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Abstract

Commonly groundwater quality data are modelled using temporally independent spatial

models. However, primarily due to cost constraints, data of this type can be sparse

resulting in some sampling events only recording a few observations. With data of this

nature, spatial models struggle to capture the true underlying state of the groundwater

and building models with such small spatial datasets can result in unreliable predictions.

This highlights the need for spatio-temporal models which ‘borrow strength’ from earlier

sampling events and which allow interpolations of groundwater concentrations between

sampling points.

To compare the relative merits of analysing groundwater quality data using spatial

compared to spatio-temporal statistical models, a comparison study is presented using

data from a hypothetical contaminant plume along with a real life dataset. In this

study, the estimation accuracy of spatial p-spline and Kriging models are compared

with spatio-temporal p-spline models. The results show that spatio-temporal methods

can increase prediction efficiency markedly so that, in comparison with repeated spatial

analysis, spatio-temporal methods can achieve the same level of performance but with

smaller sample sizes.

For the comparison study, in the spatio-temporal p-splines model, differing levels of

variability over space and time were controlled using different numbers of basis func-

tions rather than separate smoothing parameters due to the computational expense of

their optimisation. However, deciding on the number of basis functions for each di-

mension is subjective due to space and time being measured on different scales, and

thus methodology is developed to efficiently tune two smoothing parameters. The pro-

posed methodology exploits lower resolution models to determine starting points for the

optimisation procedure allowing for each parameter to be tuned separately.

Working with spatio-temporal models can, however, pose their own problems. Due

to the sporadic layout of many monitoring well networks, due to built-up urban areas

and transport infrastructure, ballooning can be experienced in the predictions of these

models. ‘Ballooning’ is a term used to describe the event where high or low predictions

are made in regions with little data support. To determine when this has occurred



a measure is developed to highlight when ballooning may be present in the models

predictions. In addition to the measure, to try to eliminate ballooning from happening

in the first place, a penalty based on the idea that the total contaminant mass should not

change significantly over time is proposed. However, the preliminary results presented

here indicate that further work is needed to make this effective.

It is shown that by adopting a spatio-temporal modelling framework a smoother, clearer

and more accurate prediction through time can be achieved, compared to spatial mod-

elling of individual time steps, whilst using fewer samples. This was shown using existing

sampling schemes where the choice of sampling locations was made by someone with

little knowledge or experience in sampling design. Sampling designs on fixed monitoring

well networks are then explored and optimised through the minimisation two objective

functions; the variance of the predicted plume mass (VM) and the integrated prediction

variance (IV). Sampling design optimisations, using spatial and spatio-temporal p-spline

models, are carried out, using a variety of numbers of wells and at various future sam-

pling time points. The effects of well-specific sampling frequency are also investigated

and it is found that both objective functions tend to propose wells for the next sampling

design which have not been sampled recently.

Often, an existing monitoring well network will need to be changed, either by adding

new wells or by down-scaling and removing wells. The decision to add wells to the

network comes at a financial expense, so it is of paramount importance that wells are

added into areas where the gain in knowledge of the region is maximised. The decision

to remove a well from the network is equally important and involves a trade-off between

costs saved and information lost. The design objective functions suggest a well should

be added in an area where the distance to the nearest neighbouring wells is greatest.

Finally, consideration is given to optimal sampling designs when it is assumed the

recorded data has multiplicative error - a common assumption in groundwater quality

data. When modelling with this type of data, the response is normally log transformed

prior to modelling and the predictions are then transformed back onto the original scale

for interpretation. Assuming a log transformed response, the objective functions, ini-

tially presented, can be used if computation of the objective function is also on the log

scale. However, if the desired scale of interpretation of the objective functions is the orig-

inal scale but modelling was performed on the log scale, the resulting objective function



values cannot simply be exponentiated to give an interpretation on the original scale.

Modelling on the log scale while interpreting the objective function on the original scale

can be achieved by adopting a lognormal distribution for the predicted response and

subsequently numerically integrating its variance to compute the IV objective function.

The results indicate that the designs do differ depending on which scale interpretation

of the objective function is to be made. When interpreting on the original scale the

objective function favours sampling from wells where higher values were previously es-

timated. Unfortunately, computation of the VM objective function when assuming a

lognormal distribution has not been achieved so far.
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Chapter 1

Introduction

Spatio-temporal models have become a prevalent theme across many fields with their

application being seen in economics (Holly et al. [2010]), epidemiology (Waller et al.

[1997]), ecology (Malchow et al. [2007]) and environmental studies (Miller et al. [2014]).

They are used to model data collected in space at several time points and are designed

to describe the spatial and temporal correlations which are often present.

Spatio-temporal data arise most commonly in the environmental setting; for exam-

ple, hourly measurements taken at meteorological stations (Environmental Protection

Agency [2018]); or daily measurements of particle matter in the air (Air Quality in Scot-

land [2018]). The observed data can take various forms. Areal data are particularly

common, where a study region is split into non-overlapping areal units and observations

are made at each unit; for example, health boards in Scotland (National Health Service

[2018]). This type of data is most frequently used in epidemiological modelling across a

geographical region; see Shaddick and Zidek [2015]. In addition to areal data, geosta-

tistical data are also very widely used. This is data which can be recorded at infinitely

many locations across the study region. In reality these measurements are taken at

predefined locations, for example groundwater monitoring wells around a refinery or air

quality monitoring stations. Alternatively both types of data can be used collectively,

see Lee et al. [2017].

Several goals can be achieved by making use of a spatio-temporal model. Typically

they are used for prediction; however, they can also be used to track temporal changes

and for design optimisation. Observed spatio-temporal trends can be explained by a

1
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multitude of both Bayesian and frequentist models; two of the most common methods

are Kriging (Gaussian Processes), Krige [1951], and smoothing methods. See Wood

[2006], Cressie and Wikle [2011] and Fahrmeir et al. [2013] for further details. These

models are able to capture the non-linear trends often exhibited in both the spatial and

temporal components of the data and allow for a more flexible representation compared

with standard regression techniques. This thesis will focus primarily on spline-based

models. Application of some of these smoothing methods can be seen in, Lee and Durban

[2011], who use p-spline models in a mixed model framework to investigate ozone over

Europe and similarly, Bowman et al. [2009], who model air pollution across Europe by

utilising an extended additive splines model. O’Donnell et al. [2013] use spatio-temporal

p-splines to model nitrate pollution in the river Tweed, while Ventrucci et al. [2014] use

a spatial parametric function combined with a smooth temporal function for modelling

neuronal activity in the brain.

Modelling spatio-temporal data can be computationally demanding. Very often the data

are made up of observations at many locations across a large study region and at several

time points. With the ability now to store large volumes of data, and to collect data

automatically, the dense nature of the data can pose computational problems when esti-

mating model parameters, such as the smoothing parameter/parameters in a penalised

regression splines model. Almost all parameter estimation methods require the inver-

sion of an appropriate design matrix and as more basis functions are incorporated to

allow for more modelling flexibility with increased amounts of data, the dimensions of

this matrix increase exponentially, resulting in computational times which also increase

exponentially. Several authors have tackled the issue of poor computational speed, in-

cluding Wood [2011], who proposed an efficient restricted maximum likelihood (REML)

method for determining the smoothing parameters in an additive smoothing splines

model. Molinari [2014] made use of eigenvalue decompositions and linear algebra formu-

lations to tune the smoothing parameter efficiently in a p-splines model. Further details

of this method will be given in Section 2.3.2.

In other cases, data are collected by hand, resulting in sparse datasets, usually with

several missing values. This can pose problems of a different nature, with some sampling

times only containing one or two observations.
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Time and space should be treated and modelled differently as they are measured on

different scales that have no association. However, deciding how to treat these two

components is very often a subjective matter. Differing covariance structures can be

adopted for each component if a Kriging-based model is used; see Cressie and Wikle

[2011] for more details. In a spline paradigm, separate smoothing parameters can be

used to penalise the smoothness across each dimension separately. Alternatively, Evers

et al. [2015] suggest scaling the number of basis function for each dimension to reflect

the level of variation believed to be present e.g. if it is assumed that there is less

variation over time compared with space, then the temporal dimension is assigned a

smaller number of basis functions compared with the spatial dimensions. Approaches

for dealing with space and time data will be discussed further in Chapter 4.

1.1 Groundwater

Groundwater is a term used to describe all water stored beneath the surface of the

earth in geological formations known as aquifers, located in the saturated zone below

the water table (Bear [1979]). It is a vital and essential resource which is widely used

to supply water for drinking, industry and agriculture and it makes up around 97% of

all the available freshwater on earth, excluding glaciers and ice caps (Hornberger et al.

[2014]).

In many countries groundwater is the main source of drinking water. With rapid popula-

tion growth, the demand for this is continually increasing (Arnell [1999]), with currently

around 75% of EU inhabitants depending on groundwater for their drinking water (Eu-

ropean Commission [2018]). In addition to its use by the population, it also maintains

wetlands and river flow during periods of drought and is a vital factor in the sustainabil-

ity of their biodiversity and ecology (Scottish Environment Protection Agency [2018]).

1.1.1 Groundwater Pollution

Groundwater quality can be affected by pollutants from many sources. Therefore, sev-

eral countries have legislation in place and protect groundwater from contaminants; for

example, the European Union Water Framework Directive (European Union [2016]).
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Groundwater moves slowly through the subsurface, resulting in pollutants remaining for

long periods of time, sometimes even for decades.

Contamination of groundwater is difficult to avoid and thus, with such a high demand for

the resource, it is of paramount importance that pollution within groundwater is moni-

tored and controlled. Monitoring groundwater is not an easy operation given its ‘hidden’

nature. Locating contamination can be difficult and, once located, it is challenging to

access and assess its implications. This highlights the need for a regular monitoring

schedule to allow for early detection of a pollution incident. A more in-depth discussion

of the different categories of groundwater monitoring along with a discussion of current

methods, is presented at the beginning of Chapter 6.

Some of the more common sources of groundwater pollution are outlined below:

• Natural Sources

Contamination can arise from substances found naturally in soil or rocks such as

iron, manganese and arsenic. Excessive consumption of these chemicals can cause

health problems; see Ng et al. [2003] and Appelo and Postma [2004]. Particles of

decaying organic matter can also pollute the groundwater.

• Septic Systems and Landfill sites

Effluent from septic tanks and sewage works are one of the main causes of ground-

water contamination. Incorrectly installed waste water disposal systems in homes

and businesses can leak bacteria and household chemicals into the groundwater

(Groundwater Foundation [2018]).

Chemicals can leach from landfill sites into the ground and subsequently the

groundwater. New landfill sites are required to be lined with a synthetic or clay

material to prevent these hazardous chemicals filtering into the groundwater; for

the EU regulations, see European Union [1999]. However, if this layer is damaged

the chemicals are able to enter the groundwater. Similarly, old landfill sites may

still emit chemicals.

• Agriculture

Groundwater can become contaminated as a result of many agricultural practices.

Often pesticides or fertilizers sprayed on the crops can seep into the soil and
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eventually reach the groundwater. The most common pollutant is nitrate, a by

product from nitrogen-rich fertilizers and animal waste (Singh and Sekhon [1979]).

If concentrations of nitrate rise too high this can pose a risk to human health.

• Releases and spills from petroleum products

Underground and above-ground storage tanks are often used for petroleum prod-

ucts; for example, oil or gas tanks for central heating or fuel tanks at petrol

stations. As tanks age they can be subject to corrosion which in turn can result

in leaks into the groundwater. Most of these petroleum based chemicals do not

dissolve and disperse into the water but instead travel in a cloud formation. Ben-

zene, toluene, ethylbenzene, and total xylenes (BTEX), which come from gasoline

refining, and methyltert-butyl-ether (MTBE), which is a fuel additive, are common

contaminants in urban areas. These contaminants are collectively called NAPLs

(Non-aqueous phase liquids) (Mackay and Cherry [1989]).

Contamination by petroleum based chemicals will be the main focus of this thesis.

1.2 Thesis Overview

The primary aim of this thesis is to develop methodology for determining optimal sam-

pling designs for groundwater quality monitoring. These optimal designs will look to

reduce sample sizes and subsequently costs by utilising spatio-temporal models in pref-

erence to the more commonly used spatial models.

In preparation for this aim, Chapter 3 will assess the benefits of using a spatio-temporal

model over a spatial model for prediction, through a comparative study of current mod-

elling methods described in Chapter 2.

Chapter 4 will then adapt the spatio-temporal p-splines model by Molinari [2014] to

allow for more flexibility in choosing the degree of smoothness in the spatial and temporal

components. This will be done by incorporating an additional smoothing parameter for

the temporal dimension. Adding this extra flexibility comes at a computational expense,

thus an algorithm for determining the optimal combination of smoothing parameters is

also presented.
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Due to the nature of the monitoring well networks and erratic sampling frequencies, a

phenomenon known as ‘ballooning’ can be seen in the predictions of the one and two

smoothing parameter spatio-temporal p-spline models. A simulation study is conducted

in Chapter 5 with the aim of determining which components of the model specification

account for this. A measure for detecting when ballooning might be present is also

introduced along with a ‘Conservation of Mass’ penalty which aims to penalise sudden

changes in the contaminant plume mass over time.

Chapter 6 uses spatial Kriging and spatial and spatio-temporal p-spline models to op-

timise sampling designs based on minimising two objective functions, namely, the Vari-

ance of the Plume Mass (VM) and the Integrated Prediction Variance (IV). Properties

of designs resulting from these objective functions are investigated.

Finally, Chapter 7 adapts the objective functions for data with multiplicative error

since this is what is commonly appropriate for groundwater quality data. The resulting

designs are compared to the designs from Chapter 6 to determine key differences.



Chapter 2

Current Nonparametric

Modelling Techniques

Environmental data, such as measurements of contamination in groundwater, exhibit

many complex features which make classical parametric methods such as linear regres-

sion inappropriate. Thus, environmental data are often analysed through nonparametric

modelling methods. Utilising these approaches allows the assumption of linearity to be

relaxed and more flexible smooth functions to be fitted instead.

Given a set of observed data containing response yi and a single covariate xi; i ∈

{1, · · · , n}, a nonparametric model can be denoted as

yi = m(xi) + εi, (2.1)

where εi ∼ N(0, σ2) are the independent error terms and m(xi) is a nonparametric

regression function of the covariate which can be estimated by some smooth function,

m̂(xi). In the following sections, a brief overview will be given of some of the smooth-

ing techniques used to estimate m̂(xi). A more in-depth description of splines is also

included, as this is the primary method used throughout this thesis.

7
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2.1 Kernel Smoothing Methods

2.1.1 Kernel Density Estimation

Kernel density estimation allows the detailed shape of the underlying density function

of a set of data to be estimated. Given observed data, x = (x1, x2, · · · , xn), the density

function can be estimated by:

m̂(x) =
1

n

n∑
i=1

w(x− xi;λ),

=
1

n

n∑
i=1

1

λ
K

(
x− xi
λ

)
,

(2.2)

where K() is known as a kernel function, with each observation having a kernel function

centred around it. Kernels are symmetric, non-negative functions which assign weights

to the neighbouring observations. As the distance to the neighbouring observation in-

creases, the weight assigned decreases monotonically. The bandwidth or the smoothing

parameter, λ, defines the size of the ‘window’ surrounding each observation. As λ in-

creases the density becomes more smooth. Some common kernel functions are detailed

below:

• Uniform/Rectangular

K(u) =
1

2
I{|u| ≤ 1}

• Triangular

K(u) = (1− |u|)I{|u| ≤ 1}

• Epanechnikov

K(u) =
3

4
(1− u2)I{|u| ≤ 1}

• Tricube

K(u) = (1− |u|3)3I{|u| ≤ 1}

• Gaussian

K(u) =
1

2π
exp

(
−1

2
u2

)
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where I is an indicator function, taking the value 1 when xi falls within the window, of

width 2λ, around the observation, and 0 otherwise. Figure 2.1 illustrates the shape of

each of these kernels.

0.0

0.1

0.2

0.3

0.4

0.5

−5.0 −2.5 0.0 2.5 5.0
x

K
(x

)

Kernel

Uniform

Triangular

Epanechnikov

Tricube

Gaussian

Figure 2.1: Some commonly used kernel functions

2.1.2 Local Linear Regression

Local linear regression utilises the weights produced by a kernel function to fit regression

models locally to a set of data. Given a set of observed data containing responses yi

and a single covariate xi; i ∈ {1, · · · , n}, local linear regression solves a weighted least

squares problem at each xi:

min
α,β

n∑
i=1

{yi − α− β(xi − x)}2w(x− xi;λ). (2.3)

The estimated value at x, m̂(x), is then taken as α̂. As in the case of kernel density

estimation, λ acts as a smoothing parameter and controls the smoothness of the function.

As λ increases, the width of the kernel increases and thus the smoother the estimated

function becomes. The kernel also ensures that observations close to xi are given the

most weight in determining the estimate. For a more detailed discussion see Bowman

and Azzalini [1997].
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2.2 Regression Splines

Regression splines are another common nonparametric regression approach which allow

the relationships between a response and covariates to be described in a flexible manner.

Regression splines are constructed by joining a set of known functions at points called

knots, often these functions are referred to as basis functions.

The estimate of the nonparametric function, m̂(xi), is a function of the form
m∑
j=1

αjBj(xi),

Bj ; j ∈ {1, · · · ,m} are the basis functions constructed over knots, κ = (κ1, · · · , κq) and

αj are the corresponding basis coefficients. For a polynomial spline of degree p, the

number of basis functions is m = (p + q − 1). The model can be expressed in vector

matrix form:

y = B(x)α+ e, (2.4)

where B = B(x) is an (n×m) basis matrix with each column corresponding to a basis

function, α is an (m × 1) vector of basis coefficients and x is the covariate vector.

This matrix and vector are treated in the same way as the design matrix and vector

of coefficients from a linear model, respectively. To obtain the estimates for the basis

coefficients and hence the estimated fitted values, the least squares function (LS) shown

in Equation 2.5 is minimised,

LS(α) =
n∑
i=1

yi −
m∑
j=1

αjBj(xi)︸ ︷︷ ︸
m̂(xi)


2

. (2.5)

Alternatively this can be written in vector-matrix notation as:

LS(α) = (y −Bα)> (y −Bα) . (2.6)

Consequently, by minimising the expression in Equation 2.6 with respect to α, the vector

of basis coefficient estimates, α̂, is computed as:
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α̂ = (B>B)−1B>y (2.7)

Several decisions have to be made when modelling with regression splines, one of which

is choosing an appropriate number and location of the knots. The choice is difficult, but

crucial, as the knots can dramatically change the shape of the function. The decision

involves a bias-variance trade off. A large number of knots will produce a rougher model

which tracks the data closely. This model will have a low bias, but the variance of this

model is likely to be high. On the other hand, a model with a small number of knots

will have a low variance but is likely to have a high bias. This model will be smoother

than the model with a large number of knots.

There are also many options for the locations at which the knots are placed. The simplest

and most routinely used method is to have equally spaced knots, but an alternative is to

position the knots according to quantiles of the covariates or, ‘by eye’ i.e. subjectively.

To resolve these issues, a model selection criterion can be adopted and several models

can be compared. A further approach which is also commonly used is to introduce a

penalty term on the basis coefficients to control the smoothness of the function and

prevent over-fitting. This penalty approach is known as penalised regression splines and

is discussed in more detail in Section 2.2.3.

There are several different types of basis functions that can be used, including; poly-

nomial splines, natural cubic splines, truncated power basis, thin-plate splines and B-

splines. The later are described in Section 2.2.1. For further information on the other

types of spline bases see Fahrmeir et al. [2013] and Wood [2006].

2.2.1 B-splines

B-splines are a set of basis functions which are commonly chosen as an alternative to

the truncated power basis. They are preferred as they are more stable numerically; see

Fahrmeir et al. [2013]. The main advantage of B-splines is that they are a local basis

i.e. they are only non-zero over a small range of the data, making them computationally

efficient. For a given B-spline basis function of degree p and set of knots κ = (κ1, · · · , κq),

the following properties hold:
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• A B-spline basis function of degree p is made up of p + 1 polynomial pieces of

degree p. This is depicted in Figure 2.2, where a B-spline of degree 3 is seen to be

made up of 4 polynomial pieces of degree 3.

• Each basis function is non-zero over a range of p + 2 adjacent knots.

• At any point within the range of the data, p + 1 basis functions are non-zero.

• Every basis function overlaps with 2p other bases.

• A further 2p knots are required outside of the domain [a, b].

• For every point x ∈ [a, b]:
m∑
j=1

Bj(x) = 1

0.0

0.2

0.4

0.6

0.0 0.2 0.4
x

B
(x

)

Figure 2.2: A B-spline basis function of degree 3 made up of 4 polynomial pieces of
degree 3.

B-splines can be defined recursively as:
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• Given a set of q knots the B-spline basis of degree 0 is given by the functions(
B0

1(x), · · · , B0
q−1(x)

)
with

B0
j (x) =

 1 κj ≤ x ≤ κj+1

0 otherwise.
(2.8)

• Given a set of q knots the B-spline basis of degree p > 0 is given by the functions(
Bp

1(x), · · · , Bp
p+q−1(x)

)
with

Bp
j (x) =

x− κj−p
κj − κj−p

Bp−1
j−1 (x) +

κj+1 − x
κj+1 − κj+1−p

Bp−1
j (x). (2.9)

Thus the resulting matrix B = B(x) is:

B =



Bp
1(x1) · · · · · · Bp

m(x1)
...

. . .
. . .

...
...

. . .
. . .

...
...

. . .
. . .

...

Bp
1(xn) · · · · · · Bp

m(xn)


From this matrix it is apparent that there is no intercept term for a B-splines model.

However, the intercept is implicitly contained in the span of the basis; see Fahrmeir

et al. [2013]. As B-splines are a local basis, the matrix B is made up of mainly 0’s.

Figure 2.3 illustrates B-spline basis functions in one dimension, before they are scaled by

the basis coefficients. As shown in this plot, the basis functions are all the same shape,

they are simply shifted along the x-axis. The distance between each function depends on

the distance at which the knots are placed. In Figure 2.3 equally spaced knots are used,

and it is clear from the plot that as the number of knots increases the basis functions

would become closer together.
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Figure 2.3: Unscaled B-spline basis functions of degree 1, 2 and 3 respectively.
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Derivative of a B-spline

The construction of B-splines from polynomial pieces makes their derivatives simple to

compute. It can be shown that the first derivative of a B-spline of degree p is:

∂

∂x
Bp
j (x) =

p

κj − κj−p
Bp−1
j−1 (x) +

p

κj+1 − κj+1−p
Bp−1
j (x). (2.10)

When the case of equally-spaced knots is considered Equation 2.10 can be simplified to:

∂

∂x
Bp
j (x) =

1

δ
Bp−1
j−1 (x) +

1

δ
Bp−1
j (x). (2.11)

Where δ = κj −κj−1. The derivative of the non-parametric regression function, f(x), is

then given as:

∂

∂x
m(x) =

m−1∑
j=1

Bp−1
j (x)

αj+1 − αj
δ

. (2.12)

In vector-matrix form Equation 2.12 becomes:

∂

∂x
m(x) =

1

δ
Bp−1D1α, (2.13)

where Bp−1 is a matrix of basis functions of degree p−1 and D1 is a 1st order difference

matrix. Similarly, the rth derivative can be defined as:

∂r

∂xr
m(x) =

1

δr
Bp−rDrα. (2.14)

2.2.2 Tensor Product Regression Splines for Multi-Dimensional Data

Generalising regression splines to data of a higher dimension, i.e. models with more than

one covariate, is relatively straightforward. To extend the approach to 2-dimensions,

with data indexed over spatial coordinates (x1i, x2i), m(x1i, x2i) can then be estimated

as:
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m̂(x1i, x2i) =
∑
j

∑
k

αjkBjk(x1i, x2i) =
∑
j

∑
k

αjkBj(x1i)Bk(x2i) (2.15)

where m(x1i, x2i) is a non-parametric regression function of the spatial coordinates x1i

and x2i, αjk are the basis coefficients, and the basis functions, Bj and Bk, are for the

easting and northing components respectively. The basis functions can be constructed

efficiently using row-wise Kronecker products of the marginal B-spline bases; Lee and

Durban [2011]. Figure 2.4 illustrates the construction of the unscaled tensor product

B-splines.

Figure 2.4: Unscaled tensor product B-spline basis functions of degree 3

The matrix of basis functions B, is of dimension n × (m1,m2), where m1 and m2 are

the numbers of basis functions for each component.
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To extend this approach to a 3rd dimension an additional basis function, Bl, is added

to Equation 2.15 for the temporal component, as detailed in Equation 2.16. Again,

the basis functions are constructed using row-wise Kronecker products of the marginal

B-spline bases:

m̂(x1i, x2i, ti) =
∑
j

∑
k

∑
l

αjklBjkl(x1i, x2i, ti),

=
∑
j

∑
k

∑
l

αjklBj(x1i)Bk(x2i)Bl(ti).
(2.16)

Similarly, the matrix of basis functions, B, is of dimension n×(m1,m2,m3), where again

m1, m2 and m3 are the numbers of basis functions for each component. For simplicity,

each dimension can be given an equal number of basis functions, but, we will see later

that it can be useful for each dimension to have a different number of basis functions.

2.2.3 Penalised Regression Splines

To overcome the issue of choosing an appropriate number of knots a penalty term which

prevents over-fitting can be introduced. The main advantage of this penalised approach

is that the smoothness of the function is no longer dependent on the number of knots, but

rather on a single smoothing parameter. The method involves minimising the penalised

least squares criterion (PLS), shown in Equation 2.17 in the same way as the least

square criterion is minimised in Equation 2.5. To fit a spline model with a penalty

term a reasonably large number of equidistant knots is commonly chosen (∼20 - 40) and

Equation 2.17 is minimised with respect to α, the basis coefficients.

PLS(α) =

n∑
i=1

yi − m∑
j=1

αjBj(xi)

2

+ λPEN (2.17)

where λ, the smoothing parameter, is a non-negative value which penalises the overall

smoothness of the function. When λ = 0 there is no penalty attached and the function

has the ability to interpolate the data. As λ → ∞ the function becomes increasingly

smooth.
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Determining the most appropriate smoothing parameter is imperative. Section 2.2.7

outlines several criteria that can be used to determine the optimal smoothing parameter.

A common choice of penalty, shown in Equation 2.18, is the integral of the squared

second derivative of the non-parametric function. The second derivative is deemed a

suitable choice of penalty as it is a measure of curvature.

The penalty term can be denoted as

λ

∫
x
m′′(x)2dx = λ

∫
x

 m∑
j=1

αjB
′′
j (x)

2

dx

= λ

∫
x

 m∑
j=1

m∑
k=1

αjαkB
′′
j (x)B′′k(x)

 dx

= λα>Kα,

(2.18)

where K[j, k] =
∫
xB
′′
j (x)B′′k(x)dx. The quadratic form nature of the penalty allows for

easier computation. The PLS can then be written in vector-matrix notation as shown

in Equation 2.19.

PLS(α) = ||y −Bα||2 + λα>Kα. (2.19)

The expression for α which minimises the PLS criterion is:

α̂ = (B>B + λK)−1B>y. (2.20)

The covariance matrix of the PLS estimates, conditional on the observed data, is for-

mulated as:

Cα̂|y = cov(α̂) = σ2(B>B + λK)−1B>B(B>B + λK)−1. (2.21)

From Equation 2.21 it is apparent that the PLS estimates are not unbiased. However, in

comparison with the un-penalised LS estimates, the PLS estimates have lower variance,

Fahrmeir et al. [2013].
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Finally, the fitted values can be obtained:

ŷ = Bα̂ = B(B>B + λK)−1B>y = Sy. (2.22)

Here S = B(B>B + λK)−1B> is known as the smoothing matrix (see Fahrmeir et al.

[2013]) whose trace, tr(S), is defined as the effective degrees of freedom (e.d.f) and can be

interpreted as the equivalent number of parameters in the model, giving an estimation of

the model’s complexity. An estimate of the variance of the fitted values is then obtained

through Equation 2.23. This formulation exploits the fact that S is a symmetric matrix.

var(ŷ) = var(Sy) = Sσ2InS
> = σ2SS>. (2.23)

2.2.4 P-splines

An alternative approach is to use p-splines, proposed by Eilers and Marx [1996], which

adds a penalisation term based on order differences between adjacent coefficients in the

bases of the B-splines. For p-splines with order one differences, the penalty term is

λ||D1α||2 = λ

q+p−2∑
j=1

(αj+1 − αj)2. (2.24)

Thus, the penalty in vector-matrix form can be denoted as:

λα>D>d Dd︸ ︷︷ ︸
K

α, (2.25)

where Dd is a dth order difference matrix. Note, by denoting K = D>d Dd, the penalty

term is of the same form as that given in Equation 2.19 and hence the same equations

can be used to obtain the basis coefficient estimates and the fitted values.

Commonly 1st or 2nd order differences are used; for example a second order penalty is

computed as:
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D2 =


1 −2 1 0 0 · · ·

...

0 1 −2 1 0
. . .

...

0 0 1 −2 1
. . .

...
...

...
...

...
...

...
...


The difference penalty is used as it is a good discrete approximation to the integrated

square of the dth derivative, see Eilers and Marx [1996].

Figure 2.5 demonstrates the difference penalty in action. The panel on the left shows

the result of fitting a regression spline with a B-spline basis. Here the curve is clearly

over-fitted. In contrast, the panel on the right shows the same basis but for a penalised

regression spline fit with a first order difference penalty. Adding the penalty with a

suitable penalisation parameter forces the curve to be smooth.
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Figure 2.5: Predicted curves using a splines model without (left) and with (right) a
penalty term

2.2.5 Tensor Product Penalised Regression Splines

The penalties described above can be easily adapted for multidimensional data, building

on their spline bases detailed in Section 2.2.2. Separate smoothing parameters can be
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used for each dimension; alternatively one global smoothing parameter can also be used.

Given data which are indexed over two spatial dimensions, i.e. (x1i, x2i), from Equation

2.15 the non-parametric function m(x1i, x2i) can be estimated as:

m̂(x1i, x2i) =
∑
j

∑
k

αjkBj(x1i)Bk(x2i).

