
 
 
 
 
 
 
 
 
Gómez-Castañeda, Eduardo (2018) Uncovering the BCR-ABL1 tyrosine kinase 
independent signature in chronic myeloid leukaemia stem cells. PhD thesis. 
 
 
https://theses.gla.ac.uk/39043/     
 
    

Copyright and moral rights for this work are retained by the author 

A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 

This work cannot be reproduced or quoted extensively from without 
first obtaining permission from the author 

The content must not be changed in any way or sold commercially in 
any format or medium without the formal permission of the author 

When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

 
 
 
 
 
 

Enlighten: Theses 
https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 

https://theses.gla.ac.uk/39043/
mailto:research-enlighten@glasgow.ac.uk


Uncovering the BCR-ABL1 tyrosine kinase 

independent signature in chronic myeloid 

leukaemia stem cells 

 

Eduardo Gómez Castañeda 

 

Submitted in fulfilment of the requirements for the 

Degree of Doctor of Philosophy  

 

Institute of Cancer Sciences 

College of Medical, Veterinary & Life Sciences  

University of Glasgow 

 

 

 

 

September 2018 



 2 

Abstract 

Chronic myeloid leukaemia (CML) is characterised by the presence of the fusion protein 

BCR-ABL1. The addiction of CML cells to the tyrosine kinase (TK) activity of the 

oncoprotein has been successfully exploited by the introduction of tyrosine kinase 

inhibitors (TKI), such as imatinib, which have shown a great success at managing the 

disease. However, these compounds fail to eradicate a primitive cell population, the 

leukaemic stem cells (LSCs), which persist in the patients. This translates in the need of 

life-long therapy for most of the patients, meaning a higher risk of treatment side effects 

and the prolonged psychological burden of living a leukaemia patient. Life-long therapy is 

also translating in a continuous increase in CML prevalence in developed countries and 

sustaining a big patient population on TKI treatment is becoming a challenge for national 

health systems. 

Recent reports in chronic myeloid leukaemia biology have confirmed that CML LSCs are 

not addicted to the TK activity of BCR-ABL1 and they retain repopulation and leukaemic 

properties even during BCR-ABL1 TK inhibition. Thus, the discovery of new therapeutic 

targets capable of eliminating this cell population is required for curing the disease. 

Previous reports have already shown great success at reducing the number of CML LSCs 

by targeting JAK2, STAT5, EZH2, MYC and p53 pathways as well as autophagocytosis. 

However, none of them have shown complete eradication of the clone and they failed to 

define a global gene expression signature that may explain the persistence of CML LSCs 

during TKI treatment. 

In this thesis, microarray analyses revealed (I) 527 consistently de-regulated genes in CML 

LSCs compared with normal HSCs and (II) 5,706 genes not affected by TKI treatment in 

CML CD34
+
 cells. The comparison of both lists revealed a 60 genes signature that is 

differentially expressed in CML LSC (as compared with normal HSC) and not affected by 

TKI treatment of CML CD34
+
 cells. Of the 60, 4 genes (CD33, CHST2, PPIF and ERG) 

were validated in a set of independent patients and controls by qPCR. CD33, a myeloid 

cell surface marker, was found to be upregulated in CML and can be targeted by the 

clinical grade compound gemtuzumab-ozogamicin (GO). GO proved effective at targeting 

CML CD34
+
 cells in vitro and after 72 hours of treatment it had an IC50 of 136ng/mL, 

which was 19 times lower than the BCR-ABL1
-
 control and about 7 times lower than the 

FDA-approved dose for acute myeloid leukaemia (≈1000ng/mL). Importantly, the 

combination of GO with 2µM imatinib presented a mainly additive effect and the 

combination treatment had an IC50 of 195ng/mL using the imatinib alone treatment as 

baseline and the number of colony forming cells was reduced in a concentration dependent 
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manner. Additionally, an increase in γH2AX, a marker for double strand breaks in the 

DNA, was observed in a concentration dependent manner, consistent with the mechanism 

of action of GO, which induces DNA damage. Interestingly, GO induced cell-cycle entry 

in the CML cells in a concentration dependent manner, opposing the antiproliferative 

effect of imatinib. Similar effects were observed when (I) the cells were initially treated 72 

hours with imatinib and then 72 hours with GO and (II) when the cells were initially 

treated 72 hours with GO and then 72 hours with imatinib. The sequential treatments 

revealed that GO is effective at targeting the cells that remained after TKI treatment and 

that a concentration of at least 100ng/mL of GO is needed to observe medium-term effects 

in CML CD34
+
 cells when they are allowed to recover. Global gene expression differences 

after GO treatment were enrichment in homeostasis and inflammation pathways, which is 

consistent with the increase in cell death and apoptosis and may represent an activation of 

repopulating pathways in CML LSCs. 

Another clinical need in CML is the development of molecular biomarkers that 

complement the current EUTOS score. Although the EUTOS score has a high specificity, 

which provides a great confidence in the high-risk patients, it only has 16% sensitivity for 

predicting the patients who will not achieve progression free survival. Therefore, a high 

proportion of patients with bad prognosis that are currently scored as low-risk would 

benefit from the use of a more sensitive score. With this in mind, the TKIi signature was 

tested as a biomarker for TKI response and disease aggressiveness. The TKIi signature was 

a better classifier than both (I) all the RefSeq transcripts analysed in the microarray and (II) 

97.1% of randomly generated probe sets of the same size, showing its potential for 

predicting response to TKI. However, the TKIi signature was not found informative in 

predicting disease aggressiveness. 

Interestingly, most of the genes present in the TKIi signature are deregulated in the same 

direction compared with normal controls across all the phases of CML. This suggests that 

any treatment targeting the signature has the potential to be effective across all the phases 

of the disease, which may accelerate its use in the clinical practice due to the lack of 

therapeutic options for treating CML blast crisis. 

Taken together, the work presented in this thesis confirms the existence of a BCR-ABL1 

transcriptional signature in CML LSCs. Also, it shows that targeting CD33, a member of 

the TKIi signature, reduces the number of CML CD34
+
 cells and induces a transcriptional 

and phenotypic change towards a cycling and repopulating cell population. Additionally, 
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the use of the TKIi signature has shown potential as a molecular biomarker for predicting 

TKI response in CML patients. 
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1 Introduction 

1.1 Haematopoiesis 

The blood is a fluid and dynamic tissue that has an important role in the homeostasis of the 

different organs and tissues of the body, maintaining constant levels of oxygen and pH as 

well as other salts, and neutralizing foreign elements. The mature cells of the blood have a 

short life and over 3x10
11

 new blood cells need to be generated in an adult human every 

day (Notta et al., 2016). This constant repopulation is performed by the haematopoietic 

stem cells (HSCs), a population of multipotent stem cells that are capable of differentiating 

into any haematopoietic cell type and have self-renewal capacity (Akashi et al., 2000, 

Notta et al., 2016). 

Studies on the effect of radioactivity in mice led to the finding that transplanting bone 

marrow from a non-irradiated healthy mouse into a lethally irradiated mouse was able to 

rescue the mouse and reinitiate haematopoiesis, and that this protective effect was 

performed by the cellular component of the bone marrow (Ford et al., 1956). Further 

engraftment studies in lethally irradiated mice found that some cells, the colony forming 

cells (CFC), form colonies in the mouse spleen when transplanted and that these colonies 

contain committed mature blood cells of the myeloid lineage (Till and McCulloch, 1961). 

Additionally, analysing unique genome abnormalities induced by radiation it was possible 

to confirm the clonal nature of those colonies (Becker et al., 1963). Study of these colonies 

revealed that additional CFCs were contained in each colony, suggesting that CFCs have 

self-renewal capacity (Siminovitch et al., 1963). Additional work investigating the 

presence of repopulating cells in the thymus and the lymph nodes revealed that those cells 

contained the same chromosomal abnormalities as the CFCs found in the spleen, 

suggesting that lymphoid cells derive from CFCs or that both types of cells share a 

common progenitor (Wu et al., 1968). These experiments led to the idea of the existence of 

a type of cell that is able to generate a progeny that belongs to all the myeloid and 

lymphoid cell types and that can replicate itself (self-renewal): that is the HSC. However, 

it was not until 1988 that this cell population was isolated in the mouse by fluorescence-

activated cell sorting (FACS), identified by the cell surface markers Thy-1
1o

Lin
-
Sca-l

+
 

(Spangrude et al., 1988). Transplanting just 30 of these HSCs was able to rescue lethally 

irradiated mice and generated daughter cells belonging to all myeloid and lymphoid cell 

types (Spangrude et al., 1988).  

The functional characterisation of human HSCs required the development of in vitro 

assays that could re-create the experimental conditions observed in mouse transplant 
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experiments in such a way that both the ability to generate colonies and self-renewal were 

measured. First, an in vitro system in which the cells were cultured on methylcellulose for 

two weeks allowed CFC to form colonies of the myeloid lineage (Hara and Ogawa, 1978). 

As HSCs are contained within the CFC, it was assumed that HSCs would also have the 

capability of forming colonies on methylcellulose media. However, for characterising the 

HSCs in this way it was necessary to purify them first. It was observed that most CFCs die 

after approximately 4 weeks of in vitro culture supported by bone marrow stroma yet a 

non-dividing population persists (Andrews et al., 1986, Eaves et al., 1986). Harvesting the 

remaining bone marrow cells (discarding the stroma cells) and placing them on 

methylcellulose to analyse the colony forming potential of the remaining cells allowed 

quantification of the number of long term culture initiating cells (LTC-IC). These cells 

were associated with the HSCs because of their long-term self-renewal/survival capability 

and their capacity to generate colonies (Sutherland et al., 1989). A couple of years later, it 

was revealed that human HSCs are contained within the CD34
+
CD38

-
 population 

(Terstappen et al., 1991). 

Although mouse Thy-1
1o

Lin
-
Sca-l

+ 
were highly enriched for HSCs, the population was still 

heterogeneous and only 25% of the cells could reconstitute the bone marrow long-term 

(Morrison and Weissman, 1994). Further study in this heterogeneity of HSCs revealed that 

there are distinct functional groups of HSCs that can be identified by their long-term 

engraftment capacity (long-term HSCs; LT-HSCs) and others with shorter time 

engraftment (still reconstituting all the haematopoietic lineages) but higher proliferation, 

called short-term HSCs (ST-HSC) and multipotent progenitors (MPP) (Morrison and 

Weissman, 1994). The finding that HSCs differentiate into committed univariate 

progenitors (Ogawa, 1993) and the latter discovery of cells that can differentiate to all the 

cells of either the lymphoid lineage, i.e. common lymphoid progenitors (CLPs), (Kondo et 

al., 1997) or myeloid lineages, i.e. common myeloid progenitors (CMPs), (Akashi et al., 

2000) suggested that haematopoiesis happens in a hierarchical manner. Thus, this model 

suggested that haematopoiesis is a hierarchical process where the cells lose self-renewal 

and plasticity with each fate decision and that each intermediate state or population is 

homogeneous both in function and in the expression of surface markers (Orkin, 2000). 

Hence, the primitive HSCs would lose self-renewal capacity when becoming MPPs which 

then would differentiate into the oligopotent progenitors CLP or CMP. CLPs would then 

differentiate into unipotent progenitors of the lymphoid lineage (T-cells, B-cells and 

natural killers) and the CMPs would differentiate into megakaryocyte-erythrocyte 

progenitors (MEP), which would differentiate into platelets and erythrocytes, or GMPs, 
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which would differentiate into granulocytes, monocytes and dendritic cells (Ogawa, 1993). 

The model is summarised in Figure 1-1A. 

Despite the hierarchical model working well for marker-homogenous populations, it is not 

the case when investigating single-cell populations (Notta et al., 2016, Guo et al., 2013).  

One of the first publications to publicly challenge the model described a lymphoid primed 

multipotent progenitor (LMPP) that was able to generate  as progeny all the cells from the 

lymphoid lineage in addition to both granulocytes and monocytes but did not contain 

platelets/megakaryocytes or erythrocytes (Adolfsson et al., 2005). This did not fit with the 

previous model as it was contrary to the concept of CMP, a myeloid progenitor for 

granulocytes, monocytes, platelets and erythrocytes that cannot generate lymphoid 

offspring (Akashi et al., 2000). Subsequent publications, have maintained the same 

direction. Gene expression analysis of single cells have shown that GMPs have a gene 

expression profile that is closer to CLP than MEP, supporting the idea that MEP branches 

out of the model before the LMPP (Pronk et al., 2007, Guo et al., 2013). Additionally, LT-

HSCs seem to be primed for platelet differentiation as LT-HSCs express VWF but not a 

single LT-HSC has been found to be primed for any other cell fate (Sanjuan-Pla et al., 

2013, Carrelha et al., 2018, Notta et al., 2016). Analysis of the capacity of single cells to 

form colonies with more than one cell type revealed that most cells classified as 

oligopotent (that can generate an offspring containing cells of more than one type but are 

already committed, such as GMPs) were only able to generate cells of one type (Notta et 

al., 2016). This suggested that in adult haematopoiesis there are only two stem/progenitor 

stages: HSCs and unipotent progenitors (those which offspring is composed of only one 

cell type) (Notta et al., 2016).  A later report that combined single-cell functional assays, 

RNAseq and cell surface markers performed in haematopoietic cells of 2 individuals found 

that there is (I) a cloud that contains the multipotent cells, that is, the HSCs, MPPs and 

LMPP, that retain multipotency and the ability to differentiate into any haematopoietic cell 

and (II) unipotent progenitors (and a few rare dipotent progenitors) which are already 

committed towards a cell type (Velten et al., 2017). The group of multipotent cells was 

referred as a cloud because of the high degree of gene expression similarity between the 

different multipotent cells despite their lineage priming, in opposition to the clear 

distinction between the different unipotent  progenitors (Velten et al., 2017). Those 

unipotent progenitors however are not an isolated cell type but also form a continuum that 

accumulate changes from the multipotent cloud until the final differentiated progeny  

(Velten et al., 2017, Tusi et al., 2018). 
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The idea of a long-living group of progenitor cells is also supported by undisturbed 

haematopoiesis studies. The study of adult haematopoiesis in transposon tagged mice 

allowed identification of the cellular origin of the blood cells in each mouse as each cell 

would have a unique label (Sun et al., 2014). This system provided a model where no 

cellular stress was induced and there was no need for the cells to invade other tissues 

(engraft), a process that can introduce bias towards a certain type of cells in transplantation 

studies (Sun et al., 2014). Analysing global haematopoietic progeny, the contribution of 

LT-HSCs to blood production seems to be very limited and instead, multipotent 

progenitors (MPP) and ST-HSCs, which are long-living, are driving life-long 

haematopoiesis after birth (Sun et al., 2014).  

These recent publications have rebuilt the haematopoietic differentiation hierarchy into a 

continuum where no unique states are present (Tusi et al., 2018, Velten et al., 2017, Notta 

et al., 2016, Carrelha et al., 2018). In this model, platelets derive from the most primitive 

HSCs (Carrelha et al., 2018) and then another two branches, one leading to basophils, 

eosinophils, mast cells and erythrocytes, and another leading towards myeloid (neutrophils, 

monocytes and dendritic cells) and lymphoid differentiation (Notta et al., 2016, Tusi et al., 

2018, Velten et al., 2017). The model is summarised Figure 1-1B. 

Originally it was believed that haematopoietic differentiation was directed by cytokines 

(Ogawa, 1993). However, the non-specific pathways activated by the cytokine-receptor 

signalling cascade led this cytokine-driven differentiation model to be questioned 

(Socolovsky et al., 1998). In fact, it was shown that lineage-associated receptors are not 

necessary for cell differentiation into that particular cell type but to promote progenitor 

survival (Socolovsky et al., 1998). One example of this was the expression of the chimeric 

prolactin receptor that contained the pro-survival cytoplasmic domain of the erythropoietin 

receptor (EPOR) in erythroid progenitors that had a non-functional EPOR. These cells 

were able to proliferate and differentiate after signal transduction induced by prolactin but 

not when the pro-survival cytoplasmic domain of the chimeric receptor was non-functional 

(Socolovsky et al., 1997). This led to the need to find a control mechanism in 

haematopoietic cells to control cell fate and differentiation. Finding that the absence of 

some transcription factors impaired haematopoiesis suggested that it is the presence of 

certain transcription factors that is actually regulating the process (Socolovsky et al., 1997, 

Orkin, 2000). 



 25 

 

Figure 1-1. Different haematopoiesis models. Gradient of blue represents multipotent 

capacity, with darker blue having more potency (capacity to differentiate into different cell 

linages) and fainter blue meaning a more committed phenotype. Red colour represents the 

cells that have traditionally been identified with the myeloid lineage. (A) Summarises the 

traditional hierarchical model with discrete cell populations that have a homogeneous 

phenotype and expression of cell surface markers. (B) The new model identified a 

continuum of HSCs and MPPs that retain multipotency and that during commitment they 

suffer gradual changes (represented by the colour gradient in the arrows) instead of 

differentiating into discrete cell populations. 
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It was believed that different transcription factors are expressed in HSCs and that their 

presence maintains an open conformation of the chromatin of those genes that are needed 

for cell differentiation (Orkin, 2000). Although their presence is needed for both, 

maintaining the self-renewal HSC phenotype or to differentiate into the different 

haematopoietic cell linages, it is the concentration or proportion of each of them that would 

determine the fate of each individual cell (Orkin, 2000, Orkin and Zon, 2008). Many of 

these transcription factors were discovered to have a role in normal haematopoiesis after 

being found as part of fusion proteins in different types of leukaemia. One such 

transcription factor is PAX5. Mice deficient in PAX5 were able to generate pro-B cells, a 

precursor of B-cells, but these cells were unable to differentiate into mature B-cells (Nutt 

et al., 1999). Instead, PAX5 deficient pro-B cells expressed genes from different 

haematopoietic lineages and differentiated into functional macrophages, osteoclasts, 

dendritic cells, granulocytes and natural killer cells (Nutt et al., 1999), which is in line with 

the existence of a LMPP progenitor (Adolfsson et al., 2005, Velten et al., 2017, Tusi et al., 

2018). However, upon reconstitution of Pax5 expression, the cells silenced the non B-cell 

genes and differentiated into B-cells (Nutt et al., 1999). This showed that PAX5 is needed 

for negative regulation of other cell fates. GATA1’s effect was shown to be dose 

dependent as myeloid cells expressing modest levels of GATA1 protein differentiated into 

eosinophils while cells with high levels of GATA1 differentiated into platelets and 

erythrocytes (Kulessa et al., 1995). GATA1 was also shown to mutually antagonise PU.1 

(Rekhtman et al., 1999, Zhang et al., 2000), another dose dependent transcription factor 

that favours B-cell differentiation at low concentration and macrophage differentiation at 

high concentrations (DeKoter and Singh, 2000). Both GATA1 and PU.1 proteins interact 

preventing each other to bind to their DNA target regions and, therefore, inhibiting each 

other’s activity. The association of the amino terminus of PU.1 with the carboxy-finger of 

GATA1 blocks GATA1’s function, probably by interfering with its DNA recognition site 

(Zhang et al., 2000). GATA1’s inhibition of PU.1 seems to be through the interaction of 

the GATA1 carboxy finger with the ETS domain of PU.1, which is PU.1 DNA-binding 

domain (Nerlov et al., 2000). 

However, transcription factors are not only necessary for guiding cell differentiation but 

also for its induction or the maintenance of a stem cell phenotype. Increased proliferation 

can lead to stem cell exhaustion, when the bone marrow is unable to generate the necessary 

number of blood cells (Cheng et al., 2000, Bernitz et al., 2016). Therefore, controlling stem 

cell proliferation and fate is crucial for viability of the whole organism. For example, the 

IK6 dominant negative isoform of IKAROS, a key factor in lymphoid (Nakayama et al., 
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2000) and erythroid differentiation (Dijon et al., 2008), has been found to increase the 

proportion of CD34
+
CD38

-
 human cells transplanted in mice while reducing the amount of 

erythroid cells and increasing the number of B and myeloid cells (Beer et al., 2014). These 

IK6
+
 HSCs did also present a higher engraftment potential and did engraft secondary 

recipients (Beer et al., 2014). This would suggest that IKAROS is a negative regulator of 

stem cell maintenance. Loss of function (LOF) mutations of RUNX1 in HSCs have been 

observed to increase the number of HSCs and the cells of the erythroid and myeloid 

lineages while negatively affecting the development of platelets and lymphoid cells 

(Growney et al., 2005). In HSCs, LOF of RUNX1 decreases cell metabolism, ribosomal 

activity and proliferation while increasing cell resistance to stress and DNA damage (Cai et 

al., 2015). This increased survival in cells with RUNX1
LOF

 and provided a selective 

advantage over normal HSCs. MYC is also an important transcription factor involved in 

the regulation of HSCs differentiation. Reduced activity of MYC has been associated with 

impaired ability of HSCs to differentiate, which increase the expression of cell adhesion 

markers, such as N-cadherin (Wilson et al., 2004), and accumulate in their niche (Laurenti 

et al., 2008). 

Although most transcription factors in haematopoiesis seem to participate in the positive 

regulation of cell differentiation, it is likely that stem cell maintenance and self-renewal are 

also positively regulated by a set of transcription factors. The effects of the transcription 

factor ERG in HSCs have been studied in the last years founding a strong relation between 

the levels of ERG expression and HSC activity (Loughran et al., 2008, Ng et al., 2011, 

Taoudi et al., 2011, Xie et al., 2017, Knudsen et al., 2015). Mice carrying 2 copies of an 

Erg mutant with no transactivation capacity (Erg
Mld2

) die in utero as they fail to maintain 

definitive haematopoiesis (Loughran et al., 2008, Taoudi et al., 2011). However, 

observation of the haematopoietic system during development showed that ERG is not 

necessary for HSC production but to their maintenance (Taoudi et al., 2011). Erg
Mld2/+

 

mice present lower levels of platelets and leukocytes in parallel with a slightly reduced 

HSC compartment (Loughran et al., 2008, Xie et al., 2017). Although steady 

haematopoiesis was not severely affected, Erg
Mld2/+

 HSCs had poorer engraftment capacity 

and were outcompeted by Erg
+/+

 even when they were transplanted in much higher 

proportion (Loughran et al., 2008). Furthermore, Erg
Mld2/+

 HSCs were impaired during 

stress-induced haematopoiesis and lost self-renewal capacity, leading to a drain of the HSC 

pool (Ng et al., 2011). HSC exhaustion was also found in transplantation studies in a 

double inducible knock out mouse model (Knudsen et al., 2015). Interestingly, it was 

found that ERG is an upstream regulator of other haematopoietic transcription factors, 
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including Gata2 and Runx1, which shows the role of ERG as a HSC master regulator 

(Taoudi et al., 2011). Additionally, ERG has been found to bind to MYC motifs and 

directly control a set of MYC regulated genes, although it does not regulate MYC 

expression (Knudsen et al., 2015). This repressive role in MYC-regulated genes expression 

explains the lack of self-renewal capacity and increased differentiation in ERG deficient 

cells as reduced ERG activity leads to increased levels of MYC-regulated genes (Knudsen 

et al., 2015). This activates a high MYC activity like phenotype, which induces 

proliferation and cell differentiation (Wilson et al., 2004). Interestingly, HSC phenotype 

can be partially rescued using bromodomain and extra terminal protein inhibitors (BETi), 

compounds that reduce MYC activity (Knudsen et al., 2015). Additionally, induction of 

ERG gene expression in combination with induction of gene expression of HOXA5, 

HOXA9, HOXA10, LCOR, RUNX1 and SPI1 has been found to convert haemogenic 

endothelium into HSCs with engraftment and both myeloid and lymphoid repopulating 

capacity (Sugimura et al., 2017). Interestingly, ERG has been found to compete with 

unphosphorylated STAT5 for the accession to megakaryocytic genes’ promoters in HSCs 

in the absence of cytokine signalling (and therefore, absence of phosphorylation of STAT5 

by JAK2) (Park et al., 2016). The affinity of ERG for megakaryocytic promoters may be 

related with the platelet/megakaryocytic-priming of primitive stem cells previously 

discussed (Sanjuan-Pla et al., 2013, Notta et al., 2016, Carrelha et al., 2018), which further 

supports the role of ERG as a positive stem cell regulator. 
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1.2 Cancer 

Cancer is a group of diseases characterized by abnormal gene expression (Croce, 2008). 

Each tumour has its own characteristics that depend on the tissue of origin, the cell type 

affected, the alterations that are carried by the cells and the patient. However, tumours 

conserve some common qualities or capacities. These capacities are also known as the 

hallmarks of cancer and confer to the tumour adaptive advantages (Hanahan and Weinberg, 

2011). The main capabilities are resistance to cell death, independence of growth factors, 

resistance to growth suppression, induction of angiogenesis, replicative immortality, 

invasiveness and metastasis capacity, promotion of inflammation, resistance to immune 

destruction, alterations in metabolism and genomic instability. The origin of these 

capabilities is usually found in mutations or chromosomal abnormalities (that may cause a 

wide alteration of the transcriptome), but can also be produced because of environmental 

conditions in the absence of mutations (both microenvironment and non-

microenvironment). Mutations can be inherited mutations, such as BRAC1 in breast cancer 

or MSH genes in colon and endometrial cancer (germline mutations), or acquired later in 

life due to failure in the cell replication machinery or the contact with carcinogenic 

elements, such as radiation or tobacco. 

Cancer development and its cellular organization, including hierarchy, have been key 

questions in biomedical research for several years and they remain poorly understood. 

Although originally it was believed that tumours were homogenous groups of cells this 

idea is no longer accepted in the scientific community, replaced by other hypotheses that 

base the cancer development and persistence in tumour heterogeneity. This heterogeneity 

refers to non-cancerous cells in the tumour, the microenvironment, but also to the 

hierarchy of the cancerous cells. Two main models have been proposed: hierarchical and 

stochastic (Wang et al., 2014). The hierarchical model defends the existence of a pool of 

cancer stem cells (CSC) that act similarly to normal stem cells, repopulating the tissue (the 

tumour in this case) and presenting a set of survival and anti-apoptotic signals that allow 

them to evade treatment related death. According to this model the original cell affected by 

the cancerous alteration (e.g. chromosomal aberration, mutation, and epigenetic 

deregulation) is a tissue stem cell and CSC would be the only cells with the capacity to 

repopulate the tumour or to metastasize, so targeting CSC and killing all of them would 

cure the disease. On the other hand, the stochastic model proposes that cancerous cells are 

plastic and are able to alter their fate, switching between CSC status to a more 

differentiated one and vice versa. According to this model every cell in a tumour would 

have the capacity to repopulate the tumour and to metastasize, inferring the requirement to 
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target both CSC and non-stem cancer cells (NSCC) when treating in order to cure the 

disease. 

Recent studies (Huntly et al., 2004, Wu et al., 2007, Wang et al., 2014), despite explaining 

how the tumour develops in a certain type of cancer, are not able to generate a unified 

model that would help us to understand cancer as a whole. It has been found that different 

oncogenes have different influences in cell fate regulation, proliferation and self-renewal 

(Wu et al., 2007, Wang et al., 2014). These results correlate with other previous well-

accepted concept of cancer requiring two different types of mutations, one that blocks 

differentiation and another that promotes cell survival and proliferation. The requirement 

for these two types of mutations can be easily observed in acute leukaemias (Passegue et 

al., 2003). Usually cells first acquire the mutation that confers survival and proliferation 

advantage as a block in differentiation without survival signals would lead to apoptosis. 

These two steps are also known as initiating and promoting mutations (Croce, 2008). 

Haematological malignancies or leukaemias are a group of clonal diseases that affect the 

cells of the different haematopoietic lineages. These diseases are classified as lymphoid or 

myeloid depending on the affected lineage and as chronic or acute according to their 

aggressiveness. Chronic leukaemias are characterized by the increase in the production of a 

mature cell type in the bone marrow while in the acute leukaemias the proliferating cells 

are arrested in an immature stage (Hoffman et al., 2012). In acute leukaemias, the patient 

suffers a rapid increase in the number of immature cells or blasts, in a similar way to the 

final stages of chronic leukaemias. These cells have morphological abnormalities and are 

unable to differentiate and are able to interfere with normal haematopoiesis and to infiltrate 

in other organs (Estey, 2013). 

1.2.1 Chronic Myeloid Leukaemia (CML) 

1.2.1.1 Clinical presentation of CML 

CML is a clonal disease that affects the myeloid lineage (Apperley, 2015) and is 

characterized by the presence of the reciprocal translocation t(9q;22q) (Rowley, 1973) 

which results in the presence of the fusion gene BCR-ABL1 (Shtivelman et al., 1985). CML 

presents in three different phases: chronic phase (CP), accelerated phase (AP) and blast 

crisis (BC) (Baccarani et al., 2013) with most patients being diagnosed during CP. At 

diagnosis in CP, patients usually present an accumulation of granulocytes and progenitors 

in the bone marrow and in the blood (Shtivelman et al., 1985) accompanied with malaise 

and splenomegaly (Apperley, 2015). The disease progresses to AP and BC, achieving an 

acute myeloid leukaemia (AML)-like state, with increasing amounts of immature cells, 
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both in the blood and in the bone marrow. These cells can have either myeloid or lymphoid 

phenotype (Apperley, 2015). 

CML is a rare disease predominantly found in older age groups (the median age of 

diagnosis is 57-60 years) (Sokal et al., 1984). However, paediatric cases have also been 

recorded (Hijiya et al., 2016). It is established that CML accounts for 20% of all 

leukaemias in adults (UICC, 2014) and 2% of all leukaemias observed in children under 15 

years old (Ries et al., 1999). European CML registries suggest that annual CML incidence 

ranges between 0.7 and 1.0 for every 100,000 people (Hoglund et al., 2013) while some 

US-based cohorts report the CML incidence varying between 1.4 and 2.0 (Chen et al., 

2013).  

A series of potential risk factors have been identified as in CML. Probably, exposure to 

ionising radiation and increasing age are the two factors with higher impact in the risk of 

development of CML. Hiroshima atomic bomb survivors were reported to have a higher 

incidence of CML the closer they were to the epicentre of the explosion (Heyssel et al., 

1960). However, this is an extreme example of radiation exposure and the general 

population is not at risk of radiation exposure of that magnitude. Sex may also be regarded 

as a risk factor in CML as observational studies reveal that CML is found between 20% 

and 70% more commonly in men than in women (Hoglund et al., 2015, Radkiewicz et al., 

2017). This observation was also confirmed by investigation of Japanese atomic bomb 

survivors. A possible explanation of sex differences in CML incidence may be due to a 

higher number of target cells at risk in the male body to develop CML and hence an 

increased risk of oncogenic mutations (Radivoyevitch et al., 2014). Moreover, male sex 

association with a poorer prognosis may be partially explained by a historically higher 

alcohol and tobacco consumption in men (Radkiewicz et al., 2017). Occupational exposure 

to benzene has also been associated with CML development (Vlaanderen et al., 2012, 

Adegoke et al., 2003). However, the studies are based on small number of people therefore 

the evidence is sparse. Smoking may also contribute to the arising of CML (Musselman et 

al., 2013) as tobacco smoke contains both carcinogenic chemicals and benzene. However, 

no enough information is available to confirm this hypothesis. Nonetheless, smokers tend 

to have poorer survival rates than non-smokers (Lauseker et al., 2017).  

1.2.1.2 Molecular and cellular characteristics of CML 

The pathognomonic characteristic of CML is the presence of the BCR-ABL1, a protein 

which main isoform is 210KDa, although isoforms of 190KDa and a 230KDa have also 

been described (Deininger et al., 2000). The pathologic effect of this protein is due to the 
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deregulation of the ABL1 tyrosine kinase activity, which is constitutively activated (Zhao 

et al., 2002). Constitutive activation of the tyrosine kinase domain of ABL1 seems to be 

mediated by the oligomerization of the fusion protein (Zhao et al., 2002). The N-terminal 

region of the BCR segment contains an oligomerization domain that allows the 

dimerization of homodimers of BCR-ABL1 (tetramers) forming a very hydrophobic core. 

The proximity of the tyrosine kinase domains allows tyrosine auto-phosphorylation and, 

therefore, activation of the kinase domain (Deininger et al., 2000). The oligomerisation 

also promotes protein-protein interactions with other proteins containing SH2 domains 

(Deininger et al., 2000). This alters the signalling pathways in the affected cells through an 

increased phosphorylation led by the deregulated TK activity and by the increased docking 

of proteins containing SH2 domains. In fact, BCR-ABL1 is implicated in the signal 

transduction in many proliferative and survival pathways, including PI3K/AKT (Skorski et 

al., 1995) and Ras/Rho (Pendergast et al., 1993), JAK/STAT (Carlesso et al., 1996, Xie et 

al., 2001) and MYC pathways (Xie et al., 2002). The signalling alterations induced by 

BCR-ABL1 have been found necessary and sufficient for the development of CML. Using 

in vivo mouse models it was demonstrated that the expression of BCR-ABL1 in the HSC 

population promotes a CML-like disease in these mice (Koschmieder et al., 2005). 

However, BCR-ABL1 has been found in circulating blood cells of healthy individuals at 

very low levels (Biernaux et al., 1995), suggesting that not every cell carrying the mutation 

initiates the disease.  

It has actually been described that BCR-ABL1, in contrast with other oncogenes, is not 

able to activate a self-renewal program in transfected cells (Huntly et al., 2004). In fact, 

when BCR-ABL1 was expressed in a committed population the leukaemic clone exhausted 

(Huntly et al., 2004). The description of a CML cell population that resembles both the cell 

surface markers and the biological properties of HSCs, including quiescence, cell renewal 

and colony forming capacity (Holyoake et al., 1999) suggests that BCR-ABL1 has to 

originate in a HSC for maintaining the disease. This idea is further supported by the 

previous finding that all myeloid lineage cells (erythrocytes, granulocytes, platelets and 

monocytes) can be generated by the leukaemic clone in CML (Fialkow et al., 1967, 

Fialkow et al., 1977). Furthermore, another publication reported that a CML-like disease 

could be observed running in the background in patients suffering from BCR-ABL1
+
 acute 

lymphoid leukaemia (ALL), suggesting that both the ALL and the CML cells originate 

from a common progenitor able to generate cells of different lineages (Hovorkova et al., 

2017). 



 33 

1.2.1.3 Treatment of CML 

CML treatment has experienced important changes in the last decades, going from the use 

of alkylating agents to the use of the revolutionary tyrosine kinase inhibitors (TKI). In the 

early 1980s, the standard treatment for CML was the use of busulfan, a DNA alkylating 

agent, and hydroxyurea, a myelosuppressive agent (Silver et al., 1999). The use of these 

compounds only achieved modest success and 45% patients treated with them achieved 5 

years survival after the diagnosis (Hehlmann et al., 1994). Moreover, the adverse effects of 

the drugs were frequent and severe. For instance, busulfan was found to induce hepatic, 

pulmonary and cardiac fibrosis and hydroxyurea was associated with normal blood 

myelosuppression and reversible renal and liver dysfunctions (Rushing et al., 1982, 

Tsukagoshi, 1992). 

Interferon-α (IFNα), an important immunogenic cytokine, was first introduced as a 

treatment option for CML in 1983 (Talpaz et al., 1983, Gutterman, 1994). It was found that 

IFNα was able to promote more durable cytogenetic response than previously used 

anticancer drugs (Talpaz et al., 1987). IFNα treatment increased the rate of patients 

achieving 5-year survival to 59%, an increase of around 15% compared with previous 

treatments based on busulfan and hydroxyurea (Ohnishi et al., 1995, Hehlmann et al., 1994, 

Chronic Myeloid Leukemia Trialists' Collaborative, 1997). However, IFNα treatment 

presents disturbing side effects, especially during long term treatment, including flu-like 

syndrome and even depression and combination treatments with other drugs were tested in 

order to reduce the dose of IFNα. Therefore, the combination of IFNα with hydroxyurea 

(Kantarjian et al., 1993) and cytarabine (Arthur and Ma, 1993, Kantarjian et al., 1999) 

allowed reduction of the dose of IFNα, hence reducing treatment induced toxicity. 

Allogeneic stem cell transplantation (aHSCT) has been widely used since 1980s as the 

only truly curative method for CML (Thomas et al., 1986, Baccarani et al., 2013). The 

transplant offers a cure due to its conditioning regimen and its immunogenic effect against 

the leukaemic cells through the donor’s T-cell response. However, aHSCT is associated 

with substantial risks of transplantation-related mortality (Sawyers, 1999) and currently, it 

is only recommended for advanced stages of CML, or for patients with resistance to 

multiple TKIs (Baccarani et al., 2013). The European Group for Blood and Marrow 

Transplantation (EBMT) score is also used as a risk assessment for aHSCT (Gratwohl, 

2011). The score ranges from 0 to 7 and is based on the age of the patient, stage of the 

disease, the donor/recipient sex, donor type (sibling/unrelated)  and time from diagnosis 

with 0 being the best score (better post-transplant survival) and 7 being the worst 

(Gratwohl et al., 2009). Thus, despite aHSCT being the only known curative treatment for 
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CML, the risk associated with it displaces it to a third-line treatment for patients who 

progress to AP or BC or those with resistance to more than one TKI (Baccarani et al., 

2013).  

