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Abstract 

In this thesis I will present three lines of investigation using functional magnetic 

resonance imaging (fMRI) and multivariate pattern analysis (MVPA) methods to 

elucidate the characteristics of cortico-cortical feedback to early visual cortex. In 

particular, we were interested in whether regions retinotopically sensitive to 

central and peripheral regions of the visual field received different characteristic 

information types through feedback which suited their different processing 

capabilities. 

In Chapter 1, I describe the organisation of the visual system in terms of its feed-

forward and feedback processing streams. I also describe functional magnetic 

resonance imaging (fMRI) and the blood oxygenation level dependent (BOLD) signal 

and how it may be used to study visual feedback processes. I conclude with a brief 

rationale for studying feedback and in particular for why we focussed on feedback 

to foveal and peripheral early visual cortex.  

In Chapter 2, we present three fMRI experiments that use the occluded paradigm 

to build on work showing that objects are fedback exclusively to foveal cortex. 

We also use a novel analysis technique to provide support for the idea that the 

feedback information into foveal V1 cortex originates, at least in part, from lateral 

occipital cortex.  

In Chapter 3, we present two fMRI experiments in which we present subjects with 

‘hybrid images’, which can be perceived as one of two natural scenes – one carried 

in low and one carried in high frequency information channels. We find that far 

peripheral early visual cortex is influenced in a top down manner, whilst foveal 

cortex more faithfully represents the feedforward input. This provides evidence 

for scene related feedback to far peripheral cortex. 

In Chapter 4, we use high resolution 7T fMRI to study cross-modal feedback across 

the laminae of early visual cortex. We show that scene information presented in 

the auditory domain can be found in the deeper layers of early visual cortex. 

Conversely, mental scene imagery can be found in the superficial layers. We 
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conclude that high resolution 7T fMRI can shed new light on the interaction 

between feed forward and feedback with laminar resolution. 

In Chapter 5, I briefly summarise and discuss the findings and draw conclusions. I 

point out some limitations to be addressed and make recommendations for future 

work to extend the results presented in this thesis.     
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BAC  Backpropagation activated calcium spike firing 

BOLD  Blood oxygen level dependent 
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SUA  Single-unit activity 

SVM Support Vector Machine 
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V1 Primary visual cortex 

V2 Early extrastriate visual area 
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1 General Introduction 

In this general introduction l will described the organisation of the visual system 

in terms of its feed-forward and feedback processing streams. I will also describe 

fMRI and the blood oxygenation level dependent (BOLD) signal and how it may be 

used to study visual feedback processes. I will conclude with a brief rationale for 

studying feedback and in particular for why we focussed on feedback to foveal 

and peripheral early visual cortex.  

1.1 The human eye and the feedforward visual system 

 

The task of the visual system is to extract useful information from the pattern of 

light photons entering the eye. It is fascinating that each individual photon is 

identical apart from its energy or ‘wavelength’ and its angle of incidence with 

respect to the retina but that taken together this forms the basis for our entire 

visual perception. To understand how this happens in detail is the goal of visual 

neuroscience. 

Photons arriving at the eye from between a 60° angle in the medial direction to a 

107° angle in the lateral direction are focused by the eye’s lens onto the retina 

where they stimulate photocells with a vertically flipped image. These photocells 

come in two varieties: rods and cones. Rods are about 20 times more numerous in 

the retina and appear at a high density everywhere except for the fovea. 

Conversely, cones are highly concentrated in the fovea and appear at a low density 

beyond 10°. Cones are also responsible for our ability to perceive colour because 

cones are responsive to one of three wavelengths (blue, green or red). The rods 

and cones send their outputs to ganglion cells (via a network of laterally 

interconnecting cells) of which there are several different types each with 

different receptive field sizes and sensitivities to depth, shape and colour. Each 

photocell responds only to photons arriving from within a small region of the visual 

field called the receptive field (RF) of the cell. The concept of the receptive field 

is relevant for almost all of the visual system. Later cells pool inputs from several 

earlier cells with similar RF locations and thus are themselves selective to a larger, 

but still localised region of the visual field. 
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The nerve impulses travel from the retina out of the eye via the optic nerve, with 

some cross-over at the optic chiasm and onto the lateral geniculate nucleus (LGN) 

in the thalamus. Nerve fibres originating from the left visual field are projected 

to the LGN in the right hemisphere and vice versa. The LGN is a six layered 

structure, with each layer receiving input exclusively from one eye and principally 

from one of two ganglion cell types (parvocellular and magnocellular). 

Importantly, within each layer of the LGN, adjacent neurons receive input from 

adjacent neurons in the retina. That is, there is a topographic mapping between 

locations on the retina and locations in each layer of the LGN. Many of these 

features of the LGN are manifested in the cortex. 

The LGN relays the signals ipsilaterally to the striate cortex (V1), the earliest 

cortical stage of visual processing which is located at the posterior tip of the brain 

and forms the calcarine sulcus and extends up the banks onto the top of the 

surrounding gyri. About 90% of feedforward retinal input is sent to V1. V1, like 

most of the cortex, is a six layered structure and the signals from the LGN are 

projected to cells in layer four. The topographic mapping between the retina and 

the LGN is retained in the transfer to V1. Therefore V1 of each hemisphere 

contains a vertically flipped representation of the contralateral visual field with 

the horizontal meridian represented in the deepest part of the calcarine sulcus. 

However, owing to the increased density of photocells in the fovea of the retina 

and the uniform density of the topographically corresponding cells in V1, much of 

the visual cortex is devoted to processing a small area of the central visual field 

(this concept is known as cortical magnification). This cortical magnification 

already suggests a functional dichotomy between processes carried out by foveal 

and peripheral early visual cortex.  

The traditional standard model of ‘simple cells’ in V1 is given by a linear receptive 

field (Carandini et al., 2005). This refers to a series of weights to apply to each 

image pixel before summing to predict a cell’s response to the image. The idea of 

a receptive field implies that all areas outside of a sub-region of the image are 

set to zero – thus the cell responds only to stimuli within this sub-region. Together 

the weights define a filter, and the shape of this filter is a description of the 

selectivity of the cell. That is, an image that resembles the filter will produce a 

large response. V1 cells are commonly found to have filters elongated along one 
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spatial axis and are thus sensitive to orientation. In addition, the filters usually 

have an ‘ON region’ (in which bright and dark stimuli activate or suppress the cell 

response, respectively) and an ‘OFF region’ which has the opposite behaviour. 

Given these filter preferences, a popular conception of V1 is as a bank of Gabor 

filters. In other words, V1 starts its processing by detecting low-level features in 

the image that correspond to edges. Roughly half of V1 cells are well explained 

by this model but the other half, called ‘complex cells’, have more complicated 

filters and display more invariances to stimuli (e.g. bright vs. dark). This marks a 

trend in the visual system of ever more complex feature selectivity and invariance 

to stimuli. Complex cell responses to stimuli within their receptive field can even 

be modulated by the concurrent presentation of stimuli outside their receptive 

field which would in isolation produce no response (Angelucci & Bressloff, 2006).  

Angelucci and Bressloff (2006) suggest that feedforward and lateral (i.e. intra-

areal) inputs account for the ‘classical receptive’ field while feedback inputs 

account for the ‘extra-classical’ receptive field modulations. To understand 

feedforward and feedback connections in the cortex, it is necessary to discuss the 

cortical layers. 

Like most of the cortex, V1 is composed of six principal layers. Simple and complex 

cells are not uniformly distributed across layer. Indeed, the layers are defined 

based on the different cell type concentrations along with their short and long 

range connections. To simplify a highly complex system, feedforward input 

arriving from the LGN enters the cell-dense layer 4 (also called the ‘granular 

layer). Layers 2 and 3 (superficial to layer 4) feedforward signals to later cortical 

areas, whereas layers 5 and 6 (inferior to layer 4) feedback signals to earlier 

cortical (and sub-cortical) areas (Markov et al., 2013; K. S. Rockland, 2017). 

Feedback inputs usually arrive into Layer 1 which is cell sparse but which contains 

the dendritic tufts of large pyramidal cells in Layer 5 (Larkum, 2013; K. S. 

Rockland, 2017). There are also feedforward and feedback connections variously 

originating and terminating in both supra- and infra-granular layers and that these 

supra- and infra-granular counter-streams are at least as functionally segregated 

as the feedforward and feedback streams (Markov et al., 2013; Markov et al., 

2014). Neurons aligned orthogonally with respect to the layer boundaries form 

cortical columns. Cells in the same column have matching orientation, spatial 
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frequency tuning and receptive field locations (although the receptive field sizes 

tend to be larger outside of layer 4; Fracasso, Petridou, & Dumoulin, 2016).  

V1 is the first of many cortical visual areas which together form a hierarchy in 

which each area performs ever more complex and abstract computations and the 

RF sizes increase in size (Grill-Spector & Malach, 2004). Mapping from the retina 

to V1 is topographic in that adjacent regions on the retina project to adjacent 

cortical regions. Therefore, in the cortex neighbouring portions in the visual field 

are represented adjacent patches of the grey matter surface. This concept is 

called retinotopy. Many visual areas inherit the retinotopy of the areas project to 

it. Most cells in V1 project their output to the adjacent cortical area V2 which in 

turn principally projects to the next adjacent cortical area V3. Areas V2 and V3 

are each formed by a concentric strip of cortex wrapping around V1 at the 

occipital pole. The lower visual field representation in V1 has the horizontal 

meridian in the deepest part of the calcarine sulcus and moves to the lower 

vertical meridian on the border of V1 and dorsal V2 (V2d). This visual field 

representation is reflected into V2d about its border with V1 and then reflected 

again into V3d. A corresponding reflection of the upper visual field occurs at the 

ventral borders of V1, V2 and V3.  

Beyond V3, the sequential nature of the processing stream starts to disintegrate, 

although there are generally two recognised processing streams; the dorsal stream 

processing spatial location and motion, and the ventral/lateral stream processing 

identification and recognition (Grill-Spector & Malach, 2004). Located on the 

ventral/lateral stream are several areas which selectively respond to higher level 

classes of stimuli (Grill-Spector & Weiner, 2014), such as faces in the fusiform face 

area (FFA); body parts in the extrastriate body area (EBA); objects/tools in the 

lateral occipital complex (LOC) and posterior fusiform gyrus; spaces, scenes or 

buildings in areas like parahippocampal place area (PPA), retrosplenial complex 

(RSC) and transverse occipital sulcus (TOS). 

The traditional hierarchical feedforward processing framework described above is 

based on much empirical evidence from a wide range of methods and in the past 

has dominated much theoretical and empirical work. Specifically, stimuli are 

thought of as undergoing sequential stages of processing - each stage localised to 

a distinct cortical area and capturing more complex stimuli features than the last 
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(Felleman & Van Essen, 1991). Ideas based on this framework have been fairly 

impressive in accounting for cortical responses to simple stimuli, but do less well 

with more complex stimuli (Carandini et al., 2005).  

1.2 Feedback in the visual hierarchy 

Local connections (~2mm) dominate the circuitry of the cortex, accounting for 

more than 70% to a given area, and serve to amplify sparse signals arriving from 

other areas (Markov et al., 2013). In V1, long-range feedforward thalamic input 

accounts for only ~5% of excitatory connections with the rest being intracortical, 

i.e. local and feedback connections (Budd, 1998; Kayser, Körding, & König, 2004). 

Feedforward and feedback connections constitute distinct neural populations 

forming two segregated streams with different characteristic connectivity profiles 

(Markov et al., 2013; Markov et al., 2014). Feedback connections are thought to 

be somewhat more diffuse than are feedforward (Perkel, Bullier, & Kennedy, 

1986; Kathleen S Rockland & Ojima, 2003; Salin & Bullier, 1995) although there is 

much debate around this issue (Markov et al., 2014). Even if feedback connections 

are more diffuse than feedforward connections, this is only true on the spatial 

scale of cell populations (i.e. cortical columns; Salin & Bullier, 1995), and there 

is nonetheless a reciprocity of feedforward and feedback connections between 

patches of cortex on a course spatial scale (~10mm). Given the retinotopic 

organisation of the visual cortex, it follows that feedback connections to V1 

originate from populations of cells in higher areas which are sensitive to a larger 

visual field region centered on the V1 cells receptive fields (Perkel et al., 1986; 

Salin & Bullier, 1995). The anatomical segregation between feedforward and 

feedback signals mean that they almost certainly perform different functional 

roles (Markov et al., 2014). Therefore, studying and understanding feedback in 

addition to feedforward processing is vital for understanding general brain 

function.  

A functional segregation between feedforward and feedback was shown by Andre 

Moraes Bastos et al. (2015) who characterised these processes in the cortical 

hierarchy in terms of the frequency of the neural oscillations. They measured 

electrocorticography (ECoG, i.e. direct subdural recordings) in monkeys in many 

visual areas throughout the cortical hierarchy. They then applied Granger 

causality analysis to determine frequency-specific directed influences between all 
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pairs of areas recorded. In other words, they estimated the frequency channel 

that each area used to communicate with all other areas in the hierarchy. 

Remarkably, they found that feedforward influences (from lower areas of the 

hierarchy to higher areas) occurred in theta- and gamma- bands whereas feedback 

influences (from higher to lower areas) occurred in the beta-band. Moreover, the 

ratio of the feedforward to feedback influences between areas correlated with 

the ratio of anatomical feed-forward and feedback connections. This result was 

later replicated in humans (Michalareas et al., 2016) using 

magnetoencephalography (MEG) - values for anatomical connections were derived 

from areas in the monkey visual hierarchy for which homologous areas exist in 

humans. One of the studies included a cognitive task requiring top down control 

which increased the influence of higher areas over the lower areas. Thus the visual 

hierarchy involves an interplay of feed-forward and feedback influences which 

adapt flexibly to meet task demands. 

The functional relevance of feedback can also be seen at the cellular level. 

Angelucci and Bressloff (2006) used single cell electrophysiology to show that 

feedback connections to V1 are involved in contributing to suppression of V1 cell 

responses when stimuli are presented to the extra-classical receptive field. 

Specifically, inactivation of area MT (by cooling) reduced, eliminated, or even 

reversed the usual suppression effects in V1 cells. Nassi, Lomber, and Born (2013) 

found the same results when inactivating V2/3 and additionally found that those 

V1 cells that formally showed the strongest suppression effects showed the largest 

enhancement with deactivation of V2/3. Lateral connections do not span enough 

cortical space for adjacent cells synapsing onto the V1 cell to account for these 

effects, and their slow transmission times rule out the possibility of several cells 

‘passing on the message’. Conversely, feedback connections easily span the 

necessary cortical space and have transmission times up to 10 times faster than 

lateral connections.  

Chen et al. (2014) demonstrated that contour integration and background 

suppression in V1 depend upon recurrent signalling with V4. They conducted single 

cell studies with more complex stimuli; a large field of randomly oriented line 

segments forming a “background”, with 1, 3, 5, or 7 identically orientated lines 

positioned in such a way as to form a long (dashed) line running through the field. 



23 
 
V1 and V4 cells with receptive fields centred on the mid-point of the line were 

simultaneously recorded. They found that V1 first reacted at 44ms, and that V4 

reacted at 58ms (14ms feedforward transmission delay). V4 instantly showed 

contour integration (i.e. increased activity for the 7 lines compared to 1 line 

occurred at 59ms); whereas contour integration was delayed in V1 until 95ms (i.e. 

51ms after V1 began reacting to stimulus onset). Poort et al. (2012) found similar 

results in monkeys regarding figure-ground segmentation, with the figure 

boundaries initially detected in V1, and the figure interior enhancement occurring 

in V4, which was only became apparent in V1 later in time and in infra- and supra-

granular layers (Poort, Self, van Vugt, Malkki, & Roelfsema, 2016). In addition, if 

the figure was task relevant the V1 figure-ground segmentation continued to 

strengthen with a time-course consistent with feedback. These data corroborate 

with an initial feedforward sweep of cortical activity starting in V1 and travelling 

to V4, followed by a second feedback sweep from V4 to V1. Moreover these results 

were neatly explained by a simple recurrent hierarchical network. Thus it seems 

that the feedforward and feedback sweeps play distinct functional roles in the 

ongoing processing of stimuli. 

A cellular mechanism that could mediate such a complex interplay of feedforward 

and feedback influences in an anatomically plausible way was proposed by Larkum 

(2013). Coincident stimulation of the bodies of pyramidal cells in layer 5 (where 

feedforward connections are made) and to their dendritic tufts in layer 1 (where 

feedback is often projected) results in bursts of action potentials 

(backpropagation activated calcium spike firing or ‘BAC’) not seen with 

stimulation to either one alone. Such a ‘coincident detection’ mechanism between 

the feedforward and feedback streams allows for amplification (or dis-

amplification) of task relevant or predicted feedforward input, or more broadly 

allows for perceptual context to help disambiguate noisy signals. 

A common notion has been that feedforward signals ‘drive’ activity in subsequent 

areas in a topographic specific manner and that feedback signals serve as a 

weaker, top down modulation of the feedforward signals (Andre M Bastos et al., 

2012). Such a scheme may account for the effects of large scale activity changes 

brought about through cognitive acts such as attention to certain stimulus 

locations or features. However, research is converging (Fang, Boyaci, Kersten, & 
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Murray, 2008; Murray, Boyaci, & Kersten, 2006) to show that manipulating high 

level aspects of the stimuli (e.g. surrounding depth cues) can result in differential 

responses in early visual cortex. According to the traditional hierarchical model, 

such differential responses are expected to be confined to higher areas. These 

results implicate the involvement of the higher areas in connection with V1 (i.e. 

feedback) beyond a simple modulation of a feedforward signal. Recently these 

results have led to widespread acknowledgment that feedback processing is highly 

important in explaining cortical responses to complex stimuli, and in explaining 

response modulation by the surrounding context and by internal processing states, 

even in “low-level” areas (Muckli & Petro, 2013; L. S. Petro, Vizioli, & Muckli, 

2014).  

Modern comprehensive theories of cortical function must account for the complex 

interaction between feedforward and feedback among cortical areas. There are 

now several, not necessarily mutually exclusive, ideas about general brain 

function that emphasise the role of feedback signals. Friston (2010) suggests that 

a unifying principle running through many contemporary theories is the idea that 

the brain maintains a stable state in the face of sparse, noisy sensory input. This 

idea is usually formalised as the optimisation of some quantity and Friston (2010) 

interprets this quantity as being equivalent to the minimisation of discrepancies 

between ongoing internal states and incoming sensory input. Most theories retain 

the hierarchical framework. An example is predictive coding (Rao & Ballard, 1999) 

which posits that the brain continuously generates internal models of the world 

and the models’ predictions constitute feedback signals. These predictions are 

sent from higher to lower areas in the hierarchy and compared to incoming 

feedforward signals (which initially were generated by stimuli in the outside 

world) and discrepancies between the predictions and the feedforward data are 

computed (so called ‘prediction errors’). The prediction errors are sent from lower 

to higher areas and thus represent the feedforward signal in the cortex. The 

prediction errors are used to update the models to minimise future error. 

Predictive coding theory has recently received detailed theoretical treatment in 

relation to current anatomical knowledge (Andre M Bastos et al., 2012) with the 

conclusion that the circuitry of the cortex appears well-suited to implementing 

some form of predictive coding. These theories are abstract descriptions of 

complex and messy real-world phenomena (i.e. the functioning brain) and it is 
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important to attempt to bridge the gap. In addition to anatomical considerations 

this endeavour will require measurement techniques and paradigms that are 

capable of disentangling feedback from feedforward influences.  

1.3 Using fMRI to study feedback 

Functional magnetic resonance imaging (fMRI) can non-invasively measure the 

oxygenation of blood (this is known as the blood oxygenation level dependent or 

‘BOLD’ signal), which itself is an indirect measure of neural activity. The BOLD 

effect comes about through a still not clearly understood interaction of 

haemodynamic changes in cerebral blood flow (CBF), cerebral blood volume (CBV) 

and metabolic changes within neural cells. The most relevant unknown is how 

various neural activities (different cell types, excitatory vs. inhibitory, 

feedforward vs. lateral vs. feedback connection types etc.) couples and interacts 

with vasculature effects, since this limits our understanding of which aspects of 

the BOLD signal are most informative about neural activity. Nonetheless, the value 

of being able to non-invasively measure some aspect of neural activity in the 

awake human brain is clear, especially given that relatively large volumes (up to 

the entire volume of the brain) can be recorded in one or two seconds. This allows 

a signal time series to be acquired from many brain areas simultaneously. The 

signal is spatially localised to a few cubic millimetres or less (depending on the 

field strength of the magnet) which allows an analysis of individual brain areas 

and in many cases of sub regions of areas. This gives fMRI a unique advantage – no 

other in vivo imaging method gives the kind of global coverage at such high spatial 

resolution. However, the signal is temporally sluggish compared to the speed at 

which much of cortical dynamics unfolds - the BOLD signal peaks around 4-6 

seconds after a burst of neural activity. This necessitates various experimental 

design considerations (for instance the rapidity at which stimuli are presented and 

so forth). 

A key validation of the idea that the BOLD signal is coupled to neural activity 

comes from studies in which both BOLD and direct local measures of 

electrophysiological activity are recorded in the same subjects in the same 

locations of the brain. Jacques et al. (2016) did just this using ECoG measurement 

of the ventral temporal cortex (VTC) in awake human subjects. A typical BOLD 

activity profile in response to high level visual stimulus categories (e.g. faces, 
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body parts, objects and buildings) was observed and a similar profile was also 

observed in the ECoG data and displayed a clear spatial correspondence. 

Moreover, the representational structure of distributed VTC activity was similar 

in the BOLD and ECoG data. Such a correspondence between BOLD and ECoG has 

also been observed by other researchers in different areas (including motor 

cortex, sensorimotor cortex and motion area hMT) using various stimuli 

(Gaglianese et al., 2017; Hermes et al., 2012; Siero et al., 2013; Siero et al., 

2014). In general the finding across these studies is that the ECoG activity >60 Hz 

can be used to best predict the BOLD signal. 

