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Abstract 

The dynamics of soliton pulses for use in nonlinear optical devices is mathemat- 
ically modelled by Maxwell-Bloch systems of equations for the interaction of 
light with a uniform distribution of quantum-mechanical atoms. We study the 
Reduced Maxwell-Bloch (RMB) equations occuring when an ensemble of rota- 
tionally symmetric 3-level atoms is assumed. The model applies for on and off- 

resonance conditions and is completely integrable using Inverse Scattering theory, 

since it arises as the compatibility condition of a3x3 AKNS-system. Further- 

more this integrability remains valid for all timescales of the optical field because 

only the "one-way wave approximation" is required during the derivation. Solu- 

tions are constructed in two ways: 1. Darboux-Bäcklund transforms are applied, 

generating single soliton pulses of ultrashort (< 1ps) duration, and families of el- 
liptically polarised 2-solitons not possible in lower dimensional problems. 2. A 

general Inverse Scattering scheme is developed and tested. The Direct Scattering 

Problem is dealt with first to obtain a complete set of scattering data. Subse- 

quently the Inverse Problem is solved both formally and then in explicit closed 
form for the special case that the reflection coefficients vanish for real values of 
the spectral parameter. In this case the main result is a determined system of n 
linear algebraic equations which yield the n-soliton solution of our RMB-system. 

It is confirmed that the 1-solitons found by means of Darboux transforms are pre- 

cisely the same as those given by the full mechanism of Inverse Scattering. Finally 

we calculate the invariants of the motion for the RMB-equations, and derive an 

evolution equation giving the variation with propagation distance of the invariant 

functionals when the original RMB-system is modified by an arbitrary perturbing 
term. As an application dissipative effects on 1-solitons are considered. 
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Chapter 1 

Introduction. 

1.1 Solitary Waves and Solitons. 

As an essential preliminary we must first define the notion of a soliton. Referring 
to Ablowitz & Clarkson [1] p. 13, pp. 18-19 we make the definitions below: 

A solitary wave solution of a nonlinear partial differential equation 

N (x, t, u(x, t)) = 0, 

where xER, tER are spatial and temporal variables and uER is the dependent 

variable, is a travelling wave solution of the form 

u (x, t) =f (x - ct) = f(4) 

whose transition is from one constant asymptotic state as a -* -oo, to (possibly) 

another constant asymptotic state as C -+ +oo. 

A soliton is a localised solitary wave solution of a nonlinear equation (or system of 

equations) which asymptotically preserves its shape and velocity upon nonlinear 
interaction with other solitary waves, or more generally with another (arbitrary) 
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localised disturbance. 

Later (cf. p. 14) the more formal concept of an "n-soliton" will be introduced 
in the context of the Inverse Scattering Transform method (which is thoroughly 
described in Chapter 2). 

1.2 Solitons in Nonlinear Optical Media. 

A significant motivating factor for research into the solitary wave solutions of 
Maxwell-Bloch (MB) systems of differential equations was the original sugges- 
tion by Hasegawa and Tappert (1973) [2] that optical solitons could be used as bits 
in high capacity digital nonlinear communication systems. Basically Hasegawa 

and Tappert's idea was that given sufficiently high optical power from a laser 

source, short stable soliton pulses suitable for data transmission could be produced 
in a silica glass fibre, as a result of the balance arising between the effects of dis- 

persion and the induced Kerr nonlinear interaction. Now the chief mathematical 
model representing this process is governed by the Nonlinear Schrödinger equa- 
tion. However, this equation is just one reduction of the Maxwell-Bloch system 
for the interaction of an electromagnetic plane wave with a uniform distribution 

of quantum-mechanical atoms through dipole polarisation. In fact, if the atoms 

are assumed simply to have two levels, a ground state and a single upper energy 

state, then there are three cases: 

1. The incident carrier wave is off-resonance with the atomic transition, and a 
Slowly Varying Envelope or Rotating Wave approximation is made. 

2. The incident carrier wave is on-resonance, and an envelope approximation 
is made. 

3. The incident carrier wave can have any frequency, and the atomic ensem- 
ble is supposed to have low density, allowing use of the "one-way wave 
approximation" (neglect of backscattered waves). 
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Cases 1 and 2 lead to the Nonlinear Schrödinger equation and the sine-Gordon 
equation respectively, which are famous nonlinear partial differential equations 
for complex wave envelopes. Both of these equations are integrable (i. e., analyt- 
ically solvable) by the Inverse Scattering Transform [3] [4] and have well doc- 

umented soliton solutions. In particular, because of its relevance to fibre optic 
telecommunications, the Nonlinear Schrödinger equation has been exhaustively 
studied. We have included a brief discussion of soliton communication systems 
for background interest: see Section 1.4. Case 3 leads to the so-called 2-level Re- 
duced Maxwell-Bloch (RMB) equations which have importance modelling Self 

Induced Transparency effects, where powerful ultrashort optical pulses are prop- 
agated without energy loss through a resonant dielectric medium. The Inverse 
Scattering scheme and solitons of this system were found by Bullough, Caudrey, 

Eilbeck and Gibbon (1973) [5] [6] [7]. 

A substantially more complicated and less well researched problem is to integrate 

the Maxwell-Bloch equations occuring when the constituent atoms of the ensem- 
ble have three distinct energy levels. We shall be investigating the soliton solutions 
of a recently discovered [8] exactly integrable 3-level Maxwell-Bloch system: the 

system in question is essentially an extension of the 2-level RMB-equations to 

allow circularly and elliptically polarised solutions, and is derived by assuming 
each of the individual atoms is rotationally symmetric with a zero level and two 

separate orthogonal upper levels. As a general model it answers the need for an 

analytically solvable basis with which to study near resonant interactions in non- 
insulating optical media, such as doped optical fibres, semi-conductors or vapours. 
Indeed its most pertinent application is probably in the description of pulse for- 

mation within laser cavities. We note that whilst there exist other examples of 
integrable 3-level MB-systems [9] [10] [11], their formulation invariably neces- 
sitates envelope approximations. On the other hand, as will be seen in Chapter 
3, the 3-level RMB-equations with rotational symmetry retain their integrability 

right down to the carrier timescale, thus allowing physical interpretation of solu- 
tions at timescales as short as one optical cycle. Furthermore, in contrast to the 
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2-level model where by assumption there is no opportunity for the existence of 
orthogonal dipoles, soliton solutions of the 3-level equations may be circularly or 

elliptically polarised. 

1.3 Objectives and Layout. 

The main purposes of this thesis may be summarised as follows: 

. To devise a general integration scheme for the 3-level RMB-equations with 
rotational symmetry using the Inverse Scattering Transform method and ob- 
taining formulae for the n-soliton solution (N 3n> 1). 

" To find a way of evaluating the effects of non-Hamiltonian perturbations on 
the soliton parameters. 

These two problems are addressed in Chapters 5 and 7 respectively, after the req- 
uisite groundwork has been covered. 

In Chapter 4 we employ Darboux-Bäcklund transforms to calculate expressions 
for the fully polarised 2-solitons of the RMB-system. Darboux transforms give 
a useful and relatively slick method of aquiring pure multi-soliton solutions of 
integrable nonlinear equations. Unfortunately though, this is their only function, 

whereas the techniques of Inverse Scattering provide a general solution to the ini- 

tial value problem with rapidly decreasing boundary conditions defined in Chap- 

ter 3. 

The contents of the remaining chapters are clear enough from their titles, so we 
do not comment further. 

In order to make clear the breakdown of original work contained in our thesis, we 
state that the RMB-equations were derived and proved to be completely integrable 
by Arnold in 2001 [8]. The basic linearly polarised 1 and 2-soliton solutions were 
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also calculated via Darboux Transform methods at this time. Much of Chapters 
3 and 4 therefore amounts to a verification of Arnold's results. However, the 

calculation to find elliptically polarised solitons is our own, and these formulae 

are previously unpublished. All the theory in Chapters 5,6 and 7 is our own 

work, although as we readily acknowledge, it generalises (in a nontrivial way) 
mathematical theory due to Faddeev & Takhtajan [12] (Chapter 5), Ablowitz & 

Clarkson [1] (Chapter 5), and Elgin [13] (Chapter 7). 

Regarding equation numbering, we mention that at the beginning of each new 
chapter, the numbering starts again at (1). If in one chapter an equation from 

another chapter is referred to, then a page number is included with the reference. 

1.4 Optical Soliton Communication Systems. 

Following the first observation of an optical fibre soliton by Mollenauer et at. 
(1980) [14], the practical science and theory of soliton communication systems 
has developed swiftly. In fact, from a wholly scientific perspective, there are 

no real obstacles to manufacturing multichannel soliton links with each channel 

offering error-free data rates of more than 1OGbs-1 over transatlantic distances: 

see for example [15]. Nevertheless, commercially speaking these links are cur- 

rently unviable due simply to lack of demand on the capacity of the fibre optic 

network already in place. Presumably as demand overrides capacity during the 

next five-ten years, commercial interest will be reignited. Today there exists just 

one "dispersion-managed" (see below) soliton transmission system in regular use, 

connecting Perth and Adelaide in Australia. 

By comparison, because of various relaxation effects, absorption and dissipation, 

the creation of true solitons in near resonant media is much more difficult, and 
there has been little experimental success. Hence a data transmission system us- 
ing the characteristic ultrashort soliton pulses predicted by the RMB-equations 

continues to be only a theoretical possibility. 
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The efficiency of a typical soliton link is limited by a number of factors; the most 
important being the effects of dispersion and optical power loss on the information 

carrying pulse together with any accompanying background radiation. Since fibre 
losses eventually cause the nonlinear interaction creating the solitons to become 

negligible, damaging the integrity of a transmitted pulse stream, optical ampli- 
fiers are inserted at intervals of roughly 50km. Erbium Doped Fibre Amplifiers 
(EDFAs) are chosen to do the job, and for the most part they work very well. 
However, in 1986 Gordon & Haus [16] showed that spontaneous emission of light 
from the amplifiers created a timing jitter in the output pulse, resulting in serious 
errors at the receiver over long propagation distances. One way of dealing with 
this problem is to place optical filters after the amplifiers to eliminate wide devi- 

ations in the frequency content of each soliton pulse [17]. However the high cost 
of these filters is preclusive. A better and more recent solution has been the intro- 
duction of dispersion-managed systems, where the fibre link consists of alternate 
lengths of normally and anomalously dispersive fibre. Multiple channels are ac- 

comodated through the technique of Wavelengh-Division-Multiplexing (WDM) 

[18] [19] [20]. Modulated soliton pulse streams, whose carrier wavelength sep- 
aration is chosen to minimize the timing jitters caused by soliton collisions and 
"four-wave mixing", are combined and transmitted down the fibre. Then at the 

receiving end filters or gratings split the wavelengths up again so that each carrier 
falls on a separate detector. 
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Chapter 2 

Mathematical Methods for Solving 
Nonlinear Evolution Equations. 

Here we shall describe in some detail the two main techniques which will be used 
later to find solutions of the initial value-boundary value problem for the RMB- 

system. 

2.1 The Inverse Scattering Transform (IST). 

2.1.1 Introduction. 

In 1967 Gardner, Greene, Kruskal and Miura [21] published a now famous paper 
describing an exact method of solving the Korteweg-de Vries (KdV) equation. 
This caused considerable excitement as the KdV equation is a nonlinear PDE and 
is therefore unsusceptible to solution via standard methods for linear PDEs, such 
as the application of Fourier transforms. Intense research over the following years, 
notably influenced by Lax (1968) [22], resulted in the so-called Inverse Scattering 

Transform, a sophisticated procedure for solving initial value problems for a large 
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number of physically important nonlinear partial differential equations. In par- 
ticular, amongst many others, the Nonlinear Schrödinger, sine-Gordon, Boussi- 

nesq, Kadomtsev-Petviashvili, Three-wave interaction, Davey-Stewartson, and 
Self-dual Yang-Mills equations are all solvable using variations of the IST method. 

Several comprehensive textbooks are available dealing with all aspects of the the- 

ory of the transform, its historical development and applications. Especial use will 
be made of the treatments written by Faddeev and Takhtajan (abbreviated to F&T. 

subsequently) (1986) [12], and by Ablowitz and Clarkson (A&C. ) (1991) [1]. 

We now begin with some basic concepts and definitions. 

A given system of r (N E) r> 1) nonlinear PDEs is said to be completely 
integrable or simply integrable if it is exactly solvable by the Inverse Scatter- 

ing Transform. Suppose our equations are for an unknown vector function q= 
(ql, 

..., q,. ) of one spatial variable x, and one temporal variable t. Then Ablowitz, 

Kaup, Newell and Segur (AKNS) (1973b, 1974) [23] and Ablowitz and Haberman 

(1975b) [24] proved that a wide class of completely integrable systems could be 

represented as the compatibility condition of the following overdetermined pair of 
linear equations: 

äxF = UF, (1) 

atF = VF, (2) 

where U= U(x, t, (), V=V (x, t, () are NxN complex matrices dependent 

on qj, j=1, ..., r and their derivatives in a way to be defined, F= F(x, t) = 
(F1, ..., FN)t is an Nx1 complex column vector, and C is a complex spectral 

parameter. Equating Fit = Ft., implies that for all 

Ut-Vx+[U, V]=0, (3) 

which is often called the zero curvature compatibility condition (cf. F&T. pp. 21- 

22). Here [U, V] denotes the matrix commutator UV - VU. The left-hand side is, 

11 



in general, an analytic function of C with poles, having coefficients depending on 
the components of q(x, t). It vanishes identically as long as the original nonlinear 
PDEs are satisfied. 

If N=2, then a typical form for U (AKNS [23]) is 

ý 
qi 

cc 

t) 
3 

ý4ý U(x, t, ý) - 
q2 (x, t 

where c :=. The elements of V are functions of ql, q2 and (', independent of 
the components F1, F2 of F. 

In the general NxN case ([24]) 

u(x, t, e) = c(J + Q(x, t), (5) 

where J= diag(J1, ..., JN), with Jk # JJ fork 1, k, l=1, 
..., 

N and Q 
is off-diagonal and dependent on the components of q. (As for the 2x2 case 
the elements of V are functions of the components of q and C, independent of 
F1,... ' FN). 

Notice that the above forms for U are not all-encompassing: for instance a more 
complicated (-dependence might be chosen, leading to a different class of inte- 

grable equations. They are however quite sufficient for our study of the RMB- 

system. 

2.1.2 Inverse Scattering Transform for 2x2 AKNS-Systems. 

Suppose that we wish to use the IST to solve the Cauchy problem for a given 
determined system of nonlinear PDEs, which is known to be equivalent to the 

compatibility condition of the AKNS pair of differential equations 

axF = UF Q(x't) F, ätF = VF. (6,7) 
r(x, t) c( 
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Fixing t=0 in the first equation (6), we have a linear ordinary differential equa- 
tion containing the spectral parameter( linearly. 

The first step in applying the IST is to solve this 2x2 scattering problem (which 

may also be referred to as the auxiliary linear problem). That is, knowing q(x, 0), 

r(x, 0) and assuming q and r are absolutely integrable functions of rapidly de- 

creasing type at infinity, we find the eigenfunctions of equation (6). If certain 
asymptotic conditions are satisfied at infinity, then these eigenfunctions are called 
Jost solutions. Their behaviour as Ix1 -4 oc determines scattering data consisting 
of two components s(() and s, "1 corresponding to continuous and discrete spec- 
tra, with n standing for a number of discrete eigenvalues. Since the operator U 
depends on q and r we can define a map 

{q(x, o), T(x, o)} F--* {s(C, o), an(o)} . 

Secondly, temporal evolution of q and r according to the original system of non- 
linear PDEs, generates evolution of the scattering data through equation (7), the 

time-part of the AKNS pair. In general the time dependence of the scattering data 

has the following trivial form 

atsýCý t) =w (C)s(C, t), 
fltsn(t) 

= GJnsnýtýý 

where some of the w,, 's or w (C) may be equal to zero. 

Finally the most difficult step is to solve the inverse scattering problem, which 

means reconstructing the potentials q(x, t), r(x, t) from the set of scattering data 
{s((, t), s, a(t)} at an arbitrary time t. As we shall see, solving the inverse scatter- 
ing problem is equivalent to solving a Riemann-Hilbert boundary value problem 
in scattering space, and is achieved by the application of a certain projection op- 
erator. 

We point out that in every case the discrete spectrum scattering data determines 

solitons, whereas the continuous spectrum scattering data determines a back- 
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ground radiation field. Potentials q(x), r(x) to which there corresponds non-trivial 
discrete spectrum data s,, (t), but for which the continuous spectrum data implies 

vanishing of the background radiation are termed reflectionless. They evolve into 

pure "n-soliton solutions" through the mechanism of the IST. 

Next we look more closely at the calculations involved in the two principle stages 

of the transform, i. e., the direct and inverse scattering problems. (Finding the time 
dependence of the scattering data is straightforward by comparison). Our pre- 

sentation here amounts to a summary of theory extracted from A&C., Chapter 3, 

pp. 105-9, and from F&T., Chapter 1, pp. 11-55. Since results from both solu- 
tion methods will be applied during Chapter 5, a remark comparing the strongly 

contrasting notation schemes has been included. 

2.1.3 The 2x2 Direct Scattering Problem. 

Consider once again the auxiliary linear equation 

dF 
= U(x, t=0, ()F. (8) 

dx 

Typical assumptions on the potential functions q and r are that they are infinitely 

differentiable, absolutely integrable and satisfy 

f 

000 0 
1xI" lq(x)l dx, f 

000 0 
1xI" jr(x)l dx < oo, Vn E N. 

Now let -y be the line segment [y, x] (y < x) on the x-axis, and partition y into a 
large number of tiny adjacent segments yi, ...,, yR, say. Then the transition matrix 
is defined to be the matrix of parallel transport (cf. F&T, p. 22, p. 26) from y to x 

along the x-axis: 

fy Z 

U(z, ()dz := lim { (I + Udz) ... 
(I 

+ Udz) v yý R-roo 'YR 'i1 T (x tx-P 
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We also note that TL (() :=T (L, -L, () is called the monodromy matrix. 

The transition matrix is fundamentally useful for solving the direct scattering 

problem because it satisfies the auxiliary differential equation (8): 

öxT(x, y, () = U(x, ()7'(x, y, (), (9) 

with initial condition 

[T(x, v, ()]x_y = I. (lo) 

When q(x) =0= r(x), the solution of (9,10) is simply 

10 
E(x - y, () := exP ý(x - y)( 01" 

By virtue of the assumptions on q and r, the Jost solution matrices T, exist and 
are defined as the limit 

Tf(x, () =y1'im {T(x, y, ()E(y, ()}, for (ER. 

(cf. F&T. pp. 39-42). Furthermore we have that 

dýT±= 
U(x, C)Tf(x, C), (11) 

With 

Tf(x, () = E(x, () + o(1), (12) 

as x -+ foo. 

In other words the columns of T±(x, () = (Tali, Tf2)) (x, () say, are eigenfunc- 
tions of our 2x2 scattering problem. Since Tr [U (x, ()] =0 (where Tr denotes 
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the matrix trace function), it follows (F&T. p. 27) that 

detT(x, y, () =1= detT±(x, (), 

and so consequently {T'), T 2) } are linearly independent sets. 

Finally, for CER the following limit exists (F&T. p. 44) and is called the reduced 

monodromy matrix: 

T(C) = 
x-+ýim _ý 

{E(-x, ()T (x, y, ()E(y, ()} . 

T (C) satisfies T (C) = T+ 1(x, ()T_ (x, C), i. e., 

T_ (x, () = T+ (x, C)T (C), (13) 

which symbolises the completeness relationship between the columns of the Jost 

solutions. Elements T=j (() of the reduced monodromy matrix are called transition 

coefficients. Observe that it is crucial to find all symmetries of the matrix U which 
respect the definition of the transition matrix. These symmetries are referred to 

as involution relations (F&T. p. 27) and they extend through the whole analysis 

of the direct scattering problem, minimising the number of independent transition 

coefficients. 

This is a good point at which to see through the notational differences mentioned 
between the solution methods in F&T. and A&C.. Comparing the asymptotic 
behaviour of Tt given by (12) with A&C. (3.1.3) p. 105, i. e., 

^' (ý ) 

(0, j) ^' 
( 
( 

e-K-T 0 
, 0 e`cx 

as x -+ +oo, 

e'Kx 0 
, as x --3 -oo, (14) 

0 --e`Sx 
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and comparing the relation (13) with A&C. (3.1.4) p. 105, i. e., 

(0, j) _ (Z, o) ab 
b -ä 

' 
(15) 

it is evident that Ablowitz & Clarkson's eigenfunctions 0, ý and 0, ý of d. F = 
UF simply correspond to the columns of the Jost solution matrices T+ and T_ 

(albeit the normalisation differs trivially). Note that the use of tildas rather than 
bars in (14) and (15) avoids confusion with the complex conjugate. 

Now that the eigenfunctions required have been characterised, they can be explic- 
itly found at t=0 by re-expressing the auxiliary differential equation (8) as a 

linear integral equation. In fact for our case U= -t( q, the transition 
r c( 

matrix T (x, y, () may be represented as the solution of a Volterra integral equa- 
tion, whose iterations are of course absolutely convergent. Appropriate limits are 
then taken in order to obtain integral representations for TT (x, () and T (C) (cf. 
F&T. p. 30, pp. 39-41, pp. 46-48). 

Lastly, analytic properties of the Jost solutions and the transition coefficients, de- 

duced from their integral representations, in conjunction with the completeness 

relation (13) imply the discrete and continuous spectrum scattering data. 

To be more explicit, consider for example the Nonlinear Schrödinger equation 
dealt with in Chapter 1 of Faddeev & Takhtajan's book ([121), where the matrix 
U of the auxiliary linear equation has the form 

týIX1 O(x) cA/2 t FIX 11,0 (x) cA/2 

and the reduced monodromy matrix may be written 

T (A) = 
a(A) -b(A) 
b(A) -a(. 1) 

I 
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Here 0(x) = (x, t= 0) is a known complex-valued function, A is the arbitrary 
complex parameter, and the bars denote complex conjugation. 