The current standard of treatment in CML is the use of TKIs, a group of small molecule 

inhibitors that are able to bind to the catalytic pocket of the TK domain of BCR-ABL1 and 

prevent its interaction with ATP (Druker et al., 1996, Zabriskie et al., 2014). The first 

compound to be available for its use in the clinical practice was imatinib (IM), which 

showed a very specific targeting of the BCR-ABL1 TK activity, although the KIT receptor 

and PDGFR have also shown inhibition upon treatment with IM (Heinrich et al., 2000). 

Clinical trials comparing IM to the previous treatment consisting of IFNα and cytarabine 

showed a much better cytogenetic response on the patients treated with IM and also an 

increase in the survival rate after 18 months of treatment (O'Brien et al., 2003). However, 

IM was found not to eradicate the leukaemia stem cells (LSCs) over treatment in vitro 

(Graham et al., 2002) and patients suffering from CML need to be on treatment for the rest 

of their lives for controlling the disease. Only a small subset of patients presenting 

sustained major molecular response (MMR), accounting for 4% of the CML patients 

treated with TKIs, are able to discontinue the treatment without suffering a relapse (Mahon 

et al., 2010). 

The appearance of side effects and TK domain mutations that disturb the binding of IM to 

the catalytic pocket created a clinical need for treating those patients that do not benefit 

from IM (Baccarani et al., 2013, Zabriskie et al., 2014). This led to the development of 

new generations of TKI, which included nilotinib (NIL), dasatinib (DAS), bosutinib (BOS) 

and ponatinib (PON). These new generation compounds can be used for treating the 

patients who had serious adverse effects with IM and are effective at binding the catalytic 

pocket of some mutated BCR-ABL1, although PON is the only compound that has shown 

activity against the BCR-ABL1
T315I 

(Zabriskie et al., 2014). Although these drugs have a 

higher affinity for the catalytic pocket of BCR-ABL1 than IM, it has been shown that they 

are still unlikely to eradicate the LSC population in CML patients (Jorgensen et al., 2007, 

Copland et al., 2006). Therefore, patients suffering from CML have to be on life-long 

treatment. 

1.2.1.4 Prognosis scores in CML 

The lack of a risk-free curative treatment also means that it is important to correctly assess 

the patients that are at a higher risk of not responding correctly to TKI treatment and 

therefore, developing an advanced disease over time. This means that higher-risk patients 
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will be under closer monitoring and different therapeutic options (e.g. second generation 

TKI) may be considered. Current stratification scores are based on cellular and clinical 

factors. Historically, the Sokal score (Sokal et al., 1984) was the first score to be 

implemented for the prognostic assessment of patients suffering from CML. This score 

was developed based on data of patients treated with cytotoxic agents (busulfan) and the 

final score took into account the age of the patient at diagnosis, spleen size, platelet count 

and percentage of blasts. The next prognostic score to be developed was the Euro score 

(Hasford et al., 1998). This score was generated using data from patients treated with IFNα 

and found age, spleen size, blast count, platelet count, eosinophil count, and basophil count 

to be good indicators of prognosis. The EUTOS score, the most recent prognosis score to 

be published, was developed using data from patients treated with IM in different 

European countries (Hasford et al., 2011). This score uses the spleen size and at time of 

diagnosis and the percentage of basophils to generate the score. This score has achieved a 

high specificity, meaning that patients classified as high-risk will benefit from closer 

monitoring. However, the EUTOS score only has a modest sensitivity both for CCyR and 

progression free survival (23% and 16% respectively). This means that a big proportion of 

the patients that would benefit from closer monitoring are actually classified as low-risk. 

The low sensitivity of the score has motivated the investigation of molecular signatures 

that could predict response to TKI treatment in patients suffering from CML. Whole 

transcriptome gene expression changes between IM responders and non-responders were 

investigated using unselected CML cells collected at diagnosis (Crossman et al., 2005). 

However, no differences were found between the two groups of patients. The same 

research group then investigated if the use of a more primitive cell population (CD34
+
 

cells) gene expression could improve the ability to find differences between the two groups 

of patients (IM responders and non-responders). Using these primitive cells, it was 

possible to build a gene expression classifier that was able to discriminate patients from 

both groups and, therefore, to predict their response to TKI (McWeeney et al., 2010). 

However, the use of this classifier failed to discriminate between patients that respond well 

to NIL and those who do not (Patel et al., 2018). This highlighted the need to build a 

molecular classifier able to predict response to a wider set of TKI treatments and not only 

IM. 

The use of single-cell RNA sequencing has provided a powerful tool for investigating gene 

expression differences. Using this approach it was possible to investigate BCR-ABL1
-
 cells 

in CML patients (Giustacchini et al., 2017). This revealed that gene expression of these 

cells is different in patients that responded well to TKI treatment than in those who did not. 
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In contrast, unsupervised analysis of the whole transcriptome did not revealed differences 

between the two groups of patients (Giustacchini et al., 2017). Additionally, the same 

publication reported that patients that evolved into blast crisis already presented a distinct 

clone with blast crisis like gene expression in the samples collected at diagnosis 

(Giustacchini et al., 2017). Taken together, single-cell RNA sequencing represents a 

powerful tool that allows both prediction of response to TKI treatment and the risk of an 

early blast crisis transformation (Giustacchini et al., 2017). However, this technique is still 

very expensive and technically challenging. Therefore, the development of standardised 

protocols and a reduction in the price are needed for its routine implementation in the 

clinic.  

1.2.1.5 CML LSC persistence and evidence of a BCR-ABL1 TK independent 

signature 

As mentioned before (1.2.1.3), TKI treatment despite managing CML is not a curative 

treatment. Thus, prevalence of CML is increasing and treating patients suffering with CML 

with TKIs, which are expensive, is proving challenging for public health systems and for 

patients without health insurance (Abboud et al., 2013, Beinortas et al., 2016, Kurtovic-

Kozaric et al., 2016). It was not before the availability of generic analogues of IM (2017 in 

the UK) that TKI treatment became a norm in many countries that could not afford the cost 

(Beinortas et al., 2016, Lejniece et al., 2017). However, not every patient responds well to 

IM and the other TKIs are still expensive. Additionally, the persistence of CML cells in the 

patients is not only a psychological burden to the patients, but also a constant risk of 

treatment resistance acquisition or disease progression. 

This clinical need prompted the study of CML persistence after TKI treatment. It was soon 

after the introduction of IM in general practice that researchers in Glasgow found that the 

LSC, which are quiescent, are not eradicated after IM treatment (Graham et al., 2002). In 

fact, it was found that a higher proportion of cells showed a quiescent phenotype, 

suggesting that IM has an antiproliferative effect on this cell population (Graham et al., 

2002). Furthermore, recent reports have shown that IM may induce the expression of 

quiescence and self-renewal genes both in CML and normal cells (Charaf et al., 2016, 

Zhang et al., 2018). Similar effects on the LSC population have been observed also with 

the second generation TKIs dasatinib (Copland et al., 2006) and nilotinib (Jorgensen et al., 

2007). An increase in the number of quiescent CML LSCs has also been confirmed by a 

single-cell RNA sequencing experiment after TKI treatment compared with the same 

patients at diagnosis (Giustacchini et al., 2017). This revealed that the use of TKIs is not 
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enough for the eradication of the CML clone and that other therapeutic avenues should be 

explored. 

As TKIs have an antiproliferative effect on CML LSCs, they fail to eradicate the disease. 

Therefore, a potential therapeutic option for the eradication of the CML LSCs could be to 

promote their entrance into cell cycle, which would make them sensitive to TKI treatment. 

IFNα has been proposed as a candidate medicine for this approach as six patients initially 

treated with IFNα showed strong responses to IM when they switched treatment (Essers et 

al., 2009). Similarly, it was observed that the use of intermittent pulses of granulocyte 

colony stimulation factor (G-CSF) in CML CD34
+
 cells induced them to enter cell cycle 

and increased their sensitivity to IM in vitro (Jorgensen et al., 2006). With these promising 

results, G-CSF was tested in patients during a phase II clinical trial. This trial showed that 

the use of G-CSF is not toxic for the patients (Drummond et al., 2009). However, a higher 

number of patients lost CCyR or MMR in the study group than in the control group taking 

the standard 400mg/day of IM, which was believed to be caused by the interruption of IM 

during the G-CSF pulses (Drummond et al., 2009). Thus, this treatment option was not 

taken forward, although it is still believed that cell cycle entry is a good strategy for 

sensitising CML LSCs to TKI treatment.  

These results increased the interest in the understanding of the underlying causes of CML 

LSC persistence in an attempt to find new ways to target them. It was especially revealing 

that research performed in Glasgow showing simultaneous inhibition of BCR-ABL1 

activity by both dasatinib and knock-down failed to eradicate the CML LSCs (Hamilton et 

al., 2012). Inhibition of BCR-ABL1 TK was confirmed by reduction of CRKL and STAT5 

phosphorylation, which confirmed that BCR-ABL1 TK is molecularly targeted by TKIs. 

Additionally, it was found that although the BCR-ABL1 double inhibition significantly 

reduced the number of CML cells, these were highly enriched for primitive LTC-IC 

(Hamilton et al., 2012), showing the high resistance of this population to the current 

treatments. Interestingly it was found that the activity of IM in eradicating CML progenitor 

cells (CD34
+
CD38

+
) is achieved not only by the inhibition of BCR-ABL1 TK but the 

simultaneous inhibition of the KIT (Corbin et al., 2013). It was shown that specific 

inhibition of the BCR-ABL1 TK was rescued by treatment with stem cell factor (SCF). 

This suggested that similarly to progenitor cells, LSCs may be rescued from TKI mediated 

cell death by an unknown mechanism. This was supported by the finding of molecular 

pathways that are differentially expressed in CML cells that persist TKI treatment, such as 

the intrinsic β-catenin pathway, which suggests that CML LSCs survival is intrinsic and 

potentially independent from external factors (Eiring et al., 2015). Even more reassuring is 
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a report showing a BCR-ABL1 TK independent change in gene expression. It was shown 

that MIR10A is downregulated in CML cells and showed no change in expression after 

TKI treatment. This led to increased proliferation and cell growth (Agirre et al., 2008). 

The knowledge that there are other potential therapeutic targets in CML LSCs has 

promoted avid research in the field. This has led to the discovery of new compounds that 

target this malignant cell population. Some of these treatments include PP2A activating 

drugs (PADs) (Neviani et al., 2013), pioglitazone (Prost et al., 2015), EZH2 inhibitors 

(EZH2i) (Scott et al., 2016), autophagy inhibitors (Baquero et al., 2018), BETi and MDM2 

inhibitors (MDM2i) (Abraham et al., 2016). PADs have successfully been used for 

inhibiting the high levels of JAK2 activity in TKI treated cells (with inhibition of BCR-

ABL1 TK). In this situation, this drug successfully eliminated part of the CML LSCs but 

failed to completely eradicate the clone (Neviani et al., 2013).  Pioglitazones are agonists 

of PPARγ  and have been shown effective at reducing the expression levels of STAT5 

(Prost et al., 2015). STAT5 is mainly in its inactive conformation (unphosphorylated) in 

TKI treated cells but the levels of total STAT5 remain constant. The unphosphorylated 

confirmation retains a role in transcriptional regulation in HSCs by displacing other 

transcription factors from their binding sites (Park et al., 2016). In fact, the use of 

pioglitazone treatment reduced the expression of STAT5 and this induced the cells to enter 

cell cycle and reduced the number of CFCs (Prost et al., 2015). The use of pioglitazone has 

also been tested in 3 CML patients that were on IM treatment and it was shown effective at 

inducing complete molecular response (Prost et al., 2015). CML LSCs present a 

deregulation of the Polycomb Repressive Complex 2 (PRC2) which leads to a 

downregulation of EZH1 and an upregulation of EZH2 (Scott et al., 2016). Targeting 

EZH2 with EZH2i potentiate the TKI transcriptional signature on CML LSCs and induce 

them to enter apoptosis while not affecting normal haematopoiesis (Scott et al., 2016). 

Autophagy is a known mechanism of survival in HSCs and CML LSCs seem to use it for 

overcoming TKI mediated cell death. The use of autophagy inhibitors induce CML LSCs 

to enter cell cycle and to differentiate, which sensitises them to TKI treatment (Baquero et 

al., 2018). Finally, the finding of a deregulated protein network in CML LSCs where MYC 

and p53 were the main nodes led to the use of BETi and MDM2i in CML LSCs (Abraham 

et al., 2016). Dual treatment with BETi and MDM2i induced apoptosis and differentiation 

in CML LSCs. 

Although some of these treatment rationales were based on the discovery of certain 

pathways differentially expressed or with deregulated activity in CML LSCs, and 

independent of the BCR-ABL1 TK activity (Abraham et al., 2016, Eiring et al., 2015), a 
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fully comprehensive network of the deregulated pathways in these cells under BCR-ABL1 

TK inhibition has not been described. Therefore, a better understanding of the mechanisms 

underlying CML LSCs persistence would be beneficial for the development of new 

targeted therapies. 
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1.3 Aims 

The existing literature points towards the existence of a molecular signature in CML that is 

independent of the TK activity of BCR-ABL1. First, CML LSCs persist TKI treatment 

despite the drugs successfully inhibiting the BCR-ABL1 TK activity. Second, different 

signalling pathways seem to be deregulated in CML even during BCR-ABL1 TK 

inhibition, such as the intrinsic β-catenin pathway, p53 and MYC. However, the existence 

of a BCR-ABL1 TK independent gene expression signature has not been closely 

investigated and a more cohesive model would be beneficial for the understanding of CML 

LSC persistence and biology.  

In addition, the current prognosis scores used for CML patients, which are based on 

clinical factors, lack sensitivity and a big proportion of CML patients that have a poorer 

outcome are initially scored as low-risk individuals. Therefore, the development of 

molecular prognostic scores that complement the current EUTOS score may benefit 

patients that are currently miss-classified and do not benefit from the closer monitoring of 

high-risk patients. 

The main aim of this thesis is to investigate if a gene expression signature independent of 

the TK activity of BCR-ABL1 actually exists in CML LSCs and if it can be further 

exploited in the clinical practice, both as a source of new therapeutic targets or as a 

prognostic biomarker. The main objectives and the plan of investigation have been 

summarised in the following points: 

I. Definition of a TKI independent (TKIi) signature in chronic phase CML LSCs 

using whole transcriptome microarray datasets comparing (I) CML and normal 

HSCs and (II) CML CD34
+
 cells treated and untreated with TKIs. 

II. Investigation of the role of the TKIi signature as a biomarker for disease prognosis 

both as aggressiveness of the disease and response to IM treatment. 

III. Characterisation of the TKIi signature expression in the different phases of CML. 

IV. Investigation of the effect of drug treatments targeting the TKIi signature in CML 

CD34
+
 cells. 
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2 Materials and methods 

2.1 Materials 

2.1.1 Primary patient material 

All samples were collected after written informed consent from the patients. The project 

had approval from the West of Scotland Research Ethics Committee (REC reference: 15-

WS-0077). Samples were processed from peripheral blood or leukapheresis from patients 

suffering from CML, other haematological malignancies or healthy donors (allogenic 

haematopoietic stem cell donors). Patients’ age, gender and response to IM are 

summarised in Table 2-1 for CML and in Table 2-2 for non-CML (nCML). 

 

2.1.2 Tissue culture solutions 

2.1.2.1 RPMI+ 

 RPMI  

 10% v/v FBS  

 2mM L-glutamine  

 100U/mL penicillin and 100μg/mL streptomycin  

2.1.2.2 RPMI++ 

 RPMI 

 20% v/v FBS 

 2mM L-glutamine 

 100U/mL penicillin and 100μg/mL streptomycin 

2.1.2.3 DMEM+ 

 DMEM  

 10% v/v FBS 

 2mM L-glutamine 

 100U/mL penicillin and 100μg/mL streptomycin 
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Table 2-1. Summary of the CML primary patient samples used in this project. The 

levels of BCR-ABL1 by qPCR refer to the 6 months checkpoint. n/a not available. 

Sample Gender Age Disease BCR-ABL1 > 10%  Additional information 

CML444 M 45 CML-CP No Used fresh 

CML450 M 63 CML-CP Yes ELN failure. Used fresh 

CML452 M 43 CML-CP n/a Used fresh 

CML454 M 56 CML-CP n/a Used fresh 

CML456 F 63 CML-CP Yes 

Change to dasatinib.  
Used fresh for TKI validation 
Used from frozen for GO treatment 

CML459 n/a n/a CML-CP n/a Used fresh 

CML457 M 60 CML-CP No Used fresh 

CML469 M 62 CML-CP n/a 
5 days of hydroxyurea before collection 
Used fresh 

CML470 M 69 CML-CP n/a Used fresh 

MP10AC n/a n/a CML-BC n/a Used fresh 

CML398 M 61 CML-CP No ELN failure. Used from frozen 

CML429 n/a n/a CML-CP n/a Used from frozen 

CML441 M 63 CML-CP n/a 
Change to bosutinib after 3 months 
Used from frozen 

CML423 F 27 CML-CP Yes 
ELN failure. Intolerant to IM and NIL 
Used from frozen 

CML460 F 30 CML-CP n/a Used from frozen 

 

Table 2-2. Summary of the nCML samples used in this project. n/a not available. 

Sample Gender Age Disease Additional information 

PGT160414 M 28 Mantle cell lymphoma Used fresh 

PGT160322 F 49 Lymphoma Used fresh 

PGT160907B M 62 Lymphoma Used fresh 

PGT170419 M 56 Myeloma Used fresh 

PGT170504A M n/a Lymphoma Used fresh 

PGT170511 F n/a Myeloma Used fresh 

nCML035 M 26 Relapsed Hodgkins Used from frozen 

nCML038 M 49 Lymphoma Used fresh 

nCML039 M 20 Allogenic donor Used fresh 

nCML040 F 53 Myeloma/plasmablastic lymphoma Used fresh 

nCML041 M 35 Lymphoma Used fresh 

nCML025 F n/a Erwing sarcoma Used from frozen 

nCML029 M 65 Diffuse large B-cell lymphoma Used from frozen 

nCML032 M 48 Lymphoma Used from frozen 

PGT170808 M 54 Myeloma Used fresh 

PGT170830B F 61 Diffuse large B-cell lymphoma Used fresh 

nCML033 M 34 Allogenic donor Used fresh 

nCML034 F 28 Allogenic donor Used fresh 

PGT170816 F n/a Lymphoma Used fresh 

nCML042 M 68 Lymphoma Used fresh 
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2.1.2.4 Serum free media (SFM) 

 IMDM  

 2mM L-glutamine 

 100U/mL penicillin and 100μg/mL streptomycin 

 100μM 2-mercaptoethanol  

 20% v/v bovine serum albumin, insulin, and transferrin (BIT) 

2.1.2.5 Physiological growth factors (PGF) 

 0.2ng/mL SCF 

 1ng/mL G-CSF 

 0.2ng/mL GM-CSF 

 1ng/mL IL6 

 0.05ng/mL LIF 

 0.2ng/mL MIP1α 

2.1.2.6 FACS solution 

 PBS 

 2% v/v FBS 

2.1.2.7 DAMP 

 50U/mL of DNase 

 2.5mM MgCl2 

 14mM trisodium citrate 

 1% v/v human serum albumin (HSA) 

 PBS 

2.1.2.8 Magnetic activated cell sorting buffer 

 PBS 

 2mM EDTA 

 1% v/v HSA 

2.1.2.9 Gemtuzumab-ozogamicin (GO) 

 Sterile water 

 1mg/mL GO  

2.1.2.10 Imatinib (IM) 

 Sterile water 

 100mM IM  
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2.1.3 Flow cytometry 

All flow cytometry data collection was performed in a FACSCanto (BD, Oxford, UK). 

Flow cytometry data was analysed using FlowJo 10 (FlowJo LLC, Ashland, Oregon, USA). 

2.1.3.1 Antibodies 

All antibodies were purchased from BD (Oxford, UK). 

Epitope Clone 

KI67 B56 

γH2AX N1-431 

CD34 581 

CD33 P67.6 

 

2.1.4 Molecular biology 

Retrotranscription, pre-amplification and digestions were performed in a Techne TC-412 

thermocycler. A 7900HT Fast Real-Time PCR System (Life Technologies) was used for 

quantitative PCR (qPCR). Microfluidics qPCR was performed using Fluidigm’s Biomark™ 

HD system. 
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2.2 Methods 

2.2.1 Cell biology 

2.2.1.1 Cell counts 

CD34
+
 and mononuclear cells were counted by trypan blue dye exclusion using a 

haemocytometer. Cell lines were counted using trypan blue dye exclusion using the 

EVE™ Automated Cell Counter (NanoEnTek) that also allowed measurement of the 

average size of the cells. 

2.2.1.2 Recovery of frozen primary cells 

Frozen cells were thawed rapidly at room temperature immediately after removing them 

from liquid nitrogen. On thawing, the content of the vials was added to a 50mL sterile 

centrifuge tube. 10mL of pre-warmed DAMP (20°C) were added drop-wise to the cells 

over 20 minutes providing continuous agitation. Cells were then centrifuged at 200g for 10 

minutes and the supernatant and any cell debris aggregates were discarded. This process 

was repeated another two times. Cells were counted and resuspended in SFM+PGF at a 

density of 1x10
6
 cells/mL (CD34

+
 cells) or 1x10

7
cells/mL (MNC). 

2.2.1.3 Magnetic activated cell sorting (MACS) 

Mononuclear cells (MNC) were enriched in CD34
+
 cells using MACS. The cells were 

centrifuged at 300g for 10 minutes and the supernatant was discarded. The pellet was 

resuspended in 300µL of room temperature MACS buffer per million CD34
+
 cells 

(expected number in the sample based on cell counts and previous CD34 fluorescent 

labelling analysed by flow cytometry). After that, 30µL of CliniMACS anti-CD34 

magnetic bead-conjugated antibodies per million CD34
+
 cells were added to the 

suspension and mixed gently. The cells and the beads were incubated for 30 minutes at 

room temperature. Once the incubation was finished, 5mL of MACS buffer per million 

CD34
+
 cells was added to the suspension and centrifuged 10 minutes at 300g. Supernatant 

was discarded and cells were resuspended in 500µL of MACS buffer per million CD34
+
 

cells and applied to a LS column previously primed with 3mL of MACS buffer. The 

column flow-through was collected in a sterile 50mL centrifuge tube. Once the flow-

through stopped, 3mL of MACS buffer were added on top of the column. This last step 

was repeated 2 more times. This flow-through contained the CD34
-
 population. In order to 

get the CD34
+
 cells 5mL of MACS buffer were added on top of the column and pushed 

firmly with the plunger through the column. This flow-through was collected in a new 

sterile 50mL centrifuge tube. Purity of CD34
+
 cells was confirmed in both fractions and 
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cells were counted. Most of the samples were enriched for CD34
+
 cells and cryopreserved 

where appropriate by Dr Alan Hair. 

2.2.1.4 Surface antigens staining and detection 

Detection and analysis of surface antigens was performed with fluorescently labelled 

antibodies and detected by flow cytometry. An aliquot of cells (≈20,000) was transferred to 

a flow cytometry tube and centrifuged for 5 minutes at 350g. Supernatant was discarded 

and 5µL of anti-CD34 APC and 5µL of anti-CD33 PE-Cy7 antibodies were added to the 

cell. Additional tubes with (I) no antibodies, (II) only anti-CD34 APC, (III) only anti-

CD33 PE-Cy7 and (IV) the isotype control for PE-Cy7 were prepared. The antibodies were 

incubated for 20 to 30 minutes at 4ºC in the dark. After the incubation the cells were 

washed with 700µL of FACS solution and centrifuged at 350g for 5 minutes. The 

supernatant was discarded and the cells were analysed in a FACSCanto cell analyser. 

2.2.1.5 Culture of CML CD34+ cells for validation of the TKIi genes 

For these experiments the CML CD34
+
 cells were cultured immediately after CD34

+
 

enrichment (>90% purity). Cells were not frozen at any time. After counting the cells using 

a haemocytometer, cells were washed and resuspended in SFM at a density of 

1x10
6
cells/mL. Cells were them seeded in a 6-well plate and grouped as no drug control 

(NDC) or IM treated. IM was added at a final concentration of 5µM. Cells were cultured at 

37°C and 5% CO2 for 7 days. IM was added again at day 4 without washing the cells. On 

day 7 cells were sorted by FACS by Ms Jennifer Cassels for viable cells (DAPI
-
) and used 

for RNA extraction.  

2.2.1.6 Culture of primary cells for drug response studies 

After recovery cells were resuspended at a density of 2x10
5
cells/mL in SFM+PGF in the 

presence or absence of 2µM IM and/or different concentrations of GO (10, 30, 100, 300 

and 1000ng/mL) and cultured at 37°C and 5% CO2. Treatment was delivered in three 

different regimens: 

 72 hours of IM+GO simultaneous combination. 

 72 hours IM followed by 72 hours of GO. 

 72 hours of GO followed by 72 hours of IM. 

Following 72h the cells were washed in SFM and centrifuged for 10 minutes at 300g three 

times in order to eliminate the first drug. After treatment the cells were counted and used 

for downstream experiments. 
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2.2.1.7 Assessment of apoptosis 

Induction of apoptosis was measured using flow cytometry. The cells (≈100,000) were 

washed in Hank's Balanced Salt Solution (HBSS) and centrifuged at 350g for 5 minutes. 

Supernatant was discarded and a solution of 98µL of HBSS, 2µL of Annexin V and 0.1µL 

of 1mg/mL DAPI were added and incubated for 15 minutes at room temperature in the 

dark. Once incubation was finished the cells were analysed in the FACSCanto cell analyser. 

During apoptosis and necrosis the phosphatidylserine in the cell membrane flips towards 

the outer part of the plasma membrane allowing Annexin V, a protein with high affinity for 

phosphatidylserine, to bind (Koopman et al., 1994). By conjugating Annexin V to a 

fluorescent dye and using a vital dye, such as DAPI, it is possible to discriminate between 

viable cells (Annexin V
-
DAPI

-
), early apoptotic cells (Annexin V

+
DAPI

-
) and late 

apoptotic or necrotic cells (Annexin V
+
DAPI

+
), as shown in Figure 2-1 (Vermes et al., 

1995). 

 

 

Figure 2-1. Classification of the cells in viable, apoptotic and necrotic by AnnexinV 

and DAPI staining. AnnexinV
-
 DAPI

-
 cells are classified as viable cells. AnnexinV

+ 

DAPI
-
 cells are classified as early apoptotic and AnnexinV

+
 DAPI

+
 cells are classified as 

late apoptotic or necrotic cells. 
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2.2.1.8 Staining and detection of intracellular antigens 

Intracellular protein expression was also measured using flow cytometry. For this, the cells 

need to be fixed and the plasma membrane permeabilised in order for the antibodies to 

reach the epitopes that they recognise. This was performed using BD Cytofix/Cytoperm™ 

Fixation/Permeabilisation Kit. Cells (≈150,000) were transfered to flow cytometry tubes 

and washed with FACS solution and centrifuged at 350g for 5 minutes twice. The cell 

pellet was vortexed for reducing cell aggregation and resuspended in 250µL of 

fixation/permeabilisation solution and incubated for 20 minutes at 4ºC. Cells were washed 

in perm/wash™ buffer (i.e. centrifuged at 350g for 5 minutes) then resuspended in 400µL 

of FACS solution. Tubes were sealed with parafilm and stored at 4ºC until further use. 

On day of analysis, cells were centrifuged at 350g for 5 minutes to remove FACS solution. 

Plasma membrane was further permeabilised by incubating the cells in perm/wash™ 

buffer for 15 minutes. Cells were centrifuged again at 350g for 5 minutes and buffer was 

discarded. 5µL of anti-γH2AX antibody were added to the cell pellet and incubated for 20 

minutes at 4ºC in the dark. Afterwards the cells were washed twice with PBS (centrifuged 

at 350g for 5 minutes) and incubated at room temperature with 15µL of anti-KI67 antibody 

in the dark. Cells were washed one more time in PBS (centrifuged at 350g for 5 minutes) 

and resuspended in 200µL of a dilution of 1:200 of DRAQ7 in PBS for DNA staining. The 

cells were incubated for additional 15 minutes at room temperature in the dark and 

analysed on the FACSCanto. 

2.2.1.9 Colony forming cell (CFC) assay 

After 72h or 144h treatment 3,000 cells from the selected wells were harvested and mixed 

with 3mL of Methocult
®
 H4034. This mix was then split evenly between two 35mm

2
 

plates covering the entire surface of the plates. All the plates from each sample were places 

inside a 23.5cm
2
 plate and 2 plates containing just water were added to avoid the 

Methocult drying. Cells were cultured for no less than 9 days at 37°C and 5% CO2. Then, 

colonies were counted and scored as erythrocytes (E), granulocytes (G), macrophages (M), 

granulocyte-macrophage (GM) or granulocyte-erythrocyte-macrophage-megakaryocyte 

(GEMM) using the Stem Cell Technologies manual as reference.  

2.2.1.10 Long-term culture 

2.2.1.10.1 Preparation of the feeder cells layer 

A mix of 7.5x10
4
 M210B4 and 7.5x10

4
 Sl/Sl cells was seeded in each well with 500µL of 

RPMI
+
 and 500µL of DMEM

+
 in a 24-well nunc

®
 plate and were incubated for 24 hours at 

37°C and 5% CO2. After 24 hours visual inspection of the cells confirmed their adhesion to 
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the plastic. If the cells had adhered to the plastic, 800µL of media were removed from each 

well and 10µL of 1mg/mL mitomycin C was added to the cells in order to get a final 

concentration of 50µg/mL. The cells were incubated at 37°C and 5% CO2 for 30 minutes 

and then, using a Pasteur pipette each well was washed 3 times with sterile PBS. After 

washing 1mL of Myelocult H5100 supplemented with 1µM hydrocortisone was carefully 

added to each well, making sure the cells were not dislodged. The addition of mitomycin C 

stops the cells from dividing, therefore, keeps a constant number of live feeder cells over 

the duration of the experiment. Perimeter wells were filled with sterile water in order to 

reduce loss by evaporation. 

2.2.1.10.2 Seeding and culture of primary cells on feeder cells 

After completion of drug treatment (72h or 144h) 50,000 cells from the each of the wells 

of interest (those with 0, 30 and 100ng/mL of GO±IM) were transferred to the plates 

containing the feeder cells. The cells were placed in an incubator at 37°C and 5% CO2 for 

six weeks. 

Every week half of the media was replaced using filtered pipette tips. For wells placed at 

the edge of the plate a 100µL surplus of Myelocult supplemented with hydrocortisone was 

added to counter the effects of evaporation. 

2.2.1.10.3 Harvest 

After six weeks the media was collected into a 15mL centrifuge tube (collection tube) and 

the wells rinsed gently twice with 1mL of sterile PBS to remove the remaining media. 

After each rinse the PBS was added into the collection tube. After the two rinses, 200µL of 

0.25% w/v trypsin were added into each well and the cells were placed for 15 minutes in 

an incubator at 37°C and 5% CO2. Immediately afterwards 40µL of filtered FBS was 

added into the wells to neutralise the trypsin while dislodging the cell layer by pipetting. 

The cells were resuspended in 1mL of 2% FBS IMDM and transferred to the collection 

tubes. Each well was rinsed two more times with 1mL of 2% FBS IMDM and contents 

transferred to the collection tube. The cells were centrifuged at 276g for 7 minutes and the 

supernatant discarded. This process was repeated another two times resuspending the cells 

in 3mL of 2% FBS IMDM. Any remaining IMDM was carefully aspirated with a pipette 

without disturbing the pellet. The volume of the remaining IMDM was measured and it 

was used for resuspending the cells. The number of cells was counted using an 

haemocytometer and trypan blue dye exclusion. The cells were finally transferred to 3mL 

of Methocult and mixed, plated, cultured and counted as described for the CFC assay 

(2.2.1.9). 
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2.2.1.11 Cell lines drug response analysis 

K562 CML myeloid blast crisis cell line was cultured in RPMI
+
 and BV173 CML 

lymphoid cell line was cultured in RMPI
++

. Both cell lines were maintained between 2x10
5
 

and 1x10
6
cells/mL in 75cm

2
 cell culture flask and incubated at 37ºC and 5% CO2. Drug 

treatments were performed in 24 or 96 wells plates at a cell density of 2x10
5
.  The absence 

of mycoplasma was confirmed using Lonza Mycoalert detection kit. Cell line composition 

(i.e. identity, genotype) was not confirmed once obtained from the Paul O’Gorman 

Leukaemia Research Institute biobank. 

2.2.1.12 Resazurin 

Synergy studies in cell lines were performed using cell viability reported by resazurin. 

Resazurin is a non-fluorescent blue dye. However, when reduced by cell metabolism it is 

transformed into resorufin, which is a fluorescent red dye that can be excited at 530nm and 

emits at 590nm. As no previous steps are needed for its use, resazurin is a reasonable 

approach for high throughput analysis of cell viability (Ansar Ahmed et al., 1994). After 

treatment, 10µL of 500µM resazurin were added to 90µL of cell suspension and incubated 

4 hours at 37ºC and 5% CO2. Fluorescence was measured in a spectrophotometer at 590nm 

after stimulating the dye at 535nm using wells with only culture media (no cells) as blank 

and non-treated cells as control. Effect of the each drug combination was calculated as the 

ratio of the fluorescence emission of each condition compared with the NDC. The blank 

was calculated adding resazurin to a well containing no cells and therefore, no conversion 

to resorufin would be observed. All the values were subtracted the blank before performing 

any calculation. 

2.2.2 Molecular biology 

2.2.2.1 RNA extraction 

Total RNA extraction of cell lines was performed using Qiagen RNeasy Mini kit. Total 

RNA from patient’s samples was performed using Qiagen RNeasy Micro kit or Arcturus 

PicoPure depending on the sample size of the condition with the lowest number of cells. 

Extraction was performed following manufacturer’s protocol. Total RNA was quantified in 

a spectrophotometer at 260nm. The samples used for RNAseq were quantified and the 

RNA integrity numbers (RIN) were assessed on an Agilent 2100 bioanalyser system. RNA 

was kept at -80ºC for long-term storage. 

2.2.2.2 Primer design 

Primers were designed using Primer Blast (Ye et al., 2012) selecting melting temperatures 

close to 60ºC (±1) and with amplicon sizes between 80 and 150bp (MIR21 amplicon had a 
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length of 50bp). When the gene had more than one exon, primers were designed to cover 

an exon-exon junction. Primers were synthesised by IDT (Leuven, Belgium). Sequences 

can be found in Appendix I. 

2.2.2.3 Retrotranscription 

RNA was reverse transcribed into cDNA using high capacity cDNA reverse transcription 

kit (Life Technologies) following the manufacturer’s protocol. cDNA was kept at -20ºC 

for long-term storage. 

2.2.2.4 Quantitative polymerase chain reaction (qPCR) 

PCR duplicates the number of molecules of DNA with the targeted sequence on each cycle 

of the reaction in the presence of DNA polymerase, dNTPs (deoxynucleotides 

triphosphate), primers flanking the sequence of interest and salt (MgCl2). Each cycle is 

composed of the following phases: denaturation, annealing, and extension. During 

denaturation the two strands of DNA separate allowing the primers to bind during the 

annealing phase. During extension the DNA polymerase add the dNTPs complementary to 

the model strand to the novel strand of DNA. 

SYBR Green is a molecule that when bound to double strand DNA emits fluorescence at 

524nm (Zipper et al., 2004). This allows quantification of the amount of DNA in a 

particular sample by emitted fluorescence. By detecting the amplification cycle at which 

the fluorescence intensity reaches the set intensity threshold (Ct or threshold cycle) it is 

possible to determine the amount of original DNA copies of the sequence of interest. 

Each qPCR experiment was performed for 40 cycles using PowerUp SYBR Green master 

mix (Life Technologies), 10ng of cDNA and 500nM of each of the primers. Activation of 

the polymerase required heating the reaction for 2 minutes at 50ºC and another 2 minutes 

at 95ºC. Each of the following reaction cycles had a 15 second denaturation step at 95ºC 

and 60 seconds annealing and extension step at 60ºC. Dissociation curves were performed 

for all reactions and both non template control (NTC) and no DNA control (RNA not 

retrotranscribed) reactions were performed for every set of primers and experiment. 

2.2.2.5 Fluidigm 

The Fluidigm platform is a microfluidics qPCR system that allows performing multiple 

reactions every run. During this project, a 48.48 chip was used, which amplifies 48 genes 

on 48 samples, making a total of 2,304 reactions. 

The cDNA of each sample was pre-amplified for 18 cycles using the PCR multiplex PCR 

kit (Qiagen). Each reaction contained a pool of all the primers of interest at 50nM 
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concentration and a maximum 12.5ng of cDNA (some samples yielded very low 

concentrations of RNA and higher concentrations were not possible). The polymerase was 

activated at 95ºC for 15 minutes and each cycle comprised of 30 seconds of denaturation at 

94ºC, 90 seconds of annealing at 60ºC and 60 seconds of extension at 72ºC. A final 

extension of 30 minutes at 72ºC was performed. The samples were treated with 0.5U/µL of 

exonuclease I (New England Biolabs, Ipswich, MA, USA) for 30 minutes at 37ºC. The 

enzyme was inactivated at 80ºC for 15 minutes. This step eliminates the non-incorporated 

primers avoiding non-specific amplification during the qPCR. The samples were diluted 

1:5 and stored. 

