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Abstract

Today, CMOS-compatible Flash memory technology dominates the non-volatile

memory storage market due to high density and low fabrication costs. However, with

CMOS approaching fundamental scaling limits, research into novel emerging non-volatile

memory storage technologies that exploit materials properties including resistance, spin

and polarisation, has significantly progressed. The ideal non-volatile memory technology

would compete with Flash, offering high-density memory storage at low costs, however

it would outperform Flash due to its faster operating speeds, lower energy requirements,

greater endurance and greater potential for scaling. Of all the emerging technologies,

resistive RAM (RRAM) elements, in which reproducible (switchable) and distinct high and

low resistance states are the basis of memory storage, are considered most advantageous

due to their superior potential for scaling, fastest exhibited operating speeds and extremely

low energy requirements. Despite progress in the field of RRAM research, the underlying

mechanisms that allow a device to switch between high and low resistance states

remains unclear in many materials systems and is the key motivation behind this work.

Here, Pulsed Laser Deposited (PLD) RRAM devices that incorporate resistive switching

transition metal oxide thin films were studied using Electron Energy Loss Spectroscopy

(EELS). Basic metal/oxide/metal RRAM heterostructures that incorporated strongly

oxidising titanium electrodes and polycrystalline ZnO and manganese-doped ZnO were

investigated in Chapter 3. These devices were designed for direct comparison to a

device in presented the literature which displayed the simultaneous co-switching of

resistance and magnetisation states. In the devices fabricated here, EELS analysis

revealed Mn-phase segregation both at grain boundaries both above and below the
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top and bottom electrodes, which supported the proposed co-switching mechanism. In

Chapter 4, epitaxial single crystal perovskite oxide Pr0.48Ca0.52MnO3 was incorporated

into a novel metal/oxide/tunnel-oxide/metal RRAM structure, where the thickness of

the interfacial Yttria-stabilised Zirconia tunnel oxide varied the output current density. In

both the ZnO and Pr0.48Ca0.52MnO3 devices, EELS analysis revealed that the observed

resistive switching was mediated by the field-induced exchange of oxygen vacancies

between the bulk oxide and an interfacial oxide. Despite this similarity, the overall device

resistance was governed by different effects: for the polycrystalline ZnO-based devices,

this was the oxygen-vacancy induced formation and dissolution of a highly resistive TiO2

interfacial layer; in contrast, for the epitaxial Pr0.48Ca0.52MnO3 device, this was the

oxygen-vacancy induced charge accumulation and dissipation in the tunnel oxide, which

modulated the tunnel barrier height.
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CHAPTER 1

Introduction

1.1 Principles of Memory Storage

In principle, a basic memory cell can be programmed to one of two discrete binary

states, which can then be read and identified. Additional functionality includes the

ability to erase and re-write that data. Since the 1950s, computer data storage utilised

magnetic media, in which drums, tapes and disks were coated with ferromagnetic metal-

oxide films (typically iron oxide) that could be magnetised into discrete states to store

information. Today, magnetic Hard Disk Drives (HDDs), which comprise a spinning

magnetic disk and a retractable read-write head, are still widely employed in commercial

computing systems, primarily as semi-permanent storage. However, the mechanical

requirements of HDDs serve as their greatest disadvantage: moving parts contribute

negatively towards operating speeds, size restrictions and durability. An alternative class

of technologies, Solid-State Drives (SSDs), have already begun to replace HDDs; these

are Complementary Metal-Oxide Semiconductor (CMOS) technologies with no moving

parts that to date commonly store memory in flash cells arrays. As with the development

of HDDs, SSDs can only be improved through research dedicated to the optimisation

of the metal-oxide materials that are at the heart of each memory cell. This thesis

intends to contribute towards that effort through two spectroscopic studies on ZnO

1
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and PrCaMnO3 metal-oxide thin films, which were characterised for applications in an

emerging class of solid-state resistive memory technology, Resistive Random Access

Memory (RRAM).

Traditionally, memory storage is broadly categorised into two groups: Read-Only

Memory (ROM), which is typically used to store permanent information, or information

that does not need to be regularly updated; and RAM, which can be overwritten and

erased multiple times at fast speeds. ROM is non-volatile, which means that it is able

to retain stored information without constant power input, whereas depending on the

technology, RAM can be either volatile or non-volatile.

Figure 1.1: Computer memory hierarchy. Here, cache processing requires memory
technologies with extremely fast operating speeds, which have only been achieved by
low density, high speed, (SSD) SRAM. Main memory has lower speed requirements than
Cache, and currently employs (SSD) DRAM. In contrast to computational memory,
storage technologies must be non-volatile, and have the lowest operating speed and
highest storage density requirements. The most widely used storage technologies are
(SSD) Flash and HDD.

Today, computer systems contain both HDD and SSD ROM and RAM technologies

which are used for different applications, as defined by the computer memory hierarchy

presented in Fig.1.1. Customarily, the operating speeds, storage densities and volatilities

of the technologies presented in Fig.1.1 dictate their applications. This is because

traditional computer architecture operates on the basis of transferring data between

physically separate data storage, which includes non-volatile technologies with high

storage density, and computational memory, which includes volatile technologies with
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Table 1.1: Comparison of conventional and emerging memories where F is the minimum
feature size. Adapted from 2012 and 2016 publications [2, 3]

Volatile Non-Volatile Emerging Non-Volatile
Type SRAM DRAM Flash FeRAM MRAM PRAM RRAM
Minimum Cell Size 140F 2 6F 2 5F 2 22F 2 20F 2 4F 2 4F 2

Write/Erase Speed 0.3ns/0.3ns 10ns/10ns 1ms/0.1ms 10ns/10ns 10ns/10ns 20ns/50ns 5ns/5ns
Endurance Cycles 1016 1016 105 1014 1016 108 1010

Operating Voltages <1.5V <1.5V 5V <1.5V <1.5V <3V <1V

fast operating speeds [1]. For instance, non-volatile HDDs are employed for storage,

and volatile SSD Dynamic- or Static-Random Access Memory (DRAM and SRAM

respectively) are used to run and load applications that temporarily require memory. As

presented in Tab.1.1, comparatively, SRAM can achieve faster read and write operations

(0.3ns [2]) than DRAM (10ns [2]), however SRAM has a minimum cell size of 140F 2

(where F is the minimum feature size), which is over 20 times greater than that of

DRAM (6F 2) [2]. This means that high-speed, low-storage-density SRAM is employed in

cache memory operations, whereas lower-speed, high-storage-density DRAM is employed

as main computer memory. It should be noted that both of these technologies are

volatile, as depicted in Fig.1.1.

To improve upon the limitations of volatile technologies, a large amount of research

focuses on the pursuit of high-performance non-volatile technologies. Flash is an example

of such progress, and over the past two decades, has outperformed HDDs in terms of

operating speeds. Flash technology relies on the tunnelling of electrons and storage

of charge in order to store information. Such tunnelling devices remain of interest in

emerging technologies, and a tunnel-oxide RRAM device is presented in Chapter 4;

in order to enable a comparison between the storage mechanisms of this device and

that of a flash memory cell, the principles of flash will now be described. Fig.1.2(a)

shows a cross-section of a flash memory cell, which has a structure similar to that of a

Metal-Oxide Semiconductor Field-Effect Transistor, but utilises an additional floating-

gate that is electrically insulated by insulating oxide layers (tunnel and blocking oxides).

Due to its insulation, a floating-gate is able to trap (store) charge, and the presence

or absence of this charge defines the memory state of the flash cell. In order to trap

electrons and write (program) a flash cell, an electric field is applied across the source

and drain electrode which stimulates current flow along a conduction channel, as shown

in Fig.1.2(b). Fig.1.2(c) illustrates how positively biasing the control-gate stimulates
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the tunnelling of electrons from the conduction channel into the floating gate. The

accumulation of charge in the floating-gate modifies the voltage threshold that the

control-gate requires to sustain current flow along the conduction channel, thus, the

magnitude of the voltage threshold is measured to determine the memory state. Fig.1.2

illustrates how the memory state is erased; the control-gate is electrically grounded and

the substrate is positively biased such that electron tunnelling from the floating-gate

into the substrate is stimulated. It should be noted that Fig.1.2 presents an example of

a single-level cell that can store up to 1 bit of information; today, multi-level flash cells

can store up to 4 bits if operating speeds are compromised.

Figure 1.2: (a) Labelled cross-section of a Flash memory cell and (b)-(d) its working
principles. (b) A voltage applied across the source and drain electrodes forms a conduction
channel. Charge carriers are represented by yellow circles. (c) Write process where
a positive control gate voltage stimulates the tunnelling of charged carriers into the
floating gate; due to the surrounding insulator layers, the charges becomes trapped. (d)
Erase process in which the control gate is grounded and the substrate is positively biased.
This stimulates the tunnelling of charge carriers back into the conduction channel.

Today, flash is typically employed as storage technology as opposed to computational

memory, which is largely due to its relatively slow operating speeds (read=1ms and

write=0.1ms [2]) when compared to SRAM and DRAM. However, even as a storage

technology, Flash is limited by its high operating voltage requirements (5V [4]), which

will eventually fail to comply with the lowering operating voltages demanded by an

ever-developing electronics industry [2, 4, 5]. In efforts to replace Flash memory and
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improve upon its performance, there has been huge investment into research on emerging

non-volatile solid state technologies. The four most prominent emerging technologies

are Ferroelectric-RAM (FeRAM), Magnetoresistive-RAM (MRAM), Phase-Change-RAM

(PRAM), and RRAM. According to the storage densities and operating speeds published

in the literature (and presented in Table.1.1), not only do these technologies have the

potential to replace Flash as storage, but they could also replace DRAM as main memory.

Furthermore, RRAM and PRAM have high storage densities and high operating speeds

which means they can be classed as both memory and storage or true memory-storage

technologies.

1.1.1 Emerging Non-Volatile Memories

In an influential 2009 publication, Waser et al. defined the ideal characteristics of a

non-volatile memory technology that could outperform Flash and compete with DRAM

[5]; these were operating voltages of the order of 10−1V, operating speeds faster than

100ns per write operation, and endurance (repeated write and erase processes) greater

than 103 cycles [5]. These characteristics are not limited to any single materials system or

memory effect, and as a result, there are a number of emerging non-volatile technologies

that are currently being researched which all ultimately encode data using distinct

resistance states. The principles of memory storage for each of the aforementioned

emerging non-volatile technologies, FeRAM, MRAM PRAM, and RRAM, will now be

described.

Figure.1.3 is a simplified illustration of a FeRAM cell in which a top and bottom

electrode are separated by a thin film of ferroelectric material, the active layer. Under an

applied electric field, this thin film is subject to ionic polarisation, in which an ion within

each unit cell is displaced. This displacement persists when the electric field is removed,

resulting in the polarisation hysteresis curve shown in Fig.1.3, which is defined by the

positive and negative write voltages V+ and V−. This hysteresis allows one to define

positive and negative polarisation saturation (depicted with parallel arrows in Fig.1.3) as

distinct binary states. Conventionally, a FeRAM cell is read by applying a positive write

voltage (here shown as V+) to the top electrode, and measuring the output current

generated under the saturating electric field. If the device is not in the polarisation
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Figure 1.3: (a) Cross-section of a FeRAM cell. (b) Evolution of the polarisation
resolution as a function of the voltage applied across the top and bottom electrodes.
Parallel arrows indicate the polarisation saturation of the ferroelectric active layer where
distinct positive and negative saturation states are achieved at positive and negative
bias respectively.

state corresponding to that voltage, then the large resultant ion displacement causes a

large change in the output current. The FeRAM read process is inherently destructive,

which is a disadvantage with respect to achievable operating speeds [6]. Furthermore,

ferroelectric hysteresis is subject to degradation with electrical cycling, which is caused

by free charge carriers forming defect dipoles. Despite these drawbacks, FeRAM cells

have fast operating speeds (read/write, 10ns/10ns [2]), which is comparable to DRAM,

and have demonstrated endurance as high 1014 cycles.

In contrast to FeRAM, MRAM memory cells resemble Magnetic Tunnel Junctions

(MTJs) and comprise two ferromagnetic active layers that are separated by a thin tunnel

oxide insulator. Under an applied electric field, the magnitude of the device tunnel

current is dependent on the relative magnetisation directions of the two ferromagnetic

layers: when (anti)parallel, the tunnel current is (decreased)increased, and the device

magnetoresistance (RM) is (increased)decreased. In MRAM, these distinct, bistable,

magnetisation-induced resistance states serve as binary memory states. Figure.1.4

presents a simplified representation of a MRAM cell, and shows its ferromagnetic

response (depicted with parallel arrows) to an applied voltage cycle. It illustrates how

the lower ferromagnetic layers is ’fixed’ and has pinned magnetisation, whilst the other
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Figure 1.4: (a) Cross-section of an MRAM cell. (b) Evolution of the magnetoresistance
response to the voltage applied across the top and bottom electrodes. Whilst the pinned
layer remains saturated in one direction, the ferromagnetic active layer can be saturated
to the same or opposite direction, which affects the magnetoresistance.

is ’free’ and can be written into a magnetic state at sufficient write voltages, here

shown as V+ and V−. MRAMs have operating speeds, voltages, and cell size comparable

to FeRAM, however as magnetisation saturation does not require the motion of ions

within a material, MRAMs do not suffer from the electrical-loading-induced degradation

experienced by FeRAMs.

Figure 1.5: (a) Cross-section of a PRAM cell. (b) During the set process, a short
pulse length at high temperatures is sufficient to trigger a transition to the amorphous
phase. In contrast, during the erase process long pulses at low temperatures stimulates
a transition to the crystalline phase.

Like MRAM, PRAM stores memory as distinct resistance states. However, unlike

MRAM, this change in resistance is due to a change in the phase of the active layer.

Fig.1.5 shows a simplified example of PRAM cell in which a top and bottom electrode
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sandwich two adjacent insulating layers: the phase-change active layer, and an insulating

layer that houses a resistive heating element. Under an applied electric field, the heating

element stimulates a thermally reversible change between amorphous and crystalline

phases of the active layer, which are resistive and conductive respectively. As shown in

Tab.1.1 and illustrated in Fig.1.5, PRAM cells require longer erase (50ns [2]) than write

(10ns [2]) processes. This is because in order to switch to the crystalline phase, the

active layer is resistively heated to the temperature TC for a length of time sufficient for

the material to crystallise, whereas to change into the amorphous phase, the active layer

is heated to TA and rapidly quenched. For PRAM, the key limiting factor is the operating

voltage required to stimulate a phase change, which, in comparison to other emerging

technologies, is relatively high (up to 3V [3]). Despite this, PRAM outperforms Flash in

terms of storage density, operating speeds and endurance.

Figure 1.6: (a) Cross-section of a Metal-Insulator-Metal RRAM cell. (b) Evolution of
the resistance state as a function of the voltage applied across the top and bottom
electrodes. Here, the Low Resistance State (LRS) and the High Resistance State (HRS)
are highlighted by a dashed line.

Fig.1.6 presents an example of a basic Metal-Oxide-Metal (MOM) RRAM cell. Similar

to MRAM and PRAM, RRAM cells are able to store memory due to the bistability

of two distinct resistance states, which are accessible under an applied electric field.

For a 1 bit RRAM cell, these states are referred to as the high- and low- resistance

states, which are shortened to HRS and LRS respectively. The process by which a device

changes between its resistive states is referred to as resistive switching. RRAM devices

are typically characterised by a current-voltage (I-V) curve; Fig.1.6 shows an example of
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a bipolar resistive switching hysteresis loop, in which the device switches from the LRS

to the HRS at one polarity, and then back into the LRS at the opposite polarity; these

switching events occur at VSET and VRESET respectively. In order to read a RRAM cell,

a small read voltage (VREAD) is applied; this is typically no greater than 10% of the

write voltages required to switch the device into the HRS or LRS [5]. Using low VREAD

voltages, it is possible to probe the resistive state of the RRAM cell non-destructively.

Customarily, a RRAM device is also characterised by the ratio between the HRS and

LRS, which is obtained at VREAD.

Figure 1.7: Example of a simplified 3D RRAM Crossbar array. Here, individual RRAM
cells can be accessed by isolating specific top and bottom electrode intersections.

In comparison to other emerging non-volatile memories, RRAM has the advantage

of fast operating speeds and voltages, which are less than 10ns and 1V respectively.

Typically, RRAM devices display diode-like behaviour; this, coupled with the simplicity of

MOM architecture, means that RRAM cells can be fabricated in CMOS-compatible 3D

crossbar arrays, which are depicted in Fig.1.7. As shown in Fig.1.7, these array structures

employ long metal top and bottom electrodes, where physically separated thin films of

RS active layer are sandwiched between, creating multiple distinct RRAM cells. The top

electrode metal bar is oriented 90◦ with respect to (w.r.t) the bottom electrode metal

bar, such that each RRAM cell can be accessed at a defined intersection. Furthermore,

owing to the diode-like electrical characteristics of RRAM, transistor elements are not

required to access each cell. However, RRAM devices have not yet displayed endurance

comparable to conventional memory technologies (1016cycles for SRAM and DRAM,

and 1010cycles for RRAM [3]); this can be attributed to the variability introduced by
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competing mechanisms that occur simultaneously during resistive switching, which are

further described in section 1.2.2. Despite not yet outperforming SRAM and DRAM,

RRAM has been shown to have greater endurance than Flash and PRAM, which have

exhibited 105 and 108 cycles respectively. Taking these attributes into consideration,

RRAM is arguably the most promising emerging non-volatile memory technology that is

currently in development. This is the key motivation for the RRAM research presented

in this thesis.

1.2 Resistive Switching

1.2.1 Memristor Theory

The theoretical basis for resistive switching dates back to 1971 when L. Chua reasoned

that in addition to the resistor, the capacitor and the inductor, one could consider an

additional fundamental circuit element, the memory-resistor or memristor [7, 8]. At the

time, it was generally accepted that there were five mathematical relationships that

paired current (i), voltage (v), charge (q) and magnetic flux (φ). Two of these relations

show one variable as the time derivative of another, dqdt = i and dφ
dt = v , whilst the other

three show that one variable is a function of another: dv
di = R describes the resistor

(with resistance R); dqdv = C describes the capacitor (with capacitance C); and dφ
di = I

describes the inductor (with inductance I). Chua argued that one relationship remained

undefined, and postulated that the ’missing memristor’ was described by the following

relationship between φ and q: dφ
dq =M where M is memresistance. The key difference

between a memristor and a resistor was that the memristor exhibits a non-linear response

that is dependent on the device history. Five years later, Chua et al. published more

work that broadened the memristor concept to include memristive systems [7]. These

were a more general class of dynamic non-linear systems where a memristive response

could be stimulated by any variable, and is not limited to φ [7].

Nearly four decades later, in a 2008 publication, Strukov et al. presented evidence for

the first physical memristor, which was a Pt/TiO2/Pt thin-film heterostructure. In this

publication, the device displayed a memristive pinched hysteretic response to an electric

field applied across the Pt electrodes [8]. Here, RS was attributed to the controlled drift
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of oxygen vacancies across the device, which affected the stoichiometry of the film; this

mechanism is further described in section 1.2.5. In the decade since, there has been

huge investment into RRAM research; as a result, resistive switching (RS) has been

observed in a wide variety of materials including organic and inorganic media [9, 10]. In

this work, inorganic materials, specifically transition metal oxides, are studied.

1.2.2 Resistive Switching Mechanisms

In the decade since Strukov et al.’s proposed RS model, the mechanisms of RS are

not yet completely understood. In fact, a number of publications have reported the

observation of multiple distinct switching mechanisms stimulated within a single device

heterostructure, as opposed to the single mechanism which was first proposed [9,11]. If

poorly understood, such complex RS contributes negatively towards device variability. In

order to improve device performance, a large portion of RRAM-research, including the

metal-oxides studies presented in this thesis, focuses on understanding the contributing

mechanisms of RS within a variety of device heterostructures. RRAM devices are typically

electrically characterised using IV curves, which provide key information including whether

RS occurs due to bipolar or unipolar effects. Bipolar RS was introduced in section 1.1.1

and a conventional bipolar RS IV curve is presented in Fig.1.8(a). Here, the LRS is

shown in green, the HRS is shown in red, and the resistive switching events are shown in

grey. Fig.1.8(a) represents a device that is initially (at V = 0) in the HRS. As a positive

voltage is applied, little current flows across the device, however, at VSET , the SET

process, highlighted by the black arrow, is triggered. In order to protect the device from

damage, a compliance current (cc) limits the current flowing through the device, and

is shown as a green dashed line in Fig.1.8. The device will remain in the LRS state

until the voltage reaches VRESET , which, for bipolar IV curves, is at opposite polarity to

that of VSET . In contrast, for unipolar RS, VSET and VRESET can occur during a single

sweep at either polarity. Fig.1.8(b) represents a unipolar RS device that is initially in

the LRS state, and undergoes a RESET switch to the HRS at low voltages. As the

magnitude of the voltage increases, little current flows through the device, and at VSET

the device switches to the LRS.

As mentioned above, the polarity dependence exhibited by an RS device is governed
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by the dominant RS mechanism. The wide breadth of RS-mechanism research has

emphasised how much influence the choice of materials can have over which mechanisms

of RS can be sustained during repeated cycling. Importantly, this is not limited to

the RS oxide layer: RS may be dominated by interfacial effects that are dependent

on both the metal-oxide and the electrode materials. Considering this, it is of utmost

importance that devices are carefully designed to promote and sustain one particular RS

mechanism above all others. For metal-oxide materials, RS is mediated via redox-based

mechanisms that can be classified into three main groups: Electrochemical Memory

(ECM), Thermochemical Memory (TCM), and Valence Change Memory (VCM), which

are presented in section 1.2.3, section 1.2.4 and section 1.2.5 respectively.

Figure 1.8: Two basic modes of resistive switching in which the LRS and HRS are shown
in green and red respectively, and the switching process is shown in grey. The SET
and RESET voltages highlighted in both images, and the compliance current, used to
prevent damage, is shown as a green dashed line. (a) illustrates bipolar RS, and (b)
illustrates unipolar RS. Adapted from [5].

1.2.3 Electrochemical Memory

ECM involves the electrochemical dissolution and recrystallisation of an active

electrode material under an applied electric field [12]. This mechanism is also referred

to as ’metallisation-’ or ’conductive bridging-’ memory because the dissolution process

leads to the formation of a conductive metallic filament across the device. Fig.1.9

illustrates key stages of the ECM mechanism in conjunction with a bipolar I-V switching

cycle. Here, the MOM cell comprises an electrochemically active electrode (shown in
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dark blue) such as Ag, Cu, or Ni, a solid electrolyte insulator (shown in pink) and an

inert electrode (shown in grey) such as Pt, Ir, W. Importantly, the active electrode is

a metal that can be electrochemically dissolved into and conducted through the solid

electrolyte; in contrast, the inert electrode cannot [12].

Figure 1.9: IV curve obtained from an ECM cell in the four key stages of RS are
illustrated in four device cross-sections presented in insets (a)(b)(c) and (d). In (a),
a positively biased active electrode induces M+-migration in the direction shown by
the curved white arrows, where M+ cations are represented by blue circles. In (b),
the active electrode has reached a voltage sufficient to SET the device to the LRS
which corresponds to the formation of a conductive M+ filament. In (c), a sufficient
negative voltage has induced M+-migration in the direction indicated by the white
arrows, rupturing the filament. Image (d) represents the final HRS reached after the full
dissolution of the filament. Adapted from [5].

In the absence of an applied field, the cell shown is initially in its HRS. However, when

the inert electrode is negatively biased, the electrochemical dissolution of the anodic

active electrode (M) is stimulated, which is described by the reduction reaction:

M −→M++e− (1.1)

where M+ represents metal cations. Fig.1.9(a) shows how, under an increasing applied
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field, M+ cations drift towards the inert cathode. As a result, cathodic deposition occurs

at the inert electrode/solid electrolyte interface, forming a metallic filament that grows

towards the anodic active electrode. This electro-deposition is described by the oxidation

reaction:

M++e− −→M (1.2)

It should be noted that through this electro-deposition process, the thinnest part of

the conductive filament will be at the active electrode. Fig.1.9(b) corresponds to the

voltage sufficient to SET the memory cell to the LRS state (VSET ). At this voltage,

a complete conductive M+ filament is formed that electrically shorts the active and

inert electrodes. It is generally accepted that the formation of a filament is supported by

defects within the solid electrolyte material such as nanopores or grain boundaries. Such

a filamentary SET process is characterised by a sharp increase in device current; therefore,

compliance currents are employed. An ECM RRAM cell will remain in the LRS until

a sufficient RESET voltage (VRESET ) at opposite polarity induces the electrochemical

dissolution of the conductive filament, which is shown in Fig.1.9(c). Finally, due to the

electrochemical dissolution, the device enters the HRS, shown in Fig.1.9(d). Typically,

|VSET |> |VRESET |, which leads to a asymmetric I-V curve. There was some speculation

in the literature as to the cause of this asymmetry. However, by comparing ECM RS in

solid and liquid electrolytes, Waser was able to assign this effect to the morphology of

the system, referring to the filament/active electrode interface as a ’needle-to-plane’

geometry [13]. In this configuration, the minimum voltage required to rupture the

needle-like filament at the active electrode is much lower than the voltage required to

form a complete filament that spans the entire electrolyte. At reverse polarity, as shown

in Fig.1.9(a) the dissolution of the active electrode may lead to the electrodeposition of

metal cation clusters that grow competitively before a complete, conductive filament is

formed.

The assignment of a filamentary RS mechanism is supported by electrical charac-

teristics which have shown that, for ECM, the LRS does not depend on the area of

the top electrode. The lack of dependence on top electrode area is due to the fact

that the overall resistance state of the device is governed by the needle-like tip of a
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single conductive filament. This means that ECM RS cells can be scaled down to sizes

that only need accommodate a single narrow filament, which is a great advantage with

regards to increased storage density.

Figure 1.10: RS reproducibility map depicting the dependence of reproducible RS on
applied voltage.

For highly resistive films in which the switching oxide is an insulator, ECM MOM cells

exhibit a greater VSET voltage in their first cycle than in subsequent cycles; this initial

cycle is called an electroforming cycle. The electroforming cycle is characterised by an

electroforming voltage VEF , which allows one to achieve stable, lower voltage RS in

subsequent cycles. The relatively high VEF is ascribed to the formation of a channel that

persists after the dissolution of the first conductive filament, which becomes a template

for filaments generated in subsequent cycles. However, the magnitude of VEF and the

corresponding electroforming current are sufficiently large to damage the device. This

is somewhat mitigated through the use of compliance currents, however, it has been

argued that high-power-consumption electroforming is an inherently destructive process,

and that the anticipation or expectation of an electroforming cycle has promoted the

research of RRAM devices which display RS that is ultimately less reproducible than

their electroforming-free counterparts. Fig.1.10 illustrates this argument and shows how

RS reproducibility can vary with applied voltage: here, no RS is exhibited below VSET ;

reproducible RS is exhibited at voltages between VSET ≤ V < VEF ; and irreproducible

RS, that is, RS that is only sustainable for a few cycles, is exhibited at voltages ≥ VEF .

In order to avoid irreproducible RS, it is possible to design RRAM devices to be initially

conductive, and therefore, electroforming-free. For instance, in ECM, electroforming is

only necessary if the solid electrolyte does not, in its pristine state, already contain the
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metal cations required for filament formation. Further to choosing a solid electrolyte

material that does, through annealing, one can stimulate the thermal diffusion of active

electrode cations into the solid electrolyte prior to switching, such that an electroforming

cycle is not required. However, due to the high impact of early papers, the anticipation

of an electroforming cycle has guided researchers to tend towards the production of

highly resistive RS films. In fact, the literature typically refers to the MOM structure

as a Metal-Insulator -Metal (MIM) structure, which implies that RS cannot be readily

achieved in more conductive films. Chapter 3 explores the electroforming process and its

impact on RS further through the study of zinc oxide based thin film heterostructures.

1.2.4 Thermochemical Memory

Figure 1.11: (a)-(c) Stages of RS that occur in Joule-heat-dissolution TCM; each image
corresponds to a different point in the unipolar IV curve, which has been separated
into a SET voltage sweep and a RESET voltage sweep for clarity. The red region
in (a) illustrates the hot conduction channel formed as a result of the thermoelectric
breakdown of the insulator material, which is shown in pink. This causes oxygen anions
to migrate out of the hot channel in the direction indicated by the black arrows, and
leaves behind chemically reduced insulator material, which is shown in dark blue. (b)
Formation of a conductive filament. (c) Localised dissolution hotspot that ruptures the
filament, resetting the device.
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TCM occurs most frequently in transition metal oxides and, like ECM, is a filamentary

mechanism. However, for TCM, the conductive filament generated during the SET

process consists of either electrode metal cations (similar to that shown in Fig.1.9),

carbon from residual organics, or reduced, non-stoichiometric insulator material [14].

Fig.1.11 depicts the case in which a metal oxide is employed as the RS material, shown

in pink, and inert metals (Pt, Ir, W) as the electrodes. Here, reduced, non-stoichiometric

oxides comprise the conductive filament, which is shown here in dark blue. Fig.1.11(a)

shows how, under an applied electric field, Joule heating leads to the formation of

a high temperature region within the insulator, the hot conduction channel, which is

shown in red. The temperature gradient between the hot conduction channel and the

surrounding insulator provides impetus for the thermodiffusion of O2− out of the hot

conduction channel and into the insulator. As shown in Fig.1.11, this thermally-induced

migration of oxygen vacancies leads to the formation of an energetically favourable

reduced oxide which acts as a conductive filament, bridging the two electrodes [5,14,15].

The Joule heat-induced SET transition is referred to as the thermoelectric breakdown

of the transition metal oxide, and can be controlled through the use of a relatively

low compliance current. As TCM is a unipolar effect, both the SET and RESET

switches can be triggered in a single voltage sweep, as depicted in Fig.1.8, or in two

separate voltage sweeps (a SET sweep and a RESET sweep), as shown in Fig.1.11.

Fig.1.11(c) illustrates the RESET process; here, Joule heating leads to the development

of a dissolution-hotspot, which is located in the middle of the filament, at its thinnest

point. Within this hotspot, the local electric field and current density are increased,

which leads to the dissolution and rupture of the filament. To RESET the device, high

compliance currents are employed stimulate Joule heat dissolution. In subsequent RS

cycles, rupture and formation in the hotspot region of the filament allows for switching.

There are a number of differences between TCM and ECM: in TCM RRAM cells

RS is a thermally-induced effect that is governed by variations in the chemistry of the

insulator, which differs from electrically-induced ECM in which RS is largely dependent on

electrode materials, and occurs at an insulator/metal interface. As TCM RS is induced

without the requirement of an electrochemically active electrode, inert metals such as

Pt can be employed in symmetric devices, such as the well-characterised TCM system
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Figure 1.12: ’Faucet’ model for unipolar TCM showing (a) the HRS and (b) the LRS.
Here, switching is governed by a highly resistive ’faucet’ region at the interface, which is
shown here in dark red. Conductive regions consistent of reduced, non-stoichiometric
oxide are shown here in white. In both states, multiple filaments bridge the top and
bottom inert electrodes, but the ’faucet’ governs the overall resistance state of the
device.

Pt/NiO/Pt [14,16]. In contrast to ECM, the literature presents evidence (Conductive

Atomic Force Microscopy, described in section 2.9) for TCM being a multi-filamentary

effect. These characteristics are both described by Inoeu et al.’s TCM ’faucet’ model,

which is a prominent alternative model to Joule heat dissolution [5, 16]. In this model,

electroforming leads to the formation of a conductive bulk oxide that comprises multiple

filaments formed along grain boundaries, which is shown in Fig.1.12(a); however, the

bulk conductivity does not dictate RS in the device [5,16,17]. Instead, the faucet model

suggests that the current across the device must be limited by a small, highly resistive

region at the electrode/oxide interface, the ’faucet’, shown in Fig.1.12 by the dark

red region. In the HRS, current flows homogeneously across the entire metal/oxide

interface. In support of this model, the literature shows that for many systems, the HRS

is dependent on the area of the top electrode, whilst the LRS is independent [16].

1.2.5 Valence Change Memory

VCM is a anion-mediated effect in which an electric field induces the redox of an

insulating transition metal oxide. Specifically, the abundance or deficiency of oxygen

anions (O2−) affects the valence state of the transition metal cation, which causes a

change in the electrical conductivity of the transition metal oxide. Taking TiO2 as an

example, the transition metal redox is governed by the reactions:



1.2. Resistive Switching 19

O2−⇀↽
1

2
O2+VÖ + 2e−

ne−+T i4+⇀↽Ti (4−n)+ (1.3)

where n represents the number of electrons (e−) and VÖ represents oxygen vacancies

[5, 18, 19]. Because VÖ are more mobile than transition metal cations, VÖ mediate the

switching effect. The polarity of each electrode within the MOM structure induces the

migration of positively charged VÖ across the device. Thus, VCM RS is also a bipolar

effect. For n- or p-type materials, VÖ act as donors and acceptors respectively [20]. This

means that n-type(p-type) transition metal oxides have increased(decreased) resistivity

when VÖ-deficient.

Figure 1.13: (a) Electroforming process of a n-type oxide material and (b)(c) filamentary-
VCM RS in a MOM heterostructure. This process is governed by the electromigration
of VÖ, which are shown in white, and move in the direction of the white arrows. (a)
During electroforming, the migration of VÖ towards the anode forms a ’virtual cathode’.
Within the vicinity of the anode, highlighted by the black dashed box in (a), filamentary
RS occurs and is shown in (b) and (c). (b) shows the LRS in which VÖ migrate towards
the anode (top electrode) and form a complete conductive path. At opposite polarity,
(b) shows the HRS in which the VÖ-filament is ruptured due to the migration of VÖ
towards the cathode (anode electrode). VÖ-migration occurs in the direction opposite
to O2−-migration, which is shown in brown.

The literature has shown that VCM occurs via two geometries: filamentary-VCM and

interface-VCM [5,9]. The former is shown in Fig.1.13, and is analogous to the filamentary

RS exhibited in ECM; both mechanisms are independent of electrode area and have often

been shown to require an electroforming cycle to sustain bipolar RS. In 1990, Baiatu et al.

described an ’electrical degradation’ mechanism that occurred with insulating transition
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metal oxides which is now regarded as the electroforming process required for VCM [21].

In their publication, they proposed that the insulator/metal interfaces within a MOM

structure blocked the ionic conduction of VÖ. This created a VÖ-gradient across the

film in which VÖ accumulated at the cathode and O2− accumulated at the anode [21].

Ultimately, the segregation of VÖ and O2− created a p-n junction. This mechanism

was later linked to RS by Hong et al. and Waser et al. who were able to visualise the

formation of a field-induced p-n junction within bulk oxides through transmission optical

microscopy [5, 22]. In this technique, contrast arose due to variations in valence state

of the transition metal cation, which, as shown in Eq.1.3, can be used to indicate the

presence of VÖ [5, 22]. Today, the formation of a VÖ-rich, n-conducting region is now

referred to as the formation of a virtual cathode, and is depicted in Fig.1.13(a). Under

a continued applied field, the virtual cathode will propagate towards the anode until it is

slowed by electrostatic repulsion. Due to electron-tunnelling across this interface, the

resistance of the device decreases dramatically and the memory cell is electroformed [5].

It should be noted that the propagation front of virtual cathode is inherently rough as

VÖ migration is anticipated to occur along extended defects. This means that whilst a

large area of the device becomes cathodic due to VÖ-deficiency, the propagation front is

comparable to collection of individual filaments. In subsequent cycles, switching occurs

across the few nm that separate the virtual cathode and physical anode. For n-type

transition metal oxides, the HRS(LRS) is attained if the physical electrode is further

positively(negatively) biased, whereas for p-type transition metal oxides, the LRS(HRS)

is attained if the physical electrode is further positively(negatively) biased.