The penalised least squares criterion, defined in Equation 2.17 for one dimension, can

be written for two dimensions as:

PLS(α) =

n∑
i=1

yi −∑
j

∑
k

αjkBj(x1i)Bk(x2i)

2

+ λPEN. (2.26)

As shown by Wood [2006], the corresponding integrated squared second derivative

penalty can be computed as:

λPEN = λ

∫
x1

∫
x2

[(
∂2f

∂x2
1

)2

+

(
∂2f

∂x2
2

)2
]
dx1dx2

= λ

∫
x1

∫
x2

∑
j

∑
k

αjkB
′′
j (x1)Bk(x2)

2

+

∑
j

∑
k

αjkBj(x1)B′′k(x2)

2

dx1dx2

= λ
∑
jk

∑
lm

αjkαlm

(∫
x1

B′′j (x1)B′′l (x1)dx1

∫
x2

Bk(x2)Bm(x2)dx2

+

∫
x1

Bj(x1)Bl(x1)dx1

∫
x2

B′′k(x2)B′′m(x2)dx2

)
= λα>Kα

where

K = (Ã1 ⊗A2) + (A1 ⊗ Ã2)

and
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A1[j, l] =

∫
x1

Bj(x1)Bl(x1)dx1, A2[k,m] =

∫
x2

Bk(x2)Bm(x2)dx2, (2.27)

Ã1[j, l] =

∫
x1

B′′j (x1)B′′l (x1)dx1, Ã2[k,m] =

∫
x2

B′′k(x2)B′′m(x2)dx2. (2.28)

The penalty term for data indexed over three variables, i.e. space and time, can be

denoted similarly, with matrix K taking the form

K = (Ã1 ⊗A2 ⊗A3) + (A1 ⊗ Ã2 ⊗A3) + (A1 ⊗A2 ⊗ Ã3),

where the matrices A1, Ã1, A2 and Ã2 have the same entries as in Equations 2.27 and

2.28, and the matrices A3 and Ã3, i.e. those for the temporal dimension, take the form

A3[l, o] =

∫
t
Bl(t)Bo(t)dt, Ã3[l, o] =

∫
t
B′′l (t)B′′o (t)dt. (2.29)

2.2.6 Tensor Product P-splines

The first order difference penalty for data indexed over two variables is computed by

summing over all of the squared row-wise and column-wise differences i.e.

∑
j

∑
k

(α(j+1)k − αjk)2 +
∑
j

∑
k

(αj(k+1) − αjk)2. (2.30)

In terms of matrices, this can be written as:

α>[(D>(1)D(1) ⊗ I2) + (I1 ⊗D>(2)D(2))]α (2.31)

where D>(i)D(i) is the cross product of the matrix of differences for each of the indexing

variables and Ii are identity matrices of dimension equal to the number of basis functions

for each subscripted variables.
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To obtain the difference penalty for data indexed over 3 variables i.e. spatio-temporal

data, the penalty is similar with the addition of another matrix of differences for the

third dimension i.e.

α>[(D>(1)D(1) ⊗ I2 ⊗ I3) + (I1 ⊗D>(2)D(2) ⊗ I3) + (I1 ⊗ I2 ⊗D>(3)D(3))]α (2.32)

The matrices 2.31 and 2.32 are then multiplied by the smoothing parameter, λ, to give

the model penalty term. Alternatively, separate smoothing parameters can be used to

apply different levels of smoothness to each dimension, we will see later that this can be

useful.

2.2.7 Choosing the Smoothing Parameter

Choosing the optimal smoothing parameter, λ, can be tackled through an optimality

criterion. Several commonly used criterion for determining the optimal value of λ are

outlined below. Here n is the number of observations, p is the number of parameters,

RSS =
∑n

i=1 (yi − ŷi)2 is the residual sum of squares and L is the value of the likelihood

function for the fitted model.

• Akaike’s Information Criterion (AIC) (see Akaike [1973])

AIC = 2n− 2 log(L) (2.33)

A ‘corrected’ version of this criterion (AICc) was later proposed by Sugiura [1978]:

AICc = AIC +
2n(p+ 1)

n− p− 1
. (2.34)

• Bayesian Information Criterion (BIC)(see Schwarz [1978])

BIC = −2 log(L) + p log(n). (2.35)

BIC generally imposes a stronger penalty on the number of parameters than AIC

resulting in BIC preferring less complex models compared with AIC.
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• Cross-Validation (CV) involves leaving out each data point in turn, building a

model with the remaining data then using this model to predict the value for the

omitted observation. The CV score is computed as:

CV =
1

n

∑
i

(
yi − ŷ−i

)2
, (2.36)

where ŷ−i is the predicted value for the ith observation using a model that was

built without the ith observation; yi is the observed value at this location and n

is the number of observations. Computing the CV score can be time-consuming

when large datasets are involved as it requires n models to be built for each value

of of the smoothing parameter being assessed. To improve computational time

and effort, the observations can be divided into k groups (folds) and each group

of observations is left out in turn, the CV score is then computed in the same way

but is averaged over k rather than n.

• Generalised Cross Validation (GCV)

GCV =
nRSS

(n− tr(S))2 (2.37)

GCV provides a more computationally efficient version of CV. Rather than n

computations of the criterion for each value of λ as required by CV, GCV only

requires one computation of the criterion for each value of λ.

See Wood [2006] for further details.

Alternatively a Bayesian approach can be adopted as described by Evers et al. [2015],

where λ is chosen as the value that maximises the posterior density. This is known as

the MAP (maximum a posteriori) estimate. This approach to choosing λ is described

further in Section 2.3.2.
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2.3 Bayesian P-splines

2.3.1 Bayesian Regression

In the classical regression model:

y = Xβ + ε, (2.38)

where X is an n × m matrix of explanatory variables with corresponding unknown

model parameters β = (β1, · · · , βm); y is an n × 1 vector of the response variable

and ε ∼ Nn(0, σ2In) is an n × 1 vector of observation errors which are assumed to be

independent with constant variance, σ2. Thus:

Y|β, σ2 ∼ Nn(Xβ, σ2In). (2.39)

Bayesian regression treats the unknown model parameters (β, σ2) as random variables

allowing for them to be described by a probability distribution, fβ,σ2 . A common choice

of prior distribution for these parameter variables is the Normal-Inverse-Gamma distri-

bution

fβ,σ2 ∼ NIG(µβ,Vβ, a, b), (2.40)

which is equivalent to the product between a normal prior on β ∼ N (µβ, σ
2Vβ) and an

inverse gamma prior on σ2 ∼ IG(a, b) where a, b > 0. This is a common choice because

it is conjugate.

Bayes’ theorem then enables the joint posterior distribution of (β, σ2), conditional on

the observed explanatory variables X, and response variable Y = y, to be expressed as:

fβ,σ2|X,Y =
fY|X,β,σ2fβ,σ2

fY
. (2.41)

This formulation allows (β, σ2) to be updated by the observed data through the prior

distribution of the model parameters, fβ,σ2 , which reflects initial beliefs about the model
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parameters, the likelihood function of the data, fY|β,σ2 , and the marginal distribution

of the data, fY =
∫
fβ,σ2fY|β,σ2 dβdσ2.

2.3.2 Derivation of the Posterior Density of the Smoothing Parameter

for a P-splines Model

Outlined in this section is the derivation of the posterior density of the smoothing pa-

rameter, λ proposed by Molinari [2014] for a p-splines model. The maximum a posteriori

value of the derived distribution of λ is subsequently used to define the optimal smooth-

ing parameter. This model is also used as the basis for the material in Chapter 5 where

a second smoothing parameter is considered.

Model Summary

Building on the model specification detailed in Equation 2.39, the observation model

is assumed as Y|α, σ2,Mλ ∼ Nn(Bα, σ2In) where Mλ is the model for a particular

penalisation parameter term λ; B ∈ Rn×m is a matrix of B-spline basis functions and

α ∈ Rm are the corresponding basis coefficients i.e. for Y = y,

fY|α,σ2,Mλ
=

1

(2πσ2)n/2
exp

{
− 1

2σ2
(y −Bα)>(y −Bα)

}
, (2.42)

with y ∈ Rn.

A normal inverse gamma prior is placed on the parameters α, σ2 ∼ NIG(µ,V(λ), a, b)

i.e.

fα,σ2 =
ba

(2π)m/2Γ(a)|V(λ)|1/2
[σ2]−(a+m/2+1) exp

{
− 1

2σ2
(α− µ)>V(λ)−1(α− µ) + 2b

}
,

(2.43)

with µ ∈ Rm, and a and b both in R+. In this model, µ is set to 0 and the inverse of

the hyperparameter V(λ) is set to V(λ)−1 = λD>D, where D is a dth order difference

matrix. An improper uniform prior is put on the penalty parameter λ, fMλ
.
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However using this formulation of V(λ)−1 results in singularity issues as D>D is not of

full rank and hence is not invertible. To overcome this issue, V(λ)−1 is reformulated as:

V(λ)−1 = λD>D + τIm. (2.44)

The posterior distribution of the model Mλ, fMλ|y is then defined as the expression when

τ → 0. Through derivation, the model parameters joint posterior distribution can be

shown to be:

fα,σ2|Y,Mλ
∼ NIG(µ∗,V∗(λ), a∗, b∗) (2.45)

Where, with µ = 0;

V∗(λ) = (B>B + V−1)−1 = (B>B + λD>D)−1

µ∗ = V∗(B>y + V−1µ) = V∗(B>y)

a∗ = a+
n

2

b∗ = b+
1

2

[
y>y + µ>V−1µ− (µ∗)>(V∗)−1µ∗

]
= b+

1

2

[
y>y − y>BV∗B>y

]
= b+

1

2
y>
[
In −B(B>B + λD>D)−1B>

]
y

(2.46)

The likelihood, fY|Mλ
, is obtain as a by-product in this derivation. By Bayes’ theorem

fMλ|Y ∝ fY|Mλ
fMλ

(2.47)

and so it can be shown that, in general,

fMλ|Y ∝
Γ(a∗)|V∗(λ)|1/2

[b∗]a∗ |V(λ)|1/2
fMλ

. (2.48)

Retaining only the terms that depend on λ and substituting in the expressions for V∗(λ),

µ∗, a∗ and b∗, the posterior distribution for model Mλ is proportional to:
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fMλ|Y ∝ λ
rank(D>D)

2 × Γ(a∗)|B>B + λD>D|−1/2{
b+ 1

2y> [In −B(B>B + λD>D)−1B>] y
}a∗ fMλ

(2.49)

The optimal λ is taken as the MAP estimate of the log posterior distribution.

Improving Computational Efficiency

To evaluate fMλ|Y for each value of λ, the inverse and determinant of the f × f matrix

B>B + λD>D must be computed, with f = m3, where m is the number of one dimen-

sional basis functions being used for each dimension. For l candidate values of λ the

naive approach is of complexity O(l× f3). By utilising linear algebra methodology, the

computational effort can be reduced to a single O(f3) calculation followed by, for each

candidate λ, a O(f) calculation, i.e. O(f3 + f × l), for l candidate values of λ.

To obtain this reduction in computational effort, B>B + λD>D, can be jointly diago-

nalised in a similar way to Eldén [1977] and Wood [2000].

Since ω0 = B>B + D>D is strictly positive definite, the Theorem of Spectral Decom-

position (see Appendix B.1) can be applied to give:

ω0 = B>B + D>D = Γ0∆0Γ0
>, (2.50)

where the orthogonal matrix Γ0 contains the eigenvectors of B>B + D>D, and ∆0

is a diagonal matrix containing the corresponding eigenvalues. Thus we can define

ωB =
(
BΓ0∆

−1/2
0

)> (
BΓ0∆

−1/2
0

)
and similarly apply the aforementioned theorem, to

obtain:

ωB = (BΓ0∆0
−1/2)>(BΓ0∆0

−1/2)

= ∆0
−1/2Γ0

>B>BΓ0∆0
−1/2

= ΓB∆BΓB
>,

(2.51)

where ΓB is orthogonal and ∆B is diagonal. Solving for B>B:
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B>B = Γ0∆0
1/2ΓB︸ ︷︷ ︸

U

∆B ΓB
>∆0

1/2Γ0
>︸ ︷︷ ︸

U>

= U∆BU> (2.52)

Thus, from Equation 2.50 it can be shown that:

B>B + D>D = UU> (2.53)

Consequently

D>D = UU> −U∆BU> (2.54)

and thus, combining Equations 2.51 and 2.54,

B>B + λD>D = U∆BU> + λ(UU> −U∆BU>)

= U [∆B + λ(I−∆B)]︸ ︷︷ ︸
∆λ

U>

= U∆λU
>.

(2.55)

Thus,

(B>B + λD>D)−1 = (U>)−1∆−1
λ U−1

= (U−1)>∆−1
λ U−1.

(2.56)

It can be shown that |U|2 = |∆0|; hence

|B>B + λD>D| = |U|2|∆λ| = |∆0||∆λ|. (2.57)

Letting w = ΓB
>∆0

−1/2Γ0
>B>y, from Equation 2.46, allows fMλ|y to be calculated

for each value of λ without needing to compute α̂ each time.
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b∗(λ) = b+
1

2
y>
[
In −B(B>B + λD>D)−1B>

]
y

= b+
1

2
y>y − 1

2
y>B(B>B + λD>D)−1B>y

= b+
1

2
||y||2 − 1

2
w>∆−1

λ w

(2.58)

Bringing together Equations 2.57 and 2.58 with Equation 2.49, the posterior distribution,

fMλ|Y is obtained

fMλ|Y ∝ λ
rank(D>D)

2 × [Γ(a∗)|∆0|−1/2]|∆λ|−1/2{[
b+ 1

2 ||y||2
]
− 1

2w>∆−1
λ w

}a∗ fMλ
. (2.59)

The posterior distribution of λ in the form shown in Equation 2.59 now only depends on

λ through the inverse and determinant of ∆λ, which are efficient to compute since ∆λ is

diagonal. The expressions in square brackets, along with w, only need to be computed

once since they do not depend on λ.

2.4 Kriging

2.4.1 Geostatistical Processes

The geostatistical approach adopts the idea that the spatially distributed variable of

interest, {Y (s); s ∈ D}, is a realisation from a spatial stochastic process (random field)

indexed over spatial locations s within a fixed continuous study region D ⊂ R2. In

reality, data are observed at a finite subset of locations n and are denoted as y =

(y(s1), · · · y(sn)).

A common model assumes that the joint distribution of these observations is multivariate

Gaussian. The process is then a Gaussian process which is completely defined by its

mean function or first moment, µ(s) = E(y(s)), and its covariance or second moment,

C(s, s′) = cov(y(s), y(s′)).

A Geostatistical process can be described as stationary if the following assumptions are

satisfied; Diggle and Ribeiro [2007]:

1. µy(s) = µ i.e. the mean of the process is constant for all spatial locations s
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2. The covariance function cov(y(s), y(s′)) = CY (h), where h = s− s′ i.e. the covari-

ance only depends on the distance between the observation locations.

Moreover, this process can be described as isotropic if Cy(h) = Cy(||h||) where ||.||

denotes the Euclidean distance, i.e. the covariance does not depend on the direction

between two spatial locations.

2.4.2 Covariance Functions

Covariance functions can be used to model the correlation between observations. There

are parametric families of functions used to define an appropriate class of covariance

functions; Diggle and Ribeiro [2007]. Described below are some of the more commonly

used covariance functions which are known to be positive definite, a necessary condition

of the covariance function.

• Exponential

Cy(h) =

 σ2 + τ2 h = 0

σ2exp(−h/φ) h > 0

• Gaussian

Cy(h) =

 σ2 + τ2 h = 0

σ2exp(−(h/φ)2) h > 0

• Power Exponential

Cy(h) =

 σ2 + τ2 h = 0

σ2exp(−|h/φ|r) h > 0

where 0 < r ≤ 2 i.e. non integers.

• Spherical

Cy(h) =


σ2 + τ2 h = 0

σ2[1− 3
2(h/φ) + 1

2(h/φ)3] 0 < h ≤ φ

0 h > φ

• Matérn

Cy(h) =

 σ2 + τ2 h = 0

σ2 21−κ

Γ(κ) (h/φ)κKκ(h/φ) h > 0
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where, for all functions, h = ||si − sj ||.

In each of these functions, σ2 denotes the ‘partial sill’ parameter which is the limit of

the covariance as the distance tends towards 0; φ denotes the range parameter, which

is the distance between observations at which the covariance is close to 0 and τ2 is the

nugget parameter which quantifies the measurement error or non-spatial variation.

In the Matérn covariance, Kκ() denotes a modified Bessel function of order κ where κ > 0

is a shape parameter. When κ = 0.5, the Matérn function reduces to the exponential

function, while as κ → ∞ the Matérn function approaches the Gaussian covariance

function.

Parameter Estimation using Maximum Likelihood

A geostatistical process can be modelled as:

Y (s) = µy(s) + εy(s) (2.60)

where:

µ̂y = (µ̂y(s1), · · · , µ̂y(sn)) = Xβ (2.61)

and

εy = (εy(s1), · · · , εy(sn)) ∼ N (0,Σ(θ)) (2.62)

where X is a design matrix of the covariates with corresponding coefficients β, θ =

(σ2, τ2, φ) are the covariance parameters and Σ(θ)ij = Cy(||si− sj ||,θ), where Cy() is a

chosen covariance function. Consequently, given geostatistical data y = (y(s1), · · · y(sn)),

the geostatistical model considered is:

y ∼ N (Xβ,Σ(θ)). (2.63)
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Classically, the parameters (β, σ2, τ2, φ) in this model are estimated using maximum

likelihood which involves choosing the parameter values which maximise the log likeli-

hood function of y based on the multivariate Gaussian assumption i.e.

ln(f(y)) ∝ −1

2
ln(|Σ(θ)|)− 1

2
(y −Xβ)>Σ(θ)−1(y −Xβ). (2.64)

Maximisation can be performed by computer optimisation.

2.4.3 Prediction with a Gaussian Spatial Process - Kriging

Kriging was first proposed by Krige [1951] as a method for prediction from a spatial

Gaussian process. The Kriging predictor is based on deriving the Best Linear Unbiased

Predictor (BLUP) for a new spatial location, s0, given current observations y and is

obtained by minimising the mean square prediction error (MSPE):

MSPE = E
[
(y(s0)− ŷ(s0))2

]
(2.65)

It can be shown that ŷ(s0) = E (y(s0)|y(s)) and hence the Conditional Distribution

Property of a Multivariate Gaussian Distribution can be used, see A.1.

Application of the aforementioned property allows the optimal predictor to be derived for

y(s0) given y = (y(s1), ..., y(sn))>. The joint geostatistical process of a new observation

at location s0 and the current observations can be defined as,

 y(s0)

y

 ∼ N
 µy

µy

 ,

 k c>0

c0 K

 . (2.66)

Here

k = Cy(||s0 − s0||;θ)

c0 = (Cy(||s0 − s1||;θ), . . . , Cy(||s0 − sn||;θ))

Kij = Σ(θ)ij = Cy(||si − sj ||;θ) i, j ∈ 1, · · · , n
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where θ = (σ2, φ, τ2) are the covariance model parameters and Cy() is a chosen covari-

ance function (see Section 2.4.2).

It follows that

E[y(s0)|y] = µ̂y + c>0 K−1(y − µ̂y1) (2.67)

and,

Cs0|y = var(y(s0)|y) = k − c>0 K−1c0. (2.68)

Equation 2.67 is the Ordinary Kriging predictor, which assumes µy is constant but

unknown. When µy is non-constant, i.e. includes location specific covariate values, and

is unknown we have the Universal Kriging predictor.

2.4.4 Spatio-temporal Geostatistical Processes

Suppose the data are now collected over space and time i.e. indexed as (si, ti). In this in-

stance, the geostatistical process for spatio-temporal data, y = (y(s1, t1), ..., y(sn, tm))>

is

Y (s) = µy(s, t) + εy(s, t) (2.69)

where

µ̂y = (µ̂y(s1, t1), · · · , µ̂y(sn, tm)) = Xβ (2.70)

and

εy = (εy(s1, t1), · · · , εy(sn, tm)) ∼ N (0,Σ(θ)). (2.71)

The geostatistical model is then of the same form as that for spatial data denoted in

Equation 2.63 and the model parameters can be estimated by maximum likelihood.
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The covariance structures for space and time should be treated differently; Cressie and

Wikle [2011] describe several of these structures in detail. One of the most common

and simple covariance structures assumes that the spatial and temporal covariances are

separable, i.e. they act independently, so that

Cy((s, t), (s
′, t′)) = Cy(t, t

′)Cy(s, s
′). (2.72)

The spatio-temporal process is said to be stationary if both the spatial and temporal

covariances satisfy the stationarity assumptions detailed in the spatial Kriging section

(Section 2.4.1). Under this assumption of stationarity and isotropy, a separable spatio-

temporal covariance function can be denoted as:

Cy(t, t
′)⊗ Cy(s, s′) = Cy(u)⊗ Cy(h) (2.73)

where h = ||s− s′|| and u = ||t− t′||. To compute the separable covariance matrix, the

Kronecker product, ⊗, is used to obtain the covariances between all possible space and

time combinations.

2.4.5 Prediction with a Gaussian Spatio-temporal Process

Assuming a separable covariance structure for the current observations, the joint geosta-

tistical process of a new observation at location s0 and time t0 can be defined similarly

to spatial Kriging in Section 2.4.3, as:

 y(s0, t0)

y

 ∼ N
 µy

µy

 ,

 k c>0

c0 K

 . (2.74)

Here

k = Cy(t0 − t0;θt)⊗ Cy(s0 − s0;θs),

c0 = (Cy(t0 − t1;θt)⊗ Cy(s0 − s1;θs), . . . , Cy(t0 − tm;θt)⊗ Cy(s0 − sn;θs)),

K = Σ(t) ⊗Σ(s),
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where Σ
(s)
ij = Cy(||si − sj ||;θs) is the spatial covariance matrix, θs = (σ2

s , τ
2
s , φs) are

the spatial covariance parameters, Σ
(t)
ij = Cy(||ti − tj ||;θt) is the temporal covariance

matrix, θt = (σ2
t , τ

2
t , φt) are the temporal covariance parameters and Cy() is a covariance

function from Section 2.4.2.

It follows, from the Conditional Distribution Property of a Multivariate Gaussian dis-

tribution, that the Ordinary Kriging Predictor for spatio-temporal data is

E[y(s0, t0)|y] = µ̂y + c>0 K−1(y − µ̂y1) (2.75)

and

Cs0,t0|y = var(y(s0, t0)|y) = k − c>0 K−1c0. (2.76)



Chapter 3

A Comparison of Spatial and

Spatio-temporal Modelling

Methods for Contaminated

Groundwater

Modelling groundwater contamination can be difficult due to the impracticalities and

cost of obtaining samples from every monitoring well at every sampling period. In some

cases only a very small proportion of the wells may be sampled at one time or the

samples can be sporadic with some wells remaining unsampled for long periods of time

due to their proximity to other wells.

The main objective of this study was to compare the predictive performance of spatial

and spatio-temporal modelling techniques, to determine whether the added computa-

tional complexity of constructing spatio-temporal models has any increased benefits on

the resulting predictions compared with spatial models. Spatial models for interpolating

contaminant plumes in groundwater are already widely used e.g. Elumalai et al. [2017],

Reed et al. [2004], Surfer R© 16 from Golden Software, LLC [2018], whereas methods

which also take into account temporal information i.e. spatio-temporal models, are a lot

less common.

37
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3.1 Data Simulation

For this study, groundwater data were simulated from the partial differential equation

(PDE) detailed in Equation 3.1. A slightly modified version of this data was used by

Evers et al. [2015] for a comparison of methods for selecting a smoothing parameter for

a spatio-temporal p-splines model.

∂y

∂t
= D ·

(
∂2y

∂x2
1

+
∂2y

∂x2
2

)
+ ω1(x1, x2)

∂y

∂x1
+ ω2(x1, x2)

∂y

∂x2
(3.1)

where y are the contaminant concentrations, x1 and x2 are the spatial coordinates and

t ∈ [0, 1] denotes time. In the first term, D is a constant controlling how quickly the

solute spreads. This is combined with the sum of the 2nd partial derivatives to give a

term which describes the spread by diffusion of the contaminant in the groundwater. The

remaining two advection terms describe how the contaminant is affected by groundwater

flow, where ω1 and ω2 describe its direction and velocity in each direction respectively.

These functions were chosen based on observed groundwater levels at a current site. An

additional spatial Matérn effect was added to the simulated data.

Observed measurements were generated by interpolating the PDE at sampling locations

obtained from a set of real site locations. The true concentrations (i.e. test data) were

obtained by interpolating the numerical solution to the PDE, computed over a 100 ×

100×100 grid. Once these measurements were generated, well-specific and measurement

noise were added. The initial contaminant plume is shown in the top left panel of Figure

3.1. The remaining three plots show the spread of the plume at subsequent times,

t ∈ {0.25, 0.50, 0.75}.

Two sampling scenarios were created from a network of 29 wells (displayed as points in

Figure 3.1). The first (scenario 1) used the exact design obtained from a current site.

It is often very impractical and not always viable to obtain samples from every well

in the network during each sampling period, therefore the simulated data have several

incomplete sampling periods. For this scenario there were a total of 1400 observations

spread over 167 sampling periods. The second scenario (scenario 2) consisted of every

well being sampled at all 167 sampling periods i.e. 4843 observations. In terms of
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Figure 3.1: True underlying PDE described in Equation 3.1 (PDE1) at times t ∈
{0, 0.25, 0.50, 0.75}

gathering as much information as possible, this scenario is more appealing; however, it

is not practical or cost-effective.

Before the data were used for analysis a log(y+ 1) transform was applied to the concen-

tration values. The +1 was included to account for the simulation occasionally producing

concentration values at, or very close to, 0.

3.2 Results

Spatial and spatio-temporal p-spline models, along with spatial Kriging, were applied to

the data simulated in Section 3.1. When implementing spatial Kriging, exponential and

Matérn (with κ fixed to 2) covariance functions were considered. Kriging was included

in the study as it is one of the most common spatial interpolation methods Li and

Heap [2014]. For spatial and spatio-temporal p-splines a first order difference penalty

was used along with B-spline basis functions of degree three. Two combinations of basis

functions were used for the spatio-temporal model, the first had (14, 8, 3) basis functions

corresponding to the easting, nothing and time components respectively and the second

had (25, 15, 3) basis functions. The temporal component was given a lower number of

basis functions to reflect the fact that in this dataset the contaminant concentrations

vary more over space than they do over time. Computation of the spatio-temporal model

is very time consuming and dependent on the number of basis functions, thus a model
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with fewer basis functions was used to assess the accuracy of the results with a model

that takes less time to compute. As mentioned in Section 2.2.4 there are several ways to

determine the most appropriate smoothing parameter for penalised spline-based models.

In this study the Bayesian MAP estimate was used as described in Section 2.3.2 and by

Evers et al. [2015] for both the spatial and spatio-temporal p-spline models.

To determine the predictive performance of each of the methods, mean square prediction

errors (MSPE) were computed and compared. The MSPE at time t is defined as:

MSPEt =
1

n

∑
j

(
ysjt − ŷsjt

)2
, (3.2)

where ysjt is the true value from the test data at spatial prediction location sj = (x1j , x2j)

and prediction time t, ŷsjt is the fitted value from the model at spatial location sj and

prediction time t, and n is the total number of prediction locations at time t. A low

value of MSPE indicates that the model has predicted well.

For each sampling scenario, predictions were obtained for three time points; time 100

which is located approximately half way through the data, and has samples from 11

wells under scenario 1; time 167 which is the final time for which data are available i.e.

the most recent time point - under scenario 1 this time point had observations from 14

wells; and finally time 100, but only using the data up until this time point - this time

point was included as only 16 of a possible 29 wells had samples taken by this point.

3.2.1 Sampling Scenario 1 - A Realistic Design

Table 3.1 shows the MSPE for predictions at each time point. At all three prediction

times, the spatio-temporal p-spline models perform best, with the model containing

(25, 15, 3) basis functions performing best at time 100 and the model with (14, 8,

3) performing best for time 100 when only prior samples are used and also time 167.

The spatial methods perform less well. At time 100, the two Kriging models perform

similarly with a MSPE of ∼ 1.05 whilst the spatial p-splines performed slightly better

with a MSPE of 0.93. At time 167 the three spatial methods have very similar MSPEs

of ∼ 1.1, which is significantly higher than the spatio-temporal methods with a MSPE

of ∼ 0.4.
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The difference in MSPE for the spatio-temporal and spatial methods is probably caused

by the sampling scheme missing areas of high contaminant concentration due to wells

not being sampled in certain locations. The spatio-temporal methods capture these

areas by exploiting temporal smoothness in the models, so that information from earlier

sampling events aids prediction.

When predicting for time 100 using prior samples only, the spatio-temporal methods do

not have the significant improvement over the spatial methods as was seen for the other

two prediction times. This can be explained by looking at the sampling scheme. By

time 100, only 16 of the 29 available wells had samples recorded and, of these 16 wells,

11 were sampled at time 100. Thus, at this time point, the spatio-temporal models only

have extra information from 5 wells. The location of these additional five wells is around

the perimeter of the study region where there is little to no contamination present and

thus they provide little additional information about where the contaminant cloud is

located.

Table 3.1: Mean Square Prediction Errors (MSPEs) and standard errors (SEs) at the
100th (using prior samples only), 100th (using all samples) and 167th time points under
the realistic sampling scenario (200 simulations). Note: in the spline models the values
in brackets indicate the basis functions for each direction and for Kriging in brackets is

the covariance function used.

Modelling Method Time 100 (Prior) Time 100 Time 167

Spatio-temporal P-splines (25, 15, 3) 0.8281 (0.0095) 0.3526 (0.0089) 0.4878 (0.0075)

Spatio-temporal P-splines (14, 8, 3) 0.7329 (0.0125) 0.4864 (0.0146) 0.3736 (0.0106)

Spatial P-splines 0.9372 (0.0158) 0.9372 (0.0158) 1.0907 (0.0224)

Spatial Kriging (Matern) 1.0471 (0.0257) 1.0471 (0.0257) 1.0594 (0.0231)

Spatial Kriging (Exponential) 1.0798 (0.0216) 1.0798 (0.0216) 1.1294 (0.0365)

From the prediction surfaces for one simulation displayed in Figures 3.3, 3.4 and 3.5 at

all prediction times the models are able to identify the main mass of contamination in

the centre of the study region where most wells are located.

