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Abstract

This present thesis proposes a novel approach for coupling finite element and boundary element

formulations using a Loop subdivision surface discretisation to allow efficient acoustic scattering

analysis over shell structures. The analysis of underwater structures has always been a challenge

for engineers because it couples shell structural dynamics and acoustic scattering. In the present

work, a finite element implementation of the Kirchhoff-Love formulation is used for shell

structural dynamic analysis and the boundary element method is adopted to solve the Helmholtz

equation for acoustic scattering analysis. The boundary element formulation is chosen as it can

handle infinite domains without volumetric meshes.

In the conventional engineering workflow, generating meshes of complex geometries to

represent the underwater structures, e.g. submarines or torpedoes, is very time consuming

and costly even if it is only a data conversion process. Isogeometric analysis (IGA) is a

recently developed concept which aims to integrate computer aided design (CAD) and numerical

analysis by using the same geometry model. Non-uniform rational B-splines (NURBS),

the most commonly used CAD technique, were considered in early IGA developments.

However, NURBS have limitations when used in analysis because of their tensor-product

nature. Subdivision surfaces discretisation is an alternative to overcome NURBS limitation.

The new method adopts a triangular Loop subdivision surface discretisation for both geometry

and analysis. The high order subdivision basis functions have C1 continuity, which satisfies

the requirements of the Kirchhoff-Love formulation and are highly efficient for the acoustic

field computations. The control meshes for the shell analysis and the acoustic analysis have the

same resolution, which provides a fully integrated isogeometric approach for coupled structural-

acoustic analysis of shells. The method is verified by the example of an acoustic plane wave
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which scatters over an elastic spherical shell. The ability of the presented method to handle

complex geometries is also demonstrated.
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Chapter 1

Introduction

1.1 Acoustic scattering in engineering applications

When a propagating sound wave encounters an obstacle, part of the wave will deviate and

spread around the obstacle. This phenomenon is called acoustic scattering [6]. Acoustic

scattering has many important applications. For example, it is used in medical ultrasound

imaging techniques [7, 8]. Ultrasonic equipment produces a high frequency acoustic wave. The

wave is transmitted in the human body and scattered by different tissues and viscera. Images

of the internals of the human body are constructed based on received echoes, which can help

doctors in diagnosis. Ultrasonic wave propagation in solids is also used in material testing [9].

For example, by analysing the ultrasonic wave scattering in metal, such as steel and aluminium,

defects and cracks can be detected because they behaved as acoustic scatterers. This technique

does not affect the performance of the subject under inspection and it is named non-destructive

testing (NDT) [10].

The sonar system is based on acoustic wave propagating underwater [11]. Sound waves are

transmitted into the water to detect underwater structures, such as torpedoes and submarines.

By constantly transmitting and receiving the acoustic waves, the speed and direction of the

travelling target can be inferred. By analysing the scattering behaviour, the sonar system can

estimate the size of the object and determine the profile of the detected target. The majority

of man-made underwater structures can be viewed as shell structures and they are more easily

1
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excited than rigid objects when impinged by incident acoustic waves. The shell structure vibrates

and becomes a secondary acoustic source, which also radiates additional acoustic waves. In this

circumstance, the acoustic wave consists of three parts: the incident wave, the scattering wave

and the radiated wave. Therefore, when designing underwater structures, the additional radiated

wave must be considered as it may significantly influence the ability to conceal the structure.

Analytical solutions for the acoustic scattering over simple geometries such as spheres and

cylinders can be found in [12]. However, practical engineering structures always have complex

geometries. These geometries must be modelled using CAD tools to show the design details.

Acoustic scattering over these geometries cannot be solved analytically. Therefore, numerical

methods are often used to analyse such complex geometries.

1.2 Numerical methods for coupled structural-acoustic anal-

ysis

The dynamic interaction between fluids and solids is an important concern for the engineering

design of underwater structures. Due to the coupling effect, the structural dynamic response and

acoustic performance of the underwater objects cannot be considered separately. An acoustic

wave propagating in the water creates a fluid load on the surface of the structures, thereby

exciting it. Furthermore the underwater structure scatters the acoustic wave and vibrates due to

the excitation. The shell moves with a velocity which also radiates an additional acoustic wave

to the fluid. This is termed an acoustic fluid-structure interaction (FSI) problem. To solve this

problem numerically, two formulations (one for the fluid and one for the solid) must be coupled

by finding the relationship between the relevant physics. The selection of appropriate numerical

method for the two different problems is vital for stability and robustness analysis. The finite

element method (FEM) is the dominant numerical method in structural analysis but the optimal

computational method for acoustics is subject to debate. Commonly used numerical methods in

computational acoustics include the finite element method, the finite difference method (FDM),

the finite volume method (FVM) and the boundary element method (BEM). They all have their

strengths and weaknesses depending on the type of problem. For the scattering problem with
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an infinite domain, the boundary element method has a unique advantage as it only requires a

discretisation of the boundary surface and it satisfies the Sommerfeld radiation conditions of

Helmholtz equation [13], which requires the acoustic wave must scatter to infinity. Using the

BEM to solve the Helmholtz equation for acoustic scattering problems is a common approach in

engineering. Notable literature includes Shaw [14], Ciskowski and Brebbia [15], Bai [16] and

Wrobel [17]. The BEM adopts the fundamental solution (Green’s function) of the governing

partial differential equation to establish an integral equation only on the boundary using Gauss’s

law. This integral equation is called the boundary integral equation and the boundary element

method is also known as boundary integral method. Then, the boundary integral equation is

discretised and the resulting system of equations with appropriate boundary conditions solved

numerically. Because the BEM is a semi-analytical method, the numerical results are more

accurate than those of other methods. However, the BEM has difficulties in dealing with non-

linear acoustic scattering in fluid [18], as governed by the Westervelt equation. The fundamental

solutions of such non-linear partial differential equation are impossible to obtain. Moreover, the

Green’s function of governing equation and its normal derivative often contain singular terms,

which leads to difficulties in their integration. Regularisation methods subtract a static term from

the original integration kernel which can decrease the strongly singular function into weakly

singular function and transformation methods (eg. polar coordinates transformation, Telles’

transformation [19] and Duffy transformation [20]) can be used to shift the positions of the

quadrature points and thereby avoid the remaining singularity.

A number of methods are available to couple the finite element method for structural

dynamics and boundary element method for acoustic analysis, to solve the acoustic FSI

problem. The earliest work to adopt this idea is Everstine and Henderson [21]. In order

to increase the computational efficiency, Fischer and Gaul [22] coupled the fast multipole

boundary element method with the plate elements. However, they adopted a Galerkin approach

to formulate the boundary element method. The Galerkin approach has a solid theoretical base

but requires a costly double integration over the boundary elements. Schneider [23] improved

the computational efficiency of the coupled method using a collocation approach to formulate

the boundary element method. However, Chen et al. [24] stated that the efficiency of the fast
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multipole boundary element method drops dramatically as the acoustic frequency increases. He

used a coupled finite element method and wideband fast multipole boundary element method to

overcome this problem.

1.3 Integrated CAD and numerical analysis for underwater

structures

In order to minimise resistance when moving in a fluid, the geometry of many underwater

structures, e.g. submarines, ships and torpedoes, are carefully designed as streamline bodies

with smooth surfaces. The conventional finite element and boundary element methods employ

a Lagrangian discretisation of the geometries. A Lagrangian dicrestisation often approximates

the geometry with a number of low-order elements, which introduces geometry errors into the

numerical results. Moreover, only C0 continuity can be obtained between elements, which

artificially create non-smoothness on the boundary and it increases the difficulty of performing

singular integration by inducing unnecessary corners on the boundary. A common approach

is to use discontinuous boundary element methods and locate the collocation points within the

elements, but it scarifies extra computational time.

There are two main formulations for shell analysis: Kirchhoff-Love theory and Reissner-

Mindlin theory. The Kirchhoff-Love formulation has the requirement that the deflection

field be C1 continuous everywhere. Thus conventional finite element method for shell

structures prefers to adopt Reissner-Mindlin theory due to Lagrangian discretisation can not

satisfy this requirement. However, Each nodal point in the discretised Reissner-Mindlin shell

has six degrees of freedom: three translational and three rotational. The three additional

degrees of freedom greatly increase the size of the system of equations to be solved with an

associated increase in computational time. Noels and Radovitzky [25] proposed a discontinuous

Galerkin (DG) method for Kirchhoff-Love shell to avoid this expensive computation. The

DG formulation [26] is also a finite element method derived from the weak formulation but

uses only piecewise continuous functions for interpolation and add an enforcement to achieve

inter-element C1 continuity. Another alternative to overcome this problem is using meshless
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method [27, 28].

Hughes et al. [29] proposed the concept of isogeometric analysis in 2005. The main objective

is to use the same discretisation for both design and analysis. The geometry discretisation used

in spline technology has a high degree of continuity between elements and can overcome both

problems for boundary element method and Kirchhoff-Love shell formulation in an elegant

way. Computer-aided design (CAD) and computer-aided engineering (CAE) are widely used for

design and analysis in many engineering fields. However, design models and analysis models

are usually generated in two different ways. The spline technology in CAD software can easily

model smooth, streamlined surfaces and capture details of the designed geometries. Engineering

analysis software however often use relatively simple schemes to discretise the geometry into a

number of low order elements for analysis. In the current engineering workflow, the object is

first designed with CAD software. The design model always consists of different components

in order to capture the design features. For instance, the main body of a submarine can be

modelled with fairly simple cylindrical and hemispherical geometries but the fins and propellers

should be described in detail with advanced CAD techniques. A common approach is to model

each component individually and assemble them at the end of the design, but this generally

leads to gaps and overlaps between the different components. Engineers must then manually

fix those conflicts to generate a mesh for analysis. After the numerical analysis, the results

provide guidances for design updates. This process will repeat until the analysis results meet all

the design criteria. The conversions between the design models and the analysis models often

require massive extra efforts and also sacrifice design features in order to be analysis-suitable.

In a practical engineering project, the works in meshing and CAD recovering stages may take

more than 80% of the entire analysis time [30]. This inefficiency greatly limits the development

of computer-aided engineering. IGA directly uses the spline functions from the design model

for analysis. Since the design and the analysis use the same discretisation, the geometry remains

unchanged in the entire analysis process and there are no geometric errors in the numerical

results. So, this method is called "isogeometric analysis". It integrates design and analysis and

skips the expensive data conversions.

The most commonly used technique in CAD software are Non-Uniform Rational B-Splines
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(NURBS), which are a general extension of B-splines to provide great flexibility and accuracy

to model specific geometries, such as spheres, cones and cylinders. Because NURBS dominated

the CAD market, early IGA tended to use NURBS discretisation for analysis. However, NURBS

surfaces have significant limitations for modelling complex geometries due to its tensor product

nature. A CAD model always combines multiple NURBS patches with different resolutions to

represent complex geometries with arbitrary topologies. In this case, it is difficult for the design

geometry to maintain watertightness and continuity between patches, which is problematic to the

analysis. Moreover, due to the tensor product nature, the NURBS model can not perform local

refinement and adaptive meshing during the analysis process. This greatly limits the application

of isogeometric analysis to practical problems. A number of analysis-suitable techniques have

been developed and implemented into IGA to overcome these two limitations, the most notable

being T-splines [2, 31]. Cirak and Ortiz [32] employed an alternative geometry representation

technique, Loop subdivision surfaces, for Kirchhoff-Love shell structural analysis. Unlike

T-splines, the subdivision surfaces is a mature geometry representing technique which are

already widely used in gaming and animation industries. The Loop subdivision surfaces adopt

a triangular linear control mesh to evaluate a smooth limit surface with quartic box-spline

functions [33]. The control mesh of Loop subdivision surfaces allows extraordinary vertices,

which means that the number of neighbouring vertices that each vertex can connect to is not

limited to six. Except for the surface points related to extraordinary vertices, the subdivision

limit surface hasC2 continuity everywhere. Where the surface points are related to extraordinary

vertices they have C1 continuity. The entire surface is smooth everywhere and the high level

of continuity meet the requirement of Kirchhoff-Love shell theory. Extraordinary vertices

enable subdivision surfaces to model watertight geometries with smooth surfaces and arbitrary

topologies, and they also provide the possibility of local refinement and adaptive meshing.

In computer aided design, solid geometries are modelled using a boundary representation (B-

rep) methods, where only the surfaces are represented using spline techniques. In engineering

analysis however, the dominant numerical methods always require volumetric discretisation.

The development of trivariate spline techniques that are compatible with analysis in CAD has

become the most important and challenging work in isogeometric analysis [1]. Nevertheless,
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both the boundary element method and shell formulation only require a boundary discretisation

of the object which means it is possible to use a subdivision discretisation to fully integrate the

design and analysis for the underwater structures which scatter acoustic waves.

1.4 Novel contributions

A new isogeometric boundary element method with subdivision surfaces is presented for

acoustic analysis. It employs the Loop subdivision surfaces to discretise the Helmholtz

boundary integral equation. By adopting the high order spline functions to perform Helmholtz

analysis, a higher accuracy per degree of freedom is obtained over equivalent quartic Lagrangian

discretisations. Inspired by the work done by Fritze et al. [34], this method is further

combined with the Kirchhoff-Love shell theory using the same Loop subdivision surfaces. The

implementation of the Kirchhoff-Love shell with Loop subdivision surfaces has been done by

Cirak and Ortiz [32]. A novel coupled boundary element and Kirchhoff-Love shell formulation

is presented based on their work to perform structural-acoustic analysis with Loop subdivision

surfaces. The Loop subdivision surfaces provide a smooth boundary discretisation with high

order spline functions which satisfy the C1 continuity requirement of the Kirchhoff-Love theory

and continuous boundary element method. Compared with methods in literature [23, 24, 34],

the presented method has a much smaller system matrix for the same problem and is hence more

computationally efficient. With the implementation of hierarchical matrices (H -matrices) [35],

this novel method can handle acoustic problems with higher frequency and complex practical

geometries.

1.5 Manuscript organisation

This thesis summarises the background knowledge and theory for the coupled isogeometric

boundary element and finite element method for structural-acoustic analysis with subdivision

surfaces. Numerical examples are also presented to verify the method and demonstrate the

advances of IGA in accuracy and efficiency. The goal of Chapter 2 is to review the literature
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on some of the most important developments in the IGA after the seminal paper published

in 2005. The focus is on the three limitations of NURBS and how to deal with them,

including the methods of performing analysis with commercial CAD models, the developments

of analysis-suitable splines and B-rep IGA methods. Chapter 3 presents the theories of

fundamental CAD techniques, NURBS and subdivision surfaces, from two dimensional curves

to three dimensional geometries. The acoustic boundary element method detailed in Chapter

4, where the fundamental solution of the Helmholtz equation, the governing equation for

acoustic problems, is first introduced. After that, a step-by-step derivation of the boundary

integral equation for acoustic scattering problem is presented. From Section 4.3.1, the novel

boundary element method with Loop subdivision surfaces is presented. A collocation approach

is introduced to formulate the boundary element method and the integration schemes for singular

integrals are demonstrated. Numerical examples are then presented to verify the methods in

Section 4.5. This thesis will not repeat the details of Krichhoff-Love shell with Loop subdivision

surfaces but a brief review will be presented in the first part of Chapter 5. This is followed by

an illustration of the coupled boundary element and finite element formulation for structural-

acoustic shell analysis. More practical geometries are used to demonstrate the advances of this

coupled isogeometric method in Section 5.3.



Chapter 2

A review of isogeometric analysis

This chapter will first introduce the concept of isogeometric analysis (IGA) and illustrate its

potential to change the traditional engineering workflow, followed by the three major challenges

in the development of IGA and the reasons for them. Then, a literature review of methods which

use industrial Computer Aided Design (CAD) geometries for IGA is given in Section 2.3. After

that, Section 2.4 will review the developments of analysis suitable computer aided geometry

design (CAGD) techniques including T-splines, Hierarchical B-splines, PHT-splines, LR B-

splines and subdivision surfaces. The last section will state the developments of parameterisation

methods to create volumetric splines discretisations for analysis and two surface-based IGA

methods using shell formulation and boundary element formulation.

2.1 Isogeometric concept

In modern engineering workflows, manufacturing industries rely on CAD models to describe the

geometry of a production object. During the creation of such models, numerical methods which

provide insight into the physical behavior of an object are used extensively with the process

often referred to as Computer Aided Engineering (CAE). Traditionally, engineering practice

considers CAD and CAE as two separate stages in the engineering workflow. Figure 2.1a

shows a flowchart of the conventional manufacturing design process. An initial design is always

generated and passed to the analysis engineer together with a CAD model. Then, the engineer

9
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Figure 2.1: (a) Conventional workflow. (b) Isogeometric analysis workflow.
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needs to convert the design model into a new model which is suitable for analysis. This step

normally heals and repairs corruptions of the model through manually patching gaps, removing

overlaps and defeaturing the complex detailed designs. After that, the model is volumetricly

meshed for analysis. After numerical analysis, e.g. using finite element or boundary element

analysis, engineers must adjust the CAD design model by updating corresponding design

parameters based on the analysis results. These steps will repeat a number of times until the

results satisfy all the design criteria. The CAD adjustments and mesh regenerating stages always

involve manual interfaces which are time consuming. Moreover, the complexity of geometry

in industries such as the automotive, aerospace and ship building is ever increasing, so that

approximately 80% of the total time of CAE is taken up by those mesh regeneration and CAD

recovery procedures [29]. Thus, the conversion between CAD models and analysis models is a

severe bottleneck in CAE and leading to costly time delays.

Isogeometric analysis was generalised and proposed by Hughes et al. [29] in 2005. The

IGA directly adopts the spline functions from design models to perform analysis. There is no

geometric error in the results since the design geometry and analysis geometry are one and the

same. The method is called "isogeometric analysis" because the geometry remains unchanged

during the analysis process. IGA aims to improve engineering product design using the same

discretisation to integrate design and analysis and skip the costly mesh regeneration stages. It

is a potentially revolutionary approach to overturn the traditional engineering workflow and

simplifies it into a more efficient version, as shown in Figure 2.1b. This IGA concept has been

implemented in a number of engineering applications. Areas of research receiving considerable

attentions include shell analysis [36], electromagnetics [37], structural vibrations [38], fluid-

structure interaction [39] and shape optimisation [40–42].

The early IGA literatures focused on Non-Uniform Rational B-Splines (NURBS), which is

derived from B-splines, simply because NURBS is the standard CAD geometry representation

tool widely used in commercial software. However, NURBS and B-splines are both developed

on a single patch rather than individual elements. As figure 2.2 shown, B-splines have a

parametric domain which can be subdivided into sub-domains and mapped to the physical

domain. Each basis function can span multiple sub-domains, which makes these sub-domains



CHAPTER 2. A REVIEW OF ISOGEOMETRIC ANALYSIS 12

not directly available as "elements" in finite element analysis. The Bézier extraction method was

a milestone of IGA developments [43]. It mapped sub-domains into individual Bézier elements.

With this mapping method, one can use different parametric domains for geometry and analysis,

and the Bézier elements can be easily evaluated using Bernstein polynomials which are more

amenable to computational methods.

Figure 2.2: An example B-spline mapping from parametric domain to physical domain. Figure

is reproduced from [1].

However, NURBS-based CAD models still have difficulties when used in IGA. The next

section will state the three main challenges that IGA faces to integrate design and analysis.

Section 2.3, 2.4 and 2.5 will further illustrate these three challenges and also review the works

have been done to overcome them.

2.2 Challenges of isogeometric analysis

Although IGA has a number of attractive features, applying the IGA workflow in industry is

not straightforward. The early IGA research focused on applying NURBS basis functions in

analysis simply because it is the most commonly used computer aided design tool in commercial

software. However, NURBS surfaces has three major limitations when they are used in analysis.
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2.2.1 Complex geometry with arbitrary topology

The first limitation is that NURBS surfaces have difficulties in modelling complex geometries

with arbitrary topologies. This is due to the tensor-products nature of NURBS surfaces. A

conventional NURBS-based IGA model can only describe complex geometries using a number

of tensor-product patches. The isogeometric analysis requires the patches to fit perfectly together

to keep geometries watertight and also remain high geometry continuity across multiple patches.

A geometry with arbitrary topology always requires significant number of patches jointed

together. This will require additional modifications of the complex CAD model before analysis.

2.2.2 Local refinement and adaptivity

The second limitation is NURBS model can not be locally refined and adaptively meshed in

analysis. This limitation is also caused by the tensor-product nature of NURBS surfaces. A

number of alternative CAD techniques were developed to overcome this limitation and used in

IGA, including Hierarchical B-splines [3, 44], T-splines [2, 31], PHT-splines [45, 46] and LR

B-splines [47, 48]. These locally refinable techniques are introduced in section 2.4. Another

alternative technology, subdivision surfaces, is also used in analysis [5]. Subdivision surface

is a geometry representation tool derived from B-splines, which overcomes the tensor-product

limitation of NURBS surfaces to enable local refinements. Subdivision surfaces can model

complex geometries with arbitrary topologies with one mesh.

2.2.3 Volumetric discretisation

The aforementioned two limitations are both attributed to the tensor-product nature of the

NURBS surfaces. This problem can be solved by using more advanced CAD tools. However,

not only NURBS surfaces, but almost all the CAD techniques have a third limitation which is

they are not volumetric representations. The spline-based CAD discretisation are all boundary-

representation methods. They use curved surfaces to represent three dimensional objects.

However, the dominant numerical method in computational engineering is the finite element

method which requires a volumetric discretisation of the analysis object. The early IGA works
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were limited to solving two dimensional problems. Comparing with the above two limitations,

overcoming this limitation is more essential and vital for developments of IGA as a design

tool. Therefore, a number of researchers are working to develop a robust and efficient method

to generate trivariate geometrical representations for the interior solid from the surface models

[4, 49–52].

The surface-based formulations are naturally attractive to the IGA community since they do

not suffer from this limitation. IGA shell formulations are always popular because isogeometric

analysis can provide smoothness of high order across elements which is essential for rotation-

free shell theories, such as Kirchhoff-Love. Boundary element method (BEM) solves partial

differential equations formulated as boundary integral equations. Compare with finite element

method it has several advantages, the most distinct feature attractive to IGA is that BEM solves

the three dimensional problems only using equations on boundaries which avoids the costly

volume parameterisation process. BEM can be applied in a number of engineering areas and

has particular advantages in exterior problems, such as acoustics and electromagnetics.

2.3 Working with industrial CAD geometries

The industrial CAD models often have gaps and overlaps and the computer aided geometry

design (CAGD) community either ignored these flaws or adopted very crude methods to solve

the problem as they mainly focused on creating smooth and accurate complex geometries.

In order to construct complex geometries with arbitrary topology, industrial CAD models

use trimming curves to remove parts of the surfaces. This is an efficient way for geometry

representation but it is also a crude approach from an analysis perspective. After IGA becoming

popular which linked CAGD and CAE communities, researchers started to pay attentions to

finding methods to joint different NURBS patches and also perform analysis with trimmed

surfaces.
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2.3.1 Conforming and non-conforming patches

As one of the limitations of NURBS surfaces, commercial CAD models are always composed

by a number of patches because of the tensor-product nature of NURBS. These patches often

connect poorly because they are, in general, not on the same parametric level. When these

models are used in analysis, the jointed boundaries of the non-match patches must be treated

carefully to ensure the geometries are watertight. The common issues include existing gaps

and overlapped surfaces. Costly manual interferences should be made to tide up the CAD

models before conducting the analysis. Moreover, the difference of mesh resolutions between

two jointed patches is a crucial challenge for a straightforward coupling. This problem is called

"non-conforming" patches. The conventional way to overcome this problem is to conform the

two patches by refining at least one of them to ensure the control points on the two jointed edges

are one-to-one corresponded. Then, the model becomes a conforming discretisation, as shown

in Figure 2.3b. Although applying analysis with conforming patches is relatively easy, there are

also notable works focused on coupling non-conforming patches for analysis [53–57] because

the non-conforming patches are more common in CAD models.
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(a)

(b)

Figure 2.3: (a) Example of non-conforming patches. (b) Example of conforming patches.

There are two different notations for continuity: parametric and geometric. A curve with

a parametric continuity Cn means the first to the nth derivatives of value at any point are

continuous. Two curves can be combined into a new curve with geometry continuity Gn if

the two segments have the same nth order geometry smoothness at the joint point. One of

the important advantages of IGA is that it can provide a high-order continuity discretisation.

