) is said to be trivial if there are a
C*-algebra B and *-isomorphisms 0, : A, = B, 0 : A — Cy(X, B) such that, for every
z € X, we have 0, om;, = ev; 06. The bundle A is subtrivial if the maps 8, 6, are not

necessarily surjective.

Ezample 1.8.2. An interesting example of a continuous bundle is given by Elliott, Natsume
and Nest in [27]. This paper proves the Bott periodicity theorem via a description of the

C*-algebra of the Heisenberg group as a continuous bundle of C*-algebras. The base space

is R. The fibre at 0 is Co(R?), whilst every other fibre is K(L?(R)).

Recently, Blanchard [9] has obtained some remarkable results on the subtriviality of

continuous bundles of C*-algebras. These are best described within the framework of

C'(X)-algebras: see section 1.3.2.

In this thesis, we shall be particularly interested in operations on continuous bundles
of C*-algebras. Let A = (X, n;: A — Az, A) be a continuous bundle of C*-algebras and
fix a C*-algebra B. Then the minimal tensor product bundle

ARB=(X,m,®id:AQ® B~ A; ® B, A® B)
can be constructed. There is also the maximal tensor product bundle

A Rmaz B = (Xa Te Qmaz 1d 1 A Qmag B — A:r: Pmaz B1A Qmag B)

The constructions of both these bundles are explained in {44].



In [44] Kirchberg and Wassermann obtained a new characterisation of exactness of C*-

algebras in terms of minimal tensor product bundles over the one-point compactification

of the natural numbers N.

Theorem 1.3.2. Suppose that B is a C*-algebra. Then B 1s exact if and only 1f for any
continuous bundle A of C*-algebras over N (with separable bundle C*-algebra), A® B 1s

continuous.

They also found a similar characterisation of nuclearity in terms of maximal tensor

product bundles over N.

Theorem 1.3.3. Suppose that B is a C*-algebra. Then B is nuclear if and only if for any
continuous bundle A of C*-algebras over N (with separable bundle C*-algebra), A @masz B

18 conlinuous.

In the above results, B is regarded as fixed and the initial bundle is allowed to vary.
Fixing the bundle and allowing B to vary, we get a characterisation of exactness of the

bundle C*-algebra. The following appears as part of Theorem 4.6 in {44].

Theorem 1.3.4. Let A = (X,7; : A — Az, A) be a continuous bundle of C*-algebras

with ezact fibres. Then the bundle C*-algebra A is ezact if and only if for any C*-algebra
B, A ® B is continuous.

1.3.1 Continuous fields of C*-algebras

Here we mention an alternative viewpoint for the theory of continuous bundles. We make

the following definition.

Definition 1.3.5. Let X be a locally compact Hausdor[f space. A continuous field of C*-

algebras A = ((A(z))zex, ") consists of a family of C*-algebras A(z), indered by the set
X, together with a subset" C [, .x A(z). The subset I' satisfies the following:

e I' is a x-subalgebra of [[ .. x A(z).
o For everyz € X, {s(z):s €T} is dense in A(z).

o For everys €', z — ||s(z)]| ¢s continuous.

o Supposet € [1,.cx A(z). If, for every x € X and € > 0 there exists s € ' such that
|s(2) — t(2)|| < € for z in some neighbourhood of z, thent € T.



The subset I' is the set of continuous sections for A. If X is compact then T is a
C*-algebra in the obvious way. If X is not compact then I'y C I', the subset of continuous
sections which vanish at infinity, is a C*-algebra.

As explained in the introduction of [44], the concepts of continuous field and contin-
uous bundle are essentially equivalent and it is easy to pass between the two concepts.
Sometimes continuous bundles are more useful in the context of a particular problem,
other times continuous fields seem more natural.

For further information on continuous fields of C*-algebras, see chapter 10 of Dixmier

[16]. Continuous fields are also used extensively by, for example, Kirchberg and Phillips
143].

1.3.2 (C(X)-algebras

This section considers the point of view provided by C(X)-algebras. First, recall the
definition of a bundle of C*-algebras. We required the bundle C*-algebra A to be a
left Co(X)-module with 7;(fa) = f(z)m;(a). As explained in [3], this can be replaced
by assuming the existence of a *-homomorphism 8 : Co(X) =+ ZM(A) (where ZM(A)
denotes the centre of the multiplier algebra of A) such that

m(8(f)a) = f(z)m(a).
This motivates the following definition, taken from section 2.2 of Blanchard [8].

Definition 1.3.6. Let X be a locally compact Hausdorff space. A Co(X )-algeﬁbra consists
of a C*-algebra A together with a non-degenerate x-homomorphism Co(X) = ZM(A).

We are usually interested in the case where X is compact and the non-degenerate *-
homomorphism is actually an embedding. In this case, the non-degeneracy is equivalent

to asking that the *-homomorphism is unital.

Now consider
Cz:(X)A={fa: f € C;(X), a € A}.

By [8] Corollary 1.9 this is a closed vector subspace of A and hence it is an ideal. Define
A, to be the quotient A/C,(X)A. It is now clear how a Cp(X)-algebra can be made into a
bundle over X. By [8] Proposition 2.8 the family of quotient maps {A = A/Cr(X)A}zex

is faithful. So we do indeed obtain a bundle of C*-algebras over X. Moreover, the definition

implies that this bundle is automatically upper semicontinuous (this is explained in, for

example, section 1.1 of [9]).
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Going in the other direction, suppose that we have a bundle of C*-algebras. Then, as
remarked at the beginning of this section, we get a *~homomorphism Cp(X) — ZM(A)
in a natural way. Using this *-homomorphism, we obtain a new bundle over X with the
same bundle C*-algebra as the original bundle but with possibly different fibres. By [44]

Lemma 2.3, the new and original bundles coincide precisely when the original bundle is

upper semicontinuous.

It will be useful to consider representations of Cp(X)-algebras on Hilbert Cp(X)-

modules. We use the following definition from section 2.3 of [8].

Definition 1.3.7. Suppose that A is a Co(X)-algebra. A Co(X)-representation 7 :

A = L(€) is a Co(X)-linear x-homomorphism from A into the adjoiniable operators on

some Hilbert Co(X)-module €.

This means that, for every ¢ € X, m induces a Hilbert space representation 7 : Az —
L(&;) where £, = £ Qev, C. If every m; is faithful, 7 is said to be a field of faithful
representations. As remarked in [8] section 2.3, the function z +— ||7z(as)]| is always

lower semicontinuous.

A Co(X)-algebra is said to be a continuous field of C*-algebras if the bundle which it
defines is continuous. In this situation, we will often simply say that the Co(X)-algebra is
continuous.

Given a Co(X)-algebra A, we let S(A) be the state space of A and we denote by Sx(4)
the set of states ¢ such that ¢|Co(X) is pure (and hence a character *on Co(X)). So there

is an obvious map p: Sx(A) = X. We have the following theorem: see section 3.1 of [8].

Theorem 1.3.8. Let X be a locally compact Hausdorff space. Suppose A is a separable

Co(X)-algebra with every A; non-zero. Then the following are equivalent:
(1) A is a continuous field of C*-algebras.

(2) p:Sx(A) = X is open.

(3) There is a family {¢)} of continuous fields of states on A such that for every z € X,
{ev, o dx} 18 a faithful family of states on A;.

(4) A admats a field of faithful representations.

Here a continuous field of states on A is simply a Co(X)-linear positive map ¢: A —

Co(X) such that for every z € X, ¢, = ev, 0 ¢ is a state on A;.

11



By Lemma 3.8 of 8], if X is compact and A is unital (a case we will often be interested

in) then item (3) above may be replaced by
(3’) There is a continuous field of faithful states on A.

The existence of such a continuous field of faithful states can also be seen from [6], in the

case where X is a metric space as well as being compact.

This theorem will be of use in chapter 5, where we consider the reduced free product

operation on continuous bundles of C*-algebras.

Next, we mention tensor products in the context of C'(X)-algebras. Just as there are
(maximal and minimal) tensor product operations on bundles of C*-algebras, so it also

possible to take tensor products of C'(X)-algebras. We will rarely consider such tensor

products. For more details, see the work of Blanchard [7], [8].

Finally, we mention the following result of Blanchard [9].

Theorem 1.3.9. Suppose that X is a compact metric space and that A is a unital separa-

ble C(X)-algebra with unital embedding C(X) — Z(A). Then the following are equivalent:

(1) A is a continuous field of nuclear C*-algebras over X.

(2) There is a unital C(X)-linear monomorphism o : A — C(X, O;) and a unital C(X)-
linear completely positive map E : C(X,03) = A such that Eo« = idy.

Here, of course, Oy is the Cuntz algebra on two generators. Basically, this theorem

says that any continuous bundle of nuclear C*-algebras is subtrivial.

Kirchberg (in an appendix to [9]) showed that a continuous field of C*-algebras with

ezact bundle C*-algebra is subtrivial in the same way as in the above theorem (but of

course the map F need not exist).

Kirchberg and Phillips obtained similar results in [43]. They obtained more information
about the embedding a (see the statement of the theorem above). However, they had to

restrict the base space somewhat more than in Blanchard’s result.

FEzample 1.3.5. An interesting example of a bundle is given by the rotation C*-algebras.
Let 6 be a real number between 0 and 1. Then, by definition, the rotation C*-algebra Ay
is the universal C*-algebra generated by a pair of unitaries u, v satisfying vu = e2™9yv.

See example 3.1.2 later in this thesis.
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Elliott [26] showed that the family of rotation C*-algebras is actually a continuous
field. That is, there is a C*-algebra A and surjective *-homomorphisms mg : 4 — Ay such

that 8 — ||mg(a)]] is continuous for every a € A.

Haagerup and Rgrdam [35] were able to show that the rotation C*-algebras form a

subtrivial continuous bundle. This was done as follows. Suppose H is a separable infinite-
dimensional Hilbert space. Then they obtained continuous paths u,v : [0,1} - U(H)
with %(0) = u(1), v(0) = v(1) and u(f)v(8) = e*™Pv(B)u(f) for every § € [0,1]. This
subtriviality is not surprising, given Theorem 1.3.9 above and the fact that all the rotation

(C™*-algebras are nuclear.

1.4 Full and reduced free products of C*-algebras

There are basically two types of free products of C*-algebras, full free products and reduced

free products. Both types will be of some importance in this thesis.

1.4.1 Full free products

Full free products of C*-algebras are defined in chapter 1 of Voiculescu, Dykema and Nica

[62]. See also Blackadar [5]. For unital C*-algebras (these are our main concern) we have

the following definition.

Definition 1.4.1. Let (A,).cr be a family of unital C*-algebras. The free product C*-
algebra *,c1A, 1s the unique unital C*-algebra A with unital embeddings 1, : A, — A such
that, given any unital C*-algebra B and unital x-homomorphisms ¢, : A, — B there exists

a unique unital x-homomorphism ® : A — B such that ¢, = ® o ¢, for every v € I. That
is, ® extends all the ¢,.

Non-unital free products are defined in an analogous manner.

It is necessary to show that the free product A actually exists. To do this, we consider

the algebraic free product Ag, which is a x-algebra. Define the following norm for z € Ay:

lz|| = sup{||x(2)]| : # a unital *-representation of Ag on a Hilbert space}

Completing A with respect to this norm, we obtain the free product A.

Full free products relate very nicely to free products of groups.

Proposition 1.4.2. Let (G,).c1 be a family of groups. Then C*(x,¢1G,) = *,e1C*(G.).
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Proof. See Proposition 1.4.3 of [62]. O

Another important property of the full free product is the following. Suppose A and
B are unital C*-algebras with A C B unitally. Then, if C is another unital C*-algebra,

we have a canonical inclusion A*C C B *C. The minimal tensor product of C*-algebras
satisfies a similar property. However, the maximal tensor product of C*-algebras does not

have this kind of property in general.
Full free products also satisfy the following. Recall the residually finite-dimensional

property from section 1.1.

Theorem 1.4.3. Let A and B be unital C*-algebras. Then the unital full free product Ax B

18 residually finite-dimensional if and only if A and B are residually finite-dimensional.

Proof. See Theorem 3.2 of Exel and Loring [28]. (]

Unfortunately, taking full free products does not preserve exactness or nuclearity.

Ezample 1.4.1. Consider C(T) where T is the unit circle. Now C(T) is commutative so is

certainly nuclear and exact. But C(T) & C*(Z) so
C(T)«C(T) = C*(Z) « C*(Z) = C*(F,).

In [63] and [64] Wassermann showed that C*(I;) fails even to be exact. Indeed, letting J

denote the kernel of the canonical *-homomorphism C*(Fy) — C*(F;), the sequence

0= C*(F)®J = C*(F2) ® C*(F3) = C*(F,) @ Cr(F3) = 0

1s not exact.

Finally, note that there is also the concept of a full amalgamated free product of

C*-algebras. This involves amalgamating over a common C*-subalgebra. The defini-

tion is very similar to Definition 1.4.1. Essentially the difference is that we only take
x-homomorphisms ¢, : A, = B which agree on the common C*-subalgebra.

In fact, the unital full free product of C*-algebras that we have been considering is,
strictly speaking, an amalgamated free product. We are amalgamating over the common

C*-subalgebra C1. Full amalgamated free products will also be considered in chapter 5 of

this thesis.
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1.4.2 Reduced free products

Reduced free products of C*-algebras have been important recently, both in C*-algebra
theory and in free probability theory (see the book [62] for more on this). Reduced free
products were introduced by Voiculescu [61]. Earlier they had been constructed in a less

general manner by Avitzour [4] and Ching [11]. As we are particularly interested in reduced
amalgamated free products, we shall define and construct the reduced amalgamated free
product. See chapter 1 of [62] for the unamalgamated case, chapter 3 of [62] for the

amalgamated case. Here we follow the notation and conventions of Dykema [20].

The concept of freeness (a non-commutative analogue of independence) is important.

for the definition of reduced free products.

Definition 1.4.4. Let A be a unital C*-algebra with unital C*-subalgebra B and a condi-
tional ezpectation ¢ : A — B. Consider a family of intermediate C*-subalgebras B C A, C
A. The family (A,).e1 is said to be free with respect to ¢ if p(aiay---a,) = 0 whenever
a; €A, Plaj) =0and iy £ t3# - # in.

We now define the reduced amalgamated free product.

Definition 1.4.5. Suppose B is a unital C*-algebra and that for every . € 1, A, is a unital
C*-algebra containing B and with a conditional ezxpectation ¢, : A, -+ B. Assuming that

the corresponding G.N.S. representations are faithful, the reduced amalgamated free product
C*-algebra 1s the unique unital C*-algebra A containing B, with conditional expectation

¢ : A — B and embeddings A, — A restricting to the identity on B, such that
(1) ¢ ezxtends all the ¢,;

(2) the family (A,).e1 ts free with respect to ¢;

(3) A is generated by the union of the A,;

(4) the G.N.S. representation of ¢ is faithful on A.

The reduced amalgamated free product is written

(A, ¢’) — *f»EI(AH ¢’¢) '

Sometimes the reduced free product (using states) of two C*-algebras A and B is written

A *, B if it is obvious which states are involved.
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A C*-algebra A with the above properties is unique. The question is, does there exist

such an A? The construction goes as follows. Recall section 1.2 on Hilbert C*-modules.
Let F, = L2(A,,,¢,,)' be the Hilbert B-module obtained (via the generalised G.N.S.
construction described in section 1.2) from the pair (A,,#,). As usual, we denote the
canonical map A, -+ E,bya+~—d. Let r, : A, = L(E,) be the corresponding (generalised)
G.N.S. representation. We are assuming that every =, is faithful.
Now consider the vacuum vector &, = 1¢ E,. The subspace £, B is a complemented
submodule of E,. Indeed, 0, ¢, is the projection onto §,B. Let E} be the complementing

submodule. Thatis, E° = {¢ € E, : (z,£,) = 0}. Note that this is just the closure of As
in E,, where A® = ker¢,. Define

E=(B® (D E,®sE,®s ®BE,

neN
{1 4eeeyin el

L1 FRFEFin

where B is just a copy of B, considered as a Hilbert B-module, with £ = 1. The tensor
products are interior tensor products arising from restricting the maps 7, to B. The

Hilbert B-module F is known as the free product Hilbert B-module, and we write

(Er E) = ¥,e] (Engc)'

Next, take ¢« € I and define

E()=nB® (D E,®E,®s  ®pE

neN
k] yeesyln EI

L F2FFin

01 F£

where 7,B is another copy of B with n, = 1. Let V, : E, g E(t) =&+ E be the natural
unitary operator defined by

£@n +—§
(®n+—(
£R® QG)—(1® B
(R(1® ®G)— (BB B

where € E7, (j € E], with ¢ # ¢y # tg # -« F tn.
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The unitary V, enables us to define a representation of A, on E rather than E,. That

is, we get a *-homomorphism A, : A, = L(F) given by
\(@) = Vi(m(a) @ 1)V}

We then define the reduced amalgamated free product A to be the C*-algebra generated
by |J,er A(A). Welet ¢ : A — B be the conditional expectation ¢(a) = (a&,&). Note
that in the case where B = C, all the Hilbert C*-modules become Hilbert spaces and the
conditional expectations become states. (We also tend to write H, for the Hilbert space F,
in this special case.) But, for a general reduced amalgamated free product, it is necessary
to use the theory of Hilbert C*-modules.

It is not difficult to check that (A, ¢) satisfies the desired properties. Consider,
for example, the property of freeness. Suppose that a; € A, and ¢, (a;) = 0 for
j=1,2,...,n. This means that (¢;§,,,§,) = 0. Direct calculation reveals that, assuming
W FLFE F in,

a6z An =01 Q0 Q - @ @y

where we have omitted the representations A,. Clearly the right-hand side of the above
equation is orthogonal to &, hence ¢(ai1a3---a,) = 0. This proves that the freeness condi-

tion is satisfied.

This completes our review of the construction of the reduced amalgamated free product.
Note that A is the closed span of B together with all reduced words. These are words of
the form aja; - -a, where a; € A,;, ¢,,(a;) =0, ¢y # -+ # ¢, and n € N. We will often
write A? for A, N kerd,.

The canonical example of a reduced amalgamated free product is the one associated to
an amalgamated free product of groups. See Example 2.3.1 for details of the construction.

We also have the following interesting result due to Dykema [20].

Theorem 1.4.6. Suppose B is a unital C*-algebra, I is a set, and for v € I we have a

unital C*-algebra A, containing B and having a conditional expectation ¢, : A, = B whose

G.N.S. representation is faithful. Let

(Ar d)) — *bGI(AH ¢t.)

be the reduced amalgamated free product. Then A is ezact if and only if all the A, are

exact.
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So reduced amalgamated free products preserve exactness. The extent to which they

preserve nuclearity is one of the questions asked in this thesis.

Finally we mention the K-theory of free products of C*-algebras. Germain has inves-
tigated the K-theory of both full [32] and reduced [30] free products of unital C*-algebras

(amalgamating only over the units). See also Dykema and Rgrdam [23] for more on the

K-theory of the free product.

[t turns out that, at least if the C*-algebras involved are nuclear, then the K-theory
is the same for both the reduced and full free products. Moreover, the K-groups can be

calculated from a simple six-term exact sequence. For details of this, see Germain [32],

[30].

Ezample 1.4.2. Consider the reduced free product A of M, and M,, (with respect to
chosen states) for n,m € N. The results of Germain imply that K,(A) is always zero. On

the other hand, Ko(A) = Z ® Z/ima: where the group homomorphism o : Z - Z @ Z is

given by 1 — n @ (—m). It follows that Ko(A) = Z @ Zj, where k is the highest common
factor of m and n. The K-theory of the full free product of M, and M,, will be exactly

the same.

