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Abstract

There is an urgent need for new chemotherapies against human African trypanosomiasis
(HAT), caused by the protozoan parasite Trypanosoma brucei. It is anticipated that
the parasites’ divergent biochemistry will enable development of novel therapies. To
study the behaviour of a complex network as metabolism, one can employ mathematical
models.

In this thesis, metabolism of bloodstream form T. brucei was investigated. Cellular
metabolism consists as a complex system connecting enzymes with metabolites, and
to study such a network one can construct mathematical models that describe the
connections within the biological system. A previously published, and well-curated
model of glycolysis in bloodstream form T. brucei (Bakker BM, et al. (1997) J Biol
Chem 272:3207 15), was extended here with the pentose phosphate pathway (PPP), the
second major pathway in glucose metabolism in most life forms. Several hypotheses
were derived during the model building process and these were tested experimentally.

It became apparent that the glycosomal bound-phosphate balance is essential for the
parasite. Extension of the glycolytic model with the PPP introduced the risk of a
so-called ’phosphate leak’, where bound-phosphates are depleted in the glycosome.
Two hypotheses were investigated in silico, while one hypothesis could also be tested
experimentally; (i) a glycosomal ATP:ADP antiporter was proposed, but in silico
analysis indicated that the activity of such an antiporter requires tight regulation. (ii) A
glycosomal ribokinase was investigated both in silico and experimentally. Genetic
mutants indicated that ribokinase is essential to bloodstream form T. brucei, albeit at
low levels.

Additional analysis of the generated models indicated that ablation of 6-phosphogluconate
dehydrogenase (6PGDH) in T. brucei is lethal by a different mechanism as seen in other



ii

organisms. Overall, extension of the glycolytic model with the PPP demonstrated the
fragility of the model regarding the bound-phosphate balance and indicated that future
analysis on glycosomal metabolism should be focused on this.

Important in the use of mathematical models of metabolism is that the underlying
stoichiometry of the model reflects (albeit with simplification) the in vivo system. It
is therefore paramount to know what enzyme activities are present in the organism of
interest. In this thesis a metabolomics approach was used to elucidate the function of
three T. brucei genes. These genes were putatively annotated as arginase (ARG), N-
acetylornithine deacetylase (NAO) and nicotinamidase (NAM). The results suggested
that ARG has catalytic activity as tryptophan monooxygenase (EC 1.3.12.3), while
substrate promiscuity was indicated for NAO and NAM.

The work presented in this thesis has provided us with new insights on trypanosomal
metabolism. The extended model now allows us to research a larger part of T. brucei
metabolism with mathematical modelling, and will thereby aid in the identification and
further investigation of (proposed) drug targets.
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Chapter 1
Introduction

Human African trypanosomiasis is a neglected tropical disease caused by subspecies of
the parasite Trypanosoma brucei. The unique metabolic characteristics of T. brucei might
provide potential targets for rational drug design. This project was conceived to further
the understanding of trypanosomal metabolism by studying its dynamics both in silico
and with wet-lab experimentation.
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1.1. Human African trypanosomiasis

Human African trypanosomiasis (HAT) is a deadly parasitic disease also known by the
misleadingly name of “sleeping sickness”. HAT is caused by an infection with subspecies
of the protozoan parasite Trypanosoma brucei which is transmitted via the tsetse fly
vector. The distribution of tsetse flies (Cecchi et al., 2008) restricts the spread of the
disease to sub-Saharan Africa (Figure 1.1).

Figure 1.1.: Distribution of human African trypanosomiasis. The black line divides the areas
in which either of the two subspecies predominates. Adapted from Brun et al.
(2010), permission to reproduce this image has been granted by Elsevier.
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HAT is a disease with two stages, defined by the presence of the parasites at different
locations within the mammalian host. In the first stage of the disease, parasites reside
in the blood plasma and lymph and symptoms vary from general malaise, headache and
fever, to pulmonary oedema and pancarditis. The parasites evade the host’s immune
response by a combination of a dense glycoprotein coat and the remarkable ability
to modulate its structure through a process of antigenic variation (Cross, 1975). The
duration of the first stage of disease depends on the subspecies of T. brucei involved, and
varies from a few weeks to months for T. b. rhodesiense, to several months to years for
T. b. gambiense. Patients eventually progress into the second stage of the disease, when
the parasites have entered the cerebral spinal fluid and eventually the brain. The second
stage of HAT often leads to the characteristic symptoms of sleeping sickness: nocturnal
insomnia and diurnal somnolence. It is in the second stage of the disease when patients
usually present themselves at health clinics. Untreated infection leads invariably to coma
and death.

The number of new cases of HAT have declined significantly in the last decade; in 2009,
for the first time in 50 years, less than 10,000 cases were reported (Simarro et al., 2008).
However, the statistics on sleeping sickness incidence suffer from gross errors due to
under-reporting of new cases and deaths (Odiit et al., 2005). Many of the people affected
do not present themselves at health clinics, which are often located beyond their reach
or infected patients are not diagnosed correctly. In 2010, 7,139 new cases of HAT were
reported to the World Health Organisation (WHO), while the predicted total number of
cases was almost 5-fold higher (WHO, 2012). Although the recent decline in new cases
of HAT is promising, a similar decline in the prevalence of HAT in the last century did
not result in the eradication of the disease (Figure 1.2). Particularly, political instability
and war are important factors increasing the risk of reemergence of HAT in countries
including the Democratic Republic of the Congo and South Sudan (Berrang-Ford et al.,
2011; Tong et al., 2011; Ruiz-Postigo et al., 2012).

1.1.1. Chemotherapy

There are currently four licensed treatment regimes for HAT: pentamidine, suramin,
melarsoprol, eflonithine and an additional nifurtimox-eflornithine combination therapy
(NECT, Simarro et al., 2012) which is used off-license having been placed on the WHO
list of essential medicines. While many of these drugs have been around for decades,
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Figure 1.2.: Reported cases of sleeping sickness and population screened, 1939–2004. Grey
columns, number of reported cases; black circles, population screened. From
Steverding (2008), reproduced under the Creative Commons Attribution License.

only the mode of action of eflornithine is understood, as a suicide inhibitor of the enzyme
ornithine decarboxylase (Poulin et al., 1992).

The current available chemotherapies against HAT are unsatisfactory for a number of
reasons: the drugs require parenteral administration, show severe side-effects and are
relatively expensive when considering the impoverished state of most of HAT’s victims
(Barrett et al., 2007). In 2010, the average cost to treat a stage II HAT patient was
C336 (Simarro et al., 2012). Pentamidine is only used against T. b. gambiense,
while melarsoprol and eflornithine are the only effective drugs against stage II disease
and melarsoprol may cause drug induced encephalopathy in 5 10 % of the patients.
Additionally, resistance against the current drugs is of concern: resistant parasites to
all the drugs have been selected in the laboratory (Phillips and Wang, 1987; Scott et al.,
1996; Bridges et al., 2007; Vincent et al., 2010), and treatment failures to all of the drugs
have been noted in the field (Barrett et al., 2011).

There is a renewed optimism that in the post-genomic era (Berriman et al., 2005), our
knowledge of the parasite’s divergent biochemistry will enable development of novel
therapies for the disease. The Kinetoplastida diverged early in evolution from other
eukaryotes (Hannaert et al., 2003b) and is replete with peculiar biochemical features
that have encouraged those interested in drug development (Verlinde et al., 2001; Stuart
et al., 2008). The development of genetic tools in trypanosomes, such as gene knock
out and RNA interference allow the study of these potential drug targets in more detail
(Barrett et al., 1999; Clayton, 1999).



1.2. Trypanosoma brucei 5

1.2. Trypanosoma brucei

Trypanosoma brucei is a flagellated protozoan parasite, a member of the order
Kinetoplastida and the family Trypanosomatida. There are three subspecies of T. brucei,
of which two are human infective. T. b. gambiense causes >90 % of the reported
cases of HAT and can be found in West and Central sub-Saharan Africa, while T. b.
rhodesiense is found in East sub-Saharan African and causes the remaining 10 % of HAT
(Simarro et al., 2008). The third subspecies, T. b. brucei, is non-infective for humans,
and is therefore routinely used in laboratories. Other members of the Trypanosomatida
include T. congolense and T. vivax, causing n’gana in cattle in Africa; Trypanosoma
cruzi, the causative agent of Chagas’ disease in South-America; and members of the
genus Leishmania, causative agents of a range of diseases in the tropics and subtropics
(Barrett et al., 2003).

1.2.1. A unique life cycle

T. brucei has a complex life cycle during which they encounter vastly differing
environments (Figure 1.3). Upon injection into the bloodstream, T. brucei is fully adapted
to the glucose-rich environment of mammalian blood. Bloodstream form parasites
express a coat of variable surface glycoproteins (VSG), in an attempt to evade the
host’s immune system. Metacyclic trypomastigotes transform into the rapidly dividing
bloodstream form trypomastigotes, which can be readily cultured in the laboratory
(Hirumi and Hirumi, 1989). When parasitaemia in the host increases, the long-
slender bloodstream form trypomastigotes differentiate into the non-dividing short-
stumpy trypomastigote forms via a quorum-sensing type mechanism that has not been
fully elucidated (Fenn and Matthews, 2007).

Stumpy form parasites are primed to differentiate upon uptake into the tsetse fly vector
to the procyclic form trypomastigtes (Figure 1.3). During differentiation in the tsetse
midgut, the surface coat switches from VSGs to the expression of the non-variable
GPEET and EP procyclins (Vassella et al., 2001). While migrating towards the salivary
glands, the parasites differentiate into the metacyclic trypomastigotes that are ready to
be injected into a new mammalian host. While residing in the tsetse fly, T. brucei relies
on the use of amino acids, particularly proline, for energy metabolism (Bursell, 1981;
Bringaud et al., 2006).
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Figure 1.3.: Life-cycle stages of Trypanosoma brucei. Adapted from Blum et al. (2008),
permission to reproduce this image has been granted by Elsevier.

1.3. Trypanosomal glycolysis

In the mammalian host, where glucose is available in high (5 mM) and constant levels,
glucose is the sole energy source for T. brucei, that has no functional citric acid cycle in
the bloodstream form stage (Ryley, 1956; Durieux et al., 1991). The bloodstream form
of T. brucei has a streamlined energy metabolism, where glucose is only catabolised in
glycolysis to pyruvate and glycerol (Grant and Fulton, 1957), with negligible amounts
used in biosynthetic processes (Haanstra et al., 2012). Recent tracking of 13C-labelled
glucose through untargeted metabolomics challenges this view, with glucose-derived
carbons ending up in various tricarboxylic acids, although labelling patterns indicate
these are glycosomal derived following fixation of CO2 onto phosphoenolpyruvate rather
than products of a citric acid cycle (unpublished data; Dr Darren Creek, University of
Glasgow).
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1.3.1. Compartmentalisation of glycolysis

A major part of trypanosomal glycolysis is compartmentalised in peroxisome-related
microbodies called glycosomes, which were first described by Opperdoes and Borst
(1977), described in detail in Section 1.4. The compartmentalisation of glycolysis is
thought to have a selective advantage by providing a greater metabolic flexibility to the
vastly differing environments T. brucei encounters during its life-cycle (Herman et al.,
2008; Gualdrón-López et al., 2012a). Over 90 % of the total protein content of the
glycosomes in bloodstream form T. brucei is comprised of glycolytic enzymes (Aman
et al., 1985; Misset et al., 1986), while the same enzymes in the procyclic form only
make up 40–50 % of the total glycosomal protein (Hart et al., 1984).

In the glycosome, glucose is converted to 3-phosphoglycerate, that is subsequently
catabolised further to pyruvate in the cytosol (Figure 1.5). Pyruvate is the end product of
glycolysis in bloodstream form T. brucei due to the absence of lactate dehydrogenase
(Dixon, 1966; Ormerod et al., 1970) or a functional tricarboxylic acid cycle (Ryley,
1956; Durieux et al., 1991). The glycosome has been described as a permeability barrier
for sugar-phosphates, ATP/ADP and NADH/NAD+—although this has recently been
challenged, as discussed in Section 1.4.

The partial glycosomal compartmentalisation compels the flux through glycolysis to
adhere to the strict stoichiometry of the pathway. Any reduction of NAD+ by
glyceraldehyde-3-phosphate dehydrogenase needs to be balanced by the oxidation of
NADH by glycerol-3-phosphate dehydrogenase, reducing dihydroxyacetone phosphate
(DHAP) to glycerol 3-phosphate (Gly-3-P). Under aerobic conditions, a Gly-3-P:DHAP
shuttle subsequently reoxidises glycerol 3-phosphate to DHAP via a mitochondrial
glycerol-3-phosphate oxidase (Clarkson et al., 1989). DHAP can subsequently be
directed towards pyruvate production via triosephosphate isomerase (TIM). Under anoxic
conditions, glycerol 3-phosphate cannot be oxidised in the mitochondrion, and is
converted to glycerol by the reverse action of glycerol kinase. While aerobic glycolysis
yields two ATP molecules by pyruvate kinase per glucose molecule consumed, anaerobic
glycolysis only yields one molecule and equimolar amounts of pyruvate and glycerol
(Ryley, 1956; Haanstra et al., 2012).

With part of glycolysis localised to the glycosome, trypanosomal glycolysis has lost
some of the regulation seen in other organisms. Glycolysis is an example of an
autocatalytic pathway, as the surplus ATP production of glycolysis can fuel its early
steps in a positive feedback loop (Figure 1.4). This has been called the “turbo” principle
and contains a inherent risk (Teusink et al., 1998). The surplus of ATP produced
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could boost the flux through the early reactions of glycolysis above the capacity of the
enzymes downstream, resulting in extreme accumulation of the intermediates, hexose-
phosphates. Most organisms prevent this “turbo design” of glycolysis by additional
negative feedback to hexokinase and phosphofructokinase (Teusink et al., 1998), e.g.,
inhibition of hexokinase by glucose 6-phosphate (Weil-Malherbe and Bone, 1951) or
phosphofructokinase by phosphoenolpyruvate (Blangy et al., 1968).

T. brucei lacks feedback regulation through hexokinase and phosphofructokinase
(Nwagwu and Opperdoes, 1982). Bakker et al. (2000) predicted from mathematical
modelling of trypanosomal metabolism (discussed in 1.8.5) that the loss of glycosomal
localisation of the glycolytic enzymes in T. brucei would result in a “turbo explosion”.
And indeed, later experimentation confirmed that parasites deficient in glycosomal
protein localisation accumulate hexose-phosphates (Haanstra et al., 2008). Additionally,
other groups have confirmed that high glucose concentrations are lethal for glycosome-
deficient bloodstream forms, while procyclic forms could be rescued by the removal of
sugars from the medium (Furuya et al., 2002), or by the ablation of hexokinase (Kessler
and Parsons, 2005). The essentiality of the glycosome for the prevention of a turbo effect
is likely a consequence of the glycosomal compartmentalisation, rather than the cause
(Gualdrón-López et al., 2012b).

Figure 1.4.: The autocatalytic design of glycolysis. The conversion of glucose to pyruvate
through glycolysis, with the intrinsic positive feedback (dashed arrow). Most
organisms have some sort of negative feedback from the hexose phosphates to the
early steps of glycolysis (dotted arrow).
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Figure 1.5.: Glycolysis in the glycosomes of bloodstream form T. brucei. Abbreviations used
are as follows: Glc-6-P, glucose 6-phosphate; Fru-6-P, fructose 6-phosphate;
Fru-1,6-BP, fructose 1,6-bisphosphate; DHAP, dihydroxyacetone phosphate;
GA-3-P, glyceraldehyde 3-phosphate; Gly-3-P, glycerol 3-phosphate; 1,3-BPGA,
Pi, inorganic phosphate; 1,3-bisphosphoglycerate; 3-PGA, 3-phosphoglycerate;
2-PGA, 2-phosphoglycerate; PEP, phosphoenolpyruvate. Reactions shown are as
follows: step 1, transport of glucose across the cytosolic membrane (GlcTc); 2,
transport of glucose across the glycosomal membrane (GlcTg); 3, hexokinase
(HXK); 4, phosphoglucose isomerase (PGI); 5, phosphofructokinase (PFK); 6,
aldolase (ALD); 7, triosephosphate isomerase (TIM); 8,
glyceraldehyde-3-phosphate dehydrogenase (GAPDH); 9, phosphoglycerate kinase
(PGK); 10, transport of 3-PGA across the glycosomal membrane (3PGAT); 11,
phosphoglycerate mutase (PGM); 12, enolase (ENO); 13, pyruvate kinase (PYK);
14, transport of pyruvate across the cytosolic membrane (PYRT); 15, glycerol
3-phosphate dehydrogenase (G3PDH); 16, glycerol kinase (GK); 17,
Gly-3-P:DHAP antiporter (GDA); 18, glycerol-3-phosphate oxidation (AOX); 19,
ATP utilisation (ATPu); 20, adenylate kinase (AK). From Achcar et al. (2012),
reproduced under the Creative Commons Attribution License.
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1.4. A unique organelle: the glycosome

Glycosomes are globular microbodies, related to peroxisomes and glyoxysomes
(Opperdoes, 1988). Glycosomes have a diameter of around 0.27 μm, while bloodstream
form trypanosomes contain 240 glycosomes on average, representing 4.3 % of the total
cell volume (Opperdoes et al., 1984). Several early reports show evidence of particle-
bound glycolytic enzymes in trypanosomes, such as hexokinase (HXK) (Risby and Seed,
1969), phosphoglucose isomerase (PGI) (Risby et al., 1969) and glycerol-3-phosphate
dehydrogenase (G3PDH) (Reynolds, 1975), but this was poorly understood at the time.
Opperdoes and Borst (1977) purified microbodies from bloodstream form T. brucei and
showed that nine glycolytic enzymes are predominantly localised to these microbodies.
The term glycosome was coined for the high glycolytic content.

1.4.1. Glycosomal targeting of enzymes

Glycosomal proteins are encoded by nuclear genes (microbodies, including glycosomes,
do not contain DNA, Opperdoes, 1984), and therefore need to be transported into the
glycosome. It has been demonstrated that import of proteins in peroxisomes is dependent
upon three amino acids (serine-lysine-leucine, or related motifs) at the very end of the C-
terminus (Gould et al., 1988). This peroxisomal targeting signal (PTS-1) was first noted
with the observation that firefly luciferase, containing a C-terminal serine-lysine-leucine
sequence, was transported into mammalian peroxisomes (Keller et al., 1987). Similar
transport of luciferase into glycosomes indicates that the PTS-1 sequence can also target
proteins to glycosomes (Sommer et al., 1992).

Substitutions of amino acids in the PTS-1 have demonstrated that the exact amino
acid sequence of PTS-1 is less strict for transport into glycosomes when compared
to mammalian peroxisomes (Sommer and Wang, 1994). PTS-1 is present in
many glycosomal enzymes, but absent in others, such as hexokinase, aldolase and
triosephosphate isomerase (Colasante et al., 2006). However, an additional peroxisomal
targeting signal has been identified at the N-terminal of peroxisomal proteins (Swinkels
et al., 1991). This signal, PTS-2, has also been demonstrated to function in trypanosomes
(Blattner et al., 1995), and identified to be present in various proteins, including aldolase
(Chudzik et al., 2000). An internal peroxisomal targeting signal (I-PTS) has also been
reported for peroxisomal targeting in Saccharomyces cerevisiae (Klein et al., 2002),
which is present in trypanosomal triosephosphate isomerase (Galland et al., 2007).
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Importing proteins into peroxisomes and glycosomes involves a protein complex,
including PEX2 (Guerra-Giraldez et al., 2002), PEX5 (de Walque et al., 1999) and
PEX14 (Moyersoen et al., 2003). PEX5 is the cytosolic receptor recognising the PTS-
1 sequence, while PEX14 is a membrane bound protein that acts as a docking station
for PEX5, and PEX2 is involved in the actual translocation of the protein across the
glycosomal membrane (Schliebs, 2006). Conditional knock-out of various PEX proteins
showed that the glycosome is an essential organelle for trypanosomes (Fry et al.,
1993; Guerra-Giraldez et al., 2002; Moyersoen et al., 2003; Krazy and Michels, 2006;
Verplaetse et al., 2009) .

1.4.2. Transport of metabolites over the membrane

It has been suggested that the glycosome acts as a permeability barrier preventing the
glycolytic intermediates, ATP/ADP and NADH/NAD+ from freely moving between the
glycosome and cytosol (Opperdoes and Borst, 1977; Opperdoes, 1987; Clayton and
Michels, 1996). This separation of cytosolic and glycosomal pools of metabolites has
been particularly important to prevent the aforementioned turbo effect (Bakker et al.,
2000; Haanstra et al., 2008). It is noteworthy that while most metabolites were assumed
to not cross the glycosomal membrane, glucose, 3-phosphoglycerate, glycerol and the
combination of DHAP and glycerol 3-phosphate were assumed to cross the glycosomal
membrane by unknown mechanisms (Bakker et al., 1997).

Recently, this hypothesis of non-permeable glycosomes has been challenged by the
discovery of two types of pores in glycosomes, similar to pores in peroxisomes (Grunau
et al., 2009; Rokka et al., 2009). An investigation by Gualdrón-López et al. (2012c)
defined channel-forming proteins in the glycosomal membrane that would allow the free
flow of small molecules across the glycosomal membrane. This poses a problem with the
previously observed importance of glycosomal compartmentalisation of glycolysis. In an
additional paper, Gualdrón-López et al. (2012a) argue that, even though the non-specific
channels are present, glycolytic intermediates are retained within the glycosome. This
could be accomplished by; (i) the glycolytic enzymes forming a multi-enzyme complex,
where there is limiting availability of free intermediates; (ii) a Donnan equilibrium,
where the glycosomal enzymes have a higher pI than cytosolic enzymes and therefore
attract the intermediates; (iii) a regulatory mechanism involving regulatory enzymes or
proteins that are currently unknown.
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1.5. Pentose phosphate pathway

Although the glycosome is named after the presence of glycolytic enzymes, it also
houses other metabolic pathways. One of those is the pentose phosphate pathway (PPP,
Figure 1.6). Early reports show that the release of CO2 from a trypanosome culture
accounted for less than 1 % of the glucose consumed, from which it was concluded
that the PPP was not very active (Grant and Fulton, 1957). This was supported by the
observation that no activity for 6-phosphogluconate dehydrogenase (6PGDH) could be
detected (Ryley, 1962). However, a later report demonstrated that the activity of 6PGDH
can be detected in trypanosomes and is dependent on Mg2+, which was absent in earlier
experiments (Cronin et al., 1989). This report also showed the activity of other enzymes
from the PPP.
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Figure 1.6.: The PPP in T. brucei. Solid arrows indicate reactions present in all life-stages,
dashed arrows indicate reactions that are not present in the bloodstream form stage.
1: glucose-6-phosphate dehydrogenase (G6PDH); 2: 6-phosphogluconolactonase
(PGL, reactions also occurs spontaneously); 3: 6-phosphogluconate dehydrogenase
(6PGDH); 4: pentose phosphate isomerase (PPI); 5: pentose phosphate epimerase
(PPE); 6: transketolase (TKT, catalyses two reactions); 7: transaldolase (TAL).
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1.5.1. Oxidative PPP

In the oxidative part of the PPP (or hexose monophosphate shunt) glucose
6-phosphate is oxidised to 6-phospogluconolactone (6-PGL) by glucose-6-phosphate
dehydrogenase (G6PDH), while NADP+ is reduced to NADPH. 6-PGL is hydrolysed to
6-phosphogluconate (6-PG) by both a spontaneous reaction (Kupor and Fraenkel, 1972)
and catalysed by the enzyme 6-phosphogluconolactonase (PGL). The dedication of an
enzyme to the catalysis of an already spontaneously occurring reaction probably has the
function to keep the concentration of 6-PGL as low as possible, as this strong electrophile
can have toxic effects (Rakitzis and Papandreou, 1998). NMR analysis has also shown
that the 6-PGL that is produced by G6PDH is of the so called δ-form, which can lead
to the γ-form by intramolecular rearrangement (Miclet et al., 2001). However, only
the δ-form undergoes spontaneous hydrolysis, the γ-form of 6-PGL is a ‘dead branch’,
resulting in an accumulation of the highly electrophilic compound. G6PDH is only able
to hydrolyse the δ-form, but by doing so it prevents its conversion into the γ-form.

6-PG is subsequently oxidised and decarboxylated to ribulose 5-phosphate (Rul-5-P)
by 6-phosphogluconate dehydrogenase, while again reducing NADP+ to NADPH.
Pentose phosphate isomerase finally converts Rul-5-P into ribose 5-phosphate (Rib-5-P),
although this step can also be considered to be part of the non-oxidative part of PPP.

1.5.2. Non-oxidative PPP

In the non-oxidative part of the PPP, pentose phosphate epimerase (PPE) converts
Rul-5-P into xylulose 5-phosphate (X-5-P). The enzyme transketolase (TKT) transfers
two carbon atoms from X-5-P to Rib-5-P, producing glyceraldehyde 3-phosphate
(GA-3-P) and sedoheptulose 7-phosphate (S-7-P). Transaldolase (TAL) can subsequently
transfer three of the carbon atoms from S-7-P to GA-3-P, producing fructose 6-phosphate
(Fru-6-P) and erythrose 4-phosphate (E-4-P). TKT can catalyse another reaction, where
two carbon atoms from X-5-P are transferred to E-4-P, producing Fru-6-P and GA-3-P.

The end products from three molecules of Rul-5-P through the non-oxidative part of the
PPP are one molecule of GA-3-P and two molecules of Fru-6-P. In bloodstream form
trypanosomes only the oxidative part of the PPP, including PPI is active, while the whole
PPP is operational in procyclic trypanosomes (Cronin et al., 1989; Colasante et al., 2006).



1.6. Redox metabolism 14

1.5.3. Functions of PPP

The PPP has several important functions, such as the production of reducing equivalents
in the form of NADPH, which can protect the parasite during oxidative stress (Barrett,
1997). In T. cruzi, the connection between resistance against oxidative stress and activity
of G6PDH and 6PGDH—two enzymes that produce the protecting NADPH—has been
demonstrated (Igoillo-Esteve and Cazzulo, 2006; Mielniczki-Pereira et al., 2007). In this
context, a genetic null mutant of the glucose transporter in Leishmania mexicana was
also more sensitive to oxidative stress (Rodriguez-Contreras et al., 2007).

The production of Rib-5-P is also an important function of the PPP in many
organisms, as this metabolite can be used to produce phosphoribosylpyrophosphate,
an important intermediate in nucleotide biosynthesis. The non-oxidative branch in
procyclic trypanosomes is also important in provision of key carbohydrate precursors
and interconnecting pentose phosphates with glycolytic intermediates.

Most of the PPP enzymes appear to be targeted to the glycosome, suggested by the
presence of PTS sequences. However, experiments also show a dual localisation of the
PPP enzymes, here they are most abundant in the cytosol. Of the total cellular activity,
85 % of PGL and 55 % of G6PDH were located in the cytosol (Heise and Opperdoes,
1999; Duffieux et al., 2000). The localisation of 6PGDH was inconclusive, but indicates
a larger abundance in the cytosol (Heise and Opperdoes, 1999). It has been reported that
transketolase has a PTS (Colasante et al., 2006) and most of this enzyme is found in the
cytosol with a small proportion also found in glycosomes (Veitch et al., 2004; Stoffel
et al., 2011).

1.6. Redox metabolism

Another characteristic of the divergent biochemistry of trypanosomatids is the
mechanism by which it regulates its redox balance. Where most organisms
use glutathione as the central thiol to control cellular redox, trypanosomatids use
trypanothione or N1,N8-bis(glutathionyl)-spermidine, which consists of two glutathione
molecules conjugated to a spermidine linker (Fairlamb et al., 1985). Trypanothione
is central in maintaining cellular redox metabolism in trypanosomatids (Krauth-Siegel
and Comini, 2008) and is more efficient than glutathione as it can form intramolecular
disulphide bonds more rapidly (Olin-Sandoval et al., 2010). Interestingly, the
trypanocidal drug eflornithine acts as a suicide inhibitor of ornithine decarboxylase
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(Bacchi et al., 1983), an enzyme involved in the synthesis of polyamines and ultimately
trypanothione (Figure 1.7). Untargeted metabolomics shows that treatment of T. brucei
with a sub-lethal dose of eflornithine leads to significant changes in concentrations of
polyamines, i.e. putrescine levels are depleted (Vincent et al., 2012).

1.6.1. Ornithine biosynthesis

Given the effects of eflornithine on ornithine decarboxylase, it was considered that
ornithine biosynthesis is a good drug target. It has been assumed that arginase was the
source of ornithine in T. brucei, as in other eukaryotes (Figure 1.7).

The gene coding for arginase in the related species Leishmania has been identified and
studied in detail (da Silva et al., 2002, 2008, 2012; Riley et al., 2011), but T. brucei
does not have a syntenic homologue of this gene (Vincent, 2011). However, the T.
brucei genome does harbour a different putative gene with high sequence similarity to
other eukaryotic arginases. The syntenic partner of this gene was putatively annotated in
Leishmania as an ureohydrolase, the group to which arginase also belongs.

The T. brucei gene was putatively annotated as arginase in early genome databases,
although this annotation was changed in a later update to agmatinase, another
ureohydrolase. However, T. brucei has found to have negligble arginase activity (Vincent
et al., 2012). Sequence alignment of the latter gene with known arginases from different
species demonstrated the absence of key active site residues (Vincent, 2011).

Interestingly, following treatment of T. brucei with eflornithine, the accumulation
of ornithine is closely correlated to the accumulation of N-acetylornithine (Vincent
et al., 2012). This brings up the suggestion that T. brucei produces ornithine from
glutamine, similar to a common pathway in prokaryotes (Figure 1.8). In contrast, further
investigation by (Vincent, 2011) demonstrated that T. brucei does not use glutamine to
produce ornithine, although a putative N-acetylornithine deacetylase gene was identified.
The putative arginase and N-acetylornithine deactylases genes are investigated in more
detail in chapter 5. It seems that much of the trypanosome’s supply of ornithine is
via uptake from its environment, although in ornithine-free conditions, arginine can be
converted to ornithine, albeit by an unknown route (Vincent, 2011).



1.7. Metabolomics 16

1

2

3

5

Glutathione

GSpdSHSpermidine

Putrescine

Ornithine

Decarboxylated-S-
adenosylmethionine

5'-methylthioadenosine

Arginine

Trypanothione

Agmatine

4 4

Figure 1.7.: The trypanothione biosynthetic pathway. Trypanothione consists of two
glutathione molecules conjugated to a spermidine linker, produced in a two-step
reaction by trypanothione synthase. Leishmania spp. have a functional arginase that
can produce ornithine, which is lacking in Trypanosoma brucei. GSpdSH,
glutathionylspermidine. 1: arginase; 2: ornithine decarboxylase; 3: spermidine
synthase; 4: trypanothione synthase; 5: agmatinase.
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Figure 1.8.: Ornithine biosynthetic pathway from glutamate. Reaction 1: N-acetylglutamate
synthase; 2: N-acetylglutamate kinase; 3: N-acetyl-γ-glutamyl phosphate
reductase; 4: N-acetylornithine transaminase; 5: N-acetylornithine deacetylase.

1.7. Metabolomics

To study metabolic pathways one can apply the analysis of all small molecules in a given
biological sample, called metabolomics (Creek et al., 2012a). The aim of metabolomics
is not only to study the complete metabolic content (Mr <1200) of cells or other defined
systems, but also to do this in an unbiased and high-throughput manner. Of all the
“omics” techniques, metabolomics could be described as being closest to the phenotype.
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Where in the other “omics”, entities are studied that more or less follow the same basic
structure (for example a deoxyribose-backbone with four types of bases in DNA), the
complement of metabolites (or “metabolome”, as introduced by Tweeddale et al., 1998)
is very heterogeneous in chemicophysical properties. Metabolites extend over a broad
range in mass, volatility, charge, stability, thermolability etc. Due to the heterogeneity
of the metabolome, there is not a single technique that can be used to measure all
metabolites. Several techniques have been developed and all have their own biases
against certain metabolites alongside other (dis)advantages.

The main techniques used in metabolomics are mass spectrometry (MS) and nuclear
magnetic resonance (NMR) spectroscopy. MS is often hyphenated with gas
chromatography (GC) or liquid chromatography (LC) to resolve complex biological
mixtures, increasing the resolution and decreasing ion suppression (Villas-Bôas et al.,
2005). There also exist a variety of mass-spectrometers, differing in methods of
ionisation (Vestal, 2001), detection and mass analysis (McLuckey and Wells, 2001). MS
generally has a high sensitivity and resolution, but lacks quantitative accuracy. NMR
spectroscopy on the other hand, has a lower sensitivity and resolution, but an outstanding
quantitative accuracy and reproducibility (Pan and Raftery, 2007). Additionally, as NMR
is typically not hyphenated to a separation technique, it has no bias for or against volatile,
heavy or charged compounds.

Metabolomics has been used successfully many times in the study of Kinetoplastids
(Creek et al., 2012a). For example, NMR has been used to study anaerobic glycolysis
of T. brucei (Mackenzie et al., 1982, 1983), but more recently in a series of studies on
central carbon metabolism in the procyclic form of this parasite (Besteiro et al., 2002;
Coustou et al., 2006, 2008; Ebikeme et al., 2010). The mode of action of the drugs
eflornithine and nifurtimox on T. brucei were investigated with LC-MS (Vincent et al.,
2012), while central carbon metabolism was investigated in Leishmania (Saunders et al.,
2010).

1.8. Systems biology of metabolism

Trypanosomal metabolism has for long been the subject of investigation due to its unique
characteristics and the hope of identifying potential drug targets, with particular focus on
both the metabolites (e.g. trypanothione) and enzymes (e.g. ornithine decarboxylase).
However, most of these studies are about defining the characteristics of the object of
interest in isolation, while their role is performed in real biological systems.
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1.8.1. Why modelling metabolism?

Real systems in biology are mathematically complex, and would be impossible to study
as a whole without the use of modelling. Models are simplified abstractions of reality,
that aim to provide a deeper understanding of the real system. An important reason for
the complexity of biological systems is that they are hierarchical, both in time scales
and material structures. The time it takes for a compound to react with an enzyme is
separated by many orders of magnitude from the time it takes for a full cell-division.
And the material structures range from low-weight molecular compounds that make up
metabolism to whole organisms and even populations. Focusing only on metabolism
reduces the time scale and limits the scope of the analysis to the enzymes and their
metabolites, whereby you are no longer looking at the real system, but rather at a model.

A second reason for the complexity of biological systems is that they are highly
connected. Enzymes interact with metabolites, but also with other enzymes, which are
themselves the product of transcription and translation. In this respect, RNA and DNA
can also interact with each other, with enzymes and metabolites. All these interactions
can theoretically be described by mathematical equations, with various levels of detail.
Again, only focusing on metabolism reduces the complexity of the system, but results in
a simplified model.

Mathematical modelling of metabolism allows the investigation of the constituent parts of
metabolism within a biological context, by using mathematics to describe the interactions
within the network and focusing on the part of system important for the particular
research question. An important feature of using modelling while studying biological
systems is the constant iterative cycle between the real biological system and the model.

1.8.1.1. Metabolic control analysis

An important example of why the modelling of metabolism is required, and not just the
study of enzymes in isolation, is the subject of metabolic control analysis. In a landmark
paper in 1973, Kacser and Burns showed that the accepted dogma of one rate-limiting
step in a metabolic pathway is incorrect. Rather than one enzyme that controls the flux
through a pathway, the control is distributed through all the enzymes that are part of the
pathway. Not all enzymes have the same control on the pathway, enzymes can have a
near-zero control or even a negative control, but all control is shared.

The control of an enzyme can be quantified with the control coefficient:
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CJ
vi
=

d lnJ
d lnVmax,i

, (1.1)

where J is the metabolic flux through the pathway, vi represent reaction i and Vmax,i

is the activity of enzyme i. The control coefficient can theoretically obtain a number
between 0 and 1. If the control-coefficient CJ

vi
of enzyme i is zero, then any changes in

the activity Vmax,i of enzyme i has no effect on the flux J through the pathway. If the
control-coefficient CJ

vi
of enzyme i is 1, then any changes in the activity Vmax,i of enzyme

i lead to an equal change of the flux J through the pathway. All enzymes combined share
all control over the flux through the pathway, such that

n

∑
i=1

CJ
vi
= 1, (1.2)

where n is the total number of enzymes in the pathway. From this it becomes clear that
the control coefficient can only be calculated, and only has meaning, when enzymes are
studied as part of a pathway rather than in isolation.

1.8.2. Top-down versus bottom-up

Two broad approaches have emerged to allow the study of metabolism in recent years:
top-down and bottom-up (Figure 1.9 and Bruggeman and Westerhoff, 2007). The main
difference in the two approaches is primarily dictated by what data is used to generate
the mathematical models.

The top-down approach to modelling generates large networks with limited detail,
starting by generating data that describes (a large part of) the whole system. These
data sets can for instance be gene expression profiles, protein-protein interactions or
untargeted metabolomics (Kell, 2004; Chandrasekaran and Price, 2010). Subsequently,
it is attempted to make connections between the measured entities from a data set. From
gene expression profiles for instance, one can generate a metabolic map describing all
active metabolic pathways by connecting all expressed enzymes in a particular life-cycle
stage. Because of the size and nature of the underlying data sets, the models generated
from a top-down approach are typically large but only describe the stoichiometry of the
network.

The main objective of top-down models is to discover how the observed systemic
behaviour can be explained from the structure of the network. For instance a model
of all active metabolic pathways in a particular life-cycle of a cell can be used to identify
critical reactions, so called choke points, that can pin-point to important enzymes and
potential drug targets (Lee et al., 2009).
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Figure 1.9.: Top-down versus bottom-up systems biology. Top-down systems biology starts
with knowledge about systemic properties and applies the use of mathematical
models to gain new understanding of the network. Typically large datasets (e.g.
genome data) are generated while large networks are constructed that connect
entities within the dataset. Bottom-up systems biology on the other hand starts with
the properties of the system’s components, integrates those components into a
model and studies the emerging behaviour of the system. Top-down models are
typically large scale descriptions of the stoichiometry of a model, while bottom-up
models are typically detailed small scale models describing part of the whole
network.

The second approach to modelling is bottom-up, typically generating smaller models
with much more detail than in a top-down approaches (Figure 1.9 and Snoep et al., 2006).
One starts with studying the constituent parts of the system in great detail, e.g. the
kinetics of a particular enzyme in isolation. Detailed descriptions of the different entities
are then connected to generate a bottom-up models. The size of such models is restricted
due to the complexity of the description of the parts and the lack of experimental data.
For a bottom-up model of a metabolic pathway, one would typically need to measure
many parameter values.

The main objective of such bottom-up models is to predict what systemic behaviour
emerges from the combination of its constituent parts. An example is the use of a detailed
model of glycolysis in muscle cells to understand the rapid inactivation of this system
after contraction (Schmitz et al., 2010).
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However, there is no strict separation between the two approaches to modelling. The
future potential of systems biology is based on the integration of both modelling
approaches. An ambitious aim, but one that logically flows from the developments seen
in the last decades, is the construction of a Silicon Cell (Westerhoff, 2001). In the future,
this in silico representation of life would span all levels in cell biology, from genomes to
proteomes, metabolomes and beyond, and might also eventually include spatial effects.
The hope is that such in silico cells can be used for personalised medicine, where
computationally the best combination of drugs can be found using a personalised in silico
description of life. It is clear that this approach can only function with a combination of
top-down and bottom-up approaches.

1.8.3. Generation of a dynamic model

To get a better understanding of what a dynamic model of metabolism exactly is, it is
good to look at how a dynamic model is generated. The construction of a dynamic model
can be separated in four steps (Figure 1.10):

1 HXK: 1 Glucose + 1 ATP  ←→ 1 Glucose 6-phosphate + 1 ADP

PGI: 1 Glucose 6-phospate ←→ 1 Fructose 6-phosphate

Stoichiometry:

Rate equations:

2 } Combine

Parameterization:3 Vmax

Km

Keq

[metabolite]

4

Figure 1.10.: Four-step construction of a dynamic model of metabolism. The first step
constitutes of describing the stoichiometry of the system to be modelled: what
enzymes convert what metabolites in what quantities? Shown are two reactions of
glycolysis: HXK, hexokinase; PGI, phosphoglucose isomerase. The second step is
to provide rate equations for each reaction step, which will allow for simulation of
the dynamics of the system. The Michaelis-Menten equation for PGI is given as
an example. The third step is the parametrisation of the rate equations declared in
step 2, but also includes the metabolite concentrations at t = 0, and typically also
the volume of the system. In the fourth and final step, all this information is
gathered to form a set of ordinary differential equations.
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1. Description of the system and its stoichiometry. All the constitutive parts of the
system need to be listed and the topology of the network connecting the parts needs
to be described. In models of metabolism, the parts are metabolites and the links
are the enzymes. The outcome of this step is the stoichiometry matrix S, where Sij

is positive if metabolite i is a product of reaction j and negative if metabolite i is a
substrate of reaction j.

2. Description of rate equations for the reactions in matrix S. The complexity of
the rate equations can vary from standard mass-action kinetics, to complex kinetics
involving specific binding constants for each substrate. Typically, Michaelis-
Menten type of equations are used. The results is vector v, where vj is the rate
equation of reaction j.

3. Parametrisation of the rate equations. The parameters used in the rate equations
in vector v have to be given. In a model of metabolism, these are typically the
kinetic constants for the enzymes. These values can be obtained experimentally,
by characterising the enzymes in vitro, or computationally, by fitting the parameter
values to an available data set. For experimental determination of parameter values
it is important that the assays performed in vitro are close to the in vivo conditions,
as differences in pH, temperature and metabolite concentrations can have major
effects on the results. For a model of central carbon metabolism in yeast, all kinetic
parameters were measured in one in vivo-like buffer.

4. Combination of all information. The final step of model building is the
combination of the three previous steps. Multiplication of matrix S with
parametrised vector v results in a set of ordinary differential equations that describe
the changes in the metabolites over time.

The primary output of a simulation of a dynamic model of metabolism are the
concentrations of the metabolites and the reaction rates as a function of time
(Figure 1.11). Most models will eventually reach a state where the rates and
concentrations of metabolites do not change any more; such a system is then said to
be in steady-state. A time-course simulation can be performed while checking for every
time-step, to determine whether the model has reached steady-state, but this can also be
directly calculated algebraically.

More advanced analysis of a dynamic model of metabolism is the metabolic control
analysis mentioned above, where the contribution of each reaction to the control of the
pathway is calculated. Additionally, dynamic models exist of formulae and parameter
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values that can easily be altered and therefore the effect of a range of parameter values
or the presence or absence of particular reactions can easily be tested.
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Figure 1.11.: Example of output from a time-course simulation. A time-course simulation is
performed with a conceptual model containing three metabolites (xi) and three
reactions (vi). Metabolite x0 is a source with a fixed concentration. The ordinary
differential equation of metabolite x1 is given, and describes the change in
concentration as a function of the rates of reactions v1 and v2. The output of the
time-course simulation is the flux through the three reactions and the metabolite
concentrations over time. Note that the metabolite concentrations converge after
three time-units, indicating that a steady-state is reached.

1.8.4. Applications of dynamic models

Dynamic models of metabolism have been around for many years. The first
comprehensive models of metabolic pathways were published in the 70s, after the
development of computers (Garfinkel et al., 1970) and the arrival of recombinant
technologies made dynamic modelling more accessible (Heinrich and Rapoport,
1974; Westerhoff and Palsson, 2004). Since then, a large number of models have
been published, describing a variety of metabolic processes from accumulation of
mucopolysaccharides during development of Dictyostelium discoideum (Loomis and
Thomas, 1976), to central carbon metabolism in erythrocytes (Joshi and Palsson, 1989).
The basis of dynamic models of metabolism has not changed much over these years, but
what has changed is the accuracy, amount of detail and scope of such models.
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1.8.4.1. Dynamic models of glycolysis

The most-studied and best-characterised biochemical pathway is glycolysis, not
unexpected for a pathway so essential for almost all organisms. The enzymes of
glycolysis have been studied extensively for almost a century, and since the 1960s many
dynamic models, particularly of yeast glycolysis, have been constructed (e.g. Boiteux
et al., 1975; Schellenberger and Hervagault, 1991; Teusink et al., 2000), providing a
wealth of knowledge for the modelling of glycolysis in other systems.

The early models of glycolysis were focused on oscillations in metabolite concentrations
that were observed in yeast cultures (Peringer et al., 1974; Richter et al., 1975). These
models were phenomenological and perhaps early examples of (small-scale) top-down
systems biology, as the observation of systemic oscillations was followed by attempts to
describe this behaviour with mathematical equations. With the development of metabolic
control analysis, bottom-up approaches were starting to be used to generate mechanistic
models that describe the enzyme kinetics underlying glycolysis (Cortassa and Aon,
1994; Teusink et al., 2000), following the scheme described in Figure 1.10. A model
of glycolysis in yeast was for instance instrumental to demonstrate the aforementioned
risk of the turbo design of glycolysis (Teusink et al., 1998).

The model of yeast glycolysis by Teusink et al. (2000) was the first yeast glycolytic
model that did not involve any fitting of parameter values, where parameter values
are estimated by fitting the outcome from the dynamic model to observed metabolite
concentrations or fluxes, in attempt to have the model mimic reality. In contract, the
Teusink-model was purely based on the measurements of enzyme kinetics. Therefore,
the model was an evaluation whether the dynamics of yeast glycolysis can indeed be
understood from the underlying kinetics. Teusink et al. (2000) concluded that the in vitro
kinetics did not satisfactorily describe the in vivo activity for all the glycolytic enzymes:
the steady-states observed in the laboratory could not be replicated with the mathematical
model. Only significant changes to some parameter values would lead to a satisfactory
description. This discrepancy between outcome of the Teusink-model and experimental
observations was often observed under different growth conditions, as commented by
van Eunen et al. (2012).

Extensive scrutiny of the Teusink-model eventually led to the substantial improvement
of model predictions by: (i) measuring all kinetic parameters under in vivo-like
conditions that resemble the intracellular environment, and (ii) including appropriate
allosteric regulation (van Eunen et al., 2012). It transpired that kinetic parameters
measured under optimised assay conditions (van Eunen et al., 2010) were sometimes
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substantially different from kinetic parameters measured in an assay buffer specifically
formulated to mimic in vivo conditions. The formulation of an in vivo-like reaction
buffer for the kinetic characterisation of all enzymes in a metabolic model is therefore
recommended. Allosteric regulation of HXK and G3PDH were not included in the
previous model (Teusink et al., 2000), but measurement of these improved model
predictions substantially. Although it is implausible to test every enzyme for any
potential allosteric regulator, it is important to keep the possibility of allosteric regulation
in mind when there is a difference in the outcome of modelling and experiments.

1.8.4.2. Dynamic models of PPP

In contrast to glycolysis, the PPP has been the subject of dynamic modelling to a
lesser extent. In particular the PPP in erythrocytes has been modelled using enzyme
kinetics (Schuster et al., 1988; Joshi and Palsson, 1989; Mulquiney and Kuchel, 1999a).
Erythrocytes are particularly suitable for the application of kinetic models of metabolism,
as their set of metabolic pathways is reduced to only the bare minimum to survive.
Erythrocytes have no functional citric acid cycle, but solely rely on glycolysis and the
PPP for energy.

Schuster et al. (1989) used a kinetic model of glycolysis and the PPP in erythrocytes to
study deficiencies of enzymes responsible for the first reaction of the PPP, G6PDH. The
PPP is the only source of reducing energy to keep glutathione reduced, and deficiencies
in G6PDH in erythrocytes are the most widespread enzymopathies, present in more than
400 million people worldwide (Cappellini and Fiorelli, 2008). G6PDH deficiency can
cause haemolytic anaemia in response to infections or exposure to certain chemicals or
medications. In an approach that already gives a flavour of the aim of silicon cells,
i.e. personalised medicine, Schuster et al. (1989) measured the kinetic parameters of
G6PDH variants in patients and included these patient-specific values in a generic model
of erythrocyte metabolism. In this study, both mathematical prediction and wet-lab
experimentation, which involved the exposure of erythrocytes from the patients to the
reducing agent methylene blue, correlated well with the clinical manifestation of the
disease in the individual patients. Schuster et al. (1989) indicated that increases in the
rate of ATP utilisation within the erythrocyte can aggravate the symptoms of G6PDH,
culminating in the advice to give special attention to prescribing drugs that activate
energy-consuming reactions to G6PDH-deficient patients.

Another model of erythrocyte glycolysis and PPP was published by Mulquiney
and Kuchel (1999a). This model has yielded new insights into the regulation of
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2,3-bisphosphateglycerate (2,3-BPG), an important modulator of haemoglobin oxygen
affinity (Benesch and Benesch, 1967; Gerber et al., 1973). Metabolic control analysis
with this dynamic model has, among others, demonstrated how the flux through 2,3-
BPG changes in response to changing energy demands placed on the cell (Mulquiney
and Kuchel, 1999b). Reaction rates within the Mulquiney-model of erythrocyte energy
metabolism are defined with great detail, with more than twice as many parameter
values per reaction in comparison to the Schuster-model. pH effects and the binding
of magnesium to ATP are also taken into account. It is worth noting, however, that larger
and more detailed models are not by definition better models, as the increased complexity
might work against the principle reason why they are used in the first place: to simplify
reality.

1.8.5. Dynamic model of trypanosomal glycolysis

Glycolysis in the bloodstream form of T. brucei has been studied using dynamic models.
In 1997, Bakker et al. (1997) established that trypanosomal glycolysis can be understood
from the kinetics of the underlying enzymes. This model has become an example
of a well-curated model of metabolism and has been improved multiple times by
incorporating new data (Bakker et al., 1997, 1999a; Helfert et al., 2001; Albert et al.,
2005).

1.8.5.1. Stoichiometric analysis of trypanosomal glycolysis

Analysis of the stoichiometry of the model demonstrated the existence of five moiety
conservations (Bakker et al., 1997; Albert et al., 2005). The stoichiometry of the model
network, and the partial glycosomal localisation in particular, results in five groups of
metabolites whose combined concentrations within the group are conserved (Table 1.1).
The metabolites of moieties 1–3 are involved in reactions as co-factors, transferring
high-energy organic phosphate (moieties 1 and 2) or electrons (moiety 3). Moiety 4
is a result of the Gly-3-P:DHAP antiporter, where each Gly-3-P in the cytosol can only
be transformed in DHAP and vice versa. Possibly the most interesting of all moieties
is the conserved sum of bound-phosphates within the glycosome, moiety 5 (Table 1.1).
Note that inorganic phosphate (Pi) is not part of the conserved moiety, even though it
is involved in the production of 1,3-BPGA (Figure 1.5). The concentration of inorganic
phosphate has been set as a fixed metabolite, reflecting an intracellular homoeostasis of
inorganic phosphate (Bakker, 1998). Allowing Pi to transport cross the glycosomal and
cytosolic membrane, by the addition of transport reactions to the glycolytic model, does
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not result in a different conserved sum. Moreover, the inorganic phosphate concentration
is not limiting to the rate of the steady-state flux (Bakker, 1998), supporting the fixation
of inorganic phosphate and thereby assuming rapid diffusion of inorganic phosphates
from the environment into the glycosome.

Moiety Conserved metabolites

1 ATPg + ADPg + AMPg

2 ATPc + ADPc + AMPc

3 NADHg + NADg

4 Gly-3-Pc + DHAPc

5 Glc-6-Pg + Fru-6-Pg + 2 Fru-1,6-BPg + DHAPg + GA-3-Pg + 1,3-BPGAg + Gly-3-Pg + 2
ATPg + ADPg

Table 1.1.: Conserved moieties in the glycolysis model. The stoichiometry of the model
results in five groups of metabolites, whose combined concentration within the group
remains constant.

Mode Overall
reaction

Individual reactions

1 Glce + O2 + 2
Pig→ 2 Pyre

+ 2 Pic

GlcTc, GlcTg, HXKg, PGIg, PFKg, ALDg, TPIg, 2 GAPDHg, 2 PGKg, 2
PGATg, 2 PGAMc, 2 ENOc, 2 PYKc, 2 PyrTc, 2 G3PDHg, 2 GDAg, 2
GPOc, 2 ATPuc

2 Glce + Pig→
Pyre + Glye +
Pic

GlcTc, GlcTg, HXKg, PGIg, PFKg, ALDg, GAPDHg, PGKg, PGATg,
PGAMc, ENOc, PYKc, PyrTc, G3PDHg, GKg, ATPuc

3 Glye + O2 +
Pig→ Pyre +
Pic

TPIg, GAPDHg, PGKg, PGATg, PGAMc, ENOc, PYKc, PyrTc,
G3PDHg, 2 GDAg 2 GPOg, – GKg, ATPuc

Table 1.2.: Elementary modes of the original glycolysis model. Three elementary modes are
listed as the overall reactions plus the individual enzyme-catalysed reactions with
their relative flux weight. Mode 1 is known as aerobic glycolysis, mode 2 is
anaerobic glycolysis, while mode 3 is glycerol oxidation.