As opposed to filamentary-VCM, interface-VCM occurs homogeneously across the

physical electrode. In an influential publication, Sawa et al. showed that interface-VCM

could only occur if a Schottky contact was formed at one of the insulator/electrode

interfaces, and an ohmic contact was formed at the other, which is depicted in

Figs.1.14(a) and (b) [20]. Schottky contacts (or Schottky barriers) are formed at

metal/semiconductor interfaces and involve the bending of energy bands within the

semiconductor material to equilibriate with the Fermi energy across the interface, which

is shown in Figs.1.14(c) and (d); this means that Schottky barriers have rectifying

characteristics. In comparison, an ohmic contact is non-rectifying and follows Ohm’s law.
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Figure 1.14: RS in a Schottky contact/oxide/Ohmic contact MOM heterostructure in
which an n-type oxide is employed. RS is depicted in terms of (a)(b) interface-VCM
and (c)(d) Schottky barrier modulation. (a) and (c) represent the LRS in which VÖ
-migration towards the anode leads to the accumulation of VÖ at the interface. This
leads to the formation of an oxygen-rich region, which is shown here in dark red, and the
reduction of the depletion width Wd of the Schottky Barrier, which promotes tunnelling.
(b) and (d) represent the HRS at opposite polarity; here, VÖ-migration in the opposite
direction leads to a reduction in the number of VÖ at the Schottky interface and an
increase in Wd which prevents tunnelling.

Sawa et al.’s study proposed that the electromigration of VÖ governed the depletion

width of a Schottky barrier which in turn varied the resistance state of the device: the

LRS corresponded to a narrower depletion width that could support tunnelling, and is de-

picted in Fig.1.14(c); and the HRS corresponded to a wider depletion width that inhibited

tunnelling, and is depicted in Fig.1.14(d). This comprehensive study also showed that,

as the height of the Schottky barrier (φB) is determined by the difference between the

work-function (φW ) of the insulator and the metal electrode, the work-function of the

active electrode metal either prevents or promotes interface-VCM-RS; this was shown

for two crystalline perovskite-type oxides: p-type PrCaMnO3, and n-type Nb:SrTiO3,

where Ti (φW = 4.3eV), Au (φW =5.1eV) and SrRuO3 (φW = 5.3eV) were used as top
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electrodes. They found that for the p-type material, the interface resistance increased

with decreasing metal work function. Conversely, for n-type material, interface resistance

increased with increasing metal work function. At high(low) interface-resistance, both

systems displayed rectifying(ohmic) I-V behaviour, which was attributed to the formation

of a Schottky(an ohmic) contact [20, 23–25]. Sawa et al.’s study sparked huge interest

into the effect of electrode materials on RS performance, and prompted researchers to

use spectroscopic methods to investigate oxygen vacancy electromigration and interfacial

chemistry, such as the studies presented in this work [20,25–29]. In Chapter 3, n-type

ZnO thin films are sandwiched between a Ti top electrode, which forms a Ohmic contact

and a Pt bottom electrode, which forms an Schottky contact. A more complex ternary

oxide structure was fabricated by collaborators for the PrCaMnO3 study presented in

Chapter 4; this device employs a dedicated interfacial oxide, the role of which will be

described in section 1.2.6.

Figure 1.15: Example of a bipolar, interface resistive switching IV curve where the LRS
is highlighted in green and the HRS is highlighted in red. As current increases gradually,
compliance currents are not always employed.

Through electrical characterisation, it is possible to distinguish between filamentary-

and interface-homogeneous-RS: interface-homogeneous effects produce smooth, gradual

IV curves, which contrast the sharp switches produced in filamentary IV curves. Fur-

thermore, interface-RS gives rise to a dependence on electrode area [20]. However,

these two VCM geometries represent two ends of the spectrum: it is possible to show

characteristics of both filamentary- and interface-RS. For instance, area scaling devices

can show dependence on electrode area at µm scales, but independence on nm scales [5].
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The PrCaMnO3 device presented in Chapter 4 is an example of this. In terms of RRAM

device scalability, such a geometry imposes a minimum size limit. As such, high-resolution

microscopic studies are required to fully characterise such materials systems.

Figure 1.16: ’Reverse’ valence change memory in an n-type MOM cell. VÖ-rich regions
are shown in white, and O2-rich regions are shown in dark red. (a) LRS of an interface-
VCM RS device where the Schottky interface is located below the active electrode. This
is the same set-up shown in Fig.1.14(a) and is included for comparison. (b) HRS of
reverse-interface-VCM RS device, which is achieved at the same polarity as (a), but at a
larger voltage magnitude. This increased voltage further depletes the of an oxygen-rich
(VÖ-deficient) region at the inert electrode, forming a second Schottky interface that
dictates the RS state of the device.

It has also been shown that for interface-VCM, RS-governing processes can occur at

different locations within a MOM structure. For devices designed with additional layers

such as tunnel oxides, which are described further in Chapter 4, RS that is localised by

design offers researchers further control over the performance of a RRAM device. It

is interesting to note that differences in the location of RS-determining processes can

affect the voltage polarity dependence of the device [30]. Researchers have shown that

interface-VCM can exhibit bipolar RS with opposite polarity dependence (typically defined

as clockwise or anticlockwise) to that described in Fig.1.14 [9]. For example, Dittmann

et al. observed both clockwise and anti-clockwise RS within the same perovskite oxide

Fe:SrTiO3 MOM structure, where one switching regime was accessed at increased

voltages with respect to the other [31, 32]. In this publication they proposed that if the

insulating layer (perovskite oxide Fe:SrTiO3) is much thinner than the anode, then, once

the device is electroformed, sufficient negative biasing of the cathode could induce the

migration of VÖ from the region of insulating film closest to the inert electrode, which is

depicted in Fig.1.16(b). This VÖ-depletion (O2−-accumulation) leads to the formation
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of a second insulating Schottky barrier at the insulator/inert electrode interface. This

second Schottky interface competes with the barrier located at the insulator/active

electrode interface to govern the overall resistance state of the device. However, as

shown in Figs.1.14(b) and (d), a small number of VÖ leads to an increase in Wd which

increases the resistance of the device. This means, as soon as VÖ begin to migrate from

the inert electrode region, the device is dominated by the high resistance Schottky barrier

that is immediately formed. The formation of the second, more dominating Schottky

barrier shown in Fig.1.16 accounts for the observation of bipolar switching that occurs

at the reverse polarity to that shown in Fig.1.16(b) within the same sample [9, 31].

This VCM model is consistent with the polarity dependence of bipolar electrode-area-

dependent (interface-) RS that has been observed in a number of MOM structures

comprising single crystal perovskite oxides published in the literature [20,33,34].

1.2.6 Interfacial oxides for Valence Change Memory

In addition to the choice of electrode materials, it is possible to improve device

performance using additional non-switching layers, such as interfacial oxides. There

are two types of interfacial oxides that can facilitate VCM RS: redox-formed oxides,

shown in Fig.1.17(a), and dedicated oxides, shown in Fig.1.17(b). The first are formed

due to the redox of an electrochemically active electrode material and can thicken

during an electroforming process. Chang et al. showed that, in comparison to high

work function metal Pt (φW ∼ 5.6eV), low work function metals Cr (φW = 4.5eV)

and Al (φW = 4.2eV) were oxidised to form CrOx and AlOx interfacial oxides at the

insulator/metal interface [35], which is depicted in Fig.1.17(a). Conversely, they showed

that within the vicinity of the oxidisable electrode, the insulator material, ZnO, was

reduced to ZnO1−x . This observation proved the existence of an exchange of VÖ

between the insulator and electrode (shown by the white arrows in Fig.1.17(a)), showing

that the interfacial oxide acted as a oxygen reservoir. The VÖ-exchange between the

reservoir and insulator was shown to promote RS and improve device stability [35].

Through in-situ Transmission Electron Microscopy, these interfacial oxides have recently

been shown to grow and shrink in the HRS and LRS respectively, which is consistent

with Sawa et al.’s direction of VÖ-migration in the Schottky VCM RS model [28]. This
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type of interfacial oxide has been identified through the use of spectroscopic techniques

in VCM RS devices across the literature [18,19,24,28,36]. Given the low work function

of Ti, an interfacial TiOx was also expected to contribute towards RS in the ZnO device

presented in Chapter 3.

Figure 1.17: (a) Redox-formed CrOx interfacial oxide formed in a Cr/ZnO/Pt device
discussed in [35]. Here, the oxidation of the Cr electrode causes a reduction of the
nearby ZnO film, forming a ZnO1−x layer. (b) Dedicated functional oxide that was
deposited during fabrication.

Fig.1.17(b) presents the second type of interfacial oxides, dedicated oxides. These

are deliberately deposited between the RS insulator and the electrode material. As for

electroformed interfacial oxides, these dedicated oxides can also serve as oxygen reservoirs.

However, it should be noted that as they are not formed as a result of redox, they do not

generate a non-stoichiometric region within the insulating film. When considering RRAM

design, these oxides have an advantage in terms of the uniformity of the interfacial

layer. For example, in comparing electroformed oxides CrOx and AlOx , Chang et al.

found that the oxidation of the (Al)Cr electrode occurred (in)homogeneously, leading

to a (AlOx)CrOx film with (non-)uniform thickness that displayed (poor)excellent RS

endurance [35]. The difference between these electroformed oxides was ascribed to the

difference in the Gibbs free energy of oxide formation. Considering this, the deposition

of dedicated oxides provides one with a greater choice of materials, as interfacial oxide

formation is not limited by thermodynamics. It should be noted that dedicated oxides

are not limited to the sole function of an oxygen reservoir, these can have additional

functional properties that enhance the device. For example, researchers have shown

that the thickness of dedicated tunnel-oxides can be used to tune the magnitude of
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the LRS and HRS [37]. In these devices, the tunnel-barrier height is modulated by the

accumulation of charged VÖ during VCM RS, which is similar to the VÖ-modulated

Schottky barrier formed at the oxide/metal interface described above. A tunnel-barrier

device, fabricated by collaborators, was investigated and is presented in Chapter 4.

1.3 Scope of Research

In this work, Electron Energy Loss Spectroscopy (EELS), an analytical electron

microscopy (AEM) technique that is sensitive to the bonding environments and valence

states of probed atoms, was used to investigate RS-induced electrochemical changes

in thin-film RRAM heterostructure devices incorporating polycrystalline (doped and

undoped) ZnO (presented in Chapter 3) and crystalline perovskite oxide PrCaMnO3

(presented in Chapter 4). With respect to RRAM and the mechanisms of RS, the degree

of sensitivity provided by EELS offers valuable insight into both the presence of and

the extent of redox-mediated RS effects within metal-oxide materials [18, 26, 38, 39].

Taking filamentary VCM in an n-type material as an example, EELS has been used to

identify conductive filaments consisting of reduced, lower valence state material, and the

surrounding, fully oxidised thin film [40], as depicted in Figs.1.13(a) and (b) and described

by Eqn.1.3. Similarly, the area-homogeneous redox present in interface-VCM devices

can also be identified using EELS. In fact, over the past decade, studies have presented

EELS data showing evidence for just that: gradual, bipolar RS that occurs due to

electric-field-stimulated redox reactions at the insulator/metal interface, consistent with

the interface-VCM RS mechanism described in section 1.2.5 [18,24,41,42]. However,

in addition to these findings, the literature also presents an overwhelming amount of

evidence for the variability of RS in terms of cycling endurance, polarity dependence

and the ratio between resistance states. In many cases in the literature, these negative

performance attributes and issues are not discussed, which contributes to a lack of clarity

and slows progression in the field. The more comprehensive studies have shown that the

increased performance variability is largely attributed to both the interfacial chemistry

effects that are governed by the choice of materials employed, and the complexity

of the competition between multiple simultaneous nanoscale RS mechanisms. As
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such, progression in RRAM research will remain limited unless electrochemically sensitive

spectroscopic techniques, such as EELS, are used in addition to electrical characterisation

to fully characterise the contributing mechanisms that are responsible for RS in carefully

designed RRAM structures. Furthermore, given the complex interplay between numerous

simultaneous RS mechanisms, it is essential spatially-resolved techniques like EELS

are employed to distinguish between homogeneous, in homogeneous, bulk material and

interfacial effects.

The research undertaken here was 3-fold: it involved the design and fabrication,

electrical characterisation and EELS analysis of VCM-type RRAM devices. This allowed

for the optimisation of RRAM devices and attribution of RS characteristics to spatial,

chemical and/or morphological effects. In particular, the research presented in Chapter

3 performed to fill a knowledge gap relating to the field-induced redistribution of VÖ

across a simple MOM (Ti/Mn:ZnO/Pt) structure during RS. It had been previously

proposed that such VÖ-electromigration could be attributed to the stimulation of room

temperature ferromagnetism in Mn-doped ZnO in addition to simultaneously stimulating

changes in the resistive state of the film [43]. Through the EELS analysis of pristine

and programmed devices, it was possible to use the valence state of the dopant Mn ions

to map the redistribution of VÖ across the device. Such mapping showed evidence for

the presence of two adjacent interfacial phases, both chemically distinct from the bulk

Mn:ZnO, that acted as O2−- and VÖ-reservoirs respectively, where VÖ were exchanged

across their shared interface. In addition, the mapping of Mn showed evidence for

the clustering of Mn dopants along grain boundaries, which has been alluded to in

the literature, but not confirmed. Finally, quantification analysis of the EELS spectra

(described further in section 2.7.3) suggested that Mn dopants, in addition to VÖ,

underwent electromigration during RS. Similarly, in Chapter 4, the valence state of the

Mn present in PrCaMnO3 was used to monitor VÖ redistribution; these single crystal

devices were fabricated and electrically characterised by collaborators in Jülich and

incorporate an VÖ-rich dedicated tunnel oxide deposited adjacent to the PrCaMnO3.

Owing to the sharp interface between the tunnel oxide and the PrCaMnO3, the EELS

analysis undertaken performed to further our understanding of the spatial homogeneity of

VÖ-electromigration. Indeed, through comparison of EELS spectra acquired from HRS-
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and LRS-programmed devices, reproducible changes in Mn valence state were observed.

Specifically, it was found that despite showing top electrode area scaling of electrical

characteristics, the redox activity of Mn at the interface was spatially inhomogeneous,

which is not typically reported in the literature.

1.3.1 Thesis Outline

Chapter 2 describes the instruments and techniques used to fabricate and characterise

the ZnO and PrCaMnO3 RRAM devices investigated. Chapter 2 has a particular focus

on Pulsed Laser Deposition and Transmission Electron Microscopy, and presents the

underlying physics describing Electron Energy Loss Spectroscopy, which is the primary

spectroscopic method used to investigate RRAM mechanisms in this work. Chapter

3 presents polycrystalline undoped and Mn-doped ZnO thin-film devices that were

deposited using a local Pulsed Laser Deposition system and Chapter 4 presents a

crystalline PrCaMnO3 device that was fabricated by collaborators at the Peter Grünberg

Institute Research Center Jülich, who also characterised the device using Hard X-ray

Photoelectron Spectroscopy, which is described in Section 2.8. In both results chapters,

RRAM performance is discussed with respect to the structural and chemical changes

revealed during electron microscopy and spectroscopic analysis. Finally, Chapter 5

summarises all conclusions and outlines future work that should be implemented in the

development of this research field.
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CHAPTER 2

Instrumentation

A comprehensive suite of fabrication and analytical protocols were employed so that

variations in RRAM device performance could be attributed to fabrication-controlled

nanoscale structural and chemical characteristics. The study presented in Chapter 3

required the use of Pulsed Laser Deposition (described in Section 2.2) for the controlled

deposition of zinc oxides, and a standardised patterning metallisation process which

included photolithography and electron-beam evaporation techniques (described in

Section 2.3) for the formation of electrical contacts. Optimisation of the deposition of

oxide thin films was possible through an assessment of surface topology via Atomic Force

Microscopy (described in Section 2.9) and the characterisation of electrical properties

using an electrical probe station (described in Section 2.10). Analysis of the structural

and chemical properties of thin film devices are presented in Chapters 3 and 4, where the

data were acquired on a Transmission Electron Microscope equipped for Electron Energy

Loss Spectroscopy, a set-up further described in Section 2.6. Electron-transparent

lamellas suitable to loading into the Transmission Electron Microscope were created

using a DualBeam Focused Ion Beam Scanning Electron Microscope system (described

in Section 2.4). Hard X-ray Photo-Electron Spectroscopy was employed by collaborators

in the study presented in Chapter 4 and spectroscopy technique is described in Section

2.8.
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2.1 Physical Vapour Deposition

An ever increasing demand for novel, functional thin film materials in fields such as

micro-electronics has required rapid development of both vacuum deposition technology

and our understanding of the underlying chemical and physical processes that occur

during thin film deposition and growth. A wide range of deposition technologies are

available. Each of these can be broadly categorised as either a physical process such as

Molecular Beam Epitaxy (MBE), a thermal evaporation method used for the fabrication

of Si and GaAs devices, or as a chemical process, such as Chemical Vapour Deposition

(CVD), a method widely used for applications in surface coating in which material

is deposited as result of stimulated chemical reactions [1]. In this work, chemical

deposition technologies were not utilised, instead, a combination of Physical Vapour

Deposition (PVD) techniques were employed to fabricate multi-layer thin film devices.

The use of more than one PVD method was necessary as each technique has unique

advantages that best served the functional requirements of individual layers within the

device heterostructure. For instance, in 1995 Gupta et al. published a comparison of

amorphous carbon deposited via four different deposition methods, which produced a

variation in mechanical properties, including hardness and elastic modulus [2].

2.2 Pulsed Laser Deposition

Also a PVD technique, Pulsed Laser Deposition (PLD) is a popular deposition method

used predominantly in academic research. Its appeal is due to many aspects: its capacity

for deposition under ambient gas at pressures ranging from atmosphere to 10−9Torr,

its ability to deposit composite materials away from thermal equilibrium, and its ability

to deposit complex multiple-component materials at stoichiometry [1, 3–5]. The latter

is the most important motivation for the use of PLD in this work, which includes the

optimisation of stoichiometric oxide thin film deposition, which is further discussed in

Chapter 3.

A PLD system allows users to focus a series of high-power laser pulses into a

deposition chamber and onto a target material which vaporises, forming a plasma
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comprising highly energetic species, with energies between 1 and 100eV [5, 6]. This

plasma expands upwards and outwards, allowing the energetic species to condense onto

the substrate surface and initiating the thin film growth process, which is described

further in Chapter 3. The very first deposition of thin films using PLD was demonstrated

by Smith and Turner in 1965 [7], who successfully grew compound semiconductor films

and binary oxides. In 1988, a comprehensive study completed by Cheung and Sankur

demonstrated the versatility of the PLD technique, reporting on a broad collection of

deposited materials, including most notably, the stoichiometric deposition of complex

oxide ceramics under oxygen [8]. This study was published not long after pioneering work

was published by Bednorz and Muller, who demonstrated the successful production of

superconducting copper-oxide-based ceramic thin films in 1986 [9]. These two significant

ceramic oxide studies changed the perception of PLD from an exotic method of growth

to an extremely versatile tool that could provide researchers with access to a plethora of

complex, innovative materials systems [10].

A typical PLD system comprises an ultra-high vacuum (UHV) chamber capable

sustaining of pressures of order 10−7Pa, a high power laser, and an optical system.

Fig.2.1 shows how the optical system allows one to focus the laser on the target, which

is typically mounted onto a motorised target carousel with two degrees of motion. These

are indicated by the purple arrows in Fig.2.1: rotation about its own axis, and movement

back and forth, parallel to the target surface. The carousel grants easy access to a

range of materials, permitting the deposition of multilayer thin film heterostructures.

Fig.2.1 also illustrates that the chamber can be filled with background gas via a mass

flow controller. Background gasses can be used to manipulate thin film growth via two

effects: reactive gases can be employed to achieve the desired chemical composition,

such as the use of molecular oxygen for the deposition of oxides; and background gas

pressure can be varied to reduce the average kinetic energy of plume species arriving at

the substrate [1]. Thin film properties are also affected by substrate temperature, which

can be used to improve or retard atom mobility. Given that during plume expansion

some portion of the plasma species eventually slow and stop propagating towards the

substrate [11], the distance between the substrate and the target can be changed to

control growth rates. As such, PLD systems users typically mount substrates onto
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Figure 2.1: Schematic diagram of a UHV vacuum that accommodates pulsed laser and
magnetron sputtering deposition systems. Laser pulses are guided into the deposition
chamber through a window and onto a target that is held on a motorised target carousel
system; the purple arrows represent possible motion. The substrate is also attached
to a motorised holder which can be resistively heated and can move in the directions
represented by the red arrows. A turbo-molecular vacuum pump was used to evacuate the
chamber via the outlet highlighted by the green arrows, and a mass flow controller was
used to control gas flow into the deposition chamber through the gas inlet highlighted
by the single blue arrow.

motorised holders that can be heated as required, where the substrate can rotate about

its own axis, and can be positioned along the z-axis, as shown by the red arrows in

Fig.2.1.

In this work, a Neocera Pioneer PLD system was used in conjunction with a 248nm

UV excimer laser (Coherent Compex Pro). The laser used has pulse duration 20ns,

a typical laser fluence 1-2J/cm2, and could be programmed to pulse at rates ranging

between 1-20Hz. Evacuated by a Pfeiffer 355ls−1 turbo-molecular pump, which itself

is backed by an Edwards 1.7ls−1 rough scroll pump, the deposition chamber has a

base pressure of 1×10−5mTorr without baking. Within the deposition chamber, up

to six targets are mounted on a motorised target carousel, and the substrate is loaded

into a motorised holder that features a resistive heater, allowing for the adjustment
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of the target-substrate distance and substrate temperature by up to 8cm and 1000◦C

respectively.

Additional components can be mounted onto the UHV chamber to provide either

complementary deposition techniques or in-situ analytical techniques. The apparatus

used in this work features an additional magnetron sputter source, which allows for the

deposition of metals. Furthermore, the PLD system also includes a Reflection High

Energy Electron Diffraction (RHEED) system (shown in Fig.2.1) that allows for in-situ

surface characterisation during deposition. This technique allows one to continuously

record the diffraction pattern produced by electrons that are scattered by the substrate

surface at low grazing angles (∼ 0.5◦). In particular, the intensity of a diffracted

spot relates to the reflectivity of the surface, which in turn is governed by the surface

roughness [12]. During layer-by-layer growth, the surface roughness oscillates, which

means that monitoring diffraction spot intensity allows for an identification of growth

mode. However, RHEED data were not acquired for the studies presented in this work

as epitaxial 2D growth was not required.

2.2.1 Laser-Matter Interaction

Although the principle of PLD operation itself is relatively simple, the interaction

between the laser and the target material is a complex process. The earliest models

assumed the interaction to be a purely thermal effect, which was later experimentally

proven to be an incomplete description that could not account for resultant electron and

ion emissions [1]. Today it is known that, dependent on the laser fluence at the target,

the laser-matter interaction can be split into two stages: the laser-solid interaction,

which is triggered at low-fluence, as shown sequentially in Figs.2.2(a)(b) and (f), and

the formation and expansion of the plasma plume, which is triggered at high-fluence, as

shown sequentially in Figs.2.2(a)-(e) [13]. It is the condensation of the plasma species

generated at high-fluence onto the substrate surface that initiates the process of thin

film growth, which is further described in Chapter 3.



40 Chapter 2. Instrumentation

Figure 2.2: The four stages of laser-matter interaction during the ablation of a PLD
target. At high laser fluence, the interaction passes through stages (a),(b),(c),(d) and (e)
consecutively, whereas at low laser fluence, stage (f) follows stage (b). Stages (a) and
(b) depict the melting and subsequent vaporisation of the target, which at high-fluence
is followed by the creation of a plume of ejected material, partly thermally ionised. This
is followed by stages (d) and (e) where the plume becomes increasingly ionised due to
shock wave collisional ionisation and further laser irradiation. In contrast, at low-fluence,
the vaporisation stage is followed by the re-solidification of melted material, as shown in
(f).

At high fluence, two processes occur: as found for lower laser fluence, the melting

front of the target material propagates through the target, and a luminous plume of

vaporised material containing species with high kinetic energy is ejected normal to the

surface of the target [10]. The vapour is produced at extremely high temperatures

(∼ 103K) that support the thermal ionisation of ablated species, forming a plasma

plume [5, 14]. As depicted in Fig.2.2(d), the formation of the plume effectively sputters

the surface of the target material, where sputtering is defined as the vaporisation of

a target material which is ejected as a result of energetic ion-bombardment [15–17].

For the remainder of the laser pulse, the plume absorbs laser irradiation, triggering the

photo-ionisation of neutral species and increasing the extent of plume ionisation [5,13,18].

Furthermore, at sufficiently high temperature and density, the plume effectively shields

the target from further irradiation, as shown in Fig.2.2(d) [14]. The degree of ionisation

changes during the course of plasma expansion due to ion-electron recombination [5].

The luminosity of the plume is due the relaxation of excited positive ions that generate

photons, and can be observed as the highly directional plume expands towards the
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substrate [5]. During the expansion of the plasma plume, the plasma species undergo

collisions with atoms in the ambient gas which cause the plasma species to slow and

eventually stop. At relatively high background pressures (10-150mTorr), the plume

couples with the ambient gas and undergoes shockwave propagation and features a

shock front (depicted in Fig.2.2(d)). Fig.2.2(d) illustrates how shockwave propagation

allows for further ionisation of the plume through collisional ionisation. Furthermore,

these collisions cause an increase in the lateral spread of the ejected particles, creating

a cone shaped plasma plume as shown in Figs.2.2(d)(e). In contrast to the shielding

properties of a hot, dense plume, the expansion of the plume allows it to cool adiabatically.

Eventually the plume becomes transparent to further laser irradiation which allows for

laser-solid interaction to occur once again.

2.3 Metallisation

As described in Chapter 1, RRAM devices comprise two metallic electrode contacts

sandwiching one or more active layers. In order to fabricate the devices investigated in

Chapter 3, electron-beam (e-beam) evaporation was used to deposit a Ti/Pt bottom

electrode layer onto Si/SiOx substrates, where the Ti acted as an adhesion layer. The

bottom electrodes served as substrates for the PLD of Mn:ZnO and ZnO thin films. To

isolate RRAM devices for electrical characterisation after the deposition of continuous

thin films, photolithography followed by e-beam evaporation was used to pattern a

series of top electrode contacts (Ti/Pt, and Pt) on the surface of the active layer, as

shown in Fig.2.4 where more details are provided. These standardised processes were

undertaken in the extensive cleanroom facility available on campus, the James Watt

Nano-Fabrication Center (JWNC), and will now be described.

2.3.1 Photolithography

Photolithography is a patterning technique in which the UV photo-irradiation of an

organic polymer film (photoresist), spun onto a substrate surface, triggers structural

changes in the photoresist film structure. Depending on the nature of the structural

response, photoresists are categorised as positive or negative tone; after photo-irradiation,
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positive tone photoresist undergoes chain scission, the degradation of polymer chains,

which results in a decrease in photoresist solubility, whilst negative photoresist undergoes

chain cross-linking, the bonding of polymer chains, which causes an increase in photoresist

solubility [19]. Fig.2.3(a) shows how a patterned a mask can be used to expose specific

regions of the photoresist to UV irradiation. This results in localised structural changes,

as shown in Fig.2.3(b). When immersed in developer, the most soluble region of

photoresist will dissolve, producing a patterned photoresist layer, as shown in Fig.2.3(c).

Figure 2.3: Steps required for photolithography after photoresist spinning are shown in
images (a)-(c), where (a) depicts the use of a mask to prevent/allow UV exposure on
specific regions of the photoresist, (b) illustrates structural changes in the photoresist
as a result of photo-irradiation, and (c) shows the remaining patterned photoresist
after the dissolution of the exposed photoresist. Images (d) and (e) depict the final
metallisation steps described in Section 2.3.2; (d) shows the deposition of metal onto
the patterned photoresist, and (e) shows the final metallised pattern obtained after
agitation in acetone.

Microposit S1818 positive photoresist was spun onto PVD thin film heterostructures

at 4000rpm for 30s, which resulted in ∼ 2µm thick photoresist films. Samples were

subsequently baked for 3 minutes at 115◦C to remove excess solvent, before being

loaded onto a SUSS MicroTec MJB4 Photolithography Mask Aligner along with the

photolithography mask. The mask desgined for this work featured a series of a UV-

transparent circles with diameters 10µm, 20µm, 50µm, 100µm, 200µm, and 300µm.

The range of top electrode areas allowed for the mechanisms of switching to be broadly

categorised as either filamentary or area-dependent processes, an important classification

used in the analysis of RRAM devices (see section 1.2.2 in Chapter 1). Samples were
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exposed to UV light for 5.2s in the hard-contact mode of the MJB4, in which the

sample is brought into direct contact with the mask. Post-exposure, samples were

manually agitated in Microposit MF-319 solution for 140s before a final immersion in a

RO water bath for 1 minute. An optical microscope was used to verify the success of

each patterning attempt before patterned samples were loaded into the electron-beam

evaporation system for metallisation.

Figure 2.4: SEM image of e-beam evaporated Ti/Pt top electrode contacts deposited
after photolithographic patterning. Top electrode contacts had diameters 10µm, 20µm,
50µm, 100µm, 200µm, and 300µm

2.3.2 Electron-beam Evaporation

For the fabrication of ZnO based RRAM devices presented in Chapter 3, a PLASSYS

electron-beam (e-beam) evaporator was employed to deposit bottom electrode contacts

before the deposition of the resistive switching active layer, and top electrode metal

contacts after photolithographic patterning. Like PLD, e-beam evaporation is also a PVD

technique and accelerates and focuses an e-beam onto a target material held in a crucible.

The bombardment of high energy electrons causes thermal heating and sublimation of

the target material. An advantage is that the localised heating induced by the focused

e-beam produces high purity thin films in comparison to other thermal evaporation

methods; in non-localised thermal evaporation, the target material and its crucible are
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both heated and so the target can be subject to intermixing contamination [20]. The

PLASSYS also features a quartz microbalance crystal which monitors growth rate. To

create bottom electrodes for the devices presented in Chapter 3, 120nm of Ti followed

by 5nm of Pt were deposited under vacuum. After the photolithographic patterning of

PLD zinc oxide, 3nm and 30nm layers of Ti were deposited, followed by 5nm of Pt.

2.4 Focused Ion Beam Lamella Fabrication

A fundamental requirement for transmission electron microscopy is that the samples

must be electron transparent, which corresponds to < 100nm thickness at 200kV. In this

work, for the investigation of multilayer RRAM devices, electron transparent lamellae

were produced using an FEI DualBeam Nova Scanning Electron Microscope which

included both an e-beam column and a Ga+ ion-beam column, the latter of which is

depicted schematically in Fig.2.5. In principle, this focused ion-beam instrument (FIB)

allows one to mill material from a sample, held within a vacuum chamber, with high

precision (∼ 10nm) using Ga+ ions, and to image this process non-destructively using

the Scanning Electron Microscope (SEM), which is described in Section 2.5 [21].

An ion beam column is depicted in Fig.2.5. To create an ion beam, the extraction

electrode is biased to produce a 108V/cm field and extract Ga+ ions from the ion source,

which is a tungsten needle wetted with liquid gallium [21]. These ions are accelerated

along the length of the ion-column between 1kV and 30kV, and are focused onto the

sample surface using a series of electrostatic lenses. Scanning coils allow the beam to

be rastered across the sample surface, and blanking plates are used to obstruct the

ion beam as required. The bombardment of energetic Ga+ ions at the sample leads to

sputtering of sample material. Secondary electrons (SE) and back-scattered electrons

(BSE) are also generated during sputtering and allow for the formation of images in

which contrast arises due to variations in both surface topography and atomic number.

However, due to sputtering, ion-beam imaging is inherently damaging; to avoid this,

the sample is imaged with a non-destructive e-beam instead, which generates SE and

BSE. The FIB instrument also employs an Omniprobe needle and a gas injector. The

Omniprobe needle permits the placement/removal of ion-sputtered (milled) structures,
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Figure 2.5: Diagram showing vertical ion-beam column used in the FIB-SEM DualBeam
instrument. A liquid metal ion source is shown in yellow and sits at the top of the
column. Ga+ ions are accelerated and focused along the ion column through the use of
an extraction electrode (shown in blue) and a series of electrostatic lenses and scanning
coils. Beam blanking plates (shown in red) enable the user to obstruct the beam as
required.

and the gas injector allows for chemical vapour deposition. Here, organometallic gas (for

example, W(CO6)) is injected within 200µm of the sample surface, where it adsorbs.

When the ion beam is rastered over the desired deposition region, it decomposes the

gas such that metal (W) is deposited onto the sample surface whilst waste product is

removed by the vacuum system, allowing for ’maskless’ patterning [22, 23]. Similarly,

the e-beam can also be used to decompose organometallic gas.

In this work, a standardised FIB process was employed to produce electron transparent

lamellae from bulk multilayer RRAM heterostructures and is outlined in Fig.2.6. The

process was as follows: first, a RRAM device was mounted onto the sample stage, which

could move in x,y ,z-directions, had rotational motion and was able to tilt. Fig.2.6(a)
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shows the gas injector inserted into the deposition chamber, held just above the sample

surface. Fig.2.6(b) shows the result of e-beam assisted Pt deposition atop a top

electrode, which served to protect the layers beneath from damage during ion-beam

milling. Fig.2.6(b) also shows cross-shaped features milled into the top electrode; these

were used for alignment purposes in the subsequent automated milling steps required

for lamella fabrication. Figs.2.6(c) and (d) show the trench milled either side of the

region protected by the e-beam deposition Pt during an automated milling process. The

milled trench exposed a cross-section of the sample, which exposed each layer within

the RRAM heterostructure. When tilted to the orientation shown in Fig. 2.6(d), the

ion-beam was used to mill away connections between the cross-section and the bulk

sample. Before complete separation from the trench, the Omniprobe needle was inserted

and Pt was deposited such that the cross-section was welded to the probe. Once this

was done, the final connection between the trench and cross-Section was milled away,

which meant that the Omniprobe could be used to move the cross-sectional lamella away

from the bulk sample. Once solely attached to the Omniprobe needle, the cross-section

was thinned to electron transparency and polished: Figs.2.6(e) and (f), show the final

product. Thinned, polished lamella were attached to Transmission Electron Microscopy

sample holders for electron beam imaging, a technique described in Section 2.6.
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Figure 2.6: SEM and ion beam images of the FIB lamella preparation process utilised
in this work. (a) a low magnification SEM image that shows a number of patterned
top electrodes and the gas injector inserted just above the bulk sample surface. (b)
an ion beam image showing a protective layer of Pt situated between two alignment
cross-shaped features. (c) and (d) were acquired at the same point during the lamella
preparation process;(c) was acquired from directly above the trench, whereas (d) was
acquired with the sample tilted. (e) and (f) were acquired at a later point in the lamella
preparation process and show the lamella, thinned to electron transparency; with respect
to (e), (f) was acquired at rotation 90 ◦ and shows a top-down view of (e), as indicated
by the orange arrow in (e).
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2.5 Transmission Electron Microscopy

The spatial resolution of a conventional light microscope is restricted by the wave-

length of visible light (0.4µm-0.8µm) to 250nm [24]. This limit continues to stimulate

research into alternative imaging methods to enable scientists to characterise and ma-

nipulate materials for advancement in nanotechnology [24]. By far the most powerful

imaging technique employed in materials science is electron microscopy, which can be

used to image both surfaces and material structure; surfaces are imaged via a scanning

electron beam, whereas material structure can be probed via transmission electron

microscopy (TEM), which offers atomic resolution.

De Broglie’s pioneering theory of electron wave-particle duality, published in 1925,

describes how electrons can be used to image samples at higher resolution than visible

light [25]. In this work, de Broglie postulated that all matter, including electrons,

had wavelength (λ) proportional to its momentum (p), such that λ = h/p, where h

represents Planck’s constant. Following de Broglie’s publication, in 1931 Ruska and

Knoll constructed the world’s first electron microscope, for which they were awarded a

Nobel Prize some 55 years later [26].

An electron microscope comprises an electron source (described in Section 2.5.3),

and an electron optical system comprising electromagnetic lenses (described in Section

2.5.4). Depending on the type of electron microscope, the arrangement of these systems

will vary: in a scanning electron microscope (SEM), the electron gun and optical system

are housed within an evacuated electron column which guides the electron beam to the

surface of a sample located inside a vacuum chamber, and a separate detection system

that collects electrons scattered from the surface of the sample. In contrast, in a TEM,

an electron-transparent sample is loaded into the electron column such that the optical

system transmits the electron beam through the sample and onto the detection system,

which is typically located at the very base of the electron column.

