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Abstract

This thesis explores the relationship between Khovanov homology and strongly invertible knots

through the use of a geometric construction due to Sakuma. On the one hand, new homological

and polynomial invariants of strongly invertible knots are extracted from Sakuma's construction,

all of which are related to Khovanov homology. Conversely, these invariants are used to study the

two-component links and annular knots obtained from Sakuma's construction, the latter of which

are almost entirely disjoint from the class of braid closures. Applications include the problem of

unknot detection in the strongly invertible setting, the e�ciency of an invariant when compared

with the η-polynomial of Kojima and Yamasaki, and the use of polynomial invariants to bound

the size of the intrinsic symmetry group of a two-component Sakuma link. We also de�ne a new

quantity, κA, and conjecture that it is an invariant of strongly invertible knots.
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Introduction

The study of knot and link symmetry has its roots in the very beginning of knot theory. Indeed,

ever since the �rst knot tables were being complied by Tait in the 19th century [85] questions

about their symmetry properties were raised. For example, a natural query that arises is which

knots are amphicheiral ; that is, which are equivalent to their mirror images. Also of interest is

the question of knot invertibility; if we consider the orientation of a knot curve, an invertible knot

is one which equivalent to itself with the orientation reversed. It was unclear for a time whether

or not a non-invertible knot existed, a problem which wasn't resolved until the 1960s when

Trotter [89] found an in�nite family of non-invertible knots. Today, the study of knot symmetry

is still an active area of research; for example a recent result of Paoluzzi and Sakuma [67] has

answered a longstanding open question regarding the existence of amphicheiral prime knots with

free periodic symmetries of period 2.

The principal objects of study appearing in this thesis are strongly invertible knots. These are

knots paired with a particular symmetry, known as a strong inversion, which is an involution of S3

that reverses the orientation of the knot. All strongly invertible knots are invertible by de�nition,

but there are examples of invertible knots which are not strongly invertible [26] [98]. For knots

with a small number of crossings, strongly invertible knots are particularly prevalent; as Sakuma

notes [79], about 85% of the prime knots with 10 crossings or less admit strong inversions. In

addition, strongly invertible composite knots are easily constructed by taking the connect sum of

any oriented knot with its inverse.

In addition to strongly invertible knots we will be concerning ourselves with a geometric construc-

tion, �rst developed by Sakuma [79], which allows us to associate to every strongly invertible knot

a unique two-component link with both components unknotted. The link should be viewed as an

auxiliary object of the strongly invertible knot � an invariant of the link is by construction an

invariant of the strongly invertible knot. Indeed, Sakuma's motivation for his construction was

to apply the η-polynomial of Kojima and Yamasaki [46] to strongly invertible knots.

While strongly invertible knots may appear to be a relatively unassuming class of objects, they

make appearances in the wider �eld of low-dimensional topology, perhaps most notably in the

Berge conjecture. In an unpublished work Berge [6] produced a list of knots which admit lens

space surgeries; it was then conjectured is that this list is exhaustive, that is, if a knot admits a

lens space surgery it must be one of knots in Berge's list. Interestingly, as Watson notes in the

introduction of [91], the Berge conjecture can be restated in terms of strongly invertible knots.
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Berge knots are genus 2, so by a result of Osborne [63] are strongly invertible; the conjecture then

comes down to �rst showing that any knot admitting a lens space surgery is strongly invertible,

then showing that a strongly invertible knot admitting a lens space surgery is a Berge knot.

However, not all strongly invertible knots admit lens space surgeries. Watson constructs for each

strongly invertible knot a certain quotient tangle, which we shall call the Watson tangle, and

proves that surgeries on strongly invertible knots correspond to double branched covers of S3

over certain closures of the associated quotient tangle. Using this fact he developed obstructions

for strongly invertible knots to admit lens space surgeries using Khovanov homology, our other

main protagonist.

The development by Khovanov of a homology theory for links [40] in the late 1990s resulted

in a explosion of new algebraic tools available to knot theorists. Khovanov homology was the

�rst of what became known as `categori�ed' knot invariants, by which we mean homological

invariants whose Euler characteristics return a classical polynomial invariant. In the case of

Khovanov homology, it is the categori�ed version of Jones polynomial � a polynomial invariant

�rst constructed by Jones in the 1980s [34]. The advantage of working with categori�ed invariants

over polynomial ones is that they contain more stucture, which allows for more applications.

Perhaps the most archetypal example of this is Rasmussen's s invariant [73], which is de�ned

using the Lee spectral sequence from Khovanov homology to Khovanov-Lee homology [48]. Using

the s invariant Rasmussen was able to come up with a purely combinatorial proof of the Milnor

conjecture.

The use of spectral sequences converging from Khovanov homology to other homology theories has

become a standard technique for knot theorists, and has led to a number of celebrated discoveries.

An important example is Kronheimer and Mwroka's proof that Khovanov homology detects the

unknot [47], which exploited a spectral sequence from Khovanov to instanton Floer homology.

Another came from Ozsváth and Szabó [66], who exhibited a spectral sequence between the

Khovanov homology of a link and the Heegaard-Floer homology of its double-branched cover. In

fact, the connection between Khovanov-style homology theories and Heegaard-Floer-style theories

is so widespread that a collection of sequences have been uncovered; see, for example, papers by

Roberts [76], and Grigsby and Wehrli [22] [23]. A variation of Khovanov homology of particular

interest in this thesis is annular Khovanov homology, which is an invariant of links in the thickened

annulus A × I, instead of the usual 3-sphere. Annular links are a naturally occurring set of

objects, appearing, for example, in the construction of satellite knots; as closures of braids; and

as quotients of periodic knots by their symmetry, when viewed as lying in the exterior of the axis

of rotation.

In recent years attempts have been made to understand the interplay between Khovanov ho-

mology and knot symmetries. For example, Watson [92] has de�ned a homological invariant of

strongly invertible knots, κ, using Khovanov homology. His invariant provides compelling evi-

dence that quantum topological invariants can be a source of powerful new tools for studying

strongly invertible knots. Another important set of examples have as their motivation work of

Murasugi [61], who used the Jones polynomial to rule out the periodic symmetries a knot can
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have. In particular, equivariant Khovanov homology theories have been de�ned � see papers

of Cibili [13], Politarczyk [69], and Borodzik and Politarczyk [8] � which use the extra struc-

ture coming from a the presence of a periodic symmetry. In addition, Zhang [100] has studied

the annular setting, and proved a rank inequality between the annular Khovanov homology of a

periodic link and its quotient link. This thesis is best viewed in the context of all these recent

works.

0.1 Summary of main results

Following in the spirit of Sakuma, the results in this thesis come as a consequence of constructing

invariants of strongly invertible knots from invariants of related auxiliary objects. In addition to

Sakuma's links and Watson's tangles mentioned above, it is possible to associate a pair of annular

knots and a further tangle to every strongly invertible knot, which allows for a wide range of new

invariants. The relationships between the auxiliary objects and their parent strongly invertible

knot are exhibited by the following schematic:

Strongly invertible knots

(K,h)

Sakuma links

L = B ∪ L

Tangles

-Sakuma

-Watson

Annular Sakuma knots

L ⊂ E(B)

B ⊂ E(L)

In actual fact, we do a little more. Sakuma's construction begins by taking a pair of equivariant

longitudes of a strongly invertible knot (K,h) which have zero linking number withK. We expand

upon Sakuma's construction by changing the framing of the pair of longitudes � this allows us

to build an in�nite family of quotient objects for each (K,h). We label a strongly invertible knot

with a non-zero framing n by (K,h, n), and call it a framed strongly invertible knot.

We apply to the families of auxiliary objects a number of invariants, which by construction give us

invariants of strongly invertible knots. In addition to the η-polynomial we investigate seven other

invariants: the Jones polynomial, the annular Jones polynomial, Khovanov homology, annular

Khovanov homology, tangle Khovanov homology, Watson's κ invariant, and κA, a conjectured

new invariant which is best viewed as an annular o�shoot of κ. We �nd that some invariants are

sensitive to changing the longitude framing in Sakuma's construction, whilst other are not, and
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return the same value for all framings.

We assess the di�erent invariants, following three main lines of inquiry:

1. Ability to detect the strongly invertible unknot.

2. Ability to distinguish pairs of strongly invertible knots.

3. Ability to detect the cheirality of the underlying knot.

Unknot detection

One of the �rst questions one should ask of any knot invariant is whether or not it gives a unique

value on the unknot. In our setting, we are interested in the strongly invertible unknot (U , h0),
which is simply the unknot equipped with its standard inverting involution. It is known that the

η-polynomial does not detect the unknot [79], whilst Watson proves [92, Theorem 1] that κ does

detect it. We prove the following three theorems:

Theorem 0.1.1. Let (K,h) be a strongly invertible knot with Sakuma link L. Then,

(K,h) ∼= (U , h0)⇐⇒ dimF(Kh∗(L)) = 4.

That is, Khovanov homology detects the strongly invertible unknot.

Theorem 0.1.2. Let L = B ∪ L be a Sakuma link, and let U be the homologically trivial unknot

in A× I.

1. Suppose AKh∗(L) ∼= AKh∗(U) ∼= F[0, 1, 0] ⊕ F[0,−1, 0]. Then L is the two-component

unlink and L ∼= U .

2. Suppose AKh∗(B) ∼= AKh∗(U) ∼= F[0, 1, 0] ⊕ F[0,−1, 0]. Then L is the two-component

unlink and B ∼= U .

Theorem 0.1.3. Let (K,h) be a strongly invertible knot, and let T(K,h) be its Watson tangle.

Suppose TKh∗(T(K,h)) ∼= TKh∗(T(U ,h0)), where T(U ,h0) is the Watson tangle associated to (U , h0).
Then (K,h) ∼= (U , h0).

The following theorem relies on the fact that κA is an invariant of strongly invertible knots �

something we have only been able to conjecture.

Theorem 0.1.4. Let Lm be a family of annular Sakuma knots associated to a strongly invertible

knot (K,h). Suppose κA(K,h, L) = 0. Then (K,h) ∼= (U , h0).

E�ectiveness of invariants

We also compare the invariants' ability to distinguish strongly invertible knots. As the η-

polynomial has been determined for the largest number of examples (see the appendix to [79]),

we use it as the benchmark invariant.

We prove a result about the η-polynomials of a family of torus knots.
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Proposition 0.1.5. η(T (−m,2),h)(t) = η(T (−m−2,2),h)(t) for m = 4k − 1, (k ≥ 1).

On the other hand, we show that the annular Jones polynomial can distinguish every member of

the family.

Proposition 0.1.6. AJ(LT (−m,2))(q, t) 6= AJ(LT (−m−2,2))(q, t) for all m ≥ 3. Hence, the annu-

lar Jones polynomial distinguishes every member of the family of strongly invertible torus knots

(T (−m, 2), h), m ≥ 3.

Sensitivity to cheirality

One interesting facet of the η-polynomial is its ability to determine whether the underlying knot

of a strongly invertible knot is cheiral [79, Proposition 3.4]. Since the remaining invariants all

have their roots in Khovanov homology, which is known to be sensitive to the cheirality of a

knot [40], we obtain similar results. A particular instance is the following result for the Jones

polynomial:

Proposition 0.1.7. Let (K,h, n) be a framed strongly invertible knot and suppose K is hyperbolic

and amphicheiral.

1. Suppose that K does not have a free or cyclic period of period 2, and let h be the unique

inverting involution. Then (K,h, n) ∼= (K,h, n), and so J(K,h,n)(q) = J(K,h,n)(q) for all n.

In particular, when n = 0 we have J(K,h)(q) = J(K,h)(q) = J(K,h)(q
−1).

2. Suppose K does have period 2, and let h1 and h2 be its two inequivalent inverting involutions.

Then (K,h1, n) ∼= (K,h2, n), and so J(K,h1,n)(q) = J(K,h2,n)(q) for all n. In particular, when

n = 0 we have J(K,h1)(q) = J(K,h2)(q) = J(K,h2)(q
−1).

It is also possible to apply the invariants to Sakuma's links, and this can have some interesting

implications when considering their symmetry properties. In particular, there exists a related,

but subtly di�erent, symmetry group of a link, originally de�ned by Whitten [97], called the

intrinsic symmetry group. As noted by Berglund et al. in [11], from one point of view the

intrinsic symmetry group is a more natural object to study than the standard symmetry group of

the link as every element is easy to explicitly describe. We use polynomial invariants to provide

restrictions on the size of the intrinsic symmetry group of the two-component links. For example,

an element of the intrinsic symmetry group that exchanges the two components is referred to as

a pure exchange symmetry; and it turns out that the η-polynomial can determine when one of

Sakuma's two-component links cannot have a pure exchange symmetry.

We also focus on the class of annular knots as objects in their own right. Most of the current

literature on annular knots deals with annular knots obtained from braid closures; however we

show that the class of knots obtained using Sakuma's construction is almost completely disjoint

from this class.

Proposition 0.1.8. Let K ⊂ A × I be an annular Sakuma knot that is not associated to

(U , h0,±1). Then K is not equivalent to a braid closure.
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0.2 Overview

Chapter 1 covers the necessary background material on knot symmetries. Explicit knot sym-

metries and their role as elements in the symmetry group and intrinsic symmetry group of a knot

are explained.

Chapter 2 introduces Sakuma's and Watson's constructions, and constructs the families of

auxiliary objects we attach to each strongly invertible knot.

In Chapter 3 we turn our attention to polynomial invariants of strongly invertible knots. In

particular, Sakuma's work on applying the η-polynomial of Kojima and Yamasaki to strongly

invertible knots is covered, as well as the Jones polynomial and its annular counterpart. We

end with a discussion regarding the use of polynomial invariants to study the intrinsic symmetry

group of a Sakuma link.

In Chapter 4 we de�ne and study homological invariants of strongly invertible knots. We look at

�ve invariants: Khovanov homology, annular Khovanov homology, κ, κA, and tangle Khovanov

homology.

Finally, in Chapter 5 we provide a �nal evaluation of the invariants covered, and list some

directions for future work.

Appendix A is a user manual for the Mathematica package `AKh.m', which was written by

the author in order to obtain explicit calculations for the annular Khovanov homology of annular

Sakuma knots.



Chapter 1

Symmetries of knots and links

In this �rst chapter we will provide the necessary background on the symmetry properties of knots

and links, with a particular emphasis on strongly invertible knots. Along the way we will come

across di�erent types of �nite symmetries, and will see two di�ering concepts of a link's symmetry

group. We will end by returning to strongly invertible knots and their properties.

1.1 Symmetry groups of knots and links

1.1.1 Properties of knots and links

Much of the following discussion and de�nitions are taken from Cromwell's book [15, Chapters

1 & 3] or Kawauchi's [38, Chapter 3]. We begin with the formal de�nition of a link in the 3-

sphere. There are two equivalent ways in which links are de�ned: using subsets of S3, or using

embeddings into S3. We choose the latter.

De�nition 1.1.1. An n-component link L is an embedding of a disjoint union of n copies of S1

in S3. A knot is a link with one component.

Knots and links come with notions of equivalence, which are of varying �avours and strengths.

The most commonly used one is ambient isotopy.

De�nition 1.1.2. Two links L and L′ are said to be ambient isotopic if there exists an isotopy

h : S3 × [0, 1]→ S3 such that h(L, 0) = L and h(L, 1) = L′.

Ambient isotopy forms an equivalence relation on the set of links: we say an equivalence class of

a link is its link type. In this thesis we will always use this notion of link equivalence. An example

of a stronger equivalence relation is if we were to number the components of L = K1 ∪ . . . ∪Kn

and L′ = K ′1 ∪ . . . ∪K ′n from 1 to n, and further demand that an ambient isotopy also preserve

the numbering � that is, h(Ki) = K ′i for all i.

Remark. An equivalent alternative to ambient isotopy can be de�ned when links are considered

as subspaces of S3. In this case, two links L and L′ are equivalent if there is an orientation

1
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Figure 1.1: The three Reidemeister moves

preserving homeomorphism of S3 to itself that takes L to L′. In this thesis we will use both

notions interchangeably.

Determining when two links are of the same type is not a straight-forward task, since an explicit

isotopy is required. Instead, knot theorists often �nd it easier to attack the problem from another

angle, by determining when two links are not of the same type. The standard way to do this is to

cook up a link invariant, which is a quantity which is the same on all equivalent links. Therefore,

if the link invariant of two links L and L′ is not the same, we know the links cannot possibly be

equivalent.

Now, knots and links are 3-dimensional objects, but since mathematics is done on paper, we

would like to be able to represent them accurately as a drawing in the plane R2. This can be

done by projecting a link onto a chosen plane in such a way that there are a �nite number of

singular points and there are exactly two points in the preimage of each one � such a projection

is called a regular projection. A link diagram is obtained from a regular projection by including

crossing information � this is done by putting in a break to indicate which strand is passing over

and which is passing under at each crossing. There are an in�nite number of ways to represent

a given link, and, as Cromwell notes [15, Chapter 3.3], in general there is no `correct' or `best'

diagram � di�erent diagrams of the same link can be used to exhibit di�erent characteristics.

This is an important point to remember when we start viewing the di�erent symmetries of a link.

Another instance of this point are the link diagrams of alternating links.

De�nition 1.1.3. A link diagram is alternating if, when travelling along each component, the

crossings alternate between over-crossings and under-crossings. A link is said to be alternating if

it possesses an alternating diagram.

The crucial theorem which allows us to work with link diagrams is due to Reidemeister [74].
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Figure 1.2: Crossing conventions

Reidemeister's Theorem (Reidemeister, 1927). Let L1 and L2 be two links in S3, and let D1

and D2 be diagrams of them in R2. Then L1 and L2 are equivalent if and only if D2 can be

obtained from D1 by applying a �nite series of the Reidemeister moves shown in Figure 1.1, as

well as some ambient isotopies of the plane.

Many of the link invariants we come across are de�ned using link diagrams. In order to prove

that such quantities are link invariants we must show that they are invariant under each of the

three Reidemeister moves. It is important to stress, however, that not all link invariants are

diagrammatic; some can only be de�ned on the link when it is viewed as a subspace of S3.

Given a knot we can equip it with an orientation. There are two possible choices available and

we depict a choice in a knot's diagram by placing an arrow on a strand. The same idea naturally

extends to links.

De�nition 1.1.4. Let L = K1 ∪ . . . ∪ Kn be a link in S3. An orientation on L is a choice

of orientation on each of its components Ki. We say a link equipped with an orientation is an

oriented link.

Once a link diagram D has been oriented we can divide the crossings into two sets, which we call

the positive crossings and the negative crossings. Given a crossing p in an oriented link diagram,

we de�ne the sign of p to be either + or −, depending on whether p is positive or negative. The

most common convention for them is shown in Figure 1.2 � unfortunately some mathematicians

have been known to use the opposite convention.

De�nition 1.1.5. Let L ⊂ S3 be an oriented link, and let DL be a choice of diagram with n+
positive crossings and n− negative crossings. The writhe of DL is de�ned to be

Wr(DL) = n+ − n−.

The writhe is an invariant of the diagram, but is not an invariant of the link it depicts. The reason

for this is that the writhe is not preserved under Reidemeister I moves. However, for alternating

links Thistlethwaite [87], Kau�man [36], and Murasugi [60] independently proved that reduced

diagrams of the link always have the same writhe � a result which was originally conjectured by

Tait in the 19th century.

De�nition 1.1.6. Let L ⊂ S3 be a link with diagram DL. We say a crossing p in DL is nugatory

if there is a circle in R2 meeting p transversely which does not meet the diagram at any other
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Figure 1.3: A nugatory crossing in a link diagram

point. If DL has no nugatory crossings it is said to be reduced.

See Figure 1.3 for an example of a nugatory crossing in a link diagram. Nugatory crossings can

clearly be removed by �ipping one half of the diagram over � this motivates the use of the phrase

`reduced diagram'.

Building upon the idea of the writhe, for links with two or more components we have the notion

of linking number. We state the de�nition for two-component links:

De�nition 1.1.7. Let L = K1 ∪K2 be an oriented two-component link, and DL be a diagram.

Suppose there are n+ positive crossings between K1 and K2, and n− negative crossings. The

linking number of L is:

lk(L) = lk(K1,K2) :=
n+ − n−

2
.

The linking number is an invariant of two-component links � that is, it is invariant under

Reidemeister moves. A related concept is that of self-writhe.

De�nition 1.1.8. Let L = K1 ∪K2 be an oriented two-component link, and DL be a diagram.

Suppose there are n+ intra-component positive crossings, and n− intra-component negative cross-

ings. The self-writhe of DL is:

SWr(DL) = n+ − n−.

The three concepts of writhe and linking number are related as follows:

Wr(DL) = 2lk(L) + SWr(DL).

As a consequence of the above, for alternating links the self-writhe is also an invariant of reduced

diagrams.

Next, we de�ne precisely a sense of `primeness' for knots and links.

De�nition 1.1.9. Let L1 and L2 be two links. The disjoint union, denoted L1 t L2, is the link

formed by placing L1 and L2 inside disjoint balls B1, B2 ⊂ S3.

De�nition 1.1.10. A link L is split if L can be expressed as a disjoint union of two sub-links

L1, L2.



CHAPTER 1. SYMMETRIES OF KNOTS AND LINKS 5

De�nition 1.1.11. Let L ⊂ S3 be a link, and suppose there exists a 2-sphere S which meets L

transversely in exactly two points. Let α ⊂ S be an arc that connects the two points of L ∩ S,
and let U1 and U2 be the two components of S3\S. De�ne Li = (L∩Ui)∪α for i ∈ {1, 2}. Then
L is a product link with factors L1 and L2, and we say S is a factorising sphere for L. We write

L = L1#L2.

De�nition 1.1.12. A factor of a link is a proper factor if it is not the unknot, nor the link itself.

A link with proper factors is called a composite link. A link with no proper factors is a locally

trivial link.

De�nition 1.1.13. A link is prime if it is non-trivial, non-split, and locally trivial.

Now we will outline the main types of links. Due to a result of Thurston we can neatly divide

links into one of three categories: hyperbolic, satellite, and torus.

First, the torus links. As their name suggests, these are a class of links which can be embedded

in a torus T ⊂ S3.

De�nition 1.1.14. Let T be a trivially embedded torus in S3 and let (m, l) be the standard

meridian-longitude pair of curves on T . Let (p, q) be a pair of coprime integers. We say a torus

knot on T is of type (p, q), and denote it T (p, q), if it is homologous to the curve pm + ql in

H1(T ;Z). A torus link T (np, nq) is simply n copies of T (p, q) in parallel, all oriented in the same

direction.

Now, the satellite links.

De�nition 1.1.15. Let K ⊂ S3 be a knot, and l be a longitude of K. We say l is preferred if

the linking number lk(K, l) = 0.

De�nition 1.1.16. Let C ⊂ S3 be a knot, and N (C) be a regular neighbourhood of C. Let

P ⊂ V be a link in a solid torus such that P is not contained in any 3-ball in V . Now let

φ : V → N (C) be a homeomorphism mapping the standard meridian-longitude pair on V to a

meridian and preferred longitude on N (C). A satellite link is the link Sat(P,C) = φ(P ). We say

that Sat(P,C) has pattern P and companion C.

A particular type of satellite link are the cable links.

De�nition 1.1.17. An n-parallel cable link of a knot C is the satellite link Sat(P,C), where P

is the n-component torus link T (0, n).

Finally, the hyperbolic links. In order to understand their de�nition we will �rst brie�y describe

the statement of Thurston's Hyperbolisation Theorem. This ground-breaking theorem is con-

cerned with the di�erent geometric structures we can equip 3-manifolds with. In particular, the

motivation behind it was to determine which 3-manifolds can be equipped with a hyperbolic

structure.

An interesting class of 3-manifolds are the link exteriors, which are obtained from S3 by removing

the interior of a regular neighbourhood of a link: we denote them by S3\N (L), or E(L) for short.
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Figure 1.4: Building the Figure-8 knot exterior from tetrahedra

When applied to link exteriors links Thurston's theorem allows us to classify links into one of the

three sets mentioned above. Those links whose exteriors permit a hyperbolic structure are the

hyperbolic links. The exteriors of hyperbolic links have a �nite hyperbolic volume, and this is a

powerful link invariant � in fact, the hyperbolic volume is an example of a non-diagrammatic

invariant. The other two sets have properties which prevent a hyperbolic structure being attached

to their exteriors: it turns out these are precisely the torus links and the satellite links.

We will now state the theorem as it appears in [15, Chapter 4], then will provide the necessary

de�nitions.

Hyperbolisation Theorem (Thurston). Let L be a non-split link. Then the exterior of L,

S3\N (L), is a manifold with a hyperbolic structure if and only if L is atoroidal and anannular.

Furthermore, S3\N (L) has �nite volume if and only if L is not the trivial knot or the Hopf link.

De�nition 1.1.18. Let T be a torus embedded in E(L) for some L ⊂ S3. We say T is said to

be boundary parallel if there is a continuous map h : T × [0, 1]→ E(L) such that h(T ×{0}) = T

and h(T × {1}) is a component of ∂E(L).

De�nition 1.1.19. Let A be an annulus properly embedded in E(L) for some L ⊂ S3. We say

A is boundary parallel if there is a continuous map h : A× [0, 1]→ E(L) such that h(A×{0}) = A

and h(A× {1}) is a subset of a component of E(L).

Next, we de�ne the notion of a compressible surface in a 3-manifold. Given a surface F , we say
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a loop in F is essential if it represents a non-trivial element of H1(F ).

De�nition 1.1.20. Let F be a surface in a connected 3-manifold M . We say a disc D ⊂ M is

a compressing disc for F in M if D ∩ F = ∂D and ∂D is essential in F .

De�nition 1.1.21. Let F be a properly embedded compact surface in a compact connected

3-manifold M . If F is not a sphere or a disc, we say F is compressible in M if there exists a

compressing disc for F in M . Otherwise, we say F is incompressible in M .

We can think of an incompressible surface as being one which has been simpli�ed as much as pos-

sible whilst remaining `non-trivial' inside the 3-manifold. There are also notions of compressibility

for spheres and discs, but we omit these for brevity.

De�nition 1.1.22. A link L ⊂ S3 is atoroidal if any torus T in the interior of E(L) is compress-

ible or boundary parallel.

De�nition 1.1.23. A link L ⊂ S3 is anannular if any annulus A properly embedded in E(L) is

compressible or boundary parallel.

Informally, the problem with a link exterior containing an embedded annulus or torus that can-

not be compressed away is that these pieces cannot be given a hyperbolic geometric structure.

Satellite links contain such a torus � the regular neighbourhood of its companion curve � and

so their exteriors are not atoroidal. As for torus links, they fail the anannular condition.

How is the exterior of a hyperbolic link given a hyperbolic structure? Thurston [88, Chapter 3]

describes the general method: "one divides the complement into a union of ideal polyhedra, then

attempts to realize these polyhedra as ideal hyperbolic polyhedra and glue them together to

form a hyperbolic manifold". By a hyperbolic tetrahedra we mean tetrahedra as they appear in

hyperbolic 3-space, equipped with the hyperbolic metric.

Example 1.1.24 (Figure-8 knot exterior). As an example of how we might go about gluing

together tetrahedra to make a link complement we will show what happens without proof for

the Figure-8 knot (this example can be found in Thurston's book [88, Example 1.4.8]). Consider

Figure 1.4: the Figure-8 exterior can be obtained from gluing two truncated tetrahedra together

so that face labels, edge colours, and edge arrows match up. The eight shaded triangles are glued

together pairwise along their edges to make the boundary of the exterior, which is a torus. Note

that this diagram does not actually show the Figure-8 knot in any way � to see this a couple

more diagrams are needed (see Thurston [88, Figure 1.26]).

In practice this method is much too complicated to do by hand, but fortunately there exists a

computer program that will �nd the hyperbolic triangulation for us. Written by Je�rey Weeks

in the 1980s, SnapPea is an incredibly powerful and useful tool for low-dimensional topologists

interested in hyperbolic 3-manifolds. Its latest iteration is as SnapPy [16], which is an extension

of the original SnapPea to the Python programming language. The algorithm SnapPy uses to

�nd a triangulation of a link exterior is also due to Weeks [94].
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1.1.2 Symmetries of knots and links

We will now describe some of the basic symmetry properties of knots and links. We begin with

invertible links and amphicheiral links.

If L is an oriented link, we say the link in which all orientations are reversed is its inverse, and

denote it by −L. It is immediate that another stronger notion of link equivalence can be obtained

if we also specify the orientations on link components be preserved by our ambient isotopies. In

particular, if L is ambient isotopic to its inverse we say it is invertible.

Next, view S3 as R3 ∪ {∞}. Let r : S3 → S3 be the orientation reversing homeomorphism which

sends a point (x, y, z) to (−x,−y,−z) and {∞} to itself � we say r is a re�ection of S3 through

two points. The image of a link under r is called its mirror image, and is denoted by L. If an

unoriented link is ambient isotopic to its mirror image we say it is amphicheiral ; otherwise it is

cheiral.

Remark. As Cromwell notes in [15, Chapter 1], we should really call −K the reverse ofK � and

so this thesis should really be about strongly reversible knots! The de�nition was changed when

K and −K were found to be inverse elements in the concordance group of knots, however many

other de�nitions have not been updated, and so the old label is still canon in many circumstances.

Therefore, to prevent unnecessary confusion, we will retain the old term.

We can choose to di�erentiate between those ambient isotopies that send a link to its mirror. For

L = K1 ∪ . . . ∪Kn an oriented link we can form 2n related links by reversing some orientations

of its components. We will refer to a related link by Lε, where the n-tuple ε ∈ {+,−}n indicates

whether the orientation of each Ki is preserved or reversed. If L is equivalent to Lε, we say that

L is ε-amphicheiral.

For knots things are simpler: if K = K we say K is (+)amphicheiral, and if K = −K we

say K is (−)amphicheiral. In homeomorphism language, if there exists an orientation reversing

homeomorphism of S3 that preserves (reverses) the orientation of K then K is (+)amphicheiral

((−)amphicheiral).

Following Cromwell, if we denote the operation that sends K to −K as s, and let t = rs be the

operation sendingK to−K we obtain a groupG (which is isomorphic to the Klein 4-group).

1 r s t

1 1 r s t

r r 1 t s

s s t 1 r

t t s r 1

A knot K then must have one of the following �ve symmetry types, depending on which subgroup

of G is realised in the knot type of K.
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Figure 1.5: The trefoil admits a periodic symmetry of period 3

G fully symmetric

〈s〉 invertible

〈r〉 (+)amphicheiral

〈t〉 (−)amphicheiral

〈1〉 no symmetry

We will now outline some of the most common examples of symmetries of knots and links. They

are sometimes known as `rigid' symmetries due to the fact they can all be described by the action

of a rotation or re�ection of the 3-sphere. The reference for the upcoming de�nitions and results

is Kawauchi's excellent book [38, Chapter 10].

De�nition 1.1.25. A knot K ⊂ S3 is a periodic knot of period n if there is a periodic map f of

(S3,K) of period n such that Fix(f) ∼= S1 and Fix(f) ∩K = ∅.

The standard way to draw periodic symmetries is to view the �xed point set of the map to be

an axis passing straight through the plane of a knot diagram. As we can see from Figure 1.5

it is clear that the trefoil admits a periodic symmetry of period 3. When we specify our knots

be oriented we see that periodic symmetries preserve the orientation of K. This means they do

not feature at all in the symmetry type group de�ned above, showing the group's limitations at

capturing all the symmetry information of a knot.

De�nition 1.1.26. A knot K ⊂ S3 is a freely periodic knot with free period n if there is a

periodic map f of (S3,K) of period n such that Fix(f i) = ∅ for all 1 ≤ i ≤ n− 1.

Free symmetries are much harder to visualise than periodic symmetries; perhaps the most intuitive

set of examples are those on torus knots � whose exteriors are Seifert �bred.

De�nition 1.1.27. Let D2 ⊂ C be the unit disc in the complex plane, and ρ : D2 → D2 be a

homeomorphism given by ρ(x) = xe
2πia
b , where a and b are coprime integers. Consider the product

manifold D2× I, and form the quotient under the relation (x, 0) ∼ (ρ(x), 1). The resulting torus,

T , can be expressed as a union of �bres, namely as the collection of circles ({x} × I)∼. We say
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that T is a standard �bred torus.

De�nition 1.1.28. Let M be a closed 3-manifold. A Seifert �bration of M is a decomposition

of M into a disjoint union of �bres such that each �bre has a tubular neighbourhood equivalent

to a standard �bred torus.

Given a Seifert �bration on the exterior of a torus knot we can obtain a free symmetry by pushing

each point along its �bre. To get a symmetry of period n imagine identifying each �bre with the

unit circle in the complex plane, then send each point x in the �bre to e
2πi
n x.

Sakuma has proved [80], [81] that the presence of free periodic symmetries is inconsistent with a

knot being amphicheiral.

Theorem 1.1.29 (Sakuma, 1986). Let K ⊂ S3 be an amphicheiral, prime knot. Then K does

not have any free periodic symmetries of period > 2.

Theorem 1.1.30 (Sakuma, 1987). Let K ⊂ S3 be an amphicheiral hyperbolic knot. Then K has

no free periodic symmetries.

It was an open question for a time about whether or not there existed an amphicheiral prime

knot with free period 2. Recently, however, Paoluzzi and Sakuma [67] have resolved this question

in the a�rmative:

Theorem 1.1.31 (Paoluzzi-Sakuma, 2018). 1. There are in�nitely many prime knots with

free period 2 that are (+)amphicheiral but not (−)amphicheiral; in particular, they are

not invertible.

2. There are in�nitely many prime knots with free period 2 that are (ε)amphicheiral where

ε ∈ {+,−}; in particular, they are invertible.

We now arrive at the main set of objects featuring in this thesis � the strongly invertible

knots.

De�nition 1.1.32. A knot K ⊂ S3 is strongly invertible if there is an involution of (S3,K)

which preserves the orientation of S3 and reverses the orientation of K.

We note the subtle di�erence between the de�nitions of invertible knots and strongly invertible

knots: in order for an invertible knot to be strongly invertible the homeomorphism which takes K

to −K must be an involution. From the de�nition it is immediate that all strongly invertible knots

are invertible, though it turns out that the converse is not true (see papers by Hartley [26] and

Whitten [98] for examples of invertible knots which are not strongly invertible). For hyperbolic

knots, however, more can be said [38, Proposition 10.3.3].

Proposition 1.1.33. Let K be an invertible, hyperbolic knot. Then K is strongly invertible.

De�nition 1.1.34. A knot K ⊂ S3 is strongly (+)amphicheiral or periodically (+)amphicheiral

if there is an involution or a periodic map respectively of (S3,K) which reverses the orientation

of S3 and preserves the orientation of K. Likewise, K is strongly (−)amphicheiral or periodically
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1

2

3

4

Figure 1.6: A highly symmetrical diagram of the Figure-8 knot

(−)amphicheiral if there is an involution or periodic map of (S3,K) which reverses the orientations

of both S3 and K.

A particular instance of a map that realises the periodically (+)amphicheiral symmetry is a twisted

rotation. The following construction appears in a paper of Luo [51]: view S3 as (R × C) ∪ {∞}
and f be the map that takes a point (x, z) to (−x,−e

2πi
n z) and {∞} to itself. Then f is said to

be a twisted 2π
n -rotation of S3.

Analogously to the strongly invertible setting, there is an example of an amphicheiral knot which

is not periodically amphicheiral [26], but for hyperbolic knots this can be ignored [38, Proposi-

tion 10.4.3].

Proposition 1.1.35. Let K be an amphicheiral, hyperbolic knot. Then K is periodically am-

phicheiral.

Example 1.1.36. We will now see some of the above symmetries in action, by considering a

particular diagram of the Figure-8 knot. The Figure-8 is a highly symmetrical, hyperbolic knot:

it is strongly invertible, periodically (+)amphicheiral, strongly (−)amphicheiral, and admits a
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periodic symmetry of period 2. However, if we turn to perhaps its most well known diagram

(the right hand knot diagram in Figure 1.7, which appears in Rolfsen's table of knots [77, Ap-

pendix C]), only a strong inversion is present. This highlights a fundamental di�culty in studying

the symmetries of a knot or link � even if the existence of a certain symmetry is known, actually

�nding a diagram exhibiting it is often a di�cult task!

Consider now the diagram of the Figure-8 knot in Figure 1.6 ( [38, Figure 4.2.2]) . This has

been drawn in such as way as to be more suggestive of its 3-dimensional nature; in particular it

lies above and below the red plane, passing through it in four points. We claim that all of the

symmetries mentioned above can be exhibited in this diagram. Firstly, the periodic symmetry

can be seen by rotating the knot π radians about an axis passing through the centre of the red

plane. The (+)amphicheiral symmetry is exhibited by rotating π
2 radians about the same axis,

then re�ecting in the red plane. There are two strong inversions in the diagram too: rotate the

knot π radians about the axes labelled 2 and 4. Finally, two (−)amphicheiral symmetries can be

obtained by rotating π radians about axes 1 and 3 respectively, then re�ecting in the red plane.

1.1.3 The symmetry group

The symmetry group of a link is a classic invariant, which, like the hyperbolic volume, is non-

diagrammatic. As Kodama and Sakuma remark in the opening to [44], the symmetry group

of a link essentially codi�es information about its cheirality and invertibility. For knots, the

explicit `rigid' symmetries introduced previously are all contained within the symmetry group �

although, as we will see, not every symmetry appears as a non-trivial group element. We stay

with Kawauchi [38, Chapter 10.6] for the following de�nitions.

For a link L ⊂ S3 let Aut(S3, L) be the group of homeomorphisms from the pair (S3, L) to itself,

and let Aut0(S3, L) be the subgroup consisting of those homeomorphisms which are ambient

isotopic to the identity.

De�nition 1.1.37. Let L ⊂ S3 be a link. The symmetry group of L, Sym(L), is de�ned to be

the quotient group Aut(S3, L)/Aut0(S
3, L).

The symmetry group of L is therefore just the mapping class group of the pair (S3, L). For

knots, Sym(K) can also be identi�ed with the mapping class group of the knot exterior E(K),

which we will denote by MCG(E(K)), and the outer automorphism group of its knot group

π(K) := π1(E(K)). The proof of the following appears in Kawauchi [38, Theorem 10.6.2].

Theorem 1.1.38. Let K ⊂ S3 be a prime knot. Then we have the following natural isomor-

phisms:

Sym(K) ∼= MCG(E(K)) ∼= Out(π(K))

The symmetry group has been extensively calculated. For hyperbolic links Sym(L) is isomorphic

to the group of isometries on E(L), when E(L) is viewed as a hyperbolic manifold (c.f. [44]).

Using this fact Weeks was able to use his SnapPea program to calculate the symmetry groups
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of hyperbolic links, since, as Henry and Weeks state in [30] "the potentially di�cult topological

question of �nding the symmetries of the link complement is reduced to the computationally

trivial combinatorial question of �nding the symmetries of the canonical triangulation". Using

the SnapPea computer program Henry and Weeks [30] calculated the groups of hyperbolic knots

up to 10 crossings and links up to 9 crossings.

Working independently to Henry and Weeks, Kodama and Sakuma [44] computed the symmetry

group of all but three of the prime knots up to ten crossings by using a combined approach of

theorems and a computer program written by Kodama, which calculated symmetries of a certain

θ-graph. An example of one of their supporting theorems is given below for the hyperbolic case.

Let Sym+(K) be the subgroup of Sym(K) in which all elements preserve the orientation of

S3, and Sym′(K) be the subgroup in which elements preserve the orientations of both S3 and

K.

Proposition 1.1.39 (Kodama-Sakuma, 1992). Let K ⊂ S3 be a hyperbolic knot.

1. Sym′(K) is a �nite cyclic group Zn for some positive integer n.

2. Sym+(K) is isomorphic to the dihedral group Dn of order 2n, or to Zn, according to whether

K is invertible or not.

3. If K is cheiral, then Sym(K) ∼= Sym+(K).

4. Suppose K is amphicheiral. If K is invertible, then Sym(K) ∼= D2n. If K is non-invertible,

then Sym(K) ∼= Z2n or Dn according to whether K is positive or negative amphicheiral.

Example 1.1.40 (Figure-8 revisited). Using SnapPy it can be easily veri�ed that the symmetry

group of the Figure-8 knot is isomorphic to the dihedral group D4, which is generated by an

element r, of order 4 and an element s of order 2. Returning to the decomposition of E(41) into

tetrahedra in Figure 1.4 we can intuitively see how the two generators must act on the tetrahedra:

r cycles through the 4 faces, and s exchanges the two tetrahedra.

Furthermore, the symmetry group of 41 can be viewed completely in terms of its rigid symmetries.

We have

D4 = {e, r, r2, r3, s, sr, sr2, sr3}

Where r are r3 are (+)amphicheiral symmetries of order 4, r2 is a periodic symmetry of period 2,

s and sr2 are two strong inversions, and sr and sr3 are (−)amphicheiral symmetries of order 2.

Compare this with Figure 1.6: some of the elements of the group are present in the diagram. As

we will see later, two strong inversions are considered equivalent if they are conjugate (c.f. [44])

� which is the case for the two strong inversions exhibited in Figure 1.6.

For torus knots, the symmetry group is not quite as useful a tool to describe its symmetries, as

it is always isomorphic to Z/2Z.

Theorem 1.1.41 (Schreier, 1924). Let K ⊂ S3 be a torus knot T (p, q), then Out(π(K)) ∼= Z/2Z.

Corollary 1.1.42. Let K ⊂ S3 be a torus knot T (p, q), then Sym(K) ∼= Z/2Z.
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From the point of view of symmetries, the above result is in part due to the fact that all torus knots

are cheiral, but also because, as Kawauchi notes, torus knots admit a circle action. We de�ne

the circle group T to be the points of the unit circle S1 ⊂ C under multiplication. Let T (p, q)

be a torus knot of type (p, q); then T acts on (S3, T (p, q)) by sending a point x ∈ S3 ⊂ C2 to

eiθx. This action includes any periodic symmetries. In order to see that free periodic symmetries

are embedded within an action of T consider a Seifert �bration of the exterior of T (p, q). An

action of T consists in sending a point x on each �bre to e
2πi
n x on the same �bre. Now, since all

homeomorphisms given by a circle action are ambient isotopic to the identity, all homeomorphisms

realising free and cyclic periods of T (p, q) must also be ambient isotopic to the identity, and so

their images in Sym(T (p, q)) are trivial.

As a result, "there are �nite group actions which are not detected by the symmetry group"

(Kawauchi). The symmetry group says nothing about how many free and cyclic periods a torus

knot has; we must use other methods for this task.

So far all the examples of symmetry groups have been �nite groups. However, intuitively, the

number of homeomorphisms of (S3, L) is very large, perhaps even in�nite. Even after we quotient

out by those homeomorphisms ambient isotopic to the identity we may still wonder whether

Sym(L) is necessarily a �nite group. It turns out that this is not always the case, as the following

result of Sakuma [82] shows.

Proposition 1.1.43 (Sakuma, 1989). A link L has a �nite symmetry group if and only if L is

a hyperbolic link, a torus link, or a cable of a torus link.