Elementary mode analysis is a tool that allows to identify so-called elementary modes:
the simplest subsets of reaction in the system that can support a steady state (Schuster
et al., 1999). The model of glycolysis supports three elementary modes (Table 1.2). In the
absence of oxygen the only possible elementary mode is anaerobic glycolysis, mode 2.
During anaerobic glycolysis, equimolar amounts of glycerol and pyruvate are produced,
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as discussed in Section 1.3. This requires glycerol kinase to work far from equilibrium,
in order to balance the NAD+ and NADH within the glycosome. The first dynamic model
of trypanosomal glycolysis demonstrated how mode 2 is not only possible from model’s
stoichiometry, but also from the enzyme kinetics involved (Bakker et al., 1997).

1.8.5.2. Metabolic control analysis of trypanosomal glycolysis

Metabolic control analysis of the model of trypanosomal glycolysis provided additional
interesting insights. The glucose transporter present on the glycosomal membrane has
the highest control over the glycolytic flux, followed by ALD, G3PDH, GAPDH and
PGK (Bakker et al., 1999a,b). This is of particular interest as erythrocytes, sharing the
same living space as bloodstream form T. brucei in the mammalian host, deficient in
ALD, GAPDH and PGK show no clinical symptoms in 95 % of the cases (Schuster
and Holzhütter, 1995). Indeed, experiments where the glucose transporter was inhibited
confirmed a potent trypanocidal effect (Haanstra et al., 2011).

A additional prediction that arose from the kinetic model of trypanosomal glycolysis
was that the glycosomal compartmentalisation of glycolysis is essential to prevent the
aforementioned turbo effect, as described in (Section 1.3.1). This effect was predicted by
the model in 2000 by Bakker et al., but only experimentally confirmed by Haanstra et al.
in 2008.

The model has been improved from the first publication (Bakker et al., 1997) to the latest
curation (Albert et al., 2005). In the first model, the kinetic parameters where taken
from the literature, where almost each enzyme was assayed in a unique assay buffer.
Albert et al. (2005) measured all enzyme activities from cultured parasites, bringing
more uniformity into the sources of parameter values. Nonetheless, dynamic modelling
of glycolysis in yeast has shown the importance of measuring all parameter values in the
same in vivo-like buffer (van Eunen et al., 2012).
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1.9. Aim: extension of the dynamic model of
trypanosomal metabolism

With the success of the dynamic model of trypanosomal glycolysis, the next step is
to extend this model with additional pathways. An extended model of trypanosomal
metabolism will allow the further exploration of the peculiar physiological properties of
T. brucei. The ambitious aim of producing a Silicon Trypanosome was raised by Bakker
et al. (2010). This Silicon Trypanosome would be “[...] a comprehensive, experiment-
based, multi-scale mathematical model of trypanosome physiology [...]” and comparable
to the Silicon Cell (Snoep, 2005) and Virtual Liver projects (Abbott, 2010).

However, because of the complexity of metabolic pathways and the lack of available data
on kinetic parameters, Silicon Cell initiatives depend upon exploiting the modularity of
metabolic models, such that basic models can be extended by the sequential addition of
new reactions, pathways and sub-models. This bottom-up approach allows coupling of
models of different pathways to create ever larger representations of the network under
scrutiny (Snoep et al., 2006).

Based on these observations, the aims of this project were to:

1. Extend the current model of glycolysis in bloodstream form T. brucei with the PPP,
as a step intp the direction of the Silicon Trypanosome.

2. Test hypotheses deriving from the model extension with wet-lab experimentation
in an iterative cycle between model building and experimental testing.

3. Elucidate parts of the peculiar trypanosomal metabolism by using reverse genetics,
enzyme analyses and metabolomics.
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Chapter 2
Methods

2.1. Trypanosome growth

2.1.1. Culturing T. brucei

Bloodstream form trypanosomes were cultured in HMI-9 medium (Hirumi and Hirumi,
1989) at 37 °C and 5 % CO2, unless otherwise stated. HMI-9 was routinely obtained
from Gibco, but was made from scratch for growth on fructose, where glucose was
absent (Chapter 6). For metabolomics experiments, parasites were routinely grown in
CMM, a medium that contains less components than HMI-9 but supports a similar growth
(appendix A; unpublished; Dr Darren Creek, University of Glasgow). The advantages of
using CMM in metabolomics experiments is the reduced background signal and reduced
HEPES concentration that could otherwise block the mass-spectrometer needle. Culture
medium was supplemented with 10 % FBS Gold (PAA) or 10% certified tetracycline-free
FBS (Biosera) for the inducible genetic mutants.

Cell densities of trypanosome cultures were typically kept between 0.5 · 104 and 2 · 106

cells ml−1. Wild-type strain 427 was cultured in the absence of antibiotics; 2T1 cells were
cultured with 0.5 μg ml−1 phleomycin and 0.2 μg ml−1 puromycin; transfected 2T1 cells
(Alsford and Horn, 2008) with 0.5 μg ml−1 phleomycin and 2.5 μg ml−1 hygromycin;
6PGDHRNAi cells (derived from 427 WT, generated by Dr Vincent P Alibu, University
of Glasgow) with 10 μg mL−1 hygromycin, 5 μg ml−1 G418 and 0.2 μg ml−1 phleomycin.
Tetracycline was used at 1 μg ml−1.
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Stabilates were routinely made from parasite cultures, by resuspending parasites to a
density of around 1 · 106 ml−1 in HMI-9 with 15 % glycerol. Aliquots of 1 ml were
wrapped in cotton wool and frozen at −80 °C before transferring to liquid nitrogen for
long-term storage. Stabilates were revived by harvesting the cells by centrifugation (10
minutes, 3000g, 4 °C) and resuspending the cells in HMI-9 with 20 % FBS. Appropriate
antibiotics were added in subsequent passages.

2.1.2. Transformation of parasites

Stable transformation of parasites was performed as described previously (Burkard et al.,
2007). For each transformation, 4 · 107 cells of a mid-log culture were resuspended in
100 μl transfection buffer (Schumann Burkard et al., 2011) and 10 μl H2O containing 10
μg linearised DNA, followed by electroporation of the parasites in 2-mm gap cuvettes
(Bio-Rad) with the proprietary program X-001 of the Amaxa Nucleofector II (Lonza,
Germany). Cells were subsequently diluted in HMI-9 and appropriate antibiotics were
added 6 hours post transformation. Stable clones were selected by serial dilutions on 96-
wells plates. If fewer than 30 % of the wells contained live cells after 14 days, then the
populations were considered to be clonal (calculated for a 96-well plate using a Poisson
distribution).

2.1.3. AlamarBlue assays

Toxicitiy of compounds were assessed by alamarBlue assays (Räz et al., 1997). Parasites
were incubated in a 96-wells plate at a density of 4 · 104 cells ml−1 and a 1:2 serial
dilution of the desired drug in a final volume of 200 µl per well. Parasites were incubated
for 48 hours at 37 °C, 5 % CO2, followed by addition of 20 µl 0.49 mM resazurin (Sigma)
in PBS, pH 7.4 and incubation for another 24 hours. Fluorescence was measured on a
FLUOstar OPTIMA (BMG Labtech, Germany) fluorescence spectrometer, with λexcitation

= 544 nm and λemission = 590 nm.

2.1.4. Cell extracts

For enzymatic assays on cell extracts, 2 · 108 cells were harvested in mid-log phase by
centrifugation at 1,900g for 10 minutes, and washed twice in PBS. Subsequently, the
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cells were resuspended in 1 mL lysis buffer (PBS, 150 mM NaCl, 0.1 % Triton X-100
and cOmplete™ EDTA-free Protease Inhibitor Cocktail (Roche)), incubated on ice for 1
hour and briefly vortexed every 15 minutes. Cell debris was removed by centrifugation
(30 minutes, 16,100g, 4 °C) and the remaining supernatant was kept on ice until further
use. The protein content of cell-extracts was determined via a Bio-Rad protein assay,
based on the method by Bradford (1976).

2.2. Molecular biology

2.2.1. PCR

Polymerase chain reactions were typically performed in 25 μl volumes GoTaq
DNA polymerase (Promega) according to provided standard protocols. High-fidelity
polymerase chain reactions were typically performed in 50 μl volumes with Phusion Hi-
Fi polymerase (New England Biolabs) according to provided standard protocols. Primers
used in this study are listed in Table 2.1.

2.2.2. Plasmid generation

Various plasmids were routinely obtained by digestion and ligation with restriction
enzymes. An overview of plasmids used in this study is given in Table 2.2. Maps of
the different plasmids generated in this study are given in Figure 2.1 and Figure 2.2.

For the generation of plasmids, DNA was amplified with a proofreading polymerase
and subsequently incubated with 1 U Taq polymerase and 0.3 mM dNTP to obtain A-
overhangs. These amplicons were ligated into intermediate cloning vector pGEM-T Easy
(Promega) via TA-cloning. Plasmids were typically transformed in DH5α (Invitrogen)
for growth on Luria broth agar plates or in Luria broth with the appropriate antibiotic
(ampicillin 100 µg ml−1; kanamycin 50 µg ml−1). Plasmids were extracted from overnight
cultures using commercial miniprep kits (Qiagen or Macherey-Nagel).
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Figure 2.1.: Plasmid maps as generated in this study (1). Coding sequences and other
features are indicated by grey arrows. Cloned fragments are indicated by black
arrows. Restriction sites used for cloning or linearisation of the constructs are
shown. Plasmids pMB-G102, 124, 131 and 170 are derived from pET, pMB-G67 is
derived from pRPaiSL, while pMB-G171 is derived from pGL2084. pGL2084 is
similar to pRPaiSL, but contains AttL1 and AttL2 sites to allow for Gateway cloning
(Nathaniel Jones, University of Glasgow). For transfection, pRPaiSL and pGL2084
derived plasmids are linearised at the AscI sites.
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Figure 2.2.: Plasmid maps as generated in this study (2). Coding sequences and other ... are
indicated by grey arrows. Cloned fragments are indicated by black arrows.
Restriction sites used for cloning or linearisation of the constructs are shown.
Plasmids pMB-97, 98, 122, 123, 126 and 127 are derived from pTBT. pTBT
derived plasmids are linearised at the NotI and XhoI restriction sites, while
pMB-G30 is linearised at the NotI site.

2.2.2.1. Plasmids for recombinant protein overexpression

Vector pET28a(+) (Merck) was used for overexpression of ribokinase (RK), putative
arginase (ARG) and N-acetylornithine deactylase (NAO). RK was amplified with primers
MB0331 and MB0413 (Table 2.1) and cloned at the HindIII and BamHI sites to generate
plasmid pMB-G102 (Table 2.2); ARG was amplified with primers MB0542 and MB0544
and cloned at the NdeI and NotI sites to generate plasmid pMB-G131; NAO was
amplified with primers MB0555 and MB0556 and cloned at the BamHI and HindIII
sites to generate plasmid pMB-G124.

The expression vector for recombinant nicotinamidase (pMB-G170, Table 2.2) was
generated with a ligation-independent cloning kit (pET30a Xa/Lic, Merck Millipore),
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in an effort to speed up the generation of expression vectors. The reverse primer for
nicotinamidase also contained a stop-codon (TAG), leading to N-terminal 6xHIS-tagged
nicotinamidase.

2.2.2.2. RNA interference constructs

The vector pRPaiSL in combination with the cell line 2T1 were used for the ablation
of transcript by RNA interference (Alsford and Horn, 2008). A detailed description
of the cloning of RNAi fragments into pRPaiSL is given in (Alsford and Horn, 2008).
The pRPaiSL / 2T1 system is optimised for stable transfection and expression of a stem-
loop RNAi construct. The pRPaiSL vector integrates in a targeted locus in 2T1 cells,
disturbing a puromycin resistance gene while complementing a hygromycin resistance
gene. Correct integration of the pRPaiSL construct can subsequently be monitored by the
gain of hygromycin resistance and the loss of puromycin resistance. The gene fragment
to be used in the RNAi vector was selected with the RNAit program (Redmond et al.,
2003).

A ligation-independent version (pGL2084) of the pRPaiSLplasmid was used for
generation of the nicotinamidase RNAi construct (pMB-G171), kindly provided by
Nathaniel Jones (University of Glasgow).

2.2.2.3. Gene knockout constructs

Vector pGL1688, based on pTBT (Cross et al., 2002), was used for generating of
knockout constructs. The 5’ and 3’ untranslated regions (UTRs) adjacent to the genes
of interest were cloned at the NotI and XbaI (5’) and ApaI (3’) restriction sites on
pGL1688. pGL1688 originally included a coding sequence for hygromycin resistance,
which was swapped at the EcoRI restriction sites with a coding sequence for puromycin
acetyltransferase. Knockout constructs were linearised by restriction digest with NotI
and XhoI, prior to transfection.

Constructs for the tetracycline-inducible expression of ribokinase were generated by
cloning the full ribokinase gene at the HindIII and BamHI sites of pHD1336 (Alibu et al.,
2005). Prior to transfection of trypanosomes with the tetracycline-inducible construct,
first the tetracycline-repressor was introduced by transfection with pHD1313 (Alibu
et al., 2005). Both plasmids were linearised with NotI prior to transfection.
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2.2.3. Northern blot

Northern blots were performed according to standard procedures. Certified RNA-free
equipment was used and equipment was sprayed with RNaseZap (Ambion) or treated
with DEPC. RNA was extracted using Trizol (Invitrogen), and 20 µg was run on a
formaldehyde (16 %), Na2HPO4 (18 mM), NaH2PO4 (2 mM) and agarose (1 %) gel,
blotted on a Hybond-N (Amersham) nylon membrane and probed with Easytides 32P-
dATP (Perkin Elmer), incorporated in the gene of interest using a one-cycle polymerase
reaction (PrimeIT, Stratagene).

2.3. Protein expression

2.3.1. Overexpression

Protein overexpression was performed in BL21(DE3) E. coli (Stratagene), by inoculating
1 litre of lysogeny broth (30 µg ml 1 kanamycin) with an overnight culture. The large
culture was incubated at 37 °C in an orbital shaker, until an OD600 of 0.6 was reached.
Overexpression was induced by addition of 1 mM IPTG for 4 hours at 37 °C. Cells were
harvested by centrifugation (4500g, 30 minutes, room temperature) and stored at −20 ˚C.

2.3.2. Purification

Small scale purification was performed on Ni-NTA spin columns (Qiagen) following
supplier’s protocols. Large scale purification was done by immobilised metal affinity
chromatography (IMAC), kindly performed by Alan Scott (University of Glasgow).
Cells were lysed in bacterial protein extraction reagent (Thermo Scientific) and
sonicated. Purification was performed under native (non-denaturating) conditions, by
using increasing concentrations of imidazole (50 mM for the wash step, 500 mM for the
elution). The N-terminal polyhistidine-tags bind to the nickel ions that are immobilised in
the column. Proteins retained in the column by non-specific and low affinity binding are
washed away by imidazole (50 mM), that competitively interacts with the nickel ions.
A high concentration of imidazole (500mM) is used to elute the polyhistidine-tagged
protein from the column. The eluate was dialysed twice in 100 volumes 50 mM Tris
HCl, 100 mM NaCl, pH 7.2 at 4 °C and stored at −80 °C with 50 % glycerol.
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2.4. Enzyme assays

To standardise kinetic measurements of T. brucei enzymes, a pseudo-in vivo reaction
buffer was developed within the SilicoTryp project (unpublished; Dr Alejandro Leroux,
University of Heidelberg, Germany). This ST buffer is designed to mimick in vivo-like
conditions, regarding pH, concentrations of salts, phosphate, tonicity etc. (Table 2.3). All
kinetic measurements within the SilicoTryp project are to be measured in this buffer.

Component Concentration (mM)

K+ 95
Na+ 15
Cl- 120
PO3−

4 10
Mg2+ 10
EDTA 1

Table 2.3.: SilicoTryp assay buffer. Pseudo-in vivo reaction buffer as used within the
SilicoTryp project. Assays are performed at pH 7 and 37 °C. The pH of the assay
buffer is adjusted with KOH after all other metabolites used in the enzyme assay are
added.

2.4.1. Ribokinase

The ribokinase activity was measured spectrophotometrically by a coupled enzyme
assay at 340 nm (Figure 2.3). Ablation of NADH was monitored at 340 nm and the
change of absorption over time was converted to change of NADH concentration using
a molar extinction coefficient of 6,220 M cm−1. The stoichiometry of the coupled
enzyme assay dictates that changes in NADH concentration correspond to equal changes
in ribose concentration, i.e. the change in NADH concentration is a measure of the
ribokinase activity. The measured ribokinase activity was normalised against the quantity
of ribokinase used in the assay, as determined from the protein sample by Bradford
assay, to obtain the enzyme’s specific activity. A similar approach was used for the
reverse reaction, where NADPH production was monitored at 340 nm, corresponding to
consumption of Rib-5-P (Figure 2.3).

The forward (ribose consuming) reaction was assayed in 1 ml ST buffer, 20 mM ribose,
5 mM ATP, 5 mM PEP, 0.2 mM NADH, 2 U PK and 2 U lactate dehydrogenase. The
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reverse (ribose producing) reaction was assayed in 1 ml ST buffer, 20 mM Rib-5-P, 5
mM ADP, 5 mM glucose, 0.2 mM NADP+, 2 U HXK and 2 U G6PDH. The signal was
corrected for background activity using assays with no ribose or Rib-5-P was added.

2.4.2. Hexokinase

The hexokinase activity was measured spectrophotometrically by a coupled enzyme
assay at 340 nm (Figure 2.3). The phosphorylation of glucose was measured by
monitoring the production of NADPH, while dephosphorylation of glucose was
measured by monitoring the production of NADH. Conversion from NADPH and NADH
concentrations to activities was performed as described in Section 2.4.1.

The phosphorylation of glucose was assayed in 1 ml ST buffer, 20 mM glucose, 5 mM
ATP, 0.2 mM NADP+ and 2 U glucose 6-phosphate dehydrogenase. Fresh cell extract
was added at 5 µg whole cell protein per assay. The dephosphorylation of glucose 6-
phosphate was assayed in 1 ml ST buffer, 25 mM Glc6P, 5 mM ADP, 0.2 mM NAD and
2 U glucose dehydrogenase. Fresh cell extract was added at 25 µg whole cell protein per
assay.

2.4.3. Glucose-6-phosphatase assay

The activity of glucose-6-phosphatase was measured spectrophotometrically by a
coupled enzyme assay at 340 nm (Figure 2.3). The phosphorylation of glucose
was measured by monitoring the production of NADH, conversion from NADH
concentrations to specific activities was performed as described in Section 2.4.1. Assays
were performed in 1 ml ST buffer, 0.2 mM NAD+, 5 mM glucose 6-phosphate and 2 U
glucose dehydrogenase. Fresh cell extract was added at 25 µg per assay, and absorbance
measurements were corrected with a control sample without glucose 6-phosphate.
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Figure 2.3.: Coupled enzyme assays. Overview of the coupled enzyme assays used in this
study. Changes in NADPH and NADH correspond to the activity of the reaction of
interest, and are measured at 340 nm. Extinction coefficients and the quantity of
protein added to the assay are subsequently used to calculate specific activities.

2.5. Western blotting

For Western blot analysis, 3 · 106 parasites were harvested by centrifugation, washed
in PBS, resuspended in 30 μl Laemmli buffer (Laemmli, 1970) and stored at –80 °C
before analysis. Samples were boiled for 10 minutes at 95 °C and 20 μL was separated
on SDS-PAGE (Novex 4 20 % Tris-glycine, Invitrogen) at 125 V and transferred to
a nitrocellulose membrane (Hybond-ECL, Amersham, USA) at 150 mA for 4 hours.
Membranes were blocked for 2 hours at room temperature with 5 % milk in PBS-T
(PBS with 0.05 % Tween-20), washed three times with PBS-T, and probed with primary
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antibody in 1 % milk in PBS-T overnight at 4 °C. After three washes with PBS-T, the
membrane was incubated with secondary antibody in 1 % milk in PBS-T for 2 hours at
room temperature. After five washes with PBS-T, horseradish peroxidase activity was
measured with SuperSignal HRP substrate (Merck, Germany).

2.5.1. Ribokinase polyclonal antibody

A polyclonal antibody (pAB) for T. brucei ribokinase (pAB-TbRK) was raised in rabbits
by GenicBio, Hong Kong, using recombinant ribokinase. The antibody was purified
from serum by protein A-chromatography, and the ELISA titer was determined at
>1:192,000. The antibody was further purified by affinity-chromatography. For this,
recombinant T. brucei ribokinase was immobilised on column with a mixture of Affi-Gel
10 and 15 activated affinity medium following supplier’s protocol (Bio-Rad). 15.5 mg of
recombinant ribokinase in PBS was coupled to 2 ml of Affi-Gel mixture overnight at 4
°C.

The protein A-purified serum was loaded on the ribokinase-column and a series of
different solutions were used to find the optimal elution conditions. The first ten elution
volumes were acid elutions with 100 mM glycine-HCl pH 2.5, the second ten elution
volumes were base elutions with 100 mM ethanolamine pH 11.5, while the and last ten
elution volumes were chaotrophic elutions with 3.5 M MgCl2, 20 mM TrisHCl pH 7.5. A
dot blot was used to select the optimal elution fractions, and the final magnesium elutions
were used for subsequent Western blots.

The purified pAB-TbRK was used at a final dilution of 1:1,000. The secondary
antibody used for detection of pAB TbRK was goat anti-rabbit IgG peroxidase conjugate
(Calbiochem). A cross-reacting band larger than 80 kDa was observed in all Western
blots using pAB-TbRK, while T. brucei RK is expected to show a band at 38 kDa. The
cross-reacting band was constant in all genetic mutants, even when the 38 kDa-band
disappeared. The identity of the cross-reacting band is unknown.
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2.6. Metabolomics

2.6.1. Metabolomics enzyme assay sampling

The idea behind the metabolomics enzyme assay is discussed in detail in chapter 5.
Briefly, it consists of incubation of a recombinant enzyme in a complex mixture of
metabolites and the measurement of changes in the metabolite mixture using mass-
spectrometry. Commercial yeast extract (Sigma) was used as a complex metabolite
mixture. Around 1 mg of yeast extract was resuspended in 200 µl of 75 % acetonitrile
/ H2O and briefly vortexed to denature the proteins. Denatured protein and other debris
were pelleted (16,100g, 5 minutes) and the supernatant was dried under vacuum. The
remaining metabolites were resuspended in 100 µl 40 mM MOPS pH 7, 20 mM MgCl2.
The final assay volume of 100 µl contained 1:4 diluted metabolite mixture, one of the two
cofactor mixtures (each cofactor at 100 µM, Table 2.4) and 2 µl of purified recombinant
protein of interest.

The enzyme was allowed to react for 30 minutes at 37 °C and the reaction was
subsequently quenched by the addition of 400 µL ice-cold acetonitrile. Samples
were vortexed, centrifuged at 16,100g for 6 minutes at 4 °C, and transferred to glass
chromatography vials. Control samples were prepared by addition of the enzyme of
interest after the addition of acetonitrile. Samples were stored at −80 ˚C under argon
prior to analysis by mass-spectrometry.

Mixture 1 Mixture 2

NAD NADH
NADP NADPH
ADP ATP
GDP GTP
CoA Acetyl-CoA
FMN FMN
FAD FAD
PP PP
TPP TPP
Biotin Biotin

Table 2.4.: Cofactor mixtures used in metabolomics enzyme assays. All cofactors were used
at a final concentration of 0.1 mM.
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2.6.2. Parasite metabolite extraction

Samples for metabolic profiling were taken from cultures in log phase growth (around
1 2 · 106 cells ml−1). Five biological replicates were obtained by sampling from
independent cultures on separate days. For each replicate, 4 · 107 cells were rapidly
cooled to 4 °C by submersion of a 50 mL Corning flask in a dry ice-ethanol bath, and kept
at 4 °C for all subsequent steps. The samples were centrifuged (1250g, 10 minutes) and
the supernatant discarded. Cell lysis and protein denaturation was achieved by addition of
200 µl of ice-cold chloroform:methanol:water (ratio 1:3:1 v/v/v) plus internal standards
followed by vigorous shaking for 1 hour at 4 °C. Metabolite extracts were centrifuged
(16,000g, 4 °C, 2 minutes), the supernatant collected and stored under argon at −80 °C
until further analysis.

2.6.3. Internal and authentic standards

During sampling, internal standards are added to the extraction solvent at a concentration
of 1 µM. These internal standards (theophylline, 5-fluorouridine, Cl-phenyl cAMP, N-
methyl glucamine, canavanine and piperazine) have been selected as they are expected
to be present in the T. brucei and E. coli samples. With each experiment, a set of
authentic standards were run on the mass spectrometer, a full list is given in Section
D.1. These standards have been selected to cover a wide range of chemical properties,
and among others function as a training set that is used in the retention time prediction
that is performed during analysis (Creek et al., 2011). Standards were prepared at 10 µM
in three mixtures, according to the list of Section D.1, to prevent isobaric compounds and
likely fragments within each group, as described by Creek et al. (2011).

2.6.4. Liquid chromatography-mass spectrometry

All samples were separated by HPLC with either a ZIC®-HILIC or ZIC®-pHILIC
column (Merck). HILIC stands for hydrophilic interaction liquid chromatography, and
separation of compounds is based on their interactions with the hydrophilic stationary
phase in the chromatographic column. HILIC is able to separate polar compounds and
commonly recommended for LC-MS based metabolomics analysis (Creek et al., 2012a).
The stationary phase in HILIC is silica based, while the stationary phase in pHILIC is
polymer based, giving pHILIC an extended pH stability range. As metabolites can have
different charges depending on the pH, and the analytes are measured based on mass-
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to-charge ratio, analysis of the sample at different pHs therefore allows to extend the
coverage of the measured analytes. In this project, I tried to use both columns as much
as possible.

The injection volume was 10 µl and the HPLC gradient was as follows: flow rate 100 µl
· min 1; solvent A: 20 mM ammonium carbonate in H2O; solvent B: acetonitrile; 80 %
B (0 min); 20 % B (30 min); 5 % B (32 min); 5 % B (38 min); 80 % B (40 min); 80 %
B (47 min). The HPLC column was coupled to an Exactive Orbitrap mass spectrometer
(Thermo) as mass detector. The Exactive was run with rapid switching between positive
and negative mode, and data was acquired at 50,000 resolution; spray voltages +4.5 kV
and −3.5 kV; capillary voltage 40 V and 30 V; tube voltage 70 V; skimmer voltage 20 V
and 18 V; ESI probe temperature 150 °C; capillary temperature 275 °C; shealth gas 40
units; auxilliary gas 5 units and sweep gas 1 unit.

2.6.5. Data analysis

Raw LC-MS data was converted to peakML format with msconvert (Kessner et al., 2008),
and metabolite peaks were picked using xcms with a mass accuracy of 2 parts per million;
peak width 5 100 seconds; signal-to-noise ratio of 5 and minimal intensity of 1000
(Smith et al., 2006). The peak list was aligned, filtered and reduced using mzMatch,
with grouping window of 30 sec and 5 parts per million, a relative standard deviation
filter of 0.5, noise filter of 0.8, intensity filter of 3000, 3 minimum detections and a
retention-time window of 6 sec for related peaks (Scheltema et al., 2011). Retention time
correction, mass calibration, metabolite and related peak identification and comparative
analysis were all performed using default settings of version 14 of the Excel-based macro
system IDEOM (Creek et al., 2012a).

Manual curation of the metabolomics data sets consisted of the confirmation of peak
shape and intensity, and the identification of fragments based on both retention time and
relational id as provided by mzMatch (Scheltema et al., 2011).

Significantly changed metabolites were selected by using rank products (Breitling et al.,
2004), which is a non-parametrical statistical method that was developed to detect
differentially expressed genes in microarray experiments. Rank products are based
on the rank of fold-changes, where metabolites that are consistently increased among
all replicates receive a higher rank than metabolites that only show random variation
(Table 2.5). Subsequently, it is calculated how consistent the obtained rank products are
by comparison to typically 10,000 random permutations of the same data set. From this



2.7. Computational methods 48

comparison, a false discovery rate (FDR) is calculated, as described in (Armengaud et al.,
2004). An FDR of < 5% means that only 5% or less of the metabolites up to this position
is expected to be observed by change (false positives), the remaining being metabolites
that are significantly affected (true positives). The strength of rank product analysis is
that it looks at the whole data set for each replicate, and takes both the fold change (rank
position) and reproducibility (product of ranks) into account.

A Fold change

Metabolite Repl. 1 Repl. 2 Repl. 3

A 3.0 2.5 2.0
B 2.9 2.7 1.7
C 1.0 1.3 1.6

→

B Rank lists

Repl. 1 Repl. 2 Repl. 3

Rank 1 A B A
Rank 2 B A C
Rank 3 C C B

↙

C Ranks multiplication Rank product

A 1/3 · 2/3 · 1/3 1/9

B 2/3 · 1/3 · 3/3 2/9

C 3/3 · 3/3 · 2/3 2/3

Table 2.5.: Main principles of rank product analysis. A simplified overview of rank product
analysis. In three replicate experiments (1–3), three metabolites (A–C) are measured
and compared between a treated and untreated sample. The fold changes of the three
metabolites are given (Table A). Rank lists are made for each replicate, where the
metabolites are ordered by the size of the fold change, with the highest fold change
on top (Table B). The rank values of each replicate are divided by the total number of
measured metabolites and subsequently multiplied for each metabolite (Table C).
The resulting number is the rank product, metabolites with the lowest rank product
have the largest and most significant fold changes throughout the replicates.

2.7. Computational methods

2.7.1. Model description

The dynamic model described in chapter 5 is based on the curated model of trypanosomal
glycolysis (Albert et al., 2005; Haanstra et al., 2008) first published by (Bakker et al.,
1999a). The equations were rewritten to contain the equilibrium constants and rapid
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reversible reactions for the transport steps, as described by (Achcar et al., 2012). These
alterations did not affect the model outcome. A few additional modifications in the
kinetic equations are listed below. A full description of the model is provided as Copasi
and SBML files on the supplementary CD-ROM.

2.7.1.1. Generic rate equations

Most of the rate equations for 2-substrate-2-product reactions follow the generic form:

vc/g = Vmax,c/g ·

[S1]c/g
Km,S1

· [S2]c/g
Km,S2

·
(

1− Γx,c/g
Keq,x

)
(

1+
[S1]c/g
Km,S1

+
[P1]c/g
Km,P1

)
·
(

1+
[S2]c/g
Km,S2

+
[P2]c/g
Km,P2

) (2.1)

while rate equations for reactions with one substrate and one product typically follow:

vc/g = Vmax,c/g ·

[S1]c/g
Km,S1

·
(

1− Γx,c/g
Keq,x

)
1+

[S1]c/g
Km,S1

+
[P1]c/g
Km,P1

(2.2)

where S1 and S2 are the substrates while P1 and P2 are the products. Subscripts c/g
indicates that separate equations are used for cytosolic and glycosomal reactions. Keq is
the equilibrium constant, and Γx,c/g specifies the ratio of substrates and products and is
defined as:

Γc/g =
[P1]c/g · [P2]c/g

[S1]c/g · [S2]c/g
, (2.3)

for Eq. (2.1), and

Γc/g =
[P]c/g

[S1]c/g
(2.4)

for Eq. (2.2).

2.7.1.2. Modified glycolysis equations

The equations in the last model of glycolysis have been modified by using reversible
rate equations for hexokinase, phosphofructokinase and pyruvate kinase, which were
modelled previously as irreversible reactions. Hexokinase now follows Eq. (2.1) and
Eq. (2.3).
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Phosphofructokinase is modelled with reversible ordered bi-bi kinetics with mixed
inhibition by fructose 1,6-bisphosphate (Fru-1,6-BP) (Cronin and Tipton, 1987):

vPFK,g =Vmax,g ·
Kii

[Fru−1,6−BP]g +Kii

·
[Fru−6−P]g·[AT P]g
Km,Fru−6−P·Km,AT P

· (1−ΓPFK,g/Keq,PFK)

Ks,AT P
Km,AT P

+
[AT P]g
Km,AT P

+
[Fru−6−P]g
Km,Fru−6−P

+
[Fru−6−P]g·[AT P]g
Km,Fru−6−P·Km,AT P

+
[ADP]g
Km,ADP

+
[Fru−1,6−BP]g·[ADP]g

Kis·Km,ADP

,

(2.5)

where ΓPFK,g follows Eq. (2.3), Kii and Kis describe the mixed inhibition by Fru-1,6-BP
and are also taken from Cronin and Tipton (1987).

Pyruvate kinase is modelled reversibly with cooperativity for phosphoenolpyruvate
(PEP):

vPK,c =Vmax,c ·

(
[PEP]c
KPEP

)n
· [ADP]c

Km,ADP
· (1−ΓPK,c/Keq,PK)(

1+
(
[PEP]c
KPEP

)n
+

[Pyr]c
Km,Pyr

)
·
(

1+ [ADP]c
Km,ADP

+
[AT P]c
Km,AT P

) , (2.6)

where ΓPK,c follows Eq. (2.3) and

KPEP = Km,PEP ·
(

1+
[AT P]c
Ki,AT P

+
[ADP]c
Ki,ADP

)
. (2.7)

The known inhibition of phosphoglucose isomerase by the pentose phosphate pathway
intermediate 6-phosphogluconate (6-PG) was included as described by Marchand et al.
(1989):

vPGI,g =Vmax,g ·
[Glc−6−P]g
Km,Glc−6−P

· (1−ΓPGI,g/Keq,PGI)

1+
[Glc−6−P]g
Km,Glc−6−P

+
[Fru−6−P]g
Km,Fru−6−P

+
[6−PG]g
Ki,6−PG

, (2.8)

where ΓPK,c follows Eq. (2.4).

2.7.1.3. Rate equations of PPP extension

The reactions of the ATP:ADP antiporter, glucose-6-phosphate dehydrogenase, 6-
phosphogluconate dehydrogensae, and ribokinase were modelled with Eq. (2.1) and
Eq. (2.3). Glucose-6-phosphatase, pentose phosphate isomerase and trypanothione
reductase were modelled with Eq. (2.2) and Eq. (2.4).
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For the 6-phosphogluconolactonase reaction both the spontaneous hydrolysis as well as
the enzyme-catalysed reaction were included (Miclet et al., 2001):

vPGL,c/g =Vmax,c/g ·
[6−PGL]c/g
Km,6−PGL

· (1−ΓPGL,c/g/Keq,PGL)

1+
[6−PGL]c/g
Km,6−PGL

+
[6−PG]c/g
Km,6−PG

+k ·Vc/g ·

(
[6−PGL]c/g −

[6−PG]c/g

Keq,PGL

)
,

(2.9)

where k is the rate constant of spontaneous hydrolysis and Vc/g is the volume of the
relative compartment, which are 5.4549 and 0.2451 μl per mg protein for the cytosol and
glycosome, respectively (Opperdoes et al., 1984).

Glycosomal and cytosolic oxidation of NADPH and trypanothione are modelled with
mass-action kinetics:

vc/g = k · [S]c/g ,

where k is the mass-action constant.

2.7.1.4. Rate equation of fructose extension

To allow the model to use fructose instead of glucose (see chapter 6), the hexokinase
reaction (Eq. (2.1)) was amended to include competitive inhibition:

vc/g = Vmax,c/g ·

[S1]c/g
Km,S1

· [S2]c/g
Km,S2

·
(

1− Γx,c/g
Keq,x

)
(

1+
[S1]c/g
Km,S1

+
[P1]c/g
Km,P1

)
·
(

1+
[S2]c/g
Km,S2

+
[P2]c/g
Km,P2

+
[IS2]c/g
Ki,IS2

+
[IP2]c/g
Ki,IP2

) ,(2.10)

where IS2 is the inhibiting substrate (glucose in the case of the fructose-phosphorylating
hexokinase, and vice versa), and IP2 is the inhibiting product (glucose 6-phosphate in the
case of the fructose-phosphorylating hexokinase, and fructose 6-phosphate in case of the
glucose-phosphorylating hexokinase) and Ki are the inhibitor constants of IS2 and IP2.

2.7.1.5. Kinetic parameters

The kinetic parameters in the rate equations mentioned above were predominantly
derived from literature. If no parameters of the T. brucei enzyme were available,
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parameters from related species were used. If necessary, Keq values were corrected to
pH 7. All parameter values are listed in Table 3.2. Distributions of parameters used in
uncertainty modelling are given in appendix B.

2.7.1.6. Metabolite concentrations

The extension of the model with the glycosomal pentose phosphate pathway led to an
extension of the conserved moiety of phosphorylated glycosomal metabolites (Table 1.1)
as compared to earlier model versions (Bakker et al., 1999a). The new conserved sum
was chosen such that extension of the glycolysis model with the glycosomal PPP and
ribokinase results in similar steady state concentrations of glycolytic metabolites in both
models. The conserved sum of NADPH in the cytosol and glycosome was arbitrarily
chosen as 2 mM, while the conserved sum of trypanothione was chosen as 0.38 mM
(Fairlamb et al., 1987).

2.7.2. Simulations

The model was initially constructed and simulations were performed in PySCeS 0.7.8
(Olivier et al., 2005) or COPASI 4.8 (Hoops et al., 2006). SBML and Copasi files are
provided on the supplementary CD-ROM. Some of the simulations were performed while
taking uncertainty into account. Each simulation exists of a 1000 individual runs, where
in each run all parameter values are sampled simultaneously. The parameter distributions
are described in more detail in appendix B. A tool was developed in-house by Dr Fiona
Achcar, that is responsible for the random sampling of parameter values, calculations of
steady states or time-course simulations, and subsequent collation of the results from all
individual runs (Achcar et al., 2012).
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Chapter 3
Extensions of the model of
trypanosomal metabolism

A detailed dynamic model of T. brucei glycolysis was constructed and successfully
applied to address questions regarding unique characteristics of trypanosomal glycolysis
(Bakker et al., 1997, 1999a, 2000; Helfert et al., 2001; Albert et al., 2005).

In this Chapter, the model of trypanosomal glycolysis is extended with the PPP.
Hypotheses that derived from the newly constructed models were experimentally tested,
and the results were subsequently used to update the model.
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3.1. Introduction

An ambitious aim in systems biology is the generation of the “Silicon Cell”, a
mathematical description of life at a cellular level by integration of information from the
genome, transcriptome, proteome, metabolome and observed phenotype (Snoep, 2005).
Because of the complexity of biological systems, the most tractable way to construct
such a large-scale model is by applying a modular approach (Snoep et al., 2006). Smaller
models, describing only part of the biological system, are coupled to create ever larger in
silico representations of life.

3.1.1. Towards an in silico trypanosome

The dynamic model of bloodstream form T. brucei glycolysis, constructed by Bakker
et al. (1997), is an example of a model that describes part of a biological system.
This model describes the kinetics of the enzymes that form glycolysis, which is
partly compartmentalised in a unique organelle called the glycosome, and is the sole
energy source of bloodstream form trypanosomes. Trypanosomal glycolysis has been
a front runner in systems biology, due to the relative simplicity of the network and the
availability of a comprehensive and uniform set of kinetic parameters. This model of
glycolysis has aided to address a number of questions, including what reaction steps
control the glycolytic flux—they were found to be different from erythrocytes, offering
potential as drug targets (Bakker et al., 1999a,b)—and the significance of the loss of
some feedback regulation, (Bakker et al., 2000; Haanstra, 2009; Gualdrón-López et al.,
2012b).

In spite of the successes of the model of glycolysis, it only covers a small part of
metabolism. For instance, even though the majority of glycolytic flux is directed towards
the excretion of pyruvate, it does branch into other essential pathways such as the PPP.
The PPP is an important source of NADPH that is used in reductive biosynthesis and to
maintain cellular redox homoeostasis, particularly under oxidative stress. An important
factor in the oxidative stress protection is the unique and essential thiol trypanothione,
with its biosynthesis implicated in the mode-of-action of trypanocidal drugs (Bacchi
et al., 1983). The biological importance of redox metabolism renders the PPP as a natural
extension of the current available model.

In a collaborative project called SilicoTryp, funded within the large systems biology
programme SysMO (Booth, 2007), the model of trypanosomal glycolysis is now
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extended to incorporate pathways that are involved in redox metabolism (Bakker et al.,
2010). Besides horizontal extension of the model of metabolism with additional
metabolic pathways, the model is also extended vertically by the inclusion of gene
transcription and translation, making progress towards a “silicon trypanosome”. In this
Chapter I will deal with the horizontal extension of the glycolytic model with additional
pathways.

3.1.2. Trypanosomal PPP

The PPP, branching off glycolysis at the point of Glc-6-P, is an essential pathway
that provides NADPH for redox metabolism and Rib-5-P for nucleotide biosynthesis.
Genetic mutants and inhibitor studies have demonstrated the importance of the PPP for
trypanosome survival (Hanau et al., 1996; Dardonville et al., 2003).

In the bloodstream form of T. brucei only the oxidative part of the PPP is present
(Figure 1.6), and the PPP is localised to both the cytosol and glycosomes, as indicated
by subcellular localisation studies (Duffieux et al., 2000; Heise and Opperdoes, 1999;
Stoffel et al., 2011), proteomic analyses (Colasante et al., 2006; Vertommen et al., 2008)
and subcellular targeting-sequence-based predictions (Opperdoes and Szikora, 2006).

3.1.3. Aim

Because of the importance of the PPP for trypanosome survival (Hanau et al., 1996;
Dardonville et al., 2003), and the partial glycosomal localisation of this pathway, it was
decided to extend the original model of trypanosomal glycolysis with the PPP. Such
an extended mechanistic model will allow to study the characteristics and (dynamic)
behaviour of both glycolysis and the PPP in more detail (as shown in Chapter 6). The
extended model is a step forwards towards a silicon trypanosome (Bakker et al., 2010).

In this chapter, I will extend the current model of trypanosomal glycolysis with the PPP
using enzyme kinetics, both from literature and wet-lab experimentation. This progress
follows an iterative cycle, where model predictions are tested by experimentation, and
the results from experimentation is subsequently used to inform the model building
process. The results section commences with a brief description of a method that has
been developed in our laboratory that allows to take uncertainty of the parameter values
into account. Although this is not a prerequisite for most of the remaining chapter, it
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does demonstrate that observed behaviour of a dynamic model is not purely based on
particularly selected parameter values.
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3.2. Results

3.2.1. Modelling glycolysis including uncertainty of the
parameters

Kinetic models of metabolism require quantitative knowledge of detailed kinetic
parameters (e.g. maximum reaction rates, enzyme affinities for substrates and
regulators). However, our knowledge about these parameters is often limited. When the
parameters are measured, various sources of error can affect the results: experimental
noise at the technical and biological levels, systematic bias introduced by parameters
being measured in vitro instead of in vivo or by the choice of specific experimental
conditions (pH, temperature, ionic strength, etc.). Moreover, a substantial number of
important parameters have never been measured and the estimates included in models are
based either on values measured in closely related species or on the general distribution
of similar parameters (Borger et al., 2006). Few general methods for dealing with this
uncertainty have been suggested (Wang et al., 2004; Tran et al., 2008; Murabito et al.,
2011; Mišković and Hatzimanikatis, 2011).

The model of glycolysis in T. brucei was adapted to include this uncertainty of parameter
values, prior to further extension. In order to specify the uncertainty of each parameter
value, Dr Fiona Achcar (University of Glasgow) and I gathered all available information
relating to the sources of the values used in the model. Information included data on
how kinetics were measured, the number of replicates and the standard error of mean
values when available, additional calculations used to estimate the parameter from the
observed values, and any “corrections” for additional factors such as temperature or pH.
For this purpose, we created the SilicoTryp Wiki1, a MediaWiki-based website dedicated
to the detailed documentation of the sources of parameters used in the latest version of
the model of glycolysis in T. brucei. Each reaction is described on its own page, which
contains the rate equation and the detailed references and calculations for each parameter
(see Figure 3.1 for an example). From the information collected, probability distributions
could be inferred for each parameter, as described in Chapter C.

Dr Fiona Achcar developed methodology to handle the random sampling of parameters
(Figure 3.1) and analysed the implications of parameter uncertainty on the model of
trypanosomal glycolysis in more detail (Section E, Achcar et al., 2012). In the remainder
of this chapter this strategy will be used to demonstrate that the observed dynamic

1http://silicotryp.ibls.gla.ac.uk/wiki/
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behaviour is not a function of a chosen set of parameter values. Error bars in this chapters
represent interquartile ranges of the model results.

Figure 3.1.: Overview of modelling with uncertainty. A: Example of a page on the SilicoTryp
wiki. B: Schematic overview of modelling with uncertainty in 5 steps. 1:
Collection of information on parameter uncertainty, together with any relevant prior
knowledge. 2: Distributions are described for each parameter value. 3: A collection
of models is generated, by random sampling of parameter values. Each model has a
unique combination of parameter values. 4: All generated models are analysed one
by one. 5: The outcome from all model simulations are combined to give a
distribution of outcomes. Figure courtesy of Dr Fiona Achcar, University of
Glasgow.
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3.2.2. Stepwise extension with the PPP

The latest model of glycolysis in T. brucei was extended with the PPP. The extensions
were divided into modules and added to the original model of glycolysis in a stepwise
approach, what allowed extensive scrutiny of each module. Figure 3.2 and Figure 3.3
give an overview of all model versions considered in this Chapter. Table 3.1 describes
the stoichiometry of all reactions, while Table 3.2 and gives all parameter values. The
rate equations used are described in Chapter 2, Copasi and SBML files of the model are
supplied on the supplementary CD-ROM. Stoichiometric analyses of each module are
described in the appropriate section.

The original model of glycolysis was changed on a few points. A number of reactions that
were modelled with irreversible rate equations (HXK, PFK and PYK). The rate equations
for these reactions were replaced with reversible rate equations, using parameter values
from literature (Table 3.2 for parameter values, see Methods for rate equations). It
was decided not to change the assumption of the existence of an intracellular inorganic
phosphate homoeostasis. As described in 1.8.5.1, inorganic phosphate is not limiting the
rate, it is not involved in the rate equation for GAPDH, and inorganic phosphate is not a
member of the conserved moiety of bound phosphates in the cytosol. The incorporation
of transport reactions over the glycosomal and cytosolic membrane does therefore
not affect the model, and I decided to keep the structure of the glycolysis module
identical to the well tested original model of glycolysis (except from the aforementioned
reversibility).

1 2 3 4

5 6 7

Figure 3.2.: Overview of different versions of models described in this Chapter. Coloured
pathways refer to modules from Figure 3.3.
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Figure 3.3.: Overview of metabolic pathways modelled in this Chapter. Detailed scheme of
the glycolytic model with extensions including the glycosomal and cytosolic PPP.
Reactions are indicated by numbers: 1: glucose transport over the cell membrane
(GlcTc); 2: glucose transport over the glycosomal membrane (GlcTg); 3:
hexokinase (HXKc/g); 4: phosphoglucose isomerase (PGIg); 5:
phosphofructokinase (PFKg); 6: aldolase (ALDg); 7: triosephosphate isomerase
(TIMg); 8: glycerol-3-phosphate dehydrogenase (G3PDHg); 9: glycerol kinase
(GKg); 10: Gly-3-P/DHAP antiporter (GDAg); 11: glycerol-3-phosphate oxidase
(GPOc); 12: glyceraldehyde 3-phosphate dehydrogenase (GAPDHg); 13:
phosphoglycerate kinase (PGKg); 14: 3-PGA transporter (PGATg); 15:
phosphoglycerate mutase (PGAMc); 16: enolase (ENOc); 17: pyruvate kinase
(PYKc); 18: pyruvate transport (PYRTc); 19: glucose-6-phosphate dehydrogenase
(G6PDHc/g); 20: phosphogluconolactonase (PGLc/g); 21: 6-phosphogluconate
dehydrogenase (6PGDHc/g); 22: pentosephospate isomerase (PPIc/g); 23: RK
(RKg); 24: ATP/ADP antiporter (ATPTg); 25: NADPH utilisation (NADPHuc/g);
26: G6PPase (G6PPc); 27: trypanothione reductase (TRc); 28: trypanothione
oxidation (TOXc); 29: adenylate kinase (AKc/g); 30 ATP utilisation (ATPuc).
Extensions to the original model of glysolysis that correspond to the modules in
Table 3.1 are indicated by coloured shapes. Boundary metabolites with fixed
concentrations are in bold, Rib-5-P in the glycosome is a boundary metabolite in
model versions where no RK is present. Pink: cytosolic PPP; red: G6PP; yellow:
TR; light-green: glycosomal PPP; dark-green: RK; blue: ATPT.
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Module Reaction Reaction stoichiometry

Glycolysis GlcTc Glucosee→ Glucosec

GlcTg Glucosec↔ Glucoseg

HXKg Glucoseg + ATPg↔ Glc-6-Pg + ADPg

PGI Glc-6-Pg↔ Fru-6-Pg

PFK Fru-6-Pg + ATPg↔ Fru-1,6-BPg + ADPg

ALD Fru-1,6-BPg↔ DHAPg + GA-3-Pg

TIM DHAPg↔ GA-3-Pg

GAPDH GA-3-Pg + NADg + Pig↔ 1,3-BPGAg + NADHg

PGK 1,3-BPGAg + ADPg↔ 3-PGA + ATPg

PGAT 3-PGAg↔ 3-PGAc

PGAM 3-PGAc↔ 2-PGAc

ENO 2-PGAc↔ PEPc

PYK PEPc + ADPc↔ Pyruvatec + ATPc

PyrT Pyruvatec → Pyruvatee

G3PDH DHAPg + NADHg↔ NADg + Gly-3-Pg

GDA DHAPc + Gly-3-Pg↔ DHAPg + Gly-3-Pc

GPO Gly-3-Pc + 0.5 O2→ DHAPc

GK Gly-3-Pg + ADPg↔ Glycerole + ATPg

ATPu ATPc → ADPc + Pic
AKg 2 ADPg↔ ATPg + AMPg

AKc 2 ADPc↔ ATPc + AMPc

G6PP G6PP Glc-6-Pc↔ Glucosec + Pic

Cytosolic PPP HXKc Glucosec +ATPc↔ Glc-6-Pc + ADPc

G6PDH Glc-6-Pc + NADPc↔ 6-PGLc+ NADPHc

PGL 6-PGLc↔ 6-PGc

6PGDH 6-PGc + NADPc↔ Rul-5-Pc + NADPHc + CO2

PPI Rul-5-Pc↔ Rib-5-Pc

NADPHu NADPHc→ NADPc

Trypanothione TR TS2,c + NADPHc↔ T(SH)2,c + NADPc

cycle TOX T(SH)2,c→ TS2,c

Glycosomal PPP Reactions and kinetics identical to cytosolic PPP, but
pathway entirely localised in the glycosome.

RK RK Rib-5-Pg + ADPg↔ Riboseg + ATPg

ATPT ATPT ATPc + ADPg↔ ATPg + ADPc

Table 3.1.: Model stoichiometry. The modules and their subsequent reactions, as depicted in
Figure 3.3. Bold characters indicate external metabolites whose concentrations are
kept constant.
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Table 3.2.: Kinetic parameters of the reactions related to the PPP. For dual localised
reactions, subscript c and g indicate cytosolic or glycosomal localisation. Where
needed, parameter values were corrected to pH 7 and/or 25 °C.

Enzyme Parameter Value Unit Ref.

GlcTc Vmax 111.7 nmol min–1 mg protein–1 Achcar et al., 2012

Km,Glc 1 mM Bakker et al., 1999b

α 0.75 dimensionless Bakker et al., 1997

GlcTg k 250,000 dimensionless Achcar et al., 2012

HXK Vmax,g 1,775 nmol · min–1 · mg protein–1 This Chapter

Vmax,c 154 2 nmol · min–1 · mg protein–1 This Chapter

Keq 759 3 dimensionless Fromm et al., 1964

Km,Glc 0.1 mM Bakker et al., 1997

Km,ATP 0.12 mM Nwagwu and Opperdoes, 1982

Km,Glc-6-P 12 mM This Chapter

Km,ADP 0.13 mM Nwagwu and Opperdoes, 1982

PGI Vmax 1,305 nmol · min–1 · mg protein–1 Albert et al., 2005

Keq 0.457 dimensionless Achcar et al., 2012

Km,Glc-6-P 0.4 mM Helfert et al., 2001

Km,Fru-6-P 0.12 mM Helfert et al., 2001

Ki,6-PG 0.14 mM Marchand et al., 1989

PFK Vmax 1,708 nmol · min–1 · mg protein–1 Albert et al., 2005

Keq 1,035 dimensionless Voet et al., 1999

Kii 15.8 mM Cronin and Tipton, 1987

Kis 10.7 mM Cronin and Tipton, 1987

Ks,ATP 0.0393 mM Cronin and Tipton, 1987

Km,ATP 0.0648 mM Cronin and Tipton, 1987

Km,Fru-6-P 0.999 mM Cronin and Tipton, 1987

Km,ADP 1 mM 4

ALD Vmax 560 nmol · min–1 · mg protein–1 Albert et al., 2005

Keq 0.084 dimensionless Achcar et al., 2012

Km,GA-3-P 0.067 mM Callens et al., 1991

Ki,GA-3-P 0.098 mM Callens et al., 1991

Km,Fru-1,6-BP 0.009 mM Callens et al., 1991

Km,DHAP 0.015 mM Callens et al., 1991

Ki,ATP 0.68 mM Callens et al., 1991

Ki,ADP 1.51 mM Callens et al., 1991

Ki,AMP 3.65 mM Callens et al., 1991

2Model 1 and 7 do not have a cytosolic HXK.
3Corrected to pH 7 and/or 25 °C.
4No value available, assumed to be significantly higher than Km,ATP, as ADP was shown to activate the

enzyme under particular conditions (Cronin and Tipton, 1987).
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Enzyme Parameter Value Unit Ref.