However, it is difficult to achieve this property across NURBS patches. A number of studies have

been done to couple multiple patches and retain continuity across patches. Early studies of the

continuity across multiple patches include Cottrell et al. [58] who showedC0 continuity is easily

achieved for conforming patches. However, the more interesting C1 continuity across multiple

patches needs special treatments to achieve. C1 continuity is very important for isogeometric

analysis because it is required by Kirchhoff-Love shell formulation. Kiendl et al. [59] proposed

a method, called the bending strip, to perform shell analysis using an additional strip of fictitious

material in the connecting places. This method coupled the patches with a geometric continuity

G1, which means each pair of points on the jointed edge have a common tangent plane. Schmidt
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et al. [60] employed trimmed NURBS surfaces for coupling patches with C1 continuity to

perform shell analysis. But these two methods are only valid with conforming patches or

hierarchical meshes. Lei et al. [53] adopted a penalty formulation to couple non-conforming

NURBS patches for Kirchhoff-Love shell analysis in an isogeometric approach which has C0

and G1 continuity across patches. Successful coupling methods are also used for the analysis of

Reissner-Mindlin plates which also requires C1 continuity [52, 55].

2.3.2 Trimmed CAD surfaces

Trimmed CAD surfaces are an efficient way to define complex geometries with arbitrary

topologies in existing CAD software. Compared to conventional NURBS surfaces, trimmed

NURBS surfaces avoid separating the geometry into multiple tensor-product NURBS patches

by only use additional trimming curves to describe the trimmed regions, as Figure 2.4 shown.

This saves a lot of manual works in the implementation of IGA. In the original work presented

by Kim et al. [61], trimmed surfaces were used in an isogeometric finite element analysis for

two dimensional elastic plate problems. They presented the formulation for constructing the

system matrix with trimmed surfaces and showed the trimmed surfaces have better behaviour

over conventional NURBS surfaces. Kim et al. [62] extended this work and used the trimming

curves to describe both the outer boundaries and the inner trimmed regions of the geometry,

which showed the abilities of trimmed surfaces in describing any arbitrary topologies. The

data of the trimming curves are directly extracted from the CAD software for IGA analysis,

which is an integration of CAD and numerical analysis. The same spline functions are used

for both trimmed and non-trimmed regions, which maintained the isoparametric properties in

the IGA analysis of trimmed CAD surfaces. Because of the flexibility in representing arbitrary

topologies, the trimmed CAD surfaces was implemented in topology optimisations by Seo et al.

[40]. Schmidt et al. [60] presented a different method to perform isogeometric shell analysis

with surfaces coupled by several trimmed NURBS patches. Beer et al. [63] proposed a method

for isogeometric analysis with trimmed CAD surfaces involving an additional mapping step,

which provided a simple approach to perform IGA directly with the data from commercial CAD
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software.

(a) A NURBS surface.

Trimming Curve

(b) A NURBS surface trimmed by a NURBS curve.

Figure 2.4: An example of a trimmed CAD surface.

2.4 Analysis suitable CAGD techniques for IGA

The CAD community is a much larger than CAE community. Advanced geometry

representation methods were designed for film, animation, gaming and advertising but seldom

for engineering. The commercial CAD models are "dirty" geometries, which normally have

gaps and overlapped surfaces and the traditional analysis models always have large geometry
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errors and the geometries will keep changing during the refinements in analysis. The rapidly

evolving IGA has received attention from the CAD community. Development of analysis

suitable geometry representation tools becomes a new and attractive research direction, which

is to invent a good geometry representation technique for both design and analysis stages. This

section will introduce five analysis suitable CAGD tools used in isogeometric analysis.

2.4.1 T-splines

T-splines can be seen as NURBS surfaces with T-junctions. They were invented to overcome

the tensor-product limitation of the NURBS surfaces. They were first introduced in [31] and

quickly implemented in isogeometric analysis [2] using the finite element method. T-splines

are based on a new spline technology called point-based splines (PB-splines). PB-splines use

unstructured point clouds instead of meshes to control the geometries. Every control point in

the clouds has a local knot vector with arbitrary length and each control point is associated

with a blending function. The PB-splines can locally add more control points to describe

the complex part of the geometry and use sparse point cloud to represent the less important

regions. It can be seen as a generalisation of the NURBS but it removes the limitation of the

structured control meshes. However, PB-splines is not very compatible with other numerical

methods, e.g. finite element method and boundary element method, because it does not have

a clear element structure for analysis. Moreover, each of the blending functions is constructed

independently so that the discretisation model is very difficult to be refined without changing the

original geometry. Although PB-splines have a number of nice properties in adding flexibilities

in designing complex geometries, the weaknesses are also very obvious. To date, no commercial

software in the CAD market has used PB-splines to design geometries. T-splines adopt the

idea of the PB-splines which use local knot vectors to define blending functions but retain the

analysable elements structure of NURBS.

An example of a T-splines control mesh (T-mesh) is showed in Figure 2.5. Complex

geometries modelled by NURBS surfaces always suffer from watertight problems, such as gaps

and overlapping surfaces between two NURBS patches. T-splines allows hanging points to

connect two non-conforming patches into one single mesh, see Figure 2.6. It can model the
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geometry with a single smooth and watertight surface. In the conventional NURBS-based

IGA, costly manual modifications should be conducted to conform multiple patches before

the analysis stage. Using a T-splines discretisation in IGA can eliminate this time consuming

stage. Moreover, the T-junctions enhance the capability of T-splines to model more complex

geometries. It is easier to use a non-uniform mesh with higher densities for part of the geometry

to show more design details and lower densities for less important regions. Compared with

NURBS surfaces, T-splines can use far fewer control points to represent a geometry with the

same level of complexity. When T-splines are used in IGA, it allows for local refinements and

adaptive meshing of the geometry, which are essential for the design updates and circulative

analysis in CAE workflow.

control point

T-junction point

Figure 2.5: An example T-spline control mesh.
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Figure 2.6: (a) A complex CAD model of a hand. (b) Visible gaps existed between two NURBS

control grids. (c) A watertight T-mesh conforms NURBS patches. Figure is reproduced from [2].

2.4.2 Hierarchical B-splines

Hierarchical B-splines were introduced by Forsey and Bartels [44]. They refine parts of the

basis functions and combine the refined basis functions with the original ones, as shown in

Figure 2.7. The method adopts the refinable nature of B-splines and provides the ability to

locally refinements and add geometric details in the required locations without changing the

rest of the geometry. This is called multi-resolution editing. Vuong et al. [3] implemented

hierarchical B-splines in isogeometric analysis. Schillinger et al. [64] explored adaptive

hierarchical refinement for NURBS and used it to conduct fluid-structure analysis. Giannelli

et al. [65] modified the classical hierarchical B-splines and developed a new technique which

enables one to define locally supported basis functions, named truncated hierarchical B-splines

(THB-splines). Hierarchical B-splines overcome the issue of modelling local shape details but

because it still has a nested structure, it has difficulties in modelling geometries with arbitrary

topologies.
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Figure 2.7: Construction of a hierarchical B-spline: initial basis functions (above), refined

basis functions (middle) and combinations of two levels of basis functions (below). Figure

is reproduced from [3].

2.4.3 PHT-splines

In Section 2.4.1, T-splines were introduced as an advanced CAD technique. It overcomes the

tensor-product weakness of NURBS and has advantages in modelling complex topology and

conducting adaptive analysis, but the basis functions of T-splines are locally defined and the

sum of all the basis functions does not naturally equal to an unity. The basis functions of T-

splines must be divided with the sum to ensure each basis is a partition of unity. Therefore, the

basis functions of T-splines are rational functions. This feature makes T-splines complicated and

also costly to implement. Deng et al. [45] introduced the polynomial splines over hierarchical

T-meshes (PHT-splines) which extended the T-splines with hierarchical concepts which enhance

T-splines in a number of aspects including that it uses polynomial functions instead of rational

B-spline functions. PHT-splines can model more detailed features of geometries. However, in

the term of analysis, PHT-splines, as an extension of T-splines, are developed on a relatively

complicated theory and are hard to implement. By far, to the best knowledge of the author, no

commercial software implemented the PHT-splines for geometry design.
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(a) Level 0. (b) Level 1. (c) Level 2.

Figure 2.8: An example hierarchical T-mesh.

2.4.4 LR B-splines

Just as its name implies, Locally Refined B-splines (LR B-splines) have a very clear objective,

which is to add local refinement abilities on B-splines. It was proposed by Dokken et al. [47]

in 2013 to create a new CAGD technique which has advantages in both design and analysis and

it was implemented into IGA in 2014 by Johannessen et al. [48]. The LR B-splines method

is driven by the idea of refining the model directly in the parametric domain to locally create

new elements for analysis. Refinement happens by inserting line segments to partition a tensor-

product spline space into a T-mesh. Every inserted line segment will increase the dimension

of mesh and the corresponding basis functions in the affected region are deleted and new basis

functions are added back to complete the refinement process.

2.4.5 Subdivision surfaces

Subdivision surfaces is a good alternative to T-splines since it can also overcome the limitations

of NURBS surfaces and it is also a mature method which is widely used in animation and gaming

industries. A number of geometry design software for digital entertainment have implemented

subdivision surfaces. Compare with T-splines and PHT-splines, subdivision surfaces uses a

simpler data structure to represent complex geometries. One begins with a coarse polygon mesh

and applies a certain subdivision algorithm to recursively refine this polygon mesh until refined

meshes eventually converge to a smooth limit surface. The limit surface can be evaluated using

spline functions from any level of refined meshes. The polygon mesh can be locally refined

and adjusted to model any arbitrary topologies. The most well-known subdivision algorithm
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for generating surfaces is Catmull-Clark developed in 1978. Due to the advantages of the

subdivision surfaces in modelling geometries with arbitrary topologies, it gained popularity

during the 1990s along with the development of digital entertainment industries [66, 67].

Subdivision surfaces only have uniform parametric domains for all elements and the degree

of the surface is fixed, but it has the ability to represent complex geometries with simple

meshes and simple evaluating methods. This unique feature of subdivision surfaces has recently

gained the attention of the engineering community. Subdivision surfaces do not have the

limitations of NURBS and are also easy to implement. It has already been available in a

number of CAD commercial software including Autodesk Fusion 360 R©[68], PTC Creo R©[69]

and 3DS CATiATM[70] which provide prerequisites for integrating design and analysis using

this geometry representation technique. Loop [33] developed a subdivision scheme in 1987,

which can generate smooth surfaces through triangular control meshes. The Loop subdivision

surfaces can be evaluated using box splines basis functions. Cirak [5, 32] implemented Loop

subdivision surfaces for Krichhoff-Love shell analysis in 2000. Loop subdivision surfaces use

linear triangular mesh as the control mesh which is easily refined and adjusted during the

recursive analysis process. The analysis method with subdivision surface discretisation can

analyse a complex engineering geometry with only a single linear mesh where NURBS-based

IGA approach may need multiple patches to address the complex topologies. Subsequently,

subdivision surfaces have been extended to applications including shape optimisation [71], and

shells, including non-manifold shell geometries [72] and thick shells [73].

2.5 Volume parameterisation and surface-based IGA formu-

lations

2.5.1 Volumetric spline parameterisation

Because the dominant numerical analysis methods require volumetric discretisations, trivariate

splines have been developed in [74] and used in IGA. However, the CAD techniques used in
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commercial design software are only surface representing tools (bivariate splines). In order

to achieve a full integration of computer aided design and analysis, the parameterisation from

a bivariate spline-based surface into trivariate spline based solid is crucially required. Cotrell

et al. [1] stated that the development of three-dimentional spline parameterisations is "the

most significant challenge" in IGA. The early attempts of volume parameterisation in IGA

literature include [49, 75, 76]. Li et al. [75] used harmonic functions to conduct volumetric

parameterisation, but their approach requires expensive trial-and-error optimising. It requires

extensive manual interfaces which is not robust. Martin et al. [76] proposed an approach to

generate a trivariate B-spline mesh through parameterisation with discrete harmonic functions

from triangular surface mesh. However, this method can only be applied to genus-zero objects.

At the same time, Aigner et al. [49] applied an alternative swept volume parameterisation to

generate NURBS volume for isogeometric analysis. Shortly after the invention of T-splines,

the volumetric parameterisation of T-splines becomes popular because it provides the attractive

features of local refinements and adaptive meshing. Escobar et al. [50] developed a method

to generate trivariate T-splines meshes from triangular surface meshes. The parameterisation

through a fully automatic process. The method firstly maps the surface mesh to a three

dimensional parametric cube. Then, it generates an adapted and structured tetrahedral mesh

of the parametric cube and maps its boundary back to the surface. The inner nodes should

be relocated to the optimised positions using an untangling and smoothing procedure. After

that, it creates an adapted T-mesh by partitioning the parametric domain in cells according

to the tetrahedral parametric cube and also moves the "T-junctions" to the optimal positions

calculated from the volumetric parameterisation. Zhang et al. [4] proposed a more robust and

efficient algorithm for constructing rational T-splines volumetric discretisation. The procedure

is illustrated in Figure 2.9. They also developed the volumetric parameterisation method for

objects of genus greater than zero in [77]. Zhang et al. [78] also proposed a method to generate

conformal trivariate solid T-splines directly from a T-splines surface which reached an important

stage of the integration of CAD and analysis.
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Figure 2.9: (a) A triangular surface mesh of a CAD model. (b) The mapped parametric triangular

mesh on a cube. (c) The subdivision result for the parametric cube. (d) Constructing the model

with T-mesh and T-spline for the geometry. (e) Applying Bézier extraction on the T-splines.

Figure reproduced from [4].

2.5.2 Isogeometric shell formulations

Since volumetric parametrisation is the most challenging problem for isogeometric analysis,

shell formulation, which does not require volume discretisation, is attractive to the IGA

community. The IGA concept proposed in [29], uses the thin elastic shell as an example. The

two-dimensional shell theory consider the structure as a curved two-dimensional surface with

a relatively small shell thickness. There are two different shell theories: Kirchhoff-Love and

Reissner-Mindlin. Shells are classified into "thin" and "thick" shells according to the ratio

of the radius of curvature and the thickness (R/h). The Kirchhoff-Love shell theory, also

referred as "classic shell model", can only describe thin shells, where R/h ≥ 20. Reissner-

Mindlin shell theory is an extension of Kirchhoff-Love theory with the shear deformations

taken into account. The theory can be applied on both thin and thick shells. Reissner-

Mindlin only requires C0 continuity, while Kirchhoff-Love requires C1 continuity of the shell

surfaces. Conventional FE discretisation, such as Lagrangian discretisation, can only provides

C0 continuity across elements. So, even though most applications of shell analysis only use thin
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shells, Reissner-Mindlin shell theory is more popular in finite element analysis. However, the

Reissner-Mindlin shell formulation requires three additional rotational degrees of freedom at

each node, which will form a larger system matrix than Kirchhoff-Love shell theory which only

requires three translational degrees of freedom on each node. Therefore, Reissner-Mindlin shell

formulation is more expensive than Kirchhoff-Love shell formulation. One of the advantages

of the spline-based discretisations in IGA, is that they can provide at least C1 continuity,

which makes the rotation-free shell formulation (Kirchhoff-Love) easy to be implemented.

The first spline-based Kirchhoff-Love shell formulation was developed by Cirak et al. [32] in

2000, which implemented the FE shell formulation with subdivision surfaces. The subdivision

surfaces provide a fully C1 conforming discretisation for Kirchhoff-Love shell formulation.

After the IGA concept was proposed, Kiendl et al. [36] developed an isogeometric approach

of Kirchhoff-Love shell formulation with multiple G1 continuous NURBS patches and for

conforming NURBS patches only have C0 continuities, they also proposed a method to perform

shell analysis using additional strips of fictitious material at the patch interfaces to achieve G1

continuities across patches [59]. Benson et al. [79] developed the first isogeometric Reissner-

Mindlin shell formulation for analysing large deformation problems and they also proposed

an isogeometric Kirchhoff-Love theory [80]. Because the isogeometric shell formulation has

various applications in manufacture industries and are also easy to implement, the shell theories

are always used to test new IGA ideas. Uhm and Youn [81] implemented the T-splines in the

shell analysis with the Reissner-Mindlin theory. Nguyen-Thanh et al. [46] extended the rotation-

free Krichhoff-Love thin shell analysis with PHT-splines to gain the abilities of h-adaptive

refinements after they applied this advanced IGA discretisation tool on two-dimensional elastic

solid analysis [82].

2.5.3 Isogeometric boundary element method

The early IGA works are predominately focused on the use of the finite element method because

it is the most widely used numerical method in many applications. However, as stated in

section 2.1, three dimensional finite element method requires volumetric discretisations for

analysis where common CAD software normally only use boundary representation approaches,
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Figure 2.10: IGA workflow using BEM.

mostly NURBS surfaces, to model the geometry. The volume parameterisation of splines are

complicated and costly. Boundary element method is a traditional numerical computational

method which solves partial differential equations formulated as integral equations only on the

boundaries. It can solve three dimensional problems in many engineering and science areas.

Because boundary element method only requires the discretisation of the boundaries, it has

advantages in solving external and unbounded problems, such as acoustics and electromagnetics,

and it also can easily handle geometries with free or moving boundaries because its mesh

regeneration algorithm is much simpler than finite element method. The aim of IGA is to

integrate design and analysis using one model and BEM is the perfect match for achieving

this goal. Using BEM for analysis, the engineering workflow is simplified as shown in

Figure 2.10. Boundary discretisation normally has fewer degrees of freedom compared to

volumetric discretisation and when the scale of the problem is relatively small, BEM can analyse

the problem within a shorter period compared to the finite element method. When carrying

out a conceptual design, BEM analysis can be quickly performed after each change of the
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geometry. Based on this idea, Simpson et al. [83] proposed an isogeometric boundary element

method, termed as IGABEM, to analyse two-dimensional elastosatic problems with NURBS

basis functions. They showed that a seamless design-through-analysis process can be achieved

by using isogeometric boundary element method (IGABEM). IGABEM is a full integration of

CAD and analysis. Takahashi and Matsumoto [84] also implemented an isogeometric boundary

element method for two dimensional Laplace problems. They adopted the fast multipole method

to accelerate the matrix construction process. After that, Scott et al. [85] coupled unstructured

T-splines with isogeometric boundary element method to perform three dimensional analysis

of linear elastostatic problems. Peake et al. [86] extended the IGABEM for the application of

acoustics. They employed partition-of-unity enriched NURBS functions into two dimensional

Helmholtz problems. Simpson et al. [87] demonstrated three dimensional acoustic scattering

simulations using isogeometric boundary element method with T-splines, which showed the

superior accuracy of IGABEM in unbounded problems.

However, the weaknesses of boundary element method are also very obvious and

insurmountable. The boundary element method requires the explicit fundamental solutions of

the governing equations, which restrict the method to solve non-linear problems which analytical

solution are hard to obtain. Recent works to couple isogeometric boundary element method

with other method for solving complicated problems inculde [88]. The kernel functions in

boundary element method are normally singular and are difficult to be integrated accurately.

Regularisation methods are used to overcome this weakness but still have difficulties in extreme

situations, such as hyper-singular kernels in Burton-Miller method [89]. A more serious

limitation of boundary element method is that the matrices which construct the system of

equations are fully populated. When the scale of the problem becomes larger, the time to

construct the matrices and solve this system of equation increase more rapidly than finite

elements which produces sparse system matrices. The IGA uses spline functions which are

difficult to compute make the analysis more time-consuming. Accelerating methods, e.g.

fast multipole method [90] and hierarchical matrices [91, 92] are used to reduce the total

computational time. Boundary element method can also adopt a collocation approach to

formulate the system of equations which massively reduce the time of constructing the matrices.
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2.6 Summary

The developments of IGA focused on addressing the three limitations of current computer-aided

design techniques. The NURBS surfaces are the dominant technology in the CAD market,

but it is generated as a tensor-product of two NURBS curves which restricts the NURBS from

modelling complex geometries with arbitrary topologies. Two research directions are derived

in order to solve this problem. One is to use special treatments of NURBS surfaces to perform

analysis, including trimmed NURBS surfaces and NURBS patch coupling method. The other

research direction is to develop analysis-suitable CAGD techniques. Notable developments

include T-splines, hierarchical B-splines, PHT-splines and LR B-splines. The subdivision

surfaces is a mature CAD technique which is already widely used in animation and gaming

industries. It is based on a relatively simple principle to represent smooth surfaces and the

surfaces also can be evaluated with spline functions. The truncated subdivision surfaces can be

locally refined and applied adaptive meshing schemes.

However, the most challenging issue in the developments of isogeometric analysis is that

all the CAD models use boundary representative techniques but the numerical methods always

require volumetric discretisations. In order to achieve a fully integration of design and analysis,

the parameterisation from bivariate spline-based surface into trivariate spline based solid has

been developed. Both shell formulation and boundary element method only require a surface

discretisation of the geometries which can also overcome this challenge.



Chapter 3

CAGD fundamental techniques

This chapter will provide further details on the theory of two fundamental Computer Aided

Geometry Design (CAGD) techniques introduced briefly in the previous chapter which

are widely used in commercial software: Non-Uniform Rational B-Splines (NURBS) and

subdivision surfaces. Section 3.1.1 will use B-spline curve as a starting point to introduce

spline based geometry discretisations, followed by the theory of NURBS, which is a general

extension of B-spline. Then the theory of two dimensional NURBS surfaces are illustrated.

h- and p-refinement methods for NURBS are introduced in Section 3.1.4. Bézier extraction

method provides a data structure of NURBS for analysis and will be explained in Section 3.1.5.

Section 3.2.1 will introduce different subdivision algorithms for constructing curves and

Section 3.2.2 and Section 3.2.3 will introduce Catmull-Clark and Loop subdivision surfaces

respectively. The last section 3.2.4 will illustrate the evaluation method of Loop subdivision

surfaces, which is used in present work.

3.1 B-splines and NURBS

3.1.1 B-spline curves

In the current Computer Aided Design market, the most commonly used geometry

representation tool is NURBS, which is a general extension of B-splines to gain more control

over the geometry. A spline is defined as a piecewise polynomial function which can interpolate

31
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curves with a guaranteed level of continuity. The parametric domain of a spline is divided into

segments by a knot vector ξ. A knot vector is a set of coordinates in the parametric space, written

as ξ = {ξ1, ξ2, ..., ξi, ..., ξnc+np+1}, where ξi is the ith knot, i is the knot index, np refers to the

polynomial order, and nc is the total number of control points of the spline curve. The whole

parametric space of a spline can be seen as a patch of elements and the sub-domains between

two adjacent knots are the elements. A B-spline basis function Ni,np has a general form defined

as:

for np = 0:

Ni,0(ξ) =

 1 if ξi ≤ ξ < ξi+1,

0 otherwise,
(3.1)

while for np = 1, 2, 3, ...:

Ni,np(ξ) =
ξ − ξi

ξi+np − ξi
Ni,np−1(ξ) +

ξi+np+1 − ξ
ξi+np+1 − ξi+1

Ni+1,np−1(ξ), (3.2)

where ξ is the parametric coordinate and Ni,np denotes the ith basis function with order np B-

spline. This formulation is called the Cox-de Boor recursion formula [93, 94]. To understand

these basis functions, an example of B-spline curve is shown in Figure 3.1 and a plot of the

basis functions is showed in Figure 3.2. In this example, the B-spline curve has a knot vector

ξ = {0, 0, 0, 0.2, 0.4, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0} with np = 2. The point on the B-spline curve

are evaluated as:

S(ξ) =
nc∑
i=1

Ni,np(ξ)Pi,

where S ∈ R3 is the physical coordinates of a surface point on the curve. Pi ∈ R3 denotes the

physical coordinates of ith control point. This example curve has nc = 8 control points where

each associates with one basis function. The knot vector ξ has six non-repeated knots which

divide the B-spline curve into five elements. The first and last knots ξ1 and ξ6 are repeated

np + 1 times in the knot vector, which ensure that the vector is an open knot vector. An open

knot vector defines a separated B-spline patch. Generally, the B-spline curve with order np has

Cnp continuity everywhere except Cnp−1 the locations of the knots. The continuities at the knot

will decrease to Cnp−k if the knot repeat k times in the knot vector. For example, the curve in
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Figure 3.1 has two open end knots ξ1 and ξ6. It has C2 everywhere except the locations of knots

ξ2, ξ3, ξ4 and ξ5. The continuity at knot ξ5 decreases to C0 because it repeated twice in the vector

while the other knots can keep C1 continuities.
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Figure 3.1: An example B-spline curve with ξ = {0, 0, 0, 0.2, 0.4, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0},
nc = 8 and np = 2.
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The B-spline basis function, shown in Figure 3.2, Ni,np is only non-zero in the span between

knots ξi and ξi+np+1. It means the basis functions locally support the curve. By changing one

of the control points, it only affects a specific region of the curve and other parts will remain

the same. For a parametric coordinate ξ in any location, the sum of the basis functions equal

to 1.0, i.e.
∑n

i=1Ni,np = 1.0, and all the basis functions are non-negative. However, different

from Lagrange polynomials, B-splines can have more than one non-zero basis functions at knots

(element boundary points).