In this (generic) case the discrete spectrum data (A complex) comprises: 

"A set of discrete eigenvalues {al, 
..., A, ti} which are the zeros of the transi- 

tion coefficient a(A) in the upper half A-plane, together with their complex 
conjugates {Xi, 

..., "ln}. 

" 2n complex coefficients {rye, ryý ja=1, ..., n} called transition coefficients 
for the discrete spectrum. They are proportionality coefficients existing be- 

tween the columns of the Jost solution matrices T±(x, A) at A= a1 and 
A=T;, i=1, ., n. 

Whilst the continuous spectrum data just consists of the set Ib(A), T(A) IA E R}. 

(a(A), AER can be expressed in terms of its zeros al, ..., A, a via a "dispersion 

relation": cf. F&T. pp. 50-51). 

2.1.4 The 2x2 Inverse Scattering Problem. 

By taking into account the known analytic properties of TT(x, () and T(C), the 
completeness relation T_ (x, () = T+ (x, ()T(() will be rewritten and reinter- 
preted as a vector Riemann-Hilbert problem in scattering space, which can then 
be formally solved at time t using projections. 

Following A&C. pp. 105-109 we suppose the Jost solutions now have the asymp- 
totic behaviour (14) and satisfy the completeness relation (15). Let N, N, M, .U 
be the modified eigenfunctions with constant boundary conditions defined by 

N(x, 
0 e_ýCx 

1Q 
N, as x -3 +oo, 

Q1 

) 
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(M(x, (), M(x, ()) 

Then (15) becomes 

(M, M) 

or componentwise 

where 

(M, M) _ 

= (rh(a. Cl. rä(a. Cll \T \"l a/7 T \--7 ', // 1ý 
_ýIT 

IV 
10 
0 -1 

e`cx 0 

0 e-` 

, as x -3 -oo. 

a be-2i(x (Ný N) 
be2isx _ä ý 

a((ý)() 
N(x' () + P(()e2'C'N(x: (), (16) 

P(()e-2iCxN(x, ý) - N(x, 
ä(ý) 

P(C) = b(()Ia((), P(() = b(C)Ia(C)" 

) 

Volterra integral equations for N, N, M, M and integral representations for a, 
ä, b, b are given by equations (3.1.7) p. 106 and (3.1.16) p. 107 of A&C.. 

They imply that M(x, (), N(x, (), a(() are analytic in the upper half (-plane lit 

whilst M(x, (), N(x, () and ä(() are analytic in the lower half (-plane II-. (b((), 
b(() cannot in general be extended away from the real line). Therefore equations 
(16,17) are equivalent to the Riemann-Hilbert boundary value problem 

(ý+ - m-) (x, C) = rrc- (x, ()V (x, C), (18) 

U eThw 
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where 

m+(x, C) = 

and 

V (X, () = P(C)P(C) P(C)e- 
2aSx 

P(C)e2iSx 0 

N(x, C) , m- (x, () = 1V(x, C), - 
ä(x, c) 

7 (C) 

mf(x, () -+ I, as ICI -+ oo. 

Suppose that given q(x, 0), r(x, 0) we have solved the linear integral equations 
for N, N, M, M and hence obtained m±(x, 0, (), the discrete and continuous 

spectrum scattering data and V(x, 0, () using (18). Suppose further that we have 

found the time dependence of the scattering data from the V-part of the AKNS- 

pair. Then the inverse problem requires us to solve the vector Riemann-Hilbert 

problem on Im( =0 

(m+ - rn-) (x, t, () = rn- (x, t, C)V (x, t, C), 
rnf(x, t, C) -+ I, as ý(ý -3 00, (19) 

finding m± (x, t, () when the matrix function V (x, t, () is known. 

For the sake of brevity in this section we assume a((), ä(() have no zeros, mean- 
ing that mt are analytic rather than meromorphic in their respective half-planes. 

In Chapter 5 we will derive a Riemann-Hilbert problem of the same type as (19) 

in order to solve the inverse scattering problem for the RMB-system, and we shall 

explicitly carry out the extra calculations demanded by allowing meromorphic 

m}. 

Define the projection operator P} by 

1ýu ýP±f ý (C) - 27r6 
foo 

u- (ý f L0) 
du. (20) 
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If ff (() are analytic in IIf, and f±(() -+ 0 as I(I -4 oo, then it is immediate 

using Cauchy's Integral Formula from Complex Analysis that 

(PVT) (C) = 0, (P: 'f±) (C) = ±f±(0- 

Let us apply P- to equation (19). We have 

P-{(7n+-I)-(m_-I)-m_V}=0. 

Therefore 

1/ co rra_ (x, t, u)V (x, t, u) du 
rra_ xt= I+ 

27rc Joo u- (ý - c0) 
00 

_ 
ti I- 

ý1 
(P(t, u)ea'uN(x, t, u), P(t, u)e-2cuxN/X' t, u), du 2ýG oo 

l 

as ICI -+ oo. 

Alternatively, another asymptotic expansion for m_ in inverse powers of C is 

gained simply by using integation by parts, the rapidly decreasing boundary con- 
ditions for q and r at infinity, and the integral representations for N, M and ä. In 
fact 

1+ 2K f' q(C, t)r(C, t)dý 2i(Entl < 
M- (X, t, () N > 71C 1+ 2LS f xI q(e, t)r(E, t)d 

as 1(1 -p oo, which upon matching coefficients of C-' in the (1,2) and (2,1) 

positions gives 

q(x, t) = 

r(x, t) = 

_1 
%O0 

-2aux J 
oo 

p(t, u)e Nl (x, t, u) du, 

1 %O0 2ýux 
ýfý 

p(t, u)e N2(x, t, u) du, 

where Nl is the (1,1) element of N, and N2 is the (2,1) element of N. 
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Evidently these formulae describe q and r at a general time t in terms of the 
continuous spectrum scattering data (i. e., p(t, (), p(t, () which are known) and 
the solutions m± of (19) (i. e., N(x, t, (), N(x, t, ()). 

2.2 BäckIund and Darboux-Bäcklund Transforma- 
tions. 

In this section we review two allied methods for calculating pure multi-soiiton 
solutions to integrable nonlinear PDEs. 

2.2.1 Bäcklund Transformations. 

A Bäcklund transformation is a system of equations which implicitly defines a 
mapping between local solutions of either two different partial differential equa- 
tions or one single partial differential equation. 

More precisely, given two uncoupled partial differential equations P(u) = 0, 
Q(v) =0 for u= u(x, t), v= v(x, t), a Bäcklund transformation may be defined 
[25] as a pair of relations 

2 ý(u, voux, vx, ut, vt, ...; x, t) = 0,2 = 1, 

satisfying the following property: if u is chosen to be a solution of P(u) = 0, 
then R; =0 are integrable for v and the resulting v is a solution of Q (v) = 0, and 
vice versa. If the operators P, Q are the same, then 0, i=1,2 are called an 
auto-Bäcklund transformation. 

It is intriguing that every evolution equation solvable by the IST has its own auto- 
Bäcklund transformation. Moreover, the AKNS-pair corresponding to a particular 
integrable equation itself represents a Bäcklund transformation: cf. Ablowitz and 
Segur [26] pp. 156-157. 
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Suppose now that P(u) 0 is an integrable PDE with AKNS-pair 

8j = U(u)F, 

ätF =VF. 

Then applying the auto-Bäcklund transformation for P(u) =0 to a given (suitably 

behaved) solution uo(x, t), P(uo) = 0, yields a new solution ul(x, t), P(ul) =0 
characterised by the fact that the spectrum of OF = U(ul)F differs from the 

spectrum of OF= U(uo)F by exactly one discrete eigenvalue. Consequently, if 

ua is an n-soliton solution, then ul will be an (n ± 1)-soliton solution. A standard 
trick for obtaining 1-solitons is therefore to apply the auto-Bäcklund transforma- 

tion to the trivial zero solution of P=0 (providing of course P=0 possesses this 

solution). Higher order solitons are then found either by further applications of 
the Bäcklund transformation, which unfortunately requires repeated integrations, 

or preferably by algebraic means alone if the Bäcklund transformation satisfies a 

permutability theorem. We shall demonstrate this method with a typical example 
for finding a 2-soliton solution of the sine-Gordon equation 

uxt = sin u. 

An auto-Bäcklund transformation for the sine-Gordon equation is given by 

(u - v)x = 2a sin[(u + v)/2], 
(u + v)t = 2a-1 sin[(u - v)/2], 

where a 36 0 is an arbitrary constant. (As can be verified by cross-differentiation). 
If we choose 

v= vo with (vo)xt = sin (vo) 
, 

and if we successively take a= ai (i = 1,2) in the Bäcklund transformation, then 
by definition we obtain two solutions u= vi (say) of the sine-Gordon equation. 
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In fact if vo = 0, then 

v, =4 arctan [exp (a; x + t/as)] , 

each of which represents a 1-soliton solution. Now if we take v= vi, a= a2 then 
we obtain a solution u= v12 (say), and similarly a solution u= v21 from v= v2, 
3= a1. 

_ V21 

Thus we have four pairs of equations: 

(vl - vo)z = 2a1 sin[(vl + vo)/2] (vi + vo)t = 2ai l sin[(vl - vo)/2], 
(v2 - vo)x = 2a2 sin[(v2 + vo)/21 (v2 + vp)t = 2aa l sin[(v2 - vo)/2], 

(v12 
- vl)x = 2a2 sin[(v12 + vl)/2l (v12 + vl)t = 2aj1 sin[(v12 - vl)/2], 

(v2l 
- v2)x = 2al sin[(val + v2)/2l , 

(v21+ v2)t = 2ai l sin[(v21 - va)/2]. 

Since Bianchi's Theorem of Permutability (1902) (proved for instance in [27]) 
demands that v12 = v21 we can eliminate the differential terms and finally obtain 

) 
tan[(vl - v2)/4]. tan(((/vo - v12)/4] _ (a2- 

- 

al) l 

This nonlinear superposition formula allows us to calculate algebraically the so- 
lution vie providing we can solve for vi, v2 given vo. The 2-soliton solution of the 

sine-Gordon equation results from the choice vo = 0, v; =4 arctan(exp(a; x + 
t/a; )]. 
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It is straightforward in principle to continue this process, although the calculations 
become very involved for large n. The sequence of Bäcklund transformations 
leading to a 3-soliton solution v123 is illustrated below: 

V123 = V213 = V231 etC. 

2.2.2 Darboux-Bäcklund Transforms. 

A Darboux-Bäcklund transform is a special type of gauge transformation which 
can be used to effect auto-Bäcklund transformations between n and (n+l)-soliton 

solutions of integrable PDEs. 

Let M(q) =0 be an integrable nonlinear system for an unknown vector function 

q(x, t) = (ql,..., q,. ) (x, t), N9r>1, and let 

F. = U(q, ()F, Ft = V(q, C)F 

be the associated AKNS NxN linear system. 
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Observe that the zero-curvature condition Ut - Vx + [U, V] =0 is invariant under 
gauge transformations, which are (F&T. p. 22) changes of frame defined by 

F= GF, U= GUG-1 + GyG-1 (20), V= GVG-1 + GtG-1 (21). 

Therefore a gauge transformation G(q, q, () acting on U, V to produce Ü= 

U(q, (), V=V (q, () implicitly transforms between two different solutions q, q 

of the same nonlinear system M=0. 

The form of U fixes the (-dependence of G necessary for G to cause transforma- 

tions between n and (n + 1)-solitons: cf. Kundu (1987) [28]. In order to make the 

procedure clearer we work through a routine 2x2 example. 

Consider the AKNS-pair 

F UF FF-c cosh B- sink BF 
F-- 

2 8x ,t 4( sinh 0- cosh 0 

for the sinh-Gordon equation 8xt = sinh 0, and let 

U=ý -c 0+ 19y 01 
. -C(bA)+ 

19. 
B, 

Oc2102 

U= C(tA) + 
2eý, B, 

where 0=6(x, t), A= -1 0 
, B= 

01 
0110 

We shall show that if the gauge transformation G has linear dependence on C given 
by G= (Gl +Go, then the defining transformation equations (20), (21) constrain 
G in such a way that 0 and B are related by the auto-Bäcklund transformation for 

the sinh-Gordon equation. It is necessary however to make some choices about 
the form of the matrices Gl and Go. 
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Substituting for G, U and U in (20) we find that the quadratic polynomial 

0= {2 
11- 

[G1, cA]+Gly+OXG1B-20,, BG, +[Go, tA]}+ 

Go, +2OG,, B-2OBGo 

must be satisfied identically in (. 

A suitable choice for Gi is Gl = aA, (G1 oc I also works), and if we write 
ab G° 
cd, 

then by equating the coefficients of C and CO to zero we obtain 

b=c=1 (8 + g)x (22) 

and 

a=d, 

ax =Z b(B - 9)x, (23) 

bx _2a (B - B)x, (24) 

respectively. 

Now suppose that a=a 
(B2 B), 

and define f=f 
(B20) 

with f=a. Then from 

equations (23,22) we have that 

a'=b=4(9B)x =. f", 

whilst equations (24,22) give 1 (9 + 9)xx = fx, i. e., 

4 
(9 

(taking the integration constant to be zero). Therefore f= f", which has a solu- 
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tion 

With 

f 

fl =a=d=ýcosh 
9B 

2) 

K sinh 
9- 

28 

b=c=4(B+9) ý x 

I 

where ic is an arbitrary constant parameter. In particular, upon resealing 0= 0/2, 
ý= B12, we have the x-part of the auto-Bäcklund transformation 

(0 + 0)�� = 2r. sinh(iß - 0). 

The t-part of the Bäcklund transformation, namely 

(ý - 0)t = 2ý sinh(j + 0), 

ensues by substituting for V and G in equation (21). 

Our example has shown how a Darboux transform acts in an equivalent way to 

an auto-Bäcklund transformation. Multi-soliton solutions are found just as for 

Bäcklund transformations: the Darboux transform is applied to the trivial zero so- 
lution of the nonlinear system in question, then higher order solitons are calculated 

algebraically where possible using a permutability theorem. 
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Chapter 3 

Formulation and Integrability of the 
3-Level Maxwell-Bloch Equations. 

Consider the system consisting of an electromagnetic plane wave interacting with 
a uniform dielectric of 3-level quantum-mechanical atoms. It is assumed that the 

atoms are rotationally symmetric in the transverse plane. The equations modelling 
this system can be written: 

ýý. atr = [x, rý , 
aZA-C-2 at2A = -C 

2E01 atP. 

The first equation is the Liouville equation of motion for the 3x3 quantum density 

matrix r. The second is Maxwell's equation, where A(z, t) is the vector potential 
field of the plane wave, P(z, t) is the polarisation density induced in the atomic 
ensemble, and c is the speed of light in vacuum. 

By definition the density matrix r is hermitian and has the property Trip = 1. 
However the form of the Liouville equation permits us to define a new traceless 
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density matrix p through the relation 

r= 
3ý + 2P 

where I= diag {1,1,1}. Clearly p also satisfies the Liouville equation 

thatP = [H, PI " 
y 

'IN Upper 

y- energy 
level. (Direction of propagation. ) 

---"> x 

Upper x-energy level. 

If we suppose that the atom-field coupling is minimal-replacement [29], then the 
Hamiltonian matrix H takes the form 

-2hSZo/3 -cepxAx/rri -cepyAy/rrc 
H= cepýA. /Trc hSZo/3 0 

cepyAy/rri 0 hSZo/3 
I 

where h 10 is the energy level of the orthogonal x and y states, the momentum 
operator is given by 

p= (t'bP2)P3) _(x 

0 -c 000 -c 
100, py 000 
000c00 ( 

and -e, m are the charge and mass of the electron respectively. 
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The polarisation density is 

P (z, t) = -NeTr {I'q} 2 NeTr { pq} , 

where N is the number density of atoms, and q is the dipole displacement operator 

010001 
/ Q=ql, q2, (73) = (g0 100, q0 000,0). 

000100 

Since p, q are related by the equation 

P=- 
bý [q, HoJ , 

where Ho is the Hamiltonian in the absence of an applied field, we have px = 

py = mq0 Zo = po say, due to the rotational symmetry. 

If the number density of atoms is small (for example N less than about 1018 

atoms/cm3), then reflected waves may be neglected and use of the "one-way wave 

approximation" [30] reduces Maxwell's equation to (ö + c-18t) A= (2ceo)-1 P. 

Finally, by substituting the travelling wave coordinate r=t- z/c our system of 

equations becomes 

ahäTP = [H, p], (1) 

ÖzA 
2ýoP' 

(2) 

which are called the reduced 3-level Maxwell-Bloch (RMB) equations. 

In order to show that this system is completely integrable it is necessary to use 

some results from the theory of the Lie algebra su(3) consisting of anti-hermitian 
3x3 traceless matrices. (Please see the Appendix p. 135 for the definition of a 
Lie algebra and a brief review of the terminology used in this section). A basis for 
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su(3) is the set {-tA 1/2, ..., -tAs/2} such that 

010000 

Jý1= 100 , 
a2= 001 

000010 

0 -c 0000 
A4 

=L0 0Ag =00 -6 

000060 

i0olo 
A7 =0 -1 0 I, 8ZI = 

in 
01 

001 
A3= 000 

100 

00 -c 
as =000 

600 
ý I 

0 I, (3-10) 

10 0 0ý ' `0 0 -2 

with structure constants 
f147 = 1, 

f135 = 1126 = 1432 = 1465 = 1376 = 1572 =-21 

ýýý 1368 = 1258 = 

satisfying 8 

2' 

2c E fjkt, \, j = (Ak, 1\1] . 
(11) 

j-1 

p and H, being hermitian traceless matrices, can therefore be written 

8 
L PjAj, 
j_i 

8 

H=EH3aj =e, °(A, A4+AyA6)-2 X7+ 1 A8 
j=l 

Furthermore, since there exists an outer automorphism ©: su(3) -> su(3) de- 
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fined by 

G(g) = -gt, d9 E su(3), 

it is possible to express p and H in terms of their anti-symmetric and symmetric 
parts as follows 

P('') - P4A4 '+' P5A5 + P6A6 +b (PlAl 
'i" P2A2 + P3A3 + P7A7 + P8A8) 

= P+ + cP , 
(12) 

H(C) = 
eo (AxA4 + AyAs) - b. 

2fiiS2o 
a7 + 

ýýa 

m 

= H+ + (H-, (13) 

where S is an arbitrary, generally complex, parameter. Observe that because the 

automorphism O changes the sign of the real matrices Al. A2+ A39 A7, )ºg whilst 
the complex matrices A4, A5, As are left unchanged, the same sets of real numbers 
{ p3 Ij=1, 

.., 8}, { H3 j=1, ..., 8} are solutions of Liouville's equation at both 

(=+l and(=-1. 

We now claim our 3-level RMB-equations (1,2) are equivalent to the compatibil- 
ity condition of the AKNS-pair of linear differential equations 

OF = UF, (14) 

8zF = VF, (15) 

where 

U (, r, z, () =- ý6 
(H+ + (H-), 

V (T, z, () = (ýGK1) `P++(P 
)2 

K= Ne2gö/2hceo is a constant normalising factor, and F (7-, z) E C3. 
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In fact, forming the zero-curvature condition (cf. equation (3), p. 11) 

00U-OTV+[U, V1 =0, 

and multiplying throughout by hK'1 ((2 
- 1) gives 

0= b2 (_oH + [H_, p ]) +( (-tharp- + [H+, P ]+ [H p+]) + 

chap++ 
Ka, H++ [H+, P+1) 

The Fundamental Theorem of Algebra then implies that this quadratic polynomial 
in ( will be satisfied identically for all CER if it is satisfied at three distinct values 
of C, which are taken to be (= oo and (= ±1. At these values we find 

öxH+ _ -aK 
[H-, PJ, (16) 

cýiäT ýP+ ýPl= [H+ ±H-, p+ ±P ]" (17) 

Equation (17) is evidently just the same as Liouville's equation (1). Moreover 

calculating the commutator [H-, p-] using (3 - 10), (12,13), and then matching 
coefficients of A4 and A6 in equation (16), leads to 

Kh Nego 
ÖA, = --pl pl, 

eqo 2c¬o 
Nego ÖzAy par 
2ceo 

which are exactly the components of the Maxwell equation (2). 

Comparing the AKNS-pair (14,15) with the generic AKNS-pair (1,2) on p. 11 

we see there is a simple yet important difference. Namely, for the 3-level RMB- 

system it is the propagation distance z, rather than time t, which is to be thought of 
as the evolution variable, and the transverse variable is the shifted time r= t-z/c, 

as opposed to x. This is a common occurence in optical applications where the 
initial input pulse at z=0 is known as a function of time, and then the output 
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pulse is detected at some z>0 and again determined as a function of time. 

We conclude the present chapter by specifying the initial value-boundary value 

problem for the RMB-equations. Componentwise the RMB-system (1,2) be- 

comes 

aTPI = SZo [e-qo (2A. ýP7 - AbP2) + P4] 
0oeqo 

aTPa =h (A., P3 + Aypi) 
, 

arPs = SZo (eý [-AýPa + AY (P7 + V3-p8)] + p6}, 

07-P4 = 00 
(h 

AYPS " PlJ 

OoeQo 
aTP5 = 

,ý 
(AxP6 

- AYP4) , 

aTps 
aTP7 

aTp8 
ÖxAx 

2 
(Ap5 

-+ P3 1e 

_ 
PoeQo 

(2AxPi + AyPs) 
i h 

-\, F3Qoego 
AyP3) (18-25) 

h 

- 
Neqo 

Pi ' 
azAy =- 2ý 

o Ps. (26,27) 
20 0 

i. e., ten first order nonlinear PDEs for the ten unknown functions Ax, Ay, p1,..., p8 

of two variables r, zE (-oo, oo). 

