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Summary

The clinical importance of Salmonella has been known for more than a century.The 

control of salmonellosis requires detailed understanding of both pathogenicity and 

epidemiology. Certain plasmids are involved in the vimlence of the salmonellae and 

their analysis often contributes to epidemiological investigation. Molecular 

characterization of the serotype associated plasmids of the salmonellae was 

undertaken. A predefined strategy of restriction endonuclease fragmention pattern 

(REFP) analysis revealed plasmids previously defined as “serotype specific” were 

present in different serotypes. Plasmids indistinguishable from of molecular variants 

of established serotype associated plasmids (SAP’s) were detected in other 

serotypes of serogroup D l. The results showed that related or identical plasmids 

were present in both strains which varied only slightly in their H antigens e.g. 

Enteritidis (gm), Moscow (gq) and Blegdam (gmq) as well as a strain of Antarctica 

which possessed the H antigens gz^s.. In addition to plasmid similarity within a 

serogroup, plasmids were identified in strains of Wangata which although a 

member of serogroup D are outwith the g-complex of flagellar antigens (H = 

Z4Z23). Unexpectedly, these plasmids were closely related to Typhimurium which 

belongs to serogroup B.

The incompatibility of the plasmids was tested with a cointegrate plasmid 

pOG669 (a cointegrate of pOG660, the Typhimurium plasmid and pOG670, an 

IncX R-plasmid) and confhmation of incompatibility to the Typhimurium 

component of this plasmid was shown by introduction and compatibility with 

pOG670. Plasmid incompatibility analysis of these plasmids revealed all the SAP’s, 

Except Dublin, were incompatible with Typhimurium and confimied a family of 

related plasmids common to but not restricted in their distribution to individual 

serotypes.

Co-resident plasmids of intermediate size (30 - 40 kb) were observed 

relatively frequently in certain serotypes of GpDl- notably Dublin, Enteritidis, 

Moscow, Blegdam and Antarctica. With the exception of Antarctica these plasmids 

exhibited IncX properties - and although the possibility of dual incompatibility was 

not investigated, these properties, by inference were impossible as it would have 

resulted in incompatibility to pOG669 also.
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Restriction endonuclease fragmentation pattern analysis of the serotype 

associated plasmids of the salmonellae revealed a high degree of relatedness 

between plasmids of Typhimurium, Wangata, Gallinarum and Pullorum and a low 

degree of REFP similarity with the plasmids of Dublin and Abortusovis and the 

otherSAP’s. The presence of a plasmid thought to be an evolutionary intermediate 

in the development of Typhimurium and Enteritidis has been suggested. This study 

demonstrated the presence of plasmid in Dublin which showed more REFP 

similarity to the plasmid of Gallinarum than to Dublin itself and may be an 

intermediate in the development of the Dublin plasmid. This was strengthened by 

the incompatibility analysis of the plasmids. All the SAP’s except Dublin were 

incompatible with the Typhimurium plasmid only; the plasmid of Dublin exhibited 

dual incompatibility properties with both pOG660 and IncX. The intermediate 

Dublin plasmid pOG683 showed incompatibility to the Typhimurium plasmid only. 

The presence of other co-resident plasmids in this serotype which exhibit IncX 

properties as well as the identification of large cointegrate plasmids which were 

unstable, suggests that the SAP of Dublin has arisen via a cointegration event with 

an IncX plasmid.

Molecular variation within serotypes was observed at a higher incidence in 

host adapted serotypes (23%-Dublin, 47%-Pullorum) than those of broad host 

range (5% for both Enteritidis and Typhimurium). This was contradictory to the 

hypothesis that the narrow range of ecological conditions encountered by these 

serotypes would reduce the possibility of genetic diversity. Chromosomal analysis 

of these serotypes has previously shown that they were relatively stable and 

consisted of a single world-wide clone and minor sub-clones.

The location of restriction sites for Pstl and Smal were detemiined for the 

plasmid of Typhimurium and fragment similarity toother SAP’s in relation to 

existing maps suggested.

A 2.3 kb Pstl fragment was demonstrated to be present in the plasmids of 

Typhimurium, Wangata, Gallinarum, Pullorum, Bovismorbificans, Dublin and the 

Dublin variant pOG683. Smaller fragments of Abortusovis and Choleraesuis 

hybridized and indicated partial sequence homology. No homology was detected in 

the plasmid of Enteritidis.
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Not only do these results confinii a family of related plasmids within the 

salmonellae, they indicate much more of the plasmid is conserved. These analyses 

suggest molecular divergence of the plasmids from a common ancestor 

(Typhimurium) has arisen by loss of DNA. The population genetics of the SAP’s of 

the salmonellae parallel the findings of chromosomal analysis in as much as they 

demonstrate the presence of a common world wide clone. However, they also 

demonstrate that the rate of evolution of the plasmid is much higher than 

previously thought.
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CHAPTER 1

Introduction



History

The salmonellae were named after DE Salmon, an American bacteriologist 

who, in 1885, isolated and identified a micro-organism which was at the time 

described as the causative agent of hog cholera (Salmon and Smith, 1886). 

Although the aetiological agent of this disease was later proved to be vhal and the 

bacillus isolated subsequently recognised as a secondaiy infectious agent, the 

generic designation Salmonella was inti'oduced to honour the work of Salmon. 

This bacillus was named Salmonella choleraesuis and was found frequently to be a 

secondary invader in cases of hog cholera (Weil and Saphra, 1953). In the yeai's 

that led up to the turn of the century, organisms were identified that caused both 

human (Gaertner, 1886) and animal disease (Loeffler, 1892) and although differed 

culturally and immunologically, were sufficiently related epidemiologically, 

serologically and culturally to be considered a single genus. Although primarily an 

intestinal parasite of man and other animals salmonellae are also found in soil, 

rivers, sewage and food.

Definition

The genus Salmonella belongs within the family Enterobacteriaceae and 

consists of gi’am negative, aerobic, non-sporing, rod-shaped organisms which are 

serologically related (Le Minor, 1984). Most strains are motile by means of 

peri trichons flagella and will grow on defined media without special growth 

factors. In general, they do not ferment lactose, sucrose or adonitol but do produce 

acid and gas fi'om glucose, mannitol, sorbitol and a variety of other carbohydrates. 

In addition, they can utilise citrate as a sole source of carbon, rarely form indole, 

do not hydi'olyse urea and produce H2S from tiiple sugar iron agar. In addition to 

cultural properties, all members have an antigenic structure by which they can be 

recognised -  although neither of these characteristics is wholly exclusive to the 

genus (Kauffmann 1954). These characteristics ai'e not always stable features of 

the salmonellae and has made classification and nomenclature somewhat 

controversial.



Nomenclature

Before the recognition of the genus Salmonella, the causative agents of 

disease were generally referred to by the type of illness caused e.g. Bacillus typhi 

was or were given names associated with the animal from which they had been 

isolated e.g. Bacillus pullorum  and B. abortus-equi (Weil and Saphra, 1953). 

Although the genus was originally created by medical bacteriologists to include 

organisms that gave rise to a certain type of illness in man and animals and were 

related antigenically it soon was apparent that salmonellae had many common 

biochemical characters and subsequently more emphasis was placed on biochemical 

activity than antigenic structure in their definition (Kauffmann, 1960). Further 

classification was inti’oduced by PB White and F Kauffmann who divided the 

salmonellae into sub-groups based on their antigenic properties (Kauffmann, 1966). 

However, rather than refer to each type by its antigenic formula, the convention 

was established that each new type should be named after the place in which it was 

fh'st isolated. In 1925 only 25 Salmonella serotypes were known. Currently there 

are 2375 serotypes with new types being discovered every year (Popoff et al 

1994). However it soon emerged that some salmonellae were not host-adapted 

and others did not cause the disease that fkst inspired their name and this 

procedure for naming salmonellae was abandoned. As a result efforts were taken to 

limit the plethora of “species”. Various unsuccessful efforts were made to clarify 

the situation. Ewing (1972) succeeded with the proposal that there were only three 

species of Salmonella : S.choleraesuis, S.typhi and S.enteritidis', the latter of 

which included all other serotypes. Under that method S. typhimurium became S. 

enteritidis serotype Typhimurium.

The advent of modern methods e.g. DNA-DNA reassociation techniques 

cleaiiy indicated that all serotypes of Salmonella belonged to one group which 

comprised seven sub-species (Crosa et al 1973, Le Minor et al 1982a): subsp I 

included most of the serotypes responsible for widespread disease in man and 

animals; the other six sub-species comprised mainly parasites of cold-blooded 

animals or were found in the natural envh’onment. It therefore followed that the 

species should have a single name. Following the rules of the Bacteriological Code, 

Le Minor et al (1982b) proposed Salmonella choleraesuis as the type species -  it



being the first type described -  with serotypes given in Roman type after the sub

species name e.g. S.typhimurium became S.choleraesuis subsp choleraesuis ser 

Typhimurium. However this provided yet more ambiguity by using a name 

previously used to designate a serotype. As a result a new epithet was proposed -  

S.enterica (Le Minor and Popoff 1987). In this way S.typhimurium became 

S.enterica subsp enterica serotype Typhimuiium which although taxonomically 

correct, is too complicated for general use. A much simpler designation was 

Salmonella Typhhnuiium or just Typhimurium. The proposal has generally been 

accepted and although it is being widely used (Ewing 1986, Le Minor and Popoff 

1987, Old 1990, Oichton and Old 1990, Browning et al 1995, Browning and Platt 

1995, Rankin and Platt 1995) it has not yet acquLed universal acceptance.

Typing Methods

Serotyping

In 1929 serological studies by White intioduced the terminology by which 

the salmonellae are referred to today. The Kauffmann-White scheme is based on 

the recognition of bacterial surface antigens -  the thermostable polysaccharide cell 

wall or somatic antigens (O antigens) and the theimolabile flagellar proteins or H 

antigens (Kauffmann, 1966). Those bacteria which possess capsules or envelopes 

also have a third vaiiety of antigen (Vi or K). The Kauffmann-White scheme 

divided the salmonellae into serotypes based on the O and H antigens present.

The typical Salmonella possess both somatic (O) and flagellar (H) antigens. 

The Kauffmann-White scheme (Report 1934) classified salmonellae into groups 

and sub-groups designated by the letters A, B, C l, C2, C3, D, E l, E2, E3, E4 to 

Z. Each group was characterised by one or more antigenic factors which was 

common to all members of the group but which was not represented in members of 

other groups. The O antigens were designated numbers and to identify individual 

organisms within each group in was necessary to deteimine the H antigens. Most 

salmonellae have two fonus of H antigen (Phase I and II) the expression of which 

are genetically determined and an individual cell may possess one or other foim. A 

culture may therefore be composed of organisms all of which have the same H



antigen or may be a mixture of both. Phase I antigens were identified by lower case 

letters and Phase II by arable numbers 1-7. The scheme arranged the salmonellae 

into serotypes based on antigens present in the envelope, cell wall and flagella. This 

method only recognised those antigens of primary diagnostic importance and is not 

a record of the complete antigenic structure of the organism.

By convention the four subgenera (TIV) established by Kauffmann (1960, 

1966) were recognised on the basis of biochemical tests only. However, detailed 

phenotypic and numerical-taxonomic studies revealed that most of the serotypes in 

these four subgenera were indistinguishable biochemically (Veron and LeMinor 

1975).

Phage-typing

Bacteriophages are vim ses that are capable of infecting bacteria resulting in 

either lysis of the cell or lysogeny in which the phage persists within the cell. All 

strains of Salmonella are susceptible to infection by bacteriophages.

Strains in particular- serotypes can be further differentiated into phage types 

by their susceptibility to a series of bacteriophages. Phages with different 

specificities produce a pattern of lysis which when interpreted give rise to the 

phage type. However phage typing schemes have only been developed for a few 

serotypes e.g. Typhi (Craigie and Felix 1947), Typhimuiium (Anderson et al 

1977), Inf anti s (Kasatiya et al 1978), Hadar (de Sa et al 1980) Enteritidis (Ward et 

al 1987), and Virchow (Chambers et al 1989).

Phage typing is a phenotypic method of sub-dividing certain serotypes of 

Salmonella and is dependent on the presence of phage receptor sites on the 

bacterial cell surface. Chart et el (1989) showed that the loss of EPS in strains of 

Enteritidis resulted in change of phage type from 4-^7 (witli a concomitant loss of 

virulence). This resulted from the loss of six phage reactions for which the 

receptors are obviously found on the EPS. There have also been various reports of 

a change in phage type due to the acquisition of a plasmid. Frost et al (1989) 

showed that the acquisition of a plasmid resulted in the conversion of strains of 

Enteritidis from PT4 to PT24. An ampicUlin resistant plasmid has been reported to 

be responsible for the increase in Enteritidis phage type 6 a in Greece (Vatopoulos



et al 1994). Elimination of a similar sized plasmid (40kb) by Rankin and Platt 

(1995) resulted in the conversion of phage type 6 a to 4 and also demonstrated the 

conversion of several different phage types of Enteritidis by the addition of 

temperate phages from the typing scheme. Although it is not known if this inter

conversion occurs readily in nature, it indicates that phage type results should be 

interpreted with considerable caution.

Biotyping

Biotyping is a method of discriminating within a serotype on the basis of 

biochemical properties. The typing scheme of Duguid et al (1975) was initially 

devised for Typhimurium and was based on 15 biochemical tests. 32 possible 

biotypes were defined by the combination of positive and negative reactions 

obtained with certain substrates (D-xylose, meso-inositol, L-rhammnose, d- and m- 

tartrates). Sub-types within these primary biotypes are characterised after reactions 

with a further 10 secondary tests. Full biotypes were designated a primary number 

and secondary letter. Although modified versions of the Typhimurium typing 

scheme were applied to other serotypes e.g. Paratyphi B (Barker et al 1988), 

Montevideo (Old et al 1985), Agona (Barker et al 1982) this system remains 

limited to a few serotypes. Biotyping is of most use when combined with other 

typing methods (Barker and Old 1989).

Multilocus Enzyme Electrophoresis

The typing methods mentioned previously either used individually or in 

combination provide phenotypic discrimination, which although useful in an 

outbreak or epidemiological situation, provides no infomiation as to the population 

genetics of the salmonellae and does not readily allow the determination of 

relationships between serotypes. Multilocus enzyme electrophoresis (MLEE) was 

initially used in the field of eukaryotic population genetics. A modified method was 

developed by Selander and co-workers for the analysis of bacterial populations. 

This method characterises isolates by the relative electrophoretic mobility of a lai'ge 

number of cellular enzymes in starch or polyacrylamide gels (Selander et al 1986). 

Between 20-30 basic metabolic enzymes (which were expressed in all isolates of a



species) were chosen based on their neutrality under selection and hence were 

minimally subject to convergence through adaptive evolution. Mobility variants of 

enzymes were termed electromorphs. Each isolate was defined by its combination 

of electi'omorphs over the number of enzymes assayed. In this manner distinctive 

profiles of electromorphs were designated electrophoretic types (ET’s). The 

relative mobilities of each enzyme can be equated with alleles at a corresponding 

gene locus. This method provided an indirect method of genotypic analysis 

whereby the amino acid sequence of the resultant proteins determines the result 

and has been of most use in the study of the population genetics of bacteria. 

Belti’an et al (1988) demonstrated that certain multilocus enzyme types were of 

global distribution within the salmonellae. However, it is possible for genetic 

change to occur without any change either in the amino acid sequence or sufficient 

change to affect enzyme mobility. Hence subtle changes in DNA sequence may 

remain undetected. This method provided no discrimination of strains within an 

outbreak.

Molecular analysis

The phenotypic nature of serotyping, phage typing and biotyping does not 

allow the determination of evolutionary relationships between serotypes. The 

application of MLEE to bacterial population genetics demonstrated the clonal 

nature of the salmonellae (Beltran et al 1988, Selander et al 1990). These methods 

relied on the identification of surface structures or metabolic activities of the 

organisms. The recent advances in the field of molecular biology have enabled a 

greater understanding of the salmonellae. A number of techniques have been 

developed which have been applied to the salmonellae.These include plasmid 

analysis, pulsed field gelelectrophoresis, nucleic acid hybridization, ribotyping, 

IS200 analysis and polymerase chain reaction, studies. These wül be dealt with in 

the next section.

Plasmid analysis

Plasmids or exn achromosomal genetic elements have been found in almost 

all bacterial genera so far investigated. Takahashi et al (1969) showed that the



relative molecular length of plasmids could .be determined by their mobility in 

agarose gel after electrophoresis whilst Aaij and Borst (1971) showed that the 

electrophoretic ability of DNA was dependent on its conformation in the gel 

matrix; closed circle DNA migrated faster than the duplex form. The development 

by Birnboim and Doly (1979) of a rapid simple method to isolate plasmid DNA has 

enabled plasmid analysis to be undertaken in any laboratory using simple 

equipment. Many wild-type strains of Salmonella cariy plasmids which differ in 

size and number, and can be separated on agai'ose gels by electrophoresis. The 

investigation of outbreaks of salmonellosis was one of the first situations in which 

plasmid analysis was able to make a unique contribution in the identification of 

sources of infection (Spika et al 1987, Taylor et al 1982, Riley et al 1983). 

Widespread outbreaks of salmonellosis had in the past only been recognised if they 

were due to unusual serotypes e.g. S.eastbourne in chocolate (Craven et al 1975), 

or unusual phage types of Typhimurium (Cowden et al 1989). By using plasmid 

analysis Taylor et al (1982) were able to accurately distinguish a number of strains 

of S.muenchen from others isolated in the United States.

However plasmids of identical size but different in sequence and function 

can exist in many bacteria. This problem can be overcome by restriction 

endonuclease fragmentation pattern analysis of the plasmids whereby digestion 

with enzymes that recognise specific sequences in double stranded DNA produces 

a characteristic series of linear DNA fragments when separated by electrophoresis 

in agai'ose gels. The resultant pattern comprises the plasmid fingerprint (Platt 

1983). The choice of enzyme depends on the size of the plasmid and also on the 

number of fragments generated. There should be sufficient fragments generated for 

specificity but not so many that coincidental matching occurs (Platt et al 1986). 

Interpretation of such plasmid fingerprint gels in an epidemiological situation 

requbes a prerequisite knowledge of the plasmid pool of the organism.

It is often assumed that plasmids are accessory DNA elements and that 

their presence in bacterial strains is ephemeral. However, where a plasmid 

contributes to the virulence of an organism it is maintained over considerable 

periods of time by selection in infected persons or animals. Many strains of 

Typhimurium, Dublin, Enteritidis carry virulence plasmids (Woodward et al 1989)



which may reside by chance in epidemiologically uni’elated strains (Platt et al 

1986). The demonstration that several strains harbour an indistinguishable plasmid 

cannot always be taken as evidence of their relatedness.

Chromosomal analysis

Pulsed Field Gel Electrophoresis

The genome of Typhimurium (and other salmonellae) is approx 4.5 x 10® bp 

and is thought to code for about 3000 genes. About 4% of the genome encodes 

functions neccesaiy for virulence.

Because of its lai'ge size, great care must be taken when isolating 

chromosomal DNA in order to avoid physical shearing. One of the most successful 

techniques involves extraction in situ, where intact bacterial cells are embedded in 

agarose, lysed, deproteinised and digested and the agarose plugs loaded directly 

into the wells of an agarose gel for electiophoresis (Schwaitz and Cantor 1984). 

Conventional electrophoresis does not resolve fragments lar ger than about 50 kb 

and restriction enzymes that cut the bacterial genome into fragments smaller than 

50 kb tend to generate too many similar sized fragments. Pulsed field gel 

electrophoresis (PFGE) was derived fi'om conventional agarose electrophoresis to 

enable the resolution of large fragments >200 kb -  the electric field was alternated 

between spatially fixed pairs of electrodes. In this way, DNA fragments were able 

to re-orientate and move more easily (Carle et al 1986).

PFGE has proved of little value in epidemiological investigation. A study by 

Arbeit et al (1990) revealed that PFGE was useful in the determination of the 

evolutionary divergence of E.coli but could not discriminate epidemiologically 

related and unrelated sti'ains. Similarly, Thong et al (1996) reported 29/32 sporadic 

cases of Enteritidis were indistinguishable from the outbreak-related cases. Olsen 

and Skov (1994) used PFGE to demonstrate four different genomic lineages of 

Dublin, one of which predominated throughout the world and paralleled the MLEE 

results of Selander et al (1992), plasmid analysis (Browning et al 1995) and whole 

cell REFP (Platt et al 1995) of this serotype. PFGE analysis is therefore open to 

mis-interpretation if the operator is unawai'e of the population genetics of the



organism being studied; within particular geographical areas a common clone often 

exists.

Nucleic Acid Hybridisation

Nucleic acid hybridisation takes advantage of the ability of double-stranded 

DNA/RNA molecules to be separated (by heat or alkali treatment) and the 

subsequent introduction of a probe fragment wül allow the re-formation of H— 

bonds between complementaiy sequences that exist. The probe is labelled with a 

detectable maiker

DNA hybridisation

DNA hybridisation is most often combined with REFP or chromosomal 

fingerprint gels. The DNA fragments are ti'ansferred to nylon or nitrocellulose 

membranes and then hybridised with a probe. Probes can be either specific e.g. spv 

-  a probe from a region of the Typhimurium virulence plasmid (Woodward et al 

1989, Poppe et al 1991) which demonstrated the presence of a vbulence associated 

region in plasmids of different serotypes, or random sequences (Tompkins et al 

1986) which served to highlight sequence heterogeneity.

Ribotyping

This method, introduced by Grimont and Grimont in 1986, uses ribosomal 

RNA or the corresponding sequence as a probe. This method relies on the fact that 

rRNA genes are organised into opérons -16S, 23S and 5S and that several (4-8) 

copies are found in a typical bacterial cell. Used individually or collectively these 

probes wül hybridise with fragments in a chromosomal fingerprint that contain the 

corresponding gene or part thereof. It has been found to be useful primarily when 

combined with other typing methods e.g. plasmid analysis and phage typing and 

has been used to study Enteritidis (Martinetti and Altwegg, 1990), Berta (Olsen et 

al 1992), Typhi (Nastasi et al 1993), Reading, Senftenberg and Typhimurium 

(Esteban et al 1993). All reseai’chers basically found that within a serotype isolates 

can be sub-divided into smaller groups based on their ribosomal patterns. The 

discrimination of strains achieved by this method was generally low.
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IS200 analysis

Insertion sequences are genetic elements that can insert themselves into 

different sites in a genome and as a result can often cause chromosomal 

rearrangements (inversions, deletions) and thereby alter gene expression. In 1983 a 

Salmonella-spQoïïic insertion sequence was discovered by Lam and Roth and was 

designated IS200. This 700bp element and has been found to be present in different 

copy numbers in different serotypes of salmonellae. IS200 profiles have been used 

m the area of population genetics and Stanley el al { \99l)  identified three clonal 

lineages of Enteritidis based on the distribution of IS200 although the conclusions 

reached by the authors, that IS200 analyses “underline the value of phage typing 

which maximises strain discrimination in epidemiological studies of S.enteritidis'^ 

ai*e inaccurate. Given that the authors found all isolates within a phage type had the 

same IS200 profile, it would appear that in an epidemiological context, the method 

is of no more benefit than other typing methods. A recent study concluded that 

IS200 analysis was not applicable to Choleraesuis (Weide-Botjes, 1996). Thus 

although beneficial in the area of population genetics, IS200 profiles are of most 

use when combined with other methods.

Polymerase Chain Reaction

The polymerase chain reaction (PGR) enables the amplification of a few 

copies of target DNA to a level that can be detected by gel electrophoresis of 

hybridization (Saiki et al 1988). PCR has been used for the detection of different 

pathogenic organisms in clinical samples and foodstuffs (Widjojoatmodjo et al 

1991) and semi-quantitative assays have been developed for the detection of 

Salmonella virulence plasmid genes (Mahon and Lax 1993, Rexlach et al 1994). 

Although this method is extremely sensitive, it is subject to certain constraints. In 

epidemiology it is currently limited by reproducibility. False positive reactions can 

occur and contamination is a major consideration in the analysis of diagnostic 

results. However when used correctly PCR can provide an important research 

technique
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Comparison o f different typing methods

There have been many reports on the merits and drawbacks of different 

typing systems. Barker and Old (1989) found biotyping afforded excellent strain 

discrimination whereas phage typing provided good discrimination of epidemic 

strains. Binnner et al (1983) however found biotyping was of no use in the analysis 

of Typhimurium but phage typing was as good as plasmid analysis. Holmberg et al, 

(1984) and Tompkins et al (1986) also found plasmid analysis comparable to phage 

typing. However, these studies relied on the determination of plasmid size as an 

indication of their relatedness, and as indicated by Farrer (1983) identity of plasmid 

size does not indicate plasmid identity. For this reason the use of plasmid 

fingerprint analysis should be employed in the analysis of plasmids, although it 

should be pointed out that the choice of restriction enzyme is important. Many 

workers have used enzymes that cleave infrequently which generate only few 

fragments and may not reveal sequence valuations which reduces the information 

content of a fingerprint.

Each laboratory, perhaps understandably, advocates their own particular 

method of analysis. In epidemiological investigation, the best results were achieved 

when a combination of methods were implemented (Riley et al 1983, Brunner et al 

1983, Mayer et al 1988, Holmberg et al 1984, Platt et al 1987).

Pathogenicity

Types o f Disease

The salmonellae cause a wide variety of disease in man and animals. In its 

natural setting salmonellosis is acquired by oral ingestion of the organism. 

Thereafter there are three common clinical manifestations — gastroenteritis, 

systemic infection (enteric fever) or the asymptomatic carrier state. The most 

common clinical manifestation is gastroenteritis in which the organism passes 

thi’ough the stomach to the intestine where it is engulfed by the epithelial cells of 

the ileum. There is rarely penetration beyond the basal epithelium. This non- 

systemic infection of the intestinal tract and regional lymph nodes results in
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diarrhoea and the disease is usually self-limiting. Enteric fever occurs when the 

bacteria cross the intestinal epithelia to the reticulo-endothelial system where 

systemic infection occurs as the bacteria multiply in mononuclear phagocytes in the 

liver, spleen, lymph nodes and Peyers patches. Bacteraemia occurs when the 

patient develops fever minus the manifestations of enteritis. Asymptomatic carriers 

can excrete organisms more than a year after the symptoms of salmonellosis have 

disappeared. In this instance the bacteria reside in the gall bladder and are excreted 

into the intestine with the bile (Christie 1974).

