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L

“Probability is the very  guide of  l i fe”

[Cicero, De Natural



Abstract

In Information Retrieval (IR), probabilistic modelling is related to the use of 
a model th a t ranks documents in decreasing order of their estim ated prob­
ability of relevance to a user’s information need expressed by a query. In 
an IR  system based on a probabilistic model, the user is guided to  examine 
first the documents th a t are the most likely to be relevant to  his need. If 
the system performed well, these documents should be at the top of the re­
trieved list. In m athem atical terms the problem consists of estim ating the 
probability P (R  | q ,d ), th a t is the probability of relevance given a query q 
and a document d. This estimate should be performed for every docum ent in 
the collection, and documents should then be ranked according to this mea­
sure. For this evaluation the system should make use of all the inform ation 
available in the indexing term  space.

This thesis contains a study of the kinematics of probabilities in probabilistic 
IR. The aim is to get a better insight of the behaviour of the probabilistic 
models of IR currently in use and to propose new and more effective models 
by exploiting different kinematics of probabilities. The study is performed 
both  from a theoretical and an experimental point of view.

Theoretically, the thesis explores the use of the probability of a conditional, 
namely P (d  —> q), to estimate the conditional probability P (R  \ q ,d). This 
is achieved by interpreting the term  space in the context of the “possible 
worlds semantics” . Previous approaches in this direction had as their basic 
assumption the consideration th a t “a document is a possible world” . In this 
thesis a different approach is adopted, based on the assumption th a t “a term  
is a possible world” . This approach enables the exploitation of te rm -term  
semantic relationships in the term  space, estim ated using an inform ation 
theoretic measure. This form of information is rarely used in IR a t retrieval 
time. Two new models of IR are proposed, based on two different way of 
estim ating P (d  —>■ q) using a logical technique called Imaging. The first 
model is called Retrieval by Logical Imaging; the second is called Retrieval



by General Logical Imaging, being a generalisation of the first model. The 
probability kinematics of these two models is compared with th a t of two 
other proposed models: the Retrieval by Joint Probability model and the 
Retrieval by Conditional Probability model. These last two models mimic 
the probability kinematics of the Vector Space model and of the Probabilistic 
Retrieval model.

Experimentally, the retrieval effectiveness of the above four models is anal­
ysed and compared using five test collections of different sizes and character­
istics. The results of this experimentation depend heavily on the choice of 
term  weight and term  similarity measures adopted.

The most im portant conclusion of this thesis is th a t theoretically a proba­
bility transfer th a t takes into account the semantic similarity between the 
probability-donor and the probability-recipient is more effective than  a prob­
ability transfer th a t does not take th a t into account. In the context of IR 
this is equivalent to saying th a t models th a t exploit the semantic similar­
ity between terms in the term  space a t retrieval time are more effective th a t 
models th a t do not do that. Unfortunately, while the experimental investiga­
tion carried out using small test collections provide evidence supporting this 
conclusion, experiments performed using larger test collections do not pro­
vide as much supporting evidence (although they do not provide contrasting 
evidence either). The peculiar characteristics of the term  space of differ­
ent collections play an im portant role in shaping the effects th a t different 
probability kinematics have on the effectiveness of the retrieval process.

The above result suggests the necessity and the usefulness of further in­
vestigations into more complex and optimised models of probabilistic IR, 
where probability kinematics follows non-classical approaches. The models 
proposed in this thesis are just two such approaches; other ones can be devel­
oped using recent results achieved in other fields, such as non-classical logics 
and belief revision theory.
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Introduction
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Chapter 1 

Information Retrieval and 
Probability

This introductory chapter provides a minimum background knowledge of 
Information Retrieval necessary to understand the rest of the thesis. The 
chapter also gives the motivations of the work and outline the structure of 
the thesis.

1.1 Introduction and motivations

The advent of computers in the last forty years has resulted in an avalanche 
of machine readable text. Newspapers, books, journals and reports are gen­
erated using computers, transm itted by computers, and stored in computers. 
Bibliographic archives list almost every book, article, and report published. 
Lawyers have databases with almost every law ever issued and every case 
ever dealt with. Whole encyclopedias are now published on CD ROMs. Full 
text of articles from journals are now stored and distributed through the 
Internet.

Access to information has gone through a slow but steady process to  adapt to 
the growth of availability of electronically stored information. W hen library 
were small, access to a piece of information could be achieved by asking the 
librarian, a “wise sage” who was supposed to have read every book in the 
library. The librarian could tell you which book contained the information 
you needed and where the book was located. When the number of books 
began to exceed the limits of human memory, categorisation became neces­

2



CHAPTER 1. INFORMATION RETRIEVAL AND PRO BABILITY  3

sary and library classification systems such as the Dewey or the Library of 
Congress’ were developed. Each book was assigned a set of subject headings 
th a t identified the topics treated in the book and a location in the library. 
Only by knowing the appropriate set of subject headings th a t identified the 
searched information one could find the location of the book in the library. 
W ith computers and the availability of electronic text comes the possibility 
of searching through the entire text of documents (book, articles, etc.) to 
find words and phrases th a t identify a document as containing the informa­
tion sought. This “free text searching” ability meant th a t the searcher did 
not have to rely on someone else looking for documents for him or assigning 
documents to particular categories. Never the less, if on one hand this puts 
the searcher in control of the search, on the other hand the searcher now 
has to know which word to use to express his information need when looking 
for documents, and every so often he has to know how to use the tool th a t 
performs such search.

W ith the increasing availability of electronic text and with the searcher be­
coming the user of an information accessing system, it became necessary to 
develop systems th a t were both easy to use and effective. New generations 
Information Retrieval systems need to become easier to user and more effec­
tive than  current Information Retrieval systems. This thesis will tackle the 
issue of effectiveness.

An Information Retrieval system can become more effective in m any differ­
ent ways, for example by developing a more effective indexing technique to 
represent better the document informative content, or by capturing better 
the user information need expressed in the query, or by developing a more ef­
fective retrieval technique. This last approach is the one th a t I tackle in this 
thesis. I believe th a t there is ground to develop more effective retrieval tech­
niques, th a t will make an Information Retrieval system overall more effective, 
even without improving other components of the system, such as for example 
indexing or query formulation, although, as every researcher in Inform ation 
Retrieval recognises, a real breakthrough will only be achieved when new and 
more advanced document and query representation techniques will be devel­
oped. Also, I don’t believe in the “pure experimental approach” th a t many 
Information Retrieval researchers follow. I think th a t Information Retrieval 
has more to gain from an in depth analysis of what has been achieved so far, 
studying the established results and the pitfalls, than by mere massive runs of 
experiments blindlessly trying new techniques. An approach m ainly focused 
on experimentation can achieve “ad hoc” improvements of effectiveness, but 
only by developing new retrieval models based on a deep theoretical analy-
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sis o f the retrieval process will Information Retrieval be able to step firmly 
forward in the search of more effective systems. This view is also shared by 
many others Information Retrieval researchers, and in particular by some of 
the pioneers of this field such as C.J. van Rijsbergen [vR93], S. Robertson 
[Rob76], and W.S. Cooper [Coo94], whose work greatly inspired me.

One of the most theoretically sound models of Information Retrieval is the 
Probabilistic M odel The Probabilistic Model provides a general theoretical 
framework for document indexing and retrieval. In this thesis I intend to 
study possible ways of improving the retrieval process of the Probabilistic 
Model. To do so I intend to perform a deep analysis of what happens at 
retrieval tim e to  the probabilities associated to the atomic elements of the 
probabilistic indexing space. In particular I will study how these probabil­
ities are moved from element to element and how this effects the retrieval 
performance of a probabilistic Information Retrieval system. I believe th a t 
by studying the kinematics of probabilities in probabilistic Information Re­
trieval, we will be able to advance toward developing more effective retrieval 
technique for next generations of Information Retrieval systems.

1.2 Information Retrieval

Inform ation Retrieval (IR) is the branch of computing science th a t aims at 
storing and allowing fast access to a large amount of multim edia information, 
such as for example text, images, speech, etc. [vR79]. The objects handled by 
an IR application are usually called documents, and the software tool which 
autom atically manages these documents is called Information Retrieval Sys­
tem  (IRS). The task of an IRS is to help a user to find, in a collection of 
documents, those documents which contain the information the user is look­
ing for, th a t is, providing help in satisfying what is often called the user’s 
information need.

Frequently IR is confused with database (DB) technology. Figure 1.1 sum­
marises some of the m ajor differences between IR and DB technology; these 
characteristics have been identified and described by Van Rijsbergen in [vR79], 
pp. 2. The fundamental difference between IR and DB is th a t IR  systems 
usually provide only references to or a description of the data they manage, 
while a DBMS provides the actual data. This is not ju st because of limi­
tations imposed by current technology. Even in full tex t IR, the task of IR 
is mainly to point at documents. This is because IR systems retrieve docu­
ments (mainly) in a probabilistic way, while DB systems retrieve documents
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Information Retrieval Database
Matching Partial match Exact match
Inference Induction Deduction
Model Probabilistic Deterministic
Classification Polythetic Monothetic
Query Language N atural Artificial
Query Specification Incomplete Complete
Items W anted Relevant Matching
Error Response Insensitive Sensitive

Figure 1.1: Differences between IR and DB.

(mainly) in a deterministic way. This means th a t an IRS retrieves documents 
th a t are likely to be considered relevant by the user; th a t is, likely to satisfy 
the user’s information need. DB facts retrieved in response to a query are 
always considered to be a complete and true answer to the query, while in IR  
the perceived relevance of a document varies dram atically across users, and 
even with one user at different times.

This characteristic of IR  has some consequences. First, users’ queries to an 
IRS are usually more vague. They are usually in the form: “I want documents 
about ...” , while users of a DB want facts, such as: “I want the price of the 
product abc” . Second, the evaluation of an IRS is more or less related to 
its utility , th a t is, how helpful the system is to a user, not a well specified 
measure, while DBMS are evaluated in accordance w ith well specified and 
standardised performance measures.

Given this fundam ental differences between IR and DB, an IRS usually man­
ages only descriptions of the informative content of documents. The basic 
element of these descriptions is called descriptor or index term. In the clas­
sic approach to IR, a schematic view of which is presented in Figure 1.2, the 
problem of the representation of the document informative content is tackled 
assigning descriptors to the document. This process is called indexing, and 
it can be either manual or autom atic. The representation of the document 
informative content is one of the most im portant problems in IR and much 
efforts are being spent to develop better representations. However, so far the 
most commonly used indexing technique simply extract descriptors from the 
text of the document performing a quite simple lexical analysis.

Once a suitable representation structure has been provided, an IRS faces the 
problem of evaluating the similarity between query and document represen­
tations. This is often achieved by evaluating a similarity measure which uses
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Figure 1.2: A schematic view of a classical Information Retrieval system.

features of document and query representation to evaluate an overall degree 
of sim ilarity between the query and each document in the collection.

An advance technique becoming rapidly available on most IRS is relevance 
feedback. Relevance feedback is a technique th a t allows a user to express 
in a be tter way his information requirement by modifying his original query 
formulation w ith further information provided by indicating some relevant 
documents [Har92b]. W hen a document is marked as relevant the relevance 
feedback algorithm analyses the document text, picking out term s th a t are 
statistically  significant, and adds these terms to the query. Relevance feed­
back is a very good technique for specifying an information requirement, 
because it releases the user from the burden of having to think up lots of 
term s for the query. Instead the user deals with the ideas and concepts con­
tained in the documents. It also fits in well with the known human tra it 
of “I don’t know what I want, but I ’ll know it when I see it” . Obviously 
the user cannot mark documents as relevant until some are retrieved, so the 
first search has to be initiated by a query. In response to this initial query, 
the IRS will return a list of ordered documents covering a range of topics, 
but probably a t least one document in the list will cover, or come close to 
covering, the user’s interest. The user marks some document(s) as relevant 
and starts  the relevance feedback process performing another search. If the 
relevance feedback algorithm performs well the next list should contain docu­
ments closer to the user’s requirement, and the process can be repeated until 
the user is satisfied by the result.

In the next section I will provide a brief overview of the state of the art of 
IR and of the evaluation techniques used for measuring the effectiveness of 
IR systems. This will provide a general framework in which to place the
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contribution of this thesis.

1.3 The state of the art of Information R e­
trieval

IR  is an established technology tha t has been delivering solutions to users for 
more than  30 years and yet it is still an active area of research. This suggests 
th a t although much work has been done, much remains to be accomplished. 
In over 30 years, researchers in IR have developed and evaluated a bewildering 
array of techniques for indexing and retrieving text. These techniques have 
slowly m atured and improved through refinement rather than there having 
been one or a small number of really significant breakthroughs.

In this section I will give a brief report of the state  of the art of IR, showing 
how we can see a clear distinction between the systems used in the research 
world (experimental systems), the brand new class of IR  systems th a t is 
concerned with searching the World Wide Web (W W W), and the systems 
used in the commercial world (libraries, information providers, etc.).

1.3.1 Experim ental IR System s

Experim ental IR systems are systems th a t have been developed to test new 
indexing or retrieval techniques. They are the means by which IR  researchers 
test new ideas. An experimental IR system is often not very efficient with 
respect to CPU time and memory resources. The main purpose of the system 
is to  enable a fast testing of some theoretical ideas, therefore the development 
of routines for the efficient use of computer resources is left for a later time.

Experim ental systems have enabled IR researchers to develop and evaluate 
many new indexing and retrieval techniques [SJ81] and have been and still are 
very im portant vehicles of research. The SMART system of Cornell Univer­
sity, for example, was developed almost 30 years ago as an experimental IR 
system for testing a particular IR model (the Vector Space model) and is still 
a very im portant instrum ent of research [Sal71]. There are many other exam­
ples of experimental systems, MEDLARS [Mil71], STAIRS [Bla96], PThom as 
[OB91], I3R [CR87], RIME [BC89], GRANT [KC87], ju st to  mention a few.

In the context of this thesis I will use an experimental system called SIRE,
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developed at Glasgow University. SIRE will be used as an im plem entation 
platform  for testing the theoretical ideas proposed here.

Some indexing and retrieval techniques developed and tested on experimental 
systems are later exploited commercially, while others never make it to  be 
used in commercial systems. There are many reasons for this. The most 
common reasons are th a t the technique developed is highly inefficient (this 
is perhaps the most im portant reason) or not effective enough to justify  the 
investment. W hile the efficiency problem can be tackled or perhaps simply 
solved by the availability of faster computers, the effectiveness problem has 
no simple solution and requires a re-thinking of the proposed techniques.

1.3.2 Web Search Engines

The World Wide Web (WWW, W3 or Web) is a recent but explosive phe­
nomenon [BL96]. The Web is a global information system th a t provides
hypertext access to resources on the Internet via a common syntax of ad­
dressing network resources (URL), a common protocol for the transfer of 
d a ta  from a Web server to a Web client (HTTP), and a m ark-up language 
(HTML) for writing the hypertext nodes. The Web client is responsible for 
communicating with servers to retrieve necessary documents and files. The 
Web server is responsible for making local documents or files available to 
other software systems.

The number of available sources of information on the Web has constantly 
increased over the last few years: during 1993 the number of Web sites has
passed from 50 to 500, but by the end of 1995 the sites world-wide available
were more than  10,000. The Web also incorporates existing network services, 
such as FT P  and Gopher. Because of this expansion of Web sites, to  find 
specific information on some topic using only the browsing paradigm  over 
the Web is almost impossible.

Documents located on a single site can often be searched by ignoring the link 
structure and applying full text search like with text archives. But searching 
of information on a specific topic over the whole Web would not be possible 
without the help of one of the search tools th a t have been rapidly developed 
and made available on the Web.

Web search tools are very useful tools th a t enable a user to  search for nav­
igation starting  points of the Web th a t satisfy his query. Web search tools 
often use technology developed in the IR area. Sometimes it is consolidated
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technology, like in the case of most large commercial tools, bu t some other 
tim es Web search tools use techniques just out of experimental IR  systems. 
The testing (for free) of these techniques on such a large document set and 
w ith a large number of users provides a very useful assessment of their effec­
tiveness. In this case Web search tools can be considered the interm ediate 
step for a techniques developed at experimental level before being used in 
commercial systems.

There are several Web search tools, differing substantially by many charac­
teristics. A tentative classification of these search tools can be organised as 
follows:

•  Search engines’, tools for finding documents on the Web based on their 
contents (e.g. Lycos, Altavista).

•  Meta-search engines: search engines th a t consults several search en­
gines a t the same time (e.g. SavvySearch, Find-It!).

•  Subject directories: tools to search Web sites th a t base the search on 
w hat the site is about (e.g Yahoo).

•  Geographical directories: tools th a t makes a search on Web sites, bu t 
the search is based on where the site is located (e.g. The V irtual 
Tourist).

•  Link databases: tools for finding links in databases of Web sites and 
resources (e.g. IWeb).

O ther search tools have been developed and made available to search for 
information all over Internet and not only in Web sites. Some of these are: 
people directories and white pages, business directories and yellow pages, 
software archives, newsgroups and mailing lists search, background informa­
tion search.

From the point of view of the work reported in this thesis, among the above 
list of search tools, the search engines are the most interesting. A search 
engine is a networked IRS th a t operates over the Web. The main difference 
between a search engine and an IRS is th a t a search engine operates in a 
sort of symbiosis with a Web robot. The robot is used to index the content 
of Web pages and to follow the links th a t are present in the Web pages 
to collect and find further information. The robot can be classified as an 
autom atic browser tha t is able to autonomously traverse the complete Web
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structure finding each single Web document and recursively finding all the 
other documents th a t are related to it through Web links. Most common 
synonyms of Web robot are: crawler, wanderer, spider, and worm. Web 
ants are robots th a t work in a co-operative way and in parallel to  save time 
[Men95].

W hatever the way a search engine uses to index and represent document 
out of the Web, it still has to rely on a similarity algorithm to evaluate how 
documents match queries. From this point of view a search engine is not 
different from an IRS, and the results of this thesis could be used to build 
new Web search engines too.

1.3.3 Commercial IR System s

Techniques th a t are developed and tested in experimental systems take a long 
time before being accepted to be included in commercial IR systems. Most 
commercial IR system are still based on the Boolean model, one of the oldest 
IR model, and only recently systems based on free-text queries have started 
to be accepted in the commercial world. There are many reasons why this 
happens. Perhaps the most im portant one is th a t most users of commercial 
IR systems are middle-aged professionals tha t received their training on old 
commercial systems based on the Boolean model, such as STAIRS [Bla96] 
and MEDLINE [Fei85], for example.

However, things are changing. First of all, the newer generation of profes­
sional users of commercial systems have been trained not only on Boolean 
systems, but also on free-text systems. They feel equally comfortable using 
both models. Second, but perhaps more im portant, IR  systems are more 
and more being accessed by end users without the intervention of profes­
sional intermediaries. These end users, most of them not expert in IR, want 
IR systems th a t are easy to use and th a t do not require a long training to 
be used effectively. Interactive free-text partial-m atch IR systems seem to 
respond to these users needs. It is towards this type of systems th a t the work 
reported in this thesis is directed.

1.3.4 Evaluation of IR System s

Much effort and research has gone into studying the problem of evaluation 
in IR. Never the less, most of the people active in this field still feel th a t the
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Figure 1.3: Determination of precision and recall values

problem is far from solved, in particular for interactive IR  systems. Here I will 
not enter into the discussion about which evaluation technique is best, bu t I 
will simply report on the “state of the a rt” of the IR  evaluation techniques.

Following the approach proposed by Van Rijsbergen in [vR79], in trying to 
evaluate an IRS one has to  try  to answer to a t least two questions:

1. what to evaluate?

2. how to evaluate?

The answer to the first question is related to the main purpose of one’s work. 
A researcher could be interested in evaluating the speed of some retrieval 
process, or the level of interaction an IRS allows, for example. There are 
various aspects of IR th a t a researcher could be interested in evaluating. I 
will not address the general issues of what is the most im portant feature of 
an IRS to evaluate. The main feature I will consider in the evaluation is the 
effectiveness of retrieval. In doing this I am in tune w ith the most part of 
the evaluations reported in the IR literature.

The second question instead needs a more technical answer. Among the 
various measurable quantities of effectiveness proposed as early as in 1966 
by Claverdon [CMK66], the time lag, the presentation, and the effort, have 
been almost completely ignored in the IR literature, because they are related 
to an operational implementation of the system and not to the effectiveness 
of the IR  process. The two best known measures of effectiveness are recall 
and precision. They are by far the measures of effectiveness most commonly 
used in the IR  literature. Since these two measures will be used extensively 
to report the results of the evaluations described in this thesis, I will explain 
them  in detail.

In order to have clear the meaning of the recall and precision measures, their 
definition, as described in [vR79], is here reported. It is helpful to refer to 
Figure 1.3, from which recall and precision can easily be derived. They are
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defined as:

Precision =

Recall = . A .
I A  |

where | A  n  B  | is the number of relevant and retrieved documents, | B  \ 
is the number of retrieved documents, and | A  | is the number of relevant 
documents.

The evaluation of these precision and recall values is only possible if one 
has complete knowledge of the relevant documents present in the collection. 
This is not possible in most operative cases. Therefore, in order to enable an 
evaluation of IR  systems (in particular experimental IR  systems) a consider­
able am ount of resources have been spent in building test collections [Sv76]. 
These are collections of textual documents th a t come with a set of queries 
and lists of documents in the collection th a t are known to be relevant to  the 
queries. The availability of relevance judgements enables the evaluation of 
precision and recall values for diverse indexing and retrieval strategies in a 
controlled environment. This makes it possible to compare the results and 
draw conclusions th a t can be extended to operative cases.

In the evaluation of an IR  system, precision and recall values need to be 
evaluated for every query subm itted to the system. However, the evaluation 
of these values depends on cut-off points in the ranked list of documents 
retrieved in response to the query. Therefore, a better way of displaying these 
measures is through a recall-precision graph. An example of such a graph is 
depicted in Figure 1.4, where precision values are reported corresponding to 
standard recall values.

To measure the overall performance of the system on a set of queries, it is 
necessary to produce as many graphs as the number of queries and then 
combine them  in some way. This is often done using the “macro-evaluation” 
approach, which consists in averaging over all queries the individual precision 
values corresponding to the standard recall values. All the graphs reported 
in this thesis are obtained in this way. For a more in depth explanation of 
IR evaluation techniques see chapter seven of Van Rijsbergen’s book [vR79].

A n B
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Figure 1.4: An example of a Recall-Precision graph

1.4 Probabilistic Information Retrieval

The basic belief of probabilistic approaches to IR  is tha t, for optim al per­
formance, documents should be ranked in order of decreasing probability of 
relevance or usefulness to the user. Probabilistic approaches therefore a t­
tem pt to estim ate or calculate in some way the probability th a t a document 
will be relevant to a particular user need expressed in a natural language 
query. The explicit formulation of this idea is given in the The Probability 
Ranking Principle [Rob77], which states:

“If a reference retrieval system’s response to each request is a 
ranking of the documents in the collection in order of decreasing 
probability of usefulness to the user who subm itted the request, 
where the probabilities are estim ated as accurately as possible on 
the basis of whatever data  has been made available to the system 
for this purpose, then the overall effectiveness of the system to 
its users will be the best th a t is obtainable on the basis of th a t 
da ta .”

However, the interpretation of the phrase probability of relevance is far from 
straightforward and a number of different connotations have been pu t upon
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it. Moreover, the evaluation of the probability of relevance from the available 
d a ta  is far from simple and many different models have been proposed for this 
purpose. I will review the various approaches to probabilistic IR  in C hapter
2 .

Although there are a few experimental IR systems based on probabilistic 
or semi-probabilistic models, there are still obstacles to getting probabilistic 
models accepted in the commercial IR world. One m ajor obstacle is th a t of 
finding methods for estim ating the probabilities of relevance th a t are both 
effective and com putationally efficient. Past and present research has made 
much use of formal probability theory and statistics in order to solve the 
problems of estim ation. In m athem atical terms the problem consists in esti­
m ating the probability P ( R  | q ,d ), i.e. the probability of relevance given a 
query q and a document d for every document in the collection, and ranking 
the documents according to this measure. This is very difficult because of
the large number of variables involved in the representation of documents
in comparison with the small amount of feedback data  available about the 
relevance of documents, a problem sometimes refered to as the “curse of 
dimensionality” [Eft96].

In 1986 Van Rijsbergen [vR86] proposed to consider the conditional probabil­
ity P ( R  | q, d) as the probability of the conditional d —»• q, th a t is P (d  —> q). 
In order to evaluate P (d  —> q) he proposed to use the following logical un­
certainty principle:

“Given any two sentences x  and y ; a measure of the uncer­
tain ty  of y -»  x  related to a given data  set is determined by the 
minimal extent to which we have to add information to the da ta  
set, to establish the tru th  of y —> x .”

However, Van Rijsbergen said nothing about how “uncertainty” and “mini­
m al” might be quantified.

The logical uncertainty principle initiated a new line of research th a t has 
been followed by many researchers, (see for example [Nie88, CC92, Bru93]), 
and different interpretations of the term  “uncertainty” and different ways to 
estim ate it have been proposed.
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1.5 Probability Kinematics and Probabilistic 
Information Retrieval

The logical uncertainty principle is the staring point of this thesis. However, 
to proceed with its application we need to map it first to the IR problem. 
To do so we need to answer the following questions in the IR context:

1. W hat are x  and y l

2. How do we interpret y —> x l  W hat is the semantics of y  -*  x?

3. How do we choose /x(y —»• x), the measure of the uncertainty of y —> x7

4. W hat is the da ta  set in the context of which ja(y x) is evaluated?

5. How can we add information to the data  set? W here does this infor­
m ation come from?

6. How do we establish the tru th  of y —»• x?

7. How can we measure the information we have added to the data  set to 
establish the tru th  of y —>■ x l  How do we calculate fi(y —> x)7

8. How can we be sure th a t the information we added to the data  set is 
minimal?

The rest of the thesis will be devoted to provide answers and explain solutions 
to the above questions. The result is a set of models for probabilistic IR 
th a t are based on the logical uncertainty principle. Note th a t this thesis 
tackles these questions in a very particular way, making decisions th a t may 
be questionable, but th a t are reasonable and theoretically sound.

Two assumptions have been taken in order to answer the above questions:

•  The measure of uncertainty /z will be searched in the context of Proba­
bility Theory, so th a t the resulting model will be a probabilistic model 
of IR.

•  Once we have specified a probabilistic space, the information to be 
added to the data  set to establish the tru th  of y —> x  will come from 
elements of the probabilistic space itself and not from outside it.



CHAPTER 1. INFORMATION RETRIEVAL AND PRO BABILITY  16

The above two assumptions were taken with the purpose of restricting the 
area of research, so providing a framework inside which carry out an in depth 
research. W ith the first assumption I restrict the choice of p, into a very well 
delimited framework. The probabilistic framework has proved to  be very 
successful in IR, although other approaches based on different uncertainty 
measures have been proposed (see for example [Lal96, TC92b]). The second 
assum ption assures tha t I will not be concerned with information provided 
by a user, an intermediary, or some other external source. The introduction 
of the user in this area of research would generate a number of issues related 
to the subjectivity of the results, the interaction with the user, the modelling 
of the user behaviour, and so on. I do not wish to tackle these issues a t this 
stage.

Given the above two assumptions, this thesis will be concerned w ith speci­
fying a probabilistic space in which the basic elements of IR, th a t is index 
terms, documents, and queries, will be placed and assigned probabilities to. 
These probabilities will then be moved around in the retrieval space a t re­
trieval tim e in order to achieve the goal of a probabilistic IR system, th a t is 
to rank documents in decreasing order of some estim ated probability of rel­
evance to a user query. Existing probabilistic IR models will also be studied 
in this same probabilistic space, to compare their behaviour with th a t of the 
new models I will propose.

Particular emphasis will be placed to the kinematics of probabilities, th a t is to 
the study of how probabilities are moved from one element of the probabilistic 
indexing space to  another. I believe th a t the key to obtain better probabilistic 
IR models, both from a theoretical and a practical point of view, is to study 
existing models a t a very deep level, almost like studying them  “through 
a microscope” . This will enable a more in depth comparison with existing 
models and a more accurate explanation of the differences in behaviour and 
results.

1.6 Structure of the thesis

A large am ount of the technical m aterial reported in the rest of this thesis 
has been already published by me in various technical reports, workshops and 
conference proceedings, and journals articles. In particular, eight chapters of 
the thesis (from Chapters 2 to 9 included) have been extracted from papers 
either published or in the process of being published. A detailed list of where 
and when these papers have been published is reported at the beginning
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of this thesis in the Declaration section. The work reported here forms a 
seamless study on the kinematics of probabilities in probabilistic IR.

In particular, Chapter 2 reports a survey of the state of the art of proba­
bilistic modelling in IR. This provides the background in which the study 
reported in this thesis should be placed. Chapter 3 presents a first formula­
tion of a new class of probabilistic retrieval models based on Logical Imaging. 
This formulation is later enhanced and compared with probabilistic models 
of IR  in C hapter 4. Chapter 5 reports an analysis of the sense resolution 
properties of the proposed models. Chapter 6 tackles the problem of using 
these new models in the absence of complete information on the probabilis­
tic term  space. These last four chapters constitute a theoretical study th a t is 
the core of the thesis. The following two chapters report on the implementa­
tion study into possible implementation platforms for the proposed models. 
C hapter 7 reports on the implementation of the proposed models on top of 
Probabilistic Datalog, while Chapter 8 reports on their im plem entation on 
top of the Ci Probabilistic Logic. The following three chapters report on the 
experimental study into the effectiveness of the proposed models. C hapter 9 
reports on the troubles faced in experimenting retrieval by Logical Imaging 
w ith a very large collection of documents. Chapter 10 reports on further 
experim entations with a large collection of documents and analyses some 
contrasting experimental results obtained from different im plementations of 
retrieval by Logical Imaging and General Logical Imaging. C hapter 11 con­
cludes the thesis reporting the theoretical and the experimental conclusions, 
and the future work.

N ote on the Compilation of this Thesis

It is general practice when writing research papers to introduce the topic of 
research by recalling theoretical points and results already presented by the 
author in previous papers. For this reason, some concepts th a t are central 
to this thesis are reported a few times in the chapters derived from papers. 
Although this may seem a useless repetition, it is a consequence of the original 
structure of the papers from which this thesis has be derived and could not 
be totally  avoided.
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Chapter 2 

Probabilistic Information  
Retrieval

This chapter provides an introduction to and survey of probabilistic ap­
proaches to modelling Information Retrieval. The basic concepts of prob­
abilistic approaches to Information Retrieval are outlined, and the principles 
and assumptions upon which the approaches are based are presented. The 
various models th a t have been proposed in the development of IR  are de­
scribed, classified, and compared. The models are classified and compared 
using a common formalism. New approaches th a t constitute the basis of 
future research are described.

2.1 History of probabilistic modelling in IR

In Information Retrieval (IR), probabilistic modelling is the use of a model 
th a t ranks documents in decreasing order of their evaluated probability of 
relevance to a user’s information need. Past and present research has made 
much use of formal theories of probability and of statistics in order to  eval­
uate, or at least estimate, those probabilities of relevance. These attem pts 
are to be distinguished from looser ones like, for example, the Vector Space 
model [Sal68] in which documents are ranked according to a measure of 
similarity with the query. A measure of similarity cannot be directly inter­
pretable as a probability. In addition, similarity based models generally lack 
the theoretical soundness of probabilistic models.

The first a ttem pts to develop a probabilistic theory of retrieval were made

19
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over th irty  years ago [MK60, Mil71]. Since, there has been a steady devel­
opment of the approach. There are already several operational IR  systems 
based upon probabilistic or semi-probabilistic models.

One m ajor obstacle with probabilistic or semi-probabilistic IR  models is th a t 
of finding methods for estimating the probabilities used to evaluate the prob­
ability of relevance th a t are both theoretically sound and com putationally 
efficient. The problem of estimating these probabilities is difficult to tackle 
unless some simplifying assumptions are made. In the early stages of the 
study of probabilistic modelling in IR, assumptions related to event indepen­
dence were employed in order to facilitate the computations. The first models 
to be based upon such assumptions were the “binary independence index­
ing model” (Section 2.3.3) and the “binary independence retrieval model” 
(Section 2.3.2). Recent findings by Cooper [Coo95] have shown th a t these 
assumptions are not completely necessary and were, in fact, not actually 
made (Section 2.5).

The earliest techniques th a t took into account dependencies gave results 
th a t were worse th a t those given by techniques based upon the simplifying 
assumptions. Moreover, the use of complex techniques th a t captured de­
pendencies could only be made at a com putational price regarded as too 
high with respect to the value of the results [vR77]. One particular research 
direction aimed at removing the simplifying assumptions has been studied 
extensively and much work is being done [FCAT90, TC90, Sav92, vR92].

Another direction has involved the application of the statistical techniques 
used by pattern  recognition and regression analysis. These investigations, of 
which the “D arm stadt indexing approach (DIA)” is a m ajor example [Fuh89, 
FB91] (see Section 2.3.4), do not make use of independence assumptions. 
They are “model free” in the sense th a t the only probabilistic assumptions 
involved are those implicit in the statistical regression theory itself. The 
m ajor drawback of such approaches is the degree to which heuristics are 
necessary to optimise the description and retrieval functions.

A theoretical improvement of the DIA was achieved through the use of logis­
tic regression instead of standard regression. Standard regression is, strictly 
speaking, inappropriate for estimating probabilities of relevance where rele­
vance is considered as a dichotomous event: i.e. a document is either rele­
vant to a query or not. Logistic regression has been specifically developed to 
deal with dichotomous (or n-dichotomous) dependent variables. Probabilis­
tic models th a t make use of logistic regression have been developed by Fuhr 
and Pfeifer in [FB91] and by Cooper et al. in [CGD92] (Sections 2.3.4 and
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2.3.7).

One area of recent research investigates the use of an explicit network repre­
sentation of dependencies. The networks are processed by means of Bayesian 
inference or belief theory, using evidential reasoning techniques such as those 
described by Pearl [Pea88]. This approach represents an extension of the ear­
liest probabilistic models, taking into account the conditional dependencies 
present in a real environment. Moreover, the use of such networks generalises 
existing probabilistic models and allows the integration of several sources of 
evidence within a single framework. A ttem pts to  use Bayesian (or causal) 
networks are reported in [Tur90, TC91, Sav92].

