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Summary.

The results presented in this thesis concern two aspects of the 

biology of trypanosomatids. First, the process of antigenic variation in 

the African trypanosomes and second the structure and function of the 

kinetoplast DNA of trypanosomatids.

Part I.

Trypanosomes were cyclically transmitted by the insect vector, 

Glossina morsitans, and the expression of variable antigen types (VATs) 

in the metacyclic populations from the salivary glands and the first 

bloodstream populations in metacyclic initiated infections in mice 

were analysed. Tsetse flies were fed on the blood of mice containing 

any one of 5 VATs of Trypanosoma brucei of the AnTAR 1 serodeme. The 

VATS of the metacyclic trypanosomes subsequently detected in the flies' 

saliva probes vere investigated using monospecific antisera to AnTAR 1 

VATs in indirect immunofluorescence and trypanolysis reactions; these 

sera included 3 raised against AnTats 1.6, 1.30, and 1.45, previously 

idnetified as components of the metacyclic population (M-VATs), and 

against the 5 VATs originally ingested by the flies. The percentage of 

metacyclics reacting with a particular M-VAT antiserum remained more or 

less constant (AnTat 1.6, 6.0-8.3/u; AnTat 1.30, 13-7—1Q-2̂ ; AnTat 1.45, 

2.0-8.0^), regardless of the age of the fly or the ingested VAT. As

these 3 VATs account for no more than one-third of the metacyclic 

population, the existence of at least one more VAT is envisaged. The

ingested VAT could not be detected among the AnTAR 1 metacyclic 

trypanosomes.

Metacyclic trypanosomes from the salivary glands of infected tsetse 

flies were also used to initiate infections in mice. Immunofluorescence 

and trypanolysis reactions employing 24 monospecific antisera were used 

to analyse the VATs present in the mice following cyclical transmission. 

Regardless of the VAT used to infect tsetse flies, the first VATs 

detectable in the bloodstream were those previously identified as M-VATs.



These were present until at least 5 days after infection, at which 

time lytic antibodies against at least 2 of the M-VATs were detectable 

in the blood of infected mice. In mice immunosuppressed by X-irradiation 

the M-VATs were detectable in the bloodstream for longer periods, but

the percentage of the population labelled with anti-metacyclic sera
*

showed a decrease on day 5 as in non-irradiated animals. The VAT 

ingested by the tsetse was always detectable early during the first 

parasitaemia following cyclical transmission and was usually the first 

VAT detectable after the M-VATs. Neutralization of selected M-VATs before 

infecting mice resulted in elimination of the neutralized M-VAT from 

the first parasitaemia but had no effect on the expression of other VATs 

in the early infection.

Part II.

In studies on the structure and function of the kinetoplast 

DNA (kDNA) of trypanosomatids I have examined the kDNA structure and 

mitochondrial activity of two species of Herpetomonas and also a 

stock of T. brucei which has lost the ability to activate its mito­

chondrion during syringe passaging in laboratory rodents.

The structure of the kDNA of Herpetomonas musearum and Herpetomonas 

in^enoplastis was compared by electron microscopy, restriction endonuclease 

digestion and hydridization with cloned portions of the maxi-circle from 

T. brucei 427. The kDNA of both H. musearum and H. in^enoplastis has 

a buoyant density of 1.693 g/cm^; however, the kDNA of H. in^enoplastis 

represents 31 i° of the total cellular DNA as compared with Q/o for

11. muse arum kDNA. The kDNA network of H. muse arum consists of thousands 

of mini-circles of 0.6 to 0.7 x 10^ daltons and a few large circular 

molecules, maxi-circles, of 21 x 10 daltons. The mini-circles of

H. muse:arum show sequence heterogeneity while maxi-circles of H. musearum 

have a unique nucleotide sequence. The kDNA of H. ingenoplastis 

completely lacks mini-circle size molecules and the network is composed



6 6 6 entirely of large circular molecules of 11 x 10 , 15.5 x 10 and 24 x 10
6 6daltons. The 11 x 10 and 15.5 x 10 dalton molecules show sequence 

heterogeneity and are the major component of the kDNA. Hybridization 

studies with cloned fragments of T. brucei maxi-circle suggest that the 

24 x 10^ dalton component of H. ingenoplastis kDNA is functionally 

equivalent to the maxi-circle of other trypanosomatids. It was concluded 

that the 11 x 10^ and 15.5 x 10^ dalton circles of H. in, enoplastis are 

functionally similar to mini-circles of other trypanosomatids and that 

the maxi-circles of H. ingenoplastis differ from those of T. brucei and

H. musearum in major nucleotide sequences.

The structure and activity of the mitochondrion from H.ingenoplastis 

and H. muscarum have been studied by electron microscopy, respiration 

studies with different substrates and inhibitors, analysis of oligomycin- 

sensitive ATPase activity and low-temperature difference spectra 

of respiratory chain cytochromes. Certain differences in the two 

species can be correlated with alterations in the maxi-circle of

H. ingenoplastis described in the preceding paper. 1) The mitochondrion 

of H. ingenoplastis is poorly developed and devoid of the plate-like 

cristae present in the mitochondrion of H. muscarum. 2) The total 

cellular ATPase activity in homogenates of H. muscarum is sensitive to 

oligomycin (2Af° inhibition) while only 5f° of the ATPase activity in 

homogenates of H. ingenoplastis is oligomycin-sensitive. 3) Inhibition 

studies on the respiration of intact cells and homogenates with cyanide, 

azide, antimycin A and saliqrlhydroxamic acid show that respiration is 

not mediated by a conventional cytochrome chain with cytochrome aâ  

acting as the terminal oxidase in H. ingenoplastis as it is in H. muscarum. 

4) Low-temperature difference spectra suggest that cytochromes b, c and aâ  

are present in the mitochondrion of H. muscarum but that H. ingenoplastis 

completely lacks cytochrome aâ  and that the absorption maxima peaks 

for cytochrome b in preparations of H. ingenoplastis differ from those 

obtained from H. muscarum. It appears that mutations have occured in



the maxi-circle of H. ingenoplastis which result in the typical mito­

chondrial gene products, cytochrome b, and portions of cytochrome aa^ 

and the mitochondrial ATPase complex being either absent, or present in 

an altered form. The loss of cytochrome aa^ has resulted in H. ingenoplastis 

using an alternative pathway for energy metabolism possibly using an 

o-type cytochrome as the terminal oxidase.

Several characteristics of a recently derived population of 

T. brucei EATRO 1244 which is incapable of infecting the tsetse fly 

were compared with the parental population which retains infectivity for 

the insect vector. Oligomycin-sensitive ATPase activity, growth

characteristics in the mammal“ degree of pleomorphism and the ability to

grow in culture at 26°C differ for these two populations. No detectable

alterations in the maxi-circle component of the kDNA were correlated

with loss of infectivity for the tsetse fly either by electron microscopy 

or by restriction endonuclease analysis. There are two possible 

interpretations of our results: 1),minor alterations, such as point

mutations in.critical mitochondrial genes, have occurred which are 

undetectable with the methodology used; 2) mutations have occurred in 

nuclear genes coding for peptides which are imported into the.mitochondrion 

and are essential for mitochondrial protein synthesis.



Part I.

STUDIES ON ANTIGENIC VARIATION IN CYCLICALLY 

TRANSMITTED TRYPANOSOMA BRUCEI



1* INTRODUCTION

1.1 GENERAL

Trypanosomes are parasitic protozoa of the order Kinetoplastida 
which spend at least a portion of their life-cycle in a vertebrate host. 

Trypanosomes infecting fishes, amphibians, reptiles and birds are 

generally not pathogenic to the host. A few of the many species of 

trypanosoma parasitizing mammals are the causative agents of serious 

diseases, collectively termed trypanosomiasis.

The trypanosomes of mammals have been divided into 2 groups 

based on the developmental cycle in the insect vector (Hoare, 1972).

The group Salivaria, largely confined to sub-Saharan Africa, completes 

its developmental cycle in the mouthparts or salivary glands of the 

vector which is usually the tsetse fly (Glossina spp.). Infection 

of the mammalian host is usually initiated by the injection of meta­

cyclic trypanosomes with the saliva when the vector feeds. The other 

group, the Stercoaria, completes its developmental cycle in the 
hindgut of the vector and metacyclic trypanosomes are present in the 

faeces of the vector.

Control of both African and South American trypanosomiasis has 

relied almost entirely upon eradication of the insect vector or 

upon drug treatment of the mammalian host. Serious problems exist 

with both of these approaches and immunological approaches for con­

trolling these diseases are now being considered (Holms, 1980; Murray 
et al_., 1980).

The most extensively studied of the African trypanosomes is 

Trypanosoma brucei. ̂ Trypanosoma brucei brucei. causative agent of 

Nagana in cattle, is not infective to man but is morphologically and



biochemically indistinguishable from Trypanosoma brucei rhodesiense 

and Trypanosoma brucei gambiense the causative agents of acute and 

chronic human sleeping sickness respectively.

1.2 THE LIFE-CYCLE OF T. brucei

The developmental stages in the life-cycle of T. brucei. in both 

the mammalian host and the insect vector are shown in figure 1.

T. brucei infects both the blood and tissue fluids of the mammal (Losos 

& Ikede, 1974) and trypomastigotes (Hoare & Wallace, 1966) are probably 

the only forms present. After inoculation into the vertebrate host the 

first trypanosomes observed are long, slender multiplicative forms 

which normally differentiate, through an intermediate stage, to a 

short, stumpy non-multiplicative trypomastigote form (Robertson, 19l2a, b). 

Intracellular stages have not been demonstrated in the life-cycles of 

of any of the salivarian trypanosomes. The morphological variation in 
the bloodstream trypanosomes is termed pleomorphism and production of 

stumpy forms is associated.with the ability of the trypanosome population 

to infect the insect vector (Robertson, 1912; Yickerman, 1965). The 

short stumpy forms appear to be preadapted to life in the insect vector 

by virtue of changes which take place in the structure and function of 

the flagellates single mitochondrion during differentiation from the 

slender form (Vickerman, 1965; Brown et al., 1973); these changes are 

discussed in more detail in Part II.

The bloodstream trypanosomes are ingested by the tsetse fly‘when it 

feeds on an infected mammal. The blood meal plus trypanosomes pass 

through the oesophagus, crop and proventriculus to reach the midgut 

where the trypanosomes quickly transform to procyclic trypomastigotes 

(Hoare, 1940). From the midgut the trypanosomes migrate to the



Figure 1

Diagram to show changes in the surface of T. brucei during the course 

of the life cycle. In the bloodstream, lymphatics and connective 

tissue of the mammalian host trypomastigote developmental stages undergo 

antigenic variation and at all times possess a surface coat (shaded). 

Upon ingestion by the insect vector bloodstream trypomastigotes 

rapidly lose the surface coat, their antigenic idenity and infectivity 

for mammals. In the salivary glands uncoated, attached epimastigote 

forms differentiate to uncoated, attached trypomastigotes and finally 

to coated metacyclic trypomastigotes which are free in the lumen of the 

gland. The metacyclic forms are infective for mammals and express 

a characteristic repertoire of variable antigen types. The cycle in the 

mammal begins with the injection of metacyclics with the saliva when 

the tsetse fly feeds. (Vickerman, unpublished)





Figure 2

Development of T. brucei in the insect vector, Glossina spp., based 

upon the cycle described by Robertson (1913)• The direction of migration 

by the trypanosomes is indicated with arrows and dotted lines. The 

trypanosomes ingested with an infected blood meal pass through the 

pharynx (ph), crop (c), proventriculus into the midgut. The trypanosomes 

then migrate around the posterior end of the peritrophic membrane (pm), 

along the peritrophic space (ps), through the peritrophic membrane 

into the proventriculus then move back along the pharynx entering the 

salivary glands via the hypopharynx. Also labelled in this drawing 

are the rectum (r), hindgut (hg) and haemocoel (h).

Photographs of Giemsa stained T. brucei from the (a) salivary glands, 

(b) proventriculus and (c) midgut are shown. x1500.
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salivary glands of the tsetse. The classical viewpoint (Robertson, 1913) 

has been that the procyclic trypanosomes migrate to the posterior end of 

the midgut, around the end of the peritrophic membrane, move up the 

peritrophic space to the proventriculus where they retraverse the 

peritrophic membrane and then back-track to the proboscis, invading the 

hypopharymc from its open end and entering the s.-livary glands (figure 2). 

In contrast to this view Evans and Ellis (1975, 1977 & 1979) and 

Mshelbwala (1972) have presented evidence that the midgut trypanosomes 

penetrate the peritropic membrane (Ellis & Evans, 1977) and the gut 

wall (Evans & Ellis, 1975) to enter the haemocoel (Mshelbwala, 1972).

They further suggest that the trypanosomes may enter the salivary 

gl nds by penetration of the gland directly from the haemocoel. This 

alternative cycle of migrat-un* ioes not rule out the possibility that 

both routes may be used. Regardless of the route taken, once in the 

salivary glands the trypomastigotes differentiate to epimastigotes 

which are attached to the salivary gland cells (Vickerman, 1969;

Steiger, 1973). Metacyclic trypomastigotes arise from the epimastigotes 

first as attached forms and later are found free in the lumen of the 

salivary glands (Vickerman et al.. in press). The metacyclic trypano- 

some is the only developmental stage in the insect vector which has 

been shown to be infective for the mammalian host although other, non- 

metacyclic forms, are often seen in saliva probes from infected 

tsetse flies (Otieno, 1978).

During the life-cycle of T. brucei changes in the antigenicity 

of the organism have been observed (Seed, 1966; LeRay, 1975; Honigberg 

et al., 1976; Barry & Vickerman, 1979) which can be correlated with 

loss and reaquisition of the thick surface coat which covers the entire 

cell (Vickerman, 1969). The coat is the site of the variable antigen



or variant specific glycoprotein (VSG) and is present on all bloodstream 

stages. By altering the composition of this coat the bloodstream 

trypanosome evades the host's immune response. This switch in the 

nature of the variable antigen expressed is termed antigenic variation. 

Loss of the surface coat occurs in the midgut of the tsetse and is 

correlated with loss of infectivity for the mammalian host. Only 

after 17-25 days, when coated metacyclic forms are present in the 

salivary glands, do the ’.setse flies become able to infect the mammalian 

host. The aquisition of a surface coat at the metacyclic stage is 

apparently a preadaptation for survival in the mammalian host (Vickerman, 

1969). Tetley et al. (in press) have found that the metacyclics of 

Trypanosoma vivax do not have a surface coat and are insensitive to 

normal guinea pig and rabbit sera; the same authors found that uncoated, 

insect developmental stages of T. brucei are lysed by normal sera.

1 .5 ANTIGENIC VARIATION IN TRYPANOSOMES

During the course of infection in the mammalian host the number of 

trypanosomes in the blood and lymphatic fluids fluctuates in a character­

istic fashion. As early as 1907 (Massaglia, 1907) it was suspected 

that this fluctuation in the parasitaemia of African trypanosomes 

was due to the host's immune response, each remission being the con­

sequence of antibodies destroying trypanosomes bearing a particular 

antigen and each recrudescencebeing composed of a trypanosome population 

expressing a different antigen. Antigenic variation - the ability of 

the trypanosome to change its antigenic characteristics and so circumvent 

complete destruction of the parasite population by the host's immune 

response is a feature of all African trypanosomes ( Vickerman, 1974;

1978; Gray & Luckins, 1976; Cross, 1978; 1979; Turner, 1j80| Doyle, 1977). 

The change in antigenic composition of the trypanosomes in the relapsing



parasitaemias has been demonstrated by a variety of serolological (McNeillage 

et al., 1969; Van Meirvenne 1975a, b; LeRay, 1975) and immunochemical 

methods (Cross, 1975; 1977).

1.4 THE STRUCTURAL AND MOLECULAR BASIS OF ANTIGENIC VARIATION

Vickerman (l969) described a thick (l2-15nm) proteinaceous coat 

covering the entire surface of the trypanosome during its developmental 

stages in the mammalian host; inis surface coat was hypothesized to 

contain the variable antigen of the trypanosome and to be an adaptation 

to life in the immunologically reactive mammalian host. Localisation of 

the variable antigen in the surface coat has been demonstrated by 

several approaches. 1. Binding of ferritin conjugated antiserum to the 

surface coat of the homologous trypanosome variant and not to a 

heterologous variant or to the homologous variant after the surface 

coat had been removed by trypdnization (Vickerman & Luckins, 1969;

Fruit et al.. 1977). 2. Trypanosomes from the midgut of the tsetse
oand from invitro culture at 26C lack a surface coat, are non-infective 

for mammals and do not react with antiserum raised against the bloodstream 

variable antigen type (VAT) used to initiate the infection or culture 

(Vickerman 1969; Steiger, 1973; Honigberg et al., 1976; Barry & Vickerman, 

1979). Hyperimmune antiserum against purified VSG reacts only with the

surface of the homologous VAT (Cross, 1975).

The VSG from cloned populations of T. brucei has been purified 

and studied extensively by Cross and co-workers (Cross, 1975; 1977;

Bridgen et al., 1976; Cross & Johnson, 1976). From each antigenically 

distinct and homogeneous population of T. brucei a single VSG can be 

isolated. This glycoprotein accounts for roughly 10/̂  of the total cell

protein and has a molecular weight of about 65,000 daltons. The



carbohydrate of the VSG differs from one VAT to another both in 

amount by weight from 7-17$, the proportions of the 3 sugar constituents 

galactose, mannose, and glucosamine present and the site of attachment 

to the polypeptide backbone of the VSG (Johnson & Cross, 1977). As 

discussed by Cross (l978) the carbohydrate component of the VSG does 

not appear to be a major antigenic determinant and cytochemical 

evidence (Wright & Hales, 1970) suggests that oligosaccharide groups are 

attached to the VSG at a site near to the surface membrane and are not 

exposed in the living trypanosome. Studies on the amino acid sequence 

of the N-terminal portion of VSG from 4 VATs of a single trypanosome 

suggest that there is little or no homology in the primary structure 

of the VSG, at least in this portion of the molecule (Bridgen et al., 

1976). This suggests that the immunological uniqueness of each VSG 

is due to extensive differences in the amino acid composition of the 

molecule. The C-terminal portion of the VSG, which is probably the 

region of the molecule involved in attachment to the trypanosome 

surface membrane, apparently has some regions of homology in different 

VATs since tryptic digest fragments from this portion of the molecule 

cross-react serologically (Cross, 1979; Barbet & McBuire, 1978).

Until recently the genetic basis of antigenic variation was 

completely unknown although the semi-ordered appearence of VATs in 

trypanosome populations following cyclical transmission through the 

tsetse fly (Gray, 1965; 1975) and the extensive differences in amino 

acid sequences of the N-terminal region of the VSG argued against 

antigenic variation being the result of mutation of a small number of 

variable antigen genes.



In vitro translation studies with purified mRNA for VSG (Williams 

et al., 1979; Lheureux et al., 1979; Merrit, 1980) and total poly- 

adenylated (poly A+) RNA ( Hoeijamkers et al., 1980) suggests that 

the VSG mRNA codes for a pre-VSG which is larger than the "mature" 

molecule present on the surface of the trypanosome. The portion of the 

molecule removed might be a "signal peptide" involved in the transfer of 

the nascent protein to the surface (Hoeijmakers et al., 1980a).

When the products of in vitro translation of the total poly A+ REA 

from 4 different VATs was analysed by SDS gel electrophoresis and immuno- 

precipitation with antisera against each of the VATs, the only differ­

ences detected were in the variant pre-glycoproteins (Hoeijmakers et al., 

1980a). In additional experiments, complementary DNA copies of 

poly A+ RNA from each of the 4 VATs were cloned in Escherichia coli 

after linking to a plasmid vector. When the cloned cDNA was reacted 

with poly A+ RNA from the 4 VATs, hybridization was detectable only 

with the homologous RNA and not with that of the heterologous VATs. 

Hoeijmakers et al. (1980a) concluded that this lack of cross hybrid­

ization shows that antigenic variation in trypanosomes is not due to the 

linkage of a large set of genes for a variable N-terminal region of the 

antigen with a single gene for a constant C-terminal region as is the case 

for antibodies in mammals (Milstein & Munro, 1973). Thus it seems 

likely that each VSG is coded for by a single gene and that antigenic 

variation involves the differential expression of a large number of 

VSG genes.

Hybridization experiments using the cloned cDNA described above

and nuclear DNA (nDNA) digested with restriction endonucleases from the

4 VATs were done to examine the type of genomic rearrangements which

may occur when a particular VSG gene is expressed (Hoeijmakers et al., 1980b)



The results of these experiments show that each VAT contains a copy of 

the other VSG genes in its genome supporting the idea of a gene for each 

VSG. When cDNA was hybridized with nDNA from the homologous VAT and the 

3 heterogous VATs an extra hybridizing fragment was detectable in the 

nMA from the homologous VAT. This is interpreted as an "expression- 

linked copy", each VAT containing a basic copy of the entire repertoire 

of VSG genes, an extra copy of the VSG gene is present only in the 

genome of the expressed VAT. Although the nature of the events leading 

to the presence of this expression-linked copy is unknown it is clear 

that the nucleotide sequences surrounding this gene are altered, 

either by movement of the gene to a new (expression) site or insertion

of a sequence next to the extra copy.

Early studies on the occurence of new VATs in trypanosome infections

in non-immune animals (Lourie & O'Conner, 1937) suggested that the

expression of new VATs was induced by antibody against the trypanosome 

(discussed by Vickerman, 1974). To study in detail the occurrence of 

antigenic variation in the mammalian host, Van Meirvenne and co-workers 

(1975a) prepared, from a single cloned trypanosome, a set of 13 VATs 

identified by immunofluorescence .nd trypanolysis reactions. The 13 

VATs isolated make up only a small fraction of the VATs which can be 

expressed by this cloned population. The entire repertoire of VATs 

which can be expressed by a clone is termed a serodeme (WHO, 1978).

Van Meirvenne and co-workers (1975a) found that, in non-immune animals, 

minor VATs (heterotypes) are detectable in a idition to the major VAT 

(homotype) even very early in the course of the infection. In a 

relapsing parasitaemia resulting from a single infecting trypanosome

the first peak is composed of a homotype plus a few heterotypes. 

Following antibody induced remission, the relapse population consists 

of one (or more) heterotypes of the previous peak parasitaemia which
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Figure 4

FITC immunofluorescence reactions on acetone-fixed metacyclics 

from a single fly labelled with antiserum against AnTat 1.30 (a), 

AnTat 1.6 (b) and AnTat 1.45 (c) to show specificity of reactions 

obtained, (X1500).
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figure for lysis by combined anti-M-VAT sera quoted above. 
Metacyclic trypanosomes from another serodeme, GUTAR 1, derived 
from EATRO 1244 (Barry & Vickerman, 1979) were not labelled by 
antisera against any of the AnTAR 1 M-VATs.

The presence of two different M-VATs within one salivary 
probe was demonstrated by using a double primary antibody- 
labelling immunofluorescence test. Monospecific rabbit 
antiserum against AnTat 1.30 and mouse antiserum against AnTat
1.45 were pooled to give active specific dilutions and applied 
to saliva probes. The second antibody layer was pooled FITC- 
conjugated goat anti-rabbit immunoglobulin and, TRITC-conjugated 
rabbit anti-mouse immunoglobulin. By the use of appropriate 
filters it was possible to visualise both the FITC and TRITC 
reactions on the same preparation (fig. 5). In this experiment 
7.3% metacyclics were labelled with the anti-AnTat 1.45 TRITC 
reaction and 15.3% with the anti-AnTat 1.30 FITC reaction; 
the remaining cells were unlabelled indicating the presence of 
other VATs in the metacyclic population.

The stability of the VAT composition of the metacyclics 
during the course of the infection in the tsetse fly was examined 
using the immunofluorescence reaction on sequential saliva probes 
from the same fly (Table 3). The percentage of metacyclics 
labelled with a particular anti-M-VAT serum remained relatively 
constant in all 3 cases, viz. AnTat 1.30, 13.7-18.2%; AnTat 1.45, 
2.0-8.0% and AnTat 1.6, 6.0-8.3%.



Figure 5. Metacyclic trypanosomes in a saliva probe labelled with 
both (a) rabbit anti-AnTat 1.30 antiserum and (b) mouse anti-AnTat
1.45 antiserum, then reacted with goat anti-rabbit FITC and rabbit 
anti-mouse TRITC. Arrows indicate unlabelled AnTat 1.45 in the 
FITC anti-AnTat 1.30 photograph (a) and the unlabelled AnTat 1.30 
in the TRITC anti-AnTat 1.45 photograph (b). Other metacyclics 
show only slight background fluorescence and indicate the presence 
of other metacyclic VATs. xl200.





Table 3. Percentage of Metacyclic Variable Antigen Types
in Sequential Probes from Individual Tsetse Flies

Age of tsetse infection Immunofluorescence
(Day after infective feed)

Fly A % AnTat 1.30
22 15.2
24 15.2
27 13.7
29 14.0
36 12.9
38 14.3
42 ' 17.0
44 17.0
46 18.2

Fly B % AnTat 1.45
43 8.0
50 2.0
55 7.0

Fly C % AnTat 1.6
25 8.3
41 6.0
44 8.3



Effect of ingested VAT on M-VAT composition 
of metacyclic population

The possibility that the VAT of the trypanosome population 
ingested by the fly might influence the VAT expressed by the 
metacyclic trypanosome population developing from it was 
investigated. Flies were infected with 5 VAT-defined bloodstream 
populations and an undefined mixture of VATs, all belonging to 
the AnTAR 1 serodeme. ;k;ble 4 shows the degree of homogeneity 
of the ingested VAT-defined populations in terms of the percentage 
of heterotypes present as assessed by immunofluorescence analysis. 
The metacyclic populations arising in the infected flies were 
analysed by immunofluorescence, testing for presence of the 
ingested VAT and the 3 identified M-VATs. The VAT ingested by 
the fly was never detected in the ensuing trypanosome metacyclic 
population, whereas the 3 M-VATs were regularly found (Table 5). 
The only saliva probes in which all 3 M-VATs were not detected 
were those of the flies that had ingested AnTat 1.18: these
probes lacked AnTat 1.6 though this M-VAT has since been identified 
in other experiments utilising similarly infected flies.