In general, satellite links have an in�nite symmetry group. Sakuma in [82] shows this by exhibiting

a family of Dehn twists on the exterior of a satellite link. Given a satellite link L with companion

knot K we can decompose its exterior E(L) into a union of three pieces M0 ∪ T × [0, 1] ∪M1,

where M0 = N (K)\N̊ (L), T = ∂N (K), and M1 = S3\N̊ (K). Then Dehn twists (a type of

homeomorphism of a surface we leave unde�ned, see [77]) along T belong to the mapping class

group of E(L), and so also to Sym(L). Recall that cable links are a class of satellite links which

have a torus link as their pattern, which means they sit on the surface of the neighbourhood of

the companion knot. Intuitively, this property will cause problems if we try to perform Dehn

twists on the exterior of a cable link (see [82] for further details).

In the next section we will encounter another type of symmetry group which is always �nite for

all knots and links.

1.1.4 The intrinsic symmetry group

We will now detail a related, but subtly di�erent, symmetry group. This group was developed

by Whitten [97] in the late 1960s, and is known as the intrinsic symmetry group. The primary

reference for this section is a paper by Berglund et al. [11].

Let L ⊂ S3 be a link with symmetry group Sym(L). Consider the homomorphism given by

π : Sym(L) = MCG(S3, L)→MCG(S3)×MCG(L)
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where f ∈MCG(S3, L) 7→ (f |S3 , f |L).

De�nition 1.1.44. Let L, Sym(L) and π be as above. The intrinsic symmetry group, Sym∗(L),

of L is the image of the map π in MCG(S3)×MCG(L).

Now, MCG(S3) ∼= Z/2Z, with the non-zero element generated by an orientation reversing home-

omorphism. This means that Sym∗(L) contains explicit homeomorphisms on L � the only

thing about the ambient S3 it sees is its orientation. The main di�erence between Sym(L) and

Sym∗(L) is that Sym∗(L) is always a �nite group � as Berglund et al. remark, for the satellite

links not covered by Sakuma's theorem (Proposition 1.1.43) there are in�nitely many elements

which act non-trivially on the complement of L, but �x the link itself. These elements are con-

tained in the kernel of π, so are safely ignored. In addition, there are known examples of links

with a non-empty kernel even when Sym(L) is �nite [11, Table 13]. Berglund's group give the

following as the main motivation for working with Sym∗(L) over Sym(L): "it is often di�cult to

describe an element of Sym(L) in ker π exactly, but it is always simple to understand the exact

meaning of the statement γ ∈ Sym∗(L)".

The intrinsic symmetry group can be described in a more explicit way. For an n-component link

L the group MCG(S3) ×MCG(L), denoted by Γ(L) for short, can be expressed as a product

and semi-direct product of copies of Z/2Z as follows:

Γ(L) = Z/2Z× (Z/2Zn o Sn),

where Sn is the permutation group on n objects. The proof of this statement can be found

in Berglund [11, Proposition 4.9]. Informally, the group Γ(L) encodes the orientations of the

components of L, the order in which they are labelled, and the orientation of the ambient S3. We

express elements γ ∈ Γ(L) by the shorthand (ε0, ε1, . . . , εn, p), where εi ∈ {−1, 1} and p ∈ Sn; an
element of Γ(L) acts on L to produce a new link Lγ . We then specify that γ ∈ Γ(L) is contained

in Sym∗(L) if and only if there is an ambient isotopy which takes L to Lγ .

Remark. In fact, the intrinsic symmetry group was de�ned originally by Whitten [97] using

the above terminology; the de�nition we gave above comes from a result of Berglund et al [11,

Proposition 4.9].

For knots Γ(K) is none other than the group of knot symmetry types de�ned earlier! That is,

for K ⊂ S3, Γ(K) ∼= Z/2Z× Z/2Z. Hence, Sym∗(K) is isomorphic to one of the �ve subgroups

of Γ(K) outlined previously. The following result follows almost immediately.

Lemma 1.1.45. Let K ⊂ S3 be a knot. Then the map π : Sym(K)→ Sym∗(K) is surjective.

Proof. The result comes from the following three implications:

• K (+)amphicheiral ⇐⇒ (1, 0) ∈ Sym∗(K).

• K invertible ⇐⇒ (0, 1) ∈ Sym∗(K).

• K (−)amphicheiral ⇐⇒ (1, 1) ∈ Sym∗(K).
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Example 1.1.46. The Figure-8 knot has full symmetry, so its intrinsic symmetry group is Z/2Z×
Z/2Z. From earlier we know that Sym(41) ∼= D4. We will now describe explicitly the map

π : Sym(41)→ Sym∗(41):

e 7→ (0, 0) s 7→ (0, 1)

r 7→ (1, 0) sr 7→ (1, 1)

r2 7→ (0, 0) sr2 7→ (0, 1)

r3 7→ (1, 0) sr3 7→ (1, 1)

Note that π has a non-trivial kernel: periodic symmetries do not feature in the intrinsic symmetry

group.

For links, Γ(L) is more interesting. For example, for two-component links Γ(L) is a 16 element

non-abelian group isomorphic to Z/2Z×D4. Berglund et al. note that for an element γ ∈ Γ(L)

the intrinsic symmetry group of the link Lγ is the conjugate subgroup γSym∗(L)γ−1. Thus, the

number of possible distinct intrinsic symmetry groups is the number of non-conjugate subgroups

of Γ(L). For two-component links, there are 35 subgroups of Γ(L), and 27 of them are non-

conjugate. Exactly how many of these 27 subgroups actually appear as the intrinsic symmetry

group of some two-component link is an open question; Berglund et al. have found that only 6

are realised by prime links with 8 or fewer crossings.

A speci�c type of symmetry for two-component links of interest to us is the pure exchange sym-

metry, which is the symmetry corresponding to the element (1, 1, 1, (1, 2)) ∈ Γ(L). It should be

clear that a two-component link can only have pure exchange symmetry if both of its components

are of the same knot type.

1.2 Strongly invertible knots revisited

We will now return to strongly invertible knots, which were brie�y touched upon earlier. Much

of the following is taken from Sakuma's paper [79].

1.2.1 Properties of strongly invertible knots

We will start by providing an equivalent de�nition to that given earlier (De�nition 1.1.32). This

alternative de�nition of a strongly invertible knot is really just a consequence of De�nition 1.1.32,

but it is in some respects more illuminating.

De�nition 1.2.1. A knot K in S3 admits a strong inversion if there is an orientation preserving

involution h on S3 such that the following are satis�ed:

1. h(K) = K

2. Fix(h) is a circle that meets K in two points

We can think of our involution as a half rotation about some axis in the 3-sphere which meets K

in two places. It proves useful to think of the axis as a copy of S1 which passes through the point
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Figure 1.7: Two strongly invertible knot diagrams

at in�nity. This is possible due to the a�rmation of the Smith conjecture [58], which states that

the �xed point set of any homeomorphism of �nite order on the 3-sphere is always an unknotted

S1.

We consider the pair (K,h), where K is strongly invertible and h satis�es the criteria above.

Such a pairing (K,h) is called a strongly invertible knot and there exists an equivalence relation

on the set of such pairs. Namely, (K,h) ∼= (K ′, h′) if and only if there is an orientation-preserving

homeomorphism f on S3 such that f(K) = K ′ and fhf−1 = h′. As we saw earlier, a strong

inversion is an element of the symmetry group of a knot, Sym(K). From the above de�nitions,

it immediately follows that an equivalence class of a strongly invertible knot corresponds to the

conjugacy class of a strong inversion in Sym(K) (cf. [92, De�nition 8]).

For an example of two equivalent strong inversions we return to the Figure-8 example in Figure 1.6:

if we take the conjugate of one strong inversion with the periodic symmetry we obtain the other.

On the other hand, Figure 1.8 displays two distinct strong inversions.

Remark. When we draw diagrams of strongly invertible knots D(K,h) as in Figure 1.7 we invari-

ably end up with instances where the �xed point set of the involution interacts with a crossing of

the diagram. By this we mean that in S3 the �xed point set passes in between the two strands

that comprise the crossing. It is also important to remember that (K,h) is an equivalence class,

meaning that when we depict strongly invertible knots diagrammatically we have implicitly chosen

a member of the class ahead of time.

De�nition 1.2.2. Suppose (K,h) is a strongly invertible knot. Then (K,h) is said to be trivial

if it is equivalent to (U , h0), where U is the unknot and h0 is its standard inverting involution.

Marumoto in [54, Proposition 2] proved that detecting the trivial strongly invertible knot ulti-

mately amounts to detecting the unknot.

Proposition 1.2.3 (Marumoto, 1977). Let (K,h) be a strongly invertible knot. Then (K,h) is

trivial if and only if K is trivial.
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Figure 1.8: Two distinct strong inversions on the Figure-8 knot

It is also possible to de�ne a notion of `primeness' for strongly invertible knots. Given two strongly

invertible knots (K1, h1), (K2, h2) Sakuma shows us how to form their equivariant connect sum

(K1, h1)#(K2, h2). In order for the connect sum to be well de�ned, however, we need some

additional information about the pair of strongly invertible knots (K1, h1), (K2, h2).

1. An orientation of Fix(hi).

2. A marked base point∞i of Fix(hi), which lies in one of the two components of Fix(hi)\Ki.

We call a strongly invertible knot equipped with the above information a directed strongly invert-

ible knot. The connect sum operation then proceeds as follows. Let zi be a point of Fix(hi)∩Ki

and Bi be an equivariant regular neighbourhood of zi (so that hi(Bi) = Bi set-wise). Let also f

be an orientation reversing equivariant homeomorphism from ∂(B1, B1 ∩K1) to ∂(B2, B2 ∩K2).

Then f can be used as a gluing map between (S3,K1)\(B̊1, B̊1∩K1) and (S3,K2)\(B̊2, B̊2∩K2),

which gives us a manifold homeomorphic to (S3,K1#K2). Furthermore, the involutions h1 and

h2 combine to determine a strong inversion h of K1#K2.

In order to make this operation precise we use the directed information: in order to form

(K1, h1)#(K2, h2) we specify that z1 be the second point we come to following the orienta-

tion from ∞1, and z2 be the �rst point from ∞2 (see [79, Figure 1.1]). Sakuma proves that

the directed information also determines the gluing map, by showing another choice of gluing

map returns an equivalent strongly invertible knot. We can now formally de�ne the equivariant

connect sum of (K1, h1) and (K2, h2) to be the strongly invertible knot (K1#K2, h).

De�nition 1.2.4. A strongly invertible knot (K,h) is prime if it is not trivial and is not equiv-

alent to an equivariant connect sum of two non-trivial strongly invertible knots.

De�nition 1.2.5. Given an oriented knot K ⊂ S3 de�ne the double of K, D(K) to be the knot

K#−K.

As Watson remarks in [92], while not every knot K admits a strong inversion, it is always the case

that D(K) does. Indeed, we can de�ne the strongly invertible double of K to be (D(K), h), where

h is an inverting involution that exchanges K and −K (c.f. [79, De�nition 1.1]). It is important



CHAPTER 1. SYMMETRIES OF KNOTS AND LINKS 19

Figure 1.9: Two more views of the strong inversions on the Figure-8 (Left: (41, h1), Right:
(41, h2))

to note that (D(K), h) is not formed from the equivariant connect sum of two strongly invertible

knots � in fact, as stated above, K need not admit a strong inversion at all. This point motivates

the presence of strongly invertible doubles in the following result [79, Lemma 1.2(2)].

Lemma 1.2.6 (Sakuma, 1985). A strongly invertible knot (K,h) is prime if and only if K is

prime or (K,h) ∼= (D(K ′), h′) for some prime knot K ′.

Building on the connect sum operation, Sakuma also proved a decomposition theorem [79, The-

orem 1] for a general directed strongly invertible knot into its prime pieces.

Theorem 1.2.7 (Sakuma, 1985). Let (K,h) be a non-trivial, directed, strongly invertible knot.

1. (K,h) has an equivariant prime decomposition. Any prime decomposition is equivalent to

a decomposition

(K,h) ∼= {#r
i=1(K1, h1)}#{#s

j=1D(K̂j)}

where Ki and K̂j are prime knots.

2. Let {#r
i=1(K1, h1)}#{#s

j=1D(K̂j)} and {#r′
i=1(K

′
1, h
′
1)}#{#s′

j=1D(K̂ ′j)} be two prime de-

compositions of (K,h). Then

(a) r = r′ and (Ki, hi) ∼= (K ′i, h
′
i) for each 1 ≤ i ≤ r.

(b) s = s′ and after a permutation D(K̂j) ∼= D(K̂ ′j) for each 1 ≤ j ≤ s.

We may also ask if there a limit on the number of strong inversions a link can have. Kojima [45]

has shown that any non-trivial link can only ever have a �nite number of strong inversions. In

the case of knots, other cases have been determined by Sakuma [79, Proposition 3.1]:

Proposition 1.2.8 (Sakuma, 1985). Suppose K is a knot admitting n strong inversions.

1. If K is a torus knot then n = 1.

2. If K is hyperbolic then n = 2 if it has a cyclic or free period of period 2, and n = 1 if it

does not.
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Unfortunately, outside of these two classes the situation is nowhere near as simple. As a conse-

quence of Proposition 1.2.7 it is possible for any positive integer n to construct a composite knot

which has more than n inverting involutions (c.f. [79, Remark 3.2]). Sakuma has also shown that

it is possible to do this for prime satellite knots [82].

We will �nish this section on the subject of mirroring a strongly invertible knot. Given a strongly

invertible knot (K,h) we observe that h also takes the mirror of K, K, to itself, and Fix(h)

meets K in two points. Hence, we obtain another strongly invertible knot, known as the strongly

invertible mirror of (K,h), which we denote by (K,h). It follows from the equivalence relation

on strongly invertible knots that (K,h) ∼= (K,h) if and only if K = f(K) for some orientation-

preserving homeomorphism f on S3 (that is, K is amphicheiral) and h = f−1hf .

For cheiral K, the strongly invertible mirror is clearly a distinct object in its own right. However,

this can also be the case for an amphicheiral K too, which is due to the second point requiring

f and h to commute. For an example, we return once more to the Figure-8 knot. Notice that

the diagrams for (41, h1) and (41, h2) in Figure 1.9 are mirror images of one another; that is,

(41, h1) ∼= (41, h2). However, since (41, h1) and (41, h2) are distinct strongly invertible knots, it

must be the case that (41, h1) is not equivalent to its strongly invertible mirror, despite 41 being

amphicheiral.

Sakuma [79, Proposition 3.4] proved the following relationship between the amphicheirality and

strong invertibility of hyperbolic knots.

Proposition 1.2.9 (Sakuma, 1985). Let K be a hyperbolic, amphicheiral knot which admits at

least one strong inversion.

1. Suppose that K does not have a free or cyclic period of period 2, and let h be the unique

inverting involution. Then (K,h) ∼= (K,h).

2. Suppose K does have period 2, and let h1 and h2 be its two inequivalent inverting involutions.

Then (K,h1) ∼= (K,h2).

1.2.2 Diagrams of strongly invertible knots

As we have seen, �nding a diagram of a strongly invertible knot which exhibits the strong inversion

is a non-trivial task. Indeed, a quick browse through Rolfsen's table of knots [77, Appendix C]

reveals many instances of knots that are known to admit a strong inversion where the diagram

chosen to represent the knot does not feature it. However, for 2-bridge knots Sakuma [79] has

developed a method to determine their diagrams that feature the strong inversion.

De�nition 1.2.10. Let L ⊂ S3 be a link. A bridge presentation of L is a diagram DL in which

the majority of DL lies entirely within the plane, with a �nite number of `bridges' containing all

the over-crossings of the diagram. The bridge number of L is the minimum number of bridges

required out of all possible bridge presentations.

In particular, 2-bridge knots are knots with bridge number 2; this is the smallest possible bridge
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number a non-trivial knot can have.

A construction due to Schubert assigns to every 2-bridge link a pair of coprime integers (α, β)

such that α > 0, |β| < α, and β is odd. The pair of integers is then used to construct a bridge

presentation for the link which has bridge number 2. This presentation is referred to as Schubert's

normal form of a 2-bridge link, and is denoted by S(α, β). Furthermore, if α is odd then S(α, β)

is a knot, and if α is even S(α, β) is a two-component link. For a description of how the normal

form is formed in practice see [38, Chapter 2].

Schubert [83] completely classi�ed 2-bridge links (cf [38, Theorem 2.1.3]):

1. The 2-bridge knots S(α, β) and S(α′, β′) are equivalent if and only if

α = α′, β±1 ≡ β′ (mod α).

2. The 2-component 2-bridge links S(α, β) and S(α′, β′) are equivalent if and only if

α = α′, β±1 ≡ β′ (mod 2α).

For knots, since α and β are both odd, we note that there exists an equivalent 2-bridge knot

S(α, β′), where β′ = β ± α and β′ is even. Sakuma [79] uses a continued fraction expansion

of S(α, β′) in order to construct strongly invertible knot diagrams. Namely, α
β has the unique

continued fraction
α

β
= a1 +

1

a2 +
1

a3 +
1

. . . +
1

an

where all the ai and n are non-zero even integers. Sakuma denotes this continued fraction by

[a1, a2, . . . , an].

Remark. This continued fraction is not the same as Conway's normal form for a 2-bridge link,

although similar in appearance. To see this, we refer to [38, Chapter 10]; the continued fraction

Sakuma uses makes an appearance in Exercise 2.1.14.

Now letK(α, β′) be the 2-bridge knot with Schubert normal form S(α, β). Bankwitz and Schubert

proved that 2-bridge knots are invertible [5], and it is also true that they have a cyclic period of

period 2 (see [38, Figure 2.17] for a diagram exhibiting it). Suppose K(α, β′) is a hyperbolic knot;

then K(α, β′) is strongly invertible and Proposition 1.2.8 tells us that K(α, β′) admits exactly

two distinct strong inversions. The templates for these strong inversions appear in [79, Figure 2.5]

and are displayed in Figures 1.10 and 1.11; a positive integer αi means there are αi copies of

in the relevant box; a negative αi means there is |αi| copies of (likewise for ci).

Proposition 1.2.11 (Sakuma, 1985). Let K(α, β′) be a 2-bridge knot as above.
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−cm −cm−c1 −c1α1

αm

Figure 1.10: Strongly invertible knot diagram for I1(α1, . . . , αm; c1, . . . , cm)

α1

−α2

(−1)m−1αm

(−1)m−1αm

−α2

α1

Figure 1.11: Strongly invertible knot diagram for I2(α1, . . . , αm)

1. Suppose that q2 6≡ 1(mod p). Then the two strong inversions on K(α, β′) have diagrams

given by I1(a1, a3, . . . , an−1; a22 ,
a4
2 , . . . ,

an
2 ) and I1(−an,−an−2, . . . ,−a2;−an−1

2 ,−an−3

2 , . . . ,−a1
2 )

2. Suppose q2 ≡ 1(mod p) and q 6≡ 1(mod p). Then the two strong inversions on K(α, β′)

have diagrams I1(a1, a3, . . . , an−1; a22 ,
a4
2 , . . . ,

an
2 ) and I2(a1, a2, . . . , an

2
)

Remark. Actually, the diagram I2(α1, . . . , αm) is technically not a knot diagram, as it is not a

closed curve. In reality the two ends meet, but outside of the plane the diagram is drawn in. This

cannot be depicted in the diagram whilst maintaining its symmetry without forming a four-way

intersection at the red axis of rotation.

Example 1.2.12. This method was used to construct the two diagrams of the Figure-8 knot

in Figure 1.9. The Figure-8 can be expressed as the 2-bridge knot S(5, 2), and has continued

fraction expansion [2, 2] (see the Appendix of [79]). Since, 22 = 4 6≡ 1(mod 5) we are in case (1)

of Proposition 1.2.11, and the two diagrams are I1(2; 1) and I1(−2;−1).



Chapter 2

Auxiliary objects of strongly invertible

knots

In this chapter we introduce a geometric construction due to Sakuma, which assigns a unique two-

component link to every strongly invertible knot, and will investigate some of the properties of

these `Sakuma links'. Then we will describe another construction on strongly invertible knots due

to Watson, which assigns a unique sutured tangle to each strongly invertible knot. It turns out

that the two constructions can be combined in a sense � which provides us with a diagram of a

Sakuma link in which Watson's tangle features. Finally, we will show how Sakuma's construction

can be extended to assign further auxiliary objects to strongly invertible knots � these will take

the form of tangles and annular knots.

2.1 Sakuma links

We begin with the �rst of the series of auxiliary objects we can attach to strongly invertible

knots. In [79] Sakuma shows it is possible to associate to every strongly invertible knot a unique

two-component link with linking number zero, where both components are unknotted. This

construction works just as well on framed strongly invertible knots, composite strongly invertible

knots (in the sense of De�nition 1.2.7), and strongly invertible doubles.

2.1.1 Sakuma's construction

For an oriented strongly invertible knot (K,h), let N be an equivariant tubular neighbourhood

of K, and l be a preferred longitude of N . The requirement for equivariance means that our

involution h takes N to itself (but non-trivially). In addition, we demand that the image of l

under h does not intersect l� that is, h(l)∩l = ∅. This means we have a pair of disjoint longitudes

l and h(l) which are exchanged by the strong inversion. Next, de�ne p : S3 → S3/h ∼= S3 to be

the projection of S3 to its quotient space under the involution h, B = p(Fix(h)), L = p(l ∪ h(l)),

and claim that L = B ∪ L is a link of the class we are interested in: we will henceforth refer to

such links as Sakuma links.

23
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l
h(l)

Figure 2.1: Constructing L from l and h(l)

Note that, as Fix(h) is una�ected by the action of p, B is still an unknotted circle. For L, since
h(l) ∩ l = ∅, the e�ect of passing to the quotient space is that the two longitudes get glued

together at the places where the �xed point set interacts with the knot to produce another copy

of S1. To see an example of this consider Figure 2.1. Here, the blue longitude l and the green

longitude h(l) have been drawn in such a way as to show their equivariant nature � l should be

viewed as lying on the reader's side of N , while h(l) lies on its far side. Passing to the quotient

space in each local case glues the longitudes together as shown.

For an example of Sakuma's construction in action, consider the trefoil with its single strong

inversion (c.f. Proposition 1.2.8), (31, h) as depicted in Figure 2.2. On the left hand side we

have �xed a diagram for (31, h), and on the right is a diagram for the two-component link L
obtained from applying Sakuma's construction. A Sakuma link obtained from an equivalent

strongly invertible knot is of the same type as L, so any choice from the equivalence class of

(31, h) is permissible. For completeness we have also included a diagram of p(K), the image of

this presentation of the trefoil under the projection (the result of which is an edge of a θ-graph).

When we draw diagrams of L we depict B as a vertical straight line (passing through the point

at in�nity) and draw L as an unknot with two parallel strands that lie entirely on the left or the

right of B (according to taste) aside from in the following cases (see Figure 2.3):

1. The strands form a clasp around B, with one strand looping over and back under to meet

the other.

2. The strands coil around B.

3. The strands twist about each other.

The �rst two relate to the two cases where Fix(h) crosses K:

1. When Fix(h) meets K.
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(K,h)

Knot

p(K)

θ-graph

B

L

Sakuma Link

Figure 2.2: Sakuma's construction on (31, h)

Clasp Coil Twists

Figure 2.3: Local behaviour of Sakuma links

2. When Fix(h) passes between two strands of K.

The third case comes about from the framing of the longitude l. Since Sakuma requires that l be

a preferred longitude (that is, a longitude with linking number zero), it is sometimes the case that

compensatory twists must be put into l. These twists then get carried through the projection to

form the twists in L� for an example see the Sakuma link in Figure 2.2, which was formed from

a preferred longitude of the trefoil .

Remark. Notice that in Figure 2.2 we have chosen to draw the clasps of L so that they are

`oriented' oppositely. By this we mean that the `upper' clasp has its over strand `above' (with

respect to the y-coordinate of the plane the diagram is drawn in) its parallel neighbour; and the

`lower' clasp has the over strand `below' its neighbour. This could be changed by �ipping one of

the clasps over, at the price of changing the number of half twists between the strands. In all

that follows, however, we will consider the clasps to be arranged as in Figure 2.2. Recall that

the writhe is a property of an oriented knot diagram equal to the number of positive crossings

minus the number of negative crossings. For knot diagrams of K with even writhe nothing needs

to be changed, but when the writhe is odd (for example in the diagram of the trefoil Figure 2.2
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comes from) a �ip is needed to arrange the clasps as desired. Sakuma also makes this choice of

clasp orientation, as can be seen in [79, Figure 2.1 (b)]. We will refer to such a diagram as the

standard projection diagram of a Sakuma link, and will denote it DL. By convention, we shall

always orient B with the arrow pointing upwards.

We will now justify why the linking number of B and L is zero in a Sakuma link. We �rstly note

that a coil can never make any contribution to the linking number, due to the fact one strand

always travels in the opposite direction to its parallel neighbour. Therefore, the only non-zero

linking between B and L comes from the clasps, and, since we speci�ed at the beginning that

Fix(h) intersects K in two points, we always have exactly two of them. When the clasps are

oriented as speci�ed above there is always an even number of half twists, therefore the clasps

have opposite contributions to the linking number which cancel each other out.

2.1.2 Changing the framing

Although Sakuma speci�es we use preferred longitudes when forming Sakuma links, we can just

as easily ask for the linking number between l and K to be any integer we like. Therefore, it is

possible to control exactly how many twists end up in L, which allows us to create an extended

family of framed Sakuma links. For example, if our diagram D(K,h) has even writhe and we

were to take l to be the naive longitude we might �rst consider � known as the blackboard

framed longitude, or the Seifert longitude � no twists appear in L. Note that the framing of the

blackboard longitude depends on the writhe of D(K,h).

However, changing the framing does a�ect the linking number of the resulting Sakuma link.

We can get a two-component link of linking number zero when we take l to be an even framed

longitude, and one of linking number ±2 when l is an odd framed longitude. This follows from the

discussion at the end of the previous section: when the clasps are oriented as per our convention

an odd number of half twists in L means the linking number of L is ±2, depending on how we

decide to orient L.

De�nition 2.1.1. Suppose (K,h) is a strongly invertible knot and n ∈ Z is the linking number

between K and a chosen longitude l. We call the triple (K,h, n) a framed strongly invertible knot.

Let Ln be a two-component link obtained from (K,h, n) using Sakuma's construction on l and

h(l). We call Ln a framed Sakuma link, and note that L0 := L. Two framed strongly invertible

knots (K,h, n) and (K ′, h′, n′) are equivalent if and only (K,h) and (K ′, h′) are equivalent, and

n = n′.

Remark. When we talk about Sakuma links in general, without mentioning a speci�c framing,

we mean the standard 0-framed case.

It is bene�cial to know when forming a framed Sakuma link from a strongly invertible knot how

many half twists will appear in L. We will now make this number precise.

Lemma 2.1.2. Let (K,h, n) be a framed strongly invertible knot with diagram D(K,h,n), and

suppose the writhe of D(K,h,n) is x. Let Ln be the associated framed Sakuma link, and form the
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standard projection diagram DLn. Let the number of half twists in DLn be denoted by m.

1. Suppose x is even. Then m = x− n.

2. Suppose x is odd. If x < 0 then m = x− n− 1 and if x > 0, m = x− n+ 1.

Proof. Fix a diagram for (K,h, n) and suppose it has writhe x ∈ Z. Then −2x + 2n half twists

must be added to a blackboard longitude (−x + n on each side of Fix(h) in order to preserve

symmetry under h), where by a negative half twist we simply mean one that has −1 linking

number with K.

There are two cases we need to consider.

1. When x is even we end up with x− n half twists in L with the clasps arranged as per our

convention. Note that the sign of the half twists is reversed when we project � this is

because the orientation of l is opposite to that of h(l).

2. When x is odd we still have x − n half twists after projecting but one of the clasps needs

�ipping over in order to arrange them as desired. This either adds another negative half

twist if x is negative or adds a positive half twist if x is positive. So we end up with either

x− n− 1 or x− n+ 1 half twists.

2.1.3 Classifying Sakuma links

We will now formally classify Sakuma links, and prove that Sakuma's construction is indeed a

bijection between the set of strongly invertible knots and the set of Sakuma links.

We will begin by recalling some covering space terminology, see for example [28] for further details.

Given a topological space X, a covering space is, informally speaking, another topological space

made up of multiple copies of X glued together.

De�nition 2.1.3. Let X be a topological space. A covering space X̃ is a topological space plus

a map p : X̃ → X such that for each point x ∈ X there is an open neighbourhood U of x such

that p−1(U) is a union of disjoint open sets each of which is mapped homeomorphically onto U

by p. We call p−1(x) a �bre over x, and the cardinality of p−1(x) the degree of the covering. If

the degree, n, is �nite we say the covering space (X̃, p) is an n-fold covering space.

Equally important are examples of spaces that `almost' cover a space, expect for in a small

subset. These are the branched covering spaces; we de�ne them formally as follows (c.f. [77,

Chapter 10B]).

De�nition 2.1.4. Let M̃ and M be n-manifolds with proper co-dimension 2 sub-manifolds

B̃ ⊂ M̃ and B ⊂ M . M̃ is said to be a branched covering of M with branch sets B̃ and B if

there exists a surjective map p : M̃ →M satisfying:

1. Components of pre-images of open sets of M form a basis for the topology of M̃ .
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+

−

−4

Figure 2.4: A θ-graph and its Sakuma link

2. p(B̃) = B, p(M̃ − B̃) = M −B, and the restriction p : M̃ − B̃ →M −B is a covering space

map.

We call the restriction the associated unbranched covering, and if it has degree n we say the

branched covering is an n-fold branched covering.

All of the branched covering spaces we will encounter will be 2-sheeted. These are referred to as

double branched covers, and are often denoted by Σ(M,B), where M is the base manifold, and

B is the downstairs branch set.

We now will prove a lemma which allows us to recover the writhe of a strongly invertible knot

diagram from its related θ-graph. Let (K,h, n) be a framed strongly invertible knot with diagram

D(K,h,n) and equip this diagram with an orientation. This choice of diagram then necessarily

�xes one for its θ-graph, and by an abuse of notation we denote the diagram of the interval

corresponding to the image of K under the quotient map p p(K). Next, orient p(K), divide it

up into sections, with the divides coming when p(K) coils around B, and colour the sections

alternatingly with two colours (see Figure 2.4 for an example).

We notice that there are two ways in which p(K) can coil around B, depending on how the related

crossing is arranged in D(K,h,n). We illustrate both cases in Figure 2.5, and label coil and crossing

Type I or Type II.

Lemma 2.1.5. Let (K,h, n), D(K,h,n) and p(K) be as above and orient and colour p(K) as

described. Let X be the set of crossings in p(K) between strands of the same colour and Y be the

set of crossings between strands of di�erent colours. Let a be the number of Type I coils and b be

the number of Type II coils. Then,

Wr
(
D(K,h,n)

)
= 2

∑
x∈X

sign(x)−
∑
y∈Y

sign(y)

− a+ b.
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Type I Type II

In cover

In quotient

Figure 2.5: Coils and crossings

Proof. We begin by examining how crossings in our diagram D(K,h,n) get encoded in our diagram

for p(K) (which we also refer to as p(K)). Away from the image of the �xed point set a crossing

in p(K) corresponds to two crossings upstairs in D(K,h,n). Furthermore, each coil in p(K) corre-

sponds to a single crossing in D(K,h,n), namely to one that has the �xed point set of h passing

through the middle of it. Putting this information together we note that

number of crossings in K = a+ b+ 2(number of crossings in p(K)).

We now claim that Type I crossings in D(K,h,n) always contribute −1 to Wr
(
D(K,h,n)

)
and Type

II crossings always contribute +1. Suppose for a contradiction that a Type I crossing contributes

+1 to Wr
(
D(K,h,n)

)
. Then, the strands forming the crossing must be oriented so that the

outgoing strands are on opposite sides of the �xed point set. We know they must eventually

return to interact with the �xed point set; in particular, we must have one of three possible cases:

• The strands attach to another Type I crossing

• The strands attach to a Type II crossing

• The strands meet at one of the intersection points with the �xed point set

The problem with each of these possibilities is that, due to the symmetry of D(K,h,n), it is

impossible to put a consistent orientation on it. The third case can be immediately ruled out,

as the strands would then meet oppositely oriented. For the other two cases, since the strands

leave on opposite sides they must return to a Type I or Type II crossing from opposite sides.

This means that they can only join to another positive Type I crossing or to a negative Type II

crossing. But now we are stuck, because a negative Type II crossing presents exactly the same
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problem: the outgoing strands cannot join to an intersection point. Hence, we can only have

negative Type I crossings in D(K,h,n). The same argument works for positive Type II crossings.

Hence, we can only have negative Type I crossings and positive Type II crossings � which explains

the last two terms in our writhe formula for D(K,h,n).

We now will examine the contributions made by crossings away from the �xed point set. Observe

that at a coil the orientation of p(K) always swaps between matching the orientation on the

related strand in D(K,h,n) to opposing it � this is precisely what is encoded by the colouring of

p(K). Examining the crossings, we note that the sign of a crossing between two strands of the

same colour is always the same as the sign of the related crossing in D(K,h,n), whilst the sign of

a crossing between di�erent coloured strands is always opposite to the related sign in D(K,h,n).

Putting everything together gives us the result as claimed.

Example 2.1.6. As an example, let us see what happens when we apply the lemma to the

diagrams in Figure 2.4. The number of Type I coils is 1, the number of Type II coils is 0, the

set X is empty and the set Y contains one crossing with sign +1. Therefore, the writhe of the

diagram of the trefoil which induced the diagram of the θ-graph is:

Wr
(
D(K,h,n)

)
= 2(−1)− 1 = −3

as expected.

The lemma is used together with the following observation. Given �xed diagrams D(K,h,n), p(K),

and DLn we can pass from DLn to p(K) if we decorate the θ-graph with the extra information

found in DLn . See Figure 2.4 for an example of this observation in practice: the left picture has

been decorated with an integer to keep track of the twists (and their sign) in L, as well as plus
and minus signs, which tell us how the clasps are arranged.

We now can classify framed Sakuma links.

Proposition 2.1.7. Let L = K1 ∪ K2 be a two-component oriented link in S3. Suppose the

following two conditions hold:

L-1 K1 and K2 are unknotted.

L-2 Up to ambient isotopies of L, K2 bounds a properly embedded disc meeting K1 transversely

in exactly two points.

Then L is a framed Sakuma link, that is, there exists some framed strongly invertible knot (K,h, n)

such that applying Sakuma's construction returns L.

Proof. We begin by noting that since K2 is unknotted, it bounds a disc, which we will call S2.

Now, condition L-2 tells us that K2 forms two clasps around K1, in the sense of Figure 2.3. We

now perform an ambient isotopy on K1 so that it passes through the point at in�nity, so that a

diagram of L has K1 depicted as an axis. Then we take the double branched cover Σ(S3,K1),

which, since K1 is unknotted, is just another copy of S3, and consider the lifts of K2. These will
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be two longitudes of a knot K that meets the branch set, the lift of K1, exactly twice � once

for each clasp downstairs. Furthermore, K admits a strong inversion h given by rotating K π

radians about the branch set; and the lifts of K2 are equivariant with respect to this inversion.

In order to determine the framing n of the lifts of K2 we use Lemma 2.1.2 and Lemma 2.1.5.

Hence, (K,h, n) is a framed strongly invertible knot, and has L as its associated framed Sakuma

link.

While the above result does not explicitly mention the linking number of L, the fact that it is

either 0 or ±2 follows from condition L-2. Following the notation given in [77, Chapter 5D],

let us equip S2 with a bi-collar (S2, S
+
2 , S

−
2 ) i.e. take S2 × [−1, 1] and set S+

2 = S2 × {1} and
S−2 = S2 × {−1}. Then exactly one of the following three things must happen:

1. At both intersection points K1 passes locally from S−2 to S+
2 .

2. At both intersection points K1 passes locally from S+
2 to S−2 .

3. At one point K1 passes locally from S−2 to S+
2 , and at the other from S+

2 to S−2 .

This implies the linking number lk(K1,K2) must be either 2, −2, or 0 respectively.

Proposition 2.1.8. There is a bijection between the set of framed strongly invertible knots and

the set of framed Sakuma links.

Proof. Denote by φ the map which takes a framed strongly invertible knot to its framed Sakuma

link. We will �rst prove φ is well de�ned, then will prove it is injective. Surjectivity follows from

Proposition 2.1.7.

• Let us �rst prove that φ is well de�ned. Suppose that two framed strongly invertible

knots are equivalent i.e. (K,h, n) ∼= (K ′, h′, n′). We immediately must have n = n′, and

a homeomorphism f : S3 → S3 such that fhf−1 = h′ and f(K) = K ′. We are looking to

construct a homeomorphism g : S3 → S3 that takes L to L′.

We begin by observing that f(Fix(h)) = Fix(h′), and f(l)∪ f(h(l)) is a pair of equivariant

preferred longitudes on K ′. Also, h and h′ de�ne equivalence relations ∼ and ∼′ on S3, and

p and p′ can be thought of as mapping each point x to its respective equivalence classes

[x]∼ and [x]∼′ . Given this, we de�ne a map g as follows:

g : S3 → S3

[x]∼ 7→ [f(x)]∼′

It is now easy to see that g takes L to L′ as required.

• Now let us prove that φ is injective. Suppose that applying Sakuma's construction to two

framed strongly invertible knots (K,h, n), (K ′, h′, n′) gives equivalent links downstairs i.e.
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there exists a g such that g(Ln) = L′n′ . We want to now show that (K,h, n) ∼= (K ′, h′, n′).

Let x be a point in the downstairs copy of S3, and let x̃1 and x̃2 be its two lifts, with respect

to p, in the covering copy of S3. Likewise, let g̃(x)1 and g̃(x)2 be the two lifts of g(x) with

respect to p′. We note that the strong inversions h and h′ exchange the relevant two lifts.

We de�ne a map f as follows:

f : S3 → S3

x̃i 7→ g̃(x)i i ∈ {1, 2}.

It should be clear that f takes K to K ′, and fhf−1 = h′ as required. Furthermore, since f

is a homeomorphism, it also preserves the linking number between K and l. Hence, n = n′,

and we are done.

2.1.4 Properties of Sakuma links

While not every two-component link can be a Sakuma link due to the linking number restriction

and the fact that both the components are unknotted in a Sakuma link, they still form an

interesting subset of the set of two-component links; to the author's knowledge they have not

been studied before as a class in their own right.

We now will prove some elementary facts about Sakuma links, in order to give ourselves a clearer

image of them. The fact that the projection diagrams for Sakuma links get increasingly more

complex in terms of the number of crossings means that computing link invariants is computa-

tionally time consuming. However, we can make use of Sakuma's construction. Although it was

originally developed in order to prove things about strongly invertible knots, we can use it in the

opposite direction; that is, we can use properties about strongly invertible knots to say things

about Sakuma links.

Lemma 2.1.9. Sakuma links are prime.

Sakuma links are clearly non-trivial and non-split. They are also locally trivial � no factorising

sphere exists that can cut a Sakuma link into two distinct prime links.

Given a link it is of interest to determine whether it is hyperbolic, torus or satellite. We next

will show the existence of Sakuma links in each of the three sets. To do so, we make use of the

following theorem, due to Menasco [55].

Theorem 2.1.10 (Menasco, 1984). Let L ⊂ S3 be a link. If L is prime and alternating, and L

is not a torus link, then L is hyperbolic.

Adams, writing in [56, Chapter 1], explains that in order to tell that a prime alternating link

is not a torus link we simply need to draw the alternating projection. If the diagram is not a
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n

Figure 2.6: Sakuma links associated to (U , h0, n)

`2-braid', that is, a diagram in which the two strands twist around one another (see [56, Figure 1])

then the link is not a torus link.

We now turn to the family of framed Sakuma links associated to the framed strongly invertible

unknots. This family is alternating, as can be seen in Figure 2.6 (up to �ipping the clasps), and

aside from the cases where n = ±1, they are not torus links. Theorem 2.1.10 then tells us that

they must be hyperbolic. This fact can also be veri�ed by use of SnapPy [16]. The cases in which

n = ±1 can be drawn as 2-braids, and so are torus links.

There is also an in�nite family of Sakuma links which are satellite.

Proposition 2.1.11. Let K ⊂ S3 be any knot. Then there exists in�nitely many framed satellite

Sakuma links with companion K.

Proof. Given a knot K form the framed strongly invertible double (D(K), h, n). Suppose Ln is

the framed Sakuma link associated to (D(K), h, n): it can be easily seen that Ln is a satellite

link with companion K. See Figure 2.7 for an instance where K is the right-handed trefoil �

those with an interest in rock climbing may observe that the blue component essentially forms

an overhand knot on the bight.

Remark. Note that we do not requireK to be prime in the above proposition. Strongly invertible

doubles are de�ned just as well for composite K.

The above proposition works because the framed Sakuma links associated to framed strongly

invertible doubles do not have any coils in their projection diagrams (in the sense of Figure 2.3),

which allows for the existence of a factorising sphere. This is an interesting feature of Sakuma

links that will a�ect the possible symmetries they can have. We state exactly which subsets of

Sakuma links share this property.

Proposition 2.1.12. Let Ln = B ∪ L be a framed Sakuma link, and consider the standard

projection diagram DLn that results from Sakuma's construction. Suppose there are no coils in
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#

Figure 2.7: A Sakuma link viewed as a satellite link

L. Then Ln is associated to one of the following:

1. A framed strongly invertible unknot (U , h0, n).

2. A framed strongly invertible double (D(K ′), h, n), for some prime knot K ′.

3. A framed equivariant product of strongly invertible doubles, ({#s
i=1D(K ′i)}, h, n), for prime

knots K ′i.

Proof. This can be seen by reversing Sakuma's construction, by taking the double branched

cover of the pair (S3, B). If L does not coil around B then its two lifts in Σ(S3, B), i.e. the two

longitudes of the strongly invertible knot (K,h, n), cross Fix(h) exactly twice. This means that

K can only cross Fix(h) twice too; namely, at the two points where K meets Fix(h). But then we

can embed a factorising sphere S into S3 which meets K at both points of K ∩Fix(h). Therefore

K is a product knot. In light of Lemma 1.2.6 and Theorem 1.2.7, it then follows that either K is

either equivalent to a framed strongly invertible unknot, to a framed strongly invertible double,

or to a framed equivariant product of strongly invertible doubles.

We note that every framed Sakuma link described in Proposition 2.1.12 is a satellite link.

We may also be interested in the symmetry properties of Sakuma links. These will be discussed

in more detail at the end of the next chapter, when more tools have been made available to us.

For now, let us state the necessary criteria for a Sakuma link to be amphicheiral.
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Lemma 2.1.13. Let Ln be the framed Sakuma link associated to the strongly invertible knot

(K,h, n). Then the mirror of Ln is the framed Sakuma link L−n, which is obtained from (K,h,−n).

Proof. This follows from Sakuma's construction. Using Lemma 2.1.2 we see that in order to swap

the sign of the twist crossings over we need to take −n as the framing on our longitudes.

Corollary 2.1.14. Let Ln be the framed Sakuma link associated to the framed strongly invertible

knot (K,h, n). Then Ln is amphicheiral if and only if (K,h, n) ∼= (K,h,−n); that is, if and only if

there exists an orientation preserving homeomorphism f on S3 such that f(K) = K, h = f−1hf ,

and n = 0.

Proof. This is a consequence of Sakuma's bijection and the above lemma.

We can immediately conclude from the above that framed Sakuma links are not amphicheiral,

apart from in the standard case where n = 0. Even here, we can rule out more candidates.

