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Artists impression of the Orbital Re-entry Experiment (OREX) designed

to acquire re-entry data as part of the Japanese H-II Orbiting Plane
(HOPE) program. Other vehicles in the program include the Hypersonic
Flight Experiment (HYFLEX), a lifting vehicle intended to demonstrate
hypersonic flight technologies, and the Automatic Landing Flight
Experiment (ALFLEX) .

OREX was successfully flown in February 1994.

(Picture Taken from OREX publicity pamphlet)




“We shall not cease frem exploration, and the end of all
our exploring will be to arrive where we started and
know the place for the first fime.”

T.8. Eliot

“As far as the laws of mathematics refer to reality they
are not certain: and as far as they are certain, they do
not refer to reality”

Albert Einstein




Abstract

The development of a flexible, high-fidelity, generic simulation
of transatmospheric and interplanetary motion is described. The
simulation incorporates aerodynamic and gravitational force
modelling implemented in a Cartesian reference co-ordinate set.
Propagation of the motion of a vehicle is carried out in a “working”
reference frame whose origin is determined by the current
gravitational sphere of influence. A semi-analytic model of
planetary motion propagates the motion of the nine planets and six
major moons, allowing simulation at any point within the solar
system. Expansion and improvement of the model is facilitated
through the vector formulation of the problem.

The use and applicability of the method of matched asymptotic
expansions is examined as a means of producing high quality
trajectory predictions quickly and easily. Ballistic launch and entry
trajectories are considered incorporating a velocity dependent
model for the aerodynamic drag coefficient. Using the derived
relations direct launch is considered as a low-cost means of
transporting acceleration insensitive payloads to a space station in
low Earth orbit. In addition, it is shown that the high quality
trajectory predictions may be obtained using a simple spreadsheet
package.

Analytic modelling is also used as the basis of a highly robust,
computationally efficient, controller design for autonomous
aerocapture in the context of the Iunar return problem. The validity
of this approach to lunar return is examined and found to be of
considerable potential in both its robustness and the potential
improvements in payload mass-fraction available through the
substantial fuel savings over direct return to Earth or propulsive
return to a space station. The study shows that, using the derived
control, the aerocapturc manoeuvre can be successfully performed
with existing material and technological capabilities.
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Nomenclature

Notes: 1) Where a symbol has more than one meaning in the list below the

appropriate meaning can be understood from the text.

2) Where a symbol is for explanatory means the context of the

symboal is given in the text.

3) All quantities are given in standard S.1. units except where noted.

4) A bar above a symbo] usually denotes a non-dimensionalised

quantity. Where this is not the case this is clear from the text.

A, A'- periapsis and apoapsis

a- semi-major axis, acceleration

C,~ aerodynamic drag coefficient

C, - aerodynamic lift coefficient

C,- aerodynamic side force coefficient

CysSy, - tesseral harmonics

D- aerodynamic drag

E- eccentric anomaly

¢ - eccentricity

£~ force

G - Universal gravitational constant

g-local gravitational acceleration

I - atmospheric scale height

A~ altitude (dimensioned or non-

dimensional)

I~ moment/product of inertia

J,- zonal harmonics

I.- aerodynamic lift

L/ D- aerodynamic lift to drag ratio

m, M - mass

M - mean anomaly, mass, Mach

number

N, N'- ascending and descending

orbital nodes

P - pseudocontrol, North celestial pole
F,- orbital period

P (z), P/"(z)- Legendre polynomials of
the function z
p.4q,r~ vehicle roll rates about x,y,z
co-ordinate axes
4,7~ vehicle angular accelerations
about x,y,z co-ordinate axes
Q- convective heating rate
¢- dynamic pressure, y-axis roll rate
R - planetary /lunar/solar radius
R .- radius of sphere of influence
r- orbital radius, vehicle roll rate
about z-axis
S- reference area, focus (of ellipse)
T'- torque, temperature
{ - time
U - gravitational potential
i~ square of non-dimensionalised
velocity
v, V-velacity
V,- airspecd
x,y,z- Cartesian reference axes
X, Y, Z- Cartesian reference axes
Y- aerodynamic side force
¥, ¥, y - altitude erroz, climb rate error,

radial acceleration error
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Greek Symbols

0- control gain, angle of attack
B - ecliptic latitude, angle of sideslip
y - flight path angle
Ai- change in inclination
AV - change in velocity
Ay~ change in heading angle
d- bias
&- small parameter, flattening
parameter
¢ - longitude, inclination (spherical
polar co-ordinates), control gain,
roll (bank) angte
&, 0, yr- roll (bank), pitch, yaw
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- planetary gravitational constant
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¢~ command

e - demand
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I, m,n- indices
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D~ parent, planet, perigee
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soi- sphere of influence
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# - constant of integration

- planetocentric, exospheric
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Chapter 1.

INTRODUCTION

I.LA. Comment

If mankind is ever to expand beyond the confines of the Earth,
we must first look at and learn about the worlds around us.
Examination and exploration of these bodies will enable us to learn
more about the mechanisms of the Universe: how things develop,
grow and decay, and how the human mind and physiology react to
the varied environments to be encountered. Careful utilisation of

the resources we may find should assist tis to expand further into
the Solar system.

All this has to begin somewhere and perhaps the “small step”?
that was Apollo could be regarded as the first significant step
towards man’s expansion into space. Alas, since Apollo, man has
not returned to the moon and, although missions such as Voyager
and Viking have taught us more about our solar system, the

advances that were envisaged at that time have not been achieved.
Twenty-six years later, man has still not journeyed to Mars.

To be fair, the cost of a Mars mission, extrapolated from Apollo,
would have been exorbitant (the cost of the Apollo program
translates to over $120billion in 1990 Dollars?, equivalent to over 600
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shuttle missions) and the advances that have been made in
technology and design in the interim may show that it was wise to
wait (if that were the intention). But perhaps now the time for man
to return to space has come.

What motivations can we find for the effort that will be
required?

* Human Expansion

Man has long been driven by the desire to examine and to
advance his understanding of his cnvironment. The urges to
explore, to discover, and to achicve took Columbus to the
Americas, led the Egyptians to build the Pyramids, and cause our
finest minds to look deeper into the atom or further into the
skies. These aspirations alone should be justification enough for
the manned exploration and colonisation of space.

More recently, our understanding of our environment and
its past proposes another reason for manned space exploration;
the continuation of the species. History suggests that sudden
(geologically), periodic extinction of species such as the dinosaurs
may be the result of cataclysmic events such as comet or
meteorite impacts. Within the last year the effects of the impact
of fragments of the comet Shoemaker-Levy on Jupiter have clearly
demonstrated the destructive potential of such collisions. Even
with the advanced technologics of today we must concede that
we may not be able to avoid such an impact.

In addition possible climate changes, whether natural or
man-made, would suggest that it is in the interests of the entire
race then to expand into the Solar system, lest this planet become
uninhabitable.

¢ Scientific Knowledge

As the Hubble Space Telescope has shown, much can be
learned through such space-based astronomy about the
evolution of our solar system and indeed the universe. I'rom
space we may observe the universe without the attenuating
effect of the Earth’s atmosphere and the clutter of radio waves
which fill it.
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¢ Energy

Some appraisals of our fossil fuel consumption have us
running out of economically wviable sources in around
S0years®4, The most promising replacement source is currently
nuclear power with fusion likely to be more productive in the
long run. However, both fission and deuterium-tritium fusjon
(currently proposed for future reactors) produce large amounts
of wasle heat and radioactivity.

Alternative energy sources such as geothermal, solar power,

hydroelectricity, wind and wave power although renewable are
unlikely to be able to replace fossil fuels even at today’s energy
consumption levelsd.

A first step in addressing these concerns is a return to the moon.
¢ Human Expansion

A lunar colony is essential in developing our understanding
of how human physiology reacts to prolonged exposure to
reduced gravity and artificial environments (any lunar base will
by necessity be an artificial environment) and in developing

radiation protection and the aforementioned artificial
ecosystems3,

Knowledge gained from lunar experience could be used in
developing arlificial ecosystems for other planets, in particular
Mars, which would be an essential first step even if highly
futuristic concepts such as terraforming (the transformation of
an alien environment into a human-habitable one) were Lo
prove feasible.

e Scientific Knowledge

The science of the moon, in spite of the success of the Apollo
and Lunokhod missions, is still incomplete and there is still
much to be learned about its composition and history3. Tn
addition access to the moon allows experimentation in unique
gravitational and radiation environmentsS.
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The building of a radio-telescope and other observatories on
the moon should be seriously considered. As has been remarked
“the Moon is a God-given, spin-stabilised platform waiting for a
payload”?. The Moon would appear an ideal site for a radio-
telescope in particular, with the far side being permanently
hidden from the Earth and its radio outputs.

¢ Energy

Deuterium-helium-3 fusion produces significantly less

radioactive waste {almost none) than current fission and
proposed fusion reactions and would provide energy with
almost double the efficiency of current fission reactorsi.

Natural terrestrial helium-3 is scarce but deposits on the
moon are abundant®4, In addition, as helium-3 is deposited by
the solar wind, it will be found in the surface soils aiding
excavation.

One account suggests that Lunar mining could prove a highly
lucrative business, with a single shuttle load of 25 metric tons
valued at $75billion3.

The concern over energy may seem the more immediate and is
more likely to receive commercial backing. The use of other
resources, such as oxygen, iron and aluminium may also prove
commertcially viable for in-orbit or lunar construction and it is
likely that this will prove very important in terms of future
funding for space efforts2. In addition there is the possibility of rare
carth metal extraction which would certainly help the

aforementioned commercial viability.

Of course, expansion onto the Moon and into space should be
carried out under careful management. Leaving aside terrestrial
concerns, we have already polluted the skies above us with orbital
debris and through achieving our goals in an unthinking or naive
fashion we have created a problem which hinders us in continuing
to achieve those goals. It is all part of the learning process but we
should now know to think before we act.
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I.B. Problem Statement:
Lunar and Planetary Exploration

It is likely that the majority of early missions in the next phase of
lunar exploration will be unmanned. Proposals by groups such as
the ESA Lunar Study Steering Group (LSSG)5 have lead to the
conception of the Lunar Europcan Demonstration Approach
(LEDA)S which calls for a lunar lander carrying a small rover
vehicle. Tt is proposed that the mission carry out soil analysis and
assess the suitability of the Moon as a base for optical and radio-

astronomy in addition to evaluating the operational environment
on the Moon.

Whilst missions such as LEDA investigate the soil and rock
structure and composition, a polar orbiter could be used to map the
surface and survey the global chemical and physical make-up of the
Moon. Other missions proposed include surface penetrators for
examination of Lunar geology, the development of a network of
small surface stations and sample-return missionsS. In the future,
technologies developed for and understanding gained from sample-
return vehicles would be crucial in establishing a supply
infrastructure to and from a lunar base. Given the likely limitations
on energy consumption it will be important that we use what we
can in the most efficient way possible. The economies to be gained

over rocket propulsion from the effective usc of aerobraking and
aerocapture may make their use essential in the lunar return

probiem.

Further afield, we come first to Mars and then the other planets.
For those planets with atmospheres, aerobraking and aerocaptiure
could be used to perform the vital function of slowing the vehicle
on arrival at its destination. Mars is likely to be the first planet,
other than our own, to be explored by man and the approach to
Martian exploration will probably be similar to that for Lunar

exploration.
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The work presented here describes:

¢ The development of a generic simulation (gernL) for the analysis
of space vehicle motion, investigation of control techniques and

methodologies, and validation of analytic models.

* The development, implementation, and investigation of
analytic models of transatmospheric vehicle motion.

¢ The development, implementation, and investigation of
controls based on these models, in particular investigating the
control of terrestrial aerocapture in the Lunar return context.

I1.C. Aero-assisted Trajectories

The wuse of aerodynamic forces for the control of
(transatmospheric) space vehicles is by no means a new concept.
London’s8 1961 paper on orbital plane changing is generally
regarded as the first on the subject and although Walberg? gives one

example of a paper published prior to London’s he adds that
London’s “appears to be the first to convincingly demonstrate a
significant performance gain.”.

Most vehicles subject to aerodynamic forces will experience only
the retarding effect of drag, and this may be either a help or a
hindrance depending on the mission scenario. Lack of an
atmosphere on the moon required the Apollo orbiter and Eagle
tander to achieve all of their deceleration propulsively, requiring
the transport of large amounts of fuel to the moon. A recent
example of the benefits of aerodynamic braking was provided by the
Magellan Venus mission!?, where atmospheric drag was

successfully used to shrink the spacecraft’s orbit apoapsis from
8467km to 541km. This manoeuvre was carried out using only a
fraction of the fuel that would be required to propulsively reduce
the orbit and avoiding the extra cost of transporting the additional
fuel to Venus.
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Walberg? describes three classes of aeroassisted mission:
* synergetic plane change
¢ planetary mission applications

* orbital transfer vehicle applications.

This classification of aeroassisted missions is somewhat arbitrary
as there is a degree of overlap among the classes. For example, the
transfer between Geostationary Earth Orbit (GEQ) and Low Earth
Orbit (LEQ) is an orbital transfer manoeuvre and may also require a
change of plane.

In keeping with this arbitrary style of classification then we shall
discuss aeroassisted manoeuvring in four sections:

* aerobraking
¢ aerocapture
» plane changing

* aerogravity assist.

These are presented in the order most appropriate to the work

described here. As shall be seen the distinction between aerocaptiire
and aerobraking can be considered more quantitative than
qualitative. A review of the dynamics of the motion is included
where appropriate.

I.C.1. Aerobraking

Aerobraking is a simple manoeuvre conceptually. Any body
passing through an atmosphere experiences drag and is thus
subject to aerodynamic braking. The aerobrake manoceuvre is

designed to take advantage of this effect in order to achieve a
clesired reshaping of the orbit.
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A propulsive burn would be used to transfer the vehicle

=

from its initial trajectory into an elliptical orbit about the planet
that skims the upper atmosphere at periapsis. The drag

IRt Tt

experienced during this atmospheric pass will lower the apoapsis
and in this manner the orbit is gradually lowered and
circularised1%:11, Once the required apoapsis has been achieved a
further burn is required to raise the periapsis out of the

atmosphere if a surface impact is not desired. Fig 1.C.1-1 below
| illustrates the multi-pass aerobraking scheme.

Saa L\l 2

Mo biindind oo b

g e

Fig. 1.C.1-1 : Schematic of a Multi-pass Aerobrake mission: GEO to LEO 2

As mentioned above aerobraking was used to great effect on
the Magellan mission!?. What was particularly remarkable
about this demonstration was that Magellan was not designed
with aerobraking in mind. The possibility of extending the

eaiic 21k

TR 1 W pe I

mapping mission using aerobraking only arose as a result of the
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success of the original mission. The extension was intended to
provide an accurate gravity map of Venus and this would
require lowering the orbit from its 8467km apoapsis to 541km. To
achieve this propulsively would have required an order of
magnitude more propellant than Magellan possessed, leaving
aerobraking as the only means of lowering the orbit.

The aerobraking phase lasted 70 days during which time the
vehicle performed several hundred passes. The length of an
acrobraking operation allows time to “walk” the vehicle into an
atmosphere and collect data to allow calibration of the

- manoeuvres and any necessary propulsive corrections. This
allows the design of fail-safe missions even into previously
unknown atmospheres. In addition, because of the high altitude
of the atmospheric passes involved, an aerobraking vehicle will

experience relatively low heat and deceleration loadings.

An aerobraking precursor to Magellan, the Atmospheric
Explorer vehiclel* was also not designed to take advantage of
aerobraking. For this mission, the perigee was kept sufficiently
high that the aerodynamic heating experienced by the vehicle

was negligible.

As Magellan has shown, multi-pass aerobraking may be
accomplished at low deceleration loads and with less stringent
heat shielding requirements allowing greater flexibility in

vehicle design®10,

I.C.2. Aerocapture

An aerccapture manoeuvre can be regarded as a single
aerobraking manoeuvre (atmospheric skip) on a bigger scale.
While aerobraking begins from propulsive insertion into an
elliptical orbit about the planet, the aerocapture approach
trajectory is directly into the atmosphere. The required velocity
decrement is achieved through a single deep atmospheric pass
such that upon atmospheric exit the vehicle can no longer
escape from the planct’s gravity field and is captured into an
clliptical orbit about the planet. On achieving apogee a single
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rocket motor burn would circularise the vehicle’s orbit outside
the atmosphere.

Aerocapture has been successfully used in the Apollo Lunar-
returnl? and was proposed for use in manned Mars missions in
the sixties?. An analysis of lifting entry was also carried out in
advance of the Viking Mars13 missions. In these cases a surface
landing was required as will be the case in the Cassini-
Huygens1415 mission to Saturn and one of its moons, Titan.
Because of the double-dip (see below) manoeuvre performed at
Earth re-entry, Apollo remains the closest match to the capture-
to-orbit manoeuvres proposed for future planctary and lunar
return missionslé:17,18,19,

During atmospheric entry of the Apollo capsules
aerodynamic lift was used to augment vehicle control. Graves
and Harpold1? describe in detail the “double-dip” scheme
employed to alleviate high pressure, deceleration, and heating
loads by using the less dense upper atmosphere to slow the
vehicle twice (see fig. 1.C.2-1},

The necessity for load-alleviation through a double-dip
manoeuvre has been lessened by the advances made in
materials technology and the increasing likelihocod that the
vehicle will be unmanned. In addition, the complexity of
performing an autonomous double-dip manoeuvre at a remote
plaret in uncertain atmospheric conditions makes it likely that a
simple single pass will be adopted for off-world capture-to-
ground applications. _

Although Mars may be sufficiently close to contemplate
relaying commands from Earth to a vehicle in orbit it is doubtful
that such a signal could be sent through the plasma sheath that
would engulf an entry vehicle.

Even if this were possible, the dynamics of the motion are so
fast that the light time delay would make any received
commands obsolete. This leads to the requirement for
autonomous vehicle control®.

The use of aerodynamic lift greatly increases the
controllability of acromanoeuvring?12:20.21, Drag modulation
is a possible means for trajectory control {e.g. inflatable ballute ox

10
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Fig. 1.C.2-1 Double-dip manoeuvre schematic showing the guidance phases.

Taken from Graves, C. A, and Harpold, J. C., Apolle Experience ReportIz

angle of attack modulation) but will only allow control of the
deceleration acting along the line of motion, whereas lift allows
control over accelerations perpendicular to the plane of motion.
A more detailed consideration of the methods of controlling
transatmospheric vehicles follows later in the chapter.

Walberg? describes two periods of high interest in
aerocapture missions. The first, between 1964 and 1968, was
primarily concerned with the manned Mars mission NASA
proposcd as a follow-up to the Apollo program. Funding never
materialised for this program and it was not until 1979 that
interest rose again, this time in the context of unmanned
planetary missions. Walberg describes as a flight control
requirement a hypersonic L/D of 1.0-1.5, although Graves and
[Tarpold!? give values for the Apolio capsule averaging around
0.35. The discrepancy between these two values is mostly due to

H
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the former being for unmanned vehicles, which will operate
with higher g-load limits.

The deep hypervelocity pass into the atmosphere brings with
it significant heat and pressure loadings, the heat loadings being
such that ablative heat shielding may be required, if not all over,
then on the nose and leading edges of the vehicle, The vehicle
may need to be completely enclosed in a protective aeroshell,

further restricting vehicle design?.

One scenario for a mission to Saturn and Titan proposed
prior to Cassini-Huygens was designated SO2P-Titan?. This
Saturn Orbiter would achieve capture into an orbit around
Saturn by passing through the atmosphere of Titan, The vehicle
would have used a full acroshell to protect the probes during the

atmospheric pass.

The complication with aeroshell design is that it will tend to
trap the heat generated by the on-board power supply and
instrumentation. As a result of this, thermal radiation shielding

would be required for the sensitive instrumentation and systems
and active cooling would be neccessary to maintain the
temperature of the spacecraft within an acceptable band. In
addition expendable surface-mounted telemetry equipment may
be required for tracking and navigation en route. This would

avoid opening doors within the aeroshell during transit for

deployment of subsystems which would introduce questions
about the integrity of the aeroshell during atmospheric passage.

It appears that the use of aeroassist will significantly
complicate the spacecraft design but it may also significantly
improve payload margins, perhaps by as much as 100%?.

Using the atmosphere to slow a vehicle at, for example, Mars
would greatly reduce the amount of propellant required for the
mission and thus the mass of vehicle which must be placed into

Mars orbit. Any mass reduction here would be valuable in that
an increase of lkg mass in Mars orbit would require about 10kg
extra mass in LEO?. In 1990 Ariane 4 was one of the cheapest

12
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launch vehicles available at a cost of over £3000/kg to LEQZ, so
the savings would be considerable.

Early proposals for a manned Mars mission2? envisaged
blunt nosed biconic configurations. The vehicle would be
controlled in much the same way as the Apollo re-entry
capsules. An off-set centre of gravity would cause the vehicle to
fly at a non-zero angle of attack, producing lift. Roll modulation
would be used for control.

The optimism of the times is perhaps reflected in the vehicle
concepts analysed. One design would have carried a crew of cight
and a 9100kg payload to Mars?® This contrasts with the ill-fated
1018kg (total mass) unmanned Mars Observer mission.

I.C.3. Plane Changing

The term orbital plane change is generally used to refer to an
alteration in the inclination of the plane, although it could
equally well be used to refer to an orientation change with or
without a concomitant change in inclination.

The ability to vary the orbital plane would be useful in
allowing a vehicle such as the Shuttle?? to rendezvous with
satellites in varying orbital planes or as Londond suggests it
could be used to establish a vehicle in an orbital plane which

does not pass through the launch site,

However, changing the orbit plane requires a large
characteristic velocity (AV). It is well known that the AV
required to achieve a 60" change in the orbital inclination is as
large as that required to place the vehicle into TEHO24.

London showed that these changes in inclination could be

achieved aerodynamically by passage of the vehicle through the
atmosphere. A retro-propulsive burn would slow the vehicle

causing it to dip into the atmosphere. During the atmospheric
pass the vehicle’s lift vector would be directed so as to produce

the required out of plane force and thus the required change of

i3




Chapterl

Introduction O'Neill

inclination, Once outside the atmosphere again a further rocket
burm would circularise the orbit.

The effectiveness of the atmospheric turn depends on the
point within the orbit at which it is effected. Walberg? shows
that a turn at one of the orbital nodes will franslate directly into
an inclination change, whereas a turn at the apex (highest
latitude) of the orbit merely rotates the orbit about the poles,
effecting no inclination change at all.

An important parameter in orbital plane changing is the lift-
to-drag ratio for the vehicle as this determines the speed loss due
to drag for any given change in inclination, Ai. This loss forms
the greatest part of the AV required to return the vehicle to
orbit8 after the pass and as such is a measure of the usefulness of
the aerodynamic manoceuvre in comparison to a purely
propulsive exoatmospheric manoeuvre. Fig. 1.C.3-1 shows the
ideal characteristic velocity required for a given inclination
change for both the aerodynamic manoceuvre (for a range of L/D
values) and the exoatmospheric propulsive manoceuvre (for the
single impulse case and the three impulse cases requiring two
and three orbital periods, P,).

As stated, the ability to change the inclination of the orbital
plane allows the insertion into orbit of equatorial satellites from
non-equatorial launch sites and rendezvous with a target when
the vehicle cannot be launched directly into the plane of the
target. It also allows some control of the inclination of the orbital
plane during an acroassisted manoeuvre. This ability may prove
particularly useful for supply missions to the International Space
Station Alpha (ISSA)} when construction is completed as it will
have an orbital inclination of 51.6° 25 in order to allow access to
the Russian launch sites.

Cuadra and Arthur?4 describe the plane change manoeuvre
as either an aeroglide or an acrocruise manoeuvre. In aeroglide
the vehicle is unpowered (during atmospheric passage), whereas
in aerocruise rocket thrust is used to balance aerodynamic drag
and maintain a constant altitude and velocity.

14
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Fig. 1.C.3-1 Ideal Characteristic Velocity for Changing Inclination
Replicated from London®

The ability to maintain a constant velocity is useful in
controlling the heating and pressure environments for the
vehicle and as Cervisi26 asserts this would facilitate the design
and control of both the manoeuvre and the vehicle.

I.C.4. Aerogravity-Assist

The aerogravity-assist (AGA) manoeuvre is an extension of
the gravity assist or “slingshot” manoeuvres used by the
Voyager spacecraft in their “Grand Tours” of the solar system.

In gravity-assist trajectories the vehicle is launched not
directly to the distant target planet, with its correspondingly large

15
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launch energy, but to a nearer planet which will require a much
lower launch energy.

The vehicle will use that planet’s gravity field to bend its
trajectory thus changing the direction and magnitude of its sun-
relative (heliocentric) velocity.

To do so propulsively would require a large fuel mass and
some means of transporting that fuel to its point of use, greatly
increasing the launch mass and launch energy requirement.
Instead the vehicle gains energy from the planet as its trajectory
is altered by the planet’s gravitational field. Fig. 1.C.4-1 illustrates
the effect on the vehicle’s heliocentric velocity, Vs, of rotating
the planet relative (planetocentric) velocity ‘vector, V., through
an angle Ay, called the bending angle. V, is the heliocentric
planetary velocity vector and primed quantities (e.g. Vg) are
values after rotation through Ay.