DISCUSSION

The observation that the variable antigen-containing surface 
coat of T. brucei is acquired during transformation of the 
epimastigote to the metacyclic trypomastigote stage in the 
salivary gland of Glossina (Vickerman, 1969, Steiger, 1973) 
along with Cunningham's (1966) report that the infectivity of 
metacyclic trypanosomes is neutralised by 14d serum from infected 
sheep, led to the hypothesis that reversion to a basic antigen 
occurs at the metacyclic stage (Vickerman, 1969)? the metacyclics



Table 4. VAT composition of bloodstream trypanosome 
populations ingested by Glossina morsitans : 
immunofluorescence analysis of 1000 trypanosomes 
in acetone-fixed blood smears.

Ingested VAT * u *.? % heterotypeshomotype

AnTat 1.8 ino

AnTat 1.14 20.6
AnTat 1.18 3.9
AnTat 1.19 0.3
AnTat 1.21 0.2



49

m
CO T

0) Eh .
o <« p O O P~ O r» O
a > • • • • • •
3 P o H* o 04 Ol
o U (0 p
0) •H Eh
0 H G

3 p O *<
g 0 >i
0 3 O
P iH 10 o ,
P P P co
3 0 0)
P G £ p in o in CO in 00
3 3 • • • • • •
(X g P P o 04 o 04 Hj>
0 g to (0 CM P CM 04 Ol 04
a ■rl G Eh

•H C
0 >1 (0 <
•H .Q O’rH 3
u T3 vO
>i 3 3o P P P
3 P (1) O vO O in O O
P 3 3 P • • • • • •
0) A -H 3 HJ* Io yo 04 o a
£ (0 P Eh P

H G C>4-4 < <
0 CQU
c ■H
o H
-H o
P >1
•H 0
CO 10
0 p P
0, <u 3£ £ C
O •H Eh
u • p 3 <

01 0 o » >
Eh C 3< 3 a) 'O o o o O o o
> P o> g 3 • • • • • •
1 H (0 3 P o o o o o o

2 w p p 3
p G 3 3a o 3 3 O’

0 £ o •H Gp P -H
Eh (0 a) G
<  G (X <> -H(0
>0 01
0 0
-P rHto U
3 3
o> c 3 H H H > > H
C -H P H M H >
•H 3 M

o> 3
P G EhO -Hcx
P OO rH
3 a)p >
P 0)
W <3 Eh

> CO
00 P p• TJ • • •

in 3 P P p
P

3 3 P P p
iH 3 3 3 3XX O’ Eh Eh Eh
3 C G G G
Eh H < < <

O o o’ o 25 o in in
• •

CO o HJ* in n r

04 CO p r» o lO o o
• • • • • • « •
CO O’ O’ CO 04 vO 04 Hi*
p p p Ol Ol P P 04

O in in o 10 o O’ 04
• » • « • • • *O’ 10 in i NO CO 10

10

H H X X H H H >H H H X H H M
> H X H X

> X

O’ P P  3p 04 O E-*• •
P  P 3 >

P
p p 3  o;
to (0 p  ii
Eh E-i X  Eh

Not
 
do
ne



of a clone line differentiating in the same environment might 
be expected to put on the same type of coat. The hypothesis 
has recently received support from Jenni (1977# 1979) and from 
Hudson et al. (1980) though . the latter presented no direct 
evidence. Our own recent transmission experiments on the AnTAR 1 
serodeme (Le Ray et <|1. / 1978; Barry et al., 1979; Barry and 
Hajduk, 1979) make this view hard to sustain and lead us to a 
different interpretation of the early events of antigenic 
variation following fly transmission.

Using the VAT-specific immunofluorescence and trypanolysis 
tests of Van Meirvenne et al. (1975)/ we found marked VAT 
heterogeneity in the first patent trypanosome population following 
fly transmission (Le Ray et al./ 1977)/ suggesting that either 
VAT diversity developed quickly after fly-induced infection of 
the mammal/ or that the inoculated metacyclic population was 
already heterogeneous/ or that both these situations occurred.
We also found that clones isolated from this early infection 
were extremely unstable with respect to VAT. It is this property 
of metacyclic-derived clones that has made it difficult to produce 
antisera to metacyclic VATs and therefore to identify defined 
VATs in tsetse salivary probes; Hudson et al. (1980) also 
recognised the VAT lability of metacyclic trypanosomes in the 
mammal. The discrepancy between the findings of other 
investigators and our own can be explained by the different 
methods used to produce anti-metacyclic antisera and to identify 
VATs with these sera.



Jenni (1977; 1979) prepared antisera to metacyclic trypano- 
somes by allowing infected flies to feed on mice or rabbits on 
single or multiple occasions before collecting serum on d6, d9, 
or dlO; he used these sera in immunofluorescence reactions 
and obtained 100% serodeme-specific labelling of metacyclics.
In our laboratory/ rabbit serum/ collected 1 week after a bite 
from an AnTAR 1-infected tsetse, labels or lyses over 90% of 
AnTAR 1 metacyclics/ but use of VAT-specific antisera reveals 
marked VAT heterogeneity of metacyclics within the same salivary 
probe (Le Ray et al. 1978). If the immunising metacyclics 
are antigenically heterogeneous, the antiserum will contain 
antibodies to this variety of VATs, and might be expected to 
show activity against most or all metacyclics of that serodeme. 
Our approach to the identification of individual metacyclic VATs 
is to employ specific antisera raised by infection of rabbits 
with antigenically stable clones (Barry et ad. 1979). As the 
variable antigen is more immunogenic than the common antigens 
of the trypanosome (Le Ray, 1975), specificity of 6 day antisera 
from such infected animals can be achieved by diluting out 
antibodies to common antigens (Van Meirvenne eat a_l. 1975) .
The specificity of the 3 ant.isera used to identify metacyclic 
VATs 1.6, 1.30 and 1.45 in our experiments was demonstrated in 
homologous and heterologous reactions with 21 other VATs of the 
AnTAR 1 serodeme. Lack of cross reactivity between the 3 M-VATs 
was further demonstrated by the use of combined sera in 
trypanolysis reactions with metacyclics.



We have here presented direct evidence that there are at 
least 4 VATs in the metacyclic populations of the AnTAR 1 serodeme 
of T. brucei. Three of these VATs have been identified with 
specific antisera, two of them simultaneously, in a single probe, 
by double labelling experiments; we infer the presence of at 
least one additional metacyclic VAT, as only a third of the 
metacyclics reacted with our anti-metacyclic sera. These results 
complement our previous findings (Le Ray et al. 1978; Barry et al. 
1979; Barry and Hajduk, 1979). Using similar techniques the 
presence of at least 4 VATs in the metacyclics of another serodeme 
has now been demonstrated (Barry, unpublished). The possibility 
that unidentified trypanosomes in the probe represent discharged 
"immature" metacyclics (Jenni, 1979) has been discounted by the 
demonstration that the reactivity of fly-probe trypanosomes in 
immune lysis reactions is unaltered by passage through ion 
exchange columns.

The mechanisms underlying the generation of M-VAT diversity 
in tsetse salivary glands, and the significance of the relative 
constancy of different M-VAT percentages in probes, regardless 
of the VAT ingested by the fly, remain to be investigated. As 
yet we cannot discount the possibility that nascent metacyclics 
express the same VAT, but quickly switch to the expression of 
other M-VATs while still in the fly. Our recent electron 
microscope studies (Vickerman, et al. 1980) show that for AnTAR 1 
trypanosomes metacyclic coating actually occurs before detachment 
of the flagellate from the salivary epithelium and not after 
detachment as was previously supposed (Vickerman, 1969; Steiger, 
1973). Immunocytochemical studies at the electron microscope 
level should therefore enable us to see if nascent metacyclics



belong to more than one antigenic type. There is no a priori 
reason why antigenic change should not take place in the fly's 
saliva? the belief that host antibody is necessary for the 
induction of antigenic change can now be discarded (Vickerman, 
1978), especially as VAT changes occur in vitro in the apparent 
absence of an immune response (Doyle et al. 1980). An alter­
native interpretation of the constant percentages of M-VATs 
in fly salivary probes would be that different epimastigotes 
give rise to metacyclics with antigenically-different coats in 
different proportions or at different rates.

Our conclusions from this work are (1) the metacyclic 
population of Trypanosoma brucei is heterogeneous with respect 
to variable antigen type? there is no evidence for a single 
"basic" VAT in the salivary glands of Glossina; (2) at least 
4 metacyclic VATs are pre;.bnt in the AnTAR 1 serodeme, 3 of 
which have been shown to form an approximately constant per­
centage in the metacyclic population; (3) the VAT ingested by 
the fly is not present in the metacyclic population, nor does 
the ingested VAT appear to influence the M-VAT composition of 
this population? the effect of the tsetse ingesting a M-VAT 
has not yet been investigated.



Acknowledgements

We thank Drs Dominique Le Ray and Nestor Van Meirvenne, 
Prince Leopold Institute of Tropical Medicine, Antwerp, 
for helpful discussions and providing many of the antisera 
and stabilates used in this study. We are also grateful 
to Dr A M Jordon, Tsetse Research Laboratory, Bristol, 
for supplying the Glossina morsitans pupae. This work 
was supported by a grant from the UK Overseas Development 
Administration (Scheme R3338) to K.V.



References

BARRY, J.D. (1979). Capping of variable antigen on
Trypanosoma brucei, and its immunological and biological 
significance. Journa I of Ce11 Scienee, 37, 287-302.

BARRY, J.D. AND IIAJDTTK, S.L. (1979). Antigenic heterogeneity 
of bloodstream and metacyclic forms of Trypanosoma brucei. 
In Pathogenicity of Trypanosomes. (ed. G Losos and 
A Chouinard), pp. 51-56. Ottawa : IDRC.

BARRY, J.D. AND VICKERMAN, K. (1979). Trypanosoma brucei :
Loss of variable antigens during transformation from 
bloodstream to procyclic forms in. vitro. Experimental 
Parasitology, 48, 313-324.

BARRY, J.D., HAJDUK, S.L., VICKERMAN, K AND LE RAY, D (1979).
Detection of multiple variable antigen types in metacyclic 
populations of Trypanosoma brucei. Transactions of the 
Royal Society of Tropical Medicine and Hygiene, 73, 205-208

CAPBERN, A., GIROUD, C., BALTZ, T. AND MATTERN, P. (1977).
Trypanosoma eguiperdum : etude des variations antigeniques 
au cours de la trypanosomose experimentale du lapin. 
Experimental Parasitology, 42, 6-13.

CUNNINGHAM, M. P. (1966). The preservation of viable meta­
cyclic forms of Trypanosoma rhodesiense and some studies 
on the antigenicity of the organisms. Transactions of 
Royal Society or ~nical Medicine and Hygiene, 60, 126.

CROSS, G. A. M. (197b;. Antigenic variation in trypanosomes. 
Proceedings of the Royal Society of London, B202, 55-72.

DOYLE, J. J. (1977). Antigenic variation in the salivarian
trypanosomes. In Immunity to blood parasites in animals 
and man (eds. L. Miller, J. Pino and J. McKelvey), 
pp. 27-63, New York ; Plenum Press.



5b

9 DOYLE, J. J., HIRUMI, H., HIRUMI, K.# LUPTON, E.N. AND
CROSS, G.A.M. (1980). Antigenic variation in clones of

animal-infective Trypanosoma brucei derived and maintained
in vitro. Parasitology, 80, 359-369.

10 GRAY, A.R. (1965). Antigenic variation in a strain of
Trypanosoma brucei transmitted by Glossina morsitans 
and G. palpalis. Journal of General Microbiology, 41, 
195-214.

11 GRAY, A.R. (1975). A pattern in the development of
agglutinogenic antigens of cyclically transmitted 
isolates of Trypanosoma gambiense. Transactions of 
the Roval Society of Tropical Medicine and Hygiene, 69, 
131-138.

12 GRAY, A.R. AND LUCKINS, A.G. (1976). Antigenic variation in
salivarian trypanosomes. In Biology of the Kinetoplastida 
vol. 1 (ed. W. H. R. Lumsden and D. A. Evans), pp. 493-542. 
London, New York and San Francisco : Academic Press.

13 HUDSON, K.M., TAYLOR, A.E.R., AND ELCE, B.J. (1980). Antigenic
changes in Trypanosoma brucei on transmission by tsetse fly 
Parasite Immunology, 2, 57-69.

14 JENNI, L. (1977). Comparisons of antigenic types of
Trypanosoma (T.) brucei strains transmitted by Glossina m. 
morsitans/ Acta Tropica 34, 35-41.

15 JENNI, L. (1979). Cyclical transmission and antigenic
variation. In Pathogenicity of Trypanosomes.
(eds. G. Losos and A. Chouinard), pp. 49-50, O Hawa : IDRC.

16 LANHAM, S.M. AND GODFREY, D.G. (1970). Isolation of salivarian
trypanosomes from man and other mammals using DEAE- 
cellulose. Experimental Parasitology, 28, 521-532.



57

17 LE RAY, D., BARRY, J.D,, EASTON, C. AND VICKERMAN, K. (1977).
First tsetse fly transmission of the "AnTat" serodeme 
of Trypanosoma brucei. Annales de la Societe beige de 
Me'dicine tropicale. 57, 369-381.

18 LE RAY, D., BARRY, J.D. AND VICKERMAN, K. (1978). Antigenic
heterogeneity of metacyclic forms of Trypanosoma brucei. 
Nature, 273, 300-302.

19 McNEILLAGE, G.J.C., HERBERT, W.H. AND LUMSDEN, W.H.R. (1969).
Antigenic type of first relapse variants arising from a 
strain of Trypanosoma (Trvpanozoon) brucei.
Experimental Parasitology, 25, 1-7.

20 NANTULYA, V.M. AND DOYLE, J.J. (1977). Stabilization and
preservation of the antigenic specificity of Trypanosoma 
(Trvpanozoon) brucei variant-specific surface antigens 
by mild fixation techniques. Acta Tropica 34, 313-320.

21 STEIGER, R.F. (1973). On the ultrastructure of Trypanosoma
(Trvpanozoon) brucei in the course of its life cycle 
and some related aspects, Acta Tropica, 30, 64-168.

22 TURNER, M.J. (1980). Antigenic variation. In The Molecular
Basis of Microbial Pathogenicity (eds. H. Smith,

o
J.J. Skehel, and M.J. Turner), pp. 133-158. Weinheim : 
Verlag Chemie.

23 VAN MEIRVENNE, N., JANSSENS, P.G. AND MAGNUS, E, (1975).
Antigenic variation in syringe passaged populations of 
Trypanosoma (Trypanozoon) brucei. I. Rationalization 
of the experimental approach. Annales de la Societe 
beige de Medicine tropicale, 55, 1-23.



24 VICKERMAN, K. (1969). On the surface coat and flagellar
adhesion in trypanosomes. Journal of Cell Science,
5, 163-193.

25 VICKERMAN, K. (1971). Morphological and physiological
considerations of extracellular blood protozoans.
In Ecology and Physiology of Protozoan Parasites.
(ed. A.M. Fallis) pp. 58-89. Toronto : University 
of Toronto Press.

26 VICKERMAN, K. (1978). Antigenic variation in trypanosomes.
Nature, 273, 613-617.

27 VICKERMAN, K., BARRY, J.D., HAJDUK, S.L. AND TETLEY, L. (1980).
Antigenic variation in trypanosomes. In H. Van den 
Bossche (ed.) Biochemistry of Parasites and Host-Parasite 
Relationships : The Host-Invader Interplay. Elsevier : 
North Holland. (In Press).

28 W.H.O., (1978). Proposals for the nomenclature of salivarian
trypanosomes and for the maintenance of reference 
collections. bulletin of the World Health Organization, 
56, 467-480.



Antigenic variation in cyclically-transmitted. 

Trynanosoma brucei

II. Variable antigen type composition of the first parasitaemia 

in mice bitten by trypanosome-infected Glossina morsitans.



Summary

Tsetse flies were infected with 5 different 
variable antigen types (VATs) or with a mixture of VATs of the 
AnTAR 1 serodeme of Trypanosoma brucei. Metacyclic forms from 
the salivary glands of infected flies were used to initiate 
infections in mice. Immunofluorescence and trypanolysis 
reactions employing 24 monospecific antisera were used to 
analyse the VATs present in the mice following cyclical trans­
mission. Regardless of the VAT used to infect tsetse flies, 
the first VATs detectable in the bloodstream were those 
previously identified as metacyclic VATs (M-VATs). These 
were present until at least 5 days after infection, at which 
time lytic antibodies against at least 2 of the M-VATs were 
detectable in the blood of infected mice. In mice immuno- 
suppressed by X-irradiation the M-VATs were detectable in 
the bloodstream for longer periods, but the percentage of the 
population labelled with anti-metacyclic sera showed a decrease 
on day 5 as in non-irradiated animals. The VAT ingested by 
the tsetse was always detectable early during the first 
parasitaemia following cyclical transmission and was usually 
the first VAT detected â +-̂ r the M-VATs. Neutralization of 
selected M-VATs before n.niCLing mice resulted in elimination 
of the neutralized M-VAT from the first parasitaemia but had 
no effect on the expression of other VATs in the early infection.



Introduction

The cyclical development of Trypanosoma brucei in the 
tsetse fly culminates in the metacyclic trypomastigote form in 
the vector's salivary glands; this stage is infective for the 
mammalian host. The metacyclic trypanosomes differ from the 
other insect developmental stages in having a surface coat 
similar in appearance to bloodstream forms in the mammal 
(Vickerman, 1969). This coat is the location of the variable 
antigen (Vickerman & Luckins, 1969? Cross, 1975; Le Ray, 1975).

Studies by Gray (1965, 1975) using the agglutination 
reaction suggested that, following cyclical transmission through 
the tsetse fly, trypanosomes tend to revert to a "basic strain 
antigen". He found that tsetse flies transmitted either 
trypanosomes expressing the basic antigen only, or a mixture of 
trypanosomes expressing the basic antigen and the variable 
antigen type (VAT) ingested by the fly in its infecting blood 
meal. Further experimental evidence (Cunningham, 1966;
Jenni, 1977, 1979) suggested that the metacyclics acquire the 
basic antigen during their development in the salivary glands 
of the tsetse. Recent results from our laboratory (Le Ray et al. 
1978? Barry et al., 1979? Barry & Hajduk, 1979? Hajduk, et al. 
1981) show, however, that the metacyclics of the AnTAR 1 serodeme 
of T. brucei express at least 4 different variable antigen types 
(VATs) and that the ingested VAT is not present in the metacyclic 
trypanosome population. In this paper we have analysed the 
composition of the bloodstream population of trypanosomes in 
mice infected with metacyclics to determine which VATs are 
expressed in the bloodstream during the early stages of the



infection and whether the VAT ingested by the tsetse influences 
the VAT composition of the first parasitaemia in tsetse-bitten 
mice.

Materials and methods

Trypanosomes and tsetse flies

The infection of Glossina morsitans morsitans with cloned 
VATs of T. brucei AnTAR 1 serodeme, the maintenance of infected 
flies, the collection of metacyclic trypanosomes and determination 
of the VAT composition of bloodstream and metacyclic trypanosome 
populations were all carried out as described in the preceding 
paper (Hajduk et al., 1981). To initiate trypanosome infections 
in experimental animals, tsetse flies with metacyclic infections 
were allowed to feed on female CFLP mice. In some experiments 
mice were infected by injection with metacyclics obtained by 
allowing infected tsetse flies to probe into fresh guinea pig 
serum. The number of trypanosomes in the blood of infected 
mice was estimated by the method of Herbert & Lumsden (1976).
Blood samples for serological analysis of trypanosome VATs by 
immunofluorescence or trypanolysis were prepared from day 3 
after the infecting tsetse bite. Due to the low parasitaemias

5(usually less than 2.5x10 /ml of blood) detectable on day 3 it 
was necessary to concentrate trypanosomes for identification 
of the VATs present as follows: 0.2-0.4 ml blood was, collected,
trypanosomes separated from blood constituents on DEAE columns 
(Lanham, 1968) and concentrated by centrifugation at l,500g. for 
10 min at 4°C. From day 4 onward sufficient numbers of 
trypanosomes were present in the blood to allow VAT determination 
from blood smears.



have now become the home type. Thus antigenic variation is a spontaneous 

process with antibody not acting as an inducer of the phenomenon, but 

as a selective agent eliminating the homotype of each wave of parasitaemia 

and periritting tne hetero types to emerge th-. homo types of subsequent 

relapse oopul 'ions.

The deveiopmen of a cultivaticr system for the bloodstream stages 

of T. brucei iHirumi et ai> 977} has made it pos.-Die to examine 

in vitro, the role of antibody in the expression of new variants.

Recent findings by Doyle et al. (19B0) show that antigenic variation 

occurs at low frequency j.n vitro in the absence of antibody.

The expression of new VATs is not a strictly random process.

This has been snown for cyclically transmitted T. brucei (Gray, 196b) 

and T. gambien^e (Gray, 1975) ana in syringe passaged infections of 

Trypanosoma equiperdum (Capbern et al. , 1977). Gray (196b) tested for 

the presence of agglutinating antibodies in the blood of animals infected 

by tsetse bite and found that . ntibodies to certain VATs were detectable 

early in the infection. Regardless of the VAT used to infect the 

tsetse f1>, antibodies to a "basic strain antigen" were detected first, 

if ail trypanosomes of a particular serodeme revert to a single VAT 

following cyclical transmission in tne insect vector, then this VAT 

might be useful as a potential vaccine against the natural challenge in 

the field.
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2. PURPOSE OF INVESTIGATION

Recent studies by LeRay et al. (1977; 1978) have shown that the 

metacyclic trypanosomes of the AnTAR 1 serodeme of T. brucei express 

a mixture of VATs in the salivary glands of G. morsitans and that in 

the mammalian host the metacyclic VATs (M-VATs) rapidly change to 

non-metacyclic VATs. The purpose of my investigation was to define the 

antigenic composition of the metacyclic population and the first 

parasitaemia in mice infected with metacyclics using monospecific 

antisera. The influence of the VAT ingested by the tsetse fly on the 

VAT composition of both the metacyclic and first bloodstream populations 

was studied. In addition> I have studied the role of antibody in the 

change from M-VATs to l,predominant,, VATs in the first parasitaemia of 

metacyclic infected mice by analysis of the VAT composition in immuno- 

suppressed, metacyclic infected mice.



Antigenic variation in cyclically-transmitted 

Trypanosoma brucei

I. Variable antigen type composition of metacyclic trypanosome 

populations from the salivary glands of Glossina morsitans.
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Summary
Tsetse flies (Glossina morsitans) were fed on the blood 

of mice containing any one of 5 variable antigen types (VATs) 
of Trypanosoma brucei AnTAR 1 serodeme. The VATs of the 
metacyclic trypanosomes subsequently detected in the flies' 
saliva probes were investigated using monospecific antisera 
to AnTAR 1 VATs in indirect immunofluorescence and trypanolysis 
reactions; these sera included 3 raised against AnTats 1.6,
1.30 and 1.45/ previously identified as components of the 
metacyclic population (M-VATs)/ and against the 5 VATs originally 
ingested by the flies. The percentage of metacyclics reacting 
w±th a particular M-VAT antiserum remained more or less constant 
(AnTat 1.6, 6.0-8.3%; AnTat 1.30/ 13.7 - 18.2%; AnTat 1.45/
2.0 - 8.0%)/ regardless of the age of the fly or the ingested 
VAT. As these 3 VATs accounted for no more than one-third 
of the metacyclic population, the existence of at least one more 
VAT is envisaged. The ingested VAT could not be detected 
among the AnTAR 1 metacyclic trypanosomes.



INTRODUCTION
The life cycle of Trypanosoma brucei consists of develop­

mental stages in a warm-blooded host, usually a mammal, and in an 
insect vector, the tsetse'fly (Glossina spp.). For survival in 
the mammal, T . brucei and the other salivarian trypanosomes have 
evolved a mechanism, antigenic variation, which allows the 
antigenic determinants on the trypanosome's surface to change, 
thus nullifying the effects of the host's immune response (for 
recent reviews see Gray and Luckins, 1976; Doyle, 1977;
Cross, 1978; Vickerman, 1978; Turner, 1980).

Several studies suggest a semi-ordered appearance of VATs 
in both syringe passaged lines and lines cyclically transmitted 
through the tsetse fly (Gray, 1965, 1975; McNeillage et al.,
1969; Van Meirvenne et al., 1975; Capbern et a l ., 1977).
Gray (1965, 1975) used agglutination reactions to follow the 
appearance of antibodies to specific variable antigen types 
(VATs) in the blood of animals infected by tsetse bite and 
found that following cyclical transmission trypanosomes of a 
particular stock tend to express first the same "basic antigenic 
type", though occasionally a mixture of this type and that 
originally ingested by the fly was transmitted.

The metacyclic developmental stage found in the salivary 
glands of the tsetse fly is the only form in the insect vector 
which has a surface coat (Vickerman, 1969). This coat is shed 
by the bloodstream trypanosome, in the tsetse midgut, within 
36-48 hours of ingestion (discussed by Barry and Vickerman, 1979). 
The metacyclics reacquire infectivity for the mammal along with 
the surface coat (Vickerman, 1969). The coat contains the 
variable antigen (Vickerman and Luckins, 1969; Cross, 1975).
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Considerable interest now attaches to the question of 
whether the variable antigen in the coat is the same for all the 
metacyclic trypanosomes of a given serodeme or whether a mixture 
of variable antigen types (VATs) is present in the population. 
Recent studies in our laboratory have shown that the VAT 
composition of the metacyclic population of the AnTAR 1 serodeme 
of T. brucei is heterogeneous (Le Ray et a_l., 1978/ Barry et al., 
1979; Barry and Hajduk, 1979) and that upon inoculation into 
the mammalian host the metacyclics rapidly undergo antigenic 
variation (Le Ray et al.. 1977). In this and an accompanying 
paper we describe furtL^x xiivestigations on the VAT make-up 
of the metacyclic population of T. brucei and the antigenic 
differentiation which occurs in the bloodstream of tsetse-bitten 
mice. These findings are discussed in relation to Gray's 
(1965) original observations on the effect of fly transmission 
on antigenic variation.

