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Abstract 

Introduction 

Acute lymphoblastic leukaemia (ALL) is the commonest childhood cancer. In the 

early trials of ALL treatment, central nervous system (CNS) relapse was a 

common occurrence - the introduction of CNS-directed therapy in the 1970s was 

associated with the largest single improvement in outcome for childhood ALL. 

Today, despite universal intensive CNS-directed therapy - with significant 

associated toxicity - the CNS is involved in around 50% of ALL relapses, with 

approximately 50% of these being isolated CNS (iCNS) relapse. Whilst many 

factors increase risk of CNS relapse, few are specific for CNS relapse. Discovery 

of specific risk factors for CNS relapse would allow increased therapy for 

children at high risk, and potentially less CNS-directed therapy for those at low 

risk. 

Relatively little is known about the biological differences between systemic and 

CNS ALL. In the CNS, leukaemic cells form plaques adherent to the 

leptomeninges, bathed in low-nutrient, low-oxygen cerebrospinal fluid (CSF). It 

was hypothesised that leukaemic cells adapt metabolically to this nutritionally 

poor CNS microenvironment, and these metabolic adaptations may be targets for 

specific therapy and/or specific biomarkers for CNS relapse. 

Findings 

Transcriptional analysis of ALL cell lines from CNS and spleen in a mouse 

xenograft model, and of ALL cells retrieved from the CSF at CNS relapse of ALL, 

have shown the upregulation of cholesterol biosynthesis as a key adaptation to 

the CNS niche. Analysis of transcriptomic data from the bone marrow or 

peripheral blood from children with ALL at diagnosis have shown the potential 

for upregulated cholesterol biosynthesis (and, independently, upregulated IL7R) 

as a significant risk factor for CNS relapse of ALL. To support this finding, 

metabolomic analysis found evidence of changes in CSF cholesterol in the 

presence of CNS leukaemia, and of increased mevalonate (a cholesterol 

precursor) and cholesterol in ALL cells retrieved from the CNS in a xenograft 
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model. Therapeutic targeting of CNS ALL in vivo with statins resulted in a CNS-

specific increase ALL disease burden. 

Untargeted metabolomic analysis of CSF shows differences between children 

with ALL (either at diagnosis or on maintenance therapy) and non-ALL controls, 

and between children with ALL at diagnosis and the same children on 

maintenance therapy. Creatine abundance was significantly different in children 

with ALL at diagnosis compared with both other groups (1/3 lower at diagnosis 

than either on maintenance or non-ALL controls). This change in creatine and 

persisted on analysis of CSF from mice with and without leukaemia. On analysis 

of CSF from children at CNS relapse with ALL there is evidence of increased 

reduced creatine at time of CNS relapse in 3 of 4 patients. 

Conclusions 

There is evidence to confirm the hypothesis that ALL cell adapt metabolically to 

the CNS niche. Cholesterol biosynthesis was identified as a key pathway 

upregulated in CNS ALL, and upregulated cholesterol biosynthesis in ALL cells at 

diagnosis was found to be a key risk factor for CNS relapse of ALL. In addition, 

clear changes in the CSF metabolome related to both ALL and ALL therapy were 

shown, and a new potential marker for the presence of CNS ALL identified. 

Prospective analyses in independent cohorts are required to determine the 

clinical utility of these novel strategies for prediction of CNS relapse risk. 
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Chapter 1: Introduction 

1.1 Background 

Acute lymphoblastic leukaemia (ALL) is the commonest cancer in childhood, and 

among the leading causes of cancer death in childhood. It is a cancer of 

immature lymphoid cells which have acquired genetic mutations leading to 

maturation arrest, proliferation and loss of apoptosis. This leads to the 

accumulation of ALL cancer cells (commonly referred to as blast cells due to 

their morphological features when examined under a microscope) many, if not 

all, of which are capable of acting as cancer stem cells. If untreated, ALL blasts 

progressively infiltrate the organ systems of the body – most markedly in the 

bone marrow which is the presumed origin site for most leukaemias - displacing 

normal cells and disrupting organ function. 

The focus of this thesis is on childhood B-cell precursor ALL (all references to 

“ALL” in the thesis are to childhood precursor-B ALL unless specifically stated). 

This is the most common subtype of ALL, accounting for approximately 85% of 

cases. ALL usually presents with symptoms and signs of bone marrow failure – 

anaemia, bleeding or infection. It is treated with intensive multi-agent 

chemotherapy over 6-7 months, followed by 2 years (girls) or 3 years (boys) of 

less intensive “maintenance” chemotherapy. 

Childhood ALL treatment is an excellent example of the success of evidence-

based medicine. Through the use of large-scale randomised trials, long-term 

survival of children with ALL has increased from below 10% in the 1960s to over 

90% today (Figure 1-1). 
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Figure 1-1 Overall survival among children with acute lymphoblastic leukemia (ALL) who 
were enrolled in Children’s Cancer Group and Children’s Oncology Group clinical trials, 
1968–2009. (Reproduced with permission from Hunger et at. N Engl J Med 2015; 373:1541-
155, © Massachusetts Medical Society) 

Despite this success in improving outcome in ALL, there are still significant 

challenges that need to be addressed in ongoing research. 

 Firstly, as noted above, despite this vast improvement in outcomes, ALL 

remains among the top causes of childhood death in the developed world 

and more research is needed as a priority to further improve disease 

outcome (0.1-0.5 per 100,000 deaths per patient-years at risk in 2016 (ISD 

Scotland), with an overall childhood mortality rate of around 10 per 

100,000 children aged 1-15 in England 2016 (Office for National 

Statistics)). 

 Secondly, the gains in survival which have been achieved have come 

mainly as a result of incremental intensification of treatment, which 

currently consists of up to 7 different chemotherapeutic agents, often 

given at maximum tolerated doses, for up to 3½ years. This 

intensification comes at the cost of increased treatment toxicity. 

It is in this context that central nervous system (CNS) involvement with ALL is an 

extremely promising area of study for reasons explored below. 



Chapter 1: Introduction 3 

 

1.2 CNS involvement with ALL 

1.2.1 History of CNS disease in ALL 

Since the early 1950s it has been possible to induce morphological remission  in 

children with ALL using chemotherapy including anti-metabolic chemotherapy 

(initially aminopterin(Farber et al. 1948), then 6-Mercaptopurine (6-

MP)(Burchanal et al. 1953), and later methotrexate (MTX) and L-asparaginase 

(ASP)(Sutow et al. 1971)) – some early chemotherapy protocols and outcomes in 

the Southwest Cancer Chemotherapy Study Group (a predecessor to the current 

Children’s Oncology Group) in the US have previously been summarised(George 

et al. 1973). These children would almost inevitably relapse, commonly with CNS 

involvement(Sullivan 1957) and had a poor overall survival. 

Relapse with CNS involvement is known as CNS relapse. This can occur without 

evidence of relapsed ALL in the bone marrow, which is known as “isolated CNS 

relapse”, or can occur with concurrent evidence of relapse in the bone marrow, 

which is known as “combined CNS relapse”. As control of systemic ALL with 

chemotherapy improved it was noted that there was an increase in CNS 

relapse(Hardisty & Norman 1967). 

It was postulated from the early descriptions of meningeal ALL that the therapy 

used at the time had only limited penetration into the CNS, allowing a 

“reservoir” of cancer cells to survive(Sullivan 1957). This led to the idea that the 

CNS is a special compartment of the body which acted as a sanctuary for 

leukaemic cells. In one 1960 post-mortem study of children who died with ALL, 

up to 70% had evidence of infiltration of the CNS with ALL blasts(Moore et al. 

1960). 

The largest single improvement in the outcome of children with ALL was 

achieved with the introduction of treatment directed at ALL blasts in the CNS to 

all children as part of routine schedules (indicated in (Figure 1-2)) by the 

Southwest Oncology Group “Sanctuary Therapy” trial in 1972-1974(Nesbit et al. 

1982), and slightly earlier by the St Jude’s Children’s Research Hospital 

(Tennessee, US)-based “Total Therapy VII” trial in 1971(Simone et al. 1972). 
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Figure 1-2 Overall survival among children with acute lymphoblastic leukemia (ALL) who 
were enrolled in Children’s Cancer Group and Children’s Oncology Group clinical trials, 
1968–2009; introduction of universal CNS-directed therapy highlighted (adapted from 
Hunger et at. N Engl J Med 2015; 373:1541-155, © Massachusetts Medical Society) 

This was initially done with cranial irradiation which is extremely effective, 

reducing overt CNS relapse rates from around 65% to less than 10% of children in 

the “Total Therapy VI” trial(Simone et al. 1972). Unfortunately this treatment is 

also extremely toxic. The side effects include cognitive impairment(Eiser 1978; 

Cousens et al. 1988; Jankovic et al. 1994; Halsey et al. 2011), hormonal 

dysfunction (secondary to pituitary gland damage), most prominently 

manifesting as reduced growth(Oliff et al. 1979; Clayton et al. 1988; Uruena et 

al. 1991), and an up to 20-fold increase in risk of secondary malignancy over 20 

years follow up(Nygaard et al. 1991; Neglia et al. 1991; Pui et al. 2003). This risk 

is mainly due to an increase in secondary CNS cancers(Nygaard et al. 1991; 

Neglia et al. 1991; Rimm et al. 1987). These adverse effects appear to be 

particularly marked in children under 5 years of age who underwent cranial 

irradiation(Eiser & Lansdown 1977; Jankovic et al. 1994; Neglia et al. 1991). 

One of the most important findings from the UK-based UKALL XI clinical trial in 

the 1990s was the success of replacing routine cranial irradiation with high-dose 

intravenous methotrexate and regular intrathecal administration of 

methotrexate even in high-risk patients(Hill et al. 2004) (and the introduction of 

high-dose dexamethasone in the subsequent ALL 97/99 trial(Mitchell et al. 

2005)). While patients receiving cranial irradiation had a lower rate of CNS 

relapse, this was offset by an increased rate of systemic relapse and overall 

Introduction of 
CNS-directed 
therapy
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there was no benefit to event-free survival. This built on previous work from the 

Children’s Cancer Study Group showing that cranial irradiation could be safely 

omitted in lower risk patients(Bleyer et al. 1991). It should be noted that 

methotrexate and dexamethasone, while not as toxic as cranial radiotherapy, do 

have significant side effect profiles. 

Some of the common side effects of cranial irradiations, methotrexate and 

dexamethasone are listed below (Table 1-1). In addition, ALL survivors managed 

without cranial irradiation (i.e. with chemotherapy alone) have been shown to 

suffer long-term neurocognitive impairment(Moleski 2000). 

Table 1-1 Table showing comparison of adverse events associated with cranial irradiation, 
dexamethasone and methotrexate therapy 

Treatment Associated Adverse Events 

Cranial Irradiation 
(reviewed by 
Stone et al.(Stone 
& DeAngelis 
2016)) 

Acute or subacute encephalopathy; 

Transient or progressive myelopathy; 

Cerebral necrosis; 

Late diffuse brain injury; 

Neuroendocrine disorders; 

Neuropathy; 

Vasculopathy; 

Secondary malignancy; 

Cognitive deficit; 

Dexamethasone 
(manufacturer’s 
information 
available at 
medicines.org.uk) 

Electrolyte disturbance; 

Myopathy, osteoporosis and osteonecrosis; 

GI reflux, peptic ulceration, perforation, pancreatitis; 

Thinning of skin, reduced wound healing, acne, oedema; 

Increased intracranial pressure, psychiatric disturbance; 

Cushingoid, suppression of growth, secondary diabetes, 
pituitary-adrenal suppression, menstrual disturbance; 

Cataracts, glaucoma, exophthalmos, chorioretinopathy; 

Immunosuppression; 

Weight gain; 

Thromboembolism; 

Methotrexate 

(manufacturer’s 

Severe (potentially fatal) skin reactions; 

Bone marrow suppression; 
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information 
available at 
medicines.org.uk) 

GI mucositis; 

Hepatic toxicity; 

Renal toxicity; 

Pnuemonitis; 

CNS toxicity: stroke-like syndrome, seizures, impaired 
cognition, raised intracranial pressure, 
leukoencephalopathy; 

Pericarditis; 

Immunosuppression; 

Thromboembolism; 

 

Despite universal intensive CNS-directed treatment – either historically with 

cranial irradiation or more typically now with combined high-dose systemic 

therapy and intrathecal therapy, CNS involvement is detected in around 50% of 

ALL relapses (i.e. 4% of children with ALL will have a CNS relapse), and isolated 

CNS relapse accounts for around 25% of relapses (2% of children with 

ALL)(Krishnan et al. 2010)..Improving our understanding of CNS ALL has potential 

therefore to both improve disease control by allowing design of better 

treatments for the children that relapse with CNS disease, and potential to 

reduce treatment toxicity by reducing the amount and intensity of CNS-directed 

therapy by identifying those at low risk of relapse. This principle was 

demonstrated in the UKALL 2003 trial, which successfully targeted patients with 

high-risk ALL for more intensive therapy while sparing low-risk patients by 

looking for very small amounts of residual cancer in the bone marrow (known as 

minimal residual disease (MRD))(Vora et al. 2013). It has been shown in this and 

other studies that the detection of disease at a low level at the end of the first 

month of intensive chemotherapy correlates with a higher risk of bone marrow 

relapse – and additionally that risk stratification based on this result can safely 

allow the escalation and de-escalation of treatment. There is currently no 

equivalent test for CNS ALL. 

1.2.2 Biology of CNS ALL 

The pattern of disease in CNS ALL remarkably consistent, with blast cells seen in 

the leptomeninges - between the arachnoid and pia layers of the meninges 

(membranes that surround the brain and spinal cord inside the skull/spinal 
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canal), and adherent to these meningeal layers (explored in more detail below 

chapter 1.3.2). Involvement of the brain parenchyma is unusual and only seen as 

a very late sequelae of CNS ALL(Price & Johnson 1973). 

 

Figure 1-3 Schematic diagram of the layers of the skull and meninges adapted from 
“Meninges of the central nervous parts” by user Mysid based on work by the SEER 
development team, used under creative commons licence 
(https://commons.wikimedia.org/wiki/File:Meninges-en.svg) 

Whilst there are some aspects that are well-studied, there are several questions 

about the biology of CNS ALL that are only part-answered. 

1.2.2.1 Origin 

It is likely that ALL cells in the CNS originate from the bone marrow (BM). This is 

supported by the fact the subclonal diversity of ALL in the CNS very closely 

mirrors that of the bone marrow in mouse xengraft models(Williams et al. 2016; 

Elder et al. 2017), and in primary samples(Bashford-Rogers et al. 2016; Bartram 

et al. 2018), that the bone marrow is the site of normal B-cell development, and 

that bone marrow is the predominant site of almost all cases of ALL at 

presentation. However, there are rare cases where ALL is detected in the CNS 

before bone marrow(Levine et al. 1973; Piovezani Ramos et al. 2016) though it is 

unclear if true “isolated” CNS ALL exists, or if in all cases of CNS ALL there is 
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some bone marrow involvement albeit on or below the limits of detection with 

current technology as suggested by very sensitive next-generation-sequencing 

techniques(Bashford-Rogers et al. 2016; Hagedorn et al. 2007; Bartram et al. 

2018). Additionally there is evidence of extramedullary haematopoeisis in the 

choroid plexus(Tabesh et al. 2011; Eskazan et al. 2012; Janssen et al. 2013), 

which makes a CNS-origin in some cases of ALL more feasible. On the balance of 

evidence it seems likely that CNS ALL arises from lymphocytes originating from 

the BM in the vast majority of cases. 

1.2.2.2 Transit 

It remains unproven how ALL blasts transit to the CNS. There is a significant 

body of literature exploring movement of blasts across models of the blood-brain 

barrier(Mielcarek et al. 1997; Holland et al. 2011; Akers et al. 2010; Feng et al. 

2011; Kondoh et al. 2014), though there is little evidence to support whether 

cells enter the CNS via this route in vivo. There is, however, evidence of the 

transit of cells across the blood-cerebrospinal fluid (CSF) barrier through cranial 

veins, and of cells entering the subarachnoid space via the CSF-producing 

choroid plexus(Ransohoff et al. 2003; Kivisäkk et al. 2003). In addition there is 

evidence that cells are able to infiltrate the CNS via the dura layer of meninges 

in humans (adherent to the cranial bones), giving the possibility of cells 

transiting from cranial bone marrow to the leptomeninges(Bleyer 1989) - this is 

clearly seen in modern mouse models of CNS ALL. Finally there has recently 

been some evidence of lymphatic channels in the meninges which may provide 

another method of ALL cell transit(Louveau et al. 2015). 

It is also unclear why cells transit to the CNS. There is no evidence in precursor-

B ALL for a distinct chemokine signature allowing blasts to infiltrate the CNS (as 

opposed to T-cell ALL where CCR7 expression is required for CNS 

infiltration)(Williams et al. 2016; Buonamici et al. 2009). In addition there is 

evidence from murine models that the ability to infiltrate the CNS is a property 

common to almost every precursor-B ALL clone(Williams et al. 2016). This fits 

with the high degree of CNS infiltration seen in children who died with ALL in 

the 1960s(Price & Johnson 1973). It has traditionally been thought that specific 

receptor-ligand interactions would be required to permit ALL cells to enter the 
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CNS, but it may be that transiting to the CNS is a common feature of ALL blasts 

(and perhaps all B cells) requiring no special cell signals. 

1.2.2.3 Behaviour of ALL in the CNS 

There is also conflicting evidence of the behaviour of ALL cells once they reach 

the CNS. ALL cells in the CNS lie adherent to the meninges bathed in CSF. This is 

a potentially hostile environment (discussed in more depth below), and there is 

evidence that ALL cells in the CNS have lower proliferation (measured by 3H-

thymidine and 3H-uridine incorporation) and are smaller than in the blood or 

bone marrow, though still maintaining viability(Huei-Mei Kuo et al. 1975; 

Tsuchiya et al. 1978; Bleyer 1989).In some patients, CNS relapse can be a very 

late event raising the possibility the cells causing relapse have been proliferating 

extremely slowly for a long time in the CNS. This, together with the evidence 

above, all suggests that the cells in the CNS may acquire a more quiescent 

phenotype. 

The evidence overall is however not entirely consistent – CNS ALL is frequently 

widespread with large amounts of disease present before it can be detected 

clinically(Price & Johnson 1973; Glass et al. 1979). The presence of large 

amounts of CNS could be explained by continual seeding of the CNS from 

systemic disease leading to progressively increasing disease bulk, or the disease 

being present in the CNS for a long time slowly proliferating, however CNS 

relapse of ALL is frequently a relatively early event (less than 1 year) after the 

start of chemotherapy and induction of remission. This suggests that despite the 

absence of systemic disease capable of seeding the CNS, and despite ongoing 

CNS-directed therapy, and despite a relatively short amount of time(Roy et al. 

2005), ALL cells in the CNS are in some cases able to proliferate rapidly enough 

to cause overt disease relapse. 

It may be that there are distinct phenotypes of ALL cells in the CNS – some which 

are able to proliferate relatively rapidly and are responsible for early relapse, 

and others with very low levels of proliferation which are responsible for late 

relapse, but there is no evidence to support this hypothesis so far. 



Chapter 1: Introduction 10 

 

1.2.3 Molecular adaptations 

There are some data available regarding transcriptional adaptations of ALL cells 

to the CNS environment. These often involve cell adhesion and signalling 

changes. The most convincing findings are described below. 

Vascular endothelial growth factor α (VEGFα): this forms part of the hypoxia 

response - as discussed below (chapter 1.3.2), the CSF is a hypoxic environment. 

VEGFα gene expression was shown in two recent papers to be elevated in mouse 

xenograft models of CNS ALL (along with other metabolic adaptations). In 

addition, treatment of mice with anti-VEGFα antibody bevacizumab reduces CNS 

disease burden in ALL murine xenografts(Kato et al. 2017; Münch et al. 2017). 

Osteopontin (SPP1): A secreted protein involved in modulating cell migration and 

adhesion with anti-apoptotic properties. Elevated osteopontin levels in the CSF 

have been correlated with CNS involvement in ALL, and ALL cells retrieved from 

the CSF of children have been shown to express high levels of 

osteopontin(Incesoy-Özdemir et al. 2013.; van der Velden et al. 2015). 

Interestingly, plasma osteopontin levels have been correlated with cholesterol 

metabolism(Isoda et al. 2003; Luomala et al. 2007; Yang et al. 2012). 

Interleukin 15 (IL-15): A cytokine mainly recognised as a regulator of T and NK 

cell activation. High expression of IL-15 in the bone marrow at diagnosis was 

found to be associated with CNS ALL at diagnosis (determined using cytospin – 

see below chapter 1.2.4.1), with a possible link between higher IL-15 expression 

in bone marrow at diagnosis and subsequent CNS relapse in patients initially 

CNS-negative. In addition, exposure to IL-15 in vitro promoted ALL cell line 

growth under low-serum conditions, and may induce expression of cell 

trafficking genes associated with CNS disease(Cario et al. 2007a; Williams et al. 

2014). 

Intercellular adhesion molecule 1 (ICAM1): A protein involved in immune cell 

adhesion and transmembrane migration. Increased expression in CNS ALL cells 

has been associated with CNS involvement in ALL cell line xenograft 

models(Mielcarek et al. 1997; Holland et al. 2011). 
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Mer tyrosine kinase (MERTK): MERTK expression has been found to be elevated in 

t(1;19) ALL patients who have a slightly increased risk of CNS relapse. Within this 

subset of ALL, Mer signalling induced a quiescent phenotype in vitro, and ALL 

cells with higher MERTK expression showed increased CNS disease burden in 

murine xenograft models(Krause et al. 2015). 

Pre-B cell leukaemia homebox 1(PBX1): A transcription factor that is a 

translocation target in t(1;19) ALL. Patients with this translocation are at higher 

risk of CNS (but not systemic) relapse(Jeha et al. 2009), and increased 

expression of PBX1 has been shown to be related to chemotherapy resistance, 

and moderately increased CNS disease in a cell line murine xenograft 

model(Gaynes et al. 2017). Interestingly the CNS relapses seen with t(1;19) are 

often late CNS relapses, which may have implications for the effects of PBX1 on 

cell biology. 

Stearyl CoA Desaturase (SCD): An enzyme involved in lipid desaturation that was 

found to have increased expression in cells retrieved from the CNS of children 

with ALL at CNS relapse, and retrospectively SCD detection by flow cytometry at 

diagnosis was found to be a risk factor for CNS relapse(van der Velden et al. 

2015). 

Finally, ALL cells with RAS pathway activation appear to be enriched at relapse, 

particularly CNS relapse, and disruption of this pathway with mitogen-activated 

protein kinase (MEK) inhibitor Selemetinib is effective in reducing disease 

burden systemically and in the CNS(Irving et al. 2014). 

1.2.4 Clinical aspects of CNS ALL 

1.2.4.1 Detection 

The standard method for detection of CNS ALL is CSF cytocentrifugation – a 

technique in which CSF is spun in a centrifuge onto glass slides, then excess fluid 

removed in order to concentrate cells, and the slides stained and analysed by 

microscopy. 

Despite excellent specificity of this technique for the presence of CNS ALL (i.e. 

the presence of leukaemic cells in the CSF indicates a very high probability of 
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CNS infiltration(Glass et al. 1979)), it has been known for many years that this 

technique has very poor sensitivity – in a 1979 study, for example, of 9 people 

with known CNS leukaemia and CSF cytology, only 4 were found to have 

leukaemic cells in the CSF(Glass et al. 1979). In another study of leptomeningeal 

malignancy with solid tumours, 3 sequential CSF samples would have a sensitivity 

to detect meningeal cancer of only 90% - i.e. in children with CNS leukaemia 10% 

would be considered negative by cytospin even after 3 sequential CSF samples 

were analysed(Wasserstrom et al. 1982). This fits with data from assessment of 

CSF with more modern techniques (discussed below). Given the histological 

findings in leptomeningeal ALL of cells adherent to the meningeal layers, and 

the relative paucity of ALL cells in the CSF, it is reasonable to assume that only a 

small proportion of CNS cells will detach into the flow of CSF at any time, and 

that these cells may represent the less viable portion of CNS ALL. It is interesting 

to note that in the initial description of cytospin for detection of CNS disease in 

1974 (i.e. the era before universal CNS-directed therapy), 65% of samples were 

positive for leukaemic blasts, perhaps indicating that the CNS involvement at 

that time was more widespread, or that the time from disease onset to diagnosis 

was longer(Evans et al. 1974). 

CSF is examined by cytospin in every child at diagnosis with ALL and classified 

into 5 groups (Table 1-2). 

Table 1-2 Table showing classification of cytospin findings in ALL 

CNS status Cytospin finding 

CNS 1 No evidence of blast cells in the CSF, 

<10 red blood cells/μL 

TLP –ve 
(traumatic 
lumbar 
puncture; no 
blasts) 

No evidence of blast cells in the CSF, 

>10 red blood cells/μL 

CNS 2 Blast cells in the CSF, <5 blast cells/μL, 

<10 red blood cells/μL 

TLP +ve Evidence of blast cells in the CSF, 

>10 red blood cells/μL 

CNS 3 Blast cells in the CSF, ≥5 blast cells/μL, 

<10 red blood cells/μL 
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There is good evidence that the presence of leukaemic blasts in the CNS 

(particularly CNS 3 disease) is associated with increased risk of relapse overall, 

with CNS 2 patients particularly having a relatively increased risk of CNS 

relapse(Mahmoud et al. 1993; Burger 2003), summarised by Pui et al.(Pui 2006) . 

This was not found in all studies, perhaps reflecting differences in treatment 

protocols(Gilchrist et al. 1994; Dutch Childhood Oncology Group et al. 2006), 

and there is evidence that this risk can be abrogated by the introduction of 

additional CNS-directed therapy in the form of additional intrathecal doses of 

methotrexate(Burger 2003). These children therefore usually receive additional 

CNS-directed therapy which is effective at reducing risk of CNS relapses. In the 

latest UKALL trail this takes the form of weekly intrathecal chemotherapy until 

two sequential CSF samples are negative by cytospin (although as noted above, 

cytospin has a low sensitivity for detecting CNS ALL). 

More modern approaches appear to hold some improvements on traditional CSF 

cytospin. Flow cytometry is able to improve the sensitivity of cytospin - e.g. in a 

2007 study of 219 patients with haematological malignancy treated in The 

Netherlands, flow cytometry detected malignant cells in 44/219 patients at 

diagnosis (20.1%) vs 19/219 (8.7%) for cytospin(Bromberg et al. 2007). A slightly 

concerning result in this study (and similarly in other studies) was that 4 children 

had CSF considered positive for CNS disease by cytospin but not flow cytometry. 

As noted above, it is known that CSF positivity by cytospin confers increased risk 

of CNS relapse, but there is no good evidence as yet that CSF positive by flow 

cytometry confers this increase in risk. A recent study by Levinsen et al. in the 

NOPHO group showed similar sensitivity in CSF flow cytometry, and showed 5 of 

52 patients with CSF blasts at diagnosis had not cleared their CNS disease by day 

15, but there is no prognostic data as yet for these patients(Levinsen et al. 

2014). 

Another technique which may improve sensitivity further is detection of 

submicroscopic levels of disease in the CSF using polymerase chain reaction on 

ALL cell DNA. In one study of 30 children in New York, 6/30 (20%) children at 

diagnosis had evidence of CNS disease by CSF PCR compared with 2/30 (6.7%) by 
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conventional cytology(Pine et al. 2005). In another short series carried out in 

Glasgow, 15/38 (39.5%) patients were positive by PCR and 4/38 (7%) positive 

(TLP+) by standard cytospin(Yousafzai 2015). In this series, one patient was 

positive by cytospin but not PCR. Again there is no evidence as yet to determine 

if PCR positivity in the CSF confers an increased risk of relapse. 

Finally, there is limited evidence that in difficult cases imaging of the CNS may 

help in the detection of occult CNS infiltration with ALL(Chamberlain et al. 

2009). 

A recent paper has been published suggesting that the ability to colonise the CNS 

is a property common to all B-cell precursor ALL (BCP-ALL) cells, and that many 

if not all children with BCP-ALL may have CNS leukaemia at diagnosis, but this is 

not detected due to the limitations of the techniques discussed above(Williams 

et al. 2016). 

1.2.4.2 Indirect biomarkers 

There have been several candidates for indirect biomarkers of CNS infiltration 

with ALL. These markers are theoretically attractive – as they do not depend on 

capturing a small number of cells circulating in the CSF they may be more 

sensitive, and more representative of the bulk leptomeningeal disease burden 

which is tightly adherent to the meninges. Unfortunately, no indirect markers 

assessed so far have been sufficiently sensitive or specific for routine clinical 

use. 

Testing of CSF glucose concentration does not provide any predictive information 

for CNS relapse. Measuring CSF protein does provide some information – CSF 

protein is consistently increased in the presence of a high CSF white cell count. 

Unfortunately this is less sensitive and specific than standard cytospin 

examination of CSF(Evans et al. 1974). 

β2-microglobulin (β2M) is a biomarker which has shown promise in CNS ALL. B2M 

has been found to be increased in the CSF in the presence of leukaemia, and on 

serial monitoring of CSF β2M has been shown to increase prior to development of 

frank cytospin-positive CNS relapse(Warrier et al. 1981; Vicente et al. 1982), 
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though this was not found in all studies(Clausen & Ibsen 1984; Pudek et al. 

1985). Additionally, β2M is not specific to ALL, and elevated β2M has only a 50% 

positive predictive value for CNS relapse in ALL even in the most promising 

studies(Hansen et al. 1991). 

Other biochemical tumour markers including carcinoembryonic antigen 

(CEA)(Clausen & Ibsen 1984), human chorionic gonadotrophin (HCG), and α-

fetoprotein (AFP)(Domaniewski et al. 1987) have been assessed for suitability as 

markers of CNS disease but not found to be useful. 

Several metabolic enzymes and metabolites have been explored as potential 

markers of CNS malignancy. Lactate dehydrogenase (LDH) is often elevated in 

blood in the presence of cancer, particularly high-grade haematological 

malignancy like ALL(Rao et al. 2012; Kovesi & Hsu; Van Zanten et al. 1986). 

There is some evidence that CSF LDH increases in the presence of CNS 

malignancy, but overall the evidence is mixed, likely due to changing normal 

ranges with age, different isoforms of LDH and different measurement 

techniques. Overall, raised LDH has a low sensitivity (66%) and specificity 

(62.5%) for the presence of CNS ALL, and therefore is not suitable as a marker of 

CNS disease in ALL(Seidenfeld & Marton 1979). 

Creatine kinase (CK) (which catalyses the transfer of phosphate between ADP 

and creatine phosphate) has been found to be elevated in the CSF of patients 

with malignant brain tumours, usually involving destruction of the brain 

parenchyma, but is also raised in other neurological disorders so is non-

specific(Herschkowitz & Cumings 1964). 

Aspartate transaminase (AST), glucose phosphate isomerase (GPI), isocitrate 

dehydrogenase (IDH), and adenylate kinase (ADK) have also been investigated as 

potential markers of CNS cancer, though none have been found to be clinically 

useful(Seidenfeld & Marton 1979). 

1.2.4.3 Cholesterol 

One metabolic marker which has been clinically useful in the diagnosis of brain 

tumours was desmosterol (a precursor for cholesterol). Desmosterol levels were 



Chapter 1: Introduction 16 

 

measured in a “sterol test” after 5 days of triparenol – a drug which prevents 

conversion of desmosterol to cholesterol - leading to its accumulation. If 

desmosterol levels were increased the diagnosis of a malignant brain tumour was 

more likely, and the test could be used to monitor for recurrence(Paoletti et al. 

1969; Seidenfeld & Marton 1979). Some groups found simply measuring 

cholesterol to be as effective as a marker of CNS cancer(Fleisherl et al. 1979). 

Improvements in imaging have made this test redundant for solid brain tumours, 

and there is no evidence of the “sterol test” being useful to detect metastatic 

CNS tumours or CNS ALL. It is known that systemic cholesterol metabolism is 

disrupted in many cancers including ALL(Moschovi et al. 2004). 

1.2.4.4 Cholesterol biosynthesis 

Cholesterol biosynthesis is regulated by sterol-regulatory element-binding 

proteins (SREBP), which stimulates transcription of genes involved in cholesterol 

biosynthesis in response to reduced intracellular cholesterol. SREBP is normally 

located in the endoplasmic reticulum (ER) with chaperone protein SREBP 

cleavage-activating protein (SCAP). In conditions where there is reduced 

intracellular cholesterol, SCAP is able to transport SREBP from the ER to the 

golgi apparatus, where it is activated by proteolysis. Activated SERBP binds to 

sterol-responsive elements (SREs) in the DNA and activate transcription of genes 

involved in cholesterol and fatty acid synthesis. An additional level of control of 

SREBP function is at the transcriptional level, where SREBF (the gene coding for 

SREBP) is regulated via extracellular signalling via insulin and oxysterol LXR/RXR 

receptors. There are 3 forms of SREBP – SREBP1a predominantly activates genes 

involved in fatty acid synthesis, SREBP2 predominantly activates genes involved 

in cholesterol biosynthesis and SREBP1c activates both pathways similarly 

(Goldstein & Brown 1990; Hua et al. 1993; Repa et al. 2000; Azzout-Marniche et 

al. 2000; Horton et al. 2002). 

Cholesterol is synthesised from acetate through the mevalonate and sterol 

pathways (Figure 1-4), and the rate of cholesterol synthesis in humans can be 

estimated by the abundance of plasma mevalonate(Parker et al. 1984). . 

Cholesterol biosynthesis intermediates geranyl and fernasyl and involved in 

protein prenylation and cell signalling. Cholesterol itself is a lipid molecule 

which forms an integral part of cell and organelle membranes and has a key role 
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in cell signalling via lipid raft formation and also has a role in storage of other 

lipids as cholesterol esters. In addition cholesterol metabolism can be adapted 

for the production of steroid hormones(Ikonen 2008). 

 

Figure 1-4 Figure showing cholesterol biosynthesis pathway adapted from “HMG-CoA 
reductase pathway” by user Krishnavedala used under a creative commons licence 
(https://commons.wikimedia.org). 
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1.3 ALL and metabolism 

1.3.1 Overview of metabolism 

Metabolism is the sum of the cellular processes that occur in living cells and 

organisms to maintain life. This includes hundreds of processes from generation 

of energy stores, to control of oxygen radicals, to synthesis of structural building 

blocks, to breakdown of obsolete structures and molecules and many more. 

Many metabolic processes can be measured either directly or indirectly, and by 

investigating the metabolism of cells in health and disease it is possible to 

understand pathology and allow rational interventions. 

1.3.2 Normal leptomeningeal physiology 

As discussed above (chapter 1.2.2), CNS ALL is found in the leptomeninges 

surrounding the brain and spinal cord. There are 3 meningeal layers: the pia 

mater is a thin layer of cells tightly adherent to the surface of the brain and 

spinal cord, the arachnoid mater a thin layer of cells and connective tissue 

beyond the pia and adherent to the third layer, the dura mater which is a thick 

fibrous sheath adherent to the skull and spine. The pia and arachnoid together 

are referred to as the leptomeninges. Between these two layers is an acellular 

space bathed in cerebrospinal fluid – it is here that leukaemic blasts are found in 

CNS ALL. There are no blood vessels within the leptomeninges; vessels carrying 

blood from the brain pass through small trabeculae which span the space 

between the pia and arachnoid mater, surrounded by the intact meningeal layer 

(Figure 1-3). 

CSF is produced mainly in the choroid epithelial cells which form an interface 

between the systemic blood circulation and the CSF. In adult humans there is 

around 150ml of CSF at any one time, with around 25ml produced and 25ml 

drained into the systemic circulation per hour. CSF drains into the venous 

circulation via arachnoid granulations which act as valves to allow CSF to flow 

into the venous sinuses of the cranium, without reflux of venous blood into the 

leptomeninges. The role of CSF in the body includes providing a shock-absorber 

for the brain, helping to regulate intracranial pressure, and draining waste 

products from the brain(Sakka et al. 2011). 



Chapter 1: Introduction 19 

 

As would be expected for a fluid in a normally very hypocellular compartment, 

despite a comparable sodium concentration and osmolarity to plasma, normal 

CSF has a low abundance of most metabolites compared to plasma (i.e. the non-

cellular liquid of the blood). For example: glucose concentration(Di Terlizzi & 

Platt 2006) and oxygen pressure are typically around two-thirds of that found in 

venous plasma(Venkatesh et al. 1999; Zaharchuk et al. 2005) (corresponding to 

oxygen pressure around half that of arterial plasma), protein levels are around 

1% of plasma(Di Terlizzi & Platt 2006) and lipid/cholesterol levels are very low at 

around 0.1% of plasma(Illingworth & Glover 1971). It is worth noting that CSF is a 

150ml fluid without haemoglobin (to which up to 95% of oxygen in the blood is 

bound within red blood cells), and these measures detect unbound oxygen. The 

true abundance of oxygen in the CSF is therefore much lower than that of blood. 

A particular metabolite with interesting kinetics in the CNS is cholesterol. 

Cholesterol is relatively abundant in the CNS as a whole – mainly in the myelin of 

neural sheaths in the brain – but is extremely scarce in the CSF(Illingworth & 

Glover 1971). The cholesterol in the CSF consists of a specific metabolite (24-

hydroxycholesterol) which is produced only in the CNS, mainly by glial neuron-

supporting cells, with no systemic cholesterol detected(Vance et al. 2005). In 

addition the lipoproteins which normally transport cholesterol to the systemic 

circulation are not found in the CNS, with CNS-specific lipoproteins detected in 

the CSF(Pitas et al. 1987; Koch et al. 2001). 

1.3.3 Oncometabolism 

CNS ALL cells therefore grow in an environment with limited nutrient 

availability. They appear tightly adherent to the meningeal layers and it is 

possible that some nutrients are obtained from surrounding meningeal stromal 

cells, but despite this it is likely that CNS ALL cells are in a more nutritionally 

poor environment than systemic ALL cells which are able to draw nutrients from 

the circulating blood. 

There is a large body of literature regarding metabolic adaptations of cancer 

cells reviewed by Vazquez et al.(Vazquez et al. 2016) Many of these metabolic 

changes are determined at a genome level – i.e. natural selection of cancer cell 

subclones best adapted to survive in a particular environment – some common 
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genetic adaptations were recently reviewed by De Berardinis and 

Chandel(DeBerardinis & Chandel 2016). The most famous oncometabolic 

adaptation is aerobic glycolysis first described by Warburg(Warburg 1956), where 

cancer cells increase glycolysis and reduce TCA metabolism despite adequate 

oxygen levels. This results in less efficient ATP production from glucose but 

allows a much more rapid glycolytic flux and results in increased production of 

metabolic building blocks and reduced generation of free radicals. 

In ALL the evidence suggests that the genomic landscape of ALL cells in the CNS 

is very similar to that in the systemic circulation, particularly when it comes to 

looking at which subclones of ALL are present in each compartment. This 

suggests that there is no genomic adaptation or natural selection of “CNS-avid” 

ALL subclones(Bashford-Rogers et al. 2016; Elder et al. 2017; Bartram et al. 

2018). 

There is, however, evidence that normal lymphoid cells are able to markedly 

adapt their metabolism transcriptionally between activated and quiescent 

states, sometimes in ways reminiscent of cancer cell metabolism with aerobic 

glycolysis and glutaminolysis, and changes in the metabolism of lipids. It may be 

that this transcriptional adaptation is sufficient for ALL cells to survive in the 

CNS(Ganeshan & Chawla 2014). Indeed as noted previously the expression of 

VEGFα is increased by ALL cells in the CNS, likely as a response to hypoxia(Kato 

et al. 2017; Munch et al. 2017). 
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Figure 1-5 Schematic diagram of naïve, activated and memory T-cell 
metabolism(reproduced with permission from Ganeshan + Chawla, Annu. Rev. Immunol. 
2014. 32:609–34, © Annual Reviews) 

Targeting ALL cell metabolism has been a mainstay of ALL therapy since very 

early days in treatment. Some of the main anti-ALL therapies which form the 

backbone of current treatment regimens are anti-metabolite drugs: 

methotrexate disrupts folate/one-carbon metabolism, 6-mercaptopurine disrupts 

nucleotide metabolism, and asparaginase disrupts metabolism involving the 

amino acids asparagine and glutamine. Methotrexate and asparaginase in 

particular are among the most effective drugs for preventing CNS relapse in ALL. 

It may be that in the nutritionally poor CNS microenvironment, ALL cells are 

more sensitive to therapeutic metabolic disruption. 
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1.4 Hypothesis and aims 

To summarise: ALL is the most common childhood cancer in the developed 

world, and is among the leading causes of cancer death in childhood. The major 

areas that can be improved in ALL treatment are, as noted above, improving 

disease control and reducing the toxicity of treatment. 

Improving the understanding of CNS disease in ALL offers an opportunity to 

address both of these areas – CNS ALL is found to be involved (by cytospin) in 

50% of ALL relapses. It is possible that the true incidence of CNS relapse may be 

higher given the known poor sensitivity of cytospin. In addition, CNS-directed 

therapy carries a significant toxicity burden. 

The crux of these issues is knowing which children should receive more CNS-

directed therapy to prevent relapse, and which could receive less. In addition 

understanding CNS leukaemia better may allow identification of critical 

weaknesses of ALL in the CNS to allow more targeted (and hopefully less toxic) 

treatments. 

CNS ALL metabolism may be a key to improving both of these issues. CNS ALL 

blasts are found in a nutrient-poor environment, raising the possibility the cells 

are under metabolic stress which could be targeted with therapy. Additionally 

the presence of ALL cells in a normally acellular environment may provide a 

metabolic signature of ALL in the CSF – which can fairly easily be collected and 

analysed. 

My hypothesis is: 

ALL cells adapt metabolically to survive in the CNS microenvironment. 

My research aims are: 

1) To identify metabolic adaptations of ALL cells to the CNS microenvironment 

that could be targets for CNS-directed therapy 

2) To identify new metabolic markers of CNS involvement in the CSF 
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3) To investigate directly metabolic changes of ALL cells in the CNS identified in 

the course of this investigation 
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Chapter 2: Materials and Methods 

2.1 Materials and Supplies: 

2.1.1.1 List of Suppliers and associated materials/supplies 

Table 2-1 List of suppliers and associated materials/supplies 

Supplier Base location Material Supplied 
Catalogue 

number 

ATCC Virginia, USA HS5 – Normal adult 
human bone marrow 
stroma 

ATC-CRL-11882 

Biolegend UK Ltd. London, UK PE/Cy7 anti-human 
CD19 antibody 

APC-Annexin V 
Apoptosis Detection Kit 

302216 
aaaaaaaaa 

640932 

BioRad 
Laboratories Ltd. 

Hemel 
Hempstead, UK 

Ssofast EvaGreen Low 
Rox Supermix Kit 

1725210 

Cambridge Isotope 
Laboratories Inc. 
(via CK isotopes 
Ltd, Ibstock UK) 

Massachusetts, 
USA 

D-Glucose (U13C6 99%) 

Sodium Acetate (1,213C 
99%) 

CLM-1396 

CLM-440 

Corning Inc. New York, USA All plastics unless 
otherwise stated 

 

DSMZ Leibniz, 
Germany 

SEM – Immortalised 
childhood ALL cells 
with t(4;11) 

REH – Immortalised 
human childhood ALL 
cells with t(12;21) 

AC-546 

 

AC-22 

E&O Laboratories, 
Ltd. 

Bonnybridge, UK Luria Bertoni Broth BM5300 

Elkay Laboratory 
Products (UK) Ltd. 

Basingstoke UK Flow Cytometry (5ml) 
tubes 

 

Eppendorf Hamburg, 
Germany 

Microcentrifuge tubes  

Fluorochem Ltd. Hadfield, UK Simvastatin M03997 

Labtech 
International Ltd. 

Heathfield, UK Embryonic Stem Cells 
tested-FCS (ES-FCS) 

 

1001S/500 

Lonza Basel, 
Switzerland 

MycoAlert Detection 
Kit 

LT07-218 
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Miltenyi Biotec 
Ltd. 

Bisley, UK anti-CD45-FITC, mouse 

Anti-Ter119-Vioblue, 
mouse 

Red Blood Cell Lysis 
Solution 

130-102-491 

130-102-208 
aaaa 

130-094-183 

New England 
Biolabs 

Massachusetts, 
USA 

Exonuclease I (E. coli) 

Phusion High-Fidelity 
DNA Polymerase 

M0293S 

M0530S 

Qiagen Hilden, Germany RNEasey kits (micro, 
mini, midi) 

Multiplex PCR kit 

RNAse-free DNAse kit 

QIAquick Gel 
Extraction Kit 

QIAshredder 

74004, 75142, 
74104) 

206143 

79254 

28704 
aaaaaaaaa 

79654 

Santa Cruz 
Biotechnology, 
Inc. 

Dallas, Texas Pseudouridine 
(chemical standard) 

HMGCR Double Nickase 
Plasmid (with Control 
Nickase Plasmid, 
UltraCruz® 
transfection Reagent, 
Plasmid Transfection 
Medium) 

Puromycin 

sc-291984 

 

sc-400560     
(sc-437281, sc-
395739, sc-
108062) 

         
jjjjjjjjjjjjj 

sc-108071, 

Sciencell Research 
Laboratories Inc. 
(via Caltag 
Medsystems Ltd. 
Buckingham, UK) 

California, USA Meningeal Cell Media 

Trypsin/EDTA 

Human meningeal cells 

1401 

0103 

SC-1400 

Sigma- Aldrich Missouri, US Oligonucleotides/PCR 
Primers 

HMGCR shRNA pLKO-
plasmid bacterial 
glycerol stocks 

Methylcellulose 

MTFA 

 

Chemical standards 
(NG-NG Dimethyl-L-
Arginine, Xanthine, N4-
Acetylcytosine) 

asdsad 
asdasaaaa 

SHCLNG-
NM_000859 
aaaaa 

M7140 

M7891 

 

D0390, X0626, 
M4254, 377910, 
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Chloroform (HPLC Plus) 

(RS)-mevalonic acid 
lithium salt 

6-Mercaptoethanol 

Demecolcine 

Cholesterol (Water 
Soluble Bioreagent) 

Methanol 

2-Propanol 
(Isopropanol) 

Calcium Chloride 

Trypan Blue 

650498 

90469 
aaaaaaaaa 

M6250 

D1925 

C-4951 
aaaaaaaa 

494291 

I9516 
aaaaaaaaaaaa 

C1016 

T8154 

Starlab Milton Keynes, 
UK 

A pipette tips  

StemCell 
Technologies 

Grenoble, 
France 

Lymphoprep 07811 

ThermoFisher 
Scientific 

(Includes 
subsidiaries: 

Invitrogen, Gibco, 
Life Technologies, 
eBioscience) 

Massachusetts, 
USA 

Nunc plasticware 

Syringes 

PBS (sterile) 

PBS (10x) 

DMEM “Low glucose, 
Pyruvate” 

RPMI 1640 

Penicillin/Streptomycin 

L-Glutamine 

Fetal Calf Serum (FCS) 

Trizol 

Amplex Red 
Cholesterol Assay Kit 

 

High-Capacity RNA-to-
cDNA kit 

Cell proliferation Dye 
eFluor 450 

Purelink HiPure 
Plasmid Filter Maxiprep 
Kit 

FAST SYBR Green 
Master Mix 

 

 

10010023 

14200059 

31885023 
aaaaaaa 

21875158 

15140122 

25030032 

10270106 

15596026 

A12216 
aaaaaaaa 

 

4387406 
aaaaaaa 

(eBioscience) 
65-0842-85 

K210016 

 

4385612 
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VWR International 
Ltd 

Lutterworth, UK Ethanol PROL20821.330 

2.1.1.2 Other Materials/Supplies 

Miscellaneous liquid chromatography-mass spectrometry (LC-MS) supplies (e.g. 

HPLC-grade acetylnitrate and some chemical standards) were kindly provided by 

the Metabolomics Unit in the Beatson Institute, Glasgow. Hexane, potassium 

hydroxide and pyridine were kindly provided by the Kamphorst group, Beatson 

Institute, Glasgow. All plastics and chemicals used for murine work (e.g. 

isofluorane, depilatory creams, 10% Neutral buffered formalin (NBF)) was 

provided by the Biological Service Unit in the Beatson Institute, Glasgow. 

Chloroquine and HEK293 cells, scramble-GFP, VSV-G and PsPax2 plasmids were 

kindly provided by the Helgason Group, Institute of Cancer Sciences, University 

of Glasgow. Agarose, TAE buffer and ethilium bromide were kindly provided by 

the Graham group, Institute of Infection, Immunity and Inflammation, University 

of Glasgow. Reagents and histology stains were provided by the Glasgow 

University School of Veterinary Medicine Pathology Department. 

2.1.2 Human Tissues 

All human tissues obtained had written consent in accordance with Declaration 

of Helsinki, and were used in protocols approved by the West of Scotland 

Research Ethics Committee (WoSREC: 09/S0703/77) 

2.1.2.1 Primary cells/Primagraft cells 

Primary bone marrow-derived human acute lymphoblastic leukaemia cells were 

obtained from the Bloodwise (formerly Leukaemia and Lymphoma Research) 

Childhood Leukaemia Cell Bank (York, UK). 

2.1.2.2 CSF biobank 

Leftover CSF taken from children at the Royal Hospital for Children, Glasgow 

(formerly Royal Hospital for Sick Children, Yorkhill Glasgow), approximately 1ml, 

was centrifuged at 1,000g for 10 minutes at 4°C, and carefully transferred into 

fresh microcentrifuge tubes and frozen at -80°C. CSF processing was largely 

carried out by Dr Saeeda Bhatti and Dr Yasar Yousafzai. 
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2.1.2.3 NSG Mice 

3 Male and 3 female NOD.Cg-Prkdcscid Il2rgtm1WjI/SzJ (NSG) mice were 

obtained from Charles River Europe, and a breeding colony maintained in sterile, 

air-filtered, barrier cages at the Biological Services Unit, Beatson Institute, 

Glasgow. All in vivo experiments were carried out using UK Home Office 

approved protocols and in accordance with local procedures (project licence 

number 60-4512). 