The relationship between cerebral hemodynamic changes and the underlying 

neural activation is complex. There are many aspects of neural activation and the 

extent to which each of these aspects is represented by the BOLD signal is 

important for the functional interpretation of the results of fMRI experiments. A 

key question that has received considerable treatment is the contribution of 

neural input (dendro-soma activity), and output (action potentials or ‘spikes’). 

Lee et al. (2010) used optogenetics to induce spiking in a population of pyramidal 

cells in the motor cortex of adult rats while simultaneously recording the BOLD 

signal. They found positive BOLD activity in the stimulation site and in the region 

where the pyramidal cells projected to. However, Logothetis (2010) points out 

that pyramidal cells are known to drive local microcircuits and thus the initial 

spiking would immediately initiate a cascade of dendro-soma activity. Logothetis 

and colleagues have tackled this issue by simultaneously recording BOLD fMRI and 

electrophysiological activity in the visual cortex of awake monkeys undergoing 

visual stimulation (Goense & Logothetis, 2008; Logothetis, Pauls, Augath, Trinath, 

& Oeltermann, 2001; Magri, Schridde, Murayama, Panzeri, & Logothetis, 2012). 

The electrophysiological recordings made were: 1) local field potentials (LFP) 

which reflect an average of neural input (synchronised dendro-somatic 

postsynaptic activity) a few millimetres in the vicinity of the electrode tip and 2) 

single and multi-unit activity (SUA and MUA) from individual neurons (mostly larger 

pyramidal cells) which reflect neuronal output (‘spikes’). The general finding was 

that LFPs (particularly at 20-60 Hz) better predict the BOLD response than does 

either SUA or MUA. LFPs are even predictive when no spiking activity is present. 

This implies that the BOLD signal mostly reflects the local neural input to a cortical 

area rather than the outgoing spikes (although the two will often be correlated). 
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Therefore the BOLD response may be measured without any outgoing spikes from 

a cortical area. Magri et al. (2012) used information theory to demonstrate that 

each frequency band in the LFP contains unique sources of information about the 

BOLD signal. They speculate that non-feedforward and even non-stimulus-driven 

components are important in bringing about the BOLD signal. 

Harvey et al. (2013) recorded BOLD and ECoG in the same subjects with identical 

stimuli which were designed to allow an estimation of the receptive fields in V1. 

The receptive fields estimated from the BOLD data exhibited the familiar centre 

surround structure, whereby positive BOLD results from center receptive field 

stimulation and negative BOLD results from stimulation in the receptive field 

surround. Interestingly, the receptive-field estimated from gamma band activity 

lacked the suppressive surround, consistent with this frequency’s connection with 

feedforward processing. On the other hand, alpha band activity increased when 

stimuli were presented in receptive field surround suggesting a role for alpha band 

activity in producing a negative BOLD response. Given that the BOLD response is 

not primarily driven by outgoing spikes (feedforward activity), it may be a 

uniquely sensitive method to study feedback activity in the cortex (Muckli, 2010). 

1.4 Visual perception and cortical magnification  

One of the most notable features of vision is how a variety of perceptual 

phenomena vary as a function of eccentricity. A well-studied example (first 

described in 1923 by Korte) is ‘Crowding’, which refers to impairment of the 

perceptual discrimination of a target caused by neighbouring distracter items 

(Levi, 2008). The critical proximity of neighbouring distracters to the target for 

crowding to occur varies as a function of eccentricity and can occur with 

proximities up to approximately half the eccentricity of the target and this rule 

of thumb may hold all the way to the fovea (Levi, 2008; Strasburger, Harvey, & 

Rentschler, 1991). In this case, multiple stimuli will be most easily discriminated 

at the centre of our gaze. Given our cluttered world, this will render most objects 

unrecognisable to us without fixating them (Levi, 2008). 

Such perceptual acuity effects that vary across eccentricities can often be 

predicted by the number of cortical cells devoted to processing the relevant region 

of the visual field (i.e. cortical magnification). Moreover, a well replicated finding 
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is that scaling stimuli to match their cortical representations (known as ‘M-

scaling’) compensates for the usual perceptual degradation of the more eccentric 

stimulus (Aubert & Foerster, 1857; Cowey & Rolls, 1974; Daniel & Whitteridge, 

1961; Drasdo, 1977; Hilz & Cavonius, 1974; Ludvigh, 1941; Rovamo & Virsu, 1979; 

Rovamo, Virsu, & Näsänen, 1978; Virsu & Rovamo, 1979; Weymouth, 1958).  

However, some effects operate differently in the fovea and periphery – for 

instance, Johnson and Scobey (1980) show that the amount by which a line must 

be displaced in order to be detected varies as a function of line length beyond 18° 

(decreasing as line length increases) but is constant when presented foveally. A 

similar pattern was shown where line luminance as opposed to length was varied. 

In such examples, M-scaling does not restore behavioural performance. For 

instance, stimulus contrast interacts with eccentricity when recognising numerical 

characters (Strasburger et al., 1991; Strasburger, Rentschler, & Harvey Jr, 1994). 

The key difference may be the need to integrate several features and recognise 

patterns, rather than merely detect a single feature.  

Similar results were obtained by Jüttner and Rentschler (1996) using grating 

stimuli which varied along two feature dimensions and which were classified by 

subjects as belonging to one of three sets. In addition to showing once again that 

M-scaling failed to alleviate the peripheral disadvantage, Jüttner and Rentschler 

(1996) were able to model the internal stimulus representations of the sets under 

foveal and peripheral presentations. With this approach, they demonstrated that 

the behavioural deficit in peripheral presentations was due to these stimuli being 

represented in a one-dimensional feature space, whereas foveally presented 

stimuli were represented using a two dimensional space. This is an important 

finding since it lays bare the extra flexibility of foveal cortex beyond the fact that 

more neurons are devoted to it. Xing and Heeger (2000) provide a case where M-

scaling is completely inconsequential - surround suppression. In surround 

suppression, the perceived contrast of a central target (in this case a circular sine 

wave grating patch) is reduced by the presence of a surrounding annulus stimulus 

(also a since wave grating). They show that this effect is much stronger in the 

periphery than in the fovea (despite M-scaling) and that discrepancies between 

the spatial frequency (by 2 octaves) or orientation (orthogonal) of the target and 
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surround all but eliminated the effect in the fovea but only reduced it in the 

periphery.  

These effects demonstrate a fundamental difference between the fovea and the 

periphery and highlight the greater sensitivity and precision of foveal cortex. This 

naturally leads us to ask to what extent these disparate cortical tissues, although 

both continuously and seamlessly present across most/all of visual cortex and in 

most individual visual areas, play fundamentally different processing roles.  

1.5 Thesis rationale 

The rationale for this thesis is to investigate feedback to early visual cortex in 

human subjects. One of the fundamental properties of the visual system as a whole 

is its retinotopic organisation. Cortical magnification in early visual cortex means 

that there is a range of resolution/spatial frequencies processing capabilities 

which varies smoothly as a function of cortical distance. This suggests that 

different functional processes are carried out in foveal and peripheral cortex.  

It is unclear whether feedback plays different roles in foveal and peripheral 

cortex. It might be that feedback signals from higher areas regarding computations 

on data stored at different resolution/spatial frequencies might be directed to 

sub regions of early visual cortex with the appropriate resolution/spatial 

frequency processing capability. Evidence for this view would show that early 

visual cortex plays a more ongoing and active role in perception than simply as an 

initial low-level pre-processing unit.  

We use three main paradigms: 1) Occluding the sub-region of natural scene images 

in order to isolate feedback signals to corresponding sub-regions of V1. 2) 

Presenting bistable images in which high and low spatial frequencies give rise to 

different natural scene percepts. 3) Presenting natural auditory scenes to 

blindfolded subjects and analysing the visual cortices. 
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2 Chapter 2: Retinotopic biases in object and scene 

feedback to V1 are task-dependent 

2.1 Abstract 

In this chapter I present three experiments which all use a visual occlusion 

paradigm recently developed in our lab in order to isolate cortical feedback to 

early visual cortex. The overall aim was to dissociate feedback of object and scene 

background information to foveal and peripheral regions of V1. To study foveal in 

addition to peripheral V1 regions, we had to modify the paradigm slightly. The 

first experiment can be seen as an initial validation of the paradigm modification, 

using only scene stimuli. The second experiment was our first attempt to include 

objects as well as scenes using the modified paradigm. The third experiment was 

an attempt to improve and extend the results from the second experiment. I 

therefore present the first experiment along with a short discussion of the results 

and then present the second and third experiments together. 

Identifying the objects embedded in natural scenes is a complex problem for the 

visual system which relies on recurrent processing between lower and higher visual 

areas. However little is known about how cortical feedback from specialised 

object and scene areas converges in early visual cortex. Subjects discriminated 

objects or background scenes in images with occluded central and peripheral 

subsections, allowing us to isolate cortical feedback activity to foveal and 

peripheral regions of V1. We found that feedback of object information is 

projected to foveal V1 cortex. There are also hints that this representation 

becomes more detailed during an object identification task and that lateral 

occipital complex could be the source of this increased detail feedback.  

Background scene information is projected diffusely to all of V1, but can be 

disrupted by a sufficiently demanding object discrimination task. We suggest that 

retinotopic biases throughout the visual hierarchy provide an organisational 

scheme for segregated cortical feedback of information about distinct higher level 

stimuli. 
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2.2 Chapter Introduction 

One of the classic operations of the visual system is to extract from a single image 

several well defined pieces of information about its contents. To do this, the visual 

system is composed of several areas that specialise in the analysis of various 

categories of stimuli such as faces, objects and places. Somehow, the visual 

system is able to segment image elements belonging to these categories, which 

then allows further discrimination of the category instance by the appropriate 

higher areas. Moreover, different categories can be prioritised for processing 

according to the task at hand (Cukur, Nishimoto, Huth, & Gallant, 2013).  

A particularly well studied process necessary for such specialised image processing 

to occur is the segmentation of a ‘figure’ from the ‘background’. Recent evidence 

from neurophysiology and neuroimaging studies suggest that recurrent signalling 

between higher and lower visual cortex is a key mechanism by which this is 

achieved. Chen et al. (2014) demonstrated that contour integration and 

background suppression in V1 depend upon recurrent signalling with V4. Poort et 

al. (2012) found similar results regarding figure-ground segmentation, with 

boundaries initially detected in V1, followed by figure enhancement effects fed 

back to V1 from V4. In addition, if the figure was task relevant the V1 figure-

ground segmentation continued to strengthen with a prolonged timecourse 

consistent with feedback. These data were neatly explained by a simple recurrent 

hierarchical network. Consistent results were obtained in humans using EEG and 

similar stimuli by Scholte, Jolij, Fahrenfort, and Lamme (2008). They found that 

event –related potentials differentiated boundaries first at occipital sites, before 

progressing to peri-occipital, temporal and parietal sites. In contrast, the figure 

interior was first differentiated in temporal regions and then propagated back 

through peri-occipital and finally occipital regions. Thus, recurrent signalling 

between V1 and higher areas is involved in segmenting objects and scene and this 

allows specialised processing in higher areas. 

V1 and higher areas share several organising principles and these may have 

consequences for recurrent signalling between areas. One is ‘retinotopic 

organisation', which means that a shift from central to peripheral, or from upper 

to lower, visual field, corresponds to a shift in the area of visual cortex most 
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sensitive to that location. This is true of both lower and higher visual cortical 

areas, but is especially dominant in the early areas. It is interesting to think about 

what this would imply for the retinotopic specificity of feedback signals. It is the 

case that feedback connections to V1 originate from populations of cells in higher 

areas which are sensitive to a larger visual field region centered on the V1 cells 

receptive fields (Perkel et al., 1986; Salin & Bullier, 1995). Even though feedback 

connections are more diffuse than feedforward connections on the spatial scale 

of cell populations (i.e. cortical columns; Salin & Bullier, 1995), there is 

nonetheless a reciprocity of feedforward and feedback connections between 

patches of cortex on a coarse spatial scale. Thus on large spatial scales the foveal 

and peripheral areas of high level cortex should feedback to the foveal and 

peripheral areas of low level cortex, respectively. 

Levy, Hasson, Avidan, Hendler, and Malach (2001) suggested that discrete, 

localised stimuli may be more suited to processing by foveal cortex whilst 

continuous stimuli (e.g. natural scenes) are more suited to processing by 

peripheral cortex. They showed that this organisational scheme can ‘overpower’ 

the retinotopic organisation of the higher, but not lower, visual areas. This is 

intuitive: if one notices an object in one’s peripheral visual field, and decides to 

discriminate its fine details, one would naturally (almost automatically) direct 

one’s gaze towards the object – bringing it into foveal retinotopic cortical space. 

Thus, feedback of object information might be principally directed to foveal V1 in 

preparation for likely saccades to the object. This fits in well with current notions 

of foveal cortex being specialised for local, discrete, high spatial frequency 

processing (for a review, see Kauffmann, Ramanoël, Guyader, Chauvin, & Peyrin, 

2015). In contrast, general scene information is all around us, and does not require 

the higher foveal resolution to identify its gist (Kauffmann et al., 2015) and so 

feedback regarding scene gist may reasonably be confined to peripheral V1 cortex. 

Thus, we hypothesise that there is a fundamental division of labour between 

feedback signals to foveal-peripheral V1 according to an object-scene principle.  

 

In recent years our lab has developed a paradigm for isolating and studying cortical 

feedback in the visual system (Muckli et al., 2015; Smith & Muckli, 2010). The 

paradigm exploits the strong retinotopy of early visual cortex by showing natural 

scene images with occluded regions. The cortical representations of these 
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occluded regions of the visual field thus receive no informative feedforward 

stimulation from the images used in the experiment. If information about the 

image can nonetheless be extracted from the cortical representation of the 

occluded region, we know that this information could not have arrived into this 

region by the feedforward pathway. It follows that some non-feedforward 

pathway must be at play - i.e. lateral or feedback connections. By taking care to 

restrict the ROI such that it represents the innermost part of the occluded region, 

we decrease the plausibility of lateral intra-V1 connections as an explanation as 

such connections do not span the necessary cortical distance to link the 

feedforward stimulated to the occluded ROI. Using this paradigm, we have 

previously shown that cortical feedback constructs representations of stimuli in a 

peripheral region of primary visual cortex that is not stimulated by feedforward 

input (Muckli et al., 2015; Smith & Muckli, 2010). A similar analytical approach 

has been used to show that feedback transmits information about objects 

presented to the periphery to non-stimulated foveal but not peripheral cortex 

(Williams et al. 2008). Follow-up studies provided evidence that this was 

important for perception using TMS (Chambers, Allen, Maizey, & Williams, 2013) 

and visual masking (Fan, Wang, Shao, Kersten, & He, 2016).   

2.3 Experiment 1 

2.3.1  Introduction 

We wanted to study feedback to foveal cortex in addition to peripheral cortex 

using the occluder paradigm. However, in previous experiments we effectively 

removed occluded foveal voxels from consideration in our analyses. This was due 

the retinotopic mapping stimuli (see figure 2-1 B left most images) and subsequent 

thresholding procedures used to extract voxels representing the occluded lower 

right quadrant, which limited the ROI to the more peripheral portion – away from 

the borders of the occluder and the image.  

We therefore first wanted to extend the occluder to cover both foveal and 

peripheral visual field. This experiment was designed to test the effect of this 

manipulation. Therefore, we varied which part(s) of the image are occluded: 1) 

only the lower right quadrant; 2) only central; or 3) both the lower right quadrant 



34 
 
and central regions. This allows us to answer some important preliminary 

questions. For instance we can ask what the effect of occluding the entire central 

visual field in addition to the lower right quadrant is on scene feedback to the 

periphery. It could be that preventing feedforward processing in foveal cortex (a 

proportionally large cortical area due to the cortical magnification factor and 

capable of high resolution processing) affects the scene representation in higher 

areas, and so critically affects or disrupts feedback signals to early visual cortices. 

The stimuli in this experiment additionally allows us to test whether the feedback 

pattern observed in a given ROI when only the corresponding image region is 

occluded (e.g. the peripheral ROI with only the lower right image quadrant 

occluded) is generalisable to the pattern observed in the same ROI when the extra 

occluder is present (e.g. the peripheral ROI with the lower right quadrant AND the 

central image region occluded). 

Assuming the extension of the occluder does not disrupt the feedback, an 

additional aim is to determine whether scene feedback can be detected in the 

fovea. Given the peripheral bias of higher order scene areas (Hasson, Harel, Levy, 

& Malach, 2003; Hasson, Levy, Behrmann, Hendler, & Malach, 2002; Levy et al., 

2001; Levy, Hasson, Harel, & Malach, 2004; Malach, Levy, & Hasson, 2002) we 

hypothesised that feedback of scene information would only be projected to 

peripheral V1 and therefore only in this ROI would we see scene feedback. 

2.3.2  Methods 

2.3.2.1 Subjects 

Nine healthy subjects (5 male; 18-36 years old) were recruited using the University 

of Glasgow, School of Psychology subject pool. All subjects had normal or 

corrected eye-sight and no history of brain damage. Each subject completed two 

consent forms to ensure that they met the safety criteria for fMRI scanning and 

understood of the experimental conditions. One subject was excluded because the 

SVM classification of feedforward data consistently failed, suggestive of large and 

frequent eye movements.  
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2.3.2.2 Stimuli and Apparatus 

The stimuli were projected, at a refresh rate of 60 Hz and a resolution of 1024 x 

768, onto a screen (19.0° × 14.2° visual angle) which subjects viewed via a mirror 

attached to the head coil. The experiment was programmed and displayed using 

Presentation (Version 16.5, Neurobehavioural Systems). There were nine 

experimental conditions and four retinotopic mapping conditions. In addition, 

subjects underwent polar angle and eccentricity retinotopic mapping to localise 

V1. 

Subjects were shown one of three greyscale static natural scenes (‘Road’, 

‘Mountain’ or ‘Beach’) with the central region (3.8° x 3.8°), the lower right 

quadrant (9.5° x 7.1°), or both regions occluded by a light grey patch. Thus there 

were nine conditions of interest for later analysis (see figure 2-1 A). Within each 

occluder configuration, the SHINE matlab toolbox (Willenbockel et al., 2010) was 

used to match the luminance histograms across the non-occluded regions of the 

three scenes (i.e. scale the pixel intensity such that there are same number of 

pixels at each intensity for each scene – this also matches the average/global 

luminance). 
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2.3.2.3 Task and Procedure 

Subjects completed 5 functional runs. As a task to ensure attention, subjects 

indicated whether the scene was slightly blurred (8 blurred frames per run, 

subjects used the index finger of the right hand). Each run consisted of 27 

condition blocks followed by 8 retinotopic mapping blocks. Each block lasted for 

12s. The condition order was pseudo-randomised for each subject with the 

 

Figure 2-1 A. The experimental images, with an example of the estimated 
receptive fields of the ROIs overlaid. B. ROI mapping stimuli. For each 
occluded ROI, we contrasted the checkerboard in the top with the 
checkerboard in the bottom row to produce an initial ROI as shown in C. We 
then further restricted this ROI to those voxels with pRFs falling entirely 

within the occluded region. 
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constraint that no condition could be repeated back-to-back. Each block consisted 

of the scene being flashed on and off (4Hz) for 1s followed by a 1s fixation period. 

A 12s baseline period during which subjects maintained central fixation preceded 

each block. Importantly, the occluder itself did not flash on and off, and was 

present throughout the block. In addition both the central and peripheral 

occluders were also present during the baseline periods. Therefore, voxels with 

receptive fields on the occluder during a block were not stimulated in a 

feedforward manner before, during or after a given block.  

 

The retinotopic mapping blocks (central, central-surround, periphery, periphery-

surround) each consisted of 12s of contrast reversing checkerboard stimuli (4 Hz) 

(see figure 2-1 B). A 12s baseline period, during which subjects maintained central 

fixation, preceded each checkerboard stimulation block (and also immediately 

followed the last block). Each run lasted 14min 12s. In addition to the runs 

described above, polar angle and eccentricity retinotopic mapping were acquired. 

The scanning session lasted approximately 1.5 hours. 

 

2.3.2.4 Data Acquisition 

Functional and anatomical MRI data was acquired using a 3 Tesla MRI system 

(Siemens Tim Trio) with a 32-channel head coil. For the functional scans an echo-

planar imaging (EPI) sequence was used with the following parameters: 18 slices, 

aligned with the calcarine sulcus, gap thickness 0.3mm, TR-1s, TE-30ms, 426 

volumes per run (polar angle mapping = 808 volumes, eccentricity mapping = 552 

volumes), a FOV of 220mm, flip angle of 62° and a resolution of 3.0mm3. The 

anatomical MRI sequence had a TR of 2.3s, 192 volumes, and a resolution of 

1.0mm3.  

 

2.3.2.5 Data preprocessing 

The functional and anatomical data were preprocessed using BrainVoyager QX 2.8 

(Brain Innovation, Maastricht, The Netherlands). The first two volumes of each 

functional run were discarded to avoid saturation effects. The functional data for 

each run were corrected for slice acquisition time and head movements. Linear 

and low frequency drifts in the data were removed. The functional data were then 

aligned with the high resolution anatomical data and transformed into Talairach 
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space.  A model cortical surface of the white matter grey matter boundary was 

created from the Talairach anatomical scans. 

2.3.2.6 ROI Definitions 

For each subject, the functional data were projected onto the cortical surface. 