For example, strongly invertible torus knots (T (p, q), h) can never have an amphicheiral Sakuma

link, as torus knots are always cheiral. For hyperbolic knots we can combine the corollary with

Sakuma's result (Proposition 1.2.9). In order for a Sakuma link L associated to a hyperbolic

amphicheiral strongly invertible knot (K,h) to be itself amphicheiral it must be the case that

K admits a single strong inversion � so it cannot have a free or cyclic period of period 2. We

observe that in the tables Sakuma provides in the appendix of [79] none of the prime strongly

invertible knots with 9 crossings or less have this property.

2.2 Sakuma tangles

An additional family of geometric objects we can associate to strongly invertible knots comes in

the form of a collection of tangles.

We will start with the de�nition of a general tangle (c.f. [50, Section 1], [92, De�nition 3]).

De�nition 2.2.1. An n-string tangle T is a pair (B3, τ), where B3 is the 3-ball and τ is a

collection of n properly embedded arcs in B3 with τ ∩ ∂B3 = ∂τ , along with a potentially empty

set of embedded copies of S1.

There are two di�ering notions of equivalence for tangles, depending on whether we desire to keep

the end points of the arcs �xed or not. If we want the end points free then tangles are considered

equivalent up to homeomorphism of the pair (B3, τ) (or, equivalently up to ambient isotopy of

τ within B3). If we want the end points to be �xed, we also specify that the homeomorphisms

(ambient isotopies) �x the boundary of B3. Their usefulness comes when we want to examine

local properties of a knot or link, which allows us to prove things about the links themselves.

We will be primarily concerned with a certain class of tangles, called sutured tangles. Sutured

tangles arise when instead of using B3, we take the homeomorphic sutured manifold D2 × I (see
Figure 2.8). Sutured manifolds are a class of 3-manifolds with boundary, and were �rst de�ned

by Gabai in [19]. They have been of particular interest in recent years due to the development
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Figure 2.8: A sutured tangle

of homological invariants of sutured objects, some of which we will see in Chapter 4. Sutured

manifolds are de�ned formally as follows.

De�nition 2.2.2. A sutured manifold (Y,Γ) is a compact, oriented 3-manifold with boundary

∂Y along with a set Γ ⊂ ∂Y of pairwise disjoint annuli A(Γ) and tori T (Γ). The interior of each

component of A(Γ) contains a suture � an oriented, simple, closed curve which is homologically

non-trivial in A(Γ). We denote the set of sutures by s(Γ).

We can equip D2 × I with a sutured structure by taking A(Γ) to be the subset S1 × I ∼= A: the

suture is usually taken to be the curve S1 × {12}. The de�nition of a sutured tangle is then as

follows (cf. [92, De�nition 3]).

De�nition 2.2.3. An n-string sutured tangle T is a pair (D2 × I, τ), where n of the end points

of ∂τ are contained in D2 × {0} and n are contained in D2 × {1}.

Sutured tangles are considered up to homeomorphisms of (D2×I, τ) which �x ∂D2×I point-wise
(equivalently, up to ambient isotopies of τ which act trivially on ∂D2× I c.f. [22, De�nition 5.1]).

This is in order to preserve the sutured structure of the manifold D2 × I. In all that follows all

the tangles we will encounter will be sutured; when we henceforth refer to a tangle, we really

mean a sutured tangle. Note that this notion of equivalence allows us to move the end points of

the tangle around, as long as we keep them within D2 × {0, 1}. We shall depict sutured tangles

as a collection of broken arcs in a copy of I × I, where, as for link diagrams, a break indicates a

crossing between two strands.

A related family of objects worth mentioning are braids. A general n-strand braid Bn consists of

n properly embedded strands in D2 × I, each with one boundary point in D2 × {0} and one in

D2 × {1}, with each strand intersecting every D2 × {t} (0 ≤ t ≤ 1) exactly once. As for sutured

tangles, we depict braids as a collection of strands lying within I × I; the additional condition

means that each strand travels continually from I ×{0} to I ×{1} without ever turning back on

itself. We use a stronger equivalence relation on braids; namely, we specify that ambient isotopies

additionally �x D2 × {0, 1}. In pratice, this means the end points of braids are �xed.

Given a braid diagram Bn we can form its closure B̂n. This is the link diagram formed by joining

the end point of each strand x× {0} to the end point x× {1} that lies directly opposite from it

without creating any new crossings. A famous theorem of Alexander [1] says that every link in
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S3 can be represented by closing a braid diagram in this way. We can also form the closure of a

sutured tangle diagram DT in the same way; we call the link diagram D
T̂
obtained the braid-like

closure of DT .

2.2.1 Classifying Sakuma tangles

We look to show that every strongly invertible knot has an associated sutured tangle, which we

will call its Sakuma tangle. We will �rst outline a recipe of how to build a Sakuma tangle, then

will show how Sakuma tangles are related to Sakuma links. An example of the following recipe

(with k = 2) can be seen in Figure 2.9.

• Begin by de�ning a k-string tangle with no closed components that we depict in a copy of

I × I by placing k− 1 marked points on the top and bottom edges, along with one marked

point on each side edge.

• We then form the 2-cable of the tangle, and add a total of m half twists between pairs

of strands, where for two strands running vertically in the diagram the crossing is

represented by +1.

• Finally, we attach to both sides of the twisted 2-cable a trivial 2-string tangle, with one

strand running to the top edge and the other strand to the bottom edge. Call this tangle

diagram DTm .

We observe that a tangle Tm constructed in this way is a member of an equivalence class. In

particular, we can exchange pairs of points in the same D2 × {0, 1} which are the endpoints of

strands that twist around each other, which will change the value of m. The reason we take pains

to distinguish representatives from the same tangle is due to the di�erent results we get when

closing them up. Let the braid-like closure of Tm be denoted by T̂m; we note that T̂m 6∼= T̂n if

m 6= n.

We are now ready to formally characterise the class of Sakuma tangles.

De�nition 2.2.4. Let T be a k-string sutured tangle with no closed components and k ∈ 2Z.
Suppose the following two conditions hold:

T-1 The braid-like closure T̂ is unknotted in S3.

T-2 T admits a construction as above.

Then T is a representative of some Sakuma tangle.

The conditions given in the above de�nition should be viewed as the tangle counterparts to those

found in Proposition 2.1.7. In particular, condition T -1 is intended to correspond to condition

L-1, and condition T -2 to condition L-2. This motivates the following result.

Proposition 2.2.5. Let Tm be a representative of a Sakuma tangle. There exists a unique

Sakuma link Ln associated to Tm, for some n ∈ Z.
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Figure 2.9: Constructing a Sakuma tangle
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Figure 2.10: Constructing a Sakuma link from a Sakuma tangle

m
O

Figure 2.11: The cut open disc S2 as seen in a Sakuma tangle
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Proof. We begin by exhibiting how a Sakuma link can be obtained from a Sakuma tangle, then

will show that this link is unique up to link equivalence. See Figure 2.10 for an illustration of the

following process.

Suppose Tm has n strands. Fix a diagram DTm . We �rst form link diagram from DTm .

1. Mark a point O on DTm at (1, 12). Then form D
T̂m

, ensuring that it encloses O. Call this
component L.

2. Add an additional component to D
T̂m

, which we depict as a vertical axis passing through O
and the point at in�nity, and forming exactly 2n crossings with L as suggested in Figure 2.10.
Label this component B.

We claim Ln = B ∪ L is a Sakuma link i.e. it satis�es both conditions of Proposition 2.1.7.

Firstly, we note that L-1 is satis�ed since B is unknotted by de�nition, and L is unknotted by

condition T -1.

For L-2, we can �nd the required disc as follows. Shade in the regions in the tangle diagram

bounded by Tm as in Figure 2.11 to get a series of ribbons, with one ribbon widening out at

either end. Now we form D
T̂m

, and observe that this allows us to glue the ribbons together in

such a way as to from a single long disc with a lasso at both ends. Furthermore, B meets the

disc transversely in exactly two points � once at O and once at the centre of the other lasso �

so L-2 is also satis�ed. In order to determine the value of n we need to use Lemma 2.1.2 and

Lemma 2.1.5 as we did when classifying Sakuma links.

Now suppose T and T ′ are equivalent Sakuma tangles, and L and L′ be their associated Sakuma

links. Then the ambient isotopy between T and T ′ induces one between L and L′, and so L and

L′ are equivalent links.

Conversely, Sakuma tangles are obtained from Sakuma links very naturally.

Lemma 2.2.6. Let Ln = B ∪ L be a framed Sakuma link. Then there is a unique representative

of a Sakuma tangle associated to Ln.

Proof. We obtain a Sakuma tangle from Ln by passing to the exterior of B, which is homeomorphic

to a solid torus. We cut this solid torus along a meridional disc intersecting L transversely and

unfurl the result � which gives us the 3-manifold D2 × R with 2k strands. We see immediately

that it satis�es T -2, and since L is unknotted it also satis�es T -1. Hence, it is a representative

of a Sakuma tangle.

Combining the previous two results gives us a bijection.

Corollary 2.2.7. There is a one-to-one correspondence between Sakuma links Ln and tangle

representatives of Sakuma tangles Tm.
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We can also compare strongly invertible knots and Sakuma tangles. Since changing the framing

of the strongly invertible knot yields a di�erent representative of the same Sakuma tangle, it

follows that the two sets are in natural bijection.

Corollary 2.2.8. There is a one-to-one relationship between strongly invertible knots (K,h) and

Sakuma tangles.

2.3 Watson tangles

In addition to Sakuma's, there is another major construction on strongly invertible knots that we

will be utilising. In [91] Watson shows it is possible to associate to every strongly invertible knot

another sutured tangle which is distinct from the Sakuma tangle de�ned in the previous section.

However, as we will see, Watson's construction �ts very neatly in with Sakuma's.

2.3.1 Watson's construction

Watson begins by considering the exterior of a strongly invertible knot (K,h), which we will

denote by E(K) ∼= S3\N̊ (K). The strong inversion on K also acts on E(K): we say that

E(K) is strongly invertible if there is an involution h on E(K) with 1-dimensional �xed point

set intersecting the boundary torus
(
∂E(K) ∼= ∂N̊ (K)

)
in exactly four points. Clearly E(K) is

strongly invertible if and only if K admits a strong inversion.

Next, analogously to Sakuma, we quotient out by the involution h. This produces a manifold

E(K)\h homeomorphic to the standard 3-ball B3. Consider now Fix(h) as a subset of E(K): it

is composed of two strands with all four boundary points lying on the boundary torus. Watson's

tangle is de�ned to be the pair (E(K)\h, p(Fix(h)), where p : E(K)→ E(K)/h. The process for

the left-hand trefoil is shown in Figure 2.12 � we will follow Watson and depict the strands in

the tangle as running horizontally.

Remark. The construction can be easily reversed by taking the double branched cover of a

Watson tangle Σ(B3, τ). This returns us the knot exterior E(K) of a strongly invertible knot

(K,h).

An important point to note about Watson's construction is that it makes no use of framed

longitudes; as for Sakuma tangles, only one Watson tangle is obtained for each strongly invertible

knot.

We now consider Watson's construction in the sutured setting. It turns out that it can be

adapted to sutured tangles very easily, as long as we equip E(K) with a sutured structure.

See [92, Figure 4] for an example of this in practice. Recall that a sutured n-string tangle is a

tangle in D2 × I such that n points lie on D2 × {0} and n other points lie on D2 × {1}. The

main di�erence in the sutured case is that we are restricted in what we can do with the boundary

points. In particular, we cannot exchange a point in D2 × {0} with a point in D2 × {1} as that
would not preserve the sutured structure of D2 × I. We can, however, exchange a pair of points

in the same D2 × {0, 1}, which amounts to adding twists in two strands of τ . We will label the
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Figure 2.12: Watson's construction
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tangle diagram with zero twists DT 0 , and, with the convention that is represented by +1, we

will refer to the tangle representative with m twists to be DTm . As for Sakuma tangles, when no

speci�c representative is required, we will simply use DT .

After we have �xed a representative and chosen a diagram of a Watson tangle T we can obtain a

collection of link diagrams by adding in extra strands to connect the endpoints of τ . Firstly, we

can join the endpoints in I×{0} and I×{1} together without adding any extra crossings; we will
follow Watson's notation and call the link represented by this diagram T (10). In addition, we can

form the braid-like closure of the diagram, and we label the link represented by this diagram T (0).

Expanding on this, we can form an in�nite family of link diagrams by adding crossings when we

attach end points of I ×{0} and I ×{1} together. With the same convention as above, we de�ne

T (m) to be the link represented by the diagram obtained by closing DT with m crossings. We

note that in this notation T (m) = Tm(0).

Remark. Our convention for representing the twist crossings is the opposite to that Watson

uses. This is because we will be primarily concerned with the closure T (10), and in that link the

strands τ are oriented in di�erent directions.

Watson proves that his construction is a bijection. Namely,

Proposition 2.3.1 (Watson, 2014). There is a one-to-one correspondence between strongly in-

vertible knots (K,h) and sutured tangles satisfying the additional property that T (10) is the unknot.

2.4 Combining the constructions

So far we have seen two constructions that take as their starting point a strongly invertible knot

(K,h) and associate to it a unique auxiliary object. In one case Sakuma shows us how to obtain

a two-component link with both components unknotted and linking number zero; in the other

Watson obtains a sutured tangle.

Since both constructions begin by quotienting out by the strong inversion, a natural question

that arises is whether one construction can be expressed in terms of the other. Said another way,

is there a precise geometric connection between Sakuma links and Watson tangles? Completing

the relationship suggested by Propositions 2.1.8 and 2.3.1 we have the following.

Proposition 2.4.1. Let (K,h) be a strongly invertible knot. There is a one-to-one correspondence

between tangle representatives of the Watson tangle, Tm and framed Sakuma links Ln.

Proof. Let us run through Watson's construction on the whole of S3 this time, and let us add

in two framed longitudes with framing n as per Sakuma's instructions. Form the Watson tangle

(B3, τ), take a representative Tm, and consider the exterior of the copy of B3. This is another

copy of B3, and, furthermore, contains a tangle consisting of two arcs and a single copy of S1,

perhaps with some twists. Figure 2.13 shows the process for the left-handed trefoil. Combining

the two tangles in the obvious way, we produce a two-component link with linking number ±2 or
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Figure 2.13: Combining Sakuma's and Watson's constructions

0 (depending on the choice of longitude framing). This link is a framed Sakuma link; to determine

the precise relationship between m and n we refer to Lemma 2.1.2.

As a consequence of the above construction we end up with an alternative link diagram for a

Sakuma link, which shows precisely the relationship between Sakuma's and Watson's construc-

tions. The Sakuma link is drawn in such a way that the branch set component B is clearly Tm(10)

for some Watson tangle representative Tm. See Figure 2.13 for an example with the left-handed

trefoil � note that for simplicity we have chosen not to draw the pair of longitudes in the �rst

diagram as being equivariant. The extra twists featuring in the �nal diagram are brought about

by the isotopies when passing from the third diagram.

2.5 Annular Sakuma knots

By now we have de�ned an increasingly large number of auxiliary objects we can equip to strongly

invertible knots. We will �nish this chapter by squeezing Sakuma's construction just a little more

to obtain a �nal set of objects, which will take the form of a pair of annular knots.
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2.5.1 Properties of annular links

We brie�y mention a few properties of annular links, which are, put simply, links sitting inside the

thickened annulus A× I, which we parametrise in cylindrical coordinates by the following:

A× I = {(r, θ, z) : r ∈ [1, 2], θ ∈ [0, 2π], z ∈ [0, 1]} ⊂ S3.

Annular links are of interest primarily due to their interactions with links in the 3-sphere, as well

as with braids. In one direction, annular links can be obtained naturally through braid closures or

braid-like closures of any sutured tangle. On the other hand, invariants of annular links have been

shown to be related to invariants of 3-manifolds through the use of spectral sequences, which we

will return to in Chapter 4. Our motivation for studying them is Sakuma's construction, which

will allow us to associate strongly invertible knots with annular knots.

De�nition 2.5.1. An n-component annular link L, is a disjoint union of n copies of S1, properly

embedded in A× I.

Whilst it is true that all links can be embedded in the annulus, the class of annular links is in

some respects larger than the class of links in S3. On the one hand, we can embed a link trivially

into A × I by placing it entirely within a three ball B3 ⊂ A × I; or, alternatively, we can use

the fact that the unknot is a companion to every link, which embeds our link in A × I in a

homologically non-trivial way. Following this logic, there are really two notions of the unknot in

A × I: a version which is nullhomologous in H1(A × I;Z), and a version which corresponds to

the generator of H1(A× I;Z). We will denote these two unknots by U and Û respectively � the

hat version is so labelled to indicate Û is the closure of the 1-strand braid. Additionally, as we

shall see, there are many examples of non-equivalent knots in the annulus that become equivalent

when they are embedded in S3.

Annular links are considered to be equivalent up to ambient isotopy, where we additionally

demand the isotopies act trivially on ∂A× I � that is, they also preserve the sutured structure

of A × I. Alternatively, two annular links L and L′ are equivalent if there exists an orientation

preserving homeomorphism f from (A× I, ∂A× I) to itself such that f(L) = L′. The standard

sutured structure we place on A × I is A(Γ) = ∂A × I and s(Γ) = ∂A × {12}, but, as A × I is

homeomorphic to the solid torus D2 × S1, if we were not interested in the sutured structure we

could just as well consider our annular links to be embedded in the solid torus.

Just as for their spherical counterparts, annular knots and links can be depicted through a choice

of diagram � the only di�erence is that annular link diagrams are drawn in an annulus A ⊂ R2

instead of in R2. There also exists a Reidemeister theorem for annular links: two annular links

are equivalent if and only if there exists a series of annular Reidemeister moves taking a diagram

of one onto a diagram of the other. The moves are exactly the same as in the R2 scenario, except

this time we are not allowed to move a strand over the hole in the annulus, nor over its outside

edge.

There also exist similar notions of symmetry for annular links. For example, an unoriented
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annular link L is said to be amphicheiral if it is equivalent to its mirror � the link obtained from

L by the orientation reversing homeomorphism which re�ects A× I in the plane z = 1
2 . We will

be concerned with symmetries of annular knots insofar as their relationship with symmetries of

a canonical two-component link we can associate to each annular knot.

De�nition 2.5.2. Let K ⊂ A × I ⊂ S3 be an annular knot. Consider the two-component link

L = K ∪B ⊂ S3, where B is an unknot consisting of the z-axis and the point at in�nity. We call

L the two-component completion of K.

Since an annular knot can be viewed as lying in the exterior of the additional component in its two-

component completion, we can rule out, for example, the amphicheirality of the link if the annular

knot is cheiral. The relationship between an annular knot and its two-component completion

will additionally show up as a connection between their respective annular and spherical link

invariants.

2.5.2 Extending Sakuma's construction

Given a framed Sakuma link we can naturally form a pair of annular knots by viewing one

component as lying in the exterior of the other. We use the term annular Sakuma knot to

refer to either associated annular knot; it should be immediately clear that a framed Sakuma

link is precisely the two-component completion of an annular Sakuma knot. By performing this

modest extension of Sakuma's construction we obtain a large family of annular knots to which

we can apply annular knot invariants. Furthermore, by construction every annular Sakuma knot

is unknotted when embedded into S3, and this has some interesting rami�cations when applying

certain invariants.

Given the standard projection diagram DLn of a framed Sakuma link Ln = L∪B, it is a relatively
simple matter to draw a diagram of the `longitude' annular Sakuma knot L ⊂ S3\N (B), as B
appears as an axis (for an example see Figure 2.14). In order to determine a diagram for the

`branch-set' annular knot, however, we need to apply a series of Reidemeister moves as suggested

by Figure 2.13.

It is immediate from Proposition 2.1.8 that there is a unique pair of annular Sakuma knots

associated to every framed strongly invertible knot. We will now prove that in almost all cases

the pair are not equivalent to one other.

Proposition 2.5.3. Let Ln = B ∪ L be a framed Sakuma link, and let B and L also denote the

two annular knots obtained from Ln. Then B and L are equivalent if and only if Ln is associated

to one of the following:

1. A framed strongly invertible unknot (U , h0, n).

2. A framed strongly invertible double (D(K ′), h, n), for some prime knot K ′.

3. A framed equivariant product of strongly invertible doubles, ({#s
i=1D(K ′i)}, h, n), for prime

knots K ′i.
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Figure 2.14: A Sakuma link and the annular knot L ⊂ E(B)

m

Figure 2.15: An annular Sakuma knot obtained from the Watson tangle Tm

Proof. This Proposition is really just a Corollary of Proposition 2.1.12. The presence of coils

makes it impossible to exchange L and B, and the only framed Sakuma links without coils in

their projection diagrams are those listed above.

Another way to view the two annular Sakuma knots is as annular closures of representatives of

the Sakuma tangle and the Watson tangle we encountered previously. Given a sutured tangle

T , there is a natural annular knot we can associate to T . We take the braid-like closure T̂ by

identifying D2 × {0} with D2 × {1} using the identity map. This means in practice we join each

point x ∈ D2×{0} to its `opposite' point x ∈ D2×{1}, resulting in a knot in a solid torus, which

we can deform in to a thickened annulus by a homeomorphism.

It is clear that given a representative of a Sakuma tangle Tm we can from the braid-like closure

to obtain the annular knot L ⊂ A× I, where Ln = B∪L is the related framed Sakuma link. The

other annular knot B ⊂ A× I is obtained from a representative of the Watson tangle by applying

the same process. See Figure 2.15 for an example.

Perhaps the most commonly studied class of annular knots are those obtained from braid closures
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(see for example [20], [4]). Interestingly, the set of annular Sakuma knots is almost entirely disjoint

from this set of annular knots, meaning we have a brand new family of annular knots to apply

annular link invariants to.

Proposition 2.5.4. Let K be an annular Sakuma knot that is not associated to (U , h0,±1). Then

K is not equivalent to a braid closure.

Proof. For a general k-strand braid Bk, form its closure B̂k, and consider the two-component

completion, L. Since in a braid all strands run from D2 × {0} to D2 × {1}, when we close all

strands in B̂k are oriented in the same direction. Hence, the linking number of L is precisely the

number of strands in Bk, namely k. Suppose K is equivalent to B̂k; then it must the case that

k = 2.

Now, K has an associated framed Sakuma link Ln = B ∪ L. We form the standard projection

diagram DLn in which K wraps around a vertical axis. Since k = 2, there therefore cannot be

any coils present in K when considered as a component of Ln. The two possibilities are then that

K is equivalent to L, or that K is equivalent to B.

For the �rst case, recall Proposition 2.1.12. As a consequence we have that K is associated to

some (U , h0, n), to some (D(K), h, n), or to a equivariant sum of (D(K), h, n). Out of all these

cases, the only time when K is equivalent to a braid closure is when it is associated to (U , h0,±1).

In the second case we see that unless Ln is associated to (U , h0,±1) it is never a braid closure,

and this is already covered by the �rst case in light of Proposition 2.5.3.



Chapter 3

Polynomial invariants of strongly

invertible knots

In this chapter we will start to de�ne and calculate invariants of strongly invertible knots. In

particular, we will concentrate on invariants which take the form of a polynomial with integer

coe�cients. There are three such invariants we will focus on: the η-polynomial of Kojima and

Yamasaki, the Jones polynomial, and the annular Jones polynomial. The η-polynomial is an

invariant of two-component links with linking number zero, and is perhaps best thought of as an

invariant in the spirit of the Alexander polynomial, insofar as it is also constructed using in�nite

cyclic covering spaces. The reader is encouraged to compare the construction of the η-polynomial

with that of the Alexander polynomial featured in Rolfsen's book [77, Chapter 7]. The Jones

polynomial was constructed by Vaughan Jones in the 1980s, and is an invariant of knots and links

in S3. Today, the Jones polynomial is perhaps one of the most well known link invariants, due to

its simple construction, and its ability to detect cheiral links. It remains in vogue primarily due

to its relationship to Khovanov homology, a homological link invariant whose Euler characteristic

is the Jones polynomial. Its annular spin-o�, which is an invariant of annular links, was originally

constructed as a consequence of independent work by Przytycki [70] and Turaev [90] on skein

modules. This allowed the generalisation of the Jones polynomial to links in thickened surfaces,

of which the thickened annulus A× I is one of the simplest examples.

We will apply the three invariants to strongly invertible knots and compare the results, with

particular emphasis on their abilities to distinguish strongly invertible knots, detect the trivial

strongly invertible knot, and detect the cheirality of a strongly invertible knot. Finally, we will

change tack somewhat, and will explain how the three invariants can be used to help determine

the intrinsic symmetry group of a framed Sakuma link.

3.1 The η-polynomial

As we mentioned above, the η-polynomial is a link invariant of two-component links with linking

number zero, originally de�ned by Kojima and Yamasaki [46] in the late 1970s. In this section we

49
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will de�ne η for a general two-component link with linking number zero, list some of its properties

and features, and apply it to Sakuma links. We will also provide the necessary background on

the theory of in�nite cyclic covering spaces � which are required to de�ne η.

3.1.1 In�nite cyclic covering spaces

We will expand upon the brief introduction to covering spaces given in De�nition 2.1.3. The

primary reference for the following de�nitions is [38, Appendix B].

De�nition 3.1.1. Let X be a connected space. An in�nite cyclic cover of X is a covering space

(X̃, p) with �bre Z.

The requirement that X is connected is necessary in order for all �bres to be homeomorphic. We

call each copy of X contained in X̃ a fundamental domain.

Example 3.1.2. If X = S1 then there exists a covering map p : R → S1 given by p(t) = e2πit.

If we examine the pre-images we see that the �bre of this cover is Z.

Two connected covering spaces (X̃1, p1) and (X̃2, p2) of a connected space X are considered

equivalent if there exists a homeomorphism f : X̃1 → X̃2 such that p1 = p2f . When the

connected space X is also locally-path connected and semilocally simply-connected (two terms

we shall leave unde�ned, see [28, Chapter 1] for further details) it turns out that the number of

connected equivalence classes X has is related to its fundamental group. The following result

appears in Hatcher [28, Theorem 1.38].

Theorem 3.1.3 (Classi�cation of connected covering spaces). Let X be a connected, locally path-

connected, and semilocally simply-connected space with basepoint x0. The equivalence classes of

connected covering spaces over X are in bijection with the conjugacy classes of subgroups of

π1(X,x0).

In all that follows we will assume our connected space X is also locally path-connected and

semilocally simply-connected.

De�nition 3.1.4. Given a covering (X̃, p), let Homeop(X̃) be the subgroup of Homeo(X̃) con-

sisting of all the homeomorphisms h : X̃ → X̃ such that ph = p. We call such homeomorphisms

deck transformations or covering transformations.

De�nition 3.1.5. A covering space (X̃, p) is called regular or normal if for every x ∈ X and for

every pair of lifts x̃, x̃′ of x there is a deck transformation taking x̃ to x̃′.

The term `normal' arises from a relationship between normal covering spaces and normal sub-

groups of the fundamental group of the base space.

Theorem 3.1.6. Let (X̃, p) be a connected covering space and let H = p∗(π1(X̃)) ⊂ π1(X).

Then

1. X̃ is a normal covering space if and only if H is a normal subgroup of π1(X).
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2. Homeop(X̃) is isomorphic to N(H)/H, where N(H) is the normaliser of H in π1(X).

In particular, Homeop(X̃) is isomorphic to π1(X)/H if X̃ is a normal covering.

De�nition 3.1.7. Let X be a connected space, Π be an in�nite cyclic group generated by t

and γ : π1(X) → Π be an epimorphism. The in�nite cyclic cover of X determined by γ is the

connected, normal covering space (X̃, p) such that p∗(π1(X̃)) = ker(γ) ⊂ π1(X).

By Theorem 3.1.6 and the �rst isomorphism theorem for groups it then follows that

Homeop(X̃) ∼= π(X)/p∗(π1(X̃)) = π1(X)/ker(γ) ∼= Im(γ) = Π.

Therefore, Π acts freely as the group of deck transformations of X̃. As X̃ is a normal covering

space we know that for every x ∈ X and every pair of lifts x̃, x̃′ there exists a ti ∈ Π such that

ti(x̃) = x̃′. To describe the action of Π we �rst number the fundamental domains of X̃, then

specify that t sends a lift x̃ of x ∈ X associated to n to the lift of x associated to n+ 1.

Two covering spaces worth mentioning are the universal covering space and the universal abelian

covering space. A connected covering space is said to be universal, and is denoted by (X, p), if

it is a covering space corresponding to the trivial subgroup of π1(X,x0). The universal covering

space has the property that it is a covering space of every other covering space of its base space

X.

The universal abelian covering space (X̂, p) is the covering space associated to the commutator

subgroup [π1(X,x0), π1(X,x0)]. If we quotient π1(X,x0) with its commutator subgroup then we

obtain the abelianisation of π1(X,x0), which is just the 1st homology group H1(X;Z). We will in

particular be interested in the special case when H1(X;Z) is isomorphic to an in�nite cyclic group

� in which case the universal abelian covering space coincides with the in�nite cyclic covering

space determined by the abelianisation.

We also note that the universal and universal abelian covering spaces coincide if and only if the

commutator subgroup is trivial; this is the case in the (R, p) covering space of S1 we outlined

above, for example.

3.1.2 De�nition and properties of η

We now will formally de�ne the η-polynomial. The following description is taken from Kojima

and Yamasaki's paper [46].

To de�ne η, we �rst take a two-component link L = K1 ∪ K2 ⊂ S3 with linking number zero.

We then consider the complement Xi of one of its components, that is, Xi = S3\Ki for i ∈
{1, 2}. The homology groups of Xi are the same as those for S1, which means in particular that

H1(Xi;Z) ∼= Z. This puts us in the special case where the universal abelian covering space X̂i of

Xi is also an in�nite cyclic covering induced by the abelianisation of π1(Xi). It then follows that

the group of deck transformations of X̂i is isomorphic to Z, or equivalently to an in�nite cyclic

group Π = 〈t〉.
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We then proceed as in [77, Chapter 7]; namely, we use the group of deck transformations to de�ne

a module structure on the homology groups of X̂i over the group ring Λ = Z[t, t−1]. We de�ne

an action of Λ on homology elements α ∈ Hi(X̂;Z) by t ∗ α = tα. Now let p(t) ∈ Λ: p(t) can be

expressed as

p(t) = c−rt
−r + . . .+ c0 + . . .+ cst

s.

We then de�ne p(t)α to be

p(t)α = c−rt
−rα+ . . .+ c0α+ . . .+ cst

sα.

We will in particular consider H1(X̂i;Z) as a Λ-module.

The next step is to observe that since the linking number of L is zero the lifts of the other link

component Kj and its preferred longitude lj are a collection of closed curves. Furthermore, each

pair of lifts are representatives of the same homology class [l̃j ] ∈ H1(X̂i;Z). Now, H1(X̂i;Z) is a

torsion module over Λ [57], so there exists a Laurent polynomial f(t) ∈ Λ such that f(t)[l̃j ] = 0.

This means that f(t)l̃j must bound a disc ζ in X̂i by the de�nition of H1(X̂,Z). The formal

de�nition of η is then

η(L, i, j; t) =
1

f(t)

∞∑
n=−∞

Int
(
ζ, tn(K̃j)

)
tn

where Int refers to the intersection number between ζ and a translate tn(K̃j) in X̂i. Kojima

and Yamasaki prove [46, Proposition 1] that η is well-de�ned; that is, it does not depend on our

choice of ζ or f(t).

Some basic properties of η are as follows [46, Proposition 2]:

Proposition 3.1.8 (Kojima-Yamasaki,1979). The following equalities hold:

1. η(L, i, j; t) = η(L, i, j; t−1).

2. η(L, i, j, 1) = 0.

In other words, the η-polynomial is always symmetric and the sum of its coe�cients is always

zero. We will therefore sometimes denote it by [a0, a1, . . . , an as Sakuma does in [79], where

[a0, a1, . . . , an refers to the polynomial given by a0 +
∑n

i=1 ai(t
−i + ti).

Returning to the de�nition, it is clear that there are two η-polynomials we can obtain from L

depending on which complement we decide to take; we will refer to these as η(L, 1, 2; t) and

η(L, 2, 1; t). In [33, Theorem 4] Jin proves the following theorem which shows a connection

between, η(L, 1, 2; t) and η(L, 2, 1; t).

Theorem 3.1.9 (Jin, 1988). Let L = K1 ∪K2 be a link with lk(K1,K2) = 0 and let ∆L(t1, t2),

∆1(t) and ∆2(t) be the Alexander polynomials of L, K1 and K2 respectively, which are normalised

to satisfy the following symmetry conditions:

1. ∆i(t
−1) = ∆i(t) for i = 1, 2,
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2. ∆(t1, t2) = (1− t−11 )(1− t−12 )g(t1, t2) and g(t−11 , t−12 ) = g(t1, t2).

Then

η(L, 1, 2; t) = ±(1− t)(1− t−1)g(t, 1)

∆1(t)

and

η(L, 2, 1; t) = ±(1− t)(1− t−1)g(1, t)

∆2(t)

Jin notes that if we take the link complement XL = S3\L then the plus and minus signs can

be determined from a presentation matrix for H1(X̂L;Z) that allows the computation of the

three relevant Alexander polynomials. An immediate consequence of Jin's theorem is the follow-

ing.

Corollary 3.1.10. Let L = K1 ∪K2 be a link as above. Then

η(L, 1, 2; t) = ±η(L, 2, 1; t)
g(t, 1)

g(1, t)

∆2(t)

∆1(t)
.

Therefore, the two η-polynomials di�er by a polynomial factor, which can be determined from a

presentation matrix for H1(X̂L;Z) and the two Alexander polynomials.

Now letML be the closed 3-manifold obtained from S3 by doing a 0-framed surgery on our link L

(that is, the result of removing a tubular neighbourhood of L, then re-gluing, so that a meridional

curve is glued to a longitudinal curve). De�ne M̃Li to be the in�nite cyclic cover ofML determined

by the composite homomorphism from π1(ML) to Z that �rst abelianises to H1(ML;Z) ∼= Z⊕Z,
then sends the homology class [Ki] to the generator of Z and the class [Kj ] to zero. Kojima and

Yamasaki de�ne the polynomial of Alexander's type with respect to Ki to be the determinant of

a square presentation matrix of H1(M̃Li ;Z) as a Λ-module, which they denote by A(ML, i; t).

This polynomial is well de�ned up to multiplication by units of Λ, which are the monomials ±t±i.
They use this polynomial to obtain the following theorem [46, Theorem 1]:

Theorem 3.1.11 (Kojima-Yamasaki, 1979). For a tame link L = K1∪K2 whose linking number

is zero,

η(L, i, j; t)
.
=
A(ML, i; t)

∆i(t)

where {i, j} ∈ {1, 2}, and `
.
=' means `up to multiplication by units' in Λ.

Note that in the case where i = 1 and K1 is unknotted the η-polynomial equals A(ML, 1; t), up

to multiplication by units.

3.1.3 The η-polynomial of a Sakuma link

As we have established a bijection between strongly invertible knots and Sakuma links we can

apply the η-polynomial to strongly invertible knots: this was Sakuma's original motivation behind

his construction. Pleasingly though, because all Sakuma links have both components unknotted
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the calculations are made much simpler. Indeed, Sakuma de�nes the η-polynomial of a Sakuma

link in [79] to be as follows:

De�nition 3.1.12. Let L = B ∪ L be a Sakuma link obtained from a strongly invertible knot

(K,h), and take K1 = B and K2 = L. Then,

η(K,h)(t) := η(L, 1, 2; t) =
∞∑

i=−∞
lk
(
l̃L, t

i(L̃)
)
ti.

The reason that this de�nition is equivalent to Kojima and Yamasaki's for Sakuma links comes

from observing that, since B is unknotted, the universal abelian cover of XB is homeomorphic

to R×D2. As the group H1(R×D2;Z) ∼= 0 the lift l̃L is a trivial homology element, so we can

take f(t) = 1 in Kojima and Yamasaki's de�nition. Then we take ∂ζ = l̃L and

η(L, 1, 2; t) =

∞∑
i=−∞

Int
(
ζ, ti(L̃)

)
ti =

∞∑
i=−∞

lk
(
l̃L, t

i(L̃)
)
ti.

Remark. Note that in order to make lL a preferred longitude compensatory half twists must

once again be added.

We observe that a fundamental domain of X̂B is precisely a representative of a Sakuma tangle

for (K,h); see [79, Figure 2.3(b)] or Figure 3.1 for an example. In addition, for Sakuma links

Theorem 3.1.11 implies η(L, 1, 2; t)
.
= A(ML, 1; t), since ∆1(t) = 1. Studying the proof of [46,

Proposition 4] we see that η(L, 1, 2; t) is exactly the `a' term that appears in the presentation

matrix Kojima and Yamasaki derive for H1(M̃L1 ;Z), which for Sakuma links is 1× 1.

When calculating η we �x a convention that before we lift L in X̂B we arrange DL so that the

two clasps are at the very top and bottom of the diagram, as shown in Figure 3.1. This follows

Sakuma, as can be seen in [79, Figure 2.3(a)].

Example 3.1.13. We take the left-handed trefoil with its single strong inversion (31, h), and

calculate its η-polynomial. The process of obtaining the Sakuma link and forming the in�nite

cyclic cover of S3\B is illustrated in Figure 3.1, where the green closed curve is taken to be our

chosen lift of L and the red and blue curves are two of its translates under the action of Λ. Other

translates of the green curve are not required, as they all clearly have zero linking number with

the lift of the preferred longitude of L (which is not depicted in the diagram).
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Figure 3.1: Calculating η(31,h)(t)
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We calculate the non-zero coe�cients of the η-polynomial:

lk
(
l̃L, L̃

)
= 8−4

2 = 2

lk
(
l̃L, t(L̃)

)
= 4−4

2 = 0

lk
(
l̃L, t

2(L̃)
)

= −2
2 = −1

Hence,

η(31,h)(t) = −t−2 + 2− t2 = [2, 0,−1

For Sakuma links η satis�es a few additional properties to those given in Proposition 3.1.8 [79,

Theorem II]:

Theorem 3.1.14 (Sakuma, 1985). η(K,h)(t) satis�es the following properties:

1. η(K,h)(t) = η(K,h)(t
−1)

2. η(K,h)(1) = 0

3. η(K,h)(−1) = 0

In addition, for any Laurent polynomial f(t) with integer coe�cients satisfying the above condi-

tions, there exists a strongly invertible knot (K,h) such that η(K,h)(t) = f(t).

Proof. We will prove the �rst three properties. A proof of the �nal result can be found in [79],

which comes from calculating the η-polynomials of the 2-bridge strongly invertible knots we saw

earlier.

1. The �rst property follows directly from the de�nition of η:

η(K,h)(t
−1) =

∞∑
i=−∞

lk
(
l̃L, t

i(L̃)
)

(t−1)i

=

∞∑
i=−∞

lk
(
l̃L, t

i(L̃)
)
t−i

=

−∞∑
i=∞

lk
(
l̃L, t

i(L̃)
)
ti

= η(K,h)(t)

2. For the second property we have

η(K,h)(1) =

∞∑
i=∞

lk
(
l̃L, t

i(L̃)
)
.

Now consider a single fundamental domain of X̂B and the various lifts of L and lL sitting

inside it. This consists of pairs of strands running in parallel that enter and exist the domain

together, aside from at the top and the bottom where they peel apart to the left and right
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of the domain. Now, we label and orient the strands according to the following conventions

(which are taken from [79]); see Figure 3.2 for an example.

(a) The top left strand is oriented downwards and has index 0.

(b) Suppose we have already indexed a strand α. Let A be the end point of α and B be

the point opposite to A. Let β be the strand that starts from B. Then de�ne index(β)

to be index(α) + 1 if B is on the right side of the domain or index(α) − 1 if B is on

the left side.

The indexing of the strands encodes information about the translates of L̃ that enter and

exit the domain. Sakuma also assigns to each crossing p in the fundamental region an index

dp: suppose α is a strand passing over another strand β at p, then dp := index(α)−index(β).

Each crossing in the fundamental domain stands for a crossing in X̂B between l̃L and some

translate of L̃; the index of a crossing indicates precisely which translate. An important

example are the twist crossings: as the strand entering the fundamental domain from the

top left has index 0 and the strand leaving at the top right has index 1 it is clear that the

twist crossings must have index ±1.

The linking numbers lk
(
l̃L, t

i(L̃)
)
can be obtained from the indexed crossings. For i 6= 0

simply sum the signs of all crossings of index i. For i = 0 we also need to take into account

the compensatory twists we put into lL � which have signed sum equal to −2 times the

signed sum of the twist crossings in L. Let q be a twist crossing, then

∞∑
i=∞

lk
(
l̃L, t

i(L̃)
)

=
∑
p

sign(p)−
∑
q

sign(q).

On the other hand, we can reobtain a diagram for L from the fundamental domain by

gluing the left-hand side of the domain to the right-hand side in the obvious way. There is

then a natural correspondence between crossings in the fundamental domain and crossings

in the diagram for L. Hence, we have

lk(lL,L) =
∑
p

sign(p)−
∑
q

sign(q).

But we know that lL is a preferred longitude of L. Therefore,
∑∞

i=∞ lk
(
l̃L, t

i(L̃)
)

= 0 as

required.

3. For the third property we have:

η(K,h)(−1) =

∞∑
i=−∞

lk
(
l̃L, t

i(L̃)
)

(−1)i

=
∑
i even

lk
(
l̃L, t

i(L̃)
)
−
∑
i odd

lk
(
l̃L, t

i(L̃)
)

= −2
∑
i odd

lk
(
l̃L, t

n(L̃)
)
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0

−1

0

1

dp sign(p)
1 −
−1 −

1 −
−1 −

1 +
2 −
0 −
1 +
−2 −
−1 +
−1 +

0 −

0

−1

dp εp
1 −
−1 −

η̃ = −x−1 − x1

Figure 3.2: Indexing crossings in a fundamental and pseudo-fundamental domain

Where the �nal equality is a consequence of the second property. We will now prove that∑
i odd

lk
(
l̃L, t

i(L̃)
)

= 0.

Consider once more the fundamental domain for X̂B, and suppose the strands are oriented

and indexed as described above. We additionally colour the strands with two colours,

beginning with the top left strand, and swapping colours for each strand starting at a point

opposite to the end point of an already coloured strand. Examine the crossings between

strands of di�erent colours � it should be clear that these are precisely the odd indexed

crossings.

On the other hand, if we recall how L was formed by gluing together l and h(l), it is also

true that every instance of L passing around B equates to swapping between following a

piece of l to following a piece of h(l) or vice versa. It then becomes apparent that all the

odd indexed crossings are those between a l piece and a h(l) piece of L. Now, we know

that lk(l, h(l)) = 0, so if we sum up all the signs of the odd indexed crossings we must get

0. Therefore,
∑

i odd lk
(
l̃L, t

i(L̃)
)

= 0 and the third property of η then follows.



CHAPTER 3. POLYNOMIAL INVARIANTS OF STRONGLY INVERTIBLE KNOTS 59

As we saw in Figure 3.1, calculating η by hand requires a certain number of diagrams, and for

more complex strongly invertible knots the process becomes time consuming. To combat this,

Sakuma developed a faster way to calculate η by working with a `pseudo-fundamental' domain of

the in�nite cyclic cover. This is formed by removing half the strands in a fundamental domain, as

shown in Figure 3.2. This speeds the calculation up considerably as there are roughly a quarter as

many crossings to deal with in a pseudo-fundamental domain. We replicate Sakuma's description

of his shortcut:

1. Start with a Sakuma link and construct a fundamental domain of X̂B, as in Figure 3.1.

2. Construct a pseudo-fundamental domain for the in�nite cyclic cover.

3. Assign an index and orientation to each strand in the pseudo-fundamental domain in the

same way as for the fundamental domain, starting by indexing the top strand with 0 and

orienting it downwards.