Both SEMs and TEMs accelerate electrons using an accelerating voltage (V ); SEMs

operate at voltages up to 30kV, whereas TEMs typically operate at voltages between

30kV-300kV. When imaging using ionising radiation, there is always a balance to be

struck between imaging resolution and beam damage, which both scale with accelerating
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voltage. For instance, for use in high voltage transmission electron microscopy where

the accelerating voltage is greater than 100KV and where the relativistic kinetic energies

of electrons must be taken in account, the electron wavelength is given by:

λ=
h√

2m0qV (1 + qV
2m0c2

)
(2.1)

where h is Planck’s constant, m0 and q are the rest mass and charge of an electron,

and c is the speed of light. Eqn. 2.1 shows that electrons accelerated at 200kV (the

operating voltage for TEM work in this thesis) have a wavelength of λ200kV = 2.51pm.

Despite λ200kV being smaller than interatomic distances, in practice, the resolution

of the TEM is limited by aberrations in electromagnetic lenses. As mentioned above,

whilst resolution is improved, beam damage, which comes in the form of sample heating,

sample sputtering (the ejection of sample material), and radiolysis (the breaking of

chemical bonds), also increases with accelerating voltage. Aberration-corrected TEM

presents a compromise between beam damage and resolution: it allows microscopists

to counter aberration effects and improve resolution whilst using lower accelerating

voltages at which beam damage is low risk. The TEMs used in this work are employ

aberration correction systems, which are described further in Section 2.5.4.

2.5.1 Inelastic and Elastic Scattering

Under an incident e-beam, electrons are scattered by atoms within the sample in

forward (parallel to the incident beam) and backward (anti-parallel to the incident beam)

directions, as shown in Fig.2.7. In an SEM, only back-scattered secondary signals can

be detected, however in the TEM, forward scattered electrons are collected below the

sample, and provide information about the internal structure and chemistry of the sample.

These forward scattered electrons are either elastically or inelastically scattered, which

refer to scattering events in which the incident electron suffers no or some loss in energy

respectively.

Elastic scattering describes scattering events in which the incident electrons deviate

from their path due Coulombic interactions with the nucleus and/or electron cloud

and do not suffer energy loss. Frequently, small-angle deviations in incident electron
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Figure 2.7: Diagram showing (a) elastic and (b) inelastic electron-scattering. (a)
Forward- and backward-scattering are shown by the blue and green e-beam trajectories
respectively. The production of characteristic X-rays (purple wavy arrow) and Auger
electrons (brown arrow) are shown in (b), where the (dashed)solid arrows represent the
(de-)excitation of an inner shell electron.

path occur as a result of elastic scattering, where the scattering angles increase with

atomic number, Z [27]. In some cases, Coulombic interactions can be sufficiently strong

to cause the back-scattering of incident electrons, in which the incident electron is

subject to a deflection greater than 90◦, as depicted by the green trajectory shown in in

Fig.2.7(a) [27].

Inelastic scattering refers to events in which incident electrons interact with atomic

electrons and lose energy as a result. These inelastic events produce a number of

secondary signals including secondary electrons and X-rays (depicted in Fig. 2.8) in

either back- or forward-scattered directions. X-rays are produced when secondary

electrons are ejected from the valence and conduction bands, or from atomic inner-

shells. The former typically have energies <50eV, which means that only those that

are generated near the surface of the sample have sufficient energy to escape. This

characteristic makes secondary electrons extremely useful for imaging the sample surface,

which is done in SEM. However, secondary electrons emitted from the conduction and

valence bands do not provide elemental information about the sample; in contrast, those

ejected from atomic inner-shells, Auger electrons, and characteristic X-rays, do carry

such information, which allows for analytical electron microscopy techniques. Fig.2.7(b)

illustrates how the incident e-beam transfers energy to inner-shell electrons, causing
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its ejection (represented by the solid black arrows). To relax from an ionised state, an

electron is de-excited to a lower energy level (represented by the black dashed arrows),

which produces characteristic X-rays (represented by a purple arrow) and Auger electrons

(represented by a brown arrow). Furthermore, e-beam electrons can undergo inelastic

scattering with collective atoms within the solid, creating an oscillation of valence

electron density. This longitudinal wave is referred to as plasmon resonance. Fig.2.8

shows that there are multiple additional electron-matter interactions that can result

in the generation of a variety of secondary signals. However, these extend beyond the

scope of this thesis, and are explained in external texts [28,29]. Given that these events

cause the respective incident electron to undergo a loss of energy, electron energy loss

spectroscopy can be used to determine the chemistry of the sample, as done in Chapter

4.

Figure 2.8: Diagram showing electron-matter interaction and the generation of secondary
signals. Electrons that pass through the sample un-deviated are referred to collectively
as the direct beam.

2.5.2 Diffraction

Section 2.5.1 described isolated single atom scattering events, however, practically,

in a specimen, collective scattering from multiple atoms occurs. Fig.2.9 illustrates how,
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for a crystalline sample in which the atomic planes are separated by distance d , elastically

scattered electrons follow Bragg’s law:

nλ= 2dsinθ (2.2)

where n is a positive integer and θ is the angle of the incident e-beam(wave) (measured

w.r.t. the atomic plane). This type of elastic Bragg scattering is referred to as diffraction,

and generates patterns in which the constructive interference of scattered (diffracted)

electron waves produce an angular distribution of bright spots. Here, the distance

between diffraction spots is governed by unit cell size and shape, whereas the intensity is

governed by the distribution, number, and types of atoms within the sample. Therefore,

through the measurement of diffraction spot intensity and position, it is possible to

assess the structure of a given sample material. Diffraction scattering and analysis of

elastically scattered X-rays can also be used to assess sample structure. In Chapter

3, X-ray diffraction is discussed in conjunction with the literature on the growth and

morphology of ZnO thin films.

Figure 2.9: Diagram showing elastic Bragg scattering (diffraction). Here the path
difference between the incident and scattered waves is given by AB+BC = 2dsinθ, and
constructive interference is observed when the path difference is equal to an integer
multiple of the electron wavelength, as described in Eqn. 2.2.

Quantitatively, the degree of crystallinity of a given material is usually determined

using X-ray diffraction (XRD). For polycrystalline materials, the many, distinct crystalline

regions (grains) produce XRD spectra containing multiple diffraction peaks at various

θB, as defined in Eq.2.2. The relative intensity of these peaks is proportional to the

fraction of the film it corresponds to, so XRD spectra acquired from more crystalline
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(less mosaic) thin films exhibit an intense diffraction peak corresponding to the preferred

crystallographic orientation. The relationship between the grain width (L) and the

FWHM of the diffraction peak is described by the Debye-Scherrer equation in which

grain width (L) is equal to

L=
Kλx

B cosθB
(2.3)

where K is a constant approximately equal to 0.9, B is the broadening of the peak and

λx is the X-ray wavelength [30]. This equation shows that with increasing grain width,

the FWHM decreases.

2.5.3 Electron Sources

Electron microscopes employ electron guns that emit electrons via either thermionic

or field emission. The FEI Tecnai T20 (T20) TEM (employed in Chapter 3) uses a

thermionic emission source, in which the source material (typically LaB6 crystal) is

heated such that electrons gain sufficient energy to overcome the work function of the

material. The FEI Nova DualBeam FIB-SEM and JEOL ARM 200cF (ARM) TEM

(employed in Chapters 3 and 4)used in this work employ field emission guns (FEGs)

in which the source material (typically tungsten) is negatively biased. The use of a

sharpened tungsten tip enhances the local electric field, enabling electron emission

through tunnelling. Both electron guns apply an electric field to focus off-axis electrons

to a gun cross-over point that is centered along the optic axis, which is shown as a

red dashed vertical line in the diagrams presented in this work. Respectively, the FEG

achieves better spatial coherency, brightness (defined as the current density per unit

area of the source per unit solid angle) and energy spread than thermionic emission guns

due to its small source size, which makes it preferable for use in analytical and high

resolution transmission electron microscopy [28]. However, the reduced FEG source

size provides poor illumination for low magnification imaging (≤ 100,000×), making

thermionic emission sources the preferred choice for routine imaging [28]. As such,

in this work, samples were typically imaged using the T20 before analytical probing is

undertaken using the ARM.
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2.5.4 Electromagnetic Lenses

Figure 2.10: (a) Cross-section of a magnetic lens where copper coils are shown in
yellow, and are enclosed within a case that can be water cooled via a water inlet and
outlet. Upper and lower pole-pieces are shown in light green, and generate a B-field
perpendicular to the optic axis when current is supplied to the copper coils. Electron
rays paths, depicting lens focusing, are shown in blue. (b) shows how electrons travelling
along the optic axis are subject to helical motion under the applied B-field.

At the time of the development of Ernst and Knoll’s electron microscope, it was

already known that a charged particle moving through an electrostatic (E) and/or

magnetic field (B) is subject to the Lorentz force (F)

F = q(E+v×B) (2.4)

where v is the velocity of a charged particle. This showed that either an electrostatic

field or a magnetic field can be employed to focus and deflect an electron beam. Indeed,

the Wenhelt electrode in a thermionic emission gun is an electrostatic lens that acts

to focus the electrons at a cross-over point. However, electrostatic lenses can suffer

from high-voltage breakdown; this restriction stimulated research into the development

of electromagnetic lenses, which are used in modern electron microscopes. Fig.2.10(a)

shows a cross section of an electromagnetic lens; here, two (upper and lower) cylindrically

symmetrical pole pieces form a bore along the optic axis through which an electron

beam can pass. Copper coils surround the pole-pieces, and generate an axially symmetric



2.5. Transmission Electron Microscopy 55

magnetic field when current is supplied. In the case of an electromagnetic lens, Eqn.

2.4 is modified such that E = 0, and electrons are subject to helical motion about the

optic axis whilst they pass through the lens, as illustrated by the purple line shown in

Fig.2.10(b).

The effect of an electromagnetic lens on an e-beam is analogous to that of a convex

glass lens on incoming light rays: both lenses act to converge off-axis rays to a single

focal point. In an electromagnetic lens, the strength of this effect depends on the

perpendicular B-field, which is governed by the magnitude of the current supplied to the

lens. Typically, electron optics are depicted using vertical ray diagrams; Fig.2.11 is an

example of this. An image of an object located in the object plane (shown in green in

Fig.2.11) is formed below the electromagnetic lens in the image plane (shown in light

blue in Fig.2.11). A diffraction pattern, however, is formed in the back focal plane of the

lens, which is highlighted by the yellow line in Fig.2.11. By varying the current supplied

to an electromagnetic lens, the B-field can be adjusted increase or reduce the angle of

convergence.

Figure 2.11: Electromagnetic lens ray diagram, where electron rays are depicted as
dark blue line. Principal planes are highlighted; the object, back focal, lens, and image
planes are represented by green, black, yellow, and light blue dashed lines respectively.
Deflected e-beams converge in the image plane at the lens focal length.
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Fig.2.11 is an example of an ideal electromagnetic lens where all off-axis e-beam

rays are deflected such that the focal length of the lens remains constant. However, as

mentioned in Section 2.5, electromagnetic lenses are limited by lens defects; in order of

dominance these are spherical aberration, chromatic aberration, and astigmatism [28].

Identified by Scherzer in 1949, spherical aberration (Cs) is a radial lens defect in which

off-axis rays converge excessively in comparison to those closer to the optic axis [31,32].

Due to this defect, detail is lost during magnification: for instance, a point object is

imaged as a disc of finite size. To counter Cs , diverging lenses comprising multiple

pole-pieces (multipoles) are employed that act to spread off-axis rays such that they

converge at a single focal point [28, 33]. Chromatic aberration (Cc) is a defect that

varies with the monochromaticity of the electron beam, that is, its frequency and

wavelength. In this case, electrons with lower energy (higher wavelengths) converge

excessively in comparison to those with higher energy, resulting in the loss of detail at

high magnification, as found in Cs [28, 31]. Whilst it is true that energy spread can be

minimised by choice of electron source, inelastic electron scattering also contributes to

the spread of electron energies post-interaction with the sample (these processes are

described in further detail in Section 2.5.1). To counter this, Cc can also be minimised

by thinning the sample, which effectively reduces the number of inelastic interactions.

Astigmatism is an image distortion that arises due inhomogeneities in the lens field. This,

for instance, can be due to microstructural variations in the pole-piece material, and can

be corrected through the use of octopole stigmators, which produce a compensating

field that acts to counter the inhomogeneities that cause the astigmatism [28].
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2.6 Electron Optical System

Figure 2.12: Schematic diagram showing magnetic optical system set up in CTEM mode
for an aberration-corrected microscope.

As mentioned in Section 2.5.3, an FEI Tecnai T20 (T20) and a JEOL ARM200cF

(ARM) TEM were utilised in this work, and allowed for the structural and chemical

characterisation of heterostructure RRAM devices and oxide thin films. Within the

electron column, the electron optical system can be divided into three sections: from top

to bottom these are the condenser system, the imaging system into which the sample is

loaded, and the projection system, as shown in Fig. 2.12.
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Using the condenser system, a TEM can be set up to illuminate the sample in two

configurations: parallel (broad beam) illumination or convergent (probe) illumination.

The former is used for imaging and selected area diffraction, and is referred to as

conventional transmission electron microscopy (CTEM), and the latter, when rastered,

is used for scanning transmission electron microscopy (STEM), which is described in

Section 2.6.2 [28]. To illuminate the sample in both modes, at least two condenser

lenses are employed, as shown in Fig.2.12. In the condenser system, the gun cross-over

(defined in Section 2.5.3) is positioned in the object plane of the first lens, C1, such that

C1 can form its demagnified image at the C1 crossover. The second lens, C2, can be

strengthened or weakened to produce either broad-beam or probe illumination. However,

most TEM instruments, including the JEOL ARM used in this work, employ the upper

pole piece of the objective lens to act as a third condenser lens (C3): if C2 is over-focused

(strengthened), C3 can produce a parallel beam of electrons, as shown in Fig.2.13(a); if

C2 is switched off, C3 can be strengthened to produce probe-illumination instead, as

depicted in Fig.2.13(b). The main advantage to using C3 for probe-illumanition is that

it can achieve a smaller probe size <1nm. The condenser system also includes a series

of condenser correctors that counteract the effects of astigmatism and aberration, as

described in Section 2.5.4.

Figure 2.13: Schematic diagram showing upper-objective condenser system set up for
(a) broad beam and (b) probe illumination in CTEM mode.

The condenser system is separated from the imaging system by the sample stage. In
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the imaging system, the role of the objective lens is to form images or diffraction patterns

of the sample. To produce a diffraction pattern, the strength of the intermediate lens

(within the projection system) is adjusted such that its object plane is in the back focal

plane of the objective lens. A selected area aperture can be introduced into the image

plane of the objective lens, which allows one to obtain a diffraction pattern from a

specific region of the sample as well as reducing the intensity incident at the detector.

To produce an image of the sample instead, the intermediate lens is adjusted so that its

object plane is in the image plane of the objective lens. Before being projected onto the

viewing screen or detectors, the image is finally magnified by a projector lens.

2.6.1 Bright-Field and Dark-Field Imaging

Bright- (BF) and dark-field (DF) imaging are two of the most important CTEM

modes employed in TEM, and are used in this work. The terms ’bright’ and ’dark’

refer to the use of an objective aperture to isolate the direct beam and diffracted beam

respectively. Fig.2.14(a) illustrates the set-up for BF imaging; here, the black rays

represent the unobstructed direct beam, and the red rays represent the obstructed

scattered beam. In contrast, Fig.2.14(b) shows how the direct beam can be tilted to

the effect that the scattered beam is parallel to the optic axis and is isolated by the

objective aperture. DF imaging isolates particular crystallographic orientations with a

given sample, producing diffraction contrast, which allows for an assessment of defects

and grain size, as presented in Chapter 3.

Figure 2.14: Schematic diagram showing objective aperture set up for (a) BF and (b)
DF imaging. Here the black(red) rays represent the direct(scattered) beam.
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2.6.2 Scanning Transmission Electron Microscopy

In STEM mode, the condenser system employs the upper-objective lens to produce a

fine e-beam probe (0.2 to 5nm in diameter [28]) that rasters across the sample. Fig.2.15

illustrates how this rastering motion is enabled by two sets of deflector coils positioned

above the upper objective lens. One of the major benefits to using STEM mode is that

lenses are not used to magnify a STEM image, meaning that lens defects in the imaging

system are avoided; instead, the transmitted electron beam is collected at the detector

pixel-by-pixel.

As in CTEM, BF and DF images can be obtained, however different detectors are

used to isolate the direct or diffracted beams as opposed to an objective aperture. In

STEM, annular dark field (ADF) images are obtained using a ring-shaped detector

centered around the optic axis. An ADF detector collects beams scattered to θ≈ 10mrad.

In addition to this, another annular detector can be added to surround the first to detect

electrons scattered at higher angles (θ ≥ 100mrad), and produces high angle annular

dark field (HAADF) images [34]. These high angle electrons are scattered via Rutherford

scattering and produce Z-contrast images, which are particularly useful in the imaging

of complex compound materials such as perovskite oxides.

Fig.2.15 depicts the TEM instrument used for STEM-coupled Electron Energy Loss

Spectroscopy (STEM-EELS), in which a 90◦ magnetic prism spectrometer (described

further in Section 2.7.7) is used to analyse the energy spread of transmitted electrons.

As described in Section 2.17, the energy lost by inelastically scattered electrons provides

information about the chemistry of a given material. Due to its fine probe size, STEM

is particularly well suited for this analytical electron microscopy technique, as it allows

one to investigate the spatial distribution of chemical changes within the sample at high

resolution. STEM-EELS was employed for the studies presented in Chapters 3 and 4 in

this work.
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Figure 2.15: Magnetic optical system set up for STEM-EELS. In this set-up, a magnetic
prism spectrometer is inserted below the viewing screen to enable the analysis of electron
energies.
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2.7 Electron Energy Loss Spectroscopy

On the ARM TEM, EELS is carried out in STEM mode in the configuration shown in

Fig.2.15, where a magnetic spectrometer (described in section 2.7.7) collects inelastically

scattered electrons. STEM-EELS mode involves the scanning of a fine e-beam probe

across the sample in a pixel-by-pixel rastering motion, commonly referred to as spectrum

imaging, which allows one to acquire an entire spectrum for each x,y coordinate within

the scan. This builds a spectral image data cube which has dimensions x,y and ∆E

(where ∆E is energy loss), as depicted in Fig.2.16.

Figure 2.16: Spectral image (SI) data cube in which an EELS spectrum is acquired for
each pixel in a scan across x and y .

2.7.1 Electron Energy Loss Spectrum

An EELS spectrum is typically described with reference to the low-loss spectrum,

shown in Fig.2.17(a), which includes energy losses ≤ 50eV and he high-loss (core-loss)

spectrum, shown in Fig.2.17(b), which extends from 50eV to ∼ 1keV. The low-loss

spectrum is dominated by an intense Zero-Loss Peak (ZLP) at 0eV, which is highlighted

by the yellow arrow in Fig.2.17(a). This comprises unscattered electrons and those

that have been subject to elastic scattering and suffered no energy loss. The FWHM

of the ZLP is limited by the energy spread of the electron source, which governs the

overall resolution of the EELS spectrum. In this work, the ARM was used to acquire

STEM-EELS data as it employs a cold-FEG source that achieves ∼0.3eV resolution. In

addition to the ZLP, the low-loss spectrum features resonance peaks that have arisen

due to plasmon excitation, and are highlighted by the orange arrow in Fig.2.17(a). The

energy of a plasmon peak is governed by the density of valence electrons present in the
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Figure 2.17: STEM-EELS spectrum obtained on the TEM showing (a) low-loss and
(b) high-loss data acquired simultaneously from PrCaMnO3. The low-loss spectrum
comprises the ZLP and plasmon peaks and the high-loss spectrum comprises core-loss
edges. In (b), oxygen and manganese core-loss edges are shown.

sample. In insulator and semiconductor materials, further plasmon peaks arise due to

interband transitions, which correspond to valence electron excitations to unoccupied

energy states above the Fermi level [35]. In general, the overall shape of the low-loss

spectrum is typically used to assess the electronic nature of a sample. Although low-loss

analysis is not typically used in RRAM research as it features overlapping plasmon peaks

from multiple contributions that complicate analysis, a comparison of the low-loss spectra

acquired from devices programmed to the LRS and HRS could offer further insight into

the mechanisms of RS [18,36]; in Chapter 4, the low-loss spectra acquired from LRS-

and HRS- programmed devices are compared and discussed and reveal reproducible

differences. In the high loss spectrum, peaks corresponding to the energy required to

excite an inner-(core-)shell electron to unoccupied energy states above the Fermi level.

As these energies are characteristic quantities, core-loss features (edges) can be used

to identify the elements present in a given sample; Fig.2.17(b) highlights the oxygen

and manganese edges obtained from a PrCaMnO3 sample, which correspond to energy

losses of 532eV and 640eV respectively. Core-loss edges are superimposed onto the

tail of the plasmon peaks, which are roughly eight times greater in magnitude than the

core-loss edges [37]. This tail can be described as a decreasing logarithmic background

that follows the form I = AE−r (where I is intensity, E is energy, and A and r are fitting
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parameters [38]), and must be removed before quantification. For a single scattering

event, k, the intensity of a given core-loss edge, Ik , is described by

Ik = I0Nσk (2.5)

where I0 is the intensity of the ZLP, N is the number of atoms per unit area, and σk is

the scattering cross-section, which represents the intrinsic probability of a scattering

event occurring for a particular atom. σk is dependent on the incident beam energy,

the atomic number (Z) and the scattering angle. However, the calculation accuracy

of σk is limited to roughly 30% [39]; this is because irregularities in the dependence

of σk on Z arise due to the outer shell structure of a given atom. Furthermore, σk

is calculated based a scattering event from a single isolated atom, which does not

reflect variations in bonding environments in bulk and, for crystalline materials, does not

compensate for diffraction effects, which dramatically modify the angular dependence of

scattering [29, 40]. For the absolute quantification of EELS data, the accuracy of σk is

a limiting factor; the Hartree-Slater model for σk , which is commonly used throughout

the field, has systematic errors of 5%, 15% for energy losses corresponding to the

excitation of 1s and 2p electrons [40, 41]. In an attempt to improve on this, some

EELS researchers, including those working within the Materials and Condensed Matter

Group at the University of Glasgow, experimentally measure σk using stoichiometric

samples of known thickness and achieve an accuracy to within a few percent [40]. The

absolute quantification of EELS data is outwith the scope of this thesis, however the

quantification of relative ratios between elements were evaluates; the elemental ratio

quantification method used in this work and its limitations are described in section 2.7.3.

In practice, the thickness of a lamella governs whether or not multiple inelastic

scattering events occur. Such independent events obey Poisson statistics, which means

that the probability that a transmitted electron undergoes n scattering events,Pn, which

can also be expressed as the ratio between the integrated n-fold scattering In, and the

total integrated plasmon intensity It , is given by:

Pn =
In
It

=
( 1

n!

)( t
λ

)n
exp

(
−
t

λ

)
(2.6)
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where t is the thickness of the lamellae, λ mean free path for inelastic scattering

events. For the unscattered electrons that comprise the ZLP, n = 0 and Eqn.2.6 can be

rearranged to produce
t

λ
= ln

( It
I0

)
(2.7)

where I0 is the intensity of the ZLP. Conventionally, tλ is used as a parameter to assess

sample thickness, where for tλ > 0.5, thickness effects are expected to affect the spectrum

and the quantification thereof [35]. With regards to the low-loss, multiple plasmons are

excited by an incident electron, which manifests as additional resonance peaks at integer

multiples of the plasmon energy [37]. In the high-loss spectrum, plural inelastic scattering

events can dramatically affect the intensity and shape of core-loss peaks. Therefore,

in order to compare core-loss edge shapes acquired from different samples accurately,

these plural scattering effects must be minimised via Fourier transform deconvolution,

which produces a single-scattering distribution [37,42].

High-loss spectra also reveal detailed peaks extending up to 50eV beyond the core-

loss edge; these pronounced features are referred to as the energy loss near-edge

structure (ELNES). There are number of interpretations that have been used to explain

the principles of ELNES in the literature, however it can be understood via a band

structure model for a single-electron-excitation approximation [28,37,38]. Here, ELNES

modulations in intensity (J(E)) are governed by Fermi’s Golden Rule which states that

the probability of an electron transitioning from its initial state (i) to a final state (k)

is proportional to the product of atomic transition matrix element (M(E)ik) and the

density of final states (ρ(E)k):

J(E)ik ∝
2π

h̄

∣∣∣M(E)ik

∣∣∣2 |ρ(E)k | (2.8)

M(E)ik is determined by atomic physics and therefore represents the overall shape of the

core-loss edge. In contrast, ρ(E)k is determined by the chemical and crystallographic

environment of the excited atom, therefore, modulations in J(E)ik represent variations

in the density of final states above the Fermi level. This model can be used to describe

ELNES if the following qualifications apply: ρ(E)k represents the local density of

unoccupied states, i.e. different elements in the same compound have a distinct set of
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unoccupied final states; and the strength of M(E)ik is dependent on the dipole selection

rule, ∆l =±1, where ∆l = +1 transitions are predominant [35]. The latter means that

for example, in high-loss spectra acquired from PrCaMnO3, modulations in the Mn-L2,3

peaks are governed by Mn-3d final states, which is discussed with respect to RS induced

Mn-redox in Chapter 4. This sensitivity is one of the most useful aspects of EELS with

regards to redox-based RS. The careful analysis of ELNES provides information about

the valence state of an atom: a change in the effective charge of a metal cation leads

to a change in the screening of the electrostatic field surrounding the nucleus which

causes a change in binding energy which manifests as the ’chemical shift’ of the core-loss

edge. In addition, when there is a strong interaction between the excited core-shell

electron and its corresponding core-hole, the intensity of ELNES peaks will also vary

with valence state. Such strongly-interacting transitions correspond to L2,3 peaks of

transition metals, and M5,4 peaks of rare-earth metals; the ratio between the intensities

of these peaks is typically referred to as the white-line ratio. Thus, both the chemical

shift and white-line ratio are used in Chapter 4 to distinguish between distinct valence

states of a transition metal cation, which, as explained in section 1.2.2, are expected to

change in transition metal oxides that display RS.

2.7.2 Basic EELS Processing Steps

All EELS datasets were processed using Gatan Digital Micrograph 2.3 (DM) software.

With regards to basic EELS processing, in the first instance, to compensate for any drift

induced by instrumental instabilities, both the low- and high-loss spectra are aligned

using an ’Align by Peak’ function on the ZLP. Both spectra are then calibrated to ensure

that the ZLP is centered about 0eV. Finally, using DM’s ’Remove X-rays’ function,

X-ray spikes which are spurious single-pixel peaks are isolated and removed. These basic

EELS processing steps were always used, however more advanced techniques, such as

deconvolution, principle component analysis, multiple linear least-squares fitting and

elemental ratio normalisation can be applied; these are described in Sections 2.7.3, 2.7.4,

2.7.5, and 2.7.6 respectively.
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2.7.3 Elemental Ratio Normalisation

In Egerton’s influential text on EELS, it was shown that for the same irradiated

volume in a given SI dataset, the stoichiometric ratio between elements A and B with

core-loss edge intensities IA and IB respectively is

nA
nB

=
IA(∆A)σB(∆B)

IB(∆B)σA(∆A)
(2.9)

where nk is the number of atoms (of type ’k ’) per unit volume and ∆k is the width of

the energy window used to integrate over core-loss edge with intensity Ik [29]. As noted

above, Eqn.2.9 can be applied for a single material in one dataset, however, to compare

stoichiometry across multiple distinct materials, for instance, across all the layers within

RRAM thin film heterostructures, or to compare stoichiometry across multiple datasets

it is important to normalise to account for other parameters that may influence Ik such

as variations in thickness, zero-loss intensity, inelastic mean free path and ratio between

low- and core-loss acquisition times. This can be done through the manipulation of

Eqn.2.5 (presented on page 64): by substituting N for nt and multiplying by λ
λ , Eqn.2.5

can be expressed as

nkλ=
( Ik
σk

)( 1

I0

)(λ
t

)(sCL
sLL

)
= Ik,N (2.10)

where sCL and sLL represent the acquisition times for the core- and low-loss respectively,

t represents lamella thickness and Ik,N represents normalised Ik . This normalisation

of Ik can be achieved using DM, which has plugins that produce 2D maps of three

of the bracketed components in Eqn.2.10: I0 is extracted using a reflected tail model

that assumes the ZLP is symmetric about its maximum; tλ is calculated according to

Eqn.2.7 (presented on page 65); and
(
Ik
σk

)
is produced via an elemental quantification

tool, which deconvolutes the spectra using the corresponding low-loss spectra and uses

the Hartree-Slater model to calculate σk [37].
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Figure 2.18: Normalisation process used for the quantification of EELS data included in
the analysis of the tunnel RRAM device to be discussed further in Chapter 4. 2D maps,
with pixel size 0.19nm2, showing (a) Raw O K-edge intensity (b) ZLP intensity (c) t

λ and
(d) O K-edge intensity normalised via Eqn.2.11. The spatial distribution of (b) and (c)
are shown in (e) and (f) respectively. (g) A comparison between the spatial distribution
of the raw and normalised O-k edge intensity. Red vertical dashed lines highlight the
interfaces between functional layers within the tunnel RRAM heterostructure.
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Fig.2.18 shows an representative example of the 2D maps (Figs.2.18(a)-(d)) and

corresponding averaged (in the y -axis) spatial distributions (Figs.2.18(e)-(g)) involved in

the normalisation process for an EELS dataset acquired from the single crystal epitaxial

device to be presented and discussed further in Chapter 4. All of the images in Fig.2.18

are aligned along the x-axis so that they can be directly compared. In addition, red

vertical dashed lines are used to highlight the interfaces between different functional

layers of the heterostructure, which include the top electrode, the dedicated tunnel oxide,

the RS active layer and the bottom electrode. Fig.2.18(a) presents the raw Oxygen

K-edge intensity (IOx) map, which includes contributions from the ZLP intensity, the

lamella thickness and the inelastic mean free path of each material incorporated into the

heterostructure; here the intensity of the oxygen K-edge in the bulk RS active layer is

increased with respect to the bottom electrode but reduced with respect to the tunnel

oxide. Fig.2.18(b) presents the ZLP intensity (I0) map; here, the variation in intensity

across the oxygen-containing layers matches that observed in the raw data, consistent

with the direct proportionality relationship between IOx and I0 shown in Eqn.2.5. For

clarity, the spatial distribution of I0 is also presented in Fig.2.18(e), where the relative

variations in intensity are easily observed. Fig.2.18(c) presents the t
λ map and the

corresponding spatial distribution is shown in Fig.2.18(f). Here, the top electrode and

the tunnel oxide are shown to be the thickest and thinnest regions of the lamella and

both come under the threshold t
λ=0.5 for quantification. Fig.2.18(d) presents the O-K

2D map, which has been normalised according to Eqn.2.10 to account for changes in t
λ

and the ZLP across the devices and, for an evaluation of the ratio between elements,

can be scaled by the oxygen K-edge cross-section, σOx . As shown in Eqn.2.10, the

normalised value of each pixel presented in Fig.2.18(d) corresponds to the product nOxλ,

where λ is distinct for each material layer. Finally, the spatial distribution of the raw

and normalised oxygen K-edge intensity are presented in Fig.2.18(g). Here, both spatial

distributions have to scaled to their respective maximums to allow for direct comparison

of any changes to the shape of the distribution. It is the shape of the normalised oxygen

intensity distributions that were used to evaluate the RS-induced electromigration of VÖ

between the tunnel oxide and the bulk RS layer. For the dataset presented in Fig.2.18(g),

the main difference caused by the normalisation process is the relative increase in the
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intensity of the O K-edge in the RS active layer and bottom electrode with respect to

the tunnel oxide. However, a comparison of spectra extracted from programmed devices

showed a reproducible change in the shape of the oxygen K-edge distribution between

the LRS and HRS.

Combining Eqns.2.9 and 2.10 produces

nAλY
nBλZ

=
IA,N(∆A)σB(∆B)

IB,N(∆B)σA(∆A)
(2.11)

where it should be noted that the inelastic mean free path is a property of a material,

therefore the subscripted λY and λZ used in Eqn.2.11 represent a comparison of the

intensity of core-loss edges acquired in two materials, denoted Y and Z. In this work,

inelastic mean free paths were calculated using the Iakoubovskii et al.’s log-ratio model

parameterisation in which λ∝ ρ−0.3, where ρ is the density of a given material [43]. In

Chapter 3, Eqn.2.11 is used to identify the spatial redistribution of Mn within a RS

Mn-doped ZnO film and in Chapter 4, it is used to compare field-induced changes in the

distribution of oxygen across three different oxides in a tunnel-RRAM heterostructure.

It is important to note that there are some limitations that can restrict absolute

quantification and a number of these relate to σk : the Hartree-Slater model used

for calculations of σk in this work is based on isolated atoms and therefore does not

include any of the (environment-dependent) ELNES features obtained experimentally,

introducing error [44]; furthermore, whilst σk is accurate for light elements which have

K-edges at accessible energies (<2keV), uncertainty on σk increases greatly for heavier

elements with inaccessible K-edges [40]; finally, as the uncertainty on σk is a systematic

error, the ratio between two edges of different types (for instance, K-type and L-type)

have greater uncertainty than that of two edges of the same type [40]. In addition, the

log-ratio method used to calculate t
λ has accuracy 20% [39]. As described in section

1.3, the absolute quantification of EELS data is limited by uncertainties in σk and t
λ ; for

this reason, the analysis presented in this work focuses on the relative quantification of

EELS data, that is, in this work, the ratio between elements is compared within single SI

datasets as well as across different SI datasets using Eqs. 2.10 and 2.11. This elemental

ratio normalisation was used in Chapter 3 to compare the Mn and Zn L-type edges and

suggested that the Mn:ZnO film had a higher Mn dopant level than expected, which
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could be attributed to the high defect density of the irregular polycrystalline films. In

Chapter 4, the elemental normalisation confirmed the expected stoichiometry of the

single crystal Pr0.48Ca0.52MnO3, showing a Pr:Ca:Mn ratio of 0.5:0.5:1. The Mn:O

ratio, however, was greater than expected (1:3.8 instead of 1:3). As the edges involved

in the Mn and O relative quantification were L- and K- type respectively, as noted above,

inaccuracies in the quantification could, in part, be due to the increased systematic error

introduced when comparing edges of different type [35,40].

2.7.4 Deconvolution

Fourier deconvolution methods in DM allow one to deconvolute DualEELS low- and

high-loss spectra to remove plural scattering effects induced by lamellae thickness [45].

Where possible, deconvolution is typically used before a comparison of core-loss ELNES

features, as the shape and intensity of a given peak has been shown to vary substantially

with plural scattering effects [37]. If direct deconvolution is not possible, due to the

generation of artefacts, it is also possible to use DM quantification scripts, which are

specifically designed to model the core-loss ELNES based on the corresponding low-loss

spectra. This quantification tool was used in Chapter 4 to assess the stoichiomentry of

ternary complex oxide PrCaMnO3.

2.7.5 Principle Component Analysis

Principal Component Analysis (PCA) is a multivariate statistical analysis method

often used to reduce random noise from spectroscopic images. In PCA, a spectroscopic

image is decomposed into a number of components of which, only a fraction are

reconstructed. This is based on the assumption that the principal components are

strongly correlated, whereas random noise are weakly correlated and can be discarded.