After localising V1, using the polar and eccentricity data, the ROIs were defined 

by contrasting the appropriate target mapping stimuli with the corresponding 

surround mapping stimuli (see figure 2-1 B).  Custom Matlab algorithms were used 

to estimate the population receptive fields (pRF, see Dumoulin & Wandell, 2008) 

from the polar angle and eccentricity data for all V1 and early visual foveal voxels, 

allowing us to reject from the occluded ROIs voxels with pRFs falling outside the 

occluded regions (see figure 2-1 A, Lower right image).   

2.3.2.7 Data Analysis 

For each Subject, a GLM was used to estimate each voxel’s hemodynamic response 

function (HRF) amplitude for each block. To classify a scene, an SVM classifier was 

used create a discriminating function for the instances of the three scenes 

presented, based on the associated multivariate voxel response patterns from 4 

runs (“Training”). The discriminating function was then used to classify the scene 

instances presented during the remaining run (“Testing”). This procedure was 

repeated, each time using a different run as the “test run” (i.e. ‘leave one run 

out’ cross-validation procedure). We also conducted ‘cross-classification’ analyses 

in which the conditions on which the SMV was tested and trained were different. 

Successful classification in this case demonstrates a certain amount of 

generalisability in the patterns elicited by the conditions used for train and 

testing. 

 

Since the sensitivity of the SVM varies with the number of features entered, it was 

important to precisely control for the different number of voxels in the foveal and 

peripheral ROIs (108.9±21.3 std.dev, peripheral: 48.7±52.7 std.dev, respectively). 

For each ROI we therefore took equally sized random samples of voxels and ran 

the SVM. We did this 1000 times and averaged the SVM results to get a single 

accuracy value. The number of voxels sampled was set per subject as 75% of the 

number in the peripheral ROI (since this was always the smallest ROI). This 
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sampling approach has the added advantage that our SVM accuracy estimates are 

less susceptible to being skewed by any particular combination of voxels. 

 

To assess the significance of group level effects, the mean group classification 

value was bootstrapped (with replacement) 10’000 times and if 95% of these 

values exceed chance level (50%), then the classification was considered 

successful. 

 

2.3.3  Results 

As shown in figure 2-2, the scene could be classified above chance from occluded 

early visual foveal voxels and also from occluded peripheral V1 voxels when a 

single occluder was present (figure 2-2, comparison 1). Thus, scene feedback is 

projected to foveal and peripheral cortex. Next, we attempted these same 

classifications when both occluders were present. The results were the same as 

before, showing that feedback to peripheral V1 cortex is not critically dependant 

on feedforward processing occurring in early foveal cortex (figure 2-2, comparison 

2). To determine whether the feedback patterns were generalisable with and 

without the additional occluder (thus preventing feedforward foveal and 

peripheral processing) we trained and tested the SVM with only a single occluder 

and tested and trained on the condition with both occluders present. The 

classification was still successful, demonstrating that the pattern was 

generalisable (figure 2-2, comparisons 3 and 4). The only indication that the 

extension of the occluded region altered the feedback pattern was that we could 

also classify above chance the presence of the second occluder (figure 2-2, 

comparison 5) – however the global luminance also differed between these 

conditions and may have driven the classifier result in this case. 
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2.3.4  Discussion 

We now know that both central and peripheral regions can be simultaneously 

occluded without disrupting the previously established scene feedback effects. 

We also found, for the first time using the occluder paradigm, that scene feedback 

is also projected to foveal cortex. This latter result was not expected, based on 

the peripheral bias of higher scene areas (Hasson et al., 2003; Levy et al., 2004). 

General discussion of this result is postponed until after experiments 2 and 3 in 

which we seek to replicate this effect.  

The important result from this experiment is that we are now in a position to 

proceed with an additional central occluder and are thus able to study feedback 

to foveal and peripheral V1. In subsequent experiments we use stimuli with 

dissociable object and scene components. We hope to show that object 

information is fed-back exclusively to foveal cortex, and also to replicate our 

Figure 2-2 Classification in non-stimulated foveal and peripheral V1 cortex in experiment 
1. Bars labelled 1 and 2 are regular classification of the scene with single or double 
occluders. Bars labelled 3 and 4 show cross-classification between single and double 
occluders. Finally, bars labelled 5 are classification of the presence/absence of the 
additional occluder. Black circles indicate individual subjects. Errors bars represent 95% 
confidence intervals obtained from bootstrapping the mean group classification. 
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previous finding that background scene information is fed-back indiscriminately 

to all of early visual cortex.  

2.4 Experiments 2 and 3 

2.4.1  Introduction 

Cortical feedback of information about objects embedded in scenes has never 

been tested. However retinotopic eccentricity biases provide an organisational 

scheme for segregated feedback of distinct higher level stimuli to early visual 

cortex. Both higher order and early visual cortex are unified by a large-scale, 

anatomically predictable, retinotopic eccentricity organisation (Hasson et al., 

2003). Moreover, object regions (medial fusiform gyrus, lateral and inferior 

occipital sulcus) exhibit a central visual field bias, whereas scene regions (PPA and 

transverse occipital sulcus) exhibit a peripheral visual field bias (Hasson et al., 

2003). Thus if object and scene areas send feedback to early visual cortex with 

similar retinotopic eccentricity biases (as do other visual areas, Salin & Bullier, 

1995), then foveal and peripheral V1 cortex ought to receive feedback information 

about object and scene respectively.  

This idea is consistent with existing data. Using fMRI and multivariate pattern 

analysis (MVPA), object feedback can be detected in non-stimulated foveal cortex, 

but not in non-stimulated peripheral cortex (Williams et al., 2008) and is related 

to subject’s object discrimination performance (Chambers et al., 2013; Williams 

et al., 2008). Conversely, natural scene information can be detected in non-

stimulated peripheral cortex (Muckli et al., 2015; Smith & Muckli, 2010). We 

already know from the first experiment that scene feedback is projected to both 

foveal and peripheral cortex which argues against a strict dissociation of object 

and scene feedback based on eccentricity. However, this may not be true if an 

object is also present in the image. Since object feedback is biased towards the 

fovea, scene feedback may become restricted to the periphery in this case. It is 

also possible that the effect is modulated by whether the object or the scene is 

task relevant. It is therefore unknown if there is a general bias for object and 

scene feedback to be projected to early foveal and peripheral cortex, 

respectively. If such a bias could be demonstrated, it would imply the existence 
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of a feedback system organised according to the retinotopy of functionally 

specialised areas. Also unknown is whether any bias in feedback processing is 

sensitive to the task-relevance of different image components. Such a task 

dependant bias would suggest that early visual cortex plays a proactive and 

functionally flexible role in the disambiguation of image components, beyond the 

classical view of passively pre-processing and relaying sensory input to higher 

areas. 

We tested whether object and scene feedback are directed to foveal versus 

peripheral V1 and how task influences this processing. In two experiments, we 

presented images containing objects, background scenes, or a combination of the 

two (a similar approcah to Harel, Kravitz, & Baker, 2013). By occluding central 

and peripheral subsections of the image, we isolated feedback activity in the 

corresponding foveal and peripheral subsections of V1. In the first experiment, 

similar objects as used by (Williams et al., 2008) were superimposed onto 

unrelated background scenes. In the other experiment, objects appeared 

embedded in congruent naturalistic scenes. In both experiments, subjects 

performed an object or scene discrimination task. 

2.4.2  Methods 

Unless otherwise stated, the details of experiment 2 and 3 were identical to 

experiment 1. 

2.4.2.1 Subjects (Experiment 2) 

Ten healthy subjects (4 male; mean 22.9 years old, range = 18-29). 

2.4.2.2 Stimuli and Apparatus (Experiment 2) 

There were four experimental conditions and five retinotopic mapping conditions. 

In addition, subjects underwent polar angle and eccentricity retinotopic mapping 

to localise V1. The images were one of two grayscale natural scenes (‘Mountain’ 

and ‘Seaweed’) with a pair of superimposed abstract objects belonging to one of 

two object categories (‘Cubic’ and ‘Smooth’, figure 2-3). Preliminary behavioual 

testing indicated that presenting the objects atop black circles improved 
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perceptual discrimination performance. In addition, this made our object stimuli 

more similar to (Williams et al., 2008) in which objects were presented on a 

uniform black background. Similar to (Williams et al., 2008), each object appeared 

at 6.1° eccentricity. The width/height of the objects was approximately 2.0° and 

the black disk was 3.5°in diameter.  

 

 

 

 

 

 

The objects were created using a custom algorithm written in Matlab. Specifically, 

each object shown throughout the experiment was unique (i.e. no object 

appeared more than once: 1728 unique objects were created in total) and 

generated by manipulating 4 main feature dimensions (mainly related to the 

number, size, shape and rotational position of the objects’ protrusions). Thus, 

objects could not be discriminated by looking at only a small part of each object, 

and more than one location of the object had to be taken into account to attain 

good discrimination performance. We aimed to make them similar to those used 

in (Williams et al., 2008). Each image spanned 19° x 14.2°. We occluded central 

(3.8° x 3.8°) and lower right (9.5° x 7.1°) image portions. To control for low level 

image properties in those areas of the scenes visible to subjects, the SHINE matlab 

toolbox (Willenbockel et al., 2010) was used to match the luminance histograms 

(i.e. scale the pixel intensity such that there are same number of pixels at each 

intensity for each scene – this also matches the average/global luminance) and 

the amplitude spectrum of each image was replaced with the average spectrum 

of the two images, thus exactly matching the images at each spatial frequency 

and orientation. 

Figure 2-3 Examples of the experimental images 
used in experiment 2. 
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2.4.2.3 Task and Procedure (Experiment 2)  

Subjects completed 12 functional runs across two days (6 runs per day). In 

odd/even runs (counterbalanced across subjects), subjects performed one of two 

tasks: 1) judging whether the two objects were identical or not (50% identical, 

subjects used the index and middle finger of the right hand, mapping was 

counterbalanced across subjects) or 2) indicating whether the scene was slightly 

blurred (8 blurred frames per run, subjects used the index finger of the right 

hand). Subjects found the object task quite demanding, scoring 76.6% (± 13.2% 

stderr) correct. In the scene task, subjects detected the blurred frames only 74.4% 

(± 7.8% stderr) of the time, with a false alarm rate of 25.1% (± 3.8% stderr). 

However, subjects easily identified the scene: 92.1% (± 0.8% stderr) of responses 

following true and false blur detections were correct.  

Each run consisted of 12 blocks. Each block consisted of 8 trials drawn from the 

same condition (e.g. Mountain + Cubic objects). The block condition order was 

pseudo-randomised for each subject, with the constraint that no condition was 

repeated twice in a row. Each trial consisted of a stimulus flashed on and off (4 

Hz) for 1s followed by a 1s fixation period during which subjects responded, thus 

each block lasted 16s. A 12s baseline period during which subjects maintained 

central fixation preceded each stimulation block. At the end of the last 

stimulation block, the retinotopic mapping period started. The retinotopic 

mapping period consisted of 10 blocks, each lasting 12s, of contrast reversing 

checkerboard stimuli (4 Hz) at one of five locations (central, central-surround, 

periphery, periphery-surround, object locations). A 12s baseline period during 

which subjects maintained central fixation preceded each checkerboard 

stimulation block (and also immediately followed the last block). Each run lasted 

9mins 55s. In addition to the task runs described above, each scanning session 

ended with either polar angle or eccentricity retinotopic mapping. Each scanning 

session lasted approximately 1.5 hours. 

2.4.2.4 Data Acquisition (Experiment 2)  

Experimental runs were 588 volumes per run (polar angle mapping = 808 volumes, 

eccentricity mapping = 552 volumes) and a resolution of 3.0mm3.  
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2.4.2.5 Data preprocessing (Experiment 2) 

The functional data were aligned with the high resolution anatomical data and 

transformed into ACPC space.  A model cortical surface of the white matter gray 

matter boundary was created from the ACPC anatomical scans. 

2.4.2.6 Data Analysis (Experiment 2) 

For each Subject, a GLM was used to estimate each voxel’s HRF amplitude for 

each block. We attempted to classify either the scene or object identity using a 

linear Support Vector Machine (SVM) classifier. This analysis was performed 

independently for the scene and objects task runs. Specifically, we trained an SVM 

to classify the Scene or Object using the associated multivariate voxel response 

patterns. For example, to classify the Scene we labelled the 4 conditions according 

to the background scene so as to create a binary classification problem (i.e. 

Mountain + Cubic, Mountain + Smooth labelled ‘1’ vs. Seaweed + Cubic, Seaweed 

+ Smooth labelled ‘2’). A corresponding approach was taken when classifying 

Object Identity. We used a ‘leave one run out’ cross-validation procedure. The 

number of voxels in the ROIs were foveal: 98.3±41.1 std.dev std.dev and 

peripheral: 49.0±16.7 std.dev. These disparities were dealt with as in experiment 

1. 

2.4.2.7 Subjects (Experiment 3) 

Nine healthy subjects (1 male; mean 22.9 years old, range = 20-26) took part. 

2.4.2.8 Stimuli and Apparatus (Experiment 3) 

The stimuli were projected at a resolution of 768 x 768 onto a screen (19.9° × 

19.9° visual angle). There were eight experimental conditions and four retinotopic 

mapping conditions. Our images (see figure 2-4) were created by combining one 

of three background possibilities (Beach, Forest, None) with one of three object 

possibilities (BBQ, Tent, None). Thus there were nine possible image 

combinations. This resulted in eight experimental images and one blank image 

used as a fixation condition (None/None). Each image was circular, with a radius 

of 9.9°. All nine images were occluded in a similar way to experiment 1 and 2 
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(central radius 2.6° and upper right quadrant). The mean luminance of every 

image was the same (85).  In particular, in each image the mean luminance of the 

pixels belonging to the background scene and object were also the same (85).   

 

 

 

 

 

 

 

 

 

 

2.4.2.9 Task and Procedure (Experiment 3)  

Subjects completed 10 functional runs across two days (5 runs per day). Subjects 

performed either an object or scene identification task on alternate days 

(counterbalanced across subjects). The object task was to identify the object in 

the image (BBQ, Tent, or None present). Similarly, in the scene task subjects had 

to identify the background scene in the image (Beach, Forest or None present). 

Subjects made button presses with the index, middle or third finger of the right 

hand (mapping counterbalanced across runs each day for each subject). Subjects 

responded at any point during the 12 second block. In contrast to experiment 2, 

in experiment 3 subjects found both tasks easy: in the scene task scoring 97.5% 

correct (± 1.6% stderr) and in the object task scoring 96.4% (± 2.1% stderr). 

Figure 2-4 The eight experimental images used in experiment 3. 
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Each run consisted of 24 blocks. Blocks consisted of a stimulus flashed on and off 

(4 Hz). Subjects responded any time after the onset of a block. The occluder did 

not flash, and remained present throughout the entire run. The retinotopic 

mapping period consisted of 4 blocks, each mapping one of four locations (central, 

central-surround, periphery, and periphery-surround). Each run lasted 11mins 24s. 

2.4.2.10 Data Acquisition (Experiment 3)  

For the functional scans an echo-planar imaging sequence was used with the 

following parameters: 31 slices, aligned with the calcarine sulcus, gap thickness 

0.2mm, TR-2s, TE-30ms, 342 volumes per run (polar angle mapping = 396 volumes, 

eccentricity mapping = 268 volumes), and a resolution of 2.0mm3. 

2.4.2.11 Data preprocessing (Experiment 3) 

The functional data were aligned with the high resolution anatomical data and 

transformed into ACPC space.  A model cortical surface of the white matter gray 

matter boundary was created from the ACPC anatomical scans. For averaging and 

performing group statistics on the representational similarity surface maps, we 

used BrainVoyager QX 2.8 (Brain Innovation) to perform cortical based alignment 

of all subjects’ model cortical surfaces of the white matter gray matter boundary. 

This creates a mapping from each subject to a common cortical space, based on 

the pattern of cortical folding. 

2.4.2.12 ROI Definitions (Experiment 3) 

Since we did not have reverse-checkerboard mapping stimuli for the object 

locations, V1-object ROIs were defined by contrasting object only experimental 

conditions with all the other conditions. 

2.4.2.13 Data Analysis (Experiment 3) 

A Support Vector Machine (SVM) was used to classify the Scene, Object Presence 

or Object Identity in the VI ROIs. For example, to classify the Scene we labelled 

the 6 conditions that contained a background scene so as to create a binary 

classification problem (i.e. Beach, Beach + BBQ, Beach + Tent labelled ‘1’ vs. 
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Forest, Forest + BBQ, Forest + Tent labelled ‘2’). A corresponding approach was 

taken when classifying Object Identity. In the case of classifying Object Presence, 

we labelled the two object-free scenes as ‘1’ and then classified against the same 

two scenes with an embedded object. We did this independently for the presence 

of BBQ and Tent in the scene. The number of voxels in the ROIs were V1-Object: 

228.0±27.2 std.dev, foveal: 475.2±117.0 std.dev and peripheral: 116.6±41.1 

std.dev. These disparities were dealt with as for experiment 1. 

We assessed the similarity in representational geometry between the V1 ROIs and 

higher areas across the brain (see figure 2-5). To do this, we used a novel 

analytical approach which combined multivariate searchlights (Kriegeskorte, 

Goebel, & Bandettini, 2006) and the cross-correlation of ROI representational 

dissimilarity structures (Kriegeskorte, Mur, & Bandettini, 2008).  

Figure 2-5 Ten pairwise SVM classification accuracies from the V1 ROIs V1-Object, 

occluded foveal and occluded peripheral (not shown here) were correlated with the 

ten corresponding SVM classification accuracies obtained from whole brain searchlight 

maps at each surface vertex. 
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For each subject, for each task, we ran ten pairwise SVMs variously classifying 

scene identity, object identity or object presence (in figure 2-4, condition pairs 

classified were: 1-2, 1-3, 1-4, 2-3, 2-5, 3-6, 4-5, 4-6, 5-6, 7-8) in a searchlight 

manner. While other SMVs were logically possible to construct, we only chose SVMs 

in which either the object OR the scene differed between image pairs, but not 

both, in keeping with our previous analyses in this chapter (hence any difference 

in classification accuracy can be interpreted as purely object or scene 

information). The searchlights were performed in volume space for every voxel in 

gray matter (defined as any functional voxel with at least 1mm3 falling within 

3mm of the white-gray matter boundary, on the gray matter side of the boundary). 

Each searchlight was spherical and centered on a functional voxel with a radius of 

three functional voxels resulting in 123 voxels per searchlight (no random voxel 

sampling was used here; unlike for the V1 seed ROIs). The central voxel in a 

searchlight is assigned the SVM classification accuracy. Thus ten SVM classification 

maps were created for the entire cortical sheet. The resulting maps were 

projected onto a cortical surface (for each volume map, the average SVM accuracy 

occurring 0-2mm along a vertex normal was mapped to the surface vertex). At 

each surface vertex, we constructed a vector from the ten SVM classification 

accuracies. This vector characterises the representational geometry regarding the 

experimental stimuli. We then correlated (using spearman’s rho) the vectors of 

each vertex with a corresponding vector obtained from a V1 ‘seed’ ROI (V1-

Object, occluded foveal, occluded peripheral, the random voxel sampling 

approach was used here as described above). The result was a wholebrain 

correlation map showing the similarity in representational geometry to the V1 

seed ROI. We carried out the above procedure separately for data from the scene 

and object task runs to assess whether the similarities in representational 

geometry between the V1 seed ROIs and the rest of the brain were modulated by 

task.  

We used cortical-based alignment to transform subjects’ maps into a common 

space and display them on a group average mesh. This allowed us to average the 

maps across subjects and to perform group statistics. To generate p-value maps, 

for each ROI and task, the average representational similarity maps were 

bootstrapped (with replacement) and the p-value at each surface vertex was 

calculated as the proportion of bootstrap samples below or equal to zero. Group 
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difference maps for each ROI were constructed by subtracting the average object 

task map from the average scene task map. To statistically assess these group 

difference maps we used a non-parametric permutation approach: We pooled the 

nine subjects’ scene and object task maps (thus creating a pool of 18 maps), and 

randomly sampled (with replacement) two sets of nine maps, averaged each set, 

and then took the difference of these average maps. We repeated this procedure 

1000 times to build a null distribution of difference maps against which we 

compared the observed difference map. A p-value map (uncorrected) was 

calculated at each surface vertex as the proportion of null distribution samples 

with an absolute value below or equal to the observed difference absolute value. 

2.4.3  Results  

2.4.3.1 Occluded V1 (Experiment 2) 

We studied feedback of object and scene information to V1 by analysing 

multivoxel information patterns in the cortical representations of occluded 

subsections of foveal and peripheral V1. This analysis was performed 

independently for the scene and objects tasks.  

Subjects found the object task quite demanding, scoring 76.6% (± 13.2% stderr) 

correct. In the scene task, subjects detected the blurred frames only 74.4% (± 

7.8% stderr) of the time, with a false alarm rate of 25.1% (± 3.8% stderr). However, 

subjects easily identified the scene: 92.1% (± 0.8% stderr) of responses following 

true and false blur detections were correct.  
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We were able to decode scene information during the scene task but not during 

the object task in both foveal V1 (Scene Task: 54.6%, p=0.0022; Object Task: 

49.6%, p=0.6547) and peripheral V1 (Scene Task: 54.8% p<0.0001; Object Task: 

52.3%, p=0.1387, figure 2-6). In the case of foveal V1, we found that correct 

classification rates were significantly higher during the scene task (p=0.01), as 

determined by a permutation test. This result suggests that scene information is 

fed back to foveal and peripheral V1, in agreement with experiment 1, but that 

the demanding task of perceptually discriminating the objects disrupts the 

representation of scene information.  