Fig. 1.C.4-1 Rotation of the planetocentric velocity vector

during an AGA manoeuvre

McRonald and Randolph?? state that the heliocentric
velocity change is directly proportional to the bending angle.

In aerogravity-assist the vehicle uses the planet’s atmosphere
to hold it within the gravity field for longer, enabling a larger
bending angle and hence a larger AV. Obviously some speed is
lost to the atmosphere of the planet but by using high lift-to-drag

16
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vehicles such as Nonweiler’s waverider concept?8 this loss can
be minimised.

AGA manoeuvres are likely to be employed where travel
times are long or launch windows are limited, for example the
Solar Probe or Pluto missions described by McRonald and
Randolph?7:29, or planetary missions to, for example, Saturn
and Jupiter. There remain many technical and technology issues
which have so far prevented the use of AGA, as well as the
understandable reluctance of the world’s space agencies to risk
using an untried and dynamically unstable3® manceuvre on
expensive deep space missions.

L.D. Dynamics and Control of

Transatmospheric Vehicle Motion

The dynamics of transatmospheric vehicle motion are usually
represented in polar co-ordinates for a vehicle travelling over a
spherical planet with a non-rotating atmosphere, and for ease of
illustration they are so represented here. Fig 1.D.-1 represents
ballistic vehicle motion for a single pass through an atmosphere
and consequently the motion lies entirely within the orbital plane.

The symbols are described in the nomenclature. It should be
noted that the flight path angle, y, is measured as positive away
from the planet. The forces acting on the vehicle are simply the
gravitational attraction of the planet and aerodynamic drag. The full
equations of motion for this system are given in Chapter II (eqn.s
IT.A.1-1:6) with the addition of aerodynamic lift.

The system is simple to analyse but difficult to control. The high
velocities associated with atmospheric entry and the accordingly
high pressure and heat loads make the use of aerodynamic control
surfaces limited if not impossible. Stabilising the motion in such a
system could be achieved through spin-vanes on the surface of the

Chapter I ntroduction O'Neill
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Fig. I.D-1 System schematic for an atmospheric pass

vehicle!4 (for slower entry speeds) or through reaction control
thrusters.

One method of drag-only control is described by Walberg? for
use as an orbital transfer or aerobraking vehicle. The inflatable
ballute concept is essentially a balloon at the front of the entry
vehicle which determines the drag characteristics of the vehicle.

By varying the internal pressure of the ballute a range of ballistic
coefficients is possible and this allows limited control over the
vehicle’s trajectory. Unfortunately control authority is somewhat
limited, but the concept is light for an aeroassisted orbital transfer
vehicle (AOTV), and the payload gains possible from the use of
aeroassist in the orbital transfer problem may yet lead to its use.
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Vinh et al.3! present a drag-only control scheme for an optimal
orbital transfer manoeuvre. No practical method of
implementation is given rather it is assumed that the vehicle is
capable of modulating its drag coefficient between limits. The
results obtained for an aeroassisted orbital transfer are described as
excellent but an order of magnitude variation in the drag parameter
is required.

For the higher speeds associated with aerocapture, ballistic
vehicle control has been all but ignored and lifting vehicles seem to
be the only viable option for controlled aerocapture.

The benefit of adding aerodynamic lift to the control problem
can be seen when we consider that a lifting vehicle may mimic a
ballistic entry by rolling the lift vector perpendicular to the orbital
plane thus removing it from consideration for motion within that
plane. If we then roll the vehicle away from the perpendicular we
produce a component of lift which acts within the orbital plane and
in this way we achieve a degree of control over the radial

acceleration acting on the vehicle and consequently the altitude
(fig.s 1.D-2a&2b).

Fig. L.D-2a Fig. LD-2b

Aerodynamic lift acting on a transatmospheric vehicle
2a) Orbital Plane: End Elevation
2b) Orbital Plane: Plan view
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Such a control allows us to widen the range of entry states from
which we can achieve an acceptable end state. This range or error
margin is known as the entry corridor (fig. I.D-3).

Fig. .LD-3 Schematic representation of the entry corridor concept

Graves and Harpold1? define the concept of an entry corridor,

"The entry corridor is defined as the set of space trajectories for which
aerodynamic capture within the atmosphere of the earth [sic] can be achieved
and for which entry-trajectory control can be accomplished without exceeding
either flight-crew or CM [command module] stress limits. Therefore, definition
of the corridor limits includes four basic considerations: aerodynamic capture
within the atmosphere, the aerodynamic load factor, aerodynamic heating, and
landing-point control.”

This defines the entry corridor as a set of trajectories which lie
between two extremes, the overshoot and the undershoot.

e overshoot - the entry is too shallow and consequently the vehicle does

not lose enough energy to achieve capture and continues out of the target
sphere of influence.

e undershoot - the entry angle is too steep and the vehicle impacts on the

surface.

It should be noted that these definitions assume there are no
structural or material limitations.
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The difference between these two extremes is referred to as the
corridor width, and this is usually given in terms of a range of
atmospheric entry angles. A fuller discussion of entry corridor
concepts and definitions is given in Chapter V.

The introduction of an out of plane force ( Lsin o, fig.L.D-2a) will
also cause changes in the orbital plane. Where this is undesirable
frequent roll-reversals (redirecting of the lift from one side of the
orbital plane to the other side) can be used tc minimise any lateral
movement.

Tauber32 describes the benefit of roll-modulated lift control for
aerocapture over alternative methods such as pitch-modulation, as
having a full range of control values from maximum positive to
maximum negative lift (along the radius vector), increasing the
entry corridor. In addition the physiological constraint of

deceleration loads favours bank-angle modulation over pitch-
modulation in that the crews tolerance to g-loads is at its highest
when the load is applied perpendicular to the upper torso. It should
also be noted that, as stated above, aerodynamic surfaces cannot be
used during aerocapture so control is effected through reaction
controls, and consequently requires fuel. As Tauber goes on lo state,
the amount of fuel used to implement roll control is significantly
less than that which would be required to maintain off-trim pitch
angles.

Control proposals for many aeroassisted manoeuvres are based
on non-linear feedback control (Chapter II). A feedback controller
uses a set of reference data in conjunction with current state

evaluations to assess the vehicle’s departure from the nominal or
ideal trajectory and implements an appropriate control to cause
convergence of the actual state to the reference state.

Mease and Kremer3? present a non-linear feedback derivative of
the current Shuttle entry guidance scheme which shows
improvement over the current control, albeit limited within the
present operating domain. Current shuttle entry guidance follows a
drag reference trajectory and Mease and Kremer show that it is, in
fact, similar in its derivation to non-linear feedback control.
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LE.

Roenneke and Markl134 present a similar controller following a
drag-vs-cnergy reference.

Non-linear contrel has also been shown to be useful for
acroassisted orbital transfer (AOT)3, and Lee3¢ presents an optimal
solution for AOT. A deterministic feedback law has been developed
by Mease and McCreary?! for control of atmospheric skip
trajectories, which uses the desired apoapsis state as its reference
and analytically recalculates the trajectory which will result in that
state at each time point.

Given the uncertainties associated with high speed atmospheric
passage it is perhaps not surprising that the use of optimal control is
somewhat limited. Meyer et al.37 study fuel-optimal bank angle
control concluding that impulsive bank-angle control is possible
with predictor corrector techniques adjusting the magnitude of the
impulses to compensate for atmospheric uncertainties, navigation
errors etc. Even here the optimisation process can only try to
optimise the trajectory from the current vehicle state necessitating a
fuel safety-margin. Given that any practical implementation will
have a fuel safety-margin to accommodate the aforementioned
uncertaintics it is questionable whether there is anything to be
gained by attempting to optimise the control in any sense other
than robustness.

Simulation and Current Work

Commercially available packages such as Orbital Workbench38
and DAB Ascent3? have been written to provide ready-made
analysis tools for space vehicle analysis. Whilst these packages
perform their tasks well they are limited in the tasks they can
perform. The author of DAB Ascent readily admits that his work is
a three degree of freedom simulation and does not model rotational
dynamics, nor does Orbital Workbench possess such a capability. In
addition, control in Orbital Workbench is effected through
magnitude and directional control of thrust alone, with no
capability of modelling lifting bodies, although it will model a
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change in the drag parameters such as that caused by the opening of
a parachute.

Propagation in Orbital Workbench can be carried out in a
number of ways from Keplerian models to numerical integration of
vector models. This latter approach is also used in DAB Ascenf and
POST (Program to Optimize Simulated Trajectories)¥0. Like DAB
Ascent, POST is a three of freedom program, which simulates and

optimises point-mass trajectories. There is also a six degree of
freedom version of POST.

The author’s impression throughout has been that the vast
majority of computer simulations were either purpose written for
the work presented, or had been written prior to the work either by
the respective authors or at least at that place of work. This suggests

that simulations specifically tailored to the research at hand are
easier to work with.

Part of the work presented here details the development of a
generic six degree of freedom aerospace vehicle simulation, genL,
which is capable of simulating any type of trajectory or manoeuvre
and can easily incorporate unique control strategies. In order to
remain as generic as possible the simulation incorporates a solar
system model to allow analysis of inferplanetary trajectories and
aercassisted manoeuvres at other planets.

As mentioned previously, the Apollo re-entry strategy employed
a double-dip manoeuvre to alleviate the high pressure,
deceleration, and heat loads experienced during re-enlry. Graves
and Harpold12 describe the phases in detail, and it is interesting to
note that any predictions required during the motion are made
analytically, The use of analytic predictions is undoubtedly
indicative of the limited computing power of the times, but its

successful use shows that effective control does not require high-
performance computers.

The usc of analytic predictions as a basis for both modelling the
motion of transatmospheric vehicles and controlling said motlion is
investigated here, firstly in the context of the launch and re-entry
problems and then for aerocapture in the Lunar return problem.
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Chapter II.

SIMULATION

ILLA. Introduction : genlL

“There is a car that has more computing power than it took to take
man to the moon. "1

So we are told. This is more a reflection on the scale of the
achievements of the Apollo program than on the car but it makes a
valid point. Year by year, computing power advances in leaps and
bounds, the current journey from product birth to obsolescence

being around three years. These advances have, in many cases,
outstripped requirements, and consequently there is a great deal
more flexibility in programming style available to researchers. The
rapid increase in processor speeds and the corresponding reduction

of program run times allows the researcher to move away from
pure efficiency of code towards modularity and ease of use.

The modular appreoach allows the programs to be written in a
more clearly structured manner and makes upgrading of programs
simpler. Rather than rewriting large portions of code to incorporate
an improved system model the model is broken down into sections
and the appropriate sections upgraded. For example, in the genL
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spacecraft simulation developed here, there is a module which
evaluates the force of gravitational attraction acting on the vehicle
towards the Earth. To change from a spherical gravity model to a
sixth-order oblate Earth gravity model requires nothing more than a
change in the call statement as it is the value of the gravitational

potential which differs rather than its interaction with the rest of
the system. This approach fits neatly with the Cartesian co-ordinate
system used in genl. which is essentially a modular way of thinking,.
By breaking down the system into suitable modules it becomes
conceptually simpler and easier to adapt for differing scenarios.

The genL simulation makes use of this approach to
programming whilst introducing a novel concept for the
propagation of vehicle motion; propagation within an arbitrary
reference frame.

Using this approach the equations of motion (Newton II} are
applied to the vehicle within some undefined Cartesian reference
axes set which will represent the current “working” frame. For
example, in the trans-earth trajectory the vehicle moves from the
Lunar sphere of influence into the Terrestrial sphere of influence,
In genL the motion of the vehicle will be propagated firstly in

selenocentric co-ordinates and then geocentric co-ordinates,
switching between the two at the interface of their spheres of
influence.

The frame of reference within which we are working then
becomes a “working” frame rather than a fixed one. This approach
allows force and moment calculations to be made in the frame most
appropriate to them, thus minimising computational errors. These
interactions are then transformed into the working frame and their
combined effects analysed through Newton II. The use of an
arbitrary reference frame is discussed in greater depth later in this
chapter.

Genl is a generic spacecraft simulation program written in
vector formulation for implementation in Cartesian reference
frames.

The simulation incorporates a simple but accurate model of the
Solar System called Holst. Holst models the motion of all nine
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planets, the Sun and the six major moons (Titan, the Galilean
Moons of Jupiter and our Moon). The gravitational effects of the
other moons are considered too small to warrant consideration as

are the major asteroids, although inclusion of further bodies into
the simulation is quite straightforward. These bodiesareincluded to
allow analysis of outer planet aerocapture and interplanetary
trajectories. From Holst arc obtained the position and velocity

vectors of the planets in the working reference frame.

Propagation of the motion of the vehicle requires knowledge of
the forces acting on it, principally gravitational, aerodynamic and
control forces:

For the analysis of transatmospheric motion genl has four
different atmosphere models:

e Exponential
* US-62 standard atmosphere
¢ Oblate Earth exponential atmosphere

¢ PBiased sine waves

The biased sine wave modecls are not actually models in themselves
but provide perturbations to the nominal values derived from one
of the other models. Each of these atmosphere models is described
later in the text (section ILC.2).

Evaluation of the aerodynamic forces acting on the vehicle is
made using the standard expressions and reference frames for
aerodynamic forces and moments and transforming these into the
working frame.

The modelling of the Terrestrial gravitational field is done in
one of two ways:

» Standard Newtonian inverse square model

« 6"-order geoid model with tesseral and zonal harmonics.

The inverse square model is adequate for the majority of scenarios
particularly hypervelocity transatmospheric motion. The higher
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order model is more useful for long-termn orbit analysis or
transatmospheric motion over a particular area of the Earth, e.g.,
shuttle re-entry to a Janding at Kennedy Space Center.

The majority of the motion analysed in the chapters following is
unpowered and consequently no propulsive control forces are
applied for these analyses. Where control forces are applied they
takc the form of a force vector in body-fixed axes.

In this chapter we examine some of the characteristics and

capabilities required of a transatmospheric motion simulation and
detail the way in which they are incorporated into the development
of the generic spacecraft simulation genL.

ILA1. Modelling Requirements

The standard equations of motion as used in transatmospheric
vehicle dynamics are, for a gliding vehicle42,

av __pV'SC, u

. — <5 8i IL.A1-1
dt 2m 2oy
7L 2
Vfl-Z A Li— CosY + BV 3G, s ILA.1-2
dt A 2m

dr .
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= iny
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where the symbols are described in the nomenclature.

Using these expressions the motion of a vehicle orbiting a
planet may be modelled in terms of its radial displacement from
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the centre of the planet, orbital velocity, spherical polar angles
(¢, 0, effectively latitude and longitude measured with respect to
the initial orbit plane) and flight path angle.

This system of equations makes use of certain assumptions,
viz.,

e a non-rotating atmosphere

e spherical non-rotating planet

» constant vehicle lift and drag coefficients

¢ unpowered flight

» fixed alignment of the vehicle with the flight path.

These are all standard assumptions and indeed they are all
used at some point in the guidance work presented later.
However, the development of a robust controller is somewhat
different from the development of a high-fidelity numerical
simulation. The capabilities of the simulation are limited if this
formulation is used. Certainly corrections can and are made to
remove these assumptions43:44 but these often involve
different formulations of the equations in terms of the orbital
elements and perturbations to these equations. The
implementation of these equations in a computer simulation
would be straightforward enough but would often require
completely replacing the equations of motion to include a new
effect.

In looking for alternatives to this approach we must first
consider the potential requirements of a high-fidelity numerical
simulation suitabie for Earth-orbiting, interplanetary, and trans-
atmospheric vehicle motion.

¢ Propagation of the motion of the vehicle in a suitable
reference frame.
(Section 11.B.2)

e Derivation of the orbital elements.
The position and velocity may be expressed directly in

Cartesian co-ordinates and propagation of the motion may be
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carried out in such a reference. However, the orbital elements
provide a standard, easily understood data set and

knowledge of these would still be preferred.
{Section ILB.2.1 and Appendix IIT)

e Gravitational field model.

The Earth and most of the other planets are not perfect 5
spheres and while it is often convenient to consider them as

such this assumption may not always prove valid.

(Section I1.C.1 and Appendix lib)

e Solar and Lunar gravity model.
(Seetion TL.C.1, ILC.3, and Appendix I)

¢ Terrestrial atmosphere model.
The truc atmosphere is neither non-rotating nor exponential

and the consequences of this need to be considered.
(Section I1.C.2)

* Modelling of vehicle dynamics and aerodynamics

Tncluding rotational motion.
(Sections I1.B.2.2 and ILD)

» Ease of upgrade.
The ability to incorporate additional physical effects with
minimal additional programming complexity is desirable.
(Section I1.B.2 and below)

Ease of upgrade is perhaps the most important in terms of the
design and development of genL, or indeed any simulation. In
defining the approach taken in writing genL, this concern also
ensures ease of use.

As will be discussed later, the clearest presentation of a

problem is often provided by data in a form other than that
which it is easiest to work with. For example, the position of a
satellite may be most clearly visualised in spherical polar co-
ordinates as it is visually referenced to the spherical planet it
orbits. However, as will be shown, the most convenient
reference in which to propagate the motion is Cartesian, Hence a
transformation of co-ordinates is required to obtain the data in
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the desired format. The Cartesian vector formulation employed
to facilitate the upgrading of the simulation is also the most
convenient for conversion between reference sets.

The other concerns and their incorporation into the generic

spacecraft simulation genl are discussed in the sections shown.

II.B. The Orbit in Space

IL.B.1. Introduction : Working Frame and Origin Switching

When we consider the motion of a body around a planet a
convenient reference point for the motion would appear to be
the centre of the planet, as this is the focus of the orbit.

If we then consider the motion of a vehicle in, for example, a
trans-lunar trajectory it becomes less clear where we should
locate the origin of the system. The barycentre of the system
would seem to be a suitable choice but there are also arguments
for the use of the Earth, Moon or switching between the two.

The description of motion about the barycentre becomes a

solution to the three body problem#4, and the inclusion of
aerodynamic effects (and hence the need to evaluate relative
velocities) to this model would complicate things further still.

The possibilities for errors are huge and the ease with which
they might be tracked down greatly reduced by the complexity of
the system and the expressions.

Other effects we might wish to include range from the
gravitational cffect of the Sun and other planets, to an oblate
Earth model, or Solar Radiation Pressure (SRP).

The increasing complexity of the system suggests the use of
vectors is essential in maintaining a clearly constructed problem.

This then defines the type of reference frame, but leaves the
issue of which frame is most suitable unanswered.
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In genl the factors influencing the vehicle’s motion are
evaluated in the Carlesian reference frames most appropriate to
them. The forces of lift and drag are most conveniently
evaluated in body axes, the gravitational force due to the Sun in
heliocentric axes and so on. In this way the forces (and

moments) acting on the vehicle are calculated with minimal
error. What remains now is to transform these forces into a
single frame in which the motion of the vehicle may be
propagated using Newton 1L

As stated above certain reference origins appear to lend

themselves to certain problems. In genl the choice of frame is W

I decided by a simple algorithm that determines which of the

celestial bodies is currently exerting the greatest gravitational

effect on the vehicle. This defines the current working frame or
the ‘planet acting as origin” (PAQO).

Switching between frames (‘origin switching”) then occurs

when the vehicle passes from one sphere of influence to

another. The gravitational effects of the other bodies are

evaluated in their own reference frames, e.g. the effect of the
Earth is evaluated in a geocentric frame, the moon in a
selenocentric frame, and so on. This follows the most
appropriate frame concept described above and transformation
to the PAO (working) frame ensures that numerical crrors are
minimised for the most significant gravitational contribution.
Position and velocity vector integration errors are also
minimised as in the majority of cases the PAO will be the

geometrically closest body.

The working frame is then the frame of reference in which
propagation of the motion of the vehicle is actually carried out.
It can be seen, however, that the PAD may change during a
simulation and so propagation is actually carried out in an
undefined reference set into which is fed the current working
data. In effect the integration routine blindly integrates the state
vectors it is given with the appropriate conversions being made

at the point of origin switching.
Fig. I1.B.1-1 is a flowchart representation of the working
frame/origin switching scheme.
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Input

Determine "working"
reference frame

Force Evaluations

Geocentric Selenocentric Body
axes axes axes

Transformations

Force Summation

Equations
of Motion

Propagate
Motion

Output

Fig. I1.B.1-1 Simplified flowchart showing the operation of the “working” frame co-
ordinate approach. State 2 will be given in the current working frame as determined by the
sphere of influence calculations. Changes of working frame require transformation of input
variables from the original working frame to the new.
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As is shown, once the influencing forces have been evaluated
they are transformed into the working frame where vector
summation produces the global furce vector used in the
equations of motion.

In this way a previously unmodelled effect, such as SRP, can
be introduced into the simulation with no change in the existing
code other than the introduction of a new term to the force
summation. This approach also allows effects to be “turned on”

or “turned off” as required without affecting the remainder of
the simulation by simply removing them from the appropriate
summation.

II.B.2. Co-ordinate Systems

There are a number of approaches to defining the position of
a body, natural or artificial, in space. Those currently in use are
there because of their suitability to astrodynamics. The choice of
system depends on the position of the observer, or desired
reference location. This might be a point on the surface of a
planet, the centre of the planet or of the sun, or of the barycentre
(centre of mass) of a planet-moon system.

A suitable system could be devised for each of the cases
mentioned but whilst the majority of the information required
may be best presented in the reference system used it may be
more conveniently updated in another reference and it is often
more useful to express some quantities in another system.

For example, for a vehicle travelling between the Earth and
Moon it might secm appropriate to express its position in terms
of a barycentric co-ordinate system for the majority of the
journey, but it is clearly more useful to know the position
relative to a given body when the vehicle is close to it. Even if a
geocentric reference system were used we would want to know
the position of the vehicle relative to the moon once it was in

the lunar sphere of influence.
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The conversion of data from onc reference system to another
can be a complicated and laborious process and this concern
assists in choosing a co-ordinate system in which to work.

The other major consideration in choosing an appropriate co-
ordinate system is how best to propagate the motion of the

vehicle. This will depend largely on the type of motion to be
studied.

As stated above, the gesL simulation was intended to be
suitable for use in all types of mission analyses. It was necessary,
therefore, to use a co-ordinate system which would facilitate
simple changes of reference, both for computational and
conceptual simplicity.

We will now consider some of the references which could be
used and explain their place within the simulation where

appropriate.

ILB.2.1 The Ecliptic System and the Orbital Elements

Observation of the Sun from Earth reveals that it appears to
progress eastwards against the celestial background at the rate
of around 1°/day. It takes a year for the Sun to trace out this
path, the ecliptic, and return to its starting point. The path of
the ecliptic lies in the plane of the Earth’s motion around the

Sun which is hence named the ecliptic plane.

The ecliptic plane is the basis of the reference system of
orbital elements used to describe the orbits of all the Sun-
orbiting bodies in the solar system as the majority of these
bodies follow orbits which lie at small inclinations to the
ecliptic, with the notable exception of Pluto. A similar system
of clements is used for planetary satellites, with the

equatorial plane standing in for the ecliptic.

The ecliptic system of co-ordinates itself comprises the
two quantities ecliptic latitude, B, and ecliptic longitude,
A(fig. TLB.2.1-1).
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Figure I1.B.2.1-1 Schematic of ecliptic system of co-ordinates

Ecliptic longitude is measured eastwards of the First Point of
Aries, or vernal equinox, a fixed point in the celestial sky.
Ecliptic latitude is measured north or south of the plane of
the ecliptic.

This system of co-ordinates is simple to use and
visualise but defines only the position of a body in space. To
define the orbit and the position of a body it is customary to
use the elements of the orbit.

Figure I1.B.2.1-2 shows a schematic orbit showing the
orientation of an orbit and the angular elements used to
define a position within that orbit relative to the vernal
equinox in the ecliptic plane.
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Fig. I1.B.2.1-2 Angular orbital elements

Referring to fig. I1.B.2.1-2 the first three elements are:

e Q, the longitude of the ascending node.
The nodes (ascending, N, and descending, N’) are the points at
which the orbital path crosses the ecliptic plane. £ is measured
eastwards along the ecliptic plane from the First Point of Aries.

e j, the inclination.
The inclination of the orbit is the angle between the orbit plane
and the plane of the ecliptic.
Together £ and i orientate the orbital plane in space.

* @, the longitude of periapsis
This defines the orientation of the orbit within the orbital plane.
@ is measured along the ecliptic from the First Point of Aries to
the ascending node and then along the orbit plane to perihelion,
such that 0 =Q+ @.
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These elements define the orientation of the orbit in space
it remains now to define the nature of the orbit.

The motion of one body about another, under only the
force of their mutual gravitational attraction will be a conic
section. The standard orbital elements assume an elliptical
orbit and the next two elements describe that ellipse: with
reference to fig. I1.B.2.1-3 they are,

a, the semi-major axis.

* ¢, the eccentricity.

Fig. I1.B.2.1-3 The elliptic orbit plane

The final element defines the time when the body was last
at periapsis (A).

e 7, the time of periapsis passage

Together with the current time this defines the present
position of the body within its orbit.