So, K-theory is of some use in understanding free products, though we do not consider

such methods in the remainder of this thesis.
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Chapter 2

Free product conditional

expectations

2.1 Introduction

In this chapter we consider the faithfulness of the free product conditional expectation
obtained in the construction of the reduced amalgamated free product of a collection of
C*-algebras. First we review the case where amalgamation takes place only over the
complex numbers. We then go on to show that the free product conditional expectation
is faithful precisely when the initial conditional expectations are faithful. Following this,
we consider some examples of reduced amalgamated free products and their associated
conditional expectations.

As in Section 1.4, let I be a set and, for ¢ € I, let A, be a unital C*-algebra. We
suppose that each A, contains the unital C*-subalgebra B and that we have conditional

expectations ¢, : A, &+ B with faithful G.N.S. representations. Let

(A, ¢') _ *¢EI(A¢3 ‘35&)

be the reduced amalgamated free product C*-algebra.
Consider first the case where B is the complex numbers. Then the conditional ex-
pectations are states. It is clear that the state ¢ inherits certain properties of the initial

states ¢,. From the reduced free product construction, it follows that ¢ has faithful G.N.S.
representation if all the ¢, have faithful G.N.S. representations. It is easy to show that ¢

is a trace if every ¢, is a trace. It is also true that ¢ is pure precisely when every ¢, is

pure (see Section 3.3).

19



Voiculescu proved that the free product state in the reduced free product of von Neu-
mann algebras is faithful, if the initial states are faithful. It follows that, in the C*-algebra
case we are dealing with, ¢ is faithful if for all ¢ € I the vacuum vector is cyclic for the
commutant of A, (in the G.N.S. representation for (A,, ¢,)). This is always true when ¢, is
a faithful trace. However, in [18] Dykema has constructed an example where ¢, is faithful,
not a trace, and with the vacuum vector not cyclic for the commutant of A,.

Despite this, it is shown in [18] that ¢ is faithful if all the initial states are faithful.
In view of this, it is natural to ask whether the same result is true for the conditional
expectations when amalgamating over an arbitrary common C*-subalgebra. This is indeed
the case. Sakamoto [56] states this without proof, in the case when the common C™-

subalgebra involved has a faithful state. Here we make no assumptions on the common

C*-subalgebra over which we are amalgamating.
The methods used in what follows are based on but at the same time generalise those
found in [18]. The generalisation provides some clarification of the calculations and defini-

tions of [18]. We use standard reduced amalgamated free product notation, as contained

in Section 1.4.

2.2 Faithfulness of the free product conditional expectation

In the following, we assume that A, # B for every ¢ € I, in order to avoid the consideration
of trivial cases. As remarked in [18], this is not really a restriction.

Let » € N with n > 2 and take indices ¢; # 13 # +++ # (1, in I; For1<j7<n-1let
(j=a, € E}. Define V: E,, —+ E by

V= Qp Ay ***Qypy ‘Elan-'

For n = 1 wedefine V to be simply the canonical embedding of E,_ into E/. This embedding
sends e P, b E) ©§, ,B=F, toxz®be E.
This is equivalent to the definition of V given in [18], when B = C. V is adjointable,
with adjoint
V¥*=Po(a,a,- ---a,,) :E—=E,

where P is the orthogonal projection onto E, , which is considered as a submodule of E

via the canonical embedding defined above.
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These maps V will be very useful in what follows. Note that V is not necessarily an

isometry (unlike in {18] }, but this does not matter for our purposes. In fact, we have

V*V =¢(a; _, ---aj a, - -a, )1

With V defined as above, we now perform some calculations involving V. The results

are as follows.

Lemma 2.2.1. Suppose m € N and k1 # kg # +-- # km, with d; € A} for 1 < 3 < m.
Then:

e Ifm=2p—1wherel <p<n, and ky, =t1 = k1, k1 =3 =koy, ..., kpy1 =

V*dl . -di - d)(a"' RV S bdpb!abpa'bp.i.]_ *r awn..1)1

én—1 ‘p+1 ip

where b,b' € B are given by
b= (s, $(as, (- B(alyds) -+ )dpms)dpoy)
b' = ¢(dp419(- - - S(dm-16(dma,,)a,;) - - - ),y )

¢ Ifm=2n-—-1 andkm — Al =k1, km-—l = {2 ==k2, oo e g kn+1 = ip-1 = kn-l: kn= in
then
V*dy--d,,V = bd,b’

where b, b’ € B are given by
b= ¢(a; _ Pa; _,(---¢(a;d1) - )dn_2)dn1)

b' = ¢’(dn+1¢’(' ' "f)(dm-lé(dma’*l )a’f'z) S )a"'ﬂ-—l)

o Otherwise

V*dl v di = (.

Proof. This is similar to the corresponding proof in [18]. We use induction on n.

First consider the case n = 1. Here V is just the inclusion of Hilbert B-modules

E, = E. lf m=1and k,, =¢; then V*d1V =d;. If k;, # 11 and m > 1 then
dl”'dm£=gl®'“®zm L{B@Efl (1)
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and

di-dnE? =di® - ®dn @ E°, LEB®E?.
So V*dl---di = ().
If ky, = ¢3 and m > 2 then (1) holds and we find that

di- dmE’ C(1®  ®dn_1)B+d1® - Qdn-1QE° LEBGE’.

So again V*d; .- -d,,V = 0. Hence the statements of the lemma are valid in the case n = 1.

Now suppose that n > 1. As V is an operator on Hilbert B-modules, we can no longer

be certain that (imV)+ = kerV*. However, (imV)+ C kerV* is still valid, and this is all

that we shall need.

If k,, # ¢; then we obtain
di--dm(C1® ®(n1) LimV

di- dm((1® @1 ®E2)  LimV

since there cannot be any reduction of words. Hence V*d;---d,,V = 0. Taking adjoints
implies that the same is true if k; # ¢;. So let us assume that k,, = ¢; = k;. This implies
that either m=1 or m > 3.

If n =2 then we obtain
di dm(() =d1 ® - ® dm-1 ® (dmC1 — &, $dmas,))

+dy - -dma ‘;ﬁ(dmaal )E (2)

and V{ =a € E°
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dy - dm((1®) =d1® @ dpey ® (dmly — &, ¢(dma,)) ® ¢

+d; - dm—14(dma,, )ag (3)

If n > 2 we obtain
di - dm((1 Q- ®n-1)
= J] Q- t;E:.rn.--l ¢ (dmCI o EHqS(dma'bl)) ®C2 ®--Q C'”'"l

+d1 tee dm—ul Q*(’(dmaq )a’:.g vl 'a’bn_1€ (4)

and V{( =d € E?,
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d] *“dm(ﬁ@"'@(‘n—-l ®C)
— 31 ®'--®gm__1 & (dmCI “5&1¢(dmaal))®g2® "'®Cﬂ.-—1 ®C

+d1 "t dm—lé(dmael)aag e aan_1ag (5)

If m = 1 then the second term of the right hand sides of equations (2), (3), (4) and (5)
is orthogonal to imV. We can now apply V*. For example, applying V* to equation (5}

g1ves
P(G:‘n_l " ‘a:; a’:l (dlabi T é(dl a"*l)l)a%‘ T t";“"'".ﬂ.----l a’f)
- P(a:‘n_I "t a’:; a':l dla’ﬁ! abz * e a’bn—l a&) (6)
Now,if z =a} ---a; dya, - -a,,_, then
r— ¢(x)l € kerg
SO

(z-¢(2)1)§ L§
and hence, £ — ¢(x)1 is a sum of reduced words, all of which must end in some element of

A? . Since a € A? and tp-1 7 Ly it follows that

byy o1

P((z - ¢(z)1)af) = 0.
Hence (6) becomes
P(é(a:‘_l °e 'a:; dla"-l " a’*n-—l )G{)
— é(a:ﬂ_l "t 0:1 dla’*l "t a‘*n—-l )GE‘

Very similar things happen on applying V* to equations (2), (3) and (4), the result being
that

V*dIV = ¢)(ﬂ* ¢ oo afl d] Qug * 0y, _q )1.

tn-=1

If m > 3, the first term in the right hand sides of equations (2), (3), (4) and (5) is

orthogonal to imV. Hence we see that
Vidy o+ dpnV =V - dm-2dm-16(dma,, )U

where U is defined in the same way as V but using only the vectors (5,... (-1, not (;.

For a moment, consider the calculation of U*d;---d,V where m > 2 and k,, = ;.

We get the same equations (2), (3), (4) and (5): although there is a possibility that the
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condition ky = ¢; is not satisfied, this is not relevant to these calculations. We now want to

apply U*. Since m > 2 the first term on the right hand side of each equation is orthogonal

to im /. So we obtain
Uy dpyV=U"dy - -dp—19(dna,)U.

The above paragraph shows that, letting d—1=dn_1 ¢(dma,, ), we have

V*dy.--d,V V*dy - dpeodp U

(U* sy g+ d3V)"
(U*dyrdiy g - d38(d50, )U)"
U*¢(a;, d1)dz - -dm—2dm—-1$(dma,, ) U.

Now apply the inductive hypothesis to finish the proof. To give an idea of how the

elements b, b’ € B from the statement of the Lemma build up, consider the situation where

m > 5 and n > 3. Then

V*dy- - dpV = U*¢(a; di)ds - dm_2dm_16(dma,)U
= T(an b0, d)da)ds - ozt $(dmt )a) T
where T is defined as for V but using the vectors (3,...,(n—1- O

It is not clear that Lemma 1.3 of [18)], which states that V*AV = A, holds in this
generality. However, it is clear from the proof that we still have V*AV C A,,, given the

calculations performed in Lemma 2.2.1 above. This allows us to prove the following.

Theorem 2.2.2. Let
(Aa ‘rb) - *I-EI(AH QS&)

be the reduced amalgamated free product of C*-algebras. Assume thal for every ¢+ € I,

A, # B and that the conditional expectation ¢, is faithful. Then the free product conditional
expectation ¢ 1s faithful on A.

Proof. Suppose that a € A, a > 0, a % 0 and ¢’(;1) = 0. Then (£,af) = 0. Let p,, .. .,

denote the projection from E onto its direct summand E? ® ---® E? , where of course

L FlaFE o FE Ly,
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Since a > 0 but a # 0 it follows that for some ¢4, ¢3,...,t, we have

pbl yeregbn a’ptl yeos yin # 0.

Let n be the smallest such that this holds. Then we can find

2=G0®GL® - ®GLEE® -®F

such that
(Z, pbl""if‘ﬂa’p‘*ls**'if‘ﬂz") # 0‘

In fact, since Xf is dense in E? for all ¢, we can assume (; = @, ; for some q,, € Afj, for all
1 < 7 £ n. Now define V using the vectors (1,(s,...,(n-1- Then ({4, V*aV(,) # 0, s0
V*aV # 0 but is > 0. Now we know V*aV € A,_ so, because ¢, is faithful, we have

(., V*aVE, ) = ¢, (V*aV) > 0 but # 0.

If n=1 then
<€bn? V*avftn) — (Es (15) — ﬁé(a») = (

which is a contradiction. If n > 1 then

G ® @ Cn-1,0(l1 @ ® (n-1)) = (§iny VTaVE,,) 2 0 but # 0.

It follows that

pbll‘"' I"ﬂ'—'lapbl'--- ’&“._1 # Ol

This contradicts the minimality of n. Hence we conclude that ¢ must be faithful. [

2.3 Some examples

In this section we consider some examples of reduced amalgamated free products and

the related C*-algebras.

Ezxample 2.3.1. This is the main motivating example for reduced amalgamated free prod-
uct C*-algebras. We suppose that for every ¢ in some index set I, we have a discrete group
(.. Suppose further that these groups all possess a common subgroup H. Then we can

define the amalgamated free product of groups G = (*xg).e1G, in the usual way. This is
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a standard construction in group theory: see, for example, Chapter 4 of Magnus, Karrass

and Solitar [48] for details.

Define A = C¥(G) C B(£%(G)) and let B =3span A(H) C A, where A is the left regular
representation of G. If we let A, = Sparn A(G,) C A, then B 2 C}(H) and A, =2 C*(G,).

For ¢ € I we define the conditional expectation 7' : A, = B via

A forge H
Tg"()\g) = s 08 whereg € G,.
0 forgd H

We similarly define the conditional expectation Tg : A — B.

It can easily be shown that
(Cr(G), Tg) = *,e1(Cr (G.), Tgi)'

Letting 7¢ : A — C and 77 : B — C denote the canonical faithful traces, we have
r@ = rH o 7. So in this case the free product conditional expectation is faithful, as are
all the initial conditional expectations. This is compatible with the results of Section 2.2.

As a concrete example, suppose we have the two groups Z4 = (a; a* = 1) and Zg =
.(b; b = 1). Then Z4 contains {1,a?} = Z; and Zg contains {1,5°} = Z,. Hence we can
deﬁne the free product G of Z4 and Zg, amalgamating over the common subgroup Zs.

Clearly G = (a,b; a* = 1, a? = b°). It is well known that in fact G & SL3(Z) where a can
1

0 0 1
be identified with ( ) and b can be identified with ( ) ,
-1 0 -1 1

In terms of C*-algebras we have
C:(SLQ,(Z)) — C:(Z:;) *o:(zz) C: (Zﬁ)

This is significant because, even though C¥(Z4) and C}(Z¢) are finite dimensional (com-
mutative even), the reduced amalgamated free product is not even nuclear. We will have

more to say about this in Chapter 3.

Fzample 2.3.2. Here we consider an important class of C*-algebras, namely the Cuntz-
Pimsner C*-algebras. These will be of use in later chapters, so we review their construction.
They were first considered in [52]. We use the same notation as in [24].

First take a unital C*-algebra B and let H be a Hilbert B-bimodule. That is, H is

a right Hilbert B-module with an (injective)} *-homomorphism B — L{H). We assume
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H is full, so that the image of the B-valued inner product map on H generates B as a
C*-algebra. Let F(H) = B® €,5, H®8)" be the Fock space over H, where H(®5)n
refers to the canonical n-fold interior tensor product of H with itself. Clearly F(H) is also

a Hilbert B-bimodule in a natural way.

For h € H define the corresponding creation operator £(h) € L(F(H)) by
(MM ®:  Qhy,=h@h1® - Qbhpn, hi,...,hn € H

f(h)b =hb, bEB

These operators are clearly adjointable. Indeed the adjoint of £(h) is given by
(RY*P1 @ Q@hp=C(hh1)ho® - Qhyp, hyy...,An € H

((hY*b =0, be B.

Moreover,

f(h)*f(g) =<(h,9), h,g€H
blf(h)bz = f(bﬂlbg) he H, bbby € B.

We shall be mostly interested in the extended Cuntz-Pimsner algebra E'(H ), which is
defined to be the C*-algebra generated by {é(h) : h € H} in L(F(H)). The fullness of H

implies that E(H) contains a canonical copy of B. We also have a canonical conditional

expectation £ : E(H) — B given by
£(z) = (1p,zlB) =z € E(H).

The Cuntz-Pimsner C*algebra O(H) is defined to be the image of E(H) in the quotient
L(F(H))/J where the ideal J is the C*-algebra generated by {L(@F_,H®2)") : k € N}.
It turns out that J is the ideal K(F(H)) of compact operators if H is finitely generated
as a right B-module. Taking B = C and H to be a finite-dimensional Hilbert space, O(H)
becomes one of the Cuntz algebras introduced in [14]. Taking B to be finite-dimensional
and commutative, with H finitely generated, O(H) becomes one of the Cuntz-Krieger

algebras considered in [15].

In [58] Speicher has shown that, if we take two Hilbert B-bimodules Hy, Hj, then
(E(Hl D Hz), 5H1$H2) = (E(Hl)a 8H1) * (E(H2)a gHz)

where the conditional expectations are the canonical ones mentioned above. In contrast

to our first example of an amalgamated free product, none of the conditional expectations
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involved here are faithful. Indeed, for A € H we have £(4(h)¢(h)*) = 0. Looking at the
case where B = C we find that these conditional expectations become pure states. Note

that pureness and faithfulness are mutually disjoint properties for states defined on a C*-

algebra of dimension > 2: this follows easily from Theorem 5.3.4 of Murphy [49], which

states that a state 7 on a C*-algebra A is pure if and only if
kerr = N, + N,:

where N, = {a € A :7(a%a) = 0}.

We shall have more to say about the Cuntz-Pimsner algebras in Chapter 3.
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Chapter 3

Nuclearity and other properties of

reduced free product C*-algebras

In this chapter we consider certain classes of reduced free product C*-algebras. We are
particularly interested in the nuclearity of these reduced free products, but we also consider
other properties.

Section 3.1 looks at reduced free products of C*-algebras with orthounitary bases, using
faithful traces. Most such free products turn out to be non-nuclear (although simple).
Section 3.2 builds on these results. We consider the ideals in a certain tensor product
C ®, C° of the reduced free product C' with its opposite C*-algebra C°?. The methods
used are based on ideas in a paper of Akemann and Ostrand [1].

Finally, in Section 3.3 we look at reduced free products of nuclear C*-algebras, using
pure states. Many of these reduced free products are found to be nuclear (and not simple).
There is a close connection here with the results on Cuntz-Pimsner C*-algebras contained

in [24]. The results of this section contrast sharply with those of Section 3.1.

3.1 (*-algebras with orthounitary bases

3.1.1 Introduction

This section considers the reduced free product of C*-algebras with orthounitary bases,
using faithful traces. Recall that Takesaki [60] gave the first example of a non-nuclear
C*-algebra, namely C(F;). Subsequently, Choi [12] gave an example of a non-nuclear C*-
algebra embedded into a nuclear C*-algebra. Indeed, he was able to show that C*(Z, x Z3)
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1s not nuclear and yet it can be embedded into the Cuntz algebra O,.

Later, Wassermann [65] gave an explicit proof of the non-nuclearity of C*(F;) =
Cr(Z) . Cr(Z). Here we show that many other reduced free product C*-algebras are
in fact non-nuclear. The proofs are based on the methods in [65]. We construct a C*-
norm v on C' © C°, where C is the reduced free product C*-algebra, such that v differs
from the spatial norm. Clearly, this implies non-nuclearity of the reduced free product in
question.

Our results always assume the existence of orthounitary bases, a concept first intro-
duced by Ching in [11]. Note that Dykema’s results on various reduced free products [17]

can also be used to show that certain C*-algebra free products (including many that we

consider here) are not nuclear. However, our approach here is quite different and perhaps

more elementary.

3.1.2 The free product orthounitary basis

Consider unital C*-algebras A;, A; with faithful traces ™, 7 respectively. We take the
reduced free product (C,7) = (A3, 71) * (A2, 72) as defined in Section 1.4. Our main

purpose at the moment is to show that, if A; and A3 have orthounitary bases, then the

reduced free product C also has an orthounitary basis.
For 2 = 1,2 we let A; act on the G.N.S. Hilbert space H;, via the representation 7; and
with vacuum vector §;. If a € A;, we write @ for the corresponding element of H;. Let the

free product Hilbert space be (H,&) = (Hy, &) * (H,&). The trace is defined by

r(c) = (c€,€) ceC.

T, and 7y are faithful traces, so 7 is also a faithful trace.
We make the following definition, which is adapted slightly from that found in [11).
Let U(A) denote the unitary group of the unital C*-algebra A.

Definition 3.1.1. Let A be a unital C*-algebra with faithful trace. We suppose A to be
acting on the associated G.N.S. Hilbert space with vacuum vector §. We say that O =
(Ua)acI 18 an orthounitary basis for A if O CU(A) and

1. (Up, & ua€) =0 if q,09 € I and ay # oy,
2. uy = c(@)u,(q) for some u, o) € O and c(a) € T, where T is the unit circle,
3. Uay Uay = (01, Q) Uy (0, ,a5) fOr SOME UY(4, o,) € O, some c(oy,a3) € T,
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4. Span O = A.