TPI Vmax 999.3 nmol · min–1 · mg protein–1 Albert et al., 2005

Keq 0.046 dimensionless Achcar et al., 2012

Km,DHAP 1.2 mM Lambeir et al., 1987

Km,GA-3-P 0.25 mM Lambeir et al., 1987

GAPDH Vmax 720.9 nmol · min–1 · mg protein–1 Albert et al., 2005

Keq 0.066 dimensionless Achcar et al., 2012

Km,GA-3-P 0.15 mM Lambeir et al., 1991

Km,NAD+ 0.45 mM Lambeir et al., 1991

Km,1,3-BPGA 0.1 mM Lambeir et al., 1991

Km,NADH 0.02 mM Lambeir et al., 1991

G3PDH Vmax 465 nmol · min–1 · mg protein–1 Albert et al., 2005

Keq 17,085 dimensionless Achcar et al., 2012

Km,DHAP 0.1 mM Marché et al., 2000

Km,NADH 0.01 mM Marché et al., 2000

Km,Gly-3-P 2 mM Marché et al., 2000

Km,NAD+ 0.4 mM Marché et al., 2000

GPO Vmax 368 nmol · min–1 · mg protein–1 Fairlamb and Bowman, 1977

Km,Gly-3-P 1.7 mM Fairlamb and Bowman, 1977

GK Vmax 200 nmol · min–1 · mg protein–1 Bakker et al., 1997

Keq 0.000837 dimensionless Achcar et al., 2012

Km,Gly-3-P 3.83 mM Králová et al., 2000

Km,ADP 0.56 mM Králová et al., 2000

Km,Gly 0.44 mM Králová et al., 2000

Km,ATP 0.24 mM Králová et al., 2000

PGK Vmax 2,862 nmol · min–1 · mg protein–1 Albert et al., 2005

Keq 3,377 dimensionless Achcar et al., 2012

Km,1,3-BPGA 0.003 mM Albert et al., 2005

Km,ADP 0.1 mM Misset and Opperdoes, 1987

Km,3-PGA 1.62 mM Misset and Opperdoes, 1987

Km,ATP 0.29 mM Misset and Opperdoes, 1987

3PGAT k 250 dimensionless Achcar et al., 2012

PGAM Vmax 225 nmol · min–1 · mg protein–1 Albert et al., 2005

Keq 0.17 dimensionless Achcar et al., 2012

Km,3-PGA 0.15 mM Chevalier et al., 2000

Km,2-PGA 0.16 mM Chevalier et al., 2000

ENO Vmax 598 nmol · min–1 · mg protein–1 Albert et al., 2005

Keq 4.17 dimensionless Achcar et al., 2012

Km,2-PGA 0.054 mM Hannaert et al., 2003a

Km,PEP 0.24 mM Hannaert et al., 2003a
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Enzyme Parameter Value Unit Ref.

PYK Vmax 1,020 nmol · min–1 · mg protein–1 Albert et al., 2005

Keq 10,800 dimensionless Achcar et al., 2012

n 2.5 dimensionless Callens et al., 1991

Km,ADP 0.114 mM Barnard and Pedersen, 1988

Ki,ATP 0.57 mM Barnard and Pedersen, 1988

Ki,ADP 0.64 mM Barnard and Pedersen, 1988

Km,PEP 0.34 mM Barnard and Pedersen, 1988

Km,ATP 15 mM Achcar et al., 2012

Km,Pyr 50 mM Achcar et al., 2012

PYRT Vmax 230 nmol · min–1 · mg protein–1 Helfert et al., 2001

Km,Pyr 1.96 mM Wiemer et al., 1992

ATPu k 50 dimensionless Bakker et al., 1997

AK k1,c/g 480 dimensionless Achcar et al., 2012

k2,c/g 1,000 dimensionless Achcar et al., 2012

GDA k 600 dimensionless Achcar et al., 2012

G6PDH Vmax,c/g 8.4 nmol · min–1 · mg protein–1 Cronin et al., 1989; Heise and Opperdoes,

1999

Keq 5.02 dimensionless Goldberg et al., 1993

Km,Glc-6-P 0.058 mM Cordeiro et al., 2009

Km,6-PGL 0.04 mM Thorburn and Kuchel, 1985 5

Km,NADP+ 0.0094 mM Cordeiro et al., 2009

Km,NADPH 0.0001 mM Thorburn and Kuchel, 1985 5

PGL Vmax,g 5 nmol · min–1 · mg protein–1 Cronin et al., 1989; Duffieux et al., 2000

Vmax,c 28 nmol · min–1 · mg protein–1 Cronin et al., 1989; Duffieux et al., 2000

Keq 20,000 dimensionless Casazza and Veech, 1986

Km,6-PGL 0.05 mM Igoillo-Esteve et al., 2007 6

Km,6-PG 0.05 mM 7

k 0.055 min–1 Schofield and Sols, 1976

6PGDH Vmax,c/g 10.6 nmol · min–1 · mg protein–1 Cronin et al., 1989

Keq 47 dimensionless Villet and Dalziel, 1969

Km,6-PG 0.0035 mM Hanau et al., 1996

Km,Rul-5-P 0.03 mM Hanau et al., 1996

Km,NADP+ 0.001 mM Hanau et al., 1996

Km,NADPH 0.0006 mM Hanau et al., 1996

5 Parameter from red blood cells. Km for Glc-6-P and NADP+ are in the same range for T. brucei and red
blood cells.

6Parameter from Trypanosoma cruzi.
7No value available. The affinity is assumed to be similar for the substrate and the product.
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Enzyme Parameter Value Unit Ref.

PPI Vmax,c/g 72 nmol · min–1 · mg protein–1 Cronin et al., 1989 8

Keq 5.6 dimensionless Goldberg and Tewari, 1995

Km,Rul-5-P 4 mM Igoillo-Esteve et al., 2007 6

Km,Rib-5-P 1.4 mM Igoillo-Esteve et al., 2007 6

TR Vmax 252 nmol · min–1 · mg protein–1 Krieger et al., 2000

Keq 434 dimensionless Fairlamb and Cerami, 1992 9

Km,TS2 0.0069 mM Jones et al., 2010

Km,TSH2 0.0018 mM 10

Km,NADPH 0.00077 mM Jones et al., 2010

Km,NADP+ 0.081 mM 10

TOX k 2-200 µl · min–1 · mg protein–1 11

NADPHu kc/g 2 µl · min–1 · mg protein–1 12

G6PPase Vmax 28 nmol · min–1 · mg protein–1 This Chapter

Keq 263 dimensionless Atkinson et al., 1961

Km,Glc-6-P 5.6 mM McLaughlin, 198613

Km,Glc 5.6 mM McLaughlin, 1986

ATP:ADPVmax 1.5 nmol · min–1 · mg protein–1 14

antiporter Keq 1 dimensionless 15

Km,ATPc/g 0.02 mM 15

Km,ADPc/g 0.02 mM 15

RK Vmax 5 nmol · min–1 · mg protein–1 This Chapter

Keq 0.0035 dimensionless Table 4.3

Km,Rib-5-P 0.39 mM Table 4.3

Km,Rib 0.51 mM Table 4.3

Km,ADP 0.25 mM Table 4.3

Km,ATP 0.24 mM Table 4.3

8No reliable localisation data available, assumed to be equally distributed in glycosomal and cytosol.
9Calculated from redox potential of trypanothione.

10Ratio of Km values of reduced and oxidised trypanothione are assumed to be similar to the ratio of Km
values of reduced and oxidised glutathione for glutathione reductase.

11Varies depending on oxidative stress
12Fitted to result in a total PPP flux of 1.2 nmol · min–1 · mg protein–1, the PPP flux in T. cruzi and L.

mexicana without induced oxidative stress (Maugeri et al., 2003; Maugeri and Cazzulo, 2004).
13The average of the two types of acid phosphatases in T. rhodesiense were used as a first estimate.
14No specific value available. See Figure 1.4.
15The hypothetical ATP/ADP antiporter was given arbitrary kinetic constants. The Keq of 1 reflects the

assumption of facilited transport, i.e. not driven by an external source of Gibbs free energy.
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3.2.2.1. Cytosolic PPP

As the first stepwise extension, the cytosolic PPP (Figure 3.2, model 2) was added to
the glycolysis model (model 1). Two key enzymes of the non-oxidative PPP, PPE and
TKT, are not expressed in the bloodstream form of the parasite (Cronin et al., 1989;
Stoffel et al., 2011), rendering Rib-5-P the end product of the cytosolic PPP branch.
The concentration of Rib-5-P is fixed in the model, implicitly reflecting its continuous
utilisation as a precursor for nucleotide biosynthesis, or other potential undefined roles
in the cell (Constantinides et al., 1990). The equations and parameters used to describe
the kinetics of the enzymes were based on in vitro studies (Table 3.2).

An elementary mode analysis was performed on the structure of model 2. A total of
twelve elementary modes were observed (Table 3.3). The first three modes are identical
to the modes observed in the original glycolysis model Table 1.2. The fourth mode is
gluconeogenesis from glycerol to glucose, possible in model 2 but not in the original
glycolysis model due to the reversibility of the HXK and PFK introduced in model
2. Elementary modes 8–12 consist of a combination of similar modes as 1–3 with an
additional mode through the PPP (Table 3.3). In modes 5 and 6, oxidative glycolysis
generates 2 ATPc, similar to mode 1. Where ATPc in mode 1 is subsequently consumed
by ATPu, in modes 5 and 6 ATPc is invested in the cytosolic PPP. Comparably, ATPc

generated by non-oxidative glycolysis in modes 7 and 8 are used by the cytosolic PPP
(cf. mode 2); while ATPc for the cytosolic PPP in modes 9–12 are generated by
glycerol oxidation (cf. mode 3). In modes 5, 7, 9 and 11, NADPH generated by the
cytosolic PPP is consumbed by the generic NADPH utilising reaction, while in modes
6, 8, 10 and 12, the NADPH is consumed by the specific TOX reaction. Model 2 has
seven conserved moieties, of which moieties 1–5 are identical to the original model of
glycolysis (Table 1.1).

In model 2, Glc-6-P is produced by HXK, an enzyme that was initially assumed to be
strictly localised to the glycosomes of T. brucei, based on fractionation experiments
(Visser and Opperdoes, 1980). An absence of cytosolic HXK would pose a problem
for the provision of Glc-6-P to the cytosolic G6PDH. However, enzymes targeted to the
glycosome are already fully folded in the cytosol (Walton et al., 1995), indicating that
glycosomal enzymes are likely to have a residual activity in the cytosol. The majority
of the activity of the glycolytic enzymes is localised in the glycosome, preventing the
turbo-explosion that is observed when all of the glycosomal enzymes are localised in
the cytosol (Figure 1.4 and Bakker et al., 2000; Haanstra et al., 2008), but more detailed
analysis of a partial cytosolic localisation of glycolysis in T. brucei is currently ongoing
(Dr Fiona Achcar, University of Glasgow). Additionally, T. brucei HXK has a strong
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tendency to stick to membranes (Guerra-Giraldez et al., 2002), indicating that the strict
glycosomal localisation found in fractionation experiments are likely an artifact.

Mode Overall reaction Individual reactions

1 Glce + O2 + 2 Pig
→ 2 Pyre + 2 Pic

GlcTc, GlcTg, HXKg, PGIg, PFKg, ALDg, TPIg, 2 GAPDHg, 2 PGKg,
2 PGATg, 2 PGAMc, 2 ENOc, 2 PYKc, 2 PyrTc, 2 G3PDHg, 2 GDAg, 2
GPOc, 2 ATPuc

2 Glce + Pig→ Pyre +
Glye + Pic

GlcTc, GlcTg, HXKg, PGIg, PFKg, ALDg, GAPDHg, PGKg, PGATg,
PGAMc, ENOc, PYKc, PyrTc, G3PDHg, GKg, ATPuc

3 Glye + O2 + Pig →
Pyre + Pic

TPIg, GAPDHg, PGKg, PGATg, PGAMc, ENOc, PYKc, PyrTc,
G3PDHg, 2 GDAg, 2 GPOg, –GKg, ATPuc

4 2 Glye + O2→ Glce –2 GKg, –2 GDAg, –2 GPOc, TPIg, –ALDg, –PFKg, –PGIg, –HXKg,
–GlcTg, –GlcTc

5 3 Glce + 2 Pig + O2

→ 2 Pyre + 2
Rib5Pc + CO2

GlcTc, GlcTg, HXKg, PGIg, PFKg, ALDg, TPIg, 2 GAPDHg, 2 PGKg,
2 PGATg, 2 PGAMc, 2 ENOc, 2 PYKc, 2 PyrTc, 2 G3PDHg, 2 GDAg, 2
GPOc, 2 HXKc, 2 G6PDHc, 2 PGLc, 2 6PGDHc, 2 PPIc, 4 NADPHuc

6 3 Glce + 2 Pig + O2

→ 2 Pyre + 2
Rib5Pc + CO2

GlcTc, GlcTg, HXKg, PGIg, PFKg, ALDg, TPIg, 2 GAPDHg, 2 PGKg,
2 PGATg, 2 PGAMc, 2 ENOc, 2 PYKc, 2 PyrTc, 2 G3PDHg, 2 GDAg, 2
GPOc, 2 HXKc, 2 G6PDHc, 2 PGLc, 2 6PGDHc, 2 PPIc, 4 TOXc

7 2 Glce + Pig → Pyre

+ Glye + Rib5Pc +
CO2

GlcTc, GlcTg, HXKg, PGIg, PFKg, ALDg, GAPDHg, PGKg, PGATg,
PGAMc, ENOc, PYKc, PyrTc, G3PDHg, GKg, HXKc, G6PDHc, PGLc,
6PGDHc, PPIc, 2 NADPHuc

8 2 Glce + Pig → Pyre

+ Glye + Rib5Pc +
CO2

GlcTc, GlcTg, HXKg, PGIg, PFKg, ALDg, GAPDHg, PGKg, PGATg,
PGAMc, ENOc, PYKc, PyrTc, G3PDHg, GKg, HXKc, G6PDHc, PGLc,
6PGDHc, PPIc, 2 TOXc

9 3 Glye + Pig + 2
O2→ Pyre +
Rib5Pc + CO2

2 TPIg, GAPDHg, PGKg, PGATg, PGAMc, ENOc, PYKc, PyrTc,
G3PDHg, 4 GDAg, 4 GPOg, –3 GKg, –ALDg, –PFKg, –PGIg, –HXKg,
–GlcTg, HXKc, G6PDHc, PGLc, 6PGDHc, PPIc, 2 NADPHuc

10 3 Glye + Pig + 2
O2→ Pyre +
Rib5Pc + CO2

2 TPIg, GAPDHg, PGKg, PGATg, PGAMc, ENOc, PYKc, PyrTc,
G3PDHg, 4 GDAg, 4 GPOg, –3 GKg, –ALDg, –PFKg, –PGIg, –HXKg,
–GlcTg, HXKc, G6PDHc, PGLc, 6PGDHc, PPIc, 2 TOXc

11 Glye + Glce + Pig +
O2→ Pyre +
Rib5Pc + CO2

TPIg, GAPDHg, PGKg, PGATg, PGAMc, ENOc, PYKc, PyrTc,
G3PDHg, 2 GDAg, 2 GPOg, –GKg, GlcTc, HXKc, G6PDHc, PGLc,
6PGDHc, PPIc, 2 NADPHuc

12 Glye + Glce + Pig +
O2→ Pyre +
Rib5Pc + CO2

TPIg, GAPDHg, PGKg, PGATg, PGAMc, ENOc, PYKc, PyrTc,
G3PDHg, 2 GDAg, 2 GPOg, –GKg, GlcTc, HXKc, G6PDHc, PGLc,
6PGDHc, PPIc, 2 TOXc

Table 3.3.: Elementary mode analysis of model 2. Twelve elementary modes are listed as the
overall reactions plus the individual enzyme-catalysed reactions with their relative
flux weight. Mode 1–3 are identical to mode 1–3 in the original model of glycolysis
(Table 1.2), mode 4 is gluconeogenesis from glycerol.
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Moiety Conserved metabolites

1 ATPg + ADPg + AMPg

2 ATPc + ADPc + AMPc

3 NADHg + NAD+
g

4 Gly-3-Pc + DHAPc

5 Glc-6-Pg + Fru-6-Pg + 2 Fru-1,6-BPg + DHAPg + GA-3-Pg + 1,3-BPGAg + Gly-3-Pg

+ 2 ATPg + ADPg

6 NADPHc + NADP+
c

7 T(SH)2,c + TS2,c

Table 3.4.: Conserved moieties in model 2. The stoichiometry of the model results in five
groups of metabolites, whose combined concentration within the group remains
constant.
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Figure 3.4.: Scans of parameter values related to the cytosolic PPP. A: The steady-state flux
through cytosolic G6PDH (JG6PDHC ) at variable cytosolic HXK activity. The
percentage of cytosolic HXK activity was scanned from 1 to 10 % of the total HXK
activity in the fixed parameter model 2. B: The steady-state concentration of
cytosolic Glc-6-P at variable G6PPase activity. The activity of G6PPase (Vmax,G6PP)
was scanned from 0 to 40 nmol · min 1 · mg protein 1 in the fixed parameter model
3.

The distribution of glycosomal and cytosolic HXK activity was scanned in model 2, and
affects the flux through the PPP as anticipated (Figure 3.4). For subsequent simulations,
the cytosolic HXK activity was set at 10 % of the total HXK activity in fixed parameter
models, or sampled from a uniform distribution between 1 and 10 percent in models were
uncertainty was taking into account.
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3.2.2.2. Prevention of cytosolic Glc-6-P accumulation

Simulations of model 2 resulted in a high risk of accumulation of Glc-6-P in the cytosol
(25 % of the models have a cytosolic Glc-6-P concentration over 20 mM), while a steady
state concentration of 2.9 mM has been reported (Hammond and Bowman, 1980b). I
postulated that the cytosolic Glc-6-P does not accumulate because of its consumption
by other pathways beside PPP. Glc-6-P can be used in GDP-mannose biosynthesis
(Kuettel et al., 2012), residual activity of cytosolic localised glycolysis and potentially
dephosphorylated by glucose-6-phosphatase (G6PPase, Seed et al., 1967; McLaughlin,
1986). Model 2 was extended with a Glc-6-P utilising reaction, generating model 3. The
G6PPase activity was assayed in wild-type parasite cell extracts, and a value of 28 ± 6.7
nmol · min−1 · mg protein−1 was measured. In simulations, the G6PPase activity was
sampled from an uniform distribution between 1 and 40 nmol · min−1 · mg protein−1,
because of uncertainty about the cytosolic availability of the total measured G6PPase
activity and other fluxes using Glc-6-P.

In previous versions of the glycolytic model (Albert et al., 2005), HXK was modelled as
an irreversible reaction with a very low affinity for Glc-6-P (Km,Glc-6-P = 12 mM). Both
the irreversibility and the low affinity of Glc-6-P exacerbate the accumulation of Glc-6-P
in the cytosol. It has been reported that Glc-6-P up to a concentration of 50 mM does not
inhibit T. brucei HXK (Nwagwu and Opperdoes, 1982; Hara et al., 1997; Morris et al.,
2006), however, all these experiments were assaying the phosphorylation of glucose by
HXK. No data could be found in literature where the dephosphorylation of Glc-6-P by T.
brucei HXK was assayed. In comparison, HXK from T. cruzi is said to be insensitive to
Glc-6-P, even though a Ki,Glc-6-P-value of 1.45 mM was measured (Urbina and Crespo,
1984), and HXK from L. mexicana has a Ki,Glc-6-P of 0.43 mM (Pabón et al., 2007).

I therefore decided to measure the affinity constant of Glc-6-P by assaying the
dephosphorylation of Glc-6-P. T. brucei cell extracts were used in the assay, and a
Km,Glc-6-P-value of 2.7 ± 1.3 mM was measured, significantly lower than previously
assumed (>50 mM, Nwagwu and Opperdoes, 1982; Hara et al., 1997; Morris et al.,
2006). The discrepancy with previous experiments could be explained by the use of
cell extracts instead of purified recombinant enzyme and the use of an in vivo-like assay
buffer. Additionally, T. brucei has two isoforms of HXK (HXK1 and HXK2) that form a
complex in vivo (Joice et al., 2012). The in vivo formation of heterohexamers of HXK1
and HXK2 might be responsible for the regulation of Glc-6-P sensitivity. Morris et al.
(2006) used only recombinant HXK1 to test the inhibition of glucose phosphorylation by
50 mM of Glc-6-P, while the assembly of recombinant HXK heterohexamers has already
demonstrated to affect the affinity of hexokinse to ATP (Chambers et al., 2008).
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Steady-state calculations of the further extended models 5 and 6 (see below) with the
updated kinetics for HXK resulted in a cytosolic Glc-6-P concentration of 1.6–2.2 mM,
more in concordance with the previously measured concentration of 2.9 mM (Hammond
and Bowman, 1980b).

3.2.2.3. Oxidative stress regulates flux through PPP

Simulations of model 3 showed that oxidative stress regulates the flux through the
cytosolic PPP (Figure 3.6A). Increasing the rate of the trypanothione oxidising reaction
(TOX) enhanced the flux through the PPP to a maximum of 4.7 ± 1.8 % of the total
glucose uptake (Figure 3.5). A similar increase in the PPP flux upon oxidative stress has
been measured in T. cruzi (Maugeri and Cazzulo, 2004).

An increase in oxidative stress in model 3 decreases the ratio of reduced over oxidised
trypanothione (Figure 3.6B), and methodologies are being developed in our laboratory
to measure both this ratio and the absolute levels (Dr Dong-Hyun Kim, University of
Glasgow). In comparison, the ratio of reduced over oxidised glutathione in proliferating
Plasmodium cells is kept in the range of 10–100 (Müller, 2004). In the mathematical
models, a kTOX -value of 2 μl · min−1 · mg protein−1 was chosen to represent a healthy
proliferating trypanosome under low oxidative stress, corresponding to a ratio of reduced
over oxidised trypanothione of 29 (Figure 3.6B). A low PPP flux in healthy proliferating
trypanosomes is supported by the experimental observation that almost all glucose
consumed is excreted as either pyruvate or glycerol (Grant and Fulton, 1957; Haanstra
et al., 2012).

The steady state flux through the cytosolic PPP is much lower than the maximum
capacity of the PPP enzymes. Even the dehydrogenases, which have the lowest activity
in the cytosolic PPP, use only 16–20 % of their full capacity at low oxidative stress
(Figure 3.5). This overcapacity of PPP activity renders the parasite capable of a rapid
response to sudden bursts of oxidative stress. Simulation of a sudden burst of oxidative
stress revealed that the parasite can, theoretically, restore its redox balance in around a
minute (Figure 3.6C and D). At low oxidative stress, the steady state concentrations and
fluxes in glycolysis were comparable to those in the original model, suggesting that the
small cytosolic PPP flux barely disturbed the system. High oxidative stress does not
affect the total glucose flux, but reallocates flux from glycerol and pyruvate into the PPP
(Figure 3.5).
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Figure 3.5.: Steady-state fluxes of the various model versions. Steady state fluxes of all
model versions that reach a steady state, at standard conditions (black, kTOX = 2 μl ·
min−1 · mg protein−1) and if cytosolic PPP is maximised (grey, kTOX = 200 μl ·
min−1 · mg protein−1). Error bars indicate interquartile ranges. NA denotes ’Not
Applicable’ for branches that are absent from certain model version, [Glc]e is 5 mM
in all models. The glucose consumption flux is distributed over the production of
glycerol and pyruvate and the two branches of the PPP. Note that ALD generates
two trioses from every hexose, such that the fluxes through the trioses glycerol and
pyruvate are double the hexose flux. The errors bars indicated interquartile ranges
as a result of the uncertainty modelling. The large error bars for glycerol production
are a result of its low flux and the smaller uncertainties assigned to the fluxes
through the other pathways.
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Figure 3.6.: Simulations of oxidative stress. Steady state calculations and time-course
simulations of model 3, at Glce = 5 mM and kTOX = 2 μl · min−1 · mg protein−1,
unless stated otherwise. Solid lines indicate medians, shaded areas show
interquartile ranges. A: The steady state flux through the cytosolic PPP as a
function of the oxidative stress by varying the kinetic constant kTOX. B: The ratio of
reduced trypanothione over oxidised trypanothione as a function of oxidative stress.
C: Fluxes through the cytosolic PPP enzymes as a function of time upon sudden
oxidative stress. During the whole time-course, kTOX = 2 μl · min−1 · mg protein−1.
The system is removed from steady state at t = 0, by setting 99 % of the cytosolic
NADPH and trypanothione pools to the oxidised form. Shown is the relaxation of
the cytosolic PPP fluxes. D: From the same simulation as panel C, the ratio of
reduced trypanothione over oxidised trypanothione is shown.

Experimental confirmation of the simulation of a sudden burst of oxidative stress would
be extremely challenging. Nonetheless, the capability of trypanosomes to deal with
continuous stress has been investigated experimentally. Penketh and Klein (1986)
demonstrated that T. brucei can metabolise 20 µM H2O2 in a uniform manner for at
least one hour. H2O2 is metabolised at 5 nmol · min−1 · mg protein−1 (assuming that one
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trypanosome represents 1.01 · 10−11 g protein; Opperdoes et al., 1984) and requires one
NADPH + H+ per H2O2. The PPP produces two NADPH + H+ per glucose consumed,
translating the 5 nmol · min−1 · mg protein−1 H2O2 metabolism to a PPP flux of 2.5 nmol
· min−1 · mg protein−1. At this PPP flux, the ratio of reduced over oxidised trypanothione
is 19 (Figure 3.6B), that falls within the expected range of 10–100.

3.2.3. Further extension with the glycosomal PPP

The second round of model building consisted in extending model 3 further with the
glycosomal branch of the PPP (model 4). The structure of the glycosomal PPP is identical
to the cytosolic PPP, with Rib-5-P as the end-product of the PPP. Similar to in the
cytosolic PPP (Section 3.2.2.1), Rib-5-P in the glycosome is fixed to represent utilisation
in the glycosome (as interestingly, enzymes of nucleotide biosynthesis can be found in
the glycosome (Colasante et al., 2006; Opperdoes and Szikora, 2006; Vertommen et al.,
2008)) or transport of Rib-5-P over the glycosomal membrane and subsequent utilisation
in the cytosol.

Elementary mode analysis immediately indicated an obvious problem. Model 4 has
the same elementary modes as model 3 (Table 3.3). No additional modes through the
glycosomal PPP are present. This is in contrast with the assumption that the PPP is
a functional pathway in the glycosome. Analysis of the stoichiometry of the model
also showed that model 3 had lost the conserved moiety of bound phosphates in the
glycosome (Table 3.4, moiety 5). A dynamic time-course simulation indicates the serious
implications of this so-called phosphate “leak” (Figure 3.7). In model 4, the conversion
of glucose to Rib-5-P drains phosphates from this previously conserved moiety of bound
phosphates (Figure 3.7), with lethal consequences. The depletion of bound phosphates
renders the model incapable of supporting a flux through glycolysis, as bound phosphates
first need to be invested in the early steps of glycolysis before they can be balanced by
the later steps of glycolysis.
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Figure 3.7.: A ’phosphate leak’ introduced by the glycosomal PPP. Time course simulation
of model 4, in which the reactions of the glycosomal PPP are switched on at t = 0
by increasing their Vmax value from zero to the value given in Table 3.2. Glce is 5
mM and kTOX = 2 μl · min−1 · mg protein−1. A: Solid lines indicate medians, shaded
areas show interquartile ranges. Concentrations and fluxes at t = 0 correspond to the
steady state values of model 3. Fluxes (J) are plotted on the left y-axis and are
indicative of glucose uptake (GlcTc), glycerol (GK) and pyruvate production (PyrT)
and the two branches of PPPs (G6PDHc/g). The sum of bound phosphates in the
glycosome (ΣPg), as exists in the model of glycolysis (Table 1.1, moiety 5), is
plotted on the right y-axis. Within 25 minutes, all bound phosphates within the
glycosome are depleted and all metabolic fluxes subsequently drop to zero. B: The
same time-course simulation is shown in model 4, where glycosomal Rib-5-P is not
a fixed metabolite. Accumulation of Rib-5-P drains phosphates from the conserved
moiety of bound phosphates in the glycosome, resulting to identical loss of
glycolytic flux, identical to in panel A.
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The phosphate leak is not a problem introduced by the decision to fix the concentration
of Rib-5-P. When the concentration of Rib-5-P is allowed to change in model 4, still
no elementary modes are supported through glycosomal PPP. Time-course simulation
of a model with a non-fixed Rib-5-P demonstrates a similar ablation of all fluxes
(Figure 3.7). Additional allowing Rib-5-P to transport over the glycosomal membrane
does not give different results, as such a transporter has the same effect as a fixed Rib-5-
P concentration: the dissipation of bound phosphates from the glycosome.

Several possibilities to restore the balance of phosphorylated metabolites were
considered, some of which were discarded immediately. For instance, extension of the
PPP with its non-oxidative branch would return phosphorylated metabolites to glycolysis
at the level of Fru-6-P and GA-3-P. The aforementioned absence of PPE and TKT in
the bloodstream form, however, precludes this option. Comprehensible glycosomal
proteomics data (Colasante et al., 2006; Vertommen et al., 2008) and searches of the
genome for genes with a PTS sequence (Opperdoes and Szikora, 2006) have indicated
the presence of even more enzymes in the glycosome in addition to the glycolytic and
PPP enzymes discussed here. However, inclusion of most of these additional reactions
in a mathematical model would require many more hypothetical reactions to be added.

Another model that deals with compartmentalisation of phosphates is the model of
the Calvin-Benson cycle in plants (Petterson and Ryde-Petterson, 1988). In this
model, inorganic phosphate is translocated across the mitochondrial membrane in
exchange for triose-phosphates. Similar translocators, either exchanging phosphates for
triose-phosphates or ribose-phosphates, can not prevent the glycosomal phosphate leak
observed in model 4. As described in Section 1.3, inorganic phosphate is not part of
the conserved moiety of bound phosphates in the glycosome, and therefore transport
reactions involving inorganic phosphate do not influence the conserved moiety.

Two options could be less readily excluded on the basis of current knowledge and
were analysed in more detail. The first option consists of an ATP:ADP antiporter
operative across the glycosomal membrane (model 5). If involved in ATP import into
the glycosome, its result would be a return of bound phosphates to the glycosome.
Although the presence of a glycosomal ATP:ADP antiporter has not been demonstrated
in trypanosomes, the general feasibility of such a transporter is indicated by the existence
of a peroxisomal adenine nucleotide transporter in yeast (van Roermund et al., 2001).
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A second option is further conversion of Rib-5-P to ribose with the concomitant
phosphorylation of ADP by RK (model 6), rendering not Rib-5-P but ribose as the
end-product of the glycosomal PPP. The T. brucei genome contains a gene putatively
annotated as coding for RK (Tb11.03.0900), which is investigated in detail in Chapter 4.

The two options presented here are of a different nature. The RK option maintains
the conserved moiety of phosphorylated metabolites in an extended version, while the
ATP:ADP antiporter breaks the conserved moiety altogether and introduces extra degrees
of freedom. Both options can be seen as representatives of two classes of solutions,
where one maintains the phosphate balance (RK class solutions), while the other provides
net import of bound phosphates into the glycosome (antiporter class solutions). To
investigate the various options further I constructed alternative kinetic models.

3.2.3.1. Glycosomal ATP:ADP antiporter requires tight regulation

First, a dynamic model was constructed to test the hypothesis that an ATP:ADP
antiporter in the glycosomal membrane could sustain the intraglycosomal balance of
phosphorylated metabolites (model 5). Indeed, the ATP:ADP antiporter successfully
rescued the model from the phosphate leak, enabling a steady flux through all branches
and no accumulation or depletion of any metabolites (Figure 3.5).

However, a strict separation of the glycosomal and cytosolic ATP and ADP pools is
essential to prevent a deadly accumulation of sugar-phosphates, or “turbo explosion”
(discussed in more detail in Section 1.3). Briefly, it was demonstrated that a model of
T. brucei glycolysis without glycosomal localisation exhibits the dangerous turbo effect
(Bakker et al., 2000; Haanstra et al., 2008), shown in Figure 3.8A and B as “model 1, no
glycosome”. To investigate if the ATP:ADP antiporter also risks the turbo effect, a model
consisting of only glycosomal glycolysis and the ATP:ADP antiporter was generated
(model 7), to allow comparison with (Haanstra et al., 2008).

Simulations indicated that the presence of an ATP:ADP antiporter indeed mimics the
absence of a glycosomal localisation of glycolysis: increasing the glucose concentration
results in an accumulation of Fru-1,6-BP (Figure 3.8A and B, cf. model 1 without
glycosome and model 7). The ATP:ADP antiporter allows bound phosphates to
accumulate in the glycosome, as there is no longer a conserved sum of bound phosphates
within the glycosome. This allows accumulation of Fru-1,6-BP without depleting the
ATP that is required to fuel HXK and PFK.
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Figure 3.8.: ATP:ADP antiporter mimics turbo-state. A-B: Concentrations of glycosomal
Glc-6-P and fructose 1,6-bisphosphate are depicted (i) in model 1, (ii) in a modified
version of model 1, in which the glycosomal compartmentalisation of glycolysis
has been removed (Haanstra et al., 2008), (iii) in the presence of an ATP:ADP
antiporter, without any further extensions (model 7), and (iv) when both branches of
the PPP and the ATP:ADP antiporter are active (model 5). C: Increasing the
activity of the ATP:ADP antiporter (Vmax,ATP:ADP antiporter) in model 5 leads to a
high risk of accumulation of hexose phosphates. The green line indicates the
concentration of fructose 1,6-bisphosphate in the original model of glycolysis (17.2
mM, panel B, model 1). Glce in this simulation is 25 mM. D: Time course
simulation of model 5 at 25 mM external glucose and various values for the
Vmax,ATP:ADP antiporter parameter. Plotted is the concentration of glycosomal
phosphates (ΣP as in Figure 3.7, moiety 5 in Table 1.1). ATP:ADP antiporter
activity values below 1 nmol · min−1 · mg protein−1 result in depletion of
glycosomal phosphates (cf. Figure 3.7). kTOX = 2 μl · min−1 · mg protein−1 in all
models. Solid lines indicate medians, shaded areas and error bars show interquartile
ranges, as derived from the uncertainty modelling.

When the cytosolic and glycosomal branches of the PPP are added to this model
(Figure 3.8A and B, model 5), the accumulation of sugar-phosphates seems to be reduced.
This is due to the increased utilisation of Glc-6-P in the glycosome via the PPP,
which prevents the accumulation of glycolytic intermediates. However, this situation is
dependent on the activity of the ATP:ADP antiporter, for which there is no experimental
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data available. When the activity of the antiporter is set at a low value (around 1 nmol
· min–1 · mg protein–1), no accumulation of sugar-phosphates is observed (Figure 3.8C).
However, when the activity of the antiporter increases slightly, there is a high risk of
accumulation of sugar-phosphates (Figure 3.8C). On the other hand, a reduced antiporter
activity is unable to prevent the depletion of bound phosphates from the glycosome
(Figure 3.8D). The activity of the transporter would therefore only be allowed to fluctuate
in a narrow range (Figure 3.8C and D).

3.2.3.2. Glycosomal RK in reverse

A second hypothesis to restore the balance of phosphorylated metabolites postulates the
presence of a RK enzyme in the glycosome (model 6). The T. brucei genome contains
a gene putatively annotated as coding for RK, which has previously been localised to
glycosomes (Colasante et al., 2006; Opperdoes and Szikora, 2006; Vertommen et al.,
2008). I hypothesised that RK in the glycosomes catalyses the transfer of phosphates
from Rib-5-P to ADP, forming ATP and ribose. The thermodynamically favoured
direction of the RK reaction under standard conditions is the phosphorylation of ribose
(Tewari et al., 1988). However, I reasoned that the supply of Rib-5-P through the
glycosomal PPP might direct the reaction towards ATP production. Defining the RK
in the direction of ribose production, the equilibrium constant is 0.0035 (Table 4.2) and
is defined as:

Keq =
[Rib]◦ · [AT P]◦

[Rib5P]◦ · [ADP]◦
, (3.1)

where ° indicates the state at thermodynamic equilibrium. When a reaction is studied in
isolation, the direction of the direction is determined by:

∆G = ∆G◦−RT · ln [Rib] · [AT P]
[Rib5P] · [ADP]

, (3.2)

where ΔG is the Gibbs free energy, R is the gas constant and T is temperature in Kelvin.
WhenΔG is larger than 0, the reaction will go produced ribose, while aΔG smaller than
0 will result in production of ribose 5-phosphate. To produce ribose: Eq. (3.2) can be
expanded to:

0 > RT · lnKeq−RT · ln [Rib] · [AT P]
[Rib5P] · [ADP]

(3.3)
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0 > Keq−
[Rib] · [AT P]

[Rib5P] · [ADP]
(3.4)

Keq >
[Rib] · [AT P]

[Rib5P] · [ADP]
(3.5)

[Rib5P]>
[Rib] · [AT P]
Keq · [ADP]

(3.6)

In isolation, the Rib-5-P concentration has to be higher than the product of ribose and
ATP over the product of Keq and ADP. Assuming an ATP over ADP ratio of 2 (Bakker
et al., 2000) and an Keq of 0.0035:

[Rib5P]& 571 · [Rib] (3.7)

Assuming a ribose concentration of 0.1 mM, the concentration of Rib-5-P needs to be
greater than 57.1 mM to produce more ribose. However, a steady-state calculation of
model 6 demonstrates that the ratio of ATP over ADP has decreased to 0.6, such that the
Rib-5-P concentration has to be 181-fold higher than the ribose concentration.

A similar situation is seen for the glycosomal glycerol kinase, which thermodynamically
favours the direction of glycerol 3-phosphate production under standard conditions
(Janson and Cleland, 1974), but has been shown to support a flux in the reverse direction,
purely based on mass action of its substrates and products when glycerol 3-phosphate
levels accumulate under anaerobiosis (Krakow and Wang, 1990).

The Keq of glycerol kinase (in the direction of glycerol production) is even smaller than
the Keq of ribose: 0.000837. In a similar calculation as for RK (Eq. (3.1)–Eq. (3.6)):

[Gly3P]& 2389 · [Gly] , (3.8)

the Gly-3-P needs to be 2389 times as high as the glycerol concentration to allow the
production of glycerol. Again, simulation of the model demonstrates that the ATP over
ADP ratio has changed. The steady-state ratio of ATP over ADP in model 1 with the GPO
reaction switched off (Vmax set to zero, to simulate anaerobiosis) is 0.07, such that the
Gly-3-P concentration only needs to be 410-fold higher than the glycerol concentration.
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3.2.3.3. Conserved moieties in model 6

The stoichiometry of model 6 was analysed to confirm that the presence of glycosomal
RK indeed results in an extension of the conserved moiety of bound phosphates in the
glycosome, as discussed in 3.2.3. In addition to the conserved moieties observed in
the original model (Table 1.1) and model 2 (Table 3.4), two new conserved moieties
are present in model 6 (Table 3.5). Moiety 5 is extended to also include the pentose
phosphates, while moiety 8 consists of the glycosomal NADPH and NADP+.

Moiety Conserved metabolites

1 ATPg + ADPg + AMPg

2 ATPc + ADPc + AMPc

3 NADHg + NAD+
g

4 Gly-3-Pc + DHAPc

5 Glc-6-Pg + Fru-6-Pg + 2 Fru-1,6-BPg + DHAPg + GA-3-Pg + 1,3-BPGAg + Gly-3-Pg

+ 2 ATPg + ADPg + 6-PGg + 6-PGLg + Rul-5-Pg + Rib-5-Pg

6 NADPHc + NADP+
c

7 T(SH)2,c + TS2,c

8 NADPHg + NADP+
g

Table 3.5.: Conserved moieties in model 6. The stoichiometry of the model results in five
groups of metabolites, whose combined concentration within the group remains
constant.

3.2.3.4. Glycosomal RK is potentially essential

To confirm the presence of a functional RK enzyme, the gene was cloned and successfully
expressed in E. coli, as described in Chapter 4. Characterisation of the catalytic activity
yielded kinetic parameters which were used to update the model. Attempts to measure
RK activity in whole cell extracts were unsuccessful due to high background activity
in the form of non-specific NADH changes, similar as experienced by Olin-Sandoval
et al. (2012). Therefore, the activity of RK was scanned in model 6 (Figure 3.9), and
in the fixed parameter model the Vmax value was set at a value that results in limited
control over the fluxes and metabolite concentrations (5 nmol · min 1 · mg protein 1). In
uncertainty modelling, the RK activity was sampled form a log normal distribution with
a mean of 10 nmol · min 1 · mg protein 1.
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Figure 3.9.: Scan of RK activity. Steady state concentration of glycosomal Rib-5-P (A) and
steady state flux of glucose-6-phosphate dehydrogenase (B) in model 6 at various
RK activities (Vmax,RKg).

Simulations show that the RK hypothesis indeed rescues the parasite from the phosphate
leak. Since the model without RK failed to reach steady state, I postulated that RK is
an essential gene for T. brucei. RK was ablated from T. brucei by gene knockdown and
attempted gene knockout, as discussed in Chapter 4. The combined results of reverse
genetics on RK as described in Chapter 4 suggested that the RK gene is essential to T.
brucei, but only a small amount of RK is required for survival.

The discrepancy between in vivo and in silico data is potentially the result of the presence
of additional reactions within the glycosome. Inhibition of RK and depletion of RK are
only lethal to the parasite if RK would be the only reaction in the glycosome that can be
involved in recovering the bound phosphates that are ’leaked’ via the glycosomal PPP.
Instead of a unique solution to the phosphate leak, the RK solution rather represents
a class of solutions, that all regulate the glycosomal bound-phosphate balance in a
similar approach. Proteomics has shown the presence of more enzymes in the glycosome
(Colasante et al., 2006; Vertommen et al., 2008). However, the aforementioned gaps in
our current knowledge of the glycosomal proteome precludes detailed in silico analysis
of all these reactions. Elementary mode analysis on the glycosomal proteome data from
Colasante et al., 2006; Vertommen et al., 2008 indicates that many additional reactions
and potential transporters would need to be added, for which there is no experimental
proof (Chapter B).

Nonetheless, the model with ribokinase is a valuable example of solutions to the
phosphate leak that are based on restoring the phosphate balance, and it is useful to
use this model to study the effects of this class of solutions.
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3.2.3.5. Increased ribose levels are lethal in silico, but not in vivo

Additional analysis of model 6 suggests that T. brucei should be sensitive to increasing
concentrations of external ribose. This becomes clear from the Eq. (3.7), where the
concentration of Rib-5-P should be 571-fold higher than the concentration of ribose.
This ratio is decreased, when the ATP/ADP ratio is reduced (as explained in 3.2.3.2), but
still more Rib-5-P than ribose should be present. An dynamic simulation demonstrates
than an accumulation of intracellular ribose would inhibit the dephosphorylation of Rib-
5-P, having detrimental effects on the glycolytic flux (Figure 3.10). The model predicts
that ribose needs to accumulate to a concentration of 9 mM to reduce the glycolytic flux
by 50 %, which has been shown to be sufficient to kill the parasites (Haanstra et al.,
2011). There is no experimental data available on the intracellular or intraglycosomal
ribose concentration.

The ribose sensitivity of the parasites was investigated by alamarBlue assay, but ribose
concentrations up to 50 mM had little effect on the parasite (Figure 3.11). Analysis of the
alamarBlue data suggests an IC50 value of 17 mM, however, it becomes apparent from
the data that other phenomena are also playing a role at these concentrations. Incubation
with the not natural-occuring sugar lyxose showed a similar response as ribose, while
lyxose is not a substrate for RK (see section 4.1.2). This suggests that the isotonicity of
the high sugar concentrations affects the parasites. Additionally, the ribose concentration
in the alamarBlue is the extracellular concentration, it remains unclear what intracellular,
and more important, intraglycosomal concentration of ribose is reached.

Figure 3.10.: Ribose sensitivity in the extended model. Steady state concentrations (A) and
fluxes (B) of model 6 at various concentrations of ribose. Solid lines indicate
medians, shaded areas show interquartile ranges. Increasing ribose concentration
results in a depletion of ATP and accumulation of Rib-5-P in the glycosome.
While the glycosomal PPP flux (JG6PDHg) remains mostly unaffected, the
glycolytic flux (JPGI) is strongly reduced.
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Figure 3.11.: Sensitivity to extracellular ribose. An alamarBlue assay with berenil as positive
control failed to demonstrate toxicity. The reduced fluorescence at high
concentration of ribose is non-specific and is also observed with other sugars, as
the rarely naturally occurring lyxose.
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3.3. Discussion

In this Chapter, I successfully extended the previous model of trypanosomal glycolysis
with the PPP. The original model containing 21 reactions was expanded by adding 11
new reactions, of which 6 are localised in two compartments, roughly doubling the
number of kinetic and concentration parameters, from 120 to 200 in total. The stepwise
extension and cycles between in silico and in vivo experiments has been crucial in this
model building process. Extension of the successful, albeit small, model of trypanosomal
glycolysis resulted very easily in models incapable of reaching steady state, extreme
accumulation of metabolites, or other non-physiological results.

I demonstrated (i) how the overcapacity of the cytosolic PPP allows it to respond rapidly
to an oxidative stress and (ii) how two classes of solutions are theoretically capable
of repairing the phosphate leak that is introduced by the presence of the glycosomal
phosphate leak. The first class is the net import of bound phosphates into the glycosome,
demonstrated here as an ATP:ADP antiporter. Such an antiporter requires tight regulation
within a narrow range that should be tuned to the PPP flux, which indicates possible
allosteric regulation by NADPH. The second class of solutions was the extension of
the conserved moiety of bound phosphates in the glycosome, demonstrated here with
a glycosome RK. When RK would be the sole responsible reaction for balancing the
bound phosphates glycosome, it would be an essential enzyme. However, genetic
mutants generated in Chapter 4 will demonstrate that ablation of RK activity is not
lethal, supporting that RK merely represents an example of a solution where the bound
phosphates are balanced within the glycosome.

Ribose sensitivity as predicted by the extended model was not observed in wet-lab
experiments. The insensitivity of RK to ribose is in contrast to the sensitivity of glycerol
kinase to glycerol. In anoxic environments, glycerol kinase also functions far away from
its thermodynamic equilibrium (Hammond and Bowman, 1980a), however, glycerol
kinase is sensitive for its product (glycerol) at low concentrations (0.8 mM inhibits 50 %
of the glycolytic flux, Fairlamb et al., 1977).

I cannot exclude that this is due to a limited uptake of ribose into the glycosome, although
active uphill secretion from the glycosome or out of the cell seems unlikely. While the
addition of the dual-localised PPP to the original model of glycolysis is a significant
extension, the glycosome contains still more pathways that will add to the complexity and
indicate the necessity of further model extensions (Parsons, 2004; Colasante et al., 2006;
Michels et al., 2006; Vertommen et al., 2008). Taking these pathways and enzymes fully
into account might be important to fully understand the glycosomal phosphate balance.
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Although the predicted glycosomal proteome gives insight into some of the enzymes
potentially present in the glycosome, it does currently not provide enough information
on stoichiometry and kinetics to allow incorporating them into the model.

The recent finding of channels across the glycosomal membrane (Gualdrón-López
et al., 2012a,c) could have major implications for the hypotheses explored in this
chapter. Transport of sugar-phosphates across the glycosomal membrane would affect
the phosphate balance, although it remains to be confirmed what precise metabolites are
capable and incapable of transversing the glycosomal membrane via these channels. The
implications of the presence of such glycosomal channels are currently being investigated
with the use of dynamic modelling (Dr Fiona Achcar, University of Glasgow).

Including the uncertainty of the model parameters in our simulations demonstrates
that the observed dynamics of the model are reproducible and are not artifacts of
certain narrowly chosen sets of parameter values. Additionally to uncertainty of model
parameters, I also demonstrated uncertainty of network stoichiometry. The ATP:ADP
antiporter and RK are representatives of two classes of solutions to the phosphate
leak, but neither model can be excluded based on current biological knowledge and
simulations.

Potential problems in our models only became apparent once I deviated from the standard
conditions: the increase of external glucose from 5 to 25 mM indicated how the ATP
hypothesis would require very tight regulations, while the insensitivity of RK for external
ribose indicates how additional pathways must be involved in balancing the glycosomal
phosphates. Our results reveal that it is crucial for newly constructed models to be
stressed and scrutinised thoroughly, by not only looking at the behaviour under standard
conditions, but also by examining the model under physiologically relevant extreme
conditions.
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Chapter 4
The role of a putative T. brucei
ribokinase

In the previous chapter it was predicted that RK might play a crucial role in retaining
the balance of bound phosphates within the glycosome. In this chapter, T. brucei RK
is studied in more detail, and predictions that arose from mathematical modelling in the
previous chapter are tested.



4.1. Introduction 89

4.1. Introduction

The construction of a mathematical model of the PPP in T. brucei has lead to the
prediction that RK plays an essential role in retaining the balance of bound phosphates
in the glycosome, as explained in chapter 3. Briefly, the sole addition of the glycosomal
branch of the oxidative PPP to a model of T. brucei glycolysis resulted in a so-called
phosphate leak. ATP committed in the early reactions of glycolysis is balanced within
the glycosome by the production of ATP in the subsequent reactions of glycosomal
glycolysis. An imbalance appears when ATP is used to produce glucose 6-phosphate that
is used in the PPP, as the absence of the non-oxidative branch of the PPP in bloodstream
form T. brucei results in Rib-5-P as the end-product of the PPP. This phosphate imbalance
can potentially be solved by the presence a glycosomal RK, as detailed in chapter 3.

In classical biochemical textbooks, RK is introduced as an enzyme that catalyses
the phosphorylation of ribose to provide Rib-5-P. Rib-5-P can be used in nucleotide
biosynthesis, or when the non-oxidative branch of the PPP is present, as a carbon
source (Anderson and Cooper, 1969). The Gibbs free energy of reaction favours the
phosphorylation of ribose under standard conditions, as ∆G◦ = −13.9 kJ / mol at pH 7
and 25 °C, calculated from the Gibbs free energies of ATP (Banks and Vernon, 1970)
and ribose hydrolysis (Tewari et al., 1988). I postulated that the role of T. brucei
glycosomal RK is to dephosporylate Rib-5-P, effectively catalysing the reverse reaction
of a traditional RK, and as such restoring the glycosomal phosphate balance by producing
ATP.

The T. brucei genome contains a gene that has been putatively annotated as RK
(Tb427tmp.03.0090). This gene is homologues to other kinases, and shows synteny
with the RK previously characterised in the related kinetoplastid Leishmania major. The
gene Tb427tmp.03.0090 codes for a 35 kDa protein with a type 1 peroxisomal targeting
sequence (PTS-1) located at the C-terminus: cysteine-lysine-isoleucine (Opperdoes
and Szikora, 2006). Tb427tmp.03.0090 is expressed in both life-cycle stages, as
demonstrated by transcriptomics (Siegel et al., 2010) and proteomics (Colasante et al.,
2006; Vertommen et al., 2008). Additionally, high-throughput phenotyping using RNA
interference has categorised the knockdown of RK as resulting in a “significant loss of
fitness” (Alsford et al., 2011).

The glycosomal localisation of RK in bloodstream form T. brucei seems counterintuitive,
considering the traditional roles of RK in nucleotide biosynthesis or when ribose is used
as an alternative carbon source. The glycosome does not contain DNA, and the absence
of the non-oxidative PPP precludes the use of ribose in glycolysis. Nonetheless, the
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purine salvage and de novo pyrimidine biosynthetic pathways are partly localised in the
glycosome, with the remainder localised in the cytosol (reviewed by Michels et al.,
2000). Additionally, the PPP is an important source of reducing equivalents for the
glycosome in the form of NADPH. It is important to note here that the presence of
a peroxisomal targeting sequence does not mean sole localisation in the glycosome,
demonstrated by G6PDH equally localised in the glycosome and cytosol (Heise and
Opperdoes, 1999) and transketolase with a dual localisation in Leishmania mexicana
(Veitch et al., 2004).

The reversible-RK hypothesis is potentially supported by metabolomics experiments.
When bloodstream form T. brucei are fed with uniformly labelled 13C-glucose, it is
suggested that 13C(u)-labelled ribose is excreted (unpublished; Dr Jana Anderson, Dr
Darren Creek, University of Glasgow). The identify of ribose in those experiments
has not been confirmed with authentic standards, and even the presence of labelled
ribose does not necessarily mean that ribose is produced by RK in the glycosome, as
it is possible that ribose is produced by the PPP that is co-localised in the cytosol.
Nonetheless, it does indicate the possibility for reversibility of RK.

In this chapter, the kinetics of T. brucei RK are characterised and genetic mutants are
generated in an effort to scrutinise the hypothesis that RK does prevents the phosphate
leak in the glycosome of bloodstream form T. brucei.
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4.2. Results

4.2.1. Putative T. brucei RK gene has a typical RK sequence

The T. brucei gene Tb427tmp.03.0090 is putatively annotated as a RK, based on sequence
similarity to other RK sequences. The gene is syntenic with the Leishmania major gene
LmjF.27.0420, whose RK activity has been demonstrated previously (Ogbunude et al.,
2007). An interesting difference between L. major and T. brucei RK is the absence of a
PTS-1 signal in LmjF.27.0420. Nonetheless, L. major RK has a predicted PTS-2 signal
(Opperdoes and Szikora, 2006), which could still guarantee glycosomal localisation.