These are the standard orbital elements which in addition
to defining the position of the body in space, are also used to
define the body’s orbital plane, its orientation, and the
position of the body within that plane.
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The orbital information presented in this format is highly
descriptive and easily interpreted. As such it is desirable to
have at least some of this information available even when
the orbit is not elliptical. Propagation of vehicle motion could
be carried out through propagation of these elements then.
However, this would require a separate expression for each
element and perturbations due to atmospheric passage
require additions to these expressions.

In addition, the orbital elements are best used for
perturbation problems, long-term orbit decay for example,
where variations are slow. This makes them unsuitable for
transatmospheric motion although again the inclination of
the orbit in particular is still a useful quantity to know.

King-Hele4? derives a number of relations for changes in
the orbital elements for small orbital eccentricities,
atmospheric drag, atmospheric drag in an oblate atmosphere,
meridional winds, oblate Earth gravity models, and so on.
These demonstrate the increasing complexity of the
mathematics, conflicting with the design goal of a low-
complexity easily upgraded model.

As a basis for a numerical simulation therefore, it is much
more complicated to implement than would be desired.

It would seem to be more convenient to model the
vehicle motion in one simple set of co-ordinates and derive
the orbital elements quantities from them.

Cornelisse?s provides relations for obtaining the orbital
elements from both rectangular (Cartesian} co-ordinates and
spherical co-ordinates, though the vector formulation used
by Weisel46 is by far the clearest and simplest to implement.

The argument for using Cartesian co-ordinates is

presented in section I1.B.2.2 following.
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11.B.2.2 Vector Formulation in Cartesian co-ordinates.

Vector analysis fits neatly to the modular philosophy used
in developing genL by allowing us to consider the motion of
the vehicle as the sum of the three component directions.
This partially solves the problem of increasing complexity as
the inclusion of a new piece of physics, such as solar radiation
pressure, therefore requires simply the evaluation of its effect
and inclusion of each component (transformed into the
working frame of reference) in the appropriate vector sum.
Effects such as different atmospheric models are incorporated
directly into the simulation without the need to replace the
propagating equations.

The motion of the body then comprises six parts; three
rotational and three translational. Each degree of freedom
(fig I1.B.2.2-1) is treated separately so that the motion of a body
along, for example, the x-axis is determined solely by the
forces, or force components, along that line of action, and
similarly the rotational motion about the x-axis is
determined solely by the torques, or moments, acting about it.
This last consideration is important in that the rotational
rates, p,q,r, are not considered in the orbital elements or in
the standard astrodynamic equations of motion given above.

fig. I1.B.2.2-1 : Cartesian reference frame showing p,q,r rotational directions.
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Using this formulation we reduce thc translational
motion of the vehicle to relations of the form

S F = m‘g{— IL.B.2.2-1
where i=x,y,z refer to the co-ordinate displacements along
the reference axes.

As stated before each force is evaluated in the reference
frame mosl appropriate to it. The summation however, is
always carried out in the current working frame.

The beauty of this formulation now becomes clear. In
order to introduce a new effect to the simulation, for
example, onboard propulsive systems, we have only to obtain
the components of the applied force in each of the axial
directions (in this case body axes), transform these to the
working frame and add to the summation term ZR. The

basic formulation remains unchanged.
For example,

Y F=F_ +F,  i=xyz I1.B.2.2-2
would cover the basic forces acting on the vehicle.

Fig. 11.B.2.2-2 illustrates the incorporation of a new effect
{(in this case solar radiation pressure).

A new routine to evaluate the magnitude and direction of
its effect is incorporated. The resulting vector transformed to
the working frame and the components added to the force
summation.

This approach facilitates the aforementioned modularity
in the simulation, with the introduction and removal of
various influences simply a case of introducing or removing

the appropriate term from the summation.
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Fig. I1.B.2.2-2 Schematic describing incorporation of

a new force effect into genL. (See also Fig. I1.B.1-1)

The rotational motion of the vehicle is described by the

standard moment equations

(1, - 1.)ar +I.(F+ pg)+ M,

p= I

. (L =L+ 1 (P +p?)+ M,

q= :
ik

AL (I.-1,)pa+1.(p+aqr)+M,

I

=

I1.B.2.2-3a

I1.B.2.2-3b

I1.B.2.2-3¢

which determine the body axes angular accelerations, p,q,r
from the angular rates, p,q,r, the moments, M M .M, and

the vehicle inertia matrix.
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The variables p.q,7, and p,q,r refer to the x,y,z axes
respectively,

Angular rates about the working frame axis sct could be
used, but it is more convenient to use the body axis set. This
set provides a consistent reference set throughout the motion
which will suffer minimal numerical errors in propagation.

The description of the vehicle’s position and orientation
with respect to some Cartesian reference frame is given by six
variables; x,y,z, describing the displacement from the origin,
and ¢,6,y, describing the angular transformation from the
reference orientation (working frame) to that of the vehicle
{body axes).

The angles ¢,6,y are termed roll (bank), pitch and yaw
(azimuth), respectively, and the symbol ¢ may be used in
place of ¢ to denote the bank angle. It remains to relate the
orientation (Euler) angles, ¢,8,y, to the rotational rates p,q,r
about the vehicle axes. This is done through the kinematic
relations, viz.,

p=—lsin0+¢ ILB.2.2-4a
g = {cosBsin g+ Ocos ¢ I1.B.2.2-4b
r = Yrcos Bcos ¢ — Osin g ILB.2.2-4c

often used in the mverse form

W =(gsin¢g+rcos¢)secd I1.B.2.2-5a
0 =gcosg ~ rsing 11.B.2.2-5b
¢ = p+tan B{gsind + rcos @) 11.B.2.2-5¢

We now have a complete set of relations which describe
the propagation of angular and translational motion for the

vehicle.
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ILB.2.3  Reference Origins and Co-ordinate Transformations

Having established how we are to represent the spatial
displacement and orientation of the vehicle it remains to
establish with respect to what we are evaluating these
variables.

It would be simple enough to define the Sun as the centre
of the system and orientate a right-handed axis set, the xy
plane lying within the plane of the ecliptic such that the x-
axis, for example, is directed towards the First Point of Aries,
and the z-axis “North” from the ecliptic. This system would
be simple to implement and could be used for the analysis of
any mission within the solar system without need for
modification.

Now consider a lunar return mission and the type of data
that would be required. We would certainly want to know
the altitude of the vehicle above the surface of the Earth

during re-entry and probably for the entire mission.
Similarly, there would be a requirement for data with respect
to the Moon.

If our working reference frame is heliocentric, in order to
obtain Earth or Moon-relative positional (or other) data we
would have to transform the information from heliocentric
to geocentric or selenocentric co-ordinates.

It can be appreciated that the difference in the position
vectors of a near-Earth vehicle and the Earth itself will be
small if both are measured relative to the Sun. Numerically
it might even be considered insignificant, and numerical
accuracy would certainly be lost if evaluation of the vehicle's
orbit about the Earth were to be calculated in a heliocentric
frame. Conversely, the displacement from the vehicle to the

geocentre will certainly not be insignificant if measured with
respect to the geocentre.

In terms of numerical accuracy then, it would make sense

to work with a reference originating at the centre of the
nearest celestial body. However, there is another
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consideration. The celestial body which is geometrically
closest to the vehicle may not have the greatest gravitational
effect on the vehicle. In order to minimise the loss of
accuracy in the largest gravitational attraction during co-
ordinate transformation it might seem more appropriate to
use that body as the current reference origin.

Given that in the majority of cases the body exerting the
largest gravitational effect on the vehicle will be the
geometrically closest the gravitational concern is allowed to
override the geometrical and a reference set with origin
located at the centre of the celestial body exerting the largest
gravitational attraction on the vehicle is used.

In this way the body which has the greatest effect on the
motion of the vehicle in reality also exerts the greatest effect
in the simulation.

In order to achieve this a gravitational sphere of influence
calculation is used to determine the planet (or moon) to act as
the origin of the reference frame, The sphere of influence of a
celestial body is an abstract region of space within which the
gravitational influence of the body can be said to
predominate over the influences of any other bodies. After
Cornelissed5, the sphere of influence of a planet or moon is
found as

245
R, = ?‘;;,,[23""] IL.B.2.3-1

ﬂlp

where R denotes

$01

the radial displacement from the body to its parent (for a

is the radius of the sphere of influence, r,,

planet this would be the Sun, for a moon its parent planet),
and m, and m, the masses of the body and ils parent
respectively.

This then forms the basis of the switching routine,
employed within the simulation which checks for the
current sphere of influence and, if a change has occurred
from the previous time step, carries out the appropriate co-
ordinate transformations. The actual integration variables are
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declared with respect to an undefined reference and a
“translation” routine supplies the values appropriate to the
current reference frame.

I1.C. Planet models

II.C.1. Gravitational

I1.C11 Introduction

The corner stone of astrodynamics is undoubtedly
Newton’s Law of Universal Gravitation. Put simply, it statcs
that “every particle of matter in the universe attracts every
other particle of matter with a force directly proportional (o
the product of the masses and inversely proportional to the
square of the distances between them”44,

Mathematically this becomes,

II.C.1.1-1

where F is the force of gravitational attraction,M and m are
the two masses, r is the separation distance of the two mass
centres, and G is an empirical constant of proportionality.

Whiist this law is universally applicable, it is often used
in conjunction with the assumption that any distributed
mass system may be considered equivalent to a point mass.

If the Earth were spherical and homogenous in
composition, this would be a valid assumption since the
resulting gravitational field would indeed be uniform.

Unfortunately this is not the case, and the shape of the
Earth is closer to an oblate spheroid with the equatorial
diameter of our world some 43km greater than that between

the poles.
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Since the Earth is not an exact sphere it follows that the
normal to the surface will not, in general, follow the radius
vector to the geocentre. This “deflection of the vertical” is
small, of the order of 107 mrad, but may be significant in
evaluating the motion of an orbiting vehicle as it is along the
normal to the surface that the gravity gradient is a
maximum. Consequently the assumption that the
gravitational attraction of the Earth acts towards the
geocentre will not prove valid for all analyses.

A close approximation to the geopotential surface of the
Earth, the geoid, is an ellipsoid of revolution. The shape of
the geoid is that of the mean sea-level surface of the Earth. As
an equipotential surface, the geoid will possess an irregular
shape, reflecting the irrcgularities in the composition of the
Earth’s various layers.

A pgravitational model which takes account of these
irregularities would be useful in the analysis of long-term
orbital motion or in considering accurate transatmospheric
motion above particular areas of the Earth.

I.C12 Application to the Simulated Environment

The force of gravitational attraction is, by Newton’s third
law, independent of which body we look at. The accelerating
effect of that force is, however, dependent on the body.

From application of Newton’s second law the
accelerations on each mass are found to be directly
proportional to the mass of the other, ie., from eqn. II.C.1.1-1

ILC.1.2-1a

H.C.1.2-1b
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Gm

For a typical Earth orbiting satellite the ratio —-, the
r

accelerating effect of the satellite on the Earth, is of order
10% kg /m*, which is generally considered insignificant,
particularly in comparison to the effect of the Moon which is
of order 107%kg/m*. In contrast the acceleration on the
satellite due to the Earth is of order unity.

The effects of the other bodies in the solar system deserve
similar consideration. A deep-space vehicle performing a
swing-by at Jupiter or Saturn, for example, may be affected by
the gravitational attraction of their moons, or for long
duration FEarth orbits the effect of the solar and lunar
gravitational fields may warrant consideration, depending on
the orbital altitude.

GenL includes the option of incorporating the effects of ali
nine major planets, the Sun, the terrestrial Moon, the
Galilean Moons of Jupiter and Titan, Saturn’s largest moon,
allowing simulation at any point within the solar system.

IL.C1.3 Gravitational model

As the area of prime interest in the work presented here is
the motion of a vehicle close to and within the terrestrial
atmosphere, the Earth’s gravitational ficld is modelled as a
sixth order oblate spheroid. The gravitational fields for the
Sun and Moon are modelled using the simple inverse square
law because their fields are not as well known and the effects

of any asymmetry they possess will be muted by their distance
from the area of primary concern. Even further away, in a
gravitational sense, the remaining planets in the solar system
are available in the full simulation as are the Galilean moons
and Titan.

The increased computational load resulting from the
inclusion of a further thirteen bodies into the simulation is
significant, with their exclusion halving the run time of the
simulation. Consequently the transatmospheric work
presented later concerns at most the four body Vehicle-Earth-

Sun-Moon system.
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The sixth-order gravity model is the Goddard Earth Model
[.2 (GEM-L2) which is based on satellite observational data43.
The form of this data ranges from photographic to Doppler
and radar, and some models derived from these analyses are
reliable up to order 36. This 36tk order model, however,
requires 1296 coefficients and would obviously require a
larger amount of computing power, especially given the
requirement for updating the gravitational attractions every
(sometimes very small) time step. It was decided therefore,
that where a higher order gravity model were required a sixth
order model would be sufficiently accurate whilst also
retaining a reasonable program run-time.

As we know the Earth is not spherical, but if we assume
for the moment that it is symmetrical about the polar axis
then we may look at the zonal harmonics of the Earth’s
gravitational potential. These are terms in the expression for
the Earth's geopotential which represent a modification to
the shape of the Earth from the ideal sphere. The second
harmonic, for example, represents the effect of the Earth's
flattening at the poles, making its cross-section look more
elliptical than circular, the third tends towards a triangular
shape, the fourth a square, etc. Some of these harmonics are
more evident in the shape of the Earth than others and
consequently each is modified by a constant J,, where n is
the order of the harmonic. It is these constants that are
evaluated from the satellite data.

The Earth is, however, not perfectly symmetrical about
the polar axis either and so we require a second set of
harmonics, the tesseral harmonics. Tesseral harmonics are
dependent not only on latitude but also on longitude. With
these included in the expression for the Earth's geopotential,
the resultant form is given below (egn. ILC.1.3-1).
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1~ i J, ({f—)" P (sin )+

H=2

-
il
- =

H.C.1L.3-1

[

{ i
2.2 (—@] P!'(sin ){C,, cosmA +5,, sinma }N,,

12 =\ F

where the J, terms represent the zonal harmonics, and the
C,, and §,, terms represent the tesseral harmonics.
P,(z) is a Legendre polynomial of form

| 1 d“(zz—l)"
P = II.C.]..S"z
057"

and P;'(z) a Legendre polynomial of form

2 M2 e, 2 _11
me ( Z) - (1 2?}3 d d(zsz _..J...A II.C.1.3~3

It can be seen that P,(z) is simply P"(z) with m=0 and n=1.

Values for the constants are given in Appendix VL

I1.C.2. Atmosphere

I.C21 Introduction

The passage of a body through an atmosphere produces
thermal and pressure loadings on the body which can affect
not only the path the body will follow but also its survival.

Within the subsonic/supersonic realm of aeronautics the
major effect is that of the distributed pressure loading,
although thermal effects cannot be neglected for higher
velocity vehicles {eg. Concorde). Control of the vehicle is
achieved through the use of aerodynamic control surfaces

which effect alterations in the local flow field, modifying the
forces and moments acting on the vehicle.
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The wvelocities associated with re-entry extend beyond
supersonic into the hypersonic region and the vehicle now
experiences both distributed thermal and pressure loads.
Regand? cites the example of an interplanetary vehicle re-
entering from a near-parabolic orbit which would have a
specific kinetic energy of around 6x10"J/ kg, approximately
the specific energy of vaporisation of carbon. When we
consider that carbon possesses one of the highest heats of
vaporisation the magnitude of the problem becomes clear,
the vehicle may not survive re-entry. This rather dramatic
statement assumes that all the kinetic energy of the vehicle is
converted into thermal energy absorbed solely by the vehicle.
As Regan goes on to point out the survival of natural
atmospheric entry bodies such as meteorites shows us that
this is not the case and some of the thermal energy is
transferred to the surrounding air through atmospheric
friction.

How much of this energy is absorbed by the vehicle is
dependent on the shape of the body and its trajectory. These
factors in turn may be influenced by the thermal and pressure
loads experienced by the vehicle through, for example,
asymmetric ablation altering the shape of the vehicie and
hence producing a non-zero trim angle, A variation in trim
angle carrics a concomitant variation in the aerodynamic
forces acting on the vehicle.

The way in which the thermal and pressure loadings, and
the vehicle shape and trajectory interact is highly complex
but their interplay becomes less significant when compared to
the variation in atmospheric density encountered during re-
entry.

The atmospheric density-altitude profile is perhaps the
most significant external factor to be considered in
transatmospheric vehicle motion. However, the uncertainty
that surrounds the prediction of atmospheric conditions is
actually of help in simplifying the atmospheric model. There

would seem to be little point in modelling the effect of a
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variation in atmospheric scale height for a vehicle which will
only spend a short time traversing an uncertain atmosphere.

Similarly, the effect of day-to-night variation may be
neglected when considering atmospheric entry vehicles. The
“daytime bulge” exhibited by the atmosphere is only really
significant at altitudes over 400km where the atmosphere is
vulnerable to solar activity, and consequently somewhat
unpredictable. Below about 250km, still outwith the sensible
atmosphere, the cffect of the day-to-night variation is smalli,
and can be considered negligible for high velocity motion.

In the design of a control system one of the most
important considerations is the robustness of the control fo
atmospheric perturbations. Assessing this will require off-
nominal atmospheric profiles and this also lessens the need
for a more precise model. The design of an atmospheric
model then becomes that of a simpler ‘mean atmosphere’
model onto which perturbations can be applied as required.

GenL contains four types of atmosphere models:

. Standard exponential (Section ILC.2.3.1)

. Oblate Earth exponential atmosphere (Section 11.C.2.3.2)
. US-62 standard atmosphere (Section 11.C.2.3.4)

. Biased sine waves (Section I1.C.2.3.5)

with the last of these a perturbation model to be applied to a
nominal density profile derived from one of the other three.

The oblate exponential atmosphere is intended more for
satellite orbital analysis than hypervelocity transatmospheric
vehicle motion and is a concession to the generic nature of
genlL.

In the sections that follow we describe the terrestrial
atmosphere, some of the atmospheric models available and
explain the simplifications that can be made to the
atmospheric model when considering hypervelocity motion.
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II.C.22  Structure of the Terrestrial Atmosphere

The shaping and structuring of the Earth’s atmosphere is
for the most part due to radiation, both from the Sun and the
surface of the Earth. The seasons, time of day, phases of the
moon and solar activity also go some way to shaping the air
above us.

All these factors might lead to the assumption that a

highly complex model of the atmosphere would be needed
for accurate analysis of the motion of a vehicle through the
atmosphere.

However, though a deviation from the anticipated
atmospheric conditions can cause significant changes in the
vehicle’s trajectory, this uncertainty can be used as an
argument for simplification of the atmospheric model. Is
there any point in using a highly complex model when the
disparity between it and a more simplistic model may well be

fess than the accuracy of the prediction?

Some model types and the arguments for and against
their use are presented in the section JL.C.2.3 below.

An examination of the basic structure of the terrestrial
atmosphere is of some help in appreciating the problem of
accurate prediction of atmospheric conditions.

Figure II.C.2.2-1 shows the classification of the atmosphere
by temperature (described below).

¢ Troposphere. _
Altitude range = ground to 8 —18km dependent on latitude.
This is the thinnest region of the atmosphere although it is by

far the most dense, containing around 80% of the total mass.
The density decreases with altitude until it is around 30% of
the sea-level value at the upper edge of the troposphere. The
troposphere can be highly turbulent, much more so than any
other region, and consequently difficult to predict.
Atmospheric heating in this region is carried out primarily by
infra-red radiation from the Sun and the surface of the Earth.
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» Stratosphere.
Altitude range = 8—18km to 50km

The stratosphere extends from the top of the troposphere to
around S50km altitude and contains the ozone layer.
Decomposition of the ozone produced by absorption of
ultraviolet radiation not absorbed by the upper atmosphere is
largely responsible for heating of the stratosphere, and
research suggests that this effect is seasonal.

At the top of the stratosphere density is already approaching
0.08% of its sea-level value. For this reason some studies
consider the stratosphere to be the limit of the sensible

atmosphere4s.

* Mesosphere.
Altitude Range = 50km to 90km.
The composition of the mesosphere is similar to that of the
stratosphere but it lacks the heating produced by the presence

of ozone.

¢ Ionosphere.
Altitude Range = 50km to (several hundred)km

The ionosphere overlaps both the mesosphere and the
thermosphere {described below). Its name derives from the
relatively large concentration of free radicals and electrons
within the region. The majority of these ions are produced by
atmospheric absorption of solar radiation. Because of the low
density within the ionosphere the ions do not tend to
recombine quickly and consequently the ionosphere exists even

the regions of the atmosphere where it is currently night-time.

¢ Thermosphere.
Altitude Range = 90km to 500km
The temperature within this region reaches the exospheric
temperature 7 and the kinetic temperature remains constant
from this altitude. Heating is due mainly to solar radiation,
and solar activity has a large influence with periods of high
solar activity causing additional heating in the upper part of

the atmosphere increasing the density within this region.

O'Neill
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The sensible atmosphere is generally considered to end in
this region at around 200 — 300&m altitude where the density
has dropped to around 107'°kg / m’. For high speed vehicles
the atmosphere ceases to have a significant effect above this
altitade.

» Exosphere.
Altitude Range = > 500km
The exosphere extends from the top of the thermosphere out
to the edges of what could be called the atmosphere. Some
atoms escape {rom here to free space. At an altitude of around
1000km: the density is less than 1077 kg / m® and aerodynamic
forces can be safely neglected for most vehicles above this
altitude. For rocket vehicles the atmosphere ceases to have a

measurable effect at much lower altitudes.

For transatmospheric vehicle motion then the
atmospheric density becomes numerically insignificant
beyond about 3004m, and the temperature within this region
(the thermosphere) stabilises to the value of the surrounding
free-space. With these concerns in mind we now turn our
attention to the construction of an atmospheric model
suitable for transatmospheric vehicle analysis.

Various models of the terrestrial atmosphere exist and
some of these are considered below. The arguments
presented for and against are so done from the view point of
an atmospheric entry vehicle but are equally applicable to
other high-velocity transatmospheric motion.

II.C.23 Atmospheric Models

Prediction of atmospheric conditions is a complicated and
uncertain matter, atmospheric dynamics being highly chaotic.
One result of this is that a truly accurale computer festing of a
vehicle or vehicle control system could only really be carried
out during that period of time within which the mission
planners could have confidence in their estimates of the
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atmospheric conditions the vehicle would experience. By
then it is of course too late, and the control must already be in
place. So any control system must be developed with the
required degree of robustness to accommodate expected
perturbations. It is the mean atmosphere model to which
these perturbations are applied which then becomes the
analyst’s concern.

The aim of a good atmospheric model must be to match
this mean as closely as possible. Wind models can be put on
top of this to allow for anticipated regional and seasonal
variations, though the accuracy of these will again be
uncertain. Thankfully, for a high-velocity atmospheric entry
vehicle these winds are not of great concern. Tropoespheric
winds rarely exceed 0.05km /s so for entry speeds approaching
10km / s these winds will make a difference but not a greatly
significant one. Because of the much reduced density at high
altitudes, the effects of upper atmospheric winds may be
safely ignored.

Above about 100k altitude the atmospheric density is so
low that there is an argument for neglecting aerodynamic
effects on the motion of an entry vehicle4?. This is not done
in genL but is worth bearing in mind when considering how
precise an atmospheric model is required. For example,
density values above 150km are subject to large variations due
to fluctuations in solar radiation, but given the low value of
the atmospheric density at these altitudes it would again
scem more appropriate to model these fluctuations as
perturbations to the mean.

The most commonly used mean atmosphere is the
exponential density model which is a low order
approximation but perfectly adequate for many purposes.
Other models, such as the so-called standard atmospheres, are
obtained from re-entry data and physical modelling. Even
these can only be said to be truly accurate if the model density
profile happens to coincide with that actually experienced
during entry. They do, however, provide us with a lTook at
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the general trends in the atmosphere and if large sets of such
data were to be averaged then a more accurate mean model
could be produced. The atmosphere is not stagnant though
and never will be, leading to the possibility that an averaging
process might produce a model which differs noticeably from
the conditions experienced in the future and again the

question of necessity ariscs.

Let us now look at the candidates for our atmospheric
model.

I1.C.2.3.1 Spherically symmetric exponential atmosphere.

The simplest of the commonly used atmospheric
density models is the spherically symmetric exponential
model wherein the density is given by

e
=0 exp| — 2 11.C.2.3.1-1
P=p, P[ . ]

The subscript o usually denotes sea-level values
although it may be used to denote perigee values
depending on the type of motion being analysed.
However, perigee values can only really be used for orbit
decay analysis where the perigee change is relatively
slow.

It is also assumed that H, is constant over the range of

interest,

11.C.2.3.2 Oblate exponential atmosphere.

One extension of this model is the inclusion of the
effect of the oblateness of the Earth. According to King-
Hele4? the atmosphere comprises of surfaces of constant
density with approximately the same shape as the Earth.
Obviously a LEO satellite in a circular orbit will
experience a variation in atmospheric drag as it travels
along its orbit and this will affect the shape of the orbit.
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Such motion will not remain truly circular for long. Once
again though the effect is most noticeable for satellite
orbits.