The salmonellae are primarily intestinal parasites of man and animals. A few 

serotypes ai'e host adapted e.g. Gallinarum -  fowl, Abortusovis -  sheep, Typhi -  

man etc. The virulence of the salmonellae is associated with the organisms ability 

to invade and persist in target organs during systemic infections (Kawahara et al 

1988). However, the factors responsible for vuntlence of the salmonellae are ill- 

defined. The EPS is the most extensively characterised vimlence determinant and 

although its exact mechanism of action is not known it may be involved in 

attachment and invasion (Finlay and Falkow, 1988). It is unknown if any effects on 

the host by the Lipid A component are essential for virulence but they certainly 

contribute to the overall disease. Rough strains of Salmonella are avirulent. The 

underlying cause probably involves loss of chemostatic motility as well as 

diminished resistance to gastric acidity (Finlay and Falkow, 1988).

Vimlence Factors

Most of the experimental analysis of the vimlence of Salmonella has been 

carried out in the mouse model and although the effects in man and animals wiU 

vaiy slightly (e.g. mice infected with Typhi do not display clinical signs of typhoid) 

it is a useful method for understanding the basis of pathogenesis.

Before it can cause disease. Salmonella must overcome a variety of host 

defence mechanisms. Typhimurium has long been the model system for studying 

the vimlence factors by which the salmonellae ai’e able to cause disease -  invasion, 

survival and replication in host cells.
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S u if ace Structures

In order to avoid elimination by peristalsis, the salmonellae must first 

adhere to the intestinal epithelial cells. Type 1 pili, or fimbriae, are filamentous 

surface structures involved in the adherence to epithelial cells. Although the exact 

role of such structures in the vimlence of the organism appears limited -  oral 

challenge of piliated and non-piliated Typhimurium sti'ains resulted in minor 

differences in vh'ulence in the mouse model (Duguid et al 1976). The composition 

of type 1 püin proteins from Typhimurium and Enteritidis varies considerably 

(Purcell et al 1987, Feutrier et al 1986). More recently a study by Baumler et al 

(1996) demonstrated that plasmid encoded fimbrial genes (pef) mediated adhesion 

to the murine small intestine. This operon, although necessary, did not mediate 

fluid accumulation and suggests that in the mouse model, the p e f  operon enhances 

the organisms ability to bind to the epithilium of the small intestine and acts in 

conjunction with other virulence factors to cause fluid secretion.

Another surface structure shown to contribute to the vh'ulence of 

Salmonella is the fiagellum -  although neither functional motility nor chemotaxis is 

required. Cai’siotis et al (1984) demonstrated that flagella were not required for 

colonisation of the gasti'o-intestinal tract but were needed for survival and growth 

of the organism in the liver and spleen. Again, the exact mechanism of vh'ulence is 

uncleai’ although it is thought that the fiagellum is necessary for either intracellular 

multiplication in the macrophage or to contribute to enhanced resistance to 

macrophage killing (Weinstein et al 1984).

Cellular invasion and survival

Invasion of the gastrointestinal mucosa is an essential step in the 

pathogenesis of Salmonella (Gianella et al 1973). Strains that are unable to invade 

are avirulent. The exact mechanism of entry into the host cell remained unknown 

for a long time but advances in the ai'ea of moleculai' genetics has provided some 

answers. Galan and Curtiss (1989) identified a chromosomally encoded locus inv 

which is essential for entry of Salmonella into cultured epithelial cells. So far 15
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genes have been identified in this locus termed inv A, B,C, D — O, The protein InvA 

is a member of a family of proteins involved in either the secretion of virulence 

determinants of flagellai' biosynthesis (Ginoccio and Galan 1995).

Survival within macrophage

Once inside eukaiyotic cells, salmonellae have a number of strategies by 

which they avoid host defences. Phagocytosis is the first line of defence against 

invading organisms. Fields et al (1986) constructed a series of Typhimui'ium 

mutants and showed that those unable to suivive within the macrophage were 

avirulent. Mechanisms for survival within macrophage include inhibition of the 

respiratory burst (the process in which the cell produces toxic metabolites including 

hydrogen peroxide and superoxide), inhibition of lysosomal fusion, escape from the 

phagolysosome and resistance to granular antimicrobial peptides. The exact 

mechanisms of these suivival strategies are unknown, although further 

characterisation of Typhimurium mutants will elucidate such bacterial virulence 

properties. One such genetic locus phoV has been identified that controls the 

expression of genes encoding factors that protect Salmonella from the bactericidal 

action of macrophage-derived cationic peptides or proteins (Fields et al 1986, 

Groismann etal\9% 6).

Toxins

Salmonella produce three types of toxin, each of which can contribute to 

virulence during infection. The Lipopolysaccharide (LPS) or endotoxin -  intact 

0-antigen side chains of the LPS protect the bacteria from host attack. The unique 

sugars that constitute the O-antigen limit the activation of the Complement system, 

and thereby reduce the ability of macrophage to ingest and kill the organism 

(Luderitz et al 1986). The heat-labile enterotoxin shows immunological cross

reactivity with cholera toxin (i.e. it increases levels of cAMP) (Wallis et al, 1986). 

The cytotoxin is localised to the bacterial outer membrane and inhibits protein 

synthesis in epithelial cells and results in extensive detachment of intact vero cells 

in experimental infection (Koo and Peterson, 1983).
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The exact role of the three toxins has not been clearly defined although 

their involvement in the pathogenesis of experimental infection has been cleaily 

demonstrated.

Plasmids

The unique property often conferred by plasmids to bacterial pathogenesis 

is virulence, although these organisms may also harbour plasmids encoding 

ancilliaiy functions e.g. antimicrobial resistance, bacteriocinogeny. However, those 

plasmids mediating essential vimlence factors per se are generally present in all 

wild-type strains of a pathogenic species (Bmbaker 1985).

In the 1970’s a large molecular weight plasmid was identified in 

Typhimurium (Spratt et al 1973, Smith et al 1973). This plasmid was termed 

“cryptic” since no phenotype could be attributed to it. Jones et al (1982) described 

this plasmid as being associated with virulence; loss of this plasmid led to reduced 

vimlence in mice and the loss of ability to adhere to and invade HeLa cells. 

Réintroduction of the plasmid restored these properties. Further studies 

demonstrated plasmids with similar properties in other serotypes e.g. Dublin 

(Terakado et al 1983), Enteritidis (Nakamura et al 1985), Gallinarum (Barrow et 

al 1987), Pullomm (Barrow and Lovell 1988) and Choleraesuis (Kawahara et al 

1988). The observation that particulai’ plasmids were associated with certain 

serotypes of salmonellae led Helmuth gf a / (1985) to introduce the tenn “serotype- 

specific” plasmid (SSP). Although this designation is widely used it was based on 

size and distribution alone without the additional data provided by REFP analysis. 

As shall be shown later, it is incorrect. Plasmids previously described as SSP’s of 

Enteritidis and Dublin have been demonstrated in different, although closely related 

serotypes. For this reason the term “serotype-associated plasmid” has been 

proposed (Browning and Platt 1995) and adopted throughout.

Serotype-associated plasmids o f the salmonellae

Serotype-associated plasmids have been identified in certain serotypes of 

Salmonella including those most commonly isolated from man (Typhimurium and
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Enteritidis) as well as host adapted serotypes (Dublin, Gallinarum, Pullorum and 

Choleraesuis). However, although this is not a universal feature of the salmonellae 

the incidence of SAP cairiage in such serotypes is between 87-89% (Helmuth et al 

1985).

Homology between SAP’s

Comparison of SAP’s of different serotypes by REFP analysis and DNA 

homology by Popoff et al (1984) used the entire Typhimurium plasmid as a probe 

and showed that the plasmids of Paratyphi C, Enteritidis, Newport, Dublin and 

Abortusovis shared a high degree of sequence homology with Typhimurium (73- 

90%). As mentioned previously, these plasmids are important in the vimlence of 

the organism. Physical and genetic analyses of these plasmids have detennined that 

not all of the plasmid is required for virulence (Michiels et al 1987). The essential 

virulence region has been identified as being 8kb in size (Williamson et al 1988b) 

and was found to be common to eleven serotypes of Salmonella : Abortusovis, 

Blegdam, Choleraesuis, Dublin, Enteritidis, Gallinarum, Moscow, Paratyphi C, 

Pullorum, Rostock and Typhimui'ium (Williamson et al 1988a). This region was 

later found to encode the salmonella plasmid virulence gene operon - spv and 

consists of the regulator spvR and four structural genes spvABCD  (Gulig et al

1993). Prior to this nomenclature different groups used designations such as vir, 

vag, mkf, mka, vsd and mba for the same genes. The exact mechanism of action of 

these genes remains largely unknown but a number of functions have been 

discovered for different loci e.g. resistance to complement action, plasmid 

replication and partition. Table 1.1 shows some examples of genes identified so far.

Popoff et al (1984) and Williamson et al (1988a) have suggested different 

mechanism for the evolution of SAP’s. The results of both their studies conflict 

with each other, not as written but in the conclusions di'awn from them. The fomier 

suggests a family of related plasmids which have diverged from a common 

ancestor; the latter implies that a particular' sequence has either been transposed 

between plasmids or conserved during plasmid evolution. Incompatibility studies 

by Platt et al (1988) revealed that the SAP’s of Typhimurium, Enteritidis and
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Dublin belong to the same incompatibility group which strengthens the ai’guement 

that the salmonellae contain a family of related plasmids.

Clonality

In the strict sense a bacterial clone consists of “a single cell and all its 

descendants representing a monophyletic branch on an evolutionary tree” (Whittam

1994) although in the field of population genetics its definition is slightly less rigid 

and generally refers to a sub-group of bacteria within a species derived from a 

common ancestor — and that have many similarities not shared by other organisms 

in the species. A clonal lineage is a genetic system whereby any differences occur 

with a single cell e.g. point mutation, deletion, inversion.

The concept of clonality was first applied in bacteriology by Kauffmann and 

Orskov in 1956 when they noticed that most enteropathogenic E.coli 0 :H  

serotypes had characteristic biotypes regardless of isolation or geographic origin. 

The first indication of clonality was provided by the observation of a stable world

wide association of several specific 0:K:H serotypes and biotypes.

The genetic structure of Salmonella is basically clonal. This conclusion was 

reached based on OMP electrophoretic patterns and plasmid analysis (Helmuth et 

al 1985) and MLEE (Beltran et al 1988). For each serotype analysed, except 

Derby and Newport, there is one predominant world-wide clone with minor clones 

probably recently derived from them. Both Derby and Newport have two divergent 

clone clusters based on MLEE analysis, which differ in the relative frequencies with 

which their clones cause disease in birds v animals (Derby) and humans v animals 

(Newport).

Clonal expansion is also evident from the plasmid population. A study of 

clinical isolates from wide geographical sources of Salmonella Wein revealed that 

the plasmid contant had remained uniform over a decade and also in the late stages 

of the epidemic history of the strain (Casalino et al 1984). Similarly, plasmid 

analysis revealed 89% of Dublin isolates from 5 continents to haibour virulence 

plasmids. These data, combined with whole cell REFP analysis extented the 

findings of Selander et al (1992) -  that the population of Dublin consisted of two 

clones D ul which was of worldwide distribution and Du3 which was restricted to
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Table 1.1

Examples of genes found in some serotypes of Salmonella

GENE LOCATION FUNCTION REFERENCE

5/?vRABCD plasmid virulence Gulig et al 1993

pefA plasmid fimbrial
biosynthesis

Friedrich et al 
1993

traT plasmid enhanced serum 
resistance

Rhen and 
Sukupoivi 1988

rsk plasmid enhanced serum 
resistance

Vandenbosch et al 
1987

rck plasmid complement
resistance

Heffernen et al 
1992

omp chromosome porin production Dorman et al 1989

//7/ABCDE chromosome fimbrial
biosynthesis

Baumler and 
Heffron 1995

rpoS chromosome transcription of
spv genes

Heiskanen et al 
1994

invA-O chromosome invasion of 
epithelial cells

Galan and 
Curtiss 1989

rfb chromosome O-antigen
biosynthesis

Brahmblatt et al 
1988

19



Europe (Platt et al 1995) by including Du3 to beyond Europe. These results 

demonstrated once geographically separated members of the same clone diverged 

in response to local selection pressure, and will be discussed more fully later. All 

Scottish strains of Dublin were fully sensitive to all antiirncrobial agents tested. In 

contrast 74% of strains from outwith the UK were resistant to between one and 

five antimicrobial agents (Browning and Platt 1995). This is an example of a sub

clone within a localised geographical area.

AIMS

The aims of this study were as follows

1) To determine the relatedness of the serotype associated plasmids of the 

salmonellae firstly by the compaiison of their restriction endonuclease 

fragmentation patterns and secondly to determine their incompatibility with a 

naturally occuring cointegrate plasmid that comprised pOG660 (the Typhimurium 

SAP) and pOG670 (and IncX plasmid).

2) To determine the extent of molecular variation of serotype associated plasmids 

both within and between serotypes.

3) To determine whether the plasmids harboured by host adapted serotypes 

exhibites more or less molecular variation than those of broad host range 

serotypes.

4) To determine the location of Pstl and Smal restiiction sites on the Typhimurium 

Sap and thereby identify potential regions on the plasmid which may be common to 

other SAP’s but not associated with vh'ulence functions. From these data it was 

envisaged that a number of fragments that were common to all or some of the
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SAP’s would be chosen with which to construct DNA probes and hybridize to 

Southern blots of REFP’s.

5) To consider the serotype associated plasmids of the salmonellae within a 

possible evolutionary framework based on the combined data.
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Storage o f Strains

Presumptive isolates of Salmonella were sent to the Scottish Salmonella 

Reference Laboratory (SSRL) where confirmation of serotype was carried out by 

standard methods (Kauffmann, 1954). A single colony was inoculated onto a 

Dorset’s egg slope and incubated overnight at 37°C. Thereafter long tenn storage 

of strains was at room temperature. Duplicate cultures were prepaied -  the growth 

from approx 1/2 a nutrient agar plate was resuspended in a 3ml solution of 

glycerol-peptone (8% glycerol in 1% protease peptone) and stored at -80^C.

Media

Short term maintenance of bacterial strains was by sub-culture on cystine- 

lactose-electrolyte-deficient (CLED) agar plates (Mast DM 110).

Nutrient agar (Nutiient broth, Oxoid CM l, that contained 1% 

Bacteriological agar, Oxoid L l l )  was used for the growth of bacteria from which 

DNA was extracted for plasmid profile analysis (PPA).

Isosensitest agar (Oxoid CM471) was used for antimicrobial susceptibility

tests.

Brain heart infusion (BHI) broth (Oxoid CM225) was used for the growth 

of organisms before extraction and purification of plasmid DNA for restriction 

endonuclease fragmentation pattern (REFP) analysis.

Bacteiial strains

Bacterial reference strains are shown in Table 2.1 together with stiain 

designation, antigenic structure and source. Strains of E.coli used in this study are 

shown in Table 2.2.

Antimicrobial susceptibility testing

Bacterial susceptibility to a range of antimicrobial agents was determined 

by disk diffusion assay on isosensitest agar with antibiotic disks (Mast) 

impregnated with individual antimicrobial agents -  amikacin (Ak;10|0.g), ampicilHn 

(Ap;10|Ltg), carbenicillin (Cb;100p,g), cephamandole (Ma;30jig), cephazolin 

(Kz;30pg), chloramphenicol (Cm;10pg), colistin sulphate (Ct;25pg), gentamicin
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Table 2.1

Reference strains for plasmid analysis

Serotype Strain
Designation

Antigenic
Structure

Source

Abortusovis GR7594 4,12 : c : 1,6 NK

Bovismorbificans GR6389 6,8 : r : 1,5 NCTC 5754

Choleraesuis GR6489 6,7 : c ; 1,5 NCTC 5735

Dublin GR34285 9,12 : g,P : - Platt et al 1988

Enteritidis GR16485 9,12 : g,m: - Platt et al 1988

Gallinarum GR6589 9,12 : — : — NCTC 9240

Pullorum GR6689 9,12 : -  : - NCTC 10706

Typhimurium NCTC 73 4,5,12 : i :1,2 NCTC 73

Wangata NCTC 8276 9,12 : Z4,Z23: 1,7 Denmark, 1953

Blegdam NCTC 5769 9,12 : g,m,q : - Copenhagen, 1939

Moscow NCTC 10480 9,12 : g,q : - Copenhagen, 1939

Rostock NCTC '5767 9,12 : g,p,u : - Copenhagen, 1939

Antarctica NCTC11342 9,12 : g, Zfi3 NCTC 11342

NK — Not Known

NCTC — National Collection of Type Cultures
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Table 2.2

Strains of E.coli used in the study.

K12 Strain Designation Purpose in Study Phenotype

39R861 (NCTC 50192) Source of plasmids for PPA 
molecular standards

lac^

J53-2 Recipient strain for 
plasmid transfer

lac% pro", met 
R if

J53-2 pOG669 Donor plasmid used in 
incompatibility studies

lac , pro“,met~ 
R if, Ap", K"

J53-2 pOG670 Donor plasmid used in 
incompatibility studies

la c \ pro",met 
R if ,Ap^ K'

lac^ lactose fermenter 

pro" proline auxoti'oph 

met" methionine auxoti’oph
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(Gm;10pg), kanamycin (Km;30|ag), nalidixic acid (Nal;30}ig), rifampicin 

(Rif;50|ag), sulphamethoxazole (Su;25p.g), streptomycin (Sm;10jig), tetiacycline 

(Tc;10|ig), tobramycin (Tb;10|ag) and trimethoprim (Tp;1.23|U.g).

Buffers and Reagents

All buffers and reagents aie detailed in Appendix 2.

Centrifugation

Unless otherwise stated all microcentrifugation steps were carried out at 

13000 rpm in a Heraeus microcentrifuge.

Plasmid Profile Analysis

Plasmid DNA was examined initially as a crude lysate to determine the 

plasmid profile of the bacterial strain.

Preparation o f cell lysates

The growth from approx 3/4 of a nutrient agar plate, incubated overnight at 

37°C, was suspended in 600pl Tris Borate-EDTA (THE 89mM Tris, 89mM Boric 

acid, L25mM EDTA pH 8.2) buffer in an eppendorf microcentrifuge tube using a 

sterile swab. 400jul of sodium dodecyl sulphate (SDS, 10% solution in TBE buffer) 

was added and the eppendorf inverted gently a few times to mix. The suspensions 

were then placed in a heating block at 55°C for 10 minutes, or until lysis was 

complete and the solution cleared. The lysates were then centrifuged for 10 

minutes and the resultant pellet of cell debris removed with broken swab or a 

pipette tip.

Vertical Gel Electrophoresis

To lOOpl of cleai'ed cell lysate 5pi of tracking dye (25 % sucrose, 0.06 % 

sodium acetate, 0.1 % SDS, 0.05 % bromophenol blue) was added and 

electrophoresed in a vertical agarose gel (0.7% w/v in TBE buffer) at lOOV for 1 

hour followed by 200V for 4 hours. Plasmids of known molecular weight {E.coli
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K12 39R861 -  147:63:36:7 kb) were included in each gel as markers for the 

estimation of plasmid size.

Visualisation o f Plasmids

After electrophoresis the gel was stained in ethidium bromide (6pg/ml) in 

TES (50mM Tris, 50mM NaCl, 5mM EDTA pH 8.0) buffer for 15 minutes. The 

plasmid bands were visualised under ultraviolet light (302nm) and photographed on 

Polaroid Type 665 film with a Polaroid MP4 land camera.

Plasmid purification for REFP analysis

Purified DNA for REFP analysis was prepared by the method of Platt et al 

(1988). A 10ml overnight culture in BHI broth was centrifuged for 10 minutes at 

4500 rpm in a benchtop centrifuge. The bacterial pellet was resuspended in 400pl 

TGE (25mM Tris, lOmM EDTA, 50mM glucose pH 8.0) buffer. Each sample was 

then divided into two eppendorf tubes and centrifuged for 30 seconds. The 

supernatant fluid was discarded and the pellet resuspended in a solution of 

lysozyme in TGE (5mg/ml). The samples were incubated on ice for 5 min, then 

400pl of alkaline SDS (1% SDS, 1% NaOH) was added, the tubes mixed gently by 

inversion and incubated on ice for a further 5 min. 300pl sodium acetate (3M) was 

added, the tubes inverted a few times until flocculation occured and then vortexed. 

The samples were placed on ice for 5 min after which time they were centrifuged 

for 2 min. The supernate was transferred to a clean eppendorf tube and 500pl 

phenol-chloroform (1:1 w/v) added and the tubes vortexed. After centrifugation for 

2 min the upper aqueous layer was transferred to a clean eppendorf, 500pl of 

propan-2-ol added and the tubes vortexed. After at least 5 minutes at room 

temperature, the DNA was recovered by centrifugation for 10 min, the supernate 

discarded and the pellet resuspended in lOOpl TE (lOmM Tris, ImM EDTA pH 

8.0) buffer. Duplicate tubes were pooled, lOOpl of ammonium acetate (7.5M) 

added, vortexed and 600pl ethanol added. The tubes were vortexed and stored 

overnight at -20°C. After centrifugation for 10 min, the supernate was discarded
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and the pellet resuspended in 160pl TE. 18jil of RNAase (1 mg/ml) was added and 

incubated at 3TC  for 30 min. 20jul of NaCl (2.5M) was added, mixed and 500fil of 

phenol-chloroform added. The tubes were vortexed and centrifuged for 2 min. The 

upper aqueous layer was transferred to a clean eppendorf, 500|ul propan-2-ol 

added and mixed thoroughly. After at least 5 min at room temperature the samples 

were centrifuged for 10 min and the resulting pellet resuspended in lOOfll TE 

buffer. lOOp-l ammonium acetate (7.5M) was added, mixed and then 600p,l ethanol 

added. The tubes were vortexed and placed at -2 0 ”C overnight. After 

centrifugation for 10 min, the pellet was allowed to air dry and then resuspended in 

60|0.1 TE buffer and stored at 4®C.

Restriction endonuclease digestion o f purified plasmid DNA

DNA was digested with a range of restriction endonucleases (Life 

Technologies) used according to the manufacturers instruction. The equivatent of 

20 units of enzyme was used (where one unit of enzyme is defined as the amount 

required to digest Iqg of lambda DNA completely in 1 hour under specified 

conditions). Reaction mixtures were prepared as follows:

20fil sample DNA 

5jul REact’’’̂  buffer 

2|li1 enzyme

23|il sterile distilled water 

The tubes were vortexed gently and centrifuged for a few seconds to ensure 

thorough mixing. The samples were then incubated at 37®C (30^0 for Smal) for 4 

hours. Control samples were included of phage lambda (k) DNA digested with the 

same enzyme as the sample DNA to determine full enzymatic activity occured. 

X DNA digested with Pstl and also X DNA digested with Kpnl were included as 

markers for the calibration of fragment sizes.

Horizontal Gel Electrophorsis

A 0.8% agarose gel was prepared (O.Sg agarose in 100ml TBE buffer 

containing ethidium bromide). After enzymatic digestion was complete, 5pl of gel
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loading buffer (25% Ficoll, 0.25% bromophenol blue in TBE containing ethidium 

bromide) was added to each reaction tube. The gel was placed in a horizontal gel 

tank (Life Technologies Model H3) and submerged in TBE containing ethidium 

bromide and the samples loaded. The current was applied (18mA for the 10 x 14 

cm gel tank and 32mA for the 20 x 20 cm tank) and electi'ophorisis canied out 

overnight (or approx 16 hours). The following morning the gel was viewed and 

photographed as previously described.

Computer aided analysis o f REF P ’s

Restriction fragment mobility in ethidium bromide stained agarose gels was 

recorded on Polaroid film and input to a computer using a digitiser and 

commercially available software (Platt and Sullivan, 1992). Each gel was calibrated 

with restriction fragments from both Pstl and Kpnl digests of X DNA. The 

molecular weights of these fragments was fitted to a robust modified hyperbola 

(Plikaytis et al, 1986) from which fragment sizes in adjacent tracks were estimated 

by interpolation. The numerical values (kb) were stored for subsequent calculation 

of similarity co-efficients (Dice 1945) and graphical output (logarithmic scale). The 

calculation of Dice coefficients of similarity was based on the fonuula

S D ( % )  = [2m/(a +b)]xlOO 

where ‘m ’ was the number of restriction fragments common to two plasmids (A 

and B) and ‘a’ and ‘b ’ were the total number of fragments generated from each 

plasmids after digestion with the same enzyme.

Incompatibility Analysis of Plasmids

Bacterial strains and their plasmid designations ai*e detailed in Table 1.1.

BHI broth was used for growth of donor and recipient organisms for plasmid 

transfer.

Antibiotic impregnated discs were supplied by Mast at a concentration of 30|U.g per 

disc.

29



Minimal Media (Appendix 1) was used for the selection of ti'ansconjugants. 

Inhibition of the recipient Salmonella was by antibiotic selection.

Certain serotypes were unable to synthesise essential vitamins and amino acids 

which therefore had to be incorporated in the media. Dublin had a nutiitional 

requirement for nicotinic acid and so for this experiment was incorporated into the 

minimal media at a concentration of 20jig/ml. Similarly Pullorum, Gallinarum and 

Choleraesuis had nutiititional requirements for cystine which was incorporated at a 

concentration of 0.2mg/ml. Abortusovis required the addition of nicotinic acid 

(20|ug/ml), cystine and methionine (0.2mg/ml) (Stokes and Bayne 1958)

Broth transfer method

An overnight BHI broth culture of both donor and recipient organism was 

mixed in the ratio of 1:5 i.e 1ml donor (pOG669) + 4ml recipient (Salmonella) plus 

5ml fresh BHI and incubated for 6 hours at 37”C. The cultures were then 

centrifuged, washed and resuspended in saline (3ml). A sterile swab was used to 

spread the suspension on a minimal media plate and ampicillin and kanamycin discs 

were placed 1 cm apart on the plate. A purity plate (CLED) was also sub-cultured 

from the mating mixture to confirm the presence of both organism types. The 

plates were incubated overnight at 37”C.

Selection o f transconjugants

Colonies that grew within the noimal zone of inhibition of the antibiotic 

were selected onto CLED agcu plates and ampicillin and kanamycin discs added. If 

no colonies were present then the plates were re-incubated overnight. The selection 

pressure was maintained for the incoming plasmid for three successive subcultures. 