The Tb427tmp.03.0090 gene has additionally high identity with ribokinases from both
eukaryotes and prokaryotes (Figure 4.2). Structural alignment of Tb427tmp.03.0090
with E. coli RK (1RK2) indicates that the active site is highly conserved, and that the
differences between the two amino sequences are not located near the binding pockets
(Figure 4.1). The function of the extra amino acids around positions 160 and 200 remains
unclear, but these are also observed in L. major RK (Figure 4.2). The Tb427tmp.03.0090
nucleotide sequence of our lab strain was identical to the publicly available reference
sequence for strain 427 at the TriTrypDB database (Aslett et al., 2009).

Figure 4.1.: Structural alignment of T. brucei to E. coli RK. Amino acid alignment of
Tb427tmp.03.0090 (green) to the crystal structure of E. coli RK (blue, Protein
DataBank, structure 1RK2, subunit A). Ribose and ADP were co-crystalised with
1RK2 and are shown in red. The N-terminal, which is longer in T. brucei than in E.
coli (Figure 4.2), is located at the opposite site from the ribose and ATP binding
sites. In orange are the loops around residues 160 and 200, also not located near the
binding pockets.
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Figure 4.2.: Protein sequence alignment of ribokinases. Sequences 2FV7 and 1RK2 are
human and E. coli ribokinases, respectively, with elucidated crystal structures (from
the Protein Data Bank, http://www.rcsb.org). LmjRK is Leishmania major gene
LmjF.27.0420, while TbRK is T. brucei gene Tb427tmp.03.0090. Protein
sequences were aligned with PRALINE (Heringa, 1999). Regions with high
conservation are typically located around the binding pocket. The regions around
residues 65, 115 and 190 are situated around the ribose binding pocket, while the
regions around residues 250, 280 and 320 are located around the ATP binding site.
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4.2.2. Kinetic characterization of recombinant T. brucei RK

To study the putative T. brucei RK in greater detail, an N-terminal polyhistidine-
tagged recombinant version of the Tb427tmp.03.0090 protein was heterologously
expressed in E. coli. Purification of the recombinant RK by immobilised metal affinity
chromatography (IMAC) gave a protein of approximately 39 kDa (Figure 4.3) and a
typical yield of 10 mg · l–1 bacteria culture.

Figure 4.3.: Protein gel of recombinant RK purification. After heterologous expression of
T. brucei RK in E. coli, recombinant protein was purified with IMAC and fractions
from the purification process were separated on SDS-PAGE and stained with
Coomassie. The wash fraction eluted with 50 mM imidazole, while the elution
fractions eluted with 500 mM imidazole. M indicates protein marker. Purification
and gel performed by Alan Scott (University of Glasgow).

The recombinant RK was assayed in both the direction of Rib-5-P dephosphorylation and
ribose phosphorylation, by a coupled enzyme assay (Figure 2.3), as described in Section
2.4.

Substrate Vmax(µmol · min–1 · mg protein–1)
Ribose 2.5 ± 0.37
2-deoxyribose 2.3 ± 0.4
Arabinose ND
Erythrose 0.36 ± 0.1
Fructose ND
Lyxose ND
Threose ND
Xylose ND
Xylulose ND

Table 4.1.: Phosphorylation of different substrates by RK. Activity was measured at 25 °C
with a substrate concentration of 5 mM and by coupling ADP production to pyruvate
kinase and lactate dehydrogenase (Figure 2.3). n = 3. ND is not detected.
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kcat Vmax
(s 1) (µmol · min–1 · mg protein–1)

Direction 25 °C 37 °C 25 °C 37 °C

Forward (Rib-5-P
forming)

1.6 ± 0.24 3.2 ± 0.43 2.5 ± 0.37 4.9 ± 0.66

Reverse (Ribose
forming)

0.014 ± 0.0036 0.026 ± 0.0050 0.022 ± 0.0056 0.040 ± 0.0077

Table 4.2.: Activity of recombinant T. brucei RK. Both the forward and reverse direction were
assayed (Figure 2.3). The enzyme was saturated with 10 mM ribose and 5 mM ATP
in the forward direction, and 10 mM Rib-5-P and 5 mM ADP in the reverse direction
(Figure 2.3). n = 3.

Km (mM)

Organism Ribose ATP Rib-5-P ADP Reference

T. brucei 0.15 ± 0.03 0.26 ± 0.10 0.39 ± 0.15 0.25 ± 0.09 This study
L. major 0.3 ± 0.04 0.2 ± 0.02 NA NA Ogbunude et al., 2007
E. coli 0.11 ± 0.02 NA NA NA Maj and Gupta, 2001
H. sapiens 2.17 0.07 NA NA Park et al., 2007

Table 4.3.: Affinity constants of RK. The affinity constants of T. brucei RK for its substrates
and products. Ribose and ATP were assayed in the direction of ribose
phosphorylation, while Rib-5-P and ADP were assayed in reverse. n = 3. NA = not
available.

T. brucei RK has a high specificity for ribose (Table 4.1). Of the pentoses tested as
substrates, only significant activity with 2-deoxyribose was observed. RK is also capable
of phosphorylating erythrose, albeit at a 86 % reduced rate.

The assays were performed at both 25 °C and 37 °C, as the current mathematical model
of trypanosomal bloodstream form metabolism operates at 25 °C (Albert et al., 2005),
while future versions of the model will be operating at the in vivo-like temperature of
37 °C. It is apparent from the results that the preferred direction of the RK reaction is in
the direction of ribose phosphorylation (Table 4.2), as expected from the thermodynamic
equilibrium. Increasing the temperature by 12 °C doubled the activity.

The affinity constants (Km) of the substrates in both reaction directions were determined
by measuring the activity at various substrate concentrations. The Km values were
subsequently determined via nonlinear regression. The Km values of ribose and ATP
were comparable to other ribokinases (Table 4.3), while no affinity constants of Rib-5-
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P and ADP for any organism have been reported previously. The affinity constants of
Rib-5-P and ADP were in the similar range as those of ribose and ATP.

Attempts were made to measure the specific activity of RK in bloodstream form
T. brucei, using the same coupled enzyme assay and T. brucei cell extracts. However,
significant background ATPase activity in these assays precluded the calculation of the
RK activity, as also encountered when specific activities of enzymes in T. cruzi extracts
were measured (Olin-Sandoval et al., 2012).

4.2.3. Ablation of T. brucei RK by RNA interference

To assess the role and essentiality of RK in T. brucei, an RKRNAi cell line was generated
to ablate the RK activity by RNA interference (RNAi). The pRPaSLi/2T1 plasmid and
cell line system was used to facilitate reliable transfection and expression of a stem-loop
allow selection of a stem-loop construct (Alsford and Horn, 2008).

Ablation of the RK transcript, induced by the addition of 1 μg · ml 1 tetracycline, did
not result in a growth phenotype (Figure 4.4). The ablation of the RK transcript and
protein was confirmed by both northern blot and western blot (Figure 4.5). The loss of
RK activity from the cells could not be assayed, due to the aforementioned significant
background in the assay.

10
3

10
4

10
5

10
6

10
7

10
8

 0  24  48  72  96  120  144

C
u
m

u
la

ti
v
e
 c

e
ll 

d
e
n
s
it
y
 (

m
L

-1
)

Time (h)

Non-induced Induced

Figure 4.4.: Growth curve of RKRNAi. A culture of RKRNAi was kept at a cell density in
between 2 · 104 and 2 · 106 cells per mL. Induced (plus-sign) is cultured in the
presence of 1 μg · ml 1 tetracycline, while non-induced (circle) is the control. No
change in growth could be observed.
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Figure 4.5.: Northern and western blot of RKRNAi. Presence of RK transcript (A) and protein
(B) in RKRNAi after induction with tetracycline (tet) at 1 μg · ml 1 tetracycline.
Tubulin (TUB) was used as a loading control in the northern blot, while a
cross-reacting band around 90 kDa was used as loading control in the western blot.

IC50(nM)

Compound Induced Non-induced Fold change p

Methylene blue 46.3 ± 1.88 33.4 ± 4.26 1.39 0.0085
Diminazene 78.7 ± 3.43 71.9 ± 10.6 1.09 0.35

Table 4.4.: AlamarBlue assays of 7-days induced RKRNAi. IC50 values from 3 alamarBlue
assays, using methylene blue to mimic oxidative stress, and diminazene as a control.
Errors are standard deviations. p-value is from a Student’s t-test, two-tailed, equal
variance.

With Rib-5-P as a reactant for RK, I wondered whether ablation of RK has an effect
on the parasite’s capability to deal with oxidative stress, as the PPP is an important
source of NADPH. The effect of methylene blue on RKRNAi was investigated with an
alamarBlue assay. Methylene blue readily reacts with NADPH, so not directly increasing
the oxidative stress, but rather mimicking the more oxidised state of the parasite under
oxidative stress. Surprisingly, RKRNAi induced for 7 days had a significantly higher IC50

value for methylene blue, although the difference was only 1.39-fold. (Table 4.4).

4.2.4. Limited changes in metabolome of RKRNAi

The effect of ablation of RK on the metabolome on the parasite was investigated by
untargeted metabolomics. The metabolites of 72 hours induced and non-induced RKRNAi

were extracted and analysed by liquid chromatography-mass spectrometry (LC-MS),
using pHILIC chromatography and high resolution accurate mass spectrometry with fast
polarity switching. The data was deconvoluted and analysed using the mzMatch/IDEOM
pipeline.
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237.04597 4.37 C13H24N4O11P2 1 CDP-N-dimethylethanolamine 2.02 0.00388

219.05341 7.11 C11H9NO4 2 8-Methoxykynurenate 1.80 0.00927

247.06910 17.64 C9H13NO7 1 N-Succinyl-L-glutamate 1.77 0.00279

363.05790 18.18 C10H14N5O8P 5 Guanosine 3'-phosphate 1.75 0.00485

151.04938 13.13 C5H5N5O 3 Guanine 1.65 0.00489

207.05337 7.06 C10H9NO4 6
4-(2-Aminophenyl)-2,4-

dioxobutanoate
1.65 0.00851

145.01977 15.46 C5H7NO2S 2
(S)-4-amino-4,5-dihydro-2-

thiophenecarboxylate
1.64 0.00328

145.07388 16.71 C6H11NO3 9
[FA oxo,amino(6:0)] 3-oxo-5S-amino-

hexanoic acid
1.62 0.0290

161.05106 7.07 C6H11NO2S 1 Allylcysteine 1.55 0.0254

193.07390 4.67 C10H11NO3 10 Phenylacetylglycine 1.48 0.0398

174.07937 7.07 C10H10N2O 4 Indole-3-acetamide 1.46 0.0283

200.00857 13.92 C4H9O7P 4 Erythrulose 1-phosphate 1.42 0.0282

886.55673 3.48 C47H83O13P 19
[PI (38:4)] 1-octadecanoyl-2-

(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-
glycero-3-phospho-(1'-myo-inositol)

-1.09 0.0369

488.10748 16.86 C14H26N4O11P2 1 CDP-choline -1.20 0.0256

337.09449 16.28 C11H19N3O7S 3 S-(Hydroxymethyl)glutathione -1.28 0.0130

144.12628 10.26 C7H16N2O 2 1-(3-aminopropyl)-4-aminobutanal -1.29 0.0241

335.13294 15.9 C12H21N3O8 3 Thr-Thr-Asp -1.31 0.0118

187.08443 7.15 C8H13NO4 6 6-Acetamido-2-oxohexanoate -1.36 0.0184

113.05897 9.95 C4H7N3O 1 Creatinine -1.39 0.00383

259.18954 14.62 C12H25N3O3 2 Leu-Lys -1.45 0.0119

112.02730 10.09 C4H4N2O2 2 Orotate (Fragment) -1.47 0.00215

230.01912 17.07 C5H11O8P 16 D-Ribose 5-phosphate -1.57 0.00253

320.05079 18.21 C8H17O11P 1 Octulose 8-phosphate -1.93 <0.0001

Table 4.5.: Changes in metabolite concentrations in RKRNAi. Putatively identified metabolites
that changed significantly (rank product FDR<0.05) in 72 hours induced RKRNAi.
Metabolites are ranked by fold changes. Measured mass as mass-to-charge ratio
(m/z); number of isomers as predicted from IDEOM databases. Negative fold
changes indicate decreased metabolites.

A total of 372 metabolites could putatively be identified in this experiment (mzMatch
output and IDEOM sheets are provided on CD-ROM). Of these putative metabolites, the
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levels of 23 were significantly changed in the induced RKRNAi cell line (based on rank
product, FDR<0.05, Table 4.5).

Comparative metabolomics experiments with this set-up routinely results in seemingly
significant changes in particularly peptides and lipids. The high heterogeneity and
similarity between the different lipids and peptides only allow identification into
subgroups, such as phosphatidyl-cholines, or fatty acids. When a large number of
metabolites are studied, some of them will show a significant change just by chance.
Therefore, changes in lipids and peptides are only monitored for general changes,
switches from one subgroup to another, but are ignored otherwise for further analysis.

Overall, only limited changes are observed in RKRNAi metabolism: none of the
metabolites change by twofold or more.

4.2.5. RK mainly produces Rib-5-P

From the remaining significantly changed metabolites, the most striking is the decreased
level of Rib-5-P. Although the pHILIC column used in the liquid chromatography
step allows a comprehensive coverage of metabolism, it is not particularly effective
in separating sugar-phosphate isomers. The identified Rib-5-P therefore represents a
mixture of pentose phosphates. Nevertheless, the decrease in Rib-5-P in the induced cell
line proposes that RK is mainly involved in producing Rib-5-P, instead of consuming
Rib-5-P. This does not necessarily contradict the reverse-RK hypothesis. The reverse-RK
hypothesis dictates that the loss of RK results in an accumulation of Rib-5-P. However,
this accumulation can be overshadowed by a decrease in Rib-5-P in the much larger
cytosol.

In comparison, a genetic null mutant in the glucose transporter of Leishmania mexicana
up regulated a number of proteins, including RK (Feng et al., 2011). The null mutant
is unable to produce Rib-5-P via the PPP due to a limited uptake of glucose and
compensates this by increasing the amount of RK present.

4.2.6. T. brucei produces octulose 8-phosphate from Rib-5-P

Interesting from the metabolomics data is that the decrease in Rib-5-P is accompanied
with a decrease in octulose 8-phosphate. Routinely, the two uncommon sugar-phosphates
octulose 8-phosphate and nonulose 9-phosphate are being identified in metabolomics
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experiments on T. brucei in our lab (Creek et al., 2012b). Labelling patterns of octulose
8-phosphate upon 13C(u)-glucose labelling suggest that octulose 8-phosphate is produced
by a ligation of a pentose phosphate and a triose phosphate (a subsequent phosphatase
reaction than cleavages one of the two phosphates). This reaction could be performed
by fructose-1,6-bisphosphate aldolase, as demonstrated in our lab (Ashleigh Fleming,
University of Glasgow). According to this scheme, a decrease in Rib-5-P in situ leads to
a decrease in octulose 8-phosphate, and this was observed in the RKRNAi cell line.

The nonulose 9-phosphate that is observed in T. brucei extracts is produced by a
ligation of a hexose phosphate and a triose phosphate, according to 13C(u)-glucose
labelling (Creek et al., 2012b). The RKRNAi metabolomics supports this hypothesis,
as the nonulose 9-phosphate does not change (fold change 1.18, FDR 0.61), and the
production of nonulose 9-phosphate is therefore unlikely to be related to Rib-5-P or
octulose 8-phosphate.

Interestingly, erythrulose 1-phosphate was increased in the RKRNAi cell line. The
opposing trends of erythrulose 1-phosphate and Rib-5-P levels suggest that the two
sugar-phosphates can react with each other. The accumulation of erythrulose 1-phosphate
could be a result of the reduced availability of Rib-5-P. The connection remains unclear,
an aldolase reaction ligating the two sugar-phosphate results in a nonulose 9-phosphate,
but this is contradicted by labelling studies (Creek et al., 2012b).

4.2.7. Unable to knockout RK

Ablation of a gene’s transcript by RNA interference does not typically result in a
complete loss of the protein of interest. It was therefore attempted to generate a
null mutant for the RK gene (Δrk), by replacing the Tb427tmp.03.0090 gene with
antibiotic selection markers via homologous recombination with neighbouring non-
coding sequences .

To construct Δrk, untranslated regions (UTRs) adjacent to Tb427tmp.03.0090 were
cloned into plasmid pTBT (Cross et al., 2002), containing either puromycin N-
acetyltransferase or hygromycin phosphotransferase as antibiotic selection markers
(Figure 4.6). Wild-type bloodstream form T. brucei were transfected with both constructs
separately, generating Δrk::HYG/RK when one RK allele was replace by a hygromycin
resistance gene, and Δrk::PAC/RK when replaced by a puromycin resistance gene.
Independent clones were selected after transfection by plating out various dilutions
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on 96-wells plates. Correct integration of the selection markers was verified by PCR
(Figure 4.6).

Figure 4.6.: PCR confirming targeted replacement of RK gene. A: Strategy of PCR
confirming gene replacement. Arrows and letters indicate primers. A PCR with
primersets AB and EF indicates presence of the endogenous RK gene, primer sets
AC and EG indicate replacement of RK with a hygromycin resistance gene, while
primer sets AD and EH indicate replacement of RK with a puromycin resistance
gene. Primer sequence are in Table 2.1. B: PCR of wild-type 427, Δrk::HYG/RK
and Δrk::PAC/RK, with primers as indicated in A. The selection markers
succesfully replace the endogenous RK gene.
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Figure 4.7.: PCR confirmation ofΔrk::HYG/PAC::RKi. Genomic DNA from 427 WT and
Δrk::HYG/PAC::RKi were amplified with primers described in Figure 4.6. The
endogenous RK is absent in Δrk::HYG/PAC::RKi (primers AB and ED), replaced
with hygromycin (primers AC and EF) and puromycin (primers AD and EG).

However, numerous attempts of transfection with the other resistant marker were
invariably unsuccessful, no parasites survived the selection with both hygromycin and
puromycin. Selection for only the antibiotic from the second transfection round gave rise
to mutants where the selection marker from the first round of transfection was replaced
by the second selection marker.

Being unable to remove both RK alleles, it was decided to generate a conditional RK
knockout instead. An exogenous copy of the RK gene, placed under control of a
tetracycline inducible promoter, was introduced to the parasites prior to replacement
of the endogenous copies of RK. The RK gene was amplified from genomic DNA
and cloned into pHD1336, that contains a tetracycline inducible PARP promotor (as
pHD678 with blasticidin, Biebinger et al., 1997). The construct was transfected in
strain 449 T. brucei, which is derived from strain 427 and expresses the T7 polymerase
and tetracycline-repressor required by pHD1336 (Biebinger et al., 1997). Clones were
selected by blasticidin resistance. Subsequently, the endogenous RK gene was replaced
by resistance genes in two rounds of transfection, while the expression of the exogenous

Figure 4.8.: Western blot of RK in RK re-expressor. Δrk::HYG/PAC::RKi strain parasites
were cultured in the absence and presence of tetracycline (tet). Subsequently,
presence of the T. brucei RK protein was investigated by Western blot. An
unidentified cross-reacting band around 90 kDa was used as loading control.
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RK was continuously induced by the presence of tetracycline. PCR confirmed the
successful replacement of the endogenous RK Δrk::HYG/PAC::RKi.

Subsequently, expression of the inducible copy of RK was halted by the removal
of tetracycline from the culture. Cells were washed in medium without tetracycline
and subsequently cultured in HMI-9 without tetracycline, supplemented with certified
tetracycline-free fetal bovine serum (FBS, BioSera). Surprisingly, no growth effect
was observed when the expression of the exogenous RK was halted by the absence of
tetracycline, while Western blot confirmed the disappearance of RK from the culture
(Figure 4.8).

In an alternative approach, Spitznagel et al. (2009) constructed an RNAi mutant for
alanine aminotransferase in a strain lacking one of the endogenous alleles, and were
able to ablate enough activity to observe a phenotype. Loss of one endogenous allele in
an RNAi mutant has the potential to enhance the knockdown of the gene of interest, as
even less transcript would be available for translation. I attempted a similar approach,
by transfection of the RKRNAi with the construct used in the generation of Δrk::PAC/RK.
Identical to all other generated RK mutants, no growth phenotype could be observed.
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4.3. Discussion

4.3.1. T. brucei RK can work both ways

Heterologues expression, purification and characterisation confirmed the RK activity of
the gene Tb427tmp.03.0090 from T. brucei. The kinetic parameters are comparable
to those measured on ribokinases in other species, but here I report the first affinity
constants of Rib-5-P and ADP. In chapter 3, mathematical modelling predicted that the
role of T. brucei RK in the glycosome is to dephosphorylate Rib-5-P in order to prevent
a glycosomal phosphate leak. I demonstrate here that T. brucei RK is indeed capable of
dephosphorylating Rib-5-P.

Metabolomics experiments on a genetic mutant ablated of RK showed a significant
decrease in the level of Rib-5-P (1.57-fold decrease, FDR 0.00253, based on rank
product), suggesting that the depleted RK would normally produce Rib-5-P. However,
it is likely that any changes in Rib-5-P concentration in the cytosol mask changes that are
observed in the glycosome, due to the size difference of the two compartments.

4.3.2. RK is potentially essential, but low levels suffice

The attempts to generate RK knock-out mutants suggested that RK is an essential,
as a full knockout could not be obtained, even as deletion of single RK alleles were
successful. However, both RKRNAi and Δrk::HYG/PAC::RKi show no growth phenotype
upon ablation of RK transcript and protein from northern and western blots. Additionally,
metabolomics on RKRNAi only indicated minor changes in a small number of metabolite
levels. This suggests that potentially low levels of RK are still present in the RKRNAi

and Δrk::HYG/PAC::RKi cell lines. RNAi in T. brucei does often not result in complete
ablation of the protein of interest, especially for very stable proteins, while inducible
expression of an exogenous gene has the risk of leaky expression. The amount of residual
activity of RK in the genetic mutants is unknown, as I was unable to assay RK from
extracts, although the western blot is compelling to show ablation of the protein.

In a recent high-throughput RNAi screen, the knockdown of RK in both bloodstream
form and procyclic form T. brucei resulted in a growth loss (Alsford et al., 2011).
However, in T. brucei RNAi, the gene fragment used in the RNA construct, culture
conditions and method used in scoring fitness can all conspire to create discrepant results,
especially if, as appears to be the case, levels of knockdown need to reach a high threshold
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for an effect to be detectable. For alanine aminotransferase, too, RNAi failed to yield a
growth phenotype while gene knockout indicated essentiality (Spitznagel et al., 2009).

Interestingly, RKRNAi seemed to be better protected against oxidative stress, although
only by a small fold change. When, at least in the cytosol, no Rib-5-P is produced from
ribose by RK, then the PPP might be activated to compensate. An increased flux through
the PPP would result in increased production of NADPH. Consequently, ablation of RK
actually improves the oxidative state of the cell.

4.3.3. The importance of uncommon metabolites

Metabolomics on RKRNAi mutants furthermore demonstrated that the uncommon
metabolite octulose 8-phosphate is likely produced from Rib-5-P, as previously predicted
from labelling patterns of octulose 8-phosphate (Creek et al., 2012b). The uncommon
metabolite nonulose 9-phosphate is not linked to Rib-5-P or octulose 8-phosphate, as no
changes were observed. Erythrulose 1-phosphate, another uncommon metabolite, was
increased in the RKRNAi, but the connection with ablation of RK remains unclear.

The importance of these metabolites for trypanosomes remains a mystery. The
production of octulose and nonulose phosphates can be catalysed by already identified
enzymes within the glycosome such as ALD and TAL, due to substrate promiscuity.
The presence of these unknown metabolites can therefore be seen as “errors” of an
“underground metabolism” (D’Ari and Casadesus, 1998), but perhaps they play an
essential role in the glycosomal compartmentalisation of metabolism.

In Chapter 3 I demonstrated how rigid the structure of glycosomal metabolism is: there
are very strict stoichiometric rules that need to be adhered to in the small volume of a
glycosome, and already a small leak in the system will quickly lead to its demise. Perhaps
the presence of an underground metabolism, with metabolites and reactions linking up
at maybe a smaller scale and rate than the majority of the flux, provides the system
with more flexibility and degrees of freedom. However, an important factor here is the
localisation of the metabolites, as it is not expected that metabolism in the cytosol suffers
from a rigid structure.
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4.3.4. RK alone is unlikely to prevent the glycosomal phosphate
leak

While the mathematical model predicted an essential role of RK in T. brucei glycosomes
in the prevention of the phosphate leak, the experimental data provided here is
inconclusive. However, as discussed in 3.2.3.4, a glycosomal RK is only an example
of a number of solutions that belong to the same class, where the conserved moiety of
bound phosphates within the glycosome is extended by additional reactions within the
glycosome. My data presented here suggests that indeed RK on its owh is preventing the
phosphate leak, but is rather involved in a complex dance with other enzymes present in
the glycosome to balance the bound-phosphates (Colasante et al., 2006; Opperdoes and
Szikora, 2006; Vertommen et al., 2008).

Notably, phosphoenolpyruvate carboxykinase (PEPCK) and arginine kinase (ArgK)
are present in the glycosome (Colasante et al., 2006; Opperdoes and Szikora, 2006;
Vertommen et al., 2008), both using ATP (Hunt and Köhler, 1995; Pereira et al., 2002).
Potentially, the effects of ablation of RKRNAi in the glycosome are buffered by other
glycosomal kinases. PEPCK is part of the succinate fermentation pathway, which is
supposed to have very limited activity in the bloodstream form of the parasite. The
activity of PEPCK, however, is 1.5 nmol · min 1 · mg protein 1(Hart et al., 1984), higher
than the flux through the glycosomal PPP. Arginine kinase appears to be an isolated
enzyme (there are no other enzymes reported in the glycosome that use either arginine
or arginine phosphate), although the cytosol could be a source of arginine. It is thought
that arginine kinase plays a role in management of energy reserves in trypanosomatids
(Pereira et al., 2002), and additional work is required to better understand the role of
arginine-phosphate in trypanosome metabolism.

Combined with the potential importance of the uncommon metabolites routinely
identified in our datasets, it perspires that glycosomal metabolism might be more
complex than initially thought when glycosomes received their name.
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Chapter 5
Studying enzyme function with
metabolomics

It is important to know, when studying the metabolism of a particular organism, which
enzymes are present and what reactions they catalyse. Although the genome sequence,
with the help of various bioinformatics approaches, can suggest which enzymes are
present, these putative annotations require experimental validation. In this chapter I use
metabolomics to study the putative function of three T. brucei enzymes.
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5.1. Introduction

Computational models are valuable tools to study the behaviour of metabolic networks;
however, the power of these models is restricted by how comprehensive the knowledge
of the parameters is. While in silico models of metabolism exist with different degrees
of abstraction, from stoichiometric models to detailed kinetic models, they all depend on
the knowledge of which reactions are happening within the cell. This combination of all
(catalysed) metabolic reactions has been called the “reactome” by (Joshi-Tope, 2004) (or
“catalome” by (Sun et al., 2006)). However, our current knowledge of the reactome is
far from complete. An estimated 30–40 % of catalytic activities are currently “orphan”,
meaning that the activity has been detected, but no gene has been annotated as being
responsible for these activities in any organism (Chen and Vitkup, 2007). Even in a well
characterised model organism, such as E. coli, 40 % of the genes have no experimentally
confirmed function (Keseler et al., 2009), while 60–70 % of the predicted protein coding
genes in trypanosomatids remain unannotated (Choi and El-Sayed, 2012). This problem
of incomplete and unreliable annotation has been recognised, and has for instance led
to the establishment of the Enzyme Function Initiative that aims to address this problem
with a structure based strategy (Gerlt et al., 2011).

Bioinformatics approaches are helpful in the functional identification of genes by
studying nucleotide sequences using tools, such as BLAST1 and Pfam2 domain searches,
but sequence analysis alone is often not sufficient to elucidate the function of a gene.
Particularly for enzymes, sequence similarity is rarely sufficient to annotate the substrate
specificity. An example of this are the enzymes melamine deaminase and atrizine
chlorohydrolase which have 98% identical amino acid sequences (Seffernick et al.,
2001). Only 9 out of 475 amino acids are different, but no detectable activity could
be measured with either enzyme for the other enzyme’s natural substrate. Although this
might appear an exceptional example, an additional problem with incorrect annotations
is that they are propagated through the genome databases (Furnham et al., 2009). Once
a gene has been annotated incorrectly, that incorrect annotation is used to (incorrectly)
annotate other genes by sequence similarity (Schnoes et al., 2009).

Evidently, sequence analysis alone is not sufficient for reliable gene annotations; there is
a requirement for experimental data on the gene products, even if just to confirm the
function predicted from sequence analysis. The detailed characterisation of enzyme
functions has traditionally been performed with targeted assays, where each assay is
optimised to measure one particular catalytic activity at the same time. However, as

1http://blast.ncbi.nlm.nih.gov/
2http://pfam.sanger.ac.uk/
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demonstrated by the example of melamine deaminase and atrizine chlorohydrolase, an
untargeted approach is required to be able to evaluate the full catalytic potential of
enzymes. Furthermore, to fully describe the reactome it is imperative to also take
substrate promiscuity into account. While most enzymes have one substrate that can
be converted to product with a high rate, they often also have affinity and activity to
other (related) molecules. To address the wide range of potential catalytic activities
of uncharacterised enzymes, traditional enzyme assays have been scaled-up by the
development of microarray-based enzyme assays (Sun et al., 2006; Northen et al., 2008).
While these arrays can now monitor many reactions at the same time, they are still only
capable of measuring a finite number of reactions that are specified by the array’s design.

5.1.1. Metabolomics for elucidation of enzyme function

The use of metabolomics has been proposed as an untargeted approach to study enzyme
functions (Saito et al., 2006; Baran et al., 2009; Saito et al., 2010). Metabolites are
common substrates and products of enzyme activities, and with the current advances
in metabolomics it is now possible to measure metabolites in a sensitive and high-
throughput manner. More precisely, two general approaches have been proposed to aid
the functional elucidation of unannotated enzymes: (i) metabolomics enzyme assays,
where a purified enzyme of interest is studied in isolation; and (ii) metabolic profiling,
where a genetic mutant of the enzyme of interest is phenotyped by metabolomics
(Figure 5.1).

The metabolomics enzyme assay, is based on measuring changes in levels of metabolites
in a complex mixture of metabolites when incubated with the enzyme of interest (Saito
et al., 2006). For this, the enzyme needs to be isolated from the organisms, what is often
easiest accomplished by heterologous expression of a recombinant version of the enzyme
and subsequent purification from the expression host. The complex mixture typically
consists of whole cell extracts, with all of the original enzyme activity eliminated.

Metabolic profiling is performed on genetic mutants that are defective in the enzyme
of interest (Saghatelian et al., 2004). This can be obtained by knockout of the gene of
interest, or knockdown of its transcript by RNA interference (RNAi), although the latter
might not lead to sufficient ablation of functional enzyme to show a metabolic effect.
Subsequently, the metabolome from the genetic mutant is extracted and compared to
wild-type extracts.
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Figure 5.1.: The use metabolomics in functional elucidation of enzymes. A: In the
metabolomics enzyme assay, a complex mixture of metabolites (depicted by
various shapes) is incubated with a purified enzyme. The contents of the two
samples are compared by mass spectrometry, generating an overview of changes in
metabolite levels. B: In metabolic profiling, an organism containing an unknown
pathway, with unknown enzymes, connecting unknown intermediates (m). A
genetic mutant is generated in one of the unknown enzymes and the metabolome is
compared to a wild-type cell via mass-spectrometry. As in A, an overview of
changed metabolite levels is given. Both the metabolomics enzyme assay and
metabolic profiling methods suggest that the star metabolite is converted to the
circle metabolite by the previously uncharacterised enzyme.
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In the simplest case, only one metabolite increases and one decreases in both approaches.
This does not necessarily mean that these are the substrate and product of the
enzyme catalysed reaction: a plausible chemical transformation needs to connect the
increased and decreased metabolites. As will become clear from the results below,
however, typically that many more metabolites change between conditions, complicating
elucidation of the enzyme’s function.

These metabolomic approaches have been applied successfully: e.g. Saito et al. (2006)
used metabolomics enzyme assays to study the characterised YbhA and YbiV proteins
from E. coli and found phosphotransferase and phosphatase activities against different
sugars. In 2009, the same group (Saito et al., 2009) characterised E. coli YihU as a novel
hydroxybutyrate dehydrogenase, this time using both metabolomics enzyme assays and
metabolic profiling.

The changes observed depend on the presence or absence of the enzyme of interest.
While this might seem trivial, not all observed changes in metabolites are necessarily
related to the presence of the enzyme. Mass spectrometry provides the ability to compare
a large number of metabolites, typically thousands per sample. When two conditions are
compared, a number of these measured metabolites will show significant changes that
originate from biological and experimental variation, rather than from differences in the
two conditions.

Additionally, the enzyme can have the ability to affect a multitude of metabolites due to
substrate promiscuity and moonlighting, the effects that an enzyme can have multiple,
potentially entirely unrelated functions. An example is cytochrome P450 170A1 that has
recently been found to be able to catalyse both monooxygenase and terpene synthase
activity (Zhao and Waterman, 2011). The two functions do not have to be catalytic
activities, aldolase in the parasite Echinococcus granulosus for example is also involved
in key processes as motility, differentiation, invasion and development (Lorenzatto et al.,
2012).

In metabolic profiling, the results can be even more ambiguous. A genetic mutation of
an enzyme of interest will likely affect its substrate and product levels, but these changes
may then by themselves affect levels of other metabolites. Alternatively, the cell might
react by homoeostatic regulation, such that the levels of substrate and product of the
enzyme of interest do not change. Although this might complicate the elucidation of the
enzyme function, it is anticipated that rigorous analysis of the results allows us to infer
new knowledge about the enzyme of interest.
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In this chapter I applied the two strategies of enzyme metabolomics and metabolic
profiling to the products of three T. brucei genes that are predicted to be enzymatically
active, but have no confirmed activity: a putative arginase, N-acetylornithine deacetylase,
and nicotinamidase.
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5.2. Results

Three T. brucei genes of interest were investigated with a metabolomics approach.
All three genes have been given putative annotations in genome databases, but have
not been confirmed experimentally. For identification purposes, the proteins are here
indicated by the abbreviations for the putative functions: gene Tb427.08.1910 codes
for putative N-acetylornithine deacetylase (NAO), gene Tb427.08.2020 codes for a
putative arginase (ARG), and genes Tb427tmp.160.2540 and Tb427tmp.160.2600 code
for putative nicotinamidases (NAM).

5.2.1. A putative T. brucei arginase without arginase activity

In T. brucei, the loss of polyamine biosynthesis results in a growth-arrest. This is
the mode of action of eflornithine, the only clinically used trypanocidal drug with a
known mode of action (Poulin et al., 1992). Eflornithine inhibits the enzyme ornithine
decarboxylase (ODC) and thereby prevents the production of putrescine from ornithine.
It was speculated that this makes the production of ornithine, as a substrate for ODC,
a potential drug target. In most eukaryotes, ornithine is produced from arginine by
arginase, but our lab showed that a gene putatively annotated in the T. brucei genome
as an arginase does not have arginase or the related agmatinase activity (Vincent, 2011).
I therefore decided to elucidate the function of this gene (ARG) by a metabolomics
approach.

5.2.1.1. Recombinant ARG binds to an E. coli chaperone

For the investigation of the enzymatic activity of the putative arginase, a polyhistidine-
tagged recombinant version of the protein was heterologously expressed in E. coli.
Purification of the recombinant ARG by immobilised metal affinity chromatography
gave two bands on a protein gel, with sizes of approximately 40 kDa and 110 kDa
(Figure 5.2). Further purification by gel-filtration and ion-exchange chromatography
(Alan Scott, University of Glasgow) did not improve the purity of the protein (Figure 5.2).
Both bands were excised from the gel and the identity of the proteins was investigated
by proteomics (Dr Richard Burchmore, University of Glasgow). The 40 kDa band was
identified as T. brucei ARG, while the 110 kDa band is a complex of ARG and chaperone
protein DnaK, a 70 kDa heat shock protein (Hsp70) involved in the correct folding of
proteins (Langer et al., 1992). The DnaK must be of E. coli origin as ARG was the
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only T. brucei gene heterologously expressed. The presence of DnaK with the purified
enzyme was ignored for further experiments, as DnaK is assumed to have no metabolic
activity, although it can not be excluded that the presence of DnaK affects the activity of
ARG. T. brucei also has endogenous heat shock proteins that have sequence similarity to
the E. coli DnaK found in the proteomics analysis. This suggests that ARG might also
form a complex with heat shock proteins in vivo.

Figure 5.2.: Purification of recombinant ARG. Heterologously expressed ARG was
sequentially purified over immobilised metal affinity chromatography, gel filtration
and ion-exchange chromatography. The black lines in the graphs on top show the
elution profiles from the chromatography system, as absorbance measured at 280
nm. Below are Coomassie blue stained SDS-PAGE gels with different fractions of
the purification process. Purification fractions and gel samples are matched by
arrows, dashed arrows indicate what sample was used for further purification. The
40 kDa band is ARG, while the 110 kDa is a complex of ARG and DnaK, as
demonstrated by proteomics.

5.2.1.2. ARG is a potential tryptophan oxygenase

The activity of the recombinant ARG was investigated using a metabolomics enzyme
assay. Purified ARG was incubated in a complex mixture of metabolites in the form of
commercial yeast extract, with the addition of either of two cofactor mixtures (Table 5.1).
The two cofactor mixtures differ in the presence of the reduced or oxidised, and
phosphorylated or dephosphorylated forms of some of the components. It was anticipated
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that, when the cofactors are involved, the catalysed reaction could be steered to the
thermodynamically preferred direction depending on the cofactor mixture.

Attempts were made to use T. brucei extracts as complex metabolite mixtures, but
resulted in a reduced number of detected metabolites, showed no significant changes
upon incubation with the enzymes, and was therefore deemed unnecessarily tedious in
comparison to the use of commercial yeast extract. Consequently, it was decided to
use commercial yeast extracts for future metabolomics enzyme assays, at least as a first
approach, with the possibility to generate trypanosome extracts if desired.

The enzyme was allowed to react in the complex metabolite mixture for 10 minutes at 37
°C, the reaction was quenched by the addition of ice-cold 75% acetonitrile, after which
the samples were analysed by LC-MS. The results were compared to a control sample,
where ARG was added after the acetonitrile quench.

Data deconvolution and filtering by mzMatch and IDEOM resulted in the putative
identification of 865 metabolites, almost half of which were di-, tri- or tetra-peptides
(IDEOM sheet on supplementary CD-ROM). It can be expected from the large number
of peptides measured that a number of these will show significant changes purely by
chance, as discussed in the introduction of this chapter.

The number of significantly changed metabolites (based on rank product, FDR<0.05) was
more than fourfold higher in samples with cofactor mixture 1; 76 putative metabolites
changed significantly in mixture 1, while 30 changed significantly in mixture 2 (Section
D.3). Additionally, the individual fold-changes of metabolites were roughly 2.5-fold
higher in samples with cofactor mixture 1. The differences between the two cofactor
mixtures implies the involvement of the mixture 1-specific cofactors NAD+, NADP+,
ADP, GDP and/or CoA.

Mix 1 NAD+ NADP+ ADP GDP CoA FMN FAD PP TPP Biotin
Mix 2 NADH NADPH ATP GTP Acetyl-CoA FMN FAD PP TPP Biotin

Table 5.1.: Contents of cofactor mixtures. The two cofactor mixtures prepared shared many
components, while some are varied between their oxidised and reduced form, or
phosphorylated and dephosphorylated forms. All concentrations were at 0.1 mM.
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Mix 1 Mix 2

290.09005 9.26 C14H14N2O5 2 N2-Malonyl-D-tryptophan 24.4 5.43 ×

205.03770 5.63 C10H7NO4 2 6-Hydroxykynurenate 21.8 3.35 ×

211.04837 7.11 C9H9NO5 5
5-(2'-Formylethyl)-4,6-
dihydroxypicolinate a

9.25 4.17

246.10058 9.28 C13H14N2O3 4 N-Acetyl-D-tryptophan 8.76 1.96 b ×

189.04258 5.82 C10H7NO3 6 Kynurenate 5.80 1.74 ×

145.05282 6.89 C9H7NO 7 1(2H)-Isoquinolinone 4.06 1.36 b ×

173.04773 5.99 C10H7NO2 4 2-Quinolinecarboxylic acid 3.95 1.49 ×

236.07972 10.45 C11H12N2O4 2 L-Formylkynurenine a 3.87 1.82

145.05281 5.53 C9H7NO 7 3-Methyleneoxindole 3.53 1.34 b ×

174.07932 10.97 C10H10N2O 4 Indole-3-acetamide 3.48 1.96 b ×

252.07440 12.08 C11H12N2O5 1 5-Hydroxy-N-formylkynurenine a 3.00 b 1.58

248.07931 6.16 C12H12N2O4 1 5-Hydroxyindoleacetylglycine 2.65 1.43 b ×

182.08442 8.27 C12H10N2 1 Harman 2.04 -1.06 b ×

172.06372 5.76 C10H8N2O 1 Indole-3-acetonitrile oxide 2.00 1.25 b ×

198.07940 8.74 C12H10N2O 4 Harmalol 1.71 1.21 b ×

204.08995 10.55 C11H12N2O2 6 L-Tryptophan -4.50 -1.28 b ×
a Not indoles or quinolines, but related to tryptophan metabolism.
b Non-significant change (rank product FDR>0.05).

Table 5.2.: Changes in indoles and quinolines in ARG assay. Indoles, quinolines and
tryptophan related metabolites that changed significantly (rank product, false
discovery rate (FDR)<0.05, n=3) in at least one of the two cofactor mixtures.
Measured mass as mass-to-charge ratio (m/z); number of isomers as predicted from
IDEOM databases. Negative fold-changes indicate decreased metabolites.

Approximately one third of the significant changes were in lipids and peptides. No trend
could be observed in the changes of lipids from one class to another, while the largest
decreases in peptides contained tryptophan (Figure 5.3). Of the remaining metabolites, a
large fraction were indoles, quinolines or related to the indolic amino acid tryptophan
(Figure 5.4). While all indoles and quinolines increased in both reaction mixtures,
only tryptophan decreased during the assay (Table 5.2). Ionisation of metabolites by
mass spectrometry typically results in fragmentation of some analytes, however, likely
ionisation fragments have already been filtered out as much as possible, based on
retention time, peak shape and chemical formula (cf. Table 5.2 and Section D.3).
Nonetheless, it cannot be excluded that fragmentation has occurred before column
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chromatography, what would result in fragments of the same metabolite entering the
mass-spectrometer at different times.

Not containing tryptophan
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Figure 5.3.: Peptide changes in ARG metabolomics assay. Fold changes of significantly
changed peptides (rank product, FDR<0.05) are shown for cofactor mixture 1 (A)
and mixture 2 (B). Grey bars indicate peptides that contain tryptophan, while black
bars indicate peptides that do not contain tryptophan.

The pattern of increased and decreased metabolites suggests that tryptophan is a substrate
for ARG, while the indoles and quinolines are products. While the results suggest
promiscuity of ARG, it is difficult to imagine an enzyme that uses one substrate to
generate a wide range of products. It is possible that other substrates were decreased
as well, but not detected in our data set.

Four of the increased indole-related compounds are the direct products of an EC-number
assigned reaction that uses tryptophan as a substrate (Figure 5.5). Two of the reactions
are oxygenases, members of a class of oxidoreductases that oxidise a substrate by the
transfer of oxygen from molecular oxygen (O2). Oxidation by dioxygenases often
involves cleavage of aromatic rings in the substrate. The two non-oxygenase reactions
are acyltransferases. This suggests that ARG might have a moonlighting function, where
it is capable to catalyse two unique reactions, albeit here with additional promiscuity.
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Figure 5.5.: Potential substrate-product pairs from ARG metabolomics assay. Metabolites
on the bottom can all be produced from tryptophan by an EC-number assigned
reaction. Reaction 1: tryptophan 2-monooxygenase (EC 1.13.12.3); 2: tryptophan
2,3-dioxygenase (EC 1.13.11.11); 3: tryptophan N-acetyltransferase (EC 2.3.1.34);
4: tryptophan N-malonyltransferase (EC 2.3.1.112).

Interestingly, the BRENDA3, KEGG 4 and MetaCyc 5 databases indicate that most of the
potential (EC-number assigned) reactions do not involve the cofactors that are provided
in the two cofactor mixtures. FAD has been identified as a cofactor of tryptophan
2-monooxygenase (Hutcheson and Kosuge, 1985), but is present in both mixtures.
Although the NAD(P)+ present in cofactor mixture 1 might not directly take part in the
catalysed reaction, it does increase the oxidation potential of the assay buffer. Also,
although the assay buffer is pH 7, potentially the presence of the different cofactor
mixtures caused a shift in the pH of the final assay mixture. The pH of the final assay
mixtures was not determined, but could provide useful information, possible even more
by measuring the pH before and after the incubation with purified enzyme.

5.2.1.3. ARG null mutant is less susceptible to trypanocidals

The ARG gene was further investigated by metabolic profiling. An ARG null mutant
was generated by replacement of the endogenous ARG gene with antibiotic resistance
genes by homologous recombination of the flanking regions. Clones were selected by
applying the appropriate drug pressure, and successful replacement of the ARG gene by

3http://www.brenda-enzymes.info/
4http://www.genome.jp/kegg/
5http://metacyc.org/
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a resistance gene was confirmed by PCR (Figure 5.6). Both alleles of ARG could readily
be replaced, generating the genotypic strain Δarg::HYG/PAC, hereafter referred to as
Δarg.

Figure 5.6.: Confirmation of genetic mutants by PCR. A: The strategy of PCRs used to
confirm gene replacement. Arrows and letters indicate primers. PCR with
primersets AB and EF indicates presence of the endogenous gene, primersets AC
and EG indicate replacement of the endogenous gene with a hygromycin resistance
gene, while primersets AD and EH indicate replacement of the endogenous gene
with a puromycin resistance gene. Primers YZ indicates the presence of the
endogenous gene. Primers A, B, E, F, Y and Z are unique for each gene of interest,
all primer sequences are given in Table 2.1. B: PCR of wild-type 427 and Δarg,
with primers as indicated in A. C: PCR of wild-type 427 and Δnao, with primers as
indicated in A. Primerset AB for Δarg did not amplify from wild-type 427 genomic
DNA, and could therefore not be used to indicate gene replacement. Instead, the
full gene was amplified (primerset YZ).

The Δarg strain was maintained in HMI-9 medium in the presence of hygromycin and
puromycin. Only a minor growth phenotype could be observed, likely due to the presence
of the antibiotics (Figure 5.7). Antibiotics were removed from the culture medium
prior to further experiments. AlamarBlue assays were performed with a selection of
trypanocidals to investigate drug sensitivity and Δarg is slightly less sensitive for most
of the drugs (Table 5.3).
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Figure 5.7.: Growth curves of various genetic mutants generated in this chapter. Cell
densities were routinely kept between 1 · 104 and 2 · 106, cumulative cell counts are
plotted, lines are fitted exponential growth curves.

Compound Medium
IC50 (nM) Ratio

WT/ Δarg p-valueWT Δarg

Suramin HMI-9 37 ± 0.72 39 ± 10 1.1 0.86

CMM 32 ± 4.1 30 ± 2.5 1.1 0.71

Melarsen oxide HMI-9 11 ± 0.98 7.0 ± 2.3 0.66 0.021

CMM 10 ± 2.9 15 ± 1.6 0.69 0.24

DFMO HMI-9 23 ± 2.8 µM 49 ± 1.9 µM 0.48 0.0018

CMM 12 ± 1.6 µM 21 ± 2.4 µM 0.59 0.027

Berenil HMI-9 29 ± 3.5 48 ± 4.6 0.61 0.019

CMM 16 ± 1.6 13 ± 3.3 1.2 0.48

5-fluorouracil HMI-9 21 ± 3.1 µM 35 ± 2.6 µM 0.59 0.018

CMM 1.5 ± 3.3 µM 2.2 ± 4.3 µM 0.70 0.28

Methylene blue HMI-9 23 ± 5.3 92 ± 6.6 0.25 0.00021

CMM 24 ± 3.7 53 ± 9.4 0.46 0.037

Table 5.3.: Toxicity of various trypanocidals inΔarg and wild-type parasites. AlamarBlue
assays were used to determine IC50 values in both Δarg and wild-type (WT)
parasites, in both HMI-9 and CMM culture medium. SEM; n≥3; Student’s t-test,
two-tailed, unequal variance.

5.2.1.4. ARG null mutant affects phosphocholines, PPP and methionine
metabolism

The metabolome of Δarg parasites was measured and compared to wild-type during
growth in CMM medium, a reduced medium formulation optimised for high-quality
metabolomics experiments (unpublished; Dr Darren Creek, University of Melbourne).
The growth in CMM medium was similar to growtn in HMI-9 medium. The samples
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were analysed by LC-MS, and two complementary runs were performed with hydrophilic
interaction chromatography using ZIC-HILIC and ZIC-pHILIC columns, in an attempt
to increase the coverage of the metabolome. The metabolomics data was deconvoluted
and analysed with the mzMatch/IDEOM pipeline.

─
4

·1
0

7
─
2

·1
0

7
4

·1
0

7
2

·1
0

7
6

·1
0

7
0

─1.2·108 ─8·107 ─4·107─6·107 ─2·107─1.0·108

P
C

 2
 (

4
.3

 %
)

PC 1 (92.6 %)

WT

Δarg

Δnao CMM

─
4

·1
0

7

P
C

 2
 (

2
.5

 %
)

─
3

·1
0

7
─
2

·1
0

7
─
1

·1
0

7
1

·1
0

7
2

·1
0

7
0

─1.5·108 ─5·107 0─1.0·108

PC 1 (95.1 %)

WT

Δarg

Δnao CMM

A BScore Plot HILIC Score Plot pHILIC

Figure 5.8.: Correlation of metabolomes of different genetic mutants. The correlation of the
metabolomes of wild-type, Δnao and Δarg was compared by principle component
analysis using all basepeaks. Depicted are the score plots of the first two principal
components of the ZIC-HILIC (A) and ZIC-pHILIC (B) chromatography runs.
Dotted lines are the 95% confidence interval. There is no clear separation between
wild-type (WT), Δnao and Δarg samples. Medium samples (CMM) are well
separated from the parasite samples.

A principal component analysis (PCA) was performed on all potential basepeaks
identified from the samples. PCA is a mathematical procedure that reduces
multidimensional data, which in metabolomics data sets is based on the numerous
metabolites compared. PCA transforms the data points to a reduced number of principle
components (PC) in such a way that the first principle component accounts for most of
the variability within the data set. PCA is often utilised as an initial step prior to further
analysis, to visualise general trends between the different samples in a data set (Sumner
et al., 2003).

PCA analysis of all potential basepeaks identified from the samples showed that the
metabolome of Δarg is barely distinguishable from the metabolome of wild-type
parasites (Figure 5.8). Looking at individual metabolites, around 70 metabolites change
significantly (Section D.4), with almost half of the changes in lipids. Within the lipids,
a shift was observed from ether phosphatidylcholines (PC) to PCs with an ester group
(Figure 5.9). Ether lipids are synthesised from dihydroxyacetone phosphate, while
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Figure 5.9.: Changes in lipid concentrations ofΔarg. The number of lipids and fatty acids
that either increased or decreased significantly in the Δarg strain (rank product,
FDR<0.05). Grouped by fatty acids, ether and ester phosphatidylcholines (PC),
ether and ester phosphatidylethanolamine (PE) and ester phosphatidylserine.
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Figure 5.10.: Biosynthetic pathway of phosphatidylcholines. Thin lines indicate reactions,
dashed line represents multiple reactions, and bold arrows indicate an increase or
decrease of the metabolite in Δarg. PC: phosphatidylcholine.

glycerol 3-phosphate is the precursor for ester lipids (Figure 5.10). Concordant to a
turnover of PCs is the increase in precursors of PCs: choline, phosphocholine and CDP-
choline (Figure 5.11).

Most of the remaining changes are orientated around two pathways: the PPP (PPP) and
methionine metabolism (Figure 5.11). Most intermediates of the PPP are increased in
the Δarg strain. An increase in metabolic intermediates can have various causes: (i)
impaired ability to use the end-product of the pathway; (ii) increased availability of the
pathway’s substrate; (iii) activation of the pathway as a secondary effect. Additionally,
changes in one metabolite can have knock-on effect and cause additional metabolites in
the same pathway to change. These possibilities can complicate the identification of the
primary effect of the loss of the gene of interest.