There is also a new stream of research, initiated by van Rijsbergen [vR86] 
and continued by him and others [AvR95, Lal96, Bru93, Bv92, Hui96, Seb94, 
Cv95]. It aims at developing a model based upon a non-classical logic, in 
particular, a conditional logic where the semantics is expressed using proba­
bility theory. The evaluation can be performed by means of a possible-world 
semantics [vR89, vR92, Sv93, CvR95] thus establishing an intentional logic, 
by using modal logic [Nie88, Nie89, AK92, Nie92], by using situation theory 
[Lal92], or by integrating logic with Natural Language Processing [CC92]. 
The area is in its infancy; no working prototype based on the proposed mod­
els has been developed so far, and the operational validity of these ideas has 
still to be confirmed.

2.2 Background

In this section, I review some general aspects th a t are im portant for a full 
understanding of probabilistic models. Then, I provide a framework within 
which the various models can be placed for comparison. I do not deal with 
concepts of probability theory in this chapter. I assume some fam iliarity of 
principles of probability theory on the part of the reader. Finally, because 
of its importance to the foundations of all probabilistic retrieval models, I 
present the Probability Ranking Principle.

2.2.1 Event space

In general, probabilistic models have as their event space the set Q x D ,  where 
Q represents the set of all possible queries, and I)  the set of all documents
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in the collection. The difference between the various models lies in their use 
of different representations and descriptions of queries and documents.

In most models, queries and documents are represented by descriptors, often 
autom atically extracted or manually assigned terms. These descriptors are 
represented as binary valued vectors in which each element corresponds to 
a term. More complex models make use of real valued vectors, or take into 
account relationships among terms or among documents.

A query is an expression of an information need. In this thesis, I regard a 
query as a unique event; th a t is, if two users subm it the same query, or if 
the same query is subm itted by the same user on two different occasions, 
these two queries are regarded as different queries. A query is subm itted to 
the system, which then aims to find information relevant to the inform ation 
need expressed in the query. In this thesis I will consider relevance as a 
subjective user judgement on a document related to a unique expression of 
an information need1.

A document is any object carrying information; a piece of text, an image, a 
sound, or a video. However, most current IR systems deal only w ith text. 
This lim itation results from problems associated with finding suitable repre­
sentations for non textual objects. Therefore, in the remaining of this thesis, 
I will consider only text-based IR systems.

Some assumptions tha t are common to all retrieval models:

•  The users’ understanding of their information need changes during a 
search session, is subject to a continuous refinement, and is expressed 
by different queries.

•  Retrieval is based only upon representations of queries and documents, 
not upon the queries and documents themselves.

•  The representation of IR objects is “uncertain” . For example, the ex­
traction of index terms from a document or a query to represent the 
document or query informative content is a highly uncertain process. 
As a consequence, the retrieval process becomes uncertain.

1 There exists a relevance relationship between a query and a document, which relies 
on a user perceived satisfaction of his or her information need. Such a perception of 
satisfaction is subjective - different users can give different relevance judgements to a 
given query-document pair. Moreover, this relevance relationship depends on time, so the 
same user could give a different relevance judgement on the same query-document pair on 
two different occasions.
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It is particularly this last assumption th a t gave way to the study of prob­
abilistic retrieval models. Probability theory [Goo50] is, however, only one 
way of dealing with uncertainty2. Also, earlier models were largely based on 
classical probability theory, but, in recent times new approaches to dealing 
with uncertainty have been applied to IR. Sections 2.3 and 2.4 present both 
traditional and new approaches to probabilistic retrieval.

2.2.2 A conceptual model

The importance of conceptual modelling is widely recognised in fields such 
as Database Management Systems and Information Systems. For this thesis, 
I will use the conceptual model proposed by Fuhr [Fuh92b], which has the 
advantage of being both simple and general enough to be considered a con­
ceptual basis for all probabilistic models presented in this survey, although 
some of them predate it.

The model is shown in Figure 2.1. The basic objects of an IR system are: 
a finite set of documents D  (e.g., books, articles, images) and a finite set of 
queries Q  (e.g., information needs). I consider a set of queries and not a 
single query alone because a single user may have varying information needs. 
If we consider 1Z a finite set of possible relevance judgements, for example in 
the binary case IZ =  {R, R},  th a t is, a document can either be relevant or 
not to a query, then the IR system’s task is to map every query-document 
pair to an element of IZ. Unfortunately, IR systems do not deal directly with 
queries and documents, but with representations of them (e.g., a text for a

2 Other approaches are based, for example, on Fuzzy Logic [Zad87] and Dempster- 
Shafer’s theory of evidence [Sha76].

Pq

Figure 2.1: The underlying conceptual model.
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document, or a Boolean expression for a query). It is mainly the kind of 
representation technique used th a t differentiates one IR model from another.

I denote ag  the mapping between a set of queries Q and their representations 
Q. For example, a user in search of information about wine may express 
his or her query as follows: “I am looking for articles dealing w ith wine” . 
Similarly, I denote o p  the mapping between a set of documents D_ and their 
representations D. For example, in a library, a book is represented by its 
author, titles, a summary, the fact it is a book (and not a article), and 
some keywords. These two mappings can be very different from each other. 
Obviously, the better the representation of queries and documents, the better 
will be the performance of the IR system.

To make the conceptual model general enough to deal with the most complex 
IR models, a further mapping has been introduced between representations 
and descriptions. For instance, a description of the above query could be the 
following two stems: “article” and “wine” . The sets of representations Q and 
D  are mapped to the sets of descriptions Q' and D' by means of two mapping 
functions (3q and (3d - Moreover, the need for such additional m apping arises 
for learning models (see for example Section 2.3.4) th a t have to aggregate 
features to allow large enough samples for estimation. It is worth noticing, 
however, th a t most models work directly with the original docum ent and 
query representations.

It is common for IR systems to be able to manage only a poor description 
of the representation of the objects (e.g., a set of stems instead of a text). 
However, when representation and description happen to be the same, it is 
sufficient to consider either a g  or as an identity mapping.

Descriptions are taken as the independent variables of the retrieval function 
r  : Q' x D' —> 5R, which maps query-document pair onto a set of retrieval 
status values (RSV) r(qk, d ') [BC76]. The task of ranked retrieval IR  systems 
in response to a query qk is to calculate this value and rank each and every 
document dj in the collection upon it.

In probabilistic IR the task of the system is different. If we assume binary 
relevance judgements, i.e. IZ contains only the two possible judgem ents R  and 
R , then according to the Probability Ranking Principle (Section 2.2.4), the 
task of an IR system is to rank the documents according to their estim ated 
probability of being relevant P ( R  \ gk,dj). This probability is estim ated by 
P ( R  | q ^ d ’j), which is the retrieval status value.
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2.2.3 On the concepts of “relevance” and “probability  
of relevance”

The concept of relevance is arguably the fundamental concept of IR. In the 
above presented model I purposely avoid giving a formal definition of rele­
vance. The reason behind this decision is th a t the notion of relevance has 
never been defined precisely in IR. Although there has been a large number 
of attem pts towards a definition of the concept of relevance [Ser70, Coo71, 
Miz96], there has never been agreement about unique precise definition. A 
treatm ent of the concept of relevance is outside the scope of this chapter and 
I will not attem pt to formulate a new definition or even accept a particu­
lar already existing one. W hat is im portant for the purpose of this survey 
is to understand th a t relevance is a relationship th a t may or may not hold 
between a document and a user of the IR system who is searching for some 
information: if the user wants the document in question, then we say th a t the 
relationship holds. W ith reference to the model presented above, relevance 
(77) is a relationship between a document (dj) and a user’s information need 
(qk). If the user wants the document d in relation to his information need 
qk, then dj is relevant (R ).

Most readers will find the concept of probability of relevance quite unusual. 
The necessity of introducing such probability arises from the fact th a t rele­
vance is a function of a large number of variables concerning the document, 
the user, and the information need. It is virtually impossible to make strict 
prediction as to whether the relationship of relevance will hold between a 
given document and a given user’s information need. The problem must 
be approached probabilistically. The above model explains w hat is the ev­
idence available to an IR system to estimate the probability of relevance 
P ( R  | qk,dj). A precise definition of probability of relevance depends on a 
precise definition of the concept of relevance, and given a precise definition 
of relevance it is possible to define rigorously such probability. Just as I did 
not define relevance, I will not a ttem pt to define the probability of relevance, 
since every model presented here uses a somewhat different definition. I refer 
the reader to the treatm ent given by Robertson et al. in [RMC82], where 
different interpretations of the probability of relevance are given and a unified 
view is proposed.
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2.2.4 The Probability Ranking Principle

A common characteristic of all the probabilistic models developed in IR  is 
their adherence to the theoretical justification embodied in the Probability 
Ranking Principle (PRP) [Rob77]. The PR P asserts th a t optim al retrieval 
performance can be achieved when documents are ranked according to their 
probabilities of being judged relevant to a query. The above probabilities 
should be estimated as accurately as possible on the basis of whatever d a ta  
has been made available for this purpose.

The principle speaks of “optimal retrieval” , as distinct from “perfect re­
trieval” . Optimal retrieval can be defined precisely for probabilistic IR  be­
cause it can be proved theoretically with respect to representations (or de­
scriptions) of documents and information needs. Perfect retrieval relates to 
the objects of the IR systems themselves, i.e., documents and information 
needs.

The formal definition of the PR P is as follows. Let C  denote the cost of 
retrieving a relevant document, and C  the cost of retrieving a non-relevant 
document. The decision rule th a t is the basis of the PR P states th a t a doc­
ument dm should be retrieved in response to a query qk above any document 
di in the collection if:

C  ■ P ( R  I qk, dm) +  C  • (1 -  P ( R  I qk, dm)) < P ( R  \ qk, d ,)+  
+ C - ( l - P { R \ q k,d i))

The decision rule can be extended to deal with multi-valued relevance scales, 
(e.g., very relevant, possibly relevant, etc. [Coo71]). In addition, by means of 
a continuous cost function, it is possible to write a decision rule for approaches 
where the relevance scale is assumed to be continuous [BP93].

The application of the PR P in probabilistic models involves assumptions:

•  Dependencies between documents are generally ignored. Documents 
are considered in isolation, so th a t the relevance of one document to  a 
query is considered independent from th a t of other documents in the 
collection (nevertheless, see Section 2.5).
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•  It is assumed th a t the probabilities (e.g., P ( R  \ qk^df)) in the decision 
function can be estim ated in the best possible way, th a t is accurately 
enough to approximate the user’s real relevance judgement, and there­
fore order the documents accordingly.

Although these assumptions limit the applicability of the PRP, models based 
on it enable the implementation of IR systems offering some of highest level 
of retrieval performance currently available [Rob77]. There are, of course, a 
number of other retrieval strategies with high levels of performance and th a t 
are not consistent with the PRP. Examples of such strategies are the Boolean 
or the cluster model. In this chapter I am not concerned with these models 
since they are not probabilistic in nature and do not fall into the class of 
models this survey is about.

2.2.5 The remainder of this chapter

In the remainder of this chapter, I present a survey of probabilistic IR  models 
in two main categories: relevance models and inference models.

Relevance models are described in Section 2.3. These models are based on 
evidence about which documents are relevant to a given query. The problem 
of estim ating the probability of relevance for every document in the collection 
is difficult because of the large number of variables involved in the representa­
tion of documents in comparison to the small amount of document relevance 
information available. The models differ, primarily, in the way they estim ate 
this or related probabilities.

Inference models are presented in Section 2.4. These models apply concepts 
and techniques originating from areas such as logic and artificial intelligence. 
From a probabilistic perspective, the most noteworthy examples are those 
th a t consider IR as process of uncertain inference. The concept of relevance 
is interpreted in a different way, where it can be extended and defined with 
respect, not only to a query formulation, but also to an information need.

The models of both categories are presented separately, but using a common 
formalism and, as much as possible, to the same level of detail.
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2.3 Probabilistic relevance m odels

The main task of IR  systems based upon relevance models is to evaluate a 
probability of a document being relevant. This is done by estim ating the 
probability P ( R  | qk,di) for every document di in the collection, which is a 
difficult problem. The estimation problem can only be tackled by means of 
simplifying assumptions. Two kinds of approaches have been developed to 
deal with such assumptions: model-oriented and description-oriented.

Model-oriented approaches are based upon some probabilistic independence 
assumptions concerning the elements used in representing3 the documents or 
the queries. The probabilities of these individual representation elements are 
estimated, and, by means of the independence assumptions, the probabili­
ties of the document representations are estimated from them. The Binary 
Independence Indexing and Retrieval models (sections 2.3.3 and 2.3.2), and 
the n-Poisson model (Section 2.3.8) are examples of this approach.

Description-oriented approaches are more heuristic in nature. Given the rep­
resentation of queries and documents, a set of features for query-document 
pairs is defined (e.g., occurrence frequency information), th a t allows each 
query-document pair in the collection to be mapped on to these features. 
Then, by means of some training data  containing query-document pairs to ­
gether with their corresponding relevance judgements, the probability of rel­
evance is estimated with respect to these features. The best example of the 
application of this approach is the D arm stadt Indexing model (Section 2.3.4). 
However, a new model whose experimental results are not yet known, has 
been proposed by Cooper et al. [CGD92]. These models exploit the mapping 
between representations and descriptions th a t we introduced in Section 2.2.2.

2.3.1 Probabilistic M odelling as a decision strategy

The use of probabilities in IR was advanced in 1960 by Maron and Kuhns 
[MK60]. In 1976, Robertson and Sparck Jones went further by showing the 
powerful contribution of probability theory to model IR. The probabilistic 
model was theoretically finalised by van Rijsbergen in [vR79], chapter 6. The 
focus of the model is on its analysis as a decision strategy based upon a loss 
or risk function.

3Depending on the complexity of the models, the probabilities to be estimated can be 
with respect to the representations or the descriptions. But for clarity of expression, we 
will refer to the representations only, unless otherwise stated.
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Referring to the conceptual model described in Section 2.2.2, it is assumed 
th a t the representation and the description methods for queries and docu­
ments are the same. Queries and documents are described by sets of index 
terms. Let T  =  { t i , . . .  , t n} denote the set of terms used in the collection 
of documents. We represent the query qk with terms belonging to  T. Sim­
ilarly, we represent a document dj as the set of terms occurring in it. If 
we use a binary representation then dj is represented as the binary vector 
x = ( x i , . . . ,  x n) with Xi =  1 if ti € dj and X{ — 0 otherwise. The query qk is 
represented in the same manner.

The basic assumption, common to most models described in Section 2.3, 
is th a t the distribution of terms within the document collection provides 
information concerning the relevance of a document to a given query. This 
is because it is assumed th a t terms are distributed differently in relevant 
and non-relevant documents. This is known as the cluster hypothesis (see 
[vR79] pp. 45-47). If the term  distribution was the same within the sets 
of relevant and non-relevant documents then it would not be possible to 
devise a discrimination criterion between them. In which case, a different 
representation of the document information content would be necessary.

The term  distribution provides information about the “probability of rele­
vance” of a document to a query. If we assume binary relevance judgements, 
then the term  distribution provides information about P ( R  | qk,dj).

The quantity P ( R  | qk,x ) ,  with x  as a binary document representation, 
cannot be estim ated directly. Instead, Bayes’ theorem is applied [Pea88]:

w„i,  P{ R\ q k ) - P( S \ R, g k)

To simplify notation, we omit the qk on the understanding th a t evaluations 
are with respect to a given query qk. The previous relation becomes:

P (R  I 0) -  P (R )  ' P (S  1 R)p (R  I *)  ------- --------------

where P{R)  is the prior probability of relevance, P (x  \ R) is the probability of 
observing the description x  conditioned upon relevance having been observed, 
and P(x)  is the probability th a t x  is observed. The latter is determined as 
the joint probability distribution of the n terms within the collection. The
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Cj (R, dec) retrieved not retrieved
relevant document 0
non relevant document ^2 0

Table 2.1: The cost of retrieving and not retrieving a relevant and non rele­
vant document

above formula evaluates the “posterior” probability of relevance conditioned 
upon the information provided in the vector x.

The provision of a ranking of documents by the PR P can be extended to 
provide an “optim al threshold” value. This can be used to set a cut-off 
point in the ranking to distinguish between those documents th a t are worth 
retrieving and those th a t are not. This threshold is determined by means 
of a decision strategy, whose associated cost function Cj(R ,dec)  for each 
document dj is described in Table 2.1.

The decision strategy can be described simply as one th a t minimises the 
average cost resulting from any decision. This strategy is equivalent to  min­
imising the following risk function:

IZ(R,dec) = ^ 2  Cj(R,dec)  • P(dj \ R)
djeD

It can be shown (see [vR79], pp. 115-117) th a t the minimisation of th a t 
function brings about an optimal partitioning of the document collection. 
This is achieved by retrieving only those documents for which the following 
relation holds:

P ( d j  I g )  .  A

m-1 r )

where

' >2 • P (R )
Ai • P (R )
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2.3.2 The Binary Independence Retrieval m odel

In the previous section, it remains necessary to estim ate the joint probabil­
ities P(dj  | R) and P(dj \ R ), th a t is P (x  \ R) and P (x  \ R) if we consider 
the binary vector document representation x.

In order to simplify the estimation process, the components of the vector x  
are assumed to be stochastically independent when conditionally dependent 
upon R  or R. T hat is, the joint probability distribution of the term s in 
the document dj is given by the following product of marginal probability 
distributions:

n

P(dj | R) = P{x  | R) = n  P(*i I R )
i =  1

and

n

P{dj | R) =  P (x  | R) =  I J  P{xi | R )
i—1

This binary independence assumption, is the basis of a model first proposed
by Robertson and Spark Jones in 1976 [RS76]: the Binary Independence
Retrieval model (BIR). The assumption has always been recognised as unre­
alistic.

Nevertheless, as pointed out by Cooper (Section 2.5), the assumption th a t 
actually underpins the BIR model is not th a t of binary independence, but 
th a t of the weaker assumption of linked dependence:

P (x  \R )  = j t  1 R)
P {x  | R) W P{xi | R)

This states th a t the ratio between the probabilities of x  occurring in relevant 
and non relevant documents is equal to the product of the corresponding 
ratios of the single terms.

Considering the decision strategy of the previous section, it is now possible 
to obtain a decision strategy by using a logarithmic transform ation to obtain 
a linear decision function:
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To simplify notation, we define the following quantities:

P j  =  P (Xj  =  1 I R )

and

Qj =  p (x j  =  1 I R )

which represent the probability of the j th  term  appearing in a relevant, and 
in a non relevant document, respectively. Clearly: 1 — pj = P(xj =  0 | R), 
and 1 — qj =  P(xj =  0 | R). This gives:

p ( s  i r ) =  n  px/  ■ (i -  p j y - xi
3 =1

and

P(x I R) = n  q f  • (1 -  qjY~Zi
3 =1

Substituting the above, gives:

g(di) =  £ " =1(zr lo g ^  +  ( i - Z j ) - l o g ^ - )
=  E j= i c,- Xj +  C

where: 

Cj =  lo g  7 -  r  

Qj ■ (! -  Pi) 

and

j=i ^
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This formula gives the RSV of document dj for the query under consideration. 
Documents are ranked according to their RSV and presented to  the user. The 
cut-off value A can be used to determine the point a t which the display of 
the documents is stopped, although, the RSV is generally used only to  rank 
the entire collection of documents. In a real IR  system, the presentation 
of documents ordered on their estim ated probability of relevance to a query 
m atters more than  the actual value of those probabilities. Therefore, since 
the value of C  is constant for a specific query, we need only consider the value 
of Cj. This value, or more often the value exp(cj), is called the term relevance 
weight (TRW), and indicates the term ’s capability to discrim inate relevant 
from non relevant documents. As it can be seen, in the BIR model term  
relevance weights contribute “independently” to the relevance of a document.

To apply the BIR model, it is necessary to estimate the param eters pj and 
qj for each term  used in the query. This is performed in various ways, de­
pending upon the amount of information available. The estim ation can be 
retrospective or predictive. The first is used on test collections where the 
relevance assessments are known. The second is used with normal collection 
where parameters are estim ated by means of relevance feedback from the 
user.

There is another technique, proposed by Croft and Harper [CH79], th a t uses 
a collection information to make estimates and does not use relevance in­
formation. Let us assume th a t the IR system has already retrieved some 
documents for the query q^. The user is asked to  give relevance assessments 
for those documents, from which the parameters of the BIR are estim ated. 
If we also assume to be working in the retrospective case, then we know the 
relevance value of all individual documents in the collection. Let a collection 
have N  documents, R  of which are relevant to the query. Let Uj denote the 
number of documents in which the term  Xj appears, amongst which, only rj 
are relevant to the query. The parameters pj and qj can then be estim ated 
as follows:
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These give:

t r w j =
N —r i j —R + r j

This approach is possible only if we have relevance assessments for all doc­
uments in the collection, i.e. where we know R  and ry. According to  Croft 
and Harper, given th a t the only information concerning the relevance of doc­
uments is th a t provided by a user through relevance feedback, predictive 
estim ations should be used. Let R  denote the number of documents judged 
relevant by the user. Further, let f j  be the number of those documents in 
which the term  Xj occurs. We can then combine this with the estim ation 
technique of [Cox70].

r j+ 0 .5

TRWj  =  — —

N —rij —R + f j  + 0 .5

Usually, the relevance information given by a user is limited and is not suf­
ficiently representative of the entire collection. Consequently, the resulting 
estim ates tend to lack precision. As a partial solution, one generally simplifies 
by assuming pj to be constant for all the terms in the indexing vocabulary. 
The value pj =  0.5 is often used, which gives a TRW th a t can be evaluated 
easily:

^  = r N  — rij
TRWj  =  J-

rij

For large iV, i.e. large collections of documents, this expression can be ap­
proxim ated by the “inverse document frequency” ID F j =  log N/rij. This is 
widely used in IR to provide an intuitive discrimination power of a term  in 
a docum ent collection.

2.3.3 The Binary Independence Indexing model

The Binary Independence Indexing model (BII model) is a variant of the 
BIR model. Where the BIR model regards a single query with respect to the
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entire document collection, the BII model regards one document in relation 
to a number of queries. The indexing weight of a term  is evaluated as an 
estim ate of the probability of relevance of th a t document with respect to 
queries using th a t term. This idea was first proposed in Maron and K uhns’s 
indexing model [MK60].

In the BII, the focus is on the query representation, which we assume to be 
a binary vector z. The dimension of the vector is given by the set of all 
terms T  which could be used in a query, and Zj =  1 if the term  represented 
by th a t element is present in the query, Zj =  0 otherwise4. In this model, 
the terms weights are defined in terms of frequency information derived from 
queries; th a t is, an explicit document representation is not required. We will 
only assume th a t there is a subset of terms th a t can be used to  represent 
any document, and th a t will be given weights with respect to a particular 
document.

The BII model seeks an estim ate of the probability P ( R  \ z ,d j)  th a t the 
document dj will be judged relevant to the query represented by z. To use 
the same formalism as the previous section, we use x  to denote the document 
representation. So far this model looks very similar to the BIR; the difference 
lies with the application of Bayes’ theorem as follows:

P ( R  | x) is the probability th a t the document represented by x  will be 
judged relevant to an arbitrary query. P (z  \ R ,x )  is the probability th a t 
the document will be relevant to a query with representation z. As z  and x  
are assumed to be mutually independent, P (z  \ x) reduces to the probability 
th a t the query z  will be subm itted to the system P(z).

To proceed from here, some simplifying assumptions must be made:

1. The conditional distribution of terms in all queries is independent. 
This is the classic “binary independence assumption” , from which the 
model’s name arises:

P ( z \ R , x )  =  J ]  P (zi I R ,x )
i=i

4As a consequence, two different information needs (i.e., two queries) using the same 
set of terms will produce the same ranking of documents.
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2. The relevance of a document with representation x  with respect to  a 
query z  depends only upon the terms used by the query (i.e., those 
with Z{ = 1) and not upon other terms.

3. W ith respect to a specific document, for each term  not used in the 
document representation, we assume:

P ( R  | Zi, x) =  P ( R  | x)

Now, applying the first assumption to P ( R  \ z , x ) ,  we get:

F ( R I ? ’ g ) = w j § -  n p ( z ' I R ’ g)

by applying the second assumption and Bayes’ theorem, we get the ranking 
formula:

P ( R  \ 7 — Fit , nr71 P{R\zi,x)r y n \ z , x )  n i=1
_  l i t  P (z ') , D / D  I . T~T P(R\Zj =  l ,x)  ' j-r P (R\ Zi —0,x)

P { z )  | A )  i i z i - l  P (R\x )  i l z i = 0  P ( i J |£ )

The value of the first fraction is a constant c for a given query, so there is no 
need to estim ate it for ranking purposes. In addition, by applying the th ird  
assumption, the third fraction becomes equal to 1 , and we obtain:

There are a few problems with this model. The use of the th ird  assump­
tion is in contrast with experimental results reported by Turtle [Tur90], who 
demonstrates the advantage of assigning weights to query term s not occur­
ring in a document. Moreover, the second assumption is called into question 
by Robertson et al. [RS76]. They proved experimentally the superiority of 
a ranking approach in which the probability of relevance is based upon both 
the presence and the absence of query terms in documents. The results sug­
gest th a t the BII model might obtain better results if it were, for example, 
used together with a thesaurus or a set of term -term  relations. This would 
enable the use of document terms not present in the query, but related in 
some way to those th a t were.
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Fuhr [Fuh92b] pointed out tha t, in its present form, the BII model is hardly 
an appropriate model because, in general, there is not enough relevance in­
formation available to estimate the probability P ( R  \ L ,x )  for specific term - 
document pairs. To partially overcome this problem, one can assume th a t a 
document consists of independent components to which the indexing weights 
relate. However, experimental evaluations of this strategy have shown only 
average retrieval results [Kwo90].

Robertson et al. proposed a model th a t provides a unification of the BII 
and BIR models [RMC82]. The proposed model, simply called Model 3 (as 
opposed to the BII model called Model 1 and the BIR model called Model 
2), enables us to combine the two retrieval strategies of the BII and the BIR 
models, thus providing a new definition of probability of relevance th a t uni­
fies those of the BII and BIR models. In the BII model the probability of 
relevance of a document given a query is computed relative to evidence con­
sisting of the properties of the queries for which th a t document was consid­
ered relevant, while in the BIR model it is computed relative to the evidence 
consisting of the properties of documents considered relevant by th a t same 
query. Model 3 enables us to use both forms of evidence. Unfortunately, a 
com putationally treatable estimation theory fully faithful to Model 3 has not 
been proposed. The Model 3 idea has been explored later by Fuhr [Fuh89] 
and Wong and Yao [WY89] (see Section 2.3.5).

2.3.4 The Darm stadt Indexing model

The basic idea of the Darmstadt Indexing approach (DIA) is to use long­
term  learning of indexing weights from users’ relevance judgements [FK84, 
B FK +88 , FB91]. It can be seen as an a ttem pt to develop index term  specific 
estim ates based upon the use of index terms in the learning sample.

DIA attem pts to estimate P ( R  \ Xi, q^) from a sample of relevance judgem ents 
of query-document or term-document pairs. This approach, when used for 
indexing, associates a set of heuristically selected attributes to each term - 
document pair, rather than  estim ating the probability associated with an 
index term  directly (examples are given below). The use of an a ttribu te  set 
reduces the amount of training data  required and allows the learning to  be 
collection specific. However, the degree to which the resulting estim ates are 
term  specific depends critically upon the particular attributes used.

The indexing performed by the DIA is divided in two steps: a description 
step and a decision step.
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In the description step relevance descriptions for term-document pairs (#*, x )  

are formed. These relevance descriptions s (x i ,x)  5, comprise a set of a t­
tributes considered im portant for the task of assigning weights to term s with 
respect to documents. A relevance description s ( x i , x )  contains values of 
a ttributes of the term  X { : of the document (represented by x )  and of their 
relationships. This approach does not make any assumptions about the struc­
ture of the function s  or about the choice of attributes. Some examples of 
a ttributes which could be used by the description function are:

•  frequency of occurrence of term  Xi in the document,

•  inverse frequency of term  Xi in the collection,

•  information about the location of the occurrence of term  Xi in the 
document, or

•  param eters describing the document, e.g. its length, the number of 
different terms occurring in it, etc.

In the decision step, a probabilistic index weight based on the previous data  
is assigned. This means th a t we estimate P ( R  | s(x i ,x ))  and not P ( R  | 
Xi,x).  In the la tter case, we would have regarded a single document dj (or 
x )  with respect to all queries containing X { , as in the BII model. Here, 
we regard the set of all query-document pairs in which the same relevance 
description s  occurs. The interpretation of P ( R  | s(a;j,x)) is therefore th a t 
of the probability of a document being judged relevant to an arbitrary  query, 
given th a t a term  common to both document and query has a relevance 
description s ( x i , x ) .

The estimates of P ( R  \ s (x i , £)) are derived from a learning sample of term- 
document pairs with attached relevance judgements derived from the query- 
document pairs. If we call this new domain L, we have:

L  c  D  x Q x U

or

L  { (qk j d j , T k j )}

5These are similar to those used in pattern recognition.
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By forming relevance descriptions for the terms common to queries and doc­
uments for every query-document pair in L, we get a multi-set of relevance 
descriptions w ith relevance judgements:

L x =  [(s(x<} d j ) ,rkj) | X i e q k r  dj A (qk, d j , rkj) e  L\

Using this set, it would be possible to estimate P ( R  | s (x j,x )) as the rela­
tive frequency of those elements of L x with the same relevance description. 
Nevertheless, the technique used in DIA makes use of an indexing function , 
because it provides better estimates through the use of additional plausible 
assumptions about the indexing function. In [FB91], various linear indexing 
functions estim ated by least squares polynomial were used, while in [FB93] a 
logistic indexing function estimated by maximum likelihood was attem pted. 
Experim ents were performed using both a controlled and a free term  vocab­
ulary.

The experimental results on the standard test collections indicate th a t the 
DIA approach is often superior to other indexing methods. The more recent, 
but only partial, results obtained using the TREC collection [FB93] tend to 
support this conclusion.

2.3.5 The Retrieval w ith Probabilistic Indexing m odel

The Retrieval with Probabilistic Indexing (RPI) model described in [Fuh89] 
takes a different approach from other probabilistic models. This model as­
sumes th a t we use not only a weighting of index terms with respect to the 
document but also a weighting of query terms with respect to  the query. If 
we denote wmi the weight of index term  X{ with respect to the document x m, 
and v ki the weight of query term  Zi  =  Xi  with regard to the query z k , then 
we can evaluate the following scaler product and use it as retrieval function:

%k)  ^  1 m i  ’ Vki

{ X m —Zk }

Wong and Yao [WY89] give an utility theoretic interpretation of this formula 
for probabilistic indexing. Assuming we have a weighting of term s with 
respect to documents (similar to those, for example, of BII or DIA), the 
weight can be regarded as the utility of the term  L, and the retrieval 
function r(dm, qk) as the expected utility of the document with respect to the
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query. Therefore, r(dm,qk) does not estimate the probability of relevance, 
but it has the same utility theoretic justification as the PRP.

RPI was developed especially for combining probabilistic indexing weighting 
with query term  weighting based, for example, on relevance feedback. As a 
result, its main advantage is th a t it is suitable for application to different 
probabilistic indexing schemes.

2.3.6 The Probabilistic Inference model

Wong and Yao in [WY95] extend the work reported in [WY89] by using an 
epistemological view of probability, from where they proposed a probabilistic 
inference model for IR. W ith the epistemic view of probability theory, the 
probabilities under consideration are defined based on semantic relationships 
between documents and queries. The probabilities are interpreted as degrees 
of beliefs.

The general idea of the model starts with the definition of a concept space, 
which can be interpreted as the knowledge space in which documents, index 
terms, and user queries are represented as propositions. For example: the 
proposition d is the knowledge contained in the document; the proposition q 
is the information need requested; and the proposition d fl q is the portion of 
knowledge common to d and q.

An epistemic probability function P  is defined on the concept space. For 
example, P(d ) is the degree to which the concept space is covered by the 
knowledge contained in the document and P ( d D  q) is the degree to  which 
the concept space is covered by the knowledge common to the document and 
the query.

Based on these probabilities, different measures can be constructed to eval­
uate the relevance of documents to queries, offering different interpretations 
of relevance, thus leading to different approaches to model IR. I discuss two 
of them. The first one is:

9 ( d  -> q) =  P(q\d) =

ty(d —>• q) can be considered as a measure of precision of the document 
with respect to the query, and is defined as the probability th a t a retrieved 
document is relevant. A precision-oriented interpretation of relevance should
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be used, for example, when a user is interested in locating a specific piece of 
information. A second measure is:

* ( 9  -► d) = P{d\q) =

ty(q —»• d) is considered as a recall index of the document with respect to  the 
query, and is defined as the probability th a t a relevant document is retrieved. 
A recall-oriented measure should be used when the user is writing a review 
paper on a particular subject, and is interested in finding as many papers as 
possible on the subject.

Depending of the relationships between concepts, different formulations of 
4/(d —>■ q) and ^5f(q —> d) are obtained. For example, suppose th a t the 
concept space is t \  U . . .  U t n where the basic concepts are (pairwise) disjoint;
i.e., ti fl t j  =  ® for i ^  j .  It can be proven tha t, taking a t  G { t i , . . .  t n}:

ty(q ->d) =

E t P ( d n g \ t ) P ( t )
p(d)

Z t P ( d n q \ t ) P ( t )

P(q)

Wong and Yao work aims to provide a probabilistic evaluation of uncertain 
implications which have been advanced as a way to measure the relevance 
of documents to queries (see Section 2.4.1). Although measuring uncertain 
implications by a probability function is more restrictive than  for example 
using the possible world analysis, the model proposed by Wong and Yao is 
both expressive and sound. For example, they show th a t the Boolean, fuzzy 
set, Vector Space and probabilistic models are special cases of their model. 
I will not go into the detail of this demonstration, but I refer to the cited 
articles.