Thereafter single colonies were subcultured to nutrient agar for plasmid profile 

analysis.

Characterization o f potential transconjugants

Confirmation of plasmid transfer was carried out by plasmid profile analysis 

as described previously. Each plasmid profile gel contained ten potential 

transconjugants, pOG669 (or pOG670) and the parental SAP.
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REFP analysis of the transconjugants was performed as described 

previously, to confirm the presence of pOG669/pOG670 in its entirety and loss of 

the SAP where the plasmids were incompatible.

Southern Blotting

This technique, devised by EM Southern in 1975, involved the transfer of 

DNA fragments from an agarose gel to a nitrocellulose or nylon membrane. The 

DNA fragments in the gel were denatured and a replica of a plasmid fingerprint 

was then suitable for hybridisation with a labelled probe (Maniatis et al 1982).

Transfer o f DNA from agarose gel

After electrophoresis, the DNA fragments were transferred to niti’ocellulose 

membranes (Sigma, pore size 0.2|um) for subsequent hybridisation with a DNA 

probe. This was achieved by vacuum transfer which was much more efficient and 

quicker than conventional capillaiy transfer and did not involve pre-treatment of 

the gel -  all the steps were performed in the vacuum blotting unit. The 

niu'ocellulose membrane was pre-wet with sterile distilled water and subsequently 

immersed in 20xSSC (3M NaCl, 0.3M Sodium Citrate pH 7.0) for 30 minutes. The 

vacuum blotting unit (Phaimacia LKB 2016 VacuGene XL) was set up in 

accordance with the manufacturers instructions, the niti'ocellulose membrane put in 

place (with one corner marked for orientation) and the gel placed on top. The 

vacuum was stabilised at 50mBar pressure. The gel was depurinated with 0.25 M 

HCl by flooding the gel without leakage (approx 30ml) for 4 min, after which time 

it was removed and replaced with the dénaturation solution (1.5M NaCl, 0.5M 

NaOH). After 3 minutes this solution was removed and replaced with a 

neutralisation solution (l.OM Tris, 2.0M NaCl) which was left on for a further 3 

minutes and finally replaced with 20xSSC to twice its depth and the transfer 

caiTied out for 45 minutes. The nitrocellulose membrane was then air-dried, the 

wells and X control lanes marked with a pencil by visualisation under UV light and 

the DNA fixed by baking at 80°C for 2 hours. The membrane was stored in an 

airtight plastic bag.
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Extraction of DNA from agarose gels

The extraction of DNA fragments from agarose was attempted by many 

methods. These included spin-bind columns (Flowgen), glass wool extraction 

(Heery et al 1990) and commercially available kits such as Geneclean (Stratech 

Scientific Ltd). However the only satisfactory method was found to be 

electroelution of the fragment onto DEAL cellulose paper (Schleicher & Schuell 

NA-45, 0.45pm pore size). However, one limitation of this method was a low 

yield of DNA. To compensate for this, multiple tracks of the same fragment were 

extracted in parallel. In this manner 12 x 20pl of plasmid DNA was digested and 

electrophoresed overnight.

Preparation ofD EAE strips

Gloves were worn to prevent contamination of DEAE paper. Strips of 

DEAE were cut approx 4 cm x 1cm and were pretreated by immersion in lOmM 

EDTA for 10 min followed by 5 min in 0.5M NaOH and several washes in distilled 

water. The strips were then stored in distilled water at 4'^C.

Elution o f DNA

A cut was made, with a scalpel, in front of the fragment of interest and a 

DEAE strip inserted. One strip was used to extract 6 fragments, therefore 2 strips 

were used per gel. To prevent elution of the fragment immediately following, 

another DEAE strip was inserted behind the one of interest. Electrophoresis was 

carried out at 18mA for 1 hour after which time both the gel and the DEAE strips 

were examined under UV light to confiim the DNA had eluted onto the paper.

The DEAE strip was washed in NET (0.15M NaCl, O.lmM EDTA, 20mM 

Tris pH 8.0) buffer to remove any residual agarose. Each strip was placed in a 

microcentrifuge tube and 250fxl of high salt NET (l.OM NaCl, O.lmM EDTA, 

20mM Tris pH 8.0) buffer added. The tubes were placed in a heating block at 60°C 

for 45 min after which time the buffer was removed to a clean eppendorf and the 

strip washed with a further 50|il of high salt NET buffer. The strip was discarded. 

To remove the ethidium bromide from the solution 500pl of n-butanol was added
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mixed, allowed to separate and the upper layer discarded. 600p,l of ethanol was 

added and the tubes placed at ~20“C overnight. The tubes were centrifuged for 10 

min and the pellet washed in 80% ethanol. One of each duplicate tube was 

resuspended in 20jil TE buffer and this transferred to the corresponding duplicate 

tube. This DNA was then ready for subsequent ligation to the vector DNA.

Nucleic Acid Hybndization

A non-radioactive digoxigenin (DIG) system (Boehringer Mannheim) was 

used for hybridization and subsequent colour detection. Random primed D IG - 

labelled DNA probes were generated by the hybridization of random 

oligonucleotides to a denatured DNA template. A complementary strand was 

synthesised by Klenow enzyme which used the 3' OH termini of random 

oligonucleotides as primers and a mixture of deoxyribonucleosides containing 

D IG -ll-dU T P . The vector pUC19 (Life Technologies) was chosen because as 

well as the possession of a selectable marker (ampicillin resistance) it contained a 

segment of DNA derived from the lac operon of E.coli that codes for the amino 

terminal fragment of p-galactosidase. Synthesis of this enzyme can be induced by 

IPTG (isopropylthio-p-D-galactoside) and resulted in the formation of blue 

coloiries when plated on media that contained the chromogenic substrate X-Gal (5- 

bromo-4-chloro-3-indolyl-P-D galactoside). DNA inserted into this polycloning 

site of pUC19 abolished a-complementation and bacterial colonies that contained 

recombinant plasmids produced white colonies.

Preparation of nucleic acid probes from Pstl restriction fragments

The first step in this process was the ligation of the extracted DNA 

fragment to the vector.

Dephosphorylation ofpUC19

The first step in the preparation of the probe was the linearisation of 

pUC19. lOpl of pUC19 (= 5p.g) was digested with Pstl (lOpl pUC19, 25p.l React 

2 buffer, 20ql Pstl, 194p.l distilled water) for 1 hour and complete digestion 

confirmed by electrophoresis of 5pi of the reaction mixture in a minigel system
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(Life Technologies Horizon 58, Model 200). The reaction mixture was purified by 

the addition of 500pl of phenol-chlorofoim, the tubes mixed and centrifuged for 2 

min. The upper aqueous layer was removed to a clean eppendorf and 500pl of 

ethanol added. This was placed on ice for 15 min and then centrifuged for 10 min. 

The pellet was resuspended in 90pl TE buffer and a lOpl aliquot removed and 

stored at -20*^0 (this served as a linearised pUC19 control for use later)

Ip l of Calf Intestinal Alkaline Phosphatase (CIAP, Life Technologies) was 

diluted in 6pl of dilution buffer. Ipl of this dilution was added to the 80pl of 

linearised pUC19 DNA and lOpl of dephosphorylation buffer (lOmM ZnClz, 

lOmM MgCli, lOOmM TrisCl pH 8.3) added. The reaction mixture was incubated 

at 3TQ  for 30 min and after dephosphorylation was complete the CIAP was 

denatured by heating to 15°C for 10 min and removed by extraction with 50pl 

phenol-chloroform (centrifugation for 2 min). The upper aqueous layer was 

removed to which lOpl of sodium acetate (3M pH 7.0) and 250pl ethanol was 

added. This was placed on ice for 15 minutes. After centrifugation for 10 min the 

pellet was resuspended in 50 pi TE buffer. This was then stored at -2 0 “C in 

aliquots of 5pl.

Ligation o f extracted DNA fragment to pUC19

The extracted DNA fragments (stored in ethanol at —20“C) were 

centrifuged for 10 minutes, the pellet washed in lOOpl 70% ethanol, resuspended in 

lOpl TE buffer and the duplicate tubes pooled. Thereafter ligation and control 

reactions were set up to include :

2.5pl insert DNA + 2.5pi water + 2.5pl dephosphorylated pUC19 

2.5pl dephosphorylated pUC19 + 2.5pl water 

2.5pl linear pUC19 + 2.5pl water 

2.5pl pUC19 control (supplied) + 2.5pl water 

These mixtures were then heated at 45”C for 5 minutes to melt any cohesive eirds 

that may have formed, and chilled on ice. Ip l of T4 DNA ligase (Life 

Technologies, diluted 1 in 10 in the dilution buffer) was added to each reaction
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mixture in addition to 2pl of buffer. The tubes were then incubated for 1 hour at 

16T.

Transformation o f competent cells

Falcon tubes were placed on ice prior to use and 100 pi DH5oc^^ competent 

cells (Life Technologies) added to each, ip l of each ligation mixture was added 

and the reactions placed on ice for 30 minutes. The tubes were then heated for 45 

seconds at 42^C and then placed on ice for 1 minute. 900pl SOC (Appendix 2) 

medium was added and the tubes shaken at 3TC  for 1 hour. Transformed cells 

were cultured on LB agar (Luria Broth base, 1% Bacteriological agar) (Life 

Technologies) plates under ampicillin selection (Sigma, lOOpg/ml).

Dilutions of each ti'ansformation reaction (1/100) and an undiluted sample 

were cultured on on LB plates under ampicillin (lOOpg/ml) selection. The plates 

were incubated overnight at 37”C. Control strains that were ampicillin resistant and 

sensitive were also set up to confitin ampicillin selection.

Histochemical screening o f transformants o f vector plus insert

IPTG (Life Technologies, 200mg/ml) and XGal (Life Technologies, 

20mg/ml in dimethyl foimamide) were incorporated into LB plates which also 

contained ampicillin. Approximately 100-150 colonies of the ti'ansformed cells 

were touched/spotted onto a plate and the plates incubated overnight. White 

colonies (i.e. colonies that contained the insert) were inoculated into Terrific Broth 

(Appendix 1) broth that contained lOOpg/ml ampicillin, sub-cultured for purity and 

incubated overnight. From the BHI broths, the DNA was extracted and purified. 

The growth from the purity plate was harvested and a crude plasmid lysate used to 

confirm the presence of the insert in the vector on a minigel. Control tracks were 

included of pUC19 and the fragment DNA alone.

Preparation o f DIG labelled probe

In order to avoid the reduction in DNA yield that would result from the re -  

extraction of the cloned fragment from pUCI9, the vector + insert was digested 

with Pstl and both fragments were labelled. 30pl of labelled DNA was digested
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with Pstl (2\xl enzyme plus 5|0.1 REact’̂ '̂  buffer) for 1 hour. The template DNA was 

denatured at lOO^C for 10 minutes and chilled rapidly to remove any cohesive 

termini that may have formed. Reaction mixtures were set up :

SOjil template DNA (digested)

4jal Hexanucleotide mixture 

4\xl dNTP mixture 

2|il Klenow enzyme

The tubes mixed, centrifuged briefly and incubated overnight at 37”C. The reaction 

was stopped by the addition of 4pl 0.2M EDTA (pH 8.0) and the labelled DNA 

was precipitated by the addition of 5|li1 lithium chloride (LiCl, 4M) and 150ql ice 

cold ethanol. After 30 minutes at —80°C the tubes were centrifuged for 10 minutes 

and the pellet washed in 50p.l of 70% ethanol. The pellet was air dried and 

resuspended in 50p,l TE. The probe was then available for immediate use or 

storage at -20°C.

Estimation o f the yield o f DIG labelled DNA

The yield of labelled probe was determined by comparison to a DIG 

labelled DNA control (pBR328, supplied) in a dot-blot followed by direct 

immunological detection with the colour substi'ates NBT (nitroblue tétrazolium 

salt, 75mg/ml in dimethyl formamide 70%w/v) and X-phosphate (5-brom o-4- 

chloro-3-indolyl phosphate, toluidinium salt, 50mg/ml in dimethyl formamide). 

Ten-fold serial dilutions (in dilution buffer : 50mg/ml herring sperm DNA in 

lOmM TrisCl, ImM EDTA pHB.O) of the labelled DNA and the control DNA were 

prepai'ed (Neat -  1/100,000) and spotted onto a nitrocellulose membrane (pre

treated in 20xSSC for 30 minutes). This was then UV cross-linked for 3 min to 

fix the DNA and each dilution mai’ked lightly with a pencil for identification. The 

membrane was washed briefly in maleic acid buffer (O.IM maleic acid, 0.15M 

NaCl, pH 7.5) and incubated for 30 min in 100ml of blocking solution (1% 

blocking solution in maleic acid). This was discarded and the membrane incubated 

in 20nd of anti—DIG-alkaline phosphatase (1/5000 in blocking solution) for 30 min 

and then washed twice for 15 min in 100ml maleic acid buffer. The membrane was
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equilibrated in 20ml detection buffer (O.IM Tris-HCl, O.IM NaCl, 50mM MgClz, 

pH 9.5). This was discarded and 10ml of freshly prepared colour substrate added 

(10ml detection buffer, 45)0,1 NBT, 35]Ol X-phosphate solution). Colour 

development was carried out in the dark overnight after which time the reaction 

was stopped by the addition of water. Comparison of the intensity of the control 

and test dilutions enabled the estimation of the concentration of the probe DNA.

Preparation of nucleic acid probes from Sm al restriction fragments

The availability of commercially available kits (Ready-To-Go™ Pharmacia) 

for the ligation of blunt ended DNA fragments to vector DNA made the 

preparation of Smal fragments simple.

Smdl fragments were extracted as previously described. The amount of 

DNA per fragment was calculated with the knowledge that a 10ml BHI culture 

yielded -0.5 qg of DNA (results not shown). Therefore the quantity of DNA per 

fragment was estimated as a fraction of the total plasmid DNA in kb.

An equivalent amount of vector and insert DNA was used for the ligation 

reaction s. (The vector DNA was supplied at lOOng).

The Smdl fragments were resuspended in TE buffer and added to the 

Ready-To-Go™  pUClS Smdl vial, left at room temperature for 5 minutes and 

mixed by a gentle pipette action. The tubes were centrifuged for a few seconds, 

incubated at 16”C for 45 minutes then 70°C for 10 minutes. Transformation of 

competent cells and selection of vector plus insert was carried out as described 

previously.

Hybridization o f Southern blots

Prehybridization of the nitrocellulose membranes was carried out. 20ml of 

DIG Easy Hyb™ (Boehringer Mannheim) was heated to 42°C. The niti'ocellulose 

membrane to be probed was pre-wet in 2xSSC (0.3M NaCl, 30mM sodium citrate 

pH 7.0) and placed on top of a nylon mesh cut to the same size. The membrane and 

the mesh were rolled up (mesh outermost) and placed in a hybridization bottle. 

10ml 2xSSC was added and the bottle rolled gently until the mesh stuck to the 

bottle -  with no afr bubbles. The mesh allowed full contact of the probe solution
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and the membrane. The 2xSSC was poured off and replaced with the pre-waimed 

DIG Easy Hyb™ solution, the bottle placed in the rôtisserie hybridization oven 

(Hybaid) and incubated for 30 min at 42°C.

The DIG labelled probe was denatured (100°C for 5 min and cooled rapidly 

on ice) and the appropriate dilution prepared. In this case 1/1000 was optimal 

therefore Ijil was diluted in 10ml DIG Easy Hyb. The prehybridization solution 

was discarded, the probe solution added and incubated overnight.

Post-hybridization washes

The probe solution was decanted and stored at —20”C for further use and 

the membrane washed 2x5min in 50ml 2xSSC, 0.1% SDS at room temperature 

followed by 2xl5min in O.lxSSC, 0.1% SDS at 68”C with constant agitaton.

Immunological detection procedure

After the post hybridization stringency washes the membrane was rinsed in 

50ml maleic acid buffer. Thereafter the detection procedure was as before. The 

reaction was stopped and the membrane stored in a bag in TE buffer. Results were 

documented by photography of the membrane.
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CHAPTER 3

REFF analysis of the serotype associated plasmids of the

salmonellae
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Introduction

The association of virulence plasmids with particular serotypes of 

Salmonella is well recognised (Woodward et al 1989). These plasmids differ in 

size with respect to the host serotype and range from 50 kb in Choleraesuis 

(Kawahara et al, 1988) to 95 kb in Typhimurium (Jones et al, 1982). Such 

plasmids have also been identified in Abortusovis (Colombo et al 1992), Enteritidis 

(Nakamura et a/, 1985), Dublin (Terakado et al, 1983), Gallinanim (Barrow et al,

1987) and Pullomm (Barrow and Lovell, 1988). The REPP of each plasmid is 

characteristic of the serotype (Helmuth et al, 1985). Methods such as heteroduplex 

analysis and nucleic acid hybridisation have shown these plasmids to be related 

(Montenegro et al 1991, Popoff et al 1984, Williamson et al 1988a). An 8kb 

region has been identified in the plasmids of Abortusovis, Blegdam, Choleraesuis, 

Dublin, Enteritidis, Gallinarnm, Moscow, Paratyphi C, Pullorum, Rostock and 

Typhimurium that is responsible for the virulence of the organism (Williamson et al 

1988a). This region has been variously teimed mba (mouse bactericidal action, 

Matsui et al 1990), mka (mouse killing action, Tiara and Rhen 1989), m kf (mouse 

kUling factor, Norel et al 1989a), vsd (virulence Salmonella Dublin, Krause et al 

1990) and spv {Salmonella plasmid virulence, Gulig and Chiodo 1990). It is the 

latter of these designations which has been universally accepted and encompasses 

five genes jpvRABCD. This region has been fully sequenced in Typhimurium 

(Norel et al 1989 a,b, Gulig et al 1992), Dublin (Krause et al 1990) and 

Choleraesuis (Matsui et al 1990).The extent of sequence identity between these 

plasmids showed no significant difference (Gulig et al 1993). Therefore although it 

is well demonsti'ated that a small portion (8kb) of the virulence region is common 

to certain plasmids, the extent of sequence similarity outwith the vhnlence region is 

unknown. Friedrich et al (1993) sequenced a 14kb region of the Typhimurium 

plasmid involved in flagellar biosynthesis whilst Cerin and Flackett (1993) 

sequenced a 4.3kb region of the plasmid responsible for incompatibility and 

partition functions. However analysis of the other SAP’s has not been undertaken. 

The application of REFP analysis allows relatively detailed comparison of the 

entire plasmid.
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s
Rationale fo r  inclusion o f serotypes

This study included plasmid analysis of most of the serotypes of Salmonella 

previously shown to harbour a virulence plasmid namely Typhimurium, Enteritidis,
;

Dublin, Gallinarnm, Pullorum, Choleraesuis and Abortusovis. In addition routine 

epidemiological monitoring of Bovismorbificans indicated this serotype to harbour 

a plasmid related to those of other serotypes. A recent report has suggested 

relationships exist between certain serotypes on the basis of chromosomal markers 

(IS200 and ribotype) (Stanley et al 1994). However these authors extended their 

conclusions to relationships between plasmids on the basis of demonstration of the 

presence of spv (vh'ulence) genes and an estimate of plasmid size. The evidence 

presented in the study by Stanley et al (1994) similarly does not exclude such a 

possibility. Therefore in order to extend previous observations (Platt et al 1988,

Rankin and Platt 1995) and clarify uncertainties (Stanley et al 1994) 

representatives of serogroup D1 (Blegdam, Moscow, Rostock and Wangata) were 

included in the study. The results of this analysis of plasmids me presented and the 

relatedness of the plasmids discussed.

Materials and Methods

PP and REFP analyses were performed as detailed in Chapter 2.

Salmonella serotypes antigenic structures plasmid sizes and designations 

me given in Table 2.1.

The consti’uction of a probe from the 2.3 kb Pstl pOG660 fragment was 

achieved as detailed in Chapter 2.

Î

Definitive choice o f SAP

Although SAP’s have been identified in certain serotypes, in the absence of 

detailed sequence analysis, the identification has been made purely on the basis of 

plasmid size and homology to an spv probe (Williamson et al 1988a). In 1986 

Brown et al demonsti’ated a predominant plasmid REFP in Typhimuiium isolates. 

Similar results were obtained for the plasmids of Enteritidis and Dublin ( Platt et al

1988). The existance of molecular variants of plasmids within a serotype has been
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documented (Browning and Platt 1995, Rankin and Platt 1995) and will be dealt 

with in the next chapter. Where possible the predominant REFP was used for all 

serotypes (and the oldest strain when available). In some cases e.g. Choleraesuis 

the rarity of the serotype limits the number of strains that can be analysed. Early 

work by Kawahara et al (1988) led to the correlation between the plasmid in 

Salmonella Choleraesuis and virulence in the mouse model. Part of this work 

involved EcoRl digestion of the plasmid and although it only generated 7 

fragments, this pattern was consistent with the reference plasmid used in this study 

which was obtained from the National Collection of Type Cultures. Although only 

one strain of Abortusovis was available for analysis, it was included in the study 

after REFP analysis of the 50kb plasmid revealed it to share a high degree of 

similarity with other SAP’s. Similarly with Gallinarnm and Pullorum the limitations 

of the population size of these serotypes led the selection of the SAP to be based 

on the identity of a plasmid found in reference strain obtained from the National 

Collection of Type Cultures. In the case of Gallinarnm, the archetypal SAP was 

originally chosen as pOG676 -  obtained from NCTC. However, analysis of an 

international collection of strains revealed pOG642 to be the dominant plasmid 

type. This is discussed in the Chapter 5 -  Moleculai* Variants of the SAP’s. The 

serotype Wangata was included for analysis because although relatively 

uncommon, a plasmid similar in REFP to other SAP’s was identified. Blegdam, 

Moscow, Rostock and Antarctica were rare serotypes, with only a few examples of 

each serotype available. However REFP analysis revealed a high degree of 

similai'ity to other SAP’s. Previous work by Popoff et al (1984) failed to establish 

the presence of a virulence plasmid in Bovismorbificans. However routine 

epidemiological monitoring of this serotype revealed the presence of a high 

molecular weight plasmid albeit at a much lower incidence than othe SAP’s (39%). 

The plasmid identified was indistinguishable with the enzymes used from that of the 

NCTC 5754 strain which was isolated in 1939. These results are discussed and the 

presence of an SAP in Bovismorbificans is reported for the first time.

It was anticipated that the identification of restriction fragments of the same 

size in different SAP’s would lead to the construction of a series of probes and 

their use in hybridization to Southern blots. Unfortunately, a combination of
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technical difficulties and time constraints meant that this work was not carried out 

to completion. However the preliminary results generated in this study have 

enabled further analysis of the salmonellae and provided scope for future work.

Results

Unless otherwise stated all sti'ains of Salmonella were fully sensitive to the 

antimicrobial agents tested.

Plasmid sizes and designations are shown in Table 3.1.

REFP analysis o f  the plasmids o f Rostock, Moscow, Blegdam and Antarctica

The results of plasmid digestion with Pstl and Smal are shown in Fig 3.1 

and digestion with EcoPN  in Fig 3.2. The computer generated output of the 

REFP’s from Pstl and Smal is shown in Fig 3.3 and the Dice coefficients of 

similarity in Table 3.2.

Salmonella Rostock

The plasmids present in both strains of Rostock examined were 

indistinguishable from pOG675 the reference plasmid of Dublin.

Salmonella Blegdam

Both strains of Blegdam contained a plasmid previously identified as a 

molecular variant (designated pOG704) of the Enteritidis reference plasmid 

pOG674. Digestion with Pstl revealed the 2.8 kb fragment of pOG674 to be absent 

with an additional 3.2 kb fragment generated. Digestion with Smal revealed none 

of the SAP fragments to be missing but an additional 2.4 kb fragment was present.

Salmonella Moscow

One strain of Moscow harboured a plasmid indistinguishable from pOG674 

with Pstl, Smal and EcoRV. Four strains of Moscow examined contained two
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Table 3.1

Plasmid size, designation and associated serotype.

SEROTYPE PP [Designation] kb

Abortusovis 50 [pOG645]

Choleraesuis 50 [pOG678]

Enteritidis 54 [pOG674]

Blegdam 54 [pOG704] (2)*

Moscow 54 [pOG674]

54 [pOG680] ; 40 (3)* 

54 [pOG704] : 40

Antarctica 54 [pOG681] : 30

Dublin 72 [pOG675]

Rostock 72 [pOG675] (2)*

Bovismorbificans 85 [pOG679]

Gallinarnm 85 [pOG676]

Pullorum 85 [pOG677]

Wangata 90 [pOG646]

Typhimurium 95 [pOG660]

( )* number of strains examined
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Figure 3.1

REFP s of plasmids of Salmonella serotypes Enteritidis (En), Moscow (Mw), 

Blegdam (Bg) and Antarctica (At) digested with Pstl (Lanes 2-7) and Smal 

(Lanes 8-13).

L a n e l. A.Ps/1 2. pOG674(En) 3. pOG674(Mw) 4. pOG680(Mw)

5. pOG704(Mw) 6. pOG704(Bg) 7. pOG681(At) 8. pOG674(En)

9. pOG674(Mw) 10. pOG680(Mw) 11. pOG704(Mw) 12. pOG704(Bg) 

13. pOG681(At)

1 2 3 4  5 6  7 8  9  10 Tl 12 13
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Figure 3.3
Computer generated REFP analysis of the plasmids of Salmonella serotypes 

Enteritidis(En), Moscow(Mw), Blegdam(Bg), Antarctica(At), Dublin(Du) and 

Rostock(Ro) digested with Pstl and Smal
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Table 3.2

Dice coefficients of similarity (% ) between plasmids of Enteritidis (pOG674), 

Blegdam/Moscow (pOG704), Moscow (pOG680) and Antarctica (pOG681)

Plasmid pOG674 pOG681 pOG704 pOG680

pOG674 — 100 94 87

pOG681 94 — 94 87

pOG704 97 91 — 92

pOG680 91 94 —

P stl values in bold 

Smal values in italic
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plasmids, the smaller of which (40 kb) was not cleaved by the restriction enzymes 

used. The 54 kb plasmid present in one of these strains was indistinguishable from 

pOG704. The remaining three strains harboured an identical 54 kb plasmid which 

differed slightly from pOG704 designated pOG680. Pstl digestion revealed the 4.9 

and 2.8 kb SAP fragments to be missing with additional fragments of 3.2, 3.0 and 

1.85 kb generated. Smal digestion revealed the 5.9 kb SAP fragment to be missing 

with additional 5.0, 2.4 and 1.65 kb fragments generated.