We prescribe Ax, Ay on z=0, subject to boundary conditions of rapidly de- 

creasing type. If we choose A,, (r, 0) = Al (r), Ay (T, 0) = A2 (T) to be known 

functions of r, then equations (18 - 25) on z=0 represent a system of ODEs 

which can be solved uniquely for pl, ..., p8 (r, 0) as functions of A1, A2 (T), as- 

suming that p1i ..., p6-+0, p7 ->1, p8 -+ 1//, as tTI -3 oo. Ax, Ay are 

supposed to be infinitely differentiable and together with all their derivatives to 
decay faster than any power of ITI-1 as 17-1 -+ oo. 

It is worth emphasizing that whereas we have used the vector potential A to de- 

35 



scribe the incident electromagnetic wave, all previous models (such as the 2-level 

RMB-equations due to Eilbeck, Gibbon, Caudrey & Bullough [5]) have been for- 

mulated using the electric field E, where E= -OVA. To our knowledge it is 

not possible to construct an integrable 3-level system with appropriate rotational 

symmetry if the atoms are coupled to the field by electric dipole coupling. In 

particular, since we have assumed rapidly decreasing boundary conditions, this 

means that soliton solutions of the 3-level RMB-equations always have zero time 

area: 

j°°E(z, r)dr=-f 
00 

ä., {A}d7- =0. 

By contrast solitons of the 2-level RMB-equations have characteristic pulse areas 

of 2kir, (N Dk> 0): 
f 

000 0 
E(x, t)dt a 2kir, 

where E is the magnitude of the incident plane polarised electromagnetic field [5] 

[7]. 

00 

36 



Chapter 4 

Use of Darboux-Bäcklund 

Transformations to find Fully 

Polarised Soliton Solutions. 

Chapter 4 is divided into two sections. In the first section we calculate the fun- 

damental single soliton expressions for A.,,, Ay and additionally for the density 

matrix components pl, ..., p8. Taking into account our previous discussion of Dar- 

boux transforms (pp. 25-28) a gauge transformation G= CI + X, linear in the 

parameter (, will be used to generate these solutions. However, determination of 
the correct form for the matrix X is a difficult problem as we are now dealing with 

a 3-level system. Following Arnold [8], and motivated by the work of Park & Shin 

[9] [10], we shall see that defining X in terms of a hermitian projector matrix G 

proves successful. In Section 4.2 sequences of two one-parameter Darboux trans- 
forms are applied in conjunction with a nonlinear superposition formula to obtain 
both linearly polarised and elliptically polarised 2-solitons of the RMB-equations. 

Our formulae specifying the elliptically polarised solitons are the primary results 
here, they are previously unpublished and represent a natural vector generalisa- 
tion of the modulated 07r-pulse solutions of the 2-level RMB-equations derived 
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by Bullough, Caudrey, Eilbeck & Gibbon [5] [7]. 

4.1 Linearly Polarised 1-Soliton Solutions to the RMB- 
System. 

The zero-curvature compatibility condition äzU-ä, V+[U, V] =0 is left invariant 

under gauge transformations defined by 

F' = GF, U' = GUG-1 + 0TGG'1 (1), V' = GVG-1 + a, zGG-1. 

Here we know 
U ((H- + H+ (T)) 

0 -Ax -Ay -2 00 
H' = aSZoego Ax 00, H- = 3ho0 

010 
Ay 00001 

Choice of the form of G is key to the procedure and a suitable choice is G= 

(I + X, where 
x= -07X = -cry 2G -I 

(77 ER is an arbitrary constant), and 

o2=6, O*t=Gt=G 

(G is a hermitian projector). Notice that these conditions mean that for (ER 
GGt = ((2 +, n2) I. i. e., G is proportional to a unitary matrix. 

Substituting into (1) and demanding that G transforms the matrix U into one of 
similar form U' = (th)-1((H' + H'+), leads, upon equating powers of c, to the 
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equations 

H'+ - H+ = [X, H"], 

ttxXz = H'+X -X H+, 

0 -A' -A' 
where H'+ = tgoego A' 00 

A'y 00 

The simplest 1-solitons are generated by our Darboux transform acting on the zero 
field solution to the RMB-system. Therefore we take H+ = 0, giving 

H'+ ~ [X, H ], (2) 

chXT = H'+X (3) 

Using equation (2) and the condition G2 = G, we find G may be written as 
follows 

1t sst G= 
-ss =, 
9 sts 

9 

s= CAx/2r1 
CA'y/2r1 

where g2 -g+ QC2r'2 
(A'2 + Ar2) = 0, and C := eqo/h. (Providing s is real 

valued, G satisfies Gt = G). 

Equation (3) can now be integrated yielding g and the components A', A' of the 

transformed field. In fact (3) implies 

9z = 2Q0q9(9 - 1), 

A' XT 
= S2on(29 - 1)Ax, 

AýT = SZoý(29 -1)Ay, 

with g (g -1) >0 and g (g -1) -3 0, as Jr I -+ oo, since A. ',, A'y -+ 0, as Jr I -+ oo. 
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Hence 

g 
e2e + 1, 

Ax =C sechB, Aý =C sech9, 

where 0= Qorl (T - ro), and the constants a, b must satisfy a2 +b2 =1 for 

consistency. 

A', A' are real provided that the arbitrary constants a := cos ¢, b := sin q5, and To 
are also real numbers. 

Summarising: linearly polarised 1-soliton solutions 

A(r, z) =C 
(secho11 

(r - To (z)) 
,C sechccoi7 (T - To (z)) (4) 

of the RMB-system, whose polarisation direction lies at an angle 0 to the x-axis, 

are generated from the zero solution by the Darboux transform G= (I - cr79 = 
((+ cry) - 2ti O, where the real symmetric projection matrix 0 is given by 

sst 11 
G_ 1e sts, 

s= 
e29+ae ý 

beB 

a2+b2= cos20 +sin20 = 1. 

The z-dependence of the parameter To = To (z) will be found presently. 

1 aee bee 
G= 

e2e +1 aee a2e20 abe2e 
bee abe20 

GT1 

X= 
ate 

j, ý 2aee (2a2 - 1)e2e -1 2abe2e 
ý1 

1-e 20 2aee 2bee 
2aee (2a2 - 1)e2e -1 2abeý 
2bee 2abe 20 (2b2 - 1)e 2bed 2abe20 (2b2 - Deze -1 

beB 

I 
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- tanh B asechO bsechO 
X= -177 asechO a2eesech9 -1 abeesech9 

bsechO abeesech8 b2eesechB -1 

Now G acts on the matrix V according to the equation V'G = GV + ORG. Sub- 

stituting for G will determine how p is transformed and fix r0 as a function of 

Z. 

In the absence of a driving field 

cK V 
C2 -- 1 `P+ -}' 

(P ý aNe2g0 ý 
diag {2, -1, -1} 3hce° V2 

-1 

bK°C diag {2, -1, -1}, 0 -1 

say, where 
RD Ko=23 >0. 

If we write V' _-CVI -V¢ then substituting as described and equating powers of 

gives 

Vi = cKoD + X, z, (5) 

V1X +Vo = cKOXD, (6) 

Vo = 
ZXýX. (7) 

Here D= diag {2, -1, -1} and (7) follows from X2 = _i, 21. 

Using (5) and (7) in equation (6) implies 

Xx - 
-cKo [X, D] X, 

(1]2 + 1) 
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which is a consistency condition holding for To = To (z) only if äx ro (z) = no 
i. e., 

3Koz 2Kz 
T0 (z) =/= ý0\i2+1) 90(112+1). 

Vö and Vi may now be computed from (7) and (5). 

We obtain 

V' - 

Hence 

1 %K / 

2tK J r7sech8 

lPT + Sp % 
(2.... 1 

0 -ta -tb i 
ca uut ý2-1 ý2+1 
cb 00 

2 -sech20 -asech9 tanh 9 --bsech9 tanh 0 
71 
+1 -asech0 tanh 0 a2sech20 absech20 + ý 

-bsech0 tanh 9 absech20 b2sech20 

200 

30 -1 0. 
00 -1 

22 22 
pi =- rý2 

+1 
asech9 tanh 9, p2 =2+1 absech28, 

77 
2 

A 2ri 
=- ý2+ 1 

bsech9 tanh 9, p4 =-ý+1 asech9, 

2 
bsechB Pý=0, p6 =-ýa+1 , 

P7 =l 
, q2ýa 

i 

l) 
sech2B, p8 =11- 

3ý12b2 
sech29 . 

(8-15) 
ý, F3 772 +1 
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4.2 2-Soliton Solutions of the RMB-System. 

We begin as before with the gauge transformation equation for the matrix U, 

U'G = GU + Cr. (16) 

Let G be a product of two basic Darboux transforms with distinct parameters 

G= F2G1= F1G2, 

where G, = (I + X3, F3 = (I + Yj, j =1,2. Then (16) becomes 

((H- + H'+) [(2I + ((Xl + Y2) + Y2X1] = 

[C2I +C (X1 + Y2) + Y2X 1] 
(CH + H+) + th [C (X 1+ Y2)T + (Y2X1)T} 

In particular, equating the coefficients of (2 implies the following formula for the 
transformed field in terms of the 3x3 matrices X1 and Y2, 

0 -Alm -A'y 
H'+ = cSloeqo A1.0 0= [(Xi + Y2) , H-] + H+. 

Ai, 00 

If we again take H+ = 0, then we have that 

Ax =C (XI + Y2)(1,2)1 Av (Xl + Y2)(1,3) (17) 

where M(ij) denotes the (i, j)-th element of a matrix M. This makes it possible 
to read off the fields A', A' once the Darboux matrices Xl and Y2 are found. 

Now suppose the parameters associated with the matrices Xj are defined to be 

77j, a1 = cos ¢j, b1 = sin Oj, Bj =I oqj (T - r3), j=1,2. From the equality 
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F2G1 = F1G2, which is a consequence of Bianchi's Permutability Theorem, we 
find 

XI + Y2 = X2 + (Xl 
- X2) Xl (Xl - X2)-1 

_ (XL - X2) (Xl 
- X2)-1 

z* Xl + Y2 = 
(772 

- 771) (Xl 
- X2)-1 

3 
(18) 

since Xj = -raj I, j =1,2. 

Depending on the nature of the parameters chosen, equations (17) and (18) can 
be exploited to generate families of linearly, circularly and elliptically polarised 
2-soliton solutions from the vacuum. We begin by considering the case 01 = 02 = 
0, for which 

- tanh 9j sechBj 0 
Xi _ -07i sechBj tanh 9,0 

00 -1 

Substituting into (17) and (18) leads to 

A' x 

A' 
v 

G, (n2 - ni) (Xj - X2)(112) 

(77,2 - 7722) (iijsech9l - r72sech92) (19) 
- 

2r)jr)2 (tanh 01 tanh 92 + sech9lsech92))' C [rli + 772 

o. 

The next step is to allow the various parameters to be complex valued. This is 

valid providing the choice of parameters always results in real field components 
A', A',. If in equation (19) we take 

rli =7lä ý_ (P+ýq) 
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and 

el = e2 = n077 (T 
- T1) 

= P(T -W)+tQ(T-ýP)ý (say) 

then at W= ip =0 we have 

A' 
2psechpT [cos qT - (pq-1) sin qT tanh pr] 20 x SZoC [1 + (p2q-2) sin 2 grsech2pr] 

() 

A'y = 0. 

(Replacing pr by p (T - cp) and qr by q (r - ii) gives the correct formula when 
cp, cp & 0). Below there is a plot of Sl0CA' as a function of r when p=1 and 
q=4: nQCAz 

Expressions (19) and (20) both represent linearly polarised "breather" solitons 
having zero time area. They may be rotated to any given direction of polarisation 
by applying a r-independent gauge transformation R so that G i-+ RGR-I, where 

100 
R := exp (c¢. 5) =0 cos q5 sin ¢, q5 E R. 

0- sin 0 cos qS 
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Let us move on to the problem of constructing elliptically polarised solitons. In 

order to guarantee the reality of Ax, A'' we require 

Then 

which is pure imaginary, and 

Xi-X2 

Hence 

)' '72 = 71, and G1 = G2* = G. 

4tpq 
Sl' 0 

-26 
(77161 

- 7I2G2) +L (7I1 - 772) I 

-2c 
(770 

- ý*G*) +c (77 - ý*) I 

o 
{-2c [(p 

-}- ig) G- (p - cq) G*, - 2qI }ER. (21) 

A'x =ýpC (Xi - 
X2)112) E R, A'ý, _ýoC (X, - X2)113) E R. 

It remains to find the inverse of Xl - X2, only this time we will permit complex 

parameters a and b. Our task is simplified by first refining the form of G. 

In the previous section we showed that 

1 
G=st, 1 

aee , where a2 + b2 = 1. 
sts e28 +1 

bee 

e-e 
Equivalently, dividing the original s by 2sechO, 

G is generated by a, which 
b 

bee 
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e'n0nT 
in turn can be rewritten as s= ka ,C3k constant, by rescaling. 

kb 
In fact 

) 
e-nOn(T-T) 

=k a 
b 

1 
HkIaI, scaling out T= -� In k. 

e-no+! '+' 

a 
b 

Suppose we choose the case a= cosh 0, b=t sinh 0, k= sechq5,0 E R. Then 
ka = 1, kb = tT, where T := tanhqS, f=- (2S2oi)-l In (1 - T2), 

B (p+iq) r 

s= 1 

cT 

and 

e-no+P+ ke-'1on'r 
ka =ka 
kb b 

[e-ikp-"")T +I -i `j 
J. 

_,.,,, 
I -(n+ig)T 1 c"i 

I 

ý 

e 2(P+cq)T -(P+iq)z cT e-(P+q)T 
e-(P+iq)T 1 cT 

6T e (P+aq)r 
tT -T2 cTe (P+, g)T tT -T2 

Finally, substituting for d and G* in equation (21) and inverting the resulting 
expression for X1 - X2 gives 

A, _ 
4pe pT {2T2p2 cos qT + pq sin qr [e-2pr - (1 - T2)] + q2 cos q7- [e-2p'' + (1 + T2)]} 

A!,, 
SZoC {qe [e'2pT + (1 + ^f 2)]2 + 4p2 [e-2p'' (sine gT + T2 cos2 gT) + T2] }ý 

At - ýi.. ýi... ri_ýif" 

Y S20C tq2 (e-2p7' + (1 + T2))` + 4p2 le-2pT (sin' qT + T2 cos2 g7-) + T21 j 
4pTe PI {-2p2 sin qT + pq cos qr [e-2pr + (1 - T2)] - q2 sin q-r [e-2pr + (1 + T2)]} 

a co71 
bI-. 
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Circularly polarised solitons correspond to the limiting case T -+ 1 (or T --> -1), 
when we have 

A, _ 
4pe-PT [2 (P2 + q2) cos qT + qe-2PT (q cos qT +p sin qr)j 

10C [q2e-4PT +4 (p2 + q2) (e_2PT + 1)] I 

A' _ 
4pe-p'' [-2 (p2 + q2) sin qr + qe-2Pr (p cos qr -- q sin qr)] 

y Sl0C [q2e-4Pr +4 (p2 + q2) (e-2Pr + 1)] 

Using partial fractions and the identity 

f1 (pr+1n ý) sech ,z= e-2pr, 
z+ A 27A 

leads to 

A, _P 
[q cos gT +(00177I + p) sin gT] 

sech 
[pr 

+ In 
2 0In I (Q01, q 1+ P) 

x ýoc ýMo 17711 (CQo 1771 +ý) q 

+ 
[g cos gT - (sto 1771 - p) sin gT] sech 

[P7- 

+ In 
'2F1101771 (11o I7,1 - P) 

, 2Q01711(Q0 li7l - p) q 

A' 
v 

p[-gsin gT +(Qo IqI + P) cos gT] sech + In 
2SZo In7I (lQlo IrjI + P) 

pr 5oC 
2s-to IýI (ýo Iýl +rý) q 

[g sin gT + (Qo Ir%I 
- p) cos qT] 

sech 
lp 

T+ In 
J2 "o IýI (" 0 

I, qlI - lp') 
2Sto 1771 A 1771 - P) q 

There follow some illustrative graphs of the transformed field components in the 

case p=1, q=5: 
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Circularly polarised solitons (T -* 1). 
1oCAy 

StoCA'y 

SZOCAx 
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Elliptically polarised solitons for the case T= 1/2. 

SZOCA'x 

SZoCA' y 
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Chapter 5 

Inverse Scattering for the 
RMB-System. 

We proceed to solve the initial value-boundary value problem (stated on p. 35) for 

our RMB-equations by means of the inverse scattering transform method. 

Consider the 3x3 AKNS-pair corresponding to the RMB-system which from 

p. 33 is known to be 

äTF=UF, äzF=VF, (1,2) 

where 

Wt (CH-+H+) 

-L 

leh. 

Q. 

(3) 

-2 001(0 -Ax -Ay 
010+ cSZa ego Ax 00 
001 Ay 00 

K 
1) `P+ 

(Tý Z) + CP (Tý z)ý " (4) 

) 
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(H+, H- and p+, p- are the anti-symmetric and symmetric parts of H and p 
respectively, and K := 2hö ). 

Observe that equation (3) is a special case of equation (5) on p. 12, with N=3 

and J2 = J3. This simple degenerate property of the matrix U has far reaching 

consequences which were originally noticed and exploited by Manakov [31] in the 

separate context of Schrödinger equations. Manakov developed an inverse scat- 
tering scheme for a two component vector Nonlinear Schrödinger equation whose 
AKNS-pair is similar to the pair for our 3-level system. Unfortunately Manakov's 

scheme was never published in a particularly detailed form. Very recently ([32]) 

we discovered that Ablowitz, Prinari and Trubatch (2004) [33] have rectified this 

situation by giving a rigorous account of the inverse scattering transform for a gen- 

eralised matrix Nonlinear Schrödinger equation. Nevertheless, since matrix Non- 

linear Schrödinger equations do not possess the same (sine-Gordon-type) symme- 
tries as the 3-level RMB-system, the inverse scattering scheme presented below 

remains the first of its kind. Specifically the degenerate structure of the matrix U 

(defined by (3)) means that we can find integral representations of Volterra rather 
than Fredhoim type for the transition matrix, allowing us to use a generalised ver- 

sion of Faddeev and Takhtajan's method to solve the direct scattering problem. 
There is no need to apply the theory of, for example, Caudrey [34] or Beals and 
Coifman [35] [36], who studied and gave solution methods for general NxN 

(N > 3) direct and inverse scattering problems (cf. A&C., Section 3.1.2, p. 111). 

We have already described in Chapter 2 the procedural steps involved in using the 

IST to solve nonlinear PDEs associated to 2x2 AKNS-systems, and the strategy 
is no different for our 3x3 case. However, there are certain extra intrinsic diffi- 

culties which stem from the basic fact that the inverse of a3x3 matrix is a much 

more algebraically complicated object than the inverse of a2x2 matrix. We over- 

come these difficulties by employing symmetry relations and a crucial formula for 

the inverse of the transition matrix. 
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5.1 The Direct Scattering Problem. 

5.1.1 Properties of the Transition Matrix. 

The auxiliary linear equation and the transition matrix T (T, To, () for the RMB- 

system are given by 

dF 
dT =U(T, z=O, ()F, 

and 

(5) 

T (T, To, tx--p 
Jr U(s, C) ds := lim { (I +f Uds) ... 

(I 
+j Uds) } (6) 

ro R-ºoo ? 'R 71 

respectively, where yi, ..., ryR partition the line segment [To, T] on the r-axis (cf. p. 
14). 

The transition matrix has a number of elementary properties (cf. F&T. pp. 26-27): 

" It satisfies the auxiliary linear equation 

TT('r, 'ro, C) = U(r C)T (r, To, () (7) 

with initial condition 

[T(r, T0, ()]T=Tp = 1. 
l8ý 

If As(T) =0= An(r), then U=3 tS'lo diag{2, -1, --1} and the solution 
of the differential equation (7,8) is 

E(T - To, () = exP 

200 
To) 

c3o 0 -1 0 ii" i9) 

00 -1 
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" The superposition property 

T (r, r, ')T (T1, r0, 
)=T (r, 

r0, 
)' for r0 < Tl < T, 

which implies 
T (r, ro, () = T- 1(ro, r, () 

" 
(10) 

" The differential equation for T(r, roe () with respect to ro is 

TTO(r, ro, () = -T(r, ro, ()U(ro, (), (11) 

again with 
[T(T, r0, ()}ý, 

=r = I. (12) 

9 detT(T, To, () = 1. Proof: It is easy if laborious to check directly using (7) 

that 
ýTdetT(T, 

To, ý) _ 'IýU(T, C)detT(T, To, ý)" 

Then since TrU =0 and det { [T (T, r0, C)], 
f=, ro 

}=1, it follows that 

detT(T, Tp, () = 1. 

We now seek to find those symmetries of U which respect the definition of the 

transition matrix (6). Unfortunately, for our matrix U given by (3), there are 
no non-trivial involution relations of the kind (3.13) on p. 27 of F&T., namely 

relations of the form Ü=o Uo, where Q2 =I and Ü is obtained from U by some 
simple operation (such as complex conjugation) which respects the definition (6). 

(In fact this is the main reason why Faddeev and Takhtajan's method of solving 
the inverse problem fails to work for the RMB-system). 

U does however satisfy 

(13) U(S) = U(--() 
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and 
Ut(C) = -U(), (14) 

where the bars denote complex conjugation and the r-dependence of U has been 

suppressed for clarity of expression. 

It is immediate from equation (13) that 

T (T, T0, () =T (r, 7-0, --(), (15) 

which incidentally means T is real when C is pure imaginary. Furthermore we 

claim that the following important relation holds 

T-11T, 7-0, () -T 
(T, TO, -(). 

