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ABSTRACT 

The main focus of this thesis is how to optimally choose a set or sets of cut- 

points (in a categorized survey question) which are offered to respondents. In 

the case of several sets, a further issue is how to allocate sampled subjects to 

these sets (design points). Applications include Contingent Valuation (CV) 

studies (surveys on a population's willingness to pay for a service or public 

good) and market research studies which might include for example a ques- 

tion on individual incomes. 

Chapter 1 starts with an introduction to linear and non linear design theory 

including properties of the information matrix of the design. Then, a gen- 

eral optimizing problem (P1) is stated along with the concepts of directional 

derivatives and optimality conditions. The chapter closes with the introduc- 

tion of several design criteria and their properties. The criteria include A-, 

D-, C-, E-, DA-, linear and EA-optimality. 

Chapter 2 considers the formation of the problem in our particular context 

which begins with the main idea of the problem and applications in contin- 

gent valuation (CV) studies (the primary aim is to estimate a population's 

willingness to pay (WTP) for some non market products or public goods) and 

market research studies. For example a survey is conducted and X, XEX= 

[C,, D] is a variable of interest. Suppose that responses are placed into one 

of k categories determined by cutpoints xo, xi, x2i ... , xk_r, xk, xo =C and 



xý. = D. A generalized linear model of the form P(X < x) = F(a+/3x), xE 

X is adopted where a and 3 are reparameterized from a location parame- 

ter y and a scale parameter a, a= -p/a, 3= 1/a. We transform X to 

Z: Z= (X - I. c)/a =a+ ßX. We have a standardized form of the set 

of cutpoints ZO, zl, ... , Zk, z, =a+ ßxi, ZE2= [A, B], zo = A, zk = B. 

Then some design objectives are introduced which relate to good estimation 

of either the single parameter µ or a or both of them. The chapter ends with 

a review of the case k=2 categories which was presented in Ford, Torsney 

and Wu (1992). 

Chapter 3 focuses on a one point design problem. In this case, we assume 

there are three or more categories. It is possible to estimate all parameters 

using the same cutpoints for all respondents, i. e. the same design point. 

The formula of the Fisher information matrix is constructed. We use search 

methods to find the solutions for some optimal designs. Five standard op- 

timal criteria (D-, A-, el-) e2- and E- optimality) and four distributions 

(logistic, probit, double exponential and double reciprocal) are considered. 

Chapter 4 focuses on the cell probabilities 01102, 
... , 

Ok defined by 01 = 

F(z1), 0,; = F(z., )-F(zi_1), Ok = 1-EO. It proposes a multiplicative al- j=1 
for determining their optimal values and hence those of z1, z2.... , zk-1- 

These iterations neatly satisfy the constraints on 01,02, 
... , 

Ok i. e. 0, > 0, 

0, = 1. Some properties of the algorithm are shown. Using the algo- 

ritllrn, we verify the results found by search methods and extend these to 

determining results for asymmetrical distributions (complementary log-log 

and skewed logistic) cases. 



Chapter 5 extends results to the more general case of a multiple design 

point problem. The problem is stated and the expected information matrix 

is constructed. We consider two main cases: multiple point designs with con- 

straints on cell probabilities and equal design weighting and multiple point 

designs with arbitrary weights and no constraints. The multiplicative algo- 

rithm is extended to determining the several sets of cell probabilities defining 

the different design points. Finally, the choice of the number of design points 

is considered. 

Chapter 6 explores a new approach to CV studies, namely the bivariate 

approach. The motivation of this approach comes from the two stage pro- 

cess or the double bound approach in contingent valuation studies in which a 

first bid is offered to a respondent arid then a lower or higher bid depending 

on the response to the first bid. Allowing for some change in a respondent's 

willingness to pay, we denote by (WTPI) and (WTP2) the willingness to pay 

of the respondent at the first and second bid respectively. This generates an 

extension of our problem in which we wish to find a set or sets of cutpoints 

in each of two dimensions. Many authors assume the bivariate normal for 

the joint distribution of the two WTPs. In our case, we extend our analysis 

to alternative bivariate models, namely Copula models. The first part of 

the chapter introduces the construction of the problem, the concept and use 

of copula (in particular the Plackett copula) and the formula for the Fisher 

information matrix. The Plackett copula is characterized by a coefficient of 

association denoted by 0. The second part of the chapter focuses on inves- 

tigating two main cases: two parameter models and four parameter models. 



The two parameter model arises when the marginal distributions of (WTPI), 

(6t'TP2) are identical in their parameters. If the two marginal distributions 

differ in their parameters, we have a four parameter model. In each case, 

we derive the Fisher information matrix and use a search method to find 

optimal solutions. The special case when the coefficient of association 7P = 1, 

is considered in each case too. 

Chapter 7 concludes with a brief review of the main findings of the thesis 

and a discussion of potential future work. 



ACKNOWLEDGEMENTS 

First of all, I would like to express my deepest gratitude to my supervisor 

Dr. Ben Torsiiey for his suggestion of the topic, his enthusiastic guidance and 

advice, his huge support, patience and encouragement during the course of 

my research. Without him, this thesis would not been successfully completed. 

Secondly, I would like to thank all the staff members and postgraduate stu- 

dents in the Department of Statistics. My special thanks are due to Professor 

Adrian Bowman, Professor Marian Scott, Professor Mike Titterington, Mrs 

Kathleen Mosson. 

Thirdly, I acknowledge the financial support from Vietnamese Government, 

University of Glasgow Scholarship and a U. K. Government Overseas Re- 

search Student Award (ORS). 

Finally and importantly, from the bottom of my heart, my gratitude is due 

to my family, especially my wife, my son and my parents. They are my mo- 

tivation, determination and belief from which I can complete my research. 



