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A bstract

The principal aim o f the study was to further the knowledge o f the interaction between 

Alternaria linicola and the host plant linseed {Linum iisitatissimim). A novel detached 

cotyledon in viti'o bioassay was developed to allow the quantification of disease resistance o f 

Linum  material to A. linicola. Differences were apparent between the disease response scores 

of four linseed varieties when tested with seven isolates o f the pathogen which differed in 

aggressiveness. However, there was no significant difference between the disease response 

scores o f the varieties and no change in the ranking o f varieties over three experiments. This 

indicated that the varieties behaved in a predictable manner to each isolate during each test. 

Accordingly, in a subsequent study, 102 Linum  accessions were challenged with an aggressive 

and a non-aggressive isolate. About 75 % o f the accessions gave a moderate response, 

although there was a continuous distribution o f resistance from high susceptibility to resistant. 

Accessions at both extremes o f the disease response consisted o f breeding material, currently 

grown varieties and near relatives o f the host species. For example, one o f the more resistant 

accessions tested was Linum angustifolium.

A sub-set o f nine Linum  accessions was chosen (a range o f susceptible, moderately-resistant 

and resistant material) and the resistance response o f the material to an aggressive and a non- 

aggressive A. linicola isolate was investigated using a whole seedling inoculation technique.

A comparison o f the response o f the material during the seedling test with that of the detached 

in vitro assay indicated that the latter test systematically, but marginally, overestimated the 

disease response. The in vitro bioassay scores and the seedling test scores were positively 

correlated following inoculation with the more aggressive o f  the two isolates. It was suggested 

that the resistance response o f material could be accurately predicted by the in vitro bioassay 

but that a certain level o f isolate aggressiveness was necessary to differentiate between 

responses o f the accessions. Since large isolate-line interactions with respect to resistance 

scores were not observed, the results implied that resistance was polygenically determined. 

These results indicate that the bioassay for disease resistance produces an accurate measure o f 

resistance and provides plant breeders with a useful tool which can be utilised during breeding 

programs.

A microscopic analysis was carried out to examine differences in pathogen behaviour and host 

response in interactions between Alternaria linicola and three genotypes o f Linum 

usitatissimum  (previously identified as susceptible, moderately resistant and resistant to the
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.
pathogen). Cotyledons of whole seedlings were inoculated with a conidial suspension o f the

pathogen and seedlings were incubated in a controlled environment cabinet. Observations of 
.

the infection process were carried out at 18, 24 and 40 h post-inoculation by UV fluorescence 

microscopy. Data o f 15 variables o f the interaction was analysed using multivariate analysis 

o f variance (MANOVA) and canonical variâtes analysis (CVA). Significant differences in 

pathogen development were found among the Limim  accessions at 18, 24, and 40 hours after 

inoculation. At 18 hours after inoculation, attempted penetration by the pathogen was 

relatively rare on all three accessions. Canonical variâtes analysis revealed that overall 

differences among accessions resulted from the successful penetration o f the most susceptible 

accession. Beyond 18 h post-inoculation attempted penetration was more common in the 

moderate and resistant accessions also. Overall differences among accessions were found to 

result from differences in the rate o f colonisation of the host tissue. Pathogen development 

was obseiwed to occur at a quicker rate on susceptible material.

Subsequent studies demonstrated that linicola growing in vitro produced a wide range of 

secondary metabolites. Extracts o f culture filtrate were taken by reverse phase 

chromatography. Crude extracts produced disease-like symptoms on linseed cultivars and a 

range o f non-host species indicating the presence of phytotoxic components in the extract. 

Characterised via thin layer chromatography, these included the non-host specific phytotoxins 

tenuazonic acid, alternariol monomethyl ether, tentoxin and two destruxin-type compounds 

(which closely resembled destruxin A and destruxin B). The identity o f four of the compounds 

was confirmed by two dimensional thin layer chromatography and proton nuclear magnetic 

resonance spectroscopy.

Linum  leaf material infected with conidia o f  A. linicola and blastospores o f Melampsora Uni 

were extracted using a facilitated diffusion extraction technique. The resultant extracts 

contained a number o f compounds which were fungitoxic to Cladosporiiim cladosporioides 

and, to a lesser extent, A. brassicicola. One such compound corresponded to the phytoalexin 

conifeiyl alcohol which had previously reported to have been produced by flax seedlings 

inoculated with M  Uni. Quantitative differences in the amount o f  the fungitoxic compounds 

produced between the inoculated and uninoculated resistant and susceptible host genotype 

combinations suggested that the production o f fungitoxic compounds was greater in response 

to attempted colonisation and that as such, phytoalexin production was a component of the 

resistance reaction.
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The main conclusions from the study were that due to the absence o f qualitative differences in 

resistance response, resistance was polygenically determined. This observation, and the lack 

o f a specific inhibitory response by a single host factor during the infection process indicated 

that the mechanism o f resistance was multicomponent in nature. It is suggested that one o f the 

major components in the interaction would appear to be the ability o f the pathogen to produce 

non-host specific phytotoxins (some o f which may be host-selective). At the cellular level, 

changes are induced in the host which result in the modification o f the cell wall. Changes in 

the physical and/or chemical construction o f the cell wall slow down the rate o f pathogen 

ingress. Concurrent production o f phytoalexin compounds by the host cells also has the effect 

o f  slowing or preventing pathogen ingress. Susceptible accessions apparently are induced too 

late or produce less o f a resistance response in comparison to resistant accessions. The 

possibilities of an improvement in the resistance o f linseed to A. linicola  are discussed and it is 

suggested that such improvement would be both possible and beneficial.
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Chapter î

1.1 The linseed host

1.1.1 The history and importance o f linseed {Lhmm iisitatissimiim L.). 

The Linaceae

The Linaceae is a family consisting o f 12 genera which contain about 200 identified species o f

shrubby, often tree-like, herbaceous plants (Hutchinson, 1967; Durrant, 1976; Gill, 1987).
'

Although examples o f woody shrubs o f this family are common (for example Liniim

arboreiim, a woody much-branched shrub native to Crete), many o f the species found within

the Linaceae are annual herbs with a wiry stem. The only species o f the Linaceae of

agricultural importance is Linnm nsitatissimum  L., an annual herb which shows polymorphism 
.
into two main cultivar groups. Linseed cultivars are generally short and highly branched to

St
produce large quantities o f seed, from which the valuable commodity linseed oil can be 

extracted. The taller flax cultivars are usually single stemmed and show only minor branching, 

the length and quality o f fibres in the stem being the important character o f the flax crop. The 

species is largely self-pollinating and the two groups have tended to remain fairly distinct 

(Turner, 1987).

Ancient history o f  linseed and f la x  cultivation

Linseed and flax varieties o f Linum  spp. have historically been grown in Europe since ancient

times. Fragments o f flaxen garments and nets have been found amongst the remains o f
.

neolithic Swiss lake dwellers (dated to 8,000 BC), although it is thought that these materials 

were derived from the strongly tillering and branching, dehiscent perennial species Linum  

angustifolium  which was common in southern Europe and western Asia (Durrant, 1976;
■

Turner, 1987). The great diversity o f forms o f Linum  found in the Indian sub-continent 

suggested that early forms of the domesticated crop originated there and were bought into 

western Europe via the trade routes o f  the middle East (Tammes, 1928; Durrant, 1976; Turner,

1987). Forms o f L. nsitatissimum  were probably not introduced into the U.K until the arrival 

o f the Romans (Durrant, 1976).
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Recent history o f  linseed and fla x  cidtivation

Large scale production o f flax was prevalent in Britain during the late 19th century-early 20th 

century and more recently flax and linseed production was dictated by the economic and 

trading constraints associated with the two world wars (Appel, 1991). After the resurgent war

time period, the area of both linseed and flax slowly declined during the 1950's, mainly due to 

the introduction and mass production o f synthetic lubricants and fibres. Essential linseed oil 

was imported as required, predominantly from Canada or Argentina and linen became less 

fashionable as a textile (Appel, 1991).

Following the formation of the European Community and in the wake of the 1973 U.S. soya 

embargo, linseed was one o f the industrial oilseed crops specified under the Common 

Agricultural Policy (CAP) o f 1987. The aim o f the resulting legislation was that the 

community would become self-sufficient in linseed (a requirement estimated at -400,000 t per 

annum) removing the need for economically unstable imports (Appel, 1991). At that time only 

France was producing any significant am ount o f  linseed and in order to entice farmers to grow 

the crop, large area aid subsidies were offered to make linseed economically viable.

The recent dramatic increase in the area o f linseed cultivated in Britain from less than 2000 ha 

in 1984 to the peak o f 156,000 ha during the 1993 season (Fig. 1.1) was produced as a direct 

result o f the CAP policy. It should also be noted that the exponential increase in the U.K. 

linseed crop area contrasted with other EC m em ber states which, with the exception o f 

Germany (55,000 ha in 1993), did not experience the expected increase in the area o f linseed 

grown. This phenomenon was probably a direct effect o f the historical reliance of these 

countries on flax production, an eventuality predicted in 1987 by Turner. It is also a direct 

consequence o f a cut in the area aid subsidy which has lead to a decline in the popularity o f  the 

crop in recent years.

Aspects o f  linseed production

Linseed holds a unique role in the British agricultural system being a non-food oilseed 

breakcrop which provides an alternative to oilseed rape or a leguminous field crop which can 

be used in rotation with traditional cereals. Linseed requires a low-input o f fertilisers and 

agrochemicals allowing the grower to maximise the profit margin per hectare in comparison 

with other breakcrops. The linseed crop reportedly produced the greatest yield increase when
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Fig. 1.1 The exponential growth o f  linseed as a non-food oilseed break crop in the U.K. 

(Source: Annual Agricultural and Horticultural Census, MAFF, 1995).

the crop was sown into a minim ally cultivated seed bed using a conventional seed drill (Freer,

1995). Autumn sown linseed varieties are currently available and improved winter cultivars 

are undergoing trials. These provide further choices for w inter cultivation and an alternative 

winter cover crop to prevent nitrogen leaching. Another advantage o f  linseed is that the crop is 

readily combinable using a conventional combine harvester provided the weather is dry at 

harvest time although dessication m ay be necessary for late m aturing varieties.

1.1.2 The cytogenetics o f the Linum genus.

Evidence from the literature suggests that the cytogenetics o f  the Linum genus are poorly 

understood. Basic chromosome num ber within the genus appears to be exceptionally variable 

(n = 8, 9, 10, 12, 14, 15, 16) but there are evident karyotypes at 2n = 18 and 2n = 30 with 

linseed and flax cultivars belonging to the second o f these two groups. Tammes (1928) cites a 

number o f authors who found L. usitatissimum to contain 30 chromosomes (diploid) and 

haploid lines containing 15 but also cites Martzenitzina (1927) and Emme & Schepeljeva ■

(1927) who found L. usitatissimum  2n = 32.

It is reported that hybrids are readily obtainable between several species o f the 2n = 18 group 

and between several o f the 2n = 30 group, many showing one or more translocations (Gill &

Yermanos, 1967). The L. perenne group (2n = 18) found in Eurasia is thought to be close to
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the L  pratense  group (2n = 18) o f North America which was probably introduced via Siberia 

and Alaska. The higher numbered groups (2n = 30. 32 & 36, including L. usitatissinnun) were 

introduced to Northern America at a much later date by European settlers (Durrant, 1976).

Although the cytotaxonomy o f the Linum  genus appears extremely confused, the present 

consensus is that modern forms o f L. usitatissimum  are derived from the closely related wild 

species o f  North Africa and Eurasia with 2n = 30 chromosomes: L. ajricamim, L. 

angustifolium, L. corymbiferum, L. decumbens, L. nervosum  and L. pallescens (Durrant, 1976). 

O f these, L. usitatissimum  appears to be nearest to the highly variable L. angustifolium  (2n =

30, 32), a strongly branched and tillered perennial or biennial w ith dehiscent capsules. L. 

usitatissimum  is easily crossed with this wild relative and differs from it cytologically by one 

translocation (Durrant, 1976). Tammes (1928) reported that the chromosome number o f L. 

angustifolium  is 2n = 30 and remarks on the ease with which this species will cross with L. 

usitatissumum, pointing out the fact that the progeny o f such a cross are normal, fertile hybrids. 

The probable relationships and evolutionary pathways o f linseed/flax are shown in Fig. 1.2.

x = 9, including:
^ —

x = 8, 10, 12, 14
perenne group (Eurasia) Linum r miscellaneous spp.

pratense group (N. America)

X = 15 
N. American spp.

Breeding potential

usitatissimum  
2n = 2x = 30 (32)

Linseeds; 
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oilseed, low latitudes
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long fibre, high latitudes

Breeding potential
x =  15(16) 

Eurasian and 
North African spp. 

including angustifolium

I
Fïuman selection for: 

annual habit, 
indéhiscent capsules, 

self-feitilisation

Ï

:
A

■■f

Ia

:i
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I
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Fig. 1.2 Relationships and evolution o f  linseed and fla x  cultivars o f  L. usitatissimum (after 

Durrant, 1976).
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1.2 The pathogen

1.2.1 The genus Alternaria and the pathogen Ahernaria linicola Groves and Skolko.

The systematics o f  the genus Alternaria

Within the Deuteromycotina (Fungi Imperfecti) the dematiaceous Flyphomycetes are 

characterised by the production o f pigmented conidia from simple conidiophores produced 

from pigmented or hyaline hyphae. Within this group, the genus Alternaria  Nees (ex Fries) 

contains a large number o f economically important plant pathogens with a wide range of host 

species. Conidia produced by Alternaria  species are frequently catenate (Ellis, 1971), usually 

elliptical or obclavate euseptate porospores produced as an outgrowth o f  protoplasm through a 

pore in the apical wall o f a conidiophore (Simmons. 1967). In catenate species, secondai*y and 

subsequent conidia are produced through a simple pore in the tip o f  a primary conidium or 

through the lateral outgrowth o f any conidial or beak cell. This cell converts morphologically 

and functionally to act as a conidiophore (Simmons, 1967).

Differences in conidiophore and conidium morphology provide good characters for the 

taxonomic study o f the Alternaria. However, variability in both cultural and morphological 

characteristics o f axenic cultures have historically impeded an understanding o f the Alternaria  

(Simmons, 1986; 1992). The systematics o f  the conidial fungi and o f the dematiaceous 

Hyphomycetes in particular has been a matter o f contention for m any years (Kendrick,

1981a,b) and Simmons (1992) highlights the main problems with respect to Xbe Alternaria  in 

particular. The problem is compounded in that teleomorphs of most o f the Alternaria  have not 

as yet been obtained in axenic culture (Simmons, 1986). Present evidence suggests the 

Alternaria  are the asexual phase o f the genus Lewia Barr & Simmons within the Ascomycotina 

(Simmons, 1986; McRoberts, 1992),

Alternaria species pathogenic on linseed/flax

Three species, Alternaria linicola Groves & Skolko. Alternaria alternata  (Fries) Keissler, and 

Alternaria infectoria Simmonds (anamorph o f Lewia infectoria Barr & Simmons) are 

commonly found to be pathogenic on British linseed (Fitt & Ferguson, 1990). Alternaria Uni 

Dey has been reported to infect linseed in India (Dey. 1933) although it is unclear from the 

descriptions given whether the causative agent observed is a separate species, or a pathogenic
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form of^L alternata as suggested by Arya & Prasada (1953) and Saharan (1988). A further 

species, Alternaria cheiranthi (Lib.) Bolle has been reported on flax in the Ukraine 

(Grebenyuk, 1983) where in a study between 1976 - 1978, 72.3% o f 820 stem samples were 

infected with this particular species, although this is the only report o f this species attacking 

flax.

M orphologically, A. linicola is far removed from A. alternata and A. infectoria within the 

Alternaria  genus. A. linicola produces hyphae which are septate, branched, hyaline to pale 

smokey olive, 4 - 7pm in diameter, with similarly coloured septate conidiophores o f variable 

length, 5 - 8pm in diameter. Conidia o f  the species are singular, obclavate, gradually 

attenuated above into a long slender, sometimes branched beak, smooth, muriform, with 7 -1 1  

transverse septa, 150 - 300pm x 17 - 24pm  (Groves & Skolko, 1944). In comparison, conidia 

o f A. alternata and A. infectoria are found in long, often branched chains, each individual 

conidium being much smaller (20 - 63pm  x 9 - 18pm and 20 - 70pm x 9 - 18pm respectively) 

with a much shorter, less distinct beak than those o f  A. linicola (Ellis, 1971).

A. linicola  is regarded as the most serious o f the seed-borne diseases affecting British linseed 

(M ercer et aL, 1991a). A. alternata and A. infectoria are not generally considered to be as 

pathogenic as A. linicola although these species have been found to produce symptoms on 

cotyledons and lower leaves. In contrast to A. linicola, it appears unlikely that alternata or 

A. infectoria cause sufficient damage to decrease yields (Fitt et aL, 1991a).

Characteristics and epidemiology o f  A. linicola

IA. linicola is not strongly pathogenic on adult plants where an infection is manifest as dark 

brown lesions on the leaves, stems and capsules (Turner, 1987; M ercer e ta / . ,  1991a).

However, the pathogen causes serious economic damage early in the season and later during
:

saprophytic growth following flowering when the developing seed can become infected.

Seedlings may be seriously weakened or killed leading to as much as a 50 % reduction in the 

emergence o f the crop, a 35 % reduction in seed yield and a reduction in oil yield and quality

(M uskett & Colhoun. 1947: M ercer er £?/., 1989). Levels o f contamination caused by 

linicola are the commonest cause o f the failure o f UK linseed to meet the seed certification
:ÿ::'

Standard o f less than 5 % infected (M ercer et aL, 1991a).
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Like m any Alternaria  spp. which are phytopathogenic in temperate regions, A. linicola only 

causes a disease problem during moist seasons such as 1987 (Fitt et al., 1991b) and 1993 (B. 

Freer, Pers. comm.). The primary source o f inoculum for disease development in the growing 

crop has been shown to be the seed (Mercer, 1994; Vloutoglou et al., 1995). As a result, the 

disease can be especially problematic and economically damaging if damp weather precedes 

germination and the harvest period. However, for much o f the growing season, A. linicola 

does not appear to be particularly detrimental to the developing linseed crop. The pathogen is 

often only found to be present at low levels on the lower leaves and stems of the plant (M ercer 

et al., 1991a) and if  plants survive the seedling stage it is common for the actively growing 

upper stem and leaves to be relatively free o f the pathogen until after flowering when infection 

again becomes apparent. Little is known o f the mechanisms which underlie this phenomenon, 

or how the pathogen is able to re-infect the seed at the end o f  the growing season from what 

must surely be a depleted inoculum source.

Mercer et al. (1991a) suggested that sufficient inoculum exists on the lower leaves for it to 

multiply quickly at this time o f the growing season if the climatic conditions favour the growth 

o f the pathogen. This suggestion was supported by an observed increase in A. linicola spore 

numbers above and within the crop canopy immediately prior to capsule formation (M ercer et 

a l, 1991a). Recent work by Vloutoglou et al. (1995) has shown that the pathogen can survive 

over w inter as thick-walled chlamydospores in hyphal or conidial cells in naturally infected 

crop debris and also on infected linseed volunteers and the alternate hosts Veronica persica. 

Vloutoglou e ta l. (1995) suggested that under suitable environmental conditions, these sources 

o f inoculum, in conjunction with planted infected seed, formed the primary inoculum source at 

the beginning o f the season and continued to provide a source o f inoculum through to the 

middle o f the season.

Inoculum dispersal by rain-splash is thought to play only a minor role in the movement o f A. 

linicola from the lower to the upper parts o f the linseed plant (Vloutoglou et al... 1995). This 

observation contrasted with the similar movement o f Alternaria brassica and Alternaria 

brassicicola conidia on Brassica crops where rain-splash has been described as important 

(Prasanna, 1984). Similarly, Fontem et ah, (1991) observed that during a period of intense wet 

weather, rain-splash dispersal appeared to be the predominant cause o f the spread of A. 

brassicicola spores during dark leaf sppt epidemics on cabbage. Rain-splash is probably less 

important in the /I. linicolaiWnsQQd interaction due to the narrow shape and small size o f the 

leaves o f  the host plant.
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f

Wind blown conidia appear to be the primary source o f inoculum for the spread of .4. linicola

between plants and between different fields o f linseed during the growing season (Fitt &

McCartney, 1986), although details o f the epidemiology o f the pathogen are still not fully

understood. Conidia o f  A. linicola  are dispersed singly, in comparison with the conidia o f^ .

alternata andvf. infectoria, 50% o f which were found to be dispersed in chains of up to seven

spores. It is this, in conjunction with the differences in spore size and morphology, which

produce the characteristic differences in the fall speed o f the conidia o f the three species (Fitt

et aL, 1991a). A. linicola conidia released singly have a fall speed o f 1.0 cm s*', whereas for

A. alternata and A. infectoria the fall speed range was 0.6 cm s'  ̂ (single conidia) to I .l  cm s'*
.

(chain o f  up to 3 conidia) which indicates that .T. linicola conidia will settle out of still air at a

Sî::
faster rate than singular spores of the A. alternata and A. infectoria. In turbulent air the greater 

velocity ofT . linicola spores and the larger spore size ensures a greater impaction velocity 

(Gregory, 1961) onto the sm aller leaves o f the linseed host in comparison to the two non- 

pathogenic species.
A:

Comparison with the Alternaria  pathogens o f oilseed rape would suggest that inoculum o f A. 

linicola from a heavily infected crop may be dispersed over a large distance in the air, although 

reports in the literature are somewhat contradictory. Humpherson-Jones & Maude (1982) 

trapped large numbers o f viable conidia of^L brassicicola near to, and down wind from 

Brassica oleracea seed crops during harvesting. Although conidia were trapped at distances 

of up to 1800m from the crop, the density o f inoculum was found to decrease rapidly away

from the inoculum source. Recently however, Fontem et aL, (1991) suggested that steep 

disease gradients and relatively slow isopathic rates observed in dark leaf spot {A. 

brassicicola) epidemics on cabbage were due to very localised spore dispersal, predominantly 

through rain-splash dispersal which, as mentioned above, is probably not an important route o f 

disease spread in th e ^ . linicola/Vmseod pathosystem.

Seed infection

Alternaria linicola  is thought to infect the developing seed either during capsule development 

or later on in the season during capsule ripening (Mercer, 1994). Current evidence suggests 

that alternate wet and dry conditions during capsule maturation increases the levels o f infection 

o f the seed. K. Rashid (Pers. comm., 1992) suggested that the pathogen is able to ingress 

through the continually opening and closing margins o f each segment o f the developing
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capsule. Mercer (1994) suggested that the pathogen grows either through the capsule wall or 

up the central stalk although the actual process is still not understood.

In infected seed, Alternaria linicola  is located almost exclusively the outer cells of the testa 

and in the mucilaginous coat where the pathogen over winters in the form o f resting hyphae 

(Mercer & Hardwick, 1991; M ercer et aL, 1991a). The levels o f A. linicola  on stored seed 

decrease with time but only com paratively slowly in comparison to other seed-borne 

pathogens (Mercer et a l ,  1991a). V iable resting hyphae have recently been shown to survive 

successfully for at least five years (M ercer, 1994).

Climatic factors affecting disease development in the fie ld

In axenic culture, A. linicola has different optimal growth temperatures depending on the 

growth media used. Typical tem perature conditions in the field however, do not appear to 

limit the ability o f  seed-borne isolates o f  the pathogen to colonise seedlings or indeed to 

germinate from wind blown conidia and infect the growing crop later in the season. Although 

little work on the importance o f climatic conditions for successful infection and epidemic 

development has been reported in the literature field observations suggest that cool, wet 

conditions after planting favour pathogen development in the growing crop (M ercer et aL, 

1991a; Mercer, 1994).

Humpherson-Jones & Hocart (1983) observed that the optimal temperatures for Alternaria  

pathogens o f brassica seed crops was species dependant. In controlled environment infection 

studies with cabbage, brassicicola  a n d / ,  brassicae produced the greatest levels o f infection 

at temperatures o f 25°C and 15°C respectively. Both species required a minimum period o f 

16 hours at these temperatures for the initiation o f infection and optimal disease development 

occurred after 48 - 72 hours. Importantly, Humpherson-Jones & Hocart (1983) found that at 

10°C, / .  brassicicola failed to produce significant infection after 96 hours whereas / .  

brassicae, the dominant species in the field, was found to produce numerous lesions at that 

temperature.

Vloutoglou et aL (1995) observed t h a t / ,  linicola was effectively transmitted from the seed to 

the seedling but transmission levels were dependant on soil temperature and the proportion of 

infected seeds sown. The pathogen was transmitted most effectively at a temperature range o f 

between 15-25°C and was significantly reduced at 10°C (Vloutoglou et aL, 1995) although
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Webster & Dix (1960) reported that at 20®C, A. alternata required a relative humidity in 

excess o f 89% for germination to occur. Chandrashekar & Ball, (1980) showed that at 25°C, 

an isolate o f  A. alternata from grey mangrove (Avicennia marina var. aiistralasica), in 

Australia required an r.h. o f only >75% to germinate, but maximum germination was only 

reached at 100% r.h. However, in a more detailed study, Dickinson & Bottom ley, (1980), 

found large responses in the germination o f conidia to r.h. at different temperatures with

1.2.2 Control o f  Alternaria linicola

Chemical control

Chapter i

transmission from infected seed to linseed seedling roots was found to be greater at 8-10°C 

than at 20-24°C (Mercer. 1994).

i-
After arriving on the phylloplane, moisture appears to be a limiting factor to conidial 

germination as is the case many oth&c Alternaria  species. Lacey (1986) suggested that A. 

alternata requires a minimal range o f 90 - 92 % relative humidity (r.h.) for germination to 

occur. In an experiment with the same species on Phaseoliis leaves, Dickinson & O' Donnell

(1977) found that the highest levels o f  conidial germination and germ tube growth were 

achieved by keeping plants under continuous high r.h. conditions o f 97%. In contrast, this 

study also found that changes in the physiological condition o f the leaf (i.e. by either washing 

the leaf surface prior to inoculation or by adding sucrose with the inoculum) had very little 

effect on conidial germination and germ tube growth.

germination only occurring at 97-98% r.h when the temperature was between 5-10°C.

I

Historically, the most effective control o f  A. linicola  was achieved through the application o f 

the fungicide iprodione to infected seed. However, extensive use o f this chemical lead to the 

selection of insensitive isolates. Data from the UK Seed Testing Station (DANI, Belfast) 

showed that the proportion o f insensitive isolates within the A. linicola  pathogen population 

increased dramatically from 2% o f all seed samples tested in 1986 to 85% by 1988 (M ercer et 

aL, 1991a).

As a result o f the problems with iprodione seed treatment, prochloraz has been the 

recommended for disease control in the UK for a number o f years as the compound has been 

shown to give good control o f  A. linicola  (M ercer et aL, 1988). The compound has been
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successfully used as a seed treatment (Mercer, 1994). However, field trials with this fungicide 

as a spray treatment showed that there was no significant decrease in / .  linicola levels on 

either the capsules or seed and that there was no increase in yield unless the chemical was used 

at an uneconomic rate (M ercer et aL, 1989; 1991b; 1992). It should be noted that disease 

levels during the trials were low due to dry, warm weather conditions which were not 

conducive to pathogen development.

Biological control

The phenomenon o f microbial competition on the phylloplane is well known with antagonism 

between saprophytes and plant pathogens being utilised commercially for novel biological 

control methods (Baker & Cook, 1974; Reinecke, 1981). At the leaf surface A. linicola 

appears to be strongly dominant with a high degree o f influence on other seed-borne pathogens 

such as Fiisarium  species. M ercer & Hardwick (1991) found that there was significantly less 

growth o f Fitsarium avenacewn in the presence o f A. linicola. Similar results were found for 

Botrytis cinerea (M ercer & Jeffs, 1988).

Competition between A. linicola and other species o f the Alternaria  has also been obseived in 

th a t / ,  linicola appears to be dominant o v e r / ,  alternata and / .  infectoria when atmospheric 

conditions are suitable for the pathogenic species' growth. M ercer et al. (1993) observed that 

although / .  alternata had a significant effect on the growth o f  A. linicola  in paired-culture tests 

suggesting a degree o f potential antagonism, / .  alternata had little effect on levels o f A. 

linicola  when both species were co-inoculated in seed tests.

A number o f workers have realised the potential o f  biological control o f linseed diseases 

considering the low-input status of the crop. The possibility o f co n tro lling /, linicola with bio

control measures would also prevent the selection o f fungicide insensitive isolates from the 

pathogen population. M ercer et £7/(199lb ) found that in field trials, spore suspensions o f 

Epicoccum nigrum  competed successfully with / .  linicola. The level o f  control achieved was 

equivalent to that achieved with sprays o f prochloraz but not as effective as sprays of iprodione 

(M ercer et aL, 1991b). However, low disease levels during the duration o f the trials did not 

provide a clear indication o f the usefulness o f the organism as a biological control method. In 

more recent work, M ercer et al (1993) found that isolates o f Epicoccum nigi'iim and 

Trichoderma spp. gave good control o f A. linicola both in the laboratory, glasshouse and field
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trials. The level o f  control achieved by a number o f Trichoderma spp. (in particular isolates of 

T. harzianum) rivalled the level o f control achieved by the fungicide iprodione.

Cultivar resistance

Although differences in the levels o f A, linicola on specific cultivars have been observed in the 

field, it is uncertain whether observed differences are due to genetically inherited resistance 

mechanism or are caused by differences in relative maturity (M ercer & Jeffs, 1988; Turner, 

1987). Recent evidence suggested that incidence o f / .  linicola  was not correlated to maturity 

(Mercer & Ruddock, 1994), but as yet, cultivars are not recommended by the National Institute 

o f Agricultural Botany with respect to disease resistance. The current status of what is 

understood o f cultivar resistance and the possibilities o f  the use o f the method for the control 

o f / ,  linicola  on linseed will be discussed more fully during the following chapter.

1.3 Aims o f the project

Considering the problems associated with disease control as outlined above, disease pressure 

from the pathogen has been expected to increase over recent years due to the increased interest 

in the crop and the accompanying increase in the area o f  linseed grown in the UK. Although 

linseed is an ancient crop to Britain, very little is known about the biology o f the pathogens 

which infect the crop. The main aim o f the study was to further the knowledge of the 

understanding o f the interactions between linseed a n d / ,  linicola.

Objectives:

1. To develop a bioassay capable o f differentiating levels o f resistance to / .  linicola in 

linseed.

2. To use the bioassay to assess the levels of resistance to / .  linicola  in a ranges of linseed, 

flax and Linum  accessions.

3. To describe the nature o f the host/pathogen interaction at the cellular level.

4. To characterise the role o f phytotoxin production by the pathogen in the infection process.

5. To investigate phytoalexin production by the host during the resistance response.

I
f
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2.1 Breeding for resistance to plant disease

Current status o f  disease resistance to Alternaria linicola in linseed.

It has only been in recent years, since the large increase in the area of linseed grown in the UK 

(Fig. 1,1), that disease resistance to fungal pathogens and to A. linicola in particular, has become of 

relative importance to the crop breeder. The main cause for concern has been that the large area 

under linseed has increased the selection pressure on the pathogen population. This, in 

combination with the problems associated with the control o f A. linicola by chemical means, as 

outlined previously, has ensured that the possibilities of the use of cultivar resistance to control the 

pathogen have taken on a new significance. There was, therefore, an increased interest in the 

current levels of resistance exhibited by cultivars and a growing importance to assess sources of 

resistance for the breeding of improved cultivars. However, it would appear that one of the main 

reasons why breeding for disease resistance to / .  linicola has not ranked highly amongst breeders 

selection criteria previously is that no discreet assay which allows the quantification of resistance 

levels to the pathogen has been developed. The principal aim of the following study was, 

therefore, to design such a test in order to investigate levels o f resistance to the pathogen. It was 

also envisaged that the testing of a sufficiently large number of linseed accessions would allow 

inferences to be made as to the genetical system which controlled the resistance mechanism.

At the beginning of the 1990’s. very little was known of levels of resistance to A. linicola in linseed 

and even to date, after extensive field trials for the recommended list, the National Institute of 

Agricultural Botany (NIAB) does not make recommendations to the grower on disease resistance 

of linseed cultivars (Anon, 1995). Mercer & Jeffs (1988) and Turner (1987) reported differences in 

the levels o f A. linicola infection on different cultivars in field trials but suggested that the effect 

was due to differences in the maturity of the cultivars. More recent evidence from late in the 

growing season suggests that different cultivars have an effect on the incidence o f A. linicola on 

capsules and seed following harvest, but that there is no correlation with cultivar maturity, from 

which it can be concluded that the observed effect is of genetical significance (Mercer & Ruddock, 

1994). However, it was also observed that the ranking of the cultivar effect changed from year to 

year and that correlation between years was poor (Mercer & Ruddock, 1994), Mercer & Ruddock 

(1993) had previously reported that no correlation was observed between the incidence of / .  

linicola on capsules or seeds following harvest and the incidence of the pathogen on seedlings of 

the crop earlier in the season. From these observations Mercer & Ruddock (1994) suggested that 

seedling resistance and the resistance which determined differences in pathogen incidence between 

cultivars later in the season were governed by two separate mechanisms.
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Possible mechanisms o f  resistance - The concept o f  monogenic control

During the history of the crop, it is unlikely that linseed/flax cultivars have been bred specifically 

for disease resistance to any of the important diseases; yield o f seed or fibre and other agronomic 

characters being economically more important to the breeder and grower. In recent history, the 

exception to this has been the breeding for resistance against the rust pathogen, Melampsora Uni. 

The work of Flor (1941; 1942 a, b; 1946; 1947; 1955) and subsequent studies (Lawrence et al.,

1981 a, b) has resulted in the genetics of the flax-M Uni interaction being one of the best 

characterised of all agricultural crops and their pathogens. The resistance reaction was observed to 

be controlled by major genes in both the pathogen and host which interacted in a specific manner 

to confer resistance or susceptibility. Flor concluded that the genetic interaction between the 

pathogen and the host was much closer than had been previously assumed and the 'gene-for-gene' 

hypothesis (Flor 1942b; 1955) was proposed.

Flor hypothesised that for each gene that conditions the resistance reaction in the host there is a 

corresponding gene in the parasite that conditions pathogenicity (Flor, 1942b, 1946, 1947). In the 

case o f the flax-rust interaction, resistance was invariably dominant to susceptibility with genes 

which controlled high degrees of resistance being epistatic to genes which confer less resistance. 

Resistance alleles conditioned a characteristic resistance reaction type which was manifested by the 

extent o f colonisation by the pathogen. Analysis o f the complementary genes in the fungus 

indicated that avirulence was dominant. Linkage between the resistance genes was observed, as 

was multiple allelism, and subsequent work showed five closely linked genes. To the present time, 

29 specific resistance alleles have been recognised which have been grouped into 5 linkage groups 

designated L, M, N, P and K, containing 13, 7, 3, 5 and 1 alleles respectively (Crute, 1985). 