The increase in PPP intermediates is accompanied by an increase in NADPH (Section
D.4). The PPP can be activated at increase of oxidative stress (see Chapter 3, and Maugeri
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Figure 5.11.: Schematic map of metabolite changes inΔarg. Metabolic changes are painted
on a non-species specific metabolic map, based on KEGG IDs (Yamada et al.,
2011). Increased metabolite concentrations are in red, decreased in blue. At the
bottom are metabolite that are not part of, or closely related, to any pathway. Ade:
adenine; dAdo: deoxyadenosine; y-GABA:
gamma-glutamyl-gamma-aminobutyraldehyde; Hyp: hypoxanthine; N9P:
nonulose 9-phosphate P-DPD, 4-hydroxy-2,3-pentanedione-5-phosphate; PAA,
phenylacetic acid.
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et al., 2003; Maugeri and Cazzulo, 2004), but that does not seem to be the cause here.
The higher NADPH level of the parasites renders them less susceptible to methylene blue
and many other drugs that are suspected to increase oxidative stress (Table 5.3). It seems
that the loss of ARG requires the parasites to compensate by augmenting their PPP, with
the increased oxidative stress protection as a side-effect, rather than an activation of the
PPP due to oxidative stress.

Besides NADPH, the PPP also provides Rib-5-P that can be used in nucleotide
biosynthesis. Phosphoribosylpyrophosphate (PRPP) is produced from Rib-5-P while the
phosphoribosyl-group can subsequently be transferred to a nucleobase (e.g. adenine) to
form a monophosphate nucleoside (e.g. AMP). Besides adenine, also hypoxanthine and
guanine were increased upon the loss of ARG (Figure 5.11).

The second major pathway affected in the Δarg strain is methionine metabolism:
metabolites as S-adenosyl methionine (SAM) and methylthioadenosine (MTA) are
increased in Δarg. Interestingly, there is a connection with the original proposed
annotation of ARG as an arginase, as decarboxylated SAM is used in the biosynthesis
of spermidine from the putrescine that is produced from ornithine. However, no
significant changes in arginine, ornithine, N-acetylornithine, or other polyamines were
observed. Adenine is a by-product of methylthioadenosine degradation, potentially
connecting the changes in methionine metabolism to the changes in nucleobases and PPP
intermediates. SAM connects to phosphatidylcholine metabolism, as CDP-ethanolamine
can be converted to PC in a series of biochemical reactions.

While connections can be drawn between the metabolic changes, it remains unclear what
exactly is the primary effect of loss of ARG. Furthermore, there seems to be very little
overlap with the results of the metabolomics enzyme assay with recombinant ARG. The
only change related to tryptophan metabolism is the decrease of 8-methoxykynurenate,
but neither this metabolite nor close neighbours in tryptophan metabolism seem to be
involved in any of the other changed metabolites in Δarg.

5.2.1.5. Different functions suggested for ARG

The metabolomics enzyme assay suggested that ARG has a function related to tryptophan
or other indoles, with an indication of a potential oxygenase function. While the
metabolic profiling uncovered significant changes in a number of metabolites, and
these changes are potentially connected to each other, it did not provide support for a
tryptophan-related function. Moreover, I was unable from the metabolic profiling to



5.2. Results 125

Oxida
tive

stres
s

PPP

NADPH

Ade
Hyp

Guan

Nucleotides

MTA SAM

Choline Phosphocholine

CDP-choline

Ether PC

Ester PC

CDP-ethanolamine

Figure 5.12.: Possible connection of observed changes inΔarg. Arrows do not necesarily
represent one reaction. Direction of the arrow indicates a hypothetical causative
connection.

distinguish between the primary effect of ARG loss, the secondary effect and potential
compensatory changes.

Especially the lack of concordance between the numerous tryptophan related changes
in the metabolomics assay and only 8-methoxykynurenate changing upon loss of ARG
seems problematic to pinpoint the function of ARG.

5.2.2. Putative N-acetylornithine deacetylase

From earlier metabolomics experiments it became apparent that treatment of T. brucei
with eflornithine results in similar changes in levels of ornithine as of N-acetylornithine
(Vincent et al., 2012). As T. brucei lacks arginase activity there is a possibility that N-
acetylornithine is part of an alternative ornithine biosynthetic pathway (see 1.6.1, and
Vincent, 2011). The T. brucei genome contains a gene that has been putatively annotated
as an N-acetylornithine deacetylase (NAO, Tb427.08.1910), and this gene is investigated
here in more detail.

5.2.2.1. Metabolomics assay confirms deacetylase function

For the metabolomics assay with NAO, a polyhistidine-tagged recombinant version of
the NAO gene was heterologously expressed in E. coli and purified with immobilised
metal affinity chromatography. Purification yielded a single band on SDS-PAGE of
approximately 45 kDa. A metabolomic enzyme assay was performed as described above
for ARG. The number of significantly changed metabolites (rank product, FDR<0.05)
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was roughly 2.5-fold higher in cofactor mixture 1, with 65 changes compared to 23
changes in mixture 2 (Supplement 1.1.4). Unlike in the ARG assay, however, there
was little difference in fold-changes in metabolites that were significantly changed in
both mixtures (Table 5.4), suggesting that none of the mixture-specific cofactors were
required.

The changed metabolites propose that NAO is an N-acyl-amino acid deacetylase with
a broad substrate specificity. Javid-Majd and Blanchard (2000) have characterised E.
coli N-acetylornithine deacetylase and found a similar substrate specificity: the highest
activities were found using N-formylmethionine and N-acetylmethionine, while also
numerous of other acetylated amino acids could function as substrates. Interestingly,
four of the consistent changed metabolites were related to kynurenine (Table 5.4). In the
ARG assay, a number of kynurenine related metabolites were all increased, while the
kynurenine related changes in the NAO assay are decreased. This further questions the
significance of the kynurenine related changes that were observed in the ARG assay. The
only consistently increased metabolite in the NAO assay is fumarate. The reason for this
increase remains unclear, as no other fumarate related metabolites are changing.
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Putative metabolite

Fold change

Mix 1 Mix 2

116.01107 6.26 C4H4O4 3 Fumarate 5.20 4.18

252.07445 12.14 C11H12N2O5 1 5-Hydroxy-N-formylkynurenine -1.36 -1.69

189.04255 5.82 C10H7NO3 6 Kynurenate -1.50 -2.47

264.07438 5.95 C12H12N2O5 1 Diformylkynurenine -1.58 -1.56

173.10506 5.73 C8H15NO3 5 N-Acetyl-L-leucine -1.67 -1.61

205.03768 5.66 C10H7NO4 2 6-Hydroxykynurenate -2.03 -5.29

207.08962 5.68 C11H13NO3 6 N-Acetyl-L-phenylalanine -2.18 -2.18

177.04598 5.94 C6H11NO3S 3 N-Formyl-L-methionine -3.62 -4.20

191.06129 5.89 C7H13NO3S 1 N-Acetylmethionine -4.88 -3.85

Table 5.4.: Significantly changed metabolites in NAO assay. Metabolites that showed
significant changes in both cofactor mixtures are shown. Measured mass as
mass-to-charge ratio (m/z); number of isomers as predicted from IDEOM databases.
Negative fold-changes indicate decreased metabolites.
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5.2.2.2. Metabolome of NAO null mutant shows limited changes

An NAO null mutant (Δnao) was generated as described previously for ARG (Figure 5.6
and Figure 5.7). The metabolome of the Δnao strain was measured by LC-MS and
compared to wild-type parasites. Principal component analysis demonstrated limited
separation of the null mutant from wild-type parasites (Figure 5.8). This is further
supported by studying the putative metabolites: only 26 putatively identified metabolites
changed significantly (rank product, FDR<0.05, Supplement 1.1.5).

Of the significantly changed metabolites, only N-acetylmethionine was also changed in
the enzyme metabolomics assay (cf. and Table 5.4 and Table 5.5). In Δnao, methionine
did not change significantly, but the decrease in 5’-methylthioadenosine (MTA) could
be connected to the loss of NAO (Figure 5.13). N-acetylmethionine, however, is not a
classical source for methionine synthesis, as it is normally produced from cysteine via
cystathionine and homocysteine. N-acetylornithine does not change, with non-significant
fold-changes of 0.73 and 1.21 from the analysis with ZIC-HILIC and ZIC-pHILIC
chromatography respectively. Also ornithine does not change significantly, with fold-
changes of 1.08 and 1.19.

N-acetylmethionine

Methionine

SAM

dcSAM

MTA

Figure 5.13.: Potential connection between changes in N-acetylmethionine and MTA.
Levels of N-acetylmethionine are increased in Δnao, while methylthioadenosine
(MTA) is decreased. The star indicates the perturbation of N-acetylornithine
deacetylase. SAM: S-adenosyl-methionine; dcSAM: decarboxylated SAM.
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pHILIC 154.00305 12.32 C3H7O5P 3 Propanoyl phosphate -1.46 0.0381

135.05453 9.92 C5H5N5 1 Adenine -1.63 0.0427

112.02734 8.59 C4H4N2O2 2 Uracil -1.73 0.0487

297.08976 7.36 C11H15N5O3S 2 5'-Methylthioadenosine -1.78 0.00161

247.06925 17.94 C9H13NO7 1 N-Succinyl-L-glutamate -2.12 0.0162

339.99585 19.67 C6H14O12P2 14 D-Fructose 1,6-bisphosphate -2.79 <0.0001

HILIC 191.06171 5.94 C7H13NO3S 1 N-Acetylmethionine 2.97 0.000284

297.08978 11.33 C11H15N5O3S 2 5'-Methylthioadenosine -1.50 0.0189

422.08255 17.26 C12H23O14P 5 Trehalose 6-phosphate -2.13 0.0206

Table 5.5.: Metabolic changes inΔnao. Significantly changed metabolites (rank product,
FDR<0.05, n=5) in Δnao compared to wild-type. Peptides, lipids and fatty acids are
not shown (see Supplement). Results are ordered by LC-column, and by
fold-change. Measured mass as mass-to-charge ratio (m/z); number of isomers as
predicted from IDEOM databases. Negative fold-changes indicate decreased
metabolites.

The limited metabolomic response to loss of NAO is not completely unexpected if NAO
is indeed an N-acetylornithine deactylase. The T. brucei genome contains a putative
aminoacylase gene (Tb427tmp.01.3000), that would be able to compensate for the loss
of NAO. In bacteria, heterologous expression of an aminoacylase was able to complement
mutants defective in N-acetylornithine deacetylase activity (Sakanyan et al., 1993).
Although bacteria NAO and aminoacylase both have broad substrate specificities, they
do differ substantially in deacetylating capacity depending on the amino acid. While
NAO has the highest activities with N-formyl- and N-acetyl-methionine (Javid-Majd and
Blanchard, 2000), aminoacylase has the highest activity with N-acetyl-alanine (Sakanyan
et al., 1993).

To annotate T. brucei NAO as N-acetylornithine deacetylase, however, can be misleading,
as the highest activity is not observed with N-acetylornithine. In bacteria the NAO
gene (ArgE) is located in the argECBH operon, together with other enzymes involved
in arginine biosynthesis (Meinnel et al., 1992), providing rationale for this annotation.
T. brucei on the other hand does not produce ornithine via a similar pathway from
glutamate (Vincent, 2011), suggesting that NAO might have an alternative role in T.
brucei. Aminoacylases do not tend to have extreme thermodynamic equilibria, with a
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typical equilbrium constant under standard conditions in the range of 3 33 (Goldberg
et al., 2004). The function of NAO could therefore easily be in either direction, the
acetylation or deacetylation of (acetylated) amino acids.

5.2.2.3. NAO does not affect eflornithine sensitivity

Treatment of parasites with the ornithine decarboxylase inhibitor eflornithine results
in changes in N-acetylornithine that correlate with changes in ornithine, as shown by
Vincent (2011). It was therefore anticipated that the knockout of NAO might affect
the eflornithine sensitivity of the parasite. Sensitivity assays by alamarBlue showed a
significant but limited reduction in IC50 value (Table 5.6).

IC50(µM)

Medium WT Δnao Ratio p

HMI-9 49.4 ± 4.2 36.1 ± 6.4 0.73 0.016
CMM 20.8 ± 5.4 15.8 ± 6.9 0.76 0.28

Table 5.6.: Eflornithine sensitivity ofΔnao. Drug sensitivity to eflornithine (20 mM – 4.8 nM)
was assayed by alamarBlue in two types of medium and compared between
wild-type and Δnao strain parasites. SD, n≥3, Student’s t-test, two-tailed, unequal
variance.
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Figure 5.14.: Changes in metabolites upon eflornithine treatment. The fold change of
ornithine and N-acetylornithine in Δnao is similar to the fold change in wild-type
cells, upon a 5 hour treatment with 500 μM eflornithine (WT data from Vincent
et al., 2012, measured with an identical experimental setup). Error bars are
standard deviations.

The metabolome of eflornithine treated parasites was determined by treatment of Δnao
cells with DFMO for 5 hours prior to metabolite extraction. The metabolome was
compared to wild-type parasites treated in an identical experiment (Vincent et al., 2012).
Calculating fold changes between treated and untreated parasites reduces the technical
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variability and allows to compare the two separate experiments. No significant changes
in the response to DFMO in wild-type parasites (Figure 5.14).

5.2.3. Putative nicotinamidase

Metabolomics experiments in our lab showed interesting changes in nicotinamide levels
in parasites upon treatment with the drug SDG66, a compound designed with a P2-
motif for recognition by the P2-transporter (Barrett et al., 1995), and a nitro group for
potential oxidative toxicity. Upon treatment with SDG66, untargeted metabolomics by
an identical approach as used in this thesis demonstrated that nicotinate levels increased
significantly, while nicotinamide levels decreased (Dr Pui Ee Wong, University of
Glasgow). Although addition of nicotinamide did not rescue the parasites from the
trypanocidal effects of SDG66, it does suggest involvement of nicotinamidase in the
drug action of SDG66 (Figure 5.15). The T. brucei genome contains putatively annotated
nicotinamidase (NAM) genes, and it was therefore decided to investigate these further.
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Nicotinamide Nicotinate

EC 3.5.1.19

Figure 5.15.: Reaction catalysed by nicotinamidase.

Figure 5.16.: Nicotinamidase gene within the T. brucei strain 427 genome. The two
nicotinamidase genes (black) are separated by two putative genes (grey).
Tb427tmp.160.2550 is annotated as “ribosomal protein S7, putative”, while
Tb427tmp.v1.0150 is annotated as “hypothetical protein, conserved”.

5.2.3.1. Nicotinamidase function confirmed by metabolomics enzyme assay

There are two copies of the nicotinamidase gene in the T. brucei genome
(Tb427tmp.160.2540 and Tb427tmp.160.2600), with 100 % sequence identity
(Figure 5.16). For heterologous expression, the NAM gene was amplified and cloned
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into pET-30 Xa/LIC. Expression and purification resulted in a protein of approximately
24 kDa.

The NAM enzyme was investigated by a metabolomics assay identical to ARG and NAO.
Data deconvolution by mzMatch and IDEOM resulted in the putative identification of
652 metabolites. In concordance with the ARG and NAO assays, cofactor mixture 1
resulted in more significantly changed metabolites in comparison to cofactor mixture 2,
with 45 and 29 changes respectively, while the fold-changes themselves were comparable
in both mixtures (Table 5.7).

Striking in the list of significantly changed metabolites is the combination of an increase
in nicotinate (average peak intensity from 10 · 105 to 28 · 105) and a decrease in
nicotinamide (average peak intensity from 30 · 105 to 2.4 · 105). These are the substrate
and product of nicotinamidase, confirming the activity of NAM. T. brucei nicotinamidase
is also capable of hydrolysing amino groups from other substrates. This is demonstrated
by the decrease in N-acetyl-beta-alanine and increase in 2-acetolactate, and similar for
succinamate and succinate, however, nicotinamide and nicotinate showed the largest
fold changes. Nicotinamidases are known to hydrolyse the drug pyrazinamide (Hu
et al., 2007; Zhang et al., 2008; Fyfe et al., 2009), a compound highly related to
nicotinamide and only differing in an additional nitrogen in the aromatic ring. The
changes in succinamate and N-acetyl-beta-alanine potentially show an even further
reduced specificity of nicotinamidase.

Crystallography of yeast nicotinamidase has characterised the binding and activation of
zinc to the enzyme (Hu et al., 2007). No zinc was specifically added to the growth
medium and assay buffer during the study of T. brucei NAM, but it is plausible that the
yeast extract used in both the LB growth medium and the complex metabolite mixture
contains zinc. The mass of zinc is too low to be detected with our mass spectrometry
instruments.

5.2.3.2. Attempt to ablate NAM by RNA interference

A knockdown mutant by RNAi was generated for NAM instead of a knockout. The
two T. brucei nicotinamidase genes (Tb427tmp.160.2540 and Tb427tmp.160.2600) are
located in close proximity to one another on chromosome 9, but are separated by two
other genes (Figure 5.16). The 5’ and 3’ UTR of the two nicotinamidase genes are also
identical, suggesting that the gene has been duplicated. A knockout strategy where each
copy is targeted individually is impossible due to the identical UTRs. Replacing the
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Mix 1 Mix 2

123.03210 7.46 C6H5NO2 4 Nicotinate 2.81 2.64

309.10597 17.27 C11H19NO9 5 N-Acetylneuraminate 2.45 1.32

132.04224 6.13 C5H8O4 16 2-Acetolactate 1.94 1.18 a

222.06736 22.74 C7H14N2O4S 4 L-Cystathionine 1.92 1.10 a

116.01094 6.12 C4H4O4 3 Fumarate 1.51 a 1.91

147.05319 16.64 C5H9NO4 14 L-Glutamate 1.83 1.12 a

189.06379 7.16 C7H11NO5 4 N-Acetyl-L-glutamate 1.79 1.00 a

118.02663 6.43 C4H6O4 7 Succinate 1.64 1.14 a

133.03753 17.59 C4H7NO4 4 L-Aspartate 1.57 1.05 a

308.15822 27.02 C12H24N2O7 2 Fructoselysine 1.38 -1.10 a

345.04732 15.69 C10H12N5O7P 3 3',5'-Cyclic GMP 1.27 1.10 a

135.05462 14.54 C5H5N5 1 Adenine 1.24 a 1.25

131.05820 6.58 C5H9NO3 14 N-Acetyl-beta-alanine -1.41 -1.22 a

189.10014 6.23 C8H15NO4 5
2 -(Butylamido)-4-

hydroxybutanoic acid
-1.27 a -1.43

117.04262 6.74 C4H7NO3 5 Succinamate -1.43 -1.22 a

72.05753 5.66 C4H8O 4 Butanal -1.23 a -1.64

129.15178 11.08 C8H19N 2 Octylamine -1.89 -1.64

147.05316 7.70 C5H9NO4 14 N-hydroxy-N-isopropyloxamate -1.25 a -1.75

145.15790 43.66 C7H19N3 1 Spermidine -2.11 -1.43 a

122.04802 8.63 C6H6N2O 4 Nicotinamide -17.7 -10.0

a Non-significant change (rank product FDR>0.05).

Table 5.7.: Significantly changed metabolites in NAM assay. Shown are metabolites that
changed significantly in at least one of the two mixtures (rank product FDR<0.05),
excluding peptides and lipids. Measured mass as mass-to-charge ratio (m/z); number
of isomers as predicted from IDEOM databases. Negative fold-changes indicate
decreased metabolites.
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whole region, however, would additionally replace the two genes in between. Although
these two genes are annotated as hypothetical and putative, I decided that the risk of an
effect by disturbing those genes was undesired. Instead, RNA interference was used to
ablate the NAM protein. Both NAM transcripts would be targeted equally due to the
identical sequences.

The NAMRNAi strain was constructed by amplification and cloning of a 544 bp fragment
in the pRPaSLi plasmid (as explained in 2.2.2), and subsequent transfection of 2T1
parasites. Successful integration of the construct was confirmed by the gain of
hygromycin resistance, and puromycin sensitivity. Induction of RNA interference by
addition of tetracycline to the culture medium did not result in a growth phenotype
of NAMRNAi (Figure 5.7), however, Northern blot failed to provide conclusive evidence
of knockdown of the NAM transcript (Figure 5.17). A 32P labelled dATP was used to
generate a radioactive probe from the whole RK gene. After probing the Northern blot,
clear bands could only be identified in the tetracycline-induced samples. However, these
bands were much further to the bottom of the blot than expected from the expected
molecular weight of NAM transcript. NAM has a comparable molecular weight to
tubulin, that had been used as a control to confirm presence of transcript in all samples
(Figure 5.17). As the tubulin control did indicate transcript in all samples, and the
low-molecular weight bands after probing with NAM only occurred after addition of
tetracycline, I hypothesised that the bands visualised with the NAM probe are the
expressed RNAi fragments, and not the endogenous NAM transcripts. This suggests
that NAM might not be expressed in this cell line, even though it has been demonstrated
to been expressed previously. Additional experiments with alternative techniques, like
quantitative PCR combined with reverse-transcription, would be required to further
investigate this hypothesis.

Figure 5.17.: Northern blot of NAMRNAi. RNA samples were taken before and 0, 1, 2, 3 and 4
days after induction of RNAi with tetracycline (tet). Northern blot was probed
with the full NAM gene or with a full tubulin (TUB) gene as control. RNA ladder
was not visible. The tubulin genes are approximately 1.3 kb, the NAM gene is 615
bp. The NAM probe is only visible in samples with tetracycline, while the TUB
blot, although overexposed, indicates equal loading of all samples.
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The NAMRNAi strains was investigated by metabolic profiling comparable to the Δarg
and Δnao strains. RNAi was induced in independent cultures for 8 days prior
to sampling, and the metabolome was compared between induced and non-induced
NAMRNAi. Samples were run only over a ZIC-HILIC column prior to mass spectrometry.

The metabolome of NAMRNAi showed very limited changes after 8 days of induction
(Table 5.8). Possible explanations for this result are that (i) NAM is not expressed in T.
brucei, such that ablation has no effect (although Alsford et al. (2011) found NAM to be
an abundant transcript); (ii) the level of NAM transcript was not reduced at all, or only by
an insignificant amount (the Northern blot was inconclusive); (iii) NAM is expressed in
T. brucei, and the transcript level was significantly reduced by RNA interference, but the
parasite adapts to the loss of NAM. However, the absence of proof that NAM was ablated
in the parasites renders it impossible to infer why virtually no changes are observed.

While metabolic profiling did not provide any support for the elucidation of the function
of T. brucei NAM, the metabolomics enzyme assay provided reasonable support for the
functional annotation of NAM as a nicotinamidase.
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126.00820 12.02 C2H7O4P 2 2-Hydroxyethylphosphonate 1.87 0.00054

297.08964 9.81
C11H15N5O3

S
2 5'-Methylthioadenosine 1.63 0.00153

174.01642 7.84 C6H6O6 3 cis-Aconitate 1.44 0.0267

147.03534 12.12 C5H9NO2S 1 Thiomorpholine 3-carboxylate 1.38 0.0114

205.07376 5.90 C11H11NO3 5 Indolelactate 1.38 0.0138

161.05108 10.38 C6H11NO2S 1 allylcysteine 1.33 0.0275

173.06876 10.45 C7H11NO4 6 N-Acetyl-L-glutamate 5-semialdehyde 1.31 0.0469

245.61693 29.44 C18H33N7O9 2 Arg-Thr-Thr-Asp 1.30 0.0371

763.51473 5.67 C43H74NO8P 24
[PE (16:0/22:6)] 1-hexadecanoyl-2-

(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-
glycero-3-phosphoethanolamine

1.26 0.0459

189.08240 8.16 C8H15NO2S 1 Prenyl-L-cysteine 1.26 0.0438

191.06153 5.88 C7H13NO3S 1 N-Acetylmethionine 1.25 0.05

248.17771 5.16 C16H24O2 13 [FA (16:4)] 4,7,10,13-hexadecatetraenoic acid -1.27 0.0493

713.53575 5.88 C40H76NO7P 5 PC(14:1(9Z)/P-18:1(11Z)) -1.31 0.0354

509.38484 9.81 C26H56NO6P 8 LysoPC(O-18:0) -1.32 0.0182

214.13167 14.89 C10H18N2O3 2 Val-Pro -1.33 0.0377

181.04097 15.67 C5H11NO4S 1 DL-Methionine sulfone -1.33 0.0401

272.08383 5.18 C19H12O2 2 7,8-benzoflavone -1.38 0.0237

Table 5.8.: Metabolic changes in NAMRNAi. All significantly changed metabolites are shown,
including lipids and peptides. Measured mass as mass-to-charge ratio (m/z); number
of isomers as predicted from IDEOM databases. Negative fold-changes indicate
decreased metabolites.
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5.3. Discussion

In this chapter I demonstrated the use of metabolomics in the investigation of unknown
enzyme functions, and obtained mixed results.

5.3.1. Complicated metabolite changes observed in T. brucei
ARG elucidation

A putative T. brucei arginase (ARG) did not demonstrate ureohydrolase activity, in line
with previous investigations in the absence of arginase activity in T. brucei (Vincent,
2011). The metabolomics assay with ARG, where a recombinant version of ARG was
incubated in a complex metabolite mixture, suggested instead a function related to the
metabolism of tryptophan, indoles and quinolines. The large number of significantly
changed metabolites complicates elucidation of the function of the enzyme of interest.

Substrate promiscuity of the enzyme could be the cause of numerous increases and
decreases of metabolites. These increasing and decreasing metabolites due to substrate
promiscuity can then be paired up to show the same chemical transformation for each
pair. This was observed in the metabolomics assay with nicotinamidase: three pairs
of metabolites showed opposite changes upon incubation with nicotinamidase, where
the three increased compounds were the deaminated products of the three decreased
compounds. In ARG however, the many increases in indoles and quinolines only
seemed to be related to a decrease in tryptophan, what cannot be explained by substrate
promiscuity.

While enzymes can have multiple functions in the cell, a phenomenon known as
“moonlighting”, it seems unlikely for one enzyme to be able to produce such a variety
of products from one substrate, bringing up the suggestion that the purified ARG was
contaminated with E. coli enzymes that would react with tryptophan. Although a number
of tryptophan-related metabolites changed in the NAO assay, those changes were in the
opposing direction compared to the ones observed in the ARG assay, arguing against
contamination with E. coli enzymes as a recurring problem. In the NAM assay, none of
the significant changes seem to be related to tryptophan. Overall, this supports that the
consistent increases in indoles and quinolines in the ARG assay are specific for ARG,
although the mechanism for this remains unclear. The different indoles and quinolines
are not products of fragmentation by the mass spectrometer, as the retention times of the
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compounds vary significantly, but it can not be excluded that the indoles and quinolines
are fragments formed before the samples are run on the liquid chromatography system.

In contrast to the many changes in indoles and quinolines observed in the metabolomics
assay, none of these metabolomics changes were present in the metabolic profiling of
a T. brucei ARG null mutant. The loss of ARG seems to activate the PPP, resulting in
increased NADPH production that makes the parasites less susceptible to oxidative stress.
The activation of the PPP is potentially related to an increase in nucleobases, methionine
metabolism and a switch of ether phosphatidylcholines to ester phosphatidylcholines.
Although a network can be drawn connecting the changes observed upon loss of ARG,
it is not clear whether those connections are causal, and which of the changes are the
primary effect of loss of ARG. Curiously, there seems to be very limited overlap between
the metabolomics assay and metabolic profiling results for ARG.

5.3.2. Should NAO be annotated as N-acetylornithine
deacetylase?

While the analysis of ARG resulted in confusing results, the picture was clearer for the
analysis of NAO. T. brucei NAO seems to be a broad substitute range N-acylamino
acid deacetylase. The greatest changes were observed in N-acetylmethionine and N-
formylmethionine, similar to NAO characterised from E. coli (Javid-Majd and Blanchard,
2000). The metabolic profiling of a NAO null mutant showed limited changes in the
metabolome. It has been demonstrated that a N-acetylornithine deactylase null mutant of
yeast can be compensated by the expression of an aminoacylase (Sakanyan et al., 1993).
Potentially the same happens in T. brucei, as the gene Tb427.01.3000 has been putatively
annotated as aminoacylase.

While T. brucei NAO demonstrates the same broad substitute range as E. coli NAO,
it remains debatable whether T. brucei NAO should be annotated as N-acetylornithine
deacetylase. E. coli NAO is located in an operon with other enzymes of the glutamate-
to-arginine biosynthetic pathway, indicating a specific function of E. coli NAO in
deacetylation of N-acetylornithine, even though higher affinities are observed for N-
acetylmethionine and N-formylmethionine. However, T. brucei does not produce
arginine from glutamate, suggesting that it might play a different role in the parasites
metabolism. Because of the broad substrate range it might be advisable to annotate
T. brucei NAO as an “aminoacylase”, and define different aminoacylases to different
classes depending on substrate specificity. This will need to be established empirically
by assaying different aminoacylases.
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5.3.3. NAM also seems to have a broader substrate range than
predicted

Of the three T. brucei enzymes studied the putative nicotinamidase yielded the clearest
results in the metabolomics assay. The most significant increases and decreases observed
where in the natural substrate and product of nicotinamidase. Additionally, a number of
other amines were decreased, while two of those could be paired by an increase of their
deaminated form. This suggests a broader substrate specificity than typically given for
nicotinamidases, that are known to be able to deaminate pyrazinamide as well.

5.3.4. Improvements on metabolomics enzyme function
elucidation

The use of metabolomics in the elucidation of the three aforementioned T. brucei
enzymes has brought to light a number of potential improvements to the experimental
set-up used here.

While each assay was performed with two different cofactor mixtures, only ARG
showed significant changes in the fold-changes of individual metabolites between the
two mixtures. Surprisingly, mixture 1 consistently changed more metabolites, even
in the NAO and NAM assays. It would be advisable also to include an assay where
none of the oxidising, reducing, phosphorylating and dephosphorylating cofactors are
added. Additionally, the effect of incubation of the metabolite mixture in the presence
of cofactors, but without enzyme, might highlight changes occurring in the metabolite
mixture due to the reducing potential of the cofactors, rather than the addition of the
enzyme.

The numerous changes in the ARG metabolomics enzyme assay brings up the problem
of carry-over of E. coli enzymes from the purification. It would therefore be informative
to have an E. coli extract undergo the Ni2+ purification used here without heterologous
expression of a recombinant protein, and to use the different fractions in a metabolomics
enzyme assay. This addresses the potential affinity of E. coli proteins to the nickel-
column, however, it is also possible that E. coli proteins bind to the recombinant protein
and therefore co-elute simultaneously. The experimental approach could be improved by
introducing point mutations at the active site of the enzyme, as predicted from sequence
alignments. This would act as a suitable negative control. Nonetheless, the absence
of similar significant changes of tryptophan related metabolites in the NAO and NAM
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metabolomics enzyme assays suggest that the observed changes in the ARG assay are
not due to contamination by E. coli protein binding to the column during purification.

For the metabolic profiling of knockouts, although the experiments typically consists
of five biological replicates, it would be informative to use different clones for each
replicate. Potentially, the clone used in the metabolic profiling has changed in an
additional way, that is not typical for the loss of the gene of interest. Comparison
of only one clone to wild-type parasites might therefore be misleading. This can be
prevented by the use of RNAi mutants instead of null mutants, as the knockdown is
induced independently for each replicate. However, RNAi has the risk that multiple
transcripts are targeted and knocked-down. Additionally, the NAM results demonstrated
that knockdown of the gene of interest might not be sufficient to result in changes in the
metabolome.

Finally, the complexity of metabolomics experiments will always include variables
that introduce uncertainty as to the interpretation of results. The combination of
metabolomics enzyme assay and metabolic profiling helps to identify potential catalytic
activities, however, it remains crucial to validate the putative function by a more classical
enzyme assay, to provide higher certainty about the correct annotation.
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Chapter 6
Why does the loss of 6PGDH kill
trypanosomes?

The second enzyme of the PPP, 6PGDH, has been identified as a potential drug target
in T. brucei, thriving the synthesis of potent inhibitors of this enzyme. It has been
assumed that ablation of 6PGDH activity is lethal to the parasites as a result of a reduced
glycolytic flux. However, this has not been confirmed experimentally, and it is plausible
that the glycosomal localisation of glycolysis and the PPP in T. brucei affects the mode-
of-action of 6PGDH ablation. The extended model generated in previous chapters is used
in this chapter to investigate the effects of a loss of 6PGDH activity, and preliminary
experimental results are shown that support the model predictions. This is an example
of how the model generated in Chapter 3 can be used to investigate the behaviour of
trypanosomal metabolism.



6.1. Introduction 142

6.1. Introduction

Most of the current drugs against Human African trypanosomiasis are difficult
to administer, unacceptably toxic, and relatively expensive when considering the
impoverished state of most patients (Barrett et al., 2007). It is anticipated that the
parasites’ divergent biochemistry will enable development of novel therapies for the
disease.

6PGDH has been identified as a potential drug target, due to its divergent amino-acid
sequence (Barrett and Le Page, 1993), and, as part of the PPP, as an important source of
NADPH required by the parasite to maintain cellular redox potential and protect against
oxidative stress (LePage and Barrett, 1990). The potential of 6PGDH as a drug target was
confirmed when inhibition of 6PGDH was shown to be lethal to the parasite (Hanau et al.,
1996). Subsequently, effort has been made to design more potent and specific inhibitors
of 6PGDH (Bertelli et al., 2001; Pasti et al., 2003; Dardonville et al., 2003; Dardonville
and Gilbert, 2003; Dardonville et al., 2004). Although 6PGDH plays an important role
in maintaining the cellular redox potential, it has been assumed that inhibition of 6PGDH
is lethal to the parasite by a different mechanism.

Inhibition of 6PGDH leads to the accumulation of its substrate 6-phosphogluconate
(6-PG), a potent inhibitor of the enzyme PGI (PGI, Figure 6.1A). PGI is part of
the glycolytic pathway, and responsible for the isomerisation of glucose 6-phosphate
to fructose 6-phosphate. Inhibition of 6PGDH activates a positive feedback loop:
accumulation of 6-phosphogluconate causes inhibition of PGI, resulting in an increase
of glucose 6-phosphate. Accumulation of glucose 6-phosphate directs the flux towards
the PPP, consequently increasing the concentration of 6-PG even more (Figure 6.1B).

The activation of this feedback loop, and the deadly consequences of loss of 6PGDH
activitiy, have been demonstrated previously. Bewley and Lucchesi (1975) described
the lethality of Drosophila null mutants of 6PGDH and attributed this to the absence of
a functional PPP. In 1977, however, Hughes and Lucchesi showed that an additional
loss of glucose-6-phosphate dehydrogenase (G6PDH) rescues 6PGDH null mutants
(Figure 6.1C). The absence of G6PDH activity prevents a flux through the PPP and
the subsequent accumulation of 6PG. Similar results were obtained for yeast (Lobo and
Maitra, 1982).

More recently, it was shown that the loss of 6PGDH inhibited growth of lung cancer
cells, while no changes in NADPH and ribose 5-phosphate production were observed
(Sukhatme and Chan, 2012). Possibly, NADPH levels are maintained by enhanced
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glutaminolysis. Loss of G6PDH on the other hand did not affect cell growth, and
rescued proliferation of cells deficient in 6PGDH. Moreover, growth on fructose instead
of glucose also restored the proliferation of 6PGDH knockdown cells. Fructose bypasses
the PPP, while any remaining inhibition of PGI does not affect the flux from fructose to
the lower part of glycolysis (Figure 6.1D).
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Figure 6.1.: Schematic overview of positive feedback loop of 6PGDH inhibition. Overview
of the first reactions of both glycolysis and the PPP. Black arrows represent
reactions with a flux, grey arrows are reactions with a reduced flux. Crosses
indicate loss of activity and chevrons indicate accumulation of a metabolite. A:
Distribution of fluxes in normal conditions, both glycolysis and PPP are active. B:
Loss of 6PGDH activity results in accumulation of 6PG that inhibits PGI and forms
a positive feedback loop. Glycolysis is inhibited. C: Loss of both 6PGDH and
G6PDH activity prevents a flux through the PPP, preventing accumulation of 6PG.
Glycolysis is restored. D: Loss of 6PGDH activity with an alternative source of
hexose (here fructose), bypasses PGI. Any accumulation of 6PG does not affect the
flux through the lower part of glycolysis. 1: HXK, can use phosphorylate glucose
and fructose; 2: PGI; 3: PRK; 4: G6PDH; 5: PGL; 6: 6PGDH.

The same lethal mechanism is thought to be effective in T. brucei by analogy, as 6PG
is also an inhibitor of T. brucei PGI (Marchand et al., 1989). However, trypanosomal
metabolism has some unique characteristics, including the compartmentalisation of
part of glycolysis and PPP in the glycosome. It remains undetermined whether these
peculiarities might affect the response of T. brucei to the loss of 6PGDH.
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The construction of a dynamic model including both glycolysis and the PPP in T. brucei
(Chapter 3) now allows us to test his hypothesis in silico. In this chapter, the effect
of ablation of 6PGDH is investigated by both mathematical modelling and wet-lab
experimentation.
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6.2. Results

6.2.1. 6PGDH loss in T. brucei does not inhibit PGI

The mathematical model of trypanosomal glycolysis was extended in chapter 3 with the
PPP, creating two classes of models. Model 5 includes an ATP:ADP antiporter across
the glycosomal membrane, while model 6 includes a glycosomal ribokinase (Figure 6.2).
Both models were analysed here.

5fru 6fru

5 6

Figure 6.2.: Schematic overview of model versions considered. Model 5 and 6 are identical to
model 5 and 6 in chapter 3 (Figure 3.3), models 5fru and 6fru include the transport
and phosphorylation of fructose (shown in purple).

The activity of 6PGDH (Vmax,6PGDHc/g) was scanned and model 5 and 6 behave similar
to the ablation of 6PGDH. The activity of 6PGDH can be reduced by 90 % without any
apparent effects on fluxes or metabolite concentrations (Figure 6.1). When the activity
of 6PGDH is reduced below 1 nmol · min 1 · mg protein 1, 6-PG accumulates both in
the glycosome and the cytosol (Figure 6.1B and D). An increasing fraction of the models
fails to reach steady-state (within 1000 modelled minutes, Figure 6.1B and D), due to the
extreme accumulation of 6-PG.

The two models behave differently at very low 6PGDH activity, as the glycosomal
concentration of 6-PG is constrained in model 6 (moiety 6, Table 3.5). The fraction
of model 6 that reaches steady state at near-absent 6PGDH activities increases, but the
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steady-state that is calculated with these low 6PGDH activities have a very low glycolytic
flux (Figure 6.1A). Nonetheless, those states would never be reached, as knockdown or
inhibition of 6PGDH would already have caused a lethal accumulation of 6-PG.

In an attempt to isolate the inhibition of PGI by 6-PG, the glycosomal concentration of
6-PG was scanned in model 1, consisting of only glycolysis and no PPP (Figure 6.3C). A
6-PG concentration of 400 mM is required to inhibit the glycolytic flux by 50 %, which
results in a growth arrest of the trypanosomes (Haanstra et al., 2011). This concentration
is only obtained when the cytosolic 6-PG has already accumulated to extremely high
levels (model 5), or are not obtained at all (model 6). Inhibition of glycolysis is therefore
an unlikely explanation for the lethality of 6PGDH ablation, as the parasite would have
burst from extreme 6-PG levels already.
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Figure 6.3.: Effects of ablation of 6PGDH. A: The effect of knockdown of 6PGDH on the flux
through glycolysis is simulated by reducing Vmax,6PGDH in model 6 with kTOX = 2 μl
· min−1 · mg protein−1. Model 5 gives similar results. B and D: Very low activity of
6PGDH results in accumulation of 6-PG in the glycosome (red lines) and cytosol
(blue lines). The green lines indicate the percentage of models that do not reach
steady-state within 16 hours. When no steady-state is reached, the concentration at t
= 1000 min is plotted. C: A scan of the glycosomal concentration of 6-PG in model
1 demonstrates that a glycosomal 6-PG concentration of around 400 mM is
required for a lethal 50 % reduction in glycolytic flux.
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While a 90 % reduction of 6PGDH (1.06 nmol · min 1 · mg protein 1) does not seem
to affect the glycolytic flux and metabolites, it does affect the capability to deal with
oxidative stress. The reduced activity of 6PGDH hinders the PPP to quickly react to
oxidative stress. It was demonstrated in chapter 3 that oxidative stress activates the
PPP, increasing the production of NADPH, with PPP enzymes working closer to their
maximum activity (Figure 3.6). Inhibition of the PPP would limit the capabilities to
increase the PPP flux and therefore increases the parasites sensitivity to oxidative stress.

Based on these results, it is suggested that inhibition of PGI by accumulation is unlikely
to be the cause of the lethality of 6PGDH depletion. More likely is that rather the
explosive accumulation of 6-PG, or the impaired PPP flux and associated increased
sensitivity to oxidative stress are what kills the parasite.

6.2.2. Fructose is unable to rescue 6PGDH loss in silico

Sukhatme and Chan (2012) showed that 6PGDH deficient tumours could retain their
proliferation by growth on fructose, bypassing PGI. T. brucei is also able to use fructose
as carbon source (Kiaira and Njogu, 1989), as the hexose transporter and hexokinase of T.
brucei are able to transport (Fry et al., 1993) and catalyse the phosphorylation of fructose
(Morris et al., 2006). By analogy, it was tested whether T. brucei could be rescued from
depletion of 6PGDH by growth on fructose.

Model 5 and 6 were both extended with the fructose transport and utilising reactions, and
are denoted as model 5fru and model 6fru. Parameter values were derived from literature
(Table 6.1), and the rate equations of hexokinase were changed to allow both the use of
fructose and glucose as substrates, but also include competitive inhibition between the
two substrates (see Methods for rate equations).
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Reaction Parameter Value Unit Ref

FruT Vmax 69.1 / 195 nmol · min 1 · mg protein 1 Fry et al., 1993 a

Km,Fru 3.91 mM Fry et al., 1993
α 0.75 dimensionless b

HXK Vmax,c 1775 nmol · min 1 · mg protein 1 b
(Fru) Vmax,g 154 nmol · min 1 · mg protein 1 b

Km,Fru 0.35 mM Morris et al., 2006
Km,Fru-6-P 12 mM b
Km,ATP 0.116 mM b
Km,ADP 0.126 mM b
Keq 631 dimensionless Banks and Vernon, 1970
Ki,Glc 0.1 mM c
Ki,Glc-6-P 12 mM c

HXK Ki,Fru 0.35 mM c
(Glc) Ki,Fru-6-P 12 mM c
a: A value of 69.1 was measured from ex vivo trypanosomes, a value of 125 is used in
simulations, fitted to the net ATP production of glucose-grown models.
b: No value measured for fructose (6-phosphate). Assumed to be similar to the value for glucose
(6-phosphate).
c: Competitive inhibitor, Ki is identical to Km.

Table 6.1.: Parameter values of fructose extension. Additional parameter values, all other
parameter values used in the models are shown in Table 3.2. Hexokinase can use two
substrates, glucose (Glc) and Fructose (Fru).

The steady-state flux through pyruvate kinase, responsible for net ATP production, is
more than halved when fructose is used instead of glucose (Figure 6.4B, 76 vs 188 nmol
· min 1 · mg protein 1). The lower flux originates from the difference in the measured
transport capacity for fructose and glucose: the glucose transporter Vmax is 111.7 nmol
· min 1 · mg protein 1 and Km is 1 mM, while those numbers for fructose are 69.1
nmol · min 1 · mg protein 1 and 3.91 mM. A 50% reduction in ATP production results
in a growth arrest (Haanstra et al., 2011), contradicting that T. brucei can readily use
fructose as carbon source and indicating that the measured fructose transport capacity is
incompatible with the dynamic model. The current model of trypanosomal metabolism is
based on enzyme activities from culture parasites, while the fructose transport activity is
measured from ex vivo trypanosomes. Additionally, it is possible that the parasite adapts
to growth in fructose by up-regulating its hexose transporters. A fructose transport Vmax

of 190 nmol · min 1 · mg protein 1 is required to achieve a similar steady state pyruvate
kinase flux as when glucose is used (Figure 6.4B).

Ablation of 6PGDH in the fructose models leads to a similar accumulation of 6-
PG (Figure 6.4A). The accumulation of 6-PG is dependent on the activity of the
fructose transporter, an activity of less than 150 nmol · min 1 · mg protein 1 does



6.2. Results 149

not lead to accumulation of 6-PG when the 6PGDH activity is reduced to 0.2 nmol ·
min 1 · mg protein 1(Figure 6.4A). However, ATP production is also significantly lower
(Figure 6.4B). The model therefore predicts that fructose is unlikely to rescue from the
explosive accumulation of 6-PG when 6PGDH is ablated.

Figure 6.4.: Simulations of the fructose model. Results shown are for model 6, simulations
with model 5 give similar results. A: Heat-map of steady-state cytosolic
6-phosphogluconate (6-PG) concentration at various fructose transporter (FruTc)
and 6PGDH (6PGDH) activities. A steady-state could not be calculated for the
combination of parameters in the bottom right corner, due to continuous extreme
accumulation of 6-PG. B: Steady-state flux through pyruvate kinase (PYK) in
model 6 with no ablated 6PGDH activity, at different fructose transporter activities.
Solid line is result from model 6fru, dashed line is the steady-state flux in model 6
(using glucose).

6.2.3. Preliminary experimental results on ablation of 6PGDH

The model prediction that fructose is not able to rescue the ablation of 6PGDH in
trypanosomes was tested experimentally. A 6PGDHRNAi line was generated in our group
(Dr Vincent Alibu). Induction of the RNA interference by the addition of tetracycline
resulted in reduced levels and activities of 6PGDH (Dr Vincent Alibu).
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Reduced levels of 6PGDH are lethal for bloodstream T. brucei, as shown in Figure 6.5.
I tested whether the growth of T. brucei on fructose would rescue from the reduction in
6PGDH activity. Parasites were routinely grown in the glucose-medium and transferred
to fructose-medium upon induction of the RNA interference. The growth rate of T. brucei
on fructose was slightly lower than on glucose (Figure 6.5) but 6PGDHRNAi parasites did
not survive in either glucose or fructose medium upon reduction in the 6PGDH level
(Figure 6.5).

The slightly lower growth could be indicative that the ATP production is lower in
parasites grown on fructose, however, additional and more rigorous experiments are
required to confirm this. A reduced flux is contradictory to the findings of Kiaira and
Njogu (1989), who showed that ex vivo trypanosomes produce more pyruvate when
grown on fructose instead of glucose.
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Figure 6.5.: Growth curve of 6PGDHRNAi on glucose and fructose. 6PGDHRNAi was cultured
in HMI-9 with 25 mM glucose and split at day 0. Two cultures continued growth on
glucose, while two additional cultures grown on fructose (25 mM). Tetracycline (1
µg · ml 1) was added at day 0, cells were counted daily and diluted down to 1 · 105

cells · mL 1 when required. At day 3, no life cells were observed in the cultures
with tetracycline.
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6.3. Discussion

In this chapter I showed preliminary data suggesting that the inhibition of 6PGDH in T.
brucei is not lethal due to inhibition of PGI. Although preliminary, it does demonstrate
how the model generated in Chapter 3 can utilised to investigate trypanosomal
metabolism.

In silico analysis showed that either extreme accumulation of 6-phosphogluconate in
the cytosol, or the diminished flux through the PPP are the reasons why the loss of
6-phosphogluconate is lethal for T. brucei. The two classes of models generated in
chapter 3 diverge only at the very low 6PGDH activity range, which are unlikely to
be reached in vivo, as the extreme accumulation of 6-PG would already be lethal to
the parasites. Mathematical models of the use of fructose in trypanosomal glycolysis
and PPP demonstrated that the lower affinity and activity of the hexose transporter
for fructose would be able to rescue the parasite from loss of 6PGDH, however, the
reduced ATP production flux would likely have severe effects on trypanosome growth.
Nonetheless, the reduced 6PGDH activity still impairs the parasites ability to deal with
oxidative stress.

The generation of a 6PGDHRNAi (Dr Vincent Alibu) confirmed that reduced levels of
6PGDH are lethal to the parasites, and cannot be rescued by the addition of fructose, in
concordance with the in silico prediction.

However, these results are preliminary and require extensive scrutiny. Activity
measurements of 6PGDH in the 6PGDHRNAi line would be essential to quantitate
the level of 6PGDH activity required for parasite survival. Additionally, the fructose
transport activity should be measured in cultured T. brucei that has adapted to growth on
fructose, such that this variable can be excluded from the results. The measurement of
pyruvate production by fructose-grown parasites can then be used to validate the model
when updated with new kinetics for fructose.
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Chapter 7
General discussion and future work

Predictive models of cellular physiology are of growing significance in biology, including
in the selection of drug targets and in predictive toxicology (Pujol et al., 2010). For
instance, stoichiometric genome-scale reconstructions of metabolism, are valuable tools
to identify targets in complex biological networks (Duarte et al., 2007; Ma et al., 2007;
Folger et al., 2011). These constraint-based models are relatively easily extended by
adding the stoichiometry of new reactions – the expanded models are mathematically
guaranteed to still provide feasible solutions if the starting model worked, adding
reactions can only increase the size of the cone of possible fluxes, with all previous
solutions still being part of the original solution space. As demonstrated in this thesis,
this is not the case for bottom-up dynamic models: adding new reactions can reveal
unexpected fragilities of the original model, and a much more careful approach is
required when extending such models. Nonetheless, the generated dynamic models can
present insights into metabolic pathways that stoichiometric models can not provide.

7.1. Unravelling glycosomal metabolism

In several rounds of experimentation and in silico simulations (Chapter 3), we added
the glycosomal and cytosolic branch of the pentose phosphate pathway (PPP) to a
model of trypanosomal glycolysis. The resulting models demonstrate the activation
of the PPP by induced oxidative stress, while it became apparent during the model
building process that balancing the glycosomal bound-phosphate levels is crucial for
this system. The extension of the glycolytic model with the glycosomal PPP introduced
the risk of a glycosomal phosphate leak. Two classes of solutions were explored in
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more detail, represented by a glycosomal RK that maintains the conserved moiety of
bound-phosphate within the glycosome, and an ATP:ADP antiporter that breaks the
moiety altogether. While both solutions are able to prevent the phosphate leak, the
antiporter would require tight regulation and the glycosomal RK only works at low ribose
concentrations. Deviations from standard conditions in the models suggest that a more
complex mechanism is involved in balancing the glycosomal bound-phosphates.

The compartmentalisation of a limited set of linear pathways can make a system rigid
and fragile, as there are strict stoichiometric rules that need to be adhered to, with a very
limited number of degrees of freedom. The presence of additional reactions can provide
more flexibility to a compartmentalised network. This was demonstrated in Chapter
3, where a turbo explosion was observed when a glycosomal ATP:ADP antiporter was
added to the glycolytic model. The presence of the pentose phosphate pathway did not
prevent the turbo explosion, but the observed accumulation of sugar-phosphates was less
profound.

Nonetheless, the extended models that were constructed representing almost a doubling
of the number of reactions in comparison to the original glycolysis model still suffer
from the rigid structure that is forced on the system due to the compartmentalisation.
The recently described channels in the glycosomal membrane (Gualdrón-López et al.,
2012a,c) could provide additional flexibility to the system, and future work should
therefore be focused on the properties and consequences of these glycosomal channels,
as they could have important implications for the behaviour of glycosomal metabolism.

In preliminary mathematical modelling of glycosomal channels by Dr Fiona Achcar
(unpublished data; University of Glasgow), it appears that the effects of the presence
of such channels depends on which metabolites are and which are not transported
across the glycosomal membrane. The glycosomal channels likely possess selectivity
based on, for instance, charge, size or presence of a particular chemical group in the
metabolite. Simulations of different selectivity of the glycosomal channels indicate that
larger metabolites, such as ATP/ADP, NADH/NAD+ and NADPH/NADP+, are likely
prevented from freely mixing with the cytosolic pools (unpublished data; Dr Fiona
Achcar, University of Glasgow). The presence of glycosomal channels provides more
flexibility to the system, however it is not sufficient to prevent the symptoms of the
phosphate leak I addressed in this thesis. Experiments can be envisaged that can test the
hypotheses that derive from the modelling of glycosomal channels, e.g. whether the sole
cytosolic localisation of one glycolytic enzyme allows the parasite to survive (in contrast
with the rather harsh ablation of PEX-proteins by RNAi that was done previously and
would affect all enzymes localised to the glycosome; Furuya et al., 2002; Kessler and
Parsons, 2005; Haanstra et al., 2008).
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The presence of transport across the glycosomal membrane is not the only way that
glycosomal metabolism might be more flexible than observed in the mathematical
models. The presence of additional reactions and pathways in the cytosol could
play essential roles in the functioning of the glycosome. Especially in combination
with the channels in the glycosomal membrane, as “lone” enzymes (whose substrates
and products are not involved in other reactions within the glycosome, therefore not
forming a pathway) could be connected to enzymes and pathways in the cytosol.
Phosphotransferases potentially play an important role in Trypanosoma and Leishmania
energy management, as these species have the largest number of phosphotransferase
isoforms found in a single cell (Pereira et al., 2011). For instance ArgK is localised
in the glycosome in T. brucei (Colasante et al., 2006; Vertommen et al., 2008) while no
other enzymes have been shown to be present in the glycosome that can use arginine or
arginine-phosphate as a substrate (Colasante et al., 2006; Vertommen et al., 2008). Those
enzymes might well be present, but not detected in the proteomic experiments to date.
However, if arginine can freely cross the glycosomal membrane, then glycosomal ArgK
could provide an essential role in balancing the conserved moiety of bound phosphates
in the glycosome. Perhaps arginine-phosphate is too large for the glycosomal channels,
and can therefore function as a localised energy storage. Arginine-phosphate has recently
been shown to be involved in stress-responses in T. brucei, where levels of metabolomics
experiments demonstrated that arginine-phosphate levels are decreased upon oxidative
stress, although further investigation in this is still ongoing (unpublished data; Dr Dong-
Hyun Kim, University of Glasgow).