Contents 

1 The Theory of Optimal Designs 1 

1.1 Design for a linear model ..................... 
2 

1.2 Design for a non-linear model ................... 
5 

1.3 Approximate and exact designs 
................. 

7 

1.4 Properties of the Fisher information matrix .......... 
8 

1.5 General problem (P1) 
....................... 

10 

1.6 Directional derivatives ...................... 11 

1.6.1 Definition 1.6.1 ...................... 11 

1.6.2 Definition 1.6.2 ...................... 12 

1.6.3 Properties of directional derivatives FF{p, q} ...... 12 

1.6.4 Normalized directional derivatives 
............ 14 

1.6.5 Further properties of directional derivatives 
...... 15 

1.7 Conditions for local optimality .................. 17 

1.7.1 Theorem 1.7.1 ....................... 18 

1.7.2 Theorem 1.7.2 Vertex direction optimality theorem .. 
18 

1.7.3 General Equivalence Theorem 
.............. 18 

1.8 Criteria of optimality ....................... 19 

1.8.1 D-optimality 
....................... 20 

1.8.2 A-optiniality 
........................ 22 

1 



1.8.3 G-optimality 
....................... 

22 

1.8.4 E-optimality ........................ 
23 

1.8.5 DA-optimality ....................... 
26 

1.8.6 Linear optimality ..................... 
27 

1.8.7 EA-optimality 
....................... 

28 

2 Optimal Cutpoints Defined 30 

2.1 The main idea 
........................... 

30 

2.2 Some applications ......................... 
31 

2.2.1 Market research studies ................. 
31 

2.2.2 Contingent valuation studies ............... 
31 

2.3 Establishing the formal problem-A Generalized Linear Model . 
34 

2.3.1 A Generalized Linear Model 
............... 

34 

2.3.2 Standardization/Characterization 
............ 

36 

2.4 The canonical problem ...................... 37 

2.5 Some design objectives ...................... 39 

2.6 Case of k=2 categories ..................... 40 

3 One Point Design: k Categories 46 

3.1 Introduction 
............................ 46 

3.2 The formula of the Fisher information matrix ......... 47 

3.3 Search method and numerical results .............. 53 

3.3.1 Criteria and distributions considered .......... 53 

3.3.2 Numerical results ..................... 54 

3.1 Comments and justification of the results ............ 
63 

3.5 Contour plotting ......................... 77 

3.5.1 Introduction 
........................ 77 

ii 



3.5.2 Triangle and square contour plots ............ 
77 

3.5.3 Some comments about the contour plots. ........ 
84 

3.6 Some results for asymmetric distributions and three category 

case ................................ 
90 

4A Multiplicative Algorithm for Finding Optimal One Point 

Designs 95 

4.1 Introducing the algorithm for the problem (P1) 
........ 

96 

4.1.1 A multiplicative algorithm ................ 96 

4.1.2 Properties of the algorithm ................ 98 

4.2 Using the algorithm to find optimal one point designs ..... 100 

4.3 The results ............................ 105 

4.3.1 Symmetric distributions 
................. 105 

4.3.2 Asymmetric distributions 
................. 113 

5 Multiple Design Points 127 

5.1 The problem and notations .................... 128 

5.1.1 The problem ........................ 128 

5.1.2 The expected information matrix ............ 129 

5.2 Multiple point designs with constraints and equal design weight- 
ing 

................................. 129 

5.2.1 The case of three categories ............... 130 

5.2.2 The case of four categories ................ 131 

5.2.3 Graphical approach .................... 132 

5.2.4 Some results ........................ 132 

5.3 Multiple point designs with arbitrary 

Nveiglits and no constraints .................... 145 

iii 



5.3.1 Multiplicative algorithm for multiple point designs 
... 

145 

5.3.2 Some results ........................ 
148 

5.3.3 The case of unequal number of cutpoints across design 

points ........................... 
152 

5.4 Choosing the number of design points .............. 
156 

6 The Bivariate Approach 157 

6.1 Introduction 
............................ 

157 

6.2 Construction of the problem ................... 
160 

6.2.1 Concept of copula and Plackett copula ......... 
163 

6.2.2 Fisher information matrix ................ 
165 

6.2.3 Design objectives ..................... 
166 

6.3 Case 1: The two marginal distributions are identical in their 

parameters ............................. 
169 

6.3.1 Models arid the Fisher information matrix ....... 
170 

6.3.2 Symmetric distribution cases ............... 170 

6.3.3 Some results ........................ 
175 

6.3.4 Special case: =l.. ................... 179 

6.3.5 Asymmetric distribution cases .............. 182 

6.4 Case 2: The two marginal distributions differ in their parameters 184 

6.4.1 Model and the Fisher information matrix ........ 
184 

6.4.2 Some results ........................ 188 

6.4.3 Special case: 0=1.. 
................... 192 

7 Conclusions and Future Work 194 

7.1 Coiicausions 
............................ 194 

7.2 Future work ............................ 
197 

iv 



7.2.1 Conditional approach ................... 
197 

7.2.2 Extensions to higher dimensions 
............. 

198 

7.2.3 Using bivariate normal distribution in the bivariate ap- 

proach ........................... 199 

7.2.4 The rultivariate approach ................ 200 

7.2.5 The use of multiplicative algorithms for bivariate and 

multivariate approach .................. 
200 

V 



List of Tables 

3.1 Four symmetric distributions considered ............ 
54 

3.2 Numerical results for logistic distribution, k=3 ......... 
55 

3.3 Numerical results for logistic distribution, k=4 ......... 
55 

3.4 Numerical results for logistic distribution, k=5 
......... 

56 

3.5 Numerical results for logistic distribution, k=6 ......... 
56 

3.6 Numerical results for normal/probit distribution, k=3 
..... 

57 

3.7 Numerical results for normal/probit distribution, k=4 
..... 

57 

3.8 Numerical results for normal/probit distribution, k=5 
..... 

58 

3.9 Numerical results for normal/probit distribution, k=6 
..... 

58 

3.10 Numerical results for double exponential distribution, k=3 .. 59 

3.11 Numerical results for double exponential distribution, k=4 .. 
59 

3.12 Numerical results for double exponential distribution, k=5 .. 60 

3.13 Numerical results for double exponential distribution, k=6 
.. 

60 

3.14 Numerical results for double reciprocal distribution, k=3 
.. 

61 

3.15 Numerical results for double reciprocal distribution, k=4 
... 

61 

3.16 Numerical results for double reciprocal distribution, k=5 .. 
62 

: 3.17 Numerical results for double reciprocal distribution, k=6 ... 
62 

3.18 Results: finding minimum eigenvalue using a multiplicative 

algorithm for logistic distribution 
................ 

76 

3.19 Some asymmetric distributions considered ........... 
90 

vi 



3.20 Numerical results for D-optimality, k=3 
............ 

91 

3.21 Numerical results for A-optimality, k=3 
............. 

91 

3.22 Numerical results for el-optimality, k=3 
............ 

92 

3.23 Numerical results for e2-optimality, k=3 
............ 

92 

4.1 Solution: Logistic distribution, D-opt and k=3 ......... 
109 

4.2 Solution: Logistic distribution, D-opt and k=4 ......... 
110 

4.3 Solution: Logistic distribution, D-opt and k=5 ......... 
111 

4.4 Solution: Logistic distribution, D-opt and k=6 ......... 112 

4.5 The results: D-optimality and complementary log-log distri- 

bution 
............................... 

116 

4.6 The results: A-optimality and complementary log-log distri- 

bution 
............................... 117 

4.7 The results: el-optimality and complementary log-log distri- 

bution 
............................... 117 

4.8 The results: e2-optimality and complementary log-log distri- 

bution 
............................... 118 

4.9 The results: D-optimality and Skewed logistic distribution, 

m=1/3 ............................... 118 

4.10 The results: D-optimality and Skewed logistic distribution, 

t a=2/3 ............................... 119 

4.11 The results: D-optimality and Skewed logistic distribution, 

m=3/2 ............................... 119 

-1.12 The results: D-optimality and Skewed logistic distribution, m=3120 

4.13 The results: A-optimality and Skewed logistic distribution, 

rri=1 /3 
............................... 120 

vii 



4.14 The results: A-optimality and Skewed logistic distribution, 

vi==2/3 ............................... 
121 

1.15 The results: A-optimality and Skewed logistic distribution, 

in=312 ............................... 
121 

4.16 The results: A-optimality and Skewed logistic distribution, rn=3122 

4.17 The results: el-optimality and Skewed logistic distribution, 

ni=1/3 ............................... 
122 

4.18 The results: el-optimality and Skewed logistic distribution, 

rn=2/3 ............................... 
123 

4.19 The results: el-optimality and Skewed logistic distribution, 

rn=3/2 ............................... 
123 

4.20 The results: el-optimality and Skewed logistic distribution, 

rib=3 ................................ 
124 

4.21 The results: e2-optimality and Skewed logistic distribution, 

'n,. =113 ............................... 
124 

4.22 The results: e2-optimality and Skewed logistic distribution, 

rrt, =2/3 ............................... 
125 

4.23 The results: e. 2-optimality and Skewed logistic distribution, 

'm=3/2 ............................... 
125 

4.24 The results: e2-optimality and Skewed logistic distribution, 

m, =3 ................................ 
126 

5.1 The ci iterion values of multiple point designs: k=3, logistic 

(list ribrntion ............................ 
134 

5.2 The criterion values of multiple point designs: k=3, normal 

(listribution ............................ 134 

viii 



5.3 The criterion values of multiple point designs: k=3, double 

exponential distribution 
..................... 135 

5.4 The criterion values of multiple point designs: k=3, double 

reciprocal distribution 
...................... 

135 

5.5 The criterion values of multiple point designs: k=4, logistic 

clistiibution ............................ 136 

5.6 The criterion values of multiple point designs: k=4, normal 

distribution ............................ 136 

5.7 The criterion values of multiple point designs: k=4, double 

exponential distribution 
..................... 137 

5.8 The criterion values of multiple point designs: k=4, double 

reciprocal distribution 
...................... 137 

5.9 The optimal cell probabilities and optimal cutpoints: k=3, 

logistic distribution and D-optimality 
.............. 139 

5.10 The optimal cell probabilities and optimal cutpoints: k=4, 

logistic distribution and D-optimality 
.............. 139 

5.11 The optimal cell probabilities and optimal cutpoints: k=3, 

normal distribution and A-optimality 
.............. 140 

5.12 The optimal cell probabilities and optimal cutpoints: k=4, 

normal distribution and A-optimality 
.............. 140 

5.13 The derivatives of . O{M(p)} w. r. t. zý21 and pi .. 147 

5.14 The results of two point and three point designs for D-optimality 

amid logistic distribution 
..................... 150 

5.15 The results of two point and three point designs for D-optimality 

and skewed logistic distribution 
................. 151 

ix 



5.16 2 points: three and four categories, logistic distribution, D- 

optimality ............................. 
153 

5.17 3 points: three, four and five categories, skewed logistic distri- 

hution, D-optiinality 
....................... 