3.1.2 Non-Uniform Rational B-Splines curves

‘Non-uniform’ means the knots of the spline are not equally-spaced in the parametric domain.

This allows for special local adjustments in specific regions of the curve which is essential for

modelling a complex geometry. The basis functions defined in Equation 3.2 is a non-uniform

B-spline function. In Section 3.1.4, the method of inserting new knots will be introduced. The

knots can be inserted in any parametric location without changing the geometry to create non-

uniform B-spline curves. Uniform B-spline curves are a special case of non-uniform B-spline

curves.

The non-uniform B-spline gives more controls over the curve than uniform B-spline, but

it is still impossible to model exact geometries, such as circles and ellipses, that can not be

modelled with low-order B-spline curves. One of the solutions to model these geometries is to

use "rational B-spline curves". "Rational B-spline curves" means the objects modelled by the

spline can be expressed by rational polynomials. It associates a "weight" with each control point

allowing the flexibility to drag and push the curve closer or further away from the corresponding

control point by changing the weight. This method does not create additional control points

and also preserve the original continuity. For a control point Pi = [xi, yi, zi], a "weight" wi is

associated. The homogeneous coordinates (one order higher than normal Cartesian coordinates)

of the control point PiH are defined by

PiH = [xiwi, yiwi, ziwi, wi]
T .
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Then, the B-spline curve point SH is expressed as

SH(ξ) =
nc∑
i=1

Ni,np(ξ)PiH .

It can be converted back to Cartesian coordinate system by dividing SH(ξ) by the fourth

coordinate w(ξ), where

w(ξ) =
nc∑
i=1

wiNi,np(ξ).

The expression for S becomes

SH(ξ) =
nc∑
i=1

Ni,np(ξ)wi∑nc
j=1Nj,np(ξ)wj



xi

yi

zi

1


. (3.3)

or in terms of the first three components

S(ξ) =
1∑nc

j=1Nj,np(ξ)wj

nc∑
i=1

Ni,np(ξ)wiPi,

and the equation can be simplified to

S(ξ) =
nc∑
i=1

Ri,np(ξ)Pi,

where

Ri,np(ξ) =
Ni,np(ξ)wi∑nc
j=1Nj,np(ξ)wj

.

The sum of rational basis functions
∑
Ri = 1.0, and one can control the curve by changing

the weight of the corresponding control point (basis function). If all weights are equal to one,

the NURBS curve will reduce to a B-spline curve. Figure 3.3 shows a comparison between

B-spline curve and a NURBS curve. The NURBS has a weight vector {1, 2, 1, 2, 1, 1, 2, 1} and

is therefore moved closer to the corresponding control points P2, P4 and P7.
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Figure 3.3: A comparison between a B-spline and a NURBS curve with a weight vector

{1, 2, 1, 2, 1, 1, 2, 1}.

3.1.3 NURBS surfaces

CAD software often uses a surface representation for three dimensional modelling. The most

widely adopted surface representation is the NURBS. The NURBS surfaces are based on the

concept of bilinear patches, which is the simplest CAD surface and can be seen as an unique

case of NURBS surface. The surface has a simple expression given by

S(u, v) = P1(1− u)(1− v) + P2(1− u)v + P3u(1− v) + P4uv, (3.4)

where S is a surface point on a bilinear patch and P1, P2, P3 and P4 are the coordinate vectors

of the four control points, and u and v are the parametric coordinate components. The NURBS

surface also has parametric directions but the surface points are interpolated with B-spline

basis functions including an additional fourth component, known as a weight, which allows

geometries, such as cones, spheres and ellipsoids to be represented exactly. A NURBS surface

point is defined by
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P(u, v) =

∑m
i=1

∑n
j=1 wi,jPi,jN

m
i (u)Nn

j (v)∑m
i=1

∑n
j=1 wi,jNm

i (u)Nn
j (v)

, (3.5)

where m and n are the numbers of control points in the two directions, and Nm and Nn

are two sets of B-splines basis functions in two directions expressed using Equation 3.1 and

Equation 3.2, i and j are the indices for the control points in two directions, and wi,j is the

weight of point Pi,j . Figure 3.4 shows an example of NURBS surface with 16 control points.

Figure 3.4: An example of a NURBS surface.

3.1.4 Refinement

In Section 3.1.1, the commonly used CAD tool non-uniform rational B-splines was introduced.

One of the interesting properties of NURBS is that it allows subdivision and order elevation of

the spline without changing the geometry through inserting a number of new knots into the knot

vector. A curve can be defined by various combinations of knot vectors and control points. It

is very useful in analysis as it easily allows for h-and p-refinement of the discretisation of the
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geometry.

Knot insertion We first introduce how to insert a knot into the parametric domin of a B-spline

or NURBS curve. Assume a B-spline curve has a knot vector ξ = {ξ1, ξ2, · · · , ξnc+np+1}. Insert

an knot ξ̄ into the knot vector ξ and assume the knot is located between ξk and ξk+1. The new

knot vector will thus be ξ = {ξ1, ξ2, · · · , ξk, ξ̄, ξk+1, · · · , ξnc+np+1}. The number of new control

points will be increased by one, i.e. nc + 1. The new set of control points is computed as

P̄i =


P1, i = 1.

αiPi + (1− αi)Pi−1, 1 < i < nc + 1.

Pnc , i = nc + 1.

(3.6)

αi =


1, 1 ≤ i ≤ k − np.
ξ̄−ξi

ξi+np−ξi
, k − np + 1 ≤ i ≤ k.

0, i ≥ k + 1.

(3.7)

h-refinement The "h" in "h-refinement" refers the sizes of elements, hence "h-refinement"

means subdivide the elements into smaller elements. Uniformly inserting new knots will

uniformly subdivide the parametric domain of the NURBS curve. NURBS allows to be

non-uniformly refined, which is a generalisation of B-splines introduced in Section 3.1.1.

Figure 3.5 shows an example of applying uniform h-refinement on a NURBS curve. The

initial knot vector is ξ = {0, 0, 0, 0.2, 0.4, 0.6, 0.8, 0.8, 1, 1, 1} and the refined knot vector is

ξ̄ = {0, 0, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.8, 0.9, 1, 1, 1}. The number of control points

has increased from 8 to 13.
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Figure 3.5: An example of h-refinement of NURBS.

p-refinement p-refinement elevates the polynomial order of the NURBS curve without

changing the geometry and the number of elements. The method firstly subdivides the curve into

a number of Bézier curves by repeating knots (this method will be introduced in Section 3.1.5)

and elevating the order of these individual Bézier curves. After that, it combines these curves

into one new NURBS curve of higher order by removing the unnecessary knots. Figure 3.6 use

the same curve to show the effect of p-refinement. After elevating the polynomial order by one,

the refined knot vector becomes ξ̄ = {0, 0, 0, 0, 0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 0.8, 1, 1, 1, 1}.

Every unique knot in the vector has been repeated once to retain the original continuities. The

number of control points is increased from 8 to 13, but the element number stays the same.
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Figure 3.6: An example of p-refinement of NURBS.

3.1.5 Bézier extraction

Bézier decomposition Bézier decomposition repeats all interior knots to discretise the spline

curve into piecewise Bézier elements. The interior knots are repeated to have multiplicities equal

to np.

Take a B-spline as an example, a cubic B-spline has a knots vector ξ = {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}.

The interior knots should have multiplicities equal to 3. In order to apply Bézier composition

on this B-spline, the knots 1, 2 and 3 will be repeated twice to achieve a new knot vector

ξ̄ = {0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4} using the method introduced in Section 3.1.4.

Repeating the interior knot once will reduce the continuity of the basis by one but the continuity

of the resulting curve will be unchanged. The method creates additional control points at the

positions of the knots to break the patch into Bézier elements. Figure 3.7 shows a B-spline is

decomposed into a number of Bézier curves and Figure 3.8 shows an example of the piecewise

basis functions.
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Figure 3.7: An example Bézier extraction of a B-spline curve with knot vector ξ =

{0, 0, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.8, 0.9, 1, 1, 1}.
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Figure 3.8: Plots of piecewise Bézier basis functions of the curve shown in Figure 3.7.

Computing the Bézier extraction operator Given a NURBS curve with a knot vector

ξ = {ξ1, ξ2, · · · , ξnc+np+1} and the set control points is P = {Pi}nci=1. To achieve the Bézier
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decomposition, a set of new knots, {ξ̄1, ξ̄2, · · · , ξ̄m}, should be inserted into the initial knot

vector. Denote the j th new knot as ξ̄j , where j = 1, 2, · · · ,m. Then, for j th inserting knot, the

new control points after the knot insertion can be generated from the old control points as

P̄
j+1

= [Cj]T P̄
j
,

where the matrix Cj can be generated as

Cj =



α1 1− α2 0 · · · 0

0 α2 1− α3 0 · · · 0

0 0 α3 1− α4 0 · · · 0

...

0 · · · 0 α(n+j−1) 1− αn+j


,

where the coefficient αji can be calculated using Equation 3.7 for the ith inserting knot.

After insertingm knots, the final set of control points P̄m+1 will represent the result of Bézier

decomposition. Let Pb = P̄
m+1 and define CT = [Cm]T [Cm−1]T · · · [C1]T and the resulting

control points of the Bézier decomposition are written as

Pb = CTP. (3.8)

The geometry of the curve remain the same during the knot inserting process, thus we have

[Pb]TB(ξ) = PTN(ξ),

where B is a vector form of Bernstein polynomial functions. Rewrite [Pb]TB(ξ) with

Equation 3.8 yields

[Pb]TB(ξ) = [CTP]TB(ξ) = PTCB(ξ).

Then, the B-spline basis function can be written as a product of matrix C and Bernstein basis
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functions.

N(ξ) = CB(ξ).

The matrix C is called the Bézier extraction operator.

Evaluation of NURBS surfaces using Bézier elements Although a NURBS curve is natural

divided into a number of elements by the knot vector, the NURBS basis functions are not

efficient for analysis. The NURBS basis functions, introduced in Section 3.1.1, are based on

B-spline basis functions. A NURBS curve normally has a number of basis functions which

are continuous on different elements, see Figure 3.2. When evaluating one of the element in a

NURBS patch, the B-spline basis functions should be computed using recursive functions (see

Equations 3.1 and 3.2) which means they are very expensive when used for analysis. Bézier

extraction operator maps a NURBS into a number of Bézier elements. Bézier element are

considered more efficient for analysis because they can be evaluated with Bernstein polynomial

basis functions which are simple and consistent in all the elements. All elements have the same

np + 1 basis functions and the ith Bernstein polynomial basis of an order np Bézier curve is

computed with a simpler formulation by

Bi(ξ) =

 np

i− 1

 ξi−1(1− ξ)np−(i−1), i = 1, 2, 3, . . . ,np + 1,

where the binomial coefficients are calculated as np

i− 1

 =


np!

(i−1)!(np+1−i)! if 1 ≤ i ≤ np + 1,

0 else.

There are np + 1 polynomial basis functions for a Bézier curve with degree np. The Bézier

extraction provides a good element structure for numerical analysis. Figure 3.9 shows the

mapping between Bézier element and a NURBS surface. The Bézier element is an analysis

element with a parametric domain [−1, 1]× [−1, 1]. Every point in this domain can be mapped

onto a parametric point on a NURBS surface which has a domain [0, 1] × [0, 1]. This mapping
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method allows one to use two different discretisations to separate the geometry representation

and analysis. The geometry can be represented using lower-order NURBS surfaces, and the

analysis model can consist of a number of Bézier elements which use Bernstein polynomial

basis functions for evaluation. The analysis model can easily apply h- and p-refinements without

changing the geometry.

NURBS Surface

Bezier Element

v
u

(0,1)

(0.5, 1)

(1,1)

(1,0.5)

(0.5,0.5)

(0,0.5)

(0,0)

(0.5,0)
(1,0)

(-1,1) (1,1)

(-1,-1) (1,-1)

ξ

η

P(-0.8,0.8)

P’(0.05,0.45)

x
y

z

Figure 3.9: Mapping from Bézier element integration domain to NURBS parametric domain.

3.2 Subdivision curves and surfaces

Subdivision surfaces is a mature geometry discretisation technology with history dating back to

the late 1970s. It is also derived from B-splines but in a different way to NURBS. There exist a

variety of subdivision schemes, but the basic idea is to use a subdivision scheme to generate a

smooth surface through a limiting procedure of repeated refinement steps starting from an initial

polygon grid. Compared with NURBS, subdivision surfaces has the advantage of using a single
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polygonal mesh to represent complex geometries with arbitrary topology.

3.2.1 Curves

Chaikin’s algorithm The concept of subdivision surfaces can be explained starting with a

basic subdivision curve, Chaikin’s curves. Constructing a subdivision curve requires a control

polygon and a subdivision algorithm. A recursive refinement scheme is used to generate new

polygons from the initial control polygon. The result of the limiting process is a smooth

subdivision curve. Chaikin’s algorithm is a corner cutting scheme which successively cut the

corner with a fixed ratio. The algorithm is given as:

• Given an initial control polygon (P0
0, P0

1, P0
2, P0

3, ..., P0
n).

• Apply first level of refinement by calculating:



P1
0 =

3

4
P0

0 +
1

4
P0

1, P1
1 =

1

4
P0

0 +
3

4
P0

1,

P1
2 =

3

4
P0

1 +
1

4
P0

2, P1
3 =

1

4
P0

1 +
3

4
P0

2,

. . .

P1
2n−2 =

3

4
P0
n−1 +

1

4
P0
n, P1

2n−1 =
1

4
P0
n−1 +

3

4
P0
n.

• Apply ith level of refinement on j th segment using equations:


Pi

2j =
3

4
Pi−1
j +

1

4
Pi−1
j+1,

Pi
2j+1 =

1

4
Pi−1
j +

3

4
Pi−1
j+1.

• The limit of the algorithm is Chaikin’s curve.

Figure 3.10a shows the successive refinement process and Figure 3.10b shows the curve which is

the limit result of the algorithm. The work [95] has shown that the limiting curve of a Chaikin’s

curve is identical to a quadratic B-spline curve.
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Figure 3.10: Chaikin’s Algorithm

Catmull-Clark algorithm Motivated by Chaikin’s curve, Catmull and Clark [96] developed

the bicubic B-spline patch subdivision algorithm for describing smooth three dimensional

objects. Catmull-Clark subdivision surfaces are widely used in the animation and gaming
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industries. Catmull-Clark subdivision surfaces are derived as tensor-products of Catmull-Clark

curves, but do not have the limitations of tensor-product-based NURBS surfaces. Using the same

idea of the Chaikin’s algorithm, Catmull-Clark algorithm successively refines a curve starting

from an initial set of control points and the curve is limited to a cubic B-spline curve.

Refined edge point

Refined vertex point

P i
2j

P i−1
j

P i
2j+1

P i−1
j+1

P i
2j+2

P i
2j+3

P i−1
j+2

P i−1
j+3

P i
2j+4

Control point

Figure 3.11: Computing new control points through the Catmull-Clark algorithm.

Figure 3.11 shows an example of Catmull-Clark algorithm. The control point Pi
2j in the ith

level of refinement is computed as:

Pi
2j =

1

2
Pi−1
j +

1

2
Pi−1
j+1.

Point Pi
2j is the middle point of Pi−1

j -Pi−1
j+1. It is called "edge point". The control point Pi

2j+1 is

computed as:

Pi
2j+1 =

1

8
Pi−1
j +

3

4
Pi−1
j+1 +

1

8
Pi−1
j+2.

To compute this point, one needs to connect the middle points of Pi
2j-P

i−1
j+1 and Pi−1

j+1-Pi
2j+2

and the point Pi
2j+1 is the middle point of the connecting line. This type of point is called

"vertex point". Each "vertex point" is associated with an upper level control point. Figure 3.12a

shows two levels of refinements using Catmull-Clark algorithm for constructing a curve and

Figure 3.12b shows the limiting result which is a Catmull-Clark curve.
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Figure 3.12: Catmull-Clark Algorithm

Quartic subdivision curves The Chaikin’s algorithm and the Catmull-Clark algorithm are

two well-known recursive subdivision schemes which can generate quadratic and cubic B-spline

subdivision curves respectively. There are also algorithms for higher order B-spline subdivision
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curves. For example, the algorithms for quartic B-spline subdivision curves [97] is given by


Pi

2j =
5

16
Pi−1
j +

5

8
Pi−1
j+1 +

1

16
Pi−1
j+2,

Pi
2j+1 =

1

16
Pi−1
j +

5

8
Pi−1
j+1 +

5

16
Pi−1
j+2.

(3.9)

3.2.2 Catmull-Clark subdivision surfaces

With the concept of the bilinear patch, NURBS surfaces are generated as the tensor products

of two one-dimensional NURBS. Surfaces can also be generated as the tensor products of two

one-dimensional subdivision curves. Subdivision surfaces based on the Chaikin’s subdivision

algorithm are called Doo-Sabin surfaces [98] (or Chaikin’s surfaces). A more well known

subdivision surfaces algorithm is the Catmull-Clark subdivision surfaces which can generate bi-

cubic B-spline surfaces. To the Catmull-Clark algorithm, one face in the original control mesh

is split into four new faces. For a closed surface, the numbers of faces and control points are

doubled. Figure 3.13 shows an example of generating new control mesh through the Catmull-

Clark algorithm.

Similar with one-dimensional Catmull-Clark curve, the new refined control points can be

classified into three types: ‘face point’,‘edge point’ and ‘vertex point’. The ‘face points’ in ith

refinement is computed as:

Pi
2j,2k =

1

4
Pi−1
j,k +

1

4
Pi−1
j,k+1 +

1

4
Pi−1
j+1,k +

1

4
Pi−1
j+1,k+1,

where j and k are indices of control points for two perpendicular directions. The ‘face point’ is

the central point of the original face. The ‘edge point’ is computed as

Pi
2j+1,2k =

1

16
Pi−1
j,k +

3

8
Pi−1
j,k+1 +

1

16
Pi−1
j,k+2

+
1

16
Pi−1
j+1,k +

3

8
Pi−1
j+1,k+1 +

1

16
Pi−1
j+1,k+2,

or
Pi

2j,2k+1 =
1

16
Pi−1
j,k +

1

16
Pi−1
j,k+1 +

3

8
Pi−1
j+1,k +

3

8
Pi−1
j+1,k+1

+
1

16
Pi−1
j+2,k +

1

16
Pi−1
j+2,k+1.
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Figure 3.13: Computing refined control mesh through the Catmull-Clark algorithm.
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The ‘vertex point’ is computed as

Pi
2j+1,2k+1 =

1

64
Pi−1
j,k +

3

32
Pi−1
j,k+1 +

1

64
Pi−1
j,k+2

+
3

32
Pi−1
j+1,k +

9

16
Pi−1
j+1,k+1 +

3

32
Pi−1
j+1,k+2

+
1

64
Pi−1
j+2,k +

3

32
Pi−1
j+2,k+1 +

1

64
Pi−1
j+2,k+2.

With these formulas, the new control mesh in the ith level of refinement can be computed using

the matrix operator:

Pi = SPi−1,

where Pi refers the set of control points in ith level of refinement and S is a subdivision operator

which is a matrix consisting of a set of weights. Each weight associates with a control point in

Pi−1. The weight distributions for different types of control points are shown in Figure 3.14.

After a successive levels of refinements, a smooth B-spline surfaces can be obtained. Figure 3.15

shows a smooth spherical surface generated through levels of refinement starting with a cubic

control mesh.

Extraordinary points As mentioned, the Catmull-Clark subdivision surface is similar in

nature to NURBS surface as both of them are the tensor products of two one-dimensional curves.

As a result, each vertex point in subdivision surface control mesh is connected with only four

faces. We define the number of faces connected with the point as the ‘valence’ of the vertex. A

regular vertex in a Catmull-Clark surface mesh has a valence of 4. However, contrary to NURBS

surfaces, Catmull-Clark subdivision surface can handle irregular cases where the valence of

vertex is not equal to 4. Thus allows it to handle arbitrary topologies. In the seminal paper

on Catmull-Clark surfaces [96], they proposed a way to modify the weight distributions for a

vertex with a valence not equal to 4 in order to achieve complex geometries. Those irregular

points are called extraordinary points. Figure 3.16 shows the weight distributions for computing

an extraordinary point. With this easy solution, Catmull-Clark surfaces can use a single mesh to

present surfaces of arbitrary geometries while other spline-based CAD tools, such as NURBS

surface, need to link up multiple patches. Peters and Reif [99] have proven that the limiting
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Figure 3.14: The weight distribution for computing different types of new control points.

Figure 3.15: Catmull-Clark subdivision algorithm applied to an initial cube control mesh.
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surface of Catmull-Clark subdivision algorithm has C2 continuity all over the surface except at

the extraordinary vertices. But the corresponding surface locations of the extraordinary vertices

retain C1 continuity.

τ

κ

τ

κ

τ

κ

τ

κ

υ

κ

υ

κ

υ

κ

υ

κ

υ

κ

1 − τ − υ

Extraordinary point

κ Valence of extraordinary point

υ = 3/(2κ)

τ = 1/(4κ)

Figure 3.16: Weight distributions for computing an extraordinary point with valence κ.

3.2.3 Loop subdivision surfaces

In the 1990s, Catmull-Clark subdivision surfaces based on quadrilateral elements became the

most widely-used geometry representation method in the animation and gaming industries.

However, a triangular mesh has advantages in modelling arbitrary geometries with complex

topologies. In 1987, Loop presented an approximating subdivision scheme in his Master’s

thesis [33] which can generate smooth surfaces with triangular control meshes. Similar with

the Catmull-Clark subdivision scheme, the smooth surface is defined as the limit of an infinite

number of subdivisions of the initial polygon control mesh. In each subdivision, all the elements

are quadrisected into four new sub-elements and new points are computed at the middle points
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of all edges. Then, the new edge points and the original vertex points are adjusted by a weight

which smooths the original mesh. Figure 3.17 shows the refinement of a triangular mesh using

the Loop subdivision scheme. For a vertex point with a valence of κ, the new edge points can

be computed as:

Pi+1
j =


3
8

[
Pi

0 + Pi
j

]
+ 1

8

[
Pi
κ + Pi

j+1

]
, j = 1,

3
8

[
Pi

0 + Pi
j

]
+ 1

8

[
Pi
j−1 + Pi

j+1

]
, j = 2, 3, . . . ,κ− 1,

3
8

[
Pi

0 + Pi
j

]
+ 1

8

[
Pi
j−1 + Pi

1

]
, j = κ.

Because of the quadrisecting scheme, every new refined edge point will be a vertex with a

valence 6 in the refined mesh. The old vertex point is relocated with a weight w as:

Pi+1
0 = [1− κw] Pi

0 + w
κ∑
j=1

Pi
j. (3.10)

The new vertex point will remain the same valence as the original vertex has. In Loop’s thesis,

the w0 is given as:

w =
1

κ

[
5

8
−
[

3

8
+

1

4
cos

2π

κ

]2
]

.

But it was proven that a simpler choice proposed by Warren [100] can also define smooth

surfaces:

w =


3

8κ
for κ > 3,

3
16

for κ = 3.

Extraordinary points In a Loop subdivision control mesh, the regular vertex has a valence

equal to 6. A vertex whose valence not equal to 6 is called an extraordinary point. Equation 3.10

is a general function which defines the refinement rules of computing new extraordinary vertex

points. Evaluating points in an element with extraordinary point is possible, details are given

in Section 3.2.4. Similar to Catmull-Clark subdivision surfaces, the Loop subdivision surfaces

have C2 continuity every except the extraordinary points. The corresponding surface locations

of the extraordinary vertices have C1 continuity.
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Figure 3.17: Computing refined control mesh through the Loop subdivision algorithm for a

regular vertex.

3.2.4 Evaluation of Loop subdivision surfaces

Without the extraordinary points in the mesh, the limiting surface of a Loop subdivision surface

can be evaluated from a number of triangular Bézier element patches. The basis functions

are derived from box splines. Furthermore, Stam [101] developed a method to evaluate

the extraordinary points on Loop subdivision surfaces. This section will first introduce the

evaluation method for elements with no extraordinary points in Loop subdivision surfaces. Then

the method for evaluating elements with extraordinary will be discussed.

12

345

6789

101112

Figure 3.18: A regular patch for an element in Loop subdivision surfaces.
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45

Figure 3.19: A regular patch with ghost points for an element in Loop subdivision surfaces.