Linkage between loci conferring specific virulence was also observed, but less frequently, and no 

evidence of multiple allelism was found in the pathogen (Lawrence et a i, 1981a; 1981b).

Each host gene for resistance possessed alternative alleles, R resulting in resistance, and r which 

did not confer resistance, and this locus interacted with a specific corresponding gene in the 

pathogen which also possessed alternative alleles; Av  resulting in avirulence and v resulting in 

virulence. Hypothetically, the resultant pattern of conformative response, known as a quadratic 

check, showed that one of the four possible combinations o f the corresponding alleles in the host 

and pathogen gave resistance (or avirulence) when R in the host coincided with / v  in the pathogen 

and susceptibility for the three remaining combinations of Riv, riAv and riv.
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The gene-for-gene interaction dictated that a different resistance gene with two allelic forms 

interacted with a different avirulence/virnlence gene in the pathogen. The complementary 

interaction that this confers could not be illustrated for a single pair of corresponding genes in a 

quadratic check, as the specificity of the interaction was not depicted. Table 2.1 illustrates that the 

minimum number o f complementary gene pairs required to represent the gene-for-gene interaction 

is two, which, as Day (1974) pointed out, was the model upon which Flor based the original 

hypothesis.

Subsequent development of the gene-for-gene hypothesis has shown that the complementary gene 

system was not, as first thought, a peculiarity of the flax/rust pathosystem, but was applicable to 

many plant-pathogen systems (Crute, 1985) including, potato~Phytophthora infestans (Black, 1952; 

Toxopeus, 1956) and applo-Venturia inaequalis (Bagga & Boone, 1960, 1968). Van der Plank

(1978) listed 28 examples of pathosystems which exhibit gene-for-gene systems as the basis of the 

interaction and also suggested that this was likely to be only a small proportion of the total number 

of plant-pathogen interactions which would eventually be found to be controlled by the 

mechanism.

Pathogen alleles

Host alleles

R1R2 R lr2 rlR 2 rlr2

AvlAv2 V I 1 C2

Avlv2 I I ĉ C

vlAv2 1 Ç I c
vlv2 C c c c
* 1 : incompatible interaction (resistant/avirulent).

" C : Compatible interaction (susceptible/virulent).

 ̂_  : underlined characters indicate that R2 does not confer incompatibility with A vl and likewise 

R1 does not confer incompatibility with Av2 demonstrating the specificity of the gene-for-gene 

interaction.

Table 2.1. An example o f  an hypothesised gene-for-gene interaction between two host loci (each 

■with two alleles, R1 o r r l  and R2 or r2) and two corresponding loci in a pathogen (also with Pvo 

allelic forms, Avl o rv l  and Av2 o r\2 ). (after Johnson, 1992).
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Evidence for other gene-for-gene interactions in linseed/flax pathosystems have been published in 

the literature. Resistance to wilt, caused by Fusarium oxysporum f.sp. Uni, was reportedly 

observed to be controlled by a single dominant gene and resistant varieties to the pathogen are 

reported from the United States (Burnham, 1932; Stevenson & Jones. 1933) and India (Singh et a i, 

1956; Jeswani & Upadyaya, 1970; Kamthan et a i.  1981; Goray et a i,  1987). Work on powdery 

mildew {Oidium Uni) also suggested that resistance was conferred monogenically by a dominant 

gene, designated 01, and that this was present in all resistant cultivars o f linseed (Goray et a i,

1989; Singh & Saharan, 1979).

Very little information has been published on the resistance mechanisms involved in linseed/flax 

diseases caused by Alternaria spp.. Kalia et a l  (1965) identified resistance against the form of 

Alternaria blight endemic in India, Alternaria Uni, to be under monogenic control. From the 

descriptions given by some of the Indian authors, it would appear th a t / .  Uni was a linseed 

infecting pathotype of the complex of pathogens which belong to the / .  alternata anamorph group. 

Such a close relationship with the host plant would not be uncommon for a pathotype o f / .  

alternata as many forms have an extremely narrow host range. Often causing major disease 

problems in sub-tropical and tropical regions, pathotypes of / .  alternata have been associated with 

the production of host-specific toxins under monogenic control (Kohmoto et al., 1987, also, see 

Chapter 4, Introduction).

There is no evidence from the literature at present to suggest that major genes are involved in the A. 

/mzco/a/linseed pathosystem. The observations of Mercer & Jeffs (1988) and Turner (1987) 

suggest a continuous range of resistance response between resistant and susceptible cultivars as 

opposed to the discontinuous, large interactive differences which would be expected should the 

interaction follow the classic gene-for-gene pattern. Some evidence of toxin production by the 

pathogen has been published (Leduc, 1958). The description suggests the production of host non

specific toxins similar to those produced by the large spored species, /  solani rather than the 

monogenically controlled host-specific toxins characteristic of pathotypes o f the A. alternata 

anamorph.

Possible mechanisms o f  resistance - The concept ofpolygenic control

Flor (1941; 1946; 1965) observed some exceptions to the general trends upon which his gene-for- 

gene theory was postulated. Subsequent studies with other host-parasite pathosystems have shown 

other variances from Flor's model. Examples include, resistance being inherited as a recessive or
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partially dominant trait, duplicate avirulence genes corresponding to a single resistance gene, and 

additive effects of resistance genes. Since the proposition of the gene-for-gene hypothesis, a large 

number of pathosystems have been shown not to fit into the gene-for-gene pattern and many 

examples are cited by Crute (1985). The evidence to date suggests that the genetics of 

resistance/susceptibility are more complex in nature than can be explained by a generalised model.

In an attempt to explain the different forms of genetic control observed, Van der Plank (1963) 

proposed that there were two distinct classes of resistance, vertical, which was effective only 

against certain races (e.g. was race-specific) and therefore conformed to a strict gene-for-gene 

system, and horizontal which was equally effective against all races (e.g. was race-non-specific) 

and was therefore not controlled by a gene-for-gene interaction. Van der Plank (1963) pointed out 

that vertical resistance was the key tool that breeders had been choosing during the breeding of new 

crop cultivars for many years, the successful inclusion of a resistance gene conferring a state of 

immunity, or no disease. Historically this lead to the so-called “boom'’ in the growth o f large areas 

of resistant crop cultivars utilising vertical resistance genes. However, the inherent problem with 

reliance on vertical resistance genes was, and still remains, that resistance/susceptibility in the host 

is conferred by usually one or very few genes which in turn interact with one or very few 

virulence/avirulence genes in the pathogen. Thus, a small shift in the frequency of virulence alleles 

in the pathogen population (for example by deletion or mutation), coupled with strong selection 

pressure from the resistance genes of the 'resistant' host resulted in resistance being quickly lost 

(Johnson, 1978; 1992).

The loss of effectiveness of the resistance gene and subsequent loss o f resistance was often referred 

to as the cultivar being "bust"’. Thus, the whole sequence of events, from an increase in the 

popularity and subsequent failure of many crop cultivars, became termed the “boom and bust” 

cycle. It was as a consequence of the repeated extensive incorporation of single genes into 

resistant cultivars and the subsequent failure o f resistance that breeding tactics changed to involve 

the incorporation of series of genes rather than individual genes (Ellingboe, 1981). Table 2.1 

shows that because of the specificity of the gene-for-gene interaction, resistance genes can be 

incorporated into the host in combinations and the pathogen must then evade the effect of each of 

the genes at a corresponding, specific locus. Thus the pathogen must evolve and accumulate the 

required virulence alleles in the correct combination. However, the eventual result is that change in 

the pathogen population will occur, but the key question for plant breeders and farmers is how long 

the change will take. Johnson (1992) suggested that in practice the 'life-span' o f vertical resistance 

genes would be variable and depended on many factors, such as the extent of deployment of the

I
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specific genes, the epidemiology and population size of the pathogen and the potential of the 

pathogen population to vary.

The much cited examples of the breakdown of resistance in many pathosystems have fuelled the 

great debate amongst plant pathologists and plant breeders. Many questioned the occurrence of a 

gene-for-gene relationship in all host-pathogen interactions and also whether reliance on dominant 

resistance genes was a necessary pre-requisite for successful plant breeding. Views in the literature 

appeared to differ depending on personal experience in the laboratory or field and the particular 

pathosystem being studied. Person (1959) suggested that evolution to resistance in the host would 

be followed by evolution to virulence in the pathogen in a step-by-step progression. Parlevliet 

(1981) and Ellingboe (1975) suggested that if this was the case, resistance would always follow a 

gene-for-gene relationship. In fact, Ellingboe (1975) argued that not only was all resistance 

controlled by a gene-for-gene interaction, but failure to demonstrate such an interaction was due to 

poor experimental technique 1 Differences in opinion over the validity of Van der Plank’s concept 

of disease resistance continue, and the consideration of recent experimental evidence has neither 

proved nor disproved the validity of HR or VR as real, genetically controlled phenomena.

However, following disease control failure, many breeders appeared to abandon the introduction of 

dominant major resistance genes into new cultivars, even in groups. It was realised that horizontal 

resistance was not just resistance "that had not yet been shown to be vertical" as rather curtly 

described by Ellingboe (1981). The possibility of producing cultivars showing "less disease" rather 

than immunity was a strange concept for many traditional breeders to grasp, although many 

realised that horizontal resistance could offer an alternative to the “boom and bust” treadmill. A 

recent review of the use of horizontal resistance in cultivated crops has indicated that not only does 

horizontal resistance work in the field, but no specific case of failure has so far been reported 

(Simmonds, 1991).

One of the earliest and most well known examples of successful breeding utilising horizontal 

resistance was described by Niederhauser et al. (1954) working on disease resistance of potato to 

Phytophthora infestans. Vertical resistance genes (7?-genesy from, Solamm demissiim had been 

introduced into numerous cultivars in Europe and North America in the 1930's. Failure of the 

resistance conferred by the R-genes was predictably swift and total. However. Niederhauser 

obseiwed that the potato clones showed a highly repeatable variability of response to the pathogen 

and could be ranged from susceptible to fairly resistant (but not immune). Furthermore, the 

ranking of the material remained essentially stable over many years. Niederhauser suggested that
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what was being observed was 'field resistance' and that being repeatable, resistance of this nature 

would be responsive to selection (Simmonds, 1991).

Unfortunately, very little of Niederhauser's early work on what is know recognised as being 

horizontal resistance was published. The important points are noted in Niederhauser et a i  (1954). 

However, the early studies lead to the realisation that horizontal resistance was present in most, if 

not all, crop species at various levels and that an alternative strategy to the continual cycle of'boom 

and bust' for disease resistance could be exploited.

The critical importance o f horizontal resistance was that it was not discontinuous (i.e. there was no 

"all or nothing" response as observed with vertical resistance genes). Horizontal resistance, 

controlled by polygenes, produced a continuous distribution of resistance responses between host 

cultivars and pathogen isolates and as such, the selection pressure on the pathogen population was 

not as strong or specific. Indeed, Van der Plank (1963) defined horizontal resistance as being non- 

pathotype specific. He stated that an isolate x cultivar interaction constituted the effect of major 

genes and that if this situation was observed, resistance would be vertical due to the adaptation of 

pathotypes to a specific host genotype. If such an interaction was not observed, resistance would 

be horizontal (Van der Plank, 1963). However, there is some evidence that this is not necessarily 

true. As Simmonds (1991) states "it would be very surprising, on a priori grounds, if they [host x 

pathogen interactions] did not exist; in biological systems, interactions are nearly always found if 

sought". The example given by Simmonds (1991) to demonstrate this point concerns two 

pathogens of maize, Colletotrichum graminicola and Bipolaris maydis for which there was no 

evidence o f vertical resistance in the host (Jenns et al., 1982). Small interactions were found in 

single trials,which were variable and unrepeatable over separate trials, specificity was not 

observed, and resistance was unequivocally horizontal in nature. Although not the case in this 

example, large consistent interactions in respect to horizontal resistance would suggest the 

evolution of adapted pathotypes to a given genoly^pe and the beginning of the failure of the 

horizontal resistance. For crops which have been breed using quantitative traits, large consistent 

interactions have not been reported in the literature and, indeed, this provides the basis of the 

argument that horizontal resistance is stable or 'durable'. Accordingly, the importance and 

advantages o f the development of durable, usually race non-specific, resistance systems have been 

reported in recent years (Johnson, 1979; Simmonds. 1991). Evidence of durable resistance for 

facultative pathogens which have a similar biology to the Alternaria has been described recently 

and include Septoria spp., Bipolaris (formerly Helminthosporiiim) spp. Cercospora spp. and 

Colletotrichum spp, (Simmonds, 1991).
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Current evidence from the literature concerning phvtopathogens of iho Alternaria which occur in
'

temperate climates suggests that race specific resistance is not generally observed and that 

resistance mechanisms are polygenically controlled. Of the reports o f Alternaria spp. which are 

pathogenic on Brassica spp., polygenic (quantitative) resistance was observed for Alternaria 

brassicae (Humpherson-Jones & Hocart, 1983; Prasanna. 1984; Bansal et al., 1990) and Alternaria
'

ôrassic/co/ûr (Prasanna, 1984).

Recent evidence of the interaction between linseed and A. linicola indicated that the mechanism of 

resistance was polygenic in nature. Klose et al (1993) observed that qualitative interactions were 

not observed between 16 linseed cultivars and two A. linicola isolates at a number o f growth stages 

during glasshouse tests. Levels o f resistance were continuous from susceptible to fairly resistant 

although some change in the ranking o f resistance between the different cultivars tested was 

observed to occur at different growth stages. As large cultivar/isolate interactions were not 

obseiwed, Klose eta l (1993) concluded that resistance was under polygenic control and suggested 

that a good response to selection for improved resistance should be possible.

In a general review on the merits of the use of breeding for resistance utilising horizontal 

resistance, Simmonds (1991) not only gave examples where resistance had been both effective and 

reliable but suggested that the level of response of quantitative traits to selection was high. O f the 

Alternaria, Nash & Gardner (1988) demonstrated that resistance of tomato to Alternaria solani was 

quantitative in nature, heritable and showed good response to selection. Simmonds (1991) also 

provides a number of examples of quantitative breeding programmes targeted against pathogens 

which have a similar biology to Alternaria spp. where response to selection for quantitative traits 

has been successful. Jenkins et al. (1954) observed good response to selection of quantitative 

resistance of maize to the pathogen Helminthosporiiim turcicim, another anamorphic foim of the 

Pleosporaceae.

It is likely that durable resistance to A. linicola will involve several physiological and biochemical 

components. Evidence from other phytopathogenic systems involving the Alternaria would 

suggest that following recognition, the resistance response would be multicomponent in nature and 

involve components including structural changes to the host cells and the production of defence 

related compounds by the host in response to physical and chemical stimuli from the pathogen.

Such a structure of resistance response was suggested by Te war! (1991) as the mechanism of 

resistance of cruciferous species to / .  brassicae and was also suggested as a general model of 

resistance by Heath (1991 ; 1995) for many plant pathogen interactions.
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The development of A. linicola resistant varieties carrying durable resistance genes is of prime 

importance if linseed is to remain a viable proposition as a crop. At present the mechanism of 

resistance to A. linicola has not been fully characterised. Johnson (1978) suggested that the most 

obvious source of durable resistance for a breeding programme is a parent which has shown a good 

level of resistance for many seasons. In an extension of this, the co-evolution of natural plant 

populations with pathogen populations over many generations has effectively dictated the 

incorporation and maintenance of many useful resistance genes. As such, it would seem likely that 

a good source of resistance to A. linicola would come from a wild or near relative of L. 

usitatissimum, or from cultivars which have shown durability for a number o f seasons in the field. 

Levels of resistance in such lines to A. linicola have not been described to date

Criteria fo r  the development o f  a bioassay fo r  resistance to Alternaria linicola

The aim of the following study was to develop a reproducible bioassay which could be used to 

assess the resistance of currently-grown linseed cultivars and a range of Linum material against 

field isolates o f A. linicola. The second aim was to demonstrate that the response observed from 

the bioassay was indicative of the response during normal linseed plant growth under glasshouse 

conditions. Third, to use the data produced from the experiments to assess the underlying 

mechanism of the resistance response as a guide to possible breeding strategies for future studies.

A series of experiments were developed based on a number of studies reported in the literature. 

Because of the requirement for the resistance bioassay to be quick to carry out and to be 

reproducible, it was decided that a detached tissue assay under controlled environmental conditions 

would allow the systematic testing o f large amounts of material. For this reason, an assay was 

developed in which cotyledons of linseed were removed from young seedlings, infected with 

isolates o f the pathogen and were incubated for five days at a constant temperature/relative 

humidity.

The choice of the cotyledons as the test tissue was made for two reasons. First, the true leaves of 

linseed are long and narrow and were not conducive to the rapid application o f inoculum droplets. 

Second, if an infected seed of linseed germinated successfully in the field and survived to reach the 

soil surface, the cotyledons would be the organs which were readily attacked in the field hyA.  

linicola. As explained in Chapter 1, survival and strong growth of the seedling allowing the plant 

to outgrow the rate of infection would arise as a direct result o f the resistance response of the 

cotyledons. The survival of the cotyledons at the vulnerable seedling stage of the growth cycle 

therefore determines whether the plant survives to develop further.
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Due to inherent problems with the induction of in vitro sporulation of many of the Alternaria, and 

in this case, the A. linicola isolates, the use of a mycelial inoculum was developed for the purposes 

of inoculating the material during the assay. A regular supply o f mycelium could then be cultured 

so that inoculum was available to coincide with the production of seedlings of the test material of 

the required growth stage. Also, considering the biology of the pathogen in the field, infection 

pressure from A. linicola at the seedling stage would be derived from mycelia growing over the 

surface of the seedling. The mycelia which are observed to attack the stem and cotyledons are 

produced from the infection hyphae which over winter in the mucilagenous layer surrounding the 

testa of the seed. It would appear that conidiogenesis does not occur in A. linicola until much later 

in the season during the movement of the pathogen from the lower leaves and stem upwards to the 

flowers and developing seed pods (Vloutoglou, 1994). Thus, infection of the cotyledons with a 

mycelial inoculum provides an exaggerated, but realistic, scenario of seedling attack as it would 

occur in the field.

Objectives o f  the bioassay study:

1. Develop a method to allow the quantification o f the resistance response of Linum accessions to 

A. linicola.

2. Use the bioassay to assess variability in the aggressiveness of the pathogen population.

3. Assess the resistance response o f a large number o f genetically diverse Linum accessions 

(<100 accessions).

4. Validate the data from the in vitro bioassay by comparing with in vivo data.

I
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2.2 Materials and methods

2.2.1 Growth o f plant material

Seeds o f the plant material were sown in Fison's Levington M3 compost in 9 cm pots and 

grown in a glasshouse under natural daylight supplemented for 16 h daily by 400 W mercury 

vapour lamps. The maximum tem perature was 24° C during the day and fell to a minimum 

temperature o f 9° C at night. Plants were removed from the glasshouse for testing when 

cotyledons had fully expanded and the first true leaves were beginning to unfold (O.S. 09-10; 

Freer, 1991) unless othenvise specified.

2.2.2 Culture o f  Alternaria linicola  isolates and preparation o f inoculum

Three 10 mm diameter plugs o f each linicola isolate (Appendix 1.1) from five day-old V-8 

agar cultures were used to inoculate 500 ml culture bottles (Duran) containing 250 ml o f 

defined medium (Appendix 1.2). Liquid cultures o f the pathogen were grown at 20° C in 

darkness for 30 days, the cultures being agitated every second day. The mycelial mat was 

filtered o ff under vacuum through a single layer o f sterile muslin, mycelial mats from different 

bottles o f each isolate being pooled, and washed with approximately 50 ml o f sterile distilled 

water (SDW).

The mycelial mat was transferred to a pre-weighed receptacle and the fresh weight measured. 

The mycelium was homogenised in 20 ml SDW for one minute using a Waring blender with a 

pulverisor attachment. Inoculum solution was prepared by diluting the homogenate with SDW 

to a concentration o f 0.02 g ml ' fresh weight mycelium. One droplet o f Tween 80 was added 

to each batch of inoculum in order to minimise clumping o f the mycelial matter within the 

suspension and to maximise the spread o f the inoculum droplet over the surface o f the 

cotyledon. A water control solution was prepared using 60 ml o f SDW with a droplet o f Tween 

80.

2.2.3 Preparation and inoculation o f excised cotyledons

Cotyledons o f the material to be tested were excised at the base o f the petiole. Replicate 

cotyledons o f each set of test material were embedded by the petiole in a Petri dish (10 cm x 

10 cm. Sterilin) containing 80 mg f  benzimidazole water agar. Each cotyledon was inoculated
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:
with a 25 pi droplet o f mycelial suspension from one isolate. Each dish was sealed with Para- 

film to minimalise the possibility of contamination and to prevent the evaporation o f the 

inoculation droplet. Dishes were incubated at 18° C (16 h photoperiod) for 5 days in a 

controlled environment cabinet (Conviron CMP3244).

2,3 Experimental design

2.3.1 Preliminary assay of four linseed cultivars with 7 isolates o f Alternaria linicola

Seven isolates of^L linicola (Appendix 1.1, A l l -7) were tested against four widely grown

cultivars o f linseed; Antares, Barbara, Linda and McGregor, in order that a measure o f levels 
.

of resistance in commercially available cultivars could be assessed. In each trial, a split plot 

design was used. The six replicate cotyledons o f  each cultivar (sub-plot) were tested with 

mycelial inoculum o f one o f the seven isolates or with control solution (main plot). Three 

trials were carried out on a randomised block design to test the repeatability o f the technique 

and to assess whether the response o f the A. linicola  isolates and the linseed cultivars remained 

predictable over time.

2.3.2 Inoculation o f linseed cultivars and Limim  germplasm material with the non- 

aggressive isolate A ll and the aggressive isolate A16

Linseed, flax, Linum angiistifolium  (Hudson) and L  usitatissimwn sub-species material were 

collected from EC project partners and from other sources as detailed in Appendix 1.4. 

Following a season in the field in order to bulk up seed stocks, material was tested with 

isolates A11 and A16 using the detached cotyledon bioassay described above.

Ten replicate cotyledons o f test material were used per 10 cm x 10 cm dish together with five 

replicate cotyledons o f each o f the cultivars, Linda and Antares. The two “standard” cultivars

were included in every test to act as reference material o f a known resistance response to the 

twoyf. linicola isolates during the tests. M aterial was tested on three separate occasions in 

batches of 8 - 4 0  accessions chosen at random following adequate germination.
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2.3.3 Inoculation o f cotyledons o f intact Limim  seedlings in a glasshouse study

A sub-set o f eight accessions tested using the detached cotyledon assay (2.3.2) were chosen for 

inclusion in a whole plant study in order to verify that the response observed during the in vitro 

test was indicative of the resistance response expressed during normal whole plant growth. 

Antares was also included as a reference cultivar as in 2.3.2. The criterion used for the 

selection o f material to be included in 2.3.3 was that the test accessions should include a range 

of material reflecting the whole range o f responses observed during the main detached 

bioassay (2.3.2), from susceptible to resistant accessions.

Seedlings were grown in the glasshouse as described above (section 2.2.1). At G.S. 09-10 

(Freer, 1991), cotyledons were inoculated with a 25 pi droplet o f mycelial suspension o f either 

isolate A ll, A16 or water control solution, prepared as described in section 2.2.2. Ten replicate 

seedlings o f each accession were inoculated per plastic pot and two replicate pots of each 

treatment were used during the experiment. Pots were placed on large metal trays containing 

water and were covered in clear polyethylene sheeting to ensure a high relative humidity.

2.3.4 Scoring o f cotyledons and the statistical analysis o f the data

During the course o f experiments, visual assessment o f disease symptoms was made on a scale 

o f 0 - 4 (Appendix 1.3) five days after inoculation. Analysis o f variance (ANOVA) was 

carried out on the data for the preliminary study (2.3.1) and the whole plant study (2.3.3) using 

GENSTAT release 5.2.2. (NAG, Oxford) using the VAX mini-computer. Owing to an unequal 

number o f accessions being tested in each batch and material being tested non-sequentially, the 

design o f the main study (2.3.2) was sufficiently unbalanced that the use o f ANOVA was 

considered inappropriate. Data for study 2.3.2 were analysed by restricted maximum 

likelihood (REML) analysis using GENSTAT release 5.3. on a Sun Unix computer of 

Biomathematics and Statistics, Scotland (BIOSS).

For the data o f the main study (2.3.2), the ten scores (or five in the case o f Antares and Linda) 

o f each accession-.^, linicola  combination on a plate were summed to give a total o f 886 

experimental units. The fixed sources o f  variation were due to cultivar, A. linicola isolate and 

the cultivar-isolate interaction. The random sources of variation were due to batch (1-12) and 

plate within batch. Residual variation would be expected from the fact that the ten replicates 

of a factor combination did not produce the same score.
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REML uses the structure o f the experiment, particularly the control cultivar scores in this case 

to estimate the effect o f each o f the random sources of variation. The technique then estimates 

a hypothetical mean for each o f the fixed effects for the score that would be achieved if the 

design were balanced for all other sources o f variation. The fixed effects can then be 

compared on an “equal footing” and statistical significance for the fixed effects is indicated by 

a statistic.

Data for the preliminary bioassay (2.3.1) and the main study (2.3.2) were further analysed 

using a number of multi-variate statistical techniques. For the preliminary study data 

(experiment 1), principal components analysis (PCP) was carried out on the sums o f squares 

data produced from the ANOVA output. PCP operates on a units by variables data matrix and 

analyses the relationship between the variables so that the units can be represented in a smaller 

number o f dimensions whilst retaining as much o f the original variation as possible. PCP 

analysis carries out this task by finding linear combinations o f a set o f variâtes that maximise 

the variation within them. I f  the resulting component axes display most o f  the original 

variability, the underlying trends in the data can be said to be represented in a smaller number 

of dimensions.

Hence, for the preliminary bioassay (2.3.1), PCP was carried out in order to summarise the 

original variance observed, provide more information about the response o f the four cultivars 

with the linicola isolates and to characterise underlying trends. The data matrix produced 

was plotted as a biplot in order that the response could be visualised. Gabriel first described 

the technique in 1981 and it has subsequently been used effectively during the study o f a 

number o f host-pathogen interactions (Phillips & McNichol, 1986; Anderson et al., 1990).

The estimated mean data produced from the REML analysis o f  the main study data (2.3.2) was 

re-analysed using a number o f statistical and graphical methods. Firstly, a similarity matrix 

was produced using a City Block co-efficient, a similarity measure which was designed for use 

with quantitative data:

City block distance measure d ĵ =  ~ ^  jk\ ^ ( C a i n  & Harrison, 1958)

where the distance {d^  between i andy, based o n p  variablesXk and r̂  is the range of

the Ath variable. The similarity matrix was then represented graphically as a dendrogram.

Page 28



Chapter 2

2.4 Results

2.4.1 Preliminary assay o f four linseed cultivars with 7 isolates o f Alternaria linicola

Differences between the seven A. linicola  isolates accounted for the majority o f the variance. 

There was a significant effect o f  A. linicola  isolate even when the effect o f the control solution 

was restricted out o f the analysis (F < 0,001). There was no significant difference between 

cultivars {P =  0.064) although Fig. 2.1 illustrated that there were consistent responses to the 

seven isolates. There was no significant interaction between isolates and cultivars {P = 0.072) 

and Fig. 2.1 illustrated a consistent trend, in that D I’s in response to A12 and A16 were higher 

than with other isolates. The ranking o f the isolates with respect to virulence remained fairly 

constant with three distinct groupings, aggressive (A12 and A16), non-aggressive (A ll and A17) 

and intermediate (A13, A14 and A15)(Fig. 2.1).

Cultivars behaved in a predictable m anner w ith low scores against non-aggressive isolates and 

higher scores (denoting susceptibility) against the two aggressive isolates (A12 and A16)(Fig. 

2.1). Over the three tests, Linda achieved the lowest mean DI in comparison to Barbara and 

Antares, whilst McGregor achieved the highest score (1.16 < 1.25 < 1.354 < 1.361 

respectively).

PCP analysis indicated that the total am ount o f variance could be accounted for in the first three 

principal components (PC) (64.81 %, 29.24 % and 5.94 % respectively). The biplot produced 

from the PCP analysis (Fig. 2.2) illustrates the response o f the four cultivars against the seven A. 

linicola isolates. Small angles between vectors indicate co-linearity and vectors with opposite 

directions are negatively correlated (Anderson et aL, 1990). An increase in distance away from 

the origin o f the points for the cultivars indicates a large response in the interaction.

Isolates A12, A14 and A16 were closely associated in the interaction achieving a negative score :

on the first PC axis. Conversely, isolates A ll, A13, A1 5 and A17 achieved a positive score on 

the first PC axis. Also, the vectors assigned to isolates A12, A13 and A15 extend a considerable 

distance from the origin indicating that these isolates accounted for a large proportion o f the 

variance in the interaction.
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2.5

Q 1.5

0.5

Variety:

a  Antares n  McGregor □  Linda g  Barbara

A14 A15

Isolate

A16 A17 Cent

Fig. 2 .1 M ean response o f  four linseed cidtivars to seven isolates q /A ltem aiia  linicola 

shoM’ing the characteristic level o f  resistance against aggressive, non-aggressive and  

intermediate isolates. SEDs = 0.34, d f=  14 (for comparison between isolates) and 0.24, df'- 

48 (for comparison within isolates).
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Fig. 2.2 Biplot o f  PCP analysis data from  the prelim inary bioassay (2.3.1) showing the 

interaction between seven A. linicola isolates (A ll-7) and fo u r cidtivars o f  linseed, Antares 

(Ant), Barbara (Bar), Linda (Lin) & McGregor (McG).
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Fig. 2.2 also indicated that the PCP analysis associated the isolates with the cultivar upon which 

the highest score was achieved by that particular cultivar. The non-aggressive isolates A13 and 

A17 and to a lesser extent A ll, showed strong association with cv. McGregor the cultivar which 

had the highest mean DI score. Conversely, A12. A14 showed association with cv. Barbara 

which achieved the second lowest DI score and AI6 achieved the highest mean DI score on 

Antares with which it is clearly associated. None of the isolates were strongly associated with 

cv. Linda, the cultivar which achieved the lowest mean DI score.

2.4.2 Inoculation o f linseed cultivars and Limim  germplasm material with the non-aggressive 

isolate A ll and the aggressive isolate A16

Due to the underlying nature o f REML, the estimated variance components (VC) decomposed 

the variance o f a single observation and were used to compare the random effects over the 

whole data set. O f these, the effect o f batch was fairly large (VC =  0.11) accounting for 

approximately 41 % o f  the residual effect (VC = 0.27). The effect o f plate within batch, 

however, was almost negligible (VC = 0.01).

O f the fixed sources o f variation, there was a significant effect o f  accession (%- = 273.3, d f = 

101, jP < 0.001) and, as observed in the results described above (2,4.1), a large significant effect 

o f A. linicola isolate (%̂  = 1640, d f = 1, <0.001). The interaction between accession and A.

linicola isolate was not significant 101.1, d f=  101, P  = 0.51) and for each accession the 

estimated mean for A16 was greater than that for isolate A l l . Fig. 2.3 illustrates the relationship 

between the estimated summed mean scores o f the accession material and indicates that, 

although much o f the material gave an intermediate response, there was a continuous 

distribution o f response from susceptible to resistant.

Table 2.2 indicates the ranking o f accessions from resistant to susceptible using the estimated 

summed mean DI score o f  both isolates over three test occasions. The data presented in Table

2.2 illustrated the spread o f  response observed during the testing o f the accessions and gives a 

quantitative measure o f the resistance response.

,.-t
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-3 --
Summed estimated DI score for isolate A16

Fig. 2.2 Estimated summed mean data o f  D I scores fo r  isolates A ll  a n d A l6  achieved against 

102 accessions o /L inum  material. Solid  squares denote accessions which were chosen fo r  

inclusion in the whole seedling bioassay (2.3.3).
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The dendrogram shown in Fig. 2.4 a. b and c illustrates the association o f cultivars which 

responded similarly during testing with A ll and A16, The length o f the horizontal lines to the 

connecting bars are proportional to the distance between material in relation to the resistance 

response and are given as percentage similarity. Four distinct clusters were observed 

representing four groups showing similarity o f resistance response.

The f irs t  and most obvious, sub-division was that T. ii. u. candidum (LCD) showed only a 5% 

similarity with the 101 other accessions tested and was thus grouped individually (Fig. 2.4 c). 

The second o f two major branches sub-divided the remaining accessions into a large group o f 

lower scoring (moderately resistant and resistant) material (Figs. 2.4a and b.), which showed > 

40 % similarity to the higher scoring (susceptible material) group (Fig 2.4c). The third major 

branch o f  the dendrogram occurred within the lower scoring material indicating that the resistant 

material (Fig 2.4b) showed 70 % similarity to the moderately resistant material observed on Fig. 

2.4a.

Discounting the group formed by LCD, the three major groups showed varying degrees o f sub

branching. The m ost complex was the susceptible group (Fig. 2.4 c) which showed a high level 

o f branching at all similarity levels above 55 %. O f the sub-branches found within the group, 

only one small group which showed 95 % similarity contained more than two accessions, the 

group o f 4 accounting for only a tenth o f the total number o f  accessions in the susceptible 

group.

The material which achieved a moderate response (Fig. 2.4 a) was further sub-divided into three 

main groups at > 75, > 85 and > 90 % similarity. Above this level o f  similarity, the 34 

accessions o f the moderate group were sub-divided into only eight groups at the > 95 % level, 

seven o f which contained more than two accessions.

Figure 2.4b indicated that the resistant accession group was observed to show a low amount o f 

sub-branching at the higher levels o f similarity. The group was sub-divided by three main sub

branches at > 80 %, > 85 % and > 90 % similarity and all sub-groups exhibited exceptionally 

low levels of sub-branching at a similarity o f > 90%. The 25 accessions o f the group were 

represented in only 5 groups at a similarity o f > 90 %.
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ANT 
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SEZ 
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FLA 
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FAR 
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HOS 
HEL 
LER 
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LMM 
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TRA 
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VIC 
AOY 
CLA 
ARI 
LAB 
LIA 
MET 
SFZ 
MAR 
LAM 
LEL

n

1

70 % similarity to LAL and other groups of accessions

Fig. 2.4a Accessions achieving a moderate response to two Alternaria linicola isolates during 
an in vitt o detached cotyledon bioassay. (For a guide to the three letter code o f  each accession, 
refer to Appendix 1.4).
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% Sim. 100 90 80 70 60 50
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SAZ 
MAN 
OCE 
DSE 
LEG 
DSA 
CSA 
LEG 
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TAG 
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Rll 
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SOM 
NOM 
VIF 
MIK 
GER 
LAP 
LAP 
LEE 
LAL

40 30 20 10 0

70% similarity to LEL and accessions 
achieving a moderate mean DI score

n
40 % similarity to TAP and the high 
scoring group of accessions and LCD

Fig. 2.4b Accessions achieving a low score (resistant) to two isolates o /A lternaria linicola 
during an in vitro detached cotyledon bioassay.. (For a guide to the three letter code fo r  each 
accession, refer to Appendix 1.4).
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E l
5 1

5

i i
ZL

40 % similarity to LAL and the 
moderate and low scoring groups of 
accessions

Fig. 2.4c Accessions achieving a high mean D I score to two Alternaria linicola isolates during  

an in vin-o detached cotyledon bioassay. (For a guide to the three letter code o f  each accession, 

refer to Appendix 1.4).
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Inoculation o f  cotyledons o f  intact Linum seedlings in a glasshouse study

The analysis o f variance indicated that there was a significant effect o f  isolate {P < 0.001, A ll 

mean = 0.874, A16 mean = 1.357, SED. = 0.06) and accession {P <  0.001)(Fig. 2.5). There was 

no significant interaction between accession and cultivar {P = 0.235).