PCA is an optional procedure that is typically used tentatively as a cross-referencing tool

between the raw and reconstructed data. This is because weakly correlated, yet relevant

spectral features may be discarded during processing, and conversely artefacts may also

be introduced during reconstruction [46,47]. In this work PCA was only used in some

instances of elemental distribution mapping, and to show the gradual appearance of

spectral features confirmed as real in the raw data.
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2.7.6 Multiple Linear Least-Squares Fitting

Multiple Linear Least-Squares (MLLS) fitting is a technique primarily used to separate

overlapping edges in core-loss EELS spectra [48,49]; this fitting process is depicted as

a schematic in Fig.2.19. Here, an example of a background-subtracted experimentally

recorded spectrum, which features overlapping edges, is shown in Fig.2.19(a). Two

reference spectra, which represent pure phases that are known to contribute to the

experimentally recorded spectrum shown in Fig.2.19(a), are shown in Fig.2.19(b) and

labelled SA and SB. These reference spectra were used to produce the MLLS fit shown

in Fig.2.19(c), which is expressed F (E) = CASA+CBSB, where CA and CB are scaling

coefficients for SA and SB respectively. In DM, MLLS fits are produced for each pixel in

an EELS SI, which means that for each reference spectra, Sx , an x,y -map is produced

where the intensity is given by its corresponding scaling coefficient, Cx . In addition, the

DM MLLS script also outputs residual- and reduced Chi2-maps which reflect the quality

of the MLLS fit, which is particularly useful for the assessment of the quality of an

interface between two phases. For instance, regions of an SI that could not be well fitted

using a the linear combination of SA and SB could be indicative of the presence of an

additional chemically distinct interfacial phase. For this reason, in addition to separating

overlapping core-loss edges, MLLS fitting is used to evaluate the spatial distribution

of multiple phases [50]. MLLS fitting proved essential in this work: in Chapter 3, this

technique was used to map the spatial distribution of two chemically distinct interfacial

phases present at the rough interface between polycrystalline Mn-doped ZnO and a

strongly reducing Ti top electrode.
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Figure 2.19: Schematic diagram of MLLS fitting technique. (a) background-subtracted
core-loss spectrum which features two overlapping core-loss edges. (b) two separate
reference spectra (SA and SB) that contribute to the recorded spectrum shown in (a);
these references are recorded at the same energy offset and dispersion as (a). (c)
resultant MLLS fit made using reference spectra shown in (b).

2.7.7 Electron Energy Loss Magnetic Spectrometer

Both the T20 and ARM are equipped with post-column Gatan Image Filter (GIF)

magnetic prism spectrometers. Within the GIF spectrometer, electrons are deflected by

a perpendicular B field, which causes those travelling with velocity v to follow a path
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with radius of curvature R given by:

R =
m0v

qB

(
1−

v2

c2

)−1/2
(2.12)

where m0 and q are the mass and charge of an electron respectively, and c is the speed

of light. Equation 2.12 shows that electrons that have undergone larger(smaller) energy

loss and have lower(higher) velocity as a result will be subject to a smaller(larger) radius

of curvature. This difference in curvature produces multiple distinct points of focus in

the dispersion plane of the spectrometer, which directly correspond to separation in

energy loss, as depicted by points P and P’ in Fig.2.20 [28]. To acquire a full spectrum

in STEM mode, the electrically isolated drift tube, shown in Fig.2.20, is biased such

that the kinetic energy of electrons incident at the Charge-Coupled Device (CCD) can

be adjusted as desired. An aberration corrector and magnifying lenses are positioned

between the dispersion plane and a CCD detector.

Figure 2.20: Gatan Image Filter magnetic spectrometer employed for spectroscopic
analysis of electron energy losses. Electrons with energy E0 and E0−E are represented
by the solid and dashed blue lines respectively. A magnetic field B is applied across an
electrically isolated drift tube, perpendicular to the trajectory of electrons, which causes
a change in radius of curvature. Electrons with distinct energy loss are focused at points
P and P’ in the spectrometer dispersion plane. An aperture slit is used to select specific
energy losses for imaging at the CCD detector.
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2.8 Hard X-Ray Photoelectron Spectroscopy

Figure 2.21: Diagram showing X-ray Photoelectron Spectroscopy apparatus in which
photoelectrons (represented by black curved arrows) are generated as a result of sample
(shown in orange) irradiation by monochromatic X-rays (represented by green wavey
arrow). These X-ray photoelectrons are accelerated through, and focused by a series
of electrostatic lenses (represented by electron optics column shown in grey) before
reaching the hemispherical electron analyser via an aperture slit. Within the analyser, an
electric field is applied across the outer and inner hemispherical components (shown in
yellow) such that the photoelectrons are deflected by 180◦, and photoelectrons with
different kinetic energies are separated.

Another UHV spectroscopic technique presented in Chapter 4, but undertaken by

collaborators in Jülich, is Hard X-Ray Photoelectron Spectroscopy (HAXPES), which

measures the kinetic energy spread of electrons emitted from an X-ray irradiated sample

due to the photoelectric effect [51]. The measurement of photo-emitted electron

(photoelectron) energies provides information about the electronic structure of the

sample because photoelectrons have kinetic energy:

Ek = hν−EB−Φ (2.13)

where h is Planck’s constant, ν is the frequency of the photon, EB is the binding

energy of a core shell electron and Φ is the work function of the electron analyser [52–54].

For insulating materials, the emission of photoelectrons leads to an accumulation of
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positive charge at the sample surface; as a result, Ek is further reduced, which results in

a shift, of the corresponding photoelectron peak, to lower energies. Fig.2.21 shows how

generated photoelectrons are deflected through 180◦ along a hemispherical electron

analyser column before registration at an electron detector. The outer and inner

hemispherical components (shown in yellow in Fig.2.21) are held at positive and negative

potential, and can be adjusted to isolate electrons within a specific range of kinetic

energies, allowing one to scan a full spectrum.

The inelastic mean free path of each photoelectron, defined as the distance a

photoelectron travels through a material before losing its energy, is dependent on

the energy of the photons that generated it: higher(lower) energy X-rays produce

photoelectrons with larger(smaller) mean free paths. This means that by tuning the

incident X-ray energy, it is possible to tune the X-ray probing depth [55]. Hard X-ray

Photoelectron Spectroscopy refers to X-rays with energies exceeding 2kV, which probe

material within 10nm beneath the sample surface. This probing depth proved particularly

useful for investigating shallow-buried heterointerfaces within the RRAM devices that

are presented in Chapter 4.

2.9 Atomic Force Microscopy

Figure 2.22: An Atomic Force Microscope set up in which the cantilever-mounted tip,
shown in black, scans a rough sample surface, shown in orange, and is deflected as a
result. Cantilever deflection is measured using a quandrant photodiode detector that
records a laser signal reflected from the cantilever. A computer interface can used to
control the contact-mode of the AFM through a feedback loop, and the sample stage
and tip can be moved in x- and y -directions.
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Atomic Force Microscopy (AFM), developed by Binnig et al. in 1986, is a surface

sensitive technique widely used to characterise substrate and thin film surfaces in

materials science. In principle, the AFM rasters a sharp, cantilever-mounted tip across

the sample surface and measures cantilever deflection due to Van der Waals interactions

between the sample surface and tip [56]. Fig.2.22 illustrates how the reflection of a

laser, incident on the deflected cantilever, is recorded on a quadrant photodiode as the

tip scans the sample surface. There are several modes in which the AFM can operate;

through feedback control, the tip can be remain in constant contact with the surface,

or it can oscillate above it within close proximity. For the studies presented in this work,

non-destructive tapping-mode was employed. In tapping-mode, the cantilever is oscillated

at its resonant frequency, and tip-sample interaction causes a change in its amplitude

and phase. In non-contact mode, used to image soft, easily damaged samples, the tip

also oscillates at resonant frequency and change in amplitude is measured, however the

tip oscillates above the sample surface. Furthermore, through the use of functionalised

tips, the principle of AFM can be applied to magnetic-, kelvin-probe-(sensitive to work

function) force microscopy to name a few; in general, variations on this technique are

referred to collectively as scanning probe microscopy.

Atomic force microscopy is a effective technique for use in conjunction with thin film

deposition, as it can be used to assess the substrate surface before deposition, as well as

the deposited film surface, and requires no functional properties of the sample. Substrate

assessment prior to deposition is incredibly important for the deposition of single crystal

films as the substrate provides a crystallographic foundation for subsequent growth. An

example of this is the crystalline perovskite oxide RRAM device presented in Chapter 4

that comprises a thin film of single crystal Pr0.48Ca0.52MnO3 deposited on a crystalline

SrTiO3 substrate that had first been subject to processing steps to facilitate 2D layer-

by-layer growth. As it is possible to expose planes of SrO, TiO2, or a mixture of both

on the SrTiO3 surface, there is a wealth of literature on processing methods for SrTiO3,

a majority of which use AFM height and phase imaging for surface characterisation.

As an illustration, Fig.2.23 presents work undertaken on the optimisation of SrTiO3

substrate processing for deposition of LaSrMnO3 via 2D growth modes on the local

PLD system, which is similar to the substrate preparation processes required for the
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Figure 2.23: 5µm by 5µm AFM (a) height and (b) phase images of double-terminated
SrTiO3 vicinal surface after substrate processing. (a) A vicinal surface in which the left
hand side of the image is higher with respect to the right, and each step edge is followed
by a trough with height difference equal to 12u.c. (b) These troughs correspond to a
change in phase, and the relative phase difference is consistent with exposure of SrO in
the troughs, and TiO2 on the step surfaces. These images were acquired simultaneously
over the same area in tapping mode

fabrication of the crystalline perovskite oxide device presented in Chapter 4. Here, the

surface presented in Fig.2.23 was produced after the substrate was first annealed at

1000◦C for 2 hours, then etched in reverse-osmosis water at 90◦C for 10 minutes,

and finally annealed again under the same conditions. In the preparation of SrTiO3,

high-temperature anneals are used to induce the migration of SrO to the substrate

surface. Submerging the substrate in water then forms SrO-hydroxyls that can be etched

away in either water or buffered hyrdofluoric acid. The removal of SrO promotes a TiO2

singly-terminated surface, which, in its chemical uniformity, is suitable for deposition,

however etching typically results in a roughened surface that can be improved upon with

a final ’re-crystallisation’ anneal. However, for the substrate presented in Fig.2.23, the

final anneal caused excessive migration of SrO to the substrate surface, which is evident

in both the height and phase images. The height image shown in Fig.2.23(a) reveals

a vicinal (stepped) surface where each step-edge features a trough that is 12 of a unit

cell (u.c.) deep; these troughs appear darker than the step surfaces. As SrO and TiO2

planes are separated by 12u.c., this image shows evidence for doubly-terminated SrTiO3

(i.e two phases, as opposed to one, are exposed on the substrate surface). Furthermore,
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the phase image shown in Fig.2.23 revealed two distinct phases on the substrate surface,

which are consistent with TiO2-terminated steps, and SrO-terminated troughs.

2.10 Electrical Probe Station

An electrical probe station was used to electrically characterise thin films and RRAM

devices. A Keithley sourcemeter sourced current or voltage to probes that were mounted

onto micro-manipulator stages, which permitted access to electrode contacts. The

probes and sample mount were housed within a glove box to allow for oxygen to be purged

before sample measurements. Fig.2.24(a) shows how, for the electrical characterisation

of thin films, four-probe Van der Pauw measurements were undertaken to assess sheet

resistivity Rs . Van der Pauw’s method requires four small electrical contacts to be

deposited onto a thin film of uniform thickness. If a potential difference is applied across

two contacts (V3,4), the current measured across the two contacts on the opposite side

(I1,2) can be probed and a resistance value can be derived (R12,34); these resistances

can be substituted into Van der Pauw’s formula [57]:

exp[−πRvertical/Rs ] +exp[−πRhor izontal/Rs ] = 1 (2.14)

to find Rs , where Rvertical = 1
2(R12,34+R34,12), and Rhor izontal = 1

2(R23,41+R41,23).

To characterise RRAM devices two probes were used; one to probe the top electrode

contacts patterned onto the surface of bulk RRAM devices (imaged in Fig.2.4 in Section

2.3), and one to probe the bottom electrode thin film that was purposefully left exposed

during the pulsed laser deposition of subsequent layers, as shown in Fig.2.24(b). A

LabVIEW script created specifically for RRAM measurements was used, and permitted

control over compliance current, applied voltage, and voltage polarity, which was par-

ticularly useful for the characterisation of the bipolar RRAM devices presented in this

work.
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Figure 2.24: Electrical characterisation set-up used for (a) Van der Pauw and (b)
RRAM device measurements. Corner electrodes are shown in peach, and patterened
electrodes are shown in lilac.
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CHAPTER 3

Polycrystalline Manganese-Doped Zinc Oxide RRAM Device

This chapter focuses on the optimisation of pulsed laser deposited zinc oxide and

manganese-doped zinc oxide thin films for applications in RRAM. Binary oxides, such

as ZnO, TiO2, WOx and TaOx , have been of particular interest for applications in

RRAM due to their CMOS compatibility and simple composition [1]. In this chapter, a

comparison of RS in undoped and 5% Mn-doped ZnO is made. Whilst RS in undoped

ZnO is well characterised in the literature, a few recent studies have demonstrated that

for Mn-doped ZnO, it is possible to switch the magnetic and resistive properties of the

material simultaneously under an applied electric field, highlighting the potential for

applications in multifunctional spintronic devices [2, 3]. Despite these findings, there

is little literature on the morphology and stoichiometry of 5% Mn-doped ZnO thin

films that display RS. In this study, both ZnO-based thin films were deposited via

PLD over a range of deposition temperatures and pressures and were characterised

using a number of techniques: AFM was used for the assessment of surface topology

post-deposition, providing information on surface roughness, grain size and, indirectly,

crystallinity; electrical characterisation allowed for the evaluation of resistive switching

behaviour; and finally TEM and TEM-EELS were used to confirm film morphology

and evaluate film stoichiometry respectively. Through this characterisation, RS in both

undoped and Mn-doped ZnO was found to be consistent with oxygen vacancy (VÖ)-

89
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mediated VCM-type RS in which interfacial oxides, formed between the active electrode

and ZnO films, facilitated switching. All deposited films were shown to be polycrystalline,

and interestingly, in the Mn-doped ZnO films, Mn was found to accumulate along

grain boundaries. Furthermore, the investigation revealed evidence for field-induced

redistribution of Mn throughout the film, which is not typically observed in polycrystalline

Mn-doped ZnO in the literature [4].

3.1 Properties of Zinc Oxide

Figure 3.1: (a) cubic rocksalt (b) cubic zinc blende and (c) hexagonal wurzite ZnO
structures. The blue and red spheres represent Zn and O atoms respectively.

Zinc oxide (ZnO) is a II-VI semiconductor material which can have a cubic rocksalt (F

m -3 m), cubic zinc blende (F -4 3 m), or hexagonal wurzite (P 63 m c) crystal structure,

as shown in Fig.3.1, which have lattice parameters a = 4.3, a = 4. and a = 3.3, c = 5.2

respectively [5,6]. Both the zinc blende and wurzite structures are made up of tetragonally

coordinated Zn [7], however, of these structures, only wurzite ZnO is thermodynamically

stable under ambient conditions [5]. Wurzite ZnO has a wide, direct band gap (3.37eV

at 300K [8]) and a large exciton binding energy (60meV [9]). These findings permitted

the realisation of ZnO UV-light emitters in 1996 and prompted worldwide research

into ZnO for further applications in optoelectronics [9]. To its advantage, ZnO can be

deposited via a number of physical and chemical vapour deposition techniques: whilst

polycrystalline ZnO is typically deposited onto amorphous glass and silicon/silicon oxide

(Si/SiOx) substrates via conventional magnetron sputtering [10], sol-gel techniques [11],

and chemical vapour deposition [12, 13], single crystal ZnO has been deposited onto
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sapphire, quartz and silicon substrates via molecular beam epitaxy [14], RF magnetron

sputtering [5] and pulsed laser deposition [15]. This, coupled with the wide range of

deposition techniques available, means that ZnO currently is employed in research across

multiple disciplines such as chemical and bio-sensing, optical waveguides, transparent

conductive oxides, piezoelectric transducers, varistors, and RRAM memory storage [5].

In its undoped state, ZnO has n-type conductivity due to the presence of intrinsic

defects, oxygen vacancies and Zn interstitials [5, 16, 17]. Through doping, it is possible

to control the number of charge carriers and tune the electrical properties of ZnO

from insulating to metallic. Furthermore, doping can also be used to manipulate the

magnetic properties of ZnO [5]. In particular, doping with 3d-transition metal ions such

as Mn, Fe, Cr or Co into ZnO produces Dilute Magnetic Semiconductors (DMS), a

group of materials which have applications in spintronics [18]. With regards to RRAM,

such DMS materials offer an exciting opportunity for the pursuit of multifunctional RS

devices, in which magnetic as well as electronic properties of the ZnO undergo reversible

changes with applied voltage. Since Dietl et al.’s 2000 prediction that at 5% doping, Mn-

doped ZnO (Mn:ZnO) would be ferromagnetic at room temperature, a vast amount of

literature presenting experimental observations of the room temperature ferromagnetic

hysteresis of Mn:ZnO has built up [19–21]. The theoretical study attributed room

temperature ferromagnetism (RT-FM) in Mn-doped DMS to the substitution of Mn2+

for Zn. In this valence state, Mn has a half-filled 3d subshell in which all five orbitals

contain a single electron which, according to Hund’s rule, have parallel spin. Given the

considerable energy required to add an electron with anti-parallel spin to an orbital,

this half-filled 3d5 orbital has comparable stability to that of a complete subshell and

results in a strong magnetic moment. Dietl et al. proposed that in these Mn:ZnO

systems, strong coupling between the transition metal 3d5 spins and free charge carriers

allows for carrier-mediated ferromagnetism [5]. However, since then, in addition to

the experimental publications that have shown evidence for RT-FM in Mn:ZnO, there

are those publications that also show no evidence for RT-FM, as well as others that

have demonstrated the existence of RT-FM in undoped and non-magnetically-doped

ZnO films; in the latter, RT-FM has been attributed to VÖ-concentration [22], Zn-

vacancy concentration [23], Zn interstitials [24] and O interstitials [25], which implies
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that RT-FM is not solely dependent on magnetic coupling between spin polarised Mn

atoms and free charge carriers as Dietl et al. proposed [26]. In addition, whether

intentionally or unintentionally, these intrinsic defects can also be produced in Mn:ZnO,

which further complicates our ability to fully describe RT-FM. However both theoretical

and experimental studies have presented evidence demonstrating that the number of VÖ

present in Mn:ZnO affect the presence and stabilisation of RT-FM in Mn:ZnO [26,27].

This dependence was explained by Coey et al. who proposed that that magnetic polarons

are bound at VÖ within the crystal lattice and these polarons allow for the ferromagnetic

exchange coupling of Mn dopant cations [27]. Despite these findings, due to the lack of

reproducibility of RT-FM in Mn:ZnO structures across the literature, its exact cause

remains controversial. Much of the controversy may be caused by the difference in

deposition and preparation methods used across the literature [26,27]: as mentioned

above, ZnO can be deposited by a wide choice of techniques. Considering previous

works, which emphasise the importance of the control over the density of VÖ throughout

the material, in this work, 5% Mn:ZnO was fabricated using PLD and probed used

EELS, where the stoichiometry could be controlled and evaluated. An optimisation

study, used to identify the ideal deposition conditions for producing stable RS in ZnO

and Mn:ZnO, was undertaken and is presented in this chapter. There has been relatively

little investigation of RS in ferromagnetic ZnO [28–31]; of these, so far only two studies

have demonstrated the coexistence of simultaneous resistive and magnetic switching

in Mn:ZnO [2, 3], which indicates the urgent need for exploration in this area. This

study focuses on the chemistry of RS Mn:ZnO devices designed for direct comparison

to those shown in the literature to display the simultaneous co-switching of resistivity

and magnetisation. Here, the mechanism of RS in both doped and undoped ZnO

RRAM devices through electrical, morphological and spectroscopic characterisation.

In particular, through a TEM-EELS evaluation of the valence state of manganese

dopants [2,32], it was possible to assess redox activity due to VÖ-migration and identify

the formation of TixMnyOz interfacial oxides. Ferromagnetic resonance measurements

were also attempted, however no magnetisation was measured; this could be due to

the relatively low Mn-dopant levels used in this work, which may require higher probing

sensitivity.
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3.2 Resistive Switching in Zinc Oxide

Resistive switching in ZnO was first demonstrated in 2008 by Chang et al. within

a symmetrical, inert electrode Pt/ZnO/Pt heterostructure [33]; they showed that in

such a structure, polycrystalline ZnO films exhibited unipolar RS, and attributed this

to the formation and rupture of conductive filaments which formed along the grain

boundaries between crystalline regions within the ZnO film [33]. Importantly, they

proposed that the conductive filaments comprised VÖ, a conclusion that has since

been supported by later experimental studies that focused on the effect of ZnO oxygen

content on RS performance [1,34]. According to the description presented in Section

1.2.4, Chang et al.’s device is fully described by the TCM RS mechanism, however,

in the literature, there is some debate as to whether or not this should be classified

as VCM, due its dependence on VÖ, or TCM, given its compliance current dependent

unipolar RS behaviour. For the purpose of clarity, in this work, all instances of unipolar

RS will be ascribed to the TCM mechanism, as done in the most prominent review

papers [35, 36]. Since Chang et al.’s work, one of the most notable studies on RS in

another Pt/ZnO/Pt structure was performed by Huang et al. [37]; their study revealed

that, if probed under forward and reverse bias, they could drive a transformation from

reproducible unipolar, filamentary TCM RS, as seen by Chang et al., to sustainable,

homogeneous, bipolar VCM RS, which was a switching mode that had not been observed

in ZnO systems previously [37]. Specifically, Huang et al. proposed that whilst moderate,

positive voltages and compliance currents sustained unipolar RS, larger, negative voltages

stimulated a mass VÖ-migration away from the cathode and towards the anode [37];

this VÖ-migration created a oxygen-deficient region near the cathode which acted as a

reservoir to sustain VCM RS [37]. Notably, this study quite clearly demonstrated that

the manner in which RRAM heterostructures are electrically probed has huge influence

on the exhibited RS behaviour, and that as well as careful RRAM heterostructure design,

electrical probing can be used to isolate and promote a single RS mechanism above

other competing mechanisms. Despite these findings, since then, the effect of electrical

probing on the type of RS mechanism is rarely investigated or accounted for in the

literature. Instead, most experimental studies tend to focus on the reproducibility of a
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single RS mechanism, typically the mechanism described in a prominent early paper, and

do not usually investigate the possibility of sustaining other mechanisms. Furthermore, as

noted in Chapter 1, in this field, there is also an expectation that RRAM devices initially

require a filamentary electroforming process; this expectation prompts experimentalists to

apply high forming voltages to their RRAM heterostructures, a process which, although

often successful, may prevent the observation of alternative RS mechanisms that do not

correspond to filamentary RS. In fact, a majority of the literature describing RS in ZnO

(symmetrical and asymmetrical heterostructures) report a filamentary TCM or VCM

switching mechanism, whilst very few report homogeneous VCM RS; this difference could

be due to the fact the filamentary switching is typically observed after electroforming,

whereas homogeneous switching can be stimulated without electroforming [38–43].

In addition to VÖ-mediated VCM and TCM, ZnO heterostructures that employ

Ag or Au electrodes have also been shown to exhibit bipolar ECM RS, in which metal

cations from the electrode form metallic filaments under an applied field that bridge the

top and bottom electrodes [1, 38,44–47]. The stimulation of all three RS mechanisms

(ECM,TCM and VCM) in ZnO is reflected in the broad and abundant literature on ZnO

RRAM, which presents a wide variety of novel ZnO structures that can sustain RS [48].

Such flexibility in RS stresses the importance of careful design, fabrication and electrical

probing in ZnO systems. However, the flexibility of ZnO RS is not wholly a negative

attribute. It means that ZnO offers a wide range of parameters which can be adjusted

such that power consumption can be minimised whilst reproducibility and resistance ratio

are maximised. For this reason, the literature that focuses on the optimisation of ZnO

RS is most informative. For instance, in an optimisation study, Huang et al. were able to

demonstrate that for RF magnetron sputtered polycrystalline ZnO in Pt/ZnO/Pt, the

unipolar RS characteristics varied with the oxygen partial pressure, which ranged from

0% to 100%: with increasing oxygen pressure, the HRS became more resistive due to a

decrease in the VÖ-concentration and the resistance window increased, which proved

the importance of stoichiometric control in VÖ-mediated RS [34]. Furthermore, through

TEM, the study also showed that films deposited at 10% oxygen partial pressure featured

the largest crystalline grain size and the most stable RS, revealing that in addition to

stoichiometry, thin film morphology had influence over the stability of RS [34].
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The study presented in this chapter aims to build upon the work of Huang et al.

by using TEM to discuss the effects of stoichiometry and thin film morphology on RS

characteristics in undoped ZnO and Mn(5%):ZnO. With regards to RS, Mn-doping in

ZnO is commonly used to increase the resistivity of the HRS and, in turn, increase the

resistance window [28,47]. This increased resistivity is achieved because Mn is a deep

donor in ZnO, and acts to trap intrinsic donors such as VÖ in the film [47,49–51]. This

means that one can expect to use both Mn-doping in addition to oxygen deposition

pressure to control the VÖ carrier concentration in ZnO thin films, which in turn controls

RS performance (for VÖ-mediated VCM or TCM).

3.2.1 Simultaneous Magnetisation- and Resistive-Switching in Mn:ZnO

Whilst a number of studies have successfully obtained RS in Mn:ZnO heterostruc-

tures, only two have demonstrated the electric-field-driven simultaneous co-switching of

magnetic and resistive properties [2, 3]; Ren et al. stimulated this in an asymmetrical

Pt/Mn(5%):ZnO/Ti structure, which exhibited filamentary bipolar switching after an

electroforming cycle [2]. Magnetisation hysteresis measurements revealed that in the

LRS, the magnetic moment was 5.4 times larger than that measured in the initial state,

and was non-volatile, lasting for at least 30 days. In fact, the same co-switching of

magnetisation and resistive state was observed in ZnO films doped with Ni:ZnO, however

this material exhibited a slightly lower ratio between the magnetic moment of the LRS

and the initial (also called pristine) state (IS) than Mn:ZnO. It was proposed that in

Mn:ZnO, RT-FM was observed due to the presence of multiple Mn-clusters, aligned

along the growth axis, which constitute a secondary phase that can be magnetised under

an applied electric field [2]. Using X-ray photoelectron spectroscopy depth profiling,

a redistribution of VÖ throughout the Mn:ZnO film was observed [2]. The measured

Mn-2p3/2 peak was used to quantify the contribution from Mn2+ and Mn4+, which

represented an abundance and deficit of VÖ in the film respectively. In addition, fitting

to the O-1s peaks indicated the presence of lattice oxygen and VÖ respectively. Thus,

they showed that in the pristine state, there was an abundance of VÖ and Mn2+ at the

top (Ti) and bottom (Pt) electrodes, however, the bulk Mn:ZnO was VÖ-deficient and

contained more oxidised Mn4+ [2]. In contrast, devices programmed to the LRS showed
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a clear gradual change in VÖ-concentration and Mn valence state across the depth of

the film: the Mn:ZnO near the top electrode contained more oxidised Mn4+, whilst the

Mn2+ contribution became more dominant at the bottom electrode [2]. Considering the

polarity of RS, it was proposed that when the top electrode was positively biased, the

VÖ initially present beneath the top electrode migrated towards the bottom electrode,

creating conductive filaments that spanned across the Mn:ZnO, which preferentially

formed along the secondary phase Mn-clusters [2]. Furthermore, it was argued that

the high concentration of Mn and VÖ along the conductive filaments allowed for the

ferromagnetic ordering of Mn ions [2], consistent with the percolation of Ö-bound

magnetic polarons in the RT-FM model proposed by Coey et al. [27]. Surprisingly, no

discussion of film morphology was made despite the fact that the literature overwhelm-

ingly agrees that VÖ-filaments are typically formed along grain boundaries. Considering

this proposed mechanism, one might expect that these secondary phase Mn-clusters

form along grain boundaries, in the same regions that contain a higher concentration

of VÖ. In order to verify the presence of and spatial distribution of secondary phases,

further microscopic and spectroscopic investigations are required. The work in this

chapter aims to contribute to this area of research through the use of TEM and EELS,

which will allow us to describe RS in Pt/Mn:ZnO/Ti through a discussion of thin film

morphology and VÖ-stoichiometry. This focus on the chemical effects that occur due

to RS allowed for the proposal of an RS mechanism and provided evidence to support

the proposed magnetisation switching mechanism offered by Ren et al. [2].

3.3 Principles of Thin Film Growth

In this work, a combination of physical vapour deposition techniques were used to

fabricate ZnO-based RRAM heterostructures: PLD was used to deposit (un)doped ZnO

as the active RS layer and e-beam deposition was used to create top and bottom metal

electrodes. For both of these deposition techniques, the same principles of thin growth

apply, and can be tuned such that the deposited material achieves a desired function. In

the initial stages of growth, atoms and molecules are transferred from a source material

onto the substrate surface and undergo surface diffusion and/or desorption. As a result
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of this motion, adatoms aggregate to form islands (also referred to as clusters), which,

with an increasing influx of adatoms to the surface, may eventually coalesce to form

a continuous film. Adatoms can also attach onto existing surface features such as

atomic step edges or kinks [52, 53]. A number of classic growth modes, which describe

initial growth onto single crystal substrates, are defined in external texts [52,54]. These

demonstrate that growth modes are largely influenced by the difference between the

lattice constant of the substrate surface and that of the deposited material because the

substrate acts as a seed structure for adatoms: well lattice-matched substrates promote

the epitaxial layer-by-layer growth of single crystal materials, whilst lattice-mismatched

substrates tend to promote the formation of clusters. In the deposition of hexagonal

ZnO, sapphire, quartz and silicon substrates are commonly used for heteroepitaxial

growth [55,56], whereas non-epitaxial ZnO films are typically deposited on amorphous

glass and silicon/silicon oxide (Si/SiOx) substrates. In this work, epitaxial ZnO thin films

were not pursued, therefore, Si/SiOx substrates and Si/SiOx/Ti/Pt were employed.

Figure 3.2: Structural zone model adapted from [57] that depicts the dependence of
thin film morphology on substrate temperature.

The initial stages of growth describe the first few nanometers of growth. In the later

stages of growth (>10nm), the morphology (or microstructure) of a thin film is largely

governed by substrate temperature. Fig.3.2 presents a structural zone model (SZM)

and is an adaptation from a publication by Kaiser et al. who studied the deposition of

Al under high-vacuum [57,58]. The SZM reveals the evolution of thin film morphology

with substrate temperature in which film morphology is affected by four temperature-

moderated processes: surface diffusion, dominant at moderate temperatures, which

includes adatom diffusion across boundaries that separate regions of uniform crystallinity

(grains); shadowing, dominant at low temperatures, which occurs due to the interaction

between surface roughness and surface features with an incoming flux of atoms and
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molecules; bulk diffusion, dominant at high temperatures, which describes the mobility of

adatoms within single grains; and recrystallisation, also dominant at high temperatures,

in which a structural transformation from one crystallographic orientation to another

occurs [54, 57]. Through careful choice of homologous temperature, which describes

the ratio between the temperature of a material (TS) and its melting temperature (TM),

these four processes can be manipulated to produce an optimised morphology for desired

applications. Early studies on thin film growth via sputtering developed the first SZMs

in the late 1960s; today, these remain relevant to a wide selection of materials including

metals (typically deposited under Argon) and metal oxides (typically deposited under

oxygen) [54,58–60]. It should be noted that, in particular, it is sputter deposition studies

that have informed our understanding of film microstructure and morphology. When

applying this understanding to films deposited via PLD, differences between the two

techniques that must be taken into account. For instance, the deposition rate, which

for PLD is high, instantaneous and intermittent, contrasts the low and steady rate

achieved with sputtering. The literature on PLD shows that, between pulses, during

the dissipation of the plasma plume, any unstable adatom clusters (formed during the

pulse) dissociate into mobile species and migrate to form larger, energetically favourable

clusters [61, 62]. Importantly, this means that for PLD, the pulse frequency can be

adjusted to promote different growth modes [61]. In addition, parameters such as pulse

energy and background gas pressure also have influence over growth mode and film

morphology. In this work, the effects of oxygen deposition pressure on ZnO morphology

was evaluated; the results suggested that increased oxygen pressures reduced the average

adatom energy and mobility, promoting cluster formation and irregular grain size and

orientation. Although sputtering is not the only technique used to deposit ZnO, SZMs

provide a well-defined, broad overview of key thin film morphologies and, as such, are

frequently used to classify the morphology of ZnO thin films grown via a wide variety of

deposition techniques.

In general, the homologous temperature determines the nucleation density of adatom

clusters, which limits the width of growing grains. This is shown in the SZM in Fig.3.2,

where the black lines represent grain boundaries that enclose crystalline regions of

material. The overall microstructure can be subdivided into four distinct zones which
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are labelled in Fig.3.2: Zones 1, 2, T and 3. Porous, void-separated, columnar thin

film structures with rounded, dome-like profiles define Zone 1, and are produced at

low temperatures where surface diffusion is limited and shadowing is dominant. This

is because a low surface diffusion coefficient (Ds) creates films with a high nucleation

density, which in turn causes columnar growth where growing crystal grains shadow their

surrounding grains, limiting growth in the lateral direction. In Zone 2, increased substrate

temperature increases Ds , and the effects of shadowing are limited; in comparison to

Zone 1, these films have lower nucleation density and have grains with larger lateral

sizes and flat surface profiles that are no longer separated by voids. The wider grains

exemplified by Zone 2 are typically associated with an overall increase in film crystallinity

when compared to narrow (lower lateral width) grains that define Zone 1. In both

Zones 1 and 2, the crystallographic orientation of the film is largely influenced by the

preferred orientation of the substrate. In this study, Si/SiOx/Ti/Pt substrates were

used and the columnar polycrystalline structure of the Ti adhesion layers promoted

the growth of columnar ZnO. The final columnar morphology in the SZM is Zone

T; this microstructure is obtained at substrate temperatures between those of Zones

1 and 2 in which surface diffusion is dominant. Here, the difference in Ds between

grains with distinct crystallographic orientation creates a competitive growth mode.

The crystallographic orientation with the lowest Ds incorporates the largest fraction

of incoming material and therefore grows fastest; in contrast, high Ds , slow-growing

orientations are eventually enveloped by the fast-growing orientations [63]. As depicted

in Fig.3.2, this results in a change in film structure along the growth axis where films

feature small, randomly-oriented grains (high mosaicity) near the substrate surface which

sit beneath larger cone-shaped grains that have maximum lateral width near the film

surface [58]. Zone T films have grains with dome-like profiles, but due to the high

mosaicity near the base of the film, tend to exhibit a greater variation in peak-to-trough

distance (i.e. difference in height between the top of each dome and an adjacent grain

boundary) than Zone 1 or 2 films [54, 58]. Zones 1, 2 and T constitute the basic SZM

and are the foundation of every SZM presented in the literature, however, a further high

mosaicity morphology, Zone 3, which was characterised by randomly oriented, faceted

grain profiles, was later ascribed to different formation mechanisms. Thornton et al ’s
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early publication attributed Zone 3 morphology to increased bulk diffusion that could

only be produced at heightened temperatures, as shown in Fig.3.2: such heightened

temperatures were shown to be sufficient to stimulate a transition from columnar grains,

which are elongated along the growth axis, to equiaxed grains, where the axes defining

each grain are of equal length [54]. In contrast, Barna et al. later showed that Zone

3 morphology could be produced at any temperature, but that the average grain size

decreased with increasing impurity level due to the periodic blocking of growth [57, 58].

Both studies produced SZMs based on the deposition of metals in which oxygen is

considered an impurity. Although oxygen is not an impurity in the deposition of metal

oxides, both the basic- and the impurity-SZM are used to evaluate ZnO morphology

in the literature. For instance, Huang et al. showed that for sputtered ZnO thin films,

with increasing oxygen partial pressure, the morphology gradually changed from Zone 2

of the basic SZM, which is characterised by grain boundaries aligned along the growth

axis, to Zone 2 of the low-impurity-level SZM, which is characterised by sloping, off-axis

grain boundaries [34].

With regards to applications in RS, polycrystalline ZnO films are considered more

desirable than amorphous or single crystal films. This is largely due to the fact that grain

boundaries act as sinks for VÖ and Zn interstitials, and these are known to facilitate

RS [64]. Therefore, one might expect to manipulate the RS characteristics of a ZnO

RRAM device by controlling the crystallinity of the film, which in turn affects the number

of grain boundaries present. With this approach, there are some considerations that

must be taken in account. For instance, given that during filamentary RS, conductive

filaments form preferentially along grain boundaries, for non-uniform polycrystalline

morphologies, such as Zones T and 3, non-uniform filaments form and may cause RS

instability.

For wurzite ZnO thin films with c−axis structure, the intensity of the (002) diffraction

peak is typically used as an indicator for crystalline quality and in polycrystalline ZnO,

the FWHM of the (002) peak reveals information about the average lateral width of

(002) columnar grains. According to Eqn. 2.3 this means that high quality crystalline

ZnO films are characterised by a strengthened and narrowed (002) peak [5,11,15]. Such

high quality films are most often produced through deposition at temperatures exceeding
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670K; in addition, at these heightened temperatures, post-deposition anneals can be

employed to improve on the crystallinity of films that were originally deposited at lower

temperatures by stimulating a surface-diffusion-mediated transition from Zone T to

Zone 2 of the SZM.