154 

6.1 D-optimal cutpoints for: logistic distribution; bivariate ap- 

proach; two parameters; cases (1) and (4). 
........... 

177 

6.2 D-optimal cutpoints for: logistic distribution; bivariate ap- 

pioach; two parameters; cases (6) and (8). 
........... 

178 

6.3 D-optimal cutpoints for: complementary log-log distribution; 

bivariate approach; two parameters ................ 
183 

6.4 D-optimal cutpoints for: logistic distribution; bivariate ap- 

proach; four parameters ...................... 
189 

6.5 D-optimal cutpoints for: logistic distribution; bivariate ap- 

proach; four parameters ...................... 190 

6.6 D-optimal cutpoints for: bivariate approach, skewed logis- 

tic (iri=2/3) and Complementary log-log distributions; form 

{("u, c); (a, v)} ........................... 191 

X 



List of Figures 

3.1 Plots of criteria value vs. the number of categories k..... 64 

3.2 The triangle contour plot ..................... 78 

3.3 Contour plot: logistic distribution and D-opt 
.......... 

80 

3.4 Contour plot: normal distribution and D-opt 
.......... 80 

3.5 Contour plot: double-expo distribution and D-opt 
....... 81 

3.6 Contour plot: double-reciprocal distribution and D-opt 
.... 

81 

3.7 Contour plot: logistic distribution and A-opt 
.......... 82 

3.8 Contour plot: normal distribution and A-opt 
.......... 82 

3.9 Contour plot: double-expo distribution and A-opt 
....... 83 

3.10 Contour plot: double-reciprocal distribution and A-opt 
.... 83 

3.11 The contour plot: k=3,1 point, logistic dist and el-opt .... 86 

3.12 The contour plot: k=3,1 point, normal dist and el-opt .... 86 

3.13 The contour plot: k=3,1 point, double-expo dist and el-opt . 87 

3.14 The contour plot: k=3,1 point, double-reciprocal dist and 

cl -opt ............................... 87 

3.15 The contour plot: logistic distribution and e2-opt ....... 88 

3.16 The contour plot: normal distribution and e2-opt ....... 
88 

3.17 The contour plot: double-expo distribution and e2-opt ..... 89 

3.18 The contour plot: double-reciprocal distribution and e2-opt . 
89 

3.19 The contour plot: k=3,1 point, comp-loglog dist and D-opt 
. 

93 

X1 



3.20 The contour plot: k=3,1 point, skewed-logit dist (m=1/3) 

and D-opt 
............................. 

93 

3.21 The contour plot: k=3,1 point, comp-loglog dist and el-opt . 
94 

3.22 The contour plot: k=3,1 point, skewed-logit dist (m=1/3) 

and e2-opt ............................ 
94 

5.1 The contour of criterion values versus three cell probabilities 

(Logistic distribution and D-optimality) 
............ 

141 

5.2 The contour of criterion values versus four cell probabilities 

(Logistic distribution and D-optimality) ............ 142 

5.3 The contour of criterion values versus four cell probabilities 

(Normal distribution and A-optimality) 
............ 143 

xii 



Chapter 1 

The Theory of Optimal Designs 

The purpose of designing an experiment is to answer a variety of questions of 

interest. To do this, experimenters have to assume a model and choose nec- 

essary inputs. After running the experiment, they will observe the measure- 

nnents on some variables of interests. A design is also related to determining 

liow inaiiy observations should we take at each combination of inputs. 

Nornnrnlly, interest, is in obtaining estimates of the parameters and using the 

estimated model for other purposes such as statistical inference or predic- 

tion. To obtain good estimation of the parameters, the experiment will be 

designed so that it optimizes a chosen criterion. The way of doing this we 

call optimal experiment design. 

In this chapter, we will focus on introducing the general theory of optimal 

design for linear and non-linear models with some fundamental concepts and 

definitions. Tlieii, we will mention briefly a general problem (that we call 

problem (P 1)) and the conditions for optimality of this problem. At the end 

of the chapter, some optimal criteria and their properties will be introduced. 

1 
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1.1 Design for a linear model 

Suppose we Lave a linear model for N observations with k explanatory vari- 

ýiI, lcs . 1"I 
, .iý..... x A. as follows: 

Yi = Olfl(x2)+ B2f2(? 
i)+ ... 

+ em, fm(xti)+ Ei 

= BTf(1i) +Eti 

_ qT'U + E2 

ýý here i. = 1.2, ... , 
N, vi =f (x,, ), f (x. 

Z) 
being regression functions. 

We can wi ite the above equation in the matrix form: 

(1.1) 

(1.2) 

(1.3) 

Y=FB+E (1.4) 

Iii which: 

F= 
. fT(sI) 
f-T(X2) 
fT (X 

N) 1 
.c= 

(xi, x2, ... , xk)T is a vector of k explanatory or control variables. We 

assume that the values of x can be chosen by experimenters from a set X, 

i. e. ,EXC 118k, also 0E0C Rm. The set X is called the design space and 

the set 0 is called the parameter space where the m-dimensional vectors of 

uiikiiown para, rneters 0= (Br, 02i 
... , 

O"t)T take their values. 

Iii most applications, X is taken to be compact. fj :X -> R, a continuous 

frnuction from X into R, (j = 1,2 
.... , rn). E is a vector of error terms, 

independent of x. Y is a vector of response variables, YE IiBN. For each 

. T, E X, an experiment can be performed whose outcome is the observed 

value of a random variable Y,, where var(y) = var(E, ) = Q2, (provided that 
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in this particular case, we consider the error terms Ej to be independent and 

uncorrelated with zero mean and constant variance a2). 

The inatrix F is called the design matrix. Suppose that under a design the 

N ohservaitions are taken at 'n distinct points x,, x2, ... , xn in X (n > m) 

and that it, (i. = 1,7rt) are the numbers of observations taken at the point x,. 

so N=E, ' 
i n, and p, = n, /N are the proportions or weights of observations 

taken at x,. We call the set of points Supp(p) = {xi, (i = 1, n) } the support 

points of the design, denoted by p. 

Definition: Design Measure. 

\V"e can present the set of support points xi and the set of proportions pi by 

the following form: 

C1 1'2 ... 
I TL 

{ 

P1 P2 ... 
Pn ' 

it 

(1.5) 

where p, = 1,0 < pi < 1. Then, ý is defined to be the design measure. 

More genenilly, a design will be characterized by some probability measure 

ý(: c). given on the design space X and satisfying the conditions: 

1 dý(.. c)=1, ý(x)>0, xEX. (1.6) 

TEX 

From now on, we will not distinguish notationally between a design and a 

design ineasure. This does not make for confusion. If ý is a design measure 

cal distribution. it is by definition defined on the design space. We always 

%v-ill he Mean about what the design space is arid about which design point 

receives which weight. 

By appropriate methods, we can estimate the values of the unknown param- 

eters 9. For the least squares method, the parameters 0 are estimated by the 
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following formula: 

B= (FTF)-1FTY. (1.7) 

And the vaiiiýuice-covariaiice matrix of 0 is: 

Cov(B) = (FT F)-i0,2 (1.8) 

It is notable that this matrix and the terms following are independent of B. 

The predicted value of the response variable at x is: 

Y= eT f(x) (i. s) 

and the corresponding variance of Y is: 

Var(Y) = a2(f (x)) T (FT F)-if (x). (1.10) 

The standardized variance is: 

Vccr"(Y)lO2 _ (f (x))T (F'T F')-lf (x)" (1.11) 

Tlie matrix F7'F is called Fisher information matrix of the N observations 

and denoted as matrix I. It can be presented by the following form: 
7L 

FT F=I=Z rLi f (X%)(f (ii))T (1.12) 

ý=i 
72 

= Npzf(ýý)(f(xi))T 
z-ý 

= NM(p). 