The DI scores for the in vitro assay (2.3.2) and the whole plant assay (2.3.3) were positively 

correlated, but the significance o f  the correlation was dependant on isolate. In the case o f the 

non-aggressive isolate, Al l ,  the correlation between the DI scores was positive, but not 

significantly so (r = 0.476, P > 0,1), while the correlation with the aggressive isolate, A16, was 

positive and significant (r = 0.744, P > 0.05). Overall, the DI scores recorded during the in vitro 

assay (2.3.2) were slightly higher than those recorded in the whole plant assay (2.3.3) indicating 

that the in vitro test slightly, but systematically, underestimated the resistance o f the tested 

material (Fig. 2.6).

2

1.75

1.5 -I 

1.25 

1

2  0.75 j

0.5

0.25

0

I I 3
3

A ccession

Fig. 2.5 Mean D I score achieved by nine Linum accessions tested with two isolates o f  

Alternaria linicola during a  whole seedling study (2.3.3). Error bar -  SED
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2.5 Discussion

General observations on the response o f  the linseed cultivars during the prelim inary bioassay

Analysis of the preliminary study results (2.4.1) indicated that the majority o f variance was 

accounted for by differences between isolates. In this experiment, and indeed, the main study 

(2.4.2) and the whole plant test (2.4.3), changes in the level o f  pathogenicity observed between 

batches o f tests for each particular isolate proved to be slightly problematic. However, the 

results o f the preliminary study indicated that no significant differences occurred between the 

four cultivars tested and also that the ranking o f the cultivars remained similar throughout the 

study. Comparisons between different batches o f the main experiment were therefore likely to 

be valid as the relative differences in the aggressiveness o f the isolates were stable with time. 

The incorporation o f the “standard” cultivars Antares and Linda into the experimental design 

o f the main study also allowed the possibility o f variation within the pathogen to be accounted 

for during the testing o f the accessions (2.3.2).

The basic response o f the cultivars during the preliminary assay (2.3.1) remained stable with 

time (2.4.1). Although the level o f  pathogenicity showed slight variation between the three 

tests, the response o f each cultivar to a specific isolate, for example A16, the more virulent o f 

the two aggressive isolates, was always a characteristic high DI score. Conversely, inoculation 

with isolate A ll always resulted in a low DI score. As there was no significant interaction 

between A. linicola isolates and cultivars the pattern of resistance observed remained the same, 

but the absolute score showed variation.

Effect o f  environmental conditions on infection during bioassays

An explanation for this could be that the experimental conditions fluctuated between tests.

The fact that test dishes were sealed and placed in the same controlled environment cabinets 

for each test would appear to exclude this, however. Nonetheless, it could be reasoned that no 

matter how carefully an experiment is designed and undertaken, there may be errors which 

would affect the observations to some degree. From the work o f Dickinson & O ’ Donnell 

(1977), Chandrashekar & Ball (1980) and Lacey (1986) it would appear that relative humidity 

is the most limiting environmental factors affecting the success o î Alternaria  spp. on the 

phyiloplane and that as a genus, relatively high levels are required for successful germination 

(reported as 90 - 92 % and 97 % relative humidity, respectively by the previously cited
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authors). Achieving and maintaining a very high relative humidity (for example, 95% as used 

in 2.3.1 and 2.3.2) can be extremely difficult and as relative humidity appears to be especially 

important for infection to occur W \\h Alternaria  pathogens, a slight drop in the level of relative 

humidity’ may have some influence on the outcome of an experiment.

I

Temperature would also appear to be an important factor which affects the optimal level o f 

growth and development o f pathogens such as Alternaria  spp. (Humpherson-Jones & Hocart,

1983). From this, it would be quite conceivable that the relative humidity level and 

temperature o f the test plates within the controlled environment cabinet could fluctuate to a 

degree which would have caused a slight shift in the level o f  the mean DI scores. Fluctuations 

in environmental conditions would explain the observation that the changes in DI were 

observed for all test plate/cultivar combinations o f  a specific test and were systematic.
::
i

However, although some inherent variability was encountered, the in vitro nature o f  the test 

ensured a level o f  control o f the environmental conditions and greatly increased the ease with 

which uniformity o f infection was achieved in comparison with whole-plant inoculation 

methods. Uniformity was important since the aim o f the study was to develop a reproducible 

screening method for Limim breeding material.

Variation within the pathogen isolates during 2.3.1
ï:

I
Another reasonable explanation for differences in the mean DI scores would be that the length 

o f time isolates were stored under axenic culture conditions affected the aggressiveness o f 

isolates. Many authors have reported a loss in pathogenicity o f fungal isolates following 

extended periods o f axenic culture, particularly for species such as Alternaria., and 

linicola  in particular (Mercer & M ukherjee, pers. comm., 1992, Vloutoglou, pers. comm.,

1993). It should be noted that problems o f this nature were not encountered to such a degree 

during the main bioassay (2.3.2) and the whole seedling assay (2.3.3) following the re

vitalisation o f stock cultures o f A. linicola  AI isolates on a sand : peat ; earth mixture 

(Schneider, 1958).
I

The effect o f  genotypic différences between the cultivars used during 2.3.1

Although the four cultivars used in the prelim inary study were bred by four separate 

companies in geographically diverse regions (Antares - Co-operative de Semences de Lin,
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France; Barbara - Cereal Research Institute, Hungary; Linda - Northrup King Semences, 

France; M cGregor - Morden Agricultural Research Station, Canada) one would expect the 

breeding base from which they were produced to be fairly narrow as is the case with many 

cultivated crops. Also, A. linicola is not considered to be a major disease o f any o f these 

warmer, drier continental countries. Thus, breeding for resistance against the disease would 

not have figured highly as a criterion for selection. However, no significant difference was 

observed between the response o f the four cultivars during the preliminary study (2.3.1). Even 

though there was probably not specific selection of A. linicola  resistance during the breeding 

o f the cultivars, the moderate DI scores suggest a background level which was effective 

against the isolates used during the test.

No field data exist on the resistance o f linseed cultivars, particularly under UK conditions. 

However, linseed has been grown for many years and major problems with diseases such asH . 

linicola have not been encountered, except in the wettest o f  years, and this provides further 

evidence o f  a good level o f  background resistance in currently grown cultivars. Differences in 

the levels o fri. linicola infection on growing crops o f different cultivars were observed in field 

trials in Northern Ireland. Correlations between the response o f cultivars over different years 

were not strongly positive and the ranking o f the levels o f  resistance was observed to change 

from year to year. It was thus not concluded whether observed differences were genotypic in 

nature or otherwise (Mercer & Ruddock, 1993).

The m e o f  Principal Components Analysis to investigate the interaction

The biplot o f  the interaction between the 4 linseed cultivars and the isolates o f A. linicola (Fig 

2.2) indicated that the majority o f the variance was accounted for by the first two PC axis and 

the remaining variance was accounted for by the third PC axis. As only four cultivars were 

tested, this was to be expected, as the mathematical distance between four points requires only 

three dimensions to be fully represented graphically. However, as the majority of the variance 

within the data was due to differences between the A1 isolates, as identified during the 

ANOVA, the first axis provides a measure of the aggressiveness o f the isolates. Weak, non- 

aggressive isolates typically have a positive score on the first PC axis (A ll, AI3. A15 and A17) 

and strong, aggressive isolates have a negative score on the first PC axis (A12, A14 and A16).

A similar pattern can also be observed on the second PC axis which could be considered to 

detail the response o f the cultivars to the isolates, isolate vectors being associated with the 

cultivar upon which the highest mean DI score was achieved.
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One o f the important points which can be made from the data collected for the preliminary 

bioassay (2.3.1) is that, even when testing a limited amount o f linseed material, there was a j

diverse response produced against the different isolates (as illustrated graphically in Fig. 2.1).

The level of the response o f each cultivar was not equal to each specific isolate, which |

suggests the interaction to be poiygenically controlled and the resulting resistance to be 

horizontal in nature.

General observations on the response o f  the accessions tested during the main bioassay

During the main bioassay (2.3.2), there was a large significant effect o f isolate within the 

interaction. The effect o f  plate within batch was negligible. However, an effect o f batch was 

observed which suggested some variation between batches during the study. The majority o f 

this would be accounted for by differences between the two isolates as was observed for the 

preliminary study, although the size o f the main detached bioassay (2.3.2) would ensure that 

inherent variation was amplified further. As the accessions were selected for the batches at 

random, some o f the differences between batches may have arisen by chance if several 

resistant, or conversely, several very susceptible, accessions had been tested together in one 

batch but not in others. However, the inclusion of the “control” cultivars Antares and Linda in 

every dish of all batches during the study allowed REML to take account o f  much o f this 

variance and weight the estimated scores for the accessions accordingly. As there was a 

significant effect o f accession during the main study (2.3.2), some o f the variation between 

batches was due to differences between disease responses o f the different accessions.

As observed during the preliminary bioassay (2.3.1), there was no interaction o f accession with 

A. linicola isolate during the main bioassay (2.3.2). The summed estimated DI for each 

accession was always higher for the aggressive isolate A16 than for the non-aggressive isolate 

A ll, and the relationship can be clearly observed from Fig. 2.3. Much o f the material gave a 

moderate response, similar in mean score to that observed for the commonly grown varieties 

tested during the preliminary study (2.3.1 ). A continuous distribution o f  response was 

observed, from material which was highly susceptible (for example; L.u.u. candidum, Blauwe

ster, Hindoukouch and JWS) to resistant material which achieved a low score, even against the 

aggressive isolate A16 (for example; L.u.u. albocoeruleum, Ceres. L.u.u. elongatum elongatum  |

and L. angustifolhim). Note that five o f the data points representing the resistant material 

(Ceres, L.u.u. elongatum elongatum, L. angustifolhim. L.u.u. angustipetuleum  and Mikael)
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shown on Fig. 2.3 were estimated as negative values by REML analysis which denoted an 

extremely low score response for these accessions against A ll in comparison with the other 97 

accessions.

Analysis o f the data presented in Table 2.2, the estimated summed DI scores for the accessions 

tested averaged over the three test occasions, illustrated the trend observed from Fig. 2.3. As 

well as the general pattern observed for the accessions as a whole, it was interesting to note 

that the different types of accession tested, for example the primitive forms o f L. usitatissimum, 

the breeding lines from Hungary or Germany or the established cultivars achieved the full 

range o f resistance response from resistant to susceptible.

The range o f  resistance responses to the two Alternaria linicola isolates

The scores o f  the two extremes o f the table illustrate the possibilities for resistance breeding 

and the possible eventualities o f growing cultivars which have little resistance. The 

susceptible material, such as Blauwe-ster and Hindokouch, achieved a mean DI score per 

cotyledon of > 2.0, and the prim itive form L.u.u. candidum  was observed to produce an 

extremely susceptible response o f  a mean o f  3.164 which, for a scale o f 0-4, shows the extent 

to which the accession was attacked by the pathogen. The first five accessions o f the resistant 

material, all o f  which achieved a mean score per cotyledon o f < 0.8, contained three L. 

usitatissimum  sub-species or primitive forms, the near relative L. angustifolium  and the cv. 

Ceres. I f  as suggested by Durrant (1976), L. angustifolium  was the nearest "wild relative" to 

the cultivated L. usitatissimum, the potential for breeding and response to selection would, 

theoretically, be higher than from more distant species o f the genus (Simmonds, 1991).

Another point of interest from Table 2.2 was the position o f the “control cultivars”, Linda and 

Antares. During the preliminary bioassay (2.3.1) it was observed that the resistance response 

o f Linda was superior to that o f the other three cultivars tested, Barbara, McGregor and 

Antares. Table 2.1 indicated that Linda achieved an estimated mean DI o f 8.71 and gave a 

response which was characteristic o f  the top 10 % of the accessions tested. Antares achieved 

an estimated mean DI o f 11.51 which, although not being that much higher than the score o f 

Linda, grouped Antares with many other accessions which achieve a moderate resistance 

response.
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The response o f the primitive form L.u.u. candidum  was extremely susceptible in comparison 

to the other accessions and this observation was highlighted by the analysis o f similarity which 

was graphically represented in Fig. 2.4. L.u.u. candidum  was observed to form an outlying 

group which was separated on the dendrogram at the first available branching point. When 

grown in the field at Auchincruive during the season of 1992 (during the bulking up of seed 

stocks prior to the testing o f material, unpublished data), L.u.u. candidum  was observed to be 

phenotypically very stunted, highly branched and white flowered and completely different 

from all o f  the other accessions. Plots o f  the accession were severely diseased even though 

levels o f  A. linicola on other material was low. The nearest field o f commercially grown 

linseed which could have acted as a possible inoculum source, was estimated to be more than 

45 miles away, in Lothian. There was also the possibility o f disease carry over from flax trash 

from a previous crop or from alternate hosts (i.e. Veronica spp., Vloutoglou et al., 1995) 

however levels o f infection by A. linicola on other material was low. Inoculum levels on the 

seed were no higher than on other seed lots o f  the primitive forms received from Prof. Friedt, 

University o f Giessen, Germany. From this it was assumed that L.u.u. candidum  would be the 

most susceptible accession o f the linseed material available for testing and this was found to be 

the case.

The dendrogram which represented the moderate resistance response accessions (Fig. 2.4 a) 

contained the accessions o f the middle two columns o f Table 2.2 and clearly represents the 

close association o f much o f the material with a moderate resistance response. Many of the 

sub-groups within Fig. 2.4 a, contain three to five accessions which show similarity at the 95 

% level and this illustrates the likeness o f  the response o f much o f the moderately resistant 

material. The group contained a mixture o f  accessions including many linseed and flax 

cultivars and a number o f the primitive forms or sub-species o f L. usitatissimum.

Comparison of'm  vitro and  in vivo bioassay techniques

The whole seedling study (2.3.3) verified that the resistance responses observed during the 

preliminary (2.3.1) and main bioassays (2 .3.2) occurred in planta  and that inoculation o f 

cotyledons in vitro resulted in a representative score which could be used during a breeding 

programme. The in vitro test typically gave a slightly higher DI score than the whole plant 

assay. Although inoculated whole plant cotyledons appear, from this study, to phenotypically 

respond with “ less disease” the differences in levels o f disease caused by each A. linicola 

isolate for each accession differed systematically between the whole plant and in vitro screens.
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Vloutoglou (1994) suggested that the softer construction o f  the cotyledon leaf of linseed in 

comparison with the true leaves probably accounted for the ease with which A. linicola can be 

successfully transferred from the seed to seedling.

As only inoculation with the aggressive isolate A16 resulted in a significantly positive 

correlation between the DI scores o f  experiments 2 and 3, it is suggested that differences in 

disease resistance between the accessions would only be measurable when the disease 

symptoms were observed to reach a specific level. Although the resistance response of the 

accessions can be observed to show the same ranking (Fig. 2.6) when inoculated with the non- 

aggressive isolate A ll, the differences between the accessions in either the in vitro assay or the 

whole plant assay are less obvious. From this observation, the use o f an aggressive isolate 

would be recommended for future testing o f  material in order for the observed response to be 

truly representative o f the resistance level o f the accession.

The resistance mechanism and the use o f  the bioassay by breeders

From the three studies reported here it is concluded that resistance was governed by a 

quantitative mechanism and that due to the range o f the response o f the material, there are 

probably many genes involved in the interaction between linseed and A. linicola. This would 

agree with similar studies carried out with other Alternaria  species (Prasanna, 1984) in which 

monogenic resistance factors are also thought to be absent. Klose et al. (1993) also found that 

resistance o f 16 linseed cultivars to A. linicola, tested at a number o f  stages during the plant 

growth period, was under polygenic control and suggested that good response to selection for 

improved resistance should be achieved. In comparison with the results o f  the experiments 

described in this chapter, Klose et al. (1993) similarly observed that o f  the two A. linicola 

strains used during their study (ALT I and ALT II), there was a consistent difference in disease 

level between the two strains over all o f the cultivars tested. From this it would appear that the 

resistance response was also isolate specific.

The work reported here confirms that an effective screening test for resistance of linseed and 

Linum  material to the pathogen A. linicola has been developed. The test concentrates on the 

seedling stage o f plant growth, which is the stage at which A. linicola has its greatest economic 

effect on the crop in the field (Mercer et ah, 1991a). An added benefit o f the test in a breeding 

situation is that the cotyledons can be detached from juvenile Linum  seedlings without causing 

detrimental damage to the plant and subsequent development can occur through to seed
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production. This means that valuable breeding lines or rare primitive forms o f Limtm, can be 

screened even if large seed stocks do not exist.

The test described compares well with other reports from the literature o f bioassays for disease 

resistance which utilise plant explants. For example Cohen (1993) reported that the use o f a 

leaf disk assay for the detection o f resistance in melon to the pathogen Sphaerotheca fuliginea  

race 1 allowed the preliminary selection for resistance at the cotyledonary stage and also that 

the results correlated well with results obtained in whole plant experiments. A similar leaf disk 

assay allowed the detection o f resistance to early blight {Alternaria solani) in juvenile potato 

plants which allowed the manipulation o f environmental factors which had previously 

prevented tissue characterisation in the field (Bussey & Stevenson, 1991). Both tests utilise an 

advantage that the in vitro assay possesses which cannot be easily controlled in the field. In 

the case o f the in vitro bioassays reported above (2.3.1 and 2.3.2), the use o f excised 

cotyledons utilises the largest available surface area o f the linseed plant upon which the 

inoculum droplet can be placed without the requirement for sporulation by the pathogen and 

the environmental parameters can be carefully controlled.

Aspects o f  the resistance response q/’Linum/Altemaria linicola through the gf^owing season

However, some authors have suggested that the resistance response at the seedling stage is 

different in genetical control and mechanism to that observed later in the season. Evidence 

from the linseed-^, linicola  pathosystem would currently support this theory. M ercer & 

Ruddock (1993) found no correlation between the incidence o f  A. linicola  on the seed capsules 

and seed and that on inoculated seedling grown in the glasshouse. Similarly, Klose et al. 

(1993) observed changes in the rankings o f the resistance response o f 16 cultivars when 

infected with two strains o f the pathogen at three different growth stages. From this, they 

suggested that the incidence o f the disease on seedlings was governed by genetically- 

determined phytoalexin-type responses, whereas incidence on capsules and seeds was 

dependant on a complex o f physiological, genetic and environmental effects, however, the 

authors provided no scientific basis or evidence for their suggestions. The current study 

suggests that both mechanisms, if indeed there are two, would be multicomponent in nature, 

especially if the biology o f  Alternaria  pathogens generally is considered (Tewari. 1991), in 

which case, it is likely that a number o f  resistance mechanisms would be involved in such an 

interaction.
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Rotem (1994) states that Alternaria  diseases are characterised by a short period of 

susceptibility in seedlings, a long period o f resistance in young to intermediate-aged plants, 

and increasing susceptibility in ageing plants” although he noted a number o f exceptions 

{'mcluding Alternaria solani on potato, the juvenile stage o f which is resistant, with 

susceptibility increasing with age). The generalisations made by Rotem would appear to fit the 

observations of researchers involved in work on the linseed-ri. linicola pathosystem in that 

linseed was often observed to be heavily infected with the pathogen at the seedling stage and 

the stages following the onset o f flowering, but the crop remains relatively healthy during the 

majority o f the growing season.

Little evidence exists of the changes which take place to explain the observations o f  M ercer & 

Ruddock (1993) and Klose et aL (1993) as described above. Rotem (1994) observed that with 

the exception o f potato, very little information exists about the association between juvenile 

and adult plant resistance to Alternaria  spp. However, as the seedling stage o f the host growth 

cycle forms one of the important periods in which A. linicola can cause economical losses in 

the linseed crop, the possibilities o f  increasing levels o f resistance to the pathogen even for a 

small section o f the growth cycle would be beneficial. Adding further resistance which was 

effective during the early stages o f  the growth season would reduce levels o f  inoculum for later 

in the season and slow the possible development o f a disease epidemic.

Breeding using horizontal resistance

Despite the common supposition that polygenic resistance is cumbersome to handle in 

traditional breeding programmes, theoretically there is no reason to expect that increasing the 

level o f  resistance against pathogens such as the Alternaria should be possible (Simmonds, 

1991). As a consequence o f the polygenic nature o f the resistance interaction and the 

likelihood o f the physiological and biochemical resistance mechanism being multi-component 

in nature, it is likely that resistance to A. linicola  would be durable. The large number o f 

accessions which achieved a moderate response to the test isolates confirms that there appears 

to be a good level o f background resistance genes either already incorporated into cultivars or 

that the potential exists for the introduction o f useful levels from near relatives.

Rotem (1994) suggests that wild species offer a major source o f resistance in many Alternaria- 

host pathosystems, but continues to point out that in the majority of cases the wild origin o f  a 

given cultivar has been long forgotten and breeders use some o f the resistant offspring o f the
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original wild relative to further breeding efforts. Many examples o f resistance which has been 

successfully transferred from wild relatives to crop cultivars which previously were not 

resistant are given by Knott & Dvorak (1976). There are very few reports o f resistance from 

wild relatives against diseases caused by the Alternaria  which have been transferred into crop 

cultivars but the best documented case involves the AUenmria solani-tom 2Ao systems were 

stocks o f germ plasm have been characterised and maintained by a network o f institutes in 

north America (Rotem, 1994). Accessions such as Lycopersicon pim pim llifolium , L. hirsutiim  

and L. penivianm n  were crossed with L, esculentum  and the complex o f resistance genes form 

the basis o f resistance to A. solani in commercial tomato cultivars.

Similar work which examined the exploitation o f resistance from wild relatives and sub

species o f crop cultivars o f the brassicas was described by Tewari (1991). All commercial 

cultivars o f rape were found to be susceptible to A. brassicae, but those o f the Brassica napiis 

subsp. oleifera were less susceptible than those o f B. campestris subsp. oleifera. Weed species 

such as Camelina sativa, Capsella bursa-pastoris and Eruca sativa showed a high degree o f 

resistance and an accession o f B, campestris subsp, rapifera showed an intermediate level o f 

resistance. Tewari concluded that the resistance mechanism was multicomponent in nature 

and could be transferred to commercial rape cultivars by conventional breeding techniques and 

the use o f  interspecific biotechnological techniques.

Improvement o f  resistance to Alternaria linicola in linseed

Given the current economics o f linseed production in the UK, in which A. linicola does not 

appear to cause disease problems except in the wettest o f years, and even one fungicidal spray 

treatment is barely justifiable, it could be argued that any improvement in durable disease 

resistance would be a worthwhile aim . This is particularly true if linseed is to hold the position 

that the crop currently holds as a low-input break crop within the British agricultural system .

Some degree o f  understanding o f the mechanism o f the multicomponent resistance response 

would be beneficial, particularly from a plant breeders point o f view . A knowledge o f a 

resistance component and the timing and importance o f the action o f that component would aid 

the selection o f the resistant character in subsequent generations. There are candidate 

components which can be expected to play a role in the resistance response and the level o f 

resistance observed for a specific accession probably results from a complex o f numerous 

interactions. In an attempt to elucidate some o f the components o f the interaction between
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linseed and A. linicola  and to understand the specialisation o f^ . linicola to the linseed host, 

the following study concentrates on three areas o f host-pathogen interactions. The three areas 

studied have commonly been found to be involved in Alternaria diseases in many 

commercially important crop species (Rotem, 1994).

The first study area was an examination o f evidence o f physiological differences in the 

resistance response at the microscopic level. During the study it was the intention of the 

author to examine the structure o f the host cell response o f resistant/susceptible accessions and 

to analyse the behaviour of aggressive and non-aggressive isolates o f the pathogen which take 

place during the attempted ingress o f the pathogen. The second area o f study was to 

investigate the production of secondary metabolites by the pathogen. Many of the Alternaria  

produce phytotoxic compounds, and o f  these, host-specific toxins form the component which 

allows specificity and pathogenicity to a particular host or host cultivar (Kohmoto et a i ,  1987). 

The third area o f study was to investigate the production o f fungitoxic secondary metabolites 

such as phytoalexin compounds. Compounds such as these have commonly been isolated 

from many host species following challenge with an Alternaria  pathogen (Rotem, 1994).
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three Linum accessions by Alternaria linicola
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3.1 Introduction

Pathogen development and the penetration process

The pre-penetration, penetration and infection processes for many plant-pathogen interactions 

have been well documented. The environmental and physical factors which limit the 

germination of spores and the penetration o f host tissue are well understood and have been 

described for many different plant-pathogenic species (Wood, 1967). Eliingboe (1972) 

reviewed the processes associated with infection by the powdery mildews describing the 

processes in great detail and defining specific morphological stages in pathogen development. 

Wynn (1976) described the early stages o f penetration in response to surface contact stimuli 

for bean rust fungus. Similarly, Dickinson (1949), gave a detailed account of the tropic 

responses o f rust hyphae on contact with different surfaces and membranes. Similar reviews 

by Wynn (1981) and Aist (1981) cover the entire infection process o f many phytopathogenic 

species.

Reviews o f the known behaviour o f  a num ber o f pathogens on the phylloplane are given in a 

book edited by Blakeman (1981), one chapter o f  which specifically compares infection by 

Alternaria  spp. and Cladosporium  spp. (Dickinson, 1981). Dickinson (1981) suggests that 

Alternaria  spp. show a significant potential for pathogenicity over a range o f plant species 

tested in comparison with the Cladosporium  spp.

Although the amount of study o f the processes involved mAlternaina  spp./plant interactions 

(and A. linicolaiWnseed interactions in particular) is minimal in comparison to many biotrophic 

phytopathogens, the extent o f what is currently known is given in Table 3.1. From this the 

Alternaria  appear to be generally more opportunistic in nature in comparison with the more 

specialised biotrophic pathogens. However, a degree o f caution is necessary as specialisation 

by a number o f Alternaria spp. has been reported, although many o f the differences observed 

between reported penetration events from different species could be due to the relatively small 

amount o f quantitative histological study which has been carried out on the infection o f  plant 

material by the Alternaria.
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Species Penetration method observed on host Reference

A. alternata Brassica: Direct with appressoria 
Triticum: Stomata!
PhaseohiS'. Stomata! or direct with/without 
appressoria
Brassica: Direct or occasionally stomatal with 
or without appressoria

McKenzie et al (1988) 
Dickinson (1981)
Saad & Hagedorn (1969)

McRoberts & Lennard 
(1996)

A. brassicae Brassica: Direct with appressoria 
Brassica: Stomatal or direct with or without 
appressoria

Brassica: Stomatal or direct with or without 
appressoria

Changsri & W eber (1963) 
Tsuneda & Skoropad (1978) 
Tewari (1986)
Mckenzie et a / (1988) 
McRoberts & Lennard 
(1996)

A. brassicicola Brassica: Stomatal or direct with appressoria 
Brassica: Direct with or without appressoria 
Brassica: Direct or occasionally stomatal with 
or without appressoria

Changsri & Weber (1963) 
McKenzie et al{\9%%) 
McRoberts & Lennard 
(1996)

A. cucumerina Ciicvmeris: Direct with appressoria Jackson (1959)

A. helianthi Helianthiis: Direct with appressoria or stomatal 
without appressoria

Allen et t?/(1983)

A. longipes Nicotiana: Direct with or without appressoria Von Ramm (1962)

A. linicola Linum: Direct or stomatal (by chance) with or 
without appressoria

VloutogloLi (1994)

A. porri Allium: Stomatal
Allium: Stomatal or through wounds 
Allium: Direct or stomatal

Ange11 (1929)
Walker (1952) 
Fahim & E l-Shehedi(1966)

A. raphani Brassica: Stomatal or direct with appressoria 
Brassica: Direct or stomatal (rarely) with or 
without appressoria

Changsri & W eber (1963) 
McRoberts & Lennard 
(1996)

A. solani Solamim: Stomatal or direct with or without 
appressoria

Harrison et a / (1965) 
McRoberts & Lennard 
(1996)

A. tagetica Tagetes: Direct Cotty & Misaghi (1984)

i

(Adapted from McRoberts. 1992)

Table 3.1. Penetration phenomena observed in Alternaria species
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Development o f  Alternaria pathogens on the phylloplane

The exact penetration process o f A. linicola on the linseed host has received attention from 

only one study to date. The work o f Vloutoglou (1994) on A. linicola suggested that infection 

by the pathogen showed many similarities with those observed for phytopathogenic Alternaria 

species as detailed in Table 3.1. The results o f Vloutoglou (1994) compared directly to species 

which infect the Brassicae in particular, in that following conidial germination and hyphal 

growth, appressoria form above cell junctions. Following penetration, A. linicola was 

observed to show a pattern o f intercellular growth as observed by M cRoberts & Lennard 

(1996) fovA. brassicae and A. brassicicola.

Variation in the development pattern o f  Alternaria  of the same species during different tests 

has been described by some authors and indicates large levels o f variability between isolates o f 

specific species o f the genus. For example, McKenzie et al. (1988) observed that conidia o f  A. 

brassicae and A. brassicicola  germinated to produce one or more germ tubes on Brassica leaf 

disks, whilst Tsuneda & Skoropad (1978) reported that brassicae germinated as described 

by McKenzie et al. (1988) or occasionally was observed to produce secondary conidia. 

Curiously, McKenzie et al. (1988) observed the phenomenon o f secondary conidium 

production by A. brassicicola, but not by A. brassicae.

The Alternaria  do not appear to produce profuse hyphal growth on the surface of the leaf prior 

to attempting penetration although the lack of quantitative study o f the infection process o f the 

Alternaria  and variability between isolates o f particular species ensure that the phylloplane 

activity o f  many phytopathogenic yl/rem ar/o species remains unclear. Current evidence o f 

tropism by germ tubes o f^ . linicola was not observed and encounters (and subsequent 

penetration attempts) at stomata were described as being chance events by Vloutoglou (1994).

Considerable variation in penetration site selection has been demonstrated for the Alternaria 

(Table 3,2) and intraspecific variance also prevents the formation o f a generalised model o f 

Alternaria  development. As an example, the results o f McKenzie et al. (1988) agreed with 

those previously published by Tewari (1986) who found that the Brassica pathogens A. 

brassicae and A. brassicicola were able to penetrate the leaf surface directly with or without 

prior appressorium formation. Additionally, Tsuneda & Skoropad (1978) concluded that 

penetration by A. brassicae could take place with or without prior appressorial formation either
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directly through the leaf surface or indirectly through the stomata. Previously, Changsri & 

Weber (1963) had reported that both Brassica pathogens only attempted penetration following 

appressorial formation and that infection by A  brassicae only took place directly into the host 

cells, whilst zl. brassicicola was able to penetrate directly or indirectly via the stomata. Such 

discrepancies in descriptions o f the penetration method o f the Alternaria  abound within the 

literature. During studies on the development o f onion blight in Egypt, A. porri was observed 

to penetrate directly into the epidermis or indirectly into the stomata (Fahim & El-Shehedi, 

1966). Studies on the infection o f the same host by A. porri in the United States found that 

penetration occurred through the stomata (Angell, 1929) or through the stomata or wounds 

(Walker, 1952).

Penetration site selection

Studies o f the stimuli for penetration site selection for many biotrophic phytopathogens have 

concentrated on the physical topography o f the leaf surface. For example, appressorial 

formation by Erysiphe graminis f.sp. hordei was reportedly stimulated by the physical 

structure o f the epicuticular wax o f the barley host (Eliingboe, 1972) although normal 

appressorial formation was observed on barley leaves which had been treated to remove the 

epicuticular wax (Carver & Thomas, 1990). Similarly, the biotrophic rust pathogen Uromyces 

phaseoli showed a positive tropic response to the shape o f the guard cells o f  the bean host 

before attempting indirect penetration through the adjoining stomatal pore (Wynn, 1976).

Studies o f the effect o f epicuticular wax on the site of attempted penetration o f a number of 

Alternaria  spp. have been reported in the literature although the stimuli for penetration site 

selection do not appear to be specific in contrast with many biotrophic pathogens (Rotem,

1994). Akai et al. (1969) reported that appressorium formation by A. porri was stimulated by 

epicuticular wax although the authors noted that the effect was probably rare amongst the 

Alternaria. Tewari & Skoropad (1976) and Skoropad & Tewari (1977) reported the higher 

level o f resistance o f a cultivar o f B. napus to A. brassicae in comparison with a cultivar o f  B. 

campestris was due to a difference in wax thickness. The higher level o f resistance was 

reportedly not due to the physical barrier presented by the thicker layer but was a result o f the 

increased hydrophobicity o f the leaf which in turn directly reduced the retention o f water

borne inoculum and affected the development potential o f the pathogen. McRoberts (1992) 

assessed the effect o f wax thickness on the development o f a number o f Alternaria  pathogens 

using three breeding lines o f B. oleracea  var. gemmifera which differed in wax thickness. No
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effect was observed on conidial germination although germ tube production by brassicae 

was reduced on the leaf type with the thickest wax layer. As previously suggested by the 

similar work of Conn & Tewari (1989) and Berry (1992), McRoberts (1992) concluded that 

the thicker wax layer probably impeded the flow of exudates from the epidermal cells which 

formed the primaiy stimulus for conidial germination and pathogen development. To date, the 

importance o f the role of biotic compounds or salt ions exudates from the underlying 

epidermal cells as a stimulus for penetration site selection has not been fully explained for 

phytopathogenic Alternaria spp.

In comparison, Vloutoglou (1994) observed that the pattern o f growth by A. linicola was 

typical o f many o f the Alternaria  as described by Rotem (1994). Penetration was most often 

direct through the epidermal cells and indirect penetration via stomata was infrequently 

observed. No tropism towards particular physiological features o f the leaf was reported and 

the study did not investigate the importance o f the phylloplane topography.

Host responses to penetration

Following successful penetration, the speed and effectiveness o f the host plant defence 

mechanisms appear to be paramount to the resistance response o f many biotrophic and 

facultative plant pathogens. Aist (1976) gave examples o f  numerous biotrophic 

pathogen/cereal crop interactions and highlighted the importance o f the role o f papillae in the 

prevention o f successful cellular penetration and further pathogen development which 

accounted for differences in cultivar resistance. Aist (1981) had further suggested that the 

prevention o f further pathogen developm ent from a sub-cuticular phase was more important in 

a larger number o f pathosystems than was previously recognised. Following further work,

Aist & Gold (1987) suggested that papillae development was responsible for cultivar 

resistance derived from the ml~o resistance gene o f  barley and that the resistance reaction and 

papillae development was regulated by calcium ions.

