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ABSTRACT 

This thesis examines some aspects of milk yield manipulation utilizing some factors 

that can affect the function of the mammary gland. 

In the first part of study, the effect of photoperiod on lactation performance in the 

goats was studied, and particularly to investigate if this response can be potentiated by prior 

exposure to short periods of short days elicited by melatonin treatment. Long light did not 

produce a clear stimulatory effect on milk yield, but a small response was seen in autumn 

and only in goats that were not treated by melatonin. Repeated short cycles of melatonin did 

not sensitize lactating goats to subsequent long light effect on milk yield regardless of stage 

of lactation or commencement time of year. Indeed, this treatment might produce a 

detrimental effect on milk yield when applied in early lactation. 

The second part of the study was to determine the maximum metabolic capacity of 

cows from different genetic merit. We adopted a multiple galactopoietic stimuli, increasing 

milking frequency, bovine somatotropin and thyroxine, applied in additive stepwise fashion 

at peak yield to cows from high and low genetic merit. This approach was successfully 

drove the cows into what we believe their maximum metabolic capacity. Milk yield was 

increased in an additive fashion at each stimuli. The increase in milk yield capacity was 

associated with mammary growth which was detected during the maximum stimuli. There 

was no significant difference in the response to the galactopoietic stimuli between cows from 

different genetic merit which did not suggest that high genetic merit cows are milking closer 

to their maximum capacity and, therefore, at greater risk of collapse of metabolic control 

than low genetic merit cows. 
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CHAPTER ONE 

REVIEW OF LITERATURE 

1.1 INTRODUCTION 

Milk yield is greatly influenced by the total number of secretory cells of the 

mammary gland which is determined mostly during mammary development occurring 

during pregnancy. It has been estimated in the rat that the increase in milk secretion between 

parturition and peak lactation might be brought about entirely by increase in cell number 

(Knight et at., 1984). Cellular differentiation which enhance the secretory activity will also 

contribute to the increase in milk yield (Wilde & Kuhn, 1979). In the goat, cellular 

proliferation does not continue till peak lactation rather it ceases within 2-3 weeks after 

parturition (Knight & Peaker, 1984; Wilde et al., 1986) indicating that the increase in cell 

number may be less important as a determinant of milk yield in early lactation in the goat, 

and the increase in cellular synthetic capacity contributes mostly to the rise in milk yield up 

to peak lactation. In the declining phase of lactation cellular activity, as determined by 

enzyme activities and in vitro lactose and casein synthesis rate, is not changed, but it is the 

loss of cellular number that is the major factor in the gradual fall of the milk yield (Wilde 

et al., 1986). Initial milk yield and persistency of lactation, which is defined as the rate of 

decline in milk yield after peak lactation is achieved are important factors affecting the 

shape of the lactation curve of the lactating cow. A great amount of attention has been made 

in the period of when milk yield starts to decline looking for ways of manipulating the 

lactation curve in a manner that will increase milk yield or maintain milk secretion and 

hence improve persistency which overall results in increase in total milk produced in the 

lactation cycle. This can be achieved in part by maintaining the milk secretion capacity of 

the mammary gland by stimulating cellular proliferation and mammary growth, slowing the 
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rate of cell death (apoptosis), or increasing the secretory activity per cell. A number of 

stimuli can achieve this improvement in lactation, which includes alteration in systemic 

hormonal levels (growth hormone or bovine somatotropin, thyroxine), alteration in a local 

factor that regulates milk secretion rate (frequent milking), or manipulation of the external 

environment, ie photoperiod (Blaxter et al., 1949; Tucker, 1985; Wilde et al., 1995). 

Milk secretion is highly regulated by the endocrine system, which has a major role 

to play in providing an optimum environment to support the huge metabolic demand for 

milk secretion in early lactation and for lactation to be maintained. For example, alteration 

in the secretory activity of lactotrophs and somatotrophs in the anterior pituitary ensures 

high levels of prolactin and growth hormone in the circulation. Another example which is 

related to the adaptation of the endocrine system is alteration in the metabolic activity of 

some organs and tissues in a way that will provide a support for milk secretion. The 

stimulatory effect of insulin on adipose tissue is reduced or diminished in the lactating 

animal (Vernon, 1989), for instance. In this chapter, hormones that are closely related to 

milk production will be reviewed. Galactopoietic factors that have been employed in 

manipulating milk production, which include local factors (frequent milking), environmental 

factors (photoperItiod) will be discussed. Finally, the most widely used to improve milk 

production, genetic selection, will be discussed with emphasis on some physiological factors 

that have been altered in response to genetic selection for high milk production. 

1.2 PROLACTIN 

1.2.1 Prolactin structure and receptor 

Prolactin (PRL) is one member of a family of closely related polypeptide hormones 

which includes growth hormone, placental lactogen and PRL. Generally, it consists of 

around 197-199 amino acid residues with a molecular weight of around 23,000 da. Although 
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the major form of PRL exists in a monomer form; different studies have reported different 

forms of PRL with different molecular weights and possibly different biological potencies. 

In mouse serum, Sinha, (1980) reported the existence of a large molecular weight form 

("big big"), intermediate ("big") together with the monomeric form ("little"). Another form 

of PRL which has been detected is the glycosylated form with a possible different biological 

potency and immunoreactivity from reference PRL (Lewis et al., 1984). The physiological 

significance of these different forms is not fully understood, but they may be preferentially 

secreted in response to specific physiological situations. For example, a shift in molecular 

size distribution in response to milking in cows in which the big form disappeared and the 

big-big form appeared in the circulation after milking (Gala & Hart, 1980). Also, in the ram 

PRL variants with higher molecular weights are at significantly higher concentrations in the 

pituitary of rams maintained in the winter months (Stroud et at., 1992). It can be anticipated 

that different variants of PRL are secreted by specific stimuli or releasing factors to serve 

specific biological activities in specific target cells; a concept which is in agreement with 

the wide biological activity of PRL in different tissues and organs. However, whether a 

single lactotroph cell has the ability to produce different variants or different cells produce 

specific variants is not known. 

In order for PRL to manifest its effect on target cells, it must first bind to specific 

binding sites on the surface membrane on these cells. Receptors for PRL belong to the 

growth hormone/prolactin cytokine family (Wallis, 1992) which is characterized by a 

transmembrane domain and absence of intrinsic tyrosine kinase. Studies with PRL receptor 

have indicated the presence of two different forms of PRL receptor; low form with a 

molecular weight of about 35,000 da and a large one with around 85,000 da and this 

difference is attributed to the length of the cytoplasmic domain (Kelly et al., 1992). The two 

forms could be transcribed from multiple mRNA species like the situation in rat liver and 
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mammary gland (Jahn et al., 1991), but in the rabbit mammary gland they result from post- 

translational processing of a single long form of the receptor (Edery et al., 1989). In the rat, 

the molecular form of the receptors showed variation according to the developmental state, 

and some PRL receptors variants are preferentially present in specific physiological 

situations. For example, low molecular weight form is present in the mammary gland only 

during lactation (Guillaumot & Cohen, 1994); the short form predominates in some tissues 

like liver and mammary gland whereas the long form is present at high concentrations in 

other tissues like the ovary (Kelly et al., 1992). However, in the cow apparently only one 

form of receptor of molecular weight of 36,000 is present throughout the developmental 

stages of the mammary gland (Smith et al., 1993). The structural heterogeneity of PRL 

receptors might suggest different signal transduction mechanisms which might be involved 

in mediating the PRL actions in different target tissues and developmental stages. 

1.2.2 Control of PRL secretion 

Prolactin is secreted by secretory cells, lactotrophs, in the adenohypophysis. A 

number of neurotransmitters and peptides which are synthesised in the hypothalamus and 

transported to the anterior pituitary, via portal blood system, exert either stimulatory or 

inhibitory effects on PRL release. The role of the hypothalamus in mediating inhibitory 

effects on PRL secretion was demonstrated when the anterior pituitary gland was separated 

from the hypothalamus, which resulted in steady increase in PRL secretion (Nagy et al., 

1979; Lincoln & Clarke, 1995) suggesting the removal of mainly inhibitory factor(s) from 

the hypothalamus. 

Different factors produced mainly by the hypothalamus have the capability to exert, 

with varying degree, an inhibitory effect on PRL synthesis and release, but dopamine is 

considered to be the predominant one and widely recognized as the prolactin inhibitory 
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factor (PIF). Dopamine is a neurotransmitter synthesised in neurons of the arcuate nucleus 

whose axons terminate in the median eminence capillary, and is then released into portal 

vessels and transferred to the anterior pituitary (Moore, 1987) where it interacts with D2 

subtype of dopaminergic receptors on the lactotrophs causing inhibition of PRL release 

(Ramsdell et al., 1985; Moore, 1987). Dopamine also inhibits PRL gene transcription and 

suppresses lactotroph proliferation (Ben Jonathan, 1985). The specificity of the inhibitory 

effect of dopamine on PRL release is clear since removal of the dopaminergic influence by 

dopaminergic blockers increase PRL release by competing with dopamine receptors and 

hence blocking the inhibitory action of dopamine (Lopez et al., 1989; Lincoln & Clarke, 

1995). Therefore, dopamine has a major role to play in regulating the PRL release and it 

has been suggested that chronic tonus of dopamine is responsible for the basal levels of PRL 

and during periods of physiological stimulation the coordinated action of stimulating factors 

coupled with a transient decline in the dopaminergic system results in augmenting the PRL 

release (Ben Jonathan et al., 1980; De Greef & Visser, 1981). 

Also, several factors of hypothalamic origin exert some regulatory mechanism on 

PRL release. The ability of y-Aminobutryic Acid (GABA) to inhibit PRL release in vitro 

was demonstrated (Lamberts & Macleod, 1978) but only with high doses by acting directly 

on the anterior pituitary (Grandison & Guidotti, 1979). Somatostatin (SRIF), which is a 

potent inhibitor of growth hormone release, also has the ability to induce inhibitory effect 

on basal as well as stimulated PRL release as has been demonstrated in the rat pituitary cells 

in culture (Hanew & Rennels, 1982), but this inhibitory effect seems to be oestrogen (E2) 

dependent, since E2 can act directly to regulate the sensitivity of lactotrophs to somatostatin 

possibly by modifying the number of its receptors (Kimura et al., 1986). The presence of 

PIF in the posterior pituitary lobe was reported by Ben-Jonathan and Peters (1982), when 

they observed an elevation of basal PRL after posterior pituitary lobectomy in the rat which 
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suggested the presence of an inhibitory factor in this area of pituitary. The posterior 

pituitary lobe participates in PRL regulation most probably by acting as another way of 

delivering dopamine to the anterior pituitary (Ben jonathan, 1985); since some of the axones 

of the neurones of the arcuate nucleus which synthesize dopamine terminate in the posterior 

lobe. 

Although a primary PRL releasing factor has not yet been identified, several factors 

with PRL releasing activity have been described under different physiological conditions. 

Several factors have been reported to show stimulatory effects on PRL release with different 

origin and different potency. Vasoactive intestinal peptide (VIP) which originates mainly 

from the paraventricular nucleus in the hypothalamus which is transported to the anterior 

pituitary via the portal blood system (Abe et al., 1985) where it can act directly on 

lactotrophs to stimulate PRL release (Kato et al., 1978), and the significance of this peptide 

in PRL regulation has been demonstrated by the finding that passive immunization with 

antisera against VIP reduced PRL secretion (Kaji et al., 1985). A possible involvement of 

VIP in the physiglogical control of PRL during lactation has been suggested in which 

lactation induces a significant increase in VIP synthesis in the suprachiasmatic nucleus 

(Gozes et al., 1989). It has been suggested that VIP may regulate PRL release through an 

intracellular mechanism since the lactotrophs have the capability to synthesis VIP and hence 

act as an autocrine factor to stimulate PRL synthesis (Arnaout et al., 1986; Balsa et al., 

1996). 

Thyrotropin-releasing hormone (TRH) is another factor with the ability to stimulate 

PRL secretion by acting directly at the level of the anterior pituitary to stimulate PRL 

release. Administration of TRH resulted in a significant increase in PRL in cattle (Vines et 

al., 1976; Marcek & Swanson , 1984), also, it has been suggested that TRH may be 

involved in the regulation of suckling-induced PRL release (De Greef et al., 1987). 
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Serotonin or serotonin precursors exert some stimulatory actions on PRL release from the 

anterior pituitary (Lu & Meits, 1978). Serotonin has been suggested to mediate its effect on 

PRL release by modulating dopamine release (Pilotte & Porter, 1981) and it increases TRH 

and VIP concentrations in the portal system (Jordan et al., 1978; Shimatsu et al., 1982). 

The presence of PRF in the posterior pituitary lobe was reported when the posterior 

lobe was excised from lactating rats which prevented suckling-induced PRL release 

suggesting the requirement of the posterior lobe for this phenomenon (Murai & Ben- 

jonathan, 1987). Furthermore, posterior pituitary extracts stimulate PRL release from the 

anterior pituitary in vitro (Hyde & Ben Jonathan, 1988) and in vivo (Hyde & Ben Jonathan, 

1989), but the nature of this releasing factor and how it mediates its effect on PRL release 

is still to be determined. 

Oestrogen is considered to be a potent factor regulating PRL release since E2 can 

act directly on lactotrophs to stimulate synthesis and secretion of PRL (Augustine & 

Macleod, 1975; Kino & Dannies, 1981) and also exerts a mitogenic effect on lactotrophs 

(Amara et al., 1987). Furthermore, E2 can modulate the hypothalamic PRL inhibitory and 

stimulatory factors and thereby affecting the responsiveness of lactotrophs to regulatory 

factors. For example, E2 has been shown to decrease dopamine release and receptors on 

lactotrophs (Cramer et al., 1979; West & Dannies, 1980) and enhance the stimulatory effect 

of TRH (Hu & Lawson, 1994) by increasing its receptors on lactotrophs (Gershengorn et 

al., 1979). Although stimulatory effect of E2 on PRL release has been well documented, 

under specific conditions E2 can also exert inhibitory effect on PRL secretion (Shull & 

Gorski, 1989). 

Other factors that have been reported to have stimulatory effect on PRL release were 

oxytocin, angiotensin II, insulin-like growth factor-I, opiates, met-enkephalines and several 

growth factors (Lamberts & Macleod, 1990). 
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1.2.3 The influence of season on PRL release 

Seasonal influence on PRL release is considered to be important in determining the 

levels of circulating PRL, with two seasonal factors that are notably involved, photoperiod 

and ambient temperature. Concentrations of PRL in sera are highest during the long light 

days and lowest during the short days in seasonally breeding animals like sheep and goats 

(Lincoln & Ebling, 1985; Emesih et al., 1993) and also in non-seasonally breeding animals 

like the cow (Koprowski & Tucker, 1973). 

Photoperiod influences PRL release via its effect on melatonin (MEL) which is 

produced by the pineal gland. It has been demonstrated that elimination of MEL from the 

circulation by pinealectomy abolishes the normal photoperiod-induced changes in PRL in 

the sheep (Brinklow & Forbes, 1984a) and disrupts the seasonal variation in PRL profiles 

in the deer (Schulte et al., 1981); in the goats, superior cervical ganglionectomy which 

perturbs the pineal-photoperiod pathway also disrupts the annual cycle of PRL profiles 

(Buttle, 1977; Maeda et al., 1986). However, pinealectomy in cattle has little or no effects 

on PRL induction by long light exposure (Petitclerc et at., 1983; Stanisiewski et al., 1988). 

Thus, MEL is considered to be a prime candidate for regulating the fluctuation in seasonal 

PRL profiles in the seasonally breeding animals but to have less role in non-seasonally 

breeding animal like cattle. 

The diurnal rhythm of MEL secretion follows the light-dark cycle. Melatonin 

profiles during the dark period of the day are characterized by peak values and it is 

suppressed during the light period (Rollag & Niswender, 1976). It is the duration of 

nocturnal MEL secretion rather than the amplitude which provides an endocrine index of 

night length and thus the day length. Consequently, infusion of pinealectomized rams with 

MEL induced biological responses correlating with the duration of infusion and thus the 

duration of elevated MEL profile is the mediator of day length on biological activities 
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affected by season (Lincoln, 1992). Both sheep and goats in temperate climates are short day 

breeders; their reproductive cycle initiates in response to decreasing day length in the 

autumn. Therefore, increase in the duration of MEL secretion is the key factor in triggering 

an endocrine response that leads to start of breeding season (Arendt, 1986; Chemineau et 

al., 1986). Consequently, MEL has been used to advance the breeding season in sheep and 

goats (Arendt, 1986; Deveson et al., 1992a). Administration of MEL is an effective way 

of advancing the breeding season by around two months in the sheep, and mimics the effects 

of short days on PRL release when administered during long days (Arendt, 1986). Thus, 

MEL signal is mediating the multiple effects of photoperiod on timing of seasonal 

reproductive cycle and seasonal variation in PRL release. However, the exact mechanism 

by which MEL regulates the seasonal PRL profiles is not fully understood, but two 

pathways have been suggested; by acting through the hypothalamus and hence modulating 

the PRF or PIF involved in PRL release, or acting directly on the anterior pituitary to 

regulate the PRL release. 

Local administration of MEL within the hypothalamus by microimplants inserted into 

the mediobasal hypothalamus during long days exposure in the ram induced a short day 

response effect on PRL release (Lincoln & Maeda, 1992). This suggests that the mediobasal 

hypothalamus might be a site of MEL action in the photoperiodic influence on PRL release, 

possibly by affecting the release of neurotransmitters or neuropeptides that are involved in 

PRL secretion regulation. Although the part of the neural system which might be the 

specific target for MEL action is not known, it is thought to involve the dopaminergic 

pathway (Lincoln & Maeda, 1992). Thus, MEL might be acting in the mediobasal 

hypothalamus area or adjacent areas to stimulate the release of dopamine which 

consequently delivers to the anterior pituitary an inhibitory signal. However, data from the 

same laboratory did not support the hypothesis that MEL signal is mediated mainly through 
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dopaminergic pathway but they did not exclude the involvement of this pathway in 

mediating the effects of MEL on PRL release (Lincoln & Tortonese, 1995), and the 

mechanism by which the MEL signal is mediated through the hypothalamus is not clear and 

it might involve more than one pathway. 

The other pathway, in which MEL has been suggested to act directly on the anterior 

pituitary, is supported from experiments in which the pituitary gland was disconnected from 

the hypothalamus in rams. This disconnection did not affect the seasonal profiles of PRL 

as evident by the ability of MEL to exert a short day signal when applied during long day 

exposure (Lincoln & Clarke, 1994; 1995), suggesting that the MEL signal which encodes 

the day length may act directly in the pituitary to mediate the effects of photoperiod on PRL 

release and this photoperiod transduction pathway bypasses the hypothalamus. The presence 

of MEL binding sites with high density in the anterior pituitary gland is mostly restricted 

to the pars tuberalis (PT)(Dereviers et al., 1991; Piketty & Pelletier, 1993), and the 

administration of MEL micro-implants in PT has been shown to depress PRL concentrations 

in the ram (Lincoln, 1994; Malpaux et al., 1995). Taken together, these findings suggest 

that MEL might be acting directly on PT to modulate the release of factor(s) that act on 

neighbouring pars distalis (PD) cells through a paracrine fashion. However, a direct effect 

of MEL on PD cannot be excluded. The presence of a low number of MEL binding sites 

in PD of different species studied which makes it unlikely that MEL is acting through its 

receptors (Boissinagassee, 1992; Nonno et al., 1995), but may be acting directly by a 

mechanism which does not involve interaction with membrane binding sites. 

The other environmental factor that exhibits some influence on PRL release is the 

ambient temperature. Increasing ambient temperature above the thermoneutral zone 

significantly increases serum PRL in heifers and conversely lowering temperature depresses 

PRL levels (Wettemann & Tucker, 1974) with a tendency for a linear relationship between 
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PRL levels and ambient temperature. Not only the basal levels are influenced by 

temperature but also the stimulated levels, since TRH stimulated PRL release was found to 

be reduced at 10°C and abolished at 4.5°C whereas maintaining heifers at 27°C caused 

more PRL to be released after TRH injection when compared to heifers exposed at 10°C 

(Tucker & Wettemann, 1976). This might suggest that temperature regulates PRL release 

by affecting the lactotrophs responsiveness to PRL releasing factors. The influence of 

ambient temperature on PRL release is also demonstrated by in vitro studies; the secretory 

activity of lactotrophs taken from piglets reared at hot environmental temperature was higher 

when compared to that taken from animals maintained at lower temperature (Matteri & 

Becker, 1996). The prolactin inhibitory factor, dopamine, has been suggested to be involved 

in this mechanism since a relationship between temperature and the activity of the 

dopaminergic neurons has been reported. Ambient temperature is positively correlated with 

the activity of these neurons; exposure to high temperature inhibits the dopaminergic 

pathway which results in reduction in the concentration of dopamine that reaches the 

lactotrophs and hence increasing the PRL release (Tucker et al., 1991). Conversely, low 

temperature increases the activity of dopaminergic neurons terminating in the 

infundiblum/pituitary stalk (Tucker et al., 1991) suggesting that dopamine release might 

mediate the temperature induced changes in PRL release. The concentration of the hormone 

in the blood circulation is affected by secretion rate as well as clearance rate, so the increase 

in PRL concentration in response to high temperature exposure is likely to be the result of 

increase in the rate of secretion coupled with a slowing in the metabolic clearance rate 

(Smith et al., 1977). Since PRL is highly influenced by environmental temperature; it has 

been suggested that this mechanism might be related to the thermoregulatory mechanism 

(Salah et al., 1995) and the change in PRL in relation to ambient temperature might 

constitute a physiological mechanism by which the animal is responding to alteration in 
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environmental factors. 

There has been some evidence to indicate that both temperature and photoperiod 

interact together to regulate the PRL release. Exposing cattle to lower temperature blocks 

the stimulatory effect of long-day on PRL release (Peters & Tucker, 1978). Conversely, 

maintenance at higher temperature stimulated more PRL secretion in response to longer 

hours of light exposure when compared to natural photoperiod at the same ambient 

temperature. These findings suggest a strong interaction between photoperiod signal and 

temperature in regulating the release of PRL. The stimulatory effect of photoperiod was 

disrupted by low temperature but at higher temperature, photoperiod and temperature act 

together synergistically to stimulate PRL release. In agreement with what has been 

suggested in the ram about the lesser role to be played by the dopaminiergic pathway in 

mediating the photoperiodic effect on PRL release (Lincoln & Tortonese, 1995), this 

pathway also has not been shown to be involved in relaying the photoperiodic effect on PRL 

release in calves (Zinn et al., 1991). Thus, photoperiod and temperature can affect PRL 

secretion, but each of them uses different neural mechanisms to regulate the release of PRL 

and both acting together as environmental cues to determine the seasonal profiles of PRL. 

1.2.4 Prolactin surge in response 

to milking stimulus 

Suckling or milking provokes a rapid PRL secretory burst from the anterior pituitary 

into blood circulation in different mammalian species. In goats, the PRL rise is initiated 

within 1-2 minutes of the start of milking and reaches a peak within 2-15 minutes, and then 

gradually declines to basal values within about 30 minutes (Hart, 1975a). Milking stimulus 

for PRL release involves the tactile stimulus of the teats by the nursing young or the milking 

machine which triggers nerve impulses from the sensory receptors in the teats which are 
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carried via the afferent nerve fibers through the spinal cord and the midbrain to the 

hypothalamus (Anderson, 1985). This causes a rapid decline in dopamine release (Chiocchio 

et al., 1979). Apparently this decrease in dopamine secretion sensitizes the lactotrophs to 

the subsequent releasing factor(s) (De Greef et al., 1987), so the dopamine suppression 

which is provoked by the milking stimulus is essential for the occurrence of PRL surge as 

indicated when dopamine agonist treatment prevents the PRL induction in response to 

milking in lactating goats (Hart, 1973). Several prolactin releasing factors have been 

reported to have some degree of involvement in this stimulus, but the exact mechanism is 

still not fully understood and still debated. Some researchers have suggested that TRH may 

be involved in mediating the suckling stimulus (De Greef et al., 1987), and a recent study 

suggested a possible role but only in the first days of lactation (van Haasteren et al., 1996). 

However, others have shown that TRH has a negligible role (Johke, 1978; Riskind et al., 

1984). Another PRF, VIP, is also suggested to be involved in the milking-stimulus since 

passive immunization against VIP severely attenuates suckling-induced PRL release in 

lactating rats (Abe et al., 1985). 

The posterior pituitary lobe may participate in mediating the suckling stimulus 

release of PRL since excision of this lobe has been shown to abolish the suckling-induced 

PRL release (Murai & Ben Jonathan, 1987). Although the nature of this factor, its origin 

and mode of action is not known, some evidence has indicted that it is the intermediate lobe 

which serves as the source of the active factor involved in PRL stimulus (Hill et al., 1991) 

which is believed to be a-melanocyte-stimulating hormone (a-MSH), a main product of the 

intermediate lobe. A supportive line of evidence about the role of this peptide in suckling 

is indicated when suckling increases the secretory activity of pars intermedia, and antiserum 

to a-MSH severely attenuated the PRL release after suckling (Hill et al., 1993); 

furthermore, pars intermedia stores of a-MSH are rapidly depleted within minutes of 



14 

suckling (Deis & Orias, 1968) supporting the 'induction of its release by the milking 

stimulus. The nature of such proposed action of a-MSH on lactotrophs is not fully 

understood. It has been proposed that it might act as a responsiveness agent by priming the 

lactotroph to the releasing factor(s) induced by suckling or milking (Hill et al., 1991; 

Frawly, 1994). 

In goats, PRL release at milking declines as lactation advances, but as a consequence 

of their breeding seasonality it is difficult to separate the effects of stage of lactation from 

that of season on the concentration of PRL released at milking. The start of lactation 

coincides with increasing day length in spring and summer, and late lactation with the 

decline in day length in autumn and winter (Hart, 1975b). The amount of PRL released at 

milking in spring and summer is higher than that in autumn and winter, but when it is 

expressed as a percentage of pre-milking values, it is higher when the basal levels is at its 

lowest, in the fall and winter, (Hart, 1975b) which suggests an inverse relationship between 

basal levels and the percentage of increase in response to milking stimulus. Using the month 

of sampling as covariate, to adjust for season effect, in lactating dairy cows, indicated a 

gradual decline in post-milking PRL release as lactation advances (Koprowski & Tucker, 

1973). In fact, there is a decline in the lactotrophs sensitivity to the secretogenic stimuli 

during the last stages of lactation (Shanti et al., 1994) and this indicates that the decline in 

milking related PRL release is associated with stage of lactation. Although the stage of 

lactation is likely to be predominant factor affecting the post-milking PRL stimulus, 

environmental factors like day length and temperature are also interfering to some degree 

in this phenomenon (Hart, 1975b). 
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1.2.5 Prolactin and lactation 

Evidence of a role of PRL in mammogenesis in ruminants has been derived from 

several experimental procedures. Application of the milking stimulus for a long time to 

virgin goats, which induces PRL rise similar to that seen after milking, also induced udder 

growth and ultimately lactation (Cowie et al., 1968). Moreover, induced mammary growth 

by steroid treatment was prevented with simultaneous treatment with bromocriptine (CB 154) 

in virgin goats (Hart & Morant, 1980) and implantation of goats with perphenazine, which 

increases PRL release, into the median eminence elicited mammary growth and lactation 

(Vandeputte-van Messon et al., 1976). These studies clearly demonstrate the ability of PRL 

to serve as a mammogenic factor regulating mammary development in the absence of 

placental lactogen (PL) produced by the placenta during pregnancy. However, the depletion 

of PRL during pregnancy from week 8 to week 20 had a small effect on mammogenesis 

(Forsyth et al., 1985) which suggests less important role of PRL during pregnancy due to 

the presence of PL. 

The requirement of PRL in maintenance of lactation in small animals is well 

documented. In the rabbit, treatment with bromocriptine causes an immediate fall in milk 

secretion, which can be restored by PRL treatment (Taylor & Peaker, 1975) and 

experiments which involves in abolishing of circulating PRL in the rat have indicated that 

PRL is maintaining lactation by acting as a cell survival factor and maintaining the cellular 

integrity of the secretory epithelium (Flint & Gardner, 1994). In ruminants, it has been 

established that PRL plays an essential role in initiation of lactation (lactogenesis) and lesser 

role in maintaining milk production in established lactation. Prolactin rise around parturition 

appears to be required for full initiation of milk production in ruminants since blocking this 

surge delay lactogenesis and depresses milk production for several days in cows and goats 

(Schams et al., 1972; Johke & Hodate, 1978; Forsyth & Lee, 1993). The decline in milk 
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yield ranged from 33-72% for some cows and it took an average of six weeks for full 

restoration of milk production (Johke & Hodate, 1978). Biochemical analysis did not show 

any effect on cellular number (total DNA) of epithelial tissue, but less RNA, and an 

apparent inhibition on structural differentiation of alveolar epithelium (Akers et al., 

1981a, b). Moreover, PRL has been shown to be required for the reinitiation of lactation in 

hypophesectomized lactating goats, but it can be withdrawn from hormonal combination 

without any noticeable effect once lactation has reestablished (Cowie et al., 1964). Taken 

together, these data suggest that PRL has an important role to play in lactogenesis probably 

acting to promote cellular differentiation and prepare the mammary gland for maximal milk 

production. 

Once lactation is established, PRL suppression has little or no effect on maintaining 

milk production in ruminants (Karg et al., 1972; Hart, 1973). However, there have been 

some reports on the depressive effects of PRL ablation on milk yield; bromocriptine 

treatment significantly reduced milk yield by at least 20% in lactating dairy goats (Knight 

et al., 1990a; Forsyth et al., 1995). Also, there is some indirect evidence about the 

involvement of PRL in the maintenance of lactation. For example, prolactin levels in 

lactating goats are higher than that of non-lactating ones (Hart, 1975b), PRL is increased 

in response to milking stimulus and a positive correlation between PRL profile after milking 

and milk yield in dairy cows was reported (Koprowski & Tucker, 1973). 

The failure to see a distinct effect of PRL depletion on ruminant lactation can be 

explained in several ways. First, PRL depletion was not completely effective and lower 

concentration may be sufficient for milk maintenance of secretion. Second, CB154 treatment 

may not be effective in suppressing some PRL variants which can not be detected by 

radioimmunoassay. Third, there might be a mechanism by which the mammary gland is 

protected from lower PRL profiles as seen in CB154 treatment or due to seasonal effects on 
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PRL profiles which results in increase in the accumulation of the hormone in the mammary 

gland by either increase in mammary uptake of the hormone (Forsyth et al., 1995) or 

increase in the mammary gland synthesis of PRL since the ability of the mammary gland 

to synthesis PRL has been demonstrated in rodents as well as in ruminants (Steinmetz et al., 

1993; Leprovost et al., 1994; Lkhider et al., 1997). Finally, it has been observed that 

bromocriptine treatment in lactating goats resulted in depression in PRL release but the GH 

release in response to milking was significantly increased in a dose dependent manner (Hart, 

1975b) because of the ability of dopamine and dopamine agonist, bromocriptine, to 

stimulate growth hormone release (Harvey, 1995). So, the increase in growth hormone 

secretion might be compensating for the decline in PRL in maintaining lactation in 

ruminants. 

1.3 GROWTH HORMONE AND THE 

INSULIN-LIKE GROWTH FACTORS AXIS 

Growth hormone (GH) or somatotropin is a polypeptide hormone produced by the 

somatotrophs of the anterior pituitary gland which exhibits a wide range of metabolic 

activities like lipolytic, and anabolic activities such as cell division, skeletal growth and 

protein synthesis. 

1.3.1 Growth hormone structure and receptor 

Growth hormone principally exists in plasma as a monomer of about 190-191 amino 

acid residues with a molecular weight of 22,000 da, but several forms of GH have been 

reported which range from fragments to high molecular weights (Baumann, 1991). The 

existence of GH or GH-like proteins with different primary sequences, isoforms, which can 

be produced by different genes, i. e. in humans two GH genes, hGH-N and hGH-V, have 
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been detected. Alternatively, these isoforms can be attributed to different splicing of GH 

mRNA. For example, mRNA spliced into two different mRNAs resulting in a 22,000 da 

hGH with 191 amino acid residues and 20,000 da hGH with deletion of 15 amino acids (32- 

46) (Lewis, 1992). After synthesis, GH may undergo posttranslational modification to 

produce a series of variants and these modifications include, dimerization, deamidation, 

proteolytic cleavage, glycosylation, phosphorylation (Scanes & Campbell, 1995). 

Growth hormone receptor is a single chain peptide comprising of 630 amino acid 

residues, with extracellular domain of 242 amino acids in length and the intracellular 

domain of 350 amino acids (De Meyts, 1992). Variation may occur in GH receptors during 

transcription and posttranslational processing. Growth hormone binding studies have 

indicated that GH is bound to multiple receptors or multiple forms of receptor and different 

GH action may be mediated by different forms of receptors (Hughes & Friesen, 1985). The 

GH receptors in the liver are under the control of endocrine system and metabolism. Under 

situations where feed intake is reduced, GH binding in the liver is also reduced, and normal 

feeding normalizes the binding process (Maes et al., 1983). In steers, two binding sites in 

the hepatic membranes with different affinity were detected (Breier et al., 1988a) which can 

be modulated by nutritional status; high level of feeding is correlated with increase in 

receptor affinity and the induction of the high-affinity type receptor which is also correlated 

with the biological activity of GH (Breier et al., 1988b). 

The binding of GH to its receptor has been reviewed recently by Wells, (1996). X- 

ray crystallographic studies have revealed that binding of GH to its receptor results in the 

formation of a complex of one hormone molecule per two molecules of receptor (De Vos 

et al., 1992). This receptor dimerization has been proposed to be essential for the activation 

of GH receptor. The GH uses two different sites (site 1 and 2) to bind to two identical 

extracellular domains of GH receptor and this dimerization occurs sequentially. hGH binds 
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to the first receptor through site 1 and then followed by binding to the second receptor 

through site 2 which results in the formation of a complex which consists of one molecule 

of the hormone with two molecules of its receptors (Cunningham et al., 1991). 