King-Hele®? illustrates the development of an oblate
exponential atmosphere, with the density at a height
(r— o) given by

P =P exp{—m} 11.C.2.3.2-1
H
with
- P2
mp oSN 1L.C.2.3.2:2
7 1-esin® ¢,
or
o= 0,{1-zsin’ ¢+ 0(e?)} I1.C.2.3.2-3

where r is the orbit radius, o the radius of the oblate
spheroid at the cutrrent latitude, ¢, and p the
atmospheric density at the initial perigee. The subscript
po usually refers to values at initial perigee, though it
may be used to refer to sea-level values, while the
subscript E refers to the value at the equator.

Using this model it is essential to remember to modify
the altitude evaluation of the vehicle accordingly
though the orbital radius evaluation will remain
unaffected. The shape of the Earth model resulting from
eqn. IL.C.2.3.2-3 with a flattening €=0.003352 44 has
dimensions:

¢ Equatorial radius = 6378.14km
* DPolar radius = 6356.74km

these match the “true Earth” values.
The radius of the oblate Earth at the sub-satellite point
is automalically evaluated in genl whenever this

atmosphere model is used.
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11.C.2.3.3 Altitude varying scale height .

Onec other extension to the model could be the
inclusion of an altitude varying scale height. Once again
such an approach is more appropriate for long-term orbit
decay than atmospheric entry, particularly as the
variation in scale height is most noticeable at altitudes
above 150km where the atmospheric density is already
less than 10%kg/m’. The model assumes a linear

variation,
1= IL.C.2.3.3-1
dr

of scale height, H, with altitude such that

H=H,+A(r-r,) ILC.2.3.3-2
and
P=p, exp{:-(-%!’—]} 11.C.2.3.3-3

LAY

S S

Again the subscript p refers to perigee values.

The assumption that scale height varies linearly with
altitude holds true over the probable range of interest for
a satellite in a slowly decaying orbit. As this was not an
area of prime concern this atmospheric model was not
included in the simulation.

11.C.2.3.4 The U.S.-62 Standard Atmosphere

The atmosphere model ultimately chosen as the
“real” mean atmosphere for genl is based on the 1962
U.S. standard atmosphere4?, The US-62 standard
atmosphere is a reference atmosphere derived from
physical modelling and re-entry data.

The model used here takes the form of a fourteenth
order Chebyshev polynomial approximation to the US-62




Chapter 1T Strnulation 'Neifl

atmosphere. The series coefficients have been optimised
for the region from ground zero to 200km altitude.

The series has the form

flz)= %— +3 a,C(2) 1L.C2.34-1
k=l
where
=cosgand -1<z<], 11.C.2.3.4-2
,) T
4 == [ £(cosg)coskéde 11.C.2.3.4-3
0
and
C, = cos(k cos™ z) = coske 11.C.2.3.4-4

WhereC,(z) is a polynomial in z of order &, called a
Chebyshev polynomial. Chebyshev polynomials are the
solutions to the differential equation

(1-2*)i-zt+k*x =0 1L.C.2.3.4-5

The solutions have the form

C,(z)=22C_ (2} C_,(z} 11.C.2.3.4-6
with

C,(z)=1 11.C.2.3.4-7a
and

C(z)=z I1.C,2.3.4-7b

The approximation to the U.S. standard atmosphere is
then given by setting

e=2t 11.C.2.3.4-8

h

X

where #h is the altitude above sea-level and h, the
upper limit of the model’s validity, in this case 200km, or
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roughly the upper edge of the "sensible" atmosphere.

This guarantees —1<z<1.
We also set

f(z)=In pi) I1.C.2.3.4-9

where p, is sea-level air density.

Equation I1.C.2.3.4-1 is now

P ”+Zak 11.C.2.3.4-10
Po

and hence
plh)=p, exp[% + 2 a,C, (z)} 1.C.2.3.4-11
|

The coefficients «, for a fourteenth order series with
h_.. =200km are given in table ILC.2.3.4-1 below.

~-(.25415229E+02

0

1 -0.11684380E+02
2 +0.18721406E+01
3 +0.81660876E+00
4 -0.93811118E-01
5 ~0.30155735E-00
6 -0.77593291E-01
7

3

9

10

11

+(.21640168E-00
-0.34918422E-01
-0.70126799E-01
+0.36014616E-01
+0.14951351E-01
12 -0.21450283E-01
13 -0.12497995E-02
14 | +0.18421866E-01

Table T1.C.2.3.4-1 Cocfficients for US-62 Atmosphere Model

Tigure 11.C.2.3.4-1 shows how this model compares to the
standard exponential atmospheric density model.
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Fig. I1.C.2.3.4-1 Comparison of Exponential and US-62 Standard Atmosphere Models

11.C.2.3.5 Modelling Off-Nominal Atmospheric Conditions

As has been stated, of primary concern for
transatmospheric flight is the robustness of the control 1

PRI

to off-nominal atmospheric conditions and navigational
errors. To account for this then, the control needs to be
tested over a range of likely atmospheric conditions and

el il

navigational errors (Chapter V).

To represent off-nominal atmospheric conditions we

=

use a biased sine wave variation of the standard
exponential atmosphere model similar to that used by
Braun & Powell5? and Thorp & Piersonl?.

CHCINDT S8
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p= pm[l + 8+ asin %J ILC.2.3.5-1
el
where
—h ~
Pog =P, exp[—g) H.C.2.3.5-2

as per eqn. 1.C.2.3.1-1, though any atmospheric density
model could be used (e.g. US-62 standard atmosphere)

The parvameter ¢ is the bias and introduces a
percentage offset from nominal density, a is the
amplitude of the sinusoidal variations superimposed on
the biased density profile, and 4, the frequency of those

variations.

Varied choice of these parametfers will generate
different atmosphere models, which, as the name
implies, are sinusoidal oscillations about the nominal
exponential atmosphere biased towards either high or
low pressure conditions. Figure IL.C.2.3.5.-1 shows the
density values (within the likely perigee range for a

lunar return aerobraking mission) for the nominal
(exponential atmosphere) and four biased sine wave
models. It can be seen that the models are biased lowards
either over- or under-dense compared to the nominal
atmosphere but are not exclusively so, It is felt that this
will result in greater fidelity with probable atmospheric

variations.

TL.C.2.3.6 Other Atmosphere Models

Other atmospheric models exist. Some, like the MSIS-
83 model31 are empirical in origin and provide accurate

representations of variations in not only density but also
temperature and composition. An analytic version of
the Jacchia 1977 Static Density Model3? exists which
again gives detailed breakdown of the temperature and
mass profiles within the various regions of the
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Off-Nominal Atmospheres : Biased Sine Wave Models

Nominal Atmosphere
e f —-—-—-- Bias 0.1, Amplitude 0.1
Tk R — Bias -0.1, Amplitude 0.1
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Bias -0.05, Amplitude 0.1

Fig. I1.C.2.3.5-1 Off-Nominal Atmospheres : Biased Sine Wave Models
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atmosphere. And again the GRAM (Global Reference
Atmosphere Model)?® used by NASA provides a highly
accurate reference model, in this case including a
spherical harmonic wind model.

All of these types of models can be considered overly-
accurate for the analysis of transatmospheric vehicle
motion for the reasons given previously. Some models,
like the analytic Jacchia-77 Model and the GRAM model
deserve consideration for inclusion in genL, to improve
the modelling of satellite orbits and proximity
manoeuvres. The existing models are, however,
considered sufficient for the work to follow.

I1.C.3. Solar System Orbit Model

The orbits of the planets in our solar system (with the notable
exception of Pluto) all lie in orbit planes close to the ecliptic (the
plane of orbit of the Earth about the Sun), following
approximately circular orbits. For the purposes of examining the
vanishingly small effects of the outer planets on an Earth re-
entry vehicle it would be more than adequate to assume
coplanar circular orbits for all these planets. However, when
considering trans-lunar trajectories we cannot assume the same
holds true for the orbits of the Earth and the moon.

In order to keep genL as generic as possible, elliptical orbit
models were included for all nine planets and the six major
moons: the Galillean moons of Jupiter, Titan, and our own
Moon. The inclusion of a facility allowing the user to ignore the
effects of any of these bodies when deemed insignificant is
included allowing faster run times where appropriate.

A precise propagation of the orbits of these bodies would
require numerical integration. It might be desirable if this
integration were carried out in a vector formulation similar to
that employed for vehicle motion. In this way the propagation of
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the motion of all the bodics in the simulation would be
consistent.

However, to integrate (to4thorder) the motion of fifteen
bodies in addition to that of the vehicle being examined would
drastically increase the run-time of the simulation, requiring
three positional and three velocity integrations for each body.
This would introduce an additional 16x{(3+3)x4=384
integration calculations for each time point if all the celestial
bodies modelled in the simulation were to be included. In
addition, for long term analyses cumulative integration errors
could result in not insignificant departures from accurate orbits.
As a result a semi-analytic propagation method was chosen
which can be shown to possess a rapid rate of convergence.

The method is termed semi-analytic in that it requires an
iterative solution of Kepler’s equation but is otherwise analytic.

Kepler's equation relates two of the quantities used in
evaluating the orbital state of a body at time ¢, for a known orbit.

E-esinE=M 1LC3-1

where M and E are the mean and eccentric anomalies,
respectively, and e is the eccentricity of the orbit. If M were the

required quantity and £ and e were known the solution would
be simplicity itself. Unfortunately, we require E with the other
variables known. Somewhat more fortunately, the form of the
expression is sufficiently well posed that we may avoid use of
Newton-Raphson or secant methods and simply use a solution
of the form

E =M +esinEj
E,=M+esink, ILC.3-2
E,=M-+esinE,...

until the value converges to a good degree of accuracy.
This requires a good guess for E, and again the problem is so
nicely formulated that the approximation ;=M will be

sufficient for orbits with small eccentricities, though the more
accurate approximation E, =M +esinM is used here.
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It has been shown that solution of Kepler's equation using
this method requires no more than six steps to converge to an
accuracy better than £1x107" rads.

Upon obtaining this solution the remainder of the orbital
data is derived analytically. A description of the full orbital
solutions can be found in Appendix L

The simulated anomalistic Harth year resulting from these
solutions is thirty minutes longer than a true year, an error of
less than 6x107%, and the distance between the bodies in the
solar system means that the resultant error in the solar system
gravitational field estimation is negligible over time periods of
interest.

II.D. Aerodynamics

The mechanics of interaction between an atmospheric entry
vehicle and the atmosphere itself would constitute an entire
study unto themselves and consequently the treatment given
here may seem rather cursory.

The flow encountered by an entry vehicle may be considered
in five regimest’, ranging from free molecule flow to
continuum flow. The region of continuum flow extends to
about 275kn from the surface of the Earth. Beyond this the flow
cannot truly be considered to behave in the same manner.
However, the air density above 275km is of order 1077 and
decreasing exponentially.

The flow above this altitude will then have a relatively
insignificant effect in terms of aerodynamic lift and drag and so
it is considered sufficient to assume continued continuum flow
rather than introduce a new model for this region.

The discrepancy between the aerodynamic effects of an
assumed continuum flow and a more realistic flow model may
well be of the same order as the aerodynamic effects themselves

67




Chapter I Simulation O'Neill

but the tiny magnitude of those effects makes this a reasonable
operating assumption.

The widespread use of this assumption in re-entry vehicle
dynamics supports this approach.

For the work presented here, the values of the various
aerodynamic force and moment coefficients are taken from
empirical test or representative data used in other studies.
Although various methods exist for predicting coefficients it was
not the intention of this study to accurately design an
atmospheric vehicle .

All aerodynamic force evaluations are made in the wind axes
reference frame which is standard to acronautics.
The magnitudes of the aerodynamic forces are obtained from

the usual relations, viz.

Ix = :_Iz'st.SCL II.D"].&
D =4%pVisSC, 11.D-1b
Y =1pV2SC, ILD-1¢

where V, is the vehicle airspeed, and the first unknown

encountered in obtaining the aerodynamic force vector.

The airspeed, ¥,, may be found from the value of the velocity
vector in the current working frame. This vector is first rotated
into equatorial planet axes. If we assume that the atmosphere
rotates with the planet at the same speed or about the same axis
we then establish a frame rotating with this atmosphere with
origin coincident with that of the equatorial set. The angular
velocity, ®, of the rotating frame with respect to the equatorial
frame is then simply the speed of rotation of the atmosphere
about the polar axis.

Using the velocity transformation

|4

Loretating

Vs —@ X1 11.D-2

the velocity with respect to the rotating frame is found. Local
wind conditions can now be taken into account and the resulting
vector is then rotated back into PAO axes, our working reference
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frame. This then defines the “airspeed’ vector with respect to our
inertial reference and hence the vehicle airspeed.

Now using the working frame Euler angle set, the vector is
rotated from inertial to body axes allowing derivation of the
angles of attack and sideslip, o and f3, in the usual way. Once
these have been obtained it is possible to define the lift unit
direction vector as (0,0,-1) in wind axes and using o, 3 and the
Euler angles to rotate this into body and then PAO axes. Scaling
by the magnitude of the aerodynamic lift produces the lift vector
in inertial axes.

The drag and side force vectors are obtained more easily, the
unit direction vectors being the negative velocity unit vector
and the unit vector perpendicular to lift and drag forming a right
handed set with the positive directions obtained by the cross
product of these direction vectors. It should be noted that
because of the axes conventions in aircraft dynamics both lift and
drag act in the negative direction along the appropriate axes in
steady level flight.

Aerodynamic moments are evaluated directly in body axes
using the standard relations

L=%}pViSCe ILD-3a
M =%pV2SC,c IL.D-3b
N=4pV.SC,c ILD-3¢

where L,M,N,and C,,C,.C, are the x,y,z moments and
moment coefficients respectively, and ¢ is a reference length,
usually the distance from the centre of pressure to the centre of
gravity.

I and C, are not to be confused with L and C, used for
aerodynamic lift. Because these moments are evaluated directly
in the axis set in which angular motion is propagated no
transformation of data is necessary.
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ILE. Integration

The integration method chosen is based on an adaptive Runge-
Kutta-Fehiberg scheme of order four.

Adaptive algorithms automatically rescale the integration step
size to the required accuracy of the solution as dictated by some
predefined error tolerance. The difficulty with some of these
schemes lies in the requirement to “step back” if the assessed error
does not lie within the required tolerances.

For example, when the Adams-Moulton predictor-corrector
algorithm presented by Cheney and Kincaid34 encounters an
unacceptable error, the scheme will step back four time points (data
sets) and either half or double the step size, depending on whether
the error exceeds either the lower or upper tolerance. This requires a
very careful selection of integration tolerances if the scheme is to
avoid being caught in a loop as this modification of the step size
may result in a calculated error which exceeds the other tolerance.

Obviously this is undesirable, although the facility to modify the
step size according to the dictates of the problem is a very useful
one.

As stated the scheme used here is based on an adaptive fourth-
order Runge-Kutta-Fehlberg scheme. This scheme requires six
evaluations to provide a fourth order solution with an error
estimate. This estimate is provided by developing a fifth order
solution and using this to assess the truncation error in the fourth-
order solufion. It was intended that this error estimate be used in
controlling an adaptive scheme as mentioned, but, although this
facility exists within genL, it was decided through experience that a
fixed step fifth order solution provided the better results for
hypervelocity trans-atmospheric modelling both in terms of run-

time and accuracy of solution.

However, bearing in mind the large discrepancy in the speed of
the dynamics between Keplerian and atmospheric motion, the use
of a different size of integration step in each region would seem
appropriate. Similarly, it would seem appropriate to differentiate
between controlled and uncontrolled motion in order to model the
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effects of the control more accurately. To this end step sizes are split
into four “zones” (shown below) with a simple check for the
presence of the vchicle in cach zone. The time steps used in each
zone are problem specific.

Table HL.E-1 Definition of integration step zones for transatmospheric motion

This was found to work well in verification with Orbital
Workbench38 and known analytic solutions to trajectory and orbit
problems. An algebraic description of the algorithm can be found in
Appendix IV.
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Chapter 1II.

MATCHED ASYMPTOTIC

&
NonN-LINEAR CONTROL

In this chapter preliminary discussions are presented of both the
analytic prediction technique and the control method employed in
chapters IV & V. A brief examination of the theory behind each approach
is given as well as a discussion of their applicability to the problems
considered.

ITI.A. The Method of Matched Asymptotic
Expansions

III.A.1. Introduction

The method of matched asymptotic expansions is a technique
which was developed for the treatment of singular perturbation
problems in fluid mechanics35.
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Early applications of this technique to transatmospheric

vehicle dynamics examined its use in lifting body hypervelocity
atmospheric entry problemsS® and found that the trajectory
predictions obtained corresponded well to those obtained from
numerical simulations. Solutions have since been presented for
atmospheric skips in two57 and three dimensions4? with
similarly good results.

In using the method of matched asymptotic expansions we
consider systems of differential cquations where a small
parameter multiplies the highest derivative. This derivative can
then be ignored except in thin regions of rapid change where the
value of the derivative becomes large enough to cancel the effect
of multiplying by the small parameter. These thin regions are
often found at one of the boundaries to the problem and hence
may be referred to as boundary layers.

Solutions may then be developed for the boundary layer
(inner region) and the outer region and the resultant expressions
matched at the interface to ensure continuity. Combining the
two sets of expressions results in a close approximation to the
real system which is uniformly valid over the full value range
of the independent variable. In transatmospheric vehicle
dynamics this independent variable is wusually non-

dimensionalised altitude.

The atmospheric entry problem is a clear candidate for the
application of the method of matched asymptotic expansions.
The singular perturbation is the effect of atmospheric entry on
the motion of the vehicle and the problem is constructed so that
a small parameter multiplies the aerodynamic terms in the
equations of motion. Obviously outside the atmosphere there
are no aerodynamic effects and the dynamics of the motion are
relatively slow. During atmospheric passage the dynamics are
notably faster and so, in comparison to the slow regions above
the Earth, the atmosphere fits nicely to the concept of a thin
region of rapid dynamical change or boundary layer.
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The problem then becomes the development of expressions
for the inner and outer regions and a common solution. These
may then be combined to produce a uniformly valid composite
solution for the entire motion.

III.A.2. Theory Behind the Solution Method

The method of matched asymptotic expansions is an analytic
technique for obtaining a close approximate solution to a
singular perturbation problem. In describing the theory behind
the solution method it is helpful to use a problem which
possesses an exact solution.

Consider the differential equation

2 y
ed—f + _ai}_ =x in the region 0<x<1 I.A.2-1
dx dx
where
y = y(x,&) with y(0,e}=0 and y(1,¢)=1 TLA.2-2

and ¢ is a small parameter.
For fixed & this system can be directly integrated to give

(1-x)fe __ Ye
_(+2e)e ) px 4 2 ILA.2-3
2(1-¢"") 2

¥

Then, for x#0 fixed, ase — 0 this solution can be seen to tend
towards

2

1+x
2

¥x,e)= TIELA2-4

This approximation to the solution is, however, not
uniformly valid over the entire domain of x values. In the
region approaching x =0 the other terms in eqn. IIl.A.2-3 are no
longer exponentially small and can no longer be ignored.
Consequently eqn. IIILA.2-4 is found to lose validity near x=0
and the lower boundary condition is lost from the solution.
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An alternative expression may be developed which is
uniformly valid in this region. For &=x/e fixed, ase—0,
rewriting eqn. IILA.2-3 in terms of &, the solution tends towards

. (1—e"§)
Heg,e)=>—— 1ILA.2-5
This solution again loses validity towards one boundary
condition, this time as &£ — 1.

In this way a single expression may be represented by two
separate functions, one describing ecach region. There is,
however, some commonality in the solutions obtained, as
evidenced by the factor 1/2 found in each solution. This
commonality exists as a result of the overlap region where both

solutions are valid.

These solutions are approximations to the exact solution and
the description of their development outlines the theory behind

the maitched asymptotic solution to the problem.

IIL.A.3. Solution by Matched Asymptotic Expansions

In contrast to the solutions obtained above, solution by
matched asymptotic expansions requires the exact solution of
approximate sub-problems. Consideration of the initial problem

(eqn. III.A.2-1) suggests that for small £ we might be able to
singularly reduce the order of the problem, effectively treating it
as a regular perturbation problem. This is done by letting £ -0
before solving the differential equation.

The reduced problem is then

?« =x in the region 0<x<1 HILA.3-1
x
again with y=y(x,&) andy(l,£) =1 IILA.3-2

Assuming an expansion of the form

y(x, )= i £'y,(x)+0(e"") IIL.A.3-3
pary
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equ. [ILA.3-1 is solved to lowest order in the expansion as

2

y,(x,6) = 52~ +C, TILA.3-4

Knowledge of the exact solution to the problem allows us to
apply the upper boundary condition to this solution, which will
be known as the outer. Application of this condition determines
the value of the integration constant C,, so that now

2

X 1
ge)=2 4l TL.A.3-5
o(%,8) =545

which is identical to eqn. IIT.A.2-4,

As has been discussed the reduction in order of the
differential equation is not valid where d’y/dx* is large, ie.,
where there are rapid changes in the value of y. The

examination of this region is made using a stretched
independent variable, &=ux/e. Using this stretched variable
effectively magnifies the area of interest, such that the range

0<x<é& becomes 0< € <1,

Egn. ILA.2-1 now becomes

14% 1dy

L p = 8 I[I.A.3-6
edE®  edé :

where § = j(g&,e) and 3(0,£) =0 1ILA.3-7

Again we assume an expansion of the form

(e, ) Ee ¥.(e&)+0(e") HILA.3-8

and eqn, III.A.3-6 is then solved to lowest order as

y,(eé.e)= _,_,,_+ C, I11.A.3-9

In this example the lower boundary condition is known and
may be used to help obtain the integration constants C,, C,.
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Application of this condition gives

C,+C, =0 TIL.A.3-10

The upper boundary condition may not be applied as the inner
solution loses validity in this limit.

The lower boundary condition will not always be known. In
this event the inner integration constants are found solely
through the matching process described below.

As mentioned above, there exists a region in which both
solutions are valid, i.e. where £ is large and x is small. By
forcing the two solutions to match in this region we may solve
for the remaining integration constants. The matching process is
performed by taking the two solutions to their respective limits
of validity and equating to find the constants.

Thus eqn. TIL.A.3-3 becomes

v o= -1— as x—0 IT1.A.3-11

v a

N

and egn. HI.A.3-9 becomes

y,—=C as f IIL.A.3-12

Equating eqn.s IILA.3-11 & -12 gives

Gy = % HI.A.3-13
and hence from eqn. III.A.3-10

. 1

G = ) I.A.3-14

completing the set of integration constants.

To form a useful single uniformly valid solution we combine
the two solutions (eqn.s IILA.3-5 & -9) to form a composite. We
know that there is a solution which is common to both regions
and this must be subtracted from their sum lest it be included
twice.
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The common solution is found by expressing one solution in
the independent variable of the other and taking the limit as
g — 0. Here we will take the ouler which becomes

2
(8) 1 II1.A.3-15
2 2

Yo =

and in the limit ¢ — 0

IT1.A.3-16

N =

ya:

The composite solution is then the sum of the inner and
outer solutions less their common solution, viz.,

y(x,8)= %(x2 — e 41 I1.A.3-17

1t can be seen that the composite solution differs slightly from
the cxact solution. A comparison of the solutions (fig. III.A.3-1)
shows that the missing terms have a relatively minor effect and
so the zeroth order solution obtained is shown to be valid over
the full range of x values.

The largest discrepancy between the solutions is found in the
overlap region where £ is large and x is small. Comparison of
the solutions suggests that this is a higher order effect and
consequently a higher order solution might provide greater
accuracy. It would certainly, however, increase the complexity of

solution.

Fig. ILA.3-2 shows the variation in the absolute errors (dY)
obtained using the matched asymptotic solution for &£=0.01
compared with the exact sclution.
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Fig. II1.A.3-2 Absolute Errors in MAE Solutions, € = 0.01

IT11.A.4. Inner Variables and Boundary Layers in the
Atmospheric Entry Problem

| In the discussion above we have used a second order problem
| with an exact solution to illustrate the solution method and theory.
This allows us to determine from the size of the boundary layer and
| an appropriate scaling for this region. It is not always the case that
‘ one has an exact solution to help determine these factors and hence
it might prove necessary to examine all the possibilities.

Similarly, a boundary layer might exist at the upper bound of the
problem and this would have to be included in the modelling.
Analysis of the problem assuming a boundary layer at the upper
extreme results in an inner which is merely the outer expressed in a
different variable, and it becomes clear that no such boundary layer
exists at this extreme.

The atmospheric entry problem is well known and so may be
treated like our example problem in that through numerical
integration we may obtain an exact solution to the motion. This
helps us to define the boundary layer(s) and to choose appropriate

stretching parameters for those layer(s).
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The boundary layer in this case is the atmosphere (thin relative
to the surrounding space) in which we change from the slow
dynamics of Keplerian motion to the rapid dynamics of
hypervelocity aerodynamic motion.

The choice of inner variable is made using suitable parameters
which will form part of the non-dimensionalising of the trajectory
variables (section IV.B.2), such that the two regions considered are
exoatmospheric/Keplerian (Outer) and atmospheric (Ianer) motion.