The differences in the prediction surfaces lie around the boundary where at certain

times no wells are sampled. For time 100 (Figure 3.4) the spatial methods are unable

to predict the diffusion of the contaminant cloud into the north region of the plot due

to no wells being sampled in this area at this time point. This is also the case for the
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Figure 3.2: Boxplots of the MSPE for each modelling method at each prediction
time under the realistic sampling scenario (200 simulations). The number after each
spatio-temporal splines model indicates the number of basis functions for the easting

component

spatio-temporal p-spline models when predicting at time 100 using prior samples only

(Figure 3.3) since by this time only 16 of the 29 wells have had samples taken and none

are located in this area. In comparison, when predicting at time 100 using all of the

data, the spatio-temporal p-spline models are able to identify the restricted spread in

the northerly direction by using information from later sampling times. A similar case

is present when predicting at time 167 (Figure 3.5) where again the spatial methods are

unable to predict the diffusion of the contaminant; however, this time it is in a southerly

direction. The spatio-temporal methods have the advantage that earlier observations

at these boundary wells inform the model more accurately of where the contaminant

plume lies. Comparing the predicted surfaces from the two spatio-temporal models, the

improved MSPE for the lower resolution model over the higher resolution model appears

to stem from the higher resolution model tracking the data too closely.
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Figure 3.3: Predicted surfaces, of one simulation, for each method at time 100 us-
ing only samples prior to this time point under the realistic sampling scenario. The
plot in the top left location is the true surface from PDE1. The number after each
spatio-temporal splines model indicates the number of basis functions for the easting

component.
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Figure 3.4: Predicted surfaces, of one simulation, for each method at time 100 using
the entire sampling data under the realistic sampling scenario. The plot in the top left
location is the true surface from PDE1. The number after each spatio-temporal splines

model indicates the number of basis functions for the easting component.
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Figure 3.5: Predicted surfaces, of one simulation, for each method at time 167 (most
recent time point) using the entire sampling data under the realistic sampling scenario.
The plot in the top left location is the true surface from PDE1. The number after each
spatio-temporal splines model indicates the number of basis functions for the easting

component.
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3.2.2 Sampling Scenario 2 - A Full Design

The same modelling methods were then applied to data obtained from a full sampling

design. For this set of data the best performing method for all time points was spatio-

temporal p-splines with (25, 15, 3) basis functions. However, as expected, the improve-

ment in predictive performance of the spatio-temporal methods over the spatial methods

is less significant compared with sampling scenario 1. As in the first scenario, the three

spatial methods had similar results with a MSPE of ∼ 0.50 at time 100 and ∼ 0.6 at time

167. The spatio-temporal p-splines model with (14, 8, 3) basis functions had a higher

MSPE of 1.20 at time 100 and 0.71 at time 167. The boxplots of the simulation results

shown in Figure 3.6 highlight several outliers for the lower resolution spatio-temporal

p-splines model. It is likely that the poor performance of this model is due to an effect

known as ‘ballooning’, where unusually high or low predictions are made in areas with

little data support.

Table 3.2: Mean Square Prediction Errors (MSPEs) and standard errors (SEs) at the
100th (using prior samples only), 100th (using all samples) and 167th time points under
the full sampling scenario (200 simulations) Note: in the spline models the values in
brackets indicate the basis functions for each direction and for Kriging in brackets is

the covariance function used.

Modelling Method Time 100 (Prior) Time 100 Time 167

Spatio-temporal P-splines (25, 15, 3) 0.3001 (0.0067) 0.3071 (0.0065) 0.4827 (0.0070)

Spatio-temporal P-splines (14, 8, 3) 0.6418 (0.0391) 1.2012 (0.0945) 0.7090 (0.0422)

Spatial P-splines 0.5013 (0.0097) 0.5013 (0.0097) 0.6677 (0.0094)

Spatial Kriging (Matern) 0.4610 (0.0137) 0.4610 (0.0137) 0.5931 (0.0153)

Spatial Kriging (Exponential) 0.4881 (0.0120) 0.4881 (0.0120) 0.6358 (0.0139)

The prediction surfaces for a single simulation are displayed in Figures 3.7, 3.8 and 3.9.

In comparison with the realistic sampling scenario, under the full design the spatial

methods predict surfaces which are much more similar to those of the spatio-temporal

methods. This is not surprising given every well is sampled at every time point and so

the amount of additional information brought by a spatio-temporal model is limited.

Looking at the prediction surfaces for the spatio-temporal p-splines model with a lower

number of basis functions (top right panel of each surface plot), ballooning is evident in
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Figure 3.6: Boxplots of the MSPE for each modelling method at each prediction
time under the full sampling scenario (200 simulations). The number after each spatio-
temporal splines model indicates the number of basis functions for the easting compo-

nent

the central region of the plot. Chapter 5 investigates ballooning further and a measure

for its detection is presented.
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Figure 3.7: Predicted surfaces, of one simulation, for each method at time 100 using
only samples prior to this time point under the full sampling scenario. The plot in the
top left location is the true surface from PDE1. The number after each spatio-temporal

splines model indicates the number of basis functions for the easting component.
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Figure 3.8: Predicted surfaces, of one simulation, for each method at time 100 using
the entire sampling data under the realistic sampling scenario. The plot in the top left
location is the true surface from the PDE1. The number after each spatio-temporal

splines model indicates the number of basis functions for the easting component.
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Figure 3.9: Predicted surfaces, of one simulation, for each method at time 167 (most
recent time point) using the entire sampling data under the realistic sampling scenario.
The plot in the top left location is the true surface from the PDE1. The number
after each spatio-temporal splines model indicates the number of basis functions for the

easting component.
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3.2.3 Computational Time

From the results in Section 3.2 it is apparent that using a spatio-temporal model with a

significant number of basis functions improves predictions over a spatial model. However,

as would be expected, the computation times for determining parameters in the spatio-

temporal models are considerably greater than those of the spatial models. Evers et al.

[2015] used several linear algebra methods to significantly improve this computation

time; see Section 2.3.2 for details. However, the time taken for fitting a spatial model

will never be matched. Table 3.3 contains the mean computation times for each of the

spatio-temporal models considered in Section 3.2, separated by each sampling scenario.

For comparison the computation time of the spatial methods is almost instantaneous

(less than 1 second).

Table 3.3: Mean computational time in seconds for each spatio-temporal model used
in Section 3.2. The timings are separated by sampling design, where the first design
contained 1400 samples and the second 4843 samples. The number of basis functions

given are for each dimension i.e. (easting, northing, time).

No. of Basis functions Realistic Design (1400 samples) Full Design (4843 samples)

25, 15, 3 25.81 44.41

14, 8, 3 3.68 4.32

3.3 Reducing the Number of Samples

The primary aim of this study, from an industry perspective, was to determine whether

the quantity of data collected can be reduced, whilst retaining the prediction accuracy,

by predicting the state of the study region using a spatio-temporal model rather than

a spatial model. By reducing the number of samples, the costs associated with data

collection will also reduce. To assess whether this could be achieved, two data removal

techniques were considered and simulations were performed. The first, referred to as ‘ob-

servation removal’, involved starting with a full design i.e. samples were obtained from

every well at every sampling time, then iteratively data from two randomly selected wells

were removed from each sampling event (∼ 5% of data) in a stratified approach. This

corresponds to an engineer collecting two fewer samples at each sampling event. The sec-

ond, referred to as ‘well removal’, again started with a full design and involved iteratively
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removing all data associated with two wells. At each round of data removals models

(spatial splines and spatio-temporal p-splines) were built and subsequently predictions

were made at each sampling time. Given that the interest here is in determining by how

much the quantity of data can be reduced through predicting with a spatio-temporal

model rather than a spatial model, only one of the spatial models (p-splines) was used

for comparison. The mean square prediction error at time t was then calculated for each

model using the formula detailed in Equation 3.2 and these MSPEs were then summed

over all time points and averaged over the simulations to give mean total MSPEs for

each stage of data removal, shown in Equation 3.3:

MSPE =
1

M

M∑
m=1

T∑
t=1

MSPEtm (3.3)

where M is the number of simulations and T is the number of time points for which

predictions were made.

Figure 3.10 shows that as data are removed by the observation removal method, the

performances of the spatial model deteriorates markedly in contrast with a much gentler

rate of decline for the spatio-temporal model. The almost constant total MSPE over all

stages of observation removals for the spatio-temporal model demonstrates the benefit

of the spatio-temporal models ability to ‘borrow strength’ over time.
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Figure 3.10: Mean total MSPEs over all sampling times for 200 simulations using
the ‘observation removal’ method of data removal. Error bars indicate ±1 standard

deviation.

Figure 3.11 shows results from the scenario where wells are removed rather than obser-

vations. This is a more challenging situation for the spatio-temporal model as removing

the data from entire wells removes all knowledge of what is happening in these areas,

and so the spatio-temporal model has no observations from which to ‘borrow strength’

over time. This is reflected in the MSPE results where the spatio-temporal model still

delivers the best performance but the rate of deterioration with well removal, while

slower, is more similar to those of the spatial model.
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Figure 3.11: Mean total MSPEs over all sampling times for 200 simulations using the
‘well removal’ method of data removal. Error bars indicate ±1 standard deviation.

3.4 Real Application

The spatial and spatio-temporal p-spline models were used to analyse a dataset on a

pollution incident at a refinery. MTBE (methyl tertiary butyl ether) is added to petrol

to reduce noxious emissions as well as engine knocking. MTBE is no longer used at

this site but it was in use at the time the data were collected. Due to MTBE having a

high aqueous solubility and low retardation potential, its transit through groundwater

is steady and degrades only under anaerobic conditions.

3.4.1 Results

For each of the p-spline models the degree of basis functions and order of penalty were

kept the same as those in used in the simulation study. However, this time 18 basis
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Table 3.4: Well-based cross validation scores for each prediction time for each spline
model on the real dataset.

Modelling Method
Time

300 700 900 1300

Spatial P-splines 0.4142 2.4630 1.5438 4.1243
Spatio-temporal P-splines 0.8072 1.6380 1.8401 2.0396

functions were used for the easting component, 22 for northing and 14 for time. These

numbers of basis functions were chosen to reflect the spatial aspect ratio of the study

region and they took into account the fact that measurements were taken over a signif-

icantly longer period of time compared with the simulation study. As before, the MAP

estimate of the smoothing parameter was used for both the spatial and spatio-temporal

p-spline models.

Due to the sparsity of the data, each of the chosen times where predictions were made

had only ∼ 10 or fewer observations, many of which were in very close vicinity. This

is a very small number of observations from which to make reliable predictions and so,

for the spatial p-splines model, observations within a 3-week time window were also

included to improve stability.

Figure 3.12 shows the predicted surfaces from spatial and spatio-temporal p-spline mod-

els at 4 time points throughout the data. Table 3.4 shows 10-fold well-based cross-

validation (CV) scores for each model at each prediction time shown in Figure 3.12. The

shape and direction of the predicted contaminant plume is consistent with the south-

east/north-west gradient of the groundwater flow for both p-spline models. Looking at

the first time point, the spatio-temporal p-splines model is able to detect the release of

the contaminant in the south east corner, while this is not the case for the spatial model

due to a lack of samples in this region. Following the location of the leak being iden-

tified, both models are able to track the depletion of the plume. The spatio-temporal

model provides a more definitive plume shape in comparison with the spatial model.

The spatial model performs particularly poorly at time 1300 days. Interpretation of the

plot suggests this is likely to be due to the model over-smoothing.
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Figure 3.12: Predicted surfaces at four time points (300, 703, 899 & 1300 days) for
each spline model on the real dataset. Filled squares indicate wells that were sampled
at the prediction time and their recorded concentration; filled red triangles indicate
observations that fall within the 21 day time window to be used in the spatial model
and grey circles indicate the last recorded concentration at wells which were not sampled

at the prediction time.
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3.5 Summary

In conclusion, the results show that in general there is an added benefit in using a spatio-

temporal model which borrows strength over time as opposed to the currently more

frequently used spatial methods which treat time independently. The prediction surfaces

for varying time points when using an incomplete sampling design (Figures 3.3, 3.4, 3.5)

highlighted the ability of a spatio-temporal model to use earlier sampling information

to improve its predictions. However, Figure 3.3 also illustrated that even the spatio-

temporal model cannot predict what is going on in a region where there are no data

available. The spatio-temporal splines model using (14, 8, 3) basis functions highlighted

an effect known as ballooning in some of its predictions. Studies in Chapter 5 suggest

that increasing the number of basis functions helps to prevent this from happening and

this was also apparent when comparing the MSPEs for the two spatio-temporal models

under sampling scenario 2.

The studies looking into data removal, presented in Section 3.3, clearly demonstrate

the potential cost savings that can be made by reducing the number of samples and

adopting a spatio-temporal model. This study also highlighted that the reduction in

data very much depends on how data are removed. A spatio-temporal model is more

advantageous if observations spread out across the study region are removed rather than

entire sets of observations from specific wells. To achieve the equivalent accuracy with

a spatial model, the network needs to be sampled much more extensively. It is worth

noting however, that the computational effort required in a spatio-temporal model is

significantly greater than that of a spatial model. To avoid ballooning being triggered

in the spatio-temporal model, a large number of basis functions needs to be used and

as the number of basis functions for each component increases, the computational time

also increases exponentially.

There are several other methods that can be used for modelling spatio-temporal data

such as Kriging. Evidence of ballooning has also been witnessed in spatio-temporal

Kriging models when a Matérn covariance structure is used. One benefit to modelling

with a spline-based model over Kriging is that there is no assumption of stationarity

and isotropy.



Chapter 4

Incorporating an Additional

Smoothing Parameter for the

Temporal Component

4.1 Motivation and Model Formulation

Data obtained from several groundwater sites indicated that contaminant concentra-

tions varied more across space than they did over time, highlighting the need for a

model which controls the smoothness over space and time separately. In the case of

a p-splines model smoothness across space and time could be controlled independently

with separate smoothing parameters for each component. The single smoothing param-

eter spatio-temporal p-splines model used in Chapter 3, which was developed by Evers

et al. [2015], utilises efficient linear algebra to obtain the optimal smoothing parame-

ter. Unfortunately however, their method can only be used to efficiently optimise one

smoothing parameter and not the desired two parameters being suggested. To com-

pensate for this restriction, they suggest scaling the number of basis functions in each

component to emulate the ‘wigglyness’ of the function i.e. the time component is given

a smaller number of basis functions to reflect the fact that the contaminant concentra-

tions vary more over space than they do over time. However there is no detailed criteria

on how the numbers of basis functions should be assigned. Given that space and time

are measured on different scales deciding on a suitable set of rules for the number of

58
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basis functions in each dimension is subjective and complex and thus, a model with two

smoothing parameters seems more appropriate.

Tuning a single smoothing parameter is relatively fast when working with one dimen-

sional data, and many steps have been taken to improve the computational speed further

when working with higher dimensioned data. However, as the number of smoothing

parameters being used increases, obtaining the optimal combination requires a compu-

tational efforts which very quickly become unmanageable. The optimisation of multiple

smoothing parameters has been discussed by many authors. To improve computational

speed, Wood [2000] propose a general multiple smoothing parameter selection method

based on minimising the Generalised Cross Validation (GCV) score for Generalised

Additive Models (GAMs). Computing the GCV score many times is very time consum-

ing due to the trace of the smoothing matrix being required in the denominator, see

Equation 2.37. To improve the computational speed, matrix decompositions and trans-

formations are used. This methodology is built on by Wood [2004] who deal with the

numerical instabilities caused by rank deficiency in the original methodology. This new

method provides numerical robustness by allowing for a fixed penalty term i.e. a ridge

penalty. They use pivoted QR or singular value decompositions (SVD) of the smooth-

ing matrix, to improve the computational time of the GCV score. They then went on

to publish a methodology aimed at semiparametric Generalised Linear Models (GLMs)

(Wood [2011]). A restricted maximum likelihood (REML) or maximum likelihood (ML)

method is adopted, with optimisation through a Newton method. This new method

does not suffer from the occasional under-smoothing experienced by GCV and AIC.

Here a method is proposed for tuning two smoothing parameters in a tensor product

p-splines model. This builds on the methodology set out by Evers et al. [2015], detailed

in Section 2.3.2. There is potential to consider a third smoothing parameter to allow for

differing levels of smoothness in the northing and easting components. However, since

each spatial component is measured on the same scale, this can more easily be accounted

for by scaling the numbers of basis functions by the length of the study region in each

direction.
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4.1.1 Formulation

The penalised least squares expression to be minimised for a spatio-temporal p-splines

model with two smoothing parameters can be formulated as:

PLS(α) = (y −Bα)> (y −Bα) + λ(α>PF
1α+α>PF

2α+ λrelα
>PF

3α) (4.1)

with

PF
1 = P1 ⊗ I2 ⊗ I3

PF
2 = I1 ⊗P2 ⊗ I3

PF
3 = I1 ⊗ I2 ⊗P3.

Kronecker products of the difference penalty matrices, P1 = D>s1Ds1 , P2 = D>s2Ds2

and P3 = D>t Dt, and identity matrices, of dimension equivalent to the number of

basis functions in each dimension, create the required penalty structure for the spatio-

temporal data. Here λ is the overall smoothing parameter and λrel is the scaling factor

of λ for the temporal component.

The criterion, adopted by Evers et al. [2015], for determining the optimal single smooth-

ing parameter, λ, can be utilised in the two smoothing parameter model. The posterior

distribution for λ, detailed in Equation 2.49, is adapted for λ and λrel to become

fMλ|y ∝ λ
rank(D>D)

2 × Γ(a∗)|B>B + λP|−1/2|P|1/2

b+ 1
2y> [In −B(B>B + λP)−1B>] y

fMλ
(4.2)

where

P = PF
1 + PF

2 + λrelP
F
3 . (4.3)

Optimising λrel is computationally expensive since it is embedded within the penalty

matrix P. Conversely, the linear algebra methods used in the model proposed by Evers

et al. [2015] allow λ to be optimised efficiently through expressing Equation 4.2 in a
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manner that depends only on λ, through the inverse and the determinant of an inverse

of a diagonal matrix. This formulation is given in detail in Equation 2.59.

This method, aided by a grid search, can be used to obtain the combination of λ and

λrel that maximises the log posterior distribution given in Equation 4.2. Optimisation

this way, for k candidate values of λrel and l candidate values of λ, is of complexity

O(r × (f3 + l× f)). Here f =
∏3
k=1mk where mk is the number of 1-dimensional basis

functions for component k. This is already a reduction on the naive computational

complexity of O(r× l×f3). However, as the number of basis functions in each direction

and the number of candidate values of λrel increases, the increase in computational

expense of optimising both smoothing parameters is cubic. This is highlighted in Figure

4.1, which shows the total optimisation time via a grid search for increasing numbers of

basis functions and 30 candidate values of λrel.
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Figure 4.1: Two smoothing parameter grid search optimisation times (in seconds) for
spatio-temporal models with increasing numbers of basis functions for a dataset with

4843 observations. For this plot the number of candidate values of λrel is 30.

To avoid the need for an expensive grid search, where both parameters are tuned to-

gether, a new formulation of the PLS expression (Equation 4.1) can be used to allow

each parameter to be tuned separately using the methodology set out by Evers et al.

[2015], this is detailed later in Section 4.3.2. However, for this to work effectively the

surface being optimised over needs to have contours that are parallel to one of the axes.

This allows the identification of starting points for each parameter that would not result



Chapter 4. Incorporating an Additional Smoothing Parameter 62

in the optimisation getting ‘stuck’ in a contour. The following section seeks to deter-

mine whether the log posterior surface of the two smoothing parameters exhibits the

necessary parallel contours to allow the parameters to be tuned separately. This is done

by performing grid searches on several simulated and real datasets to find the shape of

the log posterior surface. The results of this simulation study are then used to develop

a more efficient optimisation procedure for the two smoothing parameters.

4.2 Study of Simulated and Real Datasets

Grid searches over combinations of λ and λrel were performed on simulated and real life

datasets to determine the shape of the log posterior surfaces and also to try to detect any

trends in the optimal combination of λ and λrel for varying numbers of basis functions.

Three simulated datasets were created based on four normal densities plotted at different

spatial locations with temporal sine curves oscillating each of these densities separately.

Table 4.1 contains the different combinations of standard deviation and frequency that

were used for the densities and sine waves respectively. Figure 4.2 shows the simulated

datasets at one time point.

Table 4.1: Combinations of standard deviations of the four normal densities plotted in
space and the corresponding frequencies of their oscillations over time for the simulated

data.

Simulation Standard Deviation Frequency

1 4, 2, 0.5, 4 0.4, 0.4, 0.4, 0.4

2 4, 4, 4, 4 0.2, 0.4, 0.2, 0.4

3 4, 2, 0.5, 4 0.2, 0.4, 0.2, 0.4
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Figure 4.2: Three simulated datasets made up of varying spatial normal densities
oscillating at different temporal frequencies. The parameters used to simulate these

datasets are shown in Table 4.1

Figures 4.3, 4.4 and 4.5 show the log posterior surfaces for each simulated dataset over

a 80 × 30 grid of values of λ and λrel. In Figures 4.6 and 4.7 the log posterior surfaces

for data simulated from the PDE used in Chapter 3 are shown, whilst Figures 4.8 and

4.9 are the log posterior surfaces for two real datasets obtained from two different sites.

The black arrows track the optimal combination of parameters as the number of basis

functions is increased.
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Figure 4.3: Log posterior surface of the two smoothing parameters for the first simu-
lated dataset using 15 basis functions in each direction over a dense 80 × 30 grid. The
black points and connecting arrows show the evolving maximum log posterior value as

the number of basis functions in each direction increases from 6 - 9 - 12 - 15.
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Figure 4.4: Log posterior surface of the two smoothing parameters for the second
simulated dataset using 15 basis functions in each direction over a dense 80 × 30 grid.
The black points and connecting arrows show the evolving maximum log posterior value

as the number of basis functions in each direction increases from 6 - 9 - 12 - 15.
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Figure 4.5: Log posterior surface of the two smoothing parameters for the third
simulated dataset using 15 basis functions in each direction over a dense 80 × 30 grid.
The black points and connecting line show the evolving maximum log posterior value

as the number of basis functions in each direction increases from 6 - 9 - 12 - 15.
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Figure 4.6: Log posterior surface of the two smoothing parameters for a dataset
simulated from PDE1 with a realistic design, using 24 basis functions in each direction
over a dense 80 × 30 grid. The black points and connecting arrows show the evolving
maximum log posterior value as the number of basis functions in each direction increases

from 9 - 12 - 15 - 18 - 21 - 24.
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Figure 4.7: Log posterior surface of the two smoothing parameters, for a dataset
simulated from PDE1 with a full design, using 24 basis functions in each direction
over a dense 80 × 30 grid. The black points and connecting arrows show the evolving
maximum log posterior value as the number of basis functions in each direction increases

from 9 - 12 - 15 - 18 - 21 - 24.
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Figure 4.8: Log posterior surface of the two smoothing parameters for the first real
dataset using 15 basis functions in each direction over a dense 80 × 30 grid. The black
points and connecting arrows show the evolving maximum log posterior value as the

number of basis functions in each direction increases from 6 - 9 - 12 - 15.
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Figure 4.9: Log posterior surface of the two smoothing parameters for the second
real dataset using 12 basis functions in each direction over a dense 80 × 30 grid. The
black points and connecting arrows show the evolving maximum log posterior value as

the number of basis functions in each direction increases from 6 - 9 - 12.

In order to employ the methodology previously described, using the method of Evers

et al. [2015], each parameter needs to be tuned separately whilst fixing the other. To
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achieve this, the contours of the log posterior surface need to lie parallel to one of the

axes. This makes the optimisation less dependent on the starting point and also helps

to prevent the optimisation becoming ‘stuck’ in a contour. From the figures depicted

above it is apparent that the contours generally do not follow the desired shape and

are instead curved along the main diagonal, making it difficult to tune each parameter

individually.

However, there does appear to be a trend present when looking at the optimal locations

as the number of basis functions increases. With the exception of the second simulated

dataset, as the number of basis functions in each dimension increases the optimal value

of λ changes substantially. On the contrary the optimal value of λrel does not change

as substantially, particularly if the optimum for the model with the lowest number of

basis functions is ignored. Therefore, it is proposed that this trend is exploited to give

starting points for tuning the two smoothing parameters.

4.3 Algorithm for Optimising Two Smoothing Parameters

The study conducted in Section 4.2 highlighted that although λ was different for each

combination of basis functions, λrel did not appear to change as substantially compared

with λ as the number of basis functions in the model increased.

It was therefore proposed that initially a coarse grid search would be performed using a

model with a lower number of basis functions to obtain approximate values of λrel and

λ. The approximate value of λrel would then be used to tune λ for a model with the

desired number of basis functions and similarly, the newly obtained optimal value of λ

would be used to tune λrel for the desired model. This allowed λ to be tuned efficiently

as before. However, λrel can now also be tuned in the same way as λ using an augmented

data notation. The adopted algorithm is detailed in the following section.

4.3.1 Algorithm

1. Determine each dimensions reduced number of basis functions, m̃k, for the grid

search, by scaling the desired number of basis functions by γ
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m̃k = γ ·mk k = 1, 2, 3.

2. Use this lower number of basis functions to approximately optimise λ and λrel

on a q × q grid, where q ∼ 10. (Evaluation at different values of λ are not

computationally costly so the number of these can be increased if required.)

3. Using the optimised values of λ and λrel and the original number of basis functions

(m1,m2,m3):

3.1 Tune λ whilst fixing λrel to the value from step 2

3.2 Tune λrel using a new formulation of the PLS expression (Equation 4.10),

detailed in Section 4.3.2, and fixing λ to the value from step 3.1

Choosing the Reduced Number of Basis Functions for Step 1

To decide on an appropriate reduced number of basis functions for the initial tuning

step, an effort reduction κ, for the expensive inversion of the matrix (B>B +λP) needs

to be chosen, e.g. κ = 1/10.

To begin with, the estimated computational effort for a single inversion of the matrix

(B>B+λP), given there are mk basis functions for each of the k components, is of order

(
3∏

k=1

mk

)3

. (4.4)

This formula stems from the fact that matrix inversions are of complexity O(f3), where

f is the dimension of the matrix. Here f =
∏3
k=1mk since three dimensional tensor

product basis functions are being used.

The scaling factor γ, which controls the reduction in the number of basis functions,

depends on the desired effort reduction κ.

To achieve the chosen effort reduction κ, the scaling factor γ needs to be chosen such

that:
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(
3∏

k=1

γ ·mk

)3

=

(
3∏

k=1

mk

)3

· κ. (4.5)

Thus the scaling factor for the number of basis functions is

γ = 9
√
κ. (4.6)

Example

To reduce the computation time on a model with mk = 18 to a 1/10th of the effort, the

number of basis functions would need to be scaled by:

γ = 9
√
κ = 9

√
1/10 = 0.77

for the initial tuning step i.e. m̃k = 18× 0.77 ' 14.

4.3.2 Augmented Data Formulation for Optimising λrel

An augmented data notation can be used to allow the penalised least squares expression

for two smoothing parameters (Equation 4.1) to be re-expressed with λrel in the position

of λ. To obtain the augmented data, Equation 4.1 can be alternatively denoted as:

(y −Bα)> (y −Bα) + (0−Dsα
√
λ)>(0−Dsα

√
λ) + λλrelα

>D>t Dtα. (4.7)

which is equivalent to

y

0

−
 B
√
λDs

α
>y

0

−
 B
√
λDs

α
+ λλrelα

>D>t Dtα. (4.8)

By denoting
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ỹ =

y

0

 B̃ =

 B
√
λDs,

 (4.9)

Equation 4.1 can be written as

(
ỹ − B̃α

)> (
ỹ − B̃α

)
+ λrelα

>(
√
λDt)

>(
√
λDt)α. (4.10)

Given λ is fixed in step 3.2 of the algorithm, this alternative formulation of the PLS

expression, shown in Equation 4.10, allows λrel to be tuned using the methodology set

out for tuning λ.

4.4 Improving Computational Speed

The formulation of fMλ|y used by Evers et al. [2015], detailed in Equation 2.49, differs

slightly from the formulation presented at the beginning of this chapter in Equation

4.2. Notice the addition of |P|1/2 = |D>D|1/2 in the numerator. In Evers’ model,

|D>D|1/2, contained within |V(λ)|−1/2 = |λD>D|1/2, was removed when specifying the

expression proportional to fMλ|y since it remained constant with changing λ. In the

case of the model with two smoothing parameters, D>D, now expressed as P, does

not remain constant for differing values of λrel and thus P and its determinant needs

to be computed for every value of λrel that is considered. For step 1 of the algorithm,

when many values of λrel are being considered, the computational expense due to this

calculation increases rapidly. The matrix P and its determinant are also required to be

calculated once for each substep of step 3 in the algorithm.

To overcome the computational complexity of calculating the determinant of the ma-

trix, the penalty matrix P can be jointly diagonalised. By the theorem of spectral

decomposition (Appendix B.1), P1, P2 and P3 can be denoted as:
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P1 = Γ1∆1Γ
>
1

P2 = Γ2∆2Γ
>
2

P3 = Γ3∆3Γ
>
3

where Γ1, Γ2 and Γ3 are orthogonal matrices and ∆1, ∆2 and ∆3 are diagonal matri-

ces. The full tensor product penalty can also be re-expressed using the aforementioned

theorem as:

P = PF
1 + PF

2 + λrelP
F
3

= (P1 ⊗ I2 ⊗ I3) + (I1 ⊗P2 ⊗ I3) + λrel(I1 ⊗ I2 ⊗P3)

= Γ∆Γ>.

(4.11)

It can be shown that the orthogonal matrix, Γ, obtained from the spectral decomposition

of the full penalty is equivalent to the Kronecker product of Γ1, Γ2 and Γ3 i.e.

Γ = Γ1 ⊗ Γ2 ⊗ Γ3. (4.12)

∆ can then be obtained by rearranging Equation 4.11:

∆ = Γ>PΓ = (Γ>1 ⊗ Γ>2 ⊗ Γ>3 ) [(P1 ⊗ I2 ⊗ I3) + (I1 ⊗P2 ⊗ I3) +

λrel(I1 ⊗ I2 ⊗P3)] (Γ1 ⊗ Γ2 ⊗ Γ3)

∆ = Γ>PΓ = (∆1 ⊗ I2 ⊗ I3)︸ ︷︷ ︸
∆F

1

+ (I1 ⊗∆2 ⊗ I3)︸ ︷︷ ︸
∆F

2

+λrel (I1 ⊗ I2 ⊗∆3)︸ ︷︷ ︸
∆F

3

(4.13)

By definition:

|P| =
n∏
i=1

∆[i, i] (4.14)

i.e. the determinant of P is equal to the product of the eigenvalues of P.

However, since P is not of full rank it is also not invertible since its determinant is equal

to 0. To by-pass this computational issue, a small ridge penalty, τI, is added to ∆ where



Chapter 4. Incorporating an Additional Smoothing Parameter 72

I is the identity matrix and τ is a small value i.e. 1× 10−10. Adding this ridge penalty

avoids zero eigenvalues in ∆ and so the determinant of P can be computed.

As ∆1, ∆2 and ∆3 are of dimension, mk×mk, where mk is the number of 1-dimensional

basis functions for component k, they are computationally inexpensive to obtain. ∆F
1 ,

∆F
2 and ∆F

3 are each made up of the Kronecker product of a diagonal matrix with

identity matrices and so they are also inexpensive to compute. This results in ∆ being

obtained by spectral decomposition of 3 matrices of dimension mk ×mk, instead of one

matrix of dimension
(∏3

k=1mk

)
×
(∏3

k=1mk

)
where mk is the number of basis functions

for dimension k.

Therefore, by adopting the proposed algorithm, the computational complexity of the

optimisation of the two smoothing parameters is now

O( q2 × f̃3︸ ︷︷ ︸
Grid Search

+ (f3 + (f × l))︸ ︷︷ ︸
Tuning λ

+ (f3 + (f × r))︸ ︷︷ ︸
Tuning λrel

)

where q is the dimensions of the initial coarse grid search, f̃ =
∏3
k=1 m̃k, where m̃k

is the reduced number of one dimensional basis functions for dimension k in step 1 of

the algorithm, l is the number of candidate values of λ in step 3.1, r is the number

of candidate values of λrel in step 3.2 and f =
∏3
k=1mk where mk is the number of

one-dimensional basis functions for dimension k.