3.4 Thin Film Considerations for Zinc Oxide RRAM

There are few previous studies that optimise the deposition of ZnO thin films for both

oxygen deposition pressure (PO2) or substrate temperature (TS) [34,65,66]. Despite

this, across all deposition techniques, the effect of Ts remains as defined in the SZM

shown in Fig.3.2: with increased Ts , ZnO films tend towards increased lateral columnar

width, which is typically associated with an overall increase in film crystallinity. A majority

of the publications on PO2 are PLD studies. Of these are the works of Choopun et al.

and Vispute et al., who examined ZnO thin films grown heteroepitaxially onto sapphire

substrates at low oxygen pressures and high temperatures: PO2 = 10−2−10−3mTorr,

Ts = 970−1020K [67,68]. Using AFM, they revealed that these conditions produced well-

defined hexagonal terraced features across the film surface, which, when probed using

XRD, were consistent with (002) crystallographic orientation. Interestingly, Choopun et

al. also observed a sudden increase in roughness at heightened pressure due to a change

in film morphology: heightened PO2 allowed for the columnar growth of ZnO. It is now

understood that the heightened pressure increased the number of collisional interactions

between the plasma and ambient oxygen, which lowered the energy of the ablated species

and thus reduced the mobility of adatoms deposited onto the substrate surface. As a

result, a columnar film with high nucleation density formed. Furthermore, the same study

showed that at PO2 = 100mTorr one could produce the smooth, hexagonal morphology at

lower pressures through the initial deposition of a seed layer [67]. This demonstrated one

of the basic principles of growth, that the nucleation stage, the first few nanometers of

growth, governs the morphology of the entire film. At these high pressures, the literature

presents further evidence for the influence of oxygen pressure on film morphology. Using

XRD on PLD-ZnO, Im et al. showed that at pressures between PO2 = 1−200mTorr,

columnar films with (002) c-axis crystallographic orientation were produced, whilst at
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higher pressures (PO2 = 500mTorr), a proportion of each film develops with a (101)

a-axis orientation which had a flake-like surface topology [66]. Imaging via SEM revealed

that at these pressures, c-axis oriented columns had dome-like surface profiles, which

contrasted with the irregular flake-like topology of a-axis oriented films, which means

that in the absence of XRD measurements, AFM measurements of surface topology of

a ZnO polycrystalline film can be used as a preliminary means of assessing the dominant

crystallographic orientation.

In addition to providing some insight into crystallographic orientation, AFM mea-

surements of ZnO films allow one to assess the surface roughness; this is an important

parameter to measure because the roughness of each thin film layer in a RRAM het-

erostructure can affect the quality of electrode/ZnO contacts, which can lead to an

increase in device variability, and is an important parameter that should be minimised

during RRAM device fabrication. Surface roughness has been shown to depend on both

Ts and PO2, and it is usually evaluated through a calculation of the root-mean-square

average (rms) of an AFM height image. Typically, ZnO films with rms=1-2nm are

generally considered to be ’smooth’, and are often produced as a result of heteroepitaxial

deposition onto sapphire or silicon substrates [67, 69–71]. Studies have shown that for

a given film, roughness is minimised for a small range of Ts but that this temperature

varies with PO2. For example, in separate studies, Water et al. and Her et al. showed

that for magnetron sputtered films deposited at PO2 = 3mTorr and PO2 = 1.5mTorr,

roughness was minimised at Ts = 570K [72] and Ts =370K [73] respectively. In both

cases, depositions at higher and lower Ts produced films with increased surface roughness.

Unlike studies on PO2, wide ranges of Ts are accessible for many deposition techniques;

comparatively, atomic layer deposition (ALD) has been shown to produce the smoothest

ZnO films with sub-nm rms (0.61nm at Ts =420K, PO2 = 600mTorr) [74], whilst

the smoothest films produced via magnetron sputtering and PLD have only attained

rms=1-2nm [69,71–73,75]. Despite achieving comparable rms, the effects of PO2 on

surface roughness are not well defined. Some evidence suggests that for PLD, surface

roughness increases with PO2, whilst for magnetron sputtering, the opposite trend has

been reported [76, 77]. Here, the most suitable PO2 for the deposition of polycrystalline

ZnO thin films for applications in RRAM was identified by evaluating the effect of PO2
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on the electrical properties of ZnO.

In addition to affecting film roughness, PO2 is expected to alter a film’s conductivity:

as ZnO is a n-type material, an abundance of VÖ is expected to decrease the resistivity

of the film. A substantial fraction of the oxygen present in PLD-grown oxides is

incorporated from the ambient oxygen, such that PLD PO2 can be used to manipulate

ZnO stoichiometry and RS performance. However, there is some contradiction in the

literature over the effect of PO2 on ZnO resistivity. For example, Masuda et al. published

evidence for non-linear dependence on PO2, where resistivity was maximised at 5mTorr

and decreased at higher and lower pressures [78]; whereas a majority of publications

showed that resistivity increased, with increasing PO2 [66,76,79]. Notably, there are few

studies dedicated to the examination of the effect of Ts on ZnO resistivity. One of these

studies showed that resistivity generally increased with Ts , and that films deposited at

5mTorr and 50mTorr exhibited comparable resistivity for Ts < 770K, but showed greater

disparity at higher Ts ; this quite clearly reveals that both Ts and PO2 combined govern

the electrical properties of the film [80]. Annealing under vacuum can also be used

to reduce the resistivity to measurable levels, which is likely due to an increase in the

concentration of VÖ as oxygen is liberated [81,82]. Conversely, high temperature anneals

under flowing oxygen reduce the VÖ-concentration, making ZnO films more resistive [83].

With regards to structural changes, recent literature has shown that the average grain

size decreases if the film is annealed under vacuum and increases under flowing oxygen.

Given that the number of grain boundaries is inversely proportional to the average grain

size, it stands to reason that VÖ-concentration is increased as grain size decreases. For

highly mosaic morphologies where grain boundaries are oriented at all angles with respect

to the growth axis (like those depicted in the high impurity SZM in Fig.3.2(d)), increases

in conductivity may be limited by the complex path from the bottom to the top of the

film. However, for columnar films, where the grain boundaries run (near) parallel to the

growth axis, conductive paths are largely unobstructed between the substrate and film

surface, which would result in a very low resistivity film (measured perpendicular to the

substrate). In fact, Zhuge et al. compared the RS characteristics of two ZnO films

sputtered at Ts = 770K under vacuum and flowing oxygen and showed that RS was only

achieved for the vacuum deposited films that comprised smaller grains (≈40nm) and had
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higher initial resistivity (1011Ω), but no RS hysteresis was observed in the comparative

ZnO film deposited under oxygen, which had a larger average grain size (>100nm) [84].

Importantly, this study highlighted that not all deposition conditions will support RS, and

that the film must fall within a ’switchable’ range of initial resistivities. In Zhuge et al.’s

case, switchable devices were identified by extremely high initial resistance values, which

would change abruptly to the LRS during an electroforming process; this observation is

reflected throughout the literature on RS in ZnO [29,84,85]. However, as mentioned

in Chapter 1, electroforming-free devices can also display RS, which means that some

intermediate VÖ-concentration may sustain RS in a device with a moderate initial

resistance that does not require electroforming, and this may be advantageous in terms

of reproducibility. Alternatively, dopants can be used to vary the VÖ-concentration.

Clearly, in order to fabricate ZnO-based RRAM devices, a compromise between thin

film crystallinity, resistivity and surface roughness must be reached, and this will require

the optimisation of both PO2 and Ts . Based on the above review of the literature, ideal

PLD-ZnO films for applications in RRAM were deposited at temperatures Ts ≤ 770K

and pressures PO2 ≤200mTorr. These upper limits are put in place to ensure the

production of a (sufficiently) resistive polycrystalline columnar film with a dominant

(002) orientation. At higher Ts , the number of grain boundaries is expected to reduce,

which could be detrimental to VÖ-mediated RS. Given the non-linear relationship between

Ts and surface roughness, the temperature that produces the smoothest film will need

to be determined through AFM.

3.5 Zinc Oxide and Manganese-doped Zinc Oxide RRAM

The ZnO and Mn:ZnO RRAM investigation presented in this chapter aims to further

the literature on RS in Mn:ZnO, which is lacking in TEM and spectroscopic studies.

Specifically, the RRAM devices investigated here were designed to be comparable to

the co-switching, PLD-grown transition metal doped ZnO device presented in Ren et

al.’s work, which was introduced in Section 3.2.1 [2]. In this study, ZnO thin films were

deposited onto Si/SiOx substrates over a range of Ts and PO2 and characterised using

AFM.
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3.5.1 RRAM Heterostructure Fabrication

Figure 3.3: ZnO RRAM device heterostructures: Si/SiOx/Ti/Pt/ZnO/Ti/Pt.

In this study, ZnO and Mn:ZnO thin films (ranging between 70-200nm) were employed

as resistive switching layers within Si/SiOx/Ti/Pt(5nm)/Ti(3nm)/Mn:ZnO/Pt(5nm)

patterned RRAM heterostructures, as illustrated in Fig.3.3. Here, Ti/Pt top and

bottom electrodes were deposited via e-beam evaporation such that ZnO thin films were

sandwiched between an asymmetric Pt/ZnO/Ti heterostructure. Before deposition, the

Si/SiOx substrates were sonically agitated in acetone and propanol to remove surface

contaminants. ZnO thin films were pulsed laser deposited at Ts ranging between room

temperature (RT) and 850K and at PO2 ranging from 1 to 100mTorr, as detailed in

Table 3.1. The combinations of PO2 and Ts were used on the basis that an initial

deposition of undoped ZnO over a range of Ts at PO2=100mTorr produced reproducible

RS at Ts=490K. At this temperature, further comparable films were deposited over a

range of PO2 to assess its on RS; it was found that reproducible RS was only attained at

PO2=100mTorr. The doped ZnO films were initially deposited at the deposition pressure

and subtrate temperature that produced reproducible RS in undoped ZnO, however

to optimise RS in the doped material, Ts was varied to the temperature above and

below and it was found that reproducible RS was attained at Ts = 630K. To reduce the

effects of contamination during the surface characterisation of ZnO, identical films were

deposited on Si/SiOx substrates for this sole purpose. All films were deposited at a laser

repetition rate of 5Hz and with a target-substrate distance of 96.5mm. In practice, we
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found that, even at lower laser energies, ZnO would grow at moderate rates (0.5s−1);

in this work the laser energy used to deposit the films listed in Table 3.1 ranged from

20mJ to 170mJ.

In the RRAM heterostructure displayed in Fig.3.3, the Pt/ZnO interface is expected

to form an ohmic contact, whereas the strongly reducing Ti top electrode is expected

reduce the ZnO closest to the electrode and form interfacial TiOx with Schottky-barrier-

like, highly resistive properties. As explained in Chapter 1 section 1.2.6, interfacial oxides

are known to facilitate VCM RS, and are expected to thicken and thin with the direction

of VÖ-migration under an applied bias. This means that this structure is designed to

promote bipolar VCM, which can be either a filamentary or area-homogeneous effect.

Table 3.1: Oxygen pressure and substrate temperature deposition conditions for ZnO
films pulsed laser deposited onto Si/SiOx substrates for film characterisation or Ti/Pt
substrates for electrical characterisation. Conditions under which Mn:ZnO thin films
were also deposited are indicated by blue checkmarks.

RT 400K 490K 630K 850K
1mTorr
10mTorr
100mTorr
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3.5.2 AFM Analysis

Figure 3.4: AFM images acquired over 1µm×1µm for 100nm of polycrystalline ZnO
deposited at PO2 =100mTorr (a) room temperature (b) Ts =400K (c) Ts =490K (d)
Ts =630K and (e) Ts =850K are presented. Rms average variation over substrate
temperature is displayed in (f).

ZnO and Mn:ZnO films were deposited onto Si/SiOx substrates to assess their

sheet resistivity via Van der Pauw’s 4-probe method but these measurements proved

inconclusive, which was likely due to the poor quality electrical contacts used. Initial

device resistance (Ri) was therefore assessed via the same 2-probe method used to

electrically characterise the resistive switching behaviour and is described in Section 2.10.

ZnO Si/SiOx films were also used to assess surface topology, as described below.

Fig.3.4 presents AFM images that were collected over 1µm×1µm areas from ZnO
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(Fig.3.4(a)-(e)) and Mn:ZnO (Figs.3.4(f)-(h)) films deposited at 100mTorr onto Si/SiOx

substrates at a range of substrate temperatures. Most of the ZnO and Mn:ZnO images

are consistent with films constituting densely packed columnar structures, where each

column had a dome-like profile, consistent with the (002)-oriented polycrystalline films

expected for the range of PO2 used. However, the Mn:ZnO film deposited at 630K (shown

in Fig.3.4(h)) shows no clear columnar structure or distinction between grains, which

could be indicative of Zone 3 morphology (shown in Fig.3.2 on page 97). Fig.3.4(i)

presents a comparison of the rms roughness values for undoped ZnO and Mn:ZnO

calculated from the AFM images in Figs.3.4(a)-(h). In line with the literature [72,73],

the smoothest undoped ZnO film had rms≤2nm, and was produced at Ts = 490K;

at higher and lower temperatures, these films became rougher. The Mn:ZnO films

deposited at 400K and 490K show comparable roughness to the corresponding undoped

films deposited at the same temperature, however the smoothest Mn:ZnO film was

deposited at 630K, as shown in Fig.3.4(i). For the undoped ZnO films, most notably,

the roughness rapidly rose to ∼40nm at Ts = 850K. Choopun et al. observed a similarly

abrupt roughening (from rms=1-2nm to rms=40nm) as PO2 was increased from 10mTorr

to 100mTorr [67]. Given that Choopun et al.’s rough film was produced at a high Ts

at PO2 = 100mTorr, it can be compared to the roughest PLD film produced in the

study presented in this work (deposited at PO2 =100mTorr, Ts =850K); these results

provide evidence for a reproducible phase change stimulated at high temperatures and

pressures. The XRD literature presents no evidence for temperature-induced crystalline

phase transitions at temperatures above Ts =570K, which suggests that this ZnO film

retains its (002)-orientation, consistent with a temperature-stimulated transformation

from Zone 2 to Zone 3, as shown in Fig.3.2. The literature also notes that at heightened

temperatures (Ts >770K), re-evaporation of adatoms from the film surface leads to

the degradation of the crystalline quality of (002)-oriented ZnO and roughens the

surface [15,86]. It is likely that the ZnO morphological phase obtained at Ts >770K is

due to a combination of thermally activated re-evaporation and bulk-diffusion, which

act to mediate a transformation from Zone 2 to Zone 3 and drastically roughen the film

surface. Following this logic, temperatures below Ts <770K (shown in Fig.3.4(a)-(d))

are likely to produce Zones 1, 2 and T films. However, not all of these morphologies are
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desirable for RRAM applications. For instance, porous Zone 1 films (typically deposited

at low Ts) would lead to the formation of a short circuit. In addition, although Zone T

and Zone 2 ZnO thin films typically exhibit comparable surface roughness, Zone T films

have been shown to display greater RS variability than Zone 2 films, which is has been

attributed to the complex, irregular grain boundary paths that are characteristic of Zone

T [34].

Lateral grain size was determined using the AFM images shown in Fig.3.4(a)-(h);

columnar width distributions are presented as insets for each AFM image and the

variation of average columnar width (CW ) and standard deviation (σCW ) as a function

of substrate temperature is shown in Fig.3.4(j). It should be noted that, given the lack

of clear grain boundaries for the Mn:ZnO film shown in Fig.3.4(h), this film was not

included in grain size analysis. Considering the literature, one might expect that for an

optimised deposition that produces a uniform Zone 2 film, CW would be maximised whilst

σCW would be minimised [66], however this was not observed in this work. Here, the

variation of CW with Ts mirrored that found for the rms surface roughness: the smallest

average grain size (CW = 30nm) for undoped ZnO was produced at Ts = 490K, but

grain size increased with higher and lower Ts ; and at Ts =850K, the Zone 3 morphology

shown in Fig.3.4(e) was characterised by the largest average grain size and standard

deviation (CW = 98nm, σCW=60nm), setting it apart from the ZnO and Mn:ZnO films

deposited at lower Ts which, as observed in Fig.3.4, were all roughly comparable. At

these low temperatures, σCW showed no clear dependence on CW or Ts , which could

be due to the occurrence of a temperature-induced phase transition between Zone T

and Zone 2. However, it is not possible to confirm this particular transition using a

surface sensitive technique like AFM as the SZM shows that the difference between

these two morphologies only becomes evident in a comparison of the grain shapes along

the growth axis: Zone T has cone-shaped grains whereas Zone 2 has growth-axis-aligned,

rectangular grains. Therefore, to fully characterise the morphology of ZnO thin films and

discuss the effects of ZnO microstructure on RS, TEM was employed and the results

are discussed in Section 3.5.4.
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3.5.3 Electrical Characterisation

Optimised deposition parameters for ZnO and Mn:ZnO RRAM were found through

an electrical assessment of the resistive switching characteristics of identical ZnO and

Mn:ZnO films to those presented in Fig.3.4. The electrical characterisation of ZnO

and Mn:ZnO RRAM heterostructures revealed that reproducible RS was supported

by undoped ZnO thin films that were deposited at PO2 =100mTorr and Ts = 490K

and by Mn:ZnO films deposited at PO2 =100mTorr but at a higher substrate tem-

perature, Ts = 630K. For undoped ZnO, films deposited under the same oxygen pres-

sure (PO2 =100mTorr) but deposited at different temperatures (with the exception

of Ts = 850K, which was ohmic) exhibited non-linear IV characteristics and could not

sustain reproducible resistive switching despite being probed in two manners: to avoid

electroforming and to induce electroforming. Comparing the two ends of the temperature

range employed in this study, RT and Ts = 850K, revealed that ZnO thin film resistivity

has a complex dependence on Ts . Films deposited at Ts = 850K exhibited an ohmic

response and had low initial resistance (Ri ≈ 600Ω), whilst room temperature deposited

devices had slightly greater initial resistance (Ri ≈ 1kΩ) and could be electroformed. De-

spite undergoing the same forming process as those devices deposited at Ts = 490K that

displayed reproducible RS, room temperature ZnO devices had poor stability, collapsing

to the ON state within only 16 cycles after a gradual degradation of the HRS to lower

resistivities. Given that the ZnO devices that displayed reproducible RS had significantly

greater initial resistance (Ri ≈ 10kΩ) than those that displayed no RS or irreproducible

RS, it is likely that the instability of RS increases with decreased resistivity of ZnO.

This would mean that in addition to displaying non-linear IV behaviour, films must have

sufficient initial resistivity (which in this case was Ri ∼ 10kΩ) to sustain reproducible

RS. In a similar fashion, the effect of PO2 on electrical characteristics of ZnO RRAM

devices deposited at Ts=490K was also investigated. Preliminary AFM measurements re-

vealed that films deposited on Si/SiOx became smoother with lower deposition pressure,

reaching sub-nm rms at both lower pressures. ZnO films deposited at PO2 =10mTorr

exhibited ohmic behaviour and devices had extremely low initial resistance (Ri = 40Ω),

whilst those deposited at PO2 =1mTorr exhibited unstable, non-linear characteristics and

had slightly greater initial resistance (Ri ≈ 100Ω), although this was still far below the
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(above mentioned) threshold for stable RS in ZnO. These results support the general

consensus in RRAM that states that devices must be sufficiently resistive to sustain

reproducible RS and that ZnO films with relatively low initial resistance (Ri < 1kΩ) are

likely to display an ohmic, non-switching response or irreproducible RS [36].
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Undoped ZnO

Figure 3.5: IV curves acquired from ZnO RRAM deposited at PO2 =100mTorr and
Ts = 490K. The colour scale, which runs from blue to red, indicates the direction of
the voltage cycle in each plot. (a) Initial stable RS state. (b) Electroforming cycle.
Representative RS IV curve produced after electrofoming plotted on a (c) linear and (d)
semilog scale where cc=+2mA. Linear fitting of (d) is shown for the (e) SET and (f)
RESET transitions, which are plotted on a double logarithmic scale for an assessment of
I ∝ V n. Slope values next to the data present the value of the gradient for each linear
fit (n).
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For undoped ZnO, the devices were initially in a highly resistive state: using simple

2-probe measurements, the initial resistances of multiple patterned devices were found to

be of the order of Ri = 10kΩ and showed some variation across the film, which is likely

due to the film’s polycrystalline morphology (see Fig.3.4(c)). To obtain reproducible RS,

the devices were electroformed via a typical high voltage filamentary process, as seen

in the literature. Interestingly, before electroforming, the device exhibited a preliminary

form of reproducible resistive switching, in which the device switched at opposite polarity

to that exhibited post-electroforming; the preliminary RS and forming cycles are shown

in Figs.3.5(a) and (b) respectively. In the preliminary state, even at moderate voltages

(higher than those displayed in Fig.3.5(a)), relatively low currents flowed across the

device, and at VREAD = 0.1V, the resistance window was a low as ∼1.5. These were

relatively poor performance parameters, however, the stability of the preliminary RS state

indicated that if probed differently, the device may have been able to sustain a second

stable form of RS. Upon increasing the magnitude of the positive voltage sweep, the

device underwent a filament electroforming process at VEF = +2.2V. Fig.3.5(b) reveals

how instead of undergoing a RESET process during the positive sweep, as exhibited

during preliminary RS, the device underwent a SET transition, reaching the compliance

current, which was limited to cc=0.5mA. After electroforming, the device reached a

reproducible second RS state, which is shown in Figs.3.5(c) and (d) on linear and semilog

scales respectively; here, the ZnO device displayed bipolar, gradual RS, with a resistance

window of ∼ 8 measured at VREAD = 0.1V. The smooth and gradual RS displayed

is only observed for VCM RS mechanisms, confirming that VÖ-electromigration, as

opposed to filamentary ECM or TCM, governs switching in these devices. In Figs.3.5(a)

and (b), the direction of switching (highlighted with arrows and the colour scale) is

counter-clockwise, in which the SET process occurs at positive voltages, and the RESET

process occurs at negative voltages. Due to the gradual nature of RS there is no clear

VSET . In contrast VRESET very clearly occurs at −0.5V and is easy to identify due to

the occurrence of Negative Differential Resistance (NDR), a term used to describe the

phenomenon in which current flow decreases with increasing voltage. NDR was originally

observed in voltage cycled Au/SiO/Au MOM structures, where it was proposed that

the migration of Au+ ions into the SiO led to the formation of deep charge traps upon
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which charge accumulation could lead to space charge that limits current flow across

the device [87,88]. Similarly, photoluminescence studies have shown that intrinsic Zn,

O defects (including VÖ) and charged dopant ions form charge traps in ZnO [89–91],

and it is proposed here that these could result in NDR.

It is possible to assess RRAM conduction mechanisms by fitting IV data to conduction

models, which in this case, can be used to identify specific conduction mechanisms [92,93].

In undoped ZnO RRAM, the LRS typically exhibits ohmic conduction, in which I ∝ V ,

however, several conduction mechanisms have been ascribed to the HRS and these are

field dependent [94]. In general, at low voltages, the HRS also exhibits ohmic conduction,

but a higher voltages, Poole-Frenkel (PF), Schottky Emission (SE) and Space-Charge-

Limited Current (SCLC) have been observed, and I ∝ V 2 respectively [39, 46, 94, 95].

PF is a model in which conduction across a device is enhanced through the field induced

lowering of the ionisation energy of donors or acceptors and can be identified by the

relationship Log( IV )∝
√
V [39]. SE is a model in which electrons are able to surpass

the energy barrier present at a metal-dielectric interface through thermal activation and

has a Log(I)∝
√
V relationship [92]. A double logarithmic IV plot, such as those shown

in Figs.3.5(c) and (d), is commonly used as an initial assessment for the relationship

I ∝ V n, as on this plot, the gradient of a linear fit is equal to the exponent n, which

is particularly useful in the assessment of SCLC conduction. In this model, the IV

characteristic can be divided into three field-dependent distinct I ∝ V n relationships: at

low fields, n = 1 and conduction is ohmic, which means that the number of thermally

generated free carriers in the oxide is greater than the number of carriers injected from

the electrode; at high fields, n = 2, which, in contrast to ohmic conduction, indicates

that the number of injected charge carriers is greater than the number of thermally

generated carriers; in some cases, n > 2, which corresponds to trap-limited (also called

trap-filled) SCLC in which a portion of the injected charge carriers become trapped at

defect trapping sites [43,92]. It should be noted that it is possible to transition from

trap-free SCLC (I ∝ V n for n ≤ 2) to trap-filled SCLC (I ∝ V n for n ≥ 2) and back [92].

In Fig.3.5, the (c) SET and (d) RESET datasets are separated into multiple linear

fitting regions, each labelled with their corresponding gradient (n). The LRS in both

transitions is consistent with ohmic conduction(n = 1). In contrast, the HRS only
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Conduction Model Proportionality Gradient Expression Dataset R2 m Estimated εr

SCLC I ∝ V 2 m = 9
8d3
µε0εrθ

SET 0.9777 0.011 -
RESET 0.9988 0.004 -

Schottky Emission Log( IV )∝
√
V m = e

kT

√
e

4πε0εrd

SET 0.9945 4.660 0.50
RESET 0.9986 2.001 1.29

Poole-Frenkel Log(I)∝
√
V m = e

kT

√
e

πε0εrd

SET 0.9886 3.380 3.81
RESET 0.9985 1.716 14.79

Table 3.2: Estimated dielectric constants (εr ) of polycrystalline undoped ZnO calculated
using linear fit analysis of the HRS for SET and RESET transitions displayed in Fig.3.5.
The gradient expressions for each conduction model were obtained from current density
formulae in the literature [92, 94, 96] where ε0 is the permittivity of free space, e is
the charge of an electron, k is Boltzmann’s constant, T = 298K, and film thickness is
d=200nm.

exhibits ohmic conduction at low voltages (V < 0.1V ). Between 0.1V < V < 0.4V , n

increases to 2, consistent with trap-free SCLC. At even higher voltages (V > 0.4), n > 2,

consistent with trap-limited SCLC. For the RESET transition presented in Fig.3.5(d),

this increase is modest (n increases to 2.45), but for the SET transition shown in

Fig.3.5(e), n increases to 4 before the device reaches the 2mA compliance current.

The observation of these three distinct I ∝ V n regions are consistent with a transition

from trap-free to trap-limited SCLC conduction, which has previously been observed in

complex oxides such as PrCaMnO3, a material investigated in Chapter 4 [43].

Multiple conduction models can be used to describe IV characteristics of the HRS

state. Here, for trap-limited-SCLC conduction, where n > 2, further evaluation of the

dominant conduction mechanism was undertaken. The HRS data corresponding to these

trap-limited-SCLC regions, which range between 0.3V < V < 0.5V and 0.4V < V < 0.7V

for the SET and RESET transitions respectively, were fitted to trap-free SCLC, SE and

PF conduction models via the proportionality relationships detailed in Table.3.2 [94, 96].

The R2 value can be to identify the best linear fit for each conduction model, and the

fitting parameters can be used to estimate the static dielectric constant εr at room

temperature, which has been shown to be εr = 1.86 for amorphous ZnO and to range

between 4< εr < 11 for crystalline ZnO [96,97]. The results of this fitting process are

presented in Tab.3.2. However, given similarity of R2 values and the fact that εr was

not measured in this work, the fitting process was not found to be a robust discriminator

for identifying the dominant conduction mechanism.
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Mn:ZnO

Figure 3.6: IV curves obtained from Mn:ZnO RRAM devices in which the Mn:ZnO film
was deposited at PO2 = 100mTorr and Ts = 630K. (a) Electroforming RESET transition.
(b)(c) Reproducible bipolar IV curve exhibited post-electroforming. (b) is replotted in (c)
on a semilog scale. (d) (e) Comparison of the representative bipolar IV curves obtained
for ZnO and Mn:ZnO.
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Mn:ZnO RRAM devices were fabricated using the same PLD deposition conditions

used to produce reproducible RS in undoped ZnO, PO2 = 100mTorr and Ts = 490K;

however, these devices displayed irreproducible bipolar RS. Devices fabricated using films

deposited at Ts = 400K also displayed irreproducible RS but those made using films

deposited at Ts = 630K exhibited reproducible bipolar RS after an electroforming RESET

process at negative voltages. This is particularly interesting because in the literature,

electroforming steps generally describe a process in which an initially resistive device

becomes significantly less resistive due to the formation of a conductive filament. Whilst

electroforming SET transitions have been observed at both polarities, electroforming

is largely described as a SET process. As discussed in the introduction, multiple early

reports of electrofoming SET processes has influenced researchers in the field to create

highly resistive films that require such a process. Here, we observed the opposite: an

initial RESET process was required to sustain bipolar RS in relatively conductive Mn:ZnO

films that exhibited Ri = 300Ω, which significantly smaller than the Ri = 10kΩ required

for stable switching in undoped ZnO. An example of this electroforming RESET is

shown in Fig.3.6(a); the abruptness of this transition is consistent with the rupture

of a conductive filament. A representative example of the reproducible RS produced

after an electroforming RESET is shown in Figs.3.6(b) and (c) on linear and semilog

scales respectively. As observed for undoped ZnO, the Mn:ZnO displayed gradual

bipolar switching in which the SET(RESET) transition occurred at positive(negative)

voltages. For direct comparison, both undoped and Mn-doped ZnO devices are displayed

in Figs.3.6(d) and (e) in black and green respectively; here, it is clear to see that the

shape of the Mn:ZnO IV curve is similar to that exhibited by the undoped ZnO device.

Both the low and high resistance states for the Mn:ZnO are more resistive than that of

the undoped ZnO HRS. In fact, at V = +0.5V, the Mn:ZnO is approximately 4 times

more resistive than the undoped ZnO, a difference that is consistent with the literature

in which Mn is commonly employed to increase the resistance of the HRS in ZnO.

Figs.3.6(d) and (e) also shows that different compliance currents were employed for the

RRAM devices: cc=+2.0mA was used for undoped ZnO and cc=+0.8mA was used for

Mn:ZnO. The comparatively reduced compliance current used for Mn:ZnO was employed

in consideration of the electrical characterisation of undoped ZnO, where stable RS
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was only achieved if, post-electroforming, the RS process was limited to relatively low

currents (<2mA). Given that reproducible RS in Mn:ZnO was achieved for such a low

compliance current, this limit was not increased. Using such a low compliance current

to limit the LRS inevitably reduced the resistance window: at VREAD = +0.1V , the

ratio between the LRS and HRS was only 2:1, 4 times smaller than that observed for

undoped ZnO measured at higher compliance currents. With reards to the conduction

mechanism, analysis of the Mn:ZnO IV curves revealed that, as in our undoped ZnO

devices, these devices were consistent with trap-limited SCLC conduction.

For the small range of Ts used to evaluate RS in Mn:ZnO, all films exhibited non-

linear hysteretic IV behaviour, however not all exhibited the reproducible RS shown

in Fig.3.6. In fact, some devices underwent a typical electroforming SET process at

positive voltages, as seen for undoped ZnO, and displayed irreproducible bipolar RS with

the same voltage polarity dependence as that shown in Fig.3.6 as a result.

Figure 3.7: Reproducible electroformed IV curves acquired from (a) undoped ZnO and
(b) Mn:ZnO devices. In both, the colour scaled dataset represents the initial cycle. The
black dataset represents the (a) 30th (b) 60th cycle.

Fig.3.7 demonstrates the stability of RS in undoped ZnO and Mn:ZnO RRAM devices.

In each subfigure, the dataset presented using the colour scale is the first cycle, whilst

the dataset shown in black is, in the case of undoped ZnO, the 30th cycle, or in the case
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of Mn:ZnO, the 60th cycle. In both, there is a slight degradation of resistance window

due to both the HRS and LRS becoming more and less conductive respectively. In

addition, for both, the NDR exhibited during the RESET process becomes less prominent

during repeated cycling, which could be indicative of a reduction in the number of charge

carriers becoming trapped in defect states; a reduction in the number of charge carriers

involved in the RS process may also explain the reduction in resistance window.

Discussion

It should be noted that it was not possible to stimulate reproducible VCM RS across

all patterned devices, which limited an assessment of top electrode area-dependency.

This variation in device performance could be due to a number of reasons: given the

polycrystallinity of the film, grain size and grain boundary density could vary substantially,

introducing non-uniformity to each device structure and due to the roughness of the

film, the quality of the top electrode contact may vary across the device and induce

non-uniformity in the thickness of the interfacial TiOx layer. In addition, as emphasised

earlier, external factors, such as the electrical probing style is likely to have had an effect

on device yield: electrical characterisation is an iterative process, in which each device

tested provides greater context for the next, therefore devices probed incorrectly could

have led to early device failure. For instance, devices cycled using cc>2mA often led

to either irreproducible filamentary RS, or an irreversible transition to an ohmic LRS,

therefore subsequent devices were probed in a more conservative fashion using lower

compliance compliance currents. Despite these effects, the RS displayed in Figs.3.5 and

3.6 represent the most reproducible and stable form of RS achieved across all devices

fabricated under the conditions and were therefore used to represent optimal RS in

undoped ZnO and Mn:ZnO in this study.

Major differences between the IV curves obtained from Ren et al.’s RRAM devices

and the Mn:ZnO devices presented here are the polarity and abrupt nature of RS: their

IV curves display sharp SET and RESET transitions that occur when the Pt bottom

electrode is negatively and positively biased respectively, which contrasts our observations.

As described in the literature, this differences can be attributed to dissimilarities in the

choice of compliance current and applied voltages; in their work, the use of much higher
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compliance currents (10mA) would have allowed the application of larger voltages which

would have supported filament formation across the device. A significant disadvantage

of using high compliance currents and voltages is device degradation. For instance, even

though our devices exhibited much poorer resistance windows they surpassed Ren et al.’s

in terms of reproducibility, sustaining 60 cycles (as shown in Fig.3.7). In general, the

gradual nature of the bipolar RS observed in the ZnO and Mn:ZnO devices contrasts a

majority of the literature which, in most cases, reports on the observation of abrupt,

filamentary RS [2,31,38,39,42,45,98,99]. As mentioned in Chapter 1, of all the RS

mechanisms, such gradual switching is only exhibited by devices undergoing VCM RS.

Considering the polarity of the observed RS, which was the same for both devices, it

is possible to describe the VCM-type mechanism with respect to the voltage biased

Pt/[Mn:]ZnO/Ti structure. It is proposed here that the overall resistance state of

the device is governed by the thickness of an interfacial TiOx layer. Fig.3.8(a) shows

that when the Pt bottom electrode is negatively biased, VÖ migrate towards it along

defect-rich grain boundaries and accumulate; at the same time, O2− ions migrate towards

the Ti top electrode and thicken a pre-existing redox-formed interfacial layer of highly

resistive TiOx which causes the device to switch to the HRS. Conversely, Fig.3.8(b)

shows that when the Pt bottom electrode is positively biased, electro-migration of VÖ

and O2− in the opposite directions cause the dissolution of the resistive TiOx layer,

which switches the device to the LRS. Furthermore, Fig.3.8(b) also shows that the

dissolution of the TiOx may allow for the formation of unobstructed conductive VÖ

filaments between the top and bottom electrodes along grain boundaries, which may

account for the ohmic nature of the LRS [100]. In both states, Fig.3.8 depicts the

accumulation of positively-charged VÖ near the anode, as found for gradual bipolar

RS ZnO films presented in the literature [34]. In Mn:ZnO, these VÖ-rich regions are

expected to contain relatively reduced Mn in comparison to the bulk material.

In both undoped and Mn:ZnO, linear fit analysis of the IV curves showed that during

the SET transition, the conduction mechanism was consistent with trap-free SCLC at

moderate voltages (0.2V<V≤0.4V) and trap-limited SCLC at higher voltages (>0.4V).