4. Assign to each crossing p an index dp as described for crossings in the fundamental domain,

and a signature εp ∈ {+,−} as follows: let α and β be the over-strand and under-strand at

p; if β crosses α from left to right set εp to +, and if β crosses α from right to left set εp to

−. Note that the signature is therefore the negative of the sign of p.

Let also η̃ =
∑

p εpxdp .

5. Let η′(t) be the Laurent polynomial obtained from η̃ by setting xi = ti−1 − 2ti + ti+1. As

η′(t) is symmetric, it can be expressed as [b0, b1, b2, . . .

6. Then ηK,h)(t) = [a0, a1, a2, . . ., where

aj =


−2
∑
i≥1

b2i (j = 0)

−
∑
i≥1

b2i+1 (j = 1)

bj (j ≥ 2)


The �nal steps require a little justi�cation. Each crossing in the pseudo-fundamental domain

corresponds to four crossings in the fundamental domain, and the indices of the strands are

related as indicated in Figure 3.3. The index and signature of the crossing shown in the pseudo-

fundamental domain is +i. On the other side, the indices and signs of the crossings in the

fundamental domain are −i,+(i + 1),+(i − 1), and −i. This explains the substitution of xi for

ti−1 − 2ti + ti+1. As a general aj term (j 6= {0, 1}) can be determined by summing the signs of

all crossings with index j in the fundamental domain, the correspondence means that aj = bj for

j 6= {0, 1}.

Unfortunately though, since the twists in the fundamental domain are not present in the pseudo-

fundamental domain it is not possible to obtain the a0 and a1 terms purely from working with

the pseudo-fundamental domain. However, it is possible to determine them from the bj terms.



CHAPTER 3. POLYNOMIAL INVARIANTS OF STRONGLY INVERTIBLE KNOTS 60

d+ i

d

d+ i d+ i+ 1

d

d+ 1

+ i
− i + (i+ 1)

+ (i− 1) − i

Figure 3.3: Crossing correspondence between fundamental and pseudo-fundamental domains

Recall that η(K,h)(1) = η(K,h)(−1) = 0; this implies that

∑
i odd

lk
(
l̃L, t

i(L̃)
)

=
∑
i even

lk
(
l̃L, t

i(L̃)
)

= 0.

The a0 term can now be calculated:

∑
|i|≥0

lk
(
l̃L, t

2i(L̃)
)

= 0 =⇒ a0 = −2
∑
i≥1

a2i

=⇒ a0 = −2
∑
i≥1

b2i

Similarly, ∑
|i|≥0

lk
(
l̃L, t

2i+1(L̃)
)

= 0 =⇒ 2a1 = −2
∑
i≥1

a2i+1

=⇒ 2a1 = −2
∑
i≥1

b2i+1

=⇒ a1 = −
∑
i≥1

b2i+1

Example 3.1.15. For an example of Sakuma's shortcut in action, we calculate the η-polynomial

of the left-handed trefoil once more. Consider the pseudo-fundamental domain appearing in

Figure 3.2. We then have,

η′(t) = −(t−2 − 2t−1 + 1)− (1− 2t+ t2)

= −t−2 + 2t−1 − 2 + 2t− t2

= [−2, 2,−1
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Hence,

η(31,h)(t) = [2, 0,−1

as we calculated earlier.

We now discuss the e�ect of applying η to framed Sakuma links. The process is the same as in

the base case, however since we require links of linking number zero we can only de�ne η on even

framed strongly invertible knots, that is, on (K,h, n) where n is even.

De�nition 3.1.16. Let (K,h, n), n ∈ 2Z, be a framed strongly invertible knot, and Ln = B ∪ L
be its framed Sakuma link. De�ne η(K,h,n)(t) by the equality

η(K,h,n)(t) := η(Ln, 1, 2; t) =

∞∑
i=−∞

lk
(
l̃L, t

i(L̃)
)
ti.

It turns out that knowing η for a zero-framed strongly invertible knot (K,h) is enough to deter-

mine it for its whole family of even framed strongly invertible knots (K,h, n).

Proposition 3.1.17. Let (K,h) be a strongly invertible knot with Sakuma link L, and suppose

that η(K,h)(t) = [a0, a1, a2, . . .. Then,

η(K,h,n)(t) = [a0 + n, a1 −
n

2
, a2, . . .

where n is an even integer.

Proof. Fix a diagram D(K,h) and suppose it has writhe x ∈ Z. Suppose we want a longitude l

with framing n ∈ Z. Then −2x+2n half twists must be added to a blackboard longitude (−x+n

on each side of Fix(h)) in order to preserve symmetry under h.

Recall Lemma 2.1.2. There are two cases we need to consider:

• When x is even nothing needs to be done and we end up with x− n half twists in DL with

the clasps arranged as per our convention.

• When x is odd we still have x − n half twists after projecting but one of the clasps needs

�ipping over in order to arrange them as desired. This either adds another negative half

twist if x is negative or adds a positive half twist if x is positive. So we end up with either

x− n− 1 or x− n+ 1 half twists.

Now, the only two terms that are a�ected by changing the number of half twists in DL are a0
and a1. Changing the numbers of twists changes the writhe of DL, so a di�erent number of

compensatory twists need to be added in lL � this explains a0. For a1, this follows because the

twists only contribute to a1 in the lifts.

Let us examine the e�ect on a1 �rst. In all cases we end up an extra −n half twists in DL,

therefore our new a1 term, a′1 is given by a′1 = a1 − n
2 .
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Now, we observe that a0 is made up of two parts: self crossings of L̃, which get counted twice;

and compensatory twists put in to ensure l̃L was preferred. The change in a0 comes down to the

number of extra twists that we put in DL, so it follows that a′0 = a0 + n as required.

Example 3.1.18. Take once more the left-handed trefoil with its unique strong inversion as in

Figure 3.1, but this time set n = 2. This results in six negative twists in DL. Our formula tells

us that

η(31,h,2)(t) = [4,−1,−1

which can easily be veri�ed by adjusting the diagrams in Figure 3.1.

Next we prove a result about the relationship between the highest non-zero power of t of the

η-polynomial and the number of coils in the standard projection diagram.

Lemma 3.1.19. Let (K,h, n) be a framed strongly invertible knot with Sakuma link Ln and

consider DLn, the standard projection diagram for Ln. Let x denote the number of coils present

in the diagram. Then the largest non-zero power of t in the η-polynomial of Ln is bounded above

by x+ 2, that is ai = 0 for i ≥ x+ 2.

Proof. As we have previously seen, in DLn every instance of L looping around B equates to an

instance of L̃ passing into the next fundamental domain along. Now, as L̃ is a closed curve we

know that it can only occupy a �nite number of fundamental domains. In the case where x = 0

there are only two places where L loops around B, so L̃ can only pass into the next domain and

return; hence, it occupies two fundamental domains. Adding a coil increases the `reach' of L̃
in that it occupies an extra fundamental domain, so the total number of fundamental domains

occupied is 3; in general, if L has x coils then L̃ will occupy x + 2 fundamental domains. Now

consider translates of L̃, ti(L̃). There can clearly be no linking between l̃L and ti(L̃) for i ≥ x+2,

and the result follows.

We next consider the other η-polynomial we could take from a framed Sakuma link (η(Ln,L,B; t),

n ∈ 2Z in the terminology of De�nition 3.1.12). An important detail to note is that Sakuma has

chosen to take η(L,B,L; t) instead of η(L,L,B; t) to attach to the associated strongly invertible

knot. In light of Corollary 3.1.10, however, it would appear η(Ln,L,B; t) can tell us nothing that

we cannot obtain from η(Ln,B,L; t). In addition, it turns out that η(Ln,L,B; t) can only ever

have three terms: the constant term and the t±1 terms.

Proposition 3.1.20. Suppose Ln, n ∈ 2Z, is a framed Sakuma link obtained from a framed

strongly invertible knot (K,h, n), and suppose that in the standard projection diagram for Ln L
coils around B, in the sense of Figure 2.3. Then,

η(Ln, 2, 1; t) = a1t
−1 + a0 + a1t a0, a1 ∈ Z.

Proof. Given DLn we perform Watson's construction in order to obtain a diagram for Ln with L
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as the axis. In this diagram B does not coil around L at all, so a lift of B in X̂L can only occupy

a maximum of two fundamental domains. Therefore, ti(B̃) for i ≥ 2 can not possibly link with

l̃B, hence η(L, 2, 1; t) can only have three terms.

Recall Proposition 2.1.12 from the previous chapter. Combining this with the above result than

gives us the following.

Corollary 3.1.21. Suppose Ln, n ∈ 2Z, is a framed Sakuma link associated one of the following:

1. A framed strongly invertible unknot (U , h0, n).

2. A framed strongly invertible double (D(K ′), h, n), for some prime knot K ′.

3. A framed equivariant product of strongly invertible doubles, ({#s
i=1D(K ′i)}, h, n), for prime

knots K ′i.

Then η(Ln, 1, 2; t) = η(Ln, 2, 1; t).

Proof. If (K,h, n) is a member of one of the three classes of framed strongly invertible knots

listed above then DLn does not have any coils, and so has pure exchange symmetry. This means

that η(Ln, 1, 2; t) = η(Ln, 2, 1; t) = a1t
−1 + a0 + a1t.

We will conclude this section by returning to the question of which knots admitting strong

inversions are amphicheiral.

Proposition 3.1.22 (Sakuma, 1985). Let (K,h) be a strongly invertible knot and suppose K is

hyperbolic and amphicheiral.

1. Suppose that K does not have a free or cyclic period of period 2, and let h be the unique

inverting involution. Then (K,h) ∼= (K,h), and so η(K,h)(t) = η(K,h)(t) = −η(K,h)(t) = 0.

2. Suppose K does have period 2, and let h1 and h2 be its two inequivalent inverting involutions.

Then (K,h1) ∼= (K,h2), and so η(K,h1)(t) = η(K,h2)(t) = −η(K,h2)(t).

For a proof see [79].

We can extend the above result to include framed strongly invertible knots.

Corollary 3.1.23. Let (K,h, n), n ∈ 2Z be an even-framed strongly invertible knot and suppose

K is hyperbolic and amphicheiral.

1. Suppose that K does not have a free or cyclic period of period 2, and let h be the unique

inverting involution. Then (K,h, n) ∼= (K,h, n), and so η(K,h,n)(t) = η(K,h,n)(t).

2. Suppose K does have period 2, and let h1 and h2 be its two inequivalent inverting involutions.

Then (K,h1, n) ∼= (K,h2, n), and so η(K,h1,n)(t) = η(K,h2,n)(t).

As a result of the above results, the η-polynomial can be used to detect the cheirality of hyperbolic

knots which admit strong inversions. The following examples appear in [79, Example 3.5].
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Example 3.1.24. Consider the hyperbolic knots 10104 and 10155 in the Rolfsen tables [77, Ap-

pendix C]:

1. 10104 has a unique strong inversion, and from work of Hartley [27] and Murasugi [59], it

can be shown that it does not have period 2. However, its η-polynomial is [2,−1, 1− 1, so

it cannot be amphicheiral.

2. 10155 has two unique strong inversions, and using [27] it can be shown that it has a free

period of period 2. But, the respective η-polynomials of the two strongly invertible knots

are 0 and [−4, 0, 2, and so 10155 cannot be amphicheiral either.

We end this section by applying η to the mirrors of Sakuma links. Recall Lemma 2.1.13 from

Chapter 2; for a framed Sakuma link Ln with framed strongly invertible knot (K,h, n), we saw

that its mirror image is the framed Sakuma link given by L−n, which has (K,h,−n) as its

framed strongly invertible knot. It then follows from the de�nition of the η-polynomial that

η(K,h,n)(t) = −η(K,h,−n)(t), and so if a Sakuma link is amphicheiral its η-polynomial must be

zero.

3.2 The Jones polynomial

The next polynomial invariant we will consider is the Jones polynomial � which was �rst de�ned

by Jones in [34]. The Jones polynomial is an invariant of links in the 3-sphere, and takes the

form of a Laurent polynomial with coe�cients in Z. In the discussion to follow we will be using

a renormalised version of the Jones polynomial, which is the version Khovanov categori�ed [40]

when he de�ned the Khovanov homology of a link. Just as for the η-polynomial, this invariant

can be used to study strongly invertible knots via the framed Sakuma links we constructed in the

previous chapter.

3.2.1 De�nition of J(L)

We start by taking an oriented link L in S3 and �xing a diagram DL ⊂ R2 for it. One way to

obtain the Jones polynomial is by �rst calculating a related polynomial � the Kau�man bracket.

The Kau�man bracket was �rst introduced by Kau�man in [36] and is an invariant of the link

diagram, though not of the link itself.

De�nition 3.2.1. Let DL ⊂ R2 be a link diagram. The Kau�man bracket 〈DL〉 ∈ Z[q±1], is a

Laurent polynomial de�ned by the following three axioms:

〈∅〉 = 1 (3.1)

〈 DL〉 = (q + q−1)〈DL〉 (3.2)〈 〉
= 〈 〉 − q 〈 〉 (3.3)

By scaling the Kau�man bracket by a suitable factor we obtain the Jones polynomial of the

link.
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De�nition 3.2.2. Let L ⊂ S3 be an oriented link and DL be a choice of diagram for L with n+
positive crossings and n− negative crossings, and let 〈DL〉 be the Kau�man bracket of DL. The

unnormalised Jones polynomial of L is de�ned to be

Ĵ(L)(q) := (−1)n−qn+−2n−〈DL〉.

The Jones polynomial is then

J(L)(q) :=
Ĵ(L)(q)

q + q−1
.

Remark. The reason we normalise the Jones polynomial is to ensure that the unknot has Jones

polynomial equal to 1, rather than q + q−1.

Remark. As mentioned earlier, this de�nition of the Jones polynomial is due to Khovanov, and

is actually a rescaled version of the original polynomial as de�ned by Jones. Jones uses the

notation V (t) to describe the polynomial � we can pass between the two versions using the

following substitution (c.f. [40]):

V (L)(t)
∣∣∣√
t=−q

= J(L)(q)

Another way to express the Jones polynomial is through constructing a cube of smoothings, an

example of which we have depicted in Figure 3.4. Let L ⊂ S3 as before and DL be a diagram for

L in R2. Begin by numbering the crossings of DL from 1 to n and denote by and the 0 and

1-smoothings of a crossing respectively. An n-tuple α ∈ {0, 1}n gives us a set of smoothing

instructions for DL: simply smooth the ith crossing according to the ith entry in α. We denote

by Sα the result of applying the smoothing instructions given by α, which is nothing more than

a collection of disjoint circles in the plane � this is sometimes referred to as a Kau�man state

of DL (c.f. [95]). We will denote the set of Kau�man states for DL by K(DL). The phrase `cube

of smoothings' comes from the fact that the Kau�man states can be arranged on the vertices of

a hypercube, where each α determines the vertex Sα appears at.

We determine 〈DL〉 from a cube of smoothings by attaching to each Sα a term of the form

(−1)rqr(q + q−1)u and summing; where r is the height of the smoothing (the number of 1's that

appear in α, also denoted |α|) and u is the number of circles appearing in the smoothing. Finally,

we multiply 〈DL〉 by a normalisation term as before to obtain J(L). This can be expressed more

succinctly as follows:

J(L)(q, t) =
(−1)n−qn+−2n−

q + q−1

 n∑
r=0

(−1)rqr

∑
|α|=r

〈Sα〉

 (3.4)

where 〈Sα〉 = (q + q−1)u.
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1 2

3

{0, 0, 0}

{1, 0, 0}

{0, 1, 0}

{0, 0, 1}

{1, 1, 0}

{1, 0, 1}

{0, 1, 1}

{1, 1, 1}

r = 0 r = 1 r = 2 r = 3

Figure 3.4: Cube of smoothings for a diagram of the trefoil

3.2.2 The Jones polynomial of a Sakuma link

Just as for η, we can use the bijection between strongly invertible knots and Sakuma links in

order to apply the Jones polynomial to strongly invertible knots. Given a strongly invertible knot

(K,h) with Sakuma link L we simply de�ne the Jones polynomial of (K,h) to be that of L:

De�nition 3.2.3. Let L be a Sakuma link obtained from a strongly invertible knot (K,h). Then,

J(K,h)(q) := J(L)(q).

We now have our second polynomial invariant of strongly invertible knots. Just as for η, we can

de�ne the Jones polynomial of a framed strongly invertible knot � the advantage here being that

all framings are permissible, not just even ones.

De�nition 3.2.4. Let (K,h, n) be a framed strongly invertible knot with Sakuma link Ln. Then,
we set

J(K,h,n)(q) := J(Ln)(q).
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In the rest of this thesis we will pass over the Jones polynomial in favour of its annular counterpart,

although, as we shall see later on, the two polynomials are closely connected. We will brie�y

consider, however, a couple of consequences of applying the Jones polynomial to a framed Sakuma

link.

For starters, the Jones polynomial is a good detector of amphicheirality. For knots, the Jones poly-

nomial of an amphicheiral knot is palindromic, that is J(K)(q) = J(K)(q−1). For links, we have a

slightly expanded notion of amphicheirality. Recall that an n-component link L is ε-amphicheiral

if L is equivalent to Lε, where the n-tuple ε ∈ {+,−}n indicates whether the orientation of

each Ki is preserved or reversed. In this setting, the Jones polynomial of an ε-amphicheiral link

J(L)(q) is equal to qkJ(L)(q−1), where k ∈ Z (see, for example, [37, Lemma 3.1]). That is, the

coe�cients of J(L) are still palindromic, but the powers of q are shifted. Applying this knowledge

to framed Sakuma links, J(Ln) can rule out the presence of ε-amphicheiralities of Ln. We use this

knowledge to restate Proposition 3.1.22 in terms of the Jones polynomial (recall Proposition 1.2.9

and Corollary 2.1.14).

Corollary 3.2.5. Let (K,h, n) be a framed strongly invertible knot and suppose K is hyperbolic

and amphicheiral.

1. Suppose that K does not have a free or cyclic period of period 2, and let h be the unique

inverting involution. Then (K,h, n) ∼= (K,h, n), and so J(K,h,n)(q) = J(K,h,n)(q) for all n.

In particular, when n = 0 we have J(K,h)(q) = J(K,h)(q) = J(K,h)(q
−1).

2. Suppose K does have period 2, and let h1 and h2 be its two inequivalent inverting involutions.

Then (K,h1, n) ∼= (K,h2, n), and so J(K,h1,n)(q) = J(K,h2,n)(q) for all n. In particular, when

n = 0 we have J(K,h1)(q) = J(K,h2)(q) = J(K,h2)(q
−1).

Example 3.2.6. Let K = 41, the Figure-8 knot, and consider its two inequivalent strong inver-

sions as depicted in Figure 1.9. We take 0-framed longitudes for both strongly invertible knots,

form the respective Sakuma links, and calculate their Jones polynomials:

J(41,h1)(q) = q−9 − 3q−7 + 4q−5 − 3q−3 + 3q−1 − q + 2q5 − 2q7 + 2q9 − q11

J(41,h2)(q) = −q−11 + 2q−9 − 2q−7 + 2q−5 − q−1 + 3q − 3q3 + 4q5 − 3q7 + q9

Note that, since in the n = 0 setting the Sakuma links are mirrors of one another, the above

Jones polynomials are obtained from one another by substituting q for q−1.

Next, a word on unknot detection. The Jones polynomial has been proven not to detect the unlink

for n-component links; indeed, in�nitely many counterexamples have been shown [17]. However,

for two-component links, the families constructed with trivial Jones polynomials are not Sakuma

links as their components are not unknots. This leads to the following question:

Question. Does the Jones polynomial detect the strongly invertible unknot? That is, if L is a

Sakuma link such that J(L)(q) = 0, is L the two-component unlink?

While it might seem unlikely that restricting to Sakuma links will turn the Jones polynomial into
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an unlink detector, there may well be a constraint on a non-trivial Sakuma link having trivial

Jones polynomial coming from the topology of Sakuma links. We will leave this question open

for further study.

3.3 The annular Jones polynomial

The next polynomial knot invariant we come across is the annular Jones polynomial, an o�shoot

of the Jones polynomial for links in the thickened annulus A × I. In this section we will de�ne

the annular Jones polynomial and apply it to the annular Sakuma knots we encountered at the

end of the last chapter.

3.3.1 De�nition and constructions

Consider an oriented link L in the thickened annulus A× I and let DL be a diagram for L in A.

We can then calculate the annular Jones polynomial AJ(L), which is really nothing more than

an extension of the standard Jones polynomial J(L) to the annular setting.

First, we de�ne the annular Kau�man bracket.

De�nition 3.3.1. Let DL ⊂ A be an annular link diagram. The annular Kau�man bracket

〈DL〉A ∈ Z[q±1, t±1], is a two-variable Laurent polynomial de�ned by the following four axioms:

〈∅〉A = 1 (3.5)

〈 DL〉A = (q + q−1)〈DL〉A (3.6)

〈 DL〉A = (qt+ (qt)−1)〈DL〉A (3.7)〈 〉
A

= 〈 〉A − q 〈 〉A (3.8)

The third of the above axioms requires further explanation. By we simply mean there exists

a circle in the diagram which encloses the hole in the annulus, without implying anything about

how DL interacts with the hole (DL may well enclose the hole too). For example, if DL is n

nested circles around the hole 〈DL〉A = (qt+ (qt)−1)n.

Comparing these formulas with those for the standard Kau�man bracket, we note that the only

di�erence between the two is when we have a circle which is homologically non-trivial in H1(A;Z);

we encode this di�erence by the variables t±1.

We now come to the de�nition of the annular Jones polynomial.

De�nition 3.3.2. Let L ⊂ A× I be an oriented link and DL be a choice of diagram for L with

n+ positive crossings and n− negative crossings, and let 〈DL〉A be the annular Kau�man bracket

of DL. The annular Jones polynomial is de�ned to be

AJ(L)(q, t) := (−1)n−qn+−2n−〈DL〉A. (3.9)

Lemma 3.3.3. Let L ⊂ A × I be an oriented link with annular Jones polynomial AJ(L)(q, t).
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Then setting t equal to 1 returns the unnormalised Jones polynomial of L ⊂ S3; that is,

AJ(L)(q, 1) = Ĵ(q).

Proof. This follows immediately from the de�nition of the annular Kau�man bracket, which

resolves to the standard Kau�man bracket when we set t equal to 1. Furthermore, if L is the n-

component unlink then we obtain AJ(L)(q, 1) = (q+q−1)n, which is the value of the unnormalised

Jones polynomial for L ⊂ S3.

What the above lemma really tells us is that setting t equal to 1 in the annular Jones polynomial

is the algebraic equivalent of taking our annular link L ⊂ A × I ⊂ S3, forgetting the thickened

annulus, and calculating the Jones polynomial of L. This highlights the close relationship between

the Jones polynomial and its annular counterpart.

Proposition 3.3.4. The annular Jones polynomial is an invariant of annular links.

Proof. We will check that the annular Jones polynomial is invariant under the �rst two Reide-

meister moves � invariance under the third move can be shown using a similar method.

Let DL = , and suppose DL has n+ positive crossings and n− negative crossings. Then

AJ( ) = (−1)n−qn+−2n−〈 〉A
= (−1)n−qn+−2n−

(
〈 〉A − q〈 〉A

)
= (−1)n−+1qn+−2(n−−1)〈 〉A
= AJ( ).

So AJ is invariant under Reidemeister I moves.

Next, let DL = . We have

AJ( ) = (−1)n−qn+−2n−〈 〉A
= (−1)n−qn+−2n−

(
〈 〉A − q〈 〉A − q〈 〉A + q2〈 〉A

)
= (−1)n−qn+−2n− (−q〈 〉A)

= (−1)n−+1q(n+−1)−2(n−−1)〈 〉A
= AJ( ).

So AJ is also invariant under Reidemeister II moves.

We will now outline several useful ways of expressing the annular Jones polynomial. The �rst is

as follows:

AJ(L)(q, t) =
∑
m

tmPm(q), (3.10)

where Pm(q) ∈ Z[q±1].



CHAPTER 3. POLYNOMIAL INVARIANTS OF STRONGLY INVERTIBLE KNOTS 70

Figure 3.5: Binary tree

Secondly, just as for the Jones polynomial for links in S3, we can express the annular Jones

polynomial using a cube of smoothings. Let L ⊂ A× I as before and DL be a diagram for L in

the annulus. Number the crossings of DL from 1 to n and construct the set of Kau�man states

for DL as in the S3 setting. This time we calculate 〈DL〉 by attaching to each Sα a term of the

form (−1)rqr(q + q−1)u(qt+ (qt)−1)k−u and summing; where r is the height of the smoothing, u

is the number of circles in the smoothing that are nullhomologous in H1(A;Z), and k − u is the

number of homologically non-trivial circles. Finally, we multiply 〈DL〉 by a normalisation term

(−1)n−qn+−2n− as before to obtain AJ(L). This can be expressed as follows:

AJ(L)(q, t) = (−1)n−qn+−2n−

 n∑
r=0

(−1)rqr

∑
|α|=r

〈Sα〉A

 (3.11)

where 〈Sα〉A = (q + q−1)u(qt+ (qt)−1)k−u.

Next, we will describe a binary tree construction of the annular Jones polynomial, originally

de�ned by Thistlethwaite [86] for the Jones polynomial of links in S3. We will be adapting a

version as appears in a paper by Wehrli [95], however, as the conventions used �t in better with

those used in Khovanov homology (see also [12]). We begin with the observation that the annular

Kau�man bracket can be described in the following way:

〈DL〉A =
∑

Sα∈K(DL)

(−1)rqr〈Sα〉A (3.12)

where |α| = r. Now, given DL we can repeatedly use the fourth Kau�man bracket axiom (3.8) to
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Figure 3.6: Truncated binary tree

reduce DL into its set of Kau�man states, which allows us to obtain 〈DL〉A; see Figure 3.5 for an
example. The order in which we decide to smooth crossings will a�ect the diagrams that appear

at each vertex of the binary tree, but the same Kau�man bracket is returned for any choice of

order.

The above method will work for every knot diagram eventually, but, as Wehrli comments, in

practice it quickly becomes impractical, as the complexity of (3.12) grows exponentially as n

increases. The process is made more e�cient, however, if we stop smoothing crossings whenever

we obtain a partially smoothed diagram which is equivalent (up to Reidemeister moves) to a

member of the following set:

Z =

{
, , , . . . , , . . .

}
(3.13)

This truncates the binary tree, as we now do not have to smooth every crossing (c.f. Figure 3.6).

We will refer to such a tree by TDL .

We can then de�ne a basis for the annular Kau�man bracket as follows:

〈z0〉A := 〈 〉A = (q + q−1)

〈z1〉A := 〈 〉A = (qt+ (qt)−1)

〈z2〉A := 〈 〉A = (qt+ (qt)−1)2

...
...

〈zm〉A := 〈 〉A = (qt+ (qt)−1)m

...
...
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(q + q−1)

{0,0}
−q(qt+ (qt)−1)2

{1,0}

−q(qt+ (qt)−1)2

{0,1} q2(qt+ (qt)−1)2(q + q−1)

{1,1}

Figure 3.7: Calculating AJ(K)

Said more precisely, we have:

〈DL〉A =
∑
m

Am(q)〈zm〉A (3.14)

where Am(q) ∈ Z[q±1]. Although the truncated tree TDL is dependent on the order in which we

smooth the crossings of DL the basis coe�cients obtained are ultimately the same regardless of

our initial choice of order. This basis can also be used as a basis for the annular Jones polynomial:

let n+ and n− be the number of positive and negative crossings in DL. Then,

AJ(L)(q, t) = (−1)n−qn+−2n−
∑
m

Am(q)〈zm〉A (3.15)

Example 3.3.5. Consider the annular knot diagram DK depicted in Figure 3.7. We follow the

cube of smoothings procedure to calculate the annular Jones polynomial of the knot. Figure 3.7

includes the cube of smoothings for the knot diagram, with the relevant polynomial term attached

to each smoothing. As a result,

〈DK〉A = (q + q−1)− 2q(qt+ (qt)−1)2 + q2(qt+ (qt)−1)2(q + q−1)

= (q + q−1) + (q3 − q)(qt+ (qt)−1)2

= 〈z0〉A + (q3 − q)〈z2〉A
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and, so
AJ(K) = q−4〈z0〉A + (q−1 − q−3)〈z2〉A

= t−2(q−3 − q−5) + (q−5 − q−3 + 2q−1) + t2(q − q−1)

We notice that if we were to embed this annular knot into S3 we would obtain the unknot.

Therefore, when we specialise AJ(K) by setting t = 1 we expect to obtain the unnormalised

Jones polynomial of the unknot: a quick calculation proves that this is indeed the case.

3.3.2 General properties

We will now detail a number of general results about various characteristics of the annular Jones

polynomial. In the de�nition of AJ the role of the homologically non-trivial circles in the various

Kau�man states is to decorate AJ with its additional t variable. Intuitively, we might expect the

powers of t present in an annular Jones polynomial to be related in some way to how the annular

link wraps around the central hole in the annulus. This intuition leads us to the concept of the

wrapping number of an annular link.

De�nition 3.3.6. Let L ⊂ A×I be an annular link. The wrapping number ω of L is the minimal

geometric intersection number of all members of the equivalence class of L with a meridional disc

of A× I.

Informally, the wrapping number of an annular link is the number of times a representative of L

that has been `pulled tight' runs around the central hole.

Example 3.3.7. Let Bn be an n-strand braid, and B̂n ⊂ A× I be its closure. Then ω = n.

Now let L ⊂ A× I, �x a diagram DL, and consider a Kau�man state of DL. A useful technique

to divide the circles into the trivial and non-trivial camps is to draw a ray λ in A from the inner

edge to the outer edge such that λ avoids all the crossings, then determine the parity of the

number of times λ meets a given circle � an odd number means the circle is non-trivial, and

an even number means it is trivial. We make use of this technique in the proofs of the next two

results.

Lemma 3.3.8. Let L ⊂ A × I be an annular link with wrapping number ω, and consider

AJ(L)(q, t) expressed as in (3.10), i.e as

AJ(L)(q, t) =
∑
m

tmPj(q).

Then ω bounds the powers of t in AJ(L)(q, t) from above; that is Pm(q) = 0 for |m| > ω.

Proof. Let DL be a diagram of a representative of L which realises the wrapping number of L.

This means that if we draw a ray λ in the annulus as described above, λ meets DL in exactly ω

points. Consider 〈DL〉A: the powers of t are entirely dependent on the number of homologically

non-trivial circles present in the smoothings of DL, and the maximum number of these possible in
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a smoothing is ω, where each meeting point is contained in a separate non-trivial circle. Therefore,

there cannot be any powers of t in which |m| is greater than ω.

The next lemma tells us that the powers of t in AJ(L)(q, t) are dependent on the parity of the

wrapping number � expanding further on the statement `the t powers encode how L wraps

around the hole in the annulus'.

Lemma 3.3.9. Let L ⊂ A × I be an annular link with wrapping number ω. Consider the

expression of AJ(L)(q, t) in (3.10) i.e as

AJ(L)(q, t) =
∑
m

tmPm(q).

1. Suppose ω is even. Then Pm(q) = 0 for all odd m.

2. Suppose ω is odd. Then Pm(q) = 0 for all even m.

Proof. (1) Suppose ω is even and let DL be a diagram of L which realises ω. Suppose for a

contradiction that there exists a non-zero Pm(q) for m odd. Then there must be a smoothing

Sα of DL in which there are m non-trivial circles. Then there are ω −m remaining intersection

points between a ray λ and DL to account for, and by assumption these are all contained in trivial

circles. But ω −m is odd, so one circle must contain an odd number of the remaining meeting

points. But then this circle is also non-trivial, and we have a contradiction. Hence, Pm = 0 for

all odd m. The proof of (2) follows in a similar way.

The next result follows work of Grigsby and Ni [20] on the annular Khovanov homology of braid

closures (see Proposition 4.2.4). Some of their techniques can be applied to the annular Jones

polynomial. In particular, the annular Jones polynomial can rule out the possibility of an annular

link being equivalent to a braid closure.

Lemma 3.3.10. Let Bn be an n-strand braid, and let B̂n ⊂ A×I be its closure. Then Pω(q) = aqb

for integers a, b.

Proof. Take a diagram for B̂ and consider its cube of smoothings. As Grigsby and Ni note only

one smoothing does not `backtrack'. We attach (−q)r(qt + (qt)−1)n to this smoothing. Since

ω = n, we have Pω(q) = (−1)r+n−qr+ω+n+−2n− and the result follows.

We may wonder, due to the evident similarity between the Jones polynomial and the annular

Jones polynomial, how many of the properties of J still hold for annular links, and how the two

invariants relate to each other. We will explore this idea in a few di�erent directions.

Firstly, we highlight a result due to Pascual [68, Theorem 3] concerning satellite knots. Recall

De�nition 1.1.16: we denote a satellite knot with pattern P ⊂ A×I and companion knot C ⊂ S3

by Sat(P,C). Recall also the de�nition of a n-parallel cable link of a knot C (De�nition 1.1.17)

� the satellite link with companion C and pattern the torus link T (0, n).
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Theorem 3.3.11 (Pascual, 2016). Let P ⊂ A× I be an annular knot, C ⊂ S3 be a knot in the

3-sphere, (C;n) be the n-parallel cable link of C, and Sat(P,C) be the satellite knot with pattern

P and companion knot C. Then,

J(Sat(P,C))(q) = AJ(P )(q, t)
∣∣∣
zn=J(C;n)(q)

The proof of the above can be found in [68], albeit stated using slightly di�erent terminology.

Due to the fact that the pattern knot is simpler in terms of crossings to the satellite knot formed

from it, Pascual's theorem provides us with a way of calculating the Jones polynomial of the

satellite that is less expensive computationally. We can make use of this theorem in the Sakuma

link setting, since in�nitely many Sakuma links are satellite if we perform Sakuma's construction

with a strongly invertible double (D(K), h), where K ⊂ S3 is any knot.

Next we turn our attention to the two-component completions of annular knots. Recall that,

given an annular knot K ⊂ A× I, we can obtain its two-component completion L = K ∪B ⊂ S3

by adding an additional unknotted component B which consists of the z axis and the point

at in�nity. We investigate the relationship between AJ(K)(q, t) and J(L)(q), using Pascual's

theorem as motivation.

Let L = K ∪ B be the two-component completion of an annular knot K. Let DL be a diagram

for L obtained from a diagram of K, DK , which realises the wrapping number of K by adding

in B as a vertical axis passing through the hole � we will refer to any such DL as a preferred

diagram of L. We note that every crossing in DK has a canonical counterpart in DL.

We use another binary tree style method to calculate the Kau�man bracket of a preferred DL.

The key di�erence from the binary trees we use to calculate the ordinary Kau�man bracket is

that we will not smooth any crossings between K and B. We de�ne a partial Kau�man state of a

preferred diagram DL to be the link obtained as a result of smoothing all other crossings � which

are precisely the self-crossings of K. As before, we will truncate the binary tree; we will stop

whenever a partially smoothed diagram is Reidemeister equivalent to one of the following:

Z =

 , , , . . . , , . . .

 (3.16)

We will refer to such a binary tree by TDL ; for an example see Figure 3.8. We also note there

exists a canonical bijection between this set and the set Z we de�ned in (3.13).

Lemma 3.3.12. Let K ⊂ A × I, and DK be a diagram of K. Let L be the two-component

completion of K and DL be the preferred diagram of L corresponding to DK . Number the crossings

in DK and their counterparts in DL in the same way. Let TDK and TDL be the truncated binary

trees of DK and DL obtained by smoothing crossings in the numbered order. Then TDK and TDL
are isomorphic.
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Figure 3.8: A truncated binary tree of partial Kau�man states

Proof. This follows immediately from the de�nitions: resolving a crossing in DK is clearly equiv-

alent to resolving its counterpart in DL.

Next, we de�ne the following basis for the Kau�man bracket of a preferred diagram of a two-

component completion.

〈z0〉 :=

〈 〉
〈z1〉 :=

〈 〉
〈z2〉 :=

〈 〉
...

...

〈zm〉 :=

〈 〉
...

...

We can immediately observe that for m > ω, 〈zm〉 = 0; this is a consequence of Lemma 3.3.8.

The Kau�man bracket of DL can be written as follows:

〈DL〉 =
ω∑

m=0

Bm(q)〈zm〉,

where Bm(q) ∈ Z[q±1]. We compare the above basis for 〈DL〉 with that obtained for 〈DK〉A (see

(3.14)). Since the two truncated binary trees are isomorphic each Am(q) is a factor of Bm(q).
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There are, however, some extra powers of q in the basis for 〈DL〉 which need to be explained.

Namely, in order to pass from a diagram appearing in an end vertex of TDL to one which is

equivalent to some zm some Reidemeister II moves are required; these moves do not show up in

the annular setting. For an example of this compare the bottom left vertex in Figure 3.8 with

the equivalent vertex in Figure 3.6.

The number of RII moves required is determined by the wrapping number ω.

Lemma 3.3.13. Let L be a two-component completion of an annular knot K with wrapping

number ω, with preferred diagram DL. Let TDK and TDL be the two isomorphic truncated binary

trees for DK and DL, and let S be an end vertex of TDL . Suppose S is equivalent to zm; then the

number of RII moves required is ω −m.

Proof. InDL strands running around B are joined together in pairs when we smooth crossings, and

form ω−m
2 loops. Each loop needs to be pulled around the axis, which requires two Reidemeister

II moves; hence, the total number of RII moves required to transform S into zm is ω −m.

As as result, we have:

〈DL〉 =

ω∑
m=0

(−q)ω−mAm(q)〈zm〉.

Therefore, we have a basis for Ĵ(L) as well:

Ĵ(L)(q) = (−1)n−qn+−2n−
ω∑

m=0

(−q)ω−mAm(q)〈zm〉.

Next, we note that the members of the set (3.16) are always connect sums of Hopf links.

Therefore, the values of 〈zm〉 can be calculated easily, using an induction argument. We have in

particular:

〈zm〉 =

{
(q−1 + q3)m(q + q−1) m ≥ 1

(q + q−1)2 m = 0

}

We see that (q + q−1) is a factor of all 〈zm〉. Therefore, we can express the Jones polynomial of

L as follows:
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J(L)(q) = (−1)n−qn+−2n−

(
(−q)ωA0(q)(q + q−1) +

ω∑
m=1

(−q)ω−mAm(q)(q−1 + q3)m

)
(3.17)

This leads us to a result relating AJ(K)(q, t) and J(L)(q).

Theorem 3.3.14. Let K ⊂ A×I be an annular knot with wrapping number ω and two-component

completion L = K ∪ B ⊂ S3. Let DL be a preferred diagram of L with nK,B+ positive crossings

and nK,B− negative crossings between the components K and B. Then,

J(L)(q) = X(q)AJ(K)(q, t)
∣∣∣
〈z0〉A=(−q)ω(q+q−1),〈zm〉A=(−q)ω−m(q−1+q3)m

where X(q) = (−1)n
K,B
− qn

K,B
+ −2nK,B− .

Proof. The work has almost all been done. The only thing left is to note, comparing (3.15) and

(3.17), that we need to scale by a term corresponding to the uncounted crossings of DL in DK ,

which are precisely those between K and B. The result then follows.

Example 3.3.15. As a quick example illustrating the formula in action, we will use the link and

the annular knot featuring in Figures 3.6 and 3.8. We will orient B upwards, and orient K in the

same way in both DL and DK . On the one hand, a direct calculation yields

J(L)(q) = q−6〈DL〉
= q−4(q + q−1) + (q−3 − q−5)(q−1 + q3)2.

Whilst, on the other,

AJ(K)(q, t) = q−4〈DK〉A
= q−4〈z0〉A + (q−1 − q−3)〈z2〉A.

Finally, we have (−1)n
K,B
− qn

K,B
+ −2nK,B− = (−1)2q−2 = q−2, and so

J(L)(q) = q−2AJ(K)(q, t)
∣∣∣
〈z0〉A=q2(q+q−1),〈z2〉A=(q−1+q3)2

as expected.

Lastly, we will consider sensitivity to cheirality. One of the most notable properties of the Jones

polynomial is its ability to detect the cheirality of a knot. It turns out that this is property holds

for the annular Jones polynomial too.

Proposition 3.3.16. Let K ⊂ A × I be an annular knot. Suppose K is amphicheiral; then

AJ(K)(q, t) is palindromic, that is, AJ(K)(q, t) = AJ(K)(q−1, t−1).

Proof. Fix a diagram DK ⊂ A for K, and suppose DK has n+ positive crossings, and n− negative
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crossings. Recall that AJ(K)(q, t) can be expressed as follows:

AJ(K)(q, t) = (−1)n−qn+−2n−

 n∑
r=0

(−1)rqr

∑
|α|=r

〈Sα〉A

 .
Now, we consider the mirror image of K, and take DK . We can express AJ(K)(q, t) as

AJ(K)(q, t) = (−1)n+qn−−2n+

 n∑
r=0

(−1)n−rqn−r

 ∑
|α|=n−r

〈Sα〉A

 .
Now,

AJ(K)(q−1, t−1) = (−1)n−q−n++2n−

 n∑
r=0

(−1)rq−r

∑
|α|=r

〈Sα〉A


since 〈Sα〉A is palindromic by de�nition. Suppose K is amphicheiral; then it follows that

AJ(K)(q, t) = AJ(K)(q, t). We compare terms at height r = i:

AJ(K)(q−1, t−1)i = (−1)n−+iq−n++2n−−i

∑
|α|=i

〈Sα〉A


= (−1)2n++n−−iq2n−−n+−i

 ∑
|α|=n−i

〈Sα〉A


= AJ(K)(q, t)i.

Summing over i for 1 ≤ i ≤ n gives AJ(K)(q−1, t−1) = AJ(K)(q, t) = AJ(K)(q, t) as required.

Remark. Interestingly, we do not need the whole of AJ(K) in order to rule out the amphicheiral-

ity of an annular knot. If we write AJ(K) as the sum of the Pt(q) polynomials (recall (3.10)),

then if P0(q) is not palindromic AJ(K) cannot be palindromic.

3.3.3 The annular Jones polynomial of an annular Sakuma knot

We now look to apply the annular Jones polynomial to the annular Sakuma knots we de�ned in

the previous chapter. The fact that for every strongly invertible knot (K,h) there exists a unique

pair of annular Sakuma knots means that the annular Jones polynomial can be considered as an

invariant of strongly invertible knots.

De�nition 3.3.17. Let (K,h) be a strongly invertible knot with Sakuma link L = B∪L. De�ne
the pair of annular Jones polynomials associated to (K,h) by AJ(K,h)(B) and AJ(K,h)(L).

We can likewise de�ne a pair of annular Jones polynomials for every framing. We note that, as

for the Jones polynomial of the Sakuma link, one advantage of the annular Jones polynomial

over the η-polynomial is that we can de�ne the annular Jones polynomial for all framed strongly

invertible knots, not just those with even framings.
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De�nition 3.3.18. Let (K,h, n) be a framed strongly invertible knot with framed Sakuma link

Ln = B∪L. De�ne the pair of annular Jones polynomials associated to (K,h, n) by AJ(K,h,n)(B)

and AJ(K,h,n)(L).