MATERIALS AND METHODS

Trypanosomes:
Cloned VATs of the AnTAR 1 serodeme of T. brucei stock 

EATRO 1125 (see WHO. 1978 for nomenclature) were used in these 
experiments. Variable antigen types AnTat 1.1 to 1.13 were 
isolated from a syringe passaged, monomorphic line of this 
stock as described by Van Meirvenne and co-workers (1975);
AnTat 1.14 to 1.22 were isolated from a line of the AnTAR 1 
serodeme which had been cyclically transmitted through Glossina 
morsitans (Le Ray et al., 1977). AnTat 1.30 and 1.45 were 
isolated from chronically infected rabbits as described by 
Barry et al.. (1979) and in this paper. The pedigree of Antat
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1.30 and 1.45 is given in figure 1. All clones were stored 
at -196°C with DMSO (7.5%) added as a cryopreservant.

Tsetse flies:
Glossina morsitans pupae were obtained from the Tsetse 

Research Laboratory, Bristol, UK. Pupae were incubated at 
30°C and 70-80% relative humidity on sterile sand in gauze- 
covered Kilner jars. p ->ntlv hatched flies were chilled at 
4°C for 15-20 minutes beiure being transferred to numbered 
individual plastic tubes, length 80 mm, diameter 25 mm, with 
gauze-covered ends. These flies were then fed, usually 
within 48 hours, on female CFLP mice, which had received 600 
RADs whole body X irradiation, 1 day before infection with 
1 of 5 T. brucei VATs or with an uncharacterized mixture of 
VATs from the AnTAR 1 serodeme. Following this infective feed, 
tsetse flies were maintained at 26°C, and 75% humidity. 
Maintenance blood meals were given 3 times per week on the 
flank or ears of New Zealand half-lop rabbits. From 15 to 30d 
following the infecting feed, flies were allowed to probe on a 
microscope slide warmed to 37°C and the extruded saliva was 
examined for the presence of metacyclic trypanosomes by phase 
contrast microscopy. All infected flies were henceforth 
maintained on uninfected CFLP mice.

Antisera:
Monospecific antisera against bloodstream VATs AnTat 1.1 

to 1.22 were obtained by intravenous injection of 1 x 10^ living 
trypanosomes of a particular cloned VAT into rabbits and 
collection of serum 6 days later from the marginal ear vein.



Figure 1

Pedigree of the syringe passages AnTAR 1 populations used to 

obtain antigenically stable clones baring metacyclic VATs. Joined 

stabilate boxes indicate transfer from one laboratory to another. 

EATRO, East African Trypanosomiasis Research Organization; LUMP, 

London University Medical Protozoology; ITMAP, Institute of Tropical 

Medicine Antwerp Protozoology; GUP, Glasgow University Protozoology.



Figure 1.

Isolation of Stable Metacyclic Variable Antigen Types:

Bushbuck, 1969, Uganda

mouse

B24

mice (13 passages)

AnTat 1.6*
(See Van Meirvenne e£ al

rat

mouse

Rabbit 56
mice and rats (7 passages)

mice (2 passages) 
GUP 462 {■ Clonesmousemouse

Seramouse

mouse

GUP 112

ITMAP 170468

GUP 505 AnTat 1.45*
AnTat 1.1
GUP 165

EATRO 1125 LUMP 581

mouse

rabbit 45

mice (3 passages)

ClonesGUP 335 mouse

SeraNmouse

mouse

GUP 383 AnTat 1.30*

1975)

(1-7)

N = neutralization
Broken lines indicate passaging of a single trypanosome
♦Indicates a monomorphic bloodstream population expressing metacyclic VAT



Sera were then titrated against the homologous VAT and a 
heterologous one? end point dilutions for specificity were 
determined using both immunofluorescence and trypanolysis 
reactions, and serum samples were stored either whole at -70°C 
or as freeze dried material at room temperature. Most of the 
serum samples used in this study were those previously employed 
by Van Meirvenne et al (1975) or by Le Ray et al (1977) and had 
been extensively checked for specificity.

Monospecific antisera against 2 metacyclic VATs, AnTats 1.30 
and 1.45, were prepared using the method described by Barry et al 
(1979). Rabbits chronically infected with a syringe passaged, 
monomorphic line of AnTat 1.1 were bled at 3 day intervals for 
serum samples and for trypanosomes to infect mice; following 
2 passages in mice stabilates were made of each isolate. By 
trypanolysis reactions using living metacyclics and the serum 
samples from the chronically infected rabbit, the point in the 
rabbit's infection when its serum showed incipient anti-metacyclic 
activity was identified, and clones were isolated from the blood 
of mice that received trypanosomes at this time. These clones 
expressing metacyclic VATs were more stable with respect to VAT 
than clones derived directly from metacyclics and could be used 
to prepare monospecific antiserum in rabbits as described above.

Immunofluorescence reactions:
Air dried smears of infected mouse tail blood, and tsetse 

saliva probes of metacyclic trypanosomes, were routinely fixed 
in acetone at room temperature for 15 minutes. Material fixed 
in methanol or formalin (Nantulya and Doyle, 1977) and living 
trypanosomes (Barry, 1979) gave similar results. Fixed probes 
and smears were rehydrated in phosphate buffered saline (PBS)



pH 7.2 for 15 minutes. Diluted rabbit anti-trypanosome antiserum 
was added to a marked area of smear which was then incubated in a 
humid chamber for 15 minutes then washed in PBS. Fluorescein 
isothiocyanate (FITC)-conjugated goat anti-rabbit immunoglobulin 
(Pasteur Institute) was added at a 1:400 dilution in 1:10,000 
Evans blue-PBS solution. After incubation for 15 minutes the 
preparation was washed again in PBS.

To distinguish between 2 VATs in the same preparation a 
double labelling, indirect immungfluorescence test was used. 
Monospecific mouse anti-trypanosome serum raised against one 
metacyclic VAT was mixed with rabbit anti-trypanosome serum 
against a second metacyclic VAT, both at their determined specific 
dilutions. The mixture was applied to acetone fixed, rehydrated 
saliva probes of metacyclics, incubated 15 minutes, washed with 
PBS, reacted first with FITC goat anti-rabbit immunoglobulin 
(1:400), washed again in PBS, then reacted with rabbit anti­
mouse immunoglobulin conjugated with tetramethyl-rhodamine 
isothiocyanate (TRITC), and finally washed with PBS.

Smears were mounted in 50% (w/v) glycerol/PBS and prepara­
tions examined with a Leitz Ortholux II microscope using incident 
light fluorescence with an HBO 50 high-pressure mercury vapour 
lamp. For the FITC reactions, 2X KP490 (exciting), TK 510 
(dichroic mirror) and K515 (suppressing) filters were used.
For TRITC, 2mm BG36+S546 (exciting), TK580 (dichroic mirror) and 
K580 (suppressing) filters were used.

Colour photographs were taken using Kodak Ektochrome 200 
ASA film, which was exposed and developed as for 400 ASA. Colour 
prints were made using Cibachrome Systems filters, chemicals and 
paper (Ilford).



Trypanolysis reactions:
Antibody-mediated lysis of trypanosomes, in vitro, was 

carried out essentially as described by Van Meirvenne et al (1975). 
Living metacyclics were collected by allowing infected tsetse 
flies to probe into shallow wells (leucocyte migration plates, 
Sterilin) containing about 0.2 ml of either fresh guinea-pig 
serum or Medium 199 (Gibco) supplemented with 15% foetal calf 
serum. Metacyclic trypanosomes were concentrated by centrifu­
gation at l,000g. for 10 minutes at 15°C in Eppendorf centrifuge 
tubes. Metacyclics were then resuspended in fresh guinea-pig 
serum for lysis reactions in disposable microtitre plates.
5 pi of guinea-pig serum containing metacyclics was mixed with 
1 pi of monospecific antiserum at the appropriate dilution and 
incubated at 26°C for 30 minutes. Samples from the plates were 
examined under the 40x phase contrast objective.

RESULTS

Infection of tsetse with trypanosomes
Experimental studies on the effect of cyclical transmission 

on Trypanosoma brucei infections are made difficult by the 
inefficiency of transmission in the laboratory, as in the field.
The percentage of flies which develop metacyclic infections 
after an infecting meal is usually less than 5 and mortality 
rates during the long period required for completion of 
cyclical development may contribute substantially to this 
inefficiency. Our experiments confirmed the findings of 
Jenni (1977) that (1) by maintaining the flies in a clean, 
controlled environment mortality rates can be reduced to 
less than 1% per day; (2) by utilising flies that have



Figure 2

Giemsa stained, methanol fived saliva probe obtained from a 

tsetse fly with a metacyclic infection to show the large number of 

trypanosomes extruded. (X400).

Figure 3

Portion of the saliva probe shown in figure 2 at higher mag­

nification. Only trypomastigote (metacyclic) forms are present in 

this probe; the position of the nucleus (n) and kinetoplast (k) are 

clearly visible in the trypanosomes, (X1500).
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taken their infecting meal within 24h of hatching, infection 
rates may be raised to 10%; in our experiments 75% of flies 
fell into this category. The use of predominantly stumpy 
bloodstream trypanosomes to infect flies was also found to be 
important in achieving this elevated transmission rate.

Metacyclics in saliva probes
A representative dried tsetse saliva probe containing 

metacyclics is shown in fig. 2. The flagellates were usually 
crowded around the edge of the dried droplet, more dispersed 
and flattened towards its centre. Fig. 3 shows that at higher 
magnification the flagellates have readily recognisable meta­
cyclic morphology. Epimastigote trypanosomes, dislodged from 
their anchorage on the salivary epithelium, and proventriculus 
or midgut trypomastigotes were occasionally observed in probes 
from flies with "immature" infections but were not present in 
significant numbers in the probes utilised for analysis.

Metacyclic trypanosomes obtained in tsetse saliva probes 
remained viable for several hours in guinea pig serum, while 
uncoated stages (eg procyclics, epimastigotes) were rapidly lysed 
in this serum.

Identification of metacyclic VAT p
In previous papers the identification of AnTat 1.30 

(Barry et al., 1979) and AnTat 1.6 (Barry & Hajduk, 1979) as 
metacyclic VATs (M-VATs) has been described. AnTat 1.45 was 
also recognised as a M-VAT using the same procedure as that used 
to identify AnTat 1.30, and a monospecific antiserum was produced



against the AnTat 1.45 clone. The specificities of the 3 
antisera used to identify AnTats 1.6, 1.30 and 1.45 among the 
metacyclic trypanosomes of tsetse saliva probes were previously 
tested in homologous and heterologous trypanolysis reactions 
with the 3 bloodstream clones and also in heterologous reactions 
with 21 other VATs of the AnTAR 1 serodeme. In trypanolysis 
reactions the 3 antisera did not cross react with one another 
(Table 1). This lack of cross reaction was further demonstrated 
by trypanolysis experiments in which the individual anti-M-VAT 
sera were pooled in different combinations (Table 2). In 
reactions where 2 or 3 sera were combined, the percentage lysis 
obtained was additive; a total of 28.6% of metacyclics were 
lysed by a mixture of all 3 sera. Unlike AnTat 1.6, AnTats
1.30 and 1.45 were not lysed with the pooled preparation of 
sera against AnTat 1.1 to 1.22 whereas all 3 M-VATs were lysed 
by end-infection serum from rabbits (Table 1; cf. Le Ray et al., 
1978) . The contribution of uncoated epimastigotes and procyclic 
trypomastigotes and partially coated "immature" metacyclics was 
minimal in these preparations since the percentage lysis with 
individual and pooled anti-M-VAT sera was unaltered by passaging 
of the trypanosomes obtained from tsetse saliva probes through 
DEAE cellulose columns (Lanham, 1968) prior to the lysis reaction 
(Table 2).

Figure 4 shows the FITC immunofluorescence reaction obtained 
when the 3 monospecific sera were applied individually to 
acetone-fixed salivary probes from a single infected fly. 
Antiserum against AnTat 1.30 labelled 18.2% of the metacyclics, 
Anti-Antat 1.6 labelled 9.0% and anti-AnTat 1.45 labelled 3.0%. 
The total of 30.2% metacyclics labelled compared well with the
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Antisera
Antisera against VATs AnTat 1.1 to 1.22 and AnTat 1.30 

and 1.45 were prepared as described previously (Van Meirvenne 
et al., 1975; Barry et aJL. , 1979; Hajduk et al̂ ., 1981) and 
diluted to concentrations at which they reacted only with the 
homologous VAT. A preparation of pooled antisera against 
AnTats 1.1 to 1.22 was prepared to use in trypanolysis reactions 
by mixing the 22 antisera together so that when added at a 1:6 
dilution to an antigen preparation each was at a monospecific 
dilution. A polyvalent antiserum against metacyclic VATs 
(M-VATs) and VATs arising from the metacyclics in the mammalian 
host was prepared by allowing an infected tsetse fly to feed 
on an uninfected New Zealand half-lop male rabbit and collecting 
serum 7 days later (Le Ray et: a_l., 1978).

Neutralization of M-VATs
Neutralization of M-VATs AnTat 1.30 and 1.45 was carried 

out on metacyclics suspended in fresh guinea pig serum with the 
antisera diluted to 1:80 and 1:50 respectively; incubation was 
at 26°C for 1 hour. Mice were then infected by intraperitonal 
injection.

Effect of Immunosuppress-i on antigenic variation
Infected tsetse fI_L̂... wnich had ingested an undefined mixture 

of VATs of the AnTAR 1 serodeme were fed on CFLP mice immuno- 
suppressed by subjection to 600 rads total body x-irradiation 
1 day previously. Unirradiated mice were similarly infected 
to provide controls.



Results

Expression of metacyclic VATs in mice following tsetse bite
The number of trypanosomes in the blood of tsetse-bitten 

mice increased for the first 4 days followed by a slight decline 
or levelling off in numbers on day 5. The parasitaemia ascended 
from day 6 until day 10 when a major remission generally occurred 
(Figure la). The decline in parasitaemia on day 5 corresponded 
with the point at which anti-metacyclic trypanolytic antibodies 
could first be detected in the bloodstream of tsetse bitten mice 
(Figure lb); the titre of antibodies against M-VATs AnTat 1.30 
and 1.45 increased from day 5 until at least day 8. The presence 
of M-VATs on days 3-5 in the bloodstream of mice infected with 
metacyclics was demonstrated by immunofluorescence (Figure lb).
The percentage of trypanosomes labelled with both anti-AnTat
1.30 and anti-AnTat 1.45 increased to about 39% and 15% respec­
tively on day 4 but had fallen to 0 by day 6.

The presence of M-VATs in the bloodstream of tsetse-bitten 
mice was verified by trypanolysis reactions using monospecific 
antisera against AnTat 1.6, 1.30 and 1.45 (Table 1). All 3 
M-VATs were detectable in the metacyclic initiated infection.
The polyvalent 7-day antiserum against M-VATs of this serodeme 
lysed 83% of the metacyclics in probes and decreasing percentages 
of the bloodstream forms from day 3 to day 7 after infection with 
metacyclics. Non-M-VATs arose early in the infections as shown 
by the increased percentage of lysis with pooled antiserum 
against AnTats 1.1-1.22 in the bloodstream trypanosome population 
from day 3 to day 10 (Table 1).



Ô

Legends

Figure 1. The course of parasitaemia, lytic antibody titres 
against 2 M-VATs, (AnTat 1.30 and 1.4 5) and the percentage of 
trypanosomes labelling by immunofluorescence reactions using 
anti-AnTat 1.30 and 1.45 sera was determined for 10 days in a
mouse infected by the bite of a tsetse fly which had ingested 
AnTat 1.14. (A) Course of parasitaemia in representative
mouse infected by tsetse bite. (B) Trypanolytic titres of
serum from the same mouse against AnTats 1.30 (©---&) and
1.45 (Q o); similar results were obtained with sera from
2 other mice. Also shown are percentages of trypanosomes
labelled with anti-AnTat 1.30 (#.. #) and 1.45 (o o) sera.

Figure 2. The course of parasitaemia and the expression of 
5 VATs in the bloodstream of a tsetse-bitten untreated mouse 
and of a mouse immunosuppressed by 600 rads total body 
x-irradiation. (A) Course of parasitaemia in irradiated
(©.. ©) and non-irradiated (O O) mice. (B & C) Percentages
of M-VATs AnTats 1.30/ 1.45 and 1.6 (dotted lines) and of 
non-M-VATs AnTats 1.5 and 1.19 (solid lines) detected by 
immunofluorescence reactions in blood from fly-bitten mice. 
AnTat 1.4 5 persisted in the blood of the irradiated mouse 
until day seven at a very low level (1% on days 6 and 7).
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Table I

Percentage lysis of metacyclic trypanosomes from salivary probes 
and of bloodstream trypanosomes from first parasitaemia in 
trypanolysis reactions using monospecific and polyvalent antisera : 
figures refer to means obtained from 3 different mice and probes 
from 3 different tsetse flies

Days after * . .. i . . Antiserainfection
Pooled anti Polyvalent anti- anti- anti- anti-
AnTat 1.1-1.22 metacyclic (day 7) AnTat AnTat AnTat

1.6 1.30 1.45

Metacyclics 4.7 88.3 8.8 19.3 8.0
(probe)

3 3.3 71.6 1.7 6.3 11.3
4 5.6 65.0 2.3 4.6 6.3
5 21.0 58.0 2.3 1.7 5.0
6 27.0 3.0 1 0 2.7
7 33.7 2.7 0.67 0 0
8 24.7 0.3 0.3 0 0
9 30.0 0 1.3 0 0
10 38.4 0 1.7 0 0



Influence of the VAT ingested by the tsetse on the VATs 
expressed in the bloodstream

The results of the immunofluorescence analysis, with 24 
monospecific antisera, on the trypanosomes in the blood of 
mice bitten by tsetse flies which had ingested 5 different VATs 
is presented in Table 2. The M-VATs AnTat 1.6, 1.30 and 1.45 
were the first VATs detected in the blood on day 3: the
percentage of the population labelled with each anti M-VAT 
serum was approximately the same regardless of whether the 
infecting tsetse had ingested AnTat 1.8, 1.14, 1.18, 1.19 or
1.21. AnTats 1.30 and 1.45 were always eliminated by day 6 
after tsetse bite, but AnTat 1.6 generally persisted until
day 9 or 10; this finding was consistent with the low virulence 
of AnTat 1.6 reported by Van Meirvenne et al., (1975). Of the
24 different VATs tested for using, monospecific sera in these 
experiments, only AnTats 1.1 and 1.13 were never detected, during 
the first 10 days; VATs rarely expressed were AnTats 1.20 and
1.22. In addition to the M-VATs, AnTat 1.3 and 1.7 were always 
expressed at high percentages (greater than 10%) sometime during 
the first 10 days of infection. The expression of several VATs 
in these infections appeared to be influenced by the VAT used to 
infect the tsetse (I-VAT). The I-VAT was always a major type 
in the bloodstream of fly-bitten mice, usually being detectable 
by day 4 or 5 after tsetse bite, i.e. immediately following or 
slightly overlapping the M-VATs. Other VATs were also expressed 
more frequently in the tsetse-bitten mice when a particular VAT 
had been ingested by the tsetse fly. The increased frequency
of AnTat 1.2 when AnTat 1.8 or 1.14 was the I-VAT, and of AnTat 
1.15 when AnTat 1.18 or 1.19 was the I-VAT, suggested that the 
expression of certain VATs was somehow linked with expression 
of the I-VAT in the early parasitaemia of fly-bitten mice.
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Effect of neutralization of M-VATs on the VATs present in the 
first parasitaemia

Live metacyclic trypanosomes from a fly which had ingested 
AnTat 1.19 were neutralized with Anti-AnTat 1.30 or 1.45 serum 
and the preparation injected into mice. Regardless of whether 
neutralized AnTat 1.30 or 1.45 metacyclics, or untreated meta- 
cyclics, were injected, the major VATs detectable in the blood 
of the mice from days 3 to 9 were the same except that the 
neutralized M-VAT was never detected (Table 3).

Effect of immunosuppression on the course of infection and 
on trypanosome antigenic variation in tsetse bitten mice

The effect of host ,X-irradiation on the subsequent 
parasitaemia of mice infected by tsetse bite is shown in 
figure 2A. In the non-irradiated host the parasitaemia 
fluctuated forming 2 major peaks on day 9 and day 17. In 
the immunosuppressed host the parasitaemia formed a plateau

gafter about 6 days, remaining at about 2x10 trypanosomes per ml 
of blood until day 17 of the infection.

The percentages of AnTats 1.6, 1.30 and 1.45 (the 3 
M-VATs) of AnTat 1.5 (a major non-M-VAT in the first peak 
parasitaemia), and of AnTat 1.19 (the major VAT in the relapse 
parasitaemia) in the non-irradiated host are shown in figure 2B. 
The M-VATs AnTat 1.30 and 1.45 were detectable at maximum 
percentages on day 3 and were undetectable by day 5. The 
other known M-VAT, AnTat 1.6, was detectable as less than 10% 
of the population from day 3 to day 9. AnTat 1.5 was detectable 
on day 4, reached maximum percentage on day 10 and was eliminated 
from the population by day 11, i.e. at a time corresponding to 
the drop in parasitaemia. AnTat 1.19 was undetectable before



71

Table III
Effect of neutralization of specific M-VATs in metacyclic populations 
on the VAT composition of subsequent parasitaemias in mice as shown 
by immunofluorescence reactions on blood samples from single mice

Percentage of population labelled with 
Antisera against AnTats

Neutral- Days
ising
anti­
serum

after
infec­
tion

2 3 5 6 7 8 14 15 18 19 30 45

Anti- 3 0 0 0 0 0 0 0 0 0 0 0 10
AnTat
1.30 4 0 1 0 1 1 0 0 0 0 0 0 14

5 0 0 1 1 1 0 0 2 1 1 0 10
6 2 8 2 2 8 1 0 8 6 5 0 0
7 2 4 1 1 8 0 0 9 5 10 0 0
8 5 6 8 4 9 1 0 28 0 17 0 0
9 5 6 6 5 13 3 0 31 0 24 0 0

Anti- 4 0 0 0 1 0 0 0 0 0 1 20 0
AnTat
1.45 5 0 0 0 3 4 0 0 1 0 3 21 0

5 1 7 0 4 4 0 0 5 7 12 9 0
7 2 5 1 4 3 1 0 6 6 9 0 0
8 2 5 2 10 11 0 4 18 4 13 0 0
9 5 7 6 10 13 0 0 24 0 16 0 0

Untreated 4 0 0 0 0 0 0 0 0 0 0 15 10
5 0 0 0 1 0 0.5 0 1 1 1 5 1
6 0.5 2 2 2 5 1 0 2 1 4 0. 5 0
7 0 7 0 1 6 0 1 13 6 11 0 0
8 1 7 3 1 4 1 4 15 2 12 0 0
9 3 8 1 3 4 1 1 32 0 22 0 0



day 8 and only after the remission of the parasitaemia did 
the percentage of trypanosomes labelled with anti-AnTat 1.19 
serum increase. AnTat 1.19 was the major VAT present in the 
second peak parasitaemia.

In the irradiated host (Figure 2C) the M-VATs AnTat 1.30 
and 1.45 also reached maximum percentages on day 3 and, as in 
non-irradiated mice, the percentage of trypanosomes labelled 
decreased on day 4 and*5. However, neither VAT was eliminated 
completely; AnTat 1.45 was detectable until day 7 and AnTat
1.30 was present in the parasitaemia until the end of the 
experiment on day 14, though as a reduced percentage of the 
population. The non-M-VATs AnTat 1.5 and 1.19 were detectable 
on the same day as in the non-irradiated mouse but never 
accounted for more than 10% of the population. Both were 
detectable until day 14 when the experiment ended.

Discussion

Work by Broom and Brown (1940) and Gray (1965, 1975) 
suggested that following cyclical transmission through the 
tsetse fly, stocks of T. brucei (including T.b. gambiense) 
revert to a stock specific "basic" antigen. In his 1965 
paper Gray reported that flies which had ingested different 
VATs "transmitted trypanosomes with either the basic strain 
antigen only or a mixture of the ingested variant and the 
basic strain antigen". It is important to recall that the 
transmitted VATs were identified indirectly by looking for 
agglutinating antibody production to these VATs in the infected 
mammalian host.



The metacyclics from the AnTAR 1 serodeme of T. brucei 
are heterogeneous with respect to VAT (Le Ray et al., 1978;
Barry et al.., 1979) and preliminary results have shown that 
following infection of mice with AnTAR 1 metacyclics the 
trypanosomes rapidly undergo antigenic variation; non-M-VATs 
are detectable after day 4 or 5 of the infection (Barry et al., 
1979). Other workers have reported the existence of 
heterogeneous populations in the blood of mice infected with 
metacyclics from other serodemes (Jenni, 1977a, b; 1979;
Hudson, 1980; Stanley et al., 1979).