The matrix: 

(1.13) 

(1.14) 

n 
(P) 

-E Pif (xi) (f (IM, 

e=1 

is the expe'c: tecl information matrix per-observation under the design. That 

is: 

n 

M(p) = M(e, e) = EpiI (e, ýZ)ý (1.15) 
i=1 
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where I (0, x) is the expected inforination matrix of a single observation at x 

and undci our linear model, I (q, x) =f (x) (f (x) )T 
. 

NUbV' w(' have: 

2 
Ca�(e) (1.16) 

So the design problein is how to choose the support points w to optimize the 

estimation of the parameters 0. In practice, we will focus on choosing the pro- 

portion 1), of observations at xi for good estimation of 0, that is to minimize 

a function of the inverse of the information matrix (to make the covariance 

of 0 small), or to maximize a suitable criterion function ¢(p) = {M(p)} 

which is a function of the information matrix. Since Cov(9) is independent 

of 0 in linear models, the criteria are independent of the parameters 0, so we 

can determine optimal designs before collecting the data or carrying out the 

experiment. This is not the case for non-linear models as we now see. We 

will come back to the concept of criteria later on in this chapter. 

1.2 Design for a non-linear model. 

Consider ý-i, iion-linear experimental design problem in which the scalar re- 

sponse variable y is distributed as a member of the exponential family p(y, 17). 

hi particular, assume that model has the form: 

E(y1x, q) = rl(x, B), (1.17) 

li(. a;, B) is expected response. We also have the same explanation for indepen- 

dent variables . c, the parameters 0 and other notations as before. 

For the exponential family of models as mentioned in equation 1.17, the 

Fisher information matrix for 0, given an observation at design point x, is 
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defined to be: 

I (B' x) [a(e, x)]-1? le% ' 

rj, ) 
denotes the vector of partial derivatives: 

rIT = 
_A 

Mll(l for the expoiieiitial family: 

ärß öri 
1977 äe1 , äe2 ... aem 

(1.18) 

(1.19) 

a(0, x) = var(ylx). (1.20) 

The notation implies that these terms will in general depend on 6. 

Iii the case of generalized linear models, the explanatory variable x and the 

parameter 0 appear together linearly 
, that is: 

Thus we have: 

bVllel'0: 

ýý _ ýý(HT? ) = n(µ), ST = (1, XT), µ= eTS. 

I(B x) = w(µ)(SST], 

w(µ) _ (ar1/aft)2 /'uar(ylx). 

(1.21) 

(1.22) 

(1.23) 

The function cu(. ) is playing the role of weight function 
. 

We assume it is 

measurable. 

Because we may have more than one design point, it is necessary to intro- 

duce the concept of an expected information matrix. For the design with 

the support points x,. and the corresponding proportions pi, the expected 

inforina, tion matrix is defined to he: 

n 

1170, e) _ pi1(e, 
i=1 

(1.24) 
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where ý is the set of pairs [x, pz]. 

We also may consider continuous design measures ý(. ) satisfying fX ý(dx) =1 

, md l, (. r) >0 for which the expected per observation information matrix is 

M(ý, B) _ 
fI(Ox)(dx) (1.25) 

01 

M(ý, 0) _I w(9T s)s sTý(dx). (1.26) 

Note: As we iiientioned in the previous section, the main difference between 

linear and non-linear problems is that the choice of optimal design is straight- 

forward in linear problem, because the information matrix is independent of 

0. In non-linear design problem, on the other hand, the information matrix 

H(ý, B) or its function will depend on the parameters 0. In order to find 

out practical designs in this case, we need to have a prior estimate of the 

iiºlnlowii parameters 0. 

A design ý which maximizes the function '(M(ý, 9)) for given 8 is called 

locally ý)-optimal design. (See Ford, Torsney and Wu, (1992)). 

Our main concern will deal with the non-linear design problem. 

1.3 Approximate and exact designs 

Suppose a clesigii has N trials such that there are n, replicates, i=1, """, k, 

at k distinct support points x,, : c2, """, ýCk. We call this an exact design. This 

caºi be represented by the notation: 

ýE X1 'G2 Xk 
_ 

74 rt2 1"bk 

}. 
1.27 
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On the other hand, approximate designs are represented by a measure ýA 011 

the design space X. This can be expressed as follows: 

xl x2 ... ýLk ýA = 
P1 P2 "'A 

where: 

(1.28) 

k 

>0 and pz = 1. (1.29) 

ý_ý 
Exa t and approximate designs differ in that every exact design can be ex- 

pi essed as an equivalent approximate design, but not every approximate 

design can be expressed as an exact one for a given number of runs. The 

equivalent approximate design eR, for the above exact design can be written 

tis follows: 

, ZI X2 ,.. Xk 
eR 

n1 ý22 '? L 
NNN 

(1.30) 

In preletice. nil designs have to be exact. In general, an approximate (or 

continuous) design ec can coincide with an exact design if and only if pti, i= 

1,2, """, k, are rational numbers. Furthermore the exact design has ni = piN 

replicates at the corresponding support points xi, i=1,2, """, k. 

As is cominoai practice, because the exact design problem is a non-trivial 

iiiteger programming problem, we will focus on approximate or continuous 

clesigiis, 

1.4 Properties of the Fisher information ma- 
trix 

We 11oW list some basic properties of the Fisher information matrix by citing 

the theory given in Feclorov (1972). 

Definition 1.1: 
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The set S is called convex if any point: 

s=as, +(I-ck)821 

rupf: rc 

s1ES, 82 ES, 0 <<x<1 

belongs to th: iis set. 

The set S* of points: 

S* = atsi 
i=1 

where 
t 

ýcxt=1, ai >0, si ES (i=1,2,..., t) 

ý-1 
is a convex set. 

Such the set S* is called the convex hull of the set S. 

9 

Theorem: Fedorov (1972): 

Property 1: For any design ý, the information matrix M(ý, B) is a syrn- 

nictrr, c posrtave-serrodefinite matrix. 

Property 2: The matrix M(ý, B) is singular (that means JM(ý, ft = 0), 

if the support points of the design ý contain less than m points (m is the 

rrv. rnber of unknov)n. parameters). 

Property 3: The family of matrices , corresponding to all possible normal- 

ized dea-g'n, s zs convex. 

Property 4: For any design, l;, the matrix M(ý, 0) can be represented in the 

form,: 
k 

lVi(ý, e) _ý pi'wiSis 
T 

z=1 
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where k< iii. (rii + 1)/2 + 1,0 < p, < 1, Ek 
i pi = 1, rrt is the dimension 

of the information matrix, k is number of support points, the set {s' :i= 

1.2, ... 
k} is the support of the design ý, w2 is the value of the weight defined 

in 1.23. 

We will consider choosing ý to optimize some criteria or functions of M(ý). 

Caratheodory's Theorem: 

Each point 5* ara the convex hull S* of any subset S of the t-dimensional space 

can, be represervted as a convex combination of at most t+1 elements of S: 

t+1 

S* CkvSi 

ti=1 

where 

(1.31) 

t+ 1 

ri,, =1, a, >0, s, ES, i=1,2,..., t+1 

If . 5' i, s a boicn, dary point of set S*, then at+r can be set equal to zero 

For the proofs of properties and theorems, see Fedorov (1972). 

1.5 General problem (P 1) 

From now on we denote an approximate design ý by p when it is defined by 

l in equation 1.28. Also we replace k by J. We now state a general problem 

(Problem (P1)) that we will deal with in the next chapters, (See Torsney and 

A-Iandal (2000)). 

Problem(P1): Suppose that we choose proportions pi to maximize some cri- 

terion q)(p) subject to the constraints p, > 0, z1pi=1, i=1,2, 
... , 

J. 
J 

The equality constraint pz =1 renders the problem a constrained opti- 

mization one, the full constraint region being a closed bounded convex set. 

The above design problem is an example where O(p) _ V){M(p)}. For this 
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p? 1rticnlar problem, M(p) can be presented as follows: 

M (P) = 
J 

(1.32) pi'U7'U. 
7 

J=1 

«w11ere v. are the induced support poillts. 

In order to derive optimality conditions for this problem, we introduce here 

the concept of directional derivatives. 

1.6 Directional derivatives 

We can cl1eck for optimality (local or global) through a point to point direc- 

tional derivative. These can be defined for a function 0(. ) defined in a convex 

set.. 