Dimerization is thought to be essential for initiation of signal transduction (Chen et al., 

1997) and the induction of tyrosine phosphorylation (Silva et al., 1993). Consequently 

blocking the binding of the second binding site of the hormone to the receptor, ie hGH 

analogue (G120R) mutated in the second binding surface of the hormone, inhibited the GH 

receptor dimerization and also has been demonstrated to block the GH-stimulation of 

lipogenesis in primary adipocyte (Ilondo et al., 1994). 

As it is the case for many growth factors which are bound to specific binding 

proteins in the plasma, the presence of specific binding proteins for GH (GHBP) has been 

reported. It has been calculated in humans that 30-50% of GH circulates complexed to 

binding proteins (Baumann et al., 1988). Their production is affected by several factors that 

include age, sex, pregnancy, nutritional status and endocrine system. For example, feed 

deprivation results in a drop in GHBP production, which is correlated with GH receptors 

(Mulumba et al., 1991). The biological relevance of GHBP with respect to GH biological 

activities is still not entirely understood. However, GHBP can modulate the GH action by 

inhibiting binding to its receptors (Mannor et al., 1991) and by binding to GH and forming 

GH-GHBP complexes in the plasma which results in slower metabolic clearance rate of the 

hormone, protecting it from degradation and eventually increasing its half life in the 

circulation (Baumann et al., 1987) suggesting that these binding proteins have a significant 

role in modulating the activity of GH. In cattle, GHBP are detected in plasma with varying 

molecular sizes and have also been detected in the milk (Devolder et al., 1993) which 

suggests that they can be synthesized in the mammary gland. However, their biological 

function in the mammary gland function remains to be determined. 
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1.3.2 Regulation of GH secretion 

Growth hormone is secreted from somatotrophs in episodic nature. Its secretion is 

governed by two hypothalamic hypophysiotrophic factors, growth hormone releasing-factor 

(GRF) and somatostatin (SRIF). The stimulatory factor, GRF, is synthesized in neurones 

located in the arcuate nucleus (Werner et al., 1986) released into pituitary portal circulation 

in the median eminence (Niimi et at., 1989) reaching the anterior pituitary where it interacts 

with specific binding sites to elicit GH release (Velicelebi et al., 1985). It is believed that 

GRF is controlling the episodic release of GH since active immunization against GRF 

diminished the pulsatile release of GH (Moore et al., 1992). 

Growth hormone inhibitory factor, SRIF, is produced by neurones in the 

periventricular and paraventricular nuclei of the anterior hypothalamus (Frohman et al., 

1992) and these neurones have their axon terminals in the median eminence where SRIF is 

released into hypophysial portal circulation and transported to the anterior pituitary gland. 

The physiological role for SRIF in regulating GH release is indicated by the increase in 

basal as well as stimulated GH release by SRIF receptor antagonism, or immunization 

against SRIF (Wehrenberg et al., 1982; Sato et al., 1989). Hypothalamic nuclei may 

regulate somatotroph function through the release of neurotransmitters that are released into 

the anterior pituitary and the activity of these neurones are regulated by central nervous 

system-acting stimuli like stress and humoral feedback from peripheral factors (Ju et al., 

1991). Several aminergic and peptidergic factors produced by the hypothalamic neurons 

possess stimulatory or inhibitory actions on GRF and SRIF secretion, and also act directly 

in the pituitary to alter the responsiveness of somatotrophs to GRF and SRIF action. 

Therefore, the hypothalamic control of GH release results from complex interactions at 

hypothalamic and pituitary sites by numerous stimulating and inhibiting factors (Harvey, 

1995). 
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The amplitude and the frequency of the episodic release of GH are modulated by 

several factors like nutrition, age, and also by genetic background. The nutritional status can 

regulate the secretion of GH; reduced feed intake provokes increases in GH secretion and 

also increases the responsiveness of somatotrophs to secretogenic factors in cattle (Bauman 

et al., 1979; Breier et al., 1988b) which might be attributed to an elevation in the frequency 

of GRF release (Armstrong et al., 1993). Conversely, feeding reduces mean GH 

concentration and also the amplitude of GH episodes (Wheatan et al., 1986; Trenkle, 1989; 

Mears, 1993). 

Milking has been reported to elicit GH release in some mammalian species. In 

lactating rats, suckling induces the release of GH, whereas the removal of the pups for 

several hours results in a significant decline in GH (Riskind et al., 1984) and immunization 

against GRF diminished suckling induced GH rise (Wehrenberg & Gaillard, 1989). Also, 

in goats, it has been reported that milking stimulates the release of GH (Hart & Flux, 1973; 

Hart & Linzell, 1977), but the release of GH differs from that of PRL release in the mode 

of release and that the tactile stimulus is not required for GH, and it appears to be 

influenced by other factors like feeding and metabolic state (Hart, 1974). Unlike the goats, 

milking does not provoke GH rise in the dairy cow (Johke, 1978; Lefcourt et al., 1994; 

Samuelsson et al., 1996) but the suppression of GH after feeding, which normally occurs 

in cattle, was prevented by the simultaneous feeding and milking (Samuelsson et al., 1996) 

suggesting that milking might affect the release of GH releasing or inhibiting factors and 

thus modify the GH release. 

1.3.3 GH and lactation 

The galactopoietic property of GH has attracted a great deal of attention and there 

have been numerous investigations of its effects on milk production and its mechanism of 



22 

action. The ability of GH to maintain milk production in hypophysectomized lactating goats 

after the withdrawal of PRL (Cowie, 1964) and the high GH levels in early lactation which 

fall during late lactation when milk yield is dropping as well and the galactopoietic activity 

of exogenous GH in lactating dairy cows has justified the need to investigate its role in 

stimulating milk production. The effect of bovine somatotropin (bST) treatment on lactation 

performance in lactating dairy cows has been well documented. Milk yield can be increased 

by bST administration by as much as 40% (Peel & Bauman, 1987), but the response 

depends on several factors like management practices, 'e. g. milking regimen, nutrition and 

environmental conditions (Bauman, 1992). For example, bST treatment is without any effect 

on milk yield if the cows are not adequately fed. The mechanism by which bST is 

stimulating milk secretion is still debated, however, two mechanisms have been proposed: 

a direct way through repartitioning of nutrients towards milk synthesis and indirect pathway, 

through the stimulation of insulin-like growth factor-I (IGF-I) production. The presence of 

high bST levels in the circulation alters the partitioning and use of postabsorptive nutrients 

through the alteration of the metabolism of various tissues and organs like the liver and the 

adipose tissue (Burton et al., 1994). In general, bST can increase gluconeogenesis in the 

liver and reduce glucose oxidation by the body tissues resulting in increasing the availability 

of glucose for the mammary gland (Zhao et al., 1996). Lipid metabolism is also affected 

by bST. In general, fat mobilization is stimulated by bST (Binelli et al., 1995), but this 

depends on the energy balance of the cow; if the treatment causes the cow to be in a state 

negative energy balance, this results in enhancement in lipid mobilization and elevation in 

the plasma levels of free fatty acids (FFA), which can be used as a metabolic fuel to 

substitute for glucose. The mobilization of body fat can be increased to an extent related to 

the state of energy balance (Bauman, 1992). Furthermore, lipogenesis is inhibited by bST 

regardless of the energy status of the cow probably by alteration in the adipose tissue 
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responsiveness to lipogenic stimuli like insulin (Peel & Bauman, 1987) resulting in the 

reduction of the direction of nutrients towards body reserve and increasing nutrients 

availability for milk synthesis. At the level of the mammary gland, bST causes an increase 

in mammary blood flow and cardiac output (Davis et at., 1988a) to increase the delivery 

of partitioned nutrients. Also, it causes increases in the uptake of nutrients by the mammary 

gland e. g. glucose (Davis et al., 1988b) to support the increase in milk synthesis. 

Circulating levels of IGF-I in the plasma is regulated in part by GH so that treatment 

with bST elicits its release, mainly from the liver. The presence of IGF-I receptors in the 

mammary gland (Dehoff et al., 1988) and its mitogenic effect on bovine mammary tissues 

(Baumrucker & Stemberger, 1989) might support the proposed hypothesis that IGF-I 

mediates the galactopoietic action of bST by acting in the mammary gland. However, a 

wealth of evidence does not give a lot of support to this contention. In the rat, IGFs did not 

mimic GH action when administered to lactating rats receiving anti-rat GH (Flint et al., 

1992) and a combination of IGF-I, IGF-II, and IGF-binding protein-3 (IGFBP3), which are 

normally increased by bST treatment, failed to mimic the galactopoietic effect of GH (Flint 

et al., 1994). Furthermore, in a recent study utilizing the coculture of mammary, liver, and 

adipose tissues, incubation with IGF-I did not stimulate the synthesis of lipids and proteins 

by the mammary gland when compared with incubation with GH (Keys et al., 1997). Taken 

together, these findings may not support the IGF-I theory and the most accepted theory is 

that bST stimulates milk production via partitioning of nutrients between the mammary 

gland and the rest of body. It is worth noting that a direct action of GH on the mammary 

gland is most unlikely, since several conventional binding assays have failed to detect any 

GH receptors in the mammary gland (Akers, 1983; Gertler et al., 1984; Keys & Djiane, 

1988). On the other hand, some investigators have detected mRNA for GH receptors in the 

mammary gland itself (Jammes et al., 1991). 
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1.3.4 Insulin-like growth factors and 

their binding proteins 

Insulin-like growth factors (IGF-I, IGF-II) form a family of single chain polypeptide 

hormones with a molecular weight of around 7,500 da. They are involved in a wide range 

of activities which include growth, reproduction, lactation and immune system. Although 

IGFs are synthesized locally by a number of tissues, the IGFs circulating in the blood are 

mainly produced by the liver. The concentration of IGFs in the circulation varies depending 

on the physiological state, being mainly regulated by GH and nutritional status. Growth 

hormone has a stimulatory effect on IGF release, since exogenous bST administration 

stimulates the release of IGFs and immunization against GRF significantly lower IGFs 

concentration (Moore et al., 1992). Although bST has been shown to unequivocally increase 

IGF-I concentration, data for IGF-II are not consistent. Some researchers did not detect any 

changes in IGF-II in response to bST (Davis et al., 1987) or the increase only occurred 

during the dry period (Vicini et al., 1991) which suggests that the two IGFs have different 

regulatory mechanisms or the metabolic status may determine the response to the stimulatory 

effect of bST on IGF-II. 

Nutritional status has a major effect on IGF levels in circulation. For example, it has 

been reported that in some situation IGF-I is influenced by nutritional status more than by 

GH. Fasting or reduced feeding which presumably retards growth rate temporarily is 

associated with lower concentration of IGF-I (Breier et al., 1986; Ronge & Blum, 1989). 

Moreover, the stimulatory effects of bST on IGF-I synthesis is inhibited by feed restriction 

in cattle (Breier et al., 1988b; Ronge & Blum, 1989). The mechanism by which the 

nutritional status affects IGF-I production might involve several possibilities. Some studies 

in the rat have suggested that it is the decrease in IGF-I mRNA in the liver which bring 

about the decrease in IGF-I levels (Straus & Takemoto, 1991) and this might be as a result 
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of reduced GH binding (Baxter et al., 1981; Maes *et al., 1983). In steers, this effect might 

be attributed to the absence of another type of somatotrophic receptor present in the liver 

which is characterized by high affinity binding to GH (Breier et al., 1988a). Also, 

postreceptor changes induced by nutritional status might be involved in altered IGF-I 

secretion (Thissen et al., 1990). Studies in the dairy cow have indicated that the energy 

status can determine the basal and stimulated IGF-I concentration. In early lactation, the 

IGF-I levels are low during a time when the cows are usually in a state of negative energy 

balance because the nutrients from feed intake does not match that in milk (Ronge et al., 

1988; Vicini et al., 1991). The levels of IGF-I increases gradually as lactation advances, 

reaching a maximum value during the dry period when the cow is in a positive energy state 

(Vega et al., 1991). Furthermore; the stimulated pattern follows the same trend as basal 

values (Ronge & Blum, 1989; Vicini et al., 1991). Therefore, it has been proposed that 

serum IGF-I is positively correlated with energy balance in lactating cows. In early 

lactation, there is a shift in the metabolic state from mostly anabolic during dry period to 

a catabolic state during early lactation; this process is coordinated by the endocrine system 

and the GH/IGF-I axis has a role to play in this process. A relatively low IGF-I value in 

early lactation will favour direction of nutrients away from body stores and conversely 

higher values is associated with more deposition of nutrients in body tissues. 

Two subtypes of receptors for IGFs have been identified. Type I receptor which is 

characterized by disulfide-linked a-subunits which bind the hormone and ß-subunits with 

tyrosine kinase activity (Leroith et al., 1995) mediates the mitogenic activity of IGFs. The 

other receptor, type II, is a single polypeptide which lacks the subunits and tyrosine kinase 

activity (Rechler & Nissley, 1986). Both IGFs bind to the first type with the same affinity 

but type II preferentially binds IGF-II. 

The IGFs in the circulatory system are bound to multiple specific high affinity 
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binding proteins (IGFBPs) which modulate the biological activities of the IGFs. Their action 

can be inhibitory or stimulatory and it has been reported that IGFBPs affect IGFs by 

forming IGF/IGFBP complexes, these limiting the efflux of IGFs from the vascular space, 

increasing their half life and regulating their metabolic clearance rate. Binding proteins also 

control the passage of IGFs from the vascular compartment and their transport to target 

cells, and will modulate the interaction between IGFs and their receptors (Baxter, 1988; 

Clemmons, 1990; Jones & Clemmons, 1995). Thus, IGFBPs are not acting only as a carrier 

of IGFs in the circulation, but they have an active role in inhibiting and enhancing the 

actions of IGFs. Six IGFBPs, 1 to 6, have been identified in several species including the 

bovine (Cohick et al., 1992; Hossner et al., 1997), and recently this family has been 

extended to include three more IGFBPs (Rosenfeld et al., 1997). The majority of circulating 

IGFs are bound to IGFBP3 which forms a complex of 150,000 da by binding to IGFs and 

a larger protein (acid-labile subunit) (Barreca et al., 1995). The regulation of IGFBPs 

secretion has not been studied extensively as it has been for their modulatory actions of 

IGFs. The treatment with bST increases the concentration of IGFBP3 but decreased IGFBP2 

(Vicini et al., 1991; Cohick et al., 1992). Like the IGFs, IGFBPs secretion can be 

modulated by nutritional status. For example, during growth retardation situations like feed 

restriction or fasting, there is an increase in IGFBPI and also IGFBP2 but not IGFBP3 in 

humans (Collet-Solberg & Cohen, 1996). In lactating cows, circulating concentrations of 

IGFBP2 have been shown to increase in response to feed deprivation but IGFBP3 is less 

sensitive to nutritional status (McGuire et al., 1995). Therefore, different types of IGFBPs 

respond differently under different conditions. The modulatory effects of IGFBPs on IGFs 

activity depend on their concentration, relative proportions in extracellular fluids and 

distributions between extracellular fluids and cell surfaces (Hossner et al., 1996). 

The presence of IGFBPs in milk can be attributed to transfer from blood through the 
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arterial supply of the mammary gland (Prosser et al., 1991) or de novo synthesis in the 

mammary gland itself (Campbell et al., 1991). The presence of IGFBPs in the milk suggests 

a potential role to play in the regulation of mammary function. For example, the involuting 

mammary gland increases its production of IGFBP5 which might serve to block the cell 

survival activity of IGF-I in the mammary gland (Tonner et al., 1995). 

1.4 THYROXINE AND LACTATION 

The involvement of the thyroid gland in lactation was recognized more than forty 

years ago. Thyroidectomy markedly depressed milk yield in lactating dairy cows, which 

could be restored by thyroid feeding (Graham, 1934a). Also, increasing plasma thyroxine 

(T4) by means of feeding thyroxine or thyroprotein, an iodinated casein which increases 

plasma level of thyroxine, or injecting thyroxine stimulate milk production (Graham, 1934a; 

Shaw et al., 1975; Davis et al., 1987). The milking response, however, varies between 

individuals and also with stage of lactation; higher response was reported when treatment 

was performed during the declining phase of lactation (Graham, 1934b). Although milk 

yield increase can be achieved by T4 treatment, long term treatment has shown to be not 

successful in maintaining the galactopoietic effects of T4 (Shaw et al., 1975) and the overall 

increase in milk yield in long term treatments is relatively small. Furthermore, it has been 

reported that a dramatic decline in milk yield was seen after cessation of thyroprotein 

feeding (Thomas et al., 1954; Hibbs & Krauss, 1947). Despite the galactopoietic effect of 

T4 in cattle, the relationship between T4 and lactation is controversial. Selection for high 

milk production may or may not be associated with significant differences in T4 level in the 

plasma. Whereas some studies have not been able to establish any difference in T4 in 

response to genetic selection (Bodah et al., 1972), others have suggested that cows with 

high milk production capacity have lower plasma T4 levels (Magdub et al., 1979; Bitman 
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et al., 1984). Also, in rats lactational intensity produced a significant decrease in serum T4 

(Jack et at., 1994). This relationship of milk synthesis capacity and T4 implies a negative 

correlation between the two. This is certainly related to the lower state of metabolism in 

peripheral tissues which is of great importance in sparing nutrients that can be utilized to 

support the high rate of metabolism of the mammary gland. 

Treatment with T4 has been associated with increases in the metabolic activity in the 

whole body as indicated by elevation in pulse rate and respiration rate which might lead to 

body catabolism and consequently reduced body weight when treatment is continued for 

long time (Hibbs & Krauss, 1947). Short term T4 injection increased milk yield and resulted 

in an increase in cardiac output and proportion of cardiac output perfusing the udder (Davis 

et al., 1988a). Moreover, the mammary glucose uptake was increased but the ratio of 

glucose uptake to lactose output was also increased (Davis et al., 1988b). It can be 

suggested that increase in mammary blood flow which increases the delivery of nutrients to 

the mammary gland together with increase in mammary gland metabolism as a consequence 

of elevation of whole body metabolism might bring about the enhancement of milk yield 

with T4 treatment. 

1.5 LOCAL CONTROL OF MILK SECRETION 

It is a normal practice in dairy farms to milk cows twice daily, usually in early 

morning and late afternoon, but increasing milking frequency results in a significant increase 

in milk yield (Pearson et al., 1979; Poole, 1982). The increase in milk yield is very rapid 

so it can be seen within hours in animals milked hourly with oxytocin injections (Linzell & 

Peaker, 1971). On the other hand, reducing milking regimen to once daily reduces milk 

yield (Wilde & Knight, 1990). In experiments in which half the udder has been milked more 

than twice while continuing the other half on twice daily, the increase in milk secretion is 
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only apparent in the treated gland which shows that the effect is mediated by local rather 

than systemic factors. Thus, the increase in milk secretion was related to frequent removal 

of the milk from the udder. The physical distention of the udder is not involved in mediating 

these effects because when the milk removed from the udder was replaced by an inert 

solution this did not prevent the stimulatory effect of frequent milking (Henderson & 

Peaker, 1984). The presence of a local chemical factor that has a negative feedback on milk 

secretion was first suggested by Linzell & Peaker, (1971) and it is the frequent removal of 

this factor from the proximity of the secretory cells which leads to increased rate of milk 

secretion (Henderson & Peaker, 1987) suggesting its direct inhibitory effect on the secretory 

cells. The increase in milk yield brought about by frequent removal of milk from the udder 

for a short time is accompanied by increases in the activity of some key mammary enzymes 

(Wilde et al., 1987b) suggesting an increase in the metabolic activity of secretory cells. 

After several weeks of continuous frequent milking, a greater number of secretory cells is 

achieved (Wilde et al., 1987b). Thus, it can be concluded that an early response to frequent 

milking is associated with increase in rate of secretory cell differentiation, but as a result of 

long-term response, cellular proliferation appears to be evident. Conversely, less frequent 

milk ' removal or incomplete milking reduces the activity of key enzymes and negatively 

affects the cellular differentiation (Wilde et al., 1989; Wilde & Knight, 1990). 

The response to frequent milking is due to the removal of a milk constituent that 

affects milk secretion by negative feedback on the secretory cells which is known as 

feedback inhibitory of lactation (FIL). It was identified by screening of goats' milk whey 

fraction as a protein with a molecular weight of 7600 da (Wilde et al., 1995) which 

inhibited the synthesis of casein and lactose from explants of mammary tissues in a dose 

dependent manner (Wilde et at,, 1987a; 1995). Furthermore, introduction of FIL into the 

mammary gland of lactating goats temporarily decreased milk yield (Wilde et al., 1995) and 
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the injection of antibodies against FIL into lactating goats during the declining phase of 

lactation improved lactation persistency and also decreased the decline in milk secretion in 

response to once daily milking (Wilde et al., 1996). The inhibitory effects of FIL on milk 

secretion in vivo as well as in vitro suggest a role in regulating the rate of milk secretion and 

it could mediate the effects of frequent milking on milk secretion. Also, FIL is affecting the 

secretory cells by an autocrine mechanism since FIL is secreted by the same cells on which 

it exerts its inhibitory effects (Wilde et al., 1995) 

1.6 PHOTOPERIOD AND LACTATION 

Day length or photoperiod has an influence on a number of biological activities, 

primarily reproduction, body growth, coat growth and lactation. Several studies on the 

effects of supplementation of light in lactating ruminants have shown a significant increase 

in milk production, however, the responses were variable. Increasing the light exposure by 

artificial lighting during short days in autumn and winter increases milk production by 6- 

10% in cows and goats (Peters et al., 1978; Peters et al., 1981; Marcek & Swanson, 1984; 

Terqui et al., 1984; Dahl et al., 1996). The galactopoietic effect of photoperiod on milk 

yield is not immediate and it requires a minimum of one week before a significant effect on 

milk yield can be manifested and apparently the response is independent of stage of lactation 

(Peters et al., 1978). However, the effect is not entirely consistent; some reports in cows 

(Murrill et al., 1969) and in goats (Hart, 1975b) did not show a stimulatory effect of 

photoperiod on milk yield. 

The mechanism by which photoperiod stimulates milk production is not known and 

several possibilities have been proposed. It was thought that the increase in milk production 

in response to exposure to longer hours of light might be the result of increase in nutrient 

availability which comes from the increase in feed intake (Peters et al., 1981). However, 
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others reported an increase in milk yield without any change in time spent with eating in 

dairy cattle exposed to long day photoperiod (Phillips & Schofield, 1989), and long light 

exposure increases average daily live weight gain without affecting dry matter intake in 

Holstien heifers (Peters et al., 1978). Furthermore, long light stimulates body growth in 

heifers even when feed intake is restricted (Petitclerc et al., 1983). Thus, feed efficiency 

for growth is likely to be increased with exposure to long light. Also, there is evidence that 

photoperiod may affect behaviour, reduced physical activity being associated with exposure 

to longer hours of light (Phillips & Schofield, 1989). This could result in reducing the 

energy expenditure utilized for activity which can be spared for milk production. The other 

hypothesis that has been proposed for explaining the effect of photoperiod on milk 

production is that the photoperiod signal is mediated via hormonal releases by the endocrine 

system. Several hormones have been studied to determine a possible role in mediating the 

photoperiodic stimulation of milk production, PRL being the primary candidate because it 

is the only lactogenic hormone that is responsive to changes in photoperiod. Long day 

exposure is coupled with high PRL values and short day decreases PRL. Also, long light 

stimulates basal and TRH stimulated PRL release (Peters et al., 1981) indicating that the 

lactotrophs become more responsive to secretagouges factors. 

Skeleton long photoperiod of 6 hours of light and an additional 2 hours of light 

between 18.00-20.00h significantly increased milk production and PRL release (Evans et 

al., 1991). Even though the cows were exposed to a total of only 8 hours of light, they were 

able to pick up the photoperiodic signal of long day and respond to it. This indicates the 

presence of a photosensitive phase when the cows were responsive to light exposure which 

occurs between 13-15 hours after subjective dawn. Thus, it is possible that the timing of 

light periods within a 24 hours light-dark cycle is important rather than the total amount of 

light exposure. However, not all studies support a role for PRL in mediating the effects of 
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photoperiod. Exposing heifers to long light stimulated growth in spite of a suppressive effect 

of low ambient temperature on PRL release (Peters et al., 1980), and others have reported 

that the galactopoietic effects of long light can be achieved without a significant effect on 

basal and stimulated PRL release (Marcek & Swanson, 1984). Therefore, it is not proven 

that increase in feed intake or enhanced secretion of PRL is responsible for the 

galactopoietic effect of photoperiod in dairy cattle. 

Another hormone which might be involved is GH, but most reports indicate that GH 

is not responsive to photoperiod and therefore cannot be the mediator for the stimulatory 

effect of photoperiod on milk yield (Peters & Tucker, 1978; Peters et al., 1981; Gustafson, 

1994). However, Evans et al., (1991) were able to detect an increase in number of GH 

peaks in photosensitive phase during light treatment in dairy cows and also, light stimulated 

GH secretion in lactating goats when lactation was induced by steroid treatment (Terqui et 

al., 1984) suggesting a possible effect of photoperiod on GH release. 

Effects of photoperiod on mammogenesis have been reported for pre- and post- 

pubertal heifers. Exposure to 16L: 8D stimulated growth of parenchyma and increased 

cellular proliferation (Petitclerc et al., 1985). Also, increased daily exposure of cows to 

light during the last month of gestation subsequently resulted in enhancement in milk 

production for the first two months of lactation (Gustafson, 1994) indicating that 

photoperiod has an effect at the level of the mammary gland during mammary development. 

Whether the stimulatory effect of long light on milk yield is associated with changes in 

cellular differentiation or proliferation has not been determined. 

Another mechanism that might be related to the galactopoietic effects of photoperiod 

on milk production is an effect on fat metabolism. Long light exposure affects the body 

composition by decreasing the rate of fat accretion in both sheep and cattle (Brinklow & 

Forbes, 1984b; Tucker et al., 1984), and conversely MEL treatment which mimics short 
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day increases fat deposition in the body (Zinn et at., 1988a). Therefore, it is possible that 

long light signal might affect fat metabolism by inhibiting lipogenesis or the short day signal 

might induce lipogenesis and this can be halted by long day exposure. The inhibitory effects 

of long light on lipogenesis in adipose tissue might increase the portion of nutrients available 

to the mammary gland and direct nutrients away from body stores. If this the case then the 

question needs to be answered, how could the long light signal mediate the change in 

adipose tissue metabolism? Nobody has attempted to address this possibility so far, but one 

study reported a tendency for lower insulin values during long light exposure in dairy cows 

(Gustafson, 1994) so it is possible that lower insulin levels might be involved in the 

direction of nutrients away from body tissues thereby increasing the availability of nutrients 

towards milk synthesis. 

1.7 PHYSIOLOGICAL BASIS IN GENETIC SELECTION 

FOR HIGHER MILK PRODUCTION 

Genetic selection for milk yield in cattle has led to a dramatic increase in milk 

production per cow. High producing dairy cow can produce about 10,000 kg of milk per 

lactation cycle and this improved milk yield is the result of accumulated effects of many 

years of selection for milk yield. With the improved milk production, some traits have not 

changed with genetic selection whereas others have altered markedly and these may be 

important determinants of efficient milk production. Digestibility, maintenance requirement, 

requirement per unit of milk produced have been shown to be similar between cows of 

different genetic merit (Hart et al., 1978; Bauman et al., 1985b). However, they do differ 

in their metabolism as nutritional studies have indicated that high yielding cows are 

characterized by partitioning energy from feed intake toward milk production whereas cows 

with low genetic merit are not effective in directing their nutrients towards milk. This will 
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be of particular importance in early lactation, when dairy cows (and especially high yielding 

ones) are in a state of negative energy balance. Therefore, partitioning dietary energy 

between milk production and the rest of the body might be the result of inherited trait which 

might be the main difference between low and high yielding dairy cows. Difference in 

energy partitioning is regulated mainly by the endocrine system. One important hormone 

which is highly correlated with milk production and also known for a long time to possess 

galactopoietic effects in dairy cows is GH, and it was thought that it might have responded 

to genetic selection. Several studies utilizing cows with different genetic merit have shown 

consistently that high yielding dairy cows are associated with higher GH concentration 

(Barnes et al., 1985; Bonczek et al., 1988), and the capability to secrete GH after TRH 

injection is higher in the high yielding cows (Kazmer et al., 1986) suggesting a higher 

secretory activity of somatotrophs in the superior cows. Furthermore, the increase in basal 

GH values and GH response to varying secretogogues with genetic selection has been 

reported for heifers with potential higher milk production at an early age, before puberty 

(Barnes et al., 1985; Lovendahl et al., 1991) which suggests that GH might be a 

physiological trait that can be transmitted by genetic selection. However, some researchers 

have argued that the difference in GH levels among cows from different genetic lines may 

be attributed to differences in energy balance resulting from the high milk production in the 

high genetic merit cows (Hart, 1983; Klemetsdal et al., 1992). When cows of different 

genetic merit were fed to a similar weight gain, no differences were found between the two 

groups in GH levels (Hart, 1983) which tends to support this argument. However, in that 

situation the elevation in plasma GH in the low line could be attributed to the restriction in 

feed intake, since this has been reported to increase GH concentration in cattle (Kazmer et 

al., 1985). Also, Kamer et al., (1986) found a distinct difference between genetic lines in 

GH levels without any significant dissimilarities in their energy balances. 
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Insulin (INS) is another hormone which has been shown to be associated with milk 

production capacity. However, its plasma concentration is low in early lactation and 

increases as lactation progresses and milk yields fall (Walsh et al., 1980) showing that the 

relationship between milk production and INS is an inverse one. Also, INS treatment 

depresses milk yield in lactating dairy cows. The secretion of INS has been investigated with 

cows of different genetic merit, and most of the studies have indicated a lower INS value 

in the high line cows (Hart et al., 1978; Bonczek et al., 1988). INS is the major anabolic 

hormone which mainly promotes nutrients deposition in the body tissues and inhibits the 

mobilization of nutrients from body stores (Vernon, 1988). Therefore, the lower INS in 

cows which are characterized by higher milk yield potential will allow for greater 

availability of nutrients to be directed towards milk synthesis. 

Thyroxine also has been determined in studies that were designed to investigate 

possible hormonal profile differences related to potential milk production. When compared 

across stage of lactation, T4 is low in early lactation and increases as lactation advances 

(Bonczek et al., 1988). This led to the conclusion that serum T4 is negatively correlated 

with milk yield (Walsh et al., 1980) and studies with low and high yielding dairy cows have 

reported lower serum T4 concentrations in the high yielding cows than that of low yielding 

ones (Hart et al., 1978; Bines et al., 1983). 

Due to the less important role of PRL in ruminant lactation once lactation is 

established, there is no apparent change in PRL release which might be attributed to genetic 

selection (Barnes et al., 1985; Bonczek et al., 1988). Since its secretion is influenced by 

many factors in the dairy cow like photoperiod, temperature, stress, feeding, stage of 

lactation and milking and also due to its episodic release, it is very difficult to find a 

sensible correlation between milk production and PRL release. 
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1.8 AIMS OF STUDY 

In dairy cattle, several factors can theoretically be manipulated to affect the shape 

of the lactation curve. In this study, we attempted to manipulate milk production utilizing 

several galactopoietic stimuli with different mechanisms of action. Photoperiod is an 

environmental factor which has been manipulated to stimulate milk production. However, 

its galactopoietic property is variable and not always evident. Furthermore, how photoperiod 

stimulates milk production is not known. Since there is evidence that the photoperiodic 

effect on milk yield may be potentiated by long term previous exposure to chemically 

induced short days (by melatonin treatment; Knight, 1993), the first objective of this study 

was to investigate if short term exposure to short days would also prime the goats to 

subsequent stimulatory effects of long light on milk yield. 

Genetic selection for higher milk yield has been used as an avenue of increasing milk 

production efficiency. Intensive selection for milk production has resulted in a marked 

increase in the level of production but also increased concerns about the welfare of the cow. 

Whether high yielding dairy cows are actually milking close to their maximum metabolic 

capacity and are, therefore, more exposed to the possibility of metabolically related diseases 

than lower yielding dairy cows, has not been established. To achieve the target of driving 

the cows into their upmost production, the secretory activity of the mammary gland needed 

to be manipulated by more than one stimulus. Therefore, manipulation of local factors 

(frequency of milking) together with systemic manipulation (via endocrine challenges of 

bST and T4) were aimed to influence the milk secretion capacity through different routes 

in order to achieve the maximum metabolic capacity. By applying these multiple stimuli to 

cows from different genetic merit, the relative degrees of risk of metabolic disturbances 

could be assessed. Another aim of this study was to explore the relative importance of the 

mammary gland versus the whole body in determining the maximum metabolic capacity. 
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CHAPTER TWO 

GENERAL MATERIALS AND METHODS 

In this chapter, collection and preparation of blood samples and methods of hormone 

determination will be described. Other techniques that were used in particular experiment 

will be described in the chapter which describes that work. All chemicals used, unless 

otherwise mentioned, were from Sigma Chemical Company Ltd, Poole, ̀ UK. 

2.1. BLOOD SAMPLING 

Blood samples were collected (approximately 7m1), via jugular venipuncture in goats 

and from tail vessel puncture in cows, into heparinized vacutainer tubes (Becton Dickinson, 

Vacutainer Systems Europe, Meylan-Cedix, France). For serial blood samples, blood 

samples were collected by an indwelling jugular cannula. Intravenous catheterization (using 

Medicut 14g; Sherwood Medical, Tullamore, Ireland) was performed about 18 hours before 

the start of blood collection. A cannula (polyethylene tubing; I. D. 1.40mm, O. D 1.90mm; 

Dural Plastics and Engineering Pty Ltd, Auban, NSW, Australia) was inserted into a jugular 

vein and sealed with a 3-way tap, and the blood was collected into a vacutainer tube. A 

saline solution containing heparin (1000 IU/100 ml) was used after each blood collection 

for flushing the cannula. Samples were centrifuged (1800g, 15 minutes, 4°C) shortly after 

collection, and the plasma was harvested and stored at -20°C until assayed for hormone 

concentrations. 