We were not able to detect object identity information in either task in foveal 

(Object Task: 50.6%, p=0.2410; Scene Task: 52.2%, p=0. 1938) or peripheral V1 

(Object Task: 50%, p=0.548; Scene Task: 48.7%, p=0.7501, figure 2-6). This is in 

contrast to Williams et al. (2008) who were able to decode object identity 

information in the fovea. In our data, even classification in a V1 ROI directly 

stimulated in a feedforward manner by the objects was low and only significantly 

above chance during the object task (Object Task: 52.1%, p=0.0027; Scene Task: 

48.6%, p=0.9571). Given that the objects were unnatural in appearance and 

superimposed onto the scene in a superficial way, and given that discriminating 

the objects disrupted scene feedback, we reasoned that the scene feedback may 

Figure 2-6 Classification in non-stimulated V1 cortex in experiment 2. Black circles indicate 
individual subjects. Errors bars represent 95% confidence intervals obtained from 
bootstrapping the mean group classification. 
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have obscured object feedback. To investigate this possibility, we conducted 

experiment 3.  

2.4.3.2 Occluded V1 (Experiment 3) 

In experiment 3, we used computer generated grayscale images of real objects 

embedded in scenes in a natural way, for example, a barbeque on a beach. With 

the extended stimulus set, we were additionally able to classify the presence of 

an object in the scene. Since no fine details are required to indicate an object’s 

presence/absence in the image, this “object presence” feedback information may 

be easier to detect than the identity – perhaps even so in the periphery. These 

analyses were performed independently for both the scene and object task data. 

In contrast to experiment 2, in experiment 3 subjects found both tasks easy: in 

the scene task scoring 97.5% correct (± 1.6% stderr) and in the object task scoring 

96.4% (± 2.1% stderr). Scene information was detectable regardless of task in both 

foveal (Object Task: 55.0%, p<0.0001; Scene Task: 55.0%, p<0.0001) and 

peripheral V1 (Object Task: 55.3%, p<0.0001; Scene Task: 56.5% p=0.0017, figure 

2-7). Thus, reducing the object task load (as compared to experiment 2 in which 

subjects only scored 76.6% correct) may have enabled automatic scene feedback 

to all of V1. This once again replicates the main findings of experiment 1. 
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Object presence in the scene was detectable for both objects, regardless of task, 

in foveal V1 (BBQ during Object Task: 54.1%, p=0.03; BBQ during Scene Task: 

53.2%, p<0.0001; Tent during Object Task: 55.5%, p<0.0001; Tent during Scene 

Task: 52.9%, p=0.0014, figure 2-7). In peripheral V1, during the scene task, no 

object information was detectable (BBQ during Scene Task: 51.9%, p=0.1113; Tent 

during Scene Task: 50.6%, p=0.3592). The presence of objects in the scene was 

Figure 2-7 Classification in non-stimulated cortex in experiment 3. Black dots indicate 
individual subjects. Errors bars represent 95% confidence intervals obtained from 
bootstrapping the mean group classification value. 
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detectable during the object task for one object, although only at an uncorrected 

alpha level, and approached significance for the other (BBQ during Object Task: 

53.1%, p=0.0572; Tent during Object Task: 52.4%, p=0.0147).  However, this weak 

effect was not supported by further analyses; running the SVM on data pooled 

across task (which allows the SVM to take advantage of more data) yielded non-

significant results for the presence of both objects (BBQ: 50.7%, p=0.2978; Tent: 

48.8%, p=0.8829), as did separate SVMs classifying object presence/absence 

within each scene rather than collapsing across the scene (BBQ: 51.7%, p=0.2363; 

Tent: 51.8%, p= 0.2012) and also when using Linear Discriminant Contrast (BBQ: 

0.2332, p=0.7099; Tent: 0.9703, p=0.1662, Walther et al., 2016). In general there 

were no significant differences between foveal and peripheral ROIs for object 

classification accuracies (p>0.05, as determined by a permutation test). However, 

we do see a similar trend as Williams et al. (2008) which suggests that information 

about the presence of an object in the scene is automatically fed back to foveal 

V1. 

Object identity information was detectable in foveal V1, only during the object 

task (Object Task: 52.3%, p<0.0001; Scene Task: 51.1%, p=0.2546). Such 

information was not detectable in peripheral V1 in either task (Object Task: 

52.1%, p=0.1416; Scene Task: 48.9%, p=0.6530, figure 2-7). This suggests that 

object identity is fed-back to fovea when subjects are asked to identify the 

objects in the scene. 

There were no significant differences in classification rates between ROIs or 

between different tasks (as determined by permutation tests). This could be due 

to the low overall classification accuracies across conditions – particularly since 

subject variation in below chance classifications are not interpretable and serve 

only to add noise to the data. Nonetheless, motivated by a weak but consistent 

trend for the object classifications to be higher in foveal V1 and (an even weaker 

trend) to be higher during the object task, we conducted follow-up exploratory 

analyses to look for differences between ROIs and between tasks. 

2.4.3.3  Relation of V1 to Higher Areas (Experiment 3) 

Given that the object and scene information we detected in our occluded V1 ROIs 

likely originates from higher areas, we assessed the similarity in representational 
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geometry between the V1 ROIs and the rest of the brain, including other visual 

areas higher up in the cortical hierarchy. We were particularly interested in 

whether these geometry similarities were modulated by task, given that object 

identity was only decodable during the object task in foveal V1. To do this, we 

used a novel analytical approach (figure 2-5) similar to Henriksson, Khaligh-Razavi, 

Kay, and Kriegeskorte (2015) which combined multivariate searchlights 

(Kriegeskorte et al., 2006) and the cross-correlation of ROI representational 

dissimilarity structures (Kriegeskorte et al., 2008).  

Figure 2-8 The 1st column shows the location of the seed ROIs. The 2nd and 3rd columns 

show significance values from the whole-brain correlation maps. These maps indicate 

significant similarity in representational geometry to V1 seed ROIs during the scene 

and object tasks. The 4th column shows significant task differences between maps 

(yellow-orange hues and green-blue hues indicate significantly higher correlations 

during the scene task and object task, respectively).  
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First, we looked at the feedforward V1-Object ROI (figure 2-8, top row). In both 

tasks, similar geometries are found in dorsal V2 and V3. This is sensible, because 

there are strong feedforward connections from dorsal V1 to these regions (Van 

Essen, Newsome, Maunsell, & Bixby, 1986). Also in both tasks, Lateral Occipital 

Complex (LOC) showed a similar geometry. Again, this is sensible given LOC’s role 

in object recognition (Grill-Spector, 2003; Grill-Spector, Kourtzi, & Kanwisher, 

2001) and the feedforward input of object information to the seed ROI. However, 

only during the scene task were there additional similar geometries spanning 

anterior of the parieto-occipital sulcus to parahippocampal place area (PPA). This 

likely reflects task dependant engagement of scene selective cortex. Non-

parametric permutation tests showed significantly higher correlations 

(uncorrected) during the scene task in RSC and in an area slightly dorsal to 

parahippocampal place area (PPA).   

Next we looked at occluded foveal V1 (figure 2-8, middle row). As this region is 

occluded, its geometry is based on feedback information, presumably sent from 

higher visual areas in the cortical hierarchy. In our classification analyses, we saw 

a trend for more precise object feedback during the object identification task. 

Consistent with this observation, during the object task the correlation maps show 

that dorsal early visual cortex and LOC have similar geometries as does occluded 

foveal V1. Moreover, during the object task this correlation map using occluded 

foveal V1 as the seed region is strikingly similar to the feedforward V1-Object 

maps. Consistent with a reduction in detailed object information, the LOC does 

not appear in the scene task correlation map. Non-parametric permutation tests 

confirmed that area LOC had significantly higher correlations (uncorrected) during 

the object task compared to the scene task. However, the effect is small and does 

not survive False Discovery Rate correction, therefore it can only be taken as a 

hint towards support for the hypothesis that area LOC, known to be involved in 

object recognition, may be a source of more precise object information fed-back 

to occluded foveal V1 when subjects identify objects.  

For occluded peripheral V1 (figure 2-8, bottom row), we found significant 

correlations on the medial surface, but unlike the occluded fovea and V1-object 

ROIs we found none at all on the lateral surface in either task. This is consistent 

with the lack of object information shown in our classification analyses in either 
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task. During the scene task there were significantly higher correlations 

(uncorrected) in RSC, similar to what we also found using the feedforward V1-

Object ROI as a seed region. This may suggest task dependant communication 

within the cortical hierarchy between scene selective cortex and peripheral early 

visual cortex. During the object task, there were significantly higher correlations 

(uncorrected) in a region just anterior to RSC. This latter result is hard to interpret 

– it could simply be a false positive which serves to remind us to be cautious in 

drawing strong conclusions on the basis of small effects which may be 

underpowered.  

2.4.4  Discussion 

We used occluded images to study cortical feedback of objects and scenes to 

foveal and peripheral V1. We found that foveal and peripheral V1 contain high 

level information that could not have arrived directly from retinal and lateral 

geniculate input. As such, this information must have been projected to V1 from 

higher levels of the cortical hierarchy, or from lateral interactions within V1. In 

experiments 2 and 3, we showed that background scene information is fed back 

to foveal and peripheral V1, replicating the result in experiment 1, and that this 

can be disrupted by a difficult object task. In experiment 3, we showed that the 

presence of an object in the scene is fed back to foveal V1 regardless of task. 

Peripheral V1 on the other hand did not classify above chance in either task. This 

could be taken to suggest a general bias for object feedback to be projected to 

early foveal cortex, however without significant statistical comparisons of task 

this claim can only be a speculation. The identity of the object was only significant 

in the fovea and then only during the objects task. Again, we are tempted to 

speculate that the precision of this object feedback to foveal cortex varied with 

task, but did not find statistically significant differences to confirm this.  

We then asked where the feedback ordinates from. We addressed this question 

using a recently developed analytical approach (Henriksson et al., 2015) which we 

used to assess the similarity in representational geometry between the V1 ROIs 

and higher areas across the brain. We found that only during the object task was 

the representational geometry in occluded foveal cortex similar to LOC. This 

result supports the idea that LOC may feedback more precise object feedback 
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information to occluded foveal V1 during the object task. It is important to be 

cautious in making strong claims about directionality from these results – any 

similarity in representational geometry between two regions could be mediated 

by a third region or by an interaction among several other regions. Nonetheless, 

it is striking that the same areas that are correlated to the feedforward V1-Object 

seed, regardless of task, are also correlated to the occluded foveal V1 seed during 

the object task. Task dependant increases in background connectivity between 

early visual cortex and specialised higher areas (Fusiform Face area and PPA) have 

also been shown by (Al-Aidroos, Said, & Turk-Browne, 2012).  

Given LOC’s central visual field bias and known involvement in object recognition 

(Grill-Spector, 2003; Grill-Spector et al., 2001), feedback of object information to 

early foveal cortex is anatomically and functionally sensible. The high and low 

resolution capabilities of early central and peripheral cortex, respectively (Duncan 

& Boynton, 2003), led Malach and colleagues to propose that the functional 

relevance of the central-peripheral bias in higher areas may be to accommodate 

fine detail discrimination of objects and large-scale integration of scenes, 

respectively (Hasson et al., 2002). However, this account does not address the 

fact that centrally biased higher areas still have very large receptive fields (Grill-

Spector & Malach, 2004), which make high resolution processing difficult. 

Retinotopically segregated feedback might solve this problem by recruiting V1’s 

highest resolution capabilities (the fovea) to scrutinise and discriminate objects 

(Hochstein & Ahissar, 2002). Our results are consistent with this proposal, although 

we find feedback of scene information to foveal as well as to peripheral cortex – 

we did not find a complete dissociation. It maybe that the quantity and quality of 

computations that can be performed by foveal cortex is useful for most visual 

perceptual tasks. Indeed, Larson and Loschky (2009) demonstrated with a 

behavioural occluder paradigm that once absolute area is equalised, central vision 

is more efficient than peripheral at recognising scene category. This experiment 

was modelled using deep convolutional neural networks (Wang & Cottrell, 2016) 

and a wider stimulus set which included faces and objects as well as scenes with 

similar results. In addition, Wang and Cottrell (2016) found that faces and objects 

benefitted more than scene from processing by central visual field and the reverse 

was true for peripheral visual field. Thus feedback to both foveal and peripheral 

cortex may aid scene identification. It is possible that more minimalistic scenes 
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(e.g. simple spatial layouts as used in Harel et al., 2013) would only be fed back 

to peripheral cortex.  

Another reason for object feedback to be restricted to foveal cortex is suggested 

by neurophysiological monkey data from (Poort et al., 2012) showing that the 

distribution in visual space of enhanced V1 figure responses predicted saccade 

land positions. Objects are likely targets for upcoming saccades (Nuthmann & 

Henderson, 2010), especially if they are task relevant (Henderson, 2003), and thus 

a possible reason for object feedback to be projected only to foveal cortex may 

be to meet relevant upcoming feedforward input to V1 resulting from saccades. 

This hypothesis is not mutually exclusive with that of Malach and colleagues; it 

may be that when object’s identity needs to be scrutinised, foveal V1 cortex is 

recruited, via feedback, for its high resolution capabilities. This may occur as 

preparation for a natural tendency for upcoming saccades designed to center the 

object on foveal V1 cortex. Cortical predictions are fed back to V1 in time for 

sensory inputs that are the target of eye movements (Edwards, Vetter, McGruer, 

Petro, & Muckli, 2017), and so predicted object information may be transported 

to foveal cortex because we tend to make eye movements towards objects to 

interact with them. The content of the feedback may be sensory predictions 

(Friston, 2010) of the object representations generated in higher visual areas and 

sent to early visual areas, such that internal representations of ‘to-be-processed’ 

objects are present with the highest resolution in V1. 

We highlight the dynamic recurrent information sharing that occurs between V1 

and functionally specialised higher areas during the disambiguation and 

recognition of object and scenes. We propose that the role of V1 should be thought 

of as a proactive and functionally flexible extension of the higher areas. V1’s 

unique abilities, such as high resolution processing, are recruited adaptively 

according to task requirements. 

2.5 Chapter Discussion 

We have shown that feedback signals are present when the visual system analyses 

natural images. If the image is composed of a background scene and an object, 

feedback signals related to these image components show a somewhat different 
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pattern of projection sites. Specifically, object feedback seems directed to foveal 

cortex while scene feedback is apparently sent to both foveal and peripheral 

cortex. There were small hints of task effects (mostly not significant) in the 

classification accuracy results. The comparison of the representational geometries 

of occluded early visual areas with that of non-occluded category selective higher 

areas reflected the task effects and allows us to motivate hypotheses about the 

interplay between areas and how different stimuli and tasks affect those 

relationships. The idea that retinotopic organisation might play an organisational 

role in feedback (as well as feedforward) signalling, coupled with the known 

eccentricity biases in category selective higher areas suggests that object stimuli 

have some special significance for foveal cortex even in early visual cortex.  

Hasson et al. (2003) provide evidence that higher object areas such as LOC are 

biased to analysing central visual field information whilst higher scene areas such 

as PPA and RSC have a peripheral visual field bias. Foveal cortex is typically 

associated with smaller receptive field sizes and thus increased resolution 

capabilities and the availability of high spatial frequency information. A functional 

consequence of such a central visual field bias could be that this makes them more 

suited to analysing small details and thus enable fine discrimination of object 

features. Conversely, the peripheral visual field is characterised by large 

receptive fields, low resolution and thus low spatial frequency information 

(Kauffmann et al., 2015). Hasson et al. (2003) suggest that scene selective higher 

areas are more likely to integrate information over large regions of the visual 

field. If (Hasson et al., 2003) are correct, then our object decoding data could be 

taken to support the hypothesis that higher object areas send feedback to foveal 

early visual cortex in order to make use of the high spatial frequency information.  

It is worth considering that the typical receptive field size of higher order visual 

areas is several times larger than early visual cortex. Thus any higher areas must 

rely on early visual cortex to access the higher spatial frequency information. This 

can be done using feedforward or feedback signals. The fact that foveal visual 

cortex is large is both a reflection of the fact that higher spatial frequency 

information contains more detailed information and therefore needs a larger 

cortical allocation and that the visual system relies heavily on such information 

for perception. As such it might be that the higher scene areas actively use the 
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computational ability of early foveal visual cortex well after the initial 

feedforward signals arrive. Low spatial frequency information may be sufficient 

for gross scene categorisation, but two scenes will still each contain diagnostic 

high spatial frequency information.  

The feedback processing stream is retinotopically coarser than the feedforward 

processing stream (Muckli et al., 2015). Therefore, in the case of feedback in the 

visual system it may be that the high vs. low spatial frequency content of the 

image is a better driver of foveal vs. peripheral visual cortex than is retinotopic 

location of the image. In other words, even though there is a correlation between 

eccentricity and spatial frequency information in visual cortex, these two 

properties could have a different importance for feedback and feedforward 

processing. It could be that there is a bias to send feedback about low spatial 

frequency information to the periphery, and to send high spatial frequency 

information to foveal cortex – somewhat independently of the eccentricity at 

which these frequencies are presented. If true, this would mean that the scene 

feedback we observed in foveal and in peripheral V1 carried distinct information. 

An interesting follow up experiment to investigate this idea would be to 

independently filter the background scene and objects. The prediction would be 

that if the background scene contains only low frequency information, then 

feedback would be constrained to peripheral V1. If the background scene contains 

only high frequency information, then feedback would be constrained to foveal 

V1. In the case of objects, since there is evidence that feedback is sent only to 

foveal cortex, we would predict that filtering the object of high frequency content 

would remove the feedback signal entirely. This latter prediction has been 

demonstrated in a behavioural experiment by (Fan et al., 2016) using the same 

object stimuli as the original fMRI study by (Williams et al., 2008). 

In the next chapter, we sought to test the influence of top down spatial frequency 

biases in the representation of scene images in early visual cortex. 
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3 Chapter 3: Classifying category perception of 
bistable hybrid images in early visual cortex 

3.1 Abstract 

We present two fMRI experiments in which we present subjects with ‘hybrid 

images’, which can be perceived as one of two natural scenes – one carried in low 

and one carried in high frequency information channels. We find that far 

peripheral early visual cortex may be influenced in a top down manner, whilst 

foveal cortex seems to more faithfully represent the feedforward input. This 

provides evidence for scene related feedback to far peripheral cortex. Both 

experiments have very few subjects, and so the conclusions are only speculation 

at this point. However, the theoretical implications are interesting if the observed 

trends are true. 

3.2 Chapter Introduction 

In the last chapter, we used a paradigm in which subsections of an image were 

occluded allowing us to isolate and examine feedback signals arriving into 

corresponding subsection of V1. This subsection of V1 received no relevant 

feedforward input. In real-life however, feedback and feedforward signals 

converge in the same regions of cortex and interact dynamically. Therefore the 

occluded paradigm is an artificial perceptual situation. In order to study feedback 

in a more ecologically valid context, it is desirable to have relevant feedforward 

information. This is challenging since the feedforward signals could mask the 

feedback signals in the BOLD signal. One way to approach this is to use stimuli 

with a bistable percept. That is a single stimulus with two mutually exclusive 

perceptual interpretations. A classic example is the Necker Cube illusion (in figure 

3-1).  
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The logic is that on any given trial the physical input to the visual system and the 

corresponding feedforward signal does not explain why the stimulus was perceived 

in the way it was. Thus any observed differences associated with the different 

perceptions, even in early visual cortex, can be attributed to top down or 

feedback influences. Thus we have a way to include the presence of a relevant 

feedforward signal and still to investigate some aspects of the interacting 

feedback signal. 

Here we use hybrid images which were originally developed by (Schyns & Oliva, 

1994). Hybrid images are composed of two superimposed images, the spatial 

frequencies of each of which is low- or high-pass filtered. This creates a single 

stimulus image which is bistable – only one of the two filtered images is perceived 

at any one time. With appropriately short presentation times, subjects tend to 

perceive just one of the images, with the non-perceived image contributing 

nothing more than perceptual noise.  

In keeping with the experiments in chapter 1, we presented natural scenes from 

different categories to the entire visual field. Sowden and Schyns (2006) 

hypothesise that feedback influences can act on spatial information in certain 

frequency bandwidths and also presented data showing that spatial frequency 

processing can be modulated in a top-down fashion at early stages of visual 

processing. Our data from the last chapter suggests that natural scene information 

is fed-back to both foveal and peripheral early visual cortex, therefore we probed 

for natural scene feedback at a range of eccentricities. We were interested in 

Figure 3-1 The Necker Cube illusion. 
Vertices A and B perceptually alternate 
between being perceived as being in the 
foreground or background, respectively.  
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whether feedback attributable to low spatial frequency information would be 

found more in the periphery and high spatial frequency information would be 

found in the fovea.  

Previous research using hybrid stimuli (Oliva & Schyns, 1997; Schyns & Oliva, 1994; 

Sowden, Özgen, Schyns, & Daoutis, 2003) were exclusively behavioural and the 

trials were much more numerous and presented much closer together in time than 

is usual for fMRI paradigms. We therefore had to modify the behavioural 

experimental design to be suitable for an event-related fMRI design. Critically, 

the inter stimulus intervals had to be substantially lengthened and although we 

observed some behavioural effects, they were not as clear as in previous research. 

Nonetheless, the results were informative. 

Previous studies claim that early visual processes are likely involved in producing 

the behavioural effects and base this conclusion on the observation that the 

effects can be targeted to a circumscribed region of the visual field. However, 

this research only probed such retinotopy at the scale of visual field quadrants. 

Thus the effects are constrained to any visual area which is selective to the 

left/right and upper/lower visual field. Many visual areas – several of them high 

level - fit this constraint. Therefore, using fMRI may help better localise the 

effect. 