2.3.7 The Staged Logistic Regression m odel

Cooper’s Staged Logistic Regression model (SLR), proposed in [CGD92], is 
an a ttem p t to  overcome some problems present in the use of standard regres­
sion m ethods to  estim ate probabilities of relevance in IR. Cooper criticises
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Fuhr’s approaches, especially the DIA which require strong simplifying as­
sumptions. He thinks (I include a longer explanation of his point of view 
in Section 2.5) th a t these assumptions inevitably distort the final estim ate 
of the probability of relevance. He advocates a “model-free” approach to 
estimation. In addition, a more serious problem lies in the use of standard 
polynomial regression methods. Standard regression theory is based on the 
assumption th a t the sample values taken for the dependent variable are from 
a continuum of possible magnitudes. In IR, the dependent variable is usually 
dichotomous: a document is either relevant or non relevant. So standard 
regression is clearly inappropriate in such cases.

A more appropriate tool, according to Cooper, is logistic regression, a sta­
tistical method specifically developed for using dichotomous (or discrete) de­
pendent variables. Related techniques were used with some success by other 
researchers, for example, Fuhr employed it in [FP91] and more recently in 
[FB93].

The method proposed by Cooper is based on the guiding notion of treating 
composite clues on at least two levels, an intra-clue level at which a predictive 
statistic is estimated separately for each composite clue6, and an inter-clue 
level in which these separate statistics are combined to obtain an estim ate of 
the probability of relevance for a query-document pair. As this proceeds in 
stages, the method is called Staged Logistic Regression (SLR). A two stage 
SLR would be as follows:

1. A statistical simplifying assumption is used to break down the complex 
joint probabilistic distribution of the composite clues. This assumption 
is called linked dependence. For example, assuming th a t we have only 
two clues, a positive real number K exists such th a t the following con­
ditions hold true:

P (a , b \ R ) = K  P(a \ R)  • P{b \ R)  

P(a, b | -iR) =  K  P(a  | - R ) • P{b | ->R)

It follows that:

P ( a , b \ R )  P ( a \ R )  P { b \ R )  
P(a,b  | -iR) “  P(a \ ^ R )  ' P{b | R)

6A simple clue could be, for example, the presence of an index term in a document. 
Clues need to be machine-detectable.
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Generalising this result to the case of n  clues and taking the “log odds” 
we obtain:

LogO(R  | a i , . . .  ,an) =
n

= LogO(R)  +  ^2(LogO (R  | a*) — LogO(R))
i =  1

This is used a t retrieval time to evaluate the log odds of relevance for 
each document in the collection with respect to  the query.

2 . A logistic regression analysis on a learning sample is used to obtain 
an estim ate of the terms on the right hand side of the previous equa­
tion. Unfortunately, the required learning sample is often only available 
within the environment of test collections, although it could be possible 
to use the results of previous good queries for this purpose.

The estim ation of LogO(R)  is quite straightforward using simple pro­
portions. A more complex m atter is the estimation of LogO(R \ a*), 
when there are too few query-document pairs in the learning set with 
the clue a* to yield estimates of P ( R  \ ai) and P(->R \ ai). To go beyond 
simple averaging, Cooper uses multiple logistic regression analysis. If 
we assume th a t the clue a* is a composite clue, whose elementary a t­
tributes are h i , . . . , h m then we can estim ate LogO(R  | ai) as follows:

LogO(R  | = LogO(R  | h i , . . . ,  h m )

=  Co +  Ci h i , +  . . .  +  c m  h m

To dem onstrate how the logistic function comes into the model, the 
probability of relevance of a document can be expressed as:

g C o + C l  / l l , +  . . .+ C m  hm

P { R  | h i , . . . , h m) =  1 +  eC0+Cl hU+...+Cm hm

Taking the log odds of both sides conveniently reduces this formula to 
the previous one.

3. A second logistic regression analysis, based on the same learning sam­
ple, is used to obtain another predictive rule for combining the com­
posite clues and for correcting biases introduced by the simplifying 
assumption.
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The linked dependence assumption tends to inflate the estim ates for 
documents near the top of the output ranking whenever the clues on 
which the estimates are based are strongly interdependent. To help 
correct this, a second level logistic regression analysis is performed on 
the results of the first. It has the following form:

LogO(R  | d\ , . . . ,  nn) =  do T  d\ Z  -f- g?2 ti

where Z  = £ ? = i(LogO(R  | a*) — LogO(R))  and n  is the number of 
composite clues. More elaborate correcting equation might also be 
considered.

W hen a query is subm itted to the system and a document is compared against 
it the technique in part 2 is applied to evaluate the log odds necessary to  
obtain Z.  T hat is then employed in part 3 to adjust estim ate of the log odds 
of relevance for the document.

This approach seems flexible enough to handle almost any type of probabilis­
tic retrieval clues likely to be of interest, and is especially appropriate when 
the retrieval clues are grouped or composite. However, the effectiveness of 
the methodology remains to be determined empirically, and its performance 
compared with other retrieval methods. An experimental investigation is 
currently under way by Cooper, and the use of logistic regression has also 
been investigated by Fuhr, as reported in the proceedings of the TREC-1 
Conference [FB93].

2.3.8 The N-Poisson indexing model

This probabilistic indexing model is an extension to n-dimensions of the 
2-Poisson model proposed by Bookstein et al. in 1974 [BS74]. In its 2- 
dimensional form the model is based upon the following assumption. If the 
number of occurrences of a term  within a document is different depending 
upon whether the document is relevant or not, and if the number of occur­
rences of th a t term  can be modelled using a known distribution, then it is 
possible to decide if a term  should be assigned to a document by determ ining 
which of the two distributions the term  belongs to. The 2-Poisson model re­
sulted from a search for the statistical distribution of occurrence of potential 
index terms in a collection of documents.



CHAPTER 2. PROBABILISTIC INFORMATION RETRIEVAL  45

We can extend the above idea to the n-dimensional case. We suppose there 
are n  classes of documents in which the term  X{ appears with different fre­
quencies according to the extents of coverage of the topic related to th a t 
specific term. The distribution of the term  within each class is governed by a 
single Poisson. Given a term  Xi, and a document class for th a t term  and 
the expectation of the number of occurrences of th a t term  in th a t class Ay, 
then the probability th a t a document contains I occurrence of , i.e. th a t 
t f ( x i) — h given th a t it belongs to the class K i j , is given by:

P ( t f ( x i )  = I | x  e  Kij) = e~Xij

Extending this result, the distribution of a certain term  within the whole 
collection of documents is governed by a sum of Poisson distributions, one 
for each class of coverage. In other words, if we take a document a t random  
in the collection, whose probability of belonging to class is pij then the 
probability of having I occurrences of term  Xi is:

=l)  = j l p i j  e~Xii L -
3 =1  *•

This result can be used with a Bayesian inversion to evaluate P ( x  G \ 
t f ( x i  = I)) for retrieval purposes. The param eters A^ and can be es­
tim ated without feedback information by applying statistical techniques to 
the document collection.

Experiments have shown th a t the performance of this model is not always 
consistent. Some experiments performed by Harter [Har75] on a 2-Poisson 
showed th a t a significant number of “good” index terms were 2-Poisson, but 
they did not provide conclusive evidence of the validity of the n-Poisson 
model. These results were co-validated by Robertson et al. [RW94]. They 
dem onstrated considerable performance improvements by using some effec­
tive approximations to the 2-Poisson model on the TREC collection. O ther 
research investigated the possibility of using a 3-Poisson, and lastly Margulis 
[Mar92, Mar93] investigated the generalised n-Poisson model on several large 
full tex t document collections. His findings were more encouraging than  those 
of the previous work. He determined th a t over 70% of frequently occurring 
words were indeed distributed according to a n-Poisson distribution. Fur­
ther, he found th a t the distribution of most n-Poisson words had relatively
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few single Poisson components, instead, usually two, three, or four. He con­
cluded suggesting th a t his study provides strong evidence th a t the n-Poisson 
distribution could be used as a basis for accurate statistical modelling of large 
document collections. However, to date, the n-Poisson approach lacks work 
on retrieval strategies based upon the results gained so far.

2.4 Uncertain inference models

The models presented in this section are based on the idea th a t IR  is a process 
of uncertain inference. Uncertain inference models are based on more com­
plex forms of relevance th a t those used in relevance models, which are based 
mainly upon statistical estimations of the probability of relevance. W ith un­
certain inference models, information not present in the query formulation 
may be included in the evaluation of the relevance of a document. Such 
information might be domain knowledge, knowledge about the user, user’s 
relevance feedback, etc. The estimation of the probabilities P ( R  | qk ,d i ,K)  
involves the representation of the knowledge K.

Another characteristic of uncertain inference models is th a t they are not as 
strongly collection-dependent as relevance models. Param eters in relevance 
models are only valid for the current collection, while inference models can 
use knowledge of the user or the application domain th a t can be useful with 
many other collections.

This research area is promising in th a t it is a ttem pting to move away from 
the traditional approaches, and may provide the breakthrough th a t appears 
necessary to overcome the limitations of current IR systems.

There are two main types of uncertain inference models. The first is based 
on non-classical logic, to which probabilities are m apped (Section 2.4.1), and 
the second is based on Bayesian inferences (Section 2.4.2).

2.4.1 A non-classical logic for IR

In 1986, Van Rijsbergen proposed a paradigm for probabilistic IR in which 
IR was regarded as a process of uncertain inference [vR86]. The paradigm 
is based on the assumption th a t queries and documents can be regarded as 
logical formulae, and to answer a query, an IR system must prove the query 
from the documents. This means tha t a document is relevant to a query only
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if it implies the query; in other words, if the logical formula d q can be 
proven to hold.  The proof may use additional knowledge K;  in th a t case, 
the logical formula is then rewritten as (d , K )  —>• q.

The introduction of uncertainty comes from the consideration th a t a collec­
tion of documents cannot be considered as a consistent and a complete set of 
statem ents. In fact, documents in the collection could contradict each other 
in any particular logic, and not all the necessary knowledge is available. It 
has been shown [vR86 , Lal97] th a t classical logic, the most commonly used 
logic, is not adequate to represent query and documents because of the in­
trinsic uncertainty present in IR7. Therefore, Van Rijsbergen proposes the 
logical uncertainty principle  [vR86]:

“Given any two sentences x  and y\ a measure of the uncer­
tainty of y —> x  related to a given data  set is determined by the 
minimal extent to which we have to add information to the d a ta  
set, to establish the tru th  of y -» x n

The principle says nothing about how “uncertainty” and “minimal” might be 
quantified. However, in his paper, Van Rijsbergen suggested an information- 
theoretic approach. This idea has been followed by Nie et al. [NLB95] and 
Laimas [vRL96]. However, th a t work is somewhat beyond the scope of this 
chapter.

More close to this survey, Van Rijsbergen [vR89] later proposed to  estim ate 
P ( d —>q) by imaging.  Imaging formulates probabilities based on a “possible 
worlds” semantics [Sta81]. According to this semantics, a document is repre­
sented by a possible world w ; i.e. a set of propositions with associated tru th  
values. Let r  denote a logical tru th  function, then t ( w ,  y)  denotes the tru th  
of the proposition y  in the world w.  Further, let a ( w , y )  denote the world 
most similar to w  where y  is true. Then, y  —> x  is true a t w  if and only if x 
is true a t a ( w,  y).

Imaging uses this notion of most similar worlds to estim ate P (y  —¥ x).  Every 
possible world w has a probability P(w),  and the sum over all possible worlds 
is 1. P(y  —> x) is computed in the following way:

P (y  -> x)  = E W p i w ) t ( w ,  y - > x )  
= E tv p (w ) r(cr(w, y), y - > x )  
=  E w P(w) r (a(w ,y ) ,  x)

7There are other reasons why classical logic is not adequate, but these are not relevant 
to this chapter (but see [Lal97]).
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It remains undetermined how to evaluate the function a  on document repre­
sentations, and further, how to assign a probability P  to them.

In the above framework, the concept of relevance, does not feature. In 
[vR92] Van Rijsbergen proposed to evaluate the probability of relevance 
P ( R  | qk,di) using Jeffrey’s conditionalisation. This conditionalisation, de­
scribed as “Neo-Bayesianism” by Pearl [Pea90], allows conditioning to  be 
based on evidence derived from the “passage of experience” , where the evi­
dence can be non-propositional in nature. A comprehensive treatise of Jef­
frey’s studies on probability kinematics, i.e. on how to revise a probabil­
ity measure in the light of uncertain evidence or observation, can be found 
in [Jef65]. By means of the famous example of inspecting the colour of a 
piece of cloth by candlelight in th a t book, Van Rijsbergen introduced a form 
of conditioning th a t has many advantages over Bayesian conditioning. In 
particular, it enables conditioning on uncertain evidence, and allows order- 
independent partial assertion of evidence. Such advantages, despite some 
strong assumptions, convinced van Rijsbergen th a t this particular form of 
conditionalisation is more appropriate for IR than Bayesian conditionalisa­
tion. However, despite the appeal of Jeffrey’s conditionalisation, the evalu­
ation of the probability of relevance involves parameters, the estim ation of 
which remain problematic.

In the same paper [vR92], Van Rijsbergen makes the connection between 
Jeffrey’s conditionalisation and the Dempster-Shafer’s Theory of Evidence 
[Dem68 , Sha76]. This theory can be viewed as a generalisation of the Bayesian 
m ethod (for example, it rejects the additivity rule), and have been used by 
some researchers to develop IR models (see [SH93, dSM93]).

2.4.2 The Inference Network m odel

W hen IR is regarded as a process of uncertain inference, then the calculation 
of the probability of relevance, and the general notion of relevance itself, 
becomes more complex. Relevance becomes related to the inferential process 
by which we find and evaluate a relation between a document and a query.

A probabilistic formalism for describing inference relations with uncertainty 
is provided by Bayesian inference networks, which have been described exten­
sively in [Pea88] and [Nea90]. Turtle and Croft [Tur90, TC90, TC91] applied 
such networks to IR. Figure 2.2 depicts an example of such a network. Nodes 
represent IR entities such as documents, index terms, concepts, queries, and 
information needs. We can choose the number and kind of nodes we wish to
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use according to how complex we want the representation of the document 
collection or the information needs to be. Arcs represent probabilistic depen­
dencies between entities. They represent conditional probabilities; th a t is, 
the probability of an entity being true given the probabilities of its parents 
being true.

The inference network is usually made up of two component networks: a doc­
ument network and a query network. The document network represents the 
document collection. It is built once for a given collection and its structure 
does not change. A query network is built for each information need and can 
be modified and extended during each session by the user in a interactive 
and dynamic way. The query network is attached to the static document 
network in order to process a query.

In a Bayesian inference network, the tru th  value of a node depends only 
upon the tru th  values of its parents. To evaluate the strength of an inference 
chain going from one document to the query we set the document node di to 
“true” and evaluate P(qk =  true \ di =  true). This gives us an estim ate of

It is possible to implement various traditional IR models on this network by

d o c u m e n t
n etw o rk

q u ery
n etw o rk

Figure 2.2: An inference network for IR.

P(di —> qk).
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introducing nodes representing Boolean operators or by setting appropriate 
conditional probability evaluation functions within nodes.

One particular characteristic of this model th a t warrants exploration is th a t 
multiple document and query representations can be used within the context 
of a particular document collection (e.g., a Boolean expression or a vector). 
Moreover, given a single information need, it is possible to combine results 
from multiple queries and from multiple search strategies.

The strength of this model comes from the fact th a t most classical retrieval 
models can be expressed in terms of a Bayesian inference network by esti­
m ating in different ways the weights in the inference network [TC92a]. Nev­
ertheless, the characteristics of the Bayesian inference process itself, given 
th a t nodes (evidence) can only be binary (either present or not) lim its its 
use to where “certain evidence” [Nea90] is available. The approach followed 
by van Rijsbergen (Section 2.4.1), which makes use of “uncertain evidence” 
by using Jeffrey’s conditionalisation, therefore appears attractive.

2.5 Effective results from faulty models

Most of the probabilistic models presented in this chapter use simplifying 
assumptions to reduce the complexity related to the application of m athe­
matical models to real situations. There are general risks inherent in the 
use of such assumptions. One such risk is th a t there may be inconsistencies 
between the assumptions laid down and the data  to which they are applied.

Another is th a t there may be a misidentification of the underlying assump­
tions , i.e. the stated assumptions may not be the real assumptions upon 
which the derived model or resulting experiments are actually based. This 
risk was identified by Cooper [Coo95]. He identified the three most com­
monly adopted simplifying assumptions which are related to the statistical 
independence of documents, index terms, and information needs:

Absolute Independence

P{a,b) = P(a)-P{b)

Conditional Independence



CHAPTER 2. PROBABILISTIC INFORMATION RETRIEVAL 51

P ( a , b | -.P) = P(a  | -iP) • P(b | --P)

These assumptions are interpreted differently whether a and b are regarded 
as properties of documents or of users.

Cooper pointed out how the combined use of the Absolute Independence 
assumption and either of the Conditional Independence assumptions yields 
logical inconsistencies. The combined use of these assumptions leads to the 
conclusion th a t P ( a , b, R) > P (a , b), which is contrary to the elementary laws 
of probability theory. Nevertheless, in most cases where these inconsisten­
cies appeared, the faulty model used as the basis for experimental work has 
proved, on the whole, to be successful. Examples of this are given in [RS76] 
and [FB91].

The conclusion drawn by Cooper is th a t the experiments performed were 
actually based on somewhat different assumptions, which were, in fact, con­
sistent. In some cases where the Absolute Independence assumption was 
used together with a Conditional Independence assumption, it seems th a t 
the required probability rankings could have been achieved on the basis of 
the Conditional Independence assumption alone. This is true of the model 
proposed by Maron et al. in [MK60]. In other cases, the Conditional In­
dependence assumptions could be replaced by the single linked dependence 
assumption:

P(a, b | R) P(a  | R) P(b \ R)
P(a,6 | -«P) ~~ P(a | -.P) ’ P(b | -.P)

This is a considerably weaker assumption, and it is consistent with the Ab­
solute Independence assumption. This is true of the SLR model presented 
in Section 2.3.7, and of the BIR model (whose name seems to  lose appropri­
ateness in the light of these results) presented in Section 2.3.2.

2.6 Further research

In the late nineties, we have come to realise th a t there is a leap to be made 
towards a new generation of IR systems; towards systems able to cope with 
increasingly demanding users, whose requirements and expectations continue 
to outstrip the progress being made in computing, storage, and transport 
technology. Faster machines and better interconnectivity enable access to
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enormous amounts of information. This information is not only increasing 
in amount, but also in complexity; for example, structured hypertexts con­
sisting of multiple media are becoming the norm. Until recently, research 
in Information Retrieval has been confined to the academic world. Things 
are changing slowly. The success of the TREC initiative (from [Har93] to  
[Har96]), particularly in terms of the interest shown by commercial organi­
sations, demonstrates th a t there is a wider desire to produce sophisticated 
IR  systems. The Web search engines, which have a high profile in the wider 
community, increasingly utilise probabilistic techniques. It can only be hoped 
th a t this increasing awareness and interest will stim ulate new research.

The requirements of the next generation of IR systems include:

M u ltim e d ia  d o c u m e n ts  The problem with multim edia document collec­
tions lies in the representation of the non-textual parts of documents, 
e.g. sounds, images, animations. Several approaches have been tried 
so far: they can be exemplified in the particular approach of attaching 
textual descriptions to non-textual parts, and the derivation of such 
descriptions by means of an inference process (e.g. [Dun91]). Never­
theless, such techniques avoid the real issue of directly handling the 
media. This applies not only to probabilistic models, bu t to all IR  
models.

In te ra c tiv e  re tr ie v a l Current IR systems, even those providing forms of 
relevance feedback for the user, are still based upon the traditional it­
erative batch retrieval approach. Even relevance feedback acts upon 
a previous retrieval run to improve the quality of the successive run 
[Har92c, Har92b]. We need real interactive systems, enabling a greater 
variety of interaction with the user than merely query formulation and 
relevance feedback [Cro87]. User profile information, analysis of brows­
ing actions, or user modification of probabilistic weights, for example, 
could all be taken into consideration [CR87, CLC88 , CLCW89, Tho89, 
Tho90a, Tho90b]. The subjective, contextual, and dynamic nature of 
relevance is now being recognised and incorporated into probabilistic 
models [CvR96].

In te g ra te d  te x t  a n d  fac t re tr ie v a l There has been a steady development 
of the kinds of information being collected and stored in databases; 
notably, of text (unformatted data), and of ’facts’ (formatted, often 
numerical, data). Demand is growing for the availability of systems 
capable of dealing with all types of data  in a consistent and unified 
manner [Fuh92a, CST92, HW92, Fuh93].
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Im p re c ise  d a ta  The use of probabilistic modelling in IR is not only impor­
tan t for representing the document information content, bu t also for 
representing and dealing with vagueness and imprecision in the query 
formulation and with imprecision and errors in the textual documents 
themselves [Fuh90, TC92b]. For example, the increasing use of scan­
ners and OCR in transferring documents from paper to electronic form, 
inevitably introduces imprecision (but see [SS88]).

2.7 Conclusions

The m ajor concepts and a number of probabilistic IR models have been 
described. I am aware th a t new models are being developed as we speak. 
A survey is always a bit dated. However, I believe I have covered the most 
im portant and the most investigated probabilistic models of IR.

It is not easy to draw conclusions from a survey of th irty  years of research. 
It is safe to conclude th a t good results have been achieved but more re­
search is required since there is considerable room for improvement. Current 
generation probabilistic IR systems work quite well when compared with 
the Boolean systems th a t they are replacing. A novice user using natural 
language input with a current generation probabilistic IR system gets, on 
average, better performance than an expert user with a Boolean system on 
the same collection. Moreover, theoretically, the probabilistic approach to 
IR  seems inherently suitable for the representation and processing of the un­
certain and imprecise information th a t is typical of IR. I believe th a t, with 
development, it will be capable ultim ately of providing an integrated, holistic, 
and theoretically consistent framework for the effective retrieval of complex 
information.
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Chapter 3

Information Retrieval by 
Logical Imaging

The evaluation of an implication by Imaging is a logical technique developed 
in the framework of modal logic. Its interpretation in the context of a “possi­
ble worlds” semantics is very appealing for IR. In 1989, Van Rijsbergen sug­
gested its use for solving one of the fundamental problems of logical models 
in IR: the evaluation of the implication d —>■ q (where d and q are respec­
tively a document and a query representation). Since then, others have tried  
to follow th a t suggestion proposing models and applications, though without 
much success. Most of these approaches had as their basic assumption the 
consideration th a t “a document is a possible world” . I propose instead an 
approach based on a completely different assumption: “a term  is a possible 
world” . This approach enables the exploitation of term -term  relationships 
which are estimated using an information theoretic measure.

3.1 The use of non-classical logic in Informa­
tion Retrieval

The use of a probabilistic model in IR assures th a t we can obtain “optim al 
retrieval performance” once we rank documents according to their probabil­
ity of relevance with regards to a query [Rob77]. However, this principle, 
called The Probability Ranking Principle, refers only to “optimal retrieval” , 
which is different from “perfect retrieval” . Optim al retrieval can be defined 
precisely for probabilistic IR  because optim ality can be proved theoretically,

55
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owing to a provable relationship between ranking and the probabilistic in­
terpretation of precision and recall [Rob76]. Perfect retrieval relates to  the 
objects of the IR systems themselves, i.e. documents and information needs, 
but as IR systems use representations of these objects, perfect retrieval is not 
an appropriate goal for computer-based systems and cannot be achieved ex­
perimentally. Despite th a t and despite a few criticisms [Coo94], probabilistic 
models based on the Probability Ranking Principle have been shown to  give 
the highest levels of retrieval effectiveness currently available [Fuh92b].

Although there are some operative IR systems based on probabilistic or semi- 
probabilistic models, there are still obstacles to getting probabilistic models 
accepted in the commercial IR world. One m ajor obstacle is th a t of finding 
methods for estimating the probabilities of relevance th a t are both effective 
and computationally efficient. Past and present research has made much use 
of formal probability theory and statistics in order to solve the problems of 
estimation, see for example [CH79, FB91, WY89]. In m athem atical term s 
the problem consists of estimating the probability P ( R  \ q ,d ), th a t is the 
probability of relevance given a query q and a document d. This estim ate 
should be performed for every document in the collection, and documents 
should then be ranked according to this measure. This is a difficult task 
because of the large number of variables involved in the representation of 
documents in comparison with the small amount of feedback da ta  available 
about the relevance of documents, a problem sometimes referred to as the 
“curse of dimensionality” [Eft96, vR79].

In 1986 Van Rijsbergen [vR86] proposed to use an estim ation techniques 
based on the use of non-classical conditional logic. This enables the esti­
m ation of P ( R  | q,d) by the evaluation of P(d  —> q), therefore using the 
probability of a conditional to estimate the conditional probability.

There are two main reasons behind the choice of P{d  —» q) to evaluate 
P ( R  | q,d). The first one is th a t in this way we can separate the process 
of revising probabilities from the logic, the second is th a t we can separate 
the treatm ent of relevance from the treatm ent of documents and queries. In 
order to evaluate P ( R  | q, d) we would need to resort to Bayes’ Theorem:

P ( R \ q , d ) ( x P ( q \ R , d )  P(R)

Another way of putting this is th a t P  is revised to a different probability 
function Pr in the light of information about relevance:
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However, putting it in this way, it is clear th a t two users with differing 
ideas of relevance but subm itting the same query can expect to get different 
probability of relevance for the same document, i.e. user one would get 
Pft(q | d) and user two P^(q  | d). This means th a t the probability of relevance 
can be revised in different ways. Moreover, what about the case of same 
relevance judgements but different queries? The probabilistic model does 
not deal with it directly, but the evaluation of P(d  -> q) enables one to  
address these problems.

According to Van Rijsbergen’s view, the logical implication d —> q is not one 
of m aterial implication, the usual truth-functional connective d D q, which is 
always true in all cases except when d is true and q is false, but is based on 
a non-classical notion. The evaluation of the probability of the implication 
should be based on the following logical uncertainty principle:

“Given any two sentences x  and y; a measure of the uncer­
tainty of y —> x  related to a given data  set is determined by the 
minimal extent to which we have to add information to the data  
set, to establish the tru th  of y —> x ”

The logical uncertainty principle initiated a new line followed by many re­
searchers; see for example the work of Nie [Nie89], Chiaramella and Chevallet 
[CC92], Bruza [Bru93], and Huibers [HLvR96]. However, in the original 1986 
paper Van Rijsbergen did not provide an indication about how “uncertainty” 
and “minimal” might be quantified. Only a few years later Van Rijsbergen 
proposed to estimate the probability of the conditional by a process called 
Logical Imaging (or simply Imaging), but w ithout explicitly defining a tech­
nique th a t could be used operatively [vR89]. The Imaging technique was 
explored by Crestani and Van Rijsbergen and a model called Retrieval by 
Logical Imaging has now been defined in detail [CvR95].

I propose a technique called Retrieval by Logical Imaging (RbLI), th a t is 
based on the ideas suggested by Van Rijsbergen. It enables the evaluation 
of P(d  —> q) and P(q  —> d) by Imaging according to a possible worlds 
semantics where a term  is considered as a possible world. This technique 
exploits term -term  relationships in retrieval by means of an accessibility 
relation between worlds based on the Expected M utual Information Measure 
(EMIM) estim ated as described in [vR77].

The chapter is structured as follows. In Section 3.2 I give a brief explanation 
of what the Imaging process is all about, whilst Section 3.3 presents how
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Imaging can be used in IR. Section 3.4 deals with the problems related to 
the implementation of RbLI. Section 3.5 reports on some experiments aiming 
at evaluating the effectiveness of the proposed technique. Related work is 
reported in Section 3.6, while the conclusions are described in Section 3.7.

3.2 Imaging and possible worlds semantics

Imaging is a process developed in the framework of Modal Logic. It enables 
the evaluation of a conditional sentence without explicitly defining the oper­
ator W hat it requires is a clustering on the space of events (worlds)
by means of a primitive relation of neighbourhood. This semantics is called 
possible worlds semantics and was proposed by Kripke in [Kri71]. Accord­
ing to this semantics the tru th  value of the conditional y —> x  in a world w 
is equivalent to the tru th  value of the consequent x  in the closest world wy 
where the antecedent y is true. The identification of the closest world is done 
using the clustering. Ties a t this stage, if they occur, are broken a t random, 
to ensure uniqueness of the closest world (but see [G82] for a generalisation). 
The passage from a world to another world can be regarded as a form of 
belief revision, and the passage from a world to its closest is therefore equiv­
alent to the least drastic revision of one’s beliefs. Using this process it is 
possible to implement the logical uncertainty principle described in Section 
3.1. Imaging can be extended to the case where we have a probability distri­
bution on the worlds [Lew81]. A probability distribution over the worlds can 
be regarded as a measure of the prior uncertainty (or certainty) associated 
with the beliefs. In this case there is a shift of the original probability P  of 
the world w to the closest world wy where y is true. Probability is neither 
created nor destroyed, it is moved from a “not-?/-world” to  a “y-world” to 
derive a new probability distribution P'. This process is called deriving P'  
from P  by imaging on y.

To explain in more detail how the Imaging process works, we need to  use a 
little algebra and to introduce some terminology. The explanation will be 
in terms of the possible worlds semantics and it refers to  the interpretation 
given by Stalnaker [Sta81].

Suppose we have a set of possible worlds W .  Let wy be the world most 
similar1 (the closest if we have a distance metric) to w where y is true, then

1The notion of world and similarity used here is the standard one introduced by David 
Lewis in [Lew86].
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y —> x  will be true a t w if and only if x  is true a t wy. Now let:

, . f 1 if y is true a t w 
W{y) = \  0 otherwise

then we have:

w(y x) = wy(x)

where:

, x f 1 if £ is true a t wv 
^  = 0 otherwise

Now we assume a probability distribution over the set of possible worlds W  
so tha t, according to the classical rules of probability, we have:

y ^P (n )) =  1
w

Hence we define P(y)  as follows:

p (y) = Y , p (w ) w (y)
w

From this probability distribution we can derive a new probability d istribu­
tion P'  so that:

P'(w') = Y2 P ( w ) I (w ',w)  
w

where:

f , v f 1 if w' = Wy

/ (u’ >u’) =  0 otherwise
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This process of deriving the new probability distribution P'  from the original 
P  is obtained by transfering the probability of every world w to  its wy , the 
most similar world to w where y is true.

Now we are able to show th a t P(y  —> x) =  P'(x) or, using a terminology 
more appropriate to highlight the imaging process on y , that:

P ( y - + x )  = Py(x)

where Py(x) is the new probability distribution derived from P  by imaging 
on y. The probability of the conditional is the probability of the consequent 
after Imaging on the antecedent. In fact, as reported in [Lew81]:

P(y  x) = E w  P(w) w(y  -» x)
= E w  P(w) wy(x)
=  E w p W  ( E w H w\ w ) w'(x ))
=  E w ' ( E w p (w) I{w ',w) w'(x))
=  E r  P  (wf) w'(x)
= P ' W
=  P y i x )

In the next Section we will see how we can apply Imaging to IR.

3.3 Retrieval by Logical Imaging

Taking into consideration a possible worlds semantics, the most obvious way 
of applying Imaging to IR would be by considering a document as a possible 
world, regarding it as a set of propositions with associated tru th  values. 
This is the view taken originally by Van Rijsbergen [vR86] and followed by 
others. In this view we should evaluate the probability of the conditional 
d y Q by computing a new probability distribution Pj  by imaging on d over 
all the possible worlds, i.e. over all the possible document representations. 
According to the definition of Imaging we have:

P(d^q) = Pd(q) = J2nd)dd(q)
D
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where

1 if q is true a t dj 
0 otherwise

and dd is the closest document to d where d is true.

In order to apply this technique to IR there are a few problems to be solved. 
The first is related to the computational requirements of Imaging. We need 
to assign a probability to each document (world) and to define and use a 
similarity measure between them. The former problem can be solved by 
looking a t classical IR techniques, e.g. [vR79]. The la tte r problem is much 
more difficult to solve. It is related to the interpretation of the possible worlds 
semantics when the event d in the conditional statem ent is also interpreted 
as world. There is a difficulty with this interpretation since it is unlikely tha t 
a document d could not be true in d itself. To deal with this difficulty one 
would have to make explicit the difference between a document as a Active 
object existing in its own right and a partial description of such an object 
(as in [LvR93]). Rather than doing this I have adopted a different approach.

I consider the set of terms T  (index terms or simply term s used in the doc­
ument collection) as the set of possible worlds. According to this I consider 
a process of Imaging on d over all the possible term  t in T. More formally:

and td is the closest term  to t  for which d is true.

The possible worlds semantics in the context of IR  can now be interpreted 
without difficulty by considering a term  represented by a set (a vector) of 
documents. This is the inverse of the representation technique most often 
used in IR where a document is represented as a set of features, namely 
terms (or index terms). Intuitively this can be understood as “if you want 
to know the meaning of a term  then look at all the documents in which tha t

P(d  ->q) = Pd(q) = td(q)
T

where

1 if q is true a t td 
0 otherwise
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term  occurs” . This idea is not new in IR (see for example [AK92, QF93]) 
and it has been widely used for the evaluation of term -term  similarity (see 
Section 3.4). Using this representation technique for terms, we consider a 
document d true in a term  (world) t  if the term  t occurs in d. Moreover, 
using a measure of similarity among terms it is easy to determine the closest 
term  td to t  which occurs in the document d. Using the same interpretation 
I consider a query q true in a term  (world) t  if the term  t occurs in q. The 
process of Imaging on d causes a transfer of probabilities from term s not 
occurring in the document d (i.e. for which the document d is not true) to  
terms occurring in it.

Similarly we can also evaluate P(q  -»  d) by imaging on q:

P ( q - > d ) = P g(d) = £ i P ( t ) t q(d)
T

where

— j  1 if d is true a t tq
q |  0 otherwise

and tq is the closest term  to t where q is true.

Here we consider a process of Imaging on q over each possible term  t in T
so th a t the probability initially assigned to each term  moves from term s not 
occurring in the query q to terms occurring in the query q.