Regular patch An element with no extraordinary point (all vertices have valences equal to 6)

can form a regular patch with 12 control points as shown in Figure 3.18. If one of the edges

of the element is on the boundary, e.g. Edge 4-7 in Figure 3.19 is on the boundary, The points

5, 8 and 11 should be mirrored to 1, 3 and 6. The three points are named ghost points. Using

the method proposed by Lai [102], the physical coordinates S of a point in the triangular Bézier

element can be interpolated with box spline functions by

S =
12∑
i=1

N(u, v,w)iPi,

where Ni(u, v,w) is the ith box spline function and Pi is the coordinates of the ith control point.

The box spline function N(u, v,w)i is calculated with a barycentric coordinates (u, v,w). The

coordinates system is shown in Figure 3.20. Vertex 4 has a coordinates (1, 0, 0), vertex 7 has a

coordinates (0, 1, 0) and vertex 8 has a coordinates (0, 0, 1).
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4 7

8

Figure 3.20: Barycentric coordinate of a triangular element.
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The set of basis functions {Ni(u, v,w)}12
i=1 are specified as

N1 =
1

12
(u4 + 2u3v)

N2 =
1

12
(u4 + 2u3w)

N3 =
1

12
(u4 + 2u3w + 6u3v + 6u2vw + 12u2v2 + 6uv2w + 6uv3 + 2v3w + v4)

N4 =
1

12
(6u4 + 24u3w + 24u2w2 + 8uw3 + w4 + 24u3v + 60u2vw + 36uvw2

+ 6vw3 + 24u2v2 + 36uv2w + 12v2w2 + 8uv3 + 6v3w + v4)

N5 =
1

12
(u4 + 6u3w + 12u2w2 + 6uw3 + w4 + 2u3v + 6u2vw + 6uvw2 + 2vw3)

N6 =
1

12
(2uv3 + v4)

N7 =
1

12
(u4 + 6u3w + 12u2w2 + 6uw3 + w4 + 8u3v + 36u2vw + 36uvw2 + 8vw3

+ 24u2v2 + 60uv2w + 24v2w2 + 24uv3 + 24v3w + 6v4)

N8 =
1

12
(u4 + 8u3w + 24u2w2 + 24uw3 + 6w4 + 6u3v + 36u2vw + 60uvw2 + 24vw3

+ 12u2v2 + 36uv2w + 24v2w2 + 6uv3 + 8v3w + v4)

N9 =
1

12
(2uw3 + w4)

N10 =
1

12
(2v3w + v4)

N11 =
1

12
(2uw3 + w4 + 6uvw2 + 6vw3 + 6uv2w + 12v2w2 + 2uv3 + 6v3w + v4)

N12 =
1

12
(2vw3 + w4).

(3.11)

The set of basis function is denoted in vector form by N.

Irregular patch If an element has an extraordinary vertex, the corresponding element patch

is called an irregular patch as shown in Figure 3.21. Vertex 1 is an extraordinary vertex with a

valence κ 6= 6. The total number of control vertices in this element patch equals κ+6, numbered

as shown in the figure. To evaluate the shaded triangular element, a subdivision scheme should

be applied on the three vertices of the element to divide the element into four sub-elements as

Figure 3.22 and a new element patch with control vertices as shown in Figure 3.23 is formed

from the original element. The new sub-elements 1, 2 and 3 do not have any extraordinary
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vertices. The new patches for these three new sub-elements are regular and the surface points

can be evaluated using box-spline functions and the new control vertices. However, the new

sub-element 4 still has an extraordinary vertex. If the target point is in this element, we

must repeatedly refine the element until the target point fall into a new sub-element without

an extraordinary vertex. This method can only handle the case that the element has only one

extraordinary vertex.

1

2

3

4

5

. . .

κ

κ + 1

κ − 1

κ + 2 κ + 3

κ + 4

κ + 5

κ + 6

Figure 3.21: An irregular patch for an element in Loop subdivision surfaces.
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2
3

1
2 3
...

Figure 3.22: Refinement of an element with one extraordinary vertex.
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Figure 3.23: Refined element patch and sub-patches for the sub-element 1, 2 and 3.

We denote the control points of an irregular patch in Figure 3.21 as a matrix form P and the

initial control points of the patch is expressed as

P0 = [P0,1, P0,2, . . . , P0,κ+6]T .

Through one level of subdivision we generate new κ+ 6 control points as shown in Figure 3.22,

denote by

P1 = [P1,1, P1,2, . . . , P1,κ+12]T .

The subdivision step is represented as

P1 = AP0,
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where

A =


S 0

S11 S12

S21 S22

 .

The term S, S11, S12, S21 and S22 are defined in [101]. To evaluate the sub-element 1, 2 and 3

in Figure 3.23, only requires κ+ 6 new control points out of the new κ+ 12 control point patch.

A selection matrix D for sub-element k = 1, 2, 3 is using to select the necessary control points

from P1:

P1,k = DkP1.

Then the surface point can be evaluate with the box-spline basis functions as

S = PT1,kN.

Element 4 in Figure 3.22 can not yet be evaluated because it still has an extraordinary vertex.

Through successive refinements, as shown in Figure 3.22, the non-evaluable region can be

limited into a negligible area. Using this method, the extraordinary vertex can be evaluated

with a very small offset. However, the extraordinary vertex only has a C1 continuity.

Assume the surface point S has a parametric coordinates (u,v,w), where u = 1 − v − w,

one first determines the number of refinements required to evaluate this surface point. If u of the

surface point requires n refinement to satisfies the criterion:

[
1

2

]n+1

< u ≤
[

1

2

]n
,

the surface point can be evaluated. After each refinement, the element is partitioned into four

elements and three of them are evaluable. One denotes the evaluable sub-elements as ∆j
k,

where sub-element ∆j
k is generated after the j th refinement and k is the sub-element index

(k = 1, 2, 3).The successive refinement procedure is shown in Figure 3.24. After determining
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the number of refinements n, k should also be determined as

k =



1 if
[

1

2

]n+1

< v ≤
[

1

2

]n
,

2 if v ≤
[

1

2

]n+1

and w ≤
[

1

2

]n+1

,

3 if
[

1

2

]n+1

< w ≤
[

1

2

]n
.

11
2

1
2

2

1
2

3

∆1
1

∆1
2

∆1
3

∆2
1

∆2
2

∆2
3

∆3
3

∆3
2

∆3
1

v

w

Figure 3.24: Successive refinements of the parametric domain for evaluating an irregular

element.

Now, the surface point S is located in the regular sub-element k after nth refinement. The

patch for this element is picked with the selection matrix Dk as follows.

Pn,k = DkPn.

The enlarged matrix Pn contains κ+12 control vertices, which is generated from the subdivision

of P̄n−1:

Pn = AP̄n−1.
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The patch P̄n−1 has κ+ 6 control vertices. It is successively refined from the initial patch P0 as

follows.

P̄n−1 = Ā
n−1

P0,

where Ā is a square matrix which subdivides the patch for computing the new patch for the

irregular element, and is defined by

Ā =

 S 0

S11 S12

 .

Then the patch for new sub-element Pn,k is expressed as

Pn,k = DkAĀ
n−1

P0.

The surface point in the element with an extraordinary vertex can be computed as

S = Pn,k
TN = P0

T [DkAĀ
n−1

]TN︸ ︷︷ ︸
NL

, (3.12)

where NL is the Loop subdivision surfaces basis function.

3.2.5 Comparison of subdivision with NURBS surfaces

NURBS and subdivision surfaces both have their strengths and weaknesses in geometric

modelling and analysis. The traditional method uses polygons to represent geometries

piecewise. They require a large amount of memory to store the information associated with

points. NURBS is an efficient technique which can model precise geometries with smooth

surfaces using only few control points since the surface is interpolated mathematically. But one

NURBS patch can only represent simple geometries due to its tensor product nature. Subdivision

surfaces combine the advantages of polygons and NURBS. It can generate smooth surfaces with

flexible coarse polygon meshes.

In terms of analysis, Because NURBS can model exact geometries, It performs better in
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idealised benchmark problems such as the sphere examples in Section 4.5.1 and Section 5.3.1.

There is no geometric error involved in the entire analysis. So, we note that the NURBS surfaces

and subdivision surfaces will not be compared using such numerical examples. Furthermore,

NURBS curve can be easily p-refined but a specific subdivision algorithm can only provide

a certain polynomial degree. However, subdivision surfaces have their own advantages in

analysis. NURBS uses B-splines which are recursive functions. They are more expensive to

compute during analysis while the basis functions used in subdivision surfaces are computed as

polynomials. The Bézier extraction process converts the NURBS surfaces into Bézier elements

but also loose the high continuity across elements. However subdivision surfaces have C1

continuities everywhere. We also note that subdivision surfaces are not ideal for problems

involving discontinuities such as cracks and fractures.



Chapter 4

Boundary element method for acoustics

The dominant numerical methods used in engineering include the finite element method, the

finite difference method and the boundary element method. Each of these approaches convert

continuous formulations into a discrete setting for amenable computer implementation. In the

case of the finite difference method and finite element method, a partial differential equation

is used as the starting point to formulate the system equations. However, in the case of

boundary element method, the governing partial differential equation must first be converted

into an integral equation. A fundamental requirement of the boundary element method is that a

Green’s function is defined to allow the integral equation to be formulated. Because the integral

equations are built only on the boundary, the method can only be applied to problems where the

governing differential equations are linear equations.

The history of using integral equations to formulate the fundamental boundary value

problems can dates back to 1903. Fredholm [103] used a discretisation procedure to calculate

the solutions with integral equations. However, the early development of this method was

restricted by the large demands of calculations. With the development of computer technology,

discretisation procedures were implemented for integral equations in the 1950s. The first

application of integral equations using computers is Massonnet [104], where elasticity problems

were solved. In the early 1960s, the applications of discretisation procedures were used to solve

boundary integral equations in different engineering fields with some famous contributions by

Jaswon [105] and Symm [106].

65
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Lachat and Watson [107] introduced a formulation to discretise the boundary integral

equations using isoparametric elements. They stated the advantages of using quadratic

isoparametric elements and illustrated a way to evaluate the singular integrals. The term

boundary element method was first proposed in the literature by Brebbia [108] in 1978 which

is the first book on the BEM. The weighted residual approach for deriving boundary integral

equations was used for the first time in Brebbia’s book. Futher applications of the BEM have

included fracture [109–111], potential problems [112], elasticity [113–115], acoustics [17, 114]

and electromagnetics [116].

Acoustic analysis is almost needed in all the aspects of modern engineering designs

involving the noise control. The computational acoustic analysis contributes to the development

of many manufacturing industries including aeronautics and astronautics, electronic and

electrical equipments, ship, automotive and building industries. Moreover, numerical

simulations of acoustics are also widely applied in the built environment, biomedical and marine

sciences. The modelling of exterior acoustic radiation and scattering problems have unbounded

(infinite) fluid domains. The finite element method and finite difference method must create

arbitrary bounds of the domain and apply special boundary conditions to simulate the acoustic

phenomenon, which sometimes can be very complex in terms of implementation [117, 118].

The boundary element method solve the integral equation built only on the boundaries which

have advantages in handling these kind of problems. Therefore, the boundary element method

is the ideal computational method to simulate acoustic behaviour. Section 4.1 will introduce

the fundamentals of acoustics and illustrate the Helmholtz equation – the governing equation

of linear acoustic problems. The Green’s function of the Helmholtz equation is also solved

in this section. In Section 4.2, a boundary integral equation is formulated with the Helmholtz

Green’s function for solving the acoustic scattering problem. Then, a subdivision surfaces IGA

discretisation is applied to the boundary integral equation and a collocation boundary element

method is illustrated. Section 4.4 introduces different methods to deal with the singular integrals

in the boundary element method.
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4.1 Fundamentals of linear acoustic analysis

In engineering, acoustics is considered as a study of mechanical waves propagation in fluids

which cause pressure fluctuations. The acoustic waves are longitudinal waves which vibrate

in the same direction as they travel. Thus acoustic waves are relatively simple waves which

do not have any polarisation, but similar to other kinds of waves, acoustic waves can diffract,

reflect and interfere with each other. It is a very complex phenomenon when the acoustic wave

is scattered by one or multiple objects. This section first introduces two important acoustic

properties – acoustic pressure and acoustic velocity. Then, it illustrates why the Helmholtz

equation is the governing equation for linear acoustic problems. Then, the fundamental solution

of the Helmholtz equation is derived, which is essential for the implementation of the acoustic

boundary element method.

4.1.1 Acoustic pressure and acoustic velocity

The two important parameters of a acoustic wave are acoustic pressure and acoustic velocity.

The acoustic pressure describes the local pressure deviation in the propagating medium caused

by the acoustic wave. The acoustic velocity v, also termed as particle velocity, indicates the

speed of sound propagating in the medium. It is defined by

v =
∂u

∂t
,

where t is the time and u is the particle displacement. The linear wave equation is the

fundamental equation which describes the sound propagation in terms of either p or u. For

the acoustic pressure p, the equation is expressed as

∇2p− 1

c2

∂2p

∂t2
= 0, (4.1)

where∇2 is the Laplace operator, c is the thermodynamic speed of sound which depends on the

property of the propagating medium. A similar formulation is also valid for acoustic velocity
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magnitude v̄, given as

∇2v̄ − 1

c2

∂2v̄

∂t2
= 0.

4.1.2 Helmholtz equation

For a harmonic time-dependent acoustic wave, the acoustic pressure p̃(x, t) can be expressed as

p̃(x, t) = p(x)e−iωt,

where p(x) is the amplitude of the acoustic pressure at point x, ω is the angular frequency and i

is the imaginary unit defined as i :=
√
−1. Substituting the expression of acoustic pressure into

the linear wave equation (4.1) yields

∇2p(x)e−iωt − p(x)
1

c2

∂2(e−iωt)

∂t2
= 0.

This can be simplified as

∇2p(x)e−iωt +
ω2

c2
p(x)e−iωt = 0,

where ω/c =k̄ can be replaced by the wave number, which is the spatial frequency of the wave.

After eliminating the term e−iωt, the equation reduces to the Helmholtz equation given by

∇2p(x) + k̄2p(x) = 0. (4.2)

Here, p(x) satisfies the expression of the Helmholtz equation, so that the time harmonic linear

acoustic wave problem can be governed by the Helmholtz equation.

4.1.3 Helmholtz fundamental solution

In the previous section, the Helmholtz equation is showed which is the governing equation for

time harmonic linear acoustic problem. In order to solve this equation with boundary element

method, the fundamental solution of the Helmholtz equation is required. The fundamental

solution of Helmholtz equation G is a function of the field point y and source point x which
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is denoted as G(x, y) and it is also known as Green’s function. The Green’s function satisfies

the differential equation

∇2G(x, y) + k̄2G(x, y) = −δ(x, y), (4.3)

where δ denotes the Dirac delta function. In R1, it can be defined as:

δ(x′,x) = lim
N→∞

sin[N(x− x′)]
π(x− x′) .

It is also known as the unit impulse symbol and has the property:

∫ ∞
−∞

δ(x′,x)dx =

∫ x′+h̄

x′−h̄
δ(x′,x)dx = 1,

where h̄ is any positive number. A simple definition in R3 is given as

δ(x, y) =


∞ if x = y,

0 otherwise.

When the field point and source point are not identical, the Green’s function satisfied the

Helmholtz equation:

∇2G(x, y) + k̄2G(x, y) = 0, for x 6= y. (4.4)

To solve the Green’s function, one constructs a spherical coordinate system centred at source

point x and the field point y has coordinates (r, θ1, θ2), where r := |x − y| and θ1 and θ2 are

two angular coordinates. Then, the Equation 4.4 is reformulated as

1

r2

d

dr

[
r2 dG

dr

]
+ k̄2G = 0, for r 6= 0,

which can be written in the form of an ordinary differential equation in terms of r as

G′′ +
2

r
G′ + k̄2G = 0, for r 6= 0.
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The general solution for this ordinary differential equation is given by

G = A
eik̄r

r
+B

e−ik̄r

r
, (4.5)

where A and B are unknown constant coefficients which need to be determined. The two terms

on the right-hand side represent two waves propagating in two opposite directions. Let B = 0

to just consider one of them. Assume the source point x is surrounded by a small sphere with a

infinitesimal radius ε and the point y is on the surface of the small sphere, the left-hand side of

Equation 4.3 has the property of the Dirac delta function expressed as

∫
Vε

[
∇2G(x, y) + k̄2G(x, y)

]
dVε = −1.

Because the radius is infinitesimal, the Helmholtz equation is yielding to the Laplace equation

and ∫
Vε

∇2G(x, y)dVε = −1.

Apply the divergence theorem:

∫
Vε

∇2G(x, y)dVε =

∫
Γε

∂G(x, y)

∂n
dΓε = −1. (4.6)

The Green’s function is now a static function,G = Ḡ = a/r, where r = |x−y| = ε. The normal

direction is the same direction with the radius. ∂G/∂n = −a/ε2 and the integral becomes:

a
1

ε2

∫
Γε

dΓε = 1, (4.7)

where the surface area of the small circle is 4πε2, so a = 1/4π and the Green’s function for

Helmholtz equation is thus

G(x, y) =
eik̄r

4πr
. (4.8)



CHAPTER 4. BOUNDARY ELEMENT METHOD FOR ACOUSTICS 71

The normal derivative of the Green’s function for Helmholtz equation is:

∂G(x, y)

∂n
=

eik̄r

4πr2

[
ik̄r − 1

] ∂r
∂n

. (4.9)

4.2 Acoustic boundary element method

This section will derive the boundary integral equation starting with the Helmholtz equation.

After obtaining the boundary integral equation, different boundary conditions for the acoustic

problems will discussed. The boundary integral equation is discretised with the subdivision

surfaces IGA approach and a collocation scheme is used to formulate the boundary element

system of equations.

4.2.1 Boundary integral equation for the Helmholtz equation

The acoustic boundary integral equation is to solve the Helmholtz equation (4.2). For a point

source of unit strength, the Helmholtz equation is expressed as

∇2p(P, Q) + k̄2p(P, Q) = 0 when P 6= Q,

where the P is the source point and Q is the field point. The fundamental solution of the

Helmholtz equation is eik̄r/4πr. Recall r is the absolute value of distance between field point

P to the source point Q. The solution is denoted as the Green function G(P, Q). Assume a

space region Ω with closed surface Γ with outward unit normal vector n and a force F is acting

on Ω. The total flux of the force on the surface Γ mush be equal to the volume integral of the

divergence of F, which is the divergence theorem expressed as

∫
Ω

∇ · F dΩ =

∫
Γ

F · n dΓ . (4.10)



CHAPTER 4. BOUNDARY ELEMENT METHOD FOR ACOUSTICS 72

Assume two arbitrary functions ψ and φ and their first derivatives are continuous in the space

domain Ω. Replace F in Equation 4.10 with ψ∇φ and the Green’s first identity shown as

∫
Ω

[
ψ∇2φ+∇ψ · ∇φ

]
dΩ =

∫
Γ

ψ∇φ · n dΓ . (4.11)

Interchange ψ and φ with each other in Equation 4.11 and the resulting equation is still valid.

Then subtract the new equation from Equation 4.11 to give the Green’s second identity as

∫
Ω

[
ψ∇2φ− φ · ∇2ψ

]
dΩ =

∫
Γ

[ψ∇φ− φ∇ψ] · n dΓ .

Then, substitute the fundamental solution of Helmholtz equation G and into the Green’s second

identity and use the acoustic pressure p to replace φ. The Green’s second identity becomes

∫
Ω

[
G∇2p− p∇2G

]
dΩ =

∫
Γ

[
G
∂p

∂n
− p∂G

∂n

]
dΓ , (4.12)

where p satisfies the Helmholtz equation,∇2p = −k̄2p. Thus

∫
Ω

(
∇2G+ k̄2G

]
p dΩ =

∫
Γ

[
p
∂G

∂n
−G∂p

∂n

]
dΓ . (4.13)

Thus fundamental solution Green function G has the property

∇2G(P, Q) + k̄2G(P, Q) = −δ(P, Q),
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Ps

ε

Γε

P

Γ

Ω
Ωε

n

Figure 4.1: The source point is contained by a small sphere with radius ε to avoid singularity.

The Dirac delta function is infinite when Q is identical to P, which leads to a singular

problem in integration. One introduces a circle of radius ε centred at source point P into this

domain to avoid the singularity and extend Equation 4.13 as

∫
Ω\Ωε

[
∇2G+ k̄2G

]
p dΩ =

∫
Γ

[
p
∂G

∂n
−G∂p

∂n

]
dΓ

+

∫
Γε

[
p
∂G

∂n
−G∂p

∂n

]
dΓ .

Taking the limit ε→ 0 and this equation will be identical to Equation 4.13. Due to the property

of the Dirac delta function, the left-hand integral over Ω\Ωε vanishes. And

0 =

∫
Γ

[
p(Qs)

∂G(P, Qs)

∂n(Qs)
−G(P, Qs)

∂p

∂n
(Qs)

]
dΓ

+

∫
Γε

[
p(Qs)

∂G(P, Qs)

∂n(Qs)
−G(P, Qs)

∂p

∂n
(Qs)

]
dΓ ,

(4.14)

where Qs denotes the field point on the boundary.

Then, interpreting the part
∫
Γε
p(Qs) [∂G(P, Qs)/∂n(Qs)] dΓ as a first-order Taylor series

expansion of the function p(Qs) in terms of p(P). One obtains
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∫
Γε

p(Qs)
∂G(P, Qs)

∂n(Qs)
dΓ =

∫
Γε

[p(Qs)− p(P)]
∂G(P, Qs)

∂n(Qs)
dΓ

+ p(P)

∫
Γε

∂G(P, Qs)

∂n(Qs)
dΓ .

When ε→ 0, Qs is approaching P. It is obvious that

lim
ε→0

∫
Γε

[p(Qs)− p(P)]
∂G(P, Qs)

∂n(Qs)
dΓ = 0.

Following the same approach with Equation 4.6, but the direction of the normal vector opposite

to the radius vector because the source point is now exclusive of the space domain, one obtains

lim
ε→0

∫
Γε

∂G(P, Qs)

∂n(Qs)
dΓ = 1. (4.15)

Thus

lim
ε→0

∫
Γε

p(Qs)
∂G(P, Qs)

∂n(Qs)
dΓ = p(P). (4.16)

Using the same approach, the other part of the integral
∫
Γε
G(P, Qs) [∂p/∂n(Qs)] dΓ can also

be expanded as

∫
Γε

G(P, Qs)
∂p

∂n
(Qs) dΓ =

∫
Γε

G(P, Qs)

[
∂p

∂n
(Qs)−

∂p

∂n
(P)

]
dΓ

+
∂p

∂n
(P)

∫
Γε

G(P, Qs) dΓ .

When the ε → 0, the first term in the right-hand side is zero and the integral of the Green’s

function in the second term is also zero and the entire integral vanishes, here

∫
Γε

G(P, Qs)
∂p

∂n
(Qs) dΓ = 0. (4.17)

Substitute Equation 4.16 and Equation 4.17 into Equation 4.14, to obtain

∫
Γ

[
p(Qs)

∂G(P, Qs)

∂n(Qs)
−G(P, Qs)

∂p

∂n
(Qs)

]
dΓ + p(P) = 0.
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Rearranging, one obtains Green’s third identity as

p(P) =

∫
Γ

[
G(P, Qs)

∂p

∂n
(Qs)−

∂G(P, Qs)

∂n(Qs)
p(Qs)

]
dΓ . (4.18)

Once the Green’s third identity is obtained, one uses the same strategy by using a small sphere

containing P, on p(P) to obtain

p(P) =

∫
Γ

[
G(P, Qs)

∂p

∂n
(Qs)−

∂G(P, Qs)

∂n(Qs)
p(Qs)

]
dΓ

+

∫
Γε

[
G(P, Qs)

∂p

∂n
(Qs)−

∂G(P, Qs)

∂n(Qs)
p(Qs)

]
dΓ .

(4.19)

Γ

Ps

ε

Γε

Ω

Figure 4.2: The source point is moved onto the boundary and it is surrounded by a semi-circle.

Applying the sphere approach the boundary and P and Ps will be identical. Assume the

boundary is smooth, then Γε becomes a semicircle as shown in Figure 4.2. The Equation 4.19 is

expressed as

b(Ps)p(Ps) =

∫
Γ

[
G(Ps, Qs)

∂p

∂n
(Qs)−

∂G(Ps, Qs)

∂n(Qs)
p(Qs)

]
dΓ ,
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where

b(Ps) = 1− lim
ε→0

∫
Γε

∂Ḡ(Ps, Qs)

∂n(Qs)
dΓ =

1

2
.