According to the literature, for undoped ZnO devices, these charge traps were VÖ, whilst

for Mn:ZnO device, these were both VÖ and Mn2+ dopant ions [90,91,101].
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Figure 3.8: Diagrams showing the interfacial oxide thickness modulation and VÖ mi-
gration expected for the (a) HRS and (b) LRS states in the undoped and Mn-doped
devices. VÖ are shown in white and black and white arrows beside (a) and (b) show the
direction of electromigration for O2− and VÖ respectively.
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3.5.4 Electron Microscopy Characterisation

To understand the switching characteristics within the context of film morphology, FIB

lamellae samples were obtained from RRAM heterostructures that displayed reproducible

RS, which incorporated a 200nm undoped ZnO film deposited at PO2 =100mTorr and

a 70nm Mn:ZnO film deposited at PO2 =100mTorr, and an ohmic device that did not

display RS, which incorporated a 100nm undoped ZnO film deposited at PO2 =10mTorr.

Diffraction patterns acquired from the two undoped ZnO devices are presented

in Fig.3.9(a) and (b); these both had spotted ring-like diffraction patterns that are

consistent with polycrystalline ZnO. By comparing the radial distribution of our measured

diffraction spots with those in crystallographic databases, both films were found to be

consistent with hexagonal wurzite ZnO, as expected; indexed peaks corresponding to

crystallographic planes present in wurzite ZnO are highlighted in Fig.3.9(c). Additional

contributions from metallic Ti, Pt and Au layers, and interfacial oxide TiO2, which were

also isolated with the selected area (SAD) aperture, were also present in the diffraction

patterns and are identified in Fig.3.9(c). In Fig.3.9(c), a greater contribution from

these additional layers is seen for the PO2 =10mTorr film because this film was half the

thickness of that deposited at PO2 =100mTorr.
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Figure 3.9: Diffraction patterns acquired from (a) PO2 =100mTorr and (b) PO2 =10mTorr
devices, both pulsed laser deposited at Ts = 490K. In both images, the central bright
spot is blocked to prevent saturation damage. In addition the yellow ring in both images
highlights the diffraction spots that contributed to the hollow-cone diffraction images
presented in Fig.3.10. (c) Radial distribution plot showing the average intensity of
diffracted spots within each concentric ring as a function of radial distance from the
central spot. Each peak is indexed and colour co-ordinated with the device heterostructure
shown in the inset, which includes top electrode (TE) Pt and Au caps, the redox-formed
interfacial TiOx layer, and the adhesive Ti layer required for the Pt bottom electrode
(BE). The miller indices used correspond to ZnO P63mc, Ti P63mc, TiO2 Pbcn, Pt
Fm3m, and Au Fm3m structures.
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Fig.3.10 presents bright- and dark-field images obtained from the undoped ZnO and

Mn:ZnO devices mentioned above. In the BF images, the heavy Pt bottom electrode

appears dark, whereas the Ti and ZnO are near indistinguishable. These images allow for

an assessment of film roughness and topology; for instance, the bright-field image of the

undoped ZnO device deposited at PO2 =100mTorr (shown in Fig.3.10(a)) confirms the

dome-shaped grains observed using AFM and reveals that the peak-to-trough distance

(highlighted in Fig.3.10(a) using red arrow and yellow dashed line) is of the order

30nm, whilst for PO2 =100mTorr (shown in Fig.3.10(c)) this distance is significantly

smaller (<10nm), consistent with the AFM roughness measurements which showed that

roughness decreased with PO2. Figs.3.10(e) and (k) shows that unlike the undoped ZnO,

the Mn:ZnO films do not display grains with smooth dome-like profiles; instead, each grain

top appears to be faceted, which is consistent with the sharp contrast in surface topology

between ZnO and Mn:ZnO observed using AFM (shown in Fig.3.4(h)). The peak-to-

trough distance for the Mn:ZnO (20nm) is comparable to that found for ZnO. It should

be noted that the contrast between the magnitude of the roughness or peak-to-trough

values exhibited by these films and those presented in Fig.3.4 is due to the difference in

the roughness of each substrate: Fig.3.4 presents films deposited onto smooth Si/SiOx

but Fig.3.10 presents films deposited onto Si/SiOx/Ti(200nm)/Pt(5nm), which was

significantly rougher due to the presence of a thick Ti adhesion layer.
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Figure 3.10: BF and DF images acquired from the (a)-(b) RS PO2 =100mTorr and the
(c)-(d) ohmic PO2 =10mTorr undoped ZnO devices deposited at Ts =490K and the
(e)-(h) RS PO2 =100mTorr Mn:ZnO device deposited at Ts = 630K. In the DF images,
yellow dashed lines are used to highlight grain boundaries for clarity.

As explained in Section 2.6.1, DF imaging allows one to isolate crystallographic

orientations, as identified in a diffraction pattern, within the polycrystalline ZnO film

and to enhance diffraction contrast between grains. The images shown in Figs.3.10(b),

(d), (f) and (h) were produced using the hollow-cone method, in which the beam is not

only tilted but rotated during the exposure, leading to a DF image that corresponds to

multiple diffraction spots. Fig.3.10(b), which presents a DF image of the reproducible-

RS device fabricated using undoped ZnO deposited at PO2 =100mTorr, reveals its

Zone T morphology; yellow dashed lines are used to highlight the smaller grains that

populate the base of the film, close to the substrate surface, and the larger cone-

shaped grains with dome-like profiles that constitute the bulk. In contrast, Fig.3.10(d)

presents a DF image of the non-switching, ohmic device, which contained undoped ZnO
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deposited at PO2 =10mTorr; at this reduced deposition pressure, the ZnO comprised

large rectangular grains that are elongated along the growth-axis, each with relatively

flat profiles, consistent with Zone 2 morphology. Figs.3.10(f) and (h) present DF images

obtained from the Mn:ZnO device, which exhibited reproducible RS, reveal irregular grain

shapes and sizes that are not entirely consistent with the cone-shaped or rectangular

grains characteristic of Zones T and 2; instead, the Mn:ZnO is consistent with Zone 3

morphology, despite having been deposited at the same pressure and temperature as

the Zone T undoped ZnO film. This difference could be due to segregated Mn dopants

causing the periodic blocking of growth, as explained by Barna et al. [58].

Discussion

Reproducible RS was not observed in devices that incorporated the Zone 2 ZnO film;

it is possible that for these ohmic devices, the presence of grain boundaries aligned along

the growth axis presented unobstructed VÖ-rich conductive paths between the top and

bottom electrodes that electrically shorted the device. In comparison, the films deposited

at higher pressures had Zones T and 3 morphology, which present far more complex

and irregular conductive paths between the top and bottom electrodes, increasing the

resistivity of the film. These results are consistent with the majority of the literature on

RRAM, which generally reports on the observation of reproducible RS in highly resistive

films.

3.5.5 TEM-EELS Analysis

The undoped ZnO and Mn:ZnO devices that displayed reproducible RS were char-

acterised using TEM-EELS. For the undoped ZnO, a FIB lamella was fabricated from

a pristine device and for the Mn:ZnO, FIB lamellae were fabricated from pristine and

programmed devices. Table 3.3 presents the acquisition information corresponding to

the EELS datasets used in this work.

Table 3.3: Acquisition information for ZnO and Mn:ZnO EELS datasets.

Datasets Offset (eV) Dispersion (eV/Ch) Pixel Size (nm2)
Acquisition Time (ms)

Acquisition Ratio
Low-Loss High-Loss

ZnO 300 0.5 0.99 0.10 100 1000
Mn:ZnO 300 0.5 0.99 0.25 50 200
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Undoped ZnO

Figure 3.11: EELS analysis of a pristine undoped ZnO RRAM device. (a) HAADF image
where the EELS acquisition area is shown in red. (b) RGB composite signal map where
Ti, O and Zn are shown in green, blue and red respectively. (c) Elemental map showing
the spatial distribution profiles of the Ti, O and Zn signals, where a TiOx interfacial
oxide layer is highlighted with a black arrow. Black, white, yellow and pink boxes indicate
regions from which reference spectra for MLLS fitting were acquired and correspond
to the substrate adhesion layer, bulk ZnO, interfacial TiOx and the contaminated top
electrode respectively. (d) MLLS fitting reference spectra used to produce (e) an MLLS
fit map. Here, the white dashed box shows the region used to produce (f) a normalised
spatial distribution profiles of MLLS fit.
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Fig.3.11 presents a representative TEM-EELS dataset acquired from a pristine

Pt/ZnO/Ti device on the same bulk sample that displayed reproducible RS. Fig.3.11(a)

shows the HAADF overview image, in which diffraction contrast reveals the presence of

grain boundaries, which appear dark and extend along the growth axis. In Fig.3.11(b),

Ti, which is shown in green, is present in the bottom electrode (the LHS of the signal

map) and the top electrode (the RHS of the signal map). The bulk ZnO appears as a

bright purple due to the contribution of both blue O and red Zn in the film. Despite the

confirmed Zone T structure, no significant variation in Zn:O ratio was observed at grain

boundaries, which are typically thought to be O-deficient. However, Fig.3.11(b) shows

that near the Ti top electrode, there is a change in Zn:O ratio: a blue, O-rich region

is sandwiched between the top electrode and ZnO bulk, which is consistent with the

presence of an interfacial TiOx layer. This O-rich region can also be seen in Fig.3.11(c),

which shows the distribution of Ti, O and Zn signals in Fig.3.11(b). Whilst the O and Zn

signals overlap at the bottom electrode, there is a separation of ∼ 3nm between the O

and Zn slopes at the top electrode (highlighted with the black arrow); this separation was

seen across most datasets. Furthermore, Fig.3.11(c) shows that at the top electrode,

the Ti signal is completely overlapped by the O signal, which suggests that the full

thickness of the Ti top electrode (which was fabricated to be 5nm thick, see Fig.3.3) is

in fact fully oxidised. This is in agreement with the analysis of the diffraction patterns,

discussed in Section 3.5.4, which featured diffraction spots that were consistent with

the presence of TiO2. Given that the entire Ti top electrode was oxidised, the clear

distinction between O and Ti signals at the top electrode in Fig.3.11(b) suggested that

less oxidised or metallic Ti was present in the Pt/Au cap. Fig.3.11(d) presents the EELS

spectra acquired from the top electrode, the substrate adhesion layer, the bulk ZnO and

the interfacial TiOx (these are highlighted in dashed boxes in Fig.3.11(b)) and reveals

the presence of a TiOx contaminant in the Pt top electrode (see blue spectra). The

contamination of Pt (which most likely occurred at the point of deposition) was also

observed at the bottom electrode and reached levels of up to 25%. At this relatively

low level of contamination, no significant impact on RS was expected. Instead the Ti

signal present in the Pt electrode and cap can be used to map the Pt indirectly.

The oxidation state of Ti in the Pt top electrode, interfacial TiOx layer and Ti



3.5. Zinc Oxide and Manganese-doped Zinc Oxide RRAM 129

adhesion layer can be directly assessed through comparison of the recorded Ti-L3,2

edges with the literature [102, 103]; the recorded spectra are shown in Fig.3.11(d).

Here, clear changes in Ti-L3,2 peak position, which were greater than the dispersion

(0.5eV/Ch) and therefore significant, were seen: the Ti-L3 peak acquired from the

substrate (shown in purple) has energy loss 458.7eV and is the most metallic of all TiOx

phases present in the device; the Ti contaminant present in the Pt top electrode is

chemically shifted by +1eV with respect to the substrate and has Ti-L3 peak position

459.7eV; finally, the interfacial oxide present beneath the Pt top electrode is chemically

shifted by +1eV with respect to the top electrode and has a Ti-L3 peak position 460.7eV,

making it the most oxidised of all TiOx phases present and consistent with TiO2 and the

spectra was either miscalibrated during ZLP centering or subject to dispersion scaling

effects [102,103]. According to Stoyanov et al., who measured Ti-L3,2 as a function of

Ti valence state, with respect to Ti4+, the contaminated Pt top electrode and substrate

contain Ti3.3+ (found in Ti3O5) and Ti2.6+ respectively [102]. These spectra, as well as

that acquired from the bulk ZnO, were used as principal references for MLLS fitting

(described in Section 2.7.6). To improve the fit, an additional spectrum corresponding to

the Au top electrode was also included, but as it does not contribute to the basic MOM

heterostructure, it was not included in the analysis of RS. The MLLS fitting results

are mapped in Fig.3.11(e). Here, a clear distinction between the Ti3O5 phase (shown

in blue) present in the top electrode and TiO2 top electrode interfacial oxide (shown

in red) can be seen. A normalised line profile of the spatial distribution of the signal

corresponding to each MLLS reference (except the substrate) is displayed in Fig.3.11(f),

which confirms that the two TiOx phases at the top electrode are spatially segregated

and that the interfacial TiO2 layer is ∼5nm thick.

Considering the EELS analysis of the pristine device presented in Fig.3.11, with

regards to the mechanism of RS, it is likely that the fully oxidised TiO2 sandwiched

between the bulk ZnO and the Pt/Au cap acts as a interfacial VÖ-reservoir layer during

RS, which, due to its high resistivity [104], governs the overall resistance state of the

device, as depicted in Fig.3.8. In addition, the same reasoning can be applied to the

electroforming SET transition: due to the immediate redox-induced formation of TiO2

during deposition, the device is initially in the HRS and the dissolution of the TiO2 layer
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must be triggered before the device can be electroformed to the LRS. In contrast, the

Mn:ZnO device required an electroforming RESET transition, which suggests that its

pristine state is not identical to that observed for the undoped ZnO devices.

Mn:ZnO

Figure 3.12: Low-magnification images of lamella extracted from (a) a pristine and (b)
a programmed Mn:ZnO device. Damage to the Pt/Au top electrode cap did not appear
to damage the Mn:ZnO RS layer.

Low magnification BF TEM images of the lamellae fabricated from a pristine and a

programmed device are shown in Figs.3.12(a) and (b) respectively: in Fig.3.12(a), the

heavy metal top electrode cap (which appears dark) is uniform in thickness (∼ 1µm)

across the width of the device; whilst in Fig.3.12(b), the lamellae was extracted from

directly beneath the region of probe damage where the top electrode cap is non-uniform

in thickness. Despite damage to the Pt/Au cap, the local Mn:ZnO RS layer appears

undamaged. Analysing both lammellae allows for a direct comparison of pristine and

programmed devices and, in addition, allows us to compare different regions along the

length of the lamella to assess the spatial uniformity of the VCM RS effect.

Fig.3.13(a) presents the HAADF overview image in which diffraction contrast appears;

in addition, the region used for the acquisition of EELS data is highlighted in red.

Figs.3.13(b)-(f) display the spatial distribution of O, Zn, Ti, Pt and Mn in a pristine

Mn:ZnO RRAM device that was identical to those that exhibited the reproducible

RS presented in Fig.3.6. Unexpectedly, in every dataset, the Ti and Mn signal maps

(presented in Fig.3.13(d) and (e)) showed evidence of clustering above the Pt bottom
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electrode, which suggests that the presence of an interfacial phase formed due to chemical

activity during deposition. In addition, for some datasets, the vertical clustering of Mn

(highlighted by the orange arrows in Fig.3.13(e)), presumably along grain boundaries,

was revealed. The segregation of dopants at grain boundaries has been observed in

the literature in a number of polycrystalline materials, but is not typically reported in

the experiment-based literature on Mn:ZnO [105, 106]. In general, as found for Zn

interstitials and VÖ, grain boundaries act as sinks for impurity dopants where secondary

impurity-oxide phases can form and cluster [106]. Such segregation typically occurs due

to an excess of impurity dopants that cannot be accommodated within the crystalline

lattice and is therefore dependent on the thermal equilibrium solubility limit of the dopant

into the bulk material [107]; for Mn in ZnO, this limit is 13 mol% at 973K. However, for

Mn:ZnO deposited via PLD, a non-equilibrium technique, the thermal equilibrium limit

has been exceeded: solubility of Mn of up to 35% in ZnO has been achieved where the

bulk material exhibited no evidence of dopant segregation [107]. The deposition and/or

anneal temperature has also been shown to induce the reversible thermal diffusion of

dopants out of crystalline grains into grain boundaries [108]. It is possible that at the

lower substrate temperature used here, thermal diffusion was limited and insufficient for

the homogeneous distribution of Mn throughout the ZnO. Although the exact cause of

Mn segregation is unclear, the direct observation of the resultant vertical clustering of

Mn is of particular interest as it resembles the vertical ferromagnetic sub-oxide phases

proposed in Ren et al.’s RT-FM-RS co-switching mechanism [2].
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Figure 3.13: EELS analysis of pristine and programmed Mn:ZnO devices. (a) HAADF
overview map. Signal maps acquired from pristine devices showing (b) O, (c) Zn, (d)
Ti, (e) Mn and (f) EDX-Pt signals. Blue and orange arrows are used to highlight the
vertical and horizontal clustering of Ti and Mn. (g) Colour composite map of (b)-(f)
where O, Zn, Ti and Mn are shown in white, red, blue and green respectively. (h)
Elemental-ratio-normalised distribution profiles acquired from a programmed devices
where O, Zn and Mn are shown in red, blue and black respectively. In both, the Ti
line profile (green dashed line) was scaled up to evaluate Ti and O spatial overlap. (i)
Comparison of EELS spectra acquired from highlighted regions in (g): the top electrode
(shown in black), the adjacent interfacial TiOx phase (shown in red), the substrate
adhesion layer (shown in orange) and the TixMnyOz phase (shown in blue). Inset shows
Ti-L3,2 peaks. (j) Comparison of Mn-L3,2 peaks acquired from the bulk Mn:ZnO (shown
in green) and TixMnyOz (shown in blue).
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Fig.3.13(g) presents a colour composite of the Mn, Zn, O and Ti maps presented in

Figs.3.13(b)-(e) and is colour coordinated to allow for direct comparison to the colour

composite signal map of the undoped ZnO device shown in Fig.3.11(b). As found for the

pristine undoped ZnO device, at the top electrode interface, the O signal (shown in blue)

extends further towards the Ti at the top electrode (shown in green) than the Zn signal

(shown in red). Furthermore, Fig.3.13(h), which was produced using the elemental ratio

normalisation process described in Section 2.7.3, shows that this extension occurs at

both electrodes (i.e. there is a ∼ 6nm separation between the rise and fall of the Zn and

O signals respectively), which was only observed at the top electrode of the undoped

ZnO device and corresponded to fully oxidised TiO2. The extension of the O signal at

the bottom electrode (highlighted in yellow in Fig.3.13(h)) coincides with the the Ti-

and Mn-rich cluster present above the bottom electrode (shown in Figs.3.13(d) and (e)),

suggesting the presence of an interfacial oxide. Figs.3.13(h) also shows that the bulk

Mn:ZnO has stoichiometry Mn0.1Zn0.9O, which is a larger dopant level than expected

(Mn0.05Zn0.95O).

A comparison of spectra acquired from the Pt top electrode, substrate adhesion

layer, interfacial TiOx , and the Ti- and Mn-rich cluster above the bottom electrode

is shown in Fig.3.13(h). As seen in the undoped ZnO device, the Pt top electrode is

contaminated with a TiOx phase (which is used here for mapping the Pt) and there is a

significant difference in Ti-L3 peak shift (magnified in inset in Fig.3.13(i)) between the

Ti present in different regions of the device: the Ti present in the interfacial oxide is fully

oxidised Ti4+ in TiO2, indicated by its Ti-L3 peak at energy loss 460.7eV [102,103]; the

Ti-L3 peak acquired from the contaminated Pt top electrode has energy loss 459.2eV,

which, considering the dependence of Ti-L3 peak shift on valence state, corresponds to

Ti3+ in Ti2O3 [102]; the substrate contains the most metallic Ti present in the device,

where the Ti-L3 peak has energy loss 458.7eV, which corresponds to Ti2.6+, indicative

of the presence of both Ti2+ in TiO and Ti3+ in Ti2O3; finally, the Ti present in the

Ti- and Mn-rich oxide phase above the Pt bottom electrode has a Ti-L3 peak with

energy loss 460.5eV, which, with respect to the position of the Ti4+, is consistent with

Ti3.9+ [102]. Although not characterised in the literature, across these four spectra,

the Ti-L2 peak also displays a gradual peak shift consistent with the Ti-L3-peak-based
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evaluation of Ti valence state where the Ti-L2 peak shifted to higher energy losses with

increasing Ti valence state. Considering the EELS analysis presented above and the

polarity and gradual nature of the bipolar RS exhibited by these devices, the Mn:ZnO RS

mechanism is consistent with that proposed for the undoped ZnO device and depicted in

Fig.3.8: the interfacial TiO2 layer present at the top electrode acts as an VÖ-reservoir

to facilitate VCM RS. However, here we see that redox activity at the interfacial oxide

near the top electrode is spatially inhomogeneous. In addition, the contribution from the

unexpected oxide phase(s) present above the Pt bottom electrode, which is not present

in the undoped ZnO device, must be evaluated. Of utmost importance is whether this

is indicative of a single phase which contains both Ti and Mn or multiple chemically

distinct phases containing either Ti or Mn that spatially overlap. Fig.3.13(i) allows

for an assessment of this through direct comparison of the unknown bottom electrode

phase (shown in blue) with other Ti-containing phases. Whilst the presence of the

Mn-L3,2 edge is not necessarily indicative of chemically distinct phase in itself (because

it would also appear if an Mn-containg phase spatially overlapped with another phase),

the significant difference in the shape and absolute intensity of the O-K edge observed

for the Ti- and Mn-rich phase strongly suggests that this (TixMnyOz) phase is distinct

from the other Ti-containing phases present in the device. For example, the shape of

the TiO2 O-K edge is consistent with that observed for TiOx in the literature, which

typically feature a broad peak that rises and falls between 530eV and 535eV, whilst

the shape of the O-K edge in the TixMnyOz is, in contrast, consistent with Mn2+

present in MnO, which is dominated by a doublet situated at energies between 530eV

and 545eV [109–112]. In addition, the relative intensity of the O-K in the TixMnyOz is

greater than that in TiO2, which suggests that the ratio between Ti and O is greater

than 1:2. In the literature, only two TixMnyOz phases fit this criteria: TiMnO3 and

TiMn2O4. Similarly, Fig.3.13(j) allows for an evaluation of the Mn valence state through

a comparison of the Mn signal extracted from the bulk Mn:ZnO to that acquired from

the TixMnyOz phase. Here, there is a subtle relative peak shift between the two phases:

the bulk Mn:ZnO is shifted +0.5eV with respect to the TixMnyOz which, according

to the literature, is indicative of a change of Mnn+0.3 [110]. Despite this shift, the

Mn-L3 maxima occur at 641.7eV for both spectra, consistent with Mn3+ [110, 113],
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and this is due to a clear difference in the shape of the Mn-L3,2 edge: the Mn-L3 in the

TixMnyOz phase is more asymmetric than that in the bulk Mn:ZnO and is weighted

towards lower energy losses, an effect typically observed for Mn2+ [113]. There are two

further difference between the Mn-L−3,2 edges: the Mn in the TixMnyOz phase has an

increased L3:L2 peak ratio, which has been shown to increase with decreasing valence

state [110, 111, 114]; and the Mn-L2 in the TixMnyOz is broad and has a flattened top,

consistent with a poorly resolved observation of the doublet typically produced for Mn2+

(a single sharpened Mn-L2 peak is more consistent with Mn3+) [113]. Given that the

Ti in the TixMnyOz was shown to be Ti3.9+ and that this phase is likely to be either

TiMnO3 and TiMn2O4, the Mn valence state can also be estimated through a simple

charge balancing calculation (where oxygen is O2−). Doing this, the Mn valence state is

either Mn2.1+ for TiMnO3 or Mn2.05+ for TiMn2O4; both phases are consistent with

the evaluation of Mn valence state via peak shape presented above. Due to the Mnn±0.3

shift between the bulk Mn:ZnO and TixMnyOz phase, it is estimated that the bulk

Mn:ZnO contains Mn2.3+. This is a slightly higher oxidation state than that predicted

for homogeneously distributed Mn in single crystal Mn:ZnO, however given the presence

of grain boundaries, which influence the concentration and distribution of VÖ and O2−

throughout the film, small deviations from Mn2+ in polycrystalline Mn:ZnO are to be

expected [20].

Signal maps like that shown in Fig.3.13 allow for an evaluation of the spatial

distribution of individual elements. To investigate the spatial distribution of distinct

phases, MLLS fitting (described in Section 2.7.6) was employed; the results of which are

shown in Fig.3.14. The key spectra used to create the fits are presented in Fig.3.14(a)

and include the TixMnyOz phase (extracted from the above the bottom electrode), the

TiO2 interfacial oxide (extracted from beneath the top electrode), the bulk Mn:ZnO, and

the bottom electrode. Given that Pt core-loss edges were not recorded, Ti-contaminant

signal was used to evaluate the spatial distribution of the Pt. As noted above, this low

level contamination is not expected to affect RS, which means that with regards to

RRAM operation, these can be considered metallic and inert.
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Figure 3.14: (a) Deconvolved spectra used to MLLS fit the data. Colour composites of
the signal intensity maps associated with each phase presented in (a) is presented in
(b), (d) and (f), which represent pristine, programmed (acquired from region A) and
programmed (acquired from region B) respectively. The white boxes in (b), (d) and (f)
highlight regions used to acquire the spatial distribution of each MLLS fit across device
along the growth axis; these results are shown in (c), (e) and (g). In all subfigures,
the Ti/Pt bottom electrode, bulk Mn:ZnO, TiMnO phase and TiO phase are shown in
yellow, green, blue and red respectively.
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Colour composite maps revealing the spatial distribution of the phases presented

(and colour-coded) in Fig.3.14(a) are shown in Figs.3.14(b), (d) and (f). These

are representative maps that show the phase distribution in pristine and programmed

Mn:ZnO devices, where two different regions (labelled A and B) along the length of

the lamella are compared for an assessment of spatial homogeneity. In addition to

the colour composite MLLS fit maps, Figs.3.14(c), (e) and (g) present line profiles

taken through Figs.3.14(b), (d) and (f) that show the spatial distribution of each

phase along the growth axis. MLLS fitting of the pristine device (shown in Fig.3.14(b))

revealed that the Mn:ZnO RRAM device had a more complex heterostructure than

that which was designed: instead of the anticipated Pt/Mn:ZnO/TiOx/Ti structure,

the devices had a Pt/TiO2/TixMnyOz/Mn:ZnO/TixMnyOz/TiO2/Pt structure. As

shown in Figs.3.14(b) and (c), the TixMnyOz present above the bottom electrode was

also present at the top electrode and similarly, the TiO2 present underneath the top

electrode was also present at the bottom electrode. Interestingly, Fig.3.14(b) shows

that at the top electrode, the TiO2 and TixMnyOz phases are non-uniform in thickness.

Furthermore, they appear to thicken and thin in accordance with one another: regions

of thick (∼5nm) TiO2 are directly adjacent to regions of thin (∼2.5nm) TixMnyOz and

vice versa, which suggests that the formation of these phases may be attributed to the

exchange of mobile constituents between the two. The programmed devices showed

reproducible changes in the spatial distribution of each phase. Fig.3.14(d) shows that

the datasets acquired from different regions were largely similar to the pristine datasets,

however the TiO2 phase at the top electrode appears to have thickened at the expense

of the TixMnyOz . Fig.3.14(e) shows that there is nearly twice as much TixMnyOz

present above the bottom electrode than there is beneath the top electrode, which is

significant decrease in comparison to the pristine device shown in Fig.3.14(c). Region

B of the programmed device(shown in Figs.3.14(f) and (g)) shows greater differences

in comparison to the pristine device and region A of the programmed device: instead

of both TixMnyOz and TiO2 being present above and beneath the bottom and top

electrodes, TiO2 is dominant at the top electrode whilst TixMnyOz is dominant at the

bottom electrode. These observations are consistent with the occurrence of spatially

inhomogeneous redox activity at each electrode interface and, due to the absence of
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TixMnyOz at the top electrode interface, suggests that the electromigration of Mn,

in addition to VÖ, may occur during RS, which has not previously been observed in

the literature. Finally, in Fig.3.14(g), the profile of the bulk Mn:ZnO has non-uniform

intensity, which contrasts Figs.3.14(c) and (e); the dip in intensity in the middle of the

bulk Mn:ZnO film (at 50nm) coincides with an increase in the TixMnyOz phase. The

presence of chemically distinct Mn-phase in the bulk Mn:ZnO agrees with the suggestion

that in these devices, Mn ions are subject to electromigration.

Figure 3.15: Comparison of elemental ratio normalised distribution of Mn (averaged
over the entire width of each EELS dataset) previously shown in Fig.3.13(g).

Further inspection of the elemental-ratio-normalised Mn profiles in Figs.3.13(g) and

(h) revealed more evidence of redistribution of Mn in programmed devices; the Mn

profiles (averaged over the entire width of each EELS dataset) corresponding to different

regions of a programmed device are shown in Fig.3.15. Here, the datasets were aligned

with respect to the bottom electrode interface (centred at 25nm). For the datasets

acquired from region A, there was a significant accumulation of Mn at the bottom

electrode, consistent with the Mn signal map shown in Fig.3.13(e) and the increased

presence of TixMnyOz at the bottom electrode shown in Fig.3.14(e). In addition, for

pristine devices, the data showed that there was either an accumulation of Mn at the

bottom electrode, as seen for region A, or a uniform distribution of Mn. In contrast, the

datasets acquired from region B showed no accumulation of Mn at the bottom electrode;

instead, there was a greater concentration of Mn in centre of the bulk Mn:ZnO film

as opposed to either the top or bottom electrodes. In addition to changes presented
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in Fig.3.14, changes to the normalised Mn distribution profile strongly suggest that,

in addition to VÖ, Mn ions are also mobile in the bulk Mn:ZnO and migrate under an

applied electric field, presumably along growth-axis-aligned grain boundaries where phase

segregation was observed.

3.6 Conclusion

In both the undoped and Mn:ZnO devices, TEM-EELS analysis confirmed the

presence of a TiO2 interfacial oxide, formed due to the full oxidisation of the Ti top

electrode, beneath the Pt top electrode cap; it likely that this interfacial oxide acted as

a source an sink for VÖ and facilitate VCM RS. Interestingly, in the Mn:ZnO device, an

additional interfacial TixMnyOz phase (either TiMnO3 or TiMn2O4) was found above

the bottom electrode and appeared to have formed during deposition due to the presence

of Ti contaminants at the surface of the Pt bottom electrode. Additional evidence

consistent with the presence of secondary Mn phases was also found in different regions

of the device: Fig.3.13(e) shows clear proof of the accumulation of Mn not only at above

the bottom electrode, but along (typically VÖ-rich) grain boundaries, a finding which

has been proposed but not experimentally observed in the literature [106]. Interestingly,

this supports Ren et al.’s publication on simultaneous resistance and magnetisation

co-switching in pulsed laser deposited Pt/Mn:ZnO/Ti devices (introduced in Section

3.2.1). Although grain boundary segregation was not explicitly stated, it was proposed

that secondary phase Mn-clusters aligned vertically along the growth axis and that VÖ

conductive filaments formed within their vicinity [2]. Their paper also investigated the

redistribution of VÖ along the c-axis and showed that in the pristine state, regions near

the top and bottom electrodes were VÖ-rich and contained more Mn2+ than Mn4+;

these regions contrasted the VÖ-deficient bulk Mn:ZnO, which contained more Mn4+

than Mn2+. In the LRS, a steady gradual change in VÖ-concentration along the growth

axis was observed. There are some similarities between Ren et al.’s proposal and the

experimental results found here: given that the Mn present in the TixMnyOz phase was

relatively reduced with respect to the bulk Mn:ZnO (see Fig.3.13(j)), this phase can

be directly compared to their regions of increased Mn2+. Indeed, in the pristine state
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(shown in Fig.3.14(c)), the TixMnyOz phase is present above and beneath the bottom

electrodes respectively and these two VÖ-rich regions sandwich the Mn:ZnO bulk which

contains relatively oxidised Mn. Although we have no direct comparison for the LRS (as

fixed state LRS and HRS were not studied in this work), the heavily probe damaged

region of the device shown in Fig.3.14(g) represents a state is which VÖ are present

above the bottom electrode (indicated by the presence of TixMnyOz phase) and O2−

are present beneath the top electrode (indicated by the presence of TiO2).

Figure 3.16: Proposed mechanism of RS in Mn:ZnO device where VÖ and Mn2+ are
represented by white and black circles respectively. (a) Pristine device that displays Mn-
and VÖ- clustering along growth-axis-aligned grain boundaries. (b) and (c) represent
different regions (separated spatially) along the sample where (b) depicts a mid-point
(or transition state) between (a) and (c), emphasising spatial inhomogeneity of redox
activity at the electrode interfaces.

Based on the electrical characterisation and EELS analysis presented in this chapter,

an RS mechanism is proposed in Fig.3.16. Fig.3.16(a) shows the pristine device, where

the Ti top electrode is fully oxidised to TiO2. Fig.3.16(a) also depicts the experimentally

observed clustering of Mn (shown in black) along c-axis aligned VÖ-rich (shown in white)

grain boundaries. The TixMnyOz and TiO2 phases are shown to have equal thickness in

the pristine state, however when one electrode is biased with respect to the other, these

thicken or thin. As shown in Figs.3.16(b) and (c), when the top electrode is positively

biased, the formation of TiO2 beneath the top electrode and TixMnyOz above the

bottom electrode is promoted. Here, based on the normalised Mn signal distribution

shown in Fig.3.15, it is proposed that this interfacial oxide formation process is mediated

by the electromigration of both VÖ and Mn2+ along grain boundaries. Depicting the

HRS or LRS is complicated by the fact that it is unclear whether TiMnO3 or TiMn2O4
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is present in the device. For instance, considering the gradual nature of switching, it is

likely that the resistance state is governed by the gradual formation and degradation of

a highly resistive oxide layer; in the heavily probe-damaged device, this could be either

the TiO2 or the TixMnyOz phase. However, given that the RS electrical characteristics

and polarity dependency exhibited by the Mn:ZnO devices were similar to that exhibited

for undoped ZnO, it is likely that RS is dominated by a similar interfacial oxide effect.

The common feature between these two devices is the TiO2 interfacial oxide formed

beneath the top electrode, as such, it is likely that the formation and dissolution of this

phase dominates the overall resistance state. Therefore, due to the relatively thick TiO2

present beneath the top electrode in Figs.3.16(b) and (c), these are expected to represent

different regions along a Mn:ZnO that is programmed to the HRS. Furthermore, this

representation of the HRS (Figs.3.16(b) and (c)) implies the pristine state (Figs.3.16(a))

is more conductive, which is consistent with the initial requirement of an electroforming

RESET from the LRS observed for these devices. Given that the formation of TiO2 at

one electrode appears to be coupled with the formation of TixMnyOz at the opposite

electrode, the proposed mechanism would suggest that RS could occur at either polarity,

which supports the fact that the RS observed here occurred at the opposite polarity to

Ren et al.’s devices [2].

In summary, in this chapter, the impact of film morphology on resistivity and RS was

also explored; films with completely unobstructed grain boundary paths, aligned along

the growth axis, such as those present in Zone 2 films, were shown to be ohmic and less

resistive than films containing more irregular paths, such as Zone T and Zone 3 films.

Interestingly, the Mn:ZnO devices required an unusual electroforming RESET transition,

which is not typically reported in the literature as electroforming SET transitions are

often sought after. The attainment of reproducible RS after an electroforming RESET

demonstrates that the manner of electrical characterisation can have huge impact on

the observed RS, which is not often explored or accounted for in the literature. The

EELS investigation of polycrystalline ZnO-based RRAM devices presented here revealed

evidence for Mn phase segregation along growth-axis aligned grain boundaries, an effect

which has previously been proposed, but not observed, in order to explain the observation

of RT-FM in pulsed laser deposited Mn:ZnO [2]. MLLS analysis uncovered the presence
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of an unexpected TixMnyOz phase, containing chemically reduced Mn that was present

beneath and above the top and bottom electrodes respectively. These findings are

consistent with the XPS results published by Ren et al., who also found reduced Mn

present at the top and bottom of Mn:ZnO devices that exhibited the simultaneous

co-switching of resistance and magnetisation.

The growth and dissolution of interfacial oxides were shown to play an important role

during RS; these facilitated an exchange of VÖ between the bulk [Mn:]ZnO layer and

the electrochemically active Ti top electrode. Although MLLS fitting allowed for the

mapping of these interfacial oxide phases, due to the irregular film morphology and film

roughness, further analysis of the interface was limited. To improve our understanding of

interfacial chemistry during RS, contributions from morphological and chemical effects

must be isolated and evaluated. As seen for the relatively smooth but ohmic ZnO films

deposited at lower pressures, the compromise between film roughness and film properties

will always be a limiting factor in polycrystalline RRAM devices. However, devices that

incorporate highly resistive single crystal RS oxides provide an idealised materials system

to study RS mechanisms within due to their spatial homogeneity and sharp interfaces.