The 48.48 chip was primed with control line fluid in the IFC controller MX and each of the 

primer wells was filled with a 5µL solution containing 1X assay loading reagent, DNA 

suspension buffer and 5µM of each of the primers of the pair assigned to the well. Each 

sample was loaded with 5µL of 1X SsoFast™ EvaGreen Supermix with low ROX (Bio-

Rad), 1X DNA binding dye sample loading reagent (Fluidigm) and 45% v/v of the pre-

amplified cDNA assigned to the well. The reaction in the Biomark activated the enzyme at 

95ºC for 1 minute and performed 30 cycles of denaturation at 96ºC for 5 seconds and 

annealing and extension at 60ºC for 20 seconds. A melting curve was generated at the end 

of the qPCR for every reaction. 

2.2.2.6 RNA sequencing 

RNA for RNAseq was reverse transcribed using the SMART-Seq v4 Ultra Low Input 

RNA Kit for Sequencing (Takara, Saint-Germain-en-Laye) by Glasgow Polyomics. cDNA 

library preparation for RNAseq was performed using Nextera library preparation kit by 

Glasgow Polyomics. RNA sequencing was performed using Illumina HiSeq and NextSeq 

sequencers. Sequencing reads of both instruments were merged by Glasgow Polyomics. 

Illumina platforms utilise an imaging system to identify the sequence of each of the cDNA 

molecules (Metzker, 2009). To facilitate the detection, Solid-phase or bridge PCR 

generates clusters of each of the cDNA fragments on a surface. Once the cluster is 

generated, primers complimentary to the library adaptors are hybridised to the cDNA 

fragments. Then, a mix of fluorescently labelled nucleotides and DNA polymerase are 

released to the reaction chamber and a single nucleotide is added to the sequence. The 

addition of a blocker and the fluorescent label prevents subsequent nucleotides from being 

added to the sequence. After washing the excess nucleotides, the imaging system detects 

the fluorescent signal from each cluster and identifies the nucleotide with which it is 
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associated. Then the fluorescent label and the blocker get cleaved from the nucleotide and 

a new cycle starts until the sequence is complete. 

The reads generated in the HiSeq were pair-ended and 75 base pairs long while the reads 

generated in the NextSeq platform were single-ended and 75 base pairs long. 

2.2.3 Bioinformatics 

Data analysis was performed using R 3.5.0 running under macOS 10.13.6 unless otherwise 

stated. 

2.2.3.1 Microarray analysis 

Data generated using Affymetrix HuGe 1.0 ST microarray were imported into R using 

oligo (Carvalho and Irizarry, 2010) and pre-processed using the robust multichip average 

(RMA) method (Irizarry et al., 2003), which is a quantile normalisation approach. 

Depending on the analysis, probe set values were summarised to either the gene level or 

RefSeq transcript level. 

Data generated by other chip types (Affymetrix Human Genome U133 Plus 2.0 and 

Affymetrix Human Genome U133A 2.0) was imported into R using affy (Gautier et al., 

2004). Pre-processing was performed by RMA and the probe set intensity values were 

summarised at the RefSeq level. 

Differential gene expression was calculated using limma (Smyth, 2004, Ritchie et al., 

2015). limma uses empirical Bayes linear models for estimating the differential gene 

expression. This takes in account the gene expression differences between the different 

groups for each gene but it also takes in account the overall gene expression differences for 

computing the empirical Bayes moderated t-statistics and the associated p-value. It also 

allows analysing experiments with complex designs, such as those with multiple groups 

and batch/individual effect. Technical replicates were accounted using the 

duplicateCorrelation function and type I error was controlled by using Benjamini-

Hochberg (BH) correction (Benjamini and Hochberg, 1995). Specific thresholds for 

statistical significance are discussed in each chapter. 

Statistically significant probe sets were annotated to gene names (HGNC symbols) or 

RefSeq accession numbers with biomaRt (Durinck et al., 2009) connecting to the Ensembl 

release December 2014 (Cunningham et al., 2015). 
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2.2.3.2 In silico validation of gene lists  

Over and under representation analyses were performed using both the hypergeometric test 

and Monte-Carlo sampling (Metropolis and Ulam, 1949). The universe, that is, the identity 

of all the elements present in the analysis, was defined according to the technical 

limitations (i.e. genes represented by the probe sets of a particular microarray chip or 

transcripts detected by RNAseq). Monte-Carlo functions were written in-house while 

hypergeometric distribution calculations were based on the base R function dhyper.  

A hypergeometric distribution is often described as the distribution of probabilities of 

drawing a number of white balls from a known mixture of white and black balls without 

replacement. This can be used for overrepresentation analyses by calculating the 

cumulative probability of drawing the same or higher number of white balls, which would 

equate to the p-value. For underrepresentation analyses the cumulative probability of 

drawing the same or lower number of white balls is calculated instead. For example, it 

could be used to calculate if a list of 100 differentially expressed genes between normal 

and leukaemic samples have a higher proportion of cancer related genes than what would 

be expected in a random set of 100 genes in the same universe. 

Monte Carlo simulation can also be used to assess the significance of analysis results. Here, 

the same analysis is run multiple times with the data randomised to provide a null 

distribution over the analysis result. For example, random sets of data can be generated by 

permuting the sample or gene names in a microarray or RNAseq dataset (the permuted 

values are specified when describing each experiment). This maintains a similar 

distribution to that of the original data resembling best the original analysis. This allows 

calculating the probability of obtaining a value equal or higher than that obtained with the 

real data by dividing the number of iterations that generated a value equal or higher to the 

real one by the total number of iterations (overrepresentation). For underrepresentation 

analysis the number of permutations with equal or lower value than the real data will be 

divided by the number of total permutations. This ratio of permutations of interest by total 

permutations would equal to the p-value of the test. 

𝑝 = 𝜎𝑣≥𝑥(𝑘)/𝑛 

𝑝 = 𝜎𝑣≤𝑥(𝑘)/𝑛 

Equation 1. Calculation of the p-value for Monte Carlo simulations. For 

overrepresentation analysis (up) the p-value equates to the number of iterations (k) with a 

value (v) equal or greater than the real value (x) divided by the total number of iterations 

(n). In underrepresentation analysis (down) v should be equal or smaller than x. 



 55 

2.2.3.3 Principal components analysis (PCA) 

PCA is a common technique used for data exploration. It allows identifying batch or 

patient effects and can provide with a quick insight of the main factors contributing to the 

variance. This variance is assessed by the generation of eigen vectors (vectors of length 1) 

with a number of components equal to the number of observations (i.e. number of genes in 

the universe). The eigen vector which product with each of the samples/samples has the 

highest variance is selected as principal component 1 (PC1). Then the process is repeated 

with the vectors perpendicular to PC1 from which the one with the highest variance is 

selected as PC2. The process is repeated for subsequent PCs. PCA was performed using 

prcomp function from base R. 

Association of the PCs with each factor of interest was performed using Kruskal-Wallis 

test on the values of each eigen vector divided on groups based on the levels of each factor. 

The script for this calculation was kindly provided by Dr Lisa Hopcroft and later modified 

for adapting for the data format used in the different experiments. 

2.2.3.4 Generation of a classifier: Support vector machine (SVM) 

A common approach for classifying a binary factor (e.g. CML/normal, responder/non-

responder) would be the use of a hyperlane. A hyperlane is an element with one less 

dimension than the space it is trying to classify (e.g. a line when classifying elements in a 

plane). However, using a hyperlane directly on the data can fail to classify non-linear data. 

To prevent this, the dimensions of the data can be increased using a kernel and then, 

applying the hyperlane based on the training dataset (James et al., 2013). In this thesis, the 

SVM classifier generated used the scikit-learn SVM model with default options (RBF 

kernel) (Pedregosa et al., 2011). This was kindly performed by Dr Simon Rogers using 

Python programming language under macOS. 

2.2.3.5 qPCR analysis 

Relative expression of the test genes was calculated by subtracting the mean of the Ct 

values of the reference genes (ENOX2, GAPDH, RNF20, and TYW1) to the Ct value of the 

test gene within each sample (ΔCt). These ΔCt values were used as normalised gene 

expression values and differential gene expression was calculated using limma (Ritchie et 

al., 2015). Genes were considered to be differentially expressed when the BH-adjusted p-

value was lower than 0.05. The confidence interval of the ΔΔCt (log2 fold change) was 

also calculated by limma.  
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2.2.3.6 RNAseq analysis 

Quality of sequencing was assessed using FastQC (Andrews, 2010), and sequences were 

trimmed using TrimGalore (Krueger, 2015) with 3’ end trimming and paired parameters, 

using a quality score threshold of 20. The reference genome 

(Homo_sapiens.GRCh38.dna.primary_assembly.fa) was obtained via Ensembl on 20
th

 

March 2018 and reads were aligned to the genome using hisat2 (Kim et al. 2015). Count 

matrix was generated using featureCounts (Liao et al. 2013). This pre-processing was 

kindly performed by Ms Joana Bittencourt-Silvestre. 

Differential gene expression was calculated using DESeq2 (Love et al., 2014). DESeq2 

uses generalised linear models for the analysis of differential gene expression in RNAseq 

count matrixes. This provides flexibility for the analysis of different experimental designs. 

This package also uses empirical Bayes shrinkage of the dispersion and the fold changes to 

reduce the effect of very variable genes and genes with very low counts. Additionally, to 

further reduce the noise introduced genes with low counts, only the genes with more than 

100 total counts (among all the samples) were selected for differential gene expression 

analysis. Type I error was controlled by using Benjamini-Hochberg (BH) correction 

(Benjamini and Hochberg, 1995) and all genes with a q-value equal or smaller than 0.1 

were considered significantly differentially expressed. 

2.2.3.7 Pathway overrepresentation analysis 

Gene lists were analysed for overrepresentation of pathways and gene ontology terms 

(GO-terms) (Ashburner et al., 2000, The Gene Ontology Consortium, 2017) using Protein 

ANalysis THrough Evolutionary Relationships (PANTHER) (Mi et al., 2017) and 

Consensus Path DB (CPDB) (Kamburov et al., 2013). PANTHER possesses its own 

curated biological pathway database and calculates overrepresentation and 

underrepresentation (Fisher’s exact test) of the members of each pathway using the 

PANTHER annotated proteins as universe. CPDB is associated with a number of 

biological pathways, protein complexes, drug interaction and GO-terms datasets. In this 

project CPDB has been used for interrogating Kyoto Encyclopedia of Genes and Genomes 

(KEGG) (Kanehisa et al., 2017), Reactome (Fabregat et al., 2018), BioCarta 

(www.biocarta.com) and GO-terms at level 3 of the GO hierarchy. Over and under 

representation were calculated using the hypergeometric test and corrected for multiple 

testing using BH correction (Benjamini and Hochberg, 1995) using the list of genes 

analysed in the experiment (detected genes in RNAseq or genes with assigned probe sets in 

microarray experiments) as the universe. A threshold of 3 or more member of the pathway 

or GO-term was set for avoiding singletons. 

http://www.biocarta.com/
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2.2.3.8 Drugs synergy calculation 

When used together, different drugs and compounds can have the same effect than the sum 

of their individual effects (expected effect), in which case it is said that they have 

independent effects. However, this is not always the case and, when used together, 

different compounds can have a reduced (i.e. the compounds are antagonistic) or enhanced 

effect (i.e. the compounds are synergistic). For the purpose of identifying drug interactions 

in this thesis, combination effect were compared with expected effects using Bliss equation 

(Bliss, 1939) as shown in Equation 2. Statistical significance was calculated using Student 

T-test. 

𝐵𝑙𝑖𝑠𝑠 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 𝐸𝑓𝑓𝑒𝑐𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − (𝐸𝑓𝑓𝑒𝑐𝑡𝐷𝑟𝑢𝑔𝐴 + 𝐸𝑓𝑓𝑒𝑐𝑡𝐷𝑟𝑢𝑔𝐵 − 𝐸𝑓𝑓𝑒𝑐𝑡𝐷𝑟𝑢𝑔𝐴 × 𝐸𝑓𝑓𝑒𝑐𝑡𝐷𝑟𝑢𝑔𝐵) 

Equation 2. Bliss coefficient is the difference of effect between the observed and 

expected effects of the combination of two drugs. The coefficient is given in unit ratio 

and allows identifying synergistic and antagonistic effects. 
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3 Results (I): Identification of a TKI independent signature in CML LSCs 

3.1 Introduction 

The presence of the BCR-ABL1 fusion protein and its coding gene has been long 

associated with CML (Rowley, 1973, Konopka et al., 1984, Shtivelman et al., 1985). The 

presence of this tyrosine kinase in all CML cells lead to the development of a small 

molecule inhibitor, imatinib, which is able to bind to the catalytic pocket of the kinase, 

preventing the binding of ATP and, therefore, inhibiting the tyrosine kinase activity of 

BRC-ABL1 (Carroll et al., 1997, Druker et al., 2001a). This activity named this family of 

molecules as tyrosine kinase inhibitors (TKIs). However, a primitive quiescent cell 

population (known as leukaemic stem cells or LSCs) evades apoptosis despite TKI 

treatment (Graham et al., 2002), representing a reservoir of leukaemic cells that persist to 

reinitiate the disease upon treatment withdrawal (Holyoake et al., 2001). Although 

different dosing strategies have been studied for the eradication of this cell population, it 

persists and reinitiates the disease after treatment discontinuation in most patients even 

when BCR-ABL1 transcripts are not detectable by qPCR (Clark et al., 2017, Ross et al., 

2013, Mahon et al., 2010). Both their capacity to persist TKI treatment and to reinitiate the 

disease highlight the key relevance of eradicating LSCs in the pursuit of a cure for CML.  

A closer analysis of the molecular mechanism involved in the eradication of CML 

progenitor cells (CD34
+
CD38

+
) suggests that not only the inhibition of BCR-ABL1 TK but 

also the inhibition of KIT is essential for their eradication (Corbin et al., 2013). However, 

the same study was not able to link KIT activity with LSCs persistence and suggested that 

another pathway may be conferring survival capabilities during TKI treatment. Research 

performed in Glasgow confirmed that CML LSCs do not require BCR-ABL1 TK 

signalling for survival and propose that CML LSCs overcome oncogene addiction through 

different pathways (Hamilton et al., 2012). Recent publications show that p53, MYC 

(Abraham et al., 2016) and EZH2 pathways (Scott et al., 2016) are deregulated in CML 

LSCs and targeting them has a potent effect in the elimination of CML LSCs. 

The absence of detectable oncogene addiction (Hamilton et al., 2012, Corbin et al., 2013) 

and the growth advantage observed in CML LSCs (Cashman et al., 1998) has motivated 

my own investigations into the molecular mechanisms driving the CML LSCs phenotype. 

The aim of this chapter is to investigate if there is a gene expression signature in CML that 

is not dependent on the TK activity of BCR-ABL1. To do so, it was assumed that genes 

whose expression was not affected by TKI treatment were not governed by the TK activity 

of BCR-ABL1. In order to find that signature, three different microarray datasets were 
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analysed to compare (I) CML and normal stem cells and (II) CML progenitor cells before 

and after TKI treatment (Figure 3-1). This identified a list of genes differentially expressed 

in CML compared with normal controls that were not affected by TKI treatment. In order 

to confirm the gene expression signature, expression changes were validated by qPCR. 

 

Figure 3-1. Summary of the microarray analysis performed in this chapter for 

defining the TKI independent (TKIi) transcriptomic signature. 
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3.2 Identification of the TKIi signature using transcriptomic datasets 

3.2.1 Description of the microarray datasets 

3.2.1.1 Dataset TKIFP: CML LSCs’ transcriptional response to TKI 

In the TKIFP dataset (Scott et al., 2016) gene expression levels from LSCs of six different 

patients were measured using Affymetrix HuGe 1.0 ST chips. Gene expression was 

measured at baseline (0h) and after eight hours of treatment (8h) for CD34
+
CD38

-
 and 

after 7 days treatment (7d) for CD34
+
 cells. The cells were treated with 5μM imatinib, 

150nM dasatinib or 5μM nilotinib and a second dose of the drug at the same concentration 

was applied during the 4
th

 day of treatment. The cells were sorted again for live cells after 

7d of treatment. Total RNA was extracted using RNeasy Mini Kit (Qiagen, Manchester, 

UK). Baseline time point was performed using technical triplicates while the replicates of 

the other time points were performed with each of the different drugs. For the objective of 

this chapter only the 0h and the 7d data were analysed as preliminary analysis of the 8h 

time point revealed little effect of the TKIs on the gene expression. The first two principal 

components (accounting for 50% of the total variability in these data; Figure 3-2A) show 

samples clustering according to both patient and the presence of TKI (Figure 3-2B), 

indicating that the differential expression analysis needs to control for each patient sample 

and a paired analysis approach should be adopted. 

3.2.1.2 Dataset CMLDV: transcriptional differences between CML and 

normal 

For the CMLDV dataset (Abraham et al., 2016) cells from chronic phase CML patients 

(n=3) and normal bone marrow donors (n=3) were sorted for CD34
+
CD38

-
 (HSC/LSC) 

and for CD34
+
CD38

+
 (progenitor cells: HPC/LPC). Total RNA was extracted using 

RNeasy Micro Kit (Qiagen) when the number of isolated cells was less than 5x10
5
, and 

RNeasy Mini Kit (Qiagen) when the number of isolated cells was between 5x10
5
 and 

1x10
7
. Gene expression was measured using Affymetrix HuGe 1.0 ST microarray chips 

performing technical duplicates (Array Express accession number E-MTAB-2581). Only 

the HSC/LSC cells were included in the analysis as they were the most closely matching 

population to our study population (LSCs). Principal components analysis (PCA) showed 

normal HSCs closely clustered together while CML LSCs seemed to have a more 

heterogeneous transcriptome (Figure 3-2D). Technical duplicates clustered tightly together. 
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3.2.1.3 Dataset CMLMC: transcriptional differences between CML and 

normal 

For the generation of the CMLMC dataset (Cramer-Morales et al., 2013) five different cell 

populations of varying maturity—HSC (CD34
+
CD38

-
CD90

+
), MPP (CD34

+
CD38

+
CD90

-
), 

CMP (CD34
+
CD38

+
CD123

+
CD45RA

+
), GMP (CD34

+
CD38

+
CD123

+
CD45RA

low
) and 

MEP (CD34
+
CD38

+
CD123

-
CD45RA

-
)—were sorted from healthy donors (n=3), chronic 

phase (n=6), accelerated phase (n=4) and blast crisis CML patients (n=2). Total RNA was 

extracted using RNeasy Micro Kit or RNeasy Mini Kit (Qiagen), depending on the number 

of cells. Gene expression was measured using Affymetrix HuGe 1.0 ST microarray chips. 

Normalised and quality controlled expression values were downloaded from 

Stemformatics (Wells et al., 2013) (http://www.stemformatics.org/, Gene Expression 

Omnibus accession number GSE47927). In this chapter only the HSC data from normal 

and chronic phase patients was used as it is the most primitive population and is the best 

match to our study population (LSCs). PCA demonstrated that there were differences 

between normal and CML and that each condition (i.e. CML/normal) forms its own 

particular cluster (Figure 3-2F).  

http://www.stemformatics.org/
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Figure 3-2. The different groups analysed in each dataset form distinct clusters in the 

PCA. (A) The scree plot of TKIFP shows a big difference in the explained variability 

between PC1 and PC2. (B) The samples in TKIFP cluster by patient and by treatment time, 

suggesting an effect of the treatment in the cells but also highlighting the need of 

controlling for the patient (to run a paired samples test). (C) The scree plot for CMLDV 

also shows a big difference in the explained variability between PC1 and PC2. (D) CML 

and normal form different clusters in CMLDV while the technical replicates (sample) 

cluster together. (E) In CMLMC the PC1 explained less variability than in the other 

datasets. (F) CML and normal HSCs form different clusters in CMLMC. 
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3.2.2 Definition the threshold for no-change in microarray 

To find the genes that are not affected by TKI treatment, it was decided to use an 

equivalence test (CPMP, 2001). This kind of test is used in clinical studies (CHMP, 2010) 

but it is not commonly used in transcriptomic data analysis, which traditionally are focused 

in the differences between the studied groups. Equivalence tests assess the similarity of 

two different sets of measurements. A common approach in equivalence testing would be 

to calculate the difference between the mean of the log2 fold changes of the two groups for 

each gene/transcript and calculate the confidence interval 95 of the subtraction. For the two 

groups to be considered equivalent in the expression of a particular transcript/gene the 

confidence interval must cross zero and be positioned between two previously defined 

thresholds (one smaller and the other greater than zero; Figure 3-3). A key step in this 

methodology is the setting of the thresholds. Here, it was decided to use technical 

replicates to define them. Technical replication allows studying the variability of the data 

due to the handling of the samples and the limits of the technology as it provides different 

measurements for the same sample. This is very useful for setting the thresholds of an 

equivalence test as it provides a reasonable estimate of the variability produced by the 

technique and not the biology and therefore, the variability to be expected when there are 

no changes. 

As all the datasets described above were generated using the same platform (Affymetrix 

HuGe 1.0 ST) it was decided to compare the technical replicates present in CMLDV and 

TKIFP to determine the null fold change distribution. As it was found that the different 

TKIs treatments (7d) of TKIFP dataset were more similar to each other (within the same 

patient) than the technical replicates of either TKIFP 0h or CMLDV (Figure 3-4A), it was 

decided to include them in the estimation of the technical variability. Assuming a p-value 

threshold of 0.05, we identified the 2.5
th

 and 97.5
th

 percentiles of the technical variation, 

which corresponded to the values -0.486 and 0.487 of the log2 fold-change. These values 

were rounded to one significant figure in the log2 scale: -0.5 and 0.5 (Figure 3-4B). All the 

values between these two percentiles represent p≥0.05, which is commonly accepted as a 

non-change value. Therefore, it was decided to use this interval, hereafter referred to as the 

“noise interval”, as the threshold for the equivalence test. 
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Figure 3-3. Explanation of what an equivalence test is. Equivalence tests are used when 

the alternative hypothesis (H1) states that two values are equal. In order to inform about 

that, the confidence interval of the comparison is analysed as it must include zero and not a 

single value outside the interval delimited by the threshold (T) set by the researcher (the 

noise interval in the current study). An example of the confidence interval of a 

significantly non-changing comparison is plotted in green while three examples of 

comparisons where it is not possible to confirm equality are plotted in red. 

  

0 +T -T 

No-change. Crosses 0 and the limits are between –T and +T 

Change. Crosses 0 but the limits are not between –T and +T 
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Figure 3-4. The noise interval was set between -0.5 and +0.5. (A) The distribution of the 

subtractions between the technical replicates in CMLDV (red) and the 7d TKIFP (blue) 

were similar. (B) Technical replicates were compared in order to build a distribution of the 

fold changes when comparing two samples that should be equal. The orange bars represent 

the percentiles 2.5 (-0.486 log2 fold-change) and 97.5 (0.487 log2 fold-change). 
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3.2.3 Differential gene expression and non-changing genes in the microarray 

datasets 

limma (Smyth, 2004) was used for computing the log2 fold-changes in each of the three 

datasets and for computing the p-values of the differential expression analysis in CMLDV 

and CMLMC. TKIFP was analysed for detection of non-changing genes using an 

equivalence test, as described in the previous section (CPMP, 2001). Differential gene 

expression results were adjusted for multiple comparisons using BH method (Benjamini 

and Hochberg, 1995) and any gene with a q-value smaller than 0.1 was considered 

significant. The q-value was slightly relaxed from the usual 0.05 in order to increase the 

number of consistently changing genes (i.e. genes differentially expressed both in CMLDV 

and CMLMC). The requirement for the genes to be differentially expressed in both 

CMLDV and CMLMC reduced the concern about picking false positive genes (the product 

of the two 0.1 q-values is 0.01, still smaller than 0.05). 

 A total of 2,497 genes were differentially expressed in CMLDV and 888 in CMLMC 

(Figure 3-6A). To ensure accuracy and specificity in defining the CML DE genes, only 

those 527 genes differentially expressed in the same direction in both datasets were 

retained to represent the signature (Figure 3-6A, green shaded areas’ overlap). On TKIFP, 

5,706 genes were found significantly not-changing (Figure 3-6A, shaded blue). 60 genes 

were common to both lists (Figure 3-6A, circled in red); these 60 genes comprise the initial 

candidate list representing TKIi60 signature (Figure 3-6B). 

Further analysis of the list using CPDB (Kamburov et al., 2013) revealed an 

overrepresentation of genes involved in olfactory transduction (ANO2, OR2L5, OR2L2, 

OR2L3, OR2AK2 and OR2L8; q=0.013) and cell adhesion molecules pathways (SELL, 

CDH2 and ESAM; q=0.028). Olfactory receptor (OR) genes were all downregulated but 

ANO2, a calcium-activated chloride channel. ANO2 is located in chromosome 12p just 

downstream of VWF, a haemostasis factor, and their expression as shown to be related in 

other conditions (Schneppenheim et al., 2007). 

All the OR genes in the TKIi60 signature clustered together in the same region of the 

genome. Previous reports suggest that the expression of OR genes is affected by 

neighbouring genes (Feldmesser et al., 2006). Further investigation of this region of the 

genome using the genome browser of UCSC (Kent et al., 2002) revealed TRIM58 as a 

neighbouring gene of the TKIi60 OR genes (Figure 3-5). Additionally, TRIM58 promoter’s 

histones are highly acetylated in K562 cells (ENCODE Project Consortium, 2012) and it 

has been found to be an important regulator of erythropoiesis (Thom et al., 2014). With 
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this in mind, it was decided to substitute the OR genes for TRIM58 in the downstream 

analysis even when it was not present in the initial list of 60 genes. 

ESAM has been found to be an important marker for HSCs both in human (Ishibashi et al., 

2016) and mouse (Yokota et al., 2009). It has also shown to have higher expression in high 

proliferating but repopulating HSCs (Sudo et al., 2012) and it has been reported as a 

potential AML LSC marker after a transcriptomic and a proteomic screen (Bonardi et al., 

2013). Similarly, L-selectin (SELL) and N-cadherin (CDH2) seem to be involved in HSC 

maintenance and regulate differentiation (Zhi et al., 2016, Agnihotri et al., 2017). 

The finding of MIR10A downregulated in the list of TKIi60 genes increased the confidence 

in the list as its TKI independent downregulation in CML has previously been reported by 

an independent group (Agirre et al., 2008). The decrease of MIR10A expression in linked 

to an increase in the protein levels of USF2 and an increase in cell proliferation. 

 

 

 

Figure 3-5. The 4 olfactory receptor (OR) genes present in the TKIi60 list cluster 

together in the genome at 1q44 (red circles). The presence of so many OR genes lead to 

a detailed screening of their chromosomal neighborhood, where TRIM58 (green circle) was 

found. TRIM58 presented high H3K27 acetylation (orange circle) in K562 cells, suggesting 

a high expression level in this cell line. 
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Figure 3-6. A total of 60 genes were identified as TKIi. (A) After the analyses of the 3 

microarray datasets, 60 genes were found to be present in the 3 lists, that is, to be TKIi60. 

(B) Heatmaps showing the log2 of the fold changes of the comparisons for the 60 genes 

that are present in all 3 lists (genes upregulated in CML are shown on the left, genes 

downregulated in CML are shown on the right). 

A 

B 
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3.3 Validation of the TKIi signature 

3.3.1 In silico validation of the TKIi signature 

The probability of obtaining a 60 gene signature was tested using both Monte-Carlo and 

hypergeometric distribution. Monte-Carlo is based in the repetition of the analysis multiple 

times but randomizing or permuting the allocation of samples into the groups (i.e. the 

classification into normal or CML for CMLDV and CMLMC datasets) (Metropolis and 

Ulam, 1949). More information in the Methods (2.2.3.2). The number of TKIi probe sets 

instead of genes was used in order to accelerate the experiment (annotation with biomaRt 

requires connection with Ensembl). After performing 10,000 permutations of the sample 

names of both CMLDV and CMLMC, 12 reached the number of probe set IDs (58) in the 

actual TKIi signature, giving a significance of p=0.0012 (Figure 3-7C). Not a single 

permutation returned a number of overlapping probe set IDs higher than 58. As further 

validation, the probe set IDs in all three datasets were permuted (i.e. the probe set IDs were 

assigned to a different row of expression values) and overlap between the three datasets 

was assessed. After 100,000 permutations, the maximum number of overlapping probe set 

IDs was 28, way below the number of TKIi probe sets (58; Figure 3-7D). 

The hypergeometric distribution returns the probability of obtaining a certain number of 

cases of one condition from a particular set of cases where two conditions are mixed 

(Methods 2.2.3.2). Here, the hypergeometric distribution was used to calculate the 

probability of getting the same or greater/lower number of cases in an overlap between two 

sets of significant genes: (I) genes differentially expressed in both CMLDV and in 

CMLMC and (II) the 527 common deregulated genes in CML and the genes that do not 

change in TKIFP. It was found that the probability of getting the same number of genes (or 

more) overlapping between CMLDV and CMLMC was close to zero (Figure 3-7A) while 

the probability of getting an overlap of 60 genes (or less) between TKIFP and the 527 

genes common in both CML datasets was also close to zero (Figure 3-7B).  

Overall, these results suggest that the identification of 60 genes (or 58 probe set IDs) 

comprising the TKIi60 signature is unlikely to have been obtained by chance. The Monte-

Carlo analysis calculates the probability of getting the same number of genes or larger by 

chance using the data and methodology than in the original analysis, which is very low. 

Furthermore, the hypergeometric distribution supports the hypothesis as the number of 

common genes in CMLDV and CMLMC was higher than expected by chance, which 

correlates with the fact that in both datasets the same CML DE genes comparison was 

performed (using the same methodology). However, the number of genes that overlap 
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between the 527 CML genes and the significant genes in TKIFP is lower than expected by 

chance. It is important to highlight that although the number TKIi genes found in the 

analysis is lower than the expected by chance, the biological context should be considered 

here. It is known that CML cells, and in particular committed and progenitor cells, are 

sensitive to TKI treatment (Corbin et al., 2013, Holtz et al., 2002). It has been suggested 

that TKI treatment restores the normal transcriptome in CML cells by inhibiting the BCR-

ABL1 TK activity (Hamilton et al., 2012), restoring normal haematopoiesis (Holtz et al., 

2002). As the 527 CML DE genes are potentially affected by the TK activity of BCR-

ABL1, inhibition of this TKI activity should restore most of these genes’ normal 

expression levels. This correlates with the significant reduction in the number of TKIi 

genes in the second hypergeometric distribution. Thus, the TKIi genes are actually an 

exception to the rule, just as the BCR-ABL1 TK independent genes are expected to be.   

3.3.2 In vitro validation of TKIi signature: primer optimization 

In order to be more confident in the reproducibility of the gene expression signature, the 

results were further validated using an independent cohort of patients (Table 2-1, Table 

2-2) and their gene expression was assessed by qPCR. 

PCR primers do not always have the same efficiency. Although theoretically PCR 

reactions should duplicate the number of molecules of the target sequence of DNA or 

cDNA (amplicon), this is not always the case (Karlen et al., 2007). This is a problem when 

the expression of different genes is compared by qPCR, as different primers can amplify 

their target sequence to different extents in the same cycle of the reaction. To confirm that 

primer efficiencies are consistent it is necessary to test primer efficiency using a series of 

cDNA dilutions of known concentration. Doing that, it is possible to determine the 

efficiency of the reaction in the range of concentrations tested and select those primers 

with efficiencies close to 100% (that is, that duplicate the amplicon in every cycle). 

Determination of efficiency was performed using Equation 3 using standards for 50, 25, 10, 

2.5 and 0.5ng of cDNA prepared from RNA extracted from wild type (WT) K562 cells in a 

10μL reaction. 

Primers were designed for protein coding and miRNA genes but not for pseudogenes or 

other non-protein coding genes. Primers for a total number of 46 genes were tested. From 

those, primer pairs for 35 genes presented efficiencies in the range of 80 to 120% in an 

interval of at least 3 concentrations containing 10ng per reaction (1ng/μL of reaction) 

(Figure 3-8).  
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Figure 3-7. The TKIi60 signature is unlike to be generated by chance. The orange bar 

always represents the number of genes/probe set IDs in the actual data. (A) Distribution of 

the probability of getting 527 common genes in the two CML datasets by chance using 

hypergeometric distribution. (B) Distribution of the probability of getting 60 genes that do 

not respond to TKI treatment in the 527 CML genes using hypergeometric distribution. (C) 

Distribution of the number of TKIi60 probe set IDs obtained after performing 10,000 

permutations on the samples names of CMLDV and CMLMC at the same time and 

calculating the overlap of the differentially expressed genes in the permuted datasets and 

the non-modified TKIFP (Monte-Carlo). (D) Distribution of the number of TKIi60 genes 

obtained after performing 100,000 permutations of the gene names in all the three datasets. 

C 
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Figure 3-8. Primer efficiencies in K562 cells. The green lines represent the interval 

between 90 and 110% efficiency, which is considered the optimal efficiency for a pair of 

primers. However, the primers with efficiencies 80-120% were also included in later 

experiments. 

 

 

Equation 3. Primer efficiencies equation. Using the slope obtained after plotting the Ct 

value (y axis) against the base 10 logarithm of the concentration of DNA present in the 

reaction (x axis) at different concentrations it is possible to determine the efficiency of the 

primers under the conditions used in the reaction. 

 

3.3.3 Validation of the TKIi signature by qPCR in CD34+ cells 

Validation of the TKIi60 signature was performed using a cohort of independent patient 

samples from those used in the microarray experiments from CML (n=5) and nCML (i.e. 

mantle cell lymphoma and lymphoma, haematological malignancies that do not affect the 

HSC population; n=2) patients as well as from normal donors (i.e. allogenic bone marrow 

donors, treated with G-CSF; n=2). All the samples were enriched for CD34
+
 cells as 

described in the Methods section (2.2.1.3). CML samples were treated with 5µM IM for 7 

days culturing them in serum free media in the absence of growth factors. Imatinib was 

reapplied after 96 hours without changing the media and sorted for viable cells (DAPI
-
) on 

Amplification efficiency = -1+10
1/-slope
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day 7. RNA was extracted at baseline (just after CD34
+
 enrichment) and after sorting, for 

both the IM treatment and no drug control arms. 

Gene expression of the 39 genes was measured using a 48.48 Fluidigm chip and ENOX2, 

GAPDH, RNF20 and TYW1 as reference genes. A new noise interval specific to the 

Fluidigm data was calculated using the technical replicates included in the chip (Ctreplicate1-

Ctreplicate2). As the reduced number of comparisons did not allow calculating a symmetrical 

noise interval, all the Ct difference values were transformed into their absolute value. This 

should not have an effect on the results as the technical replicates could be arbitrarily 

exchanged in the subtraction and it would still have the same meaning (difference between 

two technical replicates). Thus, the percentile 95 was calculated (instead of the percentiles 

2.5 and 97.5). The noise interval was found to be from -0.49 to 0.49 (rounded to -0.5 to 

0.5) differences in Ct, similar to the one previously described for the microarrays (Figure 

3-9). Using this interval, 12 genes – PPIF, TRIM58, CD33, CHST2, PRPF8, ASAP2, 

GIPC2, UBASH3B, TCEB2, GRB10, ERG and MIR10A – were found to be non-changing 

in CML CD34
+
 cells after IM treatment (Figure 3-10A). 

 

 

 

Figure 3-9. The noise interval in the 48.48 Fluidigm chip was similar than in the 

microarrays. Technical replicates were compared in order to build a distribution of the 

fold changes when comparing two samples that should be equal. The orange bars represent 

the mean of the absolute values of the percentiles 2.5 and 97.5 (-0.49 and 0.49 difference 

of Ct). 
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Originally, the analysis was performed using both the nCML and the normal samples as 

controls to compare against CML samples. The pool of nCML and normal is referred to as 

‘nCMLp’ for the rest of this section. Performing this analysis, 18 genes (Figure 3-10B) 

were differentially expressed in CML compared with nCMLp, of which 6 were not 

affected by IM treatment (Figure 3-10C). However, UBASH3B was found upregulated in 

the microarray analysis while it was found downregulated after the qPCR analysis, leaving 

a final list of 5 genes: MIR10A, GIPC2, TRIM58, ERG and CD33. 