Note that some related objects, standard orthonormal bases, are used extensively in
[21]. These are similar to orthounitary bases, except that we only insist on the first and
fourth conditions to be satisfied (and the condition O C U{(A) is also removed).

The question of existence of an orthounitary basis seems to be quite difficult. Zorn’s
Lemma always gives a maximal (with respect to inclusion) subset of & (A) satisfying the
first three conditions of the definition, but such a subset need not satisfy the fourth condi-
tion. In fact, C@® C with a non-canonical trace does not even have any zero-trace unitaries
(this example is mentioned in [4]). However, C¥(G), with the canonical faithful trace,
clearly has an orthounitary basis when G is discrete. This is given by the set of unitaries

obtained from the left regular representation of G. We also have the following example.

Exzample 3.1.1. Consider M, (C) with the canonical trace. Let w € M,(C) be the matrix
with

Wp1=Wi2=W23="""=Wp-1n =

and all other entries zero. Let v € M,,(C) be the matrix with
vjj =€ (1< G < n)

and all other entries zero. Clearly v and w are both unitaries. Let O = {wkv? :1<4,k<
It can easily be checked that these unitaries are pairwise orthogonal (with respect to
the trace). Using the relation vw = e?"(»~V/"ww, it can be checked that O is actually an

orthounitary basis for M, (C) (see [11]).

Now, suppose that A; has orthounitary basis O3 = (ua)aer and A has orthounitary
basis O; = (v3)pes. We may as well suppose that each orthounitary basis contains 1. This
is because the fourth condition for an orthounitary basis implies that it is non-empty. The
second and third conditions then imply that there is an element in the orthounitary basis
of the form Al for some A € T. The first condition implies that there is a unique such

element. Multiplying every element of the orthounitary basis by X gives an orthounitary
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basis containing 1. So, fix ap € I such that u,, = 1 and fix 8¢ € J such that vg, = 1.
We wish to construct an orthounitary basis for the free product C, following the same
approach as in Ching’s paper [11].

Define

O — U {umvﬁl ---ua“vﬁn . ¥y # 473 fOl'?:> ]-:/6'5 ?l'- 180 fOl‘i < n}
n>1

Lemma 3.1.2. O s an orthounitary basis for the reduced free product C.

Proof. The second and third conditions are easily seen to be satisfied since, for example,
(Uay V8 ** * YanVB,)" = lUp Ug Vg _ “Ug, 1,

which is again of the required form once any unnecessary 1’s have been eliminated.

For the first condition, consider two distinct elements of O,

Uy = Uy Ug, * " U Vpp s
Ug = uaivﬁ{ .. ~ua;nvg;n.

We suppose that m > n. Clearly

(u1€, ua) = (g ug "'UE; (“;i“al)‘l’m ' Uan U €).

Consider first the pair ay, . If a3 = o] then Ug:i Ug, = 1 80 We move on to the next pair

of indices. If oy # of then, since O, is an orthounitary basis,

T(u;ium) = (Ut €5 vy §) = 0.

Assuming also vg, # 1,vg: # 1, we know that

T(v) = T(ugy) =+ =7(vp) =7(vg) = =7(tta,) = 7(vs,) = 0.
So, by freeness,
T(vpr, U -+ - V1 (g Uy JUB, * * * Ua,VG,) = 0.
Hence (u1§,u2{) = 0. Very similar things happen if vg, = 1 or vg = 1. Now, either we
meet a pair of indices which are not the same (and then the above shows that (u €, u€) =
0) or (if all of u; is ‘used up’) we obtain (u;§, ug€) = (u3,€) where u3 is an end-portion

of 4. A similar calculation to the one above then gives (u3€,£) = 0. So the first condition

is satisfied.

Finally, note that the span of O contains the span of all products from @O; and O;. It

follows that the fourth condition is satisfied. Hence O is an orthounitary basis for the free

product C. O
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3.1.3 Non-nuclearity of the free product

“Here we show that the free products we have been considering are not nuclear. In order
to do this, we must first consider the G.N.S. representations of the free product C and its

opposite C*-algebra C°?. There is an injection
C—H ; c—c€

with dense image, so we may consider H to be the G.N.S. Hilbert space associated with
(C, 1) and £ to be the associated vacuum vector.

We have the G.N.S. representation of C, given by
AN:C — B(H) ; Mc)(a€) =ca§ for a€C.
In other words, A = id. There is also the G.N.S. representation of C°P,
p:C? — B(H) ; p(c)(a€)=acf for a€C

where C is the same C*-algebra as C' but with the multiplication reversed. As usual,
A(C), p(C°P)] = 0.

Write the orthounitary basis @ = (€4)acs for some indexing set S. Since C¢ = H,
(ea€)aes is an orthonormal basis for H. So, if ¢ € C' and we define ¢y = (c,e4{) then
€ = Y csCataf. Applying p(a) to both sides of this equation for @ € C shows that
Y wes Cata converges strongly to ¢ on the dense subspace C'¢ of H. In fact, this is valid
for any c¢ in the double commutant of C. This enables us to use the proof of Theorem 1

from [11], something we do in Proposition 3.1.4.

Lemma 3.1.3. The mapping Y_ z;Qy; — Y_ Mz:)p(yi) is an embedding of C ©C°P inlo
B(H) if dimA; > 2 and dimA, > 3.

Proof. To show that the mapping is injective, it suffices to show that C' ® C°P is simple.
A standard algebraic result (see, for example, Theorem 4.1.1 of [37]) states that this is
the case so long as C itself is simple. The dimension assumptions and the existence of
orthounitary bases imply that the Avitzour conditions are satisfied, so by [4] C is simple.

Hence the mapping is indeed injective. [

From now on we assume that the dimension conditions in the above Lemma are in
force. The embedding allows us to define a C*-norm v on C ® C°?. Let the resulting

tensor product C*-algebra be denoted C' ®, C°?. We wish to show that v is not the spatial
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norm, which is done as in [65] by making use of the ‘14¢ lemma’. First, recall the following

from [11].
The indexing set S for O can be made into a group, multiplication being given

by ayap = p(ai, o) where p(oq,@s) is such that es eq, = ¢y, 02)e, (a0, for some
c(ay, az) € T. The identity is ¢, where e, = 1.

Define ' C S to be the set of o such that e, ends in a non-trivial vg (recall the
definition of ). Choose non-trivial vg € O, and let e,, = 1vg. Then FUroFry! = S\{¢}.
Next, choose distinct non-trivial uq,,u,, € O1 and let e, = uy,1, e, = uy,1. Then

F,riFr{' roFr;! are pairwise disjoint subsets of S\{¢}. We are now ready to prove the

following.

Proposition 3.1.4. C®,C°? C B(H) contains the compact operators K(H) if dimA, > 2
and dimA; > 3.

Proof. We first show that C' ®, C° contains a rank 1 projection, obtained by applying

the continuous functional calculus to z € C' ®, C°P given by

YT %(A(em)p(ein) + Alery)p(erg) + 2A(er ) (e7, )

+2X(er, )p(er,) + Alery)p(er,) + Aler,)p(er,)).

In the same way as in Lemma 2 of [65], we take { € (Cf)L of norm 1 and define
K = ||¢ — z(||. We hope to get a numerical lower bound on K. If

21 = 5 (M ero)plel,) + A(e3,)plers)

22 = 5(\(en)oler,) + Aeh,)p(en)

25 = 5 (Mer)p(el;) + Mer)o(ers))

then z = -}1-(:1:1 + 2249 + z3) so
1
i€ = 7(z1 + 225 + 23)(]| = K.
Applying Lemma 1 of [65] twice gives, for1=1,2,3
lz:¢ — || < 3KMA.
Applying Lemma 1 again gives
IMer)p(er)¢ — ¢l < 4K
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for1=0,1, 2.
Now we wish to apply the ‘14¢ lemma’, stated as Lemma 4 of [11}, in order to obtain

an upper bound on ||(||. Decompose { with respect to the orthonormal basis (e4§)qes:

C - Z f(a’)eaf-

x€ES

Then f € €2(S), and since { € (C¢)1, it follows that f(ap) = 0, where op is such that

We have

4K1/8 > “C"A(em)P(e:n)C”

Z f(a)(ead — ergeaty €)

l

a€S
- Z f(a)eﬂ€ o Z f(a)caergar;“s
xES xES
|
= ‘,Z f(rOﬂra-l)ergﬁra'lE T 2 f(a)caergar;lg
BeES aES
1/2
= (Z |f(7‘0‘17'51) = caf(a)|2) .
€S

. s .
Here ¢4 € T is defined by erjeqef, = cae, arsls

Similar calculations work for e, and e,,, so Lemma 4 of [11] now gives ||¢|| < 56 K*/&.

As ( is of norm 1, it follows that K > 5678.

As in Lemma 2 of [65], this shows that z = z* is a contraction with z|C{ = 1 and
o(z|(CE*) C [-1,1-5678]. If f:[-1,1] — [0, 1] is a continuous function with f(1) =1
and f(t) =0fort <1-56"%, then f(z) is the rank 1 projection onto C€. So C ®, C

contains a rank 1 projection.

Finally we must show that C' ® C° acts irreducibly on H. Suppose E is a closed
invariant subspace of H and let p be the projection onto it. Then p € (C ® C°?)’ so

p € A(C)' Np(CPY = A(C) NA(C)" = Z(A(C)".

But the proof of Theorem 1 in [11] shows that Z(A(C)") is trivial, so p = 0 or p = 1.

Hence C' ® C°P acts irreducibly on H and C ®, C°? contains the compact operators. [J

Corollary 3.1.5. If dimA, > 2 and dimA; > 3 then the reduced free product C is not

nuclear.
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Proof. C is simple so C®C?? is also simple. But C®, C°? contains the compact operators

and hence cannot be simple. So v cannot be the spatial norm. ]

Note that Lemma 1.1 of [10] shows that there is a conditional expectation from the free
product C onto each of A; and A;. So nuclearity of C' implies nuclearity of both 4, and
A,. Hence the above Corollary is only really interesting when A; and A, are nuclear. It
also means that there is no interest in extending the statement of the Corollary to reduced
free products of more than two C*-algebras.

Recall from [20] that reduced free products of exact C*-algebras are exact. So, in the
case where A; and A are nuclear, it is always the case that C is exact.

Finally, note that Theorem 3.8 of [21] implies, in particular, that all the reduced free

products we consider here are of stable rank 1.

Which C*-algebras can we take for A; and A; 7 We have assumed that A; and A,
have faithful traces, orthounitary bases, and have dimA; > 2, dimA; > 3. So either A;

or A; can be M, (C) (n > 2) or C}(G) for some discrete amenable group G with at least

3 elements. Another example is the following.

FEzample 3.1.2. Consider the irrational rotation algebra Ay, where € is an irrational num-
ber between 0 and 1. Ay is the universal C*-algebra generated by a pair of unitaries u,v

satisfying vu = e?™%uv. Ay turns out to be simple and nuclear. These algebras were

extensively studied by Rieffel [55].

Given (A, u) € T? there is an automorphism a) , of A4 sending u to Au and v to uv.

This enables us to define a (unique) faithful trace 7 on Ay via

T(z)l = // ayu(z)dAdp = € A,.
T2

With respect to this trace, the elements of O = {u*v? : 4,5 € Z} are pairwise orthogonal.
[t then easily follows that O is an orthounitary basis for Ay. Hence, either A; or A5 can

be an irrational rotation algebra in Corollary 3.1.5 above.

The following example is also of some interest.
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Ezample 3.1.3. Let M be a UHF algebra. Then M = @2, M,(;) for some positive integers

=1

s(z). Let O; be the usual orthounitary basis for M,y;y (see Example 3.1.1), where

s1(4) = s(1)(2) - - - s(3).

We have O; C ;41 for every ¢, so let O = U2,0;. It is easy to see that O is an
orthounitary basis for M, with respect to the usual faithful trace. Hence, either A; or

Ag can be a UHF algebra in Corollary 3.1.5. Reduced free products of hyperfinite von

Neumann algebras were considered by Dykema: see Theorem 4.6 of [17].

3.2 The ideals of C ®, C°?P

3.2.1 Introduction

This section is closely related to Section 3.1. Here we continue to look at the C*-algebra
C ®, C° defined in the previous section. Proposition 3.1.4 showed that this C*-algebra
contains the compact operators as an ideal, when dimA4; > 2 and dimA4; > 3. We show
that K(H) is actually the unique ideal of C' @, C°P, generalising a result of Akemann and
Ostrand in [1]. However, it seems necessary to assume that the underlying groups of the
orthounitary bases for A; and A, are either finite or free.

First let us review the case where C = C}(F;) = C}(Z) *, C*(Z). Theorem 1 of [1]}
shows that in this case the compact operators are contained in C ®, C°?. The proof of
this uses the results of the extensive calculations done in [2]. However, Wassermann [65]
showed how to obtain this result without referring to the calculations of [2], and we have
used similar methods to prove the generalisations of Section 3.1.

Theorem 3 of [1] states that the compact operators are the only non-trivial ideal of
C' ®,C° when C' = C}(F;). The proof makes no use of the calculations of [2] or the proof

of Theorem 1, and as mentioned above, the result can be generalised to certain other

situations where C' is not C}(F;).

3.2.2 The results

Let A; and A; satisfy the conditions required in Section 3.1, so that the compact operators
is an ideal of C ®, C°?. We consider the case where A; and A, are finite dimensional,

which is equivalent to asking that the orthounitary bases of A; and A, are finite. We now
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use similar methods to those in [1] to show that the compact operators form the unique
ideal of C ®, C°P,

Let 8 be the embedding of Lemma’3.1.3. Consider the inverse mapping ¢. This is a
*-isomorphism from a dense *-subalgebra of C'®, C°? onto a dense *-subalgebra of CQC"??,
with norm 1. Hence ¢ extends to a surjective *-homomorphism ¢ : C ®, C°? — C ® C?,

where C®,C? is considered as a C*-subalgebra of B(H ). The following lemma is required.

Lemma 3.2.1. The kernel of ¢ is precisely the compact operators K(H).

Proof. First show that K(H) C ker¢. We know that ker¢ N K(H) must be 0 or K(H)
since K(H) is simple. If the intersection is K (/) then we are done. If it is zero, then
¢(K(H)) is an ideal of C @ C°P, which is simple as remarked in Section 3.1. So either
¢(K(H)) = 0, which is what we want, or ¢(K(H)) = C ® C°?. This last equality leads
to a contradiction, since ¢(K(H)) is non-unital, but C' ® C°? is unital. So the conclusion

must be that K(H) C ker¢.
Next we show that ker¢ C K(H). Suppose a € ker¢ and take ¢ > 0. Choose b =

n

1 biX(z:)p(yi) such that ||a ~ b|| < €. Here z;,y; € O, the orthounitary basis for C,
whilst b; € C. Since ¢(a) = 0 and ||¢|| = 1 we have ||¢(b)]| < e. We will find a compact
operator ¢ with ||b — ¢|| < v/2]|¢(b)|| < V/2¢, in order to show that a is compact.

In order to define ¢, we need to consider a length function £ defined on the orthounitary
basis for C. This function is defined in the obvious way, with £(u,,vg, * * *Ua,Vs,) = 27,
¢(uq,) = 1, and so on. This is just the ‘block length’ for reduced words in the free product
C. Define S;={z € O :4(z) <t} and T;= O - S;.

Let p be the maximum length of all elements of O appearing in the expression for b.

Let ¢ denote projection from H onto (spanSe,)€. Since A; and A, are finite dimensional,

g is finite rank. So ¢ = bq is compact. Also,

lb — c|| = sup{||bz]||2 : ¢ € CTe,€ with ||z||2 = 1}.

Fix z = Ef’-:l o;w;€ in CTg,&, with the w; distinct.
For z € O, let

I(z)={(3,7):1<i<n1<j<tand 3c; € Tsuch that z,wy; = ¢;;2}.

Then let H = {z € O : I(z) # 0}. Clearly H is a finite set. For 2 € H we let p, =
E(i,j)e](z) biﬂ'jcij. Then

bz = Z bio;z;w;y;§ = Z %23
1,

z€H
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Hence bzl = (X, ¢p |12l /2.
We claim that there is { in the algebraic tensor product CO¢ @ CO¢ with £2-norm 1

and such that ||bz||; < v/2||¢(b)¢]|z. Clearly, if this is the case, then the Lemma will be

proved.

To define ¢, we need to define certain truncation functions. Let h = hjhy---h,, € O,
so that each Ay, for 1 < @+ < m, is either in O; or O, (the orthounitary bases for A;
and Az). We define, for 1 < ¢ < m, fi(h) = hyhy:--h;. Welet fo(h) = 1. Define also
gi(h) = fi(h)~*h.

Decompose CO¢ @ COE into orthogonal subspaces K, for z € O, where K, has or-

thonormal basis
{uf ® v€ :uvz~! € T1).

For j <t define (; € Ky, by

bp~-1

G = —% 3™ fi(w)€ @ gu(w;)E.

k=
Then let ¢ = Z;-:l iCj. Since ||(;]l2 =1 for all j, and the subspaces K, are orthogonal,
we have |z = (Se, [oj) /2 = 1
Let 2 € H and (3,3j) € I(2). Then

bp—1

(2 ® 1) = ﬁ S i i (5)€ ® gi(w;)uit.

k=p
Now z;w;y; = ¢;;z and £(w;) > 6p. So for p < k < 5p — 1, z; fx(w;) is, up to an element
of T, an ‘initial portion’ of 2. Moreover, it is clear that the element of T is independent of
k, as is the amount of cancellation between z; and fx(w;). So z;fx(w;) = 8ij fegr(i 5)(2)
for p < k < 5p -1, where |r(z,7)| < p and s;; € T.

We also obtain

gx(w;)y: fie(w;) " w;y;

fr(w;) a7 eisz

Sii frarig) (2) " teijz

Il

Ci;i553 Ok +r(i ) (2)

Therefore
bp—1 +1"'(1,J)

Y. f(2)E@gr(2)E

=p+r(s,7)

(z: @ u:)(; =

I
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and this is an element of K, for every (1, 7) € I(2).

Now let (), denote the orthogonal projection from K, onto the subspace spanned by

{fr(2)€® gr(2)€ : 2p < k < 4p — 1}. Define
4p—1

1
A, = T Z fe(2)€ ® gr(2)€.

=2p

We have ||A,||2 = § and Q.((z: ® %:)(;) = ¢i; A, for all (3, 5) € I(2).
Finally, we use the projections @}, to estimate ||¢(b)(||2. We get

n t
B¢ = D _bi) oi(zi ® %)

=1 =1

Y Y bioj(2i @ wi)¢

z€H (i,5)€1(z}

Now (z; ® ¥;)(; € K, so

18 B)S2

DI DY bioi(ei @ w)Gli;

zeH (i,5)€l(z)

Y QD bioi(zi @ 1:)(5)]I3

z€H (i7)€l(z)

Y Il YD bigjeiAlll

z€H (i,7)€l(=z)

AV

1

| |l
O] M
J75
N >
5 X
b b

|
N | =
=

8

oo

This proves the Lemma.

u

Proposition 3.2.2. Let A; and A; be finite-dimensional C*-algebras with faithful traces

and orthounitary bases, and demA, > 2, dimA, > 3. Then, if C is the reduced free product,
K (H) constitutes the unique ideal of C @, C°P.