2.2 Techniques: 

2.2.1 Patient Characteristics 

2.2.1.1 Patient characteristics of cell donors for primary/primagraft 
xenotransplantion 

Table 2-2  Patient characteristics for donors of primary and primagraft cells engrafted into 
NSG mice 

 

Cell ID Translocation Sex Age at diagnosis

White Cell Count 

at diagnosis Outcome

Patient 1 

(primagraft cell)

TEL:AML1 t(12;21)
F 2.5 84.6

Long-term survival; no 

relapse

Patient 2 

(primagraft cell)
TEL:AML1 t(12;21) F 3.6 120

Long-term survival; no 

relapse

Patient 3 

(primagraft cell) TEL:AML1 t(12;21) F 3.5 113
Died on treatment; no 

relapse

Patient 4 

(primary cell)
MLL t(4;11) F 11.1 324

Long-term survival; no 

relapse

Patient 5 

(primary cell)
MLL t(4;11) F 3.2 489

Long-term survival; no 

relapse

Patient 6 

(primary cell)
MLL t(4;11) 5 8.1 585

Long-term survival; no 

relapse
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2.2.1.2 Patient characteristics for untargeted CSF analysis 

Table 2-3 Patient characteristics for samples used in untargeted CSF analysis 
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2.2.1.3 Patient characteristics for CSF analysis at CNS relapse 

Table 2-4 Patient characteristics for samples used in CNS relapse CSF analysis 
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2.2.2 Xenografting 

Human ALL cell lines, primary cells, and primagraft cells (i.e. primary cells that 

had been xenografted, then human ALL cells retrieved from the spleens of mice 

post-engraftment) were introduced into immunocompromised NOD.Cg-Prkdcscid 

Il2rgtm1WjI/SzJ (NSG) mice. 

2.2.2.1 Tail vein injection 

SEM and REH ALL cell lines, in passage 5-10 from purchase from ATCC, were 

centrifuged at 300g for 5 minutes, supernatant discarded and cells resuspended 

in “complete” culture media (i.e. RPMI or DMEM with 10% FCS, 5% Penicillin, 5% 

Glutamine) at a density of 2x107 cells/ml. This cell suspension was stored at 4°C 

and transferred to the animal facility where 0.1ml (2x106 cells) were introduced 

intravenously into the tail vein of 6-12 week old NSG mice with a 29-gauge 

needle under aseptic technique. These cells reliably engrafted in CNS and spleen 

by 28 days (SEM) or 35 days (REH). 

At the end of experiments – either at 28 days (SEM) or 35 days (REH) or at the 

development of symptoms (e.g. weight loss), mice were culled by 

intraperitoneal injection of lethal dose of pentobarbital for experiments 

investigating the transcriptome or metabolome of CNS ALL cells or CSF. For any 

other experiments, mice were culled using increasing FiCO2. 

2.2.2.2 Intrafemoral injection 

Primary and primagraft cells were thawed, resuspended in 10ml complete RPMI, 

centrifuged at 300g for 5 minutes and resuspended in complete RPMI to a cell 

density between 1x106 and 1x107 cells/ml at 4°C. 

Primary and primagraft cells engraft less reliably than cell lines, likely due to 

reduced cell numbers and reduced cell viability. To combat this, these cells 

were introduced directly into the femurs of mice. Mice hindlimbs were treated 

with depilatory cream to remove hairs. 24 hours later, mice were anaesthetised 

with isofluorane, their femurs identified and immobilised manually, and an 

aperture made in the distal epiphysis with a 25-gauge needle. This needle was 

removed and 0.1ml of the ALL cell suspension introduced into the marrow space 

with a 29-gauge needle under sterile technique. 
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Mice received carprofen analgesia intraoperatively dosed according to their 

weight following local protocols, and were closely monitored for 48 hours post-

procedure for signs of discomfort. Any mice with discomfort at 24 hours received 

a further dose of carprofen. No mice required carprofen beyond 24 hours. 

Mice were culled either at the development of symptoms (e.g. weight loss or 

hindlimb paralysis), or at 6-9 months if no symptoms developed. 

2.2.2.3 Tail vein injection of 13C-labelled glucose and acetate 

1mg/g bodyweight in 100μL sterile water of fully 13C-labelled glucose, or 100μL 

of 300mM fully 13C-labelled acetate, was injected via the tail vein of mice, and 

mice culled by pentobarbital and CSF/cells retrieved as described below after 20 

minutes or 40 minutes. 

2.2.2.4 Retrieval of human ALL cells for RNA analysis 

To retrieve cells for RNA analysis, mice were culled with intraperitoneal 

pentobarbital. Brains were carefully and rapidly removed and placed in a 2% 

FCS/PBS solution at 4°C, the meninges adherent to the skull were carefully and 

gently scraped with the rubber plunger of a 1ml syringe and the scrapings 

suspended in the same FCS/PBS solution as the brain. This solution was gently 

vortexed for 1 minute to dislodge cells from the meningeal layers adherent to 

the brain, and a meningeal cell suspension created by passing the solution 

through a 40μm filter. The brain and any connective tissues in the filter were 

discarded and the cell suspension carefully layered onto lymphoprep™ (StemCell 

Tech.) in 15ml centrifuge tube as per the manufacturer’s instructions. 

Spleens were rapidly removed, weighed and placed in a different 2% FCS/PBS 

solution. Spleens were then processed through a 40μm filter to create a cell 

suspension. This cell suspension was carefully layered onto lymphoprep™ in a 

50ml centrifuge tube as per the manufacturer’s instructions. ALL cells from the 

spleen were used as there is good evidence that the transcriptional profile of 

xenograft ALL cells from the spleen is very similar to that of the bone 

marrow(Samuels et al. 2010), and leukaemic cells in the spleen are more 

abundant and technically easier to harvest and isolate 



Chapter 2: Materials and Methods 34 

 

Specimens on lymphoprep™ were centrifuged at 800g for 20 minutes to separate 

cell populations by density (i.e. to remove any erythrocytes, glia or granulocytes 

from cell suspensions). Purified lymphocytes were resuspended in 10ml 

2%FCS/PBS at 4°C, supernatants discarded and cell pellets snap-frozen in dry ice 

and stored at -80°C. Time from cull to freezing was approximately 45 mins to 1 

hour, with cells mainly kept at 4°C during this time. (Figure 2-1) 

 

Figure 2-1 Schematic diagram of procedure for extraction of RNA from CNS and spleen ALL 
in mice 

2.2.2.5 Retrieval of human ALL cells for metabolomic analysis 

For metabolomic analysis time from cull to freezing is crucial as the metabolome 

can be disrupted very rapidly. In addition, plasma and CSF samples can provide 

extremely interesting data either on their own or as a supplement to cellular 

data. The technique for retrieving cells was therefore adapted to allow for 

maximum speed and accuracy of collection. 

The mice were culled by lethal dose of phenobarbital and CSF was obtained 

when the mice were unconscious under terminal anaesthesia. Immediately as 
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death was confirmed, the mice were placed on ice, a laparotomy performed, 

and blood drawn from the IVC or heart. Blood and CSF were both immediately 

stored at 4°C, and later centrifuged at 2000g for 15 minutes to make blood 

plasma, and supernatants removed and stored at -80°C. The mice were 

decapitated, the base of skull and brain removed, and meningeal cells scraped 

gently with a syringe plunger through a 40μm filter into 2% FCS/PBS at 4°C. The 

spleen was removed and processed through a 40μm filter into 2% FCS/PBS. 

As discussed below, there were concerns that red cell contamination from the 

spleen would compromise any results, and an experiment to examine the utility 

of red cell depletion is described (section 5.5.1). Rapid red cell depletion for 

metabolomic analysis was performed by diluting Red Cell Lysis Solution 10x 

(Miltenyi) in ddH2O as per manufacturer’s instructions, and incubating cells in 

this solution at room temperature for 3 minutes. For later experiments, a 50μL 

aliquot each of spleen-derived and meningeal-derived ALL cell suspensions were 

taken and stored at 4°C for counting. 

The cell solutions were then centrifuged at 4000g for 2 minutes, supernatants 

discarded, and snap-frozen in dry ice before storage at -80°C. 

2.2.2.6 Retrieval of tissues for histology 

Finally, for xenograft experiments where RNA or metabolite extraction was not 

required, mice were culled with increasing FiCO2. Spleens were removed and 

weighed, then placed in 10% NBF and transferred to a specialist laboratory 

(Glasgow University School of Veterinary Medicine Pathology Department), fixed 

for over 48 hours. Mice heads were removed, stripped of soft tissues exterior to 

the skull and placed in 10% NBF for immediate storage and transport. On arrival 

at the specialist laboratory, these samples were decalcified in a Hilleman and 

Lee 5.5% EDTA in 10% formalin solution for 2-3 weeks, then fresh EDTA for 3-4 

days prior to embedding in paraffin. Paraffin blocks were then cut into 2.5μm 

slides, dried, and stained with Gill’s haemotoxalin and Putt’s eosin prior to 

transfer back to the laboratory. Slides were scanned with a Hamamatsu 

NanoZoomer NDP scanner, and analysed using HALO v2.0.1061.3 software (Indica 

Labs Inc.). 
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2.2.3 RNA extraction 

Two different techniques were used for RNA extraction. For RNAseq analysis, the 

University of Glasgow Glasgow Polyomics Department’s protocol stipulated the 

use of Trizol™ for RNA extraction using the standard manufacturer’s procedure. 

For other RNA experiments, RNA was obtained using the Qiagen RNeasy™ system 

which was simpler and safer. 

2.2.3.1 Trizol™ extraction 

To extract RNA using Trizol™, in a clean hood 1 ml of Trizol™ was added to cell 

pellets, and cell pellets resuspended using a pipette, and the mixture 

transferred to a “clip-lock” microcentrifuge tube. 0.2ml chloroform was added 

and mixed by inversion of the samples. After 3 minutes at room temperature, 

the mixture was centrifuged at 10,000g for 20 minutes at 4°C. After 

centrifugation the aqueous phase was removed from the resultant mixture and 

diluted in an equal volume 100% isopropanol (approx. 0.5ml), and mixed by 

inversion. After 10 minutes at room temperature, the mixture was centrifuged at 

10,000g for 10 minutes at 4°C and the supernatant discarded. 1ml of 75% 

ethanol was added to the tube and mixed by pipetting, then centrifuged at 

7,500g for 5 minutes at 4°C. The supernatant was discarded and the tube air-

dried (approximately 45 minutes) then resuspended in 50μL nuclease-free water. 

This was incubated on ice for 10 minutes, then at 65°C for 5 minutes. The 

quantity and quality of RNA obtained was assessed using the Nanodrop 

spectrophotometer (ThermoScientific, MA, USA) to assess absorbance at 260 and 

280nm wavelengths of light. 

2.2.3.2 RNEasy 

The RNeasy™ system was bought in as a kit, either the “micro”, “mini”, or 

“midi” kit depending on the cell number RNA was to be extracted from. The 

manufacturer’s instructions were followed, but briefly: 

 Cells were lysed using “Buffer RLT” (from the RNeasy™ kit), and 

homogenised by centrifuging through “QIAshredder” column. 

 The homogenate was mixed with alcohol, and the RNA eluted onto a 

membrane in a “Spin Column” supplied with the kit by centrifugation. 
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 The column was washed with a proprietary buffer, and DNAse added to 

the membrane with RNA to remove DNA. This was incubated for 15 

minutes, then washed again. 

 The RNA wass retrieved in a microcentrifuge tube by centrifuging 

RNA/DNA-free water through the RNA-impregnated membrane. 

 The quantity and quality of RNA obtained was assessed using the 

Nanodrop spectrophotometer as above. 

2.2.4 RNAseq 

RNASeq is a technique used to identify and quantify RNA using massive parallel 

sequencing of cDNA(Wang et al. 2009). RNA was obtained from SEM and REH 

cells retrieved from the CNS and spleens of mice as detailed above (sections 

2.2.2.4 and 2.2.3.1). This was then passed to the University of Glasgow Glasgow 

Polyomics Department. The RNA was analysed using the NextSeq® 500 platform 

as (Illumina® Inc., CA) with poly-A mRNA selection and 75bp paired-end 

sequencing. Reads were aligned to the reference human and murine 

transcriptome using k-mer statistics with the Kallisto programme (Patcher Lab, 

Caltech, CA). Any reads aligning to the mouse genome were removed (100,000 of 

30 x106 reads from control cells; 1,500,000 of 30 x106 reads from ALL cells 

retrieved from the spleen; and 800,000 of 30 x106 reads from ALL cells retrieved 

from the CNS). In total, RNA from 65,000 genes was analysed by the lab for 

differential expression using the DESeq2 package as discussed below (section 

2.2.12.1). 

2.2.5 Polymerase Chain Reaction (PCR) 

PCR is a technique used to amplify a small sequence of DNA using two 

complementary-DNA primers (i.e. small molecules of DNA with sequences of 

bases that will bind one to the start and one to the end of a target sequence) 

and DNA polymerase. As the amplification of DNA is an exponential processes 

given sufficient resources, the time taken to reach a detectable amount of DNA 

can be used in a technique called quantitative PCR (qPCR) to calculate the 

original amount of the target DNA in a sample. 
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In this project, RNA from cells was converted to cDNA (i.e. each RNA molecule 

was translated into the complementary DNA sequence) using High-Capacity RNA-

to-cDNA™ Kit (ThermoFisher Scientific), method below. This cDNA was then 

analysed using PCR to determine the original abundance of specific molecules of 

RNA. 

2.2.5.1 Conversion of RNA to cDNA 

Using a High-Capacity RNA-to-cDNA™ Kit (ThermoFisher Scientific), equal 

amounts of RNA for each sample in an experiment up to 2μg in a volume of 

nuclease-free water up to 9μL (as determined by nanodrop spectrophotometer 

absorbance) were mixed with a reaction buffer (including excess nucleotides) 

and the reverse transcriptase (RT) enzyme. Additionally samples were mixed 

with reaction buffer and nuclease-free water to provide a negative control 

(negative-RT control). The samples were then incubated at 37°C for 60 minutes 

to produce cDNA, then the reaction terminated by heating to 95°C for 5 

minutes. The cDNA was stored at -20°C until use. 

2.2.5.2 Primer design 

Primers were designed using Primer 3 Plus web tool (www.bioinformatics.nl/cgi-

bin/primer3plus/primer3plus.cgi, Wageningen University, NZ), and analysed for 

target specificity using Primer-BLAST (National Center for Biotechnology 

Information (NCBI), US) to minimise the chance of off-target DNA/cDNA binding 

to sequences in the human or mouse genome. 

In brief, the target DNA sequence (i.e. the sequence of DNA translated to RNA 

after splicing etc.) was loaded into Primer 3 Plus, and which was analysed for 

potential sequences with the following parameters: 

 length 18-23 base-pairs 

 40%-65% of bases being guanine or cytosine 

 predicted Tm (“melting temperature” – the temperature of maximal 

complementary DNA binding) 59.5°C-61°C 
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 Maximum self-complementarity of 2 (i.e. the primers will not have 

sequences larger than 2 base-pairs which are complementary to 

themselves or each other) 

 Maximum 3’ self-complementarity of 1 (i.e. a complete lack of self-

complementarity in the primer binding to the start of the sequence, 

where the polymerase reaction will start) 

 Target sequence of less than 150 base-pairs 

 Avoiding stretches of 4 or more G or C bases 

 Avoiding a GC “clamp” on primers (i.e. avoiding 2 or more G or C bases 

within 5 bases of the 3’ terminus of each primer) 

The primer pair with the characteristics closest to this was selected, and 

analysed using the primer-BLAST tool comparing the sequences to the human 

and mouse genome to ensure there was no ,minimal-target or cross-species 

complementarity, and to cover major splicing isotypes of the genes. 

2.2.5.3 Standard PCR 

2 sets of primers were designed for HMG CoA Reductase (HMGCR), HMG CoA 

Synthase (HMGCS), and TATA-box Binding Protein (TPB) (“housekeeping”) genes 

using the method described above. One set the “outer” set, amplified a 

sequence of the target gene containing the sequence amplified by the “inner” 

set of primers. Primers were obtained from Sigma-Aldrich. 

Table 2-5 List of PCR primers for qPCR (HMGCR / HMGCS1 / TBP Housekeeping gene) 

Target Sequence (forward/reverse) 

HMGCR Standard 
GGTGATGGGAGCTTGTTGTG / 
AGTGCTGTCAAATGCCTCCT 

HMGCR QPCR 
CAATGGCAACAACAGAAGGT / 
GTGGAAGACGCACAACTGG 



Chapter 2: Materials and Methods 40 

 

HMGCS1 Standard 
AGGGTGGATGAAAAGCACAG / 
GGGCTTGGAATATGCTCAGTT 

HMGCS1 QPCR 
ATGGTTCCCTTGCATCTGTT / 
CTTCAGGTTCTGCTGCTGTG 

TBP Standard 
AGGATAAGAGAGCCACGAACC / 
GCTGGAAAACCCAACTTCTG 

TBP QPCR 
GGGCACCACTCCACTGTATC / 
CATCTTCTCACAACACCACCA 

 

RNA was extracted from HEK293 cells, and converted to cDNA as above. A 

conventional polymerase chain reaction was then carried out for each primer 

pair using Phusion DNA Polymerase as per manufacturer’s instructions. Briefly: 

cDNA was mixed with a reaction buffer, an excess of nucleotides, a primer pair 

and DNA polymerase. This mixture was placed in a thermal cycler for an initial 3 

minutes of 98°C, then 30 cycles of 98°C for 5 seconds, 60°C for 20 seconds, 

72°C for 15 seconds, a final 72°C for 5 minutes, then the products stored at 4°C. 

A 2% agarose gel was prepared with TAE buffer and ethidium bromide, and the 

PCR products and a DNA ladder were run through the gel by electrophoresis at 

100V for 20 minutes. UV light in a gel imager was used to visualise bands of 

oligonucleotides, confirming the presence of a single band of appropriate size 

for the target gene. 

For the “outer” set of genes, bands were carefully cut from the gel, and DNA 

purified using a QIAquick kit (Qiagen) as per instructions (using a similar 

membrane-binding system to the RNeasy system). This DNA was quantified using 

Nanodrop spectrophotometer (with number of copies of the target sequence 

determined by calculating the mass of each copy of target sequence DNA based 

on length and the average mass of a DNA base-pair – 660da), and then a series of 

dilutions made to provide a standard for quantification of cDNA in samples for 

each of the target genes. 
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Quantification was done using quantitative PCR (qPCR) using a SYBR-green 

system. SYBR green is a dye which binds to DNA, and in its bound state can 

absorb blue light, and emit green light. The fluorescence of a mixture with an 

excess of SYBR green with DNA therefore depends on the concentration of DNA. 

This can be used to continually measure the DNA abundance during PCR 

reactions. 

A master mix for each of pairs of “inner” primers together with SYBR-green 

(ThermoFisher Scientific)) and nuclease-free water was added to each sample in 

triplicate and to serial dilutions (each in duplicate) of the appropriate standard 

from the step above in a range from 108 copies to102 copies in dilutions of 10. 

Additionally the master mix was added to a “-RT” control for each gene for each 

sample. 

PCR was then performed using a 7900HT real-time PCR machine (ThermoFisher 

Scientific). The mixture was heated to 94°C for 10 minutes, then 40 cycles of 

94°C for 3 seconds and 60°C for 30 seconds, with fluorescence of the mixture 

measured at the end of each cycle. Finally, the mix was heated incrementally to 

94°C over 25 minutes, with fluorescence continually measured for a melt curve. 

The period of exponential increase in DNA for each primer is automatically 

detected by the software, and an arbitrary threshold set. The time taken for 

each sample to reach this threshold (Ct) was determined and used to calculate 

the abundance of the target cDNA in the initial sample. A standard curve was 

calculated for the Ct’s of the standards, and the amount of each gene in the 

samples calculated from this. The abundance of each gene was normalised to 

that of the housekeeper gene (TBP). 

2.2.5.4 Multiplex PCR 

Multiplex PCR using the Fluidigm® Biomark HD system was used to facilitate the 

performance of multiple PCR reactions on single samples. The technique was 

theoretically very similar to previous techniques, but with some differences. 

Primers were prepared according the procedure above, and cDNA generated 

from each sample as above. The manufacturer’s instructions were followed, but 

in brief: 
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The abundance of each target cDNA sequence was amplified to improve 

sensitivity. A mix of each of the primers was prepared at 500nM and 0.5μL mixed 

with 2.5 μL TaqMan PreAmp Master Mix (ThermoFisher Scientific), 0.75μL 

nuclease-free water and added to 1.25μL of each sample. This mixture was 

placed in a thermal cycler at 95°C for 10 minutes, then 14 cycles of 95° for 15 

seconds and 60°C for 4 minutes. Amplified samples were treated with 

Exonuclease I (New England Biolabs) – 0.4μL of 20 units/μL exonuclease I, 0.2μL 

reaction buffer and 1.4μL water were added to the 5μL samples, mixed and 

briefly centrifuged then heated in a thermal cycler to 37°C for 30 minutes, then 

80°C for 15 minutes. The samples were then diluted in 18μL TE buffer and 

stored at -20°C. 

Samples were mixed with SsoFast Supermix (BioRad) and DNA-Binding Dye 

Sample Loading Reagent (Fluidigm). Primer pairs were diluted to a concentration 

of 5μM in Assay Loading Reagent and DNA Suspension Buffer (Fluidigm). The 

samples and primers were then loaded onto a pre-primed 48.48 Dynamic Array 

IFC (Fluidigm), and the mixtures loaded using an IFC controller before PCR being 

performed and analysed using the BioMark HD. 

Target Sequence (forward/reverse) 

HMGCR TGTTTGCAGATGCTAGGTGTTC / 
AGTGACAATTCCCCAGCCATT 

HMGCS1 GGTGTGCGCAGGACTTT / 
CAGGGCTTGGAATATGCTCAGTT 

CYP51A1 ATTTGGAGCTGGGCGTCATC / 
TCAGTGGGAAAGTATCCATCA 

DHCR7 GAGGCCAGGGGAAGGT / 
TCACAGCAGAACTTTT 

DHCR24 CCCCGAGGTGTACGACAAG / 
TGAAAGTGTGGATCTAGGAAAGCA 

FDFT1 GCCAACTCTATGGGCCTGTTT / 
AACATACCTGCTCCAAACCTCTT 

LSS GTACGAGCCCGGAACATTCT / 
CAGCCACATCTCTGGGAACA 

MSMO1 ATTGGAATCGTGCTTTTGTGTGA / 
TGATGCCGAGAACCAGCATAG 
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MVK GCTCTGGGTTGTGGGAGTTG / 
CGGCGCAGACACCAGYAGGA 

SQLE ATGGCAGAGCCCAATGCAAA / 
AACAGTCAGTGGAGCATGGA 

TM7SF2 GGGGAACTCAGGCAATCC / 
CGGGTCGCAGTTCACAGAAA 

PMVK CCGCGTGTCTCACCCTTTTC / 
CTAAGCGGAGCGGCAACAAG 

MVD CTTTCCCCCAGGCTCGAATG / 
GGCCCCACCTGAGTGACAA 

IDI1 ACCACCTCGACAAGCAACAG / 
AGCTCGATGCAATAATCCTTTCTCA 

FDPS TGACGGTGGTAGTAGCATTCC / 
CTTGCAGCAGTTCCACACA 

NSDHL CGCCTACGGACGGAAAAGAA / 
CGTGCGACTTGGTCTCTCA 

SC5D ACAAATGTTGGTGCTTACATCCT / 
TCTCTCGACGGACTTGATTCTTT 

HSD17B7 AAGCAAAGGTTTCAGAGATTAGAC / 
CAGCTTGAAAAAGAGGCCAAAGA 

EBP CCGATACATCCTGGGTGACAA / 
GGCCCACAGAGACCACAAG 

IDI2 GAGGAATTGCCATCTGAACGA / 
AATACCCAGGAAACGTGACT 

SREBF1a ATGGACGAGCCACCCTTCAG / 
GCCGACTTCACCTTCGATGT 

SREBF1C GCGCTCAACGGCTTCAAAAATC / 
GCATGTCTTCGAAAGTGCAATCC 

SREBF2 GGACCTGAAGATCGAGGACTTT / 
TCATCTTTGACCTTTGCATCATC 

SPP1 GAGGAGACACAGCCGAGATAC / 
GGCTTTTCCAAACAGAGTCACA 

IRF4 ACCCGGAAATCCCGTACCAA / 
GGTGGGGCACAAGCATAAAAG 

VEGFA ACTGAGGAGTCCAACATCACCAT / 
CGGCTTGTCACATCTGCATTCAC 

ACSS2 CCATTGTGTTTGCAGGCTTCT / 
CCAGCTCCTTCAGGTTCACA 

IL-15 TGTTTCAGTGCAGGGCTTCC / 
CAACTGGGGTGAACATCACTTTCC 

ACSS1 ACCTGGTGGCAGACAGAAACA / 
CAAAGAAGGGCCTCATCGCC 
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ICAM-1 TGGGCAGTCAACAGCTAAAAC / 
CCTGGCAGCGTAGGGTAAG 

MERTK AATCCCCCTCCGTGCTAACT / 
TGGGGAGGGAATTGCTTTGA 

PBX-1 ATGACCATCACAGACCAGAGTT / 
AAAGAACAATGAGGGGCAGTT 

 

2.2.6 Metabolomics 

The analysis of large numbers of small-molecule metabolites from an integrated 

network in a biological system is known as metabolomics. Metabolomic analysis 

can be done in various ways, but the most common uses a combination of 

chromatography to separate metabolites in a sample over time, ionised to a 

charged state, and mass spectrometry to measure with extreme accuracy the 

mass (or more accurately the mass/charge ratio - m/z) of those metabolites by 

measuring the deviation of the ionised metabolite from a straight path under a 

known voltage. With this combination of techniques it is possible to detect many 

thousands of possible metabolites. In this project 3 complementary approaches 

to these techniques were used. 

In the first, known in this thesis as “targeted” liquid-chromatography mass 

spectrometry (LC-MS), samples are separated on a liquid chromatography column 

then ionised and the masses of metabolites measured using mass spectrometry. 

Metabolites were identified by the chromatography time (known as retention 

time or RT), and sometimes the shape of the chromatography peak, and their 

mass by comparison to a regularly maintained database of pure metabolite 

standards’ RT and mass. This technique is relatively quick and provides excellent 

resolution of metabolite peaks. 

The second technique, “untargeted” LC-MS is similar in that a liquid 

chromatography column is used to separate metabolites, though metabolites are 

diffused over a longer time to improve separation, and ionised only to either 

positive or negative polarity on a single run prior to detection. As an additional 

step, the top 10 highest abundance metabolites at any time are fragmented, and 

the m/z ratios of these fragments measured. Metabolites are identified based on 

retention time, mass and the fragmentation pattern. This technique allows the 
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identification of a huge number of metabolites, not only those that have 

previously been run as a standard. 

Finally a third technique, gas-chromatography mass spectrometry (GC-MS) was 

used. This vaporises samples and separates metabolites using gas-

chromatography prior to mass spectrometry. This technique allows better 

detection and quantification of volatile and lipid molecules. 

To prepare samples for analysis, the metabolites first need to be prepared or 

“extracted.” 

2.2.6.1 CSF and plasma extraction 

At 4°C 50μL of human CSF samples were mixed 1 in 20 in a extraction solution 

(50% methanol/30% acetonitrile/20% deinoised water) with a final concentration 

of 0.5μM 13C-labelled (i.e. standard molecules with normal 12C carbon atoms 

replaced with detectably heavier but chemically identical 13C carbons) pyruvate, 

arginine, alanine, lactate and 5μM 13C Glucose. 

Samples were mixed thoroughly in a vortex for 30 seconds then centrifuged at 

16,000g for 10 minutes at 4°C, then the supernatant transferred to a glass vial 

and stored at -80°C until analysis. 

Mouse CSF and plasma samples were extracted using the same method, though 

1μL of sample was mixed 1 in 50 in extraction solution. 

Extraction using methanol/acetonitrile/water was used for analysis of small 

polar metabolites. For analysis of more lipid molecules two different sample 

extraction methods were used. For LC-MS lipid analysis, 100 μL of CSF was 

placed in a microcentrifuge tube at 4°C then 300μL of chloroform and 600μL of a 

50:50 methanol/deionised water mixture added. Samples were mixed in a vortex 

for 2 minutes then the bottom layer (i.e. the chloroform layer) carefully 

pipetted into a glass vial. This vial was then placed under nitrogen gas until dry 

then stored at -80°C. 
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For GC-MS, samples were processed as above, then once dry under N2 gas the 

samples were resuspended in 700μL 50:50 methanol:PBS and 75μL potassium 

hydroxide, then incubated at 80°C for 1 hour in order to hydrolyse lipids. After 

incubation 200μL water and 500μL of hexane was added. The samples were 

vortexed for 3 minutes and the top layer (hexane) carefully collected. This layer 

was then dried under N2 gas. Once dried, the samples were resuspended in 40μL 

of dry pyridine (stored with molecular sieves to ensure no water contamination) 

and 50μL MSTFA to derivate cholesterol. Samples were added to glass vials, 

capped and incubated at 60°C for 60 minutes, cooled to room temperature and 

analysed immediately. 

2.2.6.2 Cellular extraction 

For extraction of cellular samples, cells in microcentrifuge tubes were retrieved 

from storage at -80°C, and extraction solution (50% methanol/ 30% acetonitrile / 

20% water as above) added to a cell concentration of 1-2 x106 cells/ml. Samples 

were mixed by pipetting to resuspend cells then agitated in a thermomixer at 

1,400 rpm for 10 minutes at 4°C. Samples were then centrifuged at 16,000g for 

10 minutes at 4°C, the supernatants transferred to glass vials and stored at -

80°C until analysis. 

2.2.6.3 Targeted LC-MS 

For small molecule analysis, samples were loaded onto a Thermo Ultimate 3000 

high-performance liquid chromatography (HPLC) system (ThermoFisher). 2μL of 

sample was loaded and run through a 150 x 2.1mm SeQuant ZIC-pHILIC column 

(Merck), with a preceding SeQuant 20 x 2.1mm guard column (Merck) with an 

aqueous and an organic solvent. The aqueous solvent used was 20mM ammonium 

carbonate, and the organic solvent was acetonitrile. A gradient from 80% organic 

solvent/20% aqueous to 80% aqueous solvent/20% organic was run over 15 

minutes, then returned to starting conditions over 7 minutes, all at 45°C. The 

total run time was 23 minutes. 

After separations by chromatography, samples were ionised using heated 

electrospray ionisation (HESI) and injected into a Q-Exactive Orbitrap mass 

spectrometer, where ions were scanned in a range 75-1000 (m/z) with a 

resolution of 35,000. Polarity switching was used to produce and analyse 
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negative and positive ions. Lock masses were used, and mass error for the 

spectrometer was less than 5ppm, and usually less than 2ppm. Data were 

acquired using XCalibur software (ThermoFisher), and analysed using 

TraceFinder v4.1 (ThermoFisher), and metabolites were identified by the mass 

of singly-charged ions and by known retention time(Mackay et al. 2015). All 

metabolites detected had previously been analysed using commercial standards. 

All LC-MS was carried out by the Metabolomics Unit in the Beatson Institute, 

Glasgow. 

Lipidomic analysis was also performed using a Q Exactive Orbitrap mass 

spectrometer. 4μL of samples were injected as above, and separated on a 

Waters Acquity CSH C18 column (Waters) at 50°C. A gradient of aqueous solvent 

water/acetonitrile (40:60, v/v) with 10 mM ammonium formate and organic 

solvent acetonitrile/2-propanol (10:90, v/v) with 10 mM ammonium formate, at 

a flow rate of 0.3 mL/min was used. The solvent gradient ran from 0% to 40 % 

organic over 6 min, then from 40% to 100% in the next 24 min, followed by 100% 

organic for 4 min, and then returned to 0% in 2 min where it was kept for 4 min 

column equilibration (40 min total). Samples were ionised using HESI. The mass 

spectrometry analysis was performed with a full scan range of 300-1200 m/z, 

with a resolution of 17,500, using MS and ddMS(top 3) analysis. Polarity switching 

was used to produce and analyse negative and positive ions. Lipidomic data 

analysis was performed using LipidSearch 4.0 software (Thermo Scientific). All 

lipidomic LC-MS and initial LC-MS data analyses were carried out by S Tumarov, 

Beatson Institute, Glasgow. 

2.2.6.4 Untargeted 

Untargeted mass spectrometry samples were run as from small molecule analysis 

as above, but with a chromatography time of 38 minutes (with a flow rate of 

100μL/min, and a solvent gradient (solvents as above) changing from initially 

80% organic to 20% organic over 30 minutes, then back to 80% organic over 8 

minutes). There was no polarity switching. Metabolite fragmentation by ddMS2 

of the top 10 metabolites at any one time was carried out in the Q-Exactive HCD 

collision cell. Peaks were analysed using Progenesis QI software, and using 

publicly-available databases (the Human Metabolome Database (HMDB)(Wishart 

et al. 2007), the METLIN database(Smith et al. 2005) and the MZCloud database 
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(https://www.mzcloud.org)). There was limited automatic checking of the HMDB 

and METLIN databases with the Progenesis software, however the bulk of 

compound identification was done manually. The MZCloud database was found 

to most faithfully identify prospective compounds from these experiments. 

Compound masses and fragmentation peak m/z’s were used to manually search 

the database and potential matches identified. These were confirmed by 

analysis of external standards.  All LC-MS was carried out by the Metabolomics 

Unit in the Beatson Institute, Glasgow. 

2.2.6.5 Gas Chromatography-Mass Spectrometry (GC-MS) 

Samples were separated using gas chromatography on an Agilent 7890B system 

using a Phoenix ZB-1701 column then analysed using Agilent 7000 Triple 

Quadripole GC-MS system with a scanning range of 38-650Da. Gas flow through 

the column was 1ml of He/minute. 1 μL of sample was injected in splitless 

mode, with an inlet temperature of 280°C, interface temperature of 270°C and 

a quadrupole temperature of 200°C. Quadrupole temperature was kept constant 

for 1 minute then increased by 20°C/minute to 280°C, and was kept at this 

temperature for 9 minutes. Total run time was 14 minutes. The column was 

equilibrated for 2 minutes between samples. 

Data were acquired between 5 and 14 minutes, in a mass range of 140-550Da at 

1.47 scans/second. The internal standard d7-cholesterol was used to allow 

absolute quantification of cholesterol. Hunter B.06.00 software (Agilent, CA, US) 

and MetabQ (R package) were used for data analysis. All GC-MS and initial GC-MS 

data analyses were carried out by S Tumarov, Beatson Institute, Glasgow, unless 

otherwise stated. 

2.2.6.6 Amplex® Red Cholesterol Assay 

An alternative approach to measure cholesterol using Amplex® Red Cholesterol 

Assay Kit (ThermoFisher) was also used as per the manufacturer’s instructions. 

This technique uses hydrogen peroxide produced by the oxidation of cholesterol 

to react with Amplex® Red reagent and cause fluorescence proportional to the 

abundance of cholesterol in the sample. 
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In brief: samples and a range of cholesterol standards were added to a 

proprietary reaction buffer. Negative controls with only reaction buffer, and 

positive controls with 10μM hydrogen peroxide were also prepared. A mixture of 

cholesterol esterase, cholesterol oxidase, horseradish peroxide (HRP) and 

Amplex® Red reagent was then added to the solution and incubated at 37°C for 

30 minutes protected from light, then fluorescence at 590nm measured. To 

measure free (rather than total) cholesterol, cholesterol esterase is omitted 

from the reaction solution and replaced with reaction buffer. 

2.2.7 In vitro culture 

2.2.7.1 Maintenance/Passage 

Cells were incubated at 37°C in 5% CO2. All manipulation of tissue culture cells 

was done using sterile technique in a sterile TC hood. 

SEM and REH cells were maintained in “complete” RPMI or DMEM media at a 

concentration of 0.5 – 2 x106 cells/ml as per the supplier’s recommendations. 

DMEM was used to maintain these cell lines in lieu of RPMI to facilitate co-

culture experiments. Cells were regularly tested for the presence of mycoplasma 

using Mycoalert mycoplasma detection kit (Lonza) as per the manufacturer’s 

instructions. For passage, cells in media were pipetted into a 15ml centrifuge 

tube, then centrifuged at 300g for 5 minutes, supernatants discarded, and cells 

resuspended in complete media to a concentration of 5x106/ml. 

HS5 cells were maintained in “complete” DMEM with ES-FCS at a confluence of 

60-90%. For passage, media was removed and stored, and cells were washed in 

sterile PBS. PBS and 0.25% Trypsin/EDTA (ScienCell) was added to the cells. For 

a 75 cm2 flask, 8ml PBS and 2ml Trypsin/EDTA were used, and equivalent 

amounts for other sizes of flask. The flasks were monitored for cell detachment 

using an inverted microscope. Once cells had detached (3-4 minutes), the 

Trypsin-cell solution was neutralised in complete media in a 50ml centrifuge 

tube, and the flasks were incubated a further 2 minutes then washed twice in 

complete media to collect any residual cells. Cells were centrifuged at 300g for 

5 minutes, the supernatant discarded, and cells resuspended in complete ES-

FCS/DMEM prior to seeding at a confluence of 60%. 
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Primary Human Meningeal cells (HMens) were maintained in proprietary 

Meningeal Cell Media (MCM), with 2% FCS, 1% Meningeal Cell Growth Supplement 

and 1% Pen/Strep (Sciencell) at a confluence of 60%-90%. Passage was carried 

out as per HS5 cells, except trypsin was neutralised and flasks rinsed with trypsin 

neutralising solution (Sciencell), and cells were resuspended into a flask coated 

in poly-L-lysine (Sciencell) as per supplier’s instructions. 

2.2.7.2 Freeze/thaw 

To freeze cells, cells were prepared as above (i.e. SEM and REH cells were 

pipetted directly into a centrifuge tube, and HS5 and HMen cells detached using 

trypsin prior to pipetting into a centrifuge tube, then centrifuged at 300g for 5 

minutes), then resuspended at a density of 1x107 cells/ml (SEM and REH), or 

1x106/ml (HS5 and HMen) in 1ml of 70% media (the same media used for 

maintenance of culture as above), 20% FCS and 10% DMSO in a cryostorage tube. 

Cells were then frozen at -196°C in the gaseous phase of a liquid nitrogen tank. 

To thaw SEM and REH cells, cells were warmed in a water bath at 37°C, then 

mixed in 10ml of complete DMEM at 37°C, centrifuged at 300g, then 

resuspended in complete DMEM at a density of 1x106/ml. To thaw HS5 and HMen 

cells, cells were thawed at 37°C in a water bath, then mixed with complete ES-

FCS/DMEM or MCM to a density of 25,000 cells/ml and seeded in 12ml in a 75cm2 

flask. 

2.2.7.3 Co-Culture 

To perform co-culture experiments, adherent cells (HS5 or HMen) were grown to 

80% confluence in T75 flasks. The media was removed, the cells washed once in 

PBS, and suspension cells (SEM or REH, pre-treated with e450 cell proliferation 

dye (eBioscience) as described below) were then added in complete DMEM at a 

concentration of 0.5x106/ml. 

2.2.7.4 Investigating cholesterol metabolism in vitro 

To examine the effects of simvastatin in vitro, simvastatin was obtained from 

Fluorochem, and dissolved in DMSO, then diluted to 0.1% DMSO in complete 

media. Cholesterol-β-cyclodextran was obtained from Sigma-Aldrich, and diluted 

in sterile water and used in concentrations indicated below (section 5.2.2.3). 
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Mevalonic acid-lithium salt was obtained from Sigma (US), and dissolved in 

sterile water. 

2.2.8 Cell counts 

Two methods were used for cell counts. For all tissue-culture related cell lines, 

an automated cell counter (CASY® TT Cell Counter, Roche) was used as per 

manufacturer’s instructions. For any benchside cell counts, cells were stained in 

trypan blue (Sigma-Aldrich) and counted using an inverted microscope using a 

haemocytometer. 

2.2.8.1 Haemocytometer 

For cell counts using a haemocytometer, 10μL of cell solution diluted 1 in 4 in 

trypan blue and loaded onto the counting chamber under a coverslip. Cells were 

visualised using an inverted microscope, and the live cells distinguished by the 

exclusion of trypan blue. The number of live and dead cells in each of the 4 

corner 4x4 (10-4ml) squares was counted, and multiplied by104 to determine the 

sample cell live and dead cell count/ml (i.e. sample cell count/ml = cells per 

corner square x dilution x 104, or for 1 in 4 dilution: sample cell count/ml = 

(cells in 4 corner squares /4) x 4 (dilution) x104). 

2.2.8.2 Automated Cell Counter 

The automated Casy® TT Cell Counter was maintained and used as per 

manufacturer’s instruction. In brief: samples were diluted usually 1:500 in 10ml 

of CASY® Ton propriety buffer to around 2,000 cells/ml, and mixed gently. 

Where cells would not be counted immediately, this solution was stored at 4°C 

and carefully mixed prior to analysis. 3 replicates of 400μL of this solution were 

loaded onto the machine and live and dead cell counts measured by electrical 

impedance and recorded (i.e. live cells are insulated at the plasma membrane, 

and the cell volume is calculated from the impedance and recorded; dead cells’ 

plasma membrane is disrupted and these cells are insulated at the nuclear 

membrane, and this smaller nuclear volume is calculated and recorded). 
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2.2.9 Flow Cytometry 

Flow cytometry is a technique that measures laser-activated fluorescence on 

individual cells. Fluorochromatic labels can be targeted to markers on the cell 

surface or in intracellular cytoplasm and the intensity of fluorescence measured 

to provide data on the abundance of those markers in a cell population. In this 

project, flow cytometry was used to track cell proliferation and apoptosis/cell 

death. 

For this project a FACScalibur (BD) flow cytometer was used. Unstained, single-

stain and double-stain controls together with proliferation controls and samples 

were loaded onto the flow cytometer. Acquisition gates were set based on 

forward and side scatter and double stain controls. 

Data were exported and analysed using FlowJo v10.1r5, then exported for 

statistical analysis in Microsoft Excel 2016 v16.0.4639.1000. 

2.2.9.1 Cell proliferation 

In order to track proliferation, and additionally for co-culture experiments to 

discriminate leukaemic cells from stromal cells, an inert cytoplasmic dye was 

introduced into the cytoplasm of SEM and REH cells. With each subsequent cell 

division, the dye in the cytoplasm splits evenly between the daughter cells (i.e. 

the amount of dye in the cytoplasm of a cell is proportional to the number of 

divisions between that cell and the original cell at the start of the experiment). 

Cell proliferation Dye eFluor® 450 was obtained from eBioscience(ThermoFisher 

Scientific) and introduced into cells as per manufacturer’s instructions. Briefly, 

SEM or REH cells were washed and resuspended in PBS at 2x the target cell 

concentration (usually 1x106 cells/ml) a 20μM solution of the cell preparation 

dye in PBS at room temperature was prepared and added to an equal volume of 

the cell solution whilst vortexing. This mixture was incubated at 37°C in the 

dark for 10 minutes. The labelling was stopped by adding 4x volume of cold 

complete media and incubating on ice for 5 minutes. Cells were then washed x3 

and resuspended in complete media. 

To provide a non-proliferation control, demecolcine (Sigma-Aldrich) at 20ng/ml 

was added to cells stained with eFluor®450 to stop the cell cycle. 
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Proliferation was determined by measuring the Mean Fluorescence Intensity 

(MFI) of cells. In brief, cells were prepared with APC-Annexin V and Propidium 

Iodide (staining methods below) and resuspended in annexin V Binding buffer 

(BioLegend) at a concentration of approximately 250,000 cells/ml, and loaded 

onto the flow cytometer as above. 

2.2.9.2 Apoptosis and Cell death 

Apoptotic and necrotic cell death was measured using Annexin V and Propidium 

Iodide (PI) staining. Annexin V binds to phosphatidylserine (PS) - a protein 

normally found on the inner leaflet of plasma membranes. In early apoptosis, 

membrane organisation is lost and PS is found on the outer leaflet of cells. By 

measuring Annexin V binding to non-permeabilised cells, the proportion of cells 

in apoptosis can be assessed. 

Propidium Iodide (PI) is a fluorescent molecule that does not permeate the 

membrane of live cells. Measuring PI staining of cells therefore allows the 

detection of dead cells. 

To carry out this analysis APC-Annexin V Apoptosis Detection Kit with PI was 

acquired from Biolegend ( Cat# 640932), and cells processed as per the 

manufacturer’s instructions, except Ca-free PBS was used in place of proprietary 

Cell Staining Buffer. Cells were washed x2 in PBS, then resuspended in Annexin V 

Binding Buffer at a concentration of 1x106 cells/ml. A 100μL aliquot was taken 

and 5μL APC-Annexin V and 10μL PI was added. Cells were gently vortexed then 

incubated in the dark at room temperature for 15 minutes. 400μL of Annexin V 

binding buffer was added, then cells were stored at 4°C and analysed 

immediately by flow cytometry as above. Cells were considered to be in early 

apoptosis if they were annexin-V positive, but PI negative. Cell were considered 

to be in late apoptosis if they were both annexin-V and PI positive.  

2.2.9.3 Discriminating human Precursor-B cells from murine blood cells 

To discriminate human precursor-B ALL cells from mouse haematopoeitic cells in 

our xenograft models to determine blood engraftment levels, or the proportion 

of murine-derived cells in spleen or CNS samples, flow cytometry was used. Anti-

human CD19 antibodies with conjugated PE-Cyanine 7 (Biolegend) were used to 
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mark human cells (anti-human CD45 antibodies were less successful as many ALL 

cells have only low-level CD45 expression), anti-mouse CD45 with conjugated 

FITC was used to mark murine leukocytes, and anti-mouse Ter119 with 

conjugated VioBlue (both Miltenyi) used to mark murine red cells. 

To assess purity of CNS or spleen samples, 100μL aliquots of cells in 2%FCS/PBS 

were taken and 5ml PBS added. Cells were washed x1 in PBS, then resuspended 

in 50μL PBS. 5μL each of anti-human CD19-PE/Cy7, anti-murine CD45-FITC and 

anti-Ter119 were added, gently vortexed, and incubated for 10 minutes at room 

temperature in the dark, 1ml of ice-cold PBS was added. Samples were stored at 

4°C in the dark, and analysed immediately as above. 

To assess lymphocyte engraftment in blood, 50μL of blood in an EDTA-coated 

tube was taken from the tail vein of mice and added to 0.5ml of Red Cell Lysis 

Buffer (Miltenyi) and incubated for 10 minutes, washed twice, then resuspended 

in 50μL PBS. 5μL each of anti-human CD19-PE/Cy7, and anti-murine CD45-FITC 

was added, gently vortexed, and incubated for 10 minutes at room temperature 

in the dark, 1ml of ice-cold PBS was added. Samples were stored at 4°C in the 

dark, and analysed immediately as above. 

2.2.10 In vivo simvastatin experiments 

The efficacy of in vivo simvastatin was assessed as described below. Simvastatin 

was obtained from Fluorochem, and dissolved in DMSO at 250mg/ml. This 

solution was diluted 1:20 in 0.5% methylcellulose (Sigma-Aldrich) (for lower 

doses of simvastatin, the DMSO solution was diluted 1:50 in 0.5% methylcellulose 

to keep volumes of drug similar) and sonicated until a fine slurry was formed. 

Mice were dosed daily by oral gavage in doses as described below (section 

5.3.1). 

2.2.11 Genetic manipulation 

In order to investigate the role of cholesterol synthesis in CNS ALL in vivo, two 

techniques to reduce intracellular cholesterol synthesis were employed: CRISPR-

Cas9 deletion of the gene coding for the rate limiting step in cholesterol 

biosynthesis (HMGCoA reductase, HMGCR gene), and shRNA production targeting 

HMGCR RNA. Approval for genetic manipulation was given by the Institute of 
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Cancer Sciences GM committee and all techniques were carried out in a category 

2 tissue culture facility. 

2.2.11.1 CRISPR-Cas9 

CRISPR-Cas9 is a system used in certain bacteria and archaea for targeting and 

deleting foreign or virus DNA. By repurposing this system, it is possible to 

introduce the Cas9 gene into a target cell’s genome together with an RNA guide 

that will target Cas9 to a particular gene, causing a double-stranded DNA breaks 

and deletion of part of a gene. 

To delete the HMGCR gene from SEM cells in vitro, a “Double Nickase” system 

was used. This is similar in principle to the standard CRISPR-Cas9 technique, but 

relies on have two offset 20-nucleotide guides for a Cas9-nickase (a version of 

Cas9 that cuts only one strand of DNA) binding to both strands of DNA, which will 

only cause a double-stranded break and gene deletion if both guides bind to the 

target gene. This increases the specificity of the gene targeting, though at the 

expense of reduced efficiency. 

In order to help SEM cells survive with reduced or absent HMGCR function, the 

cells were grown in complete media with 40% FCS and 5mmol additional 

mevalonate (the product of HMGCR). The lowest puromycin dose that would 

cause 100% cell death at 48 hours in SEM cells in this media was determined 

experimentally. 