Results presented in this paper confirm the presence of 
M-VATs in the bloodstream of tsetse-bitten mice up to 5 days 
after fly bite. The elimination of the M-VATs on day 5 
corresponds with the detection of lytic antibodies against M-VATs. 
The detection of anti-metacyclic antibodies in the blood at 
this time might be taken as evidence that antibody acts as a 
stimulus for the trypanosome to switch from expressing M-VATs 
to expressing the other early bloodstream VATs. This seems 
unlikely, however, since in immunosuppressed mice infected with 
metacyclics, non-M-VATs were detected as early as day 4 and the 
percentage of cells labelled with anti-metacyclic serum decreased 
on day 5. In the immunosuppressed animals the M-VATs persisted 
for longer in the infection. It appears therefore that the 
M-VATs, in the bloodstream^of the metacyclic infected mice, 
are replaced by non-M-VATs, in the absence of antibody and 
that antibody eliminates the bloodstream trypanosomes expressing 
M-VATs only after a portion of the population has changed its 
VAT. This pattern of antigenic variation was proposed by Van
Meirvenne et al (1975) to account for the presence of minor VATs 
in cloned bloodstream populations of T. brucei.



Our detailed analysis of the influence of the ingested 
VAT on the bloodstream VATs arising following cyclical trans­
mission, supports Gray's (1965) finding that the ingested VAT 
is often present in the first parasitaemia of tsetse bitten 
animals. In our experiments, regardless of which of the 5 VATs 
was ingested by the infecting tsetse, the 3 M-VATs were identified 
on days 3 and 4 in the cyclically-infected mouse. From day 4 to 
day 10, however, up to 18 different VATs were identified in the 
blood of mice, illustrating how rapidly the cyclically-trans­
mitted trypanosomes undergo antigenic variation. After 
proliferation of M-VAT trypanosomes in the bloodstream, the 
VATs detected from day 4 included the ingested VAT. The 
ingested VAT did not necessarily become the major VAT in the 
first peak parasitaemia, perhaps owing to differences in 
virulence of the different VATs (Seed, 1978). The accompanying 
VATs in the first parasitaemia were also influenced by the 
ingested VAT, although certain VATs (AnTat 1.3 and 1.7) were 
always present as major types in the first population.

The expression of the same repertoire of M-VATs in both 
the salivary glands and the bloodstream of tsetse-bitten mice, 
regardless of the VAT ingested by the tsetse, and the detection 
of the ingested VAT in the bloodstream of mice following cyclical 
transmission suggests that the genes specifying the M-VATs and 
the genes for the bloodstream VATs might have separate control 
mechanisms.



Further support for this hypothesis comes from the 
observation that, in the first parasitaemia, a given I-VAT 
is accompanied by a characteristic spectrum of associated VATs, 
suggesting that expression of the latter is linked to the 
expression of the I-VAT. The neutralization of M-VATs experiment 
described here suggests, however, that suppression of one of the 
M-VATs has no effect on the non-M-VAT composition of the sub­
sequent first bloodstream population. The tendency of the 
ingested VAT to be expressed in the first parasitaemia of 
tsetse bitten mice would suggest that the modifications in the 
DNA sequence leading to expression of a particular variable 
surface glycoprotein (VSG) (Cross, 1975; Hoeij'makers, et al.,
1980, a, b) might persist even in the insect stages where the 
VSG is not detectable. In the salivary glands a different 
promoter sequence might activate the metacyclic VSG genes.
The ingested VAT might have a greater chance of being expressed 
in the bloodstream following cyclical transmission if the gene 
for the VSG of this VAT was present as an expression-linked 
copy but in an inactive form. A similar situation might be 
the presence of an inactive expression linked gene for VAT 121 
in nuclear DNA of VAT 221 from T. brucei 427 described by 
Hoeijmakers et. al. (198° ,

Gray's results, suggesting the presence of a basic antigenic 
type in cyclically transmitted T. brucei populations must now be 
re-evaluated on the basis of our findings. We find that, 
regardless of the VAT used to infect the tsetse, a characteristic 
set of M-VATs are present in the salivary glands of the fly and in 
the bloodstream of fly-bitten mice. The techniques of immuno­
fluorescence and trypanolysis identify the VAT of individual



trypanosomes, not that of the major component of the trypanosome 
population as do agglutination reactions. Thus the mixtures of 
M-VATs detected both in the salivary glands, and in the blood­
stream might be undetectable using agglutination reactions.
The existence of a single basic VAT for each serodeme now seems 
unlikely. A basic repertoire of M-VATs expressed by trypanosomes 
in both the salivary glands and the bloodstream of tsetse bitten 
mice seems, however, a reasonable possibility.
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Part II.

STUDIES ON THE RELATIONSHIP OP KINETOPLAST DNA 

STRUCTURE TO MITOCHONDRIAL FUNCTION IN TRYPANOSOMATIDAE



Is. INTRODUCTION

1.1 GENERAL

The kinetoplast DNA (kDNA) of the Kinetoplastida is a unique 

mitochondrial DNA (mtDNA) composed of thousands of covalently closed 

circular molecules interlocked into a complicated network structure 

(Simpson, 1972; Borst & Hoeijmakers, 1979a; Englund, 1980). Despite 

the large amount present per cell, by analogy with the mtDNA of other 

eukaryotes, kDNA seems likely to contain the genetic information for 

only a very limited number of essential peptides and mitochondrial RNAs 

required by the mitochondrial protein synthesizing system and mitochondrial 

metabolic pathways. The structure, replication, and transcription 

of mtDNA has been extensively reviewed (Borst, 1972, 1977, 1980;

Borst & Grivell, 1978; Grivell etal. 1979; Linnane & Nagley, 1978;

0*Brian, 1977; Schatz & Mason, 1974; Wolstenholme, et al.. 1974) and 

I present here only a few important features of mtDNA, in particular that 

of yeast, as an aid to coiisiderations of kDNA in the papers which follow.

1.2 MITOCHONDRIAL DNA STRUCTURE

All eukaryotes capable of synthesizing functional mitochondria 

have mtDNA. With the exceptions of Tetrahvmena and Paramecium, which 

contain linear duplex mtDNA, the mtDNA of all organisms studied exists

as covalently closed circular duplex molecules and varies in molecular
6 6 weight from about 10x10 daltons in higher animals to about 70x10

C'

daltons in higher plants. The mitochondrial genome only specifies a 

- small-fraction of the componenlS-necessary for mitochondrial biogenesis. 

Nuclear genes specify the remaining components which are imported into 

the mitochondrion after translation on cell sap ribosomes (Chua & Schmidt,

1979); duplicate copies of the mitochondrial genes are not present in the 
nuclear genome. f̂he mitochondrial gene products of yeast are shown in 

Table 1. An interesting feature of the peptides coded for by the mtDNA
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is that most are enzyme complexes which are functional only if the 

mitochondrial and nuclear gene products are present.

Mutants in yeast which have lost from 20 to 99.9p/° of their mito­

chondrial genome are incapable of mitochondrial protein synthesis 

(Borst & Grivell, 1978). These cells are viable under anaerobic conditions, 

however, since mitochondrial activity is completely repressed. Such 

petite mutants yo , contain a mtDNA which is equal in size to the wild 

typeyj*, mtDNA. The sequence retained by the^o cells appears to have 

been amplified until a wild type size mtDNA molecule is achieved.

There does not appear to be a tendency for any particular sequence to be 

retained and amplified, since petites retaining various portions of the 

genome have been described. Why the amount of mtDNA remains constant 

is a mystery, however, Borst and co-workers (Borst et al.. 1976) have 

suggested that molecules of^o+ size are preferentially replicated with 

a "sizing step" being involved.

Recent studies have shown that at least 3 genes in the mtDNA of 

yeast contain intervening sequences (introns) similar to those found in 

nuclear genes (Breathnach et al.. 1977; Jeffreys & Flavell, 1977).

The large, 21s ribosomal RNA (rRNA) gene contains an intervening 

sequence of 1,200 base pairs (bp) while the apo-cytochrome b gene 

contains 4 intervening sequences of 2,000, 1,400, 1,200 and 650 bp 

( Bos et al.. 1979» 1980; Grivell et al.. 1979). In addition, the 

gene for subunit I of cytooh-rome-oxidase probably contains intervening 

sequences (Grivell et al., 1979). Another mitochondrial gene of yeast, 

that coding for subunit 9 of the ATPase complex, has been subjected to 

complete sequence analysis and the base pair sequence compared with the 

amino acid sequence of the peptide. No intervening sequences are present 

in this gene. The processing of the split gene transcripts is discussed 

later.



The mitochondrial genome of yeast has been extensively studied by 

techniques using genetic mapping (Schwevn et al.. 1976, 1978;), physical 

mapping with restriction endonucleases (Morimoto et al.. 1975, 1977;

Sanders et al.. 1977) and more recently mapping of transcripts (Grivell 

et al. 1979; Van Qmmen, 1977). Figure 1 shows the physical and genetic 

map of Saccharomyces cerevisiae mt DNA.

1.5 MITOCHONDRIAL DNA REPLICATION

Replication of mtDNA is semi-conservative and completely independent 

of nuclear control. Most studies on the replication of mtDNA have been 

on the process in vivo since, despite.many elegant attempts, complete 

replication of mtDNA molecules in vitro has not been achieved (Eichler 

et al, 1977). Circular mtDNA appears to replicate according to the Cairns 

model (Cairns, 1963) of replication for circular viral DNA (Robberson et al. 

1972; Kasamatsu et al., 1971). Replicative intermediates have been 

identified by electron microscopy and replication is initiated by the 

formation of small displacements loops (D-loops) and DNA synthesis preceeds 

unidirectionally with the light strand serving as a template. Semi­

conservative replication is completed by replication of a new light 

strand using the old heavy strand as a template. 1

Replication of the linear mtDNA of Tetrahymena (Arhberg et al. 1974; 

Cleggs, et al., 1974) and Paramecium (Goddard & Cummings, 1975) differs 

from that of the closed circular mtDNA of other organisms. The mtDNA 

of Tetrahymena replicates bidirectionally from a fixed starting point 

with semiconservative replication taking place on both stands simultaneously 

Paramecium mtDNA is replicated unidirectionally and replicated molecules 

exist as linear dimers which must later be cleaved into 2 equal molecules.



Figure 1.

Genetic and physical map of yeast mtDNA. The genetic map is based on 

the co-retention of markers in petite mutants (Schweyen et al. 1978).

The markers are indicated within the inner ring (see table 1 also).

The black bars in the inner ring represent the major insertions present 

in this mtDNA. The outer ring gives the positions of recognition sites 

for endonucleases Hindll +  III and EcoR I and the approximate position 

of 4s RNA genes (Van Ommen et al., 1977). The open circles are 

tRNAme .̂ genes. The approximate positions of other transcripts are given 

outside the outer ring (Van Ommen and Groot, 1977), the bars indicating 

uncertainty in the exact positions. Ifhe open part of the 21s rRNA 

represents the intervening sequence. Sal and Pst indicate the single 

recognition sites for restriction endonculeases Sal I and Pst I respectively. 

(Figure taken from Borst and Grivell, 1978).
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1.4 MITOCHONDRIAL DNA TRANSCRIPTS

Transcripts of the mitochondrial genome, are limited to mitochondrial 

r'RNAs, transfer RNAs (tRNAs) and a few messenger RNAs (mRNAs) which are 

translated within the mitochondrion (Table l). The proteins synthesized 

in the mitochondrion represent only about 5^ of the total mitochondrial 

protein and the advantage in retaining these few extra-nuclear genes is 

still not obvious. Although mitochondrial transcripts have been studied 

from a variety of organisms the most extensive analysis has been under­

taken with yeast (Grivell et al., 1979). A detailed transcription map 

of S. cerevi3iae is given in figure 1. It seems likely, from the trans­

cript mapping, that all genes present on the mtDNA of yeast have been 

recognized since transcripts to all the genetic markers on the mitochondrial 

genome have been identified.

The presence of intervening sequences in at least 3 mtDNA genes has 

been discussed in section 1.2. It seems likely that the 21s rRNA, 

apo-cytochrome b gene and the gene for subunit I of cytochrome oxidase are 

transcribed as large precursor molecules which are later processed 

(Bos , 1978). Arnberg et al. (1980) and Hilbriech _ei-fll'. (1980)

have recently found covalently closed circular RNA molecules in the 

11s and 18s fraction of yeast mitochondrial RNA. These circular 

molecules hybridize with fragments of the cytochrome oxidase gene and 

may represent active mRNA of this gene. The circular RNA molecules 

may also be nuclease resistant information storage forms or by-pr®ducts 

of processing of larger mRNA precursor molecules.

How mitochondrial transcription is regulated, even in the exten­

sively studied yeast system, is still poorly understood. However, the 

presence of mRNA precursor molecules containing intervening sequences 

and circular RNA molecules suggests that processing of transcripts may 

play an important role in regulation.



1.5 KINET0PLA3T DNA

Since the discovery by Riou and co-workers (Riou & Paoletti, 1967; 

Riou & Delain, 1969) that the kinetoplast of Trypanosoma c-mzi was 

composed of thousands of small circular molecules interlocked to form a 

network structure, kDNA has become the most extensively studied protozoan 

DNA. This interest in kDNA of trypanosomes is stimulated not only by 

the intriguiigstructural organization of the kDNA network but also because 

many of the chemotherapeutic compounds used in the treatment of try­

panosomiasis bind perferentially to the kDNA (Williamson, 1976, 1970; 

Hajduk, 1978). The kDNA of trypanosomatids has been reviewed extensively 

(Borst & Fairlamb, 1976; Borst & Hoeijamkers, 1979a, b; Borst et al.. 1980; 

Cosgrove, 1973; Englund, 1980; Newton, 1979; Vickerman & Preston, 1976).

I shall briefly summerize a few of the most important features of kDNA 

structure, replication and function.

1.6 KINETOPLAST DNA STRUCTURE

The in situ organization of the kDNA has been studied by electron 

microscopy of sectioned fixed and stained material. As discussed by 

Simpsai (1972) the appearence of the kDNA is dependent upon thie fixation 

procedure used. In most members of the order Kinetoplastida the kDNA 

appears as an electron dense fibrous band, 0.08 jam to 0.5 pm in width, 

bounded by the double mitochondrial membrane. The kDNA is situated in 

a portion of the cell's single mitochondrion (Paulin, 1975) which is 
adjacent to the basal body of the flagellum. The relationship of the kDNA 

to the flagellum, if any, is completely unknown.

The in situ appearence of the kDNA is quite variable, in particular 

among the free-living Bodonidae (Brooker, 1971; Vickerman, 1977;

Vickerman & Preston, 1976). In some members of the Bodonidae and also 

the trypanosomatid Hernetomonas musearum ingenoplastis (Section 3* )



the kDNA appears in section as a loosely arranged bundle of long fibres

extending from the adbasal mitochondrial membrane at least 2.5 pn into

the mitochondrion (Vickerman & Preston, 1976; Wallace et al., 1973).

Other bodohids apparently lack an organized network of kDNA since

small bundles of fibrous material are seen throughout the mitochondrion

(Vickerman, 1977). Because of the difficulties in growing the D0donidae

axenically, the molecular organization of their kDNA has not been studied.

The kDNA network can be isolated from many species of parasitic trypan-

osomatid with relative ease due to its high molecular weight, high

adenine-thymine content and covalently closed form (Table 2 ) , Isolated

kDNA networks vary in size form 4 p  to 20 jun in diameter, and molecular
10weight form 0.4 to 4 x10 dal tons. Preparations of kDNA spread for

electron microscopy give the impression of a "fishnet" like structure 

(figure 2) mainly composed of catenated small circular molecules, 

mini-circles (Renger & Wolstenholme, 1971, 1972; Riou & Delain, 1969), 

but also containing a small number of longer molecules usually seen as 

loops at the edge of the network, as apparently linear molecules, or as 

occasional free large circular molecules ( Kleisen et al., 1976b;

Steinert & Van Assel, 1976; Simpson & De Silva, 1971). These larger- 

than-mini-circle molecules in kDNA preparations could either be contamination 

with nDNA (Nichols & Cross, 1976), oligomers of mini-circles (Barker, 1980; 

Newton, 1979), or large circular kDNA molecules, maxi-circles (Kleisen 

et al., 1976; Steinert & Tan Assel, 1976). As discussed later, it is 

likely that maxi-circles and mini-circles are the only components of the 

kDNA network.

1.6.1 MINI-CIRCLES

The kDNA network of most species of trypanosomatids is composed 

primarily of mini-circles which form about 95^ of the network by mass. 

Mini-circles are closed, duplex molecules varying in size from 900 to
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Figure 2.

Electron micrographs of isolated kDNA. A. kDNA network from T. equiperdum 

spread for electron microscopy following isolation by high speed pelleting 

and cesium chloride density gradient ultracentrifugation. Networks 

contain catenated mini-circles and long edge loops, presumably 

maxi-circles (arrows). 122,000. B. Free maxi-circle and mini-circles 

in kDNA isolated from Crithidia fasciculata. The mini-circles measure 

about 0.8 pi; the maxi-circle 11.8 pa. X 32,000.



.

■

Mm

i p i
H

* ■' ‘ ■ -•:-7;n'v'.7 ■•'f'W M ii-;'.-v.Vv.:;. . 
.



2500 bp and it is estimated that about 10^ mini-circles are catenated 

together to form the kDNA network (Borst & Fairlamb, 1976; Borst & 

Hoeijmakers, 1979a; Englund, 1980). Restriction endonuclease digestion 

product analysis of mini-circles from several species of trypanosomatid 

has shown sequence micro-heterogeneity (Riou & Yot, 1975; Kleisen &

Borst, 1975; Borst & Hoeijmakers, 1979a; Englund, 1980). Reassociation 

studies of T. brucei by Steinert and co-workers are in agreement with a 

high degree of sequence heterogeneity in T. brucei mini-circle . with up to 

300 sequence classed being present, Steinert's group also identified a 

component with low complexity ( Steinert & VanAssel, 1976, 1980) which 

they interpreted as a common w^quence of about 200 nucleotides.

Studies by Donalson et al. (l979) and Chen & Donalson (1980) using cloned 

T. brucei mini-circles for hybridization and sequencing studies, 

also showed extensive heterogeneity in the mini-circles but also regions 

of homology. The function of these common sequences in the T. brucei 

mini-circle is unknown although Chen & Donalson(l980) suggest that a 

transcription initation codon may be present in this region of the mini­

circle. This site might also function in the initiation of mini-circle 

replication or represent a specific site of reattachment of replicated 

free mini-circles (see Section 1.7). The mini-circles of all other 

trypanosomatids studied fail to show extensive sequence heterogeneity 

seen in T. brucei (Borst et al. 1977, Challberg & Englund, 1979; Cheng & 

Simpson, 1978; Leon et al. 1980; Kleisen et al., 1976a) although 

limited sequence heterogeneity was detected in all but T. equiperdum 

(Riou & Saucier, 1979) and T. evansi (Borst & Hoeijmakers 1979b).

The mini-circle nucleotide sequence is rapidly evolving since differences 

in the restriction enzyme analysis of mini-circles from Crithidia 

luciliae were detected after 3 years maintainance in culture (Borst & 

Hoeijmakers, 1979a,b).



1.6.2 MAXI-CIRCLES

Because of their small size and sequence heterogeneity and the lack 

of transcripts in at least 2 species (Section 1.8) the mini-circles 

seem an unlikely candidate for the genetically functional mtDNA of 

trypanosomatids. However, until the discovery by Steinert & Van Assel 

(1975) of free large circular DNA molecules and homogeneous high molecular 

weight restriction endonuclease fragments by Kleisen et al. (l976) in 

highly purified kDNA, no other mtDNA had been identified in trypanosomatids. 

Maxi-circles have now been described for all trypanosomatids studied 

which can make functional mitochondria.

Mari-circles vary from 20 to 39 kilo bases (kb) depending on species 

but there appears to be a high degree of sequence conservation in the 

maxi-circles from different species (Borst & Hoeijmakers 1979a,b).

The number of maii-circle molecules per cell is low, about 50 copies, 

end restriction endonuclease analysis suggests a unique nucleotide 

sequence. Restriction endonuclease maps of maxi-circles fro-m several 

species are now available (Borst & Faae-Fowler, 1979; Masuda et al.,

1979; Stuart, 1979). Although it is difficult to visualize the arrangement 

of the maxi-circles in the kDNA network because of the accompanying 

large number of densely-packed mini-circles, two possible arrangements 

aeem likely: either the maxi-circles are simply catenated with the 

mini-circles in a random fashion, or the maxi-circles are catenated to 

each other with limited interaction with the mini-circles.

Maxi—circles can be separated from mini—circles on the basis of their 

higher A-T content (Simpson,1979). In T. brucei the A-T rich nature of the 

maxi-circle is at least in part due to a segment making up roughly 5 kb 

of the 20.5 kb molecule which is extremely A-T rich and because of this 

virtually devoid of restriction endonuclease sites. Borst and co-workers



show that this region of the maxi-circle varies in size in 9 stocks 

of T. brucei analysed while the rest of the maxi-circle sequences are 

highly conserved. Based on its size, number of copies per cell and unique, 

conserved sequence the maxi-circle seems likely to be the trypanosomatid's 

"true” mitochondrial DNA.

1.7 KENETOPLAST DNA REPLICATION

Early studies on the ultrastructure of several species of trypanosomatid 

provided information on the structure of replicating kDNA networks 

(Anderson & Hill, 1969; Burton & Dusanic, 1968; Simpson, 1972). In most 

species studied by transmission electron microscopy of sections, the 

kDNA band undergoes lateral elongation until it is about twice its 

normal length then the kDNA and its surrounding mitochondrial membrane 

are constricted into 2 daughter kinetoplasts. This duplication of the 

kDNA band and segregation of the daughter kinetoplasts takes place during 

a discrete portion of the cell cycle (Cosgrove & Skeen, 1970). The 

kDNA mass of at least a few trypanosomatids duplicates by vertical 

rather than horizontal fission (Brack, 1968; Paulin & McGhee, 1971).

Simpson et al. (1974) and Manning & Wolstenholm (l976) have shown 

that kDNA replication is semiconservative and that each mini-circle is 

replicated once during a cell «ycle. Because of the large number of mini- 

circles and the catenated structure of the kDNA network, the mechanisms 

of kDNA replication and segregation are likely to be complex. Recently, 

•Englund (1978, 1979) has presented a model for kDNA replication based 

on available experimental evidence involving replication of free mini-circles. 

During the Ĝ  phase of the cell cycle all of the mini-circles in the kDNA 

network are covalently closed (Form i). Mini-circles are detached from 

the network possibly by a topoisomerase-like enzyme (Marini et al. 1980)



during the S phase and replicate by a Cairns-type of mechanism as free 

mini-circles (Englund, 1979). Following replication the free mini­

circles, in a nicked, open, configuration, reattach to the periphery of 

the network. A topoisomerase-like enzyme might mediate this step as well. 

Thus for every covalently closed mini-circle which detaches, 2 nicked 

mini-circles attach following replication resulting in the kDNA network 

increasing in size. The finished product of kDNA replication is a 

network twice the size of. the starting Form I network and contains 

only nicked mini-circles; these are called Form II networks. Finally 

there is a division of the double sized Form II network into 2 eqUal 

progeny followed by covalent closure of all the mini-circles.

Replication of the maxi-circle component has not been studied in 

detail although Hoeijmakers &Weijers (1980) have described the distribution 

of maxi-circles during replication and segregation in spread preparations 

of kDNA from T. brucei. Four distinct types of network were identified 

on the basis of shape, size, number and location of maxi-circle loops 

and the nicked or covalently closed nature of the mini-circles and 

maxi-circles.

1.8 KINETOPLAST DNA FUNCTION

Two approaches have been used in studies on the function of kDNA.

The first involves the isolation and characterization of kDNA transcripts. 

The second has taken advantage of mutant bloodstream forms of the African 

-trypanosomes which lack functional mitochondria and cannot multiply in 

the insect vector (Borst & Fairlamb, 1976). These mutants often have 

detectable alterations in their kDNA compared with the "wild type".

The transcripts from purified mitochondria have been analysed by 

Simpson and co-workers for Leishmania tarentolae (Simpson & Simpson,1978)



and Phvtomonas davidi (Cheng & Simpson, 1978). The major RNA's present 

are 9s and 12s and these selectively hybridize with the maxi-circle 

fragments following electrophoresis and transfer to nitrocellulose 

filters (Southern, 1975); no hybridization with mini-circle fragments 

was detected. The localization of the 9s and 12s RNA genes on a 

restriction map of the maxi-circle of Leishmania tarentolae has recently 

been reported (Masuda et al.. 1979).

Borst and co-workers (Borst & Hoeijmakers, 1979a, b; Borst et al.. 

1980; Hoeijmakers & Borst, 1978) have also studied kDNA transcripts.

By hybridizing total cellular RNA with endonuclease digests of kDNA 

blotted onto nitrocellulose filters, Hoeijmakers & Borst (l978) detected 

hybridization with portions of the maxi-circle of C. luciliae but not 

the mini-circle fragments. These workers have also hybridized fragments 

of the T. brucei maxi-circle, which have been cloned in E. coli. with 

RNA fractionated on agarose gels and transferred to diazobenzyloxymethyl- 

cellulose paper. Although their cloned fragments cover only about 

half of the T. brucei maxi-circle they detect hybridization with the 

9s and 12s RNAs and at least £ ”inor RNAs. All the minor transcripts 

contain poly A tails and are likely to be mitochondrial mRNAs.' As 
discussed by Borst et al. (1980) the 9s and 12s RNAs are most likely to be 

the mitochondrial rRNAs of trypanosomatids, though somewhat smaller 

than other rRNAs. Fouts and Wolstenholme (l979} have obtained results 

using Crithidia acanthocenhali that suggest that transcripts of a portion 

of. the mini-circle may be present. Considering the inability of Borst's 
and Simpson's groups to detect mini-circle transcripts in T. brucei,

C. luciliae. P.davidi or L. tarentolae these results are indeed suprising 

and certainly additional experiments are required to characterize better 

the mini-circle transcript of C. acanthocephali.

During the portion of the life cycle of African trypanosomes in the 

bloodstream of the mammalian host (figure 1, Part I, Section 1.1)



mitochondrial activities are repressed and the trypanosome survives 

solely on the ATP generated by glycolysis (reviewed by Bowman & Flynn,

1976)̂  upon ingestion by the insect vector cytochrome-mediated mitochondrial 

respiration begins* This is analagous to the anaerobic to aerobic switch in 

respiration of yeast (Borst & Hoeijmakers, 1979a, b). As is found in

the mtDNA of yeasty the bloodstream African trypanosomes can survive 

alterations in the kDNA (Borst & Hoeijmakers, 1979a,b; Borst et al..