Salmonella Antarctica

The strain of Antarctica examined harboured two plasmids the smaller one 

of which did not contribute any fragments to the REFP with the enzymes used. The 

54 kb plasmid was indistinguishable from pOG674 after digestion with Pstl. 

However Smal digestion showed the loss of the 5.0 kb fragment with an additional

5.3 kb fragment generated and was subsequently designated pOG646. Minor 

variations were also seen using other enzymes : Avail and EcoRY  generated 

additional fragments of 1.1 kb and 4 kb respectively.

REFP analysis o f the serotype associated plasmids o f the salmonellae

REFP analysis showed a wide range of similarity in the plasmids of the nine 

serotypes that possessed SAP’s (Abortusovis, Bovismorbificans, Choleraesuis, 

Dublin, Enteritidis, Gallinaium, Pullomm, Typhimurium and Wangata). Results 

from digestion with Pstl and Smal are shown in Figures 3.4 and 3.5 respectively 

and the resultant fragment sizes detailed in Table 3.3 {PstV) and Table 3.4 {SmaX). 

The computer generated output from the REFP’s of Pstl and Smal digestion are 

presented in Figure 3.6. HindlU. digestion of the plasmids is shown in Figure 3.7.

REFP analysis o f the SAP o f Abortusovis

The fragment sizes after digestion with Pstl and Smal are detailed in Tables

3.3 and 3.4 respectively. The computer generated output of the REFP’s are shown 

in Figure 3.6 and the comparison to other plasmids with Dice coefficients of 

similarity in Table 3.5.
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Figure 3.4

Pstl digestion of the plasmids of Salmonella serotypes Abortusovis(Ab), 

Choleraesuis(Cs), Enteritidis(En), Typhimurium(Tm), Wangata(Wa), 

Gallinarum(Ga), PuIlorum(Pu), Bovismorbificans(Bm) and Dublin(Du).

Lane 1. X Pstl 2. pOG678(Cs) 3. pOG645(Ab) 4. pOG660(Tm)

5. pOG646(Wa) 6. p()G674(En) 7. pOG676(Ga) 8. pOG677(Pu)

9. pOG679(Bm) 10. pOG675(Du) 11. pOG683(DuVar)*

1 2 3 4 5  6 7 8 9  1011

*Molecular variant of pOG675(see Chapter 5 Molecular variants of the SAP’s)
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Figure 3.5

Smal digestion of the plasmids of Salmonella serotypes Abortusovis(Ab), 

Choleraesuis(Cs), Enteritidis(En), Typhimurium(Tm), Wangata(Wa), 

Gallinarum(Ga), Pullorum(Pu), Bovismorbificans(Bm) and Dublin(Du).

Lane 1. X Pstl 2. pOG645(Ab) 3. pOG678(Cs) 4. pOG674(En)

5. pOG660(Tm) 6. pOG646(Wa) 7. pOG676(Ga) 8. pOG677(Pu)

9. pOG679(Bm) 10. pOG675(Du) 11. pOG683(DuVar)*

1 2 3 4 5  6 7 8 9  1011

*Molecular variant of pOG675 (see Chapter 5 Molecular variants of the SAP’s)
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Table 3.3 Fragment sizes 

pOG645 pOG678 pOG674

14.5

8.3

5.7

5.5
4.6

4.2

3.85

3.1
2.9

2.2

1.9

5.7

4.4

3.4
3.1

2.8

2,4

1,95

(kb) of SAP’s after digestion with Pstl 

pOG660 pOG646 pOG642 pOG677 pOG679 

10.1 10.1
9.8

9.5

5.7
4.9

4.4

3.5
3.4
3.1

2.8

2.4

2.1
2.0

4.4

4.1
3,9

3.4
3.1

2.4

2.3

2.1

5.8 5.8 5.8
5.7 5.7 5.7
4.9

4.4 4.4 4.4
4.3

3.9 3.9 3.9

3.4 3.4 3.4
3.1 3.1 3,1

2.7
2.6
2.4 2.4 2.4

2.35 2.35
2.3 2.3 2.3

1.95 1.95
1.9

8.3

4.4

3.85

2.4

2,3
2.2
2.1
2.0

1.8

pOG675
39.7

6.8

5.7

3.4
3.1

2.4
2.35
2.3

1.7 1.7 1.7
1.6 1.6

1.55
1.6

1.50 1.50
1.45

1.50 1.50 1.50 1.50 1.50

1.40 1.40 1.40 1.40 1.40 1.40
1.35 1.35 1.35 1.35 1.35 1.35

1.32 1.32 1.32 1.32
1.23 1.23 1.23 1.23 1.23
1.16 1.16 1.16 1.16

1.03

1.16 1,16
1.10

1.16 1.16 1.16
1.10

0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88

0.84
0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78
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Table 3.4 Fragment sizes (kb) of SAP’s after digestion with Sm al
pOG645 pOG678 pOG674 pOG660 pOG646 pOG642 pOG677 pOG679 pOG

42.9
11.0 11.0

7.7
11.0 11.0 11.0 11.0 11.0 11.0 11.0

7.4

6.2
5.9

5.0

7.4

6.2

5.0

7.4

6.2

5.3

5.0

7.4
6.6

5.1

7.4

6.3

5.2

6.3
6.2

5.0
4.7 4.7 4.7
4.55

4.4 4.4 4.4 4.4 4.4
4.1 4.1 4.1

4.05 4.05
4.0

3.4

4.0 4.0

3.5
3.4

3.6

3.4

3.9
3.6

3,2 3.2 3.2 3.2 3.2 3.2 3.2 3.2
3.1

2.9
3.0 3.0 3.0

3.1

2.7 2.7 2.7 2.7 2.7 2.7 2.7
2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
2.45
2.4

2.3

2.4

2.2
2.3

2.35 2.35

2.1

1.77

2.1
2.0 2.0

1,80

2.1

1.95

1.87
1.80

2.1

1.80

2.1
2.0

1.90

2.1

1.95

1.80

1,73 1,73 1.73 1.73 1.73 1.73 1.73 1.73 1.73
1,70
1.68 1.68

1.58
1.46 1.46 1.46

1.40

1.58
1.46

1.32 1.32

1.15

1.32 1,32 1.32
1,28

1.32 1.32
1.28

1.32

1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08
0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
0.87

0.83
0.87 0.87 0.87 0.87

0.80
0.87
0.80

0.87 0.87
0.80
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Figure 3.6

Computer generated REFP analysis of the plasmids Salmonella enterica serotypes 

Abortusovis(Ab), Choleraesuis(Cs), Enteritidis(En), Typhiumrium(Tm), 

Wangata(Wa), Gallinarum(Ga), Pullorum(Pu), Bovismorbificans(Bm) and 

Dublin(Du) digested with Pst\ and Sma\.
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Figure 3.7

HindlU  digestion of the plasmids of Salmonella serotypes Abortusovis(Ab), 

Choleraesuis(Cs), Enteritidis(En), Typhimurium(Tm), Wangata(Wa), 

Gallinarum(Ga), Pullorum(Pu), Bovismorbificans(Bm) and Dublin(Du).

Lane 2. pOG645(Ab) 3. pOG678(Cs) 4. pOG674(En)

5. pOG660(Tm) 6. pOG646(Wa) 7. pOG676(Ga) 8. pOG677(Pu)

9. pOG679(Bm) 10. pOG675(Du) II. pOG683(DuVar)*

■ > 2  3 4 5 6 7  8 9  10 11

r".

r
f

*Molecular variant of pOG675 (see Chapter 5 Molecular variants of the SAP’s)
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The plasmid hai'boured by serotype Abortusovis, pOG645, showed more REFP 

similarity to pOG660 the plasmid of Typhimuiium when digested with Smal than 

Pstl. With Smal, fragments of 11.0, 7.4, 4.7, 4.1, 4.0, 2.7, 2.5, 2.1 and vaiious 

fragments < 1 kb were common. However with Pstl fragments of 5.7, 3.1, 1.6, 1.5,

1.23, 1.16 and vaiious fragments < 1 kb were common to both plasmids. Dice 

coefficients of similarity showed the plasmids pOG645 and pOG660 to be 55 and 

63 % similar" with Pstl and Smal respectively. Of all the plasmids examined, 

pOG645 was the least related to any of the other SAP’s -  with values < 50 % 

when compared to most other plasmids (Table 3.5).

REFP analysis o f the SAP of Choleraesuis

The plasmid pOG678 showed REFP similarity with the plasmids of 

Enteritidis and Typhimurium with both Pstl and Smal. Pstl fragments of 5.7, 4.4, 

3.4, 3.1, 2.4 as well as fragments < 1 kb were common to pOG678, pOG674 and 

pOG660; a fragment of 2.8 kb was common to pOG678 and pOG674; fragments 

of 1.5 and 1.4 kb were common to pOG678 and pOG660. With Smal fragments of

11.0, 3.2, 2.7, 2.5, 1.32 and fragments < 1 kb were common to pOG678, pOG674 

and pOG660. Dice coefficients of similarity showed the plasmids of Choleraesuis 

and Enteritidis to be 68 and 60% similar* with Pstl and Smal respectively; 

Choleraesuis and Typhimurium plasmids were 63 and < 50% similar with Pstl and 

Smal respectively.

REFP analysis o f the SAP o f Wangata

A  study of 61 Scottish isolates in 1992 found 72% to be plasmid-free and 15 

plasmid profile types to exist within the 28% of plasmid harbouring strains. The 

plasmids involved were diverse and showed geographical clustering of isolates 

(results not shown). However, one strain isolated from parrot faeces in 1986 was 

shown to harbour a plasmid indistinguishable from that of the NCTC strain which 

was also remarkably similar" to other SAP’s, notably pOG660 and was chosen as 

the representative SAP. The plasmid harboured by serotype Wangata (pOG646)
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differed considerably from those harboured by other Group D1 serotypes. It was 

more closely related to pOG660 the reference plasmid of Typhimurium NCTC73 

than to pOG674 (Enteritidis). Digestion with Pstl revealed four of the pOG660 

fragments to be missing with four additional fragments generated. Similarly Smal 

digestion showed four SAP fragments to be absent with two additional fragments 

generated. Dice coefficients of similarity showed pOG646 to be 82% and 86% 

related to pOG660 using Pstl and Smal respectively whereas comparison with 

Enteritidis showed 65% and 53% similarity.

REFP analysis of Salmonella Bovismorbificans

The REFP of pOG679 showed 68% and 77% similarity with Pstl and Smal 

respectively to pOG660. It was least similar to pOG645 < 50%, 51% with Pstl and 

Smal respectively.

REFP analysis of Salmonella Gallinarnm and Pullomm

The plasmids of Gallinarirm and Pullorum showed a high degree of REFP 

similarity (Figures 3.4-3.6, Table 3.5). As mentioned previously, the SAP of 

Gallinarum is pOG642. Although this will be dealt with in the next chapter, it 

seems appropriate to mention here (since Figures 3.4 and 3.5 contain pOG676 -  

the NCTC reference strain plasmid) the minor differences between pOG642 and 

pOG676. With Smal, the 11.0 kb fragment in pOG676 is replaced by one of 10.7 

kb; with Pstl the 4.8 kb fragment is replaced by one of 4.3 kb.

pOG642 showed the highest degree of REFP similarity to pOG677 (80% 

with both Pstl and Smal).

REFP analysis o f the SAP o f Dublin

The plasmid pOG675 showed the least amount of REFP similarity (after 

pOG645) to any of the other SAP’s examined. This plasmid was unique in both 

Pstl and Smal fingerprints with not only the fewest fragments generated (Smal 

digestion produced no fragments in the 3.6-11 kb region) but also in the 

generation of a large -40  kb fragment. In compaiison to other plasmids, the REFP
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of pOG675 was most similar to pOG642 (Gallinarum) -  65 & 72% with Pstl and 

Smal respectively. Similarity to the other plasmids ranged from 50-58% .

Hindlll analysis o f the SAP’s

The REFP’s of the SAP’s after digestion with H indlll is shown in Figure 

3.7 and revealed all the plasmids except pOG676 to have a fragment of 3.9kb. This 

fragment has been shown to encompass the vii'ulence region and furtlier 

demonsü’ates that the plasmid of Gallinarum pOG676 was a variant plasmid.

Hybridization with probe generated from  the 2.3 kb Pstl fragment ofpOG660

The ti'ansformation efficiency of the competent cells was -5%  i.e. 5 white 

colonies per 100 blue. Quantification of DIG-labeled probe showed the 

optimalprobe concentration to be 1/1000. A control hybridization revealed no 

reaction with the pUC19 labelled DNA therefore any hybridization resulted from 

the plasmid DNA. The hybridization of the probe to a Pstl Southern blot of the 

SAP’s is shown in Figure 3.8. and reveals the 2.3 kb fragment to hybridize with the

2.3 kb fragments of the plasmids of serotypes Wangata, Gallinarum, Pullorum, 

Bovismorbificans, Dublin (and the Dublin variant plasmid pOG683 -  see Chapter 

5). This fragment also hybridized with the 1.95 kb fragment of the Choleraesuis 

plasmid and the 1.6 kb fragment of the plamid of Abortusovis. This fragment did 

not hybridize with the plasmid of Enteritidis.

Discussion

The interpretation of Dice coeffiicients of similarity must be undertaken with 

considerable caution and with several considerations in mind. The comparison of 

fragment numbers does not take into account the proportion of DNA in common 

either in relation to overall plasmid size (e.g. the comparison of a 90 kb plasmid 

with a 50 kb plasmid) or the fragment size itself (e.g. a match of 1.2 kb is given the 

same ‘weight’ as a match of 10 kb of DNA). Computer generated analysis of 

REFP’s on a logarithmic scale tends to emphasize fragment variation however with 

a permissible level of variation of 5% the potential for mis-matched fragments was 

minimised.
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Figure 3.8

Hybridization of a DIG-labeled probe generated from the 2.3 kb Pstl 

fragment of the Typhimurium plasmid pOG660 with a Pstl REFP Southern 

blot of the plasmids of Salmonella serotypes Abortusovis(Ab), 

Choleraesuis(Cs), Enteritidis(En), Typhimurium(Tm), Wangata(Wa), 

Gallinarum(Ga), Pullorum(Pu), Bovismorbificans(Bm) and Dublin(Du).

Lane I. pOG683(DuVar)* 2. pOG675(Du) 3. pOG679(Bm) 4. pOG677(Pu) 

5. pOG676(Ga) 6. pOG646(Wa) 7. pOG660(Tm) 8. pOG674(En)

9. pOG678(Cs) 10. pOG645(Ab)

2 3 4 5 6  7 8 9  10

1  t  \  I I i I 1 1 <
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The lowest degree of similarity was seen between the plasmid in Abortusovis and 

the other SAP’s, most of which were <50% similar with both Pstl and Smal. An 

interesting feature of this plasmid was that although one of the smallest at 50 kb it 

showed remarkable REFP similarity to pOG660 the largest of the SAP’s (95 kb) 

and suggests that the plasmid of Abortusovis could have arisen from Typhimurium 

by deletion of DNA.

pOG675 also shows a fairly low degree of similarity to other SAP’s, except 

with pOG676 (Gallinarum) with which it shares 65% and 68% similarity with Pstl 

and Smal respectively.

An early study by Brunner (1952) demonstrated that changes in H antigens 

could be induced in certain serotypes of serogroup D1 and included the 

unidii’ectional conversion of serotype Blegdam (gmq) into both Enteritidis (gm) 

and Moscow (gq), all of which contained the g-complex of flagellar antigens. He 

concluded that the many serological types within this group may have originated 

from a single ancestral strain or û'om a few primitive strains. REFP analysis of 

these plasmids is consistent with clonality such that plasmids from different 

serotypes are the same or closely related to Enteritidis, Dublin or Typhimurium. 

Molecular variation among the plasmids within and between Enteritidis and Dublin 

has been demonstrated previously and possible mechanisms discussed to explain 

the mai'ked REFP and incompatibility difference with Dublin (Platt et al 1988). 

Such variation is also is evident between further uncommon serotypes within a 

serogroup. It is therefore evident that although limited sequence homology was 

demonstrated previously (by hybridization to an spv probe) between serotypes 

Moscow, Blegdam, Antarctica, Rostock and Wangata these serotypes in fact 

harboured plasmids that were either identical to or were molecular variants of the 

established SAP’s of Enteritidis and Typhimurium. The non-conjugative nature of 

the SAP’s suggests that the surface structures of these serotypes have evolved 

independently of the plasmid. It is also evident that high levels of similarity between 

plasmids is not restricted within a particular serogroup. The observation that the 

plasmid harboured by Wangata, serogroup D, is more closely related to that of 

Typhimuiium which belongs to serogroup B is perhaps not enthely surprising and 

parallels the recent report (Rankin et al 1995) that described a variant of the
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archetypal Enteritidis plasmid which was more related to the reference plasmid of 

Typhimurium than to that of Enteritidis.

The identification of a plasmid pOG704 that is present in a strain of 

Enteritidis (Rankin and Platt 1995) and a strain of Moscow suggests that not only 

do these plasmids evolve within a serotype but the conservation of the plasmids is 

such that they can remain stable whilst the serotype evolves. The demonstration 

that minor changes in plasmid REFP occurs both within and between serotypes 

shows that the plasmids have evolved with considerable subtlety.

The relatedness of the virulence plasmids of the salmonellae has until now 

been based on the conservation of an 8 kb region between plasmids. Any attempt 

to compare these plasmids by REFP analysis has relied on the use of infrequent 

base cutter enzymes such as EcoRI and Hindlll which generate only about 6-10 

fragments.

The use of enzymes which produce 20-25 fragments increased the 

sensitivity of the analysis. In this study the degree of relatedness between the 

plasmids is paralleled by both Pstl and Smal analysis and is further corroborated by 

EcoKM results and strengthens the ai’guement that these data are valid for 

providing a window on evolutionary processes, particularly where genotypic data 

further correlates (Platt et al 1995).

These results suggest fhstly that the salmonellae have undergone 

evolutionary changes of considerable subtlety, secondly that traditional phenotypic 

approaches may not provide an optimal baseline for the development of a 

phylogenetic framework for the genus and thhdly where extrachromosomal DNA 

is studied a more detailed analysis is required than an estimate of the approximate 

sizes of plasmids harboured. The results presented here confirm a family of related 

plamids associated with but not restricted by serotype. Not only do these plasmids 

evolve within serotypes but the conservation of these plasmids is such that they can 

remain stable whilst the serotype evolves. Moreover, the overall conservation of 

the plasmids suggests that detailed analysis can offer insight into the evolutionary 

process the serotypes that harbour them have undergone.
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Typhimurium than to that of Enteritidis,

The identification of a plasmid pOG704 that is present in a strain of 

Enteritidis (Rankin and Platt 1995) and a strain of Moscow suggests that not only 

do these plasmids evolve within a serotype but the conseiwation of the plasmids is 

such that they can remain stable whilst the serotype evolves. The demonstration 

that minor changes in plasmid REFP occurs both within and between serotypes 

shows that the plasmids have evolved with considerable subtelty.

The relatedness of the virulence plasmids of the salmonellae has until now 

been based on the conservation of an 8 kb region between plasmids. Any attempt 

to compare these plasmids by REFP analysis has relied on the use of infrequent 

base cutter enzymes such as EcoRI and Hindlll which generate only about 6-10 

fragments.

The use of enzymes which produce 20-25 fragments increased the 

sensitivity of the analysis. In this study the degree of relatedness between the 

plasmids is paralleled by both Pstl and Smal analysis and is further corroborated by 

EcoPN  results and strengthens the arguement that these data are valid for 

providing a window on evolutionary processes, paiticulai’ly where genotypic data 

further correlates these findings (Platt et al 1995).

These results suggest firstly that the salmonellae have undergone 

evolutionary changes of considerable subtlety, secondly that traditional phenotypic 
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phylogenetic framework for the genus and thhdly where extrachromosomal DNA 
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process the serotypes that harbour them have undergone.
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CHAPTER 4

Incompatibility properties of the serotype associated plasmids of

the salmonellae
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Introduction

Plasmid incompatibility is defined by the inability of two plasmids to co

exist stably in the same cell line in the absence of continued selection pressure for 

both plasmid types (Timmis 1979). The phenomenon of plasmid incompatibility 

was first recognised by Maas and Maas (1962) and was shown by Dubnau and 

Maas (1968) to involve the failure of one of the plasmids to replicate.

In its simplest foim, incompatibility occurs when the introduction of a 

second plasmid into a plasmid-beaiing host results in the elimination of the 

resident plasmid (Datta 1979). Compatibility between plasmids is indicated by the 

retention of both resident and incoming plasmids. Various mechanisms were put 

forward to account for plasmid incompatibility (Timmis 1979). One hypothesis, 

based on the Replicon Model postulated that the replication of plasmids occuncd 

at specific attachment sites on the cell surface andas such compatible plasmids 

utilized different sites. The Inhibitor Dilution Hypothesis (Pritchard 1978) 

suggested that DNA replication was controlled by the presence of inhibitor 

substances that limits the frequency of replication events i.e cell growth decreases 

the concentration of the inhibitor and eventually results in the initiation of plasmid 

replication. This in turn generates an increase in the inhibitor which suppresses 

plasmid replication until sufficient cell growth has taken place. Plasmid 

incompatibility was concluded to result from the mutual inhibition of two related 

plasmids that produce cross-reacting repressor molecules : disproportionate 

concentrations of both plasmid populations became amplified during subsequent 

replication events led to the production of a population of bacteria that lacked one 

of the original plasmids. Another model for plasmid incompatibility suggested that 

random spatial distribution of copies of a single plasmid occurs prior to cell 

division and results in a random population of DNA molecules being partitioned to 

each daughter cell. As a result two compatible plasmids in a single bacterial clone 

would be partitioned as distinct plasmid populations and be inherantly stable.

This led to the conclusion that co-existing plasmids operated different 

replication systems and vice versa : the replication systems of incompatible 

plasmids were the same and as a result only one plasmid type could be maintained
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in the cell. Plasmids were therefore assigned to incompatibility groups and further 

classification was based on DNA-DNA homology. Plasmids of the same 

incompatibility group have been shown to be of roughly the same size and share at 

least 80% of their DNA sequences whilst plasmids of different incompatibility 

groups showed less than 15% sequence similarity (Chabbert et al 1979). The 

demonstration that two plasmids are incompatible with each other reveals them to 

share either replication control or partition function -  functions which both 

plasmids would otherwise compete for. Further classification was based on D N A - 

DNA homology. Plasmid incompatibility thus indicates the relatedness of plasmids.

More recently the incompatibility functions of the plasmid of Typhimurium 

have been located at a 4.3 kb region (Cerin and Hackett, 1989). Tinge and Curtiss 

(1990b) identified three replicons on the Typhimurium plasmid repk, B and C 

involved with replication functions and a par region shown to increase the 

segregation stability of the repC replicon. The exact mechanism involved in the 

partitioning of this plasmid have not been defined.

The serotype-associated plasmids of the salmonellae have not been assigned 

to an incompatibility group although various studies have attempted to resolve the 

situation. Ou et al (1990) found the virulence plasmids of Gallinarum and Pullorum 

belonged to a different incompatibility gr oup to those of Typhimurium, Enteritidis, 

Choleraesuis and Dublin. However it has already been established that the plasmid 

of Dublin exhibits IncX properties (Platt et al 1988) and thus has different 

properties to the plasmids of Enteritidis and Typhimurium. Michiels et al (1987), 

Cerin and Hackett (1989) and Tinge and Curtiss (1990) identified two distinct 

replicons on the Typhimurium virulence plasmid -  although the exact location and 

incompatibility group of the replicons differed in each study.

The naturally occuring cointegrate plasmid pOG669 is composed of a 

conjugative IncX plasmid (pOG670) that mediates ampicillin and kanamycin 

resistance and pOG660 the Typhimurium virulence plasmid (Platt et al 1988). The 

introduction of pOG669 into each of the SAP’s was performed to assess their 

incompatibility properties. Any plasmid that showed incompatibility to pOG669 

was then tested against pOG670 (the IncX component) to determine whether the
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incompatibility was a result of ther Typhimurium or the IncX component of the 

cointegrate plasmid.

6 6

Materials and Methods

Bacterial strains and their plasmid designations are detailed in Tablet. Methods are 

as detailed in Chapter 2.

Results

Incompatibility analysis o f the SAP’s o f the salmonellae

The introduction of pOG669 into SAP-bearing strains resulted in the 

elimination of the SAP. Introduction of pOG670 resulted in the retention of both 

plasmid types except in the case of Dublin where pOG675 was eliminated. Plasmid 

incompatibility results are detailed in Table 4.1.

Incompatibility results o f SAP’s or variant plasmids harboured by atypical 

serotypes (Blegdam, Moscow, Antarctica and Rostock)

The introduction of pOG669 into Blegdam resulted in the elimination of the 

54 kb plasmid. The introduction of pOG670 resulted in the retention of both 

plasmids.

The introduction of pOG669 into both types of Moscow resulted in the 

elimination of both resident plasmids (54 and 40 kb). The introduction of pOG670 

resulted in the retention of the 54 kb plasmid but the elimination of the 40 kb 

plasmids.

The introduction of pOG669 into Antarctica resulted in the elimination of 

both resident plasmids. The introduction of pOG670 resulted in the retention of the 

54 kb plasmid and the elimination of the 30 kb plasmid.

The introduction of pOG669 into Rostock resulted in the elimination of the 

72 kb plasmid. The introduction of pOG670 also resulted in the elimination of the 

72 kb plasmid. These results are summarised in Table 4.2
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Table 4.1

Incompatibility analysis of the SAP’s of the salmonellae with pOG669 

and pOG670.