However, a closer look at the differences between normal donor samples and nCML 

samples revealed a trend showing important gene expression differences between the two 

groups (Figure 3-11A). This suggests that the analysis should be repeated using only truly 

normal samples as controls (the two allogenic bone marrow donors). After redefining the 

control samples and repeating the analysis as previously described, 13 genes were found to 

be differentially expressed in CML compared with normal (Figure 3-11B), of which 4 

were not affected by IM treatment: ERG, CHST2, PPIF and CD33 (Figure 3-11C, Table 

3-1). Although the small number of normal samples reduces the power of the experiment 

the differences observed between the normal donors and the nCML suggested to only use 

the normal donors as controls. 
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Table 3-1. Gene expression changes of the TKIi60 genes with successful amplification 

in Fluidigm. Gene expression changes are shown in log2 fold-change. The genes validated 

by qPCR are highlighted in red. CML qPCR column shows the mean gene expression 

changes between CML and normal samples. TKI qPCR column shows the mean gene 

expression changes between NDC and IM 5µM. CMLDV, CMLMC and TKIFP are the 

respective microarray datasets. RNF180 did not present detectable expression for both the 

NDC and the IM 5µM for any single sample and it is marked as NA for the TKI qPCR 

column. 

Gene CML qPCR TKI qPCR CMLDV CMLMC TKIFP 

ARHGAP18 0.94 -0.50 1.32 0.61 0.13 

ASAP2 -2.14 0.03 1.94 0.85 0.04 

BMP6 -6.47 0.71 -1.18 -0.93 0.04 

C10orf10 -4.27 1.86 -0.82 -1.42 0.09 

CCDC159 -0.72 1.07 -0.78 -0.58 0.03 

CD33 2.43 -0.11 1.61 1.16 0.10 

CDH2 -6.91 -0.99 -1.79 -1.77 -0.02 

CHST2 2.21 -0.08 1.75 1.48 -0.13 

DNAH10 -4.76 1.42 -0.79 -0.67 0.07 

DUSP18 -4.75 0.55 -1.04 -1.00 0.09 

ERG -1.65 0.44 -1.30 -0.66 -0.06 

ESAM -1.02 -2.37 1.68 0.95 -0.04 

GIPC2 -3.65 0.07 -1.37 -1.42 -0.02 

GMPR 2.09 -1.48 0.82 1.12 -0.01 

GRB10 0.40 0.27 0.71 0.65 0.07 

IGFBP2 -0.06 -1.35 0.88 1.91 0.10 

MIR10A -4.24 0.48 -1.56 -1.45 -0.06 

MIR21 -1.24 2.60 -1.52 -2.29 0.16 

PGM5 -5.40 2.10 -1.69 -1.46 0.01 

PLAG1 -5.73 2.09 -2.48 -3.07 -0.10 

PPIF 1.21 -0.31 1.78 1.10 0.14 

PRPF8 0.00 -0.05 -0.93 -0.98 0.05 

PTPN7 1.40 0.82 0.70 0.62 -0.07 

RAB38 0.70 -1.07 1.18 0.69 -0.12 

RASSF9 -4.85 1.35 -0.83 -1.63 -0.02 

RNF180 -4.21 NA -1.33 -2.17 0.01 

SLC16A10 1.85 -1.45 1.01 1.22 -0.07 

TCEB2 0.50 0.13 0.73 0.47 -0.05 

TMEFF1 0.15 -1.78 0.97 1.01 0.01 

UBASH3B -2.15 0.08 1.16 0.93 0.13 

VMP1 -0.48 0.73 -1.52 -2.29 0.16 

ZMAT3 0.44 0.66 1.33 0.70 -0.07 
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Figure 3-10. A list of 6 genes was found to be TKIi using nCMLp samples as control. 

(A) Boxplots showing the gene expression differences of the 39 genes tested using 

Fluidigm following 7 days of culture in SFM without growth factors in the presence and 

absence of 5µM IM. The horizontal, orange dashed lines define the noise interval. The 

genes with mean -∆∆Ct occurring within the noise interval are highlighted in red. (B) Gene 

expression differences between CML and nCMLp in all the genes analysed by qPCR. The 

boxplots coloured in purple represent those genes that are significantly differentially 

expressed. (C) Those genes that are both differentially expressed in CML compared with 

nCMLp and not affected by the 7 days IM treatment. UBASH3B is downregulated in the 

Fluidigm chip while it was upregulated in the microarray analysis, so it was discarded. 

A 

B 

C 
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Figure 3-11. A list of 4 genes was found to be TKIi in using normal samples as control. 
(A) Differences between normal donor samples and those from nCML malignancies. Most 

genes were not equal in both groups as they were not confined within the noise interval 

(orange lines). -∆∆Ct was calculated using the mean of the normal donors as reference. (B) 

Gene expression differences in all the genes analysed by qPCR between CML and the 

normal donors. The boxplots coloured purple represent the genes that were significantly 

differentially expressed. (C) Shortlist of the genes that were both differentially expressed 

in CML compared with normal (purple) and not affected by the 7 days IM treatment (red). 

The data for each of these comparisons are shown next to each other for each gene. 

A 

B 

C 
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3.4 Discussion 

The high efficacy of TKIs for controlling CML but their lack of success at eradicating the 

LSCs (Mahon et al., 2010, Ross et al., 2013, Clark et al., 2017) requires new therapeutic 

approaches that are able to eradicate CML LSCs. The success of TKIs means that any new 

therapy in CML should be designed to cooperate with, not substitute for, TKIs as 

withholding such an effective medicine would not be ethical and clinical trials would have 

difficulty in recruiting patients. Also, the limited toxicity of TKIs on non-leukaemic HSCs 

means that any novel therapy must have a low toxicity profile in order to maintain the 

quality of life of the patients.  

Previous work has been done targeting members of other signaling pathways important for 

LSCs survival, such as PP2A (Neviani et al., 2013), EZH2 (Scott et al., 2016), p53 and c-

MYC (Abraham et al., 2016), showing promising results. However, the discovery of these 

new targets was performed on untreated cells, which might lead to elucidation of target 

pathways that may be normalized by TKI. Thus, some of the benefits achieved by each of 

the drugs might be redundant with those of TKI and a similar or improved effect could be 

achieved with reduced toxicity targeting pathways not affected by TKI treatment. The 

novelty of the work presented in this chapter lies in the discovery of a new gene signature 

(TKIi60/TKIi4) whose members’ expression is unaffected by TKI treatment but is disease 

specific (differentially expressed in CML compared with normal controls).  

The new approach described in this chapter may lead to more effective screening for 

potential drug targets that would cooperate with TKI treatment in CML LSCs. Here, a list 

of 4 genes (ERG, CHST2, PPIF and CD33) is presented as potentially valid drug targets in 

CML LSCs uncovered after the analysis of microarray datasets and validation using 

microfluidics qPCR. 

There are no well-established protocols for detecting significantly equivalent levels in most 

disciplines and borrowing methodologies from other disciplines requires adaptation. In this 

chapter a new protocol for detection of non-changing genes is presented by adapting the 

equivalence test previously used in clinical trials (CPMP, 2001) to microarray analysis. By 

calculating the variability between pairs of technical replicates it was possible to infer the 

normal variability expected by the instrument. This allowed setting a non-arbitrary 

threshold for the equivalence test and provides enough flexibility to be used among 

different platforms (e.g. microarray and microfluidics qPCR). The in silico validation of 

the number of TKIi60 genes also showed that these results are unlikely to be obtained by 

chance, further supporting the designed protocol. 
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The relative low validation rate from the microarray analysis in the qPCR (4/35) could be 

explained by different factors. The first is the different cell type analysed: while the 

CMLMC and CMLDV datasets included primitive LSCs (CD34
+
CD38

-
/CD34

+
CD38

-

CD90
+
) the experiments described here were performed using CD34

+
 cells, which contain 

primitive populations but primarily comprise more committed cells. The main reason to 

work with a different population was the availability of material. While CD34
+
 cells are 

already a rare population of cells (about 0.02% of leukocytes) (Kikuchi-Taura et al., 2006), 

CD34
+
CD38

-
/CD34

+
CD38

-
CD90

+
 populations are even rarer (about 5% of the CD34

+
 

population) and working with them would require large patient samples, especially when 

treating with cytotoxic drugs. Secondly, the original microarray dataset included three 

different time points (0h, 8h and 7d) but only the 0h time point was treatment naïve with 

no valid controls at 8h or at 7d. This meant that the time point was confounded with the 

treatment (NDC/treated) with no means of controlling for it. For the validation a NDC was 

included at 7d in order to control for the effects that the time point may have on the cells, 

such as cultural artefacts and differentiation. This, while improving the overall 

experimental design, also introduced a difference between the microarray dataset and the 

validation data.  

Another point to consider is the use of only healthy CD34
+
 allogeneic donors as controls. 

The availability of this kind of sample for research is limited and, therefore, other samples 

are usually selected for this purpose. Generally, haematological malignancies such as 

lymphoma and myeloma (nCML) do not have their CD34
+
 population affected by the 

disease. That means that the CD34
+
 population is similar to that of a healthy person 

although these patients might have been on treatment already, which can have an effect in 

gene expression. However, no studies have demonstrated this similarity and when the gene 

expression levels of the 35 genes analysed in the microfluidics qPCR for the nCML 

samples and the healthy donors were compared, most genes did not fall within the limits 

for non-change. This lead to the decision of using only healthy donors as controls for the 

experiment despite of the loss of statistical power (the experiment was designed with 4 

controls but 2 were dropped on this decision). 

The final list of TKIi4 genes comprises ERG, PPIF, CHST2 and CD33. ERG is a 

transcription factor that has already been found to participate in other cancers such as 

AML (Martens, 2011, Knudsen et al., 2015), pre-B-ALL (Clappier et al., 2014) and 

prostate cancer (Adamo and Ladomery, 2016), where its activity is very important for the 

development of the tumour. However, it seems to be downregulated in most cancers 

through hypermethylation of the two CpG islands in its promoters (Adamo and Ladomery, 
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2016). ERG interacts directly with GATA2 and RUNX1 (Wilson et al., 2010) and 

promotes stem cell maintenance and quiescence in HSCs via repression of MYC (Knudsen 

et al., 2015). ERG belongs to the ETS family of transcription factors and binds to a motif 

between 15 and 20 base pairs, becoming more promiscuous after suffering post-

translational modifications or heterodimerisation (Adamo and Ladomery, 2016). Its three 

different promoters allow for a transcriptional diversity, reaching up to 30 different 

transcripts and 15 proteins, which regulate different targets. ERG cooperates with histone 

deacetylases (HDACs) and the polycomb complex recruiting EZH2 and inhibits the 

CBP/p53 pathway (Adamo and Ladomery, 2016). 

CHST2 is an essential component of the cell sulphonation machinery (Kawashima et al., 

2005, Uchimura et al., 2005). Sulphonation is a post-translational modification mechanism 

on glycosylated proteins. This process is fundamental for the synthesis of valid L-selectin 

ligands – which includes CD34 – and, therefore, it is necessary for the homing of 

lymphocytes in the lymph nodes (Kawashima et al., 2005, Uchimura et al., 2005). 

Additionally, CHST2 has been found to be upregulated in low risk B precursor ALL with 

ERG intragenic deletions, in contrast with the high risk BCR-ABL1
+
 patients (Harvey et al., 

2010). This could suggest a role for cell-cell interactions in CML LSC persistence. 

PPIF is a key initiator of autophagy in the mitochondria as it participates in the 

mitochondria transition pore. PPIF
-/-

 cardiomyocytes are unable to initiate autophagy, 

while PPIF overexpressing cells increase autophagy even under non-starvation conditions 

(Carreira et al., 2010). During ischemia, PPIF forms a complex with p53 that activates 

necrosis and it has been shown that PPIF
-/-

 mice exhibit protection against ischemic brain 

disease (Vaseva et al., 2012). Conversely, a co-immunoprecipitation study showed that 

PPIF associates with BCL2 (Eliseev et al., 2009). This association protects the cell from 

apoptosis, probably by the regulation of cytochrome c release (Eliseev et al., 2009). Thus, 

PPIF participates in the regulation of cell death by both protecting cells from apoptosis and 

by increasing necrosis. The increase in the levels of PPIF and its pro-necrotic activity may 

be countered by the reduced activity of p53 pathway in CML LSCs (Abraham et al., 2016). 

Therefore, high levels of PPIF in CML LSCs may only protect against apoptosis without 

promoting necrosis. Cyclosporine A, a widespread immunosuppressant drug, targets PPIF 

and it has been shown to inhibit its activity (Eliseev et al., 2009, Vaseva et al., 2012). 

CD33 is a myeloid cell surface marker that has been exploited as a therapeutic target in 

AML because of its high expression in AML blasts. Between 2000 and 2010 gemtuzumab-

ozogamicin (GO), commercialised as Mylotarg by Pfizer, was used routinely for treating 
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AML, but was withdrawn from the market after a clinical trial showed hepatotoxicity in a 

number of patients (Jurcic, 2012). However, other clinical trials have demonstrated that 

GO is highly beneficial for some subsets of patients, especially those with low risk 

cytogenetics (Jurcic, 2012) and recently it has been re-approved by the US FDA for its 

commercialisation (Jen et al., 2018a). Although normal HSCs can present expression of 

CD33, it is believed that CD33 is not expressed in normal HSCs in the presence of LSCs, 

as no effect in normal haematopoiesis has been detected in patients treated short-term with 

GO (Pearce et al., 2006). However, when patients are treated long-term with GO some of 

them develop thrombocytopenia, probably because of the re-expression of CD33 in normal 

stem or progenitor cells (Pearce et al., 2006). A previous publication already reported the 

high expression of CD33 in CML LSCs (Herrmann et al., 2012).  

In summary, the TKIi4 gene signature described in this chapter comprises ERG, PPIF, 

CHST2 and CD33. Both CD33 and PPIF can be targeted using commercially available 

drugs that are already approved for use in the clinical practice. The effect of gemtuzumab-

ozogamicin (GO) on CML CD34
+
 cells targeting CD33 will be discussed on Chapter 5 of 

this thesis. Additionally, Chapter 4 discusses the role of the TKIi signature as a biomarker 

for TKI response and prognosis. 
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4 Results (II): Investigation of the potential role of the TKI independent 

signature as a biomarker in CML LSCs 

4.1 Introduction 

The uncovering of the TKIi signature in the previous chapter reinforced the hypothesis that 

CML LSCs possess de-regulated genes that are independent of the TK activity of BCR-

ABL1. However, its existence does not necessarily mean that it has any real application in 

a clinical environment. The aims of this chapter is to (I) assess the TKIi signature as a 

potential biomarker for TKI response, disease aggressiveness and phase of the disease and 

(II) investigate if the differential expression of the TKI signature in CML CP is maintained 

over accelerated phase (AP) and blast crisis (BC) using already existing microarray 

datasets. 

Previous publications have already investigated the existence of gene expression signatures 

as biomarkers for TKI response (McWeeney et al., 2010), disease aggressiveness (Yong et 

al., 2006) and phase of the disease (Cramer-Morales et al., 2013) (CMLMC). In this 

chapter, these data will be exploited to evaluate the value of the TKIi signature in silico. 

The different datasets were processed for finding gene expression differences between the 

contrasts of interest (TKI response, disease aggressiveness and phase of the disease) and 

the results compared with the TKIi signature mentioned in the previous chapter. 

The different microarray platforms used for each dataset make direct comparison between 

the two datasets introduced in this chapter (Yong et al., 2006, McWeeney et al., 2010) and 

the TKIi60 list more complicated. Summarising the values of the probes representing the 

same gene, as was done in the previous chapter, provides a more stable value for the 

expression of each gene. However, each microarray platform contains a different set of 

probes that do not necessarily bind to the same part of the transcript. Therefore, comparing 

summarised gene values from different platforms may provide results from a different set 

of transcripts (splicing variants). In order to solve this issue the comparisons between 

different microarray platforms were performed using RefSeq transcripts (O'Leary et al., 

2016) instead of genes. 

To assess the value of the TKIi signature as a biomarker for TKI response, disease 

aggressiveness and disease progression, the differentially expressed transcripts in the three 

datasets analysed in this chapter were analysed for enrichment on TKIi transcripts using 

the hypergeometric distribution. Additionally, the existence of two cohorts of datasets 

transcriptionally profiling TKI responders and non-responder CML patients allowed for 
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testing the TKIi signature as a classifier for TKI response as one dataset was used for 

training the classifier while the other was used for testing it. 
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4.2 The TKIi signature is able to predict TKI response in CML 

4.2.1 Description of the TKI response microarray dataset 

The RNRMW (responders – non-responders McWeeney) dataset comprises of two 

different groups of patients: a training group (n=36, peripheral blood) and a validation 

group (n=23, bone marrow). In both groups there are patients who respond to IM treatment 

(training: n=24, validation: n=17) and patients who do not (training: n=12, validation: n=6). 

Patients were defined as responders if they reached complete cytogenetic response (CCyR, 

0% Ph
+
 metaphases) after 1 year of IM treatment and as non-responders if they did not 

achieve even minor cytogenetic response (at least 66% Ph
+
 metaphases) during that time. 

Affymetrix Human Genome U133 Plus 2.0 chips were used for detecting gene expression 

in all samples. 

PCA was used to summarise the variability of the two datasets present in RNRMW 

(training and validation) in order to identify batch effects, that would require correction 

before pursuing with the analysis, and any specific clustering based on a single factor. No 

clusters associated with TKI response were observed in the projection of the first two PC 

neither on the training dataset (Figure 4-1B) nor in the validation set (Figure 4-2B). This 

was confirmed by calculating if there was any significant difference between the values of 

each eigen vector based on the TKI response classification using Kruskal-Wallis test in 

both the training (Figure 4-1C) and validation datasets (Figure 4-2C). Small clusters could 

be observed but the lack of additional clinical information describing the samples 

prevented further investigation of this observation. 

4.2.2 Replication of the analysis conditions of RNRMW failed to return the same 

results than presented in the publication 

The original publication (McWeeney et al., 2010) stated that the training set was 

normalized using RMA and each probe set was compared between the two groups 

(responders and non-responders) using analysis of variance. The p-values were corrected 

for false discovery rate (FDR) and filtered for a q-value smaller than 0.1. Additionally, the 

probes sets were filtered for those with an absolute fold-change greater than 1.5. Using 

those rules for filtering the gene list after comparing the TKI responders and non-

responders with limma (Smyth, 2004). No probe sets were found in the training dataset 

matching this criteria (Figure 4-3A) and only one probe set, which mapped to HOXA1, was 

found to be match this criteria in the validation set (Figure 4-3B). 
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Figure 4-1. TKI response is not associated with any of the first 8 PCs in the training 

set. The scree plot (A) shows that multiple principal components have an important 

relative weight in explaining the variability. (B) The projection of PC 1 and 2 fails to 

discriminate between TKI responders and non-responders. (C) Analysis of the association 

of the eigen vectors with the response to TKI revealed no significant differences between 

groups. The black horizontal line marks the threshold p<0.05. 

A 

B 
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Figure 4-2. TKI response is not associated with any of the first 7 PCs in the validation 

set. The scree plot (A) shows that multiple principal components have a significant weight 

in explaining the variability. (B) The projection of PC 1 and 2 fails to discriminate between 

TKI responders and non-responders. (C) Analysis of the association of the eigen vectors 

with the response to TKI revealed no significant differences between groups. The black 

horizontal line marks the threshold p=0.05. 

A 

B 

C 
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Figure 4-3. Correction for FDR reduces the number of differentially expressed probe 

sets in the validation set to only HOXA1. Probe sets differentially expressed before FDR 

correction are shown in orange and those which were differentially expressed after 

correction are shown in red. (A) The training dataset did not present any differentially 

expressed probe set after FDR correction. (B) A probe set mapping to HOXA1 was found 

to be differentially expressed after FDR. 

B 

A 
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Figure 4-4. The overlap of the differentially expressed RefSeq transcripts is unlikely 

to happen by chance. Using the hypergeometric distribution it was clear that it is very 

unlikely for the overlaps between (A) the training and the validation sets and (B) the 

RNRMW combination and the TKIi161 signature to happen by chance. (C) Selecting 

10,000 random sets of RefSeqs of the same size than the TKIi signature had a similar result 

than the hypergeometric distribution. (D) Venn-diagram showing the number of RefSeqs 

differentially expressed in each set of patients and the overlaps between them and the TKIi 

signature. The orange vertical bars denote the observed values. 

D 

A B 

C 
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4.2.3 Failing to correct for false discovery rate reproduce similar results to the 

analysis presented in the original publication 

The absence of differentially expressed genes when applying the filters stated in the 

original publication suggested that it was not possible to replicate the exact methodology 

from the original publication. This could be due to different normalisation protocols and 

the different versions of the software used in the two analyses (as the two different 

analyses have been performed 8 years apart). In order to minimise the differences between 

the two analyses the filtering for statistical significance was performed with the raw p-

value and not by the FDR. Using these settings 938 probe sets were found differentially 

expressed, a number very close to the one stated by the authors (885) (Figure 4-3A). The 

similarity between the number of differentially expressed probe sets in both lists increased 

the confidence in the possibility of replicating the results of original publication with the 

new criteria. 

4.2.4 The overlap between the TKIi signature and the genes differentially 

expressed between TKI responders and non-responders is bigger than the 

overlap expected by chance 

Having a list of differentially expressed probe sets between TKI responders and non-

responders in the training set without correcting for FDR (and using a relaxed p-value 

threshold of 0.1) would be a more relaxed threshold than the common q<0.05 threshold. 

The existence of the validation set, however, allowed working with the probe sets 

differentially expressed in both datasets (training and validation). Using the overlap of the 

two sets decreases the risk of false positives and increases the confidence in the result. 

Carrying out the same analysis of the validation set returned 797 differentially expressed 

probe sets (Figure 4-3B); 87 of these were also differentially expressed in the training set. 

In order to investigate if the differentially expressed probe sets were enriched in the TKIi 

signature, the probe sets were mapped to RefSeq transcripts using biomaRt (Durinck et al., 

2009). As each probe set can map to a different number of RefSeq transcripts, the numbers 

of differentially expressed RefSeq transcripts can differ from the number of differentially 

expressed probe sets. After mapping, 1,069 transcripts were considered differentially 

expressed in the training set and 1,025 in the validation (Figure 4-4D). Of those, 167 

transcripts were differentially expressed in both sets (Figure 4-4D). The probability of 

finding 167 or more common transcripts in two lists of 1,069 and 1,025 transcripts selected 

from a pool of 34,769 (number of RefSeq transcripts that map to the probe sets of the 

microarray) by chance was very small (p<1x10
-70

, Figure 4-4A). Thus, it was believed that 
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those RefSeq transcripts are truly differentially expressed between IM responders and non-

responders. 

The analysis of CMLDV (3.2.1.2), CMLMC (3.2.1.3) and TKIFP (3.2.1.1) datasets 

described in the previous chapter was repeated to perform it at the transcript level (instead 

of summarising the probe sets to the gene level). This new analysis reported 161 TKIi 

transcripts, of which 150 had a probe set mapping to them in the Affymetrix Human 

Genome U133 Plus 2.0 chip (used in in RNRMW). The TKIi161 list was compared to the 

list of differentially expressed transcripts obtained from the overlap of the two sets of 

RNRMW, finding 4 common transcripts that coded for EGFL6, VWF, CACNA1D and 

RBPMS. The probability of finding an overlap of 4 or more transcripts between the two 

lists by chance was found to be unlikely by both hypergeometric distribution (p=0.0059; 

Figure 4-4B) and Monte-Carlo by selecting 10,000 random sets of 150 RefSeq IDs 

(p=0.0062; Figure 4-4C). 

4.2.5 The TKIi signature can discriminate between TKI responders and non-

responders 

The significant overlap between the TKI-response transcripts and the TKIi161 signature 

suggested that the TKIi161 signature might actually have potential for predicting the TKI 

response a patient will have. The projection of the first two PCs of the TKIi161 signature 

revealed a better separation of TKI responders and non-responders than when the PCA was 

done with all the transcripts in both the training (Figure 4-5B)  and the validation datasets 

(Figure 4-6B). This was also confirmed by the association of the TKI response with the 

PC1 in the training dataset (Figure 4-5C) and with PC2 in the validation dataset (Figure 

4-6C). However, the separation in different clusters was not as clear as with the 938 probe 

sets that were differentially expressed in the training dataset (Figure 4-7B), which showed 

association of the TKI response with the PC1 (Figure 4-7C), but not in the validation 

dataset (Figure 4-8B), which showed association of the TKI response with the PC4 (Figure 

4-8C). The 75 probe sets of the classifier built in the original publication improved the 

separation in different clusters based on the response to TKI in both the training dataset 

(Figure 4-9B) and the validation dataset (Figure 4-10B) associating in both datasets with 

the PC1 (Figure 4-9C and Figure 4-10C). In summary, The TKIi161 signature improved the 

clustering of the samples in TKI responders and not responders but was not as successful 

as the genes present in the classifier built in the original publication. 

This modest but positive result at discriminating the response to TKI using the TKIi161 

signature suggested that the TKIi transcripts could be used to build a classifier to predict 
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TKI response. A Support Vector Machine (SVM) classifier was chosen based on its 

consistent high performance across a wide range of domains. The scikit-learn SVM model 

was used with default options (RBF kernel) (Pedregosa et al., 2011). The existence of two 

distinct datasets in RNRMW allowed training the classifier in the “training” dataset and 

testing it in the “validation” dataset. The classifier built with the TKIi161 signature had an 

AUC of 0.82 in the RNRMW’s validation dataset (Figure 4-11). This result was better than 

the result obtained using all available probe sets in the universe (AUC 0.73) and only 2.9% 

of classifiers built using random subsets of transcripts of the same size than the TKIi161 

signature (150) achieved an equal or better result, implying p<0.05. However, the 149 

RefSeq transcripts mapped to the 75 probe sets of McWeeney’s classifier got an AUC of 

0.87, which was better than the TKIi161 signature and only 1.0% of the random subsets 

perform equally or better than it (Figure 4-11). This improvement in AUC and statistical 

significance of the McWeeney’s classifier was expected as the classifier was optimised 

(e.g. selection of optimal number of probe sets) and built using this dataset. The 

achievement of the TKIi161 signature as classifier is that a list of transcripts generated from 

a completely different research question (transcripts differentially expressed in CML but 

not affected by TKI treatment) has a significantly better AUC than random sets of 

transcripts. 
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Figure 4-5. Selecting only the TKIi161 RefSeqs increases the discrimination between 

responders and non-responders in the training set. (A) Percentage of variance 

explained by each PC. (B) Projection of the first two PCs. It can be observed that TKI 

responders and non-responders separate more than with all the probe sets. (C) Analysis of 

the association of the eigenvectors with the response to TKI revealed an association 

between the PC1 and the response to TKI. The black horizontal line marks the threshold 

p<0.05. 
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Figure 4-6. Selecting only the TKIi161 RefSeqs increases the discrimination between 

responders and non-responders in the validation set. (A) Percentage of variance 

explained by each PC. (B) Projection of the first two PCs. It can be observed that TKI 

responders and non-responders separate more than with all the probe sets. (C) Analysis of 

the association of the eigen vectors with the response to TKI revealed an association 

between the PC2 and the response to TKI. The black horizontal line marks the threshold 

p<0.05. 
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Figure 4-7. Selecting only for the probe sets differentially expressed in the training set 

increases the discrimination between responders and non-responders in the training 

set. (A) Percentage of variance explained by each PC. (B) Projection of the first two PCs. 

It can be observed that TKI responders and non-responders separate more than with all the 

probe sets. (C) Analysis of the association of the eigen vectors with the response to TKI 

revealed an association between the PC1 and the response to TKI. The black horizontal 

line marks the threshold p<0.05. 

A 

B 

C 



 95 

 

Figure 4-8. Selecting only for the probe sets differentially expressed in the training set 

increases the discrimination between responders and non-responders in the 

validation set. (A) Percentage of variance explained by each PC. (B) Projection of the first 

two PCs. It can be observed that TKI responders and non-responders modestly separate 

more than with all the probe sets. (C) Analysis of the association of the eigen vectors with 

the response to TKI revealed an association between the PC4 and the response to TKI. The 

black horizontal line marks the threshold p<0.05. 
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Figure 4-9. Selecting only for the probe sets present in McWeeney’s classifier has the 

largest effect in discriminating between responders and non-responders in the 

training set. (A) Percentage of variance explained by each PC. (B) Projection of the first 

two PCs. It can be observed that TKI responders and non-responders separate more than 

with all the probe sets. (C) Analysis of the association of the eigen vectors with the 

response to TKI revealed an association between the PC1 and the response to TKI. The 

black horizontal line marks the threshold p<0.05. 

A 

B 
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Figure 4-10. Selecting only for the probe sets present in McWeeney’s classifier has the 

largest effect in discriminating between responders and non-responders in the 

validation set. (A) Percentage of variance explained by each PC. (B) Projection of the first 

two PCs. It can be observed that TKI responders and non-responders separate more than 

with all the probe sets. (C) Analysis of the association of the eigen vectors with the 

response to TKI revealed an association between the PC1 and the response to TKI. The 

black horizontal line marks the threshold p<0.05. 

A 

B 
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Figure 4-11. The TKIi161 signature and the McWeeney classifier have higher AUCs 

than random. The histogram shows a distribution of random sets of 150 probe sets (same 

size than the TKIi161 signature in the microarray platform used in RNRMW datasets). The 

orange bar represents the AUC obtained by using all the probe sets in the universe (0.73, 

p=0.21), the blue bar represents the AUC of the TKIi161 signature (0.82, p=0.029) and the 

red bar represents the AUC of McWeeney classifier (0.87, p=0.01). 
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4.3 The TKIi signature is not able to predict disease aggressiveness 

4.3.1 Description of the disease aggressiveness microarray dataset 

The aggressive versus indolent dataset generated by Agnes Yong (AIAY) (Yong et al., 

2006) was generated using CML patient samples collected between 1979 and 2001 from 

leukapheresis (peripheral blood) and enriched for CD34
+
 cells (>90%). The different 

samples were classified as indolent disease when the patients survived at least 7 years 

before developing a blast transformation (n=9), and as aggressive disease when the patients 

developed blast transformation within 3 years after diagnosis (n=10). The treatment used 

on these patients was interferon-α and/or hydroxyurea. Affymetrix Human Genome 

U133A 2.0 chips were used for detecting gene expression in all the samples. 

Projection of the first 2 PCs of the PCA did not reveal clustering based on the 

aggressiveness of the disease but did reveal clustering based on gender on the PC2 (Figure 

4-12B). Study of the association of the different PCs with gender, age and aggressiveness 

confirmed the association of PC2 with the gender. Additionally, the PC3 associated with 

the aggressiveness of the disease and PC4 with the age (Figure 4-12C). This suggested that 

although PC1 was not associated with any of the known factors, gender, aggressiveness 

and age have an effect in gene expression, as it is shown by their association with the PCs 

2, 3 and 4. 

4.3.2 Differential expression analysis revealed no significant differences between 

aggressive and indolent patients 

Although the original publication (Yong et al., 2006) analysed the gene expression data 

using three different bioinformatics tools, no FDR was applied. A better comparison of the 

differentially expressed transcripts of AIAY and RNRMW could be achieved by applying 

the same normalisation and differential expression protocol. However, AIAY is only one 

dataset and therefore, there is no option for validating the differentially expressed 

transcripts in a sister dataset. Because of that, it was decided to apply FDR<0.1 and fold-

change>1.5 threshold during limma (Smyth, 2004) differential expression analysis for 

considering a transcript differentially expressed. However, no transcripts met these criteria 

(Figure 4-13).  

4.3.3 The TKIi signature is not a marker for disease aggressiveness 

Although a list of differentially expressed genes was not generated, it was decided to 

investigate the potential of the TKIi161 signature for predicting aggressiveness in CML. 103 

TKIi RefSeq transcripts were present in the AIAY dataset and PCA was carried out using 

only those data. Kruskal-Wallis test showed that none of the principal components was 



 100 

significantly associated with any of the known factors; although aggressiveness and gender 

were almost significantly associated with principal components 2 and 3 respectively 

(Figure 4-14B-C).  

Performing PCA using only  the 57 probe sets that match to the probe sets included in the 

McWeeney classifier (McWeeney et al., 2010) increased the variance explained by PC1 to 

45% (Figure 4-15A), which associates significantly with both aggressiveness and age 

(Figure 4-15B-C). This increase in the variance significantly associated with either 

aggressiveness or the age group (from 16.2% to 45%) suggests that using the McWeeney 

classifier reduces the noise for discriminating between patients with different disease 

aggressiveness and different age groups. However, the association of both factors with 

PC1 in this analysis was equally significant, which may suggest that both factors are co-

founders in in the gene expression changes observed in the genes present in the McWeeney 

classifier. 
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Figure 4-12. AIAY’s PCA reveals association of gender, aggressiveness and age with 

PCs 2, 3 and 4. (A) Percentage of variance explained by each PC. (B) Projection of the 

first two PCs. PC2 is associated with a separation between male and female patients. (C) 

Analysis of the association of the eigen vectors with the known factors (gender, 

aggressiveness and age) revealed an association between them and the PCs 2, 3 and 4. The 

black horizontal line marks the threshold p<0.05. 
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Figure 4-13. Differential gene expression analysis revealed no significantly DE genes 

between aggressive and indolent disease in CML. The probe sets that had a non-adjusted 

p<0.1 and a fold change>1.5 are highlighted in orange. 
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Figure 4-14. Selecting only for the TKIi161 transcripts reduced the association of the 

PCs with any of the known factors (disease aggressiveness, age and gender). (A) 

Percentage of variance explained by each PC. (B) Projection of the first two PCs. No clear 

clustering was observed. (C) No associations were found between the eigen vectors and the 

known factors (gender, aggressiveness and age). The black horizontal line marks the 

threshold p<0.05. 
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Figure 4-15. Selecting only for the McWeeney classifier transcripts associated the 

PC1 with disease aggressiveness and age. (A) Percentage of variance explained by each 

PC. (B) Projection of the first two PCs. PC1 is associated with a separation between old 

and young patients as well as those suffering from an indolent or aggressive disease. (C) 

PC1 was associated with the known factors aggressiveness of the disease and age. The 

black horizontal line marks the threshold p<0.05. 

A 

B 

C 



 105 

4.4 Disease progression is associated with the expression of the TKIi signature 

4.4.1 Disease phase and cell population are strongly associated with the variance 

in the dataset 

In order to assess the role of the TKIi60 signature in disease progression, the BC and AP 

samples from CML Mhairi Copland (CMLMC) dataset were analysed. PCA revealed a 

stronger association of the cell population than of the disease phase in the first two 

principal components (Figure 4-16B-C). However, the phase of the disease was also 

significantly associated with the first six principal components (Figure 4-16C). The 

significant association across several principal components suggests that disease 

progression has a strong effect on gene expression. 

4.4.2 Differential gene expression reveals an enrichment on TKIi genes in BC 

and AP 

Differential gene expression analysis was performed using limma and a FDR<0.1 was used 

as threshold for significance. 2,810 genes were found to be differentially expressed in AP 

HSCs when compared with HSCs from normal controls but only one gene, KCTD14, was 

found to be differentially expressed (upregulated) in AP when compared with CP HSCs. 

Pathway overrepresentation was studied in the 2,810 differentially expressed genes in AP 

using PANTHERdb (Mi et al., 2017). This analysis revealed that components of cell cycle, 

DNA biogenesis and p53 pathways were overrepresented while G-protein signalling 

pathway components were underrepresented (Fisher’s exact test FDR<0.05; Table 4-1). 

The same analysis was performed in BC HSCs. When compared with normal HSCs, it was 

found that 3,707 genes were differentially expressed in BC. However, no pathways were 

found to be over or underrepresented as reported by PANTHERdb. 6,280 genes were 

differentially expressed in BC when compared with CML CP HSCs. Using PANTHERdb 

DNA replication, apoptosis and p53 pathways were found to be overrepresented in the 

genes differentially expressed in BC when compared with CP (Table 4-2). 

The results obtained from the analysis of the AP samples’ gene expression are in line with 

what was expected, as AP cells presented a number of differentially expressed genes when 

compared with normal controls but were very similar to CP. This is consistent with the 

positive response to TKI treatment in most patients that evolve into AP (le Coutre et al., 

2012), which at the same time may suggest a limited amount of mutations or expression 

changes compared with CP. The overrepresented pathways are consistent with the increase 

in proliferation and survival observed in CML cells compared with normal cells. The 

results from the gene expression analysis of the BC samples revealed more differences 



 106 

between BC and CP than between BC and normal. The overrepresented pathways (p53, 

apoptosis, and DNA replication) are consistent with the more aggressive phenotype of the 

disease (more proliferation and less cell differentiation). However, only two CML BC 

samples were included in the dataset and therefore the results could change after addition 

of additional samples. 

The overlap between the TKIi60 genes and these lists of differentially expressed genes was 

calculated and assessed. The 2,810 genes differentially expressed between AP and normal 

contained 48 of the 60 TKIi60 genes, the genes differentially expressed between BC and 

normal contained 36 TKIi60 genes and, the comparison of BC and CP contained 16 TKIi60 

genes. All of these overlaps are highly unlikely to happen only by chance when assessed 

by hypergeometric distribution (p<0.001 in all cases; Table 4-3). 