1980). These mutations in the kDNA are correlated with the inability 

to infect the insect vector (i ) (Opperdoes et al.. 1976; Borst &

Fairlamb, 1976). The I mutants studied usually have detectable 

alterations in the kDNA or have completely lost their kDNA. The most 

drastic I mutants include the so called dyskinetoplastic populations 

of trypanosomes (Trager & Rudzinska, 1964) which may arise spontaneously 

or be induced by treatment with DNA-binding compounds (Hajduk, 1978).

These forms lack a detectable kDNA in stained preparations but may 

retain remnants of the kDNA or other DNA dispersed in their mitochondrion 

(Hajduk, 1976, 1979; Stuart,. 1971; Renger & Volstenholme, 1971; Vickerman,

1977). Some dyskinetoplastic populations have been conclusively shown

to lack any kDNA sequences (Borst & Hoeijmakers, 1979a,b). Several stocks 

of T. evansi have completely lost the maxi-circle component of the 

kDNA but the mini-circle network structure is retained (Borst Sc Fairlamb, 

1976). Another I mutant, T. equiperdum (ATCC 30019) has a mini-circle, 

maxi-circle kDNA network but the maxi-circle component appears to have 

suffered a single 1.5 kb deletion in comparison with the maxi-circle of 

T. brucei 427 which can activate mitochondrial activities and infect the 

insect vector (Frasch et al. 1980; Hajduk & Cosgrove, 1979). Another 

class of I mutants containing maxi-circles which are normal by all 

criteria tested have been detected and are discussed later (Section ).

The alterations, if any, in the maxi-circle must be minimal, ie. point 

mutations in specific maxi-circle genes. Another explanation might
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be that mutations in nDNA genes coding for components of the mitochondrial 

protein synthesizing system have occurred.

Even though a wide range of changes in the kDNA and possibly in the 

nDNA may lead to the I phenotype, it is clear that all trypanosomes 

with detectable alterations in the maxi-circle or lacking the maxi-circle 

are incapable of mitochondrial activation. Table 3 summarizes some 

characteristics of the I trypanosomes available. The I"* mutants with 

alterations in the maxi-circle ̂ component of the kDNA..but retention of both 

mini-circles and network structure, support the hypothesis that the 

maxi-circles are the genetically functional unit in the kDNA. The 

function of the mini-circles, which make up 95>» of the kDNA network is 

difficult to understand. However, it is clear that the mini-circles are 

essential for maintenanceof the network structure and in every mutant where 

mini-circles&re missing maxi-circles have also been lost. The possibility 
that mini-circles have a structural role in the kDNA network has been 

discussed by several workers ( Borst & Fairlamb, 1976; Cosgrove, 1973).

1.9 ENERGY METABOLISM IN TRYPANOSOMATIDS

The oxidative metabolism of trypanosomatids has been reviewed by 
Bowman and Flynn (1976) and it is clear that the metabolic patterns of 
the members of this family are highly diverse. In most trypanosomatids 
oxidative metabolism of either carbohydrates or amino acids is complete, 
with CO^ being the main product. A functional Krebs cycle is present and 
NADH is reoxidized by a cytochrome mediated electron transport chain. 

Morphologically these cells contain a single mitochondrion with numerous 

plate like cristae (Vickerman, 1965). Respiration in the insect trypano­

somatids is inhibited to a large extent by cyanide, azide and antimycin A 

indicating that electron transport involves cytochromes b, c, and aa^.

The cytochrome chain of the insect trypanosomatids is apparently



}branched since a portion of the respiration by these cells is in-
o

sensitive to cyanide, azide and antimycin A. Figure 3 shows the 

branched electron transport system proposed by Ray and Cross for 

Trypanosoma mega (Ray & Cross, 1972) and described for several other 

species by Hill'and co-workers (1 976). The presence of cytochrome o 

as an alternative, cyanide insensitive, terminal oxidase has J?een 

controversial (Hill, 1976) but it now seems likely that an o-like 

cytochrome functions as a terminal oxidase in at least some species 

(Degn et al., 1977). Njogu et al. (1980) have recently examined the
• <•

electron transport system of the procyclic trypomastigotes of T. brucei 

which resemble the developmental stages found in the midgut of the 

insect vector. Unlike the bloodstream forms of T. brucei the established 

procyclics have a branched electron transport system with about 60^ of 

the respiration being cyanide sensitive and 30?° being sensitive to SEAM ' 

an inhibitor of the glycerophosphate oxidase system in the bloodstream 

trypanosomes. Figure 3 shows this proposed branched pathway.

The bloodstream stages of T. brucei have a repressed mitochondrion, 

morphologically reduced in size and lacking cristae (Vickerman, 1965). 

Energy production is entirely by glycolysis, no functional Krebs cycle 

or cytochromes are detectable and respiration is insensitive to cyanide, 

azide, and antimycin A. NADH is reoxidized by the glycerophosphate 

oxidase system (figure 3) localized in the mitochondrion (Opperdoes 

etal.. 1977). This oxidase system is apparently unique to African 

trypanosomes and is being extensively studied as a potential site for 

chemotherapy of African trypanosomiasis (Clarkson & Brohn, 1976;

Opperdoes et al., 1976b; Van der Meer et al., 1979).



Figure^.

Respiratory pathways in trypanosomatids. A. Branched cytochrome 

mediated pathway proposed by Ray & Cross (1972) for Trypanosoma mega 

and apparently present in most trypanosomatids from insects. B. The 

proposed arrangement of the respiratory pathways of the insect stages 

of T. brucei (N.iogu et al.. 1980). Red. and Ox., are unidentified 

components that allow transfer of electrons between the glycerophosphate 

oxidase (GPO) system and the cytochrome system. C. Glycolysis and 

respiration of the bloodstream stages of T. brucei (N.iogu et al.. 1980). 
FDP, fructose-1,6-diphosphate; GAP, glyceraldehyde-3-phosphate; 

ocGP, cC-glycerophosphate; DPG, 1,3-diphosphoglycerate; DHAP, dihydroxy- 

acetonephosphate; and salicylhydroxamic acid, SHAM.
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gj. PURPOSE OF INVESTIGATION

The kinetoplast DNA is the only DNA thus far found in the mito­

chondrion of trypanosomatids and recent evidence indicates that the 

maxi-circle is the equivalent of the mtDNA in other eukaryotes. The 

mini-circles, which make-up the bulk of the kDNA network, apparently are 

not transcribed in most species and perhaps function as structural 

elements in maintaining the kDNA network. Such a role would be unique 

for a DNA molecule.

To study the functional role of DNA making up the kDNA network I 

have selected cell populations which show morphological and biochemical 

characteristics which suggest alterations in mitochondrial biogenesis or 

alterations in kDNA structure. By analysis of these mutant populations 

some in sight into the function of the kDNA components and network 

might be obtained. I have attempted to correlate mutations in 

the kDNA structure, in particular in the maxi-circle, with changes in 

mitochondrial activities. In all other studies changes in kDNA structure 

have been restricted to the bloodstream stages of African trypanosomes 

where mitochondrial activities are repressed. One species I have studied, 

Herpetomonas ingenoplastis. is unique among the trypanosomatids in being 

able to survive in culture, at 26°C, with a non-functional mitochondrion.



Relationship of kinetoplast DNA to mitochondrial activity in the 

flagellate protozoan Herpetomonas musearum

I. Characterization of the kinetoplast DNA of two subspecies



Summary

We have compared the structure of the kinetoplast (kDNA) of 

Herpetomonas musearum muscarum and Herpetomonas muscarum ingenoplastis 

by electron microscopy, restriction endonuclease digestion and hybrid­

ization with cloned portions of the maxi-circle from Trypanosoma brucei 

427. The kDNA of both Herpetomonas subspecies has a buoyant density of
7

1.698 g/cm ; however the kDNA of H.m. ingenoplastis represents 31ifc 

of the total cellular DNA as compared with 8$ for H.m. muscarum kDNA.

The kDNA network of H.m. muscarum consists of thousands of mini-cricles 

of 0.6 to 0.7 x 106 dal tons and a few large circular molecules, maxi­

circles, of 21 x 10^ daltons. The mini-circles of H.m. muscarum show 

sequence heterogeneity while maxi-circles of H.m. muscarum have a 

unique sequence. The kDNA of H.m. ingenoplastis completely lacks

mini-circle size molecules and the network is composed entirely of
6 6 6 large circular molecules of 11 x 10 , 15.5 x 10 and 24 x 10 daltons.

6 6The 11 x 10 and 15.5 x 10 dalton molecules- show sequence heterogeneity 

and are the major component of the kDNA. Hybridization studies with 

cloned fragments of T. brucei maxi-circle suggest that the 24 x 10^ 

dalton component of H.m. ingenoplastis kDNA is functionally equivalent

to the maxi-circle of other trypanosomatids.
6 6 We conclude that the 11 x 10 and 15.5 x 10 dalton circles of

H.m. ingenoplastis are functionally similar to mini-circles of other

trypanosomatids and that the maxi-circles of H.m. ingenoplastis differ

from those of T. brucei and H.m. muscarum in major nucleotide sequences.



INTRODUCTION:

The mitochondrial DNA of flagellate protozoa of the order Kinetoplastida 

is organized as a complex network of catenated circular molecules termed 

the kinetoplast (1,2). The kinetoplast DNA (kDNA) network is situated 

in a portion of the cell's single mitochondrion adjacent to the basal 

body of the flagellum. In preparative procedures kDNA is readily 

separated from the flagellate *,s nuclear DNA by virtue of its high molecular 

weight, the covalently closed form of its constituent molecules and its 

high adenine-thymine content* The kDNA from several species, all from

the family Trypanosomatidae, has been studied in some detail (see 3-7
\ 4for recent reviews). Each kDNA network is composed of about 10 small

2
circular molecules, the "mini-circles” (8 ,9), and about 10 large circular 

molecules, the "maxi-circles" (10,11), all interlocked to form the high 

molecular weight structure.

The mini-circles of different species vary in contour length (from 

about 0*3 pm in Leishmania spp. (12) to 0.8 pm in Crithidia spp. (13)) and 

in their degree of nucleotide sequence heterogeneity (5,14,15)i Two 

mini-circles from T. brucei have recently been completely sequenced and 

clearly show a high degree of sequence deviation but also show several 

regions of homology (16). Studies on the transcription abilities of 

mini-circles have given conflicting results (l7,18,19); in at least 3 
species no transcripts have been detected. As discussed by Borst and 
Hoeijmakers (5) and by Englund (7), the preponderance of evidence suggests 

that the mini-circles have an as yet undiscovered non-coding function in 

the species studied.

The minor component of the kDNA network, the maxi-circle, has many 

of the characteristics of mitochondrial DNA molecules from other cells in



that: 1. maxi-circles are present in similar numbers, i.e. between 50

and 100 copies per cell; 2. maxi-circles are similar in size to mitochondrial 

DNA molecules, 6-12 pm contour length; 3* maxi-circles have a unique 

nucleotide sequence whis appears to have been conserved in evolution of 

the Trypanosomatidae (5); 4. transcripts hybridizing to portions of the 

maxi-circle of Crithidia. Leishmania tarentolae and T. brucei have been 

detected (18,19 20); 5* maxi-circles code for the mitochondrial ribosomal 

RNAs in trypanosomes (20); and 6. mutants lacking all or part of the 

maxi-circle are incapable of normal mitochondrial activities (6,20).

Although a network composed on mini-circles and maxi-circles is 

the predominant configuration of the kDNA, at least in the family 

Trypanosomatidae, different structural arrangements of the kDNA have 

been found in mutants that have lost the ability to make functional 

mitochondria, in particular, in the pathogenic African trypanosomes.

Mutants lacking all or part of the kDNA network have been described 

(6,21,22) and in every case these mutants have been found only in the 
bloodstream form of the trypanosome in which mitochondrial biogenesis 

is completely repressed, the cells relying entirely upon glycolysis for 

energy (23)* These cells are unable to survive under culture conditions 

which require mitochondrial activation; this activation accurs naturally 

in the tsetse fly vector (2).

Our main interest in kDNA stems from its possible role in adaptive 

activation and repression of mitochondrial activitiy in kinetoplastid 

flagellates. Further understanding of the function of the kinetoplast, 

and in particular of the enigmatic mini-circles may come from comparative 

studies on kinetoplast structure in relation to mitochondrial function. 

Hitherto such studies have been confined to different stages in the life 
cycle of Trypanosoma, brucei and its evolutionary deseendents. We report 

here, and in the following paper, on the kDNA structure and mitochondrial



activity of two subspecies of the monoxenic trypanosomatid, Herpetomonas 

muscarum (Leidy); both subspecies occure naturally in the gut of dipterous 

flies but invitro culture forms were studied here. We find that 

H.muscarum ingenoplastis (24) has a kDNA network completely devoid of 

mini-circles and containing an altered maxi-circle component; it is also 

deficient in mitochondrial activities. Hernetomonas muscarum muscarum (24) 

on the other hand has a kinetoplast-mitochondrion more closely resembling 

that of other trypanosomatids parasitising insects.

MATERIALS AND METHODS:

Organisms

Cultures of Hernetomonas muscarum muscarum (ATCC 30260) and 

Herpetomonas muscarum ingenonlastis (ATCC 30269) were obtained from 

Dr. W.B. Cosgrove, Department of Zoology, University of Georgia, USA.

The 2 subspecies were originally isolated in culture from the gut of 

Musca domestica and Phormia regina respectively by Rogers and Wallace (24). 

Both subspecies had been cloned at least once and were stored as frozen 

stabilates in 10$ dimethyl sulphoxide at -196°C.

Cultivation

Both H.m. muscarum and H.m. ingenoplastis were routinely cultivated 

in brain heart infusion medium with blood agar base as described by 

Rogers and Wallace (24)* Recently time-expired human blood obtained from 
the Glasgow Western Infirmary Blood Transfusion Service was used In the base.

Br^in heart infusion agar (Difco) was sterilized as a 5.2$ (w/v) solution

at 15 PSI for 20 min, cooled to 45°c and blood added to 10$ (w/v).

After cooling the agar, 1 to 2 volumes of 3.7$ (w/v) brain heart infusion 

(Difco) were added as an overlay. Cultures were maintained at 26°C.

H.m. muscarum (but not H.m. ingenoplastis) was also cultivated in a variety 

of other media including RPMI 1640 + 25 mM Hepes supplimented with 10$ 

foetal calf serum.



Flagellates of the genus Herpetomonas have two distinct morphological 

stages in their life cycle, the multiplicative long promastigote form 

with the kinetoplast and flagellum base in front of the nucleus, and the 

non-multiplicative shorter opistomastigote form with the kinetoplast and 

flagellum base behind the nucleus. Only promastigotes were present in 

our cultures.

Isolation of kDNA

Cells were grown to late log phase in 1 liter flasks with 200 ml 

of blood agar and 300 ml of overlay. To harvest the flagellates the 

overlay was filtered through loose, absorbent cotton wool which removed 

peices of agar, then centrifuged at 2000 g for 20 min at 4°C in an MSE 

Hi-Speed 18 centrifuge fitted with a 6 x 250 ml angle rotor. Pelleted 

cells were resuspended in 0.15 M sodium chloride, 0.015 M sodium citrate, 

0.1 M disodium ethylenediaminetetra acetate, pH 7.5 (SES) and washed 3 

times in the same buffer. Pelleted cells were resuspended in the same 

buffer, mixed with an equal volume of 6$ Sarkosyl (in SES) and incubated, 

with pronase (Calbiochem) at a final concentration of 1 mg/ml, for 1.5 

hours at 37°C with gentle shaking. Pronase was pre-treated for 2 hours 

at 37°0 and 15 min at 80°C before use (22). Lysates were deproteinized 

by mixing with an equal volume of phenol saturated with SES and leaving on 

ice for 30 min with gentle shaking at 5 min intervals. Aqueous and 

phenol phases were separated by centrifugation at 2,000 & for 30 min at 
4°C. The aqueous upper layer was removed with a wide-tip pipette and 

further deproteinized by mixing with an equal volume of a chloroform: 

Isoamyl alcohol (24:1) mixture on ice for 30 min, shaking as before.

The 2 phases were again separated by centrifugation and the aqueous phase 

precipitated with 2 volumes of cold (-20°C) 95$ ethanol. The precipitate 

was collected on a glass rod, dissolved in SES buffer and incubated with



ribonuclease (Sigma, final concentration 200 jig/ml) for 1 hour at 37°C. 

Ribonuclease was preincubated at 80°C for 15 min to inactivate any 

deoxyribonuclease activity. Deproteination with chloroform:isoamyl 

alcohol and centrifugation were repeated and the aqueous phase dialysed 

against 2 changes of SES buffer for 24 hours at 4°C. The dialysate was 

then centrifuged at 21,000 RPM in an MSE Prepspin 55 ultracentrifuge 

with a 3 x 15 ml swing-out rotor for 1.5 hours at 4°C. The supernate 

containing most of the nuclear DNA was carefully removed and the kDNA 

pellet resuspended in 10 mM Tris (pH 7.5); pelleting was repeated at least 

3 times. The final pellet was resuspended in 10 mM tris and further 

pruified by centrifugation in sodium iodide gradients (n̂ 25-1.4335) contain­

ing 25 Jig ethidium bromide per ml. Centrifugation was for 72 hours at 38,000

RPM in an MSE Prepspin 55, 10 x 10 ml angle rotor, or a Beckman L2-50
oultracentrifuge, type 40 rotor, at 20 C. The upper fluorescent band of 

kDNA was gently removed and extracted 3 times with water-saturated 

isoamyl alcohol at 4°C, then dialysed against 10 mM Tris (pH 7.5) 

for 24 to 48 hours at 4°C. When necessary the kDNA was concentrated by 

centrifugation in a ^orvall RC-2B centrifuge, HB-4 rotor, at 11,000 RPM 

for 30 min. Purified kDNA was stored at -20°C.
u

Light Microscopy

To demonstrate kinetoplast morphology, cells were incubated in 

0.1 pg/ml 4,6 diamidino-2-phenylidole (DAPl) for 1 hour at 25°C then 

examined with a Leitz Ortholux II microscope using incident light 

fluorescence with a HBO 50 high-pressure mercury vapour lamp, exciting 

filter UG 1, dichroic mirror TK400 and suppressing filter K430.

Photographs were made on Ilford HP5 film.

Electron Microscopy-

Cells for thin sectioning were pelleted at 1,500 g for 10 min 

at 4°C and fixed in 1$ glutaraldehyde in 0.1M sodium cocodylate buffer, 

pH 7.4, for 1 hour at 4°C.. Cell were washed 2 times in cacodylate buffer



and post-fixed in osmium tetroxide in the same buffer for 1 hour at 

room temperature. Following post-fixation cells were washed 3 times in 

cacodylate buffer then stained for 1 hour at room temberature in 0.5$ 

aqueous uranyl acetate. They were then washed 2 times in cacodylate 

buffer, dehydrated through graded ethanols and propylene oxide, embed­

ded in an Epon-Araldite mixture and blocks polymerized at 60°C for 48 

hours. Sections were stained with uranyl acetate and lead citrate.

Purified kDNA was spread by a modification of Lang and Mitani's 

microdiffusion technique (25). The spreading solution contained 1.0 pg  

kDNA, 0.1 mg cytochrome c and 0.15 M ammonium acetate, per ml. In some 

experiments ethidium bromide was added at 50 p g /ml. After diffusion for 

40 min in a formaldehyde-saturated atmosphere, the DNA was picked up on 

75-200 mesh grids, with carbon support films, then rotary-shadowed with 

platinum-palladium at an angle oi 9°. In all experiments FM2 phage DNA 

was co-spread as a length marker. All photographs were taken using 

either an AEI-EM8 or Phillips EM300 electron microscope.

Contour length measurements were made on tracings of photographed 

molecules; the contour length of FM2 DNA was taken to be 3*02 jm.

Analytical Ultracentrifugation

Analytical cesium chloride ultracentrifugation of total cellular 

DNA was carried out in a Beckman Model E at 44,770 RPM for 20 hours at 

20°C. Equilibrium bands were photographed at 260 nm and negatives 

scanned with a Gilford 2400 spectrophotometer. Buoyant densities were 

calculated as described by Schildkraut et al (26) using Micrococc.us
j

luteus DNA as a density marker (p=1.731 g/cm ).

Restriction enzyme anlavsis 

" Restriction endonucleases Xhol, Bglll, Xbal, Mbol, MboII and TaqI



were purchased form New England Eiolahs. PstI, HapII, HindiII, BspI,

Kpnl and Sail were prepared by published procedures (see 27 for references). 

EcoRI was obtained from Boehringer Manheim.

All restriction endonuclease digestions of kDNA were for 2 hours 

at 37°C except TaqI which was incubated at 60°C. Enzymes Xhol, Bglll,

Xbal, Mbol, MboII, BspI, TaqI, Kpnl and Sail were incubated in 10 mM Tris- 

HCl (ph 7.5)> 8 mM MgCl^, 1 mM dithiothreitol and 1$ gelatin. Enzymes 

Hindlll, EcoBl and PstI were incubated in 5 mM Tris-Hcl (pH 7.5)»

7 mM MgClg, 50 mM NaCl and 5 mM dithiothreitol. Ŝ  nuclease was prepared 

according to Vogt (28) from Asnergellus orvzae but ommiting the Sephadex 

G-100 filtration and the sulfoethyl-sephadex chromatography. kDNA was 

incubated for 30 min at 45°C with Ŝ  nuclease in 0.125 M Na acetate,

0.1 mM ZnSO^, 0.4 M NaCl and Q.04$ sodium dodecyl sulphate, pH 4*7.

To facilate layering, all digested kDNA samples were mixed with 

Ficol and Orange G to final concentrations of 5$ and 25 ng/ml respectively. 
To resolve high-molecular-weight fragments, gel . electrophoresis was 

carried out on 0.5$ horizontal agarose slab gels at 20-25 mAmps for 17 

hours at room temperature, in a ruining buffer containing 40 mM Tris- 

HC1, 20 mM Na acetate, 1mM EDTA,pH 7*7 with 0.5 )ig  ethidium bromide per 

ml. kDNA fragments smaller than 1 kilo base bair in size were resolved 

on 2fo agarose gels run at 150 mAmps for 2 hours with a running buffer of 

90mM Tris-HCl, 90 mM Na borate, 2.5 mM EDTA (pH 8.3) and 0.5 p g ethidium 

bromide-per ml.

Following electrophoresis gels were destained for 30 min in distilled 

water, then photographed by ultraviolet light with a Nikon F camera 

through a Kodak Wratten filter 17 with Agfa Oopex Pan Rapid film.



To determine the molecular weight of the kDNA fragments the migration 

of the fragments was measured relative to marker DNA fragments. Molecular 

weight markers used were phage lambda DNA, phage lambda DNA digested 

with EcoRI, phage $X DNA digested with BspI or Mspl.

Hybridization experiments

Following electrophoresis kDNA fragments weie denatured in situ 

and the DNA transferred to nitrocellulose filters as described by 

Southern (29). Filters were hybridized with denatured kDNA probes 

labelled with 20 pCi of©4-^P- TTP and«<-^^P- CTP by nick* translation.

DNA probes used were: 1. EC02 (RR2), and 2. EC03 (RB3) fragemnts both 

from the maxi-circle of T. brucei 427 cloned in Escherichia coli using 

lambda-gt-WES. lambda-B as vector (for nomenclature and procedure see 30); 

3. mini-circles from H.m. muscarum prepared by digesting kDNA networks 

with Xhol, which cuts the maxi-circle but few of the mini-circles and 

pelleting the mini-circle network at 11,000 RPM in a Sorvall HB-4 rotor 

for 30 min at 4°C foil-wed by 3 washes. Filters were incubated at 65°C 

for 3 hours in 3 times concentrated 0.15 M sodium citrate, 0.15 M 

sodium pH 7.5 (SSC) with 0.2$ Ficol, 0.2$ bovine serum albumin', 0.2$ 

polyvinyl-pyrrolidone, 0.1$ sodium dodecyl sulphate, 50 pg/ml Salmon 

sperm DNA. The heat denatured radio-labelled DNA probe was added and 

filters allowed to hybridize for 24 hours. Following hybridization filters 

were washed exhaustively at 65°C with the hybridization solution (see 

above) without the P labelled DNA probes. Filters were dried and 

autoradiograms exposed at —70°C for 2 hours to 2 weeks depending on the 

degree of hybridization.

RESULTS

Fluorescence microscopy of the kinetoplast

DAPI is a highly fluorescent derivative of berenil (31) which



has been useful in detecting small amounts of DNA (32). This compound 

binds preferentially to A-T rich DNA and when exposed to ultraviolet 

l i g h t fluoresces a brilliant blue. When either H.m. ingenoplastis or*

H.m. muscarum was incubated with DAPI and examined by fluoreescence 

microscopy, the kinetoplast appeared as an intensely-stained structure 

at the base of the flagellum (figure 1a and b). Probably owing to the 

high content and high concentration of kDNA the kinetoplast fluorescence 

appeared much more intense than the nuclear fluorescence; an alternative 

explanation is that the association of nuclear DNA with proteins 

affects DAPI binding. The kinetoplast of H.m. ingenoplastis was tear­

drop shaped both in living and fixed cell preparations. There was a 

high degree of variation in the size of the kinetoplast of H.m. ingenoplastis 

and up to 10$ of the cells were dyskinetoplastic (33,34); that is, 

completely lacking a stainable kinetoplast. In contrast the kinetoplast 

of H.m. muscarum was small and ovoid in shape and the percentage of

dyskinetoplastic cell was less than 0.5$.
c

Electron microscopy of the kinetoplast

Electron micrographs of sections of both H.m. ingenoplastis and

H.m. muscarum showed the kDNA to be present in that portion of the cell's 

single mitochondrion adjacent to the basal body of the flagellum (figure 

1c and d). The structure of the kinetoplast o$ H.m. muscarum was similar 

to that of most other trypanosomatids studied; the kDNA appeared in 

vertical section as a fibrous band of electron dense material about 

0.15 )im in width with the kDNA fibres roughly aligned with the long­

itudinal axis of the cell (figure 1d). The kinetoplast of H.m. ingenoplastis

was seen in vertical section as a voluminous bundle of fibres, also 

roughly aligned with the longitudinal axis of the cell, with a distinct 

electron-dense "edge" at the end nearest the flagellum and loosely 

packed kDNA fibres extending posteriorly in the mitochondrion for



Figure 1.