Additionally, recent metabolomics experiments have shown that a succinate fermentation
pathway might be functioning in the glycosomes of bloodstream form T. brucei
(unpublished data; Dr Darren Creek, University of Glasgow). Although the glycolytic
flux is far larger than any other glycosomal flux, it is well possible that these smaller
fluxes play essential roles in retaining redox and bound phosphate balances within the
glycosome. Succinate fermentation produces NADH, and as NADH is potentially too
large to pass through the glycosomal channels, it is possible that succinate fermentation
plays an important role to provide more flexibility in the redox balancing in the
glycosome.

Overall, a further unravelling of the metabolic processes that take place in glycosomes
will be essential to fully understand the functioning of this unique organelle. This
is of particular interest due to the absence of glycosomes in the mammalian hosts.
It is therefore pivotal to compare the trypanosomal metabolism with the host’s cells
metabolism. Such a comparison is not only informative for the identification of potential
drug targets against human African trypanosomiasis, but can potentially also provide
insights into human diseases of metabolism.
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It would be interesting to extensively compare the extended model of trypanosomal
metabolism with the model that describes glycolysis and the PPP in erythrocytes
(Mulquiney and Kuchel, 1999b, and briefly discussed in 1.8.4.2). In the first stage of
trypanosomiasis, the parasites reside in the mammalian bloodstream. Delivering drugs
in this stage is easier than in the later stage, where the parasite has crossed the blood-
brain barrier. Comparison of the models of erythrocyte and trypanosomal metabolism
might aid to indicate potential drug targets.

Glycolysis is the (almost) exclusive energy source for both erythrocytes (Chapman et al.,
1962) and bloodstream form trypanosomes, indicating that changes to glycolysis can
have major influences on both cell types. However, there are also a number of differences
between the erythrocyte and trypanosomes. For one, erythrocyte don’t have glycosomes
and therefore don’t suffer from the risks affiliated to the strict intraglycosomal bound-
phosphate balance that is seen in trypanosomes (see Chapter 3). On the other hand, 2,3-
bisphosphoglycerate (2,3-BPG) is an important metabolite in erythrocytes and is highly
regulated, as 2,3-BPG is a major modulator of haemoglobin oxygen affinity (Benesch and
Benesch, 1967; Gerber et al., 1973). In trypanosoma, 2,3-BPG has not been expected to
play an important role in metabolism (Chevalier et al., 2000).

7.2. How essential is the glycosomal PPP?

The hypothesis that a glycosomal RK could prevent the phosphate leak introduced by the
glycosomal localisation of the PPP was tested by using genetic mutants in RK (Chapter
4). A combination of knockdown and conditional knockout mutants indicated that only a
small quantity of RK is essential for trypanosomal survival. What has not been addressed
in this thesis, however, but could play an important role in the investigation in the
glycosomal PPP is whether the glycosomal localisation of the PPP is essential.

Various genetic mutants have shown that indiscriminate ablation of glycosomal and
cytosolic PPP activity is lethal for bloodstream form T. brucei (Hanau et al., 1996; Barrett
and Gilbert, 2002). In Chapter 6 was showed how ablation of 6PGDH is lethal to T.
brucei. It was anticipated that the loss of 6PGDH results in a lethal inhibition of PGI,
however, we demonstrated that this is rather due to an impaired flux through the PPP
or the extreme accumulation of 6-PG. In other cell types, growth on alternative sugars
rescues a cell from the lethal loss of 6PGDH (Sukhatme and Chan, 2012), as the use
of these sugars bypass the PGI that is inhibited by accumulation of 6-PG. However, it
is possible that the lethality of these and other mutants is only a result of the cytosolic
ablation and not the glycosomal loss of the PPP. Potentially, the NADPH requirements
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in the glycosome can be regulated, such that the loss of PPP activity in the glycosome
will not have such a profound effect as the loss of all PPP activity. This could then
also explain why the ablation of RK activity did not affect trypanosome survival, as the
down-regulation of the glycosomal PPP would prevent the phosphate leak induced by
the loss of RK. Important for this is also whether the glycosomal channels are capable
of transporting NADPH, potentially providing the glycosome with cytosolic produced
NADPH.

A way of testing this would be to supplement one of the lethal RNAi mutants lacking
a PPP enzyme, such as G6PDH, with the expression of a PTS-less version of the same
enzyme. The originally ablated activity would then still be present in the cytosol, but
no glycosomal activity should be present. This will allow to study the importance of the
glycosomal PPP, while keeping the cytosolic PPP intact. With the PPP playing such an
important role in the parasites redox balance, it is imperative to understand why the PPP
is partly localised to the glycosomes.

7.3. Enzymes, the forgotten workhorses?

The investigations into trypanosomal metabolism in this thesis have also demonstrated
how little is known about enzymes. In the post-genomic era, it is becoming ever cheaper,
faster and easier to generate large datasets. The problem with acquiring large amounts of
data is to interpret the data. Whole genome sequencing, for instance, is already becoming
a routine procedure; however we only have limited understanding of the meaning of all
those millions of nucleotides in each genome.

In Chapter 5, it was discussed how sequence analysis can be employed to annotate the
genes by sequence similarity, but for a variety of reasons this cannot capture all of the
characteristics of the proteins they encode and experimental data is required to really
characterise the enzymes. Nonetheless, gene annotations based on sequence similarity
can still be used to construct genome-scale models of metabolism, and various methods
have been developed to analyse these metabolic networks without paying attention to
the underlying complexity of the enzymes. Although studies of genome-scale models
can be instrumental in the prioritisation of drug-targets and in synthetic biology, by
identify choke-points that can be targeted, it can be disconcerting to realise that the
real workhorses of metabolic pathways, the enzymes, are perhaps not given the research
attention they deserve.
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The catalytic activities of three putatively annotated T. brucei genes were investigated in
Chapter 5 with an untargeted approach using metabolomics. The first gene, putatively
annotated as arginase, did not show arginase or related ureohydrolase activity, but rather
suggested a function as indole-oxygenase. The second gene, putatively annotated as N-
acetylornithine deacetylase, demonstrated activity and substrate promiscuity comparable
to E. coli N-acetylornithine deacetylase. However, the annotation as N-acetylornithine
deacetylase is misleading, as the enzyme demonstrates wide substrate promiscuity
and likely has a higher activity with N-acetylmethionine. The third gene, putatively
annotated as nicotinamidase, showed the expected nicotinamidase activity, although a
slight substrate promiscuity might exist.

Enzymology seems to be an art-form that is dying out, while the detailed analysis of
enzymes can be crucial for the behaviour observed in the whole system. If we are to build
silicon cells (Westerhoff, 2001; Snoep, 2005; Bakker et al., 2010), then quantitative and
accurate knowledge about enzyme promiscuity, moonlighting functions (Copley, 2003)
and their evolutionary advantage (D’Ari and Casadesus, 1998) are certainly essential to
be able to succeed.
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Appendix A
Creek’s minimal medium (CMM)

Note: unpublished

Compound Concentration (µM)

Bathocuproine disulfonic acid 52
Phenolsulfonphtalein 42
HEPES 10,000
NaCl 77,590
CaCl2 1,490
KCl 4,400
MgSO4 814
NaHCO3 35,950
D-Glucose 10,000
L-Glutamine 1,000
L-Cysteine 1,000
Mercaptoethanol 192
FBS Gold (PAA) 10 % a

Arginine 100 a

Tyrosine 100 a

Methionine 100 a

Leucine 100 a

Phenylalanine 100 a

Tryptophan 100 a

a: Arginine, tyrosine, methionine, leucine, phenylalanine and
tryptophan are only added if a different brand of FBS is not
able to support growth. Certified tetracycline-free FBS from
Biosera requires the additional amino acids.

Table A.1.: Creek’s minimal medium (CMM).



Appendix B
Elementary mode analysis of
glycosomal proteome

A model of glycosomal metabolism was constructed, the metabolic reactions included
in the model were taken from comprehensible glycosomal proteomics data (Colasante
et al., 2006; Vertommen et al., 2008). Only those reactions expressed in the bloodstream
form were included. All reactions were set as reversible, except for GPO, PFK, FBPase,
PGL. Protons, Pi, PPi, H2O, CO2 and O2 were not included in the reactions. Glucose,
3-PGA, ribose and glycerol were set as external metabolites.



189

Abbreviation EC Enzyme name Mode Ref.

OGDH 1.2.4.2 2-oxoglutarate dehydrogenase a
SRD5A 1.3.99.5 3-oxo-5-alpha-steroid 4-dehydrogenase a
6PGDH 1.1.1.43 6-phosphogluconate dehydrogenase × b
APRT 2.4.2.7 Adenine phosphoribosyltransferase × b
AdK 2.7.1.20 Adenosine kinase × b
ANase 3.2.2.7 Adenosine nucleosidase × b
AK 2.7.4.3 Adenylate kinase × a
AdSS 6.3.4.4 Adenylosuccinate synthetase b
ALD 4.1.2.13 Aldolase × a, b
AGPS 2.5.1.26 Alkyl-dihydroxyacetone phosphate synthase a
ArgK 2.7.3.3 Arginine kinase a, b
FBPase 3.1.3.11 Fructose bisphosphatase × a
FRD 1.3.1.6 Fumarate reductase b
G6PDH 1.1.1.49 Glucose-6-phosphate dehydrogenase × b
GAPDH 1.2.1.12 Glyceraldehyde-3-phosphate dehydrogenase × a, b
GK 2.7.1.30 Glycerol kinase × a, b
G3PDH 1.1.1.8 Glycerol-3-phosphate dehydrogenase × a, b
GPO 1.1.3.21 Glycerol-3-phosphate oxidase × a, b
GDA 3.5.4.15 Guanine deaminase b
HGPRT 2.4.2.8 Guanine phosphoribosyltransferase b
GNase 3.2.2.1 Guanosine nucleosidase b
HXK 2.7.1.1 Hexokinase × a, b
HPRT 2.4.2.8 Hypoxanthine phosphoribosyltransferase a
IRH 3.2.2.2 Inosine nucleosidase b
IMPDH 1.1.1.205 Inosine-5’-monophosphate dehydrogenase a, b
SOD 1.15.1.1 Iron superoxide dismutase b
IDH 1.1.1.41 Isocitrate dehydrogenase a, b
TDH 1.1.1.103 L-Threonine 3-dehydrogenase a
LysoPLA 3.1.1.5 Lysophospholipase a
MVK 2.7.1.36 Mevalonate kinase b
NADPHu NADPH utilization ×
OMPRT 2.4.2.10 Orotate phosphoribosyltransferase a, b
OMPDC 4.1.1.23 Orotidine-5-phosphate decarboxylase a, b
PPI 5.3.1.6 Pentosephosphate isomerase × b
PEPCK 4.1.1.32 Phosphoenolpyruvate carboxykinase b
PFK 2.7.1.11 Phosphofructokinase × a, b
PGL 3.1.1.31 Phosphogluconolactonase ×
PGI 5.3.1.9 Phosphoglucose isomerase × a, b
PGK 2.7.2.3 Phosphoglycerate kinase × a, b
PMI 5.3.1.8 Phosphomannose isomerase b
PRPPsyn 2.7.6.1 Phosphoribosyl pyrophosphate synthetase × b
PYK 2.7.1.40 Pyruvate kinase a
RK 2.7.1.15 RK × a, b
TPI 5.3.1.1 Triosephosphate isomerase × a, b
GALE 5.1.3.2 UDP-galactose 4-epimerase b
XNase 3.2.2.1 Xanthosine nucleosidase b

Table B.1.: Additional glycosomal enzymes. All reactions present in the bloodstream form T.
brucei glycosome, according to comprehensible glycosomal proteomics (ref. a:
Colasante et al., 2006; ref. b: Vertommen et al., 2008). Only reactions present in the
bloodstream form of the parasite are included. Abbreviations and EC numbers are
given for each reaction. Indicated are what reactions are part of an elementary
model (Table B.2).
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Mode Overall reaction Individual reactions

1 Glc→ 2 3-PGA HXK, PGI, PFK, ALD, TPI, 2 GAPDH, 2 PGK, 2 G3PDH, 2
GPO

2 Glc→ 3-PGA +
Gly

HXK, PGI, PFK, ALD, GAPDH, PGK, G3PDH, GK

3 Gly→ 3-PGA –GK, 2 GPO, GDH, TPI, GAPDH, PGK

4 Glc→ Rib HXK, G6PDH, PGL, 6PGDH, PPI, 2 NADPHu, RK

5 Futile cycle 2 PFK, 2FBPase, RK, AK, APRT, ANase, –PRPPsyn, ADK

6 4 Gly→ 2 Glc 4 –GK, 4 GPO, 2 TPI, 2 –ALD, 2 FBPase, 2 –PGI, 2 –HK, RK,
AK, APRT, ANase, –PRPPsyn, ADK

7 4 Gly→ 2 Rib 4 –GK, 4 GPO, 2 TPI, 2 –ALD, 2 FBPase, 2 –PGI, 2 G6PDH, 2
PGL, 2 6PGDH, 2 PPI, 3 RK, AK, APRT, ANase, –PRPPsyn,
ADK, 4 NADPHu

8 2 3-PGA + 2 Gly
→ 2 Glc

2 –PGK, 2 –GAPDH, 2 –GK, 2 –GDH, 2 –ALD, 2 FBPase, 2
–PGI, 2 –HK, RK, AK, APRT, ANase, –PRPPsyn, ADK)

9 2 3-PGA + 2 Gly
→ 2 Rib

2 –PGK, 2 –GAPDH, 2 –GK, 2 –GDH, 2 –ALD, 2 FBPase, 2
–PGI, 2 G6PDH, 2 PGL, 2 6PGDH, 2 PPI, 3 RK, AK, APRT,
ANase, –PRPPsyn, ADK, 4 NADPHu

Table B.2.: Elementary modes of glycosomal proteome. The resulting model has 9
elementary modes, of which modes 1–4 are comparable to modes 1–4 in Table 1.2.
Elementary mode 5 is a futile cycle without external metabolites involved.
Elementary modes 6–9 are unlikely to occur in dividing bloodstream trypanosomes,
as a high glucose to pyruvate and glycerol flux is maintained. Additionally, the
activity of FBPase could not be measured (Cronin et al., 1989).



Appendix C
Parameter distributions

Courtesy of Dr Fiona Achcar, University of Glasgow.

C.1. Methods: sampling the parameters

The sampling methodology used is the same as described in (Achcar et al., 2012). We
sampled parameters simultaneously from the entire parameter space while respecting
thermodynamic constraints, usually from a log-normal distribution using experimentally
observed standard deviations. Thus, the distributions used to sample the parameters
reflect our uncertainty about the value of each parameter. In comparison to Achcar et
al., the time limit allowed for a given model to reach steady-state (from the initial values
based on the steady state of the fixed-parameter model) is increased to 1000 minutes
(instead of 300) to account for the larger size of the models. Except for time series
simulations, the results presented in the main manuscript are the steady state values of
only those models that were able to reach steady state within 1000 minutes. For the
glycolysis part of the models, the parameters and their uncertainties are the same as in
(Achcar et al., 2012) with the exception of the following parameters:

• The Vmax of the phosphoglycerate mutase is still unknown. The accumulation of 3-
phosphoglycerate described in (Achcar et al., 2012) when this Vmax is sampled
in the lower range of its values is still occurring after addition of the pentose
phosphate pathway. This issue is not modified by the addition of the pentose
phosphate pathway in any of the topologies described in Figure 3.3. However, in
order to limit the percentage of models that fail to reach steady state before 1000



C.1. Methods: sampling the parameters 192

minutes, we limited the sampling of the Vmax of the phosphoglycerate mutase so
that 95 % of the models have values in the range [202.5; 250] with a median of 225
nmol · min 1 · mg protein 1 (distribution is log normal (Achcar et al., 2012))

• The Vmax of the pyruvate transporter is set using the median value and standard
deviation calculated from (Vanderheyden et al., 2000) as described in (Achcar
et al., 2012). Similarly, as for the phosphoglycerate mutase, the accumulation of
pyruvate observed when the Vmax of the pyruvate transporter is in the lower range
of its values is not modified by the addition of the pentose phosphate pathway.

New parameters: The parameters of the newly added reactions are sampled using the
same rules as used for the glycolysis parameters. The median values are set as the fixed-
parameter values described in the main article unless specified otherwise below. The
standard deviations are set as described in the sources of the fixed-parameter values,
when these mention a standard deviation or standard error of mean or using the mean
standard error of the other measured parameters as described in (Achcar et al., 2012).

Exceptions: The following parameter values remains fixed unless mentioned otherwise:

• The parameters of the black-box reactions of NADPH utilisation in the cytosol and
the glycosome.

• The parameters of the ATP:ADP antiporter.

• The parameter kTOX of trypanothione oxidation.

Vmax of enzymes present in both the cytosol and the glycosome: The total activity
is sampled as described above. The cytosolic fraction is then computed from this total
activity and the fixed percentage of activity as described in the main article, the rest of the
activity is the glycosomal activity. This percentage of cytosolic activity is fixed except for
the cytosolic hexokinase activity, which is sampled from a uniform distribution between
1 and 10 percent, as its value has an important impact on some of the results as described
in the main article.

Glucose 6-phosphate phosphatase Vmax: This value is unknown. It is sampled from a
uniform distribution between 1 and 40 nmol · min 1 · mg protein 1 (this latter value is in
the range of the measured total phosphatase activity reported in (McLaughlin, 1986)).

Ribokinase Vmax: This value is unknown. As the equilibrium constant of ribokinase
favours the reverse direction more easily, we sampled the reverse Vmax with a median of
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1000 nmol · min 1 · mg protein 1 and 97.5 % of the value sampled lower than 4000 nmol
· min 1 · mg protein 1 (log normal distribution).

Equilibrium constants: In addition to the equilibrium constants of the pentose
phosphate pathway reactions, equilibrium constants were introduced for pyruvate kinase,
hexokinase and phosphofructokinase as described in the methods subsection of the main
manuscript. All the new equilibrium constants are sampled using the fixed-parameter
value as a median and the relative standard error of the other equilibrium constants,
except for glucose-6-phosphate dehydrogenase for which the value used is the median
of the values published in (Wurster and Hess, 1970, 1973) corrected for pH (median
equilibrium constant = 7.0), and the corresponding standard error.

C.2. Distributions

Distribution of parameters and steady state fluxes and concentrations in the sampled
model based on model 6 (see Figure 3.2). Most parameters are sampled from a log
normal distributions of mean and standard deviations based on experimental sources (see
the SilicoTryp Wiki1 for detailed data and calculations), some parameters are calculated
from other sampled parameters for thermodynamical consistency. Detailed descriptions
can be found in the section above and in (Achcar et al., 2012). The vertical black lines
indicate the value in the fixed- parameter model. The units of the x-axis are as follows:
Km, Ki and Ks: mM; Vmax: nmol · min 1 · mg protein 1 ; others: unitless.

Distributions are shown from next page.

1http://silicotryp.ibls.gla.ac.uk/wiki
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Distributions of the sampled parameters

Distributions of the parameters for model 6. Most parameters are sampled from a log normal distributions of mean and
standard deviations based on experimental sources (see the Silicotryp wiki1 for detailed data and calculations), some
parameters are calculated from other sampled parameters for thermodynamical consistency. Detailed descriptions
can be found in section a) above and in (Achcar et al , 2012). The vertical black lines indicate the value in the fixed-
parameter model. The units of the x-axis are as follows: Km, Ki and Ks: mM; Vmax: nmol.min−1.mg protein−1;
others: unitless.
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Appendix D
Metabolomics

D.1. Standards

List of three standards mixtures that are run with every metabolomics experiments. RTs
are typical retention times in minutes. ND is not detected.

Mix Compound Name Detected m/z RT pHILIC RT HILIC

1 (R)-3-Hydroxybutanoate 103.04002 ND 6.59
2,3-Bisphospho-D-glycerate 264.95203 19.65 ND
2-Methylcitrate 205.03525 18.40 ND
2-Phenylglycine 152.07050 7.83 13.41
3-Hydroxyphenylacetate 151.03989 8.78 ND
3’,5’-Cyclic AMP 328.04535 ND 15.38
4-Aminobenzoate 138.05484 12.61 5.87
4-Coumarate 163.03999 7.82 5.60
6-Phospho-D-gluconate 275.01755 19.12 ND
Adenine 136.06146 9.70 14.83
ADP 426.02213 16.54 ND
beta-Alanine 90.05499 16.68 18.26
cis-Aconitate 173.00894 19.05 7.81
CMP 322.04449 16.69 19.57
Creatinine 114.06593 9.98 16.95
Cytidine 244.09239 12.67 19.20
D-Erythrose 119.03491 10.15 ND
D-Fructose 1,6-bisphosphate 338.98883 19.58 ND
D-Galactarate 209.02988 18.30 ND
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Mix Compound Name Detected m/z RT pHILIC RT HILIC

1 D-Galacturonate 193.03517 17.64 16.04
D-Glucosamine 180.08661 16.05 22.75
D-Glucose 179.05595 12.99 11.76
D-Glucose 6-phosphate 259.02228 18.36 18.92
D-Ribose 5-phosphate 229.01178 17.26 17.18
Deoxyuridine 227.06731 8.02 7.86
dGMP 348.07071 16.96 17.02
Ethanolamine phosphate 142.02647 17.62 19.33
Gallate 169.01414 19.85 8.87
Glycerol 93.05451 9.58 9.46
Glycine 76.03936 16.96 18.39
Guanine 152.05659 13.13 14.31
IDP 427.00638 18.19 ND
Imidazole-4-acetate 127.05024 11.71 16.00
IMP 347.03989 16.21 15.03
Inosine 269.08823 11.48 10.27
L-Arginine 175.11890 27.49 26.19
L-Asparagine 133.06085 16.46 18.47
L-Aspartate 134.04475 16.40 17.46
L-Citrulline 176.10289 17.24 18.88
L-Cysteate 167.99702 16.95 16.99
L-Cystine 241.03111 17.46 22.41
L-Glutamate 146.04587 15.60 16.79
L-Glutamine 147.07654 16.25 18.03
L-Histidine 156.07668 16.02 25.16
L-Leucine 132.10205 11.42 12.88
L-Lysine 147.11285 25.92 26.53
L-Methionine 150.05843 12.13 13.79
L-Phenylalanine 166.08626 10.55 12.28
L-Proline 116.07045 13.79 15.65
L-Rhamnose 163.06119 ND 11.13
L-Serine 106.04986 17.00 18.47
L-Threonine 120.06551 ND 17.39
L-Tryptophan 205.09727 12.25 13.03
L-Valine 118.08630 13.31 14.68
Malonate 103.00357 ND 7.24
Maltose 341.10886 13.47 ND
Melatonin 233.12839 4.45 5.64
meso-2,6-Diaminoheptanedioate 191.10249 19.60 23.60
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Mix Compound Name Detected m/z RT pHILIC RT HILIC

1 Methylmalonate 117.01925 ND 6.54
MOPS 208.06473 7.29 13.88
N2-Acetyl-L-lysine 189.12329 16.40 17.46
Nicotinate 124.03941 ND 7.56
Orotate 155.00943 10.18 9.86
Phenolsulfonphthalein 353.04907 ND 5.07
Phenylhydrazine 109.07601 5.60 5.82
Phosphoenolpyruvate 166.97491 18.60 ND
Pyridoxine 170.08087 7.83 14.80
Pyruvate 87.00870 7.29 ND
Riboflavin 377.14578 8.51 7.82
S-Adenosyl-L-methionine 399.14517 17.59 29.18
Selenomethionine 192.00873 12.01 13.48
sn-Glycero-3-Phosphocholine 258.11014 15.84 19.82
Taurine 126.02199 15.90 16.33
Thiamin 265.11218 22.65 29.06
Thiamin diphosphate 423.03021 16.36 ND
Thymidine 241.08310 7.29 7.24
trans-4-Hydroxy-L-proline 132.06561 15.67 16.48
UMP 323.02866 15.48 14.05
Uridine 243.06180 10.10 9.06
Xanthine 151.02574 11.94 8.79

2 (S)-Malate 133.01405 17.45 ND
1-Aminocyclopropane-1-carboxylate 102.05508 13.31 14.45
2-Oxoglutarate 145.01402 16.86 ND
3-(4-Hydroxyphenyl)pyruvate 179.03455 7.26 ND
4-(beta-Acetylaminoethyl)imidazole 154.09727 7.37 ND
5-Oxoproline 130.04997 11.27 7.42
5’-Methylthioadenosine 298.09683 7.25 ND
6-Methylaminopurine 150.07736 7.81 ND
Adenosine 268.10419 9.07 12.51
agmatine 131.12848 19.63 ND
Ala-Gly 147.07651 12.85 ND
AMP 348.07016 15.11 17.87
Betaine 118.08636 11.97 ND
Biotin 245.09538 8.72 6.40
Choline 104.10686 22.10 ND
Citrate 191.01959 19.48 ND
D-Erythrose 4-phosphate 199.00096 17.45 ND
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Mix Compound Name Detected m/z RT pHILIC RT HILIC

2 D-Glucosamine 6-phosphate 260.05270 15.20 ND
dAMP 332.07550 14.09 ND
dCMP 308.06396 16.28 ND
Deoxyadenosine 252.10902 8.08 ND
dIMP 331.04501 15.82 ND
dUMP 307.03372 15.16 ND
Eflornithine 183.09323 14.17 ND
FMN 455.09720 12.55 ND
Folate 440.13263 18.18 ND
Glycylglycine 133.06061 15.23 ND
GMP 362.05078 17.18 ND
HEPES 239.10591 10.87 22.65
L-2,3-Diaminopropanoate 105.06606 17.20 ND
L-2-Aminoadipate 162.07585 16.36 16.92
L-Alanine 90.05489 15.99 ND
L-Cystathionine 223.07468 18.25 ND
L-Gulono-1,4-lactone 177.04036 14.53 ND
L-Homoserine 120.06542 16.23 ND
L-Isoleucine 132.10182 12.82 ND
L-Kynurenine 209.09181 11.34 ND
L-Tyrosine 182.08109 13.86 ND
Lipoate 205.03580 4.36 ND
Mesaconate 129.01926 16.78 ND
Methylcysteine 136.04283 12.42 15.04
Methylguanidine 74.07149 39.73 ND
N-Acetylglutamine 187.07213 11.26 ND
N-Acetylneuraminate 308.09875 14.43 ND
N-Acetylornithine 175.10751 16.87 15.64
NAD+ 664.11432 15.54 19.97
Nicotinamide 123.05527 7.25 8.70
Orotidine 287.05203 13.13 12.94
Oxalate 88.98808 19.10 ND
Pantothenate 220.11780 8.48 ND
Phenylacetylglycine 192.06660 4.49 6.01
Phenylpyruvate 163.04007 4.41 6.08
Picolinic acid 124.03931 8.43 ND
Pyridoxal 168.06509 7.73 ND
S-Adenosyl-L-homocysteine 385.12885 14.72 ND
sn-Glycerol 3-phosphate 171.00630 16.40 ND
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Mix Compound Name Detected m/z RT pHILIC RT HILIC

2 Succinate 117.01922 16.53 8.15
Taurocholate 514.28467 4.25 ND
Thiopurine S-methylether 167.03842 7.23 ND
Thymine 127.04991 7.39 ND
Trypanothione disulfide 722.29443 21.11 ND

3 2-Aminobutan-4-olide 102.05504 ND 18.53
2-phospho-D-glycerate 184.98546 18.13 17.15
5-Aminolevulinate 132.06548 14.31 17.95
Acetoacetate 101.02438 14.50 ND
Acetylcholine 146.11745 16.68 14.80
acetylcysteine 162.02293 7.34 ND
Benzoate 121.02946 7.31 5.51
Biopterin 238.09389 8.82 ND
Bis-γ-glutamylcystine 499.11731 19.30 ND
D-Arabinose 149.04530 14.05 ND
D-Fructose 179.05614 14.50 13.42
D-Fructose 6-phosphate 259.02246 17.49 17.61
D-Glucono-1,4-lactone 177.04031 8.37 8.27
γ-L-Glutamyl-L-cysteine 251.06958 15.51 ND
Glutathione 308.09140 15.74 ND
Glutathione disulfide 613.15875 18.98 ND
Homocystine 269.06201 17.44 ND
Isonicotinic acid 124.03936 7.35 8.70
Itaconate 129.01929 15.91 6.27
L-Dehydroascorbate 173.00874 11.85 ND
L-Homocysteine 136.04268 13.76 ND
lipoamide 206.06689 5.17 ND
Maleic acid 115.00362 12.70 6.66
N-acetyl-L-glutamate 188.05626 15.45 7.14
NADH 664.11823 14.65 ND
O-Acetylcarnitine 204.12263 11.78 ND
Orthophosphate 96.96973 13.40 16.54
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D.2. Metabolomics data

Significantly changed metabolites (rank product, FDR<0.05) from different metabolomics
experiments. The mass is given as measured by the machine at 2 ppm accuracy, predicted
formula is the most likely chemical formula, putative metabolite is based on both the
accurate mass and the retention time. Fold changes are versus control samples, and the
FDR is derived from the rank product analysis.

Metabolomics data for RKRNAi and NAMRNAi are not shown here, as the tables in the
main text already listed all significantly changed metabolites.

D.3. ARG metabolomics assay

Table D.2.: ARG metabolomics enzyme assay, cofactor mixture 1. Putatively identified
metabolites with significant fold changes (rank product FDR<0.05).
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290.09005 9.26 C14H14N2O5 2 N2-Malonyl-D-tryptophan 24.4

205.03770 5.63 C10H7NO4 2 6-Hydroxykynurenate 21.8

238.05890 9.41 C10H10N2O5 1 (3-nitrobenzoyl)alanine (fragment of peptide) 15.3

153.99346 15.24 C3H6O5S 1 3-sulfopropanoate 14.5

163.06339 5.62 C9H9NO2 4 3-Methyldioxyindole (fragment of 6-hydroxykynurenate) 12.1

211.04837 7.11 C9H9NO5 5
5-(2’-Formylethyl)-4,6-dihydroxypicolinate (related to

5-methyl-barbiturate)
9.25

480.11531 14.99 C18H21N6O8P 1
7,8-H2pterin-6-yl-methyl-4-(β-D-ribofuranosyl)aminobenzene

5’-phosphate
9.03

246.10058 9.28 C13H14N2O3 4 N-Acetyl-D-tryptophan 8.76

253.02548 9.73 C10H8N3O3Cl 1
5-Amino-4-chloro-2-(2,3-dihydroxyphenyl)-3(2H)-

pyridazinone
8.34

266.09023 7.08 C12H14N2O5 1 p-aminobenzoyl glutamate 7.8

175.06329 11.04 C10H9NO2 12 3-Indoleglycolaldehyde (fragment of indole 3-acetamide) 7.5

135.06842 5.47 C8H9NO 4 2-Phenylacetamide 6.14

142.03769 7.07 C5H6N2O3 3
5-methyl-barbiturate (related to

5-(2’-Formylethyl)-4,6-dihydroxypicolinate)
6.06
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189.04258 5.82 C10H7NO3 6 Kynurenate 5.8

147.03192 5.62 C8H5NO2 2 Isatin (fragment of 6-hydroxykynurenate) 5.79

335.14806 9.41 C16H21N3O5 1 Gly-Pro-Tyr 4.65

358.12768 5.98 C17H18N4O5 1 202-791 4.62

165.04246 5.56 C8H7NO3 8 Formylanthranilate (fragment of 3-methyldioxyindole) 4.44

264.08997 5.51 C16H12N2O2 1 Perlolyrine (fragment of 3-methyldioxyindole) 4.32

196.06370 5.4 C12H8N2O 2 Pyocyanine-reduced (fragment of 2-phenylacetamide) 4.24

146.04802 6 C8H6N2O 1 1(2H)-Phthalazinone 4.1

173.04773 5.99 C10H7NO2 4 2-Quinolinecarboxylic acid 3.95

236.07972 10.45 C11H12N2O4 2 L-Formylkynurenine 3.87

145.05281 5.53 C9H9NO2 4 3-Methyldioxyindole 3.53

174.07932 10.97 C10H10N2O 4 Indole-3-acetamide 3.48

214.02403 14.42 C5H11O7P 6 2-Deoxy-D-ribose 5-phosphate 3.24

250.06237 9.43 C8H14N2O5S 2 Glu-Cys 3.09

242.08052 5.66 C12H10N4O2 1 Lumichrome 3.03

137.99876 12.77 C3H6O4S 2 2-oxopropane sulfonate 3.03

195.05317 8.46 C9H9NO4 9 Dopaquinone 2.85

181.03737 7.09 C8H7NO4 3 DIBOA 2.8

87.06843 13.23 C4H9NO 10 4-Aminobutanal 2.73

349.11248 13.8 C12H19N3O9 2 Thr-Asp-Asp 2.7

197.06888 13.12 C9H11NO4 2 3,4-Dihydroxy-L-phenylalanine 2.46

168.06873 8.61 C11H8N2 1 beta-Carboline 2.3

147.03553 14.74 C5H9NO2S 1 Thiomorpholine 3-carboxylate 2.29

274.09113 19.39 C9H14N4O6 1 5-Amino-1-ribofuranosylimidazole-4-carboxyamide 2.28

123.98302 13.5 C2H4O4S 1 Sulfoacetaldehyde 2.15

154.98877 8.9 C8H13Cl3O6 1 trichloroethanol glucoside 2.09

298.11699 14.73 C13H18N2O6 1 N-(4-nitrophenyl)validamine (fragment of peptide) 2.09

182.08442 8.27 C12H10N2 1 Harman 2.04

172.06372 5.76 C10H8N2O 1 indole-3-acetonitrile oxide 2

250.09533 5.93 C12H14N2O4 1 3-Oxohexobarbital 1.89

179.05815 5.83 C9H9NO3 6 Hippurate 1.62

181.04072 13.79 C5H11NO4S 1 DL-Methionine sulfone 1.59

165.04602 15.68 C5H11NO3S 4 L-Methionine S-oxide 1.43

270.21916 5.16 C16H30O3 19 [FA oxo(16:0)] 3-oxo-hexadecanoic acid 1.37

193.07367 5.68 C10H11NO3 10 Phenylacetylglycine 1.37

312.22959 5.18 C18H32O4 39 [FA (18:2)] 9S-hydroperoxy-10E,12Z-octadecadienoic acid 1.36

209.06887 6.07 C10H11NO4 3 4-Hydroxyphenylacetylglycine 1.27

445.21743 12.26 C18H31N5O8 10 Ala-Leu-Asp-Gln -1.5

361.18429 12.29 C15H27N3O7 2 Glu-Ile-Thr -1.63
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289.16347 12.2 C12H23N3O5 5 Leu-Ala-Ser -1.87

288.1796 23.84 C12H24N4O4 1 Lys-Ala-Ala -2.01

248.05615 20.95 C8H13N2O5P 1 Pyridoxamine phosphate -2.04

261.13238 23.35 C10H19N3O5 5 Lys-Asp -2.06

372.21221 23.41 C15H28N6O5 1 Thr-Pro-Arg -2.06

287.11226 20.15 C11H17N3O6 2 Asp-Gly-Pro -2.13

266.10151 14.89 C11H14N4O4 1 8-Oxodeoxycoformycin -2.32

274.16357 25.43 C11H22N4O4 2 Lys-Ala-Gly -2.39

247.05152 5.84 C12H10ClN3O 1 CPPU -2.55

317.12233 20.87 C12H19N3O7 1 Asp-Pro-Ser -2.56

300.06374 5.32 C16H12O6 26 Peonidin -2.58

261.14368 24.87 C9H19N5O4 1 Ser-Arg -2.62

213.04404 19.21 C13H22N4O8S2 2 S-glutathionyl-L-cysteine -2.64

307.08380 19.21 C10H17N3O6S 3 Glutathione (fragment of S-glutathionyl-L-cysteine) -2.78

133.06889 30.53 C12H18N4O3 1 L-lysine-p-nitroanilide -2.9

299.10050 8.62 C13H17NO7 1 p-aminobenzoate-&beta;-D-glucopyranosyl ester -2.91

301.14271 9.37 C16H19N3O3 3 Trp-Pro -3.03

270.09608 23.42 C10H14N4O5 2 Asp-His -3.06

199.05921 9.57 C7H9N3O4 5
5-Nitro-2-furancarboxaldehyde (2-hydroxyethyl)hydrazone

(fragment of N-succinyl-L-citrulline)
-3.06

174.06423 8.82 C6H10N2O4 4 N-Formimino-L-glutamate -3.23

305.13748 11.39 C15H19N3O4 1 Thr-Trp -3.31

346.22224 22.22 C15H30N4O5 3 Leu-Lys-Ser -3.82

334.13845 8.64 C14H26N2O3S2 1 Lipoyllysine -4.35

204.08995 10.55 C11H12N2O2 6 L-Tryptophan -4.5
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Table D.3.: ARG metabolomics enzyme assay, cofactor mixture 2. Putatively identified
metabolites with significant fold changes (rank product FDR<0.05).
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163.06339 5.62 C9H9NO2 4 3-Methyldioxyindole (fragment of 6-hydroxykynurenate) 5

175.06329 11.04 C10H9NO2 12 3-Indoleglycolaldehyde (fragment of indole 3-acetamide) 4.48

211.04837 7.11 C9H9NO5 5
5-(2’-Formylethyl)-4,6-dihydroxypicolinate (related to

5-methyl-barbiturate)
4.17

238.05890 9.41 C10H10N2O5 1 (3-nitrobenzoyl)alanine 3.78

253.02548 9.73 C10H8N3O3Cl 1
5-Amino-4-chloro-2-(2,3-dihydroxyphenyl)-3(2H)-

pyridazinone
3.41

205.03770 5.63 C10H7NO4 2 6-Hydroxykynurenate 3.35

264.08997 5.51 C16H12N2O2 1 Perlolyrine (fragment of 3-methyldioxyindole) 3.26

236.07972 10.45 C11H12N2O4 2 L-Formylkynurenine 1.82

189.04258 5.82 C10H7NO3 6 Kynurenate 1.74

335.14806 9.41 C16H21N3O5 1 Gly-Pro-Tyr 1.71

196.06370 5.4 C12H8N2O 2 Pyocyanine-reduced (fragment of 2-phenylacetamide) 1.62

191.07936 11 C7H13NO5 1 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate 1.58

116.01104 6.33 C4H4O4 3 Fumarate 1.54

173.04773 5.99 C10H7NO2 4 2-Quinolinecarboxylic acid 1.49

261.09630 15.88 C9H15N3O6 4 Ala-Asp-Gly -1.3

188.15253 22.97 C9H20N2O2 2 7,8-Diaminononanoate -1.3

106.05809 18.91 C10H16N2O3 2 Pro-Pro -1.32

151.09777 21.63 C13H26N4O4 1 Lys-Val-Gly -1.37

301.12767 14.11 C12H19N3O6 2 Ala-Asp-Pro -1.37

246.133 21.36 C9H18N4O4 2 N2-(D-1-Carboxyethyl)-L-arginine (fragment of peptide) -1.39

226.10647 23.15 C9H14N4O3 3 Carnosine (fragment of peptide) -1.39

220.06966 17.56 C7H12N2O6 2 Asp-Ser -1.41

355.18527 26.62 C15H25N5O5 3 Leu-Ser-His -1.43

314.1588 15.53 C13H22N4O5 2 Ala-Gln-Pro -1.45

471.28061 20.97 C20H37N7O6 3 Arg-Leu-Pro-Ser -1.49

217.10629 15.94 C8H15N3O4 3 Ala-Ala-Gly -1.52

183.06609 20.53 C5H14NO4P 1 Choline phosphate -1.69

215.05801 5.51 C12H9NO3 1 Robustine -1.75

366.16521 9.32 C15H22N6O5 3 Orizabin (fragment of peptide) -2.17

219.08569 18.28 C7H13N3O5 3
1D-1-Guanidino-1-deoxy-3-dehydro-scyllo-inositol (fragment

of peptide)
-33.3
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D.4. ARG null mutant metabolic profiling

Table D.4.:Δarg metabolic profiling, pHILIC. Putatively identified metabolites with
significant fold changes (rank product FDR<0.05).
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136.03854 10.75 C5H4N4O 3 Hypoxanthine 1.54

276.02469 19.3 C6H13O10P 2 6-Phospho-D-gluconate 8.72

543.33241 4.33 C28H50NO7P 3 LysoPC(20:4(5Z,8Z,11Z,14Z)) 4.41

372.54538 18.68 C21H30N7O17P3 1 NADPH 2.92

545.34822 4.31 C28H52NO7P 2 LysoPC(20:3(5Z,8Z,11Z)) 2.8

495.33252 4.42 C24H50NO7P 5 [PC (16:0)] 1-hexadecanoyl-sn-glycero-3-phosphocholine 2.78

523.36387 4.34 C26H54NO7P 9 [PC (18:0)] 1-octadecanoyl-sn-glycero-3-phosphocholine 2.39

230.01906 17.25 C5H11O8P 16 D-Ribose 5-phosphate 2.3

251.10206 7.57 C10H13N5O3 4 Deoxyadenosine 2.26

673.46819 3.94 C36H68NO8P 5
[PC (14:1/14:1)]

1,2-di-(9Z-tetradecenoyl)-sn-glycero-3-phosphocholine
2.22

509.34872 4.38 C25H52NO7P 8 LysoPC(17:0) 2.16

481.31676 4.47 C23H48NO7P 8 [PC (15:0)] 1-pentadecanoyl-sn-glycero-3-phosphocholine 2.13

521.34856 4.35 C26H52NO7P 11 1-Oleoylglycerophosphocholine 2.02

135.05453 9.92 C5H5N5 1 Adenine 1.96

165.07902 10.8 C9H11NO2 7 L-Phenylalanine 1.94

493.31666 4.45 C24H48NO7P 3 [PC (16:1)] 1-(9Z-hexadecenoyl)-sn-glycero-3-phosphocholine 1.91

195.11062 22.26 C7H17NO5 1 N-methyl glucamine 1.91

203.11587 12.06 C9H17NO4 1 O-Acetylcarnitine 1.9

151.04935 13.38 C5H5N5O 3 Guanine 1.84

791.56723 3.45 C42H82NO10P 2
[PS (16:0/20:0)]

1-hexadecanoyl-2-eicosanoyl-sn-glycero-3-phosphoserine
1.8

567.33224 4.28 C30H50NO7P 2
[PC (22:6)] 1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-

glycero-3-phosphocholine
1.77

571.36376 4.24 C30H54NO7P 1 LysoPC(22:4(7Z,10Z,13Z,16Z)) 1.69

446.06067 18.06 C11H20N4O11P2 1 CDP-ethanolamine 1.66
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136.03854 10.75 C5H4N4O 3 Hypoxanthine 1.54

787.53577 3.51 C42H78NO10P 8
[PS (18:1/18:1)]

1,2-di-(9E-octadecenoyl)-sn-glycero-3-phosphoserine
1.62

246.05037 14.03 C6H15O8P 3 Glycerophosphoglycerol 1.62

183.06613 16.86 C5H14NO4P 1 Choline phosphate 1.61

148.03713 16.37 C5H8O5 18 (R)-2-Hydroxyglutarate 1.61

363.05812 18.38 C10H14N5O8P 5 GMP 1.56

147.05305 15.82 C5H9NO4 14 L-Glutamate 1.52

350.06140 18.5 C9H19O12P 1 nonulose 9-phosphate 1.52

259.04570 17.08 C6H14NO8P 8 D-Glucosamine 6-phosphate 1.49

154.00305 12.32 C3H7O5P 3 Propanoyl phosphate 1.47

304.24012 3.57 C20H32O2 38 [FA (20:4)] 5Z,8Z,11Z,14Z-eicosatetraenoic acid 1.46

566.05561 18.04 C15H24N2O17P2 3 UDP-glucose 1.43

297.08976 7.36 C11H15N5O3S 2 5’-Methylthioadenosine 1.42

488.10742 17.06 C14H26N4O11P2 1 CDP-choline 1.4

302.22439 3.58 C20H30O2 43 [FA (20:5)] 5Z,8Z,11Z,14Z,17Z-eicosapentaenoic acid 1.39

103.09965 22.23 C5H13NO 1 Choline 1.35

493.35298 4.33 C25H52NO6P 1 [PC (17:1)] 1-(1Z-heptadecenyl)-sn-glycero-3-phosphocholine -1.58

244.20375 3.66 C14H28O3 12 2S-Hydroxytetradecanoic acid -1.58

216.17251 3.75 C12H24O3 11 12-Hydroxydodecanoic acid -1.59

248.06453 19.19 C8H12N2O7 2 Asp-Asp -1.61

188.14123 3.89 C10H20O3 13 [FA hydroxy(10:0)] 9-hydroxy-decanoic acid -1.64

104.01095 17.33 C3H4O4 3 Malonate -1.66

276.09568 14.09 C10H16N2O7 2 Glu-Glu -1.86

232.06947 15.71 C16H24N4O12 2 Asp-Thr-Asp-Asp -2.04

176.03203 16.7 C6H8O6 15 2-Hydroxy-3-oxoadipate -2.14

296.10068 15.78 C13H16N2O6 2 Asp-Tyr -2.33

479.33749 4.37 C24H50NO6P 5 [PC (16:1)] 1-(1Z-hexadecenyl)-sn-glycero-3-phosphocholine -2.34

244.15357 14.66 C20H40N8O6 1 Arg-Lys-Val-Ser -2.36

465.32187 4.4 C23H48NO6P 3 [PC (15:1)] 1-(1Z-pentadecenyl)-sn-glycero-3-phosphocholine -2.72

451.30624 4.46 C22H46NO6P 2 [PC (14:1)] 1-(1E-tetradecenyl)-sn-glycero-3-phosphocholine -2.76
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Table D.5.:Δarg metabolic profiling, HILIC. Putatively identified metabolites with
significant fold changes (rank product FDR<0.05).
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258.01399 17.32 C6H11O9P 6 D-Glucono-1,5-lactone 6-phosphate 19

495.33252 9.69 C24H50NO7P 5 [PC (16:0)] 1-hexadecanoyl-sn-glycero-3-phosphocholine 4.03

230.01913 15.07 C5H11O8P 16 D-Ribose 5-phosphate 3.71

509.34825 9.56 C25H52NO7P 8 LysoPC(17:0) 3.13

545.34773 9.45 C28H52NO7P 2 LysoPC(20:3(5Z,8Z,11Z)) 3.07

264.10460 33.88 C12H16N4OS 1 Thiamin 2.88

523.36404 9.45 C26H54NO7P 9 [PC (18:0)] 1-octadecanoyl-sn-glycero-3-phosphocholine 2.84

290.04033 16.62 C7H15O10P 6 D-Sedoheptulose 7-phosphate 2.71

151.04939 15.51 C5H5N5O 3 Guanine 2.67

212.00852 15.83 C5H9O7P 3 P-DPD 2.51

673.46780 7.59 C36H68NO8P 5
[PC (14:1/14:1)]

1,2-di-(9Z-tetradecenoyl)-sn-glycero-3-phosphocholine
2.39

805.56200 7.44 C46H80NO8P 28
[PC (16:0/22:6)] 1-hexadecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-

docosahexaenoyl)-sn-glycero-3-phosphocholine
2.28

705.53133 7.57 C38H76NO8P 22
[PC (15:0/15:0)]

1,2-dipentadecanoyl-sn-glycero-3-phosphocholine
2.18

521.34874 9.53 C26H52NO7P 11 1-Oleoylglycerophosphocholine 2.18

677.49895 7.6 C36H72NO8P 20
[PC (14:0/14:0)]

1,2-ditetradecanoyl-sn-glycero-3-phosphocholine
2.16

199.06857 33 C15H22N6O5S 1 S-Adenosyl-L-methionine 2.14

649.46769 7.65 C34H68NO8P 21
[PE (14:0/15:0)] 1-tetradecanoyl-2-pentadecanoyl-sn-glycero-

3-phosphoethanolamine
2.07

147.05318 17.92 C5H9NO4 14 L-Glutamate 2.05

481.35346 9.99 C24H52NO6P 4 [PC (16:2)] 1-hexadecyl-sn-glycero-3-phosphocholine 2.04

195.08953 13.96 C10H13NO3 6 L-Tyrosine methyl ester 1.77

259.04582 16.94 C6H14NO8P 8 D-Glucosamine 6-phosphate 1.64

144.04225 14.2 C6H8O4 13 Methylitaconate 1.56

173.10519 5.75 C8H15NO3 5 N-Acetyl-L-leucine -1.42

148.07348 5.45 C6H12O4 14
[FA methyl,hydroxy(5:0)] 3R-methyl-3,5-dihydroxy-pentanoic

acid
-1.44

234.03515 9.21 C12H10O3S 1 2-(2-Hydroxyphenyl)benzenesulfinate -1.53

164.04735 5.48 C9H8O3 13 4-Coumarate -1.55

136.05241 5.47 C8H8O2 16 Phenylacetic acid -1.56

145.05276 5.6 C9H7NO 7 Quinolin-4-ol -1.58
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132.04235 6.16 C5H8O4 16 2-Acetolactate -1.61

354.19029 19.41 C16H26N4O5 1 Ala-Ala-Pro-Pro -1.65

216.17249 5.31 C12H24O3 11 12-Hydroxydodecanoic acid -1.72

219.05327 7.73 C11H9NO4 2 8-Methoxykynurenate -1.83

507.36909 9.38 C26H54NO6P 6 [PC (18:1)] 1-(11Z-octadecenyl)-sn-glycero-3-phosphocholine -1.89

298.07763 9.21 C16H14N2O2S 1 Mefenacet -2.07

493.35331 9.52 C25H52NO6P 1 [PC (17:1)] 1-(1Z-heptadecenyl)-sn-glycero-3-phosphocholine -2.3

178.04768 9.01 C6H10O6 26 D-Glucono-1,5-lactone -2.36

216.11112 13.85 C9H16N2O4 3 gamma-Glutamyl-gamma-aminobutyraldehyde -3.33

479.33769 9.64 C24H50NO6P 5 [PC (16:1)] 1-(1Z-hexadecenyl)-sn-glycero-3-phosphocholine -3.55

451.30618 9.93 C22H46NO6P 2 [PC (14:1)] 1-(1E-tetradecenyl)-sn-glycero-3-phosphocholine -3.74

465.32204 9.78 C23H48NO6P 3
[PE (18:1)]

1-(9Z-octadecenyl)-sn-glycero-3-phosphoethanolamine
-4.43
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D.5. NAO metabolomics enzyme assay

Table D.6.: NAO metabolomics enzyme assay, cofactor mixture 1. Putatively identified
metabolites with significant fold changes (rank product FDR<0.05).
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91.06332 16.25 C3H9NO2 2 3-Aminopropane-1,2-diol 4.55

116.01107 6.26 C4H4O4 3 Fumarate 4.18

116.13130 26.82 C6H16N2 1 1,6-diaminohexane 2.69

307.08411 13.56 C10H17N3O6S 3 Glutathione 2.18

247.11681 16.19 C9H17N3O5 3 Thr-Ala-Gly 2.06

192.08039 9.48 C19H28O6S 1 3b-16a-Dihydroxyandrostenonesulfate 1.8

206.09052 16.2 C7H14N2O5 5 Thr-Ser 1.66

444.23244 11.12 C18H32N6O7 7 Ala-Leu-Asn-Gln 1.54

395.01239 17.6 C10H14N5O6PS21 Molybdopterin 1.5

289.16349 12.33 C12H23N3O5 5 Leu-Ala-Ser 1.48

217.10631 16.02 C8H15N3O4 3 Ala-Ala-Gly 1.33

189.07500 16.15 C6H11N3O4 3 Asn-Gly 1.27

248.11955 9.7 C10H20N2O3S 1 Met-Val 1.24

181.07403 12.33 C9H11NO3 11 L-Tyrosine 1.23

541.06101 18.44 C15H21N5O13P2 1 Cyclic ADP-ribose (fragment of NAD) 1.2

208.05839 9.35 C7H12O7 1 1-O-methyl-&beta;-D-glucuronate 1.2

483.31712 16.15 C22H41N7O5 2 Arg-Leu-Val-Pro 1.18

271.25112 6.07 C16H33NO2 4 [FA amino(16:0)] 2R-aminohexadecanoic acid 1.17

337.13079 13.64 C12H23N3O6S 1 Met-Thr-Ser 1.16

317.17402 8.82 C17H23N3O3 2 Leu-Trp 1.15

233.10131 16.03 C8H15N3O5 4 Ala-Gly-Ser 1.14

406.22167 12.51 C20H30N4O5 7 Leu-Phe-Gln 1.14

260.11206 17.79 C9H16N4O5 4 Ala-Asn-Gly 1.14

129.07901 13 C6H11NO2 9 L-Pipecolate (fragment of peptide) -1.54

187.12072 5.38 C9H17NO3 3 N-Heptanoylglycine -1.54

258.08519 7.78 C10H14N2O6 3 Ribothymidine -1.54

264.07438 5.95 C12H12N2O5 1 diformylkynurenine -1.56

288.05909 13.67 C10H12N2O8 1 Orotidine -1.56

175.06326 11.2 C10H9NO2 12 3-Indoleglycolaldehyde (fragment of indole 3-acetamide) -1.59

173.10506 5.73 C8H15NO3 5 N-Acetyl-L-leucine -1.61

237.06341 6.98 C16H23N6O9P 1 glutamyl-beta-ketophosphonate-adenosine -1.61

214.02401 14.56 C5H11O7P 6 2-Deoxy-D-ribose 5-phosphate -1.61
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203.07905 6.33 C8H13NO5 2 N2-Acetyl-L-aminoadipate -1.61

209.06889 6.03 C10H11NO4 3
N-Benzyloxycarbonylglycine (fragment of

4-hydroxyphenylacetylglutamic acid)
-1.61

139.97787 15.56 C2H4O5S 1 Sulfoacetate -1.61

231.11083 5.75 C10H17NO5 3 Suberylglycine (fragment of N-acetyl-L-leucine) -1.61

161.06878 19.02 C6H11NO4 10 N-Methyl-L-glutamate -1.64

174.07931 11.07 C10H10N2O 4 Indole-3-acetamide -1.64

351.14660 13.03 C13H25N3O6S 1 Met-Thr-Thr -1.67

252.07445 12.14 C11H12N2O5 1 5-Hydroxy-N-formylkynurenine -1.69

238.09537 13.11 C11H14N2O4 2 Gly-Tyr -1.69

165.04236 5.61 C8H7NO3 8 Formylanthranilate (fragment of 3-methyldioxyindole) -1.69

193.07366 5.7 C10H11NO3 10 Phenylacetylglycine (fragment of N-acetyl-L-phenylalanine) -1.75

165.04603 15.8 C5H11NO3S 4 L-Methionine S-oxide -1.75

223.08441 5.92 C11H13NO4 2 Bendiocarb (fragment of N-acetylvanilalanine) -1.82

147.03192 5.65 C8H5NO2 2 Isatin (fragment of 6-hydroxykynurenate) -1.92

248.07929 6.17 C12H12N2O4 1 5-Hydroxyindoleacetylglycine -1.92

335.14806 9.49 C16H21N3O5 1 Gly-Pro-Tyr -1.92

142.03766 7.06 C5H6N2O3 3 5-Hydroxymethyluracil -1.96

182.08442 8.34 C12H10N2 1 Harman -2.04

168.06871 8.65 C11H8N2 1 beta-Carboline -2.04

243.10090 8.49 C13H13N3O2 1 methoxy-PU -2.04

145.05282 5.54 C9H7NO 7 3-Methyleneoxindole -2.13

207.08962 5.68 C11H13NO3 6 N-Acetyl-L-phenylalanine -2.17

146.04802 6.02 C8H6N2O 1 1(2H)-Phthalazinone -2.22

285.14768 7.75 C16H19N3O2 1 Cynometrine -2.27

240.02364 20.29 C6H12N2O4S2 2 L-Cystine -2.38

189.04255 5.82 C10H7NO3 6 Kynurenate -2.44

284.10091 15.71 C24H32N4O12 1 Tyr-Glu-Glu-Glu -2.5

190.07415 7.07 C10H10N2O2 2 L-5-benzyl-hydantoin -2.63

197.06890 13.19 C9H11NO4 2 3,4-Dihydroxy-L-phenylalanine -3.13

288.14724 7.39 C16H20N2O3 4
Methyl

2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-p-toluate
-3.57

264.08982 5.53 C16H12N2O2 1 Perlolyrine (fragment of 3-methyldioxyindole) -3.85

191.06129 5.89 C7H13NO3S 1 N-Acetylmethionine -3.85

177.04598 5.94 C6H11NO3S 3 N-Formyl-L-methionine -4.17

205.03768 5.66 C10H7NO4 2 6-Hydroxykynurenate -5.26
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Table D.7.: NAO metabolomics enzyme assay, cofactor mixture 2. Putatively identified
metabolites with significant fold changes (rank product FDR<0.05).