1.6.1 Definition 1.6.1 

C'oiisicler the function: 

f(p, q, E) _ {(1 - E)p + fq} (1.33) 

Define: 

F, b {p, q1 = lirti 
f (p, (1, f) -0 (p) 

- 
df (p, q, E) k= 0+ (1.34) 

Ej0 E dE 
alld: 

F'm{p, g} _ 
d2f (p, q, E) I 

dE2 
E= (1.35) 

Whittle (1973) call FF{p, q} the directional derivative of O(p) at p in the 

direction of q. This derivative can exist even if O(p) is not differentiable. 

FJ, {P" q} (q - p)Tao/ap, if O(p) is differentiable 
i 

- E(q; - pi)di where di = ao/apti, i=1,2,. .., 
J 

a=1 



CHAPTER 1. THE THEORY OF OPTIMAL DESIGNS 12 

Let F1 = F0{p, e3 }, where e, is the jth unit vector in Rj 

i 
= (13-ýpid, j=1,2,..., J 

c=1 

ýVe call F, a vertex directional derivative of o(p) at p. 

1.6.2 Definition 1.6.2 

Consider the function: 

g(p, M'O _ o{p + Em} (1.36) 

Define: 

Gq, {1), ni, } = Ihn g(p, 'rn, E) -O(p) 
-dy(p, 

'rn, E) I E= 0+ (1.37) 
F10 E de 

C,,,, {p, in} is called Gäteaux derivative of (5(. ) at p in the direction of m. If 

to =q-p, F,;, {p, q} = G{p, rn} or G, 5{p, 'rn) = FF{p, p+ m}. We note that 

differentiehility of 0(. ) at p implies that G6 is linear in its second argument 

(see Rockafellar (1970). 

Whittle (1971) uses this alternative but equivalent definition of 1.6.1. Kiefer 

(1971) uses the concept of Mteaux derivatives in his design theory though 

lie (lid not call it a directional derivative. The definition 1.6.1, which allows 

the direction of interest to be determined by a point q, as above, is more 

useful and leads to a generalization of some standard calculus. The derivative 

Fq{p, q} will serve our purpose better than G,, {p, 'rra} 

1.6.3 Properties of directional derivatives Fc{p, q} 

1. Suppose that S is a convex set, if p, qES, then so does {(1 - E)p + 

eq}, which is an advantage if one wishes to calculate FF{p, q} only for 
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1), c/ E S. In contrast, G6{p, nr} dose not particularly benefit from such 

coiivcsitY. 

`?. If o(. ) is coilcave, Fo{p, q} > O(g) - O(p). 

Proof: 

1', {p, q} = hill 
ýl(1 

- E)p -}- Eq} - 
O(p) 

(10 f 

(1 - > hill E)O(p) + Eo(g) - O(p) 

ELo E 

= ¢(g) - O(p) 

3. F, {p, p} = 0, because no change is effected in ¢(. ) if one does not move 

froiii p. lu contrast, Gm{p, p} = FF{p, 2p} 0. 

-l. F, {p, q} in some sense measures the rate of change in «(. ) at p in the 

direction of q. FF{p, q} depends on the distance between p and q and 

the rate of change as well. 

Note that if we inove from p in the direction of q, i. e. we move from p in the 

direction of the vector rn =q-p. Thus if we have c>0, the above movement 

is equivalent to the move from p in the direction of vector cm. If we pass 

along the full length of the vector cm from p, we will stop at {p + c(q - p)}. 

So F, {p, p+c(q - p) } measures the rate of change in «(. ) at p in all directions 

which remain the same for all c>0. 
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We can prove above statement as follows: 

Fo{p, p + c(q - p)} lull ý{(1 - E)p + E[p + c((q - p)]} - O(p) 

E10 E 

11111 (p{p + CE(q - p)} - (p(p) 
E10 E 

hill E(o{p + cE(q - p)} - 0(p)] 

E10 CE 

11111 cE)p + CEg} - 0(p)] 
E10 CE 

Hence: 

Fo{p, p+ c(q - p)} = cFo{p, q} (1.38) 

We can denote FF{p, q} by f+(0) where f (c) = {(1 - c)p+ Eq}. Since f+(0) 

is the rate of change induced in the linear approximation to f (. ) at 0 by a 

iiiiit increase iii c, it follows that FF{p, q} defines the rate of change induced 

in a correspoiicling linear approximation to 0(. ) at p by a step toward q, the 

inagnitude of which is the distance between p and q. 

Thus it suggests that we should calculate F, ý{p, q} only for aq which is a 

niºit distance from p. However, we face the problem that we will be presented 

with aq of interest which will not typically be a unit distance from p. Such 

distances must be standardized. We easily see that we should choose c so 

that c(q - p) has unit length, say c= Tz11, where z=q-p. 

This gives rise the following concept. 

1.6.4 Normalized directional derivatives 

The n<n"iimlized directional derivative is defined as follows: 

FI({p, q}) = 
Fo{pTq} 

(1.39) 
. VIZZ 
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This rises only one particular norm. A more general normalized directional 

derivative would be 

FA({p, (, }) = 
Fm{pA} 

(1.40) 

where A is a symmetric non-negative definite matrix. 

1.6.5 Further properties of directional derivatives 

As mentioned above, the directional derivatives can exist even if 0(p) is not 

(liifereutiable. Now assume that O(p) is differentiable. We state some other 

properties for directional derivatives; (see Kiefer (1959)).. 

1. (FP1) 

G, (p, ýrn) = rr1, Too 
= rraT d where d= 

"0 
(1.41) 

Op OP 

aucl 

Fo(p, q) - Go{p, (9 - p)} 

= Gm(p, 9) - Gm(p, p) 

_ (4 - p)T d (1.42) 

2. (FP2) 

In the above property, if we replace rn or q by a unit vector ej, then 

G6(p, , rra) = eý d (1.43) 

and 

FO (p, ej)=(e, -p)Td= 
ý-O 

-pTd. (1.44) 
öpj 

As mentioned in subsection 1.6.1, FO(p, ej) is called the vertex direc- 

tiowil derivative of 0(. ). 
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In our calculations later on, we need to take the criterion 0 to be functions of 

information matrices. We now construct the formula for directional deriva- 

tives, in these cases. In general, we take the criteria 0 in the form: 

O(p) = , ip{A(p)} 

vv11eie A(p) is a symmetric non-negative definite matrix. In the case of design 

problems, A(p) is the expected information matrix and can take the form: 

n 

A(p) = M(p) =yp, vjvý 
j=1 

We now derive the formula for the derivatives GO(p, q) and FF(p, q). Based 

on the extensions of these derivatives to O(A), we have: 

Gv, (A, B) = t'r(BÖA) (1.45) 

rll l(1 

Fý,, (A, B) = tr [(B 
- A) 

aA] 

Then: 

2L11(1 

k OA(p) Gm(p, 9) = Gv, A(p)> 
i_1 

92 apti 

(1.46) 

(1.47) 

k aA(p) l Fro(p, q) = F, p (A() , 
A(p) + I: (gz - p2) ap, 

(1.48) 
l 2=1 

Proof of 1.47: 

Allowing for a nonlinear dependence of A on p and using a first order Taylor 

exp, msioti of' the iuatrix A(p + Eq): 

4i OA(p) A(p + Ecl) = A(p) +k 
ý 

Z_1 
api 
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So: 

Gm{p, q} = hin 
O(p + E9) - O(p) 

_- - Elp f 

= urn 

Proof of 1.48: 

'tp 
(A(p + E9)) - ýb 

(A(p)) 

ý (A(p) +Eý. i i gi aapp )-ý (Aýp) ) 
EJ0 E 

= lira 
eý0 E 

k 9A(p) 
GO A(p) , 4i Tpi 

ý 

i. =1 

F, b{p, q} = Go(p, g - p) 

(1.49) 

G A(p) 
k 

(qti - p2) 
aA(p) 

=4(, 
/ 

z=1 
api 

k M(p) 
= Fý, 

(A(p), 
A(p)+j: (q, -p, j--jý7 

ý. 
(1.50) 

1.7 Conditions for local optimality 

In problem (P1), for optimizing a concave criterion function like O(p) = 

(n{AI (p)}, we need some optimality conditions for checking and constructing 

optimal designs. 