Proof: Define 

OR = 
(I 

+f UdT) ... 
(I 

+f Udr) (I 
+f UdT) , 7s 1 {=R 7i 

and let ri = -rys, i=1, ..., R. (i. e., r; is the line segment 'y with negative 

orientation). Then 

R (T) TOýýý - 
(I 

+fU (C)dT) ... 
(I+f iJt(C)dT) 

71 7R 

(I 
-j U(CdT)... (I 

-j U(ýdT) 
1R 

by (14). On the other hand, since 

(I+judr)... (I+judr) (i+f 
R 

UdT) ... 
(I +f UdT) = I, 

we have that 

ýRl (T, 70 ý b) - 
(I 

+f u«)dT) 
-1 

... 
(I +f U(ý)dT) 

71 7R 
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i-i 
(I 

+ frl U(C)dT) ... 
(I+fR U(C)dT) 

(I 
-f1 U(C)dT) ... 

(1- f U(C)dT) 

R (T) TO) bI" 

Therefore as R -s oo we obtain the stated identity. 

Encapsulating the above using (10) and (15) gives 

T(TO, T, () =T-1(T, TO, () =T (T, T0, () =Tt(T, To, -c)" 

Next we introduce notation for the elements of T (T, To, 

aQ ry 
T(T, To, b) = 77 0 E. i (T, To, C) 

vPX 

(is) 

Since detT(T, To, () =1 and T-1(7-, To, () = Tt(T, To, -(), it is straightforward 
to show that the transition matrix can be written (T, To-dependence suppressed for 

clarity) as 

(OX - Pµ) (-C) (vµ - 17X)(-() (r] P- ve) (-C) 
T(C) _ q(C) B(C) µ(C) (17) 

v(C) P(C) X(C) 

together with the normalisation conditions 

17(()'q(-() + O(()O(-C) +µ(C)µ(-C) = 1, (18) 

v(()v(-() + P(C)P(-() + x(()x(-C) = 1, (19) 

vPX 
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and the orthogonality condition 

71(()V(-() + O(C)p(-() +i (C)X(-() = 0. (20) 

In other words a, ,B and y are to be thought of as dependent functions defined by 

c'(7, TO, 

lb--ý 

= (/eX 
- Pµ)(T, TO, `(), 

N\TfTOýbý - 

((vµ-rIXýýTýTOý-rýýý ýýTýTOýbý - lýlP-1/BýýTýTOr"C)" 

We note that the conditions 

a(C)a(--() + ß(C)ß(-'C) +'YýC) Yý-C) = 1, 

a(()ij(-() + #(()8(-() +'Y(C)µ(-() = 0, 

a(C)v(-() + ß(C)p(-C) +'Y(C)X(-C) = 0, 

are implicit from equations (18 - 20). 

5.1.2 Integral Representations for the Transition Matrix. 

Suppose we write 

U(r, () = Uo (Ax(T), Aa, (T)) + (Ul. 

Then the integral equations corresponding to the differential problems (7,8) and 
(11,12)are 

T (T, To, ý) = E(7- - To, +f E(T - s, ()Uo(s)T (s, To, ()ds (21) 
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and 

T (r, ro, S) =E (T - To, () +fT (T, s) Uo (s) E (s - To, ds (22) 

respectively. We shall prove (22): the proof of (21) is similar. 

Firstly the equality E(T - TO, () = exp [( (T - To) U1] implies 

E(s - To, C) = CUIE(s - To, C)ý (23) 
as 

whilst integrating equation (11) between To and r gives 

6T T (T s ()E(s - To, ()ds =-JT (r, s, ()U(s, ()E(s -To, ()ds. (24) 
JTO Cs 1' 

To 

Hence using (23) and integrating by parts we find 

+TO 

T f 

oT'(T, 
s, () [U(s, ý) -(Ul]E(s-To, ()d3= 

T 

T(T, s, ()U(s, ()E(s-To, ()ds - E(T-To, ()+ 

as 
(T, s, ý)E(s - 70, ý)ds + T(T, TO, ý). 

TO By (24) the first and third terms on the right-hand side cancel, and the remaining 

equation is (22). 

We now assert that iterative analysis of the Volterra equations (21) and (22) leads 

to the following integral representations for T (r, , ro , () : 

(T, To, ý) = E(T - To, ý) [I +f F(s - To, ()(T, To, s)ds, , 
(25) 
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and 

where 

and 

T (T, TO, 
[I 

+ f(T, 
To, 8)F(T -' s, ()ds, E(T _ To, (), (26) 

o 

r(T, To, s) = Uo(s) +1T Uo(r)r(r, To, r- s+ To)dr, (27) 
a 

I'(T, TO, s) = Uo(s) +ýd I'(T, r, r- s+T)Uo(r)dr. (28) 
Tp 

100 
Here To <s<r and F(r, C) := exp -tQo(r 0 -1 0 

00 -1 

Equations (25 - 28) are proved by using the symmetry relations 

UoE(T, () = E(T, ()F(T, C)Uo, (29) 

UoF(T, C) = F(-T, C)Uo, 

which together also give 

E(T, ()Uo = UoF(T, C)E(T, C). (30) 

Let us study the iterations of equation (22). Being a Volterra integral equation and 
taking into account the postulated behaviour of Ax (T), A. (z), we are assured that 
the Neumann series must converge absolutely. For the first iteration we write 

ý'i(T, Toý ý) = 
fE(r E(T - To, () +-s, ()Uo(s)E(s - 'ro, () ds 

1 
= 

{I+Jruo(s)F(r 
- sds, E(T -o 

by virtue of the symmetry relation (30). Comparing this with equation (26) we 
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see that ri (r, To, s) = Uo (s). Secondly, making use of (30), we find 

(T2 - Ti) (r, TO, () =[f7f Uo(r)Uo(s)F(r - s, () drds] E(r - To, C)" 

If we substitute for u=s-r+, r, change the order of integration and relabel the 

dummy variables, then this becomes 

(Tz - TO (T, Tp, () = 
VO Tfa 

UO (T 
-s +T)Up(r)drF(T - s, ()dsJ E(T -To, 

o 

from which we deduce 

r2(T, To, s) = Uo(s) + fro8 Uo(r -s+ ýr)Uo(r)dr. 
ý 

Continuing in the same fashion yields 

(T3 - Ta) (T, To, ()E(To - T, () = 

rar r-s+r 11 

JJ LJ 
Uo(u + s- r)Uo(u)duJ Uo(r)drF(T - s, C) ds, 

, ti ýLr 

and 

r3 (r, ro, s) = U0 (s) +/a r2 (r, r, r-s+ r) Uo (r) dr. 
11 TO 

The pattern is now apparent, and so as the number of iterations tends to infinity 

equations (26) and (28) result. Of course the representation (25) with 1 satisfying 
(27) is derived similarly using symmetry relation (29). 

Lastly we remark that r and f are connected by the formulae 

rR(T, T0, s) = I'R(T, r0, s)F'(2s - T- T0, (), 

roR(T, T0i s) = rOR(T, T0, s), (32) 

(31) 

where the R and OR-parts of an arbitrary 3x3 matrix M refer to the decompo- 
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sition 

M= MR + MOR 
I 

00 
M23 + m21 
M33 M31 

M12 M13 
00 
00 00 

The identities (31,32) follow directly from the integral representations (25,26) 

and the commutator relations 

[E, T R] = 0, [F, I' R] =0= rF, I'Rj . 

5.1.3 Integral Representations for the Jost Solutions. 

It is first necessary to introduce some notation. Let Ll (R) be the vector space 
of absolutely integrable, measurable functions on R with the standard norm, and 
suppose L3x3(R) is the normed space of 3x3 matrix functions M such that 
Mij E L' (R), i, j=1,2,3, with norm 

IIMII :=JL IMi1I (s)ds < oo. 
°O i, j=1,2,3 

Now the Jost solution matrices are defined to be the limits 

T± (r, () _ 
slim o 

{T (r, ro, () E(ro, () }, 

for SER, (cf. P. 15). The proof that these limits exist providing Ax (r), Ay (r) E 
LI(R) exactly parallels the existence proof for the 2x2 solutions T± (x, A) in 
F&T. pp. 39-40, and we choose to omit it here. 

=10 M22 
Mll 000 

0 M22 M23 + M! 
0 M32 M33 M; 0 M32 
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From equations (26) and (28) we obtain 

lim {T(T, To, ()E(To> ()} 
Tb-º-oo 

where 

= 
1I+f T r- (T, s)F(r - s, C)ds) E(r, C), (33) 

, 

r_ (T, s) := 
slim o 

I'(T, To, s) = Uo(s) +f5 r(T, r, r-s+ T)Uo(r)dr, (34) 

and for each fixed r, r_ (T, s) E L3x3 (-oo, T). [Since one can show 

s) 11 ds <_ [JT IIUo(s)II ds, exp (f oo 
IIUo(s)II ds), 

where by assumption ff. IIUo(s)II ds < oo. ] 
Next consider 

11TH {T(T, To, ()E(ro, ()I 
ro-++00 

We know [T(T, r0, ()E(ro, ()]-' = E(-Tro, ()T(To, r, () and equation (25) says 

T(To, T, ý) = E(ro -, r, 
[i+f° F(s - r()r(TO, 7, s)dsJ 

Therefore 

T+ 1(T, () = lim {E(-To, C)T(Tp, T, ý)} 
ro ýf-oo 

E(-T, () I+ 
JooF(s - T, C)I'+(T, s)ds p 

where 

I'+ (r, s) =701m 
o 

I'(ro, r, s) = Uo(s) + 
00 f Uo(r)I'(r, r, r- s+ r) dr, (35) 

a 

and for each fixed r, I'+(T, 
s) E L3x3(T, oo). On the other hand it is immediate 
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from equation (16) and the definitions of Tf (T, () that 

T-1 (r, ý) = T: 'L 
_ 
(r, -() 

(= f (r, (), when E R) . (36) 

Hence 

T+(T, () "= 
lim {T (T, 7o, ()E(TO, ()} 

TO ++00 

_ 
[I 

+1 
00 f+ (r, s)F(T -- s, ()dsJ E(T, (). (37) 

T 

Notice TT satisfy the auxiliary differential equation 

dTf_ 
dT II (T, ( )Tt I 

With 

Tf(7, () = E(T, () + o(1), as r -+foo. 

5.1.4 The Reduced Monodromy Matrix T (C). 

For( E R, 

T(() := 
, r-*+oo, 

limes-oo {E(-T, C)T(T, To, ()E(To, (38) 

and so by (16) it follows that 

T'1 (C) = Tt(--C) (= T (C) when (E R) . 
(39) 

Furthermore since detT(T, To, C) = 1, we also have 

detTT(T, C) =1= detT(C). (40) 

63 



Therefore we conclude that the Jost solution matrices and the reduced monodromy 

matrix are unitary with determinant 1. They are defined for CER, but their 

columns and coefficients respectively may be extended into either the upper half 
(-plane II+, or the lower half (-plane II-, according to the fundamental integral 

representations (33,37) of T± (-r, ('). In fact, writing 

we deduce from (33,37) that the columns T+1) (T, (), T! 2 (T, (), T! 3) (r, () extend 

analytically into II+, whereas Ti1) (r, (), T+2) (T, (), T+31 (r, () extend analytically 
into H. Moreover, because r_ (r, s), r+ (T, s) are absolutely integrable functions 

of s for each fixed T, the Riemann-Lebesgue Lemma implies for Im( > 0,1(1 -3 
00, 

I 
T+1) (T, () exp 

(toCr) 
=0+ 0(1), 

0 

0 
Tý2) (r, exp 

(3cSZo(7-ý 
= +0(1), 

0 

l0 Ti 3) (r, exp 
(3blo(Tl 

=0 +0(1), (41-43) 

whereas for Im( < 0, ý(ý -+ oc, 

Ti l) (-r, C) exA 
(-- 

3aSZoCr) =0+ o(1)> 

0 
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(tc1o(r) 
T+2) (T, exp 

T+3) (T, exp 
(tcor) 

Now (cf. (13) p. 16) 

0 
1+ o(1), 

0 
0 
0 +o(1). (44-46) 
1 1 

= T+(T, --ý}T_(T, ý), (47) 

which gives 
aQ ry 

ý9p (C) _ 
vPX 

T+1, (-() " T! i, ((), T+1ý (_(). T! 2) (C), T+ (-C) " T11) (S) 
T+2) (-C) " T{1ý (ý), T.. 2 (-() " T! 2) T+2ý (-() "T 

ý3)(() 
, (48) 

T+3) (- C) " Till (C), T+ (-C) "T2 (C), T+31(-C) "T 
ý3) (ý) 

where T+'1(-() " TYl (S) := Ek_1 T+i(--()Tk'((), i, j=1,2,3, and we have 

retained the same Greek letters to denote the transition coefficients that were used 
for corresponding elements of the transition matrix: so for instance T" (() 

a(() = (OX - pµ) (-() whilst T11(r, ro, () := a(r, To, () = (OX - plz) tr, ro, -b )" 

"Substituting" the analytic and asymptotic behaviour (41 - 46) of TT (r, () into 

the right-hand side of (48) establishes the following: 

" a(() _ (Ox - pp)(-() may be analytically extended into 11-, with a(C) _ 
1+ o(1), for Im( < 0, as I(! --i oo. 

9 e((), µ(C), p((), X(C) may be analytically extended into II+, with B(() = 
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1+ o(1), µ(() = o(1), p(() = o(1), X(() =1+ o(1), for Im( > 0, as 

1(1-4oo. 
" The coefficients Q(() = (vµ - 77X) -y(() = (rjp - v9)(-(), 77 (C), and 

v(() have in general no analytic continuation away from the real line. 

In addition there are normalisation and orthogonality conditions for the transition 

coefficients given for real ( by (cf. (18 -- 20)) 

77(C)77(-C) + g(C)B(-C) + µ(C)µ(-C) = I77(C)12 + le(C)12 + Iµ(C)12 = 1, (49) 

v(C)v(-C) + P(C)P(-C) + x(C)x(-C) = Iv(C)12 + IP(C) 12 + Ix(C)12 = 1, (50) 
and 

o= n(()v(-() + e(()p(-C) + µ(C)x(-() = 
71(()v(() + O(C)T(C) + µ(()X(()" (51) 

5.1.5 Integral Representations for the Transition Coefficients. 

We will need the results here in connection with the existence of solutions to the 
inverse problem. 

Let X be the ring consisting of functions of the form 

F(() =F [cS(s) +f (s)] =c+ 
Lý f (s)e`c9ds, 

00 

where f (s) E Ll (R), and F denotes the Fourier transform operator. RI is the 

subring of & with elements of the form 

Ff (ý) = c+ 
f 00 f± (s)el`C'ds, 

where f(s) E L'(0, oo). Functions in R: extend analytically into II':. 
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We claim a(() E RT, 9(C), X(C) E R+ I, µ(C), p(C) E4 and 

77 (C), v(C), 0 (C), ̂f (C) E Ro. 

Proof Let us check for example that a(() E Ri 
, 17(() E Ro. Consider the 

definition (38) of the reduced monodromy matrix. If we let r, -r0 tend to +00 at 
the same rate, then (38) can be rewritten 

T(C) =l im {E(-L, ()T (L, -L, ()E(-L, C)}, for (ER, 

so that in particular we have 

a(() = Lý {e 3aLSZoýaL(()} 
, 77l() = 

Ll--º 
{e ýaLS2oSýLýýý} 

Now according to equation (26) the monodromy matrix T (L, -L, () has the inte- 

gral representation 

T (L, -L, ý) =I+fL r(L, -L, s)F(L - s, ()ds E(2L, ý). 

Writing out the (1,1) and (2,1)-elements of this matrix equation gives 

aL(()e_ý, Lnoe =1+ 
to 

J -2L 
ru (L, -L, s+ L)e`10('ds, (52) 

77L(S)e 
jaLS2oC 

= eoLnoC 
f 

z0 L 
r21(L, 

-L, s+ L)e`O0C'ds. (53) 

0 -Ax -Ay 
Using equations (28), (31,32), and the fact that Uo(T) = QoC Ax 00 

Ay 00 
we find 

(T), 

8+L 

rll(L, -L, s+L) = SZoC 
JL 

I'12(L, r, r-s)Ax(r)+r13(L, r, r-s)Ay(r)dr, (54) 
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eiLStoc 

noG, 
I'21(L, -L, s+ L) = e`LnocA, (s + L) + 

f s+L 

L 
(I+22 (L, r, r- s) Ax(r)+ 

f23 (L, r, r- s) A,, (r)] e`no[(r-2s)dr. (55) 

Since L"' (T, oo) f+(r, s) := limm.. ýoo 
1(r0, r, s) for each fixed r<s, it is 

valid to substitute (54) in (52) and let L -+ oc, obtaining 

cý(S) =1+ 1000 [StoC jý r+ (r, r- s)Ax(r) + r+ (r, r- s)Ay(r)drJ e`n0c'ds, 

which may be written as 

s)e `4'ds, a(ý) =1+ 
j°° &( 

with &(s) E L'(0, oo), after a trivial rescaling of the integration variable s. Simi- 
larly if we substitute (55) into (53), change the order of integration in the double 
integral, and let L -+ oo, then we find 

77(() = 
fC {A(s) 

+ J-. lI'+ 
(s, s- r)Aý(s)+ 

+ 
(s, s- r)Ay(s)] e-`00s''dr} 

which may be written 

ooq(s)e'c°ds' 

with ý(s) E L' (R), after rescaling s. 

5.1.6 Temporal Evolution of the Transition Coefficients. 

The evolution equation for the transition matrix is given by (cf. F&T. pp. 28-29) 

ÖzT(T'TO, 
z>C) = V(T, z, C)T(TeTO, z, T(T, TO, z, C)V(TO, z, bý" 

SZoC 
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i. e., Tz(r, ro, () = V(r, ()T (r, ro, () - T(r, ro, C)V (ro, (), (56) 

suppressing the z argument. 

We know that T±(T, () : =1imTO, f... {T(r, ro, ()E(ro, ()}, and also (cf. p. 41) 

lim {V (T, z, () }= 
-r--rfoo 

2cKLdiag {2, -1, -1} , 3 (C2 - 1) 

where R -3 K= N2hö > 0. Therefore, if we multiply (56) on the right by 
E(ro, (), then examination of the limit 

roh 
} {T. (T, TO, ()E(To, ()} _ 

ýli} 
{V (, r, ()ý'(T, To, ()rrE(To, ()- 

T(T, TO, ()V(TO, ()E(To, 
b)} 

obviously leads to 

özT}ýT'ý) =V (T, ()7'f(T, C)- 
3C1)ý'f(T, 

C) 

In a similar way, bearing in mind 

200 
0 -1 0 (57) 

00 -1 

T (() := 
z-º+ 

limý_ý {E(-T, C)T \To Too ()E(To, ý)} ý 

we obtain 

200 
T: (C) =3 ((a 

- 
1) 

I\0 -1 0I T(C) I" (58) 

001I 

As we shall see, the differential equations (57), (58) completely determine re- 
markably simple temporal evolution of the scattering data for our RMB-system. 

From equation (58) it is clear that the transition coefficients 9, it, p, X and a are 

2tK( 
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all independent of z: 

e(z, C) = 0A C) ,. µ(z, C) = µ(o, 
P(z, C) = P(o, C) , X(z, C) = X(Q, C), 

and a(z, () = a(6, () _ (eX - Pp) (O, -(), (59-63) 

whilst for (ER, rl, v, 0 and y evolve in accordance with the trivial equations 

n(z, C) = 71(0, () exP (2cKiz , v(z, 0) = v(0, () eXP 
-22Klz 

, 
(64,65) 

ß(z, () _ (vµ - 77X) (z, ((vµ -71X) (0, -()] eXP 
22K_z 

z 

(2-1 '2 

and 7(z, () _ (rip - vO) (z, [(77p - v9) (0, -()) exP (GK-1 2 

5.1.7 The Scattering Matrix for the Direct Scattering Problem. 

Through a simple transformation of the completeness relation (47) 

T_ (T, () = T+ (r, C)T(C), 

we gain a new equation which not only helps identify the scattering data, but is 

also fundamental to the inverse problem. 

Suppose we define the matrices 

S+(T, () 
_ 

(T+1)I R )I T(3ý) (T, ()' S-(r, 
b) _ 

(T'), 7+2), T)) (66,67) 

Then from pp. 64-65 we know that S. are analytic in II} with the asymptotic 

behaviour as 1(1 -4 00 

S+(T, ()E-1(T, () =I+ o(1), forIm(? 0, (68) 
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S_(r, ()E-1 (r, () = I+ o(1), for Im( < 0. (69) 

Furthermore, by writing out columnwise the two forms T_ (, r, () = T+ (r, ()T(C) 

and T+ (r, () = T_ (r, ()Tt(-() of equation (47), it is easy to show that 

1 
S+(T, C) 

_ 
(Z+1), T(2), T(3)) (, r, C) 0 

0 

/ 

and 

fl ry 

PX 

// 
a00 

(T+1), T+2), T+(3)) 10 

v01 

(70) 

(71) 

a00 
S+(T, C) _ TP), Ti3)) (T, C) ý10 (-C), (72) 

ry 01 

1 17 v 
_(T 

(1), TI2), Tý3}) (T, C) 00p (-C) " 
(73) 

0µX 

The scattering matrix S(() is defined via the key relation 

S-(T, () ° S+(T, ()S(C), 

where using (70 - 73) we have 

v01 

(74) 

-1 
1Q ry a00 

s(C) =0eµ (C) 77 10 (C) 
0PXv01 
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a00 77 v 
_Q10 (-C) 09p ý-C)" 

ry 01 0A X 

Calculating either product leads, courtesy of the normalisation and orthogonality 

conditions (49 - 51), to 

1 q(-C) v(-C) 

S(C) = a(1 -N-C) X(C) -µ(C) 
-'r(-() -P(() e(C) 

Clearly, since detTt (T, () = 1, equations (71), (70) imply 

(75) 

detS_(T, () = det (Til)> T+2), T+3)) (r, a((), (76) 

detS+(r, () = det ý(T. (. 1), Tj2), Tý3) ) (T, ý)ý = a(-C), (77) 

and consequently 
detS(ý) _ 

c'«) 
). 