Nie showed in [Nie88] th a t the two conditionals d —» q and q —»■ d have a
very interesting interpretation in the context of IR. The conditional d —► q 
expresses the exhaustivity of the document to a query, i.e. how much of a 
document content is specified by the query content. In fact d —> q is in tu­
itively equivalent to d C q. The conditional q —»■ d, instead, expresses the 
specificity of a document to a query, i.e. how much of a query content is
specified in the document content. In fact, q —»■ d is intuitively equivalent to
q C d. Nie proposed to combine the two measures to produce a correspon­
dence measure between query and document. This measure should estim ate 
the relevance of a document to a query. I intend to investigate this proposal 
in the future.

The application of the above technique to IR requires an appropriate measure 
of similarity and an appropriate probability distribution over the term  space 
T.  I will tackle this problem in Section 3.4.
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In the following two sections I explain in more detail the RbLI model using 
a simple example.

We assume a set of term s T  with a probability distribution P  which assigns 
to each term  t e T  a probability P(t)  so th a t 52P(t)  =  1. We also use the 
following notation:

We assume we have a document collection D , with di £ D,  where the docu­
ments are represented by terms in the set T. Finally, we assume we have a 
query q also represented by terms in T. Then, as explained in the previous 
section, it is possible to  evaluate the P(di  —» q) as:

where tdi is the term  most similar to t  which also occurs in di, and Pdi (t) is the 
new probability distribution over the set of terms appearing in di obtained 
by imaging on di.

The evaluation of P(di  -» q) = Pdi{q) must be repeated for each document 
in the collection D  and it is based on the initial probability distribution over 
the set of terms T  and on the availability of a similarity measure enabling 
the evaluation of t di.

For a practical example of this evaluation let us suppose we have a query q 
described by the term s ti ,  £4 , and t6. We would like to evaluate the probability 
of relevance of a document di described by terms ti ,  £5, and t§. Assuming a 
vector notation, Table 1 reports the evaluation of P(di  —> q) by imaging on 
di as an estim ate of the probability of relevance of the document di to the 
query q.

3.3.1 Evaluation of P (d  —> q)

1 if t occurs in x  
0 otherwise

P(di —>• q) = P di(q)
E r P ( t ) t di(q)
E{Vi:t(g)=l} Pdiil)

The evaluation process is the following:



CHAPTER 3. INFORMATION RETRIEVAL B Y
LOGICAL IMAGING 64

t P(t) t(di) tdi P*( t ) t(o) Pd M q ) )
1 0.2 1 1 0.3 1 0.3
2 0.1 0 1 0 0 0
3 0.05 0 5 0 0 0
4 0.2 0 5 0 1 0
5 0.3 1 5 0.55 0 0
6 0.15 1 6 0.15 1 0.15

1.0 1.0 0.45

Table 3.1: Evaluation of P(di —>• q) by imaging on di

1. Identify the terms occurring in the document di (third column of the 
table).

2. Determine for each term  in T  the t ^ ,  i.e. the most similar term  to  t 
for which t(di) =  1. This is done using the similarity measure on the 
term  space (fourth column).

3. Evaluate Pd^t) by transferring the probabilities from term s not occur­
ring in the document to terms occurring in it (fifth column).

4. Evaluate t(q) for each term, i.e. determine if the term  occurs in the 
query (sixth column).

5. Evaluate the probabilities Pdi (t(q)) for all the terms in the query (sev­
enth column) and evaluate Pdi{q) by summation (bottom  of seventh 
column).

It is interesting to see a graphical interpretation of this process. In Figure 
3.1(a) each term  is represented by a world with its probability measure ex­
pressing the importance of the term  in the term  space T. The shadowed 
terms occur in document di. We assume a measure of similarity on the term  
space. Using this information we can now transfer the probability from each 
term  not occurring in the document di to its most similar one occurring in di 
as depicted in Figure 3.1(b). In Figure 3.1(c) the terms with null probability 
disappear and those occurring in the query q are taken into consideration 
and their new probabilities P'(ti) are summed up to evaluate Pdi(<l)-
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ba c

Figure 3.1: Graphical interpretation of the evaluation of P(di  -»  q) by imag­
ing on di.

3.3.2 Evaluation of P (q  d)

Using the same data  of the previous example we can now evaluate the prob­
ability P(q —¥ d{). The terminology is analogous to th a t of the example 
above, though modified to take into consideration the evaluation of differ­
ent elements. Table 2 reports the evaluation of P(q —> di) which can be 
structured in the following steps:

1. Identify the terms occurring in the query q (third column of the table).

2 . Determine for each term  in T  the tq, i.e. the most similar term  to t  for 
which t(q) = 1 (fourth column).

3. Evaluate Pq(t) by transferring the probabilities from terms not occur­
ring in the query to terms occurring in it (fifth column).

4. Evaluate t(di) for each term, i.e. determine if the term  occurs in the 
document (sixth column).

5. Evaluate Pq(t(di)) for each term  in the document and evaluate Pq(di) 
by summation (seventh column).

A graphical interpretation of the Imaging process in relation to this example 
is reported in Figure 3.2.
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t P(t) *(?) tq m t(di) P M * ) )
1 0.2 1 1 0.35 1 0.35
2 0.1 0 1 0 0 0
3 0.05 0 1 0 0 0
4 0.2 1 4 0.5 0 0
5 0.3 0 4 0 1 0
6 0.15 1 6 0.15 1 0.15
Et 1.0 1.0 0.5

Table 3.2: Evaluation of P(q  —>■ d{) by imaging on q.

cb

t3

t5

Figure 3.2: Graphical interpretation of the evaluation of P(q  —>■ di) by imag­
ing on q.
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3.4 Worlds mass and worlds distance

In order to perform RbLI we have two requirements:

•  a probability distribution over the set of worlds which should reflect the 
importance of each world (the mass if we take an analogy with planets 
and stars) in the universe;

•  a measure of similarity (which is related to distance) between worlds.

According to the view th a t a term  is a world, these two requirements become: 
a probability distribution and a measure of similarity on the term  space T.

The problem of determining an appropriate prior probability distribution 
over the set of index terms is one of the oldest problems of IR and many 
ways have been proposed for this purpose. The problem could be translated  
into finding a measure of the importance of a term  in the term  space, where 
this importance is related to  the ability of the term  to discriminate between 
relevant and not relevant documents. The importance of the term  in the 
term  space seems a reasonable rationale for a probability function. Several 
discrimination measures have been proposed, and a few examples can be 
found in [vR79, RS76]. For the tests reported in this chapter I used the 
Inverse Document Frequency, a measure which assigns high discrimination 
power to terms with low and medium collection frequency. Strictly speaking, 
this is not a probability measure since idf(t)  /  1 , however we can assume 
it to be monotone to P{t).  We can use this estim ate because we require only 
a ranking of the documents in response to a query, not the exact probability 
values.

The problem of defining a measure of similarity between term s and the use 
of such a measure for defining the accessibility among worlds is more dif­
ficult, although it has been addressed by many researchers in the past, in 
the fields of IR [WCY93, Voo93, Sri92] and Natural Language Processing 
[CH89, BDPd+92]. It is very im portant to chose a good measure since much 
of RbLI depends on it. I decided to use the Expected Mutual Information  
Measure (E M I M ), because it is a well accepted measure in Lexicography 
[CH89].

In Information Theory E M I M ( i , j )  is often interpreted as a measure of the 
statistical information contained in ti about tj (or vice versa, it being a
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symmetric measure). The EMIM measure is defined as follows:

.  g  P(t, <= *  , ,  6 «  'V pP(, % ^ ,

where L and tj are terms.

We can estim ate E M I M  between two terms using the technique proposed 
by Van Rijsbergen in [vR79]. This technique makes use of co-occurrence d a ta  
th a t can be derived by a statistical analysis of the term  occurrences in the 
collection. Using E M I M  we can then evaluate for every term  a ranking of 
all the other terms according to their decreasing level of similarity with it. 
We store this information in a file which is used at run-tim e to determine for 
every term  t  its closest term  occurring in d, th a t is td.

In the next section I will compare the performance of RbLI w ith simple 
weighted retrieval and I will also show th a t it is possible to decrease the 
com putational effort of RbLI by cutting down the number of probability 
transfers using some heuristics.

3.5 Evaluating Retrieval by Logical Imaging

All the experiments reported in this section refer to the evaluation of RbLI 
for P(d  —>• q).

For the experiments reported in this chapter I used the Cranfield 2 document 
collection (in particular the C 14001). This test collection was produced in the 
Cranfield Project [CMK66] in the sixties and it is one of the most used for 
comparative evaluations. The collection is made up of 1400 documents, and 
225 queries with relevance assessments. The number of term s used in the 
collection is 2686, manually derived from the documents. These experiments 
should be seen as illustrative of the technique and an indication of whether 
further research might be worthwhile.

Figure 3.3 reports a performance comparison between RbLI and a Bench­
mark. The Benchmark uses the same weighting scheme of RbLI, i.e. the 
IDF, but does not perform the transfer of probabilities which is typical of 
Imaging. As can be seen, the performance of RbLI are slightly better than  
the Benchmark, although a statistical analysis shows th a t the difference is 
not significant.
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Precision Recall performance: Retrieval by Imaging vs Benchmark1
Retrieval by Imaging -9—  

Benchmark0.9

0 . 8

0.7

0 . 6

0.5

0.4

0.3

0 . 2

0 . 1

0
0 . 2 0.3 0.4 0.5

Recall
0 . 6 0.7 0 . 8 0.9 10 0 . 1

Figure 3.3: Performance of RbLI vs. Benchmark.

A problem with RbLI is the amount of com putation necessary to provide for 
the transfer of probabilities. These computations need to be performed at 
run-tim e2. The next experiment investigates the possibility of reducing the 
amount of com putation necessary at run-time to perform RbLI.

In Figure 3.4 I report the performance of RbLI when I reduce the number of 
probability shifts necessary to compute it. I decided to cut off the 10% most  
frequent terms and the 10% least frequent terms because their discrimination 
power is very low. During RbLI if a term  t is not present in the similarity 
file because it was excluded from the similarity evaluation then we simply 
do not transfer its probability but we lose it. This is theoretically incorrect 
for the Imaging process since the new probability distribution P^  will not 
have YjPdi — 15 but the ranking of the documents according to  the estim ates 
of P(d  —> q) does not change. The cut reduces considerably the am ount 
of com putation necessary a t run-time and the results show th a t there is 
no significant decrease in performance. The size of the cut is, of course, 
dependent on the size and characteristics of the collection. The cut reported 
here is the biggest I was able to perform without decreasing the performance 
of RbLI for this collection.

21 am not concerned here with the computations necessary to the evaluation of EMIM 
between every pair of terms. This is certainly computationally very expensive, but it is 
performed off-line.
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Precision Recall performance: reducing the number of terms1
All terms -4—

Without the 10 % most frequent terms -h—  
Without the 10% least frequent terms -B-- 

Without both
0.9
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Figure 3.4: Performance of RbLI with different dimensions of the term  space.

Another problem in the implementation of RbLI is related to the storage 
space requirements for the term  similarity evaluated using EMIM (see Section 
3.4). This is stored in a file which lists for every term  all the other term s 
ordered by their similarity with it. This is used to evaluate for each term  the 
closest one occurring in a particular document (or query). The dimension of 
this file can be considerably reduced if we store only the first k most similar 
terms. Again if for a term  t we cannot find in the file its then we do not 
transfer its probability but we lose it. This heuristics acts like a threshold on 
the accessibility between worlds. Figure 3.5 shows the performance of RbLI 
a t various level of k. It can be seen th a t there is little difference between these 
values. For k = 60 there is actually a small increase in performance compared 
to RbLI w ithout threshold. The use of a threshold on the similarity brings 
a considerable saving in storage space. For example, for k = 60 the file is 
reduced by almost 40%. It should be noticed th a t for k = 0 RbLI is equivalent 
to simple weighted retrieval because there is no probability transfer.

3.6 Related work

The use of imaging in IR was proposed for the first time by Van Rijsbergen 
in 1989 [vR89], however, to the best of my knowledge, there have been only 
a few attem pts to use it.
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Precision Recall performance: threshold on the similarity between terms

k 60
0.9 k = 40 

k = 20 -0 —  
k = 0 •*—
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Figure 3.5: Performance of RbLI cutting the similarity measure between 
terms.

In [AK92] Amati and Kerpedjiev proposed two logical models for IR. One of 
them  is based on conditional logic and makes use of imaging for the evaluation 
of P(d  —> q) and P(q  —» d). However, they proposed two different semantics 
for the evaluation of the two conditionals. For the evaluation of P (d  —> q) 
they consider a term  as a world, while for the evaluation of P(q —> d) they 
consider a document as a world. I see a difficulty in this la tter approach 
because the event d in the conditional statem ent q —>■ d is also interpreted 
as a world. To deal with this difficulty one would have to make explicit the 
difference between a document as a Active object existing in its own right 
and a partial description of such an object (as in [LvR93]). Rather than  do 
this I have adopted a different approach.

Sembok and Van Rijsbergen [Sv93] proposed a relevance feedback technique 
based on the use of imaging. Again, the perspective of a document as a world 
is used, which gives the same problem as before. Moreover, the similarity 
between documents is evaluated by means of clustering using nearest neigh­
bours. The similarity measure used for the clustering on the document space 
is based on Dice’s coefficient, a very simple similarity measure. I th ink th a t 
since most of the power of imaging relies on the correct identification of the 
closest possible world, it is very im portant to use the best possible similarity 
measure for the job.
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Nie, first in [Nie92] and later in [NLB95], uses imaging to include in the 
retrieval process such contexts as user knowledge, domain knowledge, inten­
tions, and so on. In his model both documents and queries are sentences. 
Possible worlds represent different states of the da ta  set, for example possible 
states of knowledge th a t can be held by users. A document d is true in a 
world w if the document is “consistent” (the term  is used here in a broad 
sense) with the state of knowledge associated with th a t world. Worlds differ 
because they represent different states of knowledge and, given a m etric on 
the world space, we can identify the closest world to w for which d is true. 
Imaging can then be used for the evaluation of the certainty of the implica­
tion d —»• q. Nie’s approach takes a view similar to the one followed in this 
chapter. Both approaches consider a world as an informative entity, in the 
context of which a document or a query need to be checked for consistency. 
The m ajor advantage of Nie’s model is th a t it enables user modelling and 
therefore the evaluation of a user oriented measure of relevance, while RbLI 
only takes into account a system evaluated relevance.

There is also a number of papers th a t deal with techniques other than  imaging 
for evaluating P(d  —> q). The work by Wong and Yao is perhaps the most 
interesting.

Wong and Yao [WY91, WY95] demonstrated th a t most of the IR  models in 
use a t present can be explained in terms of the formula P ( E  —> H)  th a t is 
evaluated as P ( H  \ E).  The la tter formula evaluates the degree of confirma­
tion (or belief, according to the view taken) of the sentence H  given evidence 
E.  Conventional IR models can be obtained by associating either d or q to  
H  or E,  and by defining different ways of evaluating the probabilities via 
probabilistic inference on a concept space. Concepts are considered disjoint 
elements of the representation space, or are transformed in such a way to  be 
disjoint. Terms are basic concepts.

Another im portant result is reported in [WY95] p. 58 where Wong and Yao 
show th a t their model, called “probabilistic inference model” , subsumes the 
probabilistic model. Both Fuhr’s probabilistic independence indexing model 
[Fuh89] and binary probabilistic independence retrieval model [vR79] can be 
explained in terms of the probabilistic inference model. Since the probabilis­
tic inference model is based on the concept of conditional probability, then 
also Fuhr’s and the binary probabilistic independence models are based on 
the same kinematics of probabilities. The amount of probability moved from 
one concept to another may change, but the principle remains the same: the 
transfer of probabilities provides the minimal revision of the prior probabil­
ity th a t is necessary to make the evidence E  certain without distorting the
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profile of probability ratios on the representation space. Later in this thesis 
I will show th a t there are other types of probability kinematics th a t imple­
ment the Logical Uncertainty Principle in different ways. Moreover, the view 
taken by Wong and Yao is purely probabilistic. For them , only probabilis­
tic inference is used for the evaluation of the uncertainty of the implication 
E  —> H.  I extend th a t view by taking into consideration a semantics of the 
representation space based on Possible World Semantics, which enables the 
evaluation of P ( E  —> H)  in a less restrictive way than does pure probabilistic 
inference. Thus I think th a t the use of the Possible World Semantics enables 
us to design and deal with different and more complex models of probability 
kinematics, like imaging.

I would also like to mention the work done in the context of expanding 
a query by adding terms th a t are semantically similar to those originally 
present. There are some similarities between my work on probability kine­
matics and work th a t has been done by others on query expansion. The 
transfer of probabilities th a t RbLI performs could be regarded as a way of 
expanding the terms present in the document with term s th a t are similar to 
them  but not present. Work in this direction has been carried out by many 
researchers, for example Qiu and Frei [QF93] and Voorhees [Voo94]. How­
ever, the similarities between my work and query expansion are not easy to 
assess. There is nothing analogous to RbLI in the context of query expan­
sion. Moreover, once we move out from the Possible World Semantics, it is 
very difficult to interpret the consequences of imaging in the context of n a t­
ural language, while it is easy to interpret query expansion. The first results 
of a study of the implications of imaging in the context of sense resolution 
have appeared in [CSv96] and are reported in Chapter 5. Until the natural 
language semantics of imaging is fully understood, it is not possible to  assess 
clearly the differences between imaging and query expansion or other query 
modification techniques.

3.7 Conclusions

In this chapter I have experimented with a new interpretation of the Imaging 
process for IR th a t I called RbLI. It is based on a possible worlds semantics 
where a term  is a possible world. Every term  (world) is assigned a probability 
and the accessibility between terms is measure by the EMIM. RbLI estimates 
the relevance of a document to a query using the probability of conditionals: 
either P(d  —>• q) or P(q  —)> d). I investigated RbLI for P(d  —> q) where this
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is evaluated deriving a new probability on the term  space by Imaging on the 
document d. The experiments reported here showed th a t RbLI is a t least 
as effective as classical weighted retrieval on a small standard test collection 
and th a t the com putational costs of its use can be considerably reduced using 
some simple heuristics.



Chapter 4 

Probability Kinem atics in 
Information Retrieval

In this chapter I analyse the kinematics of probabilistic term  weights a t re­
trieval time for different Information Retrieval models. I present four models 
based on different notions of probabilistic retrieval. Two of these models are 
based on classical probability theory and can be considered as archetypes 
of models long in use in Information Retrieval, like the Vector Space Model 
and the Probabilistic Model. The two other models are based on a logical 
technique of evaluating the probability of a conditional called imaging, one 
is a generalisation of the other. I analyse the transfer of probabilities oc­
curring in the term  space a t retrieval time for these four models, compare 
their retrieval performance using classical test collections, and discuss the 
results. I believe th a t these results provide useful suggestions on how to im­
prove existing probabilistic models of Information Retrieval by taking into 
consideration term -term  similarity.

4.1 Introduction

In this chapter I explore further the use of the probability of a conditional, 
namely P(d  —¥ q), to estim ate the conditional probability P ( R  \ q, d). I 
propose the use of a model called Retrieval by General Logical Imaging, based 
on a generalisation of the Retrieval by Logical Imaging model. I analyse and 
compare the probability kinematics of imaging and general imaging w ith th a t 
of two more classical probabilistic models: the Retrieval by Joint Probability

75
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model and the Retrieval by Conditional Probability model. These two models 
are a t the basis of many IR probabilistic models currently in use.

The chapter is structured as follows. Section 4.2 describes the representation 
model for documents and queries th a t I will use in the rest of the chapter. 
Section 4.3 describes the probability kinematics of four different retrieval 
models and explains in detail Retrieval by Logical Imaging and Retrieval by 
General Logical Imaging. The retrieval performance of these four models is 
then studied using the experimental settings described in Section 4.4 and the 
probability and similarity functions described in Section 4.5. The results are 
presented, compared, and discussed in Section 4.6. Section 4.7 reports the 
conclusions of the experimental investigation and the pitfalls in the proposed 
models.

4.2 The representation space

In probabilistic IR the task of the system can be formalised as follows. Let 
us assume binary relevance judgements, then 1Z, the set of possible relevance 
judgements, contains only the two possible events: relevance (R ) and non­
relevance (R). The Probability Ranking Principle tells us th a t the task of 
a probabilistic IR system should be to rank documents according to  their 
probability of being relevant: P ( R  | q, d), where q and d are the real query 
and the real docum ent1. Unfortunately we can only estim ate this probability 
by using the available query and documents representations, q and d. The 
probability P ( R  \ q ,d ), is then only an estimate of P ( R  \ q,d) th a t depends 
very much on the quality of the document and query representation and on 
the quality of the estimation process. P ( R  \ q, d) is the probabilistic version 
of the Retrieval Status Value (RSV), a value assigned to each pair (d, q) th a t 
enables the ranking of all documents in the collection. The way the RSV is 
evaluated varies according to the IR model used.

The difficulty of applying probabilistic IR arises out of two different problems: 
estimation and representation.

The problem of estimating P ( R  \ q, d) is tackled in this chapter from a 
theoretical point of view. In the past researchers have tried to estim ate 
P ( R  | q, d) in many different ways. Often, researchers have had to resort to

1For “real query” and “real document” I mean the information need of the user and 
the informative content of the document. These are only ideal objects, but relevance can 
only be fully achieved with reference to these objects and not their representations.
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ad hoc estim ation techniques, very much dependent on experimental tuning 
of the param eters of their models. In Section 4.3 I will report on four the­
oretical retrieval models. W ithout entering into a discussion on the process 
of param eter estimation, I will analyse their differences and will draw some 
interesting conclusions th a t could be useful in directing new research in this 
area.

The effective representation of documents and queries is a very difficult prob­
lem. Most IR  system assume a poor representation of documents and queries, 
based on the use of index terms autom atically extracted from the text of 
documents and queries. In this chapter I will use the same poor represen­
tation  technique, hoping th a t in the future more effective techniques will be 
available2. In fact, the novelty of the approach is in the assignment of a 
new semantics to this almost standard way of representing documents and 
queries.

4.2.1 Possible World Semantics and Logical Imaging

Possible World Semantics was introduced by Kripke [Kri71] in the context 
of Modal Logic. In this semantics the tru th  value of a  logical sentence is 
evaluated in the context of a “world”. The word “world” has been used like 
this by a number of logicians and seems to be the most convenient one, but 
perhaps some such phrase as “conceivable or envisageable state of affairs” 
(used in [HC68], p. 75) would convey the idea more clearly. Possible World 
Semantics has been used in Modal systems to give a semantics for Necessity 
(where a sentence is true in every possible world) and Possibility (where a 
sentence is true in a t least one possible world)3.

W ithout entering into the details of this semantics, one of the main advan­
tages of Possible World Semantics is th a t it enables the evaluation of the 
tru th  value of a conditional sentence without explicitly defining the operator 
“— [Lew86], W hat it requires is a clustering on the space of events (worlds) 
by means of a primitive relation of neighbourhood. The clustering then en­
ables us to define an accessibility relation th a t is necessary for the evaluation 
of the conditional sentence. According to the Possible World Semantics the 
tru th  value of the conditional y —> x  in a world w is equivalent to the tru th

2The retrieval techniques discussed in this chapter are independent of the representation 
technique used. We only assume that documents and queries are represented by means of 
relevant features.

3Here I simply refer to the Modal System 55 and not to more complex models.
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value of the consequent x  in the closest world w y to w  where the antecedent 
y  is true [Sta81]. Ties at this stage, if they occur, are broken at random, to 
ensure the uniqueness of the closest world (but see further on for a general­
isation). The passage from one world to another world can be regarded as 
a form of belief revision, and the passage from a world to its nearest neigh­
bour is equivalent to the least drastic revision of one’s beliefs. Using this 
process is a mean of implementing the logical uncertainty principle described 
in C hapter 1.

More formally, suppose we have a language L  with an infinite set of prepo­
sitional variables {a, b, c , ...}, two primitive connectives A (conjunction) and 

(negation), and parentheses. Suppose we have two sentences (well formed 
formulas) x  and y of L. Moreover we have the additional connectives D (ma­
terial conditional) , V (disjunction), and =  (material equivalence) defined in 
term s of the primitives.

We also assume we have a tru th  evaluation function r  th a t takes sentences 
into {0 , 1} and th a t meets the following two conditions:

(a) t (->x ) =  1 — t (x )

(b) r ( x  A y)  =  t ( x )  r ( y )

Suppose now we have a finite set of possible worlds W .  We can extend the
tru th  evaluation function r  to indicate the tru th  value of a sentence in the
context of a world:

, N f 1 if y is true a t w  
T^  = \ o  otherwise

Let w y be the world most similar to w  where y  is true. The implication 
y  —» x  will be true a t w  if and only if x  is true a t w y :

r ( w , y  —> x) = def r ( w y , x)

This is the technique called Logical Imaging and was first proposed by Stal- 
naker [Sta81]. The arguments related to the existence of the most similar 
world to w  are addressed in [Lew86 , G88]. I will not raise them here since 
I will be imposing a metric on W  th a t will enable us always to find a t least 
one most similar world to any given world w.
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Imaging has been extended by Lewis [Lew81] to the case where there is a 
probability distribution on the worlds. Let us assume it follows the classical 
rules of probability, and in particular:

£  P(w ) =  1
W

Then we can go from probabilities of worlds to probabilities of sentences by 
summing the probabilities of the worlds where a sentence is true:

P(x)  = '^C/ P{w) t ( w , x )
w

This second probability distribution defined over the sentences is different 
from the probability distribution defined over the worlds, although the first 
can be derived from the second. However, for simplicity of notation we will 
use P  for both.

Given a sentence y , we can derive a new probability distribution P'  from the 
initial “prior” probability distribution P  over the possible worlds:

P'(w') =def J Z p (w)
w

where:

/ / \ /  1 if w' =  Wya iw  ,w ,y )  = < _ . y
[ 0  otherwise

The process of deriving the new probability distribution P'  from the original 
P  is obtained by transferring the probability of every “not-y world” w  to  its 
most similar “y-world” . The new probability of the sentence x  can again be 
evaluated as;

P'{x ) ~  Tiw i x )
w

Lewis showed th a t P(y  —>• x) =  P'{x)  or, using a notation more appropriate 
to highlight the role of y\

P (y  -+ x)  = Py{x)
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where Py(x) is the new probability distribution, called “posterior” proba­
bility, derived from P  by imaging on y. In other words, the probability of 
the conditional is the probability of the consequent after imaging on the an­
tecedent. The proof is reported in [Lew81]. The interested reader can also 
look at the following papers by Stalnaker [Sta81], Gardenfors [G82] and Cross 
[Cro94] for more details of the imaging process.

In 1988 Gardenfors proposed a generalisation of the imaging process [G88]. 
The generalisation originated from an attem pt to overcome one of the re­
strictive assumptions Lewis made for Stalnaker’s semantics of conditionals 
[Lew81]. The assumption is related to the “uniqueness” of the world wy, th a t 
is the uniqueness of the most similar y-world to w. The generalisation th a t 
Gardenfors proposed does not rely on this assumption4. The starting  point 
is the use of a probability function P w(w') to represent the belief in the world 
w'  given th a t the world w is certain. This probability function enables us to 
evaluate the (degenerated) probability function P w(y) th a t can be used to 
represent the fact th a t in any possible world w a sentence y can be true to  a 
certain extent. The probability function P w(y) is derived from a probability 
distribution P w(w') over the possible worlds in such a way that:

p w {y) =  J 2 p w (w ')T (w '^y)
w '

Lewis called the probability function P w{y) “opinionated” because “it would 
represent the beliefs of someone who was absolutely certain th a t the world w
was actual and who therefore held a firm opinion about every question” (see
[Lew81], p. 145). Gardenfors generalised imaging by considering the fact 
tha t, instead of having P w{y) =  1 only for a single world wy, we can have 
0 <  P w{y) <  1 for a set of worlds:

pwr \ ( >  0 if y is true a t w 
' '  ( = 0  otherwise

with the requirement th a t Y,w p w {y) =  1- Hence, taking into consideration 
the prior probability we go from probabilities of worlds to  probabilities of 
sentences as follows:

P { y )  =  ' £ P { w )  P w {y)

4 He also characterised this generalisation of imaging in terms of a homomorphic con­
dition that does not presuppose any kind of possible world semantics, but I will remain 
faithful to this semantics in the rest of this chapter.
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From the prior probability distribution P(w)  we can derive a new probability 
distribution P"  so that:

where W y is the set of the closest worlds to w where y is true.

It could be proved, with a demonstration similar to the one reported in 
[Lew81], p. 142, th a t this new probability distribution is the posterior prob­
ability distribution derived from the prior probability P  by General Logical 
Imaging on y. In other words, this new probability distribution can be ob­
tained by transferring the probability from every world w to the worlds in 
W y, the set of most similar (closest) worlds to w where y is true. The transfer 
of probability is performed according to the opinionated probability function 
P w(y). It is easy to prove th a t Lewis’ imaging is just a special case of general 
imaging when P w(y) = 1 for just one w.

The evaluation of Py(x) by general logical imaging is then performed in a 
similar way as the evaluation of Py(x) by logical imaging:

The evaluation of Py(x) either by imaging or general imaging causes a shift

a new probability distribution Py. Since the transfer of probabilities is di­
rected towards the closest y-worlds, this technique is just what it is needed 
to  implement the logical uncertainty principle described in Section 4.1. The 
probability revision is in fact minimal with regards to the accessibility rela­
tion, th a t is to say, it minimises the to tal distance covered in the probability 
transfer. In Sections 4.3.3 and 4.3.4 I will explain how we can use this result 
in the context of IR, but first let us examine how we can use the Possible 
World Semantics to model the term  space.

P"{w') =def Y , p (w ) p w {™') v {w ' ,w ,y )
w

where:

1 if w' G Wl 
0 otherwise

p y ( x ) =  Y , P " ( W ) t { w , x )
W

Again, it can be dem onstrated that:

P (y  - > x ) =  Py(x)

of the original probability P  from “not-y-worlds” to “?/-worlds” to  derive



CHAPTER 4. PROBABILITY KINEMATICS IN INFORMATION
RETRIEVAL 82

ti h h
di 1 1 0 • •• 0
d>2 0 0 1 • • • 1
ds 1 1 1 • • • 1

dk 1 0 0 • • • 1

Figure 4.1: The classical geometrical space semantics for the term  space

4.2.2 The term  space

One of the best known IR models is the Vector Space Model (VSM) [Sal68]. 
In the VSM a document is represented by means of a vector whose elements 
represent the presence/absence of certain features in the document represen­
tation, such as, for example, the presence or absence of index terms. Consid­
ering the binary case, for simplicity of exposition, a 1 in a particular position 
of the vector indicates the presence in the document representation of the 
feature associated with th a t position, while a 0 indicates its absence. The 
document representation space is therefore multidimensional, with as many 
dimensions as the number of features used for representing documents. Doc­
uments and queries are represented in this space as vectors. The semantics 
of the VSM is therefore th a t of a multidimensional geometrical space. The 
topology and the metrics of this space enable the evaluation of the RSV of a 
document with regards to a query as a distance measure. Many IR models 
use a similar representation space.

Here we use the same representation space but a different semantics. The 
semantics of the representation space is based on the Possible World Seman­
tics. I use the Possible World Semantics in the context of IR  by considering 
a term  as a possible world, a view th a t was proposed in [CvR95]. According 
to this view, a term  is represented as a “vector of documents” . Intuitively 
this can be understood as “if you want to know the meaning of a term  then 
look at all the documents in which th a t term  occurs” . This idea is not new 
in IR (see for example [QF93]) and it has been widely used for the evaluation 
of term -term  similarity (see Section 4.5).

More formally, let us assume our representation space is made of a set of 
index terms T, we will call it a Term Space. The set of index term s T  is 
our set of possible worlds. We also assume we have a document collection D  
where each document d is represented using terms in T, as depicted in the
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di C?2 C?3 • • dk
tl 1 0 1 • • 1
h 1 0 1 . • 0
h 0 1 1 • • 0

tn 0 1 1 • • 1

Figure 4.2: Application of the Possible World Semantics to the term  space

representation m atrix in Figure 4.1. According to  our semantics, in order to 
determine if a document is true or not in the context of a term  it is sufficient 
to transpose the representation m atrix and consider a document true in the 
context of a term  if the document uses th a t term  in its representation. The 
m atrix  depicted in Figure 4.2 can therefore be interpreted as representing 
the tru th  values of documents in the context of terms.

The above semantics for the term  space can easily be extended to  the case 
of a representation m atrix with real values. In particular, if these values are 
in the [0 , 1] range, then they can be considered as probabilities of tru th  for 
a document in the context of a term.

In order to be able to apply imaging in this context, we also have to assume 
the presence of a prior probability distribution P  on the term  space, assigning 
to  each term  t  e  T  a probability P(t)  so th a t T i tb i t )  = 1- This probability 
reflects the importance of a term  in the term  space. We call this initial 
probability distribution “prior” because it reflects the im portance of term s 
prior to the submission to the IR system of any query or the selection of 
any document as relevant to a user’s information need. Once some external 
information enters the term  space, mostly in the form of a query or a relevance 
judgem ent (but not necessarily only in these forms) then the im portance of 
a term  changes to reflect the new information. Accordingly, the probability 
assigned to a term  changes to reflect the increased or decreased im portance 
of the term. However for it to be considered a probabilistic space, the sum 
of the probabilities assigned to terms must remain constant (i.e. equal to 
1) and so probabilities are moved around in the term  space so th a t if one 
term  increases its importance then some other terms must decrease their 
im portance in a equal measure. These changes occurring in a IR system at 
retrieval time are very im portant in order to understand how IR models work. 
I believe th a t a study of the kinematics of probability in IR  is very im portant 
in order to understand in detail why some models give better performance
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than  others. This is what I intend to investigate in the rest of the chapter.