A HMGCR double-nickase plasmid pair was obtained from Santa Cruz 

Biotechnology. One of the plasmids contained a GFP-producing gene, and the 

other a puromycin resistance gene allowing for double selection. The sensitivity 

of SEM cells in 40% FCS and 5mmol mevalonate to puromycin was assessed and 

an optimal dose chosen. The plasmid transfection was carried out as per the 

manufacturer’s instructions. In brief: SEM cells were seeded in 3ml of complete 

media in a 6-well plate at a density of 1x105/ml, and left for 24 hours, washed 

and then resuspended in antibiotic-free complete DMEM. Plasmids were 

resuspended in DNAse-free water to form a 1g/L plasmid, 10mmol TRIS EDTA, 

1mM EDTA solution, and added to proprietary “Transfection Medium” (SC-
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108062), which was then added dropwise onto proprietary “Transfection 

reagent” (SC-395739) – an agent for the lipofection of plasmid into the cells. 

After 24 hours, the culture media was replaced with DMEM with 40% FCS and 

100μM mevalonate in addition to 5% glutamine and 5% penicillin-streptomycin. 

GFP-fluorescence was used to monitor for successful tranfection, and after 72 

hours puromycin at the previously-determined optimal concentration was added 

to select for successfully-transfected cells. 

2.2.11.2 ShRNA 

An alternative method of genetic manipulation was the introduction of HMGCR 

shRNA into SEM cells. This was done using a lentiviral vector. 

Three validated HMGCR shRNA-pLKO plasmids and a scramble-sequence shRNA-

pLKO plasmid in the form of frozen bacterial glycerol stock were obtained from 

Sigma-Aldrich. Samples from these stocks were incubated and gently agitated 

overnight in Luria Bertoni Broth (E&O Labs) with amoxicillin at 38°C to grow the 

bacteria and plasmids purified from this bacterial culture using a Purelink HiPure 

Plasmid Filter Maxiprep Kit (ThermoFisher Scientific) as per manufacturer’s 

instructions. Briefly: bacterial cells were concentrated by centrifugation and 

chemically lysed. The lysate was drained by gravity though a membrane where 

DNA (i.e. plasmids) was bound. This membrane was then washed, and DNA 

eluted, the DNA washed in isopropanol, then 70% ethanol, then resuspended in 

Tris-EDTA buffer. DNA content and purity was measured using a Nanodrop 

spectrophotometer (ThermoFisher Scientific). 

Lentiviral particles were then generated from each pLKO plasmid and a 

scramble-GFP plasmid, by transfection of HEK293 cells with the target plasmid, 

VSV-G envelope plasmid and PsPax2 packaging plasmid. 

HEK293 cells were grown to 90% confluence in 100mm petri dishes, and media 

replaced with complete DMEM with 15μM chloroquine. 

Each “target” plasmid DNA was mixed with packaging and envelope plasmid DNA 

in DNAse-free water, then calcium chloride added dropwise. This solution was 
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then added dropwise onto agitated HBSS solution. This was left to settle for 20 

minutes. 

Each HBSS-DNA solution was then added dropwise onto a separate petri dish with 

HEK293 cells. The media was changed after 8 hours, then again after a further 

16 hours. After another 24 hours, the media was collected, centrifuged at 300g 

for 5 minutes to pellet any non-adherent cells, the supernatant removed and run 

through a 45μm filter. This filtered media contained reconstituted lentivirus 

containing the target gene for insertion into the genome of SEM cells. 

The lentiviral media was then added to SEM cells to a cell density of 2.5 

x105/ml. These cells were plated in duplicate into 6-well (i.e. 2 wells per 

“target” plasmid – 3xHMGCR shRNA, 1x scramble shRNA, 1x scramble-GFP, for a 

total of 10 wells). After 24 hours, the lentiviral media was replaced with 

complete DMEM with 100μM mevalonate. Transfection efficiency was determined 

by assessing GFP-fluorescence in the scramble-GFP plasmid. After a further 48 

hours, puromycin was added at on optimal concentration for these conditions 

(i.e. the lowest dose of puromycin causing 100% cell death at 48 hours in SEM 

cells in standard “complete” media and 100μM mevalonate) to select 

successfully transfected cells. 

2.2.12 Bioinformatics 

All raw data were converted to .xls/.xlsx/or.csv files and initial data 

manipulation and any statistical analysis using student’s t-test carried out using 

Microsoft Excel 2016 v16.0.4639.1000. 

Prism v 5.03 (GraphPad) was used to generate all Kaplan-Meier curves and 

calculate log-rank survival values unless stated otherwise. 

Metaboanalyst web platform(Xia & Wishart 2011) (www.metaboanalyst.ca/) was 

used for ROC curve analysis of untargeted metabolomic data. 

Figures were assembled using either Inkscape v0.92.2 or Microsoft Powerpoint 

2016 v v16.0.4639.1000. Molecular models were made using ViewerLite™ v5.0 

(Accelrys inc.). 

http://www.metaboanalyst.ca/
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Analysis of RNAseq data, and all other graphs and any other statistical analyses 

were carried out using R version 3.3.3 via Rstudio v1.0.136. Packages used 

included: DeSeq2, readxl, ggplot, rms, tidyr, grid, VennDiagram, together with 

dependencies. All R scripts and visual basic (MS Excel) scripts used for this study 

are published in succinct form in the appendix. 

2.2.12.1 RNASeq 

RNASeq analysis was carried out using the DeSeq2 package ((Love et al. 2014). 

Raw counts were obtained as discussed earlier from Glasgow Polyomics (section 

2.2.4). Data were normalised using a median-of-ratios method. A list of genes 

was obtained with associated baseMean quantification of reads (i.e. a surrogate 

for RNA abundance for that gene), log2 fold-change between groups (CNS vs 

Spleen), standard error of the log-fold change, and statistical analysis for 

difference between groups in the form of a wald-statistic, p-value, and adjusted 

p-value. 

2.2.12.2 Gene Set enrichment analysis 

The Gene Set Enrichment Analysis v.3.0 java tool was downloaded from the 

Broad institute and used as per instructions (Subramanian, Tamayo, et al. 

(2005), PNAS 102, 15545-15550, http://www.broad.mit.edu/gsea/). “Hallmark 

Gene Sets”, a collection of 50 gene sets was downloaded from the broad 

institute website and used for analysis with an additional “cholesterol 

biosynthesis” gene set from KEGG pathways (https://www.genome.jp) human 

datasets “Terpenoid Backbone Synthesis” hsa00900, and “Steroid biosynthesis” 

hsa00100. 1000 permutations were analysed. All other setting were used as the 

default (including “dividing by mean” normalisation and “Classic” enrichment 

analysis). A table lisitng the most perturbed gene sets and a graphical 

representation of the top 20 most enriched genesets per phenotype (e.g. CNS vs 

spleen) was obtained. 

2.2.12.3 Analysis of TARGET phase 1 data 

Data were obtained from the Therapeutically Applicable Research to Generate 

Effective Treatments (TARGET) initiative (managed by the United States’ 

National Cancer Institute (NCI)). The data used for this analysis are available 

ftp://caftpd.nci.nih.gov/pub/dcc_target/ALL/clinical/. Information about 

http://www.broad.mit.edu/gsea/
https://www.genome.jp/
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TARGET can be found at http://ocg.cancer.gov/programs/target). Clinical data 

were downloaded from the TARGET website, and microarray data from the 

United States’ National Centre for Biotechnology Information. Clinical file 

version: “TARGET_ALL_Phase_I_ClinicalData_5_8_2015_harmonized” and 

microarray: “GEO accession GSE11877,” data were accessed on 22/03/2016. 

Clinical and microarray data were merged by matching initially age in days at 

diagnosis, and any inconclusive results were then matched by white cell count at 

diagnosis. A list of genes involved in cholesterol biosynthesis was retrieved from 

KEGG pathways as above (section 2.2.12.2). Data for these genes were pulled 

from the array. Where more than 1 probe existed for a gene, the probe with 

highest coefficient of variation was selected. For each gene a z score was 

calculated for each reading using the formula: 

(𝛧 =  
𝜒 − 𝜇

𝜎
) 

(i.e. z-score = (sample value – mean value for that gene across all samples) / 

standard deviation of values for that gene across all samples). Data were then 

log2-transformed as detailed below (section 3.4.1) prior to analysis.A score was 

calculated based on number of genes in each sample which were above a 

particular z-score cutoff. 

 

http://ocg.cancer.gov/programs/target
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Chapter 3: Transcriptomic adaptations of 
malignant BCP-ALL cells to the central nervous 
system niche 

3.1 Introduction and aims: 

Metabolic processes in a cell can have many layers of control. Metabolic 

adaptations can occur at a substrate level, a protein level, at the RNA 

translation level, at the RNA transcription level or at a genomic level. In order to 

examine the metabolic adaptations of BCP-ALL cells it was decided to start by 

looking at the transcriptional level using RNASeq. This was felt to be the most 

comprehensive, technically simple, reproducible, mature and cost-effective 

technology. 

The aim in this part of the study was to identify, using this unbiased approach, 

changes in the transcriptome of BCP-ALL cells in the CNS compared with 

systemic disease. In particular, perturbations in any genes or pathways involved 

in cell metabolism will be explored. These changes will then be validated in 

primary human ALL cells, both using xenotransplantation models of human 

leukaemia in mice, and in publicly available transcriptome data from primary 

human CNS ALL. Finally, the possibility of stratification risk of CNS relapse in 

children with ALL based on transcriptional signatures will be explored. 

3.2 RNASeq analysis of CNS and systemic BCP-ALL cells 
from a murine xenograft model: 

Having decided on using RNASeq technology to interrogate the transcriptome of 

CNS and systemic ALL blast cells it was necessary to design a model system to 

address our aims. 

CNS disease in ALL occurs in a stereotyped manner with leukaemic blasts 

infiltrating the leptomeningeal space, adherent in plaques to the meningeal 

membranes, bathed in CSF. As discussed previously (section 1.3.2), this is a low-

nutrient environment with close cellular contact between the leukaemic and 

stromal cells. Building a faithful model of this complex environment in vitro was 

not feasible. 
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Equally, using primary human leukaemia CNS and bone marrow blast cells was 

not feasible. Less than 5% of children have detectible CNS leukaemia on cytospin 

at diagnosis. The numbers of ALL cells in the CSF, when present, are usually 

small (typically 5,000 to 20,000 cells/ml, with less than 1ml of CSF available for 

research analysis). In addition, the cells that are seen on cytospin have detached 

from the bulk CNS disease and so may not be representative, and isolating RNA 

from these cells quickly enough to obtain meaningful data would be technically 

challenging. Finally, while DNA and/or RNA is extracted from the bone marrow 

of every child at diagnosis with ALL, this is done for the creation of patient-

specific primers for minimal residual disease detection, and may not be done 

quickly enough after retrieval of cells to ensure metabolic signatures (e.g. 

hypoxia inducible factor (HIF)) are not lost. 

Given these large challenges to obtaining primary human CNS BCP-ALL cells, it 

was therefore decided to use a xenograft model of childhood ALL. 

It has been shown that childhood ALL cells, when introduced into 

immunocompromised NSG mice (mice lacking endogenous B-cells, T-cells, NK-

cells and IL2Rγ receptors), typically cause leptomeningeal infiltration regardless 

of which original cells are used. Further in experiments with serial dilution of 

ALL cells prior to introduction into NSG mice it has been suggested that at least 

1-in-10 ALL blasts is capable of causing CNS disease(Williams et al. 2016). 

The pattern of CNS infiltration in these xenograft models is leptomeningeal 

plaques with complete sparing of the brain/spinal cord parenchyma – a very 

similar pattern to that seen in human disease(Thomas et al. 1964). In addition it 

is possible to extract quickly, at high purity, and in good cell numbers BCP-ALL 

cells from the CNS and systemic compartments for extraction of RNA. 

For this experiment BCP-ALL cell lines were used. Whilst as noted above it is 

entirely feasible to use primary human BCP-ALL cells in our model of CNS 

leukaemia, primary cells have a longer time until end-point, and a less 

consistent pattern of engraftment between and within experiments. By using 
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cell lines it is possible to plan and execute experiments to maximise the quality 

of data produced. 

Two cell lines were selected for these experiments: SEM cells, BCP-ALL cells 

driven by an MLL t(4;11) translocation, to represent high-risk disease; and REH 

cells, BCP-ALL cells with TEL-AML1 t(12;21) translocation, to represent standard-

risk disease. Cells were injected into NSG mice, and cells retrieved as above 

(section 2.2.1.1).. 

RNA extraction was carried out by Dr O Olivares (postdoctoral researcher in the 

research group) as detailed above (section 2.2.3.1). In order to maximise the 

robustness of our results while controlling cost, RNA from the CNS and Spleen 

from 3-4 mice was pooled and each xenograft experiment repeated twice for 

SEM and 3 times for REH. Unfortunately RNA of a sufficient quality could only be 

obtained from Spleen ALL cells for 2 of the replicates in the REH experiments. 

The RNA was then given to the University of Glasgow Glasgow Polyomics 

Department for processing and read alignment. As an additional control, RNA 

from cells retrieved from standard tissue culture was analysed in parallel. 

The RNA was sequenced, aligned to human and mouse genomes (with reads 

aligning to the mouse genome then removed), and measured using the NextSeq® 

500 platform, as detailed above (section 2.2.4) and analysed for differential 

expression using the DESeq2 package(Love et al. 2014) as described above 

(section 2.2.12.1). 

3.2.1 Gene expression of ALL cells in the CNS compared with 
spleen. 

Using these data, the results of these experiments were analysed at multiple 

levels. Firstly the results were examined at a transcriptome-wide level, with 

principle component analysis and hierarchical clustering models showing clear 

clustering of the CNS samples compared with the spleen, and a clear separation 

between both in vivo groups and the in vitro control (Figure 3-1). 
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Figure 3-1 Principal Component Analysis (PCA) plot and Cluster Heatmap/Dendrogram for 
RNASeq datafrom A,B - SEM cells retrieved from murine CNS and Spleen, and from Tissue 
Culture (A – PCA, B - Cluster Heatmap/dendrogram. Data from the cells retrieved from 
spleens labelled SEM-S1/2, data from the cells retrieved from CNS labelled SEM-B1/2, data 
from the cells retrieved from tissue culture labelled SEM-P13); C,D – REH cells retrieved 
from murine CNS and Spleen, and from Tissue Culture (C – PCA, D - Cluster 
Heatmap/dendrogram. Data from the cells retrieved from spleens labelled REHS2/4, data 
from the cells retrieved from CNS labelled REHB1/2/3, data from the cells retrieved from 
tissue culture labelled CTRREHP15). 

Given the significant shift between in vivo and in vitro results with these 

genome-wide perspectives it was decided to conduct further analyses using data 

from the in vivo CNS and spleen compartments with the exclusion of in vitro 

results (PCA and cluster Heatmap/dendrogram below). 
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Figure 3-2 Principal Component Analysis (PCA) plot and Cluster Heatmap/Dendrogram for 
RNASeq datafrom A,B - SEM cells retrieved from murine CNS and Spleen (A – PCA, B - 
Cluster Heatmap/dendrogram. Data from the cells retrieved from spleens labelled SEM-S1/2, 
data from the cells retrieved from CNS labelled SEM-B1/2; C,D – REH cells retrieved from 
murine CNS and Spleen (C – PCA, D - Cluster Heatmap/dendrogram. Data from the cells 
retrieved from spleens labelled REHS2/4, data from the cells retrieved from CNS labelled 
REHB1/2/3). 

 

Next the data were examined at a pathway and gene network level. Network 

analysis was performed on the GeneMANIA platform(Warde-Farley et al. 2010). 

The top 50 most significantly differentially expressed genes (ranked by adjusted 

p-value) were analysed using the Genemania algorithm(Mostafavi et al. 2008). 

This created a network map using gene-ontology (GO) database(Consortium 

2015) to link these genes together (the gene lists are available below in Table 

3-1 (SEM) and Table 3-2(REH)). This map was then interrogated to determine the 
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predicted functions of the differentially expressed gene networks. All of the top 

ranked networks in this analysis were metabolic. The most statistically 

significantly altered network between CNS and spleen ALL was cholesterol 

biosynthesis (SEM: Figure 3-3, REH: Figure 3-4). 

Next, pathway analysis was carried out using Geneset Enrichment 

Analysis(Subramanian et al. 2005). This method ranks all genes based on log2 

fold-change, and uses this ranking to determine which pathways are “enriched” 

in one experimental group compared with another. For our analysis we used the 

GSEA “hallmark” genesets - 50 sets of curated gene pathways based on published 

data(available via the Broad Institute, MA)(Liberzon et al. 2015), plus an 

addition bespoke pathway containing only genes directly involved in cholesterol 

biosynthesis (determined using the KEGG database(Kanehisa & Goto 2000; 

Kanehisa et al. 2016; Kanehisa et al. 2017)). Using this approach, cholesterol 

metabolism (both the standard “Hallmark Cholesterol Homeostasis” geneset and 

the custom “TC Cholesterol Biosynthesis” geneset) were found to be highly 

significantly upregulated in cells from the CNS (SEM: Figure 3-5, REH: Figure 

3-6). 
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Figure 3-3 Results of geneMANIA network analysis of RNASeq data from SEM cells retrieved 
from murine CNS vs spleen based on top 50 differentially expressed genes (ranked by adj. 
p-value) A –Network map, with cholesterol biosynthesis genes highlighted (yellow). Lines 
show gene interactions, node size is proportional to network interaction score; B - Table of 
predicted differences in cell processes between cells from CNS vs spleen. 
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Figure 3-4 Results of geneMANIA network analysis of RNASeq data from REH cells retrieved 
from murine CNS vs spleen based on top 50 differentially expressed genes (ranked by adj. 
p-value) A –Network map, with cholesterol biosynthesis genes highlighted (yellow). Lines 
show gene interactions, node size is proportional to network interaction score; B - Table of 
predicted differences in cell processes between cells from CNS vs spleen. 
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Figure 3-5 Results of GeneSet Enrichment Analysis of RNASeq data from SEM cells 
retrieved from murine CNS vs spleen A –Enrichment plot for “Hallmark” cholesterol 
homeostasis pathway; B – Enrichment plot for bespoke “TC cholesterol biosynthesis” 
pathways; C – Geneset Enrichment Analysis table of the top 16 differentially expressed 
pathways using the MSigDB “Hallmark” pathways database and bespoke “TC” cholesterol 
synthesis pathways 
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Figure 3-6 Results of GeneSet Enrichment Analysis of RNASeq data from REH cells 
retrieved from murine CNS vs spleenA –Enrichment plot for “Hallmark” cholesterol 
homeostasis pathway; B – Enrichment plot for bespoke “TC cholesterol biosynthesis” 
pathways; C – Geneset Enrichment Analysis table of the top 16 differentially expressed 
pathways using the MSigDB “Hallmark” pathways database and bespoke “TC” cholesterol 
synthesis pathways 

With these results showing an enrichment of cholesterol biosynthesis in the CNS 

at a gene pathway level, the dataereas analysed at the level of individual genes. 

Of the 20 genes directly involved in cholesterol biosynthesis, all but 2 were 

upregulated, and 13 were statistically significant with an adjusted p-value of 

<0.05, with both downregulated genes being included in the 7 genes that did not 

have significantly differential expression between groups in SEM cells, with PMVK 
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(phosphomevalonate kinase) being significantly reduced in REH cells (adj. p-

value 0.017) (Figure 3-7). 

 

 

Figure 3-7 Waterfall plot of cholesterol synthesis gene differential expression by RNASeq 
for ALL cells retrieved from murine CNS and spleenA – SEM cells; B – REH cells; ordered by 
log2 fold-change CNS vs Spleen; -log10 p-value calculated using DESeq2 package and 
denoted by colour, genes without statistically significantly different expression denoted by 
diagonal lines. Please note differences in colour scales between graphs. 

The top 50 genes most significantly regulated in the CNS are listed in Table 3-1 

(SEM) and Table 3-2 (REH). 
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Table 3-1 Top 50 differentially expressed genes in SEM ALL cells in the CNS compared to 
spleen 

GENE ID GENE 
EXPRESSION 
INTENSITY 

LOG2 FOLD 
CHANGE 
CNS:SPLEEN 

ADJUSTED 
P-VALUE 

BHLHE40 854.290057 3.579513952 3.72E-64 

RP11-
473I1.9 

515.4523942 -5.189958922 4.82E-64 

AK4 732.1970873 3.899323918 1.66E-63 

H3F3AP4 266.5470379 4.876411497 1.80E-58 

SLC16A3 420.6139571 4.061443941 5.51E-56 

RGS1 241.6029986 4.704041172 1.20E-55 

ALDOC 1379.277908 2.988659645 5.90E-52 

SCD 2603.707357 2.652232456 3.17E-42 

RP11-
513I15.6 

466.3420583 -3.18635547 1.09E-39 

PFKFB4 661.1011637 3.357693729 2.62E-39 

NDRG1 1941.714621 2.268400456 1.14E-35 

CD9 703.3309409 3.167564359 2.24E-34 

TBC1D30 183.3962127 3.388150826 2.05E-32 

VEGFA 389.0034644 2.710617233 2.51E-27 

RP11-
386G11.10 

2608.084034 -2.926810724 2.60E-27 

ENO2 171.8322524 3.144849166 2.88E-26 

RP11-
452N17.1 

86.91834009 -3.52970914 6.13E-26 

BNIP3 1716.094338 1.961330535 3.27E-23 

RP11-
770J1.5 

466.0528964 -2.532610169 3.34E-21 

GBE1 2653.827839 1.681188404 1.80E-19 

LRRC32 93.11256535 2.936056676 3.00E-19 

MIR210HG 167.3653814 2.433883147 1.07E-17 

CERS6-AS1 190.9033216 -2.821392463 5.33E-17 

HK2 5808.813739 1.536358544 2.31E-16 

LDLR 1988.388306 1.577382283 4.13E-16 

AC110615.1 91.67609714 -2.87063744 5.40E-16 

IRF4 535.4381629 1.905642971 5.40E-16 

SPRY1 100.6324779 2.635676151 6.51E-16 

BACH2 733.989599 1.844663082 9.41E-16 

SCN3A 742.4200309 2.040778596 2.06E-15 

RGS2 482.5503159 1.884242068 3.83E-15 

CD300A 128.0680756 2.551295437 3.96E-15 

INSIG1 4005.011772 1.58987599 5.40E-15 

TNS1 801.272915 1.61716589 1.43E-14 

HMGCS1 5900.975162 1.591277278 4.86E-13 

P4HA1 2728.475608 1.333715342 1.02E-12 

PVRL1 384.550124 1.861383131 5.79E-12 
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ZACN 271.2326783 -2.131024036 5.79E-12 

HIVEP2 1001.984364 1.472539777 8.00E-12 

PPFIA4 81.44481842 2.301019404 1.17E-11 

SQLE 2936.861533 1.339166413 1.33E-11 

ADM 48.68816604 2.435307116 1.59E-11 

NR4A1 72.9122992 2.299248565 4.68E-11 

MYLIP 1072.514875 1.379854974 5.33E-11 

BNIP3L 4715.004603 1.387083128 6.94E-11 

DDIT4 4483.92922 1.515689567 8.37E-11 

FAM65B 2572.931109 1.598586739 1.72E-10 

RP11-
463I20.1 

416.2678673 -1.475422195 3.11E-10 

CYP51A1 2836.839519 1.185528456 3.41E-10 

MSMO1 1933.47185 1.218348567 4.19E-10 

 

Table 3-2 Top 50 differentially expressed genes in REH ALL cells in the CNS compared to 
spleen 

GENE ID GENE 
EXPRESSION 
INTENSITY 

LOG2 FOLD 
CHANGE 
CNS:SPLEEN 

ADJUSTED 
P-VALUE 

CSF3R 3250.179 2.96689 8.48E-96 

BHLHE40 1036.656 4.341969 9.11E-91 

LDLR 1972.6 3.095277 4.77E-90 

ELFN2 1709.634 3.672371 2.81E-86 

STARD4 538.2924 3.094963 1.59E-81 

SHANK3 3086.683 2.665201 3.42E-72 

SREBF1 3593.836 2.257933 1.09E-67 

VEGFA 767.7651 3.519427 8.06E-67 

SREBF2 8210.101 1.935486 9.54E-66 

H1F0 2273.007 2.498565 2.77E-65 

RP11-
18H21.1 

1323.096 2.067241 9.50E-57 

FDFT1 6521.643 2.125536 2.17E-54 

ALDOC 1002.504 2.676968 3.66E-51 

HSPA6 245.2923 3.799504 2.38E-50 

ABCG1 469.4563 2.882726 3.73E-46 

AK4 307.1934 3.187793 2.43E-45 

TP53INP1 1013.493 2.177063 8.37E-43 

BNIP3 2902.897 2.06596 3.09E-41 

CPT1A 8671.02 -1.4552 3.27E-41 

OLIG3 1935.778 2.202999 3.28E-40 

FBXW7 3573.935 1.375641 2.55E-38 

LGR6 2439.537 1.595821 4.31E-38 

PFKFB4 835.4546 2.372291 1.38E-36 
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INSIG1 5191.641 2.06251 4.52E-35 

ANO1 915.9114 1.809972 5.26E-35 

DDIT4 2440.804 1.86262 6.18E-34 

DRAM1 1351.463 1.697338 1.85E-32 

FLT1 453.2486 2.481939 1.92E-32 

YPEL3 2515.797 1.297044 2.23E-32 

P4HA1 1993.925 1.769766 3.71E-32 

FADS1 6938.226 1.260015 3.71E-32 

EF1 436.4398 2.612551 4.39E-31 

SQLE 2604.018 1.868471 3.92E-30 

ANKRD37 230.0075 2.199052 2.55E-29 

GBP4 2724.729 1.496766 3.10E-29 

CHST2 231.1591 2.294324 5.34E-29 

GBE1 2945.173 1.19739 5.71E-29 

BIRC7 2310.026 1.674353 7.25E-29 

ARHGAP24 328.4362 2.058197 1.05E-28 

FGFR1 6803.806 -1.23488 5.88E-28 

SCHIP1 257.5327 2.116252 3.14E-27 

PECAM1 386.5941 2.470171 6.51E-27 

SERINC5 4710.443 1.399024 6.71E-27 

PCDH12 307.3392 2.193775 1.90E-26 

PFKFB3 3137.987 1.416325 3.74E-26 

FAM134B 1248.153 1.667611 1.01E-25 

TCF4 12818.29 1.103448 1.53E-25 

FUT11 890.3417 1.541721 2.48E-25 

SLC2A3 908.1944 1.586512 3.81E-25 

FLJ16779 1336.113 1.626996 8.33E-25 

 

3.2.2 Combined analysis of genes differentially expressed between 
murine CNS and spleen in both REH and SEM cells by RNASeq 

When the data from both SEM and REH cell lines were considered together, as 

suggested by the results above, there was significant overlap. Network analysis 

of the 189 genes differentially regulated between CNS and Spleen in both cell 

lines confirmed differential expression of cholesterol synthesis genes to be 

common to both cell lines (Figure 3-8). 
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Figure 3-8 Combined analysis of genes differentially expressed between murine CNS and 
Spleen in both REH and SEM cells by RNASeq A – Venn diagram showing number of genes 
differentially expressed  between murine CNS and spleen with Log2 fold-change >0.6 or <-
0.6, and adjusted p-value <0.05.  B – Table of differentially expressed cell processes based 
on GeneMANIA analysis of genes differentially expressed between murine CNS and Spleen 
in both SEM and REH cells; C - GeneMANIA network map of genes differentially expressed 
between murine CNS and Spleen in both SEM and REH cells with cholesterol biosynthesis 
genes highlighted (yellow). Lines show gene interactions, node size is proportional to 
network interaction score. 

3.2.3 Summary 

RNASeq analysis of ALL cells retrieved from the CNS and spleen of 

xenotransplanted mice have shown clear transcriptomic changes between the 

two compartments. These changes are consistent between two different cell 

lines (SEM and REH), and support the hypothesis that ALL cells undergo 

metabolic adaptation to the CNS niche. In particular, pathway analyses using 
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GSEA and GeneMANIA platforms show increased cholesterol biosynthesis in ALL 

cells retrieved from the CNS. 

3.3 Validation of RNASeq data in primary ALL cells 

The next stage in the project was to validate these findings in primary human 

cells. As noted above, whilst using cell lines gives more consistent engraftment 

and CNS infiltration using the NSG mouse model of leukaemia, it is possible to 

engraft primary human leukaemic cells. Primary human ALL cells were taken 

from the bone marrow of children with ALL at diagnosis then stored in liquid 

nitrogen. Two sources of primary human ALL cells were used in this analysis: 

cells thawed and directly xenografted into mice (primary cells), and cells that 

had previously been xenografted into mice, then had cells retrieved from the 

murine spleen and refrozen in liquid nitrogen (primagraft cells). In this project I 

used 3x primary, and 3x primagraft ALL cells (i.e. cells from 6 children). Patient 

characteristics are summarised previously (Error! Reference source not f

ound.). As noted previously , REH cells carry a t(12;21) translocation similar to 

patients 1-3, and SEM cells carry a t(4;11) translocation similar to patients 4-6. 

The only major difference in technique between using cell lines (as described 

above) and primary ALL cells is that to improve engraftment cells are injected 

directly into the femurs of the mice under general anaesthetic as previously 

described (section 2.2.2.2), and that the time to engraftment varies. In these 

experiments the time to engraftment, and ALL cell count and purity when 

retrieved at cull is detailed in the table below (Table 3-3). 
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Table 3-3 Details of primary and primagraft cells engrafted into NSG mice and harvested 
from CNS and spleen at end of experiment 

 

RNA was extracted from these cells using the RNeasy system, and analysed using 

the Fluidigm® multiplex PCR system as detailed previously (section 2.2.5.4). 

PCR primers were designed for each of the genes in the cholesterol biosynthesis 

pathway. In addition, primers were designed for genes involved in lipid 

metabolism – specifically a selection of genes involved in fatty acid metabolism, 

ACSS genes involved in the conversion of acetate to acetyl CoA, and the sterol-

regulatory element-binding transcription factor (SREBF) subtypes involved in 

regulation of cholesterol and lipid synthesis - Interferon regulatory factor 4 

(IRF4)(Tun et al. 2008) (an interferon signalling pathway gene noted to be 

differentially expressed in our RNASeq data and in published reports of CNS 

lymphoma), and genes that have been identified in the literature as 

differentially regulated between CNS and systemic ALL (SPP1/osteopontin(van 

der Velden et al. 2015), VEGFα(Münch et al. 2017; Kato et al. 2017), IL15(Cario 

et al. 2007b; Williams et al. 2014), ICAM-1(Holland et al. 2011; Mielcarek et al. 

1997), and MERTK(Krause et al. 2015)). . 

Cell ID Translocation

Number of Mice 

at end of 

experiment

Mean duration of 

experiment (Days)
Site

Mean Cell Count 

from each site 

(x106 cells)

Mean ALL Cell 

Purity

Patient 1 

(primagraft cell) 

(1)

TEL:AML1 

t(12;21)
3 135

CNS 6.2 90%

Spleen 170 79%

Patient 1 

(primagraft cell) 

(2)

TEL:AML1 

t(12;21)
2 170

CNS 15 99%

Spleen 264 99%

Patient 2 

(primagraft cell) 

(1)

TEL:AML1 

t(12;21)
3 188

CNS 12 99%

Spleen 235 98%

Patient 2 

(primagraft cell) 

(2)

TEL:AML1 

t(12;21)
3 184

CNS 15 98%

Spleen 60 97%

Patient 3 

(primagraft cell) 

(1)

TEL:AML1 

t(12;21)
3 196

CNS 3

Spleen 80 88%

Patient 4 

(primary cell)
MLL t(4;11) 4 188

CNS 14 99%

Spleen 143 97%

Patient 5 

(primary cell)
MLL t(4;11) 3 125

CNS 0.8 81%

Spleen 8.5 85%

Patient 6 

(primary cell)
MLL t(4;11) 4 No engraftment
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3.3.1 Results of multiplex PCR of cholesterol synthesis genes in 
primagraft cells 

Focussing on the results of the cholesterol biosynthesis pathway genes in the 

first instance, not unexpectedly the results were not as consistent with primary 

cell lines compared with the RNASeq data on cell lines. Only 2 genes in the 

cholesterol biosynthesis pathway (IDI1 (p=0.04) and MSMO (p=0.03)) reached 

statistical significance even before statistical correction for multiple testing 

(Figure 3-9). 

 

Figure 3-9 Waterfall plot of cholesterol synthesis gene differential expression by Fluidigm® 
multiplex PCR for primary and primagraft ALL cells retrieved from murine CNS and Spleen. 
Mean Log2 fold-change noted by bars and individual patient data denoted by points. Genes 
ordered by log2 fold-change CNS vs Spleen; -log10 p-value (student’s paired t-test) denoted 
by colour, genes without statistically significant differential expression denoted by diagonal 
lines. 
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Looking at these results in more depth, in 4 of the 5 patients there appears to be 

upregulation of cholesterol synthesis overall (patients 1, 2, 3, and 4; with 13/18, 

13/18, 12/18, and 15/18 genes upregulated vs downregulated respectively). In 

the remaining patient (patient 5), the pattern is more balanced with 9/18 genes 

upregulated. These data were either from CNS and spleen of 3 mice (Patients 1 

and 3), or from 1 mouse each (patients 2, 4, and 5), so statistical analysis was 

not performed (Figure 3-10). 

 

Figure 3-10 Waterfall plot of cholesterol synthesis gene differential expression by Fluidigm® 
multiplex PCR for primary and primagraft ALL cells retrieved from murine CNS and Spleen. 
Patients 1,2,3: t(12;21) ALL; Patients 4,5: t(4;11) ALL. Ordered by log2 fold-change CNS vs 
Spleen. Blue colour denotes upregulation; red colour denotes downregulation. Median Log2 
fold change for cholesterol synthesis genes denoted by yellow colour. Dots represent 
results for individual mice in experiments with multiple mice included (individual data 
points beyond the limits of the graph are not shown). Note no statistical analysis performed 
on these data. 
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3.3.2 Analysis of lipid metabolism 

3.3.2.1 SREBF and ACSS gene expression 

As detailed elsewhere (section 1.2.4.3) the main regulatory system of cellular 

cholesterol and  lipid metabolism revolves around sterol-responsive-element 

binding proteins (SREBPs); coded for with the SREBF1 and SREBF2 genes(Hua et 

al. 1993). SREBF1 has two transcriptional isoforms –SREBF1a and SREBF1c(Hua et 

al. 1995). These 3 SRBEBP proteins (SREBP-1a, SREBP-1c, and SREBP2) have 

subtly different roles: SREBP-1a is involved in both fatty acid and cholesterol 

synthesis, SREBP-1c is involved mainly in fatty acid synthesis, and SREBP2 is 

involved mainly in cholesterol synthesis(Horton et al. 2002). 

The two ACCS genes (ACSS1 and ACSS2) convert acetate to acetyl-CoA which, 

among other roles, is a key lipid precursor metabolite. Given the potential 

importance of acetate as a metabolic precursor in cancer, particularly in 

nutrient poor environments(Schug et al. 2015) it was  hypothesised these genes 

were likely to be upregulated in the CNS. There was not, however, evidence of 

increased ACSS expression in our RNASeq data, and data from this multiplex PCR 

experiment did not find evidence of upregulation (Figure 3-11). 
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Figure 3-11 Waterfall plot of lipid metabolism gene differential expression by Fluidigm® 
multiplex PCR for primary and primagraft ALL cells retrieved from murine CNS and Spleen. 
Ordered by log2 fold-change CNS vs Spleen. Blue colour denotes upregulation; red colour 
denoted downregulation. Dots represent results for individual mice in experiments with 
multiple mice included (some individual data points are beyond the limits of the graph and 
not shown). There were no statistically significant differences between CNS and Spleen. 

3.3.3 Fatty acid metabolism 

In addition to cholesterol metabolism, this experiment provided data regarding 

fatty acid metabolism, showing two key genes (SCD and CPT1a) are significantly 

differentially regulated between the CNS and the spleen. SCD is upregulated and 

CPT1a downregulated in the CNS compared with the spleen (Figure 3-12). As 

noted previously (section 1.2.3) SCD upregulation has been shown to be 

associated with CNS relapse in ALL (van der Velden et al. 2015). 
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Figure 3-12 Waterfall plot of fatty acid metabolism gene differential expression by Fluidigm® 
multiplex PCR for primary and primagraft ALL cells retrieved from murine CNS and Spleen. 
Ordered by log2 fold-change CNS vs Spleen. Blue colour denotes upregulation; red colour 
denoted downregulation. Dots represent results for individual mice in experiments with 
multiple mice included (some individual data points are beyond the limits of the graph and 
not shown) 

3.3.4 Analysis of other candidate genes in CNS ALL 

On examination of the data for other putative genes differentially expressed in 

CNS ALL from this Fluidigm® multiplex PCR experiment, there is confirmation of 

some previously described findings. In particular, in all 5 patients VEGFα was 

detected in the CNS but not the spleen in keeping with published data. 

Interferon regulatory factor 4 was also upregulated in all 5 of our patient 

samples. The other factors tested (osteopontin/SPP1, IL-15, ICAM1, and MERTK) 

did not show any consistent pattern (Figure 3-13). 



Chapter 3: Transcriptomic adaptations 
of malignant BCP-ALL cells to the 
central nervous system niche 

83 

 

 

Figure 3-13 Waterfall plot of putative “ALL CNS-phenotype” gene differential expression by 
Fluidigm® multiplex PCR for primary and primagraft ALL cells retrieved from murine CNS 
and Spleen. Blue colour denotes upregulation; red colour denoted downregulation. Dots 
represent results for individual mice in experiments with multiple mice included (individual 
data points beyond the limits of the graph not shown). Note VEGFα bars shown do not show 
extent of fold-change – RNA was found in CNS but not spleen so fold-change is infinite. 
IRF4 showed a statistically significant increase in abundance in CNS compared to spleen 
(p=0.018). IL15 not detected in CNS or spleen in Patient 4. 

3.3.5 Summary 

Multiplex PCR of cholesterol synthesis genes, selected lipid metabolism genes 

and genes previously proposed to be important for CNS ALL was carried out on 

RNA from primary or primagraft ALL cells retrieved from the CNS vs spleens of 

mice. This showed upregulated cholesterol synthesis in cells from the CNS for 

4/5 cells used, together with evidence supporting changes in lipid metabolism in 
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cells in the CNS (particularly upregulation of SCD and downregulation of CPT1α). 

In addition these data confirms upregulation of VEGFα in cells retrieved from the 

CNS, as well as upregulation of IRF4. Other genes that have previously been 

suggested to be important for CNS ALL were not shown to have a consistent 

expression profile in the CNS vs the spleen in this experiment. 

3.4 Validation of RNASeq in publicly available primary CNS 
ALL data 

The final validation of the RNASeq data was comparison of our findings with 

publicly available microarray transcriptomic data from 8 children with ALL at 

CNS relapse (cells retrieved from the CSF) compared with cells from the bone 

marrow at diagnosis and bone marrow relapse(van der Velden et al. 2015). As 

mentioned earlier this method of obtaining cells for transcriptional analysis has 

significant challenges, but nevertheless provides possibly the closest data to the 

true transcriptional profile of human CNS ALL cells. 

Data were retrieved from the “GEO Data Sets” NCBI database GSE60926 and 

analysed for differential expression of cholesterol synthesis genes by sample 

clustering (Figure 3-14) and Gene Set Enrichment Analysis (Figure 3-15). Entirely 

in keeping with our RNASeq data, there was significant enrichment of cholesterol 

synthesis in cells retrieved from the CNS at relapse compared with bone marrow 

either at diagnosis or BM relapse. There were no significanct differences in 

cholesterol biosynthesis between samples from the bone marrow at diagnosis vs 

BM relapse. 
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Figure 3-14 Cholesterol gene waterfall chart and Heatmap of transcriptomic data from 
human ALL cells retrieved from CNS at CNS-relapse (CNS-R) vs BM at diagnosis (BM-D) or 
relapse (BM-R). A -Waterfall plot of cholesterol synthesis gene differential expression 
between CNS and BM samples. Ordered by log2 fold-change CNS vs Spleen; -log10 p-value 
(student’s t-test) denoted by colour, genes without statistically significant differential 
expression denoted by diagonal lines; B - Heatmap and dendrogram of cholesterol 
synthesis genes across all samples. CNS samples denoted in blue, BM samples in green. 
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Figure 3-15 GeneSet Enrichment Analysis of transcriptomic data from human ALL cells 
retrieved from CNS at CNS-relapse vs BM and diagnosis or relapse. A - Geneset Enrichment 
Analysis Enrichment plot for the “Hallmark” cholesterol homeostasis pathway; B - Geneset 
Enrichment Analysis Enrichment plot for the bespoke “TC cholesterol synthesis” pathway; 
C – Geneset Enrichment Analysis table of the top 10 differentially expressed pathways 
using the MSigDB “Hallmark” pathways database and bespoke “TC” cholesterol synthesis 
pathways 

3.4.1 Summary 

Analysis of primary gene expression data from ALL cells retrieved from the CNS 

at CNS relapse of ALL have confirmed upregulation of cholesterol biosynthesis in 

the CNS compared (non-paired) to the bone marrow at diagnosis and relapse. 
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3.5 Exploration of cholesterol synthesis upregulation as a 
marker of risk of CNS relapse 

One of the key recent discoveries in the field of CNS ALL research was the 

detection of cells with specific markers that, if present in diagnostic bone 

marrow, predicted for future CNS relapse(van der Velden et al. 2015). Given the 

compelling evidence for enrichment of cholesterol synthesis gene transcription 

in the CNS, the possibility that increased levels of cholesterol synthesis genes in 

the bone marrow at diagnosis may predict CNS relapse was explored. 

Publicly available data, with clinical annotation including survival and bone 

marrow/CNS relapse, for children with high-risk ALL treated on the Children’s 

Oncology Group (COG) P9906 trial was obtained from the US National Cancer 

Institute TARGET phase 1 acute lymphoblastic leukaemia project and NCBI “Geo 

DataSets” GSE GSE11877. 

Briefly, in the P9906 trial patients between the ages 1-22 years with high-risk 

leukaemia were recruited. High-risk disease was defined by any of: 

 Age- and Sex-stratified WCC (Shuster criteria(Borowitz et al. 2003)) 

 CNS 3 status 

 MLL positivity 

 Testicular involvement (n=3, no CNS relapse) 

Patients with Philadelphia chromosome or hypodiploidy were excluded. Patients 

with TEL-AML1, or trisomy 4 and 10, were excluded in the absence of CNS3 or 

testicular leukaemia(Bowman et al. 2011). 

Data from 207 children were available in the form of microarray of ALL cells 

(from BM 131/207, peripheral blood 76/207). These were matched with clinical 

data from the TARGET database. A cholesterol signature was sought using a z-

score approach The method employed is available above (section 0). Data were 
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transformed to ensure normal distribution (Figure 3-16), In this study the cutoffs 

chosen were: 1.2 (approximately the top 10% expression levels for each gene), 

1.5 (approximately top 5% of expression levels), and 2 (approximately top 2.5% 

expression levels). For simple two-group analyses, samples with 2+ genes 

upregulated with a z-score ≥ 1.5 were considered “cholesterol synthesis 

upregulated”. 

 

Figure 3-16 Histogram of distribution of cholesterol synthesis gene expression values 
across samples p9906 trial with overlaid normal distribution curve.A – before log 
transformation; A – after log transformation. 

3.5.1 Correlations 

The first step in this analysis was looking to see how a cholesterol biosynthesis 

signal was associated with other clinical factors linked to risk of CNS relapse: 

age at diagnosis, white cell count at diagnosis, MLL-translocation status and CNS-

status (determined by whether there are red cells and/or leukaemic blasts and 

how many blasts are present in the CSF at diagnosis); and if the signal was 

associated with clinical outcomes. This was done by using the criteria above (2+ 

genes above a cut-off z-score of 1.5) to split the data set unto “cholesterol 

synthesis upregulated” and “cholesterol synthesis not upregulated” groups. 

Statistical analysis was carried out using a chi-squared test. The cholesterol gene 

signal was correlated with MLL status but not any other traditional risk factor for 

CNS relapse (Table 3-4). In terms of outcome, upregulated cholesterol synthesis 

A B 
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correlated with CNS relapse (predominantly isolated CNS relapse) but not bone 

marrow (BM) relapse (Table 3-5). 

Table 3-4 Correlation of upregulated cholesterol synthesis (defined as 2+ genes upregulated 
with a cutoff z-score of 1.5) with traditional risk factors for CNS relapse in childhood ALL. p-
value calculated with chi-squared test. 

 

Table 3-5 Correlation of upregulated cholesterol synthesis (defined as 2+ genes upregulated 
with a cutoff z-score of 1.5) with death and relapse outcome in childhood ALL. p-value 
calculated with chi-squared test. 

 

Of note, MLL status in this dataset does not correlate with CNS relapse (p=0.54 

univariate LogRank test) though numbers are small. 

3.5.2 CNS relapse risk analysis 

With this crude analysis showing an apparent correlation between samples 

having a cholesterol synthesis signal and CNS relapse, the next stage was to 

perform detailed survival analysis to assess whether this correlation persists in 

the presence of sample censoring, and how it develops over time. 

To do this a Kaplan-Meier curve was created and statistical analysis performed 

using univariate LogRank test. This was done initially using the two groups above 

(Figure 3-17), showing that upregulation of cholesterol synthesis was strongly 

associated with CNS relapse (p<0.0001). 

Risk factor /Outcome Number with 

cholesterol 

synthesis 

upregulated

% with 

cholesterol 

synthesis 

upregulated

Number without 

cholesterol synthesis 

upregulated

% without 

cholesterol 

synthesis 

upregulated

p-value

Total: 44 21% 163 79%

WCC at diagnosis ≥ 50 x109/L 23 22% 82 78% 0.8

Age at diagnosis ≥ 10 yrs 23 18% 108 82% 0.09

MLL positive 10 50% 10 50% 0.0009

CNS 3 status 4 19% 17 81% 0.8

Risk factor /Outcome Number with 

cholesterol 

synthesis 

upregulated

% with 

cholesterol 

synthesis 

upregulated

Number without 

cholesterol synthesis 

upregulated

% without 

cholesterol 

synthesis 

upregulated

p-value

Total: 44 21% 163 79%

Death 16 31% 36 69% 0.07

Isolated BM relapse 10 26% 31 74% 0.4

Any BM relapse 10 23% 36 77% 0.7

Any CNS relapse 11 37% 19 63% 0.026

Isolated CNS relapse 11 44% 14 56% 0.003
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Figure 3-17 Kaplan-Meier survival curve for CNS relapse-free probability in COG P9906 trial 
by upregulation of cholesterol synthesis (defined as z-score ≥ 1.5 in 2 or more genes in 
cholesterol synthesis pathway). Number of patients included in analysis at each timepoint 
in each group marked along x axis. p<0.0001 by univariate LogRank test. 

Next, to ensure this was a true cholesterol biosynthesis signal, Kaplan-Meier 

curves were created using multiple groups corresponding to number of genes 

with z-scores above each of the cut-offs used. The increased risk of CNS relapse 

consistently increased as the number of upregulated genes increased, and as z-

score was increased (p<0.0001) (Figure 3-18). 
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Figure 3-18 Kaplan-Meier survival curve for CNS relapse-free probability in P9906 data by 
upregulation of cholesterol synthesis. A - z-score ≥ 1.2; B – z-score >1.5; C – z-score >2; for 
cumulative increase in number of genes upregulated for each z-score. All analyses show 
significant differences between groups (LogRank test, p<0.0001). 
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3.5.3 Multivariate analysis 

To confirm that this apparent increase risk is truly related to the cholesterol 

synthesis signal multivariate analysis with traditional risk factors of CNS relapse 

(section 3.5.1) was performed. 

This was done by construction of a Cox Proportional Hazards model. As before, a 

simple two-group analysis was performed (Table 3-6), and analysis of a range of 

number of genes upregulated for a particular z-score – 1.2 (Table 3-7) and 2 

(Table 3-8). For all of these analyses, upregulation of cholesterol synthesis 

retains high statistical significance for correlation with CNS relapse when 

analysed alongside the “high-risk” factors of the patients in the study. One small 

caveat worth noting is that the study protocol was changed early in the trial to 

increase CNS-directed therapy for patients with high WCC due to an early excess 

of CNS relapses in these children(Bowman et al. 2011). 

Table 3-6 Table showing multivariate analysis of CNS relapse risk of traditional risk factors 
and cholesterol synthesis upregulation (defined as z-score ≥ 1.5 in 2 or more genes in 
cholesterol synthesis pathway) 

 

Table 3-7 Table showing multivariate analysis of CNS relapse risk of traditional risk factors 
and cholesterol synthesis upregulation (defined as a continuous factor, the number of 
genes upregulated with z-score cutoff ≥ 1.2) 

 

HR (95% CI) p-value

Cholesterol synthesis 

upregulated (2genes; z-s 

≥ 1.5)

3.33 (1.48-7.5) 0.00369

Day 29 MRD >0.01 1.23 (0.5-3.03) 0.65079

WCC at diagnosis ≥ 50 

x109/L
1.29 (0.5-3.35) 0.59935

CNS status 3 0.71 (0.15-3.26) 0.65871

Age at diagnosis ≥ 10 yrs 0.45 (0.18-1.17) 0.10272

MLL positive 0.8 (0.21-3.01) 0.74187

HR (95% CI) p

Number of  cholesterol 

genes upregulated z-

score ≥ 1.2

1.53 (1.21-1.94) 0.00037

Day 29 MRD >0.01 1.04 (0.42-2.59) 0.92801

WCC (diagnosis) ≥ 50 

x109/L
1.27 (0.51-3.18) 0.6121

CNS status 3 0.66 (0.14-3.05) 0.59902

Age (diagnosis) ≥ 10 yrs 0.46 (0.19-1.12) 0.08719

MLL positive 0.64 (0.16-2.51) 0.52396
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Table 3-8 Table showing multivariate analysis of CNS relapse risk of traditional risk factors 
and cholesterol synthesis upregulation (defined as a continuous factor, the number of 
genes upregulated with z-score cutoff ≥ 2) 

 

3.5.4 Bone marrow relapse 

Having shown this correlation with CNS relapse, the next stage was to look for a 

similar correlation with (more common) bone marrow relapse. This was done in 

the same way: by constructing Kaplan -Meier curves and statistical analyses with 

univariate LogRank test (Figure 3-19). 