I

SEROTYPE PP [Designation] kb INCOMPATIBLE WITH 

pOG669 pOG670

Abortusovis 50 [pOG645] + ND

Choleraesuis 50 [pOG678] + -

Enteritidis 54 [pOG674] + -

Typhimurium 95 [pOG660] + -

Wangata 90 [pOG646] + —

Gallinarum 90 [pOG676] + —

Pullorum 90 [pOG677] + -

Bovismorbificans 90 [pOG679] + -

Dublin 72 [pOG675] + +

f

I

i

I
+ plasmid incompatible 

-  plasmid compatible 

ND = Not Done
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Table 4.2

Incompatibility analysis of SAP’s or variant plasmids harboured by 

atypical serotypes

SEROTYPE PP [Designation] kb INCOMPATIBLE WITH

pOG669 pOG670

Blegdam 54 [pOG704] + -

Moscow 54[pOG680] 4- —

40 + +
Moscow 54 [pOG704] + —

40 + +
Antarctica 54 [pOG681] + —

30 — +
Rostock 72 [pOG675] +

+ incompatible 

-  compatible

6 8



Discussion

The démonstration that the plasmid of Rostock exhibited the same 

incompatibility results with pOG669 and pOG670 as that of Dublin confirms the 

REFP data -  that these plasmids are the same.

The 40 kb co-resident plasmids in Blegdam and Moscow strains were 

incompatible with both pOG669 and pOG670 and thus suggests that these 

plasmids exhibit IncX properties.

The 30 kb co-resident plasmid of Antarctica was compatible with pOG669 

and compatible with pOG670. This result was surprising since IncX properties 

should result in the plasmids elimination with the introduction of pOG669 also. 

Since this plasmid was co-resident with the virulence associated plasmid its 

properties were not examined further. Possible explanations as to the anomalous 

inc results could be the plasmids instability or other host restriction factors 

acquired during plasmid transfer. For the purposes of this study though the 54 kb 

plasmid of Antarctica showed incompatibility to the plasmid of Typhimurium; the 

30 kb co-resident plasmid merits future analysis.

Plasmid incompatibility analysis of the SAP’s of the salmonellae and related 

plasmids from other serotypes revealed that the SAP’s of Enteritidis, Choleraesuis, 

Abortusovis, Wangata, Pullorum, Gallinamm and Bovismorbificans were related to 

the SAP of Typhimurium. The plasmid of serotype Dublin IncX incompatibility 

properties and suggests a different mechanism of evolution to the other SAP’s 

which will be dealt with later. The plasmids of serotypes Blegdam, Moscow, 

Rostock and Antaictica were shown by REFP analysis to be the same as existing 

SAP’s in other serotypes or molecular variants thereof. Therefore the 

incompatibility results of these plasmids is not entkely surprising and strengthens 

the arguement that these plasmids are serotype-associated rather than serotype- 

specific. The 40 kb plasmids co-resident in the sti'ains of Moscow and Dublin were 

incompatible with both pOG669 and pOG670. It is almost certain that these are 

IncX plasmids -  for three reasons. Fh’stly, their size; IncX plasmids are usually 

around 40 kb in size. Secondly, the REFP of the plasmids are similar. Although the 

co-resident plasmids of the salmonellae did not generate any fragments after 

digestion with Pstl or Smal, pOG670 itself only produces 5 fragments. Digestion
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of pOG670 with EcoRY  generated more fragments as did the 40 kb plasmids of 

the salmonellae (results not shown). Thirdly, if these plasmids like that of Dublin, 

exhibited dual incompatibility properties then they would not be able to co-exist 

stably with the virulence plasmid

Previous work by Ou et al (1990) stated that the virulence plasmids of 

serotypes Typhimurium, Choleraesuis, Dublin and Enteritidis belonged to a 

different incompatibility gi’oup to those of Gallinarum and Pullorum. However, 

various anomalies were apparent from this work-fustly, the supposed same 

incompatibility group of the plasmids of Dublin and Typhimurium. Previous work 

by Platt et al (1988) established that the plasmid of Dublin exhibited IncX 

properties -  results which were successfully repeated in this study. Secondly, the 

apparent different incompatibility group of Gallinarum and Pullorum plasmids from 

the others. The results presented here are at variance with those of Ou et al (1990) 

as regards the incompatibility group of Gallinarum, Pullorum and Dublin. 

However, previous work by McConnell et al (1979) found that the Salmonella 

plasmids of the Fime group were incompatible with the F factor and MPIO 

plasmids (found in Typhimurium) but did not show any DNA homology. Therefore 

the inablüity of these plasmids to coexist must be a result of unexplained host 

factors rather than incompatibility properties. These results may explain the 

anomalous incompatibility results obtained by Ou et al (1990). The REFP data 

presented here (i.e. the high degree of similarity of plasmids of Pullorum and 

Gallinarum to Typhimurium and the low degree of similarity of Dublin to all the 

other SAP’s) strengthens the arguement that the SAP’s of Abortusovis, 

Chloeraesuis, Enteritidis, Wangata, Gallinamm, Pullorum and Bovismorbificans are 

related to Typhimurium whilst that of Dublin is related but at a much lower level.
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CHAPTER 5

M olecular variants of the serotype associated plasmids of the

salmonellae
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Introduction

Chapter 3 dealt with the the serotype-associated plasmids of the 

salmonellae and their restriction endonuclease fragmentation patterns. However, 

molecular variation among such plasmids has been demonstrated previously in 

Enteritidis (Brown et al, 1993) and Typhimurium (Platt et at 1988) at a level of 

5%. Molecular variation was detected in Dublin plasmids at a level of 23% 

(Browning et al 1995). The definition of molecular variant plasmids has previously 

been described (Platt et al 1988, Browning et al 1995). Briefly, it requires that the 

plasmid be identified initially in a serotype known to contain an SAP and although 

the majority of fragments are common, at least one SAP fragment be absent in 

strains that harbour additional plasmids or are of a different size.

As part of a survey of Salmonella plasmids in 1985 strains of Dublin were 

all found to harbour the SAP alone. This contrasted the situation in both 

Typhimurium and Enteritidis where a small but significant proportion of strains 

were plasmid free. The combined data from both plasmid profile and REFP analysis 

was then used to address the question of clonality in Dublin.

Most of the serotypes that harboured SAP’s were found to harbour variant 

plasmids. These results are discussed.

Mateiials and Methods

Plasmid profile and REFP analyses were performed as described previously 

in Chapter 2.

Bacterial strains

Five strains of Choleraesuis were analysed from the UK and the USA and 

their plasmid REFP compared to the NCTC strain. Fifty strains of Gallinarum 

were analysed from an international collection that included isolates from Europe, 

USA, Africa and Asia and their plasmid REFP’s compared to i that of the NCTC 

reference strain. Thirty one sti’ains of Pullorum were analysed that comprised a UK 

collection and their plasmid REFP’s compared to the NCTC reference strain. A 

total of 65 distinct isolates of Dublin were examined. They were geographically
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diverse; UK (26), USA (15), Holland (8), Canada (4), Denmark (4), France (4) and 

Germany (4). The strains studied comprised part of international collection held by 

Central Veterinary Laboratory (Weybridge) and a wide range of Scottish isolates. 

Additional strains were kindly provided by Dr P Jones (Animal health Institute; 

Compton). GR34285, pOG675 was used throughout as a reference strain of 

Dublin for the comparison of REFPs. Where epidemiological information indicated 

that multiple isolates were from a single outbreak or incident and molecular data 

was consistent with this conclusion a single isolate was included. However, all 

isolates epidemiologically defined as sporadic were included, 104 isolates of 

Bovismorbificans were examined that comprised a collection of Scottish strains and 

their plasmid REFP’s compared to that of the NCTC reference strain.

Results

Molecular variation among plasmids o f Choleraesuis

Six strains of Salmonella Choleraesuis were available for plasmid analysis, 

one of which was acquired from NCTC and to which the others were compared. 

Plasmid details are given in Table 5.1, computer generated output of the plasmids 

in Figure 5.1. Both pOG633 and pOG634 shared the same REFP when digested 

with F itI which differed from pOG678 in the absence of the 1.7 kb SAP fragment 

and the addition of one of 1.6 kb. Smal digestion however revealed pOG633 to 

contain all the SAP fragments with additional fragments of 1.25 and 1.2 kb 

generated. pOG634 contained one fragment of 1.25 kb in addition to the SAP 

fragments when digested with Smal.

These results indicate minor differences in these plasmids which could have 

arisen by ;

a) a deletion which resulted in the loss of a single Pstl cleavage site and the 

addition of a Smal restriction site 

or b) a rearrangement which generated an additional restriction site which 

resulted in the production of two smaller fragments one of which was 

below the level of detection of the system
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Table 5.1.

Molecular characterization of Salmonella choleraesuis plasmids

Strain
Designation

Origin PPA
(designation)

Source

GR6489 UK 50 (pOG678) NCTC 5735 isolated in 
1939

GR6889 USA 50 (pOG678) Univ. of Pennsylvania^

GR6989 USA 50 (pOG678) Univ. of Pennsylvania *

GR7695 Not Known 50 (pOG633) lAH, Compton"^

GR7795 Not Known 50 (pOG634) lAH, Compton'^

GR7895 Not Known 50 (pOG634) I AH, Compton'^

 ̂ Strains received as a gift from Dr C Benson, University of Pennsylvania

Strains recieved as a gift from Dr Tim Wallace, Institute of Animal Health, 

Compton, Berkshire.
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Figure 5.1

Computer generated REFP analysis of the plasmids of Salmonella 

Choleraesuis

I I

cuN
•H
W
4-1 mg
Ito
Ll CMk

CO ro f- CO CO
8 8 8 S 8 S

-  %  %  %  %  %  %

•7S



or c) the insertion of a piece of DNA which disrupted a Pstl restriction site 

and included or generated a Smal site.

Molecular variation among plasmids o f Gallinarum

Fifty one strains of Gallinarum were examined the results of which are 

given in Table 5.2, the computer-generated graphical printout in Figure 5.2 and 

Dice coefficients of similarity in Table 5.3.

Of the 51 strains examined 2 (4%) were plasmid free.

One strain GR7294 harboured a plasmid indistinguishable from pOG676 

the NCTC sti'ain.

pOG641 differed from pOG676 when digested with Pstl in that the 4.4 kb 

doublet was only a single fragment. Smal digestion revealed the 11.0 kb and 2.5 kb 

fragments to be absent with an additional fragment of 11.9 kb generated.

pOG642, when digested with Pstl, revealed the 4.8 kb fragment to be 

absent with an additional fragment of 4.30 kb generated. Smal digestion showed 

the 10.7 kb fragment was replaced by one of 11.0 kb.

Due to the rarity of this serotype the NCTC strain was initially used as the 

basis for the comparison of other sti'ains and its plasmid was considered to be the 

SAP of this serotype. However, further analysis of an international collection 

revealed the majority of strains (90%) harboured an identical plasmid, the REFP of 

which was a molecular vai'iaiit of the NCTC sti’ain. The widespread geographical 

origins of these strains suggested that this plasmid is the predominant type and as a 

result pOG642 was thereafter designated as the SAP for Gallinarum. Dice 

coefficients of similarity between the plasmid variants show them to be > 95% 

related.

Molecular variation among plasmids o f Pullorum

Thirty two strains of Pullorum were analysed. Strain details and plasmid 

designations are given in Table 5.4, the computer-generated analysis of REFP’s 

after digestion with Pstl and Smal in Figure 5.3 and Dice coefficients of similarity 

in Table 5.5. Of the 32 sti’ains of Pullomm examined, one was plasmid free. The
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Table 5.2

Molecular characterization of plasmids from Salmonella Gallinarum

Strain designation Origin PP [designation] kb
GR6589 NCTC 9240 85[pOG676] : 8

GR4590 (7) Tanzania 85[pOG642]

GR5090 (4) Saudi Arabia 85[pOG642]

GR5490 Mombasa 85[pOG642]

GR5590 Nairobi 85[pOG642]

GR5690 Lebanon 85[pOG642]

GR5790 (8) Greece 85[pOG642]

GR5890 (10) Jordan 85[pOG642]

GR4594 Greece 85[pOG642] : 8

GR4894 Yemen 85[pOG642]

GR5294 (3) Kenya 85[pOG642]

GR5394 (2) UK ND

GR5494 (8) UK 85[pOG642]

GR6694 Not Known 85[pOG642]

GR6794 Saudi Arabia 85[pOG641]

GR7294 Kenya 85[pOG676]

( ) number of strains examined 

ND = None Detected

%'
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Figure 5.2

C om puter generated REFP analysis o f the plasm ids o f Salmonella G allinarum

after digestion with Pstl and Sma\
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T able 5.3

D ice coefficients o f  sim ilarity (%) o f variant plasm ids o f G allinarum .

I
Plasmid POG642 POG676 POG641
pOG642 —........ 95 95
pOG676 100 — 100
pOG641 98 98 —

P stl values in bold 
Smal values in italic
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Table 5.4

Strain designation, source and plasmid profile of Salmonella Pullorum strains 

analysed

Strain designation Origin PP [designationjkb

GR6689 NCTC 10706 85[pOG677] : 8

GR1494 NCTC 5667 85[pOG677]

GR1594 England 85[pOG677] : 8

GR1694 (6) UK 85[pOG677] : 8

GR1794 (4) UK 85[pOG636] : 8

GR1894 UK 85[pOG640]

GR2094 UK 85[pOG639] : 8

GR2194 UK 85[pOG638] : 8

GR2494 UK ND

GR2794 UK 85[pOG677]

GR3194 UK 85[pOG635]

GR3294 (3) England 85[pOG677] : 8

GR3494 (4) Scotland 85[pOG636] : 8

GR3694 England 85[pOG638]

GR3794 (2) England 85[pOG677]

GR4194 England 85[pOG638] : 8

GR4294 England 85[pOG677] : 8

GR4394 NCTC 8044 85[pOG637] : 8

GR4494 Scotland 85[pOG677] : 8

( ) Number of strains examined 

ND = None detected
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Figure 5.3

Com puter generated R E FP’s o f the plasm ids o f Salmonella Pullorum  after

digestion with Pst\ and Smal.
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Table 5.5

D ice coefficients o f sim ilarity (%) between the variant plasm ids o f Pullorum

Plasmid pOG677 POG640 POG639 pOG638 pOG637 POG636 POG635
pOG677 ---------- 95 100 98 95 100 97
pOG640 100 — 95 98 90 95 97
pOG639 93 93 — 98 95 100 97
pOG638 100 100 93 — 93 98 95
pOG637 91 91 93 91 — 95 92
pOG636 96 96 98 96 96 — 97
pOG635 96 96 95 96 96 100 —

Pstl values in bold

Smal values in italic
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other 31 sti'ains all harboured an 85 kb plasmid. 16 (50%) were indentical to 

pOG677, the SAP. The other 15 strains harboured variant plasmids which 

comprised 6 patterns. 8 strains harboured the plasmid designated pOG636 which 

differed from pOG677 in the Smal REFP only : the 3.1 kb fragment was replaced 

by one of 3.9 kb.One strain harboured a plasmid designated pOG640 

which was evident as a variant only after digestion with Pstl -  the 4.4 kb doublet 

fragment was replaced by single fragments of 4.4 kb and 4.35 kb and the 2.7 kb 

fragment was absent.

Conversely, pOG639 was a variant plasmid only after digestion with Smal 

where two fragments of 3.1 and 2.35 kb were absent, and one additional 3.9 kb 

fragment seen. This plasmid was present a single ; isolate.

Three strains harboured the plasmid, designated pOG638, which showed 

variation from pOG677 only when digested with Pstl — the 4.4 kb doublet was 

replaced by fragments of 4.4 and 4.35 kb.

Two strains harboured individual plasmids which were variants with both 

Pstl and Smal. The plasmid of GR4394, when digested with Pstl, revealed the 

absence of the 4.4 kb doublet fragments and the addition of a 4.2 kb fragment. 

Smal digestion revealed two fragments to be missing (6.3 and 3.1 kb) which were 

replaced by fragments of 6.9 and 3.9 kb. This plasmid was designated pOG637. 

The other plasmid that showed variation with both enzymes was found in strain 

GR3194. Pstl digestion revealed this plasmid to have the same REFP as pOG640. 

Smal digestion however showed this plasmid to be the same as pOG636. This 

plasmid was designated pOG635.

Overall, the six distinct variant plasmids were closely related to each other 

and the archetype; dice coefficients of similarity between the plasmids ranged from 

91-99% (mean values calculated from Pstl and Smal results).

Molecular variation among plasmids o f Bovismorbificans

Direct statistical analysis of the plasmids of Salmonella Bovismorbificans 

was not possible due to the lack of detailed epidemiological information in 

connection with these strains although their distribution suggests that some were 

epidemiologically related. As a result the actual incidence of plasmid carriage is
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probably higher than indicated here. Of the 104 isolates examined, 30 harboured 

one or more plasmids (Table 5.6). The REFP results of the three 90 kb plasmid 

types can be seen in Fig 5.4 and the Dice coefficients of siinilarity in Table 5.7. The 

majority of strains of Bovismorbificans isolated in Scotland that harboured 

plasmids fell into two categories ; the first plasmid pattern being the same as that of 

pOG679, the second differed from pOG679 in the Smal digest pattern only in 

which it generated a single fragment of 1.2 kb in addition to all the SAP fragments 

and was designated pOG644. The REFP of pOG679 and pOG644 were 

indistinguishable after digestion with EcoRY  (results not shown). These two 

plasmid types are seen with approximately the same frequency as each other 

although the majority of human isolates (9/12) harboured pOG679 whilst all the 

non-human isolates hai’boured pOG644.

pOG643 was identified in one human strain isolated in 1993 and differs 

from the SAP when digested with both Pstl and Smal. After digestion with Pstl 

three fragments (3.85, 2.2 and 2.0 kb) were absent with three additional fragments 

generated (5.0, 3.0 and 2.8 kb). Smal digestion showed three fragments to be 

absent (6.3, 2.35 and 1.9 kb) with two additional fragments generated (6.1 and 3.3 

kb). This plasmid may have arisen as a result of the insertion of DNA which 

interupted a restriction site. The plasmid harboured by S/910475 remained uncut 

after digestion with Pstl and Smal. EcoRY  digestion revealed a plasmid unrelated 

to the other plasmids of Bovismorbificans.

Molecular variation among plasmids in Dublin

Sti'ain designation, antimicrobial resistance pattern and plasmid profile are 

shown in Table 5.8. Smal digestion of some of the variant plasmids is shown in 

Figure 5.5 and the computer generated REFP’s with Pstl, Smal and EcoRY  in 

Figure 5.6. Dice coefficients of similarity of the REFP’s with Pstl, Smal and 

EcoRM are given in Table 5.9.

None of the isolates was plasmid free; all except 4 harboured a 72kb 

plasmid and 31 (48%) possessed one or more additional plasmids. Fifteen different 

strains were distinguished on the basis of PPA : 82 kb (1), 72 kb (30), 72:65 kb 

(5), 72:60 kb (1), 72:45 kb (2), 72:40 kb (4), 72:30 kb (1), 72:60:6 kb (4), 

72:30:3.3 kb (1), 72:3.8 kb (1), 72:3.3 kb (9), 72:9 kb (1), 72:4.3:3.3 kb (1), 72:12
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Table 5.6

Strain designation, source and plasmid details of Bovismorbificans strains

Strain designation Source (Year isolated) PP [designation] kb

GR6389 NCTC 5754 (1939) 90(pOG679)
S/890132 HUMAN (1989) 90(pOG679) : 7

S/890281 BOVINE (1989) 90(pOG644)

S/890337 BOVINE (1989) 90(pOG644)
S/890382 BOVINE (1989) 90(pOG944)
S/890796 BOVINE (1989) 90(pOG644)

S/890976 BOVINE (1989) 90(pOG644)
S/890411 OVINE (1989) 90(pOG644)

S/890463 CANINE (1989) 90(pOG644)

S/890608 ENVIRONMENTAL (1989) 90(pOG644)
S/890648 OVINE (1989) 90(pOG644)

S/892850 HUMAN (1989) 90(pOG679)
S/894174 SEAL (1989) 90(pOG644)
S/901430 AVIAN (1990) 3

S/902090 QC (1990) 90(pOG679)

S/903191 HUMAN (1990) 90(pOG679)
S/904040 SEAL (1990) 90(pOG644)
S/910475 BOVINE (1991) 60
S/915148 SEAL (1991) 90(pOG644)
S/922633 HUMAN (1992) 90(pOG679) : 6
S/922814 HUMAN (1992) 90(pOG679)
S/922898 HUMAN (1992) 90(pOG679)
S/923879 HUMAN (1992) 90(pOG644)

S/930803 OTTER (1993) 90(pOG644)

S/930869 HUMAN (1993) 90(pOG644)
S/931030 HUMAN (1993) 90(pOG643)
S/931354 ENVIRONMENTAL (1993) 90(pOG644)
S/934107 HUMAN (1993) 90(pOG679)
S/935530 HUMAN (1993) 90(pOG679)
S/935538 HUMAN (1993) 90(pOG679)
S/940709 AVIAN (1994) 90(pOG644)

85



Figure 5.4

C om puter generated REFP analysis o f the plasm ids o f Salmonella

Bovism orbiilcans after digestion w ith Pstl and Smal
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Table 5.7

Dice coefficients of similarity (%) of the variant plasmids of Bovismorbificans

Plasmid POG679 POG644 POG643
pOG679 — 100 86
pOG644 98 — 86
pOG643 93 91 —

Pstl values in bold 
Smal values in italic
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Table 5.8 Characteristics of Salmonella Dublin strains studies
Origin Strain Designation PP (designation) kb Antibiotic resistance
UK GR34285 72(pOG675) ND

GR10290 (12) 72(pOG675) ND
S/923907 72*(pOG688) : 40 ND
S/920682 72*(pOG689) ND
GR10190 (2) 72*(pOG682) :45 ND
S/921207 (3) 72: 3.3 ND
S/920386 (5) 172: 70(pOG647)l# ND
S/922378 172 : 70]# ; 3.3 ND
S/921941 70(pOG647) : 30 ND
S/922442 70(pOG647) : 40 ND

USA GR9890 72 ND
GR9690 72 Ap
GR9990 (2) 72 Ap,Tc,Km,Gm, Tc
GR1590 (2) 72*(pOG683) ND
GR2290 72*(pOG640) : 65 Ap, Km
GR9490 72:65 Ap, Km
GR9590 82*(pOG685) Ap, Km
GR9790 72*(pOG686) : 60 Ap,Km,Su
GR1890 72: 65 Ap,Tc,Km
GR1990 72:65 Ap,Tc,Km
GR2090 72: 65 Ap,Tc,Km,Sm
GR1790 125*(pOG650) Ap
GR2190 125*(pOG649) Ap

Canada GR8290 72:60:6 Ap,Cm
GR8390 72:60:6 Ap,Tc,Su,Cm
GR8490 72 : 60 ; 6 Ap,Sm,Su
GR8590 72:60:6 Ap,Tc,Cm,Km,Sm

Denmark GR9090 (2) 72 ND
GR9290 72 : 3.8 ND
GR9390 72:30: 3.3 ND

France GR8790 72 Tc,Su,Cm
GR8690 (2) 72*(pOG687) : 40 ND
GR8990 72 : 4.3 : 3.3 ND

Germany GR8090 72 Tc,Su,Cm
GR7890 125*(pOG648) Ap _
GR7990 72: 3.3 Cm,Su
GR8190 72: 9 Ap,Cm,Su

Holland GR2490 72 Tc,Su,Cm
GR2690 72 Km,Su,Sm,Cm
GR2590 72*(pOG684) Ap,Tc,Km,Su,Cm
GR2390 72: 12 Ap,Tc,Su,Cm
GR2790 72: 3.3 Nal,Tc,Su,Cm
GR2890 72: 3.3 Tc,Su,Sm
GR2990 72: 3.3 Su,Sm
GR3090 72: 3.3 Tc,Su,Cm

■4
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( ) No. of strains examined 
*  indicates a variant plasmid on 
#[72 : 70] indicates comigration 
analysis.

the basis of REFP analysis
of plasmids of similar size; distinguished only after REFP



Figure 5.5 REFP analysis of plasmids of Salmonella Dublin digested with 
Sma\.
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Figure 5.6

Computer generated REFP analysis of the plasmids of Dublin digested with 

Pstl, Smal and EcoRV. ■ indicates fragments derived from a co resident 

plasmid.
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kb (1), 125 kb (3). The 15 recognisable plasmid-profile types were further 

subdivided on the basis of REFP analysis into 28 strains.

Of 30 isolates which possessed a single 72 kb plasmid from PPA data, 5 

were shown to harbour two comigrating plasmids after REFP analysis and the 

additional plasmid designated pOG647. The latter strain was found only among 

UK isolates and was associated with both outbreak and sporadic isolation.

The two human strains isolated in 1992 both possessed two plasmids 

(72:40 kb) and (72:30 kb). The 72 kb plasmid was identical in both strains. It was 

however um'elated to the SAP, and had the same fragmentation pattern as 

pOG647. However REFP analysis showed both the 40 kb and 30 kb plasmids to 

remain uncut with the enzymes used. The single ovine and the environmental 

isolates both contained the SAP alone.

One strain (GR2390), showed the presence of a single 72 kb plasmid. 

However, REFP analysis showed an additional 12 kb low copy-number plasmid 

which was obscured by chromosomal DNA and was undetected by PPA alone.

All the remaining strains harboured the SAP either alone, in addition to one 

or more plasmids or as a molecular vaiiant.

Thii'teen strains harboured plasmids which were molecular variants of the 

reference SAP pOG675 -  and comprised 10 distinct patterns (Figure 5.6).

Plasmid pOG689 was recognised as a variant plasmid only after digestion 

with Smal (Pstl and EcoRY  digestion both gave patterns identical to pOG675). 

Smal digestion showed the 1.94 kb SAP fragment to be missing. No additional 

fragments were observed.

Plasmid pOG684 contained all the SAP fragments when digested with Smal 

together with an additional fragment of 7.5 kb. However, this plasmid was 

classified as a variant SAP after digestion with Pjtrl. It lacked the 1.1 kb SAP 

fragment and three additional fragments were detected which totalled 7.8 kb. 

EcoRY  digestion revealed loss of the 2.5 and 2.3 kb SAP fragments with one 

additional fragment of 4 kb generated. REFP analysis with these three enzymes 

indicates a net gain of 5 kb DNA. (This was not evident in a plasmid profile).

Plasmid pOG685, when digested with Smal was shown to lack the 42.9 kb 

SAP fragment. Additional fragments of 29.4, 14.7 and 7.5 kb were present. This

92



resulted in an overall DNA gain of approximately 9 kb. Pstl digestion revealed the 

loss of the 3.1 kb SAP fragment with five additional fragments generated that 

totalled 19.4 kb. EcoRY  digestion revealed the loss of the 2.3 kb SAP fragment 

with two additional fragments of 6.8 and 3.1 kb generated. The net result of these 

REFP data was an overall DNA gain of 10.8 kb DNA as indicated by PP and 

confirmed by REFP analyses.