4.3 Probability kinematics in IR

In the following sections I examine the different kinematics of probability 
th a t take place in four retrieval models. The purpose is to show how the 
probability associated with terms changes and shifts in different ways in 
different models as the result of new information entering the term  space. I do 
not intend to associate directly any of the models presented here with existing 
IR  models. However, these four models can be looked at as the archetypes 
of the most common IR models. In particular, the probability kinematics 
of the first two models, called Retrieval by Joint Probability and Retrieval 
by Conditional Probability, is similar to th a t taking place in the VSM and 
in the Probabilistic Retrieval model. In fact, apart from some norm alisation 
factors, the VSM and the Probabilistic Retrieval model are respectively based 
on the concepts of joint probability and conditional probability. The last two 
models, called Retrieval by Logical Imaging and Retrieval by General Logical 
Imaging, are new and are based on a completely different approach for the 
transfer of probability. Their origin lies in the field of non-classical logics, and 
in particular in the application of the Logical Imaging technique to  IR. I will 
show th a t in principle, i.e. w ithout entering into complex “ad hoc” weighting 
and retrieval schemas, these last two models perform better than  the first 
two. This result suggests th a t an improvement in retrieval effectiveness can 
be obtained by designing IR systems based on probabilistic models th a t use 
a non-classical probability kinematics.

In order to make the analysis clearer, I will provide examples of the kine­
matics of probability of the four models. I will take into consideration a 
particular document and query. We suppose we have a document d repre­
sented by terms 11, t5, and t§ and a query q represented by £i, £4, and tQ. 
Each of these terms has a prior probability associated with it, indicated by 
P(t) .  In the following I show how the RSV of document d is evaluated in 
different ways by different retrieval models and I concentrate my attention 
on how the probabilities associated with terms change and shift from term  
to term  during the evaluation of the RSV. I indicate the new “posterior” 
probability with Pd(t) to highlight the fact th a t it is obtained by looking at 
a particular document d.
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4.3.1 Retrieval by Joint Probability

I call Retrieval by Joint Probability (RbJP) the ranking and retrieval of doc­
uments obtained by estim ating the probability of relevance w ith the proba­
bility of the joint event of having both the query and the document true for 
a set of terms.

P ( R  \ q , d ) &  P(q, d)

R bJP  evaluates the RSV of a document using the following formula:

p (<L d ) =  Y ,  r(̂  d) r(̂  ?)
t

Given a document d , we compute the sum of the probabilities of all term s 
th a t are present in both th a t document and th a t query. In Possible World 
Semantics this is equivalent to the sum of the probabilities of the worlds 
for which both the document and the query are true. It can easily be seen 
th a t here there is no transfer of probabilities. The prior probability P ( t ) 
associated with term  t  does not change, but remains the same whatever 
document we are considering.

R bJP  is the simplest approximation to P ( R  \ q,d), but it is used by many IR 
models. In fact it is the archetype of many IR models currently in use. Most 
IR  models th a t are based on the evaluation of similarity between documents 
and query are based upon the idea of a joint probability measure. Both 
Dice’s and Jaccard’s coefficients (see [vR79], p. 39) are based on it, as can 
be seen once we remove the normalisation factors.

Let us consider, for example, the case P(t)  = k for every term  in the term  
space, where A; is a constant value. Then:

P{<L d) = £ t p (t) r(t, d) r{t, q)
=  k || d fl q ||

where || S  || indicates the cardinality of the set S.

The results of the last formula is monotone to the Retrieval by Simple Match­
ing value and with k = 1 we obtain the “coordination level coefficient” (the 
number of terms the query has in common with the document, see [vR79], p.
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97) one of the oldest IR models. From the R bJP  formula we can also obtain 
Dice’s and Jaccard’s coefficients just by assigning to k different normalisa­
tion factors. The Cosine Correlation used by the VSM is also a normalised 
version of RbJP, it is in fact the same formula with a Euclidean norm:

nr \ \ d n Q \ \
P( Q, d) =  I, ,  I, .I— fi­

ll d W II Q II

Moreover, let us suppose th a t P(t)  is estim ated using the “Inverse Document 
Frequency” (idf) of the term  t , defined as:

idf(t)  =  —log j j

where n  is the number of documents in which t occurs, and N  is the number 
of documents in the collection. Let us also suppose th a t r(t , d) = tfd(t),  and 
t ( £ ,  q) =  t f q(t), where tfd(t)  and t f q(t) indicate respectively the frequency of 
occurrence of term t in the document and in the query. Then we have the 
formula:

P {q ,d) = £ t  P(t)  r ( t , d) r ( t , q)
= t f d{t) t f q(t)

or, if the term  frequency of occurrence of term  t in the query is not considered, 
since very often a term  occur only once in the query, we have the result:

P{<Ld) = J 2 idf ( t ) t fd(t )
t

This corresponds to the Cosine Correlation using the “t f  • idf  ” weighting 
scheme as defined in [SY73]. We should notice th a t P(q,d)  is no more a 
measure of probability, since it does not give values between 0 and 1, however 
this problem could be simply solved introducing a normalisation factor.

While not intending to undervalue the importance of normalisation factors, 
I wish to point out th a t the probability kinematics of all the IR  models I 
have mentioned does not change once a normalisation factor is introduced; 
it substantially remains the same as th a t of RbJP.

To show how I evaluate the RSV in the case of RbJP, I refer to  Table 4.1, 
where I report the evaluation of P(q, d) for a particular document and query. 
The evaluation process is the following:
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t P(t) r{t ,d) r{t ,q) P(t)  • r { t , d) - r ( t ,  q)
1 0.2 1 1 0.2
2 0.1 0 0 0
3 0.05 0 0 0
4 0.2 0 1 0
5 0.3 1 0 0
6 0.15 1 1 0.15
E* 1 0.35

Table 4.1: Example of the evaluation of P(q, d)

Figure 4.3: Graphical interpretation of the evaluation of P(q,d).

1. Identify the terms occurring in the document d.

2. Identify the terms occurring in the query q.

3. Evaluate the P ( d , q) by summing the probability of all term s present 
in both document and query.

A graphical interpretation of R bJP  using the Possible World Semantics is
given in Figure 4.3, where each term  is represented by a world with its prior
probability measure expressing the importance of the term  in the term  space 
T. The shaded terms are those occurring in document d (Figure 4.3). The 
value of P (q , d) is obtained by summing the probability of all terms occurring 
both in the document and in the query representations, th a t is summing the 
probabilities of the shaded terms also occurring in q.

This process in R bJP  is not covered by the logical uncertainty principle, since 
there is no revision of the prior probability.
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4.3.2 Retrieval by Conditional Probability

In the case of Retrieval by Conditional Probability (RbCP) the probability 
of relevance of a document is estim ated by evaluating the conditional prob­
ability of the query given the document.

P ( R  | g, d) «  P{q \ d)

In other words, the relevance of a document is estim ated by the extent to 
which the fact th a t we are observing th a t document supports the observation 
of the query. According to classical logics the conditionalisation, q given d is 
equivalent to the m aterial implication d D q.

P(q  | d) can be evaluated as follows:

P ( q \ d )  = P d(q)
= E t Pd(t) r(t ,q)
= £*(1 +  Ad) P(t)  r(t ,q)

where Pd{t) is the posterior probability distribution obtained by conditioning 
on the document d , and (1 +  A )̂ is the factor by which the prior probability 
is to be modified to obtain the posterior probability. The value A  ̂ is the ratio 
between the sum of the probabilities of the terms not occurring in d and the 
sum of the probabilities of those th a t do occur in d:

x _  Yjt£dP{i) 
d ~ Z t e d P ( t )

Notice th a t RbCP is a “normalised” form of RbJP. In fact, according to 
Probability Theory:

nt I J \  p {Q’d)
p{q  1 d) =  T ( 5 T

The normalisation enables the prior probability to be revised in accordance 
with the characteristics of the particular document under consideration. 
Thus, the transfer of probabilities th a t takes place in RbCP provides the 
minimal revision of the prior probability necessary to make d certain without



CHAPTER 4. PROBABILITY KINEMATICS IN INFORMATION
RETRIEVAL 89

t P(t) r{t, d) Pd(t) r{t,q) Pd(t) 'T(t ,q)
1 0.2 1 0.308 1 0.308
2 0.1 0 0 0 0
3 0.05 0 0 0 0
4 0.2 0 0 1 0
5 0.3 1 0.461 0 0
6 0.15 1 0.231 1 0.231

1 1 0.539

Table 4.2: Example of the evaluation of P(q \ d)

distorting the profile of probability ratios. In fact, the posterior probability 
is proportional to the prior probability, so leaving constant the ratio of prob­
abilities associated with the terms after the contraction of the term  space 
due to the fact th a t the conditional event d has become certain.

Wong and Yao dem onstrated in [WY95] th a t most probabilistic models of IR 
can be explained using P(q \ d). The difference between the various models 
is given by the different ways P(q | d) can be evaluated.

Table 4.2 reports an evaluation of P(q \ d). The evaluation process is the 
following:

1. Identify the terms occurring in the document d.

2. Evaluate the posterior probability P<j(t) by transferring the probabil­
ities from terms not occurring in the document to term s occurring in 
it. The probabilities are transferred in a proportional way, so th a t each 
term  occurring in the document d receives a portion of the sum of the 
probability of the terms not occurring in the document proportional to 
its prior probability.

3. Evaluate r(t ,q)  for each term, i.e., determine the term s occurring in 
the query.

4. Evaluate Pd(t) -r (t ,q )  for all terms and evaluate Pd{q) by summation.

It is interesting to see a graphical interpretation of probability kinematics 
induced by RbCP. In Figure 4.4(a) each term  is represented by a world 
with its prior probability. The shaded terms occur in document d. The
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Figure 4.4: Graphical interpretation of the evaluation of P(q \ d).

conditioning process transfers the probability from terms not occurring in d 
to those occurring in it as depicted in Figure 4.4(b). In Figure 4.4(c) the 
term s with null probability disappear and only those terms occurring in the 
query q are taken into consideration to evaluate P{q | d).

4.3.3 Retrieval by Logical Imaging

I use imaging in IR for estim ating the probability of relevance of a document 
by means of the probability of the conditional d —>• q:

P ( R  | q,d) & P(d  q)

The motivation behind this approach is related to the underlying definition 
of Relevance (R ). I accept a logical notion of relevance, in accordance w ith 
the work of Cooper [Coo71] and Van Rijsbergen [vR86]. Relevance is defined 
as the tru th  value of the implication d -*  q. An equivalent in terpretation of 
the tru th  of d —> q is to consider d and q as events, then the “satisfaction” 
of a document described by d entails the satisfaction of a query described 
by q. The satisfaction of a document d means th a t the logical expression 
d is true in the current retrieval situation. A particular case in which d 
is true is when a document corresponding to d is retrieved, so a slightly 
narrower interpretation of the tru th  of d —> q is: “the retrieval of d leads 
to  the satisfaction of q” . It is known in IR th a t relevance is often uncertain 
due to the uncertainty in the description of the contents of documents and 
queries, therefore we cannot talk about the tru th  of d —>■ q, but of the degree 
of certainty (or uncertainty) of the tru th  value. This leads us to  talk  about 
P(d —> g)-
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Wong and Yao [WY95] suggested estimating P (d  —> q) by P(q \ d). The 
lim itations of this approach are known in the area of logics by the name of 
“triviality results” , and were well illustrated by Lewis in [Lew81]. According 
to  these results P(d  -> q) and P(q \ d) would be equal only in certain extreme 
cases th a t are so simple th a t they can be considered “trivial”5. These results 
excluded th a t conditional probabilities could be used as a probabilistic logic 
dealing with conditionals. As a consequence, Lewis suggested estim ating the 
probability of a conditional using Logical Imaging.

Retrieval by Logical Imaging (RbLI) is the model th a t estimates P ( R \  q, d) 
by P(d  —> q), where the la tter is evaluated using logical imaging. A detailed 
explanation of the RbLI model can be found in Chapter 3.

The application of Possible World Semantics on the term  space enables us to  
apply imaging to derive the posterior probability Pd(t) by imaging on d over 
all the possible terms (possible worlds) t  in T. Probabilities are transferred 
according to the kinematics induced by the imaging process. More formally 
P(d  —»• q) can be evaluated in the following way:

P ( d - M )  = P d(q)
= E t Pd(t) r{t ,q)
= Y,t P{t) r{tdlq)

where t d is the closest term  to t  for which d is true, or in other words, the 
most similar term  to t th a t also occurs in the document d. The application 
of imaging to IR requires an appropriate measure of similarity over the term  
space to enable the identification of td. This is the equivalent of the accessi­
bility relation described by Lewis in [Lew81]. The measure of similarity used 
in the evaluations reported in this chapter is described in Section 4.5.

RbLI implements Van Rijsbergen’s Logical Uncertainty Principle because it 
provides the minimal revision of the prior probability in the sense th a t it 
involves no gratuitous movement of probability from one world to dissimilar 
worlds. The revision of the prior probability necessary to make d certain is 
obtained by adopting the least drastic change in the probability space. This 
is achieved by transferring probabilities from each term  not occurring in the 
document d to its closest (most similar) term  occurring in d, so th a t the 
to tal amount of the distance covered in the transfer is minimal. A detailed

5Only a so called trivial probability function, according to which positive probabilities 
are never assigned to more than two incompatible alternatives, would accept the equiva­
lence P(d  —» q) =  P(q | d)
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t P(t) r( t ,d) U f tW r(t ,q) Pd(t) • t(£, q)
1 0.2 1 1 0.3 1 0.3
2 0.1 0 1 0 0 0
3 0.05 0 5 0 0 0
4 0.2 0 5 0 1 0
5 0.3 1 5 0.55 0 0
6 0.15 1 6 0.15 1 0.15

1.0 1.0 0.45

Table 4.3: Example of the evaluation of P(d  —»■ q) by imaging on d

comparison between other forms of conditionalisation and imaging can be 
found in [Cro94].

For a practical example of the evaluation of RbLI let us suppose we have the 
same query q and document d of the previous sections. Table 4.3 reports 
the evaluation of P(d  —> q) by imaging on d. The evaluation process is the 
following:

1. Identify the terms occurring in the document d.

2. Determine for each term  in T  the td, i.e. the most similar term  to t  for 
which r ( t , d) =  1. This is done using a similarity measure on the term  
space not described here to keep the example simple.

3. Evaluate Pd(t) by transferring the probabilities from term s not occur­
ring in the document to terms occurring in it.

4. Evaluate r ( t , q) for each term, i.e. identify the terms occurring in the 
query.

5. Evaluate Pd ■ r(t ,q )  for all terms and evaluate Pd(q) by summation.

A graphical interpretation of this process is depicted in Figure 4.5. I assume 
we have a measure of similarity on the term  space. Using it we can transfer 
probability from each term  not occurring in the document d to its most 
similar one occurring in d (Figure 4.5(b)). After the transfer of probabilities, 
term s with null probability disappear and those occurring in the query q are 
taken into consideration, so th a t their posterior probabilities Pd(t) are added 
together to evaluate Pd{q)-
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a b c

Figure 4.5: Graphical interpretation of the evaluation of P(d  —> q) by imag­
ing on d.

4.3.4 Retrieval by General Logical Imaging

Retrieval by General Logical Imaging (RbGLI) is the result of the application 
of Lewis’ general imaging technique to IR.

P ( R  | q, d) «  P (d  —» q)

In this case the evaluation of P(d  —» q) is performed using the following 
formula:

P { d ^ q )  = P i (q)
= Et Pi(t) r( t ,  q)
= E t P(t) X t'P' (d) )T( td,q)
= Et (Et ' P ^ t )  P ( f i )  r ( td,q)
= E t,t'p i { t )  P{t') r ( td,q)

The opinionated probability function P /( i ) ,  defined in Section 4.2.1, deter­
mines the amount of probability to be moved from t' to the term  t  belonging 
to the set T^, where C T  is the set of all terms occurring in document d. 
Such a function depends on the particular document on which general imag­
ing is performed and on the particular term  from which we want to  transfer 
the probability. The number of opinionated probability functions required 
is then equal to the product of the number of documents multiplied by the 
number of terms. This number could be very high. I am currently working on 
this problem and I plan to use contextual information together with similar­
ity information to determine the opinionated probability function, with the
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t P(t) r(t ,  d) td Pd(t) r( t ,q) Pd(t) -r ( t ,q )
1 0.2 1 1 0.33 1 0.33
2 0.1 0 i; 6 0 0 0
3 0.05 0 5; 6 0 0 0
4 0.2 0 5; 1 0 1 0
5 0.3 1 5 0.47 0 0
6 0.15 1 6 0.2 1 0.2

1.0 1.0 0.53

Table 4.4: Example of the evaluation of P(d —> q) by general imaging on d

document giving the context in which the similarity is measured. However, 
for the tests reported in this chapter I will make some strong assumptions:

1 . The opinionated probability function is independent of the document 
being considered. This is equivalent to assuming th a t the opinionated 
probability function is context-independent, th a t is: P j (t) =  P l (t) for 
every d G D.

2. The opinionated probability function does not use the similarity value, 
but only the similarity ranking. This means th a t in the evaluation 
of how much probability needs to be transferred from t' to t  we will 
not consider the value of the similarity between t' and t , but only the 
position of t in a ranking of all terms in (T — Td) according to  their 
similarity with t ' .

These two assumptions enable us to use a single opinionated probability 
function for every term  in the term  space. I plan in the near future to 
remove first the second assumption and perform a transfer of probability 
th a t is related to the value of similarity between two terms, and later remove 
also the first assumption to make this transfer dependent on the context set 
by the document. In the tests reported in this chapter, however, I will make 
use of a very simplistic opinionated probability function. Such a function is 
described in detail in Section 4.5.

Table 4.4 reports an example of the evaluation of P(d  —> q) by general 
imaging on d. The evaluation process is the following:

1. Identify the terms occurring in the document d.
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2. Determine for each term  not occurring in the document (with r ( t , d) =  
0 ) the most similar terms (in this example only two terms) occurring in 
the document (those with r( t ,d )  =  1). This is done using a similarity 
measure on the term  space.

3. Evaluate Pd(t) by transferring the probabilities from term s not occur­
ring in the document to terms occurring in it using the opinionated 
probability function . In this example the opinionated probability 
function prescribes th a t the most similar term  to the one under con­
sideration receives 2/3 of its probability, while the second most similar 
receives the remaining 1/3.

4. Evaluate r ( t , q) for each term, i.e. determine the term s occurring in 
the query.

5. Evaluate the probabilities Pd-r(t, q) for all the terms and evaluate Pd{q) 
by summation.

A graphical interpretation of this process is shown in Figure 4.6. As can 
be seen in the picture, in the case of RbGLI the transfer of probability is 
performed from each term  not occurring in the document d to the kt most 
similar term s occurring in d. In the example kt = 2 for every term, but kt can 
be any other integer number so th a t 1 < kt < lt , where lt is the number of 
documents in which the term  t occurs. The value of kt is in theory different 
for every term, but can be set to a constant k independent of the term  t. This 
setting simplifies considerably the evaluation of RbGLI. If kt = 1 for every 
term, then RbGLI defaults down to RbLI. If kt = It for every term , then 
the transfer looks similar to the one produced by RbCP. However, note th a t 
the probability transfer in RbGLI is performed by taking into account the 
similarity between terms and not the ratio of prior probabilities as in the case 
of RbCP. Gardenfors dem onstrated in [G88] th a t it is not possible to find any 
prior probability distribution for which the transfer of probability induced 
by general imaging is equivalent to th a t induced by conditional probability.

4.4 Experimental analysis

So far I compared four probabilistic retrieval models using a common rep­
resentation space and a common semantics. The comparison was mainly on 
theoretical grounds and was meant to show what happens a t retrieval tim e to 
probabilities assigned to the elementary objects of the representation space.
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Figure 4.6: Graphical interpretation of the evaluation of P(d —> q) by general 
imaging on d.

I showed th a t these four models induce different probability kinematics in 
the term  space. Now, an obvious question comes to mind: which of the four 
models is the best in practical terms? The theoretical analysis I perform 
allows us to see the differences between the various models, bu t does not 
allow us to say which is the best. Some performance testing are necessary 
to compare the retrieval of the four models. These tests are only m eant to 
show existing significant differences in the retrieval performance of the four 
different models. I decided to avoid using “ad hoc” indexing and normalisa­
tion schemes or adaptations of existing IR systems, since they could throw 
the comparison out of “balance” . I used the retrieval models as they have 
been described in Section 4.3. My results cannot therefore be compared with 
the results achieved by other IR systems using the same data, and they only 
have a comparative significance in the framework of the present testing.

In order to study and compare the retrieval effectiveness of the four models 
under consideration I performed a series of tests using some standard test 
collections. I used three test collections th a t have been extensively studied 
and used in the field of IR: the Cranfield 1400, the CACM , and the NPL  test 
collections. The characteristics of these three test collections are described 
in many papers (see for example [CMK66 , Sv76]). A summary of the main 
characteristics is reported in Table 4.5.

The results of the test are presented using the standard evaluation technique 
used in IR. Precision and recall tables have been evaluated using their stan­
dard definition [vR79]. The method of linear interpolation has been used to 
determine the standard values corresponding to intervals of 10% in the recall 
figures.
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Data Cranfield CACM NPL
documents 1400 3204 11429
queries 225 52 93
terms in doc. 2686 7121 7492
terms in query 274 356 337
avg. doc. length 53.61 24.26 19.96
avg. query length 8.95 11.5 7.15
avg. rel. doc. 7.28 15.31 22.41

Table 4.5: Test collections data

4.5 Prior probability, similarity and opinion­
ated probability function

In order to perform some performance testing with the four retrieval models, 
RbJP, RbCP, RbLI, and RbGLI, we have three requirements:

1. For all models, a “prior” probability distribution over the set of worlds 
which should reflect the importance of each world in the representation 
space;

2. For RbLI and RbGLI only, a measure of similarity (or a distance) 
between worlds;

3. For RbGLI only, an opinionated probability function.

The problems of determining the best prior probability and measure of sim­
ilarity has already been discussed in Section 3.4. Here the same probability 
distribution (idf) and the same measure of similarity (EMIM) will be used.

The problems related to defining an appropriate opinionated probability func­
tion have already been introduced in Section 4.3.4. This third experimental 
requirement is a heavy one. The problem of finding a good opinionated prob­
ability function is still open. I do not tackle it in this chapter. In the tests 
reported in Section 4.6 I use a discrete monotonically decreasing transfer 
function th a t transfers from a term  t a decreasing fraction of its probability 
to all the other terms in the term  space once they are ordered in decreasing 
order of similarity. In particular, to simplify computations, in the evaluation 
of P (d  —> q) by general imaging on d, from each term  not occurring in d



CHAPTER 4. PROBABILITY KINEMATICS IN INFORMATION
RETRIEVAL 98

Average Precision values in % (increase in % over preceding model)
Collection R bJP RbLI RbCP RbGLI
Cranfield 1400
CACM
NPL

24.3 
27.1
22.4

27.6 (+12.0%) 
33.2 (+16.8%) 
29.8 (+24.8%)

31.8 (+13.3%)
37.1 (+10.6%)
38.1 (+21.9%)

36.2 (+12.1%) 
42.8 (+13.4%) 
42.1 (+9.5%)

Table 4.6: Comparison of the average precision of the four models with dif­
ferent test collections

the algorithm transfers probability only to the first 10 most similar terms 
occurring in d. Once term s are ordered in decreasing order of similarity with 
t , the probability transfer function I use works in such a way th a t the ith  
term  gets double of what the (i +  l) th  gets. In the future I intend to use 
a more complex function th a t takes into account the contextual information 
provided by the particular document on which general imaging is performed. 
The opinionated probability function will be based on a term -term  similarity 
measure evaluated in the context of th a t document.

4.6 Evaluation

I performed a comparative evaluation of the retrieval effectiveness of the four 
models presented above using the document collections and the experimental 
settings reported in Section 4.4 and 4.5.

I do not enter into the details of the evaluation, suffice to say th a t the actual 
com putations of the RSV used for obtaining the figures reported in this 
section are very similar to the ones reported in the examples in Section 4.3. 
The only modifications to the techniques described earlier were introduced 
in order to reduce the number of computations necessary a t run-tim e for 
the probability transfer. These modifications have already been described in 
detail in Chapter 3. Here I only compare the results obtained by each model 
to draw some plausible conclusions.

Table 4.6 reports the average precision values obtained by the different mod­
els on different test collections. It also shows the percentage increase in the 
average precision gained by using the different models. It can be easily seen 
th a t the average precision increases consistently from R bJP  to RbGLI in all 
three document collections, although the increase rate is variable.
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Figure 4.7: Precision and recall graphs for the Cranfield test collections

The results displayed in the Recall/Precision graphs in figures 4.7, 4.8 and 4.9 
show th a t the performance of RbGLI are slightly higher than those obtained 
by any other model, with R bJP  at the lowest level of performance.

From the results we can observe that:

•  any model inducing a probability transfer (like RbLI, RbCP, and RbGLI) 
performs better than any model th a t does not induce such transfer 
(RbJP);

•  any model th a t induces a probability transfer from one term  to a set 
of terms (called “one-to-many” transfer, like in RbCP and RbGLI) 
performs better than  any model in which either there is no transfer 
(RbJP) or the transfer is from one term  to a single other term  (called 
“one-to-one” transfer, like in RbLI);

•  any model th a t induces a one-to-many transfer th a t takes into account 
the similarity between the donor and the receivers (RbGLI) performs 
better than  any model with a one-to-many transfer th a t takes into 
account the probability ratio between the receivers (RbCP).

These findings are consistent over the three document collections.

Despite the fact th a t I am using a simple term  weighting schema and th a t I 
am experimenting with small test collections, I think I can nonetheless con-
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Figure 4.8: Precision and recall graph for the CACM test collection
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Figure 4.9: Precision and recall graph for the NPL test collection
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elude th a t the probability kinematics of IR probabilistic retrieval models is 
worthy of further study. An exploration of the kinematics of probabilities in 
IR  can help discover interesting properties of existing and new retrieval mod­
els, and can provide pointers for further study on how to improve the design 
of new IR  models. An interesting result from this study on the kinem at­
ics of the four models presented is th a t it is possible to  obtain higher levels 
of retrieval effectiveness by taking into consideration the similarity between 
the objects involved in the transfer of probability. However, the similarity 
information should not be use too drastically (like in RbLI) since similarity 
is often based on co-occurrence and such a source of similarity information 
is itself uncertain. A way of partially dealing with this la tte r uncertainty 
would be to contextualise the similarity information to make it document 
dependent. This is a line of research I will investigate using N atural Lan­
guage Processing techniques. Some initial results of this work are reported 
in C hapter 5.

4.7 Conclusions

In this study of the probability kinematics in IR, I believe I have shown 
th a t, in principle, a probability transfer th a t takes into account a measure 
of similarity between the term  “donor” and the term  “recipient” is more ef­
fective in the context of IR than a probability transfer th a t does not take 
th a t into account. Most current probabilistic retrieval models are based on 
a probability kinematics th a t does not take into account similarity between 
term s or between documents, unless ad hoc weighting schemas, m ostly based 
on clustering, are used. Furthermore, even when similarity between term s 
is taken into consideration, this is often just an add on to a conventional 
(rarely probabilistic) model, and it is not integrated into the model. I would 
therefore like to suggest a further investigation into more complex and opti­
mised models for probabilistic retrieval, where probability kinematics follows 
non-classical models. General imaging is one of such models, bu t other ones 
can be developed using results achieved in other fields, such as non-classical 
Logics or Belief Revision theory.

The theory and the results reported in this chapter seem to suggest th a t an 
improvements in retrieval effectiveness can be obtained by designing IR  sys­
tems th a t use probabilistic models based upon a different kind of probability 
kinematics. These results need to be tested experimentally using a larger 
collection of documents to see if they scale up.



Chapter 5

Sense resolution properties o f  
Logical Imaging

In this chapter, the effect on word senses caused by Imaging is outlined 
and this is followed by a description of a small experiment and a proposal for 
further such experiments. Finally there is a short discussion and conclusions.

5.1 Word sense ambiguity

Before discussing the relationship between Imaging and word sense ambigu­
ity, a brief overview of some of the features of ambiguity and disam biguation 
will be presented.

W hen ever dealing with words, it is im portant to remember th a t most words 
can refer to more than one sense. These individual senses can be quite 
distinct, for example the word “b a t” can refer to an implement used in sports 
to  hit balls or to a furry, flying mammal. Word senses can also be related, 
for example the word “crash” could refer to a physical event such as a car 
crash but also it could refer to the shares in a stock market dropping quickly. 
W hat sense a word has depends of course on the context th a t word appears 
in.

As information retrieval deals with the words of documents, and often ignores 
their context, inevitably IR is affected by word sense ambiguity. To illustrate, 
a manager of an on-line news retrieval system reported (in a personal com­
munication) th a t the previous British Prime Minister was causing problems
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with their retrieval system. A number of users had tried to retrieve articles 
about the Prime Minister using the query “m ajor” . This query caused many 
articles about “John M ajor” to be retrieved. However, in addition many 
more articles were retrieved where “m ajor” was used as an adjective or as 
the name of a m ilitary rank.

5.1.1 Word sense disambiguation

The autom atic disambiguation (or resolution) of word senses is a problem 
th a t has been studied for many years; Gale, Church and Yarowsky [GCY92] 
cite work dating back to 1950. These disambiguators were used in natural 
language processing applications such as translation systems. Early a ttem pts 
to build disambiguators [Wei73, KS75, SR82] relied on a combination of hand 
built lexicons and rules. Although working well for the examples they were 
programmed for, researchers were never able to ’scale up’ the disambiguators 
to work on large disambiguation problems.

However in the past ten years disambiguation research has moved towards 
investigating the exploitation of existing corpora already available online. 
The first work in this area was by Lesk [Les86] (an often cited paper). He 
used the textual definitions of an online dictionary to provide evidence for 
his disambiguator. The use of this evidence can be shown with a simplified 
example. Suppose we wish to resolve the sense of the word “ash” as it appears 
in the following sentence.

They cleared the a sh  from the coal fire.

To disambiguate “ash” , first its dictionary definition is looked up in the online 
dictionary and the individual senses of the word are identified. The form at 
of the online dictionary is sufficiently structured to make this identification 
process relatively simple.

ash: The soft grey powder th a t remains after something has been 
burnt.

ash: A forest tree common in Britain.

Then the definitions of each of the other words in the sentence (apart from 
stop words) are looked up as well. For example:
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coal: A black mineral which is dug from the earth, which can be
burnt to give heat.

fire: The condition of burning; flames, light and great heat.

W hat follows is a process similar to ranked retrieval, where: the individ­
ual dictionary sense definitions of “ash” are regarded as a small collection 
of documents (a collection of two in this case); and the definitions of the 
words surrounding “ash” are regarded as the query. So the sense definitions 
are ranked by a scoring function th a t is based on the number of words co­
occurring between a sense’s definition and the definitions of each sentence 
word. The top ranked definition resulting from this process is chosen as the 
correct sense of “ash” .

Lesk performed some limited testing of his technique and reported a dis­
ambiguation accuracy of between 50% and 70%. This level of accuracy is 
actually quite poor as Gale et al [GCY92] found th a t a disam biguator could 
have an accuracy of 75% if it always picked the most commonly occurring 
sense of a word. Although it is likely th a t if Lesk’s disam biguator had in­
corporated information on the skewed frequency distribution of word senses 
its performance would have improved. However the im portance of Lesk’s 
work was to dem onstrate the use of online corpora as sense disambiguation 
evidence and by doing this, to raise the possibility of building, w ithout to 
much effort, a disambiguator capable of resolving the senses of a great many 
words.

Since Lesk’s paper a bewildering array of disambiguators have been built us­
ing the same principle of collecting sense evidence from a large online corpus 
and ranking possible word senses according to the degree of m atch between 
sense evidence and the context of the ambiguous word: Cowie [CGG92], Wal­
lis [Wal93] and Demetriou [Dem93] have made further use of dictionaries; 
Zernik [Zer91] built a disambiguator using a morphological analyser; Dagan 
[DIS91] used bilingual corpora; Church [Chu92] tried aligned bilingual cor­
pora; Voorhees [Voo93] and Sussna [Sus93] used the WordNet thesaurus; and 
Yarowsky [Yar92] used a combination of Roget’s thesaurus and Grollier’s en­
cyclopaedia to produce one of the better performing disambiguators to  date, 
achieving 90% accuracy for the 12 words it was tested on.

A shared feature of all the disambiguators referred to above is an assumption 
th a t each individual sense of a certain word will appear in a wide context 
(typically 40-100 surrounding words) th a t is distinct from the contexts of the 
other senses of th a t word. It is not clear if this assumption is entirely correct
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as research on human disambiguation has found th a t people can identify 
word senses accurately from a much narrower context of 1-5 words. This 
raises the possibility of having two senses of a word occurring in similar 
wide contexts but in different narrow contexts. Although such a situation 
probably accounts for some of the errors made by autom atic disambiguators, 
when we consider th a t the Yarowsky disambiguator (cited above) makes this 
distinct context assumption and it has a 90% disambiguation accuracy, this 
assumption appears to be correct most of the time. It is this feature of 
distinct sense contexts coupled with the skewed frequency distribution of 
word senses (highlighted by Gale et al) th a t is im portant in the relationship 
between Imaging and the senses of a word.

5.2 Imaging and sense ambiguity

As has already been discussed, we can have two forms of Imaging in IR: 
Imaging on the document Pd{q), and Imaging on the query Pq{d). Each form 
behaves differently with regard to the senses of ambiguous words and will 
therefore be discussed separately. To illustrate these discussions, a simplified 
example will be used.

Let us imagine a document collection in which the word “b a t” appears in 
a number of documents and th a t the frequency of occurrence of its word 
senses is skewed. In most documents, the word is used to refer to a sporting 
implement, but occasionally it is used to refer to the flying mammal. As the 
sporting sense of “bat” is predominant in this collection, words most similar 
to “b a t” (similarity is measured by co-occurrence) will be those similar to 
this one sense. For this example, let us say th a t the words most similar to 
“b a t” are “cricket” , “baseball” , “h it” , and “ball” . In term s of Imaging, it is 
these five words th a t are most likely to transfer their probabilities to each 
other.