If the point P is in the acoustic domain, then b = 1, while b = 0 if P is not in the domain.

Now, both the source point and the field point in this equation are on the boundary. In order to

simplify the expression of the boundary integral equation, one uses x and y to denote the source

point and field point on the boundary, respectively. The boundary integral equation is expressed

as

b(x)p(x) =

∫
Γ

[
G(x, y)

∂p

∂n
(y)− ∂G

∂n
(x, y)p(y)

]
dΓ .

The definition of interior and exterior acoustic problem is shown in Figure 4.3. In this work,

the exterior acoustic problems are considered. The acoustic domain is the outside region of the

physical boundaries. The boundary integral equation is still valid. For the acoustic scattering

problem the total acoustic pressure is the sum of the acoustic pressure caused by the scattered

acoustic wave and the incident wave, (pinc), thus

b(x)p(x) =

∫
Γ

[
G(x, y)

∂p

∂n
(y)− ∂G

∂n
(x, y)p(y)

]
dΓ + pinc(x), (4.20)

where b(x) = 1 − lim
ε→0

∫
Γε

∂Ḡ(x,y)
∂n

dΓ . This boundary integral equation can be used to solve the

incident acoustic wave problem.

Exterior problemInterior problem

Ω

Ω
n

n

Γ
Γ

Figure 4.3: Definition of interior and exterior domains.



CHAPTER 4. BOUNDARY ELEMENT METHOD FOR ACOUSTICS 77

4.2.2 Acoustic boundary conditions

The Dirichlet boundary condition on the acoustic pressure on the surface is defined by

p = p̄ on ΓD.

The Neumann boundary condition prescribes the normal derivative of the acoustic pressure on

the surface as
∂p

∂n
= q̄ on ΓN ,

where

Γ = ΓN ∪ ΓD.

The pressure of incident wave is also applied as

pinc(x) = p̄inc(x), x ∈ Γ .

In this project, only Neumann boundary condition is applied to solve the plane wave scattering

problem, where

q̄ = 0 on Γ ,

and

p̄inc(x) = eik̄·x,

where k̄ = k̄d and d is a vector with a unit length which indicates the direction of the plane

wave.

4.2.3 Discretisation of the boundary integral equation

The BEM approximates the boundary integral equation through discretising the boundary into a

number of elements as follows

Γ =
Ne∑
j=1

Γj, (4.21)
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where Ne is the total number of elements and j is the element index. In the conventional

boundary element method, there is a geometry error eg when the boundary is discretised into

elements. In this work, the geometry is represented using subdivision surfaces which represent

the exact geometry, so that there is no geometry error. The boundary surface of the model is

naturally divided into a number of triangular elements by the Loop subdivision control mesh

illustrated in Figure 4.4. Numerical integrations is computed within the reference element using

Gauss quadrature and mapped into physical space as shown in Figure 4.5. A field point in the

reference element has a local coordinates (ξ, η), where ξ ∈ [0, 1] and η ∈ [0, 1] and the physical

point can be interpolated using the basis functions defined with the local coordinates, so that

the physical point is a function of local coordinates, denoted by y(ξ, η). The basis functions

used here are the Loop subdivision surfaces basis functions (see Equation 3.12) which are

derived from the box-spline functions. However, these functions are computed with barycentric

coordinates (u, v,w). A simple mapping method is used to get the barycentric coordinates:

u = ξ,

v = η,

w = 1− ξ − η.

The Loop subdivision basis functions of the field point y(ξ, η) are defined in a larger control

grid, which is termed the ‘element patch’, as shown in figure 4.4. Each of the basis functions

is associated with one control point in the element patch and the field point y is evaluated with

Loop subdivision basis functions and the control point coefficients. The acoustic pressure and

its normal derivative at field point y are discretised by

p(y(ξ, η)) =
m∑
k=1

Nk(y(ξ, η))pk, (4.22)

and
∂p

∂n
(y(ξ, η)) =

m∑
k=1

Nk(y(ξ, η))
∂pk
∂n

, (4.23)
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where m is the number of basis functions and k is the local index within the element patch. Nk

is the basis function corresponding to the kth control point in the element patch. Substituting

equations (4.21), (4.22) and (4.23) into the boundary integral equation (4.20), the discretised

boundary integral equation is expressed as:

b(x)p(x) =
Ne∑
j=1

m∑
k=1

∂pjk
∂n

∫
Γj

Nk(y(ξ, η))G(x, y(ξ, η))dΓ

−
Ne∑
j=1

m∑
k=1

pjk

∫
Γj

Nk(y(ξ, η))
∂G

∂n
(x, y(ξ, η))dΓ + pinc(x),

(4.24)

where pjk and ∂pjk
∂n

are the kth pair of coefficients in element j.

4.3 Boundary element method with subdivision surfaces

4.3.1 Collocation approach

The discretised boundary integral equation (4.24) interpolates the acoustic pressures and its

normal derivatives using Loop subdivision surfaces basis functions with the corresponding nodal

coefficients. The nodal coefficients are associated with the control points, so that the number

of unknown variables in this equation is equal to the number of control points. The boundary

element method must build the same number of boundary integral equations as the number of

control points to formulate a system of equations to solve for the unknown nodal coefficients.

One uses a collocation scheme to choose the locations of a number of source points to generate

a system of equations. An alternative method is to apply a Galerkin approach but this involves

double integration over the boundary, which is much more costly. The schemes for choosing the

collocation points in isogeometric analysis can be found in [119]. Greville abscissae, Demko

points and the maxima of B-splines have been considered in collocation methods which directly

discretise the strong form of the governing equations. The maxima of the subdivision basis

functions, which are associated with the control vertices, are used as the collocation points in

this work. For a given element Γe, one defines the set of collocation points contained within the
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element through its three nodal points with the parametric coordinates

Ce := {xe(0, 0), xe(1, 0), xe(0, 1)}

and construct the global set of collocation points as

C =
Ne⋃
e=1

Ce. (4.25)
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Figure 4.4: Illustration of a control mesh and associated limit surface for a regular patch using

the Loop subdivision scheme. Control vertices are located in the control mesh at the intersection

of edges and collocation points are defined as the corresponding points on the limit surface. The

collocation points of the centre element specified by the set Ce are denoted by red circles. It is

important to note that control vertices and collocation points do not coincide.
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4.3.2 Derivation of system of equations

There is the same number of collocation points in the set C as the set of control points. One

denotes both by the number Nc. For the ith collocation, the boundary integral equation is

b(xi)p(xi) =
Ne∑
j=1

Nc∑
k=1

∂pjk
∂n

∫
Γj

Nk(y(ξ, η))G(xi, y(ξ, η))dΓj

−
Ne∑
j=1

Nc∑
k=1

pjk

∫
Γj

Nk(y(ξ, η))
∂G

∂n
(xi, y(ξ, η))dΓj + pinc(xi),

(4.26)

where xi is the ith collocation point. The index k is now a global index of the basis function.

The boundary element system of equations can be assembled as:

Hp = Gq + pinc, (4.27)

where the entries (ith row and kth column) in matrices G,H are computed as

Gik =
Ne∑
j=1

∫
Γj

Nk(y(ξ, η))G(xi, y(ξ, η))dΓj, (4.28)

Hik =
Ne∑
j=1

∫
Γj

Nk(y(ξ, η))
∂G

∂n
(xi, y(ξ, η))dΓj +Nk(xi)b(xi). (4.29)

When the collocation point xi is not contained in element Γj , the Nk(xi) will always be zero. p

denotes the global vector of the control point coefficients of the acoustic pressures and q is the

global vector of the acoustic pressure normal derivatives coefficients. pinc is the vector of the

incident acoustic pressures at the set of collocation points.

4.3.3 Acceleration methods

Compared to the finite element method, the BEM matrices H and G are both fully populated

(dense) matrices. Assembling these matrices is O(N2) complexity and a direct solver for BEM

has O(N3) complexity. The conventional boundary element method requires a large amount of

memory to store the entries of the matrices and a large runtime to solve the system of equations
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when dealing with large-scale engineering problems. Therefore, matrix compression techniques

are commonly used to reduce the overall complexity toO(N logN) orO(N). The most popular

techniques include the fast multipole method (FMM) [120–122] and hierarchical matrices (H -

matrices) [123, 124]. These two techniques are based on the same fundamental concept of

approximating the far field values using an efficient hierarchical data structure that allow for fast

matrix-vector computations within an iterative solver.

In terms of implementation, H -matrix is preferred because it perform matrix compression

in a purely algebraic manner, but the FMM requires extensive changes to boundary element

formulations. An H -matrix approach using the library HLibPro [125] is implemented in this

work. The detailed theory of H -matrix can be found in [35, 91]. The method computes a

low-rank approximation of H and G through a specified tolerance by utilising a hierarchical

‘cluster tree’ which separates terms into far-field and near-field sets. The cluster tree is defined

through a set of coordinates and bounding boxes related to the underlying basis of the boundary

element discretisation. The low-rank compression method used in this work is Adaptive Cross

Approximation (ACA) with O(N logN) complexity. The GMRES algorithm

citesaad1986gmres is adopted with H -matrix which reduce the complexity of the solver to

O(N).

4.3.4 Evaluation of element integrals

The entries of the BEM matrices, Equation 4.28 and 4.29, are computed as the sum of a number

of discretised integrals which should be evaluated within subdivision surfaces elements. Assume

the Ie in the following equation is one of the integrals that need to be evaluated in a subdivision

surface element Γe, i.e.

Ie =

∫
Γe

Nk(y(ξ, η))G(x, y(ξ, η))dΓ .

The element Γe in the Cartesian coordinate system can be considered as a surface in physical

space mapped from a reference element with a local coordinate system (ξ, η) as shown in

Figure 4.5. Any physical points in Γe can be evaluated with the local coordinates. Then the
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differential of element area is given by

dΓ = |J|dξdη,

where |J| is the Jacobian of the transformation from the reference element to the physical

surfaces. That is

|J| =
√
J2

1 + J2
2 + J2

3 ,

where
J1 =

∂x2

∂ξ

∂x3

∂η
− ∂x3

∂η

∂x2

∂ξ
,

J2 =
∂x3

∂ξ

∂x1

∂η
− ∂x1

∂η

∂x3

∂ξ
,

J3 =
∂x1

∂ξ

∂x2

∂η
− ∂x2

∂η

∂x1

∂ξ
.

ξ
ξη

η

Γ̂
Γe

Figure 4.5: Mapping of the reference triangle to the triangle on the subdivision surface. xe

denotes the mapping operation.

Now, the integral can be calculated within the reference element as

Ie =

∫ 1

η=0

∫ 1−η

ξ=0

Nk(y(ξ, η))G(x, y(ξ, η))|J|dξdη.

Using Gaussian quadrature for triangles, the integral can be approximated by the following

expression

Ie =
1

2

Ng∑
i=1

Ng∑
j=1

Nk(y(ξi, ηj))G(x, y(ξi, ηj))|J(ξi, ηj)|wij.

The number of sampling points is N2
g and wij is the weight associated with the sampling point



CHAPTER 4. BOUNDARY ELEMENT METHOD FOR ACOUSTICS 85

y(ξi, ηj).

4.3.5 Non-uniqueness problem and the Burton-Miller method

For exterior acoustic problems, the boundary integral equations have non-unique solutions

at certain frequencies. This problem was first identified by Copley in 1967 [126]. It is a

mathematical limitation of the boundary integral formulation, which does not conform to the

physical phenomena. A number of solutions have proposed to overcome this problem. Two

notable methods are widely used in a number of boundary element formulations, namely the

CHIEF method and the Burton-Miller method. The term CHIEF stands for the combined

Helmholtz integral equation formulation. It increases the number of collocation points by adding

interior points, which results in an overdetermined system of equations. This implementation

is relatively simple but it is only suitable for simple acoustic models. It has difficulties to

handle complex models because of the uncertainty in the number of collocation points and

the difficulties to determine the positions of the extra interior collocation points. Burton and

Miller [127] proposed another method which formulated a new boundary integral equation by

taking the partial derivative of the conventional boundary integral equation (CBIE) with respect

to the source point normal vector. Because the new boundary integral equation contains a

hypersingular term, it is named hypersingular boundary integral equation (HBIE). The linear

combination of CBIE and HBIE is formulated to obtain the unique solutions for the exterior

acoustic problems:

CBIE + αHBIE = 0, (4.30)

where

α =

 i, if k̄ ≤ 1,

i/k̄, if k̄ > 1.

The hypersingular boundary integral equation is given by

b(x)
∂p(x)

∂nx
+

∫
Γ

∂2G(x, y)

∂n∂nx
p(y) dΓ =

∫
Γ

G(x, y)

∂nx

∂p(y)

∂n
dΓ +

∂pinc(x)

∂nx
, (4.31)
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where nx denotes the normal vector at the source point x. The hyper-singular boundary integral

equation is derived from the conventional boundary integral equation by partial differentiation

with respect to the normal vector at the source point x. The derivatives of the two kernel

functions (4.8) and (4.9) are given by

∂G(x, y)

∂nx
= − eik̄r

4πr2

[
ik̄r − 1

] ∂r
∂nx

, (4.32)

∂2G(x, y)

∂n∂nx
=

eik̄r

4πr3

[[
1− ik̄r

]
n · nx +

[
k̄2r2 − 3

[
1− ik̄r

]] ∂r
∂nx

∂r

∂n

]
. (4.33)

Combining the two boundary integral equations, Equation 4.30 can be written as:

b(x)p(x) +

∫
Γ

∂G(x, y)

∂n
p(y) dΓ + α

[
b(x)

∂p(x)

∂nx
+

∫
Γ

∂2G(x, y)

∂n∂nx
p(y) dΓ

]
=

∫
Γ

G(x, y)
∂p(y)

∂n
dΓ + pinc(x) + α

[∫
Γ

G(x, y)

∂nx

∂p(y)

∂n
dΓ +

∂pinc(x)

∂nx

]
.

Equation 4.33 contains a hyper-singular (1/r3) after the second derivation of the Green’s

function. The hyper-singular problem dramatically increases the difficulty of the implementation

of the Burton-Miller method. One implements a regularisation method to evaluate the hyper-

singular term in the Burton-Miller formulations. The method is illustrated in Section 4.4.3.

4.4 Singular integration

The Green’s function G = eik̄r

4πr
has the term (1/r) which leads to a weakly singular problem for

the integration. The normal derivative of the Green’s function ∂G
∂n

= eik̄r

4πr2

[
ik̄r − 1

]
∂r
∂n

is more

difficult to integrate because it contains the term (1/r2) which is considered as strongly singular.

The second derivative of the Green’s function in the Burton-Miller method is hyper-singular with

the term (1/r3).

4.4.1 Weakly-singular integrals: polar coordinate transformation

The integrals in the BEM matrix G contain the Green’s function term G = eik̄r

4πr
. When the

collocation point is located in the target integration element, the distant r between the collocation
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point and the Gauss point is relatively small. In this case, the integral is weakly singular can not

be computed accurately with conventional Gauss quadrature. An efficient method for dealing

with weakly singular integrals in three dimensional surface elements is the polar coordinate

transformation. The method divides the integration element into several sub-elements using

a scheme dependent on the position of singular point as shown in Figure 4.6. The elements

in Loop subdivision surfaces are all triangular elements and the collocation points (singular

points) are always located at one of the corner points, so the triangular element do not need to

be subdivided.

Singular point

Figure 4.6: Subdivision for Polar coordinate transformation (If the singular point is located at

one of the corners, divide the element through the diagonal line (left). If the singular point lies

on one of the edges, divide the element into three triangle elements (middle). If the singular

point lies in the element, the element will be divided into four triangular elements (right)).

Illustrate the polar coordinate transformation method by assuming the integral will be

computed in element Γe and the field point in this element y has a local coordinates (ξ, η).

The integral is expressed as

I =

∫
Γe

G(x, y(ξ, η))N(y(ξ, η))|J(y((ξ, η))|dξdη.

The polar coordinates system is built at the singular point x as the origin, which has an local

coordinates (ξs, ηs). Then, the local coordinates of the field point y can be expressed using polar
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coordinates by

ξ = ξs + ρ̄ cos θ,

η = ηs + ρ̄ sin θ.

Then the derivatives of the coordinates can be expressed as

dξ = dρ̄ cos θ − ρ̄ sin θdθ,

dη = dρ̄ sin θ + ρ̄ cos θdθ.

and their product dξdη is calculated as:

dξdη = [dρ̄ cos θ − ρ̄ sin θdθ] [dρ̄ sin θ + ρ̄ cos θdθ]

= sin θ cos θdρ̄dρ̄− ρ̄ sin2 θdθdρ̄

+ ρ̄ cos2 θdρ̄dθ − ρ̄2 sin θ cos θdθdθ.

The terms dρ̄dρ̄ and dθdθ vanish and dθdρ̄ = −dρ̄dθ, so that dξdη = ρ̄dρ̄dθ. After the

subdivision scheme is applied to each sub-element, a quadrilateral element will be divided into

a number of triangular sub-elements. The original integral is also subdivided into a number of

sub-integrals as

I =
ne∑
j=1

∫ θj

θj−1

∫ r̂(θ)

0

G(ρ̄, θ)N(ρ̄, θ)|J(ρ̄, θ)|ρ̄dρ̄dθ, (4.34)

where ne is the number of sub-elements. (θj−1, θj) is the angular boundary of the sub-element

j in polar coordinates system. r̂(θ) gives a parametrisation of the boundary of the sub-element

according to the angle θ in polar coordinates system. It can be calculated from the following

equation

r̂(θ) =
hj

cos θ̄
,

where θ̄, r̂ and hj are defined in Figure 4.7. After the Polar transformation, the integrals in

Equation 4.34 are no longer singular.
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θ

θ̄
hj

(ξs, ηs)

θ

θ̄

hj

(ξs, ηs)

r̂(θ)
r̂(θ)

Figure 4.7: The definitions of the variables in polar coordinates transformation for a standard

quadrilateral element (left) and a triangular element in the Loop subdivision surfaces (right).

Convergence study

A convergence study is conducted to determine the number of quadrature points that should

be used in the numerical simulations. One chooses an arbitrary element from a subdivision

discretisation and performs a polar transformation. After that, the integration scheme stated

above is applied. The kernel function is the Green’s function of Helmholtz equation given in

Equation 4.8. The integration of this kernel function with 3600 (60×60) quadrature points is

used as a reference results to compute quadrature errors. The singular point has a parametric

coordinate (0, 0). For subdivision surface discretisations, this is the worst scenario for polar

coordinates transformation as the singular point corresponds to an extraordinary vertex of the

control mesh. The integration error of an element with an extraordinary vertex is compared with

the regular case. Table 4.1 shows the quadrature errors decrease while increasing number of

quadrature points. eL2 denotes theL2 normalised error. To consider the computational efficiency,

a 4× 4 quadrature scheme is chosen for numerical examples in the following sections.
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Table 4.1: Integral errors after polar coordinates transformation

Number of quadrature points eL2 (regular element) eL2 (element with extraordinary vertex)
4 1.64e-3 1.727e-2

16 3.342e-5 4.548e-3
64 5.941e-6 1.756e-3

100 8.539e-6 6.489e-4
144 2.705e-6 7.212e-4
196 2.382e-7 2.451e-4

4.4.2 Strongly-singular integrals

Similar to the G matrix, the integral in the H matrix also has problems with singular terms

because it contains the derivative of the Green’s function ∂G
∂n

= eik̄r

4πr2 (ik̄r − 1) ∂r
∂n

. But this

term has 1
r2 which is considered as a strongly singular problem and more difficult to evaluate.

Evaluation of strong singular integrals is a common but challenging problem in the development

of boundary element method. A number of researchers have studied this problem and provided

reliable solutions [128–131]. This work uses the regularisation process to deal with the problem.

The regularisation method manipulates the singular kernel in boundary integral equation and

builds a new boundary integral equation to avoid integrating singular terms. We first consider the

strongly singular term in Equation 4.20. Subtract a static normal derivative of Green’s function

∂Ḡ
∂n

= 1
4πr2 from the normal derivative of acoustic Green’s function and add it back as

∫
Γ

∂G(x, y)

∂n
p(y) dΓ =

∫
Γ

[
∂G(x, y)

∂n
− ∂Ḡ(x, y)

∂n

]
p(y) dΓ +

∫
Γ

∂Ḡ(x, y)

∂n
p(y) dΓ . (4.35)

The first integral on the right-hand side is now regularised and no longer singular but the second

integral still has a singularity. After this step, the singularity problem of the Helmholtz Green’s

function is shifted to a static Laplace Green’s function. The singular part at the source point x

can be subtracted from the integral and the integral is expanded as

∫
Γ

∂Ḡ(x, y)

∂n
p(y) dΓ =

∫
Γ

∂Ḡ(x, y)

∂n
[p(y)− p(x)] dΓ +

∫
Γ

∂Ḡ(x, y)

∂n
dΓp(x), (4.36)
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where the static Green’s function derivative
∫
Γ
∂Ḡ(x,y)
∂n

dΓ = −1
2
. When the source point is

on a smooth surface, b(x) in the boundary integral equation (4.20) is equal to 1
2
. Then, the∫

Γ
∂Ḡ(x,y)
∂n

dΓp(x) cancels with b(x)p(x). The left-hand side of Equation 4.20 is transformed as

b(x)p(x) +

∫
Γ

∂G(x, y)

∂n
p(y) dΓ =

∫
Γ

[
∂G(x, y)

∂n
p(y)− ∂Ḡ(x, y)

∂n
p(x)

]
dΓ .

The boundary integral equation (4.20) is now regularised as

∫
Γ

[
∂G(x, y)

∂n
p(y)− ∂Ḡ(x, y)

∂n
p(x)

]
dΓ =

∫
Γ

G(x, y)
∂p(y)

∂n
dΓ + pinc(x).

This new boundary integral equation does not have singularities.

4.4.3 Hyper-singular integrals

The regularisation of HBIE is more difficult because of the hyper-singular term 1
r3 . Similar to the

treatment of strongly singular term, first subtract the hyper-singularity with the corresponding

static Green’s function derivative:

∫
Γ

∂2G(x,y)

∂n∂nx
p(y) dΓ =

∫
Γ

[
∂2G(x,y)

∂n∂nx
−
∫
Γ

∂2Ḡ(x,y)

∂n∂nx

]
p(y) dΓ+

∫
Γ

∂2Ḡ(x,y)

∂n∂nx
p(y) dΓ . (4.37)

The first term is non-singular and the second term can be further transformed by subtracting the

first two terms of the Taylor expansion and adding these terms back gives∫
Γ

∂2Ḡ(x,y)

∂n∂nx
p(y) dΓ =

∫
Γ

∂2Ḡ(x,y)

∂n∂nx
[p(y)− p(x)−∇p(y)(y − x)] dΓ

+ p(y)

∫
Γ

∂2Ḡ(x,y)

∂n∂nx
dΓ +

∫
Γ

∂2Ḡ(x,y)

∂n∂nx
[∇p(y)(y − x)] dΓ .

(4.38)

The term containing the gradient of the acoustic pressure can be computed as

∇p(y)(y − x) =

2∑
k=1

∂p(x)

∂vk
vk · (y − x),

where v1, v2 refer to the two tangent vectors at the surface point. The following Laplace integral

identities are used to regularise the expanded singular term:∫
Γ

∂2Ḡ(x,y)

∂n∂nx
dΓ = 0 (4.39)
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∫
Γ

∂2Ḡ(x,y)

∂n∂nx
(y − x) dΓ =

∫
Γ

∂Ḡ(x,y)

∂nx
n(y)dΓ − 1

2
n(x). (4.40)

Substituting the identity (4.39) into the expanded equation (4.38), the second term on the right-

hand side can be eliminated. Using identity (4.40) to modify the last term on the right-hand side,

the new expansion form is reduced to weakly and strongly singular integrals:

∫
Γ

∂2Ḡ(x,y)

∂n∂nx
p(y) dΓ =

∫
Γ

∂2Ḡ(x,y)

∂n∂nx

[
p(y)− p(x)−

2∑
k=1

∂p(x)

∂vk
vk · (y − x)

]
dΓ

+
2∑

k=1

∂p(x)

∂vk

∫
Γ

[
∂Ḡ(x,y)

∂nx
vk · n(y) +

∂Ḡ(x,y)

∂n
vk · n(x)

]
dΓ .

This equation can be expressed as

∫
Γ

∂2Ḡ(x,y)

∂n∂nx
p(y) dΓ =

∫
Γ

∂2Ḡ(x,y)

∂n∂nx

[
p(y)− p(x)−

2∑
k=1

∂p(x)

∂vk
vk · (y − x)

]
dΓ

+
2∑

k=1

∂p(x)

∂vk

∫
Γ

∂Ḡ(x,y)

∂nx
vk · n(y)dΓ − 1

2

2∑
k=1

∂p(x)

∂vk
vk · n(x).