The Smal digest of plasmid pOG640, contained all the SAP fragments with 

four additional fragments that totalled 20.5 kb. Pstl digestion revealed the absence 

of both the 6.8 and 5.7 kb SAP fragments with four additional fragments generated 

that totalled 15,6 kb. This strain died before completion of the investigation. The 

presence of an additional 65 kb plasmid further complicated the analysis but the 

loss of two Pstl fragments unequivocally indicated the plasmid to be a vaiiant.

Plasmid pOG686, when digested with Smal, revealed the 0.95 kb SAP 

fragment to be absent with four additional fragments totalling 19.4 kb generated, 

Pstl digestion revealed the absence of the 5.7 kb SAP fi’agment with four 

additional fragments generated that totalled 11.3 kb DNA. EcoRV digestion 

revealed the loss of the 4.9 kb SAP fragment with three additional fragments of 

5.6, 5.2 and 3.9 kb, together with three fainter fragments (40, 14.1 and 10.7 kb) 

which is consistent with their derivation from a lower copy number (60 kb) 

plasmid.

Plasmid pOG683 lacked the 42.9 kb SAP fragment after digestion with 

Smal; eight additional fragments were generated which totalled approximately 

34kb. Pstl digestion revealed loss of the 39.7 kb SAP fragment with five 

additional fragments generated which totalled 19.4kb DNA. EcoRY  digestion 

revealed the 4.06, 2.71 and 2.46 kb SAP fragments to be absent with additional 

fragments of 9.1, 3.7, 3.2, 3.1 and 2.8 kb generated. Overall, the three enzymes 

indicate a DNA loss of 5.5 kb.

When plasmid pOG688 was digested with Smal REFP was the same as that 

of pOG683 but for the additional 40 kb plasmid which lacked Smal sites. After 

Pstl digestion the REFP of pOG688 was also identical to pOG683. However, the 

additional 40kb plasmid had a single Pstl restriction site and contributed a single 

40 kb fragment. EcoRV digestion was the same as that of pOG683 with two
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1additional doublets of 10.7 and 6.98 kb which totalled 35 kb and probably 

comprised the co-resident plasmid.

The Smal digest of pOG687 lacked both the 42.9 and 1.74 kb SAP 

fragments; additional fragments present matched those of pOG683. Pstl digestion 

produced the same REFP as that of pOG683 with the exception of the 4.2 kb 

fragment of pOG687 which was paralleled in pOG683 and pOG688 by an 

additional 4.1 kb fragment. EcoRY  digestion matched that of pOG683 together 

with two additional fragments of 2.48 and 1.92 kb.

One strain GR8890 originally harboured 2 plasmids but after repeated sub

culture lost the 40kb plasmid. From the comparison of initial and derivative strains 

it was possible to determine from REFP data which fragments originated from the 

co-resident plasmid.

It is clear from Pstl and Smal digest results that plasmids pOG683, 

pOG687 and pOG688 are almost identical. EcoRV digestion supported these 

findings: all three were shown to lack the 4.06 kb SAP fragment with the same 

additional fragments generated -  with the exception of pOG687 which had two 

fragments of 2.02 and 2.57 kb not present in pOG683 and pOG688

The three 125 kb plasmids all contain the majority of SAP fragments. 

pOG648 lacked the 6.84, 3.41, 2.44 and 1.32 kb SAP fragments when digested 

with F^rl; Smal digestion revealed the loss of the 3.2 kb fragment. pOG649 and 

pOG650 after Pstl digestion showed the loss of the 39.7 kb fi'agment. Figure 5.7 

shows the plasmids pOG648 and pOG649 digested with Pstl, Smal, EcoRY  and 

compared topOG675. Eight common additional fragments were generated and 

pOG649 contained a further two additional fragments of 1.5 and 1.45 kb. The 

Smal digest showed both plasmids to lack the 42.9 kb fragment; three common 

additional fragments were seen and pOG649 produced one unique fragment and 

pOG648 two unique fragments. Each of these plasmids was conjugative, 

incompatible with pOG675 and were thus co-integrate plasmids. pOG649 and 

pOG650 were closely related ( S d values >90% for both Pstl and Smal). pOG648 

was not closely related to either except in regard to the fragments derived from the 

SAP. This result is not surprising since pOG648 originated in Gennany and
:

pOG649 and pOG650 were both from American strains of Dublin and indicates
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Figure 5.7 REFP analysis of the cointegrate plasmids of Salmonella Dublin

after digestion with Pstl (Lanes 2—4), Smal (Lanes 5-7) and EcoRV 

(Lanes 8-10).

L a n e l.^ P s /I  2,5&8. pOG675 3,6&9 pOG649 4,7&10pOG648 l l . X K p n l
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unrelated cointegration events.

Incompatibility analysis ofVariant-SAP and other plasmids harboured by Dublin

The introduction of pOG669 into GR1590 resulted in the elimination of the 

72 kb variant plasmid. The introduction of pOG670 resulted in the retention of 

both plasmids.

The introduction of pOG669 into GR8890 resulted in the elimination of 

both parental plasmids whilst the introduction of pOG670 resulted in the 

elimination of the 40kb plasmid only.

The introduction of pOG669 into S/923907 resulted in the elimination of 

both resident plasmids whilst pOG670 resulted in the elimination of the 40kb 

plasmid only.

The introduction of pOG669 into S/921941 and S/922442 resulted in the 

elimination of both resident plasmids whilst pOG670 resulted in the elimination of 

the 30 and 40 kb respective plasmids only. The introduction of pOG669 into 

GR14792 resulted in the elimination of both co-mi grating plasmids whilst the 

introduction of pOG670 resulted in the elimination of the SAP (72 kb) only. These 

results are summaiised in Table 5.10.

The incidence of molecular variation in the serotype associated plasmids of 

the salmonellae is shown in Table 5.11.

Antimicrobial Resistance

None of the UK strains were resistant to any of the antimicrobials tested. 

Excluding UK isolates 77% of "rest of the world" strains were resistant to between 

one and five antimicrobial agents.

There was no overall correlation between antimicrobitü resistance and 

plasmid presence as some strains which possessed the typical SAP alone were also 

resistant to 2-5 antimicrobials and indicates a chromosomal location for the 

resistance determinants.
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Table 5.10

Plasmid incompatibility analysis of plasmids of Salmonella Dublin

Strain Designation PP[designation]kb Incompatible with 

pOG669 pOG670

GR 1590 72 [pOG683] + -

S/921941 70 [pOG647] +
30 +

S/922442 70 [pOG647] + —
40 + +

GR 8890 72 [pOG687] + —
40 + +

S/923907 72 [pOG688] + —
40 + +

GR 14792 72 [pOG675] 4“
70 [pOG647] + —

I
■f

i:.î

I
I

+ incompatible 

-  compatible

I
I

I

I
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Table 5.11

The incidence of molecular variation in the SAP’s

Serotype No strains %P —ve % variants Range Sd to SAP*

Bovismorbificans 104 61 3 8 6 - 9 9

Gallinarum 51 4 6 9 5 - 9 8

Pullorum 32 3 47 9 1 - 9 9

Dublin 65 0 23 6 2 - 9 4

Typhimurium # 5 # #

Enteritidis # 5 # #

* Mean Dice coefficients of similarity of variant plasmids compared to the SAP

# Variant plasmids previously demonstrated at 5% in these serotypes (Platt et al 

1988, Brown et al 1993)
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Discussion

The majority of serotypes of Salmonella that harbour SAP’s also possess 

variant plasmids. Plasmid vaiiation has been demonstrated at a level of 5% in 

serotypes Typhimurium and Enteritidis. This study showed Dublin to exhibit 

plasmid variants at a level of 23%, Gallinarum at around 6% and Pullorum at 47%. 

The plasmid of Bovismorbificans appears to be present in the population in two 

forms albeit this variation was only detectable with one enzyme. These plasmids 

were present at the same frequency as each other, and variation to them was at a 

level of around 3%. In the cases of Dublin, Gallinarum, Pullorum and 

Bovismorbificans there is evidence of the distribution of the plasmid world-wide as 

well as the existance of sub-clones within a localized geographical area. The 

presence of a plasmid in Gallinarum that is widespread and differs from that seen in 

the NCTC strain reveals this plasmid to have the 11.0 kb Smal fragment in 

common with Typhimurium (and all other SAP’s) whereas in pOG676 this 

fragment is replaced by one of 10.7 kb. The existance of a plasmid variant in 

Dublin (pOG683) which shows a high degree of similarity to Gallinarum (pOG676) 

indicates that these plasmids are more closely related to each other and may in fact 

provide an link in the evolutionary development of plasmids.

Although the incidence of plasmid variation in Dublin seems to be much 

higher than that of Enteritidis and Typhimurium (23% compared to 5%), the 

strains of Dublin involved were obtained from world-wide sources and thus 

not be truly representative of the population. For example the plasmids 

from two out of the four French isolates were designated molecular variants yet 

this probably does not reflect the overall situation in Dublin plasmids isolated in 

France. Similarly, 4% of Dublin isolated in Scotland in 1995 possessed molecular 

variants of the SAP. In these instances the epidemiology of the strains is important 

in determining the overall picture of plasmid identification.

The combination of plasmid profile and REFP analysis has confirmed the 

international dispersion of common clones of Dublin and also demonstrated distinct 

strains to be common within a locality and restricted to it. Strains that harbour the 

72 kb plasmid alone are particularly common and their demonstration confers no 

epidemiological specificity unless REFP analysis indicates molecular variation.
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Population genetic studies of Dublin (Selander et al 1992) based on MLEE 

distinguished four clones, three of which were closely related (Dul, Du3 and Du4); 

D ul had a world-wide distribution, Du3 was restricted to the UK and France and 

Du4 was unique to the USA. The distribution of plasmid within D ul was limited to 

either the SAP alone or ther SAP together with a single small (3 kb) plasmid 

whereas Du3 harboured no small plasmids and either the SAP alone, the SAP 

together with a plasmid of intermediate size (40-50 kb) or an intermediate sized 

plasmid alone. A sui'vey of Danish isolates of Dublin (Olsen et al 1990) showed 

nine plasmid profiles, four of which corresponded to profiles typical of D ul and 

Du3 and thus extends the range of Du3 to Denmark.

The more detailed analysis of plasmids presented here indicates 

considerably greater diversity in which there is no direct correspondence between 

the plasmid profiles of many strains and D ul and Du3. Nevertheless, by inference 

both clones were represented among UK, Danish or French strains. The 3.3 kb 

plasmid found among isolates from all European countries sampled was identical 

on the basis of REFP analysis with four restriction enzymes although no individual 

enzyme generated a fingerprint with an optimal information content. Thus strains 

with the profile 72:3.3 kb are widely distiibuted and equate with D ul and indicate 

the stability of the small plasmid. One sti’ain from France harboured an additional

4.3 kb plasmid but is presumably clonally related. Individual strains from Denmark 

(PPA 72:30:3.3) and the UK (72:70:3.3), neither of which had acquired drug 

resistance may belong to D ul but the presence of additional plasmids of 

intemiediale size also raises the possibility of association with Du3. Similarly the 

Canadian strain that harboured small (6 kb) and intermediate (60 kb) sized 

plasmids and the American isolates that possessed additional plasmids cannot be 

readily assimilated into the clonal framework proposed by Selander et al (1992).

The demonstration of identical REFP’s among the 72 kb SAP’s horn all 

seven countries confirms the overall conservation of this plasmid. However 

molecular variation in the SAP was detected in 15 (23%) of the isolates studied of 

which three were co-integrate plasmids. On the basis of REFP similarity and 

dissociative behaviour in vitro two of these were associated with the strains of PP 

72:65. A further seven of the molecular valiants were detected in strains that
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harboured additional plasmids of intermediate size. Five of these corresponded to 

clone Du3; pOG682 and 688 (UK) and pOG687 (France) were almost identical to 

each other and also to pOG688 (USA). The latter plasmid, present alone in two 

American isolates, provides circumstantial evidence that Du3 is also present in the 

USA. The three remaining molecular variants were each recognised in single strains 

from different counhies and none had diverged gi'eatly from the reference SAP 

pOG675. Together these data suggest the possibility that co-resident plasmids may 

have influenced the evolution of the SAP in Dublin and go some way to explain 

why the SAP’s of Dublin and Enteritidis ai’e more markedly divergent than the 

genomic DNA appears to be on the basis of MLEE and IS200 fingerprinting.

Overall this study has demonstrated considerable plasmid diversity within 

Dublin and evolutionary divergence of the Dublin SAP. These findings offer some 

scope for the application of plasmid analysis in epidemiological investigation but 

not where sti'ains haibour the SAP alone. Further studies are required to clarify the 

association between plasmid variation and genotypic mai'kers; comparative analysis 

of molecular variants of the SAP’s from different serotpyes will contribute to a 

better understanding of salmonella phylogeny.

The result of the Dublin-Variant plasmid pOG683 (incompatible with 

pOG669, compatible with pOG670) suggests this plasmid is more related to 

Typhimurium than the Dublin SAP is. This plasmid may be an intermediate in the 

evolutionary development of Salmonella plasmids.

All the SAP’s tested were incompatible with pOG669 and, with the 

exception of pOG675 (Dublin) compatible with pOG670. This indicated that the 

incompatibility with pOG669 was a result of the Typhimurium portion of the
...

plasmid and not the IncX component.

The variant plasmids were all incompatible with pOG669. However 

pOG683 was compatible with pOG670 unlike the SAP.

The SAP of Dublin is known to exhibit IncX properties. It has been 

suggested that the plasmid of Dublin may have evolved by a different mechanism to 

that of other plasmids which may have involved cointegration of an IncX plasmid 

followed by a deletion event in which the IncX properties were retained by the 

Dublin plasmid. This plasmid may provide an insight into the reason behind the
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different incompatibility and REFP properties of the Dublin SAP. pOG683 may be 

an evolutionay inteimediate in the development of plasmids.

The similarily matrices (Table 5.9) show that each of the three enzymes 

corroborated the relationships between variant plasmids. In comparisons with 

pOG675 all variants were >80% similar (Pstl), >74% (Smal) and >62% (EcoRV).

The highest degree of relatedness (>90%) between the variant plasmids was 

seen in comparisons of pOG682, 683, 687 and 688. In contrast each of these 

plasmids was <75% similar to pOG675. Thus these four strains represent either 

parallel or progressive divergence from a single variant.

One interesting feature of the study was the difference in the antimicrobial 

resistance seen in isolates from different countries : the most noticable observation 

being the lack of resistance markers in UK isolates, which markedly contrasts the 

situation in cattle with respect to Typhimurium DT204c which have progressively 

acquired resistance deteraiinants since their initial detection in 1979 (Thidfall et al 

1985). Plasmid analysis suggests much antibiotic resistance to be chromosomally

detennined as strains with the SAP alone possessed resistance markers and have 

been previously reported (Woodwai’d et al 1989).
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CHAPTER 6

The identification of restriction endonuclease sites on the

Typhimurium SAP
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Introduction

The identification of a limited number of restriction endonuclease sites on 

certain plasmids of the salmonellae has previously involved the analysis of
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Typhimurium (Norel et al 1989 a,b, Cerin and Hackett 1993, Gulig et al 1992,

Gulig and Chiodo 1990, Friedrich et al 1993), Dublin (Williamson et al 1990) and 

to a lesser extent Enteritidis (Suzuki et al 1994). In all cases, plasmid examination 

involved either REFP analysis with enzymes that cleave infrequently e.g. RamHI,

Bglll etc which resulted in the generation of a small number of fragments (Tinge 

and Curtiss 1990, Michiels et al 1987) or the sequence detemiination of a small 

section of the plasmid e.g the virulence region (Gulig et al 1992, Gulig and Chiodo 

1990) or fimbrial biosynthetic genes (Friedrich et al 1993).

Although it was shown that an 8 kb Sall-Xhol probe from the virulence

region hybridised with plasmids of different serotypes (Williamson et al 1988b), it

is not known to what extent other regions of homology exist between the different

plasmids. The comparison of REFP’s from a variety of SAP’s has indicated a high

degree of similarity exists between certain plasmids e.g. Pullorum/Gallinarum,

Typhimurium/Pullorum, Choleraesuis/Enteritidis and also a low degree of

relatedness between others e.g. Dublin/Choleraesuis, Dublin/Typhimurium.
■

The published details of the restriction map of the Typhimurium plasmid 

has relied on the results generated by the enzymes BanilH, BglU, Xhol, Hindïll,

3EcoRI and Sail all of which (Sail excluded) generate between 3-7 fragments, and 

which revealed a large section of the plasmid to contain none of these sites at aH 

(Sail excluded). However, although the exact size of the fragments were not 

detailed the position of each fragment with respect to each other was (Michiels et 

al 1987, Tinge and Curtiss 1990) e.g. H2, H8, H4, H I, H5, H7, H3, H6 (HI = 

lai'gest Hindlll fragment). In addition another anomaly existed — the precise size of 

the plasmid itself. Friedrich et al (1993) published a map in which the plasmid was 

given as 90 kb whilst Korpela et al (1989) and Rhen et al (1989) both described a 

plasmid of 96 kb.



Where both enzymes required the same React buffer, the digestions were

The usefulness of Pstl and Smal REFP’s in both epidemiology and the 

recognition of variation in SAP structure would be extended by relating the sites 

for these enzymes to the existing more limited restiiction maps.

The identification of both Pstl and Smal restriction sites on the plasmid of 

Typhimurium would greatly enhance our understanding of the SAP’s. It has 

already been demonstrated that there exists a high degiee of relatedness between 

the plasmids of different serotypes, however the extent of the relatedness of non

virulence regions remains unknown. Ultimately, the analysis of both common core 

regions of the plasmids and also regions that do not appear to be common 

throughout was intended. The construction of probes from both common and 

unique fragments and hybridization to Southern blots was intended. This would 

demonstrate the true extent of fragment homology and if the fragments were really 

common/unique and if they were present elsewhere on the plasmid. Of par ticular 

interest was pOG683, pOG688 and pOG687 -  variant plasmids of the Dublin SAP 

which showed more overall REFP similarity to plasmids of other serotypes than to 

Dublin itself; they shared a common core group of fragments with both Pstl and 

Smal with other SAP’s.

From these results it was hoped to more precisely define the relationship 

between the various SAP’s and from which the construction of an evolutionary 

framework of plasmid development might be possible.

Materials and Methods

DNA fragment extr action and redigestion and REFP analysis of plasmid DNA was 

carried out as described previously.

.

Digestion o f DNA with two enzymes.

carried out simultaneously in a total volume of 50ql with an excess (3|al) of each 

enzyme to ensure complete digestion of the DNA.
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Where both enzymes required different React buffers, the enzyme that 

required the buffer with the lowest salt concentration was used first in a total
■

volume of 30|il (20ql DNA, 3jil buffer, 3|il enzyme and 4|il distilled water) and

digestion carried out for 2 - 3  hours. The second digestion was carried out by the 
.addition of 5\xl buffer, 3}al enzyme and 12|il distilled water for a further 2 -3  hours. 

For example a double digest that involved Pstl and BamHl was carried out with 

Pstl first (React 2 -  50mM NaCl) followed by BamFLl (React 3 -lOOmM NaCl),

Anomalies within the literature o f the size o f the Typhimurium SAP

Published maps of the Typhimurium plasmid varied both with respect to 

plasmid size and as a result the size of restriction digest fragments. Initial mapping 

studies were designed to identify fragments which contained sequences of interest 

e.g the virulence region was identified on a 3.5kb H indlll fragment. Therefore, 

although the exact size of the fragments may differ between different workers, the 

limited number of fi'agments generated enabled each to identify the appropriate 

fragment.

Although the various published maps of the plasmid of Typhimurium only 

differed by 6 kb, both Pstl and Smal generate fragments of <11 kb in size so this 

difference would be significant with these enzymes. Estimation of the Bglll 

fragment sizes of these plasmids indicated the map of Friedrich et al (1993) to 

contain fragments of 6 1 : 1 2 : 1 0 : 3 : 3 : 1  whereas the map of Korpela et al 

(1989) contained fragments of 67 : 12 : 9 : 3.4 : 3 : 0.6.

pOG660 corresponded to the Korpela map. This was confinrred with a 

Bglll-Xhol double digest. If the Friedrich map had been correct then this would 

have resulted in the generation of additional fragments of 8 and 4 kb; whereas the 

96 kb plasmid of Korpela would have generated additional fragments of 10 and 8 

kb. The latter was in fact the case and indicated that the 96 kb plasmids of Korpela 

was correct.
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The Xbal restriction site is at map position 0.

pOG660 contained a single Xbal restriction site and so this was placed at

other enzymes.
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Results and discussion
4

Restriction endonuclease fragment sizes o f the Typhimurium SAP,

pOG660 was digested with BamJAl, Bglll, EcoRI, Hindlll, Sail, Xbal and 

Xhol, The fragment sizes generated are given in Table 6.1. The exact calculation of 

the larger fragments (> 30 kb) was made difficult by the decreased sensitivity of 

control fragments by this method but was achieved after the subtraction of the 

other fragments.

ÏÎ

map position 0.

Map positions of BamRl, BgHl, EcoRl, Hindlll, Sail and Xhol

The map positions, with respect to each other, of each restriction fragment 

is shown in Figures 6.1 and 6.2 and in Table 6.2 together with the fi'agment 

bisected by Xbal and the fragments generated from a double digest with Xbal and

I
The virulence region extends from 83-91 kb

The virulence region was previously demonstrated to be contained within 

an 8 kb Sall-Xhol fragment (Williamson et al 1988) and to encompass a 3.7 kb 

Hindlll fragment (Norel et al 1989c, Poppe et al 1991). This region extended from 

position 83-91 kb on this map.

Xhol restriction sites

A  Xhol-Xbal double digest resulted in the loss of the 15 kb Xhol fragment 

and the generation of two fragments of 3 and 12 kb. It has already been established 

that there is a Xhol restriction site in the virulence region which extended from 83 

to 91 kb, the correct orientation of these fragments with respect to Xbal was 

determined to be 3 and 83 kb. The other Xhol site was mapped at 36.8 kb. This 

was detei*mined after double digest analysis of Xhol -B glll, Xhol-Sall and Xhol -  

Hindlll (see later).



Table 6.1 Restriction enzyme fragment sizes (kb) of the Typhimurium SAP 
digested with various enzymes

15.2
14

15.1
14.5

10.1 11 12.7 13d 12
9.9 9.9 9 8.8

7.4 7.4 7.4 7.5
6.2 6.2

5.8
5.7

5
4.7

5

4.4 4.4
4.3
4.2

4.3

4.1 4.1
4.0

3.9 3.9
3.6

3.7

3.4
3.2 3.2 3.2 3.2

3.1
3.0 3.0

'M:

Pstl Smal H indlll BglR Barnm  Sail Xhol
40 66 82 46

30 34
20.2

15 J

2.8 :
2.4 2.4 2.4
2.3

2.2 2.2 
2.1 2.1

2.0 
1.8 
1.73

1.6 
1.55
1.5 1.46
1.4 1.4
1,35
1.32 1.32 1.3
1.23 1.2
1.16
1,03 1.08 1
0.96 0.96 0.9d
0.88
0.87 0.87 0.1
D denotes fragment is present as a doublet
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Table 6.2

Orientation of restriction endonuclease fragments with respect to each other 
of the Typhimurium plasmid pOG660 after digestion with various enzymes

ENZYM E M AP PO SITION (kb)
Xbal 0
Xhol 15.0*(3,12), 33.8, 46.2
H indlll 15.2*(6.6,8.6), 2.4, 9.9, 40.2, 7.4, 3.2, 12.7, 3.9, 0.1
B g m 66.2*(47.2,19), 9.0, 1.0, 3.6, 12.0, 3.2

SaR 3.7*(2.7,1), 7.5, 1.2, 15.1, 1.3, 1.4, 5.0, 8.8, 6.2, 2.8, 14.5, 4.3, 20.2
E cdSl 13.0*(6.8,6.2), 13.0, 1.7, 4.3, 1.7, 30.3, 0.9, 13.8, 2.3, 9.8, 4.2
BamHl 82.6*(74.7,8), 7.4, 0.9, 3.2, 0.9

1
iÎ
s
I

IÎ
K::

1̂.

i

^Fragment bisected by Xbal (size of fragments generated)
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BamHI restriction sites

A  Bam lB-Xbal double digest generated an additional fragment of 8 kb. 

This indicated that the Xbal site was on the 8.2 kb BamBl fragment; the resultant 

fragment of 74 kb remained indistinguishable fi'om its original fragment. Again, 

because it has already been established that a BamBl site is present in the vkulence 

region, these BamHl sites were at map positions 87 and 74.6 kb. Other BamBl 

sites were positioned at 82, 82.9 and 86.1 kb.

B glll restriction sites

A Bglll~Xbal double digest revealed the Xbal restriction site to be present 

on the 66 kb BglE  fragment and generated two additional fragments, the smaller of 

which was ~-20kb (Figure 6.3). Therefore the accurate map positions of Bglll 

could not be achieved by this method alone.

A Xhol~Bglll double digest generated additional fragments of 7 and 10 kb 

(Figure 6.3). The absence of Bglll sites in the 15 kb Xhol fragment indicated no 

such sites were present in the region 83-95 kb. Therefore the Bglll site must either 

be at map position 76 or 73 kb. The 7.4 kb BamBl fragment which extends from

74.6-82 kb was eliminated upon simultaneous digestion with BamBl and Bglll 

(Figure 6.3) and thus indicated that a Bglll site lay within this region. Therefore, a 

Bglll restriction site must be present at map position 76 kb. This indicated that the 

Xbal-Bglll double digest fragments were 19 and 47.2 kb. Therefore the Bglll sites 

were positioned at 47.7, 56.2, 57.2, 60.8, 72.8 and 76 kb.

H indlll restriction sites

A H indlll-Xbal double digest generated additional fragments of 6.6 and

8.6 kb with the concomitant loss of the 15.2 kb Hindlll fragment (Figure 6.3). 

Thus the map position of this Hindlll fragment was established at 6.6 and 86.4 kb. 