We next will consider some consequences of the results in the previous section when brought to

bear on annular Sakuma knots.

Firstly, we return to Theorem 3.3.14. This tells us not only that the Jones polynomial of a

framed Sakuma link Ln and the annular Jones polynomial of its annular Sakuma knots are

closely connected, but that the two annular Jones polynomials are related too. For a framed

Sakuma link Ln = B ∪ L we obtain:

X(q)AJ(L)(q, t)
∣∣∣
〈z0〉A=(−q)ωL (q+q−1),...

= X ′(q)AJ(B)(q, t)
∣∣∣
〈z0〉A=(−q)ωB (q+q−1),...

(3.18)

In some situations we have an even stronger result; the following should be thought of as the

annular Jones version of Corollary 3.1.21.

Proposition 3.3.19. Let Ln = B∪L be a framed Sakuma link associated to one of the following:

1. A framed strongly invertible unknot (U , h0, n).

2. A framed strongly invertible double (D(K ′), h, n), for some prime knot K ′.

3. A framed equivariant product of strongly invertible doubles, ({#s
i=1D(K ′i)}, h, n), for prime

knots K ′i.

Then AJ(L)(q, t) = AJ(B)(q, t).

Next we mention the wrapping numbers of the pair of annular Sakuma knots. As we saw before,

the wrapping number of an annular link determines the powers of t which appear in its annular

Jones polynomial. For annular Sakuma knots we have:

Corollary 3.3.20. Let Ln = B∪L be a framed Sakuma link not equivalent to the two-component

unlink, and denote by ωB and ωL the respective wrapping numbers of B and L.

1. ωL is even; hence AJ(L) only contains even powers of t.

2. ωB = 2; hence AJ(B) only contains powers of t equal to 0,±2.

Proof. Consider the standard projection diagram DLn . The number of times L wraps around B
corresponds to the number of times L ⊂ A × I intersects the meridional disc when we form the

annular Sakuma knot. This will always be an even number � a coil provides two intersection

points, and the clasps provide one each. Therefore, the wrapping number ωL must be even and

Lemma 3.3.9 then tells us that only even powers of t can be contained in AJ(L).

For the second part, we note that when Ln is drawn with L as the axis, B only forms clasps

with L and no coils. Furthermore, we cannot remove the clasps in any way, so the minimum
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. . .m

Figure 3.9: Diagram for Lm

intersection number of all possible representatives for B ⊂ A × I with the meridional disc is 2,

and so ωB = 2. Applying Lemma 3.3.9 gives us the result.

An interesting question, which we leave open, is the following:

Question. Suppose L is an annular Sakuma knot and AJ(K,h)(L) = q+q−1. Is (K,h) ∼= (U , h0)?

The answer to the above is yes if for an annular knot K with wrapping number ω, Pω(q) is always

non-zero. We note that there is some evidence towards this being the case; every calculation of

the annular Jones polynomial obtained by the author to date satis�es the condition.

Given a strongly invertible knot (K,h) we have seen how an in�nite family of annular knots can

be obtained by changing the framing of the longitude in Sakuma's construction. We next will

explain how the annular Jones polynomials of this family are related.

Consider (K,h, n) and �x a family of diagrams for a family of annular Sakuma knots which vary

only by the number of twists in a twist box (c.f. Figure 3.9). Let DLm denote a diagram for an

annular Sakuma knot Lm which has m twists in its twist box (note that we index Lm by the

number of twists in its �xed diagram DLm). To avoid overly complicating matters we will not

explicitly mention the framing required to obtain Lm, but this can be calculated easily enough

if desired using Lemma 2.1.2. Our goal is the proof of the following result, which relates the

annular Jones polynomial of Lm to that of L0.

Proposition 3.3.21. Fix a family of diagrams for a family of annular Sakuma knots as in

Figure 3.9 and suppose there are n+ positive crossings and n− negative crossings in DLm , and

n+, n− in DL0. Set c = n− − n−. Then:

When m > 0,

AJ(Lm)(q, t) = (−1)m−cq2m+3cAJ(L0)(q, t) + q
(
qt+ (qt)−1

)2 m−1∑
i=0

(−1)iq2i

When m < 0

AJ(Lm)(q, t) = (−1)−cq−m+3cAJ(L0)(q, t) + q−1
(
qt+ (qt)−1

)2 −m−1∑
i=0

(−1)iq−2i
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Proof. The proof will rely on repeated use of the Kau�man bracket skein relation axiom (3.8) on

DLm .

Firstly, suppose m > 0. Then is smoothed, and we obtain 1-smoothing 〈 〉A, which is

precisely 〈DLm−1〉A, and 0-smoothing 〈 〉A, which is the bracket for a two-component annular

link (equivalent to the two-component annular unlink with both components non-trivial), which

we will denote by D
L̂m−1

. Repeated application of (3.8) leaves us with the following:

〈DLm〉A =
〈
D
L̂m−1

〉
A
− q

〈
DLm−1

〉
A

= (−q)0
〈
D
L̂m−1

〉
A

+ (−q)1
〈
D
L̂m−2

〉
A

+ (−q)2
〈
DLm−2

〉
A

...

= (−q)m 〈DL0〉A +

m−1∑
i=0

(−q)i
〈
D
L̂m−1−i

〉
A

At this point the job is not quite done, as we also need to scale the annular Kau�man bracket in

order to obtain the annular Jones polynomial, namely

AJ(Lm)(q, t) = (−1)n−qn+−2n− 〈DLm〉A

where n− and n+ are the number of positive and negative crossings in DLm . We multiply

everything by (−1)n−qn+−2n− , and convert the Kau�man brackets of DL0 and DLm−1−i to their

respective annular Jones polynomials. This will leave behind some residue powers of (−q), which
we now calculate.

Firstly,
(−1)n−qn+−2n− 〈DL0〉A = (−1)−cqm+3c(−1)n−qn+−2n− 〈DL0〉A

(−1)−cqm+3cAJ(L0)

Also,

(−1)n−qn+−2n−
〈
D
L̂m−1−i

〉
A

= qi+1(−1)n−qn+−1−i−2n−
〈
D
L̂m−1−i

〉
A

= qi+1AJ(L̂m−1−i)

= qi+1
(
qt+ (qt)−1

)2
Combining everything gives,

AJ(Lm)(q, t) = (−1)m−cq2m+3cAJ(L0) +
m−1∑
i=0

(−q)iqi+1
(
qt+ (qt)−1

)2
= (−1)m−cq2m+3cAJ(L0) + q

(
qt+ (qt)−1

)2 m−1∑
i=0

(−1)iq2i

When m < 0 the only things that changes are that 〈D
L̂m+1

〉A is now the 1-smoothing, and

〈DLm+1〉A is now the 0-smoothing, which alters the powers of (−q). Otherwise, the argument
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proceeds as above to get the claimed result.

Remark. The above result is particularly useful when running Mathematica calculations, since

we can calculate for the annular Sakuma knot with zero twists, then use the proposition to

scale the answer as necessary. For strongly invertible knot diagrams where the writhe is large

and 0-framed longitudes are desired, considerable time savings can be made using this two-step

technique.

Next we prove a version of [79, Proposition 3.4] for the annular Jones polynomial.

Corollary 3.3.22. Let (K,h, n) be a framed strongly invertible knot and suppose K is hyperbolic

and amphicheiral.

1. Suppose that K does not have a free or cyclic period of period 2. Let h be the unique

inverting involution and Ln = B ∪L be the framed Sakuma link of (K,h, n). Then we have

(K,h, n) ∼= (K,h, n), and so

AJ(K,h,n)(L)(q, t) = AJ(K,h,n)(L)(q, t)

and

AJ(K,h,n)(B)(q, t) = AJ(K,h,n)(B)(q, t)

for all n. In particular, for n = 0

AJ(K,h)(L)(q, t) = AJ(K,h)(L)(q, t) = AJ(K,h)(L)(q−1, t−1)

and

AJ(K,h)(B)(q, t) = AJ(K,h)(B)(q, t) = AJ(K,h)(B)(q−1, t−1).

2. Suppose K does have a free or cyclic period of period 2. Let h1 and h2 be its two inequivalent

inverting involutions, and Ln,i = Bi ∪ Li be the framed Sakuma link of (K,hi, n). Then

(K,h1, n) ∼= (K,h2, n), and so

AJ(K,h1,n)(L1)(q, t) = AJ(K,h2,n)(L2)(q, t)

and

AJ(K,h1,n)(B1)(q, t) = AJ(K,h2,n)(B2)(q, t)

for all n. In particular, for n = 0

AJ(K,h1)(L1)(q, t) = AJ(K,h2)(L2)(q, t) = AJ(K,h2)(L2)(q
−1, t−1)

and

AJ(K,h1)(B1)(q, t) = AJ(K,h2)(B2)(q, t) = AJ(K,h2)(B2)(q
−1, t−1)

Proof. This follows as a consequence of Sakuma's original result, Corollary 2.1.14 and Proposi-

tion 3.3.16.
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−10 −12

Figure 3.10: (99, h1) (left), (99, h2) (right) and one of their respective annular Sakuma knots

We will end with some examples and computations. The following examples were chosen due

to their appearance in [92], where Watson's κ invariant is shown to exhibit certain advantages

over the η-polynomial. All accompanying �gures were taken from [92], and all calculations were

computed using a Mathematica program written by the author.

Example 3.3.23. Consider the two strongly invertible knots (99, h1) and (99, h2). These have

been shown to have the same η-polynomial [79]. We calculate the annular Jones polynomials

AJ(99,h1)(B) and AJ(99,h2)(B) and record their respective P0(q) polynomials:

(99, h1) : −q−29 + 3q−27 − 5q−25 + 5q−23 − 2q−21 − 3q−19 + 6q−17 − 5q−15 − 4q−11 − 6q−9

+4q−7 − q−5 − q−3 + 2q−1

(99, h2) : −q−33 + 2q−31 − 2q−29 − 2q−27 + 8q−25 − 11q−23 + 4q−21 + 10q−19 − 22q−17

+22q−15 − 11q−13 − 3q−11 + 11q−9 − 10q−7 + 6q−5 − 3q−3 + 2q−1

These distinguish the two strongly invertible knots, and therefore the full annular Jones polyno-

mials must do as well.

Next, we compare our invariants' sensitivity to cheirality.

Example 3.3.24. 820 admits a single strong inversion, which is depicted in Figure 3.11. The

η-polynomial of (820, h) is 0 [79], and so cannot say anything about the cheirality of 820. A direct
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−2

Figure 3.11: (820, h) and one of its annular Sakuma knots

calculation for AJ(820,h)(B) returns

AJ(820,h)(B)(q, t) =


P−2(q) : −q−15 + 2q−13 − 2q−11 + q−9 + q−7 − 3q−5 + 3q−3 − q−1

P0(q) : q−15 − 2q−13 + 3q−11 − 3q−9 + q−7 + 2q−5 − 4q−3 + 5q−1 − 2q + q3

P2(q) : −q−11 + 2q−9 − 2q−7 + q−5 + q−3 − 3q−1 + 3q − q3


which is clearly not palindromic. Corollary 3.3.22 then says that 820 cannot be amphicheiral.

The three knots (1048, 1071, 10104) appearing in the next example are of particular interest

since, as Watson remarks [92], they are cheiral knots for which the cheirality cannot be detected

by either the Jones polynomial, the signature, or even Khovanov homology. Furthermore, the

Khovanov homology of 1071 and 10104 is the same. Watson proves [92, Proposition 25] that each

of them admit a single strong inversion � we apply the annular Jones polynomial to each of

(1048, h), (1071, h), and (10104, h).

Example 3.3.25. Consider (1048, h). This time, we calculate AJ(1048,h)(B) and just state P0(q):

P0(q) = q−19−4q−17+8q−15−10q−13+7q−11+2q−9−11q−7+16q−5−13q−3+6q−1−4q3+3q5−q7.

This is not palindromic, and so Corollary 3.3.22 says 1048 cannot be amphicheiral.

Example 3.3.26. Now consider (1071, h). Once more, we calculate AJ(1071,h)(B) and state P0(q):

P0(q) = −q−25 + 2q−23− 3q−21 + 2q−19 + q−17− 4q−15 + 6q−13− 4q−11 + 2q−9 + q−7− q−5 + q−1.

Hence, 1071 is not amphicheiral.
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−2 −2

Figure 3.12: (left to right) (1048, h), (1071, h), (10104, h), and one of their annular Sakuma knots

Example 3.3.27. Consider (10104, h). Here, P0(q) is:

P0(q) =
q−15 − 2q−13 + 2q−11 + q−9 − 4q−7 + 5q−5 − 7q−1 + 12q − 7q3 − 3q5

+10q7 − 10q9 + 4q11 + 2q13 − 4q15 + 3q17 − q19

Hence, as before, 10104 is not amphicheiral.

We note additionally,

Theorem 3.3.28. Consider the strongly invertible knots (1071, h) and (10104, h). We have on

the one hand AJ(1071,h)(B) 6= AJ(10104,h)(B), whilst on the other Kh(1071) ∼= Kh(10104).

The above theorem is surprising as we have uncovered an instance where a polynomial invariant

tells us something a categori�ed invariant cannot.

3.4 Comparing η and AJ

In this section we prove a result comparing the η and annular Jones polynomials of an in�nite

family of torus knots. The motivation behind our choice of these knots came from observing that

in the tables of η-polynomials Sakuma includes in the appendix of [79] the entries for the trefoil

(a.k.a T (−3, 2)) and the cinquefoil (a.k.a T (−5, 2)) are the same. This could perhaps be written

o� as a coincidence, but for the fact that the η-polynomials of T (−7, 2) and T (−9, 2) are also

the same. We will �rst prove a result showing that this behaviour holds for consecutive pairs of

torus knots T (−m, 2) and T (−m− 2, 2) (m ≥ 3 and odd), then will show, interestingly, that the

annular Jones polynomial distinguishes all the members of the family.

Recall [79, Proposition 3.1] that torus knots have a unique strong inversion. Moreover, all torus
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m−1
2

m−1
2

Figure 3.13: A diagram of T (−m, 2) with its single strong inversion

knots are cheiral, so a strongly invertible torus knot (T (p, q), h) is never equivalent to its strongly

invertible mirror (T (p, q), h) ∼= (T (−p, q), h). The results for the annular Jones and η polynomials

for the mirrors can be obtained easily, however, by substituting t for t−1 and q for q−1 in the �rst

case, and multiplying by −1 in the second.

Let us �rst calculate the η-polynomials of this family. To do this we will utilise Sakuma's shortcut

on the diagram of (T (−m, 2), h) in Figure 3.13, the process of which we saw earlier. Consider

Figure 3.14: there are two separate cases we need to calculate � when m−2
2 is odd and when it is

even. Here m−2
2 simply stands for the number of twists, recording nothing about their sign.

Let us �rst suppose m−2
2 is odd. We calculate the values of dp and εp for all the crossing points

p in the pseudo-fundamental domain, which are as follows:

dp εp

p1 1 −
p2 −1 −
...

...
...

pm−1
2

1 −
pm−1

2
+1 −1 −

Then,

η̃ = x1 − x−1 − . . .− x1︸ ︷︷ ︸
m−1

2

−x−1

and

η′(t) = −(1− 2t+ t2)− (t−2 − 2t−1 + 1)− . . .− (1− 2t+ t2)︸ ︷︷ ︸
m−1

2

−(t−2 − 2t−1 + 1).
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m−1
2

m−1
2

m−1
2

m−1
2

m−1
2 odd m−1

2 even

0

−1

0

1

Figure 3.14: Using Sakuma's η shortcut on (T (−m, 2), h)

Now set 2x = m−1
2 + 1. In Sakuma's notation, η′(t) is then

η′(t) = [−2x, 2x,−x

which means

η(t) = [2x, 0,−x.

Now suppose m−2
2 is even.

dp εp

p1 −1 −
p2 1 −
...

...
...

pm−1
2

1 −
pm−1

2
+1 0 +

Then,

η̃ = x−1 − x1 . . .− x1︸ ︷︷ ︸
m−1

2

+x0

and

η′(t) = −(t−2 − 2t−1 + 1)− (1− 2t+ t2)− . . .− (1− 2t+ t2)︸ ︷︷ ︸
m−1

2

+(t−1 − 2 + t).
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Now set 2z = m−1
2 .

η′(t) = [−(2z + 2), 2z + 1,−z

So,

η(t) = [2z, 0,−z

The above calculations lead to the following.

Proposition 3.4.1. η(T (−m,2),h)(t) = η(T (−m−2,2),h)(t) for m = 4k − 1, (k ≥ 1).

Proof. If m = 4k − 1 for some positive integer k, then m−1
2 = 4k−2

2 = 2k − 1 is odd. Then

2x = 2k, and

η(T (−m,2),h)(t) = [2k, 0,−k

Now we substitute m+ 2 for m in the even case. We have 2z = (m+2)−1
2 and m+ 2 = 4k + 1, so

m+1
2 = 2k. Then, 2z = 2k and

η(T (−m−2,2),h)(t) = [2k, 0,−k

as required.

The above result tells us that there are in�nitely many pairs of torus knots which are not dis-

tinguished by the η-polynomial. Additionally, since η
(T (−m,2),h)(t) = −η(T (m,2),h)(t) we also have

the following.

Corollary 3.4.2. η(T (m,2),h)(t) = η(T (m+2,2),h)(t) for m = 4k − 1, (k ≥ 1).

Now let us calculate the annular Jones polynomials of our family of strongly invertible torus

knots. If we apply the construction and consider the `longitude' annular Sakuma knot, that is

L ⊂ A×I, we obtain the family of annular knots with diagrams as depicted in Figure 3.15, which

we will refer to by LT (−m,2).

Consider DLT (−m,2) . The crossings are grouped into three di�erent sets:

• A set of m+ 1 twist box crossings.

• A set 2m− 2 crossings grouped into m−1
2 `hash-tags'.

• A �nal set of four crossings, which also form a hash-tag.

Also included in the diagram is a ray λ drawn in red and the four arcs λ meets labelled as a, b, c, d.

We see that λ meets only these four arcs an odd number of times, so the only powers of t that can

appear in AJ(LT (−m,2))(q, t) are those for −4 ≤ j ≤ 4 (this follows from the same argument used

in Lemma 3.3.8). In addition, the maximum number of non-trivial circles that any Kau�man

state of DLT (−m,2) can have is four.

Lemma 3.4.3. Consider the annular knot diagram for LT (−m,2) as shown in Figure 3.15, and

suppose α ∈ {0, 1}3m+3 is some tuple that produces exactly four non-trivial circles in the related
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a b c d
1

2

3

4

5

6
7

8

2m− 1

2m

2m + 1

2m + 2

2m + 3

3m + 3

m+ 1

2m− 2

Twist box

Hash-tags

Figure 3.15: An annular Sakuma knot diagram for (T (−m, 2), h)
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m− 3

trivial circles

4 non-trivial circles

Figure 3.16: A Kau�man state for DLT (−m,2)
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Kau�man state Sα. Then the arcs labelled a, b, c, d in Figure 3.15 must all feature in distinct

non-trivial circles in Sα.

Proof. Suppose for a contradiction that two of a, b, c, d feature in the same circle in Sα. Then λ

intersects this circle an even number of times, which means the circle must be trivial. But then

the number of non-trivial circles must be less than 4, which is a contradiction.

Now suppose any three of a, b, c, d are in the same circle. Then this circle is non-trivial, and

in addition the circle containing the remaining arc is also non-trivial. But now no more non-

trivial circles can exist, which is again a contradiction. Hence, each of the labelled arcs must be

contained in a separate non-trivial circle.

Now we come to the main calculation. We will prove that the annular Jones polynomial is su�-

cient to distinguish every member of the family of LT (−m,2), and so every strongly invertible knot

(T (−m, 2), h). The strategy we will follow will be to show that form ≥ 3 there is always a term in

AJ(LT (−m−2,2))(q, t) that is not in AJ(LT (−m,2))(q, t). More precisely, we will show that the term

containing the smallest power of q in the P−4(q) polynomial is not in AJ(LT (−m,2))(q, t).

Proposition 3.4.4. Let m ≥ 3 be an odd integer. Then the term containing the smallest power

of q appearing in P−4(q) for AJ(LT (−m,2))(q, t) is −q−4m−1.

Proof. As before, we �x a diagram for LT (−m,2) as shown in Figure 3.15, number its crossings as

shown and �x an orientation. We will �rst exhibit a family of Kau�man states for DLT (−m,2) that

all contribute towards the coe�cient of the smallest power of q in P−4(q); then will show that

the sum of their contributions leaves us with a −1 coe�cient.

Let α ∈ {0, 1}3m+3 and Sα be the related Kau�man state. De�ne cα to be the number of circles

appearing in Sα, and recall that |α| is the `height' of α; that is, |α| =
∑

i αi, where αi is the ith

entry. The task now before us is to uncover all the Kau�man states Sα subject to the following

conditions:

i) Sα has four non-trivial circles.

ii) The value cα − |α| is the maximum possible.

The �rst condition is required as we are considering a term in P−4(q), and the second condition

comes from the fact that when we calculate AJ we scale up by |α|. We will proceed by starting

with α equal to the all-zero smoothing (αi = 0 for all 0 ≤ i ≤ 3m + 3) then will determine

which entries need to be changed to 1's in order to satisfy the two conditions. Note that the

all-zero Kau�man state does not satisfy the two conditions itself, because it does not contain any

non-trivial circles.

We begin by considering the �rst four crossings. In order to satisfy condition i) Lemma 3.4.3 tells

us that a, b, c, d must be in distinct circles in Sα. Out of the 24 possibilities we have for smoothing

these four crossings, the only ones that satisfy Lemma 3.4.3 are {0, 0, 0, 0, . . .}, {0, 0, 1, 0, . . .},
and {0, 1, 1, 0, . . .}. We will proceed by taking {0, 1, 1, 0, . . .} as the smoothing instructions for
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the �rst four crossings; we will eventually show that the other two possibilities give a smaller

value of cα − |α|. After performing these four smoothings we have 1 non-trivial smoothing, and

|α| = 2.

The next set of crossings we will examine are the 2m − 2 crossings that appear in the hash-tag

crossing box. If we smooth all of these crossings with the 0-smoothing we obtain m − 3 trivial

circles, and get an extra non-trivial smoothing. We now have m − 1 circles, two of which are

non-trivial, and |α| = 2.

The �nal set ofm+1 crossings appear in the twist box. If we smooth them all with a 0-smoothing

we do not obtain enough non-trivial circles, so at least one of the crossings must be smoothed

with a 1-smoothing. We now have m + 1 circles, four of which are non-trivial, and |α| = 3, so

cα − |α| = m− 2.

We note that the value of cα− |α| is less than m− 2 if we were to change the �rst four entries of

α to {0, 0, 0, 0, . . .} or {0, 0, 1, 0, . . .}. In both of these cases the two non-trivial circles containing

the arcs b and c must pass through the hash-tag crossing box. However, this must necessarily

give a smaller number of trivial circles than we previously obtained, and, furthermore, we need

additional 1-smoothings. Hence, the value of cα′ − |α′| must be smaller than cα − |α| for the
smoothing Sα′ where the �rst four entries in α′ are {0, 0, 0, 0, . . .} or {0, 0, 1, 0, . . .}.

We now note that each additional 1 entry in the m+ 1 twist box crossings increases the number

of circles by one each time, as an extra trivial circle is added. We also obtain an additional trivial

circle if we set α5 = 1. For each of these changes the value of cα − |α| is unchanged, and we

therefore obtain a family of smoothings given by:

S := {0, 1, 1, 0, ε1, 0, . . . , 0, ε2, ε3, . . . , εm+2},

where εi ∈ {0, 1} and at least one εi = 1. This is precisely the family of smoothings we are

looking for. An example of an Sα is shown in Figure 3.16. The four non-trivial circles are drawn

in here in blue, and for this α all εi are zero except for ε2.

The next step is to determine what the contribution to P−4(q) is from each of the Kau�man

states in S. The power of q in each contribution is

−(m− 2) + n+ − 2n− = −m+ 2 + (m+ 1)− 2(2m+ 2) = −4m− 1,

where n+ and n− are the number of positive and negative crossings in the diagram of LT (−m,2).
However the coe�cient for a contribution switches between 1 and −1, as we also need to scale

by (−1)|α|. We will now show that the sum of the contributions from S is non-zero.

Now, |S| = 2m+2 − 1: we have a choice of replacing each εi with a 0 or a 1 as long as at least

one of the ε is replaced with a 1; the only choice that is not allowed is therefore the all-zero

replacement. Ignoring this for a moment, out of the 2m+2 choices for α half of them have an even

number of 1 entries and half have an odd number of 1 entries. Therefore, for half the choices of

α (−1)|α| is odd and for the other half it is even. Hence, the values of (−1)|α|q−4m−1 for α ∈ S
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cancel in pairs, but because the all-zero replacement (which has an even number of 1 entries) is

not allowed we end up with a −q−4m−1 which is left uncancelled, as required.

Corollary 3.4.5. AJ(LT (−m,2))(q, t) 6= AJ(LT (−m−2,2))(q, t) for all m ≥ 3. Hence, the annular

Jones polynomial distinguishes every member of the family of torus knots T (−m, 2), m ≥ 3.

Recall that the annular knot LT (−m,2) has as its mirror the annular knot LT (−m,2) ∼= LT (m,2),
and

AJ(LT (−m,2))(q−1, t−1) = AJ(LT (−m,2))(q, t) = AJ(LT (m,2))(q, t).

The next result follows immediately from this and the above Corollary.

Corollary 3.4.6. AJ(LT (m,2))(q, t) 6= AJ(LT (m+2,2))(q, t) for all m ≥ 3. Hence, the annular

Jones polynomial distinguishes every member of the family of torus knots T (m, 2), m ≥ 3.

3.5 The intrinsic symmetry group of a Sakuma link

We will end this chapter with a di�erent application of the invariants we have seen so far. Namely,

we will use the η, Jones, and annular Jones polynomials to study the symmetry properties of

framed Sakuma links via their intrinsic symmetry groups. Recall that for a two-component link

L its intrinsic symmetry group Sym∗(L) is a subgroup of the following �nite group:

Γ(L) = Z/2Z× ((Z/2Z× Z/2Z)o S2),

where S2 is the 2 element permutation group. This is a non-abelian group which is isomorphic

to Z/2Z×D4, and has 16 elements.

For two-component links, Berglund et al. [11] have developed a general strategy for determining

the intrinsic symmetry group. On the one hand, they exhibit some symmetries via explicit

isotopies to bound the order of Sym∗(L) from below. In the majority of cases these symmetries

are elements that invert one or both components, that is, are elements of the form (ε0, ε1, ε2, p)

with one or both of ε1 and ε2 equal to −1. In addition to this, they also seek to rule out the

existence of other elements of Γ(L) in the intrinsic symmetry group, which allows them to bound

the order of Sym∗(L) from above. The methods they employed for this task tend to follow the

same general template: �rst picking some link invariant, then using it to show that Lγ � L for

some γ ∈ Γ(L). Invariants they favoured ranged in complexity; from numerical invariants such as

the linking number and the self-writhe (for alternating links), through to polynomial invariants

like the Jones polynomial.

When looking to calculate the intrinsic symmetry group of a framed Sakuma link Ln we can start

by exploiting their geometric properties. Firstly, the element (1, 1, 1, (12)) (the pure exchange

symmetry) can be ruled out of the vast majority of intrinsic symmetry groups. The following is

an immediate consequence of Proposition 2.1.12.

Corollary 3.5.1. Let Ln be a framed Sakuma link. Then Ln has pure exchange symmetry if and

only if Ln is associated to a framed unknot, a framed strongly invertible double, or to a framed
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equivariant product of strongly invertible doubles.

We note that the presence of a pure exchange symmetry for even framed Sakuma links can be

ruled out using the η-polynomial and for all framings using the annular Jones polynomial. Recall

Corollary 3.1.21: it is clear that if Ln has pure exchange η(L2n, 1, 2; t) must equal η(L2n, 2, 1; t),

and so if they are not equal no pure exchange symmetry can be present. This logic can be applied

just as well to the annular Jones polynomial � if AJ(K,h,n)(L) 6= AJ(K,h,n)(B) then Ln has no

pure exchange symmetry.

We now will describe the intrinsic symmetry group of all framed Sakuma links constructed from

di�erent framings on the strongly invertible unknot. The following lemmas are due to Berglund's

team [11].

Lemma 3.5.2 (Berglund, Cantarella, . . . , 2012). Let L be a two-component link in S3, and

Sym∗(L) be its intrinsic symmetry group.

1. If the linking number of L is non-zero, then Sym∗(L) < Σ8,2.

2. For L alternating, if the self-writhe is non-zero then Sym∗(L) < Σ8,1.

3. For L alternating, if the linking number and self-writhe are non-zero then Sym∗(L) < Σ4,1.

The group Σ8,2 is de�ned to be all elements of Γ(L) of the form {(ε0, ε1, ε2, p) : ε0ε1ε2 = 1};
Berglund et al. refer to it as `even operations and pure exchange'. The group Σ8,1 is given by

elements of the form {(1, ε1, ε2, p)}, and Σ4,1 can be described by {(1, ε1, ε2, p) : ε1 = ε2}.

Berglund et al. �nd the intrinsic symmetry groups of �ve framed Sakuma links, which in Rolfsen

notation are: 021, 4
2
1, 5

2
1, 6

2
3, 7

2
3 and 826. They are constructed from the strongly invertible un-

knot with framings 0,−1,−2,−3,−4 and −5, respectively. We use their methods to prove the

following, which is a modest extension of their results.

Proposition 3.5.3. Let Ln be a framed Sakuma link obtained from (U , h, n), where U is the

unknot, and n ∈ Z.

• If n = 0 then Sym∗(Ln) = Σ(021) = Γ(L).

• If n 6= 0 is even then Sym∗(Ln) = Σ8,1.

• If n is odd then Sym∗(Ln) = Σ4,1.

Proof. The case when n = 0 appears in [11], so let us assume n 6= 0 and deal with each case

separately.

Suppose n is even and negative. In [11, Figure B3] it is shown that 521 and 723 (a.k.a the Sakuma

links obtained from (U , h0,−2) and (U , h0,−4)) possess a pure inversion, that is, an element in

their intrinsic symmetry groups of the form (1,−1,−1, e). It is clear that in general the Sakuma

link associated to (U , h0, n) will also have this symmetry. We combine this with the fact that

all the links we are considering are purely exchangeable to get Σ4,1 < Sym∗(Ln). We then note
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that in all cases the self-writhe of Ln is non-zero (recall that all Sakuma links obtained from

unknots are alternating), so part (2) of Lemma 3.5.2 tells us that Sym∗(Ln) < Σ8,1. Next, we

observe that [11, Figure B4] shows the existence of (1,−1, 1, e) in Σ(723), and it is again clear

that in general this element will always be in Sym∗(Ln). However, (1,−1, 1, e) is not an element

of Σ4,1, which means Sym∗(Ln) = Σ8,1. Since the pair of Sakuma links obtained from (U , h0, n)

and (U , h0,−n) are not equivalent the result holds for n positive too.

Now suppose n is odd and negative. We again use [11, Figure B3] to note that every Sakuma

link we are considering has a pure inversion � therefore Σ4,1 < Sym∗(Ln). Now, every link in

this family has linking number non-zero, and for all links aside from (U , h0,−1) the self-writhe

is non-zero: we apply part (3) of Lemma 3.5.2 to get for these links Sym∗(Ln) = Σ4,1; we again

note that the result holds for n positive too. Finally, we see that Berglund et al. have proved

that for n = ±1 Sym∗(L) is also Σ4,1.

We will end by brie�y exploring various tactics we can use in order to put some bounds on the size

of the intrinsic symmetry group of a general framed Sakuma link. Since we will not be exhibiting

any explicit symmetries, we will not be able to completely determine Sym∗(Ln) as Bergland

et al. do for their links; nonetheless, by using nothing more complicated computationally than

the polynomial invariants we have encountered, many elements of Γ(L) can be shown not to be

elements of Sym∗(Ln).

Firstly, if the link is not one of three classes of framed Sakuma link that appear in Corollary 3.5.1

we can immediately rule out pure exchange symmetries, and indeed, all elements where p = (12).

As stated earlier, the η-polynomial can rule out these elements for even n if η(Ln,L,B; t) 6=
η(Ln,B,L; t), as can the annular Jones polynomial for all n if AJ(K,h,n)(L) 6= AJ(K,h,n)(B).

We now turn to elements in which ε0 = −1. The Jones polynomial is the natural invariant to

choose in order to rule out these elements, however, we can also use the annular Jones polynomial.

If a framed Sakuma link is amphicheiral, then its two annular Sakuma knots must also be am-

phicheiral; hence, if the annular Jones polynomial of an annular Sakuma knot is not palindromic,

then the framed Sakuma link cannot be amphicheiral.

An even easier invariant that can be employed for this is the linking number � if a framed Sakuma

has non-zero linking number it cannot be amphicheiral, so (−1, 1, 1, e) can be ruled out for all

odd framings. Conversely, when the linking number is zero we can make use of the η-polynomial.

The following result is due to Jiang, Li, Wang and Wu [32, Theorem 4.2].

Theorem 3.5.4 (Jiang, Li, Wang, Wu, 2012). Suppose L = K1∪K2 is an oriented link in S3 with

zero linking number. If η(L, 1, 2; t) 6= 0 then L is absolutely cheiral. Moreover, if η(L, 1, 2; t) 6=
η(L, 2, 1; t) then L is set-wise cheiral.

By `absolutely cheiral' we mean there are no elements in Sym∗(L) of the form (−1, ε1, ε2, e), and

`set-wise cheiral' that we also exclude elements in which p = (12).

Finally, we come to elements of Γ2 in which ε0 = 1 and either one or both of ε1 and ε2 equal
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−1. Although it is true that the Jones polynomial of a knot in S3 is the same regardless of

which orientation we choose to take, for links the story is di�erent. Changing the orientation of

a component of, for example a two-component link, changes the number of positive and negative

crossings between the components. This di�erence is picked up by the Jones polynomial in the

�nal scaling term, hence, we can use J(L) to rule out (1,−1, 1, e) and (1, 1,−1, e). Changing both

orientations means that the number of positive and negative crossings is unchanged, however, so

(1,−1,−1, e) cannot be ruled out by using J(L).

Remark. Due to our ability to generate an in�nite family of framed Sakuma links from each

strongly invertible knot the intrinsic symmetry groups of a vast collection of two-component links

can be obtained almost for free once an initial group is determined, as we showed in our proof

for the framed Sakuma links constructed from the unknot.



Chapter 4

Homological invariants of strongly

invertible knots

In this chapter we will continue to construct invariants of strongly invertible knots via the quotient

objects obtained in Sakuma's and Watson's constructions. This time we concern ourselves with

invariants taking the form of a homology theory, all of which are various derivatives of Khovanov

homology. Khovanov homology was �rst de�ned by Mikhail Khovanov [40] in the late 1990s,

and revolutionised the study of knots and links. The basic idea is to construct a bi-graded chain

complex from the set of complete smoothings of a link diagram, the homology of which turns

out to be an invariant of the link. Furthermore, by design the Euler characteristic of Khovanov

homology is the Jones polynomial of the link � as a result Khovanov homology is said to categorify

the Jones polynomial.

The main advantage of working with homological invariants over polynomial invariants is that

there tends to be more structure present in the categori�ed world, and this can be exploited in

order to exhibit additional qualities of invariants � the primary example being unknot detec-

tion [47]. In particular, we can make use of spectral sequences between Khovanov and Heegaard-

Floer homology theories, the �rst of which was due to Ozsváth and Szabó [66]. The downside of

all this extra structure, however, is that homological invariants are much harder, and more time

consuming, to compute, forcing us to often work in the polynomial world.

We will look at �ve invariants of strongly invertible knots in the course of this chapter: Khovanov

homology, annular Khovanov homology, κ, κA, and tangle Khovanov homology � κA being a

conjectured new invariant, which is best viewed as an annular o�shoot of Watson's κ [92]. Just

as for the polynomial invariants we considered in the previous chapter, we will be evaluating the

invariants' abilities to detect the unknot, distinguish strong inversions, and detect the cheirality

of the underlying knot.

98
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4.1 Khovanov homology

In this �rst section we will recall the de�nition of Khovanov homology, and will use it to study

strongly invertible knots via Sakuma links. The go-to reference when learning about Khovanov

homology for the �rst time is Dror Bar-Natan's excellent summary [9] of Khovanov's seminal

paper.

4.1.1 Construction

The construction of Khovanov homology we will outline here is taken from Bar-Natan's paper.

We start by taking a link L in the 3-sphere, make a choice of diagram DL for it and number the

crossings from 1 to n, then form the cube of smoothings of DL in exactly the same way as we did

for the Jones polynomial in the previous chapter. However, instead of attaching a polynomial

term to a Kau�man state Sα (with α ∈ {0, 1}n), we attach a vector space over a choice of base

�eld F.

The basic `unit' of our vector spaces is denoted V : it is two-dimensional, and is generated by the

elements v+ and v−. To a Kau�man state Sα with |α| = r and c circles we attach the vector

space V ⊗cα . We follow Rasmussen's notation [73] by de�ning a Z-grading, denoted by p, on V :

p(v+) := 1 and p(v−) := −1. The p grading is extended to V ⊗c in the natural way, namely:

p(v1 ⊗ v2 ⊗ . . .⊗ vk) = p(v1) + p(v2) + . . .+ p(vk).

The edges of the cube of smoothings can be viewed as cobordisms between Kau�man states.

Taking this viewpoint further, we adopt Grigsby and Wehrli's terminology [23] and call another

Kau�man state Sα′ an immediate successor of Sα if α′ is obtained from α by replacing a single

0 with a 1, that is, αi = 0, α′i = 1 for some 1 ≤ i ≤ n, and αj = α′j for all j 6= i. We observe

that the edge cobordisms take a Kau�man state Sα to all its possible immediate successors. The

cobordisms between two Kau�man states come in two types: either two copies of S1 merge, or

a single copy splits in two. We associate to each cobordism taking Sα to Sα′ a map between the

vector spaces V ⊗cα and V ⊗c
′

α′ . We de�ne a merge map m and a split map ∆ as follows:

V ⊗ V ←→ V

m v+ ⊗ v+ 7→ v+

v+ ⊗ v− 7→ v−

v− ⊗ v+ 7→ v−

v− ⊗ v− 7→ 0

∆ v+ 7→ v+ ⊗ v− + v− ⊗ v+
v− 7→ v− ⊗ v−

(4.1)

The maps associated to the two types of cobordism are then de�ned to be the identity on all

copies of V attached to circles not participating in the cobordism, and m or ∆ on those that are

split or merged. If we are working over a �eld F which is not Z/2Z then minus signs need to
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be added to certain edge maps, which are necessary in order for the di�erential of the Khovanov

chain complex to satisfy d ◦d = 0. More precisely, for a edge map dα;α′ between two vector space

V ⊗cα and V ⊗c
′

α′ we denote by ε(α;α′) the number of 1s to the left of the changed 0 in α (i.e the

sum of all the αj (j < i), where αi is the position of the changed 0 in α). If ε(α;α′) is an odd

number then we add a minus sign to dα;α′ .

From here we can de�ne the Khovanov bracket of DL. This is chain complex formed by taking the

direct sum of all the vector spaces at the same height, with di�erentials given by the sum of all

the relevant edge maps. We denote the Khovanov bracket of DL by JDLK; this should be viewed

as the analogue of the Kau�man bracket in the categori�ed setting. Like the Kau�man bracket

(recall (3.3)), the Khovanov bracket can be described by three axioms, which are as follows:

J∅K = 0→ F→ 0 (4.2)

J DLK = V ⊗ JDLK (4.3)

J K = F(0→ J K→ J K{1} → 0) (4.4)

The third axiom is the mapping cone on the two chain complexes J K and J K, which is referred

to by Bar-Natan as the `�atten' operation on double chain complexes (hence the use of F). We

will return to this axiom, and will explain precisely what we mean by a mapping cone in an

upcoming section.

Elements v ∈ V ⊗c{r} have two gradings associated to them. The �rst is the homological grading,

which is de�ned as s(v) = |v| − n−, where |v| = r is the height of v and n− is the number of

negative crossings in DL. The homological grading determines the position of v in the Khovanov

chain complex, that is, the degree of the abelian group it is contained within.

The second grading is obtained from the p grading we have already seen. From this, we de�ne

the quantum grading of v to be q(v) = p(v) + |v|+n+− 2n−, where n+ is the number of positive

crossings in DL. The crucial thing about the quantum grading, and indeed, the reason we shift

the p grading in the �rst place, is that the maps m and ∆ preserve it.

Next, the Khovanov chain complex can be obtained. We simply shift the Khovanov bracket in

both degrees, which is should be thought of as the categori�ed analogue of obtaining Ĵ(L) from

〈DL〉 by multiplying by (−1)n−qn+−2n− . The Khovanov chain complex CKh(L) is de�ned by

JDLK[n−]{n+− 2n−}, where the square bracket indicates a shift in homological grading, and the

curly brackets a shift in quantum grading. It turns out, remarkably, that the cohomology of this

chain complex, Kh∗(L) does not depend on our choice of diagram, and so is a link invariant.

Theorem 4.1.1 (Khovanov, 1999). Let L be an oriented link in S3. The Khovanov homology of

L, Kh∗(L) is a link invariant.

Another, more concise way, to express the Khovanov homology of a link is to write it in terms

of its underlying abelian group (this is used, for example, by Grigsby and Wehrli in [23]). To do
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this we take the direct sum of all the V ⊗c, accounting for the grading shifts (which we omit here

for simplicity):

CKh(L) =

(⊕
α

V ⊗cα

)
.

The di�erential ∂Kh can be expressed as the sum

∂Kh =
∑
α;α′

(−1)ε(α;α
′)dα;α′

taken over all pairs α, α′, where α′ is an immediate successor of α. We then can write

Kh∗(L) ∼= H∗
(
CKh(L), ∂Kh

)
. (4.5)

We often express the Khovanov homology of a link in terms of its Poincaré polynomial.

De�nition 4.1.2. Let L ⊂ S3 be a link with Khovanov homology Kh∗(L) over a �eld F. The

Poincaré polynomial of Kh∗(L) is the following two-variable Laurent polynomial:

P(Kh∗(L)) :=
∑
i,j

siqjdimF(Khi,j(L)),

where Khi,j(L) is the graded piece of Kh∗(L) with homological grading i and quantum grading

j. We call s the homological variable and q the quantum variable.

The Poincaré polynomial is closely related to the Jones polynomial of the link, that is:

χq(Kh
∗(L)) :=

∑
i,j

(−1)iqjdimF
(
Khi,j(L)

)
= Ĵ(L) (4.6)

The above equation is what is meant when we say Khovanov homology `categori�es' the Jones

polynomial.

We end this background section by mentioning a natural re�nement of Khovanov homology, again

due to Khovanov [41], which deals with a particular sub-complex of the Khovanov chain com-

plex CKh(L). The homology of this sub-complex is referred to as reduced Khovanov homology

K̃h∗(L), and is set up in such a way that its Euler characteristic is the Jones polynomial � not

the unnormalised version.