Proof. Let I be an ideal of C ®, C°P. Then ¢(I) is an ideal of C' ® C°?, which is simple,
so either ¢(I) = 0 or ¢(I) = C Q C°P. If ¢(I) = 0 then [ is an ideal of K(H) (by the
previous Lemma), so [ is either zero or K(H). If ¢(I) =C ® C°P then I # 0. So

0+# K(H)I C INnK(H).
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As INK(H) # 0, we must have I N K(H) = K(H) and this implies that I = C @, C°?.
Thus K(H) is the only non-trivial ideal of C @, C°P. O]

This result can also be obtained in the case when the groups underlying the orthouni-
tary bases of A; and A are both free. Indeed, Akemann and Ostrand look at the case
where the underlying groups are both Z. The freeness of the groups involved ensures that
a suitable definition of length can be obtained (more refined than the ‘block length’ con-
sidered in the Lemma above). For more general groups (ones that are neither finite nor

free), it is not clear how to obtain a similar result.

3.3 Reduced free products using pure states

3.3.1 Introduction

Here we consider reduced free products of C*-algebras with respect to pure states. These
were considered by Kirchberg in [41]. In the course of showing that reduced amalgamated
free products of finite dimensional C*-algebras are exact, he showed that the reduced free
product of some matrix algebra with itself ( a finite number of times), using the same
pure state on each copy of the matrix algebra, is in fact an extension of a Cuntz-Krieger
algebra by the compact operators. It follows that such reduced free products are nuclear.

In the following we exploit the connection between reduced free products and Cuntz-
Pimsner C*-algebras which is described by Dykema and Shlyakhtenko in [24]. We show
that many reduced free products of nuclear C*-algebras with respect to pure states are in

fact nuclear. This includes all reduced free products of matrix algebras (with pure states

attached).

3.3.2 Nuclearity of the reduced free product

Let (A, ¢) = (A1, ¢1) * (A2, ¢2) be the reduced free product of two unital C*-algebras A;
and A,. We assume that the states ¢ and ¢, are pure {(and of course have faithful G.N.S.

representations). We assume also that A; and A; are nuclear, this being a necessary

condition for the reduced free product to be nuclear.
Now let 7; : A; — B(H;) be the G.N.S. representation corresponding to ¢;, fori = 1, 2.

Let the corresponding vacuum vectors be denoted &;. We can show the following.
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Theorem 3.3.1. Suppose that K(H;) C 7;(A;) fori=1,2. Then the reduced free product

A is nuclear (and not simple).

The extra condition required in the above Theorem is automatic when A; and A, are
matrix algebras, it being equivalent to pureness of the corresponding state. The condition
is in fact clearly satisfied for any type I C*-algebras A; and A;. So, this Theorem covers
all reduced free products of matrix algebras, as well as many infinite dimensional examples
(see later in this Section).

We now show how to prove this theorem, by relating the reduced free product A to

the Cuntz-Pimsner C*-algebras. These were introduced in Example 2.3.2.

First note that, by Voiculescu’s characterisation of the commutant of the reduced free
product (see Theorem 1.6.5 in [62]), it follows that the free product state ¢ is pure.

Now let B = A; ® A, and let p be the tensor product state on B given by ¢; ® ¢s.
Let H be the Hilbert B-bimodule L?(B, p) ®c B, and let E(H) be the associated Cuntz-

Pimsner C*-algebra. Finally, we let £ : E(H) — B be the canonical vacuum expectation.

Proposition 4.2 in [24] shows that there is an embedding
m:A— E(H) (1)
which is state-preserving in the sense that p o £ o m = ¢. The following result is essential.

Lemma 3.3.2. The Cuntz-Pimsner C*-algebra E(H) is nuclear.

Proof. The tensor product B is certainly nuclear. We can then use the proof of Theorem
3.1 in [24] to give a proof of the nuclearity of E(H), using the usual closure properties of
the class of nuclear C*-algebras.

Alternatively, use Theorem 2.4 of [33]. O]

Hence, to show nuclearity of the reduced free product A, it suffices to provide a con-

ditional expectation F(H) — A.

The proof of Proposition 4.2 in [24] shows that

(E(H),po &) = (C,¥) x(B,p) (2)

where C is the C*-subalgebra of E(H) generated by the non-unitary isometry (1@ 1),
1® 1 being an element of H. The state ¢ is the (scalar valued) restriction of £ to C.
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Clearly, C' is isomorphic to the Toeplitz algebra. By the Toeplitz algebra, we mean the
universal C'*-algebra generated by a non-unitary isometry (see, for example, section 3.5 of

Murphy [49] for more details on this).
Let 1 be the free product Hilbert space corresponding to the free product (2), with

vacuum vector £&. Now 7 is defined by

1

m(a1) = uayu™" a; € A,

2 2

ﬂ'(ag) = U aoU dg € Ag

where u € C is a Haar unitary, in other words ¥(u*) =0 for all k > 0.

So, K = m(A)& is a closed subspace of #. Let P denote the orthogonal projection from
‘H onto this subspace, and let

v: E(H)— B(K) (3)
be compression with respect to this projection P.

The embedding (1) is state-preserving, so we may identify X with the G.N.S. Hilbert
space L*(A, ¢). In fact, it is easy to see that ¥|n(A) is an isomorphism between mw(A)

and A. So, to show that V¥ is the required conditional expectation, it suffices to prove the

following.

Lemma 3.3.3. The image of ¥ is contained in U(m(A)) (which we identify with A).
Proof. This is divided into parts as follows.

A. Decomposition of elements of B

Since ¥(1) = 1 it suffices to consider ¥(z) where z is a reduced word in the free product

(2). By linearity and continuity of ¥, we can assume

T = 01(-’-11 VY bl)cz(az & 52) " ‘cn(“'n & bn)cn+1 (4)

where ¢; € C, a; € Ay, b; € Az, p(a; ® b;) =0V, and ¥(c;) = 0Vj. (We could possibly

have ¢; = 1 or cp4+1 = 1, depending on what type of reduced word z happens to be.)
Write a; @ b; = (¢1(a;)1+ ;) ® ($2(b;)1 + b;). Here, if a € (A, ¢) then by @ we mean

a — ¢(a)l. Doing this allows us to assume that each tensor a; ® b; is one of the following

three types:

(a) a; ®b; with ¢1(a;) = ¢2(b;) = 0.
(b) a; ®1=a; with ¢ (ﬂ,j) = (.
(c) 1® b; = b; with (;52(63) = (.
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B. Projections in the free product A

By assumption, A; contains the finite rank projection Pg¢,. Hence A; also contains

1 — Fcg, = Pge. Let P2 be the image of this projection under the canonical embedding
Ay — A. Then P, € A is the projection from (H, &) = (Hq, &) * (H3, &3) onto

n>1
L FLg -'21#511

=

Doing a similar thing for A, gives a projection P; € A, from H onto

n>1
R

L=
We also define P) = Fgg =1~ P, — P3 € A. These three projections, contained in A, will

be useful in what follows.

C. Evaluation of P

V¥ is defined as compression by P, so to understand ¥ it is useful to know how P can be

evaluated. Suppose we have a vector z§ € H, where « is of the form (4) and each tensor

is either of type (a), (b) or (c).

First note that, since P projects onto w(A)¢, it follows that

P(x(a)z) = n(a)P(2£) (5)

for all a € A.

- Next, note that P(z€) = 0 if z contains any tensors of type (a). This involves showing
that (r(a)z§, £) = 0 for all reduced words a in the algebraic free product of A, and A; (as

well as a = 1). To get a non-zero result for {7 (a)z&, ), we must have complete reduction

of the word m(a)z. But this involves either a; € A} or by € A meeting a tensor a; @ b,
of type (a), the result of which is aja; ® b; or a; ® b;b;. These tensors, however, are still

reduced. That is, p(a1a; ® b;) = 0 and p(a; ® byb;) = 0. This means that reduction

between the words 7 (a) and z ‘stops’ at a; ® b;, hence complete reduction can never occur

and we must have (r(a)z§,§) = 0.

So we can assume that all tensors in z are actually elements of A} or A%, in other

words of type (b) or (c). That is,

T = €101C209 * * * CpGnCnil (6)
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where a; € A7 ;) and n(j) € {1,2}. Of course, consecutive integers n(j) could well be the

Sallle.

If ¢y = 1 then P(z§) = 0, regardless of c,41. This is because the concatenation of 7 (a)

and z is already a reduced word (w(a) always ends with a non-zero power of u).

If ¥(c;) = 0 and n(1) = 1 then we claim that

P(ciay -+ cp41é) = v(ute))P(uay - - cCnt+1§). (7)

For this, we need

(m(a)cray -« - cng1€, &) = Y(u er1)(m(a)uay - - - cppr &, €)

where, as usual, a is a reduced word from the algebraic free product of A; and A;. If a

ends with an element of A%, both sides are zero. On the other, hand, if @ ends with an

element of A then both sides are seen to agree.

If n(1) = 2 then we get the corresponding formula

P(Clﬂ.l .o 'Cﬂ+1(f) — 1/)(1&—261)})(%2&,1 0o 'cn+1£)- (7’)

in the same way.

Once (7) or (7’) has been used, we can then write (in the case n(1)=1)

P('u,al Codg * - Cn.Hcf) P(W(al)uc2a2 " 'cn+1€)

ﬂ'(al)P(uCzdg ' 'Cﬂ_.|.1§)

by (5). Continuing this process allows us to evaluate P(z{). For example, if a; € A7,

by € A3 and ¢y, ¢, c3 are reduced then

P(Clalczblc:af) = '.b(u_l01)¢(U_102)¢(u203)ﬂ(6151)§-

It is apparent that, if two consecutive integers n(j) are equal, then the result will be
zero. Also, we made no assumptions on ¢,41. Clearly we again get zero if ¢,4+1 happens

to be 1. So the use of (5), (7) and (7’) allow us to evaluate P(z§) fully for any type of

word z.

D. Words containing tensors of type (a)

Now consider ¥(z) where z is of the form (4). We are assuming here that all tensors in =z

are of types (a), (b) or (c). Suppose z contains a tensor of type (a). Then we claim that
¥(z) = 0.
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Indeed, P(z£) = 0 by the comments in part C above, since z contains a tensor of type
(a). Now consider P(zm(a)£) where a is a reduced word in the algebraic free product of

A1 and A;. Consider the reduction of z7(a) into a sum of reduced words. Any words

containing a tensor of type (a) will be sent to zero on application of P. The only chance
of obtaining something non-zero is when a tensor from z meets an element, say a; € A{,

from a.

In this case we obtain the following sequence

. .C(aj- @ bj)aluk .o

where ¢ € C, a; ® b; is a tensor of type (a) from z, and k = —1 if there is nothing after a;
in a, while k£ = 1 if there is something afterwards.

Applying P gives
P(---c(aja; ® b;)u*--.) = ¢y (a;a;) P(- - -chuk -+ )

(see part C). Apply the process mentioned in part C to evaluate P(---cbju®---) : after
removing 7 (b;) using (5), we evaluate 1 (u?u*) (when k = ~1) or ¥(u~2(u2u*)) (when
k = 1). In either case we obtain zero.

An entirely analogous calculation works for the case where a; ® b; meets b; € 43. So

¥(z) =0.
E. Unsymmetrical words

Having dealt with any words containing tensors of type (a), we can now restrict to z of the

form (6), where everything is reduced, except possibly ¢; and ¢,4; (these are permitted

to be 1).
It is clear from part C that ¥(z) = 0 when both ¢; and ¢,4; are equal to 1. Now we
consider the unsymmetrical words where one (but not both) of ¢; and ¢,4+1 is equal to 1.
Since ¥(z) = (¥(z*))*, it suffices to consider the case where ¢,4+3 = 1. Suppose

a, € A$ (a very similar argument works for a,, € A3). Suppose a, a reduced word in the

algebraic free product of A; and A,, begins with a} € A?. Then
P(zm(a)f) = P(cy - - -apuaju® - -.).

Here &k depends on whether there is anything after a] in a but is always non-zero.
Using the usual evaluation process, after removing n(a,) using (5) we have to evaluate

P(u~'u?) = 0. Similarly, in the case when a begins with an element of A9, we are required
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to evaluate ¥ (u~%u%) = 0, so again P(zn(a)f) = 0. Therefore, since P(z€) = 0 also, we

get U(z) = 0.
F. Evaluation of ¥V(C)

We now wish to determine ¥(c) for ¢ € C. In fact,

U(c) = P(c) P, + Y(u " cu) Py + (v %cu?) Ps (8)

where Py, P, and P; are the projections from part B. As these projections are actually in
A (which we identify with w(A)), it follows that ¥(C) C ¥r(A). Note that, from now on
in the proof of this Lemma, u* denotes a non-zero power of « in some reduced word. The

actual value of & will be unimportant, and depends on the type of reduced word involved,

but i1s always non-zero.

To prove (8), note that ¥(c)§ = P(c€) = v¥(c)¢ (this is easy to check). Considering a

word a beginning with a] € A§ as in part E, we obtain

P(cm(a)é) P(c';m'luk oo o §)

Y(u"'eu) P(uaju® - - -€)
Y(u eu)m(a)é
V(u" cu)Pym(a)é.

Il

Similarly for a word a beginning with an element of AJ. Hence (8) is proved.
G. Induction formula for evaluation of W

We are considering words of the form

T = €1G10202 * * * CnQpCny (9)

where every letter is reduced and a; € A7 ), n(j) € {1,2}. Let w = c1a1¢203 - - cn, SO
that z = wa,cn41. We show that ¥(z) can be written in terms of W(z’) for various words

z' of length less than that of z. Since ¥(C) C ¥r(A), it will then follow by induction that

the entire image of ¥ is contained in Wr(A).

We claim that, if a, € Aj, then

¥ (z) = U(wu™ )7 (as) (¥ (ucpt1) Py + Y(cns1%) P + ¥ (u™ epyu?) P3). (10)

Note wu~! does indeed have length less than that of z. To prove (10) we need to evaluate

both sides at various points, and check that equality holds.
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At £, the L.H.S. of (10) is

P(wancn41€) = P(ucny1) P(wanu™'¢)

using the usual evaluation of P procedure from part C. But this is precisely what you

obtain from the R.H.S. of (10).
At m(a)¢, @) € Aj,

L.H.S.

P(wa,cppiuaju™tE)

¢(cn+1u)P(wanaflu_l§).

It is easy to check that this is precisely the R.H.S.
At w(b))€, b) € A3,

L.HS. P(wancny1 b u™2¢)

P(wapcnyu?biju=?E).

Using the usual evaluation procedure, after removing m(a,) we obtain

P(ucn+1u2bju%¢) P(u ucnpru?)m(51)¢

Y(u™ enpr?)m(B))E.

On the other hand, the R.H.S. gives
¢(u"lcn+1 u2)\II(wu“1)7r(am €= 7,b(u'lcn.,_luz)P(wanub'lu"zf),

which by the previous comments can easily be seen to be equal to the L.H.S.

At m(alby---)€ (a} € A3, b € A}), a word beginning with an element of A} and of

length > 2, we have

L.H.S. = P(wancapiud,abiu®---§)
= P(cnp1t) P(wana;ubju® . .- £)
while
R.HS. = t/)((:,,,.,.lu)\I!(wu'l)uanaiub'luk---f

V(Cny1u) P(wanaiublu”® - &)

L.H.S.
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At m(bjay---)E (b] € A3, af € A}), a word beginning with an element of A and of
length > 2, we have

L.H.S.

P(wancpprubju=talu® .. - €)

P(wancayprubiu~aiu - - £).

Evaluating this, after removing n(a,) we obtain

P(ucnprulbiuaju’ - &) = P(u™ eppru?)m(bia) - - - )E.

On the other hand,

R.H.S.

Y(u” lcn+1 uz)\I’(wu"l)fr(anb'l ay---)€

Y(u” 1‘-3'1r1.+1 uz)P(wanub;unlaiuk .+ &)

|

which is now seen to be precisely the same as the L.H.S. This proves (10).

If we have a,, € A3 in (9), a similar formula is obtained by very similar methods:

¥(z) = UV(wu?)m(as) (Y (u’cnt1) P + Y (ucn1u) Py + (cny1u?) P3) (11)

So, (10) and (11), along with part F, can be used to give a proof (by induction on the
length of words) that all words z of the form (9) satisfy ¥(z) € ¥n(A). We have now

considered all possible words in the free product. Hence the Lemma is proved. L}

The above Lemma is of interest in itself, providing some insight into the structure of
the reduced free product (2), as well as showing how the reduced free product A and the

tensor product B (both contained in E(H)) interact. The Lemma also allows us to prove

Theorem 3.3.1.

Proof of Theorem 3.3.1. By Lemma 3.3.3, we have a conditional expectation ¥ : E(H) —
A. By Lemma 3.3.2, E(H) is nuclear. Hence A is nuclear. In part B of the proof of Lemma
3.3.3, we showed that the finite rank projection Pg¢ was contained in A. As remarked
earlier, the free product state ¢ is pure so the corresponding G.N.S. representation 74 :

A — B(H) is irreducible. As m4(A) N K(H) # 0, it follows that K(H) C 74(A). So A is

certainly not simple. ]
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3.3.3 Examples

Which C*-algebras are covered by Theorem 3.3.1 ? As already remarked, all matrix
algebras are covered, in particular the reduced free products considered by Kirchberg in
[41]. We can also consider any unital nuclear C*-algebra A. Let w4 : A — B(Hy) be
the G.N.S. representation corresponding to some state ¢ on A. Then n4(A) + K(Hy) is a
C*-algebra to which the Theorem can be applied.

Let ©; denote the Cuntz-Pimsner C*-algebra for the Hilbert C-bimodule C* (where
d is finite), with corresponding vacuum expecation (actually a state) ¢¢ (see example
2.3.2). Now Oy contains the compact operators K(F(C?)), and it is readily seen that
04/ K (F(C?)) 2 Oy, the Cuntz algebra on d generators. Thus 0, is an extension of Oy

by the compact operators, and we have

(Oay, 8¢) * (Ouy, b¢) = (Oay 14, )

where d;,ds € N. This is a special case of Speicher’s result (see Example 2.3.2). The states
¢¢ are pure, so Theorem 3.3.1 is saying that 5d1+d2 is nuclear and not simple, which is
certainly true.

Note that if A; and A, satisfy the required conditions for the Theorem, then 4; ® A,
with the tensor product state does as well. Also, the reduced free product A of A; and
A, satisfies these same conditions.

Reduced free products with respect to non-faithful states were also considered in [22].

Theorem 3.1 in this paper states that certain free products

(2[: ¢’) — (A: (»bA) * (MN(C) & B: éN 0%y ¢B)

are simple (and purely infinite), where ¢n(e11) = 1. However, this conclusion is only valid
for pairs A, B which satisfy the so-called property @), which, roughly speaking, excludes
the compact operators from the G.N.S. representations of A and B. So the conditions of

Theorem 3.3.1 do not apply.

3.3.4 An alternative proof

Here we give an alternative proof of Theorem 3.3.1. The methods used are perhaps less
elementary, since they use a fair amount of the existing theory. They are related to the
proof of the equivalence of nuclear embeddability and exactness: see Theorem 4.1 of {42],

chapter 7 of [66], as well as section 1 of [53].
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The method is, roughly speaking, as follows. We know that reduced free products of

matrix algebras (with pure states attached) are nuclear [41]. Now A; and A, are nuclear,
so they can be approximated by matrix algebras. Hence we can show that A is nuclear if
we can take the reduced free product of the approximating maps for A; and A,. For this,
we need these approximating maps to be state-preserving (see [10]). Unfortunately, this
is not necessarily the case, so we need to modify the approximating maps somewhat, in

order to ensure that they are state-preserving.

Remark 3.8.1. We obtain some inspiration for this alternative proof by looking at reduced
free products of UHF algebras with pure states (of a certain special form) attached.