This orientation was detemiined by the presence of the H indlll site within the 

virulence region (map position 86.4) which meant that the 6.6 kb fragment lay 

upstream from the Xbal site. Therafter Hmdlll sites were established at map 

positions 9, 18.9, 59.1, 66.5, 69.7, 82.4 and 86.3 kb.
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Figure 6.3 Double digest REFP’s of pOG660

L an el. 2 . //i/id lll 3. f/m dlll/fig/II 4 . ////id llM am H I

5. f/iVidIII/5a/I 6, Sail l .B gllV Sall S. BamHUSall 9, BamHl 

10. BgnVBamHl II. BgBl 12. XbaVBgBl 13. XhoVBglU 

U.XhoVBam H l 15. X ball H indlll 16. Xholl H indlll 17. XhoUSall 

18. XbaVSall
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EcoRI restriction sites

K nXhal—E co^l double digest generated fragments of 6.8 and 6.2 kb (with 

the loss of a 13 kb EcoRI fragment). This meant that the fragment was either 

positioned at 6.2 & 88.2 kb or 6.8 & 88.8 kb. A //m dlll-EcoR I double digest 

(Figure 6.4) resulted in the elimination of the 2.4 kb Hzndlll fragment (map 

position 6.6-9.0) therefore this fragment must contain an EcoRI site. Thus, the 

correct position of the 13 kb EcoRI fragment with respect to Xbal was 6.8 and

88.8 kb. Thereafter the EcoRI sites were established at map positions 19.8, 21.5, 

25.8, 27.4, 57.8, 58.7, 74.8 and 84.6 kb.

Sail restriction sites

A  Sail -  Xbal double digest (Figure 6.3) resulted in the loss of the 3.7 kb 

Sail fragment and the generation of fragments of 2.7 and 1 kb. These were 

positioned at 2.7 and 94 kb and the other Sail fragments were established at 

map positions 10.2, 11.5, 26.6, 27.8, 29.1, 34.1, 42.9, 49.1, 51.9, 66.4 and 70.7 

kb. The positions of these fragments did not entirely correspond to those reported 

by Tinge and Curtiss 1990, who indicated that immediately upstream fron the 3.7 

kb Sail fragment were fragments of 1.2 and 7.5. However, the 7.5 kb Sail 

fragment contained a Xhol site and therefore must lie adjacent to the 3,7 kb 

fragment (in order to encompass the Xhol site at 3.0 kb). Similarly Tinge and 

Curtiss ordered the fragments between 27.8 and 42.9 kb as 8.8, 1.3, 5 kb however 

the 8.8 kb fragment also encompassed a Xhol site and therefore the order of the 

fragments should be 1.3, 5, 8.8 kb. Therefore the 8.8 kb fragment must be 

positioned from 34.1-42.9 kb and the 5 and 1.3 kb fragments downstream. It must 

be noted that the restriction fragment sizes in the map of Tinge and Curtiss (1990) 

were not actually given; they were estimated from the diagram therefore the 

fragment orientations may be subject to variation.
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Figure 6.4 Double digest REFP’s of pOG660

L a n e l.^ P s /I  2. EcoRI 3 . //mdlII/EcoRI ^ .H indlll S.XhoUEcom

6. Smal 7. SmaUEcoBA 8. EcoRI

1 2 3 4 5 6 7 8
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Once these restriction sites were identified, the positions of Pstl and Smal 

sites were determined. Obviously, the large number of small fragments generated

The identification of Smal sites on the Typhimurium plasmid pOG660

With the previously established positions of BamHl, Bglll, Hindlll, Xhol
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by these enzymes meant that the exact position of all fragments was not feasible
'

(without sequence analysis of the plasmid). However, it was possible to identify 

regions which contained small fragments < 1 kb but not the precise location of such 

fragments.

and Sail as a template (see previously), the first step in the determination of the

Smal restriction sites was to insert those already identified by sequence analysis,

both by Friedrich et al (1993) and by Gulig et at (1990). The virulence region was

contained within an 8 kb Sall-Xhol fragment which had a map position of 83-91 
.kb. A 6.2 kb region within this region was notable for the absence of Smal 

restriction sites. Hence the virulence region was shown to be contained on a larger 

Smal fragment -  either 11.0, 7.4 or 6.2 kb. A Xhol-Sm al double digest revealed 

the 11 kb fragment to be absent, replaced by a slightly smaller fragment (-10 kb) 

and also the 4 kb fragment to be absent, with two additional fragments generated 

(2.0 and 1.95 kb). Therefore because the virulence region encompasses a Xhol site 

it must also be contained on the 11 kb Smal fragment.
'3:?

Positioning of the 11 kb Smal fragment

This fragment encompassed the entire virulence region. Its position in the 

plasmid map was achieved with the use of double digests.
■;

A Xhol—Smal double digest already revealed the Xhol site to intersect the 

11 kb fragment such that it generated two fragments of 10.2 and 0.8 kb. Therefore 

the fragment must either be positioned from 82.8-93.8 or 73.8-83.8 in order that 

it encompass the Xhol site at position 83 kb).
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A Smal - EamHIdouble digest revealed the 3.2 kb BamHl (map position

82.9-86.1 kb) fragment remained intact (i.e. it contained no Smal sites). This 

confirmed the 11 kb Smal fragment to extend from map position 82.8- 93.8.

Two Smal fragments were however eliminated : 11 and 2.4 kb with one 

visible additional fragment of 6.8 kb produced. The 2.4 kb Smal fragment must 

therefore encompass the BamHi site at 82 kb. The only other BaniHl site it could 

surround was the one at 74.6 however sequence data revealed the Smal fragment 

at this site to be >3.2 kb. Therefore the 2.4 kb Smal fragment extends from map 

position 80.4-82.8 kb.

The REFP’s of both Smal and BamHl contained a fragment of 7.4 kb. A 

fragment this size was also present after a double digest with these enzymes which 

means that either the 7.4 kb BaniHl fragment contains no internal Smal restriction 

sites and is itself contained within a larger Smal fragment or conversely the 7.4 kb 

Smal fragment is contained within a larger BamHl fragment. It has already been 

established that there are Smal sites at map positions 74.6 and 80.5 kb thereby 

disrupting the 7.4 kb BamHl site. In addition the only Smal fragment that could 

possibly contain the 7.4 kb BamHl fragment is the llk b  which has already been 

demonstrated to encompass the virulence region. Therefore the 7.4 kb Smal 

fragment must be postioned within the 74 kb BamHl fragment.

A Smal-BamHl double digest allowed the position of Smal restriction sites 

in and around BamHl sites to be determined (excluding a section 74.6-80.4 which 

shall be dealt with later, but probably consists of a few small fragments).

The work of Friedrich et al (1993) concerned a 14 kb section of the 

Typhimurium plasmid that extended from the BamHl site downstream to a Bglll 

site (74.6 and 60.8 kb respectively on my map). This sequence contained Smal 

sites at positions 71.4, 70.5, 67.3, 65.6, 64.5, 64.4 and 63.1 and indicated 

fragments of 0.9, 3.2, 1.7, 1.1, 0.1, and 1.3 kb were present. This region contained 

a fragment >3.2 kb upstream from 70.4 and >2.4 kb downstream from 63.1 kb. 

The 3.2 kb Bglll fragment (72.8—76 kb) was eliminated after double digestion with 

Smal and therefore contained an internal Smal restricton site. Therefore the Smal 

fragment that extended from 71.4 kb was > 3.2 kb but < 4.6 kb. There were four
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possible fragments that could have applied to this situation 3.2, 4.0 kb, 4.1 kb and

4.4 kb. The 4.0 kb fragment was eliminated during a Xhol double digest therefore 

this fragment could not be at this position. In addition the Smal fragment would 

remain intact after double digestions with both Hindlll (contained within the 12.7 

kb Hindlll fragment) and Sail (contained within the 20 kb Sail fragment). The 4.4 

kb Smal fragment, although intact after Hindlll digestion (Figure 6.5), was 

eliminated upon digestion with Sail. Therefore the 4.4 kb Smal fragment must be 

positioned elsewhere on the map. The 4.1 kb Smal fragment was not eliminated 

after digestion with Bglll. Therefore the only fragment that could be positioned 

upstream from 71.4 kb was 3.2 kb and indicated that this fragment was present as a

triplet in a Smal REFP. Thus, the 3.2 kb fragment extends from 71.4-74.6 kb.

The Smal fragment that extended downstream from 63.1 kb was > 2.3 kb. 

The 3.6 kb Bglll fragment (57.2-60.8) was eliminated after digestion with Smal 

and therefore must contain a Smal site. Thus, the fragment in question must also be 

< 5.4 kb. The fragments which fell into this category were 2,5, 2.7, 3.0, 4.4, 4.7 

and 5.0 kb. This fragment was contained within the 7.4 kb Hindlll fragment (59.1-

66.5). Smal sites have already been established for part of this region and 

correspond to Smal fragments of 1.1, 0.1 and 1.2 kb. Extraction of the 7.4 kb 

Hindlll fragment and subsequent redigestion with Smal generated fragments of 

-2.4, 1.7, 1.2, 1.2 and 0.8 kb (Figure 6.6). Therefore the fragment that extends 

downstream from 63.1 must be 2.5 kb and is positioned from 60.6-63.1 kb. 

Thereafter, the region 59.1-60.6 must contain Smal fragments too small to detect 

by this method (e.g. < 0.5 kb).

Orientation of the Smal fragment around the Xbal site

A Smal-Xbal double digest resulted in the elimination of a 3.2 kb fragment 

(which was present as a doublet) and the generation of fragments of 2.0 and 1.2 

kb. there were two possible orientations of this Smal fragment

1) map positions 2,0 and 93.8

2) map positions 1.2 and 93.



Figure 6.5 Double digest analysis of pOG660 

Lane 1. X Pstl 2. Pstl 3. PstllSall 4. Sail 5. PstllBglll 6. BglU

7. PstlJHindlll 8. H indlll 9. SmaVHindlll 10. Smal

1 2 3 4 5 6 7 8 9  10

■ I i

119



The 11 kb Smal fragment has previously been demonstrated to extend to map 

position 93.8, therefore the 3.2 kb fragment must be situated at map positions 93.8 

and 2.0.

Published work on the RepA (incompatibility) region of the plasmid (which 

on this map extended from 4 .5-8.6 kb and incorporated the H indlll fragment 

situated at 6.9 kb) revealed Smal fragments to be present at map positions 6.1 and

7.2 kb. This was confirmed by the extraction of the 2.4 kb Hindlll fragment (6 .6-

9.0 kb) and redigestion with Smal which generated two fragments of 0.2 and 2.2 

kb (Figure 6.5). Extraction of the 9.9 kb Hindlll fi'agment (9-18.9) and 

redigestion with Smal generated two fragments of ~ 4.4 and 5.4 kb. Therefore 

both these fragments must have arisen from larger Smal fragments; either 7.4, 6.2 

or 5.0 kb. The 6.2 kb Smal fragment was not possible at this position because a 

Sm al-Sall double digest revealed a fragment of this size. Since both enzymes 

themselves generated a fragment of this size it meant that either the 6.2 kb Smal 

fragment contained no Sail sites or conversely the 6.2 kb Sail fragment contained 

no Smal sites. If the 6.2 kb Sail fragment contained no Smal sites then it would be 

part of a larger Smal fragment i.e. either 11.0 or 7.4 kb. However both of these 

fragments were demonstrated to contain Sail sites. Therefore, the 6.2 kb Smal 

fragment did not contain any Sail sites. The 7.4kb Smal contained Sail fragments 

and therefore could not be positioned upstream from 7.2 kb (because there were 

Sail sites at 10.2 and 11.4 kb). Therefore, the 5.0 kb Smal fragment must be 

positioned within the Hindlll fragment situated at 9.0-18.0 kb and cross the Sail 

sites at 10.2 and 11.4 kb. For this reason it must extend from 9.5-14.5 kb.

Similarly, the 6.2 kb Smal fragment was positioned from 14.5-20,7 kb. 

This was the only option at this position; this fragment contained a H indlll site but 

no Sail sites and extraction of the 9.9 kb Hindlll fragment and redigestion with 

Smal was shown to generate two fragments of approx 5.5 and 4.5 kb (Figure 6.6).
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Figure 6.6 Double Digest REFP’s of pOG660 and fragment extraction and 

redigestion analysis 

Lane 1. X Pstl 2. EcoRI 3. PstllEcoRl 4. Pstl 5. 15kb ffin d lll fragment 

redigested with Pstl 6. 12kb Hindlll  fragment redigested with Pstl 7. 7.4kb 

Hindlll  fragment redigested with Pstl 8. Smal 9. 9kb H indlll  fragment 

redigested with Smal 10. 7.4kb Tfi/idlII fragment redigested with 5mal 11.

3.2 kb Hindlll  fragment redigested with Smal 12. 2.4 kb H indlll fragment 

redigested with Smal
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7.4 Smal fragment. This meant that the 7.4 kb Smal fragment was positioned either

122

4.0 kb Sm al fragm ent

A Xhol-Sm al double digest resulted in the elimination of the 4.0 kb Smal 

fragment and the generation of two 2.0 kb fragments. This meant that the fragment 

encompassed either the Xhol site at position 3.0 or 36.8 kb. Therefore the 

fragment would either be positioned at 1—5 kb or 34.8—38.8 kb. Since a Smal site 

has already been established at map position 1.2 kb the 4.0 kb Smal fragment must 

extend from 34.8-38.8 kb.

4.7 kb Sm al fragment

The 4.7 kb Smal fragment was eliminated by double digestions with both 

BglU. and Sa/I. The only site at which this could occur was the BgUl site at 47.2 kb 

and Sail site at 52 kb. A Smal—BglU double digest generated two additional 

fragments of 2.4 and 2.3 kb. Therefore the exact orientation of the 4.7 kb Smal 

fragment around the Bglll site in unconfirmed however it was either 44.8-49.5 or

44.9-49.6 kb.

Of the available regions left in the map :

20.7 - 34.8

38.8 - 44.8 

49.5 - 54.9 

63.2 - 67.3

the only position the 7.4 kb Smal fragment could be was somewhere in the region

20.7—34.2. This was the only appropriately sized region that resulted in the 

elimination of the 7.4 kb Smal fragment by both Hindlll and Sail in their 

respective double digests, and also result in the elimination of the 5.0 kb Sail 

fragment (29.2-34.2). The elimination of the 7.4, 5.0, 4.7 and 4.4 kb Smal 

fragments after digestion with Sa/I resulted in the generation of fragments of 4.6, 

4.2, 3.8 and 3.1 kb. The 3.1 fragment was generated as a result of digestion of the

5.0 kb Smal fragment (9.5-14.5). Similarly the 4.6 kb fragment was a product of

4.7 kb Smal fragment (44.8-49.5). The 3.8 kb fragment originated from the 4.4 kb 

Smal fragment (30.4 - 34.8). Therefore the 4.2 kb fragmentwas generated from the

1
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from 26-33 .4 kb or 22 .6-30 kb. As will be demonstrated later, the actual position 

of this fragment was 22,6-30 kb.

The 4.1 kb Smal fragment was contaitned within the region 38.3-43 as it 

was neither eliminated by double digestion with Sail or Hindlll. It extended from

38.8-42.9.

This indicated that there were only two possible positions at which the 4.4 

and 3.0 kb Smal fragments could occur. In order for them to be eliminated upon 

digestion with Sail, these fragments must cross the Sail sites at positions 34.2 and 

52 kb. The presence of a Hindlll site at map position 66.5 as well as Sail ruled this 

site out. As mentioned previously, Sail intersected the 4.4 kb Smal fragment to 

produce a fragment of 3.8 kb. This meant that this Smal fragment extended from 

30.4-34.8. (If the 3.0 kb Smal fragment had been at this position there would have 

been an additional 2.4 kb fragment generated after a H indlll-Sall double digest.

This was not the case).

Therefore the 3.0 kb Smal fragment was positioned from 50.5-53.5 kb (A 

Sm al-Sall double digest generated two fragments of -1 .5  kb)

The 2.7 kb Smal fragment was undisturbed by Sail or Hindlll and 

therefore lay in the region 63.2-66.5 or 66.5-67.3.

The 1 kb Bglll fragment (map position 56.2—57.2) was eliminated by 

double digestion with Smal and generated at least two fragments below 0.7 kb.

Therefore there must be a Smal restriction site in this region. Due to the presence 

of a Smal site at 57.3 this region must contain small Smal fragments < 0.8kb. The 

two remaining BglU sites at map positions 56,2 and 76 kb must be surrounded by 

Smal fragments of 2.1 and 2.2 kb. Both fragments must have been cut into
:

roughly equal sizes; no exfra fragments >1 kb were detected after double digestion.

Therefore it was not known which Smal fragment was at which Bglll site and as a 

result their postions may be interchanged. For the purposes of mapping the 2.2 kb 

fragment has been positioned from 74.9 - 77.1 and the 2.1 kb from 54.9 - 57kb.

The 2.0 and 1.8 kb Smal fragments were eliminated by Hindlll digestion 

(Figure 6.5). There were only two possible Hindlll sites at which they could occur 

: 9.0 and 59.1 kb. A //mdIII-S7?iaI double digest generated additional fragments of
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The Smal resüiction site of the Typhimurium plasmid pOG660 are shown 

in Figure 6.7 and Tables 6.1 and 6.2 .

Identification of Pstl restriction sites on the Typhimurium plasmid pOG660
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1.8 and 1.5 kb and implied that the 2.0 kb Smal fragment was cut by Hindlll and

produced fragments of 1.8 and 0.2 kb; the 1.8 kb Smal fragment generated 

fragments of 1.5 and 0.3 kb when digested with Hindlll. The only orientation for 

these sites was for the 2.0 kb Smal to extend from 7.2-9.2 kb and the 1.8 kb Smal 

from either 57.6-59.4 or 58.8-60.6.

Sequence data of the virulence region (Gulig et al 1990), which was 

situated at map position 83—91 kb, revealed Pstl restriction sites at map position

87.9 and 88.7 kb and demonstrated the virulence region to be located on a Pstl 

fragment >5.6 kb downstream from 87.9 kb. Three potential fragments were 

therefore possible at this position : 10.1, 5.8, 5.7 kb. This fragment also 

incorporated the 3.2 and 0.9 kb B am H  fragments (82.9-86.1, 86.1-87 kb). A 

BamHl—Pstl double digest revealed the 10.1 and 5.8 kb Pstl fragments to remain 

intact. Therefore, the vkulence region was contained on the 5.7 kb Pstl fragment 

which extended from 82.2-87.9 kb.

The published sequence data of Friedrich et al (1993) demonstrated Pstl 

restriction sites at map positions 71.3, 70.9, 69.8, 69.0, 68.3, 66.7 and 62.6 kb and 

revealed fragments of 0.4, 1.1, 0.8, 0.7, 1.6 and 4.1 kb to be present. Therafter, 

downstream from 62.2 lay a fragment >1.8 kb and upstream from 71.3 was a 

fragment >3.3 kb.

A Pstl-BgUl double digest resulted in the elimination of three Pstl 

fragments : 3.4, 2.1 and 1.6 kb (Figure 6.5). These fragments each encompassed a 

BglU site. Therefore, the 3.4 kb Pstl fragments extended upstream from 71.3 -

74.7 kb and thus incorporated the BglU site at 72.8kb.

Downstream from 62.6 therefore continued with the 2.1 kb Pstl fragment 

(60.5-62.6 kb) and incorporated the BglU site at map position 60.8 kb. This was

, . l l
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Table 6.3 S m a l restriction sites on the Typhim urium  SA P

li : Smal fragments at these intervening regions remain unconfirmed although are 
<1.8kb.
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Table 6.4 M ap positions o f Smal Fragm ents o f the Typhim urium  SA P

Sm al fragm ent (kb) M ap position

U 8 2 .8 -9 3 .8
7.4 22.6 -  30
6.2 14.5 -  20.7
5.0 9,5 -  14.5
4.7 44,8 -  49.5
4,4 3 0 .4 -3 4 .8
4.1 3 8 .8 -4 2 .9
4.0 34,8 -3 8 .8
3,2 67.3 -  70.5
3,2 7 1 .4 -7 4 .6
3,2 9 3 .8 -2 ,0
3.0 50.5 -  53.5
2,7 within 63.2 -  67.3
2,5 60 .6 -6 3 .1
2,4 80.4 -  82,8
2.2 74 ,9 -7 7 .1
2,1 54,9 -  57
2.0 7 ,2 -9 .2
1.8 within 57.6 -  59.4 

or 58.8 -  60.6
1.73 65,6 -  67.3
1,46 %
1.32 *
1.08 $
0.96 *
0.87 7 0 .5 -7 1 .4

* Exact fragment position unconfirmed.
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confiiTned by extraction of the 7.4 kb //m dlll fragment (59.1-66.5 kb) and 

redigestion with Pstl. This generated fragments of 4.1, 2.1 and 1.2 kb and thus also 

demonstrated a 1.2 kb fragment extended from 59.3-60.5 kb.

Extraction of the 15 kb Xhol fragment (83-3 kb) followed by redigestion 

with Pstl generated fragments of -5 .8, 4 and 2.4 kb. Because of the Pstl sites 

already established at map position 82,2 and 87.9, this 5.8 kb fragment was not 

part of a larger (i.e 10.1 kb) fragment and indicated the 5.8 kb Pstl fragment 

extend upstream from the vii'ulence region from 88.7 ~ 94.5 kb. The Xbal site 

bisected the 2,4 kb Pstl fragment in such a way that it generated two fragments of

2.3 and 0.1 kb after double digestion, therefore, the 0.1 kb portion of this fragment 

must extend from 94.9 - 95 kb (the 2.3 kb fragment could not be positioned on this 

side of the Xbal site because of the Pstl site at 94.5 kb). Therefore the 2,4 kb Pstl 

fragment extended from 94,9 - 2.3 kb.

Sequence data of the RepA gene (map position 4 .5-8.8 kb) revealed Pstl 

sites at 8.0 and 8.6 kb. In addition this region was shown to be contained on a Pstl 

fragment >3.9 kb which extended downstream foim 8.0 kb. this corresponded to 

the 4.4 kb Pstl fragment which was therefore positioned at 3.6 - 8.0 kb.

The 3.4 kb Pstl fragment was actually present as a doublet. Both fragments 

were eliminated after double digestion with Bglll and Sail respectively (Figure

6.5). One of these fragments has already been identified at map position 71.3-74.7 

kb. The only other position at which the second 3.4 kb Pstl fragment could be 

situated was at the Bglll site 47.2, Sail site 49.2 kb. The fragment must encompass 

both these sites.

Extraction of the 6.2 kb Sail fragment (43-49.2) and redigestion with Pstl 

generated fragments of 2,4, 1.4, 1.4 kb. The 2.4 kb double digest product must 

have arisen from the 3.4 kb Pstl fragment present in this region and must be 

positioned from 46.8—49,2 in order that the 3.4 kb Pstl fragment be situated from

46.8 - 50.2 kb. The region 43-46.8 consisted of fragments <1,4 kb.
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The 2.3 kb Pstl was eliminated after digestion Hindlll (Figure 6.5) and 

must therefore encompass a Hindlll site. The only sites at which this fragment 

could occur were at 9.0 or 59.1 kb. A Pstl-EcoRl double digest resulted in the 

elimination of the 2.3 kb Pstl fragment. No EcoRI sites were present around the

9.0 kb region such that a 2.3 kb fragment would encompass it. Therefore the 2.3 

kb Pstl fragment must extend from 58.2-60.5 kb.

The 3,1 kb Pstl fragment contained no BamHl, BglU, EcoRI, Hindlll, Sail 

or Xhol restriction sites (Figures 6.5, 6.6, 6.8). Extraction of the 5.0 kb Sail 

fragment (29.2-34.2 kb) and redigestion with Pstl generated fragments of 2.0 and

1.0. Therefore since the 3.1 kb fragment must be contained within this region it 

cannot be situated here. It therefore could be situated in the following regions : 

21.6(P5rI)-25.8(EccRI)

36.8(XW)-43(5'a/I)

52(Sall)-56.2(Bglll)

76(Bg/II)-80.9(FsfI)

The 1.50 kb Pstl fragment contained a BamHl site. The only position this 

fragment could occur at was 80.7-82.2 kb which incorporated the BamHl site at 

82 kb.

The 3.9 kb Pstl fragment did not contain any BamHl, BgUl, EcoRI, 

//m d lll or Xhol sites. It did however contain Sail site(s) (Figure 6.5). Extraction 

of the 9 kb Bglll fragment (47.2-56.2) and redigestion with Pstl generated 

fragments of -3.2, 1.7 and 1.1 kb (Figure 6.9). A Pstl site has already been 

demonstrated at map position 50.2 and so the 3.2 kb double digestion product 

must have resulted from this. Therefore the 3.9 kb Pstl fragment cannot lie in the 

region 47.2—56.2. This region must contain, in addition to the 3.4 kb fragment, 

fragment <1.7 kb.

Therefore, the 3.9 kb Pstl fragment could be situated in the following 

regions 27.4(EcoRI)-36.8(%/zoI) and must cross the Sail sites at 27.8, 29.2, 34.2 

kb. The 1.4 kb Sail fragment remained intact after double digestion and therefore 

did not contain an internal Pstl site

or 36.8(A/îc>I) - 46.8(FM) and must cross the SaR site at 43 kb.
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Figure 6.8 Double digest REFP’s of pOG660

Lane l.X, Pstl 2. Pstl 3. Pstl/ffi/idlII 4 . //t /id lll S. XhoUPstl!Hindlll 

6. Xhol l .B g lU  S.PstUBglll 9,XhollPstUBglll Id, Xhol!Pstl 

12.PstI/5fltI 13. A/ioI/PstI/5fln
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Figure 6,9

Extracted Bglll fragments of pOG660 redigested with Pstl and Smal.

Lane 1. X Pstl 2. pOG660/BglII 3. pOG660/PstI 4. 66kb/PstI 5 . 12kb/PstI 

6. 9kb/PstI 7. pOG660/SmaI 8. 66kb/SmaI 9 . 12kb/SmaI 

10. 9kb/SmaI

1 2 3 4 5  6 7 8 9  10
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the 3.1 kb fragment.

Thus, although it was not feasible to map the restriction sites of the smaller 

Pstl fragments, the positions of the larger (>1.6 kb) fragments was determined.

Extraction of the 11 kb Smal fragment and redigestion with Pstl confirmed 

the presence of fragments of around 5.8 kb (Figure 6.10). These consisted of the

5.7 kb fragment in its entirity and part of the adjacent 5.8 kb fragment.