The chain complex for reduced Khovanov homology di�ers from the `full-fat' version by the

addition of a basepoint x on one of the components of DL. We form the reduced Khovanov chain

complex C̃Kh∗(DL) from the cube of smoothings for DL exactly how we would in the standard

case, except that this time we attach a 1-dimensional vector space 〈v+〉 to all circles which contain
x. We retain the usual merge and split maps for cobordisms not involving x, and de�ne them to

be as follows for those which do involve x.
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V ⊗ V ←→ 〈v+〉 〈v+〉 ⊗ V ←→ V

m v+ ⊗ v+ 7→ v+ v+ ⊗ v+ 7→ v+

v+ ⊗ v− 7→ 0 v+ ⊗ v− 7→ v−

v− ⊗ v+ 7→ 0

v− ⊗ v− 7→ 0

∆ v+ 7→ v+ ⊗ v− + v− ⊗ v+ v+ 7→ v+ ⊗ v−
v− 7→ 0

The di�erential ∂̃Kh is then expressed as

∂̃Kh =
∑
α;α′

(−1)ε(α;α
′)d̃α;α′

taken over all pairs α, α′, where α′ is an immediate successor of α, and d̃α;α′ is as in the standard

case but with the new notions of the split and merge maps.

We can then de�ne the reduced Khovanov homology as follows:

K̃h∗(L) ∼= H∗
(
C̃Kh∗(DL){−1}, ∂̃Kh

)
(4.7)

The shift of −1 in the quantum grading is done to ensure that the reduced Khovanov homology

of the unknot is F[0, 0].

As stated above, the `take-home' feature of reduced Khovanov homology can be seen in its Euler

characteristic:

χq(K̃h∗(L)) :=
∑
i,j

(−1)iqjdimF
(
K̃hi,j(L)

)
= J(L) (4.8)

That is, the reduced Khovanov homology is the categori�cation of the standard Jones polyno-

mial.

If L is a knot, then its reduced Khovanov homology does not depend on the choice of basepoint.

For links, however, choosing a di�erent component on which to place the basepoint can a�ect it

(see [41]), unless we work over Z/2Z. Shumakovitch [84] proved the following:

Theorem 4.1.3 (Shumakovitch, 2004). Let L ⊂ S3 be an oriented link. Then

Kh∗(L;Z/2Z) ∼= K̃h∗(L;Z/2Z)[0,−1]⊕ K̃h∗(L;Z/2Z)[0, 1].

In particular, K̃h∗(L;Z/2Z) does not depend on the choice of component for the base point.

This result highlights additional advantages of working with Z/2Z coe�cients.
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4.1.2 The skein exact sequence

As promised, we now return to the third Khovanov bracket axiom (4.4). The following explanation

was taken mostly from Le Gros' Masters' thesis [49, Chapter 4.5]. Given a crossing in a link

diagram, we can smooth the crossing in two ways, and consider the three Khovanov brackets

J K, J K, and J K. As we will see, it turns out that the three are related by a short exact

sequence, and we can apply a result from homological algebra to obtain a long exact sequence in

their homologies. This long exact sequence is known as the skein exact sequence.

First we require the following, classic result, which can be found in any good textbook on homo-

logical algebra (see, for example [78, Theorem 10.42]).

Theorem 4.1.4. Consider the short exact sequence of chain complexes:

0→ A∗ → B∗ → C∗ → 0

There exists natural homomorphisms δn : Hn(C)→ Hn+1(A) such that the homology groups form

a long exact sequence.

We begin by constructing the short exact sequence. Suppose L ⊂ S3 is an oriented link, and D

is a choice of diagram for L with n crossings, n+ of which are positive and n− are negative. We

consider a crossing inD, and denote byD0 andD1 the diagrams of the 0 and 1-smoothings. We

now consider the Khovanov brackets of the triple D,D0, D1, letting di being the ith di�erential in

JDK, and di0 and d
i
1 the ith di�erentials in JD0K and JD1K. Recall the construction of JDK from the

cube of smoothings of D. Since D0 and D1 have been obtained from D by smoothing a crossing,

every Kau�man state in their respective cubes also features in the cube for D. However, it should

be noted that the cube for D1 starts at height 1 and ends at height n, so some extra shifting

is required in order to express the chain groups of JD1K as subgroups of JDK. In particular, the

chain groups comprising JDK can be expressed as the following:

JDKi =


JD0Ki i = 0

JD0Ki ⊕ JD1Ki−1{1} 0 < i < n

JD1Ki−1{1} i = n


This decomposition of J K is exactly what is meant by the third Khovanov bracket axiom, albeit

expressed in a slightly di�erent way. Observe that the di�erential di in JDK is in general the

sum of di0, d
i−i
1 and an extra term going from JD0K to JD1K. From this we obtain a short exact

sequence of the Khovanov brackets:

0→ JD1K[1]{1} ↪→ JDK� JD0K→ 0

This short exact sequence can be shifted as usual to obtain a short exact sequence in the Khovanov

chain complexes, however there are two cases to consider, when is positive and when it is

negative.
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First, let us assume is positive. Then the orientation of D is preserved in the 0-smoothing,

but not in the 1-smoothing. Let us therefore pick an orientation on the components of D1 and

de�ne an integer c as follows:

c = number of negative crossings in D1 − number of negative crossings in D.

Now, D0 has n+ − 1 positive crossings and n− negative crossings, and D1 has (n− 1)− (c+ n−)

positive crossings and c + n− negative crossings. We therefore need to shift JD0K by −n− in

the i grading and (n+ − 1) − 2n− in the j grading, and JD1K by −(c + n−) in the i grading

and (n − 1) − (c + n−) − 2(c + n−) = n+ − 2n− − 3c − 1 in the j grading to obtain CKh(D0)

and CKh(D1). However, we need to shift everything by [−n−]{n+ − 2n−} in order to obtain

CKh(DL). This means there is extra shifting required in CKh(D0) and CKh(D1).

JD1Ki−1,j−1[−n−]{n+ − 2n−} = JD1Ki−c−1,j−1−3c−1[−c− n−]{n+ − 2n− − 3c− 1}
= CKhi−c−1,j−1−3c−2(D1)

JD0Ki,j [−n−]{n+ − 2n−} = JD0Ki,j−1[−n−]{n+ − 2n−}
= CKhi,j−1(D0)

The short exact sequence in CKh is then:

0→ CKh(D1)[−c− 1]{−3c− 2} ↪→ CKh(D)� CKh(D0){−1} → 0,

which then induces the following long exact sequence in homology:

· · · Khi−c−1,j−3c−2(L1) Khi,j(L) Khi,j−1(L0)

Khi−c,j−3c−2(L1) Khi+1,j(L) Khi+1,j−1(L0) · · ·

γ

Now let us assume is negative. This time D1 inherits the orientation of D. Pick an orientation

on D0 and de�ne c′ as

c′ = number of negative crossings in D0 − number of negative crossings in D.

We follow the same process as above to obtain a similar, but subtly di�erent, short exact sequence

in CKh:

0→ CKh(D1){1} ↪→ CKh(D)� CKh(D0)[−c′]{−3c′ − 1} → 0,

and obtain another long exact sequence in homology:
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· · · Khi,j+1(L1) Khi,j(L) Khi−c
′,j−3c′−1(L0)

Khi+1,j+1(L1) Khi+1,j(L) Khi−c
′+1,j−3c′−1(L0) · · ·

γ

Remark. The skein exact sequence works in exactly the same way in the reduced setting �

in fact we may simply exchange each Khovanov group for its reduced counterpart in the above

sequences with no further work necessary.

The primary application of the skein exact sequence is to express the Khovanov homologies of

a link in terms of the Khovanov homologies of simpler pieces. We will use it in particular when

comparing the annular Khovanov homologies of annular Sakuma knots obtained from the same

family of framed Sakuma links.

4.1.3 Khovanov homology and strongly invertible knots

Khovanov homology is the �rst homological invariant we can apply to strongly invertible knots.

For a strongly invertible knot (K,h) we form the Sakuma link L and calculate Kh∗(L), which is

clearly an invariant of (K,h).

De�nition 4.1.5. Let (K,h) be a strongly invertible knot with Sakuma link L. Then set

Kh∗(K,h) := Kh∗(L).

As for the η-polynomial, Jones polynomial, and annular Jones polynomials, we can de�ne Kho-

vanov homology of a framed Sakuma link.

De�nition 4.1.6. Let (K,h, n) be a framed strongly invertible knot with Sakuma link Ln. Then
we set Kh∗(K,h, n) := Kh∗(Ln).

It is known that Khovanov homology detects the two-component unlink [29]. Since the trivial

strongly invertible knot (U , h0) has as its Sakuma link the two-component unlink we immediately

have the following:

Corollary 4.1.7. Let (K,h) be a strongly invertible knot with Sakuma link L. Then,

(K,h) ∼= (U , h0)⇐⇒ dimF(Kh∗(L)) = 4.

That is, Khovanov homology detects the strongly invertible unknot.

The above result is signi�cant for us as this is the �rst invariant we have outlined that detects the

trivial strongly invertible knot. In the previous chapter we saw that the η-polynomial does not

detect (U , h0), and it is an open question whether the Jones and annular Jones polynomials do.

This fact is re�ective of the existing progress on unlink detection in general � where categori-

�ed invariants have, broadly speaking, been shown to detect unlinks, whilst their decategori�ed

counterparts, on the whole, have not.
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Like its decategori�ed counterpart, Khovanov homology is a good detector of cheirality. The

following is due to Khovanov [40, Corollary 11]:

Lemma 4.1.8. Let K ⊂ S3 be a knot. Suppose K is amphicheiral; then Kh∗(K) is palindromic,

that is, Khi,j(K) ∼= Kh−i,−j(K) for all (i, j).

Because of its sensitivity to cheirality, we can reproduce [79, Proposition 3.4] for Khovanov

homology too. However, as the statement is almost identical to the versions we have seen before

(for example Corollary 3.2.5), we will leave it up to the reader to construct the result.

In the rest of this chapter we will pass over Khovanov homology in favour of its lesser known

annular cousin.

4.2 Annular Khovanov homology

We will now move on to the variant of Khovanov homology for links in thickened annuli de�ned

by Asaeda, Przytycki, and Sikora in [2]. The construction of annular Khovanov homology is

very similar to that of links in the 3-sphere � the main di�erence comes from equipping the

chain complex with an additional third grading, which encodes information about how the link

wraps around the central hole. It turns out that the new k grading is non-increasing with respect

to the Khovanov di�erential, which allows us to apply tools from homological algebra to form

another, related chain complex � the homology of which is annular Khovanov homology. The

two homology theories are related by a spectral sequence, the theory of which we will brie�y

recap. Finally, we will apply annular Khovanov homology to the annular Sakuma knots we

constructed earlier, and will prove that annular Khovanov homology also detects the strongly

invertible unknot.

4.2.1 Filtrations and spectral sequences

Here we recap the concept of a spectral sequence, a powerful tool used by homological algebraists.

The content in this section is taken from Chow's article [14] and McCleary's book [53], which

should be consulted for proofs and further reading. In everything that follows we will work with

cochain complexes of �nite dimensional vector spaces over �elds, as this is the setting we �nd

ourselves in with Khovanov homology; however, everything can be de�ned just as well for chain

complexes and for complexes of modules over rings. We will also from now on drop the `co'

pre�x, in keeping with the general looseness that this is used in Khovanov homology (which is

technically a cohomology theory).

Spectral sequences arise when we are able to equip a chain complex with a Z-grading that `plays
nicely' with the complex's di�erential. The ideal scenario is that of a graded chain complex,

which allows us to split each chain group into graded slices, each of which are preserved by the

di�erential. More precisely, for a cochain complex (C∗, δ) given by

· · · δ−→ Ci−1
δ−→ Ci → Ci+1 δ−→ · · ·
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which is equipped with a grading, so that each Ci can be expressed as

Ci =
⊕
p

Ci,p ,

the complex is graded if δ(Ci,p) ⊂ Ci+1,p for all i and p. This means that the homology of the

whole chain complex is the same as the sum of the homologies of each slice, that is

H∗
(
C∗, δ

)
=

n⊕
p=1

H∗
(
C∗,p, δ

)
.

When we have a graded chain complex we �nd it is often computationally less expensive to

calculate the homologies of each slice than that of the whole complex at once.

In practice, however, when we are able to de�ne an extra grading on a chain complex we often do

not have anything nearly as nice as a graded chain complex. More likely, what results is a �ltered

chain complex, in which the grading induces a �ltration � a nested sequence of sub-complexes

which is preserved by the di�erential. For example,

0 = Ci,0 ⊆ Ci,1 ⊆ · · · ⊆ Ci,n = Ci

where, δ(Ci,p) ⊂ Ci+1,p for all i and p. In this situation we say that the di�erential is non-

increasing in the p grading. Note that δ may well take elements of Ci,p to elements of Ci+1,p

with a lower p grading due to the nested nature of the sub-complexes � this is a key distinction

from the graded chain complex case we had before.

From here we can form what is known as the associated graded complex. In order to do this we

form a series of quotient spaces from each nested sequence, de�ning

Ei,p0 := Ci,p/Ci,p−1

so that

Ci =
⊕
p

Ei,p0 .

We then observe that when the di�erential δ is applied to each Ei,p0 it induces a chain map δ0
which preserves the p grading � two elements of Ci,p that di�er by an element of Ci,p−1 get

mapped to elements of Ci+1,p that di�er by an element of Ci+1,p−1. The associated graded chain

complex of (C∗, δ) is then the chain complex(⊕
p

Ei,p0 , δ0

)
,

which has isomorphic chain groups to (C∗, δ), but a possibly di�erent di�erential. This fact means

that we cannot assume that the homology of (C∗, δ) is equal to sum of the homologies of the slices

of
(⊕

pE
i,p
0 , δ0

)
, although the latter can be viewed as an approximation to the former.
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In fact, the homology of the associated graded chain complex is the �rst stage of a sequence

which converges to the homology of (C∗, δ) � this sequence is known as spectral sequence. The

homology of the associated chain complex is denoted by E∗1 , and is referred to as the �rst `page'

of the spectral sequence, whilst the homology of (C∗, δ) is usually denoted in the literature by

E∗∞. The �rst page can be viewed as a chain complex by de�ning a new di�erential δ1, which

instead of preserving the p grading drops it by 1 � that is it takes Ei,p1 to Ei+1,p−1
1 . Taking

the homology gives us the second page of the sequence, and the process continues until E∗∞ is

obtained. It is important to note that the dimensions of the underlying vector spaces of each

page are non-increasing � adding in additional pieces of δ can only remove basis elements.

We now change tack slightly, by de�ning a notion of equivalence for �ltered chain complexes.

This de�nition appears in [24, De�nition 2.6], with a slight change of notation.

De�nition 4.2.1. Let C1 and C2 be two �ltered chain complexes. We say that C1 and C2 are

�ltered quasi-isomorphic, and write C1 ' C2, if there exists a third �ltered chain complex C ′,

and �ltered chain maps

φj : Cj → C ′,

such that

φj : Ei(Cj)→ Ei(C
′)

is an isomorphism for all i ∈ Z+, j ∈ {1, 2}.

Two general chain complexes are said to be quasi-isomorphic if they have isomorphic homology

groups � the above de�nition simply allows for the extra �ltration information.

Spectral sequences are particularly powerful when used to relate two homology theories. In-

deed, in recent years there have been many results which utilise a spectral sequence between

Khovanov-style homology theories on the one hand, and Heegaard-Floer -style theories on the

other. Furthermore, the most commonly used method to prove a Khovanov style homology the-

ory detects the unknot is to �nd a spectral sequence to an invariant that is already known to

detect it � this is the methodology used originally by Kronheimer and Mrowka [47] when they

proved the Khovanov homology detects the unknot. Spectral sequences have featured in work of,

for example, Grigsby and Wehrli [22], [23], [24], [25], Baldwin [3], and Roberts [76], [75], as well

as many others.

4.2.2 Construction

To calculate annular Khovanov homology of an annular link L we �rst take a diagram DL ⊂ A

and form the cube of smoothings in the usual fashion. We observe that the circles present in a

general complete smoothing Sα can be divided into two sets: those that enclose the central hole,

and those that do not. Continuing on from the construction of the annular Jones polynomial we

refer to the sets of circles as `non-trivial' and `trivial' respectively.

We then proceed as before and attach a vector space to each circle: to a trivial circle we attach

a copy of V as in the S3 setting, and to a non-trivial circle we attach a 2-dimensional vector
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space W over F generated by w+ and w−. As ungraded vector spaces V and W are isomorphic,

and we specify in addition that their p gradings are also the same. The di�erence comes from

an additional grading � the annular k grading, which we now de�ne. Suppose that a Kau�man

state Sα consists of circles K1, . . . ,Ku,Ku+1, . . . ,Kc (where u is the number of trivial circles)

which are associated to vector spaces V1, . . . , Vu and Wu+1, . . . ,Wc. Then,

k(v±i) := 0

k(w±i) := ±1

The k grading of a basis vector v±1 ⊗ . . . ⊗ v±u ⊗ w±u+1 ⊗ . . . ⊗ w±c is de�ned exactly how we

would expect:

v±1 ⊗ . . .⊗ v±u ⊗ w±u+1 ⊗ . . .⊗ w±c = k(v±1) + . . .+ k(v±u) + k(w±u+1) + . . .+ k(w±c)

= k(w±u+1) + . . .+ k(w±c).

With this additional grading we construct the triply graded Khovanov chain complex CAKh∗(DL)

(note that the underlying abelian groups of CAKh∗(DL) and CKh∗(DL) are isomorphic, pro-

vided we discard the k grading). To de�ne the di�erentials on CAKh∗(DL) we recall the de�nition

of the Khovanov di�erential, and examine its e�ect on the k grading of a basis element. Observe

�rst that there are three kinds of splitting and merging behaviour between trivial circles and

non-trivial circles.

1. Two trivial circles can merge into a single trivial circle and a trivial circle can split into two

trivial circles.

2. A trivial circle and a non-trivial circle can merge into a non-trivial circle and a non-trivial

circle can split into a trivial circle and a non-trivial circle.

3. Two non-trivial circles can merge into a trivial circle and a trivial circle can split into two

non-trivial circles.

In each of the three cases the Khovanov di�erential either preserves the k grading, or lowers it

by 2. That is, we can express ∂Kh as the following:

∂Kh = ∂0 + ∂−2

where ∂0 is the piece that preserves the k grading, and ∂−2 is the piece that lowers it by 2. For

completeness we include their e�ects on all three gradings (i, j, k):

deg(∂0) = (1, 0, 0)

deg(∂−2) = (1, 0,−2)

As a consequence of this observation the k grading induces a �ltration on the Khovanov chain

complex, so we can form the associated graded chain complex. In this setting we do this by

slicing up each group in the Khovanov chain complex into slices of each k degree, then form a
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series of chain complexes with ∂0 as the di�erential. Taking the homology of each slice and direct

summing gives us annular Khovanov homology, which we denote by AKh∗(L).

In practice, an easier way to arrive at AKh is to instead use ∂0 in the annular Khovanov chain

complex and take the homology. This short-cuts the whole process of taking the homology of

each slice of the associated chain complex and direct summing. In other words,

AKh∗(L) ∼= H∗
(
CAKh(DL), ∂0

)
The table below (4.9) appears in Kesse's Bachelor's thesis [39] and details the di�erential ∂0. In

the �rst case nothing needs to be done as all k gradings are 0, however in the second and third

cases minor adjustments need to be made in order for the k grading to be preserved.

(1) V ⊗ V ←→ V (2) V ⊗W ←→W (3) W ⊗W ←→ V

m v+ ⊗ v+ 7→ v+ v+ ⊗ w+ 7→ w+ w+ ⊗ w+ 7→ 0

v+ ⊗ v− 7→ v− v+ ⊗ w− 7→ w− w+ ⊗ w− 7→ v−

v− ⊗ v+ 7→ v− v− ⊗ w+ 7→ 0 w− ⊗ w+ 7→ v−

v− ⊗ v− 7→ 0 v− ⊗ w− 7→ 0 w− ⊗ w− 7→ 0

∆ v+ 7→ v+ ⊗ v− + v− ⊗ v+ w+ 7→ v− ⊗ w+ v+ 7→ w+ ⊗ w− + w− ⊗ w+

v− 7→ v− ⊗ v− w− 7→ v− ⊗ w− v− 7→ 0

(4.9)

We can de�ne the Poincaré polynomial of annular Khovanov homology:

P(AKh∗(L)) :=
∑
i,j,k

siqjtkdimF
(
AKhi,j,k(L)

)

One thing to note is that annular Khovanov homology is the categori�ed version of the annular

Jones polynomial that we saw earlier. That is,

χq,t(AKh
∗(L)) :=

∑
i,j,k

(−1)iqjtkdimF
(
AKhi,j,k(L)

)
= AJ(L)(q, t) (4.10)

where, similarly to the standard Khovanov case, AKhi,j,k(L) refers to the homogeneous piece of

AKh∗(L) in grading (i, j, k).

Example 4.2.2. For an example we return to the annular knot we �rst saw in Example 3.3.5.

Let F = Z/2Z and consider the cube of smoothings featured in Figure 4.1. Note that we have

chosen to number the circles from the inside out, so that, for example, the leftmost copy of V or

W attached to each smoothing corresponds to the innermost circle in the smoothing. From this

cube we form the Khovanov bracket JDKK:

JDKK : 0 −→ V [0]{0} δ1−−−−−→ (W⊗2 ⊕W⊗2)[1]{1} δ2−−−−−→ (W ⊗ V ⊗W )[2]{2} −→ 0
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V

{0,0}
W ⊗W

{1,0}

W ⊗W

{0,1} W ⊗ V ⊗W

{1,1}

Figure 4.1: Calculating AKh

In this example n = 2, n+ = 0, and n− = 2, so to obtain the annular Khovanov chain complex

we shift the homological degree by −2 and the quantum degree by −4:

CKh(DK) : 0→ V [−2]{−4} δ1−−−−−→ (W⊗2 ⊕W⊗2)[−1]{−3} δ2−−−−−→ (W ⊗ V ⊗W )[0]{−2} → 0

The action of the annular Khovanov di�erential ∂0 is as follows:

δ1

v+ 7→ (w+ ⊗ w− + w− ⊗ w+, w+ ⊗ w− + w− ⊗ w+)

v− 7→ 0

δ2

(w+ ⊗ w+, 0) 7→ w+ ⊗ v− ⊗ v+
(w+ ⊗ w−, 0) 7→ w+ ⊗ v− ⊗ w−
(w− ⊗ w+, 0) 7→ w− ⊗ v− ⊗ w+

(w− ⊗ w−, 0) 7→ w− ⊗ v− ⊗ w−
(0, w+ ⊗ w+) 7→ w+ ⊗ v− ⊗ w+

(0, w+ ⊗ w−) 7→ w+ ⊗ v− ⊗ w−
(0, w− ⊗ w+) 7→ w− ⊗ v− ⊗ w+

(0, w− ⊗ w−) 7→ w− ⊗ v− ⊗ w−
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And so the AKh∗(K) groups are:

AKh−2,∗,∗(K) ∼= Z/2Z[−2,−5, 0]

AKh−1,∗,∗(K) ∼= Z/2Z[−1,−1, 2]⊕ Z/2Z[−1,−3, 0]⊕ Z/2Z[−1,−5,−2]

AKh0,∗,∗(K) ∼= Z/2Z[0, 1, 2]⊕ Z/2Z[0,−1, 0]⊕ Z/2Z[0,−1, 0]⊕ Z/2Z[0,−3,−2]

Where [i, j, k] indicates a grading shift of (i, j, k). The Poincaré polynomial is then

P(AKh∗(K)) = s−2q−2 + s−1q−1t2 + s−1q−3 + s−1q−5t−2 + qt2 + 2q−1 + q−3t−2,

and we observe that by setting s = −1 we obtain the annular Jones polynomial we calculated in

Example 3.3.5:

We can also display annular Khovanov homology groups in a table. We will use the Poincaré

polynomial of AKh, and place it in a table with horizontal axis the homological grading, vertical

axis the quantum grading, and the annular grading appearing in each box as a power of t. In

this example the table looks like:

q\s −2 −1 0

−5 1 t−2

−3 1 t−2

−1 t2 2

1 t2

4.2.3 Properties and applications

In this section we will detail some key characteristics of annular Khovanov homology, and will

mention a number of spectral sequences which converge from annular Khovanov homology to

another homology theory.

As annular Khovanov homology categori�es the annular Jones polynomial it shares the properties

we mentioned in the previous chapter. For example, the wrapping number of an annular link

determines the possible k gradings present in its annular Khovanov homology:

Lemma 4.2.3. Let L ⊂ A×I be an annular link with wrapping number ω. Then AKhi,j,k(L) ∼= 0

for all k such that |k| > ω. Furthermore,

1. Suppose ω is even. Then AKhi,j,k(L) ∼= 0 for all odd k.

2. Suppose ω is odd. Then AKhi,j,k(L) ∼= 0 for all even k.

We mentioned in the previous chapter that Grigsby and Ni proved a result about the annular

Khovanov homology of braid closures [20, Corollary 1.2]. Their result is stronger than the version

we proved for the annular Jones polynomial (Lemma 3.3.10), as it uses extra information present

in annular Khovanov homology � see [20] for further details.
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Proposition 4.2.4 (Grigsby-Ni, 2011). Let L ⊂ A× I be an annular link with wrapping number

ω. Then the group

AKh(L, ω) :=
⊕
i,j

AKhi,j,ω(L),

is isomorphic to F if and only if L is equivalent to a closed braid.

For example, the annular knot featured in Example 4.2.2 has

AKh(K, 2) ∼= Z/2Z[0, 1, 2]⊕ Z/2Z[−1,−1, 2]

and so is not equivalent to a braid closure.

Additionally, Baldwin and Grigsby [4, Theorem 1] have proven a result about AKh and its ability

to detect the trivial n-strand braid.

Theorem 4.2.5 (Baldwin-Grigsby, 2015). Let Bn be an n-string braid, and let 1 be the trivial

n-string braid. If AKh∗(B̂n) ∼= AKh∗(1̂), then Bn = 1.

Also, as it contains the annular Jones polynomial, and due to its relationship with Khovanov ho-

mology, annular Khovanov homology can be used to detect the cheirality of an annular knot.

Lemma 4.2.6. Let K ⊂ A× I be an annular knot. Suppose K is amphicheiral; then AKh∗(K)

is palindromic, that is, AKhi,j,k(K) ∼= AKh−i,−j,−k(K) for all (i, j, k).

Next, we will mention a number of spectral sequences which converge from annular Khovanov

homology to another homology theory, with the aim of placing annular Khovanov homology

within a wider mathematical framework.

Firstly, we make explicit the relationship between annular and regular Khovanov homology. In

the last section we saw how the annular Khovanov homology of an annular link L can be expressed

in terms of the Khovanov chain complex of L ⊂ S3 by using the k grading preserving piece of

the Khovanov di�erential, ∂0. If we then include the piece that drops the k grading by two,

∂−2, and take the homology of AKh∗(L) with respect to it then we re-obtain Kh∗(L). In the

terminology of spectral sequences, therefore, annular Khovanov homology converges to Khovanov

homology. This is simply the homological counterpart of the relationship between AJ(L) and

Ĵ(L) we observed in the previous chapter.

Example 4.2.7. Consider again the AKh calculation in Example 4.2.2. When we take the

homology of AKh∗(L) with respect to ∂−2 some cancellation occurs. In total three pairs of

generators cancel: Z/2Z[−2,−5, 0] with Z/2Z[−1,−5,−2], Z/2Z[−1,−3, 0] with Z/2Z[0,−3,−2],

and Z/2Z[−1,−1, 2] with Z/2Z[0,−1, 0]. This leaves us with Z/2Z[0, 1, 2] and Z/2Z[0,−1, 0], and

throwing away the k grading gives Z/2Z[0, 1] and Z/2Z[0,−1], which is the Khovanov homology

of the unknot in S3, as expected.

Next, we discuss the connection between annular Khovanov homology and an o�shoot of Heegaard-

Floer homology, known as sutured Floer homology. The �rst indication that such a relationship

existed was due to Roberts. Given a link L in the complement of an unknot B ⊂ S3 he proved
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in [76] the existence of a spectral sequence between AKh∗(L) and a variant of the knot Floer

homology of B̃ ⊂ Σ(S3, L). Grigsby and Wehrli [23, Theorem 2.1] proved that this variant was in

fact isomorphic to the sutured Floer homology as de�ned by Juhász [35]. In Grigsby and Wehrli's

notation, the result reads as follows:

Theorem 4.2.8 (Grigsby-Wehrli, 2009). Let L ⊂ A× I be a link in the product sutured manifold

A × I. Then there is a spectral sequence whose E1 term is AKh∗(L) and whose E∞ term in

SFH(Σ(A× I, L)).

We will keep the details of this spectral sequence, including the �ltration gradings, deliberately

vague. In all the results we will go on to prove we will only require the existence of this spectral

sequence, as we will mainly concern ourselves with the Khovanov end. We will remark, however,

that the spectral sequence yields more invariants than just AKh and SFH. As Grigsby and

Wehrli explain in [24, Remark 3.9], arguments of Roberts [75, Sec. 7] and Baldwin [3] can be

used to show that the �ltered chain complex that features in the spectral sequence admits a

sequence of invariants � one for each page of the spectral sequence � up to �ltered quasi-

isomorphism.

For annular Sakuma knots we may well ask ourselves what exactly the 3-manifolds Σ(A×I, L) are.

Let (K,h) be a strongly invertible knot with Sakuma link L = B ∪L and annular Sakuma knots

L, B ⊂ A× I. When L = B we can simply reverse Sakuma's construction. That is, Σ(A× I,B)

is S3\
(
N (l) ∪ N (h(l))

)
, where l and h(l) are the pair of equivariant longitudes of K used in

Sakuma's construction. Interestingly, in the case where we have two distinct strong inversions on

the same knot, (K,h1), (K,h2), we note that Σ(A × I,B1) ∼= Σ(A × I,B2), which means that

AKh(L1) and AKh(L2) have the same E∞ page in Grigsby and Wehrli's spectral sequence. In

other words, applying the spectral sequence means we lose track of the strong inversions.

For the annular knot L we �rst express L as the two-component completion of B ⊂ A× I. Then,
as A × I is homeomorphic to the exterior of B, the double branched cover with branch set L is

simply the exterior of the two-component link depicted in Figure 4.2.

Remark. We have been somewhat lax in the above discussion, as we have neglected all mention

of the sutured structure on Σ(A× I, L). Recall that the sutured structure on A× I is given by

A(Γ) = ∂A× I and s(Γ) = ∂A× {12}. Reconceptualising A× I as the exterior of the other link

component L′, in the double branched cover we end up with two sutures on the exterior of each

lift of L′, so Σ(A× I, L) has four sutures in total.

Finally, we brie�y detail the Lee spectral sequence between Khovanov homology and Khovanov-

Lee homology, and how this can be adapted to the annular setting. Lee in [48] de�nes a deforma-

tion of Khovanov homology, in which the Khovanov di�erential ∂Kh is altered and the resulting

homology is taken. Analogously to the annular case, the Lee di�erential ∂Lee lowers the quan-

tum grading, which induces a spectral sequence from Kh to KhLee. The spectral sequence from

Khovanov homology to Khovanov-Lee homology was exploited by Rasmussen [73], who used it

to de�ne his famous s invariant.
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Grigsby, Licata, and Wehrli [21] have applied Lee's ideas to the annular setting. They show how

annular Khovanov homology converges to Khovanov-Lee homology by de�ning a Z⊕Z �ltration

on the Khovanov chain complex. They then extended Rasmussen's ideas, by de�ning a series of

s-type invariants for an annular link, which they denote by dt, t ∈ [0, 2].

Theorem 4.2.9 (Grigsby-Licata-Wehrli, 2016). Let L ⊂ A × I be an annular link, let o be an

orientation on L, and let t ∈ [0, 2].

1. dt(L, o) is an oriented annular link invariant.

2. d1−t(L, o) = d1+t(l, o) for all t ∈ [0, 1].

3. d0(L, o) = d2(L, o) = s(L, o)− 1.

4. Viewed as a function, [0, 2]→ R, dt(l, o) is piecewise linear.

Remark. Whilst rich in structure, the dt invariant is hard to calculate. The only calculations to

date have been done on a Mathematica program written by Scott Morrison (see [21]), but this

only takes annular links formed from braid closures as its input. As a result, we will pass over the

dt invariant, remarking only that adapting Morrison's program to annular Sakuma knots would

be an interesting direction in which to take Sakuma's construction further.

4.2.4 Annular Khovanov homology and strongly invertible knots

Just in the decategori�ed setting, we can apply annular Khovanov homology to strongly invertible

knots via the extended version of Sakuma's construction. Here we formally de�ne the annular

Khovanov homology of a strongly invertible knot, and apply some of the results covered in the

previous section to annular Sakuma knots.

De�nition 4.2.10. Let (K,h) be a strongly invertible knot with Sakuma link L = B ∪ L.
We de�ne the pair of annular Khovanov homologies associated to (K,h) by AKh∗(K,h)(B) and

AKh∗(K,h)(L).

We also de�ne annular Khovanov homology on framed strongly invertible knots.

De�nition 4.2.11. Let (K,h, n) be a framed strongly invertible knot with framed Sakuma link

Ln = B ∪ L. We de�ne the pair of annular Khovanov homologies associated to (K,h, n) by

AKh∗(K,h,n)(B) and AKh∗(K,h,n)(L).

One of the most interesting features of the annular Khovanov homology of a strongly invertible

knot is that, because both annular knots are unknotted when embedded into S3, the annular

Khovanov homology always collapses to something two dimensional when we apply the spectral

sequence to Khovanov homology � see for instance Example 4.2.7. As previous noted, this

property is the homological analogue of a property of the annular Jones polynomial, namely, the

fact that the annular Jones polynomial specialises to the unnormalised Jones polynomial of the

unknot when the annular variable is set to 1 � see Example 3.3.5.

Next we specify the e�ect of the wrapping number on the annular Khovanov homology of an
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annular Sakuma knot. Recall that the wrapping number of an annular Sakuma knot is always

even, and for the `branch-set' knots it equals two. We then have:

Corollary 4.2.12. Let Ln = B∪L be a framed Sakuma link not equivalent to the two-component

unlink. Then,

1. AKhi,j,k(B) ∼= 0 for k /∈ {0,±2}.

2. AKhi,j,k(L) ∼= 0 for odd k.

Proof. This follows from Lemma 4.2.3 and Corollary 3.3.20.

Recall that the set of annular Sakuma knots is almost entirely distinct from the set of braid

closures (Proposition 2.5.4). As a consequence of this fact, and of Proposition 4.2.4, it follows

that:

Corollary 4.2.13. Let L ⊂ A × I be an annular Sakuma knot with wrapping number ω that is

not associated to (U , h0,±1). Then dim(AKh(L, ω)) 6= 1.

In light of annular Khovanov homology's sensitivity to cheirality there also exists a version of [79,

Proposition 3.4] for annular Khovanov homology. As for Khovanov homology we will omit the

statement, but it is easily deducible from the various versions we included in Chapter 3.

4.2.5 Strongly invertible unknot detection

In this section we will show that annular Khovanov homology detects the strongly invertible

unknot. In all that follows take the �eld F to be Z/2Z.

We require a few supporting results. The �rst is due to Grigsby and Wehrli [23, Proposition 2.24]

� here is a slightly altered and abridged version for our purposes.

Proposition 4.2.14 (Grigsby-Wehrli, 2009). Let K ⊂ A × I be an annular link with two-

component completion L = K ∪ B. Let p(K) = (lk(K,B) mod 2). Then,

SFH
(
Σ(A× I,K)

) ∼= { ĤFK
(
Σ(S3,K), B̃

)
⊗Θ if p(K) = 1

ĤFK
(
Σ(S3,K), B̃

)
if p(K) = 0

}

where Θ is a bigraded, dimension 2 vector space over Z/2Z.

Next is a result due to Ni; we will state the version appearing in [62, Proposition 1.4].

Proposition 4.2.15 (Ni, 2006). Suppose L is an n-component link in S3. If the rank of its knot

Floer homology ĤFK(L) is 2n−1, then L is the n-component unlink.

Finally, we prove a last supporting lemma:

Lemma 4.2.16. Let L = B ∪ L be a Sakuma link constructed from a strongly invertible knot

(K,h). Consider B̃ ⊂ Σ(S3,L), the lift of B in the double branched cover of S3 over L. Suppose
B̃ is the two-component unlink. Then L is the two-component unlink, and hence (K,h) ∼= (U , h0).
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Tm Tm

T
m

L

B B̃

Figure 4.2: A Sakuma link L = B ∪ L (left), and B̃ ⊂ Σ(S3,L) (right)

Proof. Sakuma links can be drawn as shown in the left of Figure 4.2, where Tm is a representative

of Watson's tangle associated to (K,h) with m twists, as per our convention. Then, since L is an

unknot, Σ(S3,L) ∼= S3, and B̃ is a two-component link. It follows that B̃ can be drawn as in the

right side of Figure 4.2, where by the upside-down Tm we simply mean the tangle Tm rotated π

radians about an axis through the plane of the diagram.

Now suppose B̃ is the two-component unlink. This means that Tm must be equivalent to the

trivial tangle, with two separated strands running in parallel from D2×{0} to D2×{1}. Putting
this tangle into the diagram of the Sakuma link, it immediately follows that L must also be the

two-component unlink as required.

Now comes the main theorem:

Theorem 4.2.17. Let L = B∪L be a Sakuma link, and let U be the homologically trivial unknot

in A× I.

1. Suppose AKh∗(L) ∼= AKh∗(U) ∼= F[0, 1, 0] ⊕ F[0,−1, 0]. Then L is the two-component

unlink and L ∼= U .

2. Suppose AKh∗(B) ∼= AKh∗(U) ∼= F[0, 1, 0] ⊕ F[0,−1, 0]. Then L is the two-component

unlink and B ∼= U .

Proof. We �rst turn to Proposition 4.2.14. We know that for all L the linking number is 0 or ±2,

so we have p(L) = p(B) = 0.

Consider U ⊂ A × I, and let L = U ∪ B be its two-component completion, which is the two-

component unlink. We also have p(U) = 0, so Proposition 4.2.14 tells us that

SFH(Σ(A× I,U)) ∼= ĤFK(Σ(S3,U), B̃).

Now, since U ⊂ S3 is unknotted, Σ(S3,U) ∼= S3, and B̃ is the two-component unlink. Hence, we

can apply Ni's result to obtain

ĤFK(Σ(S3,U), B̃) ∼= ĤFK(S3,U ∪ U)
∼= F⊕ F.
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Putting everything together we have

SFH(Σ(A× I,U)) ∼= F⊕ F.

1. Consider L ⊂ A × I and suppose AKh∗(L) ∼= F ⊕ F. We have Σ(S3,L) ∼= S3, and B̃ is a

two-component link with diagram as in Figure 4.2.

Now apply the spectral sequence detailed in Theorem 4.2.8 between annular Khovanov

homology and sutured Floer homology. It follows

SFH(Σ(A× I),L) ⊆ F⊕ F

If SFH(Σ(A × I),L) ∼= F then ĤFK(S3, B̃) ∼= F. But then Ni's result tells us B̃ is

the unknot, which is a contradiction, as we know B̃ is a two-component link. Hence,

SFH(Σ(A× I),L) ∼= F⊕ F, and B̃ is then the two-component unlink. Lemma 4.2.16 then

tells us that L is also the two-component unlink.

2. Now consider B ⊂ A× I and suppose AKh∗(B) ∼= F⊕F. Once more Σ(S3,B) ∼= S3, and L̃
is the pair of equivariant longitudes on a tubular neighbourhood of some strongly invertible

knot (K,h) that featured in Sakuma's construction.

Applying the spectral sequence, and using the same logic as above means that the pair

of longitudes l ∪ h(l) is the two-component unlink. But then (K,h) ∼= (U , h0), and L is

therefore the two-component unlink.

Hence,

Corollary 4.2.18. Annular Khovanov homology detects the strongly invertible unknot.

In some respects this result should come as no surprise, given the track record of Khovanov style

homology theories to detect unknots. Nevertheless, the above proof is interesting in the sense

that we essentially get two unknot detection results for the price of one: on the one hand we show

that if an annular Sakuma knot has the same annular Khovanov homology as the homologically

trivial unknot then it is equivalent to it; on the other, we use this relation to prove a result about

Sakuma links and strongly invertible knots in S3.

4.2.6 Annular skein exact sequence

Next, we will return to the skein exact sequence and use it to pass between annular Sakuma knots

that di�er by a change of framing. This is really just the categori�ed version of the work we did

on the annular Jones polynomial in the previous chapter.

Now, in the annular setting the short exact sequence in the Khovanov bracket can be decomposed

into its k graded sub-sequences with no loss of data, since the maps are all k grading preserving.
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Hence, we can also decompose the skein exact sequence into its k-graded subsequences. For

example, when a positive crossing in DL is smoothed we have:

· · · AKhi−c−1,j−3c−2,k(L1) AKhi,j,k(L) AKhi,j−1,k(L0)

AKhi−c,j−3c−2,k(L1) AKhi+1,j,k(L) AKhi+1,j−1,k(L0) · · ·

γ

Now, as we did in the previous chapter, take a family of annular Sakuma knots and �x a family

of diagrams for them which di�er only by the number of twists in a twist box (see Figure 3.9); we

denote the diagrams DLm , where m ∈ Z refers to the signed number of twist box crossings. We

will now explain how the annular Khovanov homologies of the family of Sakuma links are related

by applying the skein exact sequence to their diagrams.

In the �rst case let m > 0. Let be the left-most twist crossing in DLm , so the 0-smoothing is

and the 1-smoothing is . We observe that applying the 1-smoothing gives us DLm−1 and the

0-smoothing gives a diagram for a two-component annular link equivalent to a pair of non-trivial,

unlinked unknots � as in the previous chapter, we shall denote this link diagram by D
L̂m−1

.

We note also that in this case c, which is the number of negative crossings in DLm−1 minus the

number of negative crossings in DLm , is zero. This means the skein exact sequence is then:

· · · AKhi−1,j−2,k(Lm−1) AKhi,j,k(Lm) AKhi,j−1,k(L̂m−1)

AKhi,j−2,k(Lm−1) AKhi+1,j,k(Lm) AKhi+1,j−1,k(L̂m−1) · · ·

γ

Let's start �lling in some of the slots in this sequence. The annular Khovanov homology of L̂m−1
is four dimensional, with the following generators:

AKh∗(L̂m−1) ∼= F[0, 2, 2]⊕ F⊕2[0, 0, 0]⊕ F[0,−2,−2]

This means that for (i − 1, j − 1, k) and (i, j − 1, k) not equal to (0, 0, 0),(0, 2, 2) or (0,−2,−2)

the skein exact sequence simpli�es:

· · · −→ 0 −→ AKhi−1,j−2,k(Lm−1)
∼=−−−−→ AKhi,j,k(Lm) −→ 0 −→ · · ·

As a result, the annular Khovanov homology for Lm contains the majority of the annular Kho-

vanov homology of Lm−1 as a direct summand, albeit with a shift in gradings. The remaining

terms can be found by setting (i − 1, j − 1, k) equal to (0, 0, 0), (0, 2, 2), and (0,−2,−2) in the

skein exact sequence.