Suppose that M is a UHF algebra, so that M = ®72, M,(;) for some positive integers
s(2). Let ¢; be a pure state on M,;). Then ¢ = ®;2;¢; is a pure state on M.

For n € N, define ®, : M — M,y where sl(n) = s(1)s(2)---s(n). We let &, act as
the identity on the first n factors. That is ®,|M,;) = id for ¢ < n. Then, for ¢ > n, we
let ®,|M,(;) = ¢i. Thus @, is a tensor product of unital completely positive maps, and is
therefore a unital completely positive map. It is also clearly state-preserving, in the sense
that ¢ = (®7.,¢i) © @,.,: ( ¢ being the state on M, ®7_;¢; being the state on M,yp)).

Now let ¥y, : My,) — M be the inclusion. Obviously this is also a state-preserving
unital completely positive map, in the sense that Q@ ,¢; = ¢ o ¥,,. With the above

r 32—

definitions, we now obtain
liMmpsoo||¥n®r(z) —z|| =0Vz € M.

Indeed, this is clearly true when z is in U3>; M,y(y), and such z are dense in M.

So we have the equivalent of Proposition 3.3.6 for UHF algebras (with states of the
above form attached). Now the alternative proof of Theorem 3.3.1 (see after Proposition
3.3.6) shows that reduced free products of UHF algebras with pure states (of the above

form) attached are nuclear.

This kind of procedure has also been considered by Haagerup in [34]. Here a semidis-
crete I1;-factor is approximated by matrix algebras, and it is shown that the approximating
maps can be taken to preserve the canonical traces involved. As the canonical trace on
a matrix algebra is somewhat different in nature from the pure states on matrix algebras
that we are considering, it turns out that the methods used in [34] are quite different.

We start with the following simple Lemma.
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Lemma 3.3.4. Suppose By and B, are unital C*-algebras, with states vp; € S(B;) for
1 = 1,2, whpse G.N.S. representations are faithful. Let (B,1)) be the reduced free product
of By and By. Then B may be embedded into

(B1 @ Bz, %1 ® v3) * (B1 ® By, 91 @ ¥2). (1)

Moreover, there is a conditional expectation from the reduced free product (1) onto B.

Proof. Clearly B; embeds into By ® By via by — b1 ® 1, and (11 ® ¥2) (b1 ® 1) = ¥1(b1).
Similarly, B; embeds into B; ® B; in a state-preserving manner. Hence by [10] Theorem
1.3 there is an embedding of B into the reduced free product (1).

On the other hand, the map idg, ® ¥z : B; @ B, — Bj is unital completely positive
and state-preserving (that is, ¥ ® 192 = 1, o (idp, ® ¥2)), similarly for 9, ® idg,. So by

(10} Theorem 2.2 there exists a unital completely positive map from (1) to B, and it can

readily be seen that this map is in fact a conditional expectation onto B. L

In order to carry out the previously mentioned process of modifying the approximating

maps, we also need the following simple result.

Lemma 3.3.5. Suppose e and p are projections and that ¢ > 0. If ||(epe)? — epe|| < ¢
then || [e, 2] || < 2V

Proof. We have

| (epe — pe)*(epe — pe)|| = ||lepe — (epe)?|| < e.

So ||epe — pe|| < +/€ and ||epe — ep|| < /€. Hence |lep — pe|| < 24/ ]

Next we consider the approximation of a nuclear C*-algebra with matrix algebras,

using maps which preserve the pure states involved. We let ¢¢ € S(M,,) be the pure state
on Mﬂ, given by (1)0(811) = 1.

Proposition 3.3.6. Let A be a separable nuclear C*-algebra and suppose ¢ € S(A) is
pure, but with faithful G.N.S. representation w. Suppose w(A) D K(H), where H is the
G.N.S. Hilbert space. Then for every finite dimensional operator system X C A and e > 0,
there exist n € N and unital completely positive maps ® : A - M,,, ¥V : M,, — A such that
®, U are state-preserving (in the sense that ¢go® = ¢, po W = ¢g) and ||(TP — id)|x|| < e.

Proof. This is certainly true if A is finite dimensional. Indeed, since ¢ is pure, 7(A)’ = C1

so A has trivial centre. Hence A = M, for some p € N. Now n(M,) = n(M,)" = B(H)
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so H = CP. So we have a *-isomorphism 7 : M, = M, such that ¢ = ¢y o 7 (choosing an
orthonormal basis for CP whose first element is the vacuum vector). This means that we
can taken=p, ® =7 and ¥ = "L,

If A is not finite-dimensional, we can suppose that H = ¢2(N), with orthonormal basis
e1,é€2,.... Here we can assume that e; is the vacuum vector €.

As in Lemma 2 of [53], let ®, : A = M, be the unital completely positive map given
by compression with respect to the projection onto span{e; : 1 < n}. As e; = &, these
maps are also state-preserving.

Now consider ®,,|X. For large enough n this is going to be injective. So if n > ng say,

then we have an inverse mapping W, : ®,(X) = X. The proof of Theorem 1 in [53] tells
us that the W,, are completely bounded and in fact

E;n-ﬂ—)'m”Wﬂ”Cb = 1.

So for some large n we can take ||W, || < 14 €.

We need to use the nuclearity of A. Nuclearity implies that there are m € N and unital

completely positive maps U : A =+ M, V : M, - A with

|(VU —id)|x]|| < e.

Consider UW,, : ®,(X) = M,,. As U is completely contractive, we have |[UW,||a <
1+e¢. The Wittstock extension theorem (see Theorem 1.13 in [66] for example) implies that
there is a completely bounded self-adjoint extension W : M,, = M,, with ||W||s < 1+ €.
Now Proposition 1.19 of [66] gives a unital completely positive map T : M, = M, with
IT — W||la < €. Let ¥y = VT : M, = A. This is a unital completely positive map.

Since 7(A) D K(H), we can assume that X contains the rank one projection ey; €
K(H). We want ¥y to be state-preserving. Now ®,(e11) = €13 € M, so we would like

¥, (e11) to be e;;. What we can say is that, letting ¥,(e;1) = 2, we have ||z — e1;]| < 2e.
Define ¥y : M,, @ A by

Uo(z) = ennVi(er1zern)enn + e'll'lllll (e'l"lcceu)eu + ell‘Ill(eua:ef'l)eiLl + e'lLl\Ifl (e'll'la:ei"l)e‘l"l.

Here ej; = 1 — e11. Certainly, ¥q is completely positive. Also, since e;; is rank one, we

have

Wo(e11) = e112e11 = Aeny

where A > 0 satisfies |A — 1| < 2¢. Although ¥ is not unital, we do have
Wo(1) = eyyzeq1 + ey (1 — 2)ej; = ¢, say.
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Note that ||t — 1|| < 2¢ so t is positive and invertible.
The result of this is that we can define a map ¥ : M, — A by ¥(z) = t~1/2Wy(z)t~1/2.

With this definition, ¥ is unital and completely positive. It can be seen that [t, e;;] = 0,

so [t1/2, e1;] = 0 and hence
‘If(eu) — t"llzeuzeut'ljz — €11.
It follows that ey is in the multiplicative domain of ¥. Hence if £ € M,, then

111(81122611) = 611\1’(:13)611 — (,?5(‘1’(37))611

On the other hand,
U(ey1ze1n) = ¥(do(z)ernn) = do(z)en.
Thus ¥ is state-preserving.

So, define ® to be ®,,. Then & and ¥ are unital completely positive state-preserving
maps. What is ||(¥® —id)|x]|| ?

Well, ¥, : M, =+ A C B(H) is unital completely positive. Hence Stinespring’s theo-
rem gives a representation o : M, — B(K) (where K is a Hilbert space containing H)

such that, letting E denote projection from K onto H, we have ¥ (z) = Eo(z)E. Now
|Eo(e11)E — en]| < 2e so it follows that

||(E/‘a(¢?11)}£7})2 — Eo(ey1)Fl| < 6e.
Lemma 3.3.5 now implies that || [E, o(e11)] || < 2v/6e. Also,
I[E, o (ei)]ll = | B, o(en)]]l < 2V6e.
Using these estimates and the expression defining ¥o(z), we get
[To(2) — W1 (2)|| < (16€+ 16vV6e)]|c]].

Hence, |[¥o — ¥4 || < f(€) say, where f(e) — 0 as € — 0.
Since ||t—1|| < 2¢, it follows (by functional calculus arguments) that |[t=}/2 =1 < g(e),

where g(¢) = 0 as e = 0. So

1 (z) - To(z)|| < ||t/ 2Wo(2)t7 12 — Wo(2)t™ /2| + |[To(a)t™ /2 - Wo(z)|]
< (17 )| g(€) + g(€)) || Wol)|]
< (T4 g(€))g(e) + g(e)) (1 + 2¢)] ||

h(e)||zl| say,
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where h(e) — 0 as € — 0.

Now put everything together. We know that W|®(X) = UW,, and that ||[VT -VW|| <
€. So ||[VT|®(X) - VUW,|®(X)|| < €. Hence

(@12 - VU)Ix|[ = |((VT® - VUW,D)|x|| < e.

But ||(VU —id)|x]|| < € so ||[(¥1® — id)|x]|| < 2¢. As ||¥; — ¥|| < f(€) + h(e), we can

conclude that
1(¥® - id)|x|| < f(€) + h(e) + 2e.

As € is arbitrary, the result follows. n

The above Proposition allows us to give an alternative proof of Theorem 3.3.1.

Alternative proof of Theorem 3.3.1 Take zy,...,2, in the algebraic free product of A,
and A, and take 4 > 0. We wish to show that there are a nuclear C*-algebra N and
unital completely positive maps a: 4 -+ N, 8 : N =+ A such that ||fa(z;) — z;|| < 0 for
every ¢+ < n. From this it will follow, by standard techniques, that A is nuclear. Indeed,
as N is nuclear, Theorem 1.1.4 implies that /N has the completely positive approximation
property. So the identity map id : N - N may be approximately factorised as o o v for
some unital completely positive ¢ : N = M,, v : M, —+ N (and some p € N). Hence
the identity map id : A =+ A may be approximately factorised using coa: A =+ M, and
Bov:M, - A. It follows that A has the completely positive approximation property,
and so by Theorem 1.1.4 A is nuclear.

Each z; has an expression as a sum of reduced words plus a multiple of 1. We know
that the maximum length L of all the words involved is finite. Let L’ be the maximum
number of reduced words appearing in an z;. Let F; be the set of elements of A; appearing
in the expressions for the z; (7 = 1,2). Apply the above Proposition to A; with e = 6 /2LL’
and with X being the operator system generated by F; (j = 1, 2).

For 5 = 1,2 we get unital completely positive state-preserving maps a; : A; = M,,
B; : Mn, — A; with the properties stated in the Proposition. By [10] Theorem 2.2,
we can take the reduced free product of these maps to get unital completely positive

a:A—-> M, *»M,,,B:M,, x M, — A. We can certainly assume that the norms of all

elements in F} and F; are < 1. Now « is defined via

ofar -+ ax) = apr)(a1) -+ ongr) (ak)
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where (for 1 < j < k) a; € A];y and n(j) € {1,2} with n(1) #n(2) # - - # n(k). As B is

defined in a similar fashion, it can easily be seen that

|Ba(z;) — ;|| < LL'e < 6

for all 1 < n.

Finally, Lemma 7.6 of [41) implies that all reduced free products My *, My (with pure
states attached and k any positive integer) are nuclear. Lemma 3.3.4 then shows that the
reduced free product M, *, M,, mentioned above is nuclear. This means that we can

take the nuclear C*-algebra N mentioned in the first paragraph to be the reduced free
product M, *. M,,. Now standard techniques show that A is nuclear. []

3.3.5 The general result

It appears likely that any reduced free product of nuclear C*-algebras with pure states
attached is also nuclear, but it is not obvious how to go about proving this.

The original proof of Theorem 3.3.1 does not work when the G.N.S. representations
involved fail to contain the compact operators. It may at first seem possible to prove the
general result via a generalisation of Proposition 3.3.6, where we do not assume that the
G.N.S. representation contains the compact operators. The problem is that, without the
compact operators around, it is not clear how to ensure that the unital completely positive
maps involved are state-preserving.

Finally, another approach could be to modify the proof that nuclearity implies the
completely positive approximation property (as contained in Kirchberg [39] or Choi and
Effros [13]). This modification would attempt to ensure that the approximating maps
A — M, - A, where A is the nuclear C*-algebra concerned, are state-preserving with
respect to the pure state on A and some canonical pure state on M,,.

One of the problems with doing this is that the proofs in [39] and [13] depend on the
fact that the set of compositions A —+ M,, —+ A (where n can vary and the maps are unital
completely positive) is a convex subset of the set of all unital completely positive maps

from A to A. If we insist that we only allow state-preserving maps in these compositions,

then convexity is lost.
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Chapter 4

The tensor product operation on

continuous bundles of C*-algebras

4.1 Introduction

This chapter looks at continuous bundles of C'*-algebras. See Section 1.3 for the necessary
background material. We are particularly interested in the minimal tensor product opera-
tion on bundles. The most important question is whether or not continuity of the bundle
is preserved by this operation. As remarked by Kirchberg and Wassermann [44] it was at
one time thought that continuity was always preserved.

In [44] bundles with base space N were constructed such that continuity was not always
preserved. In Section 4.2, we construct a bundle on the unit interval [0, 1] such that
continuity is not always preserved. In Section 4.3, we extend this, giving a construction of
a bundle on any fixed compact infinite metric space X such that continuity is not always
preserved. These constructions give rise to new characterisations of exactness in terms of

the continuity of certain minimal tensor product bundles.

4.2 Continuous bundles on the unit immterval

Here we construct a continuous bundle on [0, 1] such that continuity is not always preserved
by the minimal tensor product operation. First of all we review the properties of the
minimal tensor product bundle and the situation for the base space N. Then we provide
a fairly general procedure for constructing a continuous bundle of C*-algebras on [0, 1],

starting from a sequence of C*-algebras. Finally we use this procedure to obtain a bundle
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on [0, 1] with the required discontinuity properties, thus giving a new characterisation of
exactness for C'*-algebras.

Let A = (X,7;: A — Az, A) be a continuous bundle of C*-algebras, and fix a C*-
algebra B. The minimal tensor product bundle A ® B is given by

(X,m,®id: A® B— A, ® B, A® B).

So if A has fibres A, then A ® B has fibres A, ® B. If A is continuous then A ® B is
always lower semicontinuous (see Lemma 2.5 of [44]j. [t turns out that, so long as A is
exact, A @ B is actually continuous (Theorem 4.6 of [44]). Also, if B is exact then A® B
is always continuous (see Theorem 4.5 in [44]).

However, if B is not exact then there exists a continuous bundle A on N such that
A ® B fails to be continuous. This is described in Proposition 4.3 of [44]. The base space

i,

N is clearly the simplest metric space on which there exist discontinuous functions. The

question is, can we replace N with the unit interval [0, 1] ? This is certainly possible in the
corresponding situation for maximal tensor product bundles (see Remarks 3.3 of [44]).
Now we provide a fairly general procedure for constructing continuous bundles of C*-
algebras on [0, 1], starting from a sequence of C*-algebras. In fact, we always consider
bundles on ﬁ+, the one point compactification of the non-negative reals Ry. As [0,1] is

homeomorphic to ]ﬁ.,., this can certainly be done. The main reason for doing it is to make

the construction a bit easier.

Start with a sequence A;, Ay, A3, ... of separable C*-algebras. We let &2, A; denote

1=1

the direct product of this sequence. That 1s,

G214 = {(-Ti o1t T € A; Y, Sl;§>||$1|| < oo} .
T

We also assume we have embeddings A, < A,+1, and we suppose we have a separable

C*-algebra A such that Iy 9 A C ®2,A;, where I is the ideal of sequences in ©;2,A4;

tending to zero.

Define B to be the set of f = (f,) € &%2,C([n — 1, 7], An) such that
o sup,cn||lfnll < 00 (actually part of the definition of ©32,)

o fu(n) = fany1(n) Vn €N

o (fa(n—a))3z € A Ya €0, 1]
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o a— (fn(n — @), is a continuous function from [0, 1] to A.

We can (and will) think of elements of B as bounded functions on Ry. To be explicit,

to f = (f.) € B, we associate the function g on R, given by

9(z) = fiz)41(2).

The second clause in the definition of B ensures that the definition of g is unambiguous
at integer values. The first clause of the definition of B ensures that ¢ is norm-bounded.

The final clause of the definition of B implies that there is an embedding ¢+ : B <
C([0,1],A). As C([0,1], A) is separable, it follows that B must also be separable.Clearly

B is a closed *-subalgebra of &2 ,C([n — 1,n], A,), in other words B is a C*-algebra.
For z € Ry, let

B$=B/{f€B;f|[£l;,OO)=0}.

We think of elements of B, as functions on R4 that are zero except possibly on the interval

[z,00). Also, define

By = B/{f € B :lim, || f(2)|| exists and is zero}.

There is an embedding 57 : B <« ®mei§+B‘“ via the quotient maps n, : B — B,
Too : B = By.

Note that, if f € B then

170 (A = limaseo || £(2)]].

The proof of this is similar to the proof that ||7(s)|| = limp—c0|sy, |, Where s = (s,,) € £ is
a bounded sequence of complex numbers and 7 is the quotient map corresponding to the
ideal ¢ of sequences s with s, — 0 as n — 0o. Now, this formula for ||7(s)]| is obtained
using truncations of a sequence s. That is, we consider sequences s’ of the form s/ = s,
for n < N (and s;, =0 for » > N) for some N. What we are really using is the fact that
£°° is closed under multiplication by elements of ¢;.

In a similar way, in order to prove the formula for |7, (f)|| we need to show that B is
closed under multiplication by elements of Cy(R), where this multiplication is defined in
the obvious way. So, if h € Cy(R), we need to show that hf € B.

The first clause in the definition of B is satisfied since h is bounded. The second clause is
satisfied since h is continuous. For the third clause we need to show that ((hf)(n—a))n>; =

(h(n— o) f(n—a))y>1 is an element of A. It is certainly a member of Iy, so it must belong
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to A. For the fourth clause we need to show that @ = (h(n—a) f(n—0)),>1 is continuous.
This is true because this is basically a product of two continuous functions. It follows that

hf € B, and hence the required formula for |7 (f)|| can indeed be proved.

Denote by B’ the image j(B). Now let 05 : @ g By — Bz denote the z’th coordinate
map. Then

B' = {y € ®;B; : 3f € B with n;(f) = 0,(y) Vz € IE.,.}.

We usually write v, for (7).
Any f € C(R4) acts on @B, by sending v € @, B, to fy where (f7)s = f(z)7s-

Now B’ is not necessarily invariant under this action, so we enlarge B’ to B”, the smallest
C*-subalgebra of @B, such that B’ C B” and C (]ﬁ.}.)B” C B”.

We can now define our continuous bundle on ﬁ.,.. The bundle algebra is B” C
D, i, Bo- The fibre at z € R. is Bg, with the fibre map B” — B, being o|B". This
definition means that the required module properties are trivially satisfied. Faithfulness

is also clearly satisfied. The fibre maps are surjective since
0z(B") D 04(B') = nx(B) = B,.

Finally we must check continuity.

Now B is the closure of

{29’57‘ 1 gi € C(ﬁ+), v; € B', sum ﬁnite} :

So first consider a typical ¥ g;v: where v; € B’ and so (v;) = 7. (f;) for some f; € B. We

wish to consider continuity of the function

z ”(Zgi'ﬁ)x

= ”Zgi(i‘)ﬁz(ﬁ)“
(D gi(2) fi) l
Y 5i(@) fi(w)]| if 2 < oo

sup
Y2

All the functions involved are bounded continuous functions on R,, so this function is

clearly continuous at all finite z.