Now let us look at two documents from this collection. Document d\ is 
represented by words “b a t” and “hit” , while document c?2 is represented by 
words “b a t” and “night” . Document di uses the word “ba t” in the sporting 
sense (see Figure 5.1a); document d<i uses it in the animal sense (see Figure 
5.2a). Suppose a user enters the two word query, “ba t” , “cricket” . How will 
the two forms of Imaging rank these two documents?
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t P(t) / M i ) d̂i PdAt) /(*, q) Pd! (t ) • I{t, q)
bat 0.2 1 1 0.4 1 0.4
ball 0.1 0 5 0 0 0
night 0.05 0 1 0 0 0
cricket 0.2 0 5 0 1 0
hit 0.3 1 5 0.6 0 0
baseball 0.15 0 1 0 0 0

1.0 1.0 0.4

Table 5.1: Evaluation of P(d\  —» q) by Imaging on d\
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Figure 5.1: Sense resolution properties of P(di —> q) by Imaging on d\.

5.2.1 Imaging on a document

As we recall, when Imaging on a document d, the probabilities of term s 
not appearing in d are transferred to the term s th a t do appear in d. The 
m ethod of transfer is determined by a similarity measure which in this case 
is approxim ated using co-occurrence.

Looking at the example, let us first examine (fa. Since the words “cricket” , 
“baseball” , “h it” , and “ball” are more similar to “ba t” than to “night” , all 
their probabilities transfer to this one word (Figure 5.2b). From Table 4 
we can see th a t this transfer results in document (fa having an estim ated 
probability of relevance of 0.95.

However in the case of di, this document contains the word “h it” . As this 
word is also similar to “cricket” , “baseball” , and “ball” , the chances are th a t 
the probabilities of some of these words are likely to be transferred to “h it” 
instead of “b a t” , this is shown in Figure 5.1b. As “b a t” is the only query
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t P(t) I(t ,  d2) td,2 Pd.2 W i ( t ,  q) Pd2(t) • I { t , q )
bat 0.2 1 1 0.95 1 0.95
ball 0.1 0 1 0 0 0
night 0.05 1 3 0.05 0 0
cricket 0.2 0 1 0 1 0
hit 0.3 0 1 0 0 0
baseball 0.15 0 1 0 0 0

E* 1.0 1.0 0.95

Table 5.2: Evaluation of P(d2 -> q) by Imaging on d2.
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Figure 5.2: Sense resolution properties of P(d2 —>■ q) by Imaging on d2.

word contained in d\ , this results in d\ having a lower estim ated probability 
of relevance than  d2 (see Table 3), which means th a t d2 is ranked higher than
d,\

So what this example seems to show is th a t Imaging on a document will 
give preference to those documents which contain query terms appearing in 
unusual contexts. In term s of word senses, the supposition is th a t this form 
of Imaging will rank higher, those documents which hold query term s used 
in unusual senses.

5.2.2 Imaging on the query

W hen Imaging on a query, the method of probability transfer is similar to 
Imaging on documents except th a t the transfer is onto the term s in the 
query. Unlike Imaging on documents this form of Imaging is unaffected by 
the context in which query term s appear. From Figure 5.3 it can be seen
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t P(t) tq m / ( M 0 Pq{t) ■ I(t ,  di)
bat 0.2 1 1 0.7 1 0.7
ball 0.1 0 4 0 0 0
night 0.05 0 1 0 0 0
cricket 0.2 1 4 0.3 0 0
hit 0.3 0 1 0 1 0
baseball 0.15 0 1 0 . 0 0

E* 1.0 1.0 0.7

Table 5.3: Evaluation of P(q  —* d\) by Imaging on q.
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Figure 5.3: Sense resolution properties of P(q  —> di) by Imaging on q.

th a t the transfer of probabilities to the query term s is the same regardless of 
what document is being retrieved. Table 5 shows the estim ated probability 
of relevance for d\ and it is left as an exercise to the reader to show th a t d2 
will be assigned the same score.

5.3 Discussion and conclusions

The effect th a t Imaging on documents has on documents containing ambigu­
ous query terms is caused because the Imaging technique is influenced by all 
the term s of a document and not just those th a t appear in the query. It is not 
clear whether this effect of preferring documents containing query term s in 
unusual senses or contexts is desirable. Term weighting schemes such as the 
popular t f  • idf  do give preference to unusual term s appearing in a docum ent 
in unusually large quantities. Therefore one might think th a t this preference 
for the unusual might indicate th a t the Imaging effect is desirable. However
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if a user enters a query term  it would seem reasonable to expect him to  intend 
the most common sense. Until the tests outlined in [CSv96] are completed 
though, I prefer to withhold judgement.



Chapter 6

Logical Imaging with  
Incom plete Knowledge of the  
Term Space

In this chapter I compare different ways of exploiting information about the 
Probabilistic Term Space used by a Probabilistic Information Retrieval Sys­
tem. These four models induce four different kinematics of probabilities, 
th a t use in different ways the information available about the Probabilis­
tic Term Space. Some initial results show th a t the more information the 
Probabilistic Information Retrieval System uses in the retrieval process the 
better the system performs. A new model th a t exploit in a more complete 
way the information available to the system is then proposed. This model is 
particularly useful in the case of incomplete knowledge of the Term Space.

6.1 Introduction

A retrieval model based completely on the kinematics induced by General 
Logical Imaging is very computationally expensive, due to the large am ount 
of probability transfers, has it has been shown in an experimental investi­
gation using a very large document collection [CRSvR95]. In Section 6.4 I 
present a technique th a t put together the advantages of the models based on 
conditional probability and Imaging, and th a t partially reduces the compu­
tational burden of the Imaging (standard or general) process. In Section 6.5 
I will show how to use this technique for dealing with incomplete knowledge
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of the Term Space.

6.2 The probabilistic term  space

Lets assume binary relevance judgements for documents; in other words the 
set 7Z of possible relevance judgements contains only the two possible judge­
ments: relevant (R) and not-relevant (R). Then according to  the Probability 
Ranking Principle [Rob77] the task of a probabilistic IR  system is to  rank 
the documents according to their probability of being relevant P ( R  \ q, d), 
where q and d are the real query and the real document. Of course we can 
only estim ate this probability by using the available query and document 
representations, q and d. The probability P ( R  | q, d), is estim ated using the 
Retrieval Status Value (RSV) th a t will be used by the IR  system to rank 
documents. So:

P ( R  | q,d) «  P ( R  | q,d) »  R S V

Document and query representations are obtained by representing the query 
and the document informative content using descriptors available to the rep­
resentation space of the IR system. Very often these descriptors are term s 
th a t are assigned manually or autom atically to documents and queries. The 
representation space therefore corresponds very often w ith the term space.

One of the requirements of probabilistic IR is the existence of a “prior” prob­
ability distribution on the term  space, assigning to each term  a probability 
th a t is supposed to indicate the importance of the term  in the term  space. I 
will not discuss here how this prior probability is assigned to terms, I will ju st 
take it for granted. This probability distribution can be considered as a form 
of knowledge of the term  space th a t is available to the IR  system. It provides 
the IR system with information relative to the im portance of a term  in the 
term  space. However, there is other knowledge of the term  space th a t the IR 
system could acquire and use, and th a t is not explicit, bu t implicitly present 
in the term  space. This last form of knowledge is relative to  the semantic 
similarity between terms, th a t could be acquired, for example, through the 
use of a topology on the term  space th a t can be induced by a thesaurus or 
by co-occurrence data. Some other form of knowledge about the im portance 
of a term  can be obtained. The user, for example could provide his own 
“subjective prior probability” or his own “subjective measure of sim ilarity”
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on the term  space. These kinds of knowledge are very seldom used by the 
IR  system in the evaluation of the RSV.

In the next Section I will show how the use of different forms of knowledge 
of the term  space induces different probability kinematics in the evaluation 
of the RSV of a document with regards to a query.

6.3 Probability kinematics in IR

In the following sections I will examine the different kinematics of probability 
transfers th a t takes place in three different retrieval models. I will explain 
the changes in the probabilities of the term  space by taking as an example a 
particular document di and a query q. In the representation space described 
in Section 6.2 let us suppose we have the document di described by term s ti,  
t§, and te and the query q described by the terms ti,  £4, and te. Each one 
of this term  has a prior probability associated to it, these will be indicated 
by P ( t i ). In the following I will show how the RSV of the document di is 
evaluated by different retrieval models using the knowledge of the term  space 
th a t is available to  the IR  system, and I will concentrate on how probabilities 
move from term  to term  during retrieval as a consequence of the use of a 
particular form of term  space knowledge.

6.3.1 Retrieval w ithout using term space knowledge

Some models of IR, like for example the models based on the evaluation of 
a similarity between document and query do not use term  space knowledge. 
The only knowledge they use is related to presence or absence of a term  
in the document representation and in the query representation. In this 
case the RSV is evaluated simply by counting how many term s are present 
both in the query and in the document. There is no use either of the prior 
probability knowledge, or of the term  similarity. The RSV is evaluated as 
some normalised form of the following formula1:

R S V  = || q n d  ||

1This case in considered only theoretically in this chapter since it was shown long ago 
that IR systems based on a such a RSV perform quite badly.
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Prior Probability

Figure 6.1: Graphical example of a model th a t does not perform probability 
transfer.

where || q fl d || is the number of term  common to both the query q and the 
document d.

Some more advanced models of IR in this class of models do make use of 
some knowledge of the prior probability but only in oder to  evaluate the 
RSV of a document as to  the sum of the probabilities of the terms th a t are 
present in both  the document and the query.

R S V  = P (q , d)

where P (q , d) is the probability of joint event q and d. This formula, like all 
the other formulas for evaluating the RSV, is often normalised to take into 
account the length of the document or of the query.

In these models there is no transfer of probabilities from term  to term , and 
therefore no posterior probability, since no knowledge of the ratios of prior 
probabilities or of the similarity between terms is used (see Figure 6.1).

6.3.2 Retrieval using the term  prior probability distri­
bution knowledge

Most models of probabilistic IR are instead based on the concept of “con­
ditional probability” . W ithout entering into the details of these models and 
w ithout considering normalisation factors often introduced in operative mod­
els, the probability kinematics th a t characterise this class of models is based 
on the preservation of the ratio of the prior probability. Probability are 
transfered in such a way th a t a term  not present in a document moves its
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Figure 6 .2 : Graphical example of the use of prior probability distribution 
knowledge during probability transfer.

probability to all terms present in the document preserving the probability 
ratio among the terms present in the document (see Figure 6 .2). In this way 
the posterior probabilities associated to these la tter term s will be propor­
tional to their prior probabilities. The RSV of a document is often evaluated 
with some normalised variation of the following formula:

R S V  = P{q | d )

where P(q \ d) is the (Bayesian) conditional probability of the query q given 
the document d.

A disadvantage of this class of models is th a t they do not use some other 
im portant knowledge th a t is implicitly contained in the term  space, like for 
example knowledge about the semantic closeness of terms. The only knowl­
edge used is the one relative to the probabilistic im portance of a term  in the 
context of the term  space.

6.3.3 Retrieval using term similarity knowledge

The two model of retrieval based on Imaging, the Retrieval by Logical Im ag­
ing model (RbLI) and the Retrieval by General Logical Imaging model (RbG LI), 
presented in [Cv95] use term -term  semantic similarity to direct the transfer 
of probabilities from term s non present in the document to terms th a t are 
present. This enables the transfer of probability from a term  not present 
in a document representation to its most similar other term  th a t is instead 
present in the document representation, according to the Imaging process. I
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Figure 6.3: Graphical example of the use of term  similarity knowledge during 
probability transfer.

will not enter into the complex details of the models of retrieval by (General) 
Imaging process here (see Chapters 3 and 4), it may suffice to  indicate th a t 
the RSV is evaluated as follows:

R S V  =  Pd(q)

where Pd(q) is the probability of the query q evaluated by (general) imaging 
on the document d.

The difference between the RbLI and RbGLI models is in the fact th a t RbLI 
transfers the probability of a term  totally to its single closest term , while 
RbGLI transfers it to all term s present in the document with quantities th a t 
are in decreasing order in relation to the similarity between the “donor” 
and the “recipient” term. Figure 6.3 depicts an example of the probabil­
ity kinematics induced by RbGLI. As it can be easily derived, RbGLI is a 
generalisation of RbLI.

The problem with both RbLI and RbGLI is th a t they require a  very large 
am ount of knowledge. It is in fact necessary to have a sim ilarity value for 
every pair of terms in the term  space. These values need to  be used at 
retrieval time to find for every term  not present in the document to the 
term s to which its probability needs to be transfered and the relative am ount 
involved in the transfer. We should also remember th a t this com putation 
needs to be done for every document in the document collection in order to 
produce a ranking according to their RSV.
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6.4 Retrieval using both the term  prior prob­
ability distribution knowledge and the term  
similarity knowledge

Experiments performed in Glasgow using a large collection of documents 
proved th a t models based on Imaging are very com putationally expensive 
because of the complexity and number of the probability transfers involved.
In trying to solve this problem I made some modification to the original 
Imaging models. The modifications partially followed some results already 
achieved using a small document collection and presented in C hapter 3. From 
these modification a new model was developed th a t not only enables to per­
form Retrieval by General Imaging in a faster and more efficient way but th a t 
also allows the combination of term  prior probability distribution knowledge 
and term  similarity knowledge.

This new model consists in performing the probability transfer according to 
term  similarity knowledge only for a subset of all term s in the term  space, 
th a t is only for those terms for which we are able to produce easily term  
similarity knowledge. The term  similarity knowledge was produced using a 
measure called EMIM [vR79], an information theoretic measure based on 
term  distribution information. I used only an estim ate of this measure based 
on term  co-occurrence data, thus on one hand enabling to  produce term  
similarity knowledge in a efficient way, but on the other hand making it 
impossible to have similarity information on terms th a t are not co-occurring. 
The term  similarity knowledge so produced and th a t is provided to the IR 
system is therefore not complete, but it is certainly the most useful part.

The probability transfer is then performed in the following way:

1 . for the terms for which we have similarity knowledge the transfer of 
probability is done according to the RbGLI model;

2 . for those terms for which we do not have similarity knowledge the prob­
ability transfer is performed according to the conditional probability 
paradigm, and therefore using the term  prior distribution knowledge.

This combination of the Imaging and Conditional Probability enabled to  use 
the most im portant part of the term  similarity knowledge with regards to 
term s th a t have a high level of similarity with each other, while performing 
a transfer based on the fast and efficient term  prior probability knowledge
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Figure 6.4: Graphical example of the use a combination of prior probabil­
ity distribution knowledge and term  similarity knowledge during probability 
transfer.

for all other terms. An example of this combination is given in Figure 6.4 
where the probabilities of terms £3 and £4 are transfered according to  RbGLI, 
while the probability of term  is transfered according to the conditional 
probability paradigm.

This modification of Imaging enables us to combine and make use in a  single 
model of both the term  prior probability distribution knowledge and the term  
similarity knowledge.

6.5 Retrieval with incom plete knowledge of 
the Term Space

The technique presented in the previous section is very useful when it is 
impossible to have complete knowledge of the Term Space. This case is very 
frequent in practical applications of the RbGLI technique, in particular when 
large or dynamic collections are used. In the case of large collections it may 
be impossible to produce the amount of da ta  necessary to have complete 
knowledge of the term  similarity. This is the case we had to deal w ith in 
TREC-4 [CRSvR95] and th a t is reported in the C hapter 9.

Another very interesting case is related to “dynamic” collections, th a t is with 
applications th a t deals with collections th a t keep changing over time. This 
is the case of collections th a t are updated (adding or modifying documents) 
frequently. In this case, it is not possible to have complete knowledge of the 
term  similarity, unless this is provided externally in the form of a quantitative
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Figure 6.5: Levels of knowledge of the Term Space

thesaurus. Moreover, it is also impossible to have reliable knowledge of the 
term  prior probability distribution. In order to have precise knowledge of 
the term  prior probability distribution it would be necessary to re-index the 
collection every time a new document is added. Adding a new document not 
only changes the weights of terms already present in the Term Space, but 
can also add new terms to the space [BS74, vR79, VF95].

It is therefore not infrequent the case in which only incomplete knowledge 
of the term  similarity and imprecise knowledge of the term  prior probability 
distribution is available. Referring to Figure 6.5, it is possible to  be in any 
of the following possible cases there depicted:

C ase  1 no knowledge of the prior probability distribution and no knowl­
edge of the term similarity. This is the simplest case, since there is 
no probabilities involved in the evaluation of the RSV of a document 
with regards to a query. In this case the RSV can be calculated using 
any of the IR models developed for the case of unweighted terms, like 
for example the Simple Matching Coefficient or the Dice’s Coefficient 
models ([vR79], pp. 39).

C ase  2 precise knowledge of the prior probability distribution and no knowl­
edge of the term similarity. This is the case of most of the classical 
probabilistic IR models, where the knowledge of term  similarity is not 
taken into account. Probability is transfered from term  to term  accord­
ing to the RbCP model.

C ase  3 precise knowledge of the prior probability distribution and incom­
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plete knowledge of the term  similarity. This is the case discussed in 
Section 6.4 and th a t is currently being tested using the TREC test col­
lection [CRSvR95]. Probability transfer is performed as a combination 
of the RbGLI and the RbCP models.

C ase  4 precise knowledge of the prior probability distribution and complete 
knowledge of the term  similarity. This is the case of the application of 
the full RbLI or RbGLI models, and th a t has been tested in [Cv95]. 
Here we have complete and precise transfer of probabilities for the 
evaluation of the RSV.

C ase  5 imprecise knowledge of the prior probability distribution and in com­
plete knowledge of the term  similarity. This is perhaps the most inter­
esting and the most practically frequent case. How probabilities should 
be transfered in this case is currently being studied and tested.

6.6 Conclusions

In this chapter I outlined the probability kinematics of a new model th a t is 
based on the combination of the transfers induced by the use of prior prob­
ability distribution knowledge and term  similarity knowledge. The model 
needs a deep theoretical study of the full consequences of the combination 
of these two kinds of knowledge to enable to take full advantage of both  
of them, in particular if this model needs to be used in the case of incom­
plete knowledge of the term  similarity, imprecise knowledge of the term  prior 
probability, or a combination of both.
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Chapter 7

Logical Imaging and 
Probabilistic Datalog

Probabilistic Datalog, a probabilistic extension of the Datalog logical model 
of databases proposed by Fuhr in 1994 [Fuh95], enables the modelling of Infor­
m ation Retrieval as uncertain inference. The expressiveness of Probabilistic 
D atalog is such th a t it enables modelling both new models of hypermedia 
retrieval and classical probabilistic models of Information Retrieval.

In this chapter I report on some results and some open issues regarding 
the implementation of the General Imaging model on top of Probabilistic 
Datalog. This work was later carried on by Markus Blomer a t Informativ 
VI, University of Dortmund, Germany, as part of his Diploma practical work. 
The results have been published in his Diploma Thesis [Blo97].

7.1 Information Retrieval by General Logical 
Imaging

Logical Imaging is a process developed in the framework of Modal Logic th a t 
enables the evaluation of a conditional sentence w ithout explicitly defining 
the operator p’ [Sta81]. Imaging has been extended to the case where 
there is a probability distribution on the worlds by Lewis [Lew81]. In this 
case the evaluation of P (y  —> x) causes a shift of the original probability 
P  from a world w to the closest world wy where y  is true. Probability is 
neither created nor destroyed, it is simply moved from a “not-y-world” to a
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“y-world” to derive a new probability distribution Py. This process is called 
“deriving Py from P  by imaging on y” .

General Logical Imaging originated from an a ttem pt to overcome one of the 
restrictive assumptions Lewis made for Stalnaker’s semantics of conditionals 
[Lew81]. The assumption is related to the “uniqueness” of the world wy, th a t 
is the uniqueness of the world most similar to w where y is true. In [G88] 
p. 110, Gardenfors propose a generalisation of the Imaging process th a t 
does not rely on this assumption. The starting point of the generalisation is 
the use of a probability function to represent the fact th a t in any possible 
world w a proposition y is either true or false. In the case P w(y) =  1 if y 
is true in w, and P w(y) = 0 if y is false in w we go back to the classical 
definition of Imaging, in any other case, with 0 <  P w{y) <  1, we state  
th a t y is only partially true in w. Lewis called such probability function 
“opinionated” because “it would represent the beliefs of someone who was 
absolutely certain th a t the world w was actual and who therefore held a firm 
opinion about every question” (see [Lew81], p. 145).

Retrieval by General Logical Imaging (RbGLI) can be regarded a the process 
of applying General Imaging on d in order to evaluate the probability th a t 
a document d implies the query q. The focus point of the RbGLI model, 
proposed by Crestani and Van Rijsbergen in [Cv95], is the consideration 
th a t “an index term  is a world” . The following is a simplified formulation of 
the model:

P{d  -► q) = M  *M*') * r M ) -
t t'

where: P%(t) is the opinionated probability of term  t' in t  in relation to 
document d\ r ( t , q) is a function with the values 1 if the term  t  is present in 
the query q, and 0 if the term  t is not present; and is the probability 
assigned to each term  in the term  space T l .

The application of the above technique to IR requires an appropriate measure 
of similarity over the term  space T  to enable the identification of the set of 
closest terms to t where d is true, and an opinionated probability function

T t should be noticed that the nature of the probability function P(x ) of P(d —> q) is 
different from that of the probability function y(x) used to assign the probability to index 
terms.
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ti n { u ) P ? (u ) P f iU ) Pl«{ti)
tl 1.0 0.67 0 0.33 0 0
2̂ 0 0 0 0 0 0
3̂ 0 0 0 0 0 0

U 0 0 0 0 0 0
h 0 0 0.67 0.67 1.0 0
te 0 0.33 0.33 0 0 1.0

Table 7.1: An example of an opinionated probability function

ti v(ti) r( t i ,d i) td, f^di {ti) r{L,q) Md! (*t) * r { t i 1q)
tl 0.2 1 ti 0.333 1 0.333
£2 0.1 0 tl j 6̂ 0 0 0
3̂ 0.05 0 5̂? t$ 0 0 0

u 0.2 0 5̂ 5 11 0 1 0
te 0.3 1 t$ 0.467 0 0
te 0.15 1 te 0.2 1 0.2

1.0 1.0 0.533

Table 7.2: An example of the evaluation of P(di —> q) by general imaging 
on d

determining the portion of the probability associated to a term  t th a t need to 
be transfer to a term  t ' . An example of a very simple opinionated probability 
function is reported in Table 7.1.

Table 7.2 reports an example of the evaluation of P(d\  —* q) by general 
imaging on d. A graphical interpretation of this process is depicted in Figure 
7.1.

7.2 Probabilistic Datalog

Probabilistic Datalog [Fuh95] is an extension of stratified Datalog [Hul88]. 
The basic ideas of probabilistic Datalog are the assignment of probabilistic 
weights to facts and the com putation of the weights of derived facts by means 
of intensional semantics.

Consider the following two uncertain facts:
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Figure 7.1: Graphical interpretation of the evaluation of P(d\  —>• q) by gen­
eral imaging on d.

0.7 docTerm(l,ir).
0.8 docTerm(l,db).

The first uncertain fact assigns the probability 0.7 to the proposition ’’doc­
ument 1 provides information about the term  ir” . It is straightforward to 
regard docTerm as a probabilistic relation {(0.7(1, zr)), (0.8(1, db))}. To refer 
to the probability of a fact we write u(docTerm(l,ir))  =  0.7.

Given this little program, we may formulate a rule for deriving documents 
about both ir and db:

ql(D)  ;- docTerm(DAt) & docTerm(D,db).

Assuming the tuples of docTerm to be stochastically independent, we get 
the relation ql = {(0.56(1))} where uj(ql(l)) = 0.56. Rules enables the 
formulation of any conjunction and disjunction of predicates.

Now we extend our program with further facts and rules expressing the link 
structure of a hypertext document.

0.5 link(2,l)-
about (D,T) docTerm(D,T).
about(D,T) link(D,Dl) & about(Dl,T).

The predicate about indicates the supposition th a t a document D is about 
term  T, if it refers to a document th a t is about T.

We rewrite ql and get
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q2(D) about(D,ir) & about(D,db).

An evaluation based on extensional semantics would yield o;(q2(2)) =  0.5 * 
0.7 * 0.5 * 0.8 =  0.14.

From a probabilistic point of view this weight is not correct, since link(2,l)  
is considered twice.

Instead of just computing the weight of a derived fact as a function of the rule 
weight and the weight produced by evaluating the rule body, probabilistic 
Datalog uses so-called event expressions for computing the resulting weight 
of a fact. Thus we achieve an intensional semantics of the fact weights. The 
central point is the extension of the relations with a special a ttribu te  for event 
expressions [FR95]. The event expression of a fact p  is denoted by r](p). The 
weight of a fact is computed via the formula u(p) = P(rj(p)) where P  is a 
probability distribution on events. Thus we get the probabilistically correct 
weight of q2(2):

u{q2(2)) = P{p{q2(2)))
=  P(rj(about(2,ir) & about(2,db)))
= P(r](about(2,ir)) A r](about(2,db))) 
= P(r}(link(2,l) & docTerm(l,ir))  A 

rj(link(2,l) & docTerm(2,db))) 
= P(link(2 ,l)  A docTerm(l,ir)  A 

link(2,l)  A docTerm(2,db))
— 0.5 * 0.7 * 0.8 — 0.28.

The example illustrates the com putation of the event expression. Since P  is 
a function on event expressions, it detects the double occurrence of the event 
link(2,1) and computes the correct probability.

To explain what we mean by the probability of a fact, we use possible worlds 
semantics [Nil86].

The probability of a fact p(x)  is computed by summing the probabilities of 
those possible worlds, where the fact is true.

/ / \ \ v— f 1, if <p(x) is true at world w;u((p(x)) = } u(wi) * < _ ’ ;  { . , , ,I 5 1S n e worW W i
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Probabilistic Datalog can also cope with a special case of dependent events, 
namely disjoint events. For example, the syntactical element !pred(dk,-,-) is 
used for declaring the disjointness of all facts pred(X,Y,Z)  which share the 
same value of the a ttribu te  X. The attribute  set defined by the disjointness 
clause is called disjointness key.

For an elaborated description of the complete syntax and semantics of prob­
abilistic Datalog and the evaluation process refer to [Fuh95] and [FR95].

7.3 M odelling General Imaging using Proba­
bilistic Datalog

Table 7.2 shows an example of computing the probability P(d\  -»  q) =  0.533. 
Assuming a document collection D = d i , ..., dn we can derive a  term  vector for 
each document which represents the occurrence of a term  within a document 
(riti^di)).  Given the probability distribution //(ti), a term  L  is regarded as 
a possible world. A document is regarded as a proposition which is true a t a
possible world, if the term  occurs within the document. Column td assigns
to each world where d\ is not true the nearest worlds where d\ is true. The 
probabilities of the non-ch-worlds are transferred to the nearest di-worlds in 
column fidl (L). For example, the probability of world ^  is transferred to  the 
worlds ti and t§. The opinionated probability function Pdl(L) transfers a 
portion of to the world t{. Considering the example given in Table 7.1 
the nearest world gets 2/3 and the second nearest gets 1/3 of the probability. 
The resulting probability P(d\  —>■ q) =  0.533 is computed as the sum of the 
(new) probabilities of the di-worlds where q is true.

As an example, consider the com putation of /j,dl(ti):

Aii(*i) = V(ti) * Pdlih) +  Vfo) * Pfciti) +  V(ti) * Pfcih)
=  0.2 * 1.0 +  0.1 * 0.67 +  0.2 * 0.33 =  0.333

Now we are going to implement the above information on term  probability, 
term  occurrence and opinionated probability function in probabilistic D ata­
log.

This program defines the probabilities of the terms ti (relation term) and the 
occurrence of the terms in a document (relation docTerm). The facts of term  
are declared to be disjoint (!term(_)). This corresponds to the disjointness
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0.2 term(t\).
0.1 term(t2).
0.05 termftz).
0.2 term(ti).
0.3 term(t$).
0.15 termfe) .

!term(-).
docTerm(di,ti)-
docTerm(di,t$).
docTerm (di,t&).

0.67 transfer (d\,t2 , t i )  
0.33 transfer ( d i i ^ M )  
0.67 transfer (d\,tz>th) 
0.33 transfer (di,tz,t§)
0.67 transfer (di ,t i ,t5)
0.33 transfer (di,t4 , t i )  

!transfer(dk, dk, -)

about(D,T) :- docTerm(D,T) & term(T).  
about(D,T) transfer(D,T\T) & te rm (T ’).

Figure 7.2: A probabilistic Datalog program

of possible worlds concerning the Imaging model. For the semantics of prob­
abilistic Datalog, disjointness means th a t there exists no world where more 
than  one fact of the relation term is true. The relation transfer is used to 
determine the portion of the probability of a term  t{ which does not occur 
in a document to be transferred to a term  which does occur. Thus this re­
lation is used to express the shifting of the probabilities of non-?/-worlds to 
the y-worlds modelling the opinionated probability function. The facts of 
transfer are disjoint with respect to the same disjointness key. The clause 
(transfer(dk,dk,-)) indicates th a t the first and second a ttribu te  form the dis­
jointness key.

The query

?- about(di,ti). 

yields (0.333 ()) as answer, since

u  (about (d\,t\)) = P  (r) (about (di,ti)))
= P(docTerm(di, t \)  A t e r m ( t \ ) y  

transfer(d\,t2 , t \ )  A term(t2) V  
transfer(d\,t±,ti)  A term(t±))

= 1.0 * 0.2 +  0.67 * 0.1 +  0.33 * 0.2 =  0.333
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We formulate the whole query for all documents about ti, £4, and te as

q(D) about(D,t\).
q(D) aboutfDfa).
q(D) about (D,t&).

?- q(D).

The result is (0.533 (ob)).

7.4 Implementing General Imaging on top of 
Probabilistic Datalog

In order to implement General Imaging on top of Probabilistic D atalog we 
need to produce the necessary Probabilistic Datalog facts. To do so we need:

1 . a “prior” probability distribution over the term  space;

2 . a measure of similarity between terms;

3. an opinionated probability function to direct and weight the transfer 
of probability between terms.

Once we have decided on these requirements, see for example in [Cv95] for an 
experimental setting, we need to set up one or more processes th a t construct 
the Probabilistic Datalog facts.

Figure 7.3 shows th a t in the first phase we may use information on inverse 
document frequency and term  frequency to build the probabilistic relations 
term and docTerm as described in Figure 7.2.

How can we now determine the weights of the transfer facts which model the 
opinionated function? The portion is computed by the formula:

/ <■ / 1 \\ sim(ti,  tA
10  (transfer (d, L,tj ) )  =
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D ocum ent C ollection

IR indexing

ti, idf(ti)
Indexing
Information ti, dj, tf(ti)

tran s la to r tran s la to r

1 Probabilistic 1
wi, term(ti) Datalog twij, docTerm (dj, ti)

Facts

Figure 7.3: First phase of the construction of Probabilistic Datalog facts from 
IR indexing.
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wi, term(ti) Document Collection

twij, docTerm(dj, ti)

Evaluation of 
; similarity

? -  docTerm(di, T)

sij = SIM(ti, tj)

; Probability 
I  transfer:
! .v evaluation

?
wtij, transfer(di, ti, tj)

Figure 7.4: Second phase of the construction of Probabilistic Datalog facts 
from a index term  similarity matrix.

The portion depends both on the similarity of the term s and on the set of 
term s occurring in the document. Figure 7.4 depicts the building of the 
transfer facts with the corresponding weights.

We use the result of phase 1 to determine the set of terms th a t occur in a 
document. Given a similarity measure we can then compute the weight of 
the transfer facts as defined by the above equation.

I have also developed rules to model probability transfer in the cases of 
incomplete and/or imprecise knowledge of the Term Space, a case th a t has 
been discussed in Chapter 6.

7.5 Conclusions

From the use of Probabilistic Datalog as an implementation platform  for 
General Imaging we gain the possibility to combine the probability kinem at­
ics defined by General Imaging on terms with other probabilistic knowledge. 
The expressiveness of the knowledge representation and query language is
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increased, because typical IR knowledge and queries may be combined with 
typical DB knowledge and queries.

The 2-phases approach presented above allows for implementing any kind of 
probability function, since the computation of the weight is done externally. 
A subset of the possible transfer functions could be computed using Proba­
bilistic Datalog itself. But for the chosen transfer function I have not found 
a solution to compute it internally.



Chapter 8

Logical Imaging and 
Probabilistic Logic

In this chapter I explore an alternative representation of the Imaging revision 
methods, i.e. one th a t exploits a first-order logic for (objective) probability 
such as the C\ logic proposed by Halpern [Hal90]. I explore some of the 
consequences of this representation, as a possible implementation platform  
for RbLI and RbGLI.

8.1 Introduction

Imaging probability revision methods have originally been devised as mech­
anisms for giving semantics to conditional logic [Sta81]. Sebastiani [Seb96] 
argued th a t the application of Imaging in the context of the com putation 
of relevance in IR is based on a somewhat non-standard interpretation of 
Imaging, as:

•  the representation language is not th a t of propositional logic but a 
language of simple propositional letters, each representing a document 
or an information need;

•  possible worlds are keywords; this means th a t there are not necessarily 
2n possible worlds, but there are as many possible worlds as the number 
of keywords in the application domain.

132
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In this chapter I describe a representation of the RbLI model in term s of 
the Ci logic, as proposed first by Sebastiani in [Seb96] and later extended 
by Crestani, Sebastiani and Van Rijsbergen [CSvR96]. This representation 
of Imaging should solve the above problems and give a more standard inter­
pretation of the Imaging process.

The chapter is structured as follows. Section 8.2 briefly described the C\ 
probabilistic logic. Section 8.3 describes how RbLI can be represented and 
implemented using the C\ logic. Section 8.4 concludes the chapter showing 
the advantages and the drawbacks of such approach.

8.2 The C\ probabilistic logic

The C\ probabilistic logic is a first order logic for reasoning about objec­
tive probabilities [BE90, Nut80, San89]. Probability values can explicitly be 
mentioned in the language: rather than mapping non-probabilistic formulae 
on the real interval [0,1], probabilistic formulae are m apped on the standard 
tru th  values true and false.

The logic allows the expression of real-valued terms of type w^Xlt...tXn)(oi) 
(where ct is a standard first order formula), with the meaning “the probability 
th a t random individuals x \ , . . . ,  x n verify a ” . It also allows their comparison 
by means of standard numerical binary operators, resulting in formulae th a t 
can be composed by the standard sentential operators of first order logic.