1. Firstly, let (i− 1, j − 1, k) equal (0, 0, 0). The relevant piece of the skein exact sequence is:
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0 AKh−1,−1,0(Lm−1) AKh0,1,0(Lm) F⊕2[0, 0, 0]

AKh0,−1,0(Lm−1) AKh1,1,0(Lm) 0

α β

γ

δ

There are three possibilities, depending on the image of γ:

(a) Im(γ) = F⊕2

(b) Im(γ) = F

(c) Im(γ) = 0

This gives three possibilities for the values of AKh0,1,0(Lm) and AKh1,1,0(Lm):

(a) AKh−1,−1,0(Lm−1) ∼= AKh0,1,0(Lm)

AKh0,−1,0(Lm−1) ∼= AKh1,1,0(Lm)⊕ F⊕2

(b) AKh−1,−1,0(Lm−1)⊕ F ∼= AKh0,1,0(Lm)

AKh0,−1,0(Lm−1) ∼= AKh1,1,0(Lm)⊕ F

(c) AKh−1,−1,0(Lm−1)⊕ F⊕2 ∼= AKh0,1,0(Lm)

AKh0,−1,0(Lm−1) ∼= AKh1,1,0(Lm)

2. Next, let (i− 1, j − 1, k) equal (0, 2, 2). We now have:

0 AKh−1,1,2(Lm−1) AKh0,3,2(Lm) F[0, 2, 2]

AKh0,1,2(Lm−1) AKh1,3,2(Lm) 0

α β

γ

δ

This time there are two possibilities this time for Im(γ): Im(γ) = F and Im(γ) = 0. They

result in:

(a) AKh−1,1,2(Lm−1) ∼= AKh0,3,2(Lm)

AKh0,1,2(Lm−1) ∼= AKh1,3,2(Lm)⊕ F

(b) AKh−1,1,2(Lm−1)⊕ F ∼= AKh0,3,2(Lm)

AKh0,1,2(Lm−1) ∼= AKh1,3,2(Lm)

3. Finally, let (i− 1, j − 1, k) equal (0,−2,−2). We have:
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0 AKh−1,−3,−2(Lm−1) AKh0,−1,−2(Lm) F[0,−2,−2]

AKh0,−3,−2(Lm−1) AKh1,−1,−2(Lm) 0

α β

γ

δ

There are again two possibilities of Im(γ): Im(γ) = F and Im(γ) = 0. They result in:

(a) AKh−1,−3,−2(Lm−1) ∼= AKh0,−1,−2(Lm)

AKh0,−3,−2(Lm−1) ∼= AKh1,−1,−2(Lm)⊕ F

(b) AKh−1,−3,−2(Lm−1)⊕ F ∼= AKh0,−1,−2(Lm)

AKh0,−3,−2(Lm−1) ∼= AKh1,−1,−2(Lm)

The next thing to do is to apply the skein exact sequence repeatedly in order to express AKh∗(Lm)

in terms of AKh∗(L0). We start by noting that for (i− 1, j − 1, k) and (i, j − 1, k) not equal to

(0, 0, 0),(0, 2, 2) or (0,−2,−2) we obtain:

· · · −→ 0 −→ AKhi−m,j−2m,k(L0)
∼=−−−−→ AKhi,j,k(Lm) −→ 0 −→ · · ·

That is, AKh∗(Lm) contains the majority of AKh∗(L0) as a direct summand, but shifted in

(i, j, k) gradings by (m, 2m, 0). Further progress is hampered somewhat, since we do not know in

general the connecting homomorphisms γ, nor any speci�c homology groups. We note, however,

that we can substitute L0 for Lm−1 in the troublesome pieces of the exact sequence, which gives,

for example:

0 AKh−m,1−2m,0(L0) AKh0,1,0(Lm) F⊕2[0, 0, 0]

AKh−m+1,1−2m,0(L0) AKh1,1,0(Lm) 0

α β

γ

δ

We then observe that, since AKh∗ is always �nite dimensional, if we take a su�ciently large

m, AKh−m,1−2m,0(L0) and AKh−m+1,1−2m,0(L0) will be zero, which puts us in the case where

Im(γ) = 0. Overall, this means that adding an extra twist when m � 0 will simply add in a

four dimensional vector space � F⊕2[0, 1, 0] ⊕ F[0, 3, 2] ⊕ F[0,−1,−2] � and bump everything

else up by a grading shift of (1, 2, 0).

Example 4.2.19. Perhaps an example will make the admittedly rather intense collection of

sequences appear more illuminating. We will look at the single family of annular Sakuma knots

Um associated to the strongly invertible unknot (U , h0), which are depicted in Figure 4.3. Using

results obtained from AKh.m, a Mathematica program written by the author, we claim that

AKh∗(Lm) can be expressed as follows:

We will prove the claim by induction. When m = 1 the claim holds by a direct calculation.

Assume it holds for m = m′. Now take m = m′ + 1. From the discussion above we know that
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m

Figure 4.3: Diagram for Um

q\s 0 1 2 · · · · · · m− 1 m

−1 t−2

1 2 t−2

3 t2 2
. . .

5 t2
. . . . . .

...
. . . . . .

...
. . . t−2

2m− 1 1

2m+ 1 t2 1

Table 4.1: Annular Khovanov homologies for Um, m > 0

for (i− 1, j− 1, k) and (i, j− 1, k) not equal to (0, 0, 0),(0, 2, 2) or (0,−2,−2) it must be the case

that AKhi−1,j−2,k(Lm′) ∼= AKhi,j,k(Lm′+1). In these three awkward cases we use the inductive

hypothesis, which leaves us with Im(γ) = 0 each time. The claim therefore holds for m = m′+ 1

too, and so it holds for all m > 0.

Returning to the general situation, we will brie�y mention the case when m < 0. The details are

very similar to the m > 0 case, so we will spare the sanity of the reader and jump straight to

the key points. For a negative crossing , the 0-smoothing is and the 1-smoothing is . The

skein exact sequence in this case has general form:

· · · AKhi,j+1,k(L̂m+1) AKhi,j,k(Lm) AKhi+1,j+2,k(Lm+1)

AKhi+1,j+1,k(L̂m+1) AKhi+1,j,k(Lm) AKhi+2,j+2,k(Lm+1) · · ·δ

For (i, j + 1, k) and (i+ 1, j + 1, k) not equal to (0, 0, 0), (0, 2, 2) or (0,−2,−2) we obtain:

· · · −→ 0 −→ AKhi,j,k(Lm)
∼=−−−−→ AKhi+1,j+2,k(Lm+1) −→ 0 −→ · · ·

1. Let (i+ 1, j + 1, k) equal (0, 0, 0). Im(δ) is either F⊕2, F or 0:

(a) AKh0,1,0(Lm+1) ∼= AKh−1,−1,0(Lm)
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AKh1,1,0(Lm+1)⊕ F⊕2 ∼= AKh0,−1,0(Lm)

(b) AKh0,1,0(Lm+1)⊕ F ∼= AKh−1,−1,0(Lm)

AKh1,1,0(Lm+1) ∼= AKh0,−1,0(Lm)⊕ F

(c) AKh0,1,0(Lm+1) ∼= AKh−1,−1,0(Lm)⊕ F⊕2

AKh1,1,0(Lm+1) ∼= AKh0,−1,0(Lm)

2. Let (i+ 1, j + 1, k) equal (0, 2, 2). Im(δ) is either F or 0:

(a) AKh0,3,2(Lm+1) ∼= AKh−1,1,2(Lm)

AKh1,3,2(Lm+1)⊕ F ∼= AKh0,1,2(Lm)

(b) AKh0,3,2(Lm+1) ∼= AKh−1,1,2(Lm)⊕ F

AKh1,3,2(Lm+1) ∼= AKh0,1,2(Lm)

3. Let (i+ 1, j + 1, k) equal (0,−2,−2). Im(δ) is either F or 0:

(a) AKh0,−1,−2(Lm+1) ∼= AKh−1,−3,−2(Lm)

AKh1,−1,−2(Lm+1)⊕ F ∼= AKh0,−3,−2(Lm)

(b) AKh0,−1,−2(Lm+1) ∼= AKh−1,−3,−2(Lm)⊕ F

AKh1,−1,−2(Lm+1) ∼= AKh0,−3,−2(Lm)

Example 4.2.20. We will �nish o� the previous example by determining AKh∗(Lm) when

m < 0. Using another induction argument we obtain the following table:

q\s m m+ 1 m+ 2 · · · · · · −1 0

2m− 1 1 t−2

2m+ 1 1 t−2

2m+ 3 t2 2
. . .

2m+ 5 t2
. . . . . .

...
. . . . . . t−2

...
. . . 2 t−2

−1 t2 2

1 t2

Table 4.2: Annular Khovanov homologies for Um, m < 0

4.2.7 Framed unknot detection

Next, we will apply the skein exact sequence for annular Khovanov homology to the problem of

unknot detection. Thanks to Corollary 4.2.18 we know that that annular Khovanov homology
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detects the 0-framed strongly invertible unknot, but can we do any better? That is, can AKh

detect any more of the framed strongly invertible unknots?

For a general annular Sakuma knot Lm (either Lm or Bm), with, say m > 0, recall that the skein

exact sequence tells us that adding an extra positive twist bumps the majority of the terms up

by a grading shift of (1, 2, 0). This means that the basis element of AKh∗(Lm) with the highest

i grading is not contained in AKh∗(Lm−1), so annular Khovanov homology distinguishes every

Lm for m > 0 (similarly, it distinguishes every Lm for m < 0).

We recall a classical result from homological algebra known as the Five lemma ( [78, Exer-

cise 8.52]).

The Five Lemma. Consider the commutative diagram of abelian groups, and suppose each row

is an exact sequence:

A B C D E

A′ B′ C ′ D′ E′

f

l

g

m

h

n

j

p q

r s t u

Suppose that m and p are isomorphisms, l is an epimorphism, and q is a monomorphism. Then

n is an isomorphism.

Next comes the result:

Theorem 4.2.21. Let DLm and DUn be two families of diagrams associated to a family of annular

Sakuma knots Lm and the family of annular Sakuma knots Un associated to the strongly invertible

unknot. Suppose that AKh∗(Lm) ∼= AKh∗(Un), then Lm ∼= Un.

Proof. We will prove the result for n ≥ 0 using induction. The proof for n ≤ 0 runs in exactly

the same way, but the skein exact sequences are slightly di�erent.

First, let n ≥ 0.

When n = 0, if AKh∗(Lm) ∼= AKh∗(U0) then Corollary 4.2.18 tells us that Lm ∼= U0, so the

statement holds for the base case.

Suppose that the statement holds for n = x, that is, AKh∗(Lm) ∼= AKh∗(Ux) implies that

Lm ∼= Ux. For n = x+1 we apply the skein exact sequence on bothDLm andDUx+1 simultaneously,

which produces the following diagram:

···→AKhi,j+2,k(Lm+1) AKhi,j+1,k(L̂m) AKhi,j,k(Lm) AKhi+1,j+2,k(Lm+1) AKhi+1,j+1,k(L̂m)→···

···→AKhi,j+2,k(Ux+1) AKhi,j+1,k(Ûx) AKhi,j,k(Ux) AKhi+1,j+2,k(Ux+1) AKhi+1,j+1,k(Ûx)→···

a b c d e

We immediately note that b and e are isomorphisms, since L̂m ∼= Ûx. Now, suppose that

AKh∗(Lm+1) ∼= AKh∗(Ux+1), so in particular a and d are also isomorphisms. Then the Five
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Lemma tell us c is an isomorphism too, and by the inductive hypothesis we have Lm ∼= Ux.
Therefore, Lm+1

∼= Ux+1 and the statement holds for n = x+1. Hence, it holds for all n ≥ 0.

The above theorem tells us that annular Khovanov homology is a powerful tool, capable of

detecting all framings on the strongly invertible unknot.

4.3 Watson's κ and its annular sidekick

The purpose of this section is to introduce an additional Khovanov-style invariant of strongly

invertible knots, κ, which was �rst de�ned by Watson [92]. As we shall see, κ takes the form

of a Z graded, �nite-dimensional vector space, and is extracted from the Khovanov homologies

of the family of links obtained by closing up a representative of a Watson tangle. Watson's mo-

tivation when de�ning κ was to develop further applications of the graded information present

in Khovanov homology. In recent years structural properties of Khovanov homology have given

rise to a number of results of interest to the wider �eld of low-dimensional topology � for in-

stance, Rasmussen's proof of the Milnor conjecture using the s invariant [73], or Kronheimer and

Mrowka's proof that Khovanov homology detects the unknot [47]. Moreover, in the two afore-

mentioned instances the structure exploited is not present in the Jones polynomial � which gives

strong justi�cation for studying the inner workings of Khovanov homology over its polynomial

sibling.

Interestingly, Watson's κ di�ers from the invariants we have encountered thus far, as it is de-

�ned only on strongly invertible knots, with no alterations coming from a change of framing.

On the other hand, its construction from a collection of Khovanov homology groups means it

inherits many desirable qualities from Khovanov homology, namely, that of unknot detection and

sensitivity to cheirality.

We then will bring Watson's ideas to bear on annular Sakuma knots. It turns out that a similar

methodology can be applied to the collection of annular Sakuma knots we obtain from a strongly

invertible knot, and in particular a κ-like vector space can be obtained from their annular Kho-

vanov homologies, which we will denote by κA. Just as annular Khovanov homology has an

additional grading coming from the annular data, so too does κA � it is in particular a Z ⊕ Z
graded vector space. We have been unable to successfully prove κA is an invariant of strongly

invertible knots, and only conjecture that it is.

4.3.1 Inverse and direct limits

The vector spaces κ and κA depend on some additional tools from homological algebra, which

we will now detail. The key reference for this section is Rotman's textbook [78, Chapter 7].

The twin concepts we will utilise are inverse limits and direct limits. They are calculated from

inverse systems and direct systems, which informally are collections of R-modules, which are

indexed, along with a collection of maps between them; in inverse systems the maps always lower

the indexing, and in direct systems they always raise them. The two limits should be thought
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of as constructions which, in a sense, `glue' the R-modules in the relevent system together.

More speci�cally, the inverse limit generalises intersections; whilst the direct limit generalises

unions.

Let's make the above more precise.

De�nition 4.3.1. Let I be a partially ordered set, Ai be an I-indexed family of R-modules, and

fi,j be a family of R-module maps for all i ≥ j such that:

1. fi,i is the identity of Ai for all i ∈ I

2. fi,k = fj,kfi,j for all i ≥ j ≥ k.

The pair {Ai, fi,j} is called an inverse system over I.

If we are given an inverse system we can form the inverse limit.

De�nition 4.3.2. Let {Ai, fi,j} be an inverse system of R-modules over a partially ordered set

I. The inverse limit consists of a pair (Ai←−, αi), where Ai←− is an R-module and {αi : Ai←−→ Ai} is a
family of R-module maps such that:

1. fi,jαi = αj whenever i ≥ j

2. For every pair (X, ιi) such that ιi : X → Ai and fi,jιi = ιj for all i ≥ j there exists a unique
map σ : X → Ai←− such that the following diagram commutes:

X

Ai←−

· · · Ai Aj · · ·

σ

ιi

ιj

αi

αj

fi,j

For explicit calculations the above de�nition is not particularly useful. However, it is possible to

describe the inverse limit more concretely. The proof of the next result appears in Rotman [78,

Proposition 7.90].

Proposition 4.3.3. The inverse limit of any inverse system {Ai, fi,j} of R-modules over a par-

tially ordered set I exists. Furthermore, let pi be the projection of the direct product
∏
iAi to Ai

and L be the submodule of
∏
iAi given by

L = {a ∈
∏
i

Ai : aj = fi,j(ai) ∀i ≥ j}.

Then the direct limit can be expressed as (L,αi), where αi = pi|L.

In other words, an element of the inverse limit can be viewed as a sequence of elements, one from
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each Ai, such that for all i ≥ j, aj = fi,j(ai).

Next, we formally de�ne direct systems and direct limits. Although similar in appearance to

inverse systems and limits, there are a few key di�erences in their construction.

De�nition 4.3.4. Let I be a partially ordered set, Bi be an I-indexed family of R-modules, and

gi,j be a family of R-module maps for all i ≤ j such that:

1. gi,i is the identity of Bi for all i ∈ Z

2. gi,k = gj,kgi,j for all i ≤ j ≤ k.

The pair {Bi, gi,j} is called a direct system over I.

De�nition 4.3.5. Let {Bi, gi,j} be a direct system of R-modules over a partially ordered set I.

The direct limit consists of a pair (Bi−→, βi), where Bi−→ is an R-module and {βi : Bi → Bi−→, i ∈ Z} is
a family of R-module maps such that:

1. βjgi,j = βi whenever i ≤ j

2. For every pair (Y, φi) such that φi : Bi → Y and φi = φjgi,j for all i ≤ j there exists a

unique map ζ : Bi−→→ Y such that the following diagram commutes:

Y

Bi−→

· · · Bi Bj · · ·

ζ

βi

φi

gi,j

φj

βj

As Rotman notes, the notation for a direct limit is somewhat de�cient as it does not detail

the maps of the corresponding direct system, which do a�ect the direct limit. However, this is

standard notational practice.

As for inverse limits, the above de�nition is not particularly useful when we are required to make

an explicit calculation. However, it is possible to describe the direct limit in a few alternative

ways. The next result appears in Rotman [78, Proposition 7.94].

Proposition 4.3.6. The direct limit of any direct system {Bi, gi,j} of R-modules over a partially

ordered index set I exists. Furthermore, let λi be the injection of Bi into the sum
⊕

iBi and S

be the submodule of
⊕

iBi generated by all elements of the form λj(fi,j(bi)) − λi(bi). Then the

direct limit can be expressed as (Bi−→, βi), where

Bi−→
∼=
⊕
i

Bi/S
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and βi : bi 7→ λi(bi) + S.

Alternatively, we can use the above result to view the direct limit in terms of an equivalence

relation. Namely,

Bi−→
∼=
⊕
i

Bi/ ∼

where bi ∼ bj if there exists a k such that gi,k(bi) = gj,k(bj), and βi : bi 7→ [bi]∼.

We will also require some extra theory regarding the relationship between direct limits and short

exact sequences. Firstly, we introduce a method of relating two direct systems over the same

index set.

De�nition 4.3.7. Let {Ai, fi,j} and {Bi, gi,j} be direct systems over the same index set I. A

transformation r : {Ai, fi,j} → {Bi, gi,j} is an indexed family of maps

r = {ri : Ai → Bi}

such that the following diagram commutes for all i ≤ j:

Ai Aj

Bi Bj

ri

fi,j

rj

gi,j

A transformation r : {Ai, fi,j} → {Bi, gi,j} induces a map r−→ : Ai−→ → Bi−→. We will not explicitly

de�ne this induced map, but the details can be found in Rotman.

De�nition 4.3.8. Let I be a partially ordered set. We say I is directed if for every pair i, j ∈ I
there exists a k ∈ I such that i ≤ k and j ≤ k.

In the case where the index set is directed the direct limit preserves short exact sequences. The

following result appears in Rotman [78, Proposition 7.100].

Proposition 4.3.9. Let I be a directed set, and let {Ai, fi,j}, {Bi, gi,j}, and {Ci, hi,j} be direct

systems over I. If r : {Ai, fi,j} → {Bi, gi,j} and s : {Bi, gi,j} → {Ci, hi,j} are transformations,

and if

0→ Ai
ri−→ Bi

si−→ Ci → 0

is exact for all i ∈ I, then there is a short exact sequence

0→ Ai−→→ Bi−→→ Ci−→→ 0.
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4.3.2 κ invariant

We now come to Watson's construction of the κ invariant. All proofs of the results in this section

can be found in Watson's paper [92].

To calculate κ we begin by taking a strongly invertible knot (K,h) and constructing its Watson

tangle T . We then �x a diagram DT and consider the collection of link diagrams DT (m) obtained

by closing DT with various amounts of extra twists. Depict DT as in Figure 2.8 and orient both

strands in the same direction, from I × {0} to I × {1}. This choice of orientation means that

is a positive crossing � note that this is di�erent to the situation we had in the previous

chapter with annular Sakuma knots, as there the strands in the smoothed crossing were oriented

in opposite directions.

Next, we calculate the reduced Khovanov homologies of each T (m) over Z/2Z, and apply the

skein exact sequence form > 0 when is smoothed. The 0-smoothing is simply DT (m−1), and

the 1-smoothing is equivalent to the two-component unlink DT ( 1
0
) we get when joining the end

points in I×{0} together and the end points in I×{1} together; we will denote this link diagram
by DX(m−1). Observe that DX(m−1) does not inherit the orientation from DT (m−1).

Suppose there are n− negative crossings in DT (m) with a braid-like orientation on the strands

and cT negative crossings when the orientation on one strand is reversed. The value of c, the

number of negative crossings in DX(m−1) minus the number in DT (m), is

c = (cT +m− 1)− n−

and the long exact sequence is:

· · · K̃h
i−c−1,j−3c−2

(X(m− 1)) K̃h
i,j

(T (m)) K̃h
i,j−1

(T (m− 1))

K̃h
i,j−2

(X(m− 1)) K̃h
i+1,j

(T (m)) K̃h
i+1,j−1

(T (m− 1)) · · ·

fm

fm

Now we will do the case when m is negative. This time we smooth , which has 0-smoothing

and 1-smoothing . The value of c′ is

c′ = cT − (n− +m)

and the long exact sequence is:

· · · K̃h
i,j+1

(T (m+ 1)) K̃h
i,j

(T (m)) K̃h
i−c′,j−3c′−1

(X(m+ 1))

K̃h
i+1,j+1

(T (m+ 1)) K̃h
i+1,j

(T (m)) K̃h
i−c′+1,j−3c′−1

(X(m+ 1)) · · ·

fm+1

fm+1

We extract from the skein exact sequence an inverse system of Z/2Z vector spaces over Z. Set

Am = K̃h
∗
(T (m)), and fm : K̃h

∗
(T (m))→ K̃h

∗
(T (m− 1)) for m ∈ Z. The collection of groups
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and maps {Am, fm} forms an inverse system � the map fm,n is de�ned to be the composition

fnfn+1 . . . fm−1fm. We note additionally that the maps fm preserve the homological grading,

and so the inverse system is Z graded.

We then form the inverse limit of this inverse system, and denote the underlying vector space

by Kh←−(T ). Watson proves that this vector space is an invariant of the Watson tangle [92,

Proposition 4], and hence of its strongly invertible knot (K,h).

Proposition 4.3.10 (Watson, 2014). The vector space Kh←−(T ) is a Z graded invariant of the

sutured tangle T , up to isomorphism.

Unfortunately, it turns out that Kh←−(T ) is not in general �nite-dimensional. To remedy this

Watson de�nes the κ invariant as follows:

De�nition 4.3.11. Let (K,h) be a strongly invertible knot and Kh←−(T ) be as above. Consider

the subspace K ⊂ Kh←−(T ) consisting of all sequences a such that ai = 0 for i � 0. Denote the

quotient of Kh←−(T )/K by κ(K,h).

Watson then proves that κ(K,h) is a �nite dimensional vector space, and is also an invariant of

strong inversions [92, Proposition 11].

Proposition 4.3.12 (Watson, 2014). The vector space κ(K,h) is a �nite dimensional Z graded

invariant of the strongly invertible knot (K,h), up to isomorphism.

Remark. We should re-emphasise at this point that κ does not depend at all on longitudes

framings of (K,h), since they are all subsumed within its de�nition � it is therefore an honest

invariant of strongly invertible knots.

Due to the Khovanov-style nature of κ it is natural to ask whether it carries the usual properties

of unknot detection and sensitivity to cheirality.

Theorem 4.3.13 (Watson, 2014). Let (K,h) be a strongly invertible knot. Then κ(K,h) = 0 if

and only if K is the unknot.

Proposition 4.3.14 (Watson, 2014). Let (K,h) be a strongly invertible knot, and consider its

strongly invertible mirror (K,h). Then κi(K,h) ∼= κ−i(K,h).

Example 4.3.15. Let (K,h) be the right-handed trefoil with its unique strong inversion. Watson

calculates κ(K,h):

κ(K,h) ∼= Z/2Z[−5]⊕ Z/2Z[−3]⊕ Z/2Z[−2]⊕ Z/2Z[0].

Hence, we obtain the following for the strongly invertible mirror:

κ(K,h) ∼= Z/2Z[0]⊕ Z/2Z[2]⊕ Z/2Z[3]⊕ Z/2Z[5].

As a consequence of Proposition 4.3.14 and [79, Proposition 3.4], in certain cases κ is palin-

dromic.
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Corollary 4.3.16 (Watson, 2014). Let K be an amphicheiral knot and suppose that h is a unique

strong inversion on K. Then (K,h) ∼= (K,h) and so κi(K,h) ∼= κ−i(K,h).

4.3.3 κA invariant

Now we turn our attention back to the annular setting, and examine the families of annular

Sakuma knots obtained by changing the framing of the longitudes in Sakuma's construction.

As we did in Chapter 3, we construct a family of annular Sakuma knots and �x a family of

diagrams for them, which we denote DLm . As the members of DLm are related by the skein

exact sequence in their annular Khovanov homologies, we �nd ourselves in a similar situation to

Watson.

We reproduce the annular skein exact sequences once more:

For m > 0:

· · · AKhi−1,j−2,k(Lm−1) AKhi,j,k(Lm) AKhi,j−1,k(L̂m−1)

AKhi,j−2,k(Lm−1) AKhi+1,j,k(Lm) AKhi+1,j−1,k(L̂m−1) · · ·

gm−1

gm−1

For m < 0:

· · · AKhi,j+1,k(L̂m+1) AKhi,j,k(Lm) AKhi+1,j+2,k(Lm+1)

AKhi+1,j+1,k(L̂m+1) AKhi+1,j,k(Lm) AKhi+2,j+2,k(Lm+1) · · ·

gm

gm

Now set Bm = AKh∗(Lm) and let gm : AKh∗(Lm) → AKh∗(Lm+1) be the map from the skein

exact sequence. We observe that the pair {Bm, gm} forms a direct system of F vector spaces over

Z � the map gm,n is simply de�ned to be the composition gngn−1 . . . gm+1gm.

We note that this time the gm maps do not preserve the i grading. We therefore de�ne a new Z
grading r � for a basis element x ∈ AKh∗(Lm) we set

r(x) = 2i(x)− j(x)

and observe that this grading is preserved by the gm maps. The r grading records the diagonal

a basis element lies in in the s/q plots we have been using to record AKh, and thus should be

thought of as the counterpart of the δ grading Watson uses in [92]. This diagonal grading is

a standard viewpoint from which to study Khovanov homology; see for example work of Shu-

makovitch [84]. We note additionally that the k grading is also preserved by the maps gm, and

so the direct system is Z ⊕ Z graded � if we wish to emphasise this information we will write

{Br,k
m , gm}.

In general we do not know the precise values for the gm maps. However, by using the analysis
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of the skein exact sequence we provided earlier, we �nd that they are either an isomorphism, a

surjection, or an injection. Moreover, there are only a few options for what their kernels and

images can be. Namely, a gm map is exactly one of the following:

1. Isomorphism

2. Surjection with kernel F

3. Surjection with kernel F⊕ F

4. Injection with cokernel F

5. Injection with cokernel F⊕ F

As a result, if we know what Br,k
m and Br,k

m+1 are then the value of dim(Br,k
m+1)−dim(Br,k

m ), which

will be one of {−2,−1, 0, 1, 2}, tells us exactly which one of the �ve options gm is.

In certain circumstances we require even less information to determine gm.

Lemma 4.3.17. Let gm : Br,k
m → Br,k

m+1 be as above.

• For r /∈ {±1,±3} gm is an isomorphism.

• For k /∈ {0,±2} gm is an isomorphism.

Proof. Recall that for m > 0 and (i − 1, j − 1, k), (i, j − 1, k) not equal to (0, 0, 0),(0, 2, 2)

or (0,−2,−2); and for m < 0 and (i, j + 1, k), (i + 1, j + 1, k) not equal to (0, 0, 0), (0, 2, 2)

or (0,−2,−2) the exact sequence simpli�es and gm is an isomorphism. In other words, for

r /∈ {±1,±3} and for k /∈ {0,±2} gm is an isomorphism.

We next form the direct limit of {Bm, gm}, which we denote (AKh−−−→, βm). In all that follows we

will view the direct limit as

AKh−−−→
∼=
⊕
m∈Z

Bm/ ∼

where bm ∼ bn if there exists an x ∈ Z such that gm,x(bm) = gn,x(bn), and βm : bm 7→ [bm]∼.

Since the gm maps preserve the Z⊕Z grading it is immediate that the vector space AKh−−−→ is also

Z⊕ Z graded.

Conjecture. Let (K,h) be a strongly invertible knot. The vector space AKh−−−→ is a Z ⊕ Z graded

invariant of (K,h).

The author suspects that the above result is true, but has been unable to prove it success-

fully.

We �nd that, as Watson did for his invariant, AKh−−−→ is not �nite dimensional. This is because

adding an extra twist when m � 0 simply adds a four dimensional vector space to Bm, namely

F⊕2[−1, 0]⊕ F[−3, 2]⊕ F[1,−2]. These new generators will be representatives of distinct equiva-

lence classes, which will not have any representatives in any of the previous Br,k
m . This observation

motivates our de�nition for κA.
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De�nition 4.3.18. Let (K,h) be a strongly invertible knot with direct system {Bm, gm} and
direct limit (AKh−−−→, βm) as above. De�ne κA as follows:

κA(K,h) := {[b] ∈ AKh−−−→ : [b] ∈ Im(βm) ∀m ∈ Z}

Said another way, κA is all the equivalence classes in the direct limit with a non-zero representative

in every Bm. When we need to specify which family of annular knots we are calculating with, we

will write κA(K,h,B) or κA(K,h,L).

Conjecture. The vector space κA(K,h) is a �nite dimensional Z⊕Z graded invariant of strongly

invertible knots. In particular,

dim(κA) ≤ min
m∈Z

dim(Bm).

Although we have not been able to prove κA is an invariant, we will show that it is �nite

dimensional. Recall that βm sends each bm ∈ Bm to its equivalence class [bm]. Therefore, since

every Bm is a �nite dimensional vector space it follows that the images of the βm maps are also

�nite dimensional. As κA cannot contain any more distinct equivalence classes than those in the

image of a βm, we have dim(κA) ≤ dim(Bm) for every m ∈ Z and the result follows.

Remark. Like κ, κA has the framing information from the strongly invertible knot subsumed

into its construction. Philosophically, one way in which to view κA is as a construction which

determines the pieces common to all AKh(Lm) groups, ignoring generators which are added or

removed as m increases.

In order to determine κA for an actual example, we express the AKh(Lm) groups for each value

of m in a table, where numerical entries stand for copies of F, and a power of t indicates the k

gradings of each copy of F. We do not explicitly include the gm maps in the table, however, as

we noted before, they are either isomorphisms, surjections, or injections, and their kernels and

images can be determined by calculating dim(Br,k
m+1)− dim(Br,k

m ).

As we know the gm maps are surjective, injective, or both, we know that a graded copy of F
in a row is either sent to a similarly graded copy of F in the row above, or is sent to 0. In the

�rst case, the two generators are in the same equivalence class in AKh−−−→; whilst in the second

the generator is equivalent to 0. As a consequence of these observations we can use the table to

view the equivalence classes in AKh−−−→ � the `path' a generator takes through the table, that is,

its collection of its images under the gm maps, represents an equivalence class. It is important

to note, however, that the same equivalence class can represented by multiple paths, as multiple

generators in the same Br,k
m might be equivalent. In particular, in order to determine κA from

the table we look for equivalence classes with a representative in every Bm � in other words, for

graded copies of F which are present in every row.

Example 4.3.19. Take the strongly invertible unknot (U , h0), and let Um be its single family

of annular Sakuma knots. From Examples 4.2.19 and 4.2.20 we know the annular Khovanov

homology groups for every Um, and we display a few of them in a section of the table.
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Bm\r −3 −1 1 3

...
B2 2t2 4 2t−2 0
B1 t2 2 t−2 0
B0 0 1 1 0
B−1 0 t2 2 t−2

B−2 0 2t2 4 2t−2

...

Table 4.3: Annular Khovanov homologies comprising κA(U , h)

Examining the table, we see there are no graded copies of Q which are present in every row.

Hence, there are no equivalence classes in AKh−−−→ with a non-zero representative in every Bm, and

so κA(U , h0) = 0.

Remark. Recall the spectral sequence from AKh to Kh obtained by taking homology with

respect to the remaining piece of the Khovanov di�erential ∂−2. As every annular Sakuma knot

is unknotted in S3 we can observe for each m how Bm collapses to something 2-dimensional. The

Khovanov homology of the unknot has r gradings ±1, and so after running the spectral sequence

there must be a generator remaining in the r = 1 column, and one in the r = −1 columnn. Also,

deg(∂−2) = (1, 0,−2), so ∂−2 raises the r grading by 2. Using these two pieces of information we

can see the action of ∂−2 on the AKh generators in each row: in general it takes a power of tk in

column r, and sends it to a power of tk−2 in column r + 2.

In the following two examples the tabulated annular Khovanov homologies were calculated by

AKh.m � we then conjecture that the Bm groups follow the pattern as suggested by the tab-

ulated groups. The results of the two examples, therefore, should only be taken as educated

guesses.

Example 4.3.20. Consider (31, h), the trefoil with its unique strong inversion. Form the various

Sakuma links L = B ∪ L and consider the family of `branch-set' annular Sakuma knots Bm
depicted in Figure 4.4. The annular Khovanov homologies of a selection of Bm are outlined in

the table below � for values of m outside those tabulated we conjecture that the values of Bm

m

Figure 4.4: `Branch-set' annular Sakuma knots associated to (31, h)
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continue as suggested by the table.

Bm\r −3 −1 1 3

...
B5 3t2 4t2 + 6 8 + 3t−2 4t−2

B4 2t2 4t2 + 4 8 + 2t−2 4t−2

B3 t2 4t2 + 2 8 + t−2 4t−2

B2 0 4t2 + 1 9 4t−2

B1 0 5t2 10 5t−2

B0 0 6t2 12 6t−2

B−1 0 7t2 14 7t−2

B−2 0 8t2 16 8t−2

...

Table 4.4: Annular Khovanov homologies comprising κA(31, h,B)

We can easily see which copies of Q are present in every row. Hence,

κA(31, h,B) ∼= Q⊕4[−1, 2]⊕Q⊕8[1, 0]⊕Q⊕4[3,−2].

Example 4.3.21. We also calculate κA(31, h,L), where the family Lm is depicted in Figure 4.5.

As before, for values of m outside those tabulated we conjecture that the values of Bm continue

as suggested by the table.

Bm\r −5 −3 −1 1 3

...
B3 2t4 9t2 2t2 + 14 4 + 9t−2 2t−2 + 2t−4

B2 2t4 8t2 2t2 + 12 4 + 8t−2 2t−2 + 2t−4

B1 2t4 7t2 2t2 + 10 4 + 7t−2 2t−2 + 2t−4

B0 2t4 6t2 2t2 + 9 5 + 6t−2 2t−2 + 2t−4

B−1 2t4 6t2 3t2 + 8 6 + 6t−2 3t−2 + 2t−4

B−2 2t4 6t2 4t2 + 8 8 + 6t−2 4t−2 + 2t−4

...

Table 4.5: Annular Khovanov homologies comprising κA(31, h,L)

Interestingly, in this example we have higher k gradings appearing, as well as an extra r grading.

Lemma 4.3.17 tells us that gm is an isomorphism on those Br,k
m , and so the equivalence classes of

AKh−−−→ with these gradings must be in κA. Once more, we read o� the values of κA:

κA(31, h,L) ∼= Q⊕2[−5, 4]⊕Q⊕6[−3, 2]⊕Q⊕8[−1, 0]⊕Q⊕2[−1, 2]⊕
Q⊕6[1,−2]⊕Q⊕4[1, 0]⊕Q⊕2[3,−2]⊕Q⊕2[3,−4]

We conclude this section by touching upon some interesting properties of κA.

First we consider the e�ect of κA on strongly invertible mirrors. Due to the construction of κA
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m

Figure 4.5: `Longitude' annular Sakuma knots associated to (31, h)

from the direct limit of annular Khovanov homology groups, we should expect κA to behave in

a similar fashion on the mirror images of a family of annular Sakuma links. We conjecture the

following result, which is simply Proposition 4.3.14 adapted for κA.

Conjecture. Let (K,h) be a strongly invertible knot, and consider its strongly invertible mirror

(K,h). Then κr,k(K,h) ∼= κ−r,−k(K,h).

An immediate corollary of the above conjecture concerns amphicheiral strongly invertible knots

with a unique strong inversion; the following is simply Corollary 4.3.16 for κA.

Conjecture. Let K be an amphicheiral knot, and suppose that h is a unique strong inversion on

K. Then (K,h) ∼= (K,h) and so κr,kA (K,h) ∼= κ−r,−kA (K,h) for all r, k.

For the remainder of the section we shall assume that κA is an invariant of strongly invertible

knots, and will end with yet another unknot detection proof. Due to its close relationship with κ,
we would expect κA to also be able to detect the strongly invertible unknot (U , h0) � this turns

out to indeed be the case. Before we state the proof we require a few supporting results.

Corollary 4.3.22. Let (K,h) be a strongly invertible knot and Lm be a family of annular Sakuma

knots. Suppose that κA(K,h, L) = 0. Then for all Br,k
m the r gradings are supported only in

r ∈ {±1,±3}, and the k gradings are supported only for k ∈ {0,±2}.

Proof. This follows from Lemma 4.3.17. We know that forBr,k
m with r /∈ {±1,±3} and k /∈ {0,±2}

the gm maps are isomorphisms. Hence, any generator of a Br,k
m with r /∈ {±1,±3} or k /∈ {0,±2}

is present in all rows of our table, and hence represents a non-zero element of κA(K,h, L). But

now we have a contradiction, and so there can be so such generators in any Br,k
m .

Lemma 4.3.23. Let L be an annular Sakuma knot, and let x be a generator of AKh∗(L) with

gradings (r, k) where k is non-zero. Then there is a generator x′ with gradings (r + 2k,−k).

Proof. On the level of chain complexes, a generator x of the annular Khovanov chain complex can

be paired with another generator x′, which we de�ne to be the generator obtained by swapping

all v+s for v−s and w+s for w−s, and vice versa. Suppose x has k grading κ; then x′ has k grading
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−κ. We note that the i gradings of x and x′ are the same, and their j gradings di�er by 2κ.

Hence, their r gradings di�er by −2κ.

Now, we claim if x is a representative of a homology class of AKh, then so is x′. By considering

the ∂0 piece of the Khovanov di�erential (4.9), we see that if a basis element is in the kernel of

∂0 and we change a w+ to a w− or vice versa the resulting element is also in the kernel. Hence,

if x ∈ Ker(∂0), then so is x′. Furthermore, we see also that if x is not in the image of ∂0, then

neither is x′. Therefore, if x is a representative of a homology class, then so is x′.

Theorem 4.3.24. Let (K,h) be a strongly invertible knot and Lm be a family of annular Sakuma

knots. Suppose κA(K,h, L) = 0. Then Lm = Um, and therefore (K,h) ∼= (U , h0).

Proof. We start by applying Lemma 4.3.22, so we know that the r gradings of the Br,k
m are

supported only for r ∈ {±1,±3}, and the k gradings are only supported for k ∈ {0,±2}.

Next we claim that there are no generators in any Bm with (r, k) gradings (3, 0) or (−3, 0). If

there were there would have to be generators with gradings (5,−2) and (−5, 2) in order for Bm
to collapse to the Khovanov homology of the unknot in S3, but we have shown there are no

such r gradings permissable. For similar reasons, there are no generators with gradings (3, 2) or

(−3,−2).

We next turn to the skein exact sequence. We restate, in our new notation, the two options for

the relationships between B1,−2
m−1 and B

1,−2
m and B3,−2

m−1 and B
3,−2
m .

1. B1,−2
m−1

∼= B1,−2
m

B3,−2
m−1

∼= B3,−2
m ⊕ F

2. B1,−2
m−1 ⊕ F ∼= B1,−2

m

B3,−2
m−1

∼= B3,−2
m

Now, as κA(K,h, L) = 0, there must be an M ∈ Z for which B3,−2
M is zero for the �rst time, as

once B3,−2
m becomes 0 it must stay 0 forever. That is, B3,−2

m is zero for all m ≥M and is non-zero

for all m < M . This puts us in the second of the above options, and so the dimension of B1,−2
m

must therefore increase by 1 for every m ≥M .

Next, we note that dim(B3,−2
M−1) − dim(B3,−2

M ) = 1. If not then B3,−2
m must be zero for all m,

which means that B1,−2
m must be non-zero for all m, and we have non-zero elements of κA. As a

result, we are in the �rst of the above options, and so dim(B1,−2
M−1)− dim(B1,−2

M ) = 0. Therefore,

in order for κA(K,h, L) to be zero, it must be the case that B1,−2
m = 0 for all m ≤M . Applying

Lemma 4.3.23 to the generators of BM then tells us that B−3,2M = 0 and B−1,2M = 0.

We now consider the generators of BM . We have just shown that there are no generators with

non-zero k gradings for BM , and hence, that there are no generators with r gradings ±3. Since

BM must collapse to the Khovanov homology of the unknot in S3 when the spectral sequence is
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applied, it has to be the case that BM ∼= F[1, 0]⊕F[−1, 0]. We then apply Theorem 4.2.17, which

tells us LM ∼= U0, and the result follows.

4.4 Tangle Khovanov homology

The �nal invariant of strongly invertible knots we will consider is yet another form of Khovanov

homology � this time for k-string sutured tangles. We will apply this invariant to the pair of

tangles we obtain from each strongly invertible knot: the Sakuma tangle and the Watson tangle.

In this section we set our base �eld F to be Z/2Z.

4.4.1 Construction

Tangle Khovanov homology was �rst de�ned by Khovanov in [42]. Its initial construction follows

the spirit of Khovanov homology for knots and links in S3, but problems arise when we try and

obtain a chain complex from the cube of resolutions. We reproduce Bar-Natan's words in [10],

where he explains the problem, and Khovanov's response to it:

�...Khovanov homology theory does not lend itself naturally to an extension to tangles. In order

to de�ne the chain spaces ones needs to count the cycles in each smoothing, and this number

is not known unless all `ends' are closed, ie, unless the tangles is really a link...Khovanov solves

the problem by taking the chain space of a tangle to be the direct sum of all chain spaces of all

possible closures of that tangle".

Bar-Natan himself o�ers a di�erent approach, by working on the level of smoothings and cobor-

disms for as long as possible before moving to the world of vector spaces and vector space maps. In

order to avoid going deep into the necessary terminology, however, we will use another construc-

tion of tangle Khovanov homology provided by Grigsby and Wehrli in [22] speci�cally for k-string

sutured tangles. This is admittedly a restriction to a subclass of tangles, but for our purposes

this is all we need, since Sakuma tangles and Watson tangles are all members of this subclass.

Grigsby and Wehrli's approach results in an isomorphic theory to what Khovanov de�ned, but is

somewhat easier to grasp, and does not require the heavy algebraic machinery Khovanov wheels

out. Furthermore, it is closer in spirit to the way we have seen the various Khovanov homologies

de�ned thus far.