3.3 Experiment 1 

3.3.1  Introduction 

We do not always perceive what is physically in front of us. This has repeatedly 

been demonstrated using visual illusions, where the experience of physical 

features are affected and even changed by prior knowledge, context, and 

expectation (see e.g. Muckli, 2010; Scholte et al., 2008; Wokke, Vandenbroucke, 

Scholte, & Lamme, 2013). For example, Schyns and Oliva (1994) developed hybrid 

images, which are two superimposed images of different categories each filtered 

so as to contribute non-overlapping spatial frequency information (high or low 

spatial frequencies). These hybrid images give rise to the striking observation that 

only one image can be perceived at a time, although both images are physically 
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present (Oliva & Schyns, 1997). By manipulating the presentation time duration, 

experimenters were able to bias subjects’ perception to perceive the image in low 

spatial frequency (shorter presentation time), or in high spatial frequency (longer 

presentation time) (Oliva & Schyns, 1997; Oliva, Torralba, & Schyns, 2006; Sowden 

et al., 2003). Remarkably the experimenters were also able to ‘sensitise’ the 

subject (without the subject being aware), to be biased to perceive a particular 

spatial frequency independent regardless of stimulus duration. This was achieved 

by presenting a train of ‘sensitisation images’, which only contained an image in 

the to-be-sensitised spatial frequency and structured noise (phase scrambled) in 

the other spatial frequency. Subjects gradually ‘tuned in’ to the spatial frequency 

in which meaningful information was present. When hybrid images were 

occasionally presented, subjects tended to perceive the image in the sensitised 

spatial frequency without realising that there was also an image in the other 

spatial frequency. This suggests that top-down expectation plays a role in spatial 

frequency processing. This leads to the question of how and where these 

operations are processed in the brain. Of particular interest is whether these ‘top-

down’ influences of expectation are fed back all the way to early visual cortex. 

To our knowledge, fMRI has not been used to investigate the role of feedback in 

processing spatial frequencies.  

Only a few fMRI studies have investigated spatial frequency processing in the visual 

cortices and generally used stimuli such as sinusoid gratings or spatial frequency 

band-passed scene images (Kauffmann et al., 2015). Interestingly, these studies 

showed that there were differences in how foveal and peripheral visual regions 

process spatial frequency. Specifically that HSF images tend to activate areas 

linked to foveal vision, while LSF images tend to activate regions associated with 

peripheral vision (Musel et al., 2013; Peyrin et al., 2005). This agrees with monkey 

studies by Tootell, Silverman, Hamilton, Switkes, and De Valois (1988) (using the 

C-2-deoxy-d-glucose uptake technique) showing that spatial frequency preference 

in low level (i.e. striate) visual areas varies inversely with eccentricity. In the case 

of higher areas specialising in scene analysis (such as PPA, RSC, OPS etc.) the 

picture is more mixed. Peyrin, Baciu, Segebarth, and Marendaz (2004) found that 

low spatial frequencies activated the right PPA and anterior temporal cortex (also 

known to be involved in scene analysis). However, Rajimehr, Devaney, Bilenko, 

Young, and Tootell (2011) showed essentially the opposite result in both humans 
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and macaques while Zeidman, Mullally, Schwarzkopf, and Maguire (2012) show a 

high spatial frequency preference for right PPA and a low spatial frequency 

preference for left PPA. One resolution to this may come from Musel et al. (2014) 

who showed a succession of filtered images of the same scene going from low-high 

or from high-low frequencies. PPA, RSC and OPA all activated more for the low-

high sequence, suggesting this is more in line with how these areas naturally 

process scenes (a ‘course-to-fine approach’). While the connection between 

spatial frequency and eccentricity is clear in low level areas, findings concerning 

higher level areas are more mixed.  

It is therefore interesting to speculate on how the high level areas interact with 

low level areas. These studies all assessed feedforward activity, but not top-down 

influences. Whether the correlation between eccentricity and spatial frequency 

biases are constrained to low-level feedforward signals or also affect feedback 

signals is unknown.  

We used the ‘bistable’ percept of hybrid stimuli to see if the neural 

representations in early visual cortex corresponded to the perceived spatial 

frequency (i.e. top-down perceptual experience) or to both (i.e. the physical 

feedforward activity). In addition, by using sensitisation (Oliva & Schyns, 1997) we 

aimed to bias the subject’s perception to a particular spatial frequency, and to 

assess if this bias strengthened over time as more sensitisation images were 

presented. We examined whether these effects were differentially present in 

foveal and peripheral visual regions, as previous research shows that feedforward 

processing of spatial frequency bands changes with eccentricity (Musel et al., 

2013; Peyrin et al., 2006). We hypothesise that low and high frequency 

information might be preferentially fed-back to peripheral and foveal cortex, 

respectively. 

3.3.2  Methods  

3.3.2.1  Subjects  

Five healthy subjects (4 male; mean 26.3 years old, range = 23-31) were recruited 

using the University of Glasgow, School of Psychology subject pool. All subjects 

had normal or corrected eye-sight and no history of brain damage. Subjects gave 
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consent and were screened in accordance with the safety criteria for fMRI 

scanning. One subject’s data was unusable for fMRI analysis due to data 

corruption.  

 

3.3.2.2  Stimuli and Apparatus  

The stimuli were projected with a refresh rate 70 Hz at a resolution of 768 x 768 

onto a screen (19.8° × 19.8° visual angle) which subjects viewed via a mirror 

attached to the head coil. The experiment was programmed and displayed using 

Presentation (Version 16.5, Neurobehavioural Systems). In addition, subjects 

underwent polar angle and eccentricity retinotopic mapping to localise V1. 

We presented two kinds of stimuli, created in a similar way to Özgen, Sowden, 

Schyns, and Daoutis (2005). Hybrid stimuli combined two images from different 

categories, whereas sensitisation stimuli combined a single image with a 

‘structured noise image’. We used 4 scene categories (mountain, city, forest, and 

living-room), with 6 exemplars in each. These choices of category was to balance 

categories that naturally contain much high spatial frequency content (city and 

living-room) and low spatial frequency content (mountain and forest). We avoided 

choosing images with large regions devoid of either low or high spatial frequency 

content so as not to create hybrids with regions containing diagnostic information 

about only one category.  

To create a hybrid image, the Fourier representations of two images from 

different categories, one low-pass filtered and the other high-pass filtered, were 

summed (figure 3-2 A & B). In this way, we created a hybrid for every possible 

between-category image pairing (e.g. a mountain image was combined with all 

images from the other categories, but not with other mountain images), and for 

both filtering possibilities (i.e. we created a version in which the first image was  

low-pass filtered and a corresponding version in which it was high-pass filtered). 

In total, this resulted in 432 hybrids. 

To create a sensitisation image, the Fourier representations of an image and a 

noise mask, one low-pass filtered and the other high-pass filtered, were summed 

(see figure 3-2 C & D). The noise masks were created by summing the Fourier 

representations of two images from different categories after randomly increasing 
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or decreasing the phase angles by a constant amount (=0.628). We generated 5 

sensitisation images per category exemplar per filtering possibility, each time 

randomly selecting a pair of images to create the noise mask. In total, this resulted 

in 240 sensitisation images. 

 

Figure 3-2 Examples of the experimental stimuli. A & B. Hybrid stimuli: A mountain and 
city scene combined. Panel A shows the mountain scene in high spatial frequency and city 
scene in low spatial frequency, panel B shows the same images but in opposite spatial 
frequencies. C & D. Sensitisation stimuli: A forest scene in either high spatial frequency 
(panel C) or low spatial frequency (panel D) combined with a noise image of opposite 
spatial frequencies. 
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The distance from the observer to projection screen was 108cm and the diameter 

of the stimuli was 768 pixels, subtending a visual angle of 19.8°. Hence, one 

degree of visual angle was 38.8 pixels. The low spatial frequency filter was a 2D 

symmetric Gaussian with a standard deviation equal to 1 cycle per degree (cpd). 

The high spatial frequency filter was an inverted 2D symmetric Gaussian with a 

standard deviation of 5 cpd. The global luminance of the final stimuli were 

normalised. Moreover, the uniform grey area surrounding the stimuli also had the 

same global intensity as did the images. 

3.3.2.3  Task and Procedure 

The experiment consisted of five experimental runs and two retinotopic mapping 

runs. No hybrid stimulus was repeated during the experiment. The start of each 

run had a 12 second baseline where only a fixation cross was shown. The fixation 

cross disappeared when a stimulus was onscreen, so as not to obscure information 

in the foveal visual field. The subjects were instructed to maintain fixation and 

indicate which category they had perceived (or which category seemed 

perceptually stronger if both were perceived – note that this would represent a 

suboptimal situation from our experimental perspective) with a button press as 

soon as they could. Each functional run lasted 9 minutes 48 seconds. 

Each experimental run began with a block of 24 hybrid stimuli, presented in an 

event-related design. Each hybrid was shown for 135ms (Özgen et al., 2005) with 

an inter-stimulus interval (ISI) of 5865ms. The hybrids were pseudo-randomly 

selected with the constraint that each category was represented twice in each SF 

and there was an equal number of between-category pairings. After the 24th 

hybrid image there followed a 10 second baseline.  

The second part of the run consisted of 18 sensitisation blocks each followed by a 

single hybrid. Three blocks sensitising either low spatial frequency of high spatial 

frequency were presented consecutively. This allowed us to assess strengthening 

of the biasing as the same spatial frequency was sensitised. The sensitisation 

blocks consisted of 8 sensitisation images with each category represented twice 

and shown in a random order.  Each sensitisation image was shown for 135ms with 

an ISI of 1515ms. Following each sensitisation block there was a 5865ms baseline 

before the hybrid was presented for 135ms. In the 18 hybrid stimuli following the 
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sensitisation blocks, each category was represented at least once in each spatial 

frequency. Each run ended with a 10 second baseline period. 

3.3.2.4  Data Acquisition  

Functional and anatomical MRI data was acquired using a 3 Tesla MRI system 

(Siemens Tim Trio) with a 32-channel head coil. For the functional scans an EPI 

sequence was used with the following parameters: 15 slices, aligned with the 

calcarine sulcus, gap thickness 0.25mm, TR-1s, TE-30ms, 588 volumes per run 

(polar angle mapping = 792 volumes, eccentricity mapping = 536 volumes), a FOV 

of 192mm, flip angle of 62° and a resolution of 2x2x2.5mm. The T1 weighted 

anatomical MRI sequence had a TR of 2.3s, 192 volumes, and a resolution of 

1.0mm3. The T2 weighted anatomical MRI sequence had a TR of 2s, 172 volumes, 

and a resolution of 1x0.5x0.5mm (later re-sampled to 1mm3). 

3.3.2.5  Data preprocessing  

The functional and anatomical data were preprocessed using BrainVoyager QX 2.8 

(Brain Innovation, Maastricht, The Netherlands). The first two volumes of each 

functional run were discarded to avoid saturation effects. The functional data for 

each run were corrected for slice acquisition time and head movements. Linear 

and low frequency drifts in the data were removed. The functional data were 

aligned to the T2 image which itself was aligned to the T1 anatomical, this 

resulted in a good alignment between the functional and anatomical T1 scans. The 

run-to-run alignment was assessed using a customised matlab script and thereafter 

manually evaluated to see if any run was misaligned. None of the subjects’ runs 

were deemed misaligned and thus all runs were included in the analysis. A model 

cortical surface of the white matter gray matter boundary was created from the 

ACPC anatomical scans. 

3.3.2.6  ROI Definitions  

For each subject, the functional data were projected onto the cortical surface. 

After localising V1, V2 and V3, using the polar and eccentricity data, the ROIs were 

defined (figure 3-3) by taking eccentricity bands across V1, V2 and V3 
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approximately corresponding to between 1-3°, 3-6° and 6-10+°. This was done in 

both hemispheres and the corresponding eccentricity ROIs were combined.  

 

 

 

 

 

 

 

 

 

 

3.3.2.7  Data Analysis  

We used a general linear model (GLM) to estimate each voxel’s HRF amplitude for 

each individual event/block in each run. Sixty conditions were defined; the 24 

hybrids from the start of the run, each sensitisation block (= 18), and each hybrid 

following sensitisation blocks (= 18). The behavioural bias modulation due to 

sensitisation blocks was very weak (i.e. it sensitised trials were not much more 

likely to be perceived in a given spatial frequency than were non-sensitised 

hybrids). Thus there were too few sensitised hybrids that followed the expected 

pattern to support analysis on exclusively the sensitised trials. We opted to pool 

all hybrid trials (24 + 18) to increase power. To classify trials, an SVM classifier 

was used create a discriminating function based on the associated multivariate 

voxel response patterns from 4 runs (“Training”). The discriminating function was 

then used to classify trials presented during the remaining run (“Testing”). This 

Figure 3-3 Example of ROI definitions in the left hemisphere. 
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procedure was repeated, each time using a different run as the “test run” (i.e. 

‘leave one run out’ cross-validation procedure). 

Since a hybrid image consists of two different categories (one in each spatial 

frequency) we could label all trials according to the category contained in either 

the low or high spatial frequency. We therefore attempted category classification 

of the low or high frequency content.  

We then attempted to classify all hybrid trials which were labelled according the 

reported or according to the unreported category, regardless of the spatial 

frequency of the reported category. We also performed the same analysis for trials 

in which low spatial frequency or in which high spatial frequency image was 

reported.  

Since the perception was self-reported by the subject in the scanner through 

button-presses, we also ran a control analysis to evaluate the possible contribution 

of motor responses to the classification of reported category. To do this we 

labelled the hybrids according to whether a button press was made with either 

the right hand (forest and indoors) or left hand (mountain and city). Significant 

classification for this labelling scheme implies that motor responses may have 

confounded the results. Additionally, we created labels based on perceptual 

reports of the man-made (city and indoor) and natural (mountain and forest) 

categories. In this case, the button presses were more balanced (left 3rd digit + 

right 2nd digit vs. left 2nd digit + right 3rd digit) and thus ought to be less 

informative for classification. Therefore, if classification was significant in this 

instance then the category perception was considered more plausible (albeit 

indirectly so) than were motor responses in classification of reported category. 

To assess the significance of individual subject level effects, we performed a 

permutation of the classification score for each condition labels (n=1000), and 

compared this to the real data. The permutation scrambles the labels and yields 

chance-level results. It was considered significant if the proportion of the 

permuted scores did not outperform the real scores more than 5%.   
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To assess the significance of group level effects, we bootstrapped (with 

replacement) the mean group classification value 10’000 times and if 95% of these 

values exceed chance level (50%) it was considered the classification successful. 

3.3.3  Results 

3.3.3.1  Behavioural Results 

The behavioural data for sensitisation effect is shown in figure 3-4. Individual data 

(N=5; the fifth subject still had behavioural data although the imaging data was 

corrupted) is shown in the first five panels, and the sixth panel shows the group 

normalised mean data, with bootstrapped (with replacement) 95% confidence 

intervals. Since each subject was likely to have different inherent perceptual bias 

towards a spatial frequency, we used all the data from the hybrids only phase at 

the start of each run to estimate a baseline. Thereafter, in the sensitised hybrid 

data, we calculated the percentage of responses that the subject reported the 

spatial frequency to which the block was sensitising towards (sensitisation 

strength). In the group averages it can be observed that for HSF the perceptual 

bias has significantly changed from baseline after one and three blocks of 

sensitisation (block one: 95% CI [0.63 – 25.97]; p=0.01, block three: 95% CI [0.1 – 

23.47]; p=0.023). For LSF, the perceptual bias shows a significant change from 

baseline after sensitisation blocks two and three (block two: 95% CI [-0.8 – 13.96]; 

p=0.037, block three: 95% CI [-3.06 – 28.2]; p=0.04). 
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Figure 3-4 Behavioural results of sensitisation effect on perceptual bias. The first five 
panels show each subject’s data. The y-axis represents classification scores in 
percentages. The x-axis shows sensitisation strength, where each number signifies 
sensitisation block number. Blue line shows LSF and yellow line HSF, where the horizontal 
lines represents each spatial frequency’s baseline bias (acquired from un-sensitised 
hybrids). The sixth panel shows the group mean data normalised based on each subject’s 
baseline bias. The group data was bootstrapped (with replacement, n=1000). Overall 
there seem to be indications of a positive relationship between sensitisation strength and 
perceptual bias. 
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At first glance, there seems to be a trend towards an increase in perception bias 

with sensitisation strength. When fitting a line-of-best-fit through the data of each 

subject, three out of five subjects have positive slopes for LSF, and four out of 

five subjects have positive HSF slopes. Bootstrapping the group means reveal a 

significantly positive slope in LSF perceptual bias with increasing sensitisation 

(slope: 4.31; p=0.043). The group mean slope of the HSF (slope: 2.4941) did not 

reach significance (p=0.19).  

3.3.3.2  Classification Results  

As shown in figure 3-5, we could not classify the category contained in the low 

frequency in any ROI (foveal: 49.1%, p=0.6648; peripheral: 51.0%, p=0.1193; far-

peripheral: 51.4%, p=0.0762). However in the high frequency this was possible in 

foveal cortex, although the effect was small (foveal: 52.3%, p<0.0001; peripheral: 

51.1%, p=0.1279; far-peripheral: 50.6%, p=0.2317). 

 

 

 

 

 

 

 

Interestingly, classification of the reported category perception was significant in 

all ROIs (figure 3-6). This was the case when all hybrid trials were included (foveal: 

63.4%, p<0.0001; peripheral: 62.4%, p<0.0001; far-peripheral: 62.7%, p<0.0001) or 

when only those hybrids were included where perception of low frequencies 

occurred (foveal: 61.3%, p<0.0001; peripheral: 61.2%, p<0.0001; far-peripheral: 

61.5%, p<0.0001) and classification was particularly good when perception of high 

Figure 3-5 Group average SVM 
decoding accuracies of the categories 
that appeared in low and high spatial 
frequencies across all trials in three 
eccentricity ROIs: fovea, periphery 
and far periphery. Data was 
bootstrapped (with replacement 
n=10’000) and individual subject data 
is plotted on top of each bar. 
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frequencies occurred (foveal: 70.9%, p<0.0001; peripheral: 69.3%, p<0.0001; far-

peripheral: 68.3%, p<0.0001). 

This pattern of results was also largely true when we labelled all hybrids according 

to the category that was not reported by the subject (foveal: 59.5%, p<0.0001; 

peripheral: 60.5%, p<0.0001; far-peripheral: 59.6%, p<0.0001). This shows that, 

while not reported, the information was still available to the classifier. It is 

unclear whether the unreported category was actually perceived by the subject, 

since they were tasked with responding to whichever category seemed 

perceptually stronger. The analogous classifications for perception of low 

frequencies were lower and only significant in the peripheral ROI (foveal: 54.8%, 

p=0.0612; peripheral: 55.9%, p=0.0040; far-peripheral: 55.4%, p=0.062). Once 

again, particularly good classifications of high frequency content resulted even 

when this was not the reported category (foveal: 69.8%, p<0.0001; peripheral: 

70.3%, p<0.0001; far-peripheral: 71.1%, p<0.0001). 

 

 

 

In the control analysis to evaluate the possible contribution of motor responses to 

the classification of reported category (figure 3-7), we found that we could 

classify above chance which hand was used to respond (left vs. right: foveal: 

Figure 3-6 Group average SVM decoding accuracies of reported and unreported categories 
across all trials in three eccentricity ROIs: fovea, periphery and far periphery. Data was 
bootstrapped (with replacement n=10’000) and individual subject data is plotted on top 
of each bar. 
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64.4%, p<0.001; peripheral: 60.6%, p<0.001; far-peripheral: 62.5%, p<0.001), 

implying that motor responses may have played a role in our ability to classify in 

previous analyses. By studying figure 3-7, it can be seen that one subject in 

particular (denoted by the star symbol) had high classification scores for motor 

responses.  

 

 

 

 

 

 

3.4 Discussion  

Our behavioural data showed a trend towards a linear relationship between 

sensitisation strength and perceptual bias. In other words, there were indications 

that with increased sensitisation the participant reported more frequent 

perception of the sensitised spatial frequency direction. However this effect was 

based on only five subjects (four of which were available for fMRI analysis) and 

very weak, with an average shift in bias of only a few percent. This hindered our 

ability to evaluate the effect of top down influences on spatial frequency 

processing in early visual cortex. Despite this, some positive findings emerged. 

For the most part we were unable to classify hybrid categories labelled according 

to their low or high spatial frequency content. However, the reported category 

was readily available to the classifier as was the unreported category – particularly 

in the case of high spatial frequency content. These results seem inconsistent – 

why can we robustly classify the high spatial frequency content: 1) when it is 

reported, 2) when it is unreported but not 3) when we label this content in all 

trials, regardless of whether it was reported or not? Given that the motor 

Figure 3-7 Group averages of influences of button-
presses on classification results. Each bar colour 
shows different conditions (see legend) and each 
condition is shown in each ROI: fovea, periphery 
and far periphery. X-axis shows decoding accuracy, 
while y-axis shows ROIs. Data was bootstrapped 
(with replacement n=1000) and individual data is 
plotted on top of each bar. There seem to be a 
large effect of right vs. left hand condition, 

although inter-subject variability seems large. 
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responses may have affected our data, it may be that the classifier was able to 

use that fact that a given unreported category was never associated with its 

mapped button response (but would have been associated with button responses 

to the other 3 categories) to achieve above chance classification. For example, 

when classifying unreported high spatial frequency occurrences of ‘Mountain’ and 

‘City’, the consistent absence of a particular button press (e.g. for ‘Mountain’) 

might have resulted in a consistent difference in the neural pattern as compared 

to the unreported ‘City’ trials – which would occasionally have been associated 

with a button press for ‘Mountain’ when this category was being reported in the 

low spatial frequency. 