2.2. HORMONE DETERMINATION TECHNIQUES 

Plasma PRL, GH, and INS were assayed by double-antibody radioimmunoassay 

(RIA) using the method described by Vernon et al, (1981). 
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2.2.1 Prolactin RIA 

Antiserum to ovine PRL was provided by the National Institute of Health (NIH), 

Bethesda, Maryland, USA. The reference curve (3.12-200 ng/ml) was constructed using 

ovine PRL (AFP-9221A) supplied also by NIH. RIA buffer (containing 0.05M sodium 

phosphate, 0.15M sodium chloride, 0.5% w/v bovine serum albumin (RIA grade) and 

0.05 % w/v sodium azide; pH adjusted to 7.4) was used for sample dilution and the dilution 

of the antiserum and preparing the standard. For preparing the second antibody, RIA buffer 

plus an equal amount of polyethylene glycol (16% PEG, from BDH, Thornliebank, 

Glasgow, UK) and then 0.83 % v/v anti rabbit precipitating serum, and 0.03 % v/v normal 

rabbit serum, both donated by the Scottish Antibody Production Unit (SAPU), Carluke, 

Lanarkshire, UK, were added and mixed thoroughly. An antiserum dilution of 1: 60-80,000 

and a tracer activity of around 30,000 cpm 9-oPRL were used to get an average total 

binding of 30%. The addition of the tracer was delayed for 4-6 hours after the incubation 

with the first antibody, and then further incubated overnight at room temperature. Then, the 

second antibody was added and the tubes were centrifuged (3000g, 30 minutes, room 

temperature) after 2-4 hours of incubation at room temperature. The supernatant was 

decanted and the tubes were counted by Gamma counter (Packard, Meriden, USA). The 

PRL levels were determined by comparing the unknown samples to the standard curve. 

Intra- and inter assay coefficient of variations were determined by running quality control 

samples containing varying amounts of the hormone at every assay. Inter- and intra-assay 

coefficient of variation were 15.50 and 9.4% respectively. Sensitivity of the assay 

determined from estimated concentration at 80% of maximum binding (reference) was 

3.35ng/ml. 
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2.2.2 Growth Hormone RIA 

Antiserum to ovine GH (AFP-CO123080, donated by NIH) was used with a dilution 

of 1: 20000, and the standard curve (0.31-40 ng/ml) was prepared from ovine GH (AFP- 

9220A). The same procedure described for PRL was followed except that the addition of 

the tracer (20,000 cpm 1 I-bST )was delayed 24 hours after the addition of the first antibody 

to standard curve and sample tubes. Inter- and intra-assay coefficient of variations were 16.5 

and 7.2% respectively. Estimated concentration at 80% of maximum binding was 0.382 

ng/ml. 

2.2.3 Insulin RIA 

Anti-porcine insulin (prepared in guinea pig, 5115-201, gift from SAPU) was used 

with a dilution of 1: 40,000. Bovine insulin (from Sigma, 1-550) was used to construct the 

standard curve (0.08-5.0 ng/ml). The first antibody and a tracer activity of around 12,000 

cpm'III-bINS were added to standards and unknowns, with the latter added 6 hours after the 

former. The second antibody was prepared by adding equal amounts of RIA buffer and 16 % 

PEG and then 0.46% w/v EDTA and the pH was adjusted to 7.4 before adding 0.50% v/v 

anti-guinea pig serum and 0.03 % v/v normal guinea pig serum, both donated by SAPU. The 

assay was performed as that for PRL and GH. Inter- and intra-assay coefficient of variations 

were 17 and 7.6% respectively. Estimated concentration at 80% of maximum binding was 

0.044 ng/ml. 

2.2.4 Insulin-like growth factor-I RIA 

The method described by Flint & Gardner (1989) was followed for the determination 

of IGF-I concentration in the plasma after the samples were extracted with acid-ethanol, to 

separate the IGF-I from its binding proteins. The extraction procedure was done by adding 
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4 volumes of the extraction medium (2N HCL and ethanol 1: 7 v/v) to 1 volume of the 

samples and the standard tubes and incubating for 30 minutes at room temperature. The 

tubes were centrifuged at 3000g for 10 minutes; after that, a specific amount of supernatant 

was removed and an equal amount of neutralizing buffer (4% w/v TRIS : RIA buffer) was 

added and then the samples were further diluted with RIA buffer. Recombinant human IGF- 

I (from Bachem, Sulfran Walden, Essex, UK) was used to construct the standard curve (10- 

2500ng/ml). The first antibody was polyclonal rabbit anti-rliIGF-I (a gift from NIDDK, 

Bethesda, Maryland, USA) at a dilution of 1: 2000. This was added to standards and sample 

tubes and incubated for 24 hours before adding 115I-IGF-I (approximately 20,000cpm per 

tube) and then incubating overnight at room temperature. Then, the second antibody (RIA 

buffer/ 16% PEG with equal volume and 6% v/v anti-rabbit IgG precipitating and 0.4% v/v 

normal rabbit serum, both from SAPU) was added to the tubes and further incubated for 2-4 

hours before centrifuging at 3000g for 30 minutes at room temperature. The pellet was 

counted as before after tipping off the supernatant. Interassay coefficient of variation was 

10.8 % and intra-assay was 9 %. Estimated concentration at 80 % of maximum binding was 

8.88 ng/ml. 

2.2.5 Radioiodination procedure 

Hormones were labelled using the Iodogen technique described by Fraker & Speck, 

(1978). Radioactive iodine (III in sodium iodide) was incorporated to the hormone by using 

Iodogen (Pierce Europe BV, Oud-Beijerland, Netherlands). Approximately 5ug of the 

hormone, lOu1 0.5M phosphate buffer (pH 7.3) and 5u1 of 'uI (containing about 0.5 uci) 

were added to an iodogen coated tube (30u1 iodogen (0.05 mg/ml in chloroform), 

evaporated to dryness) and allowed to sit undisturbed for 20 minutes at room temperature. 

Then, 100ul of phosphate buffer was added and the iodogen tube content was transferred 
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to the top of a sephadex G10 minicolumn. To stop the reaction, 200u1 potassium iodide (2% 

wlv) was washed through the tube and into the minicolumn. Then, RIA buffer was added 

carefully into the top of the column and fractions were collected every 1-2 minutes, and the 

radioactivity for each fraction was counted. Incorporation of 'III into the hormone was 

determined by counting a small aliquot before and after precipitation of the protein with 

10% trichloroacetic acid. Fractions with a minimum of 80% incorporation were diluted if 

necessary and stored at -20°C behind lead. 

2.2.6 Melatonin assay 

Plasma melatonin concentration was determined by direct RIA which was described 

by Fraser et al (1983). The anti-melatonin antiserum (AB/S/021; Stockgrand Ltd, 

University of Surrey, Guildford, Surrey, UK), and melatonin standard (5-250 pg/ml) was 

prepared using N-acetyl-5-methoxytryptamine (from Sigma); the dilution medium was 

melatonin-free plasma which was collected from two goats exposed to bright light 

(5,000lux) for two hours in early afternoon. Light exposure is a strong suppressor of MEL 

secretion in different species including the goat and only plasma samples with MEL levels 

indistinguishable from maximum binding were used to construct the standard curve. The 

antibody with a dilution of 1: 4,000 as well as the tritiated MEL ([O-methyl-3H]Melatonin, 

Amersham International Plc, Buckinghamshire, UK) with an activity of 4,000cpm were 

added to the tubes containing the samples and the standard which were then incubated 

overnight at 4°C. The free and antibody bound fractions of MEL were separated by dextran 

coated charcoal (activated charcoal at 2% w/v in assay buffer which was stirred for 5 

minutes before centrifugation at 1,000g for 5 minutes at 4°C; then the supernatant was 

discarded and the charcoal was resuspended with assay buffer and 0.02% w/v dextran T-70 

was added and the solution was stirred for at least one hour at 4°C). The tubes were 
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centrifuged at 1500g for 15 minutes at 4°C after incubation time of 15 minutes. Then, the 

supernatant was transferred into vials containing 4m1 scintillation fluid, which was prepared 

by adding 0.5% w/v 2,5-diphenyloxazole and 0.03% w/v dimethyl-popop to toluene (FSA 

Laboratory supplies, Loughborough, UK). The tubes were shaken for Ih at room 

temperature before counting the radioactivity. Interassay coefficient of variation was 15.9% 

and intra-assay was 5.6%. Estimated concentration at 80% of maximum binding was 6.4 

pg/ml. 
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CHAPTER THREE 

EFFECT OF REPEATED SHORT CYCLES OF MELATONIN AND LONG LIGHT 

ON LACTATION PERFORMANCE IN THE GOATS 

3.1 INTRODUCTION 

Photoperiod has a regulatory influence on a number of biological activities in 

mammals such as reproduction, body growth and lactation. The effect of photoperiod on 

lactation performance has been the subject of several investigations in lactating cows, which 

reported that extended light exposure during the decline in natural day length stimulated an 

increase in milk yield of 6-10% (Peters et al., 1978; Marcek & Swanson, 1984; 

Stainisiewski et al., 1985). However, a consistent increase has not always been achieved 

(Murrill et al., 1969; Hart, 1975b). The mechanism involved in the effect of long light 

exposure on milk yield is not known. It has been suggested that stimulation of feed intake 

might be responsible (Peters et al., 1981), but on the other hand, others have shown that 

the increase in milk yield or body growth was independent of feed intake (Petitclerc et al., 

1983; Phillips & Schofield, 1989). Also, it was proposed that a photoperiod signal is acting 

through the adenohypophesis to stimulate the release of galactopoietic hormones. Although 

reports on the possibility of GH mediating the photoperiod effects on milk yield were 

inconclusive (Peters et al., 1981; Evans et al., 1991), PRL might be a prime candidate in 

mediating the light signal since its secretion is determined by the prevailing day length. This 

was supported by the association between stimulation of milk yield and the enhanced PRL 

release by photoperiodic stimulation (Peters et al., 1981; Evans et al., 1991). However, the 

role of PRL in galactopoiesis of the lactating ruminant has not been established. 

Manipulation of PRL profiles by inhibiting its release (Beck et al., 1979) or increasing its 

plasma concentration by exogenous PRL administration (Plaut et al., 1987) were ineffective 
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in affecting milk yield in lactating cows. Furthermore, some reports have shown that 

changes observed in milk yield in lactating cows or in growth rate in heifers with long day 

exposure appeared to be independent of changes in PRL concentrations (Peters et al., 1980; 

Gustafson, 1994). Therefore, there is no strong evidence to support a role for PRL as a 

mediator for the stimulatory effect of photoperiod on milk yield. 

Melatonin is an indoleamine which is secreted by the pineal gland in response to 

darkness, so the duration of nocturnal MEL secretion provides an endocrine index of night 

length and thus day length. MEL has been used in short day breeders like sheep and goats 

to advance the time of the breeding season (Arendt, 1986; Deveson et al., 1992a, b). 

Evidence from experiments in which photoperiod manipulation was utilized to modulate the 

reproductive cycle in sheep or growth rate in heifers suggested that previous photoperiod 

exposure may influence the response to subsequent, different, photoperiod (Robinson & 

Karsch, 1987; Zinn et al., 1988b). Most of the studies that employed photoperiod as a 

galactopoietic stimuli were conducted when the cows had experienced a period of declining 

day length (autumn and winter) before they were exposed to artificial long days. In lactating 

goats, there is preliminary evidence to suggest that long term MEL treatment, which mimics 

short day signal, primed goats to subsequent stimulating effect of long light on milk yield 

(Knight, 1993). These experiments were conducted to determine if repeated short cycles of 

MEL would sensitize the goats to subsequent long light effect on milk yield, and if this 

would be affected by stage of lactation, or the time of year when MEL treatment started. 

3.2 MATERIALS AND METHODS 

3.2.1 Animals and housing 

Twelve Saanen goats kidding for the first time in late March, within four days of 

each other, were used in the first year's experiment. In the second year's experiment, goats 
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in their second or third lactation were used. After parturition, mothers were left with their 

kids for 24 hours before separation and moving to the designated building where they were 

kept throughout the experiment. Goats were housed in individual pens and they were milked 

twice daily at 07.00 and 16.00h, and fed 0.75 kg of concentrate diet (goat mix 2, Edinburgh 

School of Agriculture) at each milking time. Hay and water were made available all time. 

The goats were milked twice daily at 07.00h and 15.30h. 

3.2.2 Experimental design 

Cycles of conditioning treatment (2 or 4 weeks) followed by long light (2 or 4 

weeks) were started in lactation week 5 (late April). Goats were blocked by milk yield and 

allocated into two groups where 6 goats were to receive the MEL treatment and the other 

6 to receive a vehicle. For MEL treatment, 3mg of MEL (N-acetyl-5-methoxytryptamine, 

Sigma) were dissolved in lml of 50% alcohol and then absorbed into a small amount of 

concentrate feed which was left to dry at room temperature for about 2h. Fresh treated diet 

was prepared every 5 days and stored at 4°C before being fed daily to goats. The MEL 

containing concentrate was fed to goats at 15.00h each day and a similar prepared 

concentrate but without the indoleamine was also fed to the other group simultaneously. 

This conditioning treatment was continued for 2 weeks then MEL was stopped before all 

goats were switched to long light for 2 weeks. Lights were on between 06.00-23.00h daily 

controlled by a programmed clock timer, and lighting was provided by cool white 

fluorescent tubes. Light intensity measured by light meter (Illummometer, Kyoritsu 

Electrical Instrument, Tokyo, Japan) at the eye level of the goats was determined at three 

times and they were 322.8±15.7,348±16.7, and 384.2±20.6 lux. While the goats were 

on normal light (conditioning treatment period) lights were on from 06.00-18.00h daily. The 

same procedure was applied in a second cycle but the periods of conditioning and 
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subsequent long light were extended to 4 weeks., It was intended to continue on repeating 

these cycles throughout lactation, but during the third conditioning period the clock timer 

was found to be faulty. Since it was not known when the problem with the timer had 

started, the data from this cycle were excluded, and at early September, cycles of MEL and 

long light were repeated as they had been performed in early lactation. Part of the 

experiment was repeated a year later, this time with all treatments commencing in 

September. 

3.2.3 Measurements 

Milk yields obtained at each milking were recorded throughout the experiments. 

Also, milk samples were collected every two weeks and milk fat was determined before 

defatting (by centrifugation 1000g, 20 minutes, 20°C) and the defatted milk was stored at 

-20°C before being analyzed for protein and lactose. Body weights were recorded weekly 

during the experimental periods. 

3.2.4 Blood collection and hormonal determinations 

Routine blood samples were collected four times weekly (at 14.00 and 16.30h on 

two different days) throughout the experiment. Also, goats were subjected to frequent blood 

sampling at two-hourly interval from 09.00-19.00h, and every 5 minutes from 10 minutes 

before milking to 20 minutes after milking. This was performed during the second week of 

conditioning and long light cycles in early (April) as well as in late lactation (September) 

and also during the first week of long light in spring. Blood samples were collected and 

handled as described in chapter 2. 

Weekly samples were assayed for PRL contents, the two-hourly samples were 

assayed for PRL, GH, MEL, and IGF-I, and samples collected around milking were 
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quantified for PRL and GH concentrations. Methods of hormonal determinations have been 

described in chapter 2. 

3.2.5 Milk composition 

Fat percent 

Milk fat percentage was determined by the rapid fat method described by Fleet & 

Linzell, (1964). Fresh milk samples were incubated in a water bath at 37°C for about 20 

minutes and thoroughly mixed before drawing into capillary tubes (Hawksley, UK) and 

sealing with wax. Then, tubes were centrifuged (1000g, 15 minutes at room temperature). 

The milk samples which were separated into two layers, cream (white) and serum (opaque) 

layers, were read by microhaematocrit reader and the readings were corrected by 

multiplying by a correction factor (0.75) to determine the fat percent. 0 

Bradford protein 

Protein content was determined by measuring the change in absorbence by a dye 

binding to protein (Bradford, 1976). A protein standard curve, ranging from 1 to 10µg 

protein, was prepared from bovine serum albumin. Milk samples were diluted to 1: 350 

using distilled water. 5011 aliquot of standards and samples were placed in 96-well micro- 

titration plates, and 2401A1 Bradford reagent added (20%, Bio-Rad Laboratories Ltd, Hemel 

Hempstead, UK) and then incubated for 10 minutes at room temperature. Absorbence of the 

coloured complex formed was monitored at 620nm (Titertek Multiskan MCC340 MKII type 

347, Labsystems, Basingstoke, UK). 
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Lactose 

Lactose content was determined using a Sigma kit (510A) for measuring glucose. 

Milk samples were incubated with ß-galactosidase (from Bobringer Manheim) in order to 

degrade lactose into glucose and galactose. Lactose standard (10mM a-lactose in 0.1M 

sodium phosphate buffer, pH 7.3) was used to construct a standard curve with 

concentrations ranging 1-5mM. Milk samples were diluted 1: 40 in sodium phosphate 

buffer. 400 µl of diluted milk sample or standard were transferred into microtube and the 

following were added: 

70µ10.1M Potassium phosphate buffer (pH 7.3) 

20µl 0.1 M Magnesium sulphate 

10µ1 ß-galactosidase 

Then microtubes were vortexed and incubated in the dark at 37°C for 30 minutes. 

Perchloric acid (l00µ14.2% v/v) was added to stop the reaction. Then, l0µ1 of the reaction 

mixture was transferred in a 96-well plate, 300µ1 of Peroxidase/glucose oxidase/o- 

dianisidine solution added and incubated for 10 minutes at 37°C. Absorbances were read 

at 450nm and lactose content was determined by reading from the standard curve. 

3.2.6 Statistical Analysis 

Average milk yield during each of the MEL or long light cycles was analysed by 

ANCOVA using the milk yield of the week preceding each cycle as a covariate. Total milk 

yield during each season was also analysed by ANCOVA and the pretreatment milk means 

(before the 2week conditioning cycle) as covariate. Hormonal profiles were analyzed by 

ANOVA or t test. For the post-milking PRL profiles, the mean of the two samples collected 

before milking (10 and 5 minutes before milking) was regarded as basal level and the 

response area was calculated as the area under the curve minus the basal values. Values of 
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PRL and GH were logarithmically transformed to get a normal distribution of the data. The 

data were analysed both on log transformed and original data but the results were similar. 

Therefore, the results presented here are those on original data. 
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3.3. RESULTS 

3.3.1 Milk yield 

Average weekly milk yields for early (spring) and late (autumn) lactation of the first 

year and the second year experiments are depicted in Figure 3.1. At the commencement of 

treatment in spring, apparently, the goats did not reach their peak yields since milk yields 

were still ascending. In MEL-treated goats, peak yield was achieved at lactation week 

8.67±0.95 while it continued to increase for an average of further two weeks, in the control 

group, reaching the peak at week 10.17±0.60, but this variation was not found to be 

statistically significant (P> 0.05, t test). Average weekly milk yield for both groups in each 

cycle of conditioning and long light of the first and second year experiments are presented 

in Figure 3.2, and they were analyzed by ANCOVA using the milk yield of the week 

immediately preceding each treatment cycle as covariate which are shown in Table 3.1. Two 

weeks of conditioning with MEL treatment apparently was not effective in priming the goats 

to subsequent stimulatory effect of long light on milk yield. So, the conditioning cycle was 

increased to four weeks before exposure to another four weeks of long light, and this also 

did not sensitize the goats to long light effect on milk yield regardless of the commencement 

time of treatment cycles. Indeed, there was no strong evidence of stimulatory effects of 

extended hours of lighting on milk yield except for a small, but significant, increase during 

the last long light cycle of the first year experiment and only in goats that did not receive 

the MEL treatment. In the two-week cycle of long light, in both seasons of the first year 

experiment, milk yield was not affected by long day exposure in both control and 

conditioned goats (P > 0.05, Paired t test). During the spring's second cycle of long light, 

milk yield decreased in both groups, more sharply in the third week, and this was apparently 

unrelated to treatment. Average weekly milk yield during the last long light cycle of the 

autumn of the first year experiment indicated that the group that did not receive MEL 
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produced more milk than the group fed MEL (P=0.05, ANCOVA). This was also 

confirmed by Paired t test analysis when the average milk yield during long light was 

compared with that of the week preceded long light cycle (P=0.02). ANCOVA analysis 

showed a non-significantly lower milk yield in goats that were conditioned by MEL when 

compared to non-conditioned ones (P=0.08). Despite the tendency for lower yields in MEL 

treated goats during the conditioning cycles in the first year experiment, ANCOVA did not 

confirm any significant difference between the two groups at each of 2 or 4 week period of 

conditioning cycles (P > 0.05; Table 3.1). Total milk yield produced throughout the repeated 

cycles of conditioning and long light analysed by ANCOVA, using milk yield of the week 

before the commencement of the first conditioning cycle (2-week) as a covariate, has 

indicated that goats that did not receive MEL treatment produced more milk than MEL- 

group during spring experiment (for control and MEL-treated, 270.8±13.2 v. 250±8.8 kg, 

P=0.05, ANCOVA). Also, a similar trend was seen in autumn's experiment, but the 

difference in milk yield did not reach the significance level (230±9.1 v. 218±13.8 Kg, 

P> 0.05). 

Unlike the first year experiment, MEL treatment in the second year experiment did 

not cause a decline in milk yield both during conditioning or subsequent long light cycles 

(Figure 3.1c & Figure 3.2c). There was no obvious effect of long day photoperiod on milk 

yield in both groups; yields were maintained without any significant differences between 

them (n. s, ANCOVA, Table 3.1). Milk yield fell in the first week of the first long light 

cycle in both groups and this was clearly unrelated to light treatment. Similar to previous 

year results, MEL was ineffective in priming the goats to the following long light effect on 

milk yield. However, unlike what has occurred in the first year experiment, long light 

exposure in late autumn was without any stimulatory effect on milk yield in either of groups 

(P > 0.05, Paired t test). 
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Figure 3.1 Mean milk yields (kg/d) of goats during two and four weeks of conditioning 
and long light cycles in (a) spring and (b) autumn of the first year experiment and (c) in the 
second experiment (autumn only). During conditioning cycles, goats were either fed 3mg/d 
of MEL (MEL-treated) or fed vehicle (control) at 15.00h, and during long light cycles, 
lights were on between 06.00-23.00h daily. Values are means with S. E. M. 



4.0- 

3.5- 

3.0- 

2.5- 

2.0- 

1.5- 

4- 

3.5- 

3.0- 
M 
A 

>- 2.5- 

2.0- 

1.5- 

4.0- 

3.5- 

3.0- 

2.5- 

2.0- 

1.5- 

COND1 LL1 COND2 LL2 

(b) 
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conditioning cycles, goats were either fed 3mg/d of MEL (MEL-treated) or fed vehicle 
(control) at 15.00h, and during long light cycles, lights were on between 06.00-23.00h 
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Table 3.1. Average milk yields (kg/d) in goats during two (2wk) and four (4wk) of cycles 

of conditioning and long light in spring and autumn of the first year and second year 

(autumn) experiments. During the conditioning cycle, goats were either fed 3mg of MEL 

(MEL-fed) or fed vehicle (control) daily at 15.00h. During long light cycle, lights were on 

from 6.00-23.00h. Values are adjusted means (using the milk yield in the week immediately 

before each treatment cycle as a covariate). SED, standard error of difference. 

Treatment Groups P 
Year Season 

Cycle Control MEL-fed 
SED 

Value 

Conditioning (2wk) 2.98 2.94 0.05 > 0.05 

Long light (2wk) 3.12 2.99 0.07 > 0.05 
Spring 

Conditioning (4wk) 3.29 3.25 0.05 > 0.05 

long light (4wk) 3.09 2.95 0.07 =0.08 
First 

Conditioning (2wk) 2.85 2.78 0.12 > 0.05 

Long light (2wk) 2.85 2.84 0.03 > 0.05 
Autumn 

Conditioning (4wk) 2.59 2.58 0.08 > 0.05 

Long light (4wk) 2.66 2.53 0.06 =0.05 

Conditioning (2wk) 2.80 2.83 0.09 > 0.05 

Long light (2wk) 2.43 2.52 0.06 > 0.05 
Second Autumn 

Conditioning (4wk) 2.42 2.55 0.08 > 0.05 

Long light (4wK) 2.50 2.57 0.18 > 0.05 
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Total milk yield produced throughout repeated cycle of conditioning and long light 

was not lower in the MEL-treated group, rather it tended to be greater than the non- 

conditioned goats (207.9±18.3 v. 220.5±9.06 Kg, for control and MEL-treated groups 

respectively, P=0.07, ANCOVA). 

3.3.2 Milk composition 

Milk composition data are shown in Figure 3.3. MEL treatment did not result in any 

pronounced changes in milk composition regardless of season. Also, shifting to long light 

was without any effect on fat or protein content of the milk. There was a small decrease in 

milk fat percent in both groups during the second week of the second conditioning cycle in 

autumn (P=0.08, t test), the reason for this is not known. Lactose was also not affected by 

MEL or long light treatment in sample determined in the second MEL and long light cycles 

in spring (for control and MEL treated, 133.2±2.0,139.5±6.5 and 138.5±2.5, 

133.5 ±1.2 mM/l during MEL and long light respectively, n. s, ANOVA). 

3.3.3 Body weight 

Average weekly body weights for both groups during spring and autumn of the first 

year experiment are shown in Figure 3.4. There was a gradual increase in body weight in 

spring while it was maintained fairly constant in autumn. There was no evidence of any 

difference in body weight between the two groups at any time, and both groups exhibited 

a similar trend in body weight changes except for the final long light cycle in autumn. 

Average body weight was significantly increased in the control group when compared to that 

of MEL-treated group (P=0.04, ANCOVA). 
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Figure 3.3 Milk composition in milk samples collected biweekly in goats during different 
periods of conditioning and long light cycles, (a) for fat percent and (b) for protein content 
in spring and autumn of the first year experiment. During conditioning cycles, goats were 
either fed 3mg/d of MEL WL-treated) or fed vehicle (control) at 15.00h, and during long 
light cycles, lights were on between 06.00-23.00h daily. Values are means with S. E. M. 
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Figure 3.4 Changes in weekly body weights in lactating goats during two and four weeks 
of conditioning and long light cycles in (a) spring and (b) autumn of the first year 
experiment. During conditioning cycles, goats were either fed 3mg/d of MEL (MEL- 
treated) or fed vehicle (control) at 15.00h, and during long light cycles, lights were on 
between 06.00-23.00h daily. Values are means with S. E. M. 
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3.3.4 Hormonal profiles 

In the second year experiment, no blood samples were obtained from the goats, and 

therefore hormonal data from the first year experiment will be only reported. 

3.3.4.1 Melatonin profiles 

Plasma MEL profiles during the conditioning cycles (second week of the two-week 

cycle) in both seasons together with that determined during the first week of long light, after 

cessation of MEL administration, are shown in Figure 3.5. Oral feeding of MEL at 15.00h 

but not vehicle significantly increased plasma levels of MEL after the feeding reaching a 

peak at around 30 minutes after the administration, which then gradually declined. Despite 

this decline, levels of MEL in goats on MEL diet at 17.00 and 19.00h were significantly 

higher than that in the control group in both seasons (P<0.05, t test). Height peak of 

plasma MEL values was not significantly affected by season (P> 0.05). In spring treatment, 

MEL concentrations in plasma tended to be elevated during the afternoon (at 13.00 and 

15.00h) not only in MEL fed goats but also, to a lesser extent, in the control group 

(P<0.01, at 15.00h, t test). Withdrawal of MEL treatment was accompanied by 

abolishment of the elevation in plasma MEL levels when determined during the first week 

of long light exposure (Figure 3.5c); MEL levels in goats that had been receiving MEL 

feeding were similar to that found in goats that had not been treated with MEL (P>0.05, 

ANOVA). 

3.3.4.2 Prolactin profiles 

Average weekly PRL concentrations for spring and autumn experiments are shown 

in Figure 3.6. There was no significant difference in PRL profiles between the two groups 

in pretreatment week (P>0.05, ANOVA). Average weekly PRL concentrations were first 
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analysed by ANOVA and the model included group (MEL-treated, control), light treatment 

(normal, long) and season (spring, autumn) and their interactions. PRL concentration was 

increased by long light (P=0.005), and it decreased during autumn (P <0.001). Melatonin 

treatment did not significantly affect the overall PRL mean nor was there any effect on PRL 

response to long light. Mean weekly PRL profiles for each group in each treatment cycle 

which were analysed by ANOVA are presented in Table 3.2. Melatonin treatment when day 

length was increasing (spring) did not significantly affect PRL concentration, no difference 

was found between the two groups (> 0.05). However, in the second conditioning cycle, 

PRL levels were increased during the first week in MEL-treated goats (P=0.09, Paired t 

test), in contrast to a tendency for a decline in control group (P> 0.05, Paired t test), which 

then declined as the treatment was carried on but there was no significant difference between 

the two groups in the cycle mean of PRL. Similar trend in MEL-treated group was observed 

also during the first week of the second conditioning cycle in autumn (P=0.04, Paired t 

test), and the cycle mean of PRL concentration was greater in MEL-treated goats than that 

of non-conditioned goats (P=0.01, ANOVA; Table 3.2). Apparently exposing the goats to 

only two weeks of long light was not effective in stimulating PRL secretion in both seasons. 

After shifting to long light in spring, PRL concentration did not increase until at least two 

weeks of exposure. 

Profiles of PRL determined in the two-hourly samples during spring and autumn are 

shown in Figures 3.7 & 3.8, and area under PRL curve calculated from these samples are 

in Figure 3.9. The mean of PRL AUC did not indicate that MEL had any significant effect 

on PRL profiles during the conditioning cycle or alter the long light response; mean of PRL 

in the MEL-treated goats was not significantly different from that of the control group, 

confirming the finding from the weekly samples. Frequent samples (two-hourly) during the 

conditioning cycle did not suggest that MEL suppressed PRL release, but PRL tended to 
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decline after MEL feeding so that at 19.00h it was almost significantly lower in the MEL- 

treated group when compared to that in control group (P=0.06, ANOVA; Figure 3.7a). 

Switching the goats to long light significantly increased PRL profiles (AUC) in both groups, 

in the first week (P =0.01) and second week (P = 0.004, t test) when compared to that of 

the conditioning cycle (Figure 3.9a). There was no evidence of any difference in response 

to long light between the two groups in the second week, and both groups followed a similar 

pattern of diurnal pattern change (Figure 3.7c). Prolactin was relatively low in the morning 

and exhibited a marked increase in the afternoon (P < 0.01, t test) which was maintained till 

the last sample. Seasonal effects on PRL profiles were also evident in the two-hourly 

samples, AUC of PRL release was markedly declined in autumn compared to spring's 

values. MEL treatment during autumn was without any effect on basal PRL profiles (Figure 

3.8a). Although AUC was higher in MEL-fed goats during MEL treatment, it was not 

statistically different from that in the controls. Prolactin concentration was not affected by 

previous MEL treatment since there was no significant difference between the two groups. 

PRL secretion in goats was increased when they were maintained at long light (P=0.04, t 

test) regardless of MEL treatment. 

PRL profiles in samples collected at 5 minutes interval around the afternoon milking 

in spring are presented in Figure 3.10. Goats were milked 20-50 minutes after MEL or 

vehicle feeding. PRL levels before milking (basal) tended to be greater in the MEL treated 

goats; nevertheless, they released less amount of PRL in response to milking stimulus than 

that of the control goats (Figure 3.10a). Furthermore, total AUC for PRL profiles calculated 

from samples collected post-milking was lower in MEL-fed goats but it did not reach the 

significance level because of high variability in the control group (961 ±407 v. 3347±1814, 

n. s, ANOVA). 
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Table 3.2 Average prolactin levels (ng/ml) in goats during two (2wk) and four (4wk) of 

cycles of conditioning and long light in spring and autumn of the first year experiment. 
During the conditioning cycles, goats were either fed 3mg of MEL (MEL-fed) or fed 

vehicle (control) daily at 15.00h. During the long light cycles, lights were on from 06.00- 

23.00h. Results were analysed by analysis of variance and values are means. SED, standard 

error of difference. 

Treatment Groups 
Season 

cycles Control MEL-fed 
SED P Value 

Conditioning (2wk) 208.8 178.1 38.3 > 0.05 

Long light (2wk) 225.3 201.3 29.5 >0.05 
Spring 

Conditioning (4wk) 247.5 250.7 26.0 > 0.05 

long light (4wk) ' 334.1 317.0 39.3 > 0.05 

Conditioning (2wk) 73.1 101.6 18.8 > 0.05 

Long light (2wk) 58.8 64.3 10.4 > 0.05 
Autumn 

Conditioning (4wk) 41.1 69.2 8.9 =0.01 

Long light (4wk) 80.0 58.0 30.2 >0.05 
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In the first week of long light, AUC was increased in both groups but was still lower 

in the goats that had been treated with MEL than in controls (1084±155 v. 3254±1251, 

n. s, ANOVA). In the second week of long light, MEL-fed goats reached their peak value 

earlier than control group but no significant difference was found in AUC between them (for 

MEL-group and control, 2775±844 v. 4306±1757, n. s, ANOVA). 

Milking-related PRL profiles in autumn are presented in Figure 3.11. Total AUC 

for postmilking PRL profiles were non-significantly decreased in control goats in autumn 

compared to in spring (P> 0.05, t test), however, MEL-treated group had greater PRL 

profiles in autumn than that of spring during the conditioning cycle (P=0.04, t test). 

Profiles of PRL in the MEL-group were unexpectedly higher than that found in control 

group over all sampling times resulting in a significantly difference in AUC (5096±851 v. 