M
ea

su
re

d
m

as
s

R
et

en
tio

n
tim

e
(m

in
)

Pr
ed

ic
te

d
fo

rm
ul

a

Is
om

er
s

Putative metabolite

Fo
ld

ch
an

ge

116.01107 6.26 C4H4O4 3 Fumarate 5.2

192.08039 9.48 C19H28O6S 1 3b-16a-Dihydroxyandrostenonesulfate 2.29

389.17940 12.39 C16H27N3O8 2 Glu-Glu-Ile 1.78

429.29547 16.11 C20H39N5O5 5 Ala-Leu-Lys-Val 1.5

472.26365 24.38 C20H36N6O7 7 Gln-Lys-Thr-Pro 1.32

407.16585 18.41 C14H25N5O9 2 Asn-Thr-Ser-Ser 1.31

428.23813 24.37 C18H32N6O6 2 Ala-Lys-Asn-Pro 1.31

416.23841 20.35 C17H32N6O6 4 Ala-Lys-Ala-Gln 1.13

306.07606 18.75 C20H32N6O12S2 1 Glutathione disulfide 1.13

348.20143 24.61 C14H28N4O6 1 Lys-Thr-Thr 1.12

253.02538 7.07 C10H8N3O3Cl 1
5-Amino-4-chloro-2-(2,3-dihydroxyphenyl)-3(2H)-

pyridazinone
-1.33

252.07445 12.14 C11H12N2O5 1 5-Hydroxy-N-formylkynurenine -1.36

117.04268 7.21 C4H7NO3 5 succinamate -1.46

358.12775 6 C17H18N4O5 1 202-791 -1.49

189.04255 5.82 C10H7NO3 6 Kynurenate -1.5

264.07438 5.95 C12H12N2O5 1 diformylkynurenine -1.58

284.10091 15.71 C24H32N4O12 1 Tyr-Glu-Glu-Glu -1.59

193.07366 5.7 C10H11NO3 10 Phenylacetylglycine (fragment of N-acetyl-L-phenylalanine) -1.63

173.10506 5.73 C8H15NO3 5 N-Acetyl-L-leucine -1.67

205.03768 5.66 C10H7NO4 2 6-Hydroxykynurenate -2.03

207.08962 5.68 C11H13NO3 6 N-Acetyl-L-phenylalanine -2.18

223.08441 5.92 C11H13NO4 2 Bendiocarb (fragment of N-acetylvanilalanine) -2.2

177.04598 5.94 C6H11NO3S 3 N-Formyl-L-methionine -3.62

191.06129 5.89 C7H13NO3S 1 N-Acetylmethionine -4.89
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Table D.8.:Δnao metabolic profiling, pHILIC. Putatively identified metabolites with
significant fold changes (rank product FDR<0.05).
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296.10068 15.78 C13H16N2O6 2 Asp-Tyr 1.89

246.13286 18.76 C9H18N4O4 2 N2-(D-1-Carboxyethyl)-L-arginine (fragment of peptide) 1.53

543.33241 4.33 C28H50NO7P 3 LysoPC(20:4(5Z,8Z,11Z,14Z)) -1.34

465.32187 4.4 C23H48NO6P 3 [PC (15:1)] 1-(1Z-pentadecenyl)-sn-glycero-3-phosphocholine -1.39

509.34872 4.38 C25H52NO7P 8 LysoPC(17:0) -1.43

451.30624 4.46 C22H46NO6P 2 [PC (14:1)] 1-(1E-tetradecenyl)-sn-glycero-3-phosphocholine -1.43

154.00305 12.32 C3H7O5P 3 Propanoyl phosphate -1.46

523.36387 4.34 C26H54NO7P 9 [PC (18:0)] 1-octadecanoyl-sn-glycero-3-phosphocholine -1.48

495.33252 4.42 C24H50NO7P 5 [PC (16:0)] 1-hexadecanoyl-sn-glycero-3-phosphocholine -1.5

509.38550 4.41 C26H56NO6P 8 LysoPC(O-18:0) -1.54

481.31676 4.47 C23H48NO7P 8 [PC (15:0)] 1-pentadecanoyl-sn-glycero-3-phosphocholine -1.55

310.28727 3.55 C20H38O2 16 [FA (20:0)] 11Z-eicosenoic acid -1.55

753.53031 3.91 C42H76NO8P 25
[PC (14:0/20:4)] 1-tetradecanoyl-2-(5Z,8Z,11Z,14Z-

eicosatetraenoyl)-sn-glycero-3-phosphocholine
-1.55

135.05453 9.92 C5H5N5 1 Adenine -1.63

112.02734 8.59 C4H4N2O2 2 Uracil -1.73

338.31849 3.53 C22H42O2 9 [FA (22:0)] 13Z-docosenoic acid -1.73

133.07388 7.39 C5H11NO3 4 3-nitro-2-pentanol (fragment of 5-methylthioadenosine) -1.74

297.08976 7.36 C11H15N5O3S 2 5’-Methylthioadenosine -1.78

247.06925 17.94 C9H13NO7 1 N-Succinyl-L-glutamate -2.12

339.99585 19.67 C6H14O12P2 14 D-Fructose 1,6-bisphosphate -2.8



D.6. NAO null mutant metabolic profiling 221

Table D.9.:Δnao metabolic profiling, HILIC. Putatively identified metabolites with
significant fold changes (rank product FDR<0.05).
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191.06171 5.94 C7H13NO3S 1 N-Acetylmethionine 2.97

649.46769 7.65 C34H68NO8P 21
[PE (14:0/15:0)] 1-tetradecanoyl-2-pentadecanoyl-sn-glycero-

3-phosphoethanolamine
1.84

368.34439 5.24 C27H44 1 [ST] (5Z,7E)-9,10-seco-5,7,10(19)-cholestatriene 1.7

517.31638 9.72 C26H48NO7P 4
[PC (18:3)]

1-(9Z,12Z,15Z-octadecatrienoyl)-sn-glycero-3-phosphocholine
-1.32

567.33238 9.34 C30H50NO7P 2
[PC (22:6)] 1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-

glycero-3-phosphocholine
-1.39

569.34826 9.33 C30H52NO7P 2 LysoPC(22:5(4Z,7Z,10Z,13Z,16Z)) -1.45

571.36385 9.25 C30H54NO7P 1 LysoPC(22:4(7Z,10Z,13Z,16Z)) -1.47

495.33252 9.69 C24H50NO7P 5 [PC (16:0)] 1-hexadecanoyl-sn-glycero-3-phosphocholine -1.47

297.08978 11.33 C11H15N5O3S 2 5’-Methylthioadenosine -1.49

353.23310 7.92 C20H33O5 2 13,14-Dihydro- lipoxin A4 -1.56

220.10589 20.55 C8H16N2O5 3 Thr-Thr -1.82

358.18509 20.52 C15H26N4O6 3 Ala-Thr-Ala-Pro -1.85

208.58234 20.6 C19H23N5O6 1 Phe-Asp-His -1.92

422.08255 17.26 C12H23O14P 5 alpha,alpha’-Trehalose 6-phosphate -2.13

236.08295 20.46 C8H16N2O4S 1 Met-Ser -2.27

252.08579 20.6 C10H12N4O4 2 N-D-Ribosylpurine (fragment of peptide) -2.33
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Table D.10.: NAM metabolomics enzyme assay, cofactor mixture 1. Putatively identified
metabolites with significant fold changes (rank product FDR<0.05).
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123.03210 7.46 C6H5NO2 4 Nicotinate 2.81

309.10597 17.27 C11H19NO9 5 N-Acetylneuraminate 2.45

248.10080 18.71 C9H16N2O6 1 Glu-Thr 2.4

132.04224 6.13 C5H8O4 16 2-Acetolactate 1.94

222.06736 22.74 C7H14N2O4S 4 L-Cystathionine 1.92

147.05319 16.64 C5H9NO4 14 L-Glutamate 1.83

189.06379 7.16 C7H11NO5 4 N-Acetyl-L-glutamate 1.79

351.19078 15.7 C16H25N5O4 1 Val-Pro-His 1.76

277.10981 15.03 C10H19N3O4S 3 Met-Ala-Gly 1.69

118.02663 6.43 C4H6O4 7 Succinate 1.64

133.03753 17.59 C4H7NO4 4 L-Aspartate 1.57

257.10294 20.07 C8H20NO6P 1 sn-glycero-3-Phosphocholine 1.51

145.07386 27.04 C6H11NO3 9 5-hydroxy-pipecolate (fragment of peptide) 1.48

308.15822 27.02 C12H24N2O7 2 Fructoselysine 1.38

123.57660 29.57 C10H21N3O4 1 Lys-Thr 1.3

345.04732 15.69 C10H12N5O7P 3 3’,5’-Cyclic GMP 1.27

379.21084 12.44 C19H29N3O5 3 Leu-Phe-Thr -1.37

155.03487 19.62 C3H10NO4P 3 N-Methylethanolamine phosphate -1.4

131.05820 6.58 C5H9NO3 14 N-Acetyl-beta-alanine -1.41

117.04262 6.74 C4H7NO3 5 succinamate -1.43

392.20200 7.03 C22H32O4S 1

[ST hydroxy(2:0/2:0)] (7E)-(3S,6RS)-3-hydroxy-6,19-epithio-

23,24-dinor-9,10-seco-5(10),7-choladien-22-al

S,S-dioxide

-1.47

138.57299 27.92 C11H23N3O3S 1 Lys-Met -1.48

321.18005 26.4 C15H23N5O3 1 Phe-Arg -1.48

172.12126 26.03 C16H32N4O4 1 Lys-Val-Val -1.49

424.26875 12.96 C21H36N4O5 2 Ile-Val-Pro-Pro -1.54

384.24826 25.49 C17H32N6O4 2 Leu-Pro-Arg -1.56

470.18344 14.69 C20H30N4O7S 5 Ala-Met-Ser-Tyr -1.57

384.23755 13.06 C18H32N4O5 3 Ala-Val-Val-Pro -1.62

502.26292 6.16 C22H46O8S2 1 [FA (22:0/2:0/2:0)] Docosanediol-1,14-disulfate -1.65

271.25093 7.84 C16H33NO2 4 [FA amino(16:0)] 2R-aminohexadecanoic acid -1.76
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129.15178 11.08 C8H19N 2 Octylamine -1.89

145.15790 43.66 C7H19N3 1 Spermidine -2.11

352.13067 7.31 C21H20O5 10 [Fv] Pongachalcone II -2.95

122.04802 8.63 C6H6N2O 4 Nicotinamide -17.7

Table D.11.: NAM metabolomics enzyme assay, cofactor mixture 2. Putatively identified
metabolites with significant fold changes (rank product FDR<0.05).
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260.13719 13.59 C11H20N2O5 4 Glu-Leu 2.86

246.10381 13.51 C10H18N2O3S 2 Met-Pro 2.75

123.03210 7.46 C6H5NO2 4 Nicotinate 2.64

435.22368 16.07 C19H29N7O5 2 Phe-Asn-Arg 2.55

116.01094 6.12 C4H4O4 3 Fumarate 1.91

277.10981 15.03 C10H19N3O4S 3 Met-Ala-Gly 1.84

351.19078 15.7 C16H25N5O4 1 Val-Pro-His 1.84

301.14272 13.07 C16H19N3O3 3 Trp-Pro 1.44

257.10294 20.07 C8H20NO6P 1 sn-glycero-3-Phosphocholine 1.41

443.18407 16 C18H29N5O6S 1 Cys-Gln-Pro-Pro 1.4

464.24182 15.01 C18H36N6O6S 1 Cys-Lys-Lys-Ser 1.38

309.10597 17.27 C11H19NO9 5 N-Acetylneuraminate 1.32

189.07485 21.22 C6H11N3O4 3 Asn-Gly 1.31

135.05462 14.54 C5H5N5 1 Adenine 1.25

135.06836 5.67 C8H9NO 4 2-Phenylacetamide 1.19

344.20588 13.57 C15H28N4O5 9 Leu-Val-Asn 1.01

186.13685 23.93 C18H36N4O4 3 Leu-Leu-Lys -1.38

309.16870 14.79 C15H23N3O4 2 Lys-Tyr -1.42

186.12421 25.74 C16H32N6O4 1 Val-Val-Arg -1.43

384.23755 13.06 C18H32N4O5 3 Ala-Val-Val-Pro -1.44
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189.10014 6.23 C8H15NO4 5 2 -(Butylamido)-4-hydroxybutanoic acid -1.44

206.07245 14.82 C7H14N2O3S 1 Met-Gly -1.46

345.18996 13.51 C15H27N3O6 3 Leu-Val-Asp -1.5

280.10601 13.5 C13H16N2O5 2 Phe-Asp -1.51

263.09396 15.08 C9H17N3O4S 3 Ala-Ala-Cys -1.52

379.21084 12.44 C19H29N3O5 3 Leu-Phe-Thr -1.53

328.17468 14.83 C14H24N4O5 3 Val-Asn-Pro -1.61

502.26292 6.16 C22H46O8S2 1 [FA (22:0/2:0/2:0)] Docosanediol-1,14-disulfate -1.62

72.05753 5.69 C4H8O 4 Butanal -1.65

129.15178 11.08 C8H19N 2 Octylamine -1.65

147.05316 7.7 C5H9NO4 14 N-hydroxy-N-isopropyloxamate -1.74

262.10263 10.28 C22H32N6O7S 2 Asn-Met-Phe-Asn -1.85

455.27449 12.79 C21H37N5O6 5 Asn-Leu-Leu-Pro -1.98

122.04802 8.63 C6H6N2O 4 Nicotinamide -9.72
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Introduction

Kinetic models of metabolism require quantitative knowledge of

detailed kinetic parameters (e.g. maximum reaction rates, enzyme

affinities for substrates and regulators). However, our knowledge

about these parameters is often uncertain. When the parameters

are measured, various sources of error can affect the results:

experimental noise at the technical and biological levels,

systematic bias introduced by parameters being measured in vitro

instead of in vivo or by the choice of specific experimental

conditions (pH, temperature, ionic strength, etc.). Moreover, a

substantial number of important parameters have never been

measured and the estimates included in models are based either on

values measured in closely related species or on the general

distribution of similar parameters [1]. Few general methods for

dealing with this uncertainty have been suggested [2–6].

Here we present an analysis of the effect of parameter

uncertainties on a particularly well defined example of a

quantitative metabolic model: the model of glycolysis in blood-

stream form Trypanosoma brucei [7] (see Fig. 1). This ordinary

differential equation (ODE) model is mainly using parameters

measured on purified enzymes rather than fitted, and, since its first

publication in 1997, it has been updated [8] and extended [9–11]

several times, making it one of the most highly refined dynamic

models of a metabolic pathway published to date. The model has

been successfully used to predict the ‘‘turbo explosion’’ that would

happen in the absence of the glycosome, the subcellular

compartment in which the first seven enzymes of glycolysis are

localized in T. brucei [8]. This important property was confirmed

experimentally more than 10 years after the model was initially

proposed [11]. In this paper we used the last updated version of

the model published [11] with slight modifications to take into

account the equilibrium constants of all reactions (see methods).

Explicitly considering the uncertainties of parameters in the

analysis of the model allowed us to gain interesting new insights

into its behaviour. Most importantly, our analysis allowed us to

quantify the degree of confidence concerning diverse properties of

the system, including the hierarchy of control which is relevant for

prioritizing potential drug targets. The resulting quantitative

profile of model uncertainties, including the identification of
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major fragilities and areas in need of further examination, provides

a solid basis for future model extensions. These will in turn

introduce new uncertainties and should be dealt with using the

same general framework established here.

Results

Collecting information
In order to specify the uncertainty associated with each

parameter, we gathered all available information relating to the

sources of the values used in the model. Information included data

on how kinetics were measured, the number of replicates and the

standard error of mean values when available, additional

calculations used to estimate the parameter from the observed

values, and any ‘‘corrections’’ for additional factors such as

temperature or pH. For this purpose, we created the ‘‘SilicoTryp’’

wiki, a MediaWiki-based (http://www.wikimedia.org) website

dedicated to the detailed documentation of the sources of

parameters used in the latest version of the model of glycolysis

in T. brucei (http://silicotryp.ibls.gla.ac.uk/wiki/Glycolysis) [10].

Each reaction is described on its own page, which contains the rate

equation and the detailed references and calculations for each

parameter (see Fig. 2 for an example).

From the information collected, probability distributions could

be inferred for each parameter as described in Methods.

supplementary text S1 shows the estimated distributions for all

parameters.

The effects of uncertainty
To model the effect of uncertainty, we sampled values for each

parameter according to its probability distribution, generating a

ensemble of alternative models. Together these alternative models

accurately represent our degree of uncertainty about the correct

parameters, assuming that our knowledge of each parameter value

is independent of the other parameters (see Methods for one

example, the equilibrium constant, where this assumption is

violated and needs to be accounted for). This collection of models

can then be used to analyse model behavior and the associated

uncertainties. The same properties that were studied with the fixed

parameter version of the model can be studied with each

alternative model. The distribution of the results shows the

robustness and the degree of certainty we have about the inferred

model properties (e.g. the steady-state concentrations of the

metabolites and the control coefficients) considering our current

knowledge about the parameters and the topology of the model.

Reaching steady-state. The first property of the models that

we analyzed is whether or not a steady-state is reached in a

reasonable time. Our simulation uses the steady-state of the model

with the fixed set of parameters to set the initial concentrations of

the metabolites. From this initial state, each model is simulated

until steady-state is reached. Considering the generous threshold

we set for these simulations, steady-state should be reached

rapidly. Yet, only 33% of the 10,000 models reached steady-state

within 50 simulated minutes or less, and only 36% within 300

simulated minutes. As shown in Fig. 3, models that could not reach

steady-state within 300 minutes had all produced a very high

concentration of either 3-phosphoglycerate (3-PGA) or pyruvate.

The accumulation of these metabolites to unreasonable

concentrations indicates that the models contain fragilities.

These cases are studied in more detail below (section Effects on

steady-state concentrations).

Effects on steady-state flux. In bloodstream form T. brucei,

glucose is mainly converted to pyruvate in aerobic conditions,

while it is divided equally between pyruvate production and

glycerol production under anaerobic conditions [12,13]. These

flux distributions were also observed in cultured cell [14] and

reproduced by the model [7] (anaerobic conditions are modelled

by setting the Vmax of glycerol 3-phosphate oxidase (GPO,

reaction used to model the mitochondrial glycerol 3-phosphate

dehydrogenase coupled with the trypanosome alternative oxidase)

to zero, the only model reaction requiring oxygen; the

experimental measurements correspond to its inhibition as T.

brucei does not survive total anaerobic conditions [9]).

This property is well-conserved in all our models using the full

range of plausible parameter values (see Fig. 4). As expected, the

effect of uncertainty is more important in aerobic conditions: for

most of the models that do reach steady-state within 300 minutes,

the proportion of glucose that ends in glycerol varies between 0

and 20% (mean + standard deviation of the models that reaches

steady-state within 300 minutes: 9:1+5:9%). In contrast, under

anaerobic conditions, the glycolytic flux is always shared 50/50%

between the production of glycerol and pyruvate (50:0+
4 � 10{4%; the small error is most probably due to numerical

rounding effects).

Indeed, anaerobically, the flux distribution is entirely deter-

mined by the topology and stoichiometry of the model: the 6-

carbon product derived from glucose (fructose 1,6-bisphosphate) is

split into two 3-carbon products by aldolase. Anaerobically, the

NADH formed in the pyruvate branch can only be reoxidized to

NADz in the glycerol branch [7]. Hence the 50/50% split is

independent of the parameters of the model as expected from the

topology of the model. Under aerobic conditions, glycerol 3-

phosphate is mostly reoxidized using the mitochondrial glycerol 3-

phosphate dehydrogenase (GPO) and then re-routed through the

pyruvate branch via triose-phosphate isomerase [7]. However, a

small proportion of the flux ends with the production of glycerol.

This small proportion depends on the parameters used in the

model. No single parameter can easily predict the proportion of

the flux that ends in the production of glycerol.

The fixed-parameter version of the model (i.e. the model with

the set of parameter defined to be as close as possible to the model

described in [10]) predicted only a very small portion of the

Author Summary

An increasing number of mathematical models are being
built and analysed in order to obtain a better understand-
ing of specific biological systems. These quantitative
models contain parameters that need to be measured or
estimated. Because of experimental errors or lack of data,
our knowledge about these parameters is uncertain. Our
work explores the effect of including these uncertainties in
model analysis. Therefore, we studied a particularly well
curated model of the energy metabolism of the parasite
Trypanosoma brucei, responsible for African sleeping
sickness. We first collected all the information we could
find about how the model parameters were defined on a
website, the SilicoTryp wiki (http:///silicotryp.ibls.gla.ac.uk/
wiki/). From this information, we were able to quantify our
uncertainty about each parameter, thus allowing us to
analyse the model while explicitly taking these uncertain-
ties into account. We found that, even though the model
was well-defined and most of its parameters were
experimentally measured, taking into account the remain-
ing uncertainty allows us to gain more insight into model
behavior. We were able to identify previously unrecog-
nised fragilities of the model, leading to new hypotheses
amenable to experimental testing.
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glycolytic flux through the glycerol branch, while a wider range of

plausible values are permitted when parameter uncertainty is

considered. Indeed, a wide range of aerobic flux distributions has

been measured experimentally: from a few percent glycerol

measured by [14] to about 9% glycerol measured by [15]. This

range of observed biological variety can be explained using the

variety of kinetic parameters included in our collection of models,

or by partial anaerobiosis leading to a mixture of oxygenation

states in individual cells within the population measured.

Effects on steady-state concentrations. Using our

collection of models, we are able to see the effect of parameter

uncertainties on the steady-state concentration estimates.

Figure 1. Aerobic glycolysis in bloodstream form T. brucei. Abbreviations: Metabolites: Glc-6-P = Glucose 6-phosphate, Fru-6-P = Fructose 6-
phosphate, Fru-1,6-BP = Fructose 1,6-bisphosphate, DHAP = dihydroxyacetone phosphate, GA-3-P = glyceraldehyde 3-phosphate, Gly-3-P = glycerol 3-
phosphate, 1,3-BPGA = 1,3-bisphosphoglycerate, 3-PGA = 3-phosphoglycerate, 2-PGA = 2-phosphoglycerate, PEP = phosphoenolpyruvate. Reactions:
1 = transport of glucose across the cytosolic membrane, 2 = transport of glucose across the glycosomal membrane, 3 = hexokinase,
4 = phosphoglucose isomerase, 5 = phosphofructokinase, 6 = aldolase, 7 = triosephosphate isomerase, 8 = glyceraldehyde 3-phosphate dehydroge-
nase, 9 = phosphoglycerate kinase, 10 = transport of 3-PGA across the glycosomal membrane, 11 = phosphoglycerate mutase, 12 = enolase,
13 = pyruvate kinase, 14 = transport of pyruvate across the cytosolic membrane, 15 = glycerol 3-phosphate dehydrogenase, 16 = glycerol kinase,
17 = DHAP-Gly-3-P antiporter, 18 = glycerol-3-phosphate oxidation, 19 = ATP utilisation, 20 = adenylate kinase.
doi:10.1371/journal.pcbi.1002352.g001
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Considering only the models that reach steady-state within 300

simulated minutes, several cases can be distinguished (see Fig. 5

and supplementary text S2):

N For many metabolites, steady-state concentrations are well-

conserved in all plausible models and their distribution is

approximately log-normal: glucose 6-phosphate, fructose 6-

phosphate, glycosomal glyceraldehyde 3-phosphate, cytosolic

and glycosomal dihydroxyacetone phosphate and glycerol 3-

phosphate, mathrmNADz, NADH, 2-phosphoglycerate and

phosphoenolpyruvate. These distributions may be expected,

given that most of the parameters are sampled from log-

Figure 2. Example of a page of the SilicoTryp wiki. Each reaction of the model has its own page. On this page, the rate equation is specified
and a table includes all parameters with their detailed source and calculations when necessary.
doi:10.1371/journal.pcbi.1002352.g002

Figure 3. Steady-state concentration of pyruvate as a function
of the concentration of 3-phosphoglycerate at steady-state or
t = 300 minutes if steady-state is not reached before. The
contour lines indicate when steady-state was reached (in minutes of
simulated time). If steady-state was not reached before, simulations
were stopped at 300 minutes (see Methods). When a model did not
reach steady-state before 300 minutes, the concentrations of pyruvate
and/or 3-phosphoglycerate reached unreasonably high concentrations
(black contour lines). Note that the models that do not reach steady-
state within 300 minutes because of 3-PGA accumulation will
eventually reach steady-state at very high 3-PGA concentrations if the
simulations are run much longer. This is not the case for the models
that show pyruvate accumulation. Since pyruvate kinase is not product-
sensitive in the model, nothing stops the accumulation of pyruvate and
steady state is never reached (see supplementary Fig. S1 for example of
simulations).
doi:10.1371/journal.pcbi.1002352.g003

Figure 4. Effect of the uncertainties on the distribution of the
glycolytic flux between the production of pyruvate and
glycerol. The glycolytic flux is defined as the sum of the fluxes
producing glycerol and pyruvate. The black lines represents the
percentage of the glycolytic flux in the pyruvate branch (top) and the
glycerol branch (bottom) in the fixed parameter model. The red line is
the distribution of the percentage of the glycolytic flux in the collection
of models generated from the parameter probability distributions. The
division of the flux between the pyruvate branch and the glycerol
branch is well conserved. The effect of the uncertainties of the
parameters is almost non-existent in anaerobic conditions (simulated by
setting the glycerol 3-phosphate oxidase Vmax parameter to 0). In
aerobic conditions the effect is more important, indicating that this
division is not entirely due to the topology of the model in this case.
doi:10.1371/journal.pcbi.1002352.g004
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normal distributions and thus approximately log-normal

distributions for the steady-state concentrations are expected

too.

N For several metabolites, steady-state concentrations do not

follow approximate log-normal distributions, although their

steady-state concentrations are distributed within a range of

values consistent with physiological metabolite concentrations.

These include glycosomal and cytosolic ATP, ADP, AMP,

glycosomal and cytosolic glucose, fructose 1,6-bisphosphate

and glycosomal 1,3-bisphosphoglycerate. For example, the

concentration of glycosomal ATP and AMP is predicted to be

between 0 and 6 mM (see Fig. 5 B. for ATP), compared to the

fixed-parameter values of 4.2 mM and 0.25 mM respectively.

The concentration is bounded by the fact that the total

adenine nucleotide concentration in the glycosome is set to

6 mM in the model. Given the uncertainty regarding the exact

parameters, any ratio between ATP and AMP seems possible

and consistent with our parameter knowledge.

N For two metabolites, 3-phosphoglycerate and pyruvate, the

steady-state concentration distribution has a long, heavy tail,

indicating that some combinations of plausible parameter

values can lead to extreme predicted concentrations (several

hundreds to thousands of mmol=l, see Fig. 3). These cases

were studied in more detail as they point to interesting

fragilities in the existing model, which indicate a need to refine

our knowledge of some parameters and/or model topology.

The accumulation of 3-phosphoglycerate (3-PGA) and/or

pyruvate to unreasonable concentrations causes some models to

reach steady-state at extremely high concentrations or to fail

reaching steady-state within 300 minutes. This occurs when the

maximum reaction rates (Vmax) of phosphoglycerate mutase

(PGAM) for the 3-PGA accumulation or pyruvate transport

(PyrT) for the pyruvate accumulation are smaller than their mean

values. Fig. 6 shows the percentage of models that break as a

function of PGAM Vmax (Fig. 6 A) and PyrT Vmax (Fig. 6 B). The

data show that these models break even when these parameters

have values very close to the original value used in the fixed-

parameter version of the model. Yet, these two reactions can both

be inhibited experimentally in vivo. When PGAM was inhibited

using tetracycline-inducible RNAi, diminishing Vmax to 51% of its

original value [10], no adverse effects on the viability of the

organism were observed. The pyruvate transporter can also be

inhibited substantially before the cells start dying [16]. The reason

for the newly revealed model fragilities thus could be twofold:

either the relevant parameter values are significantly higher than

the currently used values (which are fitted, not measured; [10]), or

some unknown regulatory interaction or missing reaction stabilizes

the biological system. The pyruvate accumulation is due to a

known fragility of the model: the pyruvate kinase is insensitive to

its products, which can lead to the accumulation of pyruvate when

the Vmax of its transporter is not high enough.

Figure 5. Distribution of the steady-state concentrations of
four metabolites. The cytosolic 2-phosphoglycerate and glycosomal
ATP steady-state concentrations are consistent with physiological
metabolite concentration, whereas 3-phosphoglycerate and pyruvate
sometimes reach hundreds of millimoles per liter. The value for the
fixed parameter model is indicated by a vertical black line.
doi:10.1371/journal.pcbi.1002352.g005

Figure 6. Percentage of sampled models that reach steady-
state within 300 minutes as a function of the Vmax of pyruvate
transport and phosphoglycerate mutase. (A) Percentage of
models that reach steady-state within 300 minutes as a function of
phosphoglycerate mutase Vmax (B) Percentage of models that reach
steady-state within 300 minutes as a function of pyruvate transport
Vmax. The red line is the distribution of the parameter as it is usually
sampled. The black line is the fixed-parameter value. A model which has
a value for one of these two parameters smaller than the mean will
easily fail to reach steady-state, whatever the other parameter values
and despite these Vmax values still being close to their mean. This
reveals fragilities in the model.
doi:10.1371/journal.pcbi.1002352.g006
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Vanderheyden et al. have measured the pyruvate efflux Vmax at

370C in bloodstream form T. brucei [17] as 499+34 nmol/min/

mg of protein (mean + SD). Assuming an activation energy of

50 kJ/mol, the Vmax at 250C would be about 230 nmol/min/mg

of protein, very close to the 200 nmol/min/mg of protein

currently used in the model. Using Vanderheyden et al.’s value

to compute the probability distribution of the Vmax of pyruvate

transport (using the corrected mean and calculating the standard

deviation as for any value with a measured mean and unknown

standard deviation; see methods), only 0.58% of models cannot

rapidly reach a steady-state because of pyruvate accumulation

(pyruvate concentration at 300 minutes higher than 100 mM),

compared to 35.4% when the Vmax is set as described in Methods).

But this still imply that even a small inhibition of the pyruvate

transporter should kill the cells, which is inconsistent with the

experimental observations [16]. Therefore, there is probably an

additional mechanism that prevents the accumulation of pyruvate

in the cytosol. Among the possible hypotheses, it is interesting to

note that alanine aminotransferase activity has been measured in

bloodstream forms by Spitznagel et al. [18] (419+10 nmol/min/

mg of protein in whole cell extracts at 370C). This enzyme, which

catalyses the reversible reaction pyruvatezglutamate<alanine
z2{oxoglutarate, was shown to be essential in bloodstream

form trypanosomes and might have a significant role in the

regulation of the intracellular pyruvate concentration.

Adding alanine aminotransferase into the model would require

adding several other reactions as well: the production and

recycling of 2-oxoglutarate and glutamate need to be incorporat-

ed, as well as the export of alanine [19,20] and probably 2-

oxoglutarate [21].

Effects on control coefficients. Control coefficients are one

of the most important high-level properties of kinetic models of

metabolism: they allow the quantification of how much influence

each reaction has on the flux of the pathway. In the glycolytic

model of T. brucei, individual control coefficients have been used to

predict the most promising trypanocidal drug targets. The T. brucei

glycolysis model published by Alberts et al. [10] indicated that the

glucose consumption flux is controlled mainly by the glucose

transporter at 5 mM of extracellular glucose (control coefficient

CGlcTc
~0:98 [10]). As the sum of the control coefficients over the

pathway is one [22], the other enzymes have no or very little

control over the glucose consumption flux in this fixed-parameter

model.

Using our collection of models, we calculated the control

coefficients for every reaction and every model (see Methods).

These control coefficients were then ranked from the highest to

the lowest. Our analysis (Fig. 7) shows that, given our uncertainty

on the parameters, we cannot be certain about the identity of the

reaction that has most control over the glucose consumption

flux. Moreover, we show that the fixed-parameter model

scenario, where almost all the control is held by one reaction -

the glucose transporter - is not the only scenario possible, but

that even at 5 mM of glucose the control might be shared by

several reactions.

Fig. 7A (red) shows the reaction that has the highest control

coefficient over the glucose consumption flux as a percentage of

the sampled model. The glucose transporter has the highest

control over the glucose consumption flux in only 40.3% of the

models. A substantial proportion of models yield either the

phosphoglycerate mutase (PGAM, 31.1%) or GAPDH (28.5%) as

having the highest control coefficient.

In 1999, Bakker et al. [23] estimated the control coefficient over

the oxygen consumption flux of the glucose transporter experi-

mentally (at 5 mM of extracellular glucose) as being between 0.3

and 0.5. In the fixed-parameter model, the Vmax of the glucose

transporter was fitted to this control coefficient (0.4) by Alberts et

al. [10]. In 17.3% of our models, the glucose transporter has the

highest control coefficient over the oxygen consumption flux

(Fig. 7A (blue)). Among these models, the control coefficient of the

glucose transporter varies between 0.2 and 1.0; when another

reaction has the largest control coefficient, the control coefficient

of the glucose transporter is always lower than 0.4. A similar

distribution of the control coefficient is observed over the glucose

consumption flux. No single parameter alone can explain the wide

range of values of CGlcT . It has been shown, however, that the

extreme sensitivity of CGlcT to various parameters can be

attributed to the large difference between the Km values of the

glucose transporter and the next enzyme, hexokinase, towards

intracellular glucose [24].

Fig. 7B represents the number of reactions that exert some

control over the glucose consumption flux (defined as the

reactions with control coefficients above 0.001) as a percentage

Figure 7. Control coefficients in the collection of models. (A) Percentage of models which have either the glucose transporter (GlcTc),
phosphoglycerate mutase (PGAM) or glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as the reaction with the highest control coefficient either
over the glucose consumption flux (red) or the oxygen consumption flux (blue). (B) Percentage of models vs. the number of reactions that have a
control coefficient higher than 0.001. The color inside the bars represents the proportion that has either the glucose transporter, PGAM or GAPDH as
the reaction with the highest control coefficient over the glucose consumption flux within these subgroups.
doi:10.1371/journal.pcbi.1002352.g007
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of the sampled models. For 21% of the sampled models, only one

reaction controls the glucose consumption flux and this reaction

is most of the time the glucose transporter, as is the case in the

fixed-parameter model. When PGAM exerts most control over

the flux, it shares the control with at least one other reaction.

When GAPDH exerts most control over the flux, it shares the

control with at least four other reactions. Interestingly, the

activity of GAPDH has been reported to be inhibited by an

unknown compound [25]. If this inhibition is physiological and

also occurs in vivo, it might have an important role in the control

of glycolytic flux. Indeed, partial inhibition of GAPDH has

already been shown to decrease the glycolytic flux and kill the cell

[26]. The fact that PGAM exerts the most control in some models

might reflect our lack of knowledge about the parameters

describing the rate of this reaction. Further analysis of the

kinetics of this reaction is necessary to know whether it really

exerts some control over the glycolytic flux and thus represents

interesting potential drug target.

In the fixed-parameter model, shared control was only seen at

glucose concentrations higher than 5 mM [8]. Taking our

uncertainty about the parameters values into account shows that

this might be the case already at 5 mM of glucose, as has already

been suggested by the preliminary analysis of the sensitivity of

control coefficients to variations in Vmax values in this model [8].

Improving our knowledge about GAPDH and PGAM parame-

ters will allow us to know with a higher degree of confidence if

only one of these scenarios is relevant in vivo or if a similar

diversity can be found in a parasite population. This knowledge

will be essential to predict if a single glycolytic drug target is

sufficient or if multiple reactions need to be inhibited to control

parasite infections.

Discussion

Dynamic models of metabolism are powerful tools to infer

interesting and often unexpected properties of cellular physiology.

However, the data used to build models from diverse sources can

lack accuracy and precision. Here we demonstrate how model

output can vary when the uncertainties associated with incomplete

and variable datasets are explicitly considered in studying a model.

We took as an example the well characterised model of the

compartmentalised glycolysis in the parasitic protozoan T. brucei. It

should be noted that our assessment of the effect of parameter

uncertainty on the conclusions that are possible is very

conservative. Whenever possible, we have restricted our uncer-

tainty estimates to the level of experimental uncertainty seen

within a single assay. This ignores the systematic effects of

differences in, e.g., temperature, pH or ion compositions, or biases

introduced in sample preparation, all of which would increase

uncertainty as can also be seen when parameter values from

different laboratories are compared. However, even with these

relatively limited uncertainties, we were able to assess the

robustness and variability of various properties of the model.

The first property that we studied is the ability of the model to

reach steady-state rapidly. Surprisingly, a significant proportion

(60%) of the models we generated by sampling the parameters did

not allow the model to reach steady-state within 300 minutes, due

to the accumulation of either 3-phosphoglycerate or pyruvate in

the cytosol. This phenomenon could be attributed to two

individual parameters, the maximal reaction rates of phospho-

glycerate mutase and pyruvate transport which, when operating

below their mean value (but still very close to it), caused the

accumulation of two metabolites (3-phosphoglycerate and pyru-

vate respectively). For the pyruvate transporter, the analysis

suggested a mechanism that could avoid this problem: alanine

aminotransferase has been shown, unexpectedly, to be essential in

bloodstream form T. brucei [18], and its activity comparable with

the rate of pyruvate efflux. This would be sufficient to exert a

substantial influence on the intracellular pyruvate concentration.

The maximal reaction rate of phosphoglycerate mutase is difficult

to measure directly [27], therefore further experimental and

theoretical studies are required to refine our knowledge about this

reaction. Indeed, the model predicts that current values for PGAM

are probably lower than those operative in T. brucei, and some

effort should be made to determine whether the values are indeed

higher.

We then analysed the distribution of the steady-state fluxes

between the pyruvate and glycerol producing branches of

glycolysis both in aerobic and anaerobic conditions. In totally

anaerobic conditions, the distribution was very well conserved.

Indeed, this property is entirely constrained by the topology of the

model and thus this result was expected. Our analysis shows that

the distribution of the fluxes is more variable in aerobic conditions,

consistent with previously unexplained variation in experimental

observations (although changes in oxygen tension within different

cells in measured populations would create the same effect).

Further analysis of the steady-state concentrations allowed us

to distinguish the metabolites that are only moderately affected by

the parameter uncertainties and follow an approximate log-

normal distribution, such as NADz and NADH, from the

metabolites that follow a more complex distribution such as

glycosomal ATP. ATP is constrained by a conserved sum,

therefore its steady-state concentration always stays within

reasonable limits. Technical limitations mean that the concen-

tration of glycosomal ATP is not directly accessible for

experimentation (glycosomes cannot be purified efficiently

enough). Therefore, only by acquiring additional data about

the parameters of the model can assumptions about these

concentrations at steady-state be refined.

Finally, we analysed the control coefficients of each enzyme

using our collection of models. These properties are especially

important in the case of glycolysis in T. brucei, as they allow us to

identify potential drug targets. Our analysis reveals that, although

the reaction that has the most control over the glucose

consumption flux is the glucose transporter in 40.3% of the

models, two other reactions maximally control the flux in a

significant proportion of the models: PGAM (31.1%) and GAPDH

(28.5%). Moreover, the activity of GAPDH has been reported to

be inhibited by an unknown metabolite [25]; if this inhibition

occurs in vivo, it might have an important role in the control of

glycolytic flux. Interestingly, partial inhibition of GAPDH has

been shown to affect parasite growth and glycolytic flux [26], and

selective inhibitors of the T. brucei enzyme have been shown to be

trypanocidal [28]. The rest of the control coefficient hierarchy is

more variable. Either this variability is a true reflexion of biological

noise or the result of our lack of knowledge about some parameters

of the model.

The data derived from the work performed here point to several

further studies, including analysis of the role of alanine amino

transferase in the regulation of pyruvate concentration and more

exact quantification of pyruvate transport and phosphoglycerate

mutase kinetics. The detailed description of parameter uncertainty

will now form the basis for a comprehensive Bayesian analysis and

extension of the model using alternative topologies [29]. These

analyses will allow us to quantify our posterior belief about the

parameters of the model when it is confronted with new

experimental data such as measured metabolite concentrations

in different conditions.
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Methods

The model
The model used in this paper is the last updated version [10,11]

of the glycolysis model of T. brucei first published by Bakker et al. in

1997 [7] (see Fig. 1).

To allow a straight-forward sampling of parameters, the rate

equations were rewritten to contain the equilibrium constant

instead of the ratio of Vmax values (reverse over forward), using the

Haldane equation [30]. This does not change the rates, but

simplifies the sampling of the parameters, as we do not need to

check for consistency with the thermodynamic equilibrium

constant. For example, the phosphoglucose isomerase (PGI) rate

equation was:

vPGI~Vmax �

Glc6Pg

KmGlc6P

{r � Fru6Pg

KmFru6P

1z
Glc6Pg

KmGlc6P

z
Fru6Pg

KmFru6P

ð1Þ

where r~
Vmaxreverse

Vmaxforward

. The Haldane equation gives:

KeqPGI~
Vmaxforward � KmFru6P

Vmaxreverse � KmGlc6P

ð2Þ

Therefore, the rate equation of PGI can be rewritten as:

vPGI~Vmax �

Glc6Pg

KmGlc6P

� (1{
Fru6Pg

Glc6Pg � Keq
)

1z
Glc6Pg

KmGlc6P

z
Fru6Pg

KmFru6P

ð3Þ

The list of sources used to compute the values of the equilibrium

constants is available in supplementary text S3 and on the

SilicoTryp wiki (http://silicotryp.ibls.gla.ac.uk/wiki/Glycolysis).

The model in [11] considered the transport reactions between

the cytosol and the glycosome and adenylate kinase (see special

cases) to be very fast compared the other reactions of the model.

Therefore, they were not explicitly modelled. To enable

consideration of the effect of parameter uncertainty on the rate

of these transport reactions, we modelled them explicitly using

mass action kinetics. As we considered that these reactions have an

equilibrium constant of unity (no preferential accumulation or

exclusion in one of the compartments), we used a single rate

parameter for each transport reaction. For example, the transport

of glucose between the cytosol and the glycosome is modelled as:

vGlcTg~k � Glcc{k � Glcg ð4Þ

The model is available as supplementary dataset S1 (SBML file

[31]). The parameter values are as in [11]. The equilibrium

constant are calculated from the Km values and the ration of

Vmaxreverse over Vmaxforward when necessary.

Probability distributions of the parameters
In order to sample the model parameters, we needed to define a

probability distribution for each parameter. These distributions

can be defined empirically using arbitrary shapes, but for the sake

of convenience it is usually appropriate to use standard shapes (e.g.

normal or log-normal distributions) and then to estimate the

parameters of these distributions (usually the mean and standard

deviation).

Km/Ki. These parameters represent concentrations,

therefore they cannot be negative and our uncertainty about

their values is best represented by a log-normal distribution.

For each Km or Ki value of the model, the mean and standard

deviation of the corresponding log-normal distribution must be

estimated from available experimental data (indicated as lmean
and lsd ). Five situations occur:

N The parameter has been measured experimentally: a mean (m)

and standard deviation (SD) or standard error (SEM~

SD �
ffiffiffi

n
p

, where n is the number of observations) are available.

lmean~log10(m) and lsd~log10(
SEM

m
z1). If a standard

deviation is available and the number of observations is not

specified, n is supposed to be 3.

N The parameter has been measured experimentally, but only a

mean value is reported. lmean is computed as above, lsd is

computed using the average relative standard error (RSE) of all

Km values of the model for which SD or SEM is available. The

value of RSE calculated from the published data is usually

between 10 and 20%, indicating that the RSE can be expected

to be similar for those Km values where it has not been specified.

N The parameter has not been measured, and no estimate of its

value is available. When no other information is available, the

parameter is calculated from the list of Km values of all T. brucei

enzymes retrieved from BRENDA [32] (lmean~{1:1,

lsd~1:35, Fig. 8).

N The parameter has not been measured, but some indication of

its mean is available, e.g. a value measured for a phylogenet-

ically closely related species (Trypanosoma cruzi or a Leishmania

species). This heterologous mean is used to compute the lmean
as above. As this value is considered to be more uncertain than

a value measured in T. brucei, the lsd is calculated so that the

upper or lower limit of the 95% confidence interval equals the

upper or lower limit of the 95% confidence interval of all T.

brucei enzyme retrieved from BRENDA (if the heterologous

mean is higher than the mean calculated from all T. brucei

Figure 8. Distribution of the Km values retrieved from the
BRENDA database. Km values retrieved from the database (green)
and a log-normal distribution with the same mean and standard-
deviation (red) are shown.
doi:10.1371/journal.pcbi.1002352.g008
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enzyme retrieved from BRENDA, then the upper limit is used,

otherwise, the lower limit is used). However, if the 95%

confidence interval calculated is bigger than ½0:1 �mean;
10 �mean� then ½0:1 �mean; 10 �mean� is used to calculate

lsd .

The Km values of PGAM used in the published version of the

model were measured in the presence of cobalt, as this was

believed to be the cofactor used by the enzyme. However, the

nature of the metallic cofactor used by this enzyme has recently

been questioned: Fuad et al. (2011) [33] have shown that the

concentration of cobalt is too small to be relevant in vivo. For this

reason, the Km values of PGAM were set according to the earlier

measurements done by Chevalier et al. (2000) [27]: Km

(3{PGA)~0:15+0:02 mM and Km(2PGA)~0:16+0.03 mM.

Keq. The equilibrium constants, Keq, can be calculated from

the Gibbs free energy of a reaction, DGr, using equation 5:

Keq~exp(
{DGo’

r

RT
) ð5Þ

DGo’
r is expressed in J/mol and can be positive, negative or null.

Therefore, we assumed that our uncertainty about the exact value

of DGo’
r can be described by a normal distribution. As a

consequence, according to equation 5, the plausible values of the

equilibrium constant will be log-normally distributed.

As the equilibrium constant does not depend on the organism

(assuming constant temperature, pH and ionic strength), the mean

and standard-deviation of the distribution can be calculated from

the various values reported in the literature (see supplementary

text S3). When only one published value could be found, the

standard deviation was calculated using the mean relative standard

deviation of the other equilibrium constants in the model as

described above.

Vmax. The maximum rate of the reactions (Vmax) can only

have positive values. The Vmax values are linked to the equilibrium

constant and Km values by the Haldane equation. Therefore, we

assume again that our uncertainty about them can best be

described by a log-normal distribution.

For each Vmax, the mean and standard deviation of the log-

normal distribution must be defined (respectively lmean and lsd).

When the Vmax had been measured, the lmean and lsd were

calculated the same way as for the Km values. When no

information was available, the lmean was set using the value

fitted by Alberts et al. [10] for the fixed-parameter model. In these

cases, the lsd was then set so that the upper limit of the confidence

interval (95%) is 4000 nmol/min/mg protein (the largest Vmax in

the model is 2862 nmol/min/mg protein for phosphoglycerate

kinase [10]).

If the Vmax was measured in the reverse direction (Vr
max), Vr

max

is sampled. Vmax is then calculated from the sampled Vr
max, Keq

and Km values using the Haldane equation. The value used for

phosphoglycerate kinase is calculated from the measured Vr
max.

However, as two of the Km values were not measured and

therefore have large standard deviations, sampling this Vmax from

the Vr
max, Km and Keq would result in sampling values much larger

than 4000 nmol/min/mg of proteins. Therefore, the phospho-

glycerate kinase Vmax was sampled using the calculated value as a

mean, and the standard deviation was calculated so that the upper

limit of the confidence interval (95%) is 4000 nmol/min/mg

protein.

The Vmax of GAPDH reported in the literature [10] was

measured in crude extracts where a non-identified metabolite

seems to inhibit it [25]. The inhibition factor (F ) was estimated by

Misset et al. [25] as about three-fold and was sampled separately in

our study. As F needs to be higher than 1, it was sampled using a

log-normal distribution (with mean~2 and sd calculated so that

the upper limit of the confidence interval (95%) is 3.5) to which 1 is

added. The Vmax of GAPDH in the model is then multiplied by

this sampled inhibition factor.

The glucose transporter Vmax was set according to the

measurements of Seyfang et al. [34]. Using the Vmax at 370C
and the activation energy they measured, we estimated the Vmax of

glucose transporter at 250C to 111:7+19:1 nmol/min/mg of

protein. Note that this value is close to the fitted value used in [10]

(108.9 nmol/min/mg of protein).

Transport reactions. The model includes several transport

reactions. Among them, only the transport rates across the

cytosolic membrane have been measured. The transport rates

across the glycosomal membrane have not been characterised and

are currently modelled using mass action kinetics (i.e., as non-

saturable, non-enzymatic reactions) to maintain maximal

compatibility with the published model [10,11]. The

corresponding parameters have not been measured. The

equilibrium constant of these transport reactions is assumed to

be 1, so that only one kinetic parameter is required per transport

reaction.

No information is available about the uncertainty of these

parameters. As these parameters are strictly positive, they are

sampled using a log-normal distribution as are Km and Vmax

values. The means are set to the minimum value so that the

reaction will be within 5% of equilibrium (using the mean values

for all the other parameters). The standard deviation is calculated

so that the upper limit of the confidence interval (95%) is equal to

100 times the mean to allow a large exploration of the parameter

space.

Specific cases. Bakker et al. [7] and the following versions of

the model included adenylate kinase implicitly, considering this

reaction to be at equilibrium. We modelled adenylate kinase using

mass action kinetics, with two rate constants k1 and k2. As only the

equilibrium constant of this reaction is known, k2 is sampled using

the same methods as for the parameters of the transport reactions.

k1 is then calculated from k2 and the sampled equilibrium

constant: k1~Keq � k2.

ATP utilization is modelled using mass action kinetics with a

single rate constant. As this reaction represents all of the cytosolic

reactions that consume ATP and are not explicitly included in the

model, the rate constant of this reaction is unknown. As for

glycosomal transport reactions, this parameter was sampled

according to a log-normal distribution. The mean used is the

value fitted by Bakker et al. [7]. The standard deviation is

calculated so that the upper limit of the 95% confidence interval

equals 2 times the mean.