(4.41)

The weak singularity can be easily eliminated through polar integration. Substitute Equation

4.41 into the Equation 4.37, the whole hyper-singular integral can be written as∫
Γ

∂2G(x,y)

∂n∂nx
p(y) dΓ =

∫
Γ

[
∂2G(x,y)

∂n∂nx
− ∂2Ḡ(x,y)

∂n∂nx
p(y)

]
dΓ

+

∫
Γ

∂2Ḡ(x,y)

∂n∂nx

[
p(y)− p(x)−

2∑
k=1

∂p(x)

∂vk
vk · (y − x)

]
dΓ

+
2∑

k=1

∂p(y)

∂vk

∫
Γ

∂Ḡ(x,y)

∂nx
vk · n(y)dΓ − 1

2

2∑
k=1

∂p(x)

∂vk
vk · n(x).

For the right-hand side of HBIE (4.31), the strongly singular integral also can be regularised

with a identity using the same method with CBIE. The final expression of the boundary integral

equation is given as

∫
Γ

[
∂2G(x,y)

∂n∂nx
− ∂2Ḡ(x,y)

∂n∂nx

]
p(y) dΓ +

∫
Γ

∂2Ḡ(x,y)

∂n∂nx

[
p(y)− p(x)−

2∑
k=1

∂p(x)

∂vk
vk · [y − x]

]
dΓ

+
2∑

k=1

∂p(y)

∂vk

∫
Γ

∂Ḡ(x,y)

∂nx
vk · n(y)dΓ − 1

2

2∑
k=1

∂p(x)

∂vk
vk · n(x)

=

∫
Γ

[
∂G(x,y)

∂nx
+
∂Ḡ(x,y)

∂nx

]
∂p(y)

∂n
dΓ −

∫
Γ

∂Ḡ(x,y)

∂n

[
∂p(y)

∂n
− ∂p(x)

∂nx

]
dΓ +

∂pinc(x)

∂nx
.
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The remaining weakly singularity can be cancelled using a Polar transformation.

4.5 Numerical verification

4.5.1 Plane wave scattered by a rigid sphere

Problem setup

The superior accuracy of isogeometric acoustic boundary element method based on T-splines

has been illustrated in [87]. A similar advantage is expected when using subdivision surfaces

discretisation performing the same acoustic analysis. This section replicates the problem of

a plane wave impinging on a sphere simulation as performed in [87] with Loop subdivision

surfaces. The problem is defined in Figure 4.8. An incident plane wave propagating in the

positive x- direction and a hard sphere with a radius rs scatters the wave.The incident plane

wave is expressed as:

pinc = Meik̄d·x,

whereM denotes the amplitude of the acoustic plane wave and d is a unit vector which indicates

the propagating direction of the wave. In this test, a unit amplitude (M = 1) and a positive x

direction (d = (1, 0, 0)) are chosen, so the incident pressure is defined as pinc = eik̄x1 and

applied as a boundary condition. Assume the derivative of acoustic pressure on the surface

∂p
∂n

= 0, then the acoustic pressure can be solved using the system of equations (4.27).

plane wave
x

y

z

rs

∂p

∂n
= 0

Figure 4.8: Definition of plane wave impinging on a sphere.
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Analytical solution

This is a benchmark problem for computational acoustics and the analytical solution is given

in [132–134]. The acoustic pressure at the sample point is expressed as

p(r, θ) = p0

∞∑
n=1

− in(2n+ 1)j′n(k̄rs)

h′n(k̄rs)
Ln(cos θ)hn(k̄r), (4.42)

where p0 is the magnitude of the incident wave, Ln is the nth Legendre function, hn and h′n are

the nth Hankel function and its derivative respectively. j′n is the derivative of the nth spherical

Bessel function and rs is the radius of the sphere.

Mesh refinement study

Figure 4.9a illustrates an initial control polygon mesh and Figure 4.9b shows the Loop

subdivision limit surface of this control mesh. In order to study the convergence of the

coupled method, two different mesh refinement strategies are used to generate successively finer

meshes for the same sphere geometry. The two strategies are subdivision refinement and Least

squares fitting (L2 projection). We applied the Loop subdivision refinement algorithm stated

in Section 3.2.3 twice to the initial mesh. Two successively refined meshes (a) and (b) were

generated and the two control meshes used to evaluate the same limit surface as the initial control

mesh. In general, it is an advantage when the limit surfaces are the design geometries as there

will be no geometry error throughout the entire analysis process. But in this benchmark problem

for numerical verification, the two refined meshes and the initial mesh all exhibit non-negligible

geometry errors because their common limit surface has a deviation from the sphere geometry.

A second refinement scheme performed using a least squares fitting of the subdivision surface

to an analytical sphere surface with diameter a = 1. This generated two successively refined

meshes (c) and (d). The geometry error will be successively reduced because mesh (d) better

represents the geometry of the sphere than mesh (c). Figure 4.10 shows the control mesh (d) and

its limiting surface.
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(a) Control mesh. (b) Limit surface.

Figure 4.9: The initial coarse Loop subdivision discretisation with 438 vertices used to generate

control meshes (a) through to (d) in Table 4.2 and Table 4.3.The control vertices are placed such

that they lie on a sphere with diameter a = 1.

(a) Control mesh. (b) Limit surface.

Figure 4.10: The Loop subdivision discretisation of a sphere geometry with 6978 vertices

corresponding to control mesh (d) in Table 4.3. The control vertex positions are determined

such that the limit surface approximates a sphere with diameter a = 1.

For each control mesh the relative geometry error εg of the limit surface is calculated as

εg =
||xh − x||0
||x||0

,

where xh and x are physical coordinates on the Loop subdivision surface and analytical surface
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respectively with

||·||0 :=

[∫
Γ

(·)2 dΓ

]1/2

.

Table 4.2 and 4.3 details each of the control meshes for both refinement schemes. Table 4.2

shows that the subdivision refinement produces a constant geometry error (εg = 0.93%) which

means the limiting surfaces are one and the same. Table 4.3 shows the geometry errors will

converge to zero when the new control vertices are L2 projected onto the analytical sphere

surface.

Table 4.2: Mesh properties for subdivision refinement

control mesh initial (a) (b)
number of vertices 438 1746 6978

ne 872 3488 13952
εg 0.93% 0.93% 0.93%

Table 4.3: Mesh properties for subdivision refinement and subsequent L2 projection

control mesh initial (c) (d)
number of vertices 438 1746 6978

ne 872 3488 13952
εg 0.93% 0.24% 0.06%

Convergence study

A relatively low frequency problem with normalised wavenumber of k̄a = 10 is used to to

conduct the convergence study. The magnitude of the total acoustic pressure at sample points

located on the x-y plane of the sphere surface is calculated as

|pt| =
√

Re(pt)2 + Im(pt)2.

Results for control meshes (a) and (b) are shown in Figure 4.11. These illustrate convergence to

a solution that is distinct from the analytical solution due to a geometry difference between the

limiting surface and the analytical surface. However, the results for control meshes (c) and (d)

(Figure 4.12) illustrate convergence to the analytical solution. It demonstrates the importance
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of controlling geometry error when verifying the coupled method. Therefore, care must be

taken to ensure that the limit surface provides an accurate representation of required model

geometry because further application of the Loop subdivision refinement algorithm will not

overcome the inherent error induced by the incorrect geometry representation. In the case

that the limit surface is an accurate representation of the sphere our method converges to the

analytical coupled solution and thus verifies the implementation.
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|pt|

Figure 4.11: Rigid sphere scattering a plane wave with k̄a = 10: surface acoustic potential

magnitude along x-y plane using control meshes (a) and (b). The inset image illustrates

convergence to a solution which does not correspond to the analytical solution due to the non-

negligible geometrical error of the limit surface.
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θ

Figure 4.12: Rigid sphere scattering a plane wave with k̄a = 10: surface acoustic potential

magnitude along x-y plane using control meshes (c) and (d). L2 projection of control vertices

onto the analytical sphere surface leads to a reduced geometrical error in the limit surface and

convergence to the analytical solution.

Comparison with Lagrangian discretisation

A mesh with quartic (4th order) Lagrangian elements is used for comparison between subdivision

surfaces and a Lagrangian discretisation. The mesh properties are shown in Table 4.4. The

problem used in the comparison is defined in Figure 4.13. An acoustically hard sphere is

impinged by a plane-wave with ka = 8. Different from the previous problem, the sample points

are in the far field, where r = 5m. The magnitude of acoustic pressure at the sample points

are computed using the quartic Lagrangian discretisation and two subdivision discretisations

constructed with the initial mesh and mesh (c). 8 × 8 Gauss points per element are used for all

cases.
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Table 4.4: Mesh properties for Lagrangian discretisation

control mesh 4th order Lagrangian
number of vertices 1092

ne 281
εg 0.48%

Figure 4.13: Sample points in acoustic domain.

Subdivision surfaces mesh (c)

Quartic Lagrangian discretisation

Subdivision surfaces initial mesh

Analytical solution

θ

|pt|

Figure 4.14: A comparison between Lagrangian discretisations and subdivision surfaces (k = 8).
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The results for the three meshes at each of the sampling points are shown in Figure 4.14

along with the analytical solution. A closeup view of this plot illustrates that both subdivision

discretisations deliver higher accuracies compared to the Lagrangian discretisation even if it has

a lower geometry error and more collocation points. By adopting the high order basis functions

of subdivision surfaces, a higher accuracy per degree of freedom is obtained over equivalent

Lagrangian discretisations.

4.5.2 Acoustic wave scattered by a mannequin model

This numerical example will consider the ability of the present method to provide high-order

discretisations of arbitrarily complex geometries. The model we consider is that of a mannequin

which is often used to determine important acoustic parameters such as the Head Related

Transfer Function known to be important for the human perception of sound [135]. An initial

triangulation of the mannequin surface is constructed as shown in Figure 4.15 with 2,834

vertices and then apply one level of subdivision refinement to generate the control grid shown in

Figure 4.16 with 11,330 vertices. Both control grids exhibit a common limit surface as shown

in Figure 4.17.



CHAPTER 4. BOUNDARY ELEMENT METHOD FOR ACOUSTICS 101

Figure 4.15: Mannequin problem: control grid with 2, 834 vertices. The minimum bounding

box for this model and the refined model in Figure 4.16 is defined by [xmini ,xmaxi ]3 =

[−179.0, 51.0]×[−81.6, 92.4]×[10.3, 294.0].

Figure 4.16: Mannequin problem: control grid with 11, 330 vertices.
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Figure 4.17: The smooth limit surface of the mannequin model generated through Loop

subdivision. This limits surface is common to the control grids shown in Figures 4.15 and

4.16.

A forcing function is constructed through an incident plane wave with unit magnitude

travelling in the positive x- direction with a normalised wavenumber of k̄a = 11.5. Close

inspection of the geometry reveals that the model is unsymmetric about the x − z plane and

hence any solution will be unsymmetric about the same plane. Profiles of acoustic pressure

magnitude are illustrated in Figures 4.18a and 4.18b for the control grids with 2,834 and 11,330

vertices respectively, and a good agreement is observed. The ability to solve the present problem

involving dense matrices with 11,330 vertices is only possible through the use of an H -matrix

approximation. Table 4.5 shows the runtimes and memory usage for assembling and storing

H with hierarchical matrices in both tests. The set of bounding boxes and low-rank matrix

approximation used to construct our H -matrix approximation for the 11,330 model are shown

in Figures 4.19 and 4.20 respectively.
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(a) Acoustic pressure magnitude: 2,834 vertices. (b) Acoustic pressure magnitude: 11,330 vertices.

Figure 4.18: Mannequin problem: acoustic pressure profiles for the two considered Loop

subdivision discretisations.

Table 4.5: Runtime and memory usage for assembling and storing matrix H using hierarchical

matrices in two mannequin model tests

number of vertices 2834 11330
runtime for assembly 32min 36sec 5hr 1min 40sec

memory usage for storage 1.17GB 2.65GB
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Figure 4.19: The set of bounding boxes used to define the block cluster tree for H -matrix

construction of the dense matrices (11, 330 vertices).

Figure 4.20: The low-rank approximation of the dense matrix H for the control grid with 11,330

vertices. Dense and sparse entries are denoted by red and green respectively.



Chapter 5

A coupled isogeometric boundary element

and finite element method for two-way

structural-acoustic coupling analysis using

subdivision surfaces

This chapter presented a novel method which coupled a collocation boundary element

formulation and a Galerkin Kirchhoff-Love shell finite element formulation using the same Loop

subdivision discretisation for structural-acoustic analysis. The work was presented in [136]. The

Kirchhoff-Love shell formulation with Loop subdivision surfaces is presented in [5] and will be

reviewed in Section 5.1. Section 5.2 presented the coupled structural-acoustic formulation. The

implementation is verified by the examples that plane wave scattered by elastic spherical shells.

Complex geometries are then presented to demonstrate the abilities of this method to solving

practical problems.

105
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5.1 Shell structural dynamic analysis using Kirchhoff-Love

theory

In a number of applications of acoustic studies, the mechanical models of the underwater

objects can be considered as shell structures. The Kirchhoff-Love shell theory simplifies a

three-dimensional structure into a two dimensional surface with an uniform thickness. Using

simplified model, one can determine the dynamic response of the shell subject to an acoustic

wave. There are two widely-used shell theories, which are classified according to the ratio

between thickness and the radius of curvature of the shell. The Kirchhoff-Love shell theory

describes thin shells. The Reissner-Mindlin shell theory extends the Kirchhoff-Love theory

with shear deformations and can be applied to both thin and thick shells. The Kirchhoff-

Love theory requires C1 continuity of the geometry discretisation where the Reissner-Mindlin

theory only requires C0 continuity. The conventional FEM was introduced with Lagrange

elements [137], defined using Lagrange interpolation polynomials, to descretise the geometry.

The discretisation only provides C0 continuity between elements, so that the conventional finite

element implementations prefer the Reissner-Mindlin shell formulation. However, the Reissner-

Mindlin shell have three additional rotation degrees of freedom, which significantly increase

the computational efforts to formulate the system of equations. Subdivision discretisation can

provide at C1 continuity all over the surfaces. Thus it provides the possibility to model the

mechanical response of shells using Kirchhoff-Love theory. The detailed theory can be found

in Simo and Fox [138] and [139–141].

Figure 5.1 illustrates the kinematic definition of a thin shell. The Kirchhoff-Love theory

implemented in this work is confined to linear theory of shells under time-harmonic loads. The

weak form of the equilibrium equations of thin-shells is used to formulate the finite element

method. Assume a elastic shell with a mid-surface Γ and uniform thickness h. The virtual work

expression for the shell with displacements u expresses as:

Wmas(u, ū) +Wint(u, ū) +Wext(ū) = 0 , (5.1)
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z

x

y

mid-surface

ξ

ηζ

thin-shell in physical space

ζ = 0

parametric coordinate system on a thin shell

h

thickness

cross-section

Γ

S

S
η

ξ

S

Figure 5.1: An example thin shell illustrates the definitions of thickness, mid-surface and the

parametric coordinate system.

where ū is the virtual displacement. The three termsWmas(u, ū),Wint(u, ū) andWext(ū) denote

the virtual work contributions of the inertia, internal and external forces, respectively. The

detailed presentation of the equilibrium equations of elastic shells can be found in [5, 32, 142].

For a thin-shell with a density ρs the inertia contribution is given by

Wmas(u, ū) =

∫
Γ

ρs
∂2u

∂t2
· ūµ dΓ

where µ is a Jacobian term taking care of integration across the thickness of the shell. A

Kirchhoff-Love shell theory only considers the acceleration of the mid-surface. The contribution

of the angular acceleration associated with the shell’s mid-surface normal has been neglected.

The mid-surface displacements u are assumed to be time harmonic so that applying a Fourier

transformation to the weak form (5.1) leads to its time-harmonic form, given by

Wmas(u, ū) = −ω2

∫
Γ

ρsu · ūµ dΓ ,
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where ω denotes the angular frequency. The internal work Wint(u, ū) consists of two parts:

Wint(u, ū) =

∫
Γ

α(u) : E : α(ū)µ dΓ +
h2

12

∫
Γ

β(u) : E : β(ū)µ dΓ .

The first integral is the membrane part. The membrane integral depends on the fourth order

constitutive tensor E and the change of the metric tensor α(u) of the mid-surface between the

reference and deformed configurations of the shell shown in Figure 5.2. The components in E

are defined as

Eijkl =
1

2

Eh

1− ν2

(
νāij ākl +

1

2
(1− ν)(āikājl + āilājk)

)
,

where E is Young’s modulus, ν is Poisson’s ratio, and āij is the contravariant components of the

undeformed surface metric tensors. The components in α are defined as

αij =
1

2
(āi · u,j + ū,i · āj).

The second integral representing the bending part is multiplied with the square of the shell

thickness h and depends on change of curvature tensor β(u) between the reference and

deformed configurations. The components in β are defined as

βij =− u,ij · ā3 +
1√
ā

(u,1 · (āi,j × ā2) + u,2 · (ā1 × āi,j))

+
ā3 · āi,j√

ā
(u,1 · (ā2 × ā3) + u,2 · (ā3 × ā1)) ,

where
√
ā is the Jacobian of the surface coordinates. The detailed definitions can also be found

in [5]. The external virtual work for a pressure p on the mid-surface is given by

Wext(ū) = −
∫
Γ

pnS · ū dΓ

where nS denotes the normal vector at the mid-surface point.

Similar with boundary element method, the Loop subdivision basis functions N(ξ, η) are
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ξ

ηζ

reference configuration deformed configuration

parametric representation of the mid-surface

a3ā3

Figure 5.2: Reference and deformed configuration of the shell.x̄ and x are two mapping

operators map the parametric representation of the mid-surface to its reference and deformed

configurations. Figure reproduced from [5].

used to discretise the displacements u and the test functions (virtual displacements) v in each

element:

ue(ξ, η) =
m∑
k=1

Nk(ξ, η)uek and ūe(ξ, η) =
m∑
k=1

Nk(ξ, η)ūek ,

where the uek and ūek are nodal values. The integrals are evaluated with Gauss quadrature.

After linearisation, the system of equations that governs the time-harmonic behaviour of the

displacements is expressed as

(−ω2M + K)︸ ︷︷ ︸
A

u = f , (5.2)

where K is the stiffness matrix, M denotes the mass matrix and f is the global force vector. The

explicit expressions of the stiffness matrix and the implementation details can be found in [5].

The FE system matrix is denoted as A.
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5.2 Coupled structural-acoustic formulation

An isogeometric boundary element method was introduced in Chapter 4 to analyse acoustic

scattering problems in the exterior fluid domain. There, the objects were considered as

acoustically hard obstacles, which means they are perfectly rigid and reflect all acoustic waves.

The derivatives of acoustic pressures with respect to normal vector (acoustic pressure normal

derivatives) retain zero on the surfaces. However, if an incident acoustic wave impinges a thin-

shell structure, it will introduce a surface force to the shell structure and the shell will vibrate

with the associated the structural nodal velocities on the shell surfaces. The phenomena also can

be understood as the shell absorbs a part of the incident wave, which introduces acoustic pressure

normal derivatives on the surfaces. A formulation is introduced in this section to analyse the

coupled structural-acoustic problem using the finite element method to analyse the structural

dynamic behaviours and boundary element method to solve the acoustic scattering problem. It

considers the acoustic pressures as a structural forces on the surface and also links the structural

nodal velocities with the acoustic pressure normal derivatives on the surfaces. The structural

domain and acoustic domain are defined in Figure 5.3.

Figure 5.3: Definition of the structural thin shell and fluid domains for the coupled structural-

acoustic problem impinged by an incident plane wave pinc. The mid-surface of the shell is

denoted by a dashed line. The structural domain normal vectors ns and the fluid domain normal

vector nf are pointing opposite directions.

The acoustic pressure in the fluid domain can be treated as a force on the shell surface, which
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is directed along the surface normal nf . The shell nodal forces vector f in Equation 5.2 consist

of structural force fs and fluid force ff :

f = fs + ff . (5.3)

The fluid force due to an acoustic pressure field is given by:

ff = ñf

∫
Γ

NTN dΓ︸ ︷︷ ︸
Csf

p, (5.4)

where N is the global vector of subdivision basis functions and p denotes the global vector of

nodal acoustic pressure coefficients. The matrix of vertex normals ñf is defined as:

ñf =



n1f · e1 0 . . .

n1f · e2 0 . . .

n1f · e3 0 . . .

0 n2f · e1 . . .

0 n2f · e2 . . .

0 n2f · e3 . . .

. . . . . . . . .


where e1, e2, e3 are the three orthogonal normal Cartesian base vectors so that each column of

ñf contains the normal at one of the nc control vertices in the mesh. The so defined transfer

matrix Csf of dimension 3nc × nc transfers forces from the fluid to the shell. Then, The global

force vector is expressed as:

f = Csfp + fs. (5.5)

Now, we consider the relationship between acoustic pressure and shell mid-surface velocities.

The normal components of the fluid and structural velocities are denoted as vnf and vns

respectively. If there is no energy loss between the structural domain and fluid domain, the
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two normal velocities can be related through:

vnf − vns = 0 . (5.6)

The acoustic pressure normal derivatives at a surface point is related to the fluid normal velocity

vnf as
∂p

∂n
= −iωρfvnf , (5.7)

where ρf is the density of fluid. The structural normal velocity vns is related to the nodal

displacements u through:

vns = iωnf · u . (5.8)

Substituting Equations 5.7 and 5.8 into 5.6 for vnf and vns respectively, the relationship between

acoustic pressure normal derivative and structural displacement at a surface point is expressed

as:
∂p

∂n
= ω2ρnf · u .

With this relationship, the global vectors can be related as

q = ω2ρfCfsu , (5.9)

where Cfs= ñT
f and u is the global vector of nodal displacements. Using Equation 5.9 to

substitute for q in the boundary element system of equations (4.27), a coupled system for the

acoustic problem is given by

Hp = Gω2ρCfsu + pinc . (5.10)

Substitute Equation 5.5 into Equation 5.2, a coupled system of equations for the structural

dynamics problem is expressed as

Au = Csfp + fs. (5.11)

Finally, by combining Equation 5.10 and Equation 5.11, the global coupled system of equations
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is expressed as  A −Csf
−ω2ρGCfs H


 u

p

 =

 fs

pinc

 . (5.12)

Given the structural nodal shell forces and the incident acoustic pressures on the right-hand side

of the system of equations as Neumann boundary conditions, the two global vectors of the nodal

displacements and acoustic pressure coefficients can be solved. However, in the large matrix, the

finite element method matrix A is a sparse matrix but the entries in boundary element method

matrices H and G are fully populated. The matrix is also non-symmetric. Solving this system

of equation using a direct solver will lead to long runtimes and the computations will consume

significant memory. In order to solve the problem efficiently, first solve the inverse of matrix A

and use it to express displacements u:

u = A−1(fs + Csfp). (5.13)

Then substitute Equation 5.13 into system of equation 5.10. The new coupled system of

equations for acoustic analysis is expressed as

Hp = ω2ρGCfsA
−1 (fs + Csfp) + pinc . (5.14)

Defining the vector qs which accounts for the contribution of acoustic velocities from the

structural domain as

qs = ω2ρCfsA
−1fs ,

and a global admittance matrix YC that represents the admittance effect caused by the structure

as

YC = ω2ρCfsA
−1Csf .

The system of equations of Equation 5.14 is then written as

[H− GYC ]p = Gqs + pinc . (5.15)
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Low-rank approximations using the theory of H -matrices are computed for H and G. The

matrix YC is computed with an approximation of the inverse operator for A through a triangular

factorisation. Apply the Neumann boundary conditions at the right-hand side of this system of

equations, p can be solved using a GMRES iterative solver. Substitute it into Equation 5.13 and

the nodal displacements are obtained.

5.3 Numerical examples

5.3.1 Plane wave scattered by an elastic spherical shell

Assume an elastic spherical shell is immersed in water. An acoustic wave is propagating from a

far field point source. When the acoustic wave impinges on the elastic spherical shell, it can be

seen as an incident plane wave scattered by the spherical shell. This relatively simple problem

with an analytical solution is used to verify the coupled formulation and the implementation. The

definition of the problem is illustrated in Figure 5.4. Figure 5.5 shows the Cartesian coordinate

system and the local polar coordinate system defined in the x − y plane. Table 5.1 specifies

all geometry and material properties. The definition of the incident wave is same as the test in

Section 4.5.1 which is expressed as:

pinc = eik̄x1 .
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h

Figure 5.4: Coupled structural-acoustic problem of a plane wave impinged on a spherical shell

immersed in an infinite fluid domain.