Fluorescence photographs of DAPI-labelled (a ) H.m. ingenoplastis; 

and (b ) H.m. muscarum. The kinetoplast, k, and the nucleus, n, are 

visible and dividing cells are present in both preparations. X1500.

Electron micrographs of thin sections of H.m. ingenoplastis (c) 
X18000 and H.m. muscarum (d) X30000 through the kinetoplast region of 

the mitochondrion, to show characteristic distribution of kDNA in 

each subspecies.
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distances up to 2.5 /m . These observations on the ultrastructure of 

both subspecies are in agreement with previous studies by Wallace et al 

(35).

Extraction and visualization of kDNA molecules

Analytical CsCl equilibrium ultracentrifugation of total cellular 

DNA from both H.m. muscarum and H.m. ingenoplastis revealed a rapidly 

banding component which settled at a density of 1.698 g/cm (Table 1)* 

This component represented 8fo of the total DNA in H.m. muscarum and 51 

of the total cellular DNA in H.m. ingenoplastis.

Following pelleting by high speed centrifugation the kDNA from 

H.m. ingenoplastis and H.m. muscarum was freed from remaining contam­

inating nuclear DNA by Nal gradient ultracentrifugation. Figures 2d 

and 2e show the banding patterns obtained for the two subspecies with 

the kDNA forming the sharp upper band and the nuclear DNA the faint 

. lower band. The purified kDNA band was removed and spread for electron 

microscopy. Figure 2a shows a portion of a kDNA network from H.m. 

ingenoplastis. No mini-circle size molecules were observed in'any 0f 

the preparations and the kDNA appeared to be composed entirely of large 

circular molecules (figure 2b). The size distribution of free circular 

molecules in kDNA preparations from H.m. ingenoplastis is given in
ifigure 5* Spreading in the presence of ethidium bronide induced super- 

coiling of the kDNA from H.m. ingenoplastis showing that the majority of

 -the-circles are covalently~«l»osed~(not shown). The kDNA networks from

H.m.muscarum were more fragile than those from H.m. ingenoplastis and 

most of the networks observed were extensively fragmented. These 

networks were composed primairly of catenated mini-circles but a 

few longer molecules were also present in the networks (figure 2c).

The size distribution of free circular molecules from H.m. muscarum kDNA
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Figure 2.

Electron micrographs of isolated kDNA spread by the protein 

monolayer technique, (a) Edge of a kDNA network of H.m. ingenoplastis 

containing only long loops of DNA. (b) A free 6.7 pa HL-circle from 

H.m. ingenoplastis. (c) A portion of a fragmented kDNA network form 
H.m. muscarum containing catenated mini-circles and maxi-circles.

All micrographs X50000.

Photographs of Nal gradients of partially purified kDNA from (d) 

H.m. ingenoplastis and (E) H.m. muscarum.
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Figure 3*

Contour length distribution of free circular molecules in spread 

preparations of kDNA from H.m. muscarum and H.m. ingenoplastis. The 

free circles in H.m. ingenoplastis kDNA fall into 3 size classes of 

(a ) 4.4 (b ) 6.3 jm, and 11*3 pi*
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preparations is shown in figure 3* All free circular molecules in these 

preparations were of mini-circle size; no circular molecules of 

maxi-circle size were observed.

Endonuclease digestion experiments

Figure 4 shows the fragments produced when purified kDNA from 

H.m. ingenoplastis and H.m. muscarum is digested with the restriction 

endonucleases HindIII> BspI, Xhol and Eco&I and electrophoresed on 0,6% 

agarose gels. The kDNA of H.m. ingenoplastis yielded a large number of 

high molecular weight fragments, in non-stoichiometric amounts, which 

gave an added molecular weight exceeding the molecular weight values 

obtained for the linearized circular DNA molecules following digestion 

with nuclease (Table 2). nuclease can linearize circular DNA and the 

kDNA from H.m. ingenor)lastis .yielded 3 fragments of 11 x 10̂ , 15.5 x 10^ 
and 24 x 10^ daltons molecular weight when digested with this enzyme 
(figure 6). The large number of fragments and lack of stoichiometry 

were not due to partial digestion or to contamination nuclear DNA since 

10 times excess of restriction endonuclease did not alter the number or 

molecular weight of the fragments obtained and purified nuclear DNA 

run side-by-side with the kDNA gave an entirely different pattern.

Digests of the kDNA from H.m. muscarum yielded a small number of 

faint, high-molecular-weight fragments which were present in equimolar amounts 

and had a combined molecular weight of 20-24 x 10^ daltons, in agreement 
with the value of 21 x 10^'Hal'tons obtained for the maxi-circle cut once 
with nuclease (Table 2). The digest of H.m. muscarum kDNA 

also yielded small fragments of about 0.6 to 0.7 x 10^ daltons which 
corresponded to values expected for mini-circles (figure 6). No 

low-molecular-weight fragments were present in the digests of 

H.m. ingenoplastis kDNA. Table 2 summarizes the results obtained with



15
.5



Figure 4.

Agarose (0.6$) gel electrophoresis of EDNA from H.m. ingenoolastis 

(lanes 2, 4, 6, and 8) H.m, musearum (lanes 3> 5» 7, and 9) following 

digestion with restriction endonucleases Hindlll, lanes 2 and 3;

BspI, lanes 4 and 5; Xhol, lanes 6 and 7; EcoEI, lanes 8 and 9.

Lane 1 contains a mixture pf intact phage lambda DNA, phage lambda DNA 

digested with EcoEI and phage 179 DNA digested with BspI as a 

molecular weight marker.
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11 restriction endonucleases and nuclease on the kDNA from H.m. 

musearum and H.m. ingenoplastis.

Hybridization experiments

lo determine whether any of the mini-circle sequences present 

in H.m. muscarum kDNA are present in the large, heterogeneous circles 

of H.m. ingenoplastis kDNA, restriction digests of both kDNAs were run 

on 2$ agarose gels, which resolve the smaller, mini-circle size fragments 

better than the lower percentage gels. The sequence heterogeneity of the 

H.m. muscarum mini-circles i s  fc'learly demonstrated in the banding patterns 

in figure 5. The kDNA fragments were transferred to nitrocellulose 

filters and hybridized with radiolabelled mini-circle probe from an 

Xhol digest of H.m. muscarum kDNA (figure 5)* Although digests of 

both H.m. ingenoplastis and H.m. muscarum contained low-molecular- 

weight fragments, smaller than linearized mini-circle, the fragments did not 

co-migrate and the H.m. ingenoplastiskDNA did not hybridize with the 

H.m. muscarum mini-circle probe .showing that there is little or no sequence 

homology between the H.m. muscarum mini-cricles and the kDNA of H.m. 

inpenonlastis. Slot 4 in figure 5 contains kDNA from Crithidia fasciculata. 

the mini-circle of this species did not hybridize with the H.m. muscarum 

mini-circle.

Because of the large number of high-molecular-weight fragments 

in restriction endonuclease digests of the H.m. ingenoplastis kDNA, 

-it-was-not possible to determine directly from the agarose gels whether 

maxi-circle sequences were present in the H.m. ingenoplastis kDNA.

Two cloned portions of the maxi-circle of T. brucei 427 kDNA were 

therefore hybridized with kDNA from H.m. ingenoplastis and H.m. muscarum 

digested with restriction endonucleases, electrophoresed and transferred 

to nitrocellulose filters and the fragments containing nucleotide



Figure 5.

Hybridization of the mini-circle probe from H.m. muscarum kDNA 

with restriction endaiuclease fragments of kDNA from H.m. ingenoplastis 

(lanes 2, 5, and 7), H.m. muscarum (lanes 3» 6, and 8), and C. fasciculata 

(lane 4) following electrophoresis on 2$ agarose and blotting of denatured 

kDNA fragments onto nitrocellose filters. Panel A shows the electro­

phoresis of the low molecular weight fragments following digestion 

with restriction endonucleases HapII, lanes 2, 3» and 4; BspI, lanes. 5

and 6; and Mbol, lanes 7 and 8. Panel B is the autoradiogram of the
32hybridization of the P labelled H.m. muscarum mini-circle probe with the 

filter blot of the gel shown in panel A. Lane 1, panel A contains a 

mixture of intact phage lambda DNA, phage lambda DNA digested with EcoRI 

and phage 179 DNA digested with BspI a molecular weight markers.



P
an

el
 A 

P
an

el
 B

*  if I ■  I III I

I III IO) CM CO o CM CO N 10 Tfr
o  d o  o'



Figure 6,

Hybridization of cloned segments of the maxi-circle of T. brucei 427

with restriction endonuclease and nuclease fragments of H.m. ingenoplastis

(lanes 1, 3, 5, 7, 9, and 11) and H.m. musearm (lanes 2, 4, 6, 8, 10,

and 12) kDNA following electrophoresis on 0.6$ agarose and blotting

denatured DNA fragments onto nitrocellose filters. Panel A shows the 
electrophoresis of fragments obtained from Hindlll, lanes 1 and 2;

BspI, lanes 3 and 4: EcoRI, lanes 5 and 6; Mbol, lanes 7 and 8; Xhol

lanes 9 and 10; and nuclease, lanes 11 and 12. Panel E is the auto-
32radiogram of the hybridization of the P labelled Eco2 cloned maxi­

circle probe form T. burcei and a filter blot of the kDNA from H.m. 

ingenoplastis and H.m. muscarum shown in Panel A. Panel C shows 

the hybridization of a duplicate filter with the cloned Eco3 fragment 

of T. brucei maxi-circle.
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TABLE 3.

Molecular weight (x10 of kDNA fragments from H.m. muscarum and

H.m.ingenoplastis hybridizing with cloned maxi-circle fragments,

Eco2 and Eco3f from T. brucei 427.

Eco2 probe Eco3 probe
Restriction _________________
endonuclease Fragment H.m.m. H.m.i. H.m.m. H.m.i.

EcoR I 1 16.5 - 16.5 11.0

2 6.0 -  6.0 -

Hindi 11 1 3.5 - 13.5 2.5

2 3.3 - 3.5

Xhol 1 W - O - 20.0 24.0

BspI 1 3.4 - 1.1 5.6

2 0.75 - 0.75

S. 1 21.0 - 21.0 24.0
1

I



sequences in common with the T. brucei m̂ jxi-circle probes identified 

(figure 6). The high molecular weight fragments of the H.m. muscarum 

maxi-circle hybridized with both the T. brucei maxi-circle probes (cloned 

EcoRI fragments Eco 2 and Eco 3). Digests of the H.m. ingenoplastis 

kDNA gave no detectable hybridization with the Eco 2 cloned fragment 

of the T. brucei maxi-circle (Panel B, figure 6). However, hybridization 

occurred with the Eco 3 probe (Panel G, figure 6). In the Xhol and 

digests apparent full length fragemnts of the H.m. ingenoplastis 

maxi-circle hybridized with the Eco 3 probe. The fragments had a molecular
g

weight of 24 x 10 daltons and were similar in size to the H.m. muscarum 

maxi-circle.

DISCUSSION

Our results have shown that the kDNA network of H.m. ingenoplastis 

differs from that of all other trypanosomatids studied in completely 

lacking mini-circle size molecules. The kDNA of H.m. ingenoplastis is

composed entirely of large circular molecules of 3 size classes:
6 6 61. 24 x 10 , 2. 15.5 x 10 , and 3* 11 x 10 daltons molecular weight.

The 24 x 10^ dalton molecules contain sequences homologous to a portion

of the maxi-circles of H.m. muscarum and T. brucei 427 and are likely to

represent the maxi-circle of H.m. ingenoplastis. As discussed further

below, this putative maxi-circle of H.m. ingenoplastis apparently lacks

sequences that are essential for normal mitochondrial biogenesis and this

can account for the abnormal mitochondria found in this subspecies

(see accompanying paper). The other 2 size classes of circular DNA

molecules are heterogeneous in sequence and may fulfil a structural role

in the kDNA network similar to the mini-circles of other species..

We have termed these molecules heterogeneous large-circles (HL-circles)

on the basis of their size and sequence heterogeneity.
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The maxi-circle of H.m. muscarum resembles that of other trypano- 

somatids; it is only slightly smaller than the maxi-circle of Crithidia 

(see 5) and it hybridizes with both segments of the T. brucei maxi-circle 

available in cloned form. The maxi-circle of H.m. ingenoplastis is 

similar in size to that of H.m. muscarum but differences in the nucleo­

tide sequences are evident in restriction endonuclease digests and from 

hybridization experiments using the cloned T. brucei maxi-circle fragments. 

Digests of both H.m. ingenonl^ us and H.m. muscarum kDNA contain fragments 

which hybridize with the Eco 3 T. brucei cloned maxi-circle fragment, but 

the size of the hybridizing fragments differs in digests with 7 different 

restriction endonucleases. The maxi-circle of H.m. muscarum hybridizes 

strongly with the other cloned T. brucei maxi-circle fragment, Eco 2, 

while the maxi-circle of H.m. ingenoplastis completely lacks sequence 

homology with this DNA probe. The Eco 2 fragment is known to code for 

at least two prominent transcripts of T. brucei, present in both culture 

and bloodstream forms (20) and sequences hybridizing to this fragment 

are also present in the maxi-circle of Trypanosoma cruzi (36) and 

Leishmania tarentolae (a. Simpson, L. Simpson and P. Borst, unpublished).

It seems likely, therefore, that this sequence contains information 

essential for mitochondrial biogenesis and that the maxi-circle of H.m. 

ingenoplastis is defective, like the deleted maxi-circle previously 

found in a T. eauiperdum stock (21). Since the H.m. ingenoplastis 

maxi-circle is slightly larger than its counterpart in H.m. muscarum. 

the deletion of the sequences hybridizing to the Eco 2 fragment must have 

been-accompanied by a compensatory amplification of some of the remaining 

sequences; analogous amplification appears to have occurred in the cyto­

plasmic petite mutants of yeast.

The relationship of the HL-circles of H.m. ingenoplastis to other



kDNA components cannot be determined with certainty, since the HL-circles 

fail to hybridize with either the mini-circles or maxi-circles of H.m. 

muscarum (data not shown) or the cloned maxi-circle fragments of T. 

brucei. However, several properties of these HL-circles suggest that, 

despite their dissimilarity in size, they are more closely related to 

mini-circles than to maxi-circles. 1. The HL-circles are present in 

thousands of copies per cell, as are mini-circles, and apparently 

play a major structural role in maintaining the kDNA network. 2. The HL- 

circles show heterogeneity in nucleotide sequence; this suggests a 

rapidly evolving sequence and is characteristic of most mini-circles.

The lack of hybridization with mini-circles form H.m. muscarum is consistent 

with this rapid sequence evolution. A comparable situation occurs in 

T. brucei mini-circles where different stocks of the same species 

show only partial sequence homology (37). 3« The buoyant density in

CsCl of H.m. ingenoplastis and H.m. muscarum kDNA networks is identical 

viz. 1.698 g/cm . In all trypanosomatid genera studied thus far the
7

maxi-circle density is low and around 1*682 g/cm . We presume that the 

same situation will hold in Herpetomonas in view of the hybridization 

of H.m. muscarum maxi-circles with both cloned segments of the T. brucei 

maxi-circle. The density results therefore suggest that the HL-circles 

of H.m. ingenoplastis contain sequences more similar to mini-circles 

than maxi-circles. 4. The HL-circles fail to hybridize with the cloned 

maxi-circle fragments of T. brucei while the presumptive maxi-circle of 

H.m. ingenoplastis retains partial homology with the T. brucei maxi- 

'-o-ircLev If the HL-circles-«o£--flrtfr«~dngenopla3tis were derived from a 

parental maxi-circle than they should retain sequence homology to the 

T. brucei cloned maxi-circle fragments similar to that of the H.m. 

ingenoplastis maxi-circle since the rate of mutation of both the non­

functional maxi-circles and the HL-circles should be equivalent. Our 

cloned maxi-circle probes cover only half of the T. brucei maxi-circle,



however, so it is possible that there is sequence homology of the HL- 

circles with the uncloned half of the T. brucei maxi-circle.

Preliminary experiments in which total-cellular RNA from H.m. 

ingenoplastis was hybridized with kDNA from H.m. ingenoplastis digested 

with restriction endonucleases and blotted on to nitrocellulose filters 

suggest that transcripts are not made on the HL-circles (Hoeijmakers and 

Hajduk, unpublished results). These results are similar to those reported 

for the mini-circles of C. lucilae and T. burcei in which transcripts of 

the maxi-circle but not mini-circles, were found (6,18).

Discussion of the evolutionary relationship of the HL-circles of 

H.m. ingenoplastis to mini-circles of other trypanosomatids requires 

establishment of the relatedness of H.m. muscarum and H.m. ingenoplastis. 

Recent results (Hajduk, Tait and Hoeijmakers, unpublished results) 

show that these 2 subspecies differ in the electrophoratic mobilities of 

.12 of 13 enzymes studied, in the sequences of the rRNA genes in the 

nucleus, and in the buoyant density of the nDNA in CsCl. These findings 

lead us to consider the subspecies designation invalid and suggest that 

the two flagellates should henceforth be designated as different species 

within the genus Herpetomonas. viz. H. muscarum and H. ingenoplastis.

Similarities between the in situ appearence of the kDNA of H. ingeno­

plastis and that of the kDNA firm several free-living species belonging to 

the family Bodonidae of the order Kinetoplastida (2,38,39f40) raises 

the intriguing possibility that HL-aircle-like molecules are present in 

the kDNA of members of this family. This would suggest that the HL- 

circle component of the H. ingenoplastis kDNA appeared early in the 

evolution of the order, assuming that the parasitic trypanosomatids 

evolved from free-living bodonid ancestors. Thus it is possible that
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during evolution the mini-circles replaced the HL-circle-like moldcules 

as the major structural element of the kDNA network. One possible 

selective pressure for smaller kDNA size could be the temporal relation­

ship which exists between kDNA and nuclear DNA synthesis, and cell 

division. To conserve the kDNA structure and the essential maxi-circle 

genome and at the same time reduce the time and energy required for 

duplication of the network it is simplest to imagine that the size of 

the major structural component of the kDNA might be reduced to a 

minimum. Certainly there is a tendency for the size of the mini-circles 

in the trypanosomatids to decrease form the evolutionarily primative 

trypanosomatids having a single host (eg. Crithidia spp., with 0.8 pi 

mini-circles) to the more recent genera having 2 hosts in their like 

cycle (Leishmania and Trypanosoma spp., with 0.5 pa mini-circles), 

lilhy the HL-circles are conserved in H. ingenoplastis is as yet’ unclear 

although this might be related to the unusual metabolic characteristics 

of this species. Since the kDNA of the bodonids has not been studied 

. either by electron microscopy of spread preparations or restriction 

endonuclease analysis, the in situ morphological similarities may prove 

superficial and neither mini-circles or HL-circles may be present.

Alternatively, HL-circles may have been derived frop mini-circles 

by defective mini-circle replication leading to tandem repeats of mini­

circle sequences. The lack of hybridization with mini-circles and the 

lack of detectable repetitive sequences could be due to sequence 

-divergence. Englund (41) ••ha»*eheirnH>hat mini-circles from C. fasciculate 

replicate free of the kDNA network and re-attach following replication.

If the free mini-circles replicate many times prior to reattachment or 

if the free mini-circles were re-attached to the network by insertion 

into another mini-circle the HL-circles might be produced. We consider it 

unlikely that the HL-circles evolved in this fashion.
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Relationship of kinetoplast. DNA to mitochondrial activity in the 

flagellate protozoan Herpetomonas muscarum

II. Characterization of mitochondrial activity



Summary

Ve have compared the structure and activity of the mitochondria 

of H. ingenonlastis and H. muscarum by electron microscopy, respiration 

studies with different substrates and inhibitors, analysis of oligo- 

mycin sensitive ATPase activity and low-temperature difference spectra 

of respiratory chain cytochromes. Certain differences in the two 

organism, can be correlated with alterations in the maxi-circle of 

H. ingenoplastis described in the preceding paper. 1 ) The mito­

chondrion of H. ingenoplastis is poorly developed and devoid of the 

plate-like cristae present in the mitochondrion of H. muscarum.

2) The total cellular ATPase activity in homogenates of H. muscarum

is sensitive to oligomycin (24$ inhibition) while only 5^ of the ATPase 

activity in homogenates of H. ingenoplastis is oligomycin-sensitive.

3) Inhibition studies on the respiration of intact cells and homogenates 

with cyanide, azide, antimycin and saliclhydroxamic acid show that 

respiration is not mediated by a conventional cytochrome chain with 

cytochrome aa^ acting as the terminal oxidase in H. ingenoplastis as in 

H. muscarum. 4) Low-temperature differnece spectra suggest that 

cytochromes b, c and aa  ̂are present in the mitochondrion of H. muscarum 

but that H. ingenoplastis completely lacks cytochrome aa  ̂and that 

absorption maxima peaks for cytochrome b in preparations of H. ingenoplastis 

differ from those obtained from H. muscarum.

It appears that mutations have.occured in the maxi-circle of 

H. ingenoplastis which result in the typical mitochondrial gene 

products, cytochrome b and portions of cytochrome aa^ and the mito­

chondrial ATPase complex being either absent or present in altered form.

The loss of cytochrome aa^ has resulted in H. ingenoplastis using an 

alternative pathway for energy metabolism possibly using cytochrome 0 

as a terminal oxidase.



INTRODUCTION:

The mitochondrial genome of most eukaryotes codes for a small 

number of RNAs and peptides essential for mitochondrial protein synthesis 

and energy production (lf2). The products include mitochondrial 

ribosomal RNAs, transfer RNAs, cytochrome b and subunits of the mito­

chondrial ATPase and cytochrome c oxidase complexes. Although most 

mitochondrial proteins are specified by nuclear genes, translated on 

cytoplasmic ribosomes and imported into the mitochondrion (3) there are 

no duplicates of mitochondrial genes in the nucleus and alterations in 

the mitochondrial genome are generally lethal. Two exceptions are 

anaerobically grown yeast (4) and the developmental stages of the African 

trypanosomes in the bloodstream of the mammalian host (5). Both show 

repressed mitochondrial biogenesis and the pro-mitochondria present 

lack cristae and a functional Krebs cycle.

In the mammal-parasitising stages of the life cycle of Trypanosoma 

brucei energy production is strictly a consequence of glycolysis; 

neither a functional Krebs cycle nor cytochromes are detectable;

NADH is reoxidized by an oc-glycerolphosphate oxidase system (6j7).

This metabolic system is apparently unique to the African trypanosomes 

since other members of the family Trypanosomatidae have cyanide-sensitive, 

cytochrome-mediated respiration and a functional Krebs cycle (8,9). 

Difference spectra and inhibition studies on several species of 
trypanosomatid; (lO,11,12,13»14) suggest that in addition to cyto­
chrome aa^ another terminal oxidase might be functioning in these species. 

Hill and co-workers (7) have postulated that cytochrome o, generally 

considered a prokaryotic oxidase (15), serves as an alternative terminal 

oxidase in a branched cytochrome chain.

The DNA of the kinetoplast (kDNA) is the only mitochondrial DNA 

found in trypanosomatids and the maxi-circle component of the kDNA network 

probably carries the genetic information equivalent to that of mitochondrial



DNA of other cells (16). Opperdoes et al. (l 7) found that oligomycin- 

sensitive ATPase activity could be used as a marker for an intact mito­

chondrial genome even in the bloodstream forms of the African trypanosomes 

where conventional mitochondrial activities are repressed. Borst and 

co-workers (l6,18,19) have described alterations in the maxi-circle 

of Trypanosoma brucei, Trypan:*:oma equiperdum and Trypanosoma ev.ansi 

all of which are unable to activate the mitochondrion or infect the 

insect vector, as predicted by Opperdoes1 findings.

Restriction endonuclease digestion and hybridization studies of the 

kDNA from 2 subspecies of Herpetomonas mus.carum suggest that there 

are differences between Herpetomonas m. muscarum and H.m. ingenoplastis 

in the nucleotide sequence of the maxi-circle component (see preceding 

paper). We have looked for possible correlates of these differences in 

the kDNA with the metabolism, electron transport system and ultrastructure 

of the two subspecies.

MATERIALS AND METHODS:

Organisms, cultivation and electron microscopy

H.ingenoplastis and H. muscarum were grown and processed for 

electron microscopy exactly as described in the preceding paper 

except that cells used in low temperature difference spectra were 

grown in RPMI 1640 with 25 mM MBS and 2$ fetal calf serum at pH 6.7 

and 25°C.

Respiration measurements

The oxygen consumption of both intact cells and cell-free homogenates 

was measured with a Rank Brothers (Cambridge, U.K.) Clark type electrode, 

in the absence of substrate or with 10 mM substrate added.