The glucose transport across the cytosolic membrane is assumed

to be symmetric [7] based on experimental evidence [35].

Moreover, it exhibits a trans-acceleration phenomenon [36] which

is quantify by a parameter, a in the underlying model of the

transporter kinetics. As this parameter varies between 0 and 1, it

was sampled using a logit-normal distribution. The estimated

value from Bakker et al. [7] was used as a mean. The standard

deviation was arbitrarily set so that the upper limit of the 95%

confidence interval is the mean +20%.

Parameter sampling
All parameters were sampled using the MT19937 random

number generator of Makoto Matsumoto and Takuji Nishimura

[37] implemented in the GNU Scientific Library (GSL) [38]. The

random numbers where then transformed to follow their assumed
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probability distribution using the random number distribution

function implemented in the GSL library.

Steady-state calculations
The steady states were calculated using the SOSlib library [39].

Steady-state is considered if the mean+standard deviation of the

rates of change of all metabolite concentrations is lower than a

user-defined parameter ssThreshold of SOSlib. The initial

conditions were set using the steady-state concentrations calculat-

ed using the mean values of all parameters. For any sampled

model, it is assumed that steady state should be reached within

300 minutes of simulated time (steady state detection threshold

ssThreshold~0:01, parameter PrintStep~1 per simulated min-

ute). We checked that the steady-state calculations give similar

results in COPASI [40] and PySCeS [41] using their default

parameters. We also verified that the parameter sets that do not

allow the model to reach steady state in these conditions show

accumulation of individual metabolites beyond reasonable con-

centrations (hundreds or thousands of millimol per liter, see

Results and Fig. 3).

Control coefficients
The control coefficients were computed using the methodology

described by Bakker et al. [8]. The computation of control

coefficients requires more precise steady-states calculations.

Therefore, the parameters of SOSlib were set to: maximal time

Time~100000 minutes and the threshold ssThreshold~10{6.

Supporting Information

Dataset S1 Fixed-parameter model (sbml file).

(XML)

Figure S1 Examples of simulations of models unable to
reach steady-state (within 1000 simulated minutes). (A)

Simulation of pyruvate concentration in a model unable to reach

steady-state because of pyruvate accumulation. Models of this type

will never reach steady-state. (B) Simulation of glycosomal 3-PGA

concentration in a model unable to reach steady-state because of

3-PGA accumulation. Models of this type will eventually reach

steady-state, but at extremely high concentrations of 3-PGA.

(TIFF)

Text S1 Distributions of the sampled parameters.
(PDF)

Text S2 Distributions of the steady-state concentrations
of the metabolites in mmol/l.
(PDF)

Text S3 Sources used for the calculation of the equilib-
rium constants mean and standard deviations.
(PDF)
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The members of the SysMO2-funded SilicoTryp Consortium
are: Rainer Breitling, Michael P. Barrett, Barbara M. Bakker, Keith

Matthews, Christine Clayton, Luise Krauth-Siegel, Mark Girolami, Fiona

Achcar, Eduard J. Kerkhoven, Dong-Hyun Kim, Jurgen R. Haanstra,

Federico Rojas, Abeer Fadda, and Alejandro Leroux.

Author Contributions

Conceived and designed the experiments: FA RB. Performed the

experiments: FA. Analyzed the data: FA EJK BMB MPB RB. Contributed

reagents/materials/analysis tools: FA RB. Wrote the paper: FA EJK BMB

MPB RB.

References

1. Borger S, Liebermeister W, Klipp E (2006) Prediction of enzyme kinetic

parameters based on statistical learning. Genome Inform Ser 17: 80–87.

2. Wang L, Birol I, Hatzimanikatis V (2004) Metabolic control analysis under

uncertainty: Framework development and case studies. Biophys J 87: 3750–3763.

3. Tran LM, Rizk ML, Liao JC (2008) Ensemble modeling of metabolic networks.

Biophys J 95: 5606–5617.

4. Rizk ML, Liao JC (2009) Ensemble modeling and related mathematical
modeling of metabolic networks. J Taiwan Inst Chem E 40: 595–601.
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26. Cáceres AJ, Michels PA, Hannaert V (2010) Genetic validation of aldolase and

glyceraldehyde-3-phosphate dehydrogenase as drug targets in Trypanosoma brucei.
Mol Biochem Parasit 169: 50–54.

27. Chevalier N, Rigden DJ, Van Roy J, Opperdoes FR, Michels PA (2000)

Trypanosoma brucei contains a 2,3-bisphosphoglycerate independent phosphoglyc-

erate mutase. Eur J Biochem 267: 1464–1472.

28. Aronov AM, Suresh S, Buckner FS, Van Voorhis WC, Verlinde CL, et al. (1999)
Structure-based design of submicromolar, biologically active inhibitors of

trypanosomatid glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad

Sci USA 96: 4273–4278.

Modelling Glycolysis under Uncertainty

PLoS Computational Biology | www.ploscompbiol.org 10 January 2012 | Volume 8 | Issue 1 | e1002352

235



29. Xu T, Vyshemirsky V, Gormand A, von Kriegsheim A, Girolami M, et al.

(2010) Inferring signaling pathway topologies from multiple perturbation

measurements of specific biochemical species. Sci Signal 3: ra20.

30. Haldane JBS (1930) Enzymes. Longmans, Green.

31. Cornish-Bowden A, Hunter PJ, Cuellar AA, Mjolsness ED, Juty NS, et al. (2003)

The systems biology markup language (SBML): a medium for representation

and exchange of biochemical network models. Bioinformatics 19: 524–531.

32. Scheer M, Grote A, Chang A, Schomburg I, Munaretto C, et al. (2011)

BRENDA, the enzyme information system in 2011. Nucleic Acids Res 39:

D670–676.

33. Fuad FAA, Fothergill-Gilmore LA, Nowicki MW, Eades LJ, Morgan HP, et al.

(2011) Phosphoglycerate mutase from trypanosoma brucei is hyperactivated by

cobalt in vitro, but not in vivo. Metallomics 3: 1310–1317.

34. Seyfang A, Duszenko M (1991) Specificity of glucose transport in Trypanosoma

brucei. Eur J Biochem 202: 191–196.

35. Eisenthal R, Game S, Holman GD (1989) Specificity and kinetics of hexose

transport in Try-panosoma brucei. Biochim Biophys Acta 985: 81–89.
36. Stein WD, Lieb WR (1986) Transport and diffusion across cell membranes

Academic Press.

37. Matsumoto M, Nishimura T (1998) Mersenne Twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator. ACM T Model

Comput S 8: 3–30.
38. Galassi M, Davies J, Theiler J, Gough B, Jungman G, et al. (2009) GNU

scientific library reference manual: (v. 1.12). Bristol, UK: Network Theory Ltd.
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Summary

Awareness is growing that drug target validation
should involve systems analysis of cellular networks.
There is less appreciation, though, that the composi-
tion of networks may change in response to drugs. If
the response is homeostatic (e.g. through upregula-
tion of the target protein), this may neutralize the
inhibitory effect. In this scenario the effect on cell
growth and survival would be less than anticipated
based on affinity of the drug for its target. Glycolysis
is the sole free-energy source for the deadly parasite
Trypanosoma brucei and is therefore a possible
target pathway for anti-trypanosomal drugs. Plasma-

membrane glucose transport exerts high control over
trypanosome glycolysis and hence the transporter is
a promising drug target. Here we show that at high
inhibitor concentrations, inhibition of trypanosome
glucose transport causes cell death. Most interest-
ingly, sublethal concentrations initiate a domino
effect in which network adaptations enhance
inhibition. This happens via (i) metabolic control
exerted by the target protein, (ii) decreases in mRNAs
encoding the target protein and other proteins in the
same pathway, and (iii) partial differentiation of the
cells leading to (low) expression of immunogenic
insect-stage coat proteins. We discuss how these
‘anti-homeostatic’ responses together may facilitate
killing of parasites at an acceptable drug dosage.

Introduction

Living organisms combat external perturbations through
homeostatic response mechanisms. For example, if a
substrate becomes limiting, the transporter that takes it up
might be upregulated, through either increased expres-
sion or post-translational mechanisms. Similarly, during
treatment with a drug that inhibits an enzyme, the enzyme
activity might be increased, neutralizing drug action.

Much current research is devoted to validation of new
molecular targets for antimicrobial drugs. The major crite-
ria for such targets include (i) that they should be essential
for microbial growth or survival and (ii) that there should
be a sufficient difference between the host and the patho-
gen to allow specific inhibition of the pathogen target.
Since a large proportion of microbial proteins may fulfil
both conditions, it is useful also to add additional criteria.
For example, high concentrations of an enzyme substrate
will out-compete substrate analogues; and if the target is
present in huge excess, then very high levels of inhibition
will be required to kill the pathogen. Either of these situ-
ations would hinder development of a specific inhibitor
that can be given at acceptable doses. The ability of the
microbial system to homeostatically adapt to inhibition
adds an additional complication.

To deal with these issues, it is useful to apply a systems
biology approach, including metabolic modelling, when
choosing potential targets for antimicrobial drugs. Because
adaptation may involve various aspects of regulation,
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target validation ideally should integrate not only meta-
bolic, but also signalling and gene-expression networks
(Alberghina and Westerhoff, 2005). So far, however, of the
few successful network-based drug design studies that
exist (Noble, 2006), none addresses the potential adapta-
tion of the network.

Trypanosoma brucei causes deadly African sleeping
sickness in humans, and the related disease ‘Nagana’ in
cattle. As currently available drugs are inadequate and
toxic while drug resistance is increasing rapidly, new and
more selective medication is needed (Barrett et al., 2003).

T. brucei is transmitted by tse-tse flies. After growing to a
certain density in the mammalian bloodstream, the pro-
liferating ‘long-slender’ bloodstream forms differentiate
into non-dividing ‘short-stumpy’ trypanosomes. The short-
stumpy trypanosomes differentiate further into the ‘procy-
clic’ (insect-form) cells in the midgut of the tse-tse fly after
the latter has taken a blood meal (Matthews, 2005). The
most prominent differences between the life-cycle stages
inside the mammalian host and inside the insect vector are
at the level of metabolism and surface-protein expression.
The long-slender bloodstream-form trypanosome relies
merely on the glycolytic pathway with pyruvate as the main
end-product. Metabolism in procyclic trypanosomes is
more complex: they can utilize more substrates and, in
contrast to bloodstream form cells, they use extensive
mitochondrial metabolism (Hellemond et al., 2005). The
bloodstream-form cells are shielded from the mammalian
immune system by a dense layer of variant surface glyco-
proteins (VSG) (Cross, 1975; Borst and Ulbert, 2001).
Upon ingestion by the tse-tse fly, or transfer to procyclic
culture conditions, the VSG coat is shed and replaced by a
coat of EP and GPEET proteins of the procyclin family
(Vassella et al., 2001; Urwyler et al., 2005; Gruszynski
et al., 2006). The short-stumpy cells undergo some minor
metabolic changes in the direction of procyclic forms. Both
stumpy forms and non-dividing trypanosomes in the early
stages of differentiation in vitro express lower levels of
many mRNAs required for growth, and show upregulation
of plasma-membrane tricarboxylic acid transporters that
are involved in sensing the differentiation signal (Dean
et al., 2009; Jensen et al., 2009; Kabani et al., 2009;
Queiroz et al., 2009). Bloodstream-form trypanosomes
that have been cultured continuously are called ‘monomor-
phic’ because they have lost the ability to develop into
stumpy forms; in some cases they are no longer able to
differentiate into growing procyclic forms (Fenn and Mat-
thews, 2007).

The reliance of bloodstream-form T. brucei on glycoly-
sis suggests that this pathway could be an excellent drug
target, should selective inhibition be possible (Verlinde
et al., 2001). Previously, we combined Metabolic Control
Analysis (Kacser and Burns, 1973; Heinrich and Rapo-
port, 1974; Groen et al., 1982), a theoretical framework to

analyse the relative importance of each protein for cellular
fluxes, with computer modelling and experimentation
(Bakker et al., 1999a,b; Albert et al., 2005; Caceres et al.,
2010) to study which enzyme(s) control(s) glycolytic flux in
trypanosomes. We demonstrated that glucose transport
across the plasma membrane is the dominant factor con-
trolling the free-energy metabolism (the ATP synthesis
flux) of African trypanosomes. The amino acid sequence
of the trypanosome glucose transporter (THT1) is only
~19% identical and 42% similar to that of the human
erythrocyte glucose transporter GLUT1 (Bringaud and
Baltz, 1992): thus it may be possible to find a highly
specific inhibitor of THT1, and to capitalize on the unique
dependence of the parasites upon its transport activity.
This made the glucose transporter a promising candidate
drug target. However, the possibility of homeostatic adap-
tation via gene expression had not been addressed.

Trypanosomes do not regulate transcription of individual
genes by RNA polymerase II, since transcription is poly-
cistronic. Yet they do regulate mRNA processing, mRNA
degradation and translation (Clayton and Shapira, 2007;
Haile and Papadopoulou, 2007). Gene-expression
changes in trypanosomes have almost exclusively been
studied in the context of differentiation. There have,
however, been a few studies investigating the responses to
glucose availability. In bloodstream-form trypanosomes,
glucose deprivation induced the expression of procyclic
surface-coat proteins (Milne et al., 1998). And in procyclic
forms, which can obtain energy either from glucose or from
proline, inhibition of the glucose transporter by N-acetyl
D-glucosamine caused a shift towards proline-dependent
metabolism (Ebikeme et al., 2008). In procyclic forms,
also, RNAi targeting of either the glucose transporter or
hexokinase caused a switch from one procyclic-specific
surface protein to another (Morris et al., 2002).

In the present study we aim to quantitatively link the
metabolic response of trypanosomes to glucose transport
inhibition with adaptations in gene expression, growth and
differentiation. We show that while high concentrations of
glucose transport inhibitors kill trypanosomes, sublethal
concentrations evoke a multilayered adaptation of the
network. Unexpectedly, this adaptation is not homeo-
static: instead, it potentiates the effect of the primary
inhibition. This anti-homeostatic response enhances the
status of the trypanosome glucose transporter as a poten-
tial drug target.

Results

Chemical inhibition of glucose transport leads to a
decrease of glycolytic flux and growth rate of
trypanosomes

To study the effects of glucose-transport inhibition beyond
metabolism, we inhibited glucose transport with either

Network-based drug target selection in T. brucei 95
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phloretin (Bakker et al., 1999b) or 2-deoxy-D-glucose
(2-DOG) (Tetaud et al., 1997), two chemically unrelated
inhibitors. Phloretin is a general inhibitor of facilitated dif-
fusion transporters and has been shown to be a competi-
tive inhibitor of the trypanosome glucose transporter
(Bakker et al., 1999b). 2-DOG is a glucose analogue that

cannot be metabolized beyond phosphorylation by
hexokinase. 2-DOG therefore acts as a competitive inhibi-
tor of glucose transport, and – depending on its intracel-
lular concentration – also of hexokinase (HXK). As far as
side-effects are known, they are quite different for the two
compounds. Phloretin remains outside cells, but may hit
other transporters (Krupka and Deves, 1980) while intra-
cellular 2-DOG affects HXK. Effects that are seen for both
inhibitors are therefore likely to be due to the inhibition of
glucose transport specifically. The inhibitors have the
advantage that they act very rapidly on the transporter; in
contrast to RNAi, their use allows assessment of changes
of the transporter itself. All of our studies were conducted
with a monomorphic trypanosome line 449 derived from
strain Lister 427. These trypanosomes were chosen
because their glycolytic metabolism has been exhaus-
tively characterized; they are however unable to undergo
complete differentiation to procyclic forms.

Phloretin reduced the glycolytic flux, measured as the
pyruvate production flux (Fig. 1), and the specific growth
rate (Fig. 2A) of bloodstream-form trypanosomes. 2-DOG
gave similar results (Fig. 2B). At all inhibitor concentra-
tions we found production of only small amounts of glyc-
erol and neither succinate nor acetate. Above 100 mM
phloretin the cells started dying within the first 24 h,
although the glycolytic flux was only inhibited by 50%
(Fig. 1). The latter result is not specific for inhibition of
glucose transport, but was also previously found for
various glycolytic enzymes. A compilation of results
obtained with RNAi of various glycolytic targets and those
of the phloretin and 2-DOG experiments shows that a
partial (30–50%) inhibition of the glycolytic flux sufficed to
block growth (Fig. 3). A further inhibition of the pathway

Fig. 1. Glycolytic flux upon inhibition by phloretin. Glycolytic flux
(measured as the specific pyruvate production flux) in
bloodstream-form trypanosomes after 24 h exposure to various
phloretin concentrations. Each point in the graph is based on an
independent culture and its control. The uninhibited pyruvate flux,
i.e. in the absence of phloretin, was 373 � 57.1 nmol min-1 (108

cells)-1 (SEM, n = 5). At the beginning of each experiment we split
cultures into one that remained untreated and was used as control,
and another that was treated with the indicated concentration of
phloretin. The measured flux in the untreated control culture was
used as the 100% reference, to correct for variations between
experiments. The dotted line is a linear fit to the data (R 2 = 0.92).

Fig. 2. Effect of inhibition of glucose transport on the specific growth rate of trypanosomes. Specific growth rate (m, see Experimental
procedures) as determined in the first 24 h after inhibition by various concentrations of phloretin (A) or 2-DOG (B). The negative growth rates
should be interpreted as death rates. Further experiments were all performed at 100 mM phloretin or 12.5 mM 2-DOG, doses at which the cells
remain alive but hardly grow. Each point in the graph is based on an independent culture.
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caused cell death. Unlike phloretin, 2-DOG was only
tested at sublethal concentrations. Over the tested con-
centration range the relation between specific growth rate
and pyruvate production flux was similar for the two inhibi-
tors (open and closed triangles in Fig. 3). Growth
inhibition by phloretin was reversible during the first 24 h
(Fig. S1).

Inhibition by phloretin or 2-DOG evokes a
gene-expression response in bloodstream-form T. brucei

We next studied mRNA levels in cells treated with suble-
thal concentrations of phloretin and 2-DOG, concentrating
on the glycolytic enzymes. Strikingly, the THT1 mRNA,
encoding the major glucose transporter in the blood-
stream form, was down- rather than upregulated after
inhibition of glucose transport (Fig. 4A). Hence, the para-
sites adapted, not homeostatically, but in a way that
aggravated their situation.

Further analysis of glycolytic gene expression revealed
a general downregulation of mRNAs encoding glycolytic
enzymes that are normally expressed in bloodstream-
form trypanosomes [see, e.g. pyruvate kinase (PYK) in
Fig. 4A and the complete data set in Fig. 4B]. Procyclic
cells have been demonstrated to express the majority of
these enzymes at a lower protein level than bloodstream-
form cells (Hart et al., 1984; Aman and Wang, 1986).
Furthermore, typical procyclic isoforms of the glucose
transporter (THT2) and of phosphoglycerate kinase
(PGKB) were upregulated to the detriment of their

bloodstream-form counterparts THT1 and PGKC
respectively. The expression of PGKB was surprising,
since this isoform has a subcellular localization different
from that of PGKC and its expression is normally toxic in
bloodstream-form trypanosomes (Blattner et al., 1998). It
is unlikely that the increased mRNA levels of THT2 can
compensate for the decreased expression of THT1: the
absolute change is much larger for THT1 since its initial
level was 40 times higher than that of THT2 (Bringaud and
Baltz, 1993). Moreover, growth of procyclic trypanosomes
was inhibited by phloretin (data not shown), suggesting
that also the procyclic glucose transporter THT2 is sensi-
tive to this inhibitor. However, this last finding may also be
attributed to an unknown side-effect on other targets or to
catabolite repression of proline metabolism [as was sug-
gested previously (Lamour et al., 2005)].

Finally we also observed increased mRNA levels for the
genes encoding the Krebs’ cycle enzyme citrate synthase
(CS), as well as pyruvate orthophosphate dikinase
(PPDK) and proline dehydrogenase (PRODH). These
enzyme activities are absent in bloodstream-form trypa-
nosomes (Jenkins et al., 1988; Priest and Hajduk, 1994;
Bringaud et al., 1998). To test whether the mRNA changes
were reflected by changes at the level of functional pro-
teins, we measured CS activity. This was low in untreated
bloodstream forms, but rose 3.5-fold after 48 h inhibition
of glucose transport, to a level that was even higher than
that of procyclic trypanosomes (Fig. 4C).

Phloretin treatment causes transcriptome changes
indicative of partial differentiation

To characterize the effects of phloretin treatment on the
entire transcriptome, we treated exponentially growing
bloodstream-form trypanosomes for 24 h with 100 mM
phloretin, then extracted RNA. RNA from untreated trypa-
nosomes served as a control. Fluorescently labelled
cDNAs were hybridized to T. brucei oligonucleotide
microarrays (see Experimental procedures). We found
that 54 RNAs were significantly increased at P < 0.05, 45
of these being altered by 1.5-fold or more. A total of 276
RNAs were significantly decreased after the treatment,
153 of them at least 1.5-fold (see Table S1). For mRNAs
that were analysed with both techniques, the microarray
results corresponded qualitatively with those of the qPCR
analysis, although, as expected, the latter tended to yield
somewhat larger changes in expression (Table S1).

We have previously shown that during differentiation of
in vitro cultured pleomorphic trypanosomes, 1113 mRNAs
showed significant changes in abundance, with detailed
time-courses that could be classified according to 62
groups with different patterns of regulation. (Queiroz
et al., 2009). The 62 patterns fell into four broad catego-
ries: highest expression in bloodstream forms; highest

Fig. 3. Relation between growth rate and glycolytic flux in
trypanosomes with impaired activities of glycolytic enzymes or
glucose transport. Specific growth rates plotted against specific
pyruvate production flux (= glycolytic flux) after 24 h inhibition with
various concentrations of phloretin (�) or 2-DOG (�) (this article),
RNAi against several glycolytic enzymes (�) (Albert et al., 2005;
Caceres et al., 2010) and a knockout of the alternative oxidase (�)
(Helfert et al., 2001). Percentages were calculated relative to
control cultures in the same experiment. For phloretin, data of
Figs 1 and 2A were combined. Each point in the graph shows an
independent experiment.
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expression in procyclic forms; and either increased, or
decreased, expression during differentiation. The gene-
expression patterns between 1 and 12 h after initiation of
differentiation were indicative of growth arrest and partial
induction of a stumpy-like phenotype, with surface-coat
switching initiating at around 12 h (Queiroz et al., 2009).
We compared our microarray data after phloretin treat-
ment with the previous differentiation data set (Fig. 5 and
Tables S1 and S2). When we examined the 153 mRNAs
that were at least 1.5-fold downregulated after phloretin
treatment, we found that less than 10% were preferen-
tially expressed in procyclic forms. In contrast, a quarter of
them were preferentially expressed in bloodstream forms,

and another quarter decreased in level during differentia-
tion (Fig. 5A). The category preferentially expressed in
bloodstream forms included, as expected, 20 proteins
involved in glucose metabolism, including glycolytic and
other glycosomal enzymes, and glycosome assembly
proteins. The mRNAs that were decreased during differ-
entiation, and also decreased after phloretin, included no
fewer than 24 genes encoding components of the flagel-
lum (Fig. 5B): flagellar biosynthesis halts in non-dividing
cells.

The 45 mRNAs that increased at least 1.5 times after
phloretin treatment fell into more groups, but RNAs
that are preferentially expressed in procyclics, or are

Fig. 4. Effect of phloretin and 2-DOG on gene expression
A. mRNA levels in bloodstream-form trypanosomes after 48 h inhibition by 100 mM phloretin or 12.5 mM 2-DOG as compared with expression
before inhibition. For phloretin the error bars indicate the SEM of three independent experiments. For PRODH, the error was not SEM, but a
standard deviation of two experiments. EP was only measured in the 2-DOG-treated cultures.
B. mRNA fold changes for cultures treated with 100 mM phloretin or 12.5 mM 2-DOG compared with uninhibited cultures after 24 or 48 h.
Colour coding: green = twofold or more upregulated; red = twofold or more downregulated; yellow = less than twofold change. n.d., not
determined. An asterisks in the column ‘sig’ (for significance) indicates a P < 0.05 in a one-sided Student’s t-test comparing the measurements
to a value of 1 (for no change in expression).
2-DOG, 2-deoxy-D-glucose; ALD, aldolase; AOX, alternative oxidase; CS, citrate synthase; ENO, enolase; EP, EP procyclin; HXK, hexokinase;
G3PDH, glycerol-3-phosphate dehydrogenase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; PGAM, phosphoglycerate mutase; PGK,
phosphoglycerate kinase; PFK, phosphofructokinase; PGI, phosphoglucose isomerase; PYK, pyruvate kinase; PPDK, pyruvate
orthophosphate dikinase; PRODH, proline dehydrogenase; THT, trypanosome hexose transporter; TIM, triosephosphate isomerase.
C. Citrate synthase activity was measured in procyclic cultures (PF; n = 2), in ethanol-treated (control) bloodstream-form cultures (BF; n = 4)
and in bloodstream forms exposed for 48 h to a (sublethal) dose of either 100 mM phloretin (n = 2) or 12.5 mM 2-DOG (n = 4).

98 J. R. Haanstra et al. �

© 2010 Blackwell Publishing Ltd, Molecular Microbiology, 79, 94–108

242



increased during differentiation, predominated (Fig. 5A).
They included mitochondrial proteins and procyclic-
specific membrane proteins (Fig. 5B). Notably, the
upregulated mRNAs included those that encode two
citrate/cis-aconitate transporters involved in differentia-
tion, PAD1 and PAD2. PAD1 is a marker of growth-
arrested stumpy forms (Dean et al., 2009).

The overlap between the phloretin and differentiation
data sets was only partial: just 124 RNAs were both
affected by phloretin (at least 1.5-fold) and significantly
regulated during differentiation. Using the phloretin data
for just these 124 mRNAs, we calculated correlation coef-

ficients with data from the different differentiation time
points. The best correlation coefficients, i.e. 0.72 and
0.79, were for the 1 and 12 h time points respectively.
These results indicated that our phloretin treatment had
caused a subset of transcriptome changes similar to
those seen during the early stages of differentiation to
procyclic forms, when the parasites undergo growth arrest
and initiate the switch from bloodstream-form to procyclic-
form gene expression.

We also compared the phloretin microarray results with
a data set generated using a tiling array (Fig. S2). The
populations tested included stumpy trypanosomes

Fig. 5. Effects of phloretin treatment on the bloodstream-form transcriptome. Exponentially growing bloodstream-form trypanosomes (density
6 ¥ 105 cells ml-1) were treated with 100 mM phloretin for 24 h and subsequently their RNA was prepared for microarray analysis using
untreated cells as a control, exactly as described in Queiroz et al. (2009). Results shown are for five slides including three biological
replicates, with dye-swap, and include all spots showing significant P < 0.05 differences of at least 1.5-fold. The colour key is in the figure.
A. Regulated RNAs classified according to regulation during differentiation, as seen in Queiroz et al. (2009).
B. Regulated mRNAs classified according to the function of the encoded protein [automated and manual annotation, as in Queiroz et al.
(2009)].
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generated in mice, as well as comparisons of bloodstream
and procyclic forms (Jensen et al., 2009) (Fig. S2A). In
addition, we looked at a comparison of bloodstream and
procyclic-form transcriptomes generated by cDNA
sequencing (Siegel et al., 2010) (Fig. S2B). As before, the
mRNAs that were increased by phloretin showed a rather
heterogeneous regulation pattern, with a bias towards
procyclic-specific mRNAs. The results confirmed that
many of the mRNAs that decreased after phloretin-
treatment were preferentially expressed in bloodstream
forms. Moreover, an even larger group of the mRNAs
decreased after phloretin treatment showed expression
that was suppressed in the stumpy forms.

We concluded that phloretin induced gene-expression
changes characteristic of growth arrest and early
differentiation. The next step was to assess the implica-
tions of these changes for trypanosome metabolism.

Decreased expression of glycolytic enzymes renders
trypanosome glycolysis more sensitive to glucose
transport inhibition

We investigated the impact of the altered gene expression
on the inhibition of the glycolytic flux, using the previously
developed computer model of T. brucei glycolysis (Albert
et al., 2005). The model takes the enzyme expression
(concentration or Vmax) and the kinetic parameters of the
enzymes as input. It predicts how the glycolytic flux and
the metabolite concentrations respond to substrate avail-
ability, enzyme expression or specific inhibitors. We cal-
culated how the (glycolytic) ATP production flux will

respond to an increasing concentration of a competitive
inhibitor of glucose transport, like phloretin (Fig. 6). In the
calculations the inhibitor concentration [I] was normalized
against its inhibition constant Ki, which equals the disso-
ciation constant of the inhibitor from the transport protein.
This was done to generalize the results to any competitive
inhibitor of glucose transport.

If gene expression were not taken into account, a flux
reduction of 90% would be achieved at an inhibitor con-
centration that was 56 times the inhibition constant for the
transporter. A flux reduction of 95% would require 118
times the inhibition constant (Fig. 6, solid line). Next, the
Vmax values in the model were altered by the same factor
as the observed change of the corresponding mRNA after
24 h of phloretin treatment (Fig. 4B). Now, the required
inhibitor concentrations for flux reductions of 90% or 95%
were only 11 times, or 28 times the inhibition constant
respectively (Fig. 6, dotted line). Hence, according to the
model the same flux reduction is achieved at a four to five
times lower drug dosage when the gene-expression
response is included, than when it is not.

Obviously, the assumption that the actual change in
protein concentrations equals that in the mRNAs is an
approximation. The rationale behind this assumption is
that during trypanosome differentiation from the blood-
stream to the procyclic form not only mRNAs of glycolytic
proteins are downregulated (Jensen et al., 2009; Queiroz
et al., 2009; Nilsson et al., 2010), but also protein levels
and Vmax values (Hart et al., 1984; Aman and Wang,
1986). The fact that the phloretin-treated cells are hardly
dividing would diminish the changes in protein as com-

Fig. 6. The impact of gene-expression
adaptation on the reduction of the glycolytic
flux. The steady-state ATP synthesis flux was
calculated as a function of the concentration
[I] of a competitive inhibitor of glucose
transport across the plasma membrane. The
concentration [I] was normalized with respect
to the inhibition constant Ki, which equals the
dissociation constant of the inhibitor from the
transport protein. Calculations were performed
for the original model as described in Albert
et al. (2005) (solid line) and when the Vmax

values were altered with the same factor as
the corresponding transcript levels as
measured (dotted line). The glucose
concentration was 5 mM, like the blood
glucose concentration. Details of the
modelling are given in Experimental
procedures.
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pared with those in mRNA, if the proteins were stable.
During trypanosome differentiation, however, ‘old’ glyco-
somal enzymes are degraded through autophagy of gly-
cosomes (Herman et al., 2008).

Given the uncertainties in the protein response, the
above calculations should be considered as an illustration
of how the gene-expression response will affect the
required drug dosage, rather than as an exact prediction.
Nevertheless, the calculations were in surprisingly good
agreement with the measured inhibition of the glycolytic
flux by phloretin (Fig. 1). The Ki of phloretin for the trypa-
nosome glucose transporter THT1 is 21 mM (Bakker et al.,
1999b). In the presence of 20 mM glucose – like in our
experiments – the model predicts that 100 mM phloretin
will inhibit the flux by 13% without a gene-expression
response, and by 75% if the gene-expression adaptation
is taken into account. In reality we measure 30% inhibition
at 100 mM phloretin (linear fit to the curve in Fig. 1). We
have to be aware, however, that the used Ki value for
phloretin has been measured in a buffer that differs sub-
stantially from the medium used here.

Expression of EP procyclins on the surface and
sensitivity to Concanavalin A

Results so far indicated that the phloretin- or 2-DOG-
treated cells had entered into a differentiation pro-
gramme towards the procyclic stage. We therefore next
investigated whether the procyclic features expressed by
the phloretin- or 2-DOG-treated cells also encompassed
the surface coat, since the mRNA encoding EP procyclin
came up after glucose-transport inhibition (Fig. 4A and
B). In procyclic trypanosomes the glycosylated EP1 and
EP3 proteins bind the lectin Concanavalin A (ConA),
which then kills the cells via an unknown mechanism
(Hwa and Khoo, 2000; Pearson et al., 2000; Morris
et al., 2002). Bloodstream-form trypanosomes do not
normally express procyclin proteins and are resistant to
ConA killing (Fig. 7A). In contrast, 20–30% of the cells
died from exposure to ConA after pre-treatment with
phloretin (Fig. 7A), suggesting either that some cells had
incorporated procyclins into their coats, or else that the
surface VSG had undergone unusual carbohydrate
modification. However, we were unable to detect EP pro-
cyclins by Western blot (Fig. 7B) or flow cytometry
(Fig. S3), so if they are expressed, the level must be
very low.

More evidence for a functional change to the procyclic
life stage came from experiments with procyclic culture
conditions. Phloretin-treated bloodstream-form cells sur-
vived incubation under procyclic culture conditions (i.e. in
a procyclic culture medium at 28°C) for more than 4 days,
while untreated bloodstream-form cells died (Fig. 7C and
an independent experiment in Fig. S4A). As a control we

subjected the untreated bloodstream-form cells to a tem-
perature downshift from 37°C to 28°C. Under those con-
ditions the cells survived, although they almost stopped
growing (Fig. S4B). This result excluded the possibility
that the death of untreated trypanosomes under procyclic
culture conditions was merely a result of the change in
temperature. After 72 h under procyclic culture conditions,
the phloretin-treated cells were as sensitive to ConA
(Fig. 7D and Fig. S4C) as are procyclic cultures (see
Fig. 7A) and Western blot analysis revealed a strong
signal for EP procyclin proteins (Fig. 7E). This result indi-
cated that the phloretin treatment had potentiated the
ability of the trypanosomes to undergo a differentiation
programme.

Probing the metabolic signal for differentiation

We did some first experiments to determine the metabolic
signal that triggers differentiation in response to glucose
transport inhibition. A lowered [ATP]/[ADP] ratio could be
excluded, since the [ATP]/[ADP] ratio did not change
(Fig. 8A). Conditional knock-down of the next enzyme of
the pathway, HXK, led to upregulation rather than down-
regulation of THT1 in the first 24 h (Fig. 8B). However,
after 48 h, THT1 mRNA levels had returned to initial
levels. These results are compatible with intracellular
glucose being the molecule that initiates the signal
cascade, but more detailed dynamics are required. It is
known that changes in the activities of mitochondrial
enzymes influence expression of procyclins (Vassella
et al., 2004). Phloretin as well as HXK depletion caused
upregulation of mitochondrial enzymes in our experiments
and therefore one may expect secondary effects on coat
protein expression (Vassella et al., 2004).

Discussion

In a network-based approach to identify and validate a
new drug target within trypanosome glycolysis, we have
systematically investigated first the metabolic responses
(Bakker et al., 1999a,b) and subsequently (this article)
the gene-expression responses that follow inhibition of
the glucose transporter. Instead of homeostatic adapta-
tion, inhibition of glucose transport initiated a domino
effect that rendered the parasite increasingly vulnerable:
first a decrease in the glycolytic flux via metabolic
control, then a downregulation of the mRNAs encoding
the glucose transporter and most other glycolytic
enzymes. Results of a transcriptome analysis indicated
that the phloretin treatment had caused the trypano-
somes to partially undergo the early stages of differen-
tiation, with some changes typical of growth-arrested
stumpy forms with early further differentiation. Consistent
with this, the phloretin-treated bloodstream cells had an
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Fig. 7. Expression of procyclic features upon inhibition of glucose
transport.
A. The percentages of cells that survived a 24 h treatment with
ConA (5 mg ml-1) are expressed relative to the survival in identical
cultures without ConA. Numbers below the graph denote the
duration of the pre-treatment with 100 mM phloretin. Phloretin
remained present throughout the experiment in ConA-treated as
well as control cultures. BF, bloodstream form; PF, procyclic form.
Error bars reflect standard error of the mean (SEM; n = 3). For PF,
n = 1.
B. Western blot with EP procyclin mAb. A total of 3 ¥ 106 cells were
taken from BF cultures after 48 h phloretin/ethanol treatment. PF is
shown as a positive control.
C. Cell numbers of bloodstream-form cultures. Closed symbols
show three independent cultures of untreated trypanosomes; open
symbols represent two independent cultures for the first 48 h with
100 mM phloretin. After two washes in phloretin-free procyclic
medium cells were inoculated in SDM79 at 28°C at t = 48 h
(indicated by arrow).

D. After 72 h in procyclic culture medium part of the cell culture was subjected to ConA (5 mg ml-1) treatment. The percentages of cells that
survived a 24 and 48 h treatment with ConA (5 mg ml-1) are expressed relative to the survival in identical cultures without ConA. Error bars
indicate standard deviations among two independent experiments.
E. Western blot with EP procyclin mAb. A total of 3 ¥ 106 cells were taken from cultures after 48 h with phloretin treatment (lanes 3 and 4,
t = 48 h in C), after 72 h in procyclic medium (lanes 1 and 2, t = 120 in C), from untreated procyclic cultures (lanes 5, 6 and 7) and from
untreated bloodstream-form cultures (lanes 8 and 9, t = 48 h in C). Replicate samples were taken from independent cultures.
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enhanced ability to undergo subsequent differentiation
steps upon transfer to procyclic culture conditions. The
fact that they did not fully differentiate, and were not able
to divide under procyclic culture conditions (Fig. 7C), is
likely to be due to the fact that we used a monomorphic
strain which cannot complete a full life cycle. In addition,
glucose transport inhibition might not be sufficient to
induce the full spectrum of changes seen in stumpy
forms. To address this issue, future studies should be
performed with pleomorphic trypanosomes.

As noted in the introduction, alterations of coat-protein
expression in glucose-deprived trypanosomes had been
observed before, although the resulting transcriptome had
not been analysed and the implications for drug treatment
were not explored. Is the transcript response to glucose
deprivation specific to this particular metabolic challenge,
or is it simply a reaction to growth arrest? It has long been
known that treatment with dihydrofluoromethyl ornithine,

which causes cell-cycle arrest but has no obvious con-
nection to signalling or energy metabolism, can enhance
the ability of monomorphic trypanosomes to undergo
initial steps of differentiation (Giffin et al., 1986). Growth
arrest is known to be important in the differentiation
process, and various growth-inhibitory treatments have
been shown to induce expression of EP procyclins or their
mRNAs (Fenn and Matthews, 2007). We do not really
know which of these treatments targeted physiological
differentiation control mechanisms, or whether any sort of
growth inhibition will do. We therefore examined transcrip-
tome data for bloodstream trypanosomes following treat-
ments that inhibited growth, but had no obvious link to
differentiation. None of the treatments caused the
differentiation-related gene-expression changes reported
in this article. They were: RNAi targeting the small RNA-
binding proteins UBP1 and UBP2, or overexpression of
UBP2 (Hartmann et al., 2007); RNAi targeting the 14-3-3

Fig. 8. Probing the metabolic signal for
differentiation after phloretin treatment.
A. [ATP]/[ADP] ratio in untreated and
phloretin-inhibited bloodstream-form
trypanosomes. Symbols denote: (�)
untreated; (�) 50 mM phloretin; (�) 100 mM
phloretin. Values represent
averages � standard deviations of results
obtained from two independent cultures
B. Changes in mRNA levels after HXK RNAi.
An inducible HXK RNAi mutant (Albert et al.,
2005) was induced by addition of 0.25 mg ml-1

tetracycline. mRNA levels at 24 and 48 h
were measured by quantitative PCR and
compared with levels before induction. Error
bars show standard deviations of results from
two independent experiments. THT,
trypanosome hexose transporter; HXK,
hexokinase; PFK, phosphofructokinase;
GAPDH, glyceraldehyde-3-phosphate
dehydrogenase; PGK, phosphoglycerate
kinase; PYK, pyruvate kinase; G3PDH,
glycerol-3-phosphate dehydrogenase; AOX,
alternative oxidase; CS, citrate synthase;
PRODH, proline dehydrogenase; EP, EP
procyclin.
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proteins (C. Benz and C. Clayton, unpubl. data); knock-
down of clathrin expression or treatment with tunicamycin
(Koumandou et al., 2008); and treatment with dithiothrei-
tol (Koumandou et al., 2008; Goldshmidt et al., 2010). We
cannot rule out the possibility that induction of EP procy-
clins was missed in all of these experiments because the
timing was wrong, or because the parasites were too
debilitated to initiate such a response. However, so far, it
seems that the transcriptome response to glucose depri-
vation is not solely a response to growth arrest.

We suggest that trypanosome differentiation can be
triggered by a variety of stimuli, but that the intracellular
glucose concentration may be a critical intermediate
signal. In the case of glucose transport inhibition, the cells
seem to be misled by the low glucose influx and respond
as if they are in the glucose-poor environment of the
tse-tse fly, switching on their differentiation programme. A
recently identified phosphatase that is critical for trypano-
some differentiation, PIP39, is located inside the
glycosome. It is tempting to speculate that this phos-
phatase is a key player in monitoring glycosomal glucose
levels (Szoor et al., 2010).

An anti-trypanosomal drug needs to have a very low
cost and to be easy to deliver. It therefore needs to be
cheap to manufacture and must be active at low
concentrations. It also needs to have as few side-effects
as possible, so must be selective for the parasite target.
What are the implications of the present study for the use
of glucose-transport inhibition against trypanosome infec-
tions? To answer this question, we will distinguish two
different aspects, namely (i) inhibition of parasite growth
and (ii) side-effects on human metabolism.

(i) To cure trypanosomiasis, either all parasites must be
killed by the drug, or growth of all of them must be
inhibited for a sufficient time to enable elimination of
all existing antigenic variants by adaptive immunity.
Escape of a single trypanosome with a novel variant
surface coat will be sufficient to reinitiate the infection.
Ideally therefore we need to attain a drug concentra-
tion adequate to kill at least 99% of the parasites
(LD99) in the blood and tissues without causing sig-
nificant side-effects. The LD99 is also influenced by
the response of the biochemical network. The high
flux control coefficient of the glucose transporter in T.
brucei will contribute to a low LD99, especially since
50% inhibition of glycolytic flux is sufficient to kill the
parasite (Fig. 3). On top of this, according to our
model calculations, the observed downregulation of
glycolytic gene expression upon transporter inhibition
led to a four- to fivefold decrease of the inhibitor con-
centration required to reduce the glycolytic flux. Thus
the results of our analyses are favourable to THT1 as
a target. If, in line with the results presented here, the

few surviving trypanosomes start expressing invari-
able procyclins this may be an extra, efficient target
for the mammalian immune system. The ConA-
sensitive mannose residues on the EP proteins (Hwa
and Khoo, 2000; Pearson et al., 2000) may be recog-
nized by the mannan-binding lectin of the innate
immune system. Whether glucose transporter inhibi-
tion is able, by itself, to prompt sufficient surface EP
procyclin expression to activate either innate or adap-
tive immunity is currently unclear: this should be
assessed in pleomorphic parasites.

(ii) A low therapeutic drug concentration is of no use if
those low levels also kill host cells. And even minor
inhibition of glycolysis may be deleterious to some
host cell types. Therefore, even if selectivity at the
level of molecular recognition is attained, additional
selectivity at the network level would be helpful.
Simulations with a detailed model of erythrocyte gly-
colysis (Schuster and Holzhutter, 1995) showed that
glucose transport hardly controls erythrocyte glyco-
lysis at all (B. M. Bakker et al., in preparation). This
implies that erythrocytes will be less vulnerable to
glucose transport inhibition than bloodstream-form
trypanosomes. However, a quantitative analysis of
potential side-effects on other cell types – including
potential homeostatic adaptations – is required.

In the present study, phloretin and 2-DOG were used to
inhibit glucose transport in in vitro cultures of T. brucei.
Phloretin has already been used in in vivo studies in rats
for its anti-tumour activity (Nelson and Falk, 1993) and the
LD50 of phloretin for rat hepatocytes in a 2 h incubation
was reported as 400 mM (Sabzevari et al., 2004). The
concentrations of phloretin and 2-DOG used against try-
panosomes in this study (micromolar range) are too high
to use in humans, and even too high to serve as a lead
compound. Hexose analogues with anti-trypanosome
activity have already been developed (Azema et al.,
2004) but the mechanism of action was unclear since in
many cases the LD50 for the parasite was lower than the
Ki for the transporter. For either phloretin or the ana-
logues, a direct comparison of LD50s between trypano-
somes and mammalian cells under similar conditions has,
to our knowledge, not been performed. It is clear that if
inhibitors are to be found, substantial effort will need to be
made in screening and in chemical modification, since
viable leads are not yet available.

We conclude that although development of specific and
potent inhibitors may be a considerable challenge,
glucose transport is a more promising drug target in try-
panosomes than was thought based on metabolic control
alone (Bakker et al., 1999b). Furthermore, this study may
open a new avenue to systems biology-based drug target
discovery, aiming at tricking microorganisms into lethal
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adaptation strategies. Importantly, our results exemplify
the importance of monitoring the adaptations of cellular
networks in drug target validation (Hornberg and Wester-
hoff, 2006). Besides identifying cases where a homeo-
static response of the pathogen would incapacitate the
drug (enabling an early defocusing from that target), it
may also reveal more cases like the present one, in which
the cellular response is anti-homeostatic. If such an anti-
homeostatic response is absent from the human host, the
prospects for enhanced specificity of drugs against such
targets are substantial.

Experimental procedures

Strains and cultivation

Monomorphic bloodstream-form T. brucei of cell line 449 [a
derivative of strain Lister 427 (Biebinger et al., 1997)] were
cultivated in HMI-9 (Hirumi and Hirumi, 1989), supplemented
with 10% fetal calf serum (FCS, Invitrogen) and 0.2 mg ml-1

phleomycin (Cayla) in a water-vapour-saturated incubator at
5% CO2 and 37°C.

Monomorphic procyclic T. brucei 449 cells and
bloodstream-form cultures subjected to procyclic culture con-
ditions were cultivated in SDM-79 or SOGG-medium [a non-
glucose formulation of SDM-79 (Furuya et al., 2002)],
supplemented with 10 mM glucose (v/v), 10% FCS and
0.5 mg ml-1 phleomycin at 28°C.

Growth was monitored by counting cell numbers in culture
samples with a Burker-Türk haemocytometer. The specific
growth rate m was determined from the increase of the cell
numbers in time, by fitting equation X(t) = X(0) · emt to the
data. Here X(t) represents the cell density in the culture at
time point t.

Inhibition

Phloretin, 2-DOG and ConA were purchased from Sigma.
Phloretin was dissolved in 70% ethanol; 2-DOG and ConA

in demineralized water. Final concentrations of ethanol were
always below 0.7% and the highest ethanol concentration
was used in the control cultures.

Increasing cell densities decreased the sensitivity of the
cells to phloretin. At constant cell density (8·105 cells ml-1 in
our experiments), phloretin treatment gave reproducible
effects for a given concentration. We used similar cell densi-
ties in 2-DOG experiments.

RNA isolation and cDNA synthesis

Total RNA was isolated from 1–4 ¥ 107 cells by adding 1 ml of
Trizol (Invitrogen) to cell pellets according to the manufactur-
er’s protocol. Isolated RNA was DNase-1 (Finnzymes)
treated, purified by phenol/chloroform extraction and 1 mg
was used in a cDNA synthesis reaction with random hexamer
primers (Finnzymes).

Microarray

Fluorescently labelled cDNA was synthesized and hybridized
to oligonucleotide microarrays (NIAID) as previously

described (Queiroz et al., 2009). Data analysis was performed
using the ExpressConverter and MIDAS software which are
freely available at http://www.tm4.org. Files obtained from the
scan were transformed into .mev files using the Express-
Converter. Using MIDAS the signal intensities were normal-
ized by locally weighted linear regression and duplicate spots
on each slide were merged. Log2 transformed data were
exported to SAM as described (Tusher et al., 2001). The
complete microarray dataset has been uploaded to NCBI GEO
with accession number GSE24275 and can be accessed
online via: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE24275.

Real-time quantitative PCR

Amplification, data collection and data analysis were per-
formed in the ABI 7700 Prism Sequence Detector (once 2 min
at 50°C; once 10 min at 95°C; and 40 cycles of 15 s at 95°C
followed by 1 min at 59°C). The calculated cycle of threshold
values (Ct) were exported to and further analysed in Microsoft
Excel. Cycles of threshold for the different genes were normal-
ized to the Ct of hypoxanthine-guanine phosphoribosyl trans-
ferase (HGPRT) transcript in the same sample (DCt).
Transcripts of two other housekeeping genes (60S rRNA and
b-tubulin) were assayed as an internal check. Subsequently
the normalized Ct values of the different time points were, for
each transcript, compared with the Ct of that transcript at time
point zero to calculate the fold changes of the mRNA concen-
trations according to: mRNAt/mRNAt=0 = 2(DCt(0)-DCt(t )). Dissocia-
tion curves proved that only a single-sized product was formed
in every qPCR reaction. Primers used in the qPCR are listed in
Table S3 in Supporting information of this article and were
tested for efficiency.

Metabolite assays

Glucose, pyruvate, glycerol, succinate and acetate were
measured by HPLC (Rossell et al., 2005). ATP and ADP
levels were measured with a luciferase assay as described
previously (Rohwer et al., 1996).

CS activity assay

Approximately 3 ¥ 108 cells were washed twice in ice-cold
PBS (140 mM NaCl, 2.7 mM KCl, 10.1 mM Na2HPO4,
1.8 mM KH2PO4) and resuspended in 0.5 ml of PBS. Cells
were lysed using 0.6 g ml-1 acid-washed glass beads (425–
600 mm, Sigma) in a Thermo Savant FastPrep FP120
Homogenizer (four cycles of 5 s, speed 6.0, with cooling on
ice between cycles for at least 1 min). Cell lysate was trans-
ferred to a new tube, centrifuged (maximum speed, at 4°C)
and supernatant was used to measure CS activity. CS (E.C.
2.3.3.1) was measured in an automated spectrophotometer
(Cobas FARA, Roche) at 412 nm, with an assay modified
from Morgunov and Srere (1998). Final concentrations in
the assay mixture were 100 mM Tris-HCl (pH 8.0), 0.1 mM
oxaloacetic acid; 0.1 mM 5,5′-dithio-bis(2-nitrobenzoic acid
(DTNB) and 40 mM KCl. The reaction was started by addi-
tion of 0.5 mM acetyl-CoA and the increase in A412 (due to
conversion of DTNB to TNB) was followed in time. Activities
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were determined from the linear part of the A412 curves,
based on an extinction coefficient for DTNB at 412 nm of
13.6 mM-1 cm-1. Enzyme activities were normalized to the
protein contents of the cell extracts, based on a BCA
protein assay (Pierce).

Modelling

The modelling was performed with the most recent version of
the glycolysis model (Albert et al., 2005) in the open-source
software Jarnac (Sauro, 2000; Sauro et al., 2003). To calcu-
late the effect of phloretin, a competitive inhibitor [I] which
only binds to the outside (Bakker et al., 1999b) with an inhi-
bition constant Ki was included in the rate equation for
glucose transport across the plasma membrane. To this end,
the Km for extracellular glucose was multiplied with a factor
1 + [I]/Ki. This yielded the following equation:
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In the version in which gene expression was ignored
(solid line in Fig. 6) the original Vmax values were used
(Albert et al., 2005). When altered gene expression was
taken into account the Vmax values were multiplied with the
fold change of the transcript levels as measured by qPCR
after 24 h (dashed line Fig. 6). In the case of glucose trans-
port, for which two transport proteins exist, we made use of
earlier findings that THT1 represented 97.5% and THT2
2.5% of the total THT mRNA pool (Bringaud and Baltz,
1993). This gave rise to the following Vmax values [in
nmol min-1 (mg protein)-1]:

THT: 108.9·(0.975·0.25 + 0.025·1.22); HXK: 1929·0.35;
PGI: 1305·0.32; PFK: 1708·0.29; ALD: 560·0.35; TIM: 999.
3·0.34; G3PDH: 465·0.24; GK: 200·0.32; AOX: 368·0.56;
GAPDH 720.9·0.26; PGKC: 2862·0.27; PGAM: 225·0.77;
ENO: 598·0.31; PYK: 1020·0.17.

Western blotting

For Western blot analysis, 3 ¥ 106 parasites were harvested
by centrifugation, washed in PBS, resuspended in 30 ml of
Lämmli buffer and stored at -80°C before analysis. Samples
were boiled for 10 min at 95°C and 20 ml was separated on
SDS-PAGE (Novex 4–20% Tris-glycine, Invitrogen or 12.5%
Tris-glycine) at 125 V and transferred to a nitrocellulose
membrane (Hybond-ECL, Amersham) at 150 mA for 4 h.
Membranes were blocked for 2 h at room temperature with
5% milk in PBS-T (PBS with 0.05% Tween-20), washed three
times with PBS-T, and probed with primary antibody (anti-
Trypanosoma brucei procyclin mAb, Cedarlane) diluted
1:2000 in 1% milk in PBS-T overnight at 4°C. After three
washes with PBS-T, the membrane was incubated with sec-
ondary antibody (goat anti-mouse IgG peroxidase conjugate,
Calbiochem) 1:2000 in 1% milk in PBS-T for 2 h at room

temperature. After five washes with PBS-T, horseradish per-
oxidase activity was measured with SuperSignal HRP sub-
strate (Novagen).
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