If motor responses can be ignored, the result that classification of both reported 

and unreported categories is possible suggests that in early visual cortex 

information from both low and high spatial frequencies remain despite the 

bistable nature of the stimuli. However, since there were only 24 images at play 

and this experiment had 930 total trials, subjects quickly became familiar with all 

of the images. After the experiment subjects said that they often recognised both 

images in hybrid trials, and reported whichever seemed ‘perceptually stronger’ 

(as instructed). This is undesirable from an experimental standpoint. Another 

barrier to bistable perception in experiment 1 was that the spatial frequencies 

were Gaussian filtered. Such a filter is suboptimal in this case because it merely 

reduces, but does not eliminate, the power in various frequency bands – that is, 

it does not achieve a sharp spatial frequency cut-off. This latter point may go 

some way to explaining why we did not observe any differences in spatial 

frequency information among foveal, peripheral and far peripheral ROIs. 

Considering the novelty of the paradigm in an fMRI setting and the low sample 

size, it is intriguing that some trends emerged. It is important to further 

underscore that the data and their generalisability needs to be interpreted with 

caution. Despite this, some interesting patterns were revealed which justify 

continuing to improve the paradigm to further explore the potential use of hybrid 

images in investigating cortical feedback. We sought to do this in experiment 2. 
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3.5 Experiment 2 

3.5.1  Introduction  

There were a number of shortcomings in experiment 1 which we attempted to 

address in experiment 2. The most obvious was to simply counter-balance the 

finger response mapping across runs to eliminate any motor confounds.   

The sluggish nature of the BOLD signal makes it impractical to attempt 

sensitisation using many rapidly presented trials if individual trial estimates are 

needed. Therefore the main difference between experiments 1 and 2 was to 

abandon sensitisation as a manipulation. We still included sensitisation images, 

but these were now randomly interspersed with hybrid images throughout the run. 

We hereafter refer to sensitisation images as ‘probes’. Our aim was to investigate 

the relation of neural patterns generated by probes and hybrid trials in which the 

spatial frequency perceived matched the spatial frequency of the probe.  

In order to avoid recognition effects and therefore to enhance the bistable nature 

of the stimuli, in experiment 2 we used many more images - presenting each image 

only twice per experimental session. To enhance the bistable nature of hybrid 

stimuli, previous research has used a second-order Butterworth filter (for details, 

see Schyns & Oliva, 1994) to better separate the spatial into exclusively low and 

high spatial frequencies. We take the same approach in experiment 2 choosing the 

filter cut-offs such that there was a distance of 2 octaves between spatial 

frequency bands. This should help to avoid overlapping stimulation of the same 

neurons in early visual cortex by the different spatial frequency filtered images, 

as previous neurophysiological studies have shown that the average spatial 

frequency bandwidth of neurons in macaque V1 ranges from 1-1.5 octaves (De 

Valois, Albrecht, & Thorell, 1982).  

We hypothesised that if only one of the two presented images in a hybrid can be 

processed at a time, the activation pattern in early visual cortex should only 

represent information about the perceived, but not the unperceived image. We 

were also interested in whether a hybrid image perceived in a given spatial 

frequency generated a similar pattern to a probe image of the same spatial 
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frequency. Such a correspondence would be evidence that the non-perceived 

image in the hybrid is akin to noise as is actually the case in the probe stimuli. 

Once again, we analysed the data in foveal, peripheral and far peripheral early 

visual cortex. 

3.5.2  Methods  

Unless otherwise stated, the details of experiment 2 were identical to experiment 

1. 

3.5.2.1  Subjects  

Five healthy subjects (3 male; mean 24.8 years old, range = 21-26). 

3.5.2.2  Stimuli and Apparatus  

To avoid recognition of learned images, each hybrid and probe stimulus contained 

unique natural scene images selected from the SUN database (Xiao et al., 2010). 

For each category, 180 images were selected, resulting in a total of 180 unique 

hybrids, 90 LSF, and 90 HSF probes (therefore, each image appeared once in a 

hybrid stimulus and once as a probe stimulus). Images were cropped to 768´768 

pixels, transformed into Fourier space and filtered in either HSF or LSF using a 

second-order Butterworth filter (for details, see Schyns & Oliva, 1994) with cut-

off values of 1.35cpd and 5.4cpd for LSF and HSF, respectively. Thus, there was a 

distance of 2 octaves between spatial frequency bands. Throughout the 

experiment, a small white cross appeared at the centre of the screen. We changed 

the fixation cross so that it could be continuously displayed without obscuring the 

central image region. This change obviated the need to briefly remove the fixation 

from the display when the image appeared (as was done in experiment 1) which 

could conceivably interfere with foveal processing. 
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Figure 3-8 Examples of the experimental stimuli. A & B. Hybrid stimuli: A mountain and 
city scene combined. Panel A shows the mountain scene in high spatial frequency and city 
scene in low spatial frequency, panel B shows the same images but in opposite spatial 
frequencies. C & D. Probe stimuli: A forest scene in either high spatial frequency (panel 
C) or low spatial frequency (panel D) combined with a noise image of opposite spatial 
frequencies. Note that using the Butterworth filter produces a more bistable percept than 
does the Gaussian filter used in experiment 1 (figure 3-2). 
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3.5.2.3  Task and Procedure  

Throughout the experiment, subjects fixated on a small white cross in the centre 

of the screen. Each experimental session consisted of six experimental runs, two 

retinotopic mapping runs, and an anatomical scan. In total, each session lasted 

approximately 1.5 hours. Experimental runs started and ended with a 20s baseline 

during which a grey screen was presented. During each experimental run, 30 

hybrids, 15 LSF probes, and 15 HSF probes were presented in a randomised order 

for 120ms each with an inter-stimulus interval (ISI) of 5,880ms. Participants 

pressed one of three buttons on a button box in their right hand to indicate which 

of the three image categories they perceived. Button responses for the different 

categories were counter-balanced between runs, to avoid a potential motor 

response confound in early visual areas. Each experimental run lasted 6 minutes 

and 40 seconds. 

3.5.2.4  Data Acquisition  

Functional and anatomical MRI data was acquired using a 3 Tesla MRI system 

(Siemens Tim Trio) with a 32-channel head coil. For the functional scans an EPI 

sequence was used with the following parameters: 17 slices, aligned with the 

calcarine sulcus, gap thickness 0.3mm, TE-24ms, 395 volumes per run, and a 

resolution of 3mm3. We did not acquire a T2 weighted anatomical image. 

3.5.2.5  Data Preprocessing  

The functional data were aligned with the high resolution T1 weighted anatomical 

data. 

3.5.2.6  Data Analysis  

As in experiment 1, one option was to label all hybrid trials according to the 

category in either the low or high spatial frequency. We therefore attempted 

category classification of the low or high frequency content. We also attempted 

category classification of probe images (which contain a meaningful category in 

only one frequency).  
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Next, we attempted to classify the reported category. Given that each trial had a 

unique category exemplar (rather than 1 of a possible 6, as in experiment 1), our 

first step was to ensure that category classification was possible at all. We thus 

trained and tested an SVM classifier on all trials (hybrids and probes) labelled 

according to reported category. We also attempted the same analysis for trials in 

which low the spatial frequency or in which high spatial frequency image was 

reported (note that in the case of probe trials, there was only one perceptual 

option available for the subject). 

 

We then analysed the hybrid stimuli separately from the probes. As in experiment 

1, we attempted to classify all hybrid trials which were labelled according the 

reported or according to the unreported category. We also attempted the same 

analysis for trials in which low the spatial frequency or in which high spatial 

frequency image was reported. 

We were next interested in whether a hybrid image perceived in a given spatial 

frequency generated a similar pattern to a probe image of the same spatial 

frequency. To test this, we trained an SVM classifier on probe images of a given 

spatial frequency and attempted to classify the image in the same frequency in 

hybrids trials, both in trials when that frequency was reported or not reported. 

3.5.3  Results  

3.5.3.1  Behavioural Results  

We plotted behavioural responses to ensure participants were able to accurately 

perceive scene images in both high and low spatial frequencies across the 

different stimulus types. All participants were able to correctly classify images as 

one of the three stimulus categories (beach, forest, or mountain) with average 

accuracies of 79.8%, 74.7%, and 91.1% for LSF probes, HSF probes, and hybrids, 

respectively (figure 3-9 A). Accuracy was higher for the hybrid stimuli, presumably 

because chance level was 66% (as there are two images from three possible 

categories presented), as compared to 33% in the probes. The fact that accuracy 

is lower for probe trials suggests that subjects were not able to fully examine both 

high and low spatial frequency bands to determine the informative frequency and 
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the category contain therein. In the case of hybrids, either frequency will yield a 

category response. This suggests that the stimuli are likely more bistable than 

experiment 1 and lead to exclusive to perception in a single frequency. Although 

there was a slight bias across participants to report the HSF image of a hybrid 

(mean LSF bias = 42.1%; see shaded area in figure 3-9 B), all participants were 

able to report the LSF image in some trials and the HSF image in other trials. 

Interestingly, individual biases remained moderately stable across experimental 

runs (see individual lines in figure 3-9 B). 

 

 

 

 

 

3.5.3.2  Classification Results 

We emphasise at the outset that although we will note differences between ROIs 

and conditions, these are only trends seen by eye in the data and are not 

supported by statistical tests. We justify this approach only by the fact that we 

are limited to the data at hand and use it as a base for exploratory thought in 

Figure 3-9 Behavioural results. A. Mean accuracy of reported category for low and high 
spatial frequency probes and hybrids. Bars show the mean accuracy across participants 
and black dots show individual accuracy rates across runs. Dashed lines indicate chancel 
level (33% and 66%, respectively). B. Inherent spatial frequency bias in hybrid trials. Lines 
show individual subjects across runs. Shaded area shows +/- 1 standard deviation around 
the group mean. 
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favour of simply concluding more data is needed to draw conclusions (while at the 

same time fully endorsing this latter point of view).  

As shown in figure 3-10, we could not classify the category contained in any ROI 

in the low frequency probes (foveal: 46.4%, p=0.8403; peripheral: 50.6%, 

p=0.4078; far-peripheral: 50.9%, p=0.3705). This was also the case for high 

frequency probes (foveal: 51.0%, p=0.2972; peripheral: 54.5%, p=0.0758; far-

peripheral: 52.3%, p=0.1475). For hybrid trials, we were able to classify the 

category contained in the low frequency the foveal and peripheral but not in far 

peripheral ROIs (foveal: 51.7%, p=0.0088; peripheral: 52.6%, p<0.0001; far-

peripheral: 50.6%, p=0.2804). Interestingly, this was also the case in high 

frequency (foveal: 54.2%, p<0.0001; peripheral: 53.5%, p<0.0001; far-peripheral: 

51.0%, p=0.3477). The failure to classify probes above chance is likely due to the 

fewer trial numbers (15 of each probe frequency per run) compared to hybrids (30 

per run), as evidenced by the increased variability (figure 3-10). As such, we will 

not focus on probe trials in isolation. What is interesting is the Hybrid trials – 

although the errorbars overlap, the similarity in the fovea-periphery-far periphery 

gradient is noteworthy. 

 

 

 

 

 

 

 

 

 

Figure 3-10 Group average SVM decoding accuracies of the 
categories that appeared in low and high spatial frequencies, in 
probes and in hybrids, in three eccentricity ROIs: fovea, periphery 
and far periphery. Data was bootstrapped (with replacement 
n=10’000) and individual subject data is plotted on top of each bar. 



86 
 
Next, we attempted to classify the reported category using all trials (hybrids and 

probes) to give maximum power to the SVM and thus show what accuracies we 

might expect in subsequent analyses. Classification of the reported category 

perception (figure 3-11) was significant in peripheral and particularly good in far 

peripheral ROIs when all trials were included (foveal: 50.5%, p=0.3684; peripheral: 

53.3%, p=0.0002; far-peripheral: 55.7%, p<0.0001). The first thing to notice is the 

reversal of the fovea-periphery-far periphery gradient pattern observed earlier. 

Also Interesting, is that when only those hybrids where perception of low 

frequencies occurred we were additionally able to classify above chance in foveal 

cortex (foveal: 53.6%, p=0.0021; peripheral: 54.6%, p<0.0001; far-peripheral: 

54.1%, p<0.0001) and the same pattern emerged in hybrid trials where perception 

of high frequencies occurred (foveal: 52.2%, p=0.0141; peripheral: 53.9%, 

p<0.0001; far-peripheral: 54.8%, p<0.0001). Increased classification accuracy in 

foveal cortex for the latter two comparisons is particularly surprising as there are 

about half as many trials to train the classifier in these cases which would decrease 

power as compared to using all trials.  

 

 

 

 

 

 

 

When running the above comparisons in hybrid trials only, we see a similar pattern 

of results, albeit weaker owing to less training data and also not corrected for 

multiple comparisons and should therefore be treated only as a starting point for 

cautious speculation (figure 3-12). Classification of the reported category 

perception was significant in the far peripheral ROIs when all hybrid trials were 

Figure 3-11 Group average SVM 
decoding accuracies of reported 
and unreported categories across 
all trials (probes & hybrids) in 
three eccentricity ROIs: fovea, 
periphery and far periphery. Data 
was bootstrapped (with 
replacement n=10’000) and 
individual subject data is plotted 
on top of each bar. 
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included (foveal: 49.2%, p=0.8585; peripheral: 51.3%, p=0.218; far-peripheral: 

53.0%, p=0.0214). The peripheral advantage remained when only those hybrids 

where perception of low frequencies occurred were used (foveal: 51.3%, 

p=0.2768; peripheral: 56.7%, p<0.0001; far-peripheral: 54.0%, p=0.0156) and a 

similar, but non-significant, trend appeared in hybrid trials where perception of 

high frequencies occurred (foveal: 48.6%, p=0.8373; peripheral: 48.5%, p=0.9076; 

far-peripheral: 52.4%, p=0.0862). It is interesting that we see a foveal advantage 

when classifying the category shown in a particular frequency, regardless of the 

frequency of the reported percept, but we see a peripheral advantage in the case 

of the reported percept. If confirmed with further data, and bolstered with 

appropriate corrections for multiple comparisons, this would represent an 

intriguing observation. 

 

 

 

Labelling hybrids according to the unreported category resulted generally in more 

variable classification accuracies across subjects, despite the number of trials in 

this analysis remaining the same. We will report these results, but not speculate 

about them with this additional source of uncertainty on top of all the 

aforementioned uncertainty.  Using all hybrids, we were not able to classify above 

chance in any ROI (foveal: 48.9%, p=0.8125; peripheral: 48.9%, p=0.8769; far-

Figure 3-12 Group average SVM decoding accuracies of reported and unreported 
categories across all trials in three eccentricity ROIs: fovea, periphery and far periphery. 
Data was bootstrapped (with replacement n=10’000) and individual subject data is plotted 
on top of each bar. 
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peripheral: 48.3%, p=0.8390). The analogous classifications for perception of low 

frequencies were significant in the foveal ROI (foveal: 52.8%, p=0.0254; 

peripheral: 51.7%, p=0.1758; far-peripheral: 50.1%, p=0.4815). For high frequency 

perception classifications, we were able to classify above chance in foveal and 

peripheral ROIs (foveal: 57.8%, p=0.0306; peripheral: 57.0%, p=0.0179; far-

peripheral: 50.5%, p=0.3549), although the subjects were particularly variable.  

Lastly we looked at whether probes of a given frequency could be used as a model 

to classify the category in the same frequency in hybrid trials both when that 

frequency was reported and when it was not reported (figure 3-13). Nearly all 

results were non-significant. We found that models trained on low frequency 

probes could classify categories reported in the low frequency hybrid image in the 

periphery (foveal: 49.4%, p=0.8113; peripheral: 52.9%, p<0.0003; far-peripheral: 

50.9%, p=0.2930). Whereas, attempts to classify unreported low frequency hybrid 

categories failed (foveal: 50.8%, p=0.3651; peripheral: 49.6%, p=0.6355; far-

peripheral: 47.3%, p=0.9998). Conversely, models trained on high frequency 

probes could classify categories reported in the high frequency hybrid image in 

the fovea (foveal: 53.5%, p<0.0001; peripheral: 51.4%, p=0.0999; far-peripheral: 

49.5%, p=0.6105). Once again, classifying unreported high frequency hybrid 

categories failed (foveal: 46.8%, p=1.0000; peripheral: 47.0%, p=0.9257; far-

peripheral: 49.6%, p=0.7899). 

 

 

 

 

 

 

 Figure 3-13 Group average SVM decoding accuracies reported 
and unreported hybrid categories, using models trained on 
low or high frequency probes, in three eccentricity ROIs: 
fovea, periphery and far periphery. Data was bootstrapped 
(with replacement n=10’000) and individual subject data is 
plotted on top of each bar. 
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3.5.4  Discussion  

Experiment 2 was largely an attempt to improve on experiment 1. We conducted 

identical analyses as in experiment 1, in addition to some novel ones afforded by 

the probe trials. In experiment 2 classifying the category in low and high frequency 

channels in hybrid trials, regardless of which category was perceived, was 

successful in foveal and peripheral (but not in far peripheral) cortex. This 

contrasts with experiment 1, in which only high frequency information was 

available and then only in foveal cortex. The increased ability to classify in 

experiment 2 may have been due to a better separation of spatial frequency 

information as a result of the Butterworth filter.  

When grouping hybrid and probes trials according to low or high frequency 

perception, we were additionally able to classify the category in far peripheral 

cortex. While the data presented here are too few to support any strong 

conclusions, we speculate that further support for the role of category perception 

per se in far peripheral cortex comes from analyses in which category perception 

was classified across all trials regardless of the perceived frequency. In this case 

we again saw an advantage for far peripheral but now also coupled with a lack of 

classification in foveal cortex – in contrast to classifying the category in low and 

high frequency channels regardless of category perception. That category could 

be classified in foveal cortex when grouping trials according to low or high 

frequency perception but not when pooling all trials could be taken to suggest 

that low and high frequency information is represented differently in foveal cortex 

whilst in far peripheral cortex a more generalised/courser category representation 

occurs (since perceived category classification was successful in all cases).  

The trend for a far peripheral advantage for classifying perceived category 

described above was also apparent when only hybrid trials (but not probes) were 

considered. In addition, as in experiment 1, we also looked at classification of the 

unreported category. Unlike in experiment 1, in which both the reported and 

unreported category was readily available to the classifier in all ROIs, in 

experiment 2 only the reported category was available when pooling all hybrid 

trials and then only in the far peripheral ROI. Again we see an advantage for far 

peripheral cortex when classifying perceived category. 
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The last analysis was to train a model on low or high frequency probes and attempt 

to classify the category in low or high frequency channels in hybrid trials. Nearly 

all results were non-significant and so we urge extreme caution in the following 

discussion. We tried this approach both on reported and unreported hybrid 

categories. While no information was available for unreported categories, we 

found that classification of reported low and high frequency categories was 

possible in peripheral and foveal cortex, respectively. It is interesting that the 

established far peripheral advantage for perceived category classification was not 

present in this analysis. One speculative explanation is that some process occurs 

in far peripheral cortex for hybrid but not probe images (which then hinders cross-

classification). Perhaps the presence of two images in hybrid trials induces some 

form of suppression of the non-perceived category. Since this process would not 

occur in probe images (since only a single image exists) the neural patterns in far 

peripheral cortex are dissimilar. The absence of such a suppressive process in 

foveal and peripheral cortex during hybrid trials would perhaps result in a similar 

neural pattern to corresponding probe trials. This interpretation must be taken 

with caution both because of the small number of subjects and also the fact that 

regular classification of probe trials failed (figure 3-10).   

In experiment 2 we overcame many of the shortcomings of experiment 1. As such, 

the trends regarding an advantage in classifying perceived category from far 

peripheral cortex and in classifying category regardless of perception from foveal 

cortex are intriguing. However, before any of the results presented here can be 

taken seriously, much more data would be required to confirm them. 

3.6 Chapter Discussion 

We presented hybrid images to subjects while recording fMRI in two experiments. 

In experiment 1 we found that we could classify the reported and the unreported 

category, regardless of the frequency in which it was perceived. This could be 

interpreted as evidence that image content from both frequency channels was 

present in early visual cortex and that only in higher areas does the visual system 

select one of the images to enter conscious awareness. However such an 

interpretation is problematic due to various shortcomings in the design and in the 

stimuli used for experiment 1. It seems probable from self-reports that subjects 
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consciously perceived both images in our hybrid stimuli and thus classification of 

both images would be expected.  

In experiment 2, we addressed these shortcomings and obtained different results. 

We found that the perceived category was generally classifiable in far peripheral 

early visual cortex. Conversely, foveal cortex seemed to represent information 

independently of category perception. While based on only five subjects, these 

results are intriguing although further data collection would be needed to confirm 

them. 

The absence of category information in one spatial frequency channel (i.e. a 

failure to classify the unreported image) can be interpreted in one of two ways. 

First, it could be an indication that feedback information was sent to early visual 

areas and affected the feedforward information which ought to represent the 

physically present input from both spatial frequency channels. Second, it could be 

that on a given hybrid trial that some kind of biased competition-like process 

occurred within early visual cortex and was resolved without any feedback 

influence, resulting in only one of the two possible feedforward representations 

becoming fully established and later fed-forward to higher areas. In experiment 

2, since the subject was not instructed or induced to focus on a particular spatial 

frequency channel, and since all subjects perceived sometimes low and sometimes 

high frequencies, there need not have been a top down driving influence. 

However, we do not see evidence of such a biased competition process in foveal 

cortex – since we were able to classify both low and high frequency channel 

information, regardless of which was perceived. This suggests that the selection 

of a particular image/frequency occurred later in the cortical hierarchy, which 

leaves room for a feedback interpretation for our ability to classify reported 

category in the far periphery. 