A central role for papillae formation by the host as a resistance response to fungal attack has 

now been demonstrated for numerous non-biotrophic pathogens, for example Plasmodiophora 

brassicaeleahhage (Aist & Williams, 1971), Phytophthora infestans/potato (Ehrlich & Ehrlich, 

1966) and Colletotrichiim gi^aminicolaloax (Politis, 1976). The components o f the papillae 

which form in resistance to both biotrophs and facultative phytopathogens have been shown to 

include numerous defence-related secondary metabolites (e.g. polyphenols, peroxidase, pectin,
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suberin. and glycoproteins such as (31, 3-gIncans) many o f which have, or share, biosynthetic 

pathways with related defence compounds such as the phytoalexins which are found in the 

cytoplasm .

Considering host responses to Allernaria  pathogens, McRoberts & Lennard (1996) reported 

that papillae formation, through the localised deposition o f callose (a p i, 3-glucan), played an 

important role in the response o f a number o f Brassicas to infection with three Allernaria  

species. Following penetration to a sub-cuticular position, McRoberts (1992) observed that 

papilla deposition at the site of attempted cell penetration prevented further development o f  A. 

brassicae and A. brassicicola and suggested that the speed o f deposition was important in the 

resistance response o f the different cultivars under field conditions. Considering A  linicola, 

the area o f the interaction following penetration has not been fully investigated and 

development o f the pathogen from a intercellular position and the response o f the host was not 

described further by Vloutoglou (1994).

The phenomenon o f the hypersensitive response has been described as the major component o f 

the resistance reaction o f many biotrophic and facultative pathogens (Bailey & O ’ Connell,

1989, Fïeath, 1981). Evidence o f an important role for the hypersensitive response in the 

facultative pathogens appears to be less well defined in comparison to those involving 

biotrophs. Presently, hypersensitivity has not been described in response to attack by the 

Alternaria  generally or A. linicola in particular. It should be noted that although 

hypersensitivity does not appear to occur w ith pathosystems involving the Alternaria, many 

components o f the interaction between host and pathogen associated with the hypersensitive i

response in non~Alternaria pathosystems have been observed to be important in the interaction

between hosts and Alternaria  pathogens. For example, phytotoxin production (see Chapter 4) 

by the pathogen which has been suggested to be the trigger for many hypersensitive response 

reactions, and also phytoalexin elicitation (see Chapter 5), have been reported for some 

N//er77ûrrw/host interaetions (Rotem, 1994).

Evidence from the literature suggests that the chemical and physical properties o f the host 

plant phylloplane o f many Alternaria spp. appear to play little part in the resistance response 

and the primary level of defence against pathogens o f the genus results from the reaction o f the 

host cells following cuticular penetration. In response, host plants o f the Alternaria  spp. have 

been shown to produce a number o f physical and biochemical defence mechanisms which 

prevent or slow the rate of pathogen ingress (Rotem, 1994). From this, it seems likely that
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possible differences in the speed and effectiveness o f the host cell reaction would account for 

differences in the resistance response o f different cultivars o f hosts to respective ylZ/ewar/a 

pathogens.

The following study had two principal aims: firstly, to investigate whether the differences in 

resistance response o f  Linum  accessions previously observed during the in vitro bioassay 

(Chapter 2) could be discerned by a study at the microscopic level, and, secondly to investigate 

which pathogen-mediated, or host-mediated, components o f  the infection process were 

responsible for the differences in the resistance response. Three accessions o f Linum which 

were representative o f  the range o f resistance responses reported in 2.3.2 (i.e. resistant, 

moderately resistant and susceptible) were inoculated with conidia o f  A. linicola isolate A16 

and assessed microscopically for pathogen development and host response over a time course. 

Data was collected for 15 quantitative components o f the infection interaction and were 

analysed using a combined exploratory and inferential approach as described by Krzanowski 

(1990) using a number o f multivariate techniques.
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3.2 M aterials and methods

3.2.1 A microscopic investigation of the infection of three Linum accessions with Alternaria 

linicola

Production o f  conidia in vitro

Conidia of A. linicola isolate AI6 was produced using a modified version o f the method described 

by Shahin and Shepard (1979). The isolate was stored at 5° C on a sterile sand : loam : peat 

mixture (1 : 1 : 2) as described by Schneider (1958) and was subcultured onto V8 agar containing 3 

g CaCO] six days prior to the inducement of sporulation. Aerial mycelium was scraped from the 

plates and the agar was divided into ~5 mm^ cubes with a sterile scalpel. Agar cubes were placed 

on Petri dishes containing sporulation (S) medium (Shahin & Shepard, 1979) and were saturated 

with 3 ml SOW.

Un-seaied S medium plates were incubated in darkness at 20° C and exposed to near UV radiation 

(12 h photoperiod) for 1 - 2 days after which time conidia had formed on the surface of the V8 agar 

blocks. Conidia were harvested by gentle rubbing of the V8 agar blocks with a sterile glass rod 

and were washed off with a minimal volume o f SDW (containing a droplet o f Tween 80). The 

solution was filtered through a single layer of muslin to remove extraneous fungal hyphae and 

adjusted to a concentration o f 9000 conidia ml"’ using a haemocytometer.

Inoculation o f  plant material

Plant material (cvs Antares, Blauwe-ster and the closely related sub-species L.u.u. albocoeritleum) 

was grown as described previously (2.2.1). Material was removed from the glasshouse at GS 09 - 

10 and each cotyledon was inoculated with a 25pl droplet of conidial suspension of A16 (or control 

solution, SDW). True leaf material was not used during the experiment for two reasons; firstly, the 

narrow leaves were found to be difficult to inoculate with conidial suspension, and secondly, the 

material tested was chosen on the resistance response scores which were derived from the 

cotyledon bioassay described during the previous section (2,2.2). Following inoculation, plants 

were placed in a controlled environment cabinet at 18° C. 95% relative humidity, with a 16 hr 

photoperiod. Fifteen cotyledons o f each accession/treatment combination were sampled at random 

18. 24 and 40 h post-inoculation and were immediately fixed and cleared in ethanol for at least six 

hours prior to staining.

Page 60



Chapter 3

Staining, visualisation and scoring o f  inoculated cotyledons

Cleared inoculated cotyledons were stained for 24 h with 0.05 % (w/v) water soluble aniline blue 

(Gurr) in a pH 11 phosphate buffer. Following two rinses in SDW, cotyledons were stained with 

0.005% (w/v) aqueous calcoflour white (Sigma) for 30 s, rinsed twice in SDW and mounted in 

aniline blue solution. Inoculated cotyledons were viewed under visible bright field illumination 

and UV fluorescence (50 W mercury vapour light source, 340 - 380 nm uv excitation filter, 430, 460 

and 490 nm uv suppression filters) using a Leica Leitz DMRB microscope. An additional 5 

cotyledons of each accession/treatment were harvested at each time period. These were cleared 

separately and observed unstained for the presence o f lignin which was known to auto-fluoresce 

under uv radiation. No auto-fluorescent material was observed during the experiment. Stained 

conidia were observed for the occurrence o f germination and measurements o f fungal development 

and plant physiological response of were taken as detailed in Table 3.2. Germ-tubes were regarded 

as being fluorescing hyphal structures with a length of greater than 2 pm originating from non

fluorescing conidial cells. Photomicrographs were taken on either Kodakolor Gold II 35 mm print 

film (100 ASA) or Kodak Ektachrome 35 mm slide film (100 ASA) using a Leica Wild MPS52 

camera unit controlled by a Leica Wild MPS48 exposure control system.

Data variate* Abbreviation
Number of germ tubes N.gt.
Germ-tube length Gtl.
Number of branched germ-tubes N.brgt.
Number of terminal appressoria Ter.App.
Number of intercalary appressoria Int.App.
Number of penetrations via cell wall junction Cwj.pen.
Number of penetrations via cell periclinal wall surfaces Cpw.pen.
Number of penetrations via stomata Sto.pen.
Number of successful penetrations Succ.pen.
Number o f penetrations resulting in sub-cuticular growth Sub.gth.
Number of penetrations resulting in intercellular growth Inter.gth.
Number of penetrations resulting in intracellular growth Intra.gth.
Number of penetrations with only localised host cell reaction Loc.
Number of penetrations with non-localised host cell reaction Non.Loc
Number of penetrations with no apparent host cell response No.Res.
' All variâtes except Gtl. refer to counts per conidium and were assessed on germinated conidia 
only. Data for Gtl. are the mean values of the longest germ tubes of up to 30 germinated conidia 
on each replicate cotyledon.

Table 3.2 Physiological responses quantified by u.v. microscopy following the inoculation o f  three 

accessions o/Linum accessions with conidia o f  A. linicola isolate A16.
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Statistical analysis o f the components o f  the interaction.

The data were analysed using a combined exploratory and inferential approach as suggested by 

Krzanowski (1990). This approach was adopted for two main reasons. Firstly, owing to practical 

difficulties in obtaining consistent inoculation due to a problem with the controlled environment 

cabinet, the original experimental design became unbalanced. As a result, the data set contained a 

large number o f missing values which prevented the use of standard ANOVA as a statistical testing 

method. Missing and present data was tested using a x" test. The null hypothesis being tested in 

each case was that there was no difference among accessions with respect to the proportion of 

missing data. Secondly, it was of interest not only to test for differences between the response of 

the three accessions, but to identify those variables o f the interaction which were responsible for 

differences between accessions.

The null hypothesis (H J  being examined was that there was no difference between accessions with 

respect to fungal development or host plant response to attempted infection. In order to test for 

this, the data collected each sampling time were analysed using multivariate analysis of variance 

(MANOVA), a multivariate extension of univariate ANOVA (Krzanowski, 1990). Univariate 

ANOVA can be thought of as a method for assessing differences in variance between sample 

means testing for coincidence of variate points along a single line (e.g. in a single dimension). 

MANOVA extends the basic principles o f the test but tests the hypothesis in several dimensions. 

Thus, ifp  variâtes are measured, rather than being located in a single dimension (e.g. along a single 

line), treatment means lie in ap-dimensional space and acceptance o f Hq would require the points 

to occupy a coincident point within that space.

Both ANOVA and MANOVA make the assumption that the data which form the treatment means 

are normally distributed with a common variance or in the multivariate case, the treatment 

means follow a multivariate normal distribution within the common dispersion matrix Z. This in 

turn allows the construction of tests o f the Hq which would imply that all treatment means are 

coincidental on the single line (univariate ANOVA) or are coincidental within the multivariate 

space (MANOVA). In both cases, rejection o f the Hq occurs when at least one treatment mean is 

found to be too distant from the coincidental point for the to be considered to be true at a given 

probability level. However, in the case of multivariate analysis, there may be a number of possible 

reasons for the rejection of depending on the nature of the data and the way that the data is 

processed. For example, treatment means may differ greatly with respect to one or more variâtes 

or there may be more subtle differences amongst a larger number of the variâtes. Consequently, 

the different statistical tests which can be used during MANOVA are designed to give greater
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weighting to some forms of variance in comparison with others depending on the nature of the 

differences within the data. For this reason it is usual to consider a number of test statistics when 

making inferences about treatments using MANOVA (Krzanowski. 1990)

Any differences between treatment means identified with respect to the Hq formulated a priori 

were investigated further by investigating the sources of variation between the treatments. 

Identification of the dominant variâtes in the between-accession variance was then obtained using 

canonical variâtes analysis (CVA) on the data from each sampling time. CVA is a statistical 

technique which is related to PCP as used previously in section 2.3.4. The technique leads to the 

construction of a new set of variables (the canonical variâtes) from an initial multivariate set of 

data. In common with PCP, the canonical variâtes use linear combinations of the original data but 

during CVA the linear combinations are constrained so that they maximise the between-group 

(accessions in this context) to within-group variance. CVA thus identifies those variâtes which are 

responsible for differences between the groups.

Biplots of the points representing the accession groups and the group means can be plotted along 

with the latent vectors representing the data variâtes in a manner analogous to that described for 

PCP previously (Gabriel, 1981; Krzanowski, 1990). With g  treatments there are, at most, g-1 

canonical variâtes. Thus during the current study involving the testing o f three accessions, CVA 

would be expected to represent all of the variance in the 3 x 15 data matrix for each sampling time 

in the two dimensions of the biplot. In addition, under the assumption that the original data 

conforms to approximate multivariate normality, confidence regions for the groups and group 

means can be drawn on the biplot. It can be shown that the confidence limits follow a x“ 

distribution such that, for a given confidence level (100-a) the confidence limits for a 2

dimensional biplot for group means and groups are respectively (X a .i /  and (Xa 2 where

n is the number o f individuals in a group. Differences between groups are indicated by non

overlapping confidence regions. An approximate yj test was used to determine whether the CVA 

axes represent real effects within the interaction or whether they may have resulted from random 

effects.

The geometric analysis provided by CVA should agree with the test statistics generated in the 

MANOVA. However, as Krzanowski (1990) points out, the MANOVA hypothesis tests must be 

conducted on an a priori hypothesis, not on any suggestions which may arise from the 

interpretation of CVA biplots. A full account o f the methods used are given in Krzanowski (1990), 

while CVA was also discussed by Digby et a i. (1987).
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Analyses were conducted in Genstat 5.3 running under Open VMS on a DEC Alpha minicomputer. 

Probability values for the MANOVA test statistics were obtained by repeating the MANOVAs 

using Minitab (version 9.1) running under Windows (version 3.1) on a PC. The MANOVA 

results were identical between statistical packages but while the CVA information is available from 

Genstat, the package does not output the probabilities for the MANOVA test statistics, which are 

printed automatically by Minitab.

3.2.2 Analysis o f the interaction of A. linicola isolate A16 with three linseed accessions using 

Low Temperature Scanning Electron Microscopy (LTSEM).

Growth and inoculation o f  plant material

Conidia of isolate A 16 were prepared as previously described (3.2.1). Cotyledon material o f cvs 

Antares, Blauwe-ster and L.n.u. albocoeruleum were prepared for in vitro culture and inoculated 

with conidial suspension using the method described previously (3.2,1). Plates containing 

inoculated cotyledons were placed in a controlled environment cabinet (18° C, 95% relative 

humidity,, 16 hr photoperiod) for 24 and 40 h before being removed for analysis. Cotyledons were 

observed under a binocular microscope immediately prior to preparation in order to assess infection 

level and highlight areas which would be conducive to freeze-fracture.

Preparation o f material fo r  LTSEM

Following rough trimming with a sharp blade, 2 - 3 cotyledons were mounted vertically onto 

copper stubs using Tissue-Tek'^ carboxymethylcellulose adhesive. Material was frozen rapidly in 

nitrogen slush (-140° C) under argon using a cryo-preparation unit (Cambridge Instruments). 

Samples were transferred to the cryo-stage of the scanning electron microscope (Cambridge 

Instruments S250) for preliminary obseiwation. If required, samples were etched at -70° C in order 

to remove ice crystals, following which, samples were removed from the cryo-stage and returned to 

the cryo-preparation unit. A number of samples were freeze-fractured using a cooled scalpel blade 

and fractured and unfractured samples were sputter-coated with gold at -140° C. Coated samples 

were returned to the cryo-stage o f the microscope and viewed for signs of pathogen activity/host 

response. Photomicrographs were taken on 120 mm Kodak Print film.
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3.3 Results

3.3.1 A microscopic investigation o f the infection of three linseed cultivars with 

Alternaria linicola

MANOVA and analysis o f  the components in the interaction by CVA

Upon examining inoculated material, many o f the inoculation droplets were observed to have 

dried out due to excessive air movement o f the controlled environment cabinet. Following 

clearing and staining, it was observed that the number of conidia on much o f the material was 

very low. It was also observed that all o f  the conidia which remained on the cotyledon 

surfaces had germinated. From this, it was concluded that many ungerminated conidia, or 

those which had not adhered sufficiently to the leaf surface, had been washed away during the 

clearing and staining procedure. In cases where low numbers o f conidia were found on 

cotyledons, percentage data were calculated from all of the conidia present. A test 

indicated that there were significant differences between the accessions with respect to the 

proportion o f missing data at 18 and 24 h,a.i.. However, there was no consistency in the 

pattern o f missing data between sampling times which indicated that although one or more o f 

the accessions was particularly prone to m issing data at any one sampling time, differences 

were due to a random effect. The 'i test results for 40 hours indicate that there were no 

significant differences among accessions.

Analysis o f the data by MANOVA indicated that there were significant differences between 

the three linseed accessions at 18, 24 and 40 h (Table 3.3). However, canonical variâtes 

analysis indicated that three data variâtes describing the pre-penetration development o f A. 

linicola, number o f germ-tubes per conidium, number of branched germ-tubes per conidium 

and, germ-tube length, showed little variation among accessions at any o f the sampling times 

and did not contribute significantly to overall differences among the accessions (Table 3.4).

At 18 h.a.i. none o f the accessions were associated with successful infection although rare sub

cuticular growth was observed on the most susceptible accession (Blauwe-ster), and 

penetration events associated with localised responses or no apparent response were observed 

for the most resistant accession {L.n.u. albocoeruleum) (Table 3.4, Fig. 3.1, Fig. 3.6). Antares 

was found to differ from the other accessions in that there was no evidence o f attempted 

infection or host plant response at 18 h.a.i. (Fig. 3.1a).
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18 hours 24 hours 40 hours
Statistical Test Statistic P value Statistic P value Statistic P value

W ilk’s lambda 0.010 0.001 0.0007 0.001 0.0596 0.001
Lawley-Hotelling trace 45.0 < 0.001 344.44 0.001 6.8283 0.001
Pillai’s trace 1.51 0.081 1.7412 0.013 1.4737 0.001
approximate F

. . . . . . . . . . . . . . . . . . . . . .  ̂ .........

4.72" 0.001 14.24’' < 0.001 3.10" 0.001

Table 3.3 Results o f  MANOVAs o f  differences between three linseed cultivars at 18, 24 and 40 

hours after inoculation with A. linicola isolate A16, with respect to 15 data variâtes.

At 24 h.a.i. the susceptible accession Blauwe-ster was distinguished from the other two 

accessions by the occurrence o f successful penetration events and intracellular growth (Fig. 

3.1b, Fig. 3.5). There was little variation between Antares and L.u.u. albocoeruleum  with 

respect to fungal development or plant response at 24 h.a.i. (Fig. 3.1b).

An approximate % test o f the CVA data from 40 hours after inoculation indicated that the first 

canonical variate (D-squared(O)) was significant {P < 0.0005) and therefore represented a true 

treatment effect. The second canonical variate (D -squared(l)), however was not significant {P 

= 0.07). Thus any separation produced by the second canonical variate may have been due to 

random effects.

At 40 h.a.i. the variance in the interaction was more evenly distributed among the three 

accessions (Fig. 3.2) and a larger number o f variâtes were observed to account for differences 

among the accessions (Table 3.4, Fig. 3.2) than at 18 and 24 h.a.i.. Starting in the top left 

quadrant o f Fig. 3.2, the spread o f the variate vectors clockwise around the origin 

approximately follows the sequence of events during successful infection by the pathogen.

The most resistant accession {L.u.u. albocoeruleum) was found to be more closely associated 

with variâtes describing early events in the infection process than the less resistant accessions. 

For example, the incidence of appressoria was higher on L.u.u. albocoeruleum  than on Antares 

or Blauwe-ster (Table 3.5), particularly appressoria located over cell wall junctions which 

occurred significantly more often on L.u.u. albocoeruleum  (Fig. 3.3). Antares was associated 

with variâtes o f  pathogen development following penetration such as successful penetration, 

sub-cuticular growth (Fig. 3.4) and intra-cellular colonisation (Fig. 3.5). The susceptible
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accession Blauwe-ster was associated with a high incidence o f inter-cellular ramification by 

the pathogen (Fig. 3.5). Features o f the interaction are illustrated in the photomicrographs in 

Plates 3.1 - 3.5.

18 hours 24 hours 40 hours

axis 1 axis 2 axis 1 axis 2 axis I axis 2

% l.r.--' 97 3 99 1 74 26

N.gt. 2.531 1.762 4.622 -4.846 -4.715 0.638
Gtl. -1.659 -5.713 5.787 -4.503 0.364 2.770
N.brgt. 6.743 3.226 2.197 -1.136 -5.269 0.550
Ter.App. -5.817 39.743 -2.567 12.457 4.287 2.970
Int.App. -1.392 16.164 1.728 6.301 1.136 2.743
Cwj.pen. 1.812 -33.646 -2.630 -17.660 -13.860 13.917
Cpw.pen. 0.499 -22.123 -0.174 -3.375 -6.351 5.280
Sto.pen 3.376 -7.510 -3.322 -1.789 -1.429 4.428
Succ.pen. -21.197 0.687 -39.777 -5.619 -0.951 7.947
Sub.gth 14.096 -5.252 6.007 6.751 5.370 4.975
Inter.gth 5.737 -6.095 0.129 -2.081 -6.260 -14.008
Intra.grth 1.638 -3.222 -37.977 -4.922 1.577 -1.656
Loc 11.070 3.620 1.243 7.562 20.613 -22.162
Non.Loc -6.028 7.235 -0.558 0.554 3.942 -6.938
No.Res. 9.509 2.260 1.905 3.849 9.253 -9.649

* Per cent latent root

Table 3.4 Adjusted latent roots and latent vector's fo r  canonical variâtes analyses o f  the 

interactions between Alternaria linicola and three Linum accessions at 18, 24 and 40 hours 

after inoculation. The absolute values fo r  the latent vectors indicate the relative importance o f  

the original data variate to the ratio o f  within-accession:between-accession variance 

explained in the corresponding canonical variate axis; the three most important var-iates fo r  

each axis at each time are indicated by bold type. The abbreviations fo r  the data variâtes are 

given in Table 3.2.
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4

LAL
3

Succ.pen.
2 ANT

StQ.pen.j
Cpw.pen.

1 Sub.gth.

Second  ̂
CVA axis 
(25.9%  
o f total 
variance)

-2

Intra.gth.BLA

Non.Loc.

No.Res.

■3

Inter.gth.4

•5

Loc.
6

•4 1■3 •2 0 1 32 4 5 6

First CVA axis (74.1 % o f total variance)

Fig. 3.2 Biplot o f  the association among three Linum accessions 
inoculated with A. linicola 40 hours after inoculation fo llow ing  
canonical variâtes analysis o f  15 funga l development and host 
response variâtes. Confidence regions fo r  accession means ore 
shown by the circles^ means are indicated by crosses. Vector data 
points were scaled by a fac tor o f  0.25.
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Fig. 3 .4  M ean  n u n éer o f  germ  tubes p e r  conidium  
observed  to g ro w  sub-cuticular ly a t three thne po in ts on  
three accessions o f  linseed. E rror bars = SEM.
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Fig. 3.5 M ean  n u n éer o f  germ  tubes p e r  conidium  
observed  to g ro w  inter- o r  intra-cellularly a t three time 
poin ts after the inoculation o f  three accessions o f  linseed  
with A. linicola isolate A16. E rror bars =  SEMs.
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cell responses and c) host cells showing no response, per conidium fo r  three 
linseed accessions inoculated with conidia o f  A . linicola isolate A16.
Error bars = SEMs, also note different Y axis scaling.
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Plate 3.1 Photomicrographs showing the growth o f  germ tubes o f  A. linicola isolate A16 
indicating the preference o f  epidermal cell wall sites fo r  attempted penetration.

a A germ tube which has grown directly over an open stoma (s) and then attempted direct 
penetration via an anticlinal cell wall junction site (acw) on the accession L.u.u. 
albocoeruleum  40 h after inoculation. (Bar = 10 pm).

b. A germ tube which has grown directly over an open stoma (s) before it attempted five 
separate direct penetrations (p) at epidermal cell wall sites on L.u.u. alhocoendeum. (Bar = 
5pm).
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Plate 3.2 Attempted direct penetration at epidermal cell wall sites hy A. linicola isolate A16 
on accessions ofLinum 40 hours after inocidation.

a. Attempted penetration at an antielinal cell wall junction (aew) which has induced a 
localised host cell reaction preventing pathogen ingress. Fungal growth has continued to 
another cell junction site with no apparent response. (Bar = 10 pm).

b. Higher magnification o f  the penetration site in a. illustrating the formation o f an 
appressorium (ap) by the pathogen and a localised response (hr) by the host cell. (Bar = 5 
pm).

c. Well defined localised host cell responses induced by attempted direct penetration at 
epidermal cell wall sites on L.u.u. albocoendeum. (Bar = 10 pm).

d. An attempted direct penetration (with a small infection peg |p |) at an antielinal cell wall 
junction on L.u.u. alhocoerideum  producing a localised host cell response. (Bar = 5pm).
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Plate 3.3 Attempted indirect penetration via an open stomatal pore hy A. linieola isolate A16 
on cv. Blauwe-ster.

a. Unsueeessflil indirect stomatal penetration attempt on Blauwe-ster (40 h.a.i). Growth o f  
the germ tube continued to a sub-cutieular position at the apex o f  the stomata Sub-cutieular 
growth (seg) continues along the cell wall junction inducing localised callose deposition (cd). 
(Bar = 5 pm).

b. High magnification o f  a. illustrating the localised callose deposition o f  the host response 
(ed). (Bar = 5 pm).
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Plate 3.4 Localised host cell response observed on accessions p/'Linum during attempted 
infection hy A. linieola isolate A16 40 h after inocidation.

a. Low magnification photomicrograph o f  localised host cell responses at antielinal cell wall 
junctions on cv. Blauwe-ster. (Bar = 50pm).

b. and c. Localised callose deposition (ed) in the walls o f  two epidermal cells adjacent to 
attempted penetration following the formation o f  appressorium at an anticlinal cell wall site. 
(Bar = 10pm).
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Plate 3.5 Photomicrograph.^ illustrating areas o f  non-localised host cell response observed  
during the infection p/ Linum accessions during infection with A. linicola isolate A16.

a Low magnification photomicrograph illustrating non-localised callose deposition at a 
stomatal site oiL.u.u. albocoendeum  in response to attempted penetration. (Bar = 50 pm).

b. A large area o f non-localised host cell reaction observed on the cultivar Blauwe-ster. The 
response arises from two suecessfril indirect penetrations via stoma (s) from the germ-tube 
growing from bottom right to centre frame and the less obvious germ-tube growing from top 
left to centre o f  frame. (Bar = 50 pm).

c. Low magnification photomicrograph illustrating non-localised response from epidermal 
cells o f  cv. Blauwe-ster follow ing attempted direct penetration by A16 at a guard 
cell/epidermal cell wall junction. Epidermal cell is fluorescing (ec) (Bar = 10 pm).
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3.3.2 Analysis o f the interaction o f isolate A16 with the three linseed cultivars using Low 

Temperature Scanning Electron M icroscopy (LTSEM).

Preliminary studies indicated the presence o f an electron dense substance which surrounded 

and often engulfed conidia oftT. linicola isolate A16. This extraneous substance made 

observation o f the interaction o f the pathogen and the linseed host impossible (Plate 3.6). The 

material was not removable by etching and it was therefore assumed that the material was 

possibly the remnants o f the trace o f Tween 80 included in the conidial suspension to prevent 

clumping o f the conidia. The experiment was repeated, the conidia being washed off the S 

medium plates and resuspended with SDW containing no Tween 80. However, the electron 

dense matrix was still observed following the use o f the adapted method. Analysis was only 

made o f conidia which could be observed at the edge o f the matrix.

Analysis o f  germinated conidia indicated substantial growth across the phyl lop lane although 

no observable differences were noted with regards to selection o f sites for attempted 

penetration between the three accessions. As observed under uv fluorescence microscopy, 

penetration was observed to be direct via epidermal cell wall sites (Plate 3.7) and indirect 

penetration via  the stomata was not observed during the study. Intercellular growth o f the 

infection hyphae was observed following direct penetration through the epidermal layer (Plate 

3.8). Intercellular growth was often accompanied by a large amount o f damage to adjacent 

cells although the infection hyphae did not appear to penetrate directly into palisade or 

mesophyll cells within the leaf (Plate 3.8).
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Plate 3.6 Scanning electron micrograph illustrating the presence o f  large amounts o f  
extraneous material surrounding germ tubes o f  the pathogen A. linicola isolate A16 on 
cotyledons o f  linseed cv. Antares 24 h after inoculation.

a Sheets o f cxtramatrical material (m) appeared to thin tow ards the edge o f  the inoculation 
droplet. Developing germ tubes (gt) could be observed along the margins o f  the droplet. (Bar 
= 40 pm).
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Plate 3.7 Scanning electron micrographs o f  A. linicola isolate A16 attempting direct 
penetration through epidermal cell wall sites o f  the Linum accession L.u.u. albocoeruleum 24 
hours after inoculation.

A #

a. Germ-tubes which have grow along the cleft between two epidermal cells. The lower 
gcrm-tubc (Igt) continued along the junction between the two epidermal cells whilst the 
uppermost gcrm-tubc (ugt) attempted direct penetration o f  the periclinal surface o f the 
epidermal cell (ec) adjacent to the guard cell. (Bar = 20pm).

b. Higher magnification o f  the penetration event described in a . The lower gcrm-tubc (Igt) 
can be observed to be growing along the cleft between the anticlinal cell wall junction. The 
upper gcrm-tubc (ugt) has produced a small appressorium and an infection peg which can be 
observed to be causing a depression in the surface o f  the host epidermal cell wall (ec). (Bar = 
10pm).
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Plate 3.8 Scanning electron micrographs illustrating the intercellular growth of A. linicola 
isolate A16 on the linseed cultivar Antares (40 h post-inoculation).

ti

a Germ tubes (gt) o f  isolate A16 observed to penetrate the upper epidermal layer (ec) and 
grow intercellularv (h) between the palisade cells (ps), many o f  w hich appear to have 
collapsed. (Bar = 100pm).

b. Intercellular development (h) through the spongy mesophyll layer (sm) vertically upwards 
towards the palisade cells (ps) following the penetration o f the lower epidermis (le). (Bar = 
200pm).

c. High magnification o f  a number o f  intercellular hyphae (h) grow ing amongst collapsed 
mesophyll cells (me). (Bar = 20 pm).

Page 82



Chapter 3

3.4 Discussion

3.4.1 Initial pathogen development 

General observations

Although very little work has been carried out on the infection process o f  the Alternaria in 

comparison with the biotrophic pathogens o f the cereals, it would appear likely that the more 

generalised pattern o f development observed for the facultative pathogens forms a basic model 

to our understanding o f plant pathogen interactions. O f X\\q Alternaria, very little work has 

been published on the development o f  A. linicola and the current study indicates that there are 

many similarities with a number o f the other pathogens o f the genus. Alternaria linicola 

follows a sim ilar pattern to the Brassicaceae infecting species A. brassicae and A. brassicicola 

and the Solanaceae infecting species A. solani. Unlike many o f  the othQv Alternaria pathogens 

listed in Table 3.1, all four species show opportunistic potential as they are able to penetrate 

either directly or indirectly via  stomata, either with or w ithout the formation o f appressoria. 

However, although the four species show some plasticity in their ability to colonise the host, 

each does show a preference for a particular method or point o f  ingress and, indeed, it may be 

specialisation to a weakness in the host defences which determines this phenomenon.

Requirements fo r  adhesion and initial development

In general, the nature and condition o f the host material, primarily the phylloplane 

environment and structure, dictate the success o f a pathogen during the infection process 

(Rotem, 1994). As already discussed (section 1.2.1) the availability o f  free water appears to be 

a pre-requisite for the successful germination, adhesion and development o f spores of many of 

the Alternaria. The importance o f free moisture for the success o f A. linicola was probably 

demonstrated during the present study in that the numbers o f conidia o f A16 present on the 

cotyledons o f Antares, Blauwe-ster and L.u.u. albocoeruleum  on which the inoculum droplet 

had dried out during the incubation period were veiy low. This could indicate the importance 

of water availability for the successful adhesion o f the conidium to the leaf surface and for the 

germination and development o f the pathogen.

The author suggests that the presence o f an electron dense extra-matrical substance which was 

observed to surround the germinating conidia and developing germ tubes during the SEM
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studies was produced for the purpose o f adhesion. The substance had the characteristics o f a 

polysaccharide compound (J. Findlay, Personal communication, 1994) which, as the 

compound was only observed around fungal structures, was apparently produced by the 

pathogen for this purpose. This analysis would agree with the observation and analysis o f 

similar compounds which have been characterised as polysaccharides, proteins and glyco

proteins (Nicholson & Epstein, 1991). Many o f these compounds have recently been
.V ;

implicated in pathogenesis as they exhibit enzymatic activity. Theoretically, compounds such 

as these could alter the leaf surface directly (Pascholati et al, 1993). However, no evidence o f 

change to the cuticle or epidermal cell layer was observed directly beneath the mucilage during 

the present study.

Denny ( 1995) suggested that the role o f bacterial extracellular polysaccharides may be two

fold, not only in terms o f pathogenicity, but also for the protection and survival of the 

pathogen. During pathogen growth, it was suggested that extracellular polysaccharides 

protected the pathogen against desiccation at an extremely vulnerable stage in the life cycle, 

concentrated minerals and nutrients, reduced the contact o f the pathogen from hydrophobic 

and charged macromolecules, as well as adhering the pathogen to the host surface. Denny 

(1995) also suggested that during pathogenesis, extracellular polysaccharides may prevent 

excessive contact with fungitoxic substances, promote water-soaking o f  the host tissues and 

aid the successful colonisation o f the host by minimising the interaction o f  the pathogen with 

the host cells, so reducing the speed and extent o f  host response.

Development on the phylloplane

.
Following successful adhesion, the main characteristic affecting many pathogens ability to 

infect a plant is the morphology o f the plant and more specifically, aspects o f  the topography 

o f the leaf surface (i.e. cuticle thickness and structure, stomatal density and shape o f the 

epidermal cells). Differences in the topography of the leaf surface have successfully been 

shown to account for the passive non-host resistance o f many unrelated species (Royle 1976).

Much o f the work reviewed by Royle (1976) also explained examples o f  “age-related” and 

“tissue-related” resistance and some evidence for “environment-mediated” resistance.

As Antares, Blauwe-ster and L.u.u. albocoeruleum  are closely related phyllogenetically, the
■

different accessions could be expected to have a fairly similar fine topography. From this it



Chapter 3

A16 on the three accessions tested with respect to the topography and micro-environmental 

conditions o f the cotyledons. However, differences in the response of the isolate on the three 

accessions were observed (Table 3.2, Fig. 3.1 and Fig. 3.2). Analysis o f Fig 3.1 indicated that 

during the early stages o f the interaction (18 h and 24 h post-inoculation) variâtes of 

importance were a number of growth parameters o f the pathogen. These were further 

advanced and thus associated with, the less resistant accessions Blauwe-ster and, to a lesser 

extent, Antares. Differences in the speed o f  the development o f the pathogen between the 

accessions were responsible for the significant differences between the accessions at these time 

points. As one would expect, host responses were observed to become important later in the 

interaction than fungal development (40 h post-inoculation) and whilst the resistant accession 

Lm .u. albocoeruleum  was associated with variâtes o f pathogen development, the less resistant 

accessions, particularly Blauwe-ster, were associated with variâtes describing cellular 

interactions.