4.4.3 Selecting only the TKIi genes increases the discrimination between CML 

phases 

Selecting only the 60 TKIi60 genes on the whole dataset (including all phases and cell 

populations) increased the association of the disease phase and disease while decreasing its 

association with the cell population when performing PCA (Figure 4-17C) compared with 

the PCA performed using all the probes on the chip (Figure 4-16C). This suggested that the 

relative expression of the TKIi60 genes is similar over all the phases of CML when 

compared with the normal controls as the first principal component, which accounts for 

45.88% of the variance (Figure 4-17A), separates mainly CML and normal samples. This 

was confirmed by observing the relative gene expression, which is consistently up or down 

regulated compared with the normal controls in the HSCs of the three CML phases (Figure 

4-18). Only CD33, GMPR, RAB38 and UBASH3B had different directions of change in BC 

compared with CP and AP. CP and AP relative expression of the TKIi60 genes was always 

in the same direction. These four genes could explain why the TKIi60 signature also seems 

to discriminate BC from other phases of the disease on principal component 2, which 

accounts for 10.93% of the variance (Figure 4-17B). 
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Figure 4-16. Principal components are strongly associated with all the three known 

factors in CMLMC: cell population, phase of the disease and presence of BCR-ABL1. 

(A) Percentage of variance explained by each PC. (B) The projection of the first 2 

principal components shows clustering by cell type and phase of the disease. (C) The first 

9 principal components are strongly associated with at least one know factor. The black 

horizontal line marks the threshold p<0.05. 

A 

B 
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Table 4-1. Over and under-represented signalling pathways in the DE genes between 

AP and normal controls. The genes were mapped to PANTHERdb pathways and 

enrichment was calculated using the Fisher exact test and BH correction for multiple 

testing. 

PANTHER Pathways Fold-change FDR 

De novo pyrimidine biosynthesis 6.01 9.97E-03 

DNA replication 5.23 3.13E-04 

Cell cycle 4.48 8.94E-03 

De novo purine biosynthesis 4.41 1.93E-03 

Ubiquitin proteasome pathway 3.82 5.20E-05 

p53 pathway 2.52 7.73E-03 

Heterotrimeric G-protein signalling pathway 0.24 1.64E-02 

 

Table 4-2. Overrepresented signalling pathways in the DE genes between BC and CP. 

The genes were mapped to PANTHERdb pathways and enrichment was calculated using 

the Fisher exact test and BH correction for multiple testing. 

PANTHER Pathways Fold-change FDR 

DNA replication 3.28 5.51E-03 

De novo purine biosynthesis 2.82 2.70E-02 

Apoptosis signalling pathway 2.03 3.04E-03 

p53 pathway 1.91 4.85E-02 

 

Table 4-3. TKIi60 genes are overrepresented in the lists of DE genes between AP and 

normal, BC and normal and BC and chronic phase. 

Comparison Total DE genes TKIi DE genes p-value 

AP vs Normal 2,810 48 <0.001 

BC vs Normal 3,707 36 <0.001 

BC vs CP 6,280 16 <0.001 
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Figure 4-17. Selection for the TKIi60 genes increases the variance explained by the 

principal component 1 and the association of disease phase with the principal 

components. (A) Percentage of variance explained by each PC. (B) The projection of the 

first 2 principal components allows discriminating the normal samples and the BC samples 

from the rest. (C) The PC1 was strongly associated with the presence of BCR-ABL1 and to 

a lower extent the phase of the disease and the cell population. The black horizontal line 

marks the threshold p<0.05.  

A 

B 
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Figure 4-18. The direction of relative expression of the TKIi60 genes is constant in all 

phases of CML when compared with normal controls. Only CD33, GMPR, RAB38 and 

UBASH3B had different direction of change in BC than in the other 2 phases. CP and AP 

had the same direction of change for all the genes. 
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4.5 Discussion 

The TKIi signature identified in Chapter 3 was found as the overlap between the 

differentially expressed genes in CML CP HSCs as compared with normal HSCs, and the 

genes not affected by TKI treatment. In order to assess whether this signature holds any 

potential translational value, transcriptional data describing various clinical scenarios was 

analysed, specifically (I) TKI response, (II) disease aggressiveness (classified 

retrospectively at diagnosis) and (III) disease progression. Additionally, as patients 

suffering from CML BC lack effective treatments, it was assessed if the direction of 

change on the genes in the TKIi signature is constant among the 3 phases of the CML 

when compared to normal. 

TKI treatment has proved to be very effective in managing CML, however not all patients 

respond to the treatment (Hughes et al., 2015) and the disease can evolve into accelerated 

phase or blast crisis. However, the current scores for predicting prognosis have only a 

limited sensitivity (16% for progression free survival using the EUTOS score (Hasford et 

al., 2011)). Therefore, the development of new molecular-based scores that may 

complement the existing ones could benefit those patients who are wrongly classified as 

low-risk.  

Currently patients suffering from CML BC have a bad prognosis and most of them do not 

survive more than a year after diagnosis of the BC (Hehlmann, 2012). This is because the 

only therapeutic option for these patients is to undergo allogenic haematopoietic stem cell 

transplant (aHSCT), which entails many complications and is not curative in all cases 

(Hehlmann, 2012, Baccarani et al., 2013, Saußele and Silver, 2015). With this in mind, it 

was decided to investigate if targeting the TKIi60 signature could constitute a new approach 

for the management of CML BC, in the hope of improving the survival of this group of 

patients. 

The discovery of new biomarkers for predicting response to TKI is therefore of key 

importance in the management of CML patients. Using the RNRMW dataset it was 

assessed if the TKIi161 signature was indeed associated with TKI response. Despite the 

discrete difference between TKI responders and non-responders shown in the PCA (Figure 

4-1, Figure 4-2) and the differential gene expression analysis (Figure 4-3) it was shown 

that the TKIi161 signature is overrepresented in the consistently differentially expressed 

probe sets (Figure 4-4) and that it is able to predict response to imatinib better than 97.1% 

of randomly generated probe sets of the same size. The classifier generated by (McWeeney 

et al., 2010) had a higher prediction value than the TKIi161 signature (Figure 4-11). 
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However, the McWeeney classifier was generated using the RNRMW dataset and 

optimised until the maximum AUC was achieved (e.g. by selecting the optimal number of 

probe sets). In contrast, the TKIi161 signature was discovered while answering a different 

biological question (i.e. existence of BCR-ABL1 TK independent genes in CML LSCs) 

and no optimisation was performed in the classifier (e.g. all the matching probe sets were 

used in the classifier). This suggests that the TKIi161 signature has a biological effect in 

CML LSCs by promoting survival, proliferation, self-renewal pathways and potentially 

LSC persistence. Thus, the ability to persist TKI treatment and the molecular mechanisms 

affecting the response to IM may be linked.   

The PCA of AIAY dataset, which compares patients who suffered blast transformation 

within 3 years of diagnosis (aggressive disease) and patients who survived without 

suffering blast transformation for at least 7 years, revealed only minor association of the 

aggressiveness of the disease with the gene expression at diagnosis (Figure 4-12). PCA on 

TKIi161 matching probe sets showed even lower association of the aggressiveness of the 

disease with the gene expression at diagnosis. However, aggressiveness of the disease in 

the pre-TKI era was probably related to mechanisms different than the ones involved in 

TKI persistence. In contrast, PCA using the probe sets matching the McWeeney classifier 

increased the association of the aggressiveness of the disease with the gene expression at 

diagnosis. However, this association was confounded with an association of the age of the 

patient at diagnosis, which is also confounded in (McWeeney et al., 2010) as the median 

age of non-responders was 10 years higher than the median age of the responders’ cohort 

(61-51). Older age is known to be a risk factor in CML and is included in the Sokal score 

model (Sokal et al., 1984), the first score used for predicting aggressiveness in CML. The 

Sokal score classification (including age) has also been associated with poorer response to 

imatinib (Nicolini et al., 2018, Breccia et al., 2018). The study of the effect of age in 

RNRMW dataset would have been important for understanding the gene expression 

changes between the groups. However, the lack of information in the age at diagnosis of 

each patient in the RNRMW datasets prevented further analysis. 

A recent publication by the same group as RNRMW (Patel et al., 2018) showed no 

differences between nilotinib responders and non-responders. In this dataset the 

McWeeney classifier was unable to classify correctly the patients between responders and 

non-responders. Although it was not possible to test the ability of the TKIi161 signature to 

predict response to nilotinib in this thesis, the gene expression data will be requested for 

future work. Additionally, the age of the patients in the different groups of the study is not 

available, so it would not be possible to assess whether the lack of discriminative power of 
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the McWeeney classifier in this dataset is due to a more similar median age between the 

two groups. 

Gene expression analysis on HSCs revealed that the TKIi60 signature is overrepresented in 

AP and BC compared with normal controls as well as in BC compared with CP. However, 

this should be validated using other datasets with independent samples as the CMLMC 

dataset was already used for the discovery of the TKIi60 signature and using the same data 

would provide limited insight. However, the results show that the TKIi60 signature’s 

relative gene expression has consistent direction (up or down regulation) across all phases 

of the disease and it is able to discriminate normal HSCs from CML cells regardless of 

phase (Figure 4-17, Figure 4-18). There is also some evidence that the TKIi60 signature 

may discriminate BC HSCs from CP or AP HSCs, but this seems to be associated with 

principal component 2, which accounts for only 10% of the variance. Thus, this data 

suggests that the differential expression of the genes in the TKIi60 signature compared to 

normal HSCs is required in all three CML phases and therefore, targeting components of 

the TKIi60 signature may constitute a valid therapy in all the phases. 

In summary, the TKIi161 signature seems to have some value as a potential biomarker for 

imatinib response in CML independent of age and its relative expression has a consistent 

direction of change compared to normal controls across all stages of CML. The 

development of novel biomarkers for TKI response could inform choice of treatment and 

monitoring in high-risk patients. Testing the predictive value of the TKIi161 signature in 

other datasets, including different TKIs, would confirm its value and its independence 

from confounding factors. Additionally, the development of therapeutic options targeting 

the components of the TKIi60 signature may constitute a new formula for the treatment of 

advance phases of CML. 
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5 Results (III): CD33 as a therapeutic target in CML CD34+ cells 

5.1 Introduction 

CD33 is a cell surface marker that has been used for identifying cells of the myeloid 

lineage and haematopoietic progenitor cells in the past decades (Andrews et al., 1989). 

Although CD33 has been associated with progenitor cells, it was thought that long-term 

repopulating cells did not have CD33 on their surface (Andrews et al., 1989). However, a 

recent publication by Connie Eaves (Knapp et al., 2018) has shown that CD33 is expressed 

in the human cord blood cells with longest repopulating potential. 

CD33 is a CD33-related Siglec (sialic-acid-binding immunoglobulin-like lectin), a group 

of very similar proteins (9 in humans) mainly expressed in the innate immune system that 

are poorly conserved between species (Crocker et al., 2007). Most of them contain 

immunoreceptor tyrosine-based inhibitory motifs (ITIMs), making them inhibitory 

receptors by the recruitment of tyrosine and inositol phosphatases (Crocker et al., 2007). It 

has been show that targeting CD33 with monoclonal antibodies has an important anti-

proliferative effect in AML (Vitale et al., 2001) and a modest one in CML (Vitale et al., 

1999). Additionally, it has been observed that CD33-related Siglecs function as endocytic 

receptors (Crocker et al., 2007), which allows targeting of CD33
+
 cells with 

ligand/antibody targeted chemotherapy (Crocker et al., 2007, Vitale et al., 2001). 

This idea was applied by Pfizer in the development of the anti-leukaemic drug 

gemtuzumab-ozogamicin (GO, Mylotarg
®
), a conjugated antibody that binds CD33 and 

once internalised releases the cytotoxic molecule calicheamicin, which produces double 

strand breaks in the DNA that leads to the death of the cell (Naito et al., 2000). GO was 

commercialised between 2000 and 2010, when it was withdrawn from the market after a 

clinical trial revealed that GO was inducing hepatoxicity in a number of patients (Jurcic, 

2012). Since then, new trials have demonstrated the value of GO in the treatment of AML 

and it was re-approved by the FDA in September 2017 (Jen et al., 2018b). Although GO’s 

therapeutic goal was to target AML cells, a publication showed that GO is effective at 

eliminating CML MNC (Herrmann et al., 2012). 

The current chapter aims to assess the therapeutic potential of GO for the treatment of 

CML by studying its effects on CML CD34
+
 cells at the cellular and molecular levels. To 

do this the cells were treated with GO at different concentrations in the presence and 

absence of IM in different regimens: 72h GO±IM, 72h GO followed by 72h IM/no-

treatment or 72h IM/no-treatment followed by 72h of GO. The effect of GO was measured 
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in cell proliferation, apoptosis, cell cycle phase, phosphorylation of H2AX, colony forming 

potential and global gene expression changes. 
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5.2 Results 

5.2.1 K562 cell line expresses CD33 and is sensitive to treatment with GO 

In order to test GO in our laboratory and to optimise different assays, it was decided to 

study the expression of CD33 in two different CML cell lines, K562 and BV173, and test 

the effect of GO on them. It was found that K562 cells express CD33 on their surface but 

BV173 do not (Figure 5-1A and B). Treatment of K562 cells with GO over 72h reduced 

the number of live cells to 50% of the NDC at 13.45±2.2ng/mL (Figure 5-1C) while it 

required 27.09±8.58ng/mL to achieve the same effect in BV173 cells (Figure 5-1D), as it 

was predicted by the detected higher CD33 expression on the cell surface of the latter. No 

reduction in cell numbers was observed at 24 or 48 hours (data not shown). 

5.2.2 Treatment with GO increases cell size in K562 cells 

Treatment with GO was observed to increase the cell size of K562 cells. The average 

viable cell size, as reported by the automatic EVE cell counter, increased 3.2µm (from 

12.6µm to 15.8µm) when K562 cells were treated with GO 250ng/mL for 72h when 

compared with the same cells grown for 72h with no drug (Figure 5-2A). The logarithmic 

transformation of this increase in size was observed to be correlated with the logarithm of 

the concentration of GO using Spearman’s rank correlation test (Spearman’s ρ= 0.79, 

p=1.411x10
-11

). 

5.2.3 Treatment with GO has a modest impact on apoptosis in K562 cells 

The maximum effect of apoptosis observed on K562 cells treated with GO for 72h was a 

27.4% reduction of viable cells (Annexin V
-
 DAPI

-
) when compared with the NDC. The 

50% of this maximum effect was observed at 9.5±2.4ng/mL (Figure 5-2B). 

5.2.4 GO and IM have additive effect when combined in K562 or BV173 cell lines 

Initial testing of the combination of GO with IM in K562 and BV173 cells revealed that it 

is able to target CML cells suggesting that GO is more effective on CD33-expressing cells, 

as was expected. However, TKIs have already demonstrated a high efficacy at managing 

CML and new treatments will potentially be used in combination with TKIs. Because of 

this it was decided to investigate the effect of the combination of GO and IM on the cell 

lines.  

To investigate in more detail the interaction between the two drugs, K562 and BV173 cell 

lines were treated with increasing concentrations of GO (0 to 500ng/mL for one plate of 

K562 cells and 0 to 50ng/mL for the other K562 plate and BV173) and IM (0 to 5µM; 

Figure 5-3) and the effect analysed using resazurin, a dye that changes colour based on 



 117 

metabolic activity. Using the Bliss’ method (Bliss, 1939) it is possible to study if two 

different drugs’ combined effect differs from the one expected effect of the combination if 

both drugs act independently. Both drugs were found to have mostly additive effects 

although they worked in a slightly antagonistic manner, especially at higher concentrations 

of GO. The average Bliss index, which equals “1 - % viable” compared with the NDC, was 

-1.859 for BV173 (Figure 5-4A) and -0.812 and -2.18 for low and high concentrations of 

GO in K562 cells, respectively (Figure 5-4B and C). Although this result might not be the 

expected one, the lack of effect observed at high concentrations of GO might be cause by 

the increase in size observed in the cells after treating them with GO, which could increase 

the metabolic rate of the surviving cells compared with the NDC (an increase of 3.2µm in 

diameter means an increase of 17.16 µm
3
 in volume, approximately). Therefore, this could 

reduce the observed response to GO when using resazurin than when using cell counts.  

5.2.5 Binding of GO to the cell surface is dose dependent 

The binding of GO to the cell surface was measured by flow cytometry after one hour of 

treatment using an anti-human IgG antibody, which binds to GO, a humanised IgG. It was 

shown that the amount of GO bound to K562 cells increased in a dose dependent manner 

until 62.5ng/mL, when it potentially saturated all epitopes (Figure 5-4D). At later time 

points it was not possible to detect any GO on the cell surface or in the inside of the cell. 

This can potentially be explained by the internalisation of CD33 after binding of GO and 

its degradation in the lysosome. 

5.2.6 GO induces DNA damage in a dose dependent manner and it is 

independent of IM treatment 

The proposed mechanism of GO that calicheamicin produces double strand breaks in the 

DNA, which would be followed by the cell activating cell death pathways (Naito et al., 

2000). Histone H2AX is known to participate in DNA double strand breaks and its 

phosphorylation is a requirement for the recruitment of some of the factors involved in 

DNA double strand break repair (Rogakou et al., 1998, Paull et al., 2000). Thus, an 

increase in H2AX phosphorylation on serine 139, or γH2AX, would suggest an increase in 

the formation of double strand breaks in the DNA and, therefore, detecting this increase 

would inform about the double strand breaks. During this project, the presence of γH2AX 

was measured by flow cytometry in permeabilised cells. It was possible to observe an 

increase in the presence of γH2AX with increased concentrations of GO (Figure 5-5A) 

while it was observed that IM neither increased the presence of γH2AX alone (Figure 

5-5B) nor in the presence of GO (Figure 5-5C) in K562 cells. 
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Figure 5-1. K562, a CD33-expressing cell line, has a lower IC50 than BV173, a non 

CD33-expressing cell line. (A) K562 cell line presents higher fluorescence intensity 

values when the cells are incubated with an anti-CD33 antibody than when incubated with 

an isotype control. (B) BV173 cell line shows no increase in fluorescence intensity 

between the anti-CD33 and the isotypes antibodies, suggesting no expression of CD33 on 

the cell surface. Concentration-response curves in response to difference concentrations of 

GO in (C) K562 and (D) BV173. 
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Figure 5-2. GO increases size of K562 cell line and induces apoptosis. (A) The average 

size of the viable cells increases as the concentration of GO increases when treating K562 

cell line. (B) Decrease of viable K562 cells (cells negative for Annexin V and DAPI) when 

treated with increasing concentrations of GO. 
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Figure 5-3. Relative cell concentrations to NDC based on resazurin absorbance. IM 

concentration is stated in the grey box on top of the columns. Each value corresponds to a 

single observation. (A) Relative cell concentration of BV173 cells between 0 and 50ng/mL 

of GO. (B) Relative cell concentration of K562 cells between 0 and 50ng/mL of GO. (C) 

Relative cell concentration of K562 cells between 0 and 500ng/mL of GO. 

A 

B 

C 
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Figure 5-4. Bliss coefficients for each IM-GO combination and binding of GO to the 

cell surface. Green represents antagonism and red synergism. (A) Coefficients for BV173 

cells. (B) Coefficients for K562 cells treated with 0-50ng/mL of GO. (C) Coefficients for 

K562 cells treated with 0-500ng/mL. (D) It is possible to observe, both in the density plots 

and the table that the amount of GO that bind to the cells increases with GO concentration 

until approximately 62.5ng/mL, when it reaches its peak. Data from a representative 

experiment. 

A B 

C 

D 
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Figure 5-5. The level of γH2AX increases in response to GO but it is not affected by 

IM in K562 cells. (A) The levels of γH2AX increase with increasing concentrations of GO. 

(B) The level of γH2AX is not affected by the concentration of IM compared with the 

NDC in K562. (C) The combination of GO with different concentrations of IM does not 

increase the level of γH2AX compared with a sample treated with the same concentrations 

of GO. Figure shows the results of a representative experiment. 
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5.2.7 CML CD34+ cells express CD33 on the cell surface at similar levels to 

nCML CD34+ cells 

Expression of CD33 on the cell surface was measured before the start of treatment on both 

CML and nCML CD34
+
 cells. In order to normalise the intensity values between patients, 

the unstained control’s median fluorescent intensity (MFI) was subtracted from both the 

test measurement and the isotype control MFIs. Finally a ratio between the test and the 

isotype control was calculated. This allowed controlling for both background noise and 

non-specific binding of the antibody. CML cells presented a more heterogeneous 

expression of CD33 than nCML cells but the medians were very similar, which suggested 

that both groups of patients have similar levels of CD33 on their cell surface (p=0.53) 

despite the differences found at the transcript level in Chapter 3. Interestingly, and despite 

the published reports to the contrary (Herrmann et al., 2012), the single blast crisis sample 

that was analysed was found to have higher levels of CD33 on the cell surface than chronic 

phase cells (Figure 5-6A). 

5.2.8 Binding of GO to the cell is dependent on the levels of CD33 on the cell 

surface 

The levels of GO bound to the cells were measured after 1 hour of treatment at 100ng/mL. 

The normalised MFI of the anti-human IgG antibody (MFItest/MFIunstained) was compared 

with the normalised CD33 MFI for each patient’s cells. The levels of GO bound to the cell 

surface were found to be highly correlated with the levels of CD33 of the surface of the 

cells (Spearman’s ρ=1, p=0.017; Figure 5-6B). 

5.2.9 IM treatment does not affect CD33 levels on the surface of the cells 

While was confirmed that the mRNA levels of CD33 do not change after TKI treatment 

(Figure 3-11C), GO interacts directly with the protein expressed on the cell surface and, 

therefore, a constant expression of the protein is required for a consistent GO effect. The 

amount of CD33 expressed on the surface of the cells was measured using flow cytometry 

with treated with IM for 72h and untreated cells. No differences were found in the 

expression of CD33 on the cell surface either in CML or in nCML (Figure 5-6C).  

5.2.10 GO reduces cell number in CML CD34+ cells while having a minor effect on 

nCML CD34+ cells after 72h of treatment 

Once the effect of GO had been confirmed in K562 cells (Figure 5-1, Figure 5-5), and its 

basic mechanism of action confirmed, it was decided to test its effect on CML CD34
+ 

cells. 

Patient samples that did not respond to IM in the clinic were favoured for inclusion in the 
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experiment as this population is the one that potentially could benefit from GO the most. 

Patient information is summarised in (Table 2-1, Table 2-2). 

Initially it was decided the range of GO concentrations to be tested should be from 0 to 

3000ng/mL as this is the known peak plasma concentration for the first infusion in the 

treatment regimen that was approved for AML until 2008 (EMA, 2008), which consisted 

of two infusions of 9mg/m
2
 of GO in a period of 14 days. This regimen had a high risk of 

causing liver problems and veno-occlusive disease in patients receiving haemopoietic stem 

cell transplant (EMA, 2008). However, as the effect at 1000ng/mL in CD34
+
 cells, which 

approximates the peak plasma concentration for the recently approved 3mg/m
2
 regimen for 

patients with AML, was already close to maximum effect it was decided to study lower 

concentrations of the drug. IM when used was added at 2µM, which approximates the 

plasma mean concentration (Druker et al., 2001b), and the cells were cultured in the 

presence of PGF. 

It was shown that treatment with GO for 72h was very effective at eradicating CML 

CD34
+
 cells. The IC50 was found to be 136.29±22.86ng/mL (Figure 5-7), a concentration 

that is more than 7 times lower than the peak plasma concentration with the treatment 

regimen that is currently approved for the treatment of AML. The differences in the 

sensitivity to IM could explain heterogeneity to the results of the combination treatment. 

This means that although the IC50 for the combination (using the IM only sample as 

reference instead of the NDC) was similar to the single treatment at 195.42ng/mL 

(p=0.067; Figure 5-7), the standard error increased to 108.27ng/mL. The similarity 

between the two IC50s suggested again that both drugs’ effects are independent of each 

other. In order to validate this hypothesis, the combination effect of each patient was 

compared with the expected effect of the combination based on its response to IM alone 

and each concentration of GO using Bliss equation (Bliss, 1939). The observed effect was 

in average 1.56% lower than the expected effect for the interaction and was found different 

than 0 (p=0.04213, t=-2.95, DF=4). Although this suggests an antagonistic effect, the 

magnitude of the effect is small and the overall effect is close to that obtained from an 

additive effect.  

The nCML controls were treated under the same conditions than the CML cells, presenting 

an IC50 of 2,643.4±1,756.1ng/mL (Figure 5-7), which is more than 19 bigger than for CML 

CD34
+
 cells (p=1.75x10

-42
). The large standard error could be explained by the reduced 

number of data points at that end of the curve. Most samples were treated with a maximum 

concentration of 1000ng/mL (as mentioned before) and, therefore, the reduced number of 
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data points increases the confidence interval at that range of the curve. Although IM does 

not seem to have a noticeable effect on nCML cells at low concentrations of GO, it seems 

to potentiate the effect of GO at concentrations higher than 100ng/mL. The combination 

treatment presented an IC50 of 892.23±470.58ng/mL using the IM-only samples as 

minimum effect (Figure 5-7), being significantly different from the IC50 of the single 

treatment (p=0.0451) and the IC50 of the combination treatment on CML (p=4.39x10
-5

). 

Although Bliss independence test found the combination treatment to be 4.28% more 

effective than the expected effect, this was not found to be statistically significant 

(p=0.5918, DF=6), suggesting that GO and IM have additive effects on nCML CD34
+
 cells. 

5.2.11 GO induces apoptosis in CML CD34+ cells after 72h of treatment 

Viability was also measured as the percentage of cells that were not stained with 

AnnexinV or DAPI, markers for apoptosis and cell death respectively. In order to facilitate 

the comparison between the different groups, the absolute percentage of AnnexinV
-
 DAPI

-
 

cells was normalised with the absolute percentage of the NDC for each patient. IM had an 

important effect on CML cells, reducing the percentage of viable cells to 48% of the NDC 

while having no effect on nCML (93.75% of the NDC). 

The effect of GO in this assay was equally effective in both CML and nCML, which IC50s 

were 130.95±47.22ng/mL and 81.1±27.8ng/mL respectively (p=0.44; Figure 5-8). There 

was no statistically significant difference between the two combination arms (CML 

52.4±32.95ng/mL; nCML 26.45±8.9ng/mL; p=0.49; Figure 5-8) or between the single 

arms and the combination treatments (pCML=0.41; pnCML =0.16). 

This data suggests that GO is able to target those cells that are insensitive to IM, as the IC50 

is not significantly different between the single treatment (GO) and the combination in 

CML (i.e. the same proportion of CML cells are killed by GO independently of the 

presence of IM). The discrepancy between the cell counts and the apoptosis staining for the 

difference of the CML and nCML IC50s may need to be addressed with additional assays. 

This could be caused by the survival advantage that BCR-ABL1 confers on the viable cells. 

Another explanation could be that GO reduces the number of viable CML cells by other 

mechanism in addition to apoptosis, such as cell cycle arrest or other cell death mechanism. 

 

  



 126 

 

Figure 5-6. Expression levels of CD33 on the cell surface were the same between CML 

and nCML and are not affected by IM. (A) The levels of CD33 on the cell surface were 

calculated as relative expression compared with the isotype control before starting 

treatment with GO (baseline) and no differences were found between CML and nCML. 

One blast crisis CML samples was analysed, which presented high levels of CD33 on the 

cell surface. (B) The levels of CD33 on the cell surface were associated with a higher 

amount of GO (human IgG) bound to the cell surface. (C)Treatment with IM for 72h did 

not affect the expression level of CD33 on the cell surface compared with the NDC. 

Individual dots represent individual observations. 

A B 

C 
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Figure 5-7. Treatment with GO reduces CML cell number after 72h of treatment. GO 

treatment was able to reduce the number of CML cells at lower concentrations than nCML 

cells, as can be seen in the two different IC50s. Also, GO further reduced the number of 

CML cells when combined with IM while having a limited effect on nCML cells at 

concentrations lower than 300ng/mL. The IC50s at the top of each panel correspond to the 

GO single treatment while the IC50s at the bottom correspond to the combination treatment. 

Response to the treatment is represented with the solid line with 95% confidence interval 

(shadowed area). The dashed lines represent the IC50s. Individual dots represent individual 

observations. 

  

IC50=136.29±22.86ng/mL (n=5) 

N= 

IC50=195.42±108.27ng /mL (n=5) 

N= 
IC50=2,643.4±1,756.1ng/mL (n=7) 

N= 

IC50=892.23±470.58ng/mL (n=7) 

N= 
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5.2.12 GO eliminates colony forming cells (CFCs) in both CML and nCML after 

72h of treatment 

In order to study the effect of GO in the progenitor population contained in the CD34
+
 

cells, 3,000 viable cells (trypan blue negative) were plated in MethoCult
TM

 H4034. 

Colonies were left to grow for approximately 15 days before counting and scoring them as 

erythroid (E), granulocyte (G), macrophage (M), granulocyte-macrophage (GM) or 

granulocyte-erythrocyte-macrophage-megakaryocyte (GEMM) type colonies. 

Although the number of colonies for every 3,000 viable cells seemed to be higher in the 

nCML cells (Figure 5-9A), this difference was not statistically significant, potentially 

because of lack of power. It is also worth noticing that IM alone did not reduce the colony 

count neither in CML nor in nCML. IM did not show any reduction in cell number or 

viability in nCML and it has been reported to increase the expression of HSC-related genes 

(Charaf et al., 2016), so a reduction of CFCs was not expected. In CML, IM has an 

antiproliferative effect (Graham et al., 2002), so a change in the concentration of CFCs was 

also not expected. In CML the combination treatment with 100ng/mL of GO had a 

significantly lower number of colonies than both the NDC (p=0.017) and IM alone 

(p=0.027). In nCML, the NDC presented significantly more total number of colonies than 

100ng/mL of GO alone (p=0.033) and the combination treatment with 30ng/mL (p=0.03) 

or 100ng/mL of GO (p=0.013), while IM alone had significantly more total colonies than 

the combination treatment with 30ng/mL (p=0.047) or 100ng/mL of GO (0.021). No 

differences between CML and nCML were found for any of the treatments either in the 

total colony count (Figure 5-9A) or in the different subtypes (Figure 5-9B). For individual 

types of colonies CML had significant differences in E (p=0.025) and M colonies 

(p=0.014; Figure 5-9B upper panel) while nCML samples presented significant differences 

only in E colonies (p=0.013; Figure 5-9B lower panel). 

The total concentration of CFCs in the original culture (before culturing the cells in 

MethoCult
TM

) was calculated by multiplying the number of CFCs per cell by the number 

of cells per mL. It was possible to observe an increase in the number of total CFCs in the 

CML NDC when compared with nCML (p=0.008) but not for the treated cells (Figure 

5-10A). The same could be observed for the M colonies (p=0.0002) but no significant 

differences were observed for any of the other colony subtypes (Figure 5-10B). The total 

CFC concentration in CML was significantly reduced after the combination treatment with 

100ng/mL of GO (p=0.037) while in nCML all GO treated arms had a significantly lower 

concentration of CFCs than the NDC (psingle30 = 0.029; psingle100 < 0.001; pcombination30 < 

0.001; pcombination100 < 0.001) and all but 30ng/mL of GO alone when compared with IM 
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alone (psingle100 < 0.001; pcombination30 = 0.0014; pcombination100 < 0.001; Figure 5-10A). The 

nCML samples presented more significant differences even though the magnitude of the 

effect was smaller than in CML, as can be observed in Figure 5-10A. This could be caused 

by the higher variability on cell proliferation observed in the NDC in CML samples (in the 

original cultures, before transferring the cells into MethoCult
TM

). For the individual 

subtypes, CML presented significant differences in E (p=0.006) and G (p=0.031) CFCs 

while nCML had significant differences in the E (p<0.001), M (p<0.001) and GM 

(p=0.003) subtypes (Figure 5-10B). 

5.2.13 Detection of LTC-IC after 72h of GO treatment is patient dependent and no 

differences were found between treatments 

Although the standard CFC assay allows determination of the amount of progenitor cells 

present in a given population it is not appropriate for determining the number of stem cells 

in the same cell population. In order to determine the effect that GO had on the stem cells, 

after the treatment the cells were cultured in the presence of support stroma cells for 6 

weeks and plated on MethoCult
TM

 H4034 at the end of that period for determining how 

many CFCs remained. This assay works on the assumption that stem cells, having self-

renewal capacity, are able to maintain themselves over the 6 weeks while progenitor cells 

will exhaust and differentiate in the same period of time. 

LTC-ICs are a challenging assay with a high variability between patients. This prevented 

to finish the experiment for some of the conditions, as some conditions got fungal 

contamination over the 6 weeks. This is the reason why the amount of observations for 

between conditions differs in Figure 5-11 and Figure 5-12. Although the number of 

colonies counted in nCML patients was higher than in CML, both as per cell (Figure 5-11) 

or corrected by the cell concentration in the original culture (Figure 5-12), which is 

consistent with the literature and the proliferative phenotype conferred by BCR-ABL 

(Charaf et al., 2016), no significant differences were found between CML and nCML. No 

differences were found either between the different treatments in the total counts or in any 

of the colony subtypes. On the other hand, there was a significant difference between 

samples of the same condition (pCML<0.001 and pnCML=0.002), which shows the high 

heterogeneity of the LTC-IC data within the same group. 
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Figure 5-8. GO reduced the percentage of viable cells in both CML and nCML. The 

percentage of viable cells (Annexin V
-
 DAPI

-
) was reduced similarly in CML and nCML 

as it was between GO single treatment and its combination with IM. The IC50s at the top of 

each panel correspond to the GO single treatment while the IC50s at the bottom correspond 

to the combination treatment. Response to the treatment is represented with the solid line 

with 95% confidence interval (shadowed area). The dashed lines represent the IC50s. 

Individual dots represent individual observations. 

IC50=130.95±47.22ng/mL (n=4) 

N= 

IC50=52.4±32.95ng/mL (n=4) 

N= 
IC50=81.1±27.8ng/mL (n=9) 

N= 

IC50=26.45±8.9ng/mL (n=9) 

N= 
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Figure 5-9. Colony counts after 72h of treatment with GO±IM. (A) Total colony counts 

for each treatment and condition. IM has a limited effect on its own but it further reduces 

the colony counts in CML when it is combined with GO. (B) Colony counts for each 

subtype. Individual dots are the colony counts for each patient and bars are the mean. 

Significant differences with the NDC are represented with * and significant differences 

with IM only are represented with †. 

A 

B 

*† 

*† *† * 

† 

* 

† 

† † 
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Figure 5-10. CFC concentration after 72h of treatment with GO±IM. (A) Summarised 

CFC concentrations for each treatment and condition. (B) CFC concentrations for each 

subtype. Individual dots are the colony counts for each patient and bars are the mean. 

Significant differences with the NDC are represented with * and significant differences 

with IM only are represented with †. 
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Figure 5-11. Colony counts after 72h of treatment with GO±IM and 6 weeks on 

culture with stroma cells. (A) Total colony counts for each treatment and condition. (B) 

Colony counts for each subtype. Individual dots are the colony counts for each patient and 

bars are the mean. 

A 

B 
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Figure 5-12. CFC concentration after 72h of treatment with GO±IM and 6 weeks on 

culture with stroma cells. (A) Summarised CFC concentrations for each treatment and 

condition. (B) CFC concentrations for each subtype. Individual dots are the colony counts 

for each patient and bars are the mean. 

A 

B 
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5.2.14 GO increases γH2AX levels in CML CD34+ cells but not in nCML 

Similarly to the assay performed in K562 cells, the effect of GO on the formation of 

double strand breaks in the DNA was assessed by detecting γH2AX levels by flow 

cytometry. After subtracting the MFI of the non-stained control from all the samples, the 

MFI was log-transformed and compared. Paired ANOVA was not able to find statistically 

significant differences between CML and nCML or between the different treatments 

(Figure 5-13). However, a modest and constant increase in γH2AX could be observed in 

GO alone in CML, which has a significant positive correlation as tested by Spearman test 

(Spearman’s ρ=0.47, p=0.047), suggesting that the levels of γH2AX in CML increase with 

increasing concentrations of GO. Although the combination treatment seemed to also 

increase in a concentration dependent manner, the effect is more heterogeneous than in the 

single treatment. The nCML patients seemed not to have increasing levels of γH2AX with 

increasing concentrations of GO. 

5.2.15 GO promotes cell cycle entry in CML cells while increasing the proportion of 

quiescent cells in nCML after 72h of treatment 

Undivided CML cells are known to persist TKI treatment better than cycling cells (Graham 

et al., 2002). In order to investigate if GO had any effect on the cell cycle that might affect 

long-term CML treatment, the percentages of CML cells in the different phases of the cell 

cycle were analysed by flow cytometry by detecting KI67 and the amount of DNA per 

cells (using DRAQ7 as DNA stain). 

Observation of the data suggests that GO as single agent reduced the proportion of 

quiescent (G0) CML cells and increased the proportion of CML cycling cells (S/G2/M) 

while it increased the proportion of nCML cells in G0 and decreased the proportion of cells 

in G1 (Figure 5-14). As in other experiments, the small power did not allow to detect 

statistically significant changes between the different concentrations. However, it was 

possible to detect positive correlation between the percentage of CML cells in S/G2/M and 

the logarithm of the concentration of GO for the single agent arm (Spearman’s ρ=0.55, 

p=0.018), while observing a negative correlation between the percentage of nCML cells in 

G1 and the logarithm of the concentration of GO for the single agent arm (Spearman’s ρ=-

0.38, p=0.037).  