1749±242, P<0.01, ANOVA). This effect was abolished once MEL feeding stopped and 

both groups were maintained on long light and AUC was significantly reduced (P < 0.01, 

ANOVA) in goats with MEL resulting in no significant differences between the two groups 

(1568±526 v. 2000±474, n. s, ANOVA). 

3.3.4.3 Growth hormone profiles 

Profiles of weekly GH levels determined during pretreatment indicated that there was 

no significant difference between the two groups (for MEL-treated 2.90±0.59 and control 

2.73 ±0.66nglrnl, P>0.05,1 test). Two-hourly profiles of GH in spring are presented in 

Figure 3.12. During the second week of conditioning cycle, the pattern of GH secretion in 

MEL-treated goats differed from that in controls; basal levels were remained at lower levels. 

Plasma GH AUC are presented in Figure 3.14. The difference between treated and control 

goats was significant (P=0.006, ANOVA). In the first week of long light, goats treated 

with MEL showed no changes to their previous GH secretion pattern or mean. On the other 



750 1 (a) 0 Control 
" MEL treated 

600 

450 

300 

150 Ö---gý 

50 t 

0 
-10 -5 05 10 15 20 

750,1 (b) 

- 600 
E 
c 450 

v 300 

0 
16. IL 150 

50 
0 

-10 -5 0 5 10 15 20 

750 (c) 

600 

450 

300 

150 �1 

50 

2t 

0 
-10 -5 05 10 15 20 

Time relative to milking (minutes) 

Figure 3.10 Profiles of plasma PRL concentrations (ng/ml) in lactating goats determined 
around milking time during (a) the second week of conditioning cycle, (b) during the first 
and (c) the second week of long light cycle in spring. During the conditioning cycle, goats 
were either fed 3mg/d of MEL (MEL-treated) or fed vehicle (control) at 15.00h, and during 
the long light cycle, lights were on between 06.00-23.00h daily. Arrows indicate the time 
when goats finished milking. Values are means with S. E. M. 



750 (a) 0 Control 

600 

450 

300 

15o L 

E 50- 
CD o- 

G 

750 (bý 
0 16- 

a 
600 

450 

300 

150 

50 
0 t 

-10 -5 05 10 15 20 

Time relative to milking (minutes) 

Figure 3.11 Profiles of plasma PRL concentrations (ng/ml) in lactating goats determined 
around afternoon milking time during (a) the second week of conditioning cycle and (b) 
during the second week of long light cycle in autumn. During the conditioning cycle, goats 
were either fed 3mg/d of MEL (MEL-treated) or fed vehicle (control) at 15.00h, and during 
the long light cycle, lights were on between 06.00-23.00h daily. Arrows indicate the time 
when goats finished milking. Values are means with S. E. M. 

t 
-10 -5 05 10 15 20 



57 

hand, in control goats distinct peaks were diminished and also AUC tended to be reduced 

(P=0.13), generally both groups followed a similar pattern and there was no significant 

difference in GH levels between them. In the following week of long photoperiod, both 

groups were characterized by higher number of secretory bursts and the peak values tended 

to be higher than that found in the two preceding weeks. Despite these changes in the 

pattern of GH release, no effect of long light could be detected in the control group, but 

AUC was only significantly higher in the MEL group (P=0.02, t test) when compared to 

that in the week before long light exposure. 

Profiles of GH during autumn are presented in Figure 3.13. Plasma concentrations 

of GH in MEL-fed goats were maintained at lower levels than controls in all samples 

collected except in the sample taken immediately before treatment (at 15.00h; Figure 

3.13a). This resulted in a lower plasma GH AUC for this group when compared to control 

group (P=0.10, ANOVA, Figure 3.14b). Subjecting goats to long photoperiod resulted in 

a small increase in GH concentration, significant in MEL-group only (P=0.01, t test). 

However, peak values always tended to be higher in control goats. 

Profiles of GH determined around milking are shown in Figure 3.15 for spring and 

in Figure 3.16 for autumn treatments. The data are largely confirmatory of the two-hourly 

profiles. Milking stimulated GH release to a limited extent (less than PRL). Total AUC of 

GH profiles determined from post-milking samples indicated that MEL suppressed GH 

release in spring (for MEL-group and control, 33.7 ±9.4 v. 82.3±20, P =0.06) as well as 

autumn (15.0±2.9 v. 66.7±19, P=0.04, t test). Long light did not cause any dramatic 

change on post-milking GH release in controls, but it was significantly higher in MEL- 

group when compared to that found during the conditioning period (P < 0.01). There was 

no obvious seasonal effect on AUC as comparison between conditioning cycles of spring and 

autumn did not reveal a significant difference in either of groups. However, there was an 
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apparent variation in long light cycles between spring and autumn; average AUC of all goats 

was significantly higher in spring than that in autumn (110.9 ±22 v. 39.8 ±3.2, P<0.01, 

t test). 

3.3.4.4 Insulin like growth factor-I profiles 

Plasma concentration of IGF-I determined in the two-hourly samples collected during 

the first two cycles (MEL and long light) in spring and autumn are shown in Figure 3.17. 

There was no evidence of any modulatory effect exerted by MEL on plasma IGF-I 

concentration in spring or autumn, there was no significant difference between MEL-group 

and controls (P > 0.05, t test, Figure 3.17a, b). While switching to long light was without 

any effect on IGF-I levels in spring, it was slightly reduced, but significant, in autumn in 

both groups (P=0.05, t test). 
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Figure 3.15 Profiles of plasma GH concentrations (ng/ml) in lactating goats determined 
around milking time during (a) the second week of conditioning cycle, (b) during the first 
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Figure 3.16 Profiles of plasma GH concentrations (ng/ml) in lactating goats determined 
around afternoon milking time during (a) the second week of conditioning cycle and (b) 
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3.4 DISCUSSION 

3.4.1 Milk yield 

Short term MEL treatment in the middle of the day to mimic short day signal was 

not effective in priming goats to subsequent effect of long photoperiod on milk yield, 

regardless of the time, commencement or duration of MEL treatment. Indeed, milk yield 

tended to be reduced when the MEL treatment was started in early lactation, when the day 

length was increasing. Milk yield was still increasing at the time of the start of the 

experiment, at week 5 of lactation. It continued to increase in the control group and reached 

a peak higher levels while goats with MEL treatment, it apparently reached peak about two 

weeks earlier and lower milk yield. The main factor, at the mammary gland level, 

responsible for the increase in milk production at peak lactation is the enhancement in the 

secretory activity of the epithelial tissues (Wilde et al., 1986). Therefore, a tendency for 

MEL-treated goats to achieve peak yield at an earlier stage might suggest a possible 

disruption of the differentiation process. Alternatively, maintaining the control goats at a 

minimum of 12h of light might have some stimulatory effects on metabolic activity of the 

secretory epithelium. In this study, no group of goats was maintained outdoors at natural 

light to be compared with the two studied groups, and to clarify if light has caused any 

stimulation on milk yield of the control group. Although average milk yield of MEL-treated 

goats during each MEL or long light was not found to be significantly different from milk 

yield in control goats, total yield during the whole early lactation period was significantly 

lower in the MEL group. This clearly suggests that repeated cycles of MEL and long light 

are exerting an inhibitory effect on the lactation performance. Melatonin is involved in the 

regulation of many biological processes in mammals including reproduction and body 

growth and may also exert some influence on mammary gland development and function. 

It can be proposed that MEL might affect milk secretion indirectly, by altering the release 
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of pituitary hormones which are important for the, function of the mammary gland. In this 

study, PRL released post-milking tended to be suppressed by MEL in spring treatment. 

Also, GH was maintained at a lower level during the MEL treatment. Thus, the reduction 

in the amount of PRL that the mammary gland was exposed to (postmilking) while under 

MEL treatment coupled with lower circulating GH at this stage of lactation might have 

affected the secretory activity of the epithelial tissue which in turn affected milk yield. 

Although PRL may not be essential for maintenance of established lactation in ruminants 

(Karg et al., 1972; Hart, 1973; Beck et al., 1979), it definitely has a role to play in the 

initiation of lactation (Schams et al., 1972; Forsyth & Lee, 1993) which has been indicated 

to be required for full structural differentiation of alveolar epithelium (Akers et al., 

1981a, b). The galactopoietic effects of GH in ruminant is well known, and there is some 

evidence in goats which suggests a requirement for GH in maintenance of normal lactation 

(Cowie, 1964). Therefore, it is possible that the lower GH caused by MEL might have 

contributed to the decline in milk yield. 

A possible modulatory effect of photoperiod on mammary gland development in 

ruminants has been suggested. Maintenance of prepubertal heifers on 16h of light: 8h of 

darkness has been shown to stimulate growth of the mammary parenchyma (Petitclerc et al., 

1985) suggesting that long light exposure, which also reduces the duration of the nocturnal 

MEL release, might be involved in this process. This hypothesis has been confirmed by 

Sanchez-Barcelo et al, (1991) when they observed a reduction in mammary parenchymal 

growth in prepubertal heifers treated with MEL at the middle of artificial long days. Also, 

MEL treatment during pregnancy appeared to affect mammary gland development as 

reflected by the reduction in mammary gland weight and total DNA (Mediavilla et al., 

1993). It has been proposed that part of the action of MEL is mediated directly at the level 

of the mammary gland (Sanchez-Barcelo et al., 1990) and the presence of MEL binding 
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sites in mammary gland membranes of mice support this contention (Recio et al., 1994). 

However, in spite of this evidence of interference of MEL with mammary gland 

development, there is no equivalent evidence to indicate that MEL is affecting mammary 

gland function during lactation. Treatment of lactating cows with MEL for eight weeks or 

for 20 weeks in goats (after the summer solstice) was without any effect on milk yield 

(Buchanan et al., 1991; Knight, 1993). In addition, maintaining lactating ewes on short days 

(8.5h light: 15.5h of darkness) for four weeks starting at lambing, did not affect milk yield 

compared to others maintained on long light (Bocquier et al., 1990). The divergence in milk 

yield between MEL and control groups during the spring treatment was not exhibited during 

the first conditioning cycle but rather started after the cessation of MEL treatment and 

exposure to long photoperiod, during the first long light cycle. Occasionally in the first year 

experiment the milk yield tended to decline with long light exposure in goats that had been 

on MEL before switching to long light. Taken together, these findings did not support that 

the deleterious effect on milk yield was attributed to MEL per se but to the rapid and 

progressive changes in day length which might have resulted in an external 

desynchronization and shift in the phase of the circadian rhythms involved in milk 

production. Self sustained oscillations with periods of 24h, the circadian rhythms, are 

entrained by the synchronizing effects of environmental cues such as light and dark cycles 

(Takahashi & Zatz, 1982). Repeated cycles of MEL (short day signal) and long light might 

have resulted in desynchronization of the circadian system. Short photoperiodic cycles of 

one month of long days followed by one month of short days abolished seasonality of 

reproduction in male goats (spermatogenetic activity was maintained at a high rate 

throughout the year; Delgadillo et al., 1995). Also, the tendency for higher PRL 

concentrations during MEL treatment in autumn is another example of the disturbance of 

the circadian rhythm involved with PRL release in these goats. This study and that of 
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Knight, (1993) demonstrated that MEL treatment did not affect milk yield when treatment 

was initiated later in the year, after exposure to a long duration of long hours of lighting. 

This may be not simply related to seasonal or stage of lactation related sensitivity to MEL 

because the second year experiment was performed exactly like that in autumn of the first 

year yet the milk yield was not reduced in MEL group during the second year experiment. 

This suggests the importance of photoperiod cue while the day length is increasing in spring 

so that any consecutive rapid alteration in day length might be a determining factor to milk 

yield. Once the goats had experienced a period of long days and the day length was 

decreasing, then MEL was ineffective in disturbing the innate circadian rhythm involved in 

milk secretion. In fact the relationship between environmental factors such as photoperiod 

and milk production in goats is somewhat peculiar; when goats are kept to lactate for longer 

period of time, milk yield exhibits seasonal variation. Yield is high in spring-summer and 

low in autumn-winter, which might suggest a possible correlation between day length and 

lactation cycle so that a manipulation of light regimen will affect the yield. However, 

maintaining goats at extra hours of lighting during autumn-winter was ineffective in 

changing the normal decline in milk yield (Linzell, 1973; Hart, 1975b). Linzell, (1973) has 

suggested the existence of an innate rhythm for milk production in goats which may be 

independent of environmental cues like photoperiod. This may not be entirely true, since 

stimulatory effects of photoperiod on milk yield in goats have been achieved (Terqui et al., 

1984; Knight, 1993) and also in this study milk yield tended to increase during the last long 

light period in autumn of the first year experiment in the control group. The difficulty in 

explaining why effects of photoperiod on milk yield were inconsistent emerges from the fact 

that the mechanism by which photoperiod affects milk production is far from understood and 

still debated (Tucker, 1985; Dahl et al., 1997). This inconsistency in the effect of 

photoperiod on milk yield has also been reported in cows. Despite the number of reports 
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which indicated that more hours of lighting during the winter is stimulatory to milk 

production (Peters et al., 1981; Marcek & Swanson, 1984; Stainisiewski et al., 1985), 

others could not detect any effect (Murrill et al., 1969; Tanida et al., 1984). It is possible 

that other environmental factors like ambient temperature might interfere with the light 

effect or factors related to lighting regimen such as source or intensity of light may be 

factors in determining the photoperiod response. 

3.4.2 Melatonin profiles 

The increase in plasma MEL concentration at 13.00 and 15.00h in control group 

during the first cycle of MEL in spring was an unusual observation. Samples were collected 

during the day time, a situation which would be expected to be circumstances for MEL 

suppression. In goats, as with other mammals, MEL secretion is suppressed by light 

treatment and it has been shown that 150 lux is sufficient to suppress MEL levels by at least 

80% in Saanen goats (Deveson et al., 1990) and the light intensity in this study (at least 300 

lux) should have been more than enough to suppress MEL concentration throughout the day. 

The increase was only evident in the two samples collected before the feeding of the 

designated diet and in fact MEL levels fell to normal diurnal levels in samples collected 

thereafter in control goats, suggesting that the rise in MEL was unlikely to be related to an 

exogenous source. Since this was the first time of frequent sampling by catheter for these 

goats and a possible stress related response was suspected, it is possible that the elevation 

of MEL levels might have been also elicited by stress related factor. Rats subjected to 

chronic stress showed a significant increase in plasma MEL which could not be suppressed 

by constant illumination of bright light (Persengiev et al., 1991). Thus, stress related 

increase in plasma MEL can overcome the suppressive effects of light on MEL secretion. 
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Plasma MEL in the treated group increased after MEL feeding and reached a 

maximum level about 30 minutes after the time of administration, which then declined but 

it was sustained at higher levels than that found in controls until the last sample at 19.00h. 

Administration of BIEL in sheep by means of oral feeding has been reported to increase 

after feeding in a similar manner to that observed in this study (Kennawy es al., 1982). 

3.4.3 Prolactin profiles 

Seasonal variation in PRL release is controlled by environmental factors, photoperiod 

and temperature. The levels of PRL are normally high during spring-summer and decline 

as day length decreases in autumn-winter months in the goat (Buttle, 1977). This seasonality 

in PRL profiles was not disrupted very much by this progressive light changes cycles; PRL 

was higher in spring and declined in autumn and also the goats were able to respond to 

photopcriod stimulation. It was believed that the duration of the nocturnal rise in MEL 

secretion may relay the effects of photoperiod on PRL release; high PRL levels are 

associated with short duration of physiological levels of plasma MEL (long day signal) and 

conversely longer duration of nocturnal rise in MEL (short day signal) are associated with 

lower circulating PRL (Maeda et at., 1988). In this study, MEL treatment in spring did not 

result in a significant changes in PRL secretion and had only a marginal effect on the 

response to subsequent long light treatment. Extending the duration of higher plasma levels 

of MM during the day by DIEL feeding in the middle of the day, while the day length was 

irxreasing. apparcntly did not produce a significant decline in basal PRL concentrations as 

has bccn reported by others in strep (Kennaway et at., 1982; Symons et al., 1983). The 

failure of INMEL to exert an inhibitory effects on PRL levels can not be attributed to 

efficiency of ut=x-nt to elevate plasma MEL since MEL was elevated in all goats shortly 

after feeding and remained elevated until the end of the subjective day. The time of year of 
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the commcnccment of NIEL treatment may account for the lack of a significant difference 

in basal PRL levels between BIEL treated and control goats. In goats and sheep, animals 

have to be maintained on a sufficient duration of long days in order for the MEL to transmit 

its photoperiodic message (short day signal) on the hypothalamo-pituitary axis to modify the 

PRL release, presumably to remove the photorefractoriness caused by exposure to short day 

in winter (Prandi et a!., 1987; Deveson et al., 1992b). In ewes, MEL treatment did not 

affect PRL concentration when treatment started in early spring, April, but PRL 

concentration was significantly reduced when MEL treatment began two months later in 

June (Poulton et a!., 1980. Alternatively, photorefractoriness can be removed by exposure 

to long light in the winter for some time before MEL signal became effective in reducing 

plasma PRL in early spring (Forsyth et al., 1997). This indicates that MEL effects on 

suppression of PRL cannot be achieved without sufficient prior exposure to long days 

presumably to remove the short day refractoriness. However, the two hourly sampling 

assessed for PRL content might suggest a slight influence of MEL treatment on PRL profiles 

in spring. at least in the first cycle of DIEL. There was a tendency for PRL levels to be 

reduced after the feeding with MEL but not at other times, suggesting that MEL feeding 

partially suppressed PRL secretion and this suppression was dependent on the presence of 

high levels of plasma MEL This %%-as also supported by the tendency for attenuation of post- 

milking PRL surge since milking was performed shortly after MEL feeding at a time when 

plasma MEL was at highest levels. 'Beere is no available data on the effect of MEL on post- 

milking PRL release in ruminants. however, evidence from the rat has indicated that MEL 

caused a strong inhibition to the suckling irniuccd PRL surge (Juszczak & Stempniak, 1997). 

The mechanism by which r1EL participates in the neuoroendocrine regulation of PRL is not 

fully understood. MEL might be acting on hypothalamic regions by modulating the 

production of releasing or inhibiting factors that subsequently will affect PRL synthesis and 
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secretion in the pituitary gland (Lincoln & Maeda, 1992). However, this may not be the 

whole story; strong evidence in the ram indicated that the hypothalamus, and consequently 

releasing or inhibiting factors, may not be required for the MEL signal on PRL release 

(Lincoln & Clarke, 1995). This suggest that MEL can act directly in the pituitary gland, and 

a direct effect of MEL on PRL release from pituitary cells in vitro has been demonstrated 

in the rat (Griffiths et al., 1987). So. how does MEL exert its direct action in the pituitary 

gland to modulate PRL, release? It is unlikely that MEL is acting directly in the pars distalis 

to modulate PRL secretion since it does not possess strong MEL receptors expression 

(Boissinagasse. 1992; Nona et al., 1995). Indeed, a great amount of evidence suggests that 

the main site of BIEL action in the pituitary gland is in the pars tuberalis as indicated by 

high density of MEL binding sites (Dereviers et al., 1991; Piketty & Pelletier, 1993) and 

the demonstration of suppressive effects of NIEL on PRL release when implanted in pars 

tuberalis in sheep (Lincoln, 1994; Malpaux et al., 1995). It can be anticipated, therefore, 

that BIEL might be acting on some cellular components of the pars tuberalis in a way that 

affects neighbouring pars distalis cells in a paracrine fashion. The exact mechanism is far 

from understood. but this might involve changes in the sensitivity of lactotrophs to PRL 

releasing or inhibiting factors. Tb existence of PRL releasing factor from pars tuberalis can 

not be excluded since such a factor has been identified recently (Hazlerigg et al., 1996), but 

whether this releasing factor might account for the action of MEL on seasonal fluctuation 

of PRL concentrations is not known. 

Treatment of BIEL in autumn produced some effects on PRL which were different 

from those exhibited in spring. Plasma PRL levels tended to be higher during the first 

conditioning cycle and the first two weeks of the second cycle; there was no evidence of any 

tendency of lower PRL levels after MEL feeding in the frequent sampling and indeed the 

PRL surge in responsc to milking stimulus was potentiated. The response of MEL treatment 
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in autumn might be related to photorefractoriness elicited by rapid changes in day length 

signal on the mechanism of PRL release. During the first week of the first conditioning 

cycle, a sharp fall in PRL concentration in both groups was seen and this was attributed to 

switching the goats from long photoperiod to normal light (control) or short day (MEL 

treated). However, PRL profiles in MEL group were at higher levels than that of the 

controls, and a similar trend was also seen in the first week of the second conditioning 

cycle. Similarly alternating short cycles of four weeks of short days and long days in bucks 

caused a tendency for elevation in PRL levels during the first two weeks of short day 

exposure (Delgadillo & Chemineau, 1992). Secretion of PRL which undergoes marked 

circadian and seasonal changes is controlled by the circadian pacemaker system and that 

pineal gland transmiting day length information to the neuroendocrine axis via MEL 

secretion. Therefore, it can be suggested that abrupt and progressive changes in day length 

signals (short and long light) might have resulted in desynchronization in the endogenous 

circadian rhythm involved in the regulation of PRL secretion. The entrainment of the 

rhythm by photoperiod message would require some period of time before photoperiodic 

message can be expressed on PRL release. For example, PRL levels tended to decline on 

continuod I IEL administration (second conditioning cycle), and also, stimulatory effect of 

long light on PRL release was not immediate and it required some time to occur. 

3.4.4 Gro t th Hormone 

The ability of KIEL to affect Gil has been demonstrated since Gil plasma levels in 

MELarated goats were lower and this response appears to be independent of season. MEL 

treatn r1 also has been shown to suppress Gil secretion in hamsters (Vaughan et at., 1993). 

MEL has been proposed to affect the release of pituitary hormones by acting in the 

mediobasal hypothalamus (Lincoln & Maeda, 1992; Malpaux et al., 1995) presumably to 
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modify the release of factors that exert stimulatory or inhibitory actions on the release of 

pituitary hormones. Evidence from the rat indicates that MEL stimulates somatostatin 

release from rat medial basal hypothalamus in vitro (Richardson et al., 1981) which then 

reduces the secretion of Gil from somatotrophs, but direct effects of MEL on the pituitary 

to affect Gil release can not be excluded (Griffiths et al., 1987). The tendency for a decline 

in the basal Gil profiles seen in the first week of long light exposure in the control group 

was somewhat difficult to explain, but it was also maintained at lower levels in MEL-fed 

group. It is possible that the higher plasma Gil concentrations during normal light exposure 

were not related to light treatment, Gil may be elicited by other factors. This was the first 

time that the goats were subjected to frequent bleeding by means of catherization, so stress 

might has contributed to the elevation in Gil secretion during the first conditioning cycle. 

Simms et al, (1978) have observed higher plasma Gil in hourly samples when collected for 

the first time by means of catherization in goats which then declined on repeated sampling. 

Goats in this study were catheterized on the day before the day of sample collection but they 

had been subjected to weekly bleeding by venipuncture at least two weeks before the 

commencement of the experiment. Nevertheless, this may not be related directly to 

catherization or sample collection effects but may be as consequence of stress related 

distuxbazxxs in the daily activities of the goats during the day of sampling. The changes in 

Gil during light treatment in the control goats, no significant difference between normal 

light and the second week of long light exposure in GH levels in both seasons, did not 

support a stimulatory effect of photopcriod on release of Gil. The effect of photoperiod on 

GII secretion in ruminants is equivocal. In heifers and lactating cows, there is no evidence 

to indicate that photoperiod exerts a modulatory effect on basal Gil release (Peters & 

Tucker, 1978; Peters ct al., 1980.1981; Gustafson, 1994), but it might affect the number 

of episodic pulse releases of the hormone (Lcining et a1., 1980; Evans et at., 1991). Also, 
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seasonal variation in Gil levels in circulation was not evident (Petitclerc et al., 1983). In 

lactating ewes and growing lambs, Gil plasma concentrations were not altered by light 

manipulation (Bocquler et al., 1990; Francis et al., 1997). In contrast, Barenton et al, 

(1987) reported that plena GH levels were associated with the prevailing day length in the 

ram, being high during long photoperiod and low in short days. In male as well as female 

goats, there is no cvidencc of a regulatory role of environmental factors such as photoperiod 

and temperature on the release of Gil (Hart & Buttle, 1975; Kloren et al., 1993) which 

suggests that Gil levels do not exhibits a seasonal variation such as that found for PRL. In 

this study. light might participate in the regulation of Gil release. Treatment with MEL 

which mimics short day signal depressed Gil secretion and subsequent exposure to long 

light stimulated its release in this group regardless of season. On the other hand, there was 

no convincing evidence for a strong stimulatory effect in the control group in which the 

increase in Gil did not achieve the significant level. However, four out of the six control 

goats exhibited an apparent rise in plasma concentration in spring and, interestingly, the 

same goats also showed the same trend in autumn. Had there been more animals in each 

treatment group. a significant effect might have emerged. Indeed, comparison between the 

first and second weeks of long light indicated a significant difference between the two means 

in the control goats. but not when Gil levels during normal light were compared with that 

of the second week of long light. The decline in Gil concentration in August can be 

attributed mostly to stage of lactation; as lactation advances so Gil level declines. Repeated 

cycles of short day (or normal day) and long light did not attenuate the decline in Gil. 

There was no clear rise in Gil concentrations after milking and it was increased after 

5 minutes of milking in only three goats out of the six controls. The mode of release is 

different from PRL and may not be related to the tactile stimulation of the mammary gland 

(Hart & l. inull, 1977). 
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3.4.5 Insulin-like growth factor-I 

Treatment with MEL did not affect IGF-I concentration despite the tendency for 

depressive effect on Gil levels. The finding in this study of a lack of a correlation between 

IGF-I and Gil levels in plasma changes in response to photoperiodic manipulation was not 

something unexpected. Several reports which indicate that GH level is not correlated well 

with plasma IGF-I in cattle (Breier et al., 1986; Ronge & Blum, 1989) despite the 

significant role of Gil as a regulator of IGF-I synthesis. Moreover, photoperiodic 

manipulation may result in changes in IGF-I which are independent of GH changes in 

lactating cows and lambs (Dahl et al., 1997; Francis et al., 1997). In fact, several factors 

might be involved in regulation of hepatic IGF-I synthesis and hence its circulation levels 

which includes nutrition, metabolic status and the thyroid status (McGuire et al., 1992; 

Rodrigucz-Arnao el al., 1993). The decline in IGF-I in response to long photoperiod in the 

autumn might constitute a paradox, since shifting to long light has been associated with 

promotion of growth (Tucker et al., 1984) together with stimulation of feed intake (Peters 

et al., 1981). 1iherefore, IGF-I concentrations would be expected to increase with long light 

not decline. Stimulatory effect of exposure to extended hours of lighting on IGF-I levels 

have been demonstrated in lambs (Francis el al., 1997) and in lactating cows (Dahl el al., 

1996) but not in female deer (Adam et al., 1996). In agreement with what has been seen in 

this study. Sarko et al, (1994) observed a decline in serum IGF"I concentration in calves 

when shifted to 16h of light. There was no change in live body weights during the second 

week of long light to be accounted for this decline in IGF-I. However, caution is needed in 

drawing any conclusion from this finding since plasma levels of IGF-I was determined in 

frequent samples from only one day which might have been affected by factors other than 

photopcriod. Unfortunately, voluntary food intake was not measured during the 

experimental periods, although goats did not show a tendency for lower live weight during 
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long photoperiod. This indicates that photoperiodic effects on IGF-I were probably not a 

result of differences in nutritional status. 
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3.5 GENERAL DISCUSSION 

In this study, stimulatory effect of photoperiodic manipulation on milk yield has not 

been well established. Maintaining lactating goats on long light at different stages of 

lactation were ineffective in increasing milk yield except for one occasion, in the last long 

light cycle of the first year experiment. Nonetheless, this response was modest and did not 

occur in all goats, it was only evident in control goats. This inconsistency in stimulatory 

response to photoperiod is not novel and has been reported previously in ruminants. This 

suggests the existence of other factors that might limit or prevent this response. For 

example, ambient temperature might be a possible factor interfering with the galactopoietic 

effect of photoperiod. 

The main objective of this investigation was to test if short term MEL treatment was 

effective in sensitizing the goats to the following long light stimulation on milk yield. There 

was no supportive evidence to suggest that exposure to such a conditioning factor with this 

length resulted in increasing the capability of milk production once they were switched to 

long light. Indeed, there was a tendency in MEL treated goats to produce less milk once 

they were on long light in the first year experiment, suggesting that short term MEL 

treatment might block or attenuate the long light effect. The goat is considered a seasonal 

breeder and its lactation cycle starts in early spring and ends in late winter, and there is a 

parallelism between changes in milk yield and day length. Several biological functions 

which exhibit cicannual rhythms are entrained by changes in ambient photoperiod. 

Therefore, it is possible that mammary gland function which clearly shows a well defined 

seasonal rhythmicity is entrained by day length changes, and MEL is the factor which is 

responsible for the transmition of photopcriodic message to the neuroendocrine system. 

Starting the treatment regime of short cycles of MEL and long light while the day length 

was still increasing might have disrupted the normal seasonal (photoperiod) effect to entrain 
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the endogenous rhythmicity involved in milk production. However, delaying the onset of 

cycles until goats had passed the longest day (summer solstice) did not result in any 

determinant effect on endogenous rhythmicity of milk yield. This was possibly related to 

the fact that the goats needed to pass a critical period (longest day) before any rapid and 

abrupt manipulation in day length was without any deleterious effect on milk production. 

Although there was no evidence to indicate a possible stimulatory effect of long light on 

milk yield in the second year experiment, there was a tendency for conditioned goats to 

produce more milk than the non-conditioned ones in the overall cycles. This, at least, 

confirmed the proposed hypothesis about the timing of starting MEL manipulation and also 

agrees with what was found in the previous year regarding the lack of priming effect of 

MEL on subsequent response to long light exposure. Also, the absence of any effect of long 

light on milk yield supports the contention of interference of other factors with this process. 

Melatonin treatment by itself resulted in a tendency for a non-significant reduction 

in milk yield as compared to controls, provided that the treatment was started before 

summer solstice. It was possible that the inhibitory effect of MEL on GH may account for 

this decline in milk production. However. the tendency for lower milk yield after cessation 

of MEL treatment and start of long light in the first year supports the hypothesis of 

disruption in the seasonality caused by rapid alternating changes in day length signal at this 

critical period. This study did not indicate that short term MEL treatment sensitized the 

goats to subsequent long light effect on milk yield regardless of time of the commencement 

of treatment cycles. In fact, applying treatment cycles before the longest day may produce 

some detrimental effects on milk yield thus indicating the importance of seasonality in 

lactation performance in goats. There was a lack of definitive and consistent increase in milk 

yield by long light which suggests the possibility of involvement of other factors that might 

interact with the galactopoictic effect of photopcriod. 



74 

CHAPTER FOUR 

EFFECT OF MELATONIN ON THE EFFICIENCY OF UDDER EMPTYING AT 

MILKING IN THE GOAT 

4.1 INTRODUCTION 

In the previous chapter, it has been shown that short cycles of melatonin (MEL) 

followed by long light might, in some cases, produce an inhibitory effect on milk yield. The 

overall conclusion suggested that this effect may not be related directly to MEL, but may 

be related to the disruption in the normal increase in day length caused by abrupt and 

alternating exposure to DIEL and long days. however, some evidence pointed to a possible 

involvement of MEL in this response. For example, in the MEIrfed goats, plasma GH 

levels were lower and there was also a tendency for suppression of post-milking PRL release 

in early lactation treatment. This suggests that MEL might be acting on the hypothalamo- 

pituitary axis to affect the release of some hormones which are involved in the regulation 

of mammary gland function. This is supported by the existence of MEL binding sites in 

several areas in the brain indicating the multiple activity of this hormone. Oxytocin (OT) 

is a hormone released from the neurohypophysis upon the suckling or milking stimulus 

which acts on the myoepithelial cells surrounding the alveolus to induce milk ejection by 

contracting them. Some evidence from the rat and hamster has shown that the pineal 

indoleamine. MEL, exerts some regulatory mechanism on OT release; MEL reduced OT 

relcase from rat hypothalamus explants (Yasin et al., 1993) and from the neurointermediate 

lobe of the pituitary in hamster (Juszrrak et at., 1995). It is not only the basal release of OT 

which has been affected by MMEL, but also the stimulated release of OT (by KCL) has been 

shown to be reduced by NIEL (Yasin et al., 1996). There is also some evidence to suggest 

a diurnal variation in the modulatory influence of MEL on OT release, for example, OT 
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release was not suppresscd by DIEL treatment when it was applied at midnight, in fact it was 

stimulated (Yasin tt al.. 1995). 

If the NIEL treatment is causing an inhibition of milking-elicited OT release, this 

could result in im ompletc milking. Incomplete milking can lead to a reduction in milk yield 

and reduction in the metabolic capacity of secretory epithelium through increased activity 

of a locally-active autocrine inhibitory protein, the feedback inhibitor of lactation (Wilde 

et al.. 1989), confirming the contention of inverse relationship between residual milk 

volume and rate of milk secretion Weaker & Blatchford, 1988). Accordingly, this 

experiment was conducted to investigate the impact of MEL on the completeness of milking 

of the udder in the goats and if this would be affected by the changes in day length at which 

MEL was started. 

4.2 MATERIALS AND METHODS 

4.2.1 Animals 

Saanen goats which kidded in spring and of different parities were used. The 

determinations of the impact of MEL on residual milk volume were performed during early 

May (lactation week of 1.86 f 0.34) and in July, after the summer solstice when the goats 

were in lactation week of 10.40 ± 0.98. The two experiments were conducted at different 

years with different animals at each year. Housing and management were the same as that 

described in chapter 3. 