(78) 

Note also that for the inverse of the scattering matrix we have the formula 

100100 
S-1(0 =0 -1 0 St(-o 0 -1 0. 

00 -1 00 -1 

After careful inspection of the structure of S(() we draw the following conclu- 
sions: 

1. a(-() is the crucial transition coefficient whose simple zeros in II+, when 
they exist, are bound state eigenvalues of the direct scattering problem. Such 

zeros are independent of z and correspond to solitons through the action of 
the inverse scattering transform. 
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2. The functions and are reflection coefficients for the direct scat- 
tering problem. Pure soliton solutions are obtained by setting 

77(-() =0= v(-C) 

as will be seen later. 

5.1.8 Transition Coefficients for the Discrete Spectrum. 

In order to make the analysis more straightforward we assume that the zeros of 
a(-C) in n+ are simple and do not occur on the real line. Since a(-() = 1+o(1), 

as I() -- oo, for Im( >0 (cf. p. 65), there can be no cluster points of zeros in 
11+, and so a(-() must have only a finite number of zeros. 

If a(-() does possess zeros, then it is trivial to prove they occur either in pairs 
symmetric about the imaginary axis, or as single pure imaginary zeros. Indeed 

we know T(-() = T(j, which means that if a(-(, ) = 0, then also a(Ca = 0, 

where (a E n+ is some zero of a(-(). 

Evidently a(-() = (9X - pp)(C) may have zeros at points where for instance 

zeros of 9(C), p(C), or 9(C), p(g), or X(S), p((), or X(O), p(() coincide, as well as 
zeros at points for which none of 9(C), X(O), p(g), p(() are zero. 

Let the set of zeros of a(-() be given by 

Z (a (-ý)ý _f (r+ E II+I r=1,..., n= (nl + 2n2) (a) 9, X7P)µ) 1) 

where nl is the number of pure imaginary zeros, and n2 is the number of symmet- 
ric pairs of zeros. Then 

Z[a (()] ={(,: E 11- 1r=1,... n(a, 9, X, p, µ) }ý 

where (,: = -(, +, for each r. 

73 



Now evaluating equation (77) at (_ (r , and equation (76) at gives 
respectively 

det (T+1>> Tý2)> TI3» (T, C. +) = 0, 

= 0. and det (T ý1), T(+2), T(3» (T, (r -) 

Hence there exist 2n coefficients C j) p? (z), j=1,2, r=1, ..., n such that 

T +1) 
p rT (2) (r, 

b*) +p *T (3) (r, (*) (79) 

and also 2n coefficients C E) pir (z), j=1,2, r=1, ..., n such that 

T! 1) (T, (*) = p1rT+2) (T, (r-) + p2rT+3) (T, Cr )" (80) 

We can determine the z-dependence of pj from equation (57). In particular the 

evolution equations for the columns T+1), T, (2), Tý3) are 

= T1) axT+1) (T, () [v(rC) - 3((2 - 1) 
+ 

as T! 2) (? ', C) =V (T, C) + 
22K( 

T'(2) (T, C), 
3((2 - 1) 

a, 
ýT 

! 3' (T, () = V (, r, + 
2tK( 

T(3) (T, C)" 
3(C2 - 1) 

Suppose Then equating expressions for OT(1) (r, (, +) using (79) yields 

(at(=S*) 

ip f)aT'(2) +(Pý)XT'c3) + P: V+ 2cK( T(2) +Pä V+ 
2tKC 

Tý3) 
3((2 - 1) 3((2 - 1) 

_V 
4tK( jP *T(2) +P *T'j3)1 

3((2 - 1) l 
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d+ 2tKc, + 
dzp-'' ((, +) 2- 1= 

1,2, 

pt (z) = pj+,. (0) exp 
2tKC 
(C+)2 

r+z 
)j=1,2, r=1, ..., n. 

f 

Similarly, equating expressions for OZTtl) (T, S,. ) we have 

P(z) = P(0) exp - 
2tK(T z 

ýý (/ý*)2-1 ' 
j= 1,2, r= 1, ..., n. 

(81) 

(82) 

Therefore, because Cf = --(f for each r, equations (81,82) imply 

pjr(z)Pkr(z) = Pj+r (0)6r (0), 

where j, kE {1,2}, r=1, ..., n. 

Consider next equation (48) from which we know a(() = T+1) (-a) " T! l) (c). Let 

C= Cr 
. Then using (79,80) gives 

0= P+ Pir7'2) T(2) (Cr )+ PirP2r7'ý2) T+(3) (Cr-) + 

P2 P1rTj3) (C* )' ý'+2)(Cr ) +P+ Pýrý'j3) (cr )' ý'+3ý ýCr ) 

o= Pl plre((r) + p1 Pirp((T 
)+ 

p2 p1rµ((*) + p2 P2rx(C* ). (83) 

Condition (83) holds true if we take 

P2r = -e(Cr 
)" (84-87) P1rPlr - -X(Cr 

), PrP2r = A(Cr )º P 
rPlr 

= P(Cr ), P21, 

(These choices are consistent with later theory in Section 5.2, cf. p. 89). 

In conclusion, the 2n functions p (z), j=1,2, r=1, ... m, will be called the 

transition coefficients for the discrete spectrum, they are part of the scattering 
data which characterises the auxiliary linear problem. Observe that if c, + is pure 
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imaginary, then pl , pr are real, and if (, +, (; are a symmetric pair, then 

pä=pi) p8-Pr) 

as can easily be checked using (79) and the relation Tf(ý) = T±(-j. The coef- 
ficients p,,, (z) are dependent on pj (z) through equations (84 - 87). 

5.1.9 Trace Formulae. 

The results of this section allow us to minimise the number of parameters com- 

prising the scattering data, and will also be needed in Chapter 6. 

Let the set of zeros of a((), 9(C), and x(() be written respectively as 

Z[aic)1 = 
{-cýaj'Rýýa, >0, j =1,..., ni} 

U{ -bak , 
Ca E II- Ik= 

nl -I- 1, 
..., nl +n2 }, 

{ c(e, jR/D(B, > 0, l=1, . ., n1B} 
U{ 

(9, 

n, 
-SBm E n+I m= nie + 1, ..., nie + nae} , 

=1 c(xp IR 3(xn > 0, p=1, ..., nlx ) 

+ l1 ýxaý -Sxa E II g= nix -i-1, ..., nix -}- n2x 

Then we claim that for (E n-, 

exp t 00 10,; [1- (in(s)12 + Iv(s)12)] 
-- 

ds x 
I 

2ýr 

roo rsr rr fl((+ nj n2 (b + 
b) 

(- )' 

(88) 

/ /ý 
-1 b- Lýa 

l_ 

ý k-nt+1 
(b/ý 

. +. bak) 
(C Cal. ) 
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whilst for CE II+, 

exp -6 
log [l - 

(1(8)12 + Ill(s)12)] ds 9(ý) = 2joo oo s 
ri ý-6/(81 nlo+n2e (C-e9m)(C+C6m)' 

(89) 

(1=11 
C+ ýi8ý 

m=jnil, e+1 
(C 

- CBm ) (C + Cem ) 

b %oo log [1 
- l1v(s)I2 + Ip(s)I211 

X(ý) = exp - 2ý J_ao 8-( 
JJ ds x 

nL nlXý'X (C 
- (Xv) + TXv) 

11 
ý ýX 

11 
r 

P=1 
C+ L(XP 

g=niX+1 
(b 

- CXv) (C 
+ CXv) . (90) 

Formulae (88 - 90) can be proved by the same method used in F&T. pp. 50-51 

for deriving the "trace formula" in the 2x2 case (following Ablowitz et al. [33], 

equations (94,95) below will be referred to as trace formulae ). However, for 

completeness we prove the most important relation (88): 

We know that a(() = (OX - pµ)(-() is analytic in 11 and for ER we have 

the normalisation condition 

ia(C)I2 =1- (I77(()12 + IV(C)12 )" 

Introduce the modified function 

z) 

rCIO 
(91) a(() "= CY(() H 

(_ 6("j nlH 
(/b + 

. 'I=1 
(+ 6"ai k=1nii+1 

(b +C 
ah) 

(b 
- bah) 

Then for CE II', ä(() is analytic, has no zeros, and ä(() = 1+o(1) as oo. 
Furthermore, the function logä(() is analytic for Im( < 0, continuous up to the 

real line (since a(() is assumed to have no zeros when (E R), and log&(() -> 0 

as I(I -+ oo" 
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Suppose we define 

f (s) = 
log ä(s) 

ER 
s-C 'Cý 

and integrate f around the contour y shown below: 

Ims 

We have that 

) I (fr(O, 

R) 

ff 
(s)da - (( , e) 

- 
�[-R, C-e] 

f 

C+a, R] 
f (sds, 

where I'(0, R) denotes the semicircular arc centred at 0, radius R, and r((, e) is 

the arc centred at (, radius e. Therefore, as 

lim ff (s)ds = c(21r - ir)logä(C), 
6-ºo r(C, 6) 

Cauchy's Theorem yields 

0= lim r logä(s)ds 
= -cir1o a/C ") PV %O0 logä(s)ds 

R-too, a-º0 J"y(e, R) s- ý' 
g\-J 

oo s 
--C 

=: > Im {logä(e)} =1 PV f Re {logix(s)} 
ds. (92) 

ý oo s-e 
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Now applying the Plemelj Formula (cf. equation (6.24), p. 50, F&T. ) to Re {log&(s)} 

gives for (ER 

/'ý Re {logcx(s)} 
ds = PV Iý Re {logä(s)} 

ds-or fý Re {logä(s)} S(s-C)ds, Jý8 
-C +c0 ý s-ý oo 

and so by (92) 

logä(ý) =t 
r°° Re{logä(s)}ds 

7[ J-00 4F -S 

oo log [l - On(s) 12+ Iv(s)12)] ds, (93) 
27r1oo s-( 

since Re {log&(s)} = log 1&(s) I= log ha(s)1. Equation (88) follows directly 
from (91) and (93). 

Finally, if we take logarithms of (88,89), and expand the denominator of the in- 

tegrands using the binomial theorem together with the fact that Ir7(s)l2, Iv(s)I2, 

ßµ(s) 12 are even functions, then we obtain 

loga(c) 

log8(S) 

00 00 2)] s2t -2ds Iv(s) 1 ýý (2, 
{- 

2ýr 
j_iog [1 

- (1ý(s) 12 + 

2t nl 2r-1 ni+n2 
r + (bati 1- Zak 2r-1) 

, (94) 
(2r - 1) _1 k-nl+i 

\ 

00 00 {- 
2ýr oo 

log [ -ý E 2r-1 J- 1 ý 
r=1 

+ Iµ(3)I2/J 32r-2d3 

nie nie+nag 
_ 

- 
2t 

(, CB)2r-1 E 

C. �+ 
1 2r_1 ) 

(2r - 1) +(- Cem 95 
! =1 m=nlg+1 

There is obviously an analagous expression for logX(C). 
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5.1.10 Statement of the Scattering Data. 

The discrete spectrum scattering data is completely determined by the following 

sets of parameters: 

{ý«, ERI j=1,... ýnl}U{C«k, ý«k(k =n1+1,.., nl+n2I 

and 

ER {PL>>P2+j j=1, ..., nil Ul pitý, pi%, p2Ik, ý2k) k= nl + 1, ..., nl + n21 , 

where pik, pak are the transition coefficients for the discrete spectrum associated 
to bltk, and p ,, ppk are the coefficients associated to -yak 

The continuous spectrum scattering data is given, for (ER, by 

{77(o, (), V, (), v(o, (), v(o, (), µ(o, (), TO, (), P(o, (), P(o, ()} , 
plus either 

or alternatively 

where 

1 B(o, a 8(0, (), x(o, o, X(o, C)} ) 
l 

CBt 
, bB., 

(Bm 
) 

(Xr 
l bXQ ) 

zXQ 
J1 

1=1, ..., nie, m= nie + 1, ..., nie + nae, 

p=1, ..., nix, q= nix + 1, ..., nix + n2x, 

in view of relations (89,90). 

We already know the z-dependence of the transition coefficients for the discrete 

spectrum and of i and v: see equations (81) and (64,65). The remaining data are 
constants of the motion. 
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5.2 The Inverse Scattering Problem. 

5.2.1 Derivation of the Riemann-Hilbert Problem for the RMB- 
System. 

Our starting point is the defining equation (74) of the scattering matrix S((): 

(T(1), T+2), T+3)) (T, () 
_ 

(T+1), T j2), T(3)) (r, 
b)S(() 

(96) 

Suppose we normalise the Jost solution matrices by defining 

M(T, () = T_ (T, ()E-1(T, (), 

Then (cf. p. 64) the columns NM (r, (), M(2) (r, (), M(3) (T) () are analytic in 
rl+, whilst MM (r, (), N(2) (T, (), N(3) (r, () are analytic in II-, and directly from 

equations (41 - 46) we have for each fixed T the asymptotic behaviour: 

N(L) 

M(2)ýTýC) _ 

M(3) (T, 
b) - 

( 
( 
( 

1 
o+ o(1), 
0 

0 

1+ o(l)l for Im( > 0, as oo. 
0 

0 

0+ o(1), 
1 
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MM 

N(2) 

N(3) 
lT r 

ý) _ 

1 
0+ 0(1), 
0 

0 

1+ o(l)l forIm( 0, as oo. 
0 

0 
o+ 0(1), 
1 

Moreover equation (96) becomes 

(M(l) 
, N(2), N(3) ) (T, () =(N(1), M(2), M(3) ) (r, ()E(T, ()S(()E-1(T, () = 

) (Tý ý) 
1 

. _e-iStoýTQ\-ý) 
(N(l) 

> M(2)> M(3) 

Columnwise this reads 

M(i)(Tº () 

N(2) (Tý C) 

N(3) (T ý 
C) 

ein0CT? 1(-'() e""s-rv(_() 

X(O -µ(C) 

-P(S) e(C) 

N(1) (Tý C) 
_ e-iýaýT 

ýý-C) M(2) (Tý C) - e-aS2oirY(-() M(s) (T, C)ý 
a(-ý) a(-ý) a(-ý) 

= erS2°(T 17(-() N(1) (T, () + X(O M(2) (T) () - 
P(O M(3) (T, ()f 

a(-() a(-() a(-O 

= e`nOST 
v(-() 

N(1) (T, () 
- 

'L(C) 
M(2) (, r, () + 

e(C) 
M(3) (, r, ()f 

a(-C) a(-C) a(-0 

(97-99) 

Equation (97) can be rearranged to give an expression for N(1) T. If we substitute 
this expression into (98) and (99) and apply the normalisation and orthogonality 
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conditions (49 - 51), then we find 

N(ý (ý, () 
= e&no(Tý( 

) 
M(1) (T, () + 

e( (C)) 
M(2) (r, () + µa( ) 

M(3) (T, (), 
() () ) 

N(3) (T, () 
= e`nO(T v(-() M(1) (T, () + P(-() M(2) (T, () + x(-() M(3) (T, ()" 

a(() a(C) a(C) a(() 

(100,101) 
Rewriting the system of equations (97,100,101) in vector notation gives 

N(l) 
= MM + e''n°C' 

M(2) M(3) p 
(102) -) 

( 

a- a- ' a- 7' 

(? i. (2) 
9 
N(3) 

= e''noCT 
M(1) (77-) 

v-) + (M(2), M(3» 
1 0- P' (103) 

aaaaµ X- 

where for clarity we have suppressed the arguments, and for example a- denotes 

a(-(). Lastly, multiplying equation (103) on the right by X 
0_ yields 

-- ) 

N(2)N(3)a 
'a) 

X 

_/1. 
_p= 

-e`ýOýT 
M(1) 

(p 'Y) + ýM(2) 
, 
M(3)) . 

(104) 
e- « 

The system of equations (102,104) may be recast as a vector Riemann-Hilbert 

problem having the characteristic matrix form (cf. equations (3.1.19), p. 108, 
A&C. ) 

m+(T, () - m_ (T, () = m_ (T, ()V (T, (), (105) 

on the contour Im( = 0, where 

m+(7-, (): = 
N(1, ý 

a(-ýýo 

b), M(Z) (T, (), M(3) (T, ()) 
$ 
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m- (, r, r) := 
(M(1) 

(T, ()' X(-() N(2) (T, () 

- µ(-() N(3)(7-, (), a(() a(() 
8(-() 

N(3) (T, () - 
P(-() N(2) (T, () 

a(() a(() 

1-a(S)a(-() iS2o(rý iSZo(T7. ý 
e 

a(() a(()a(-() 'e a((), 

e-'s2o(r 
ý( () 

,00 a(-() 

e-ýs2o(r ý00 
a(-() ý 

and m±(-r, () -+ I, as ICI -+ oo. 

For future reference we note 

I 

m_V = m+ - M- 

= 
(e_40(T LM(2) 

+ 'Y M(3) ý e&no[T M(1) , e`noCT 
ry 

M(1) . 
(106) 

[a- 

a- aa 

5.2.2 Formal Solutions to the Inverse Problem. 

Let us first deal with the case when a has no zeros. Having already established 
the Riemann-Hilbert problem, we may proceed just as in Chapter 2, Section 1.4. 

It is necessary to find the asymptotic behaviour of m_ (r, () for large 1(1. We know 
from equations (33) and (37) on pp. 62-63 that 

T 

M(-r, () =I+ 
100 I'_ (T, s) F(r - s, () ds, 

N(T, () = I+1ýr+(r, s)F(r-s, ()ds, 
T 

100 

where F(r, () = exp -tSZoCr 0 -1 0 Looking for instance at col- 
00 -1 
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umn one of m_ (r, () we have 

7rtý1ý (T, ýý _ 
I 1 

o0 
r(T, s)eoSeds MM (Tý ý) =0+- e-i'oST 

J 

0 

I1 0 
cýorrl)(T, 

T) + 0(ý-2) 

0b 
11JA+C 

CA., (r) 

0 CAy (T) 

which follows from the definitions (34) and (28) of r_ and I', since 

0 -A-. -Ay 
Uo(-r) = S2oC Aý 00 (T). 

Ay 00 

Computing the behaviour of mý2ý, m3ý in the same way leads to 

m- (T, C) =I 

-f2oC fTý IA12 dr, Ax(T) Ay(r) 
+ 

cC 
A. (r) -f2oC f 0° A2dr, -1loC f °° AxAydr 
Ay(r) -f2oC f'°AxAydr, -f2oC f, °Aydr 

+O (107) 

as ICI 
--ý oo, where IAI2 (r) : =A 2(r) + Ay(r). 

For later use we record the corresponding result for m+: 

M+(T, C) = I+ 

0 
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r. 
+71 Ax(T) SZoC f. Axdr S2oC f Tý AxAydr 

Lk, 

Ay(r) SZoC fT. AýAydr SZoC fT,,. A? dr 
+o (S-2) 

, (108) 

as I(l -+ oo. 

On the other hand, applying the projection operator P- (cf. equation (20), p. 20) 

to equation (105) we find 

P--I- [m_ (7, () -I) - m_ (T, ()V (T, ()} =0 

() -+1 
f°° m_ (T, u)V (i, u) 

m_ (T 
2I °° u-((-c0) 

du. 

Hence, for large ICI, using equation (106) gives 

/ý 
1 00 

m 
a(-(: 

M(2)(r, U) 
)+ a(-u) 

M(3)(7, u) 
-(T, b) =- 2ýz 

j (e_mnot' 

SZoC f, ' JA1a dr, A.,; (-r) Ay(T) 
A,, r) SZoC f.. Axdr SZoC f Tý A, Aydr 
Av(r) SZoC fT. AýAydr SZoC fT,,. A? dr 

e40 ur ä(ü) 
M(1) (T 

o, ý) , eastowr 
ä(ü) M(1)(T, u) j du +O (ý-2). (109) 

Now suppose that given V (r, z, () we have solved the inverse problem defined 

by equation (105), obtaining mf(T, z, (). Then comparing (107) and (109) we 
deduce in particular that 

Ay (T, z) 

Ay (T, z) 

_1 
j°° 

Mll (, r z u)du 
oo a(0, u) ''' 

00 
J 

eiSZour'Y(z'u Mll (T, z, u)du. 
21rC -0o a(0, u) 

Secondly, let us study the case when a(-C) has a set of simple zeros 

Z [a(-C)l ={ (* E n+I r=1, . ., n= nl + 2n2} . 
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Consider equation (102): we have that N(1) T'ý is meromorphic in n+ with n 
simple poles. If we choose to set 

NýL/ý ýTrý C) 
= N+\/. rý 

ArýT+ 

al-r) 
r=1 C Cr 

where the column vector N+(T, () is analytic in II+, then (102) reads 

N+(TºC)+E 
Ar(T) 

= 
N(1() 

IT, 
C) 

r=1 
ý- 

Sr al-ý) 
= MM (T, () + 

e &OosT Q(-C) M(a) (T, ý)+ a(-C) 

M(3) (T, C) . 
(110) 

a(-() 

We also know that 

eLno(r *N(i) (r, cr )=p rM(2) (r, cr) + 1ý2rM(3) (T, Cr ), (111) 

eýs2o(r 'ºM(1) (r, (r )= PirN(2) (r, ýr )+ P2rN(3) (r, Cr ), (112) 

which are simply equations (79,80) written in terms of M and N. Therefore, 

integrating equation (110) around a suitable contour with (, + contained inside, 

Cauchy's Residue Theorem implies 

/ rr Ar(T) )[ý1*M(2) \Tº cr) + PI M(3) (, r, br 
ý, 

ý 

for each r=1, ..., n. 