Direct comparison of CML and nCML showed a significant difference for the percentage 

of cells in G0 when treated with 1000ng/mL of GO (p=0.011) and for the percentage of 

cells in S/G2/M for 30 (p=0.011), 100, 300 and 1000ng/mL of GO (all p<0.01). The 
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combination treatment seemed to have a more heterogeneous effect on the cell cycle than 

the single treatment with IM seeming to antagonise the effect of GO in CML. 

The increase in the proportion of quiescent nCML cells might be caused by a biased 

targeting of GO towards myeloid progenitor cells, which would express higher amounts of 

CD33 on the cell surface and therefore, an enrichment on more primitive HSCs. This could 

also explain that this observation has not been repeated in the subsequent sequential 

treatments, which were performed over 6 days (instead of 3) and a higher proportion of the 

progenitor cells might have exhausted. 

5.2.16 GO reduces the number of CML CD34+ cells after 72h of culture followed 

by 72h of treatment and its effect is additive to a 72h pre-treatment with IM 

Currently, most CML patients are on TKI treatment, so the potential introduction of GO 

into the clinical practice would most probably be for patients that are already on TKI 

treatment. In order to investigate if TKI treatment improves the response to GO, a 

sequential treatment of 72h of IM 2µM or no-treatment were followed by 72h of GO, the 

minimum time needed to observe a decrease in cell number in cell lines (section 5.2.1). 

It was found that the IC50 of GO after 72h of culture with no drugs and 72h with GO was 

213.74±64.8ng/mL for CML and 700.2±38.6ng/mL for nCML (p<0.001). When the cells 

were treated with IM 2µM for 72h before the 72h treatment with GO the IC50 was found to 

be 341.8±16ng/mL for CML and 1,045.3±38.6ng/mL for nCML (p<0.001). No statistically 

significant differences were found between the single treatment and the combination in any 

of the conditions (CML/nCML). This shows that GO is more effective on CML than in 

nCML in this treatment regimen as well, with nCML having over 3 times higher IC50s in 

both the single treatment and the combination (Figure 5-15). 

Using Bliss equation (Bliss, 1939) no differences were found between the observed and the 

expected effects in the combination treatment both in CML and nCML, suggesting that 

both drugs have additive effects. This was expected for two drugs that act through different 

mechanisms, such as IM and GO. 
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Figure 5-13. Levels of γH2AX increases in CML after 72h of treatment with GO. 

CML cells seem to increase the levels of γH2AX in response to increasing concentrations 

of GO. Central line in the boxes represents the median of the values. The dots represent the 

individual samples analysed in the experiment. Replicates: nCML=3, nnCML=5. 
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Figure 5-14. Differences on the percentage of cells in each cell cycle phase compared 

with the NDC. A trend towards a more proliferative phenotype could be observed in CML 

cells while nCML increased the percentage of quiescent cells. Central line in the boxes 

represents the median of the values. The dots represent the individual samples analysed in 

the experiment. Replicates: nCML=3, nnCML=5. 
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5.2.17 Pre-treatment with IM protects CML cells from entering apoptosis 

Pre-treatment with IM did not have any effect in the concentration needed to reduce the 

percentage of Annexin V
-
 DAPI

-
 cells to half of the NDC in nCML cells (IC50-single 

treatment=200.34±64.9ng/mL; IC50-combination=207.85±61.25ng/mL; Figure 5-16). However, 

CML cells seemed to require higher concentrations of GO for entering apoptosis when 

treated before with IM 2µM for 72h (p=0.004; fig; IC50-single treatment=103.97±49.59/mL; 

IC50-combination=269.65±68.32ng/mL). At the same time, IM alone did not have any effect on 

apoptosis in any of the cells studied. This could suggest that the cells that persist after TKI 

treatment are more resistant to GO than the treatment naïve ones. This could be driven by 

CML cells acquiring a more primitive phenotype after IM treatment, as shown in Figure 

5-14 and by previous reports (Charaf et al., 2016), which may reduce the binding points of 

calicheamicin on the DNA. 

5.2.18 IM pre-treatment increases CFC concentration while reducing its total 

number in CML 

The number of CFCs present after the 144h treatment was assessed in the same way as for 

the 72h treatment (section 5.2.12). The number of total colonies counted for nCML 

patients was significantly higher than in CML for the NDC (p=0.006), 30ng/mL of GO 

(p=0.02) and 100ng/mL of GO (p=0.04; Figure 5-17A) but not for the arms treated with 

IM during the first 72h. This could be explained by a non-significant increase in the colony 

counts in the CML cells treated with IM compared with the cells that were treated only 

with GO (Figure 5-17A). A higher number of G and GM colonies was observed in nCML 

compared with CML for the NDC (pG=0.006; pGM=0.008) and IM alone (pG=0.042; 

pGM=0.028; Figure 5-17B). 

The total number of CML colonies was significantly higher in the IM alone arm compared 

with the 100ng/mL of GO without IM (p=0.011) and with IM (p=0.028). The number of 

CML E colonies was significantly lower when compared with the only IM treated cells in 

the 30ng/mL (p=0.033) and 100ng/mL GO alone (p=0.010) and 100ng/mL of GO after IM 

treatment groups (p=0.024).  

The total number of colonies in nCML was significantly lower when compared with the 

NDC and IM alone for 100ng/mL of GO alone (pNDC=0.010; pIM=0.005), and 30ng/mL 

(pNDC=0.020; pIM=0.009) and 100ng/mL of GO after IM treatment (pNDC=0.003; 

pIM=0.001). The number of nCML E colonies was significantly reduced in the 100ng/mL 

of GO after IM treatment when compared with IM alone (p=0.025). The number of nCML 
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G colonies was lower in 100ng/mL of GO with and without previous IM treatment when 

compared with NDC (psingle100=0.034; pcombination100=0.039) and in 100ng/ML of GO 

without IM treatment, and 30ng/mL and 100ng/mL of GO after IM treatment when 

compared with IM alone (psingle100=0.020; pcombination30=0.030; pcombination100=0.022). The 

number of nCML GM colonies was lower in the 100ng/mL of GO after IM treatment arm 

when compared with NDC (p=0.040) and in the 30ng/mL of GO after IM treatment arm 

when compared with NDC (p=0.014) and IM alone (p=0.033). 

When the number of CFCs was corrected by the concentration of cells in the culture 

(trypan blue negative cells) the total number of CFCs in the NDC arm was significantly 

higher in CML compared with nCML (p=0.002). It was also possible to observe a non-

significant decrease in the number of CFCs when the cells were previously treated with IM 

in the GO-treated cells (Figure 5-18A). 

The number of total and E CML CFCs was higher in the NDC compared with 100ng/mL 

of GO without (ptotal=0.016; pE=0.023) and with previous IM treatment (ptotal=0.005; 

pE=0.013). All treated arms had reduced number of GM CFCs when compared with the 

NDC (pIM=0.039; psingle-100=0.007; psingle-30=0.049; pcombinaiton-100=0.003; pcombination-

30=0.024). All the CFC concentrations can be found in Figure 5-18. 

All nCML GO treated arms had significantly lower number of CFCs compared with both 

the NDC (psingle-100<0.001; psingle-30=0.016; pcombinaiton-100<0.001; pcombination-30=0.003) and IM 

(psingle-100<0.001; psingle-30=0.049; pcombinaiton-100<0.001; pcombination-30=0.011) alone, while no 

difference in the amount of CFCs was observed between this two arms. The number of E 

nCML CFCs was reduced in the 100ng/mL of GO without previous IM treatment arm 

when compared with the NDC (p= 0.026) and in both 100ng/mL of GO arms (±IM) when 

compared with IM alone (psingle-100=0.017; pcombination-100=0.048). In the nCML patients the 

number of G CFCs was also significantly reduced in both 100ng/mL of GO arms when 

compared with the NDC (psingle-100=0.016; pcombination-100=0.030) and IM alone (psingle-

100=0.028; pcombination-100=0.049) the 30ng/mL of GO after IM treatment arm had a reduced 

number of G CFCs when compared with the NDC (p=0.035). The number of M CFCs was 

reduced in nCML patients in the two 100ng/mL of GO arms (±IM) when compared with 

the NDC (psingle-100=0.042; pcombination-100=0.013) and in the 100ng/mL of GO after IM 

treatment arm when compared with IM alone (p=0.016). Similarly to the total number of 

CFCs, all the nCML GO treated arms had significantly lower number of CFCs than the 

NDC (psingle-100=0.003; psingle-30=0.022; pcombinaiton-100=0.002; pcombination-30=0.002) and all 

GO-treated arms but the 30ng/mL of GO single treatment had reduced number of CFCs 
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than IM (psingle-100=0.031; pcombinaiton-100=0.019; pcombination-30=0.019) alone. All the CFC 

concentrations can be found in Figure 5-18. 

As shown in this section, a higher number of nCML comparisons ended up in statistically 

significant differences than in the case of CML. This happened even with smaller 

magnitude effects in nCML, potentially because of the bigger heterogeneity of CML 

compared with nCML and the lower number of CML patients analysed (nnCML=7; nCML=4).  

5.2.19 No differences in the number of LTC-ICs were found in GO treated cells 

previously treated with IM 2µM for 72h 

As mentioned before, LTC-IC cultures are a challenging assay with many of the samples 

having very small if any colonies and there is a high inter-patient variability. The number 

of LTC-ICs detected in the ±IM 2µM for 72h followed by GO 72h was small and neither 

the total number of LTC-ICs counted (Figure 5-19) nor the estimated original 

concentration (Figure 5-20) were found to have statistically significant differences between 

the different treatment arms or conditions (CML/nCML). 

5.2.20 Pre-treatment with IM does not affect the level of γH2Ax, which increases 

with increasing concentrations of GO 

Similarly to the observations of the 72h treatment, no statistically significant differences 

were found between the different concentrations of GO and/or IM or between CML and 

nCML. However, it was possible to observe a constant increase in the levels of γH2AX in 

nCML for the GO single agent samples and in CML for both GO alone and the 

combination with IM (Figure 5-21). This was especially clear between 100 and 1000ng/mL 

of GO in CML. In order to test if there was any correlation, Spearman’s rank correlation 

tested was applied between the levels of γH2AX detected and the base 10 logarithm of the 

GO concentration for each treatment arm and condition. CML samples with no previous 

IM treatment were slightly correlated with the concentration of GO (Spearman’s ρ=0.402, 

p=0.052) while the samples pre-treated with IM had a higher correlation with the 

concentration of GO (Spearman’s ρ=0.642, p<0.001). Correlation became stronger for the 

interval [100, 1000], with CML not pre-treated with IM getting a Spearman’s ρ of 0.650 

(p=0.022) and the samples pre-treated with IM a Spearman’s ρ of 0.857 (p<0.001). The 

nCML samples were also slightly correlated with the GO concentration when they were 

not pre-treated with IM (Spearman’s ρ=0.448, p=0.028) but not when they were pre-

treated with IM or in the interval [100, 1000]. 



 142 

5.2.21 A delayed start on GO treatment induces increasing percentage of nCML 

cells entering S/G2/M phases of the cell cycle 

The small sample size and the heterogeneity of the data, especially CML patients, made it 

difficult to detect statistically significant changes between the different GO and IM 

concentrations. The only significant difference detected between GO concentrations was 

between the difference in the percentage of cells in phases S/G2/M between 10ng/mL of 

GO after IM treatment and 1,000ng/mL of GO with no previous IM treatment in nCML 

(Figure 5-22). 

Similarly to what was observed in the 72h treatment regimen, it was possible to observe 

some consistent trends, especially a decrease of CML cells in G0 and an increase of CML 

cells in G1. Additionally, a small increase in the percentage of cycling cells (S/G2/M) could 

be observed in nCML. The heterogeneity of the CML samples did not allow for detection 

of a significant correlation but the increase in the percentage of cycling nCML cells was 

significantly correlated with the logarithm of GO concentration when the cells were not 

pre-treated with IM (Spearman’s ρ=0.484, p=0.017). 

Comparison of CML and nCML revealed differences between the percentages of cells in 

G1 phase for the NDC (p=0.023), and 10ng/mL (p=0.049) and 30ng/mL of GO alone 

(p=0.035). This was due to nCML samples having in overall a higher percentage of cells in 

G1 phase than CML but not because of noticeable differences in the percentage of nCML 

cells in G1 between different concentrations of GO. 
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Figure 5-15. Treatment with GO after IM reduces CML cell number. GO treatment 

was able to reduce the number of CML cells at lower concentrations that nCML, as can be 

seen in the two different IC50s. Also, GO further reduced the number of CML cells when 

combined with IM but had a limited effect on nCML cells at concentrations lower than 

300ng/mL. The IC50s at the top of each panel correspond to the GO single treatment while 

the IC50s at the bottom correspond to the combination treatment. Response to the treatment 

is represented with the solid line with 95% confidence interval (shadowed area). The 

dashed lines represent the IC50s. Individual dots represent individual observations. 

IC50=213.74±64.8ng/mL (n=5) 

N= 

IC50=341.8±16ng/mL (n=5) 

N= 

IC50=700.2±38.6ng/mL (n=7) 

N= 

IC50=1,045.3±38.6ng/mL (n=7) 

N= 
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Figure 5-16. GO after IM/no treatment reduced the percentage of viable cells in both 

CML and nCML. The percentage of viable cells (Annexin V
-
 DAPI

-
) was reduced 

similarly in CML and nCML as it was between GO single treatment and its combination 

with IM. The IC50s at the top of each panel correspond to the GO single treatment while 

the IC50s at the bottom correspond to the combination treatment. Response to the treatment 

is represented with the solid line with 95% confidence interval (shadowed area). The 

dashed lines represent the IC50s. Individual dots represent individual observations. 

IC50=103.97±49.59/mL (n=6) 

N= 

IC50=269.65±68.32ng/mL (n=6) 

N= 
IC50=200.34±64.9ng/mL (n=6) 

N= 

IC50=207.85±61.25ng/mL (n=6) 

N= 
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Figure 5-17. Colony counts after sequential treatment IM/no drug → GO. (A) Total 

colony counts for each treatment and condition. IM enrich CML samples in CFCs. (B) 

Colony counts for each subtype. Individual dots are the colony counts for each patient and 

bars are the mean. Significant differences with the NDC are represented with * and 

significant differences with IM only are represented with †. 
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Figure 5-18. CFC concentration after sequential treatment IM/no drug → GO. (A) 

Summarised CFC concentrations for each treatment and condition. (B) CFC concentrations 

for each subtype. Individual dots are the colony counts for each patient and bars are the 

mean. Significant differences with the NDC are represented with * and significant 

differences with IM only are represented with †. 
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Figure 5-19. Colony counts after sequential treatment IM/no drug → GO and 6 weeks 

on culture with stroma cells. (A) Total colony counts for each treatment and condition. 

(B) Colony counts for each subtype. Individual dots are the colony counts for each patient 

and bars are the mean. 

A 

B 
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Figure 5-20. CFC concentration after sequential treatment IM/no drug → GO and 6 

weeks on culture with stroma cells. (A) Summarised CFC concentrations for each 

treatment and condition. (B) CFC concentrations for each subtype. Individual dots are the 

colony counts for each patient and bars are the mean. 

A 

B 
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Figure 5-21. Levels of γH2AX increases in CML and nCML after sequential 

treatment IM/no drug → GO. CML cells seem to increase the levels of γH2AX in 

response to increasing concentrations of GO, especially with concentrations between 100 

and 1000ng/mL, both when they have been treated previously with IM or not. The nCML 

samples increase γH2AX with increasing GO concentrations. The nCML samples 

previously treated with IM had higher variability and no correlation was found. Central 

line in the boxes represents the median of the values. The dots represent the individual 

samples analysed in the experiment. Replicates: nCML=4, nnCML=4. 
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Figure 5-22. Differences on the percentage of cells in each cell cycle phase compared 

with the NDC after sequential treatment IM/no drug → GO. A trend towards a more 

proliferative phenotype can be observed in CML and nCML cells. The difference in cells 

in S/G2/M phase positively correlated with the logarithm of GO concentration in nCML 

while in CML a non-significant trend can be observed for a reduction in the percentage of 

cells in G0. Central line in the boxes represents the median of the values. The dots 

represent the individual samples analysed in the experiment. Replicates: nCML=4, nnCML=4. 
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5.2.22 Treatment with IM after treating CD34+ cells with GO synergises with GO in 

reducing cell number 

As a sequential treatment of IM followed by GO was put in place it was thought that 

testing the reverse regimen could help to understand the underlying interactions between 

both drugs. Therefore, the cells were treated for 72h with different concentrations of GO 

and then, allowed to recover for 72h or treated for 72h with IM. The limitation in the 

number of cells only allowed for analysing 3 CML and 1 nCML patient under this 

treatment regimen. 

The IC50 for GO alone in CML was 74.13±16.36ng/mL but it decreased to 

31.91±9.49ng/mL when the cells were treated with IM instead of allowing them to recover 

(p=0.133). The nCML patient presented an IC50 of 154.75±109.01ng/mL for the single 

treatment and 69.50±42.81ng/mL for the combination treatment (Figure 5-23). 

Bliss equation revealed an average increase of 6.87% in the response from the observed 

response of the combination of GO and IM to the expected response in CML (p=0.038). In 

nCML there was also an increase of 6.18% between the observed and expected responses. 

These values suggest that IM and GO act in a synergistic manner when the cell are first 

treated with GO and then with IM. 

5.2.23 Medium-term effect of GO in percentage of viability can be observed in 

concentrations equal of higher than 100ng/mL 

Observing the percentage of Annexin V
-
 DAPI

-
 cells in the concentration-response curve 

(Figure 5-24), it is easy to observe that CML cells treated with less than 100ng/mL of GO 

and cultured for another 72h without any drug treatment fully recovered and presented 

similar percentages of viable cells than the NDC. On the other hand, cells that were treated 

with at least 100ng/mL of GO presented higher levels of non-viable cells even after 72h 

and a reduction in half the percentage of viable cells at 171.60±31.61ng/mL. Treatment 

with IM prevented the cells from recovering and increased percentages of non-viable cells 

could be observed at concentrations lower than 100ng/mL, reaching a decrease in half the 

percentage of viable cells at 54.99±23.02ng/mL. However, this difference was not 

statistically significant. The nCML cells presented a modest decrease in viability at 

concentrations less than 100ng/mL and a concentration of 341.27±263.17ng/mL was 

required for reducing the number of viable cells by half of the NDC. IM did not have any 

major effect on nCML (IC50=196.76±163.92; p=0.71). 
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5.2.24 IM treatment after GO treatment had a moderate effect at reducing the total 

number of CFCs in CML 

CFC assays revealed no changes in CFCs counts in the different treatment arms in CML 

(p=0.343) but a small decrease in the CFC count in nCML: from 373 in the NDC to 266 in 

the 100ng/mL of GO single arm (Figure 5-25A). No statistically significant differences 

were found in the individual colony subtypes (Figure 5-25B). 

When the colony counts were corrected by the cell concentration in the original culture it 

was possible to observe a non-statistically significant decrease in the number of total CML  

CFCs with increasing concentrations of GO and, especially a major effect in the 100ng/mL 

of GO followed by IM treatment (Figure 5-26A).  It is also possible to observe a total CFC 

decrease in nCML. Observing the individual colony subtypes significant decreases in CML 

G CFCs could be found in all treatment arms when compared with the NDC (pIM=0.044; 

psingle-100=0.010; psingle-30=0.005; pcombinaiton-100=0.002; pcombination-30=0.002). No other 

individual subtypes presented statistically significant differences, although the decrease in 

the number of CFCs was a constant trend in the data (Figure 5-26B). 

5.2.25 IM treatment after GO treatment further reduces the number of LTC-ICs in 

CML 

Only the samples from one patient, CML460, developed colonies consistently after 6 

weeks of culture. The other samples did not develop colonies (Figure 5-27). CML460 

developed mainly E colonies (Figure 5-27A) and it was possible to observe that while IM 

increased the number of LTC-ICs per cell in the absence of GO it reduced the number of 

LTC-ICs when used after GO (Figure 5-27). Analysing the data corrected by cell 

concentration in the original culture it was possible to observe that cells previously treated 

with GO contain less LTC-ICs when treated with IM afterwards (Figure 5-28). 

5.2.26 Treating CML cells with IM that were previously treated with GO increases 

the levels of γH2AX 

DNA damage response was also assessed for GO followed by IM treatment regimen by the 

levels of γH2AX. PGT170810, the nCML patient sample that was treated under this 

regimen, showed a 50% increase in γH2AX levels after IM treatment but only very modest 

increases after low concentrations of GO and reached an increase of 30% with 

concentrations of 300 and 1000ng/mL of GO (Figure 5-29). Although the non-IM arm in 

nCML was positively correlated with the logarithm of the concentration of GO, the sample 

size (n=1) did not provide enough power for the correlation test to be significant 
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(Spearman’s ρ=0.829, p=0.058). The correlation did not improve selecting only the [100, 

1000] interval for the concentrations of GO. 

The level of γH2AX seemed to increase in CML at concentrations higher than 100ng/mL 

when the cells were treated only with GO. IM treatment seemed to reduce the levels of 

γH2AX when the cells were not treated previously with GO but when used after GO it 

reduced the concentrations of GO required to increase the levels of γH2AX (Figure 5-29). 

Although these differences were not statistically significant, the constant increase of 

γH2AX with increasing concentrations of GO allowed to calculate the correlation values 

using Spearman’s correlation test. The combination treatment had a statistically significant 

correlation (Spearman’s ρ=0.678, p=0.015) while GO single agent was close to be 

significant (Spearman’s ρ=0.539, p=0.071). These correlation values improved when only 

the intervals where the highest observed increases were found: the GO single treatment had 

an improved correlation when only the interval [100, 1000] was taken in account 

(Spearman’s ρ=0.837, p=0.038) and the combination treatment when the interval [0, 30] 

was considered (Spearman’s ρ=0.956, p=0.003). 

5.2.27 Treatment with GO reduced the percentage of cells in G0 72h after stopping 

the treatment in both CML and nCML and seemed to be independent of IM 

In this treatment regimen both CML and nCML followed similar changes in cell cycle 

after treatment with GO±IM. The changes consisted of an increase in the percentage of 

cells in S/G2/M and G1 phases and a decrease in the percentage of cells in G0 (Figure 5-30). 

The percentage of CML cells in G0 was significantly lower than the NDC when the cells 

were treated with concentrations of GO of 300 or 1000ng/mL (p<0.05 for all of them). No 

statistically significant differences were found in the other phases of cell cycle after 

correction for multiple testing. 

When the differences in the percentages of cells in each phase of the cell cycle were tested 

for correlation, the differences in the CML cells treated only with GO were correlated with 

the concentration of GO for G1 (Spearman’s ρ=0.793, p=0.002), G0 (Spearman’s ρ=-0.906, 

p<0.001) and S/G2/M (Spearman’s ρ=0.821, p=0.001). The combination treatment in CML 

only had a significant correlation in G0 (Spearman’s ρ=-0.594, p<0.042). The nCML 

sample was significantly correlated at both G0 (Spearman’s ρ=-1, p<0.003) and S/G2/M 

phases (Spearman’s ρ=0.943, p=0.017) with the GO single treatment. 
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Figure 5-23. Treatment with GO before IM reduces cell number in CML and nCML. 
GO treatment was able to reduce the number of CML cells at lower concentrations that 

nCML, as can be seen in the two different IC50s. Also, GO further reduced the number of 

CML cells when combined with IM while having a milder effect on nCML cells. The IC50s 

at the top of each panel correspond to the GO single treatment while the IC50s at the 

bottom correspond to the combination treatment. Response to the treatment is represented 

with the solid line with 95% confidence interval (shadowed area). The dashed lines 

represent the IC50s. Individual dots represent individual observations. 

IC50=154.75±109.01ng/mL (n=1) 

N= 

IC50=74.13±16.36ng/mL (n=3) 

N= 

IC50=31.91±9.49ng/mL (n=3) 

N= 

IC50=69.50±42.81ng/mL (n=1) 

N= 
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Figure 5-24. Treatment with IM prevented CML cells from recovering after GO 

treatment. The percentage of viable cells (Annexin V
-
 DAPI

-
) was similar in CML for 

concentrations of GO lower than 100ng/mL when the cells were not treated with IM after 

GO but that percentage was reduced when the cells were treated with IM. IM treatment 

had a minor effect on nCML cells. The IC50s at the top of each panel correspond to the GO 

single treatment while the IC50s at the bottom correspond to the combination treatment. 

Response to the treatment is represented with the solid line with 95% confidence interval 

(shadowed area). The dashed lines represent the IC50s. Individual dots represent individual 

observations. 

IC50=171.60±31.61ng/mL (n=3) 

N= 

IC50=54.99±23.02ng/mL (n=3) 

N= 
IC50=341.27±263.17ng/mL (n=1) 

N= 

IC50=196.76±163.92 (n=1) 

N= 
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Figure 5-25. Colony counts after sequential treatment GO → IM/no drug. (A) Total 

colony counts for each treatment and condition. (B) Colony counts for each subtype. 

Individual dots are the colony counts for each patient and bars are the mean. 

A 

B 
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Figure 5-26. CFC concentration after sequential treatment GO → IM/no drug. (A) 

Summarised CFC concentrations for each treatment and condition. (B) CFC concentrations 

for each subtype. Individual dots are the colony counts for each patient and bars are the 

mean. Significant differences with the NDC are represented with *. 

A 

B 

* * * * * 
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Figure 5-27. Colony counts after sequential treatment GO → IM/no drug and 6 weeks 

on culture with stroma cells. (A) Total colony counts for each treatment and condition. 

(B) Colony counts for each subtype. Individual dots are the colony counts for each patient 

and bars are the mean.  

A 

B 
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Figure 5-28. CFC concentration after sequential treatment GO → IM/no drug and 6 

weeks on culture with stroma cells. (A) Summarised CFC concentrations for each 

treatment and condition. (B) CFC concentrations for each subtype. Individual dots are the 

colony counts for each patient and bars are the mean.  

A 

B 
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Figure 5-29. IM treatment after GO reduced the concentration of GO required for 

increasing the levels of γH2AX increases in CML. CML cells seem to increase the levels 

of γH2AX in response to increasing concentrations of GO, especially with concentrations 

between 100 and 1000ng/mL, and between 0 and 30ng/mL when the cells were treated 

with IM after GO. The nCML samples increase γH2AX with increasing GO concentrations 

but the correlation was not statistically significant. Central line in the boxes represents the 

median of the values. The dots represent the individual samples analysed in the experiment. 

Replicates: nCML=1, nnCML=2. 
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Figure 5-30. Differences on the percentage of cells in each cell cycle phase compared 

with the NDC after sequential treatment GO → IM/no drug. A trend towards a more 

proliferative phenotype can be observed in CML and nCML cells. The difference in cells 

in S/G2/M and G1 phases positively correlated with the logarithm of GO concentration in 

CML and nCML while G0 phase was found to have a lower percentage of cells with 

increasing concentrations of GO. Central line in the boxes represents the median of the 

values. The dots represent the individual samples analysed in the experiment. Replicates: 

nCML=2, nnCML=1. 
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5.2.28 Understanding the mechanism of action of GO by investigating whole 

transcriptome expression changes by RNAseq after 72h of treatment 

The cell biology experiments on the use of GO as a potential treatment in CML revealed 

that it is effective at eradicating CML CD34
+
 cells. This was mediated by an increase in 

DNA double strand breaks, as reported by the increase of γH2AX and it induces entry into 

the cell cycle. In order to further investigate the mechanism by which GO eliminates CML 

CD34
+
 cells, it was decided to investigate whole-transcriptome changes in an RNAseq 

experiment. CML cells were studied under the effect of IM 2µM, GO 100ng/mL and the 

combination of both drugs after 72h of treatment and compared with the NDC. The 72h 

treatment regimen was chosen for the RNAseq experiment because of the wider 

therapeutic window and under the assumption that the cells would have the lesser amount 

of culture-related changes. The samples sequenced were those from patients CML423, 

CML441 and CML460 (Table 2-1). No nCML samples were sequenced due to economical 

constraints, so CML samples were prioritised. 

RNA was extracted using the Arcturus PicoPure kit for patients CML423 and CML460 

while RNAeasy Micro-kit was used for the samples from CML441. All samples had RIN 

number above 8 with most of them over 9. Library preparation was performed by Glasgow 

Polyomics using SMART-seq ultra low cDNA conversion kit and Nextera library 

preparation kit. Sequencing was performed in the Illumina NextSeq and HiSeq machines (a 

previous run on HiSeq was complemented with a second run on NextSeq). The number of 

reads per samples was fairly constant, with most samples ranging between 40 and 50 

million aligned reads and only two having more than 50 million (Figure 5-31A). 

Initial exploration of data using PCA showed a clear separation between the different 

treatments as well as a separation between the patients CML423 and CML460 to CML441 

(Figure 5-31B). IM treated cells were the closest ones to the NDC followed by the GO 

treated cells and finally the combination treatments were the farthest from the NDC. The 

proximity of the IM treated cells could be explained by the IM insensitivity that at least 

CML423 and CML441 presented in the clinical setting (no information available for 

CML460; Table 2-1). The volcano plots showed a trend towards smaller p-values in up-

regulated genes compared with the downregulated ones (Figure 5-32 and Figure 5-33). As 

the PCA anticipated, IM was the treatment that induced the lowest number of gene 

expression changes (88 genes), followed by GO (257 genes) and the combination (5,280 

genes). When the combination treatment was compared with only the IM treated cells 

4,199 genes were differentially expressed. The total amount of genes mapped in the 

sequencing was 19,981.  
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Figure 5-31. Initial exploration of the RNAseq data did not reveal unexpected sources 

of variability. (A) All the samples presented more than 40 million reads and only CML423 

IM0 (IM alone) and CML460 UT (NDC) had more than 50 million reads. (B) The PCA 

showed patient related clustering in PC1, with CML441 forming a much separated cluster 

(different RNA extraction kit, age and sex). PC2 showed a clear separation of the different 

treatments, with IM being the closest to NDC and the combination treatment the farthest 

one. 
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The differentially expressed genes for each treatment were compared with the list of TKIi60 

genes described in Chapter 3. Of the 60 TKIi60 genes originally described, 46 were present 

in the universe of the RNAseq analysis. It was found that GO treatment upregulated 

EGFL6 and ZMAT3 (Figure 5-34, Figure 5-35A), which were originally also upregulated 

in CML compared with nCML. However, an overlap of 2 TKIi60 genes with the genes 

differentially expressed after GO treatment was not found statistically significant after 

hypergeometric distribution (p=0.16) or Monte-Carlo (p=0.14). IM was also found to 

deregulate 2 TKIi60 genes (p=0.025), C10orf10 (upregulated) and CD33 (downregulated; 

Figure 5-34, Figure 5-35A). This did not agree with the other techniques used to assess if 

CD33 gene expression is affected by IM in this thesis. The number of TKIi60 genes that 

were differentially expressed by the combination treatment compared with the NDC was 

21 (phypergeometric=0.042, pMonte-Carlo=0.008) and 15 when compared with the IM alone arm 

(phypergeometric=0.187, pMonte-Carlo=0.064) (Figure 5-34, Figure 5-35B and C). 

With the results of the RNAseq analysis it was decided to investigate if there was any 

pathway or level 3 GO-term overrepresented in the different lists of differentially 

expressed genes using CPDB (Kamburov et al., 2013). Changes in response to GO seemed 

to relate mainly with platelet activation pathways, inflammation and p53 (Table 5-1). The 

same could be observed from the level 3 GO-terms (Table 5-2). On the other hand, genes 

differentially expressed in response to IM seemed to be overrepresented in members of the 

GPCR pathways and platelet activation (Table 5-3) as were the GO-terms (Table 5-4). The 

combination treatment had an overrepresentation of members of GPCR, inflammation and 

platelet activation pathways when compared to NDC (Table 5-5) and lay towards 

inflammation and p53 signalling when compared to IM alone instead of the NDC (Table 

5-7). The GO-terms for which there was an overrepresentation in the combination 

treatment were also related with immune and platelet activation, and regulatory processes 

(Table 5-6). When compared with the IM only treatment the combination was enriched for 

membrane components, extracellular vesicles and immune activation GO-terms (Table 

5-8). The complete list of pathways and GO-terms can be found in Appendix II and 

Appendix III, respectively. 

  



 165 

 

Figure 5-32. Volcano plots of the single treatment.  (A) Volcano plot showing the 

changes in gene expression after 72h of GO 100ng/mL. (B) Gene expression changes after 

72h IM 2µM. The statistically significant differentially expressed genes are coloured in 

orange. 

 

A 
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Figure 5-33. Volcano plots showing the gene expression changes after the 

combination treatment.  (A) Compared with the NDC. (B) Compared with 72h IM 2µM. 

The statistically significant differentially expressed genes are coloured in orange. 

 

A 

B 
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Figure 5-34. Gene expression changes after the different treatments on the TKIi60 

genes present in the analysis. The black horizontal line marks the 0 and the grey 

horizontal lines mark the log2Fold Changes of the CMLDV and CMLMC datasets. Filled 

bars are those with a q-value smaller than 0.1. 
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Figure 5-35. Overlaps between the different treatments and the TKIi60 genes. (A) 

Overlap between TKIi60 genes and the genes differentially expressed after GO and IM 

treatments. (B) Overlap between the genes differentially expressed after the combination 

treatment and the TKIi60 genes. (C) Overlap between the genes differentially expressed 

after the combination treatment when compared with the IM only treatment and the TKIi60 

genes. (D) Hypergeometric distribution and (E) Monte-Carlo permutations for the 

probability of an overlap between the GO differentially expressed genes and the TKIi60 

genes. (F) Hypergeometric distribution and (G) Monte-Carlo for the overlap between the 

IM differentially expressed genes in the RNAseq and the TKIi60 genes. (H) 

Hypergeometric distribution and (I) Monte-Carlo for the overlap between the combination 

treatment differentially expressed genes and the TKIi60 genes. (J) Hypergeometric 

distribution and (K) Monte-Carlo for the overlap between the combination treatment 

differentially express genes when compared with IM alone and the TKIi60 genes. The 

orange lines represent the true overlap between the two lists compared in each figure. 
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Table 5-1. Top 10 overrepresented pathways in the genes differentially expressed 

after 72h of treatment with GO, as calculated by CPDB. 

Pathway Source q-value 

Haemostasis Reactome 4.78E-12 

Platelet activation, signalling and aggregation Reactome 1.17E-09 

p53 signalling pathway - Homo sapiens (human) KEGG 2.99E-09 

Platelet degranulation  Reactome 3.31E-09 

Response to elevated platelet cytosolic Ca2+ Reactome 4.79E-09 

Formation of Fibrin Clot (Clotting Cascade) Reactome 1.91E-08 

Cell surface interactions at the vascular wall Reactome 8.96E-07 

Cytokine-cytokine receptor interaction - Homo sapiens 
(human) KEGG 2.56E-06 

Common Pathway of Fibrin Clot Formation Reactome 3.98E-06 

Complement and coagulation cascades - Homo sapiens 
(human) KEGG 7.46E-06 

 

 

Table 5-2. Top 10 overrepresented GO-terms in the genes differentially expressed 

after 72h of treatment with GO, as calculated by CPDB. 

Name ID q-value 

blood coagulation GO:0007596 9.27E-11 

response to wounding GO:0009611 2.41E-09 

regulation of body fluid levels GO:0050878 5.29E-09 

platelet activation GO:0030168 5.29E-09 

regulation of signalling GO:0023051 6.75E-07 

regulation of response to stimulus GO:0048583 6.75E-07 

cell surface receptor signalling pathway GO:0007166 7.31E-07 

positive regulation of biological process GO:0048518 7.31E-07 

regulation of haemostasis GO:1900046 8.50E-07 

exocytosis GO:0006887 1.57E-06 

 

 

Table 5-3. Overrepresented pathways in the genes differentially expressed after 72h 

of treatment with IM, as calculated by CPDB. 

Pathway Source q-value 

Complement and coagulation cascades - Homo sapiens 
(human) KEGG 0.00963555 

GPCR ligand binding Reactome 0.00963555 

Formation of Fibrin Clot (Clotting Cascade) Reactome 0.00963555 

Signalling by GPCR Reactome 0.02102657 

Class A/1 (Rhodopsin-like receptors) Reactome 0.03701184 
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Table 5-4. Top 10 overrepresented GO-terms in the genes differentially expressed 

after 72h of treatment with IM, as calculated by CPDB. 