No observations were made during the present study on the effect of differences in the waxy 

cuticle or age-related condition o f the cotyledons between Antares, Blauwe-ster ov L.u.u. 

albocoeruleum  on infection by linicola. Considering the close phyllogenetical association 

between the three accessions, marked differences in the composition or structure o f the cuticle 

would seem unlikely and no obvious differences were observed during the present study. 

Vloutoglou (1994) noted that the wax layer on cotyledons o f linseed was thinner in 

comparison to that on the true leaves o f the plant and suggested that this may be a factor in 

explaining the increased severity o f  infection by isolates ofH . linicola which was observed on 

the cotyledons o f seedlings.

Comparison with other phytopathogenic A lternaria spp.

The pattern o f behaviour observed forH . linicola  was similar to that observed for other large- 

spored Alternaria  species on their host plants (Tsuneda & Skoropad, 1978; Allen et al,, 1983; 

Tewari, 1986; McRoberts & Leonard, 1996). The pre-penetration growth o f A. linicola 

thus apparently insensitive to minor variations in leaf surface morphology. As in interactions 

between other Alternaria species and their host plants, (Tewari, 1986; McRoberts & Leonard, 

1996) resistance and susceptibility were found to be determined principally by events ' 

associated with attempted penetration and subsequent colonisation o f the host tissue and the 

speed o f the resistance response o f the host plant cells. Thus, the data from the current study
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suggest that differences in resistance among the accessions resulted from a reduction in the 

rate o f the infection process.

Progress o f  disease development

Differences in the timing rather than the nature o f resistance responses have previously been 

shown to be correlated with variations In host resistance in a number o f  plant/pathogen 

interactions (Hachler & Hohl, 1984; Ride, 1985; Aist and Gold, 1987). Further evidence that 

such a relationship could account for the variation in resistance among the Limtm  accessions 

used in the current study can be observed. For example, penetration events were found more 

frequently on the most susceptible accession, Blauwe-ster, than on the other two accessions at 

18 h.a.i.. Later on in the interaction at 40 h.a.i., successful penetrations were observed on the 

most resistant accession, L.u.u. albocoeruleum. However, subsequent events in the infection 

process (sub-cuticular growth, and inter-cellular growth) were rare on the resistant accession. 

These events were common on the moderately-resistant accession, Antares, and the susceptible 

accession, Blauwe-ster.

The difference in the rate of infection by ̂ 4. linicola on the three Linum  accessions can be 

further illustrated by a posteriori comparisons o f particular features o f the interaction 

involving variâtes which occur during the latter stages o f the interaction. The variâtes which 

were o f  importance in differentiating the accessions in the MANOVA (Table 3.2) were 

described by the results o f the CVA analysis (Table 3.3). The occurrence o f inter-cellular 

growth (Fig. 3.5) and non-localised host cell reactions (Fig. 3.6) were delayed on L.u.u. 

albocoeruleum  in comparison with the more susceptible accessions suggesting that while H. 

linicola  was able to infect the cotyledons o f all three accessions, the infection process was 

delayed on the more resistant accession. At 40 h.a.i. the incidence o f attempted penetrations 

with localised cell responses was higher on L.u.u. albocoeruleum  than on the other two 

accessions (Fig. 3.6). These observations are consistent with the hypothesis that attempted 

penetration by the pathogen decreases in frequency once successful penetration has occurred, 

and thus the rate o f successful penetration was delayed on L.u.u. albocoeruleum  in comparison 

with the other accessions tested, leading to a higher frequency o f attempted penetrations at 40 

h.a.i..
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Differences in appressorial form ation between accessions

The general lack o f variation in the growth pattern of A. linicola  isolate A16 on Antares, 

Blauwe-ster and L.ii.u. albocoemileum  throughout the study was also observed in the 

frequency o f appresssorial formation at either an intercalary or terminal position (Table 3.4). 

Significant differences in the overall number o f appressoria formed and the position of those 

appressoria along the germ tube were not observed until late in the interaction (40 h). The total 

number of appressoria formed on Lii.u. albocoendeum  at this time was significantly higher 

than the number formed on either Antares or Blauwe-ster. O f these, significantly more o f the 

appressoria on L.u.u. albocoendeum  were formed in a terminal position in comparison to 

Antares and Blauwe-ster and likewise, the number o f intercalaiy appressoria formed was also 

significantly higher on L.u.u. albocoeruleum  than on Antares (Table 3.4).

The data suggested that v4. linicola  isolate A16 formed appressoria more readily on the resistant 

accession L.u.u. albocoeruleum. Analysis of the data for all accessions by CVA indicated that, 

although this was the case, the variables which were important in the interaction at the 40 h 

time point were penetration and host cell response variables (penetration, intercellular growth, 

sub-cuticular growth and localised host cell response). This again indicates that successful 

penetration o f  the other two accessions had already occurred by this time. Consequently, the 

majority o f pathogen development on Antares and Blauwe-ster was occurring sub-cuticularly 

and/or intercellularly.

A similar phenomenon has been reported in the literature. Blazquez & Owen (1963) noted that 

resistant clones o f Hevea brasiliensis (hevea rubber) induced the formation of more 

appressoria in comparison with susceptible clones during infection studies with the pathogen 

Dothidella ulei. The probable reason for this occurrence was the presence o f larger quantities 

of leaf exudates which Blazquez & Owen suggested were inhibitory to germ tube growth and 

thus induced appressoria! formation due to the initiation o f a survival response from the 

pathogen. W hether differences in the amount o f leaf exudate produced by L.u.u. 

albocoendeum  in comparison with Antares and Blauwe-ster was responsible for differences in 

appressorial formation frequency was not established during the present study.

In general, the majority o f the appressoria formed by A. linicola isolate A16 on Antares, 

Blauwe-ster and L.u.u. albocoendeum  were formed over anticlinal cell wall junctions (Fig.

3.3). Behaviour such as this has been obseived for many phytopathogenic fungi and it has
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/A
been suggested that the selection o f cell wall junction sites may be a positive response to a 

topographical or chemical stimuli (Preece et al., 1967; Emmett & Parberry, 1975; Daniels et 

al., 1991). Such a suggestion was made for the behaviour o f  A. brassicae which was observed 

to form appressoria at cell wall junction sites on oil seed rape (Tsuneda & Skoropad, 1978), 

although statistical evidence was not produced to substantiate the observation.

Comparative results on the preference o f  A. linicola for cell wall sites for appressoria 

formation on linseed material were published recently (Vloutoglou, 1994) along with similar 

results taken from Brassica host/non-hosts and a range o f  Alternaria  spp. (McRoberts, 1992). 

No explanation was provided for the observed results by the former author. McRoberts (1992) 

attempted to explain site selection by studying many aspects o f  the interaction including leaf 

waxiness, however, no clear relationship was observed between different forms o f waxiness 

and appressorial site selection.

,

Preference of site for appressorial formation was observed for Alternaria longipes on tobacco 

(Von Ramm, 1962) although seasonal variation was observed which was associated with the 

maturation and condition o f the host tissue. Early in the season, Von Ramm observed that 

germ tubes grew longer before appressoria developed and penetration was only observed at 

certain sites. Later in the season, appressoria developed on short germ tubes close to the 

germinated conidium and direct penetration occurred, either with or w ithout appressorial 

formation, regardless o f the position o f  the pathogen on the plant surface. No explanation o f 

the phenomena was given by the original author beyond the realisation that there was a 

correlation with plant age. However, Emm ett & Parberry (1975) later suggested that the 

change in site selectivity observed by Von Ramm may have been associated with increased 

osmosis o f exudates which accompanied the ageing o f the host cells.

Sub-cuticular development o f  the pathogen

In general, following penetration o f  the cuticle, A. linicola was observed to grow sub- 

cuticularly for a short period, although growth o f this nature was slightly delayed on the 

accession L.u.u. albocoeruleum  due to a lack o f successful penetration on the resistant 

accession. Similar growth was observed by Tewari (1986) who reported a short period o f sub

cuticular growth by A. brassicae during the infection of B. napus. A possible suggestion for 

the period o f sub-cuticular growth could be the ramification o f the pathogen over the plant 

surface as observed before the penetration o f the cuticle, but being sub-cuticular, the pathogen
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is afforded shelter from excessive changes in the environmental conditions to which it is 

subjected. Another advantage to a phase o f  sub-cuticular growth is that metabolites produced 

by the pathogen would interact directly with the tissues o f the host plant. Jones & Ayres 

(1972), for example, observed that subcuticular mycelium of Rhyncosporium secalis caused 

permeability changes in the underlying barley epidermal cells which promoted nutrient 

leaching. This in turn provided more nutrients for the developing pathogen.

Sub-cuticular growth o f A. linicola isolate A16 during the present study was intercellular along 

the cleavage lines o f the anticlinal cell wall junctions o f the epidermal cells. The probable 

reason for this directed growth was a sim ilar thigmotropic response to the physical presence o f 

the indentation o f the cell wall junctions or a chemotropic response to the presence o f chemical 

exudates or nutrients leaching from the host cells into the cell wall junction region as was 

observed during appressorial site choice.

Sub-cuticular growth was always observed to result in the penetration o f  the epidermal layer, 

an event which also took place directly (without sub-cuticular growth) and also occasionally 

indirectly through ingress to the sub-stomatal space via the stomata. The observation that 

periods o f sub-stomatal growth lead to penetration to a sub-epidermal level is important in the 

interaction and suggests the conditioning o f the host tissue by enzyme or toxin production by 

the pathogen. It may be the case that sim ilar successful penetration without sub-cuticular 

growth, either direct or indirect, may be possible providing the pathogen can evade host 

responses for a long enough period to allow the conditioning o f the host tissue ensuring it to be 

conducive to penetration.

A growth pattern o f sub-cuticular growth, followed by the conditioning o f the host tissue by 

fungal metabolites was suggested by Tewari (1986) during the infection o f B. napus by 

brassicae, however, experimental evidence o f conditioning was not given by the author. 

Similar evidence o f pre-conditioning o f epidermal cells by members o f fhe Alternaria  was 

observed during the infection o f sicklepod {Cassia obtiisifolia L.). Van Dyke & Trigiano 

(1987) suggested that the observed necrosis o f the epidermal cells o f sicklepod was due to the 

secretion o f toxins by the weakly virulent Alternaria cassiae.

Following either a period o f subcuticular growth, or direct/indirect penetration o f the cuticle,

A. linicola isolate A16 grew intercellularly to a sub-epidermal position. Very little intracellular 

growth was observed and in this respect linicola follows the behaviour which appears to be
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almost universally characteristic fox Alternaria  phytopathogens (Jackson, 1959: Von Ramm,

3.4,2 The host response and the effect on pathogen development 

The importance o f  the host response

t

1962; Tewari, 1986). Isolate A16 was then observed to spread through the cell levels o f  the

I;-
leaf, in this case through the palisade cells into the spongy mesophyll cells, ramification being

associated with cell necrosis and collapse. As the pathogen was not often observed to

physically puncture and invade adjacent host cells from the intercellular position, this would

suggest the production and action o f (a) compound(s) which were toxic to the surrounding host

cells. Further discussion o f the importance o f toxin production in the A. /m/co/a/linseed 
.

interaction will take place during the following chapter o f  this work.

During the present study, it would appear that much o f the difference in the response ofW.
_

linicola isolate A16 to the linseed accessions Antares, Blauwe-ster and L.u.u. albocoeruleum

was determined by active host mechanisms. This is particularly important in the latter stages 

of the interaction from 24 h.a.i. onwards. From the behaviour o f the pathogen described and 

discussed to this point, it would appear that development progresses from adherence and 

germination through to penetration, ingress and development, in a genetically predetermined 

manner. Such a hypothesis has been suggested for many fungal pathogens including many 

phytopalhogomc Alternaria spp. (section 3.1).

Localised callose deposition and papillae form ation

The exclusion o f the pathogen from penetration on L.u.u. albocoeruleum  was characterised by 

the high number o f localised host cell reactions which were observed on this accession. Many 

o f the localised host cell responses produced by this accession were extremely small localised 

callose deposits which fluoresced with a bright yellow colour when stained with aniline blue 

(Eschrich & Currier, 1964). Although the callose structures were not observed to completely 

engulf the advancing fungal body, the callose structures resembled papillae (Aist, 1976) on 

many occasions. These consisted o f characteristic semi-circular deposits in both of the 

anticlinal cell walls between which the pathogen was attempting to penetrate. At sites such as 

these, the pathogen was effectively prevented from developing further due to the physical 

presence o f the callose structures.
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Apart from the callose (usually a 1, 3 p-glucan) component, the chemical nature of the 

papillae-like formations could not be explained further from the observations taken. Unstained 

material was not observed to auto-fluoresce which would have indicated the presence of lignin 

or lignin pre-cursors, compounds which are often associated with papillae (A ist 1976). Many 

studies have suggested further functions for papillae in the resistance response such as the 

restriction o f  the passage o f solutes from the host cell (W heeler, 1974), a permeability barrier 

protecting the host cells from exogenous toxic compounds (Hanchey & Wheeler, 1971; M ercer 

et al., 1974; Skipp et al., 1974; Wheeler, 1974). No evidence o f another role for the papillae- 

like structures apart from the physical exclusion of the pathogen from the attacked cell was 

observed during the present study. However, if papillae formation was incited by the presence 

o f a fungal toxin, the function o f  reducing the host cell permeability to exogenous toxin 

compounds should not be dismissed. Indeed, it seems unlikely that the host cell walls within 

which the papillae-like callose structures were formed were penetrated prior to callose 

deposition, as mechanical evidence of the action o f infection pegs was not observed. This in 

itself suggests the response o f the host cell was chemically induced, possibly by the production 

o f a toxin(s) by the pathogen. This hypothesis would agree with evidence which indicates 

chemical stimuli, and the presence o f toxic metabolites in particular, to be sufficient in the 

incitement o f  papillae formation (Hanchey et al, 1968; Luke e t al, 1966).

Non-localised callose deposition

Failure o f a localised host cell response to inhibit pathogen development appears to have led to 

a spread in the amount o f  callose formation within the host cell being attacked. This response 

was observed as a characteristic of failed localised responses in the accession L.u.u. 

albocoendeum  and, more characteristically, in Antares and Blauwe-ster. It should also be 

noted at this point that localised cell reactions were not common in the susceptible accession 

Blauwe-ster. Quite often, a generalised whole cell reaction was accompanied with a localised 

or whole cell reaction in the adjacent host cell, especially if  the pathogen was observed to be 

developing sub-cuticularly between two epidermal cells. This response was also probably 

incited by the production o f toxic metabolites by the pathogen as intercellular hyphae were not 

always observed to be within the near vacinity o f the host reaction.
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Evidence o f the production o f  defence-related compounds

In the majority of cases of localised and non-localised response, the pathogen was observed to i

cease to develop further. This observation was particularly true for fungal infection bodies in areas 

which had sustained a high concentration of attack and where, consequently, many of the host cells 

were necrotic. A possible explanation would be the production of antifungal metabolites, such as 

phytoalexins, by the host plant cells in response to damage caused by A. linicola. The role of 

phytoalexins in the defence response o f many plants against phytopathogenic fungi has been 

demonstrated over many years. Phytoalexin compounds were readily produced by cultivars of flax 

(L. usitatissimiim) in response to infection with M  Uni (Keen, 1978) which clearly indicates the 

ability of the host species to synthesise fungitoxic compounds. Similarly, a range of host plants, 

including cruciferous host and non-hosts, produce phytoalexins following challenge by species of 

the Alternaria (Conn et al., 1988) which suggests phytoalexin elicitation by A. linicola would not 

be unexpected.

Many studies have linked disease resistance to the accumulation o f uv-fluorescent material such as 

callose and lignin in host cells (Kidger & Carver, 1981 ; Mansfield et al., 1974, Mayama &

Shishiyama, 1976; 1978; Mayama & Tani, 1982; Mayama et al., 1982). A commonly reported

occurrence from studies with biotrophic pathogens such as E. graminis was the formation of 

fluorescent material immediately prior to host cell collapse during the hypersensitive response. In 

many cases, a good correlation has also been established between callose formation, or an |

increased activity of components of the callose (1, 3-[3-glucan) biosynthetic pathway, and disease 

resistance in cultivars of crop species (Carver et al., 1991 ; Carver et al., 1994a; Carver et al.,

1994b; Ralton et a i ,  1988; Schmele and Kauss, 1990; Tiburzy & Reisener, 1990). However, some 

studies on non-host resistance have indicated that callose deposition does not play a role in 

restricting pathogen growth (Perumalla & Heath, 1989).

:!
As observed above, callose production, in the form of localised and non-localised host cell 

reactions, was greater in the resistant L.u.u. albocoendeum and the moderately resistant Antares.

From this, it would appear that changes in the composition and structure o f the host cell walls are 

strongly implicated in the disease resistance response o f Linum spp. to ^ . linicola although no 

evaluation of metabolic changes in the host cells was made during the present study. It could be 

suggested that the lack of ability of accessions such as Blauwe-ster to undergo physical defence t

responses is probably one of the factors which results in the breakdown of resistance and leads to 

susceptibility to A. linicola.
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There is also strong evidence in the literature of a link between the timing of the occurrence of UV- 

fluorescent compounds in host cells and the production of phytoalexin compounds. Such an 

association in the LimmlA. Unicola interaction studied would account for the observation that 

pathogen development was halted in regions which contained areas of epidermal cells which were 

either necrotic or showing a non-localised host cell reaction. If such compounds were produced 

during the interaction, extreme localised production at, or around, localised papillae-like reactions 

would account for the cessation of growth without the total engulfment of the fungal hyphae as was 

observed.

Important features o f  the interaction between A. linicola and linseed

Analysis of observations made during the present study suggest that the following description best 

explains the factors which are involved in the A. /mzco/a/Iinseed interaction and those which are of 

importance in the determination of the resistance response:

1. Differences in the topographical nature of the three accessions appeared to have little effect on 

the development of the pathogen but the pathogen showed a preference for anticlinal cell wall 

junctions for sites of appressorium formation.

2. The majority o f factors which are important in the interaction are the more specific active 

responses of the host to the development and penetrative attempts of the pathogen.

3. It is suggested that chemical components produced by the pathogen elicit a response from the

host and it is differences in the speed and quantity of host cell reactions which appear to be the 

most important factors preventing pathogen ingress and development and thus determining 

resistance/susceptibility.

4. Changes in the construction of the host cell walls forms the primary response. However, 

continued pathogen development and ingress results in cell damage which elicits a secondary 

response through the production o f phytoalexin compounds.

The remaining two chapters of this study investigate two components of plant pathogen 

interactions which have been suggested from the microscopic observations described above. The 

first o f these will investigate phytotoxin production in 4. linicola and considers the possibility that 

toxin accounts for the specialisation o f this species on linseed. The second study will investigate 

whether linseed cultivars produce fungitoxic compounds as a defence response to attack by A. 

linicola.
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4.1 Introduction

Phytotoxin production in host-pathogen interactions

Plant pathologists have known for many years that some fungal and bacterial plant pathogens 

produce compounds which are toxic to plants, indeed Gaumann (1954) stated that 

"microorganisms are pathogenic only if they are toxigenic” . Although G aum ann's statement 

was considered extreme by most pathologists, many species o f fungal pathogens are currently 

known to produce toxins. Some compounds (termed host specific toxin [HST]) are highly 

specific to the host plant species or even cultivars of one particular host species. Host-specific 

compounds cause disease-like symptoms on tissues o f the host plant or cultivar whilst no 

detrimental effect is observed on the tissues o f non-host species. The ability o f some pathogen 

isolates to produce phytotoxins has caused many o f the worlds major plant disease epidemics. 

For example, the southern leaf blight epidemic o f maize in the United States (1970-1971) had 

a major impact on the US economy and was a repetition o f an earlier epidemic o f oats in North 

America. Both o f these epidemics were caused by phytopathogens o f Bipolaris spp. (known 

formerly as Helminthosporium  spp.) which were able to colonise newly, and widely, 

introduced cultivars o f  maize and oat respectively through the production o f  a previously 

undetected host-specific phytotoxin (Scheffer & Briggs, 1981). Also, in human terms, the 

most terrible famine yet recorded occurred in the Indian sub-continent in 1943 when rice crops 

failed due to disease caused by Bipolaris oryzae which produced the toxin ophiobolin 

(Scheffer & Briggs, 1981).

The range ofphytotoxins produced by pathogens o f  the Alternaria

Although phytotoxic compounds have been isolated from biotrophic pathogens (e.g. Puccinia 

recondita f.sp. tritici [Jones & Deverall, 1978]) the majority o f the work on phytotoxins 

(particularly the HSTs) has been carried out on the so-called ‘saprophytic species', mainly on 

Alternaria spp., Helminthosporium  spp. and also on a few less well known species (Nishimura 

& Kohmoto, 1983a; b). A list o f  the phytotoxins which have been extracted from 

phytopathogenic Alternaria species, including host-specific and non-host specific toxins and 

the producing organisms are given in Table 4.1. Compounds which have been extracted from 

Alternaria species include a wide range o f secondary metabolites. The compounds tend to fall
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Chapter 4

into two main structural groups; the dibenzo-a-pyrones (or polyketides), or the nitrogen 

containing group including the cyclic depsipeptides, the tetramic acid, tenuazonic acid (TeA), 

the amides (AK-toxins) and zwitter ions (AL-toxins)(Stinson, 1985).

The largest group o f metabolites produced by members o f Û\q Altenaria. the dibenzo-a- 

pyrones, contains many HST and non-host specific compounds. The relatively simple 

structure o f compounds o f the group has ensured that many have received the attention o f 

chemists and biochemists and as a result the biosynthetic pathway o f many o f the compounds 

has been reported (Stinson, 1985). Three o f  the group, alternariol (AOH), altenariol 

monomethyl ether (AME) and alternaric acid (AcA) were found to possess phytotoxic 

properties (King & Schade, 1984). Alternariol and AM E appear to be fairly ubiquitous 

amongst X\\q Alternaria  and have been positively isolated and characterised from A. alternata 

(Raistrick et a i ,  1953), A. alternata f.sp. kikuchiana  (Kameda et al., 1973), A. cucumerina 

(Starratt & White, 1968) and the large spored species o f A. dauci (Freeman, 1965) and A. 

solani (Pollock et al., 1982a,b).

The biosynthesis o f  common Alternaria phytotoxins

The polyketide compounds to which this group o f phytotoxins belong are formed by head-to- 

tail condensations o f malonyl CoA units with single acetyl CoA. The biosynthetic routes for 

AOH and AM E were studied in A. alternata by Thomas (1961a, b) who suggested head-to-tail 

condensations o f acetate units. Gatenbeck & Hermodsson (1965) also studied the biosynthetic 

pathways o f  the compounds in /I. alternata and further determined that acetate underwent 

carboxylation to form malonate, the polycondensing agent to produce AOH. Stinson & 

Moreau (1986) demonstrated that the cytosolic enzyme alternariol-O-methyltransferase was 

responsible for the conversion o f AOH to AM E in A. alternata via  S-adenosyl-L-methionine 

which acted as the methyl donor.

Stinson (1985) also describes the biosynthetic pathway o f tenuazonic acid (TeA), a polyketide 

which is a tetramic acid derivative. Tenuazonic acid is generally regarded as the most 

important toxin produced by the Alternaria  mainly due to its widespread occurrence and 

toxicity not only to plants but to animals and insects as well (King & Schade, 1984). The 

compound has been extracted from several pathogenic species o f the genus and as such it has 

been suggested that TeA production appears to be ubiquitous within the Alternaria (Kinoshita 

et al., 1972; Steele & Mirocha, 1971).
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Tenuazonic acid appears to cause general cell disruption by the inhibition o f protein and 

nucleic acid synthesis and has been shown to cause chlorosis and necrosis on a wide range o f 

plants (Templeton, 1972, King & Schade, 1984). Gatenbeck & Sierankiewcz (1973) observed 

that specific analogues o f TeA were produced by A, alternata depending on the provision o f 

either L-valine or L-isoleucine in culture medium . This response to culture nutrient conditions 

was partly explained by Stoessel (1981)who proposed that the biosynthesis o f TeA involved a 

condensation reaction between acetoacetic acid and L-isoleucine.

Characteristics o f  the host-specific toxins produced by pathoforms o f  the Alternaria alternata 

anamorph

Much o f the work on HSTs has been carried out in Japan on the apple, pear, strawberry and 

citrus infecting pathotypes of/4, alternata  for which the HSTs have been shown to be a 

necessary determinant o f pathogenicity (Nishimura & Kohmoto, 1983b). The production o f 

HST appears to be essential for a given pathotype o f A. alternata  to be pathogenic on its 

respective host and thus accounts for the very narrow host range which is characteristic of 

HST-producing pathotypes o f this species. M orphologically the different pathotypes o f A. 

alternata show many similarities and all conform to the measurements o f  the type species as 

described by Simmons (1967).

Perhaps the most dramatic example o f the narrow host range o f some pathotypes o f A. 

alternata can be illustrated by reference to the black spot disease o f Japanese pear caused by 

the pear pathotype o f A. alternata (previously known as A. kikuchiana  Tanaka). The pathogen 

produces a number o f phytotoxic compounds, designated the AK-toxins, which have been 

demonstrated to be the sole determinant o f pathogenicity on pear cultivars. Ten cultivars, 

including the most popularly grown cultivar cv. Nijisseiki, were extremely susceptible to the 

pathogen, whilst the remaining 26 cultivars tested were immune (Otani et a l ,  1972; 1973; 

1975).

The HSTs, although showing highly host specific action, have been observed to have similar 

sites of action through the modification o f the plasma membrane or mitochondrial modification 

or chloroplast modification (Table 4.1)(Kohmoto et ah, 1987). HSTs have also recently been 

observed to produce similar effects on the specific organelle o f  the host cell on which damage 

is caused (Park, 1994). It was noted that in addition to the observed membrane specificity,
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only partial modification o f  the target structure occurred and general disruption o f  the host cell 

contents was not observed (Park et a/., 1981a; Park et al., 1981b; Kodama et al., 1990; 

Nutsugah et a l ,  1993). Park (1994) suggested that this contrasted to the general disruption 

caused by the degradation o f all cellular membranes by non-specific metabolites such as 

tenuazonic acid, in both susceptible and resistant tissues early in the interaction.

The main effect o f the modification o f  the plasma membrane by HSTs (and in a less specific 

manner, the non-HST compounds also) appeared to be a depolarisation o f  the membrane 

potential. This resulted in the rapid loss o f electrolytes (mainly potassium ions) from toxin 

treated susceptible cells (Otani et a l ,  1985) and in the case o f  AK-toxin induced depolarisation 

o f the membrane potential o f  susceptible pear cells within 30 minutes (Otani et a l ,  1989).

The primary site o f action o f the cyclic depsipeptide HSTs produced by the apple infecting 

pathotype o f A, alternata (AM -toxin) was also reported as being the plasm a membrane and 

resulted in the rapid loss o f electrolytes (Kohmoto et a l ,  1987). Dysfunction o f the chloroplast 

resulting in the inhibition o f CO2 fixation during photosynthesis indicated a second site o f 

action for the AM-toxins. However, work by Shimomura et a l  (1991) indicated that 

specificity o f the pathogen was only dependant on the dysfunction o f the plasm a membrane. 

Tewari (1983) reported that toxins produced by A. brassicae in brassicae leaf tissue had similar 

sites o f action to those observed for AM-toxins. The AM-toxins are structurally sim ilar to the 

other cyclic depsispeptide phytotoxins which are often produced by members o f the 

Alternaria, the destruxin compounds and also the common fungal metabolite tentoxin (TT). 

Studies have indicated that similarities in the structure o f the compounds produce both shared 

and unique properties in the molecules which in turn determine the toxicity o f the compounds. 

The cyclical nature o f the three compounds was suggested as being important to the toxicity o f 

the molecules since phytotoxic activity was lost when linear analogues were produced 

(Nishimura & Kohmoto, 1983a; Ayer & Pena-Rodriguez, 1987a; Edwards et a l ,  1987). The 

similarities in the structures and sites o f  action between the three cyclic peptide toxins suggests 

conservation o f biosynthetic pathways within the Alternaria even though spéciation has 

occurred and the host ranges o f the producing pathogens (or pathotypes o f A. alternata) are 

narrow but are diverse from one another.
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Phytotoxins o f  the medium and large spored species o f  Alternaria

Studies o f phytotoxin production by larger-spored members of the Alternaria  has taken place 

on a relatively small scale in comparison with the work on HSTs produced by pathotypes of^L 

alternata. In contrast to the small-spored members o f the Alternaria and the many pathoforms 

o f the A. alternata anamorph in particular, the large- spored pathogens do not appear to 

produce HST-type compounds. Much o f the work that has been undertaken has been carried 

out on the production o f metabolites by the brassica Alternaria  pathogens, primarily

A. brassicae.

Ayer & Pena-Rodriguez (1987a) and Bains & Tewari (1987) isolated the depsipeptide 

destruxin B from A. brassicae which was described as being host-specific by the latter authors. 

The claim of host-specificity for the compound was later discredited and found to be an 

artefact o f  the two different bioassays which Bains & Tewari (1987) used to test phytotoxic 

activity on host and non-hosts. Leaf surfaces o f host species were treated with aqueous 

solutions o f the toxin preparation w hilst non-host species were tested by a cut stem method 

which was later found to account for the lack o f phytotoxicity on the non-hosts tested 

(Buchwaldt & Green, 1992). Buchwaldt & Jensen (1991) and Buchwaldt & Green (1992) 

demonstrated that destruxin B was released by germinating spores and developing germ tubes 

o f  A. brassicae and was readily extracted from brassica infected with the pathogen. Using a 

bioassay where leaves o f host and non-host species were inoculated with aqueous solution, 

Buchwaldt & Green (1992) found significant differences among the taxonomic plant groups 

tested in the level o f susceptibility to destruxin B. The results indicated that, as observed from 

infection studies with A. brassicae, Brassica  species were the most sensitive to the toxin and 

sensitivity decreased as the relatedness o f the plant groups tested became decreased. As 

phytotoxic activity was observed on plant families such as Chenopodium, Hordeum, Nicotiana  

and Phaseolus, Buchwaldt & Green (1992) concluded that destruxin B was not host-specific 

but was host-selective in nature.

The role o f destruxin B in the pathogenicity o f^ . brassicae on the Brassicaceae has not been 

established to date. Tewari (1983; 1986) and Bains & Tewari (1985) suggested that the role of 

destruxin B may be to condition the host by disrupting the plasma membrane o f the host cells 

in advance o f the developing pathogen. Evidence from work on HSTs of the anamorphs o f A. 

alternata  has demonstrated that the toxins produced by the germinating conidia are the primary 

determinant o f pathogenicity allowing the penetration o f the susceptible host (Daly, 1987).
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Kohmoto et al. (1987) suggested such a role for AK-toxin which was thought to predispose the 

susceptible pear tissue through the suppression o f the host defences. Buchwaldt & Green 

(1992) suggested that destruxin B acted as a virulence factor which contributed to the 

aggressiveness o f A. brassicae by conditioning the host tissue to pathogen ingress and that this 

determined the susceptibility o f the host.

An interesting observation from the work on A. bi^assicae was that as crude extracts have been 

further purified, the host specificity o f the components o f the extract has increased 

(Degenhardt, 1978; Bains & Tewari, 1985; 1987; M cKenzie et al., 1988; Buchwaldt & Green, 

1992). M cRoberts (1992) suggested that in the light o f  the evidence that Te A was produced in 

vitro by A. brassicae, A. brassicicola and A. raphani (Bruce et al., 1984), the presence o f  non- 

HSTs such as Te A in crude extracts o f cultures o f these species may account for the lack of 

specificity o f the extracts. McRoberts (1992) continued to raise the question that, although 

non-HSTs had not been isolated from in vivo studies to date, the possibility that compounds 

with a wide host range were produced would degrade the relative importance o f any HST 

compounds in the pathogenicity o f  these producing species o f  Alternaria. It could be 

suggested that there appear to be two groups amongst the Alternaria  pathogens, opportunistic 

saprophytic species (pathotypes o f  A. alternata) which have evolved HSTs enabling 

pathogenicity on an extremely narrow host range, and pathogens which appear to be more 

generalised (such as^L solani) and are pathogenic on a wider range o f hosts through host- 

selective and non-HST toxins. This hypothesis would suggest a degree o f divergence towards 

spéciation within the Alternaria  and would fit the morphological differences between the two 

groups (e.g. small- and large-spored).

The use o f  phytotoxin sensitivity in breeding programmes

Following the discovery of the importance o f phytotoxins in the pathogenicity o f many 

pathogens, there was considerable interest in the use o f toxins as a screening tool which would 

allow the testing o f large volumes o f breeding material in a short space o f time. However, the 

use o f bioassays utilising toxin tolerance as a technique for the selection o f resistance to toxin- 

producing pathogen has had mixed success to date. Often, resistant material can be selected 

by the use o f  exposure to toxins, but in the majority o f studies to date, regeneration from callus 

or protoplasts can prove to be difficult and resistance may not be inherited. For example, 

resistant tobacco cells could be selected using AT-toxin in an in vitro protoplast bioassay 

(Nishimura, 1987). However, although Kumashiro (1983) treated tobacco cells with Te A and
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selected resistant cells, following regeneration, the plants were as susceptible as the explant 

donors since resistance was not inherited.

MacDonald & Ingram (1985) reported the selection ofW. brassicicola resistant lines o f B. 

napus from the regeneration o f secondary embryo ids which had been exposed to culture 

extracts in vitro. However, resistant lines could also be regenerated from non-exposed cultures 

which suggested that resistance was a response to the culture environment rather than the 

toxicity o f  the culture filtrate. Reviews by Daub (1986) and Vassil (1990) summarise the 

merits and problems associated with the use o f toxins for in vitro selection. Both authors note 

that no crop variety produced by this method has yet been released for commercial cultivation.

The genetics o f  phytotoxin production in relation to host/pathogen interaction

In general, the genetics o f toxin production and host interaction are not presently very well 

understood. For some pathogens for which the production o f HST confers pathogenicity on a 

narrow selection o f cultivars, cultivar-race specificity has been suggested. For many o f the 

interactions which involve the Alternaria, analogous comparisons have been made to the gene- 

for-gene theory as either a single, or a very small number o f alleles, appear to be involved in 

the interaction. For example (Clouse & Gilchrist, 1987) observed that tomato lines 

homozygous for the recessive allele ASC' were highly susceptible to AL-toxin producing 

isolates o f  A. alternata  f.sp. lycopersici whilst heterozygous, or non ASC' allele, carrying 

tomato lines were resistant. However, evidence for Alternaria  pathogens which are not 

thought to produce HSTs indicate that there is little evidence o f race specificity and the lack o f 

qualitative resistance response in general suggests that the interaction is polygenic in nature 

(Humpherson-Jones et al., 1980; Prassana, 1984).