4.5 Simulation Study

A study was conducted to compare the smoothing parameters obtained by the algorithm

to the values obtained by the grid search. The predictive performance of models with

these parameters were also compared. For this study, the data simulated for the compar-

ison study in Chapter 3 were used along with a new dataset described in Section 4.5.1.

For each dataset, two sampling scenarios were considered (a full design and a realistic

design) and the smoothing parameters along with the MSPEs were compared for each

method of obtaining the smoothing parameters. The ratio of the spatial dimensions were

different for each dataset thus, for PDE1, 18 basis functions were used for the easting

and time components with the northing component having its number of basis function
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scaled by the study regions dimensions. The model for PDE2 was similarly constructed

using 15 basis functions for the easting and time components. A smaller number of

functions was chosen due to the ratio of spatial dimensions being 1 and thus a larger

number of basis functions would make the computational expense unmanageable.

4.5.1 Data Simulation

The second set of groundwater data were simulated from a variation of the PDE (Equa-

tion 3.1) used in Chapter 3. The second PDE is detailed below in Equation 4.15.

∂y

∂t
= D ·

(
∂2y

∂x2
1

+
∂2y

∂x2
2

+
∂2y

∂x1∂x2

)
+ ω1(x1, x2)

∂y

∂x1
+ ω2(x1, x2)

∂y

∂x2
(4.15)

where y are the contaminant concentrations, x1 and x2 are the spatial coordinates and

t ∈ [0, 1] denotes time. In the first term D is a constant controlling how quickly the

solute spreads and is combined with the sum of the 2nd partial derivatives to give a term

which describes the spread by diffusion of the contaminant in the groundwater. The

remaining two advection terms describe how the contaminant is affected by groundwater

flow, where ω1 and ω2 describe its direction and velocity in each direction respectively.

Theses functions were chosen based on observed groundwater levels at a current site.

Observed measurements were simulated by randomly generating a network made up of 22

monitoring wells (points in Figure 4.10) from a grid covering the vicinity of the contam-

inant plume. Measurement noise was added on the log scale to represent multiplicative

error. The true concentrations (i.e. test data) were obtained by interpolating the numer-

ical solution to the PDE, computed over a 100×100×200 grid. Each panel of Figure 4.10

shows the spread and location of the contaminant plume at times t ∈ {0, 0.25, 0.75, 1}.

The datasets used for the study were made up of samples taken from 32 random sampling

times. For the realistic design, 50% of the full set of observations (704 observations) were

randomly removed to give a dataset containing 352 observations.
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Figure 4.10: True underlying PDE described in Equation 4.15 (PDE2) at times
t ∈ {0.25, 0.50, 0.75, 1}

4.5.2 Results

Table 4.2 shows the optimal values of λ and λrel obtained both by performing a grid

search and by using the algorithm proposed in Section 4.3, for each dataset. It also

shows the MSPEs for models fitted with these combinations of λ and λrel. These are

the values used to produce the prediction surface shown in Figures 4.16, 4.18, 4.17 and

4.19.
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Table 4.2: Optimal values of λ and λrel chosen by a classical grid search and the
proposed algorithm along with MSPEs for predictions made with the resulting models
for the PDE introduced in Chapter 3, described in Equation 3.1, (PDE1) and the PDE

introduced in this chapter, described in Equation 4.15 (PDE2).

Data
Grid Search Algorithm

λ λrel MSPE λ λrel MSPE

PDE1
Real Design 2.2× 10−5 923 0.2524 1.8× 10−4 1168.3 0.2763

Full Design 5.8× 10−5 2596.9 1.3637 1.1× 10−4 1168.3 0.6739

PDE2
Real Design 2.2× 10−4 41.4 0.2729 7.1× 10−4 10.1 0.1846

Full Design 3.6× 10−4 24.7 0.3278 8.9× 10−4 10.1 0.2452

Table 4.2 shows that the value chosen for λ for each method of optimisation is very

small, resulting in almost no penalty being applied to the spatial dimensions for both

datasets and both designs. For λrel both optimisation methods select similar values

for both designs and datasets, with the exception of the full design on the first dataset

where the value of λrel is significantly larger for the grid search, which results in the

temporal dimension being more heavily penalised.

Figures 4.11, 4.12, 4.13 and 4.14 assess how close the optimal values produced by the

algorithm are to the optimal values derived from the log posterior surface through a grid

search. From these figures, it is clear that the optimal locations differ slightly, with both

methods selecting different points along the main ridge of the surface. Table 4.3 shows

the value of the log posterior distribution using the optimal combination of smoothing

parameters for each method, PDE and design. The values of the log posterior are not

identical but they are very similar. An additional round of tuning could be incorporated

to improve the match but given the very minor change this would give in the log posterior

value in comparison to the very large computational expense, the current values seem

satisfactory.
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Figure 4.11: Log posterior surface of the two smoothing parameters for PDE1 with a
realistic design over a dense 80 × 30 grid. The point indicates the location of the max-
imum i.e. the optimal combination, whilst the cross indicates the optimal combination

obtained using the algorithm.
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Figure 4.12: Log posterior surface of the two smoothing parameters for PDE1 with
a full design over a dense 80 × 30 grid. The point indicates the location of the maxi-
mum i.e. the optimal combination, whilst the cross indicates the optimal combination

obtained using the algorithm.
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Figure 4.13: Log posterior surface of the two smoothing parameters for PDE2 with a
realistic design over a dense 80 × 30 grid. The point indicates the location of the max-
imum i.e. the optimal combination, whilst the cross indicates the optimal combination

obtained using the algorithm.
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Figure 4.14: Log posterior surface of the two smoothing parameters for PDE2 with
a full design over a dense 80 × 30 grid. The point indicates the location of the maxi-
mum i.e. the optimal combination, whilst the cross indicates the optimal combination

obtained using the algorithm.
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Table 4.3: Values of the maximum log posterior values for the optimal combinations
of λ and λrel for each PDE, design and optimisation method.

Data Grid Search Algorithm

PDE1
Real Design -3800 -3799.9

Full Design -18094.4 -18095.5

PDE2
Real Design -717.9 -722.5

Full Design -1460 -1467

The predicted surfaces for the first PDE (Figures 4.16 and 4.17) show subtle differences

due to the slight differences in the smoothing parameters chosen by each optimisation

method. Ballooning, which was identified in the one smoothing parameter model in

Chapter 3, is also present in the predictions of this two smoothing parameter model on

the full design. This will be investigated further in Chapter 5. The balloons are less

severe for the model chosen by the algorithm due to selection of a slightly higher value

of λ which more heavily penalises the spatial component. The predicted surfaces for

the second PDE are also very similar, with the algorithm predicting slightly smoother

surfaces due to the selected value of λ being higher for both designs.

Figure 4.15 compares the optimisation times for the two smoothing parameter model

using a grid search and the proposed algorithm for the full dataset from PDE1 which

contains 4843 observations. From this plot it is clear that the proposed optimisation

algorithm significantly reduces the optimisation time, by up to 90% compared with a

grid search.
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Figure 4.15: Comparison of optimisation times (in seconds) for tuning two smoothing
parameters using a grid search and the proposed algorithm with increasing numbers of

basis functions on a dataset containing ∼ 4800 observations.

4.6 Summary

A method for efficiently optimising two smoothing parameters in a spatio-temporal p-

splines model has been proposed. The algorithm is able to reduce the computational time

by up to 90% by exploiting trends in the optimal combination of smoothing parameters

as the number of basis functions in the model increases. The algorithm does not obtain

exactly the same values obtained by a grid search with the algorithm but the predictions

are very similar and, given the large computational saving, this slight discrepancy is

acceptable. To improve the accuracy, a further tuning step could be incorporated but,

as previously mentioned, the computational expense of this would need to be weighed

against the accuracy achieved.
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Figure 4.16: Predicted surfaces for spatio-temporal p-spline models built using the
combination of λ and λrel chosen by a grid search and the proposed algorithm for PDE1

and a realistic design. The plot at the top is the true surface from PDE1.
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Figure 4.17: Predicted surfaces for spatio-temporal p-spline models built using the
combination of λ and λrel chosen by a grid search and the proposed algorithm for PDE1
and a full design. The plot at the top is the true surface from PDE1. Ballooning can

be observed in these predictions, this will be investigated in Chapter 5.
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Figure 4.18: Predicted surfaces for spatio-temporal p-spline models built using the
combination of λ and λrel chosen by a grid search and the proposed algorithm for PDE2

and a realistic design. The plot at the top is the true surface from PDE2.
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Figure 4.19: Predicted surfaces for spatio-temporal p-spline models built using the
combination of λ and λrel chosen by a grid search and the proposed algorithm for PDE2

and a full design. The plot at the top is the true surface from PDE2.



Chapter 5

Ballooning

The spatio-temporal p-spline models used in Chapters 3 and 4, with one and two smooth-

ing parameters respectively, indicated that their predictions were prone to an effect

known as ‘ballooning’ for some models and data simulations (see Figures 3.7, 3.8, 3.9

and 4.17). Ballooning is a term used to describe the event where unusually high or low

predictions are made in areas with little data support. This is caused by a steep gradient

of observations just before a ‘hole’ in the predictor variables, as described by Molinari

[2014].
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Figure 5.1: Prediction from a one-dimensional simulation where ballooning is evident,
along with 95% confidence bands
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Figure 5.1 shows ballooning occurring in a one dimensional spline model, the steep

gradient of observations around x = 2.5 followed by an area with no data results in a

spike in the predicted curve with no data to support this trend.

In a spatio-temporal groundwater setting, the distribution of the wells within the moni-

toring network has a large influence on whether ballooning is present in the predictions.

The description of ballooning suggests a gridded network is not as likely to encounter

ballooning as a randomly chosen network; which is more likely to see wells positioned

closely together and regions with no well coverage. In the case of real world monitoring

networks, transport infrastructure and housing heavily influence the locations of moni-

toring wells and thus the proximity of the wells can be sporadic and out with the control

of the engineers who position them. Ballooning is not a problem that exclusively af-

fects spline-based models, it has also been seen to occur in spatial and spatio-temporal

Kriging models.

5.1 Basis Functions Simulation Study

To reduce the likelihood of ballooning occurring, Molinari [2014] suggest using an in-

creased number of basis functions. However, their chosen number of functions is still

relatively low with the maximum being (14, 8, 5) for each dimension respectively. To as-

sess the effect of increasing the number of basis functions on the likelihood of ballooning

occurring, two simulation studies were conducted using the PDEs and the designs pre-

sented in Chapters 3 and 4 and illustrated in Figures 3.1 and 4.10 respectively. These

two designs differ in the sense that the first (from Chapter 3) contains many closely

placed wells and also areas with no well coverage, whereas the second dataset (from

Chapter 4) has wells which are much more evenly spread out across the study region.

The studies also aimed to determine the minimum resolution of basis functions required

to prevent ballooning from occurring. For each simulated dataset six spatio-temporal

p-splines models based on a single smoothing parameter and three spatio-temporal p-

spline models based on two smoothing parameters were built with increasing numbers

of basis functions. In both models the number of basis functions chosen for each spatial

component reflected the spatial dimension ratio of the study region. For the temporal

dimension of the one smoothing parameter model a lower number of basis functions was
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assigned to reflect the fact that the concentrations vary more over space than they do over

time. In the two smoothing parameter model the same number of basis functions were

used for time as for space, with the smoothness controlled by the additional smoothing

parameter.

5.1.1 Simulation Study 1 - A dataset prone to ballooning

Tables 5.1 and 5.2 show the mean square prediction errors (MSPEs) for each of the

one and two smoothing parameter models respectively on the first PDE. Using the

simulation set up from Section 3.1, a full and a realistic design were considered with

predictions being made at the 100th and 167th (last) time points.

The results indicate that for both sampling scenarios and models the predictive perfor-

mance improves with increasing numbers of basis functions, which is unsurprising since

extra basis functions allow for a more flexible model. They also suggest that ballooning

may be present in some of the predictions of the lower resolution models due to the

higher MSPEs and standard error (SE) values.

Focusing on the one smoothing parameter model and the models where the number

of spatial basis functions are fixed, increasing the number of temporal basis functions

does not appear to have much effect on the predictive performance of the models with

(14, 8) and (25, 15) spatial basis functions. On the other hand, there is a significant

improvement in predictive performance for the models with (8, 5) spatial basis functions

when the temporal basis functions are increased, particularly in the case of the full

design.
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Table 5.1: Mean Square Prediction Errors (MSPEs) and standard errors (SEs) at
the 100th and 167th (last) time points of PDE1, Equation 3.1, under realistic and
full sampling scenarios (200 simulations) for one smoothing parameter spatio-temporal
p-spline models with differing numbers of basis functions (northing (N), easting (E),

time (T)).

# Basis Functions
Realistic Design Full Design

Time 100 Time 167 Time 100 Time 167

(8, 5, 3) 4.5295 (0.13) 1.0682 (0.04) 90.3621 (11.71) 32.7145 (4.32)

(8, 5, 8) 3.0611 (0.10) 0.6346 (0.02) 16.5130 (1.33) 8.0879 (0.49)

(14, 8, 3) 0.4647 (0.01) 0.3728 (0.01) 1.2012 (0.09) 0.7090 (0.04)

(14, 8, 8) 0.4724 (0.01) 0.3656 (0.01) 0.4288 (0.02) 0.3948 (0.01)

(25, 15, 3) 0.3575 (0.01) 0.4874 (0.01) 0.3071 (0.01) 0.4827 (0.01)

(25, 15, 8) 0.3723 (0.01) 0.4722 (0.01) 0.2876 (0.01) 0.4329 (0.01)

Table 5.2: Mean Square Prediction Errors (MSPEs) and standard errors (SEs) at the
100th and 167th (last) time points of PDE1 under realistic and full sampling scenarios
(200 simulations) for two smoothing parameter spatio-temporal p-spline models with

differing numbers of basis functions (northing (N), easting (E), time (T)).

# Basis Functions
Realistic Design Full Design

Time 100 Time 167 Time 100 Time 167

(8, 5, 8) 8.7635 (0.88) 7.0537 (0.96) 18.1504 (5.19) 9.8443 (3.37)

(14, 8, 14) 0.6423 (0.03) 0.5625 (0.03) 19.2282 (4.44) 19.8401 (4.54)

(18, 10, 18) 0.6909 (0.04) 0.7375 (0.04) 4.0425 (0.48) 4.4272 (0.49)

In the two smoothing parameter models results, although increasing the number of basis

functions generally improves the predictive performance for the full design, it does not

match the performance of the one parameter model.

5.1.2 Simulation Study 2 - A dataset with a more evenly spread design

Tables 5.3 and 5.4 show the mean MSPEs for both models on the second PDE simulation

from Chapter 4. Again, two time points were used for prediction, namely, the 10th and

the 32nd (last time) and a full and realistic (incomplete) design were considered. The

results indicate that it is likely ballooning is not present in any of the model predictions

since the mean MSPE across the models is relatively consistent and the SEs are low.
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This is likely due to the wells in this design being more evenly spread across the study

region.

Table 5.3: Mean Square Prediction Error (MSPE) and standard errors (SEs) at the
10th and 32nd (last) time points of PDE2 under realistic and full sampling scenarios
(200 simulations) for the one smoothing parameter spatio-temporal p-spline models

with differing numbers of basis functions (northing (N), easting (E), time (T)).

# Basis Functions
Realistic Design Full Design

Time 10 Time 32 Time 10 Time 32

(8, 8, 3) 0.1934 (0.002) 0.3134 (0.006) 0.1499 (0.001) 0.1945 (0.003)

(8, 8, 8) 0.1301 (0.002) 0.3252 (0.006) 0.1121 (0.001) 0.2255 (0.003)

(14, 14, 3) 0.4852 (0.004) 0.3831 (0.005) 0.6609 (0.005) 0.3131 (0.004)

(14, 14, 8) 0.2226 (0.002) 0.3550 (0.005) 0.2089 (0.001) 0.2827 (0.002)

(20, 20, 3) 0.9422 (0.003) 0.7090 (0.007) 1.4235 (0.012) 0.6840 (0.008)

(20, 20, 8) 0.3972 (0.003) 0.3029 (0.006) 0.3962 (0.002) 0.4399 (0.003)

Table 5.4: Mean Square Prediction Error (MSPE) and standard errors (SEs) at the
10th and 32nd (last) time points of PDE2 under realistic and full sampling scenarios
(200 simulations) for the two smoothing parameter spatio-temporal p-spline models

with differing numbers of basis functions (northing (N), easting (E), time (T)).

# Basis Functions
Realistic Design Full Design

Time 10 Time 32 Time 10 Time 32

(8, 8, 8) 0.1370 (0.00) 0.2879 (0.01) 0.1169 (0.00) 0.2028 (0.00)

(14, 14, 14) 0.3607 (0.01) 0.5302 (0.01) 0.4122 (0.01) 0.5605 (0.01)

(18, 18, 18) 0.7149 (0.01) 1.1230 (0.01) 0.7347 (0.00) 1.0976 (0.00)

Interestingly, as the number of basis functions increases, in both models, the MSPE also

generally increases which is the converse to what would be expected and to what was

seen in the results for the first PDE. This can be explained by looking at the predictions

(Figures C.1, C.2, C.3 and C.4). The models with a higher number of basis functions

produce a less smooth surface with much more localised contaminant plumes compared

with the lower resolution models, suggesting that these models are overfitting. Looking

at the true surface for the last time point, the strength of the contamination in the

plume very gradually declines to the left. The model with a lower number of basis

functions mimics this decline more accurately than a model with a higher number of

basis functions.
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5.2 A Measure for Detecting Ballooning

During this study, ballooning was observed in the predictions of the first PDE for both

spatio-temporal p-spline models with a lower number of basis functions. Predictions

from one simulation are shown in Figure 5.2; here positive and negative balloons can

be seen. The well network in this dataset contained clusters of closely positioned wells

along with regions with no well coverage i.e. conditions where ballooning is expected to

occur.

Along with increasing the number of basis functions, Molinari [2014] also suggest other

alterations that can be made to the model specification to try and reduce the occurrences

of ballooning, for example, using a first order difference penalty. However this, along

with an increased number of basis functions does not always stop ballooning occurring.

Without visualising the data, which can be inconvenient when running several models,

detection of ballooning can be difficult and thus a measure was developed to flag when

ballooning may be present in the predictions.

For unusual predictions to be classed as ballooning two criteria (detailed below) must

be satisfied. These criteria were designed to highlight when unusually high or low pre-

dictions were made in areas with little data support. Predictions which are:

1. one standard deviation above the maximum observed value or one standard devi-

ation below the minimum observed value,

and,

2. are at locations whose distance from the nearest well is greater than the median

distance of any location in the sampling area from its nearest well.

are classed as ballooning.

In the case of the realistic sampling design, when not every well was sampled at every

time, the distances calculated in step 2 were between all wells and pixels, not just the

wells that had been sampled at the prediction time point.

Figure 5.3 highlights unusually high/low predictions from a prediction using a model

with (8, 5, 3) basis functions under the full sampling scenario (shown in Figure 5.2).
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Points highlighted in pink indicate predictions which are unusually low and points high-

lighted in black indicate predictions which are unusually high. All of these highlighted

locations satisfy the first criterion.
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Figure 5.2: Predicted surface using a spatio-temporal p-splines model with ballooning
evident. Wells are plotted as filled black squares.
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Figure 5.3: Balloons highlighted by the detection mechanism, pixels outlined in pink
circles indicate unusually low predictions whilst black circles indicate unusually high

predictions. Wells are plotted as filled black squares.
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There are several areas highlighted in this prediction, some of which are not located

near any wells, for example the region of high concentration in the lower right section of

the surface. This area would be highlighted as ballooning. There are also several areas

where unusually low predictions have been made, these regions would also be highlighted

as ballooning.

5.2.1 Ballooning Simulation Study

The simulation study in Section 5.1.1, on the first PDE, was repeated with the ballooning

detection measure incorporated after predictions were made for each simulation. The

measure was also used on the second simulated dataset and, as anticipated, ballooning

was not detected in any simulations. Only the results of the first PDE will therefore be

discussed.

Figures 5.4 and 5.5 show the number of occurrences of ballooning from the 200 sim-

ulations of each p-splines model. As well as testing for the presence of ballooning, if

ballooning was present, the proportion of pixels at which ballooning occurred was also

computed. Table 5.5 contains the mean number of ballooned pixels over all simulations

when ballooning was detected for the p-splines model with one smoothing parameter

and Table 5.6 contains the proportions for the model with two smoothing parameters.
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Figure 5.4: Counts of the number of times ballooning was detected for each combi-
nation of basis functions in the spatio-temporal p-splines model, with one smoothing

parameter, for each dataset from PDE1
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As suggested by Molinari [2014], in general as the number of basis functions increases

the frequency of ballooning decreases for both designs, models and prediction times. For

the full design ballooning seems to occur more frequently for the lower resolution models

compared with the real design. This can be explained by the description of ballooning

given at the beginning of the chapter. The well network contains several clusters of

closely positioned wells. A full design implies data are collected from every well at every

time point and thus there are more scenarios when a steep gradient is present followed

by a ‘hole’ in the data, compared with the real design which is more likely to have less

steep gradients in the predictions.

Table 5.5: Mean proportion of ballooned pixels for those simulations which detected
ballooning at the 100th and 167th time points of PDE1 under realistic and full sam-
pling scenarios (200 simulations) for one smoothing parameter spatio-temporal p-spline
models with differing numbers of basis functions (northing (N), easting (E), time (T)).

# Basis Functions
Realistic Design Full Design

Time 100 Time 167 Time 100 Time 167

(8, 5, 3) 0.0672 0.0200 0.2601 0.1687

(8, 5, 8) 0.0436 0.0119 0.1478 0.0839

(14, 8, 3) 0 0 0.0358 0.0190

(14, 8, 8) 0 0 0.0187 0.0032

(25, 15, 3) 0 0 0 0

(25, 15, 8) 0 0 0 0

Prediction time also has an effect on the likelihood of ballooning. Figures 5.4 and 5.5

show the count lines for time 167 (the last time point) below the lines for time 100 (in

the middle of the data) for both models and sampling scenarios. This suggests that

ballooning is less likely to occur when predictions are made at sampling times located at

the ends of the data range. From the count lines for the two smoothing parameter model

(Figure 5.5), the effect of different sampling scenarios on the frequency of ballooning

being observed is very evident, with the full design counts not dropping off as rapidly as

the realistic design. For this model, increasing the number of basis functions does not

completely eliminate ballooning.

In both models, as the total number of basis functions increases, the proportion of

ballooned pixels decreases. This is as expected, since ballooning generally only occurs
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Figure 5.5: Counts of the number of times ballooning was detected for each combi-
nation of basis functions in the spatio-temporal p-splines model, with two smoothing

parameters, for each dataset from PDE1

with a few basis functions. With more basis functions the width of each is narrower and

thus a smaller number of pixels is covered.

Table 5.6: Mean proportion of ballooned pixels for those simulations which detected
ballooning at the 100th and 167th time points of PDE1 under realistic and full sam-
pling scenarios (200 simulations) for two smoothing parameter spatio-temporal p-spline
models with differing numbers of basis functions (northing (N), easting (E), time (T)).

# Basis Functions
Realistic Design Full Design

Time 100 Time 167 Time 100 Time 167

(8, 5, 8) 0.1206 0.0810 0.1201 0.1040

(14, 8, 14) 0.0123 0.0111 0.1348 0.1259

(18, 10, 18) 0.0301 0.0254 0.0697 0.0635

5.3 Summary of Ballooning Properties

From the simulation studies conducted in Sections 5.1 and 5.2.1 the following conclusions

can be made about ballooning.

• The likelihood of ballooning occurring decreases as the number of basis functions

increases for both one and two smoothing parameter p-spline models. However,
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care should still be taken, particularly when using a two smoothing parameter

model.

• Well positioning has a large influence on whether ballooning is present or not. A

well network with clusters of closely positioned wells is more likely to encounter

ballooning when a full design is observed compared with an incomplete design,

on the same network, which is more likely to mimic a regular grid. This was

evident in the basis function simulation studies presented in Section 5.1.1. The

simulation study in Section 5.1.2 showed that ballooning is unlikely to occur if the

well network is evenly spaced across the study region.

• Predictions for times positioned at the end of the data are less likely to exhibit

ballooning compared with times positioned in the middle of the data.

5.4 Conservation of Plume Mass Penalty

During the comparison study conducted in Section 5.1, ballooning was detected when

using spatio-temporal p-spline models with a low number of basis functions. Section 5.2

went on to suggest a method for detecting when ballooning might be present. As men-

tioned earlier, increasing the number of basis functions reduces the chance of ballooning

being present. This ‘fix’ is satisfactory; however, with spatio-temporal data, increasing

the number of basis functions in each dimension dramatically increases the computation

time for the model.

In order to use a model with a lower number of basis functions but still suppress bal-

looning and obtain reliable and robust predictions, a penalty based on the change in

contaminant plume mass over time was proposed.

5.4.1 Penalty Formulation

The penalty was motivated by the idea that the contaminant cloud would move across

the study region over time, however, its mass should not change significantly. Thus

the penalty is designed to penalise changes in the predicted plume mass over time. In

theory this should control unusual fluctuations in the total mass which is the primary

characteristic of ballooning. The change in mass is computed by first integrating the
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function over the spatial domain to give an estimate of the plume mass. The derivative

of this is then taken with respect to time to give the change in mass over time. Finally,

this term is squared and integrated over time to give the total change in mass over the

time frame of interest.

The penalised least squares expression using the proposed penalty is denoted in Equation

5.1, where PEN denotes the new penalty.

n∑
i=1

(yi −m(x1i, x2i, ti)))
2 + λ

∫
t

{
d

dt

[∫∫
m(x1, x2, t) dx1dx2

]}2

dt︸ ︷︷ ︸
PEN

(5.1)

as before, m(x1i, x2i, ti) =
∑
jkl

αjklBj(x1i)Bk(x2i)Bl(xti and Bj(x1), Bk(x2) and Bl(xt)

are basis functions for each dimension with corresponding basis coefficients αjkl. Here

a B-spline basis is used.

The change in mass penalty term, λPEN, can be decomposed as follows to allow for

more efficient computation,

λ

∫
t

{
d

dt

[∫∫
m(x1, x2, t) dx1dx2

]}2

dt

= λ

∫
t

 d

dt

∫∫ ∑
jkl

αjklBj(x1)Bk(x2)Bl(t) dx1dx2


2

dt

= λ

∫
t

∑
jkl

[
αjkl

∫
x1

Bj(x1) dx1

∫
x2

Bk(x2) dx2 B
′
l(t)

]
2

dt

= λ

∫
t

∑
jkl

∑
mno

αjklαmno

∫
x1

Bj(x1) dx1

∫
x1

Bm(x1) dx1·

∫
x2

Bk(x2) dx2

∫
x2

Bn(x2) dx2 B
′
l(t)B

′
o(t)

 dt

= λ
∑
jkl

∑
mno

αjklαmno

∫
x1

Bj(x1) dx1

∫
x1

Bm(x1) dx1·∫
x2

Bk(x2) dx2

∫
x2

Bn(x2) dx2

∫
t
B′l(t)B

′
o(t) dt

(5.2)

The integral of each B-spline basis function,
∫
Bi(x) dx, will be the same in each di-

mension with the exception of the first and last p functions, where p is the degree of the
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basis function. The value of these integrals will be smaller due to there not being full

basis functions at the beginning and end of the basis. Figure 5.6 illustrates this idea,

with the functions whose integral is the same taking the same colour. Computing the

integral of a B-spline is done by computing the integral of the polynomial pieces used

in its construction and adding them together.
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0 250 500 750 1000
x
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Figure 5.6: Basis functions of degree 3. Functions plotted in the same colour have
the same integral.

Following on from the decomposition in Equation 5.2, the penalty can be denoted as

a quadratic form. By denoting the penalty in this form the penalised least squares

expression for penalised regression splines, detailed in Equation 2.19, can be utilised.

Thus, in vector-matrix notation, the expression to be minimised for a model using the

conservation of mass penalty is:

PLS(α) = (y −Bα)> (y −Bα) + λα>Kα (5.3)

where

K = A⊗B⊗C (5.4)

and
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A[j,m] =

∫
x1

Bj(x1) dx1 ·
∫
x1

Bm(x1) dx1,

B[k, n] =

∫
x2

Bk(x2) dx2 ·
∫
x2

Bn(x2) dx2,

C[l, o] =

∫
t
B′l(t)B

′
o(t) dt.

To assess the effectiveness of the proposed penalty, two simulated datasets were consid-

ered. The findings of these studies are presented in the following sections.

5.4.2 Two-Dimensional Simulation Study - a toy example

The first simulated dataset consisted of one spatial dimension and one temporal dimen-

sion. The data were simulated from a normal density function with increasing standard

deviation over time, shown in Figure 5.7. These particular data were used since the area

under the density curve remains constant irrespective of the standard deviation and so,

if the penalty has been correctly formulated, regardless of the severity of the penalty

parameter λ, the predicted mass should not change over time. The dataset was made

up of 10 monitoring wells each sampled at 10 time points.
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Figure 5.7: True simulated data for the two dimensional study. The data consists
of a normal density function over space with increasing standard deviation over time.

Points indicate locations where observations were recorded.

Two-Dimensional Penalty Formulation

The mass penalty term for data with one spatial and one temporal dimension can be

formulated as follows:

λ

∫
t

{
d

dt

[∫∫
f(x, t) dx

]}2

dt

= λ

∫
t


∫∫ ∑

jk

αjkBj(x)B′k(t) dx


2

dt

...

... (derived in a similar manner to Equation 5.2)

...

= λ
∑
jk

∑
mn

αjkαmn

∫
x1

Bj(x) dx

∫
x1

Bm(x) dx

∫
t
B′k(t)B

′
n(t) dt.

(5.5)

Here, Bj(x) and Bk(t) are basis functions for the space and time dimensions respectively,

with corresponding basis coefficients αjk.



Chapter 5. Ballooning 99

Results

To assess whether the proposed penalty correctly penalised changes in the plume mass

over time, five penalty parameter values were considered λ = {1 × 10−6, 1 × 10−3, 1 ×

100, 1 × 103, 1 × 106}. Penalised regression spline models were built with the proposed

penalty for each λ and compared to the true data shown in Figure 5.7. P-spline models

with the same values of λ were also built for additional comparison.

Figure 5.8 shows the predicted surfaces for each value of λ (rows) along with the true

underlying surface. As expected, as the value of λ increases the p-splines model forces

the prediction to a constant surface. On the contrary, increasing λ has little or no

effect on the predicted surface of the model with the conservation of mass penalty, with

the surfaces for the five considered models being almost identical. This indicates that

regardless of the value of λ no penalty is applied because no change in mass is present

between prediction times. Table 5.7 shows the MSPEs for each prediction in Figure 5.8.

They further back up that the mass penalty is working in the intended manner since

the MSPE for each model is the same to four significant figures. When λ is very small

i.e. 1 × 10−6 and 1 × 10−3, the model with the difference penalty performs as well as

the model with the mass penalty.