Name ID q-value 

regulation of multicellular organismal process GO:0051239 3.30E-06 

regulation of response to stimulus GO:0048583 5.62E-05 

cell surface receptor signalling pathway GO:0007166 5.62E-05 

response to organic substance GO:0010033 0.00053477 

negative regulation of biological process GO:0048519 0.00054523 

regulation of haemostasis GO:1900046 0.00057476 

regulation of signalling GO:0023051 0.0014484 

blood coagulation, fibrin clot formation GO:0072378 0.0018736 

regulation of developmental process GO:0050793 0.00228845 

positive regulation of biological process GO:0048518 0.0031739 

 

Table 5-5. Top 10 overrepresented pathways in the genes differentially expressed 

after the combination treatment compared with the NDC, as calculated by CPDB. 

Pathway Source q-value 

Haemostasis Reactome 9.41E-07 

Response to elevated platelet cytosolic Ca2+ Reactome 7.01E-06 

Platelet degranulation  Reactome 5.95E-05 

Cytokine-cytokine receptor interaction - Homo sapiens 
(human) KEGG 0.00015908 

Platelet activation, signalling and aggregation Reactome 0.00015908 

Chemokine receptors bind chemokines Reactome 0.00103075 

Nucleotide-like (purinergic) receptors Reactome 0.00415011 

G alpha (i) signalling events Reactome 0.01110047 

Complement and coagulation cascades - Homo sapiens 
(human) KEGG 0.01322177 

RHO GTPases activate PKNs Reactome 0.01322177 

 

Table 5-6. Top 10 overrepresented GO-terms in the genes differentially expressed 

after the combination treatment compared with the NDC, as calculated by CPDB. 

Name ID q-value 

cellular response to chemical stimulus GO:0070887 1.50E-05 

regulation of immune system process GO:0002682 1.50E-05 

response to wounding GO:0009611 1.67E-05 

response to oxygen-containing compound GO:1901700 1.67E-05 

response to organic substance GO:0010033 1.67E-05 

negative regulation of biological process GO:0048519 1.67E-05 

extracellular vesicle GO:1903561 3.76E-05 

regulation of localization GO:0032879 1.75E-05 

regulation of response to stimulus GO:0048583 2.24E-05 

regulation of multicellular organismal process GO:0051239 4.15E-05 
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Table 5-7. Top 10 overrepresented pathways in the genes differentially expressed 

after the combination treatment compared with IM treated cells, as calculated by 

CPDB. 

Pathway Source q-value 

Cytokine-cytokine receptor interaction - Homo sapiens 
(human) KEGG 3.25E-07 

Response to elevated platelet cytosolic Ca2+ Reactome 5.74E-07 

Haemostasis Reactome 1.56E-06 

Platelet degranulation  Reactome 1.88E-06 

Chemokine receptors bind chemokines Reactome 1.35E-05 

Platelet activation, signalling and aggregation Reactome 1.77E-05 

p53 signalling pathway - Homo sapiens (human) KEGG 0.00012155 

Neutrophil degranulation Reactome 0.00015719 

GPCR ligand binding Reactome 0.00135731 

G alpha (i) signalling events Reactome 0.00140623 

 

Table 5-8. Top 10 overrepresented GO-terms in the genes differentially expressed 

after the combination treatment compared with IM treated cells, as calculated by 

CPDB. 

Name ID q-value 

extracellular vesicle GO:1903561 1.44E-08 

intrinsic component of plasma membrane GO:0031226 6.81E-08 

integral component of membrane GO:0016021 7.92E-07 

exocytosis GO:0006887 8.14E-06 

cell activation involved in immune response GO:0002263 8.14E-06 

leukocyte mediated immunity GO:0002443 1.14E-05 

regulation of response to stimulus GO:0048583 1.78E-05 

regulation of immune system process GO:0002682 1.78E-05 

leukocyte degranulation GO:0043299 3.21E-05 

chemotaxis GO:0006935 3.68E-05 
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5.3 Discussion 

This chapter shows the benefits of using GO for targeting CML cells in vitro. In all three 

treatment regimens, GO showed a lower IC50 in CML than in nCML cells, suggesting that 

its use would be relatively safe for non-leukaemic cells. This is also supported by the data 

collected from clinical trials showing its safety even at higher concentrations than the ones 

used in this chapter (Castaigne et al., 2012). Additionally, the combination of GO and IM 

seems to have an additive like effect (with small changes in the effect when compared with 

the expected effect), which suggest that both drugs could be used together for the treatment 

of CML. These results are also supported by a previous report in the use of GO in the 

treatment of CML (Herrmann et al., 2012). They showed a synergetic effect of GO and 

TKIs (nilotinib and bosutinib) on treating CML mononuclear cells. However, they did not 

study the effect on LSCs or normal controls and did not investigate the mechanism by 

which GO target CML cells. Also, the culture conditions did not approximate 

physiological conditions and did not investigated the effect of GO in cells previously 

treated with IM. Therefore, the results presented in this chapter add novelty to the field. 

IM has been shown to significantly affect a larger number of TKIi60 genes after 72h of 

treatment at 2µM than expected by chance. However, the small amount of genes affected 

(two: C10orf10 and CD33) means that a change of one would mean a non-significant 

number of TKIi60 affected genes and the results should be interpreted carefully. Although 

their expression had been shown to not be affected by IM treatment in Chapter 3 both in 

the microarray analysis (Figure 3-6) and by qPCR (Figure 3-11), culture conditions 

differed (7 days with no growth factor in Chapter 3 and 3 days in physiological conditions 

in the current chapter), which could explain the observed differences. However, the CD33 

microarray and qPCR results were supported in this chapter at the protein level when the 

amount of CD33 on the cell surface was measured by flow cytometry (Figure 5-6). 

However, the RNAseq analysis showed a modest decrease in the levels of CD33 

expression after IM treatment. This can be caused by a technique specific artefact. As 

mentioned in the introduction of this chapter, CD33-related Siglecs have very similar 

sequences within the same species (Crocker et al., 2007) and this could have affected the 

quality of the alignment and transcript identification. In any case, the protein levels on the 

cell’s surface remain constant after IM treatment and the protein is the ultimate target of 

GO, so the ability for binding CML cells by GO should not be compromised by IM 

treatment. 

One of the main pitfalls of TKI treatment is its inability to target quiescent CML cells, 

which accumulate during TKI treatment (Graham et al., 2002, Copland et al., 2006, 
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Jorgensen et al., 2007, Giustacchini et al., 2017). This happens due to the anti-proliferative 

effect of TKIs on CML LSCs, which allows them to accumulate in G0 and survive. 

Previous attempts at inducing CML LSCs to enter cell cycle using G-CSF increased the 

sensitivity to IM treatment of CML cells (Jorgensen et al., 2006) and it was shown to be 

safe in clinical practice (Drummond et al., 2009). In this chapter it has been shown that GO 

is able to induce CML (and nCML) cells into cell cycle entry even in the presence of IM, 

which could lead to the eventual exhaustion of the leukaemic clone and the eradication of 

the disease. This is also supported by the CFC and LTC-IC assay results, especially those 

from the GO→IM regimen. Although not statistically significant, the magnitude of the 

effect shows the benefit of this combination for reducing the number of CFCs in CML. 

The increase in the levels of γH2AX in GO-treated cells already pointed to GO producing 

double strand breaks in the DNA of treated cells, as its proposed mechanism of action 

suggested. However, it was thought that a more detailed study of the mechanism by which 

GO targets CML cells and how this compared to IM could be beneficial. 

The reduced number of detected differentially expressed genes by RNAseq in the single 

drug treatments was unexpected, especially for IM. However, at least two of the patients 

are known to not respond well to IM treatment in the clinical setting: one because of 

reported intolerance to IM and NIL and another responded well to BOS after 3 months on 

IM. Therefore, it is possible that the poor response of these patients to the treatment in the 

clinics is translated into a milder transcriptomic response in vitro. However, it is also 

possible that 72h of treatment in vitro is not enough time for the transcriptomic changes 

induced by IM to be detected, especially compared with more drastic conditions, such as 

the drug combination treatment. After GO treatment a modest number of genes were found 

differentially expressed, although more changes were observed in response to GO than to 

IM. On the other hand, the combination treatment did have a big effect in gene expression, 

with statistically significant changes in about 25% of the analysed genes. The top 10 most 

overrepresented pathways were related to platelet function, inflammation and/or G-protein 

coupled receptor (GPCR) pathways. GPCRs are involved in platelet activation and 

inflammation response, so all three categories might be considered the same. These 

pathways might be overrepresented in response to cell death due to drug treatment and 

might be nonspecific. However, this could also happen because of the activation of LSCs 

and the generation of progenitors as a repopulation response, as the increase in cycling 

cells might suggest. 
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The genes differentially expressed after GO treatment were overrepresented in genes 

belonging to the p53 signalling pathway. An increase in the expression of ZMAT3 and its 

negative feedback regulator MDM2 was observed (Xirodimas et al., 2004, Prives, 1998). 

The p53 pathway is known to be activated in response to DNA damage and it activates 

apoptosis if the cell is unable to recover from the damage. This might suggest an activation 

of p53 pathway in response to DNA damage induced by GO. 

Treatment with the combination treatment affects the expression of 21 out of the 46 TKIi60 

genes included in the analysis (i.e. genes with more than 100 reads). Direction of the gene 

expression was opposite to that observed in the CML vs normal comparison in chapter 3 in 

genes such as BMP6 and PLAG1. PLAG1 is known to be upregulated in a subset of AML 

patients and it has been found to interact with CBF, blocking differentiation and inducing 

proliferation (Landrette et al., 2005). While this gene was downregulated in CML 

compared with normal samples it is upregulated in response to the combination treatment, 

suggesting that it participates in the increasing percentage of cells entering cell cycle. BMP 

family proteins have also been found upregulated in TKI-resistant patients receiving TKI 

treatment (Grockowiak et al., 2017, Toofan et al., 2018) and therefore, this could be related 

with the fact that the patients used in this experiment did not respond well to IM treatment 

in the clinic. Furthermore, BMP family proteins have found to be important in the survival 

of CML LSCs and the dual treatment with BMP inhibitors and TKIs impairs self-renewal 

in those cells (Toofan et al., 2018). Therefore, its upregulation of BMP6 in treated samples 

may constitute a survival factor.  

Other genes like ERG or HOXA3 are deregulated in the same direction than they were in 

the comparison between CML and normal cells. ERG is known to regulate HSC 

differentiation via repression of MYC and it promotes quiescence (Knudsen et al., 2015). 

The downregulation phenotype observed in the combination treatment strengthens the 

reduction of the percentage of cells in G0 observed in the cell cycle analysis. HOX genes 

have also been found to be important for the maintenance of stem cell phenotype in HSCs 

(Sauvageau et al., 1994) and low levels of HOX genes expression have been found to be a 

good prognosis marker in AML (Gollner et al., 2017). In this analysis HOXA3 was found 

to be downregulated after the combination treatment, potentially favouring proliferation 

and cell differentiation. 

The results from the GO→IM regimen suggest that GO has medium-term effects on CML 

CD34
+
 cells at concentrations of 100ng/mL or higher that last at least 72h after removal of 

the drug. This can be considered at the time of designing a treatment regimen as lower 
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concentrations will probably have little therapeutic value in a medicine that is delivered 

every two weeks as GO (EMA, 2008). Additionally, during this treatment regimen, the 

GO+IM combination presented a moderate synergy (6.87%), which was not observed in 

any of the other treatment regimens (the simultaneous combination was even slightly 

antagonistic). This can be clearly appreciated in the effect that the treatment has in the cell 

cycle. While the decrease of CML cells on G0 happens at lower concentrations of GO in 

the GO→IM regiment (Figure 5-30), in the simultaneous combination IM seems to 

antagonise the effect of GO and moderated the reduction of CML cells in G0 (Figure 5-14). 

It is also worth noticing the refractory effect that IM has in the cell cycle. When CML cells 

were treated with IM and then IM was washed away, it is possible to observe a decrease of 

CML cells in G0 in the cells that recovered for 72h when compared with the NDC (Figure 

5-22). 

Treatment with GO seems to promote cell cycle entry in parallel to the cell death induced 

by DNA damage. The fact that cell cycle entry is induced even in the presence of IM, 

which is known to increase the proportion of quiescent cells (Graham et al., 2002), and the 

observed gene expression changes suggests that GO may induce cell proliferation and 

differentiation. Additionally, its combination with IM has additive or close to additive 

responses for cell counts, meaning that its use should not have any negative effect on the 

efficacy of the TKI treatment. Thus, these results suggest that the use of concentrations of 

GO of no lower than 100ng/mL in combination with TKI treatment could be beneficial for 

the treatment of CML. However, these experiments should be expanded into a larger 

cohort of patients’ primary cells and complemented with in vivo experiments to confirm 

the safety of the combination treatment before translation into a clinical trial. 

  



 176 

6 General discussion 

6.1 New therapeutic approaches are necessary for curing CML 

CML is currently a well-managed disease with expected life-span very close to those of the 

general healthy population. However, current TKI treatments are unable to eradicate the 

LSCs and the leukaemic clone persists in the patients. This is a psychological burden for 

CML patients. In addition, the increasing prevalence of CML and the high cost of the 

treatments remain a challenge to public health services, such as the NHS in the UK and the 

SNS in Spain, and it affects the availability and compliance of the treatment in countries 

without public health services or with lower funding (Abboud et al., 2013, Beinortas et al., 

2016, Kurtovic-Kozaric et al., 2016). However, the economic burden of CML treatment 

has decreased since IM became available off patent (Lejniece et al., 2017). Although some 

studies have shown the possibility of safely discontinuing TKI treatment in 4% of CML 

patients this is not effective in all patients (Chomel et al., 2016, Mahon et al., 2010). Thus, 

new therapeutic approaches that target the LSCs and cure the disease are needed in CML. 

The effect of TKIs in CML LSCs has been well studied. First, IM was shown to have a 

limited effect in the quiescent CD34
+
 cell population while it eradicates the cycling cells 

(Graham et al., 2002). Moreover, IM seemed to have an antiproliferative effect on the cells 

as a higher number of quiescent CML CD34
+
 cells were found when treated with IM than 

in the NDC. A similar effect was described for NIL (Jorgensen et al., 2007). DAS was 

found to have a more potent inhibition of the TK activity of BCR-ABL1 in CML LSCs 

than IM but it was found to enrich the CML cells in the quiescent LSCs population 

(Copland et al., 2006). A recent sequencing report (Giustacchini et al., 2017) confirmed 

that a CML LSC quiescent population present at diagnosis (before TKI treatment), of 

primitive HSC phenotype, was enriched in the patients’ blood and bone marrow over time 

when treated with TKI. Following this evidence, other reports (Charaf et al., 2016, Zhang 

et al., 2018) showed that IM may not be enriching for quiescent CML LSCs just by 

eliminating the cycling cells but by inducing the expression of quiescence and self-renewal 

genes in both CML and normal cells. This shows that TKIs induce a phenotype in CML 

cells that protects them from the treatment. Therefore, additional treatments other than TKI 

are required for complete eradication of the leukaemic clone. 

The antiproliferative effect of TKIs and the induction of a stem/quiescent phenotype is 

potentially the leading cause of TKIs failure in eradicating CML cells. Therefore, 

induction of cell-cycle entry in those cells could potentially re-sensitise CML TKI 

persistent cells to TKI treatment. The use of interferon-α (IFNα) has been proposed as a 
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potential agent to use in combination with TKI because of its effect in inducing cell-cycle 

entry in murine primitive HSCs (Essers et al., 2009). Furthermore, intermittent doses of G-

CSF induce cell-cycle entry in quiescent human CML CD34
+
 cells and increase the 

sensitivity of CML cells to IM in vitro (Jorgensen et al., 2006). However, although the 

combination of pulsing IM and pulsing G-CSF seemed non-toxic in a phase II clinical trial, 

a higher number of patients lost CCyR or MMR in the study group than the group taking 

the standard 400mg/day IM treatment (Drummond et al., 2009), suggesting that the 

benefits of the pulsing G-CSF do not compensate for the interrupted treatment with IM. 

The persistence of CML LSCs during TKI treatment opened the question of what enables 

this population to survive treatment at the same time retaining leukaemic properties. The 

finding that it is possible to rescue CML progenitor cells (CD34
+
CD38

+
) from specific 

inhibition of the BCR-ABL1 TK activity by treatment with stem cell factor (SCF), a KIT 

ligand, suggested that similar mechanisms independent of the BCR-ABL1 TK could be 

involved in the persistence of CML LSCs to TKI treatment (Corbin et al., 2013). Similarly, 

β-catenin pathway was shown to be upregulated in CML LSCs that persist TKI treatment 

compared with those that are sensitive to it, and that this increase in β-catenin was 

independent from extracellular (stroma) signalling (Eiring et al., 2015). These findings 

supported a previous report showing that dual BCR-ABL1 inhibition by knock-down and 

dasatinib treatment reduced the phosphorylation of BCR-ABL1 TK targets such as STAT5 

and CRKL but failed to completely eradicate the leukaemic clone, which was enriched in 

primitive LTC-IC (Hamilton et al., 2012). BCR-ABL1 TK independent gene expression 

de-regulation has previously been observed in CML in a miRNA screening that reported 

MIR10A to be downregulated in CML even during TKI treatment, conferring a growth 

advantage to the leukaemic cell (Agirre et al., 2008). This suggested that there is a BCR-

ABL1 TK independent signature in CML that allows the leukaemic clone to survive under 

inhibition of BCR-ABL1 TK by TKIs while retaining the leukaemic properties.  

These results highlighted the need to find new therapeutic targets in CML other than the 

TK of BCR-ABL1. As TKIs are effective at eradicating cycling cells, most efforts have 

focused in targeting elements that promote stemness and quiescence in the CML LSCs. 

The high level of JAK2 activity observed in CML LSCs even during BCR-ABL1 TK 

inhibition led to the use of PP2A activating drugs (PADs). PADs were successful at 

inhibiting JAK2 pathway’s activity and reduced the number of CML LSCs but failed to 

completely eradicate the leukaemic clone (Neviani et al., 2013). Similarly, although 

STAT5 activity is reduced after TKI treatment in CML LSCs, the gene expression and 

protein levels remain constant. The use of pioglitazone, an agonist of PPARγ, was shown 
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to be effective at reducing the levels of STAT5 expression and, therefore, its residual 

activity (Prost et al., 2015). This reduction of STAT5 activity did in fact induce cell cycle 

entry and reduced the colony forming capacity of the leukaemic clone. Additionally, it was 

shown to be effective at inducing complete molecular response in 3 CML patients that 

were already on IM treatment (Prost et al., 2015). Additionally, the deregulation of 

Polycomb Repressive Complex 2 (PRC2) targets in CML and both the downregulation of 

EZH1 and the upregulation of EZH2 led to the use of EZH2 inhibitors (EZH2i) for 

targeting CML LSCs (Scott et al., 2016). EZH2i treatment seemed to potentiate the 

transcriptional signature of TKI on CML LSCs and, despite not affecting normal 

haematopoiesis, it induced apoptosis in CML LSCs when combined with TKIs (Scott et al., 

2016). Autophagy has been shown to be a protective mechanism in cancer cells against 

anti-cancer therapy. The use of autophagy inhibitors in CML has shown a reduced number 

of CML LSCs, which enter cell cycle and differentiate and, therefore, are targeted by TKI 

(Baquero et al., 2018). Finally, a deregulated signalling network with MYC and p53 as 

main nodes has been described in CML LSCs (Abraham et al., 2016). Targeting this 

network using both MDM2 inhibitors (MDM2i) and bromodomain and extra terminal 

protein inhibitors (BETi) for stabilising p53 and inhibiting MYC transcriptional activity, 

respectively, is able to target genes not affected by TKIs and induces both apoptosis and 

differentiation, opening a new avenue for CML therapy (Abraham et al., 2016). 

Although some of these approaches target genes and/or pathways not affected by TKI 

treatment, a BCR-ABL1 TK-independent signature has not been defined before. TKIs are 

known to inhibit the TK of BCR-ABL1 (Hamilton et al., 2012). Therefore, the use of TKI 

treated CML CD34
+
 cells for investigating the genes independent of BCR-ABL1 TK was 

considered to be the closest approximation to a naturally occurring CML cell with a non-

active BCR-ABL1 TK despite the off-target effects. The use of a knock-down model 

would also eliminate the effect of the other domains of BCR-ABL1, such as its scaffolding 

activity, which is important for the role of JAK2 in CML LSCs (Neviani et al., 2013). Also, 

the vector integration would potentially affect the overall gene expression of the cells. 

Therefore, the TKI-independent (TKIi60) genes were considered to be the best 

approximation to a BCR-ABL1 TK-independent genes list. Additionally, investigating the 

TKIi60 genes response to the clinically relevant question of which CML de-regulated genes 

are not affected by the current TKI treatment. 

The 60 genes TKIi60 signature presented in the chapter 3 is then the first attempt to 

uncover the BCR-ABL1 TK independent signature in CML LSCs using whole 

transcriptome analysis. Although this does not reduce the validity of previous studies, 
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which have demonstrated their value by eliminating CML LSCs, it does add a rational for 

the development of new therapies that target the signature. In fact, the small number of 

patient samples used for uncovering the TKIi signatures is not enough to assume its 

presence in every CML patient. A larger sample size would have provided more statistical 

power, which would have increased the trust on the results by both reducing error type I 

and type II (Button et al., 2013, Sham and Purcell, 2014). Due to the limited availability of 

patients’ material it was not possible to increase the power of the experiments. However, 

when possible, the results were cross-validated in more than one experiment (e.g. 

microarray and qPCR) and compared with the existing literature. For example, the TKIi60 

signature contains MIR10A, which have already been described as a TKI insensitive gene 

in CML (Agirre et al., 2008). Similarly, upregulation of the intrinsic β-catenin pathway has 

been previously reported, which could explain the low expression levels of CDH2 (N-

cadherin) in the microarray analysis. N-cadherin is a known activator of the extrinsic β-

catenin pathway, which seems to have no effect on the persistence of CML LSCs to TKI 

treatment (Eiring et al., 2015). Additionally, PPIF is a known inhibitor of apoptosis which 

acts in a BCL2-like manner (Eliseev et al., 2009) and it has shown to directly interact with 

p53 in RAS induced tumours, reducing the antiproliferative effect of p53 in those cells 

(Bigi et al., 2016). Therefore, PPIF upregulation could contribute to the decrease in p53 

pathway proteins reported previously (Abraham et al., 2016). ERG has been shown to be 

important in the transcriptional regulation of genes with GATA/RUNX and GATA/MYC 

motifs, activating the gene expression of the first and repressing the expression of the 

second group (Knudsen et al., 2015). Expression of ERG has shown necessary in normal 

HSCs for HSC maintenance and self-renewal and its down-regulation leads to HSC 

differentiation and exhaustion through over-expression of MYC regulated genes while 

expression of MYC is unaffected (Knudsen et al., 2015). Downregulation of ERG was 

rescued using BETi, recovering HSC self-renewal and decreasing differentiation (Knudsen 

et al., 2015). Interestingly, ERG activity was not found necessary for LSC maintenance in 

AML (Knudsen et al., 2015). Taken together, downregulation of ERG in CML LSCs might 

explain the deregulation of MYC pathway previously reported as well as the positive 

response to BETi treatment (Abraham et al., 2016). A graphical summary of this can be 

found in Figure 6-1. 

Targeting the TKIi signature in CML LSCs has already shown promising results at 

eradicating CML LSCs (Abraham et al., 2016, Eiring et al., 2015). However, as part of this 

thesis it was decided to target directly one of the TKIi4 genes, in contrast to targeting the 

pathways in which they are involved. The availability of a medicine for targeting CD33, 
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gemtuzumab ozogamicin (GO or Mylotarg
TM

) (Naito et al., 2000), made targeting CD33 a 

therapy that could rapidly be translated into the clinic. As shown in Chapter 5, targeting 

CD33 with GO in CML LSCs has a bigger effect than targeting normal HSCs, allowing for 

a therapeutic window in CML. Additionally, GO seems to induce cell cycle entry of CML 

LSCs and reduce colony forming potential, even when used in combination with IM, 

suggesting that it could contribute to the exhaustion of the leukaemic clone. However, this 

hypothesis should be tested in serial transplant experiments, which are considered in our 

material transfer agreement (MTA) with Pfizer. Although GO was already tested in CML 

(Herrmann et al., 2012), the work presented in this thesis was performed in a more 

primitive population, compares the effect with BCR-ABL1
-
 (nCML) controls and provides 

a better understanding of the mechanism of the treatment (cell cycle, DNA damage and 

general gene expression changes). Although TKIs have been shown safe for normal HSCs, 

it has been reported that inhibition of ABL1 by TKIs in normal cells can lead to an 

increased sensitivity to DNA damaging agents (Fanta et al., 2008). Therefore, a close 

monitoring of normal HSCs in long-term GO+TKI combination treatment would be 

needed to ensure that no additional mutations are induced in the normal HSC population. 

Additionally, as shown in Chapter 4, the global direction of change of the TKIi60 genes 

between CML and normal controls is constant for most of the genes between the different 

phases of CML. However, because of the low sample size of the blast crisis group in 

CMLMC dataset this should be confirmed in an additional dataset, potentially Giustacchini 

(Giustacchini et al., 2017). If the results are confirmed, it would suggest that any treatment 

targeting the TKIi60 signature would potentially be also effective and safe for its use in the 

treatment of CML blast crisis. 

Taken together, these results and the existing literature show that CML, characterised by 

the presence of a unique oncogene, BCR-ABL1, possesses a complex molecular signature 

that goes beyond the de-regulated activity of the TK of BCR-ABL1. Despite the success of 

managing the disease by the inhibition of this unique protein domain with TKIs, the 

complexity of CML LSCs prevents current approaches to eradicate the disease. As 

discussed here, new approaches, some of them targeting the TKIi signature, have shown 

different success at eliminating CML LSCs. However, not a single approach has managed 

to completely eradicate this leukaemic population. Therefore, multiple pathways may need 

to be targeted simultaneous or sequentially in order to successfully eliminate the disease.  
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6.2 Biomarkers for TKI response and prognosis 

Risk assessment of CML patients uses scores based in different clinical factors, such as age, 

percentage of blasts, spleen size and percentage of basophils (Sokal et al., 1984, Hasford et 

al., 1998, Hasford et al., 2011). Of note, the Sokal score (Sokal et al., 1984) was developed 

using standard (cytotoxic) chemotherapy treated patients survival and the Euro score 

(Hasford et al., 1998) using IFNγ treated patients. The newer EUTOS score (Hasford et al., 

2011) is based in survival data of patients treated with IM in different European countries 

and uses the percentage of basophils and the spleen size at time of diagnosis for the 

assessment. However, despite the high specifity of the score predicting failure to achieve 

CCyR and progression free survival, the sensitivity is low (23% and 16% respectively). 

Therefore, patients classified as low-risk may not respond to TKI treatment and progress to 

a more aggressive phase of the disease. In order to improve patient classification and 

assess choice of treatment, prognostic molecular biomarkers would be of use. These 

biomarkers should detect molecular signatures predicting treatment resistance or the 

existence of a high risk blast crisis primed cell population (Giustacchini et al., 2017). 

Previous studies have investigated gene expression between TKI responders and non-

responders (McWeeney et al., 2010, Giustacchini et al., 2017). Unsupervised whole 

transcriptome analysis revealed no clear clusters between TKI responder and non-

responder CML cells (Chapter 4) (Giustacchini et al., 2017). However, gene expression 

differences have been found in BCR-ABL1
-
 cells between the two groups when a single-

cell approach has been used (Giustacchini et al., 2017). 

Although, single-cell sequencing is a very powerful technique, it is still expensive and 

challenging, making it unsuitable for its application in the clinic until more affordable and 

standardised protocols are developed. However, analysing the gene expression profile of a 

panel of genes in a bulk population is possible. A previous study investigated the gene 

expression differences between IM responders and non-responders in unselected CML 

cells finding no differences between the two groups (Crossman et al., 2005). In contrast, 

the same group was able to build a gene expression classifier using CD34
+
 enriched cells 

that correctly predicts IM response in a different set of patients, suggesting that it is 

necessary to investigate the gene expression of a more primitive cell population for 

predicting TKI response (McWeeney et al., 2010). However, this classifier did not 

correctly predict response to nilotinib, another TKI (Patel et al., 2018). As discussed 

previously (Chapter 4), this could be explained by the age difference between the IM 

responders and non-responders. 
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The work presented in this thesis shows the potential of the TKIi161 signature for predicting 

IM response by analysing gene expression data (Chapter 4). However, the TKIi161 

classifier requires more tuning (e.g. optimisation of the number of components) and be 

tested in additional datasets in order to avoid centre, population and treatment bias. The 

analysis of Patel (Patel et al., 2018) and Giustacchini (Giustacchini et al., 2017) datasets 

would be of great value as response to TKI was assessed for nilotinib and a mix of TKIs 

(IM, nilotinib, dasatinib and bosutinib) respectively.  

Interestingly, ERG expression has been found to have an important role in predicting 

patient outcome in other types of leukaemias. ERG is found overexpressed in AML and a 

higher expression is associated with poorer outcome (Marcucci et al., 2005). Similarly, 

higher expression of ERG predicts for adverse outcome in T-ALL (Baldus et al., 2006) and 

acute megakaryoblastic leukaemia (AMKL) (Salek-Ardakani et al., 2009). Intragenic 

deletions of ERG have been found in B-ALL and this constitutes a marker of good 

prognosis (Clappier et al., 2013, Harvey et al., 2010). Interestingly, ERG intragenic 

deletions were associated with a higher expression of CHST2, similarly to the findings of 

this thesis (Chapter 3). It is also of note, that the presence of ERG deletions was associated 

with a different set of patients than those expressing a BCR-ABL1 like signature in B-ALL 

(Harvey et al., 2010), supporting the TK independent role of this ERG downregulation in 

CML and, hence, the TKIi signatures. 

With this in mind, the TKIi161 signature may have the potential to compliment the EUTOS 

risk score (Hasford et al., 2011) in predicting TKI response. This might be led by the role 

of ERG as a global haematopoiesis regulator (Loughran et al., 2008, Knudsen et al., 2015). 

However, more work should be done on this before suggesting its use in a clinical setting. 

In conclusion, the work presented in this thesis confirms the existence of a BCR-ABL1 TK 

independent signature in CML LSCs (TKIi signature), which existence has long been 

assumed in the CML community. Furthermore, this signature affects pathways that have 

already been successfully targeted in CML for the elimination of CML LSCs, such as p53, 

MYC (Abraham et al., 2016) and β-catenin (Eiring et al., 2015) and includes genes that 

have been previously shown to be independent of the BCR-ABL1 TK such as MIR10A 

(Agirre et al., 2008) and ERG (Harvey et al., 2010). Additionally, it has been shown that 

targeting CD33, a member of the TKIi signature, using low concentrations of GO in CML 

CD34
+
 cells is effective and have a limited effect in normal cells. The use of the TKIi 

signature has also shown potential for predicting TKI response in CML CD34
+
 cells. 
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Taken together, the demonstration of the existence of the TKIi signature can open new 

avenues for CML treatment and may constitute a biomarker for current therapy. 

 
Figure 6-1. Proposed integration of the TKIi signature with the current literature. 
Soluble proteins are represented with ovals, membrane proteins with rectangles and drugs 

with triangles. GO is represented as an immunoglobulin. ERG promotes stemnes and 

inhibits the differentiation and proliferation pathways induced by MYC. Therefore, its 

downregulation activates MYC pathways, which reduce the expression of certain surface 

proteins, such as N-cadherin (CDH2). MYC can be inhibited using BETi. PPIF, which is 

upregulated in CML, can inhibit p53. Therefore, its inhibition with cyclosporine A (CsA) 

may activate p53 pathways in a similar way than MDM2i do. Additionally, surface 

proteins, like CD33, can be targeted with the use of monoclonal antibodies (like GO). 
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7 Appendix I 

Table 7-1. Primer sequences of the primers used for qPCR gene expression analysis. 

Reference (housekeeping) genes are marked in red. 

HGNC Forward primer Reverse primer Length 

ARHGAP18 GCCACCTCGAGTCGCAGA GATCGATCAAATGGAGGCTTCTC 89 

ASAP2 TCTCCGTGTCGGAATTCGTG ACGTCCAAAGCCTCCTCGAT 124 

ATP5B TCCATCCTGTCAGGGACTATG ATCAAACTGGACGTCCACCAC 110 

B2M TTGTCTTTCAGCAAGGACTGG ATGCGGCATCTTCAAACCTCC 172 

BMP6 TCAACCGCAAGAGCCTTCTG TCGTACTCCACCAGGTTCAC 130 

C10orf10 ACCTCCTCAGCTCCAGGTTG TCCCGAATTGTGGGCAGATG 91 

CCDC159 GTGACTCAGTCTCTGAGCGT GTCTCCAAGGGCTTCACCTG 125 

CD33 ACGTCACCTATGTTCCACAGA AATGGCCCCATGAACCACTC 98 

CDH2 AGGCTTCTGGTGAAATCGCA GCAGTTGCTAAACTTCACATTGAG 119 

CHST2 ATACTGCTGGCGATGGTAGC TTCGCTGCTTTCATCCACCT 112 

CPNE5 CTGGAAAAGCCCCTCACGAT GACACCACCGTTGGACACA 84 

DNAH10 GCAATCAACTTTTCACCGGCT TCCCAGCTGTGTACCTAAGGA 136 

DUSP18 AAGGAGAGAGCTTTGTTTAAGACTG ATTGGGGTAGAGGTTCAGCC 147 

ENOX2 GAGCTGGAGGGAACCTGATTT CACTGGCACTACCAAACTGCA 123 

ERG AGTCGAAAGCTGCTCAACCA CACTGCCTGGATTTGCAAGG 120 

ESAM CTTCCAGCGTGGTACACCTT GGACAACACCTGATCCTCCTT 111 

GAPDH ACGGATTTGGTCGTATTGGG ATTTTGGAGGGATCTGCTC 
 GIPC2 ATCAAAAGGTCCTGCCACCG TCAAACATTGTGGTGGCTAAATCA 129 

GMPR AAAGCCTTTGGAGCTGGAGCA CCGTCCGTTCCTCTCAAACA 96 

GRB10 CTACCAGGACAAGGTGGAGC CCTCCTGGTGATTCGCAAGT 98 

IGFBP2 CATGGGCGAGGGCACTTGT TCATCGCCATTGTCTGCAACC 81 

MIR10A ACCCTGTAGATCCGAATTTGTGTAA AGAGCGGAGTGTTTATGTCAACT 88 

MIR21 ATGTTGACTGTTGAATCTCATGGC TGTCAGACAGCCCATCGAC 50 

PLAG1 TGTTAAAGCCCCGCGGTTG CCCTGCTCCAAACTCTAGCA 114 

PPIF TTACACTGAAGCACGTGGGG GCCATCCAACCAGTCTGTCT 110 

PRPF8 AACGCTCACCACCAAGGAAA TGCACGTGACTATCCACCAC 105 

PTPN7 GCTTCCTGGAGCCTTCTCAG CAGCCATGAGGTCTGCTGAA 105 

RAB38 TGGGATATCGCAGGTCAAGAAA TCCACTTTGCCACTGCTTCA 124 

RASSF9 CCCCCACCCTCAGATCACTT TGGAGATCTGTTTTTATGCCGAGTC 109 

RNF180 TCTTTTTGGAGGTTTCCGCAG AACCACCATCCACGGCTATC 114 

RNF20 GGTGTCTCTTCAACGGAGGAA TAGTGAGGCATCATCAGTGGC 156 

SLC16A10 CATGTGCATTGGCGTCACTT TGAAGAAAAAGGAGAGTACCTGT 110 

TBC1D12 GCGATCACCTGCCCCC AAAAGGTTTCTGGTGAAGAAGTCC 124 

TCEB2 GGCTGTACAAGGATGACCAACTCT ATGCACAGGGCCTCAAAGGT 142 

TMEFF1 CAAGAGCATCAACTGCTCAGAATTA TGGCATGCACATTTCAAACCAT 123 

TRIM58 CGGCAGCTACCAGGTAAAGC GCTGCCTCTGCATTTCCACT 134 

TYW1 ATTGTCATCAAGACGCAGGGC GTTGCGAATCCCTTCGCTGTT 167 

UBASH3B ACCATCAAGCATGGATCGGC CCGACATGGGAGAATAACCAGT 134 

VMP1 GGGTTCCGGTTGTCTGGAG CAGTAACTCTTGAGGAGCCGC 112 

ZDBF2 ATAAGAAGGGAGAGCGCCCG GAATACTCAAGCTGGAGCAGAAAA 140 

ZMAT3 GATGCCTCCTTCAGTTCCCC GCTCTGAGGATTCCGAGAATGA 115 



 185 

8 Appendix II 

Tables containing all the over and under-represented pathways in each of the contrasts of 

the RNAseq experiment described in section 5.2.28. Calculations were performed by 

CPDB (Kamburov et al., 2013). 

Table 8-1. GO vs NDC. 