Heath (1985) suggested that HST producing pathogens were unusual fungi which were able to 

overcome the previously durable resistance o f host plants by effectively killing off the host cell 

before the resistance response could be elicited. Following cell death, Heath (1985) suggested 

that colonisation and development on necrotic tissue would continue unabated as the HST 

producing pathogens were saprophytic in nature. However, Scheffer (1983) had previously 

pointed out that HST producing pathogens were not always observed to induce cell death 

before colonisation. The colonisation o f live cells has since been demonstrated by Kohmoto et 

al. (1987) who observed that AK-toxin producing pathotypes o f Japanese pear appeared to 

inactivate the active host defences but did not kill the host cells.
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Evidence fo r  phytotoxin production in A lternaria iinicola

Although many Alternaria pathogens have been studied for phytotoxin production, there has 

been a single report in which phytotoxin production was suggested as a component o f thexl. 

linicola/üax pathosystem (Leduc, 1958). During microscopy studies, Leduc (1958) observed 

the production o f a compound immediately in front o f the advancing hyphae and suggested the 

production o f compounds such as alternaric acid and/or alternarin which had been recently 

extracted from A. solani (Brian et al., 1952).

The results o f the microscopy work reported above (Chapter 3) suggested that a compound, 

such as a toxin may have been produced and that this may account for the difference in the 

aggression o f the isolates o f  the pathogen. The suggestion that phytotoxins may negate some 

aspects o f the host defence mechanism (Kohmoto et a l ,  1987) would appear to fit into the 

model proposed during the previous chapter that the host cell responses in susceptible 

accessions o f Linum  (e.g. Blauwe-ster) did not occur with the frequency and speed o f those 

observed in resistant material. Furthermore, differences in the aggressiveness o f the A. Iinicola 

isolates were observed during Chapters 2 and 3 and infection by the more aggressive isolate 

resulted in a greater extent o f  tissue damage to the host. This suggests that, if produced in 

aggressive isolates, toxin producing isolates were able to infect material at a much quicker rate 

than non-aggressive isolates.

The following study was initiated to investigate the nature and phytotoxic activity o f 

metabolites produced by isolates o f A. Iinicola using two methods o f separation.

The aims o f the study were;

1. To characterise metabolite production by isolates of A. Iinicola in vitro.

2. To compare metabolites produced by A. Iinicola with known Alternaria  metabolites.

3. To assess the phytotoxicity o f crude and purified extracts from A. Iinicola on host and non- 

host species.

4. To characterise the chemical nature o f  phytotoxic metabolites via  2-dimensional t.l.c. and

' h -n m r .
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4.2 M ateria ls and m ethods

4.2.1 Extraction and characterisation o f metabolites from isolates o f Alternaria Iinicola

Organic extraction o f culture filtrate by partitioning with chloroform was carried out by 

placing 250 ml o f the culture filtrate in 500 ml extraction funnels with 100 ml o f chloroform . 

Extraction involved two mixing stages and the total standing time to allow separation o f the 

aqueous and solvent layers was 10 minutes. The lower solvent layer was removed by filtration 

through Whatman IPS (phase separation) paper containing anhydrous K2SO4 in order to 

remove aqueous contaminants, and collected in a round bottomed flask.; Solvent from 

replicate flasks was pooled and the extraction process was repeated twice with two 50 ml 

volumes of chloroform per extraction flask. Extract was rotary-evaporated to dryness at 35° C 

and re-suspended in a minimal amount o f  chloroform .

Freeze-dried samples o f culture filtrate to be extracted by RPC were further filtered through 

0.45 pm microdiscs (Sigma) to prevent clogging o f the columns during sample application. 

RPC was carried out using the method described by Buchwaldt & Jensen (1991). Bond-EIut 

C 18 columns (Varian, USA) were placed on a Vac-Elut manifold connected to a vacuum pump 

and were activated by the addition o f 10 ml of methanol per column. Following a column 

wash with 10 ml of sterile distilled water, the sample was loaded onto the column sequentially 

in 10 ml aliquots followed by 10 ml sterile distilled water until the total volume of 100 ml o f 

culture filtrate had been equally divided between two columns (2 x 50 ml).
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Growth and preparation o f  cultures

Liquid cultures o f  A. Iinicola isolates A ll - A14 were grown in 250 ml o f DCM as previously

described (2.2.2). Four culture bottles o f each isolate were incubated at 18° C for 30 days in

the dark, bottles being agitated by hand for 30 s every second day. The four cultures o f each 
.isolate were filtered through a single layer o f muslin and the resultant mycelial mat was 

homogenised with ~ 50 ml o f the culture filtrate using a food blender for 30 s. The combined 

culture filtrate and homogenised mycelial mat o f each isolate was then divided into two equal 

volumes (500 ml). One portion was extracted directly using the organic solvent chloroform . 

The second portion was prepared for reverse phase chromatography (RPC) by being further 

filtered through Whatman No. 1 paper (x 2) and a ceramic filter (filter size 6 pm) before being 

freeze-dried to a total volume of 100 ml.
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The first fraction o f highly polar material was eluted from the column with a 10 ml aliquot o f 

25 % aqueous acetonitrile. The second fraction o f medium polarity contained a mixture o f 

metabolites and was eluted with a 20 ml aliquot o f  40 % aqueous acetonitrile. The first 3 ml o f 

this fraction was collected and re-chromatographed through the column followed by the 

remaining 17 ml o f 40 % aqueous acetonitrile. Unwanted low-polarity material was flushed 

from the column with 10 ml o f 100 % aqueous acetonitrile and discarded. Following flushing, 

columns were used to extract m etabolites from culture filtrate o f the same isolate at a later 

date. To prevent the possibilities o f cross-contamination a new set o f  tubes was used for the 

culture filtrate of each individual isolate. The two fractions produced for each isolate were 

evaporated to dryness at 35° C and re-suspended in a minimal amount o f 25 % and 40 % 

aqueous acetonitrile respectively.

Visualisation by thin layer chromatography

Metabolite profiles of the crude extracts were observed following separation by thin layer 

chromatography (t.l.c.). 20 pi aliquots o f  each extracted fraction were spotted onto the pre

absorbent layer of LK6DF pre-channelled plates (Merck) 1 cm from the active interface 

(origin). Following adequate drying, plates were developed in a solvent system o f 95:5 v/v 

chloroform ; methanol until the solvent front had reached a pencil line previously scored 

through the silica bands 15 cm from the active interface. Plates were removed and dried 

overnight in a fume hood.

Developed t.l.c. plates were observed under a UV source at 254 and 366 nm . UV-quench in g 

compounds were detected at 254 nm, whilst fluorescent compounds were detected at 366 nm. 

Rp values were calculated for all metabolites observed. Metabolites from crude extracts were 

compared with available stanéavd Alternaria  toxin compounds (tentoxin [TT], tenuazonic acid 

[TeA] and alternariol mono-methyl ether [AME]) (Sigma).
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4.2.2 Comparison of metabolites produced in vitro by two Alternaria Iinicola isolates and 

three Alternaria species.

Growth o f  cultures, extraction and separation by t.l.c.

Two A. Iinicola isolates (A ll and A16), an isolate o f each o f A. solani (As), A. brassicae (Ab) 

and A. brassicicola (Ac) and an uninoculated control were grown in 4 x 250 ml DCM as 

described above (2.2.2). Following a reduction in volume from 1 litre to 200 ml by freeze- 

drying, semi-purified fractions o f each isolate were produced by RPC as described above. 

A liquots o f 20 pi o f each extract were developed on LK6DF plates using a 7:3 v/v 

dichloromethane : acetone solvent system which was found to separate the standard 

compounds to a greater extent than a 95:5 chloroform : methanol solvent system as used 

during the previous experiment. As well as TT, TA and AME, two other fungal toxin 

compounds, destruxin A and destruxin B (M . Pais, Institute de Chimie des Substances 

Naturelles) were also developed on the plates for comparison.

Concentrated bands o f destruxin A and B could be characterised by a very faint blue 

fluorescence at 366 nm. Presence or absence was confirmed by spraying the t .I.e. plate with a 

5 % w/v phosphomolybdic acid solution (in 5 % aqueous. H2SO4 and containing a trace o f  

eerie sulphate). Treated plates were heated at 150° C for fifteen minutes and destruxin-type 

compounds (cyclodepsipeptides) were characterised by the presence o f a blue band (Ayer & 

Pena-Rodriguez, 1987).

4.2.3 Bioassay o f phytotoxic activity o f extracts from Alternaria Iinicola isolates A ll and 

A16 on four linseed cultivars and on nine non-host plant species.

Growth o f  cultures and plant material

Crude extract and semi-preparative fraction 1 and 2 extracts of liquid cultures o f A. Iinicola 

isolates A ll and A16 were produced by partitioning with chloroform and by RPC as described 

above (4.2.1). Fraction 2 RPC extracts were redissolved in 22 % aqueous acetonitrile 

following evaporation to dryness, as preliminary studies indicated that 40 % aqueous 

acetonitrile was phytotoxic to the test material. Aliquots o f the extracts were used in two 

experiments, firstly to test for phytotoxic activity against cotyledons o f the linseed cultivars 

Antares, McGregor, Barbara and Linda and secondly to test for phytotoxic activity against a
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range o f non-host species. The species tested during the second experiment were the crucifers 

Brassica rapa, Brassica napus, Sinapis arvensis, Raphanus raphasnistrum  and Raphanus

sativus, Camelina sativa and Capsella bursa-pastoris, and two non-cruciferous species, 

Nicotiana tabacum  and Phaseolus vulgaris.

Bioassay design, scoring and analysis

Treatment number Extract or Treatment
1 A ll chloroform extract (crude)
2 A ll reverse phase chromatography, Fraction 1
3 A ll reverse phase chromatography, Fraction 2
4 A 16 chloroform extract (crude)
5 A16 reverse phase chromatography, Fraction 1
6 A16 reverse phase chromatography. Fraction 2
7 Tenuazonic acid (1 mg ml"' in methanol)
8 Chloroform control
9 22 % aqueous acetonitrile

Table 4.2 Description o f  the crude and semi-preparative extract treatments applied 

to linseed cotyledons and non-host species to test fo r  phytotoxicity

Linseed and non-host plant material was grown in the glasshouse as previously described 

(2.2.1) and a detached cotyledon bioassay was conducted as described previously (2.2.3).

Nine treatments were used during the two experiments as detailed in Table 4.2. As treatments 

1, 4 and 8 contained chloroform and 7 contained methanol, 10 pi o f  the treatment was firstly

applied to antibiotic filter paper discs which were allowed to dry in a fume hood. The treated 

antibiotic filter paper disc was then placed directly onto the leaf surface to be tested and 

moistened with 20 pi of sterile distilled water.

I
I
I"

'if
Five replicate cotyledons o f each cultivar or three replicate cotyledon/first leaves o f non-host 

plant species were placed in a single dish for the linseed bioassay and non-host bioassay, 

respectively. M aterial was tested in both bioassays by placing either a 10 pi droplet of the 

extract or a moistened antibiotic paper for extracts 1, 4, 7 and 8, directly onto the upper surface 

of the leaf. Each treatment dish was tested with only one extract or treatment and Petri dishes 

were sealed with para-film to prevent possible cross contamination through vapour effects.
i
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Petri dishes were incubated in a controlled environment cabinet as previously described and 

treated material was scored after 5 days using a 0 - 4 DI scoring system (Appendix 1.3). 

Analysis of the data was carried out by analysis of variance using GENSTAT on a VAX mini

computer.

4.2.4 Purification and phytotoxic activity o f metabolite extract from Alternaria iinicola 

isolate A16

Purification method

The remaining stocks o f the RPC fraction 2 extracted from A16 during the previous experiment 

were separated on 6 preparative t.l.c. plates (LK6DF) using a 7:3 v/v dichloromethane :

s

-

acetone solvent system . At 254 nm and 366 nm, the plates were divided into 12 regions at Rp 

values which appeared to differentiate the main bands observed (Table 4.3).

Region label Rp value o f region Am ount eluted from plate (mg)

1 0 -0 .1 6 4.4
2 0 .1 6 -0 .1 9 3.5
3 0 .1 9 -0 .2 4 2.6
4 0.24 - 0.28 2.6
5 0.28 - 0.40 2.5
6 0 .40 -0 .45 2.0
7 0.45 - 0.54 2.5

8 0 .54 -0 .65 2.0
9 0 .6 5 -0 .8 5 3.7
10 0 .8 5 -0 .8 9 2.8
11 0.89 - 0.94 3.0
12 0 .9 4 - 1.0 3.5

'I

Î
'I

Table 4.3 Rp values and weights o f  semi-purified metabolite bands produced by reverse phase  

chromatography Fraction 2 fi-om culture filtra te o fA l6  run on six preparative plates in a 7:3 

dichloromethane : acetone solvent system.

j
■

:

Bands were scraped into 1.5 ml Eppendorf tubes to each of which was added 0.5 ml o f 40 % 

aqueous acetonitrile. The tubes were vortexed for ~ 30 s and left to stand for 5 min. 

Following another 30 s vortex to mix the silica and acetonitrile, Eppendorfs were centrifuged

Page 109



Chapter 4

for 5 min at 13,000 r.p.m in a microfuge. The supernatant (40 % acetonitrile) was carefully 

removed from each Eppendorf using a 200 pi micro-pipette and placed in a pre-weighed glass 

vial. The silica washing and mixing process was repeated twice, firstly with 40 % acetonitrile 

and lastly with 100% acetonitrile. Samples were dried under nitrogen using a sample 

concentrator at 30° C. weighed and diluted to a concentration of 5 mg m f ' with 20 % 

acetonitrile.

Bioassay design, scoring and analysis

The twelve redissolved metabolite bands were tested on cv. Antares cotyledons as described 

previously (4.2.3). Cotyledons were also inoculated with the standards destruxin A and 

destruxin B (both at a concentration o f  5 mg m f ')  and a 20 % acetonitrile control solution.

Ten replicate cotyledons o f Antares were inoculated with a 10 pi droplet o f each treatment 

solution. Petri dishes were sealed with para-film and incubated in a controlled environment 

chamber as previously described (4.2.3). Cotyledons were scored after five day using the DI 

scoring system o f 0 - 4 (Appendix 1.3) and data were analysed by ANOVA using MS Excel 

5.0 on a PC.

4.2.5 Purification and characterisation o f metabolites produced in vitro by Alternaria  

Iinicola isolate A16 by two dimensional t.l.c. and proton NM R

Growth o f  cultures, extraction and purification o f  metabolite bands

Cultures o f isolate A16 were grown in 6 litres o f DCM (24 x 250 ml) as previously described 

for 30 days (2.2.2). Fraction 2 extract was produced by RPC as described in section 4.2.1 but 

using Isolute C;g columns (International Sorbent Technology, UK). The fraction was dried in 

vacuo at 30° C and taken up in a minimal amount o f 40 % acetonitrile. Preparative t.l.c. was 

carried out using two LK6DF plates in a 7:3 dichloromethane : acetone solvent system . One 

channel o f  each plate was loaded with the standards TA, AME and destruxin A and B samples.

Plates were observed under short and long wave UV radiation and bands corresponding to the 

Rp values of the standards were marked on the plates. Corresponding bands on the A16 extract 

channels were scraped from the plate and eluted as previously described (4.2.4). The 

recovered fractions were dried under nitrogen at 30° C and taken up in a minimal amount o f 40 

% acetonitrile. Further purification was carried out by running the recovered material on a
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further preparative plate from which the fractions were again separated and recovered into pre

weighed vials, as described above. After being weighed, fractions were taken up in a minimal 

volume o f 40% acetonitrile.

Two dimensional t.l.c {2D-t.l.c)

Fractions were analysed by 2D-t.l.c. with the standard Alternaria  toxin compounds to which 

the Rp o f the fraction corresponded using foil backed silica analytical t.l.c. plates (Merck, Art. 

5554) (Fig. 4.1). Twenty five pi o f the fraction sample was carefully spotted onto the point at 

the convergence o f the origins o f each dimension. Fifteen pi o f  standard was spotted in the 

centre o f  the standard lane (Standard spot 1, Fig 4.1). After being dried in a fume-hood, plates 

were assessed for the presence o f a band corresponding to the standard toxin sample in both 

dimensions. Following analysis at 254 nm and 366 nm, plates were sprayed with 5% 

phosphomolybdic acid solution to test for the presence o f cyclodepsipeptide compounds 

(section 4.2.2)

Confirmation o f  the purified compounds structures by proton nuclear magnetic resonance 

spectJ'oscopy (’H-nmr)

Four metabolites from A16 (Altlin 1-4) were analysed using proton nuclear magnetic resonance 

spectroscopy ('Fl-nmr) in order to confirm observations made from 2D-t.l.c. Samples were 

analysed using a Briiker AM 200 SY NM R Spectrometer at 200 MHz. Samples were 

evaporated to dryness and re-dissolved in either deutero-chioroform (Altlin 1, 3 and 4) or 

deutero-acetone (Altlin 2) as the carrier solvent. The internal standard used was 

tetramethylsilane (TMS). Analysis o f  the spectra produced was carried out by reference to 

published spectra for the standard compounds or compound groups (Cole and Cox, 1981 ;

Gupta et aL, 1989).
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Standard 

spot 1

'T' Second

dimension

(SS2)

Sample spot Standard 

spot 2

First dimension (SSI)

Fig, 4.1 The design o f  2D-t.l.c. plates used to characterise the presence o f  the standard 

Alternaria toxins, tenuazonic acid, alternariol mono-methyl ether and  destriains A & B in 

purified fractions produced from  culture filtrate o f  isolate A16 by RPC. Plates were developed  

in the f ir s t dimension (Fig. 4.1) in solvent system 1 (SSI; 7:3 v/v dichloromethane : acetone). 

After being dried in a fume-hood, the second standard sample was spotted into the centre o f  

the other standard lane (Standard spot 2, Fig. 4.1). The p late was then developed in the 

second dimension in solvent system 2 (SS2; 95:5 v/v chloroform : methanol).
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4.3 Results

4.3.1 E x traction  and  charac te risa tion  o f  m etabolites from  iso lates o f  A lternaria  

Iinicola

M etabolite  bands o b served  under U V  radia tion

Sim ilar m etabolite  profiles (F igs . 4 .2  and 4.3) w ere ob tained  from  the  isolates o f  the 

pathogen  by the tw o  ex traction  m ethods, although som e d iffe rences in  in tensity  o f  

bands w as observed . M etabo lites ex tracted  by the sem i-prepara tive  R PC  technique 

appeared to  be m ore  d istinc t and  darker (Fig . 4 .2) or b rig h ter (Fig . 4 .3 ) than  those 

observed from  crude ch lo roform  extracts . D ifferences in m etab o lite  p roduction  

betw een the d ifferen t iso lates w ere observed  w ith  a num ber o f  iso lates also producing 

com pounds w ith Rp values co rrespond ing  w ith  those o f  T T , T e A  an d  A M E . The 

control cultures w ere observed  to produce a faint, single, q u en ch in g  ban d  w hich  

occurred  at an Rp value o f  0 .04  - 0.08.

U nder U V  rad ia tion  a t 254 nm  (F ig . 4 .2), m etabolites w h ich  q u en ch ed  fluorescence at 

Rp values and corresponded  to  T e A  w ere observed  for iso la tes  A12, A13 and  m ore 

fain tly  A14. Iso late-specific  b ands w ere observed for A ll (Rp 0 .37 -0 .39) and A14 (Rp 

0 .4-0.42) and iso lates A12 and A13 w ere observed  to p roduce  a m etabo lite  at Rp 0 .22- 

0.23.

A t 366 nm , m any m o re  m inor m etabo lites  w ere observed (F ig . 4.3). P rom inen t bands 

included isolate-specific  m etabo lites  as obseiwed above w ith  fu rther iso late-specific 

m etabolites being observed  fo r iso la tes A13 (Rp 0 .33-0 .36 and  Rp 0 .42-0 .44) and A14 

(Rp 0 .4-0 .42 and Rp 0 .51-0 .54). A n  iso late  specific band  o bserved  fo r A ll  a t 254 nm  

(Rp 0 .37-0 .39) w as also fa in tly  observed  for A12 at 366 nm . Iso la te  A ll  w as observed 

to p roduce a m etabo lite  w hich  fluo resced  fain tly  at 366 nm  at an  Rp value  o f  0 .68-0.72 

co rresponding to the standard  A M E . T w o fluorescent bands w ere observed  from  the 

control cultures at Rp 0 .04 -0 .1 1  and  Rp 0.12 - 0 .18, bo th  o f  w h ich  w e re presen t for all 

cultures grow n in  D C M .
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4.3.2 Comparison o f metabolites produced in vitro by two Alternaria Iinicola isolates and 

three Alternaria  species.

Metabolite bands observed under UV radiation

Differences were observed among the metabolites produced in vitro by the two A. Iinicola 

isolates (A ll and A16) and among the three oxhev Alternaria  spp., A. solani, A. brassicae and 

A. brassicicola (Figs. 4.4 and 4.5). However, a degree o f homogeneity in banding pattern was 

also observed with many metabolites being shared among test isolates, particularly when 

visualised at 366 nm when a larger number o f metabolite bands were observed (Fig. 4.5). One 

species-specific metabolite band was observed to quench fluorescence at 254 nm at an Rp o f 

0.06 (As) although this did not correspond to an Rp value for any o f the standard compounds.

A single quenching band was observed from the extract from the control culture at Rp 0.03 and 

this was observed for all cultures.

Both A. Iinicola isolates and the three Alternaria  spp. were observed to produce compounds 

with Rp value comparable with the standaxd Alternaria  toxins, Te A and AME (Figs 4.4). 

Quenching was also observed at an Rp position which was sim ilar to that produced by the 

destruxin B sample (A ll, AI6, A. solani and/t. brassicae). The degree o f quenching observed 

for A16 was fairly strong. However, for isolate A ll, yl. solani and A. brassicae the level o f 

quenching at the destruxin B Rp value was faint.

A similar pattern was observed at 366 nm although a greater num ber o f metabolite bands were 

produced (Fig. 4.5). As observed on Fig. 4.3, the majority o f bands were visualised as blue or 

blue/yellow in colour and many o f the compounds fluoresced brightly. Two species-specific 

bands were observed at Rp 0.28 (A. solani) and Rp 0.57 (A. brassicae) although neither o f 

these corresponded to standard compounds. As observed at 254 nm, compounds which 

showed similar Rp values to TeA and AME were observed for all test isolates to varying 

degrees whilst destruxin B occurred in all test isolates except H. brassicicola. Also, as 

observed at 254 nm, at 366 nm a single fluorescent band was observed from the control culture 

extract at Rp 0.03 and this was observed for all cultures.
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4.3.3 Bioassay o f phytotoxic activity of extracts from Alternaria Iinicola isolates A ll and 

A16 on four linseed cultivars and on nine non-host plant species

Disease-like symptoms on four linseed cultivars

Extraets from both isolates of the pathogen (A ll and A16) caused disease-like symptoms on 

cotyledon material o f Antares, Linda, Barbara and McGregor. There was no significant 

difference between the response o f the four cultivars to the toxin treatments (df = 144, P  = 

0.760). Significant differences were observed between the toxin treatments (df = 144, P < 

0.001, Fig. 4.6). There was no cultivar-toxin treatm ent interaction (df. = 144, P  = 0.614). For 

both isolates, extracts produced by RPC caused greater damage to the leaf material than that 

from extract produced by the organic solvent extraction technique.

O f the two RPC fractions, the second fraction from each isolate produced greater disease-like 

symptoms, significantly more severe in the case o f the A16 fractions(Fig. 4.6). Disease-like 

symptoms caused by the non-host specific standard TeA were minor in comparison to the 

levels o f  tissue damage produced by the RPC fractions, but were similar to the damage 

obseiwed for the crude extracts produced by the organic solvent extraction method. Toxicity 

was not apparent from the chlorofonn control treatment, but a low level o f  toxicity was 

observed for the acetonitrile control treatment.

Disease-like symptoms on non-host species and  the control cultivar Antares

The disease-like symptoms apparent on non-host species were similar to those observed on 

linseed. Significant differences were observed among the different species, for the different 

treatments and also, there was a species-treatment interaction (d f = 180, all P  < 0.001). 

Disease-like symptoms, comparable with those observed on the linseed cotyledons, were 

obseiwed for many o f the Brassica and cruciferous species (Fig 4.7). The RPC fractions 

produced the greatest amount o f tissue damage (Fig, 4.8). All brassica species except turnip 

(P. rapa) and the two other cruciferous species were observed to be as severely damaged as 

Antares (Table 4.4). The non-cruciferous species, N. tabacum  and P. vulgaris showed a 

pattern of less severe disease-like symptoms in comparison, although P. vulgaris developed 

severe disease-like symptoms (mean = 2.0) when inoculated with A16 RPC fraction 2.
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Fig. 4 .6  M ean d isease-like symptoms cau sed  by extracts fro m  culture 
filtra tes o f  A . Iinicola on fo u r  linseed  cultivars. SED -  0 .144  (d f =  144).

0 .7 5  .

0.5  ^

0 .2 5

Antares B. rapa B. napus S. C. sativa R. R. C. bursa- N. P.
arvensis raphanis sativus pastoris tabacum vulgaris

tnim

Test material

Fig. 4 .7  M ean d isease-like symptoms cau sed  by nine ex tract o r  toxin 
treatments on nine non-host p la n t species o f  A . Iinicola a n d  the host 
cultivar Antares. SED  = 0.1304 (d f =  180).
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Fig. 4 .8  M ean d isease-like symptoms caused  b y  extracts fro m  
culture filtra te  o f  A . Iinicola ow nine non-host p la n t spec ies an d  the 
linseed cultivar Antares. SED  =  0.1304 (d f =  180).

Treatment

Species

MeCN
cont

Chloro
cont

TeA A ll
org.
ext.

A ll FI A ll F2 A16
org.
ext.

A16F1 A16 F2

Antares 0 0 0 0 1 2.33 0.33 0.33 2.66
B. rapa 0 0 0.33 0.33 0.33 1 0.66 0 1
B. napus 0 0 0.66 0.33 0.66 1.33 0 0 1.66
S. arvensis 0 0 0.33 0 1.33 0.66 0 0.33 2
C. sativa 0 0 0 1.33 2.33 3 0 0 2
R. raphanistrum 0 0 0.33 0 1 1 0 0 2
R  sativus 0 0 0 0 1.33 1.33 0.33 0 1.33
C. bursa-pastoris 0 0 0 0.66 2 2.33 0 0.33 2
N. tabacum 0 0 0 0 1 1.33 0 0.33 1
P. vulgaris 
SED = 0.39 
(d f=  180)

0 0 0 0 1 1 1 0 2

Table 4.4 Disease-like symptoms caused by fractions o f crude extracts o f  A. Iinicola culture 

filtrate on nine non-host plant species and Antares.
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isolate A16

Analysis o f  preparative plates

4.3.5 Purification and characterisation o f metabolites produced in vitro hy Alternaria  

Iinicola isolate A16 by two dim ensional t.l.c. and proton nmr

2D-t.Lc. results

Details o f the four metabolite bands which corresponded to the standards TeA, AME and the 

two destruxin compounds are given in Table 4.5. Two compounds, Altlin 1 and Altlin 2 

produced the characteristic Rp values o f the Alternaria  phytotoxin compounds TeA and AM E 

respectively. Altlin 3 and Altlin 4 produced Rp values which corresponded to the standards 

destruxin A and B respectively in the first dimension only (SSI; solvent system 1). M ovement 

o f the two compounds by SS2 (solvent system 2) was not exactly matched to that observed for 

the standard compounds.

1 2 2

Chapter 4

4.3.4 Purification and phytotoxic activity o f metobolite extract from Alternaria Iinicola

Analytical t.l.c. plates o f the products o f the purification process indicated that much o f the 

material scraped from the original preparative plates had been lost during the extraction. 

Bands were observed at the correct Rp value for each scraped band but fluorescence was very 

faint (data not shown).

Severity o f  disease-like symptoms caused by purified  metabolites

Disease-like symptoms observed on the treated cotyledons were slight and there was no 

significant difference between dam age caused by the different metabolite bands alone (d f = 

117, P  = 0.451). Only one cotyledon inoculated with metabolites from band 10 (Rp = 0.85 - 

0.89) showed signs o f toxicity, achieving a score o f  1. Severe disease-like symptoms were 

observed for both the destruxin compounds A and B which achieved mean scores o f 3.8 and

2.7 respectively, ensuring a large significant difference in comparison with the other treatments 

(d f=  135, P <  0.001)
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#

Compound Weight extracted 
(mg)

Rp value in the 1 st 
dimension (SSI*)

Rp value in the 2nd 
dimension (SS2^)

Altlin I 1.8 0.19-0.23 0.23-0.25
Altlin 2 2.4 0.79-0.81 0.68-0.74
Altlin 3 2.4 0.65-0.68 0.34-0.38
Altlin 4 2.1 0.70-0.74 0.38-0.42
TeA 0.2 0.25
AME 0.8 0.72
Destruxin A 0.68 O.l
Destruxin B 0.74 0.57

I
s

Table 4.5 Weight and Rp values o ffour metabolites purified  from  crude extracts o f  isolate A16 

with the comparative Rp values o f  four pathotoxins commonly produced by Alternaria spp. C*

SSI: 7:3 dichloromethane : acetone; SS2; 95:5 chloroform : methanol.
:

Confirmation o f  compound structures by proton nuclear magnetic resonance spectroscopy

1
Altlin I was confirmed as TeA. The ^H-nmr spectrum for TeA in deutero-chioroform showed

^ .. . . .

a com plex m ultiplet (8 0.9-1.5 ppm) for the alkyl side chain, a multiplet at 5 3.9 ppm for the

proton next to nitrogen and a broad singlet at 5 2.1 ppm for the methyl group (Cole & Cox,

1981). [5h (CDCI3) 0.9-1.5 (9H, m, H-6 - H-9), 3.95 (IH , m, H-5), and (3H, br s, CH3) ppm]

The nm r spectrum for Altlin 1 and the chemical structure o f TeA are given in Appendix 2.1.

Altlin 2 was confirmed as AME by ’H-nmr spectroscopy. The ’H-nmr spectrum o f AM E in 

deutero-acetone showed a singlet at 8 2.77 ppm corresponding to the aromatic methyl group, a 

singlet at 83.58 ppm for the methoxyl group and a complex multiplet at around 8 7.6 ppm

attributable to the four aromatic protons (Cole & Cox, 1981). [8h (de-acetone) 2.77 (3H, s, Ar- 

chemical structure o f AME are given in Appendix 2.2.

CH3), 3.58 (3H, s, OCEI3) and 7.6 (4H, m, A r-H) ppm]. The nmr spectrum for Altlin 2 and the

The H-nm r spectra for Altlin 3 and Altlin 4 indicated that the two compounds showed the 

typical features o f destruxin-type compounds, for example the large signals at 8 5 ppm (Gupta
.

et al.. 1989). Altlin 3 and Altlin 4 showed distinct similarities with the nmr spectra o f 

destruxin A and B respectively. However, the poor quality o f the purified fractions and the 

com plexity o f  destruxin group o f compounds prevented complete characterisation of the two 

samples. The nmr spectrum for Altlin 3 and Altlin 4 and the chemical structures o f destruxin 

A and destruxin B are given in Appendices 2.3 and 2.4, respectively.
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4.4 Discussion

Extraction procedure

The first step towards the successful isolation and characterisation o f fungal metabolites such 

as phytotoxins is to achieve a reliable and effective extraction technique. During this study, 

the semi-preparative reverse phase chromatography method produced cleaner samples than 

were produced by the classical organic solvent extraction system . Chromatographic techniques 

have been the preferred method o f sample preparation for phytotoxic compounds for a number 

of years because o f the ability o f the C,g substrate to bind high and mid-polarity compounds 

such as tenuazonic acid (TeA) and destruxin compounds, respectively (Samuels et al, 1988; 

Buchwaldt & Jensen, 1991 Buchwaldt & Green, 1992). The advantage o f this particular 

method arises from the subsequent flushing o f the bound sample with a high polarity solution 

which in effect allows the semi-purification o f the target compound(s).

Range o f  metabolites produced by Alternaria Iinicola

As a genus, the Alternaria  are known to produce a wide range o f secondary metabolites. In 

this respect, A. Iinicola does not appear to be an exception. Although only four isolates were 

extracted and compared during the first o f the phytotoxin studies reported here (4.3.1), the 

differences in banding patterns which were observed between isolates indicated variation in 

their ability to produce metabolites in vitro. Similar variation in the spectrum o f toxic 

metabolites that an isolate is able to produce in vivo could account for the differences in 

virulence observed between isolates o f the pathogen as observed in section 2.3.1. Quantitative 

differences between metabolites produced in vitro and those produced in vivo during natural 

infection may also account for this effect.

Among the many bands produced, the A. Iinicola isolates were observed to produce at least 

one, and usually two, o f the standard host non-specific toxins; tentoxin (TT), TeA and/or 

alternariol monomethyl ether (AME). Thus isolates produced a complex o f compounds, some 

of which were the non-host specific toxins, TT, TeA and AM E and some uncharacterised 

metabolites. Cotty & Misaghi (1984) suggested that the ability o f many Alternaria spp. to 

produce a number o f host non-specific compounds provides the pathogens with an ecological 

advantage in that they would be able to infect a wider range o f host species and would be less 

limited by habitat availability. I f  this argument was extended further to consider differences in
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the ability of a pathogen to infect different cultivars of a species, a range o f phytotoxic 

metabolites may provide the pathogen with a greater ability to overcome the hosts defences 

and undoubtedly account for some forms o f cultivar resistance.

Alternaria  spp, have been observed to produce a wide range o f host specific and host non

specific phytotoxins (see section 4.1) and many o f the former have been implicated as 

determinants o f pathogenicity (Yoder, 1980). It is suggested that many o f the compounds 

observed during the present study could collectively produce a synergistic effect in terms of 

relative toxicity to the host in that the action o f one compound is enhanced by the action o f a 

second toxic compound resulting in a greater toxicity effect than the summed effect o f  the two 

individual compounds. A sim ilar example o f such an interaction was observed by Degenhardt 

(1978) who isolated and partially purified two groups o f phytotoxins from A. brassicae and A. 

raphani. These unidentified, ninhydrin-positive, high molecular weight compounds were not 

observed to show host specific activity independently, but produced increased toxicity on 

Brassica species through a synergistic interaction.

Unfortunately, as standards for host specific compounds usually associated with pathotypes of 

A. alternata (e.g. AK-, AF-, AT-, AM -, ACT-, ACR- or AAL-toxins) were not available for 

comparison during the present study, the presence o f formally characterised host specific 

toxins was not determined. This problem was confounded as insufficient quantities o f  the 

uncharacterised compounds could be extracted to allow bioassays to be carried out on 

susceptible and resistant cultivars and lead to subsequent characterisation. Also the groups o f 

unknown compounds within the semi-purified bands produced during the work in 4.3.4 were 

either not phytotoxic or, perhaps more likely, were not at concentrations which were high 

enough to produce phytotoxicity. However, the possibility that yf. linicola  produces host 

specific toxin should not be discounted at this point and the presence o f such a compound(s) 

could possibly explain the apparent limited host range o f the pathogen.