In these data, upregulation of cholesterol synthesis does not correlate with bone 

marrow relapse (p=0.79(z-score 1.2); p=0.1(z-score 1.5); p=0.95(z-score 2). 

HR (95% CI) p-value

Number of  cholesterol 

genes upregulated z-

score ≥ 2

2.25 (1.36-3.72) 0.00156

Day 29 MRD >0.01 1.12 (0.45-2.79) 0.815

WCC (diagnosis) ≥ 50 

x109/L
1.9 (0.69-5.21) 0.21067

CNS status 3 0.63 (0.13-2.96) 0.55809

Age (diagnosis) ≥ 10 yrs 0.48 (0.19-1.2) 0.11771

MLL positive 0.33 (0.05-2.16) 0.2474
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Figure 3-19 Kaplan-Meier survival curve for BM relapse-free survival in COG9906 data by 
upregulation of cholesterol synthesis. A - z-score ≥ 1.2; B – z-score >1.5; C – z-score >2; for 
cumulative increase in number of genes upregulated for each z-score. Note no significant 
difference between groups found for any of these z-score cutoffs. 
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3.5.5 Overall survival correlates with upregulated cholesterol 
synthesis 

Finally, to complete this analysis the data were analysed for a correlation 

between a cholesterol biosynthesis signal and overall survival. Again, Kaplan-

Meier curves were created and data analysed with univariate LogRank tests 

(Figure 3-20).On analysis using a single cutoff of gene number for each z-score (5 

for the less highly upregulated z-score of 1.2, 2 for z-score 1.5, and 1 for z-score 

2), there is a statistically significant difference in overall survival with a z-score 

cut-offs of 1.2 (p=0.0214 by LogRank test) and 1.5 (p=0.0319), but not 2 

(p=0.288). 
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Figure 3-20 Kaplan-Meier survival curve for overall survival in P9906 data by upregulation of 
cholesterol synthesis. A - z-score ≥ 1.2, ≥5 genes upregulated (LogRank p-value=0.0214); B 
– z-score >1.5, ≥2 genes upregulated (LogRank p-value=0.0319); C – z-score >2, ≥1 gene 
upregulated (no statistically significant differences, LogRank p-value=0.288). 
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3.5.6 Summary 

Analysis of publicly available gene expression data from bone marrow/peripheral 

blood ALL cells at diagnosis has shown that increased cholesterol biosynthesis 

specifically increased risk of CNS, but not BM relapse. This effect increased as 

the degree of upregulation and number of upregulated genes increased. The 

effect appears independent of traditional risk factors, though there was an 

association with MLL rearrangement. This translated into a significant reduction 

in overall survival for children with upregulated cholesterol biosynthesis in ALL 

cells at diagnosis. 

3.6 IL7rα gene expression 

More recently, IL7Rα gene expression (coding for part of the interleukin-7 

receptor) has been shown to be correlated with CNS relapse in ALL (manuscript 

under revision). As this only came to light after this multiplex PCR experiment 

this gene was not included. However, on analysis of the our xenograft model 

RNASeq data (chapter 3.2), the GSE60926 microarray data from cells obtained 

from the CSF of children with CNS relapse of ALL (section 3.3.5) and analysis of 

the TARGET data for association with CNS relapse risk (section 3.4.1), we have 

confirmed elevated levels of IL7Rα gene expression are found in ALL cells in the 

CNS compared to systemic disease (Figure 3-21), and increased expression of 

IL7Rα in the bone marrow at diagnosis – determined, as above (section 0) using 

z-score, with a cut-off z-score of 1.2 chosen – was associated with increased risk 

of isolated CNS relapse in univariate (Figure 3-22) and multivariate analysis 

(Table 3-9 ). Interestingly, in the TARGET data, increased IL7Rα expression was 

correlated with the t(1;19) TCFR3-PBX1 translocation (Table 3-10). This fits with 

the initial studies and may help explain the increased risk of CNS relapse seen in 

children with this translocation (discussed previously in section 1.2.3). 
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Figure 3-21 Log2Fold-change in IL7R expression between: A - human ALL cells retrieved 
from the CNS:Spleen of NSG mice; B- ALL cells retriived from the CNS or bone marrow of 
children with ALL. 

 

 

Figure 3-22 Kaplan-Meier curves for CNS relapse rate by upregulated IL7R expression in 
bone marrow ALL cells at diagnosis. A – isolated CNS relapse-free probability; B – isolated 
BM relapse-free probability; C – Overall survival. 
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Table 3-9 Multivariate analysis of impact of IL7R and cholesterol synthesis gene 
upregulation on CNS relapse risk in the TARGET dataset 

 

Table 3-10 Correlation of cytogenetic subtypes with upregulated IL7R expression in the 
TARGET dataset 

 

3.6.1 Summary 

IL7R expression is increased in ALL cells retrieved from the CNS of NSG xenograft 

models and from human CSF at CNS relapse of ALL. Increased IL7R expression at 

diagnosis is associated with an increased risk of CNS but not BM relapse. This 

increased risk persists on multivariate analysis with traditional risk factors and 

increased cholesterol synthesis. There was an association between IL7R 

expression and t(1;19) TCF3-PBX1 translocation. 

3.7 Conclusions 

The aim of this chapter was to identify changes in metabolism of BCP-ALL cells 

in the CNS compared with systemic disease by analysing the transcriptome. The 

data presented show good evidence for metabolic adaptation in ALL cells in the 

CNS. These seem to focus mainly on changes in and cholesterol and lipid 

metabolism. These changes are in keeping with the CSF environment of these 

cells – low in glucose, low in oxygen and extremely low in cholesterol and lipids. 

Risk Factor HR, (95% CI) P-value

IL7R upregulation 4.74 (1.82,-,12.32) 0.00143**

Cholesterol synthesis 

upregulated
4.75 (1.99,-,11.33) 0.00044***

Day 29 MRD >0.01 1.19 (0.49,-,2.89) 0.69317

WCC (diagnosis) ≥ 50 x109/L 1 (0.37,-,2.68) 0.99764

CNS status 3 0.8 (0.17,-,3.84) 0.78291

Age (diagnosis) ≥ 10 yrs 0.47 (0.19,-,1.21) 0.11762

MLL Rearrangement 1.04 (0.28,-,3.89) 0.95782

Cytogenetic subtype

Number with 

ILR7 

upregulated

%
Number without 

ILR7 upregulated
% p-value

Total 26 13% 181 87%

MLL 2 10% 18 90% 0.7162

ETV6/RUNX1 Fusion 0 0% 4 100% 0.4440

TRISOMY 4 or 10 2 29% 5 71% 0.1934

TCF3 PBX1 7 30% 16 70% 0.0060
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It is worth noting that a significant proportion of RNASeq data were not analysed 

as the reads that aligned to both the human and mouse genome and were 

excluded. This means there can be high confidence that the changes seen 

represent true findings from human ALL cells, but there may be significant 

changes between the CNS and spleen in genes partially conserved between 

humans and mice that are missed by this analysis. 

Cholesterol metabolism may be a particularly interesting area of study. 

Cholesterol biosynthesis is consistently upregulated in the CNS in our xenograft 

model systems and this is confirmed in primary human samples. It appears as 

though it may be possible to detect a “cholesterol biosynthesis” signal in the 

bone marrow of children at diagnosis which correlates with a substantially 

increased risk of CNS relapse in a group of high-risk children, though further data 

would be required to assess the reproducibility of these data and how applicable 

it is to the wider population of children with ALL (discussed in more depth in 

Chapter 6:). 

The data from primary and primagraft ALL cells in the NSG murine model did not 

as comprehensively show increased cholesterol synthesis as the experiments in 

the rest of this chapter, though there was an increase in cholesterol synthesis in 

the CNS in 4/5 samples tested. It is possible that the relatively subtle cholesterol 

signal was lost due to RNA degradation during storage – the cells were stored as 

cell pellets for up to 1 year at -80°C, partly because of the variability in time to 

engraftment. This is not entirely borne out by the RNA absorbance data prior to 

the experiment, but there was increased RNA retrieval from spleen ALL cells 

which may have caused the loss of difference between groups. Regardless, given 

the clear findings on RNASeq of two very different ALL cell lines with 

confirmation in cells from the CNS of 8 children, cholesterol metabolism was a 

very interesting area for further study and the results of further investigations in 

vitro and in vivo will be discussed in Chapter 5:. 

Finally, analysis of these data adds supporting evidence to the upregulation of 

IL7Rα, IRF4 and VEGFα in ALL cells in the CNS, and raises the possibility of IL7R 

expression in the bone marrow at diagnosis as a risk factor for CNS relapse – 
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possibly correlated with the known risk factor for CNS relapse of t(1;19) TCFR3-

PBX1 translocation. 
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Chapter 4: Metabolomic analysis of human and 
murine CSF in the presence and absence of CNS 
acute lymphoblastic leukaemia infiltration 

4.1 Introduction and aims 

Having examined the transcriptome of ALL cells in the CNS, the next step in this 

project was to look at the metabolome of CNS ALL. This was achieved through 

access to a biobank of CSF taken from children with ALL in Glasgow, UK, 

between 2009 and 2016. 

As noted previously (section 1.2.2) ALL cells infiltrating the CNS lie almost 

exclusively in the leptomeninges, bathed in CSF. CSF is a nutrient poor 

environment, and in normal circumstances there are very few cells in this 

environment. In the context of CNS involvement with ALL however, there is a 

significant cellular burden. It was hypothesised that this would lead to changes 

in the composition of CSF reflecting increased cell metabolism within the 

leptomeningeal compartment that could be detected using untargeted LC-MS 

analysis. 

This chapter focusses on detection of potential novel metabolic markers for CNS 

ALL in the CSF. Specific aims were: 

1. To carry out metabolomic analysis of CSF, to determine whether samples 

taken at diagnosis with ALL can be discriminated from controls, and to 

identify potential markers for CNS ALL 

2. To carry out metabolomic analysis of CSF and plasma from a mouse model 

of CNS ALL to identify similarities and differences from primary human 

samples, and provide additional evidence of the validity or otherwise of 

potential markers identified in primary samples 

3. To determine the utility of potential markers to discriminate CSF samples 

taken at isolated CNS relapse from samples from patients with no relapse 
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4.2 CSF stability 

The first step in this analysis was to look at metabolite stability over time. The 

CSF biobank is based on clinical samples. These would typically be taken in the 

operating theatre at the Royal Hospital for (Sick) Children, Glasgow, in the 

afternoon, kept a variable amount of time at room temperature in theatre, 

before being transported to the clinical laboratory where the samples would be 

stored at 4°C for usually 1-2 hours, but occasionally this may be as long as 72 

hours (i.e. from Friday evening to Monday evening), before being centrifuged 

and supernatant stored at -80°C. There was concern that variable handling times 

before refrigerating and/or freezing samples might impact on sample quality for 

metabolomic analysis. 

To assess the stability of CSF stored in this way, samples from 9 patients were 

stored either at room temperature for 2½ hours or on ice for: 30 minutes, 2½ 

hours, 24 hours or 72 hours. The samples were then centrifuged and 

supernatants stored at -80°C until analysis. 

For analysis the samples were prepared as described above (section 2.2.6.1). 

Briefly, the samples were thawed and diluted 1:20 in extraction solution 

(methanol (50% volume): acetonitrile (30% volume): water (20% volume)). 

Samples were then centrifuged at 13,000 rpm at 4°C for 10 minutes and 

supernatants transferred to glass vials for analysis. Samples were stored at -80°C 

until LC-MS analysis. 

These results show no obvious time-related changes in CSF metabolites overall, 

and no gross differences in stability between metabolites assayed (though the 

variation for valine was slightly higher than the other metabolites assayed). 

Samples in the biobank were therefore considered to have been processed in 

way consistent with good quality metabolomic analysis (Figure 4-1). 
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Figure 4-1 CSF stability after storage for various times (30 mins on ice, 2½ hours at room 
temperature, 2½, 24 or 72 hours on ice). A – Relative metabolite abundance (mean of all 
metabolites assayed) for each patient for each timepoint; B – Mean Coefficients of Variation 
across all timepoints per sample for each metabolite. 
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4.3 Untargeted: early vs late vs control 

4.3.1 Background 

It is possible to look at a large part of the metabolome using a technique called 

“untargeted” LC-MS. This is described in depth previously (section 2.2.6.4.This 

approach takes significantly more time and resources (each sample is run in 

positive and negative mode, at 34 minutes for each, as opposed to a single 22 

minute run for a “targeted” approach), but provides better resolution of 

chromatography separation and a fragmentation signature – which can be 

compared to previously run standards and online metabolite libraries - to 

facilitate identification of interesting peaks. For this project we used an 

untargeted approach to generate candidate metabolites and pathways, and 

confirmed findings using targeted LC-MS. 

The goal of the project was to compare CSF from children with CNS infiltration 

with ALL blasts to CSF from children without CNS infiltration (whether or not 

they remained on treatment for ALL). To do this we hypothesised (as discussed 

previously in section 1.2.4.1) that a significant proportion, if not all, of children 

have CNS infiltration at diagnosis with ALL. 

We therefore compared the CSF of children at diagnosis (prior to any 

chemotherapy or steroid therapy) – “early” group - to CSF from the same 

children later in treatment (after completion of intensive chemotherapy, but 

while still receiving maintenance chemotherapy) –“late” group - and to control 

samples taken from children aged 12 and below who had CSF taken for 

investigation, but had no CNS pathology detected – “normal” group. Clinical 

characteristics for the children with ALL including a list of prescribed 

medications at the time of first lumbar puncture are listed previously (section 

2.2.1.2). 
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Figure 4-2 Experimental plan for untargeted metabolomic analysis of CSF samples from 
children at diagnosis with ALL and controls. Diagnostic samples form the “Early” goup, 
maintenance therapy samples the “Late” group and normal control samples the “Normal” 
group. 

 

4.3.2 Initial Findings 

. 

 

Tthe data were analysed globally to look for gross differences between groups, 

showing clear separation by principle component analysis (Figure 4-3). 

 

Figure 4-3 Principal Component Analysis of untargeted LC-MS data from CSF of children 
with and without leukaemia. Each dot represents a sample, with group denoted by colour: 
Light Blue – Early; Orange – Late; Purple – Normal. 

4.3.3 Potential markers 

The purpose of this project was to look for potential markers for CNS ALL. To do 

this the processed “untargeted” LC-MS data were analysed for potential 

Day 1 Diagnostic CSF 
samples (n=20)

Maintenance therapy CSF 
samples (n=19, paired)

Normal control CSF samples 
(n=17)

Test group Control groups



Chapter 4: Metabolomic analysis of 
human and murine CSF in the presence 
and absence of CNS acute lymphoblastic 
leukaemia infiltration 

108 

 

metabolites with clearly higher or clearly lower concentrations in the “Early” 

group compared to BOTH the “Late” and the “Normal” control groups. 

This was achieved with two complementary analyses. Firstly, peaks that had a 

ratio of the maximum (in both the control groups) to the mean of the “Early 

group that was less than 1.11 (i.e. the highest value in either of the control 

groups was less than 11% higher than the mean of the “early group), and a p-

value by t-test (paired for “Early” vs “Late, unpaired for “Early” vs “Normal”) 

<0.05 for both groups, or peaks that had a ratio of minimum control/mean 

“Early” greater than 0.89 and p-values as above, were selected for further 

investigation (Equation 1). Secondly, ROC curve analysis was performed using the 

Metaboanalyst(Xia & Wishart 2011) platform - separately for “Early” vs “Late” 

and “Early” vs “Normal”, and overlapping peaks were selected for further 

investigation. Perhaps not surprisingly, these analyses revealed very similar 

results (Figure 4-4, Table 4-1). 

Equation 1 – Criteria for selection of potential markers for CNS ALL from metabolomic 
analysis of CSF 

 

𝐴 𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒 𝑤𝑎𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑎 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑏𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟 𝑖𝑓: 

(𝑎) 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05 𝑓𝑜𝑟 𝐸𝑎𝑟𝑙𝑦 𝑣𝑠 𝐿𝑎𝑡𝑒 𝐴𝑁𝐷 𝐸𝑎𝑟𝑙𝑦 𝑣𝑠 𝑁𝑜𝑟𝑚𝑎𝑙 

𝐴𝑁𝐷 𝑒𝑖𝑡ℎ𝑒𝑟 (𝑏) 𝑜𝑟 (𝑐): 

(𝑏)
𝑀𝑎𝑥𝑖𝑚𝑢𝑚(𝐿𝑎𝑡𝑒)

𝑀𝑒𝑎𝑛(𝐸𝑎𝑟𝑙𝑦)
< 1.11 𝐴𝑁𝐷 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚(𝑁𝑜𝑟𝑚𝑎𝑙)

𝑀𝑒𝑎𝑛(𝐸𝑎𝑟𝑙𝑦)
< 1.11 

𝑂𝑅 

(𝑐)
𝑀𝑖𝑛𝑢𝑚𝑢𝑚(𝐿𝑎𝑡𝑒)

𝑀𝑒𝑎𝑛(𝐸𝑎𝑟𝑙𝑦)
> 0.89 𝐴𝑁𝐷 

𝑀𝑖𝑛𝑢𝑚𝑢𝑚(𝑁𝑜𝑟𝑚𝑎𝑙)

𝑀𝑒𝑎𝑛(𝐸𝑎𝑟𝑙𝑦)
< 0.89 
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These peaks were putatively assigned identities based on their m/z and 

fragmentation platform using the mzCloud™ database as described earlier 

(section 2.2.6.4). A literature review confirmed that while some of these targets 

had been described as tumour markers, and some had been associated with ALL, 

none had been associated with CNS disease in ALL. Of interest, using Progenesis’ 

native metabolite identification software based on PubChem molecular masses 

and Human Metabolome Database(Wishart et al. 2007) and the Metlin 

Database(Smith et al. 2005) fragmentation spectra it was possible to identify 

multiple therapeutic drugs in the CSF including common antibiotics tazobactam 

and piperacillin, and xanthine oxidase inhibitor allopurinol. 
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Figure 4-4 Volcano plots of untargeted metabolomic data of CSF. A,C - from children with 
ALL at diagnosis vs the same children on maintenance chemotherapy; B,D from children 
with ALL at diagnosis vs unmatched, normal controls. A,B show data for negative mode LC-
MS and C,D for positive mode LC-MS. 
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Table 4-1 Top 22 Features by ROC analysis area under curve for Early vs Late and Early vs 
Normal with putative metabolite IDs shown. Features only seen in either Early vs Late or 
Early vs Normal analysis but not in both in grey. Low abundance metabolites had peak area 
<1x104 and were not investigated further. 

 

Early vs Late Early vs Normal

Feature
Area under 

curve
t-test

log2 fold-

change
Putative ID Feature

Area under 

curve
t-test

log2 fold-

change
Putative ID

6.96_283.

0682m/z
0.989474 1.62E-05 18.45205 Xanthine

6.11_258.

1086m/z
0.985294 1.09E-08 1.273087 5-methylcytidine

8.86_243.

0621m/z
0.968421 1.96E-08 0.748173 Pseudouridine

3.13_430.

2434m/z
0.979412 1.87E-07 -8.85663

5.88_128.

0705m-z
0.963158 1.03E-10 1.738966

Low abundance 

metabolite

3.20_455.

2752n
0.979412 1.08E-06 -4.48734

5.95_191.

1389m-z
0.963158 1.46E-10 6.277073

3.30_243.

1827m/z
0.979412 8.66E-08 -2.18896

6.11_258.

1086m-z
0.957895 3.27E-07 1.016278 5-methylcytidine

5.06_174.

0761m/z
0.976471 1.73E-05 -2.06572

6.66_166.

0724m-z
0.952632 1.01E-07 0.840054 Phenylalanine

6.96_283.

0682m/z
0.973529 4.20E-05 14.87414 Xanthine

6.64_279.

1310m-z
0.934211 5.52E-06 5.896813

Low abundance 

metabolite

6.66_166.

0724m/z
0.973529 2.83E-08 0.960477 Phenylalanine

5.72_283.

1034m-z
0.931579 1.10E-06 1.031647

5.47_208.

1291m/z
0.970588 0.00108 7.584732

5.72_312.

1300m-z
0.931579 2.23E-06 0.967139 Dimethylguanosine

6.64_279.

1310m/z
0.970588 1.69E-06 8.281152

Low abundance 

metabolite

18.71_203

.1501m-z
0.926316 1.88E-06 1.005927 Dimethylarginine

5.47_131.

0448m/z
0.961765 0.00215 2.93144

5.80_328.

1612m-z
0.921053 3.55E-06 7.008089

5.88_128.

0705m/z
0.958824 3.57E-10 1.818522

Low abundance 

metabolite

4.01_100.

0757m-z
0.913158 0.000122 -2.25383

3.26_415.

2113m/z
0.958824 1.87E-05 -11.2342

5.18_145.

0738n
0.910526 5.17E-07 -0.33699

5.95_191.

1389m/z
0.95 3.43E-09 4.678004

5.60_154.

0610m-z
0.905263 1.40E-05 1.238755

Low abundance 

metabolite

18.71_203

.1501m/z
0.944118 1.72E-06 1.009451 Dimethylarginine

14.90_194

.0177n
0.902632 4.43E-05 10.06583

5.00_202.

1801m/z
0.929412 0.0014 -1.64995

5.57_286.

1031m-z
0.9 1.59E-05 1.186994

5.57_286.

1031m/z
0.9 1.31E-05 1.36419 Aceylcytidine

7.67_153.

0407m-z
0.9 0.000322 1.768083

5.72_312.

1300m/z
0.9 4.37E-05 0.853781 Dimethylguanosine

5.16_86.0

600m-z
0.894737 1.81E-06 -0.28169

4.93_188.

1392m/z
0.894118 0.000501 16.73596

6.03_198.

0873m-z
0.889474 2.14E-05 -1.14468

5.60_154.

0610m/z
0.891176 1.56E-05 1.528614

Low abundance 

metabolite

11.41_146

.0812m-z
0.889474 1.06E-05 -0.42146

5.72_283.

1034m/z
0.888235 5.62E-05 0.824153

3.68_149.

0574n
0.884211 0.151283 -7.71376

4.96_143.

0815m/z
0.885294 0.000372 4.258023

11.92_132

.0656m-z
0.881579 0.006222 -0.64479 Creatine

8.86_243.

0621m/z
0.876471 6.52E-05 0.51311 Pseudouridine

4.93_188.

1392m-z
0.878947 0.000245 15.78589

11.92_132

.0656m/z
0.870588 3.01E-05 -0.56553 Creatine
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The identities of these compounds were confirmed using standards obtained 

from suppliers (section 2.1.1.1). The retention time and fragmentation spectra 

of the standards were compared with those of the target peaks, and all of the 

peaks identities were confirmed with the exception of acetylcytidine. 

As noted above, it is possible to identify allopurinol –a xanthine oxidase inhibitor 

– in the CSF from some of the “Early” samples which may provide an explanation 

for the increased xanthine seen in the CSF in this group - this is the most likely 

reason for the apparent difference. A correlation analysis of xanthine vs 

allopurinol abundance at first glance seems to confirm this – but this is heavily 

skewed by the complete absence of allopurinol from most samples. Interstingly, 

by analysing only samples with reliably detectable levels of allopurinol (taken as 

an arbitrary cut-off of peak area 1x104) there is no evidence of a correlation 

between CSF allopurinol abundance and CSF xanthine abundance (Figure 4-5) 

 

Figure 4-5 Scatterplots of allopurinol vs xanthine abundance in CSF showing best-fit 
regression line, confidence intervals in grey, with correlation coefficient and p-value at top 
for: A – samples with detectable allopurinol (n=8); B- all samples (n=56). 

These metabolites were therefore taken forward for further investigation in a 

mouse model of CNS leukaemia and in CSF from patients with CNS relapse. 
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4.3.4 Summary 

From these analyses it was concluded that it is possible to discriminate CSF 

taken at diagnosis with ALL from CSF taken from the same children on ALL 

maintenance chemotherapy, and from normal controls. In additions there are 

some features which are found at significantly higher or lower abundance in CSF 

samples at diagnosis which are potential markers for CNS ALL. 

4.4 Targeted LC-MS analysis of leukaemic CSF using a 
murine model 

To confirm the significance of these findings, metabolomic analysis of CSF and 

plasma from mice with and without leukaemia was carried out. Using a mouse 

model has several advantages over using primary data. There is certainty that 

the leukaemic mice have CNS leukaemia, and that the controls have no CNS 

pathology. There are no other complicating factors that could compound analysis 

(e.g. drug treatments, infections). It is relatively simple to obtain CSF in a 

controlled manner and sample preparation is much more controlled (though as 

noted above (Chapter 4.2) this does not seem to be a critical factor for CSF 

analysis), and in addition it is simple to obtain matched blood in a similarly 

controlled way. So despite the clear physiological differences between humans 

and mice, a xenograft model of human ALL cell line cells in immunocompromised 

NSG mice was used as in previous experiments (section 2.2.1.1). 

9 experimental NSG mice were injected with SEM cells via the tail vein, with 8 

mice without leukaemia injection as controls. After 28 days, CSF was extracted 

under terminal anaesthesia, then blood obtained via cardiac puncture; Cells 

were retrieved from the CNS and spleen as described above (section2.2.2.5). As 

this chapter is focussed on analysis of CSF and blood plasma, the results of 

analysis of cellular metabolites from this experiment are described in a later 

chapter (5.4.3). 

Metabolomic analysis was carried out as described previously (section 2.2.6.1). 

The data from the CSF of 2 leukaemic mice were excluded from analysis – one 

had insufficient CSF for analyses (i.e <1μL), and one was grossly bloodstained, 
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with clearly aberrant results. The results of plasma for 1 leukaemic mouse were 

excluded as the sample was insufficient. For CSF/Plasma comparisons, the data 

from all 3 of these mice were excluded. 

4.4.1 CSF analysis 

Looking first at the targets suggested by patient CSF, the most promising finding 

was creatine which was clearly lower in CSF from leukaemic mice (Figure 4-6). 

Pseudouridine was also found to be significantly lower in CSF from leukaemic 

mice. 

 

Figure 4-6 Boxplots of abundance of target metabolites in CSF from mice with CNS 
leukaemia vs mice without leukaemia. A – Creatine (p=0.0055); B – Xanthine; C – 
Pseudouridine (p=0.0023), D – Dimethylarginine; E - Phenylalanine. 

With the consistent reduction in creatine between the initial untargeted study 

and this mouse model, related compounds creatinine and phosphocreatine were 

also analysed, showing a consistent reduction creatinine in CSF from mice with 

leukaemia (Figure 4-7). 

** 
** 
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Figure 4-7 Boxplots of Creatinine and Phosphocreatine abundance in the CSF of mice with 
leukaemia vs mice without leukaemia. A – Creatinine (p=0.0108); B – Phosphocreatine. 

4.4.2 Plasma analysis 

Whilst the mouse model used undoubtedly was useful for investigating CNS 

leukaemia it was not a model for isolated CNS leukaemia. i.e. it is possible that 

the changes found in the CSF relate to wider changes in metabolism in mice with 

systemic leukaemia. To try to determine how much of the change in the 

metabolome in CSF was related to the systemic effects of leukaemia and how 

much may truly be a local effect of CNS leukaemia, firstly the abundance of 

these metabolites in murine plasma in the presence or absence of leukaemia was 

assessed (Figure 4-8). 

* 
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Figure 4-8 Boxplots of abundance of target metabolites in blood plasma of mice with and 
without leukaemia. A – Creatine; B – Xanthine; C – Pseudouridine; D – Dimethylarginine; E - 
Phenylalanine 

Whilst none of these metabolites showed statistically significant changes in 

plasma abundance in the presence or absence of leukaemia in mice, creatinine 

(a metabolite closely linked to creatine) was significantly lower in abundance in 

plasma from mice with leukaemia (Figure 4-9). 
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Figure 4-9 Boxplots of abundance of creatinine and phosphocreatine in blood plasma of 
mice with and without leukaemia. A – Creatinine (p=0.00615); B - Phosphocreatine 

4.4.3 CSF and Plasma analysis 

To look at more depth in to the relationship between levels of metabolites in the 

plasma and in the CSF, the ratio of these target metabolites in CSF:plasma was 

calculated and these ratios for normal and leukaemic mice compared. Whilst this 

did not show any statistically significant changes specific to the CSF of 

leukaemic mice, there was a trend towards a reduced pseudouridine CSF:plasma 

ratio (p-values=0.051). This lends some weight to the suggestion that changes in 

CSF abundance of theis metabolite may represent a CNS-specific effect of 

leukaemia. 

** 
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Figure 4-10 Waterfall plot of log2 fold-change between CSF and plasma for target 
metabolites in mice with and without leukaemia 

4.4.4 Summary 

From this experiment it was concluded that there are clear metabolomic 

changes in the CSF and plasma of NSG mice with xenografted leukaemia, and 

that some of these changes are in keeping with findings from untargeted 

metabolomic analysis of human CSF from children with leukaemia. In particular 

a reduction in creatine seemed to be a consistent finding. There is a suggestion, 

though not confirmed, that some of these changes are more marked in the CNS 

and may be caused by the presence of CNS leukaemia. 
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4.5 Targeted LC-MS analysis of CSF from children at CNS 
relapse of ALL 

The final experiment in this part of the project involved looking at the CSF of 

children with known isolated CNS relapse of ALL. 4 children with CNS relapse 

were identified. As noted in the patient characteristics table, the timing of CNS 

relapse varied widely, and two of the children had undergone bone marrow 

transplant for previous relapse prior to sample storage for this analysis. In 

addition only 2 of the patients had a sample stored from diagnosis with CNS 

relapse, the others had samples available from within a short space of time from 

the diagnostic sample but not from the actual diagnostic sample. 

To provide a comparison, 10 patients who did not go on to develop CNS relapse 

had CSF samples from diagnosis, day 8, day 29 and 1 year analysed. This was 

done in order to provide a timeline of the abundance of target compounds 

during ALL therapy. Patient characteristics for relapse and control samples were 

described previously (Table 2-4). Some of the control patients also had samples 

analysed for the initial untargeted LC-MS experiment (section 4.3). 

 

 

Samples were prepared as above (section 2.2.6.1) a “targeted” LC-MS set-up was 

used and results analysed. Initially looking at the relapse samples on their own, 

a timeline of abundance of each of the target metabolites from the untargeted 

LC-MS experiment above (section 4.3) was constructed (Figure 4-11). 
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Figure 4-11 Changes in abundance of target metabolites in CSF of 4 children with isolated 
CNS relapse of ALL; metabolite abundance shown as a line chart with time of isolated CNS 
relapse denoted by vertical lines. One graph per child for each metabolite: A – Creatine; B – 
Xanthine; C – Dimethylarginine; D – Phenylalanine; E - Pseudouridine 

From here the most promising metabolites were xanthine – which consistently 

increased around the time of CNS relapse in 3 of the 4 children, though as 

discussed previously is likely to be related to use of xanthine-oxidase inhibitor in 

2 of these patients (P1437 and P6539) who had known CNS relapse prior to CSF 

sampling – and creatine, which appeared to decrease in the same children. 

Patient P6941 seemed to have little change in xanthine or creatine at the time 
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of CNS relapse. Analysis of the data from children who did not go on to suffer 

CNS relapse confirmed the initial findings regarding creatine abundance at 

diagnosis vs later on in therapy (i.e. creatine was clearly decreased at diagnosis 

compared to later in treatment), and there appears to be a reduction in creatine 

abundance in 3 of 4 children at time of relapse, though the wide variation in 

background abundance of creatine in children who did not relapse makes 

potential use of creatine as a marker of CNS disease in ALL problematic (Figure 

4-12). 

 

Figure 4-12 CSF Abundance of  creatine as a timeline in 4 children who suffered CNS 
relapse of ALL. Boxplots show median abundance (line), quartiles (box) and range 
(whiskers, outlier as dot) in CSF from patients with ALL who did not suffer CNS relapse at 
days 1, 28 and 365 post-diagnosis. Sample taken closest to isolated CNS relapse in each 
child denoted by circles. Note time is on a log axis. 

4.5.1 Summary 

There are metabolomic changes in CSF at the time of CNS relapse that are 

consistent with changes between CSF at diagnosis and later in treatment in 

children who did not suffer CSN relapse, and between CSF at the time of isolated 
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CNS relapse and at other timepoints. In particular, creatine is a  promising 

potential marker for CNS relapse in ALL, though this requires further evaluation. 

4.6 Conclusions. 

The aim of this chapter was to identify putative metabolic markers for the 

presence of CNS ALL. The data shows it is possible to detect metabolomic 

changes in CSF related to the presence of ALL using LC-MS. 

As discussed previously (section 2.2.6), it is possible to examine large parts of 

the metabolome using a chromatography/mass spectrometry approach to 

discriminate and quantitate the abundance of metabolites. One of the first 

questions that needed to be addressed was what part of the metabolome was to 

be targeted. The more common and better characterised approach is LC-MS. 

This allows excellent discrimination and identification of small metabolites up to 

short peptides and is the optimal approach to examine many cellular processes 

e.g. glycolysis/TCA or one-carbon metabolism. This approach can identify some 

fatty acids, though retention times for all fatty acid and lipid metabolites tend 

to cluster very closely. This approach, however, cannot detect most lipids (e.g. 

cholesterol or its lipid precursors). 

Likewise, the main alternative that is used for lipid metabolism analysis – GC-MS– 

is excellent for analysing lipid molecules but not suitable for most polar 

metabolites. 

Both approaches require different sample preparation, and for GC-MS this is 

reasonably intensive, and in both approaches samples must be prepared quickly 

and efficiently in order to preserve the metabolome for analysis. This can make 

preparing the same sample for both concurrently difficult, so one approach must 

be prioritised over the other. GC-MS analysis may seem at first glance more 

suitable for this project, given the focus on cholesterol metabolism from 

previous results (section 3.2). However, lipidomics results can be complicated 

with multiple isomers and less differentiated retention times. In addition 
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“lipidomics” is a less mature field than small-molecule metabolomics which can 

make interpretation of results more difficult. 

On balance, it was decided to focus on “standard” LC-MS for this part of the 

project, in order to provide a more comprehensive and comprehensible picture 

of the metabolome. It does provide some data on aspects of lipid metabolism 

(e.g. fatty acids and polar cholesterol precursors) as well as allowing an in-depth 

look at the small and polar metabolites. The LC-MS technology is more mature 

and there are more public databases of more metabolite mass spectra to help 

with identifying compounds. In essence it was felt this approach provided the 

best chance of finding viable, clinically applicable candidate biomarkers of 

leukaemic CNS infiltration. Some simple lipidomic analyses were carried out and 

are detailed below (chapter 5.3) 

This is the first time untargetd LC-MS analysis has been used for detection of ALL 

in the CNS. This is an extremely powerful technique, providing large amounts of 

data, and has given evidence for several potential markers of CNS ALL, with two 

different control groups allowing the detection of robust omarkers. It is possible 

that there are more sensitive and specific markers that could be detected as a 

metabolic signature of several metabolites, but network analysis was beyond the 

scope of this thesis – this work is ongoing. 

There are clear limitations to this study. Firstly, while there is good evidence to 

assume that most or all children with ALL have CNS disease at the time of 

diagnosis, we have no way to confirm this with current diagnostic techniques. As 

discussed previously (section 2.2.6) this type of LC-MS detects only small 

molecules, and is not able to detect larger or lipid metabolites, which may have 

interesting changes given the findings of other parts of this thesis. Additionally 

this study uses primary human samples which is excellent for providing “real-

world” clinically relevant data, but does allow for many more possible 

confounding factors (e.g. the administration of allopurinol as discussed 

previously). Additionally there is no way to discriminate a signal related to 

systemic ALL from a signal related directly to CNS ALL from these data. 
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The use of supporting data from mouse models and from primary CNS relapse 

CSF samples helps overcome some of these shortcomings. While mouse models 

provide very controllable data, this comes with the limitation that there are 

clearly large differences between mouse and “real-life” CSF, and any potential 

markers in CSF from murine models may not apply to human disease. CNS 

relapse is ultimately what this part of the project is trying to predict by looking 

at early and reliable markers in the CNS. It makes sense therefore that any 

metabolomic changes in the CSF that could be used as a marker should be 

detectable at the time of CNS relapse. In addition, in patients with isolated CNS 

relapse there is no evidence of systemic ALL, so any changes we find are very 

likely to be related to the presence of CNS leukaemia. A disadvantage of this 

approach is the fact that there were few suitable samples and not all samples 

(i.e. diagnostic, pre-relapse, relapse, post-relapse) are available for all children. 

In addition therapies such as prior bone marrow transplant may significantly 

alter the CSF metabolome. 

There are some consistent changes between human samples, mouse xenograft 

model samples, and isolated CNS relapse samples, but there are also some 

interesting differences. Of particular note xanthine was markedly different in 

children at diagnosis compared with either control group, was unchanged in 

mouse model samples lending credence to the idea that this the changes in 

xanthine relate to allopurinol exposure rather than ALL.It should be noted that 

in addition to the lack of correlation between detected allopurinol abundance in 

CSF and xanthine abundance (chapter 4.3.3), patient P4234, who has clear 

increases in xanthine abundance at the time of CNS relapse would certainly not 

have had recent exposure to allopurinol prior to CSF sampling. 

Metabolomic analysis is an extremely powerful tool for investigating the 

metabolome and the detection of novel biomarkers though more work is 

required to streamline the identification of targets and to develop tools for the 

integration of multi-omics data. 
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Chapter 5: Metabolic changes in Precursor B-cell 
ALL in the Central Nervous System 

5.1 Introduction and aims 

As noted in Chapter 3:, analysis of transcriptomic data from in vivo models and 

primary data showed that the cholesterol biosynthesis pathway is consistently 

upregulated in ALL cells in the CNS compared with systemic disease 

(BM/Spleen). In addition, analysis of CSF and plasma has shown metabolic 

changes in the presence of ALL. The next step in this project was to look more 

directly at the metabolic changes in ALL cells in the nutrient-poor (section 1.3.2) 

CSF, focussing on investigating the findings outlined in previous chapters. 

Specifically in this chapter, the aims were: 

1. To investigate the effects of modulating cholesterol metabolism in ALL 

cells in vitro and in vivo to determine if cholesterol metabolism was a 

critical pathway for CNS leukaemia that could be a potential clinical 

target 

2. To investigate lipid and fatty acid metabolism more generally in vivo 

using human CSF analysis and human ALL cells in the CNS and mouse CSF 

from a xenograft model 

3. To look more generally at the ALL metabolome in CNS ALL using metabolic 

tracers in vivo in a xenograft model 

5.2 In vitro studies 

Working with in vitro cell cultures allows precise control of experimental 

variables that is not possible with primary samples or complex in vivo models. 

This was used to investigate the importance of the cholesterol synthesis pathway 

in a childhood ALL cell line (SEM) cells’ growth and viability. To do this, 

experiments were carried out to determine the cholesterol abundance of culture 

conditions, select appropriate conditions for further experiments, and clarify the 

effects of these conditions on cell growth and viability prior to directly 

investigating cholesterol metabolism. 
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5.2.1 Effects of increasing serum concentration on cell expansion 
and cell death 

The first series of experiments explored the effects of increasing concentrations 

of FCS in DMEM cell culture medium on SEM cells. This is a crude but simple way 

of changing the abundance of cholesterol available to the cells. Firstly, the 

abundance of cholesterol in media with different proportions of FCS was 

measured using the Amplex™ Red Cholesterol Assay Kit (ThermoFisher) as 

described previously (section 2.2.6.6). Cholesterol was measured as free 

cholesterol and total cholesterol, with esterified cholesterol calculated from the 

difference. From these results, 1%-FCS-DMEM has a roughly equivalent 

concentration of total cholesterol to children’s CSF and is therefore a reasonable 

benchmark around which to base this in vitro model system. There was a 

reduction in free cholesterol in 1% FCS-DMEM compared to CSF, but this makes 

up a small part of the cholesterol pool (Figure 5-1). 
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Figure 5-1 Cholesterol quantification in DMEM with increasing percentage of FCSA - Total 
cholesterol, B – Cholesterol esters; C – Free cholesterol. Data shown as mean of two 
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replicates. Dotted line shows published normal concentration of Total/Free/Esterified 
cholesterol in paediatric CSF samples(Illingworth & Glover 1971). 

The next part of this experiment was to explore the influence of increasing 

proportion of FCS in DMEM on SEM cells in vitro. Cell culture methods are 

described previously (section 2.2.7), briefly: cells were incubated with cell 

proliferation dye e450 then cultured in standard culture media with increasing 

concentrations of FCS: 

 FCS 0%/100% DMEM 

 FCS 1%/99% DMEM 

 FCS 5%/95% DMEM 

 FCS 10%/90% DMEM 

After 24, 48 and 72 hours cells were counted, harvested and stained with 

annexin-V (conjugated to APC) and PI and analysed by flow cytometry as 

previously described (section 2.2.9).  

Unsurprisingly, there was an increase in cell proliferation both by e450 staining 

and cell counts as FCS concentration increased. In the absence of FCS there was 

a sharp drop in cell numbers, which slowly recovered over the next 48 hours. In 

1% FCS there appeared to be steady cell proliferation, though at a slower rate 

than in 5% or 10% FCS. No significant differences were detected between cells 

grown in 5% or 10% FCS. 

A similar pattern was seen when looking at cell viability and apoptosis – cells 

grown without FCS had markedly increased apoptosis. This was reduced in 1% 

FCS, and reduced further in 5% or 10% FCS with no significant differences 

between cells grown in 5% or 10% FCS (Figure 5-2). Similar results were seen at 

24 hours and 48 hour timepoints. 
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Figure 5-2 SEM cell counts, cell proliferation and cell viability in increasing concentrations 
of FCS after 72 hours. A – Cell counts; B – Cell proliferation; C – Cell viability/apoptosis. 
Proliferation measured by ratio of mean fluorescence intensity (MFI) of cell proliferation dye 
e450 to cell-cycle arrested control (i.e. lower value represents higher proliferation). n=3, 
Mean + SEM shown. Line on graph A indicates cell count at the start of the experiment. 

5.2.1.1 Summary 

Cholesterol abundance increases with increasing proportion of FCS in DMEM. 1% 

FCS has a roughly equivalent level of total cholesterol to published values for 

normal paediatric CSF. There is a clear improvement in SEM cell survival and 

increased proliferation between 0% FCS- and 1% FCS-DMEM, and between 1% FCS- 
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and 5% FCS-DMEM with no clear difference between cells grown in 5% FCS- and 

10% FCS-DMEM. This is not to suggest that cholesterol abundance is the limiting 

factor in lower-% FCS-DMEM, but it provides some evidence on which to base 

choice of FCS percentage in media. In particular in CSF-like levels of cholesterol 

(1% FCS-DMEM) there remains robust cell growth and cell viability. 

For future experiments investigating cholesterol metabolism, media with 1% or 

10% serum (the standard concentration of FCS in tissue culture media) were used 

for experimental models of leukaemic cells in CSF-like abundance of cholesterol 

(1% FCS) vs more abundant cholesterol (10% FCS). 

5.2.2 Effects of simvastatin on cell expansion and cell death 

The next phase of this series of experiments was to look at the direct effect of 

statin therapy on SEM cells in vitro. Statins are small molecule inhibitors of the 

enzyme HMG-CoA reductase, which catalyses the cleavage of HMG-CoA to create 

the first committed precursor in cholesterol biosynthesis, mevalonate. Statins 

competitively inhibit the active site of the HMG-CoA reductase molecule 

preventing the cleavage of mevalonate (Figure 5-3). 
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Figure 5-3 Diagram of the mevalonate pathway with the effects of simvastatin shown 
adapted from “HMG-CoA reductase pathway” by user Krishnavedala used under a creative 
commons licence (https://commons.wikimedia.org). 

Simvastatin was selected as the statin of choice based on its superior 

penetration into CSF, and therefore greater potential for efficacy against CNS 

Simvastatin 



Chapter 5: Metabolic changes in 
Precursor B-cell ALL in the Central 
Nervous System 

132 

 

disease in vivo. Simvastatin has limited solubility in water, so was dissolved in 

DMSO as described above (section 2.2.7.4). Similar experiments have previously 

been published, though in different cell lines, in different culture conditions, 

with different methodology, and without cholesterol rescue (Sheen et al. 2011). 

5.2.2.1 DMSO dose titration 

A series of experiments were carried out to determine the optimal concentration 

of DMSO to use. These were performed initially in 10% FCS-DMEM to provide a 

baseline, then in 1% FCS-DMEM to ensure no differences appeared with lower 

levels of serum. These experiments used the same cell count, proliferation, and 

cell viability/apoptosis methods as above, and were performed in two 

independent experiments (and were therefore not suitable for statistical 

analysis). These results showed that there was little evidence of DMSO toxicity 

at concentrations below 1% after 72 hours of cell culture (Figure 5-4). For future 

experiments simvastatin was prepared in 0.1% DMSO. Similar results were found 

at 24 and 48 hour timepoints. 
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Figure 5-4 SEM cell counts, cell proliferation, and cell viability with increasing 
concentrations of DMSO in vitro in (A, C, E) 10% FCS-DMEM or (B, D, F) 1%FCS-DMEM after 
72 hours. A, B – cell counts; C, D – proliferation (note proliferation compared to 0.01%DMEM 
internal control in 1% FCS experiments); E,F – Cell viability and apoptosis. n=2; Mean + SEM 
shown. Line on A, B indicates cell count at the start of the experiment 
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Figure 5-5 SEM cell counts, cell proliferation and cell viability with increasing 
concentrations of simvastatin in vitro in 10% FCS (A, C, E) and 1%FCS (B, D, F). A, B – cell 
counts; C, D - proliferation; E, F – cell viability and apoptosis. n=4, Mean + SEM shown. Line 
on A, B indicates cell count at the start of the experiment. *denotes p-value (at highest/least 
significant) 0.01-0.05 for 10μM simvastatin vs all other conditions. 
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experiments) with and without either mevalonate or cholesterol prepared as 

described previously (section 2.2.7.4). 

Firstly mevalonate, the direct product of the reaction simvastatin inhibits, was 

used. A high dose of mevalonate was chosen arbitrarily at 20μM as there was no 

evidence of mevalonate cytotoxicity at high doses. Addition of mevalonate 

showed clear rescue of simvastatin cytotoxicity in SEM cells both in terms of cell 

growth and apoptosis in 10% FCS using mevalonate. The rescue of simvastatin 

toxicity was less marked in 1% FCS compared with 10% FCS with persistent 

reduced cell growth in simvastatin-treated SEM cells despite mevalonate rescue 

(Figure 5-6). 
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Figure 5-6 SEM cell counts and cell proliferation with simvastatin treatment ± mevalonate in 
vitro in (A, C, E) 10% and (B, D, F) 1% FCS A, B - cell counts; C, D – cell proliferation; E, F – 
cell viability and apoptosis. n=5 (cell counts) or 3 (other experiments), Mean + SEM shown. 
Line on cell counts indicates cell count at the start of the experiment. P-values denoted: 
*<0.05, **<0.01, ***<0.001, **** <0.0001. 
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initial dose titration of cholesterol was performed, using effect of cholesterol on 

cell counts to measure toxicity. Little effect was seen at concentrations below 

100μM, and if anything cells in increased cholesterol had a small growth 

advantage (Figure 5-7). 

 

Figure 5-7 SEM cell counts with increasing concentration of cholesterol in vitro in 1% FCS 
(A, C, E, G) and 10% FCS (B, D, F, H); A,B – 24 hours; C,D – 48 hours; E,F – 72 hours; G,H – 
96 hours. Experiment performed once - no statistical analysis carried out. 
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Given the lack of evidence of toxicity at these doses of cholesterol, a further 

experiment was carried out with higher doses, focusing on 72 and 96 hour 

timepoints(Figure 5-8). This showed a reduction in cell counts with 250μM 

cholesterol in 1% FCS, and with 500μM cholesterol in 10% FCS. 

 

Figure 5-8 SEM cell counts with high and increasing concentration of cholesterol in vitro in 
1% and 10% FCS A, C – 1% FCS; B, D –10% FCS; A, B – 72 hours; C, D – 96 hours. 
Experiment performed once only, therefore not suitable for statistical analysis. 
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a small reduction in cell viability with cholesterol “rescue” of simvastatin 

treatment in 10% FCS after 72 hours. In 1% FCS the increased toxicity in cells 
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decrease in cell viability compared with simvastatin treatment alone (Figure 

5-9). 
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Figure 5-9 SEM cell counts, cell proliferation and cell viability with simvastatin treatment ± 
cholesterol in vitro in 10% FCS (A, C, E) or 1% FCS (B, D, F) A, B - cell counts; C, D – cell 
proliferation; E, F – cell viability and apoptosis. n=5 (cell counts) or 3 (other 
experiments).Mean + SEM shown. Line on cell counts indicates cell count at the start of the 
experiment. P-values denoted: *<0.05, **<0.01, ***<0.001, **** <0.0001. 
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particularly in low-serum conditions. This increased toxicity in 1% FCS may 

represent a specific effect of cholesterol depletion in a cholesterol-poor 

environment, but may simply reflect increased metabolic stress. One interesting 

hypothesis to explain the combined toxicity of simvastatin and cholesterol would 

be that addition of cholesterol suppresses HMGCR transcription at a genome 

level via SREBP, and simvastatin suppression at a protein level provides a 

double-hit to this pathway. This would be particularly effective if a metabolic 

intermediate between mevalonate and cholesterol was the essential component 

the lack of which was causing the toxicity seen. This was investigated in the 

following section. 