Figure 5.5: Spherical shell scattering study: incident wave direction and polar coordinate system

defined in the x-y plane
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Table 5.1: Default material and geometry parameters settings in the structural-acoustics

problem.

Parameter name Symbol Value Unit

density (water) ρf 1000 kg/m3

speed of sound(water) cw 1482 m/s
density (steel) ρs 7860 kg/m3

Young’s modulus E 210 GPa
Poisson’s ratio ν 0.3 -
sphere radius rs 0.5 m

shell thickness h 0.05 m
plane wave magnitude M 1 Pa

Analytical solution

The solution to this problem can be calculated analytically [12]. The total acoustic pressure

pt ≡ p is consisted of the scattered and radiated acoustic components:

pt = pscat + pela, (5.16)

where pscat is the acoustic pressure that would result from scattering over a rigid sphere which

is expressed as

pscat(r, θ) = p0

∞∑
n=1

− in(2n+ 1)j′n(k̄rs)

h′n(k̄rs)
Ln(cos θ)hn(k̄r), (5.17)

and pela is the radiated acoustic pressure resulting from elastic shell vibrations. It can be

expressed as

pela(r, θ) = p0

∞∑
n=1

in(2n+ 1)ρfcw
(Zn + zn)[k̄rsh′n(k̄rs)]2

Ln(cos θ)hn(k̄r), (5.18)

where p0 ≡ M is the magnitude of the incident wave. Ln is the nth Legendre function. hn

and h′n are the nth Hankel function and its derivative respectively. j′n is the derivative of the

nth spherical Bessel function. Zn denotes the invacuo modal impedance of the spherical shell
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calculated as:

Zn = −iρscp
Ω

h

rs

[Ω2 − (Ω
(1)
n )2][Ω2 − (Ω

(2)
n )2]

[Ω2 − (1 + β2)(ν + λn − 1)]
,

where λn = n(n + 1), Ω = ω rs
cp

is a dimensionless driving frequency, β2 = h2

12r2
s
, cp is the

velocity of compressional waves in the structure given by

cp =

√
E

(1− ν2)ρs

and Ω(1)
n and Ω(2)

n are dimensionless natural frequencies of the spherical shell determined from

the two positive roots of the polynomial equation:

Ω4
n − [1 + 3ν + λn − β2(1− ν − λ2

n − νλn)]Ω2
n + (λn − 2)(1− ν2)+

β2[λ3
n − 4λ2

n + λn(5− ν2)− 2(1− ν2)] = 0.

Finally, zn is the modal specific acoustic impedance expressed as:

zn = iρfcw
hn(k̄rs)

h′n(k̄rs)
.

Convergence study

The first numerical study examing the convergence characteristics of the coupled boundary

element and finite element method using the analytical solution given by Equations 5.16 to

5.18. The system of equations given by Equation 5.15 is constructed using the Loop subdivision

discretisation procedure. We adopted the similar idea in Section 4.5.1 and chose the consistent

normalised wavenumber k̄a = 10. Results for control meshes (a) and (b) are shown in Figure 5.6

and results for control mesh (c) and (d) are illustrated in Figure 5.7. The profiles of the results

for control meshes (a) and (b) converge to a different solution because of the non-negligible

geometry error illustrated in Table 4.2. Results for control mesh (c) and (d) converged to

the analytical solution which verifies the implementation of the coupled method for structural-

acoustic analysis.
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Figure 5.6: Coupled spherical shell problem, k̄a = 10: surface acoustic potential magnitude

along x-y plane using control meshes (a) and (b). The inset illustrates convergence to a solution

which does not correspond to the analytical solution due to the non-negligible geometrical error

of the limit surface.
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Figure 5.7: Coupled spherical shell problem, k̄a = 10: surface acoustic potential magnitude

along x-y plane using control meshes (c) and (d). L2 projection of control vertices onto

the analytical sphere surface leads to a reduced geometrical error in the limit surface and

convergence to the analytical solution.
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Coupling effect study

After the verification of the coupled formulation, this section will demonstrate the coupling

effect caused by the dynamic response of the shell structure. We conduct three tests using the

same Loop subdivision surface discretisation generated by the initial mesh shown in Figure 4.9.

The first analysis is an acoustically hard sphere scattered an acoustic plane wave using the

method specified in Section 4.5.1. The result is used as reference to compare with the other

two tests of elastic spherical shells with thickness h = 0.1m and h = 0.05m respectively scatter

the same acoustic plane wave. A wavenumber of k̄a = 6 was chosen in these tests in order to

keep consistent with the acoustic scattering study in [87]. The initial control mesh is sufficient

for this frequency with approximately thirteen elements per wavelength. Figures 5.8, 5.9 and

5.10 illustrate the results for these three tests, where Figures 5.8c, 5.9e and 5.10e compared the

far-field acoustic potential magnitude for the hard sphere against the elastic spherical shells. The

effect of the additional radiated acoustic pressure caused by shell vibrations is clearly shown.

Figures 5.9c,5.9d, 5.10c and 5.10d showed that the thinner shell subjected to the same acoustic

wave has larger displacements and creates larger additional radiated acoustic pressure which

dramatically change the profile of the total acoustic pressure magnitude. Figure 5.10e also

shows that decrease in the shell thickness creates a region of low pressure after the elastic

spherical obstacle. In addition, an inspection of Figures 5.9a, 5.9b, 5.10a and 5.10b reveals

that the maximum value of Re(p) shifts from the illuminating region to the shadow region when

the shell thickness is reduced.
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(a) Re(p), x-y plane. (b) Re(p), y-z plane.

(c) |p| on the x-y plane.

Figure 5.8: Acoustic pressure plots for the coupled sphere scattering problem with acoustically

hard surface, k̄a = 6. Shell displacements are equal to zero in this case.
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(a) Re(p), x-y plane. (b) Re(p), y-z plane.

(c) Re(u), x-y plane. (d) Re(u), y-z plane.

(e) |p| sampled on the x-y plane.

Figure 5.9: Acoustic pressure and displacement plots for the coupled sphere scattering problem

with h = 0.1m, k̄a = 6. The displacements are enlarged in the figure (c) and (d).
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(a) Re(p), x-y plane. (b) Re(p), y-z plane.

(c) Re(u), x-y plane. (d) Re(u), y-z plane.

(e) |p| sampled on the x-y plane.

Figure 5.10: Acoustic pressure and displacement plots for the coupled sphere scattering problem

with h = 0.05m, k̄a = 6. The displacements are enlarged in the figure (c) and (d).
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Medium frequency problems

Section 5.3.1 verified the proposed method for problems with a relative small wavenumber

(k̄a = 10). However, simulations of higher frequency problems are more attractive for

engineering applications. The boundary element method is considered as only for low frequency

acoustic problems. Statistic methods [143] are mainly used for high frequency problems.

However, a number of methods are developed for modelling high-frequency wave propagation,

e.g. spectral boundary element method (spectral BEM) [144] and partition of unity boundary

element method (PUBEM) [145]. This section will consider the ability of the method to simulate

medium frequency (ka > 20) acoustic waves scattered by shell structures. Analysing medium

to high frequency acoustic problem with the boundary element method always requires a high

resolution mesh in order to approximate the fast periodic changes of acoustic pressures along

the wave propagating direction. A conventional discretisation commonly use six or more

elements per wavelength to analyse the problem [146], which can lead to extremely large

systems of equations for complex geometries and high frequency problems. Using higher order

box-spline functions as basis functions may reduce the size of the system of equations. The

control meshes (c) and (d) for the sphere detailed in Table 4.3, are used to generate the Loop

subdivision discretisations for the simulations. Tests with successively increasing normalised

wavenumber, k̄a = 10, 30, 40, 50, 60, 80 are conducted to determine the upper frequency limit

of each discretisation. A set of sample points are defined on the sphere surface aligned with

the x-y plane as S = {s1, s2, . . . , snsample}. The maximum pointwise error in the sample set is

defined by

max
s∈S

∣∣|pht (s)| − |pt(s)|
∣∣

||pt(s)||∞
, (5.19)

where pht and pt represent numerical and analytical total acoustic pressures respectively. These

point-wise errors for discretisations generated via control meshes (c) and (d) are shown in

Table 5.2 for the different wavenumbers. The approximate number of elements per wavelength

is noted in the bracket after each percentage error. Figure 5.7 compares results for both control

mesh (c) and (d) to the analytical solution with a normalised wavenumber k̄a = 10. Plots of |pt|

against analytical solutions for k̄a = 30, 40 with control mesh (c) are shown in Figures 5.11 and
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5.12 respectively and for k̄a = 50, 60, 80 with control mesh (d) in Figures 5.13, 5.14 and 5.15

respectively.

Table 5.2: Maximum pointwise errors calculated through Equation 5.19 for a set of increasing

normalised wavenumbers applied to the coupled sphere problem. The numbers in parentheses

indicates the approximate number of elements per wavelength. A dash indicates a result with

a large maximum pointwise error that indicates insufficient resolution of mesh for the given

wavenumber.

control
mesh

k̄a
10 30 40 50 60 80

(c) 0.0427 (16) 0.0354 (6) 0.0853 (4) - - -
(d) 0.0090 (32) 0.0182 (11) 0.0194 (8) 0.0126 (7) 0.0208 (6) 0.0553 (4)
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Figure 5.11: Coupled sphere study: surface acoustic potential magnitude profile along x-y plane

for k̄a = 30, control mesh (c).
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Figure 5.12: Coupled sphere study: surface acoustic potential magnitude along x-y plane for

k̄a = 40, control mesh (c).

Figure 5.11 illustrate that the numerical results profile of total acoustic pressures for control

mesh (c) has a good agreement with the analytical solution when the wavenumber k̄ = 30,

but a discrepancy between the analytical and numerical acoustic pressure magnitude at θ = π is

observed which is caused by geometry error. When the wavenumber is increased to k̄a = 40, the

numerical profile can not match the analytical profile with a maximum point-wise error larger

than 8.5% at θ = π. The mesh (c) Loop subdivision surface discretisation is insufficiently fine

for this frequency.
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Figure 5.13: Coupled sphere study: surface acoustic potential magnitude along x-y plane for

k̄a = 50, control mesh (d).
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Figure 5.14: Coupled sphere study: surface acoustic potential magnitude along x-y plane for

k̄a = 60, control mesh (d).
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Figure 5.15: Coupled sphere study: surface acoustic potential magnitude along x-y plane for

k̄a = 80, control mesh (d).

Figures 5.13 to 5.15, for the more refined Loop subdivision surface discretisation generated

through control mesh (d) are used in tests with higher wavenumber k̄ = 50, 60 and 80, illustrate

that for wavenumbers up to k̄a = 60, the maximum point-wise error are relatively low (less than

2.1%). When the wavenumber reach a relatively high value k̄a = 80, the maximum wavenumber

for control mesh (d) is just around 5.5%. Based on the present results, a control mesh with at

least six elements per wavelength is recommended when using it to construct a Loop subdivision

discretisation to solve medium frequency acoustic problems.
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Figure 5.16: Coupled sphere study: Re(p) (real component of acoustic pressure) for k̄a = 80,

control mesh (d).

Figure 5.17: Coupled sphere study: Im(p) (imaginary component of acoustic pressure) for k̄a =

80, control mesh (d).

Figure 5.16 and 5.17 illustrates the real and imaginary parts of the total acoustic pressure on

the surface on the sphere for k̄a = 80 respectively. The previous work by Chen et al. [24] only
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use low wavenumber in coupled problem. It shows the ability of using subdivision surfaces to

solve structural-acoustic problems with medium frequency.

5.3.2 Acoustic wave scattered by a submarine

The second model we consider is of a submarine with a control mesh illustrated in

Figure 5.18 and the limit surface of the subdivision mesh is shown in Figure 5.19. This

example is mainly used to demonstrate the method’s ability to process complex industrially-

relevant models that utilise smooth geometry representations generated by CAD software.

The minimum bounding box of this submarine model is defined by [xmini ,xmaxi ]3 =

[−51.3, 41.0]×[−58.4, 17.8]×[−11.8, 11.8] and the model is symmetrical about the x-y plane.

The material properties as specified in Table 5.1 are applied with a shell thickness of h =

0.5m. A forcing function is constructed through an incident plane wave with unit magnitude

propagating in the negative x-direction. The normalised wavenumber for this example is

k̄a = 46.15.

Figure 5.18: Submarine problem: control mesh with 9, 510 vertices.
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Figure 5.19: The smooth limit surface of the submarine model generated through Loop

subdivision.
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(a) Acoustically hard surface.

(b) Coupled elastic shell.

Figure 5.20: Submarine model: acoustic pressure magnitude profiles for both an acoustically

hard surface and coupled shell formulation with a normalised wavenumber of k̄a = 46.15,

perspective view.
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(a) Acoustically hard surface.

(b) Coupled elastic shell.

Figure 5.21: Submarine model: acoustic pressure magnitude profiles for both an acoustically

hard surface and coupled shell formulation with a normalised wavenumber of k̄a = 46.15, x-y

plane.
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(a) Acoustically hard surface.

(b) Coupled elastic shell.

Figure 5.22: Submarine model: acoustic pressure magnitude profiles for both an acoustically

hard surface and coupled shell formulation with a normalised wavenumber of k̄a = 46.15, x-z

plane.
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(a) A x-y slice of the submarine.
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(b) Acoustic pressure magnitude profiles along the sliced curve.

Figure 5.23: Submarine model: acoustic pressure magnitude on a sliced curve for both an

acoustically hard surface and coupled shell formulation with a normalised wavenumber of

k̄a = 46.15, x-y plane.
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Different views of the acoustic pressure magnitude profiles for both an acoustically hard

surface and elastic shell formulation are illustrated in Figures 5.20 to 5.22. Figure 5.23 shows

acoustic pressure magnitude profiles on the same sliced curve for both cases. The effect on

the radiated acoustic pressure caused by shell vibrations is apparent. The magnitude profile

of the elastic shell shows more oscillations with a larger maximum value. The position of the

maximum value is also changed from the conning tower to the bottom of the hull due to higher

structural displacements. We note that this submarine model contains very thin fins. When

formulating the boundary element method, the source point can be very close to the integral

element, the distance between the source point and the quadrature point could be very small.

This integral difficulty will become apparent if a thinner shell thickness is chosen. This method

dose not address this problem as it focuses on efficiently coupling the two formulations.

5.3.3 Acoustic wave scattered by a geometry with complex topology

The final example is a Loop subdivision surface with a complex topology, as shown in

Figure 5.24. This topology is generally challenging for parametric boundary representing tools

based on tensor product formulation (e.g., NURBS), but it is addressed without any problems

using subdivision surfaces. A watertight and smooth limit surface is shown in Figure 5.24b. The

same structural acoustic analysis is considered with the material properties detailed in Table 5.1

and a plane wave of unit magnitude propagating in the positive x-direction is constructed with a

normalised wavenumber of k̄a = 3.
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(a) Control mesh.

(b) Limit surface.

Figure 5.24: Complex topology example: Loop subdivision discretisation with 3,940 vertices.
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(a) |p|

(b) |p| sampled over the x-y plane.

Figure 5.25: Coupled structural-acoustic analysis over a Loop subdivision surface with complex

topology: acoustic pressure magnitudes for k̄a = 3.0.

The magnitude of the acoustic pressure over the model surface is shown in Figure 5.25a.

The magnitude changes smoothly. Plot of acoustic pressure magnitude in the outside acoustic

domain are illustrated in Figure 5.25b within a x-y plane. The acoustic wave is scattered by the

structure and form a localised region of high acoustic pressure in the interior of the molecule-
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like model. The acoustic pressure magnitude in the exterior region stays low. With the ability

to analyse complex geometry with arbitrary topology, this method can be used to optimise the

microporous structures of acoustic meta-material in order to achieve cloaking.



Chapter 6

Conclusions

6.1 Summary

A novel isogeometric method for analysing underwater structures has been presented. The

method adopts a Loop subdivision discretisation to formulate an acoustic boundary element

method. The collocation approach is used to generate a system of equations to solve the

boundary integral equations stemming from the Helmholtz equation. The method utilises a

common geometry discretisation and provides the basis for fully integrated design and analysis

framework. The method is verified by an example of acoustic plane scattering by an acoustically

hard sphere. The results demonstrate convergence to the analytical solution. The ability of the

proposed approach to analyse complex geometry is shown using the problem of a mannequin

model. Two meshes with different levels of refinement both representing the same design

geometry, show good agreement in the acoustic pressure profiles.

The acoustic collocation boundary element method has then been coupled to a Galerkin

Kirchhoff-Love shell finite element method for coupled structural-acoustic analysis, formulated

using a common Loop subdivision discretisation. The scattering of sound (acoustic waves) by

the shell structure is an exterior problem where the acoustic domain is the region outside the

structural domain. The incident acoustic wave induces a surface force on the boundary of the

structural domain and produces displacements of the shell which are related to the acoustic

velocity. By applying the acoustic pressure of the incident wave and structural force, the nodal

139



CHAPTER 6. CONCLUSIONS 140

displacements and the acoustic pressures were solved. The implementation has been verified

using the example of an elastic spherical shell scattering an acoustic plane wave. A submarine

model generated with the Loop subdivision surfaces has been presented as a practical example

for the acoustic scattering analysis. The final example is a complex molecule-like geometry with

arbitrary topology, which highlighted the advantages of Loop subdivision surfaces to analyse

complex geometries with arbitrary topologies than NURBS.

6.2 Key findings

The Loop subdivision discretisation scheme adopts a linear polygonal mesh but uses higher

order basis functions which are more accurate for approximation. This gives a higher

accuracy per degree of freedom over equivalent quartic Lagrangian discretisations. The Loop

subdivision discretisation has advantages for analysing complex geometries with arbitrary

topologies while still maintaining high continuity across elements. The ability to solve medium

frequency problems using the Loop subdivision discretisation is an outstanding feature. It

employs high order elements but only has the number of degrees of freedom as a linear

Lagrangian discretisation. Medium frequency coupled acoustic-structural problems (normalised

wavenumbers up to ka = 80) have been solved using the proposed method with 5.5% maximum

point-wise error. Six elements per wavelength is sufficient to obtain adequate accuracy for the

acoustic scattering analysis with a Loop subdivision discretisation. The coupling effect has been

examined. The acoustic pressure profiles on the shell’s surface are significantly different from

those on acoustic rigid surfaces. Because of the shell’s vibration, the acoustic pressures on the

surfaces show increased oscillation. There are large acoustic pressures in the presences of large

structural displacements. The implementation of hierarchical matrices to construct efficient low-

rank approximations of dense matrices allows for boundary element models generated through

Loop subdivision discretisations with over 10,000 vertices. The method is efficient and accurate.
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6.3 Future work

Future work will extend the current implementation with Catmull-Clark subdivision surfaces.

These are more standard CAD techniques, used widely in industry. A robust integration scheme

will be developed for near singular integration. Simulating higher acoustic frequencies is another

research direction. The partition of unity BEM (PUBEM) [145] was proposed to solve acoustic

problem with high frequencies in a efficient way. It can be implemented into the present work

to address high frequency structural-acoustic interactions. Another worthwhile extension is to

couple the isogeometric acoustic boundary element method with a three-dimensional acoustic

finite element method to simulate acoustic scattering from the fluid domain to the solid domain.

This is very important in the application of acoustic imaging techniques.

Future work will also implement the present method into shape optimisation schemes to

assist the industrial design of underwater structures. Practical engineering design is often a

trial and error procedure. In the conventional shape optimisation process, the designer first

generates an initial model for the object with a CAD software. After that, a discretisation (mesh)

is generated to approximate the initial CAD model for analysis. Then, the design variables

which controlling the geometry will be updated according to the analysis results of the cost

functions. The CAD model is recovered for the next iteration of the optimisation process.

The proposed method is a step towards developing a fully integrated design methodology. By

using the same subdivision surfaces model for both design and analysis, the new workflow can

eliminate costly data conversion between the CAD and the mesh. Any adjustments of the CAD

will be directly adopted in analysis without the need of mesh regeneration. The optimisation

process is simplified and significant gains are made in time and efficiency.



References

[1] J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric Analysis: toward Integration

of CAD and FEA. John Wiley & Sons, 2009.

[2] Y. Bazilevs, V. M. Calo, J. A. Cottrell, J. A. Evans, T. J. R. Hughes, S. Lipton, M. A.

Scott, and T. W. Sederberg. Isogeometric analysis using T-splines. Computer Methods in

Applied Mechanics and Engineering, 199(5–8):229–263, 2010.

[3] A. Vuong, C. Giannelli, B. Jüttler, and B. Simeon. A hierarchical approach to adaptive

local refinement in isogeometric analysis. Computer Methods in Applied Mechanics and

Engineering, 200(49):3554–3567, 2011.

[4] Y. Zhang, W. Wang, and T. J. R. Hughes. Solid T-spline construction from boundary

representations for genus-zero geometry. Computer Methods in Applied Mechanics and

Engineering, 249:185–197, 2012.

[5] F. Cirak, M. Ortiz, and P. Schröder. Subdivision surfaces: a new paradigm for thin-shell

finite-element analysis. International Journal for Numerical Methods in Engineering, 47

(12):2039–2072, 2000.

[6] J. J. Bowman, T. B. Senior, and P. L. Uslenghi. Electromagnetic and acoustic scattering

by simple shapes. Technical report, Michigan University Ann Arbor Radiation Lab, 1970.

[7] R. T. Hoctor and S. A. Kassam. The unifying role of the coarray in aperture synthesis for

coherent and incoherent imaging. Proceedings of the IEEE, 78(4):735–752, 1990.

[8] J. J. P. Kastelein and E. de Groot. Ultrasound imaging techniques for the evaluation of

cardiovascular therapies. European Heart Journal, 29(7):849–858, 2008.

142



REFERENCES 143

[9] J. Blitz and G. Simpson. Ultrasonic methods of non-destructive testing, volume 2.

Springer Science & Business Media, 1995.

[10] V. M. Malhotra and N. J. Carino. Handbook on Nondestructive Testing of Concrete

Second Edition. CRC press, 2003.

[11] W. D. Hackmann. Sonar research and naval warfare 1914-1954: A case study of

a twentieth-century establishment science. Historical Studies in the Physical and

Biological Sciences, 16(1):83–110, 1986.

[12] M. C. Junger and D. Feit. Sound, Structures, and Their Interaction, volume 225. MIT

Press Cambridge, MA, 1986.

[13] A. Sommerfeld. Partial Differential Equations in Physics, volume 1. Academic Press,

1949.

[14] R. P. Shaw. Boundary integral equation methods applied to wave problems. Technical

report, State university of New York at Buffulo, 1979.

[15] R. D. Ciskowski and C. A. Brebbia. Boundary Element Methods in Acoustics. Springer,

1991.

[16] M. R. Bai. Application of BEM (boundary element method)-based acoustic holography

to radiation analysis of sound sources with arbitrarily shaped geometries. The Journal of

the Acoustical Society of America, 92(1):533–549, 1992.

[17] L. C. Wrobel. The Boundary Element Method, Applications in Thermo-Fluids and

Acoustics, volume 1. John Wiley & Sons, 2002.

[18] M. F. Hamilton and D. T. Blackstock. Nonlinear acoustics, volume 1. Academic press

San Diego, 1998.

[19] J. C. F. Telles. A self-adaptive co-ordinate transformation for efficient numerical

evaluation of general boundary element integrals. International Journal for Numerical

Methods in Engineering, 24(5):959–973, 1987.



REFERENCES 144

[20] M. G. Duffy. Quadrature over a pyramid or cube of integrands with a singularity at a

vertex. SIAM Journal on Numerical Analysis, 19(6):1260–1262, 1982.

[21] G. C. Everstine and F. M. Henderson. Coupled finite element/boundary element approach

for fluid-structure interaction. The Journal of the Acoustical Society of America, 87(5):

1938–1947, 1990.

[22] M. Fischer and L. Gaul. Fast BEM-FEM mortar coupling for acoustic-structure

interaction. International Journal for Numerical Methods in Engineering, 62(12):1677–

1690, 2005.

[23] S. Schneider. FE/FMBE coupling to model fluid-structure interaction. International

Journal for Numerical Methods in Engineering, 76(13):2137–2156, 2008.

[24] L. Chen, C. Zheng, and H. Chen. FEM/wideband FMBEM coupling for structural-

acoustic design sensitivity analysis. Computer Methods in Applied Mechanics and

Engineering, 276:1–19, 2014.