The semantics of the logic is given by assuming the existence of a discrete 
probability structure on the domain; a term  such as W(xi,...,a:n)(^) > r is true 
in an interpretation iff the probability assigned to the individuals th a t verify 
a  sums up to a t least r. It follows tha t, if x  does not occur free in a,  the term  
W(x)(a) may evaluate to 0 or 1 only, depending on whether a  evaluates to 
false or true, respectively. Given a closed formula a,  the term  W(x)(a) plays 
then the role of its characteristic function.

The semantics of C\ can be specified by means of type 1 probabilistic struc­
tures (P S i ) for Ci, i.e. triples M  = {D, 7r,//), where:

•  D  is a domain of individuals;

•  7r is an assignment of n-ary relations on D  to n-ary predicate symbols, 
and of n-ary functions on D  to n-ary function symbols ((D , tt) is then 
a first order interpretation);
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•  fj, is a discrete probability distribution (DPD) on D.

The numerical value fi(d) may be interpreted as “the probability th a t, if a 
random individual has been picked from the domain D , individual d has been 
picked” . In what follows, I will use n(D')  (where D'  C D)  as a shorthand 
for ^(d)- Also, given a DPD [i on D , n n is defined as the DPD on D n 
such th a t /in( (di , . . . ,  dn)) = /i(di) x . . .  x fi(dn).

The Ci probabilistic logic is discussed in detail in [Hal90]. R ather then 
report here more detailed characteristic of this logic, in the following I will 
concentrate in describing the characterisation of the RbLI model using such 
logic.

8.3 Im plementation of RbLI on top of prob­
abilistic logic

In order to represent the RbLI model, a first subset of formulae is necessary 
to identify keywords and documents. This is necessary, as the domain of 
interpretation must be restricted to deal with these types of individuals only, 
which are the only entities of interest in the revision processes. Assuming 
th a t T  = { t \ , . . . ,  tn} is the set of terms by means of which documents are 
represented, and th a t D = {d i , . . . ,  dm} are the documents in our collection, 
we need the following formulae:

Term( t i )  A. . .  A T e rm ( tn)
Document(d\)  A .. .  A Document(dm)
\/x.[x = t i V . . . \ / x  = tn Wx = d i \ / . . . \ / x  = dm\
Vx.^(Document(x)  A Term(x))

This is a key feature of this approach as well as of the approaches of the 
implementation of imaging on top of Probabilistic Datalog: documents and 
term s are individuals belonging to the domain of discourse of a first order 
interpretation. In the ad hoc implementation presented in Chapters 3 and 4, 
instead, terms are (propositional) interpretations and documents are propo­
sitions.

The next subset of formulae is the one th a t specifies term  occurrence, i.e. 
which documents are indexed by which term. We represent this by the for­
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mula:

wx(Occ(ti, dj)) = Oij Oij e  {0 , 1}

for al l? =  1 , . . . ,  n  and j  =  1 , . . . ,  ra, where is 1 iff L occurs in dj.

Next, the probability of each term  L is specified by means of the set of
formulae

wx(x = L | Term(x))  = pu pti e  [0,1]

for all i = 1 , . . . ,  n. These formulae account for the case in which we want
to input the probability values pti from the outside. Alternatively, these 
probability values can be computed within C\ from the already available 
occurrence data, e.g. as their inverse document frequency (i d f ). In this case, 
the above formula is substituted by formula

wx(x = ti | K eyw ord(x )) =  —log{wy(Occ(ti,y) \ Document(y )))

The above formula compute the probabilities of keywords as their inverse 
document frequency; the formula wy(Occ(ti,y) | Document(y )) is in fact to 
be read as “the probability tha t, by picking a random document y , keyword 
L occurs in y”. For the above to truly represent idf, though, we must assume 
th a t documents are picked with equal probability, which we state  by formula

^xy .{Document{x) A Document(y))  => [wz (x = z) =  wz (y = z)\

which is to be read “if x  and y are documents, the probability th a t by picking 
an individual at random x  is picked is equal to the probability th a t by pick­
ing an individual at random y is picked” . Alternatively, one may choose to 
include the previous three formulae in the representation. In this way, prob­
ability values are pre-computed “externally” and inputed to the reasoning 
process acting as “integrity constraints” . This process is very similar to the 
one used in Chapter 7 dealing with the implementation of RbLI and RbGLI 
on top of Probabilistic Datalog. In what follows I will use the expression 
P{ti) as a shorthand of the expression wx(x = L \ Term(x) ) .
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The next subset of formulae is the one th a t specifies the similarity between 
terms, i.e. the accessibility relation between worlds. A measure of how 
similar term  L is to term  tj for all 1 <  i , j  < m, i j , is give by:.

SlTfl(ti, tj) — S

Only similarities between non equal terms are specified; in fact the case i =  j  
is not interesting for imaging methods, and its specification would complicate 
the formulation of following formulae. Values Sij are input from an external 
source of information. Alternatively, they can be computed from within C\ 
from the already available occurrence values; for instance, they may be taken 
to be equivalent to the degree of coextensionality of the Occ predicate and 
computed by means of the formula:

S im ( t i , t j )  = wx(Occ(ti,x) \ Occ(tj ,x))  • wx(Occ(tj,x)  | Occ(ti,x))

or else be computed according to some other measure of similarity, like for 
example the EMIM measure. On the other hand, the above formulae may act 
as integrity constraints. Further integrity constraints may be added if one’s 
theory of similarity requires one to do so, in order to state further properties 
of similarity, like for example symmetry.

The following subset of formulae specifies, for each term, how the most similar 
term  can be computed within C\ from the already available similarity data:

M o s tS im ( t i , t ki) <(=> -i3tj .[Sim(ti , t j )  > S im ( t i , t ki)]

Alternatively, one can input the “most-similar” values (M o s t S i m ) from the 
outside.

Next, we have to show how to calculate the revised probability of term  L 
by imaging on document dj , i.e. how to  implement the probability transfer 
function. The revised probabilities are specified by the following numerical 
terms, for 1 <  i < n:

Pdj(U) = wx (Occ(ti,dj)) • [P{U)+
+  * wx(^Occ(tk, dj)) • wx(M o s tS im ( tk, t*)]]
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In order to compute Pdj(q) we now have to indicate by which term s the 
information need q is indexed:

wx(Occ(ti, q)) = Oi Oi € {0 , 1}

The probability Pdj(q) evaluated by imaging on dj may be then calculated 
as:

n

Bij (q) = wx(Occ(L, q)) • Pdj (L)
i= 1

The above modelling of the RbLI model can be easily extended to model 
RbGLI, by modifying the M o s tS im  and the Pdj {L) formula to account for 
the different kinematics of probabilities.

It is worthwhile to notice tha t, similarly to what happens in the implemen­
ta tion  of imaging on top of Probabilistic Datalog [R95, CR95], practically all 
the entities th a t participate in the imaging process are given here an explicit 
representation in the language of C\. However, unlike the implementation of 
imaging on top of Probabilistic Datalog, in the implementation of imaging 
on top of the C\ probabilistic logic an explicit representation is given even 
to:

•  the formula th a t computes the prior probabilities of keywords;

•  the formula th a t computes the similarities between keywords;

•  the formula th a t chooses the recipients of a probability transfer and 
computes the revised probabilities of these recipients.

This hints to the fact th a t different formulae encoding different methods of 
com putation of the above features may be experimented with [CSvR96]. In 
this sense, the whole information retrieval process is modelled as a proper 
theory of £ i ,  whose role is th a t of a platform for experim entation of different 
models. Such a proper theory is obtained by assembling together various sets 
of formulae, each representing a class of entities participating in the process.
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8.4 Conclusions

The above explanation of the implementation of RbLI on top of the C\ 
probabilistic logic suggests th a t C\ is a convenient and powerful platform  
for fast prototyping since it enables the evaluation of all the information 
necessary to the imaging process internally, as opposed to  their external 
evaluation required by the implementation of imaging on top of Probabilistic 
Datalog.

As pointed out by Sebastiani in [Seb96], there are both advantages and dis­
advantages to having an internal definition/com putation of the similarities 
between terms and their prior and posterior probabilities. The C\  approach 
has the advantage to be more self-contained and conceptually attractive, as 
it requires a minimum amount of data  to be provided from outside the rea­
soning mechanism. Moreover, with a minimal coding effort, different proba­
bility kinematics methods may be experimented with and compared. In fact, 
a number of variants of the RbLI and RbGLI models have been presented in 
[CSvR96].

The price to be paid for this is th a t of efficiency, as reasoning in Probabilistic 
Datalog, a less expressive reasoning tool than £ i ,  is no doubt more compu­
tationally tractable. Note th a t only “theoretical” tractab ility  considerations 
are taken into account here. The C\ logic has not been implemented yet, 
while Probabilistic Datalog has, so an experimental comparison cannot be 
made yet. On this respect, it is plausible to think th a t d a ta  th a t needs to 
be computed once for all (such as similarity da ta  between keywords) may be 
more efficiently computed outside the logic and subsequently fed to  it. On 
another respect, the possibility to express the probability kinematics m ethods 
within the logic definitely seems desirable, at the very least if one conceives 
the logic as a fast prototyping tool.



Part V  

Experim ental Study
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Chapter 9

The Troubles w ith U sing a 
Logical M odel of IR on a Large 
Collection of D ocum ents

In this chapter I report on the challenges posed by trying to experiment 
with the RbLI model on large test collection of the size of TREC-B. The 
problems I found and the way I put together ideas and efforts to solve them  
are indicative of the troubles one might find in trying to  implement and 
experiment with a “complex” logical model of IR. We believe our efforts 
could set an example for other researchers working on logical models of IR  
to try  to implement their models in such a way th a t they can cope with the 
size of real life collections, though preserving the formal “beauty” of their 
logical models.

9.1 Introduction

In 1986 Van Rijsbergen [vR86] proposed the use of a non-classical conditional 
logic for IR. The proposal initiated a new line of research th a t was followed 
by many researchers (see for example [Nie88 , Nie89, CC92, Bru93]).

A few years later Van Rijsbergen proposed to estim ate the probability of the 
conditional by a process called Imaging [vR89]. This idea was finally put 
into an implementation in 1994 when Crestani and Van Rijsbergen [CvR95] 
(C hapter 3) proposed a retrieval technique called Retrieval by Logical Imag­
ing (RbLI). This technique enables the evaluation of P(d  —> q) and P(q  —>■ d)
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by Imaging according to a “Possible Worlds” semantics where a term  is con­
sidered as a possible world. This technique exploits term -term  relationships 
in retrieval by means of an accessibility relation between worlds based on 
their Expected M utual Information Measure (EMIM).

This chapter reports on the problems, solutions, and current results of the 
experim entation of Retrieval by Logical Imaging using a large collection of 
documents. The chapter is structured as follows. Section 9.2 lays out the 
experimental settings for the implementation of the model. This is where the 
problems start. Experimenting with a large collection, of the size of TREC- 
B, poses considerable difficulties th a t are reported in Section 9.3. Section 9.4 
describes our attem pted solutions towards an implementation of the RbLI 
model th a t could cope with the size of the test collection. Section 9.5 reports 
our current results in the context of the TREC-4 initiative, “ad hoc” track. 
Further directions of investigation are described in Section 9.6.

9.2 Implementing RbLI

As it has been introduced in previous chapters, in order to implement the 
RbLI model we require:

1 . a “prior” probability distribution over the index term  space th a t should 
reflect the importance of each index term  in the term  space;

2 . a measure of similarity (or alternatively a distance) between index 
terms;

These two requirements reflects the use of a Possible World Semantics, since 
they correspond to the probability distribution, and to the accessibility rela­
tion measure among the possible worlds [Lew81].

The problem of determining an appropriate “prior” probability distribution 
over the set of terms used to index a document collection is one of the oldest 
problems in IR and many models have been proposed for this purpose. The 
problem could be translated into finding a so called “measure of the im por­
tance of the term  in the term  space” . In IR several discrimination measures 
have been proposed (see for example [vR79, RS76]) and there it is not clear 
which one should be preferred to the others. For the experiments performed
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in TREC I used the Inverse Document Frequency (idf) defined as: 

idf  (t) = - lo g

where n  is the number of documents in which the term  t  occurs, and N  is 
the to ta l number of documents in the collection.

Strictly speaking, this is not a probability measure since X ^ d /( t )  7  ̂ 1, how­
ever since I assume it to be monotone to P(t ) ,  we can use it instead of a 
proper probability function because we are only interested in a ranking of 
the documents of the collection, not in the exact probability values.

The problem of measuring the similarity between index terms in order to 
define a measure of accessibility among worlds is more difficult. It is very 
im portant to choose the most appropriate measure since much of the power of 
RbLI depends on it. For our TREC experiments I used the Expected Mutual 
Information Measure (EMIM). The EMIM between two index term s is often 
interpreted as a measure of the statistical information contained in the first 
term  about the other one (or vice versa, it being a symmetric measure). 
EMIM is defined as follows:

where i and j  are binary variables representing terms.

W hen we apply this measure to binary variables we can estim ate EMIM 
between two terms using the technique proposed in [vR77] p. 130. Using 
this measure we can evaluate for every term  a ranking of all the other terms 
according to their decreasing level of similarity with it. We store this infor­
m ation in a file which is used at run-time to determine for an index term  the 
most similar other index term  th a t occurs in the document under consider­
ation.

9.3 Experimenting with RbLI using a large 
document collection

In C hapter 3 the performance of the RbLI model was tested using a the 
Cranfield document collection. In Chapter 4 the RbLI model was generalised
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into the RbGLI model and both these models were tested using the Cranfield, 
the CACM , and the NPL  document collections. In the same chapter RbLI 
and RbGLI were compared with two prototypical classical retrieval models 
and I believe I have shown th a t in principle a probability transfer th a t takes 
into account a measure of similarity between the donor and the recipient is 
more effective in the context of IR than a probability transfer th a t does not 
take th a t into account.

In order to ensure th a t this result does not depend on the small size of the 
document collections I used, I decided to test these models on a collection of 
much larger size. Moreover, I decided to compare their performance with th a t 
of real IR systems, ones th a t could be recognised as a tough “benchm ark” .

I decided to proceed in two steps: first implement RbLI and test it, and 
only later implement RbGLI. The RbGLI model is more com putationally 
demanding due to the introduction of a “probability transfer function” th a t 
enables the probability to be transferred not only to a single td bu t to a set of 
them  according to their respective distance to the term  under consideration.

The implementation and testing of RbLI in Chapters 3 and 4 [CvR95, Cv95] 
were quite heavy due to inefficient implementations of the probability trans­
fer and to the complexity of the models. These problems, th a t were easily 
solved on small document collections, are much more difficult to  tackle with 
a large document collection. In the following section I report on the challenge 
posed by trying to make the RbLI work on a large document collection. The 
Glasgow participation in TREC-4 was in the smaller part B collection which 
consists of 165,000 documents.

9.4 G etting RbLI to work

Because of the anticipated high com putational load of performing RbLI on 
the TREC-B collection, it was decided to initially run experiments on a sub 
set of TREC-B so as to  prototype the RbLI software being developed for 
these experiments. R ather than remove documents from the collection, it 
was decided to reduce all documents (which are in fact news articles) to ju s t 
their lead paragraph, which generally for news articles is a sum m ary of the 
article. This reduction resulted in a 70Mb document collection. All work 
reported in this section is based on this modified collection.

The implementations of RbLI reported in Chapters 3 and 4 were performed
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on small test collections. Because of their size, it was possible to compute 
in a reasonable time the probability transfer of all term s in each document 
in the collection. On the TREC-B collection however, it was calculated 
th a t to  perform this complete transfer would take too long given current 
com puting resources. So methods of optimising the probability transfer were 
investigated.

9.4.1 Reducing the number of transfers

The first area looked at was the accessibility relation used to determine how 
probabilities are transferred, namely the EMIM measure. One of the features 
of EMIM is its ability to compute the relatedness between any two terms even 
if those terms don’t co-occur, which means th a t in the case of RbLI it would 
be possible to compute probability transfers between all terms. The EMIM 
measure calculated between term s th a t don’t co-occur however was found 
to be close to a small constant value, so for the experiments reported in 
this section a decision was made to restrict the EMIM calculations to only 
those terms th a t co-occur a t least once. W hen transferring probabilities onto 
a docum ent’s terms, any term  th a t doesn’t co-occur with th a t docum ent’s 
term s will have its probabilities uniformly distributed to all those document 
terms, so as not to loose its probability.

By calculating EMIM between only co-occurring terms, the to tal number of 
calculations to be performed is reduced by around 95%. But it was felt th a t 
this reduction could and should be improved with further optimisations.

9.4.2 More speed

Now th a t probability transfers were reduced to just those terms th a t co­
occur, the speed of RbLI on a document collection becomes proportional to 
the number of term  co-occurrences in th a t collection. Therefore if we want to 
speed up RbLI, we need to reduce the number of these co-occurrences. There 
are a several ways in which this might be done. For example one could choose 
to  only use those term  co-occurrences where the two co-occurring term s ap­
pear in the same paragraph. Indeed this possibility might be exploited in 
the future, for the time being however it was decided to investigate the speed 
increase on RbLI when whole terms are removed from the collection. This 
technique was already proposed and tested in Chapter 3, where an intuitive 
explanation of its usefulness was given. I wanted to  test its effectiveness on
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a large document collection.

In choosing terms to be removed, the question arises which type of terms 
should we concentrate on: (a) the few terms th a t occur in many documents, 
or (b) the many terms th a t occur in a few documents, indeed is there any 
difference between the two? To answer this question, we need to examine 
the imaging process in more detail.

The part of RbLI th a t is the most computationally intensive is the final 
stage where probabilities are transferred onto the terms of each collection 
document. The time taken to complete this stage is proportional to the to ta l 
number of probability transfers th a t will potentially be made. The term  
“potential” is used because not all transfers will happen. RbLI demands th a t 
even if a term  co-occurs with several document terms, th a t term  will only 
transfer its probability to just one of those document terms, its most similar. 
Nevertheless each one of these potential transfers has to be considered by 
the RbLI software, so each potential transfer does add to the time taken 
to complete this task. The number of potential transfers can be calculated 
using the following formula:

D  T d

number o f  t ra n s fe r s  = EE°<
d= 1 t= 1

where: D is the set of all documents in the collection, Tj is the set of term s 
contained in document d, and Ot is the number of term s th a t co-occur with 
t.

The formula for Ot is as follows:

Ot =  E  (Nd -  1)
d = 1

where: Dt is the set of documents containing term  t , and Nd is the number 
of distinct terms in document d

So, for example, given the choice of, case A, removing 1 term  th a t occurs in 
100 documents or, case B , removing 50 terms th a t each occur in 2 documents, 
we can use these formula to calculate which of these choices will reduce the 
number of transfers the most. For example, if we assume th a t each document
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contains 10 distinct terms, then the reduction in the number of transfers 
resulting from the two term  removal cases is as follows1:

For the first case

number o f  t ran fe rs (A)  = 100 * 1 * (100 * 9) =  90,000

For the second case

number o f  t ra n fe rs (B )  — 50 * (2 * *1 * (2 * 9)) =  1,800

From this, we can conclude tha t efforts should be concentrated on reducing 
the small number of terms th a t occur frequently in the collection.

9.4.3 Reducing the small number of term s that occur 
frequently in the collection

In initial experiments a standard stop list (taken from Van Rijsbergen [vR79] 
p. 18) was used when indexing TREC, but in the light of the work described 
above, it was decided to investigate how retrieval performance would be 
affected when a bigger stop list was used.

Using a standard t f  — idf  retrieval system, the effect on retrieval performance 
from using a number of different stop lists was tested. The definition of a 
term ’s membership for these stop lists was based on the number of documents 
tha t term occurred in. Stop lists were generated for term s th a t occurred in 
more than 90% of documents, more than 80% of documents, more than  70% 
of documents, and so on down to 2.5% of documents. For each stop list, the 
modified TREC-B collection was re-indexed, a retrieval run was performed 
and recall precision figures were obtained for each run. In addition two 
extra runs where performed where no stop list was used and a standard stop 
list from Van Rijsbergen [vR79] was used. The graph in figure 9.1 shows a 
selection of these runs.

As can be seem from the graph, precision is improved at all recall levels when 
a standard stop list is used instead of no stop list. If a stop list containing

1The removal of term(s) has another minor influence on the time taken to complete 
RbLI: all terms co-occurring with the term(s) being removed will have fewer probability 
transfers to them. The effect of this influence however is the same for both cases, and so 
it need not be considered.
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5% cut off vs. Stop List P/R graph
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Figure 9.1: Precision and recall figures with different stop lists.

Initial number of occurrences 12,594,371
Occurrences after 5% stop list 6,902,676
Number of words in 5% stop list 253

Table 9.1: Effects of a 5% stop list

terms occurring in more than 5% of the documents is used however, there 
is a further uniform improvement in precision. The terms in this stop list 
account for around 50% of the term  occurrences in the collection, as can be 
seen from Table 9.1. Although not plotted in this graph, it was found th a t 
using a larger stop list reduced precision.

From this experiment, it was concluded th a t the 5% stop list should be used 
when indexing the TREC-B collection so as to improve the speed of the RbLI 
process.
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9.5 Evaluating Retrieval by Logical Imaging 
using the TREC-B docum ent collection

Using the results reported in the previous section, I tried to perform a few 
experiments using the improved RbLI software on the TREC-B document 
collection for the ad hoc track. However, I soon run into a lot of small 
technical problems, the kinds of problems th a t almost all first tim e TREC 
participants experienced. My lack of experience in dealing with large docu­
ment collections together with the complexity of the RbLI model, made it 
impossible to have retrieval results ready for the TREC deadline.

In August 1995, when it became clear th a t the RbLI experiments would not 
be ready in time for the TREC-4 deadline, we of the IR Glasgow group de­
cided to use a more classical IR system we already had developed in Glasgow 
to produce the retrieval results for the “ad hoc” track to send to  TREC-4. 
We thought th a t we could later use the results of this system as a benchmark 
for the RbLI results, when these would be ready. The glair result set was 
then quickly generated and subm itted instead of the RbLI results, th a t were 
not yet available.

The benchmark system we adopted for comparison with RbLI is a “text 
book” IR system. It is based on the classical t f  — idf  retrieval strategy. 
Terms found in documents and queries have first their case normalised, then, 
any of these terms appearing in a stop list were removed. The stop list was 
taken from [vR79], since the stop list experiments reported in the previous 
section had not been carried out at this stage. The remaining term s were 
suffix stripped using the Porter stemmer [Por80]. Document term s were 
weighted using the t f  — idf  weighting scheme. The idf  formula has already 
been defined in Section 9.2, t f  is defined as in [FBY92]:

t f  log ( freqt j  +  1)
*J log (lengthj)

where f req i j  is the frequency of term  t* in document d j , and lengthj  is the 
number of unique terms in document dj.

The t f  — idf  retrieval strategy simply evaluates the product of the two com­
ponents and ranks the documents in the collection based on a score. The 
score for each document is calculated by summing the t f  — idf  weights of 
any query term s found in th a t document.
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We subm itted to the TREC-4 Conference (TREC-B) the results of this sys­
tem  with low expectations. However, the results we achieved were not bad 
a t all, as is summarised in the the official TREC-4 results [CRSvR95]. The 
system, in the context of the TREC-B only participants, gave the best per­
formances in 10 queries, and the worst performances in 6 queries out of the 
49 used in TREC-B. Its overall performance was well above the median value 
of the average precision.

The results of the t f  — idf  retrieval strategy will be compared with the results 
obtained by RbLI and RbGLI in Chapter 10.

9.6 Conclusions

We have been told by others th a t there is a tradition th a t “TREC first 
tim ers” fail to get their planned experiments done by the required deadline. 
We unfortunately have done nothing to change this.

Trying to  implement RbLI on the TREC collection proved to be a com­
promise between the theoretical purity demanded by the model, and the 
im plem entation problems posed by a collection of the size of TREC-B. We 
have found this compromise to a be a driving force in revealing other areas 
of work to be investigated. Therefore, experimental results aside, we regard 
our first participation in TREC as having been beneficial.



Chapter 10

Im plem entation, 
Experim entation and 
Evaluation Using a Large 
Collection of D ocum ents

This chapter reports in detail on the implementation, experim entation and 
evaluation of the models proposed in the theoretical study (Chapters 3 and 
4). The experimentation reported here makes use of a collection of documents 
much larger in size than those used in previous chapters.

10.1 M otivations

Chapters 3 and 4 reported the description and the results of a set of ex­
periments carried out on various standard test collections of relatively small 
size. These tests were done mainly for checking, in a quick and easy way, 
the actual effectiveness of some of the theoretical ideas proposed. Although 
in the past it was perfectly acceptable to test new models on collections of 
such a small size, and in fact most of the early models of IR were tested in 
such way [Sv76], in recent years it has become almost necessary to test new 
models on collections of much larger size. As pointed out in C hapter 1, real 
life applications nowadays usually have to deal with hundreds of thousands 
of documents. In order to be sure th a t the performance of a model scales 
up to the requirements of present day applications, the model needs to  be

150
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tested on some large collection of documents.

In C hapter 9 we reported an a ttem pt a t experimenting RbLI using a larger 
test collection. This experimental evaluation was done in the context of the 
TREC-4 framework [Har95a], with fixed and strict deadlines. Unfortunately, 
the short time and the limited resources available at th a t time compared 
with the size of the task, did not allow us to complete the experimentation 
in tim e for the TREC-4 deadline. Later on, however, with more tim e and 
with the availability of a more powerful computer and larger disk space, this 
experim entation could be continued and completed. The experience of the 
TREC-4 attem pt proved very useful.

This chapter reports on the the implementation, experimentation, evalua­
tion, and failure analysis of the two models: Retrieval by Logical Imaging 
(RbLI) and Retrieval by General Logical Imaging (RbGLI) already presented 
in Chapters 3 and 4. This experimental investigation was carried out using 
a large collection of documents and an experimental IR system th a t will be 
briefly described in the next two sections.

10.2 The Wall Street Journal docum ent col­
lection

Until a few years ago, there was no large test collection available for per­
formance testing in IR. Most of the evaluation of experimental IR  systems 
was done using relatively small test collections. These collections were built 
w ith considerable efforts by the same people who were building experimental 
IR  systems, since using them  was the only way to prove the effectiveness of 
some of the theoretical ideas proposed. Examples of these collections are the 
CACM, the Cranfield, the NPL, the LISA, etc. The characteristics of some 
of these collections are reported in Chapter 4 (Table 4.5). A complete survey 
of all the collections used in the early days of IR is reported in [Sv76].

In recent years some developers of commercial IR systems pointed out the 
gap th a t was opening between the test collections in use for experimental 
purposes and the collections of documents used by commercial IR systems. 
The collections commercial IR  systems had to manage were becoming several 
orders of magnitude larger than  the test collections. Some researchers also 
started  to question the validity of some of the effectiveness results obtained 
using test collections. The problem of the scalability of the techniques pro­
posed and experimented using test collection became an im portant issue in
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the IR  research. The question th a t many researchers started  asking was: are 
techniques proved to be effective for small test collections also effective for 
much larger collections?

Although a number of researchers started  putting increasing effort into build­
ing larger test collections since the 80s, the first milestone in this direction 
was the starting in 1990 of the Defence Advanced Research Projects Agency 
(DARPA) T IPSTER  project a t the University of Massachusetts [Cro92], in 
the USA. However, what capture the attention of a large number of IR  re­
searchers was in 1992 a “spin off” of TIPSTER  project, called TREC.

T R E C  (Text REtrieval Conference) is a workshop series sponsored by the 
National Institu te  of Standards and Technology (NIST) and DARPA th a t 
promotes large scale IR research by providing appropriate test collections, 
uniform scoring procedures, and a forum for organisations interested in com­
paring their results. The annual TREC is an event in which organisations 
with an interest in IR and information filtering take part in a coordinated 
series of experiments using the same experimental data. The results of these 
individual experiments are then presented at a workshop where tentative 
comparisons are made. In order to preserve the desired, pre-competitive na­
ture of these conferences, the organisers have developed a set of guidelines 
constraining the dissemination and publication of TREC evaluation results. 
These guidelines are meant to preclude the publication of incomplete or in­
accurate information th a t could damage the reputation of the conference or 
its participants and could discourage participation in future conferences1.

The first TREC (TREC-1) was held in November 1992 at the NIST head­
quarter and saw the participation of 25 international groups [Har93]. Since 
then the event has assumed more and more importance in the IR research, so 
much th a t more than 75 groups showed interest in participating in the latest 
TREC (TREC-6) event. A detailed description of TREC and its history is 
outside the scope of this section. The interested reader can find further in­
formation about TREC in the annual proceedings of the TREC Conference 
held every year a t NIST and in particular in the annual report prepared by 
Donna Harman [Har93, Har95b, Har94, Har95a, Har96]. Some critical re­
flections about the usefulness of the TREC initiative can instead be found in 
[SJ95].

Critical to the success of TREC was the creation of a set of tools for testing 
experimental IR  systems. In particular, TREC has built and made available

1More details about TREC can be found on the TREC home page at NIST: 
http://www-nlpir.nist.gov/trec.

http://www-nlpir.nist.gov/trec
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to  IR  researchers over the years a set of large test collections. These col­
lections were built thanks to the contribution of publishers, news providers, 
and US government offices. For the purpose of the experimentation reported 
in this thesis, a subset of the main TREC collection was used. This subset 
is made up of full text articles published in the Wall Street Journal (W SJ) 
in 1990-92. This collection of documents, about 250 MB in size and accom­
panied by a set of 300 queries and relevance judgements, constitutes by all 
standards a large test collection. The main characteristics of this collection 
are reported in Table 10.1. A quick comparison with the collections used 
in Chapters 3 and 4 shows th a t the W SJ collection is a t least one order of 
m agnitude larger than the largest of them.

Data sets: WSJ-full WSJ-lead
num. of documents 
size in MB 
num. of queries 
unique term s in documents 
unique term s in queries 
avg. document length 
avg. query length 
avg. num. of rel. doc.

74.520
247
300

123.852
3.504

180
40
35

74.520
72

300
61.079

3.504
60
40
35

Table 10.1: The Wall Street Journal document collection.

Table 10.1 reports two collections, the WSJ-full  and the WSJ-lead obtained 
from the W SJ collection. The difference between these two collections is 
th a t, while W SJ-full is the actual W SJ collection from TREC, composed of 
the full tex t of the documents, W SJ-lead is only composed on the leading 
paragraph of the documents. W SJ-lead is therefore not an official TR EC  
collection and was built on purpose for this thesis.

The reason for the use of these two collections lies in the difficulties found in 
experimenting the proposed models using a large term  space. The use of only 
the leading paragraphs of the documents reduces the term  space to about 
one half of its original size, while still enabling the use of the 300 queries and 
full relevance judgements accompanying the collection. This reduction of the 
term s space has even more influence on the size of the EMIM data  and on 
the tim e requested to calculate them  (see Chapter 9). The identification of 
the leading paragraph of a document is a simple task, since documents are 
marked up using SGML. An example of a document of the W SJ collection is 
reported in the following. The leading paragraph is marked by the < L P  >
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tag.

<DOC>
<DOCNO>
WSJ900402-0192
</DOCNO>
<DOCID>
900402-0192.
</D0CID>
<HL>

VLSI to Post Profit 
Matching Forecasts 
For the First Quarter 

</HL>
<DATE>
04/02/90
</DATE>
<S0>
WALL STREET JOURNAL (J), PAGE A8B 
</S0>
<C0>
VLSI
</C0>
<IN>
DOW JONES INTERVIEW (CEO)
</IN>
<LP>

NEW YORK —  VLSI Technology Inc.’s first-quarter earnings 
should meet analysts’ expectations, the company’s chairman 
and chief executive officer, Alfred J. Stein, said.

"We expect to do as well as the analysts are projecting .
. . between five and eight cents a share," Mr. Stein added. 
VLSI makes standard and customized integrated circuits.
</LP>
<TEXT>

Mr. Stein noted that late last year, the company guided 
analysts’ first-quarter projections lower from earlier 
estimates of around 15 cents a share.

He said a slowdown in standard chip-set sales and a drop 
in demand for custom chips by its largest customer, Apple 
Computer Corp., stalled revenue growth in the quarter.

The company had a loss of $6.3 million in the first 
quarter of 1989, largely due to problems during the start-up 
of its chip plant in San Antonio, Texas. VLSI earned 11 cents 
a share in the latest fourth quarter.

The company expects to release its first-quarter earnings 
April 12.

Mr. Stein said seasonal slowdown in Far Eastern demand for
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the chip sets was partly responsible for damping growth in 
the first quarter.

The region’s IBM-compatible computer makers use the sets 
in personal computers that see their strongest sales before 
the Christmas holidays. Far Eastern demand generally slacks 
off in the first quarter, Mr. Stein said. Shipments to the 
Far East account for about half of the company’s chip-set 
sales.

Mr. Stein said demand for customized chips by Apple 
Computer has recovered from a drop that also depressed 
first-quaxter revenue.

"Apple is coming back very strongly to us," Mr. Stein 
asserted. He added, however, that the impact of Apple’s 
resumed demand won’t be felt until the second and third 
quarters of this year.

Apple accounted for 13'/, of VLSI’s revenue in 1989, while 
sales to International Business Machines Corp. rose to about 
10'/, of total revenue.