Validation of the use of the atmosphere as a boundary layer and

the choice of stretching parameter, & (eqn. 1V.B.2-12), is ultimately
carried out through comparison of the resultant solutions to the
‘exact’ numerical solution.

III.B. Non-linear Transformation Guidance

IIL.B.1. Non-linear Systems

The stability or instability of a linear system is a characteristic
of the system itself and is not affected by the magnitude of the
input to the system or the initial conditions. The stability of a
non-linear system, however, depends on the initial conditions
and the magnitude of the input to the system. Whereas a linear
system will always have the same “shape” of response to an
input, the response of a mnon-linear system will vary in a
complex way with respect to the input.

Much work has been done demonstrating and detailing the

use of non-linear transformation, or feedback lincarisation as a
: . . 30,33,35
means of controlling non-lincar dynamical systems.
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In employing feedback linearisation we use knowledge of the
discrepancy between the current value of the state variables and
some ideal value set to determine an appropriate control
response which will act to return the system to this ideal state.
Often we require to control only one or two system variables and
these become the inputs to our control law. The magnitude of
the applied control resulting from an off-nominal state is
determined through a set of control gains.

In this way feedback linearisation is used to transform a non-
linear system into a closed-loop, lincarised system to which we
may then apply linear control theory. The development of an
appropriate feedback control law, through construction and
application, is outlined in section IILB.2 below.

The use of feedback linearisation has three main advantages:

e Reducing sensitivity of the system to variations in the system
parameters.

Fxact knowledge of vehicle parameters, for example
aerodynamic coefficients, etc., is not always possible
particularly during transatmospheric motion where thermal
expansion and ablation may alter the magnitude of such
parameters. A suitable feedback control law would
compensate for these and other variations, such as

atmospheric uncertainties, in a robust manncr.

* Conirol and time-response.
By changing the gain applied to the control loop the time-

response of the system is easily altered.

e Cancelling non-linearities in the state equations.
The equations of motion for a transatmospheric vehicle are
highly non-linear in themselves. Feedback lincarisation can

make the vehicle behave as though its dynamics were linear.
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There are, of course, disadvantages which accompany the use of
feedback linearisation:

» Requires additional hardware and increases the complexity
and cost of the system.
The introduction of a feedback loop requires the addition
of sensors and componentry which might not otherwise be
present. Although a feedback law could be formulated to
reduce the sensitivity of the system to variations in these
parameters, it will still be desirable for thesc components to be

made with a greater degree of precision than might be

acceptable for other components so as to minimise the effect

of uncertainties in the control hardware itself.

* Requires accurate knowledge of the system dynamics.
Without an accurate representation of the system
behaviour, the effectiveness and stability of the control cannot

be assured.

¢ Possibility of the introduction of instability to the system.
This is caused by the inherent time lags within the system,
with the result that what was intended as negative feedback

may turn out to be positive feedback.

e Partial linearisation.

Tn some cases, state feedback will result in only partial
linearisation of the system. The “linearised” system will also
contain an unobservable non-linear subsystem which may
cause problems. However, Mease and Kremer3? demonstrate
that such unobservable subsystems do not pose a problem for

transatmospheric vehicle control.

In determining whether or not to use feedback control we
| must compare the improvements in control and stability to the
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increased cost and complexity. Given the likely cost of any
transatmospheric vehicle the additional cost of a feedback
controller will probably not be significant and there is a
recognised need for control of aercassisted manoeuvres. In this
case, the decision criterion would become the effectiveness of the
controller in comparison to alternative methods.

IIL.B.2 State Feedback

Consider the general non-linear system

x = f(x)+g(x)u I11.B.2-1a
y = h(x) 1IL.B.2-1b
where x is the state vector, u the input (control) vector, and y is

the output vector.

By differentiation of the system we may cause the input
(control) to appear explicitly. The number of times the output
must be differentiated to achieve this is termed the relative
degree of the system. It has been shown5859, that when a non-
linear system of this form has a clearly-defined relative degree, it
is possible to feedback linearise the system with a state feedback
law of the form '

u= a(x)+ B(x)v TILB.2-2

where v is an external reference input vector.
The choice of feedback law is such that the closed-loop system

%= f(x)+ g(x)a(x)+ g(x)B(x)v I11.B.2-3

will have a linear mapping from v to y.

To illustrate this we will outlinc the development of the
constant altitude controller used later (Section V.B.5.1).
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The purpose of this control is, as stated above, to track a
constant altitude. The method of control is through roll-
modulated aerodynamic lift and so our input vector u in this
case is single-termed, viz.,

U=COSO I11.B.2-4

where o is the vehicle bank (roll) angle. This term appears
2

explicitly in the second derivative of altitude %{? and so the

system considered is

i =L vsin y= 4V in ¥ +Vcos y"—” I1.B.2-5
dt dr dt

Noting that d%contains the control term explicitly and % does
d J

not we save unnecessary expansion of terms here and write

h=fF(V,y.R)+g(V,y,h)u IIL.B.2-6

Note that, in comparison with eqn. IIL.B.2-1a, on the right
hand side we have terms for f(x)}+ g(x)u, but on the left we have
h which does not appear to fit the “rdle” of %.

In fact the expression shown above is only a part of the
system.

Consider the state vector
. . . T
x=[V, ¥, h V. 7, & I1LB.2-7a
with derivative
x=|V, ¥, h V., 7. A IILB.2-7b

Then we can see that the expression in & is a part of the full

system.
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We do not consider the full system as the only system
constraint is that it track a constant altitude. The other terms in
the state vector derivative are not of concern provided this
constraint is met. Also, as # is a function of V, v, h, and ¢ only,
the other terms in the state vector are dropped from the notation
in egn. IIL.B.2-6.

It now remains to control the above system via a feedback
law of the form given in eqn. [ILB.2-2.

In this case the external reference input is given by the
desired constant altitude, implicit in which is a null-valued
reference climb/descent rate.

The desired transient response is that of a damped harmonic
oscillator, which will guarantee stability of the system about the

reference condition, viz.,

p=—Kp—Ap 1I1.B.2-8
where p is defined as

p=h 11L.B.2-9
and p and p are the altitude error and error rate respectively.
p=h~h, II1.B.2-10a
p=h—th,=h ULB.2-10b

Now equating the left hand side of eqn. IILB.2-6 with that of egn.
II.B.2-8 and rewriting in terms of coso we obtain the feedback

faw

1 o
08 0= ————|—f(V,y,h)~ kp— Ap I1.B.2-11
s(v.7, h)( (V.7:5) )

which can be shown to have the form required (eqn. IILB.2-2).

The parameters x and A are control gains which may be
used to shape the system responsc to inputs.
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In this manner control of the vehicle about a reference ideal
may be effected. In the example above this reference ideal is a
constant altitude trajectory. This controller is fully developed in
Chapter V as well as an exit trajectory controller (“trajectory
tracker”) which utilises the method of matched asymptotic
cxpansions to analytically produce the reference data as and
when required.
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Chapter 1V

TRANSATMOSPHERIC
VEHICLE MOTION

IV.A. Introduction

In this chapter we examine some aspects of hypervelocity
transatmospheric vehicle motion, in particular we develop
matched asymptotlic expansions as both a modelling tool and as the
basis for a simple, robust, controller. The aim is to produce in
closed-form a set of analytic relations which describe the behaviour
of state variables over the whole trajectory. These relations can then
be used as a replacement for more costly sensors/instrumentation
or as a low-cost monitor of the operation of such equipment,
without the need to resort to onboard numerical integration.

The use of analytic modelling techniques such as the method of
matched asymptotic expansions provides an insight into the basic
mechanisms involved in the subject of study. An analytic
approximation to the full equations of motion highlights the terms
which most strongly influence the motion of the vehicle. In this
case the solutions validate the approximation made by Allen and
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Eggers®, that aerodynamic forces predominate within the
atmosphere to such an extent that gravitational forces may be
neglected. As will be shown, a matched asymptotic analysis of
transatmospheric motion shows that the effect of gravity tends
towards zero during the atmospheric portion of the trajectory.

This might seem a rather backward way of proving a point as it

is partly by use of this assumption that the system lends itself to
solution by matched asymptotic expansions. Whilst recognising this

fact, comparison with a high fidelity numerical solution to the
motion can still be said to validate the operating assumption.

A close analytic approximation to real motion allows accurate
determination of the trajectory variables without numerical
propagation. In the work presented here the velocity and flight-path
angle at any point along the trajectory may be obtained directly from
input of the altitude. This allows the analyst to quickly predict

related parameters such as dynamic pressure, axial acceleration and
so on. Onboard a vehicle such a system could be used to replace
complex sensors with analytically obtained values requiring
knowledge of altitude alone, thus reducing the amount of
instrumentation required and hence the cost. Initialisation of the
analytic expressions would be done using data from exo-
atmospheric state updates.

In addition, it will be shown that the validity of the constant
drag coefficient approximation, also introduced by Allen and
Eggerst?, may prove inadequate for certain applications. The
applications referred to chiefly concern launch/entry vehicles with
iow bluntness ratios (ratio of nose radius to body radius) which are
more susceptible to mach number related compressibility effects,
For these vehicles the drag coefficient is mach number (and thus
implicitly velocity) dependent. This dependence may be introduced
into the matched asymptotic analysis introducing a new physical

effect into the model and so broadening its applicability and
improving its accuracy.

Typical examples of entry missions on which such a system
could be used include planetary surface penetrators and Mars
landers, as well as the obvious application to ballistic missiles
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(section TV.B). Launch applications again include military uses as
well as the direct launch concept which is discussed later (section
v.C).

I'V.B. Ballistic Entry

Typical ballistic entry vehicles are low-drag configurations, the
intention being to minimise trajectory curvature and thus reduce
any possible targeting errors. One of the advantages of the low-drag
configuration is that it minimises the dynamic and integrated heat
loads experienced by the vehicle during atmospheric entry. One of
the disadvantages is the increased stagnation-point heating rate
incurred due to the sharpened nose-cone/leading edges. In addition,
because the vehicle does not lose so much speed, surface impacts
will occur at high velocities and may prove destructive to the

vehicle. Not surprisingly the majority of uses for this type of
vehicle are military although work on planetary surface
penetrators61:62 can also benefit from the techniques and
technologies associated with ballistic missiles.

The lack of any lift force greatly reduces the controllability of
the vehicle, as we shall see later (Chapter V) . The only means of

affecting the vehicle trajectory once in-flight are by propulsive
burns and variation in the vehicle drag parameters. Unfortunately

because of the high speeds assaciated with re-entry it is likcly that
any deployable surfaces would be subject to enormous pressure
loadings and would probably not remain attached to the vehicle for
long. Changes in drag-coefficient are more usefully carried out by
explosive release of, for example a heat shield, or, if/when
sufficiently slowed by drag, by the deployment of a parachute.

In this section the trajectories of unguided hypervelocity
atmospheric entry vehicles are investigated analytically using the
method of matched asymptotic expansions. The use of the derived
solutions is investigated both in the context of analytical modelling
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and as the basis of a low-complexity guidance/control system. Both
constant and velocity dependent drag coefficient models are
employed in solving for the vehicle trajectory.

IV.B.1. Introduction :

It has been suggested that the constant drag coefficient
approximation introduced by Allen and Eggers®® is insufficient
when applied to some re-entry problems. To show this Barberaf3
presented a closed-form solution to the re-entry problem which

incorporated an integrable, velocity dependent drag coefficient.
The coefficient model used had been closely matched to inviscid
drag data for typical re-entry vehicles. However, Barbera’s closed
form solution was actually separated into four zones, and was
therefore not a uniform solution to the problem. These zones
occurred as a result of a discontinuity in the drag coefficient
/Mach number profile around M =10, and Barbera’s use of a
two-zone patched atmosphere model. In order to produce a
uniform solution for the complete trajectory a matched
asymptotic analysis was used which employed Barbera’s drag
coefficient model.

Barbera’s solution was found to be valid for trajectories
resulting in velocities greater than M =1 at impact. Thc work

presented here is similarly aimed at high velocity entry vehicles.
The operating assumption that we may neglect gravity within
the atmosphere dictates that the aerodynamic forces experienced
should be at least an order of magnitude greater than the
gravitational forces. Hypervelocity atmospheric entry presents
aerothermodynamic problems with regard to the high heating
loads incurred, though ablative mass loss may be minimised by
the use of suitable thermal-protection. In the case of the Huygens
probe a beryllium nose cap and heat-shielding are used as low
mass, non-contaminating protection$4,

The use of matched asymptotic expansions in the solution of
launch and re-entry problems has been well
documented$6,6566, The aim of this study was to provide an
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analytical model for the entry trajectories of such vehicles in
order to successfully predict some of the characteristics of a
ballistic hypervelocity atmospheric entry vehicle. The
introduction of a velocity dependent drag coefficient model
should increase the scope of the current analytical model. The
solutions obtained are investigated for potential use in onboard
guidance and control systems, for example, in determining the
altitude for release of the aforementioned heatshield or a
decelerator system.

IV.B.2. System Dynamics

Fig.IV.B.2-1 shows a schematic of the geometry appropriate to
a study of hypervelocity atmospheric entry vehicle motion.

fig. I'V.B.2-1 Schematic of Re-entry Trajectory

It is assumed that the atmosphere is non-rotating and that
the vehicle experiences no transverse accelerations so that it
remains in the plane containing the initial velocity vector and
the planetary centre.
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It is further assumed that the ablative mass loss from the heat
shield is small and so the vehicle can be considered to have a
constant mass. The equations of motion for this system?! may
then be written in a planetocentric frame as

& __ D, asiny 1V.B.2-1
dt m
2

vf{?./_ = _{‘V_ - g}cos }l + £ IV.B.2"2

dt ¥ m
& vsiny IV.B.2-3
dr
0 _ 7Y osy IV.B.2-4
dt r

where r is the orbital radius, ¢ is time, v is velocity, and,
ythe flight path angle measured positive up from the local
horizon.

It is also assumed that gravity acts according to the spherically
symmetric inverse square model for gravitational attraction

g(r) =~ f_g 1V.B.2-5

and the aerodynamic lift and drag accelerations are given by

{é} - %’0 (r )"z{gj';g;}s IV.B.2-6

where § is the aerodynamic reference area of the vehicle. It will
later be assumed that the vehicle is non-lifting, i.e. €, =0 and
models for C, will be introduced in the form

C,=b* IV.B.2-7a

which models the velocity dependence of the drag coefficient.
A constant drag model of form

C, = bvy’ = constant 1V.B.2-7b

will also be used, where v, is the atmospheric entry velocity and
b and n are empirically derived constants.
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The atmospheric model is a non-rotating, wind free,
exponential model of the form

p(r)=p,exp(-(r— R)/H) IV.B.2-8

although any integrable expression may be used for the density-
altitude profile.

The equations of motion are now transformed into a non-
dimensionalised form via the following wvariable

transformations,
Vo= v\/E IV.B.2-9
J7)
pot"R 1V.B.2-10
R

5= pH IV.B.2-11
m/S

£= E iv.B.2-12
R

Using # as the new independent variable the system is
recluced to a set of three equations,

di* _ pviC, 2

dn  esiny (1+h) 1V.B.2-13

A0S - B —cospt—m 1V.B.2-14
dh 2¢ 1+h (1+A)*V

49 _ oty IV.B.2-15

dh 1+h

Given this system of equations the method of matched
asymptotic expansions is now employed to find a uniformly
valid solution to the motion.
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IV.B.3. Matched Asymptotic Solutions for a Ballistic
Atmospheric Entry Vehicle

The method of matched asymptotic expansions (section III.A)
considers differential equations involving a small parameter
multiplying the highest derivative . This derivative can then be
ignored except in thin regions of rapid change, or boundary

layers, in this case the sensible atmosphere close to the surface of
the planet. This boundary layer is known as the inner region,
and the Keplerian exoatmospheric region as the outer.
Expansions ate made for 7 and cosy in both these regions and
solutions arve found. Initial conditions are only known for one
region, in this case the outer, so the two solutions are matched to
find the constants of integration for the inner. A solution exists
which is common to both regions and this must be subtracted
from the sum of the two regional solutions to provide a
composite solution to the original equations.

Following the approximation made by Allen and Eggers®®,
aerodynamic drag predominates in the initial descent through
the atmosphere and above the sensible atmosphere the motion
is Keplerian. Employing a matched asymptotic analysis as
described above, we develop solutions for the aerodynamic and
Keplerian regions and then match them to produce a composite
representation of the entire trajectory.

Using the atmospheric density model given in eqn.iV.B.2-8
we make the variable substitutions

=7 1V.B.3-1a

@ =Ccosy IV.B.3-1b

The sine term in eqn.IV.B.2-13 is evaluated using the relation

siny = +4/1 — 2 IV.B.3-2

taking the physical root.

In the case of the re-entry vehicle this is the negative root.
Why this should be becomes clear when remembering that the
flight path angle is defined as positive upward (away from the
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local horizontal). In this case y for a re-entry vehicle will be
negative and consequently siny will also take a negalive sign.

The equations of motion for this system are now,

du_ PuCroxp(hie) 2 IV.B.3-3
dh eVl—w? (1+ ny’

do _ PG, 1 1] IV.B.3-4
e = ~hie)— — N 3N
o e elh/e) w{1+h (1 Ay

These expressions are now evaluated for the (Keplerian) outer
and (acrodynamic) inner regions of the motion.

IV.B.3.1 Quter Solution

The outer solution is obtained by applying the outer limit as

£ -0 with 2 and all other non-dimensional variables held

constant, viz.

du_ 2 IV.B.3.1-1
dh - (Q+h)

1 !

_____ =0 _ 1V.B.3.1-2
2
dh I+h (1+h)u

The limit & — 0 has the effect of compressing the atmosphere
to a vanishingly thin region on the surface of the planet.
Remembering that €= H/R we can see that for fixed R this
means that H—0, ie. the atmosphere tends towards an

infinitesimal size.
A series expansion of the form

u=" eu () + 0(e™) IV.B.3.1-3
j=0

o= z elw,(h)+0(e"") IV.B.3.1-4
=0
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is assumed for each of the variables under consideration.
Substituting into equations IV.B.3.1-1 and IV.B.3.1-2, the
relations become, to lowest order,

du, 2 . I1V.B.3.1-5
dh (L+h)

do, __J_ 1 1 IV.B.3.1-6
dh N+R) (Q+hfu,

with higher order terms identically zero. The zero order
terms give an exact representation of the Keplerian motion
of the body outwith the atmosphere.

By integration we obtain-the Keplerian expressions

=1 +—E—- IV.B.3.1-7
(2] 0 1+h

@, = Boo oo IV.B.3.1-8

N2 R+, (14 )’

where,

2 =~ IV.B.3.1-9
0o i 1+h!

and

0,y = O 2L+ B) it (14 B ) IV.B.3.1-10

The initial conditions, u,w.h, will be obtained from trans-
formation of the initial, exoatmospheric, vehicle state, V7.7,

into non-dimensional form.

A solution will now be developed for the acrodynamic inner

regiomn.

1V.B.3.2 Inner Solution

The inner solution is similarly found by repeated application
of the inner limit. In this boundary layer a new stretched
inner variable is used to help obtain a solution. The variable
used 1is ﬁzh./e so that now as £—0 we have h-—>o0,
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effectively expanding the atmospheric region to an infinite
distance. In this way the stretched variable may be considered
a mathematical microscope, enlarging the area of interest.

In terms of this new independent variable eqn.s IV.B.3-3
and IV.B.3-4 now become,

1dii _ mﬁ,ﬂC,,(ﬁ]exp(-—ﬁ) 2

L - : IV.B.3.2-1
e dh eV1- @ (1+2h)

_l_icg = —!ﬁg—ﬁe}{p(mﬁ) — & 1 e~ 1~ — 1V.B.3.2-2
£ dh 2e (1-!- eh) (1+eh)i

Applying the inner limit and expanding # and @ as below,

i= Y i)+ O(e™) IV.B.3.2-3
=0

o=3e @;(h)+0(e) IV.B.3.2-4
j=0

we obtain, to lJowest order,

E?E“.‘_. - _J-anﬁoCD (ﬁa)

dh _ﬁexl’("ﬁ) IV.B.3.2-5
/ - 2

dé, -p,C(&) ¢ - IV.B.3.2-6
Y exp( h)

For the ballistic case under consideration C, =0 so
eqn.IV.B.3.2-6 reduces to,

dé,

Yo =) IV.B.3.2-7
dh

or
&, =, IV.B.3.2-8

Any integrable drag function may now be incorporated into
the solution of eqn. IV.B.3.2-5. The function used is based on
Barbera’s velocity dependent drag model for hypersonic entry
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projectiles3, which assumes that the speed of sound is a
constant over the range of intevest. This relation takes the
form

C, =bv* = bu" TV.B.3.2-9
which becomes
C, = bit" IV.B.3.2-10

When this is substituted into eqn. IV.B.3.2-5, with @, =

wrf

we obtain

~ okl
ai, _ :f’“_o,&cxp(mg] IV.B.3.2-11
dh  J1-&2,

This is integrated to give,

_ 4
i, = —in’?‘iz—exp[-—ﬁ) + gm} IV.B.3.2-12
V 1- a)uu

The two scts of solutions are now matched to find the

unknown constants of integration, #, and @,,, for the inner

solution. For the matching procedure the outer is first
expanded for 2—0 , and the inner is then expanded for
h — oo, The two solutions are then equated and the constants

are found to be

fipy = (i, +2) IV.B.3.2-13
ot — @, o0 IV.B.3.2-14
00 '\im

The matched constants are now used in conjunction with
the inner and outer solutions to produce a uniformly valid

composite solution.
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1V.B.3.3, Composite Solution

The composite solution is now obtained by combining the
inner and outer solutions and subtracting the common
solution. The common solution is obtained by expressing the
outer solution in terms of the inner variable and finding the
limit as € -0 ie.,

M'a = u’un + o~ IV-B -3.3'1
1+ &h
and
IR T—— P 1V.B.3.3-2
I {1+ sﬁ)z + 2(1 T sﬁ)
)\J uﬁ‘(](

Therefore as & — Q it is found that

u,=u,+2 1V.B.3.3-3
W = Do __ 1V.B.3.3-4

The final expressions for the variation of non-
dimensionalised velocity and flight path angle with altitude

are now given as,

_ ~2h —‘b?’tﬁg ~ -n 1V.B.3.3-5
- M*{afi—aﬁ;‘”‘1’(“}”')““"“”) }

0= oy 1V.B.3.3-6
u,, (1+R) +2(L+h)

From input of the desired altitude we may now derive the
velocity, flight-path angle, and any dependent variables, for
the motion of an atmospheric entry vehicle.

In order to examine the need for a velocity dependent
drag coefficient model we will now develop solutions using
the constant drag coefficient assumption.
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IV.B.4. Constant Drag Coefficient Solutions

It is clear that the Keplerian solution to the motion will
remain the same regardless of whether we employ a constant or
a velocity dependent drag coefficient. The two solutions differ
only in the inner, aerodynamic region.

Substituting

Coli,}=C, IV.B.4-1

into eqn.IV.B.3.2-5 and integrating, we obtain the new solution

mb—aCD h

i, =1, CXP[W GXP(" N)]

As the body is non-lifting the solution for &, remains as

IV.B.4-2

before. The matching constants are found to be

B, =u,6+2 IV.B.4-3

(g4

L IV.B.4-4

Woo = i, +2

and the common solution

H, =, +2 IV.B.4-5
@, = 7&7 1V.B.4-6
i, +

The resulting composite solutions are

U= ﬁ ..|.. ﬁarj exp ..,_._&.ED_ exp(-— ._}E.] IV-B.4“7
1 + h l - (‘I)unz €

0= ez IV.B.4-8
ity (LAY +2(14+ 1)

10!
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We now possess two sets of analytic solutions which may be
compared with solutions derived from genL (Chapter II) for both

constant and velocity dependent drag coefficient models.

1V.B.5. Results

The trajectory predictions obtained from the two sets of
analytical expressions are now compared with the results from
genL (Chapter II) in order to assess their value in representing
the motion. Both the velocity dependent and the constant drag
cocfficient models have been incorporated in the numerical
simulations.

The atmospheric model employed is an exponential model of
the terrestrial atmosphere (section T1.C.2.3.1) with a scale height
of 7.1km and base density 1225kg/m® whilst the entry vehicle
data used is for the same sphere-cone configuration as will later
be used for the launch case. Details of this vehicle can be found
in Appendix V.

Relations for derived quantities such as convective heating
rate$? (radiative heating is asswmed negligible), @, and dynamic
pressure, ¢, may now be obtained using the expressions

0 = CyafpV? 1V.B.5-1
1 e 1V.B.5-2
g b EPV [y 20

Where Cy is a function of the nose radius and the material

properties of the heat shield.
Comparisons are also made for wvariations in axial
acceleration and Cp.

Fig.s IV.B.5-1 to -6 show the errors in the velocity and flight-
path angle-altitude histories over a range of eniry velocities and
angles. The errors are averaged over the entire trajectory.
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Although no trends in the observed errors can be identified
for a given entry angle, the majority of the errors themselves are
so small as to suggest the possibility that they might be
numerical in origin. Comparison with the constant drag
coefficient numerical model disabuses us of this notion by
producing similarly small errors, but with the velocity solution
being consistently worse (fig. IV.B.5-7) and the flight-path angle
solution consistently better (fig. IV.B.5-8) than the analytic
relations. In addition, from cross-comparison of the entry cases,
it can be seen that the errors decrease with an increasingly steep
entry angle, as might be expected (see ‘tip-over” below).