RS in single crystal epitaxial perovskite oxide material, Pr0.48Ca0.52MnO3, is presented

in Chapter 4.
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CHAPTER 4

Crystalline Pr0.48Ca0.52MnO3 Tunnel Oxide RRAM device

In Chapter 3, polycrystalline ZnO and Mn:ZnO was fabricated in a classic MOM

heterostructure and exhibited bipolar, filamentary RS consistent with the VCM redox

mechanism outlined in Chapter 1. In this chapter, a ternary, crystalline complex perovskite

oxide material, Pr1−xCaxMnO3, that was fabricated by collaborators in Jülich, is studied.

Pr1−xCaxMnO3 is a well-known RS material; in Sawa et al.’s prominent 2008 publication,

it was used to elucidate the interface-VCM RS mechanism, a switching model that is

dependent on the VÖ-mediated formation and modulation of an interfacial oxide (at the

oxide/metal interface) that acted as Schottky barrier [1]. The study presented here

investigates a Pr0.48Ca0.52MnO3 device that incorporates an Yttria-stabilised Zirconia

(Y2O3-ZrO2) tunnel-oxide layer for the enhanced control of RS characteristics. As

outlined in Chapter 1 in section 1.2.5, the literature suggests that for tunnel-oxide RS

devices, the tunnel-barrier height governs the resistance state and is modulated by the

VÖ-concentration [2]. This means that the most intriguing aspect of the crystalline

perovskite oxide/tunnel-oxide RS heterostructure presented here is the interplay between

Schottky- and tunnel-barrier effects, both of which have been shown to be dependent on

VÖ-electromigration. To assess the RS mechanism exhibited by this more complex device

heterostructure, STEM-EELS was used to identify the spatial extent of electrochemical

differences between LRS- and HRS-programmed devices. In addition, to understand
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changes to the electronic properties of the active layers, collaborators probed programmed

devices using HAXPES, a surface-sensitive technique, which was described in Section 2.8.

Analysis of the spectroscopic results confirmed that RS was mediated by the exchange of

VÖ across the tunnel-oxide/Pr0.48Ca0.52MnO3 interface and that this electromigration

resulted in the electrostatic modulation of the tunnel-barrier height, which ultimately

governed the overall resistance state of the device during switching.

4.1 Resistive Switching in Crystalline Perovskite Oxides

Figure 4.1: Diagram of an PrxCa1−xMnO3 perovskite oxide cubic cell. Here, Pr3+ and
Ca2+ cations are shown in green, Mn cations are shown in red, and oxygen anions are
shown in blue. Pr and Ca cations form the ionic lattice, which is represented by the
black lines.

Perovskite oxide have general formula ABO3 and adopt the structure displayed in

Fig.4.1. Here, the A-site cation (shown in green) is a rare or alkali-earth metal and has

12-fold coordination with oxygen (shown in blue) and the B-site cation (shown in red) is

a transition metal and has 6-fold coordination with oxygen [3,4]. Fig. 4.1 emphasises

the formation of an oxygen octahedra, which is formed at the B-site, however, although

it is not shown in Fig.4.1, the A- and B-site cations form a cubic ionic lattice. The

ABO3 structure shown in Fig.4.1 can incorporate foreign substitutional A- or B-site

cations and, in addition, can also support VÖ [3]. In RRAM research, perovskite oxides

are of particular interest due to their stable crystalline structure. As single crystal

devices are often used as an idealised physical model, the mechanisms of RS can more
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readily be ascribed to the geometric and electronic structure of the active material.

Deposition techniques such as PLD, which is described in Section 2.2, have been

vital to the growth of this field as they allow researchers to fabricate epitaxial, single

crystal, multilayered heterostructures of well-defined stoichiometry with atomic precision.

Considering the VÖ-mediated RS mechanisms presented in Chapter 1 in section 1.2.2,

fine control over oxide stoichiometry allows one to precisely engineer RS devices to reduce

variability and/or enhance RS performance. Further enhancement can be achieved via

the deposition of dedicated oxides between an electrode and active RS layer, which are

described in Chapter 1 in section1.2.6; these not only act as O2−-reservoirs from which

O2− anions can be pushed and pulled during VCM RS, but can also provide additional

functionality. For instance, the device presented in this chapter incorporates a dedicated

yttria-stabilised zirconia (YSZ) tunnel barrier ; this functional oxide was included as the

literature shows that it can be used to tune device operating currents, an effect which is

further described in section 4.3. Perovskite oxide crystals exhibit a multitude of tuneable

electrical and magnetic properties including colossal magnetoresistance, ferroelectricity

and superconductivity [5–10], making them favourable for applications in multifunctional

RS devices in which multiple properties exhibit switching behaviour.

The earliest observations of RS in crystalline perovskite oxides attributed the switching

effect to a charge-injection-induced metal-insulator transition [10–12]. In this electronic

RS model, the oxide layer was described as a structure consisting of multiple metallic

domains, and an electric-field could induce the tunnelling of charge carriers through

these domains towards a biased electrode [12]. However, since then, a large number

of researchers that have undertaken spectroscopic analyses of perovskite oxide RRAM

devices have attributed RS in these systems to ionic effects, specifically bipolar VÖ-

mediated VCM RS [1,11,13]. Typically, this class of materials undergoes area-scaling,

interface-homogeneous VCM RS, from which a gradual, bipolar IV curve is acquired,

as depicted in Chapter 1 in Fig.1.15 [13–18]. Depending on the type of interfacial

oxides employed in the heterostructure, perovskite oxides can display electroforming-free

interface-type VCM RS; as illustrated in Fig.1.10, this means that, in comparison to

devices that do require electroforming, interface VCM perovskite oxides have the potential

to display highly reproducible RS at low voltages. To fully understand the mechanisms
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that permit RS in a tunnel oxide YSZ-PCMO device, programmed devices and their

corresponding lamellae were probed using HAXPES and EELS, which, respectively, are

particularly sensitive to electronic and chemical variations within the sample.

4.1.1 Resistive Switching in Crystalline Pr1−xCaxMnO3

As noted earlier, in perovskite oxides, both the A- and B-site cations can be partially

substituted with dopants to manipulate the conduction characteristics of the material;

in the case of Pr1−xCaxMnO3 (PCMO), Ca2+ is substituted for A-site Pr3+, and

both of these transfer their outer electrons to complete the O-2p shell. Any excess

electrons/holes present introduced due to A-site doping are primarily located in the

3d shell of the B-site transition metal cation, which, in this context, means that the

valence state of the B-site Mn is controlled by the level of A-site Ca2+ doping [19].

A-site doping also leads to the production of VÖ in the material to maintain overall

charge neutrality [20, 21], which is an important parameter to consider for VÖ-mediated

VCM RS. For instance, in 2009, Asanuma et al. investigated the RS performance of a

Pt/Pr1−xCaxMnO3/Ti structure, where x ranged between 0 and 1 (which correspond

to the presence of Mn3+ and Mn4+ respectively), and showed that for all values of x an

interfacial TiOy layer formed via the reduction of PCMO at the strongly reducing Ti

electrode; this redox reaction generated an abundance of VÖ in the PCMO which then

facilitated VCM RS [22]. However, their study also showed that whilst VÖ-migration

between the TiOy and the reduced PCMO mediated RS, the effect of VÖ on the carrier

concentration must also be considered. For instance, in the literature, it has been

shown that A-site doping can be used to tune the dominant carrier-type in perovskite

oxides: Asanuma et al. found that for x < 0.8, holes dominated conduction in their

PCMO, whilst for ≥ 0.8, electrons dominated instead [22]. In their work, RS was only

observed for p-type hole-carrier dominated PCMO in which conduction is known to

occur via polaron hopping along mixed valence state Mn-O-Mn bonds [23–25]. Given

that in PCMO, the presence of VÖ decreases the Mn valence state and in doing so

increases the electron-carrier concentration, the field-induced accumulation of VÖ in

the PCMO at the interface acted as a barrier to polaron hopping, allowing the device

to switch to the HRS. In contrast, RS was not observed for the n-type electron-carrier
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because the accumulation of VÖ in the reduced PCMO caused no significant change

to the carrier concentration. Finally, Asanuma et al. showed that the resistance ratio

(LRS:HRS) varied with x and reached a maximum of 30:1 between x = 0.4−0.5, which

was attributed there being a relatively large concentration of hole-carriers present in

comparison to that found in lighter or heaving Ca2+-doping. In this chapter, PrMnO3

was Ca-doped at comparable levels (x = 0.52) to produce p-type Pr0.48Ca0.52MnO3

with nominal valence states Pr3+, Ca2+ and Mn3.5+ [22].

In a 2014 publication, Herpers et al. studied RS in Pr1−xCaxMnO3 (with x = 0.5)

in a PLD epitaxial SrRuO3(SRO, 30nm)/PCMO(20nm)/Ti(4nm) device, where SRO

served as an inert, ohmic, crystalline bottom electrode, and Ti served as a high work-

function top electrode. Due to VÖ-migration, the device was expected to form interfacial

layers (shown in emboldened text) at the insulator/electrode interface such that the

heterostructure would become SRO/PCMO3/PCMO3−δ/TiOδ/Ti. Given the B-site

oxygen octahedra formed in perovskite oxides, which in the case of PCMO is MnO6,

Herpers et al. expected to observe measurable changes in the Mn valence state in the

PCMO in addition to changes in Ti valence between metallic and oxidised TiOδ as a

result of VÖ-migration. To probe the redox activity of Ti and Mn at the PCMO/Ti

interface (buried ∼ 10nm below the surface) as a function of switching, HAXPES was

employed [26]. This technique revealed that the aforementioned interfacial layers were

indeed formed during Ti deposition, and would later thicken during electroforming,

when the Ti top electrode was positively biased. They identified four distinct resistive

states; in order of magnitude, these were the pristine state, the LRS, the HRS, and

the electroformed state. Of these, only the LRS and HRS were reversible. In each

resistive state the Ti-2p spectrum included contributions from oxidised Ti4+, and metallic

Ti0, where intensity of the Ti4+(Ti0) component increased(decreased) with increasing

resistivity, consistent with the previous literature which showed that the formation of

interfacial TiOδ and reduced PCMO3−δ reduces hole-carrier conduction. In addition,

the O-1s spectra were shown to be the sum of contributions from the TiOδ and

PCMO layers; with increasing resistive state, the intensity of the TiOδ component

decreased as the PCMO component increased. This provided evidence for the reversible

exchange of VÖ between the TiOδ and PCMO3−δ during RS [26]. Similarly, in an
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in-situ, STEM-EELS study on a polycrystalline PCMO RRAM device, Baek et al. probed

a TiN/TiOδN/PCMO3−δ interface and showed that the interfacial oxide underwent

measurable, reversible changes in thickness (of the order of a few nm) under an applied

field during RS [27]. By comparing the Mn-L3 peak position, and the Mn-L3,L2 white-line

ratio, this study showed that the oxygen-deficient PCMO (closest to the interfacial

oxide) contained reduced Mn, whilst further into the PCMO (away from the interfacial

oxide), the Mn was oxidised. Despite showing the spatial extent of the variation in

Mn valence state, no comparison of the Mn valence state between the LRS and HRS

was made. In this regard, Herpers et al. provided some insight; they found that with

increasing resistance, the subtle emergence of a low-energy shoulder on the Mn-2p

doublet indicated a greater presence of Mn3+, which was consistent with the suppression

of polaron hopping due to the presence of VÖ and the reduction of Mn. However,

no significant or reproducible change to the Mn valence state was observed between

the LRS and HRS. This was attributed to the limited probing depth achievable using

HAXPES, which suggests that spectroscopic techniques with larger probing depths must

be used to observe the presumably subtle changes in Mn valence state that occur during

VCM RS [26].

Both studies compared their IV curves with various conduction mechanism models.

For the TiN/TiOδN/PCMO3−δ polycrystalline device, a linear fit best described the

data when ln(I/V ) was plotted against V 1/2, indicating that Poole-Frenkel conduction

was predominant, in which charge carriers hopped along defect sites within the interfacial

oxide, TiOδN, and that this interfacial layer governed the resistance state of the device

overall [27]. In contrast, Herpers et al. proposed that a combination of conduction

mechanisms characterised each resistance state. Using impedence spectroscopy, they

showed that the interfacial oxide, TiOδ, acted as a tunnel barrier, whilst conduction in the

adjacent PCMO was dominated by field-enhanced polaron hopping [26]. In their model,

for thick TiOδ and oxygen-stoichiometric PCMO, polaron hopping was predominant

and the device was in the LRS. However, for thin TiOδ a non-stoichiometric reduced

PCMO, tunnelling was predominant, switching the device to the HRS. The PCMO device

presented in this chapter looks to build upon this RS model by fabricating and studying

a similar device heterostructure that, instead of using a strongly reducing top electrode
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to form an interfacial oxide, employs a dedicated tunnel oxide; this heterostructure is

further described in section 4.2.

For this reason, STEM-EELS was used to probe the spatial extent of any changes

to the Mn valence state across the device heterostructure; to fully characterise the RS

mechanism, both LRS and HRS programmed states are compared and discussed. It

should be noted that valence changes to Pr3+ and Ca2+ are not expected to occur

because, as shown in Fig.4.1, they form the ionic lattice.

4.2 Crystalline Tunnel Oxide Pr0.48Ca0.52MnO3 RRAM

As described in Chapter 1, dedicated interfacial oxides are purposefully deposited

interfacial layers and do not form due to electrochemical redox activity at the interface.

Their basic function is to act as an oxygen-reservoir to facilitate VÖ-mediated RS, however

if carefully chosen, dedicated oxides can offer additional functionality or control over RS

characteristics, such as tunnel oxides, which are employed to promote tunnelling of charge

carriers above any other contributing conduction mechanisms. Tunnel oxide RRAM

devices were first developed in 2008 by UNITY Semiconductor Corporation [2]. Despite

receiving little acclaim, this study notably demonstrated that the as-deposited thickness

of a dedicated tunnel oxide governs the nominal current density of the device; this means

that a tunnel-RRAM device can be tailored according to the requirements of high-density

3D cross-point RRAM architecture, which is described in Chapter 1 [2]. Importantly,

UNITY proposed that the resistance state is dictated by the concentration of VÖ in the

tunnel oxide. Specifically, an accumulation of negatively charged oxygen anions (which is

equivalent to the dissipation of VÖ) in the tunnel oxide was thought to increase(decrease)

the tunnel barrier height and restrict(promote) tunnelling, programming the device to

the HRS(LRS) [2]. Despite this insightful 2008 study, tunnel oxide RRAM devices have

scarcely been investigated since; the study presented in this chapter aims to continue

in this line of investigation by building upon key findings of RS outlined in UNITY’s

tunnel RRAM publication and Herper et al.’s crystalline PCMO publication. In this

study, a Rh(3nm)/YSZ(2.8nm)/PCMO(20nm)/SrRuO3(SRO,30nm)/SrTiO3(STO)

heterostructure, fabricated via PLD by collaborators in Jülich is presented. Each layer
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serves a functional purpose: STO is a perovskite oxide substrate that enables epitaxial

growth (which was described in Chapter3), SRO acts as an inert, ohmic, perovskite

bottom electrode, PCMO is the active resistive switching layer and Rh acts as an

ohmic top electrode. Here, (Y2O3)0.08(ZrO2)0.92 is employed as a tunnel oxide; the

replacement of Zr3+ with Y4+ leads to the formation of multiple VÖ through charge

compensation, which makes YSZ an effective ionic conductor [28]. In fact, for dopant

concentration x , the number of VÖ per unit cell, δ is given by δ = 2− (2+x)(1+x) , which

means that for the YSZ used here, δ = 0.07 [29].

Figure 4.2: PCMO tunnel-RRAM device with heterostructure:
Rh(3nm)/YSZ(2.8nm)/PCMO(20nm)/SrRuO3(SRO,30nm)/SrTiO3(STO). During
electrical characterisation, the bottom electrode, SRO, was grounded.

The literature strongly suggests that RS in this tunnel-RRAM PCMO device will

be mediated by the field-driven exchange of VÖ between the tunnel oxide and PCMO;

to observe and investigate this effect, HAXPES and EELS were employed. During

HAXPES, multiple devices can be irradiated at once, providing a relatively quick general

assessment of the electronic proprieties of materials within the probing depth. HAXPES

can also be done in-operando. In comparison, although EELS requires dedicated lamellae

fabrication, and can only be used to probe one sample that has been programmed

ex-situ, its high spatial and energy resolution and sensitivity allows one to probe subtle

chemical changes that occur during RS. In addition, as the intensity of a deconvoluted

EELS core-loss edge is proportional to the number of atoms per unit area (described by

Eqn.2.5), the number of oxygen anions being exchanged between the YSZ and PCMO

that effect a change in resistance state can be quantified, which is not possible using

HAXPES. Furthermore, given the large amount of literature of Mn valence, EELS can
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be used to assess any RS-induced redox activity at the YSZ/PCMO interface, and could

potentially reveal the much anticipated differences in Mn valence state induced by RS.

With regards to electrical characterisation, by fitting the IV characteristics to conduction

mechanism models, it is possible to elucidate the predominant conduction mechanism(s)

governing each resistive state. As explained in Chapter 2, the low-loss EELS spectra can

be used to reveal some information regarding the electronic properties of the material.

However, before using spectroscopy techniques to probe of the device, it was electrically

characterised; these results are discussed in section 4.3.

4.3 Electrical Characterisation

Figure 4.3: Quasi-static I-V curves showing the 1st and 3rd RS cycles (represented by
solid and hollow circles respectively) acquired from a bulk Rh/YSZ/PCMO/SRO device
across voltage range ±3V. The same data are plotted in (a) and (b) which use linear and
semi-log scales respectively. Here, the colour scale runs from blue→green→yellow→red
in the direction of the source voltage to allow an assessment of RS polarity. The inset
clarifies the device heterostructure (shown in Fig.4.2) and identifies the source (Rh, top
electrode) and ground electrodes respectively (SRO, bottom electrode).

Collaborators based in Jülich electrically characterised the device. Fig.4.3 displays

representative quasi-static IV curves obtained from a bulk sample in which the SRO

bottom electrode was grounded with respect to the Rh top electrode (as shown in

inset in Fig.4.3(a)). Figs.4.3(a) and (b) present identical datasets, however Fig.4.3(b)

employs a semi-log scale for greater clarity. Here, the direction of RS is expressed by the
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colour scale: from the start to the end of the voltage cycle, the marker colour gradually

changes from dark blue to green to yellow to red. Fig.4.3(b) shows that the device is

initially in the LRS and that at VRESET = +3V, the device switches into the HRS during

a RESET process. At the opposite voltage polarity, the device undergoes a SET process,

in which it switches from the HRS to the LRS at VSET =−3V. The RS polarity exhibited

by these tunnel-RRAM devices is consistent with that of p-type crystalline perovskite

oxide devices presented in the literature [1, 25]. At VREAD = −0.7V, the resistance

ratio is 1.5:1; however, this relatively small window is consistent with perovskite oxide

RRAM devices presented in the literature [26]. In Fig.4.3, both the initial (represented

by filled markers) and a successive (represented by empty markers) cycles are shown;

both switching transitions (SET and RESET) occur at the same switching voltages for

each cycle, which means these devices display good reproducibility. Furthermore, as the

switching voltages remain constant in successive cycles, these devices do not require an

electroforming process, which is typified by a greater initial VSET . However, a third of

all tested devices revealed an increased measured current during the initial cycle, which

dropped in successive cycles to the current levels shown in Fig.4.3.

In Chapter 1 section 1.13, filamentary and area-homogeneous VCM RS were in-

troduced; these two VCM geometries are typically identified by monitoring changes to

the electrical characteristics as the area of the top electrode is scaled. In this work,

numerous tunnel-RRAM devices were fabricated through the deposition of multiple

square electrodes with side lengths 10, 20, 30, 50, 100, and 200µm. The magnitude of

resistance for the pristine state (PS, shown in black), LRS (shown in blue) and HRS

(shown in red) are presented in Fig.4.4(a), which shows the inverse scaling of the LRS

and HRS with top electrode area, where the gradient is close to m =−1. This suggests

that the RS effect is homogeneous and occurs over the entire area of the top electrode,

which is often associated with the gradual transition between resistance states displayed

in Fig.4.3. Although PS does show inverse scaling with top electrode area, it deviates

from m =−1; this is most likely due to the contribution from the devices that displayed

an increased LRS current in the during the initial sweep.

UNITY’s tunnel-RRAM model was supported by evidence showing the dependence

of current density on tunnel oxide thickness [2]. To determine whether our PCMO
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tunnel-RRAM results are consistent with this, the effect of tunnel oxide thickness was

explored, the results of which are presented in Fig.4.4(b). The use of tunnel oxide

thicknesses 20Å, 24Å and 28Å revealed that the current density decreases exponentially

with increased YSZ thickness, agreeing with the tunnel model. Measured IV curves

acquired from devices with different YSZ thicknesses were also compared to a simplified

transport model describing a series connection consisting of an ohmic resistance (which

represents the SRO and other ohmic losses) and a field-accelerated polaron hopping

model (which represents the PCMO) [24], and is shown in Fig. 4.5(a). The comparison

highlighted the inadequacy of the simplified polaron hopping model, which outputted

currents that significantly exceeded those measured. Instead, an appropriate fit was

achieved after the inclusion of a tunnel barrier component, which is consistent with

Herper et al’s dual-component model [30,31].

Figure 4.4: Scaling characteristics of bulk Rh/YSZ/PCMO/SRO device. Here the HRS
(shown in red), LRS (shown in blue) and PS (shown in black) are shown as a function
of (a) device area on a log-log scale and (b) YSZ tunnel oxide thickness on a semi-log
scale. Image adapted from [30].
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Figure 4.5: (a) measured IV curves acquired for tunnel oxide thicknesses 20Å, 24Å, 28Å
(blue lines) across ±3V voltage sweeps, and compares them to polaron hopping (green
line). Image adapted from [30].

By way of determining whether HAXPES and STEM-EELS measurements could be

acquired from a programmed device, collaborators at Jülich acquired retention data over

the course of 33 hours; the results are shown in Fig.4.6. During this time, a series of

pulses at VREAD =−0.7V were used to probe both LRS- and HRS-programmed devices.

Whilst the HRS remained at a stable resistance of 0.25MΩ, the LRS relaxed towards

a higher resistance over time, until reaching stability at 0.21MΩ. This type of PCMO

LRS relaxation was previously observed in an Al/PCMO/Pt bipolar VCM device [32].

In this study, the device switched to the HRS due to the field-induced formation of an

interfacial oxide, AlOx , which acted as a Schottky barrier, and switched back to the LRS

when the field was reversed at a magnitude sufficient to stimulate the dissolution of the

AlOx . Here, the metastability of the LRS was ascribed to the fact that the free energy of

AlOx formation was lower than that of the highly reducing metal Al; it was argued that

this low energy of formation meant that after the removal of an applied AlOx -dissipating

field, a thin AlOx layer would gradually form over time, which in turn, would gradually

increase the resistance of the LRS, as observed [32]. In terms of the tunnel RRAM

device presented here, it is feasible that a comparable mechanism could be the cause

of the observed LRS relaxation, wherein it is energetically favourable for some portion

of the migrated oxygen anions to gradually return to the YSZ after the SET process.

Despite this LRS relaxation, the device proved stable for spectroscopic investigation up

to 24 hours post-programming. The analysis of STEM-EELS and HAXPES spectra are

presented in sections 4.4 and 4.5 respectively.
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Figure 4.6: Retention of HRS and LRS measured over 33 hours. Resistance values were
obtained using 250µs READ pulses at VREAD =−0.7V after programming using 1ms
pulses at VSET = +2V, VRESET =−3V. Image adapted from [30].

4.4 STEM-EELS Analysis

Table 4.1: Acquisition information for contributing EELS datasets. LRS- and HRS-
programmed devices are shown in blue and red respectively.

Acquisition Time (ms)
Dataset Offset (eV) Dispersion (eV/Ch)

Low-Loss High-Loss
Acquisition Ratio State SI Length (nm)

LRS3 535 0.25 199 0.995 200 LRS 15
LRS4 535 0.25 499 0.998 500 LRS 30
LRS5 190 0.5 49 0.980 50 LRS 15
LRS6 190 0.5 99 0.990 100 LRS 30
HRS1 190 0.5 99 0.990 100 HRS 30
HRS2 190 0.5 99 0.990 100 HRS 15
HRS3 535 0.5 499 0.998 500 HRS 30
HRS4 535 0.25 498 1.99 250 HRS 15
HRS5 190 0.5 199 0.995 200 HRS 15

Due to its high spatial and energy resolution, EELS allows one to probe the electro-

chemical response of individual active layers within a given RRAM device. With regards

to our PCMO tunnel-RRAM device, the literature strongly suggests that these active

layers are the YSZ tunnel oxide, and the O2−-deficient PCMO, where RS is mediated

by the field-induced exchange of VÖ across the YSZ/PCMO interface [22, 26, 27].

Considering the literature, which anticipates and alludes to measurable, reversible, VÖ-

migration-induced Mn redox activity, a notable EELS measurement would be that of

the valence state of Mnn+ within the vicinity of the YSZ/PCMO interface [11,19,26].

Lamella samples, prepared using the DualBeam FIB instrument (see Chapter 2 section

2.4), were obtained from ex-situ programmed devices, allowing for comparison of HRS
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and LRS devices. However, before RS-induced chemical changes can be identified, static

device characteristics, that is, those that are irrespective of programmed state, must be

understood. These static characteristics are presented in section 4.4.1, and are followed

by a comparison of the HRS-programmed and LRS-programmed devices in section 4.4.2.

Table 4.1 presents the acquisition information (described in Chapter 2) corresponding

to the EELS datasets that contributed to this study; LRS-programmed devices are

shown in blue whilst HRS-programmed devices are shown in red. To compare between

these two resistance states, datasets were first grouped according to their energy offset

and dispersion. This is an essential precaution that must be taken in order to account

for nonlinearities in the spectrometer; if this is not addressed, absolute quantification of

the onset of a core-loss edge (i.e. the chemical shift, which is an indicator of oxidation

state) is not possible. As shown in Table 4.1, the acquisition ratio (the ratio between

the acquisition time used for low- and high-loss spectra) varies across the datasets; to

compare across these datasets, the integrated intensity of the high-loss spectra was

normalised using acquisition ratio. Finally, the datasets span different lengths across

the heterostructure: the short datasets (15nm) include the Rh and YSZ layers, and

the YSZ/PCMO interface, whereas the long datasets (30nm) include the Rh, YSZ and

PCMO layers, and the PCMO/SRO interface.
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4.4.1 Static Device Characteristics

Figure 4.7: DF image of the tunnel-oxide PCMO RRAM device with (inset) Fast Fourier
Transform. A protective Pt capping layer was deposited during lamella preparation prior
to STEM.

A BF STEM image of a typical device is shown in Fig. 4.7; here, the crystalline

lattice is just visible at this magnification, providing some evidence for the excellent

hetero-epitaxial relationship of PCMO and SRO with the underlying STO substrate,

and no dislocations are observed at the PCMO/SRO interface. No higher magnification

images were procured due to time constraints. The inset FFT is dominated by a square

pattern of sharp spots that are streaked along the sample normal in the (001) direction.
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Figure 4.8: (a) Pr, (b) Mn and (c) O background-subtracted core-loss edges extracted
from the bulk PCMO. (d) Pr (orange), (e) Mn (blue) and (f) O (purple) signal maps were
generated by integrating under the core loss edge and plotting the integrated intensity
for each x,y pixel (0.095nm2) with the EELS-SI (EELS datacube). (g) normalised dis-
tribution of elements across the RRAM heterostructure, where vertical grey dashed lines
are used to highlight interfacial regions and the horizontal green dashed lines represent
the expected oxygen intensity, according to Eqn.2.11. (h) evolution of oxygen across
the oxygen-containing layers of the device, where the colour distribution (brown→blue)
indicates spectra obtained from progressively increasing(decreasing) distances from the
YSZ(SRO), shown in brown(blue). All spectra were processed using PCA and were
normalised to the maximum intensity peak for ease of comparison. A vertical dashed
line highlights the shift of peak b across each layer.
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Fig.4.8 displays the elemental distribution of O, Mn and Pr across the device

heterostructure. After basic EELS processing (described in Chapter 2 Section 2.17), Pr-

M5,4, Mn-L3,2 and O-K core-loss edges (shown in Figs.4.8(a), (b), and (c) respectively)

were extracted from a ≈1nm2 region of interest the middle of the PCMO layer. As

stated above, all core-loss edges extend above a background signal which, in standard

practice, is fitted with a power law background and then subtracted before analysis.

Integrating over the energy range that isolates a particular peak (such as 930-934eV

for the isolation of the Pr-M5 peak) produces a 2D map that shows the integrated

intensity within that energy range for each x,y -pixel within the SI; these signal maps are

shown for Pr-M5, Mn-L3, and O-K (peak b) in Figs.4.8(d), (e), and (f) respectively. As

explained in Section 2.7.3, these signal maps can be normalised in three ways to allow

for comparison across multiple datasets with different acquisition conditions: to account

for the variations in integrated signal intensity caused by thickness changes across the

lamella; to account for the variations in intensity of the ZLP; and finally, to account for

the atomic cross-section for each element. The normalised signal map for each element

was summed in y to produce the profiles displayed in Fig.4.8(g), which shows the spatial

distribution of and relative ratio between O, Mn and Pr across the device, where vertical

grey dashed lines highlight regions corresponding to the Rh/YSZ, YSZ/PCMO and

PCMO/SRO interfaces respectively. In Fig.4.8(g), the O-K signal (shown in purple) is

present in the YSZ, PCMO and SRO layers and the Pr and Mn signals (shown in yellow

and blue respectively) rise to maximum intensity in the bulk PCMO region, as expected.

In addition, Fig.4.8(g) also shows that within the bulk PCMO, the ratio between the

elements Pr:Mn:O is approximately 1:0.5:3.8, which mostly agrees with the nominal

ratio (1:0.5:3), however, there is a surplus in the relative oxygen content. It is possible

that this surplus could be due to the presence surface oxides that may contaminate the

exposed faces of lamella, however it is also possible that oxygen may have migrated into

the PCMO from the YSZ or the PCMO. As shown in Section 2.7.3, the normalisation

process results in intensity that is proportional to the product of n, the number of

atoms per unit volume, and λ, the mean free path. For stoichiometric 8%-YSZ, there

are 1.9 O atoms per unit cell [29], which has volume VY SZ =135Å
3
[33], whilst for

PCMO there are three atoms per unit cell, which has volume VY SZ = 233Å
3
[34]. Using
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the Log-ratio model (formulated by Iakoubovskii et al. [35]), the calculated mean free

paths for each layer in the RRAM heterostructure were found to be λY SZ = 109nm,

λPCMO = 101nm and λSRO = 96nm; therefore, applying Eqn.2.11, the ratio between

the normalised intensities of the O signal for fully stoichiometric YSZ and PCMO is

given by IPCMO
IY SZ

=
(
1.9
135

)(
233
3

)(
109
101

)
= 1.2. Similarly, the ratio between the normalised

intensities of the O signal in the perovskite oxides PCMO and SRO is expected to

be IPCMO
ISRO

=
(
96
101

)
= 0.95 at full stoichiometry. In addition to the normalised O signal

distribution, the calculated signal intensities for fully stoichiometric YSZ, PCMO and

SRO are plotted with green dashed lines in Fig.4.8(g) and reveal a clear difference

between nominal and measured stoichiometry. Given that it is unlikely that PCMO

contains a surplus of O atoms, it appears that the YSZ and SRO are sub-stoichiometric.

However, as these are lamella extracted from programmed devices, deviations from

stoichiometry are expected, and, as will be discussed in Section 4.4.2, the relative density

of O atoms in the YSZ ultimately showed dependency on the programmed resistive

state, which is attributed to VÖ-migration during RS. As mentioned above, Fig.4.8(g)

also indicates that there is a large drop in the number of O atoms in the SRO, which is

greater than that expected due to the change in mean free path; however, under closer

inspection of the high-loss spectrum, it became clear than the appearance of a Ru-M3

at 461eV affected the background subtraction window before the O-K edge, which lead

to an overestimation of the background contribution to the core-loss edge; therefore,

an assessment of relative oxygen density in the SRO layer is somewhat limited. The

appearance of the Ru-M3 edge also affected the Mn-L3,2 edge, which is in close proximity

to the O-K edge; this means that the apparent difference between the decay of the Mn

and Pr signals at the PCMO/SRO interface should not necessarily be interpreted as a

greater diffusion of Pr into the SRO than Mn.

In addition to using signal intensity to assess relative changes in oxygen density, which

is the basis of the normalisation process used above and described in Section 2.7.3, the

shape of the ELNES can also be used to identify the presence (or absence) of VÖ in a

oxide given material [36, 37]. To evaluate this a comparison of the O K-edge acquired

from each oxygen-containing layer (YSZ, PCMO, SRO) of the device is presented in

Fig.4.8(h), where the signals were extracted after PCA processing. For perovskite
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manganites, the O K-edge has fine structure comprising three main peaks: the first peak

(labelled a), located at 530eV, corresponds to hybridised O-2p and Mn-3d states and has

been shown to decrease with lowering Mn valence state and an increased concentration

of VÖ [36,38]; the second peak (labelled b), located at 536eV, is associated with bonding

to Pr-4f, Pr-5d, and Ca-3d states [39,40]; and the third peak (labelled c), located at

543eV is attributed to hybridised O-2p and (delocalised) Mn-4s/Mn-4p states [41]. Also

a perovskite oxide, the SRO ELNES contains peaks a, b and c, however, in comparison

to the PCMO, peaks a and b are broadened whilst peak c weakens; this can be seen

most clearly in Fig.4.8(h). In the literature on perovskite manganites, the broadening

of peak b, when associated with the weakening of peaks a and c, is attributed to the

increased presence of VÖ [36,42], however it is unclear whether this interpretation can be

applied to SRO, as the effects of VÖ on O K-edge ELNES for different perovskite oxides

vary. For instance, in the case of STO, the increased presence of VÖ causes an increase

in peak a, coupled with the decrease of peaks b and c, which contrasts that observed

for PCMO [43]. Therefore, in the absence of literature on SRO ELNES, it is unclear

if the SRO has a greater, equal or lower VÖ-concentration than the PCMO. There is

a clear difference between the O K-edge obtained from the YSZ and the perovskite

oxides, namely, the absence of peak a, and near negligible peak c. According to the

literature, a YSZ oxygen K-edge is a doublet feature, in which the relative intensities of

each peak and FWHM (if considered as a single intensity band) can be used to identify

the crystalline phase of the YSZ [44, 45]; due to the amorphous nature of the YSZ,

evident in Fig.4.7, a broad single peak is observed.
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Figure 4.9: (a) Cropped HAADF image of the tunnel oxide RRAM heterostructure.
The rainbow-coloured arrow above the YSZ/PCMO interface, which changes from
brown→yellow→green→blue, indicates which line spectra in (b), (c) and (d) correspond
to which regions of the YSZ/PCMO interface. (b) Graduation of background-subtracted
O K-edge, which comprises peaks a, b and c, and the Mn core loss edge, which comprises
L3,2 peaks, from the red line spectra, which has a larger YSZ component, to the blue
line spectra, which has a larger PCMO component. In (c) and (d), the red, orange and
blue line spectra at (c) Mn-L3,2 and (d) Pr-M4,5 are compared where the orange line
spectrum represents a transition state between the YSZ-rich brown, and PCMO-rich
blue line spectra.
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As highlighted earlier, VÖ-exchange across the YSZ/PCMO interface is expected

to occur during RS in PCMO tunnel-RRAM devices. Therefore, it is important to first

understand the chemistry within the vicinity of this interface irrespective of programmed

state. Fig.4.9 reveals such information extracted from a 4nm wide region across the

YSZ/PCMO interface. It is important to note that this data was processed using PCA,

the noise-reducing technique presented in section 2.7.5. The use of PCA means that the

introduction of artefacts, which manifest as repeated shapes superimposed on the line

spectra and must be isolated and excluded from the interpretation of results. Fig.4.9(a)

is a cropped HAADF image that shows all layers within the PCMO tunnel-RRAM

device, excluding the STO substrate. The rainbow coloured arrow, which graduates

from brown→ orange → green → blue and is situated above the YSZ/PCMO interface,

indicates which colours in Figs.4.9(b-d) represent which regions of the YSZ/PCMO

interface: here, the brown(blue) end of the arrow corresponds to the part of the

YSZ/PCMO interface with a larger YSZ(PCMO) component. This progression across

the interface can be seen clearly in Fig.4.9(b) in which the same power-law background

has been subtracted for all line traces: as we move in the direction of the rainbow arrow

(brown→blue), the relative intensity of the Mn core loss edge increases. Starting in the

region with the largest YSZ component, the brown trace includes a O-K edge (at 530eV)

dominated by a broad peak b, which we take to be a characteristic of amorphous YSZ;

the brown line trace also includes the lowest intensity Mn-L3,2 peaks (at 640eV). Moving

towards the PCMO, the line traces reveal a gradual increase of peaks a, a decrease

and narrowing of peak b and an increase a broadening of peak c. These changes are

consistent with the Mn being more reduced at the YSZ/PCMO interface than the bulk,

which is consistent with VÖ-migration from the YSZ into the PCMO (equivalent to

O2−-migration from the PCMO into the YSZ). However, to truly evaluate whether this

is an effect of redox activity or simply a gradual change between the two materials,

the Mn-L3,2 edge (shown in Fig.4.9(c)) must be assessed in conjunction. Of all the

spectra displayed in Fig.4.9(a) the red, orange and dark blue spectra, which span 3.5nm,

can be used as indicator for Mn valence state; according to the literature which relates

the intensity of peak a to the presence of VÖ in perovskite manganites, these spectra

represent the reduced, transitioning, and oxidised phases of PCMO respectively [38].
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In Fig.4.9(c), the Mn-L3,2 peaks, which are normalised to the intensity of the Mn-L3

peak, show a clear graduation in both the Mn-L3 chemical shift and the Mn-L3,2 peak

ratio, effects which would only be observed if redox activity (due to VÖ-migration) has

occurred at the interface [46]. Although subtle, in Fig.4.9(c), the red trace features an

Mn-L3 peak that is shifted to lower energies: the inset shows that the red line trace

rises to its maximum at consistently lower energies than the orange trace, which, in turn,

rises at lower energies than the blue trace; here, the difference between the red and

blue traces is 1eV, which, according to the literature, corresponds to a valence change

of Mnn−0.3 [46,47]. With respect to the normalised intensity of the Mn-L3 peak, the

Mn-L2 peak gradually increases from its lowest intensity in the red line trace, to its

highest intensity in the blue trace. Both of these trends are consistent with the brown

trace being more reduced than the orange trace, which is more reduced than the blue

case. Relating this back to specific regions within the YSZ/PCMO interface, within the

vicinity of the YSZ, the PCMO contains reduced Mn, which gradually becomes more

oxidised further away from the interface (towards the bulk PCMO). Although a ’doublet’

feature can be seen in the red line trace at the Mn-L2 peak maximum in Fig.4.9(c), it

cannot be reliably distinguished from noise and is present in peak c of the O-K, and as

such is not interpreted as a valence-state-indicative feature, instead it is most likely a

PCA-introduced artefact. Despite this, interestingly, all three line traces overlap on the

incline towards the Mn-L2 maximum yet decline (between 653eV-637eV) at different

gradients, revealing a broadening of the Mn-L2 peak as the PCMO component increases.