Table 5.7: Mean Square Prediction Errors (MSPEs) for increasing values of λ ∈
{1 × 10−6, 1 × 10−3, 1 × 100, 1 × 103, 1 × 106} using the mass penalty and a difference

penalty.

λ
MSPE

Mass Penalty Difference Penalty

1× 10−6 0.0081 0.0093

1× 10−3 0.0081 0.0041

1× 100 0.0081 0.7814

1× 103 0.0081 3.7333

1× 106 0.0081 3.7450

In addition to looking at the MSPEs and predicted surfaces, the plume mass at each

time was also calculated through numerical integration of the predicted values over the

spatial domain at each time point. The plume mass of the predictions for each model

at each time are presented in Figure 5.9.
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Figure 5.8: Predicted surfaces using spline models with the difference penalty (left)
and the conservation of mass penalty (middle). Five values of the penalty parameters
λ = {1× 10−6, 1× 10−3, 1× 100, 1× 103, 1× 106} (rows) are presented along with the

true underlying surface (right).



Chapter 5. Ballooning 101

24200

24400

24600

2 4 6 8 10
Time

M
as

s

λ
0.000001
0.001
1
1000
1000000

Figure 5.9: Predicted plume mass at each time for each of the five considered penalised
regression spline models with the conservation of mass penalty.

The predicted plume masses at each time further back up that the penalty is working as

hoped. When the penalty is essentially ‘turned off’, i.e. λ = 1×10−6, the mass does not

remain completely constant, it gradually increases by about 30 units at each prediction

time. Increasing the penalty parameter to λ = 1× 10−3 results in a smaller increase in

plume mass, with the change in mass between the first and last time points being smaller

compared with λ = 1× 10−6. This trend of the change in mass reducing as λ increases

continues for λ = 1. As λ becomes increasingly large, say λ = 1 × 103 or λ = 1 × 106,

the change in mass over time is negligible, illustrated by the constant horizontal lines

at the top of Figure 5.9. This indicates that changes in the mass have been heavily

penalised, forcing a model which predicts a constant mass across all prediction times to

be selected.

5.4.3 Three-Dimensional Simulation Study

The second simulation study was performed over two spatial dimensions and one tem-

poral dimension i.e. spatio-temporal data. The data were made up of a two-dimensional

normal density in space moving in a downward spiral motion over time, the temporal

trajectory of the spatial density is shown in Figure 5.10 along with the well network that
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was used in this particular dataset, the true plume mass does not change significantly

over time. However, the contamination would not be detected by the wells and thus

the model, until later time points, since most of the wells are located in the lower half

of the study region. Based on this idea, there should be a point in time where the

predicted contaminant mass will suddenly increase and the proposed penalty then add

contaminant mass into the predictions at the earlier time points.
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Figure 5.10: True simulated data for the three dimensional study. The data consist of
a normal density function over space with a downward spiral motion over time. Points

indicate locations where observations were recorded.

Model Formulation

In the spatio-temporal setting, the mass penalty was used in addition to a spatial dif-

ference penalty. The mass penalty was designed to penalise changes over time but this

does not control the spatial variation. Therefore, by retaining the spatial component

of the difference penalty, a control for the spatial smoothness of the model is provided.

Thus the penalised least squares expression to be minimised is

PLS(α) = (y −Bα)> (y −Bα) + λ1α
>Kα+ λ2α

>D>s Dsα (5.6)

where K takes the form given in the penalty description in Equation 5.4 and Ds is a

difference matrix of first order penalising only the spatial component.
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Results

To assess the performance of the penalty, various values of λ1 were used to build penalised

spatio-temporal regression spline models, along with λ2 = 1×10−4. This value of λ2 was

chosen as it was the mean optimal value, using the log posterior criterion for selection

(see Section 2.3.2), when independent spatial p-splines model were built at each time

point.

Figure 5.11 shows the predicted surfaces at each time point for each value of λ1. When

the mass penalty is ‘turned off’, i.e. λ1 = 0, the model does not detect any contamination

in the first few time points. This is due to the contamination not spreading over any

wells. It then detects a small amount of contamination at the 3rd and 4th time points

at the top boundary of the study region. This contamination then disappears for two

prediction times and reappears in the last four times, when the contaminant cloud moves

over monitoring wells. Under these modelling conditions, the mass of the prediction at

each time fluctuates as the contaminant plume moves across the study region and is

picked up by monitoring wells.

As λ1 increases, the predictions at the first six time points gradually change. This can

be seen by looking down the columns in Figure 5.11. From λ1 = 0.01 upwards, masses

of contaminant begin to appear in regions where there is no well coverage at these first

six time points. This is evidence of the mass penalty forcing the model to add the mass

that is present in the later prediction times into the earlier predictions. The predictions

for the final four time points are relatively similar for all values of λ2, the shape of the

contaminant plume does however become more defined as λ2 increases.
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Figure 5.11: Predicted surfaces at each time point for penalised spatio-temporal
spline models built with λ1 ∈

{
0, 1× 10−6, 1× 10−4, 1× 10−2, 10, 1000

}
and λ2 = 1×

10−4 using the conservation of mass penalty and a spatial difference penalty. Columns
represent prediction times and rows correspond to each values of λ1 for the mass penalty.

Figure 5.12 shows the total predicted plume mass at each time point for each considered

model. The plume mass was computed by numerical integration over the predictions at

each time point. When the mass penalty is ‘turned off’ i.e. λ1 = 0 the mass of the plume

initially increases, then decreases before again increasing. This follows the trend seen in

the predictions in the top row of Figure 5.11. In a similar manner to the 2D simulation

study, as λ1 increases the fluctuations in the mass decrease until a constant mass at all

times is reached when λ1 = 10. In order to achieve this constant contaminant mass, the

model forces increasingly more mass into regions of the first 6 time points where there

is no well coverage rather than suppressing the sudden increase as had been hoped.

The plots of the predicted surfaces and total mass over time, from this simulation study,

suggest that the conservation of mass penalty has been computed as desired and is

conserving the contaminant mass over time. However, the plots highlight issues with

the model formulation in practice.
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Figure 5.12: Predicted plume mass at each time for each of the five considered spline
models with the conservation of mass penalty.

5.4.4 Summary and Issues

In the two-dimensional study, presented in Section 5.4.2, the proposed conservation of

mass penalty appeared to be correctly conserving the predicted mass over time. The

primary aim of this first study was to test the proposed methodology, hence the sam-

pling design and dataset were chosen to ensure the mass remained constant over time.

Increasing values of the penalty parameter λ, were used for model building and pre-

diction. The results indicated that regardless of the value of the penalty parameter,

the predicted mass did not significantly change over time suggesting the methodology

and code were working in their intended manner and changes in the mass were being

penalised correctly.

The second simulation study, presented in Section 5.4.3, was designed to assess how well

the penalty could control and suppress a sudden change in the plume mass. The dataset

and well network were chosen such that the contamination would not be picked up by

the monitoring wells until the later time points in the simulation. It was hoped that the

penalty would suppress this sudden increase in contaminant mass. However, in practice

this is not what happened and in hindsight it is unsurprising. The high concentrations
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present in the observed data indicated that, at later times, contamination was present in

the study region. Therefore, rather than compress this new additional mass, the penalty

added extra mass into the predictions at earlier time points. Essentially, rather than

controlling ballooning, the penalty caused the model to balloon more in earlier time

points to compensate for the known mass that was observed in the later times. It is also

worth noting that the simulated dataset is not mimicing exactly what happens when

ballooning occurs since there are data to support the sudden change in mass, this is not

the case when ballooning occurs.

Based on these results it would be expected that the penalty would add additional

mass into the prediction times which do not have any balloons rather than squash the

balloons that are present. Thus, the results suggest that the penalty may not be a

suitable solution for preventing ballooning.

The penalty did however predict mass at time points where the observed data had no

record of it due to the plume not passing over any monitoring wells at these time points.

Monitoring wells missing contamination at some sampling events, due to the sporadic

nature of some monitoring networks, is relatively common and thus, with improvements,

the penalty could be used to inform models of the location of the contaminant mass when

it is not picked up by the wells until later times. To use the penalty for this purpose,

further developments are required. In its current state, the penalty conserves the mass

as desired, but the model has no information on where to store this extra mass so it

is forced into regions of the study area where there is no information from monitoring

wells.

To overcome this issue of where this unaccounted for contaminant mass is located, one

potential extension could be to incorporate a further penalty based on a PDE that

describes the motion of the groundwater; see Frasso et al. [2016b]. This would then give

the current model an idea of where the contaminant plume has travelled and hence where

the mass is located when the observed data does not have any record of it until later.

Determining the PDE that accurately describes the groundwater system is difficult and

there is evidence of variation between sites. However, if an accurate representation were

to be found and subsequently a penalty developed, this would give the model an idea

of where contaminant mass could be present and hence where additional mass may be

stored.
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Optimal Sampling Design of

Monitoring Networks with Spatial

and Spatio-temporal Models

Groundwater contamination poses a potential threat to human and environmental health,

and the contamination can occur very easily. Whenever waste or chemicals are released

into the environment, there is potential for the groundwater to become polluted. The

clean-up operation can be difficult and expensive, with groundwater contamination most

commonly occurring in densely populated regions where the land is exhaustively used.

Given that groundwater is located under the surface, determining the speed and direction

of its flow is complex and subsequently determining the current and future location of

a contaminant plume is also complex. To obtain accurate predictions, a high density

of data is required, but, collecting groundwater data is expensive. Samples need to be

collected from a set of wells at different locations and from sites of varying size, ranging

from fuel stations to large refineries. Normally the data are collected by staff with

expertise in engineering or science who are often ill informed on where these samples

should be taken and when. Due to the constantly moving nature of a contaminant plume,

both time and location are factors which influence the estimation of the contaminant

plume and so these should be considered as decision variables when choosing sampling

locations.

107
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The following section presents a review of the methodology used to determine sampling

designs for groundwater contamination data, both in a spatial and spatio-temporal con-

text. Two objective functions, based on minimising the variance of the plume mass

(VM) and the integrated prediction variance (IV), will then be presented and derived in

Sections 6.3.1, 6.3.2, 6.4.1 and 6.4.2 for spatial and spatio-temporal Kriging and p-spline

models. Several simulation studies will then be conducted to assess: the effect sampling

frequency has on the optimal design; which wells can potentially be removed from the

network i.e. well redundancy analysis and if a well were to be added to the network,

where would it be positioned.

6.1 Review of Current Literature

Groundwater quality monitoring network design can be divided into three main sub-

groups: hydro-geological approaches, statistical approaches and model-based approaches;

see Herrera and Pinder [2005], Loaiciga et al. [1992].

Before recent advances, sampling procedures most commonly fell into the category of

hydro-geological approaches. Designs resulting from these approaches are based solely

on the qualitative and quantitative hydrological information from the site of interest.

These methods require large amounts of data and are best suited to studies where early

contaminant detection is the main objective; see Herrera and Pinder [2005]. There are

several obvious drawbacks to these approaches. Primarily, they rely on large volumes of

data. Due to cost and time constraints, obtaining a sufficient number of observations to

reduce uncertainty around the estimated plume is not always feasible.

In recent years, statistical and model-based approaches have become more frequently

used. The aim in the statistical framework is to build on the hydro-geological approaches

through developing designs based on inferences from the data. Geostatistics are used

to explain the complex spatial and temporal variations in the data through covariance

structures and the methods can further be used for prediction of the contaminant plume.

In contrast, model based approaches use a combination of mathematical models and

physical knowledge of ground water movement to anticipate the contaminant plume’s

location and the uncertainty associated with this estimation.



Chapter 6. Monitoring Network Design 109

The type of design approach is generally determined by the methodology used to estimate

the location of the contaminant plume; as described by Loaiciga et al. [1992]. Attempts

have also been made to combine the statistical and model-based approaches, see Loaiciga

[1989], Reed et al. [2000]. This work will primarily focus on statistical based approaches,

with applications of the model-based approach being discussed where appropriate.

The main goal of optimal network design, in any application associated with data col-

lected over space and time, is to determine the most appropriate location and frequency

of observations in order to meet a predefined objective or set of objectives; see Fretwell

et al. [2006], van Geer et al. [2008]. A comprehensive review of sampling design is pro-

vided by Maher et al. [1994], who highlight the importance of defining the problem

that is to be solved and emphasise the importance of clearly defining the objectives

prior to optimising the design. The objective function that is to be optimised should

be chosen such that it reflects the objectives that are to be met. A prevalent theme

amongst publications on environmental design is the use of an objective function based

on minimising either the estimation or the prediction variance, combined with several

design constraints. The enforced constraints vary across designs, with the most common

constraints being the cost and time associated with obtaining samples; see Yeh [2015].

Cost constraints can also be imposed through capping the number of samples that can

be taken. Section 6.1.1 explores commonly used objective functions and criteria in more

detail.

The chosen objective function greatly influences the resulting design. Focussing on

groundwater quality monitoring, Loaiciga et al. [1992] and later McPhee and Yeh [2005]

classify groundwater monitoring network design objectives into four main categories:

• Ambient Monitoring aims to understand temporal trends in regional ground-

water quality variations. This is achieved by regularly sampling wells on a regional

basis. For this type of monitoring, generally water supply wells are sampled over

monitoring wells.

• Detection Monitoring seeks to identify the presence of contaminants as soon

as their concentration exceeds pre-determined levels. This type of monitoring

is needed around sources of contamination, for example in toxic waste sites; see

Environmental Protection Agency [2017].
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• Compliance Monitoring adheres to groundwater quality monitoring guidelines

after the existence of chemical compounds are detected. This is achieved by setting

out a series of strict monitoring requirements for specific compounds, thus allowing

the re-mediation process to be monitored.

• Research Monitoring involves sampling over space and time to meet predefined

targets and research aims.

In the following review, the focus will be on detection and compliance groundwater mon-

itoring, which aim to identify groundwater contamination as soon as it is released and

monitor the contaminant plumes movements after detection. Detection monitoring aims

to satisfy three contradicting objectives, as detailed by Meyer et al. [1994] and Angulo

and Tang [1999], namely (i) maximisation of the probability of detecting contaminants,

(ii) minimisation of plume mass when detected and (iii) minimisation of the total cost.

When constructing optimal designs for groundwater quality monitoring networks there

are several choices within the design that need to be made prior to the optimisation.

The first choice relates to where and how many samples are taken. Are they from

predetermined locations such as a current network of wells, or are the locations of the

wells chosen as part of the design to create a new network? Following on from the first

option, if the wells are already positioned, can wells be added into the network, or is the

aim to remove redundant wells? Cost constraints can be incorporated by limiting the

number of wells that can be sampled in a single event or, in the spatio-temporal case,

over a series of events. Alternatively, minimisation of a cost function can be adopted

as an additional objective function, where the cost function incorporates the financial

expense of sampling from specific wells or the price of adding a well into the network;

see Angulo and Tang [1999].

Spatial sampling designs for monitoring networks have been widely investigated in the

groundwater field. These design optimisations depend solely on spatial measurements

and no temporal correlations are considered. Most commonly, Kriging is used for esti-

mation and prediction while genetic algorithms and simulated annealing combined with

other methods are widely used for optimisation of monitoring networks; see Brus and

Heuvelink [2007], Cameron and Hunter [2000], Reed et al. [2001, 2000], Romary et al.

[2014], Yeh et al. [2006], Zhu and Stein [2006].
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A methodology adopted by several authors for spatial network optimisation is to incor-

porate minimising uncertainty about the covariance parameters into the optimisation

along with minimising prediction uncertainty. This has been tackled for spatial design

in a general sense, rather than with a particular application, by Romary et al. [2014],

Zhu and Stein [2005, 2006].

In the Bayesian framework, Nowak et al. [2010] build on the idea of Bayesian geosta-

tistical design, introduced by Diggle and Lophaven [2006], by transferring the concept

into geostatistical inverse problems. They incorporate reducing the uncertainty of the

covariance parameters in the geostatistical model into the design as a secondary objec-

tive. The primary objective is to minimise the expected Bayesian prediction variance.

By using a Matérn covariance function, the covariance shape uncertainty is accounted

for with the additional shape parameter contained in the Matérn functions structure.

More recently, methodologies developed for spatial design optimisation have been ex-

tended into the spatio-temporal setting. The extension of these methods can be imple-

mented with relative ease but there are some important distinctions. Variation between

observations in space is likely to be different to variation in time. Also, the cost of

sampling at a single site several times can be less than sampling from the same number

of wells but in different locations; see Heuvelink et al. [2012]. In the statistical frame-

work, several authors have proposed optimal design methodologies for spatio-temporal

processes in general, rather than for specific studies of interest; see Mateu and Muller

[2013]. In line with spatial designs, Kriging methods are frequently used to estimate vari-

ances and are also used to estimate the state of the groundwater; see Nunes, Paralta,

Cunha and Ribeiro [2004].

Incorporating the uncertainty around the covariance parameters into the design is utilised

in the spatio-temporal setting by Bohorquez et al. [2016] who propose a dynamic pro-

cedure for optimising spatial networks by exploiting the idea that the spatial covariance

structure varies through time. Their approach is attractive as it only depends on the

covariance structure of the data and not an underlying spatio-temporal process. Using

historical sampling data from a site, the spatial covariance parameters are estimated. A

multivariate time series is then fitted to the parameter estimates, and in turn the design

used in the next period or periods can be adapted. Forecasts of the covariance param-

eters at a future time are then made. They consider two design objectives; optimal



Chapter 6. Monitoring Network Design 112

mean estimation using generalised least squares, and optimal prediction using ordinary

Kriging (see Section 2.4). The designs are constructed with the aim of minimising the

variance associated with the chosen objective. An example using air pollution monitor-

ing networks is presented.

Cameron and Hunter [2002] propose an optimisation consisting of two algorithms for

groundwater monitoring networks, through reducing spatial and temporal redundancy.

The first algorithm combines time series of data from wells to construct a composite

temporal variogram which in turn is used to determine sampling frequencies. In the

second, global Kriging weights are assigned to well locations in the monitoring network to

ascertain their relative contribution to the contaminant plume map. The least influential

wells are then removed. However, the paper does not account for spacetime correlation

of the contaminant. Nunes, Cunha and Ribeiro [2004] also utilise minimising temporal

redundancy whilst simultaneously minimising the spatial estimation error variance in a

space-time approach.

Combining the statistical and model-based approaches was briefly discussed earlier. This

can be done by first using a partial differential equations model to estimate the location

of the contaminant plume. In practice, Darcy’s Law (Whitaker [1986]) is regularly

used to model the groundwater field. Statistical methods are then used to optimise

a sampling strategy. Generally, these methodologies aim to minimise the uncertainty

associated with the PDE model parameters as part of their objective function; see Helle

and Pebesma [2012].

Reed et al. [2000] identify cost-effective sampling plans along with the total contaminant

mass through simulations from a transport model combined with a genetic algorithm to

optimise spatial designs. They interpolate the contaminant cloud using a combination

of inverse distance weighting along with ordinary Kriging to obtain the contaminant

mass. For their study, the objective function to be minimised is the cost combined with

estimated mass error. Wu et al. [2005] extend the methodology by Reed et al. [2000],

by introducing additional constraints on the optimisation based on second and third

moments of a three-dimensional contaminant plume.

Meyer et al. [1994], also working with spatial designs, consider the three objectives:

minimise the number of wells, maximise the probability of detecting a leak and minimise

the projected area of contamination at the time of detection. They conduct uncertainty
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analysis using Monte Carlo simulations with random hydraulic conductivity values and

contaminant source locations and then solve the multi-objective integer programming

problem using simulated annealing.

Spatio-temporal designs of this nature are illustrated in two pieces of work by Herrera,

Pinder and Zhang (Herrera and Pinder [2005], Zhang et al. [2005]). They develop a

methodology similar to that of Montas et al. [2000] who also use simulations of the

contaminant plume to optimise networks over space and time with the aim of minimising

plume characterisation errors whilst limiting the number of wells that can be sampled.

In their first paper, Herrera and Pinder [2005] use a Kalman filter with a space-time co-

variance matrix obtained from Monte Carlo simulations of a stochastic transport model.

To determine the location and timings of wells to be sampled, a function of the predicted

estimate and its error variance is used. A sequential procedure is then used to select

wells that minimise the value of this function until a predetermined value is reached. In

their examples, they use the total variance of the estimate error and the coefficient of

variation as their functions to be minimised. This is similar to the variance reduction

analysis approach of Rouhani [1985]. They finish with a post-processing step where the

Kalman filter is used to update the contaminant concentration estimate and its uncer-

tainty. Although it is assumed in their work that the monitoring network is fixed, the

network that is adopted is made up of a grid of equally spaced wells. In reality, this is

an unlikely configuration due to transport infrastructure.

A similar approach is adopted in the second paper by Zhang et al. [2005] where they

consider the uncertainty associated with the contaminant concentration field. The pri-

mary objective of this study is to minimise the cost. A Kalman filter is again used with

a space-time covariance matrix obtained from simulations from the groundwater flow

and transport model. To obtain the sampling times and locations, a genetic algorithm

is used, combined with a Kalman filter for updating the covariance matrix. Andricevic

[1990] use a similar methodology in their paper, with the Kalman filter also being used

to update their covariance matrix however, they use a branch and bound algorithm for

design optimisation.

Several authors have used sequential simulations of the flow field, in a similar manner

to Herrera and Pinder [2005], in an attempt to estimate the uncertainty associated with
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the parameters of the flow field; see Bierkens [2006], Chadalavada [2008], Nunes et al.

[2013], Nunes, Paralta, Cunha and Ribeiro [2004].

Optimisation of the sampling design can either be done in advance of the study, examples

of which are presented in Herrera and Pinder [2005] described above, or alternatively a

dynamic approach can be utilised; see Chadalavada [2008], Zhang et al. [2005].

The majority of this research aims to select wells from a dense or regularly spaced grid

of potential locations. Here, networks which are already in place will be considered in a

similar manner to Bohorquez et al. [2016], Cameron and Hunter [2002], Nunes, Cunha

and Ribeiro [2004], Nunes, Paralta, Cunha and Ribeiro [2004].

6.1.1 Generic design optimalities extended to geostatistics

From the review given in Section 6.1, it is apparent that, most commonly, environ-

mental design optimality objective functions are stated as a minimisation task of some

scalar function, φ, of the sampling locations or model parameters such as the prediction

covariance matrix; see Mateu and Muller [2013].

Reverting back to design in a single dimension, frequently the objective scalar function

to be minimised is applied to the Fisher information matrix,

M(Y, s,α) = E

[{
∂

∂α
log p(Y |α)

}2
]

(6.1)

where log p(Y |α) is the log likelihood function, s are the locations of the observations

and α are the model parameters. Through the Cramer-Rao inequality, it can be shown

that the inverse of M is a lower bound for the conditional covariance matrix of the model

parameters, α. In the case of normality, M is also the precision matrix i.e. the inverse

of the covariance matrix of the model parameters conditional on the data; see Nowak

[2010]. Therefore, while maximising a function of the information matrix is a popular

choice, minimisation of a function of the covariance matrix associated with parameter

accuracy can also be used.

Geostatistical design is primarily focused on accurate estimation at unmeasured locations

rather than on model parameter accuracy. Thus, most commonly the covariance matrix
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associated with prediction accuracy, namely the Kriging variance matrix, Cs0|y, (see

Chapter 2) is used; see Zimmerman and Li [2013].

Building on the modelling methodology and notation for spatial and spatio-temporal

data for spline-based models (see Chapter 2), the covariance matrix of the basis co-

efficients, Cα̂|y, can be used. Nowak [2010] discusses the relationship between design

optimalities for classical regression design problems and geostatistical design problems.

In the majority of cases, the parameter covariance matrix can be replaced by the predic-

tion covariance matrix. Thus, for notational simplicity, the covariance matrix of interest

will be referred to collectively as C hereafter; its dimensions are m×m.

Outlined below is a summary of some of the more commonly used design criteria, ex-

tended from the traditional regression-like context into spatial and spatio-temporal do-

mains, based on the work of Nowak [2010].

Design Objective Functions based on the Covariance Matrix

In 1959, Kiefer and Wolfowitz [1959] presented the concept of alphabetic optimalities

with the introduction of D- and E- optimal designs for regression estimation problems.

Their work has been significantly added to, with optimalities such as the A-, C- and

T- now being used widely within the statistical literature. Traditional regression based

designs assume observations are collected with independent errors. This assumption is

clearly violated for spatial and spatio-temporal data and thus adjustments need to be

made; see Mateu and Muller [2013]. Classical regression based designs focus primarily

on minimising the uncertainty around the parameters being estimated in the models.

In contrast, designs for spatial and spatio-temporal data mainly focus on minimising

the uncertainty associated with predictions at unmeasured locations; see Le and Zidek

[2006].

• A - Optimality aims to minimise the quadratic penalty function:

(α̂−αtrue)
>A(α̂−αtrue)

which is equivalent to minimising the average parameter estimation variance. The

resulting function to be minimised is:
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φA =
1

m
tr[AC] (6.2)

where A a non-negative definite matrix and m is the dimension of C.

• D - Optimality aims to minimise:

φD = det[C]1/m =

m∏
j=1

eigj(C)1/m (6.3)

The logarithm of this function is also widely used. This is the most common objec-

tive function for classical regression design problems; however, in dense sampling

networks the computational expense is significantly large. This measure is also

very sensitive to a single highly informative observation; see Nowak [2010].

• E - Optimality minimises:

φE = max(eig(C)) (6.4)

The primary role of the E- criterion is to assess whether large-scale variability has

been removed. The computational cost of this measure is not as extreme as that

of D- due to the computation time of the largest eigenvalue being significantly less

than the computation time of the full set.

• G - Optimality aims to minimise the maximum prediction variance over the

design region. The criterion to be minimised is:

φG = max[C] (6.5)

• P - Optimality provides a generalisation of the A-, D- and E- optimalities, with

the criteria to be minimised being:

φP =

 m∑
j=1

eigj
(
CP
)1/P

(6.6)

When P = 1, 0 and ∞, P-optimality becomes the A-, D- and E- optimalities

respectively. However, for large datasets this measure is extremely expensive to

compute due to it requiring all eigenvalues to be computed.
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• Average estimation variance exploits the fact that estimation variance is the

value of the conditional covariance when the distance between locations is 0. This

corresponds to the diagonal elements of C. The average estimation variance which

is to be minimised is then given as:

σ2
E =

1

m
tr(C). (6.7)

This is equivalent to the A- criterion when the matrix A is the identity matrix

(A = I). This is also known as the AI optimality, denoted as φAI .

Other Design Objective Functions

In the measures for optimisation discussed earlier, the main aim was to achieve the best

predictive accuracy possible. Studies whose aims are primarily exploratory may want to

choose an objective function that gives good coverage of the study region and that are

space filling in nature; see Mateu and Muller [2013].

• Minimax Distance Design aims to minimise the maximum distance between a

given unsampled point s0 and its closest point in a given design S = {s1, . . . , sn}.

The criterion to be minimised over the study region, D, is therefore:

φmM = max
s0∈D

min
si
||s0 − si||. (6.8)

6.2 Two alternative objective functions

The remainder of this chapter will focus on the derivation and application of two al-

ternative objective functions for optimising groundwater sampling designs, namely the

Variance of the estimated plume Mass (VM) and the Integrated Variance of the predic-

tion (IV).

Spatial moments of the contaminant plume, for which variance is the second, have been

widely used in the groundwater design context. Many studies aim to minimise errors

or uncertainty associated with contaminant plume characteristics, such as the mass, as
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part of their design optimisation. Reed et al. [2000] use the global mass estimation

error as a constraint in their optimisation of a cost function. In a later paper Reed

and Minsker [2004] again make use of the global mass estimate; with maximisation of

the accuracy of the contaminant mass estimate being used as one of several objective

functions. Montas et al. [2000] minimise the error of three plume characteristics as their

design objective function, one of which is the contaminant mass error. Wu et al. [2005]

look to estimate global three-dimensional plumes using the first three moments and

Chadalavada [2008] calculate the pollution mass estimate error in their paper, however

this is not used explicitly as a design objective function. Often the errors associated

with these plume characteristics are computed by comparing the spatial moments to the

true moments taken from stochastic groundwater flow simulations. Estimation of these

errors are however, constrained by the need for a flow and transport model of the study

site, this can be complex to estimate.

Objective functions founded on minimising the variance or error of the estimated state

of the groundwater in a region i.e. minimise the uncertainty of the prediction, are also

very popular in the groundwater design context. Wagner [1995] seek to minimise the

trace of the prediction covariance matrix as their design objective function. Herrera and

Pinder [2005] minimise a function of the error variance of the concentration estimate,

whereas Bohorquez et al. [2016] minimise prediction error. Dhar [2013] aim to minimise

the maximum normalised absolute deviation between the estimated and observed con-

centrations at unmeasured locations. See Zimmerman and Li [2013] for more design

objective function based on the prediction variance.

Minimisation of the integrated prediction variance, which is to be used here, is an already

well established criterion in the classical linear model framework, often referred to as IV-

optimal. In a geostatistical setting, Diggle and Lophaven [2006] use a similar criterion in

a Bayesian paradigm for assessing whether sampling locations can be removed or added

to a network. Their methodology is based on Kriging and is applied solely to spatial

models, a variation of this criterion is also used for considering a new sampling network.

As discussed, variations of both of the proposed objective functions have been widely

used in monitoring network design for groundwater data. However almost all of these

pieces of work use Kriging-based models to interpolate the plume and obtain the vari-

ances associated with the errors to compute the desired objective functions, for example
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Bohorquez et al. [2016], Cameron and Hunter [2000], Chadalavada [2008], Dhar [2013],

Diggle and Lophaven [2006], Reed and Minsker [2004], Reed et al. [2000]). In contrast,

here, spatial and spatio-temporal p-spline models will be used to calculate the objective

functions.

The following sections will derive each objective function for Kriging and p-spline mod-

els in a spatial and spatio-temporal framework. The results section will then go onto

apply both objective functions using spatial and spatio-temporal p-spline models to a

groundwater monitoring network, with spatial Kriging also being used to optimise the

functions to give a comparison to the currently most widely used spatial and spatio-

temporal interpolation method.

6.3 Variance of the Plume Mass (VM) Objective Function

For the VM criterion, the optimal sampling design is found by minimising,

φVM = var

(∫
x1

∫
x2

ŷ(x1, x2) dx2dx1

)
(6.9)

where
∫
x1

∫
x2
ŷ(x1, x2) dx2dx1 is the estimated plume mass, computed by integrating

over the spatial study region. From here in, ŷ(x1, x2) will be denoted ŷ.

6.3.1 VM Objective Function - Spatial Models

Kriging

In section 2.4.3 the Kriging predictor for a spatial process at new location, s0, given

observed data, y = (y(s1), · · · y(sn)), was shown as

E[y(s0)|y] = µ̂y + c>0 K−1(y − µ̂y1), (6.10)

where, c0 = (Cy(||s0 − s1||;θ), . . . , Cy(||s0 − sn||;θ)) is the covariance between the new

location and observed locations; Kij = Cy(||si − sj ||;θ) is the covariance between the

observed locations; µ̂y is the estimated constant mean; θ = (σ2, φ, τ2) are the covariance



Chapter 6. Monitoring Network Design 120

model parameters, which can be estimated by maximum likelihood, and Cy() is a covari-

ance function (see Section 2.4.2). This predictor function can be denoted alternatively

as

ŷ(s0) = µ̂y +
n∑
i=1

αi(yi − µ̂y), (6.11)

where αi = (K−1)>i•c0, known as the Kriging weight of the ith observation, is the weight

of contribution of the ith observation on the prediction at new location, s0. Using this

formulation the mass of the prediction can be computed by integrating over the spatial

region i.e.