Variation in metabolite banding pattern  between different A lternaria species

A comparison o f extracts o f two A. linicola  isolates (All and A16) with extracts from isolates 

o f A. solani, A. brassicae and/f. brassicicola (4.3.2) indicated variation in the num ber and 

relative amounts o f m etabolites produced between the four species. Although the study 

considered only one isolate o f  each species and did not take into account the possibilities o f 

intra-specific variation between isolates o f the species, previous studies have indicated a high
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degree o f similarity between a range o f isolates o f both A. brassicae and A. brassicicola 

(M cRoberts, 1992).

The pattern o f compounds produced by A. solani showed the largest degree o f homogeneity 

with the metabolite profiles observed from the A. linicola isolates with eight o f the ten 

compounds visualised at 254 nm and ten o f the twelve compounds visualised at 366 nm also 

being produced by either one or both A. linicola  isolates. The similarity o f metabolite spectra 

produced by the two isolates, and the close morphological similarity betw een^, linicola and A. 

solani may indicate that the two species are closely related within the Alternaria. Further 

evidence o f a close phyllogenetical relationship between the two species is suggested from an 

analysis o f  the biology o f the pathogens. Since A. linicola and A. solani can be regarded as 

infecting a narrow range o f host species (solely linseed, and a limited number o f the 

Solanaceae, respectively) this implies a certain amount o f co-evolution between the pathogens 

and hosts. The two brassica-infecting species examined during the study showed a lower level 

o f  homogeneity with respect to the banding pattern o f metabolite compounds produced by 

linicola  isolates.

These results could indicate a closer evolutionary relationship between A. linicola and A. 

solani in comparison to A. brassicae and A. brassicicola through the conservation o f a greater 

num ber o f metabolic pathways between the two large spored, long hodiVod Alternaria  spp. 

Recent evidence indicates A.brassicae and A. brassicicola are closely related within the 

Alternaria  as sections o f nuclear ribosomal DNA from both species were amplified and 

characterised. Sequences for each species were highly conserved and analysis with A. 

alternata and A. raphani suggested that all four members of the genus were closely related 

(Jasalavich et al., 1995). However, although brassicae is also classified as a large spored, 

long beaked Alternaria  spp., loss o f m etabolic similarities to A. linicola and A. solani may 

have occurred during the co-evolution and specialisation of this particular pathogen with 

Brassica  spp,. Further studies, possibly using the genetic techniques described by Jasalavich 

et al. (1995), would be needed before such a hypothesis could be clarified.

Differences between the metabolite profiles o f  A. linicola, A. solani, A. brassicicola and A. 

brassicae during the present study broadly agree with a previous report o f  differences in 

metabolite production between Alternaria  spp. Cotty and Misaghi (1984) found that unlike A. 

solani, A. brassicae did not produce zinniol in culture and suggested differences in the 

metabolic pathways between the Brassicae infecting species and A. solani. Cotty and Misaghi
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(1984) also noted that zinniol was not detected in three pathogenic species, A. alternata, A. 

citri and A. raphain all o f which were small spored, short beaked Alternaria  species. In 

contrast, zinniol was produced by six o f  the eight large spored, long beaked Alternaria  spp. 

tested. Cotty and Misaghi (1984) suggested that the evolutionary conservation o f zinniol 

production within the large spore-long beaked species o f the Alternaria was indicative o f the 

importance o f the toxin in the pathogenesis o f  these species on their particular hosts.

Production o f  common Alternaria phytotoxins by A lternaria linicola

Comparison with the standards suggested that both A. linicola isolates and the isolates o f  A. 

brassicae, A. brassicicola and A. solani produced compounds that co-chromatographed with 

the host non-specific toxins TT, TeA and AME. TT, AME and TeA have commonly been 

reported to be produced by m m y  Alternaria  spp. including the type species A. alternata (King 

& Schade, 1984, also see section 4.1). The tim ely arrival o f the gifts of destruxin A and 

destruxin B samples (M. Païs) shortly before the onset o f  the study also allowed extracts to be 

screened for the presence o f destruxin compounds.

Tentoxin

The presence o f TT in extracts from isolates o f  A. linicola  was not unexpected as TT is a 

common cyclic depsipeptide of4L alternata  (described as A. tenuis by Templeton, 1972) 

which is structurally related to the destruxins and also the host specific AM-toxins.

D ifferences in structure, where these compounds show similarities and dissimilarities, are 

thought to account for subsequent differences in the specific activity o f the three toxins on 

different hosts (Nishimura & Kohmoto, 1983a; Ayer & Pena-Rodriguez, 1987a: Edwards et 

ah, 1987). With this in mind, it could be the case that TT was responsible for the levels o f 

phytotoxicity observed on some of the non-hosts tested during the present study and the higher 

levels o f phytotoxicity observed on linseed and some o f the brassica species was due to the 

host-selective nature of the destruxin-type depsipeptide component o f the extracts.

During the present study, TT was only detected from culture filtrate of weakly aggressive A. 

linicola  isolates A ll, 3 and 4 (4.3.1) and was not observed to be produced by A12 and A16 

(4.3.1 and 4.3.2), the more aggressive o f  the isolates tested during the initial cotyledon 

bioassay reported earlier (2.3.1). Tentoxin is often regarded as being a weak phytotoxin, 

causing chlorosis through the inhibition o f chlorophyll formation, but not necrosis (Fulton et
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of TeA among the Alternaria  and thus its lack o f specificity would exclude the compound 

from the status o f  being a determinant o f pathogenicity. This not withstanding, all o f the
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al, 1965) and, indeed, the insensitivity o f seedling growth o f many plant families was 

demonstrated by Durbin & Uchytil (1977). Alternaria alternata  is usually regarded as a 

saprophyte (with the exception o f the virulent pathotypes which produce HSTs). Given that A. 

alternata commonly produces TT it could be suggested that TT is a compound produced by 

the sNoakoY Alternaria  and that the three weakly pathogenic A. linicola  isolates which produced 

the compound during the present study have retained the TT biosynthetic pathway through 

their evolution. In contrast the more aggressive isolates evolved to produce much more potent 

compounds at the expense o f the TT biosynthetic pathway.

Altenariol monomethyl ether

i

«

Æ

:p

The polyketide AM E, a reportedly common toxin produced by A. alternata isolates (King &

Schade, 1984) was observed to be produced by both A. linicola isolates (A ll & A16) and by A. 

solani, A. brassicae and A. brassicicola during 4.3.2 and was subsequently isolated and 

characterised from A16 (4.3.5). During 4.3.1 however, detectable amounts could only be 

extracted from A ll using reverse phase chromatography and the compound was not detected in 

culture filtrate from A12 - 4. The absence o f the compound from extracts o f these three isolates 

may be an artefact o f the single, 30 day sampling time used during the experiment; Wei &

Swartz (1985) found that maximum production o f AME by A. alternata  in synthetic liquid 

culture occurred at 10-14 days. However, the same authors found that brassicae did not 

produce detectable levels o f  AME until after 20 days o f culture. Wei & Swartz (1985) 

suggested a difference in behaviour o f the two species in culture. Thus A. linicola may, like A. 

brassicae, produce the compound at a later stage o f culture and by 30 days o f culture, A ll had 

produced just enough o f the compound for detection by t.l.c..

Tenuazonic acid
A:

As mentioned previously (4.1) TeA is generally regarded as the most important toxin produced 

by the Alternaria  mainly due to its widespread occurrence and toxicity to plants, animals and 

insects (King & Schade, 1984). As the compound appears to be a ubiquitous metabolite o f  the 

Alternaria  (Kinoshita et al., 1972; Steele & Mirocha, 1971), the results o f  the present study, 

where TeA was obseiwed to be produced by all Alternaria  isolates tested suggest an important 

role for the compound in the life cycle o f the Alternaria. However, the widespread occurrence
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evidence in the case in W. linicola  suggests that TeA may be involved in determining virulence 

levels on linseed cultivars, possibly through synergistic effects with other metabolites (e.g. 

AME, TT or the destruxin type-compounds).

Destruxins

Compounds which co-chromatographed with the destruxin B sample were observed forzl. 

linicola isolates A ll and A16 and for the isolates o f^ . sola?ii and A. brassicae (4.3.2). The 

further extraction o f Altlin3 and 4 from isolate A16. and confirmation o f the identity o f the two 

compounds as cyclodepsipeptide molecules (possibly destruxins A and B, respectively) by ’H- 

nmr (4.3,5) means that A. linicola certainly produces destruxin-type compounds in vitro. 

Whether the destruxin compounds are produced in vivo in the case o f the A. linicolalVmscod 

interaction was not ascertained.

A number o f destruxin compounds, including destruxin B, have been implicated in Alternaria  

brassicaioW seed rape interactions. Ayer & Pena-Rodriguez (1987a) and Bains & Tewari 

(1987) first extracted and identified destruxin B from cultures o f  A. brassicae. Bains & Tewari 

(1987) described destruxin B a s a  host-specific phytotoxin since their studies indicated that the 

toxin only caused symptoms on Brassica  spp. Unable to reproduce the results o f Bains and 

Tewari (1987) and following detailed studies, Buchwaldt & Jensen (1991) and Buchwaldt & 

Green (1992) suggested the compound was better described as being host-selective. This 

definition was considered more acceptable as toxicity was observed on a w ider range o f 

species including non-hosts such as Nicotiana tabacum, Solanum tuberosum  and Triticum  

aestivum, but extreme phytotoxicity was only observed on the Brassicae.

The destruxin compounds are not unique to Alternaria spp. and should not be regarded solely 

as phytotoxins (Kodaira, 1961; Païs et al., 1981). This not withstanding, this is the first report 

o f a destruxin type compound being isolated from A. linicola which is only the second 

Alternaria  spp. from which the compounds have been isolated and, in this case, partially 

characterised. W hether the compounds played an integral part on the determination o f the 

pathogenicity o f A. linicola  on linseed was not elucidated during this study. One o f the 

reasons for this was that a study o f the in vivo production o f toxin compounds by the pathogen 

was inconclusive. During the study, successful infection o f whole seedlings was not achieved 

due to a loss o f pathogenicity in the isolates used during the study (Evans, unpublished 

results). However the similarity o f  the results of the present study (4.3.3) with the results o f
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Buchwaldt & Green (1992) would suggest a possible role for destruxin-type phytotoxins in the 

pathogenicity o f  A. linicola on linseed and may account for the higher aggressiveness o f A. 

linicola  to linseed than is observed for the commonly isolated species A. alternata and A. 

infectoria.

.

Phytotoxicity o f  metabolites extracted fro m  A lternaria linicola

I
During the study o f phytotoxicity o f crude extracts on non-host species and Antares (4.3.3),

differences in the levels of the production o f destruxin-type compounds such as destruxin B

may have accounted for the differences which were observed in the phytotoxicity o f the

extracts from A ll and A16. The extracts (particularly the RPC mid-polarity second fraction)

achieved a high phytotoxicity score on linseed which suggested a level o f  host-selectivity for

the active component o f the extract. Although the phytotoxicity scores o f linseed were similar
.to those o f the Brassica and crucifer species tested, there was a significant difference between 

the phytotoxicity scores of linseed and the non-hosts bean and tobacco, neither o f which 

generally showed such high phytotoxicity scores.

Before the phytotoxic effect o f  the crude and semi-prepared extracts was tested (4.3.3), 

dilution o f the samples was carried out to a concentration o f 5 pg m f ' o f  extract in solvent. 

Considering the comparative differences in purity o f the samples as outlined above, fraction 2 

therefore contained less impurities and more metabolites per unit volume in comparison with 

the organic extract and fraction one and this may account for the higher phytotoxicity index. 

Similarly, the extremely high phytotoxicity index o f the second fractions from the two isolates 

relative to the TeA standard was probably due to the synergistic effect o f the various 

compounds in the extract in comparison with the individual mode o f action o f the purified

Î

standard. These observations highlight two important points. Firstly, as pointed out by 

Scheffer & Briggs (1981), in practise the culture fluids o f almost any micro-organism can be

toxic to plants and it is whether the constituents o f such an extract are, or can be shown to be 

involved in disease causation which is the most important, and inevitably, hardest question to 

answer in toxin studies. The second problem concerns the problem o f working with crude and 

semi-preparative extracts, where the exact concentration o f the components o f the extract, and 

also the respective molarities o f  the com ponent compounds, are not known. Unfortunately 

these two statements seem interlinked, in that, during the present study, the individual testing 

of the constituents o f the crude extracts was not possible as the precise constituents o f the 

extract were not known

J
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Phytotoxicity on cultivars o f  the host species

Comparing the phytotoxic effect o f the crude and semi-preparative extracts on linseed cultivars 

(4.3.3) there was no significant difference between cotyledons o f Antares, McGregor, Barbara 

and Linda. The lack o f differences appears surprising considering the differences between the 

four cultivars during the cotyledon bioassay study (2.3.1) especially with respect to the 

differences in aggressiveness between A ll and A16. However, the constituents o f the crude 

extract were not known and the chances o f  a toxic compound which was cultivar-specific 

acting alone (if, indeed such a compound were present) would be minimal. The biology o f the 

Alternaria  in general would suggest that many components o f pathogen-host interactions have 

a role in the response o f the host to the pathogen. As a result, the influence o f one specific 

component, in this case phytotoxin activity, may not differentiate differences in resistance that 

may exist between a set o f relatively genetically uniform cultivars A phytotoxin bioassay 

using a more diverse set o f cultivars, from different ends o f the resistance spectrum 

demonstrated in 2.3.2 for example, may have produced phytotoxic differences between the 

cultivars.

Buchwaldt & Jensen (1991) observed that the second fraction o f the reverse phase 

chromatography extraction method contained the majority o f destruxin compounds and 

Buchwaldt & Green (1992) confirmed that this fraction produced the highest phytotoxicity 

index scores on hosts. Differences between the phytotoxicity o f the crude and semi

preparative extracts were observed during the present study. The second fraction produced by 

reverse phase chromatography produced significantly more toxigenic effects on the cotyledon 

material. This, along with the intensity and clarity o f the metabolite bands on t.l.c. plates 

(4.3.1) indicated that metabolite bands o f  these fractions from A ll and A16 were brighter and 

sharper. The phytotoxicity bioassay provides more evidence that this method was more 

efficient at extracting the active components from the culture medium .

Phytotoxicity on non-host species

When tested on a range o f non-host species (4.3.3), the crude and semi-preparative extracts 

caused levels o f damage to the tissue which, in the majority o f cases, were comparable with 

those observed on linseed. Significant differences were observed, however, particularly in the 

mean levels o f phytotoxicit\- which were caused on B. rapa and C. sativa in particular which
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were significantly less affected and more affected than linseed, respectively. The level o f 

phytotoxicity observed on C. sativa  was high in comparison with published work where C. 

sativa was regarded as being resistant to A. brassicae during cotyledon inoculation studies by 

Tewari (1991). However, the results o f Buchwaldt & Green (1992) agreed with the results 

reported here, as they indicated that although C. sativa was relatively resistant to A. brassicae 

during infection studies, the destruxin B sample was extremely phytotoxic to C. sativa. This 

observation also provides further evidence that multiple determinants o f pathogenicity occur in 

Alternaria/host pathosystems.

I f  the range o f compounds produced in vitro during the present study were produced in vivo 

during pathogenesis, the fact that metabolites in the A. linicola extracts appear to show a level 

o f host-selectivity may explain differences in disease resistance among linseed accessions, 

some being more susceptible to toxins than others, depending on the breeding history o f a 

particular line. This would also provide further evidence that the interaction between pathogen 

and host in this pathosystem, as in othov Alternaria  pathosystems, is multi-component in nature 

and that the mechanism may even operate at the cultivar level. However, further work would 

be needed in this area o f  the A. /m /co/a/linseed interaction before the true nature o f the effect 

o f phytotoxins produced by the pathogen could be assessed.

■

I
The phytotoxicity o f the crude extracts on the non-host species showed differences in the 

response o f the material to the extracts. The linseed cultivar Antares achieved the highest 

phytotoxicity score for the reverse phase chromatography second fraction from isolate A16 and 

also scores highly for the second reverse phase chromatography fraction from the non- 

aggressive isolate A l l . Many o f the Brassica  spp. achieved a sim ilar high score to the host 

species suggesting the presence o f a non-host specific or host-selective compound(s) in the 

extracts. The infection o f non-host species with the pathogen was not investigated during the 

present study. However, Buchwaldt & Green (1992) found that phytotoxicity scores for 

destruxin B on the host species and on non-host species followed the same pattern as 

inoculation studies with A.brassicae but generally returned a higher score. The high 

phytotoxicity scores in relation to actual infection scores were not explained by the authors 

although the most probable reason would be that the destruxin B sample being tested was at a 

higher concentration than occurred in vivo. A  similar concentration difference may possibly 

explain the lack o f  phytotoxicity in 4.3.4 when no disease-like symptoms were observed on
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cotyledons of Antares as much o f the metabolite material was lost during the purification 

process. Further purification o f the extracts using one of the many HPLC protocols which 

have been published for Alternaria  metabolites would perhaps have produced much cleaner 

compounds that would then have been easier to bioassay and ultimately characterise 

(Buchwaldt & Jensen, 1991; Gupta et al, 1989; Païs et al., 1981).

As already stated, the results o f  the present study indicate the presence o f a number of host 

non-specific metabolites and other uncharacterised metabolites which, it was suggested earlier, 

may act synergistically on the host plant. Cotty & Misaghi (1984) suggest that in the case o f 

Alternaria  species such as A. solani, the broader host range and relative persistence o f the 

pathogen through time is conditioned by the pathogen’s ability to produce a number o f non

specific toxins as opposed to a single host-specific toxin. The result o f the action o f a number 

o f host non-specific toxins as opposed to a single (or a few) host-specific toxins would be to 

reduce the selection pressure on the host genotype as the infected plant would be less diseased. 

Although the evolutionary interactions between pathogen and host are probably more complex 

than the suggestions o f Cotty & M isaghi (1984) allow, this may slow the evolutionaiy process 

in the pathogen. In effect, this would prolong the number o f  seasons over which growers 

continue to plant a specific cultivar as disease levels from year to year are percieved as being 

acceptable. The pathogen would be able to infect the particular host cultivar without further 

genetic change within the pathogen population. In this case, the balance between the pathogen 

and host would effectively be closer to a status o f equilibrium, whereas, the action o f an HST 

usually renders the host extrem ely susceptible. I f  such a scenario exists in the interaction 

between A. linicola and linseed, which has only been cultivated on a moderate to large scale in 

the UK in recent years, selection pressure on isolates o f the pathogen would be small. This 

may account for the fact that the cultivars which have been grown have remained fairly 

constant with no major introductions. Thus the pathogen has been equipped with the correct 

toxins to potentially inhabit the crop given conducive environmental conditions.
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5.1 Introduction

The origins o f  phytoalexin research

The term phytoalexin was defined by Millier & Borger (cited by Deverall, 1982) in 1940 from 

the greek for “wardm g-off agents in plants” . Subsequent studies have established that the 

elicitation o f phytoalexins is one of the major causes o f reduced pathogen development in 

many pathosystems. Paxton (1981) defined phytoalexins as being anti microbial compounds 

of small m olecular weight that accumulate after infection. The Angiosperms universally 

appear to be able to synthesise phytoalexins to one degree or another and correlation between 

the cessation o f fungal development and the accumulation o f phytoalexin compounds to 

fungistatic levels provided initial proof o f  a fundamental role in non-specific resistance (Bailey 

& M ansfield, 1982; Heath, 1991).

However, a role for only a few phytoalexins has been unequivocally proven to date, the most 

well defined example being the case o f pisatin produced by pea {Pisum sativum). Van Etten et 

al. (1989) observed that the pathogen Nectria haematococca  was unable to successfully invade 

pea in the absence o f a P-450 monooxygenase which allowed the pathogen to detoxify the 

pisatin elicited by the pea. Low virulence isolates on pea were invariably highly sensitive to 

pisatin in vitro and were found to be deficient in pisatin demethylase activity. High virulence 

segregated with high pisatin demethylase activity and insensitivity to pisatin in vitro. Van 

Etten et al. (1989) suggested that this indicated that pisatin was physiologically important as a 

resistance mechanism in pea against Nectria haematococca  unless the pathogen had the ability 

to detoxify the defence compound.

Occurrence and diversity o f  phytoalexins

Although it is generally acknowledged that Angiosperms produce phytoalexins, there is a wide 

array o f chemical structures among the compounds and these differ in concentration and form 

between different species and plant groups. Stoessl (1980) observed that the wide array o f 

compounds described as phytoalexins were produced by a multitude o f biosynthetic pathways 

and that although single plants usually produce only a small number o f compounds, the type o f 

compounds, and the biochemical pathways through which they are produced, are often 

common amongst related plant groups. However, exceptions to Stoessl's observation have 

been reported in that identical phytoalexins have been found in species from distantly related
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taxa, for example, the Fabaceae and Zingiberaceae (Kumar et al., 1984). Indeed, even 

phytoalexins produced by different species within a genus (e.g. medicarpin, a phytoalexin 

reported in species o f the genus M elilotus [Ingham, 1977]) may be produced quite differently 

at the molecular level. An example o f this is observed in two cultivars o f French bean 

{Phaseolus vulgaris). Both accumulate isoflavonoid phytoalexins on exposure to an elicitor 

from the cell wall o f the bean pathogen Colletotrichiim lindemuthianum. However, distinct 

differences are observed in the num ber o f genes expressed by, or the relative number o f 

transcripts from, members o f  two gene families. These genes code for key enzymes produced 

during the biosynthetic pathway which lead to isoflavonoid phytoalexin production (Ellis et 

a l ,  1989).

Phytoalexin elicitation by pathogenic  Alternaria species

There are a number o f reports o f phytoalexins being produced by crop species in response to 

infection by members o f the Alternaria. Dorozhkin et al. (cited by Rotem, 1994) reported that 

the production o f rishitin and lyubimin by potato {Solanum tuberosum) conferred immunity to 

infection hy A. solani. Kulshreshtha & Chauhan (1985; 1987) reported the detection of 

phytoalexins in raddish {Raphanus sativus) infected with A. alternata  and sesame {Sesamum 

indicum) infected with A. sesami.

Work by Tewari’s group on the interaction o f the Alternaria  with members o f the Cruciferae 

has produced firm evidence o f phytoalexin production in response to A. brassicae (Conn et al., 

1988). Following the infection o f  a range o f cruciferous and brassica species withH . 

brassicae. Conn et al. (1988) reported the isolation o f a range o f phytoalexin compounds 

including brassinin and cyclobrassinin. The authors suggested that differences in the 

qualitative and quantitative levels o f production o f the phytoalexin compounds may have 

accounted for the differences observed in the susceptibility o f the test species to A. brassicae.

Conn et al. (1988) reported that turnip {Brassica campestris ssp. rapifera) was less susceptible 

to infection by A. brassicae and was found to produce more phytoalexins than two rape 

cultivars {Brassica campestris ssp. oleifera). Also, the closely related non-crop species 

Capsella bursa-pastoris and Camelina sativa were resistant to A. brassicae, and these species 

were found to produce a wider range o f phytoalexins, including two metabolites not produced 

by the turnip or rape cultivars. Conn et al. (1988) hypothesised that the production o f one or 

more o f the C. sativa  and C. bursa-pastoris specific metabolites was associated with the higher
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level o f resistance of these two species to A. brassicae in comparison with the other crucifers 

tested. From further work, two novel indole phytoalexins, camalexin and methoxycamalexin 

were subsequently isolated from C. sativa  (Browne et al., 1991). Jejelowo et al, (1991 ) 

observed that large quantities o f the two compounds were produced, even when only veiy few 

conidia were placed on the C. sativa  leaf surface, Jejelowo et al. (1991) found that the 

concentration of phytoalexins produced by C. sativa in response to inoculation with A. 

brassicae increased linearly with conidial concentration and suggested that this was due to a

infection. Littlefield (1973) suggested that a close relationship existed between the 

development o f the pathogen on the surface o f the leaf and the elicitation o f phytoalexin

similar increase in the concentration o f  the fungal elicitor molecules present within the 

inoculation droplet. The authors concluded that the phytoalexins slowed germination and

inhibited germ-tu be growth o f  A. brassicae in vitro.

.
Phytoalexin production by Linum species

Littlefield (1973) examined phytoalexin production in the flax/flax rust (M  Uni) pathosystem 

and observed that the effect o f  the defence compound was restricted to the immediate area o f

I
production and also observed that phytoalexin accumulation was always much more rapid and 

occurred to a higher concentration during an incompatible non-host/host-pathogen interaction 

in comparison to a compatible interaction (Keen & Littlefield, 1978). Keen later used the 

flax/rust pathosystem to develop a facilitated diffusion technique which permitted the rapid 

extraction of phytoalexins from plants such as flax and soybean (Keen, 1978).

Initial elicitation and detoxification

There are many reports that the production of, or the action of, phytotoxins elicit the onset o f 

phytoalexin biosynthesis (Anderson, 1991). Tewari (1991) suggested that phytoalexins were 

elicited in response to the production o f  destruxin B in the A. brassicae!Q.v\xc\fQY interaction. 

However, there are studies which provide strong evidence that in some interactions, phytotoxin 

production by the pathogen suppresses host defences. Toxin production by the bacterial 

pathogen Pseudomonas syringae pv. phaseolicola  directly suppressed phytoalexin production 

in the bean host (Gnanamanickam & Patil, 1977). Good evidence from the Alternaria  

pathogens suggests a similar role for the host specific AK toxins o f the pear infecting 

pathotype o f A. alternata (Hay ami et al., 1982; Nishimura & Kohmoto, 1983b; Kohmoto et al.,

1987).
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Genetic control o f  phytoalexin biosynthesis

Recently, phytoalexin detoxifying genes have been isolated from certain pathogens (Schafer et 
.

ah, 1989) which, for the first time the 50 years o f phytoalexin research, provided indirect proof

that phytoalexins play a central role in some non-specific plant/pathogen interactions. Schafer 

et al. (1989) isolated the pisatin dem ethylase genes from the pea pathogen N ectiia  

haematococca  and transferred these into the maize pathogen Cochliobohis heterostrophiis. 

Recombinant C. heterostrophiis was found to be pathogenic on maize and pea which 

suggested resistance to phytoalexins (the ability to detoxify pisatin in this case) to be important 

in pathogenicity. It is also interesting to note that this work demonstrates evidence o f a 

common mechanism observed during host, and in this case, non-host resistance.

Recent advances in biotechnology have allowed the isolation and characterisation o f genes ^

involved in phytoalexin biosynthesis and have also provided the potential for the transfer o f 

phytoalexin genes from producers to non-producers (Fischer & Hain, 1994). For example, 

genes from grapevine which code for stilbene synthase, an enzyme involved in the

biosynthesis o f the stilbene phytoalexin resveratrol, have been isolated and inserted into the 

tobacco genome. Following inoculation w ith a suitable pathogen, the transgenic tobacco 

plants were found to produce resveratrol although not at levels equivalent to those found in the 

original grapevine (Hain et al., 1990). Subsequent analysis indicated an explanation for the 

lower expression levels o f the phytoalexin; 6-8 stilbene synthase genes occurred in the 

grapevine, whereas only one o f these had been transferred to the transformed tobacco (Hain et 

al., 1993). Similar success has been achieved with the expression o f a trichodiene synthase 

gene from Fnsarium sporotrichioides in transgenic tobacco (Hohn & Ohlrogge, 1991). 

Although from a fungal source, trichodiene synthase, a sesquiterpene cyclase, has been shown 

to be involved in the biosynthesis o f  cyclic sesquiterpenoids which are defensive compounds 

which are found in plant, fungi and insects. The authors suggest that the system may provide a 

model for the study o f a role for novel sesquiterpenoids in disease resistance (Hohn & 

Ohlrogge, 1991).

Utilising phytoalexin production during breeding fo r  disease resistance

Tewari (1991 ) and Tewari & Conn (1993) suggested that it should be possible to transfer the 

phytoalexin mediated multiple com ponent resistance observed in crucifers in response to A.
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brassicae from resistant to susceptible genotypes through either conventional breeding or

biotechnological techniques. Following work on phytoalexin production by L. usitatissimiim,
_

Littlefield (1973) similarly suggested that the phytoalexin interaction in response to M. Uni was 

one o f a m ultiplicity of factors which were involved in disease resistance, and that breeding 

using phytoalexin production as a marker for selection may be possible. Evidence from the 

literature would suggest that, as a component o f a quantitative resistance mechanism, a 

phytoalexin mediated resistance response should be heritable and show a good response to 

selection (Simmonds, 1991).

The aim o f the study was;
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1. To investigate the in vivo production o f phytoalexin compounds by Linum  accessions 

inoculated with A. linicola and the rust pathogen M, Uni.

2. To compare extracted compounds to the common phytoalexin coniferyl alcohol.

3. To assess the fiingitoxic nature o f the inoculated leaf extracts.
.
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5.2 Materials and M ethods

5.2.1 The in vivo extraction o f secondary metabolites following the inoculation of Linum  

species with Alternaria linicola and Melampsora Uni

Seedlings of L.u.u. albocoeruleiim  and L. iisitatissimum cv. Bison (flax) were grown in the 

glasshouse to GS 13 as previously described (2.2.1) in deep pots (16 cm diameter). Pots of 

whole seedlings were sprayed with 20 ml o f a conidial suspension o f  either yl. linicola (A16) 

prepared as previously described (3.3,1), with Melampsora Uni (race 1, 18,000 conidia mf ' )  or 

sterile distilled water control. The pots were covered in large plastic bags supported on short 

stakes and were kept well watered in order to maintain a high relative humidity.

After 72 h, seedlings were cut at the base o f the stem, weighed and placed in 250 ml buchner 

flasks. Whole seedlings were extracted using a modified version o f the facilitated diffusion 

technique described by Keen (1978). For each cultivar/treatment, 15 ml g’’ 70 % v/v aqueous 

methanol was added to each flask which was stoppered, evacuated for 30 s using a vacuum 

pump (Speedivac 2, Edwards, UK) and sealed. Seedlings were vacuum infiltrated for 1 h. The 

extract was filtered through a single layer o f sterile muslin and sterile Whatman No 1. paper 

before being evaporated to dryness in vacuo at 40° C.

Crude leaf extracts were resuspended in 70% (v/v) aqueous methanol to 5 mg mf ' ,  o f which 

20 pi o f  each crude extract and the standard phytoalexin, coniferyl alcohol (CoA, 5 mg ml’’) 

(Sigma, UK) were spotted onto LK6DF pre-channelled silica gel plates. Plates were 

developed in a chloroform : methanol (49:1 v/v) solvent system . Two-dimensional t.l.c. was 

also carried out with 10 pi o f each extract using the plate design as described previously (Fig, 

4,1). The plates were developed in the first dimension with chloroform : methanol (49:1 v/v) 

and in the second dimension with dichloromethane : acetone (7:3 v/v). Plates were observed at 

254 nm and 366 nm for fluorescence quenching or fluorescent bands respectively.

Plates were sprayed with a thin layer o f spore suspension o f either Cladosporium  

cladosporioides ( - 20, 000 blastospores m f ’) or^f. brassicicola ( - 10,000 conidia ml’’) in half 

strength Czapek-Dox liquid culture medium, placed in sealed trays with damp paper towel and 

incubated at room temperature. Fungal development was examined daily and areas of 

inhibition were noted and compared to the channel containing CoA and to banding patterns 

observed under UV radiation.
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5.3 Results

5.3.1 The in vivo extraction o f secondary metabolites following the inoculation o f Linum  

species with Alternaria linicola  and Melampsora Uni

Extraction and visualisation by t.l.c.

Extract from material infected with A16, and to a lesser degree, M. Uni, was observed to be o f a 

darker green/brown colour in comparison with the brilliant green extract produced from 

uninoculated material. Following separation by t.l.c., a number o f quenching bands could be 

observed at 254 nm (Plate 5.1, Table 5.1). The darkest and most obvious o f the quenching 

bands was that o f  coniferyl alcohol (CoA) observed at Rp 0.28-0.37 in channel 1, whilst very 

faint quenching bands were observed at Rp 0.8-0.83 for all o f  the inoculated material extracts 

except cv. Bison inoculated with M  Uni (channel 7).

At 366 nm, many more bands were observed (Plate 5.1). The m ajority o f compounds observed 

fluoresced with a pink/bright red colour and although there was some homogeneity between 

the control and inoculated extracts, shared bands were fainter on channels containing extracts 

from uninoculated material. Table 5.2 indicates that fluorescent bands were not observed for 

the standard compound CoA, although some quenching was observed at Rp 0.28-0.37 and Rp 

0.57-0.62. Quenching was not observed at these Rp values for any o f the cvs/treatments, 

although some red fluorescence was observed at a comparable Rp value (0.33-0.37) for the 

extract from L.u.u. albocoeruleiim  (LAL) inoculated with A16.

Cultivar/treatment Rp value o f quenching band

CoA 0.03 0.12 0.28-0.37* 0.62
LAL/SDW
Bison/SDW
LAL/A16 0.03-0.06 0.80-0.83
Bison/A16 0.03-0.06 0.80-0.83
LAL/M  Uni 0.03-0.05 0.80-0.83
Bison/M  Uni 0.03-0.05
* Very dark quenching

Table 5.1 Rp values o f  bands quenching fluorescence at 254 nm fo r  extracts o f  inoculated and  

uninoculated plants o /L .u .u . albocoeruleum and Bison.
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C hapter 5

Bioassay fo r  fungitoxic properties

Large areas o f inhibition in the growth o f C. cladosporioides were observed at Rp values 

corresponding to the fractions o f the standard phytoalexin CoA (Rp 0-0.3 and Rp 0.42-0.53) for 

the extracts of linseed lines inoculated with A16 and to a lesser extent M  Uni (Plate 5.2. Table 

5.3). Areas o f  inhibition were also observed on the channels containing extract from 

uninoculated material (channels 2 & 3, Plate 5.2) but inhibition was less distinct in comparison 

with those observed for inoculated treatments. Plate 5.2 indicates that other areas o f inhibition 

occurred at Rp values which did not correspond to CoA Rp values. These bands were 

widespread among the treatments, but again for commonly shared bands, inhibition was 

always greater on those channels containing extract from material inoculated with A16 

(channels 4 & 5).

Cultivar/treatment Rp value o f zones of growth inhibition

CoA 0-0 3 0.42-0.53
LAL/SDW 0.13-0.2 0.42-0.43
Bison/SDW 0 .12-0.2 0.40-0.42
LAL/A16 0.06-0.09 0.14-0.24 0.38-0.43 0.52-0.56 0.63-0.67
Bison/A!6 0.06-0.1 0.14-0.24 0.39-0.43 0.52-.57 0.64-0.68
LAL/M  Uni 0.14-0.24 0.42-0.46 0.52-0.57
Bison/M  Uni 0.46-0.5 0.54-0.57

Table 5.3 R f  values o f  zones o f  growth inhibition o fC . cladosporioides grown on a t.l.c. p late  

containing the extracts o f  inocidated and uninoculated Ibiseed material.