The improved accuracy in the flight-path angle solution
obtained with the constant coefficient numerical model as
opposed to the velocity dependent analytic model is not
unexpected. The flight-path angle varies little enough for a
slender re-entry vehicle and, as the inner solution {eqn. IV.B.3.2-
8) suggests, it is insensitive to the velocity dependence of the
drag coelficient. This being the case the constant coefficient
numerical solution would be expected to closely follow that for
the velocity dependent run.

The velocity solution is certainly not insensitive to the
velocity dependence of the drag coefficient and hence the

analytic relations improve over the constant coefficient
numerical results.

The constant drag coefficient analytic solutions are shown in
their best light for a steep high-velocity entry where the
discrepancy between these solutions and those for the velocity
dependent coefficient should be minimiscd. This is done in part
to show the best casc scenario, as stated, but also to show the
peaks in the derived quantities such as heating-rate.

It can be scen that the analytic solutions match well to the
velocily profile (fig. IV.B.5-9) but begin to over-predict the
velocity as the vehicle decelerates, resulting in exaggerated
predictions for peak heating rate (fig. IV.B.5-11) and dynamic
pressure (fig. IV.B.5-12) and an error in the predicted altitude of
those peaks. Accurate prediction of the altitude at which peak
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heating rate occurs would be required by a vehicle such as the
Huygens probe® in order to determine the appropriate altitude
at which to jettison its heatshielding.

The derived relations for the flight path angle (eqn.IV.B.3.3-6
and eqn.IV.B.4-8) are identical. Upon closer inspection it can be
seen that they represent the Keplerian contribution to the
motion only. This is borne out by the trajectories obtained (fig.
IV.B.5-10) which match exactly the numerical code up to the
point of flight path tip-over (see-below).

The vehicle drag coefficient (fig. IV.B.5-13) and axial
acceleration (fig. IV.B.5-14) expressed as funclions of altitude
show that the analytic expressions have been successful in
modelling the Mach number dependence of the drag coefficient.
It should be noted that the effect of the dependence on Mach
number diminishes for large half-cone angles and bluntness
ratios (ratio of vehicle nose radius to base radius).

Examination of the validity of the analylic solutions does
highlight one problem in the derived trajectory model. That is
that the expressions for the flight path angle are unable to model
a change in the sign of the gradient on the flight-path angle
curve as shown in fig 1V.B.5-10. This condition, referred to here
as ‘tip-over’, occurs for entries where the entry velocity is so high
as to produce an initial increase in the flight-path angle (it
should be remembered that ¥ is measured relative to the local
horizon). Once the vehicle has been sufficiently slowed the
variation in flight path angle is bent by gravity towards the
downward trend noted for slower entries. It is this effect which is
missing from the inner solution to the motion.

The range of velocities for which this is a problem is small in
comparison to the full range which can be modelled using the
analytic relations, particularly as for higher velocities the vehicle
does not lose enough speed before impact for tip-over to occur
(fig.s IV.B.5-16). These hypervelocity solutions (fig.s IV.B.5-15 to
-18) also exaggerate the discrepancy between the two drag
coefficient models whilst showing the accuracy of the analytic
predictions in modelling the motion and hence in obtaining
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predictions for parameters such as dynamic pressure (fig. IV.B.5-
17) and peak heating-rate (fig. IV.B.5-18).

The expressions incorporating the variable drag coefficient
were found to provide an excellent match to the numerical code,
down to eniry speeds of lkm/s (fig. IV.B.5-19 & -20) and below
showing the wide range of validity of the solutions. Whilst
atmospheric entry is not likely to occur at these velocities,
proposed release velocities for Martian penetrator-beacons$! are
as low as 138m/s and the geometric design of a penetrator
vehicle is similar to that of the vehicle modelled.

Again, comparison of the derived solutions with genl
running the US5-62 atmosphere model (section 1I.C.2.3.4) shows
how the analytic model stands up to a ‘real-world’ simulation.
Fig. TV.B.5-21 & -22 show the errors obtained for the predicted
flight-path angle and velocity respectively when compared with
genl. running either the US-62 or the standard exponential
model.

Fig. IV.B.5-21 shows that the variation in flight-path angle
errors to match very closely to that obtained in comparison with
the exponential model. This is an excellent result, but perhaps,
somewhat expected given the nature of the trajectory modelled.

Fig. IV.B.5-22 also shows the expected result whereby the
form of the relative error curve remains the same but its
magnitude has increased. The form of the curve is explained in
the same way as before whilst the increase in the magnitude of
the errors is due to the discrepancy between the density profiles
for the US-62 and exponential atmospheres (fig. 11.C.2.3.4-1).

Again the results are of a very high quality. In spite of the
apparently large increase in magnitude the average error in the
velocity predictions never exceeds 0.1% of the vehicle velocity.

In order to compare the computing power required for the
two atmospheric entry models the analytic code was
benchmarked for CPU time and required storage space against a
minimal simulation formulated in spherical polar co-ordinates
which is representative of an onboard numerical propagator.

(This is the only occasion results for this simulation are
presented. All other simulation results were obtained with the
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full genL simulation, including the graphs presented in this
section).

The results for a 200km to ground trajectory with updates
every 500m are given in table IV.B.5-1.

It should be borne in mind that these are total times and as
such flatter the numerical simulation. Each data set within the
analytic solution requires milliseconds to evaluate and this can
be done as and when required. Using the numerical approach
each point requires the evaluation of previous points until the
final point which relies on all previous evaluations. With this
in mind, it can be seen that the analytic approach is capable of
providing real-time data to an onboard system.

table IV.B.5-1 Comparison of codes

This then is the potential such analytic representations
possess. Important data is obtained quickly and accurately
without excessive use of computing power, freeing space for
other tasks. Indeed the simplicity of the analytic expressions
means that predictions for the entire trajectory could be
produced using a simple spreadsheet package for mission design.
Logically the computing power made available by the
simplification of guidance and control systems could be utilised
in expanding the experimental and observational capabilities of
missions, or performing other operational functions.

In the results that follow ‘absolute’ refers to the modulus of
the error and ‘average’ to the absolute error time-averaged over
an entire trajectory for the initial conditions indicated. Heating
rate values are for the nosetip or stagnation point heating rate.

All runs are from an initial altitude of 200km for the vehicle

described in Appendix V.

106

.
s




Chapter IV

Transatmospheric Motion

Average Error in Predicted Velocity

fig IV.B.5-2 Ballistic Entry : Entry Angle = -6°

O'Neill
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fig IV.B.5-4 Ballistic Entry : Entry Angle = -16°
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fig IV.B.5-5 Ballistic Entry : Entry Angle = -30°
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fig IV.B.5-6 Ballistic Entry : Entry Angle = -30°
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Average Velocity Error : Variable Drag Coefficient
Analytic Model and Constant Drag Coefficient
Numerical Model compared with Variable Drag
Numerical Model

fig IV.B.5-7 Ballistic Entry : Entry Angle = -30°

Average Flight-Path Angle Error : Variable Drag
. Coefficient Analytic Model and Constant Drag
| Coefficient Numerical Model compared with Variable
' Drag Numerical Model

~ Absolute Flight-

fig IV.B.5-8 Ballistic Entry : Entry Angle = -30°
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Ballistic Entry : Comparison of Velocity Solutions
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Ballisiic Entry : Comparison of Flight-Path Angle Solutions
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IV.C. Ballistic Launch

The direct launch concept moves away from the traditional
staged launch vehicle approach and towards the launch tube,
within which a projectile containing the payload is accelerated
up to orbital speeds. The projectile is targeted for a particular
apogee and on achieving said apogee an impulsive burn places
the payload into low Earth orbit (LEO).

Direct launch is seen as a means of reducing the costs
involved in transferring payloads to orbit. Of particular concern
is the transfer of acceleration insensitive payloads, such as raw
materials and cssentials like oxygen and water, which might be
used in construction and maintenance either onboard the Space
Station or by a future Lunar Base.

One of the major factors which have so far prevented the
development of a large-scale infrastructure in space is the cost of
transferring payloads to orbit, conventional launch requiring the
transfer of a launch vehicle into space with payload release
occurring after atmospheric exit.

With a direct launch the need for a launch vehicle is
removed and consequently the total mass to be inserted into LEO
is reduced. Payload mass fractions as high as 70% are predicted
for successful launch systems and costs could be reduced to
around $500/ kg (payload to LEO) compared with $20,000/ kg
(payload to LEO) for the shuttle®,

A number of different approaches have been presented as
potential direct launch systems, varying from electromagnetic
rail guns®? to ram accelerators” to light gas guns®s,

The launch projectile itself can either be designed for low-
drag or low-ablation. For equivalent vehicles the low-drag
vehicle will lose more mass whilst requiring a lower launch
energy.

The most promising of the current proposals for a direct
launch system is the ram accelerator?048,

The ram accelerator concept (or ‘ramjet-in-tube’) considers a
launch tube filled with a pressurised fuel-air mixture in which
resides a projectile shaped like the centre-body of a ramjet
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engine. Initial acceleration is provided by a conventional gas gun
and then by cxternal ignition of the fuel-air mix behind the
projectile. At around 2.5km /s the projectile passes into a fuel-air
mixture with a lower sonic velocity causing a sudden jump in
the mach number. The vehicle then ignites fuel as it passes
through an oblique compression wave which is formed by a
sudden rise in the vehicle diameter aft of the its centre-point.
The ‘bump’ is located such that the shock detonates the gas
mixture behind the vehicle. The rapid expansion of the mixture
provides the necessary forward thrust.

The estimated size of the launch tube required to accelerate a
projectile up to orbital velocity is almost 4km and Kalotpis and
Bruckner4® propose Mount Kenya as a suitable launch site.
Clearly the scale of the operation is large but the economies are
there to be gained.

Ground tests for a light gas gun have been carried out at
Lawrence Livermore National Laboratory in California where

small projectiles have been launched to speeds in excess of
4km [ 568, whilst scale ram accelerator tests have achieved
velocities over 2.4km/ 548,

IV.C.1. Solution by matched asymptotic expansions

Solutions for a direct launch vehicle are obtained in the same
way as for the atmospheric enlry case, the non-dimensional

equations of motion differing only in the sign of the flight path
angle term from eqn. IV.B.3-2, In this case, the physical root is
now the positive root as the flight path angle is defined as
positive upwards from the horizon.

Solutions are developed for the aerodynamic and Keplerian
regions as before. In this case, however, the initial conditions for
the motion are set by the launch, thus defining the inner
integrations constants from which the outer constants are found

through the matching process.
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The expressions for the outer region are again the Keplerian
relations given in egn. TV.B.3.1-7 & 1V.B.3.1-8. As before the
flight path angle solution for the inner region is constant; viz.,

@, = 0y, = Co8Y, IV.Ci11

The solution for the velocity term is now
i, = {Jﬁnf‘};—exp(—fi) + u} IV.C.12

and the constant of integration is found by application of the
initial conditions to be

=T ,,;GXP( ~hy )+ 5 IV.C.1-3

Matching the inner and outer solutions the outer constants are
found to be

=i =2 IV.C.1-4

&
with

B = Po IV.C.1-5

a)n‘.‘ﬁ
i, +2

(}r}

The common solutions take the same form as before (eqn.
IV.B.3.3-3 & IV.B.3.3-4) and the resulting composite solutions are
given below.

B
_=2h bnp, -
T 1+h {\/] B"p(“h) (1, +2)" } IV.C.1-6

W= Boo Iv.C1.7

i, (1+ BY +2(1+ 1)

The constant drag coefficient solutions are found to be
identical in form to eqn.s IV.B.4-7 & IV.B.4-8 with the
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integration constants being obtained by application of the initial
conditions to the inner solution and matching as before.

IV.C.2. Results

The derived trajectory predictions are now compared with
results from the genl numerical simulation in order to assess
their value in representing the motion. Fig.s IV.C.2-1 to -3 show
the comparisons between the numerical and analytical solutions
obtained for velocity, flight-path angle, and drag-coefficient,
respectively, for an 8km /s launch at 30° to the horizontal. The
launch vehicle used is of the ram accelerator type described in
Appendix V and is derived from Kaloupis and Bruckner4s.

The simulation incorporates both constant and velocity
dependent drag coefficient models in order to compare like with
like and also to assess the validity of a constant drag coefficient
assumption for a hypervelocity transatmospheric motion.

In contrast to the re-entry solutions, for the launch vehicle
the flight path angle solutions (fig. TV.C.2-2) match well over the
entire trajectory. This agrees with expectations as the variation
in flight path angle is primarily a result of gravity bending the
trajectory towards the Earth and this effect is modelled by the
outer solution. For a re-entry vehicle atmospheric drag slows the
vehicle to such an extent that gravity can no longer be ignored in
the inner solution, invalidating our operating assumption, and
so the flight path angle solution loses validity towards the end of
the trajectory. For a ballistic launch, however, the vehicle travels
out through the atmosphere away from the region of rapid
change, such that, in the analysis of the projectile, the motion is
actually in the direction of greater validity of solution; away
from the approximation to the atmospheric motion and into the
exact solution of a Keplerian orbit.

As anticipated the velocity solutions (fig. IV.C.2-1) provide an
excellent match over the entire range of motion.
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By examining how the accuracy of the solutions varies over a
variety of launch velocities and flight-path angles we are able to
determine a range of validity for the analytic solutions. Fig.s
IV.C.2-4 to -13 show the average errors in the velocity and flight-
path angle predictions and the average percentage error in the
velocity predictions over a range of launch velocities from
Tto9%km/s for 16°, 22°, and 30° launches. Because of the
relalively small magnitude of the flight-path angle percentage
errors are not truly representative of the accuracy of the
predictions. To justify this we consider the trajectory as it tends
towards apogee. Towards this limit the flight path angle tends
towards zero and consequently any error tends towards an
infinite percentage error. This is illustrated in the absolute error
shown in fig. IV.C.2-2.

In cach case, the error in the velocity solution is found to
have a local minimum at a launch velocity between 6 and
7km/s. Broadly speaking, this occurs at the lowest value of the
launch velocity which results in an apogee exceeding 300km. The
following explanation for this behaviour is offered:

For low-speed trajectories which do not achieve atmospheric
exit the aerodynamic loads will be sufficiently low that
gravitational forces cannot be completely ignored; thereby
invalidating the assumption employed in obtaining the inner
solution. This will lead to a decrease in accuracy with decreasing
launch velocity.

For higher velocities, after exit is achieved the analytic and
numerical solutions are effectively following separate orbits
dictated by their exit conditions. Consequently one velocity
solution will reach its minimum (at apogee) at a greater altitude
than the other creating the discrepancy observed.

Launches with apogees in the range 300 -500km are deemed
to fall between these two extremes resulting in a higher degree of
accuracy.

It is a fortunate coincidence that this range includes the
proposed altitude for International Space Station Alpha,
allowing highly accurate analytic modelling of direct launch

trajectories for supply to the station.
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Analysis of these trajectories using the analytic relations
shows the potential benefits of direct launch. Consider a direct
launch to Space Station orbit (436.48km):

Using the analytic relations developed, for a launch angle of

16° a launch velocity of 7.15km / s results in a predicted apogee of
434.20km and a required AV of 1824km/s to achieve space
station orbit from there. The fuel requirements for this
manoeuvre are roughly half the vehicle mass (923.87kg). Using

the masses of the other vehicle components given in Appendix
V the resulting payload-mass fraction is 21.56%. Accurate
numerical results obtained from genl put the final AV
requirement at 1.825km /s for the same launch conditions. This
demonstrates the success of the analytic predictions in providing

highly accurate trajectory data whilst requiring a minimum of
computing power. It can be seen that, using the derived analytic
relations, direct launch trajectory analysis may be quickly carried

out on a simple spreadsheet program without compromising the
accuracy of the analysis, making them a powerful design tool.

Whilst acknowledging that an “optimum range of validity”
exists, the relative error was still found not to exceed 0.10%for
launches to apogees of over 50004m.

The local maximum which occurs at lower launch velocities
is somewhat misleading. The predictions at these lower
velocities err both high and low of the numerical solutions
crossing at around the midpoint of the altitude range, making
these results more of a happenstance than an indication of
increasing accuracy. This explanation is supported by an
examination of the flight-path angle solutions, whosc
maximum error occurs without fail at the lowest examined

launch velocity whilst also exhibiting the local minimum found
in the velocity solutions.
Not surprisingly the accuracy of the solutions improves with

increasing launch angle (fig. IV.C.2-13), a steeper launch

launch velocity.

i resulting in a shorter atmospheric transit duration for the same
I
|
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As for the entry case, comparison of the derived solutions
with genL running the US-62 atmosphere model (section
IL.C.2.3.4) shows how the analytic model stands up to a ‘real-
world” simulation. Fig. IV.C.2-14 & -15 show the errors obtained
for the predicted flight-path angle and velocity respectively
when compared with genl running either the US-62 or the
standard exponential model.

Fig. IV.C.2-14 shows that the variation in fight-path angle
errors has lost its form and no real conclusions can be drawn
about the form of this graph other than that it is simply the
result obtained. Given that, the errors never exceed those found
for comparison with the exponential model, and in some cases
the error is reduced.

Fig. 1V.C.2-15 shows the more expected result whereby the
form of the relative error curve remains the same but its
magnitude has increased. The form of the curve is explained in
the same way as before whilst the increase in the magnitude of
the errors is due to the discrepancy between the density profiles
for the US-62 and exponential atmospheres (fig. 1.C.2.3.4-1).

Again the errors are not large but do illustrate the difficulty
in obtaining precise trajectory predictions when the exact
atmospheric conditions to be encountered are unknown. This
fact, combined with the inherent simplicity of the analytic
rclations, makes the use of the derived relations very attractive
in the context of a preliminary design tool.

In assessing the validity of the constant drag coefficient
assumption we consider the 30° launch case. For this steeper
launch the atmospheric transit time is shorter and it follows that
the difference between the constant and velocity dependent
solutions should be minimised. Fig.s IV.C.2-16 to -18 show the
comparison between the errors observed using the velocity
dependent coefficient modelled by the analytic solution and a
constant drag coefficient numerical solution. Both sets of errors
are with respect to a numerical solution employing the velocity
dependent drag coefficient model.

A quick look at the results obtained suggests that the
inclusion of the improved drag model has a significant effect on
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the accuracy of the results. This would seem to justify the use of
the velocity dependent model.

The local minima observed in the constant coefficient
solution at 7km /s occur as it crosses the actual solution, the
errors being positive before and negative after. Again, this gives
the illusion of increasing accuracy rather than any real
improvement.

The observed improvement over the constant drag coeff-
icient numerical simulation supports the casc for utilising
accurate analytic solutions in onboard guidance systems, be it as
a replacement for sensors and other instrumentation, as a
monitor for these systems, or for onboard updating of the
vehicle state vector. After all, the improvement over the
constant drag coefficient solutions has been obtained with a
significant reduction in the amount of computer code and hence
computing power.

The primary use for direct launch, however, would seem to
be as a highly accurate, computationally efficient design tool.
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Ballistic Launch Velogity Solutions : Analytic/Numarical Comparison
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Ballistic Launch Flight-Path Angle Solutions : Analytic’Numerical Camparison
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Ballistic Launch Drag Coefficient Selutions : Analytic/Numerical Comparison
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Comparison of Absolute Error in Predicted Flight-Path Angle
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IV.D. Conclusions

The method of matched asymptotic expansions has been used to
analyse the trajectories of ballistic hypervelocity entry and launch
vehicles and has shown excellent results for each. Comparison with
a high-fidelity numerical model (genL) using the US-62 atmosphere

model has shown similarly high quality results.

The incorporation of a velocity dependent drag coefficient has
significantly improved the analytic model. Provided the function is
integrable any suitable function could be used to mode] the drag
coefficient (scctions IV.B and IV.C) or the density profile.

The analytic expressions have been shown to accurately model
the velocity dependence of the drag coefficient and comparison
with a constant coefficient numerical simulation has vindicated its
use for slender vehicles. The improvement in accuracy of the
analytic solution over the constant coefficient numerical
simulation highlights the potential of the analytic relations for use
in onboard guidance and control systems in that it has becn
achieved in conjunction with a significant reduction in the amount
of computing power required.

An optimum range of validity has been found to occur for the
launch solutions for trajectories with apogees in the range
300 — 500km. This is fortuitous as it encompasses the altitudes most
likely to be used in supplying the Space Station, although excellent

results are also found to either side of this range.

Atmospheric eniry solutions produced relatively better results
than those for launch except for the vehicle flight-path in the range
where tip-over oeccurs. This was found to occur for entry velocities
near orbital velocity. Sub-orbital velocity entries could be accurately
modelled down to speed of less than lkm/s. For entries above
orbital velocity tip-over did not occur and the solutions were found
to give excellent agreement with the numerical solutions.
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In conclusion, in this chapter we have developed the capability
of the analytic relations

e to accurately model the trajectories of ballistic launch and entry
vehicles, even under off-nominal atmospheric conditions

e to accurately incorporate the effect of velocity dependence in the
drag coefficient

* to produce quality irajectory predictions, simply and quickly.

The possible implementation of the derived relations and their
ease of use is illustrated in figure IV.E-1. This figure shows a screen
snapshot of a spreadsheet tool developed using the atmospheric
entry relations derived in this chapter.

The user inputs the required parameters in the three input
frames at the top of the sheet:

¢ Initial Values
¢ Vehicle Parameters
e Planetary Parameters

The frames below these are for the constants of integration and
also three outputs:

¢ Point Solutions

values at any altitude the user requests

¢ Impact Solutions

values at impact

*» Range of Solutions

values over a range of altitudes

The derived tool is simple to construct and provides the same
quality results described in sections IV.B and IV.C above.
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The spreadsheet tool shown in fig. IV.D-1 uses the constant drag
coefficient solutions derived in Section IV.B.4. Similar tools can be

developed using the velocity dependent solutions and for direct launch
with or without the velocity dependent drag coefficient model.
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Chapter V.

LLuNAR RETURN

V.A. Introduction

The human and scientific adventures of the early lunar missions
are perhaps unparalleled in modern history. The achicvements
symbolised by the Apollo 11 landing are a clear example of what we can

achieve when the will to do so is present.

“They proved that with skill and the desire to succeed ...[we] can fudeed meel the
most difficult tasks we set for ourselves.” T

As well as the human achievement, the Apollo missions had
scientific goals: the collection of soil and rocks samples to help our
understanding of the structure of the moon, and the deployment of
instruments to measure solar-wind composition, seismic activity and
lunar libration72.

Apolio 11 achieved all its intended goals and returned some 20kg7?
of lunar material to Earth. The preliminary science report alone
contains just over 200 pages of observations and analyses made with
this early data, Furlher analysis of this data and of that obtained during

T from preface to NASA SP-238, “Apollo 11 Mission Report”, George M. Low, Acting

Administrator, National Aeronautics and Space Administration, 1971
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the remainder of the program (almost 400kg of lunar material were

returned by the Apollo program?3) have contributed greatly to our

knowledge of our nearest neighbour, the Moon.

In the time since Apollo much of the data gathered on the moon

has been from ground based observatories, the cost of launching a
mission perhaps outweighing the perceived returns. In recent times,
however, a return to the moon is again being considered as a

cornerstone of future space exploration®.

Some arguments for a return to the moon have been presented in

Chapter I Tn this chapter we address aspects of the practicalities

associated with the lunar return mission.

V.A.1l. Lunar Return

Early missions in the establishment of a Lunar base will
include unmanned sample return missions, intended to bring
samples of lunar rock and soil back to Earth for detailed analysis
and later supply missions taking raw materials, water and
oxygen as required. It is possible that the early supply vehicles
could be constructed in such a way that they could be ecasily
disassembled on the moon and the structural materials utilised
in construction there, saving the cost of returning the vehicle to
Earth. A sample return vehicle obviously cannot be used in this
fashion, but the same vehicle could be used for supply purposes
and then filled with lunar samples for its return leg.

Whether it be as a supply vehicle for a futurc lunar base or a
sample return vehicle in the earlier stages of a continuation of
the lunar exploration begun by Apollo, it is likely that there will
be a requirement for the transport of a payload from the Moon
back to Earth. The work presented here considers a small vehicle
performing just such a return.

The representative vehicle used is too small to be manned,
though this is not viewed as essential for the successful
employment of the derived control. The physiological
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constraints of the human body, however, will need to be
considered if the type of return proposed here is to be considered
for manned spaceflight.

V.A.1.1 The Transearth Trajectory

Transfer between Earth and Lunar orbits has been
analysed intensively for the Apollo and Luna missions. The
types of return available with today’s technologies are no
different than those used by the early lunar satellite launches
although the guidance and control systems will have
changed in sophistication.

Gapcynski and Woolston™ showed the effects of Venus,
Mars and Jupiter on the Earth-Moon trajectory to be
negligible and this is used as the justification for ignoring
their effects in the simulations performed for transearth
trajectories. That having been said, their inclusion would
result in only very minor changes to the initial conditions of
the return and those could be arrived at empirically and to a

great degree of confidence. Consequently the guidance and
targeting required for transearth injection are not of issue
here,

The transearth trajectory consists of three primary phases

e Transearth injection
e Transearth coast

e Earth entry/orbit insertion.