4.2.2 Experimental design 

In both trials, goats were not treated with MEL or experienced artificial long days 

before the start of the experiment. The concept of the experiment was to determine the 

effect of NIEL on milking-induccd OT release indirectly through the determination of the 
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volume of milk remained in the udder after normal milking (residual milk). MEL was fed 

to goats for 14 days and estimations of the residual milk volumes were done at three 

periods, immediately before KIEL treatment (pretreatment), during the first days of 

treatment (early MEL) and during the last days of treatment (late MEL). At each interval, 

the estimation was repeated on three successive days and the average of these determinations 

was used for the evaluation. The BIEL feed was prepared as described in the previous 

chapter. and fed to goats daily at 15.00h, approximately 30-60 minutes before milking. The 

assessment was done only at the afternoon milking, and the goats were machine-milked in 

the parlour as normal followed by thorough hand stripping, and this was carefully 

maintained at each milking. After milking the goats, they were moved to an area near their 

pens where the determination of the residual milk was carried out. Goats were then hand 

milked 1.2 minter after injection of 0.21U of 0T (in Iml of 0.9% NaCL) administered via 

one of the jugular veins. This was followed by another dose of OT and hand milking, the 

collected milk fraction was recorded to the nearest 0.5gm. The milking procedure before 

and after OT injection was kept the same throughout the determination periods. 
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4.3 RESULTS 

Milk yield volumes during P. M. milking obtained by normal machine milking 

(machine) and that recovered after OT injection followed by hand milking (residual) are 

presented in Table 4.1. Neither milk volume obtained before OT nor the total milk volume 

(machine + residual) were affected by MEL treatment, and regardless of the time of the 

year (P>0.05. t test). Administration of MEL shortly before P. M. milking apparently did 

not affect the efficiency of udder emptying as indicated by a lack of any differences in 

residual milk: volume (P> 0.05,1 test) and again without any interaction between MEL and 

changes in day length. The residual milk which was expressed as a proportion of the P. M. 

milking are presented in Figure 4.1. During spring treatment, proportion of residual milk 

tended to be higher during pretreatment period when compared to that determined later in 

the year (16.50 ± 5.6 v. 8.27 ± 1.0, P> 0.05, t test). Proportion data agree with absolute 

residual volume in the absence of any effect of MEL on the udder emptying of milk during 

normal milking (P>0.05, t test) at both intervals of MEL treatment (early and late MEL). 

In early lactation (spring), there was a trend for a drop in residual milk values during the 

MEL application (P==0.08. Paired t test), whereas, it was remained fairly steady in the 

group which was examined later in the year. 



Table 4.1 Milk volume (1) of goats obtained during normal P. M. milking (Machine), and 

after intravenous injection of 0.4 IU of oxytocin (Residual) which were determined (A) 

before and (B) after the summer solstice. Values are average (± S. E. M) of three days 

determimtions before MEL treatment (Pre-trt), during the first three days (Early-MEL) and 

last three days (Late-MEL) of MEL treatment which was fed daily at a dose of 3mg at 

15.00h for 14 days. The goats were milked within 30 minutes of MEL feeding. 

Milk volume (1) Pretreatment Early-AMEL Late-rMEL 

(A) Machine 1.29 t 0.06 1.52 f 0.10 1.54 ± 0.07 

Residual 0.24 f 0.06 0.18 f 0.04 0.12 ± 0.05 

Total 1.53 f 0.09 1.70 t 0.13 1.66 t 0.10 

(i3) Machine 1.67 f 0.08 1.55 t 0.09 1.82 f 0.12 

Residual 0.14 t 0.02 0.13 f 0.02 0.14 t 0.02 

Total 1.81 t 0.09 1.68 f 0.09 1.96 t 0.12 
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Figure 4.1 Proportion of residual milk volume during P. M. milking in goats recovered 
after intravenous injection of 0.4 N of oxytocin which were determined (A) before and (B) 
after the summer solstice. Values are average (with S. E. M) of three days determinations 
before MEL treatment (Pre-tit), during the first three days (Early-MEL) and last three days 
(Late-MEL) of MEL treatment which wes fed daily at a dose of 3mg at 15.00h for 14 days. 
The goats were milked within 30 minutes of MEL feeding. 

pre-trt Early-MEL Late-MEL 

pre-trt Early-MEL Late-MEL 
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4.4 DISCUSSION 

The results undoubtedly show that short term MEL treatment did not affect the 

efficiency of milk removal at normal milking notwithstanding of changes in day length. 

Milking or suckling elicits the release of OT from the neurohypophysis which acts to 

facilitate the expulsion of formed milk from the alveoli and small ducts to gland cistern. 

'Thus. the milk ejection reflex elicited by OT is prerequisite for completeness of milk 

removal at milking. In this study, OT concentrations at milking were not determined, but 

the response of the residual milk suggests that MEL did not effect OT release. In vitro 

experiments have shown that MEL inhibits the release of OT from hamster 

c urointermediate lobe (Juszczak et al., 1995) and rat hypothalamus (Yasin et al., 1993). 

The involvement of MEL in the modulation of pituitary hormones release is well known and 

the exisuzxe of MEL binding sites in the hypothalamo-pituitary region supports the role of 

BIEL The radioligand 2"('11I]iodomelatonin has been used extensively to localize binding 

sites in peripheral and brain tissues. Determination of target sites where MEL acts is a 

prerequisite for understanding the physiological mechanism of MEL action. In the goat, 

MEL, apparently, is not acting directly in the neurohypophysis to affect the release of OT 

since MEL was not found to bind in this pituitary region (Deveson et al., 1992c). MEL 

might be acting in the hypothalamus to modify OT release, and, the presence of high 

affinity DIEL binding sites in the suprachiasmatic nucleus (SCN) has been reported in goats 

(Devcson et at., 1992c). Mierc is an association between SCN and the paraventricular 

nucleus (Swanson & Cohen, 1975), so that the output of the paraventricular nucleus could 

modulate the activity of the cells which synthesis OT, the magnocellular neurones. 

Alternatively. NIEL could modify the uptake and release of neurotransmitters such as 

serotonin, norepincphrine. dopamine and glutamate (Cardinali et al., 1975) which in turn 

modulate the release of OT from the neurohypophysis. 
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Despite the reported inhibitory effects of MEL on OT release, there are two factors 

which might determine the modulatory effect of MEL on OT release, dose and light: dark 

cycle. It has been shown, recently, that responsiveness of the hypothalamo- 

neurohypophyseal axis to MEL treatment depends on the time of the day, so that MEL 

suppressed both basal and ICI-stimulated release of OT at the end of the day, whereas, it 

enhanced the OT stimulated release during the dark period (Yasin et al., 1996). This diurnal 

variation in the effect of BIEL on the activity of OT releasing cells is likely to be related to 

changes in the density of MEL binding sites in the hypothalamo-pituitary axis. Several 

studies have demonstrated that MEL binding sites in SCN and PT were lowest in the end 

of the dark period and highest later in the day (Piketty & Pelletier, 1993; Gauer et al., 

1993). In this experiment, MEL administration and the determination of residual milk were 

performed at a time (late afternoon) which was postulated to be of high MEL binding sites. 

In addition, the tendency of a modulatory action of MEL on both Gil and PRL levels shown 

in the previous chapter may not suggest low binding sites could have been accounted for the 

lack of effect on milk ejection caused by MEL It is possible that the time of milking at 

which the levels of MEL anticipated to be extremely high may not have provided an 

appropriate condition for MEL to suppress the release of OT. In the rat, MEL 

administration in the intraccrcbroventricular region inhibited the suckling-induced OT 

release when given at a dose regarded to be in the physiological range, while it was without 

effect with high doses (Juszczak & Stempniak. 1997). Indeed, plasma MEL concentrations 

determined around the time of milking were considered to be a pharmacological levels 

(chapter 3). Also. MEL trca by means of feeding with a similar dose increased plasma 

DIEL levels which rcxiud high values 30 minutes after feeding, and this was significantly 

higher than that found during the dark period (Kennaway et al., 1982). Therefore, this 

suggests that BIEL effect on OT release is dependent on its concentration. The putative 
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multiple MEL pathways, diurnal variation in MEL binding sites, together with species 

related differences in pathway of OT synthesis and release and a possible interaction 

between BIEL and this pathway all make it difficult to analysis and interpret this 

relationship. 

The tendency for a decline in the proportion of residual milk during treatment in the 

early stage of lactation treatment might suggest an improvement of milk removal caused by 

MEL. However, this is unlikely to be the case. Values during pretreatment were high in 

three goats which then declined in the next determination, and two of these goats were in 

their first lactation. This was not something unexpected for goats which had not been 

accustomed to milking procedure, particularly at this very early stage of lactation. The 

release of OT elicited by milking in the goats is variable, not only among animals but also 

among individual milking episodes within the same animal (McNeilly, 1972) 

It can be concluded that MEL has no effect on milk ejection reflex as assessed by 

volume of residual milk. Although no attempts were made to measure the levels of plasma 

OT released at milking, a possible partial suppression of OT cannot be excluded, however, 

the overall outcome did not support a possible effect of MEL on the efficiency of 

completeness of emptying of the udder at normal milking. 
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CHAPTER FIVE 

METABOLIC CIIPA CITY IN COWS DIFFERING 

IN GENETIC MERIT 

5.1 INTRODUCTION 

The strategy that has been adopted to improve the efficiency of milk production in 

dairy cattle is to increase milk production per cow which can be achieved by genetic 

selection. Milk yield is a phenotypic trait that can be inherited and has been widely used in 

brceding programs to produce cows with high milk production capability. Therefore, many 

years of genetic selection has resulted in a dramatic increase in milk yield per cow. Several 

studies have investigated the factors that are closely related to milk secretion which might 

have been altered in response to genetic selection for high milk yield. It has been indicated 

that selection for high milk yield did not result in changes in digestion, maintenance 

requirement per unit metabolic live weight or efficiency in milk synthesis (Bauman et al., 

1985b). The ability of the high yielding dairy cows to increase their level of milk production 

has arisen mainly from their nutrients partitioning between milk synthesis and the other 

biological functions of the animal. They preferentially partition more nutrients towards the 

mammary gland and away from body tissues to satisfy the high metabolic demand of the 

udder. In early lactation, the slow increase in feed intake lags behind the peak in milk 

production in superior cows. which put the cows in a negative energy balance situation. 

Therefore, part of the mill: energy is derived from the body stores to meet the energy deficit 

and it has been estimated that during the first four weeks of lactation, the mobilization of 

body reserves were ca rgically equivalent to about one third of total milk produced (Bauman 

& Currie, 1980). Tim. high merit cows are also characterized by rapid and great ability of 

utilizing their body stores to increase the concentrations of milk constituents precursors. 
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This physiological adaptation is coordinated by the endocrine status and the hormones that 

have a major regulatory role in metabolism are GH and INS. The ratio of GH to INS 

constitutes a key element in determining the milk production efficiency in lactating cows 

(Tierbein et al.. 1985). The high levels of Gil and lower values of INS which are typical 

characteristics of high yielding dairy cows especially in early lactation facilitate the 

availability of energy-yielding metabolites by increasing the rate of lipolysis, inhibiting 

lipogenesis and increasing gluconeogenesis in the liver. Thus, in the high genetic line, 

nutrients from the diet are directed to milk synthesis at the expense of body stores, whereas 

more of the diet's nutrients are directed toward body stores in the low yielding cows. 

Another factor which has been suggested to be influenced by genetic selection is feed intake, 

in which the high merit cows consume more feed than the low merit ones (Bauman et al., 

1985b). Another factor which has not received much attention is the extent of mammary 

gland development and the total number of secretory cells and possibly the secretory activity 

of the epithelial tissue, which are of great importance in determining the milking capacity 

of the udder. 

Milk secretion is regulated systemically by galactopoietic hormones and locally 

within the mammary gland by feed back inhibitor of lactation. Lactating cows particularly 

at peak lactation are at high metabolic pressure imposed on them because of the preferential 

flow of great amount of nutrients towards mammary gland at the expense of other body 

tissues. In fact. this might result in some compromise in other body functions like the 

immune system or increase the risk of metabolic disturbances. Whether the high yielding 

dairy cows are operating closer to their maximum and hence are more at such risk of 

metabolic disturbances than low yielding cows has not been determined. The response to a 

combination of endocrinological manipulation and frequent milking to estimate the 

maximum capacity of dairy cows differing in genetic merit is an important means in 
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evaluating the level of risk that well managed high yielding dairy cows are exposed to. 

The objectives of this experiments were: 1) To define and compare the maximum 

metabolic capabilities of genetically superior and average dairy cows. 2) To establish if this 

metabolic capacity is determined at the mammary gland level or elsewhere in the body. 

5.2 MATERIALS AND METHODS 

5.2.1 Caws 

Twenty-four primi-and multiparous lactating Holstein-Friesian dairy cows of 

diffeMM gerxtic merit wrre used in this experiment. The cows were from the Blythbank and 

Langhill herds and all were the progeny of at least three generations of selection using 

semen from 100% Holstein bulls. Twelve cows were of a high genetic merit, defined as 

being within the top 5% of UK national herd (11), and twelve cows of a lower genetic merit 

which were comparable to the UK average (L). Calving dates ranged from September 9th 

1995 to January 14th 1996. 

After calving, the cows were housed in a cubicle yard and fed a total mixed ration 

composed of silage and a complete mix (21 % crude protein (cp) and 13 MJ/kg DM) ad 

libitum. In the parlour, the 12 cows assigned to treatment groups were fed 8 kg of a 22% 

cp concentrate. while the untreated groups received 5 kg of the same concentrate, and the 

feed ration was divided into 4 meals each day. 

S. 2.2 Experimental design 

The cxpcrimcntal cows were in a2X2 factorial design (treatment X genetic merit). 

Communing in lactation week 6,611 and 6L cows were allocated to treated groups (I IT, 

Li) and the other 6 cows from each genetic line remained untreated control groups (HHC, 

LC). Within gcnctic lines, the distribution between control and treatment groups took into 
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account age (parity), source, calving date, milk yield, body weight and body condition 

score. The two weeks preceding this were used as pretreatment, period 1. After that, HT 

and LT were treated on consecutive two-week periods while HC and LC remained on the 

management just described. 

The treated groups received the treatment in an additive stepwise fashion as follows. 

Period 2. in which the frequency of milking was increased to four-times (4X) daily milking 

at intervals of approximately 6h. Period 3, a further milk secretion stimulus of recombinant 

bovine growth hormone in a delayed release vehicle (500 mg bST, Posilac, Monsanto, St 

Louis, USA) was injected subcutairously at the beginning of this period. The combination 

of 4X and bST treatment for another 2 weeks was regarded as period 4. In period 5,50mg 

of thyroxine (Sigma, Poole UK) in 15% polyvinylpyrollidone delay vehicle applied as a 

subcutaneau injection every second day for 2 weeks. In period 6, while the galactopoietic 

stimuli (4X+bST+T4) were continued, half of the udder (two diagonally-opposed 

mammary glands) was maintained at four times milking (4X) but milking frequency was 

reduced to once a day (IX) in the other half for two weeks; in order to determine if the 4X 

half increases its rate of milk secretion as a result of reduced milk secretion caused by 

reduced milking frequency in the 1X half. 

Following period 6. treatments were stopped and cows in treatment groups were 

returned to twice (2X) daily milking. and final observations (period 7, recovery period) 

were made on all cows during a two week period which commenced two weeks after 

treatment termination, or equivalent stage of lactation in controls. 

The treatment periods can be summarized as follows: 

Period 1.2 weeks pre-treatment 

Period 2.2 weeks 4X milking 

Period 3. First 2 weeks bST plus 4X milking 
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Period 4. Second 2 weeks bST plus 4X milking 

Period 5.2 weeks T4 plus bST plus 4X milking 

Period 6.3 weeks 4XI1X milking plus bST plus T4 

Period 7.2 weeks recovery (starting 2 weeks after last treatment) 

During the third week of 4X/1X milking, a mammary biopsy was performed for the 

treated cows and this resulted in decline in milk yield, so the data collected in this week 

were not included in the statistical analysis. One of the cows from HT group died from 

acute peritonitis shortly before the recovery period, so UUT group ended up with only 5 cows 

in period 7. 

S. 2.3 Measurements 

In order to dctemninc the effects of treatments on the function and the characteristics 

of the mammary gland, and to assess the concentrations of circulatory hormones and 

metabolites, the following measurements were performed. 

5.2.3.1 Milk yield 

The effect of genctic line and treatments with a possible interaction between the two 

faders on milk yields were determined by measuring the half udder yields at every milking 

to a precision of 100g. 

5.2.3.2 Body weight and body condition score 

Body Wright and body condition score were measured weekly. Heart rate was also 

determined weekly by palpation. 

Body condition scare. to dctcrminc the change in the fat mobilization, was assessed 
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by a scoring system which was developed by the East of Scotland College of Agriculture 

(1976). It is based on measurements of the loin area between the hip bone and the last rib 

as well as around the tail head which are considered important areas in determining the 

mobilization of the fat tissue. The body condition score was determined by using a1 to 5 

scale, where 1 is extremely thin cow and 5 excessively fat cow. The assessment was done 

by two assessors throughout the experimental periods. 

5.2.3.3 Udder characteristics 

Determination of the udder volume 

To determine the effect of genetic merit on the size of the udder and also to 

determine if treatments have produced any effect on mammary growth, mammary gland size 

was determined non"invasivcly by polyurethane foam cast as described by Dewhurst el al, 

(1993). The udder was completely emptied by 20 units of oxytocin injection (Oxytocin-S; 

Intervct, Cambridge. UK) which was followed by milking out the gland immediately before 

performing the casting. Cows wire introduced into a crush where they were mildly sedated 

with an injection of 0.25m1 Rompun (Bayer. Ltd. UK) and their hind legs held apart by 

tightening them to the cnish wall. Udder was clipped and an udder cream (Coopers Pitman 

Moore, UK) was applied to ease the release of the cast. Polyurethane foam (Froth-Pak'. 

Foampax Scotland, Newmilns. UK) was applied to the udder and the cast was removed after 

hardening. The total volume of the udder was obtained by filling the cast with material of 

known density and weighing. Tte gross udder volume was determined for all cows at three 

tines, during pre-treatment (pcriod 1), maximum stimulation (period 5) and finally in the 

recovery period (period 7). 
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measurements of cisternal and 

alveolar storage capacity 

The alveolar and cisternat milk volumes were determined by catheter drainage based 

on the method described by Knight et al, (1994). On the day of determination, cows were 

moved to an unfamiliar area and far away from the parlour shortly after morning milking, 

to avoid milk ejection which might be stimulated by hearing the milking machine. The cows 

were kept tied in stalls until drained. The drainage was started about 8 hours after the last 

milking. Teats were cleaned with 70% alcohol-2% hibitane solution and sprayed with a local 

anaesthetitic (Xylocaine spray, Astra Pharmaceutical, Kings Langley, UK). After that, a 

sterile plastic catheter (14g Medicut Catheter, Sherwood Medical Industries, Tullamore, 

Ireland) was introduced via the teat canal of the two front glands, allowing the milk to flow 

freely from the gland, and the milk was collected until flow of milk ceased which was 

considered to be the cisternal milk. Immediately after that, the alveolar milk volume was 

collected by further drainage of the gland with the administration of oxytocin (20 units i. v. ). 

Both milk fractions were weighed to determine the milk volumes of cisternal and alveolar 

portions. The assessment was performed in the pretreatment period (period 1), during the 

maximum stimulation (period 5) and then in the recovery period (period 7). 

5.2.3.4 Blood collection and hormonal analysis 

Blood samples were collected three times weekly immediately after the mid-day 

milking (for the treated cows. but for the control cows. they were put into the parlour and 

fed the conccntratc without being milked). This sampling regime was maintained throughout 

the experiment. Additional fstquent samples were taken. At the time of frequent sampling. 

the cows were moved to individual stalls immediately after the morning milking and bled 

every hour, from 9.00h to 19.00h. For the time around milking, the blood samples were 
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collected every 5 minutes, with a total of 7 samples from each cow. The cows were first 

moved to the parlour and bled twice before milking, then another sample was collected 

about 2 minutes after the application of the milking machine, which was then followed by 

4 further samples started 5 minutes immediately after milking finished when the cows were 

moved back to their stalls. Processing of samples and determination of plasma hormones 

were described in chapter 2. The thrice weekly samples were used for determination of 

PRL. Gil, IGF"I and INS, while the hourly as well as around milking samples were assayed 

for PRL. The frequent sampling was performed before treatment (period 1), then it was 

repeated during the maximum stimulation (period 5) and then during the recovery period 

(period 7). 

S. 2.3.5 Determination of blood metabolites 

Plasma glucose was determined by glucose oxidase and peroxidase (Bergmeyer & 

Besnt, 1974) and free fatty acids (Wharton, 1974). 3-hydroxybutyrate by colorimetric 

method (Williamson & Mellanby, 1974) and glycerol by alkaline hydrolysis (Eggstein & 

Kuhlmann, 1974). 

5.2.3.6 Statistical analysis 

To compare the pcatrcatn nt differences between genetic lines, analysis of variance 

(ANOVA) was used. Effects of treatment and a possible interaction between line and 

treatment were tested on period mean values (milk yield, body weight, body condition score 

and trait rate) by analysis of covariance (ANCOVA) using pre-treatment means (period 1) 

as a covariate to adjust for the pre-treatment values. To analyse cumulative effects between 

period means, differences between consecutive periods were analysed by ANCOVA using 

prc"trcatment values as a covariatc. Paired and unpaired t tests were used to compare 

individual mean values or between experimental periods. 
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Unilateral effects of a change in milking frequency in the test gland (1X) were 

detected by calculation of a relative milk yield quotient (RMYQ) as described by Linzell and 

Peaker, (1971); nfYQ: (t2 x cl)/(tlx c2) where c is the yield of the control gland (4X) and 

t is the yield of the test gland (1X), 1 is the period before treatment and 2 is the period of 

treatment. Values more than or less than unity indicate a positive or negative change, 

respectively. evaluated statistically by paired t test. Minitab program was used in performing 

the above statistical analysis. 

Due to the distribution of cows into five groups based on their calving dates (from 

September to January), which might have introduced a seasonal factor that could have 

affected the release of some hormones, notably PRL, hormonal data were analysed by 

Genestat (Genestat 5: Lewes Agricultural Trust, 1993), using Residual Maximum 

Likelihood (RE ML). This procedure was designed for un-balanced designs, to adjust for any 

differences that might have been related to group effect (month of sampling). The model 

consists of two parts, fixed effects which include the effects of line + treatment + their 

interaction, and a random effect which includes group effect. 
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5.3 RESULTS 

5.3.1 Milk yield 

During pre-treatment period, milk yield was significantly higher in the cows of the 

high genetic merit (29.25±2.0 and 37.04±2.2 kg/d for low and high genetic merit groups 

respectively, P=0.016, t test), but there was no significant difference between the two 

groups within each line (P>0.05). 

Milk yields of the control as well as treated cows from the two genetic lines during 

experimental periods are presented in Figures 5.1 and 5.2, and Table 5.1. In IIC cows, milk 

yield gradually declined throughout the experiment, whereas the decline in LC cows did not 

commence until period 3. In contrast to the controls cows, the treated cows yields increased 

from period 2 to period 5 and were significantly higher than those of the control cows 

(Figure 5.2). Period mean milk yields wert analysed by covariance analysis (ANCOVA), 

using the prctrcatment period as covariate to correct for pre-existing genetic line differences. 

This indicated that application of treatment stimuli significantly increased milk yields in both 

treated groups (Table 5. I). In all treatment periods, with the exception of periods 6,4X/1X 

milking, and recovery period, a significant positive treatment effect was evident. 

Increasing milking freVxncy to 4 times a day significantly increased milk production 

(P=0.01) in UUT and LT groups (Table 5.1). There was a significant line*treatment (L*T) 

interaction (P=0.02), suggesting a better response to 4X in UUT cows, and this was also 

supported by significant difference between the two lines in the absolute increase analysed 

by i test (0.78±0.51. and 2.90±0.78kg/d; P=0.05, for LT and IHT, respectively). 
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Treatment with bST significantly increased milk secretion (P<0.01) in both treated 

lines (rabic 5.1). The milk yield data in Figure 5.2 gives the impression of higher response 

in the low line group. however, this was not confirmed statistically; there was no significant 

interaction between line and bST treatment (P>0.05, ANCOVA). Thyroxine further 

it rcascd milk yield (P<0.001, ANCOVA, Table 5.1) without any significant differences 

in milk yield response between the two treated groups. 

During the 1X/4X period the yield declined in the treated groups to an extent that 

abolished the difference between treatment and control cows (P>0.05, ANCOVA). 

Comparison between the control and treated groups indicated significantly lower milk yields 

in the treated cows (P <0.001, ANCOVA) two weeks after the treatments had ceased, i. e. 

in the recovery period (Table 5.1). 

To determine the cumulative effects of treatments on milk yield, differences between 

consecutive period means were analysed, again using pre-treatment mean as a covariate 

(ANCOVA: Table 5.2). When the yields of the treated cows during the 4X period were 

compared to that of pry cnt they were significantly higher (P=0.04), but the response 

in NT cows was greater than LT cows as indicated by a significant L*T interaction 

(P=0.02). Following the first bST injection, although there was a tendency for a small 

response in the low line group neither TIT nor LT increased their yield above 4X values 

(P>0.05). 1 mmer, in the second period of bST a significant additive effect was observed 

(P<0.05) without any significant differences in the response related to genetic line 

(P>0.05). Unlike bST. T4 produced an immediate and rapid highly significant further 

increase in yield (Table 5.2) which started from the first week of treatment and was 

maintained in the second week (data not shown). Reducing milking frequency in half of the 

udder to IX daily produced a significant inhibitory effect on total milk yield (P<0.001, 

ANCOVA) without any difference between the two lines. Yield declined by about 25.5 % 
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in both lines within the two-week period, and declined further in both groups by almost 

40% three weeks after the termination of treatments. In the control cows, yield gradually 

declined during the experiment as indicated by negative mean difference values in Table 

5.2. 

Incrpscs in yield for LT and IIT during each of the stimulatory period (4X, bST and 

T4), expressed relative to pre-treatment yield are in Table 5.3. As indicated earlier, the 

absolute iirrase in response to 4X was greater in HT compared to LT cows, however, this 

was reversed with the other stimuli; the greater absolute increase as well as percent of 

pretreatment was in LT cows but these were not statistically different (P> 0.05, t test). 

Half udder milk yields for the two treatment groups during T4,1X/4X and recovery 

periods are shown in Figure 5.3. During period 6. half of the udder was milked once-daily 

(IX) whilst half continued on four-times daily milking (4X). This clearly produced a 

marked depression in milk yield for the IX milked udder-half but there was also a slight 

decrease in milk yield for the 4X milked half. Changes in IX relative to 4X were analysed 

using R. MYQ. In both control groups values were close to unity, but they were significantly 

less than unity in the treated groups (Table 5.4). This was due entirely to reduced yield in 

the IX half since paired t test analysis revealed no significant increase in milk yield for the 

half-udder which continued on 4X milking (overall mean decrease 0.25±0.32 kg/d, 

P>0.05). In the second week of 4X/1X milking no further significant decrease in milk 

yield in the 1X half was found (data not shown) without any difference in the response 

between LT and UT. 

Milk yield dr ed very markedly in LT and lIT between 4X/1X milking period and 

the recovery pcriod. when milking was twice daily and no treatments were administered. 

There was a significant ncgativc difference between treated and control cows during this 

period, in complete contrast to the earlier positive differences (Figures 5.2 and 5.3, and 
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Tables 5.2 and 5.3). Part of this difference was due to continued depression in the udder 

half milked once daily, despite both halves now being on twice daily milking (Figure 5.3, 

Table 5.4). RMYQ values continued to be significantly less than unity in the treated cows. 

Paired t test also revealed a significant (LT; P< 0.01, HT; P< 0.001) decrease in the half 

which had been milked 4X daily. Responses were very similar in LT and HT cows: no 

interaction between treatment and line was evident. 

5.3.2 Body weight 

Body weights of control and treated cows are illustrated in Figures 5.4,5.5, and 

Table S. S. Genetic lines showed no significant effect on the initial weights (for low and high 

line groups, 590.3±12,589.2±15kg, P>0.05. ANOVA) and there was no difference 

between groups within line (P>0.05, ANOVA). While the body weights for HC were 

maintained without any major changes throughout the experimental periods, they gradually 

increased in the LC group; Paired t test analysis between pretreatment and recovery periods 

indicated a significant body weight gain in LC 45.75±11.68kg, P=0.01, but not in IIC 

group. 17.5±26.02kg. P-0.16. 

In the treated cows. 4X and bST did not affect body weights in either line 

(ANCOVA, using period 1 mean as covariate; Table 5.5). However, during the following 

periods. the body weights were rapidly depressed in a stepwise fashion, so T4 treatment 

triggered body weight loss (P==0.02) which was further depressed in the 1X/4X treatment 

(P<0.01. t test). By this time the cows had lost about 8% of their initial weights. The 

return to normal management practices after termination of treatments did not prevent the 

loss in body weight, and it was estimated that the cows lost an average of 15 % of their pre- 

trcatmrnt body weights when measured during the last period of measurement (recovery). 

Once again there was no significant interaction between line and any treatment, so treated 
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Table 5.3. Increase in milk yield of treated cows from low (LT) and high (HT) genetic 

merit cows during stimulatory periods. Treatment. which started at peak lactation (week 5 

of lactation) in stepwise fashion, milking four times daily (4X), injection of 500mg of slow- 

release formulation of bovine somatotropin treatment every 14d (bST), injection with 50mg 

of thyroxine on alternate days (T4). Values are mean ± S. E. M. n=6. bST is second bST 

period. 

LT HT 

Absolute increase (kg/d) 

4X 0.79 t 0.51 2.90 t 0.78 

bST 3.02 t 1.07 2.11 t 1.72 

T4 5.47±1.41 4.15±1.19 

Yield, percent of pretreatment 

4X 103.6 t 1.96 107.2 f 1.98 

bST 112.9 f 5.03 106.5 t 4.32 

T4 122.2 t 7.3 111.63 t 3.74 

Table 5.4. Relative milk yields quotient (RMYQ) values (mean±S. E. M) for transition to 

4X/IX and between T4 and recovery period. n=6. Significance represents difference from 

unity. paired t test. 

Start of 4X/ix 
LC 1.01±0.01 n. s. 

iiC 1.05±0.03 n. s. 

LT 0.66±0.04 P<0.001 

UUT 0.64±0.02 P<0.001 

Carry-over to recovery period 

LT 0.76±0.08 P<0.05 

irr 0.75±0.07 P<0.01 
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Figure 5.4 Changes in body weights of cows from (a) low genetic merit and (b) high 
genetic maintained at standard management level in early lactation. Values are means of two 
week periods which commenced at week S of lactation (period 1). Vertical bars represent 
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Figure 5.5 Changes in body weights of cows from (a) low genetic merit and (b) high 
genetic merit treated at peak lactation with galactopoictic stimuli in stepwise fashion. Values 

are means (with S. EM) for 2 wk periods as follows: pretreatment period (Pre-trt), milking 
four times daily (4X), injection of slow-release formulation of 500mg of bovine 

somatotropin every 14d (bST). injection of 50mg of thyroxine on alternate days (T4), 

maintaining the cows at maximum stimuli while continuing milking half the udder on 4X 

and the other half on one daily (4X/1X), and 3 wk after cessation of all treatments (Rec). 
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cows responded in the same way to the different stimuli regardless of genetic background. 

5.3.3 Body Condition Score 

Comparison between the low and high line cows before the start of the experiment 

indite a significantly higher body condition score value for the low line group (2.6±0.36 

Y. 1.8±0.21. P=0.02, ANOVA) but no difference between groups within line. Body 

condition scores for control and treated cows are shown in Figures 5.6,5.7 and Table 5.6. 

There were a tendency for increase in body condition score during the course of 

experimental periods for both control groups, particularly at the last measurement period 

in LC cows. Like the response of body weight, body condition score was not affected by 

4X or bST treatment (P>0.05, ANCOVA, using period I mean as covariate). However, 

T4 administration significantly reduced the body condition score values in both lines 

(P=0.01. ANCOVA) with no significant interaction between line and T4 treatment. This 

depressive effect was further continued during the next period (1X/4X) and also during the 

rccovcry period (P<0.001. ANCOVA). The body condition score of the treated cows was 

about one third of their control groups at the last measurement period (recovery) and both 

IIT and LT showed a similar trend. 

5.3.4 heart rate 

There was no significant pretreatment difference in heart rate of cows from different 

lines (90.4±3.9 and 87.5±2.25 beats/minute, P>0.05, ANOVA, for low and high line 

cows respectively) or between groups within line. Data averaged for treatment periods are 

shown in Figures 5.8,5.9 and Table 5.7. Heart rate values did not manifest any major 

variations between periods in control groups. In the treated groups, heart rate was not 

affected by 4X and bST treatments (P> 0.05. ANCOVA, using period 1 mean as covariate), 
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Figure 5.6 Changes in body condition scores of cows from (a) low genetic merit and (b) 
high genetic merit maintained at standard management level in early lactation. Values are 
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Figure 5.7 Changes in body condition scores of cows from (a) low genetic merit and (b) 
high gemtic merit treated at peak lactation with galactopoietic stimuli in stepwise fashion. 
Values are means (with S. E. M) for 2 wk periods as follows: pretreatment period (Pre-trt), 

milking four times daily (4X), injection of slow-release formulation of 500mg of bovine 
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maintaining the cows at maximum stimuli while continuing milking half the udder on 4X 

and the other half on one daily (4XI1X), and 3 wk after cessation of all treatments (Rec). 
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however it was ft =cased considerably during T4 treatment to a value 35 % higher than the 

preceding period (P<0.001. ANCOVA. Table 5.7). This high value was maintained during 

IX/4X period with a tendency for a higher heart rate in the LT group, indicated by a 

significant line X treatment interaction (P<0.03, ANCOVA). Also, t test analysis 

confirmed the significantly higher heart rate in LT group (P=0.03). Despite falling back 

towards control values. heart rate during the recovery period remained significantly elevated 

in both lints (P<0.05. Table 5.7). 