The Pstl restriction sites of the Typhimurium plasmid pOG660 are shown 

in Figure 6.11 and Tables 6.5 and 6.6.

they occur on the plasmid. This study was designed to identify Pstl and Smal 

restriction endonuclease sites on the Typhimurium SAP with a view to further 

analysis of certain fragments by the construction of probes and hybridization to 

Southern blots.
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It was not possible to detemiine the position of the fragments smaller than 1.5 kb. 

However, the 1.55 and the 1.35 fragments both contained Sail sites and so must 

encompass one of these sites.

The 2.4 kb Pstl fragment appeared to be present as a doublet. One of the 

fragments was shown to be positioned from 94.9—2.3 kb. The other fragment did 

not contain any internal BamHl, Bglll, EcoRI, Hindlll, Sail or Xhol restriction

.sites. Therefore its position on the plasmid map was subject to the same criteria as
I-

One of the main reasons that the plasmid of Typhimurium was chosen, over 

the other SAP’s, to map Pstl and Sinal restriction sites was its size. At 95 kb it is 

the largest of the SAP’s.

The question of plasmid evolution has never been properly addressed -  in 

particular the question as to whether the plasmid evolves by DNA loss (from 

Typhimurium to Enteritidis) or DNA gain (from Enteritidis to Typhimurium). The 

fact that one small section of the plasmid remains conserved between SAP’s 

prompts the question as to how many other regions are conserved and where do

i



Figure 6.10 Smàl fragments extracted and redigested with Pstl 

L a n e l. XPstI 2. pOG660/SmaI 3. Ilkb/PstI 4. 7.4kb/PstI 5. 6.2kb/PstI 

6. 3.2kb/PstI 7. 3.0kb/PstI 8. pOG660/PstI

1 2 3  4 5 6 7 8
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Figure 6.11

Identification of Pstl restriction sites on the Typhimurium plasmid 

Exact position of fragments in these regions unconfirmed
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Table 6.5 Pstl restriction sites on the Typhim urium  plasm id pO G 660

Pstl fragment (kb) Map position

10.1 1 1 .5 -2 1 .6
5.8 88.7 -  94.5
5.7 82.2 -  87.9
4.4 3.6 -  8.0
4.1 62.6 -  66.7
3.9 within 27.4 -  36.8 

or 36.8 -  46.8
3.4 71.3 -  74.7
3.4 46.8 -  50.2
3.1 within 21.6 -  25 

3 6 .8 -4 3  
or 52 -  56.2 

76 -  80.9
2.4 9 4 ,9 -2 .3
2.4 As for 3.1 kb
2.3 58.2 -  60.5
2.1 60.5 -  62.6
1.6 66.7 — 68.3
1.55 îi«
1.4 *
1.35 $
1.32 $
1.23 *
1.16 »
1.03 6 9 .8 -7 0 .9
0.96 »
0.88 »
0,87

'exactposition not determined
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Table 6.6 Map positions of the Pstl restriction sites on the Typhimurium 

plasmid pOG660

Map position (kb)

I

^  Fragments unconfirmed in these regions
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Sm àl restriction fragments common to other SAP’s

The use of double digest analysis and also fragment redigestion enabled the 

map positions of the majority of Smal sites to be determined. Obviously the exact 

position of the small fragments (<1.5 kb) was not possible.

An interesting feature of the Smal map was the occurance of fragments 4.4,

4.0, 4.1 and 4.7 kb which lay adjacent to each other. These fragments occur in a 

region of the plasmid previously uncharacterized -  in as much as it lies within the

40 kb Hindlll, 82 kb BamUl, 66 kb Bglll and the 30 kb EcoRI fragments.

Fragments of 4.0, 4.1, 4.4 and 4.7 kb were also found in serotypes :

4.7 Abortusovis, Wangata, Bovismorbificans

4.4 Wangata, Gallinarum, Pullorum, Bovismorbificans, Dublin(variant)

4.1 Abortusovis, Wangata, Gallinarum, Pullorum, Dublin(vaiiant)

4.0 Abortusovis, Wangata

A Smal fragment of 4.7 kb (which was positioned immediately downstream 

from the repB region on the Typhimurium plasmid) was present in the plasmids of 

Abortusovis, Wangata and Bovismorbificans. The plasmid of Abortusovis is one of 

the smallest SAP’s (along with Choleraesuis) at 50 kb. If this fragment is indeed
■ i./'

present in Abortusovis as well as Wangata and Bovismorbificans, then it would 

suggest that these plasmids may have arisen via the same process -  be it deletion, 

rearrangement or insertion of DNA.

A 2.9 kb Smal fragment was present in the REFP of the plasmid of 

Choleraesius but no other SAP’s. The plasmid of Choleraesuis shows a most 

similarity to the plasmd of Enter!tidis (6S% Sm al, 6Q%~PstT) which would 

suggest that these plasmids evolved similarly. Their size supports this 50 and 54 kb 

respectively. The 3.0 kb Smal fragment was not present in the plasmid of 

Enter!tidis (in this foim) therefore either the fragments are not the same or the 

plasmid of Choleraeraesuis did not evolve from that of Enteritidis.

A 5.0 kb Smal fragment (which was demonstrated to be situated 

immediately upstream from the rep A  gene in Typhimurium) was found to be 

present in the SAP’s of Wangata and Enteritidis. If the plasmid is evolving by the
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S
loss of DNA (as we would expect-from the point of view of genetic burden etc)

'

then either the plasmid of Enteritidis has evolved from a separate lineage than the 

Other SAP’s (It would be extremely unlikely for a plasmid to lose a piece of DNA 

only to regain it again later) or this 5.0 kb fragment is not in fact the same.

%
Pstl restriction fragments common to other SAP’s

. ■a
' i t
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The majority of Pstl restriction fragments were successfully mapped. The 

position of three fragments remain unconfirmed; the 3.9 kb fragment was possible 

at two separate sites whilst the 3.1 and the 2.4 kb fragments were possible at four

sites. These undetennined sites all lay within the region previously only identified 

as part of larger fragments e.g. 40 kb HifidlU, 66 kb Bglll, 30 kb EcoRI.

The repA gene was demonstrated to be present on the 4.4 kb Pstl 

fragment. A fragment of this size was present in all the SAP’s except those of 

Abortusovis and Dublin. pOG683 (Dublin-Variant plasmid) possessed a fragment

of this size.

i

The 4.1 kb fragment was unique to the Typhimurium plasmid. This 

fragment was also present in pOG690, an Enteritidis plasmid that shows more 

similarity to Typhimurium and is thought to be an evolutionary intermediate. This 

fragment was also of interest to probe against other SAP’s, to see if it is truly 

unique or if it is present in the plasmids in another form.

A fragment of 2.3 kb was present in the plasmids of Typhimurium, 

Wangata, Pullorum, Gallinarum and Bovismorbificans. This fragment appears to be 

present in plasmids of around 90 kb in size but not in those plasmids smaller and 

indicates that they may have arisen via the same molecular event.

There was not as much fragment similarity with Pstl between pOG683 and 

othe SAP’s as there was with Smal. However, with the combined results of both 

enzymes the molecular development of the serotype-associated plasmids of the 

salmonellae can be investigated further.

The results of Pstl and Smal restriction site analysis has demonstrated more 

potential similaiity between the plasmids of different serotypes. The identification



'

of fragments of similar size within different plasmids and within non-virulence 

associated regions corroberates previous suggestions, that a family of related 

plasmids exist, rather than the suggestion that the plasmids evolved by the 

transposition of a virulence determinant as suggested by Williamson et al (1988a).

139

These results emphasise the need for hybridization analysis of these 

fragments. Of particular interest are the common fragments in the pOG683. 

Further analysis of these fragments may provide insight into the development of 

these plasmids and may explain the differences seen in the plasmid of Salmonella 

Dublin which has possibly arisen via an unstable intermediate which resulted from a

cointegration event.

■ii'I
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Chapter 7

Discussion
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The identification of Salmonella with regard to clinical epidemiology has 

relied primarily on phenotypic typing methods such as serotyping (either with or 

without phage typing), biochemical typing or antimicrobial resistance typing. These 

methods have proved invaluable both diagnostically and commercially with the 

rapid identification of an outbreak situation or prevention of spread of disease in 

the clinical, animal husbandry and food industries. Although such typing methods 

provide little or no information as to the genotypic relationships that exist within 

the salmonellae, most clinicians and veterinarians are only concerned with solving 

the problem of infection at the local level i.e. assigning a “name” to the problem 

and subsequently how to eliminate it. Thus, although much debate surrounds the 

correct nomenclature of the salmonellae, especially in this day and age of advanced 

molecular techniques and bacterial systematics, the practice of identifying 

salmonellae by name will continue.

The advent of molecular biology greatly enhanced our understanding of the 

salmonellae. The study of population genetics revealed the salmonellae to be 

basically clonal. Selander and colleagues (1990) used multilocus enzyme 

electrophoresis studies to show that the majority of serotypes analysed belonged to 

a single world-wide clone from which a small number of subclones have arisen by 

mutation (Beltran et al 1988) or recombination (Smith et al 1990). Helmuth et al 

(1988) came to the same conclusion based on outer membrane protein patterns and 

plasmid profile analysis.

The introduction of plasmid analysis enabled a greater understanding of the 

epidemiology of the salmonellae. Plasmid analysis has provided some solutions to 

the lack of diversity within serotypes in epidemiological investigations (Platt and 

Smith 1991). The concept of clonality plays an important, although not always 

recognised, part hi the epidemiology of Salmonella. Accordingly, it is important to 

know the plasmid pool of an organism before conclusions can be made concerning 

its epidemiology.

The association of virulence plasmids with certain serotypes led to their 

increased analysis. Different aspects of virulence from outer membrane proteins, 

pilin proteins, flagellai’ involvement to resistance to host attack mechanisms have 

been investigated but only served to emphasise that virulence is a multifactorial

I
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One of the first discoveries during this study was that the term serotype 

specific plasmid as introduced by Helmuth in 1985 was a misnomer. The plasmid

142

process. The contribution of the Salmonella plasmid was undeniable, even if the 

exact mechanism remained unexplained.

However, many questions remained unanswered. Did the plasmid 

population reflect the overall situation in the salmonellae? Were the plasmids 

clonal? Did they evolve at a different rate to the genome? Did the SAP of a host 

adapted serotype such as Dublin behave any differently than non adapted 

serotypes? What was the extent of molecular variation among SAP’s and lastly

what was the extent of molecular relatedness between SAP’s?

associated with serotypes Dublin and Enteritidis were identified in strains of . 

Salmonella Rostock and Moscow respectively. Plasmids previously designated as 

molecular variants of Enteritidis were identified in Blegdam and Moscow. 

Although these serotypes only vary in the structure of their H-antigens they had 

previously been shown to exhibit limited sequence homology (Williamson et al 

1988, Stanley et al 1994). It was also demonstrated that these similarities between 

plasmids were not restricted to Group D serotypes. The plasmid of Salmonella 

Wangata shows a high degree of relatedness to that of Typhimurium both in size

(90 kb compared to 54 kb of other Group D serotypes studied) and REFP (-84% 

similarity). These observations not only prompted the proposal of the term 

“serotype-associated plasmid” but demonstrated that the levels of similaiity 

between plasmids was not restricted to a particular serogroup. The observation 

that the plasmid of Wangata (serogroup D) is more closely related to Typhimurium 

(group B) parallels a recent report (Rankin et al 1995) that described a molecular 

variant of the archetypal Enteritidis plasmid which was more closely related to the 

reference plasmid of Typhimurium than to Enteritidis itself. Together these results 

indicated a family of related plasmids associated with but not restricted to serotype.

Restriction analysis of the SAP’s has progressed in two different ways 

dependant on purpose. Early mapping approaches emphasized the spatial 

relationships between small numbers of fragments whereas approaches designed 

with epidemiology in mind require a greater information content and employ



enzymes that cleave frequently but with few data available with regard to the 

spatial relationship between fragments.

REFP analysis of the SAP’s of Abortusovis, Choleraesuis, Enteritidis, 

Typhimurium, Wangata, Gallinarum, Pullorum, Bovismorbificans and Dublin 

suggested that these plasmids shared more homology than just the 7.8 kb vimlence 

region and confirms the heteroduplex results of Montenegro et al (1991).

The serotype associated plasmids have been previously demonstrated to be 

stable and highly conserved with respect to REFP in each serotype. This prompted 

the question -  were the evolutionary relationships demonstrated between different 

serotypes at the level of the genome paralleled by the plasmids associated with

certain serotypes? The size of the plasmids enabled their direct sequence analysis, 

however this has remained limited to particular areas associated with plasmid gene 

function such as virulence (Gulig et al 1993) and fimbria! biosynthesis (Friedrich et 

al 1993).

This study demonstrated the relationship between the plasmids of serotypes 

Abortusovis, Choleraesuis, Dublin, Enteritidis, Typhinurium, Wangata, Gallinarum, 

Pullorum, Bovismorbificans, Moscow, Blegdam Antarctica and Rostock by the 

comparison of the fragmentation patterns or “fingerprints” generated after 

digestion with various enzymes. Some plasmids showed more REFP similarity than 

others. For example, the REFP’s of the plasmids of Typhimurium and Wangata 

were 84% similar, Gallinarum and Pullorum 80% similar, Gallinarum and 

Typhimurium 69% similar whereas the plasmids of Dublin and Abortusovis showed 

less than 50% REFP similarity. The analysis of a large number of strains from 

serotypes that contained SAP’s revealed that molecular variants of the established 

SAP’s existed. Obviously in a population of predominantly plasmid-free (Wangata) 

or of limited accèssability (Abortusovis) this was not the case. However, if the 

sample population had been increased it is highly likely that these serotypes too will 

contain molecular variants of the SAP.

Molecular variation of the SAP of Salmonella Gallinarum was observed to 

be around 6% and paralleled the conclusions of Li et al (1993) who found the 

natural population of Gallinarum consisted of one predominant world-wide clone
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which was present at a level of 93%. Plasmid analysis of Gallinarum by Christensen 

et al 1992 also observed three different restriction profiles.

Molecular variation of the SAP of Salmonella Pullorum was observed at a 

level of 47%. Although this figure is high compaied to the incidence of variant 

plasmids in other serotypes, the actual population was different to the other 

strains. All the strains were isolated in the UK and the variant plasmids involved 15 

strains and comprised 6 patterns. Most of these plasmids exhibited minor 

differences in one or two fragments and probably reflect local variations in the 

plasmid population. Whether the differences in the plasmid pool of Gallinarum and 

Pullorum is a reflection on geographical/regional variations or the mechanisms of 

the spread of disease isi not known. Salmonella Pullorum has a predilection for the 

reproductive tissues of poultry and disease is commonly spread by ovarian 

transmission to eggs (Barrow 1994) whereas Gallinarum is usually acquired by the 

ingestion of food or water contaminated by the faeces of diseased birds (Li et al, 

1993). It is possible that the selection pressures exerted on Pullorum results in the 

spontaneous mutation of the plasmid, albeit minor.

The evolution of some serotypes to specific habitats or niches is relatively 

common within the salmonellae. This ranges from the strictly host adapted e.g. 

Pullorum in poultry to the not so restricted e.g. Dublin which is occasionally 

isolated fron ovine and human sources. Selander has suggested that the clones of 

host adapted serotypes may have arisen more recently than those of broad host 

range serotypes. Host adapted serotypes encounter a narrow range of ecological 

conditions which implies a limited amount of genetic diversity (therefore fewer 

clones or subclones). Broad host range serotypes encounter a vride range of 

ecological niches and therefore scope for more genetic diversity.

The adaptation of some serotypes has resulted in changes in amino acid 

metabolism of the organism. Whether this is a direct result of the envhonmental 

pressures that are exerted has yet to be established, however the extent of 

auxotrophy exhibited by some serotypes tends to favour this theory. Dublin is 

auxotrophic for nicotinic acid -  cattle do not require niacin in their diet therefore it 

is possible that Salmonella Dublin utilises the hosts niacin. Similarly, Pullorum is
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auxotrophic for cystine, which is found in abundance in poultry where it is utilised 

to synthesise feathers.

The results of plasmid analysis of host adapted serotypes indicates a higher 

degree of diversity m some serotypes. Of the three host adapted serotypes widely 

studied (with respect to geography and numbers) namely Gallinarum, Pullorum and
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Dublin only Gallinai'um showed limited plasmid diversity, with one world wide 

plasmid restriction profile, Pullorum and Dublin, on the other hand, showed a 

greater degree of plasmid divergence than indicated by chromosomal analysis.

Possible explanations as to the results obtained from the analysis of the 

plasmids of these serotypes include :

1) External physiological stimuli (predilection for reproductive tissue) may 

affect the Pullorum population, at least in the UK. This may account for the 

spontaneous production of minor plasmid variants. Whether these molecular 

variants remain stable in the population remains to be seen. This hypothesis could 

be analysed in vivo -  by the experimental infection of poultry with strains of 

Pullorum that harbour variant plasmids, and in vitro by trying to mimic the 

conditions exerted by the chicken. The analysis of a wide range of strains from 

throughout the world will also enhance our understanding of the plasmid 

population within Salmonella Pullorum.

2) The widespread clonal expansion of Dublin refutes the idea of limited 

genetic diversity within a host adapted serotype -  at least in the plasmid 

population. The occurance of subclones within a population however also exists in 

Dublin especially in isolates from the UK -  the majority of which harbour the SAP 

alone and are fully sensitive to the antimicrobial agents tested.

Plasmid analysis extended the observations of Selander et al (1992) that 

clone D ul was distributed worldwide and contained either the SAP alone or in 

combination with a small 3 kb plasmid whilst Du3 was restricted to the UK and 

France and was associated with either the SAP alone or in combination with 

another plasmid of intermediate size -  no small plasmids were associated with this 

clone. Plasmid REFP analysis indicated considerably greater diversity in the 

plasmid population in which there was no direct correspondance between PP and 

clones D ul and Du3. However, by inference both clones were represented and
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Du3 extended to include Denmark (Platt et al 1995). The analysis of whole cell 

DNA REFP of these strains revealed that nine strains that could not be assigned to 

either D ul or Du3 on the basis of PPA (because they possessed both an 

intermediate and a small plasmid in addition to the SAP) were identified as 

belonging to D ul (Platt et al 1995) and generally paralleled MLEE analysis but 

also showed genomic variation in both Dul and Du3.

One particular molecular variant of Dublin pOG683 proved particularly 

interesting. This plasmid was isolated from two strains from the USA; three strains 

isolated fron the UK and France showed REFP’s nearly identical to pOG683 i.e. 

they only varied in one or so fragments. The wholecell REFP of these strains 

assigned them to Du3. These plasmids have diverged greatly from the Dublin SAP 

and their presence in the USA provides evidence that Du3 is present there too. 

pOG683 showed more REFP similarity to the SAP’s of Gallinarum (79%) and 

Pullorum (77% -  although one of the molecuku variants of Pullorum showed 82% 

similarity) than to Dublin itself (74%) when digested with Smal. Five fragments 

were noticable in both their absence from pOG675 (the Dublin plasmid itself) and 

their presence in the REFP’s of other SAP’s. These fragments were 7.4 kb (also 

present in the SAP’s of Typhimurium, Wangata, Gallinarum, Pullorum, and 

Abortusovis), 6.6 kb (present in Gallinarum), 5.2 kb (present in Pullorum), 4.4 kb 

(present in Typhimurium, Wangata, Gallinarum, Pullorum and Bovismorbificans) 

and 4.05 kb (present in Gallinai'um and Pullorum). In addition to the REFP 

similarity to other SAP’s, pOG683 exhibited incompatibility properties different to 

Dublin but the same as the other SAP’s. The SAP of Dublin was unique in having 

IncX properties. The other SAP’s and pOG683 showed incompatibility to pQG660 

only. This plasmid would appear to be an evolutionary intermediate in the 

development of the Dublin plasmid fitom a common ancestor. This would also

explain the differences in both REFP and incompatibility. Dublin may at some point 

have formed a cointegrate with an IncX plasmid which subsequently degraded but 

left the DNA responsible for IncX function. Three cointegrate plasmids were 

identified in the study of the Dublin plasmids which were conjugative and unstable. 

This would also explain the differences in Pstl and Smal REFP’s -  both of which 

generate fragments of -40  kb. These fragments were not present in pOG683 and
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suggests that the 40 kb fragment present in pOG675 after digestion with Pstl and 

Smal are a derivative of an IncX plasmid. Du3 also contains IncX plasmids and is a 

geographically restricted clone (Selander et al 1992). Therefore it is less successful 

on the basis of the worldwide distrubution of D ul. This scenario may have arisen 

as a result of a primitive strain of Dublin (which possessed the SAP seen currently) 

under restricted conditions coexisting with a 40 kb IncX plasmid. Changes in the 

genome of the Dublin may have resulted in the cointegration and subsequent 

destabililisation of these plasmids. In tliis manner a different clone of Dublin with a 

greater ‘fitness’ and different incompatibility properties may have spread 

worldwide.

Whether these findings ai'e a result of practises in animal husbandry remains 

speculative at the moment. Different farming methods in different countries may 

affect the population and the importation of livestock may serve to complicate the 

analysis of evolutionary genetics.

It is not impossible, however that changes in external stimuli are reflected in 

the molecular genetics of the cell. The bacterial chromosome is less likely to be 

affected in such a way as to be noticed by current methods of analysis e.g. MMLE 

or PFGE. Changes in plasmid function and structure are much easier to monitor.

The 4.4 kb Pstl fragment was shown to contain the rep A functional genes -  

associated with incompatibility and partition functions. A fragment of this size was 

present in all SAP’s except those of Abortusovis and Dublin (again this fragment 

was evident in pOG683). This suggests that the plasmids of Abortusovis and 

Dublin pOG675 are more distantly related to that of Typhimurium or have 

undergone recent evolutionary change.

The identification of the majority of Pstl and Smal restriction sites on the 

Typhimurium serotype-associated plasmid was achieved with the use of double

digest data, fragment extraction and redigestion and the established orientation of 

other restriction endonuclease fragments with respect to each other. Although it 

was intended that this information would enable the construction of a library of 

DNA probes with which to hybridize Southern blots of the SAP’s, both technical
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difficulties and time constraints meant that this could not be completed. One 

successful fragment was cloned -  the 2.3 kb Pstl fragment — which hybridized with 

a 2.3 kb fragment from the SAP’s of Wangata, Gallinarum, Pullomm, Dublin, 

Bovismorbificans and the Dublin-Variant plasmid pOG683. This fragment also 

hybridized with the 1.95 kb fragment of Choleraesuis and the 1.6 kb fragment of 

Abortusovis. This fragment did not hybridize with Enteritidis. This avenue would 

form a usefulapproach for future investigation of the evolution of both the plasmids 

and by extension the salmonellae.

A recent report by Woodward et al (1996) identified p e f  A genes in the

plasmids of Typhimurium, Bovismorbificans, Choleraesuis and a strain of

Enteritidis that harboured a 90 kb plasmid, the lack of such genes in the plasmids

of Abortusovis, Blegdam, Gallinarum and Dublin and weak hybridization with a

strain of Enteritidis that harboured a the SAP. The p e f  region as sequenced by

Friedrich et al (1993) was shown to contain the 4.1 kb Pstl fragment and a 3.2 kb

Smal fragment (this study). The plasmid of Typhimurium was the only SAP to

have a 4.1 kb Pstl fragment. The fact that the p e f A  gene probe hybridized weakly

with the Enteritidis SAP suggested that at least part of this gene was present. This

is corroborated -  at least in theory -  by the REFP data which showed that Pstl

fragments of 3.1 and 2.1 kb, present in the Typhimurium pe/reg ion  were also

present in the plasmid of Enteritidis; similarly 3.2 and 2.5 kb Smcd fragments were

present in both plasmids. The identification of Pstl and Smal restriction sites on the 
.Typhimurium plasmid revealed that the 2.1 kb Pstl was contained within the 2.5 kb 

Smal fragment. The fact that a fragment of 2.1 kb was only evident in plasmids of 

serotypes Typhimurium, Enteritidis and Bovismorbificans yet a 2.5 kb Smal 

fragment was identified in all serotype-associated plasmids suggests that either 

these fragments are of the same size coincidentally or molecular rearrangement 

within the 2.5 kb fragment has occured such that the Pstl recognition site was 

disrupted.

The implication of plasmid evolution from a common ancestor was 

confirmed. Given that the Smal REFP of Typhimurium revealed the presence of a 

fragment of 7.4 kb which was not present in the plasmids of Enteritidis or pOG690
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(the suggested plasmid intermediate between those of Typhimurium and Enteritidis 

-  Rankin, Benson and Platt 1995) it is more likely that these plasmids arose from 

Typhimurium by deletion of DNA; in order for these plasmids to have arisen by 

DNA acquisition, the event would have had to happen twice; once to generate 

pOG690 and again to generate pOG660. Similar arguements can be presented for 

the presence or absence of fragments. However the only satisfactory answer to the 

development of these plasmids will result from the further investigation either by 

direct sequence analysis or the use of probes.

A possible framework for the evolution of the serotype associated plasmids 

of the salmonellae is given in Figure 7.1.

Overall conclusions

The analyses presented here confirm a family of related plasmids within the 

salmonellae. Molecular variation within the SAP’s of host adapted serotypes 

appears to occur at a higher frequency than in ubiquitous serotypes. Whether this is 

a function of host envhonment e.g temperature, nutrient status remains to be seen. 

The serotype associated plasmid of Salmonella Dublin belongs to a separate 

evolutionary lineage than the other SAP’s. An intermediate in the development of 

this plasmid exists which suggests that the incursion of an IncX plasmid has 

occured and the resultant unstable cointegrate plasmid gave rise to the plasmids 

we see today. The spread of infection throughout the world is also evident from 

this study. The spontaneous occurance of the same plasmid variants in both Europe 

and the USA implies the cross boundary transfer of strains. The possibility of an 

identical molecular variant arising in two separate incidents is remote if not 

impossible. One of the unanswered questions about the evolution of the serotype 

associated plasmids of the salmonellae was whether they developedfrom a common 

ancestor by deletion or incursion of DNA. The results presented here argue in 

favour of the former.

The stability and conservation of the serotype associated plasmids of the 

salmonellae suggest that they could be considered as quasi-genomic DNA for the 

study of Salmonella evolution.
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Figure 7,1 Possible framework for the evolution of the serotype associated 
plasmids of the salmonellae
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