Next we let P- operate on equation (110), giving 

E 
r=l [M(1) (T, () -I 

(l)] 
- [m- (r, ()V(7-, ()]til } 
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Since the function 
C 

s7 is clearly analytic in II-, 

1 

C-CT CT -C 
for each r, and so 

M(1)(T, C) = I(1)+ 1fý Im_V](1)(T'u)du- 
2ýc ýu- (C c0) 

n e-612ot+T 
+ 

M(2)(7, C+)+ 

r_1 
C- CT a'(-Cf )r 

a, 
Plr+) M(3) (T, (r+)] (113) 

r 

= I(1) -1 eo21rcC 
100 

oo a(-u) 

'Y(-u) (3) 
a(-u) 

M (T, u) du - 

t+ 
rrr 

, 
bý aý( C+) lpTM(2) 

(T, 
b* 

)+ ý2 M(3) (T, 
br 

)] + O(b ý2) 

r1r 

as ICI --+ oo. Alternatively, equation (107) tells us 

(ocf:,,. JA1Z (r)dr 
MM(T, S) =ýtl, (T, S) = I(1) + Ay(T) 

cb 

Aý(T) 

as I(I -> oo. Thus, equating coefficients of (', and assuming once again that 

given V(r, z, () we have solved the inverse problem for m±(r, z, (), we obtain 
the formal solution 

n 'ýos* * 

_rr+ 

ýý fýz)Mza(T' z'r* ) +ý f/z)M2s(T, z, ý, ý), 
- 

A=(T, z) =-cEe c'(0 
Sr) 

lbll 
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joo ý oß(z, -u) (T 1e 
21rC oo a(0, -u) 

m2, 
, z, u)+ 

-f (Z, -u) M23 (T, z, u) du, 
a(0, -u 

with a corresponding expression for A,, (T, z). However, this is just one represen- 
tation of the formal solution. In order to acquire the other we choose to write the 

system of equations (104) as follows 

Ný (Tý C) +ý 
ýr (T) 

_- 
X(-0 

jV(2) (T, () + 
Pa(() ) 

N(3) (T 
, 

a(c) r=1ý-ýr 

_ ed'osr 
a(c) 

M(1) (T, C) - M(2) (, r, C), (114) 

Ny cTý C) +ý CrcT) 
f=1C-Cr 

P(-C) N(z) (T, () _ 
9(-C) 

N(3) ('r, () 

e`ýýsT 
a(C) 

M(1) (Tý r) - M(3) rTý ý)ý (115) 

where Nj (r, () and Ný (r, () are column vectors analytic in II-. Matching 

residues at poles in the first equation, bearing in mind relation (112), gives 

__ r+ 
rr ý oC-rT + 

rr Br(Tý a ýbr ý 
[ý1rN(2) (T, C-) -ý iý2rN(3) 

for each r=1,.., n. Furthermore, recalling the definition of the operator P+ from 
(20) p. 20, we have 

P+ Ni +E 
Br(T) 

+ M(2) - [m_V](2) =0 
r=1 (T 

=: > M(2) - 1(2) +ýB, 
(7-) 

- P+ 1[m_V ](2)} = 0. 
T=1 

(- cT 
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Hence 

M(2) (T, C) = J(2) +1 
.. 

[00 [m V 
/(2), 

(T 
, u) du - G7T6 J-oo u- ýý -t- bU) 

n e&noCr 'rp1T 
1 E 

-CT )a'ýC* )M( 
)ýT, Sr ) 

r=l (C 
(116) 

our ßu 
M1(T u)du - = I(2) -1 

f°° e 
27rc( oo a(u) ' 

1ý 
e&sksr T Pir M(1) (Tý ýr )+0 (C-2), (117) 

as ICI -+ oo. By a parallel argument applied to equation (115) we also find 

M(3) (r, C) I(3) +1 oo [mV ](3) (T' u) 
du - 2irc Joo u- (C + to) 

n eri2oCr T P2r ý 
(C - (* ) a, ((r ) M(1) (Tý ýr ) (118) 

ý I(s) _1 eýrýouT'Y(u) M(1) - 
-co a(u) 

(r, u) du 
2ýrc( 

f°° 

n+( 
i, enoSr z P2r 

M(1) rT r-1 "ý' Olý-2ý ýl ýbr 1ý Zr=1 
a ýýr ý (119) 

as ICI -+ 00. Therefore, comparing asymptotic expansions for M(2) and M(3) 

given by (117), (119), and columns two and three of equation (108), results in the 

second formal solution 

A. (T, x) _L 
[n'` eiS2oCr T Pr (z) 

Mll (T' z' 
r=1 

ý-) - CLý a'(O, (T) r 

ýC _ 
eLsýouT 

ý(Z, ü) Mii (T, z, zý)du, (120) 
, 

ý 
enoSrT 

i2+r (z) 
Mll (T, z, br 

)_ Ay (T, z) =_L. 
i C r-l a'(0, (i) b 

1 %ý 
e&n0"T 

ý z, u Mll (7, z, u)du. (121) 
2ýC J_ . a(0, u) 
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5.2.3 Soliton Solutions of the RMB-System. 

If the transition coefficients 17((), v(() are zero when (is real, then the Riemann- 

Hilbert problem (105) may be solved in closed form. Indeed setting 77(() =0= 
v((), for (ER, so that the reflection coefficients ij/a, v/a, ß/a and 7/a are 

zero as well, clearly causes the integral terms to vanish in each of the equations 
(113) and (116 - 121). Specifically from (113), (116) and (118) we have 

M11(T, C) 

M12(T, o 

M13 (T, C) 

L 

n e-toCrr 
/ý (+ 12 +) ++M 

r=l 
ý2r13 =1-ý 

-ýf 
ý1rM \Tý br lTý br 

ýý 
a'( 

n -iS2oc; r e ý__�, - 
a'(-()(br 

-r M. ýý. -sT 
i=1 

S 'f' ýaýýla ý, 

n e-is2ps. r 

-8=1aý(-bä }(ý'ýýä }P °Mll(T, -(s ). (122-124) 

Reintroducing the z-dependence, it follows that for s=1, ..., n 

Mil (T, x, -Cs) = 
n e-iStoSr * 

X (125) 1-E-. 11 l4-%//'4- 1 . 1-4-A 
r=1 'x l-, W 1 \Sr T Sa' 1 

n e-ýsýC+T 
p(z) E 

; )P e(z)MiiýTý z, _ýa 
) L&-x(T -+' (. +))P+ 

ý++` 
/ 

e-iStorý, 
+r 

/T r +iý2rýz) 
Lý ýl-ýä )ýbr 

'i' ýs )p2a(x)Mii l, z, -ba 
)" 

This is a system of linear algebraic equations for Mll (r, z, s=1, ..., n, 

which in conjunction with equations (120,121) evaluated when 77 =0=v, CE 

R, i. e., 

As (T, z) 

Ay (T, z) 

_ý Ee-&S2oCrTä 
(r((I+) 

M11(Trxr -()' (126) 
r =l 

_Ci' Ee-inoC: r 1ý2 (z) 
M11(T>x> -(r+)l (127) 

r_1 a'(-(r ) 
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allow us to calculate pure n-soliton solutions of our RMB-system. 

Consider for example the special case n=1. We know (cf. Section 5.1.8) 
there must just be one pure imaginary zero of a(-() at (=t (say), R E) 
C>0, with associated transition coefficients for the discrete spectrum denoted 
by pl+(z), p2+(z) E It. To obtain real potentials A., (r, z), A,, (T, z), we assume 
that the reflection coefficients ß/a and y/a take the form 

_ 
NO 

- «(() 

«(() - 
i Lný+ Im C<0 I 

0, ýER, 
&z Im( <0. a' -if)«+iZ) ý 

Observe this means the reflection coefficients are real when C is pure imaginary, 

and in addition the residues of (A) (f() and (ä) (±() at ýaC are given by 

Res 
P(C) 

"t 
tPi+ 

a(() ;- a' (-cc) 

Res 
_(-(). 

cc 
1Pi+ 

a(-()' a'(-tC) 
'Y((); 

__ 
LP_+ Res 

a(C) a'(-cc) 

Res 7(-() " IC 
tP2+ 

a(-O a'(-tC) 

Matching residues once again in equations (110), (114,115) we now find 

cenofT Mll (Tý ý) = 1- 
a, LO (C - cý) 

[P1+ M12 (, T) IC) + P2+M13 

cenoFý M12ýTýý) ý 
aº(-cý)iC+ fý)Pl+MiiýT, -cý)ý 

M13 1T, 
jý = W� 1ýi+M11(T, 

a$ ý-cý)ýý + cý) 

Ge"OP* 
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and so 
-1 

M11(T, -cý) _1+ 
2+ +P2+) 

e2flo£T 4ý2a'2 (-cý) 

Hence 

A,,, (r, z) 

Pi+(0) eXP [92oe (, r - To(z))] 

1.. {_ 
rP'4ý(ä)±P2ý) )1 

exp [290e (T - To(z))] 

_Z 
Pi+(0) 

sech [SZoe (T - Tl - Tp(z))ý , 
(128) 

C Pi+(0) +Pä+(ý) 

enofT t Cal (-6t) 20oCr 

where we have used the fact that pl+(z) = pi+(0) exp (-- ), and f +1 

Wz 
_1 ro(z) := 

ý0(42 + 1)' 
T1 . In 

Similarly, 

Pi+ýý) + Pä+ýO) 

A, (, r, z) =C2 +0) 
a 

sech 190Z (r - Ti - 70 (41 
" 

(129) 
? i+(0) + ? a+(0) 

Solutions (128) and (129) are precisely the same linearly polarised 1-solitons 
found in Chapter 4 (cf. equation (4), p. 40). 

5.2.4 Existence and Uniqueness of Solutions to the Inverse Prob- 
lem. 

General questions regarding existence and uniqueness of solutions to the Riemann- 
Hilbert problem (105) are difficult to answer categorically. However, by carrying 

Pi+(z) 
Ca'(-ct) 
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out a simple calculation based on theory established by Gohberg and Krein (1958) 
[37], we can at least demonstrate existence and uniqueness in the generic sense. 

First recall equation (74) for the scattering matrix S(C) 

S+I (T, C)S-(T, S) = S(O . 

If we define 

ý a(_C)E(Tý ý)S+1(Tý ý)ý (130) G+ (-r, () 
S_ (T, C)E-1(T, (), (131) 

then Gf extend analytically into n±, with G (7-, ý) =I+ o(1), as oo (cf. 

equations (68,69)). Furthermore 

c(T, () := 
E(r, ()a(-C)S+1(T, ()S-(T, C)E-1(7-, C) 
E(T, C)a(-C)S(C)E-1ýTý C) 

1 eýý°sTrý(-C)ý elýOýT vý-C) 
-e-c!? oSTß(-C), x(0 -µ(C) 9 

-P(C) B(C) 
(132) 

andG(r, ()=I+o(1)asl(I-+oo. 

Considering that in Section 5.2.1 we also derived (105) from (74), we there- 
fore see the equivalence of our Riemann-Hilbert problem to the matrix factori- 

sation problem on Im( =0 associated with (132). Namely, given G(r, z, (), find 
G± (T, z, () such that 

G+ (r, z, ()G_(-r, z, () = G(T, z, (), 

for (ER, where G± may be analytically extended into II}. 
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Now let R3x3 be the ring whose elements are 3x3 matrix functions of the form 

F(() = cl +J 00 f (s)els°ds, 
00 

where f (s) E L3x3(R), and let R3 3 be the subring of R3x3 having representative 

elements 
(s)e}C'ds, Ff (() = cI + j°° ff 

where f±(S) E L3x3(0, oo). Then Gohberg and Krein proved the theorem below 
(cf. A&C., p. 449): 

Theorem. 

1. Every non-singular matrix G(() E R3x3 possesses the factorisation 

G(C) = G+(()o(C)G-((), 

where Gf E R31,3, detG±(() 94 0 for tEr Il, and 

ýýC)=diag ýc) "' C-c "' S-c ns {((+c 
'C +c ' +cl 

(/ 

Here rcl > r,, 2 > ßc3 are integers referred to as indices. 

2. If G possesses another factorisation 

then a(C) = A((), G+(C) = G+(C)A(C), d_(C) = A-'(()G-(C), for 

some non-singular matrix A. 

3. K= Kl + Ks +' 3= ind [detG(()], where given a function g(() defined on 
RI, the index of g with respect to Rl is 

ind (g(()] := J- 2ýc oo dý 
fing(()} d{. 
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Corollary. If it is further supposed that G(() =I+ o(1) as -º oo, and 

GR(() =1 [G(() + 0'(()] 

is positive definite, then kl = r. a = ic3 =0 and there exists a unique factorisation 

G(C) = G+(()G-(C), 

where G} E R3 3, detG±(() 00 for( E III, and G±(() =I +o(1) as ICI -ý oo. 

In view of Gohberg and Krein's theory, which provides the standard method for 

checking existence and uniqueness of Riemann-Hilbert problems, we look again 
at G and Gk specified by (130 - 132): 

. From Section 5.1.5 we conclude G has an integral representation 

G(T, C) 
00 

+1 °° 
0 
0 
0 ( 

Os -}- T), L(-s + T) 

00 e's"ds 
00 

00 
X(s) -µ(s) e`(°ds, 

-p(s) B(s) 

where J-7, i, j3, ry E Ll (R), and E L'(0, oo). Hence G(r, ý) E 
R3x3- 

" Using the integral representations (33) and (37) for the Jost solution matri- 
ces it is reasonably straightforward to prove Gf (T, () E R3 3. For instance, 

equation (72) gives 

100 

(T, C) = -ý(-ý) a(-C) 0 T`-(Tý -C)ý 
-'Y(-C) 0 a(-C) 
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leading to 
G. s+ 

(T, () = 
00 J 

rjl(T, T- 8)e'n0c'd3, 
0 

j=1,2,3, where VI (r, ,r- s) E Li (0, oo) as a function of s. (Appropri- 

ate integral representations for rows two and three of G+ (r, () are found by 

means of the Convolution Theorem for Laplace Transforms, and the equal- 
ity a(-C)S; ' (r, () = adj [S+ (r, ()] ). 

" detG(r, () = det [a(-()S(()] = a2(-()a(() ,E0 when (ER. Whilst 
detG+(r, () = a2(-() and detG_(r, () = a((), so that Gf may be non- 
singular in their domains of analyticity. 

These properties of G and G± are all much as we might expect. Unfortunately, 
due to the complicated form of G(r, (), the "hermitian positive definite" condi- 
tion apparently does not furnish a clear-cut or useful criterion for existence and 
uniqueness. However the situation is redeemed somewhat by the following result: 

ind [detG(C)] = 
1 %°° d {ln [detG(ý')j} dC TT, J-. dý' 

= 21rc 
[In (zu«) 1 a(S)1Z)] -00 00 

ý' 

which is a consequence of the asymptotic behaviour ci(() =1+ o(1) as ICI --3 
oo. According to another Gohberg and Krein theorem on stability of indices, 

Ablowitz & Clarkson (cf. p. 450) point out that if the overall index ' is zero, 
then generically speaking, the indices %£1, iz, i3 vanish aswell. Existence and 

uniqueness of solutions to our Riemann-Hilbert problem is therefore guaranteed 
in a generic sense. 
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Chapter 6 

Calculation of the Conserved 
Densities for the RMB-System. 

A striking general property of integrable partial differential equations is that they 

possess an infinite hierarchy of local conservation laws. It will be seen in the case 

of the RMB-equations that the conserved quantities occur as the coefficients in an 
asymptotic expansion for log a((), and we shall represent them as functionals of 
the scattering data through use of the trace formula (94) p. 79. 

Let N(r, z, u(r, z)) =0 be an integrable equation. Then since we have taken z to 
be the evolution variable and r the transverse variable, a conservation law may be 
defined as an equation of the form 

BJ +aTF=0, 

holding for all solutions u(T, z) of N=0, where the density I and the flux F are 
allowed to depend upon r, z, u, u1-, u,, ..., but not us. Providing I and FT are 
integrable as functions of z over R, and if F -+ constant as ITi -+ oo, we then 
find 

Id T) = 0. dz C f-'00 
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I is called a conserved density and the functional f_. Idr is a constant or invari- 

ant of the motion. 

Now in order to obtain the conserved densities for our RMB-system, we seek a 
gauge transformation which asymptotically reduces the matrix 

U(r, () = -ý4 
((H- + H+ (r)) 

to the diagonal form 
°O Uº 

Uº ,., ýi 

where each Uý is a diagonal matrix. 

It is simple enough to show that each UU is conserved. In fact, because the zero 
curvature compatibility condition is invariant under gauge transformations 

we have 

The diagonal part reads 

U'= GTG-' + GUG-' (1), V'= G,. G-' + GVG-', 

OZU'-8TV'+[U', VII = 0. 

I part reads 

azU'-ar(V')°=0, 
and so integrating with respect to T and using the boundary conditions yields 

Therefore 

as claimed. 

z(rý 
U'dr) = 0, VC. 

ý 
U'dT) = 0, 

dz 
(100 

Since U(r, () is a3x3 matrix, there are two stages involved in the diagonalisation 

procedure. First let us reduce U to an R-type matrix U'(r, () = Z(T, () (say), by 
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applying a gauge transformation Gl (r, () = (I + W(7-, C))-1, where W is chosen 
to be an OR-type matrix with the asymptotic form 

b) _E 0.0 ý 
(2) 

Wn(T) 
W(Tº 

n= 

+p (ICI-00) 

1 
ýn 

as I() -s oo. (The R and OR-parts of a3x3 matrix were defined on pp. 60-61). 

Substituting into equation (1) it follows that 

(I +W (r, ()) Z(r, C) = -WT(r, () - 
(CH + H+(r)) (I +W (r, ()) , 

which is equivalent to 

ihZ = (H- + H+W, (3) 

thWZ = -ihWT + H+ + (H-W, (4) 

after splitting into R and OR-parts respectively. Equations (2) and (3) imply 

Z(T, () = -b(H - 
ti 0 00 (H+Wn) (T) 

+p (ICI") , (5) 
n 

as oo, whilst eliminating Z from (3,4) gives 

£? WT-H++([W, H-]+WH+W =0. (6) 

0 A, Ay 
Next suppose we define or= diag {1, -1, -1}, and Hs(r) = Ay 00 (T). 

Ay 00 
Then equating coefficients of powers of ( in equation (6) and employing the for- 

mulae 

-QH' = Ha, 
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0W ia yy13 
n>n 

[Wn, H-1 = h. SZo -W, a, l 00= hS2oQWn, 

-Wnl 00 

0 Ax, Ay 

H+ = -chSZoC -Ax 00= -ihS2oCQH', 
-Ay 00 

(where C := eqo/h), leads to the results listed below: 

0 Ay, Ay 
W1 = -iC A. 00 

Ay 00 
n-1 

Wn+1 = ýn 1 ýnWnT -ý WkH+Wn-k ,n>1, 

W2 

iiac° X k-1 / 

C0 
Azr 

, Ayr 

_ý -AsT 00I= (-i)2C (S2°/ HT7 17 
no 

-AyT 00 

10 
Axrre Ayrr 0 Ax, Ay 

Wg = tC 2 AzTr 00+ C2 JA12 Ax 00 
o Ayr., 00 Ay 00 

= (-6)3C (Hr + SC2H'') (0)2 
S2o 

W4 ý-i)4C 
3 

{HTM + S2öCa [(H 3) + He'H, 
r 

+ H, 
r1182J J' (h-) T etc. 

Clearly Wn may be written 

//l 
n-1 

1ý wnýT) = `_LInC 
( 

\SZp) 
Wn(T), n> 

where w. is a real symmetric OR-matrix whose elements are polynomial func- 

tions of Az, A. and their r-derivatives. The power of a determines whether W� 
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is symmetric or anti-symmetric. Hence, substituting for H+ and W,, in (5), our 
expression for Z becomes 

z= 
3iSZodiag {2, -1, -1} C 

00 
+ npCý E 

n-1 

Axwn2 + Aywn3 00 

0 Axwn2 Axwn3 C-". (7) 

0 Aywn2 Aywn3 

We remark incidentally that the diagonal parts of H+ W2, ' are total derivatives with 
respect to r. 

The second step is to asymptotically reduce Z(r, () to 0(r, (), a diagonal matrix, 

using the gauge transformation G2(r, () = (I + M(r, where for large ICI 

00 
M(r, F M'ý(r) 

+O 
n=1 C 

and 

We have 

000 
M�(T) =00 Mn3 (T). 

0 M, 3ý2 0 

(I + M)0 = -M,. + Z(I + M), 

or, in terms of diagonal and off-diagonal parts, 

0= ZD + ZODM, (8) 

MA = -MT + ZDM + Z°D. 

Eliminating 0 therefore gives 

MT - Z°D + IM, ZD1 + MZODM = 0. 
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It is convenient for the moment to use equation (5) rather than (7) for Z, then 
matching coefficients of powers of C we obtain 

000 
M1T _ 

(H+WI)on _ -LQoC2 00A. ýAy 
0 AxAy 0 

(9) 

Mz, = -h 
f (H+W2) oD+ [(H+ WJ)D, MI]J 

000 

_ -C' 00 AyAyr 
0 AxTAy 0 

+ 1 o00 
fZoC' 00 (Ay 

- A2, ) f loo AxAyds 

0 (A. 
- Ay) fToo AxAvds 0 

etc., and by equation (8) 

0=F 
Al 

1=-i 

CH- -}. 
(H+W1)n 

+ 
(H+W2)D + (H+Wi)°D Ml+ 

fi (2 
(N+tiýs)D + (H+Wi) 

(3 
M2 2)OD ml 

+0(1(1-4) . 

As was demonstrated at the beginning of the chapter, the diagonal matrix co- 
efficients of this expansion for A are conserved densities of the RMB-system. 
However, after some rather laborious calculation, it becomes apparent that the 
coefficients of even powers of C are total derivatives and can be ignored. 

Consider for example the coefficient A2 = (chi)-1 [(H+W2)D + (H+W1)oD Ml]. 