5.3.5 Udder characteristics 

Gross udder volume 

Pre-treatment udder volume measurement revealed a significantly higher udder 

volume in the high line group (18.1±1.8 v. 13.6±1.7 1 for the high and low line cows 

respectively. P=0.02. ANOVA) without any significant difference between groups within 

line (P>0.05). Udder volume for control and treated cows during the three measurement 

periods are illustrated in Figure 5.10. Control cows maintained udder size throughout 

experimental periods, boa rer. LC tensed to show a small increase but HC showed a small 

decrease from pre-treatmcnt to recovery period. To assess treatment effect on udder volume, 

the differences between each of two consecutive periods were calculated and tested for 

significance by ANOVA, which are presented in Table 5.8. 

The cumulative effects of treatment combination culminated in a significant 

mammary gbnd grov%th in both treated groups (P=0.02, ANOVA), without any difference 

bctwccn the two treated groups (no significant line*treatment interaction, P>0.05, 

ANOVA). however. when the increase in udder volumes were expressed as a percentage 

of that n ==W during pre-trcatment period, LT cows showed a non-significant tendency 

for highcr responsc (120.14%±5.25.113.27%±4.40, for LT, 11T respectively; P>0.05, 
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Figure 5.8 Changes in heart rates (bcat/minute) of cows from (a) low genetic merit and 
(b) high genetic maintained at standard management level in early lactation. Values are 
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Figure 5.9 Changes in heart rate (beattminute) of cows from (a) low genetic merit and (b) 
high genetic merit treated at peak lactation with galactopoietic stimuli in stepwise fashion. 
Values are means (with S. E. ri) for 2 wk periods as follows: pretreatment period (Pre-trt), 
milking four times daily (4X), injection of slow-release formulation of 500mg of bovine 

somatotropin every 14d (bSI), injection of 50mg of thyroxine on alternate days (T4), 

maintaining the cows at maximum stimuli while continuing milking half the udder on 4X 

and the other half on one daily (4XIIX), and 3 wk after cessation of all treatments (Rec). 
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ANOVA). This increase in udder volume was not maintained during the recovery period; 

treated cows ended up with udder volumes that were not statistically different from their 

counterpart control cows. The decline in udder volume during the recovery period 

mr. ýswrmc -9 for the tinted covºY wis significant (P=0,01. ANOVA). which was confirmed 

by paired t test (P"O. 005). 

Sias of milk storage 

Only the front quirters were drained in order to determine the storage sites of the 

udder, and analysis betu the right and left front quarters did not result in a significant 

diffcicirc bctwccn tbaa. lb=fore. data from both quarters were pooled for each cow and 

used to asscu genetic and treatment effects on milk storage sites. 

i'ratrat=nt ahmotu milk votunr showed a tendency for higher values in the high 

litt group (3733±4S0 v. 3581±4'.. 2. mlfSh: P=0.07. ANOVA, for high and low line cows 

respcctively). Neither the cistcriul volume (for low and high line, 1068.9±191. 

1371.8±251 ml/8h) nor the pcrccntige of milk stored in the cistern (24.23% ±5.0., 

23.53 % ±5.0) during 8h period was affected by genetic selection (P> 0.05. ANOVA). 

Ajveotu ani cistcrnal milk volumes for control and treated cows are illustrated in Figures 

5.11 and 5.12. Over the experimental periods, control cows showed a gradual decline in 

alvwllr milk volumc. vºith a tcmkncy for higher decline in LC cows. Differences between 

pre. trcatmcnt Uni nuzimum trc tmcnt in milk storage capacity are shown in Table 5.9. 

At maximum trcauncnt. treated cows exhibited a significant increase in alveolar milk 

volume (P-O. Ol, ANOVA). also analysing the change in alveolar volume between pre- 

vcaurim and T4 indiatoi a significant increase in responsc to treatment (P=0.05. 

ANOVA). In general all cows maintained their cistcrnal milk portion in the max period 

without any sigaificaslt diffcrcncc cithcr bau-ten groups or across stage of lactation. 
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Pcrcenugcs of cistcrnal milk volume for the control and treated cows are given in Figure 

5.13. There was no significant difference between lines in cisternal portion (P>0.05. 

ANOVA). 'fl maximum trcatmrnt pcriod was maintaincd for all groups of cows without 

any ucatmcnt cffcct (P> 0.05. ANOVA. Table 5.9). 

Differences bctutcn msximum tccatmcnt and recovery periods in milk storage 

capacixy arc prescnxcd in Tablc 5.10. Ah r portion was decreased in the recovery period 

for all coins ani ANOVA iaiicatai a significant reduction in the treated groups (P-0.002) 

and when compared to the previous measurement (max) for all cows, it was significantly 

reduced during the recovery period (P<0.006. paired t test) in all except the i(C group, 

-A here the decline was snull and not uatistically significant (P? 0.05). All cows showed a 

decline in ci stmul milk volumes during the recovery period with a tendency for the rate of 

decline to be higher in the treated cows (P>4.05. ANOVA). Cisternal percentage during 

the recovery period was reduced in the control groups while it was maintained for treated 

groups, houvvcr no differences were found in response to treatment or between maximum 

and recovery period (P>O. O5. ANOVA). Although the cisternal milk volume was reduced 

during the recovery period for treated cows. v hen expressed relative to the total yield (half 

udder yield) it shod the percentage of milk stored in the cistcrnal was maintained during 

this period. This was mostly related to the decrease in the alveolar volume as a result of the 

deleterious effect of treatmcxus on the milk secretion in the last stages of treatment. 

5.3.6 /lonnonal profikt 

Kaitine blood sampIcs collectcd thrke w{cckly were assayed for PRL, Gil, IGF"I, 

and INS, %hilc the frequent sampics (hourly and post-milking) were subjected to PRL 

dctuininatba only. 
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Table S. S. Differences in gross udder volumes (litres), in control and treated cows, 
between pretreatment arxi maximum stimuli (4X+bST+T4; Pretrt-T4), and between 

maximum stimuli and recovery period (T4"Rec). Values are differences between means, 

na6 or (0)5. Significancc tests for effects of treatment (1), Line (L) or interaction (T*L), 

ANOVA. 

Dºilertn[tf LC liC LT UT SED Treat line T'L 
Öttw«a pttioda 

Prttrtat - T4 0.52 -0.4E 2.75 2.18 1.4 P-0.02 n. 3 n. s 

T4 - Rtc 1.07 -1.0 -6.1 "3.6" 1.4 P<0.01 n. s n. s 

Table 5.9. Diffcrcires in ah olar and cistcrnal volumes (ml), and cistcrnal proportion, in 

control and treated cows, between pretreatment and maximum stimuli (4X+bST+T4). 

vahxs are diffrnrxts between means measured 8h after normal milking, n==6. Significant 

tests for effects of treatment CD, Line (L) or interaction (T"L). ANOVA. 

LC IiC LT UT SED Treat Line T*L 

"825 . 343 513 38 613 P-0.05 11.8 a. s Vol, ýme 

Cisttroal 
217 . 90 304 317 336 0.5 n. s a. s Volume 

7.8 1.7 1.0 3.2 7.3 A. s DA A. s proportwo 



Table 5.10. Diffctrtccs in alveolar and cisternal volumes (ml), and cistcrnal proportion, 
in control aal trrasrd cows. bcmvm nmimum stimuli (4X+bST+T4) and recovery period. 
Values arc differences between means measured 8h after normal milking, n=6 or (*)S. 

Significance tests for effects of trrat=nt (C). Line (L) or interaction (T*L). ANOVA. 

LC lIC LT IIT SED Treat. Line T'L 

Alvt*Ur 
"843 -143 -3100 -33130 606 P<0.001 n. s n. s 

Volume 

CýStcýaal 
. 490 "343 413 "9089 398 n. s n. s n. s 

Volume 

twtrow 
. 6.6 -6.2 6.3 1.40 9.8 n. s n. s n. s Proportion 
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5.3.6.1 Prolactin profiles 

Period average PRL profiles 

Average PRL concentrations for both control and treated cows during the 

experimental periods arc presented in Figure 5.14. Because of the range of calving dates 

(from September to January) cows were arranged for treatment into 5 groups according to 

their calving dates. This resulted in the introduction of a seasonal factor that might have an 

inlluc= on the secretion of PRL Analysis of variance indicated a significant effect of the 

month of sampling on PR. L concentration (P<0.05). Therefore, month of sampling at each 

period for every group was used as the random factor in the REML statistical model. 

Results of RWL analysis with the adjusted period means are in Table 5.11. Pre-treatment 

basal PRL profile was not affected by genetic selection for high milk yield (27.04 and 25.38 

ng/ml. SED=6.2, for low and high line respectively; P>0.05, RE-NIL) without any 

difference between groups within line. 

F. or the comparisons bct, %= any two consecutive periods. PRL period means were 

analysed by ANCOVA with the month of sampling at each period for each group as a 

covariate. In the control groups. PRL did not vary across the experimental periods and also 

between groups within period (P>0.05. ANCOVA), although there was a tendency for a 

small increase as lactation advanced which was more obvious during the last stages of the 

experiment. PRL profiles were significantly increased from pre-treatment to 4X in the 

treated cows (P<0.01. ANCOVA) with a tendency for the response to be higher in I1T 

cows (not signifcan). There was a tendency for elevation in PRL concentration between 

4X and first bST periods (P>0.05) which was further increased during the second bST 

injection (P-0.05. ANCOVA). PRt. concentration was significantly reduced during T4 

administration compared to earner treatment periods (Pa0.05. ANCOVA) for both treated 

groups at a similar rate. Despite this decrease, PRL concentrations in the treated cows 
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re nzinai significantly higher than in the control cows (P<0.01. REML). Continued bST 

and T4 txratmcsl %hi e shifting to 1X/4X milking did not affect PRL levels, but they were 

significantly reduced in the recovery pcriod (P=0.01. ANCOVA), when there was no 

significant trratmcnt cffcct on PRL profdcs. 

hourly average PRL profiles 

The frequent bleeding (hourly samples) were quantified for PRL to give a better 

estimate of its pattern of secretion. Peaks were seen for some cows especially around 

milking time which might have been attributed to milking stimulus, so the hourly average 

moans were determined by establishing mean hormone concentrations for each cow and 

subtracting thm points greater than 2 standard deviation from the mean. 

The average hourly PRL profiles calculatcd from frequent sampling which were 

pcrfom i during pre-trcatment. auxicnum, and recovery periods arc presented in Figure 

5.15 and Table 5.12. Basal PRL profile was not affected by genetic selection, since 

statistical unlysis by RE ML did not reveal any significant prctrcatment differcnce bctween 

the two lines (13.06 and 13.26n&/ml, SED=3.82, P>0.05; for the low and high line, 

respectively) without any difference between groups within line. Maximum treatment 

rr i1 4 in a significant incrcax in average hourly PRL concentration in both treated lines 

(P<0.01, REML). During the recovery period. PRL in treated cows fell back towards 

control cows valucs. although it was still high in the low treated cows but this was not 

sutisticatly diffcrent (P> 0.05. RE, MML). Control cows maintaincd basal PRL levcls during 

the ttua sampling times without any nujor clunges. Comparison between the consecutive 

periods in the tr=tc4 cows iniic sal a sign imri increase in the average hourly PRL values 

during the nmimwn trrstmcnt which ass signifxandy decreased during the recovery period 

, Abcn comMcd to that restive previous measurements (P<0.05, ANCOVA, using 
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Figure S. 14 Prolsetin profiles (ng/cnl) in control cows of (a) low and high genetic merit 
and treated cows of (b) low and high genetic mcrit. Treatment with galactopoietic stimuli 
started at peak lactation in stepwise fashion. Values are means (with S. E. M) for 2 wk 
periods as follows: pretreatment period (Pre-trt)º milking four times daily (4X). injection 

of slow"rcleasc formulation of 500mg of bovine somatotropin every 14d (bST), injection 

of 50mg of thyroxine on alternate days (T4). maintaining the cows at maximum stimuli 
wilt cananuin; milling h; if the u dr on 4X and the other half on one daily (4X/1X), and 
3 wk after cessation of all treatments (Rec). 
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Figure 5.15 A%vrage hourly prolactin profiles, un-adjusted for season, (ng/ml) in control 
cows of (a) low genetic merit, and (b) high genetic merit, and treated cows of (c) low 

genetic merit and (d) high genetic merit determined during pretreatment period (Pre-trt). 
iTimum gabt ictic stimuli (mu"trt). and 3 wk after cessation of all treatments (Rec). 
During maximum stimuli crated cows were milked four times daily + injected with 500mg 

of slow"rclease formulation of bovine sonutotropin every 14d + injected with 50ing of 
thyroxine on alternate days. Vertical bars represent S. E. M. 
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month of sampling as covariasc). 

Po, -, r lktng PRL. profclrs 

The area under the post-milking PRL profile curve (Areas under the curve, AUC) 

was calculated from the samples collectedd after milking. Post-milking AUC for PRL 

(uncorrcctcd) are illuunted in Figure 5.16. and Table 5.13 presents the values after 

correction for the month of sampling. 

Gem-tic line did not affect the ability of cows to release PRL in response to milking 

stimulus. During the muimum stimulation. comparison between AUC of control and 

treated groups indicated a mull but significantly higher value in the treated groups 

(P=0.04). All groups apart fry m IIC showed a decline in AUC in the recovery period, 

which was only significant for the trcatcd groups (P=0.02, ANCOVA, using month of 

sampling as covariate) 

5.3.6.2 Growth hormone lew is 

Plasnu Gil concentrations of control as well as treated cows for the experimental 

periods are in Figures 5.17a aal 5.17b. and Table 5.14. There was a significant pre- 

tsar nem gc xtic cficct on ptsuna Gil concentration which was significantly higher in the 

high line cows (2.80 v. 1.24 nglml. SED=0.44; P&0.003. REML). Increasing milking 

frequency to 4 times per diy did not affect Gil levels (P>0.05, RBML). However it was 

significantly increased in response to bST injection (P<0.001) with a significant line X 

tratmerl interaction (P<0.05. RE-NIL). Gil increasing more in UUT than in LT (P=0.04, 

t test). The Icycis of Gil in the treated groups were maintained above that of the control 

cows from ft commcnccn= of bST trcaunent till the last pcriod (recovcry) (P<0.01, 

RC. 4IL). Injection of the sccorxi bST (period 4) increased Gil levels in both treated cows 
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above the levels in the first injection. with a greater increase in LT group. During the 

thyroxine treatment. Gil conccntrations increased in IIT group when compared to the 

previous value (P> 0.05.9 test) v6 hHe it was not changed in LT group. Nonetheless, weekly 

mans indicated that during the first week of T4. Gil tended to increase in both lines after 

the third bST injection (P=0.07. I test) but Gil levels decreased in the second week and t 

test analysis caiic tai that this dccrcasc was only significant in LT group (P=0.02). Plasma 

Gil %- As significantly raced three %%= s after the last bST injection (P <0.05, ANCOVA) 

but it did not drop to the control levels; a significant treatment effect was still evident 

(P-0.001. REML Table 5.14). 

5.3.6.3 Insulin-lilt gros ih Jactar-I profiles 

Concentrations of IGF I for all treatment groups are illustrated in Figure S. 18 and 

Table 5.15. Plana concentration of IGF"I was significantly lower in the high line cows 

to the low lu tos (27.81=145.73nglml. SEDz7.87; Ps-0.02, R. iL) during 

the pre-treatment period. Increasing milking frequency (4X treatment) did not affect the 

come ation of the hc*mom. but the lice effect was still evident (P=0.01. RE ML). When 

bST vºas administered, it caused a significant rise (P<0.01) in IGF I plasma levels in both 

trcatcd gam, with higher Lewis in LT cows as indicated by a significant line X treatment 

inmractm darin; the second bST (P < 0.05) which w-s confirmed by t test analysis between 

the two Ihrs (P'0.44). Thyroxin tn~aXn n& reduced the stimulatory effect of bST on IGF"I 

conccmntion resulting in a stccp drop in IGF"I levels during T4 treatment in both genetic 

lines (P<0.01. paired t test). which was further significantly decreased in the following 

period (P<O. OI, pairr$ t test). At IX/4X unarm t, IIT had the lowest IGF-I levels among 

cow groups w hick was also 1o r thin t it pre-treatment levels. The suppressive effect that 

ww scrn upon the atkniristrscion of T4 was abolished after the termination of all treatment, 
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resulting in a rise in the IGF"I concentration to match the control groups in the recovery 

period, and the effect of line was evident at this stage of lactation (P < 0.02, RE-NIL). In 

both conuol grasps. IGF I was mairuined across each stage of the experiment without any 

large changes, but there was a tendency for a small increase as lactation progressed. 

5.3.6.4 Insulin profits 

Avcragc pcriod cor cntrations of INS for control and treatcd cows are shown in 

Figure 5.19 ani Table 5.16. Pre treatnrnt INS coczxniration was significantly higher in the 

low line cows compared to the high line cows (0.16v. 0.11 ng/ml. SED=0.027; P=0.05. 

REML). Statistical 3mlywsis did rot meal any treatmcnt effect on INS plasma concentration 

during all trcauncnt periods (P> 0.05, RE'%ML) cxccpt for a tendcncy for a non-significant 

effect during T4 trcatmcnt (period 5) when the treated cows had lower INS concentration 

than the control grazps (P=0.06. RU NIL). This reduction was significant when tested by 

paired I tat (P<0.01). During the 1X/4X period, INS increased in both treated lines 

(P>U. 001, pairW i test). The it se in INS levels in treated cows was continued towards 

the recovery pcria! (P=0.01. paired t test). Both control groups exhibited a similar pattern 

for INS; it was auinzained for the most of the experiment with a tcndcncy for a gradual 

elevation which was tore cvidcnt during the last stages of the experiment. 

5.3.7 Blood metabolizes 

p smu cox czxrztk ns of gh xsc (GLU). frcc fatty acids (FFA), ß-Iiydroxybutyratc 

and glycczot (GRL) a=c dc=niz i in one sample of the thrcc samples collected 

weekly. 
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5.3.7.1 Glucose concentration 

'mc period mean concentrations of ptuma GLU in the four groups of cows at the 

various eapcrimcntal periods are shown in Figure 5.20 and Table 5.17. Plasma levels of 

GLU did coot differ significantly between the high and low line groups for samples 

dctetmirrd during the pretreatment period (5.61 ±0.29 and 5.78±0.36 mM/I for low and 

high genetic merit cow's respectively. P>0.05. REbiL), and there were no differences 

bct, wom groups within line. Values reported here tended to be higher than what have been 

normally reported for lactating dairy cows. Neither increasing milking frequency nor bST 

treatment had any effects on ply GLU levels. it was maintained for both treated and 

control cows during the periods of 4X and bST treatment. However, T4 administration 

triggered a significant increase in GLU levels (P a 0.05. RE ML). During 1 X/4X treatment, 

plasma GLU concentrations were further increased in both treated cows (P<0.01, t test), 

and the significant tine'treatmcnt interaction was indicative of higher GLU levels in LT 

group compared to iIT group. which was confirmed by t test (P=0.01). Termination of all 

treatments resulted in a significant drop in GLU concentration in the treated cows (P <0.01. 

t test), but the average concentration did not drop to the level found in the control groups 

when ft cows were in the recovery period; REN1L analysis revealed that treated cows still 

had a significantly higher GLU 1cycls (P<0.001) and again with a tendency for higher 

plasma GLU levels in LT cows when compared to IIT cows (P= <0.01, f test). In the 

oortsvl caws, GLU Icmls rr ined relatively constant throughout the experimental periods 

without any differences between the two lines. 

5.3.7.2 Fret fy acids concentration 

Perim mean conce 3tions of FFA are illustrated in Figure 5.21 and Table 5.18. 

Due to lower FEA levels in IIC cows compared to other groups during the prc"treatment 
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whilc continuing mim half the u3deT on 4X and the other half on one daily (4X/IX), and 
3 w`k after cessation of all treatments (Rec). 
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period, the an of dc etreatmcnt was included in the statistical model as a covariate to 

increase the precision of the analysis. Plasma levels of FFA did not differ significantly 

between high and low yielding dairy cows (P>0.05, REhiL). Frequent milking (4X) did 

not affect FFA levels but they were increased slightly during bST treatment which was not 

found to be significant when compared to period 2 levels (n. s, Paired t test). Due to the 

large variation between individuals, a large changes in FFA levels was needed to detect a 

significant difference. Administration of T4 resulted in a large increase in FFA 

concentration in both treated lines (P=0.027, t test) which was slightly declined in the 

period of 1X/4X (ns. r test) so there was no significant differences between treated and 

control group (P>0.05. R. EML). Treated cows manifested a further drop in FFA 

concentrations in the recovery period (P' 0.02, t test) to levels lower than control cows 

(P-0.06. RE. MiL). FFA levels in the control cows remained constant across all periods 

(I HC) or increased during the last two periods (LC) and the increase between period 6 and 

the recovery period was significant in LC group (P=0.05, Paired t test). 

5.3.7.3 ß-f lydruz) butt' rzi e conC ntration 

piano concentrations of ß-hydroxybutyrate for both control and treated cows are 

presented in Figure 5.22 and Table 5.19. Because of the tendency for higher levels of 

plasma ß-hydroxybuty rate in both treated groups before the commencement of treatment, 

pre-urstm= trenn was used as a covariate to adjust for these higher levels and increase the 

accuracy of the statistical analysis. Initial ß-llDB plasma concentration was not found to 

vary significantly between the two, genetic line groups (1.35 ±0.17 and 1.50±0.40 mM/I 

for low and high genetic merit cows rya ctively, P> 0.05, ANOVA). Values reported here 

tended to be higher than %hat have been normally reported for lactating dairy cows. 

Adjusrcd period means in the treated groups were slightly higher, but significant (P==0.05), 
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during 4X arxi the first bST periods. I iourver. neither t test nor paired t test have confirmed 

a significant change between pretreatment and the following periods in the treated groups. 

This was related to the tendeny for a decline in ß-11Dß levels in period 2 of the controls 

while it was maintained in the treated groups. Levels of ß-11Dß from period 4 to the 

recovery period were maintained without any significant changes between treated groups 

within the period or across periods when tested by t test. 

5.3.7.4 Glycerol concentration 

Plasma means of GRL for control and treated groups are in Figure 5.23 and Table 

5.20. Plasma GRI. lc cls were not affected by genetic selection, since there was no 

significant line effect during the pretreatment period (P>0.05, RFML). The significant 

linc"tratme l interaction in period 4 aas bemuse of the rise in plasma GRL in IIC group, 

but the rise from period 3 to period 4 in IIC group was not significant (P>0.05, paired t 

test), and also, v1 hen LT group was compared with IIT group, it was significantly higher 

in LT cows (P < 0.04. t test). Also. in the following period (period 5) there was a highly 

significant L'1 interaction (P<0.001. REML) and comparison between groups within line 

has indic3tcd that it was only significant in the low line group (P=0.05, t test). Although 

GR L levels were relatively higher in the treated cows in period 6 (lx/4x treatment), REML 

analysis did not reveal any differences between treated and control groups and also there 

%u no significant chance between the levels of period S and period 6 in the treated groups 

(P>0.05, t test). Plasma levels of GRL in the treated groups declined in the recovery period 

wistxut any significant difference between treated and control groups (n. s., REML). None 

of the aompariso= betu'rrn u=m-. v periods or between tine within the period were found 

to be significant in the control groups (P>0.03, t test). 
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figure 5.21 Conan as of free fatty acids in plasma (µ14U1) of both control and treated 
cows from (a) low genetic merit and (b) high genetic merit. Treatment with galactopoietic 
stimuli stattad at peak lactation in stepwise fashion. Values are means (with S. E. M) for 2 

wk periods as follows: preite ant period (Pnc-trt), milking four times daily (4X), injection 

of slow-release formulation of 500mg of bovine somatotropin every 14d (bST), injection 

of 50mg of thyroxine on alternate days (T4), maintaining the cows at maximum stimuli 
while cone ing milking tilt the uxk3er on 4X and the other half on one daily (4X/1X), and 
3 -A k after cessation of all treatments (Rec). 
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Figure 5.22 Concentrations of [ -hydroxybutyrate in plasm (mM/1) of both control and 
treated cows from (a) low genetic merit and (b) high genetic merit. Treatment with 
galactopoietic stimuli started at peak lactation in stepwise fashion. Values are means (with 
S. EIºi) for 2uk periods as follows: pretreatment period (Pre-trt), milking four times daily 
(4X), injection of slow-release formulation of 500mg of bovine somatotropin every 14d 
(bST). injection of 50mg of thyroxine on alternate days (T4), maintaining the cows at 
tnuziwn stimuli chile continuing milking half the udder on 4X and the other half on one 
daily (MXI1X), and 3 wk after cessation of all treatments (Rec). 



«o 6 

M 
64 

r4 EI 

64 

So ba 
8 

Qs 

i', *E 9 -s i- 

1Z~12- 
o 

"hEh 

F- 

04 

N 
C 

N 
C 

N 
C 

N 
C 

N 
C 

N 
C 

C 
Q 

y 
"" O 

I I 
N 
C 

N 

C 
N 

Q 
N 
C 

I a a 

M N N N N N 
C C it C Q C 

N 
N 

V3 O O O Ö Ö Ö 

pq 
ýO ... t7 ... 

c'1 
00 
N 

f' 
th . -. N 

.. .. .. .: o .. » .. 

s s. °° 0 00 - M 

$ R 
N M v in 14 n 



80 Low Line 
o Control 
" Treated 

Z 
.. r 
O 
0 
0 

60- 

40- 

20 
80 High line 

o Control 
0 Treated 

60 

40 

20 
41234567 

.. º- ý. x 
CL 

x 
It + 

~ 

} 41 
V 

cr- 
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from (a) low genetic merit aal (b) high genetic merit. Treatment with galactopoietic stimuli 
stared at peak lactation in stepwise fashion. Values are means (with S. E. M) for 2 wk 
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of slow"relcase formulation of S(Xkng of bovine somatotropin every 14d (bST), injection 

of Sümg of thyroxine on alternate days (T4), maintaining the cows at maximum stimuli 
wtüic comme g milking lull the t %icr on 4X and the other half on one daily (4X/1X), and 
3 uk after cessation of all treatments (Rcc). 
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5.4 DISCUSSION 

'Ibe cows usal in this investigation we c daughters of bulls selected as sires of cows 

with high or low gemtic merit. 11xy wire the progeny of two to six generations of selection 

sith a mean diffcrcaac in predicted breeding value for the output of fat plus protein of about 

78kg (Woolliams et a!.. 1993). Pretreatment milk yields indicated that high genetic merit 

cows (11GMi) produced an average of 30% more milk than low genetic merit cows (LGM) 

without any effect on milk composition. So what is the biological basis for this difference 

in milk production? In several studies. estimated transmitting ability for higher milk 

production u-s not related to efficiency in digestion or nutrient absorbtion (Bauman et al., 

1985b; Belyea & Adams. 1990). Also. maintenance requirement per unit metabolic body 

size or partial efficiency for utilization of nutrients for milk synthesis are not linked to 

predicted genetic merit (Bauman et al., 1985b). Genetic selection for high milk yields may 

Aot always be associated with changes in body weight, as indicated by our data and also in 

other studies (Barnes et al.. 1990; Michel et al., 1990). However, others have reported 

significarnly higher body weights in cows of high genetic merit (Davis et al., 1983; Belyea 

& Adams. 1990). This inconsistency which probably relates to the difference in breeding 

programs suggests that this trait is not an essential component for the potential of milk 

production. fps other f rs related to body growth may be more important than body 

weight per e. such as the extent of dcvek mcnt or growth of some organs. Although there 

was no difference in body weight between 11GM and LGA1 cows in this study, there was 

some evidcncc to suggest possible differences in proportions of some body components 

which arc related to milk production capacity. For example, udder volume was shown to 

be higher in HGM cows. and gut capacity may have been higher, since IiGAM cows have 

a high rate of focd con=nption %hich implies higher capacity of the gastro-intestinal tract. 

On the other hand. LGM cows bad higher fat stores as indicated by their body condition 
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xac. Tb=f=. the c scat of growth of some body components might be more important 

in adaptation for the increased milk production than an increase in body weight per se. 

Pr =nt udder size determination indicated a significantly higher udder volume 

in high line cows. Davis et al.. (1983) also reported higher udder volume in Jersey cows 

of high genetic merit %hen compared to lower genetic cows. The variation in gross udder 

volume reported here apparently associated with differences in milk yields; correlation 

bctwccn milk yield and uddcr volume was significant (r=0.76, P=0.01). Therefore, the 

diffcresrc in milk production poccriial bctwccn cows from diffcrcnt gcnetic background can 

be partly cxpUixd by the a tent of udder development which in turn reflects a variation in 

the tool munter of the secretory cells. Calculation of milk secretion efficiency (amount of 

milk produced per amnwunt of secretory time per day) did not reveal any differences 

between the two genetic mcriu (2.23±0.17 and 2.09±0.11 for low and high line cows 

respectivcly. U. S. ANOVA). However. gross udder volume is not a precise estimate of 

secmtory tissue, since it includes Connective tissue, adipose tissue. blood vessels and 

secretory tissue. but the msjority of this volume is occupied by the secretory epithelium. 

The mast essential and principil criteria which is highly linkcd to genetic selection 

for milk iaci is the distribution of ttx availabtc nutricnts bctwccn the mammary gland 

and body tiuucs (Bauman a at, 1985b). Superior cows arc more efficient in milk 

production bccausc they partition grcatcr amounts of nutrients towards milk synthesis and 

away from deposition in body stores. The variation in energy partitioning between the 

mammary gland and body stores is genetic in origin and is mediated by differences in 

eMocrine balucc. Several hormones are involved in the regulation of body metabolism 

such as Gil. INS. thymzine. and gtucagon but the two of most relevant to the dairy cow arc 

Gil and INS (13ies & Ilan. 193: ). Differences in Gil and INS concentrations in plasma 
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be = l1GM and LGM cows u= detected in this study; higher GH levels coupled with 

lower levels for INS in IiGM cows as compared to LGM cows. 

The fall in circulating plasma INS at the onset of lactation is considered one of the 

ad3pdNv pcoorsxs to increase the availability of nutrients for the purpose of milk synthesis. 

INS is an inabalic tx rtmtr %hich pmmows the utilization of glucose by peripheral tissues, 

inhibits gtuconcogcnesis and glycogenolysis, promotes the storage of nutrients in adipose 

tissue (lipogenesis) and inhibits the release of nutrients from adipose tissue, lipolysis 

(Vernon. 1989). As a conscqucz e. high yielding dairy cows are usually characterized by 

lower INS levels during Laution (Walsh et a1., 1980; 
. 
Barnes et al., 1985; Bonczek et al., 

1988). The difference between cows from different genetic merits is likely to reflect 

difference in secretion reu (hart tt nl.. I9SO). Lower INS levels in high line cows is 

& crated with mcubolic adaptation in carbohydrate metabolism which will preferentially 

divert energy to the tnunmaty glans at the expense of the rest of the body tissues (Eiart, 

1983; Collier tt al.. 1984). 

The involvcrntrn of Gi1 in nutrient partitioning during the lactation cycle is well 

recognized hause of the positive correlation between milk production and plasma levels 

of Gil. Its role in altering the ezrrgy partitioning is by increasing the availability of 

nutrients by promoting gtucvncogcnsis and lipolysis of adipose tissues, and inhibiting the 

utilization of nutrients by peripheral tissues and lipogenesis in the adipose tissue (Collier et 

a1� 1984). Gil thus antagonizes the anabolic activities of INS. The higher Gil levels we 

obscrvcd in l1GM cos is in *grremcnt with others who provided evidence suggesting that 

Cu Icvels, %vuU likely izrrcasc with genetic selection for milk yield (Barnes et al., 1985; 

F3an tk tt a1.. 19 .I Iowctia. %%hcthcr this difference in GEI is a true genetic trait linked 

to gcnctic inheritance or edited to the net energy balance of the lactating cow has been 

debaw*1. I Hart (1983) pmp sc4 that GI I variation between cows from different genetic merit 



109 

may not be a cause of. but a Consequence of variation in energy balance between high and 

low genetic merit cows. Ilovºwcver. Ka. uner of at.. (1986) have reported that both basal 

L-%-cis and responsiveness of Gil to TRii wrcre greater in cows selected for higher milk yield 

in the absence of any difference in energy balance. supporting the genetic effect on Gil 

secretion. Our treated I1GM aal UGC! cows exhibited similar rates of lipolysis and also 

maintczuncc of body condition score and body weight for several weeks (before T4 

administruion, ) sugscsticg similar cncra baum and little fat mobilization to cover for any 

ci gy deficit. In fact, greatcr Gil retcase his been shown in the same high genetic line at 

an early age (WoollUms et al.. 1993) suggesting that Gil release is genetically programmed 

in the IIGNI cows utilized in this study. 

So. one of the reasons for greater milk production in l1Gbi cows is the ability to 

rcduu the amounts of nutrients deposited in the body tissues, thereby increasing the 

availability of rutricnts available to support higher milk yield. This variation can be 

attz tcd to differencc in circulating levels of Gil and INS between the two genetic lines. 