For measurement of intact cell respiration mid-log phase cultures

were harvested by centrifugation at 1,500 for 10 min at 4°C, washed

3 times with ice cold 0.017 M phosphate buffered saline, pH 7.2. Cells

remained viable in thes buffer without substrate for at least 3 hours

on ice. The 0^ electrode was allowed to equilibrate for 5 min with 2 ml

of buffer at 26°C and after a stable base line had been obtained cells
7were added to a concentration of about 5x10 per ml. The rate of 0^ 

consumption was determined in the absence of substrate then in glucose 

(British Drug House, BDH), proline (Sigma) or succinate (BDH). The effect 

of saliclhydroxamic acid (SHAM; Koch-Light), potassium cynaide (KCN;

BDH) and sodium azide (BDH) was determined at 0.5mM, 1.0mM and 4.0mM 

respectively.,

Cell homogenates were prepared after about 150 stakes in an all-glass 

dounce-type homogenized in 20 mM Tris, 1 mM EDTA, 10 mM K^PO^, 5 mM MgCl^,

0.25 M sucrose, pH 7.2 on ice. The homogenate was centrifuged at 1,500 g 

for 10 min to remove intact cells then washed 3 times in the same buffer 

by centrifugation at 8,000 g for 15 min. Oxygen uptake was measured in 

the presence of 0.5$ (w/v) bovine serum albumin and 0.1 mM ADP. Substrates 

and inhibitors were added as described above with sodium ̂ -glycerophosphate 

(Sigma) used as an additional substrate and sodium malonate (5 mM; ^igma) 

and antimycin A (10 jig/ml;Sigma) used as additional respiratory inhibitors.

ATPase assay

The ATPase activity in sonicated homogenates of H. muscarum and H. 

ingenoplastis was determined as described by opperdoes et al. (20).. 

Oligomycin (Sigma) was added to a maximum concentration or 50 j i g /ml. 

Protein was determined by the method of Lowry et al. (21).



RESULTS:

Electron microscopy

In thin section the mitochondrion of both H. ingenoplastis (figure 1a) 

and H.muscarum (figure 1b) appeared to be a unitary structure as has been 

shown for other trypanosomatids (22). The mitochondrion of H. muscarum 

contained numerous plate-like cristae and was extensively branched; 

this is the typical appearance of the mitochondrion of other insect 

trypanosomatids (23) and the insect developmental stages of African 

trypanosomes. The mitochondrion of H. ingenoplastis was found to be 

less extensively branched and few tubular cristae were observed. The 

structure of the pro-mitochondrion of the bloodstream African trypanosomes 

is similar to that of H. ingenoplastis. Other organelles typical of the 

trypanosomatids were found in both H. ingenoplastis and H. muscarum 

including microbody-like structures which have been shown by Opperdoes and 

co-workers (24,25) to be the location of glycolytic enzymes in the 

bloodstream forms of T. brucei. Opperdoes et al. (26) have termed these 

structures glycosomes.

ATPase assays

Table 1 shows the effect of oligomycin of the total cellular ATPase 

activity in H. ingenoplastis, H. muscarum and purified rat liver mitochondria. 

An oligomycin concentration of 50 pg/ml gave virtually complete inhibition of 

the ATPase activity from isolated rat liver mitochondria. This concentration 
inhibited 24$ of the ATP speeifie ATPase aetlvity in H. muscarum homogenates 

but had little effect (5$ inhibition) on the ATPase activity in H. 

ingenoplastis homogenates. *‘igure 2 shows the ATPase activity in 

homogenates of H. muscarum at various oligomycin concentrations As 

reported for Crithidia luciliae (20) the half-maximal inhibition of the 

oligomycin-sensitive ATPase activity was 1.5 /ig/mg protein.



Figure 1.

Eldcttron micrographs of thin sections through a portion of the 

mitochondrion of (a) H. ingenoplastis and (b) H. musearum showing the 

morphological differences in the mitochondrial development of the two 

flagellates. X75»000
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Figure 2.

Oligomycin-sensitivity of the ATPase activity in homogenates 
of H»musearum.
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Respiration and inhibitor studies

Intact cell preparations of E. musearum showed high levels of 0̂  

consumption even after extensive washing in substrate-free buffer (Table 2). 

This is in agreement with reports of high endogeneous respiration in other 

insect trypanosomatids suggesting intracellular stores of lipids or amino 

acids (23)« H. ingenoplastis had a much lower endogeneous respiratory 

rate possible suggesting greater dependence on exogenous eneigy supplies.

H. musearum retained high endogeneous respiration even after 3 hours in 

substrate-free buffer at 26°C.

H. musearum was stimulated slightly by both proline and glucose 

(Table 2); H. ingenoplastis showed a greater preference for glucose with 

0^ consumption stimulated to a level mare than 4 times that of the 

endogeneous rate. H. musearum 0^ consumption was 95/y inhibited by 1.0mM 

cyanide, the remaining 5$ being insensitive to either azide or SHM.

Azide alone inhibited respiration by about 70$ suggesting that 1.0 mM 

cynanide may be acting at another site in addition to the terminal 

oxidase cytochrome aa^. SHM had little effect on 0^ consumption in

I. musearum inhibiting respiration try less than 5$* The effect of these 

3 inhibitors on the respiration of H. ingenoplastis is also shown in 

Table 2; inhibition by cyanide was less than 5$, with glucose as a 

substrate, and the sensitivity to azide was also much lower (13$ than 

for H. musearum. Respiration was, however, almost completely blocked 

(98$) by SHM, suggesting the presence of an alternative terminal oxidase 

to cytochrome aâ *

Measurement of 0^ consumption by cell-free homogenates of 

H. ingenoplastis and H. muse arum (Table 3) gave similar results with 

azide, cyanide and SHM inhibition, to those obtained using intact cells. 

Malonate, a competitive inhibit of succinic dehydrogenase, suppressed
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succinate stimulate respiration in homogenates of both H. musearum and 

H. ingenoplastis. Antimycin A which specifically blocks electron transport 

between cytochrome b and cytochrome c^, inhibited H. musearum respiration 

by as much as 93$ while having no effect of H. ingenoplastis respiration.

Low temperature difference spectra

Lwo temperature difference spectra were obtained for whole cell 

suspensions at -196°C (77°X). Figure 3 shows the spectra obtained for 

H. muscarum and H. ingenoplastis reduced^with sodium dithioniterminus 

oxidized control. Absorbance maxima at 604 and 445 nun indicate the presence 

of cytochrome aa^ in H. muscarum. These peaks are absent in H. ingenoplastis 

preparations. The presence of b-type cytochromes was indicated by peaks 

at 428, 530 and 560 in H. muscarum while H. ingenoplastis spectra showed 

absorbance maxima at 425 and 528nm. If these do represent cytochrome b 

then they differ from those found in H. muscarum. Spectra from both 

organisms indicate the presence of e-type cytochromes typical of most 

trypanosomatids with absorbance maxima of 515* 523, 550 and 556 nm.

The spectral data are summarised in Table 4.

CO-difference spectra

In order to obtain CO-difference spectra, cell suspensions of 

H. ingenoplastis and H. muscarum were reduced with dithionite and samples 

gassed with CO. Reference samples were dithionitg reduced. Evidence 

for an o-type cytochrome was obtained in spectra of both H. muscarum and 

H. "tngencrpl as t is (figure 4)v~ *PefiRs at 418, 540 and 570 nm are considered 

characteristic of cytochrome o (7).

DISCUSSION:

Our results suggest that H. muscarum has a respiratory chain 

which is similar to that discribe for the other trypanosomatids which 

have functional mitochondria,. The cytochrome-mediated electron transport 

chain is apparently branched at or before cytochrome b, and CO-binding



Figure 3«
Low temperature difference spectra of H. muscarum and H. ingenoplastis 

cell homogenates. Samples were reduced with dithionite and were cooled to 

-196°C and spectra determined minus oxidized control.
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Figure 4.

Low temperature CO- difference spectra of H. muscarum and H. ingenoplastis
1

cell homogenates. Samples were reduced with dithion.ite, bubbled with CO 

and spectra determined minus dithionite reduced control.



Figure 4.

Low temperature CO- difference spectra of H. muscarum and H. ingenoplastis
1

cell homogenates. Samples were reduced with dithion.ite, bubbled with CO 

and spectra determined minus dithionite reduced control.
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studies suggest the presence of cytochrome o in this branched chain. The 

nature of alternative terminal oxidates in trypanosomatids and other 

eukaryotes is far from clear (7,27,2b,29,30). Although our results suggest 

that cytochrome o acts as a terminal oxidase, additional information 

(in particular photochemical action spectra') is required to substantiate 

this conclusion.

During exponential growtn, cytochrome aa is the preferred terminal

oxidase in H. muscarum with greater than of the cellular respiration

being cyanide-sensitive. Inhibition studies on the respiration of intact

cells aid homogenates of 11. ingenoplastis showed that electron transport

did not involve cytochrome aa.̂  and that respiration was sensitive to

biLrtM, an inhibitor of the alternative terminal oxidase in higher plants

(31,>2) and the oC-glycerophosphate oxidase system in bloodstream African

tryuanosomes (33*34). We conclude that cytochrome aa, does not serve as3
a terminal o/.idase in H. in onoplastis and that an alternative CO-binding

oxidase, norhaps cytochrome o, is present.

In figure 9 we present a diagram of possible pathways for respiration 

in H.ingenoplastis and 11. muscarum. The branched electron transport system 

proposed for H. muscarum is modeled on Hay and Cross' (10) proposed pathway 

for Try sniosoma mega which is consistent with our data. In H. in enoplastis 

only the cytochrome o branch of the pathway appears to be functional^ 

since cytochrome aav is absent and cytochrome b appears to be modified.

These findings are of considerable interest in relation to our studies on 

the kDhA of H. ingenoi-.Iastis. We found that the maxi-circle of this 

flagellate contains major alterations in its nucleotide sequence in 

Comparisons with the maxi-circles of H. muscarum and T. brucei (see 

preceding paper). Cur difference spectra show that cytochrome c is present



Figure 5.

The proposed arrangement of the electron transport chains of H.muscarum

and llf ingenoplastis.
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in H. ingenoplastis, but it is unlikely to function in electron transport.

In yeast}and presumably in other eukaryotes^cytochrome c is coded for by 

the nuclear genome and synthesized on cytoplasmic ribosomes^so it is 

unlikely to be affected by changes in the maxi-circle of H. ingenoplastis. 

The insensitivity of H. ingenoplastis respiration to antimycin A indicates 

that there is no flow of electrons through cytochrome c in this organism.

In the preceding paper the results of hybridization and restriction

endonuclease digestion e: jeriments were presented suggesting that the 

putative kDRA maxi-circles of H. ingenoplastis and H. muscarum show 

differences which now can be correlated with differences in mitochondrial 

activities. As discussed in recent reviews (16,35) the maxi-circle of the 

kbHA is likely to be equivalent to the mitochondrial DNA of other eukaryotes. 

The nucleotide sequences differences might be due to mutations in the 

maxi-circles of H.ingenoplastis which in turn affected only a few specific 

mitochondrial gene products such as the cytochrome aavsubunits, cytochrome b 

an a portion of the oligomycin-sensitive ATPase. Alternatively, changes in 

the trypanosomatid mitochondrial protein synthesizing system, such as 

mitochondrial rRNA or ribosomal proteins may have occurred preventing the 

translation of mitochondrial transcripts. Alterations in the maxi-circle 

of one trypanosoma species, Trypanosoma equiperdum (ATCC 30019)» resulting 

in a 7.3 kilobase deletion are correlated with the inability of this 

organism to activate the repressed mitochondrion (36). The defective maxi­

circle has resulted in the parasite being able to live only in the 

mammalian host where it obtains its energy wholly by glycolysis.

Mutations in the maxi-circle of 11. ingenoplastis may have caused 

irreversible repression of mitochondrial activity so that respiration is 

maintained through an alternative pathway; in this case cytochrome o 

appears to act as the terminal oxidase.
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Although alternative terminal oxidases to cytochrome aa^ have 

been described for several trypanosomatids, H. ingenoplastis is unique 

among the insect trypanosomatids in completely lacking cytochrome aa^.
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We have c o m p a r e d  several c h a r a c t e r i s t i c s  of a rec e n t l y  

d e r i v e d  p o p u l a t i o n  of T r y p a n o s o m a  brucei E A TRO 1244 whi c h 

is i n c a p a b l e  of infecting the tsetse fly with the parental 

p o p u l a t i o n  w h i c h  r e t a i n s  i n f e c t i v i t y  for the insect vector.

0 1 i g o m y c i n - s e n s i t i v e  A T P a s e  activity, g r o w t h  c h a r a c t e r i s t i c s  

in the mammal, d e g r e e  of p l e o m o r p h i s m s  and the abi l i t y  to 

gro w  in c u l t u r e  at 26°C d i f f e r  for these two po p u l a t i o n s .  No 

d e t e c t a b l e  a l t e r a t i o n s  in the m a x i - c i r c l e  c o m p o n e n t  of the 

k i n e t o p l a s t  DNA were c o r r e l a t e d  w ith loss of i n f e c t i v i t y  for 

the tsetse fly either by e l e c t r o n  m i c r o s c o p y  or by r e s t r i c t i o n  

e n d o n u c l e a s e  analysis. There are two p o s s i b l e  i n t e r p r e t a t i o n s  

of our results: (1) m i n o r  alterations, such as point m u t a t i o n s

in critical m i t o c h o n d r i a l  genes, have o c c u r r e d  w h i c h  are 

u n d e t e c t a b l e  with the m e t h o d o l o g y  used; (2) m u t a t i o n s  have 

o c c u r r e d  in n uclear g e nes coding for pep t i d e s  w h ich are 

i m p o r t e d  into the m i t o c h o n d r i o n  and are e s s ential for m i t o ­

ch o n d r i a l  p r o t e i n  synthesis.

I N T R O D U C T I O N

In the b l o o d s t r e a m  of the m a m m a l i a n  host the long, 

s lender d e v e l o p m e n t a l  stage of T r y p a n o s o m a  brucei relies  

e n t i r e l y  upon g l y c o l y s i s  for ener g y  p r o d u c t i o n  [1], the 

NADU p r o d u c e d  in g l y c o l y s i s  being r e o x i d i z e d  to N A D + by 

the c y a n i d e - i n s e n s i t i ^ $  g l y c e r o p h o s p h a t e  o x i d a s e  system; 

the c o m p o n e n t s  of the c o n v e n t i o n a l  m i t o c h o n d r i a l  r e s p i r a t o r y  

ch ain appear to be c o m p l e t e l y  absent [2,3]. In p l e o m o r p h i c  

p o p u l a t i o n s  these long, slender forms are c a p a b l e  of 

d i f f e r e n t i a t i o n  into short, stumpy forms w h i c h  are a p p a r e n t l y  

p r e - a d a p t e d  for life in the insect vector (G l o s s i n a  s p p . ) 

in that they have a partial Krebs cycle but no functional 

c y t o c h r o m e  syst e m  [4], The p r o c y c l i c  t r y p o m a s t i g o t e  d e v e l o p ­

mental stage of T. b r u c e i , found in th^ insect m i d q u t  or in
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c u l t u r e  at 26°C, has a f u l l y - d e v e l o p e d  m i t o c h o n d r i o n  and 

e ner g y  p r o d u c t i o n  is c o u p l e d  to the m i t o c h o n d r i a l  e l e ctron 

t ransport c h ain 15,6]. The potential to d e v e l o p  an active 

mitochcpji Lon ha. b e e n  lost by c e r t a i n  of the A f rican 

t r y p a n o s o m e s . Such strains are i n c a p a b l e  of cyclical d e v e l o p ­

ment through the insect vector and are t r a n s m i s s a b l e  only by 

m e c h a n i c s  1 p a s s a g e  by biting insects (T r y p a n o s O m a  e v a n s i ), as 

a verieral d i s e a s e  in hors.ds (T r y p a n o s o m a  e q u i p e r d u m ) and by 

s y r i n g e  p a s s a g e  in the lab o r a t o r y  (T . brucei ) [7].

O p p e r d o e s  et a l . [8] have d e s i g n a t e d  t r y p a n o s o m e s  whi c h  

are c a p a b l e  of initiating i n f e c t i o n s  in the insect vector 

as I+ and t r y p a n o s o m e s  w h ich c a n n o t  infect the insect vector 

or s u r v i v e  in c u l t u r e  at 2 6 ° C  as I . They found a good 

c o r r e l a t i o n  b e t w e e n  known I f and I stocks and the p r e s e n c e  

or a b s e n c e  of o l i g o m y c i n - s e n s i t i v e  A T P a s e  activity. In yeast 

the p e p t i d e  c o n f e r r i n g  o l i g o m y c i n  s e n s i t i v i t y  is coded for 

by the m i t o c h o n d r i a l  g e n o m e  and is s y n t h e s i z e d  in the m i t o ­

chondr i o n .  A l t e r a t i o n s  in the m i t o c h o n d r i a l  genes s p ecifying 

this p e p t i d e  or c o m p o n e n t s  of the m i t o c h o n d r i a l  p r o t e i n -  

-syr.thesizing system res u l t  in the loss of o l i g o m y c i n  s e n s ­

itivity (a c o m p a r a b l e  s i t u a t i o n  may o c c u r  in trypa n o s o m e s ) .  

T r y p a n o s o m e s  lacking the o l i g o m y c i n - s e n s i t i v e  ATPase act i v i t y  

are a p p a r e n t l y  unable to d e v e l o p  normal m i t o c h o n d r i a .  The 

c o r r e l a t i o n  of o l i g o m y c i n - s e n s i t i v e  A T P a s e  a c tivity with 

the abil i t y  to grow in cer t a i n  e n v i r o n m e n t s  suggests an 

analogy b e t w e e n  the I~ b l o o d s t r e a m  t r y p a n o s o m e  and the p e t i t e  

m u t a n t s  of yeast [8-10]. However, the m t D N A  .e-f trypanosomes,  

unlike that at yeast or other eu k a r y o t e s ,  is o r g a n i z e d  as a 

uni q u e l y  c o m p l e x  s t r u c t u r e  - the k i n e t o p l a s t  - c o m p o s e d  of 

a large number of catenated, small c i r c u l a r  m o l e c u l e s  - the 

m i n i - c i r c l e s  - and a much smaller number of large c i r c u l a r  

m o l e c u l e s  - the m a x i - c i r c l e s  [11-13]. Recent e v i d e n c e  str o n g l y
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but that m a jor s e gments of the m a x i - c i r c l e  are [14,15].

The m a x i - c i r c l e ,  w h ich is similar in size to o t h e r  mtDNAs, 

seems likely to code for the typical m i t o c h o n d r i a l  gene 

p r o d u c t s  w h i l e  the m i n i - c i r c l e s  may have some n o n - c o d i n g  

function [10]. O p p e r d o e s  et a l . [8] h y p o t h e s i z e  that the 

I c o n d i t i o n  in t r y p a n o s o m e s  will u s u a l l y  be the c o n s e q u e n c e  

of d e l e t i o n s  in or c o m p l e t e  loss of the m a x i - c i r c l e .  Such  

a l t e r a t i o n s  in the m t D N A  of the p e t i t e  m u t a n t s  of y e ast are 

well d o c u m e n t e d  [16] and p r e l i m i n a r y  s t u d i e s  of I s trains 

of T . b r u c e i , T. evansi and T. e q u i p e r d u m  [17,18] s u p p o r t 

this h y p othesis.

In this study we have used a defined, cloned, par e n t a l  

Ii stock of T. brucei w h i c h  has r e c e n t l y  b een t r a n s m i t t e d  

through the insect vector and an I p o p u l a t i o n  d e r i v e d  from 

this clo n e  by 79 s yringe p a s s a g e s  in l a b o r a t o r y  r o d e n t s .  In 

the I - p o p u l a t i o n  we w ere unable to det e c t  any a l t e r a t i o n  

in the m a x i - c i r c l e  c o m p o n e n t  of the k DNA t h o u g h  these trypa- 

n o somes have a p p a r e n t l y  lost the a b i l i t y  to d e v e l o p  a c t i v e  

m i t o c h o n d r  i a .

M A T E R I A L S  AND M E T H O D S

Orqan i sms

T r y p a n o s o m a  (T r y p a n o z o o n ) b r u c e i , E A T R O  1244 was isolated 

from G l o s s i n a  p a l l i d i p e s  and m a i n t a i n e d  as a s t a b i l a t e  at 

- 1 9 6 ° C  or in la b o r a t o r y  rodents as shown in Fig. 1. The 

parental I + p o p u l a t i o n  was c r y o p r e s e r v e d  f o l l o w i n g  two m o u s e 

p a s s a g e s  of a single, clo n e d  m e t a c y c l i c  trypanosorne from 

G l o s s i n a  m o r s i t a n s . The I~ p o p u l a t i o n  was d e r i v e d  fol l o w i n g  

79 p a s s a g e s  in mice. The A m s t e r d a m  line of the MITat 1.1 

(clone 60) of T. brucei 4 2 7  was used as a cont r o l  in some  

exper i m e n t s .



Fig. 1. P e d i g r e e  of T. brucei line s howing the d e r i v a t i o n  

of the I + and I p o p u l a t i o n s .  Broken lines ind i c a t e  passage

of a single trypa n o s o m e s .
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G r o w t h  and i s o l ation of t r y p a n o s o m e s

Fem a l e  CFLP m i c e  or Wist a r  rats w ere r o u t i n e l y  ir r a d i a t e d  

w ith 600 Rads w h o l e  body X - i r r a d i a t i o n . About 18 h after 

ir r e d i a t i o r  a nimals w e r e  i n f ected by i n t r a p e r i t o n e a l  injection 

of thawed, s t a b i l a t e d  t r y p a n o s o m e s .  The doubling times of 

the t r y p a n o s o m e  p o p u l a t i o n s  w ere d e t e r m i n e d  by making cell 

c o u n t s  on d i l u t e d  tail b l ood samples, taken from n o n - i r r a d i a t e d  

.nfecfed m ice using a Neu b a u e r  h a e m o c y t o m e t e r . T r y p a n o s o m e s  

w e r e  se p a r a t e d  from the host's blood c e lls on a d i e t h y l a m i n e  

ethyl c e l l u l o s e  column [19] and c o n c e n t r a t e d  by c e n t r i f u g a t i o n  

at 1500 x for 10 min at 4°C. Cells were w a s h e d  o nce in 50 m M  

scd i u m  p h o s phate, 45 mM sodium ch l o r i d e ,  55 mM g l u c o s e  (pH 

8.0) a^d h e 1d on ice until used.

T~, tse fly i n f e c t i v i t y  and g r o w t h  in vitro at 26°C

•J. m o r s i t a n s  pupae w e r e  o b t a i n e d  from the Tsetse R e search  

L a b o r a t o r y  (Bristol, UK). Pupae w e r e  inc u D a t e d  until hatching 

at i 0 '■ 7 and 6 0 - 7 0 %  r e l a t i v e  humidity. R e c e n t l y - e m e r g e d  tsetse 

flies wer e  c h i l l e d  at 4°C for 20 min, t r a n s f e r r e d  to individual 

p l a s t i c  tubes with g a u z e - c o v e r e d  ends and then allowed to 

feed on i r r a d i a t e d  m ice wit h  4 or 5 day infect i o n s  of either 

the I f or I p o p u l a t i o n s  of F A T R O  1244. All inf e c t i v e  feeds 

were taken w i t h i n  48 h of the fly's em e r g e n c e .  Following the 

infective feed, flies were m a i n t a i n e d  at 26°C, r e l a t i v e  

h u m i d i t y  6 0 - 7 0 %  and wer e  fed 3 times a week on the shaven 

flank of New Zea l a n d  m ale r a b b i t s  or ? leai CFLP mice.

M a t u r e  m e t a c y c l i c  i n f e c t i o n s  w ere d e t e c t e d  1*7-25 days after 

the i n f e c t i v e  feeds by m i c r o s c o p i c  e x a m i n a t i o n  of saliva 

p robes from the flies and the e x a m i n a t i o n  of tail blood from 

m i c e  b i t t e n  by the flies.

The in v i t r o  t r a n s f o r m a t i o n  of the b l o o d s t r e a m  stages 

of T. brucei to p r o c y c l i c  forms, similar to the stages found
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in the insect midgut, was ach i e v e d  by in c u b a t i o n  of infected

m o use b l o o d  in a s e m i - d e f i n e d  m e d i u m  [20] at 26°C. Ir r a d i a t e d

m i c e  w e r e  infected with eit h e r  the I + or I t r y p a n o s o m e

p o p u l a t i o n  and blood c ollected, aseptically, on day 4 of •
7infection. T r y p a n o s o m e s  (5 x 10 ) w e r e  added to 5 ml of 

m e d i a  with 50 pg/ml g e n t a m y c i n  (Sigma) and inc u b a t e d  at 26°C, 

then p a s s a g e d  eve r y  5 days for at least four passages. C u l ­

tures s t arted w ith the I t r y p a n o s o m e s  showed no live cells 

past the first passage.

A T P a s e  s e n s i t i v i t y  to o l i g o m y c i n

A T P a s e  a c t i v i t y  and o l i g o m y c i n  in h i b i t i o n  w ere d e t e r m i n e d  

using the p r o c e d u r e  d e s c r i b e d  by O p p e r d o e s  et a l . [8] on 

s o n i c a t e d  h o m o g e n a t e s  of T . b r u c e i . P r o t e i n  was e s t i m a t e d  

using S c h e c t e r l e  and P o l l a c k ' s  [21] m o d i f i c a t i o n  of the Lowry 

m e t h o d .

I s o l a t i o n  of k l n e t o p l a s t  DNA (kDNA)

T r y p a n o s o m e s  were w a s h e d  twice in 0.15 M s o d i u m  chloride,

0 .01 M s o d i u m  citrate, 0.1 M d i s o d i u m  e t h y 1e n e d i a m i n e t e t r a -  

a cetate (pH 7.5) by c e n t r i f u g a t i o n  at 1500 x £ for 10 min at 

4°C, r e s u s p e n d e d  in the same buffer and lysed by the a d d i t i o n  

of an equal volume of 6% sarkosyl in the same buffer. P ronase  

was added to a c o n c e n t r a t i o n  of 1 mg/ml and in c u b a t i o n  was 

at 37°C for 90 min wit h  g e n t l e  shaking. The lysate was 

e x t e n s i v e l y  d e p r o t e i n i z e d  with phenol and c h l o r o f o r m :isoamyl 

alcohol (24:1) e x t r a c t i o n s  and f inally p r e c i p i t a t e d  with 2 

vols of cold 95% e t hanol. Fol l o w i n g  o v e r n i g h t  incuba t i o n  at 

-20°C, the p r e c i p i t a t e  was r e s u s p e n d e d  in 10 m M  Tris-HCl 

(pH 7.5) and k D N A  n e t works w ere p e l l e t e d  by c e n t r i f u g a t i o n  

in an MSE 55 u l t r a c e n t r i f u g e  at 21.000 rpm for 90 min at 15°C. 