We will now state two theorems which will allow us to use an algorithm to 

construct and check conjectured optimal designs. Then, the general equiva- 

lence theorem will be introduced as a special case of these two theorems. 
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1.7.1 Theorem 1.7.1 

In problem (P1), for a concave criterion function O(p), p* is optimal if and 

otilr if: 

Fo{p*, q} <0 b'g EP (1.51) 

i. e. max FO{p*, q} = 0, (1.52) 
qEP 

weliere P is the probability simplex in J dimensions; (see Whittle (1973). 

1.7.2 Theorem 1.7.2 Vertex direction optimality theo- 

rem 

If p(p) is differentiable at p*, lit order conditions for a local maximum at p* 

in the feasible region of problem (P1) are: 

*0: 
if p3* >0 

= Fý{1ý 
, ý, ý 

}<0: 
if p* = 0, j=1,2,. .., J 

(1.53) 

So, p* will nliinimize niaxj F, (p) 

1.7.3 General Equivalence Theorem 

Iii theorem 1.7.2 above, if 0(p) is concave on its feasible region then the 

fist order stationarity condition 1.53 is both necessary and sufficient for 

a solution to problem (P1). This is the General Equivalence Theorem in 

Optimal Design; see Whittle (1973). The theorem can be stated as follows: 

Suppose the criteria function is the function of an information matrix, say 

o(p) _ 4'. ý{ll! (p)}. The derivative of 0(p) at M(pi) in the direction of M(p2) 

15: 

ra{M(pý), ýý(ýýý)} - hrrý ý'`ý{(1- E)M(pI) + EM(p2)} - 'O{M(pI)}I 
_e 

0+ E 
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The General Equivalence Theorem states the equivalence of the following 

three con(litions on p* (and the respective design problem): 

If O{M (p) } is strictly concave on the set of symmetric positive definite ma- 

trices, then: 

1. p* iiiaxiinize5 ýý{M(p)} 

2. p* minimizes the maximum over xEX of FO{M(p*), 1(!, 8)}, i. e. the 

rrrirrirrrurn of FO {M (p*), 1 (1,9) }<0 

3. The derivative FF{M(p*), I (x, O)} achieves its maximum of zero at 

the support points of the design with respect to p*, say p*(x), i. e. 

F(, ){11I(p*), I(x, 6)} =0 if p*(: ) > 0. 

1.8 Criteria of optimality 

\Ve now consider examples of problem (P1) arising in optimal design. We 

wish to choose the proportions pi to make the matrix M(p) as large as pos- 

sible. In general, we will consider various ways in which to make the ma- 

trix A1(p) large, namely by maximizing some real valued function 0(p) _ 

i'{M(p)}. 

Note that the function 0 is called the criterion function, and in turn, the 

criterion defined by the function 0 is usually called O-optimality. A design 

maximizing o(p) is called a 0-optimal design. 

We now consider some of the design criteria and their properties. In general, 

we can divide the set of criteria into two cases. Case 1 corresponds to the 

case in wliicli interest is in inference about all of the parameters 0. The infor- 

niation matrix M(p) must be positive definite. Possible criteria in this case 
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include D-optimality, A-optimality, E-optimality and G-optimality. Case 2 

i5 about the criteria when the interest of experimenter is centered on some 

linear combination(s) of the unknown parameter 0. Such criteria include 

fJ optimality, linear optimality, c-optimality and EA-optimality. 

1.8.1 D-optimality 

The most important design criterion in applications is D-optimality. A design 

is called D-optimal if it maximizes the value of the following functions: 

' 01 

01' 

O(p) = c/>{1VI(p)} = det{M(p)} (1.54) 

¢(p) = , O{M(p)} = log det{M(p)} (1.55) 

O(p) = 0{M(p)} = -log det{M-i(p)} (1.56) 

that, means the generalized variance of the parameter estimates is minimized. 

We can explain the meaning of D-optimality in term of a confidence region 

for the vector of unknown parameters. Suppose that the model (1.1) is linear 

with the error terms normally distributed. Then the general form of the joint 

confidence region for the vector of unknown parameters 0Ee is: 

(H - 
ý))T 1L7-1 (p) (B - 8) < c, with some constant c (1.57) 

where H is the least square estimate or the maximum likelihood estimate of 

0 and c is proportional to a percentage point of a distribution e. g. X2 distri- 

hrltion. This confidence region is an ellipsoid. The volume of this ellipsoid is 

proportional to [det{M(p)}-1]1/2. So a D-optimal design is a design which 

minimizes the volume of this ellipsoid. An advantage of D-optimality is that 
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the optimal design for quantitative factors do not depend on the scale of the 

variable. That means the criterion is invariant with respect to a linear trans- 

formation of the parameters. Some of the authors who studied this criterion 

are: Kiefer (1959), Fedorov (1972), Silvey (1980), Pazman (1986), Farrell 

ct al. (1967), Kiefer and Wolfowitz (1961), Kiefer (1961) and Atkinson and 

Donev (1992) (including DS-optimality) 

Properties of D-optimality: 

Assuming that 0(p) = OjM(p)j = log det{M(p)}, so O(p) has following 

hrolx'rties: 

1. J' { NI (p) } is an increasing function over the set of positive definite sym- 

metric matrices. That is for Mr, M2 E M, 

0{M1 + M2} > '{M1} 

where M is the set of all positive definite symmetric matrices. 

2. "O{111(p)} is a strictly concave function on the set M; see Fedorov(1972). 

3. '(' {M (p) } is differentiable whenever it is finite, and the first derivative 

has the form: 

aý = uý M-1(p)vi 
aýý 

Where vj =f (x; j), j=1, k. 

J. D-opt. inial designs are invariant with respect to any non-singular lin- 

ear transformation of the parameters and of design space; see Fe- 

(lorov(1972). 
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1.8.2 A-optimality 

A desigii is called A-optimal if it maximizes the value of the following func- 

tiuil: 

0(p) = . O{M(p)} = -Trace{M-i(p)} (1.58) 

Froiii the above function, we see that an A-optimal design wants to mini- 

mize the sure of the variances of the estimated parameters or their average 

variance. However, an A-optimal design does not take correlations between 

these estimates into account. A-optimal designs were studied by Elfving 

(1952) and Chernoff (1953). 

Properties of A-optimality: 

1.. 0{ß%7(p)} is an increasing function over the set of positive definite sym- 

iiicti"ic matrices. 

2. , ü, ý{11(70} is concave function on the set of positive definite symmetric 

matrices. 

3. ()I Al (P) } is differentiable whenever it is finite, and the first derivative 

has the forrn: 

00 
_ E; Nr-2(P)Lj apj 

1.8.3 G-optimality 

A tlesit; n is called C-optinial if it maximizes the value of the following func- 

t ioim: 

O(p) = -O{M(p)} _ {-max vTM-lv} (1.59) 
v 
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This criterion seeks to minimize the maximum value of vT M-iv which is 

proportional to the variance of vTo. Kiefer and Wolfowitz (1960) prove the 

equivalence of C-optimality and D-optimality. 

Properties of G-optimality: 

1. -1){ All (p) } is an increasing function over the set of positive definite syrn- 

metric matrices. 

is concave function on the set of positive definite symmetric 

matrices. 

3. Suppose that there is unique 

'V, 71 Af-1 
,=- maxývtM-lv_t 

t 

then w(p) has unique partial derivatives corresponding to positive weights: 

ao 
(9p, = [, Vj M-l(p)vjla 

otherwise (p(r, ) is not differentiable. 

4. C-optimal designs are invariant with respect to any non-singular linear 

transformation of the parameters and of the design space. 

1.8.4 E-optimality 

lu E-optünality, the variance of the least well-estimated contrast aTO is min- 
iiiiirecl subject to the constraint a"a=1. So, a design is called E-optimal if 

it maximizes the value of the following function: 

6(P) _ 'O{M(P)} = -ArnaxLM-1(P)I. (1.60) 
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where denotes the largest eigenvalue of M-' (p); see Kiefer 

(1974). 

Properties of E-optimality: 

1. i/ßI I (p) } is an increasing function over the set of positive definite sym- 

metric inntrices. 

2. ýý{M(p)} is concave function on the set of positive definite symmetric 

matrices. 

3. Let ý1, A2, 
... , 

Ak denote the eigenvalues of M(p). If Amax is unique then 

5(p) has unique partial derivatives corresponding to positive weights. 