This raises the question of why only far peripheral cortex would be subject to such 

top down influences. It is especially interesting in light of the results from chapter 

2 in which we repeatedly found evidence of scene related feedback to both foveal 

and peripheral cortex. In chapter 2 we suggested that “[…] retinotopic biases 

throughout the visual hierarchy provide an organisational scheme for segregated 

cortical feedback of information about distinct higher level stimuli.” The results 

regarding the far peripheral cortex are more in line with the peripheral bias of 
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high level scene areas. One reason for the discrepancy could be that in experiment 

2, each image only appeared twice in an entire experiment for just 120ms and as 

such only an overall gist perception would be possible – and even that in the 

presence of unrelated information in the other frequency channel. This kind of 

gross scene analysis might have been more in keeping with the capability of far 

peripheral cortex. The repetition of the same scene many times over the 12s block 

in the experiments of chapter 2 might have rendered foveal processing possible 

and even more reliable (Müller, Metha, Krauskopf, & Lennie, 1999).  

We originally hypothesised that low and high frequency information might be 

preferentially fed-back to peripheral and foveal cortex, respectively. The only 

hint of such an effect is that low and high frequency probes allowed classification 

of reported, but not of unreported, low and high frequency categories in 

peripheral and foveal cortex, respectively. This hypothesis is not incompatible 

with the idea of eccentricity biases throughout the cortical as an organising 

principle for feedback. Both ideas may be true to some extent, and disentangling 

them is difficult with the current data given the inherent correlation between 

eccentricity and spatial frequency information in visual cortex and must remain a 

problem to be solved in future work.  

If the trends observed can be confirmed with more data, there are several 

possibilities for future work that would be interesting to explore. One idea comes 

from the work in chapter 2; it would be interesting to create hybrid images using 

object rather than scene stimuli. Might this reverse the current findings such that 

the perceived object would be represented in foveal cortex, while both objects 

would remain in far peripheral cortex? Another approach would be to add an 

occluder to the hybrid stimuli – this should allow an examination of the feedback 

signals in isolation as well as in interaction with feedforward signals in non-

occluded regions. 

Other paradigm modifications could be made to more explicitly involve top down 

processes. An element of the original behavioural work with hybrid stimuli that 

were not able to investigate here is a top down influence designed to actively bias 

frequency perception. While sensitisation is difficult in an fMRI paradigm, some 

previous work required subjects to consciously attempt to ‘tune in’ to a given 

frequency (Sowden et al., 2003). Such a manipulation would be easier to 



93 
 
incorporate in an fMRI paradigm and (i.e. by a simple auditory cue as in Sowden 

et al., 2003) and might prove more reliable on a trial by trial basis. This might be 

a more promising approach to take in future work. 

Different methods is yet another way to understand better the processes involved. 

Using ultra-high field fMRI would allow depth dependent classification. It would 

be exciting to find that in mid-layers (associated with feedforward input) 

information about categories in both frequency channels is readily available 

whereas information in superficial and/or deep layers (associated with feedback 

input) contained only the perceived category. Such a result would strongly argue 

for a feedback component in the perception of bistable hybrid images. 

To look at sensitisation, perhaps fMRI is not the ideal imaging method. However, 

it ought to be feasible to design such a paradigm for use with imaging techniques 

with higher temporal resolution such as EEG and MEG. With such temporal 

resolution, it should be possible to capture the trial-by-trial changes in neural 

activity that may be informative in understanding which percept the observer is 

experiencing. Particularly interesting is the potential to measure pre-stimulus 

activity - if we could demonstrate systematic changes in baseline activity, brought 

about by sensitisation procedures, that predicted hybrid perception then this 

would be indicative of top-down influences. It might also be possible to track 

whether initially both images in a hybrid stimulus are represented and later one 

is extinguished or if there is only ever one image represented (similar to Scholte 

et al., 2008). This was something we could not easily determine in the present 

study.  

One of the theoretical difficulties, discussed in this chapter, in studying top down 

processing in visual cortex using visual stimuli is the difficulty in disentangling 

feedback from lateral mechanisms. In the next chapter, we use non-visual stimuli 

to induce feedback in the visual system. 
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4 Chapter 4: High-resolution (7T) fMRI reveals 

auditory and imagery information across cortical 

depths in non-stimulated visual cortex 

4.1 Abstract  

Vetter, Smith, and Muckli (2014) showed that complex auditory scenes played to 

blindfolded subjects can be classified from V1, V2 and V3 using multivariate 

techniques. This raises questions about what the information represents and its 

relation to other non-feedforward input to visual cortex. Here, we use high-

resolution 7T functional brain imaging and multivariate classifiers to study 

auditory information and mental imagery in the early visual cortex of blindfolded 

subjects. The high resolution allowed us to look at activity patterns in different 

depths through the grey matter. 

 

4.2 Chapter Introduction 

One of the challenges in studying feedback in early visual cortex is knowing where 

the feedback originates from. Since there are many visual areas in the cortical 

hierarchy, any one of them could plausibly be contributing to our observed effects. 

Similarly, while in chapter 2 we took measures to avoid lateral connections as a 

mechanism by which our results could be explained, we have no easy way of ruling 

this out conclusively. The reason for the two issues is the same: the feedforward 

input arrives into the same visual area(s) in which we wish to detect feedback 

information. One way of avoiding this problem is to study cross-modal feedback 

effects. That is, present a stimulus input to one modality and investigate stimulus 

related activity in a cortical system that receives feedforward input exclusively 

from a different modality. This is the approach we took in this chapter. We used 

naturalistic real-world auditory scene stimuli, which aided comparisons with the 

naturalist scene stimuli used in chapters 2 and 3. Also, complex high level stimuli 

should engage a larger number of high level areas (compared to simple stimuli) 
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that may feedback to early visual cortex. Therefore, using complex stimuli should 

maximise the chances of detecting feedback signals.  

We replicated an experiment that our lab previously conducted at 3T (Vetter et 

al., 2014), which was designed to investigate auditory and imagery feedback in 

early visual cortex. The novelty in the replication was that we recorded data at a 

field strength of 7T (which we will occasionally refer to as ‘ultra-high field’). This 

allowed us to achieve a higher functional resolution than is possible at 3T, which 

allowed us to look at activity patterns in different depths through the grey matter 

as was done by Muckli et al. (2015). This is important because, as was outlined in 

the general introduction, feedforward and feedback connections terminate with 

distinct laminar profiles.  

Mental imagery acted as a control condition in this experiment, but is an attractive 

way to studying feedback in the visual system in its own right because it is entirely 

internally generated. As such, it provides an ecologically valid situation of 

feedback/top down signals in the absence of any feedforward driving input (e.g. 

most people presumably engage in some form mental imagery with closed eyes 

before going to sleep). As in with the occluded paradigm used in the first chapter, 

the absence of informative feedforward input is helpful in isolating feedback 

signals. 

4.2.1  Introduction 

The stimulus properties that drive occipital cortex have been extensively studied. 

The most basic feature common to almost all of these stimuli is that they are 

presented in the visual modality. This statement is not controversial and yet 

however it ignores the important observation that non-visual stimuli can also drive 

responses in early visual cortex. This fact has been known for over five decades 

and yet we still do not have a clear understanding of the information conveyed or 

the adaptive function of such signals (L. Petro, Paton, & Muckli, 2017). 

Morrell (1972) found that over 40% of visually responsive V1 cells recorded in cats 

also respond to auditory stimuli. Moreover these cells responded selectively to 

sounds according to their displacement in the horizontal direction and this 
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location is predicted by the horizontal coordinate of their visual receptive field. 

This result were replicated by (Fishman & Michael, 1973).  

Clavagnier, Falchier, and Kennedy (2004) demonstrated using retrograde tracers 

the existence of direct long distance feedback connections to V1 originating in 

primary auditory cortex (A1) and high higher multisensory areas (superior 

temporal polysensory or ‘STP’) in monkeys (a finding possibly unique to primates). 

This forces us to consider the functional role of auditory signals arriving into early 

visual cortex. One plausible idea is that such signals serve to orient gaze and/or 

visual attention to objects of interest in the world. Primates rely heavily on their 

visual systems, with about 60% of the cortex primarily responsive to visual stimuli. 

Therefore, information about a potentially important event that arrives through 

the medium of sound will likely soon be processed visually. Sound often might be 

the first input relating a feature of the external world because the external source 

of the sound may be located outside the visual field of view of the organism. In 

such situations, as the animal must orientate its gaze to bring the source of the 

sound into view. In such cases, the first part of the visual field that will receive 

input will be the far periphery. 

Falchier, Clavagnier, Barone, and Kennedy (2002) showed using retrograde tracers 

in monkeys that feedback connections to V1 from primary and higher auditory 

cortex as well as from STP project mainly to peripheral cortex with very few 

connections made to foveal cortex. Similar results were found by  Kathleen S 

Rockland and Ojima (2003) in V1 and even denser in V2. As would be expected the 

feedback connections originated from infra-granular layer 6. Such results are 

understandable if the purpose of auditory feedback is to aid orientating gaze or 

visual attention. However this does not easily explain reports that individuals show 

stronger effects of auditory stimulation in visual cortices particularly in peripheral 

visual cortex (Burton, 2003). 

Vetter et al. (2014) blindfolded normal sighted subjects passively listened to one 

of three complex natural scene sounds while recording fMRI. They found that 

classification of the sounds was strongest in far peripheral visual cortex and not 

possible in foveal cortex. While the result is in line with the peripheral bias of 

auditory feedback projections, it is hard to explain with a simple gaze/attention 

orientation hypothesis. Vetter et al. also investigated mental imagery – in which 
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subjects imagined the sounds and the corresponding natural scenes. Interestingly, 

classification of mental imagery content was strongest in foveal cortex, and not 

possible in far peripheral cortex – in stark contrast to sound content. This different 

eccentricity profile argues against involuntary mental imagery as an explanation 

for the ability to classify auditory information.  

We replicated the experiment by Vetter et al. (2014) using high resolution 7T fMRI, 

which allowed us to look at activity patterns in different depths. A similar 

approach was taken by Muckli et al. (2015) using an occluder paradigm (similar to 

the experiments in chapter 2). The key finding was that feedback signals were 

detected in supra-granular depths – where feedback connections are known to 

terminate whereas feedforward signals could additionally be detected in middle 

depths – where feedforward inputs arrive. However, feedback activity in infra-

granular depths has been reported in 7T fMRI by Kok, Bains, van Mourik, Norris, 

and de Lange (2016) using a visual illusion paradigm. While long distance feedback 

connections are known to terminate in supra-granular layers, some feedback 

connections from nearby cortical areas terminate in infra-granular layers (Markov 

et al., 2013; Markov et al., 2014). It may be that the different stimuli engaged 

different higher areas leading to divergent results. These studies demonstrate the 

feasibility and usefulness of using 7T fMRI to investigate feedback processes across 

cortical depths, but also highlight the complexity of the laminar connectivity 

profile. 

Given the divergent results of Muckli et al. (2015) and Kok et al. (2016), the 

question of which cortical depths we should expect to see auditory and imagery 

feedback in is difficult. One study in mice found auditory feedback to visual cortex 

drove activity in infra-granular layers which in turn inhibited supra-granular 

pyramidal cells (Iurilli et al., 2012). This further highlights the difficulty in making 

strong predictions, as activity in on layer can drive activity in another layer. 

Therefore, the only prediction we can make for feedback information profiles 

across cortical depths is that we should not detect information in middle depths 

since these depths are driven by feedforward stimulation. Following Vetter et al. 

(2014), we also predicted that auditory information would be found in far 

peripheral but not foveal regions and that the opposite would be true of imagery 

information. 
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4.2.2  Methods 

The experimental stimuli, task and procedure reported here are identical to those 

used in Vetter et al. (2014). 

4.2.2.1  Subjects 

Four healthy subjects (1 male; 20-26 years old) were recruited and measured at 

the Maastricht brain imaging Centre (Maastricht, Netherlands). All subjects had 

normal hearing and no history of brain damage. Each subject completed three 

consent forms to ensure that they understood of the experimental conditions and 

that they met the safety criteria for fMRI scanning according to the Ethical 

Committees at 1) of the College of Science and Engineering, University of Glasgow 

and 2) the Faculty of Psychology and Neuroscience, University of Maastricht. 

 

4.2.2.2  Stimuli and Apparatus  

Subjects wore a blindfold to prevent stimulation of the visual cortex. The sound 

stimuli were delivered binaurally through fMRI-compatible earphones 

(Sensimetrics Corporation). For each subject, the sound levels were adjusted to 

ensure subject comfort and that the sounds were audible above the sound of the 

scanner. The experiment was programmed and presented using Presentation 

(Version 16.5, Neurobehavioural Systems). We used the same three natural sound 

stimuli as was used in Vetter et al. (2014). The sounds were normalised for 

amplitude, consisting of traffic noise (a busy road with cars and motorbikes), a 

forest scene (birds singing and a stream) and of a crowded scene (people talking 

without clear semantic information) and were downloaded from 

www.soundsnap.com and cut to 12s. 

4.2.2.3  Task and Procedure 

Subjects wore a blindfold, were instructed to keep their eyes closed at all times 

and room lights were switched off. Subjects completed 8 functional runs. During 

odd runs we presented natural sound stimuli. The three natural sound conditions 

were each presented for 12s and repeated 6 times for a total of 18 blocks per run. 

A 12s baseline followed every block. During even runs, subjects were instructed 
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to imagine the scenes using any modality(s). The numbers of repetitions and their 

length was the same as in the auditory runs Subjects were instructed to imagine 

by a 1s verbal cue (“traffic”, “forest” or “people”) followed by a 12s imagery 

period during which no sounds were played. Termination of the 12s imagery 

periods was indicated to the subjects by a 1s long beep. A 12s baseline followed 

every block. In auditory and imagery runs, the condition order was pseudo-

randomised with the constraint that no condition could be repeated back-to-back. 

4.2.2.4  Data Acquisition  

Functional and anatomical MRI data was acquired on the 7-T scanner (Siemens) in 

Maastricht (The Netherlands) with a 32-channel head coil (Nova Medical Inc, USA). 

For the non-multiband functional scans (1 subject) an EPI sequence was used with 

the following parameters: 31 slices, aligned perpendicular to the calcarine sulcus, 

gap thickness 0mm, TR-2s, TE-25ms, 228 volumes for auditory runs and 245 

volumes for imagery runs (polar angle mapping = 340 volumes, eccentricity 

mapping = 283 volumes), a FOV of 128mm, flip angle of 85° and a resolution of 

0.8mm3. For the multiband functional scans (3 subjects) an echo-planar imaging 

sequence was used with the following parameters: 56 slices, aligned perpendicular 

to the calcarine sulcus, gap thickness 0mm, TR-2s, TE-25ms, 226 volumes for 

auditory runs and 243 volumes for imagery runs (polar angle mapping = 396 

volumes, eccentricity mapping = 288 volumes), a FOV of 128mm, a multiband 

acceleration factor of 2, flip angle of 75° and a resolution of 0.8mm3. All 

functional scans were preceded by 5 volumes with reversed phase-encoding 

direction (posterior to anterior) in order to allow estimation and correction of 

geometrical distortions due to magnetic susceptibility gradients (Andersson, 

Skare, & Ashburner, 2003). We also acquired three anatomical scans, all with a 

resolution of 0.6mm3: T1-weighted Anatomical, a proton density-weighted 

contrast and a T2*-weighted sequence. 

4.2.2.5  Data preprocessing 

The functional and anatomical data were preprocessed using BrainVoyager QX 2.8 

(Brain Innovation, Maastricht, The Netherlands). We divided the T1 by the PD to 

correct for inhomogeneity biases. The first two volumes of each functional run 

were discarded to avoid saturation effects. The functional data for each run were 
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corrected for slice acquisition time and head movements. Linear and low 

frequency drifts in the data were removed. For each run, we estimated the degree 

of spatial distortion due to phase encoding direction by comparing the 5 volumes 

in which the phase encoding direction was reversed with the volumes in the run 

itself and corrected the data accordingly (for a full procedural description, see 

Andersson et al., 2003). The functional data were aligned to each other, then to 

high resolution the T2* anatomical scan and transformed into ACPC space.  

4.2.2.6  ROI Definitions 

For each subject, the functional data were projected onto the cortical surface. 

For the subject without multiband scans we only had partial functional coverage 

of V3. For those subjects with multiband acquisitions, we had enough functional 

coverage to collect data in V1, V2 and V3. We were able to collect retinotopic 

mapping data which allowed us to map the early visual areas in three subjects 

(one multiband subjects being the exception). The ROIs were defined (figure 4-1 

A) by taking eccentricity bands across V1, V2 and V3 approximately corresponding 

to between 1-3°, 3-6° and 6-10+°. In the subject without retinotopic mapping, we 

manually estimated the regions from cortical folding.  

 

 

 

 

 

 

 

 

Figure 4-1 A. Example of ROI 
definitions in the right hemisphere. 
B. Example of 3 depth ROIs in both 
hemispheres in V1 (depths shown = 

90%, 58%, 10%). 
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For each of the above described ROIs, we labelled the volumetric functional voxels 

according to 6 evenly spaced cortical depths (figure 4-1 B). This relied on first 

estimating the grids as vertices using a cortical thickness map derived from the T1 

anatomical scan (voxels could be labelled by more than one depth). These vertices 

were then projected into volume space to label the voxels. 

4.2.2.7  Data Analysis 

For each Subject, a GLM was used to estimate each voxel’s HRF amplitude for 

each block. To classify an auditory scene, an SVM classifier was used to create a 

discriminating function for the instances of the three auditory scenes presented, 

based on the associated multivariate voxel response patterns from 3 runs 

(“Training”). The discriminating function was then used to classify the scene 

instances presented during the remaining run (“Testing”). This procedure was 

repeated, each time using a different run as the “test run” (i.e. ‘leave one run 

out’ cross-validation procedure). The same procedure was used for classifying 

imagery conditions. To assess the overall localisation of auditory and imagery 

information in early visual cortex, we ran SVMs in ROIs which combined all layers. 

We then ran SVMs at six individual depths. 

To assess the significance of group level effects, we bootstrapped (with 

replacement) the mean group classification value 10’000 times and if 95% of these 

values exceed chance level (33%) the classification was considered significant. To 

assess significance at the individual subject level in each depth ROI we employed 

the method described in Etzel and Braver (2013) who refer to it as the ‘fold-wise 

scheme’ and is commonly used for fMRI analyses. We trained and tested the SVM 

classifier 1000 times – each time permuting the training labels of the trials used 

to train the SVM on each cross-validation fold, thus precluding the opportunity to 

build a reliable discriminant function for the testing phase – except by pure chance 

– resulting in a chance level distribution. If the original, non-permuted mean 

classification accuracy falls outside this distribution (in the above chance 

direction), at an alpha of p < 0.05, then the classification is considered successful 

for the individual subject. 
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4.2.3  Results 

We first looked at the SVM results from ROIs that combined depths in V1, V2 and 

V3 and which were subdivided into foveal, peripheral and far peripheral regions. 

Figure 4-2 A shows the results of classifying auditory conditions. We could classify 

significantly above chance in nearly every ROI. Specifically, classification was 

significant in all eccentricities in V1 (foveal: %41.7, p<0.0001; peripheral: 42%, 

p<0.0001; far-peripheral: 40%, p<0.0001) and V2 (foveal: %41.4, p<0.0001; 

peripheral: 42.3%, p<0.0001; far-peripheral: 39.9%, p<0.0001). Moreover, in each 

case the individual subjects were also above chance (with the exception of one 

subject in the V2 far peripheral ROI). In V3, the results were significantly above 

chance in foveal and peripheral, but not far peripheral ROIs (foveal: %40.3, 

p=0.0197; peripheral: 41.4%, p<0.0001; far-peripheral: 37.4%, p=0.0724). These 

results are in contrast to results from Vetter et al. (2014), who found that auditory 

information was localised to the far periphery, and strongest in V2.  

Figure 4-2 B shows the results of classifying the imagery conditions in the same 

ROIs as described above. The classification of imagery information was not as 

uniformly above chance as the auditory classifications. Specifically, we were able 

to classify significantly above chance in all V1 ROIs (foveal: %37.1, p<0.0001; 

peripheral: 43.1%, p<0.0001; far-peripheral: 39.8%, p<0.0001), and in foveal and 

far peripheral V2 ROIs (foveal: 41.1%, p<0.0001; peripheral: 36.1%, p=0.0587; far-

peripheral: 42.7%, p<0.0001), and in peripheral and far peripheral V3 ROIs (foveal: 

34.8%, p=0.3353; peripheral: 38.5%, p=0.0172; far-peripheral: 39.2%, p<0.0001). 

We decided to look at cortical depths in V1 but not in V2 and V3 ROIs. The reasons 

for this decision were both theoretical and pragmatic. From a theoretical 

standpoint, V1 is the most studied visual area (Olshausen & Field, 2005) and is 

thus an attractive starting point. From a pragmatic standpoint, V1 is the only ROI 

our lab has previously looked into with ultra-high field fMRI and it is also the only 

ROI in this experiment in which all subjects classified above chance in both 

auditory and imagery conditions. Last, as constructing cortical layer segmentation 

over large areas of cortex takes an excessive amount of time the aim is to do the 

same for V2 and V3 at a later point. At present we have done this for V1. 

 



103 
 

 

 

 

 

 

 

 

 

 

 

 

 

Given that we did not observe a difference in between foveal, peripheral and far 

peripheral V1 ROIs (or in V2 and V3 ROIs), we decided to collapse these V1 ROIs in 

order to give the SVM classifier the maximum number of V1 voxels available for 

each depth. Figure 4-3 shows the SVM classification in each depth. In reporting 

the statistics below, we refer to the most and least superficial depth ROIs as 

‘depth 1’ and ‘depth 6’, respectively (with intervening depths labelled 5 through 

2). Individual profiles, shown in Figure 4-3 A and B, were not as consistent as in 

Muckli et al. (2015). While two of the subjects showed significant classification of 

auditory conditions in superficial layers, there is a general trend towards higher 

accuracies in the deeper ROIs. This trend is evident when averaging across 

subjects (figure 4-3 C) with the three deepest ROIs significant (depth 6: 42.4%, 

p<0.0001; depth 5: 39.6%, p<0.0001; depth 4: 36.8%, p=0.0033). In the average 

auditory plot the most superficial depths are also above chance (depth 3: 37.5%, 

Figure 4-2 Group average SVM decoding 
accuracies in ROIs combining cortical depths. A. 
Auditory conditions. B. Mental imagery 
conditions. Data was bootstrapped (with 
replacement n=10’000) and individual subject 
data is plotted on top of each bar. 
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p=0.0514; depth 2: 37.5%, p=0.0205; depth 1: 37.9%, p<0.0001), however visual 

inspection of the individual profiles suggest that this effect is driven mostly by a 

single subject. This particular subject also has significant results in deep layers.  