5.2.3 Effect of simvastatin on gene expression 

The next series of experiments were designed to see if the addition of exogenous 

cholesterol to the SEM cells in vitro reduced gene expression of HMGCR 

(potentially via the SREBP system, which is regulated by the intracellular 

abundance of sterols as noted above). To do this the experiments comparing SEM 

cells grown in 1% FCS-DMEM with 0.1% DMSO control ± cholesterol 50μM to cells 

grown with simvastatin 10μM ± cholesterol 50μM were repeated and RNA 

extracted from the cells after 72 hours. This was then converted to cDNA and 

analysed for HMGCR and HMGCS1 expression using qPCR as described above 

(section 2.2.5). 

From these data, it appears that HMGCR is upregulated on treatment with 

simvastatin. There does not appear to be any impact of cholesterol 

supplementation, suggesting repression of gene transcription may not be the 

method of increased cell toxicity. It is worth noting the high rates of apoptosis in 

these cells may skew these results (Figure 5-10). 
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Figure 5-10 SEM cell qPCR for HMGCR and HMGCS1 with 72 hours simvastatin treatment ± 
cholesterol or mevalonate in 1% FCS. A – HMGCR gene expression with simvastatin ± 
mevalonate; B – HMGCR gene expression with simvastatin ± cholesterol; C – HMGCS1 gene 
expression with simvastatin ± mevalonate; D – HMGCS1 gene expression with simvastatin ± 
cholesterol. n= 3 (simvastatin ± mevalonate) or 6 (simvastatin ± cholesterol). Mean + SEM 
shown. P-values denoted: *<0.05. 

5.2.4 Genetic manipulation of cholesterol synthesis in vitro 

In order to further explore the impact of impaired cholesterol synthesis on SEM 

cells, genetic inhibition of HMGCR was attempted. This has some key advantages 

over drug treatment – it is intrinsic to cells, so the level of inhibition does not 

vary with e.g. reduced CSF drug distribution compared with plasma in vivo; the 

level of inhibition within a cell does not vary over time compared with drug 

levels peaking after dosing then decreasing as the drug is metabolised; genetic 

inhibition can be used to track effects of reduced gene expression in a single cell 

population within complex in vitro co-culture models or in vivo models. 

5.2.4.1 CRISPr-Cas9 

In the first instance, CRISPr-Cas9 knockout of HMGCR was attempted. Gene 

knockout was felt to provide a “cleaner” form of genetic inhibition – it is 

irreversible, and the level of inhibition does not vary between affected cells, or 

over time. This comes at the cost of increased cell toxicity. There was an 

attempt to ameliorate cell toxicity with supplemental mevalonate as with the 
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simvastatin in vitro experiments described above (Chapter 5.2.2.3). Following on 

from the reduction in simvastatin toxicity in 10% FCS compared with 1% FCS in 

these previous experiments, the cells were grown in 40% FCS to minimise 

potential toxicity. 

The chosen method was a “double-nickase” which requires two CRISPR guides 

complementary to two different parts of the target gene (HMGCR in this case) in 

order to provide increased specificity for the target gene, though at the cost of 

reduced efficiency of genetic manipulation. The chosen system had one guide 

linked to a puromycin-resistance gene and one guide linked to GFP so 

successfully transfected cells would be both GFP-positive and puromycin 

resistant. 

In order to determine the correct dose of puromycin, a dose-finding experiment 

(in 20μM mevalonate and FCS 40%/60% DMEM) was performed to discover the 

lowest dose that would kill 100% of cells in these culture conditions at 48 hours, 

and a dose of 15ug/ml puromycin was chosen to select successfully transfected 

cells. Cells were transfected using a proprietary lipofectamine-based method 

described above (section 2.2.11.1). These were carried out using a range of 

amounts of plasmid DNA and volumes of transfection solution volumes. 

Though there was some evidence of successful transfection with GFP positivity 

after puromycin selection in a small numbers of cells, there was clear disruption 

of cell morphology and there was no outgrowth of a viable clone from these 

experiments (Figure 5-11). This led to the hypothesis that full knock-out of 

HMGCR is lethal for SEM cells in vitro. 
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Figure 5-11 Photograph at 10x magnification showing morphology of SEM cells after 
puromycin selection; A – scramble control; B – HMGCR knockout. 

5.2.4.2 Lentiviral transfection of shRNA 

Following the failure to produce a stable knockout of HMGCR using CRISPr-Cas9 

technology, it was decided to attempt an shRNA knockdown instead. This had 

two main advantages: lentiviral transfection of shRNA is a mature technology 

with consistent transfection efficiency; in contrast to the complete loss of gene 

function with CRISPr knockout, gene silencing with shRNA provides only partial 

loss of function, potentially ameliorating toxicity of loss of HMGCR. 

The methods are detailed above (section 2.2.11.2), but in essence the plan was 

to use a PLKO-puromycin resistance plasmid together with packaging plasmids to 

produce lentiviral particles capable of selectively silencing HMGCR RNA. 

Supplemental mevalonate was used to attempt to reduce the toxicity of HMGCR 

knockdown. 

Puromycin dosing was again determined experimentally (this time in 10% FCS), 

and a dose of 5ug/ml chosen for selection (note that the CRISPR experiments 

were performed in 40% FCS, and these in 10% FCS, which is the most likely 

reason for reduced dose requirement of puromycin), and serial cell counts were 

used to track the emergence of any puromycin-resistant clones. These results 

show emergence of successfully transfected puromycin-resistant clones from 

scramble-shRNA constructs in 3 of the 4 experiments, but none from HMGCR-

shRNA tranfesction(Figure 5-12). 

A B
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Figure 5-12 SEM cell counts following lentiviral transfection with HMGCR-shRNA; A – 
experiment 1; B – experiment 2; C – experiment 3; D – experiment 4. 

5.2.4.3 Summary 

In 12 attempts at transfection HMGCR-KD, and 12 attempts with HMGCR-shRNA, 

there was no evidence of a viable puromycin-resistant clone. It seems likely that 

genetic inhibition of HMGCR is too toxic to support viable clones despite 

mevalonate supplementation. 

5.2.5 Effect of stromal cell co-culture on cell expansion and cell 
death 

The final series of in vitro experiments were an examination of the effect of co-

culture of SEM cells and REH cells with either human bone-marrow derived 

stromal cells (HS5 cell line) or human meningeal cells (primary cells). Whilst not 

directly metabolic, the effect on meningeal stroma on cell survival in the CNS in 

vivo was of interest to this project. These experiments were carried out similarly 

to the experiments above with cell proliferation and viability assessed by flow 

cytometry. In these experiments, the absence of cell-proliferation dye e450 was 
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used to exclude stromal cells from flow cytometry analysis. Clearly this is not 

possible to do with cell counts, which were not recorded for these experiments. 

These experiments showed that meningeal cell co-culture was associated with 

increased cell proliferation in both cell lines tested compared to HS5 co-culture, 

and that HMen co-culture but not HS5 co-culture was associated with increased 

proliferation compared to suspension cells in SEM. In addition, HS5 co-culture 

but not HMen co-culture was associated with reduced cell viability, though this 

only reached statistical significance in SEM cells (Figure 5-13). 

 

Figure 5-13 REH and SEM cell proliferation viability after co-culture with human bone 
marrow stromal cells (HS5, cell line) or human meningeal stromal cells (HMen, primary 
cells)for 72 hours. A, C – REH cells; B, D – SEM cells; A, B – proliferation (compared to cells 
in suspension, MFI of suspension cells noted by vertical line); C, D – cell viability and 
apoptosis.n=3, Mean + SEM shown. P-values denoted: *<0.05, **<0.01. 
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5.3 In vivo drug treatment 

Returning to the theme of cholesterol metabolism, the next step in was to 

investigate of the effect of simvastatin therapy on CNS leukaemia burden of NSG 

mice injected with SEM cells. 

In previous experiments it had been demonstrated that SEM cells upregulate 

expression of cholesterol biosynthesis genes – including HMGCR - in the CNS 

compared to systemic leukaemia (section 3.2). In addition it has been shown 

that interfering with HMGCR using simvastatin is toxic to SEM cell in vitro, 

particularly under low-serum conditions (section 5.2.2.2). 

There has been previous experiments published attempting to achieve in-vivo 

synergy with statin and chemotherapy in T-ALL xenograft models, which showed 

no effect of statins, potentially because of inadequate dose levels(Samuels et al. 

2014). 

5.3.1 Simvastatin in vivo dose escalation 

The therapeutic impact of simvastatin specifically on CNS leukaemia in vivo was 

investigated. To do this, first the highest tolerated dose of simvastatin was 

determined experimentally. This was done by a dose-escalation experiment 

carried out in 4 NSG mice over 37 days. Simvastatin was suspended in 0.5% 

methylcellulose/5% DMSO and the mixture sonicated until a fine slurry was 

formed as described previously (section 2.2.10). 
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Figure 5-14 Experimental plan of simvastatin in vivo dose finding experiment 

There was no evidence of any behavioural changes in the mice on simvastatin, 

and no evidence of weight loss. At post-mortem there were no gross 

abnormalities of any major organs. 
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Figure 5-15 Chart of mouse weights during Simvastatin pilot experiment. 
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day 28 or mice developed clinical signs of leukaemia (e.g. weight loss/hindlimb 

paralysis). The mice were culled, spleen weights recorded, femurs and skulls 

harvested for histology, and spleens recovered for molecular analysis of the SEM 

cells. 

 

Figure 5-16 Experimental plan of simvastatin in vivo dose finding experiment 

5.3.3 Results 

The amount of CNS infiltration of the leptomeninges was estimated by 

quantifying the area of disease on histology sections fixed and stained as 

described above (section 2.2.2.6) in 5-6 sections of the skull per mouse, taken at 

standard points: forebrain, early mid-brain, midbrain, late-midbrain and 

hindbrain. Slides were scanned and the area of CNS involvement quantified using 

HALO software (Indica Labs Inc.) to measure the area of CNS ALL on each slide. 

For each mouse a mean area/section was calculated and used for analysis. 

Alternative methods of quantification e.g. a total area (corrected for number of 

sections), or excluding forebrain sections (which have a smaller cross-sectional 

area) could be used, but provided very similar results (Figure 5-17). It appears 

from these results that, contrary to expectation, simvastatin treatment in male 

mice increased the amount of CNS leukaemia by histology. 

There were no significant differences in spleen weights between simvastatin-

treated and control males or females, and the increase in CNS disease burden 

remained statistically significant when corrected for spleen weight (a surrogate 
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marker for overall leukaemic burden in the mouse), suggesting that this may be 

a CNS-specific finding. 

 

Figure 5-17 Impact of Simvastatin treatment on leukaemic infiltration of the CNS and spleen 
of NSG mice, A – CNS infiltration as quantified by mean area of leukaemic infiltration in 5-6 
slides per mouse; B – spleen weights at end of experiment; C – CNS infiltration corrected 
for spleen weight. 
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5.4 Lipidomic Analysis 

5.4.1 Pilot analysis 

In addition to the LC-MS analysis above (Chapter 4:), an attempt was made to 

analyse the lipid metabolome of CSF from children with and without ALL. This 

was based on the findings detailed previously (section 3.2) that at a 

transcriptional level there was significant differences in lipid metabolism in ALL 

cells from the CNS and from the spleen. To do this two paired techniques were 

used: GC-MS for detection and quantification of cholesterol, and lipid-LC-MS for 

analysis of fatty acid:cholesterol esters (described previously in section 2.2.6). 

A major challenge for this analysis was the extremely low abundance of lipids in 

normal CSF, though clearly this increases the potential for lipid metabolism to 

be a critical factor for CNS ALL. After some pilot experiments, 100μL of CSF was 

found to contain around 2 nmoles of cholesterol - sufficient to be detected by 

GC-MS. 

In these pilot experiments there were some indications that lipidomic analysis of 

CSF may be a useful tool for analysing differences between leukaemic and non-

leukaemic CSF. In particular there a particular reduction in the abundance of 

monounsaturated cholesterol ester cholesterol:oleic acid (Figure 5-18) in CSF 

taken at diagnosis from children with ALL compared with unpaired controls. This 

may be particularly relevant given the previous findings of changes in gene 

expression of SCD – which codes for the enzyme that converts saturated fatty 

acids to monounsaturated fatty acids (e.g. stearic acid (C18:0) to oleic acid 

(C18:1)) - described in Chapter 3:. 
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Figure 5-18 Pilot GC-MS analysis of CSF from children with ALL and normal controls. A – 
Principle component analysis; B – total cholesterol abundance in CSF; C – Ratio of 
cholesterol esters to total cholesterol; D – barcharts showing the cholesterol ester subtypes 
making up the cholesterol ester pool in each sample. n=3 in each group. “CSF_C#” denotes 
control samples and “CSF-L#” samples from leukaemic children 

5.4.2 CSF lipidomic analysis 

To further investigate these findings three approaches were taken. Firstly, as 

the abundance of cholesterol were approaching the sensitivity of the assay at 

the amount of CSF that was available, a different technique using an enzymatic 

fluorometric technique to quantify free and total cholesterol was used. This 

allowed better quantification of cholesterol, but did not allow for the more 

subtle measurements of cholesterol ester subtypes. Secondly, the samples left 

** 



Chapter 5: Metabolic changes in 
Precursor B-cell ALL in the Central 
Nervous System 

153 

 

over from the untargeted LC-MS analysis above (section 4.3) – i.e. 20 samples for 

children at diagnosis with ALL, 19 from the same children on maintenance 

chemotherapy, and 18 unmatched controls – were prepared for GC-MS and lipid-

LC-MS analysis as above. Finally, small polar metabolites associated with lipid 

metabolism in the CSF and plasma of mice with and without leukaemia were 

analysed using standard LC-MS (as above). 

5.4.2.1 Enzymatic analysis of cholesterol 

The enzymatic analysis was carried out on CSF and plasma from NSG mice with 

(n=6) and without (n=3) ALL (xenografted with SEM cells as before, section 

2.2.2.1), and on CSF from patients at diagnosis (n=5), the same patients on 

maintenance therapy (n=5) and on paired CSF and plasma from normal controls 

(n=5). The technique is described in detail previously (section 2.2.6.6), but in 

brief, cholesterol was oxidised, and the resulting H2O2 caused a detectible 

fluorescence of a marker compound. Unfortunately due to the tiny volumes 

involved, CSF results were only available for 3 of the 6 leukaemic mice, and 

there was enough sample for measurement of only total cholesterol and not 

cholesterol esters in mouse CSF. There was sufficient plasma for measurement in 

5 of the 6 leukaemic mice. 

Results showed a clear reduction in cholesterol abundance in plasma from mice 

with leukaemia compared with controls, and a trend towards reduced 

cholesterol in the CSF of leukaemic mice (p-value=0.083). In CSF from children 

with leukaemia there was a reduction in total cholesterol in diagnostic samples 

compared with samples later in treatment. Looking in more depth, there was no 

difference in free cholesterol, but a decrease in cholesterol ester abundance in 

diagnostic CSF from children with leukaemia compared with the same children 

on maintenance chemotherapy, and a trend towards the same finding comparing 

diagnostic CSF with normal controls (p-value=0.054) (Figure 5-19). 
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Figure 5-19 Cholesterol abundance in CSF and plasma of mice with and without ALL, and 
children with and without leukaemia determined using Amplex™ Red enzymatic cholesterol 
quantification. A – total cholesterol abundance in blood plasma from mice with and without 
ALL, n=3(control) and 5(leukaemic). p=0.020; B – total cholesterol abundance in CSF from 
mice with and without ALL, n=3. p=0.083; C – total cholesterol abundance in non-leukaemic 
NSG mice and control human plasma n=3 (murine) and 4 (human). ; D – total cholesterol 
abundance in CSF from children at diagnosis “Early”, later in ALL therapy “Late”, and 
normal controls “Normal” n=5. Differences did not reach statistical significance; E – 
cholesterol ester abundance using the same groups as D. p-value 0.016 Early vs Late, 0.054 
Early vs Normal. 

* 

* 
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5.4.2.2 LC-MS and GC-MS analysis 

For the second part of this experiment, CSF samples from children with ALL at 

diagnosis, the same children on maintenance chemotherapy, and from 

unmatched control were prepared and analysed using GC-MS and lipidomic LC-MS 

as above. Unfortunately the abundance of lipids in this analysis was insufficient 

to allow detailed comparisons. The overall abundance of cholesterol appears 

from this analysis to be largely unchanged between groups. Interestingly, in 

contrast with the results above, there appears to be a very modest increase in 

cholesterol abundance in the CSF from children at ALL diagnosis – this reached 

statistical significance in comparison with the unmatched control CSF, but is of 

uncertain biological significance given the issues with low lipid abundance in 

samples. Analysis of cholesterol esters unfortunately was hampered by low 

abundance with several results below the limits of detection, making 

comparisons between groups difficult. 

 

Figure 5-20 Total cholesterol in CSF from children at diagnosis with ALL compared with the 
same children later in therapy and normal controls. Cholesterol measured using GC-MS. 
n=20 (Early), n=19 (Late), n=17 (Normal). p=0.004 Early vs Normal 

** 
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Finally, CSF and plasma from mice with and without xenografted SEM cell 

leukaemia was analysed using “targeted” LC-MS. Mice were xenotransplanted 

with SEM human ALL cell line cells as described previously (section 2.2.1.1), and 

metabolic analysis carried out using LC-MS as described previously (section 

2.2.6.3).To assess cholesterol metabolism, the only metabolite it was possible to 

measure was mevalonate (described previously, section 5.2.2.2), the first 

committed precursor to cholesterol, and a small polar molecule amenable to LC-

MS analysis. No difference was detected in mevalonate abundance in the CSF 

between mice with and without leukaemia in CSF or plasma. 

To assess fatty acid saturation, the ratio of saturated to monounsaturated C16 

(palmitate/palmitoleate) and C18 (stearate/oleate) fatty acids were assessed in 

CSF and plasma in mice with and without leukaemia. Interestingly, there was a 

shift in the ratio towards saturated fatty acids in the CSF compared to plasma in 

mice with or without leukaemia, and in mice with leukaemia this ratio was 

further shifted for C16 but not C18 fatty acids. There were no statistically 

significant changes in fatty acids in the CSF or plasma, though there was a trend 

to increased palmitate and reduced palmitoleate in the CSF (p-value=0.072, 

Figure 5-21). 

Looking more closely at the ratio of saturated:unsaturated fatty acids in the 

CSF, there was an increased ratio (i.e. a relatively high proportion of saturated 

fatty acids) of palmitate:palmitoleate in CSF but not plasma from mice with 

leukaemia. There were no significant differences in stearate:oleate. When this 

ratio is compared between CSF and plasma, there is a CSF-specific skewing of 

the ratio towards increased saturated fatty acids in leukaemic but not control 

mice (Figure 5-22). 
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Figure 5-21 Comparison of mevalonate and fatty acid abundance in CSF and plasma of mice 
with and without leukaemia assessed using LC-MS. A – mevalonate; B – palmitate (p-value 
leukaemic vs control 0.075); C – palmitoleate (p-value leukaemic vs control 0.072); D – 
stearate; E - oleate 
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Figure 5-22 Comparison of saturated:monounsaturated C16 and C18 fatty acid abundance in 
CSF and plasma of mice with and without leukaemia assessed using LC-MS. A: 
palmitate:palmitoleate (p=0.008); B – stearate:oleate; C – CSF to plasma ratio of 
palmitate:palmitoleate (p=0.024) 

With this clear skewing of the saturated:monounsaturated C16 fatty acid ratio in 

the CSF of mice with CNS leukaemia, the next step was to look in human CSF. 

Data from same CSF samples from children with CNS relapse with ALL, and 

children at diagnosis and later on in therapy was used as previously using LC-MS 

analysis (chapter 4.5). When a similar palmitate:palmitoleate ratio was assessed 

in this human data, however, there was no clear evidence of a skew in the ratio 

either at diagnosis or at the time of CNS relapse (Figure 5-23). 

** 

* 
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Figure 5-23 CSF Abundance of palmitate:palmitoleate ratio as a timeline in 4 children who 
suffered CNS relapse of ALL. Boxplots show median abundance (line), quartiles (box) and 
range (whiskers, outlier as dot) in CSF from patients with ALL who did not suffer CNS 
relapse at days 1, 28 and 365 post-diagnosis. Sample taken closest to isolated CNS relapse 
for each child denoted by circles. Note time is on a log axis. 

5.4.3 Cellular lipid/fatty acid analysis 

To follow up this work on CSF lipid analysis, the lipid and fatty acid profiles of 

SEM human leukaemia cells taken from the CNS of mice were compared with SEM 

cells taken from spleens of mice. This was to better understanding of the 

changes in cell metabolism between the CNS and the spleen, and how they 

related to the changes in the transcriptome described previously (section 3.2) 

and changes in the metabolome described above. 

The experiment was designed as described previously (section 4.4). Briefly, 9 

mice were injected with SEM cells, and culled at 28 days post-injection. Cells 

were retrieved, quickly pelleted and snap frozen. 
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Analysis was carried out using standard LC-MS, as well as GC-MS analysis of total 

cholesterol abundance (GC-MS analysis performed by colleague Grace McGregor). 

From the LC-MS analysis, cells from the CNS had significantly higher abundance 

of mevalonate than cells from the spleen, in keeping with the transcriptomic 

changes described in Chapter 3:). On analysis of total cellular cholesterol 

abundance, interestingly there appears to be an increase in abundance in cells 

retrieved from the CNS. 

In terms of free fatty acid abundance, there was an increase in saturated fatty 

acids palmitate (C16) and stearate (C18) in the CNS, and a corresponding shift in 

the ratio of saturated:monounsaturated fatty acids (Figure 5-24). 
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Figure 5-24 Intracellular abundance of free fatty acids, cholesterol and mevalonate of ALL 
cells from the CNS and spleen using LC-MS or (cholesterol) GC-MS. A – palmitate (p=0.016) 
and palmitoleate; B – stearate (p=0.0009) and oleate; C – C16 and C18 
saturated:monounsaturated ratios (p=0.003 and p=0.0003 respectively); D – mevalonate 
(p=0.0028); E – total cholesterol (p=0.0013). Statistical analysis carried out using paired 
student’s t-test. 

* *** 

** *** 

** ** 
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5.4.4 Summary 

Lipidomic analysis of CSF has shown reduced cholesterol esters in the CSF of 

mice with leukaemia and of children at diagnosis with ALL using an enzymatic 

technique. Conversely there was an increase in cholesterol in CSF samples from 

children with ALL at diagnostic compared to normal controls (in different 

children’s samples to the previous experiment) by GC-MS analysis. Particularly 

there is a consistent increase in the saturated:unsaturated fatty acid and 

cholesterol ester ratios in the CSF of children at diagnosis. This did not translate 

into an increase in the palmitate:palmitoleate ratio in children with CNS relapse. 

Lipid/fatty acid analysis of cellular metabolism again showed a skewing of the 

saturated:unsaturated fatty acid ratio. In addition there was a significant 

increase in mevalonate and an increase in cellular cholesterol – in contrast to 

what might be expected given the low abundance of cholesterol in the 

microenvironment. 

5.5 In vivo metabolite tracing 

5.5.1 Rationale and experimental design 

Finally, to further explore the changes in cellular metabolism between systemic 

and CNS leukaemia, isotope-labelled metabolites were used. In brief, mice were 

injected with SEM human ALL cell line cells. After 28 days (i.e. after systemic 

and engraftment of disease), the mice were injected with isotope labelled 

glucose (n=9) or acetate (n=9). These labelled molecules are identical to normal 

metabolites except that each carbon atom in the metabolite had been replaced 

with C13-carbon (i.e carbon with 1 extra neutron). This has no 

biological/biochemical effect, but the original compound and its metabolic 

products can be detected using LC-MS, allowing “tracing” of the metabolism of 

the molecule in vivo. 

Glucose was chosen as it is a key metabolic fuel and biomass source. As 

discussed previously (section 1.3.3), altered glucose metabolism was the first 

major discovery in cancer metabolomics. Acetate was chosen as the major 
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alternative small molecule lipid biomass source, and recently described as a key 

molecule in several different tumour types. 

As the kinetics of diffusion of glucose and acetate into the CSF are unknown, 

each of the experiments were carried out in two cohorts – in the first, 5 mice 

were culled 20 minutes after IV injection of glucose or acetate, then 4 mice 

culled after 40 minutes. Cells were retrieved from the CNS and spleen, and snap-

frozen as above (section 2.2.2). 

An important question at the start of the experiment design was how to control 

for the different amounts of red cell contamination between the two sites of 

interest –typically the CNS had <5% RBC contamination and the spleen 10%-30% 

by cell count (less by cell mass) by flow cytometry analysis (section 2.2.9.3)). 

The typical method used in this project was density centrifugation (section 

2.2.2.4), but this takes a significant amount of time. An alternative method to 

achieve good red cell clearance is using rapid chemical red cell lysis (section 0) 

but the effect of this on the leukaemic cell metabolome is unknown. A final 

alternative – using systemic leukaemic cells from the bone marrow – was not felt 

to be useful as there was a comparable amount of murine cell contamination in 

samples collected from the bone marrow (Figure 5-25). 
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Figure 5-25 SEM cell purity after in vivo harvest pre- and post-purification A,B – Cell purity 
after harvest from bone marrow, spleen and CNS pre-(A) and post-(B) density centrifugation 
(n=2); C,D – Cell purity after harvest from spleen and CNS pre-(C) and post(D) rapid (3mins) 
red blood cell lysis (n=2). Cell types determined by flow cytometry after staining with human 
CD19 (SEM cells), murine CD45 (murine leukocytes), and murine Ter-119 (murine red cells). 

The first part of this experiment therefore compared the metabolic profile of 

cells from the spleen and CNS either (1): centrifuged for 30 seconds and snap-

frozen, (2) suspended for 3 minutes in RBC lysis buffer at RT then centrifuged 

and snap-frozen (3 minutes had been found to be sufficient to lyse >99% of RBCs, 

data not shown), or (3) suspended in 0.9% saline at RT then centrifuged and snap 

frozen in 3 mice. The results showed a dramatic shift in the metabolic profile of 

cells with even 3 minutes sitting in 0.9% saline at RT compared with snap-

freezing, with less shift between samples incubated in RBC lysis buffer compared 

with samples incubated in PBS. In addition, incubation in RBC lysis buffer 

appears to more significantly impact the metabolic profile of cells in CNS 

samples despite the significantly lower RBC contamination, presumably due to a 

lower ALL cell number in the incubation solution and a therefore higher relative 

toxicity to ALL cells. Based on these results, in subsequent experiments cells 
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retrieved for metabolic analysis were centrifuged and snap-frozen prior to 

extraction (Figure 5-26). 

 

Figure 5-26 Changes in metabolite detection between identical samples snap-frozen in dry 
ice, and either incubated in red cell lysis buffer or PBS. Note the graphs show ratio of 
individual metabolites in (A) samples snap-frozen to samples either incubated in red cell 
lysis solution or PBS (i.e. metabolites with the same abundance in snap-frozen and 
incubated samples would have a ratio of 1), or (B) samples RBC lysed to samples snap-
frozen or incubated in PBS. 

5.5.2 Glucose tracing 

From this experiment, it is clear that there is substantial glucose metabolism in 

vivo in ALL cells retrieved from both the CNS and the spleen. Unfortunately it 

was not possible to fully assess the proportion of glucose in CSF and plasma that 

was isotope-labelled due to difficulty obtaining sufficient CSF (CSF was obtained 

from 4 mice in the 20 minute cohort, and 2 in the 40 minute cohort), and high 

variability between samples of CSF, and therefore it is difficult to draw 

authoritative conclusions (Figure 5-27). On analysing the data however, there 

were some interesting findings explored below. 
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Figure 5-27 Proportion of 13C-glucose vs 12C-glucose labelling in the CSF and plasma of 
mice 20 minutes and 40 minutes after intravenous injection of 13C-glucose. 

5.5.2.1 Glycolysis 

When the metabolites involved in glycolysis were analysed there was, perhaps 

surprisingly given the hypoxia signalling seen on transcriptomic analysis (Chapter 

3:), little difference in 13C-labelling in the CNS and the spleen, with a modest 

increase in the fraction of fully-13C labelled pyruvate at 20 minutes, and lactate 

at 20 and 40 minutes the only statistically significant changes (Figure 5-28). 

Whilst increased glycolysis would fit with the hypoxia signalling seen on 

transcriptomics, these findings may simply reflect the increased fraction of 

labelled glucose in the CSF shown above (Figure 5-27). 
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Figure 5-28 Overview of 13C labelling of the glycolytic pathway metabolites in ALL cells in 
the CNS or spleen 20 or 40 minutes after injection with 13C-glucose; colours indicate 
number of 13Carbon atoms in the metabolites. A – overview; B – pyruvic acid labelling at 20 
minutes (p=0.0005), and lactate at 20 minutes (p=0.016) and 40 minutes p=0.027) shown in 
more detail 
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5.5.2.2 TCA Cycle 

Looking at the TCA cycle, there is again increased labelling of metabolites in the 

CNS – not in keeping with a hypoxic phenotype – particularly 40 minutes after 

injection with glucose (Figure 5-29). Interestingly there is an increase in 13C 

labelling of CSF glutamine, and many of the metabolites in the TCA with 

significant incorporation of 13C labelling are “downstream” of glutamine via AKG, 

and could conceivably have received labelling this way. It is worth noting that 

meningeal stromal cells are known to express the enzyme glutamine synthase 

and could be involved in maintaining glutamine homeostasis in the CSF, and this 

could potentially be an alternative fuel source for CNS leukaemia cells (Figure 

5-30). 
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Figure 5-29 Overview of 13C labelling of the TCA pathway metabolites in ALL cells in the 
CNS or spleen 20 or 40 minutes after injection with 13C-glucose schematic dots represent 
carbon atoms in metabolites. P-values denoted: *<0.05. 
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Figure 5-30 Glutamine labelling with 13C in ALL cells from the CNS and spleen and from CSF 
and plasma 20 (glutamate) or 40 (glutamine) minutes after injection with 13C-glucose. A – 
intracellular glutamine 20 minutes after 13C injection; B – CSF/plasma glutamine 20 minutes 
after 13C injection (p=0.0004); C - intracellular glutamine 40 minutes after 13C injection 
(p=0.036); D – CSF/plasma glutamine 40 minutes after 13C injection (n=2 so no statistical 
analysis performed). 

5.5.2.3 Summary 

These data have shown evidence that ALL cells in the CNS have increased 

glycolytic flux, and evidence of conversion of glucose to glutamine in this 

microenvironment. There is evidence of ongoing TCA activity despite the low-

glucose, low-lipid, and low-oxygen microenvironment. 

5.5.3 Acetate tracing 

From analysing data after C13-acetate injection, there was very little tracing 

found. There was no evidence of labelled acetate incorporated into fatty acids, 
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and none into TCA metabolites (Figure 5-31), and none into cholesterol (analysis 

by colleague Grace MacGregor, data not shown). 

 

Figure 5-31 Fraction of 13C-incorporated into palmitic acid 40 minutes after injection of IV 
fully 13C-labelled acetate in vivo 
 

5.6 Conclusions 

In this chapter it has been demonstrated inhibiting cholesterol synthesis with 

simvastatin has a clear impact in vitro and in vivo. Simvastatin treatment is 

effective in killing ALL cells in vitro, particularly in a low-nutrient environment. 

In vivo, high-dose simvastatin treatment seems to potentiate CNS disease in the 

male mice tested. It is possible this impact is mediated through induction of 

cholesterol synthesis pathways in systemic ALL cells in the presence of 

simvastatin; and that this allows better survival in the CNS where the effective 

dose of simvastatin is markedly reduced due to incomplete penetration of the 

drug through the blood:brain and blood:CSF barriers. 

The impact of simvastatin on cell proliferation and viability in vitro is profound, 

and the exacerbation of cytotoxicity with the addition of cholesterol interesting. 

The initial idea that the addition of cholesterol may cause downregulation of the 
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cholesterol biosynthesis pathway was not borne out by PCR analysis – but it is 

difficult to draw firm conclusions from RNA retrieved from cells that are under 

significant stress. An additional complicating factor could be that cholesterol 

was added to the cells in a water-soluble form bound to cyclodextran – it could 

be the cyclodextran rather than the cholesterol itself that is at the root of this 

combined toxicity with simvastatin. The failure to form a viable cell knockdown 

for cholesterol biosynthesis was unfortunate. It may be that targeting the 

pathway less directly (e.g. by targeting the SREBF system) may allow the 

production of more viable clones though this does come at the expense of 

increased potential for off-target effects. 

Metabolomic analysis of ALL cells harvested from the CNS and spleen shows 

significant changes in cell metabolism consistent with the low-nutrient 

microenvironment, and consistent with our RNAseq results. In particular the 

intracellular levels of mevalonate are higher in cells retrieved from the CNS 

compared to the spleen, which supports the hypothesis that cholesterol 

biosynthesis is increased in ALL cells in the CNS. There is a consistent pattern of 

increased saturated:unsaturated fatty acid ratios in the CSF of children and mice 

with leukaemia and ALL cells from the CNS vs spleens of mice. This fits with 

previously described changes in the transcription of genes involved in fatty acid 

metabolism(section 3.3.3). The saturation/desaturation ratio is has many 

important roles in cell biology, including maintaining membrane flexibility, cell 

signalling and even chemotherapy sensitivity(Zeng et al. 2008; Lee et al. 2018). 

We have shown in these experiments that CSF in non-leukaemic mice has a much 

higher palmitate (saturated):palmitoleate(unsaturated) ratio than plasma. It 

may be that upregulation of SCD and the partial reversal of this difference in 

saturated:unsaturated ratio in the CNS ALL is a way for the ALL cells to partially 

compensate for this change in environment. 

Finally the data shown suggests that there may be increased glycolytic flux in 

the ALL cells in the CNS vs spleen, though the lack of clear data of CSF 13C-

glucose labelling makes drawing firm conclusions more challenging. In addition 

the intravenous introduction of glucose may change the CSF glucose 
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concentration skewing these results – there is no evidence to confirm or refute 

this as yet. The increase in 13C-glutamine in the CSF compared with plasma is 

very interesting – further studies are required to determine if this is the result of 

metabolism in ALL cells or in the meningeal stroma. 
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Chapter 6: Discussion and Future Directions 

This project set out with 3 aims: 

1) To identify metabolic adaptations of ALL cells to the CNS microenvironment 

that could be targets for CNS-directed therapy 

2) To identify new metabolic markers of CNS involvement in the CSF 

3) To investigate directly metabolic changes of ALL cells in the CNS identified in 

the course of this investigation 

These aims have been addressed in the previous 3 chapters with findings 

summarised below. These findings have resulted in many more questions and 

some of the implications are explored as future directions. 

6.1 Summary of findings 

6.1.1 ALL cells undergo metabolic adaptations to the CNS niche 

It has been shown with transcriptomic and metabolic analysis of cells from the 

CNS and spleen of mice that ALL cells undergo metabolic adaptations in the CNS 

niche. These most strikingly take the form of changes in lipid metabolism with 

evidence of cholesterol biosynthesis upregulation and changes in fatty acid 

metabolism.  

This link between transcriptomic and metabolomic results is reassuring that 

these are true findings. Work is ongoing to more systematically integrate and 

analyse these transcriptomic and metabolomic datasets to provide more 

evidence for these findings and to look for novel changes in the CNS 

environment. 

While there is now some evidence of transcriptional changes in CNS ALL from 

other studies(van der Velden et al. 2015; Münch et al. 2017), this study has some 

key strengths:  

1) The use of a mouse model rather than primary cells leads to a trade off. 

We have excellent quality data from high numbers of viable CNS ALL cells, 

though at the cost of less direct clinical relevance. In addition to the difficulty in 
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obtaining cells from patient CSF for transcriptomic analysis, there is concern 

that the cells that are free in CSF may not be truly representative to the bulk 

CNS ALL population which is bound to the meninges – it may be that these cells 

have detached due to early apoptosis (certainly there is evidence of altered 

morphology or apoptosis on microscopy of many CSF leukaemia blasts). The key 

findings from the mouse model used in this project were validated in primary 

human cells, giving this project the best of both worlds in many respects. 

2) The removal of RNA reads from the mouse genome allows us to be highly 

confident that the findings we have are a true reflection of CNS ALL and not 

contaminated with microenvironmental cells, though at the cost of excluding 

some highly-conserved genes from analysis. 

3) The use of ALL cell lines allows for consistent high quality data to be 

obtained and also makes it possible to directly compare the metabolome and the 

transcriptome of CNS ALL to allow validation of results and potentially help pick 

out true signals from background noise. 

The clinical implications of the importance of cholesterol biosynthesis in CNS ALL 

are discussed below (section 6.2.1). 

6.1.2 There are novel candidate markers for CNS ALL 

There is evidence for changes in the metabolome between CSF from children 

with ALL at diagnosis (most of whom we presume have CNS ALL) vs the same 

children later in treatment (presumably without CNS ALL), and between children 

with ALL at diagnosis and normal controls (i.e. children/adolescents who 

underwent lumbar puncture for investigation of CNS pathology, but were not 

found to have any). Of perhaps more relevance was the finding of creatine as a 

possible marker of CNS ALL that was separated in our diagnostic group from both 

controls. 

One of the strengths of this project was the comparison of the CSF metabolome 

from children with ALL at diagnosis vs control CSF, a mouse model of CNS ALL, 

and children with CNS relapse of ALL. From these 3 analyses creatine and 

appears to be the most promising candidate biomarkers for further evaluation in 
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different centres, with different techniques and potentially for prospective 

validation. 

A key weakness in this approach however was the lack of true lipidomic analysis 

of CSF for lipid biomarkers. There was some evidence for alteration of the CSF 

saturated:monounsaturated fatty acid ratio in the presence of CNS ALL, but this 

was analysed via limited examination of CSF cholesterol esters and free fatty 

acids. Unfortunately experiments looking for the true abundance of 

saturated:monounsaturated fatty acids in diacyl and triacylgrycerols were not 

able to provide meaningful data, likely due to inadequate sample size. 

Further analyses of these data for more integrated networks is discussed below 

(section 6.2.2). 

6.1.3 Targeting critical metabolic weaknesses of CNS ALL is a 
viable strategy, but more work is needed to find successful 
therapeutics 

As part of the detailed investigation into the importance of cholesterol 

biosynthesis in vitro and in CNS ALL in vivo, an attempt was made to target CNS 

ALL by disrupting cholesterol biosynthesis with HMGCR inhibitor simvastatin, and 

by directly knocking out or knocking down HMGCR. Genetic manipulation was not 

successful, presumably due to lethality of gene knockdown for ALL cells despite 

mevalonate supplementation – it was not possible to confirm this by assessing 

HMGCR transcription with PCR or western blot as there were not enough viable 

cells. Simvastatin treatment was successful in vitro – there was some evidence 

for reduced cell proliferation with lower doses (3μL), and clear cell toxicity with 

higher doses (10μL). 

The in vivo findings were particularly interesting. Despite a dose-finding 

experiment allowing the use of high-dose oral simvastatin (100mg/kg), there was 

an increase in CNS ALL in male mice treated with simvastatin with no change in 

systemic disease burden. The specificity of this effect to male mice is 

particularly interesting. Two possibilities for this could be either: differences in 

the levels of steroid hormones (e.g. oestrogens, progestogens and testosterone) 

between male and female mice influence ALL cell biology in vivo; or that there 
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are differences in immune function between male and female NSG mice –the 

IL2rg mutation, which results in removal of ILγ chains (and subsequently NK 

cells) in NSG mice, is X-linked. Regardless, the effect of simvastatin on CNS 

leukaemia in mice provides additional evidence for the importance of 

cholesterol biosynthesis for CNS ALL. A potential explanation for this finding is 

the upregulation of cholesterol biosynthesis in the systemic ALL cells in response 

to reduced availability of cholesterol in the plasma, leading to a cell phenotype 

better adapted for the CNS niche. In order to test this hypothesis, the plasma or 

CSF cholesterol abundance, and gene expression levels of cholesterol synthesis 

genes in CNS and spleen ALL cells, should be tested in ALL xenograft models with 

and without simvastatin treatment. 

These data provide evidence that effective targeting of cholesterol synthesis in 

ALL cells in the CNS niche may be an attractive strategy to prevent or treat CNS 

relapse. This would be best shown in the first instance with a genetic knock-

down/knock-out model of cholesterol biosynthesis to provide proof of concept, 

then strategies to target CNS ALL (e.g. more lipophilic drugs to optimise 

penetration of the CNS, or direct injection of therapeutics into the intrathecal 

space) could be explored. 

6.2 Future directions 

6.2.1 Cholesterol synthesis upregulation as a risk factor for CNS 
relapse 

The most exciting finding from this project was the detection of a cholesterol 

biosynthesis signature at diagnosis that appears to carry a significantly increased 

risk of CNS relapse – a higher increase in risk than any currently used “high-risk” 

features. If validated, this could have implications for targeting CNS-directed 

therapy to children at particularly high risk to prevent CNS relapse, and 

eventually may allow for reduction in CNS-directed therapy for children at lower 

risk. 

There are some key caveats to these data: 

1) These are retrospective analyses of publicly available data. 
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2) Thiese are data from one study, using one treatment protocol 

3) These are data from children with “high-risk” ALL, and may not be 

applicable to standard risk disease. In particular the use of a z-score analysis 

uses the mean level of expression of each gene to discriminate high-expressers 

from low-expressers, therefore changes in the distribution of gene expression 

(e.g. if high-risk children have a higher or lower overall level of cholesterol 

biosynthesis than standard risk children then the population of children 

identified by z-score analysis may be different). 

Despite these caveats this date is extremely exciting. A power calculation based 

on a 3-fold increase in risk of CNS relapse, and a baseline CNS relapse rate of 

2.5% of children suggests that transcriptomic data from around 1280 children 

would be required to validate these data. Several groups have been approached 

for supporting data and this analysis is ongoing. 

6.2.2 Network analysis of metabolomic data 

There are several powerful tools available for network or pathway analysis of 

transcriptomic data (GSEA and GeneMANIA are two used in this project). There 

are fewer tools available for metabolomic data, and very few for untargeted 

metabolomic data which is complicated by the difficulty in reliably identifying 

peaks. Work is currently ongoing with the Gottlieb group in Tel Aviv to analyse 

our data using machine-learning algorithms to find networks of metabolites that 

could indicate the presence of CNS leukaemia. 

This is clearly a very challenging endeavour, particularly given the nature of 

primary CSF data which will have many confounding factors (e.g. the use of 

antibiotics and tumour lysis prophylaxis, high systemic disease burden, different 

levels of CNS disease between children) some of which (e.g. drugs) can be 

partially accounted for manually but may prove difficult to exclude 

algorithmically. 
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6.2.3 Metabolomic analysis of the CNS microenvironment 

The metabolomic data presented in this thesis are extremely interesting and 

together with the transcriptional data provide a robust analysis of metabolic 

adaptations of CNS ALL cells. A wider question of metabolomic changes in the 

CNS microenvironmental niche has not been specifically addressed; cancer cell-

stromal cell interactions are important for a wide variety of cancers 

The data presented here have provided evidence of glutamine in the CSF derived 

(within 20 minutes) from glucose. Glutamate (a glutamine derivative) is a key 

neurotransmitter in the CNS, so it makes sense for the abundance of glutamine 

and glutamate in the CSF to be highly regulated. It is possible that this 

regulation is exploited by CNS ALL cells – the data above (section 5.5.2.2) shows 

evidence of labelled glutamine in ALL cells in the CNS which may derive from 

TCA metabolism within cells, but which may derive from the labelled glutamate 

in the CSF. Further investigation of this environment may provide additional 

insights into the metabolomic adaptations of ALL to the CNS niche. 

6.2.4 Applicability of findings to CNS lymphoma 

This project focusses on BCP-ALL, but the findings may have implications for 

similar diseases such as T-cell ALL, or T- or B-cell lymphoma. CNS relapse in B 

cell lymphoma is a significant clinical issues, and unlike with ALL, there is no 

clear consensus regarding the use of intrathecal and/or systemic chemotherapy 

for CNS prophylaxis. The BCSH guideline on the prevention of secondary CNS 

lymphoma pragmatically recommends intrathecal methotrexate while discussing 

the limitations of the evidence base for this, and cautiously endorses the use of 

systemic methotrexate with caveats(McMillan et al. 2013). There are significant 

overlaps in the biology of B-cell lymphoma and leukaemia including evidence for 

the role of the HIF pathway and VEGFα (Kim et al. 2011), osteopontin ((Tun et 

al. 2008; Yuan et al. 2013), and IRF4((Tun et al. 2008). 

Lymphoma is a more common disease than childhood ALL (UK incidence of Non-

Hodgkin lymphoma (NHL) was 23 per 100,000/year in 2015 for NHL, vs 0.168 per 

100,000/year in 2013-2015 for ALL, figures from Cancer Research UK), and CNS 

relapse a more common issues for high-risk lymphoma than childhood ALL (CNS 
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relapse rate ranges from <1%-25% depending on the presence of risk factors, and 

a typical overall rate of 2%-10% (Hollender et al. 2002; Boehme et al. 2009; 

Schmitz et al. 2012)). If the findings of this project (in particular the assessment 

of risk by cholesterol biosynthesis upregulation and the identification of better 

biomarkers of CNS disease) could be translated to CNS lymphoma there is 

potential for significant clinical benefit. From a different perspective, the larger 

clinical cohort of patients with lymphoma may allow the collection of a higher 

number of samples for analysis prospectively, and the faster validation of any 

biomarkers or therapeutic interventions than in childhood ALL. 