Otherwise, O(p) is not differentiable. We can present the three cri- 

teria D-, A- and E- by eigenvalues of the information matrix. Let 

AI. A2, ... , Ak denote the eigenvalues of the information matrix M(p), 

we have: 

" D-optiiriality 

" A-optiiriality 

" E-optimality 

k 

TT1aX 
rjAi. 

P 
i=1 

k 

min 
1 

x-1 

ý2 
p 

II11T1111aX( 

ý) 

2=1, """ , k. 
P ti 

In the case when the interest is riot in all parameters of the model, we will 

use the criteria that take in to account a subset or a linear combination of 
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the parameters of the model. Suppose that we are interested in s linear conr- 

ihiuatiorrs of the parameters 0,02.... , Ok which are elements of the vector 

n, = AO. A is an sxk matrix of rank s<k. In particular, A= [I, : O] 

where I, is the sxs identity matrix and 0 is the sx (k - s) zero matrix. 

In this case interest is only in estimating the first parameters 01 
i 
02, 

... ,O of 

HEO 

If iiiatrix 111(p) is non-singular, then the variance matrix of the least squares 

P, t iina. tor of . 
40 is proportional to the matrix AM-1(p)A'. However, the 

inforinatioii matrix M(p) can now be singular since the basic requirement 

for estimating the vector a= AB is that the row space of A is in the range 

space (column space) of M(p) which results in the invariance of the matrix 

A! 1,1_(p)AT to the choice of generalized inverse matrix M-(p) of M(p) (see 

CraYbill (1969)). 

Note that a generalized inverse of a matrix M is defined as any matrix M- 

satisfying the condition MM-M = M. Such a generalized inverse exists for 

each matrix M, but it is riot unique except when M is a square non-singular 

matrix; in this case M- = M-1 uniquely. A particular example is when 

Al- = M+, where M+ is the Moore-Penrose generalized inverse which not 

only satisfies AIM+M = M, but also M+MM+ = M+ and symmetry of 

MAI and ALAI-. M+ is unique. 

So, a good design will be one which makes the matrix AM-(p)A' as small 

as possible. There are some criteria which have been proposed as follows. 
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1.8.5 D n-optimality 

A design is called Dn-optimal if it maximizes the value of the following 

huic: tioii: 

O(p) = -ý){M(p)} = -log det{AM-(p)AT } (1.61) 

Sibson (1974) called this criterion DA-optimality to emphasize the depen- 

dunce of the design on the matrix of coefficients A. 

Properties of DA-optimality: 

1. 'd){M(p)} is an increasing function over the set of positive definite sym- 

metric matrices. 

2. r/{iVI(p)} is a concave function on the set of positive definite symmetric 

matrices. 

3. '(' {M (p) } has unique partial derivatives corresponding to positive weights: 

00 
='U; M-(p)AT[AM-(p)AT] app 

-'AM-(p)vj 

These derivatives are invariant for any generalized inverse M- (p) of 

M(p) if vg's and A are in the column space of M(p) (see Graybill 

(1969)). 

We iiO W consider an important special case of DA-optimality. 

If A= [I,, : 01 and we can partition the matrix M (p) as follows: 

Mll S M12 (k-s) 
M(p) = MT M(k-s)x(k-8) 12 22 

then the matrix (AM-(p)AT)-1 can be expressed as (M11-M12M2M112 

(see Rhode (1965) and Torsney (1981)) and our design criterion be- 

comes that of choosing p to maximize the determinant of this matrix. 
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So maximize 0(p) in this case is equivalent to maximizing: 

q(p) = log äet{Mii - M12M22Mi2} 

which is known as the Ds-optimality. See Karlin and Studden (1996), 

Adwood (1969), Silvey and Titterington (1973) and Silvey (1980). 

1.8.6 Linear optimality 

Let. L be akxk matrix of coefficients. A design is linear optimal if it 

maximizes the value of the following function: 

O(p) = , O{M(p)} = -tr{M-(p)L} (1.62) 

It has its name since it is linear in the elements of the covariance matrix 

M (p). 

If L is of rank s<k, it can be expressed in the form L= ATA where A is a 

sxk matrix of rank s. Then the criterion function turns out to be: 

O(p) = -tr{M-(p)L} = -trIM-(p)ATA} = -tr{AM-(p)AT} (1.63) 

This forin stresses the relationship with DA-optimality where the determi- 

nant, rather than the trace, of -{AM-(p)A} was maximized. 

Another special case arises when A= cT, where c is akx1 vector. The 

criterion function can be expressed as follows: 

o(p) = 'O{M(p)} = -jM-(p)C (1.64) 

This is the case of a criterion called c-optimality. If we let c= el = (1,0) and 

c= e2 = (0,1), we will have the special cases of c-optimality which we call 

c1- and e2-optimality respectively. We will use these criteria to find optimal 
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design;, later oil. 

Properties of linear optimality: 

1. -/){ Al (p) } is an increasing function over the set of positive definite sym- 

metric inatrices. 

2. ýý { i\ J (ýý) } is a concave function on the set of positive definite symmetric 

matrices. 

3. ýýý{? 11(p) } has unique partial derivatives corresponding to positive weights: 

190 = vý M (p)AT 
apý 

AM (p)vj, pj? 0 

. 
As D-optimality, the criterion function in c-optimality is invariant un- 

der non-singular linear transformation of the design variable x. 

1.8.7 E, 4-optimality 

A design is called EA-optirnal if it maximizes the value of the following func- 

tioti: 

O(p) _ , O{M(p)) = -A, m 
[AM-(p)AT] (1.65) 

A,,,,,, denotes the largest eigenvalue of the matrix AM- (p)AT ; see Pazman 

(1986). 

Properties of E. 4-optimality: 

I. 0(p)) is an increasing function over the set of positive definite symmetric 

matrices. 
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2. q(p) is a concave function on the set of positive definite symmetric 

ll18t11('es. 

3. The differentiability properties of this criterion are similar to those of 

E-optimality. 



Chapter 2 

Optimal Cutpoints Defined 

In this chapter, we present the main focus of the problem which we will deal 

with in the remaining part of the thesis. Some practical contexts resulting 

froiii applying the problem will be introduced. We then construct the formal 

problem as a generalized linear model. Finally, a special case, namely the 

two category case will be reviewed. 

2.1 The main idea 

In social sciences. we are interested in many aspects of social life that strictly 

relate to human being and the environment. In order to get the information 

about these aspects, we normally have to carry out a survey or investigation. 

Suppose that we are concerned about a characteristic of a population and a 

survey is conducted. We denote X, on a continuous scale, as the variable 

of interest. In practice, however, we can not measure this variable precisely 

oii the sample members. An alternative is that we record only to which of 

a finite number of categories they belong, possibly determining this by a 

process of elimination. Our main task is how to determine these categories 

30 
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opt. im ally. 

2.2 Some applications 

2.2.1 Market research studies 

31 

There are inaiiy kinds of market research studies such as population income, 

new product or service introduction. In this kind of research, the primary 

concern is about the customer needs and characteristics. For instance, we 

want to ask potential customers how much they often spend on a particular 

product or what is their average income. In the view of statisticians, it will 

be very costly and time consuming if the way of getting information is not 

designed efficiently. The categorical information as described above will be 

recorded in a market research investigation if respondents are likely to be 

ieluctant to be very specific or to have poor memory recall. In this case, the 

best way to get information from respondents is to offer them consecutive 

ranges of values of the response variable with these ranges chosen in advance. 

So, the problem arises of how to choose such the ranges optimally. This 

kind of design is also applied in surveying general practitioners in respect 

of what percentage of patients they assign to a specific drug, or to a new 

market expansion in which a company wants to investigate the population 

expenditure potential for a new product. 

2.2.2 Contingent valuation studies 

Coiitiiigeiit Valuation (CV) study is the main application of our study. The 

primary aim of CV study is to assess a population's willingness to pay for 

softie ecosystem, environmental services, non-market goods or towards an 

increase in charge for some public services. Some examples of these are 



CHAPTER 2. OPTIMAL CUTPOINTS DEFINED 32 

willingness to pay for a fishing permit, or for access to a country park, or 

for new medical facilities. In other words, a CV study is used to estimate 

economic values for these kinds of goods and services. 