The p e l l e t e d  k DNA was r e s u s p e n d e d  in 10 m M  Tris-HCl and



i n c u b a t e d  at 37°C for 1 h w ith p a n c r e a t i c  r i b o n u c l e a s e  (100 

pg/ml), e x t r a c t e d  with c h l o r o f o r m :isoamyl alcohol and d i a l y s e d  

aga i n s t  10 m M  T r is-HCl for 24 h at 4°C. The k D N A  was further 

p u r i f i e d  by Nal gra d i e n t  u l t r a c e n t r i f u g a t i o n  e x a c t l y  as 

d e s c r i b e d  by F a i r l a m b  et a l . [22].

R e s t r i c t i o n  e n z y m e  analysis of k DNA

P u r i f i e d  k DNA was d i g e s t e d  with the f o l l owing r e s t r i c t i o n  

e n d o n u c l e a s e s :  E c o R I , HapII, Hindlll, M b o l , TaqI and Hinfl.

The d i g e s t i o n  f r a gments were a n a l y s e d  on 0.6% a g a r o s e  g e l s 

using the p r o c e d u r e s  d e s c r i b e d  e l s e w h e r e  [23]. The m o l e c u l a r  

w e i g h t s  of the k D N A  r e s t r i c t i o n  f r a g m e n t s  w e r e  d e t e r m i n e d  by 

their m o t i l i t y  r e l a t i v e  to known m a r k e r  DNA fragments.

E l e c t r o n  m i c r o s c o p y

P u r i f i e d  k D N A  n e tworks were spread using a m o d i f i e d  

v e r s i o n  of the m i c r o - d i f f u s i o n  m e t h o d  of Lang and Mit a n i  [24] 

as d e s c r i b e d  by F a i r l a m b  et a l . [22].

R E S U L T S

The h i s t o r y  of the two T. bru c e i  p o p u l a t i o n s  used in 

this study is given in Fig. 1. The t r y p a n o s o m e  isolate E A T R O  

1244 was t r a n s m i t t e d  t hrough the insect v e c t o r  G. m o r s i t a n s  

and the i n f e c t e d  tsetse fly induced to p r obe into a d r o p  

of fresh g u i n e a - p i g  serum. M e t a c y c l i c  forms wer e  o b s e r v e d  

by phase c o n t r a s t  m i c r o s c o p y  and sin g l e  t r y p a n o s o m e s  c l o n e d  

into X - i r r a d i a t e d  mice. The p a r e n t a l  p o p u l a t i o n  was then 

s t a b i l a t e d  following two p a ssages in mice. The I p o p u l a t i o n  

was d e r i v e d  from this I + p o p u l a t i o n  by r e p e a t e d  p a s s a g i n g  of 

i n fected b l o o d  from m o u s e  to mouse, u s u a l l y  at 2 or 3-day 

intervals. 79 pas s a g e s  after the tset s e  t r a n s m i s s i o n  the
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bi oo .istr ear oopulat-i - n was s t a b i l a t e d  and this was used as 

the 1~ p o p u l a t i o n  in all further e x p e r i m e n t s .

Follow. 1 -i l o n g - t e r m  m a i n t e n a n c e  in l a b o r a t o r y  ani m a l s 

tryoanc 5 . meo be. omc morph iQgically m o n o m o r p h i c  in a p p e a r a n c e  

and highly virule.M for the rodent host [7]. G i e m s a - s t a i n e d  

b lo o d  smears from mice, a days after i n f e c t i o n  with eit h e r  

I + or l ” p o p u l a t i o n  of T. b r u c e i , showed o n l y  the long, 

slender, m u l t i p l i c a t i v e ,  d e v e l o p m e n t a l  s t a g e  (Fig. 2a,c). 

N u m e r o u s  d i v i d i n g  forms with two k i n e t o p l a s t s  or two nuclei 

and two k i n e t o p l a s t s  w ere observed; a short free f l a g e l l u m  

was c l e a r l y  seen on m o s t  cells. F o l l o w i n g  5 days of infection,  

the m o r p h o l o g y  of most I t r y p a n o s o m e s  had c h a n g e d  to the 

short, stumpy d e v e l o p m e n t  a 1 stage. T h ese c e l l s  were broader, 

had a prominent u n d u l a t i n g  membrane, and no free f l a g e l l u m  

(Fig. 2b). The fr e q u e n c y  of d i v i d i n g  forms d e c r e a s e d  in this 

p l e o m o r p h i c  p o p ulation. Giernsa-sta ined s m e a r s  of the I 

trypan o s o m e s ,  5 days post inoculation, w e r e  i n d i s t i n g u i s h a b l e  

from those seen on day 2. Dividing forms are numerous and only 

slender forms were o b s e r v e d  (Fig. 2d).

The c o u r s e  of p a r a s i t a e m i a  in m i c e  i n f ected with the 

two p o p u l a t i o n s  was also d i f f e r e n t  (Fig. 3). When n o n - i r r a -  

d i a t e d  mice w ere infected with about 10*° I + or I trypan o s o m e s ,  

the I + p o p u l a t i o n  p r o d u c e d  a re l a p s i n g  p a r a s i t a e m i a  w i t h  mice 

s u r v iving for about 25 days. The I p o p u l a t i o n  pro d u c e s  an 

acute p a r a s i t a e m i a  w h ich k i l l e d  the m ice in 4-5 days. I n t e r ­

estingly, the dou b l i n g  times of both p o p u l a t i o n s  was r o u g h l y  

the same - 4.5 h - for the first 72 h of inflection, then the 

gr o w t h  rate of I+ p o p u l a t i o n s  d e c r e a s e s .  This inc r e a s e  in 

dou b l i n g  time c o r r e s p o n d e d  with an i n c r e a s e d  p r o p o r t i o n  of 

short, stumpy forms in the popula t i o n .  G r o w t h  of the I 

p o p u l a t i o n  was exp o n e n t i a l  until d e ath of the host.

The a b i l i t y  of the I+ and I p o p u l a t i o n s  to t r a n s f o ^



Fig. 2. G i e m s a - s t a i n e d  blood sme a r s  from m ice infected with 

I + (a,b) and I~ (c,d) p o p u l a t i o n s  of T. brucei E A TRO 1244.

Two days after i n f e c t i o n  all t r y p a n o s o m e s  in both the I + and 

I p o p u l a t i o n s  are long, slender forms (a,c) k i n e t o p l a s t  (K) 

and n ucleus (N) and a free f l a g e l l u m  (ff) are prominent features 

I+ t r y p a n o s o m e s  on day 5 of i n f e c t i o n  are p r i m a r i l y  short, 

stumpy forms (b); I p o p u l a t i o n s  are e n t i r e l y  long slender (d).
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to the p r o c y c l i c  fly m i d g u t  stage was tested d i r e c t l y  by 

infecting tset s e  flies and also by c u l t i v a t i o n  in vitro 

at 26°C (Table I). R e c e n t l y - h a t c h e d  flies were fed on 

i r r a d i a t e d  m i c e  w h ich had been i n f ected either the I +

or I T. bru c e i  p o p u l a t i o n  4 or 5 days earlier. After a 

per i o d  of about 25 days, flies were induced to probe on 

w a r m e d  m i c r o s c o p e  slides and b a t c h e s  of 6 flies each fed on 

cle a n  mice. No i n fected tse t s e  flies w e r e  d e t e c t e d  by either 

p h a s e  c o n t r a s t  e x a m i n a t i o n  of pro b e s  or by e x a m i n a t i o n  of 

b l o o d  s amples taken from fly - b i t t e n  mice in the 100 tsetse 

flies w h i c h  i n i t i a l l y  fed on the I population. Of the 

flies w h i c h  fed on the I +- i n f e c t e d  mice, 8.3% d e v e l o p e d  m a t u r e  

m e t a c y c l i c  i n f e c t i o n s  17-25 days after the infective feed.

We did not d i ssect the tsetse flies used in these e x p e r i m e n t s  

and it is p o s s i b l e  that n o n - i n f e c t i v e  m i d g u t  i n f e ctions did 

d e v e l o p  in some of the flies fed on the I trypanosomes;  

however, no t r y p a n o s o m e s  were ever o b s e r v e d  in the probes from 

these flies and it is c o m m o n  to o b s e r v e  p r o c y c l i c  forms in 

probes from flies with m i d g u t  infections. Moreover, only I + 

t r y p a n o s o m e s  w e r e  able to t r a n s f o r m  to the pro c y c l i c  stage 

in vitro (Table I).

We c o m p a r e d  the o l i g o m y c i n  s e n s i t i v i t y  of the m i t o c h o n ­

drial ATPase of the I + and I p o p u l a t i o n s  of T. brucei 

(Table II). In s o n i c a t e d  h o m o g e n a t e s  of the I + p o p u l a t i o n  

of T. brucei 28% of the ATPase a c t i v i t y  was i n h i bited by the 

a d d i t i o n  of 50 pg o l i g o m y c i n  per ml. The ATP a s e  a c tivity of 

the I~ p o p u l a t i o n  was c o m p l e t e l y  insensitive^'to oligomycin.

E l e c t r o n  m i c r o s c o p y  of kDN A  net w o r k s  p u r i f i e d  by den s i t y  

g r a d i e n t  u l t r a c e n t r i f u g a t i o n  r e v e a l e d  no d e t e c t a b l e  d i f f e r ­

ences in k D N A  from the I + and I p o p u l a t i o n s .  Net w o r k s  of 

c a t e n a t e d  m i n i - c i r c l e s  and l o n g-edge loops are seen in the 

k D N A  from both. C o n t o u r  length m e a s u r e m e n t s  of the long-edge



-19- 9230

T A B L E  I

C H A R A C T E R I S T I C S  OF I + AND i” P O P U L A T I O N S  OF T. brucei 

E A T R O  1,244

I + I"

I n f e c t i v i t y  for G l o s s i n a  

No. i n f e cted/no. fed 3/36 0/100

%  Infected 8.3 0

In vitro c u l t i v a t i o n

No. e s t a b l i s h e d / n o .  s t arted 5/5 0/5

P 1e o m o r p h i s m : %  short, stumpy forms:

Day 2 0 0

Day 5 0 75

Doubling time (h) in b l o o d s t r e a m * 4.5 4.5

* Doubling times d e t e r m i n e d  during day 2 and 3 of infection

(see F i g . 3 ) .
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T A B L E  II

O L I G O M Y C I N  S E N S I T I V I T Y  OF THE A T P a s e  F R O M  I+ AND I.' 

P O P U L A T I O N S  OF T. b r u c e i  E A T R O  1244

A T P a s e  a c t i v i t y  (nmol P ^ / m i n / m g )

O r g a n i s m - Oligo + Oligo
(50 pg/ 

ml )

%  I n h i b i t i o n *

T. brucei I + 25 18 28

I- 28 28 0

* Data g i ven are the m e ans of two e x p e r i m e n t s .



loops, m a x i - c i r c l e s ,  w e r e  not made.

In Fig. 4 the h i g h - m o l e c u l a r - w e i g h t  fragments pro d u c e d  by 

d i g e s t i o n  of p u r i f i e d  k D N A  w i t h  the r e s t r i c t i o n  e n d o n u c l e a s e s  

HapII, H i n d l l l ,  TaqI and Hinfl are c o m p a r e d  for the I f and 

I p o p u l a t i o n s  of T. brucei E A T R O  1244 and T. b r u c e i  42 7. With 

these four e n z y m e s  and also with EcoRI and Mbol no d i f f e r e n c e s  

in the m o b i l i t y  of the I + and I k D N A  f r a g ments were d e t e c t ­

able (Table III). One enzyme, Hinfl, r e v e a l e d  a d i f f e r e n c e  in 

m o b i l i t y  of 1.8 x 10  ̂ D for the largest fragment of T. bru c e i  

4 2 7  k D N A  and that of the I + T. brucei E A T R O  1244. The d i f f e r ­

e n c e  in the size of the largest f r a gment of the 427 and the 

E A T R O  1244 was a c c o u n t e d  for by the p r e s e n c e  of an e x tra
r

fragment of 1.7 x 10 D p r esent in both the I and i ” E A T R O  

1244 kDNAs. This was v i s i b l e  as a dou b l e  ban d  in these gels 

(Fig. 4). T a b l e  III s u m m a r i z e s  the res u l t s  o b t a i n e d  with the 

six e n d o n u c l e a s e s  tested.

D I S C U S S I O N

Our r e s u l t s  show that the ina b i l i t y  of cert a i n  t r y p a n o ­

somes to d e v e l o p  f unctional m i t o c h o n d r i a  and to undergo 

c y c l i c a l  d e v e l o p m e n t  in the tsetse fly vector is not n e c e s s a r i l y  

c o r r e l a t e d  w i t h  d e t e c t a b l e  a l t e r a t i o n s  in the kDNA. There are 

two e x p l a n a t i o n s  for these ob s e r v a t i o n s :

1. Only m i n o r  a l t e r a t i o n s  (e.g. point m u t a t i o n s )  in critical 

m i t o c h o n d r i a l  genes have o c c u r r e d  w h i c h  are u n d e t e c t a b l e

with the m e t h o d o l o g y  used.

2. M u t a t i o n s  have o c c u r r e d  in nuclear genes coding for 

p e p t i d e s  whi c h  are imp o r t e d  from the c y t o p l a s m  into the m i t o ­

c h o n d r i o n  and are e s s e n t i a l  for m i t o c h o n d r i a l  p r otein synthesis.

The first type of m u t a t i o n  w o u l d  be a n a l o g o u s  to the



Fig. 4. E l e c t r o p h o r e t i c  analysis of k D N A  d i g e s t e d  w i t h  r e s ­

triction e n d o n u c l e a s e s  HapII (lanes 1-3), H indlll (4-6), TaqI 

(7-9) and Hinfl (11-13) run on 0.6% a g a r o s e  g els and s t a i n e d  

w i t h  EthBr. Lanes 1,4,7,11: d i g e s t s  of T. brucei E A T R O  1244 

I + kDNA; 2,5,8,12: d i g e s t s  of T. brucei E A T R O  l“ kDNA; 3,6,9,13 

d i g e s t s  of T. brucei 4 27 kDNA. Intact p h a g e  lambda DNA and 

phage lambda DNA d i g e s t e d  wit h  EcoRI w e r e  run as m o l e c u l a r  

w e i g h t  m a r k e r s  in lanes 10 and 14 along w i t h  phage 0X DNA 

d i g e s t e d  with BspI in lane 10 and phage 0X DNA d i g e s t e d  w ith 

MspI in lane 14. The p o s i t i o n s  of l i n e a r i z e d  m ^ x i - c i r c l e s  and 

m i n i - c i r c l e s  are indicated.



CO CO CM 1-
I i I I _L
I I I

1

r lm
! ■

I ■

1 ■

\ U
\



MO
LE
CU
LA
R 

WE
IG
HT
 

OF 
MA
XI
-C
IR
CL
E 

FR
AG
ME
NT
S 

FR
OM
 

T. 
br
uc
ei
 

'EA
TRO

 
124

4 
I 

AND
 

I 
AND

 
42 

7 
kD

NA
s

184

L O in in in

to co CO CO<c~l CO

VOIo

0̂
CO

00
VH

CM 00
Ch

On 00
CO

CM 00
• • • •

iH CT\

CdCO<
CdJuz>2
co
Q2<
CO
CdCO<
CdLIU2
2OQ
2
Cd

oM
E-*UHa:Hco
Cd
a:
xH

a
CdHCO
CdoHa

in4->caie
cn
raHM-t
<DI—I
U
U•Hui
•H
XmE
4-tO
4->
r.on•Haj5
u(TJ
r— I
D
U<U
i-Ho

-pcajE
CT>(0HHi

<uuH3oCO

Hcrf0H

H
Mh
C•HX

H
a:ou
Cd

MMTOC•HX

Har0X

C\l

co
co

o
00

in

vo

O

o

CTi

eg
r-*

00

in

Si*
CM

00
CO

00 sfco
00

CM
CO

in
co

»
CM r- CM 00 cr>• • • • •
'sT vH o r-*

St*co t"- in o 00 CO• • • • • »
co o 00

o o *3*■ • • •00 'CT CM 'sT

o 00 CM• • • •
in co CO

VO <J\
* •l> LO

rH CM co in CM

+ 1
H H

O r—1 O ,,
CC <st* rO X
H ST -P EH
< CM O < CM
Cd EH Cd

in
co

io 
-PoH



Ta
bl

e 
II
I 

- 
co

nt
in

ue
d)

185

in
rorH

CP CO CMt • • •
ro T I r-*

CM
•

CM 00• • • •
o' T~l r-i O

in

KO <T\

r-< r\j

CMI
P"
CMO'

o'oo

O o o*
• • •

00 O ' CM

o* o 00
• • •

in O ' ro

cO in

a *
£>
•

O

<13
A
-P

C
0

in
• TJ

CO dJ
r~< M

U
(13
-C
U

<13
£1

00
• -P

CP 0
c
c
03
U

(33 •
-p (33

CP c 4J
• (13 C

r - E <13
CP E
eg CP
p 03
ip p

lp
(13

O* • r-H <13
O ' <33 U N
• jj p •H

oo c •»H (33
<13 u
E 1 (13
CP •H rH
<13 X u
P 03 p
M-i E •rH

U
o* c n r-H 1
• c r-H • H

o * •H 03 c
T~• -u E •H

03 • c/1 E
P
cr* > 03
•H C A
E 03 , -P
1 E

CM O A
• u r. -P

co 1/3 •rH
r- t -P -P 3

c 133
(13 (13 C
p CP CJ
<13 •H p

Ip -o
CM >1

in •H M d)
• £> 0 A

CO £3 -P
T I 0 £

-P T3 <13
C U

• « 03 c
T3 •»H
C M (33
03 c r
£3 0) (3)

H r-H
0 <13
l“H •• CP
£3 M
Z3 lp d3
O c (33

t—i A •H 0
03 X P
-P < 03
0 c CP
H • M 03



c y t o p l a s m i c  petite m u t a n t s  ( p ) of yeast; the second to 

the nuc l e a r  petite m u t a n t s  (p). As p o i n t e d  out by O p p e r d o e s  

et a l . [8], n uclear p e t i t e  m u t a n t s  in yeast are u n s t a b l e  

and r e a d i l y  a c c u m u l a t e  m u t a t i o n s  in m t D N A  to beco m e  p p d o u b l e  

mu t ants, if the s e c o n d a r y  m u t a t i o n s  in m t D N A  are not s e l e c t e d  

against. It is doubtful, however, if the same s i t u a t i o n  

a pplies in t r y p a n o s o m e s .  The unusual s e q u e n c e  c h a r a c t e r i s t i c s  

of yeast m t D N A  may p r o m o t e  frequent internal r e c o m b i n a t i o n s  

and the d e l e t e d  m o l e c u l e s  g e n e r a t e d  may r e a d i l y  s e g r e g a t e  out, 

r e s u l t i n g  in the high level of s p o n t a n e o u s  p m u t a n t s  (about 

1% per g e n e r a t i o n )  o b s e r v e d  in m o s t  w i l d - t y p e  strains. With o u t  

s e l e c t i o n  such m u t a n t s  will a c c u m u l a t e  and since usua l l y  

m ore than 50% of the w i l d - t y p e  m t D N A  s e q u e n c e  is deleted, 

the a l t e r a t i o n  in m t D N A  is easily detected. The m a x i - c i r c l e s  

of T. brucei also have a high m ole p ercent AT, but there is

no e v i d e n c e  for an a l t e r n a t i o n  of very A T - r i c h  and G C - r i c h

seg m e n t s  like in yeast, from the 2000 bas e  pairs seq u e n c e d 

thus far (Eperon, I.C., p e r sonal c o m m u n i c a t i o n ) .  Moreover, 

these m a x i - c i r c l e s  are c a t e n a t e d  into a network and alt e r e d  

m a x i - c i r c l e s  will, t herefore, not s e g r e g a t e  out to yield 

clones with alt e r e d  kDNA. The k D N A  in n u c l e a r  t r y p a n o s o m e  

mutants, a f f e c t e d  in m i t o c h o n d r i a l  bio g e n e s i s ,  may t h e refore

be stable. Hence, we c a n n o t  dec i d e  on a priori g r o u n d s

w h e t h e r  the I p h e n o t y p e  of our a l t e r e d  T. brucei p o p u l a t i o n  

is due to a l t e r a t i o n s  in n u c l e a r  or in kDNA.

As d i s c u s s e d  by O p p e r d o e s  et a l . [8] and Borst and 

F a i r l a m b  [10], the I p h e n o t y p e  can a p p a r e n t l y  resu l t  from 

the following a l t e r a t i o n s  in k D N A  structure:

1. C o m p l e t e  loss of the k D N A  network; d y s k i n e t o p l a s t i c  

stocks of T. evansi and perhaps T. e q u i p e r d u m  [17] are 

t r y p a n o s o m e s  w h i c h  show no kDNA in G i e m s a - s t a i n e d  p r e p a r a ­

tions [25,26].
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2. R e t e n t i o n  of the m i n i - c i r c l e  network s tructure, but 

loss of the m a x i - c i r c l e  c o m p onent; a s t o c k  of T. evansi 

w i t h  k D N A  net w o r k s  lacking l o n g - e d g e  loops in spr e a d  p r e p a r a ­

tions and h i g h - m o l e c u l a r - w e i g h t  f r a g m e n t s  in r e s t r i c t i o n  

e n d o n u c l e a s e  d i g e s t i o n s ,  whi c h  are c o n s i d e r e d  c h a r a c t e r i s t i c  

of m a x i - c i r c l e s  have been d e s c r i b e d  [22],

3. D e l e t i o n s  in the m a x i - c i r c l e  r e s u l t i n g  in loss or 

a l t e r a t i o n  of vital m i t o c h o n d r i a l  genes; a k i n e t o p l a s t i c  

stock of T. e q u i p e r d u m  (A TCC 30019) [18,27].

4. M u t a t i o n s  in m a x i - c i r c l e  g e n e s  e s s e n t i a l  for m i t o ­

c h o n d r i a l  p r o t e i n  synthesis; the I~ p o p u l a t i o n  of T. bruc e i  :used 

in this study and T. brucei- strain 31 [17] c o uld p o s s i b l y  

b el o n g  in this grouping.

Our r e s u l t s  suggest a p o s s i b l e  c o r r e l a t i o n  b e t w e e n  pleo- 

m o r p h i s m  in the I + t r y p a n o s o m e s  and the abi l i t y  to make 

functi o n a l  m i t o c h o n d r i a .  However, e a r l i e r  o b s e r v a t i o n s  [28] 

on the SAK stock of T. e vansi have shown that p l e o m o r p h i s m  

may o c c u r  in I popul a t i o n s ,  i n c a p a b l e  of a c t i v a t i n g  normal 

m i t o c h o n d r i a l  a c t i v i t i e s  and lacking k D N A  [29]. Also c e r t a i n  

h ighly m o n o m o r p h i c  and vir u l e n t  s y r i n g e - p a s s a g e d  lines of 

T. brucei (e.g. 427-60) r e t a i n  the I + p h e n o t y p e ,  the potential 

to p r o d u c e  acti v e  m i t o c h o n d r i a  and an intact m a x i - c i r c l e .

The s e l e c t i o n  of our I p o p u l a t i o n  by l o n g - t e r m  s yringe 

p a s s a g i n g  of the I + p o p u l a t i o n  in m a m m a l s  might have c a u s e d 

the a c c u m u l a t i o n  of v a r i o u s  m u t a t i o n s  in this population.

T h e s e  m u t a t i o n s  may be c o m p l e t e l y  u n r e l a t e d  to the I p h e n o ­

type or the a b i l i t y  to prod u c e  fu n c t i o n a l  m i t o c h o n d r i a  and 

m i ght res u l t  in the d i f f e r e n c e s  o b s e r v e d  in p l e o m o r p h i s m  

and v i r u l e n c e  of the I + and I p o p u l a t i o n s .

If there w e r e  no s e l e c t i v e  a d v a n t a g e  in the m a m m a l i a n  

host for r e t a i n i n g  the a b i l i t y  to m ake functi o n a l  m i t o c h o n ­

dria, then it might be e x p e c t e d  that all s y r i n g e - p a s s a g e d



l a b o r a t o r y  lines w o u l d  be I , but this is not the case.

Also if the k D N A  in I p o p u l a t i o n s  is c o m p l e t e l y  n o n - f u n c t ­

ional, then it might be e x p e c t e d  that the k D N A  w o u l d  e v e n t ­

ually be c o m p l e t e l y  lost in all I lines; again this is not the 

case. This sug g e s t s  that the p r e s e n c e  of an intact m i n i - c i r c l e  

network is of a d v a n t a g e  to trypa n o s o m e s ,  even in I stocks 

(cf. ref. 10). The n a t u r e  of this a d v a n t a g e  r e m a i n s  unclear.

The e s t a b l i s h m e n t  of I m o n o m o r p h i c  T. bru c e i  p o p u l a t i o n s  

from d e f i n e d  I + p o p u l a t i o n s  w h ich have o nly m i nor m u t a t i o n s  

in their genomes, w h e t h e r  m i t o c h o n d r i a l  or nuclear, are 

likely to be useful not only in d e f i n i n g  the factors r e s p o n s ­

ible for t r a n s m i s s a b i l i t y  b-y the tse t s e  fly, but also in the 

study of the d i f f e r e n t i a t i o n  p r o c e s s e s  in the life c y cle of 

t r y p a n o s o m e s .
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