Begin by taking a sutured k-string tangle T = (D2×I, τ) and �xing an orientation and a diagram

for it with say, n crossings, which we denote DT ⊂ I × I. Next, number the crossings, and, just
as for knots and links, form a cube of smoothings for DT . We note that a general complete

smoothing Sα for α ∈ {0, 1}n is a collection of circles contained in I × I and intervals which

have their end points at {0, 1} × I. Suppose there are c circles and x intervals, and label them

T1, . . . Tc+x, so that T1, . . . Tc are the circles, and Tc+1, . . . Tc+x are the intervals. We say the

smoothing backtracks if there exists an interval Ti, c ≤ i ≤ c + x, such that ∂Ti ⊂ {0} × I or

{1} × I, that is, if at least one of the intervals starts and ends at the same end of I × I.
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Next, we attach to a smoothing a Z/2Z vector space V (Sα)

V (Sα) :=

{
0 if Sα backtracks

Λ∗(Z(Sα)) otherwise

}

Where Z(Sα) is a vector space generated by the circle components [T1], . . . , [Tc], and Λ∗(Z(Sα))

is the exterior algebra of Z(Sα). We identify Z(Sα) with the quotient

Z(Sα) = SpanZ/2Z([T1], . . . , [Tc+x])/[Tc+1] ∼ . . . ∼ [Tc+x] ∼ 0

which means the exterior algebra can simply be thought of as a polynomial algebra over Z/2Z
in formal variables [T1], . . . , [Tc] with the relations [Ti]

2 = 0 for i ≤ c and [Ti] = 0 for i > c. We

also write

Λ∗(Z(Sα)) = Λ0(Z(Sα))⊕ Λ1(Z(Sα))⊕ . . .⊕ Λc(Z(Sα)),

where Λ0(Z(Sα)) = Z/2Z, Λ1(Z(Sα)) = Z(Sα), and Λd(Z(Sα)) is generated by all possible

products of d generators of Z(Sα) (so there are
(
c
d

)
generators of Λd(Z(Sα)).

Before we de�ne the chain complex groups and maps we will mention the two gradings which are

placed on elements of the vector space V (Sα). Firstly we have the homological grading, which is

exactly the same in this setting as it was in the classical case for knots and links in S3. Namely,

given a element a ∈ V (Sα)

i(a) := −n− + |α|,

where n− is the number of negative crossings in DT , and |α| is the height of α (the number of 1

entries). Next is the quantum grading. Suppose that a ∈ Λd(Z(Sα)) ⊂ V (Sα), then:

j(a) := dimZ/2Z(Z(Sα))− 2d+ n+ − 2n− + |α|.

Remark. We keep with our conventions for the 0 and 1-smoothings, which are the opposite to

those used by Grigsby and Wehrli. Hence, we have swapped n+ and n− in the above de�nitions

from what they de�ne in [22].

Next, we de�ne some maps on the edges of our cube of smoothings. Just as before, an immediate

successor of a complete smoothing Sα is another complete smoothing Sα′ in which α′ is obtained

from α by replacing a single 0 entry with a 1 entry.

In the case where two circles Ti and Tj merge together we de�ne the merge map m to be com-

posite

V (Sα)
π−−→ V (Sα)/[Ti] ∼ [Tj ]

∼=−−→ V (Sα′).

When a circle splits into two, the split map ∆ is

V (Sα) −→ V (Sα′)/[Ti] ∼ [Tj ]
γ−−→ V (Sα′)

where γ(a) := ([Ti] + [Tj ])a.
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It turns out that the maps preserve this quantum grading, and raise the homological grading by

one (again, this is really a cohomological theory). The Tangle Khovanov homology of T is then

de�ned to be:

TKh∗(T ) ∼= H∗
(⊕

α

V (Sα), D
)
.

4.4.2 Spectral sequences

Next, we will mention some results regarding the relationship between tangle Khovanov homology

and some of the other invariants we've come across, with a particular emphasis on annular

Khovanov homology.

Firstly, Grigsby and Wehrli in [22, Proposition 5.20] prove the existence of a spectral sequence

from tangle Khovanov homology to the sutured Floer homology of the double branched cover of

D2 × I with branch set τ .

Theorem 4.4.1 (Grigsby-Wehrli, 2009). Let T = (D2×I, τ) be an k-string, sutured tangle. Then

there exists a spectral sequence which has E1 page TKh∗(T ), and E∞ page SFH(Σ(D2 × I, τ)).

This result is the analogue of their result for annular Khovanov homology and sutured Floer

homology (Theorem 4.2.8), and highlights the similarity between AKh and TKh. That they

should be connected at all should be intuitive for, if L ⊂ A× I is an annular link, we can obtain

a sutured tangle by cutting through A × I along a meridional disc and unfurling the result.

As we did for annular links, we will keep the exact nature of this spectral sequence, including

the gradings used for the �ltration, deliberately vague. That being said, we will remark that

once more the �ltered quasi-isomorphism type of the chain complex (recall De�nition 4.2.1). is

independent of the choice of diagram, and every page of the spectral sequence is an invariant of

T (see [24, Remark 3.9] for more information).

Expanding on the above comment, Grigsby and Wehrli have additionally proved a series of results

that show the spectral sequence between tangle Khovanov homology and sutured Floer homology

"behaves well under certain natural geometric operations" [24]. For a k-string sutured tangle T

and annular link L let F(T ) and F(L) denote the �ltered chain complexes featuring in the two

spectral sequences to sutured Floer homology. Grigsby and Wehrli then prove the following three

theorems; the �gures accompanying which are all taken from [24].

Theorem 4.4.2 (Grigsby-Wehrli, 2010). Let T = (D2 × I, τ) be a k-string sutured tangle, and

let T ′ be the tangle obtained from T by adjoining a trivial strand separated from τ by a properly-

embedded I-invariant disc F as in Figure 4.6. Then

F(T ) ' F(T ′).

That is, the �ltered chain complexes of T and T ′ are quasi-isomorphic.
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Figure 4.6: Adjoining a trivial strand to a k-string sutured tangle to form a k + 1-string sutured
tangle

Additionally, there is a relationship between the tangle Khovanov homology of two tangles and

that of the tangle formed by stacking them on top of one another:

Theorem 4.4.3 (Grigsby-Wehrli, 2010). Let Ti, i ∈ {1, 2} be two k-string sutured tangles, and

let T1 +T2 be any k-string tangle obtained by stacking a diagram of T1 on top of a diagram of T2,

as in Figure 4.7. Then

F(T1 + T2) ' F(T1)⊗F(T2).

Finally, Grigsby and Wehrli prove the following relationship between AKh and TKh:

Theorem 4.4.4 (Grigsby-Wehrli, 2010). Let L ⊂ A× I be an isotopy class representative of an

annular link with diagram DL, and let λ ⊂ A be a properly embedded oriented arc representing

a non-trivial element of H1(A, ∂A) such that λ intersects DL transversely. Let T = (D2 × I, τ)

be the k-string sutured tangle obtained by decomposing along the surface λ× I, endowed with the

product orientation.

Then the spectral sequence

TKh∗(T ) SFH(Σ(D2 × I, τ)

is a direct summand of the spectral sequence

AKh∗(L) SFH(Σ(A× I, L)).

That is, F(T ) is �ltered quasi-isomorphic to a direct summand of F(L). Furthermore, the direct

summand is trivial if there exists some L′ ⊂ A× I isotopic to L satisfying

|(λ× I) t L′| < |(λ× I) t L|.

Essentially, the above theorem states that by cutting A along a suitable ray λ, we obtain a digram

for a tangle whose tangle Khovanov homology is a direct summand of the annular Khovanov

homology of the annular link. If the link diagram is not one that realises the wrapping number

ω of L, then the direct summand is trivial.
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Figure 4.7: Stacking k-string sutured tangles

Figure 4.8: Cutting an annular link to obtain a k-string sutured tangle

4.4.3 Application to strongly invertible knots

We will end this chapter by applying tangle Khovanov homology to the two classes of tangles we

obtain from strongly invertible knots, using the constructions provided by Sakuma and Watson.

The following discussion barely even scratches the surface of the potential applications to the

theory of strongly invertible knots tangle Khovanov homology can have, however we hope to give

enough motivation from the couple of results we do prove to encourage further study.

We note that, since only one Sakuma tangle and Watson tangle arise from a strongly invertible

knot, their tangle Khovanov homologies are, like κ and κA, invariants which are not altered by

a change of framing.

First, let's examine the tangle Khovanov homology of the Sakuma tangles. Interestingly, Sakuma

tangles are, in a sense, `loose enough' for Grigsby and Wehrli's decomposition theorem to be

applied to the �ltered Khovanov chain complex.

Proposition 4.4.5. Let (K,h) be a non-trivial strongly invertible knot, and let T be a represen-

tative of the Sakuma tangle for (K,h). Let T ′ be the tangle in Figure 4.9. Then, F(T ) is �ltered
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Figure 4.9: A 2-string sutured tangle

quasi-isomorphic to F(T ′).

Proof. We will proof the result algorithmically, with our starting place the construction of T as

speci�ed in Chapter 1. See Figure 4.10 for an example of the following.

1. Begin by separating all pairs of parallel strands which run from D2×{0} to D2×{1} in T
from the rest of the tangle, removing any twists between the strands. Using Theorem 4.4.2,

they can all be removed from T to obtain a tangle T1 which has a quasi-isomorphic �ltered

complex F(T1).

2. We are then left with four strands which from the clasps around the hole in the braid-like

closure. Two of these start and end at the same side, and two start and end at di�erent

sides. Separate the two strands that start and end at di�erent sides and remove them.

This leaves us with a tangle equivalent to T ′, and Theorem 4.4.2 tells us F(T ) is �ltered

quasi-isomorphic to F(T ′) as required.

As a consequence of the above result we see that, for one thing, tangle Khovanov homology is

not a particularly useful invariant if we want to distinguish Sakuma tangles. Sakuma tangles

are simply not su�ciently `tangled' to give a wide enough range of vector spaces. Perhaps more

interesting, however, is the fact that the value of SFH(Σ(T )) must be the same for all Sakuma

tangles that do not arise from the trivial strongly invertible knot. This suggests a potential

relationship between the double branched covers of Sakuma tangles, which is interesting since we

do not have much geometric intuition about what the 3-manifold Σ(D2 × I, τ) is for a general

Sakuma tangle. We will say no more about this potential connection, simply remarking that this

may pose an interesting question for further study.

For Watson tangles, however, the geometric picture for the double branched cover is much clearer.

Given a representative of a Watson tangle T = (D2 × I, τ) we can simply reverse Watson's

construction. That is, the 3-manifold Σ(D2 × I, τ) is nothing more than the knot exterior of the

original strongly invertible knot. Suppose K ⊂ S3 is a knot which admits two distinct strong
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m

Figure 4.10: Decomposing a Sakuma tangle

inversions h1 and h2. Form the Watson tangles of (K,h1) and (K,h2), which we shall label

T1 and T2 respectively. We then note that TKh∗(T1) and TKh∗(K2) must both converge to

SFH(S3\N (K)), which means that, just as in the annular setting, by employing the spectral

sequence we lose all information about the strong inversions.

Our last result is, perhaps predictably, a �nal unknot detection result. We �rst state the following

theorem of Juhász, which can be found in [35, Proposition 9.2]:

Proposition 4.4.6 (Juhász, 2006). If Y is a closed connected oriented 3-manifold and L ⊂ Y is

an oriented link then

ĤFL(L) ∼= SFH (Y \N (L))⊗ Z/2Z.

If L is a knot then

ĤFK(Y,K) ∼= SFH (Y \N (K)) .

Now comes the �nal theorem:

Theorem 4.4.7. Let (K,h) be a strongly invertible knot, and let T(K,h) be its Watson tangle.

Suppose TKh∗(T(K,h)) ∼= TKh∗(T(U ,h0)), where T(U ,h0) is the Watson tangle associated to (U , h0).
Then (K,h) ∼= (U , h0).

Proof. Applying the Grigsby-Wehrli spectral sequence we obtain

SFH
(
Σ(T(K,h)

) ∼= SFH
(
Σ(T(U ,h0)

)
.

Next, we use the fact that Σ(T(K,h)) ∼= S3\N (K) along with Juhász's result

=⇒ SFH (Y \N (K)) ∼= SFH (Y \N (U))

=⇒ ĤFK(Y,K) ∼= ĤFK(Y,U).

But, we know that Knot Floer homology detects the unknot (see [65]), so K ∼= U and the result

follows.



Chapter 5

Conclusion

Over the course of this thesis applying Sakuma's construction has provided us with an increasingly

large number of invariants of strongly invertible knots. It seems necessary, therefore, to conclude

with a summary of the di�erent invariants we have de�ned, and discuss some potential directions

for further study.

5.1 Executive summary

Initially we had two invariants of strongly invertible knots: the η-polynomial, and κ. To these we
have added �ve more: the Jones polynomial, the annular Jones polynomial, Khovanov homology,

annular Khovanov homology, and tangle Khovanov homology. We have also conjectured a sixth:

κA.

The main distinction between the invariants is whether they take the form of a polynomial or a

homology theory. Traditionally, since categori�ed invariants contain more structure than poly-

nomial invariants, they are better at distinguishing knots, and give rise to more applications. It

would be natural, therefore, to assume that homological invariants should be better at distin-

guishing strongly invertible knots than polynomial invariants; certainly, a polynomial invariant

will never be able to provide more information than its categori�ed version. However, quite

remarkably, we have shown that a polynomial invariant can in certain cases do things a homo-

logical invariant cannot. In particular, the annular Jones polynomial has shown to have certain

advantages over Khovanov homology when considering strongly invertible knots, as we showed in

Theorem 3.3.28. There are further divisions we could make within the homological invariants as

well; for example, the κ and κA invariants are more complex than a single Khovanov homology

or annular Khovanov homology calculation, due to their construction from inverse and direct

limits. This means that they take longer to calculate, but do contain more information as a

consequence.

We can also classify the invariants by the auxiliary object they are de�ned on, and, related to

this point, whether or not they are sensitive to the choice of longitude framing in Sakuma's

construction. The three main auxiliary objects that we have are used are Sakuma links, annular
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Sakuma knots, and Watson tangles � although in order to calculate the κ and κA invariants we

actually require the family of closures of a Watson tangle, and a family of annular Sakuma knots.

In terms of the complexity of the process involved to obtain them, Sakuma links require the

least amount of work, whilst Watson tangles and the branch-set annular Sakuma knots require

the most. On the other hand, if we do choose to perform the additional isotopies to obtain

the Watson tangle and annular Sakuma knots, the κ, κA, and TKh invariants do not have any

dependence on the framing of the longitudes, which makes them potentially more straightforward

to deal with.

Additionally, we have made attempts to compare invariants, most notably the annular Jones

polynomial with the η-polynomial. We proved in Corollary 3.4.5 that there exist in�nitely many

pairs of strongly invertible knots which have identical η-polynomials but di�erent annular Jones

polynomials. In light of this result, as well as the presence of the additional variable in the

annular Jones polynomial, it seems reasonable to claim, albeit cautiously, that the annular Jones

polynomial is a superior invariant, by which we mean there are no pairs of strongly invertible

knots with the same annular Jones but di�erent η-polynomials.

Given the di�erences outlined above, a natural question to ask is which is the optimum invariant

for studying strongly invertible knots. The simple answer would be that it ultimately comes down

to personal preference. Sometimes using an easier to calculate polynomial invariant may be all

we require, whilst, alternatively the situation may demand that we work with a computationally

expensive homological invariant. It is worth bearing in mind, however, that all the homological

invariants we have encountered detect the strongly invertible unknot, whilst it remains unclear

whether a polynomial invariant can. An additional factor we may wish to take into account is

whether we desire an invariant which has no dependence on longitude framing; it may well be

that having speci�c longitude framings gives us too much information, when all we require is

an honest invariant of strongly invertible knots. The outcome of this cost-bene�t analysis will

vary from situation to situation � there is unfortunately no single `master invariant' that is both

quick to calculate and applicable in all situations.

5.2 Next steps

Where do we go from here? On the whole the scope of this thesis has been broad rather then deep,

and as such there are a number of directions future work could take. For one thing, there are a

few loose ends still to take care of on the level of the polynomial invariants � see, for example,

the unknown entries in Table 5.1. In addition, we could choose to investigate our homological

invariants further, κA is only conjectured to be an invariant, or apply more � for instance the

dt invariant of Grigsby, Licata, and Wehrli [21].

In addition, three areas of potential interest are the following:
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Categorifying η

As we noted in Chapter 3, the η-polynomial is an invariant closely related to the Alexander

polynomial. Both invariants are de�ned using in�nite cyclic covering spaces, and, moreover,

Kojima and Yamasaki proved an explicit formula relating the two (recall Theorem 3.1.11). The

Alexander polynomial has been shown to be the Euler characteristic of Knot Floer homology [72]

[64], and so we can ask if we can construct a homology theory which categori�es the η-polynomial.

Such a theory is likely to be some variation of Link Floer homology [52].

Spectral sequences

In Theorem 3.3.14 we proved a relationship between the annular Jones polynomial of an annular

knot, and the Jones polynomial of its two-component completion. It seems reasonable to ask

whether there exists a similar relationship on the categori�ed level.

Conjecture. Let K ⊂ A × I be an annular knot, and L = K ∪ B ⊂ S3 be its two-component

completion. There exists a spectral sequence which has E1 page AKh(K), and E∞ page K̃h(L).

We remark that the above connection is a natural one to investigate. For instance, we can obtain

a huge class of two-component completions by taking K to be a braid closure and B to be the

braid axis. We could then ask, assuming the conjecture, if any information about braids can be

extracted from the spectral sequence. Another set of examples are obtained by taking a link and

viewing it as lying in the exterior of one of its meridians � in which case the wrapping number

of the annular link will always be equal to 1.

A related question follows from Pascual's theorem (Theorem 3.3.11) regarding the relationship

between the Jones polynomial of a satellite knot and the annular Jones polynomial of its pattern.

It would again seem likely that there exists a similar relationship in the categori�ed world. We

conjecture:

Conjecture. Let P ⊂ A× I be an annular knot, C ⊂ S3 be a knot and Sat(P,C) be the satellite

knots with pattern P and companion knot C. There exists a spectral sequence which has E1 page

AKh(P ) and E∞ page Kh(Sat(P,C)).

There is also scope for further work on Grigsby and Wehrli's spectral sequence between an-

nular Khovanov homology and sutured Floer homology. In particular, Friedl, Juhász, and Ras-

mussen [18] have de�ned a decategori�ed version of sutured Floer homology, which is best thought

of as a generalisation of the Alexander polynomial to sutured manifolds. It would be interesting

if a explicit connection could be found on the decategori�ed level, between the annular Jones

polynomial and their invariant.

Quotient objects from symmetries

In this thesis we have utilised Sakuma's construction to obtain various families of quotient objects

to associate to a strongly invertible knot. Recalling the other rigid symmetries of knots we saw

in Chapter 1 we can ask whether there exist similar geometric constructions for other symme-

tries, and if so, whether we can apply invariants of strongly invertible knots to their quotient
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objects.

As we mentioned in the introduction, for periodic knots we can quotient out by the periodic

symmetry to obtain an annular knot. This construction has featured, for example, in work of

Murasugi [59], [61], Yokota [99], and Przytycki [71] comparing polynomial invariants of periodic

links with those of their quotient links. In more recent times there have been e�orts to do the same

for homological invariants, and equivariant homology theories have been developed which use the

periodic symmetry to build a homology theory with additional structure. For example, see work

by Chbili [13], Politarczyk [69], and Borodzik and Politarczyk [8]. In addition, Zhang [100] has

studied the annular setting and discovered connections between the annular Khovanov homology

of a periodic link and its quotient, when both are viewed as lying in the exterior of the axis of

rotation.

In light of the above, a potentially naive question is then:

Question. Can an equivariant homology theory be de�ned using strong inversions?

There is also potential for further study of periodic knots as well. We say a periodic symmetry

is full if the quotient knot is equivalent to the unknot. An interesting fact about full periodic

symmetries is that their number is bounded; Boileau and Paoluzzi [7] have proved that a prime

non-trivial knot can only have a maximum of two full periodic symmetries. Full periodic sym-

metries have been shown to be connected to other interesting features of knots; for example, the

presence of full periodic symmetries of a knot is related to the branched coverings of S3 over it.

We say a knot K has an n-twin if there exists a knot K ′ � K such that the n-fold branched

covers over K and K ′ are isomorphic; Zimmerman [101] has proved the following result.

Theorem 5.2.1 (Zimmerman, 1998). Let K ⊂ S3 be a hyperbolic knot and n ≥ 3. Then K

has an n-twin if and only if K has a full periodic symmetry f of order n, and the quotient link

K/f ∪ Fix(f)/f does not have pure exchange symmetry.

Full periodic symmetries naturally give rise to two-component links with both components un-

knotted � simply take the quotient knot and the axis of rotation to be the two components. We

can therefore attach to full periodic knots invariants of links and annular knots in the same way

we have done for strongly invertible knots. In particular, we may wonder what, if anything, can

annular Khovanov homology say about full periodic knots.

In addition to strong inversions and periodic symmetries we also have periodic symmetries which

realise the amphicheirality of a knot. Recall that these periodically amphicheiral symmetries are

periodic maps of (S3,K) which reverse the orientation of S3 and either preserve or reverse the

orientation of K. A natural question to ask is whether or not we can play the same game with

these symmetries, that is:

Question. Let K ⊂ S3 be a knot with periodic (±)amphicheiral symmetry f . Is there a natural

quotient object K/f one can associate with the pair (K, f)?

An example of a map which realises a (+)amphicheiral symmetry of a knot is the twisted ro-



CHAPTER 5. CONCLUSION 149

tation symmetry that appears in Luo's paper [51]. This would be a good candidate to start

investigating.

If the above question can be answered positively, then an additional line of inquiry concerns the

symmetry group.

Question. Let K ⊂ S3 be a knot with symmetry group Sym(K). Can every element of Sym(K)

be characterised via a unique quotient object?
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Invariant
Polynomial/
Homology theory

Auxiliary Object
Sensitive to
framing change?

Unknot detector?
Sensitive to
cheirality?

η P Sakuma link Y N Y
J P Sakuma link Y ? Y
AJ P Annular Sakuma knot Y ? Y
Kh H Sakuma link Y Y Y
AKh H Annular Sakuma knot Y Y Y
κ H Watson Tangle N Y Y
κA H Framed annular Sakuma knots N Y ?
TKh H Watson tangle N Y Y

Table 5.1: Table of invariants covered and some of their key properties
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AKh.m Manual

Here we provide a brief description of the Mathematica package AKh.m, the �rst incarnation of

which was written by the author in August 2016 using Mathematica 9.0.1.0 on Windows (64-bit).

The package provides a means of calculating the annular Khovanov homology of an annular link,

and is based heavily upon Bar-Natan's initial `categori�cation.m' package � which calculates the

Khovanov homology of a link in S3. A further credit should go to Joseph MacColl, who kindly

provided the KhTable and condense commands, which express the Poincaré polynomial in table

format. The program itself works well for links with a small number of crossings, but is somewhat

ponderous when put to task on annular Sakuma knots � no doubt a much faster alternative can

be written by someone with more programming expertise!

AKh.m requires the KnotTheory` package in order to run, which can be found on the Knot Atlas

website [43]. At the time of writing AKh.m can calculate AKh over Q and Z/pZ for prime p,

however an update to also include Z coe�cients is in the works.

We also should mention a Mathematica program `KhBraids', written by Hunt, Kesse, Licata, and

Morrison [31]. This program calculates a closely related annular link invariant, which recovers

both annular Khovanov homology and Khovanov homology as specialisations. Their program

runs only on annular knots obtained from braid closures, however is considerably more powerful

than AKh.m.

A.1 Planar Diagram notation for annular links

To calculate the annular Khovanov homology of an oriented annular link L we �rst require a

choice of diagram DL. In order to describe this diagram in a way intelligible to computers we use

planar diagram notation. Start by labelling the strands of DL from 1 to n, increasing the labels

by 1 as we pass through a crossing. This provides us with a way to articulate the crossings of

DL in terms of the four strand numbers which comprise it: suppose the incoming under-strand is

labelled by i, and, moving anti-clockwise around the crossing, the other three strands are labelled

j, k, and l respectively; we then label the crossing X[i, j, k, l]. Repeating this procedure gives us

a description of the crossings of DL.

151
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1

2

3

4

5

6

X[1, 5, 2, 4] X[5, 3, 6, 2] X[3, 1, 4, 6]

{1, 4}

Figure A.1: Annular PD notation

Next, we require a method of describing the position of the hole in the annulus in relation to DL.

This is done by drawing in a ray λ from the inner edge of A to the outer edge which misses all

crossings in DL, then listing the strands λ crosses. For an example, consider the diagram of the

right-handed trefoil expressed as a braid closure in Figure A.1 � the complete annular planar

diagram notation for this knot is X[1, 5, 2, 4], X[5, 3, 6, 2], X[3, 1, 4, 6] and {1, 4}.

Remark. Note that if we leave the ray list empty then we are e�ectively describing the planar

diagram of DL lying in R2 instead of A.

A.2 A guided tour of AKh.m

Let's take a stroll through the commands contained within AKh.m. Consider once more the

annular knot K featured in Figure A.1. We open up Mathematica and load AKh.m:

In[1]:= << AKh`

We can then describe the crossings of K in PD notation:

In[2]:= K = PD@X@1, 5, 2, 4D, X@5, 3, 6, 2D, X@3, 1, 4, 6DD;

The �rst three commands in the package count the number of crossings, the number of positive

crossings, and the number of negative crossings.

NumberOfCrossings @L_PD D := Count@L, X@i_, j_, k_, l_DD
NumberOfPositiveCrossings @L_PD D :=

Count@L, X@i_, j_, k_, l_D �; j - l == 1 ÈÈ l - j > 1D
NumberOfNegativeCrossings @L_PD D :=

Count@L, X@i_, j_, k_, l_D �; l - j == 1 ÈÈ j - l > 1D
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In[3]:= NumberOfPositiveCrossings @K D
Out[3]= 3

Smoothings makes a list of all the possible smoothings for our link.

Smoothings @L_PD D := Module@8length, types<, length = NumberOfCrossings @LD;

types = Tuples@80, 1<, lengthDD
In[4]:= Smoothings @K D

Out[4]= 880, 0, 0<, 80, 0, 1<, 80, 1, 0<,

80, 1, 1<, 81, 0, 0<, 81, 0, 1<, 81, 1, 0<, 81, 1, 1<<

Circles has two possible inputs. When PD notation and a choice of smoothing instructions are

entered it produces a list of all the circles in that smoothing, along with all the strands that

comprise each circle. When PD notation and a set of smoothing instructions with a single star

are entered Circles replaces the star with a 0 and a 1, evaluates both, then expresses them either

side of an arrow →.

Circles@L_PD, a : 8H0 1L ...<D :=

Module@8i, j, k, l<,

ConnectedComponents @
Graph@DeleteDuplicates @

Flatten@HThread @8List �� L, a<D �.8 8X@i_, j_, k_, l_D, 0< -> 88i, j<, 8k, l<<,8X@i_, j_, k_, l_D, 1< -> 88i, l<, 8j, k<< <L, 1D,

SameQ@ð1, ð2D ÈÈ SameQ@ð1, Reverse � ð2D &DDDD
Circles@L_PD, a_ListD :=

Module@8list<, list = Thread @8List �� L, a<D;

Circles@L, a �. 8"*" -> 0<D -> Circles@L, a �. 8"*" -> 1<DD
In[5]:= Circles@K , 80, 0, 0<D

Out[5]= 882, 4, 6<, 81, 5, 3<<
In[6]:= Circles@K , 8"*", 0, 0<D

Out[6]= 882, 4, 6<, 81, 5, 3<< ® 881, 2, 3, 4, 5, 6<<

CubeOfSmoothings produces a list of all the complete smoothings of our link with the strands

that comprise each circle.

CubeOfCircles @L_PD D :=

Module@8types<, types = Smoothings @LD; Circles@L, ð D & �� typesD
In[7]:= CubeOfCircles @K D

Out[7]= 8882, 4, 6<, 81, 5, 3<<, 881, 2, 3, 4, 5, 6<<,

881, 2, 3, 4, 5, 6<<, 881, 5, 4, 2<, 83, 6<<, 881, 2, 3, 4, 5, 6<<,

882, 5, 6, 3<, 81, 4<<, 881, 4, 3, 6<, 82, 5<<, 883, 6<, 82, 5<, 81, 4<<<

SortCircles also has two possible inputs. When a list of circles and the ray information are

entered it counts the intersections mod 2, and then sorts each circle as either trivial or non-trivial

(by which we mean trivial in the �rst homology group of the annulus). When two lists of circles
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separated by an arrow are entered it does the same thing on each side of the arrow.

SortCircles @b_List, c_ListD :=

Times ��

Table@If@Mod@Length@Intersection @b@@nDD, cDD, 2D == 0,

trivial@Min@b@@nDDDD, nontrivial @Min@b@@nDDDDD,8n, Length@bD<D
SortCircles @expr_, c_ListD :=

SortCircles @DeleteCases @expr @@1DD,

Alternatives �� Intersection @expr @@1DD, expr @@2DD D D, cD ->

SortCircles @DeleteCases @expr @@2DD,

Alternatives �� Intersection @expr @@1DD, expr @@2DD D D, cD
In[8]:= SortCircles @882, 4, 6<, 81, 5, 3<<, 81, 4<D

Out[8]= nontrivial @1D nontrivial @2D

If there is no ray information then SortCircles always returns trivial circles...

In[9]:= SortCircles @882, 4, 6<, 81, 5, 3<<, 8<D
Out[9]= trivial@1D trivial@2D

The V command forms a list of basis elements for the vector space that we attach to a smoothing.

QuantumDegree and AnnularDegree calculate the j and k gradings respectively for a given basis

element. It is also possible to search for basis elements with speci�ed j and k gradings.

QuantumDegree @expr_D :=

Count@expr, _vp, 80, 1<D - Count@expr, _vm, 80, 1<D
AnnularDegree @expr_D :=

Count@expr, vp@_, nD, 80, 1<D - Count@expr, vm@_, nD, 80, 1<D
V@L_PD, a_List, c_ListD :=

List ��

Expand @SortCircles @Circles@L, aD, cD �.8trivial@x_D -> HHvp@x, tDL + Hvm@x, tDLL,

nontrivial @x_D -> HHvp@x, nDL + Hvm@x, nDLL < D
V@L_PD, a_List, c_List, deg_Integer , deg2_Integer D :=

Select@V@L, a, cD,HHdeg == QuantumDegree @ð D + HPlus �� aLL &&Hdeg2 == AnnularDegree @ð DLL & D
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In[10]:= V@K , 80, 0, 0<, 81, 4<D
Out[10]= 8vm@1, nD vm@2, nD, vm@2, nD vp@1, nD, vm@1, nD vp@2, nD, vp@1, nD vp@2, nD<

In[11]:= QuantumDegree @vm@1, nD vm@2, nDD
Out[11]= -2

In[12]:= AnnularDegree @vm@1, nD vm@2, nDD
Out[12]= -2

In[13]:= V@K , 80, 0, 0<, 81, 4<, 0, 0D
Out[13]= 8vm@2, nD vp@1, nD, vm@1, nD vp@2, nD<

Next we de�ne the vector space maps:

d@L_PD, a_List, b_ListD := SortCircles @Circles@L, aD, bD �. 8Htrivial@x_D trivial@y_D -> trivial@z_DL ->8vp@x, tD vp@y, tD -> vp@z, tD, vp@x, tD vm@y, tD -> vm@z, tD,

vm@x, tD vp@y, tD -> vm@z, tD, vm@x, tD vm@y, tD -> 0<,Htrivial@z_D -> trivial@x_D trivial@y_DL ->8vp@z, tD -> vp@x, tD vm@y, tD + vm@x, tD vp@y, tD,

vm@z, tD -> vm@x, tD vm@y, tD<,Htrivial@x_D nontrivial @y_D -> nontrivial @z_DL ->8vp@x, tD vm@y, nD -> vm@z, nD, vm@x, tD vp@y, nD -> 0,

vp@x, tD vp@y, nD -> vp@z, nD, vm@x, tD vm@y, nD -> 0<,Hnontrivial @z_D -> trivial@x_D nontrivial @y_DL ->8vp@z, nD -> vm@x, tD vp@y, nD,

vm@z, nD -> vm@x, tD vm@y, nD<,Hnontrivial @x_D nontrivial @y_D -> trivial@z_DL ->8vp@x, nD vm@y, nD -> vm@z, tD,

vm@x, nD vp@y, nD -> vm@z, tD, vp@x, nD vp@y, nD -> 0,

vm@x, nD vm@y, nD -> 0<,Htrivial@z_D -> nontrivial @x_D nontrivial @y_DL ->8vp@z, tD -> vp@x, nD vm@y, nD + vm@x, nD vp@y, nD,

vm@z, tD -> 0<<
In[14]:= d@K , 8"*", 0, 0<, 81, 4<D

Out[14]= 8vm@2, nD vp@1, nD ® vm@1, tD, vm@1, nD vp@2, nD ® vm@1, tD,

vp@1, nD vp@2, nD ® 0, vm@1, nD vm@2, nD ® 0<

We form the groups in the Khovanov bracket complex by direct summing the vector spaces as

usual.

KhBracket @L_PD, c_List, r_Integer , deg___, deg2___D :=

If@r < 0 ÈÈ r > Length@LD, 80<, Join ��HHHv@ð DL V@L, ð , c, deg, deg2DL & ��

Permutations @Join@Table@0, 8Length@LD - r<D,

Table@1, 8r<DDDLD
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In[15]:= KhBracket @K , 81, 4<, 0D
Out[15]= 8v@80, 0, 0<D vm@1, nD vm@2, nD, v@80, 0, 0<D vm@2, nD vp@1, nD,

v@80, 0, 0<D vm@1, nD vp@2, nD, v@80, 0, 0<D vp@1, nD vp@2, nD<

Now we shift the i and j degreesl. The function CC demands we specify our degrees too,

so we actually end up with the homogeneous component of CAKh with degrees (i, j, k) =

(r, deg, deg2).

CC@L_PD, c_List, r_Integer , deg_Integer , deg2_Integer D :=

KhBracket @L, c, r + NumberOfNegativeCrossings @LD,

deg - NumberOfPositiveCrossings @LD +

2 NumberOfNegativeCrossings @LD, deg2 D
In[16]:= CC@K , 81, 4<, 0, 3, 0D

Out[16]= 8v@80, 0, 0<D vm@2, nD vp@1, nD, v@80, 0, 0<D vm@1, nD vp@2, nD<

The next commands are concerned with forming the annular Khovanov di�erential by summing

the edge morphisms and adding minus signs as appropriate.

ReplaceHead @expr_D :=

Expand @ sign = 1;

Table@ If@ expr @@1, 1, iDD == 0,

sign ReplacePart @expr, 81, 1, i< -> 1D, sign = -1 sign; 0D ,8i, Length@expr @@1, 1DD D < D D
ReplaceBody @L_PD, b_ListD@expr_D :=

d@L, ð , bD & ��

Table@ ReplacePart @expr, 81, 1, i< -> "*"D@@1, 1DD,8i, 1, Length@Hexpr L@@1, 1DD D<D
differential @L_PD, b_ListD@expr_D :=

Module@ 8ReplaceOne , ReplaceStar <,

ReplaceOne = ReplaceHead @expr D;

ReplaceStar = ReplaceBody @L, bD@expr D;

Total@MapThread @ð1 �. ð2 &, 8ReplaceOne , ReplaceStar < D D D
differential @L_PD, b_ListD@0D := 0

In[17]:= differential @K , 81, 4<D@v@80, 0, 0<D vm@2, nD vp@1, nDD
Out[17]= v@80, 0, 1<D vm@1, tD + v@80, 1, 0<D vm@1, tD + v@81, 0, 0<D vm@1, tD

We're getting close! The next thing to do is to calculate the ranks of the homology groups.

This is done by �nding the dimension of the images of the di�erentials, then using the rank

-nullity theorem to �nd the dimensions of their kernels. This is also where the option of di�erent

coe�cients appears for the �rst time (provided by the opts variable).
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Options@BettiD = 8Modulus -> Infinity<
Rank@L_PD, a_List, r_Integer , deg_Integer , deg2_Integer ,

opts___D := H
modulus = If@8opts< === 8<, Modulus �. Options@BettiD,

Modulus �. 8opts<D;

Off@Solve::svarsD;

b0 = CC@L, a, r, deg, deg2D;

L1 = Length@b1 = CC@L, a, r + 1, deg, deg2DD;

equations =Hð == 0L & ��HExpand @differential @L, aD@ð D & �� b0 D �.

MapThread @Rule, 8b1, variables = Array@b, L1D<D L;

rk = Which@b0 === 80< ÈÈ b1 === 80<, 0, b0 === 8< ÈÈ b1 === 8<,

0, modulus === Infinity,

MatrixRank @
Normal@CoefficientArrays @equations, variables DD@@2DD D ,

modulus =!= Infinity,

MatrixRank @
Normal@CoefficientArrays @equations, variables DD@@2DD ,

Modulus -> modulusDD;

On@Solve::svarsD;

rkL
Betti@L_PD, a_List, r_Integer , deg_Integer , deg2_Integer ,

opts___D :=

Module@8z<,

z = If@ CC@L, a, r, deg, deg2D === 80< ÈÈ
CC@L, a, r, deg, deg2D === 8<, 0,

Length@ CC@L, a, r, deg, deg2D D -

Rank@L, a, r, deg, deg2, optsD -

Rank@L, a, r - 1, deg, deg2, optsD D;

Print@StringForm @ "Betti@``,``,``D = ``", r, deg, deg2, zDD; zD
In[18]:= Betti@K , 81, 4<, 0, 3, 0D

Betti@0,3,0D = 1

Out[18]= 1

Now that we can calculate ranks of the homology groups, the �nal thing to do is to include the

grading information and determine the Poincaré polynomial of AKh.
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qtBetti@L_PD, a_List, r_Integer , opts___D :=Hqdegs =

If@KhBracket @L, a, r + NumberOfNegativeCrossings @LDD === 80<,

0,

Union@
QuantumDegree �� KhBracket @L, a,

r + NumberOfNegativeCrossings @LDD +

NumberOfPositiveCrossings @LD -

NumberOfNegativeCrossings @LD + rD D;

tdegs =

If@KhBracket @L, a, r + NumberOfNegativeCrossings @LDD === 80<,

0,

Union@AnnularDegree ��

KhBracket @L, a, r + NumberOfNegativeCrossings @LDDD D;HFlatten@Outer@Betti@L, a, r, ð1, ð2, optsD Hq ^ ð1 L Ht ^ ð2L &,8qdegs<, 8tdegs<D, 3DL L
AKh@L_PD, a_List, opts___D :=

Expand @Sum@Total@s ^ r qtBetti@L, a, r, optsDD,8r, -NumberOfNegativeCrossings @LD,

Length@LD - NumberOfNegativeCrossings @LD < D D
We can now calculate the annular Khovanov homology of K!

In[19]:= AKh@K , 81, 4<D
Betti@0,1,-2D = 1

Betti@0,1,0D = 0

Betti@0,1,2D = 0

Betti@0,3,-2D = 0

Betti@0,3,0D = 1

Betti@0,3,2D = 0

Betti@0,5,-2D = 0

Betti@0,5,0D = 0

Betti@0,5,2D = 1

Betti@1,3,0D = 0

Betti@1,5,0D = 1

Betti@2,3,0D = 0

Betti@2,5,0D = 1

Betti@2,7,0D = 0

Betti@3,3,0D = 0

Betti@3,5,0D = 0

Betti@3,7,0D = 0

Betti@3,9,0D = 1

Out[19]= q
3

+ q
5

s + q
5

s
2

+ q
9

s
3

+

q

t
2

+ q
5

t
2

The default setting for AKh.m is to calculate AKh with rational coe�cients, however it also



APPENDIX A. AKH.M MANUAL 159

works for �elds Z/pZ for prime p. For example, when p = 2 the calculation is as follows:

In[20]:= AKh@K , 81, 4<, Modulus ® 2D
Betti@0,1,-2D = 1

Betti@0,1,0D = 0

Betti@0,1,2D = 0

Betti@0,3,-2D = 0

Betti@0,3,0D = 1

Betti@0,3,2D = 0

Betti@0,5,-2D = 0

Betti@0,5,0D = 0

Betti@0,5,2D = 1

Betti@1,3,0D = 0

Betti@1,5,0D = 1

Betti@2,3,0D = 0

Betti@2,5,0D = 1

Betti@2,7,0D = 1

Betti@3,3,0D = 0

Betti@3,5,0D = 0

Betti@3,7,0D = 1

Betti@3,9,0D = 1

Out[20]= q
3

+ q
5

s + q
5

s
2

+ q
7

s
2

+ q
7

s
3

+ q
9

s
3

+

q

t
2

+ q
5

t
2

The �nal few commands allow us to display the Poincaré polynomial in a table.

KhTable@kh_D :=

Module@8poly = kh, qShift, tShift, gridPoly, body, head <,

qShift = -HExponent@poly, q, MinDL;

tShift = -HExponent@poly, s, MinDL;

gridPoly = Expand @poly * Hq ^ qShiftL * Hs ^ tShiftLD;

body = CoefficientList @gridPoly, 8q, s<D;

head = 8Table@i, 8i, -qShift, Exponent@poly, q, MaxD<D,

Table@i, 8i, -tShift, Exponent@poly, s, MaxD<D<;

Grid @Prepend @Flatten �� Transpose @8head @@1DD, body<D,

PadLeft@head @@2DD, Length � body@@1DD + 1, ""DD, Frame -> AllDD
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condense@table_D :=

Module@8t = table , n, min, eTable, head <,

n = t@@1, -1, 1DD � 2;

min = t@@1, 2, 1DD;

If@min <= 0, n ++;

n += Abs@minD � 2D;

eTable = Table@t@@1, 2 iDD, 8i, 1, n + 1<D;

head = Range@t@@1, 1, 2DD, t@@1, 1, -1DDD;

PrependTo @head, "q�s"D;

PrependTo @eTable, head D;

Grid @eTable, Frame -> AllD D
AKhTable@L_PD, a_List, opts___D :=

condense@KhTable@AKh@L, a, optsDDD
In[21]:= AKhTable@K , 81, 4<D

Betti@0,1,-2D = 1

Betti@0,1,0D = 0

Betti@0,1,2D = 0

Betti@0,3,-2D = 0

Betti@0,3,0D = 1

Betti@0,3,2D = 0

Betti@0,5,-2D = 0

Betti@0,5,0D = 0

Betti@0,5,2D = 1

Betti@1,3,0D = 0

Betti@1,5,0D = 1

Betti@2,3,0D = 0

Betti@2,5,0D = 1

Betti@2,7,0D = 0

Betti@3,3,0D = 0

Betti@3,5,0D = 0

Betti@3,7,0D = 0

Betti@3,9,0D = 1

Out[21]=

q�s 0 1 2 3

1
1

t
2

0 0 0

3 1 0 0 0

5 t
2

1 1 0

7 0 0 0 0

9 0 0 0 1

We note, as a concluding remark, that leaving the ray information empty returns us the Khovanov

homology of our link when embedded in S3:
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In[22]:= AKhTable@K , 8<D
Betti@0,1,0D = 1

Betti@0,3,0D = 1

Betti@0,5,0D = 0

Betti@1,3,0D = 0

Betti@1,5,0D = 0

Betti@2,3,0D = 0

Betti@2,5,0D = 1

Betti@2,7,0D = 0

Betti@3,3,0D = 0

Betti@3,5,0D = 0

Betti@3,7,0D = 0

Betti@3,9,0D = 1

Out[22]=

q�s 0 1 2 3

1 1 0 0 0

3 1 0 0 0

5 0 0 1 0

7 0 0 0 0

9 0 0 0 1
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