∫
x1

∫
x2

ŷ dx2dx1 =

∫
x1

∫
x2

(
µ̂y +

n∑
i=1

αi(yi − µ̂y)

)
dx2dx1

=

∫
x1

∫
x2

µ̂y dx2dx1 +

n∑
i=1

(yi − µ̂y)
∫
x1

∫
x2

αi dx2dx1

=M +

n∑
i=1

(yi − µ̂y)ai

(6.12)

where M = (mx1mx2 −mx2mn1 −mn2mx1 + mn1mn2)µ̂y is a constant with:

mx1 = max(x1) mn1 = min(x1)

mx2 = max(x2) mn2 = min(x2)

and

ai =

∫
x1

∫
x2

αi dx2dx1

=(K−1)>i•

[∫
x1

∫
x2

c1
0 dx2dx1 · · ·

∫
x1

∫
x2

cn0 dx2dx1

]
.

(6.13)

Computation of the integral,
∫
x1

∫
x2

ci0 dx2dx1, is dependent on the chosen covariance

function. A closed form expression is not always available, for example in the case of a

Matérn function, and thus numerical integration is needed.
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The objective function using a spatial Kriging model can then be computed by making

use of the rule for the variance of a linear combination of variables detailed in Appendix

A.2, as

φVM =var

(∫
x1

∫
x2

ŷ dx2dx1

)
=var

(
M +

w∑
i=1

yiai −
w∑
i=1

µ̂yai

)

=var

(
w∑
i=1

yiai

)

=
w∑
i=1

w∑
j=1

aiajcov(yi, yj)

=
w∑
i=1

w∑
j=1

aiajKij

=a>Ka = tr
(
aa>K

)
.

(6.14)

This is similar to the A-optimality objective function shown in Equation 6.2, with A =

aa>.

The optimisation procedure seeks to find, for a fixed set size w, the set of wells which

minimise the expression in Equation 6.14. Historical data are used to estimate the

covariance function parameters θ and µ̂y.

P-splines

The objective function using a p-splines model for spatial prediction can be similarly

derived. Using the formula for the fitted value at location i,

ŷi =

m1∑
j=1

m2∑
k=1

α̂jkBj(x1i)Bk(x2i), (6.15)

where m1 and m2 are the number of basis functions, Bj(x1i) and Bk(x2i), in each

dimension respectively, with corresponding coefficient α̂jk. The mass of the predicted

surface can then be computed as
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∫
x1

∫
x2

ŷ dx2dx1 =

∫
x1

∫
x2

m1∑
j=1

m2∑
k=1

α̂jkBj(x1)Bk(x2) dx2dx1

=

m1∑
j=1

m2∑
k=1

α̂jk

∫
x1

Bj(x1) dx1︸ ︷︷ ︸
a1j

∫
x2

Bk(x2) dx2︸ ︷︷ ︸
a2k

(6.16)

where vectors a1 and a2 contain the area under each basis function in each dimension

respectively. Each entry in the vector will be the same with the exception of the first p

and last p entries, where p is the degree of the basis function, this is illustrated in Figure

5.6 of Chapter 5. These vectors will also be identical for models with the same number

of basis functions in each dimension.

In the model construction, the Kronecker product is used to obtain the structure required

to model the spatial surface. This methodology can also be applied here. The Kronecker

product of the two vectors a1 and a2 is denoted as a = a1 ⊗ a2. Thus Equation 6.16

can be re-expressed as:

∫
x1

∫
x2

ŷ dx2dx1 =

m1∑
j=1

m2∑
k=1

α̂jk

∫
x1

Bj(x1) dx1︸ ︷︷ ︸
a1j

∫
x2

Bk(x2) dx2︸ ︷︷ ︸
a2k

=
M∑
l=1

α̂lal

(6.17)

where M = m1 ×m2.

Thus, utilising the variance of the sum of a linear combination of variables detailed in

Appendix A.2, the objective function can be expressed as:

φVM =var

(∫
x1

∫
x2

ŷ dx2dx1

)
=var

(
M∑
l=1

α̂lal

)

=
M∑
p=1

M∑
q=1

apaqcov(α̂p, α̂q)

=a>Cα̂|ya = tr
(
aa>Cα̂|y

)
(6.18)
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where Cα̂|y[p, q] = cov(α̂p, α̂q). Again, this is similar to the A-optimality objective

function with A = aa>. The optimisation procedure seeks to find, for a fixed set size

w, the set of wells which minimise the expression in Equation 6.18.

6.3.2 VM Objective Function - Spatio-temporal Models

The objective function can be computed for spatio-temporal Kriging and p-spline models

in a similar manner to that of the spatial models. In the spatio-temporal setting the

next sampling time is assumed to be known and fixed. The mass is only computed over

the spatial domain with the temporal dimension being used to add weight from earlier

observations depending on their proximity to the proposed next sampling time.

Kriging

In Section 2.4.5 the Kriging predictor for a spatio-temporal process at new spatial lo-

cation, s0, at time, t0, given observed data, y = (y(s1, t1), ..., y(sn, tm))>, was shown to

be:

E[y(s0, t0)|y] = µ̂y + c>0 K−1(y − µ̂y1), (6.19)

where, assuming a separable covariance structure, c0 = (Cy(t0 − t1;θt) ⊗ Cy(s0 −

s1;θs), . . . , Cy(t0 − tm;θt) ⊗ Cy(s0 − sn;θs)) is the covariance between the new loca-

tion and the observed locations; K = (Σ(t)) ⊗ (Σ(s)) is the covariance between the

observed locations; µ̂y is the estimated constant mean; Σ
(s)
ij = Cy(||si − sj ||;θs) is

the spatial covariance matrix; θs = (σ2
s , τ

2
s , φs) are the spatial covariance parameters;

Σ
(t)
ij = Cy(||ti − tj ||;θt) is the temporal covariance matrix; θt = (σ2

t , τ
2
t , φt) are the

temporal covariance parameters and Cy() is a covariance function (see Section 2.4.2).

For notational ease, here the case where every spatial location is sampled at every time

point is presented. When this is not the case exploitation of the Kronecker products

cannot be used and element wise matrix multiplication is required. In a similar way to

the spatial Kriging model, the prediction function can be denoted alternatively as
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ŷ(s0, t0) = µ̂y +

n∑
i=1

αi(yi − µ̂y) (6.20)

where αi = (K−1)>i•c0, known as the Kriging weight of the ith observation, is the weight

of contribution of the ith observation to the prediction. Using this formulation the mass

of the prediction can be computed by integrating over the spatial region.

∫
x1

∫
x2

ŷ dx2dx1 =

∫
x1

∫
x2

(
µ̂y +

n∑
i=1

αi(yi − µ̂y)

)
dx2dx1

=

∫
x1

∫
x2

µ̂y dx2dx1 +

n∑
i=1

(yi − µ̂y)
∫
x1

∫
x2

αi dx2dx1

=M +

n∑
i=1

(yi − µ̂y)ai

(6.21)

where M = (mx1mx2 −mx2mn1 −mn2mx1 + mn1mn2)µ̂y is a constant with:

mx1 = max(x1) mn1 = min(x1)

mx2 = max(x2) mn2 = min(x2)

and

ai =

∫
x1

∫
x2

αi dx2dx1

=(K−1)>i•

[∫
x1

∫
x2

c1
0 dx2dx1 · · ·

∫
x1

∫
x2

cn0 dx2dx1

]
.

(6.22)

Each entry of the vector of integrals can be computed as:

∫
x1

∫
x2

ci0 dx2dx1 = Cy(t0 − ti;θt)
∫
x1

∫
x2

Cy(s0 − si;θs) dx2dx1. (6.23)

Computation of this integral depends on the specified covariance function. A closed form

expression cannot always be achieved, for example in the case of a Matérn covariance

function, and thus numerical integration is needed to obtain an estimate.

The objective function to be minimised using a spatio-temporal Kriging model is then:
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φVM =var

(∫
x1

∫
x2

ŷ dx2dx1

)
=var

(
M +

w∑
i=1

yiai −
w∑
i=1

µyai

)

=var

(
w∑
i=1

yiai

)

=
w∑
i=1

w∑
j=1

aiajcov(yi, yj)

=

w∑
i=1

w∑
j=1

aiajKij

=a>Ka = tr
(
aa>K

)
.

(6.24)

The optimisation procedure seeks to find, for a fixed set size, w, and new sampling time,

t0, the set of wells which minimise the expression in Equation 6.24. Historical data are

used to estimate the covariance function parameters, θs and θt and µ̂y.

P-splines

The VM objective function using a spatio-temporal p-splines model can be derived using

the formula for a fitted value at location i,

ŷi =

m1,m2,m3∑
j,k,l=1

α̂jklBj(x1i)Bk(x2i)Bl(ti), (6.25)

where m1, m2 and m3 are the number of basis functions, Bj(x1i), Bk(x2i) and Bl(ti), in

each dimension respectively, with corresponding basis coefficient α̂jkl. The spatial mass

of the predicted surface can subsequently be computed as

∫
x1

∫
x2

ŷ dx2dx1 =

∫
x1

∫
x2

∑
j,k,l

α̂jklBj(x1)Bk(x2)Bl(t) dx2dx1

=
∑
j,k,l

α̂jklBl(t)︸ ︷︷ ︸
bl

∫
x1

Bj(x1) dx1︸ ︷︷ ︸
a1j

∫
x2

Bk(x2) dx2︸ ︷︷ ︸
a2k

(6.26)
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where vectors a1 and a2 contain the area under each basis function in each spatial

dimension respectively and vector b contains the result of evaluating each temporal

basis function at time t i.e. the time at which the mass is to be computed.

In the model construction, Kronecker products are used to obtain the structure required

to model the spatio-temporal surface. This methodology can also be applied here. The

Kronecker product of the three vectors; a1, a2 and b can be denoted as a = a1⊗a2⊗b;

thus, Equation 6.26 can be re-expressed as

∫
x1

∫
x2

ŷ dx2dx1 =
∑
j,k,l

α̂jklBl(t)︸ ︷︷ ︸
bl

∫
x1

Bj(x1) dx1︸ ︷︷ ︸
a1j

∫
x2

Bk(x2) dx2︸ ︷︷ ︸
a2k

=
M∑
m=1

α̂mam

(6.27)

where M = m1 ×m2 ×m3.

Therefore, the objective function to be minimised is:

φVM =var

(∫
x1

∫
x2

ŷ dx2dx1

)
=var

(
M∑
m=1

α̂mam

)

=
M∑
p=1

M∑
q=1

apaqcov (α̂p, α̂q)

=a>Cα̂|ya = tr
(
aa>Cα̂|y

)
(6.28)

where Cα̂|y[p, q] = cov (α̂p, α̂q). The optimisation procedure seeks to find, for a fixed

set size w and new sampling time t0, the set of wells which minimise the expression in

Equation 6.28.

6.4 Integrated Prediction Variance (IV) Objective Func-

tion

For the IV criterion, the optimal design is found by minimising,
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φIV =

∫
x1

∫
x2

var(ŷ(x1, x2)) dx2dx1, (6.29)

where again, the integral is computed only over the spatial dimensions. From here in

ŷ(x1, x2) is denoted by ŷ.

6.4.1 IV Objective Function - Spatial Models

Kriging

Using the spatial Kriging model notation in Section 6.3.1, the integrated variance can

be expressed as follows:

∫
x1

∫
x2

var(ŷ) dx2dx1 =

∫
x1

∫
x2

var

(
µ̂y +

n∑
i=1

αi(yi − µ̂y)

)
dx2dx1

=

∫
x1

∫
x2

var

(
n∑
i=1

αiyi

)
dx2dx1

=

∫
x1

∫
x2

n∑
i=1

n∑
j=1

αiαjcov(yi, yj) dx2dx1

=

n∑
i=1

n∑
j=1

cov(yi, yj)

∫
x1

∫
x2

αiαj dx2dx1.

(6.30)

Denoting (K−1)i• = m>i , the integral of the product of the Kriging weights can be

decomposed as follows:

∫
x1

∫
x2

αiαj dx2dx1 =

∫
x1

∫
x2

(K−1)>i•c0 · (K−1)>j•c0 dx2dx1

=

∫
x1

∫
x2

m>i c0 ·m>i c0 dx2dx1

=

∫
x1

∫
x2

∑
k

mikc0k ·
∑
l

mjlc0l dx2dx1

=
∑
k

∑
l

mikmjl

∫
x1

∫
x2

c0kc0l dx2dx1

=
∑
k

∑
l

mikmjlC[k, l]

=m>i Cmj ,

(6.31)
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where C[k, l] =
∫
x1

∫
x2

c0kc0l dx2dx1. Computation of this double integral is dependent

on the chosen covariance function. A closed form expression is not always available, for

example in the case of a Matérn covariance function, and thus numerical integration is

needed.

The objective function to be minimised, using a spatial Kriging model, is then:

φIV =

∫
x1

∫
x2

var(ŷ) dx2dx1

=

w∑
i=1

w∑
j=1

cov(yi, yj)m
>
i Cmj .

(6.32)

The optimisation procedure seeks to find, for a fixed set size, w, the set of wells which

minimise the expression in Equation 6.32. Historical data are used to estimate the

covariance function parameters, θ.

P-splines

Using the spatial p-spline model discussed in Section 6.3.1, the integrated variance of

the prediction can be derived as:

∫
x1

∫
x2

var(ŷ) dx2dx1 =

∫
x1

∫
x2

var

m1∑
j=1

m2∑
k=1

α̂jkBj(x1)Bk(x2)

 dx2dx1

=

∫
x1

∫
x2

m1∑
j,l=1

m2∑
k,m=1

Bj(x1)Bk(x2)Bl(x1)Bm(x2) cov(α̂jk, α̂lm) dx2dx1

=

m1∑
j,l=1

m2∑
k,m=1

cov(α̂jk, α̂lm)

∫
x1

Bj(x1)Bl(x1) dx1

∫
x2

Bk(x2)Bm(x2) dx2

=tr
[
Cα̂|y(B̃1 ⊗ B̃2)

]
(6.33)

where,

B̃1[j, l] =

∫
x1

Bj(x1)Bl(x1) dx1 and B̃2[k,m] =

∫
x2

Bk(x2)Bm(x2) dx2.

Thus the objective function to be minimised is,
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φIV =

∫
x1

∫
x2

var (ŷ) dx2dx1

=tr
[
Cα̂|y(B̃1 ⊗ B̃2)

]
,

(6.34)

where Cα̂|y[p, q] = cov(α̂p, α̂q). The optimisation procedure seeks to find, for a fixed set

size w, the set of wells which minimise the expression in Equation 6.34.

6.4.2 IV Objective Function - Spatio-temporal Models

Kriging

Using the spatio-temporal Kriging model notation from Section 6.3.2, the integrated

variance of the prediction can be computed:

∫
x1

∫
x2

var(ŷ) dx2dx1 =

∫
x1

∫
x2

var

(
µ̂y +

n∑
i=1

αi(yi − µ̂y)

)
dx2dx1

=

∫
x1

∫
x2

var

(
n∑
i=1

αiyi

)
dx2dx1

=

∫
x1

∫
x2

n∑
i=1

n∑
j=1

αiαjcov(yi, yj) dx2dx1

=

n∑
i=1

n∑
j=1

cov(yi, yj)

∫
x1

∫
x2

αiαj dx2dx1.

(6.35)

Denoting (K−1)i• = m>i , the integral of the product of the Kriging weights can be

decomposed as follows:

∫
x1

∫
x2

αiαj dx2dx1 =

∫
x1

∫
x2

(K−1)>i•c0 · (K−1)>j•c0 dx2dx1

=

∫
x1

∫
x2

m>i c0 ·m>j c0 dx2dx1

=

∫
x1

∫
x2

∑
k

mikc0k ·
∑
l

mjlc0l dx2dx1

=
∑
k

∑
l

mikmjl

∫
x1

∫
x2

c0kc0l dx2dx1

=
∑
k

∑
l

mikmjlC[k, l]

=m>i Cmj

(6.36)
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where

C[k, l] =

∫
x1

∫
x2

c0kc0l dx2dx1

=Cy(t0 − tk;θt)Cy(t0 − tl;θt)
∫
x1

∫
x2

Cy(s0 − sk;θs)Cy(s0 − sl;θs) dx2dx1.

(6.37)

Computation of this double integral is dependent on the chosen covariance function.

A closed form expression is not always available, for example in the case of a Matérn

function, and thus numerical integration is needed.

The objective function to be minimised, using a spatio-temporal Kriging model, is then:

φIV =

∫
x1

∫
x2

var(ŷ) dx2dx1

=

w∑
i=1

w∑
j=1

cov(yi, yj)m
>
i Cmj .

(6.38)

The optimisation procedure seeks to find, for a fixed new sampling time t0 and set size

w, the set of wells which minimise the expression in Equation 6.38. Historical data are

used to estimate the covariance function parameters, θs and θt, and µ̂y.

P-splines

Using the formula for the fitted values of a spatio-temporal p-spline model from Section

6.3.2, the integrated variance of the prediction can be derived as:
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∫
x1

∫
x2

var(ŷ) dx2dx1 =

∫
x1

∫
x2

var

∑
j,k,l

α̂jklBj(x1)Bk(x2)Bl(t)

 dx2dx1

=

∫
x1

∫
x2

m1∑
j,m

m2∑
k,n

m3∑
l,o

Bj(x1)Bk(x2)Bl(t) ·

·Bm(x1)Bn(x2)Bo(t) cov(α̂jkl, α̂mno) dx2dx1

=

m1∑
j,m

m2∑
k,n

m3∑
l,o

cov(α̂jkl, α̂mno) ·Bl(t)Bo(t)
∫
x1

Bj(x1)Bm(x1) dx1 ·

·
∫
x2

Bk(x2)Bn(x2) dx2

= tr
[
Cα̂|y(B̃1 ⊗ B̃2 ⊗ B̃3)

]

(6.39)

where

B̃1[j,m] =

∫
x1

Bj(x1)Bm(x1) dx1 B̃2[k, n] =

∫
x2

Bk(x2)Bn(x2) dx2

B̃3[l, o] = Bl(t)Bo(t).

Thus the objective function is

φIV =

∫
x1

∫
x2

var (ŷ) dx2dx1

=tr
[
Cα̂|y(B̃1 ⊗ B̃2 ⊗ B̃3)

] (6.40)

where Cα̂|y[p, q] = cov(α̂p, α̂q). The optimisation procedure seeks to find, for a fixed

set size w and new sampling time t0, the set of wells which minimise the expression in

Equation 6.40.

For the spatial and spatio-temporal p-spline models, due to low estimates of the smooth-

ing parameter λ, numerical instabilities were experienced when using the frequentist

formulation of Cα̂|y detailed in Equation 2.21. To ensure robust and reliable results, the

Bayesian formulation of this covariance was used instead. The Bayesian formulation of

Cα̂|y is shown up to a multiplicative constant in Equation 6.41; more detail is given in

Section 2.3.2:
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Cα̂|y ∝
(
B>B + λD>D

)−1
. (6.41)

For the spatio-temporal model the two smoothing parameter p-spline model, introduced

in Chapter 4, was used.

From the derivations of both objective functions it is apparent that neither of them

depend on the values observed in earlier sampling events; only the spatio-temporal

models depend on the locations at which earlier samples were taken. However, the

previously observed data are used to estimate the parameters contained in each of the

models. During the design optimisation process, the uncertainty associated with the

estimated parameters is not accounted for and it is assumed that the models used do

not exhibit ballooning in their predictions.

6.5 Simulation Studies

The second half of this chapter presents the results of four simulation studies that were

conducted using the objective functions discussed in the previous sections. The first

study seeks to identify general trends in the sampling designs chosen by each objective

function. The second study investigates the effect of well-specific sampling frequency on

the sampling designs chosen for the next event. The final two studies use the objective

functions and the prediction variance to alter the well network by considering the addi-

tion of a new well and the removal of an existing well. In these studies, the sampling

design optimisations are constrained by the following three restrictions:

1. It is assumed that the monitoring well network is in place and fixed,

2. The number of wells to be sampled in the next event is also fixed,

3. The time of the next sampling event is predetermined.

Obviously, by the nature of the spatial models, knowing the time of the next sampling

event is redundant and hence restriction (3) is irrelevant for these models.
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The primary aim of the following studies is to try and determine the most suitable

locations to take samples, given the restrictions, that will result in gaining the most

knowledge about the study region by minimising the objective functions.

6.5.1 Data Simulation

To assess the optimal sampling designs chosen by each model and objective function,

groundwater data were simulated from a PDE using a groundwater flow and contam-

inant transport model. Two network designs were used for this study, each made up

of 14 monitoring wells. These will be referred to as ‘Design 1’ and ‘ Design 2’ respec-

tively. These designs were chosen as Design 1 contains clusters of closely positioned

wells whereas Design 2 contains large areas with no well coverage. Figure 6.1 illustrates

the simulated PDE at four time points, along with the two well networks.
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Figure 6.1: True surface simulated from the PDE at times t ∈ {0.1, 0.4, 0.7, 1}. The
wells, from Design 1, contained within the white circle are the cluster that are discussed

in Section 6.5.3.

Once the PDE had been simulated it was interpolated at 40 time points and the two sets

of well locations to give observed data. Additive noise was then added. Since most data

obtained from groundwater monitoring sites contains several missing values, a random

25% of the observed data were removed before the study was carried out. The data

were then subsetted to only include observations from the first 20 time points. Results
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for Design 1 will be presented here, with the results for Design 2 being presented in

Appendix D.

6.5.2 Objective Functions in Action

To compare the designs chosen by each model (spatial p-splines, spatial Kriging and

spatio-temporal p-splines) and objective function combination, three proportions (25%,

50% and 75%) of the total number of wells were optimised for the next sampling event.

For the spatio-temporal model the time of the next sampling event was chosen to be 5%

of the temporal range of the current data into the future.

Designs for Spatial Models

Spatial p-splines and Kriging were used for optimising sampling designs using the two

proposed objective functions. When using the p-splines model degree three basis func-

tions were used with a first order difference penalty. For the Kriging model, a Matérn

covariance function was used with κ = 2. Figures 6.2 and 6.3 show the optimal designs

for each objective function for the spatial p-splines and Kriging models respectively.

For the spatial p-splines model, as the proportion of wells being optimised increases

the designs chosen by each objective function become more similar, with the designs

for 75% of the wells being the same for both objective functions. When optimising for

25% of the wells, both designs select wells spaced out across the study region whereas

for 50% optimisation, the VM design selects more wells near the centre of the study

region compared with the IV design. When wells are closely positioned i.e. those circled

in Figure 6.1, both objective functions only select at most one of these wells in their

optimal designs. This is also evident in the cluster located directly above the circled

cluster.

The designs optimised using spatial Kriging differ significantly from those of the spatial

p-splines model. When optimising for 25% of the wells, both objective functions select

the same 4 wells positioned around the perimeter of the region. Similar results are seen

when optimising for 50% of the wells using the VM objective function. On the contrary,

for this optimisation, the IV objective function favours wells in the centre. When using
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Figure 6.2: Optimal designs for the integrated variance (IV) and variance of the mass
(VM) objective functions using a spatial p-splines model when optimising for three

proportions of the total number of wells (25%, 50% and 75%) using Design 1.
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75% of the wells, both objective functions optimal wells are located primarily to the left

of the study region.
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Figure 6.3: Optimal designs for the integrated variance (IV) and variance of the
mass (VM) objective functions using a spatial Kriging model when optimising for three

proportions of the total number of wells (25%, 50% and 75%) using Design 1.

Tables 6.1 and 6.2 cross-tabulate the objective function values for each optimal design

for the spatial p-splines and Kriging models respectively. Bold values indicate the design

with the minimum of each objective function i.e. across each row in each subsection.
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Table 6.1: Cross-tabulation of the objective function values for each objective func-
tions optimal design when optimising for 25%, 50% and 75% of the total number of
wells using a spatial p-splines model using Design 1. Bold entries indicate the design

with the minimum of each objective function.

Optimal Design

25% 50% 75%

VM IV VM IV VM IV

Value
VM 416011 464250 180109 234187 106966 106966

IV 10164 9980.6 7388.3 7210.9 5597 5597

Table 6.2: Cross-tabulation of the value of the objective functions for each objective
functions optimal design when optimising for 25%, 50% and 75% of the total number
of wells using a spatial Kriging model using Design 1. Bold entries indicate the design

with the minimum of each objective function.

Optimal Design

25% 50% 75%

VM IV VM IV VM IV

Value
VM 188980 188980 372796 442309 547669 550379

IV 2491.9 2491.9 4388 4268 6057.7 5991.1

For both spatial models, the fact that all of the bold values lie on the main diagonal

of each subsection indicates that the minimum value of the objective function is seen

in the design optimised using that objective function, when the optimal designs differ

between objective functions. This seems intuitive, but it also highlights that the choice of

objective function matters and should be based on what the practitioner wants to learn

from the study. If the interest is in minimising the prediction variance i.e. accurately

estimating the state of the whole study region, then the design should be optimised using

the IV objective function. Whereas if the primary interest is in accurately quantifying

the total contaminant mass then the VM objective function should be used. Looking

at optimising 50% of the wells, the VM objective function is approximately 20% lower

for the design optimised using the VM objective function compared with the design

optimised using the IV objective function. Similar results can be seen for the Kriging

optimal design for 50% of the wells. By using a design optimised using the VM objective

function, the variance of the mass is 15% lower than that of the design optimised using

the IV objective function. As the proportion of wells being optimised increases, the
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difference in the objective function values between designs reduces due to the designs

covering more of the study region and thus providing more information. The differences

between designs are also not as extreme for the IV objective function, with the values

for each design only differing at most by ∼ 2.5% for both spatial models.

Designs for a Spatio-temporal Model

In a similar manner to the spatial models, a spatio-temporal p-splines model was used to

optimise sampling designs using the two objective functions. As previously mentioned

the time of the next sampling event was predefined (∼ 5% of the current temporal range

into the future). The two smoothing parameter spatio-temporal p-splines model was

used with 15 basis functions for the easting and time component and the northing com-

ponent had its number of basis functions scaled by the dimensions of the study region.

Additional basis functions should be added into the temporal component proportionally

to how far into the future the next sampling event will occur. If this is not done, by

their construction, the temporal basis will just be stretched out over the extended tem-

poral domain, reducing the flexibility of the model and potentially over-smoothing the

temporal dimension.

Figure 6.4 shows the optimal designs for each objective function when optimising for

three proportions of the total number of wells (25%, 50% and 75%).

The majority of the wells chosen by each objective function are the same for each pro-

portion of wells being optimised using the spatio-temporal model. The designs using

25% and 50% of the wells differ by only one location, whilst the designs using 75% of

the wells are identical for both objective functions. Looking at the designs using 50% of

the wells, similar to the trends seen in the spatial p-splines designs, the optimal design

chosen using the VM objective function appears to favour wells located in the centre

of the study region over those located around the boundary, whereas the IV objective

function seems to choose wells that cover the study region. The VM function favour-

ing wells near the centre may also be due to the perimeter wells being sampled in the

previous sampling event.

For all three optimisation scenarios only one of the two wells present in the cluster in

the lower half of the network (circled in white in Figure 6.1) are chosen. This was also
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Figure 6.4: Optimal designs for the integrated variance (IV) and variance of the mass
(VM) objective functions using a spatio-temporal p-splines model when optimising for

three proportions of the total number of wells (25%, 50% and 75%) using Design 1.
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the case when using a spatial p-splines model, suggesting that using both wells in the

design provides redundant information.

Comparing the newly selected sampling locations to the 10 wells sampled in the last event

(filled orange wells), when optimising for 25% of the wells, both objective functions select

3 of the 4 unsampled wells from the previous event resulting in only one well being left

unsampled across the two sampling events. Similar results are seen when optimising for

50% of the wells. Finally, when optimising for 75% of the wells, the design chosen by

both objective functions ensures that all 14 wells are sampled across the two sampling

events.

Table 6.3: Cross-tabulation of the value of the objective functions for each objective
functions optimal design when optimising for 25%, 50% and 75% of the wells using a
spatio-temporal p-splines model for Design 1. Bold entries indicate the design with the

minimum of each objective function.

Optimal Design

25% 50% 75%

VM IV VM IV VM IV

Value
VM 40200 40322 39358 36416 38837 38837

IV 2396.7 2395.9 2374.5 2373.6 2355.5 2355.5

In a similar manner to the spatial models, the objective functions were cross-tabulated

for each design for the spatio-temporal p-splines model. Again, the value of the objective

function was lowest for the design optimised using the corresponding objective function.

The increase in the objective function by using the converse design is not as substantial as

it was for the spatial models, with the largest increase being ≤ 0.3% (optimising for 25%

of the wells using the VM objective function). This is likely due to the spatio-temporal

model being able to carry information forward from earlier sampling events.

6.5.3 The Effect of the Previous Sampling Frequency

Focusing only on the spatio-temporal p-splines model, since the time to the next sam-

pling event has no influence on the sampling design chosen using a spatial model, it was

of interest to determine whether the previous well-specific sampling frequency had any

influence on the optimal design chosen for the next sampling time.
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To assess this, three new datasets were simulated from Design 1. Each dataset contained

two samples in the first 6 time points from 7 of the 14 wells (‘low frequency wells’)

and the other 7 wells were randomly sampled 14 times over the 20 sampling periods

(‘frequently sampled wells’). The first dataset contained 7 randomly selected wells in

the ‘low frequency well’ set. This dataset was used to initially determine whether the

‘low frequency wells’ would be favoured over the previously more frequently sampled

wells for the next sampling event. The remaining two datasets assessed the effect the

cluster of wells in the lower half of the plot (circled in white in Figure 6.1) had on the

chosen design based on their sampling frequency. The second dataset contained both

wells from the cluster in the ‘low frequency well’ set. This dataset was designed to

determine whether both wells, which provide very similar information, would be chosen

for the next sampling event or if only one would be chosen. Finally, the third dataset

included only one of the two wells from the cluster in the ‘low frequency well’ set. This

dataset was used to determine whether the close spatial proximity of the wells had any

influence on the well in the ‘low frequency well’ set being chosen in the design for the

next sampling event, given there was already recent information in this region from the

well in the ‘frequently sampled well’ set.