[25] L. Noels and R. Radovitzky. A new discontinuous Galerkin method for Kirchhoff–Love

shells. Computer Methods in Applied Mechanics and Engineering, 197(33-40):2901–

2929, 2008.

[26] B. Cockburn, G. E. Karniadakis, and C. Shu. The development of discontinuous Galerkin

methods. In Discontinuous Galerkin Methods, pages 3–50. Springer, 2000.

[27] P. Krysl and T. Belytschko. Analysis of thin shells by the element-free Galerkin method.

International Journal of Solids and Structures, 33(20-22):3057–3080, 1996.

[28] T. Rabczuk, P. M. A. Areias, and T. Belytschko. A meshfree thin shell method for non-

linear dynamic fracture. International Journal for Numerical Methods in Engineering,

72(5):524–548, 2007.

[29] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite

elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied

Mechanics and Engineering, 194(39):4135–4195, 2005.



REFERENCES 145

[30] J. A. Cottrell, A. Reali, Y. Bazilevs, and T. J. R. Hughes. Isogeometric analysis of

structural vibrations. Computer Methods in Applied Mechanics and Engineering, 195

(41):5257–5296, 2006.

[31] T. W. Sederberg, J. Zheng, A. Bakenov, and A. Nasri. T-splines and T-NURCCs. In ACM

Transactions on Graphics (TOG), volume 22, pages 477–484. ACM, 2003.

[32] F. Cirak and M. Ortiz. Fully C1-conforming subdivision elements for finite deformation

thin-shell analysis. International Journal for Numerical Methods in Engineering, 51:

813–833, 2001.

[33] C. Loop. Smooth subdivision surfaces based on triangles. Master’s thesis, Department of

Mathematics, The University of Utah, 1987.

[34] D. Fritze, S. Marburg, and H. Hardtke. FEM-BEM-coupling and structural-acoustic

sensitivity analysis for shell geometries. Computers & Structures, 83(2):143–154, 2005.

[35] W. Hackbusch, B. N. Khoromskij, and R. Kriemann. Hierarchical matrices based on a

weak admissibility criterion. Computing, 73(3):207–243, 2004.

[36] J. Kiendl, K. U. Bletzinger, J. Linhard, and R. Wüchner. Isogeometric shell analysis with

Kirchhoff–Love elements. Computer Methods in Applied Mechanics and Engineering,

198(49):3902–3914, 2009.

[37] A. Buffa, G. Sangalli, and R. Vázquez. Isogeometric methods for computational

electromagnetics: B-spline and T-spline discretizations. Journal of Computational

Physics, 257:1291–1320, 2014.

[38] A. Reali. An isogeometric analysis approach for the study of structural vibrations. Journal

of Earthquake Engineering, 10(1):1–30, 2006.

[39] Y. Bazilevs, V. M. Calo, T. J. R. Hughes, and Y. Zhang. Isogeometric fluid-structure

interaction: theory, algorithms, and computations. Computational Mechanics, 43(1):3–

37, 2008.



REFERENCES 146

[40] Y. D. Seo, H. J. Kim, and S. K. Youn. Isogeometric topology optimization using trimmed

spline surfaces. Computer Methods in Applied Mechanics and Engineering, 199(49):

3270–3296, 2010.

[41] A. I. Ginnis, K. V. Kostas, C. Feurer, K. A. Belibassakis, T. P. Gerostathis, C. G. Politis,

and P.D. Kaklis. A CATIA R© ship-parametric model for isogeometric hull optimization

with respect to wave resistance. In ICCAS 2011 Trieste 20-22 September proceedings,

Italy, 2011.

[42] K. Li and X. Qian. Isogeometric analysis and shape optimization via boundary integral.

Computer Aided Design, 43(11):1427–1437, 2011.

[43] M. J. Borden, M. A. Scott, J. A. Evans, and T. J. R. Hughes. Isogeometric finite

element data structures based on Bézier extraction of NURBS. International Journal

for Numerical Methods in Engineering, 87(1-5):15–47, 2011.

[44] D. R. Forsey and R. H. Bartels. Hierarchical B-spline refinement. ACM Siggraph

Computer Graphics, 22(4):205–212, 1988.

[45] J. Deng, F. Chen, X. Li, C. Hu, W. Tong, Z. Yang, and Y. Feng. Polynomial splines over

hierarchical T-meshes. Graphical models, 70(4):76–86, 2008.

[46] N. Nguyen-Thanh, J. Kiendl, H. Nguyen-Xuan, R. Wüchner, K. U. Bletzinger,

Y. Bazilevs, and T. Rabczuk. Rotation free isogeometric thin shell analysis using PHT-

splines. Computer Methods in Applied Mechanics and Engineering, 200(47):3410–3424,

2011.

[47] T. Dokken, T. Lyche, and K. F. Pettersen. Polynomial splines over locally refined box-

partitions. Computer Aided Geometric Design, 30(3):331–356, 2013.

[48] K. A. Johannessen, T. Kvamsdal, and T. Dokken. Isogeometric analysis using LR B-

splines. Computer Methods in Applied Mechanics and Engineering, 269:471–514, 2014.



REFERENCES 147

[49] M. Aigner, C. Heinrich, B. Jüttler, E. Pilgerstorfer, B. Simeon, and A. V. Vuong.

Swept volume parameterization for isogeometric analysis. In IMA Conference on the

Mathematics of Surfaces, pages 19–44. Springer, 2009.

[50] J. M. Escobar, J. M. Cascón, E. Rodríguez, and R. Montenegro. A new approach to solid

modeling with trivariate T-splines based on mesh optimization. Computer Methods in

Applied Mechanics and Engineering, 200(45):3210–3222, 2011.

[51] G. Xu, B. Mourrain, R. Duvigneau, and A. Galligo. Parameterization of computational

domain in isogeometric analysis: methods and comparison. Computer Methods in

Applied Mechanics and Engineering, 200(23):2021–2031, 2011.

[52] W. Dornisch, G. Vitucci, and S. Klinkel. The weak substitution method–an application

of the mortar method for patch coupling in NURBS-based isogeometric analysis.

International Journal for Numerical Methods in Engineering, 103(3):205–234, 2015.

[53] Z. Lei, F. Gillot, and L. Jezequel. A C0/G1 multiple patches connection method in

isogeometric analysis. Applied Mathematical Modelling, 39(15):4405 – 4420, 2015.

[54] M. Breitenberger, A. Apostolatos, B. Philipp, R. Wüchner, and K. U. Bletzinger. Analysis

in computer aided design: Nonlinear isogeometric b-rep analysis of shell structures.

Computer Methods in Applied Mechanics and Engineering, 284(Supplement C):401 –

457, 2015. Isogeometric Analysis Special Issue.

[55] X. Du, G. Zhao, and W. Wang. Nitsche method for isogeometric analysis of Reissner–

Mindlin plate with non-conforming multi-patches. Computer Aided Geometric Design,

35-36(Supplement C):121 – 136, 2015. Geometric Modeling and Processing 2015.

[56] L. Coox, F. Greco, O. Atak, D. Vandepitte, and W. Desmet. A robust patch coupling

method for NURBS-based isogeometric analysis of non-conforming multipatch surfaces.

Computer Methods in Applied Mechanics and Engineering, 316:235–260, 2017.

[57] M. Ruess, D. Schillinger, A. I. Ozcan, and E. Rank. Weak coupling for isogeometric



REFERENCES 148

analysis of non-matching and trimmed multi-patch geometries. Computer Methods in

Applied Mechanics and Engineering, 269(Supplement C):46 – 71, 2014.

[58] J. A. Cottrell, T. J. R. Hughes, and A. Reali. Studies of refinement and continuity

in isogeometric structural analysis. Computer Methods in Applied Mechanics and

Engineering, 196(41):4160 – 4183, 2007.

[59] J. Kiendl, Y. Bazilevs, M. C. Hsu, R. Wüchner, and K. U. Bletzinger. The bending

strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of

multiple patches. Computer Methods in Applied Mechanics and Engineering, 199(37):

2403 – 2416, 2010.

[60] R. Schmidt, R. Wüchner, and K. U. Bletzinger. Isogeometric analysis of trimmed nurbs

geometries. Computer Methods in Applied Mechanics and Engineering, 241:93–111,

2012.

[61] H. J. Kim, Y. D. Seo, and S. K. Youn. Isogeometric analysis for trimmed CAD surfaces.

Computer Methods in Applied Mechanics and Engineering, 198(37):2982–2995, 2009.

[62] H. J. Kim, Y. D. Seo, and S. K. Youn. Isogeometric analysis with trimming technique for

problems of arbitrary complex topology. Computer Methods in Applied Mechanics and

Engineering, 199(45):2796–2812, 2010.

[63] G. Beer, B. Marussig, and J. Zechner. A simple approach to the numerical simulation

with trimmed CAD surfaces. Computer Methods in Applied Mechanics and Engineering,

285:776–790, 2015.

[64] D. Schillinger, L. Dede, M. A. Scott, J. A. Evans, M. J. Borden, E. Rank, and T. J. R.

Hughes. An isogeometric design-through-analysis methodology based on adaptive

hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD

surfaces. Computer Methods in Applied Mechanics and Engineering, 249:116–150, 2012.

[65] C. Giannelli, B. Jüttler, and H. Speleers. THB-splines: The truncated basis for

hierarchical splines. Computer Aided Geometric Design, 29(7):485–498, 2012.



REFERENCES 149

[66] D. Zorin and P. Schröder. Subdivision for modeling and animation. SIGGRAPH 2000

Course Notes, 2000.

[67] J. Peters and U. Reif. Subdivision Surfaces. Springer Series in Geometry and Computing.

Springer, 2008.

[68] A. Czaja, A. Grabowska, T. Kocejko, and E. Kozłowska. Introduction to Autodesk Fusion

360.

[69] PTC Creo 5.0. URL https://www.ptc.com/en/products/cad/creo, 2018.

[70] CATiA V6. URL http://www. 3ds. com/products-services/catia, 2013.

[71] K. Bandara, F. Cirak, G. Of, O. Steinbach, and J. Zapletal. Boundary element based

multiresolution shape optimisation in electrostatics. Journal of Computational Physics,

297:584–598, 2015.

[72] F. Cirak and Q. Long. Subdivision shells with exact boundary control and non-manifold

geometry. International Journal for Numerical Methods in Engineering, 88(9):897–923,

2011.

[73] Q. Long, P. B. Bornemann, and F. Cirak. Shear-flexible subdivision shells. International

Journal for Numerical Methods in Engineering, 90:1549–1577, 2012.

[74] J. Hua, Y. He, and H. Qin. Multiresolution heterogeneous solid modeling and

visualization using trivariate simplex splines. In Proceedings of the Ninth ACM

Symposium on Solid Modeling and Applications, pages 47–58. Eurographics Association,

2004.

[75] X. Li, X. Guo, H. Wang, Y. He, X. Gu, and H. Qin. Harmonic volumetric mapping for

solid modeling applications. In Proceedings of the 2007 ACM Symposium on Solid and

Physical Modeling, pages 109–120. ACM, 2007.

[76] T. Martin, E. Cohen, and M. Kirby. Volumetric parameterization and trivariate B-spline

fitting using harmonic functions. In Proceedings of the 2008 ACM Symposium on Solid

and Physical Modeling, pages 269–280. ACM, 2008.



REFERENCES 150

[77] W. Wang, Y. Zhang, L. Liu, and T. J. R. Hughes. Trivariate solid T-spline construction

from boundary triangulations with arbitrary genus topology. Computer-Aided Design, 45

(2):351–360, 2013.

[78] Y. Zhang, W. Wang, and T. J. R. Hughes. Conformal solid T-spline construction from

boundary T-spline representations. Computational Mechanics, pages 1–9, 2013.

[79] D. J. Benson, Y. Bazilevs, M. C. Hsu, and T. J. R. Hughes. Isogeometric shell analysis:

the Reissner–Mindlin shell. Computer Methods in Applied Mechanics and Engineering,

199(5):276–289, 2010.

[80] D. J. Benson, Y. Bazilevs, M. C. Hsu, and T. J. R. Hughes. A large deformation, rotation-

free, isogeometric shell. Computer Methods in Applied Mechanics and Engineering, 200

(13):1367–1378, 2011.

[81] T. K. Uhm and S. K. Youn. T-spline finite element method for the analysis of shell

structures. International Journal for Numerical Methods in Engineering, 80(4):507–536,

2009.

[82] N. Nguyen-Thanh, H. Nguyen-Xuan, S. P. A. Bordas, and T. Rabczuk. Isogeometric

analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic

solids. Computer Methods in Applied Mechanics and Engineering, 200(21):1892–1908,

2011.

[83] R. N. Simpson, S. P. A. Bordas, J. Trevelyan, and T. Rabczuk. A two-dimensional

isogeometric boundary element method for elastostatic analysis. Computer Methods in

Applied Mechanics and Engineering, 209-212:87–100, 2012.

[84] T. Takahashi and T. Matsumoto. An application of fast multipole method to isogeometric

boundary element method for laplace equation in two dimensions. Engineering Analysis

with Boundary Elements, 36(12):1766–1775, 2012.

[85] M. A. Scott, R. N. Simpson, J. A. Evans, S. Lipton, S. P. A. Bordas, T. J. R. Hughes, and



REFERENCES 151

T. W. Sederberg. Isogeometric boundary element analysis using unstructured T-splines.

Computer Methods in Applied Mechanics and Engineering, 254:197–221, 2013.

[86] M. J. Peake, J. Trevelyan, and G. Coates. Extended isogeometric boundary element

method (XIBEM) for two-dimensional Helmholtz problems. Computer Methods in

Applied Mechanics and Engineering, 259:93–102, 2013.

[87] R. N. Simpson, M. A. Scott, M. Taus, D. C. Thomas, and H. Lian. Acoustic isogeometric

boundary element analysis. Computer Methods in Applied Mechanics and Engineering,

269:265–290, 2014.

[88] L. Heltai, J. Kiendl, A. DeSimone, and A. Reali. A natural framework for isogeometric

fluid-structure interaction based on BEM-shell coupling. Computer Methods in Applied

Mechanics and Engineering, 316:522–546, 2017.

[89] A. J. Burton and G. F. Miller. The application of integral equation methods to the

numerical solution of some exterior boundary-value problems. Proceedings of the Royal

Society: A, 323:201–210, 1971.

[90] Y. Liu. Fast Multipole Boundary Element Method: Theory and Applications in

Engineering. Cambridge University Press, 2009.

[91] M. Bebendorf. Hierarchical Matrices. Springer, 2008.

[92] A. Brancati, M. H. Aliabadi, and I. Benedetti. Hierarchical adaptive cross approximation

GMRES technique for solution of acoustic problems using the boundary element method.

Computer Modelling in Engineering and Sciences, 43(2):149–172, 2009.

[93] M. G. Cox. The numerical evaluation of B-splines. IMA Journal of Applied Mathematics,

10(2):134–149, 1972.

[94] C. De Boor. On calculating with B-splines. Journal of Approximation theory, 6(1):50–62,

1972.



REFERENCES 152

[95] R. F. Riesenfeld. On Chaikin’s algorithm. Computer Graphics and Image Processing, 4

(3):304–310, 1975.

[96] E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary topological

meshes. Computer-Aided Design, 10(6):350–355, 1978.

[97] R. Qu. Recursive subdivision algorithms for curve and surface design. PhD thesis, Brunel

University, School of Information Systems, Computing and Mathematics, 1990.

[98] D. Doo and M. Sabin. A subdivision algorithm for smoothing down irregularly shaped

polyhedrons. In Proceedings on interactive techniques in computer aided design, volume

157, page 165. Bologna, 1978.

[99] J. Peters and U. Reif. Subdivision Surfaces, volume 3. Springer Science & Business

Media, 2008.

[100] J. Warren and H. Weimer. Subdivision Methods for Geometric Design: A Constructive

Approach. Morgan Kaufmann, 2001.

[101] J. Stam. Exact evaluation of Loop subdivision surfaces at arbitrary parameter values.

SIGGRAPH Course Note, pages 111–124, 1998.

[102] M. Lai. Fortran subroutines for b-nets of box splines on three-and four-directional

meshes. Numerical Algorithms, 2(1):33–38, 1992.

[103] I. Fredholm. Sur une classe déquations fonctionelles. Acta Mathematica, 27:365–390,

1903.

[104] C. Massonnet. Solution générale du probléme aux tensions de l’élasticité tridimen-

sionelle. 9th International Congress in Applied Mechanics, 1956.

[105] M. A. Jaswon. Integral equation methods in potential theory. I. In Proceedings of the

Royal Society of London A: Mathematical, Physical and Engineering Sciences, volume

275, pages 23–32. The Royal Society, 1963.



REFERENCES 153

[106] G. T. Symm. Integral equation methods in potential theory. II. In Proceedings of the

Royal Society of London A: Mathematical, Physical and Engineering Sciences, volume

275, pages 33–46. The Royal Society, 1963.

[107] J. C. Lachat and J. O. Watson. Effective numerical treatment of boundary integral

equations: a formulation for three-dimensional elastostatics. International Journal for

Numerical Methods in Engineering, 10(5):991–1005, 1976.

[108] C. A. Brebbia. The Boundary Elements Method for Engineers. Pentech Press, 1978.

[109] G. E. Blandford, A. R. Ingraffea, and J. A. Liggett. Two-dimensional stress intensity

factor computations using the boundary element method. International Journal for

Numerical Methods in Engineering, 17(3):387–404, 1981.

[110] Y. Mi and M. H. Aliabadi. Dual boundary element method for three-dimensional fracture

mechanics analysis. Engineering Analysis with Boundary Elements, 10(2):161–171,

1992.

[111] M. H. Aliabadi. Boundary element formulations in fracture mechanics. Applied

Mechanics Reviews, 50(2):83–96, 1997.

[112] P. K. Banerjee and R. Butterfield. Boundary Element Methods in Engineering Science,

volume 17. McGraw-Hill London, 1981.

[113] S. Sirtori, G. Maier, G. Novati, and S. Miccoli. A Galerkin symmetric boundary-

element method in elasticity: formulation and implementation. International Journal

for Numerical Methods in Engineering, 35(2):255–282, 1992.

[114] N. Ghosh, H. Rajiyah, S. Ghosh, and S. Mukherjee. A new boundary element method

formulation for linear elasticity. Journal of Applied Mechanics, 53(1):69–76, 1986.

[115] M. H. Aliabadi. The Boundary Element Method, Applications in Solids and Structure,

volume 2. John Wiley & Sons, 2002.



REFERENCES 154

[116] S. Kagami and I. Fukai. Application of boundary element method to electromagnetic field

problems (short papers). Microwave Theory and Techniques, IEEE Transactions on, 32

(4):455–461, 1984.

[117] R. Djellouli, C. Farhat, A. Macedo, and R. Tezaur. Finite element solution of

two-dimensional acoustic scattering problems using arbitrarily shaped convex artificial

boundaries. Journal of Computational Acoustics, 8(01):81–99, 2000.

[118] F. Ihlenburg. Finite Element Analysis of Acoustic Scattering, volume 132. Springer

Science & Business Media, 2006.

[119] D. Schillinger, J. A. Evans, A. Reali, M. A. Scott, and T. J. R. Hughes. Isogeometric

collocation: Cost comparison with Galerkin methods and extension to adaptive

hierarchical NURBS discretizations. Computer Methods in Applied Mechanics and

Engineering, 267:170–232, 2013.

[120] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Journal of

computational physics, 73(2):325–348, 1987.

[121] J. Carrier, L. Greengard, and V. Rokhlin. A fast adaptive multipole algorithm for particle

simulations. SIAM Journal of Scientific and Statistical Computing, 9(4):669–686, 1988.

[122] H. Cheng, L. Greengard, and V. Rokhlin. A fast adaptive multipole algorithm in three

dimensions. Journal of Computational Physics, 155:468–498, 1999.

[123] W. Hackbusch. A sparse matrix arithmetic based on H-matrices. Part I: Introduction to

H-matrices. Computing, 62(2):89–108, 1999.

[124] W. Hackbusch and B. N. Khoromskij. A sparse H-matrix arithmetic. Computing, 64(1):

21–47, 2000.

[125] R. Kriemann. HLIBpro user manual. Max-Planck-Institute for Mathematics in the

Sciences, Leipzig, 2008.



REFERENCES 155

[126] L. G. Copley. Integral equation method for radiation from vibrating bodies. The journal

of the acoustical society of America, 41(4A):807–816, 1967.

[127] A. J. Burton and G. F. Miller. The application of integral equation methods to the

numerical solution of some exterior boundary-value problems. In Proceedings of the

Royal Society of London A: Mathematical, Physical and Engineering Sciences, volume

323, pages 201–210. The Royal Society, 1971.

[128] M. Guiggiani and A. Gigante. A general algorithm for multidimensional cauchy principal

value integrals in the boundary element method. Journal of Applied Mechanics, 57(4):

906–915, 1990.

[129] Y. Liu and T. J. Rudolphi. Some identities for fundamental-solutions and their

applications to weakly-singular boundary element formulations. Engineering Analysis

with Boundary Elements, 8(6):301–311, 1991.

[130] Y. Liu and F. J. Rizzo. A weakly singular form of the hypersingular boundary integral

equation applied to 3-D acoustic wave problems. Computer Methods in Applied

Mechanics and Engineering, 96(2):271–287, 1992.

[131] V. Sladek, J. Sladek, and M. Tanaka. Regularization of hypersingular and nearly singular

integrals in the potential theory and elasticity. International Journal for Numerical

Methods in Engineering, 36(10):1609–1628, 1993.

[132] A. F. Seybert, B. Soenarko, F. J. Rizzo, and D. J. Shippy. An advanced computational

method for radiation and scattering of acoustic waves in three dimensions. The journal of

the acoustical society of America, 77(2):362–368, 1985.

[133] P. Geng, J. T. Oden, and L. Demkowicz. Numerical solution and aposteriori error

estimation of exterior acoustics problems by a boundary element method at high wave

numbers. The Journal of the Acoustical Society of America, 100(1):335–345, 1996.

[134] C. Geuzaine and J. Remacle. Gmsh: A 3-D finite element mesh generator with build-



REFERENCES 156

in pre- and post-processing facilities. International Journal for Numerical Methods in

Engineering, 79(11):1309–1331, 2009.

[135] B. F. G. Katz. Boundary element method calculation of individual head-related transfer

function. I. rigid model calculation. The Journal of the Acoustical Society of America,

110(5):2440–2448, 2001.

[136] Z. Liu, M. Majeed, F. Cirak, and R. N. Simpson. Isogeometric FEM-BEM coupled

structural-acoustic analysis of shells using subdivision surfaces. International Journal

for Numerical Methods in Engineering, 113(9):1507–1530, 2018.

[137] R. Courant. Variational methods for the solution of problems of equilibrium and

vibrations. Lecture Notes in Pure and Applied Mathematics, pages 1–1, 1994.

[138] J. C. Simo and D. D. Fox. On a stress resultant geometrically exact shell model. Part I:

Formulation and optimal parametrization. Computer Methods in Applied Mechanics and

Engineering, 72(3):267–304, 1989.

[139] J. C. Simo, D. D. Fox, and M. S. Rifai. On a stress resultant geometrically exact shell

model. Part II: The linear theory; computational aspects. Computer Methods in Applied

Mechanics and Engineering, 73(1):53–92, 1989.

[140] J. C. Simo, D. D. Fox, and M. S. Rifai. On a stress resultant geometrically exact shell

model. Part III: Computational aspects of the nonlinear theory. Computer Methods in

Applied Mechanics and Engineering, 79(1):21–70, 1990.

[141] J. C. Simo, M. S. Rifai, and D. D. Fox. On a stress resultant geometrically exact shell

model. Part IV: Variable thickness shells with through-the-thickness stretching. Computer

methods in applied mechanics and engineering, 81(1):91–126, 1990.

[142] P. G. Ciarlet. An Introduction to Differential Geometry with Applications to Elasticity.

Springer, 2005.

[143] J. D. Scargle. Studies in astronomical time series analysis. ii-statistical aspects of spectral

analysis of unevenly spaced data. The Astrophysical Journal, 263:835–853, 1982.



REFERENCES 157

[144] J. Li, Z. S. Khodaei, and M. H. Aliabadi. Spectral bem for the analysis of wave

propagation and fracture mechanics. Journal of Multiscale Modelling, 8(03n04):

1740007, 2017.

[145] P. Emmanuel, J. Trevelyan, and P. Bettess. Wave boundary elements: a theoretical

overview presenting applications in scattering of short waves. Engineering Analysis with

Boundary Elements, 28(2):131–141, 2004.

[146] S. Marburg. Six boundary elements per wavelength: is that enough? Journal of

Computational Acoustics, 10(01):25–51, 2002.