At transearth injection a high thrust rocket burn boosts
the vehicle from lunar orbit to the velocity required for a
transearth trajectory. The vehicle considered here is
unmanned and consequently crew safety is not an issue in
the choice of trajectory allowing greater flexibility for mission
design. For example, the Apollo program utilised a free-

return trajectory where the vehicle performs a figure of eight
motion about the Earth-Moon system. In this way, should
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there be a need to abort a landing attempt then the vehicle
could progress around the moon and rcturn to Earth with
minimal cotirse corrections and consequently minimal fuel
usage.

Here, as stated above, we have no crew to concern us and
the mission start point is the surface of the Moon itself.
Consequently, free-return is not the only option and direct
return (patched conic or cotangential transfer) is a possibility.

During the transearth coast phase the vehicle is, as
implied, coasting and any control forces applied are so done
as corrections suggested by telemetry. In the work following, a
small course correction burn (of the order of 1-2m/s) is
applied where necessary to fine tune the targeted entry

conditions.

Finally, at the end of the coast phase the vehicle begins
deceleration and is eventually brought to rest. Of concern
here is with respect to what exactly is it brought to rest? The
choices are simple: Firstly, the vehicle may be decelerated
from its transearth velocity to rest at the surface of the Earth
through some combination of propulsive, aerodynamic and
surface impact forces; or secondly the vehicle may be caught
into orbit about the Earth. This sccond option appears
attractive at first as return-to-orbit will require a smaller
velocity decrement than return-to-ground. However, the fuel
requirements to achieve this decrement will be large unless
we can ufilise atmospheric forces as well.

This then is the first major choice in developing the
return scenario for the vehicle.

Currently the choice is between Earth return and its more
stringent requirements on heat shielding and consequently
vehicle design, or return to orbit for retrieval by the shuttle.
This second option is logistically inconvenient and possibly
more expensive than the first although retrieval could be
made a secondary shuttle mission to be performed after the
primary, e.g. a satellite deployment. However, the imminent
construction of International Space Station Alpha presents us
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with the possibility of both an orbiting laboratory for analysis
of lunar samples and an orbiting supply depot to which
supplies for a lunar basc could be delivered by shuttle before
being transferred to the Moon by our transfer vehicle.

The vehicle considered in the work presented here is a
small sample return vehicle representative of the size that
might be used in demonstrating the techniques and
technologies proposed herein.

The full-return problem considered later uses the free-
return trajectory as this is likely to possess the greatest
atmospheric entry velocity, Much of the earlier work
considers entry speeds slightly lower resulting in a more
benign heating environment which could be achieved
through use of Hohmann-type returns. This allows us to
consider a range of possible return types, and, within in each
subgroup we could consider a range of actual return
conditions and trajectories. This range of possible return
trajectories is termed the entry corridor

V.A.1l.2 Entry Corridors

As stated in Chapter I;

"The entry corridor is defined as the set of space lrajectories for

which aerodynamic capture within the atmosphere of the earth [sic]
can be achieved and for which entry-trajectory control can be
accomplished without exceeding either flight-crew or CM {command

module] stress limits. Therefore, definition of the corrvidor limits
includes four basic considerations: aerodynamic capture within the
atmospliere, the aerodynamic load factor, aerodynamic heating, and
landing-point control.” 121

Within this definttion then the corridor becomes a set of
trajectories which lie between two extremes. The difference
between these two extremes is referred to as the corridor

T extract from Graves & Harpold, Apollo Expetictice Report, NASA TN D-6725
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width, and this is usually given in terms of a range of
atmospheric entry angles. It should be remembered that, for
any given trajectory, the entry angle depends on the altitude
at which atmospheric incidence is assumed to occur
(fig.V.A.1.2-1).

Fig V.A.1.2-1 - Effect of entry altitude on entry angle

If the constraints on the motion were purely aerodynamic
then the two extreme trajectories are; the overshoot, where
the vehicle does not get close enough to the desired state, and
the undershoot, where it goes too far beyond the desired state.

Modifying the definitions from Chapter I for a lunar
return aerocapture vehicle with a limited fuel load, these
would be

¢ overshoot - the entry is too shallow and consequently the vehicle
does not lose enough energy to achieve capture. The vehicle will
then either continue out of the Earth’s sphere of influence or will
achieve an orbit with too great an apogee altitude to achieve space

station rendezvous with the available fuel mass.

¢ undershoot - the entry angle is too steep and it is beyond the
aerodynamic capabilities of the vehicle to achieve an acceptable
exit state. The result in this case is either a surface impact or an
orbit with too low an apogee to achieve space station rendezvous

with the available fuel mass.
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These then would be the corridor limits if capture were
the only consideration and the vehicle’s aerodynamic
capabilities and fuel load the only constraints. This is not
likely to be the case, however, as the definition above
suggests.

Take for example the case of a manned return vehicle.
Human physiological constraints require the imposition of a
deceleration load limit on the trajectories. This is another
constraint on the motion and may further reduce the entry
corridor. Vehicle design constraints, such as the tolerable
peak heating rate and (less likely) integrated heat load, may
also reduce the corridor. These reductions in addition to
constraints imposed by the abilities of the control
algorithm(s) lead to what is called the flyable entry corridor.

Fig.V.A.1.2-2 below shows the entry corridor for Apollo 11.

Fig. V.A.1.2-2 : Apollo 11 Entry Corridor!2
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The parameters used, flight path angle and velocity atl the
atmospheric interface ave typical of those used to describe an
entry corridor, whilst the additional constraints imposed by
crew and vehicle considerations provide additional
boundaries.

The types of limits imposed and the effects of such
parameters as ballistic coefficient, and L/D ratio will be
discussed in more detail when considering particular types of
trajectory.

V.B. Return to a Space Station

l V.B.1. Introduction

The planned construction of International Space Station
Alpha (ISSA) may make feasible a larger scale return to the
moon than the single mission programs such as Clementine
which have been proposed or undertaken in recent years.

As the cost of mounting a multi-mission program from
the Earth is likely to prove prohibitive, the construction of
ISSA may provide a platform for the launch of lunar
missions and an orbiting laboratory for sample study if the
vehicles could return to the station rather than Earth’s.

One current ESA proposal is for a rover equipped lander
mission to the south lunar pole, intended to assess the
suitability of the moon as an off-world observatory. It is also
proposed that the vehicle perform some soil sample analysis
looking for oxygen and helium-3 for life-support/propellant
and fusion fuel usage respectivelys. More in-depth analysis of
the lunar geology will be necessary if a manned base is to be

established at some point in the future.
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A single mission of the type proposed by ESA is limited in
both the area it can cover and the experiments it may
perform. A series of smaller sample return vehicles could
achicve greater coverage in less time, and, with the possible
use of ISSA as an orbiting laboratory, perform more detailed
analysis for a lower financial ouflay.

With autonomous on-board guidance the problem of
communication loss with the return vehicle becomes less of
a concern provided the guidance algorithms employed are
sufficiently robust. The use of smaller vehicles would also
minimise the loss, both financial and scientific of any single
vehicle should a failure occur.

The use of small vehicles might also prove important in

terms of safety. The aeroassist manoeuvre is highly

unstable3? and consequently there is the possibility, in a
failure scenario, of a surface impact. However unlikely this
scenario might appear, the use of small vehicles should make
it easier to dispose of the vehicle, either by jettisoning the
heatshield or self-detonation resulting in correspondingly
small fragments and minimising the risk of any debris
reaching the surface.

Returning to Earth would require an effective AV of the
order of 1lkm/s if the return is to ground. This compares
with a AV of around 4km /s to achieve space station altitude
from the return trajectory, making return to the station the
more attractive option in terms of the required AV and
consequently the total heat load experienced by the vehicle.

In addition, although a ground return could be carried out
using aerodynamic forces to provide a significant part of the
required AV, the accuracy with which the landing site can be
determined is limited. Historically this has led to ocean
Tandings’ and such an approach requires a large amount of
hardware and personnel to be on hand lo retrieve the
vehicle.

If the vehicle were returned to ISSA then once its orbit
had been circularised, rendezvous with the station could be
achieved with a limited number of personnel, no more
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hardware than would be on hand to track the vehicle
anyway, and greater flexibility in time scale.

The 4kmn/s AV requirement for return to the station
would still demand a significant fuel load for a purely
propulsive return. Use of aercassisted trajectories provides
an alternative means of achieving the required AV for space
station rendezvous, without incurring a large fuel penalty.

Previous work in the field of orbital transfer?! has
examined the use of analytic modelling techniques to predict
the trajectories of aeroassisted orbital transfer vehicles and as
the basis for non-linear guidance. The approach presented
here uses the non-linear transformation technique discussed
in Chapter IIl to ensure stability of a trajectory about a
reference condition by compensating for the non-linear terms
in the motion of the vehicle, and so artificially linearising the
system dynamics.

Any suitable reference condition may be used in
developing the control expressions, There are two reference
conditions used here, a constant altitude and an analytically
produced trajectory model. These are discussed further below.

The method of matched asymptotic expansions has
proved a useful tool in the analysis of transatmospheric
vehicle motion, and has been proposed as the basis for a
number of guidance schemes21.76:42  Ag discussed in
Chapter IV, solution by matched asymptotic expansions
makes use of the approximation, first made by Allen and
Eggers®?, that gravity may be ignored for high speed
atmospheric motion in comparison with the aerodynamic
forces experienced. Making this assumption, the motion of
the vehicle can be considered in two parts, Keplerian and
atmospheric. Individual solutions obtained for each of these
regions are combined by asymptotic matching to produce a
uniformly valid composite soltttion.

Such solutions have been shown to yield accurate
predictions of transatmospheric trajectory data and these
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predictions have enabled the development of some robust,
low-complexity, inexpensive guidance schemes.

In this part of the study it is proposed to marry the use of
feedback linearisation guidance with the analytic predictions
obtained via the method of matched asymptotic expansions.

As the vehicle enters the atmosphere at a moderate bank
angle (coso=0.6 ; o measured from the vertical) analytic
prediction of the resulting skip trajectory is used to estimate
the minimum altitude that the vchicle will reach. Feedback
linearisation is used to track this altitude while matched
asymptotic expansions are used to predict the apogee which
will result should the iu-plane lift component be suddenly
increased by rolling the vehicle to a predetermined pull-up
bank angle (cos o = 0.8).

Once the predicted apogee altitude falls within acceptable
tolerances of the desired apogee the vehicle "pulls-up”. The
pull-up bank angle is chosen such that the in-plane lift force
is not saturated, leav'ing some degree of control authority
over the exit phase.

The apogee that would be achieved by this manoeuvre
would be close to the desired apogee and moderate correction
needed as the analytic relations used to prédict the apogee are
an approximation to the motion. This correction could be
achieved propulsively, however the scheme proposed here
uses aerodynamic control during the exit phase. The
predictions used to determine the pull-up point are used to
provide an analytic reference trajectory. Nomn-linear
transformations are then used to guide the vehicle along the
reference trajectory, artificially improving the analytic
predictions.

As the reference trajectory data is produced analytically it
may be generated in flight removing the need for numerical
integration or storage of trajectory data and so freeing
valuable computer power for other functions. In addition,
the trajectory data obtained is altitude dependent and
conscquently there will be zero altitude error for any given
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point along the path towards apogee. Given this, convergence
of the climb-rate to the reference condition will guarantee
attainment of the desired apogee.

The concept of a reference trajectory is somewhat
misleading in this application as the ‘trajectory’ used actually
comprises the velocity and flight path angle prediction data,
and the vehicle is guided along the altitude profiles obtained.
The expression ‘reference trajectory’ will be used in this study
for convenience.

Since the reference data is obtained from the same
trajectory predictions used in determining the point of pull-
up from level flight, the actual trajectory is guaranteed to be
near the reference trajectory. How near that is obviously
depends on the accuracy of the analytic model, but by guiding
the vehicle along the predicted path it is found that the error
in the predictions may be attenuated, matching the actual
apogee as closely as possible to the targeted apogee.

The solution of the exit (rajectory problem using
asymptotic matching produces uniformly valid expressions
for the velocity and flight path angle altitude profiles.
Implementation of a feedback linearisation guidance scheme
based on these then requires no more than the solution of
simple algebraic expressions with no derivative terms

involved.

In summary, vehicle control is implemented via bank

angle modification of the in-plane lift component and it is
assumed that the desired plane change is achieved using
periodic roll-reversals. The control strategy falls into three
sections:-

* eniry trajectory -
The vehicle enters at a moderate bank angle (cos ¢ = 0.6) and the
minimum altitude is predicted analytically.

Puring this phase a prediction of the apogee resulting from a
sudden increase in upward lift component (coso=0.8) is

constantly made to allow for anfavourable atmospheric
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conditions. This pull-up bank angle is only achicved if the
predicted apogee lies within an acceptable tolerance of the desired
apogee. At this stage the apogee prediction is really only a
monitor, intended to check that the vehicle is not experiencing

extreme atmospheric conditions.

* constant altitude guidance -

When the flight path angle approaches zero the vehicle tracks the
predicted minimum altitude until the desired apogee is predicted.
The vehicle is then rolled to the pull-up bank angle and

commences atmospheric exit.

» exit trajectory -
The analytic trajectory solutions used to predict the apogee now
provide a reference trajectory along which feedback linearisation
is used to guide the vehicle to apogee.

The pull-up bank angle is chosen such that the vertical lift
component is not saturated, thus leaving some control authority

over the exit trajectory.

We will now explore the dynamics of the motion before
developing the analytic model and thence deriving our
control.

V.B.2 System Dynamics

In this part of the study a non-linear lransformation
guidance method is presented which is based on matched
asymptotic predictions of the vehicle’s trajectory. To assist
solution of the problem in this manner it is assumed that
only in-plane motion is considered about a spherical, wind-
free, non-rotating Earth.

The equations of motion are solved in a similar manner
to Chapter IV but with the addition of aerodynamic lift.

The equations of motion for this system are therefore

2
av_ PV SCh B gny V.B.211
dt 2m 2
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Vﬂ —_ }..I.... -4 Ef cOS 'J/ - E_Y_E.C_E.L V.BaZ"Z
ds FF 2m
& Vsiny V.B.2-3
dt

where the variables are as defined in Section IV.B.2 and
again the assumed density model has the standard
exponential form

V.B.2-4
where R is the radius of the Earth and Hthe atmospheric

scale height.

It is further assumed that both the lift and drag coefficients
remain constant over the atmospheric passage. Finally, the
range angle is not considered here as it does not influence the
other state variables and has no effect on the guidance

strategy.

In order to prepare these expressions for solution by
malched asymptotic expansions the equations are non-
re-written in terms of non-

dimensionalised and

dimensionalised altitude, k, as the independent variable.

As in Chapter IV, the following substitutions are used,

V=V R V.B.2-5
Vu
n=’ ;R V.B.2-6
5=PL V.B.2-7
m/S
€= " V.B.2-8
R

where g is the Earth's gravitational parameter.

O'Neill
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The reduced equation set in terms of non-
dimensionalised altitude %, is now,

dv? _ pviSC, 2

= _ Ty V.B.2-9
deosy __pC o8 T — 12_2 V.B.2-10
dh 2g i+ (I+R)V

This system is now solved by the method of matched
asymptotic expansions.

V.B.3  Solution by Matched Asymptotic Expansions

The skip-trajectory uses atmospheric drag to slow the
vehicle, reducing the energy of the orbit such that the
resultant apogee is as close as possible to the desired apogee.

Initially the motion of the vehicle is classical Keplerian,
then, as the vehicle enters the atmosphere, acrodynamic
forces take over and the contribution of gravity to the motion
may be neglected. Finally, as the vehicle exits the atmosphere,
aerodynamic effects disappear and the vehicle’s motion is
once again under the sole influence of gravity.

The clear dominance of gravitational force outwith the
atmosphere and of aerodynamic force within allow the
analysis of the molion to be split into two scctions; the outer,
or Keplerian region, and the inner, or aerodynamic region.

This approximation allows the closed-form solution of a
simple skip trajectory by matched asymptotic expansions. In
this approach expressions for the motion in each region are
obtained separately and then combined by asymptotic
matching to produce a uniformly valid composite solution.
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The following variable substitutions are made for
clarification,

u=V?and @=cosy V.B.3-1
The equations of motion for the system are now given by

du _ pC, exp(-h/e) 2

. V.B.3-2
dh a1 - @? 1+ Y

do _ p,C, I 1

— =i —hie)— w - V.B.3-3
g SRChE) e

Solutions are now obtained for the inner and outer regions.

V.B.3.1 Inner Region

As in Chapter 1V, the boundary layer considered is the
sensible atmosphere close to the surface of the planet. The
variable #=hfe is again employed as our 'mathematical
microscope’, artificially expanding the region of interest.

With this substitution the system is now written as

~d—£f = —Lq_‘%exp(—-ﬁ) - ---~-----2m€;—~2— V.B.3.1-1
dh '\,"1 -~ (1 o} Sh)

d—(,l.) = ——E“—Ciexp(hﬁ) - L L V.B.3.1-2
dh 2

1+€%—(I+eﬂ)2ﬁ

In the limit £— 0 the independent variable % - <. In this
limit the atmosphere is effectively expanded to an infinite
distance. Applying this limit, with all non-dimensionalised
variables held constant, and assuming the following
expansions for the velocity and flight path angle terms,
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fi= Z £'%,(i)+ 0(e™") V.B.3.1-3

o=y e h)+0(e) V.B.3.1-4

=0

the relations become, to lowest order,

dity __ PoiteCp exp(—ii) V.B.3.1-5
dh  \f1-d

Aoy __ DGy exp(~A) V.B.3.1-6
dh 2

These expressions are then integrated to give

ity = i, exp(~27/A) V.B.3,1-7
d)[) = C-{u)* + %‘f—)-exp(__;;) V.B.3.1-8 {

where 1 =C,/C, and &, and @, are constants of integration.

V.B.3.2 Outer Region

The solutions for the outer region are identical to those
obtained in Chapter IV but are reproduced here for ease of

reference.
Application of the limit -0 effectively shrinks the

atmosphere to the Earth's surface, so that only
exoatmospheric motion is considered.
The equations of motion for this region are then

du_ _.,Jﬁ_,f V.B.3.2-1
dh  (1+h)

dw 1 1

=@ - V.B.3.2-2
dh {l+h. (l+h)2u}
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Series expansions are again assumed for # and @ of the form
u= 2 ' (h)+ O(e"") V.B.3.2-3
=0

W= 2 g'ay(n)+0(e™) V.B.3.2-4

i=0)

Integrating the resultant lowest order expressions the outer
solutions are obtained as

Uy =1, + 2 V.B.3.2-5
1+h

@,

@, = : V.B.3.2:6
it (14 1) +2(1+ )

where u, and @, are the outer constants of integration.

V.B.3.3 Composite Solution

The composite solution is again obtained by combining
the outer and inner solutions and relating the integration
constants by asymptotic matching,

Expanding the inner solution for it — o and the outer for
E—0 and equating the equivalent expressions from each
region the integration constants are found to follow the

relations
u, = fi,exp(-27, /A} -2 V.B.3.3-1
0, = D0, +2 V.B.3.3-2

Finally, there exists a constant solution which is common
to both the inner and the outer regions and this must be
subtracted from the sum of the solutions for the two regions
so that it is not included twice in the composite expressions.
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The common solution is obtained by expressing the outer
solution in the imner variable and taking the limit as € >0,
giving

H=1u, +2 ¥Y.B.3.3-3

o,
Ju, +2

= V.B.3.3-4

The composite solutions for non-dimensionalised
velocity and flight path angle in terms of altitude are now

given as
. 2h .
u=(u,h+2)exp(—2(‘}'-'}f*)/l)wm V.B.3.3-5
=P o nfe) e V.B.3.3-6
2 f 2
Vi, (1+7) +2(1+h)
with
cos ¥ =cos¥, + El’%gl?— exp(—h/€) V.B.3.3-7

Having obtained the uniformly valid composite solution,
it is noted that a problem occurs near y=0.

As the inner solution differs from the composite solution
by terms of order ¢, cos¥ may reach unity before the
composite solution. In this event the condition cos¥>1 arises
near y=0 rendering the solution for # (eqn. V.B.3.3-5)
indeterminate.

To avoid this the constant ¥, is evaluated from the inner
solution {eqn.V.B.3.1-8) by setting cos¥y = 1 at k=4, ie.

in

cos ¥, =1— _P_oﬂzﬁg,exp(_hm /e) V.B.3.3-8

where £, is defined as the value of % at which the

T
composite cosy (@) becomes unity.
It should be noted at this point that the evaluation of

b, from eqn.V.B.3.3-6 vequires prior evaluation of the

constants u, and @,. This concern is addressed more fully
later (section V.B.5.2).
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V.B.4 Exit Trajectory

The evaluvation of the trajectory expressions does not
assume either a negative or positive flight path angle and
consequently the relations are equally applicable to both the
atmospheric entry and exit portions of the skip, though
obviously the initial conditions for each will be different.
Recognising that the initial condifions for the exit are the
final conditions from the entry it should therefore be possible
to obtain the exit trajectory constants in terms of the enfry
constants.

Given that the {light path angle will take a positive value
over the exit trajectory it is logical to assume that the constant
7. will also be positive. From eqn.V.B.3.1-8 it can be seen that
the inner solution for the flight path angle is symmetrical
about #_, and consequently

Fom e, V.B.4-1

where the sub-subscript e denotes an exit trajectory constant.
Equating the two sets of composite solutions at A=h; the
remaining exit constants are found as,

u, =(u, +2)exp(47,/4)-2 V.B.4-2

The derived solutions are now complete and ready for
implementation in an aerccapture guidance scheme.

V.B.5 Guidance

From the initial lunar return trajectory the vehicle is
required to lose sufficient velocity that the resultant elliptical
orbit has an apogee altitude as close as possible to some target
altitude. It may not be possible for the vehicle to achieve the
AV decrement necessary to attain the desired apogee on a
simple skip and so a control is implemented at the bottom. of
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the skip to maintain that altitude until a release condition is
satisfied where the vehicle then rolls to the pull-up bank
angle.

Fig.V.B.5-1 below presents a schematic of the control
methodology, where o, is the instantaneous command bank

angle, determined by the onboard control.

T —

———

YM.,.}

Fig V.B.5-1 - Schematic of Guidance Implementation

The control used to track this altitude is a non-linear
transformation controller implemented via the vehicle bank
angle.

The release condition referred to above is the prediction,
using the analytic relations developed, that the desired
apogee (within acceptable tolerances) would be achieved
should the vehicle roll to a pre-determined “pull-up” bank
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angle. This pull-up value is chosen so that the in-plane lift is
not saturated, leaving some control authority for the exit leg.

Control over the exit trajectory is again implemented
using non-linear transformations via the bank angle. The
analytic predictions made in determining the pull-up point
are used to provide a reference trajectory and the control is
implemented to guide the vehicle along this path towards
apogee.

Once at apogee, the vehicle’s propulsion system would
circularise the orbit and proceed from there to rendezvous
with the station. Fig. V.B.5-2 presents a schematic of the
onboard implementation of the control law.

Constant
Altitude

Fig.V.B.5-2 : Guidance Scheme Implementation
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Although in this study the control laws are implemented
by banking the vehicle, it should be noted that acrodynamic
control can also be achieved by modulating the angle of
attack. This approach would seem more suitable for
manoeuvres requiring zero plane change as no out of plane
forces are created by the control.

Implementation would appear to be more difficult,
however, as the large pitching moments generated at
hypersonic velocities would probably restrict the range of
maintainable angles for a gliding wvehicle lacking
aerodynamic control surfaces. Gas jet control is possible but
maintaining an off-trim pitch angle would require large
amounts of fuel, far more than control of the bank angle
which would also give access to the entire range of in-plane
lift, from maximum outward to maximum inward??. There
is also the added advantage of simplicity in the control law.
Whereas a change in angle of attack will affect both C; and
C,, a change in bank angle affects neither, rather it redirects
the lift vector. It is also considered that the ability to control,
to some degree, the plane of vehicle motion would be useful
in correcting small changes in orbit plane.

V.B.5.1 Non-linear transformation controller

for constant altitude.

The contro! used here is developed using non-linear
transformations. As slated above the controller is
implemented via the bank angle, which has the effect of
redirecting the lift vector. It is assumed that the desired out-
of-plane motion is achieved through periodic roll-reversals
and so the variable Ais modified such that it becomes the in-
plane lift-to-drag ratio, i.e.