103 



Plainly we have 

C2 JA12 00 
(H+w21ýdT= fýöT 20 Ax 0 

1}dr=o. 
/ý 

00 Av 

Dealing with the second term 

-h 
rH+wl`on Ml = -cSZoC2diag 

{0, 
`4ý`4yMi3' Ay`ýYMi3} 

is a little more complicated. From equations (19), (26) and (27) on p. 35, we find 

p2,. dT = 0. d fý AxAydT oc 1,00 
00 

i. e., 
1-00 AxAydr := rc, (say), 

is also an invariant of the motion. Moreover, since equation (9) only defines 

M , 23(-r, z) up to an arbitrary constant of integration, we may choose 

T1 

Mý(T, x) = -tS2oC, 
[fý (A. Ay) (s, z)ds - 2ý1 

Then 

f 00.0 00 OD 
-tfloC'A, AyMI"dr 0f 

w 
-ý 

(H+W1)M1dT. 

It is also instructive to examine the coefficient 03 of (-3. Observe that 

Tr { r00 A3dTJ = 0, 
00 

which as we shall see presently , is a condition required for consistency. Indeed 
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one can readily check 

f00 00 [(H+ 
\W9) 

D+ (H+Wi)OD M2 + (H+Wa) OD M1J dr = 

00 
iStoG'2 J 00 

(diag {a + b, -a, -b} + diag {0, c+d, -c -d+ fT}) dr, 

where 

a: _-oA=Aý-C2Az1A12, b: =-öAvAvTT-. r 

c := 0öCaAzAy 
lý 

{(Av 
- Ax) 

\f .0 
AxAydu), ds, 

d := C2 [AAy (JT00 AxTAyds) + AxAt,. r 
(f 

00 

T AxAyds), 
, 

e := c2 [AXAW Voo AxAyrds) + AyAxT Voo AxAyds), 

and f := AyAy (f f 00 
A. Avds) , fz = d+ e. 

Therefore, because ff*. fdr = 0, we may set 

00 
diag {A3 + B3, -A3, -B3} d7-, 

f 00 
03dT = aSýpýi2 

100 

whcreA3: =a-c-d, 133: =b+c+d. 

We now introduce some notation and theory regarding the monodromy matrix 
TL(C) = T(L, -L, (). This theory helps to finalise the form of our expansion for 
A, and will enable us to represent the conserved densities in terms of the scattering 
data established in Chapter 5. 
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Let the monodromy matrix be written 

/r 
Q'L NL 'yL 

rr TL(C) = iL 8L PL 
vL PL XL 

where 

aL(C) - 
(OLXL - PLµL)(-C), RL1() - (vLIAL 

- ? %LXL)(-b)v 

'YL(C) _ (? 7LPL - iLOL)(-()" 

The elements of TL satisfy the usual normalisation and orthogonality conditions, 
and we know detTL(() = 1. Then the reduced monodromy matrix is given by the 
limit 

T(C) =l im {E(-L, C)Ti(C)E(-L, C)} 
e fiL'no(CYL(C), 

e}LLnoCNL(C)f e-siLSZoCryLIC) 
r Jim e-#`LnoCýL(C)r esiLnoCBL(r), esiLf2oCYL(b) " 

(10) 
L-ºoo \b 

/ e}anoCULýC)ý eIiLnoCPL(C), e3aLnoCXL(b) 

Furthermore, according to equation (2.19) p. 23 of F&T., the sequence of gauge 
transformations G1, G2 transforms TL(() in such a way that 

TL(() = (I + M(L, ()) (I +W (L, ()) x 

exp 
[1-'L 

0(r, C)dIr (I +W (L, ())-1(I + M(L, ())-1 " 
(11) 

Since detTL(C) = 1, this relation implicitly requires 

Tr 
JIL 

ä(r, C)dr = 0, VC, and so Tr {f' Ajdr = 0, Vj. 
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We are finally in position to draw together the results of our calculation. Equations 
(7) and (8) imply 

o(T, () = 
3aflodiag{2, 

-1, -1}(+ 

tZ2C2 
00 to 1" 

-"dia {A w1a +A w13 A w12 Ay w13} + p ýQJ 
gxnUn, x ný " 

co 
n=l 

r-1 ýk 
112C2 

d 
1: 

S2 s-rdiag {0, AyWk3M, 3ak, AywkýM;. 3k} 
. 

r=4k=1 U 

Hence for sufficiently large L we can write 

(T, ()dT 1L 
3cLf2odiag {2, -1, -1} ý+ 

00 2n-1 
ýoC2 LL ý\LI S-2n+ldiag {Axw2n-1 + Avw2n-1+ 

L n=1 
`i0 J 

00 2n k 
12 13 l L(f) 2n-1 

-Azw2n-1, -Avw2n-1 f+ýýCX 
n=1 k=1 

d iag {a, A: wk3Min+1-k, -Axwk3M2n+1-k 
1] dr. 

(It is of course equivalent to let 

diag {0, 
-Aywk2Mý; +1-k, 

Aywk2M2n+i-k} 

be the second matrix of the integrand). Then by equation (11) 

L 
Tr {TL(C)} = Tr exp JL tdT L= 

Tr {exp [tLco(diag{2, 
_1_1}] x 

L 
exp 

[oC2 L (''diag {A2n-1 + B2n-1, 
Ln=1 

-Asn-1, -B2n-1} dT]} 
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ý 

asL -+ oo, whcre 

Tr {exp {LLco(diag {2, -1, -1}1 x 

exp 
[LcIoc2JL 

L 
diag {(A + B) (C), -A(C), -B(C)} dT 

L 

exp 
(wo) 

exp 
[tcoc21 (A+ B)(C)dT + 

xp 
(- 

tLSoC) exp -iSloC2 
JL 

L 
A(C)d-r + e 

L 

exp 
(_LLco() 

exp 
[_tcIoc2 

JL B(C)dT 

C): = 
00 

/ý r 
00 

A(r, S): _ A4n-I(T)b-2n+i' B/rº 
b1 :=r B2n-1(T)b-2n+1. 

n=1 
`1 

nL=J1 

On the other hand we have 

TY' {TL(C)} = at(C) + 8L(() + XL(C) 

_ C, (C)ei`LnOC + e(()e'IaLf20t + X(()e-j&Lt2oC + o(1) 

as L -+ oo, which is a consequence of equation (10). Comparing expressions for 
Tr {TL(()} and letting L -+ oo therefore yields 

logo(() = log [(8X - Pµ) (-C)] = ASAoC2 J °°(A 
+ B) (C)dr +0 (I(S-°°) , 

(12) 
00 

IogO(() = -cSZ0C2 
f A(()dr +0 (1(1-') 

00 
logx(() = -LfoC2 I00 B(()dr +0 (1(1-°°) . 

Moreover, comparison of the two equations (12) and (94) p. 79 for logs(() im- 
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mediately gives 

j joo (Aý-i + 132,. -i) dr = S2oC2 I. 2ý J-ý log [l - 
(17l(s) 12 + 1v(s) IZ)] s2r-zds- 

2t ni 2r-1 ni+n2 t(2r-1 
2r -1+ 

-2r-1 

j_1 k=n1+1 

for N9r>1, whcre 

1A1+I31=IA'=Ay+Ay, 

1 
A3 + 133 = -o (AxA: TT + AyAyrr) - C2 JA14, (13) 

(or = 
iz IVA1' - C' 1A14 ), etc. 

0 

Evidently this equation describes those conserved densities which are polynomial 
functions of A., A, and their r -derivatives, in terms of the set of scattering vari- 
ables 

IV(b)12vC 
j, 

C,,,, Zawlj = 1,..., ni, k= ni +1,..., ni+nZ}. 
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Chapter 7 

Perturbative Effects in Real Optical 
Media. 

So far we have been concerned with the solution of an idealised mathematical 
model which ignores the various loss mechanisms and inhomogeneities actually 
occuring in a typical optical medium. Under these simplifying assumptions we 
have explicitly proved the solvability of the RMB-system by the Inverse Scattering 
Transform method, and studied the associated hierarchy of conserved densities. 
We shall now exploit the exact mathematical results of the preceding chapters to 
derive the following evolution equation 

f00 (A2-1 -+-132,. _i) 
dr = 

J°° 
00 

AL2r-2AdT, (1) 
dz o0 

where N3r>1, A := (-A17 Ax, -Ay, Ay)t, and L is a4x4 matrix integro- 
dil%rential operator to be defined later. Given a system of RMB-equations suit- 
ably altered to model an arbitrary perturbing effect, equation (1) may be used to 
calculate the corresponding variation with distance z of the invariant functionals 

00 

1ý (A2. _1 + B2_1) d-r 
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specified in Chapter 6. The main reference for this chapter is a paper by J. N. Elgin 
(1993) [13] entitled "Perturbations of optical solitons". Elgin proves that a similar 

equation to (1) holds for the simpler case of the Nonlinear Schrödinger equation, 

which has only a2x2 auxiliary linear problem (cf. [13], equation (4), p. 4332). 

7.1 Proof of the Evolution Equation for the Invari- 

ant Functionals. 

Let us recollect some basic theory out of Chapter 5: 

9 The AKNS eigenvalue problem for our RMB-system can be written 

jiýoC, -S2oCAz, -SZoCAy 
ff = Uf = ftoCAx, -3iStoC 0rf, (2) 

f2oCAy, 0 -s6oob 

where U= U(r, z, () and f= (fl, f2, f3)t E C3. 

. The Jost solution matrices T± satisfy the differential equation (2) for each 
z and have the asymptotic behaviour T±(r, z, () = E(r, () + 0(1), as r -4 
foo. That is 

Tt" ) (T, xr C) _ 

el'n0c* 0 

0ý e-}9nacT 
00 

I 

0 
0+ o(1), (3) 

e-VotT 
as r -º ±oo. 

" T±(r, z, () are connected via the completeness relation 

T_ (r, z, () = T+ (r, z, C)T(z, () 
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Columnwise, suppressing r and z, this reads 

a )(C), (4) T'ý'ý(C) = (C)T+1)(() +i1(S)T+2){() + v(()T+3 
T ýý)i() 

_ O(C)T+ )(() + 8(C)T +a)(C) + P(C)7+3)(C) , 
(5) 

7'3)(C) = Y(()7+1)(() + g()T+2'(C) + X(()T(3)(C), ý6) 

where a(C) = (Ox - Pµ)(-C), ß(C) = (v& 
- rºX)(-C), 'r(() = (7)P - 

vO)(-C). Since T'i(C) = i(-C), the inverse relations are 

ý(-ý)T<1ý(C)+ý(-C)Týaý(C)+ýr(-C)Tý3ý(C)ý (7) 
Tý+)(C) =1 ý(s)+B(-ý)Tý2 ý(C)+µ(-C)Tý3ý(C), ($) 
7'+(3)(C) = v(-()Tý1)(C)+P(-()Tj2)(C)+x(-C)Ti3) (C)" (9) 

In view of the facts above, we proceed to find z-evolution equations for the tran- 
sition coefficients a, ß, -y, i, 0, E. c, v, p, X by employing the method of variation 
of parameters. 

Suppose we define the column vector 

Y= fs = (f1s, f2s, f3s)t E C3. 

Then equation (2) implies 

yT-Uy-U, f=T, (10) 

where U, f = i20C (-As, fz - Ay: f3, Ax: fl, Av, fl)t. We already know that a 
suitable solution of the homogeneous equation (2), with the property y -ý 

V0 
as 

r -+ -oo, is given by 

f° KITD(C) + K27. (2) (C) + IC3Ti3) (C) = (TD, Ti2), Ti3)) (C)-. %41 
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for an arbitrary constant vector k* = (rc1i rc2,1c3)t. "Variation of parameters" 

now tells us to look for a particular solution of the inhomogeneous equation (10) 

having the form 

Y(f) = (TD, 712), T91) (C)-RI (7)" (11) 

Substituting into (10) gives 

(T42), Tj2), Tj3))* (C)-14 ,v (T) + (Ti1), Tj') , Tý3)) 'r (, T) - 
U (Ti1), T42), Tj3)) (C) r(T) - Uxf. 

Obviously the first and third terms cancel, leaving the equation 

( ti 
t= noC Tis rs T+34 ý_C) Axafl 

T13 T'33 T+33 Ayz fl 

Tu T21 Tsi I 
-Ax: fs - Ay: fs 

Axa fl 

Ay, z fi 

Hence 

s 
ICº(f) = f2oC f00[(-As, fZ 

- Ay, f3)Tlº(-()+ 
A:, fºT! º (-() + Ayx fºT3º (_()] ds, 

K2 (r) = i2nC f [(-A:, fs - Ay: f3) T T(-C)+ 

A:, ftT"(-C) + Ay, fiT3a(_()] ds, 

X-3 (7) ° n(yc 

Jr 
[(-Ax, f4 

- Ayf3) 7T (-C)+ 

ao 

A:; fºTss(_C) + Ay, fºT! 3(-C)] ds. 

If we choose f= TD (C), thcn by equation (11) we obtain 

113 



ýa ) ýý) _ SZoC özT!, 
f ý(-A2zT21(C) 

- AyzT31(C)) Tll(-ý)ý- T(1) (C) T 

00 
AxzTll (()T21(-+ AyzTll (()T31(-()] dT + 

T ý2)(C) TJ l' [(_AýzT2i(C) - 
AyzT31(C)) Tie(-S)+ 

,J oo 
l 

AxzTll (()T22 (-() + Ayz7'11(C)T22 (-C)] dr + 

T(3) (C) %T ( 
l_ý 

r(-Axz7'21(C) 
- AyzT31(C)) T13(_C)+ 

AxýTii(C)Tas(_C) + Ay, zTii(C)Tss(-()] dr. (12) 

Alternatively, from equations (4 - 9) we have as T -3 00 

19zT (1)(ý) _ [az(C)a(-C) + ýz(()ý(-C) + vz(()v(-())Tý1ý(C) + 
[az(C)h'(-ý) + r7z(()8(-() + vz(()P(-()] Tj2)(C) + 
[az(C)ý'(-C) + ý]z(C)lý(-() + vz(C)X(-C)ýTý3ý(C)ý (13) 

which follows because the matrix T+ is independent of z for large r (cf. equation 
(3)). Letting r -+ oo and equating our two expressions for eT' (() yields the 

required evolution equations. For instance, comparing coefficients of T! 1) (C) in 
(12) and (13), namely 

QoC 1". 
l \-`4xJ21 

(() -A yxT 
31 (()) X 

[a(-()7'+1 (-C) + 7l (-()T+2(-() + v(-()T+ (-()] + 

Ax, Tý1(C) [a(-C)T +1(-() + 71(-()T+2 (-() + v(-()T+3 (-()] + 

Ay; T11(() [a(-()T+1(-() + 7J(-()T+2(-() + v(-()T+3(-()]} dT, 

and a,. (S)a(-C) ++ we see that 

a: (ý) _ hoc {A rTli (C)T+1(-ý) - T? 1(C)T+1(-C)ý + 
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Avs rT'il (C)T+1(-() - T31(()T+1(-()] } dr, 

77- (C) = S2oCJ 
ao 

{Axz [7'l1(C)T+2(_() 
_ 7'a1(C)7+ ý-ý)ý + 

Ayz [Tllc()T+2i-() 
- T31(()T+ i-()] } dT, 

Ux(ý) _ ýoC fý {Aýx ýTli(ý)T-23(-ý) 
- T21ýý)T. t3(-C)] + 

Avz [T11(C)T+3(-C) - T31(ý)T+3(-C)ý } dT. 

Corresponding equations for the remaining six transition coefficients are calcu- 
lated in the same way after choosing either f= Tý2ý (C) or f= T9) (C). In fact, 
ifT`j((), i, jE {1,2,3} denotes the (i, j)-th element of the reduced monodromy 
matrix, then we find 

00 ý 
Tf'(C) = SZoC1 

ý 
{Axý ýT+`(-C)7'ý'(ý) 

-T+ (-C)T2'(C)ý + 

(14) Av: [T+3(-()Ti'(() 
-7+ (-()T3'(()] } dr. 

Suppose we now introduce the eight functions 

a(i, j) "= T+'(-()T2j((), 

b(i, 9) "= T+`(-7'i'(C), 

C(i,. 7) "= T+'(_7'sj (0, 

d(i, j) "= T+(-Tl'(S), 

k(i, j) "= 
T+'('Tli (C)-T+'(-ý)T2j(C)ý 

l(i, 9) 
"_ 

T+`(-()Tlj(() -T+'(-()Ts'((), 

m(i,. 7) "= T+i(-()T3j(C), 

n(i, j) "= T+'(-()T2j (C). 
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Then by virtue of equation (2) there is a closed system of eight first order differ- 

ential equations for a(i, j), ..., n(i, j) of the form 

ar = -cSZo(a + SZoCAxk - SZoCAyn, 

br = aSZo{b + SZoCAxk - SZoCAym, 

cr = -tSZo(c + SZoCAyl - SZoCAxm, 

dr = aSZo(d + SZoCAyl - SZoCAxn, 

kr = -2SZoCAx (a + b) - SZoCAy (c + d), 

IT = -SZoCAx(a + b) - 2SZoCAy(c + d), 

mr = SZoC (Axc + Ayb), 

nr = SZoC (Axd + Aya). (15-22) 

Note also that equation (14) becomes 

a(i, j) 

a/ /'ý b(i j) 

azT 
f'(ý) = sipc' Jý (-iixz, A-,,, -ALx) AIIz) 

C(i: j) 
dr 

d(i, j) 

_ sloC f oo A'ý(z, 
. 
7)dT, (23) 

ý 

where A= (-A,,, Ax, -Ay, Ay)t and * (i, j) := (a, b, c, d)t(i, j). 

Furthermore, suppose we set i=1=j. Then in particular we have 

k(1,1) T" (C) - T+i(_OT2i(ý) 

[a(C)Tll(_C) + ý(C)T12(_C) + ýr(C)T 13(-C)] T ll (C) - [a(C)T21(-C) + R(r)T22(-C) +`)'(S)Tý23(-C)ý T21(b) 

CY(() + O(1), as T --) -00. 
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Hence 
lim {k(1,1)} 

.= k_(1,1) = a((). 1_00 

Similarly l_(1,1) = a((), and m_(1,1) =0= n_(1,1). Since we shall be 

assuming i=1=j throughout the rest of the chapter, we hereafter neglect the 

extra (i, j) -argument of the eight functions a,..., n to ease notation. Thus, using 
equations (15), (19) and (22) gives 

cSto(a -ar + SZoCAz (f ý kr(s)ds + k_) - SZoCAy V'o 
n, (s)ds + n_ 

-a. r + SZoCAz {_c0cJ [2A(a + b) + A(c + d)] ds +- 

SZöCaAy fý (Ayd + Aya) ds, 

and so 
cS2a(a - SZoCa(C)A., = 

-öT - SZöC2 [2AzI(Ax7 ") + AvIiAv, ")ý i tý 
a1 

-2SZ02C'2AxI(Ax, 
-SZ2 OC2AýI(Av, ') 

b 

c 

-f20 [AxI(Av, -) + AYI(A.,, ")] l\d) 

where I is an integral operator defined by 

T 

I(u, ")v = I(u, v) =I u(s)v(s)ds, 
oo 

for some representative functions u, v. Applying the same procedure to equations 
(16 - 18) we subsequently find 

(ý - cCa(C)A = LV x 
0 
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-aT - n0 C2 [2AzI(Az, ") + AyI(Ay, ")] -25ý0C2AxI(Ax, ") 
21202C2AyI(Ax, ") 

äT + f22(72 [2AxI(A., ") + AyI(Ay, ")] 

-00C2AyI(Ax, ") -SZöC2 [AyI(Ay, ") + AyI(Ax, ")] 
St0C2 [AzI(Ay, ") + AyI(A:, ")] QöC2AyI(A,, ") 

-SZ0C2AyI(Ay, ") -SZ0C2 [A., I(Ay, ") + Ayi(A.,,, ")] 
n0 G'2 [AzI(Ay, ") + AyI(Ax, ")] n0C2AxI(Ay) 

-ö - SZ0C2 [AzI(A:, ") + 2AyI (Ay, ')] -2SZ0C2AyI(Ay, ") 
2SZ0C2AyI(Ay, ") a7 + S20 C2 [AxI(Ax, ") + 2AyI(Ay, ")] 

It is trivial to solve this equation for V 
asymptotically. Indeed if we look for a 

solution 

then we quickly obtain 

00 

LCa«) r, e, (-r) 

r=1 

cCa(C) Lr-1A. (24) 
r 

r-1 
( 

Now according to equation (23) evaluated at i=1=j we have 

AR-$dT. 
aza(ý) = SZoC 

J 00 

Therefore 
ö 

a(C) 
10 LQoC2a(() 00 AtL2r-2AdT' 

Öz 
r=i 

(2r-1 
f-00 

z 

which follows from (24) and the symmetries contained within the matrix operator 
L. On the other hand, equation (12) p. 108 states that 

loga(ý) = cSloC' Jý 
(A + B)(()dT +O ýý(ý-°°ý 

Co 
°O 1 00 

= aQaC2 E 2r-1 (A2r-I + B2,. -1) dT +0 (ICI-00)) 
r_1 C -oo 

t 
. 
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which implies 

00 l' o 

aza(C) = cSZoC2a(C) E Z2-1 rr 00 
Oz (Azf-i + Bar-i) dl» +O7 

r_1 

upon differentiation with respect to z. Comparing the two expressions for ez a (ý) 

we at last recover equation (1): 

d f00 (A2-1 + B2,1) dr = 
f00 ý AzL2r-2 1. 

oo 
AdT, N=) r dz 

Obviously the right-hand side here should only differ from zero if our original 
RMB-system is perturbed in some way. 