Each of the datasets were used along with spatio-temporal p-spline models and the two

objective functions to optimise the sampling design for the next time point. Figures 6.5,

6.6 and 6.7 show the optimal designs for each objective function and dataset respectively

when optimising for seven wells.
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Figure 6.5: Optimal design of seven wells using the dataset containing seven randomly
selected wells in the ‘low frequency well’ set i.e. first dataset.
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From Figure 6.5 it is apparent that both objective functions favour wells for the next

sampling event which have not been sampled recently when the first dataset has been

observed. This is evident since all seven wells in the ‘low frequency well’ set of this

dataset were selected as the optimal design for the next sampling period by both objec-

tive functions.
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Figure 6.6: Optimal design of seven wells using the dataset containing both of the
clustered wells in the ‘low frequency well’ set i.e. second dataset.

Optimal designs for the second dataset, where both of the clustered wells were in the

‘low frequency well’ set, differed slightly for each objective function. The IV objective

function included all of the ‘low frequency wells’ in its design, whereas, the VM objective

function selected six wells from the ‘low frequency well’ set, with only one from the clus-

ter, and instead of selecting the other well in the cluster, selected one of the ‘frequently

sampled wells’ in its optimal design.
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Figure 6.7: Optimal design of seven wells using the dataset containing one of the
clustered wells in the ‘low frequency well’ set i.e. third dataset.

For the final dataset, where one of the two wells in the cluster is included in the ‘low

frequency well’ set and the other is not, both objective functions again select all of the

wells in the ‘low frequency well’ set as their optimal design for the next sampling event.

The results of this study indicate that previous well-specific sampling frequency does

have an influence on the design chosen for the next sampling event by both the VM

and IV objective functions. This is evident from almost all combinations of dataset

and objective function choosing the wells in the ‘low frequency well’ set as the optimal

design for the next sampling event. The only discrepancy from this is the VM objective

function only selecting one of the two clustered wells in its next design when using the

second dataset which contains both wells in the cluster in its ‘low frequency well’ set.

Instead, this objective function opts for a well that provides more coverage of the study

region.

6.5.4 Increasing the Time to the Next Sampling Event

The differences between using a spatio-temporal model and a spatial model to optimise

the design for the next sampling event become negligible as the time to the next event

increases. This can be shown theoretically for a Kriging model with relative ease.
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Spatio-temporal Kriging Model

In Section 2.4.5 of Chapter 2, the covariance of the joint distribution of a new observation

at location, s0, and time, t0, and the current observations was defined as,

C =

 k c>0

c0 K

 (6.42)

where

k = Cy(t0 − t0;θt) · Cy(s0 − s0;θs),

c0 = (Cy(t0 − t1;θt) · Cy(s0 − s1;θs), . . . , Cy(t0 − tm;θt) · Cy(s0 − sn;θs)),

K = Σ(t) ⊗Σ(s).

Here, Σ
(s)
ij = Cy(||si − sj ||;θs) is the spatial covariance matrix, θs = (σ2

s , τ
2
s , φs) are

the spatial covariance parameters, Σ
(t)
ij = Cy(||ti − tj ||;θt) is the temporal covariance

matrix, θt = (σ2
t , τ

2
t , φt) are the temporal covariance parameters and Cy() is a covariance

function from Section 2.4.2.

For ease of understanding, consider the simple example where there has been one sam-

pling event at time t1 and the next sampling event is to happen at time t2. In this

example, let C take the form,

C =

K22 K12

K>12 K11

 (6.43)

where

K22 = Σ
(t)
2 ⊗Σ

(s)
2 = σ2

t I⊗Σ
(s)
2 ,

K12 = Σ
(t)
12 ⊗Σ

(s)
12 ,

K11 = Σ
(t)
1 ⊗Σ

(s)
1 = σ2

t I⊗Σ
(s)
1 .

Here, Σ
(s)
1 is the spatial covariance matrix for the samples taken at time t1 and similarly

Σ
(s)
2 is the spatial covariance matrix for the samples taken at time t2. The corresponding

temporal covariance matrices, Σ
(t)
1 and Σ

(t)
2 , are equal to σ2

t I since ||t1 − t1|| = 0 and
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||t2 − t2|| = 0. Finally, Σ
(t)
12 and Σ

(s)
12 are the temporal and spatial covariances between

the observations at times t1 and t2 respectively.

As the time between sampling events increases i.e. as ||t1− t2|| −→ ∞, the entries in Σ
(t)
12

tend towards 0, resulting in the entries of K12 tending towards 0 and thus

C −→

K22 0

0 K11

 (6.44)

i.e. the sampling events becoming temporally independent. This is proportionally equiv-

alent to two spatial Kriging arguments at times t1 and t2 if the spatial covariance pa-

rameters are the same for the spatial and spatio-temporal models.

Spatio-temporal P-splines Model

Establishing independence for large time separation in a spatio-temporal p-splines model

is slightly more challenging due to the difference penalty. To begin with, consider the

unpenalised spatio-temporal regression spline model made up of m B-spline basis func-

tions for each spatial and temporal component i.e. the basis functions matrix, B, is of

dimension n ×m3. To demonstrate this case, consider a spatio-temporal dataset that

contains two temporal clusters of observations, with the vectors of time points within

these clusters are denoted by t1 and t2. For now, assume a large time window between

max t1 and min t2, this suggests there will be a block of several temporal basis functions

between these two time point that are ‘inactive’ i.e. the corresponding columns of B

will be equal to 0, because there are no data in this region. This idea is shown in Figure

6.8.



Chapter 6. Monitoring Network Design 146

0.0

0.2

0.4

0.6

0 max(t1) 25 50 75 min(t2) 100
t

B
(t

)

Figure 6.8: Temporal B-spline basis functions with two observed time points. Dashed
red lines indicate ‘active’ basis functions (i.e. those positioned over observations).

Given B is constructed by row-wise Kronecker products of the marginal bases, B will

be made up of blocks containing the Kronecker product of each temporal basis function

and the spatial basis functions i.e.

B =

Bt1 0 0

0 0 Bt2


where Bt1 is made up of the Kronecker product of the four1 ‘active’ temporal basis

functions, over the observations at max t1, and the spatial basis. Bt2 will be similarly

constructed but with the ‘active’ temporal basis functions over the observation at min t2.

The block of 0s between Bt1 and Bt2 are the ‘inactive’ basis functions where there are

no data i.e. are equal to 0.

To obtain the basis coefficients, the least squares estimator is used i.e.,

α̂ = (B>B)−1B>y =


(
B>t1Bt1

)−1
B>t1 0

0 0

0
(
B>t2Bt2

)−1
B>t2

y (6.45)

Since there is a block on ‘inactive’ temporal basis functions positioned between the

‘active’ temporal basis functions at the two sampling events, the coefficients for each

block of ‘active’ basis functions can be separated and determined independently as shown

in Equation 6.45. Thus indicating that as min t2 − max t1 → ∞ the sampling design

1Here degree 3 B-splines are being used, so four B-splines are non-zero at each observation, see the
beginning of Section 2.2.1
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optimised for time min t2 will become independent of the observations taken at max t1

i.e. a spatial design.

With p-splines, the construction of the penalty term plays an important role in the design

for the spatio-temporal p-splines model tending towards the design for a spatial model.

The penalty will determine how the model will interpolate the ‘gap’ in the temporal

observations. Assuming the two smoothing parameter p-splines model is used, if there

is a first order difference penalty the model will interpolate at a constant mean value

whereas if there is a second order penalty the model will interpolate in a linear trend.

This indicates that there will be a dependence between the two time points and thus

the designs will not be independent. As the temporal smoothing parameter, λrel → 0,

the design from the spatio-temporal model will converge on the spatial models design.

The overall smoothing parameter, λ, will however have a different interpretation due to

the temporal basis functions being included in the estimation of α̂.

6.6 Using the Objective Functions to Change the Well

Network

6.6.1 Adding a New Well to the Network

Expanding the monitoring well network to increase knowledge of a study region is often

of interest but determining the most appropriate location for a new well is difficult.

Given the expense associated with digging and installing a new well, it is of paramount

importance to ensure that the potential knowledge gained from the new well installation

is maximised.

The IV and VM objective functions can be used to determine where a new monitoring

well could potentially be positioned by determining the location that gives the largest

decrease in the current minimum of the objective function. For this study, individually

each pixel was proposed as a location for a new well and each objective function was

calculated using the optimal 10 wells and this ‘new’ location. The difference in the

current minimum of the objective function using the 10 optimal wells and the value

achieved with the addition of this new location was then calculated. For this study only

spatial and spatio-temporal p-splines were used.
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The colour of each pixel in Figures 6.9, 6.10, 6.11 and 6.12 shows the change in value

of each objective function, using the spatial and spatio-temporal p-spline models, when

this pixel is proposed as a new well location along with the optimal 10 monitoring wells.
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Figure 6.9: Change in the VM objective function if each pixel were to be a new well
location along with the current optimal 10 locations using a spatial p-splines model for

Design 1.
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Figure 6.10: Change in the IV objective function if each pixel were to be a new well
location along with the current optimal 10 locations using a spatial p-splines model for

Design 1.
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Figure 6.11: Change in the VM objective function if each pixel were to be a new well
location along with the current optimal 10 locations using a spatio-temporal p-splines

model for Design 1.
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Figure 6.12: Change in the IV objective function if each pixel were to be a new well
location along with the current optimal 10 locations using a spatio-temporal p-splines

model for Design 1.

All of the above figures, i.e. all model and objective function combinations, suggest that

the largest improvement in each objective function i.e. reduction, would be achieved by

placing a well to the left of the centre at the bottom of the study region. Unsurprisingly,

this location is in a region where the distance between neighbouring wells is largest.
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6.6.2 Removing a Well from the Network

Groundwater monitoring well maintenance and sampling can be expensive particularly

when monitoring wells are located in remote regions, thus it is often of interest to scale

down the network to save money. Deciding on the most appropriate well/wells to remove

is difficult and involves a trade off between the cost of maintaining and sampling the

well and the potential amount of information that will be lost if the well is removed.

To determine which well would be the ‘best’ to remove, in the sense that it gives the

smallest increase in prediction variance, the change in prediction variance that removing

each well would cause was assessed. Using the current network, initially all (n) wells

were proposed to be sampled in the next sampling event and the prediction variance

was calculated, this gives a reference point for the change in variance as each well is

removed. Next, iteratively n− 1 wells were proposed to be sampled at the same future

sampling time and the prediction variance was again calculated. The change in the total

prediction variance was then computed (shown in the strips at the top of each plot in

Figures 6.13 and 6.14) and plotted to give a heat map, shown in Figures 6.13 and 6.14

for spatial and spatio-temporal p-splines respectively. The well which gives the smallest

increase in prediction variance when removed from the network is the well that would

be proposed to be removed.

The spatial p-splines model begins by indicating that removing one of the two wells in

the cluster at the bottom would result in the smallest increase in prediction variance.

The next smallest increase in prediction variance is achieved by removing one of the two

wells in the cluster at the top right. This is unsurprising given the close proximity of

the clustered wells and suggests that one well in these locations is enough. The wells

that, when removed, result in the largest increase in prediction variance are located at

the boundary, where they do not have any neighbouring wells on one side. Removing

these wells removes all information about what is happening at the boundary and hence

the large increase in prediction variance.

The order of well insignificance is very different for the spatio-temporal model compared

with the spatial model due to the model being able to utilise data from earlier sampling

events. Figure 6.14 indicates the first three wells with the smallest change in prediction

variance, when removed from the network, are located around the perimeter of the study
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region. On the contrary, the four wells which cause the greatest increase in prediction

variance are those which were not sampled in the previous sampling event. These wells

are also positioned away from the edges of the study region and have distant neighbours

causing the increase in prediction variance, when they are removed, to be exaggerated.

Interestingly, removing one of the two clustered wells does not give the smallest reduction

in prediction variance which is what may have been expected. However one of these wells

was not sampled in the previous event, causing an increase in uncertainty. The change in

prediction variance as each well is removed is very small compared with the changes seen

when the spatial model was used. This again demonstrates the ability of spatio-temporal

models to carry forward information from previous sampling events. Obviously, as the

time to the next event increases, the less useful previously seen information will be.

6.7 Summary

Two design objective functions have been presented and assessed on two designs (De-

sign 1 here and Design 2 in Appendix D), namely the Variance of the plume Mass (VM)

and the Integrated Prediction Variance (IV), for spatial and spatio-temporal p-spline

models. Objective functions similar to the VM function have already been discussed in

the literature and are most commonly used with Kriging type models here this objec-

tive function was also presented for spatial and spatio-temporal p-spline models. The

IV objective function is also an already well established design optimisation function.

However, again, this is mainly used with Kriging models and here this objective function

is also presented for spatial and spatio-temporal p-spline models.

Subject to the imposed restrictions of a fixed well network and a fixed number of samples

that can be taken, the resulting designs from the objective functions differ both between

functions and models. For the p-spline models, the VM objective function appears to

favour wells located in the centre of the study region whereas the IV objective function

tends to choose wells that give a good spatial coverage of the study region. The designs

chosen by the spatio-temporal model also appear to try to ensure that as many wells as

possible were sampled between the current and previous sampling events.

Tables 6.1, 6.2 and 6.3 indicated that the objective function should be chosen carefully

and reflect what is desired to be learned about the study region e.g. if the interest is



Chapter 6. Monitoring Network Design 154

in accurately estimating the plume mass the VM objective should be chosen for design

optimisation.

The effect of only sampling some of the wells a few times at the beginning of the sampling

period was also investigated for each of the objective functions. It was found that wells

which had not been sampled recently were favoured to be sampled in the next sampling

event over wells which had been sampled more recently and frequently.

Finally the objective functions were used to determine how the network could be altered

i.e. either by adding or removing wells. Each of the p-spline models and both objective

functions suggested the same location for a new monitoring well for the dataset and well

network used in the simulation study. Both Design 1 used here and Design 2, presented

in Appendix D, indicated that the ‘best’ location was situated in a region where there

are no wells located nearby. This is unsurprising since if there are no observed data in

these locations the predictions made here will be most uncertain. To determine which

well could be removed from the network, the prediction variance was used. The well

that, when removed, would result in the smallest increase in prediction variance was seen

as the well that could be removed. When using a spatial model, if there were clusters

of wells, removing one of these resulted in the smallest increase in prediction variance.

On the other hand, the spatio-temporal model suggested wells which had been sampled

most recently would cause the smallest increase in prediction variance when removed.

Spatio-temporal models are particularly advantageous when wells have been removed

from the network due to their ability to use previous sampling information to predict

what is going on in the areas where the wells use to be.

When optimising for 25% of the wells, for the network used in this study, this results in

only optimising for 4 of the 14 wells. This is a very small sample size to try and make

robust inference from when using a spatial model which does not take any previously

recorded information into account. Thus, it would be recommended that either a larger

sample be taken to use with the spatial models or a spatio-temporal model be used which

incorporates previous sampling information into its estimations and predictions. This

highlights an advantage of using a spatio-temporal model over a spatial model, with the

spatio-temporal model not requiring as many samples at individual sampling events to

make robust predictions across the study region.



Chapter 7

Sampling Design for Data with

Multiplicative Errors

In Chapter 6, the Integrated Prediction Variance (IV) and Variance of the Mass (VM)

objective functions were presented and formulae were derived to compute them for spa-

tial and spatio-temporal models. While these derivations were being computed, it was

assumed the data being modelled had additive error. However, commonly the error

associated with groundwater quality data is assumed to be multiplicative. In order to

work with the standard modelling methodology set out in this thesis, the response vari-

able is log transformed prior to modelling to give an additive interpretation of the error.

Once a final model has been decided and fitted, the fitted/predicted values are then

transformed back onto the original scale for ease of interpretation.

Log transforming for modelling, then transforming back for interpretation is however,

not appropriate for the proposed design objective functions, because integrals computed

on the log scale cannot simply be transformed back to the original scale. Computing the

objective functions with the log transformed data is sufficient as long as the objective

function is also calculated on the log scale, so that the VM objective function to be

computed is:

φVM = var

[∫
x1

∫
x2

l̂og(y) dx2dx1

]
, (7.1)

and similarly the IV objective function is:

155
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φIV =

∫
x1

∫
x2

var
[
l̂og(y)

]
dx2dx1. (7.2)

However, often it is of interest to compute and interpret the objective function on the

original scale whilst still modelling on the log scale. In this case the VM objective

function to be computed is now:

φVM = var

[∫
x1

∫
x2

exp
(

l̂og(y)
)
dx2dx1

]
, (7.3)

and similarly the IV objective function is:

φIV =

∫
x1

∫
x2

var
[
exp

(
l̂og(y)

)]
dx2dx1. (7.4)

Due to the exponential term inside the integrals, computation of these new objective

functions is difficult. The lognormal distribution can be utilised to aid the computation

of the IV objective function on the original scale given modelling was performed on the

log transformed data. Unfortunately, however, computing the VM objective function

for this scenario is complex, and currently unachievable, thus from here in only the

IV objective function will be discussed. It is worth noting, however, that the optimal

designs chosen by both objective functions are relatively similar.

7.1 The Lognormal Distribution

The lognormal distribution (LN ) is a continuous probability distribution of a random

variable, X whose logarithm, Y = log(X), is normally distributed i.e. Y ∼ N (µ, σ2).

Let Z be a standard normal random variable, then:

X = exp(µ+ σZ) (7.5)

where µ and σ are the mean and standard deviation, respectively, of the logarithm of

X. Thus, by taking logarithms of both sides, the expression above can be redefined as:
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log(X) = µ+ σZ. (7.6)

Since Z is normally distributed, then log(X) is also normally distributed.

The lognormal distribution has probability density function (p.d.f):

fX|µ,σ2 =
1

xσ
√

2π
exp

{
−(log(x)− µ)2

2σ2

}
, (7.7)

shown in Figure 7.1 with parameters µ = 0 and σ2 = 1.

0.0

0.2

0.4

0.6

0 2 4 6 8
x

f(
x)

Figure 7.1: Probability density function of the lognormal distribution with parameters
µ = 0 and σ2 = 1

The mean and variance of the lognormal distribution are expressed respectively as:

E(X) = exp

(
µ+

σ2

2

)
(7.8)

var(X) = exp(2µ+ σ2)(exp(σ2)− 1). (7.9)
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7.2 Predictive Distribution of y

Up until now, for the spatial and spatio-temporal p-spline models, having a formula for

the covariance of the basis coefficients, Cα̂|y, up to a multiplicative constant has been

sufficient for computing the integrated prediction variance when assuming additive error

on the data. However, in order to obtain an expression for the lognormal variance that

can be subsequently integrated when working with data with multiplicative error, the

full predictive distribution of y is required. This is necessary as the variance and mean

of this distribution are embedded within an exponential function.

For a given matrix of basis functions, B̃ ∈ Rr×m computed over a set of r prediction lo-

cations, the predicted response can be described as Ỹ|α, σ2 ∼ N (B̃α, σ2Ir). Therefore,

the predictive distribution, using the distributional assumptions given in Section 2.3.2,

can be shown to be, for Ỹ = ỹ,

f
Ỹ|Y =

∫
f
Ỹ|α,σ2fα,σ2|y,Mλ

dαdσ2

=

∫
N (B̃α, σ2Ir)×NIG(µ∗,V∗, a∗, b∗) dαdσ2

=MVSt2a∗
(

B̃µ∗,
b∗

a∗

(
I + B̃V∗B̃>

))
.

(7.10)

This is multivariate Student-t distribution, MVSt, with p.d.f:

f
Ỹ|Y =

Γ ((ν + p)/2)

(πν)p/2Γ(ν/2)|Σ|1/2

[
1 +

1

ν
(ỹ − µ)>Σ−1(ỹ − µ)

]
. (7.11)

The parameters of this distribution,

• Location, µ

µ = B̃µ∗

• Shape, Σ

Σ =
b∗

a∗

(
I + B̃V∗B̃>

)
• Degrees of Freedom, ν

ν = 2a∗.
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where, for a p-splines model:

V∗ = (B>B + λD>D)−1

µ∗ = V∗(B>y)

a∗ = a+
n

2

b∗ = b+
1

2
y>
[
In −B(B>B + λD>D)−1B>

]
y.

(7.12)

For a more detailed derivation, see Equations 2.46.

It is well known that as ν −→ ∞, the multivariate Student-t Distribution becomes the

multivariate normal distribution with mean µ and variance Σ, see Bishop [2006] and

Kotz and Nadarajah [2004]. Figure 7.2 shows this concept in action with the density of

a bivariate normal distribution overlayed with the bivariate Student-t distribution, with

increasing degrees of freedom (ν).

As the degrees of freedom increase, the density function of the multivariate Student-t

tends towards the multivariate normal. By ν = 30 the densities are almost identical.

DF = 20 DF = 30

DF = 5 DF = 10

−2 −1 0 1 2 −2 −1 0 1 2

−2

−1

0

1

2

−2

−1

0

1

2

X1

X
2

Distribution
Multivariate Normal

Multivariate t

Figure 7.2: Bivariate normal densities overlayed with bivariate student-t densities
with increasing degrees of freedom ν = 5, 10, 20, 30.
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In the case of the predictive distribution presented here for a p-splines model, ν = 2a∗

with a∗ = a+ n
2 . For the spatial models, the number of observations, n, is almost always

≥ 10, therefore, regardless of the value of a, ν will be ≥ 10, indicating the multivariate

normal distribution can potentially be used to approximate the multivariate Student-t

distribution. This approximation is more robust for spatio-temporal models where the

number of observations used to build the model is generally always ≥ 100, therefore

again, regardless of a, ν will be ≥ 100. Hence, the multivariate normal distribution

with mean, µ and variance, Σ, can be used to approximate the multivariate Student-t

distribution.

Making use of this idea, the approximate full predictive distribution of Y is then,

Ỹ|Y,α, σ2 ∼ N
(

B̃α̂,
b∗

a∗

(
I + B̃V∗B̃>

))
. (7.13)

7.3 IV Objective Function using the Lognormal Variance

From the definition of the lognormal, given in Section 7.1, if it is assumed

log(Ỹ|Y,α, σ2) ∼ N
(

B̃α̂,
b∗

a∗

(
I + B̃V∗B̃>

))

then,

Ỹ|Y,α, σ2 ∼ LN
(

B̃α̂,
b∗

a∗

(
I + B̃V∗B̃>

))
. (7.14)

Using the formulae for the mean and variance of a lognormal distribution, given in

Equations 7.8 and 7.9 respectively, the mean and the variance of Ỹ|Y,α, σ2 are:

• Mean:

exp

B̃α̂+

b∗

a∗

(
I + B̃V∗B̃>

)
2

 (7.15)
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• Variance:

exp

(
2B̃α̂+

b∗

a∗

(
I + B̃V∗B̃>

))(
exp

(
b∗

a∗

(
I + B̃V∗B̃>

))
− 1

)
. (7.16)

To compute the integrated variance i.e. the integral of Equation 7.16, ideally the formula

would be decomposed and simplified into smaller more manageable sections in a similar

manner to the derivations in Section 6.4. However, due to the spline functions being

embedded within exponential functions, a closed form expression is not available and

thus numerical integration is required.

Comparing Equation 7.16, which is to be integrated, with the integrated variance func-

tions for spatial and spatio-temporal p-spline models given in Equations 6.34 and 6.40

respectively, they are clearly very different. The most important difference is the fact

that the lognormal variance depends on what has previously been seen through the fit-

ted values i.e. B̃α̂, whereas the objective functions for data with additive error, shown

in Equations 6.34 and 6.40, only depend on where samples have previously been taken,

through the matrices of basis functions, and not their recorded values.

Based on the formulation of the variance of the lognormal it is expected that the optimal

design will be made up mainly of wells located where the predicted concentrations are

higher.

7.4 Results

Two datasets were considered for this study with differing contaminant plume complex-

ities.

The first, referred to as ‘Dataset 1’, used the same PDE and Design 1, presented in

Section 6.5.1. This plume has a very simple shape and only moves marginally in a

easterly direction. 10% measurement error was added to the observed data on the log

scale to represent multiplicative error. This error value represents noise as a result

of sampling and analytical variations and is based on a comparison of blind duplicate

samples in a large unpublished groundwater quality dataset for a Shell site (personal

communication J. Smith, Shell Global Solutions).
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The second dataset, referred to as ‘Dataset 2’, used PDE2, simulated in Section 4.5.1,

with a well network made up of 14 monitoring wells, shown in Figure 7.3. This plume

travels further than the plume used in Dataset 1 and the direction of travel is south-

westerly. Observations were obtained by interpolating the PDE at these well locations

and 40 time points and, as was done with Dataset 1, a random 25% of the data were

removed. 10% measurement error was added to the data on the log scale to represent

multiplicative error.

The Integrated lognormal Variance objective function (ILNV objective function), and

these two datasets, were used to optimise sampling designs with spatial and spatio-

temporal p-spline models. Modelling was performed on the log transformed response

and design optimisations were carried out for three numbers of wells. For comparison,

the methodology set out in Chapter 6 was also used to optimise designs for the same

number of wells, again using the log transformed response. The primary aim of this study

was to determine whether the optimal designs differ if the objective function is calculated

on the original scale, given the response has been log transformed for modelling (ILNV

objective function), compared with the objective function being calculated on the log

scale (IV objective function), again given modelling was also performed on the log scale.
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Figure 7.3: True surface simulated from the PDE, detailed in Section 4.5.1, at times
t ∈ {0.1, 0.4, 0.7, 1} and the well network used for Dataset 2.
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7.4.1 Design for a Spatial P-splines Model

For the sampling design optimisation using the spatial p-splines model, degree three basis

functions were used with a first order difference penalty. The smoothing parameter was

estimated using the MAP estimate, detailed in Section 2.3.2.

Dataset 1

Figure 7.4 shows the optimal designs when computing the IV objective function on the

log and original scales i.e. using the IV and ILNV objective functions respectively. The

most recent prediction using the spatial p-splines model is displayed in the background

to give an idea of where high concentrations were predicted at the last sampling event.
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Figure 7.4: Optimal designs for the integrated variance (IV) objective function, com-
puted using the lognormal distribution (ILNV objective function) and the methodology
set out in Chapter 6 (IV objective function), when optimising for 25%, 50% and 75%
of the wells using a spatial p-splines model on Dataset 1. The surface beneath the wells

shows the prediction from the previous sampling time.
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The optimal designs, when optimising for all three numbers of wells, differ significantly

depending on whether the objective function is to be computed on the original or log

scales. When using the ILNV objective function, i.e. computing the objective function

on the original scale (filled black circles) the wells located where the contaminant was

predicted to be high are favoured, as anticipated. On the other hand, the optimal

sampling designs for the IV objective function are spread out across the study region

for all three optimisations. For example, when optimising for seven wells (50%), five

of the wells in the ILNV functions optimal design are positioned on the left of the

study region where the contaminant plume was predicted to be. For the IV objective

function, the seven optimal wells are positioned more evenly across the study region

with only two wells being located at the contaminant plume. It is worth remembering

that computation and optimisation of the IV objective function does not depend on the

location or value of any previously seen data.

Table 7.1: Cross-tabulation of the Integrated lognormal Variance (ILNV) and Inte-
grated Variance (IV) objective functions and their corresponding optimal designs for
Dataset 1. Optimisation was carried out for 25%, 50% and 75% of the total number of
wells using a spatial p-splines model, with modelling being performed on the log scale.

Bold entries indicate the design with the minimum of each objective function.

25% 50% 75%

Computation Scale

Original Log Original Log Original Log

Value
ILNV 20573 31053 12411 28172 10125 15027

IV 228.6 203.5 173.6 147.1 133.0 114.3

Table 7.1 cross tabulates each objective function (ILNV and IV) and their corresponding

optimal designs. The analytical results in this table indicate that the scale for which the

objective function is to be calculated on should be taken into account when deciding on

which version of the objective function to use for optimisation. For this design, assuming

computation of the objective function is on the original scale, the integrated prediction

variance for a sampling design optimised taking this into account, i.e. using the ILNV

objective function, is up to ∼ 45% lower compared with the prediction variance for the

sampling design optimised assuming computation is on the log scale i.e. using the IV

objective function.
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Dataset 2

The features of the optimal designs highlighted for Dataset 1 were also present for

Dataset 2, shown in Figure 7.5. As was the case with Dataset 1, the ILNV objective

function favours wells located over the area where the contaminant concentrations were

estimated to be highest in the previous sampling event, in this case the top right corner.

Again, the IV objective function opts for wells that give good spatial coverage of the

region.

Table 7.2 cross-tabulates the ILNV and IV objective functions with their corresponding

optimal designs for Dataset 2. The results for this dataset again highlight the importance

of ensuring that the scale of computation of the objective function is taken into account

when deciding on which version of the IV objective function to use. If interpretation

is to be on the original scale but modelling has been performed on the log scale, the

integrated prediction variances of the sampling designs optimised which take this into

account i.e. using the ILNV function, are up to 40% lower compared with the designs

optimised using the IV function.

Table 7.2: Cross-tabulation of the Integrated lognormal Variance (ILNV) and Inte-
grated Variance (IV) objective functions and their corresponding optimal designs for
Dataset 2. Optimisation is carried out for 25%, 50% and 75% of the total number of
wells using a spatial p-splines model, with modelling being performed on the log scale.

Bold entries indicate the design with the minimum of each objective function.

25% 50% 75%

Computation Scale

Original Log Original Log Original Log

Value
ILNV 10506 21158 6373 10946 4827 5624

IV 383.3 348.1 287.2 245.6 221.0 207.9
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Figure 7.5: Optimal designs for the integrated variance (IV) objective function, com-
puted using the lognormal distribution (ILNV objective function) and the methodology
set out in Chapter 6 (IV objective function), when optimising for 25%, 50% and 75%
of the wells using a spatial p-splines model on Dataset 2. The surface beneath the wells

shows the prediction from the previous sampling time.

7.4.2 Design for a Spatio-temporal P-splines Model

For the sampling design optimisations performed using a spatio-temporal p-splines model,

the time of the next sampling event was fixed at 5% of the current temporal range into
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the future. The model was fitted with 13 basis functions for the easting and temporal

components and the number of basis functions for the northing component was scaled

by the dimensions of the study region. The two smoothing parameter spatio-temporal

p-splines model, presented in Chapter 4, was used along with a first order penalty.

Dataset 1

Figure 7.6 shows the optimal designs when computing the IV objective function on the

original and log scales using Dataset 1 and a spatio-temporal p-splines model.
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Figure 7.6: Optimal designs for the integrated variance (IV) objective function, com-
puted using the lognormal distribution (ILNV objective function) and the methodology
set out in Chapter 6 (IV objective function), when optimising for 25%, 50% and 75%
of the wells using a spatio-temporal p-splines model on Dataset 1. The surface beneath

the wells shows the prediction from the previous sampling time.

The differences that were observed between the designs from the spatial model can also

be seen in the optimal sampling designs from the spatio-temporal model. Although
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the sampling designs for each computation scale differ by a few wells, the positioning

of these differences are important. The sampling designs for the objective function

calculated on the original scale, optimised using the ILNV objective function, clearly

favour wells located on the left of the study region where the contaminant concentrations

are predicted to be higher. In contrast the designs for computation of the objective

function on the log scale, using the IV objective function, are more spread out across

the study region and attempt to ensure all wells are sampled during the current and

previous sampling events.