6.3 Overall conclusions 

This thesis presents data supporting the original hypothesis that ALL cells 

undergo metabolic adaptation to the CNS niche. It provides evidence for the 

targeting of CNS ALL cholesterol metabolism as a novel therapeutic strategy, and 

has identified a potential novel metabolic marker for CNS ALL. The most 

immediately exciting finding of this project is the identification of upregulation 

of cholesterol biosynthesis in the bone marrow at diagnosis as a highly significant 

risk factor for CNS ALL and work is in progress to validate this in independent 

cohorts. 
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Appendix 

Visual Basic Scripts: 
Sub Copy+paste_for_early_vs_late_pools_May15() 

 

Dim metabolite(1 To 33) As String 

 

metabolite(1) = "Adenine" 

metabolite(2) = "aKG" 

metabolite(3) = "Alanine" 

metabolite(4) = "Arginine" 

metabolite(5) = "Asparagine" 

metabolite(6) = "Citrate" 

metabolite(7) = "Cytidine" 

metabolite(8) = "GLN" 

metabolite(9) = "Glucose" 

metabolite(10) = "Glycine" 

metabolite(11) = "Lactate" 

metabolite(12) = "Leucine" 

metabolite(13) = "Lysine" 

metabolite(14) = "methionine" 

metabolite(15) = "Phenylalanine" 

metabolite(16) = "proline" 

metabolite(17) = "Pyruvate" 

metabolite(18) = "Serine" 

metabolite(19) = "threonine" 

metabolite(20) = "tryptophan" 

metabolite(21) = "Tyrosine" 

metabolite(22) = "Ornithine" 

metabolite(23) = "GLU" 

metabolite(24) = "Succinic acid" 

metabolite(25) = "Fumarate" 

metabolite(27) = "homocysteine" 

metabolite(26) = "IsoLeucine" 

metabolite(28) = "urate" 

metabolite(29) = "Pyruvate +3" 

metabolite(30) = "Lactate +3" 

metabolite(31) = "Glucose +6" 

metabolite(32) = "Alanine +1" 

metabolite(33) = "Arginine +6" 

 

 

Dim a As Integer 

Dim b As Integer 

Dim mycell As Range 

 

Worksheets(metabolite(1)).Select 

Range("A39", "C45").Copy 
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For a = 2 To 25 

 

Worksheets(metabolite(a)).Select 

Range("A39").Select 

Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

   

        Next a 

 

Worksheets(metabolite(1)).Select 

Range("E39", "G45").Copy 

 

For a = 26 To 28 

 

Worksheets(metabolite(a)).Select 

Range("A39").Select 

Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

   

  Next a 

 

End Sub 

********************************************************************************** 
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Sub T_Test_early_vs_late_May_15() 

 

Dim metabolite(1 To 33) As String 

 

metabolite(1) = "Adenine" 

metabolite(2) = "aKG" 

metabolite(3) = "Alanine" 

metabolite(4) = "Arginine" 

metabolite(5) = "Asparagine" 

metabolite(6) = "Citrate" 

metabolite(7) = "Cytidine" 

metabolite(8) = "GLN" 

metabolite(9) = "Glucose" 

metabolite(10) = "Glycine" 

metabolite(11) = "Lactate" 

metabolite(12) = "Leucine" 

metabolite(13) = "Lysine" 

metabolite(14) = "methionine" 

metabolite(15) = "Phenylalanine" 

metabolite(16) = "proline" 

metabolite(17) = "Pyruvate" 

metabolite(18) = "Serine" 

metabolite(19) = "threonine" 

metabolite(20) = "tryptophan" 

metabolite(21) = "Tyrosine" 

metabolite(22) = "IsoLeucine" 

metabolite(23) = "GLU" 

metabolite(24) = "homocysteine" 

metabolite(25) = "Fumarate" 

metabolite(26) = "Ornithine" 

metabolite(27) = "Succinic acid" 

metabolite(28) = "urate" 

metabolite(29) = "Pyruvate +3" 

metabolite(30) = "Lactate +3" 

metabolite(31) = "Glucose +6" 

metabolite(32) = "Alanine +1" 

metabolite(33) = "Arginine +6" 

 

Dim a As Integer 

Dim b As Integer 

 

Worksheets("Stats").Select 

Range("h1").Select 

Selection = "T-test p-value for combined early vs. late" 

 

For b = 2 To 29 

    ActiveSheet.Cells(b, 8).Select 
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    Selection = (metabolite(b - 1)) 

Next b 

 

 

For a = 1 To 28 

 

    Worksheets(metabolite(a)).Select 

        Range("B46").Select 

        Selection = "T-Test for difference between combined early and late values" 

        Range("B47").Select 

        Selection = "=T.TEST(B40:B44,C40:C44,2,1)" 

        Range("B47").Copy 

                

    Worksheets("stats").Activate 

    ActiveSheet.Cells(a + 1, 9).Select 

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

     

    Next a 

     

Dim mycell As Range 

Worksheets("stats").Select 

    For Each mycell In Range("I2", "I29").Cells 

        If mycell.Value <= 0.05 Then 

        mycell.Interior.Color = vbGreen 

        End If 

        If mycell.Value <= 0.001 Then 

        mycell.Interior.Color = RGB(0, 208, 0) 

        End If 

    Next mycell 

End Sub 

**********************************************************************************  



0 Appendix 203 

 

Sub collate_early_only_values_May15() 

 

Dim metabolite(1 To 33) As String 

 

metabolite(1) = "Adenine" 

metabolite(2) = "aKG" 

metabolite(3) = "Alanine" 

metabolite(4) = "Arginine" 

metabolite(5) = "Asparagine" 

metabolite(6) = "Citrate" 

metabolite(7) = "Cytidine" 

metabolite(8) = "GLN" 

metabolite(9) = "Glucose" 

metabolite(10) = "Glycine" 

metabolite(11) = "Lactate" 

metabolite(12) = "Leucine" 

metabolite(13) = "Lysine" 

metabolite(14) = "methionine" 

metabolite(15) = "Phenylalanine" 

metabolite(16) = "proline" 

metabolite(17) = "Pyruvate" 

metabolite(18) = "Serine" 

metabolite(19) = "threonine" 

metabolite(20) = "tryptophan" 

metabolite(21) = "Tyrosine" 

metabolite(22) = "Ornithine" 

metabolite(23) = "GLU" 

metabolite(24) = "Succinic acid" 

metabolite(25) = "Fumarate" 

metabolite(26) = "IsoLeucine" 

metabolite(27) = "homocysteine" 

metabolite(28) = "urate" 

metabolite(29) = "Pyruvate +3" 

metabolite(30) = "Lactate +3" 

metabolite(31) = "Glucose +6" 

metabolite(32) = "Alanine +1" 

metabolite(33) = "Arginine +6" 

 

Dim a As Integer 

Dim b As Integer 

 

For a = 1 To 25 

 

Worksheets(metabolite(a)).Select 

 

Range("B49").Select 

Selection = "1" 
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Range("C49").Select 

Selection = "2" 

Range("D49").Select 

Selection = "3" 

'Range("E1").Select 

'Selection = "4" 

Range("e49").Select 

Selection = "5" 

Range("f49").Select 

Selection = "6" 

 

Range("B20", "B22").Copy 

Range("B50").Select 

Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

Range("D20", "D22").Copy 

Range("C50").Select 

Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

Range("F20", "F22").Copy 

Range("D50").Select 

Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

Range("H20", "H22").Copy 

Range("E50").Select 

Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

Range("J20", "J22").Copy 

Range("F50").Select 

Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

 

        Next a 

 

For a = 26 To 28 

 

Worksheets(metabolite(a)).Select 

 

Range("B49").Select 

Selection = "1" 

Range("C49").Select 

Selection = "2" 

Range("D49").Select 

Selection = "3" 

'Range("E1").Select 

'Selection = "4" 

Range("e49").Select 

Selection = "5" 

Range("f49").Select 

Selection = "6" 

 

Range("B8", "B10").Copy 
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Range("B50").Select 

Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

Range("D8", "D10").Copy 

Range("C50").Select 

Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

Range("F8", "F10").Copy 

Range("D50").Select 

Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

Range("H8", "H10").Copy 

Range("E50").Select 

Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

Range("J8", "J10").Copy 

Range("F50").Select 

Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

 

Next a 

 

End Sub 

**********************************************************************************  
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Sub delete_irrelevent_rows_from_RNA_data() 

 

Dim a As Long 

Application.Calculation = xlCalculationManual 

Application.ScreenUpdating = False 

    For a = 66000 To 2 Step -1 

     

        With Worksheets("Data1").Cells(a, 21) 

            If Not .Value = "protein_coding" Then Worksheets("Data1").Rows(a).EntireRow.delete 

        End With 

    Next a 

     

    For a = 66000 To 2 Step -1 

 

        With Worksheets("Data1").Cells(a, 22) 

          If Not .Value > 100 Then Worksheets("Data1").Rows(a).EntireRow.delete 

       End With 

 

    Next a 

Application.Calculation = xlCalculationAutomatic 

Application.ScreenUpdating = True 

 

End Sub 

**********************************************************************************  
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Sub Met_Arrange_September15_fatty_acids() 

'declare array of variable 'metabolite' as string 

Dim metabolite(1 To 6) As String 

metabolite(1) = "Linoleic acid" 

metabolite(2) = "Linolenic acid" 

metabolite(3) = "Oleic acid" 

metabolite(4) = "Palmitic acid" 

metabolite(5) = "Palmitoleic acid" 

metabolite(6) = "Stearic acid" 

 

' set sheet1 as "All samples" 

If ActiveSheet.Name <> "All Samples" Then ActiveSheet.Name = "All Samples" 

 

Dim i As Integer                            ' Integers used in 'For' loops 

Dim j As Integer 

Dim k As Integer 

Dim m As Integer 

Dim LastCol As Integer 

 

Sheets.Add After:=Sheets("All Samples") 

ActiveSheet.Name = metabolite(1) 'creates first worksheet 

    

   For k = 2 To 6                         'Creates subsequent worksheets for each metabolite 

    Sheets.Add After:=Sheets(metabolite(k - 1)) 

    'Sheets.Add 

    ActiveSheet.Name = metabolite(k) 

    Next k 

 

                                                'Back to All Samples worksheet 

Worksheets("All Samples").Select 

  

    ' Loop through cells A1-A1200, metabolites 1-30 until 'Metabolite' is found 

 

    For i = 1 To 1500 

        For j = 1 To 6 

            If Cells(i, 2).Value = metabolite(j) Then 

                Rows(i).Copy                    ' Copy entire row 

                 

               Worksheets(metabolite(j)).Select 'select appropriate workbook 

                                             'paste transpose entire row to appropriate workbook 

                     

                    With ActiveSheet 

                    LastCol = .Cells(1, .Columns.Count).End(xlToLeft).Column 

                    Sheets(metabolite(j)).Cells(1, LastCol + 1).Select 

                    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=True 

                    Worksheets("All Samples").Select 

                    End With 
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             Application.CutCopyMode = False 'clear clipboard 

            End If 

        Next j 

         

    Next i 

                                             

'Paste titles onto each worksheet 

 

Range("A1:T1").Select 

Selection.Copy 

 

    For m = 1 To 6 

    Sheets(metabolite(m)).Select 

    Columns(1).Select 

    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=True 

        Next m 

     

 Application.CutCopyMode = False            'clear clipboard 

  

End Sub 

**********************************************************************************  
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Sub Copy_Into_Table_Sept2015_Fatty_acids() 

 

Dim metabolite(1 To 6) As String 

metabolite(1) = "Linoleic acid" 

metabolite(2) = "Linolenic acid" 

metabolite(3) = "Oleic acid" 

metabolite(4) = "Palmitic acid" 

metabolite(5) = "Palmitoleic acid" 

metabolite(6) = "Stearic acid" 

 

Dim a As Integer 

 

For a = 1 To 6 

 

    Worksheets(metabolite(a)).Select 

    'write out table backbone 

     

    Range("B7").Select 

    Selection = "1-Early" 

    Range("C7").Select 

    Selection = "1-Late" 

    Range("D7").Select 

    Selection = "2-Early" 

    Range("E7").Select 

    Selection = "2-Late" 

     

    Range("F7").Select 

    Selection = "3-Early" 

    Range("G7").Select 

    Selection = "3-Late" 

        

    Range("H7").Select 

    Selection = "4-Early" 

    Range("I7").Select 

    Selection = "4-Late" 

     

    Range("J7").Select 

    Selection = "5-Early" 

    Range("K7").Select 

    Selection = "5-Late" 

     

    Range("A8").Select 

    Selection = "Peak Area" 

     

     

    Range("B7", "M7").Copy 

    Range("B19").Select 
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    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

     

    ' copy peak area 

     

    Range("B3").Copy 

    Range("B8").Select 

    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

    Range("C3").Copy 

    Range("B9").Select 

    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

    Range("D3").Copy 

    Range("B10").Select 

    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

    Range("E3").Copy 

    Range("C8").Select 

    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

    Range("F3").Copy 

    Range("C9").Select 

    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

    Range("G3").Copy 

    Range("C10").Select 

    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

    Range("H3").Copy 

    Range("D8").Select 

    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

    Range("I3").Copy 

    Range("D9").Select 

    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

    Range("J3").Copy 

    Range("D10").Select 

    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

    Range("K3").Copy 

    Range("E8").Select 

    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

    Range("L3").Copy 

    Range("E9").Select 

    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

    Range("M3").Copy 

    Range("E10").Select 

    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

    Range("N3").Copy 

    Range("F8").Select 

    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

    Range("O3").Copy 

    Range("F9").Select 

    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

    Range("P3").Copy 
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    Range("F10").Select 

    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

    Range("Q3").Copy 

    Range("G8").Select 

    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

    Range("R3").Copy 

    Range("G9").Select 

    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

    Range("S3").Copy 

    Range("G10").Select 

    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

    Range("T3").Copy 

    Range("H8").Select 

    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

    Range("U3").Copy 

    Range("H9").Select 

    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

    Range("V3").Copy 

    Range("H10").Select 

    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

    Range("W3").Copy 

    Range("I8").Select 

    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

    Range("X3").Copy 

    Range("I9").Select 

    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

    Range("Y3").Copy 

    Range("I10").Select 

    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

    Range("Z3").Copy 

    Range("J8").Select 

    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

    Range("AA3").Copy 

    Range("J9").Select 

    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

    Range("AB3").Copy 

    Range("J10").Select 

    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

    Range("AC3").Copy 

    Range("k8").Select 

    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

    Range("AD3").Copy 

    Range("k9").Select 

    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

    Range("AE3").Copy 

    Range("k10").Select 

    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 
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    Next a 

 

End Sub 

**********************************************************************************  
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Sub Select_cholesterol_synthesis_genes_from_array_updatedMay16() 

 

Dim mycell As Range 

Dim a As Long 

Dim lastrow As Integer 

 

Sheets.Add After:=Sheets("GSE11392_series_matrix") 

ActiveSheet.Name = "Cholesterol pathway analysis" 'creates first worksheet 

 

For a = 1 To 54720 

Worksheets("GSE11392_series_matrix").Select 

 

        If ActiveSheet.Cells(a, 3).Value2 = "CYP51A1" Or ActiveSheet.Cells(a, 3).Value2 = "DHCR7" Or ActiveSheet.Cells(a, 
3).Value2 = "DHCR24" Or ActiveSheet.Cells(a, 3).Value2 = "FDFT1" Or ActiveSheet.Cells(a, 3).Value2 = "HMGCR" Or 
ActiveSheet.Cells(a, 3).Value2 = "HMGCS1" Or ActiveSheet.Cells(a, 3).Value2 = "LSS" Or ActiveSheet.Cells(a, 3).Value2 = 
"MSMO1" Or ActiveSheet.Cells(a, 3).Value2 = "MVK" Or ActiveSheet.Cells(a, 3).Value2 = "LSS" Or ActiveSheet.Cells(a, 
3).Value2 = "SQLE" Or ActiveSheet.Cells(a, 3).Value2 = "TM7SF2" Or ActiveSheet.Cells(a, 3).Value2 = "PMVK" Or 
ActiveSheet.Cells(a, 3).Value2 = "MVD" Or ActiveSheet.Cells(a, 3).Value2 = "IDI1" Or ActiveSheet.Cells(a, 3).Value2 = 
"FDPS" Or ActiveSheet.Cells(a, 3).Value2 = "NSDHL" Or ActiveSheet.Cells(a, 3).Value2 = "SC5D" Or ActiveSheet.Cells(a, 
3).Value2 = "SC5DL" Or ActiveSheet.Cells(a, 3).Value2 = "SC4MOL" Or ActiveSheet.Cells(a, 3).Value2 = "EBP" Or 
ActiveSheet.Cells(a, 3).Value2 = "HSD17B7" Or ActiveSheet.Cells(a, 3).Value2 = "IDI2" Then 

        'Row(a).Copy 

        Range(Cells(a, 1), Cells(a, 424)).Copy 

        Sheets("Cholesterol pathway analysis").Select 

        With ActiveSheet 

                    lastrow = .Cells(.Rows.Count, 3).End(xlUp).Row 

                    Sheets("Cholesterol pathway analysis").Cells(lastrow + 1, 1).Select 

                    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

                    Application.CutCopyMode = False 

                    End With 

        End If 

 

Next a 

 

End Sub 

********************************************************************************** 
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Sub Select_cholesterol_pathway_perturbation_from_array_May16() 

 

 

Dim b As Long 

Dim a As Long 

Dim number As Integer 

 

 

Worksheets("Pathway perturbation analysis").Select 

For b = 5 To 52 

 

    For a = 1 To 54615 

 

        If ActiveSheet.Cells(a, 2).Value2 = "CYP51A1" Or ActiveSheet.Cells(a, 2).Value2 = "DHCR7" Or ActiveSheet.Cells(a, 
2).Value2 = "DHCR24" Or ActiveSheet.Cells(a, 2).Value2 = "FDFT1" Or ActiveSheet.Cells(a, 2).Value2 = "HMGCR" Or 
ActiveSheet.Cells(a, 2).Value2 = "HMGCS1" Or ActiveSheet.Cells(a, 2).Value2 = "LSS" Or ActiveSheet.Cells(a, 2).Value2 = 
"MSMO1" Or ActiveSheet.Cells(a, 2).Value2 = "MVK" Or ActiveSheet.Cells(a, 2).Value2 = "LSS" Or ActiveSheet.Cells(a, 
2).Value2 = "SQLE" Or ActiveSheet.Cells(a, 2).Value2 = "TM7SF2" Or ActiveSheet.Cells(a, 2).Value2 = "PMVK" Or 
ActiveSheet.Cells(a, 2).Value2 = "MVD" Or ActiveSheet.Cells(a, 2).Value2 = "IDI1" Or ActiveSheet.Cells(a, 2).Value2 = 
"FDPS" Or ActiveSheet.Cells(a, 2).Value2 = "NSDHL" Or ActiveSheet.Cells(a, 2).Value2 = "SC5D" Or ActiveSheet.Cells(a, 
2).Value2 = "SC5DL" Or ActiveSheet.Cells(a, 2).Value2 = "SC4MOL" Or ActiveSheet.Cells(a, 2).Value2 = "EBP" Then 

         

            If (ActiveSheet.Cells(a, b).Value / ActiveSheet.Cells(a, 55).Value >= 1.5) Then 

            number = ActiveSheet.Cells(54617, b).Value2 + 1 

            ActiveSheet.Cells(54617, b).Value2 = number 

             

            Else 

             

            If (ActiveSheet.Cells(a, b).Value / ActiveSheet.Cells(a, 55).Value <= 0.6666) Then 

            number = ActiveSheet.Cells(54618, b).Value2 - 1 

            ActiveSheet.Cells(54618, b).Value2 = number 

             

            End If 

            End If 

        End If 

 

Next a 

     

Next b 

 

End Sub 

**********************************************************************************  
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Sub Modified_Select_cholesterol_pathway_perturbation_from_array_May16() 

 

 

Dim b As Integer 

Dim a As Integer 

Dim number As Integer 

Dim number2 As Single 

 

Worksheets("Cholesterol analysis").Select 

For b = 4 To 220 

 

    For a = 2 To 38 

            number2 = 0 

        If ActiveSheet.Cells(a, 3).Value2 = "CYP51A1" Or ActiveSheet.Cells(a, 3).Value2 = "DHCR7" Or ActiveSheet.Cells(a, 
3).Value2 = "DHCR24" Or ActiveSheet.Cells(a, 3).Value2 = "FDFT1" Or ActiveSheet.Cells(a, 3).Value2 = "HMGCR" Or 
ActiveSheet.Cells(a, 3).Value2 = "HMGCS1" Or ActiveSheet.Cells(a, 3).Value2 = "LSS" Or ActiveSheet.Cells(a, 3).Value2 = 
"MSMO1" Or ActiveSheet.Cells(a, 3).Value2 = "MVK" Or ActiveSheet.Cells(a, 3).Value2 = "LSS" Or ActiveSheet.Cells(a, 
3).Value2 = "SQLE" Or ActiveSheet.Cells(a, 3).Value2 = "TM7SF2" Or ActiveSheet.Cells(a, 3).Value2 = "PMVK" Or 
ActiveSheet.Cells(a, 3).Value2 = "MVD" Or ActiveSheet.Cells(a, 3).Value2 = "IDI1" Or ActiveSheet.Cells(a, 3).Value2 = 
"FDPS" Or ActiveSheet.Cells(a, 3).Value2 = "NSDHL" Or ActiveSheet.Cells(a, 3).Value2 = "SC5D" Then 

            number2 = ActiveSheet.Cells(a, b).Value / ActiveSheet.Cells(a, 234).Value 

            If (number2 >= 2) Then 

            number = ActiveSheet.Cells(95, b).Value2 + 1 

            ActiveSheet.Cells(95, b).Value2 = number 

             

            Else 

             

            If (number2 <= 0.5) Then 

            number = ActiveSheet.Cells(96, b).Value2 - 1 

            ActiveSheet.Cells(96, b).Value2 = number 

             

            End If 

            End If 

        End If 

 

Next a 

     

Next b 

 

End Sub 

**********************************************************************************  
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Sub Metabolites_Array_Aug16() 

 

 

'declare array of variable 'metabolite' as string 

 

Dim metabolite(1 To 191) As String 

Dim sample(1 To 19) As String 

 

metabolite(1) = "Adenine" 

metabolite(2) = "aKG" 

metabolite(3) = "Alanine" 

metabolite(4) = "Alanine +1" 

metabolite(5) = "Alanine +2" 

metabolite(6) = "Alanine +3" 

metabolite(7) = "Arginine" 

metabolite(8) = "Arginine +1" 

metabolite(9) = "Arginine +2" 

metabolite(10) = "Arginine +3" 

metabolite(11) = "Arginine +4" 

metabolite(12) = "Arginine +5" 

metabolite(13) = "Arginine +6" 

metabolite(14) = "Asparagine" 

metabolite(15) = "Asparagine +1" 

metabolite(16) = "Asparagine +2" 

metabolite(17) = "Asparagine +3" 

metabolite(18) = "Asparagine +4" 

metabolite(19) = "Aspartate" 

metabolite(20) = "Aspartate +1" 

metabolite(21) = "Aspartate +2" 

metabolite(22) = "Aspartate +3" 

metabolite(23) = "Aspartate+4" 

metabolite(24) = "Cytidine" 

metabolite(25) = "cis-aconitate" 

metabolite(26) = "cis-aconitate +1" 

metabolite(27) = "cis-aconitate +2" 

metabolite(28) = "cis-aconitate +3" 

metabolite(29) = "cis-aconitate +4" 

metabolite(30) = "cis-aconitate +5" 

metabolite(31) = "cis-aconitate +6" 

metabolite(32) = "Glucose" 

metabolite(33) = "Glycine" 

metabolite(34) = "Glycine +1" 

metabolite(35) = "Glycine +2" 

metabolite(36) = "Lactate" 

metabolite(37) = "homocysteine" 

metabolite(38) = "Leucine" 

metabolite(39) = "Leucine +1" 
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metabolite(40) = "Leucine +2" 

metabolite(41) = "Leucine +3" 

metabolite(42) = "Leucine +4" 

metabolite(43) = "Leucine +5" 

metabolite(44) = "Leucine +6" 

metabolite(45) = "Lysine" 

metabolite(46) = "Lysine+1" 

metabolite(47) = "Lysine+2" 

metabolite(48) = "Lysine+3" 

metabolite(49) = "Lysine+4" 

metabolite(50) = "Lysine+5" 

metabolite(51) = "Lysine+6" 

metabolite(52) = "methionine" 

metabolite(53) = "Phenylalanine" 

metabolite(54) = "proline" 

metabolite(55) = "proline+1" 

metabolite(56) = "Proline+2" 

metabolite(57) = "Proline+3" 

metabolite(58) = "Proline+4" 

metabolite(59) = "Proline+5" 

metabolite(60) = "Serine" 

metabolite(61) = "Serine +1" 

metabolite(62) = "Serine +2" 

metabolite(63) = "Serine +3" 

metabolite(64) = "threonine" 

metabolite(65) = "tryptophan" 

metabolite(66) = "tryptophan+1" 

metabolite(67) = "tryptophan+2" 

metabolite(68) = "tryptophan+3" 

metabolite(69) = "tryptophan+4" 

metabolite(70) = "tryptophan+5" 

metabolite(71) = "tryptophan+6" 

metabolite(72) = "tryptophan+7" 

metabolite(73) = "tryptophan+8" 

metabolite(74) = "tryptophan+9" 

metabolite(75) = "tryptophan+10" 

metabolite(76) = "tryptophan+11" 

metabolite(77) = "Tyrosine" 

metabolite(78) = "IsoLeucine" 

metabolite(79) = "urate" 

metabolite(80) = "Valine" 

metabolite(81) = "Valine+1" 

metabolite(82) = "Valine+2" 

metabolite(83) = "Valine+3" 

metabolite(84) = "Valine+4" 

metabolite(85) = "Valine+5" 

metabolite(86) = "xanthine" 
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metabolite(87) = "homocysteine" 

metabolite(88) = "Fumarate" 

metabolite(89) = "Fumarate +1" 

metabolite(90) = "Fumarate +2" 

metabolite(91) = "Fumarate +3" 

metabolite(92) = "Fumarate +4" 

metabolite(93) = "Ornithine" 

metabolite(94) = "Ornithine+1" 

metabolite(95) = "Ornithine+2" 

metabolite(96) = "Ornithine+3" 

metabolite(97) = "Ornithine+4" 

metabolite(98) = "Ornithine+5" 

metabolite(99) = "Lactate +3" 

metabolite(100) = "Glucose +6" 

metabolite(101) = "Alanine +1" 

metabolite(102) = "Arginine +6" 

metabolite(103) = "3-hydroxybutyric acid" 

metabolite(104) = "Acetyl CoA" 

metabolite(105) = "Acetyl CoA +1" 

metabolite(106) = "Acetyl CoA +2" 

metabolite(107) = "aKG +1" 

metabolite(108) = "aKG +2" 

metabolite(109) = "aKG +3" 

metabolite(110) = "aKG +4" 

metabolite(111) = "aKG +5" 

metabolite(112) = "Arachidonic acid +1" 

metabolite(113) = "Arachidonic acid +2" 

metabolite(114) = "Arachidonic acid" 

metabolite(115) = "Citric acid +1" 

metabolite(116) = "Citric acid +2" 

metabolite(117) = "Citric acid +3" 

metabolite(118) = "Citric acid +4" 

metabolite(119) = "Citric acid +5" 

metabolite(120) = "Citric acid +6" 

metabolite(121) = "Citric acid" 

metabolite(122) = "dihydroxyacetone phosphate (DHAP)" 

metabolite(123) = "dihydroxyacetone phosphate (DHAP) +1" 

metabolite(124) = "dihydroxyacetone phosphate (DHAP) +2" 

metabolite(125) = "Dihydroxyacetone Phosphate (DHAP)+3" 

metabolite(126) = "Docosahexaenoic acid" 

metabolite(127) = "Eicosapentaenoic acid" 

metabolite(128) = "fructose 1,6-diphosphate" 

metabolite(129) = "Fructose 1,6-bisphosphate+1" 

metabolite(130) = "Fructose 1,6-bisphosphate+6" 

metabolite(131) = "G6P" 

metabolite(132) = "G6P +1" 

metabolite(133) = "G6P +2" 
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metabolite(134) = "G6P +3" 

metabolite(135) = "G6P +4" 

metabolite(136) = "G6P +5" 

metabolite(137) = "G6P +6" 

metabolite(138) = "GLN" 

metabolite(139) = "GLN +1" 

metabolite(140) = "GLN +2" 

metabolite(141) = "GLN +3" 

metabolite(142) = "GLN +4" 

metabolite(143) = "GLN +5" 

metabolite(144) = "GLU" 

metabolite(145) = "GLU+1" 

metabolite(146) = "GLU+2" 

metabolite(147) = "GLU+3" 

metabolite(148) = "GLU+4" 

metabolite(149) = "GLU+5" 

metabolite(150) = "Glyceraldehyde 3-phosphate" 

metabolite(151) = "Glyceraldehyde 3-phosphate +1" 

metabolite(152) = "Glyceraldehyde 3-phosphate +2" 

metabolite(153) = "Glyceraldehyde 3-phosphate +3" 

metabolite(154) = "Glycerol 3-phosphate" 

metabolite(155) = "Glycerol 3-phosphate+1" 

metabolite(156) = "Glycerol 3-phosphate+2" 

metabolite(157) = "Glycerol 3-phosphate+3" 

metabolite(158) = "Lactate" 

metabolite(159) = "Lactate +1" 

metabolite(160) = "Lactate +2" 

metabolite(161) = "Linoleic acid" 

metabolite(162) = "Linolenic acid" 

metabolite(163) = "Malate" 

metabolite(164) = "Malate +1" 

metabolite(165) = "Malate +2" 

metabolite(166) = "Malate +3" 

metabolite(167) = "Malate +4" 

metabolite(168) = "Mevalonic Acid" 

metabolite(169) = "Mevalonic Acid +1" 

metabolite(170) = "Mevalonic Acid +2" 

metabolite(171) = "Mevalonic Acid +3" 

metabolite(172) = "Mevalonic Acid +4" 

metabolite(173) = "Mevalonic Acid +5" 

metabolite(174) = "Mevalonic Acid +6" 

metabolite(175) = "Oleic acid" 

metabolite(176) = "PEP" 

metabolite(177) = "PEP+1" 

metabolite(178) = "PEP+2" 

metabolite(179) = "PEP+3" 

metabolite(180) = "Palmitic acid" 



0 Appendix 220 

 

metabolite(181) = "Palmitoleic acid" 

metabolite(182) = "Pyruvic acid" 

metabolite(183) = "Pyruvic acid +1" 

metabolite(184) = "Pyruvic acid +2" 

metabolite(185) = "Pyruvic acid +3" 

metabolite(186) = "Stearic acid" 

metabolite(187) = "Succinic acid" 

metabolite(188) = "Succinic acid +1" 

metabolite(189) = "Succinic acid +2" 

metabolite(190) = "Succinic acid +3" 

metabolite(191) = "Succinic acid +4" 

 

sample(1) = "5_L_CNS" 

sample(2) = "5_L_SPL" 

sample(3) = "5_LR_CNS" 

sample(4) = "5_LR_SPL" 

sample(5) = "5_R_CNS" 

sample(6) = "5_R_SPL" 

sample(7) = "4-2L_CNS" 

sample(8) = "4-2L_SPL" 

sample(9) = "4-L_CNS" 

sample(10) = "4-L_SPL" 

sample(11) = "4-LR_CNS" 

sample(12) = "4-LR_SPL" 

sample(13) = "5-2L_CNS" 

sample(14) = "5-2L_SPL" 

sample(15) = "5-L_CNS" 

sample(16) = "5-L_SPL" 

sample(17) = "R_CNS" 

sample(18) = "R_SPL" 

sample(19) = "Blank_Water" 

 

 

'set sheet1 as "All samples" 

If ActiveSheet.Name <> "All Samples" Then ActiveSheet.Name = "All Samples" 

     

Dim i As Integer                            ' Integers used in 'For' loops 

Dim j As Integer 

Dim k As Integer 

Dim m As Integer 

Dim n As Integer 

 

Dim p As String 

 

'Sheets.Add After:=Sheets("All Samples") 

ActiveSheet.Name = "Array" 'creates first worksheet 

    



0 Appendix 221 

 

'name rows/columns 

For i = 1 To 191 

   

Cells(i + 1, 1).Value = metabolite(i) 

Next i 

 

For j = 1 To 19 

Cells(1, j + 2).Value = sample(j) 

Next j 

 

'populate array 

Worksheets("All Samples").Select 

 

For k = 2 To 4325 

 

For m = 56 To 59 

 

For n = 1 To 19 

     

    Worksheets("All Samples").Select 

    If Cells(k, 1).Value = metabolite(m) And Cells(k, 4).Value = sample(n) Then 

    p = Cells(k, 15).Value 

    Worksheets("Array").Select 

    Cells(m + 1, n + 2).Value = p 

    End If 

    Next n 

    Next m 

    Next k 

     

    

End Sub 

**********************************************************************************  
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Sub Fluidigm_Array_Jan17() 

 

'declare array of variable 'metabolite' as string 

 

Dim Gene(1 To 48) As String 

Dim sample(1 To 22) As String 

 

Gene(1) = "ATP5b" 

Gene(2) = "CTP2" 

Gene(3) = "ACLY" 

Gene(4) = "CTP1b" 

Gene(5) = "SCD" 

Gene(6) = "ACACA" 

Gene(7) = "CPT1a" 

Gene(8) = "B2M" 

Gene(9) = "FASN" 

Gene(10) = "HMGCR(1)" 

Gene(11) = "HMGCS1" 

Gene(12) = "HMGCR(2)" 

Gene(13) = "CYP51" 

Gene(14) = "DHCR7" 

Gene(15) = "DHCR24" 

Gene(16) = "RNF20" 

Gene(17) = "FDFT1" 

Gene(18) = "LSS" 

Gene(19) = "MSMO" 

Gene(20) = "MVK" 

Gene(21) = "SQLE" 

Gene(22) = "GAPDH" 

Gene(23) = "TM7SF" 

Gene(24) = "ENOX2" 

Gene(25) = "PMVK" 

Gene(26) = "MVD" 

Gene(27) = "IDI1" 

Gene(28) = "FDPS" 

Gene(29) = "NSDHL" 

Gene(30) = "SC5D" 

Gene(31) = "HSD17b" 

Gene(32) = "UBE2D2" 

Gene(33) = "EBP" 

Gene(34) = "IDI2" 

Gene(35) = "SREBF1c" 

Gene(36) = "SREBF1a" 

Gene(37) = "SREBF2" 

Gene(38) = "SPP1" 

Gene(39) = "IRF4" 

Gene(40) = "CYC1" 
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Gene(41) = "VEGFa" 

Gene(42) = "ACSS2" 

Gene(43) = "IL15" 

Gene(44) = "ACSS1" 

Gene(45) = "ICAM1" 

Gene(46) = "MERTK" 

Gene(47) = "PBX1" 

Gene(48) = "TYW1" 

 

sample(1) = "49 C1" 

sample(2) = "49 C2" 

sample(3) = "49 C3" 

sample(4) = "11 C1" 

sample(5) = "12 C1" 

sample(6) = "12 C2" 

sample(7) = "12 C3" 

sample(8) = "66 C1" 

sample(9) = "66 C2" 

sample(10) = "36 C1" 

sample(11) = "Mouse" 

sample(12) = ".-RT" 

sample(13) = "49 S1" 

sample(14) = "49 S2" 

sample(15) = "49 S3" 

sample(16) = "11 S1" 

sample(17) = "12 S1" 

sample(18) = "12 S2" 

sample(19) = "12 S3" 

sample(20) = "66 S1" 

sample(21) = "66 S2" 

sample(22) = "36 S1" 

 

'set sheet1 as "All samples" 

If ActiveSheet.Name <> "Array1" Then ActiveSheet.Name = "Array1" 

     

Dim i As Integer                            ' Integers used in 'For' loops 

Dim j As Integer 

Dim k As Integer 

Dim m As Integer 

Dim n As Integer 

 

Dim p As String 

 

Sheets.Add After:=Sheets("Array1") 

ActiveSheet.Name = "Fluidigm Ct Array" 'creates first worksheet 

    

'name rows/columns 
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For i = 1 To 48 

  

Cells(i + 1, 1).Value = Gene(i) 

 

Next i 

 

For j = 1 To 22 

Cells(1, j + 2).Value = sample(j) 

Next j 

 

'populate array 2 (second samples) 

Worksheets("Array1").Select 

 

For k = 13 To 916 

 

For m = 1 To 48 

 

For n = 1 To 22 

     

    Worksheets("Array1").Select 

    If Cells(k, 5).Value = Gene(m) And Cells(k, 2).Value = sample(n) Then 

    p = Cells(k, 7).Value 

    Worksheets("Fluidigm Ct Array").Select 

    Cells(m + 1, n + 2).Value = p 

    End If 

    Next n 

    Next m 

    Next k 

     

'populate array 

Worksheets("Array1").Select 

 

For k = 917 To 1777 

For m = 1 To 48 

For n = 1 To 22 

     

    Worksheets("Array1").Select 

    If Cells(k, 5).Value = Gene(m) And Cells(k, 2).Value = sample(n) Then 

    p = Cells(k, 7).Value 

    Worksheets("Fluidigm Ct Array").Select 

    Cells(m + 1, n + 26).Value = p 

    End If 

    Next n 

    Next m 

    Next k 

 

For k = 1778 To 2316 
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For m = 1 To 48 

For n = 1 To 22 

     

    Worksheets("Array1").Select 

    If Cells(k, 5).Value = Gene(m) And Cells(k, 2).Value = sample(n) Then 

    p = Cells(k, 7).Value 

    Worksheets("Fluidigm Ct Array").Select 

    Cells(m + 1, n + 50).Value = p 

    End If 

    Next n 

    Next m 

    Next k 

End Sub 

********************************************************************************** 
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Sub Select_cholesterol_pathway_perturbation_from_array_Apr17() 

 

'Dim b As Long 

Dim a As Long 

'Dim number As Integer 

Dim lastrow As Integer 

 

Sheets.Add After:=Sheets("SEMresACMarch17") 

ActiveSheet.Name = "Cholesterol genes" 'creates second worksheet" 

 

Worksheets("SEMresACMarch17").Select 

'For b = 5 To 52 

 

    For a = 1 To 34542 

     

    Worksheets("SEMresACMarch17").Select 

        If ActiveSheet.Cells(a, 2).Value2 = "CYP51A1" Or ActiveSheet.Cells(a, 2).Value2 = "DHCR7" Or ActiveSheet.Cells(a, 
2).Value2 = "DHCR24" Or ActiveSheet.Cells(a, 2).Value2 = "FDFT1" Or ActiveSheet.Cells(a, 2).Value2 = "HMGCR" Or 
ActiveSheet.Cells(a, 2).Value2 = "HMGCS1" Or ActiveSheet.Cells(a, 2).Value2 = "LSS" Or ActiveSheet.Cells(a, 2).Value2 = 
"MSMO1" Or ActiveSheet.Cells(a, 2).Value2 = "MVK" Or ActiveSheet.Cells(a, 2).Value2 = "LSS" Or ActiveSheet.Cells(a, 
2).Value2 = "SQLE" Or ActiveSheet.Cells(a, 2).Value2 = "TM7SF2" Or ActiveSheet.Cells(a, 2).Value2 = "PMVK" Or 
ActiveSheet.Cells(a, 2).Value2 = "MVD" Or ActiveSheet.Cells(a, 2).Value2 = "IDI1" Or ActiveSheet.Cells(a, 2).Value2 = 
"FDPS" Or ActiveSheet.Cells(a, 2).Value2 = "NSDHL" Or ActiveSheet.Cells(a, 2).Value2 = "SC5D" Or ActiveSheet.Cells(a, 
2).Value2 = "SC5DL" Or ActiveSheet.Cells(a, 2).Value2 = "SC4MOL" Or ActiveSheet.Cells(a, 2).Value2 = "EBP" Or 
ActiveSheet.Cells(a, 2).Value2 = "IDI2" Or ActiveSheet.Cells(a, 2).Value2 = "HSD17B7" Then 

         

        Range(Cells(a, 1), Cells(a, 8)).Copy 

        Sheets("Cholesterol genes").Select 

        With ActiveSheet 

                    lastrow = .Cells(.Rows.Count, 3).End(xlUp).Row 

                    Sheets("Cholesterol genes").Cells(lastrow + 1, 1).Select 

                    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

                    Application.CutCopyMode = False 

                    End With 

                    End If 

                    Next a 

                    End Sub 

********************************************************************************** 
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Sub Select_cholesterol_pathway_perturbation_from_array_REH_Apr17() 

 

'Dim b As Long 

Dim a As Long 

'Dim number As Integer 

Dim lastrow As Integer 

 

Sheets.Add After:=Sheets("REHresACMarch17") 

ActiveSheet.Name = "Cholesterol genes" 'creates second worksheet" 

 

Worksheets("REHresACMarch17").Select 

'For b = 5 To 52 

 

    For a = 1 To 38612 

     

    Worksheets("REHresACMarch17").Select 

        If ActiveSheet.Cells(a, 2).Value2 = "CYP51A1" Or ActiveSheet.Cells(a, 2).Value2 = "DHCR7" Or ActiveSheet.Cells(a, 
2).Value2 = "DHCR24" Or ActiveSheet.Cells(a, 2).Value2 = "FDFT1" Or ActiveSheet.Cells(a, 2).Value2 = "HMGCR" Or 
ActiveSheet.Cells(a, 2).Value2 = "HMGCS1" Or ActiveSheet.Cells(a, 2).Value2 = "LSS" Or ActiveSheet.Cells(a, 2).Value2 = 
"MSMO1" Or ActiveSheet.Cells(a, 2).Value2 = "MVK" Or ActiveSheet.Cells(a, 2).Value2 = "LSS" Or ActiveSheet.Cells(a, 
2).Value2 = "SQLE" Or ActiveSheet.Cells(a, 2).Value2 = "TM7SF2" Or ActiveSheet.Cells(a, 2).Value2 = "PMVK" Or 
ActiveSheet.Cells(a, 2).Value2 = "MVD" Or ActiveSheet.Cells(a, 2).Value2 = "IDI1" Or ActiveSheet.Cells(a, 2).Value2 = 
"FDPS" Or ActiveSheet.Cells(a, 2).Value2 = "NSDHL" Or ActiveSheet.Cells(a, 2).Value2 = "SC5D" Or ActiveSheet.Cells(a, 
2).Value2 = "SC5DL" Or ActiveSheet.Cells(a, 2).Value2 = "SC4MOL" Or ActiveSheet.Cells(a, 2).Value2 = "EBP" Or 
ActiveSheet.Cells(a, 2).Value2 = "IDI2" Or ActiveSheet.Cells(a, 2).Value2 = "HSD17B7" Then 

         

        Range(Cells(a, 1), Cells(a, 8)).Copy 

        Sheets("Cholesterol genes").Select 

        With ActiveSheet 

                    lastrow = .Cells(.Rows.Count, 3).End(xlUp).Row 

                    Sheets("Cholesterol genes").Cells(lastrow + 1, 1).Select 

                    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:=False, Transpose:=False 

                    Application.CutCopyMode = False 

                    End With 

                    End If 

                    Next a 

                    End Sub 

********************************************************************************** 
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R scripts 
#SEM/REH cells DESEQ2 Analysis 

 

#http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html 

.libPaths("C:/R/win-library/3.3") 

library(BiocInstaller) 

biocLite(lib.loc = "C:/R/win-library/3.3", lib="C:/R/win-library/3.3") 

biocValid() library(readr) 

library(DESeq2) 

library("AnnotationDbi") 

library("org.Hs.eg.db") 

#### 

SEM1 <- read_delim("C:/list_human.csv.gene.count-with-in-vitro.csv",  

                   ",", escape_double = FALSE, trim_ws = TRUE) 

 

SEM1 <- as.data.frame(SEM1) 

row.names(SEM1) <- SEM1$X1 

SEM1$X1 <- NULL 

SEM1 <- as.matrix(SEM1) 

 

 

countData1 <- as.matrix(SEM1) 

storage.mode(countData1) = "integer" 

 

colData1 <- read.delim2("C:/SEM.colData1.txt",sep="\t",row.names=1) 

 

SEM1dds <- DESeqDataSetFromMatrix(countData = countData1, 

                                  colData = colData1, 

                                  design = ~ Site) 

SEM1dds 

SEM1dds <- DESeq(SEM1dds) 

 

resSEM1 <- results(SEM1dds, contrast=c("Site","CNS","SPLEEN")) 

summary(resSEM1) 

SEM1res <- as.data.frame(resSEM1) 

 

SEM1res$symbol <- mapIds(org.Hs.eg.db,  

                         keys=row.names(SEM1res),  

                         column="SYMBOL",  

                         keytype="ENSEMBL", 

                         multiVals="first") 

 

rld1<- rlogTransformation(SEM1dds, blind=TRUE) 

vsd1<-varianceStabilizingTransformation(SEM1dds, blind=TRUE) 

 

library('RColorBrewer') 

library('gplots') 
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select <- order(rowMeans(counts(SEM1dds,normalized=TRUE)),decreasing=TRUE)[1:30] 

hmcol<- colorRampPalette(brewer.pal(9, 'GnBu'))(100) 

heatmap.2(counts(SEM1dds,normalized=TRUE)[select,], col = hmcol, 

          Rowv = FALSE, Colv = FALSE, scale='none', 

          dendrogram='none', trace='none', margin=c(10,6)) 

dev.copy(svg,'SEM1DESeq2_heatmap1.svg') 

dev.off() 

heatmap.2(assay(rld1)[select,], col = hmcol, 

          Rowv = FALSE, Colv = FALSE, scale='none', 

          dendrogram='none', trace='none', margin=c(10, 6)) 

dev.copy(svg,'SEM1DESeq2_heatmap2.svg') 

dev.off() 

heatmap.2(assay(vsd1)[select,], col = hmcol, 

          Rowv = FALSE, Colv = FALSE, scale='none', 

          dendrogram='none', trace='none', margin=c(10, 6)) 

dev.copy(svg,'SEM1DESeq2_heatmap3.svg') 

dev.off() 

########### 

 

distsRL <- dist(t(assay(rld1))) 

mat<- as.matrix(distsRL) 

hc <- hclust(distsRL) 

heatmap.2(mat, Rowv=as.dendrogram(hc), 

          symm=TRUE, trace='none', 

          col = rev(hmcol), margin=c(13, 13)) 

dev.copy(svg,'SEM1deseq2_heatmaps_samplebysample.svg') 

dev.off() 

############ 

print(plotPCA(rld1, intgroup=c('Site'))) 

dev.copy(svg,'SEM1deseq2_pca.svg') 

dev.off() 

########## 

plotMA(SEM1dds,ylim=c(-2,2),main='DESeq2') 

dev.copy(svg,'SEM1deseq2_MAplot.svg') 

dev.off() 
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############################################################# 

#SEM/REH analysis without TC control 

 

.libPaths("C:/R/win-library/3.3") 

library(readr) 

library(DESeq2) 

#### 

SEM <- read_delim("C:/list_human.csv.gene.count.csv",  

                  ",", escape_double = FALSE, trim_ws = TRUE) 

 

SEM <- as.data.frame(SEM) 

row.names(SEM) <- SEM$X1 

SEM$X1 <- NULL 

SEM <- as.matrix(SEM) 

 

countData <- as.matrix(SEM) 

storage.mode(countData) = "integer" 

 

colData <- read.delim2("C:/SEM.colData.txt",sep="\t",row.names=1) 

 

SEMdds <- DESeqDataSetFromMatrix(countData = countData, 

                                 colData = colData, 

                                 design = ~ Site) 

SEMdds$Site <- relevel(SEMdds$Site, ref="SPLEEN") 

SEMdds 

 

SEMdds <- DESeq(SEMdds) 

SEMdds$Site <- relevel(SEMdds$Site, ref="SPLEEN") 

 

resSEM <- results(SEMdds) 

summary(resSEM) 

SEMres <- as.data.frame(resSEM) 

 

rld<- rlogTransformation(SEMdds, blind=TRUE) 

vsd<-varianceStabilizingTransformation(SEMdds, blind=TRUE) 

 

##### 

dev.off() 

library('RColorBrewer') 

library('gplots') 

select <- order(rowMeans(counts(SEMdds,normalized=TRUE)),decreasing=TRUE)[1:30] 

hmcol<- colorRampPalette(brewer.pal(9, 'GnBu'))(100) 

heatmap.2(counts(SEMdds,normalized=TRUE)[select,], col = hmcol, 

          Rowv = FALSE, Colv = FALSE, scale='none', 

          dendrogram='none', trace='none', margin=c(10,6)) 

dev.copy(svg,'SEM-DESeq2_heatmap1.svg') 

dev.off() 
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heatmap.2(assay(rld)[select,], col = hmcol, 

          Rowv = FALSE, Colv = FALSE, scale='none', 

          dendrogram='none', trace='none', margin=c(10, 6)) 

dev.copy(svg,'SEM-DESeq2_heatmap2.svg') 

dev.off() 

heatmap.2(assay(vsd)[select,], col = hmcol, 

          Rowv = FALSE, Colv = FALSE, scale='none', 

          dendrogram='none', trace='none', margin=c(10, 6)) 

dev.copy(svg,'SEM-DESeq2_heatmap3.svg') 

dev.off() 

########### 

 

distsRL <- dist(t(assay(rld))) 

mat<- as.matrix(distsRL) 

hc <- hclust(distsRL) 

heatmap.2(mat, Rowv=as.dendrogram(hc), 

          symm=TRUE, trace='none', 

          col = rev(hmcol), margin=c(13, 13)) 

dev.copy(svg,'SEM-deseq2_heatmaps_samplebysample.svg') 

dev.off() 

############ 

print(plotPCA(rld, intgroup=c('Site'))) 

dev.copy(svg,'SEM-deseq2_pca.svg') 

dev.off() 

################ 

dev.off() 

plotMA(SEMdds,ylim=c(-2,2),main='DESeq2') 

dev.copy(svg,'SEM-deseq2_MAplot.svg') 

dev.off() 
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############################################################## 

#Cholesterol gene waterfall plots 

 

.libPaths("C:/R/win-library/3.3") 

library(readr) 

library("ggplot2", lib.loc="C:/R/win-library/3.3") 

library('RColorBrewer') 

dev.off() 

Chol <- read_csv("C:/Cholesterol genes.csv") 

 

Chol <- as.data.frame(Chol) 

Chol$`-Log10 Adjusted p-value` <- -log10(Chol$`Adjusted p-value`) 

 

Chol$X1 <- factor(Chol$X1, levels = Chol$X1[order(Chol$log2FoldChange)]) 

 

bccol<- colorRampPalette(brewer.pal(9, 'GnBu'))(100) 

 

ggplot(Chol, aes(x=X1, y=log2FoldChange, fill=`-Log10 Adjusted p-value`)) + geom_bar(colour="black",stat="identity") + 

  xlab("Gene") +   ylab("Log2 Fold-change") + 

  ggtitle("Cholesterol synthesis genes") + coord_flip() + 

  scale_fill_gradientn(colours=topo.colors(7), 

                       breaks=c(1.3, 8, 14), 

                       labels=c("1.3 (Adj. p=0.05)","8","14"), limits=c(1.3,14), na.value = "white") 

 

ggplot(Chol, aes(x=X1, y=log2FoldChange, fill=`-Log10 Adjusted p-value`)) + geom_bar(colour="black",stat="identity") + 

  xlab("Gene") +   ylab("Log2 Fold-change, CNS:Spleen") + 

  ggtitle("Cholesterol synthesis genes") + coord_flip() + 

  scale_fill_gradientn(colours=bccol, 

                       breaks=c(1.3, 8, 14), 

                       labels=c("1.3 (Adj. p=0.05)","8","14"), limits=c(1.3,14),na.value = "transparent") 

 

svg(file="C:/Cholesterol genes Barchart.svg") 

ggplot(Chol, aes(x=X1, y=log2FoldChange, fill=`-Log10 Adjusted p-value`)) + geom_bar(colour="black",stat="identity") + 

  xlab("Gene") +   ylab("Log2 Fold-change, CNS:Spleen") + 

  ggtitle("Cholesterol synthesis genes") + coord_flip() + 

  scale_fill_gradientn(colours=bccol, 

                       breaks=c(1.3, 8, 14), 

                       labels=c("1.3 (Adj. p=0.05)","8","14"), limits=c(1.3,14),na.value = "transparent") 

dev.off()  
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############################################################## 

#Venn diagram 

 

library(VennDiagram) 

library(gridExtra) 

library(readxl) 

 

RNASeqData <- read_excel("C:/CombinedRNASeqData.xlsx") 

 

REH <- as.data.frame(RNASeqData$REH) 

REH <- subset(REH,!NA) 

SEM <- as.data.frame(RNASeqData$SEM) 

REHandSEM <- as.data.frame(RNASeqData$Both) 

REH <- subset(REH!NA) 

 

dev.off() 

grid.newpage() 

h = draw.pairwise.venn(area1 = nrow(na.omit(REH)), area2 = nrow(na.omit(SEM)), 

                       , cross.area =  nrow(na.omit(REHandSEM)),fontfamily = "Arial", fontface = "bold", cat.fontfamily = "Arial", 
cat.fontface = "bold", 

                       category = c("REH", "SEM"), lty = rep("solid", 2), lwd=1 ,  

                       fill = c("#0177e1", 

                                "#ff949e"), ext.text=FALSE)#scaled = FALSE) 

grid.arrange(gTree(children=h), top="GSEA of RNA Seq\n data using\nKEGG pathways") 