To show continuity at oo, we need to show that (as z — 00),

sup
y2w

de(fb‘)ﬁ(!})” — lim, 300 ”Zgi(m)fi('z)“ -
Here, we’re using the fact, discussed previously, that ||Teo (f)|| = lim,00 || f(2)]| for f € B.
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Now, > g;(oco) f; € B so

Zgi(oo)ft(y)” — im0 ”Egz(oo)ﬂ(z)” '

As z — 00, |gi($) — g,;(OO)| — 0, s0

H|Zgi(a:)f£(y)” - “Zgz-(OO)f;(y)Hl — 0

uniformly in y, which implies what we need to show. So we have continuity for the element

sup
y2T

Y g:v;. Now an €/3 argument shows that we have continuity for all elements of B”. Hence
the bundle is continuous. Thus we have now constructed a continuous bundle on Iﬁ.,. from

an initial sequence of C*-algebras.

The above construction does not contain any analogue of Lemma 4.1 in [44). It appears
that such an analogue is not necessary for the above construction. It can be shown that

there exists a continuous function d : Ry — R such that

sup  |If(W)]] = limaneo )| f(2)]| asz — o0
yE[z,z+d(x)]

for all f € B. This is in some sense a continuous analogue of Lemma 4.1 in [44]. However,

this is not required in the above construction, where we have essentially taken d(z) = oo

for all z.

We are now in a position to prove the following.

Proposition 4.2.1. Suppose that C is a non-ezact C*-algebra. Then there ezxists a con-

tinuous bundle of C*-algebras A on the unit interval such that A ® C is not continuous.

Proof. Non-exactness of C' implies that the canonical sequence
0221 QRC>MRC ->M/I,QC -0

is not exact (see Kirchberg {40]). Here M = &2, M; and Iy is the set of sequences in this
direct sum which tend to zero. Hence, denoting the quotient map from M to M/I, by ,
there exists z € M @ C with (7 ®idc)(z) =0butz ¢ I, QC.

Now we let A, = M, in the construction described above, with the usual embeddings
M, < M,4,. Define A = C*(ly, {z,;}). Here we have chosen z, € M ® C with z,, —= =z,

and we have then written z,, as the finite sum } . z,; ® ¢,;. Note that A is separable, and

that its definition ensures that z € A® C.

The above construction gives a continuous bundle
A= (R;4,0,|B": B" = B,, B").
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We wish to show that the bundle A ® C' is discontinuous. This entails finding a ‘bad’

element in BY” ® C which is somehow related to z.

First note that B"® C D j(B)® C 2 B® C. Also, we have an embedding + : B —
C[0,1]® A and hence there is an embedding

t®ideg : BC — C[0,1]1 AQC.

Also, given a = (a,) € A we can construct a corresponding element of B: if A € C[0,1] is
given by
2t fort <1/2
At) =
2—-2t fort>1/2

then we can consider A®a € C[0,1] ® A. Each z,; € A, so we obtain corresponding
elements A@z,; € B. Then AQz,;®cn; € BRC, so summing over j gives AQz, € BQC.
Taking the limit asn > oo weget AQz € BRC.

We claim that A ® z, considered as an element of B" @), is the required ‘bad’ element.

That is, we claim (0. ®id)(A ® z) = 0 while
limyer,||(oy ®id)(A ® 2)|| > 0.

We know that (7 ®id)(z) = 0 so (r®id)(zs) = 0 as n — oo, hence limy|| 3 . 7(z4;) ®
cnj|l| = 0. Consider the map o : A/Ip — By given by m(a) — 0o (A ® a). This function
is well-defined, linear and positive. In fact, it is easy to see that o is completely positive,

which implies that o ® id¢ is also completely positive, and hence bounded. Therefore

Z Ooo(A® Tpnj) ® Cnj (c ®@idc) Z m(Znj) ® Cnj
] 3

So (oo ®id)(A® z,,) = 0 as n = 0o. Hence, (000 ®id)(A ® ) = 0, which is the first part

of what we wanted to show.

Denote by 7, : A =&+ M, the coordinate map sending (a,) € A to a, € M,. As
x & Ip @ C we have

0 < dist(z, Ip ® C) = lim,||(7, ® id)z||.
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Consider the map (, : B,_1/3 = M, given by o,_/5(f) — f(n — 1/2) where f € B.

This is a well-defined *-homomorphism. Now,

0 < limg||(m, ®@id)z||

= Imalimn| )  mn(zn;) ® vl

J

|

mﬂlimNH ch(d _1/2(A ® zn;)) @ en;l|
J

imalimn)|(¢a ®1de) Y Tno1/2(A ® zn;) ® e
J

FAN

malimn)| ) 0n-1/2(A® ;) @ enjll
2

limlimn(0n-1/2 ®idc) (A ® zn)||

limp||(Fn-1/2 ® idc)(A ® 7)|
< limyer,|l(oy ®ido) (A ® 2)]].

Thus y — ||(0, ® idc)(A ® z)|| is discontinuous at y = co. Hence the bundle A ® C is

not continuous. * [

Corollary 4.2.2. Fiz a C*-algebra B. Then B 1is ezact if and only if for any continuous
bundle A of C*-algebras on [0, 1] (with separable bundle C*-algebra), A® B s continuous.

Proof. This follows from Theorem 4.5 of [44], together with the above Proposition. 0

So, we now have a new characterisation of exactness of C*-algebras, in terms of the
continuity of bundles with base space [0, 1]. The bundle obtained in the above Proposition
can also be modified to give examples of other bundles on [0, 1] with interesting properties.

Let A= ([0,1],m; : A = A;, A) be the continuous bundle defined in the proof of the
above Proposition, except that we assume the base space to be [0,1]. Now define a new

bundle B on [0, 2]. We suppose that B has bundle C*-algebra
B = {ﬂ,@ a’ cAPA: 7r1(a) = 7!'1((1.’)}.

For y € [0, 2] we define the fibre map ¢, : B — B, as follows:

Ty (a) fory <1
oy(a®a’) = ’ ~
’ { To—y(a’) fory > 1

For f € C[0,2] and a ® o’ € B, the module action is defined via

fladd) = fia® fod
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where f; € C[0,1] is given by f,(t) = f(t) and f, € C[0,1] is given by fo(t) = f(2 - t).
With these definitions, it is easy to see that B is a continuous bundle on [0, 2].

If C is a non-exact C*-algebra, then A ® C is discontinuous at oo € ﬁ+, which cor-
responds to 1 € [0,1]. So B® C is discontinuous at 1 € [0,2]. Since any two bounded

closed intervals are homeomorphic, this means that for any t € [0, 1] we can construct a

continuous bundle of C*-algebras A® on [0, 1] such that A®*) ® C fails to be continuous
at t.

Taking finite direct sums of these bundles A(*), we can construct a continuous bundle
on [0, 1} such that, on tensoring with C, the bundle is discontinuous at any chosen finite
set of points in [0, 1].

In fact, we can also take countable direct sums. Suppose that we have a sequence
(t.)2, in [0, 1]. Letting A, be the bundle C*-algebra corresponding to the bundle .4(»),
we can then form a bundle from the restricted direct sum of these bundle C*-algebras.
This consists of sequences (a,)3%, where a, € A, for every n, and ||a,|| = 0 as n — oo.

Using the restricted direct sum gives a bundle that is still continuous and yet, on
tensoring with C, gives a bundle that is discontinuous at every t,, € [0, 1]. The reason that
the restricted direct sum bundle is continuous is as follows. If f,, € C|[0, 1] is positive for
every n € N, then f = sup, ¢y fn is not necessarily continuous. However, if we also insist

that || fn]lco = 0 as » — oo (which is the condition imposed by the restricted direct sum),

then f is guaranteed to be continuous.

It would be interesting to know if there was a continuous bundle B on [0, 1] such that

B ® C is discontinuous at every point of [0, 1].

4.3 Continuous bundles on infinite compact metric spaces

In this Section we construct a continuous bundle of C*-algebras on any fixed infinite com-
pact metric space with properties analogous to those of the bundles on [0, 1] constructed

above. This is done via the induced or pullback bundle construction. We first review this

induced bundle construction. Then we use it to construct continuous bundles on any fixed

. infinite compact metric space. Finally we show how this leads to new characterisations of

exactness for C*-algebras.
First we look at the induced bundle construction. This is a well-known construction

in the context of topological fibre bundles (see, for example, page 47 of [59]). Kirchberg
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and Phillips consider this construction in the context of continuous fields of C*-algebras
(see Lemma 1.3 of [43]). Here we consider these ideas from the point of view of bundles

of C*-algebras.

Suppose A = (X,7m; : A = Az, A) is a continuous bundle of C*-algebras and that
n:Y — X is a continuous map. Here we assume for simplicity that X and Y are compact
metric spaces. We wish to define a bundle P,(A) on Y, the pullback of Avian. ForyeY

define By = A,,). Define o, : A — B, by a — m,(,)(a). If we assume that 7 is surjective
then

oy(a) =0 VyeY =>a=0.

So there is an embedding j : A — @, ey B, which sends a to (o,(a)),ey.
Now enlarge j(A) to B, the smallest C*-subalgebra of @,¢y B, such that A C B and
B is closed under the obvious action of C(Y) on @ cy B,. We define the pullback of A to

be (Y,, : B = By, B) where 7, : ®.cy B, = B, is the usual coordinate map. Faithfulness

and the C(Y)-module properties are clear for this bundle. Is the bundle continuous?

If a € A then y— ||, (j(a))]| is continuous, from the continuity of the bundle A and
the continuity of the map 7. Now B is the closure of the set of finite sums ) g;7(a;) where

a; € A and g; € C(Y). So to show that the bundle is continuous, it suffices to show that

y — liry (S 9:3(a9)) | = lloy (X gi(y)as)ll is continuous.
Fixing y € Y and € > 0, consider

XGRS

- Hf’y'(zgi(y')aé)l

which i1s

< HI%(Z gi(y)ai)|| — ”%f (Zgi(y)ae)IH + l”%f () gi(y)ae)“ - ”Uy’ » gi(y’)ai)ul :

Continuity of z — ||o, (D " g:(v)a;)|] (z € Y) at z = y shows that the first term is < ¢/2

for ¥’ suitably close to y. For even closer ¥’ we can assume that, for every i, we have

9:(v) - 9l < s

Then the second term is

< Jow (S 0:)as) - oy (C0its)a)|
= ”Z(ge(y) - ge(y’))as'”
< €f2.
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This shows that the pullback bundle is indeed continuous.

We also require the notion of restricting a bundle. Suppose that 4 = (X,7, : 4 —
Az, A) is continuous and that Z is a closed or open subset of the compact metric space
X. We can then define the continuous bundle A|Z = (Z,0, : A’ = A, ,A"). Here
A= Af{a € A : 7m,(a) =0Vz € Z} while 0,(@) = m,(a). The module action is given
by f@ = fia where f; is any continuous extension of f € Cyp(Z) to X (which exists by
Tietze’s extension theorem).

We can now prove the following.

Proposition 4.3.1. Suppose that (X, d) is an infinite compact metric space and that C
is a non-exact C*-algebra. Then there exists a continuous bundle B on X such that BQC

18 not continuous.

Proof. As X is not discrete, there exists a sequence z,, (n € N) and z € X such that, if
d, = d(z,,z), then the d, are distinct non-zero and satisfy d,, | 0. In particular z,, = =
as n — 0o. |

We know that there exists a continuous bundle B = ([0,1),0, : B — B, B) such
that B ® C is not continuous. As remarked in Section 4.2, we can allow the point of
discontinuity to be any point of [0,1]. It is simplest to suppose that the discontinuity
occurs at 0. The proof of Proposition 4.2.1 then gives 2 € BQC for which (oo ®idg)z =0
but limz—o]|(c: ® idc)z|| > 0.

There is also a map 7 : X = Ry defined by y —— d(z,y). By scaling we can assume
that #(X) C [0, 1] since X is compact. So we have 5 : X — [0, 1]. In order to pullback we

need 7 to be surjective so we consider the map 7 : X = n(X). Now n(X) is a compact

subset of [0, 1] so we may define the restriction bundle B|n(X). This is a continuous bundle
on 77(X). Let the bundle algebra be denoted by B’ and let the fibre maps be denoted by
o, for y € n(X).

Clearly 0 € n(X) and we claim that (B|n(X)) ® C is not continuous at 0. The ‘bad’

element is (¢ ® id¢ )2z = 2’ say, where ¢ is the quotient map B — B’. Indeed,
(oo ®ide)7 = (0§ ®ide)z = (0o ® idg)z = 0.

On the other hand, we have the sequence z,, € X with z, = z. Let y, = n(z,) so that
yn — 0. Then

l(oy, ®ide)2'|| = ||(oy, @ idc)2]|
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and limg,—00||(0y, ® idc)2|| > 0, looking back at the proof of Proposition 4.2.1. (Here we

have implicitly used a homeomorphism R 22 (0, 1]. We must make sure that the sequence

(n—1/2)penN in R4 is mapped onto the sequence (Y, )neN in (0, 1] by this homeomorphism.)
So the bundle (B|n(X)) ® C is not continuous at 0.

Now consider the pullback bundle F,(B|n(X)), which is continuous. Let the bundle
algebra be B” and let the fibre maps be 7, : B” — B] for 2 € X. Recall the embedding

i : B" < @,exB? from the pullback construction. We now have the ‘bad’ element
= (j®idc)7 € B"® C. Now

(7 ®@idc)2" = (07(;) ® idg)?' = (0 ® idg) 2’ = 0.

On the other hand,

mﬂ_,mu(fa,n X idc)Z"“ = ﬁ—rﬁ-ﬂ_;m“(d;“ %, idc)Z’“ > 0.
So (P,(B|n(X))) ® C is not continuous at ¢ € X. This proves the Proposition. O
This construction provides the following characterisation of exactness of C*-algebras.

Corollary 4.3.2. Fiz an infinite compact metric space X and a C*-algebra B. Then B

is exact if and only if for any continuous bundle A of C*-algebras on X (with separable

bundle C*-algebra), A Q@ B s continuous.

Proof. This follows from Theorem 4.5 of [44], along with the above proposition. Note that
if a bundle has separable bundle C*-algebra then so does any restriction or pullback of it.

Hence the statement about separability is valid in the above Corollary. L]

This result can probably be extended to more general spaces X.
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Chapter 5

Free product bundles

5.1 Introduction

In this chapter we look at free product bundles. To be more precise, we look at free
product operations on continuous bundles of C*-algebras, in the same way that Chapter
4 considered tensor product operations on continuous bundles of C*-algebras.

Why consider free product operations on continuous bundles? Well, in Chapter 4
we looked at the minimal tensor product operation on continuous bundles, and in doing
so we obtained new characterisations of exactness in terms of the continuity of certain
bundles. In [44] maximal tensor product bundles were also considered, giving a new
characterisation of nuclearity. So it is natural to consider other operations which can
be applied to continuous bundles of C*-algebras, perhaps in the hope of obtaining new
characterisations of such properties as nuclearity and exactness.

The crossed product operation has been considered by Kirchberg and Wassermann
in [45). In fact there are two crossed product operations, corresponding to the full and
reduced crossed products. Continuity of the full crossed product bundle is closely related
to amenability of the group involved, whereas continuity of the reduced crossed product
bundle is closely related to the exactness of the group. As remarked in {46], although it
is not obvious that the reduced crossed product bundle is continuous, there is no known
example where continuity fails. This underlines the interesting nature of the bundles
constructed in Chapter 4.

This Chapter considers other operations on continuous bundles of C*-algebras. In
Section 5.2 we first look at a very simple operation, namely taking the multiplier algebra

of a continuous bundle. This multiplier algebra is again a bundle, but continuity is not
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preserved in general. We also look at full free product bundles and consider when continuity

is preserved under this operation.

Neither of the above constructions seems to lead to characterisations of exactness or
nuclearity, so we then turn our attention to reduced free product bundles. Study of these
combines reduced free products, as studied in Chapters 2 and 13, with the continuous
bundles studied in Chapter 4. Recall that nuclearity and exactness are concepts defined in
terms of C*-algebra tensor products. So it is not surprising that these concepts should be
related to continuity of the minimal and maximal tensor product operations on continuous
bundles of C*-algebras.

Why should these concepts be related to some reduced free product operation on
continuous bundles? Well, it is certainly not obvious why this should be so. However, it is
certainly known now that exactness is in some way connected with reduced free products.
Most importantly, it was shown by Dykema [20] that a reduced amalgamated free product
C*-algebra is exact precisely when all the factors are exact C*-algebras, a result which fails
to hold in the case of full free products. This gives us some reason to expect a connection

between exactness and a reduced free product operation on continuous bundles.

In Section 5.3 we construct a suitable definition of a reduced free product bundle.
It turns out that there are two bundles which may reasonably be called a reduced free
product bundle. These are denoted by C* and C'. Section 5.4 considers the continuity of
C'. This bundle is always lower semicontinuous. We show that, at least in certain special
cases, it is actually continuous.

Section 5.5 considers the continuity of C*, which is always upper semicontinuous.
Assuming exactness of the C™*-algebras involved, we show that this bundle is actually
continuous. The proof makes use of the Cuntz-Pimsner C*-algebras. These C*-algebras
were important in Chapter 3, so this work provides an interesting connection between
Chapter 3 and Chapter 5.

Finally, in Section 5.6 we consider the relationship between continuity of C* and con-
~ tinuity of C'. We look at possible applications of these results, such as the embedding of

a continuous bundle into a larger continuous bundle whose fibres are simple.

Note that free products of C'(X)-algebras, amalgamating over C'(X), have been con-

sidered before by Germain [31]. However, Germain considered these free products from a

somewhat different viewpoint and, for example, there is no reference to the continuity of
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the C(X)-algebras involved.

5.2 Multiplier algebra bundles and full free product bundles

In this Section we first look at the construction and continuity of the multiplier algebra
bundle, before moving on to the full free product bundle.

Let (X, 7, : A = A, A) be a continuous bundle of C*-algebras on a locally compact
Hausdorff space X. Consider the multiplier algebra M(A). We show how this can be
made into a bundle. We use the double centraliser interpretation of M (A), as contained
in Wegge-Olsen [67] for example.

Assume the bundle algebra A is separable. Then the surjective *-homomorphism = :
A — A; can be extended to a x-homomorphism 7, : M(A) - M(A;) which is also
surjective.

Suppose (L, R) € M(A) and 7,((L,R)) =0for all z € X. If (L., R;) = 7((L, R)) €
M(A;) then

Vae AVz € X L,(ay) =ny(L{a)) =0.

So L(a) = 0 for all a € A. Hence L = 0, and similarly R = 0. Hence {7, : z € X} is
faithful.

Now we check that the required module property is satisfied. Since A is a bundle over
X, we have Co(X) C Z(M(A)). Let f € Co(X). Write f = (Ly, Rf) € M(A), where
L¢(a) = fa and Ry(a) = af. If 7(f) = (L, R;) then

Lz(az) = 7z(Ly(a)) = mz(fa) = f(z)as
and similarly R;(a;) = f(z)a;. Hence 7(f) = f(z)1. So, if m € M(A), then
fo(fm) = To(f)7z(m) = fe)Tz(m).

So (X,7,: M(A) - M(A;), M(A)) is a bundle of C*-algebras on the space X. Is it
continuous if the original bundle is continuous? Of course, if A is unital then the answer

is trivially yes. In general, the answer is no.

Proposition 5.2.1. The multiplier algebra bundle operation does not preserve continuity

of bundles.

Proof. Consider the trivial bundle C(N, K (£%(N))), which is certainly continuous. It can be
seen that the multiplier algebra of this is C'b(ﬁ , B(£?)g) where 8 denotes the strict topology
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on B(£?). (Indeed this is an exercise in [67].) This is the set of functions N — B(£%)4
which are continuous and norm-bounded. The fibre maps are given by evaluations at each
point of N.