In the sequel we will need the operator adjoint to L. Let us define the inner product 

(XI Y) 
00 

xtydr 

for any 3x1 column vectors x, y. Then the associated adjoint operator L is given 
by 

t L--ox 

( 
19T - S202C2 [2AxI+(Ax, ") + AyI+(Ay, ")] 

-2SZ02 C2AxI+(A, ") 

-SZoC2AyI+(Ax, ") 

-St02C2 [AyI+(Axo ") + AxI+(Ay, ")ý 

-SZ02C2AyI+(Ay, ") 
-S202C2 [AyI+(Ax, + AxI+(Ay, ")1 

öT - SZöC2 [AI+(Ax, ") + 2AyI+(Ay, ')] 
-2StoC2AyI+(Ay, ") 

where 

2SZöC2AxI+(A, ") 
-aT + SZoC2 [2AxI+(Ax, ") + AyI+(Ay, ")ý 

S201C2 [AyI+(Ax, ") + AxI+(Ay, ")ý 
SZöC2AyI+(Ax, 

SZöC2 [AyI+(Ax, ") + AxI+(Ay, ")] 
S202C2AxI+(Ay, ") 
2SZoC2AyI+(Ay) ") 

_or + SZöC2 [AyI+(Ax, ") + 2AyI+(Ay, ")ý , 

s)v(s)ds. I+(u, ")v = I+(u, v) := 
j°° 

u( 

I 
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Making use of this new notation equation (1) becomes 

d 00 
= dz 1_00 (A>-1-f- B2r-1) dr (A, l L2r-2A) 

(L2r-2A, I A), for N ar > 1, 
ý L2AxI L2''-4A> , when r>2. (25) 

Finally, as a consistency check for our results, we compute the right-hand side of 
(25) in the cases r=2 and r=3 using equations (18 - 27) p. 35, anticipating 
both answers to be zero. Applying the definitions of L and L one finds 

-A-- 
ý (A,, 

Ax A. 

-Ay 
ýio AyT 

Ay Ay, 

A_ I ,. I A__ 
LA =L1 --; 1= _n 1 -;. `T 1, (26) -Ay Ia co I AyT 

II Ay j` Ayz ) 

A. -Axr 
A. 

-G 
Axr 

-G Ar7 (27) 
Ay iio 

-Ayr 
iio 

Ay Ayr 

-Axrr - 2Q0' C2 AT JA12 

L2A 1 Axrr + 200C2Ax JA12 
2 Qö -Ay, - 2SZöC2Ay JA1 

Ayr, + 2SZoC2Ay JA12 
(where JA12 := Ax +A 2y), 

Ax P4 

LA - -a 

IC2Nh 
Ax 

+ 
CNh p4 

x 2c--o Ay 2cEO Ps ' 

Ay P6 
2 

L A; = 2c, -o 00 
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Observe that equations (26,27) hold independently of whether the system is per- 
turbed or not. Hence 

since 

and 

(AzI L2A) = 
(LZAI A) - 

G'2NA AT 
2ceoSZo 

A+( A, t l A) i 0, 

00 
12(ATI A) a1. aT {IA} dT 

(ASIA) oc Jý ö% { JAý2} dr oc J° {sp7 + ps} d7 

vanish due to the boundary conditions. Moreover 

CL AzI LaA/ \_ Ca Nh Ar 
2cs0SZ0 

because 

LZA + 1A,. 1 LaA> = 0, 

(ArI OA) a 
f00 

ý 
Or {IAri2 + JAý4} dr. 

7.2 An Application of the Evolution Equation for 

the Invariant Functionals. 

7.2.1 The Perturbed Model for an Absorbing Medium. 

Our original RMB-system, given by equations (18 - 27) on p. 35, can be modified 
quite simply in order to take account of basic dissipative processes. 

Recall from Chapter 3 that the dipole displacement and momentum operators are 

Q- q0 (A1, A3)0) 
y 

(28) 

P= Mqoý20 (a4)AsYO» (29) 
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respectively, and the unperturbed Hamiltonian is 

Ha = --i2hS2o a7 +i ýas (30) 

We have that pl,..., p6 correspond to components of the dipole moment, with 
pi and p3 further corresponding to the displacement via equation (28), and p4 
and p6 corresponding to the momentum via (29). Clearly equation (30) says 

-2 ici0 (P7+ fps) is the expected value of each atom's internal energy. 

If we now assign separate phenomenological decay lifetimes, Ti for the atomic 
inversion p7 + fps, and T2 for the dipole moment, then the perturbed RMB- 

system may be written 

P1T 

P2r 

_ -T2 +Qo[C(2AxP7-AyP2)+Pa] i 

_ -T + SZoC (AxPs + AyPi) 
ý 

PsT =+ SZo {C [-AyPa +Ay (PT +ýps) +psT }, 

P47 = -+ So (CAyps - pi), 
T 

P, 57 = -T2 + SZoC (Axps - AyP4), 

PsT = -Tý - ýo (CAxPs + p3), 

PTT + P- P° + 73 P8T = -11 
-, f3- 

2QoC (AxPi + AyPs), 

PTT - ýP8T =- 
Tz [PT 

- PTT -ý 
(Ps 

- Ps)ý - 

2S2oC (Axpl - Ayps) . 
(31-38) 

NAC N AC Axz Pi, Avs _- 2cE pss (39,40) 
00 

where p°T =1 and p°g = 1/, /3-. Equivalently, equations (37,38) can be set down 
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as 

4P7T 

4 
T3PsT 

1l+ 
T2 

(P7 pý) ý 
\Tl T2 

) 
lPa - P08) 

3 

4SZoC (2AxP1 + Ayp3) , 

_11113 
(7,1 

T2ý 
(P7 

- p°) V3- 
(, 

1 
+ 1, 

a) 
(ps p°s) 

4SZoCAyp3. 

Observe that rotational symmetry requirements constrain the nature of the decay 

terms in (31 - 38). In fact, applying the rotation R= e`016 to the density matrix 

8 
E Pjaj 
jc1 

P7 + P$/V3- 
Pi + LP4 

P3 + LPs 

P1 - LP4 P3 - LPs 
-(P7+PsI f)-(%-, r3-Pa) 

2 

P2 '}' L P5 

P2 - LPs 
- 

(P7 +Pe /f)+ (P7 
- v(3-P8 

) 

2 

according to the transformation pH RpR-1, we find that p7 + p8/-, F3 and pb are 

rotationally invariant, whereas the vectors (p1, p3) and (pi, pq) are rotated through 
the angle 0, 

(pl, p3) º-+ (pi cos q5 + p3 sin o, - pl sin o+ p3 cos ¢) 
, 

(p4, p6) (p4cos¢+p6sin0, 
-p4sin0+p6cos¢), 

and the vector (p2,2 (p7 
- V3-p8)) is rotated through 20, 

(P2, (P7_v'P8)) 
H Cpl cos 20 + (p7 

- 
V3-P8) sin 20, 

-P2 sin 20 +2 (p7 
- 

\p8) cos 20) . 

Therefore, if we follow standard atomic physics theory by taking each of the off- 
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diagonal components pl, ..., ps of p to have a rapid dipole dephasing lifetime Tzi 
then for consistency we must also have p7 - Vp8 decaying at the same rate Ti-1. 

7.2.2 First Order Dissipative Effects on 1-Solitons of the RMB- 
System. 

Consider equation (25) and set r=2: 

d '00 
d 

1_. (A3 
-i- B3) dT =(L AxI A). 

This time we shall evaluate the inner product on the right-hand side by means of 
the perturbed RMB-equations (31 - 40). The calculations are generally routine 
albeit lengthy, so we have opted to summarise the individual steps rather than 

provide full details. Notice that we will be freely using the assumed boundary 

conditions and ignoring any terms which are 0 ((cloT2)-n) or O ((SZOT1)-n), 

where n>2. 

To begin with we obtain 

I 

w .. I Aýý 

\ 

--d. b 4- . _-I 

LAz =L 

-Ays 
Ayz 

P4 Ax Pi 
cC2NA 1 P4 Ax 

_1A - 2cEO C P6 
+2 

Ay CSZaT2 Ps 
+ 

P6 Ay P3 

-2Ay f Ö0 P2ds + Ax f, ' PT - P7 -3 (Ps - Pä) 
1 -2Ay fT°p2ds+AxfT° pT-P°7-V3- (Ps -P°s) 

2T2 -2Ax f, " p2ds - Ay f,. OO p7 - P°T - ý, 43- (Ps - P°s) 

-2Ax fT ° p2ds - Ay fT ° PT - P7 -V3- (Ps - Pä) ý 

ds 
ds 
da 

+ 

ds ds 
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Ax fT°° 
3 Ax poo 

2Ti Ay fT ° 
Aý y fT 

P7 - P7 +T (Ps - P8) 

P7 - P7 + j3 (Pa - Pe) 

P7 - P7 + ý(Ps - Pä) 

P7 - P°7 +7 (P8 - P°s) 

ds 
ds 
ds 
ds ) 

In addition, the following formulae are easy to verify for arbitrary functions f and 

g: 

L 

AtL 

f 
1 
9 
9 

I 

f 

9 
9 

fT +n2 C2Ay f, * (Arg - Auf) ds 

b -fT - pöC2Ay fT° (Axg - Ayf) ds 
S20 9T -f2öC2Ar fT° (Arg - Ayf ) ds 

-gT - 0öC2Ar fý (Ag - Ayf ) ds 

fT 
At -f 7' (41) 

f2o gT 

-9r 

Applying relation (41) therefore gives 

7 

P4r AZT 
PLT 

-Axr 
- 

At -piT + At2Az _ -C2Nýi 
At -p4T 

]+2Atf 

2ceoQo C P6r Ayr CSZoT2 PsT 

-PsT -AyT PsT 

-2Ay fT° p2ds + Ax f, ' [pT 
- P7 - NF3 (Ps - Pä)] da 

Atä 2AyfT°p2ds-AxfT° IP7-P7-ý(Ps 
-P8)] ds 

+ 2T2 T 
-2Axf°p2ds-Ay fT°[P7-P7-03 (P8-P8)] da 

2Ax f, ' p2ds + Ay fT° [p7 
- P7 - 03 (Ps - Pä)] ds 
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3At a 
2Ti T 

Ax fT ° [, o7 - P7 + T(Ps - Pä)] ds 

-Axf°O[P7-P7+1 73(Ps-Pä)]ds 
Ay f. °° [P7 

- P7 +ý (Ps - Pä)] ds 

-Ay fro [P7 
- P°7 +ý (Ps - P08)] ds 

(42) 

We now integrate with respect to T over the interval (-oo, oo) to gain an ex- 
pression for ( L2Az ( A). Let us deal in turn with each of the five terms on the 
right-hand side of (42): 

1. 

At I°° 00 

P4T 
-Ar 

Ps. r 
-'P6-r 

dT = 

2. 

-2 J 
00 (AxP4T + AyP6T) dr 
00 

' 00 

.ý 

[p7 
-Pi+ ý(Pa-pos) dT+ 

CTi 

Z, ý ý 
(AxP4 + AyPs) dr. (43) 

2Jý 

(AIAT)=0. 

3. 

1 c'o _ ii-2T2 
1 

0-0A 

r1T 

-P1, r 
P3-r 

-P3-r 

-DI- r- II _ 

P3T 
ý -p3-r 

aT 
2 %00 (AxPa + A� p6) dr - StpT2 l_oo 

ZC J°° r2Ap7 
- 2AApz+ 

OoTa ý 

I\ 
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Ay (p7 + v"'3-p8)] dT +0 
(ýT)2 

22, (44) 

4. 

-2Av f, ° p2ds + Ay fT° [P7 - Pol - -4- (P8 - P8)] ds 

f 00 At äT 
2Av f O0 p2ds - Ax fT ° [P7 

- P°r - V3- (P8 - Pä)] ds 
= ý -2Ax 

frw p2ds - Ay fo [P7 - P7 - /3- (P8 - Pä)] ds dT 

2Ax f, '° p2ds + Ay f O0 [p7 
- P7 -f (P8 - P°8)] ds 

1 
0{-4AxAy02 

+ (Ax - Ay) [P7 - Pi - 
(P8 

- P°s)J 1 dr, (45) 

where we have used the identities 

00 
p2ds} , 

(A, Ay)T 1 00 
p2ds =AAyp2 + Or {AAy 

JT 

and 

(A2)T1 00 [P7-P7-%/3- (Ps-PB)] ds = Ai[P7-P7-%, f3- (Ps-Pe)] 

00 

öT Az 
JT 

[P7 
- P°7- 

f(Ps-Pä» ] ds}. 

5. 
A. f7° [P7 

- P7 +ý(P8 - e8)] ds 

(P8 - p98)] ds 
dT - At8 -Ax f° [P7 

- Pi + 73 
T AyfO° [P7-P°7+T(P8 

-Pä)] ds 

-Ay f°° [P7 
- Pi +ý (P8 - Pä)] ds 

(Ps 
- Psý d7-. (46) 

00 
ýAý + Aý) 

[17 
- P° +1 VJ 

f °O 
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By virtue of equations (13) p. 109 and (43 - 46) we find 

( L2At I A) 
d 00 

TZ 10o Szo 
(AxAzrr + AyAyr, ) + C2 JA14 dT 

C2 NA j4ý 
- 2cýoS2Q l CT2 

f 
00 

(AxP4 + AyPs) dT- 

00 [P-t [_P+(P8_P)] 
dT + 

C2Ti 
ý. 

VJ 

2 110000 
7,2 

[2Aýp7 
- 2AxAyP2 + Ay (p7 + ýpa)ý dr + 

1% 00 2 (P8 
- P°8ýý dT + 2T2 oo 

(Ax 
- Ay) [P7 

- Pi - V3 

2Ti 
J°°(A+A) [Pr-P+(P8-P)]dT_ 

22 00 ýý AxAvp2dT} +0 g207,2 . 
(47) 

Suppose next that we replace the integrands A, Ay, p2, p4, p6, p7, p8 appearing in 

the above equation, by their basic 1-solitonic forms which were derived in Chapter 

4 (cf. (4) p. 40, and (8 - 15) p. 42). We choose the Greek letter ý instead of 17 
as the soliton parameter, thus avoiding confusion with the transition coefficient 

97(z, (). In other words, let 

A:, (7, z) _ 
ýC 

sechSýOý' (i- - 7-0 (z)) , Ay (r, z) =C sechSZOC (r 
- To (z)) 

and so forth, where a2 + b2 = 1, 

and 

ýL 2K du Tp(z) =- Jo no [e2(u) + l] 

_ 
NeZga 

_ 
NýiC' 

K 
2txcso 2c. eo 
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Then integration reduces equation (47) eventually to 

z=- 
2K 2-1 

+ 
ý2+2 1 

(48) (2 + 1) S10T1 Q0T2 +O SZOT2 

since e_ e(z) in the presence of our dissipative perturbation. (The integrals 

Lh4oT 
- To)] dT 

00 

00 

ch2 [SZoC ('r - To)] dT f-co*o 
se 

4 
3SZoý' 

2 

i2oc 

are helpful when checking (48)). "Separation of variables" can hence be em- 
ployed to solve this differential equation for C to first order. If we define 

61 SZoTi' 62 iiO Tz, and e2-cl =r, 

then from (48) we have the approximate equation 

Q2 +S 
C(C2+1) 

where 
R: = -2K (262 - r) and S: = -2K (es + r). 

Equivalently, separating variables, 

ICdý=Rdz 
ý2+5 

which integrates to give 

I 

a 
+(R-S)ln 

ý +S 
-2Rax R(Ca-ýo) 

R, o +S' 
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where eo = e(0). Written out in full and taking C(O) = 1, (49) reads as follows 

4K (262 - I')a x (2E2 - r) 
(1 

- 
ca) 

- 

(E2 
- 2r) in (262 - r) C' + es +r 

362 
(50) 

The function Kz(e) is shown below for the case when the parameters S2o, Ti, T2 

take the representative numerical values 

SZo = 41r x 10146 1, 

T1 = 100 x 10-12s, 

T2 = 100 x 10-las. 

Kx(ý) 

20 

17.5 

15 

12.5 

10 

7.5 

5 

2.5 

0.2 0.4 0.6 0.8 
c 

K= N[m'3] x (7.27 x 10-23) [m2] = (7.27N x 10-23) [m-1], where N is the 

number density of atoms, and the dimensions of the constants are indicated in 

square brackets. Clearly the validity of our approximate solution runs out before 

the non-physical point at C=0 is reached. 
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Incidentally, it will probably have been noticed that equation (1) evaluated at r= 
1 is tautological. However, an expression for öz (ff. t Ale dr) is easily obtained 

directly from equations (37), (39) and (40): 

(foo I IZ 
Nh °° o+ 1 (Ps 

- p08) dT. äz \ýA 
dT) = 2ýopQoTi 

f. 
[PT 

- P7 f 

Replacing A, Ay, p7, p8 as we did before by their 1-soliton forms, we find 

2Ke1C 
: =-ý2+17 

which implies 

if C(0) = 1. 

C2 
- 1+1n(2) = -4Kelx, 
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Chapter 8 

Conclusions. 

Throughout this thesis we have focused on the resolution of two demanding math- 

ematical problems connected with a new model for the propagation of electro- 
magnetic plane waves in a 3-level optical medium. The Reduced Maxwell-Bloch 

equations governing the model are notable for being formulated in terms of the 

vector potential field, as opposed to the electric field of the plane wave, and be- 

cause they possess analytic fully polarised optical soliton solutions, whereas pre- 

vious comparable treatments (i. e., those integrable at the carrier timescale) only 
admit linearly polarised solitons. Yet prior to our own study, the most fundamen- 

tal property of the RMB-equations, implied by their existence as the compatibil- 
ity condition of an overdetermined "AKNS-pair" of linear differential equations 
[8], namely their complete integrability using the Inverse Scattering Transform 

method, had never been rigorously investigated. Thus we were presented with the 
first major task: to establish an Inverse Scattering scheme providing a method for 

analytic solution of the general initial-value problem for the RMB-system with 
rapidly decreasing boundary conditions. Such a scheme was put forward in Chap- 

ter 5, and furthermore its validity was successfully tested when the 1-soliton so- 
lutions it predicted exactly matched those found by the technique of Darboux- 
Bäcklund transforms in Chapter 4. As has already been mentioned, this is the first 
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example of an Inverse Scattering scheme for a system whose scattering problem 
is characterised by a3x3 matrix 

U(T, Z, S) = G(J + Q(r, z), 

where 
J= diag {J1, J2, J2} ER 

and Q is off-diagonal (cf. equation (5) p. 12), and which possesses "sine-Gordon- 

type" symmetries (the zeros of the transition coefficient a(() occur in symmetric 
pairs about the imaginary axis of the complex (-plane). 

Widening the perspective, we remark that the scheme provides a strong mathemat- 
ical foundation for further research work. For instance one might use it to analyse 

collisions between vector solitons having different polarisation states, or as a basis 

for perturbation theory with which to construct solutions of near-integrable sys- 
tems. A case in point, and a good potential application for the RMB-equations, is 

the modelling of pulse formation in laser cavities. Here we have an environment 

which cannot possibly be represented by an exactly integrable system, because of 
the amplification and dissipation processes taking place. 

Bearing in mind these considerations, we turned to the problem of determining 

the influence of non-Hamiltonian perturbations upon the soliton parameters. By 

extending the ideas of Elgin [13], we managed to derive an exact evolution equa- 
tion for the hierarchy of conserved functionals associated with the RMB-system 
in the presence of an arbitrary perturbation. More precisely, if the inner-product 
(involving a4x4 matrix integro-differential operator) on the right-hand side of 
this evolution equation is calculated according to a suitably perturbed set of RMB- 

equations, and if the functions A, Ay, pl,..., p8 as they subsequently appear in 

the equation are replaced by their 1-soliton forms, then one obtains a first order 
differential equation describing the variation of the single soliton parameter with 
propagation distance z. Perturbative effects on two-parameter solitons would be 
handled by carrying out the same procedure at two separate values of r (cf. (1) 
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p. 110), in order to get a determined system of two first-order differential equa- 
tions. Whilst we accept that the computations required are quite laborious, this 

method at least provides a general and systematic way of evaluating the impact of 
non-conservative perturbations. 

Regarding future work, there remain various open problems and avenues of re- 

search which could be addressed; a couple of possibilities have already been men- 
tioned. We point out two more: 

1. How to extend the inverse scattering scheme to deal with the case of transi- 
tion coefficients possessing higher-order zeros. 

2. How to describe the evolution of the background radiation field generated 
in the presence of perturbing effects. 
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Appendix. 

Lie Algebras. 

Let F be the field of either the real or complex numbers. Then a Lie algebra 
L over the field F is an n-dimensional vector space over F with an additional 
multiplicative operation [, ], called the Lie product or commutator, having the 
following properties for all cY, ß, 'y E L, cl, c2 E F: 

1. 

2. 

3. 

[a, P] E L, 

[cl a+ c2ß, 7) = cl [a, 7] + cz [8,, y) , 

[a, #)=-[#, a], 

4. the Jacobi Identity holds i. e., 

[a, [ß, ry]l + [ß, 17r, all + ['Y, [a, ßll = 0. 

Now according to Ado's Theorem (cf. Jacobson [38], Chapter VI), every abstract 
Lie algebra is isomorphic to a Lie algebra of matrices. Therefore it is enough for 

our purposes to exclusively think of the elements of L as being matrices of some 
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kind; in which case the Lie product becomes the ordinary matrix commutator 

[a,, ß] =a, ß-Pa. 

If we suppose that {e1, 
..., En} is a basis for L, then the structure constants relative 

to this basis are defined through the relations 

n 
L3 [Ej, Ek] _ 1: fjktEt) j, k= i, ..., n. (1) 

1=1 

Given the set of basis elements, the n3 scalars fikt EF specify the Lie algebra 

completely. 

An automorphism of L is an invertible linear transformation O: L -4 L which 

transforms the basis elements el, ..., e,, in a non-trivial way whilst leaving invariant 

the form of the commutator relations (1). 

Lastly, we define u(N) to be the real Lie algebra consisting of anti-hermitian Nx 

N matrices. It has an (N2 -1)-dimensional subalgebra su(N) of NxN traceless 

matrices. Every member of su(N) can be expressed as a linear combination with 

real coefficients of the matrices 

1 
2 

where JAI, ..., \Na-1} is a basis for the space of hermitian traceless matrices. 
Hence, using (1) we see that the relations 

N2-1 

[Aj, Ak] = 2t Ef jklAl, j, k =1, ..., N2 -1, 
1=1 

determine the structure constants fjkl ER of su(N). We remark (but do not 
prove) that any odd permutation of the indices of fjkl changes its sign. 
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