 

dev.off() 

svg(file="C:/SEM and REH KEGG pathways venn.svg") 

grid.newpage() 

grid.arrange(gTree(children=h), top="GSEA of RNA Seq\n data using\nKEGG pathways") 

dev.off() 
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############################################################## 

#Cholesterol data from multiplex PCR 

library(readr) 

library(readxl) 

library("ggplot2", lib.loc="C:/R/win-library/3.3") 

library('RColorBrewer') 

dev.off() 

FluiChol <- read_excel("C:/TC Jan 17 Fluidigm chip analysis Chol-lipid export Foldchanges.xlsx") 

 

FluiChol <- as.data.frame(FluiChol) 

FluiChol$`-Log10 p-value` <- -log10(FluiChol$`p-value`) 

 

FluiChol$Gene <- factor(FluiChol$Gene, levels = FluiChol$Gene[order(FluiChol$`Mean FC`)]) 

 

bccol<- colorRampPalette(brewer.pal(9, 'GnBu'))(100) 

 

ggplot(FluiChol, aes(x=Gene, y=`Mean FC`, fill=`-Log10 p-value`)) + geom_bar(colour="black",stat="identity") + 

  xlab("Gene") +   ylab("Mean FC") + 

  ggtitle("FluiCholesterol synthesis genes") + coord_flip() + 

  scale_fill_gradientn(colours=topo.colors(7), 

                       breaks=c(1.3, 8, 14), 

                       labels=c("1.3 (p=0.05)","8","14"), limits=c(1.3,14), na.value = "white") 

 

ggplot(FluiChol, aes(x=Gene, y=`Mean FC`, fill=`-Log10 p-value`)) + geom_bar(colour="black",stat="identity") + 

  xlab("Gene") +   ylab("Log2 Fold-change, CNS:Spleen") + 

  ggtitle("FluiCholesterol synthesis genes") + coord_flip() + 

  scale_fill_gradientn(colours=bccol, 

                       breaks=c(1.3, 8, 14), 

                       labels=c("1.3 (p=0.05)","8","14"), limits=c(1.3,14),na.value = "transparent") 

######### 

ggplot() + geom_bar(data=FluiChol, aes(x=Gene, y=`Mean FC`, fill=`-Log10 p-value`), colour="black",stat="identity") + 

  geom_point(data=FluiChol, aes(x=Gene, y=c(`Patient 1`))) + 

  geom_point(data=FluiChol, aes(x=Gene, y=c(`Patient 2`))) + 

  geom_point(data=FluiChol, aes(x=Gene, y=c(`Patient 3`))) + 

  geom_point(data=FluiChol, aes(x=Gene, y=c(`Patient 4`))) + 

  geom_point(data=FluiChol, aes(x=Gene, y=c(`Patient 5`))) + 

  xlab("Gene") +   ylab("Log2 Fold-change, CNS:Spleen") + 

  ggtitle("FluiCholesterol synthesis genes") + coord_flip(ylim=c(-2.5,2.5)) + 

  scale_fill_gradientn(colours=bccol, 

                       breaks=c(1.3, 8, 14), 

                       labels=c("1.3 (p=0.05)","8","14"), limits=c(1.3,14),na.value = "transparent") 

################# 

 

svg(file="C:/FluiCholesterol genes Barchart.svg") 

ggplot(FluiChol, aes(x=Gene, y=`Mean FC`, fill=`-Log10 p-value`)) + geom_bar(colour="black",stat="identity") + 

  xlab("Gene") +   ylab("Log2 Fold-change, CNS:Spleen") + 

  ggtitle("FluiCholesterol synthesis genes") + coord_flip() + 
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  scale_fill_gradientn(colours=bccol, 

                       breaks=c(1.3, 8, 14), 

                       labels=c("1.3 (p=0.05)","8","14"), limits=c(1.3,14),na.value = "transparent") 

dev.off() 
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############################################################## 

#Cholesterol data from multiplex PCR - idividual graphs (similar script used for Fatty acid and SREBP/ACCS gene analysis) 

 

library(readr) 

library(readxl) 

library("ggplot2", lib.loc="C:/R/win-library/3.3") 

library('RColorBrewer') 

library(gridExtra) 

library(grid) 

dev.off() 

FluiChols <- read_excel("C:/TC Jan 17 Fluidigm chip analysis Chol-lipid export(analysis4) Foldchanges.xlsx") 

FluiChols <- as.data.frame(FluiChols) 

 

rownames(FluiChols) <- FluiChols$Gene 

FluiChols <- subset(FluiChols[,2:10]) 

FluiChols <- log(FluiChols,2) 

 

p1Chol <- subset(FluiChols[,1:3]) 

p1Chol$Mean <- rowMeans(p1Chol) 

p2Chol <- FluiChols[c(-1,-2,-3,-5,-6,-7,-8,-9)] 

p3Chol <- subset(FluiChols[,5:7]) 

p3Chol$Mean <- rowMeans(p3Chol) 

p4Chol <- FluiChols[c(-1,-2,-3,-4,-5,-6,-7,-9)] 

p5Chol <- FluiChols[c(-1,-2,-3,-4,-5,-6,-7,-8)] 

 

p1Chol$names <- factor(row.names(p1Chol), levels = row.names(p1Chol)) 

p1Chol$names = with(p1Chol, factor(names, levels = rev(levels(names)))) 

 

p1 <- ggplot(p1Chol, aes(x=p1Chol$names, y=`Mean`)) + geom_bar(colour="black",fill="blue",stat="identity") + 

  xlab("Gene") +   ylab("Mean Log2 FC")  +  

  ggtitle("Patient 1") + coord_flip(ylim=c(-2.5,2.5)) 

 

p2 <- ggplot(p2Chol, aes(x=p1Chol$names, y=`Patient 2`)) + geom_bar(colour="black",fill="blue",stat="identity")  + 

  xlab("Gene") +   ylab("Mean Log2 FC") + 

  ggtitle("Patient 2") + coord_flip(ylim=c(-2.5,2.5))  

 

p3 <- ggplot(p3Chol, aes(x=p1Chol$names, y=`Mean`)) + geom_bar(colour="black",fill="blue",stat="identity") + 

  xlab("Gene") +   ylab("Mean Log2 FC") + 

  ggtitle("Patient 3") + coord_flip(ylim=c(-2.5,2.5))  

 

p4 <- ggplot(p4Chol, aes(x=p1Chol$names, y=`Patient 4`)) + geom_bar(colour="black",fill="blue",stat="identity") + 

  xlab("Gene") +   ylab("Mean Log2 FC") + 

  ggtitle("Patient 4") + coord_flip(ylim=c(-2.5,2.5))  

 

p5 <- ggplot(p5Chol, aes(x=p1Chol$names, y=`Patient 5`)) + geom_bar(colour="black",fill="blue",stat="identity") + 

  xlab("Gene") +   ylab("Mean Log2 FC") + 

  ggtitle("Patient 5") + coord_flip(ylim=c(-2.5,2.5)) 
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grid.arrange(p1, p2, p3, p4, p5, ncol = 3) 

################################# 

 

FluiChol$Gene <- factor(FluiChol$Gene, levels = FluiChol$Gene[order(FluiChol$`Mean FC`)]) 

 

p1Chol$names <- factor(row.names(p1Chol), levels = row.names(p1Chol)) 

p1Chol$names = with(p1Chol, factor(names, levels = p1Chol$names[order(p1Chol$Mean)])) 

p2Chol$names <- factor(row.names(p1Chol), levels = row.names(p1Chol)) 

p2Chol$names = with(p2Chol, factor(names, levels = p2Chol$names[order(p2Chol$`Patient 2`)])) 

 

p3Chol$names <- factor(row.names(p1Chol), levels = row.names(p1Chol)) 

p3Chol$names = with(p3Chol, factor(names, levels = p3Chol$names[order(p3Chol$Mean)])) 

p4Chol$names <- factor(row.names(p1Chol), levels = row.names(p1Chol)) 

p4Chol$names = with(p4Chol, factor(names, levels = p4Chol$names[order(p4Chol$`Patient 4`)])) 

p5Chol$names <- factor(row.names(p1Chol), levels = row.names(p1Chol)) 

p5Chol$names = with(p5Chol, factor(names, levels = p5Chol$names[order(p5Chol$`Patient 5`)])) 

 

p1 <- ggplot(p1Chol, aes(x=p1Chol$names, y=`Mean`)) + 

  xlab("Gene") +   ylab("Mean Log2 FC")  +  

  geom_bar(stat = 'identity', colour="black", aes(fill = `Mean`>0), position = 'dodge') + 

  scale_fill_manual(values=c("red","blue"),guide = 'none') + 

  ggtitle("Patient 1") + coord_flip(ylim=c(-2.5,2.5)) 

 

p2 <- ggplot(p2Chol, aes(x=p2Chol$names, y=`Patient 2`)) + geom_bar(colour="black",fill="blue",stat="identity")  + 

  xlab("Gene") +   ylab("Mean Log2 FC") + 

  geom_bar(stat = 'identity', colour="black", aes(fill = `Patient 2`>0), position = 'dodge') + 

  scale_fill_manual(values=c("red","blue"),guide = 'none') + 

  ggtitle("Patient 2") + coord_flip(ylim=c(-2.5,2.5))  

 

p3 <- ggplot(p3Chol, aes(x=p3Chol$names, y=`Mean`)) + geom_bar(colour="black",fill="blue",stat="identity") + 

  xlab("Gene") +   ylab("Mean Log2 FC") + 

  geom_bar(stat = 'identity', colour="black", aes(fill = `Mean`>0), position = 'dodge') + 

  scale_fill_manual(values=c("red","blue"),guide = 'none') + 

  ggtitle("Patient 3") + coord_flip(ylim=c(-2.5,2.5))  

 

p4 <- ggplot(p4Chol, aes(x=p4Chol$names, y=`Patient 4`)) + geom_bar(colour="black",fill="blue",stat="identity") + 

  xlab("Gene") +   ylab("Mean Log2 FC") + 

  geom_bar(stat = 'identity', colour="black", aes(fill = `Patient 4`>0), position = 'dodge') + 

  scale_fill_manual(values=c("red","blue"),guide = 'none') + 

  ggtitle("Patient 4") + coord_flip(ylim=c(-2.5,2.5))  

 

p5 <- ggplot(p5Chol, aes(x=p5Chol$names, y=`Patient 5`)) + geom_bar(colour="black",fill="blue",stat="identity") + 

  xlab("Gene") +   ylab("Mean Log2 FC") + 

  geom_bar(stat = 'identity', colour="black", aes(fill = `Patient 5`>0), position = 'dodge') + 

  scale_fill_manual(values=c("red","blue"),guide = 'none') + 

  ggtitle("Patient 5") + coord_flip(ylim=c(-2.5,2.5)) 
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grid.arrange(p1, p2, p3, p4, p5, ncol = 3, top=textGrob("Cholesterol synthesis genes Log2 fold-change \n CNS:Spleen by 
individual patient sample", gp=gpar(fontsize=15, font =2))) 

 

svg(file="C:/Fluidigm individual patient cholesterol genes Barchart.svg") 

grid.arrange(p1, p2, p3, p4, p5, ncol = 3, top=textGrob("Cholesterol synthesis genes Log2 fold-change \n CNS:Spleen by 
individual patient sample", gp=gpar(fontsize=15, font =2))) 

dev.off() 

################ 

p1 <- ggplot(p1Chol, aes(x=p1Chol$names, y=`Mean`)) + 

  xlab("Gene") +   ylab("Mean FC")  +  

  geom_bar(stat = 'identity', colour="black", aes(fill = `Mean`>0), position = 'dodge') + 

  scale_fill_manual(values=c("red","blue"),guide = 'none') + 

  ggtitle("Patient 1") + coord_flip(ylim=c(-2.5,2.5)) + 

  geom_point(data=p1Chol, aes(x=names, y=c(`Patient 1`))) + 

  geom_point(data=p1Chol, aes(x=names, y=c(`Patient 1__1`))) + 

  geom_point(data=p1Chol, aes(x=names, y=c(`Patient 1__2`))) 

 

p2 <- ggplot(p2Chol, aes(x=p2Chol$names, y=`Patient 2`)) + geom_bar(colour="black",fill="blue",stat="identity")  + 

  xlab("Gene") +   ylab("Mean Log2 FC") + 

  geom_bar(stat = 'identity', colour="black", aes(fill = `Patient 2`>0), position = 'dodge') + 

  scale_fill_manual(values=c("red","blue"),guide = 'none') + 

  ggtitle("Patient 2") + coord_flip(ylim=c(-2.5,2.5))  

 

p3 <- ggplot(p3Chol, aes(x=p3Chol$names, y=`Mean`)) + geom_bar(colour="black",fill="blue",stat="identity") + 

  xlab("Gene") +   ylab("Mean Log2 FC") + 

  geom_bar(stat = 'identity', colour="black", aes(fill = `Mean`>0), position = 'dodge') + 

  scale_fill_manual(values=c("red","blue"),guide = 'none') + 

  ggtitle("Patient 3") + coord_flip(ylim=c(-2.5,2.5)) + 

  geom_point(data=p3Chol, aes(x=p3Chol$names, y=c(`Patient 3`))) + 

  geom_point(data=p3Chol, aes(x=p3Chol$names, y=c(`Patient 3__1`))) + 

  geom_point(data=p3Chol, aes(x=p3Chol$names, y=c(`Patient 3__2`))) 

 

p4 <- ggplot(p4Chol, aes(x=p4Chol$names, y=`Patient 4`)) + geom_bar(colour="black",fill="blue",stat="identity") + 

  xlab("Gene") +   ylab("Mean Log2 FC") + 

  geom_bar(stat = 'identity', colour="black", aes(fill = `Patient 4`>0), position = 'dodge') + 

  scale_fill_manual(values=c("red","blue"),guide = 'none') + 

  ggtitle("Patient 4") + coord_flip(ylim=c(-2.5,2.5))  

 

p5 <- ggplot(p5Chol, aes(x=p5Chol$names, y=`Patient 5`)) + geom_bar(colour="black",fill="blue",stat="identity") + 

  xlab("Gene") +   ylab("Mean Log2 FC") + 

  geom_bar(stat = 'identity', colour="black", aes(fill = `Patient 5`>0), position = 'dodge') + 

  scale_fill_manual(values=c("red","blue"),guide = 'none') + 

  ggtitle("Patient 5") + coord_flip(ylim=c(-2.5,2.5)) 

 

grid.arrange(p1, p2, p3, p4, p5, ncol = 3, top=textGrob("Cholesterol synthesis genes Log2 fold-change \n CNS:Spleeen by 
individual patient sample", gp=gpar(fontsize=15, font =2))) 

 

svg(file="C:/Fluidigm individual patient cholesterol genes Barchart1.svg") 
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grid.arrange(p1, p2, p3, p4, p5, ncol = 3, top=textGrob("Cholesterol synthesis genes Log2 fold-change \n CNS:Spleeen by 
individual patient sample", gp=gpar(fontsize=15, font =2))) 

dev.off() 
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############################################################## 

#Other gene data from multiplex PCR - idividual gene graphs 

 

library(readr) 

library(readxl) 

library("ggplot2", lib.loc="C:/R/win-library/3.3") 

library('RColorBrewer') 

library(gridExtra) 

library(grid) 

library(stringr) 

dev.off() 

 

FluiChols <- read_excel("C:/TC Jan 17 Fluidigm chip analysis Chol-lipid export(analysis6 Other) Foldchanges.xlsx") 

FluiChols <- as.data.frame(FluiChols) 

 

rownames(FluiChols) <- FluiChols$Gene 

FluiChols <- subset(FluiChols[,2:10]) 

FluiChols<- log(FluiChols,2) 

 

FluiChols$`Patient 1 (t(12;21))` <- rowMeans(FluiChols[,1:3]) 

FluiChols$`Patient 2 (t(12;21))` <- FluiChols$`Patient 2` 

FluiChols$`Patient 2`<- NULL 

FluiChols$`Patient 3 (t(12;21))` <- rowMeans(FluiChols[,4:6]) 

FluiChols$`Patient 4 (t(4;11))` <- FluiChols$`Patient 4` 

FluiChols$`Patient 4`<- NULL 

FluiChols$`Patient 5 (t(4;11))` <- FluiChols$`Patient 5` 

FluiChols$`Patient 5`<- NULL 

 

p1Chol <- subset(FluiChols[,c(1:3)]) 

p1Chol <- as.data.frame(t(p1Chol)) 

p3Chol <- subset(FluiChols[,c(4:6)]) 

p3Chol <- as.data.frame(t(p3Chol)) 

 

FluiChols$`Patient 1` <- NULL 

FluiChols$`Patient 1__1` <- NULL 

FluiChols$`Patient 1__2` <- NULL 

FluiChols$`Patient 3` <- NULL 

FluiChols$`Patient 3__1` <- NULL 

FluiChols$`Patient 3__2` <- NULL 

 

tFluichols <- as.data.frame(t(FluiChols)) 

 

g1Chol <-tFluichols[c(-2,-3,-4,-5,-6,-7,-8)] 

g1Chol$'1' <- c(p1Chol[1,1],NA,NA,NA,NA) 

g1Chol$'1__1' <- c(p1Chol[2,1],NA,NA,NA,NA) 

g1Chol$'1__2' <- c(p1Chol[3,1],NA,NA,NA,NA) 
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g1Chol$'3' <- c(NA,NA,p3Chol[1,1],NA,NA) 

g1Chol$'3__1' <- c(NA,NA,p3Chol[2,1],NA,NA) 

g1Chol$'3__2' <- c(NA,NA,p3Chol[3,1],NA,NA) 

 

g1Chol$names <- factor(row.names(g1Chol), levels = row.names(g1Chol)) 

 

g2Chol <-tFluichols[c(-1,-3,-4,-5,-6,-7,-8)] 

g2Chol$'1' <- c(p1Chol[1,2],NA,NA,NA,NA) 

g2Chol$'1__1' <- c(p1Chol[2,2],NA,NA,NA,NA) 

g2Chol$'1__2' <- c(p1Chol[3,2],NA,NA,NA,NA) 

 

g2Chol$'3' <- c(NA,NA,p3Chol[1,2],NA,NA) 

g2Chol$'3__1' <- c(NA,NA,p3Chol[2,2],NA,NA) 

g2Chol$'3__2' <- c(NA,NA,p3Chol[3,2],NA,NA) 

 

g2Chol$names <- factor(row.names(g2Chol), levels = row.names(g2Chol)) 

 

g3Chol <-tFluichols[c(-1,-2,-4,-5,-6,-7,-8)] 

g3Chol$'1' <- c(p1Chol[1,3],NA,NA,NA,NA) 

g3Chol$'1__1' <- c(p1Chol[2,3],NA,NA,NA,NA) 

g3Chol$'1__2' <- c(p1Chol[3,3],NA,NA,NA,NA) 

 

g3Chol$'3' <- c(NA,NA,p3Chol[1,3],NA,NA) 

g3Chol$'3__1' <- c(NA,NA,p3Chol[2,3],NA,NA) 

g3Chol$'3__2' <- c(NA,NA,p3Chol[3,3],NA,NA) 

 

g3Chol$names <- factor(row.names(g3Chol), levels = row.names(g3Chol)) 

 

g4Chol <-tFluichols[c(-1,-2,-3,-5,-6,-7,-8)] 

g4Chol$'1' <- c(p1Chol[1,4],NA,NA,NA,NA) 

g4Chol$'1__1' <- c(p1Chol[2,4],NA,NA,NA,NA) 

g4Chol$'1__2' <- c(p1Chol[3,4],NA,NA,NA,NA) 

 

g4Chol$'3' <- c(NA,NA,p3Chol[1,4],NA,NA) 

g4Chol$'3__1' <- c(NA,NA,p3Chol[2,4],NA,NA) 

g4Chol$'3__2' <- c(NA,NA,p3Chol[3,4],NA,NA) 

 

g4Chol$names <- factor(row.names(g4Chol), levels = row.names(g4Chol)) 

 

g5Chol <-tFluichols[c(-1,-2,-3,-4,-5,-6,-8)] 

g5Chol$'1' <- c(p1Chol[1,7],NA,NA,NA,NA) 

g5Chol$'1__1' <- c(p1Chol[2,7],NA,NA,NA,NA) 

g5Chol$'1__2' <- c(p1Chol[3,7],NA,NA,NA,NA) 

 

g5Chol$'3' <- c(NA,NA,p3Chol[1,7],NA,NA) 

g5Chol$'3__1' <- c(NA,NA,p3Chol[2,7],NA,NA) 

g5Chol$'3__2' <- c(NA,NA,p3Chol[3,7],NA,NA) 
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g5Chol$names <- factor(row.names(g5Chol), levels = row.names(g5Chol)) 

 

g6Chol <-tFluichols[c(-1,-2,-3,-4,-5,-6,-7)] 

g6Chol$'1' <- c(p1Chol[1,8],NA,NA,NA,NA) 

g6Chol$'1__1' <- c(p1Chol[2,8],NA,NA,NA,NA) 

g6Chol$'1__2' <- c(p1Chol[3,8],NA,NA,NA,NA) 

 

g6Chol$'3' <- c(NA,NA,p3Chol[1,8],NA,NA) 

g6Chol$'3__1' <- c(NA,NA,p3Chol[2,8],NA,NA) 

g6Chol$'3__2' <- c(NA,NA,p3Chol[3,8],NA,NA) 

 

g6Chol$names <- factor(row.names(g6Chol), levels = row.names(g6Chol)) 

 

######################### 

 

g1 <- ggplot(g1Chol, aes(x=names, y=VEGFa)) + 

  xlab("") +   ylab("Mean Log2 FC")  +  

  geom_bar(stat = 'identity', colour="black", aes(fill = `VEGFa`>0), position = 'dodge') + 

  scale_fill_manual(values=c("blue","blue"),guide = 'none') + 

  ggtitle("VEGFa")  + 

  scale_x_discrete(labels= function(names) str_wrap(names, width = 10)) +  #theme(plot.margin = 
unit(c(1,1,0.5,4),"lines")) + 

  geom_point(data=na.omit(g1Chol), aes(x=g1Chol$names, y=g1Chol$`1`)) + 

  geom_point(data=na.omit(g1Chol), aes(x=g1Chol$names, y=g1Chol$`1__1`)) + 

  geom_point(data=na.omit(g1Chol), aes(x=g1Chol$names, y=g1Chol$`1__2`)) + 

  geom_point(data=na.omit(g1Chol), aes(x=g1Chol$names, y=g1Chol$`3`)) + 

  geom_point(data=na.omit(g1Chol), aes(x=g1Chol$names, y=g1Chol$`3__1`)) + 

  geom_point(data=na.omit(g1Chol), aes(x=g1Chol$names, y=g1Chol$`3__2`)) + 

  theme(axis.title.x = element_text(face="bold",size=16), axis.text.x = element_text(face="bold",size=9.5), 

        axis.title.y = element_text(face="bold",size=16), axis.text.y = element_text(face="bold",size=14), 

        plot.title=element_text(size=18,hjust=0.5,face="bold")) 

g1 

 

g2 <- ggplot(g2Chol, aes(x=names, y=IRF4)) + 

  xlab("") +   ylab("Mean Log2 FC")  +  

  geom_bar(stat = 'identity', colour="black", aes(fill = `IRF4`>0), position = 'dodge') + 

  scale_fill_manual(values=c("blue","blue"),guide = 'none') + 

  ggtitle("IRF4") + 

  scale_x_discrete(labels= function(names) str_wrap(names, width = 10)) +  #theme(plot.margin = 
unit(c(1,1,0.5,4),"lines")) + 

  geom_point(data=na.omit(g2Chol), aes(x=g2Chol$names, y=g2Chol$`1`)) + 

  geom_point(data=na.omit(g2Chol), aes(x=g2Chol$names, y=g2Chol$`1__1`)) + 

  geom_point(data=na.omit(g2Chol), aes(x=g2Chol$names, y=g2Chol$`1__2`)) + 

  geom_point(data=na.omit(g2Chol), aes(x=g2Chol$names, y=g2Chol$`3`)) + 

  geom_point(data=na.omit(g2Chol), aes(x=g2Chol$names, y=g2Chol$`3__1`)) + 

  geom_point(data=na.omit(g2Chol), aes(x=g2Chol$names, y=g2Chol$`3__2`)) + 

  theme(axis.title.x = element_text(face="bold",size=16), axis.text.x = element_text(face="bold",size=9.5), 
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        axis.title.y = element_text(face="bold",size=16), axis.text.y = element_text(face="bold",size=14), 

        plot.title=element_text(size=18,hjust=0.5,face="bold")) 

 

g2 

 

g3 <- ggplot(g3Chol, aes(x=names, y=MERTK)) + 

  xlab("") +   ylab("Mean Log2 FC")  +  

  geom_bar(stat = 'identity', colour="black", aes(fill = `MERTK`>0), position = 'dodge') + 

  scale_fill_manual(values=c("red","blue"),guide = 'none') + 

  ggtitle("MERTK") 

  scale_x_discrete(labels= function(names) str_wrap(names, width = 10)) +  #theme(plot.margin = 
unit(c(1,1,0.5,4),"lines")) + 

  geom_point(data=na.omit(g3Chol), aes(x=g3Chol$names, y=g3Chol$`1`)) + 

  geom_point(data=na.omit(g3Chol), aes(x=g3Chol$names, y=g3Chol$`1__1`)) + 

  geom_point(data=na.omit(g3Chol), aes(x=g3Chol$names, y=g3Chol$`1__2`)) + 

  geom_point(data=na.omit(g3Chol), aes(x=g3Chol$names, y=g3Chol$`3`)) + 

  geom_point(data=na.omit(g3Chol), aes(x=g3Chol$names, y=g3Chol$`3__1`)) + 

  geom_point(data=na.omit(g3Chol), aes(x=g3Chol$names, y=g3Chol$`3__2`)) + 

  theme(axis.title.x = element_text(face="bold",size=16), axis.text.x = element_text(face="bold",size=9.5), 

        axis.title.y = element_text(face="bold",size=16), axis.text.y = element_text(face="bold",size=14), 

        plot.title=element_text(size=18,hjust=0.5,face="bold")) 

g3 

g4 <- ggplot(g4Chol, aes(x=names, y=IL15)) + 

  xlab("") +   ylab("Mean Log2 FC")  +  

  geom_bar(stat = 'identity', colour="black", aes(fill = `IL15`>0), position = 'dodge') + 

  scale_fill_manual(values=c("red","blue"),guide = 'none') + 

  ggtitle("IL15")  

  scale_x_discrete(labels= function(names) str_wrap(names, width = 10)) +  #theme(plot.margin = 
unit(c(1,1,0.5,4),"lines")) + 

  geom_point(data=na.omit(g4Chol), aes(x=g4Chol$names, y=g4Chol$`1`)) + 

  geom_point(data=na.omit(g4Chol), aes(x=g4Chol$names, y=g4Chol$`1__1`)) + 

  geom_point(data=na.omit(g4Chol), aes(x=g4Chol$names, y=g4Chol$`1__2`)) + 

  geom_point(data=na.omit(g4Chol), aes(x=g4Chol$names, y=g4Chol$`3`)) + 

  geom_point(data=na.omit(g4Chol), aes(x=g4Chol$names, y=g4Chol$`3__1`)) + 

  geom_point(data=na.omit(g4Chol), aes(x=g4Chol$names, y=g4Chol$`3__2`)) + 

  theme(axis.title.x = element_text(face="bold",size=16), axis.text.x = element_text(face="bold",size=9.5), 

        axis.title.y = element_text(face="bold",size=16), axis.text.y = element_text(face="bold",size=14), 

        plot.title=element_text(size=18,hjust=0.5,face="bold")) 

g4 

g5 <- ggplot(g5Chol, aes(x=names, y=ICAM1)) + 

  xlab("") +   ylab("Mean Log2 FC")  +  

  geom_bar(stat = 'identity', colour="black", aes(fill = `ICAM1`>0), position = 'dodge') + 

  scale_fill_manual(values=c("red","blue"),guide = 'none') + 

  ggtitle("ICAM1") +# coord_flip(ylim=c(-2.5,2.5)) + 

  scale_x_discrete(labels= function(names) str_wrap(names, width = 10)) +  #theme(plot.margin = 
unit(c(1,1,0.5,4),"lines")) + 

  geom_point(data=na.omit(g5Chol), aes(x=g5Chol$names, y=g5Chol$`1`)) + 

  geom_point(data=na.omit(g5Chol), aes(x=g5Chol$names, y=g5Chol$`1__1`)) + 

  geom_point(data=na.omit(g5Chol), aes(x=g5Chol$names, y=g5Chol$`1__2`)) + 
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  geom_point(data=na.omit(g5Chol), aes(x=g5Chol$names, y=g5Chol$`3`)) + 

  geom_point(data=na.omit(g5Chol), aes(x=g5Chol$names, y=g5Chol$`3__1`)) + 

  geom_point(data=na.omit(g5Chol), aes(x=g5Chol$names, y=g5Chol$`3__2`)) + 

  theme(axis.title.x = element_text(face="bold",size=16), axis.text.x = element_text(face="bold",size=9.5), 

        axis.title.y = element_text(face="bold",size=16), axis.text.y = element_text(face="bold",size=14), 

        plot.title=element_text(size=18,hjust=0.5,face="bold")) 

 

g5 

g6 <- ggplot(g6Chol, aes(x=names, y=SPP1)) + 

  xlab("") +   ylab("Mean Log2 FC")  +  

  geom_bar(stat = 'identity', colour="black", aes(fill = `SPP1`>0), position = 'dodge') + 

  ##theme_bw()  

  #scale_fill_manual(values="blue",guide = 'none') + 

  scale_fill_manual(values=c("red","blue"),guide = 'none') + 

  ggtitle("SPP1") +# coord_flip(ylim=c(-2.5,2.5)) + 

  scale_x_discrete(labels= function(names) str_wrap(names, width = 10)) +  #theme(plot.margin = 
unit(c(1,1,0.5,4),"lines")) + 

  geom_point(data=na.omit(g6Chol), aes(x=g6Chol$names, y=g6Chol$`1`)) + 

  geom_point(data=na.omit(g6Chol), aes(x=g6Chol$names, y=g6Chol$`1__1`)) + 

  geom_point(data=na.omit(g6Chol), aes(x=g6Chol$names, y=g6Chol$`1__2`)) + 

  geom_point(data=na.omit(g6Chol), aes(x=g6Chol$names, y=g6Chol$`3`)) + 

  geom_point(data=na.omit(g6Chol), aes(x=g6Chol$names, y=g6Chol$`3__1`)) + 

  geom_point(data=na.omit(g6Chol), aes(x=g6Chol$names, y=g6Chol$`3__2`)) + 

  theme(axis.title.x = element_text(face="bold",size=16), axis.text.x = element_text(face="bold",size=9.5), 

        axis.title.y = element_text(face="bold",size=16), axis.text.y = element_text(face="bold",size=14), 

        plot.title=element_text(size=18,hjust=0.5,face="bold")) 

 

g6 

 

grid.arrange(g1, g2, g3, g4, g5, g6, ncol = 3, top=textGrob("Log2 Fold-change in expression CNS:Spleen\nof genes 
implicated in CNS ALL", gp=gpar(fontsize=20, font =2))) 

 

dev.off() 

svg(file="C:/Fluidigm individual patient Other genes Barchart1.svg") 

grid.arrange(g1, g2, g3, g4, g5, g6, ncol = 2, top=textGrob("Log2 Fold-change in expression CNS:Spleen\nof genes 
implicated in CNS ALL", gp=gpar(fontsize=20, font =2))) 

dev.off() 
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############################################################## 

#Primary CNS ALL (relapse) analysis 

library(readr) 

library("ggplot2", lib.loc="C:/R/win-library/3.3") 

library('RColorBrewer') 

library(readxl) 

library(gplots) 

library(car) 

 

dev.off() 

Chol <- read_csv("C:/VanDongenCNSrelapsedata.csv") 

 

Chol <- as.data.frame(Chol) 

Chol$`-Log10 p-value` <- -log10(Chol$`p-value`) 

 

Chol$Gene <- factor(Chol$Gene, levels = Chol$Gene[order(Chol$log2FoldChange)]) 

 

bccol<- colorRampPalette(brewer.pal(9, 'GnBu'))(100) 

 

ggplot(Chol, aes(x=Gene, y=log2FoldChange, fill=`-Log10 p-value`)) + geom_bar(colour="black",stat="identity") + 

  xlab("Gene") +   ylab("Log2 Fold-change") + 

  ggtitle("Cholesterol synthesis genes") + coord_flip() + 

  scale_fill_gradientn(colours=topo.colors(7), 

                       breaks=c(1.3, 30, 60), 

                       labels=c("1.3 (Adj. p=0.05)","5","10 (Adj. p=1x10e-10)"), limits=c(1.3,10), na.value = "white") 

 

ggplot(Chol, aes(x=Gene, y=log2FoldChange, fill=`-Log10 p-value`)) + geom_bar(colour="black",stat="identity") + 

  xlab("Gene") +   ylab("Log2 Fold-change, CNS:Spleen") + 

  ggtitle("Cholesterol synthesis genes") + coord_flip() + 

  scale_fill_gradientn(colours=bccol, 

                       breaks=c(1.3, 30, 60), 

                       labels=c("1.3 (Adj. p=0.05)","5","10"), limits=c(1.3,10),na.value = "transparent") 

dev.off() 

svg(file="C:/VD Cholesterol genes barchart.svg") 

ggplot(Chol, aes(x=Gene, y=log2FoldChange, fill=`-Log10 p-value`)) + geom_bar(colour="black",stat="identity") + 

  xlab("Gene") +   ylab("Log2 Fold-change, CNS:Spleen") + 

  ggtitle("Cholesterol synthesis genes") + coord_flip() + 

  scale_fill_gradientn(colours=bccol, 

                       breaks=c(1.3, 30, 60), 

                       labels=c("1.3 (Adj. p=0.05)","5","10"), limits=c(1.3,10),na.value = "transparent") 

dev.off() 

 

Chol2 <- read_excel("C:/Cluster.xlsx") 

Chol2 <- as.data.frame(Chol2) 

 

row.names(Chol2) <- Chol2$X__1 

Chol2$X__1 <- NULL 
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set.seed(20) 

VDCluster <- kmeans(Chol2, 2, nstart = 20) 

VDCluster 

table(VDCluster$cluster, rownames(Chol2)) 

 

clusters <- hclust(dist(Chol2)) 

plot(clusters) 

scaledChol <- scale(Chol2) 

 

heatmap.2(scaledChol, scale="none", trace = "none", 

          rowsep = 8, sepcolor = "black", 

          dendrogram = "row",cexRow=1, 

          col=bccol, 

          key=FALSE,lhei=c(1,50)) 

 

heatmap.2(t(scaledChol),scale="none", trace = "none", 

          colsep = 42, sepcolor = "black", 

          dendrogram = "col",cexCol=1, 

          col=bccol, 

          key=FALSE,lwid=c(1,50),revC=TRUE,lhei=c(1,1)) 

dev.off() 

svg(file="C:/VD Cholesterol genes heatmap.svg") 

heatmap.2(t(scaledChol),scale="none", trace = "none", 

          colsep = 42, sepcolor = "black", 

          dendrogram = "col",cexCol=1, 

          col=bccol, 

          #col=cm.colors(256), 

          #sepwidth = 1, 

          key=FALSE,lwid=c(1,50),revC=TRUE,lhei=c(1,1)) 

dev.off()  
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############################################################## 

#TARGET histogram analysis 

 

.libPaths("C:/R/win-library/3.3") 

library(readxl) 

CoGchol <- read_excel("C:/CoG9906 chol genes prior to ln txxlsx.xlsx") 

 

CoGchol$Gene <- NULL 

CoGchol <- as.matrix(CoGchol) 

dev.off() 

hist(CoGchol, freq=FALSE, col="lightgreen", main="Distribution of\ncholesterol genes in CoG P9906\ntrial samples prior to 
log transformation", xlab ="") 

curve(dnorm(x, mean=mean(CoGchol), sd=sd(CoGchol)), add=TRUE, lwd=2) 

lCoGChol <- log(CoGchol) 

hist(lCoGChol, freq=FALSE, col="lightgreen",main="Distribution of\ncholesterol genes in CoG P9906\ntrial samples after to 
log transformation", xlab ="") 

curve(dnorm(x, mean=mean(lCoGChol), sd=sd(lCoGChol)), add=TRUE, lwd=2) 

dev.off() 

 

svg(file="C:/Z-scores after ln transformation/histogram prior to ln tx.svg") 

hist(CoGchol, freq=FALSE, col="lightgreen", main="Distribution of\ncholesterol genes in CoG P9906\ntrial samples prior to 
log transformation", xlab ="") 

curve(dnorm(x, mean=mean(CoGchol), sd=sd(CoGchol)), add=TRUE, lwd=2) 

dev.off() 

 

svg(file="C:/Z-scores after ln transformation/histogram post ln tx.svg") 

hist(lCoGChol, freq=FALSE, col="lightgreen",main="Distribution of\ncholesterol genes in CoG P9906\ntrial samples after to 
log transformation", xlab ="") 

curve(dnorm(x, mean=mean(lCoGChol), sd=sd(lCoGChol)), add=TRUE, lwd=2) 

dev.off() 
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############################################################## 

#TARGET survival analysis 

.libPaths("C:/R/win-library/3.3") 

library(readxl) 

library(rms) 

## Get data 

CoGdata <- read_excel("C:/Cog9906analysis3 with ln-transform for multivariate analysis.xlsx") 

##Remove bottom row (empty) 

CoGdata<-CoGdata[1:207,] 

##renames "2+ genes zs>1.5" column 

colnames(CoGdata)[which(names(CoGdata)=="2+ genes upregulated z-s >=1.5")] <- "Cholesterol_synthesis_upregulated" 

## Fit Cox prortional hazard model 

CoxModelCoG <- coxph(Surv(CoGdata$`Event Free Survival Time in Day`, CoGdata$`Isolated CNS relapse?`) 

                     ~ CoGdata$`Cholesterol_synthesis_upregulated` + CoGdata$`Day 29 MRD >0.01` + CoGdata$`High WCC?`, 

                     data=CoGdata) 

summary(CoxModelCoG) 

 

##### export Cox hazard as table 

# Prepare the columns 

HR <- round(exp(coef(CoxModelCoG)), 2) 

CI <- round(exp(confint(CoxModelCoG)), 2) 

P <- round(coef(summary(CoxModelCoG))[,5], 5) 

# Names the columns of CI 

colnames(CI) <- c("Lower", "Higher") 

# Bind columns together as dataset 

table2 <- as.data.frame(cbind(HR, CI, P)) 

table2 

write.table(table2, file="C:/coxtable.csv", sep=",") 

####### 

## Prepare Kaplan-Meier curve 

CoGkm <- npsurv(Surv(`Event Free Survival Time in Day`,`Isolated CNS relapse?`) ~ Cholesterol_synthesis_upregulated, 
data=CoGdata) 

summary(CoGkm) 

survplot(CoGkm,xlab="Days", ylab="CNS Relapse-free Survival Probablility", 

         conf = "none", xlim = c(0,1460), label.curves = list(keys=c("chol. synthesis not upregulated","chol. synthesis 
upregulated"),keyloc=("none")), 

         col=c("black","blue"),lty=c(2,1), lwd=c(1,2), time.inc=365, n.risk=TRUE, adj.n.risk=0, 
cex.n.risk=0.5,fun=function(y)100*y, ylim=c(0,100)) 

dev.off() 

embed_fonts("C:/Documents/Experiments/In silico analyses/ALL/CoGP9906/Z-scores after ln transformation/R-
plots/KMcurve;zs1.5;2gene.pdf", outfile="C:/Documents/Experiments/In silico analyses/ALL/CoGP9906/Z-scores after ln 
transformation/R-plots/KMcurve;zs1.5;2gene_e.pdf") 

par(font.axis="1") 

par(mar=c(5, 4, 4, 2)+0.1) 

svg(file="C:/Documents/Experiments/In silico analyses/ALL/CoGP9906/Z-scores after ln transformation/R-
plots/KMcurve;zs1.5;2gene.svg", family="Arial Black") 

par(font.axis="9") 

par(mar=c(5, 4, 4, 10)+0.1) 

survplot(CoGkm,xlab="Days", ylab="CNS Relapse-free Probability (%)", 



0 Appendix 249 

 

         conf = "none", xlim = c(0,1460), label.curves = list(keys=c("chol. synthesis not upregulated","chol. synthesis 
upregulated"),keyloc=("none")), 

         col=c("black","blue"),lty=c(2,1), lwd=c(1,2), time.inc=365, n.risk=TRUE, adj.n.risk=0, 
cex.n.risk=0.6,fun=function(y)100*y, ylim=c(0,100)) 

dev.off() 

par(font.axis="1") 

par(mar=c(5, 4, 4, 2)+0.1) 

######## 
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############################################################## 

#RNASeq IL7R analysis 

library(readr) 

library("ggplot2", lib.loc="C:/R/win-library/3.3") 

library('RColorBrewer') 

dev.off() 

IL7R <- read_excel("C:/RNASeq IL7R data.xlsx") 

IL7R <- as.data.frame(IL7R) 

IL7R$`-Log10 Adjusted p-value` <- -log10(IL7R$`padj`) 

 

IL7R$Gene <- factor(IL7R$Gene, levels = IL7R$Gene[order(IL7R$log2FoldChange)]) 

 

bccol<- colorRampPalette(brewer.pal(9, 'GnBu'))(100) 

ggplot(IL7R, aes(x=Gene, y=log2FoldChange, fill=`-Log10 Adjusted p-value`)) + geom_bar(colour="black",stat="identity") + 

  xlab("Gene") +   ylab("Log2 Fold-change") + 

  #  ylim(-0.5,1) + 

  ggtitle("IL7Ra expression") +# coord_flip() + 

  scale_fill_gradientn(colours=topo.colors(7), 

                       breaks=c(1.3, 2, 3), 

                       labels=c("1.3 (Adj. p=0.05)","2","3"), limits=c(1.3,3), na.value = "transparent")+ 

  theme_bw() 

ggplot(IL7R, aes(x=Gene, y=log2FoldChange, fill=`-Log10 Adjusted p-value`)) + geom_bar(colour="black",stat="identity") + 

  xlab("Gene") +   ylab("Log2 Fold-change, CNS:Spleen") + 

  ggtitle("IL7Ra expression") +# coord_flip() + 

  scale_fill_gradientn(colours=bccol, 

                       breaks=c(1.3, 2, 3), 

                       labels=c("1.3 (Adj. p=0.05)","2","3"), limits=c(1.3,3),na.value = "transparent") 

dev.off() 

dev.off() 

svg(file="C:/IL7R gene Barchart1.svg") 

ggplot(IL7R, aes(x=Gene, y=log2FoldChange, fill=`-Log10 Adjusted p-value`)) + geom_bar(colour="black",stat="identity") + 

  xlab("Gene") +   ylab("Log2 Fold-change, CNS:Spleen") + 

  ggtitle("IL7Ra expression") +# coord_flip() + 

  scale_fill_gradientn(colours=bccol, 

                       breaks=c(1.3, 2, 3), 

                       labels=c("1.3 (Adj. p=0.05)","2","3"), limits=c(1.3,3),na.value = "transparent") + 

  theme(axis.title=element_text(size=16),axis.text=element_text(size=12), 

        plot.title=element_text(size=18,hjust=0.5,face="bold")) 

dev.off()  
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############################################################## 

#VanDongen IL7R analysis 

library(readxl) 

 

## Get data 

Van_Dongen_data_IL7Ra_for_r_analysis <- read_excel("C:/Van Dongen data IL7Ra for r analysis.xlsx") 

 

boxplot(Van_Dongen_data_IL7Ra_for_r_analysis$`Mean across probes` ~ Van_Dongen_data_IL7Ra_for_r_analysis$Site) 

 

boxplot(Van_Dongen_data_IL7Ra_for_r_analysis$`226218_at` ~ Van_Dongen_data_IL7Ra_for_r_analysis$Site) 

 

boxplot(Van_Dongen_data_IL7Ra_for_r_analysis$`205798_at` ~ Van_Dongen_data_IL7Ra_for_r_analysis$Site) 

 

library(ggplot2) 

 

p <- ggplot(Van_Dongen_data_IL7Ra_for_r_analysis, aes(x=Site, y=`Mean across probes`)) + 

  labs(list(title = "IL7R expression", x = "Source of ALL cells", y = "gene expression")) + 

  theme(axis.title.x = element_text(face="bold",size=16), axis.text.x = element_text(face="bold",size=14), 

        axis.title.y = element_text(face="bold",size=16), axis.text.y = element_text(face="bold",size=14), 

        plot.title=element_text(size=18,hjust=0.5,face="bold")) 

 

## define custom median function 

plot.median <- function(x) { 

  m <- median(x) 

  c(y = m, ymin = m, ymax = m) 

} 

 

p2 <- p + geom_boxplot(aes(ymin=..lower.., ymax=..upper..),fill=c("red","red","blue"),colour="black") + 

  geom_dotplot(binaxis='y', stackdir='center', method="histodot", binwidth=0.15) 

p2 + theme_bw() + theme(axis.title.x = element_text(face="bold",size=16), axis.text.x = 
element_text(face="bold",size=14), 

                        axis.title.y = element_text(face="bold",size=16), axis.text.y = element_text(face="bold",size=14), 

                        plot.title=element_text(size=18,hjust=0.5,face="bold")) 

######## 

library(grid) 

# Create a text 

grob <- grobTree(textGrob("        p-value (Mann-Whitney)\nBone Marrow (diagnosis or relapse)\n        vs CNS relapse 
<0.00001", 

                          x=0.54,  y=0.14, hjust=0, 

                          gp=gpar(col="black", fontsize=14, fontface="bold"))) 

# Plot 

p2  + theme_bw() + theme(axis.title.x = element_text(face="bold",size=16), axis.text.x = 
element_text(face="bold",size=14), 

                         axis.title.y = element_text(face="bold",size=16), axis.text.y = element_text(face="bold",size=14), 

                         plot.title=element_text(size=18,hjust=0.5,face="bold")) + 

  annotation_custom(grob) 

 

VDDMWtest <- read_excel("C:/Documents/Experiments/In silico analyses/ALL/IL17Ra analyses/Van Dongen data IL7Ra for 
r analysis (M-W test).xlsx") 
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wilcox.test(IL7Ra ~ Site, data=VDDMWtest) 

VDDBMD <- read_excel("C:/Documents/Experiments/In silico analyses/ALL/IL17Ra analyses/Van Dongen data IL7Ra for r 
analysis (M-W test, BMD).xlsx") 

wilcox.test(IL7Ra ~ Site, data=VDDBMD) 

VDDBMR <- read_excel("C:/Documents/Experiments/In silico analyses/ALL/IL17Ra analyses/Van Dongen data IL7Ra for r 
analysis (M-W test, BMR).xlsx") 

wilcox.test(IL7Ra ~ Site, data=VDDBMR) 

 

###################Save to file 

dev.off() 

svg(file="C:/Van Dongen data boxplot (IL7Ra)1.svg") 

p2  + theme_bw() + theme(axis.title.x = element_text(face="bold",size=16), axis.text.x = 
element_text(face="bold",size=14), 

                         axis.title.y = element_text(face="bold",size=16), axis.text.y = element_text(face="bold",size=14), 

                         plot.title=element_text(size=18,hjust=0.5,face="bold")) + 

  annotation_custom(grob) 

 

dev.off() 
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############################################################## 

#TARGET IL7R analysis 

library(readxl) 

library(rms) 

library(tidyr) 

library(extrafont) 

library(extrafontdb) 

 

## Get data 

CoGdata <- read_excel("C:/Documents/Experiments/In silico analyses/ALL/CoGP9906/Minitab-SPSS/Cog9906analysis3(2) 
with ln-transform for spss multivariate1.xlsx") 

 

##Remove bottom row (empty) 

CoGdata<-CoGdata[1:207,] 

 

##renames "2+ genes zs>1.5" column 

colnames(CoGdata)[which(names(CoGdata)=="2+ genes upregulated z-s >=1.5")] <- "Cholesterol_synthesis_upregulated" 

 

## Fit Cox prortional hazard model 

CoxModelCoG <- coxph(Surv(CoGdata$`Event Free Survival Time in Day`, CoGdata$`Isolated CNS relapse?`) 

                     ~ CoGdata$`IL7R z-score >=1.2` + CoGdata$`Cholesterol_synthesis_upregulated` + CoGdata$`Day 29 MRD 
>0.01` + CoGdata$`High WCC?` + CoGdata$`CNS status 3` + CoGdata$`High Age at diagnosis?` + CoGdata$`MLL 
Status_1`, 

                     data=CoGdata) 

summary(CoxModelCoG) 

 

##### export Cox hazard as table 

########## https://datascienceplus.com/how-to-export-regression-results-from-r-to-ms-word/ ##### 

# Prepare the columns 

 

HR <- round(exp(coef(CoxModelCoG)), 2) 

CI <- round(exp(confint(CoxModelCoG)), 2) 

p <- round(coef(summary(CoxModelCoG))[,5], 5) 

# Names the columns of CI 

colnames(CI) <- c("Lower", "Higher") 

# Bind columns together as dataset 

table2 <- as.data.frame(cbind(HR, CI, p)) 

table2$a <- "(" 

table2$b <- "-" 

table2$c <- ")" 

 

table2 <- table2[,c("HR","a","Lower","b","Higher","c", "p")] 

# Merge all columns in one 

table2 = unite(table2, "HR (95% CI)", c(HR, a, Lower, b, Higher, c), sep = ",", remove=T) 

# add space between the estimates of HR and CI 

table2[,1] <- gsub("\\(", " (", table2[,1]) 

table2 

write.table(table2, file="C:/coxtable-IL7R;zs1-2 with cholesterol.csv", sep=",") 
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###################################################### 