In the literature, the relationship between the broadening of the Mn-L2 and Mn valence

state is not well characterised, however, considering the clear, graduated changes in

Mn-L3 chemical shift, Mn-L2 white-line ratio and Mn-L3,2 shape, broadening of the

Mn-L2 peak may be an additional effect of valence change. The gradual changes across

the YSZ/PCMO interface observed in the O-K and Mn-L edges are consistent with

VÖ-migration from the YSZ into the PCMO. This direction of migration agrees with

the normalised O intensity profile presented in Fig.4.8(g), which revealed that the YSZ

was sub-stoichiometric and oxygen deficient.

For comparison, Pr-M5,4 peaks, extracted from the same regions as shown in

Fig.4.9(c), are shown in Fig.4.9(d). In the literature, VÖ-migration in PCMO typically
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causes a change in the Mn valence state and this change is attribute to the MnO6

octahedron. However, surprisingly, changes to the shape of the Pr-M5,4 peaks are

observed in this work. In comparison to Mn, there is little literature that discusses how

valence state manifests in Pr-M5,4 ELNES. Of these, Herrero-Martin et al. showed

that the Pr-M5 peak is shifted to lower energies and the ratio between the Pr-M5 and

Pr-M4 peaks increases for reduced Pr3+ in comparison to oxidised Pr4+ [48]; Richter et

al. observed no change in Pr-M5 peak position between valence states, which is likely

due to the lower energy resolution used, but confirmed the trend in Pr-M5,4 peak ratio,

and further noted the appearance of a pronounced low-energy shoulder for Pr3+ [49].

With regards to the Pr-M5,4 peaks extracted from the YSZ/PCMO interface shown in

Fig.4.9(d), there is a clear low-energy shoulder present on the Pr-M5 peak in the red line

trace that is not present in the orange or blue traces, which could indicate the presence

of a more reduced Pr phase in the region with a larger YSZ component, as seen in the

literature [50]. However, the Pr-M4 peak shows a gradual transition from a prominent

Pr-M4 low-energy shoulder in the red line trace to a weak low-energy shoulder in the

blue line trace; this transition is most clearly seen in the inset. According to to Richter

et al., this is consistent with the gradual transition from Pr3+, within the vicinity of the

YSZ, towards Pr4+ away from the YSZ, which is an unexpected interfacial reduction

effect not typically associated with interfacial redox activity in PCMO in the literature.

Due to the potential for the introduction of artefacts during PCA processing and the

lack of consistency in the literature, it is difficult to be confident in the PCA-analysis of

the Pr-M5,4 peak. Therefore, all further analysis presented in this chapter was processed

without the use of PCA.

As evident from Fig.4.9, the chemical shift at the YSZ/PCMO interface can occur

over a narrow range (4nm in Fig.4.9(c)) and can be difficult to distinguish by overlapping

spectra. Therefore, the spatial extent of the shift of Mn-L3 and Pr-M5 peaks were

assessed for all datasets; an example of the profile (across x) of peak shift is shown

in Fig.4.10(b), where Mn-L3(Pr-M5) shift is shown in purple(orange). According to

the literature, the -1.3eV shift of Mn-L3 at the YSZ/PCMO interface corresponds

to a change in Mn valence state equal to Mnn−0.8, which means that if the bulk

PCMO contains nominal Mn+3.5, then Mn+2.7 is present at the interface. Across all
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datasets, at the YSZ/PCMO interface, the Mn-L3 peak underwent negative chemical

shifts that ranged between 0.4eV and 2.5eV, which corresponded to Mn valence states

which ranged between Mn+3.3 and Mn+2 respectively [47]; in some cases, this shift

extended up to ∼12nm from the YSZ/PCMO interface. These results indicate that

although gradual electrode-area-scaling RS is observed, inhomogeneous redox activity

occurs at the YSZ/PCMO interface. This is interesting because the literature largely

defines VCM RS geometry as either abrupt filamentary switching or gradual, area-scaling

homogeneous switching. Here, we show that in these tunnel RRAM devices, the latter

represents an ideal as area-scaling, gradual RS can occur due to inhomogenous interfacial

effects. Finally, no changes in peak position were observed at the PCMO/SRO interface,

indicating an absence of redox activity at this bottom electrode, as expected.

Figure 4.10: Typical (a) Cropped HAADF image and (b) peak shift of Mn-L3 (shown
in purple) and Pr-M5 (shown in orange) core-loss edges as a function of distance (x)
across the device.

4.4.2 Comparison of HRS and LRS

Acknowledging the literature, one would expect that during RS, in order to compen-

sate for the migration of VÖ between the YSZ and PCMO, the Mn would be subject

to field-induced redox activity within the vicinity of the YSZ/PCMO interface, whilst

the components of the ionic lattice (here Pr and Ca) remained unchanged [22,25,51].

In addition, given the dependence of each resistance state on top electrode area (see

Fig.4.4), this field-induced redox activity is expected to be homogeneous under the
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entire electrode area. The analysis of ex-situ programmed devices presented in Section

4.4.1 revealed evidence of the inhomegeneous redox activity of both Mn and Pr at the

YSZ/PCMO interface of all programmed devices due to VÖ-electromigration during RS.

In this section, O, Mn and Pr core-loss edges acquired at the YSZ/PCMO interface from

HRS and LRS programmed devices are contrasted and presented in Fig.4.11. For many

of the datasets, deconvolution was not possible due to the presence of multiple close

core-loss edges. However, for those that had comparable thickness
(
t
λ

)
, convolution

effects were assumed to be roughly equivalent, allowing for direct comparison between

datasets acquired at equivalent energy offset and dispersion. For those datasets that

could not be deconvoluted and did not have comparable thickness, the edge-onset (peak

position) was used to determine the extent of interfacial reduction, as this parameter is

not affected by convolution.

In Fig.4.11, two spectra acquired at the same energy offset and dispersion are

compared; one of these was extracted from a LRS-programmed device (shown in

blue), and the other was extracted from a HRS-programmed device (shown in red).

Although only one line spectra representing each programmed state is shown, these are

representative of a majority of the datasets acquired in this work. As mentioned earlier,

the line spectra presented in Fig.4.11 have not been subject to PCA, therefore changes

in shape (above noise) observed are significant and not the result of artefacts. Looking

first at the O K-edge in Fig.4.11(a), both spectra reveal a wide, broadened peak that is

characteristic of amorphous YSZ. The most notable difference between programmed

states is the relative intensity of its two components, peak b1 and (normalised) peak

b2: here, the HRS(LRS) is characterised by a strengthened(weakened) peak b1 and

a broadened(narrowed) peak c. Considering the literature, this change is indicative

of a change in the local bonding environment within the YSZ, and suggests that the

LRS corresponds to a more tetragonal-like bonding environment, whereas the HRS

corresponds to a more cubic-like environment [45]. With regards the Mn-L3,2 edge, a

number of changes were observed: the HRS line trace is shifted -0.5eV with respect to

the LRS; both of the Mn-L2 peaks were more asymmetric in the LRS than the HRS, and

in the literature, such asymmetry is associated with increased presence of unoxidised Mn

metal; and finally, the relative intensity of the Mn-L2 peak is reduced in the HRS. All of
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these changes are consistent with the HRS having a greater proportion of reduced Mn

than the LRS, which has a greater proportion of oxidised Mn. To quantify the difference

between HRS- and LRS-Mn valence states at the YSZ/PCMO interface, we can consider

Loomer et al.’s study, which suggests that the Mn valence state difference associated

with a shift of -0.5eV is Mnn−0.3 [47]. For the HRS dataset presented in Fig.4.11, the

relative peak shift between the Mn-L3 peak acquired from the bulk PCMO and the

YSZ/PCMO interface was -2.5eV, which puts the nominal valence state of the HRS at

the YSZ/PCMO interface at Mn2+, and the LRS at Mn2.3+. Furthermore, if the charges

are balanced, then for Pr4+0.48Ca
3+
0.52Mn2.3+O2−3−δ, δ =0.1, and for Pr4+0.48Ca

3+
0.52Mn2+O2−3−δ,

δ =0.25, which indicates that there is an exchange of δ =0.15 between programmed

states. According to Goff et al.’s study, it is possible for tetragonal YSZ to contain

δ = 0.2 (measured for YSZ doped at 24%), which suggests that an exchange of δ =0.15

across the YSZ/PCMO interface is feasible [29]. For each dataset, relative to the bulk

PCMO, the Mn underwent a peak shift of less(greater) than 1eV for the LRS(HRS)

(calculated as shown in Fig.4.10(b)). In addition, a relative shift of -0.5eV, which

corresponds to Mnn−0.3, was consistently observed between the HRS and LRS, where

the HRS was shifted negatively with respect to the LRS. Interestingly, as in Fig.4.9(c),

the Pr-M5,4 peaks show evidence of Pr redox activity in Fig.4.11(c): here, the HRS is

shifted by -0.7eV with respect to the LRS, which, according to Herrero-Martin et al., is

consistent with a greater proportion of reduced Pr in the HRS than in the LRS [50].

Across all paired datasets, the negative shift of the Pr in the HRS was observed, however,

in terms of peak ratio and shape, there was no clear distinction between the programmed

resistance states, which is unexpected as changes in valence state cause changes in

both peak shape and peak position. As noted in the discussion of Fig.4.9(d), the sparse

and conflicting EELS literature on the valence state of Pr limits our interpretation of

the results. For instance, a change in peak position could be due to non-linearities in

the spectrometer dispersion that are exaggerated at higher energy loss. On the other

hand, unlike Mn, Pr peak ratio and shape may not change linearly with chemical shift.

In either case, it is difficult to reliably assess valence state of Pr at this time.
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Figure 4.11: Representative comparison of HRS (red) and LRS (red) spectra acquired
from two datasets at the YSZ/PCMO interface. Sub-figures show the (a) O K-edge
(b) Mn-L3,2 edge and (c) Pr-M5,4 edge. For both spectra the acquisition parameters
were identical: pixel size was 0.2nm2 and dispersion was 0.5eV/Ch.
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Figure 4.12: Normalised distribution of elements in (a) the LRS and (b) the HRS. O,
Mn and Pr are shown in purple, blue and orange respectively and in (b) the Ca profile
is shown in pink. The main difference between these LRS- and HRS- representative
distributions is the relative change in O content between the YSZ and PCMO. The
horizontal dashed green line is positioned to represented the expected O-K edge intensity,
relative to the bulk PCMO, as calculated using Eqn.2.11.

Representative normalised elemental distributions of O, Mn and Pr are presented in

Fig.4.12 where, as in Fig.4.8(g), the expected O intensity, relative to the bulk PCMO

and calculated using Eqn.2.11, is shown for each oxide with horizontal green dashed

lines. Interfaces between these materials are highlighted with grey dashed vertical lines.

In the LRS and HRS (presented in Figs.4.12(a) and (b) respectively), the normalisation

process resulted in an Mn:O:Pr ratio of 1:3.8:0.5 and 1:3.3:0.5 in the bulk PCMO

respectively; the difference in O content could be indicative of a relative increase of
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O atoms in the PCMO in the LRS in comparison to the HRS, however evidence of

VÖ-migration into and out of the PCMO must also be found to confirm this. As shown

earlier (in Section 4.4.1), the expected relative change in the O signal intensity across

the YSZ:PCMO:SRO in a static device is 1.2:1:0.95; in Figs.4.12(a) and (b), this

expected O intensity (relative to the bulk PCMO) is presented using horizontal dashed

green lines. In Fig.4.12(a), which represents the LRS, the YSZ is sub-stoichiometric

with respect to the bulk PCMO. In Fig.4.12(b), which represents the HRS, the YSZ

is also sub-stoichiometric with respect to the bulk PCMO, however, unlike the LRS,

the O signal in the YSZ is significantly increased w.r.t. the PCMO. This change is

consistent with there being more O2− present in the YSZ in the HRS than there is in the

LRS. Considering the fact the in the bulk PCMO, the HRS contained less O (relative

to the Mn) than the HRS, then the accumulation of O2− in the YSZ in the HRS is

consistent with O2−-migration from the PCMO into the YSZ across the YSZ/PCMO

interface. Specifically, the results suggest that the HRS is programmed when the Rh

top electrode is positively biased and O2− migrate from the PCMO into the YSZ, and

conversely, the LRS is programmed when the Rh top electrode is negatively biased

and O2− anions migrate from the YSZ into the PCMO. This O2−-exchange between

the YSZ and PCMO is seen consistently over a majority of the programmed datasets,

however those that showed no significant change remain consistent with the earlier

evaluation of inhomogeneous redox at the YSZ/PCMO interface, in which the degree

of VÖ-migration along the length of the interface would vary.

Considering the critical role of the YSZ tunnel barrier, spectra corresponding to the

HRS- and LRS-programmed devices acquired from the center of the YSZ layer, away

from the YSZ/PCMO interface, were also compared and are displayed in Fig.4.13. This

revealed that overall, the YSZ layer underwent reproducible changes that mirrored those

seen at the interface as a function of switching, however the change is more subtle. As

seen at the interface (shown in Fig.4.4.2(a)), Fig.4.13(a) confirms that the LRS features

a lower intensity pre-edge peak shoulder than the HRS, which is consistent with the

aforementioned variation in local bonding environment in the amorphous YSZ [44,45].

The Low-Loss EELS spectra provides information about the electronic nature of the

probed material. Fig.4.13 presents a comparison of the Low-Loss spectra acquired from
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the YSZ and PCMO, which, like the Core-Loss spectra, exhibit switching-dependent

features. The spectra are in broad agreement with those of the literature [45,52,53].

Features below ∼22eV are ascribed to interband transitions from the O 2p state to

empty Zr states; the broad peak around 26eV is a plasmonic excitation; and features

above 30eV correspond to the Zr N2,3 edge, ie. interband transitions from the Zr 4p

state to other unoccupied Zr states [54]. One might therefore expect the greatest

changes upon switching to be observed below 30 eV, where interband transitions sensitive

to ZrO bonding and environment occur. As expected, there is variability in the intensity

of the peak at 15 eV across all data sets but the LRS datasets tend to have a more

pronounced plasmon peak that would be consistent with an increased metallic character

of the YSZ. Some regions of LRS devices yield spectra which barely differ from the

typical HRS spectrum in the region of the plasmon, once again suggesting the presence

of chemical inhomogeneities.

Figure 4.13: Comparison of HRS (red) and LRS (blue) spectra extracted from the
entire YSZ layer. Subfigures show the (a) O K-edge core-loss edge and (b) the YSZ
low-loss spectra. In (a) the spectra were separated vertically for clarity.
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4.5 HAXPES Analysis

To understand changes to the electronic structure of YSZ and PCMO as a function

of switching, collaborators at Jülich performed HAXPES both in-operando and on ex-situ

devices that were programmed in advance. For pre-programmed devices, the photon

energy was set to 3.2keV and a 5◦ grazing incidence allowed for simultaneous probing

of ∼ 50 devices, meaning that the HAXPES analysis would average over local defects

related to device fabrication.

Figure 4.14: HAXPES spectra showing (a) O-1s (b) Mn-2p (c) Rh-3d (d) Zr-3d for
initial state (black) and HRS- (red) and LRS-programmed (blue) devices. An additional
exposed SRO O1s peak is shown in (a).

HAXPES spectra acquired from ex-situ programmed devices are shown in Fig.4.14.

Fig.4.14(a) presents the O-1s peak, where no changes are seen between the LRS and

HRS. Despite this, there is a notable difference in peak shape between the initial and

programmed states: the change in shape at 532eV was attributed to the contribution

from regions of exposed SRO bottom electrode, which, when probed individually, features
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a high-energy shoulder at 532eV, as shown in green in Fig.4.14(a). However, the spectral

weighting of the exposed SRO was expected to remain constant during the irradiation of

programmed devices; evidence showing a change suggests that VÖ-migration may occur

from as far as the SRO bottom electrode. With regards to the Mn, HAXPES revealed

subtle changes in the Mn-2p spectra between the HRS and LRS, which are shown in

Fig.4.14(b): the low-energy shoulder on the Mn-2p3/2 peak is weakened in the LRS, and

strengthened in the HRS. This change is consistent with that observed via HAXPES

in the literature, which suggests that the Mn closest to the exposed surface (which in

our case is that at the YSZ/PCMO interface), is reduced in the HRS, and oxidised in

the LRS [25]. Notably, the Zr-3d spectra (shown in Fig.4.14(d)) displayed significant

changes as a function of switched state, where reproducible shifts in binding energy (of

the order 0.1eV) were observed; these shifts were not observed for the Rh-3d peaks

shown in Fig.4.14(c). As mentioned in Section 2.8, energy shifts of HAXPES peaks

are indicative of charging effects in the material; the observation of shifts in the Zr-3d

spectra but not the Rh-3d suggests that the charge build up in the YSZ was not due

to the electrical charging of the Rh top electrode. In addition, the resistance states in

Fig.4.14(d) correspond to shifts in Zr-3d binding energy such that the resistance states

can be ordered IS>LRS>HRS. Critically, these shifts are interpreted as evidence for the

build-up of electrostatic charge within the YSZ rather than a change in Zr oxidation

state, because the latter would manifest as secondary features in the Zr-3d which were

not observed. To investigate this charging effect further, HAXPES measurements of

the Rh-3d and Zr-3d spectra were acquired in-operando for single devices during voltage

sweeps, where a typical IV curve is shown in Fig.4.15(b). During biasing, the HAXPES

spectra consistently moved to higher(lower) kinetic energies at negative(positive) bias,

as shown in Fig. 4.15(c). To evaluate the shift in peak position with respect to the

unbiased state, both spectra were fitted using Voigt and modified Donjach-Sunjich

curves respectively [30]. These results are presented in Fig.4.15(d) and show that

the Rh-3d peak shift is linear as a function of voltage, consistent with the HAXPES

measurements acquired from the bulk array which show no change to Rh as a function

of switching (Fig.4.14)(c). In contrast, the Zr-3d peak displays hysteresis consistent

with the hysteresis of current exhibited in the IV curve acquired simultaneously, which
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suggests a strong correlation between charge accumulation in the YSZ and overall

electrical transport of the device. In addition, a remnant 0.2eV shift of the Zr-3d peak is

evident at 0V, and is positive(negative) after a positive(negative) voltage sweep. These

results are consistent with UNITY’s proposed tunnel RRAM mechanism in which charge

accumulation in the tunnel oxide governs the resistance state of the device [2] and that

the retention measurements (Fig. 4.6) are in fact a measurement of the stability of the

accumulated charge in the YSZ over time.

Figure 4.15: (a) a schematic cross-section of the in-operando sample. (b) The IV-
characteristics of a device measured in the UHV HAXPES chamber during collection
of (c) Rh-3d5/2 and Zr-3d−5/2 spectra using voltage sweep 0V→+2V→0V→-3V→0V.
(d) The resulting peak shifts in the Zr-3d and Rh-3d peak positions are shown relative
to the initial position, before a bias voltage was applied. The orange circle highlights
the remnant peak shifts at 0V bias.
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4.6 Conclusion

Based on the electrical characterisation and spectroscopic analysis presented above,

a charge-trapping, VÖ-based mechanism behind the RS exhibited by crystalline PCMO

tunnel-RRAM devices can be described.

EELS analysis of oxygen, manganese and praseodymium core-loss edges provided

evidence for the field-induced exchange of VÖ across the YSZ/PCMO interface, which

is expected for VCM RS. Specifically, through the analysis of peak position, shape and

peak ratio, it was shown that in the HRS, Mn was more reduced than in the LRS within

the vicinity of the YSZ/PCMO interface. It should be noted that the magnitude and

spatial extent of this reduction varied across datasets, which were acquired from different

positions along the YSZ/PCMO interface. This indicates that RS-induced interfacial

redox is inhomogeneous despite showing area-scaling with top electrode area, which

is a parameter often used in the literature to identify chemical homogeneity in RS. As

stated above, at the YSZ/PCMO interface, an evaluation of chemical shift revealed that

Mn had valence states ranging between Mn2+ and Mn3.3+. In the dataset presented in

section 4.4.2, at the YSZ/PCMO interface, the HRS was shown to contain reduced

Mn2+, whilst the LRS contained (relatively) oxidised Mn2.3+, which is consistent with

a change in the number of oxygen vacancies in PCMO3−δ from δ =0.25 to δ =0.1

respectively. A comparison of the quantitative distributions of elements across the device

for LRS- and HRS-programmed devices revealed the direction of VÖ migration and

showed that typically, the HRS (achieved at positive bias), contained more O2− in the

YSZ than the PCMO and vice-versa for the LRS. This confirms that RS is governed by

the exchange of VÖ between the YSZ layer and YSZ/PCMO interface. This exchange

is consistent with that displayed by the IV curves in Section 4.3, which show that when

the Rh top electrode is positively biased, it eventually switches to the HRS; according

to the known direction of migration of charged species through an electric field, this

RESET transition is due to the electromigration of positively charged VÖ from the YSZ

into the PCMO, and conversely, the electromigration of negatively charged O2− from

the PCMO into the YSZ.

The simplified transport model presented in section 4.3 showed that the electrical
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characteristics displayed by this heterostructure were comparable to that of a circuit

comprising a tunnel barrier and a polaron hopping component connected in series,

therefore, the effects of VÖ-migration on both of these conduction mechanisms affect

the electrical transport overall. In the literature, polaron hopping along Mn-O-Mn bonds

in PCMO is promoted with the dissipation of VÖ (equivalent to the accumulation of

O2−), whilst the accumulation of negatively charged O2− (equivalent to the dissipation

of VÖ) in the YSZ, which was supported by in-operando HAXPES results (section 4.5),

causes an increase in the tunnel barrier height and impedes tunnelling through the YSZ.

This means that for the same direction of VÖ-migration, the tunnel barrier would become

less resistive whilst the PCMO became more resistive, therefore tunnelling and polaron

hopping are competing effects. Given that the devices switch to the HRS(LRS) at

polarities that impede(promote) tunnelling, it is clear that electrical transport is ultimately

governed by tunnelling through the YSZ, a conclusion that is further supported by the

scaling of resistance states with tunnel oxide thickness.

Further EELS inspection of the YSZ tunnel barrier revealed a reproducible change in

O K-edge ELNES between HRS- and LRS-programmed devices that was consistent with

a VÖ-induced change in the local bonding environment in the YSZ. This is consistent with

the literature, which suggests that the electronic and structural properties of stabilized

zirconia can be controlled by the structural disorder around the oxygen vacancies [45,55].

Although not typically used to characterise RS device, the low-loss spectra acquired from

YSZ layers within programmed devices showed differences in the electronic character

of the YSZ, where the increased plasmon resonance in the LRS was consistent with a

more metallic character.

Interestingly, using EELS, the praseodymium, which is typically not thought to be

readily reduced or oxidised, showed evidence of reduction at the YSZ/PCMO interface.

Whilst there is little literature on the topic, graduated changes to the shape of the Pr

core-loss edge occurred in conjunction with graduated changes to the position, shape

and peak ratio of the Mn core-loss edge. This evidence suggests that Pr may play

some charge-compensation role during VÖ-mediated RS, which has not been observed

previously.

Considering all the datasets included in the study, it should be emphasised that,
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Figure 4.16: Inhomogeneous VCM-based RS mechanism in PCMO tunnel-RRAM devices
where (a) and (c) depict the HRS, whilst (b) and (d) is the LRS. For (a) and (b), VÖ
in the PCMO are depicted as white, whilst the dark purple regions represent VÖ-rich
areas in the YSZ where the local bonding environment has changed w.r.t the bulk. For
(c) and (d), the accumulation/dissipation of negative charge modulates the height of
the tunnel barrier, which ultimately governs the overall resistance state if the device.

with regards to the EELS analysis, the above stated changes did not occur to the

same extent for each programmed resistance state. Instead, some effects, such as the

valence state of Mn, were seen to vary in both magnitude and spatial extent at the

YSZ/PCMO interface. This variation is depicted in Fig.4.16, where VÖ in the PCMO

are shown in white and regions corresponding to local changes in bonding environment

in the YSZ are shown in dark purple. The large change observed between HRS- and

LRS-programmed devices seen in the O K-edge ELNES at the YSZ/PCMO interface

(Fig.4.4.2) became extremely subtle when averaged over the entire YSZ layer (Fig.4.13),

highlighting a degree of inhomogeneity within the YSZ layer which mirrors that seen

at the interface for Mn. Despite this, electrical characterisation showed that RS was

extremely reproducible. This suggests that although spatial inhomogenities may increase

device variability in different RRAM heterostructures, in tunnel-RRAM, any such negative

effects are minimised because, as emphasized in Fig.4.16(c) and (d), the concentration

of VÖ in the YSZ governs RS and has greater impact on device performance than the
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spatial distribution of VÖ. This demonstrated lack of variability despite the presence of

spatial inhomogeneities is an extremely valuable attribute when considering applications

of tunnel-RRAM in memory storage, as it could mean that simpler (easier to fabricate)

amorphous or polycrystalline materials systems could incorporate tunnel oxides for

improved reproducibility.
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CHAPTER 5

Summary and Outlook

In this work, the mechanisms of resistive switching in pulsed laser deposited transition

metal oxide thin film RRAM heterostructures were investigated using TEM-EELS. In

both the polycrystalline ZnO-based devices (presented in Chapter 3) and the single crystal

epitaxial PCMO device (presented in Chapter 4), RS was mediated by the exchange of

VÖ between the bulk switching material and an interfacial oxide. VÖ-mediated switching

devices are traditionally classified as VCM-type [1]. However, the work presented

here demonstrates that this is a relatively broad categorisation because these devices

do not necessarily switch via the same mechanism. For instance, in Chapter 3, VÖ-

electromigration mediated the formation and dissolution of highly resistive TiO2 at the

interface between the bulk [Mn:]ZnO and the electrochemically active Ti top electrode.

In contrast, in Chapter 4, VÖ-electromigration mediated the charge accumulation and

dissipation within an interfacial dedicated tunnel oxide, which modulated the tunnel barrier

height. Interestingly, this RS mechanism has similarities with the charge-storage-based

memory technology it attempts to replace, flash memory.

With regards to the tunnel oxide RS mechanism, there is no specific terminology

consistently used across the field of RRAM research. This is, in part, due to the fact

that RS can be produced in an extensive range of materials incorporated into basic

MOM devices, which initially led to the publication of a large number of studies that
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focused on the observation and categorisation of RS rather than the development of our

understanding of the switching mechanism itself. One of the primary motivations for this

work was to improve upon our understanding of switching mechanisms specifically by

using HAXPES and TEM-EELS to evaluate the contribution of electrical and chemical

effects to the observed RS in both basic and novel metal-oxide RRAM architectures.

In Chapter 3, a simplistic MOM Pt/Mn:ZnO/Ti device was fabricated locally via PLD,

which allowed control over nanoscale structural and chemical characteristics. This

materials system was of great interest: a similar pulsed laser deposited multifunctional

device had recently been shown to display simultaneous co-switching of resistance

and magnetisation, an effect attributed to the redistribution of VÖ and ferromagnetic

ordering of local Mn-clusters [2]. Their proposed mechanism was based on the results

of XPS depth profiling, an inherently destructive process with relatively low spatial

resolution. Here, high spatial and energy resolution EELS was used to investigate their

proposed mechanism and, in general, our analysis was consistent with their proposal,

showing direct evidence of Mn-clustering along VÖ-rich grain boundaries. In Chapter 4,

a more complex epitaxial perovskite oxide tunnel RRAM device, fabricated via PLD by

collaborators, was investigated. The motivation behind this particular materials system

was two-fold: firstly, epitaxial single crystal devices are the closest physical representation

of an ideal device, where defects and spatial inhomogeneities are minimised and sharp

interfaces allow for an unobstructed assessment of interfacial chemistry; secondly, the

incorporation of a dedicated tunnel oxide had been shown to allow control over the

current density, which meant that this device could be tailored according to technology

requirements [3]. Quantitative EELS analysis of ex-situ programmed devices confirmed

the exchange of VÖ between the tunnel oxide and PCMO and showed that at the

interface, the resultant redox activity may not have only affected the oxidation state of

the manganese, but also the praseodymium, which is not typically thought to be readily

oxidised or reduced. The device exhibited top-electrode area scaling, which is typically

thought to indicate the occurrence of homogeneous redox activity at a given interface.

Here, an evaluation of manganese oxidation states along the sharp PCMO/tunnel oxide

revealed that this redox activity was, in fact, inhomogeneous. An accurate evaluation

of the homogeneity of interfacial effects is of utmost importance for the progression
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of RRAM research and its mainstream implementation. For instance, for VCM-type

devices the nanoscale inhomeogenity of redox activity may act to limit the minimum cell

size that can be reliably cycled during RS. Therefore, spatially resolved spectroscopic

investigations, such as those presented here, are crucial for understanding and furthering

the scalablity of RRAM.

In addition to the lack of consistency in the terminology used to described RS, there

is also a lack of clarity with regards to the methodology of electrical characterisation,

which has slowed progression in the field. This was discussed in Chapters 1 and 3, which

commented upon the impact the early observations of electroforming SET processes

have had on the methodology of electrical characterisation in RRAM research. In

particular, it was suggested that the anticipation of such a forming step has influence

experimentalists to promote filamentary switching, which is often observed after such

a process, above other potentially viable switching mechanisms. Whilst filamentary

switching tends to yield greater resistance windows than interfacial switching, the

electroforming SET processes is often coupled with high compliance currents and can

lead to device damage, limiting the reproducibility of the observed RS. Even in the

absence of and electroforming processes, few RS-mechanism-focused studies comment

on the specific electrical characterisation approach used to generate reproducible RS or

that which led to device failure. The ArC ONE memristor characterisation platform was

produced by researchers at the University of Southampton and Imperial College London

in efforts to standardise this approach [4]. The platform lets users to probe 32×32

crossbar arrays of two-terminal devices and so can be used across all the emerging

non-volatile memory technologies presented in Chapter 1. One of its key features is its

pulsed programming routine, which, step-by-step, slowly increments the voltage applied

across each device and stops when a benchmark resistance level is reached, limiting

device damage and permitting multistate RRAM characterisation. The growing use of

technologies like the ArCONE will allow for the characterisation of switching effects that

may not have otherwise been observed and will also push researcher to improve clarity

with regards to electrical characterisation methodology across the field RRAM research.

Aside from electrical characterisation, there has been progress in the field in-situ

spectroscopic characterisation of RRAM devices [5]. These investigations involve probing
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of the device during electrical cyclying allow for the unambiguous attribution of effects

such as chemical changes or charging to the electrical probing of the device. An example

of this was performed by collaborators in Chapter 4 through HAXPES. However, locally,

it was not possible to perform in-situ EELS characterisation of lamellae. This was largely

due to time constraints and challenges regarding FIB-assisted in-situ lamella design.

However, the design and implementation of in-situ switchable lamellae remains a viable

option for future work.

For RRAM devices to be implemented into mainstream memory storage technologies,

they must be CMOS compatible and relatively easy to fabricate. Of course, these

requirements eliminate the complex epitaxial perovskite oxide structure studied in Chapter

4 which required the use of PLD, a technique that is not suited for large scale industrial

applications due to its relatively slow deposition rates and its small deposition area.

Despite this, the study uncovered the benefits of tunnel oxide layer incorporation: it

demonstrated that the tunnel barrier allowed for the control of current density and that

charge accumulation dominated the overall resistance state of the device, suggesting

that the negative impact of the inhomogeneous interfacial redox activity, or, potentially, a

rough interface, may be minimised in tunnel RRAM devices. Based on this, it is clear that

the electrical characterisation and spectroscopic investigation of novel CMOS-compatible

tunnel RRAM devices would be of great interest in the field in the future. Although

(CMOS-compatible) [Mn:]ZnO was also deposited via PLD, it is possible to deposit these

polycrystalline oxides via techniques more suited for large-scale industrial application, such

as magnetron sputtering, which makes CMOS-compatible tunnel RRAM an excellent

candidate for research. Whilst there is currently relatively little interest in tunnel RRAM,

due to the wealth of research and spectroscopic studies in particular, such as those

presented in this work, CMOS-compatible resistive memories are already in the process

of being introduced to the memory storage market: in 2015 Intel and Micron embarked

on a collaborative commercial project to produce ’3D X-point memory’, a transistor-less

3D cross-bar memory cell array (like that depicted in Fig.1.7) in which memory storage

is based upon a change in the resistance of the memory cell [6]. 3D X-point currently

remains in development [6]. As no further details have been released, one can only

speculate as to which of the emerging resistive non-volatile technologies is employed.
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However, considering its description, it is possible that 3D X-point technology is the first

commercial implementation of RRAM since its conception in 1971 [7]. Given the studies

presented in this work, which uncovered issues including nanoscale inhomogeneities

in interfacial redox activity and the unexpected presence multiple redox-formed oxides

within the heterostructure, it is likely that the development of 3D X-Point will not be

released any time soon. Further research must be undertaken to fully characterise and

minimise these effects, such as that undertaken in this work, to improve the device

resistance windows and cycling durability to commercial standards.
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