In comparison with plates sprayed with C. cladosporioides, plates sprayed with conidia o f^ . 

brassicicola were observed to show fewer and less distinct zones o f growth inhibition (Plate

5.3, Table 5.4). Zones o f inhibition on the channel containing CoA were well defined with 

inhibition occurring at Rp 0.16-0.31 and RF 0.46-0.52. Corresponding bands were not 

observed for either o f the extracts obtained from uninoculated material. Faint bands o f 

inhibition were obseiwed for both o f the extracts obtained from LAL (both A16 and M. Uni 

inoculated, Rp 0.49-0.51 and Rp 0.44-0.51 respectively) and from cv. Bison inoculated with 

A16 (Rp 0.47-0.5 l)(Table 5.4).

Page 144



Chapter 5

Lancs:
1 : Conifery l alcohol
2: L.u.u.
alhocoeruleumlS DW 
3: cv. Bison/SDW  
4: L.u.u.
alhocoeruleum/ A\6  
5: cv. Bison/AI6 
6: L.u.u.
alhocoendetimlM. Uni 
7: cv. Bison/M Uni

Plate 5.2. Inhibition o f  growth  o /’Cladosporium cladosporioides by components o f  crude lea f  
extracts from  Linum material inocidated with conidia o f  A16 and  M. lini.
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Lanes:
1 : Conifery l alcohol 
2: L.u.u.
albocoeruleumlSDV^
3: cv. Bison/SDW  
4: L.u.u.
albocoeruleumlA\6 
5: cv. Bison/A16 
6: L.u.u. albocoeruleum!M. 
Uni
7: cv. Bison/M Uni

Plate 5.3. Inhibition o f  the growth o f  A. brassicicola by components o f  crude lea f extracts 
from  Linum material inocidated with conidia o f  Al 6 and  M. lini.
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Cultivar/treatment Rp value o f zones o f growth inhibition

CoA 0.16-0.3 0.46-0.52
LAL/SDW
Bison/SDW 0.03-0.04 0.68-0.72 0.82-0.85
LAL/A16 0.05-0.06 0.49-0.51 0.68-0.72 0.82-0.85
Bison/A16 0.05-0.04 0.47-0.51 0.68-0.72 0.82-0.85
LAL/M  lini 0.44-0.51 0.68-0.72 0.82-0.85
Bison/M  lini

Table 5.4 Rp values o f  zones o f  growth inhibition o f  A. brassicicola gt^own on a t.l.c. plate  

containing the extracts o f  inoculated and iminocidated linseed material

Inhibition o fC . cladosporioides on 2D-t.l.c. plates

The zones o f inhibition observed on 2D-t.l.c. plates sprayed with C. cladosporioides 

corresponded to the zones o f inhibition attributable to the CoA standard in each dimension 

(Plate 5.4). Small areas o f inhibition were observed for extracts from uninoculated LAL plant 

material. The largest and most distinct zones o f inhibition were observed on plates containing 

extracts from LAL and cv. Bison which had been inoculated with A16. Corresponding areas 

were also obseiwed with extracts from material inoculated with M. lini.

Areas o f inhibition were not observed on 2D-t.I.c. plates at the higher Rp values which were 

previously observed under 366 nm after single dimension t.l.c (Plate 5.1, Table 5.2) and which 

had previously shown faint areas o f inhibition. (Plate 5.2, Table 5.3). Zones o f growth 

inhibition were not observed on any o f the 2D-t.l.c. plates sprayed with brassicicola  

suspension (data not shown).
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Plate 5.4 2D-t.l.c. plates o f  extracts from  inoculated and uninoailated  Linum plants sprayed  
with Cladosporium cladosporioides illustrating the production o f  the phytoalexin CoA. White 
areas correspond to areas o f  growth inhibition. (Solvent system: First dimension (horizontal, 
left to right], chloroform : methanol, 49:1 v/v and second dimension [vertical, bottom to top], 
dichloromethane : acetone, 7:3 v/v. LAL = L.u.u. albocoeruleum/
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5.4 Discussion

General obsef'vations

The results o f the microscopy study (Chapter 3) suggested that a component o f the resistance 

mechanism o f the A. linicola!Linum  interaction involved a reduction in the rate o f disease 

development. The development o f the pathogen on the accession L.u.u. albocoeruleum  was 

observed to be significantly slower in comparison to the more susceptible accession Blauwe- 

ster. One o f the possible explanations tentatively proposed for the observed response was the 

production o f phytoalexin compounds by the host in direct response to attem pted infection by 

A. linicola and that quantitative or qualitative differences in the production o f phytoalexins 

between different accessions might explain the differences in disease resistance response. The 

aim o f the current study was to investigate both o f these questions with the long term aim of 

assessing the possibility o f utilising the production o f defence related compounds through 

breeding to improve disease resistance o f linseed to the pathogen.

Visually, extracts from Linum  m aterial inoculated with either yt. linicola or M. lini were 

noticeably darker and browner in shade in comparison with the control extracts and contained 

a greater number o f bands which could be visualised following t.l.c. This suggested that 

extracts from infected material contained compounds which were not extracted from healthy 

uninoculated material and which were therefore present as a direct result o f  infection by A. 

linicola!M. lini. This could have been due to the effect o f damage which was caused to the 

cells o f  the host plant during the interaction with the pathogen. If, as hypothesised during the 

previous chapter, phytotoxins interfered with the function o f the plasma m embrane o f the host 

cells, compounds which leaked out could have caused the colour changes observed. Further 

indirect evidence o f such an effect was suggested by differences in the colouration o f the 

extracts from material inoculated with A. linicola, which were darker in comparison to those 

extracted from material inoculated with M. lini. As demonstrated during the previous chapter, 

A. linicola  is capable o f producing non-host specific toxins in vitro, however there is no 

evidence to support the production o f phytotoxins by M  lini. Thus, the darker colouration 

may be produced as a direct result o f  the extra damage caused by the production o f non-host 

specific toxins by the Alternaria  pathogen.

The dark coloration o f the inoculated extracts could be that the compounds associated with the 

breakdown o f the cell metabolism during senescence were also extracted and these non-
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pathogen induced compounds were acting as part o f  the defence mechanism o f the host plant 

in a passive manner. For example, Anderson, (1991) found that the brown coloration o f 

necrotic cells was due to the presence o f oxidised polyphenols. Anderson (1991) suggested 

that these compounds had an adverse effect on the metabolism o f the pathogen as polyphenols

Phytotoxins such as the AM-toxins are known to be site specific to the chloroplast and 

although the site o f action of the structurally related destruxins is not known, damage to the 

chloroplasts by the action of a phytotoxin m ay cause phytochromic components to leak from 

the attacked cells producing the deep brown colour. During the extraction process, some 

chlorophyll would be expected to be extracted along with other cell contents which would 

account for the bright green colour o f the control extracts. However this did not account for 

the faint red banding which was observed in the inoculated extracts during t.l.c. but not in the 

control extracts. Unfortunately, the red banding observed on the t.l.c. plates made the 

visualisation o f other bands within those Rf values problematic.

Keen (1978) suggested that problems could be incurred during the initial extraction and 

subsequent t.l.c. o f the two major phytoalexins o f  the flax/M  Uni interaction, coniferyl alcohol 

(CoA) and coniferyl aldehyde, due to the com plexing or degradation o f these two 

phenylpropanoid compounds with/by contaminants. Extracts produced during the present 

study may have contained less red pigmentation if  partitioning o f the extract with ethyl acetate 

had been carried out as suggested by Keen (1978). However, the results achieved by Conn et 

a/., (1988) using a revised method o f that described by Keen (1978), which was used during 

the present study, did not suggest that contam ination by extraneous compounds occurred either 

during t.l.c. or subsequent bioassay. A possible explanation for the large amounts o f non- 

distinct red fluorescence observed on t.l.c. plates (Table 5.2, Plate 5.1) was that the relative 

amount o f  cell damage caused by A. linicola  was much greater, particularly to the cell and cell 

organelles in comparison with that obseiwed for M. Uni by Keen (1978). Evidence from the 

present study would agree with this hypothesis as the non-distinct faint red banding observed ^

from the inoculated extracts was much m ore concentrated in extract derived from linseed 

accessions inoculated with the isolate o f^ .  linicola  in comparison with those inoculated with 

M. Uni.

■%
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Phytoalexins and the hypersensitive response

For many years, the association between phytoalexin production and the hypersensitive 

response has been well understood. There are many good examples o f histological and 

biochemical data to support the co-incidental tim ing o f localised cell death, the production and 

accumulation o f phytoalexin compounds from the surrounding cells, and the subsequent 

cessation o f pathogen development (described for many pathosystems by Mansfield, 1982). 

Hypersensitive response reactions (e.g. necrotic flecking) were not observed in linseed infected 

with A. linicola. Even resistant material such as L.u.u. albocoerulenm  was observed to 

develop non-localised symptoms before the cessation o f the growth o f the pathogen.

However, recent evidence concerning the role o f phytoalexins and resistance genes in the 

response o f host and non-host plants to infection has suggested that the process o f cell death in 

the classical description o f the hypersensitive response is not a necessary requirement for the 

elicitation o f phytoalexin biosynthesis (Keen, 1992; 1993). M any abiotic and biotic elicitors 

have been examined which induce a resistance response from the host and often confer a level 

of acquired resistance to subsequent infection by the same, or a different pathogen (Kuc,

1995). Thus it has become clear that phytoalexins may play a larger part in the response o f 

plants to pathogens in general, not only in interactions involving a hypersensitive response, but 

in interactions involving a more subtle expression o f disease resistance. Following work on 

phytoalexin production by L. usitatissimwn, Littlefield (1973) similarly suggested that a 

m ultiplicity o f factors was involved in disease resistance, and thus the presence or absence o f 

one particular component would not necessarily indicate resistance or susceptibility.

Increased elicitation due to pathogen attack

The data produced during the present study agreed with the hypothesis o f  Mansfield (1982) 

and the results o f  Keen & Littlefield (1978) as three levels o f  intensity o f inhibition o f the 

growth o f Cladosporium cladosporioides were observed. M ansfield (1982) had suggested that 

a feature o f the role o f phytoalexins in disease resistance was that phytoalexin accumulation 

was always much more rapid and occurred to a higher concentration during an incompatible 

non-host/host-pathogen interaction in comparison with a compatible interaction. Keen & 

Littlefield (1978) observed results which agreed with M ansfield’s hypothesis during work on 

the flax/M  Uni pathosystem . Levels o f fungistatic compounds produced from linseed material 

treated with sterile distilled water (control) during the present study were low in comparison 

with inoculated material. O f these, the treatment o f  the resistant accession L.u.u. I
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albocoertdetim  with A. linicola  isolate A16 (an incompatible interaction) produced brighter 

fluorescing bands and larger areas o f growth inhibition in comparison with Bison/AI6 

(moderate/susceptible), LA L/M  Uni (race 1) (susceptible) and B ison/M  Uni (race 

l)(susceptible). This suggests a definite role for phytoalexin-type compounds in the resistance

response of the incompatible interaction between L ilu. albocoerulenm  and linicola as has 

been proven for the incompatible interaction o f a resistant flax cultlvar and M. Uni (Keen,

Î

Distinct bands were observed for the standard CoA following t.l.c. which caused large areas o f 

growth inhibition to C. cladosporioides, and to a lesser extent, A. brassicicola. A  number of 

the extracts produced bands which co-chromatographed with the standard CoA bands and 

caused growth inhibition. As mentioned above, the brightest fluorescence and largest area of 

growth inhibition were observed for extracts from the incompatible interaction between L.u.u. 

albocoerulenm and A. linicola  isolate A16. The difference in relative concentration o f 

phytoaiexin produced during the incompatible interaction in comparison with that o f the more 

compatible interactions can be clearly seen from the bioassay o f 2D-t.l.c. plates shown on Plate

5.4. Unfortunately the compounds which caused the areas o f inhibition were not characterised 

further and so a level o f  uncertainty remains as to whether the inhibitory compound(s) were 

actually CoA or a sim ilar compound which was inhibitory to fungal growth.

Other phytoaiexin compounds produced in response to members o f  the Alternaria

Comparison o f the current study results with those produced by Tew ari’s group (Conn et al.,

1988), who studied phytoaiexin production in response to elicitation by A. brassicae, indicated

■s..

that a number o f  the bands observed on t.l.c. plates during the present study fluoresced with a 

bright blue colour and matched compounds produced by resistant members o f the Crticiferae.

One such unidentified compound produced by Camelina sativa  and Capsella bursa-pastoris,
■

corresponded to Rf values o f bands produced by L.u.u. albocoerulenm  and Bison in response 

to infection with A. linicola  isolate A16 (Conn et al.. 1988). Similarly, a second band (with a

Ïhigher Rf value) produced by L.u.u. albocoerulenm  and Bison infected with A16 corresponded 

to that o f the cyclobrassinin standard used by Conn et al. (1988) which was also produced in 

C. bursa-pastoris, four rapeseed cultivai s {Brassica campestris ssp. oleifera) and turnip 

(Brassica campestris ssp. rapifera). Conn et al. (1988) hypothesised that the production of

1;

I
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one or more o f the bands which were specific to C  sativa and C. bursa-pastoris was 

associated with the higher level o f  resistance o f these two species to A. brassicae in 

comparison with the other crucifers tested. Indeed, two novel indole phytoalexins, camalexin 

and methoxycamalexin were subsequently isolated from C. sativa (Browne et al., 1991).

The work o f Tewari’s group in conjunction with the results of the present study pose some 

questions as to the relationship between the Alternaria  pathogens and their hosts. The 

differences in resistance between C. sativa  and C. bursa-pastoris and the other crucifers tested 

appears to be directly linked to qualitative (and possibly quantitative) differences in 

phytoaiexin production (Conn et al., 1988). The similarities in the response o f  the linseed 

material tested here and the crucifers tested by Tewari’s group suggests that, although not 

closely related to the Brassicaceae, Linum  spp. may produce a number o f compounds similar 

to those which are hypothesised to provide a higher level o f  resistance to infection by A. 

brassicae in the resistant brassicas. The results o f Tewari’s group and the observations made 

in this study suggest that the Cruciferae and Linum  may show a similar response to the 

members o f the Alternaria.

Stimulus fo r  phytoaiexin elicitation

Littlefield (1973) observed that the effect o f phytoalexins in the flax/flax rust pathosystem was 

restricted to the immediate area o f  infection which suggested a close relationship between the 

development o f the pathogen on the surface o f the leaf and the elicitation o f  phytoaiexin 

production. Jejelowo et a/. (1991) found that the concentration o f phytoalexins produced by C. 

sativa  in response to inoculation with A. brassicae increased linearly with conidial 

concentration and suggested that this was due to a similar increase in the concentration o f the 

fungal elicitor molecules present within the inoculation droplet. An investigation o f the 

locality and timing o f phytoaiexin production was not carried out during the current study. 

However the work mentioned above, along with evidence from other pathosystems, suggests 

that there is usually a definite stage o f the infection process at which phytoaiexin production is 

elicited and pathogen development subsequently ceases (Anderson, 1991; Bailey, 1982; 

M ansfield, 1982).

Although the timing o f phytoaiexin production was not studied in vivo during the current, it 

could be suggested that phytoaiexin elicitation may have begun at the point of, or immediately 

after, phytotoxin production. There are many reports that the production of, or the action of.
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phytotoxins elicit the onset of phytoaiexin biosynthesis (Anderson, 1991). Tewari (1991)

suggested that such an interaction existed in the H. brassicae!cvnzxfcv interaction in response to 
.

the production o f destruxin B. However, there are studies which provide strong evidence that 

in some interactions, phytotoxin production by the pathogen suppresses host defences. 

Gnannianickam & Patil (1977), for example, obseiwed that toxin production by the bacterial 

pathogen Pseudomonas syringae pv. phaseolicola  directly suppressed phytoaiexin production 

in the bean host. Evidence from the Alternaria  pathogens suggests a similar role for the host 

specific AK toxins o f the pear infecting pathotype o f A. alternata (Hay ami et al., 1982; 

N ishim ura & Kohmoto, 1983b)

The ability o f pathogens to metabolise phytoaiexin and related defence compounds produced 

by their host has been well documented in the literature (Fischer & Hain, 1994; Van Etten et 

al., 1982; 1989). During the present study, many o f compounds which prevented the 

blastospores o f C. cladosporioides from germinating and developing had only a slightly 

fungistatic effect on the conidia o f  A. brassicicola  (Plates 5.2 and 5.3). This could indicate 

that in comparison to Cladosporium  spp., some members o f the Alternaria are more able either 

to tolerate and/or metabolise compounds such as CoA. The extent o f  the difference o f 

response between Alternaria isolates/spp. and whether tolerance or the level o f metabolism 

was sufficient to negate the role o f the phytoaiexin in the resistance response was not 

investigated during the current study. Due to the multicomponent nature which is 

characteristic o f  the quantitative resistance response observed, it would seem likely that the 

production o f phytoalexins by the host would be only one o f many defence responses 

produced and would not neccessarily determ ine resistance or susceptibility alone.

The role o f  phytoalexins in the A. linicola/Linum interaction

The importance o f phytoaiexin production in the resistance response o f linseed to rt, linicola  

cannot be fully ascertained from the studies in this work. Further analysis o f  compounds 

produced in vivo preferably at the histological level and characterisation o f the phytoalexins 

would provide an explanation of the interaction o f compounds derived from the host with 

those produced by the pathogen. The evidence o f the results o f this chapter along with those

from the previous Chapter 4 (phytotoxin production) suggests a biochemical interaction
.

between pathogen and host which is correlated with differences in the speed of pathogen

1
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development and host response. The differences in the tim ing and speed o f phytoaiexin 

production may explain differences in resistance response. Thus, disease/resistance response 

is multicomponent in nature and layered in time and the linseed/H. linicola  interaction is in 

keeping with the current model o f quantitative disease resistance (Kuc, personal 

communication; Kuc, 1995).

I
.

As suggested by Tewari (1991) and Tewari & Conn (1993) for phytoaiexin mediated

resistance o f  crucifers in response to A. brassicae, the transfer o f  this type o f resistance from

resistant to susceptible genotypes, through either conventional breeding or biotechnological 
.

techniques, should be possible. If  similar transfers were possible within Linum  there would be 

an opportunity to enhance the disease resistance o f crop varieties within the genus by the 

employment o f disease resistance whose mechanism is, at least partly, understood.

■i
Î

1
I
I

I
Page 155



Chapter 6

6.0 General discussion and suggestions 

for future studies

Page 156



Chapter 6

6.1 General discussion and conclusions

Specific aspects of the results o f the current study and an evaluation of the significance of these 

findings to previously published work have already been discussed in the preceding chapters. The 

following general discussion will relate the major points of relevance from this study to what is 

currently known about the biology of the Alternaria, including/I. linicola, and more specifically, 

the interaction of the pathogen with the linseed host.

General obsej-vations on the Alternaria as plant pathogens

Along with the other Hyphomycete species which are currently regarded to be anamorphic forms 

o f the Pleosporaceae (e.g. Stemphylium, Drechslera, Cnt'vnlaria, Nimhya and Bipolaris), the 

Alternaria show a general capacity for saprophytic growth on a wide range o f plant species. Many 

o f the Alternaria are more than mere saprophytes and show a close association at the species level 

with either a single or a few particular host species of a plant family. Dickinson (1981), for 

example, suggested that the unspecialised but opportunistic association ofyf. alternata with many 

cereals represented an intermediate niche, the pathogen being neither a necrotroph or a biotroph. 

Indeed, some Alternaria species show a higher level of specificity to their hosts as observed for 

some host specific toxin producing species. However, current evidence from the literature 

(Vloutoglou et a l, 1995) and the results from the present study suggest that /I. linicola appears to 

be typical of the Alternaria in general, as opposed to the HST-producing pathoforms of the A, 

alternata anamorphs, but the pathogen shows a high level o f pathogenicity on the linseed host.

Pathogen development and the host response

Studies of the infection process o f Alternaria species on host and non-host plants have shown that 

the pathogens are not adversely affected by differences in the topography of the leaf surface in 

comparison with some biotrophic pathogens such as the rusts and mildews (McRoberts & Lennard, 

1996; Tewari & Skoropad, 1986). Similarly, differences in the leaf topography of the resistant, 

moderately resistant and susceptible accessions of Linum (if present) inoculated with A. linicola 

isolate A16 did not affect the ability of the pathogen to germinate, develop and penetrate the leaf 

surface. It would appear that, as observed for some oXhet Alternarialho'sX interactions, the 

resistance response is controlled by factors which limit pathogen development either during or 

following penetration. Limitation o f the infection of individual host cells through the production of 

callose-containing papillae would appear to be an early defence response of linseed, although 

whether or not this is accompanied by the biosynthesis of phytoalexins and/or fungal inhibitory
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enzymes such as chitinase was not ascertained; although phytoalexins were shown to be produced 

by two Linum genotypes when challenged w ith^. linicola.

Rather than being regarded as the determinant resistance mechanism, many studies have shown 

that phytoalexins form only a component of an overall more complex resistance mechanism (Keen, 

1993; Kuc, 1995). The current hypothesised role o f phytoaiexin elicitation and biosynthesis fits in 

well with recent evidence of roles for compounds such as pathogenesis-related proteins, (31,3- 

glucans, chitins and chitosans, lignin and callose, lipoxygenases, and the more recently 

investigated, active oxygen species (Baker & Orlandi, 1995; Kuc, 1995). Many of these 

compounds could play an active role in the interaction o f^ . /m/coW1 inseed. For example callose 

(a (31, 3-glucan) was observed to be produced during the present study and a role for this 

compound in disease resistance has been recognised for many years. The multicomponent 

interaction o f the pathosystem could conceivably include many such factors.

Phytoaiexin production by the Linum species (flax) has been demonstrated previously in response 

to infection with to the pathogen M. lini (Keen, 1978). The current study has shown that 

phytoaiexin elicitation occurs in response to other pathogenic fungal species in Linum and indeed, 

although not fully characterised, a compound with similar properties to coniferyl alcohol (produced 

in response to M. Uni) was produced in response to elicitation by A. linicola. Whether or not 

phytoaiexin production was elicited by the action of the phytotoxic compounds produced by the 

pathogen or by another component o f the interaction was not determined during the present study. 

Closer analysis o f the inoculated leaf extract, by reverse phase chromatography for instance, may 

have provided an answer to the question o f whether both sets o f compounds were produced 

simultaneously (or whether phytoaiexin production was slightly delayed and followed phytotoxin 

production). One of the major problems with such a study would be deciding which compounds 

were produced by the pathogen and which by the host.

A classical hypersensitive response was not observed during the infection of linseed material. The 

first explanation for this could be that such a response is not elicited by A. linicola. although further 

study would be required to prove that this was the case. A more likely reason would be that Linum 

may have evolved to prevent the ingress o f  A. linicola actively, as opposed to inactively through 

the death o f host cells in front o f the advancing infection hyphae. The results of the current study 

would indicate a dual action role of papillae and phytoaiexin production, both of which form 

components of the horizontal resistance response. Although these components are also observed 

during a hypersensitive response, cell death was not obseiwed in the case of linseed. These
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components nullify the need for the physical encapsulation or the isolation of the fungus with dead 

cell material as characteristically observed during a classic hypersensitive response.

An alternative scenario could be that hypersensitivity may be the natural response of the host. 

However, a typical hypersensite response may not occur for two reasons; firstly, the pathogen may 

not elicit a response, or, secondly, the action of an inhibitory compound produced by the pathogen 

may block and prevent recognition of the pathogen. However, the production of phytoalexins 

suggests that the host has recognised the presence of the pathogen possibly through the detection of 

phytotoxin production. Thus, rather than recognition being blocked, it would follow that it is the 

ability of the host to respond quickly to the recognition stimuli which is the important factor in the 

resistance response. As phytotoxin production by A. linicola has been shown during the current 

study, this component of the interaction would seem the most likely candidate preventing response. 

As previously mentioned, a similar role has been suggested for the AK-toxins produced by 

Japanese pear Infecting anamorphs ofyJ. alternata (Nishimura, 1987).

The possible role o f  phytotoxins in the interaction

Toxin production has been proven to be a determinant o f pathogenicity for many of the great 

epidemic causing diseases o f recent times (Daly, 1987) although, admittedly, the level of disease 

caused by A. linicola is hardly comparable. However, the traditional role of phytotoxic 

compounds, that o f the induction of cell membrane damage allowing necrotrophic feeding of the 

pathogen, has been reviewed and extended on the evidence o f more recent studies to include an 

overall general effect on the overall host/pathogen interaction. The suggestion of Nishimura 

(1987) that host specific compounds may also suppress the resistance reaction of the host has been 

shown to include phytotoxins which are far less specific than host-specific toxins such as the AK- 

toxins. For example, Gnanamanickam & Patil (1977) observed that Phaseotoxin from 

Pseudomanas syringae pv. phaseolicola suppressed phytoaiexin production in beans and more 

recently, Vidhyasekaran et al. (1992) found that toxin from Helminthosporium oryzae suppressed 

phenol metabolism in rice and so negated the biosynthesis of many of the host plants defence 

compounds. These studies suggest that the non-host-specific phytotoxins isolated from A. linicola 

play a suppressive role in the interaction, and that such a factor may be sufficient to account for the 

pathogenicity of this species on linseed in comparison tovl. infectoria ovA. alternata which have 

low pathogenicity on linseed and occur as saprophytes. This would also explain the close 

association of the pathogen with linseed.
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A host-selective role was suggested for destruxin B on Brassicae host species of A. brassicae 

(Buchwaldt & Green, 1992). Many non-host specific toxins appear to be implicated in the 

aggressiveness of a particular isolate of a pathogen. As such, the production of host non-specific 

toxin, or groups of non-specific compounds (which possibly produce a synergistic effect), by A. 

linicola probably account for the close association of the pathogen with linseed. Compounds such 

as Te A, AME and the partially characterised destruxin-type compounds appear to be important in 

the aggressiveness of isolates o f^ . linicola as differences were observed in metabolite production 

between the isolates.

Components o f  the interaction

The mechanisms which determine the interaction of A. linicola with linseed appear to be a diverse 

and complex multicomponent system which is under quantitative genetic control. Based on the 

results of the present study and recent evidence from the literature (Keen, 1993), Fig. 6,1 shows a 

hypothesised model of the probable interactions which occur between A. linicola and linseed. Fig.

6.1 is presented only as a tentative model and does not accommodate all possible interactions 

between the pathogen and host, for example, the effect of toxins on Ca^^ flux or the possibility that 

phytoalexins are elicited by glyco-proteins or substances produced by the pathogen other than 

phytotoxins are not included.

The results of the study reported here greatly increase our knowledge of the pathogen/host 

interaction between W. linicola and linseed. In summary four main points arise from the study:

1. A range of Linum accessions tested using a novel in vitro bioassay were found to produce a 

continuous distribution of resistance responses, from susceptibility to resistance.

2. Pathogen ingress and development was delayed on resistant accessions which actively 

responded to the presence of the pathogen through the elicitation o f defence mechanisms. 

Susceptible accessions appeared to produce little response to pathogen development.

3. Alternaria linicola was observed to produce phytotoxins during in vitro culture and it is 

hypothesised that these may suppress early host responses.

4. Resistant accessions of Linum produced phytoaiexin compounds when challenged by an isolate 

of the pathogen. During the same experiment, less resistant material (i.e. Bison) produced the 

same compounds although less was elicited. Extracted compounds from both host accessions 

subsequently inhibited fungal growth.
■■Is
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Fig. 6.1 Diagram o f  a hypothesised mechanism o f  the interaction between A. linicola and linseed 

indicating a role fo r phytotoxins produced by the pathogen and cell wall changes and phytoaiexin 

production in the host.
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Genetic control o f  resistance and prospects fo r  the fu ture improvement o f  linseed

The lack o f qualitative gene effects between accessions tested with isolates o f the pathogen 

during the present study (Evans et a l ,  1995) was consistent with the quantitative response o f 

many dicotyledonous crop species to non-biotrophic pathogens such as the Alternaria  

(Simmonds, 1991). Such interactions are generally considered not to be under major gene-for- 

gene control. Similar mechanisms o f resistance suggest that the concepts o f non-host 

resistance and quantitative host resistance share common aspects. Thus, the interaction 

between linicola  and linseed may be genetically controlled by a number o f components 

which produce the layered structure o f the resistance response. Such a structure o f resistance 

response was suggested by Tewari (1991) as the mechanism o f resistance o f  cruciferous 

species to A. brassicae and was also suggested as a general model o f resistance by Heath 

(1991; 1995).

Recent field trial results (Mercer & Ruddock, 1993) and the moderate-to-resistant response o f  

the m ajority o f accessions tested during the bioassay o f the present study suggest that an 

adequate level o f  horizontal resistance exists within linseed to prevent excessive problems 

from A. linicola  in all but the wettest o f  seasons. As suggested by Harlan (1976), such a 

relationship suggests that the crop and pathogen are near to a state o f  endemic balance. This 

ensures that, A. linicola can usually be isolated from the crop but levels o f  infection are 

tolerated and generally cause no appreciable disease problem . This state o f  “equilibrium” 

benefits pathogen and host in that the pathogen survives whilst the host is damaged to a degree 

(which continues to supply selection pressure for the maintenance o f useful resistance genes 

within the host population) but continues to develop to maturity and in so doing, provides a 

substrate for the pathogen to grow on (Harlan, 1976).

The m ajor plant disease epidemics o f this century have been attributed to the intervention o f 

man, usually through the introduction o f large areas o f monocrop carrying single “ immunity” 

resistance genes. Pathogenic isolates are quickly selected and the resistance is destroyed. In 

this concern, linseed appears to have been fortunate in that, particularly in the UK, the crop has 

not been grown extensiveh' except in recent years and, perhaps more importantly, the intensive 

breeding for resistance to which many cereal crops have been subjected has not occurred. The 

moderate to resistant response o f the accessions tested during the current study indicated that

i
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linseed appeared to have a good general combination o f resistance genes which provide an 

adequate level o f  horizontal resistance to A. linicola.

During most seasons in the field, A. linicola appears to be constrained by environmental 

conditions such as moisture availability and temperature, both o f which affect sporulation, 

disease development and infection (Vloutoglou, 1994). The in vitro aspect o f the cotyledon 

test (where temperature was controlled at a near optimum level and there was ample moisture 

available) ensured that the disease response o f the accessions was a true representation of 

resistance levels in the material. As such, there remains the possibility o f increasing the level 

of horizontal resistance and, as suggested by Simmonds (1991), the successful selection o f 

horizontal resistance against pathogens such as tho A lternaria  should be high.

In many ways the Alternaria  typify the mid point between necrotrophy and complete biotrophy 

and as such tend to act as a model for the “average” plant pathogen. The conclusions o f the 

present study highlight the need for further study o f plant pathogen interactions amongst the 

pathogenic species o f  the Alternaria.

6.2 Suggestions for future studies

Generally, in comparison with the interactions between biotrophic pathogens such as the rusts, 

mildews and smuts, very little is understood about the interactions between the. Alternaria  and 

their hosts. The situation has, somewhat, improved in recent years through the work o f the 

Japanese on host specific toxins and the Canadians (J.P. T ew ari's group) on the general 

physiological and biochemical interactions between .zl. brassicae and crucifers. The work 

reported during the present study not only answers some o f the previously unknown questions 

about the levels and underlying mechanism of the resistance o f linseed to A. linicola^ but also 

produced more general and intriguing questions. From the studies detailed above, disease 

resistance appears to be determined by the speed o f pathogen developm ent/host response 

following successful penetration. Further detailed study would be needed to ascertain the 

importance and tim ing o f the various physical and biochemical changes which occur at the 

cellular level during this time although by the very nature o f the m ulticomponent system which 

controls the interaction, it is unlikely that susceptibility would be mediated by a specific factor.

Although a number o f host non-specific toxins were demonstrated to be produced by A. 

linicola. some o f which may show host-selectivity (i.e. the destruxin compounds), there still
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remains the question o f the narrow host range o f the pathogen. It may be the case that A. 

linicola does produce a HST but that the extraction and analysis methods used during the 

present study were not or sensitive enough to define the presence o f such a compound. 

Alternatively, an HST may be produced only in vivo. Further toxin studies, possibly involving 

in vivo work, followed by analysis o f  extracts by HPLC which would be much more 

analytically sensitive, may answer some o f these questions.

I
An interesting aspect o f  further work on phytotoxins would be to closely assess the effect o f 

phytotoxins at the cellular level, both in whole plant material and by the use o f in vitro culture.

During the current study it was hoped that extracts could be sufficiently purified in large 

enough quantities to allow studies on electrolyte leakage and more specifically the role o f 

calcium which has been suggested to mediate the action o f phytotoxins during the process o f 

cell wall damage. Unfortunately during the present studies, only enough purified phytotoxin 

could be isolated to allow the characterisation o f the compounds by ^H-nmr and electrolyte 

leakage could not be studied. The use o f  an HPLC system following reverse phase extraction 

would probably be more efficient at cleaning the samples which, as the ^H-nmr spectra of 

Altlin 1-4 indicate (Appendix 2.1-2.4), were found to be contaminated with unidentified lipid 

compounds.

The results o f  the present study, although indicating a multicomponent mechanism of

resistance, do not explain the differences in resistance response which are observed at the 

beginning o f the season (seedling stage) and at the end o f the season (onset o f flowering/seed 

set). The results also do not account for the observation that m id-season growth o f linseed 

appears to be relatively free o f A. linicola. Such a pattern o f disease response shows 

similarities with observations which have been made on the phenomena o f  acquired resistance. 

Both localised and systemic acquired resistance (SAR) have been described for many host 

plant species following pre-inoculation with a non-invasive -pathogen, or an attenuated version 

of the phytopathogen (Hammerschmidt & Kuc, 1995), Pre-inoculation is thought to trigger, or 

induce, the hosts natural defence system and depending on the host-pathogen combination 

exacts localised or systemic resistance to subsequent attempted infection. The exact 

mechanism by which acquired resistance is induced and functions is not completely 

understood but the mechanism o f resistance is thought to be multicom ponent in nature. Also,

I



Chapter 6

The author suggests that resistance o f linseed to .^. linicola may be acquired, to some extent. 

Such a pattern o f response has been observed between linseed and A. linicola  over many 

seasons; infection at the seedling stage may induce multicomponent resistance, if seedlings 

survive initial infection, acquired resistance prevents harmful levels o f disease during the 

growing season, after flowering, acquired resistance fails and disease levels increase. It would 

be interesting to investigate aspects o f  this hypothesis. If  such a system was in operation, 

phytoalexins may afford the host plant localised protection at the site o f infection, or as is more 

likely, the resistance mechanism may prove to be more complex, with phytoaiexin production 

being only one component of a systemic mechanism .
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