 

 

 

 

 

In the case of imagery information, significant effects were found only in 

superficial depths of two subjects (figure 4-3 B) and these subjects clearly drive 

the effect in the average plot (figure 4-3 D) at depth 2. A different subject drives 

an effect in depth 4 (depth 6: 34.7%, p=0.2029; depth 5: 35.1%, p=0.0634; depth 

4: 34.8%, p=0.0391; depth 3: 35.4%, p=0.0590; depth 2: 39.2%, p<0.0001; depth 1: 

37.2%, p=0.0350). 

Figure 4-3 SVM decoding accuracies in V1 depth ROIs. A. Individual profiles for auditory 
conditions. B. Individual profiles for mental imagery conditions. C. Group average profile 
for auditory conditions. D. Group average profile for mental imagery conditions. Asterisks 
represent significant permutation tests. Group data was bootstrapped (with replacement 

n=10’000) to produce 95% confidence intervals. 
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4.2.4  Discussion 

4.2.4.1  Feedback to Foveal and Peripheral V1 

We recorded four subjects with high resolution fMRI at 7T using identical stimuli, 

task and procedures as in Vetter et al. (2014). We did not replicate either the far 

peripheral advantage for classification of auditory scene information or the foveal 

advantage for decoding mental imagery content. Instead, we found that we could 

classify auditory information in nearly every ROI. Classifying mental imagery was 

possible far peripheral cortex for V1, V2 and V3 and for peripheral V1 and foveal 

V2. There are several potential reasons for the discrepancy between our results 

and Vetter et al. (2014). First, Vetter et al. (2014) used many more subjects than 

we did in the current study and that it is possible that with a comparable number 

of subjects we would find a similar pattern across eccentricity. Another possibility 

is that the higher functional resolution was more sensitive to informative patterns 

at a smaller spatial scale.  

There is some evidence from diffusion tensor imaging studies (Beer, Plank, & 

Greenlee, 2011; Beer, Plank, Meyer, & Greenlee, 2013) that connections from 

auditory cortices do reach all the way to foveal cortex (at tip of the occipital 

pole). In fact, Beer et al. (2011), found that connections to occipital pole and 

anterior calcarine sulcus were comparable in magnitude. Given that the existence 

of auditory feedback connections to peripheral visual cortex were not recognised 

for many years (Clavagnier et al., 2004), it is not unthinkable that there are still 

feedback connections to foveal cortex waiting to be discovered. Indeed, Falchier 

et al. (2002) did find a small number of foveal connections. It could be that 7T 

fMRI is sensitive enough to detect information delivered by these weaker 

connections whereas 3T fMRI is not. 

4.2.4.2  Feedback to infra- and supra- granular layers  

The higher functional resolution of 7T fMRI allows us to probe information across 

cortical depths. While the effective resolution is not high enough to distinguish 

signals emanating solely from one of the six anatomical layers (due to several 

factors that unavoidably lead to spatial smoothing of the data), we can 

nonetheless probe supra- and infra-granular cortical depths. This is important 
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because feedforward and feedback connections terminate with distinct laminar 

profiles relative to the granular cortical layer (Markov et al., 2013; Markov et al., 

2014). Our data show a trend towards auditory information in the infra-granular 

depths and mental imagery content in supra-granular depths. The fact that these 

trend are opposite for auditory and imagery information (particularly when 

comparing the two subjects with solid and fine dashed lines in figure 4-3 A and B) 

is interesting because this could point to different feedback processes subserving 

these functions. 

An extensive tracing study (Markov et al., 2013; Markov et al., 2014) using 26 

monkeys to examine the connectivity among many high and low level areas in the 

visual cortical hierarchy found that feedback connections from distant cortical 

areas project to superficial layer 1 whereas adjacent and nearby cortical areas 

have feedback connections which arrive into both supra- and infra- granular 

layers. Further, in the supra-granular layer both feedforward and feedback 

connections are topographically organised with a similar degree of precision, 

whereas in infra-granular layers there is much less precision (i.e. connections 

originating nearby each other often terminate in very different locations). Why 

this should be the case is not known, but it maybe be that the degree of 

topographic precision involved in a recurrent processing operation is dependent 

on the perceptual task. If the trend for auditory information in the infra-granular 

layers of V1 is true, then this would imply that the information arrived into V1 not 

directly from a long range auditory cortical source, but instead arrived from a 

nearby visual area that was the last in a chain of feedback linking a multisensory 

higher area (such as STP) to V1 via several nearby visual areas. It would also imply 

that there is less topographical precision in the auditory feedback than of the 

imagery feedback. This prediction may not be testable without invasive 

physiological tests.  

However, it must be kept in mind that the scheme suggested by Markov’s data is 

based solely on data from the visual system, and may miss some features of the 

typical laminar connectivity profile between different sensory modalities. There 

is also the fact that even though inter-areal connections have such identifiable 

laminar profiles, there are many intra-areal connections between the different 

layers which serve to integrate feedback and feedforward signals (Andre M Bastos 
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et al., 2012) and as such characteristic patterns of activity in one layer could 

presumably bring about a related pattern in another layer (Iurilli et al., 2012). 

Therefore we must be cautious when interpreting laminar BOLD signals (and 

indirect measure of neural activity) as being due to the connectivity profile of 

feedforward and feedback connections among distinct areas.  

4.2.4.3  Conclusions 

Feedback of auditory information to early visual cortex was detected decades ago 

(Morrell, 1972) but its functional has remained unclear. Here we demonstrate that 

laminar investigation of feedback inputs to visual cortex is possible with 7T fMRI. 

Depth dependent classification profiles show that middle depths do not carry 

auditory information in line with a non-feedforward signal. Moreover, mental 

imagery showed a different laminar information profile than did auditory 

stimulation, suggesting that our auditory results were not due to subjects engaging 

in mental imagery. The suggestion that auditory feedback aids gaze/attentional 

orientating (Morrell, 1972) do not explain our finding of abstract auditory scene 

information. It could be that auditory feedback plays a more active role in visual 

cortex to disambiguate noisy visual inputs or perhaps to help synchronise 

information processing in parallel sensory systems.  

4.3 Chapter Discussion 

Working with ultra-high filed fMRI data is extremely challenging, particularly since 

common preprocessing and analysis conventions used with 3T fMRI may not be 

optimal for use with 7T data (Kashyap, Ivanov, Havlicek, Poser, & Uludağ, 2017; 

Self, van Kerkoerle, Goebel, & Roelfsema, 2017). Solutions and conventions are 

changing rapidly and for this reason the data presented in this chapter are not 

fully analysed. Some issues that become more problematic or more important to 

address at 7T are: correcting geometric distortions of the functional data due to 

magnetic susceptibility gradients, achieving good alignment of the functional to 

the anatomical data and producing a high quality segmentation of the anatomical 

MRI data. These challenges are all essential to overcome in order to conclude that 

the laminar differences we observe in classification accuracy are really due to 

functional differences in depth-dependent processing. Even a small misalignment 
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of a millimetre or so could shift our ROIs such that deep and superficial depths are 

actually sampling mid-depth grey matter. Another set of issues relate to 

smoothing of the data (Gardumi et al., 2016) which reduces the effective 

resolution and can occur due to: subject motion, preprocessing choices such as 

interpolation of the data into non-native spaces and analytical choices such as 

how best to model BOLD activity in different cortical depths (Lawrence, 

Formisano, Muckli, & de Lange, 2017; Uludağ & Blinder, 2017) and how best to 

sample voxels which do not respect the curvature of the grey matter sheet. 

Given all of these complicating factors, it is important to realise that the often 

quoted functional resolution of 0.8mm3 is somewhat reduced by the 

aforementioned issues. Therefore we cannot and do not claim to be recording 

signals emanating solely from particular anatomical layer. However we can safely 

assume functional voxels and various cortical depths to represent a general bias 

to the processing carried out in the underlying anatomical layers. Moreover, new 

software tools are being developed to better deal with issues encountered in ultra-

high field fMRI data. For instance, mesh boundary-based alignment methods might 

produce better alignment between the anatomy and functional data. Additionally, 

projecting the defined ROIs into the native functional space rather than 

unnecessarily interpolating the functional data into non-native spaces will avoid 

inherent smoothing of the functional data. These new tools should allow us to get 

a clearer and perhaps more consistent picture of the differences in the laminar 

profile of auditory and imagery information.  

It is also clear from the variance among the laminar profiles of the individual 

subjects that more subjects are needed to clarify the effects we see in the current 

data. Feedback activity in infragranular layers has been reported in ultra-high 

field fMRI before by Kok et al. (2016) using a visual illusion paradigm. It is worth 

noting that the individual laminar profiles of individual subjects (of which there 

were ten) were largely inconsistent and the reported profile is only apparent in 

the average (figure S3 in Kok et al., 2016). The layer segmentations in that study 

relied exclusively on automated reconstruction algorithms, which may go some 

way in explaining the between-subject variance.  

However, in the present study the fact that the same depth ROIs were used to 

classify the auditory and imagery conditions, and that auditory and imagery runs 
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were interleaved during the recording sessions mean that any differences in the 

laminar profile of classification accuracy between auditory and imagery conditions 

cannot be due to some confound involving due to differential alignment of the 

auditory and imagery runs to the anatomy or due to signal related differences 

across cortical depths.  

In summary, we demonstrate trends of auditory and imagery representations in 

V1 deep and superficial layers, respectively. These results are promising, and with 

the development and optimisation of ultra-high field fMRI methodology and 

analysis, we may achieve a better understanding of this data. 
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5 General Discussion 

The anatomical segregation between feedforward and feedback signals mean that 

they almost certainly perform different functional roles (Markov et al., 2014). 

Therefore, studying and understanding feedback in addition to feedforward 

processing is vital for understanding general brain function. In this thesis I have 

described three lines of investigation that focus on where feedback signals project 

to in early visual cortex and to what extent the information is suited to the cortical 

project site. This focus was broadly motivated by conspicuous biases in large scale 

retinotopy (chapter 2), known spatial frequency processing capabilities (chapter 

3) and in anatomical connectivity profiles (chapter 4). We used a range of 

manipulations to explore this theme. In particular we varied task, the presence or 

absence of concurrent relevant feedforward information and the stimulus input 

modality. We found several cases in which foveal and peripheral early visual 

cortex received different feedback information. 

In chapter 2 we saw that feedback of object information is projected to foveal V1 

cortex – possibly with increased detail during an object identification task whilst 

background scene information is projected diffusely to fovea land peripheral V1 

and can be disrupted by a sufficiently demanding object discrimination task. In 

chapter 3 we saw an indication that scene category perception was fed-back to 

far peripheral cortex whilst foveal cortex more faithfully represents the 

feedforward input regardless of perception. Taken together, these results could 

be taken to support the idea that retinotopic eccentricity biases throughout the 

visual hierarchy – the foveal and peripheral bias of higher object and scene areas, 

respectively – provide an organisational scheme for somewhat segregated cortical 

feedback of object and scene information. In chapter 4 we demonstrate that 

laminar investigation of feedback inputs to visual cortex is possible with 7T fMRI 

and find that infra- and supra-granular layers seem to receive auditory and mental 

imagery feedback, respectively. The functional significance of this observation is 

unclear but warrants further investigation.  

Future work should address a number of limitations with the experiments in 

chapter 2. Drawing conclusions about feedback in this paradigm depends critically 

on the assumption that no differential feedforward information stimulated the 
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subsection of V1 being analysed. Even if a very small minority of voxels receive 

such stimulation, MVPA methods may capitalise on this. In fact, this could well 

mimic our observed results: slightly above chance classification (based on a 

limited feedforward signal). It is hard to know how successful we were in 

controlling for this possibility and with only three experiments, each with 

relatively small numbers of subjects, this poses a concern. However, the work 

presented represents only a subset of the total work done by our lab using this 

paradigm. In addition to the fact that the paradigm has been replicated a number 

of times within the lab, the variety of stimuli, analytical and data recording 

manipulations across all the experiments serve to increase confidence in the 

general conclusion. While each individual experiment within the lab would not be 

convincing on its own, taken together they form a coherent picture of feedback 

influences. However, replications within a lab likely contain a fair amount of 

overlap in the preprocessing and analytical procedures (at least this is the case 

here) and so possibly could be ‘replicating’ systematic biases and errors as well. 

That is why inter-lab replication is so important. On this front we can point to the 

fMRI results of Williams et al. (2008) in which object information was decoded in 

the fovea but not in the periphery and upon which we based the design of our 

experiments. 

One of the major outstanding issues is that of eye movements – any characteristic 

eye movement associated with a condition might create outright an informative 

signal for the classifier, or might allow feedforward stimulation to flow into the 

‘occluded’ ROI. While we did record eye movements in most of the subjects, we 

have not yet analysed the data. Following the example of published work from 

other labs, my lab colleagues have generally plotted the average gaze position 

and shown it to be tightly concentrated on the central fixation point, discarding 

any volumes in which the gaze deviated substantially. However, this may not be 

sufficient – if micro-saccades occurred in a consistently different way for different 

conditions, the fixation point will be ‘jittered on the retina’ inducing an 

informative pattern of (feedforward) stimulation in the cortex. A good test to pass 

for our data would be an attempt to use an SVM on the eye-tracking data to classify 

the condition directly – if this is possible then it would demonstrate that the 

subject’s eyes did indeed move differently between conditions. The results from 

eye-tracking SVMs and BOLD SVMs could be correlated across subjects to test the 
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notion that eye movements are responsible for our fMRI data and associated 

results. 

There are some issues common to all the experiments. The most fundamental is 

probably the low number of subjects. Increasing this would have given us the 

statistical power to detect or reject effects conclusively and thus make stronger 

and unambiguous inferences that we could be confident would generalise to the 

population at large. Almost all of the analysis presented in this thesis is fairly 

shallow – simply bootstrapping the classification accuracies across subjects, and 

in some cases does not take into account the number of comparisons being made 

(which tends to increase the false positive error rate). Another statistical error is 

not taking into account the random effects associated with our subjects (this is a 

form of overfitting), which again weakens the generalisability of our results to the 

general population. Linear mixed effects models have gained popularity recently 

and represent a powerful and elegant approach to modelling complex data sets. 

They can handle subjects as random effects to make generalisation possible – even 

when including other random effects in the model (Barr, Levy, Scheepers, & Tily, 

2013). 

In general, however, the small sample sizes we have worked with here may be 

better suited to some form of Bayesian analysis (McNeish, 2016; Van De Schoot, 

Broere, Perryck, Zondervan-Zwijnenburg, & Van Loey, 2015), which takes 

advantage of prior information (what is already ‘known’) and updates our 

knowledge using the collected data. While growing in popularity, Bayesian 

approaches are still not common practice in the field – although this is not a good 

argument against their use. However, they do require a new set of expertise to 

apply correctly and misunderstanding can lead to severe problems (McNeish, 

2016). A central issue when trying to apply Bayesian analysis to small sample sizes 

centres around specifying appropriate priors – which can entail judgements that 

are not easily agreed upon (Van De Schoot et al., 2015). Bad judgements in such 

cases can actually give more unreliable results than conventional frequentist 

analyses and it is not the case (although it is commonly assumed) that diffuse or 

uninformative priors are a safe option which at worse will be roughly equivalent 

to frequentist statistics (McNeish, 2016). None of this argues against using 
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Bayesian methods, it merely points out that a substantial learning investment or 

help from an expert is required to carry it out successfully. 

Another question relates to what we are actually measuring in these experiments 

– that is, what information does successful classification by an SVM reveal to us? 

Anderson and Oates (2010) discuss this issue and lay bare the complexities and 

subtleties of the answer – which may be summarised as ‘not what many people in 

the fMRI community infer from them’. More specifically, it does not give a straight 

forward localisation of which voxels contain the most information within a 

considered ROI (e.g. by simply looking at the voxels with the highest weights etc.). 

Our experiments are safe from this criticism, since all we claim is that there is 

some information residing, in some form, somewhere in an ROI – it is the nature 

of the ROI itself which is interesting in chapters 2 and 4: V1, but in the absence 

of informative feedforward input. From there we conclude that the existence of 

such information is revealing what the brain has to work with (i.e. feedback 

signals) for its subsequent computations. Here though, we rely on another 

assumption that may not be valid – just because an SVM (or other MVPA method) 

can extract information from a BOLD signal does not mean that the brain is or 

even could be making use of it. Although this point could also be made about 

univariate analyses (a difference in average activation doesn’t necessarily imply 

that the brain is making use of the implied neural difference). It would be 

beneficial to relate the MVPA results to behavioural measures or to other brain 

areas to build a stronger case that the degree to which information is available to 

the experimenter is actually of consequence to the functioning of the brain itself 

(de-Wit, Alexander, Ekroll, & Wagemans, 2016). For our research, we do touch 

upon this idea (in chapter 2 experiment 3) where we analyse the representational 

similarity between ROIs. Although, as mentioned above, we could have given more 

careful thought about the task to be done by the subject (beyond simply giving 

them a task to keep them attending the stimuli). 

Another consideration, once MVPA is going to be pursued, is which method to use 

to quantify the dissimilarity between two given patterns – SVMs and other 

classifiers are popular, but so are various ‘distance measures’ which don’t take 

the additional step of actually classifying the data (examples are Euclidian 

distance, Pearsons correlation etc.). Also important decisions are what steps to 
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include in computing the chosen dissimilarity metric. Walther et al. (2016) 

conducted simulations to show that cross-validated Mahalanobis distance with 

prior multivariate noise normalisation of the data gives the most reliable results. 

This metric has the added advantage that it is more interpretable – it has a true 

zero point (so a particular dissimilarity measurement can be meaningfully said to 

be twice as large as another, whereas it is not straightforward to say that an SVM 

which is 20% above chance represents a dissimilarity twice as large as an SVM 10% 

above chance – the underlying dissimilarities may be more or less than this). This 

metric also satisfies parametric assumptions and is therefore are more amenable 

to conventional inferential statistics. 

By addressing these limitations and implementing the improvements to the 

analysis, future work can build on the results presented in this thesis in an attempt 

to clarify the purpose of feedback to early visual cortex. To achieve this, we may 

need focus more on designing appropriate tasks that engage a variety of complex 

perceptual processes and go beyond simple discrimination and recognition. 

Different tasks stress different aspects of information processing. For example, a 

fine visual discrimination task may require careful processing of high spatial 

frequency information, whereas a rapid visual categorisation task may be best be 

performed using low spatial frequency information. V1 must be the starting point 

of processing for both these tasks and it makes sense that to maximise task 

performance, processing at the earliest levels should be adaptable. As such, 

feedback might usefully act to request and guide computations that are useful to 

the task of perception about the data, perhaps requesting early visual cortices to 

dedicate more processing resources onto relevant aspects of the data which 

remain unresolved in the higher areas. 

One popular explanation for the functional purpose of feedback is predictive 

coding, which posits that each area in the cortical hierarchy attempts to create 

an internal model to explain the feedforward data sent to it by earlier areas 

(Andre M Bastos et al., 2012; Friston, 2010). Predictions of this feedforward data 

are then sent through feedback to earlier areas. Only feedforward data not 

successfully predicted by the model is sent on to the higher area, as this data 

shows where the model is incorrect. Errors in prediction of feedforward data that 

is highly precise and thus more reliable are given more weight. On receiving these 
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prediction errors, the higher area attempts to refine its model. There is also a 

suggestion that the brain actively tries to sample new input data as means of 

testing a wide range of model predictions (‘active hypothesis testing’) to which 

results in better models. Thus on this view the brain is seen as a prediction 

machine which actively continuously tries to minimise prediction errors (Clark, 

2013).  

This is widely thought to be an elegant idea which offers a fundamental principle 

of possible cortical function. While it does incorporate most major sensory tasks, 

and while our data could be viewed within such a framework, there is still a gulf 

between the theoretical components of the predictive coding framework and what 

can be directly measured by experiment. This necessitates a long chain of 

reasoning to derive concrete predictions about the outcome of a particular 

experiment. Consequently, it is often hard to see experimental data as strongly 

supporting or contradicting the original idea. In a commentary on a piece by 

(Clark, 2013), Philips points out that a simple but very real and major challenge 

for any ‘unifying theory’ of cortical function is the sheer diversity of brains and 

cognition and concludes that although possible in principle, in practice dealing 

with this challenge is largely a hope for the future.  

We can also question whether the brain should be expected to operate according 

to an elegant fundamental principle and thus whether elegance in theory should 

be highly valued in a theory of cortical function. The brain is an evolved organ and 

while evolution often produces effective and efficient solutions, it must do so 

through a series of gradual adaptions to previous designs each of which functions. 

This process often results in a well-functioning but inherently patchwork system. 

This consideration does not argue against predictive coding per se, but does 

highlight the need to consider that cortical function may operate through an 

efficient ‘bag of tricks’ (Dennett, 2017) rather than a single fundamental 

principle.  

While it is difficult to produce data strongly for or against predictive coding, its 

all-encompassing nature makes it a useful framework within which to compare 

other models. It also highlights the role of feedback within cortical function, 

providing an important counterbalance to the historical domination of much 
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theoretical and empirical work by the so called feed-forward hierarchical 

approach. 
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