Mr. Stein said sales to IBM will exceed sales to Apple 
this year because of increasing shipments to IBM, not because 
of shrinking sales to Apple. The increasing importance of IBM 
as a customer illustrates VLSI’s strategic shift toward sales 
of "application-specific standard product," primarily 
standardized chip sets for personal computers, over the 
customized chips designed for Apple Computer and others. 
</TEXT>
</D0C>

An example of one of the 300 queries (called topics in TREC) accompaining 
the W SJ collections is reported in the following:

<top>
<head> Tipster Topic Description 
<num> Number: 003
<dom> Domain: International Economics 
<title> Topic: Joint Ventures 
<desc> Description:
Document will announce a new joint venture involving a Japanese 
company.
<narr> Narrative:
A relevant document will announce a new joint venture and will 
identify the partners (one of which must be Japanese) by name, as well 
as the name and activity of the new company.
<con> Concept(s):
1. joint venture, tie up
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2. partner, cooperation, joint management, agreement
3. cooperate, work together, jointly manage, jointly own, jointly 
produce
<fac> Factor(s):
<nat> Nationality: Japan 
<time> Time: Current 
</fac>
<def> Definition(s):
Joint Venture - An international business undertaking defined as the 
commitment, for more than a very short duration, of funds, facilities, 
and services by two or more legally separate interests to an 
enterprise for their mutual benefit.
</top>

10.3 The SIRE experim ental IR system

SIR E  (System for Information Retrieval Experim entation) is a prototype in­
dexing and retrieval toolkit developed by Mark Sanderson at the D epartm ent 
of Computing Science of the University of Glasgow. SIRE is a collection of 
small independent modules, each conducting one part of the indexing, re­
trieval and evaluation tasks required for classic retrieval experimentation. 
The modules are linked in a pipeline architecture communicating through a 
common token based language. SIRE was initially used in research examining 
the relationship between word sense ambiguity, disambiguation, and retrieval 
effectiveness [San96b]. It proved to be a flexible tool as it not only provided 
retrieval functionality, but a number of its core modules were used to build 
a word sense disam biguator as well. It was also used in the experiments for 
the Glasgow IR group submissions to TREC-4 (reported in Chapter 9 and in 
[CRSvR95]), TREC-5 [SR96], and TREC-6 [CSTL97] and is currently being 
used in a number of research efforts within the group. The system has also 
been successfully used by many students of the M aster of Science in Advance 
Information Systems of the University of Glasgow for their practical work.

SIRE is implemented on the UNIX operating system which, with its scripting 
and pre-emptive multi-tasking is eminently suitable for handling the m odular 
nature of SIRE.

A detailed description of the functionalities of SIRE is outside the scope of 
this section. The system is currently available on public domain for research 
purposes. The interested reader should contact Mark Sanderson for a copy 
of a short unpublished paper describing the system [San96a] and for the
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location of SIRE’s binary files.

10.4 Im plem entation of RbLI and RbGLI on 
top of SIRE

The flexibility of the SIRE experimental system, the availability of its source 
code, and the willingness to help of SIRE’s creator (Mark Sanderson), made 
SIRE the most obviuos choice as an implementation platform for experim ent­
ing RbLI and RbGLI with a large collection of documents. To this choice, 
three other factors contributed:

•  The code developed for the experiments reported in Chapters 3 and 4 
was highly inefficient and unsuitable for experimenting on a large scale. 
This was developed simply for testing the theoretical ideas reported in 
those chapters in the fastest possible way. A re-ingeneering of th a t code 
would have been too time consuming.

•  The current implementation of Hyspirit, the system developed at the 
University of Dortmund implementing Probabilitic Datalog [FR97], was 
not efficient enough to enable experimenting on a large scale. Therefore, 
despite the ease of implementing RbLI and RbGLI on top of Proba­
bilistic Datalog (see Chapter 7), it was decided th a t th a t was not a 
suitable implementation platform, since it would not have enabled an 
experimentation using a large collection of documents.

•  The C\ logic (Chapter 8) has not been implemented yet.

•  SIRE had been successfully used for the Glasgow partecipation in TREC- 
4, TREC-5, and TREC-6 with collections even larger than  W SJ. In 
these tasks it proved to be highly flexible and a t an acceptable level of 
efficiency.

Once SIRE was chosen as the implementation platform  for RbLI and RbGLI, 
it was necessary to develope a number of new modules for the experimen­
ta tion  carried out in this thesis. These new modules were build with the 
same design principles of the already existing modules, so th a t they could 
be used in a pipeline with them. Some of these modules were w ritten using 
the C programming language [KD88], some others using the Perl scripting 
language [WCS96].
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In the following, no detailed description of the implementation of RbLI and 
RbGLI using SIRE will be reported, since this is not of much scientific in­
terest. Instead, the rest of this chapter will concentrate on reporting and 
analysing the results of the experimentation.

10.5 Experiments with the RbLI model

The first set of experiments reported in the following concerns the imple­
m entation and evaluation of the RbLI model. This is a continuation of the 
effort started  in the framework of TREC-4 (see Chapter 9). In th a t context, 
considerable effort went into finding effective ways to evaluate the accessibil­
ity relation by means of EMIM and to cut down the number of probability 
transfers. Those results have been used for the experiments reported in this 
chapter.

The weight assigned to terms in the term  space is the idf  weight, calculated 
as:

N
idfi = l o g ( - )  

rii

where rii is the number of documents in which the term  ti occurs, and N  is 
the to ta l number of documents in the collection.

Although the idf weight cannot be considered a probability, nevertheless we 
can assume it to be an approximation of the probability. We can use this 
estim ate because we are not really interested in finding exact probabilities, 
bu t only to produce a ranking of the documents according to them. In the 
following the term  “weight” and “probability” will be used interchangeably.

Regarding the experimental design, for the purpose of the experim entation 
of this model, and as a m atter of fact for the entire experim entation, it 
was decided to follow a “incremental” approach. Experiments were first 
performed on the “easiest” model (RbLI) and on the smallest document col­
lection (WSJ-lead). This combination enabled to perform a large num ber 
of experiments in a short time. Once results were acquired and the best 
combination of parameters was achieved, this setting would be used to  per­
form experiments on a larger document collection (WSJ-full) and on a more 
complex model (RbGLI). Such approach enabled to  achieve the best com­
bination of parameters in the fastest time. Because of tha t, this section is
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divided in two parts, the first part reporting the experiments carried out 
using the W SJ-lead collection and the second part reporting the experiments 
carried out using the WSJ-full collection.

10.5.1 Using only leading paragraphs

This section reports on a series of experiments carried out using the W SJ-lead 
document collection. The experiments here reported aimed at finding the 
best combination of param eters to achieve the highest level of effectiveness 
from the RbLI model in terms of classical IR measures of performance, th a t is 
recall and precision. Results are graphed using the 10 recall points evaluation 
procedure reported in [vR79].

R edistributing the untransfered probabilities

The first theoretical hypothesis to be tested is related to the case of in­
complete knowledge of the accessibility relation. This case was discussed in 
Chapter 6.

In the experiments reported in this thesis, the accessibility relation was esti­
mated using the Expected M utual Information Measure (EMIM). This mea­
sure has been studied in details and used by many researchers in the past and 
an effective way of estim ating it was proposed by van Rijsbergen in [vR79]. 
Nevertheless, EMIM is a very computational expensive measure to  evaluate 
in the presence of a large term  space. An evaluation of the full EMIM for all 
term  pairs in the W SJ-lead collection would have required about 70 hours of 
CPU tim e using the machine available for these experiments, th a t is a Sun 
U ltra 2 running Solaris 2.5.1 with 256 MB of RAM. The storing of the EMIM 
data  would have required about 24 GB of disk space.

In order to  reduce the time and space required to evaluate EMIM we adopted 
the series of simplifications reported in Chapter 9, th a t made it possible to 
evaluate EMIM in just about 6 hours of CPU time and using only about 2.5 
GB of disk space. However, this means th a t we had to deal w ith incomplete 
knowledge of the accessibility relation between term s in the term  space.

From a theoretical point of view, the incomplete knowledge of the accessibility 
relation in the terms space creates the series of problems already discussed 
in C hapter 6. The solution to such problems lies in a redistribution of the 
untransfered probabilities over the terms occurring in the docum ent (also
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Figure 10.1: Precision and recall graphs for the W SJ-lead collection using 
the RbLI model with or w ithout probability scaling.

called d-terms). This is equivalent to a scaling of the posterior (imaged) 
probabilities assigned to terms in the document to make their sum equal to 
one (i.e. making the document certain). This scaling is achieved using the 
same kinematics of the RbCP model.

Figure 10.1 reports the results of the use of the RbLI model w ith scaling 
and without scaling. The figure also reports, as a reference, the results 
using the classical idf  and t f  — idf  weighting schemas w ithout probability 
transfers [Har92a]. The formula for idf  has already been described, while t f  
is calculated as follows:

=  log(freqij +  1) 
log (lengthj)

where freqij  is the frequency of occurrence of term  ti in docum ent d j , and 
length j is the number of unique terms in document dj.

The t f io — idf  weighting schema is instead a modification of the classic tf-idf 
schema, proposed by Sanderson in [SR96], th a t can be obtained using the 
following formula for the evaluation of i fy :

log((freqjj • 10) +  1) 
10 lj log (lengthj)
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This weighting schema has proved experimentally to be slightly more effective 
than  the classical t f —idf  schema when dealing with long documents [San96b].

It can be easily seen th a t the RbLI model is behaving very poorly, and th a t 
scaling of probabilities to make up for the incomplete knowledge of the acces­
sibility relation makes it behave even more poorly. It was therefore decided 
not to perform the scaling for the succeeding experiments, since it only in­
creases the number of computations and does not improve the performance 
of RbLI.

Notice th a t the low level of performance of t f  — idf  and t fio — idf  is due to 
the use of only the leading paragraph as document text. The levels of perfor­
mance of these models increase considerably when the full text of documents 
is considered, as it will be shown further on in this chapter.

U sing different am ounts of EM IM  data

A previous study carried out using small test collections showed th a t it is 
possible to reduce the size of the EMIM data  to be stored and scanned a t run 
tim e to direct the probability transfers, w ithout any significant decrease in 
performance for the RbLI model (see Chapter 3). Another set of experiments 
was therefore directed towards using different amounts of EMIM data  to  see 
if it was possible to achieve this effect also on a large collection.

Figure 10.2 shows the performance of RbLI using different amount of EMIM 
data. The performance of RbLI using the full EMIM data  (but w ith the 
simplifications described in Chapter 9) were compared with those achieved 
by RbLI using only a percentage of the full EMIM data.

W ith regards to the kinematics of probabilities, the use of x% of EMIM data  
is equivalent to  the use of an accessibility relation th a t only captures the x% 
most similar term s to a given term  and th a t does not provide any accessibility 
relation to the remaining (100 - x)%  terms in the term  space.

The percentages used here are approximative, since they were obtained by 
putting a threshold on the EMIM value between pairs of terms. The three 
values of 10%, 20%, and 30% of percentage of EMIM data  are reported in 
the figure. Percentages over 30% did not show any difference in performance 
from the use of the full EMIM data.

Surprisingly, the performance of RbLI improves with the use of smaller 
amounts of EMIM data. The reason for this improvement in performance
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Figure 10.2: Precision and recall graphs for the W SJ-lead collection using 
different percentage of the full EMIM data.

can be found in the modification of the kinematics of the RbLI model th a t 
this causes. Probability is transfered from a not-d-term  to a d-term only if 
there is a significant level of similarity between the two. By using the full 
EMIM data  we can always find a d-term  th a t is similar to a not-d-term , to 
which the probability of the not-d-term  will be transfered, even if the similar­
ity between the two is very low. The results reported in Figure 10.2 suggest 
th a t this is not an effective kinematics. Moreover, results reported in Figure 
10.1 suggest th a t it is better not transfer at all the untransfered probability 
remaining attached to not-d-terms, than  transfer it w ithout good reasons. 
In other words, it is better to loose some probability (and therefore having a 
probability of the document less than one), than transfer it in an unjustified 
way.

Combining the above result with the result of the previous experiments, it 
seems th a t the combination of the kinematics of RbLI and RbCP is not an 
effective combination in the context of IR. This results disproves some of the 
theoretical ideas reported in Chapter 6. The effectiveness of the combination 
between RbGLI and RbCP will be tested later on.

RbLI with full EMIM d a ta  
RbLI with 10%  of EMIM d a ta  -i—  
RbLI with 20%  of EMIM d ata  
RbLI with 30%  of EMIM d ata
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U sing different stoplists

Another set of experiments was devoted to find the best possible stoplist to  
be used with the RbLI model. There are a few reasons why it is im portant 
to study the term  discrimination power and identify which term s could be 
removed from the term  space. In fact, removing unnecessary term s from the 
term  space:

•  reduces the number of probability transfers th a t are going to be per­
formed for each document in the collection;

•  reduces the effort of evaluating the EMIM for the term s in the term  
space;

•  enables to avoid to take into consideration term s th a t would give a very 
little contribution to the overall posterior probability of a document.

The identification of the term s to be removed from the term  space should 
be related to the their discrimination power. Using the classical Zipfian 
distribution studied by Luhn [Luh57] in the context of IR, the term s th a t 
have the lowest discrimination power are those th a t are the most and the 
least frequent ones in the collection. In IR usually only the most frequent 
ones are removed, since removing the least frequent ones does not have many 
advantages. This is the direction followed in these experiments.

Moreover, in addition to the classical motivations for removing very frequent 
terms, another im portant motivation was discovered by looking at the dis­
tribution of the weights in the term  space before and after imaging.

Figure 10.3 depicts for every term  in the W SJ-lead term  space the i d f , th a t 
is the term  weight before imaging (the prior probability), and the average 
weight of the term  after imaging (the posterior probability). The graph 
clearly shows th a t frequent terms, i. e. terms with low idf  weight, have a 
very high weight after the imaging process. This is an undesired effect of 
the way imaging is implemented by the RbLI and the RbGLI models. Terms 
th a t are very frequent in the collection will also co-occur very frequently 
with other terms. Since co-occurrence is the most im portant factor in the 
evaluation of the EMIM values (see Chapters 3 and 9), then two term s th a t 
co-occur often, have also a high EMIM value. This means th a t a very frequent 
term  occurring in the document, i.e. a d-term with low i d f , a ttrac ts  a very 
large amount of weights from non-d-terms. O ther d-terms receive very little
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Figure 10.3: Prior probability (idf) vs. posterior probability (imaging 
weight).

weight from non-d-terms, since given a non-d-term the very frequent d-term  
will almost always be the one with the highest values of EMIM among the 
d-terms. This causes an unbalanced kinematics of the weights th a t may have 
disastrous effects in the retrieval phase.

In fact, let us suppose th a t ti is a very frequent term , if L is a d-term  for 
document dj than it will a ttrac t a large weight since it will be for many non- 
d-terms the d-term  with the highest EMIM value. If L is also a q-term  (a 
term  occurring in the query) then document dj will be one of the document 
ranked at the top for query q. A document dk for which L is not a d-term  
will probably be ranked at at lower position th a t dj, even if dk had a larger 
number of q-term than dj.

Figure 10.4 reports the performance of RbLI with different sizes of the sto- 
plist. The reference size is the standard stoplist reported in [vR79] comprising 
320 stopterms. O ther stoplists were built by adding to the standard stoplist 
the x% most frequent term s in the collection excluding those already present 
in the standard stoplist; for example, the so called “top 1%” stoplist contains 
320+610 stopterms, where 610 is 1% of the to tal number of terms in the term  
space.

The results show th a t a 1% stoplist gives better performance than  the stan­
dard stoplist. This is achieved by removing from the term  space some of the 
terms tha t a ttrac t large weights during the imaging process. Stoplists larger
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Figure 10.4: Precision and recall graphs for the W SJ-lead collection using 
different stoplists.

than the top 1% one, like the top 5% and the top 10% ones, remove also some 
term s th a t are useful for the retrieval process, like term s th a t are present in 
queries, therefore decreasing the performance levels.

Choosing the best com bination of param eters

Using the results of the various experiments reported above, it was possible 
to devise the best combination of param eters for the RbLI model and the 
W SJ-lead collection. The results of a performance comparison between the 
RbLI model and the classical i d f , t f  — id f , and tfio — idf  models are reported 
in Figure 10.5.

The results show th a t RbLI performs slightly better than  the id f  model 
(which is equivalent to the R bJP  model of Chapter 4), although worse than  
the t f  — id f , and the tfio — idf  models. However, we need to remind here th a t 
only the idf  model allows a fair comparison with the RbLI model, since the 
RbLI model does not use any information about the term  distribution inside 
a document, like for example the t f  weight, th a t is used by the t f  — i d f , and 
tfiQ ~  idf  models.

The above result, although of a smaller magnitude, is in complete agreement 
with the result presented in Chapter 4, obtained on a much smaller term  
space.
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Figure 10.5: Performance of the RbLI model using the W SJ-lead collection. 

10.5.2 Using full docum ents

This section reports on the experimental results obtained by using the W SJ- 
full collection. Given the size of the collection and the complexity of ex­
perim enting RbLI on such a large term  space, only a limited number of 
experiments could be performed. The results of the experim entation with 
the W SJ-lead collection, presented in the previous section, were used to  best 
direct the experimentation reported here.

T h e  b e s t  c o m b in a tio n  o f p a ra m e te r s

A large set of experiments, whose results I am not going to report here, 
suggest th a t the best combination of param eters (regarding scaling, am ount 
of EMIM data, length of the stoplist, etc.) for RbLI on W SJ-full is the same 
th a t proved to be the best for RbLI on W SJ-lead.

Figure 10.6 show th a t the performance of the RbLI and idf  models are very 
close, w ith RbLI performing slightly better at some recall levels.
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Figure 10.6: Precision and recall graph for the W SJ-full collection.

The docum ent length effect

A recognised problem with all the models presented in Chapter 4, and there­
fore also with the RbLI model as it has been implemented in this section, is 
related to the document length. The problem can be easily explained looking 
a t Figure 10.7.

Let us suppose we have two documents d\ and d2. The document di is consid­
erably larger in number of term s than  d2. Here we only consider the number 
of unique terms, so in actual facts d\ and d2 could be of similar size, bu t d\ 
could cover a broader topic or a larger number of topics than d2, therefore 
having a larger number of unique terms th a t d2. This is a consequence of not 
taking into account within document frequencies for terms.

Let us now consider the document rankings th a t RbLI could produce in re­
sponse to a query qi from a collection with only the above two documents. 
In accordance w ith the imaging process, we will first perform imaging on 
document di, transfering all the probability of the not-di-term s to di-term s. 
Since di has a large number of terms, then on average these term s will receive 
a small amount of probability from not-di-terms, and will have a posterior 
probability, after imaging, not much bigger than the their prior probability. 
The opposite will happen when we perform imaging on d2. Since d2 has 
a small number of terms, then on average these term s will receive a large 
am ount of probability from not-d2-terms, and will have a posterior probabil-
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Figure 10.7: The document length effect.

ity, after imaging, much larger than the their prior probability. W hat will 
then happen is th a t document could be ranked in a higher position than  
d i , even if the number of terms th a t q\ and d\ have in common is higher than  
the number of term s q\ and d^ have, as depicted in Figure 10.7.

The above effect is also present in the RbCP and in the RbGLI models, while 
it is absent from the R bJP  model.

This undesired effect clearly suggests th a t some document length normalisa­
tion factor should be devised to avoid it to happen. However, the identifi­
cation of the best normalisation strategy for both the RbLI model and the 
RbGLI models is a very complex issue th a t is outside the scope of this thesis. 
The identification of a normalisation strategy for these models will be left to 
future work.

10.6 Experim ents w ith the RbGLI m odel

This section reports on experiments concerning the implementation and eval­
uation of the RbGLI model. This section is not as detailed as the previous 
section, since there was no need to repeat some of the experiments already 
carried out with the RbLI model if there was not reasons to believe they 
would have had different results with the RbGLI model. RbGLI is a gener­
alisation of RbLI, but the kinematics of probabilities it causes is very similar 
and some of the results already achieved for the RbLI model can be easily
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Figure 10.8: Precision and recall graphs for the W SJ-lead collection using 
the RbGLI model with or w ithout probability scaling.

extended to  RbGLI. Therefore, in studying the effectiveness of the RbGLI 
model a smaller number of experiments than in studying the RbLI model 
was carried out. This section only reports the most significant results.

10.6.1 Using only leading paragraphs

The experim entation of RbGLI was performed in the same way as the one 
for RbLI. Experiments were first performed on the W SJ-lead collection and 
on the larger W SJ-full collection. This section reports the results obtained 
for RbGLI using the W SJ-lead collection.

R edistributing the untransfered probabilities

Figure 10.8 reports the results of an experimental investigation into the ef­
fectiveness of performing a proportional transfer (scaling) of the probabilities 
remained untransfered after imaging, as suggested in Chapter 6.

The results show th a t RbGLI with scaling gives much worse performance 
than  RbGLI without scaling. This result is in accordance with the one ob­
tained for RbLI.
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Figure 10.9: Precision and recall graphs for the W SJ-lead collection using 
different percentage of the full EMIM data.

U sin g  d iffe ren t a m o u n ts  o f E M IM  d a ta

Figure 10.9 shows how the performance of the RbGLI model improves by 
using only a portion of the EMIM data. The 10% portion of the EMIM d a ta  
proved to be the most effective, all other portions experimented (20%, 30%, 
and 40%) gave better results th a t using the full EMIM data, bu t worse th a t 
the 10% portion.

Again this result is not different from the one obtained using the RbLI model. 

U sin g  d iffe ren t s to p lis ts

For the reasons already reported in the previous section regarding experi­
m entation w ith RbLI, a set of experiments was performed to analyse the 
performance of RbGLI when terms with very high frequency of occurrence 
(and therefore with low idf  weight) were removed from the term  space.

Figure 10.10 shows th a t for RbGLI, as for RbLI, the use of a stoplist th a t 
includes the most frequent term s in the term  space does improve performance. 
In particular, a stoplist made of standard stopterm s and of the 1% most 
frequent term s in the term  space proves to be the most effective one. This 
same stoplist proved to be the most effective also for the RbLI model.

RbGLI with full EMIM d a ta  
RbGLI with 10%  of EMIM d a ta
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Figure 10.10: Precision and recall graphs for the W SJ-lead collection using 
different stoplists.

Choosing the best com bination of param eters

In the light of the findings reported in the previous sections, the best combi­
nation of param eters for the RbGLI model proved to  be the same as the one 
for the RbLI model. Figure 10.11 shows th a t using RbGLI with 10% of the 
EMIM data  and a stoplist including the 1% most frequent term s gives per­
formance th a t are better than those given by id f model. This result is very 
similar to the one obtained for the RbLI model, although here the difference 
in performance between id f  and RbGLI seems larger.

Figure 10.11 shows also a comparison between the performance of RbLI and 
RbGLI using their best combination of param eters. RbGLI performs almost 
exactly as RbLI. This result is rather disappointing and dissimilar to th a t 
obtained for smaller test collections (see C hapter 4).

10.6.2 Using full docum ents

This section reports the results obtained experimenting RbGLI using the 
W SJ-full collection.

Figure 10.12 reports a performance comparison between RbGLI, RbLI, and 
some classical IR models. As it can be seen RbGLI, RbLI, and id f  have
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Figure 10.11: Performance of the RbGLI model using the W SJ-lead collec­
tion.
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Figure 10.12: Precision and recall graph for the W SJ-full collection.
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basically the same levels of performance. The t f i 0 — id f and the t f  — id f also 
have basically the same levels of performance, but higher than  the RbGLI, 
RbLI, or id f ones.

Data sets: WSJ-full WSJ-lead
num. of documents 
size in MB
unique terms in documents
avg. doc. length
std. dev. of doc. length

74.520
247

123.852
180

142,64

74.520
72

61.079
60

26,38

Table 10.2: Average and standard deviation of the number of unique terms 
in W SJ-full and WSJ-lead.

The reason why RbGLI and RbLI perform better th a t id f using W SJ-lead 
collection, but have basically the same levels of performance than  id f for the 
W SJ-full collection, is to be found in the document length effect discussed 
previously. Documents in the W SJ-lead collection have a more homogeneous 
length than documents in the W SJ-full collection. This is obvious, since the 
leading paragraphs of newspaper articles does not vary as much in length 
as the articles themselves. Therefore the document length effect plays a 
more im portant role in the WSJ-full collection than in W SJ-lead collection, 
decreasing the effectiveness of RbLI and RbGLI. This hypothesis is confirmed 
by the da ta  reported in Table 10.2, th a t show the average and standard 
deviation of the number of unique terms in W SJ-lead and WSJ-full.

10.7 Comparison with the results obtained  
using smaller test collections

It is interesting to compare the results reported here and obtained using the 
W SJ document collection with those reported in Chapters 3 and 4 obtained 
using smaller test collections. In fact, these results do not seem to agree 
completely.

Figures 4.7, 4.8, and 4.9 report a comparison of the performance of RbJP, 
RbCP, RbLI and RbGLI using three different small test collections: the 
CACM, the Cranfield, and the NPL. In those figures, RbLI and RbGLI 
perform significantly better than  RbJP. We could therefore conclude th a t 
the use of similarity information between terms in directing the kinematics
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of probabilities in the term  space helps improving performance. Considering 
now th a t R bJP  is just another name for the classical id f model, if we compare 
the results of Figures 4.7, 4.8, and 4.9 with those reported in Figures 10.5, 
10.6, 10.11, and 10.12, we can see th a t the above conclusion seems to lose 
strength. The difference in performance between RbJP, RbLI and RbGLI 
using a large collection of document does not seem significant enough to  
support th a t conclusion anymore.

It is interesting to note th a t the difference in performance between RbJP, 
RbLI and RbGLI seems to become smaller with the increasing of the size 
of the collection and therefore of the term  space. It is difficult to find an 
explanation for this effect. O ther different characteristics of the collections 
used in the experimentation, a part from size, could effect this result. Surely 
the document length effect has a big part in the different results obtained, as 
the use of EMIM as a measure of semantic similarity between terms. An in 
depth study on how different characteristics of the term  space and different 
metrics on the space influence the kinematics of probability will be the task 
of future research.

10.8 Conclusions

In this chapter the effectiveness of the RbLI and the RbGLI models has 
been tested using a large collection of documents. Two different collections 
having different characteristics of the term  space were constructed from the 
original W SJ collection. RbLI and RbGLI has been tested using both these 
collections against classical models of IR, like the id f  model (corresponding 
to the R bJP  model of Chapter 4) and the t f  — id f model.

Although, taken on their own, these results seem disappointing, some expla­
nations for the low levels of performance have been found. An understanding 
of the factors causing these low performance does certainly help in suggest­
ing ways to improve them. Therefore, the m ajor contribution of the results 
reported in this chapter is in providing indications for future work, as it will 
be discussed in the next chapter.
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Chapter 11 

Conclusions and Future Work

This chapter summarises the theoretical and experimental contributions of 
the work reported in this thesis. It also addresses the lim itations of these 
contributions and of the approach followed. The chapter ends with directions 
for future work.

11.1 Conclusions

This thesis studied the kinematics of probabilities in probabilistic IR. The 
aim was to get a better insight of the behaviour of the probabilistic models 
of IR  currently in use and to propose new and more effective models by ex­
ploiting different kinematics of probabilities. The study was performed both  
from a theoretical and an experimental point of view. In the following the 
conclusions of this work are summarised, distinguishing between theoretical 
and experimental conclusions.

11.1.1 Theoretical conclusions

The theoretical conclusions of the study of the probability kinematics in IR 
reported in this thesis, and in particular in Chapters 3 and 4, show th a t 
a probability transfer between terms in the term  space th a t takes into ac­
count the semantic similarity between the probability-donor term  and the 
probability-recipient term  is more effective in the context of IR than a prob­
ability transfer th a t does not take th a t into account. Most current proba­

176
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bilistic retrieval models are based on a probability kinematics th a t does not 
take into account similarity between terms or between documents, unless “ad 
hoc” weighting schemas, mostly based on clustering, are used.

This result was achieved by:

1. considering a term  space for which similarity information between term s 
could be obtained;

2. designing two new theoretical IR models whose probability kinematics 
mimic those of classical IR models, like the vector space model and the 
probabilistic model;

3. designing two new theoretical models of IR whose probability kinem at­
ics take into account the similarity between terms in the term  space;

4. comparing the different behaviour and effectiveness of the four models.

Although this result seems to be supported by the experiments performed 
on small test collections reported in Chapters 3 and 4, it should be stressed 
th a t this is a purely theoretical result. In fact, the two new models (RbLI 
and RbGLI) were compared with two fictitious models (R bJP  and RbCP) 
tha t, although having a probability kinematics similar to the vector space 
and the probabilistic models, have not been optimised for effectiveness with 
ad hoc parameters. The comparison between the four models was on a very 
simplified testing ground.

Nevertheless, the above result suggests the usefulness of a further investi­
gation into more complex and optimised models for probabilistic retrieval, 
where probability kinematics follows non-classical approaches. The RbLI and 
RbGLI models proposed in this thesis are just two of such approaches, but 
others can be developed using results achieved in other fields, such as for 
example Conditional Logic, Modal Logic, and Belief Revision theory.

11.1.2 Experim ental conclusions

The theoretical results summarised in the previous section suggest th a t an 
improvements in retrieval effectiveness can be obtained by designing proba­
bilistic IR systems th a t are based upon a probability kinematics th a t exploit 
semantic similarity between terms in the term  space. Unfortunately, while 
experiments using small test collections seem to provide evidence supporting
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this conclusion, experiments performed using large test collections do not 
seem to provide as much supporting evidence (although they do not seem 
to provide contrasting evidence neither). The peculiar characteristics of the 
term  space of different collections play an im portant role in shaping the ef­
fects th a t different probability kinematics have in the effectiveness of the 
retrieval process. Characteristics such as the size of the term  space, term  
frequency, document length, and term  co-occurrence have effects th a t are 
difficult to factorise in a experimental study of retrieval effectiveness.

A much larger experimental investigation than  the one reported in this thesis 
is necessary in order to find out the influence th a t each characteristic of the 
collections has in the kinematics of term  weights.

11.2 Limitations and future work

There are a number of limitations to the work reported in this thesis. The 
following are the most im portant.

Factors influencing the kinem atics of probabilities in probabilistic  
IR

The most im portant lim itation of the work reported in this thesis is th a t the 
study only analyses the influence on retrieval effectiveness of two factors:

1. the term  distribution in the term  space;

2. the semantic similarity between terms.

Term weights were determined from the term  distribution in the term  space 
and their kinematics at retrieval tim e was studied. New models th a t could 
make use of semantic similarity between terms in directing the kinematics of 
term  weights at retrieval time were proposed. The effectiveness of these new 
models was compared with th a t of classical IR models th a t only take into 
consideration the term  distribution.

Although there is some experimental evidence supporting the fact th a t these 
new models improve effectiveness, experimental result confirmed th a t two 
other factors need to be taken into consideration for the design of effective 
probabilistic IR systems:
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3. the document length;

4. the term  distribution inside the document.

Future research will have to look into ways of including these two factors into 
the new models proposed. This will require both theoretical and experimental 
work.

Probability distribution on the term  space

In the study reported in this thesis the id f weight was used as a measure of 
the importance of a term  in the context of the term  space. Although this 
seems a reasonable choice in the context of IR, it should be noticed th a t the 
id f weight has a semantic interpretation th a t is in contrast with the usual 
semantic interpretation given to probability. The probability of an event 
can have two semantic interpretations, as Carnap [Car50] pointed out: a 
frequentist interpretation and a belief interpretation. W ithout entering into 
philosophical considerations, the id f weight is in contrast w ith both  these 
semantics, being proportional to the rareness of the occurrence of a term  in 
the term  space, and not to its frequency of occurrence. Basically, a term  
with high id f weight has a low probability of occurrence; therefore, although 
the id f weight can be considered as a good measure of the im portance of 
a term  in the term  space, we should consider th a t the theory of imaging 
[G82, Lew86] was devised with the concept of probability in mind, not its 
opposite.

It will be necessary in the future to investigate theoretically if there is any 
contradiction in the use this thesis made of the imaging theory.

Sem antic sim ilarity betw een term s

In this thesis, the semantic similarity between terms was estim ated using 
EMIM. The identification of the most appropriate measure of semantic sim­
ilarity is the m ajor requirement for the definition of a metrics on the term  
space. Such a metric provides a way of determining the accessibility relation 
between terms th a t is a t the core of the imaging process.

However, EMIM was here estimated using the technique proposed by Van 
Rijsbergen in [vR79]. This technique makes use of occurrence inform ation for 
terms in the term  space, and estimates the similarity between term s making
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a heavy use of the frequency of co-occurrence of term s in the space. Because 
of the way EMIM is evaluated, there are two problems with its use in the 
context of the imaging theory th a t need further investigation:

•  the data  used to evaluate the semantic similarity between term s is 
collection dependent, th a t is to say, the semantic similarity between 
terms depends on how the terms are used in the documents of the 
collection and can be different from one collection to another;

•  EMIM is estim ated using term  occurrence information and so is the 
id f weight; we are therefore using the same information to estim ate 
the relative importance of a term  in the term  space and its semantic 
similarity with other terms.

Future research will have to look for other measures of similarity between 
term s upon which to build a metric on the term  space. These measures should 
be collection independent and should be more oriented to the semantics of 
terms than to their distributions. The use of a thesaurus, for example, seems 
to be the next obvious direction to follow.

D ocum ent length norm alisation

In the work reported in this thesis the document length (measured as num­
ber of terms occurring in the document) was not used for normalisation 
purposes. Document length normalisation is a very im portant component 
of any retrieval model; without document length normalisation factors most 
ranked retrieval models would rank the longest documents first (see C hapter 
2).

The negative effect th a t document length plays in the models proposed in 
this thesis has already been address in Chapter 10. It will be necessary in 
the future to modify the RbLI and the RbGLI models to take into account 
document length. This work is both theoretical and experimental, since the 
theory of imaging does not provide any help for this issue and since any pro­
posed modification to the above models will require supporting experimental 
evidence.
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D ocum ent dependent inform ation

Most classical probabilistic models of IR take into consideration not only the 
distribution of terms in the term  space, but also the distribution of term  
in the context of single documents (see Chapter 2). The t f  weight, used 
in the t f  — id f model, is a classical example of use of document dependent 
information. The importance of a term, represented by the weight associated 
to the term  ( t f  — id f), is therefore composed of two parts: a collection wide 
one (idf), measuring the importance of a terms in the term  space, and a 
document dependent one (t f ) ,  measuring the importance of a term  in the 
context of the document under consideration.

In the work reported in this thesis document dependent information was not 
taken into consideration. Future research will have to investigate the best 
possible way of using document dependent information together with the 
other sources of information th a t the models based on the imaging theory 
already use. Again, this work will be both theoretical and experimental in 
nature.

Further experim entation

Future experimental work will have to investigate the above issues using 
different test collections, analysing the influence the characteristics of the 
collections have on the effectiveness of the theoretical proposals.

The methodology and the results reported in this thesis provide a very good 
starting  point for the future work suggested above. A Ph.D. is never really 
finished!
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