Another exercise in [67] considers the projections Q, € B(£%), where Q,, projects onto
Ce,. Here e, is the n’th element of the usual orthonormal basis for £2. Now ||Q.,]| = 1
for all n, but @}, — 0 in the strict topology. So define f : N — B(£%)3 via n — Qn,
and oo — 0. With this definition, f € Cb(ﬁ,B(Ez)g) but n — || f(n)|] is clearly not

continuous at oo. That is to say, the multiplier algebra bundle fails to be continuous, even

though we started off with a trivial bundle. L]

We now move on to the construction of full free product bundles. Let A = (X, 7, :

A — A, A) be a continuous bundle of C*-algebras. For simplicity we assume that A is
unital and that X is compact Hausdorfl. Let B be a fixed unital C*-algebra. We wish to
define a full free product bundle A * B over the same space X.

We let the bundle algebra be C = A *¢(x) C(X, B), while the fibre at z € X is given
by Cy = A, * B. How do we obtain the fibre maps? The universal property of the full

amalgamated free product implies that there is a surjective *-homomorphism
Op =Tg*evy, :C — Az % B

such that o;|A = m; and o;|C (X, B) = ev,,.
Now we check the module property. As C(X) C Z(A4) and C(X) C Z(C(X, B)), it
follows that C'(X) C Z(C). So the maps o, clearly satisfy the required module property

for a bundle:

oz(fe) = 0z(f)os(c) = f(z)oz(c) Vfe C(X), VeeC.

Now consider the quotient C/C.(X)C. Note A; and B both embed in this quotient,
and that C*(A4;,B) = C/C,(X)C. It is easily checked that C/C,(X)C satisfies the
universal property required of A; x B. Hence C/C,(X)C = A, x B canonically. This

means that C has the structure of a C(X)-algebra, and the maps o, may be thought of
| as quotient maps C — C/CL(X)C. Proposition 2.8 of [8] then implies that the family

{0z }zex is faithful. Hence C is indeed a bundle over X.

It also follows from the above paragraph that C is always upper semicontinuous. When

is it continuous?
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First note that, if A and B are C*-algebras, then
C(X,A)*cx)C(X,B)=C(X,Ax* B).

It follows that if A is a trivial bundle over X, with fibre A, then A x B is the trivial bundle
over X with fibre A * B. Thus the full free product operation preserves the triviality of

bundles. In fact, it preserves the subtriviality of bundles too, and this enables us to prove

the following.

Proposition 5.2.2, Let A = (X,n;: A = Ag, A) be a continuous bundle of C*-algebras
with A unital separable and X a compact metric space. If A 1s exact, then the full free

product bundle A x B is continuous, regardless of B.

Proof. The results of [9] imply that there is a C'(X)-linear embedding o : A — C (X, O3).
In particular, A is subtrivial.

We consider o as a map o : A = C(X, O3 ¥ B). We also have the obvious embedding
id : C(X,B) — C(X,0; x B). The universal property of the full amalgamated free
product then provides a *-homomorphism a*id : C = C(X, O, x B). We claim that this
is isometric, or equivalently injective.

Recall that if 8 : E = F is a C(X)-linear *-homomorphism between C(X)-algebras,
then f is injective precisely when all the induced maps 8, : E; — F, are injective. So, to
prove the claim, it suffices to show that any map (a *id); : C; = O3 x B is injective.

Now, (a *id), = a, *idg. Both a, and idp are injective, hence their free product is

too. So (a xid); is injective for any z, and the claim is true.
Note also that (e *id)y 00, = ev o (a*id) on C. This is because C = C*(A4,C(X, B))
and it is easily seen that the two *-homomorphisms agree on A and C(X, B).

Therefore, for ¢ € C, the function

z +— |loz(c)]
= |[(a*id)z 0 o5(c)]
= |levy o (axid)(c)l|

is certainly continuous. Hence, the full free product bundle is continuous. ]

Clearly the proof of the above result depends only upon the subtriviality of the bundle

A. So it can be seen that any subtrivial continuous bundle A will have its continuity

preserved by the full free product operation. This is in contrast to the situation for maximal
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tensor products. Kirchberg and Wassermann [44] construct a subtrivial continuous bundle

D such that D ®nqr C is not continuous, where C' is a non-nuclear C*-algebra.

One reason for this difference is that it Ay C A; and B is another C*-algebra, then
Ay * B C Ay % B but A; Qe B is not necessarily contained in A3 ®mqr B. So full free
product bundles are better behaved than you might at first expect. It seems unlikely that
continuity is always preserved by the full free product operation, and it would be interesting

to obtain an example of a continuous bundle for which continuity is not preserved. Such

a bundle would necessarily be nen-subtrivial.

5.3 Construction of reduced free product bundles

Here we construct the two reduced free product bundles C* and C'. Suppose that A =
(X,7z : A = Az, A) is a continuous bundle of C*-algebras. We assume that A is unital
and that X is compact Hausdorff. We wish to take the reduced free product of A with
some fixed unital C*-algebra B. For the construction, we need to assume that A and B
are separable.

To define a reduced free product, it is necessary to attach states (or conditional ex-
pectations) to the C*-algebras involved. For this reason, we assume the existence of a
continuous field of faithful states on A. That is, we assume the existence of faithful
f- € S(A;) for all z € X, imposing the condition that z — f;(a,) is continuous for every
a € A. The existence of such states is guaranteed by results in section 3 of Blanchard’s
thesis [8].

The continuous field of faithful states gives in particular a faithful conditional expec-
tation f : A = C(X) where f(a)(z) = fz(az). We suppose we have a faithful state
¢ € S(B). As B is separable, such a state is guaranteed to exist. Now we get a faithful
conditional expectation Ry : C(X, B) = C(X) where R4(g9) = ¢ o g. Using the reduced

amalgamated free product construction (see section 1.4) we obtain

(C,9¥) = (A, f) *c(x) (C(X, B), Ry).

The properties of the reduced amalgamated free product imply that, as A is a C(X)-
algebra, C is also a C'(X)-algebra in the obvious way.

Theorem 2.2.2 implies that the conditional expectation 1 is faithful. This can also be

seen in a more direct way: see the construction of C'. We now consider the two possible

reduced free product bundles.
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Construction of the bundle C*

As C is a C(X)-algebra, we can make it into a bundle in the usual way. That is, we

let,

C* = (X,q,: C = C/Cz(X)C,C)

where ¢, is the quotient map. By construction, this bundle is automatically upper semi-
continuous. The fibres are C'/C,(X)C for z € X. For a reduced free product bundle, we

would like the fibres to be A; *, B (recall from Section 1.4 that this notation is used as a

shorthand for (Az, fi) * (B, ¢)) for ¢ € X. This requirement motivates a second possible

construction.

Construction of the bundle C*

Consider the reduced free products (Cy, ¥z) = (A4z, fz) * (B, ¢). We want C' to have
fibres C, for z € X, so we need a *-epimorphism C — C;. Now C acts on the free product

Hilbert C(X)-module F, so we have a C'(X)-representation P : C — L(FE).

We have a representation P, = P®ev, : C — L(E;), where E, is the interior tensor

product F ®ev, C. Can we identify the Hilbert space E,?
Well, suppose that E; = L%(A, f) and E; = L*(C(X, B), Rs). We then have E;, =
El ®ev_,= C = Lz(Am fm) and Ezm =— Ez ®9Vm C = L2(B, <f)) for z - X. Then

E=¢(¢CX)eo P E.® --QFE.
n>1
t#Fin

Now E? ® -+ ® E? ®ev, C is canonically isomorphic to EY, ® -+ ® E; ;. Indeed,

C(X, B)° according as ¢; = 1 or ¢; = 2. This corresponds to
a“a:@ ...@ﬁ‘bnx = Efm@ cee ® Efﬂw_

So

E;, = £C(X)®ev,CO® € E;®---QE;, ®ev, C

n>1
L F e Fin
— fC@ @ Ef;a:®”'®Efnm
n>1
L FFin
— L2 (Cm ¢m)
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Thus E; is the G.N.S. Hilbert space for the pair (Cz, ¥z).
It can now be checked that, if a € A then P,(a) = q, where we consider a, as an
element of the reduced free product C;. Similarly F;(g) = g(z) for g € C(X, B). Since P;

is a *-homomorphism, it follows that the image of P; can be identified with the reduced

free product C;. Hence it makes sense to define
C'=(X,P,:C — Az *. B,C).

It is easy to check that C' satisfies the requirements for a bundle. Suppose ¢ € C and
P;(c) = 0 for all z € X. This implies that ¢(c*c)(z) = 0 Vz € X. Hence ¥(c*c) = 0
and so ¢ = 0 since % is faithful. The module property is also satisfied, because the ideal

C»(X)C is contained in kerP,. Hence C' is indeed a bundle over X.

Note that the above definition of P, implies that, for ¢ € C, ¥.(Ps(c)) = ¥(c)(z).
That is, ev, 0 ¥ = 9, o P,;. Being a reduced free product of two faithful states, 7, is also
a faithful state for every z € X (by Dykema [18]). It then follows that % is a faithful

conditional expectation, as remarked earlier in this Section.
Clearly the above constructions can be extended to the case where we are taking the
reduced free product of two continuous bundles of C*-algebras, A; and A, say. If we

attach continuous fields of faithful states f;, f2 to Ay, A3 respectively, we can define

(C, %) = (A1, 1) *o(x) (A2, f2).

The bundles C* and C' are then defined in exactly the same manner as above.

5.4 Continuity of C"

In this Section we consider the continuity of the reduced free product bundle C'. We
discuss one possible method for showing that this bundle is continuous. Then we provide
an example which uses this method.

Since C' is constructed via a C(X)-representation of C, it follows (see remarks in
section 2.3 of [8]) that C' is automatically lower semicontinuous.

As noted in the construction of C', C(X)C C kerP;. Are these two ideals equal? By

Lemma 2.3 of [44], they are equal Vz € X precisely when C' is upper semicontinuous.
So, to show continuity of C!, we need to show that Cp(X)C = kerP, Yz € X. It is

perhaps reasonable to suggest that C' is continuous if the original bundle C*-algebra A is
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exact, regardless of the C*-algebra B. We now describe a possible method for proving the

continuity of C', inspired in part by the methods of Effros and Haagerup [25] .

We suppose that A is exact. Fix ¢ € X. Then, as explained in section 4.3 of [44], the

sequence

03C(X)AQRB—=2A®RB—-2A:®B =0

is exact for arbitrary B. By results of Effros and Haagerup (see Theorem 3.2 of [25])
it follows that 7, : A — A. is locally liftable. That is, given any finite dimensional
operator system Z C A, there is a unital completely positive isometry p : Z — A such
that 7, 0 p = idz.

In the following, the methods are inspired by the ideas of Effros and Haagerup: see
[25] and the first part of the proof of Proposition 6.8 in [66]. As has already been noted,

proving that C' is continuous is equivalent to showing that (for every z € X) the sequence
02 Co(X)Co2C—=Cr=A,%B—=0

(where P, provides the map from C to C;) is exact. Now, as Cy(X)C C kerP,, there is

an induced *-homomorphism
Py :C/Ch(X)C — A %, B.

We want to show that P, is actually isometric. Take y € C/C(X)C where y is represented
by a finite sum of reduced words, plus possibly a multiple of the identity. We want to

show that ||Pz(y)|| > ||y|| because, as such y are dense in C/C,(X)C, it will then follow

that P, is isometric as required.

For simplicity of notation, assume that y is represented by a sum of the form 3 a;g;a’
where a;,a’ € A and g; € C(X, B) are reduced. It will be clear that the methods apply
whatever happens to be the form of y.

Define ¢ : B = C(X,B) by b > 1 ® b. Let Z be the finite dimensional operator
system generated by the a;, a, in A, where a;; means 7;(a;) and so on. We know that

there exists a unital completely positive isometry p : Z — A such that 7, 0 p =idz. So

we have

Il = | S ateigiad)||, o= [ alelain)olie)e(el)

'0/0_.,(1{)0
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since m;z(p(aiz) — a;) =0, evz(g; — o(g:(z))) = 0, and so on. This is

< ”Z p(aiz)o(gi(z))p(a;y)

C

by definition of the quotient norm. We would like to show that this is

< ”Z 0iz9i(2) g

Ag*.B

To do this, we really want to consider a reduced free product map p*¢. Unfortunately,
there are two problems with this. Firstly, the domain of p is in general not a C*-algebra,
so it is not even clear what the domain of such a free product map should be. Secondly,
recall from [10] that, in order to take the reduced free product of two maps, it is necessary
for them to preserve the states or conditional expectations involved. In this case, this

would seem to require the following condition to be satisfied by p:

f(p(2)) = fe(2)1V 2z € Z. (1)

The question is, when can (1) be satisfied?

We consider the following example, where both these problems can be solved.

Ezample 5.4.1. Take A = C([0,1],C?) to be the trivial bundle on [0, 1] with fibre C2. So
A, = C? for every z € [0,1]. We do not restrict the fixed C*-algebra B in any way. Whilst

A may be trivial, we take a non-trivial continuous field of faithful states on A, defined by

fa:(zl D 22) = Az2) + (1 - '\a:)z2

where A, = 2%;"—1-.

Fix z € [0,1]. Note that as the fibres of A in this example are finite dimensional, the
first problem mentioned above does not exist. To solve the second problem, we construct
p: Az = C? — A satisfying the requirements of equation (1).

Define p by letting p(1® 1) = 1 and p(1® 0) = g. Here, for y € [0,1], we have
g(y) = 9(y¥)1 ® g(y)2 where

& fory >z
g(y)1={ Z
1 fory<cez

and
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We now show that the map p satisfies the required conditions. Note that g € A, g > 0
and 1—-g > 0. Also g(z) = 1®0, so that p is a genuine lifting. We also have, for y € [0, 1],

Ayg(y)1+ (L= Ay)g(y)z2 = Ap

so fy(9(y)) = fz(1®0). It follows that p satisfies equation (1). Clearly p is unital. Is it
completely positive? As the domain C? is a commutative C*-algebra, it suffices to show

that p is positive. Suppose z; @ 22 > 0 in C. Then

22p(1® 1) + (21 — 22)p(1 & 0)

p(21 @ 22)

z9 + (21 — 23)g

219+ 22,(1—g) > 0.

Next we describe how to construct the required free product map in the case (as in the
above example) where each A; is finite dimensional and a suitable map p can be found.

First, note that there exists a *-homomorphism p : C(X)® A — A given by multi-
plication, in other words u(f ® a) = fa. Define 6 = po (idg(x) ® p) : 4z ® C(X) — A.

Then 6 is a unital completely positive map. Since we'’re assuming that p satisfies equation

(1), it follows that f; ® idg(xy=fof on Az Q C(X). It is also easy to check that 0 is a
C(X),C(X)-bimodule map. Let ¢ : B C(X) = B ® C(X) be the identity mapping.
Theorem 2.2 of [10] shows that there exists a free product map

@ : (4, ®C(X), £ ®id) *o(x) (BOC(X),¢®1id) + C

which extends both # and ¢. We also have that ® is unital completely positive. The

domain of ® can clearly be identified as

((Ag, fz) * (B, $)) @ C(X).

So,

H

”z aizi(T) iy

| as@add o]
[2(3 ewgil@)a) ®1)|

[ ez @ (gia) @ (@ @ 1)
|3° 2(ai. ® N2 (gi(e) ® 1)@}, @ 1)
13" 60 © 1)(3:(z) @ 1)8(al, ® 1)
HZ p(aiz)a(9i(2))p(a;,)

Arxy B

AV

C

C
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where the inequality is valid because ® must necessarily be contractive. Thus C' is cer-

tainly continuous when the fibres of A are finite dimensional and there exist unital com-
pletely positive liftings p : A, — A satisfying equation (1).

We now return to our example.

Ezample 5.4.2. This is a continuation of Example 5.4.1. Note that even though A =
C([0, 1], C?) is trivial, the fibres of the reduced free product bundle C* are not necessarily
isomorphic. For example, take B = C? with the trace defined by p(A,p) = —%(A + p)

for \,p € C. Then, by Proposition 2.7 of [19], the fibres of C' are isomorphic to either
C? ¢ C([0,1], M) (at every z # 1/2) or

{f :[0,1] = M3 | f continuous, f(0) and f(1) diagonal}

at £ = 1/2. The centres of the above two (C*-algebras are C:opC [0, 1] and C[0, 1] respec-

tively, so they are certainly not isomorphic. Despite this C'! is continuous.

It would be interesting to know if the methods described in the above Section are more

widely applicable. It would also be of interest to find an explicit example where continuity

of C' fails.

5.5 Continuity of C“

In this section, we consider the continuity of the bundle C*, which is automatically upper
semicontinuous. We consider the reduced free product (A, f1) *¢(x) (42, f2) of two unital
continuous bundles of C*-algebras over the compact Hausdorff space X, with continuous
fields of faithful states attached. We show that, if A; is also exact, then C* is continuous.

The strategy is as follows. First we obtain a C(X)-version of [24] Proposition 4.2.
This enables us to embed C* in a Cuntz-Pimsner C*-algebra E(H) (which is also a C(X)-
algebra). We then use the analysis of Cuntz-Pimsner C'*-algebras provided in [24] to show
that the Cuntz-Pimsner C*-algebra involved is actually a continuous field. It will then

follow that C* is continuous.

First we require a C'(X)-version of [24] Lemma 4.1.

Lemma 5.5.1. Let Ay, Ay be unital continuous bundles of C*-algebras over the compact
Hausdorff space X, with continuous fields of faithful states f;, fo respectively. Let (C, )
be the reduced amalgamated free product. Let B = A; Qc¢(x) A2 (for the definition of this
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see [44]) be the amalgamated minimal tensor product. Attach to B the tensor product

conditional expectation p= f1 ® f;.

Let Dy be a unital C(X)-algebra with C'(X)-valued conditional expectation g, attached,
such that the G.N.S. representation corresponding to (D1, g1) is faithful. Suppose there is

a Haar unitary in D, i.e. there exists a unitary u € Dy such that g;(u™) = 0 for every
non-zero integer n. Let (D,g) = (D1,41) *c(x) (B, p) be the reduced amalgamated free
product. Denote by 7 : Ax — D the C(X)-linear embedding given by mr(a) = ukau=*
(k = 1,2). Then there is a C(X)-linear embedding w : C' — D extending the 7}, such that
gomw =1,

Proof. As u is a Haar unitary, it follows that u has full spectrum. That is, C*(u) = C(T).
This is because the Haar unitary condition implies that u acts as the bilateral shift operator
on the G.N.S. Hilbert space L?(C*(u), ¢1|C*(u)) £ £*(Z).

The assumptions on D; then tell us that

(D1,91) D (C(X)@C(T),idc(x)® / -dA)

where [ -dA denotes integration with respect to the Haar measure on T. The results of

[10] allow us to assume that

(D1,91) = (C(X)®C(T),idc(x) ® / -d)\) .