Table 7.3 cross-tabulates each version of the IV objective function with their corre-

sponding optimal designs. The % reduction in integrated variance between designs is

not nearly as significant for a spatio-temporal model compared with the results from

the spatial model, with the largest difference being ∼ 5%. This is probably due to the

spatio-temporal model carrying forward information from previous sampling events into

the regions where wells, that were not chosen in the selected designs, are located. This

in turn reduces the uncertainty associated with the predictions in these areas. How-

ever Table 7.3 does show that the sampling designs optimised using the ILNV objective

function always have a lower integrated prediction variance when it is computed on the

original scale compared with when it is computed on the log scale i.e. the IV design,

when the designs differ.

Table 7.3: Cross-tabulation of the Integrated lognormal Variance (ILNV) and Inte-
grated Variance (IV) objective functions and their corresponding optimal designs for
Dataset 1. Optimisation is carried out for 25%, 50% and 75% of the total number of
wells using a spatio-temporal p-splines model, with modelling being performed on the
log scale. Bold entries indicate the design with the minimum of each objective function.

25% 50% 75%

Computation Scale

Original Log Original Log Original Log

Value
ILNV 3061.7 3231.1 2956.4 3079.8 2947.4 2947.4

IV 53.3 52.5 51.9 51.0 49.7 49.7
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Dataset 2

The sampling designs optimised for Dataset 2 using the spatio-temporal model showed

similarities to those of the spatial model. Again, wells located near where the con-

taminant plume was predicted to be in the previous event were favoured by the ILNV

objective function, with the 25% and 50% optimisations only choosing wells located in

this region. As was previously seen in Dataset 1, the IV objective function attempts to

obtain samples from all of the wells during the current and previous sampling events.

The cross-tabulation results for Dataset 2 and the spatio-temporal model, shown in

Table 7.4, show similar trends to those previously seen for this model and Dataset 1.

If the objective function is to be interpreted on the original scale whilst modelling is

performed on the log scale, then use of an objective function that reflects this, namely

the ILNV function, reduces the integrated prediction variance by up to 5% compared

with the IV function, which calculates the objective function on the log scale.

Table 7.4: Cross-tabulation of the Integrated lognormal Variance (ILNV) and Inte-
grated Variance (IV) objective functions and their corresponding optimal designs for
Dataset 2. Optimisation is carried out for 25%, 50% and 75% of the total number of
wells using a spatio-temporal p-splines model, with modelling being performed on the
log scale. Bold entries indicate the design with the minimum of each objective function.

25% 50% 75%

Computation Scale

Original Log Original Log Original Log

Value
ILNV 1370.7 1433.4 1323.9 1391.3 1311.7 1333.1

IV 91.5 88.9 89.6 87.2 86.0 86.0

7.4.2.1 The Effect of Previous Sampling Frequency

In Section 6.5.3 of Chapter 6 the effect previous well-specific sampling frequency had on

the next sampling design was investigated. It was found that wells which had not been

sampled recently were favoured over those which had more recent samples. The previous

study, in Section 7.4.2, found that when the Integrated lognormal Variance is used as

the objective function, wells where high concentrations have been predicted are favoured

in the selected design over those where lower concentrations were predicted. Thus, it
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Figure 7.7: Optimal designs for the integrated variance (IV) objective function, com-
puted using the lognormal distribution (ILNV objective function) and the methodology
set out in Chapter 6 (IV objective function), when optimising for 25%, 50% and 75%
of the wells using a spatio-temporal p-splines model on Dataset 2. The surface beneath

the wells shows the prediction from the previous sampling time.
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was of interest to determine whether these ‘high prediction’ wells would still be favoured

if the data being used to build the model contained ‘low frequency wells’, namely wells

where only a few samples were taken at the beginning of the time window. The first

dataset used for the study in Section 6.5.3, where seven wells were randomly allocated

to the ‘low frequency well’ set, was again used here, but this time multiplicative error

was added and the response was log transformed prior to modelling.
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Figure 7.8: Optimal design for the integrated variance (IV) objective function com-
puted using the log-normal distribution and a spatial p-spline model when optimising

for 7 wells using the dataset with a ‘low frequency well’ set.

Figure 7.8 shows the resulting design optimised using a spatio-temporal p-splines model

and the Integrated lognormal Variance objective function. From this plot it is appar-

ent that the ‘low frequency wells’ are not favoured for the next design, with the ‘high

concentration’ wells still being preferred for the next sampling event.

7.5 Summary

Optimising sampling designs for data which are assumed to have multiplicative error

results in designs being chosen that are different from those when the data are assumed

to have additive error, when the objective function is interpreted on the same scale.

Commonly, to allow for modelling data with multiplicative error using standard methods,

the response variable is log transformed to give an additive interpretation of the error.

These models, with the log transformed response, can subsequently be used to optimise

sampling designs. However, the scale on which the design objective function is to be
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computed must be determined prior to the design optimisation, as the resulting designs

differ depending on whether the computation of the objective function is on the original

or log scale.

Assuming multiplicative error on the data and that modelling is performed on the log

scale, when the objective function is calculated on the original scale the optimal design

tends to favour wells located in the region where, in the previous sampling event, con-

centrations of the contaminant were predicted to be highest. This is due to the variance

of the lognormal distribution, which is the predictive distribution, depending on both

the mean and variance of the log transformed response. When the objective function

is to be calculated on the log scale, in the spatio-temporal setting the objective func-

tion only depends on where observations were previously recorded, not their recorded

values and the resulting designs tend to be space filling and favour observations that

were not sampled in the previous event. The results seen in Chapter 6 illustrate this.

In the spatial setting, similar results are seen, with wells where predictions were highest

being favoured when calculating the objective function on the original scale. For the

log scale calculation, previously recorded data are only used to determine the smoothing

parameter and the resulting designs try to give good spatial coverage, as seen in Chapter

6.



Chapter 8

Discussion & Future Work

The main aim of this thesis was to develop spatio-temporal models for groundwater

contamination data that could subsequently be used to optimise sampling designs on

monitoring networks. Methods have been compared, applied and developed to produce

spatio-temporal models that can be efficiently built and two design objective functions

have been presented for optimising sampling designs over a fixed monitoring network for

data with additive and multiplicative errors.

8.1 Spatio-temporal P-spline Models

There are many advantages to using a spatio-temporal model over multiple temporally

independent spatial models. These were demonstrated in the study in Chapter 3, with

the main benefit being the improvement in prediction accuracy and potential reduction

in the amount of data that need to be sampled whilst retaining the predictive accuracy.

In earlier work by Molinari [2014], a single smoothing parameter spatio-temporal p-

splines model was used with the number of basis functions for the temporal dimension

being chosen to reflect the belief that the contaminant concentrations vary more across

space than they do over time. By formulating the model in such a way, linear algebra

methods could be used to efficiently estimate the smoothing parameter. However, decid-

ing on a scaling rule for the number of temporal basis functions is subjective and makes

justification of the one smoothing parameter problematic. Given that space and time

are measured on different scales it may not even be considered appropriate to scale one

173



Chapter 8. Discussion & Future Work 174

based on the other and thus a model which controls the smoothness of the temporal com-

ponent separately from the spatial components is more appealing. Chapter 4 developed

an algorithm for tuning two smoothing parameters that avoided the computationally

expensive grid search that is required in the naive approach for estimating multiple pa-

rameters. Initially it was hoped that the contours of the optimisation surface would lie

parallel with one of the axes, allowing one parameter to be tuned whilst fixing the other.

This would allow the efficient methodology set out by Molinari [2014] still to be used for

parameter estimation through an augmented data formulation of the second smoothing

parameter. However, this was not the case upon examination of several hypothetical

and real groundwater datasets. Interestingly though, there did appear to be a trend

in the optimal combination of smoothing parameters as the number of basis functions

in the model increased. This trend was exploited, with a low basis resolution p-splines

model being used to find starting points for the smoothing parameter optimisation on a

coarse grid. Theses starting points then allowed each smoothing parameter to be tuned

separately using a model with the desired basis resolution and the methodology set out

by Molinari [2014]. The efficiency of tuning two parameters is unlikely ever to be equiv-

alent to that of tuning one parameter, but the improvement in modelling flexibility out

weighs this added computational expense.

Inevitably there are also some drawbacks to using spatio-temporal p-spline models. Sev-

eral steps have been taken to improve the computational speed of estimating the param-

eters in the spatio-temporal model but ultimately the computational speed of the spatial

model is unlikely to be matched. The tensor product structure of the spatio-temporal

basis results in significant increases in the computational effort when only a few extra

basis functions are added to enhance the models flexibility. This subsequently causes

the computation time to increase exponentially and given it is recommended that a two

parameter model is used, the time taken to estimate the parameters can very quickly

become unmanageable.

Chapters 3 and 4 highlighted, and Chapter 5 investigated, an effect known as ‘ballooning’

which appears in some of the spatio-temporal p-spline models predictions. The simu-

lation study, and the measure developed to flag up when ballooning might be present,

found that the likelihood of ballooning occurring reduced when the number of basis func-

tions was increased. However, increasing the number of basis functions begins to require
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a trade-off between obtaining robust predictions and the computational time required

to achieve these predictions. Alternatively, increasing the smoothing parameter seems

to contain ballooning.

Rather than trying to highlight when ballooning is present, a new penalty was proposed

aimed at trying to stop ballooning from happening in the first place. The penalty was

based on the idea that although the contaminant plume would move around in space, its

mass should not change significantly over time, i.e. the plume should just diffuse out over

the study region. Thus, if a sudden change in the mass is detected through ballooning,

the penalty should suppress this unusual fluctuation in the mass. Two datasets were

simulated to assess the effectiveness of the penalty. The first was made up of one spatial

dimension and one temporal dimension. Studies of this dataset suggest the penalty was

working in the intended manner. Problems began to arise, however, with the second

dataset, made up of two spatial dimensions and one temporal dimension. This dataset

had a point in time where the wells suddenly picked up the contamination and thus the

predicted contaminant mass would suddenly increase. It was hoped that the penalty

would suppress this sudden increase in mass, but instead the model forced mass into the

earlier time points, in regions with no well coverage. In hindsight this is unsurprising

since the simulated dataset is not mimicing exactly what happens when ballooning occurs

since there are data to support this increase in mass.

The penalty itself is doing what was hoped in conserving the contaminant mass. This

can be seen by looking at the total mass over time plotted in Figure 5.12. However,

the model does not know where to store the excess mass and so places it where there

are no data. The results suggest that the penalty may not be a solution for ballooning

however, it could be used to help inform models of where contamination is located if

it is not detected by the monitoring wells until later sampling time. Therefore, future

work could involve extending the proposed penalty by incorporating information on

where the contamination is likely to be located if there is a sudden change in mass

with data support. Methodology developed by Frasso [2013], Frasso et al. [2016a] and

Frasso et al. [2016b] seeks to build spline penalties based on differential equations (DEs)

for DE parameter estimation and the analysis of dynamic systems. These types of

penalties can potentially be incorporated into the mass penalty to inform the model of
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the groundwater flow and thus on where to place excess mass that may suddenly appear

with data support.

8.2 Monitoring Network Design

The second half of the thesis focussed on optimising sampling designs for fixed monitoring

networks using spatial and spatio-temporal models. Two design objective functions were

considered for determining the optimal sampling design for the next sampling event,

namely, the variance of the plume mass (VM) and the integrated prediction variance

(IV).

Variations of these objective functions are widely developed in the literature for Kriging-

based models, but to the best of our knowledge these have not yet been developed for

spline-based models. Here a primary focus is on spatial and spatio-temporal p-spline

models. The sampling design optimisations were carried out subject to three constraints:

1. It is assumed that the monitoring well network is in place and fixed,

2. The number of wells to be sampled in the next event is also fixed,

3. The time of the next sampling event is predetermined.

The resulting optimal sampling designs differed for each model and objective function

combination. When using the spatial and spatio-temporal p-splines model, the VM

objective function appeared to favour wells located in the centre of the study region

whilst the IV function tended to choose a sampling design that gave good spatial coverage

of the region. Cross-tabulation of the objective functions and their optimal designs

highlighted the importance of choosing an appropriate objective function that answers

the aim of the study. If the interest is in reducing the prediction variance optimisation of

the sampling design should be through the IV objective function. The sampling designs

chosen by the spatio-temporal model appeared to select wells such that the majority

of the wells are sampled during the current and previous sampling events. Simulation

studies also indicated that wells which had not been sampled recently were favoured for

the next sampling design over those that had been sampled more recently and frequently.
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There are several lines for future work on the sampling design aspect. Currently the well

network is exhaustively searched to determine the optimal combination of wells. This

is adequate for the size of the network used here and ensures the optimal combination

of wells is not missed. However, as the size of the network increases, computing the

objective functions for

N
n

 combinations of wells, where N is the size of the network

and n is the number of wells to be sampled, quickly becomes too computationally inten-

sive and thus adopting an optimisation method would be more appropriate. Commonly,

genetic algorithms are used, as discussed in the literature review presented in Section

6.1. Alternatively, another widely used method for optimisation is, spatial simulated

annealing (SSA), which is discussed by Helle and Pebesma [2012] and used successfully

by Abida et al. [2008] and Heuvelink et al. [2010] for optimising air quality monitoring

networks. Although these methods are frequently used for optimising the positions of

the wells from a dense grid, in essence the idea is the same for optimising over a set of

fixed locations, for example see Zhang et al. [2005].

To aid the calculations of the integrals contained within the objective functions, for

now the domain over which they were calculated was taken as the rectangle around the

outermost wells. However, by setting the domain to this shape, areas of the study region,

in particular the corners, have little or no data support, resulting in higher prediction

variances in these regions. Ideally the region of the domain contained within the convex

hull of the wells would be where the objective functions would be computed. Figure 8.1

shows the current rectangle domain and the suggested convex hull domain for Design 1

from Chapter 6.
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Figure 8.1: Rectangle domain currently used for design optimisation and the proposed
convex hull domain
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Computing the objective functions over the convex hull of the wells is complex and re-

quires partial integrals of the b-spline functions to achieve the more complicated domain

shape. This adaptation of the domain shape is scope for future work.

8.2.1 Accounting for Multiplicative Errors

Finally, the case where the observed data are assumed to have multiplicative error, a

common assumption for groundwater contamination data, was considered. Throughout

this thesis, with the exception of Chapter 6, it has been assumed that the data have

multiplicative error and thus the response was log transformed prior to modelling to give

an additive interpretation of the error. Once a final model had been achieved, the fitted

and predicted values were exponentiated back onto the original scale for interpretation.

This method of transforming for modelling then transforming back for interpretation

does not, however, hold for the design objective functions as a result of the integral

terms. Use of the log transformed response and the objective functions designed for data

with additive error, developed in Chapter 6, is appropriate if the objective functions are

also to be calculated on the log scale. However, commonly it is often of interest to

calculate the objective functions on the original scale whilst modelling on the log scale.

Chapter 7 employed the Normal approximation to the Student-t distribution, for a suit-

ably high degrees of freedom parameter, and the lognormal distribution to allow the IV

objective function to be calculated on the original scale given modelling was performed

on the log scale. The lognormal variance function, shown in Equation 7.16, that was to

be integrated, is significantly more complex than the IV function derived in Chapter 6

for additive error and no closed form solution was available. Thus numerical integration

was required. The results indicated the designs differed depending on whether the IV

objective function was computed on the original scale or the log scales, with the former

favouring wells located where concentrations were predicted to be highest and the latter

choosing wells that gave good spatial coverage. Therefore, future work could seek a

more efficient way of calculating the integrated lognormal variance.

Figure 8.2 displays a flow chart that can be used to aid in deciding which set of objective

functions to use when the error type is known, and if it is multiplicative, the desired

scale of computation is also known.
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What type of error is the

recorded data assumed to have?

Use objective functions

detailed in Chapter 6
Modelling should be carried out

on the log scale. Are the errors

to be transformed back and

interpreted on the original scale?

Model on the log scale and

use the objective functions

from Chapter 7 to compute the

objectives on the original scale.

Model on the log scale and

use the objective functions

from Chapter 6 to compute

the objectives on the log scale.

Additive
Multiplicative

Yes

No

Figure 8.2: Flow chart for deciding which objective function to use based on the
assumed error type.

Due to the integral of the mean function being embedded within an exponential function,

calculating the VM objective function for this scenario was unachievable at the current

time. Establishing a way of calculating the VM objective function for a lognormal

response would be another interesting future project.
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Statistical Theorems and

Properties

A.1 Conditional Distribution Property of a Multivariate

Gaussian Distribution

Given the joint distribution of X = (X1,X2) is,

X =

 X1

X2

 ∼ N
 µ1

µ2

 ,

Σ11 Σ12

Σ21 Σ22

 . (A.1)

Then, the conditional distribution of X1|X2 is:

X1|X2 ∼ N
(
µ1 + Σ12Σ−1

22 (X2 − µ2),Σ11 − Σ12Σ−1
22 Σ21

)
. (A.2)

A.2 Variance of a linear combination of variables

Given random variables X1, · · · , Xn and constants a1, · · · , an the variance of the sum of

the random variables Xi scaled by their corresponding constant ai is:
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var

(
n∑
i=1

aiXi

)
=

n∑
i=1

n∑
j=1

aiajcov(Xi, Xj) (A.3)
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Matrix Properties

B.1 The Spectral decomposition

Given matrix A of dimension n×n. There exists n vectors γi with corresponding scalar

values δi ≥ 0 such that:

Aγi = δiγi (B.1)

The δi scalars are known as eigenvalues of A and the corresponding vectors, γi are

known as eigenvectors.

A = Γ∆Γ> (B.2)

where the columns of the orthogonal matrix Γ are the vectors γi and ∆ is a diagonal

matrix with the δis as its diagonal entries.

B.2 Kronecker product properties

• Let matrices A, B, C and D be given matrices of such size that the matrix products

AC and BD exist, then

(A⊗B)(C⊗D) = (AC)⊗ (BD) (B.3)
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• Transpose Let A and B be given matrices, then

(A⊗B)> = A> ⊗B> (B.4)

• Inverse Let A and B be given invertible matrices, then

(A⊗B)−1 = A−1 ⊗B−1 (B.5)

• Matrix Equations Let A, B and C be given matrices and X be an unknown

matrix. Consider the equation AXB = C, this can be re-written as

(B> ⊗A)vec(X) = vec(AXB) = vec(C) (B.6)



Appendix C

Predicted Surfaces for the Basis

Function Simulation Study in

Chapter 5

184



Appendix C. Predicted surfaces for Basis function simulation study 185

Tr
ue

(1
1,

 1
1,

 6
)

(1
1,

 1
1,

 1
1)

(1
7,

 1
7,

 6
)

(1
7,

 1
7,

 1
1)

(2
3,

 2
3,

 6
)

(2
3,

 2
3,

 1
1)

FULL REAL

20
40

60
80

20
40

60
80

20
40

60
80

20
40

60
80

20
40

60
80

20
40

60
80

20
40

60
80

20406080 20406080

E
as

tin
g

Northing

02468
lo

g(
C

on
c.

)

F
ig
u
r
e
C
.1
:

P
re

d
ic

te
d

su
rf

ac
es

fo
r

sp
at

io
-t

em
p

or
al

sp
li

n
e

m
o
d

el
s

w
it

h
o
n

e
sm

o
o
th

in
g

p
a
ra

m
et

er
a
n

d
a
n

in
cr

ea
si

n
g

n
u

m
b

er
o
f

b
a
si

s
fu

n
ct

io
n

s
fo

r
th

e
1
0
th

ti
m

e
p

o
in

t
in

P
D

E
2



Appendix C. Predicted surfaces for Basis function simulation study 186

Tr
ue

(1
1,

 1
1,

 6
)

(1
1,

 1
1,

 1
1)

(1
7,

 1
7,

 6
)

(1
7,

 1
7,

 1
1)

(2
3,

 2
3,

 6
)

(2
3,

 2
3,

 1
1)

FULL REAL

20
40

60
80

20
40

60
80

20
40

60
80

20
40

60
80

20
40

60
80

20
40

60
80

20
40

60
80

20406080 20406080

E
as

tin
g

Northing

0246

lo
g(

C
on

c.
)

F
ig
u
r
e
C
.2
:

P
re

d
ic

te
d

su
rf

ac
es

fo
r

sp
at

io
-t

em
p

or
al

sp
li

n
e

m
o
d

el
s

w
it

h
o
n

e
sm

o
o
th

in
g

p
a
ra

m
et

er
a
n

d
a
n

in
cr

ea
si

n
g

n
u

m
b

er
o
f

b
a
si

s
fu

n
ct

io
n

s
fo

r
th

e
3
2
n

d
ti

m
e

p
o
in

t
in

P
D

E
2



Appendix C. Predicted surfaces for Basis function simulation study 187

Tr
ue

(1
1,

 8
, 1

1)
(1

7,
 1

1,
 1

7)
(2

1,
 1

3,
 2

1)

FULL REAL

20
40

60
80

20
40

60
80

20
40

60
80

20
40

60
80

20406080 20406080

E
as

tin
g

Northing

02468
lo

g(
C

on
c.

)

F
ig
u
r
e
C
.3
:

P
re

d
ic

te
d

su
rf

ac
es

fo
r

sp
at

io
-t

em
p

or
al

sp
li

n
e

m
o
d

el
s

w
it

h
tw

o
sm

o
o
th

in
g

p
a
ra

m
et

er
s

a
n

d
a
n

in
cr

ea
si

n
g

n
u

m
b

er
o
f

b
a
si

s
fu

n
ct

io
n

s
fo

r
th

e
1
0
th

ti
m

e
p

o
in

t
in

P
D

E
2



Appendix C. Predicted surfaces for Basis function simulation study 188

Tr
ue

(1
1,

 8
, 1

1)
(1

7,
 1

1,
 1

7)
(2

1,
 1

3,
 2

1)

FULL REAL

20
40

60
80

20
40

60
80

20
40

60
80

20
40

60
80

20406080 20406080

E
as

tin
g

Northing

0246

lo
g(

C
on

c.
)

F
ig
u
r
e
C
.4
:

P
re

d
ic

te
d

su
rf

ac
es

fo
r

sp
at

io
-t

em
p

or
al

sp
li

n
e

m
o
d

el
s

w
it

h
tw

o
sm

o
o
th

in
g

p
a
ra

m
et

er
s

a
n

d
a
n

in
cr

ea
si

n
g

n
u

m
b

er
o
f

b
a
si

s
fu

n
ct

io
n

s
fo

r
th

e
3
2
n

d
ti

m
e

p
o
in

t
in

P
D

E
2



Appendix D

Analysis of a Second Design using

the Objective Functions from

Chapter 6

D.1 Objective Functions in Action

The analysis carried out in section 6.5, on Design 1, was repeated for Design 2, shown

in Figure 6.1. Again, to compare the designs chosen by each model and (spatial p-

splines, spatial Kriging and spatio-temporal p-splines) objective function combination,

three proportions (25%, 50% and 75%) of the total number of wells were optimised for

the next sampling event.

D.1.1 Designs for Spatial Models

For the spatial p-splines model degree three basis functions were used with a first order

penalty. For Kriging, a Matérn covariance function was used with κ = 2.

The characteristics of the optimal designs seen for Design 1 are similar for Design 2.

Figure 6.2 shows the optimal designs for each objective function for the spatial p-splines

models. Here, as the proportion of wells being optimised increases the designs chosen

by each objective function become more similar, with each design appearing to try and

fill the study region.
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Figure D.1: Optimal designs for the integrated variance (IV) and variance of the
mass (VM) objective functions using a spatial p-spline model when optimising for three

proportions of the total number of wells (25%, 50% and 75%) using Design 2.
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Figure D.2: Optimal designs for the integrated variance (IV) and variance of the
mass (VM) objective functions using a spatial Kriging model when optimising for three

proportions of the total number of wells (25%, 50% and 75%) using Design 2.
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The designs chosen by the Kriging model are vary different to those chosen by the spatial

p-splines model. For all three optimisations the Kriging model selects wells around the

perimeter of the study as the optimal design. The designs for 25% and 50% of the wells

are the same for both objective functions, with the designs for 75% of the wells only

differing by one well. Wells located on the left side of the network are again preferred

by both designs.

Tables D.1 and D.2 cross-tabulate the objective function values for each optimal design

for the spatial p-splines and Kriging models respectively. Bold values indicate the design

with the minimum of each objective function i.e. across each row in each subsection.

Table D.1: Cross-tabulation of the objective function values for each objective func-
tions optimal design when optimising for 25%, 50% and 75% of the total number of
wells using a spatial p-splines model using Design 2. Bold entries indicate the design

with the minimum of each objective function.

Optimal Design

25% 50% 75%

VM IV VM IV VM IV

Value
VM 898520 991296 446519 450999 329799 340726

IV 12784.1 12661.2 9334.4 9297.1 7808 7758.1

Table D.2: Cross-tabulation of the value of the objective functions for each objective
functions optimal design when optimising for 25%, 50% and 75% of the total number
of wells using a spatial Kriging model using Design 2. Bold entries indicate the design

with the minimum of each objective function.

Optimal Design

25% 50% 75%

VM IV VM IV VM IV

Value
VM 160646 160646 353796 353796 548173 555038

IV 1751.7 1751.7 3464.8 3464.8 5178.5 5141.0

Design 2 exhibits similar results to those of Design 1. Again, the design optimised using

an objective function has the minimum value of the corresponding objective function

across both designs when the designs differed between objective functions. However,

for this design the percentage reductions in objective function values between designs is

not as large as it was for Design 1. For spatial p-splines, the largest reduction is seen
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when optimising for 25% of the wells with the VM function being ∼ 9% lower for the

design optimised using this function. As was the case for Design 1, the difference in the

IV objective function between designs is much smaller, with the largest difference being

1%.

D.1.2 Designs for a Spatio-temporal Model

In a similar manner to the spatial models, a spatio-temporal p-splines model was used

to optimise sampling designs using the two objective functions on Design 2. The two

smoothing parameter spatio-temporal p-splines model was used with 15 basis functions

for the easting and temporal components and the northing component had its number

of basis functions scaled by the dimensions of the study region. As before, a first order

difference penalty was used for both the spatial and temporal components.



Appendix D. Analysis of Design 2 194

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

75%

50%

25%

0 10 20 30

0

5

10

15

0

5

10

15

0

5

10

15

Easting

N
or

th
in

g

Well Type
●

●

Monitoring Well

Sampled Last Event

VM Design

IV Design

Figure D.3: Optimal designs for the integrated variance (IV) and variance of the mass
(VM) objective functions using a spatio-temporal p-spline model when optimising for

three proportions of the total number of wells (25%, 50% and 75%) using Design 2.

The designs for each objective function are different when optimised using a spatio-

temporal model. The IV objective function chooses sampling designs such that as many

of the 14 wells are sampled across the current and previous sampling event as possible.

The designs chosen by both objective functions are similar in the sense that they both

provide good spatial coverage of the region.
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Table D.3: Cross-tabulation of the value of the objective functions for each objective
functions optimal design when optimising for 25%, 50% and 75% of the wells using a
spatio-temporal splines model for Design 2. Bold entries indicate the design with the

minimum of each objective function.

Optimal Design

25% 50% 75%

VM IV VM IV VM IV

Value
VM 154026 154214 152602 152866 151827 151936

IV 3533.2 3526.7 3501.9 3499.6 3486.1 34816

In a similar manner to the spatial models, the objective functions were cross-tabulated

for each design for the spatio-temporal p-splines model. Again, the value of the objective

function was lowest for the design optimised using the corresponding objective function.

As was the case with Design 1, the increase in the objective function by using the

opposite design is not as significant as it was for the spatial models.

D.1.3 The Effect of Previous Sampling Frequency

The effects of previous sampling frequency on the next sampling design were investigated

for Design 2 in the same way they were for Design 1. For Design 2 only one data set

was simulated with 7 randomly chosen wells in the “low frequency well” set. Figure D.4

shows the resulting designs using the two objective functions.
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Figure D.4: Optimal design of seven wells using the low frequency dataset simulated
on Design 2.
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For Design 2, 6 of the 7 wells in the “low frequency well” set were chosen for the next

design, with the 5 of the wells being the same for each design. Instead of choosing the

other well from the “low frequency well” set, both designs select the same well from the

“frequently sampled well” set in their next sampling design.

D.2 Using the Objective Functions to Change the Well

Network

D.2.1 Adding a New Well to the Network

The pixel simulations performed on Design 1 in section 6.6.1 were then repeated for

Design 2. Figures D.5, D.6, D.7 and D.6 show the resulting changes in objective function

values when each pixel is proposed as a new location along with the optimal 10 wells.
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Figure D.5: Change in the VM objective function if each pixel were to be a new well
location along with the current optimal 10 locations using a spatial p-splines model for

Design 2.
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Figure D.6: Change in the IV objective function if each pixel were to be a new well
location along with the current optimal 10 locations using a spatial p-splines model for

Design 2.

Using spatial p-splines (Figures D.5, and D.6), the objective functions select slightly

different locations as the optimal point for a new well, with the VM objective function

suggesting the position would be to the right of the centre of the region, whereas the IV

objective function suggests the best position is in the centre at the top. Both objective

functions do however indicate that the largest reduction in objective function value would

occur by positioning a well in a region roughly where the distance between neighbouring

wells is greatest. The IV function also highlights the top left corner as a potential

position for a new well, however the improvement in IV objective function value here is

not quite as large.



Appendix D. Analysis of Design 2 198

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

0

5

10

15

0 10 20 30
Easting

N
or

th
in

g

Well Type
●

●

Monitoring Well

Sampled

−60000

−40000

−20000

0
Diff VM

Figure D.7: Change in the VM objective function if each pixel were to be a new well
location along with the current optimal 10 locations using a spatio-temporal p-splines

model for Design 2.

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

0

5

10

15

0 10 20 30
Easting

N
or

th
in

g

Well Type
●

●

Monitoring Well

Sampled

−500

−400

−300

−200

−100

0
Diff IV

Figure D.8: Change in the IV objective function if each pixel were to be a new well
location along with the current optimal 10 locations using a spatio-temporal p-splines

model for Design 2.

The resulting objective function surfaces for the spatio-temporal p-splines model show

similar trends to those of the spatial model. Both objective functions again highlight

the region to the right of the centre as the most suitable location for a new wells. The

IV objective function again suggests a potential location in the top left corner where

the reduction in IV objective function is just marginally smaller than the most suitable

locations.
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D.2.2 Removing wells from the network

The method of identifying which well, when removed, would cause the smallest increase

in prediction variance, discussed in Section 6.6.2, was used on Design 2. Figures D.9

and D.10 show heat maps of the change in prediction variance as each well is removed

for spatial and spatio-temporal p-spline models respectively.

For the spatial p-splines model the change in prediction variance, as each well is removed,

increases as the distance to the removed wells nearest neighbour increases. Wells located

near the corners of the study region give the greatest increase in prediction variance when

removed.

As was the case with Design 1, the wells which cause the smallest increase in prediction

variance are very different for the spatio-temporal model compared with the spatial

model. The wells which cause the largest increase are those which have not been sampled

in the most recent sampling event, with those which are located around the perimeter

and have been sampled in the last event giving the smallest increase.
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