The variation in plasm kscls of IGF 1 between the two groups was in accordance with the 

difference in allocation of available nutrients. Like INS. IGF-I is an anabolic hormone 

which is involved in many processes of body growth. Therefore, lower IGF-I concentration 

in 11GM %Is probably related to the need to reduce tissue synthesis elsewhere in order to 

support the high nutrient requiranent for milk synthesis. An inverse correlation exists 

between milk production uni serum IGF I in lactating cows; IGF"I which reaches its 

minimal lcycls in culy lactation will increase gradually when milk yield falls as lactation 

a4vu s (Rongc art at., 1988). The lower plasma IGF-I conccntration in the high genetic 

m=it cows was one of the physiological adaptations to support the high milk synthesis by 

raiucing body anabolism. 
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It is well known that the dramatic increase in milk production at the onset of 

uaog=is is not a an a by a coa urrcm increase in feed intake, which in turn drives 

the cow into a pcriod of negative cx rgy balancc. The difference between output and input 

is ccnvrcd by nutrients rclcascd from bodyrcsuve mobilization (Bauman & Currie, 1980; 

Vernon. 1989). The lower body condition score in 11GM cows, when compared to that of 

LGM cows. was a comequencc of higher rate of fat mobilization to adjust for the higher 

level of energy deficit during tic first few weeks of lactation cycle. Unfortunately, net 

energy ill= was WC asussCd in this study because this required the determination of feed 

inzakc in individual cows which was not possiblc without restraining the cows into stalls, 

a situation which could have resulted in the introduction of stress factor to the cows. 

Ilyddrolysis of trixylgh ro in the adiposc tissue during mobilization will liberate FFA and 

glycerol (GRL) (Vcrnon. 19S9) so their plasma levels may reflect the energy status of the 

animal; high Invcts vºwkI pzt inubly suggest an energy deficit. In this study there were no 

differences in FFA or GRL contntrxtions between the two lines despite the expected 

variation in their metabolic status. The Uck of any significant diffcrcncc suggests that both 

Of them foci pUxd their acute negative energy balance which prevails immediately at the 

onset of 1ation ani this might also sug that the cows were in a state of positive energy 

balarrt davit the unm p iod. 11x cows w= fed an adequate and balanced ration, 

thacfcmr. the usticipcd higtrr line of high energy density diet might has been sufficient 

to cover the majority of the nutrients requirement of 11Gbi cows in this study. Hart et al, 

(1978) have found higher FFA cx xz rar. ons in high yielding cows in early lactation which 

was positively correlated with Gil. but body stores mobilization was very high as judged 

by decrease in body weights. On the other hand. Flux et al, (1984) could not detect any 

varigion in pUum IPA bct-*ccn cos from different milk production potential at week 10 

of lactation whcn the cows Acrc fcd ad libitum. but FFA wcrc incrcascd in response to 



III 
restricted feeding. however , the suggestion that I1Gbi and LGM were both at a positive 

energy baLu e during pretreatment period should be treated with caution because this 

suggestion is based on plauna levels of FFA and GLR which were determined from only 

two samples during mo weeks period and their levels are known to be variable throughout 

the day and affected by some factors like time of feeding (Flux et al., 1984). Nonetheless, 

this does not mean that both groups were at the same level of energy status; low line cows 

might have been at a state of higher energy balance than high line cows. This was supported 

by lGF"I results in which low genetic merit cows had greater plasma levels than high 

genetic merit cows suggesting that due to their lower milk yield, low line cows were 

associated with surplus nutrients that can be directed towards body tissues and the reverse 

was true for the high genetic merit cows. Despite the significant differences between I1GM 

and LGM cows in some of the hormones which are involved in metabolism regulation, 

plasma glucose concentrations were at similar levels in the two genetic groups. This is in 

agreement with other reports (Dunes et al.. 1985). Glucose availability as a precursor of 

lactose in the mammary gland is a limiting factor for milk synthesis. The absence of a 

difference in glucose levels between the two genetic lines may not reflect a similarity in 

glucose kinetics, glucose partitioning is not likely to be the same in the two groups. The 

higher requirement of glucose for lactose synthesis in JIGbi cows would necessitate an 

increase in its availability by means of increase in its rate of production and also in its 

&crsiaa away from non-mammary tissues, which are both facilitated by higher Gil levels 

togcthcr with lower INS concentrations (Chalupa & Galtigan, 1989). Thus. higher rate of 

gluconcogcncsis coupled with higher rate of glucose uptake by the mammary gland in the 

high genetic merit cows would result in maintenance of plasma glucose at levels similar to 

that in low genetic merit cows. 
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Circulating ß-WIDA is dcrived mainly from transformation of butyrate during its 

absorption through the rumen wall. and also can be synthesised from FFA in the liver 

during the time of low availability of glucosic for oxidation by peripheral tissues (Vernon, 

1989). Apparently blood ß-11Dß levels were not different between the two genetic lines. 

Also, other studies with cows from different genetic background did not report any 

diffcmra in ß-äßß levels between high and low genetic cows (Flux et al., 1984; Michel 

tt al.. 1991). 1 lo-*wever. I lut et at. (1978) reported higher levels in high yielding cows as 

compared to cows of lower genetic merit because the high genetic merit cows were in state 

of high energy deficit and also their plasma GLU was low. 

Probctin is linkai with lotion in many species, but results from this study did not 

show any differences in PRL levels (basal and postmilking) which can be attributed to 

gcm; c sclec x. This is in agreement with several reports which did not suggest that PRL 

v'as altered as a result of intensive breeding for high milk production (Barnes et al., 1985; 

ßoraek et a!., 1988). This is not surprising. since the galactopoictic effects of PRL have 

not been established in ruminants. Neither reduction of basal levels nor increasing plasma 

levels by means of injection of bovine PRL have been shown to significantly affect bovine 

milk yield after the establishment of lactation (Karg et al., 1972; Plaut et al., 1987). 

However. it cannot be simply concluded that PRL has no role in maintenance of lactation 

in ruminants. 'There is a mechanism by yrhich the mammary gland is protected from 

nuctuatxxts in PR1, cor%cntntion, %%hich includes increase in intra-mammary accumulation 

of the hic either by increase in transfer from blood circulation or de novo synthesis, 

as the ability of the mammary gland to synthesize PRL has been demonstrated (Steinmetz 

et al.. 1993). The ratio of milk PRL, pl PRL concentration was increased after 

experimentally lowering PRL level by bromocriptinc in ruminants (Beck er al., 1979; 

Forsyth art al., 1995). this suggests that PRL might be protected from intracellular lysosomal 
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degradation. there tnzy be an increase in the transfer of PRL from circulation to the 

m mmary tissue (against concentration gradient). or it could be as a result of the increase 

in de nova synthesis of PRI, all of which might be a contributing factor in ensuring that 

pRL %-Ul be rcadily avz We to the Rory gland. Some evidence in the rat suggests that 

PRL plays a role in metabolic iptation in maternal tissues during lactation to support 

nusicnt roquimmcnt to milk synch=is (Bm man & McCutcheon, 1986). If PRL is involved 

in such proccsses in ruminant lactation it may not be reflected by variation in levels of the 

hormone between cows differing in their milk production potential. 

Like the basin keels, the amount of PRL released after milking was not significantly 

oomdited with gtnaic merit. ahbough l1GM cows did tend to release more. High variation 

between cows within each group as well as the interference of seasonal factors also 

coiiribures to the difficulty in interprcting this data. The capacity of lactotrophs to release 

pR .. in ºnv as assessed by TRH stimulation was not found to be affected by genetic merit 

(Kanner et al.. 1956). 1lcmt%rr. scxrx evi er c suggest that post-milking PRL surge might 

be mote closely rcLncd to milk production than basal levels. The amount of PRL released 

at milking is highest at peak lactation and gradually declines as lactation advances in 

lactating cows (Koprowski & Tucker. 1973) but even then a correlation between milk 

production and amount of PRL released at milking was not demonstrated (Koprowski & 

Tucka. 1973). Also. infusion of PRL aftcr milking in goats had little or no effect on milk 

production (Jacquemct & Prigge, 1991) v. hich did not support a clear correlation between 

post-milking PRL surgc and milk yieIJ. 

increasing milling (ru? icncy from twicc to four times a day significantly increased 

milk yield in both groups. JU rcsponsc was immediatc and the average incrcasc in milk 

was about 1.83 ISM. A simile absolute increase in milk yield in response to increasing 
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mi1kiog frequency has becn rcporscd by others (iiillerton er al., 1990; Knight et al., 1992). 

The milk yicU res xx se to ic=ing milking frcqucncy was not accompanied by significant 

ctw in milk c *n ition in this uudy. The ir=casc in rate of milk secretion by frequent 

milking is mediated by local rather than sys=ic factors, since increasing milking frequency 

in one half of the udder significantly increases milk yield in that half only (Dewhurst & 

Knight. 1994). Moreover. we obscr. cd no significant changes in the endocrine profiles 

during frequent milking although there was a tendency for higher PRL concentration. This 

was probably a consequence of the sampling regime used in the experiment, in which all 

cows went through the parlour before bleeding but it was only the treated cows that were 

being milked. Therefore, the significantly higher PRL levels cannot be attributed to 

treatment factors because samples were taken while PRL level was elevated in response to 

mincing stimulus in the treatsd cows. Physical distention of the udder does not appear to be 

invohtd in the r spone to frequent milking (i lenierson & Peaker, 1994). Rather, the effect 

involves the existence of an autocrinc regulatory protein that has been identified in goat's 

milk whey fraction and has been demonstrated to exert an inhibitory action on secretory 

activity of both In siiu and in s tro (Wilde et al., 1987b). The inhibitor has been 

demonstrated to be synthesized by primary cultures of goat mammary epithelial cells and 

has been named the feedback inhibitor of lactation (FIL; Wilde et al., 1995). As milk 

3==la: cs in the udder between milkings, a gradual increase in the concentration of FIL 

kads to a decline in the rate of milk secretion. Therefore, more frequent removal of milk, 

from the alveolar compartment, and hence ill. from the vicinity of secretory cells will 

result in an increase in the rate of milk secretion. It is most likely that the inhibitor acts 

through receptors located on the apical membrane of the secretory cells to regulate their 

secretory activity. After secretion. milk is stored in the alveolar lumen and small ducts 

(alveolar milk) or in the cistern and large ducts (cisternal milk), The relative importance of 
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this distribution is related to the proportion of milk that is stored away from its secretion 

site. since FIL is inactive in this area. Cows that store higher proportion of milk in the 

cistern. d compartment might be anticipated to be more efficient in milk secretion. It has 

been recommended in the dairy cows that an interval of 8h after normal milking was an 

appropriate time for assessing milk storage sites (Knight et al., 1994). Proportion of milk 

volume stored in the cistern (cisternal percentage) did not vary between IIGhi and LGM 

coos. It has been postulated in the goats that cisternal percentage was positively correlated 

to secretion efficiency (Peaker & llatchford, 1988). In this study, there was no difference 

in secretion efficiency between the two lines and it would not be expected to find a trend 

for a correlation between secretion efficiency and cistcrnal percentage. 

Tc increase in milk yield seen in response to increasing milking frequency must 

havve i l%cd an increase in the supply of nutrients to support the extra milk produced. The 

source of such nutrients must be from either increase in dry matter intake or mobilization 

of body swrcz. Feed intake cannot be assessed because of the lack of feed intake 

measurement in this i vestigation. but several reports which utilized milking frequency as 

a means for increasing milk production did not indicate that feed intake was stimulated by 

frOT, xrA milking (Pearson et al., 1979; DePetcrs et al.. 1985: Kazmer et al., 1986). There 

was no evkknce from this study to suggest that body fat mobilization was activated since 

body ucig)1s and body condition scores were maintained during 4X period. This was also 

suppoctcd by the nonsignificant change in rate of lipolysis as judged by levels of plasma 

FFA aal GtR lt is most likely that the extra nutrients came from the ingested feed, since 

the feed was xupplic4 unlimited, but the increased in intake was too small to be noticed from 

the limited m asurc mend made. 

The plasma Icti, cls of ß-I IDR wrre greater in the treated cows during 4X period when 

compared to controls. increase in ketone bodies is usually associated with energy drain 
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imposed by high levels of milk yield particularly during the first few weeks of lactation 

cycle when GLU levels are reduced. The decline in plasma levels of GLU triggers an 

increase in FFA levels and this metabolite can be converted to ketone bodies by the liver 

(Amaral"phillips et al.. 1993). Plasma levels of FFA and GLU were not significantly 

different from that of controls %%hich suggests another mechanism way causing the rise in 

ß-11DB. It is possible that this may have been related to an increase in ruminal production 

of but)-rate. which is converted to ß-IIDB in the rumen wall and liver. Treated cows were 

receiving higher amounts of concentrate ration than controls and it is known that feeding 

higher protein diet may increase the production of ß-11DB (Kronfeld. 1982). 

The prolonged release formulation of bST utilized in this study resulted in a 

significant increase in milk yield over and above frequent milking. Unlike the milk yield 

respx e to bST injected daily %hieb can be seen within 6 days of administration, the milk 

yield resp rtse was not seen will the second bST injection. The delayed-release formulation 

administered every 14 d has been known to show a cyclical pattern of milk yield (Bauman 

ei at.. 1989). Knight et a!. (1992) observed a better milk yield response in the second 

injection of delayed formulation compared to the first one. Although tremendous amounts 

of published studies describe the response to bST treatment, few studies have utilized bST 

in frequently milked cows. Treatment of cows milked four times daily with slow-release 

fornwistion of bST signify dy in rcascdd milk yield by 3.9 kg/d (Armstrong et al., 1990). 

and in ancxtrr study a daily injection of 25mg of bST in cows milked three times daily for 

127 days starting at week 7 of tsctation increased milk yield by 6.1 kg/d (Jordan et al.. 

1991). 1lowev°er. these studies, did not include different milking frequencies so the 

magnitude of increase of milk yield above frequent milking cannot be assessed. Knight et 

al.. (1992) have repotted a 14.2% Increase in milk yield above that of milking four times 
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when cows were injected with 14 d bST preparation. Milk yield was increased by about 

1.30 kgld (5.7 %) atxn, e that of 4X milking in this study. The lower response seen here was 

probably rci3: cd to the tuuüional sums of the cows at the time of treatment. In this study, 

the treatments comn=ccd at peak yield when the cows are normally in great demand of 

nutrients and there might be a limkW availability of nutrients to further increase milk yield, 

w betc=s in the oIr study the trcaumenu started several weeks after the cows had passed 

lactation pcak und milk yield was dcclining. so that the cows had presumably shiftcd to a 

more positive energy state. 

'The mechanism by %% h bST stimulates milk yield is not fully understood, but it 

his been widely uccpW that bST cxcrts its galactopoictic effects by altering the partition 

of posubsotptive nutrients bctwteen milk synthesis and body tissues synthesis (Bauman & 

Carrie, 1980). I1omeorhtt c control involves the coordinated alteration of the metabolic 

procascs of many body tissues that ka4s to the preicrrntial direction of nutrients towards 

milk synthesis AM inhibits the uongc of nutrients in body tissues (Bauman et al.. 1985a; 

Peel & Bauman. 1987). The tetra nutrients needed for milk yield response during bST 

t=ux-ti in tk short tam tray be provi 3rd by d=casc4 in body tissue synthesis if the cow 

is in posizh°c cncrgy baLtncc before and during treatment, or by the release of nutrients by 

the mabiti on of body stores if the cow is in negative energy balance or if the treatment 

forcrs die cow tobe in rrguiNc cz=gy t br e (Bauman & McCutcheon, 1986). However, 

bST cam crvsuaily inc-rc fei üxxlc sc, %vW wccks after the commencemcnt of treatment 

so that the cows arc able to a adjust their level of intake to match their additional nutrient 

rcwiremcrn tLv milk pr"r ion (Pccl & Iüunnsn, 1987). As the dry matter intake was not 

measured hcrc. the asscssmcnt of bST cffcct on the increase in feed intake cannot be 

dctcrmincd. Ik iy -Acighi as %cll as body condition scocc wcrc not significantly changcd 

during bST administration. ubich indicatcs that no major body rcscrvc mobilization took 
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place during this period. Body condition score is only indicative of the amount of 

subcuurxous fat and, therefore, may not be a sensitive enough way to determine changes 

in & dip= tissue mobilization within sich a short period of time. Plasma levels of FFA and 

GRL provide acI'<iitional information. Treatment with bST did not result in a significant 

elevation of plasma levels of FFA or GRL, supporting the conclusion that substantial 

iipolysis had tic been clicked by bST. Trcatnrnt with bST may not cause an acute increase 

in pissma levels of IT-A. but it can elicit a chronic elevation when treatment causes the cows 

to be in negative energy balance (Baumaa et at., 1988). In this study, there was a small 

tendency for increase in FFA during both periods of bST injection suggesting a trend 

towards increase in the rate of adipose tissue lipolysis. Milk fat tended to be higher in 

treated coins (P: 0,03) and protein percent was significantly lower (Pz0.03) and these 

chants in milk cocnxsit are ty peal of cows treated with bST when the treatment results 

in negative energy balance (Peel et al.. 1983). The lower milk yield response to bST seen 

in this study was mostly retired to the lower ability of bST to induce fat mobilization which 

azs related to time of treatment: caws were most likely just recovering from an acute state 

of negative energy balance in %hich they mobilized most of their fat reserves. Lipolytic 

effects of bST may be dcpcn&nt on the energy status of the cows at the start of treatment, 

so in cows at pak lxciation with lower body rcxrves, treatment with bST may not change 

the plums levels of FFA v ten compared to treatment during mid lactation when the cows 

presumably shift to a positive energy baLix e (McDowell et at.. 1987). Although there 

might t00l be a s04MAW h in the raze of adipose tissue mobilisation. the metabolism 

of the adipose tissue must ha%c been altered in a way that a major inhibition or suppression 

of lspogc=is hu Dawned (tlaunun. 1992). Perhaps nutrient density of the ration coupled 

with inhibition of nutrient deposition in body tissues might have accounted for the supply 

of the cilia nutrients required (or milk production during bST treatment. The bST effects 
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on cubohydrate embolism in the dairy cow is well established, it reduces glucose 

oxidation by periphcra. i tissues a increases the rate of glucose synthesis by the liver. 

irrctirrsihk kiss ruc of g Ose hu been shcmn to be irreased in bST treated cows together 

with a rcduction of glucose oxiJstion to CO2 but plasma glucose concentration was not 

affected by trcatment (Biuinaa rt al., 1958) which constitute one of the coordinated 

altcritions or metabolism in nor}-mammary tissues to supply the glucose needed for the 

Esc in milk synthesis. Pc'im this ahation in GLU kinetics, glucose homeostasis was 

not affected by bST trcatmcnt in the prescnt study as there are no changes in plasma levels 

of GLU during bST pcnods. 

Stil ton of milk prods sinn by bST is not only through increasing the availability 

of milk precursors. but also involves an increase in the cardiac output and blood now 

pcrfusing the uLiJcr (Davis i al., 19&14. b). IIomntr. this is not the end of story; how does 

GI Ic uric the ability of scsrvt *7 tics to produce more milk? Is there any direct action 

of Gil on marnrnxsy gtaxYi tisacs? It is unlikely that Gil exerts a direct action, since Gil 

roctpcots canna be dcwctc1 in ft au nmmýry gland by conventional binding assays (Akers, 

1983; Genlcr ¬t at.. 1984). It has bcrn propound that Gil might affect mammary gland 

iuncüon indimcxty through IGN-I. as the pas= of IGF"I receptors in the mammary gland 

tjs tern &rmwratal (Dehoff et at.. 1988) and the mitogenic activity of IGF-I on bovine 

cramnwry tissues hu been apart (1; a kr & Strmberger. 1989). Treatment with bST 

si ', anciy inc=sc4 ptasna cocarar ttona of 1GF4 in both treated groups compared with 

urnuols. Although IGF-I is produced by various tissues, the liver is the major source of 

cisculasir IGF-I uni its s)Y s is partially under the control of Gil. Treatment with bST 

in co s hu bccn known to ui taý: e IGF I production (Davis et al., 1987). This is partially 

relatai to an Increase in the rate of IGF-I synthesis, as has been shown by an increase in 

tcpasic iGN mRNAI (Sha= d at.. 1994). Howevcr. Ncwbold et at.. (1997) have shown 
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that the incrcasc in IGF"I in response to slow release formulation of bST, similar to that 

ac3rniýsusrci in this study. was not due to any incrcasc in the concentration of hepatic GH 

bix fir sins. Aho, anger study %herc bST was injected daily to lactating dairy cows did 

not r uut in any chuzgcs in the ibex of tnRNA for Gil receptors or the number of free 

binding sites for Gil despite the ease in plasma levels of IGF"I (Vanderkooi et al., 

1995). Tb=fort. te mcactunism rrlascd to the increase in IGF-l production elicited by bST 

tcramxo nay me imolvc an alteration in the nunbce of Gil binding sites, and it is possible 

that alsrruion in the function of the receptors that leads to an enhancement of Gil binding 

might be involved. The increase in IGF»l plasma levels during bST administration is 

consistent with the suggestion of a rote fa IGF-I in mediating the milk production response. 

Systemic infusion of IGEFI to lxtitirg goats did not mimic the effects of Gil administration 

on milk yield stimulation (Davis et al.. 1989). but IGF-I had some stimulatory effect on 

milk secretion when it as given via Close-arterial infusion into the mammary gland 

(Prosser et al.. 1990) although this response was subsequently shown to be attenuated by 

incraºsing milking frequency (Prosser & Davis. 1992). So. the effect of IGF-I on milk 

$=e iatt is imooclusivc. In the r. U. IGF-I. IGF-II. and IGF-binding protein-3 administered 

conc. u ently failed to mimic the galactopoictic effect of Gil on milk secretion (Flint et a!., 

1991). Utilizing co tlturc of munnury, liver. and adipose tissues, the presence of IGF-I 

did taat stimulate lipid or protein synthesis by the mammary tissues (Keys et al., 1997) 

which does not support a direct galactopoirtic effect of IGF-I. 

Trcatment with bST did not affect INS concentration in the plasma, although there 

wias a small increase in LT co' i during the second bST injection. Reported effects of bST 

treatment on INS secretion in deity cows are not consistent. Dines et al, (1980) have 

tcpot%cd that plasma INS was inc eased by bST injection while another study reported only 

a small trend for increase (Davis et al.. 1989). Stimulation of INS release may be related 
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to the energy status of the cow. for INS rise was evident only in cows in positive energy 

balane i. e. low yielding cows or at late lactation (Bins et al., 1980; Vicini et al., 1991). 

The administration of T4 resulted in a rapid and significant increase in milk yield 

over and above that of 4X plus bST in cows from both genetic lines. The galactopoictic 

effect of T4 in cattle has been known for a long time. Thyroprotein feeding (which contains 

low amount of T4) has been shown to stimulate an increase in milk yield of about 10-25 % 

and several factors can affect the milk yield response such as dose, energy status, the 

availability and quality of feed. and environmental factors (Meites, 1961). More recent 

studies have reported that injection of 2Omg/d of T4 for short periods to Jersey cows elicited 

an increa e in milk yield of 15 or 25 %, depending on the stage of lactation (lower response 

at peak lactation) (Davis ei al., 1987: Davis et al.. 1988a). Several studies have indicated 

that long term feeding of thyroactive material elicited an immediate increase in milk yield 

which was not sustained but lasted for about 2-3 months, after which a gradual decline in 

yield occurred which continued even after the cessation of treatment (Seath et at., 1945; 

Hibbs & Krauss, 1947). The administration of thyroactive proteins proved not to be 

economical. since it increased metabolic rate in the whole body and as a consequence the 

mainzenancc cost was increased leading to a reduction in the efficiency with which feed was 

utilized for milk production (Thomas et al.. 1954). Therefore the use of thyroactive proteins 

as a means for milk yield stimulation in cattle which was proposed in the forties and fifties 

never came to fruition. It was used in this investigation as an experimental tool for 

increasing milk yield above that of frequent milking and bST so that a maximum milk yield 

capacity could be achicved. 

The mxhanism involved in relaying the effect of T4 on milk yield stimulation has 

not been fully elucidated. T4 treatment is associated with elevation in whole body 
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metabolism as indicated by the rapid changes in heart rate (increased by about 35 % in this 

study). It has been estimated. indirectly through heat production, that a 30% increase in 

basal metabolism occur with a dose of 25gm/d of thyroactive protein in lactating cows, 

which is not as a high dost as that utilized in this study (Thorbek et al., 1948). This 

increase in basal metabolic rate to T4 has been shown to be directly proportional to dosage 

in sheep (Blaxtcr, 1948a). The galactopoictic effect of T4, therefore, can be partially related 

to increase in the metabolic processes of the secretory tissues of the mammary gland as 

metabolism was generally elevated in the whole body. However, some evidence suggests 

that T4 causes specific effects in the mammary gland. Cardiac output which was increased 

by T4 was also associated with an increase in the proportion of cardiac output perfusing the 

udder (Davis tt al.. 1988a). This will support the increase in milk synthesis by increasing 

the nutrient supply to the mammary gland. A significant increase in the uptake of one 

essential blood metabolite, glucose, by T4 administration was shown (Davis et al., 1988b). 

However, there was also an increase in the ratio of glucose uptake to lactose output as a 

result of T4 treatment (Davis et al., 1988b) which supports the contention of lower milk 

production efficiency in lactating cows receiving the thyroxine treatment. The increase in 

cncrgy requirement to support greater milk production together with higher metabolic rate 

of the whole body tissues elicited by T4 would have challenged the cows for nutritional 

sources to satisfy their higher metabolic demand. Maintaining cows on thyroactive protein 

feeding for long times may be associated with increased in feed intake, but the losses in 

body weight sccn in many studies with moderate doses of thyroprotein feeding were 

suggestive of the cows rclying more on cndogcnous sources for meeting the extra energy 

requirement. Whether an increase in dry matter feed intake occurred during the T4 period 

cannot be determined in this study. but even if it had, this was most probably not enough 

to cover the elevation in nutrient requirement. The cows were losing body weight which was 
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continuod during 1Xi4X treatment period and the recovery period. A 10-15% loss in body 

weights during hyperthyroidism was also observed when moderate doses of thyroprotein 

wert fed to lactating cows (Seath et al., 1945; Hibbs & Krauss, 1947) which can be 

partially prevented by providing additional concentrate feeding, but this was not entirely 

effective in avoiding the dramatic loss in body weight (Thomas et al., 1954). In sheep, 

hyperthyroidism induced by thyroprotein feeding depressed body weight by 8-20% in about 

3 weeks and postmortem body composition analysis revealed that this was attributed to 

lasses in numk, bone and partiailarly body fat (Blaxter, 1948b) which suggest a rapid body 

catabolism, increase in protein deamination and adipose tissue lipolysis. In our cows, the 

severe depression in body weights together with decrease in body condition score values 

once T4 treatment started was strongly suggestive of high fat mobilization. There was also 

an acute and rapid increase in FFA and GRL levels, suggesting increased rate of lipolysis. 

However. the high rate of adipose tissues lipolysis seen in this study may not have been 

entirely elicited in response to a greater demand for energy, the lipolytic activity of T4 was 

most probably enhanced by bST. since it has been shown that bST enhances the lipolytic 

stimulus of cpincphrinc (Sechen at a!., 1990). 

The ircreax in glucose consumption by the mammary gland as reflected by higher 

milk lactose synthesis together with elevation in plasma GLU levels seen in this study were 

indicative of increase in the rate of hepatic tissues gluconeogensis and maybe a reduction 

in oxidation of glucose by peripheral tissues. This increase in plasma levels of GLU was in 

accordance with other studies in lactating cows and sheep (Blaxter. 1948b; Davis et al., 

1988b) which might contribute in part to the galactopoictic effect of T4 in lactating cows. 

1-he glucona enic activity in the liver must have been activated, indeed it has been shown 

that tram of shccp with high dose of thytnactive protein is associated with hypertrophy 

of the liver (Bluter. 1948b). Also, T4 administration was associated with an increase in the 
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rate of glucose synthesis in liver tissues as indicated by the increase in activities of key 

enzymes involved in gluconeogensis (Heitzman et al., 1971). The major and rapid changes 

in body weights and body condition score may have been of significance in providing 

precursors for glucose synthesis such as glycerol, lactate and probably amino acids which 

can be used as substrate for glucose synthesis (Vernon, 1988). T4 not only increases the 

availability of GLU but also increases the uptake of GLU by the mammary gland (Davis et 

al.. 1988b). thus supporting the increase in rate of milk production. Plasma GLU was 

elevated despite higher consumption by the mammary gland indicating that T4 enhanced the 

supply of GLU even more than the capability of the gland to utilize it. Higher plasma 

glucose concentration was associated with a fall in plasma level of INS. Similar findings 

were also reported in lactating cows (Davis et al., 1987; 1988a). Presumably the anabolic 

activity of INS would ha%t contrJdicted the catabolic effects of T4, thus a reduction in INS 

levels facilitated the generation of energy substrate needed to support higher metabolic rate. 

This fall in INS might be one of the pathways involved in the galactopoietic effects of T4 

on milk yield. 

The stimulation of milk yield by T4 was associated with a significant increase in 

milk fat percentage (P=0.01) but protein percentage was reduced significantly (P=0.01) 

in both treated groups when compared to that of controls. These changes in milk 

composition are in accordance with similar changes seen with thyroactive material feeding 

in lactating cows (Btaxtcr et a!., 1949). 

The significant decline in period means of PRL when T4 treatment started suggests 

a possible interference between thyroxine and post-milking PRL release. However. basal 

PRL Level determined from the frequent (hourly) samples were not suppressed, indeed they 

were elevated. This suggests that T4 might be responsible for the decline in PRL release 

after milking by acting via the negative feed back pathway on hypothalamic TRII release 
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which has been suggested to be involved in eliciting PRL surge after milking (De Greef et 

al., 1987). Alternatively. the higher basal levels during T4 treatment may result in 

exhaustion of releasable PRL stores in the pituitary gland; Koprowski & Tucker (1973) 

reported a negative relationship between basal concentration of serum PRL and subsequent 

milking"induccd rcleasc of PRL. 

Average hourly PRL levels were about twice that in the controls during T4 

treat ncnt. and no assessment of basal PRL levels were made during 4X and bST treatment 

to be compared with that in T4 period. Evidence from the rat suggests that thyroid status 

exerts some influence on the secretion of PRL; T4 injection to euthyroid rats significantly 

increased PRL synthesis in tim (Chen & Meites, 1969). Due to the spontaneous release of 

PRL and uncertainty of the presence of a definite PRL releasing factor, it is suggested that 

basal level is controlled by the PRL inhibiting factor, dopamine (Ben-Jonathan., 1985). So 

T4 might be affecting the release of dopamine into the portal system or it could act directly 

at the pituitary level to modulate the binding of dopamine to its receptors. The first 

explanation might be more acceptable since T4 has been demonstrated to greatly enhance 

the stimulatory effect of oestradiol on PRL secretion in thyroidectornized and 

ovariectomized rats by inhibiting the secretion of dopamine into hypophysial portal blood 

system (Wang et al., 1994). 

There was a tendency for T4 to result in low circulating Gib in both lines. The high 

heart rate and the increase in cardiac output evoked by T4 which resulted in increase in 

blood flow in body tissues might have increased the clearance rate of Gil. Furthermore, Gil 

binding is enhanced by hyperthyroidism (Ilochberg et al.. 1990) which in turn enhances the 

receptor mediated Gil clearance from the circulation. Average Gil concentration indicated 

that Gil was incrcascd in the first week of T4 injection, which coincided with the third bST 

injection in both genetic lines. The decline did not start until the second week of T4 in 
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which Gil levels were declined in both lines with greater decline in LT cows. In the fourth 

bST injection. the cyclical Gil pattern was not evident and this may be related to T4 

treatment which prevented the initial rise in Gil. 

The decline in plasma IGF-I during T4 treatment was indicative of modulation in 

synthesis or clearance rate. Similar effects of T4 on IGF-I have also been shown in lactating 

Jersey cows injected with 20mg of T4 (Davis et at., 1987). Experiments in rats (non- 

lactating) have demonstrated that circulating levels of IGF-I and IGF-I mRNA in the hepatic 

tissue were normal or increased in hyperthyroid rats (Miell et al., 1993; Thomas et al., 

1993). Nonetheless, the bioactivity of the hormone was markedly inhibited. This suggests 

that T4 may not necessarily interfere with IGF-I synthesis and, therefore, the catabolic 

effects of T4 exhibited in the body tissues might be secondary to lower IGF-I activity. The 

biological activity of IGF-I is modulated by its binding proteins as the majority of 

circulating IGF I is bound to IGFBPs with very low percentage found free in the blood 

stream. Thus, any changes in concentration and relative proportions of IGFBPs in 

extracellular fluids will modulate the localization of IGF-I in different tissues and hence 

their biological activity. Most circulating IGF-I is found bound to the 150 kd acid-labile- 

subunit of IGF13P3 (Barreca et al., 1995) which is believed to be mainly responsible for 

maintenance of IGF-I pool in the circulation and for increasing the half life of the hormone. 

Much less IGF-I is bound to IGFBPs with lower molecular weights. If this proportion is 

reversed by dcc'rcase in IGFBP3 production or an increase in the production and binding of 

other IGFBPs (IGFDPI or 2), this will result in decreasing the half life of IGF-I in the 

circulation and increasing its clearance from the circulation and significantly lowering its 

plasma levels. The modulation of IGF-I concentration in plasma by binding to IGFi3Ps has 

been proposed as a physiological adaptation in situations when growth is being compromised 

such as stress or scvcre malnutrition (üossner et al.. 1997) which also might be true in the 



127 

case of hyperthyroidism. This is supported by finding that IGFBPI increased with 

hyperthyroidism (Angervo et al., 1993) and if the proportion of IGF-I bound to IGFBPI 

is increased, this might participate in the inhibitory activity of T4 on IGF-I action by 

reducing the half-life of the hornmono arxi also reducing its binding to type 1 IGF-I receptors 

(Jones & Clemons, 1995). A possible depression on IGF-I gene expression by T4 cannot 

be excluded especially in this situation when T4 caused the cows to be in a state of low 

energy balance. It is accepted that T4 has affected IGF-I action by either affecting its 

synthesis or (and) inhibiting its bioactivity by modulating IGFBPs, both may participate in 

promotion of the catabolic activity of T4 on body tissues by inhibiting the anabolic activity 

of IGF-I. 