_C,cosa
C

Fa

A V.B.5,1-1

This definition will be used for the remainder of this section.
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The control is required to track a given altitude, r_, and so
successive lime derivatives of r are taken until the control
oappears explicitly in the relations. This occurs in the second
derivative of r so a pseudocontrol P is defined as

_d _ pViSC, | pViSC, Vi, n
P=dt2 = siny + cosocosy+Tcos Y 7z
..V.B.5.1-2

Stability is ensured by evaluating the pseudocontrol in terms
of the altitude error and error rate, viz.,

V.B.5.1-3

g VRIS

& dt

. ar, .
where the reference climb rate, T' will be zero for a constant
dr

reference altitude.
The feedback gains ¢, and ¢, are chosen to produce the

desired vehicle response in following the reference allitude.
Rearranging eqn.V.B.5.1-2 the command bank angle is found
to be

T2 2
COS QO = "2L V—cosz}/+-ﬁé+%siny+f’
pV-SC,cosy| r re 2m

..V.B.5,1-4

V.B.5.2 Apogee Targeting

Throughout the entry and constant altitude phases of the
motion it is possible to predict the apogee the vehicle will
achieve for a particular value of coso, using eqns.V.B.3.3-5 &
V.B.3.3-6. In order to apply these equations, however, it is
necessary to first evaluate the [trajectory constants
u,, @, and ¥,.

During exoatmospheric flight the initial conditions are
used to evaluate the two outer constants directly, and

prediction of the minimum altitude yields ¥,. The procedure
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becomes a little more complicated during the atmospheric
phase of the motion.

A problem arises when considering the modified constant
7.. Remembering that the modification of this constant is
required to avoid @ taking a value greater than unity near
the bottom of the skip, it is essential for accurate evaluation
of the exit trajectory constants.

It has been noted that evaluation of ¥, requires prior
knowledge of u, and ®., and, as the motion is now within the
inner region these oufer constants must be evaluated from
their inner equivalents which are in turn evaluated from the
current vehicle state.

The problem is that one of the inner constants, @,, is the
cosine of the very constant that is being modified. Obviously
one cannot be changed without the other, though thankfully
elimination of both from the minimum altifude evaluation
is possible.

Eqn.V.B.3.3-5 is used to express both ¥, and &, in terms of
the minimum altitude. The inner velocity constant, i, may
be evaluated with impunity, as it is depends only on the
current velocity and flight path angle.

The outer constants are now obtained through the
matching process. Substitution of the resultant expressions in
terms of A, into eqn.V.B.3.3-3 yields, with A=1#,

™min min/

1= P50 explh )

[l _ p_()‘zcu Cxp(_hmin /8))\]!}" CXP[“'Z COS“l[l - ELﬁé(‘:—nexp'(mh’min /8))//1)

\;2(1 + hmin ) + (1 + h'min )2(_2 + ﬁ* cXp[MZ COS_I (l a %CQ exp(_hmin /S)J/)L J)

..V.B.5.2-1

which is then solved for 5

nin

using a Newton-Raphson

iterative solver.
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For computational simplicity, during the constant altitude
portion of the motion the trajectory constants are evaluated
using the assumption that for flight path angles very close to
zero {£0.1°) @ may be taken as unity, implicitly defining the
current altitude as the minimum altitude. Having so defined
the minimum altitude the exit trajectory constants are readily
evaluated from eqns.V.B.3.1-7, V.B.3.1-8, V.B.3.3-1, V.B.3.3-2
& V.B.3.3-8.

In predicting the apogee, rather than iterate to a solution =
as is done for the minimum altitude evaluation the
predictions are used to evaluate the trajectory variables at a
point outwith the atmosphere. The values of the trajectory
variables at this exo-atmospheric point are then used as the
initial conditions for the purely Keplerian motion to apogee.

Using the outer solution expressions alone then it can be
shown that the resultant apogee, k,, is given by

= —(1 e O ) -1 V.B.5.2-2

[£2

:?0“

where u«, and @, are the outer constants obtained from

eqns.V.B.3.2-5 & V.B.3.2-6 using the values of # and w
predicted at the exoatmospheric point.

[n this manner the apogee predictions are constantly

updated and the pull-up control value achieved when the
predicted apogee lies within a specified tolerance of the target
altitude.

V.B.5.3 Trajectory Tracking

The trajectory constants evaluated in predicting the point
for the pull-up manoeuvre are now used to determine the
ideal velocity and flight path angle at any point along the
vehicle’s trajectory. This data is then used as reference data
for a feedback linearisation controller designed to guide the
vehicle along the path defined by the analytic relations.

168




Chapter V

Lunar Refurn O'Neilt

As the trajectory data is generated analytically in-flight the
need for cither storage of pre-planned trajectory data or
repeated numerical integration of the trajectory is removed.

The control is devised as though it were following an
altitude plan. As will be seen this allows account to be taken
of errors in both velocity and flight path angle.

The altitude error y is defined as

y =77t V.B.5.3-1

and consecutive time derivatives are taken until the
control ¢ appears explicitly. This occurs in the second
derivative which then defines a pseudo-control.

y=Vsiny—#,,.(1) V.B.5.3-2

2 2

pV2SC,

2o
AALIS «-mi—?;—icosacosy+70052Y-%"‘me(")

ny+
2m Y

..V.B.5.3-3

In order to assure stability the pseudo-control is evaluated
from the altitude error and climb rate error as

js = —Cﬂlj’ - azy VoB 15-3-4

It is noted at this time that, as the reference trajectory is
altitude driven, that at any given point the altitude error is
always zero and consequently the pseudo control is defined
solely in terms of the climb rate error, ie.

Y=oy V.B.5.3-5

where the feedback gain « is chosen to achieve the
desired vehicle response.

Given that there are limits to the control which can be
applied, judicious choice of « is required. This is discussed

further in the implementation section of this chapter (section
V.B.6 which follows).
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The command bank angle may now be obtained from
egns. V.B.5.3-3 & V.B.5.3-4 as

2
PY5Ch in Y+ ¥+ me(r)]
2m

..V.B.5.3-6

. 2m Vo, M
COST, = ‘—mms—————{ —CO0S" ¥+ 5 +
pVSC, cosyl r r

As stated before, the reference trajectory is altitude driven
and so the description of the reference variables as [unctions
of time is somewhat misleading. The reference radial
acceleration, #,(z), for example, is found from the values of
the trajectory variables for the altitude at which the vehicle
finds itself at time 1.

2 ¢ 2 g 2
' — ‘U. pr‘f.f'S CL . ncn pvrqf"s ("D Vrff -
ref (I) = —F - ~—'—2;;I““~"CO& O,y COSY,,r — ‘—““‘E;’;—‘bll'l Vrg + TLOS Y ier
..V.B.5.3-7

The reference climb rate, 7,(f), required for
determination of the pseudocontrol, is also found in this

manner as

Fo )=V, siny,, V.B.5.3-8

We will now examine the implementation of the control
into genl. and its performance in controlling the aerocapture

manoceuvre.

V.B.6 Implementation and Results

The following section considers a small, unmanned,
sample return vehicle, 1000kg in mass with an aerodynamic
lift-to-drag ratio of 1.5 and a ballistic coefficient (S =mg/C,S)
of 19620Pa, unless otherwise stated.

The vehicle is assumed to be sufficiently blunt (half-cone
angle greater than about 7°) that a constant value for L/D can
be used. For such a vehicle the small variations in hypersonic
L/D will be dwasfed by the variations in air-density.
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The vehicle is performing an aerobrake manoeuvre in the
Earth’s atmosphere. The manoeuvre is controlled such that
the vehicle exits along a trajectory with an apogee as close as
possible to the orbital altitude of the space station, 436.48%m.

In addition a fuel limit of 100kg is imposed on the
vehicle, resulting in a AV capability of 310m/s, for a specific
impulse of 300s.

Matched asymptotic expansions have been shown in the
past to vield good results in comparison to numerical
simulations?1,42,56,57,76,82 Nolhing new is added to the
solutions in this chapter and so the justification for their use
is taken as proven. It is the way in which they arxe
implemented which is crucial here.

As has been said, the initial entry phase (see Fig V.B.5.1} is
envisaged as monitored rather than guided. During this
portion of the motion matched asymptotic expansions are
used to predict the apogee which would result if the vehicle
were rolled to the pull-up countrol value. In this way
allowance is made for extreme variation in the atmospheric
conditions experienced during entry.

Should the vehicle achieve the release condition during
this phase pull-up would be effected at that point. In the
worst case scenario the vehicle would be unable to achieve
the desired altitude leaving the options of abort to lower
otbit, abort to ground, or sclf-destruct. The most desirable of
these would appear to be aborl to lower orbit though this may
not always be practical and indeed retrieval of the vehicle in a
lower, faster decaying orbit may not prove feasible at all.

In implementing the control algorithm we take the
vehicle state at 100km as the initial conditions for prediction
of the minimum altitude using the derived analytic
relations. Some iteration is needed to obtain the minimum
altitude so the choice of 100km altitude is arbitrarily made to
ensure the on-board computer has time to complete the
calculations. In addition, 100km is deemed sufficiently high to
be said to lie in the outer region for the analytic model.
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For these reasons the results presented below are given in
terms of the flight path angle at 100km altitude, referred to
here as the “initial” flight path angle. There will be some
disparity between this value and the entry angle. However, as
there will inevitably be some error in the anticipated
atmospheric conditions on enfry, precise estimation of the
flight path angle at the start of the first control phase would
not be possible, though the disparity will likely be small.
Given this, the choice of control gains is made such that a
good degree of accuracy was maintained over a range of
initial flight path angles rather than choosing a gain to
precisely achieve the target altitude for one particular flight
path angle. It was felt that this approach would be a more
realistic test of the control algorithm.

Given the fast dynamics of the system, the data sample
speed will be important for both state vector update and
determination of the pull-up point.

Ideally, pull-up would be performed at the exact instant
when the desired apogee is predicted. However, sample rates
and computing speed make this impractical for now, and so

pull-up is achieved when the predicted apogec lies within an
acceptable range of the target.

A tolerance of +1.54km was chosen for this work, with an
elapse time of one-tenth of a second between state vector
updates and a first order filter applied to the control output to
compensate for this and smooth out the control time history.

The f{ilter takes the form
A = (0, — Oy Jexp(—Lt) V.B.6-1

where £ is the filter gain, o, the pull-up bank angle used as
the reference bank angle in determining the command bank
angle {eqn. V.B.5.3-7) so that the final control demand, o, is

O, =0, +AC V.B.6-2

This is the value of bank angle that will be demanded of

the vehicle.
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The performance of the routine was checked on genlL
running first with an exponential atmospherc and then a
model of the 1962 U.S. standard atmosphere?® (section
11.C.2.3.4) representing the ideal atmosphere used by the on-
board computer and the “real” atmosphere, respectively.
Runs were carried out using the analytic apogee targeting
system both with and without the trajectory tracking routine.

The comparison between the two runs (both using an
cxponential atmosphere model) with an initial flight-path
angle of -6° (fig.V.B.6-1) shows a small overshoot for both
cases with the trajectory tracking reducing the apogee error by
over 25%. Fig.V.B.6-2 shows the absolute apogee error over a
range of initial flight path angles from -5° to -8°, with a
similar improvement in apogee error for each initial angle
when the trajectory tracking is used.

The aforementioned fast dynamics of the system leave it
susceptible to perturbations. It was intended that the
relatively deep pass into the atmosphere and the use of a
relatively high lift-to-drag ratio would exaggerate the
differences between the ideal exponential atmosphere and
the “real” atmosphere, again providing a more realistic test of
the guidance.

Fig.V.B.6-3 shows the results for a pass through a model of
the 1962 U.S. standard atmosphere. As expected the different
density profile (Fig. I11.C.2.3.4-1) introduces a new source of
error to analytic predictions and without tracking of the
predicted path the final apogee is in error by 36im. Using the
trajectory tracking, however, this error is reduced by almost
86%.

From fig. V.B.6-4 it can be seen that the trajectory tracking
again produces sizeable reductions in apogee error over the
same range of initial flight path angles as before.

The absolute disparity between the apogees achieved for
the two atmosphere models (fig. V.B.6-5) gives a guide to the
robustness of the guidance algorithm. Once again, the
trajectory tracking shows considerable improvement in
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cousistency over the apogee targeting alone. Fig.V.B.6-6
shows the altitude time histories of the four cases discussed
so far. It can be seen that even the worse of the two results for
the tracker improves on the better of the two for the free exit.

As has been stated, of primary importance in the testing of
a control is the robustness of the control to state estimation
and atmospheric errors. The results discussed above are the
beginnings of such an analysis.

Errors in the predicted atmospheric conditions are the
most likely errors to be encountered. Fig V.B.6-7 shows the
apogee altitudes obtained in response to a range of off-
nominal atmospheric conditions.

The off-nominal atmospheres are generated as per
equations ILC.2.3.5-1 & -2. In each case the control assumes an
exponential model for atmospheric density. Variations in
bias were found to have a greater cffect than the amplitude or
frequency of the oscillations. Consequently the results shown
here are for variations in bias, with a=0.1 and A, =3.0kn
held constant.

Figure V.B.6-8 shows the control responses for these off-
nominal atmospheric conditions. The vehicle enters the
atmosphere at a constant bank angle, then saturates whilst
pulling towards the predicted constant altitude. The control
then gradually reduces this angle as required by the constant
altitude controller. The spikes occur at the pull-up point and
the consequent traces show the control acting to maintain
alignment with the on-board generated reference data.

Figure V.B.6-9 shows the corresponding altitude histories.
The spread appears wide but as Table V.B.6-1 shows the fuel
savings over uncontrolled exit are significant and all within
the 100kg fuel limit.

Clearly the trajectory tracking has reduced the apogee
altitude error significantly. Figures V.B.6-10 & ~11 show how
this improvement translates to AV saving, firstly in absolute
terms, and secondly by expressing the AV required to achieve
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ISSA altitude from apogee as a function of that required for
the uncontrolied exit. The savings are significant with AV
requirements more than halved for most of the cases run.

Figure V.B.6-12 shows how the two sets of AV
requitements compare to our AV budget of 310m/s. Without
the trajectory tracking the system never achieves space
station orbit within budget whilst using the tracking the
budget is never exceeded. In software terms this has been
achieved by a handful of lines of code.

What these AV savings mean in terms of the spacecraft

design itself can be seen when we convert the AV data into
fuel mass (assuming a specific impulse, £, of 300s):

Figure V.B.6-13 shows that the fuel saved with a

controlled exit is aclually greater (in all cases bar one) than
the fuel actually required after such an exit.

Numerically (table V.B.6-1) we find that this equates to 80
or 90kg less fuel thanks to those few lines of code. Add to
this the mass savings in the size of the fuel tanks (10% of the
propellant mass™), and more importantly the AV savings by
the reduced mass at transearth injection, and the significance
of this mass reduction is even more readily appreciable.

-0.05 89.20 177.41 88.21
-0.0375 80.85 170.05 89.20
-0.025 73.76 164.11 90.34
-0.0125 66.65 158.00 91.35

Q_(nominali) 46.82 141.26 94.44

0.0125 52.46 145.31 892.886

0.025 46.80 140.13 893.38
0.0375 51.60 133.36 81.76

0.05 56.27 127.88 71.61

Table V.B.6-1 : Fuel Requirements and Savings

175




Chapter V Lunar Return O'Neiil

Altitude & Control Histories : Exponential Atmosphere
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Altitude & Control Histories : US-62 Standard Atmosphere
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Control-Time Histories for Off-Nominal Atmospheres
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|Delta-V Savings using Trajectory Tracking I; i
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Delta-V from Apogee to Target Orbit for Off-Nominal
Atmospheres

Fig. V.B.6-12 : AV requirements for controlled and uncontrolled exits
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Fig. V.B.6-13 : Fuel requirements for controlled and uncontrolled exits.
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Table V.B.6-2 below shows how one set of control gains
copes with large variations in initial velocity, V. The control
gains used were chosen to produce a minimum apogee error
at V,=9.20km/s.

9.00 464.37 : 27.89 7.17 496.00
9.10 452.37 15.89 7.19 465.09
9.20 439.92 3.44 721 434.92
9.30 445.52 9.04 7.24 413.06
9.40 44547 8.99 7.26 389.43
9.50 446.27 9.79 7.28 368.18
9.60 454.27 17.79 7.30 353.35
9.70 451.96 15.48 7.32 332.56
9.80 454.24 17.76 7.34 316.43
9.90 460.95 2447 7.35 305.78
10.00 506.07 69.59 7.35 335.29
10.10 498.78 62.30 7.37 313.96
10.20 428.82 -7.66 741 245.20

Table V.B.6-2 : Variation in Apogee Altitude and Velocity for a range of Inifial
Velocities.

The first observation we make is that the apogee velocity is
the predominate factor in determining the AV required to
achieve space station orbit. Compare the results obtained for
V. =9.80km /s with those for V,=10.10km/s. The increase in
attained apogee altitude is marked whilst the AV requirement
actually drops.

The second observation we make concerns the stability of the
control. From V,=9.00km /s to V,=9.60km /s there appears to be
a local minimum in the apogee altitude results at V; =9.20km /5.
The trend continues up to V,=990kn/s, though with less
congistency, and thercafter the changes become larger and less

predictable until at 10.3km /s the control fails completely and a

surface impact occurs.
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Mathematically the control guarantees stability, however the
available limits to the control (+90° bank angle) and the inherent
instability of the manoeuvre have rendered the particular gains
used unstable in this instance. This theory is borne out as we
examine the use of a further set of gains for entry velocities
above 10.2km/s. Here the control produces very favourable
results (table V.B.6-3) but loses applicability more rapidly, failing
after 10.4km/s. Yet another set of gains can be employed for
entry velocities above 10.4km /s though this time the results are

valid only for cases within +0.1km/s.

10.30 435.41 1.07 7.42 222.53
10.40 432.16 4.32 7.44 212.67

Table V.B.6-3 : Variation in Apogee Altitude and Velocity for a range of Initial
Velocities.

What explanations can we offer for this behaviour?

Firstly, the control operates in two phases : constant altitude and
exit trajectory tracking.

The control over the constant altitude portion is
implemented first and so we consider this first as a possible
answer.

Increasing entry velocities will result in rapidly reducing
perigee altitudes. Although the apogee altitude is still predicted
internally to the system, this renders the control gains less
applicable for off-design velocities and may result in over- or
underdamping of the vehicle response. The higher the velocity
the greater the disparity, this is likely to be a result of increasing
duration and/or frequency of saturation of the control.

As a result, pull-up prediction does not actually occur along
as smooth an altitude profile as intended in the control theory.
Figure V.B.6-14 shows a schematic of the effect of an off-design
entry velocity on the vehicle motion. This requires either the
widening of the predicted apogee tolerances to avoid failure of
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the control or a modification of the prediction technique to
allow prediction from off-zero flight path angles.

Unfortunately this latter approach requires iteration to find
the inner integration constants increasing the computational
demands of the predictions. For a negative flight path angle this
also introduces the additional complexity in that the apogee
prediction is no longer for an exit trajectory with y,=0 but
rather for a skip with the initial conditions in the inner solution.
It was found that knowledge of the additional integration
constants required for a lifting skip trajectory was less reliable for
initial conditions within the inner solution particularly so for

small values of y(see section V.B.5.2).

Fig. V.B.6-14 : Effect of off-design entry conditions

Increasing entry velocity seems to exaggerate the problem
although the range of validity was found to remain around
+50m /s — £100m / s. The post-flight best-estimate trajectory for
Apollo 1112 calculated atmospheric entry velocity to within
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0.Im /s of the value supplied to the command module computer
by ground support. This value was uploaded to the computer
prior to entry at 124km, and suggests that even these reduced
ranges fall within attainable limits.

A similar analysis of the controls response to variations in
initial flight path angle produces similar results. Here a spread of
0.7°, well above targeting constraints, was found to be possible
for lower entry velocities decreasing to around 0.2° for higher
velocities. Again, the best estimate trajectory for Apollo 1112
calculated a flight path angle at atmospheric entry of ~6,616° as
compared to the uploaded entry condition of -6.620°.

Figure V.B.6-15 shows an entry corridor constructed from
aerocapture analysis data obtained using genl and indicating
primary regions of stability for single sets of applied control
gains.

The construction of such a corridor proves to be complicated.
The first and most significant problem is that described above,
whereby particular control gains can be applicable for small
regions requiring the choice of a new sct of gains for entry
conditions outside that region. This concern not only slows the
process but causes a degree of uncertainty as to just how wide the
corridor is. Although some trends were noted, no rule appeared
to exist for determination of the control gains. For example, the
overshoot boundary shown in fig. V.B.6-15 below is based on the
majority of obtained results, However, a stable region was also
found .around V,=1L0kmn/s, y,=-4". The conclusion drawn
from this is that the entry corridor is indeed wide but that it
remains for a globally applicable gain scheduling scheme to be
derived,

For intermediate entry velocities, the choice of the constant
altitude gains seemed to be least significant in determining the
range of validity of any particular set of control gains. A large
area of validity is found around V,=10.0km/s, y,=-8", for
example, with very little change in the constant altitude gains
over this region, whilst the exit trajectory tracking gains require

more regular alteration.
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Entry Corridor Analysis

Fig. V.B.6-15 : Entry Corridor for Derived Control Indicating Primary Regions of
Stability for Fixed Gain Groups.

Near the higher velocities however, the constant altitude
gains require more significant modification reducing the range
of applicability of any one control set. For this reason, and the
increased pressure and heating limits encountered, entry
velocities above free return entry velocity (V, =11.0km/s) were
not studied. Variation from the free-return trajectory only being
deemed worthy if reductions in loadings could be achieved.

Again near the lower velocities it was found that the constant
altitude gains required more frequent adjustment. Two
explanations are offered for this observed effect. Firstly, that
higher velocity entry requires a greater velocity decrement before
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exit and consequently a longer duration constant altitude
portion to the flight. The lengthening of this phase allows more
time for the trajectory to be damped out towards constant
altitude flight (where the pull-up prediclions have greatest
validity) thus giving greater flexibility in coping with off-design
entry conditions.

The second, more pragmatic, explanation is the likelihood
that more than one set of control gains can produce similar
results and that those shown above may not possess the greatest
range of applicability within that region of the corridor.

Figure V.B.6-16 illustrates one case where this effect was
observed and figure V.B.6-17 shows the difference in the control
histories used to obtain these results (figures are for
V. =10.0km /s, y,=-10°, and L/D=3.0, a constant filter gain of

§=7 was used). It can be seen from these results that gains of 3

and 5 result in similar trajectory profiles for quite different
control histories.

Having accounted for the complexities in developing a true
representation of the likely entry corridor it was pleasing to note
that the lower limit of the corridor was predominately bound by
the available AV or aerodynamic undershoot rather than by
vehicle loading constraints (see table V.B.7-2 later). This result

implies that the trajectories analysed would not require material
or structural capabilities beyond those currently available. Indeed
the 5g deceleration load limit was never breached and, although
the specifications used are for a small sample return vehicle, the
relatively benign environment encountered during the
aerocapture manoeuvre suggests that the technique might also
prove suitable for larger scale personnel transport vehicles.

The issue of a suitable lift-to-drag ratio was readily resolved.
Four L/D values were considered, those being 0.5, 1.0, 1.5, and
3.0, For L/D=0.5 the results were promising, however, the
vehicle did not display the required control authority to deal
consistently with off-design conditions, saturation of the control
accurring rapidly. In addition, the entry velocities most suited to
the lower value of L/D arc significantly lower than typical entry
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Altitude Historles for Varying Gontrol Gains
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velocities. Similar results were observed for L/D=1.0 with the
expected improvement in handling off-design conditions and
increase in acceptable entry velocities.

The L/D=15 vehicle performed as anticipated (see Chapter
VI} with good accuracy and reliability in dealing with off-
nominal conditions. The biconic shape corresponding to this
value of L/D is still volumetrically efficient and it was later
discovered that the design for the Japanese Hypersonic Flight
Experiment (Hyflex) vehicle possesses similar dimensional and
aerodynamic characteristics. Hyflex is intended to demonstrate
surface to LEO operations for a reusable vehicle and will
therefore have the capabilities required for the lunar return
mission in terms of structural and thermal loading capacity. This
option was deemed the most worthy of study and the majority of
the derived results are presented for a vehicle with these
specifications.

For L/D=3.0 the accuracy is excellent and the consistency
good. Off-nominal conditions arc readily dealt with and the
acceptable entry velocities are within the range expected.
However, the reductions in volume efficiency and the increased
material and technological requirements (see Chapter VI} in
combination with the slight increase in AV requirements over
the L/D =15 vehicle were not adequately balanced by the cross-
range ability of the vehicle to warrant further consideration.

One of the most likely causes of these errors would be an
inaccuracy in the transearth injection burn which would be
magnified as the vehicle approached Earth. Correction for these
is possible during transit and this improves the prediction of the
entry conditions. The second most likely cause is that of
uncertainty in the atmospheric conditions at the time of entry.
Models such as NASA’s Global Reference Atmosphere Model
(GRAM) contain wind models derived from past meteorological
data which should help in choosing the control gains for actual
flight vehicles.

As mentioned in Chapter II though, no atmosphere model
can be totally reliable and, after taking the sensible precaution of
allowing for expected seasonal variations etc., we still require a
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control sufficiently robust as to allow for the possible variations.
In this sense there is liltle point in optimising the aeropass
manoeuvre as has been done in the past1®42:78,82 An optimal
aerocapture solution might suggest a high entry velocity giving a
correspondingly high exit velocity and hence a lower
circularisation AV. However, as has been demonstrated above,
the optimal gains might produce a highly unstable trajectory
resulting in failure for only slight deviations from the design

entry conditions.
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V.B.7 Six-degree of Freedom, Transearth Trajectory

Having developed and tested the control technique and
methodology 