## Prepare Kaplan-Meier curve 

CoGdata$`IL7R.Upregulated` <-  CoGdata$`IL7R z-score >=1.2` 

CoGkm <- npsurv(Surv(`Event Free Survival Time in Day`,`Isolated CNS relapse?`) ~ `IL7R.Upregulated`, data=CoGdata) 

summary(CoGkm) 

survdiff(Surv(`Event Free Survival Time in Day`,`Isolated CNS relapse?`) ~ `IL7R.Upregulated`, data=CoGdata) 

par(mar=c(5.1,7.1,4.1,8.1)) 

survplot(CoGkm,xlab="Days", ylab="iCNS Relapse-free\nProbablility", cex.xlab = 2, cex.ylab=2, 

         conf = "none", xlim = c(0,1460), label.curves = list(keys=c("IL7R not upregulated","IL7R 
upregulated"),keyloc=("none")), 

         col=c("black","blue"),lty=c(2,1), lwd=c(1,2), time.inc=365, n.risk=TRUE, adj.n.risk=0, 
cex.n.risk=1,fun=function(y)100*y, ylim=c(0,100)) 

par(mar=c(5.1,4.1,4.1,2.1)) 

 

###############save curve as .svg 

dev.off() 

svg(file="C:/Documents/Experiments/In silico analyses/ALL/IL17Ra analyses/KMcurve;zs1.2;IL7R(1).svg") 

par(font.axis="9") 

par(mar=c(5.1,7.1,4.1,8.1)) 

survplot(CoGkm,xlab="Days", ylab="iCNS Relapse-free\nProbablility", cex.xlab = 2, cex.ylab=2, 

         conf = "none", xlim = c(0,1460), label.curves = list(keys=c("IL7R not upregulated","IL7R 
upregulated"),keyloc=("none")), 

         col=c("black","blue"),lty=c(2,1), lwd=c(1,2), time.inc=365, n.risk=TRUE, adj.n.risk=0, 
cex.n.risk=1,fun=function(y)100*y, ylim=c(0,100)) 

dev.off() 

par(font.axis="1") 

par(mar=c(5, 4, 4, 2)+0.1) 

dev.off() 
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############################################################## 

#Untargeted metabolomics volcano plots (similar for negative mode) 

 

library(readxl) 

library(calibrate) 

 

TwoDVolcPos <- read_excel("C:/2D Volcano plot Pos.xlsx",col_types=c("text","numeric","numeric","numeric", 
"numeric","numeric","text","numeric")) 

 

# EvL 

# https://www.r-bloggers.com/using-volcano-plots-in-r-to-visualize-microarray-and-rna-seq-results/ 

 

with(TwoDVolcPos, plot(EvLLog2FC, Log10pEvL, pch=20, cex=(0.00015*MeanAbundanceCapAt10000), 

                       main="Volcano Plot\n(Positive Mode) Early vs Late", xlim=c(-6,6),ylim=c(0,8), 

                       xlab="Log2 Fold-Change Early vs Late", ylab="-Log10 p-value Early vs Late", 

                       cex.lab=1.75, cex.axis=1.75, cex.main=1.75, cex.sub=1.75)) 

 

# Add colored points: red if padj<0.05, orange of log2FC>1, green if both, blue if named) 

with(subset(TwoDVolcPos, Log10pEvL>1.3 ), points(EvLLog2FC, Log10pEvL, pch=20, 
col="red",cex=(0.00015*MeanAbundanceCapAt10000))) 

with(subset(TwoDVolcPos, abs(EvLLog2FC)>1), points(EvLLog2FC, Log10pEvL, pch=20, 
col="orange",cex=(0.00015*MeanAbundanceCapAt10000))) 

with(subset(TwoDVolcPos, Log10pEvL>1.3 & abs(EvLLog2FC)>1), points(EvLLog2FC, Log10pEvL, pch=20, 
col="green",cex=(0.00015*MeanAbundanceCapAt10000))) 

with(subset(TwoDVolcPos, Name!=""), points(EvLLog2FC, Log10pEvL, pch=20, 
col="blue",cex=(0.00015*MeanAbundanceCapAt10000))) 

with(subset(TwoDVolcPos, Name!=""), textxy(EvLLog2FC, Log10pEvL, labs=Name, cex=1.75, offset=0.6)) 

 

dev.off() 

dev.off() 

svg(file="C:/2D Volcano plot Pos EvL.svg") 

 

with(TwoDVolcPos, plot(EvLLog2FC, Log10pEvL, pch=20, cex=(0.00015*MeanAbundanceCapAt10000), 

                       main="Volcano Plot\n(Positive Mode) Early vs Late", xlim=c(-6,6),ylim=c(0,8), 

                       xlab="Log2 Fold-Change Early vs Late", ylab="-Log10 p-value Early vs Late", 

                       cex.lab=1.75, cex.axis=1.75, cex.main=1.75, cex.sub=1.75)) 

 

# Add colored points: red if padj<0.05, orange of log2FC>1, green if both, blue if named) 

with(subset(TwoDVolcPos, Log10pEvL>1.3 ), points(EvLLog2FC, Log10pEvL, pch=20, 
col="red",cex=(0.00015*MeanAbundanceCapAt10000))) 

with(subset(TwoDVolcPos, abs(EvLLog2FC)>1), points(EvLLog2FC, Log10pEvL, pch=20, 
col="orange",cex=(0.00015*MeanAbundanceCapAt10000))) 

with(subset(TwoDVolcPos, Log10pEvL>1.3 & abs(EvLLog2FC)>1), points(EvLLog2FC, Log10pEvL, pch=20, 
col="green",cex=(0.00015*MeanAbundanceCapAt10000))) 

with(subset(TwoDVolcPos, Name!=""), points(EvLLog2FC, Log10pEvL, pch=20, 
col="blue",cex=(0.00015*MeanAbundanceCapAt10000))) 

 

with(subset(TwoDVolcPos, Name!=""), textxy(EvLLog2FC, Log10pEvL, labs=Name, cex=1.75, offset=0.6)) 

 

dev.off() 

dev.off() 
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#### 

#    EvU 

 

with(TwoDVolcPos, plot(EvULog2FC, Log10pEvU, pch=20, cex=(0.00015*MeanAbundanceCapAt10000), 

                       main="Volcano Plot (Positive Mode)\nEarly vs Control", xlim=c(-6,6),ylim=c(0,8), 

                       xlab="Log2 Fold-Change Early vs Control", ylab="-Log10 p-value Early vs Control", 

                       cex.lab=1.75, cex.axis=1.75, cex.main=1.75, cex.sub=1.75)) 

 

# Add colored points: red if padj<0.05, orange of log2FC>1, green if both, blue if named) 

with(subset(TwoDVolcPos, Log10pEvU>1.3 ), points(EvULog2FC, Log10pEvU, pch=20, 
col="red",cex=(0.00015*MeanAbundanceCapAt10000))) 

with(subset(TwoDVolcPos, abs(EvULog2FC)>1), points(EvULog2FC, Log10pEvU, pch=20, 
col="orange",cex=(0.00015*MeanAbundanceCapAt10000))) 

with(subset(TwoDVolcPos, Log10pEvU>1.3 & abs(EvULog2FC)>1), points(EvULog2FC, Log10pEvU, pch=20, 
col="green",cex=(0.00015*MeanAbundanceCapAt10000))) 

with(subset(TwoDVolcPos, Name!=""), points(EvULog2FC, Log10pEvU, pch=20, 
col="blue",cex=(0.00015*MeanAbundanceCapAt10000))) 

 

with(subset(TwoDVolcPos, Name!=""), textxy(EvULog2FC, Log10pEvU, labs=Name, cex=1.75, offset=0.6)) 

 

 

dev.off() 

svg(file="C:/2D Volcano plot Pos EvU.svg") 

with(TwoDVolcPos, plot(EvULog2FC, Log10pEvU, pch=20, cex=(0.00015*MeanAbundanceCapAt10000), 

                       main="Volcano Plot (Positive Mode)\nEarly vs Control", xlim=c(-6,6),ylim=c(0,8), 

                       xlab="Log2 Fold-Change Early vs Control", ylab="-Log10 p-value Early vs Control", 

                       cex.lab=1.75, cex.axis=1.75, cex.main=1.75, cex.sub=1.75)) 

 

# Add colored points: red if padj<0.05, orange of log2FC>1, green if both, blue if named) 

with(subset(TwoDVolcPos, Log10pEvU>1.3 ), points(EvULog2FC, Log10pEvU, pch=20, 
col="red",cex=(0.00015*MeanAbundanceCapAt10000))) 

with(subset(TwoDVolcPos, abs(EvULog2FC)>1), points(EvULog2FC, Log10pEvU, pch=20, 
col="orange",cex=(0.00015*MeanAbundanceCapAt10000))) 

with(subset(TwoDVolcPos, Log10pEvU>1.3 & abs(EvULog2FC)>1), points(EvULog2FC, Log10pEvU, pch=20, 
col="green",cex=(0.00015*MeanAbundanceCapAt10000))) 

with(subset(TwoDVolcPos, Name!=""), points(EvULog2FC, Log10pEvU, pch=20, 
col="blue",cex=(0.00015*MeanAbundanceCapAt10000))) 

with(subset(TwoDVolcPos, Name!=""), textxy(EvULog2FC, Log10pEvU, labs=Name, cex=1.75, offset=0.6)) 

dev.off() 

dev.off() 
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############################################################## 

#Untargeted metabolomics allopurinol plots 

 

#################http://www.sthda.com/english/wiki/correlation-test-between-two-variables-in-
r################### 

library("ggpubr") 

library(readxl) 

 

xva <- read_excel("C:/Xanthine vs allopurinol.xlsx") 

xva1 <- xva 

xva <- subset(xva,xva$Allopurinol >10000) 

ggscatter(xva, x = "Xanthine", y = "Allopurinol",  

          add = "reg.line", conf.int = TRUE,  

          cor.coef = TRUE, cor.method = "pearson", 

          xlab = "Xanthine abundance", ylab = "Allopurinol abundance", cor.coef.size = 8) + 

  theme(axis.title = element_text(face="bold",size=25), axis.text  = element_text(size=20)) 

 

pearsontest <- cor.test(xva$Xanthine, xva$Allopurinol,  

                        method = "pearson") 

pearsontest 

 

dev.off() 

dev.off() 

svg(file="C:/Xanthine vs allopurinol.svg") 

ggscatter(xva, x = "Xanthine", y = "Allopurinol",  

          add = "reg.line", conf.int = TRUE,  

          cor.coef = TRUE, cor.method = "pearson", 

          xlab = "Xanthine abundance", ylab = "Allopurinol abundance", cor.coef.size = 8) + 

  theme(axis.title = element_text(face="bold",size=25), axis.text  = element_text(size=20)) 

dev.off() 

dev.off() 

svg(file="C:/Xanthine vs allopurinol(1).svg") 

 

ggscatter(xva1, x = "Xanthine", y = "Allopurinol",  

          add = "reg.line", conf.int = TRUE,  

          cor.coef = TRUE, cor.method = "pearson", 

          xlab = "Xanthine abundance", ylab = "Allopurinol abundance", cor.coef.size = 8) + 

  theme(axis.title = element_text(face="bold",size=25), axis.text  = element_text(size=20)) 

dev.off() 
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############################################################## 

#Cholesterol abundance boxplots 

library(readxl) 

library(ggplot2) 

 

CSFChol1 <- read_excel("C:/CSF free cholesterol for r chart.xlsx") 

CSFChol1 <-na.omit(CSFChol1) 

 

CSFChol2 <- subset(CSFChol1[(56:58),]) 

CSFChol1 <- subset(CSFChol1[(1:55),]) 

 

r <- ggplot(CSFChol1, aes(Group,`TotalChol(ug)`,fill=Colour)) + geom_boxplot(show.legend = FALSE) + 
scale_fill_manual(values=c("blue","red")) + 

  geom_point(data=CSFChol1, aes(x=Group,y=`TotalChol(ug)`),show.legend = FALSE) + 

  xlab("") + ylab("Total Cholesterol in CSF(ug)") + ggtitle("Total Cholesterol Abundance in CSF From\nChildren at Diagnosis 
With Leukaemia Compared\nWith Matched Leukaemic Controls on Maintenance\nChemotherapy and Unmatched 
Controls") + 

  #  ylim(0.5,0.95) + 

  theme(legend.position="none") + 

  theme_bw() + 

  theme(axis.title.x = element_text(face="bold",size=16), axis.text.x = element_text(face="bold",size=14), 

        axis.title.y = element_text(face="bold",size=16), axis.text.y = element_text(face="bold",size=14), 

        plot.title=element_text(size=18,hjust=0.5,face="bold")) 

r 

############ 

dev.off() 

dev.off() 

 

svg(file="C:/CSFCholAbundanceBoxplot.svg") 

r 

dev.off() 

dev.off() 
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############################################################## 

#Cellular holesterol abundance boxplots 

library(readxl) 

library(ggplot2) 

library(grid) 

library(gridExtra) 

 

## Get data 

 

CellChol1 <- read_excel("C:/CholesterolGCMSforRe.xlsx") 

CellChol2 <- subset(CellChol1[(19:20),]) 

CellChol1 <- subset(CellChol1[(1:18),]) 

 

r <- ggplot(CellChol2, aes(Group,`Cholesterol(ug/10(6)cells)`)) +geom_bar(stat="identity", fill=c("red","blue")) + 

  geom_point(data=CellChol1, aes(x=Group,y=`Cholesterol(ug/10(6)cells)`)) + 

  xlab("") + ylab("Total Cholesterol (ug/10(6) cells)") +# ggtitle("Total Cholesterol Abundance in Cells\nFrom CNS and 
Spleen of MiceWith ALL") + 

  #  theme(axis.title.y = element_text(face="bold"), axis.text.y = element_text(face="bold"))+ 

  theme_bw() + 

  theme(axis.title.x = element_text(face="bold",size=16), axis.text.x = element_text(face="bold",size=14), 

        axis.title.y = element_text(face="bold",size=16), axis.text.y = element_text(face="bold",size=14), 

        plot.title=element_text(size=18,hjust=0.5,face="bold")) 

r 

title1=textGrob("Total Cholesterol Abundance in Cells\nfrom the CNS and Spleen of\nmice with ALL", 
gp=gpar(fontface="bold",fontsize=20)) 

grid.arrange(r,ncol=1, top=title1) 

dev.off() 

dev.off() 

svg(file="C:/CholesterolGCMSbar.svg") 

 

grid.arrange(r,ncol=1, top=title1) 

dev.off() 

dev.off() 
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############################################################## 

#Cellular fatty acid abundance boxplots (similar for other multi-boxplot graphs) 

library(readxl) 

library(ggplot2) 

library(grid) 

library(gridExtra) 

 

## Get data 

 

CNSSPLCellsFA <- read_excel("C:MevalonateFAsRBoxplot.xlsx") 

#Mevalonate 

 

p <- ggplot(CNSSPLCellsFA, aes(x=Site, y=`Mevalonate`)) + 

  labs(list(title = "", x = "", y = "Mevalonate Abundance")) + 

  theme(axis.title.x = element_text(face="bold"), axis.text.x = element_text(face="bold")) + 

  theme(axis.title.y = element_text(face="bold"), axis.text.y = element_text(face="bold")) 

 

## dotplot with box 

p2 <- p + geom_boxplot(aes(ymin=..lower.., ymax=..upper..),fill=c("red","blue"),colour="black") + 

  geom_dotplot(binaxis='y', stackdir='center', method="histodot") +#, binwidth=20) 

  theme_bw()+ 

  theme(axis.title.x = element_text(face="bold",size=16), axis.text.x = element_text(face="bold",size=14), 

        axis.title.y = element_text(face="bold",size=16), axis.text.y = element_text(face="bold",size=14), 

        plot.title=element_text(size=18,hjust=0.5,face="bold")) 

 

 

title1=textGrob("Mevalonate abundance in cells from\nthe CNS and Spleens of mice\nwith ALL", 
gp=gpar(fontface="bold",fontsize=20)) 

grid.arrange(p2,ncol=1, top=title1) 

#save to file 

dev.off() 

dev.off() 

svg(file="C:/MevalonatBoxplot.svg") 

grid.arrange(p2,ncol=1, top=title1) 

dev.off() 

dev.off() 

################################# 

#Palmitate / Palmitoleate 

 

d <- ggplot(CNSSPLCellsFA, aes(x=Site, y=`Palmitate`)) + 

  labs(list(title = "Palmitate", x = "", y = "Palmitate Abundance")) + 

  theme(axis.title.x = element_text(face="bold"), axis.text.x = element_text(face="bold")) + 

  theme(axis.title.y = element_text(face="bold"), axis.text.y = element_text(face="bold")) 

 

## dotplot with box 

d2 <- d + geom_boxplot(aes(ymin=..lower.., ymax=..upper..),fill=c("red","blue"),colour="black") + 

  geom_dotplot(binaxis='y', stackdir='center', method="histodot") +#, binwidth=20) 

  theme_bw() + 
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  theme(axis.title.x = element_text(face="bold",size=16), axis.text.x = element_text(face="bold",size=14), 

        axis.title.y = element_text(face="bold",size=16), axis.text.y = element_text(face="bold",size=14), 

        plot.title=element_text(size=18,hjust=0.5,face="bold")) 

 

e <- ggplot(CNSSPLCellsFA, aes(x=Site, y=`Palmitoleate`)) + 

  labs(list(title = "Palmitoleate", x = "", y = "Palmitoleate Abundance")) + 

  theme(axis.title.x = element_text(face="bold"), axis.text.x = element_text(face="bold")) + 

  theme(axis.title.y = element_text(face="bold"), axis.text.y = element_text(face="bold")) 

 

## dotplot with box 

e2 <- e + geom_boxplot(aes(ymin=..lower.., ymax=..upper..),fill=c("red","blue"),colour="black") + 

  geom_dotplot(binaxis='y', stackdir='center', method="histodot") + 

  ylim(500000,10000000) + 

  theme_bw()+ 

  theme(axis.title.x = element_text(face="bold",size=16), axis.text.x = element_text(face="bold",size=14), 

        axis.title.y = element_text(face="bold",size=16), axis.text.y = element_text(face="bold",size=14), 

        plot.title=element_text(size=18,hjust=0.5,face="bold")) 

 

title1=textGrob("Palmitate and Palmitoleate abundance in cells\n from the CNS and Spleens of\nmice with ALL", 
gp=gpar(fontface="bold",fontsize=20)) 

grid.arrange(d2,e2,ncol=2, top=title1) 

 

#save to file 

dev.off() 

dev.off() 

 

svg(file="C:/PalmitatepalmitoleateBoxplot.svg") 

grid.arrange(d2,e2,ncol=2, top=title1) 

 

dev.off() 

dev.off() 

############## 

 

################################ 

#Stearate / Oleate 

 

k <- ggplot(CNSSPLCellsFA, aes(x=Site, y=`Stearate`)) + 

  labs(list(title = "Stearate", x = "", y = "Stearate Abundance")) + 

  theme(axis.title.x = element_text(face="bold"), axis.text.x = element_text(face="bold")) + 

  theme(axis.title.y = element_text(face="bold"), axis.text.y = element_text(face="bold")) 

 

## dotplot with box 

k2 <- k + geom_boxplot(aes(ymin=..lower.., ymax=..upper..),fill=c("red","blue"),colour="black") + 

  geom_dotplot(binaxis='y', stackdir='center', method="histodot") +#, binwidth=20) 

  theme_bw()+ 

  theme(axis.title.x = element_text(face="bold",size=16), axis.text.x = element_text(face="bold",size=14), 

        axis.title.y = element_text(face="bold",size=16), axis.text.y = element_text(face="bold",size=14), 

        plot.title=element_text(size=18,hjust=0.5,face="bold")) 
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l <- ggplot(CNSSPLCellsFA, aes(x=Site, y=`Oleate`)) + 

  labs(list(title = "Oleate", x = "", y = "Oleate Abundance")) + 

  theme(axis.title.x = element_text(face="bold"), axis.text.x = element_text(face="bold")) + 

  theme(axis.title.y = element_text(face="bold"), axis.text.y = element_text(face="bold")) 

 

## dotplot with box 

l2 <- l + geom_boxplot(aes(ymin=..lower.., ymax=..upper..),fill=c("red","blue"),colour="black") + 

  geom_dotplot(binaxis='y', stackdir='center', method="histodot") +#, binwidth=20) 

  theme_bw()+ 

  theme(axis.title.x = element_text(face="bold",size=16), axis.text.x = element_text(face="bold",size=14), 

        axis.title.y = element_text(face="bold",size=16), axis.text.y = element_text(face="bold",size=14), 

        plot.title=element_text(size=18,hjust=0.5,face="bold")) 

 

title1=textGrob("Stearate and Oleate abundance in cells\nfrom the CNS and Spleens of\nmice with ALL", 
gp=gpar(fontface="bold",fontsize=20)) 

 

grid.arrange(k2,l2,ncol=2, top=title1) 

 

#save to file 

dev.off() 

dev.off() 

 

svg(file="C:/StearateoleateBoxplot.svg") 

grid.arrange(k2,l2,ncol=2, top=title1) 

 

dev.off() 

dev.off() 

############################################# 

#Palmitate:Palmitoleate 

 

r <- ggplot(CNSSPLCellsFA, aes(x=Site, y=`Palmitate:Palmitoleate`)) + 

  labs(list(title = "Palmitate/Palmitoleate", x = "", y = "Palmitate:Palmitoleate Ratio")) + 

  theme(axis.title.x = element_text(face="bold"), axis.text.x = element_text(face="bold")) + 

  theme(axis.title.y = element_text(face="bold"), axis.text.y = element_text(face="bold")) 

 

## dotplot with box 

r2 <- r + geom_boxplot(aes(ymin=..lower.., ymax=..upper..),fill=c("red","blue"),colour="black") + 

  geom_dotplot(binaxis='y', stackdir='center', method="histodot") +#, binwidth=20) 

  theme_bw()+ 

  theme(axis.title.x = element_text(face="bold",size=16), axis.text.x = element_text(face="bold",size=14), 

        axis.title.y = element_text(face="bold",size=16), axis.text.y = element_text(face="bold",size=14), 

        plot.title=element_text(size=18,hjust=0.5,face="bold")) 

 

s <- ggplot(CNSSPLCellsFA, aes(x=Site, y=`Stearate:Oleate`)) + 

  labs(list(title = "Stearate/Oleate", x = "", y = "Stearate:Oleate Ratio")) + 

  theme(axis.title.x = element_text(face="bold"), axis.text.x = element_text(face="bold")) + 

  theme(axis.title.y = element_text(face="bold"), axis.text.y = element_text(face="bold")) 
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## dotplot with box 

s2 <- s + geom_boxplot(aes(ymin=..lower.., ymax=..upper..),fill=c("red","blue"),colour="black") + 

  geom_dotplot(binaxis='y', stackdir='center', method="histodot") +#, binwidth=20) 

  theme_bw()+ 

  theme(axis.title.x = element_text(face="bold",size=16), axis.text.x = element_text(face="bold",size=14), 

        axis.title.y = element_text(face="bold",size=16), axis.text.y = element_text(face="bold",size=14), 

        plot.title=element_text(size=18,hjust=0.5,face="bold")) 

 

title1=textGrob("Palmitate:Palmitoleate and Stearate:Oleate ratios\n in Cells from the CNS and Spleens\nof mice with 
ALL", gp=gpar(fontface="bold",fontsize=20)) 

grid.arrange(r2,s2,ncol=2, top=title1) 

 

#save to file 

dev.off() 

dev.off() 

 

svg(file="C:/RatiopalmitatetopalmitoleateBoxplot.svg") 

grid.arrange(r2,s2,ncol=2, top=title1) 

 

 

dev.off() 

dev.off() 

 

################################################################### 

### CSF Cholesterol/CE analysis 

 

##Chol ester subsets 

 

CE1 <- read_excel("C:/CSF_nmoles_norm for r stacked bar chart2.xlsx") 

 

#CE2 <- subset(CE1[,1:7]) 

 

m <- ggplot(CE1, aes(Sample,Value)) + geom_bar(stat="identity",aes(fill = ChE)) + 

  xlab("Sample") + ylab("Proportion of total Cholesterol Esters") + 

  ggtitle("Bar Chart Showing Cholesterol Ester\nSubtypes in CSF From Mice\nWith and Without Leukaemia") + 

  scale_fill_brewer(palette = "Set1") + 

  theme_bw() + 

  theme(axis.title.x = element_text(face="bold",size=16), axis.text.x = element_text(face="bold",size=14), 

        axis.title.y = element_text(face="bold",size=16), axis.text.y = element_text(face="bold",size=14), 

        plot.title=element_text(size=18,hjust=0.5,face="bold")) 

 

m 

 

dev.off() 

dev.off() 

svg(file="C:/DCSFChESubsets.svg") 

m 
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dev.off() 

dev.off() 
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################################################################### 

### CSF metabolite timeline linecharts 

 

.libPaths("C:/R/win-library/3.3") 

library(readxl) 

library(ggplot2) 

library(gridExtra) 

library(grid) 

 

 

############## Creatine 

 

cr <- read_excel("C:/creatine data for chart csf at relapse.xlsx") 

cr1 <- subset(cr[,c(1,2)]) 

cr1 <- na.omit(cr1) 

 

cra <- ggplot(cr1, aes(x=Days, y=P1437)) +  xlim(2,414) +ylim(1,3.2) +  

  geom_line(size=1,colour="#762a83") + geom_point(size=1.5,colour="#762a83") + ylab("") + xlab("") + 

  labs(title="P1437") + 

  geom_vline(xintercept = 330, size=1) + annotate("text", x=335,y=55, hjust=0,,label="time of relapse") + 

  theme(plot.title = element_text(size=18,hjust = 0.5,margin = margin(t = 10, b = -20))) + 

  theme_bw() 

 

cra   

cr2 <- subset(cr[,c(1,3)]) 

cr2 <- na.omit(cr2) 

 

crb <- ggplot(cr2, aes(x=Days, y=P6539), main="P6539")+ xlim(31,718) + ylim(1,3.2) +  

  geom_line(size=1, colour="#5ab4ac") + geom_point(size=2, colour="#5ab4ac") + ylab("") + xlab("")+ 

  labs(title="P6539") + 

  geom_vline(xintercept = 520, size=1) + annotate("text", x=530,y=55, hjust=0,,label="time of relapse") + 

  theme(plot.title = element_text(size=18,hjust = 0.5,margin = margin(t = 10, b = -20)))+ 

  theme_bw() 

crb  

cr3 <- subset(cr[,c(1,4)]) 

cr3 <- na.omit(cr3) 

 

crc <- ggplot(cr3, aes(x=Days, y=P4234)) + xlim(2050,3550) +ylim(1,3.2) +  

  geom_line(size=1, colour="#01665e") + geom_point(size=2, colour="#01665e") + ylab("") + xlab("") + 

  labs(title="P4234") + 

  geom_vline(xintercept = 2567, size=1) + annotate("text", x=2600,y=55, hjust=0,,label="time of relapse") + 

  geom_vline(xintercept = 3240, size=1) + 

  theme(plot.title = element_text(size=18,hjust = 0.5,margin = margin(t = 10, b = -20)))+ 

  theme_bw() 

crc   

 

cr4 <- subset(cr[,c(1,5)]) 
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cr4 <- na.omit(cr4) 

 

 

crd <- ggplot(cr4, aes(x=Days, y=P6941)) + xlim(350,1150) +ylim(1,3.2) +  

  geom_line(size=1, colour="#8c510a") + geom_point(size=2, colour="#8c510a") + ylab("") + xlab("") + 

  labs(title="P6941") + 

  geom_vline(xintercept = 1030, size=1) + annotate("text", x=1020,y=55, hjust=1,,label="time of relapse") + 

  theme(plot.title = element_text(size=18,hjust = 0.5,margin = margin(t = 10, b = -20)))+ 

  theme_bw() 

crd   

 

grid.arrange(cra,crb,crc,crd,ncol=2, left=textGrob("uM creatine", rot=90, gp = gpar(fontface = "bold", fontsize=18)), 
bottom=textGrob("Days"), top=textGrob("Changes in csf creatine abundance\nin serial CSF samples\nwith times of relapse 
highlighted",gp = gpar(fontface = "bold", fontsize=22))) 

 

####Save to file 

dev.off() 

svg(file="C:/Creatinelinechart.svg",width=10,  

    height=7) 

grid.arrange(cra,crb,crc,crd,ncol=2, left=textGrob("uM creatine", rot=90, gp = gpar(fontface = "bold", fontsize=18)), 
bottom=textGrob("Days"), top=textGrob("Changes in csf creatine abundance\nin serial CSF samples\nwith times of relapse 
highlighted",gp = gpar(fontface = "bold", fontsize=22))) 

dev.off() 

dev.off() 

 

######### Xanthine 

xa <- read_excel("C:/xanthine data for chart csf at relapse(normalised)1.xlsx") 

 

xa1 <- subset(xa[,c(1,2)]) 

xa1 <- na.omit(xa1) 

 

xaa <- ggplot(xa1, aes(x=Days, y=P1437)) +  xlim(2,414) +ylim(4,24) +  

  geom_line(size=1,colour="#762a83") + geom_point(size=1.5,colour="#762a83") + ylab("") + xlab("") + 

  labs(title="P1437") + 

  geom_vline(xintercept = 330, size=1) + annotate("text", x=335,y=20, hjust=0,,label="time of relapse") + 

  theme(plot.title = element_text(size=18,hjust = 0.5,margin = margin(t = 10, b = -20))) + 

  theme_bw() 

 

xaa   

 

xa2 <- subset(xa[,c(1,3)]) 

xa2 <- na.omit(xa2) 

 

xab <- ggplot(xa2, aes(x=Days, y=P6539), main="P6539")+ xlim(31,718) + ylim(4,24) +  

  geom_line(size=1, colour="#5ab4ac") + geom_point(size=2, colour="#5ab4ac") + ylab("") + xlab("")+ 

  labs(title="P6539") + 

  geom_vline(xintercept = 520, size=1) + annotate("text", x=530,y=20, hjust=0,,label="time of relapse") + 

  theme(plot.title = element_text(size=18,hjust = 0.5,margin = margin(t = 10, b = -20)))+ 

  theme_bw() 
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xab  

 

xa3 <- subset(xa[,c(1,4)]) 

xa3 <- na.omit(xa3) 

 

xac <- ggplot(xa3, aes(x=Days, y=P4234)) + xlim(2050,3550) +ylim(4,24) +  

  geom_line(size=1, colour="#01665e") + geom_point(size=2, colour="#01665e") + ylab("") + xlab("") + 

  labs(title="P4234") + 

  geom_vline(xintercept = 2567, size=1) + annotate("text", x=2600,y=20, hjust=0,,label="time of relapse") + 

  geom_vline(xintercept = 3240, size=1) + 

  theme(plot.title = element_text(size=18,hjust = 0.5,margin = margin(t = 10, b = -20)))+ 

  theme_bw() 

xac   

 

xa4 <- subset(xa[,c(1,5)]) 

xa4 <- na.omit(xa4) 

 

xad <- ggplot(xa4, aes(x=Days, y=P6941)) + xlim(350,1150) +ylim(4,24) +  

  geom_line(size=1, colour="#8c510a") + geom_point(size=2, colour="#8c510a") + ylab("") + xlab("") + 

  labs(title="P6941") + 

  geom_vline(xintercept = 1030, size=1) + annotate("text", x=1020,y=20, hjust=1,,label="time of relapse") + 

  theme(plot.title = element_text(size=18,hjust = 0.5,margin = margin(t = 10, b = -20)))+ 

  theme_bw() 

xad   

 

grid.arrange(xaa,xab,xac,xad,ncol=2, left=textGrob("Abundance of Xanthine", rot=90, gp = gpar(fontface = "bold", 
fontsize=18)), bottom=textGrob("Days"), top=textGrob("Changes in csf xanthine abundance\nin serial CSF samples\nwith 
times of relapse highlighted",gp = gpar(fontface = "bold", fontsize=22))) 

 

####Save to file 

dev.off() 

svg(file="C:/Xanthinelinechart.svg",width=10,  

    height=7) 

grid.arrange(xaa,xab,xac,xad,ncol=2, left=textGrob("Abundance of Xanthine", rot=90, gp = gpar(fontface = "bold", 
fontsize=18)), bottom=textGrob("Days"), top=textGrob("Changes in csf xanthine abundance\nin serial CSF samples\nwith 
times of relapse highlighted",gp = gpar(fontface = "bold", fontsize=22))) 

dev.off() 

 

dev.off() 

############### 

 

 

############### Dimethylarginine 

 

di <- read_excel("C:/Dimethylarginine data for chart csf at relapse3.xlsx") 

#di <- as.data.frame(di) 

 

di1 <- subset(di[,c(1,2)]) 

di1 <- na.omit(di1) 
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dia <- ggplot(di1, aes(x=Days, y=P1437)) +  xlim(2,414) +ylim(8,32) +  

  geom_line(size=1,colour="#762a83") + geom_point(size=1.5,colour="#762a83") + ylab("") + xlab("") + 

  labs(title="P1437") + 

  geom_vline(xintercept = 330, size=1) + annotate("text", x=335,y=28, hjust=0,,label="time of relapse") + 

  theme(plot.title = element_text(size=18,hjust = 0.5,margin = margin(t = 10, b = -20))) + 

  theme_bw() 

 

dia   

 

di2 <- subset(di[,c(1,3)]) 

di2 <- na.omit(di2) 

 

dib <- ggplot(di2, aes(x=Days, y=P6539), main="P6539")+ xlim(31,718) + ylim(8,32) +  

  geom_line(size=1, colour="#5ab4ac") + geom_point(size=2, colour="#5ab4ac") + ylab("") + xlab("")+ 

  labs(title="P6539") + 

  geom_vline(xintercept = 520, size=1) + annotate("text", x=530,y=28, hjust=0,,label="time of relapse") + 

  theme(plot.title = element_text(size=18,hjust = 0.5,margin = margin(t = 10, b = -20)))+ 

  theme_bw() 

dib  

 

di3 <- subset(di[,c(1,4)]) 

di3 <- na.omit(di3) 

 

 

dic <- ggplot(di3, aes(x=Days, y=P4234)) + xlim(2050,3550) +ylim(8,32) +  

  geom_line(size=1, colour="#01665e") + geom_point(size=2, colour="#01665e") + ylab("") + xlab("") + 

  labs(title="P4234") + 

  geom_vline(xintercept = 2567, size=1) + annotate("text", x=2600,y=28, hjust=0,,label="time of relapse") + 

  geom_vline(xintercept = 3240, size=1) + 

  theme(plot.title = element_text(size=18,hjust = 0.5,margin = margin(t = 10, b = -20)))+ 

  theme_bw() 

dic   

 

di4 <- subset(di[,c(1,5)]) 

di4 <- na.omit(di4) 

 

 

did <- ggplot(di4, aes(x=Days, y=P6941)) + xlim(350,1150) +ylim(8,32) +  

  geom_line(size=1, colour="#8c510a") + geom_point(size=2, colour="#8c510a") + ylab("") + xlab("") + 

  labs(title="P6941") + 

  geom_vline(xintercept = 1030, size=1) + annotate("text", x=1020,y=28, hjust=1,,label="time of relapse") + 

  theme(plot.title = element_text(size=18,hjust = 0.5,margin = margin(t = 10, b = -20)))+ 

  theme_bw() 

did   
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grid.arrange(dia,dib,dic,did,ncol=2, left=textGrob("uM dimethylarginine", rot=90, gp = gpar(fontface = "bold", 
fontsize=18)), bottom=textGrob("Days"), top=textGrob("Changes in csf dimethylarginine abundance\nin serial CSF 
samples\nwith times of relapse highlighted",gp = gpar(fontface = "bold", fontsize=22))) 

 

####Save to file 

dev.off() 

svg(file="C:/dimethylargininelinechart.svg",width=10,  

    height=7) 

grid.arrange(dia,dib,dic,did,ncol=2, left=textGrob("Abundance of Dimethylarginine", rot=90, gp = gpar(fontface = "bold", 
fontsize=18)), bottom=textGrob("Days"), top=textGrob("Changes in csf dimethylarginine abundance\nin serial CSF 
samples\nwith times of relapse highlighted",gp = gpar(fontface = "bold", fontsize=22))) 

 

################### 

dev.off() 

dev.off() 

 

############### Phenylalanine 

 

Ph <- read_excel("C:/Phenylalanine data for chart csf at relapse.xlsx") 

#Ph <- as.data.frame(Ph) 

 

Ph1 <- subset(Ph[,c(1,2)]) 

Ph1 <- na.omit(Ph1) 

 

 

Pha <- ggplot(Ph1, aes(x=Days, y=P1437)) +  xlim(2,414) +ylim(16,62) +  

  geom_line(size=1,colour="#762a83") + geom_point(size=1.5,colour="#762a83") + ylab("") + xlab("") + 

  labs(title="P1437") + 

  geom_vline(xintercept = 330, size=1) + annotate("text", x=335,y=52, hjust=0,,label="time of relapse") + 

  theme(plot.title = element_text(size=18,hjust = 0.5,margin = margin(t = 10, b = -20))) + 

  theme_bw() 

 

Pha   

 

Ph2 <- subset(Ph[,c(1,3)]) 

Ph2 <- na.omit(Ph2) 

 

Phb <- ggplot(Ph2, aes(x=Days, y=P6539), main="P6539")+ xlim(31,718) + ylim(16,62) +  

  geom_line(size=1, colour="#5ab4ac") + geom_point(size=2, colour="#5ab4ac") + ylab("") + xlab("")+ 

  labs(title="P6539") + 

  geom_vline(xintercept = 520, size=1) + annotate("text", x=530,y=52, hjust=0,,label="time of relapse") + 

  theme(plot.title = element_text(size=18,hjust = 0.5,margin = margin(t = 10, b = -20)))+ 

  theme_bw() 

Phb  

 

Ph3 <- subset(Ph[,c(1,4)]) 

Ph3 <- na.omit(Ph3) 
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Phc <- ggplot(Ph3, aes(x=Days, y=P4234)) + xlim(2050,3550) +ylim(16,62) +  

  geom_line(size=1, colour="#01665e") + geom_point(size=2, colour="#01665e") + ylab("") + xlab("") + 

  labs(title="P4234") + 

  geom_vline(xintercept = 2567, size=1) + annotate("text", x=2600,y=52, hjust=0,,label="time of relapse") + 

  geom_vline(xintercept = 3240, size=1) + 

  theme(plot.title = element_text(size=18,hjust = 0.5,margin = margin(t = 10, b = -20)))+ 

  theme_bw() 

Phc   

 

Ph4 <- subset(Ph[,c(1,5)]) 

Ph4 <- na.omit(Ph4) 

 

 

Phd <- ggplot(Ph4, aes(x=Days, y=P6941)) + xlim(350,1150) +ylim(16,62) +  

  geom_line(size=1, colour="#8c510a") + geom_point(size=2, colour="#8c510a") + ylab("") + xlab("") + 

  labs(title="P6941") + 

  geom_vline(xintercept = 1030, size=1) + annotate("text", x=1020,y=52, hjust=1,,label="time of relapse") + 

  theme(plot.title = element_text(size=18,hjust = 0.5,margin = margin(t = 10, b = -20)))+ 

  theme_bw() 

Phd   

 

grid.arrange(Pha,Phb,Phc,Phd,ncol=2, left=textGrob("uM Phenylalanine", rot=90, gp = gpar(fontface = "bold", 
fontsize=18)), bottom=textGrob("Days"), top=textGrob("Changes in csf Phenylalanine abundance\nin serial CSF 
samples\nwith times of relapse highlighted",gp = gpar(fontface = "bold", fontsize=22))) 

 

####Save to file 

dev.off() 

svg(file="C:/Phenylalaninelinechart.svg",width=10,  

    height=7) 

grid.arrange(Pha,Phb,Phc,Phd,ncol=2, left=textGrob("Abundance of Phenylalanine", rot=90, gp = gpar(fontface = "bold", 
fontsize=18)), bottom=textGrob("Days"), top=textGrob("Changes in csf phenylalanine abundance\nin serial CSF 
samples\nwith times of relapse highlighted",gp = gpar(fontface = "bold", fontsize=22))) 

dev.off() 

dev.off() 

 

############### Pseudouridine 

 

Ps <- read_excel("C:/Pseudouridine data for chart csf at relapse.xlsx") 

#Ps <- as.data.frame(Ps) 

 

Ps1 <- subset(Ps[,c(1,2)]) 

Ps1 <- na.omit(Ps1) 

 

 

Psa <- ggplot(Ps1, aes(x=Days, y=P1437)) +  xlim(2,414) +ylim(9,42) +  

  geom_line(size=1,colour="#762a83") + geom_point(size=1.5,colour="#762a83") + ylab("") + xlab("") + 

  labs(title="P1437") + 

  geom_vline(xintercept = 330, size=1) + annotate("text", x=335,y=35, hjust=0,,label="time of relapse") + 

  theme(plot.title = element_text(size=18,hjust = 0.5,margin = margin(t = 10, b = -20))) + 
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  theme_bw() 

 

Psa   

 

Ps2 <- subset(Ps[,c(1,3)]) 

Ps2 <- na.omit(Ps2) 

 

Psb <- ggplot(Ps2, aes(x=Days, y=P6539), main="P6539")+ xlim(31,718) + ylim(9,42) +  

  geom_line(size=1, colour="#5ab4ac") + geom_point(size=2, colour="#5ab4ac") + ylab("") + xlab("")+ 

  labs(title="P6539") + 

  geom_vline(xintercept = 520, size=1) + annotate("text", x=530,y=35, hjust=0,,label="time of relapse") + 

  theme(plot.title = element_text(size=18,hjust = 0.5,margin = margin(t = 10, b = -20)))+ 

  theme_bw() 

Psb  

 

Ps3 <- subset(Ps[,c(1,4)]) 

Ps3 <- na.omit(Ps3) 

 

 

Psc <- ggplot(Ps3, aes(x=Days, y=P4234)) + xlim(2050,3550) +ylim(9,42) +  

  geom_line(size=1, colour="#01665e") + geom_point(size=2, colour="#01665e") + ylab("") + xlab("") + 

  labs(title="P4234") + 

  geom_vline(xintercept = 2567, size=1) + annotate("text", x=2600,y=35, hjust=0,,label="time of relapse") + 

  geom_vline(xintercept = 3240, size=1) + 

  theme(plot.title = element_text(size=18,hjust = 0.5,margin = margin(t = 10, b = -20)))+ 

  theme_bw() 

Psc   

 

Ps4 <- subset(Ps[,c(1,5)]) 

Ps4 <- na.omit(Ps4) 

 

 

Psd <- ggplot(Ps4, aes(x=Days, y=P6941)) + xlim(350,1150) +ylim(9,42) +  

  geom_line(size=1, colour="#8c510a") + geom_point(size=2, colour="#8c510a") + ylab("") + xlab("") + 

  labs(title="P6941") + 

  geom_vline(xintercept = 1030, size=1) + annotate("text", x=1020,y=35, hjust=1,,label="time of relapse") + 

  theme(plot.title = element_text(size=18,hjust = 0.5,margin = margin(t = 10, b = -20)))+ 

  theme_bw() 

Psd   

 

grid.arrange(Psa,Psb,Psc,Psd,ncol=2, left=textGrob("Abundance of Pseudouridine", rot=90, gp = gpar(fontface = "bold", 
fontsize=18)), bottom=textGrob("Days"), top=textGrob("Changes in csf Pseudouridine abundance\nin serial CSF 
samples\nwith times of relapse highlighted",gp = gpar(fontface = "bold", fontsize=22))) 

 

####Save to file 

dev.off() 

svg(file="C:/Pseudouridinelinechart.svg",width=10,  

    height=7) 
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grid.arrange(Psa,Psb,Psc,Psd,ncol=2, left=textGrob("uM creatine", rot=90, gp = gpar(fontface = "bold", fontsize=18)), 
bottom=textGrob("Days"), top=textGrob("Changes in csf pseudouridine abundance\nin serial CSF samples\nwith times of 
relapse highlighted",gp = gpar(fontface = "bold", fontsize=22))) 

dev.off() 

  



0 Appendix 273 

 

################################################################### 

### CSF metabolite timeline linecharts with boxplot (palmitate-palioleate ratio); similir for other timelines + boxplots 

 

.libPaths("C:/R/win-library/3.3") 

library(readxl) 

library(ggplot2) 

library(gridExtra) 

library(grid) 

library(reshape2) 

 

Palmitatecsfdata <- read_excel("C:/Documents/Experiments/Metabolomics data/Vaildation of untargeted data/Relapse 
CSF May 17 run/TC CSF relapse confirmation run/ReportOutput/Palmitate ratio data for chart csf at relapse1.xlsx") 

Palmitatecsfdata2 <- read_excel("C:/Documents/Experiments/Metabolomics data/Vaildation of untargeted data/Relapse 
CSF May 17 run/TC CSF relapse confirmation run/ReportOutput/Palmitate ratio data for chart csf at relapse2.xlsx") 

Palmitate1<- melt(Palmitatecsfdata, id.var='Days') 

Palmitate1<- na.omit(Palmitate1) 

Palmitate2<- melt(Palmitatecsfdata2, id.var='Days') 

Palmitate2<- na.omit(Palmitate2) 

 

ggplot() + geom_boxplot(data=Palmitate2, aes(x=Palmitate2$Days, y=Palmitate2$value, group=Palmitate2$Days)) 

 

boxplot(Palmitate2$value~Palmitate2$Days) 

 

l<- ggplot(Palmitate1, aes(x=Days, y=value, color=variable)) + 

  geom_boxplot(data=Palmitate2, aes(x=Palmitate2$Days, y=Palmitate2$value, group=Palmitate2$Days, 
fill="#d8b365"),width=0.5, show.legend=FALSE) + 

  geom_line(size=1.4) + 

  geom_point(size=3)+ 

  theme_bw() + 

  theme(legend.title=element_blank(),axis.title = element_text(size=20),axis.text=element_text(size=16), 
legend.text=element_text(size=14)) + 

  scale_colour_manual(values=c("#762a83",#"#762a83","#762a83","#762a83","#762a83", 

                               "#5ab4ac",#"#5ab4ac","#5ab4ac","#5ab4ac","#5ab4ac","#5ab4ac", 

                               "#01665e",#"#01665e","#01665e","#01665e","#01665e","#01665e", 

                               "#8c510a")) +#,"#8c510a","#8c510a","#8c510a","#8c510a","#8c510a")) + 

  scale_x_log10(breaks=c(0,8,28,183,365,730,1460,3400),labels=c("0","8","28","183","365","730","1460","3400")) + 

  xlab(" ") + ylab("Palmitate:Palmitoloeate ratio") 

 

title1=textGrob("Palmitate:Palmitoleate ratio in\n CSF of children with ALL", gp=gpar(fontface="bold", fontsize=20)) 

grid.arrange(l,ncol=1, top=title1,bottom=textGrob("Days",gp=gpar(fontface="bold",fontsize=16))) 

 

dev.off() 

svg(file="C:/Palmitate-palmitoloeate csfchart (logaxis)2.svg") 

grid.arrange(l,ncol=1, top=title1,bottom=textGrob("Days",gp=gpar(fontface="bold",fontsize=16))) 

dev.off() 
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################################################################### 

### 13C glucose percentages 

 

library(readxl) 

library(ggplot2) 

library(grid) 

library(gridExtra) 

 

## Get data 

 

CSFgluc1 <- read_excel("C:/13C-glucose percentages for R.xlsx") 

 

CSFgluc20 <- subset(CSFgluc1,Group=="20 mins") 

CSFgluc202 <- subset(CSFgluc20[(9:10),]) 

CSFgluc201 <- subset(CSFgluc20[(1:8),]) 

 

r <- ggplot(CSFgluc202, aes(`CSF or Plasma`,`% of labelled glucose`)) +geom_bar(stat="identity", fill=c("red","blue")) + 

  geom_point(data=CSFgluc201, aes(x=`CSF or Plasma`,y=`% of labelled glucose`)) + 

  xlab("20 minutes") + ylab("Percentage of 13C-labelled glucose") + 

  theme_bw() + 

  theme(axis.title.x = element_text(face="bold",size=20), axis.text.x = element_text(face="bold",size=15), 

        axis.title.y = element_text(face="bold",size=20), axis.text.y = element_text(face="bold",size=15)) 

 

r 

################################ 

CSFgluc40 <- subset(CSFgluc1,Group=="40mins") 

CSFgluc402 <- subset(CSFgluc40[(5:6),]) 

CSFgluc401 <- subset(CSFgluc40[(1:4),]) 

 

s <- ggplot(CSFgluc402, aes(`CSF or Plasma`,`% of labelled glucose`)) +geom_bar(stat="identity", fill=c("red","blue")) + 

  geom_point(data=CSFgluc401, aes(x=`CSF or Plasma`,y=`% of labelled glucose`)) + 

  xlab("40 minutes") + ylab("Percentage of 13C-labelled glucose") + 

  theme_bw() + 

  theme(axis.title.x = element_text(face="bold",size=20), axis.text.x = element_text(face="bold",size=15)) + 

  theme(axis.title.y = element_text(face="bold",size=20), axis.text.y = element_text(face="bold",siz=15)) 

s 

 

title1=textGrob("Percentage of 13C-labelled glucose in\nthe CSF and Plasma of mic with ALL\n20 and 40 minutes after 
injection", gp=gpar(fontface="bold",fontsize=20)) 

grid.arrange(r,s,ncol=2, top=title1) 

 

#################################### 

dev.off() 

dev.off() 

svg(file="C:/13Cglucose percentages for R.svg") 

grid.arrange(r,s,ncol=2, top=title1) 

dev.off() 

dev.off() 
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