Pathway Source q-value 

Hemostasis Reactome 4.8E-12 

Platelet activation, signaling and aggregation Reactome 1.2E-09 

p53 signaling pathway - Homo sapiens (human) KEGG 3.0E-09 

Platelet degranulation  Reactome 3.3E-09 

Response to elevated platelet cytosolic Ca2+ Reactome 4.8E-09 

Formation of Fibrin Clot (Clotting Cascade) Reactome 1.9E-08 

Cell surface interactions at the vascular wall Reactome 9.0E-07 

Cytokine-cytokine receptor interaction - Homo sapiens (human) KEGG 2.6E-06 

Common Pathway of Fibrin Clot Formation Reactome 4.0E-06 

Complement and coagulation cascades - Homo sapiens (human) KEGG 7.5E-06 

Malaria - Homo sapiens (human) KEGG 1.3E-04 

Hematopoietic cell lineage - Homo sapiens (human) KEGG 1.7E-04 

Platelet Adhesion to exposed collagen Reactome 8.3E-04 

TP53 Regulates Transcription of Cell Death Genes Reactome 9.9E-04 

hemoglobins chaperone BioCarta 1.0E-03 

Peptide ligand-binding receptors Reactome 3.6E-03 

TNFs bind their physiological receptors Reactome 3.6E-03 

Erythrocytes take up oxygen and release carbon dioxide Reactome 3.9E-03 

Melanoma - Homo sapiens (human) KEGG 4.8E-03 

GP1b-IX-V activation signalling Reactome 5.2E-03 

Signal Transduction Reactome 6.0E-03 

Platelet activation - Homo sapiens (human) KEGG 6.0E-03 

TP53 Regulates Transcription of Death Receptors and Ligands Reactome 6.0E-03 

Scavenging of heme from plasma Reactome 6.0E-03 

Class A/1 (Rhodopsin-like receptors) Reactome 6.0E-03 

African trypanosomiasis - Homo sapiens (human) KEGG 6.3E-03 

Erythrocytes take up carbon dioxide and release oxygen Reactome 7.0E-03 

O2/CO2 exchange in erythrocytes Reactome 7.0E-03 

ECM-receptor interaction - Homo sapiens (human) KEGG 8.7E-03 

Amino acid synthesis and interconversion (transamination) Reactome 1.0E-02 

p53 signaling pathway BioCarta 1.1E-02 

PI3K/AKT Signaling in Cancer Reactome 1.2E-02 

Intrinsic Pathway of Fibrin Clot Formation Reactome 1.2E-02 

GPCR ligand binding Reactome 1.2E-02 

Signaling by GPCR Reactome 1.2E-02 

Chemokine receptors bind chemokines Reactome 1.4E-02 
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Apoptosis - Homo sapiens (human) KEGG 1.5E-02 

Rap1 signaling pathway - Homo sapiens (human) KEGG 1.7E-02 

Transcriptional Regulation by TP53 Reactome 2.3E-02 

Thyroid cancer - Homo sapiens (human) KEGG 2.3E-02 

Glioma - Homo sapiens (human) KEGG 2.5E-02 

MAPK family signaling cascades Reactome 2.5E-02 

Extracellular matrix organization Reactome 2.5E-02 

regulation of bad phosphorylation BioCarta 2.5E-02 

p53-Dependent G1 DNA Damage Response Reactome 2.5E-02 

p53-Dependent G1/S DNA damage checkpoint Reactome 2.5E-02 

GPCR downstream signalling Reactome 2.5E-02 

TNFR2 non-canonical NF-kB pathway Reactome 2.5E-02 

Bladder cancer - Homo sapiens (human) KEGG 2.5E-02 

hypoxia and p53 in the cardiovascular system BioCarta 2.8E-02 

Immune System Reactome 2.8E-02 

G1/S DNA Damage Checkpoints Reactome 3.0E-02 

Basal cell carcinoma - Homo sapiens (human) KEGG 3.2E-02 

PI3K-Akt signaling pathway - Homo sapiens (human) KEGG 3.2E-02 

Neutrophil degranulation Reactome 3.4E-02 

Constitutive Signaling by Aberrant PI3K in Cancer Reactome 3.6E-02 
 

Table 8-2. IM vs NDC. 

Pathway Source q-value 

Complement and coagulation cascades - Homo sapiens (human) KEGG 0.010 

GPCR ligand binding Reactome 0.010 

Formation of Fibrin Clot (Clotting Cascade) Reactome 0.010 

Signaling by GPCR Reactome 0.021 

Class A/1 (Rhodopsin-like receptors) Reactome 0.037 
 

Table 8-3. Combination treatment (GO+IM) vs NDC. 

Pathway Source q-value 

Hemostasis Reactome 9.4E-07 

Response to elevated platelet cytosolic Ca2+ Reactome 7.0E-06 

Platelet degranulation  Reactome 6.0E-05 

Cytokine-cytokine receptor interaction - Homo sapiens KEGG 1.6E-04 

Platelet activation, signaling and aggregation Reactome 1.6E-04 

Chemokine receptors bind chemokines Reactome 1.0E-03 

Nucleotide-like (purinergic) receptors Reactome 4.2E-03 

G alpha (i) signalling events Reactome 1.1E-02 

Complement and coagulation cascades - Homo sapiens KEGG 1.3E-02 

RHO GTPases activate PKNs Reactome 1.3E-02 

GPCR ligand binding Reactome 1.3E-02 
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Smooth Muscle Contraction Reactome 1.3E-02 

Class A/1 (Rhodopsin-like receptors) Reactome 1.3E-02 

p53 signaling pathway - Homo sapiens (human) KEGG 1.3E-02 

Systemic lupus erythematosus - Homo sapiens (human) KEGG 1.7E-02 

P2Y receptors Reactome 1.7E-02 

Neutrophil degranulation Reactome 2.3E-02 

RAB geranylgeranylation Reactome 2.3E-02 

cdk regulation of dna replication BioCarta 2.7E-02 

Reproduction Reactome 2.9E-02 

DNA methylation Reactome 2.9E-02 

Meiotic recombination Reactome 3.7E-02 

Amyloid fiber formation Reactome 3.7E-02 

Act PKN1 stimulates transcription of AR  
reg genes KLK2 and KLK3 Reactome 3.7E-02 

Syndecan interactions Reactome 4.6E-02 

Signal Transduction Reactome 4.6E-02 

G2/M Checkpoints Reactome 4.6E-02 

Synthesis of 5-eicosatetraenoic acids Reactome 4.7E-02 

Immunoreg interactions between Lymphoid  
and non-Lymphoid cell Reactome 8.4E-02 

Acyl chain remodelling of PE Reactome 8.4E-02 

RNA Polymerase I Promoter Opening Reactome 8.4E-02 

Cell Cycle, Mitotic Reactome 8.4E-02 

e2f1 destruction pathway BioCarta 8.5E-02 

RHO GTPase Effectors Reactome 8.5E-02 

TP53 Reg Transcription of Genes Involved  
in G1 Cell Cycle Arrest Reactome 8.5E-02 

Arachidonic acid metabolism - Homo sapiens KEGG 8.5E-02 

Mitotic G1-G1/S phases Reactome 8.5E-02 

Megakaryocyte development and  
platelet production Reactome 8.9E-02 

Cell Cycle Reactome 8.9E-02 

B-WICH complex positively regulates 
 rRNA expression Reactome 8.9E-02 

Meiosis Reactome 9.6E-02 

Condensation of Prophase Chromosomes Reactome 9.6E-02 

Mitotic Prophase Reactome 9.6E-02 

Synthesis of 12-eicosatetraenoic acid derivatives Reactome 9.6E-02 

Synthesis of 15-eicosatetraenoic acid derivatives Reactome 9.6E-02 

eicosanoid metabolism BioCarta 1.1E-01 

PRC2 methylates histones and DNA Reactome 1.2E-01 

SIRT1 negatively regulates rRNA expression Reactome 1.2E-01 

TNF receptor superfamily mediating  
non-canonical NF-kB pathway Reactome 1.4E-01 

Peptide ligand-binding receptors Reactome 1.4E-01 

RUNX1 reg megakaryocyte differentiation  Reactome 1.4E-01 



 188 

and platelet function 

Cell surface interactions at the vascular wall Reactome 1.4E-01 

Zinc transporters Reactome 1.4E-01 

Innate Immune System Reactome 1.4E-01 

rb tumor suppressor/checkpoint signaling  
in response to dna damage BioCarta 1.4E-01 

RHO GTPases activate IQGAPs Reactome 1.4E-01 

TNFR2 non-canonical NF-kB pathway Reactome 1.5E-01 

Formation of the beta-catenin: 
TCF transactivating complex Reactome 1.5E-01 

Cell cycle - Homo sapiens (human) KEGG 1.5E-01 

Transport of small molecules Reactome 1.5E-01 

DNA Damage/Telomere Stress Induced Senescence Reactome 1.5E-01 

G1/S Transition Reactome 1.5E-01 

Packaging Of Telomere Ends Reactome 1.5E-01 

Purine metabolism - Homo sapiens (human) KEGG 1.5E-01 

Senescence-Associated Secretory Phenotype (SASP) Reactome 1.6E-01 

Transcriptional misregulation in cancer - Homo sapiens KEGG 1.6E-01 

RNA Polymerase I Chain Elongation Reactome 1.6E-01 

RHO GTPases activate CIT Reactome 1.6E-01 

cell cycle: g2/m checkpoint BioCarta 1.6E-01 

cell cycle: g1/s check point BioCarta 1.6E-01 

Telomere Maintenance Reactome 1.7E-01 

ERCC6 (CSB) and EHMT2 (G9a)  
positively regulate rRNA expression Reactome 1.7E-01 

Transcriptional regulation by small RNAs Reactome 1.8E-01 

Phagosome - Homo sapiens (human) KEGG 1.8E-01 

Biosynthesis of DPAn-3 SPMs Reactome 1.8E-01 

Biosynthesis of DPA-derived SPMs Reactome 1.8E-01 

Disinhibition of SNARE formation Reactome 1.8E-01 

Immune System Reactome 1.8E-01 

Cholesterol metabolism - Homo sapiens (human) KEGG 1.8E-01 

Activation of the pre-replicative complex Reactome 1.8E-01 
 

Table 8-4. Combination treatment (GO+IM) vs IM. 

Pathway Source q-value 

Cytokine-cytokine receptor interaction - Homo sapiens (human) KEGG 3.2E-07 

Response to elevated platelet cytosolic Ca2+ Reactome 5.7E-07 

Hemostasis Reactome 1.6E-06 

Platelet degranulation  Reactome 1.9E-06 

Chemokine receptors bind chemokines Reactome 1.4E-05 

Platelet activation, signaling and aggregation Reactome 1.8E-05 

p53 signaling pathway - Homo sapiens (human) KEGG 1.2E-04 

Neutrophil degranulation Reactome 1.6E-04 
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GPCR ligand binding Reactome 1.4E-03 

G alpha (i) signalling events Reactome 1.4E-03 

Class A/1 (Rhodopsin-like receptors) Reactome 1.5E-03 

Chemokine signaling pathway - Homo sapiens (human) KEGG 3.6E-03 

RHO GTPases activate PKNs Reactome 3.6E-03 

Smooth Muscle Contraction Reactome 7.3E-03 

Cell cycle - Homo sapiens (human) KEGG 7.3E-03 

Innate Immune System Reactome 8.4E-03 

Immunoregulatory interactions between 

 a Lymphoid and a non-Lymphoid cell Reactome 1.1E-02 

Synthesis of 5-eicosatetraenoic acids Reactome 1.6E-02 

Reproduction Reactome 1.7E-02 

TP53 Regulates Transcription of Genes 

 Involved in G1 Cell Cycle Arrest Reactome 1.8E-02 

Nucleotide-like (purinergic) receptors Reactome 2.0E-02 

P2Y receptors Reactome 2.0E-02 

e2f1 destruction pathway BioCarta 2.0E-02 

Mitotic G1-G1/S phases Reactome 2.1E-02 

Signal Transduction Reactome 2.3E-02 

Cell surface interactions at the vascular wall Reactome 3.3E-02 

cell cycle: g1/s check point BioCarta 3.3E-02 

Immune System Reactome 3.4E-02 

Malaria - Homo sapiens (human) KEGG 3.4E-02 

Cell Cycle Reactome 3.4E-02 

Peptide ligand-binding receptors Reactome 3.4E-02 

p53 signaling pathway BioCarta 3.4E-02 

Complement and coagulation cascades - Homo sapiens KEGG 3.5E-02 

cyclins and cell cycle regulation BioCarta 3.5E-02 

cdk regulation of dna replication BioCarta 3.5E-02 

Cell Cycle, Mitotic Reactome 3.5E-02 

G1/S Transition Reactome 3.5E-02 

Erythrocytes take up carbon dioxide and release oxygen Reactome 3.5E-02 

O2/CO2 exchange in erythrocytes Reactome 3.5E-02 

Transcriptional misregulation in cancer - Homo sapiens KEGG 3.5E-02 

Activated PKN1 stimulates transcription of  

AR regulated genes KLK2 and KLK3 Reactome 3.9E-02 

Lysosphingolipid and LPA receptors Reactome 3.9E-02 

Systemic lupus erythematosus - Homo sapiens (human) KEGG 4.4E-02 

Meiosis Reactome 4.6E-02 

Transcriptional regulation by small RNAs Reactome 4.8E-02 

Meiotic recombination Reactome 4.9E-02 

RHO GTPases activate PAKs Reactome 5.2E-02 

Viral carcinogenesis - Homo sapiens (human) KEGG 5.4E-02 

Alcoholism - Homo sapiens (human) KEGG 5.8E-02 



 190 

DNA methylation Reactome 5.9E-02 

TNFR2 non-canonical NF-kB pathway Reactome 6.1E-02 

RUNX1 regulates megakaryocyte differentiation  

and platelet function genes Reactome 6.3E-02 

Activation of E2F1 target genes at G1/S Reactome 6.3E-02 

G1/S-Specific Transcription Reactome 6.3E-02 

Transferrin endocytosis and recycling Reactome 6.3E-02 

Mitotic Prophase Reactome 6.3E-02 

RAB geranylgeranylation Reactome 6.6E-02 

Scavenging of heme from plasma Reactome 7.2E-02 

PI3K-Akt signaling pathway - Homo sapiens (human) KEGG 7.3E-02 

Amyloid fiber formation Reactome 7.4E-02 

Phagosome - Homo sapiens (human) KEGG 7.4E-02 

Condensation of Prophase Chromosomes Reactome 7.5E-02 

TNF receptor superfamily (TNFSF) members  

mediating non-canonical NF-kB pathway Reactome 7.5E-02 

Cholesterol biosynthesis Reactome 7.7E-02 

Hematopoietic cell lineage - Homo sapiens (human) KEGG 7.8E-02 

RNA Polymerase I Promoter Opening Reactome 8.1E-02 

Formation of Fibrin Clot (Clotting Cascade) Reactome 8.1E-02 

RHO GTPases activate CIT Reactome 8.6E-02 

cell cycle: g2/m checkpoint BioCarta 8.6E-02 

Adrenaline,noradrenaline inhibits insulin secretion Reactome 8.6E-02 

regulation of p27 phosphorylation during cell cycle progression BioCarta 9.3E-02 

Serotonergic synapse - Homo sapiens (human) KEGG 9.4E-02 

Signaling by GPCR Reactome 9.9E-02 

Prostate cancer - Homo sapiens (human) KEGG 1.1E-01 

G2/M Checkpoints Reactome 1.1E-01 

Metabolism of water-soluble vitamins and cofactors Reactome 1.1E-01 

Ferroptosis - Homo sapiens (human) KEGG 1.1E-01 

S Phase Reactome 1.1E-01 

Senescence-Associated Secretory Phenotype (SASP) Reactome 1.1E-01 

Transcription of E2F targets under negative control  

by p107 (RBL1) and p130 (RBL2) in complex with HDAC1 Reactome 1.1E-01 

rb tumor suppressor/checkpoint signaling in response to dna damage BioCarta 1.1E-01 

Beta-catenin independent WNT signaling Reactome 1.2E-01 

eicosanoid metabolism BioCarta 1.2E-01 

G1/S DNA Damage Checkpoints Reactome 1.3E-01 

G0 and Early G1 Reactome 1.4E-01 

ROS, RNS production in phagocytes Reactome 1.4E-01 

Arginine and proline metabolism - Homo sapiens (human) KEGG 1.4E-01 

influence of ras and rho proteins on g1 to s transition BioCarta 1.4E-01 

cyclin e destruction pathway BioCarta 1.4E-01 

Platelet activation - Homo sapiens (human) KEGG 1.4E-01 
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GPCR downstream signalling Reactome 1.5E-01 

Ephrin signaling Reactome 1.5E-01 

ADP signalling through P2Y purinoceptor 12 Reactome 1.5E-01 
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9 Appendix III 

Tables containing all the over and under-represented GO-terms in each of the contrasts of 

the RNAseq experiment described in section 5.2.28. Calculations were performed by 

CPDB (Kamburov et al., 2013). 

Table 9-1. GO vs NDC. 

Name ID q-value 

blood coagulation GO:0007596 9.27E-11 

response to wounding GO:0009611 2.41E-09 

regulation of body fluid levels GO:0050878 5.29E-09 

platelet activation GO:0030168 5.29E-09 

regulation of signaling GO:0023051 6.75E-07 

regulation of response to stimulus GO:0048583 6.75E-07 

cell surface receptor signaling pathway GO:0007166 7.31E-07 

positive regulation of biological process GO:0048518 7.31E-07 

regulation of hemostasis GO:1900046 8.50E-07 

exocytosis GO:0006887 1.57E-06 

regulation of multicellular organismal process GO:0051239 1.97E-06 

vesicle lumen GO:0031983 1.23E-05 

intrinsic component of plasma membrane GO:0031226 1.23E-05 

apoptotic signaling pathway GO:0097190 1.38E-05 

extracellular vesicle GO:1903561 1.88E-05 

vesicle GO:0031982 1.88E-05 

intracellular signal transduction GO:0035556 3.13E-05 

anchored component of membrane GO:0031225 1.88E-05 

myeloid leukocyte migration GO:0097529 4.99E-05 

regulation of signaling receptor activity GO:0010469 4.99E-05 

response to external biotic stimulus GO:0043207 6.04E-05 

cellular response to chemical stimulus GO:0070887 7.51E-05 

haptoglobin binding GO:0031720 0.0002339 

signaling receptor binding GO:0005102 0.0002339 

leukocyte chemotaxis GO:0030595 0.00013634 

response to bacterium GO:0009617 0.00023817 

regulation of immune system process GO:0002682 0.0002661 

regulation of localization GO:0032879 0.00029603 

cell-cell adhesion GO:0098609 0.0005863 

oxidoreductase activity, acting on peroxide as 
acceptor GO:0016684 0.0012507 

chemotaxis GO:0006935 0.00080582 

response to oxygen-containing compound GO:1901700 0.00096759 

blood coagulation, fibrin clot formation GO:0072378 0.0009968 

reactive oxygen species metabolic process GO:0072593 0.0009968 

nephron development GO:0072006 0.00107965 

circulatory system process GO:0003013 0.00108591 



 193 

mononuclear cell proliferation GO:0032943 0.00108591 

response to organic substance GO:0010033 0.00115475 

collagen binding GO:0005518 0.00268898 

regulation of cellular process GO:0050794 0.00127104 

regulation of cell adhesion GO:0030155 0.00139654 

negative regulation of biological process GO:0048519 0.00184145 

cell differentiation GO:0030154 0.00190798 

glycosaminoglycan binding GO:0005539 0.00390458 

programmed cell death GO:0012501 0.00251474 

regulation of developmental process GO:0050793 0.00255447 

transport GO:0006810 0.00321951 

oxygen binding GO:0019825 0.00697998 

muscle system process GO:0003012 0.00429025 

defense response GO:0006952 0.00496074 

blood coagulation, intrinsic pathway GO:0007597 0.00496074 

glomerulus development GO:0032835 0.00602575 

heparin binding GO:0008201 0.01019035 

G-protein coupled receptor signaling pathway GO:0007186 0.00939751 

cellular oxidant detoxification GO:0098869 0.00940964 

cytoplasmic vesicle part GO:0044433 0.0141549 

cell junction organization GO:0034330 0.01059913 

TRAIL binding GO:0045569 0.01633244 

tissue development GO:0009888 0.01108119 

extracellular structure organization GO:0043062 0.01110228 

transferase activity, transferring nitrogenous groups GO:0016769 0.01633244 

external side of plasma membrane GO:0009897 0.0141549 

intracellular vesicle GO:0097708 0.0141549 

membrane microdomain GO:0098857 0.0141549 

blood vessel development GO:0001568 0.01213232 

humoral immune response GO:0006959 0.0149378 

hemoglobin binding GO:0030492 0.02227085 

cell aging GO:0007569 0.01680404 

signal transduction by protein phosphorylation GO:0023014 0.01808314 

response to toxic substance GO:0009636 0.01943658 

lipopolysaccharide binding GO:0001530 0.02711697 

integral component of membrane GO:0016021 0.03011549 

response to drug GO:0042493 0.02735792 

cofactor metabolic process GO:0051186 0.02735792 

cell activation involved in immune response GO:0002263 0.02829326 

cytokine production involved in immune response GO:0002367 0.02829326 

ectopic germ cell programmed cell death GO:0035234 0.02898383 

cell adhesion molecule binding GO:0050839 0.0412482 

smooth muscle cell proliferation GO:0048659 0.03217981 

leukocyte degranulation GO:0043299 0.03291973 

signaling receptor activity GO:0038023 0.04140678 
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renal system process GO:0003014 0.03332496 

cell development GO:0048468 0.03332496 

cellular chemical homeostasis GO:0055082 0.03332496 

heme binding GO:0020037 0.04140678 

regulation of catalytic activity GO:0050790 0.03510374 

scaffold protein binding GO:0097110 0.04140678 

dendritic cell migration GO:0036336 0.03708241 

cell-cell adherens junction GO:0005913 0.04834098 

response to transforming growth factor beta GO:0071559 0.03798788 

system development GO:0048731 0.03833257 

mononuclear cell migration GO:0071674 0.04148662 

response to xenobiotic stimulus GO:0009410 0.04406183 

calmodulin binding GO:0005516 0.05334254 

 

Table 9-2. IM vs NDC. 

Name ID q-value 

regulation of multicellular organismal process GO:0051239 3.3E-06 

regulation of response to stimulus GO:0048583 5.6E-05 

cell surface receptor signaling pathway GO:0007166 5.6E-05 

response to organic substance GO:0010033 5.3E-04 

negative regulation of biological process GO:0048519 5.5E-04 

regulation of hemostasis GO:1900046 5.7E-04 

regulation of signaling GO:0023051 1.4E-03 

blood coagulation, fibrin clot formation GO:0072378 1.9E-03 

regulation of developmental process GO:0050793 2.3E-03 

positive regulation of biological process GO:0048518 3.2E-03 

cellular response to chemical stimulus GO:0070887 8.3E-03 

leading edge membrane GO:0031256 2.7E-02 

chemotaxis GO:0006935 9.7E-03 

trabecula morphogenesis GO:0061383 9.7E-03 

tissue development GO:0009888 1.8E-02 

system development GO:0048731 1.8E-02 

response to nerve growth factor GO:1990089 1.9E-02 

regulation of localization GO:0032879 1.9E-02 

isoprenoid binding GO:0019840 6.1E-02 

regulation of cellular process GO:0050794 1.9E-02 

cardiac muscle tissue growth GO:0055017 2.2E-02 

signal transduction by protein phosphorylation GO:0023014 2.2E-02 

heart growth GO:0060419 2.6E-02 

animal organ development GO:0048513 2.6E-02 

secondary metabolite biosynthetic process GO:0044550 2.6E-02 

regulation of synapse structure or activity GO:0050803 2.6E-02 

G-protein coupled receptor signaling pathway GO:0007186 2.6E-02 

G-protein alpha-subunit binding GO:0001965 6.5E-02 
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animal organ morphogenesis GO:0009887 2.8E-02 

nuclear membrane GO:0031965 5.5E-02 

cell differentiation GO:0030154 2.8E-02 

regulation of locomotion GO:0040012 3.0E-02 

intrinsic component of plasma membrane GO:0031226 5.5E-02 

blood coagulation GO:0007596 3.0E-02 

regulation of signaling receptor activity GO:0010469 3.0E-02 

intracellular signal transduction GO:0035556 3.0E-02 

proteinaceous extracellular matrix GO:0005578 5.5E-02 

blood vessel development GO:0001568 3.2E-02 

tube morphogenesis GO:0035239 3.3E-02 

negative regulation of molecular function GO:0044092 3.4E-02 

response to oxygen-containing compound GO:1901700 3.4E-02 

tube development GO:0035295 3.4E-02 

response to wounding GO:0009611 3.4E-02 

regulation of binding GO:0051098 3.5E-02 

regulation of cellular component biogenesis GO:0044087 3.7E-02 

vesicle GO:0031982 7.2E-02 

developmental growth involved in 
morphogenesis GO:0060560 4.6E-02 

cellular response to endogenous stimulus GO:0071495 4.6E-02 

 

Table 9-3. Combination (GO+IM) vs NDC. 

Name ID q-value 

cellular response to chemical stimulus GO:0070887 1.5E-05 

regulation of immune system process GO:0002682 1.5E-05 

response to wounding GO:0009611 1.7E-05 

response to oxygen-containing compound GO:1901700 1.7E-05 

response to organic substance GO:0010033 1.7E-05 

negative regulation of biological process GO:0048519 1.7E-05 

extracellular vesicle GO:1903561 3.8E-05 

regulation of localization GO:0032879 1.8E-05 

regulation of response to stimulus GO:0048583 2.2E-05 

regulation of multicellular organismal process GO:0051239 4.1E-05 

exocytosis GO:0006887 5.0E-05 

intrinsic component of plasma membrane GO:0031226 1.3E-04 

cell activation involved in immune response GO:0002263 6.3E-05 

defense response GO:0006952 7.9E-05 

cellular chemical homeostasis GO:0055082 9.6E-05 

integral component of membrane GO:0016021 2.0E-04 

blood coagulation GO:0007596 1.7E-04 

regulation of signaling GO:0023051 2.0E-04 

leukocyte mediated immunity GO:0002443 2.6E-04 

vesicle GO:0031982 3.9E-04 
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cytoplasmic vesicle part GO:0044433 7.0E-04 

chemotaxis GO:0006935 9.0E-04 

response to bacterium GO:0009617 9.0E-04 

leukocyte degranulation GO:0043299 9.5E-04 

regulation of locomotion GO:0040012 1.2E-03 

leukocyte chemotaxis GO:0030595 1.2E-03 

oxidoreductase activity, acting on single  
donors with incorporation of O2 GO:0016701 1.0E-02 

response to external biotic stimulus GO:0043207 1.3E-03 

mitotic cell cycle process GO:1903047 1.3E-03 

negative regulation of molecular function GO:0044092 1.5E-03 

cell surface receptor signaling pathway GO:0007166 1.5E-03 

homeostatic process GO:0042592 1.6E-03 

intracellular signal transduction GO:0035556 2.1E-03 

regulation of hemostasis GO:1900046 2.1E-03 

platelet activation GO:0030168 2.2E-03 

positive regulation of biological process GO:0048518 2.9E-03 

secretory granule membrane GO:0030667 6.0E-03 

cell differentiation GO:0030154 3.3E-03 

vesicle lumen GO:0031983 6.0E-03 

regulation of developmental process GO:0050793 3.8E-03 

regulation of body fluid levels GO:0050878 3.9E-03 

protein dimerization activity GO:0046983 2.8E-02 

regulation of binding GO:0051098 4.2E-03 

humoral immune response GO:0006959 5.2E-03 

system development GO:0048731 6.2E-03 

external side of plasma membrane GO:0009897 1.0E-02 

circulatory system process GO:0003013 6.6E-03 

regulation of anatomical structure size GO:0090066 6.7E-03 

transport GO:0006810 7.3E-03 

mitotic cell cycle GO:0000278 7.3E-03 

animal organ development GO:0048513 7.3E-03 

myeloid leukocyte migration GO:0097529 7.3E-03 

cellular oxidant detoxification GO:0098869 7.3E-03 

cell adhesion molecule binding GO:0050839 5.3E-02 

nucleosome GO:0000786 2.2E-02 

response to hormone GO:0009725 1.3E-02 

response to drug GO:0042493 1.5E-02 

somatic diversification immune receptors  
via germline recomb single locus GO:0002562 1.8E-02 

intracellular vesicle GO:0097708 3.0E-02 

identical protein binding GO:0042802 8.1E-02 

immunoglobulin production GO:0002377 1.8E-02 

protein secretion GO:0009306 1.9E-02 

response to inorganic substance GO:0010035 1.9E-02 
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hydrolase activity, acting on acid anhydrides GO:0016817 8.1E-02 

organic acid metabolic process GO:0006082 2.0E-02 

tube morphogenesis GO:0035239 2.1E-02 

tissue development GO:0009888 2.4E-02 

cell cycle phase transition GO:0044770 2.6E-02 

mononuclear cell migration GO:0071674 2.6E-02 

somatic diversification of immunoglobulins GO:0016445 2.6E-02 

G-protein coupled receptor signaling pathway GO:0007186 2.7E-02 

innate immune response GO:0045087 2.8E-02 

fibroblast growth factor production GO:0090269 2.9E-02 

regulation of fibroblast growth factor production GO:0090270 2.9E-02 

regulation of cellular process GO:0050794 2.9E-02 

regulation of hormone levels GO:0010817 3.0E-02 

multicellular organism aging GO:0010259 3.0E-02 

blood coagulation, fibrin clot formation GO:0072378 3.9E-02 

sphingolipid binding GO:0046625 1.7E-01 

tube development GO:0035295 4.1E-02 

neuron cellular homeostasis GO:0070050 4.1E-02 

adaptive immune response GO:0002250 4.1E-02 

cellular response to endogenous stimulus GO:0071495 4.1E-02 

reactive oxygen species metabolic process GO:0072593 4.4E-02 

ligase activity, forming carbon-nitrogen bonds GO:0016879 1.8E-01 

regulation of signaling receptor activity GO:0010469 4.5E-02 

response to radiation GO:0009314 4.5E-02 

response to acid chemical GO:0001101 4.5E-02 

mating GO:0007618 4.7E-02 

complement activation GO:0006956 4.7E-02 

small molecule catabolic process GO:0044282 4.9E-02 

vesicle membrane GO:0012506 1.2E-01 

apoptotic signaling pathway GO:0097190 5.0E-02 

response to extracellular stimulus GO:0009991 5.0E-02 

proteoglycan binding GO:0043394 1.8E-01 

enzyme inhibitor activity GO:0004857 1.8E-01 

cell-cell adherens junction GO:0005913 1.3E-01 

signaling receptor binding GO:0005102 1.8E-01 

angiogenesis GO:0001525 6.2E-02 

sulfur compound metabolic process GO:0006790 6.4E-02 

cell-cell adhesion GO:0098609 6.9E-02 

protein to membrane docking GO:0022615 7.2E-02 

oxidoreductase activity, acting on superoxide  
radicals as acceptor GO:0016721 2.0E-01 

elastic fiber GO:0071953 1.5E-01 

muscle thin filament tropomyosin GO:0005862 1.5E-01 

nucleoside binding GO:0001882 2.0E-01 

lipid localization GO:0010876 7.3E-02 
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epithelium migration GO:0090132 7.6E-02 

anion binding GO:0043168 2.1E-01 

type B pancreatic cell proliferation GO:0044342 7.9E-02 

keratinocyte proliferation GO:0043616 8.4E-02 

smooth muscle cell proliferation GO:0048659 8.5E-02 

mating behavior GO:0007617 8.5E-02 

carbon-sulfur lyase activity GO:0016846 2.2E-01 

 

Table 9-4. Combination treatment (GO+IM) vs IM. 

Name ID q-value 

extracellular vesicle GO:1903561 1.4E-08 

intrinsic component of plasma membrane GO:0031226 6.8E-08 

integral component of membrane GO:0016021 7.9E-07 

exocytosis GO:0006887 8.1E-06 

cell activation involved in immune response GO:0002263 8.1E-06 

leukocyte mediated immunity GO:0002443 1.1E-05 

regulation of response to stimulus GO:0048583 1.8E-05 

regulation of immune system process GO:0002682 1.8E-05 

leukocyte degranulation GO:0043299 3.2E-05 

chemotaxis GO:0006935 3.7E-05 

vesicle GO:0031982 2.9E-05 

cell surface receptor signaling pathway GO:0007166 4.2E-05 

cellular response to chemical stimulus GO:0070887 4.2E-05 

leukocyte chemotaxis GO:0030595 4.2E-05 

response to wounding GO:0009611 5.7E-05 

regulation of localization GO:0032879 1.1E-04 

vesicle lumen GO:0031983 9.3E-05 

regulation of signaling receptor activity GO:0010469 1.2E-04 

defense response GO:0006952 1.6E-04 

response to oxygen-containing compound GO:1901700 2.2E-04 

external side of plasma membrane GO:0009897 2.1E-04 

myeloid leukocyte migration GO:0097529 2.5E-04 

regulation of signaling GO:0023051 3.3E-04 

signaling receptor activity GO:0038023 2.6E-03 

response to organic substance GO:0010033 6.1E-04 

regulation of multicellular organismal process GO:0051239 6.4E-04 

cellular chemical homeostasis GO:0055082 6.6E-04 

intracellular signal transduction GO:0035556 6.9E-04 

protein dimerization activity GO:0046983 4.2E-03 

mitotic cell cycle process GO:1903047 1.0E-03 

cytoplasmic vesicle part GO:0044433 1.4E-03 

platelet activation GO:0030168 1.5E-03 

response to bacterium GO:0009617 1.6E-03 

blood coagulation GO:0007596 1.6E-03 
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regulation of locomotion GO:0040012 1.9E-03 

cell differentiation GO:0030154 2.5E-03 

mononuclear cell migration GO:0071674 2.8E-03 

response to external biotic stimulus GO:0043207 3.0E-03 

regulation of developmental process GO:0050793 3.0E-03 

secretory granule membrane GO:0030667 4.1E-03 

extracellular structure organization GO:0043062 6.2E-03 

cellular oxidant detoxification GO:0098869 6.3E-03 

cell cycle phase transition GO:0044770 6.3E-03 

identical protein binding GO:0042802 3.2E-02 

somatic diversification of immunoglobulins GO:0016445 7.1E-03 

negative regulation of biological process GO:0048519 7.4E-03 

system development GO:0048731 7.4E-03 

immunoglobulin production GO:0002377 7.6E-03 

proteinaceous extracellular matrix GO:0005578 1.1E-02 

humoral immune response GO:0006959 8.2E-03 

somatic diversification of immune receptors  
via germline recomb single locus GO:0002562 8.7E-03 

mitotic cell cycle GO:0000278 8.7E-03 

heparin binding GO:0008201 3.8E-02 

regulation of anatomical structure size GO:0090066 1.1E-02 

oxidoreductase activity, acting on single  
donors with incorporation of O2 GO:0016701 3.8E-02 

positive regulation of biological process GO:0048518 1.1E-02 

apoptotic signaling pathway GO:0097190 1.1E-02 

cell-cell adhesion GO:0098609 1.1E-02 

homeostatic process GO:0042592 1.2E-02 

lymphocyte migration GO:0072676 1.3E-02 

intracellular vesicle GO:0097708 2.5E-02 

glycosaminoglycan binding GO:0005539 5.1E-02 

tissue development GO:0009888 1.8E-02 

anchored component of membrane GO:0031225 2.7E-02 

collagen binding GO:0005518 5.3E-02 

signaling receptor binding GO:0005102 5.3E-02 

animal organ development GO:0048513 2.2E-02 

regulation of cellular component size GO:0032535 2.3E-02 

myofilament GO:0036379 3.5E-02 

regulation of body fluid levels GO:0050878 2.8E-02 

oxidoreductase activity, acting on peroxide as acceptor GO:0016684 6.5E-02 

G-protein coupled receptor signaling pathway GO:0007186 3.0E-02 

adaptive immune response GO:0002250 3.2E-02 

regulation of binding GO:0051098 3.2E-02 

protein secretion GO:0009306 3.6E-02 

muscle thin filament tropomyosin GO:0005862 5.5E-02 

Ragulator complex GO:0071986 5.8E-02 
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actin filament binding GO:0051015 9.6E-02 

cell development GO:0048468 4.8E-02 

cytoskeletal protein binding GO:0008092 9.6E-02 

peptidase regulator activity GO:0061134 9.6E-02 

regulation of catalytic activity GO:0050790 5.1E-02 

supramolecular fiber organization GO:0097435 5.8E-02 

actin cytoskeleton organization GO:0030036 5.8E-02 

cellular modified amino acid metabolic process GO:0006575 5.8E-02 

response to inorganic substance GO:0010035 5.8E-02 

cellular component morphogenesis GO:0032989 6.7E-02 

regulation of cell adhesion GO:0030155 7.0E-02 

programmed cell death GO:0012501 7.0E-02 

circulatory system process GO:0003013 7.4E-02 

regulation of hemostasis GO:1900046 7.5E-02 

oligosaccharide binding GO:0070492 1.5E-01 

nucleosome GO:0000786 1.2E-01 

regulation of bone resorption GO:0045124 9.3E-02 

positive regulation of molecular function GO:0044093 9.7E-02 

transport GO:0006810 1.0E-01 

negative regulation of molecular function GO:0044092 1.0E-01 
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