In (D,g), the family (uW*Bu~%)iez is free. Comsider B = C*(Urezu*Bu~*) C D.
Conjugation by u gives the free shift on B. As B U {u} generates D, it follows that
D = B x Z. As g is a faithful conditional expectation, it is certainly true that the G.N.S.
representation corresponding to (B, g|B) is faithful. Therefore

(B, g|B) = *kez(ukBu"k, glukB'u."k)

where the right-hand side is a reduced free product, amalgamating over C(X).
Now the embedding results of [10] imply that we have an embedding 7 : C < B C D
extending every 7. This embedding preserves the conditional expectations on the C*-

algebras involved, so we get gox = 1. It is also clear that 7 is C'(X)-linear (because all

the 7 are). O

The above lemma enables us to prove a C(X)-version of [24] Proposition 4.2. Note

that, although we are working with amalgamated reduced free products here, we avoid use

of section 5 in Dykema and Shlyakhtenko [24].
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Proposition 5.5.2. For i = 1,2 let A; be a unital C(X)-algebra where X is a compact
Hausdorff space. Let ¢; : A; = C(X) be a continuous field of faithful states (3 = 1,2).
Define (C,vy) to be the reduced amalgamaled free product of A; and A;. We let B =

A1 ®c(x) A2, as in the above lemma, with p = ¢, ® ¢; the tensor product conditional

expectation. Then there exists a Hilbert B-bimodule H such that the Cuntz-Pimsner C*-
algebra E(H) is a C(X)-algebra and there ezists an injective C (X )-linear x-homomorphism

7 :C — E(H) such that po £ om = 9 where £ : E(H) — B is the canonical vacuum

expectation.

Proof. Consider the interior tensor product H = L?*(B, p) ®c(x) B where the left action
of C(X) on B is given by the canonical inclusion of C(X) into B (recall that B is a
C(X)-algebra). Also, since C(X) C Z(B), the left and right actions of C(X) on H are
the same. This results in E(H) being a C'(X)-algebra.

Let & be the element of H given by ¢ = 1® 1. Let D be the C*-subalgebra of E(H)
generated by C(X) and £(¢). Consider the conditional expectation ¢ = £|D. It follows
from the definition of £ that £|C*(£(£)) is C-valued. Thus ¢ is a C(X)-valued conditional
expectation.

We claim that D and B are free with amalgamation over C'(X), with respect to po €.
This essentially follows from Shlyakhtenko [57] Theorem 2.3, but here we provide the
details for this particular situation.

Now D = C(X) ® C*(£(€)) and ker¢ is the closed span of elements of the form f®
L*(L*)™ where n,m > 0, n+m > 0, f € C(X) and L = £(£). So, to show freeness, it

suffices to show that
po g(bofl ) Ad! (L*)m1 by fo L™ (L*)ma oo fR LTk (L*)mn:) =0

where k € N and f; € C(X), b; € B, p(b;) =0, nj,m; > 0, n; + m; > 0 for every j. As
po & is C(X)-linear, we can assume that every f; = 1. If our word contains a subword of
the form L*b;L then, since L*b;L = p(b;) = 0, we obtain the required result. If there are

no such subwords then our word is necessarily of the form
by Lb5 L - - -b;,LbfL*bg co o L¥bg 44

where b, b;i’ € B for all 7 and p,q¢ > 0, p+ ¢ > 0. However, it is readily seen that such

words are contained in the kernel of £ (from the definition of £). Hence we have the desired

freeness and the above claim is true.
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It follows that (E{H),po £) = (D, ¢) *¢(x) (B, p). Now ¢|C*(£(€)) is C-valued, and
in the same way as in [24] Proposition 4.2 we get a unitary u € C*(£(¢)) C D such that

é(u*) = 0 for every non-zero integer k.

Applying Lemma 5.5.1 now gives the required C'(X)-linear embedding of the reduced
free product C into E(H). n

So, the above Proposition gives an injective C'(X)-linear *-homomorphism 7 : C —
E(H). As w is C(X)-linear, the induced maps 7z : C; = E(H), are also injective. Hence
there is an embedding of bundles C¥ <« E(H). So, in order to prove continuity of the
reduced free product bundle C%, it suffices to prove that the Cuntz-Pimsner C*-algebra

F(H) mentioned above is continuous. In order to do this, we use the following lemma.

Lemma 5.5.3. Suppose that

021 —-A—->B-0

is an ezxact sequence of C(X)-algebras. We assume that A 1s unital and that all the maps
involved are C(X)-linear x-homomorphisms. We denote the quotient map from A to B by

g. Suppose that I and B are continuous fields. Then A is also a continuous field.

Proof. Blanchard’s characterisation of continuous fields (as described in Theorem 1.3.8)

implies that we have continuous fields of faithful representations # : B — L(£) and
o : I = L(F), where £ and F are Hilbert C'(X)-modules.

We would like to extend o to A. For this, we need o to be non-degenerate. Let F’

be o(I).F, the closed span of {o(2)n : 2z € I,n € F}. Then o defines a representation
o : I = L(F"), which is still C(X)-linear. Suppose ¢ € X and suppose (¢)z(2z) = 0 for
some z € I. Then (¢(2)n); = 0 for every n € o(I)F. Taking an approximate unit for I,
we get (0(2)n)z =0 for all n € F. So 0,(2;) =0 and 2z, = 0. Hence (7). is faithful. This

means we can assume that o is non-degenerate.

Proposition 2.1 in Lance [47] implies that o has a unique extension oy : A = L(F).
Also, oy is C(X)-linear since o is.

Now define v : A = L(E® F) via a — m(q(a)) ®o1(a). This is C(X)-linear. Consider
vy : Az = L(Ex @ F;) for some z € X. Suppose that vz(az) = 0 for some a, € A;.
Then m.qz(az) = 0. Now m is faithful, so ¢;(a;) = g(a)z = 0. Hence ¢(a) € C,(X)B.
Therefore, we can write g(a) = fg(a') where f € Cz(X) and o’ € A. Then ¢(a — fa') =0

soa— fa' € I. Thatis, a — fa’' = z for some z € I. So
0= (Ul)w(%) — (Ul)m(za:) - (Ul(z))a: - (G(Z))a: - Ua:(z:n)'
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As o, is faithful, we find that a; = 2, = 0. So v is a continuous field of faithful repre-

sentations of A. Hence, using Theorem 1.3.8 again, we see that A is also a continuous

field. | O

We are now in a position to prove the following.

Proposition 5.5.4. Let B be a unital separable C(X)-algebra which is actually a continu-
ous field of C*-algebras over the compact Hausdorff space X. Suppose that H is a countably
generated Hilbert B-bimodule, and that the left and right actions of C(X) on H are the

same. Then the Cuntz-Pimsner C*-algebra E(H) is a continuous field of C*-algebras over

X.

Proof. As the left and right actions of C(X) on H are the same, it follows that E(H) is a
C(X)-algebra. We must now show that this C'(X)-algebra is continuous.

As in the proof of [24] Theorem 3.1, let H = H® B. Since E(H) c E(H), it
suffices to prove that E(H) is continuous. In the proof of [24] Theorem 3.1, various
C*-subalgebras of E(I?) are considered. In particular, an increasing sequence of C*-

subalgebras Ag, Aj, A3, ... is defined. Here, Ag = B and we have (split) exact sequences
0—=1,—-A,— A, 1—0

for every n. It is easily checked that, in the present context, the maps involved are C(X)-
linear. Also I, = K(H(®z)n),

Qur separability assumptions imply that H®B)n ig 3 countably generated Hilbert
B-module. Hence the Kasparov stabilisation theorem (see Theorem 1.2.2) implies that

H(®B)" s a closed complemented submodule of £2(N) ® B. It follows that
I, c K({*(N)® B) & K(¢*(N)) ® B.

As K(€%(N)) is exact and B is continuous, it is seen (see Theorem 4.5 of {44]) that I, is
actually a continuous field for every n. Using Lemma 5.5.3, we can now show that every
A, is a continuous field.

The A, are increasing, hence A = m 1s also a continuous field over X. It follows
that the inductive limit A described in section 2 of [24] is continuous. As Z is an amenable
group, it follows (for example, see [44] Remarks 2.6) that any crossed product bundle A xZ
is continuous. Hence the crossed product A xg¢ N of [24] Theorem 3.1 is continuous, it
being a C*-subalgebra of a crossed product of A by Z. But this crossed product A xy N is
isomorphic to E(H). Thus E(H) is continuous, and that is what we wanted to prove. [J
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Corollary 5.5.5. Let C* denote the upper semicontinuous bundle (as constructed in sec-
tion 5.3) arising from the reduced amalgamated free product (Ay, f1) *¢(x) (A2, f2) of two
unital separable continuous bundles of C*-algebras over the compact Hausdorff space X

(with continuous fields of faithful states attached). Then, if A; is exact, C* is continuous.

Proof. By [44] Theorem 4.6, B = A; ®@¢(x) A2 is continuous. By Proposition 5.5.2, we
have a C(X)-linear embedding of the reduced amalgamated free product C into some
Cuntz-Pimsner C*-algebra E(H). By Proposition 5.5.4, this Cuntz-Pimsner C*-algebra

is a continuous field of C*-algebras over X. Hence C' must be a continuous field over X.

That is, C* is a continuous bundle over X. O

It is interesting that, in the above proofs, we have used the same work on Cuntz-
Pimsner C*-algebras as was used to show nuclearity of certain reduced free products in

Section 3.3.

5.6 Concluding remarks

We have now considered the continuity of both C* and C'. The continuity of C' is
equivalent to asking for kerP, = C,(X)C for every ¢ € X. So if C' is continuous, then
C* and C' coincide, hence C* is certainly continuous. On the other hand, it is not at all
clear if the continuity of C* implies anything about the continuity of C".

One thing we can say is the following. Assume that the reduced amalgamated free
product C is separable (as we have been doing throughout). Then Proposition 2.12 of
Blanchard [8] implies that the set of z € X for which kerP; = C;(X)C'is dense in X. It is
perhaps reasonable to conjecture that, if C is exact, then C* and C' coincide, and hence
by Corollary 5.5.5 C ' {s continuous.

Finally, we can mention one possible application of the above results. This is to the
problem of embedding a continuous bundle into another continuous bundle whose fibres
are simple. The work of Blanchard [9] shows that this is always possible if the bundle
C*-algebra is exact. It has been clear for some time now that reduced free products are
often simple (see for example the work of Powers [54], Avitzour [4] and Dykema {19]). So a
way of embedding a continuous bundle into a continuous bundle with simple fibres would
be to take the reduced free product of the continuous bundle with an appropriate fixed

C*-algebra. We then have to show continuity of the resulting bundle C'. Unfortunately,
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as remarked earlier, the results of Section 5.5 do not seem to provide any help in this

direction.

85



Bibliography

[1] C. A. Akemann and P. A. Ostrand, On a tensor product C*-algebra associated with
the free group on two generators, J. Math. Soc. Japan 27 no 4 (1975) 589-599.

[2] C. A. Akemann and P. A. Ostrand, Computing norms in group C™*-algebras, Amer.
J. Math. 98 (1976) 1015-1047.

(3] R.J. Archbold, Continuous bundles of C*-algebras and tensor products, Quart. J.
Math. Oxford (2) 50 (1999) 131-146.

[4] D. Avitzour, Free products of C*-algebras, Trans. Amer. Math. Soc. 271 no 2 (1982)
423-439.

[5] B. Blackadar, Shape theory for C*-algebras, Math. Scand. 56 (1985) 249-275.

(6] E. Blanchard, Représentations de champs de C*-algebres, C. R. Acad. Sci. Paris 314
(1992) 911-914.

(7] E. Blanchard, Tensor products of C'(X)-algebras over C'(X), Colloque sur les algébres
d’operateurs (Orléans 1992), Astérisque 232, Soc. Math. France (1995) 81-92.

[8] E. Blanchard, Déformations de C*-algebres de Hopf, Bull. Soc. Math. France 124
(1996) 141-215. |

[9] E. Blanchard, Subtriviality of continuous fields of nuclear C*-algebras, J. reine angew.

Math. 489 (1997) 133-149.

(10] E. Blanchard and K. Dykema, Embeddings of reduced free products of operator al-
gebras, Pacific J. Math. 199 no.1 (2001) 1-19.

(11] W. M. Ching, Free products of von Neumann algebras, Trans. Amer. Math. Soc. 178
(1973) 147-163.

86



[12] M-D. Choi, A simple C*-algebra generated by two finite-order unitaries, Can. J. Math.
31 no 4 (1979) 867-880.

[13] M-D. Choi and E.G. Effros, Nuclear C*-algebras and the approximation property,
Amer. J. Math. 100 (1978) 61-97.

[14] J. Cuntz, Simple C*-algebras generated by isometries, Comm. Math. Phys. 57 (1977)
173-185.

[15] J. Cuntz and W. Krieger, A class of C*-algebras and topological Markov chains,
Inventiones Math. 56 (1980) 251-268.

[16] J. Dixmier, C*-algebras, North-Holland, Amsterdam - New York - Oxford 1977.

[17] K. Dykema, Free products of hyperfinite von Neumann algebras and free dimension,

Duke Math. J. 69 no. 1 (1993) 97-119.

[18] K. Dykema, Faithfulness of free product states, J. Funct. Analysis 154 no. 2 (1998)
323-329.

[19] K. Dykema, Simplicity and the stable rank of some free product C*-algebras, Trans.
Amer. Math. Soc. 351 (1999) 1-40.

[20] K. Dykema, Exactness of reduced amalgamated free products of C*-algebras, preprint
(1999).

[21] K. Dykema, U. Haagerup and M. Rgrdam, The stable rank of some free product
C*-algebras, Duke Math. J. 90 (1997) 95-121.

[22] K. Dykema and M. Rgrdam, Purely infinite simple C*-algebras arising from free
product constructions, Can. J. Math. 50 (1998) 323-341.

23] K. Dykema and M. Rgrdam, Projections in free product C*-algebras, Geom. Funct.
Anal. 8 (1998) 1-16.

[24] K. Dykema and D. Shlyakhtenko, Exactness of Cuntz-Pimsner C*-algebras, Proc.
Edinb. Math. Soc. 44 no.2 (2001) 425-444.

125] E.G. Effros and U. Haagerup, Lifting problems and local reflexivity for C*-algebras,
Duke Math. J. 52 (1985) 103-128.

87



126] G.A. Elliott, Gaps in the spectrum of an almost periodic Schrédinger operator, C.R.
Math. Rep. Acad. Sci. Canada 4 no.5 (1982) 255-259.

[27] G.A.Elliott, T. Natsume and R. Nest, The Heisenberg group and K-theory, K-Theory
7 (1993) 409-428.

[28] R. Exel and T.A. Loring, Finite-dimensional representations of free product C*-

algebras, Internat. J. Math. 3 (1992) 469-476.

[29] J.M.G. Fell, The structure of algebras of operator fields, Acta Math. 106 (1961)
233-280.

[30] E. Germain, KK-theory of reduced free product C*-algebras, Duke Math. J. 82 (1996)
707-723.

[31] E. Germain, Amalgamated free product C*-algebras and KK-theory, Fields Inst. Com-
mun. 12 (1997), 89-103.

[32] E. Germain, KK-theory of the full free product of unital C*-algebras, J. reine angew.
Math. 485 (1997) 1-10.

[33] E. Germain, Approximation properties for Toeplitz-Pimsner C*-algebras, preprint

(2002).

[34]) U. Haagerup, A new proof of the equivalence of injectivity and hyperfiniteness for
factors on a separable Hilbert space, J. Funct. Analysis 62 (1985) 160-201.

[35] U. Haagerup and M. Rerdam, Perturbations of the rotation C*-algebras and of the
Heisenberg commutation relation, Duke Math. J. 77 (1995) 627-656.

[36] P. de la Harpe and V. Jones, An introduction to C™-algebras, University of Geneva,
1995 (available at http://www.unige.ch/math/biblio/preprint/cstar/liste.html).

[37] L.N. Herstein, Non-commutative Rings, John Wiley, 1968.

[38] G. G. Kasparov, Hilbert C*-modules: theorems of Stinespring and Voiculescu, J.
Operator Theory 4 (1980) 133-150.

[39] E. Kirchberg, C*-nuclearity implies CPAP, Math. Nachr. 76 (1977) 203-212.

[40] E. Kirchberg, The Fubini theorem for exact C*-algebras, J. Operator Theory 10
(1983) 3-8.

83



[41] E. Kirchberg, Commutants of unitaries in UHF algebras and functorial properties of
exactness, J. reine angew. Math. 452 (1994) 39-77.

[42] E. Kirchberg, On subalgebras of the CAR-algebra, J. Funct. Analysis 129 (1995)
35-63.

[43] E. Kirchberg and N.C. Phillips, Embedding of continuous fields of C*-algebras in the
Cuntz algebra O,, J. reine angew. Math. 525 (2000) 55-94.

[44] E. Kirchberg and S. Wassermann, Operations on continuous bundles of C*-algebras,

Math. Ann. 303 (1995) 677-697.

[45] E. Kirchberg and S. Wassermann, Exact groups and continuous bundles of C*-

algebras, Math. Ann. 315 (1999) 169-203.

[46] E. Kirchberg and S. Wassermann, Permanence properties of C*-exact groups, Doc.

Math. 4 (1999) 513-558.

[47] E.C. Lance, Hilbert C*-modules, a Toolkit for Operator Algebraists, London Math.
Soc. Lecture Note Series, vol. 210, Cambridge University Press, 1995.

(48] W. Magnus, A. Karrass and D. Solitar; Combinatorial group theory: Presentations

of groups in terms of generators and relations, Interscience Publishers, 1966.
[49] G.J. Murphy, C*-algebras and Operator Theory, Academic Press, 1990.

(50] W.L. Paschke, Inner product modules over B*-algebras, Trans. Amer. Math. Soc. 182
(1973) 443-468.

[51] V.I. Paulsen, Completely bounded maps and dilations, Pitman Research Notes in
Mathematics 146, Longman, 1986.

[52] M. Pimsner, A class of C*-algebras generalizing both Cuntz-Krieger algebras and
crossed products by Z, Fields Inst. Commun. 12 (1997), 189-212.

(53] G. Pisier, Exact operator spaces, Colloque sur les algebres d’operateurs (Orléans

1992), Astérisque 232, Soc. Math. France (1995) 159-186.

[564] R.T. Powers, Simplicity of the reduced C*-algebra associated with the free group on
two generators, Duke Math. J. 42 (1975) 151-156.

89



[55] M. A. Rieffel, C*-algebras associated with irrational rotations, Pacific J. Math. 93
(1981) 415-429.

[56] T. Sakamoto, Certain reduced free products with amalgamation of C*-algebras, Sci.

Math. 3 no.1 (2000) 37-48.

[57] D. Shlyakhtenko, Some applications of freeness with amalgamation, J. reine angew.

Math. 500 (1998) 191-212.

[58] R. Speicher, Combinatorial theory of the free product with amalgamation and
operator-valued free probability theory, Mem. Am. Math. Soc. 132 (1998) no. 627.

[59] N. Steenrod, The topology of fibre bundles, Princeton University Press, 1951.

[60] M. Takesaki, On the cross norm of the direct product of C*-algebras, Téhoku Math.
J.16 (1964) 111-122.

61] D. Voiculescu, Symmetries of some reduced free product C*-algebras, Operator al-
g y JP
gebras and their connections with topology and ergodic theory, Lecture Notes in

Mathematics, vol. 1132, Springer-Verlag, 1985, pp. 556-588.

[62] D. Voiculescu, K. Dykema and A. Nica, Free random variables, CRM Monogr. Ser.,
vol. 1, Amer. Math. Soc., 1992.

[63] S. Wassermann, On tensor products of certain group C*-algebras, J. Funct. Analysis

23 (1976) 239-254.

[64] S. Wassermann, A pathology in the ideal space of L(H)® L(H), Indiana Univ. Math.
J. 27 (1978) 1012-1020.

[65] S. Wassermann, Tensor products of free-group C*-algebras, Bull. London Math. Soc.
22 (1990) 375-380.

[66] S. Wassermann, Exact C*-algebras and related topics, Seoul National University Lec-

ture Note Series, vol. 19 (1994).

[67] N.E. Wegge-Olsen, K-theory and C*-algebras: a friendly approach, Oxford University
Press, 1993.

90