The ability of lactating cows to respond to T4 treatment so that milk yield was 

increased above that of bST is indicative of the additive trend of these stimuli and also 

suggestive that bST and T4 were affecting milk yield by different mechanisms. Comparison 

studies between the effects of bST and T4 on milk production which were carried out by 

Davis et al. (1987; 1988a. b) have indicated that both of them gave a similar response in 

milk yield when injected for short term. However. a possible variation in their mode of 

action might exist; T4 caused a dramatic changes in homeostasis as indicated by higher GLU 

levels. and also substantial effect on body catabolism to support higher rate of whole body 

metabolism. On the other hand, bST resulted in increases in the metabolic activity of 

secretory mammary tissues while metabolism of other body tissues is altered so a greater 

proportion of nutrients can be utilized for milk synthesis. As a result, homeostasis was not 

altered by bST despite its effect on alterations in tissue response to homeostatic signals 

(Vernon, 1988). 
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Stimulation of milk secretory capacity elicited by the galactopoietic stimuli utilized 

in this study aas accompanied by a significant stimulation of the growth of the udder. This 

represented a true udder growth which cannot be attributed to the presence of milk in the 

udder at the time of determination because the udder was emptied with oxytocin injection 

just before the measurement. The contribution of each galactopoietic stimuli on udder size 

during sequential treatments cannot be determined because measurement of udder size was 

not done during 4X or bST treatment, but it was measured during maximum treatment 

stimuli (T4 period). The increase in udder size might has been attributed to increase in 

epithelial cell number (hyperplasia) or cellular differentiation (hypertrophy). More frequent 

removal of milk from the goat udder increases secretory cell metabolic capacity but does not 

increase cell number until the treatment is applied for a long time (Wilde et at., 1987a). 

Also, the metabolic activity of the secretory cells in the mammary gland was increased by 

four times milking in cows and histological analysis indicated an increase in cellular 

differentiation and hypcrtrophy (Ilillerton et al.. 1990). Combined treatment of bST and 

frequent milking in goats increased parenchyma volume as assessed by magnetic resonance 

imaging. but without any increase in total cell number of the secretory epithelium suggesting 

that cellular hypertrophy was responsible (Knight et al., 1990b). However, there was some 

evidence in the cows that frequent milking stimulated increase in cellular proliferation as 

indicated by an increase in DNA synthesis in vitro and in the number of epithelial cells per 

alveolus 0 Merton et al., 1990). Therefore, the udder growth that has been observed in the 

treated groups can be attributed to a combined effects of frequent milking and bST; the 

former increased cellular differentiation and proliferation while the latter reduced the cell 

death and hence increased the longevity of the secretory cells. 

Having established the upper metabolic capacity of cows from different genetic 
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merit. the next area that this study was designed to explore was if the restriction point 

determining maximum output was localized at the mammary gland level itself or elsewhere 

in the body. Maximum metabolic limit is determined by two factors, machinery associated 

with the supply of nutrients and machinery associated with the consumption of nutrients, 

which in the cast of the lactating animal would be the mammary gland (Hammond & 

Diamond. 1997). The first factor is concerned with the availability of a well balanced ration 

at adequate levels, rate of feed intake, capacity of the alimentary tract for digestion and 

absorbtion, rate of processing of metabolites needed for milk synthesis and also the 

availability of body stores to cover for any energy deficit (body stores mobilization). 

Furthermore, another component which is related to the availability of nutrients is the 

direction of these nutrients to the mammary gland. At the mammary gland level, the 

synthetic capacity of secretory tissues, which is determined by the number and 

diffcrcntiative state of samory cells, might be a limiting factor when considering the ability 

of secretory cells to increase their synthetic capacity. The method adopted to localize the 

restriction point was to reduce milking frequency in half of the udder to once daily while 

maintaining the other half on four times daily and at the same time maintaining the cows on 

the galactopoictic stimuli (bST+T4) and the same feeding system. At normal levels of 

output, reduced secretion in one half of the udder triggers a compensatory increase in the 

other half (goats: Henderson & Peak-er, 1980. cows: Iiamann & Reichmuth, 1990), showing 

that individual mammary gland yield had previously been submaximum. In other words, 

output was being regulated (restricted) at the level of the whole animal, not the mammary 

gland. The question that arises is would this still be the case when galactopoictic stimuli 

were applied to specifically increase mammary synthetic function, or would the point be 

reached where the udder was functioning to its maximum capacity such that it had become 

the restriction point? 
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Total milk yield declined by about 24 % when milking frequency regime was changed 

to 1X/4X milking. RNIYQ values which compare changes in the milk yields of 1X and 4X 

halves indicated less than unity value in the treated groups which was attributed to the 

decline in milk production in the half udder milked once daily. Reducing milking frequency 

from twice to once daily milking for one week resulted in a reduced milk yield by about 

22% in cows (Knight & Dcwhurst. 1993), and 26% reduction during 2 weeks of once daily 

milking was obtained in lactating goats (Wilde & Knight, 1990). The decrease in milk yield 

in rcsponsc to oncc daily milking was the result of the inhibitory activity of FIL exerted on 

the secretory cells. Less frequent milking and infrequent removal of the inhibitor which 

increases its concentration as a result of accumulation, as well as increase in the time to 

which the secretory cells are exposed to the inhibitor ultimately reduces the rate of milk 

secretion (Wilde et al., 1989). The reduction in rate of milk secretion was mostly related 

to a decline in the cellular differentiation as suggested by lower activities of some key 

cnzy ms during the transition from twice to once daily milking in goats (Wilde & Knight, 

1990). 

The milk yield of the half udder milked four times was not increased to cover the 

loss of yield caused by reducing the milking frequency in the other half, which indicates that 

the mammary gland had already been milking at its potential since it could not increase its 

rate of milk secretion. therefore, the maximum metabolic capacity was determined at the 

mammary gland level. However. this interpretation should be treated with caution since 

milk yield in the half udder milked four times actually decreased during this period which 

was probably rclated to the deleterious effects of thyroxine treatment for this length of time 

and dose. Major body catabolism had occurred to support higher demand for both milk yield 

and whole body metabolism. If this had reached a point where essential body functions were 

being compromised then non-essential processes. such as lactation, would have been shut 
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down. The fact that total milk output was decreasing and continued to decrease for some 

time after the treatment ended suggests that this was indeed the case. Different conclusion 

might has been obtained if the cows were not in a such severe body catabolism and 

substantial negative energy balance. A follow-up experiment has been done to test this, 

using the same sequential treatments of 4X, bST (by daily injection) and T4 but for a period 

of 5 days each. Milking frequency was then reduced to twice daily in one half of the udder 

while maintaining the other half on 4X (Sorensen A& Knight CFI, personal 

communication). Reducing milking frequency resulted in a decline in milk yield in the less 

frequently milked half. but the total milk yield was not affected because there was an 

iixrease in the yield of the 4X half to compensate for the loss. This clearly shows that the 

restriction point in determining the maximum metabolic capacity was not localized in the 

udder as indicated by the ability of the mammary tissues to increase its rate of milk secretion 

so that the milk yield was sustained at the maximum level. Therefore, the maximum 

capacity is determined at the level of the whole body and not at the mammary gland level 

as was suggested above. 

The behaviour of plasma glucose level during T4 treatment was inversely correlated 

with milk yield; glucose was greater in the IX/4X period than during the T4 period, 

reflecting the dominance of the mammary gland in glucose clearance from the circulation. 

The tendency for elevated glucose does not necessarily reflect higher rates of 

gluconeogenesis, but rather the decline in mammary uptake and utilization of glucose as 

milk yield fall. In the lactating ruminant most of the glucose produced (60-85%) is utilized 

by the mammary gland (Annison & Linzei!, 1964; Dickerstaffe et al., 1974). Plasma 

concentrations of INS tended to recover from the depression that was seen during T4 period, 

probably as a response to the higher plasma glucose. Despite normal INS levels, GLU was 

maintained at high levels. This apparent INS resistance state may be accounted in part by 



132 

the antagonizing action of Gil on INS action by peripheral tissues (Vernon, 1988). 

Ilowntr, plasma GLU levels have been shown to be elevated independent of bST treatment 

(IIlaxter. 1948b; Davis et al.. 1988b) suggesting the disruption of GLU homeostasis was 

likely to be evoked by T4 treatment. Furthermore, INS sensitivity is decreased with 

clevation of plasma T4 in humans (Ohguni et at., 1995). 

The drop in milk yields in the treated groups during the recovery period was so 

dramatic that it resulted in yields being significantly lower than that of the control cows. It 

is well known that thyroprotein feeding stimulates milk yield for some time but that milk 

yield declines following cessation of thyroprotein feeding and yields continue at subnormal 

levels thereafter (Swanson, 1954). Several attempts have been tried in the early studies to 

prevent the loss in milk yield after the cessation of treatment such as gradual withdrawal of 

the protein from the diet, transferring the cows into a good pasture or providing extra 

concentrate fceding, but these have not been successful in completely preventing the drop 

in milk yield (Swanson, 1954; Thomas et al.. 1954). The decline in milk yield can be 

related to continuation of T4 treatment and also to the cessation of its administration. It was 

obvious in this study that T4 treatment had pushed the cows into a state of energy deficit 

which was met by body fat mobilization to support high metabolic demands. The total milk 

yield declined during 1X/4X period which presumably resulted in a decline in the nutritional 

requirement of the mammary gland as a result of the decline in the metabolic activity of the 

less frequently milked udder half. Indeed, the milk yield continued to decline even after 

resumption of twice daily milking. This decline in milk yield can be viewed as an alleviation 

measure taken by the cows to reduce their energy expenditure. In this study a relationship 

between changes in milk yield and body reserves mobilization while the cows received T4 

can be suggested; milk yield was high during the first few weeks of treatment because of 

higher mobilization but the yield then declined as a result of depletion of these body 
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reserves. It is known for bST that the energy requirement to support greater milk yield is 

supplied by body reserve mobilization in the first few weeks of treatment, but a gradual 

increase in feed intake will occur after some time so that the body reserves will be 

replenished. In the case of T4 the situation is different in a way that the cows tended to lose 

their dependence on energy from ingested feed so that their dependence on endogenous 

sources is not alleviated by long term treatment. The loss in body weight during T4 

administration may not be entirely related to catabolism of body tissues, a decline in gastro- 

intestinal fill might be a contributing factor in changes in the body weight (Swanson, 1954). 

Furthermore, the digestibility of dry matter might be compromised (Blaxter, 1948a) and 

even the appetite may not be maintained especially with high doses (Blaxter, 1948b). Taken 

together. thcsc possible alterations in the nutritional status might introduce a limiting factor 

to the supply of nutrients which are derived from feed intake particularly with high dose or 

treatment with T4 for long time. Therefore, it was possible that the reason that milk 

response to T4 was not sustained in this study was related to decrease in the nutrients 

availability from both exogenous as well as endogenous origins as treatment continued. At 

the first few weeks of T4 injection, the cow was capable of meeting the great demand of 

energy for maintenance as well as milk production from feed intake and body stores 

mobilization. However, continued T4 administration which resulted in depletion of body 

stores with concurrent decline in nutrients available from the ingested feed, imposed a 

restriction on the availability of nutrients resulting in shifting in the priority of partition of 

nutrients to support the high basal metabolic rate in the whole body tissues at the expense 

of the metabolic activity in tissues which are not vital. like the mammary gland. 

The significant decrease in udder volume during the recovery period in the treated 

cows coupled with lower milk yield indicated that the mammary growth stimulation by the 

application of galactopoietic stimuli was abolished. The decline in yield was associated with 
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significantly reduction in secretion efficiency. This suggests that secretory activity of 

epithelial cells was reduced, which might be related to a decrease in the rate of secretory 

cell differentiation. However, an increase in mammary tissue involution cannot be excluded 

as a contributing factor to the decline in milk secretion. In fact, the observation of absence 

of recovery after long term thyroactive feeding is suggestive of loss of secretory cells. The 

mechanism by which T4 is causing such an effect at the level of the mammary gland, or 

whether this effect is related directly to the hormone or is a consequence of major alteration 

in body metabolism and severe body catabolism is not known. The decline in milk synthesis 

might be related to a decrease in the blood flow perfusing the udder or a mechanism by 

which the uptake of nutrients was attenuated. The accumulation of GLU in plasma during 

1X/4X period and a similar trend in the recovery period is supporting this claim. The fact 

that the milk yield of the half that was milked once daily remained below that of the other 

half maintained at four times milking during the recovery period is somewhat surprising. 

Short term infrequent milking had no effect on lactation persistency when cows were 

rctumcd to their normal milking (Knight & Dewhurst, 1994), which suggest that reducing 

milking frequency for a short time does not cause a detrimental effect on secretory cells. 

The maintenance of less frequent udder half yield below that of the other half was 

suggestive of a possible interaction between FIL action and deleterious action of T4 so that 

a detrimental effect on the secretory epithelium had occurred in that half. This might have 

arisen from alteration in response of the mammary tissues to systemic factors in the half 

milked once daily. Infrequent milking which increases the inhibitory action of FIG on 

sccrctory cells also lowers the number of PRL receptors (McKinnon et al., 1988). Also, FIL 

can decrease the binding of IGF"1 in mammary membranes (Bennett, 1993). Therefore, it 

was possible that the inhibitory effect of FIL on secretory cells was exacerbated by the 

proposed inhibitory action of V. 
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The main objective of this study was to determine the maximum metabolic capacity 

of lactating dairy cows from different genetic merit and thereby assess how close these cows 

were functioning in relation to their maximum capacity. Numerous factors with different 

modes of action are involved in the control of milk secretion so that more than one 

galactopoictic stimuli was adopted to achieve the upper metabolic limit. A combination of 

a local factor. removal of FIL by the action of frequent milldng, and treatment with GH and 

T4 were applied in stepwise fashion in addition to the availability of adequate well-balanced 

ration to fulfil the target of driving the cows to their maximum metabolic capacity. 

The teixienry for higher response to increase in milking frequency in HT cows might 

have been related to the relatively lower cisternal percentage compared to LT cows (20.77 

vs 26.73% . P>0.05. ANOVA; for IIT and LT groups, respectively). It has been proposed 

that the proportion of milk stored in the cistern will determine the effect of changing 

milking frequency, so cows with small cistcmal capacity will benefit from increasing the 

frequency of milking more than cows with larger cistern (Dewhurst & Knight, 1994). 

In agreement with what has been reported by other research groups, no interaction 

between bST treatment and genetic selection for milk yield was evident (McDaniel, 1988; 

Nytes a al.. 1988). However, the level of milk production might affect the bST response, 

cows with lower pre-treatment milk yields responded with greater increase in milk yield 

after bST comp red to cows with higher milk yields (Leitch et al., 1987). There was a non- 

significant trend for a better response in LT group. One of the key factors in provoking the 

stimulatory effect of bST on milk production is the availability of body reserves for 

mobilization (Bauman. 1992). LT cows had greater body condition score, reflecting higher 

fat stores that could be mobilized and this may explain this better response to bST. This was 

supported by a tendency for elevation in plasma levels of FFA during bST periods in LT 

cows. reflecting greater rates of lipolysis. Furthermore, body condition score declined 
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during the second period of bST in LT suggesting greater fat mobilization. 

Although UUT exhibited greater Gil concentrations than LT cows after the 

administration of bST, the difference reached a significant level during the first bST 

injection only. This cannot be related to difference in dose: body weight because there was 

no diffcrci cs in body weight between the two groups. This tendency for difference in GH 

concentrations was suggestive of variation in clearance rate between the two genetic lines; 

slower metabolic clearance rate in IUT. In a situation when growth is compromised due to 

scarcity of nutrients available to be deposited in body tissues which inhibits anabolism in 

peripheral tissues. half-life of Gil is increased and clearance rate is reduced in cattle 

(Trenkle, 1976; Lapierre et al.. 1992). Circulating Gil is cleared in part by receptor- 

mediated cellular uptake and subsequent degradation within clearance tissues (Harvey, 1995) 

so it might have been related for example to poor receptor binding in these tissues. 

Levels of IGF-I and Gil in both lines during bST treatment indicated an inverse 

relationship between the two hormones: high Gil levels in the high line cows were not 

associated with higher IGF-I levels. This paradox occurred in this study because GIi is not 

the only factor that regulats IGF-I synthesis, nutritional status is also exerting an effect. In 

some situations when growth was temporarily retarded i. e., as a result of lower ingested 

nutrienu, Gil stimulated IGF"I synthesis was reduced in cattle (Breier el al., 1986; Ronge 

& Blum, 1989). It is not only the basal levels of IGF"I which are affected by nutritional 

status, bST-stimulated IGF-I is also affected; in lactating cows the IGF"I response to bST 

was diminished by restricted energy intake (McGuire et a!., 1992) or reduced in early 

lactation when the cows were in negative energy balance compared to later in lactation 

(Vicini at al., 1991). Generally, concentration of IGF"I is a reflection of anabolic status so 

that higher IGF-I is associated with higher planes of nutrition, and therefore. IGF"I could 

serve as an indicator of energy status modulating the stimulatory effect of bST on milk 
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production (McGuire et al.. 1995). A variation in energy status between HT and LT cows 

was anticipated, I IT cows might have been in lower energy status than LT cows. This does 

not necessarily mean that UUT was in negative energy balance and LT was in positive energy 

balance, but that UT cows had a higher demand for nutrients which resulted in a reduction 

in the availability of mitrients to be deposited in their body stores and hence in less anabolic 

status than LT cows. It is possible that changes in circulating concentration of IGF-I might 

signal the biological events and the magnitude of milk response that occur with bST 

treatment. Tbereforc. if stimulatory effect of bST on IGF-I synthesis is involved in 

stimulation of milk secretion, the smaller response of the HT cows may provide a protective 

measure to reduce the amount of nutrients directed to milk synthesis. This can be of 

significance in the case of tower availability of nutrients during lower feed intake or in high 

yielding dairy cows treated with bST during early stage of lactation, since by this adaptation 

the chance of collapse of metabolic control can be avoided. The cellular mechanism for this 

variation may be related to changes in hepatic Gil receptors, as energy status can influence 

the Gil binding sites. It has been reported that lower energy balance in heifers evoked by 

feed restriction decreased the mRNA for GIi receptors and this was then associated with 

lower IGF-I mRNA (Vandehaar et al., 1995). Also, in lactating cows. Gil binding sites in 

the liver was related to nutritional status (Newbold et al., 1997). Rose et al, (1992) grouped 

cows into high and low resporniers to short term bST treatment, and they observed that high 

responding cows were associated with lower Gil peak after the injection but higher IGF-I 

plasma levels concentration. Therefore, it is conceivable that the extent of milk yield 

response to bST is greatly affected by the clearance rate of the hormone from the circulation 

which is dependent on the abut of functioning Gil receptors which is regulated by the 

nutritional status. 

There was no difference in homeostatic balance between high and low genetic merit 
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cows, as measured by basal blood metabolite concentrations of glucose, free fatty acids, 

glycerol and ß-hydroxybutyrate, during treatment periods, before the addition of T4 to 

treatment combination. However, there was a trend for a difference between them in plasma 

levels of glucose after T4 administration; low genetic merit cows tended to show higher 

plasma levels suggesting reduced glucose clearance from the circulation. The effect of T4- 

stimulated lipolysis was not influenced by genetic factor in this study since plasma levels of 

FFA and GLR were not significantly different between the two treated groups. This result 

agrees with another study (Michel et al., 1991), in which epinephrine-stimulated acute 

lipolysis was not affected by genetic selection. 

There was no evidence to support the contention that cows from high or low genetic 

merit were normally milking at different points relative to their capacity, so high genetic 

merit cows were not exposed to potential metabolic disturbance more than cows of low 

genetic merit. When they were pushed very hard to increase their output, cows showed 

similar responses. High genetic merit cows were milking at higher level than low genetic 

merit cows which means that their energy budget was also higher, but during maximum 

stimuli both groups exhibited a similar rate of body fat mobilization, as indicated by plasma 

levels of glycerol and free fatty acids. This might suggest that both groups were at a similar 

level of energy deficit despite the distinct difference in their energy expenditure and this 

might be related to a greater dependence of high genetic merit cows on feed intake to meet 

their nutritional requirements. 

It can be concluded that high genetic merit cows were not operating close to their 

metabolic capacity as it was proposed and therefore they were not at more risk of collapse 

of metabolic control than low genetic merit cows. Cows from different genetic merit, under 

good management, are milking at a similar submaximum levels probably to maintain a 
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steady level of milk production and avoid any disturbances related to higher metabolic rate. 

Although there was no diffcrcnce in risk between cows from different genetic potential when 

they were fed adequately, would the same conclusion be drawn if input (feed intake) was 

restricted while the cows were at their utmost output? This question is certainly deserving 

of further study. 
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CHAPTER SIX 

Summary and conclusions 

Milk yield is the function of the total number and activity of secretory cells, but 

several factors can be manipulated to influence milk yield. This thesis involves studies on 

manipulation of milk yicld utilizing different galactopoietic stimuli. Of course each stimuli 

has its own mode of action and, therefore, it would be expected to observe some variations 

in response among these galactopoictic factors. Also, the responsiveness to such stimuli 

might vary between individuals. 

Fast, an environmental factor, photoperiod, was manipulated to investigate its effect 

on milk production. Experiments were conducted with goats which utilized photoperiod as 

a potential stimulatory factor on milk yield and to examine if the response can be potentiated 

by short periods of conditioning with melatonin treatment (chemical short days). In this 

study. exposure to long Egli did not produce a clear stimulatory effect on milk production, 

but a small response was evident in autumn of the first year experiment and only in goats 

that were not primed by mclatonin. This response was not observed when the experiment 

was repeated in the following year. The mechanism by which extended hours of lighting 

affect milk secretion is not fully elucidated, and several factors have been proposed, such 

as in ase in feed intake or release of galactopoietic hormones from the anterior pituitary 

gland. Although PRL lewls showed a parallelism with milk yield during the lactation cycle 

which might suggest a possible regulatory role of PRL in milk secretion, the absence of any 

association between stimulatory effect of long light on PRL and milk yield response 

weakens such conchuion. Also, there was no strong evidence to indicate that Gil is involved 

in mediating the photoperiod effect. However. this does not exclude the possibility of 

alteration at the level of receptors of galactopoietic hormones which modulate the tissues 
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respasiva, css to tirsc hormones. It is possible that photoperiodic stimulation on milk yield 

is associated with stimulation of feed intake as has been suggested previously (Peters et al., 

1981). Indeed, tere was indirect cvidencc from this study to support such contention; since 

there was a trend for an increase in body weight during the period of milk yield stimulation 

which imply that an increase in feed intake during that time did occur. 

Short cycles of 2 or 4 weeks of melatonin treatment which were repeated at different 

times of the lactation cycle and even with different commencement times of year were not 

found to be effective in sensitizing the goats to subsequent response to long photoperiod on 

milk yield. Indeed, this treatment might produce detrimental effects on milk yield when 

started while the day length is still increasing. The reason for the lack of a conclusive and 

definite effect of photoperiod on milk yield was not clear. Studies of the effect of exposure 

to extended hours of lighting on lactation performance in goats are very limited and have 

not been always shown to be successful in producing a stimulatory milk yield response. This 

might be related, in part, to a possible existence of an innate rhythm for milk yield in goats 

so that seasonal factors like photoperiod have little effect on milk production (Linzell, 

1971). Perhaps the photoperiodic stimulation is an indirect effect which can be elicited by 

other mechanism or sometimes may be blocked by other (uncontrolled) seasonal factors and 

therc might be a difference in the sensitivity of such factors between goats and cows. The 

finding of this study suggests that goats are not a good model for cows as regard the 

utilization of photoperiod as a means of milk manipulation. 
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The objective of the second part of the project was to determine the maximum milk 

yield output of cows of different genetic merit, therefore, we adopted more than one 

galactopoictic stimuli applied in additive stepwise fashion. We showed that the lactating 

dairy cow was not milking at her maximum capacity, regardless of genetic merit, at peak 

lactation, since we were able to elicit a milk yield response to each of the stimuli. We 

utilized frequent milking which is associated with the relief of an inhibitor acting locally to 

control the rate of milk secretion, bST which is acting as a homeorhetic repartitioning of 

nutrients towards the mammary gland, together with T4 which increases the whole body 

metabolism. This combination has never been used before and it was applied in order to 

push the cows as far as possible to their maximum milk production. The fact that we 

observed an additive yield response at each stimuli indicates differences in the mode of 

action of each stimulus. One of the obvious aspects of increasing milk secretion capacity 

was the significant increase in mammary gland growth. The capability of the mammary 

gland to grow beyond its supposed maximum growth which occurs at peak lactation as a 

consequcncc of galactopoietic stimuli was clearly demonstrated. This indicates that milk 

secretion capacity of the mammary gland is not reached at peak yield, at which time the 

mammary gland normally contains a maximum number of highly differentiated secretory 

cells, nor is it achieved by applying only one galactopoictic stimulus. The galactopoietic 

stimuli utilized in this study. notably frequent milking and GiI, have been shown to exhibit 

some stimulatory effects on mammary gland growth during lactation. More frequent 

removal of FR., by reducing the interval between milking, stimulated not only the secretory 

activity of the epithelial tissues but also cellular proliferation in lactating cows milked four 

times daily (liillenon et at., 1990). Also, Gil treatment can exert stimulatory effect on 

cellular hypertrophy and (or) increasing the longevity of secretory epithelium (Knight et al., 

1990), so the cffccts of these two factors were mostly responsible for the mammary gland 
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growth. The polyurethane foam casting technique used in this study for determination of 

changes in udder volume cannot give a precise picture of mammary growth because it only 

gives an estimate of gross udder volume. Nevertheless, mammary growth corresponded to 

a significant increase in alveolar milk volume which implies growth of the secretory tissue 

portion of the mammary gland. 

Cows from high and low genetic merit showed similar responses when they were 

pushed towards their maximum capacity. This indicates that high genetic merit cows are not 

milking closer to their maximum capacity and therefore, are not at more risk of developing 

mctabolic problems than cows from lower genetic merit. Would this conclusion still be the 

same if the cows undcrwrnt a situation of feed restriction while they are maintained at such 

strong galactopoictic stimuli? or when applied at different stages of the lactation cycle? 

Clearly these questions deserve further investigation. 

The other question that was addressed in this study: was the metabolic capacity 

determined at the mammary gland level or elsewhere in the whole body? The finding 

suggests that it was the mammary gland which might limit the metabolic capacity and not 

the body. However. this should be interpreted with caution for the deleterious effects of 

thyroxine treatment on milk yield with such dose and length of time, in fact, milk yield 

tended to decline in the half milked at four times. A follow up study at which the duration 

of treatment phases was reduced to five days each indicated that the mammary gland is not 

a limiting factor to maximum milk yield capacity as indicated by the ability of the mammary 

tissue to increase its rate of milk secretion to compensate for the loss of yield in the half 

which was infrequently milked. This suggests that the maximum milk yield capacity 

determined by galactopoictic stimuli was regulated at the whole body level and not at the 

mammary gland level. The mammary gland was not milking at its potential because of its 

capability for further irrreale in the rate of milk secretion. At the level of the body. several 
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factors might be involved in the regulation of the maximum metabolic capacity. It is 

possible that such a limiting factor could reside in the machinery associated with the 

availability and supply of nutrients to the mammary gland or elsewhere in the body. This 

compensatory increase, in the follow up study, was evident at peak yield when the highest 

number of secretory cells are present. Could a similar response be achieved during later 

stages of lactation when the secretory cell number is declined? This question clearly needs 

to be addressed. 
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Effect of repeated cycles of melatonin and long light on milk production In the goat 
AMA. Aiamcr aW C. N. Kni&U 
J mmahh Research Jiun ae AYR KA6 5114 UK 

tatroductloa Exposure to W4 day photopcriod is known to stimulate mills secretion in dairy cattle, but the 
mechanism has not been determined. Mclatonin (MMEL), which is produced by the pineal gland, is stimulated 
durirg darlacss acta has been known to mimic the short day signal when administered during long day exposure. 
Preliminary cr nc his suggested that long term MEL treatment sensitizes lactating goats to subsequent long 
Ggbc expos= (1Caig 1.1993). The present study was undertaken to test if repeated short cycles of MEL would 
prime goats to subsequent long light effect on milk yield. 

Ataterlali and aaabods Tw, cive Sauen goats, kidded in Much. were used in their first lactation. Goats were 
housed in a týoa Gghs prool buitling and milked twice daily at 08.00 and 16.00 h. They were fed 750gm 
coact Irate at each milking and hay was available all time. First MEL cycle started in April (week 5 of 
lactation) when arse of MEL absorbed into small amount of concentrate was fed daily at 15.00 h to six goats 
%We the ocher sir were fed a similar prepared concentrate but without MEL MEL feeding was continued for 
2 weeks. after that MEL was stopped and the long light exposure started for 2 weeks. Light was switched on 
for 17b bcrtiun 6. M23. W h. In the second cycle. MEL was fed for 4 weeks and followed by 4 weeks of long 
light. The same treatment procedure was applied in the autumn (September) when the goats were in late 
Nahtion. Milk yieii was recorded at each mincing. Avenge milk yields for each treatment period (MEL or long 
tigli) were tested for signi&ancc by ANCOVA and using the average weekly yield preceding each treatment 
period as a covariaie. 

Results Al 
.h milk yield in the AMEL1cd goats tended to be lower than in controls, the difference was not 

signifxm cd= by ANCOVA or t test on individual periods (Figure 1). Prevailing day length (season) had no 
et! ect on milk yield responu to MEL Exposure to extended lighting produced a small but inconsistent effect 
as mile pt-oduccticm In bah seasons. MEL trcauncat did not sensitize the goats to subsequent artificial long day 
exposure: no irrrcase in milk yield for goats that were previously on MEL treatment was seen. Indeed. there 
was a tendency for a greater response to long fight in controls during the final cycle (P*0.05). 
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Comk s Rcpcatca snort cycäd of MEL were riot effective in sensitizing goats to subsequent artificial long 

light sd=aad o of mil yield. regardless of time of year. Exposure to long light did not produce a clear 
stir effect on ek production. but may have had some stimulatory effect when applied in the Autumn. 
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Physiological characteristics of high genetic merit and low genetic merit dairy cows: a 
comparison 
A. Socaucn. ht Alam r and C. IL Knight 
tlaraiah Research luruau. Ayr KA6 SllL. UK 

Intreductioa Gcnctic selection has greatly improved individual cow productivity. A high genetic merit Holstein- 
Friesian cow will produce 10.000 of litm of milk is a 305 day lactation, those of lower genetic merit half this 
unaag Dapi e major rcxarch c& t in ga crawig these differences, quantitative biological description of what has 
been achieved is lacking. 'Tbe aim of this study was to compare biological variables of relevance to milk synthesis 
in well defined high genetic merit and lower genetic merit dairy cows. 

Matertd and methods 12 Doms of bigh gen tic merit (11GM: top 5% of UK national herd) and 12 of lower genetic 
merit (WM. close to UK avenge) were purchased from the F3lythbank and Langhill herds; the ontogcny of these 
man hncs his been dc* rlbezi dimbere (Wooüiams et aL, 1993). Management of the two groups was identical. 
Memrements were made over a period of two weeks close to peak lactation. Milk yield was rccocded at each 
milking. Plasma samples wert coti cted and analysed for a variety of hormones by radioimmunoassay and 
tnct: tx-"= by estab1 ei -utrq a nctric assays. Udder size was determined by a casting technique (Dewhurst 
et al, 1993) aal mammary biopsies for key enzyme activities were obtained as described by Knight et. al. (1992). 
IMTcrrn cs between lines were analysed by analysis of variance (ANOVA). 

Results IiGM arni LGM had simile body wcighL Milk yield and udder volume were higher in 11GM than LGM; 
eak latod secretion efficiency (ml of milk per ml oft o tissue) was similar in the two lines. Mammary enzymes 
did not &ffcr berAven 11GM and LGM (data not sIx)wn). FIGM had higher GII but lower IGF1 and insulin than 
LGM, protactin. th) oxie uni eceti of dui not differ. Body condition scat (BCS) was lower in 11GM than LGM. 
None clthe plaxna metabolites mewed differed betw«a iiGM and LGM. I leant rate was similar in the two lines. 

Table. Companion of lugk aJGito and low genetic merit (ZCrtf) caws. r a! ues are meant-s. e, n=12. Line tests 
Jar dj ftrence ben ren 11G. l! and Mtl. A, M0i A. 

11GM LGh1 11. L ratio Line 
M" YOU (10) 37.04.12.2 28.912.1 1.3 P-0.01 
Uikr vahume (1) 18.1#1.2 13.6±1.3 1.3 P*0.02 
011(nghnl) 2.8010.41 1.2310.26 2.3 P. 0.005 
IGF" 1(n6'mt) 27.813.3.87 43.7317.6 0.6 P-0.02 
inadin (nghn1) 0.1110.009 0.171.0.02 0.6 P'0.05 
Body corxtüon >c e 1.810.16 2.60.27 0.7 P-0.02 
padr wcight (kg) 590±12 589115 1.0 n. s. 
1 kart rate (beat ü) 90±3 8712 1.0 n. s. 
Glugwc (µmchtnl 5.7810.36 5.61±0.29 1.0 n. s. 
ßO11-butyrate (mno1Nl) 1.50±0.40 1.35.10.17 1.1 n. a. 

Caxiu kx u The grata milk- picks of I IGM was a fimion of greater secretory tissue mass. not secretion efficiency. 11GM u 'disnd a greater amount of body tissue than LGM, as indicated by their lower BCS and their tendency not 
to gain w e& ht for longer aNv peal; Lactation (data not shown). This Terence was probably a consequcnce of GI i 
tug higher in I1GM, Ani the lcxra Merv status was then reflected in decreased IGF 1 and insulin. In identification 
of quantitative trait loci for future selection programmes. attention should be paid to factors regulating mammary 
M-Ch it as well as AMCtion. 
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