The first such study focussed on pollution in the Delaware River Basin, USA 

in 1947. A more recent example is seen in Hanley (1989) which reported a 

study into the Willingness to Pay of Visitors to a part of the Queen Elizabeth 

Forest Park in Central Scotland. There was interest in four aspects: wildlife, 

landscape, recreation and all combined. Four WTP questions were asked. 

For the last category this was: " Suppose the government was considering 

selling the Queen Elizabeth Forest Park to a private forestry company. This 

would mean people would no longer be able to visit it. If the only way to 

prevent this happening was for the Forestry Commission to raise revenue by 

selling day tickets to visitors, how much would you be willing to pay, per 

person per visit? " This kind of question is known as an open ended question. 

An open ended CV study involves directly asking people, in a survey, how 

much they would be willing to pay for specific goods or services. The CV 

method is referred to as a "stated preference" method, since it asks people to 

directly state their values, rather than inferring values from actual choices. 

CV study is based on what people say they would do, as opposed to what 

people are observed to do. 

Since respondents may never have considered such questions, it is unrealistic 

to expect them to state a specific "willingness to pay value". There are 

several variations of the WTP question. 

" Closed ended format (or payment card): 

The respondent is offered a list (normally on a card) of possible pay- 

ments and ask to identify the one closest to his/her maximum will- 
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ingress to pay. This variation was also used in the Hanley (1989). 

An apparent alternative is that, often used in market research stud- 

ies, where we offer the respondents a consecutive range of values of a 

variable. We call each range of these values a category and the limits 

defining these ranges the cutpoints. 

" Dichotomous choice format: 

The respondent is offered a single payment or "bid" question , e. g. "are 

you willing to pay £20? " 
. 

Then the respondent simply responds YES 

or No depending on his/her willingness to pay this "bid". This form 

of asking question is also known as a Discrete choice or single bounded 

question. 

. Double bounded format: 

After the first "bid" as in a single bounded format, the respondent 

would then be offered a second "bid", lower, e. g. £10, if their response 

to the first "bid" is NO and higher, e. g. £30, otherwise. We would 

then know into which of four ranges, below £10, between £10 and 

£20, between £20 and £30 and above £30, a respondent's willingness 

to pay falls. This is known as a double bounded question. 

" Iterative biding: 

In this case, the respondent is offered a sequence of dichotomous choice 

questions, increasing or decreasing in "bid" value offered according as 

the response to the first question is YES or NO respectively. The pro- 

cess stops when the response changes or the list of the bids is exhausted. 
We note that the payment card method could be viewed as a variation 

of this. A respondent's true WTP value should lie between the circled 
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one and the next higher value. 

In all the variations of the WTP question above, we need to choose the "bids" 

offered. In the other words, we have to choose in advance the categories or 

the cutpoints. Our task is how to choose there optimally. This is the focus 

of this thesis. 

2.3 Establishing the formal problem-A Gen- 
eralized Linear Model 

Based on the idea above, we now set up the formal problem using a general- 

ized linear model and then transform it to a standardized form. 

2.3.1 A Generalized Linear Model 

As stated above, we are interested in the characteristic of a population that 

we denote by variable X. Suppose we know that the variable XEX= 

[C, D]. We call the range [C, D] a sample space. In order to get information 

about X, we carry out a survey. In the survey, we invite respondents to 

answer a categorical choice question. We also suppose that we wish to place 

responses in to one of k categories determined by cutpoints: 

10, =C1, x2, ..., xk-1, xk 

If we set xp =C and xk =D of the sample space, we only need to determine 

the set of cutpoints X11 x2, ... , xk_r. These cutpoints have to be chosen in 

advance and satisfy the condition: 

C=xp<:. C1 <x2 <... <xk_1 <xk =D 

The situation can be described by the following diagram. 
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CD 
IýIIIIIý ýý 

: Cp ; CI X2 xk-1 Xk 

The main idea of the problem is what sets of values should be cho- 

sen for these cutpoints? 

This defines a non-linear regression design problem, in which the design vari- 

able is the vector: 

ýE - (x1, x2, ..., xk-1). 

The solution should depend on the underlying distribution of X in the pop- 

ulation of interest.. 

We now assume that X has distribution function: 

F(x) = P(X < x). (2.1) 

If we, denote by µa location parameter and by or a scale parameter of X, 

both assumed unknown, we can transform F(x) as follows: 

P(X <x)-P1X [I < xtz ) 
-p) 

-µl 
, xEX (2.2) 

\UQ/\QJ 

Let: 

Z=X µ 
and z=xµ. 

01 01 
Hence: 

F(z)=F(x µl 
\ýj 

is a standardized distribution function. 

If we let (1 = -µ/Q and 3= 1/Q then equation 2.2 will turn out to be: 

(2.3) 

P(X < x) = F(a + , 
ßx), xEX. (2.4) 
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The form 2.4 is a generalized linear model in the parameters a and p. For 

convenience, we let: 

7= (a, ý)T 

2.3.2 Standardization/ Characterization 

We now carry out a parameter dependent transformation which transforms 

the above problem to a standardized problem as follows: 

Let: 

Z-X µ-a+ 
, 
ßX. 

Q 

We discuss the fact that a, 3 are unknown below. 

Tlieii: 

x-µ 
=a +, 3x 

ý 

acid: 

A=C a+, QC, B=Dµ_a+aD. 
LT cr 

Thus: 

F(aj = P(X < x) = P(Z < z) = F(z), zE .Z= 
[A, B], (2.5) 

where [A, B] is the new sample space. We have Za transformed standardized 

version of X. 

Here is the statement of the standardized problem: 

Determine cutpoints z1, z2, ..., zk_1 

satisfying A= zo < z1 < z2 <... < zk_1 < zk =B 

WVe now have a design problem with design vector: 

1= (zl, z2, ... 9 zk-1). 
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We know that z, = 
(x' - µ) 

= Ce + ßxj, j=0,1,2,... k. So whenever 

we determine optimal cutpoints zj*, we must transform back to the original 

variables x;. 

For the moment, we note that for non-linear models like this, optimal designs 

typically depend on the unknown parameters of such models. They are called 

locally optimal designs. Provisional estimates of parameters are needed for 

these to be of practical value. We will focus on construction of such designs. 

Ford, Torsney and Wu (1992) used this approach for the two-category case 

which we will review later on. 

2.4 The canonical problem 

As we mentioned in section 1.2, in a non-linear design problem, the informa- 

tion matrix depends on the parameters 0. To find the optimal design in this 

case, we will use the so-called canonical version of the design problem what 

in effect solves the design problem for all parameters 6. 

Assume that we can choose the design variables from its design space X. Let 

ý be design measure. We have: 

N1x(B, ý) =J "cu(9T s)S ST ý(dx), 

xEX 

where 

sT = (1, x). 

The clesigii problem usually involves seeking a design which maximizes some 

concave functions, say of the expected information matrix M 

The optimal design will depend on 8 since M depends on 8. 

Suppose that we have a design criterion invariant under the linear transfor- 
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ination of the form: 

S -+ t=BS, 

where B is a non-singular 2x2 matrix chosen such that its first row is (1,0) 

and its second row is 0T. Thus tl =1 and hence t= (1, z) for some z, while 

t2 = HT s, i. e. O "s is transformed to the last component of t, and hence to z. 

So x is mapped to z and hence X is mapped to an induced design space 2 

for z. 

We can see that the linear transformation from s to t and the choice of the 

inatrix B will lead to a canonical version of the design problem, which can 

he solved independently of 0. We have some comments: 

1. The design variable of this standardized problem is the image of x 

under the mapping, namely z, where t= (1, z)T. 

2. The design space Z is the image of design space X under the mapping. 

3. The expected information matrix of the standardized problem is: 

A1z(9,0 =J w(z)t j (dz), (2.6) 

zEZ 

where t= (1, z). 

The very important property of the transformation from X to Z is that the 

dependence of the optimal design on the true value of 0 for given design space 

X is replaced, in the transformed problem, by a design space which varies 

with H. Thus, if we can solve the transformed problem for arbitrary Z, we 

can also solve the optimal design problem for arbitrary X and 8. See Ford, 

Torsney and Wu (1992). 

We will come back to this problem later on. 
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2.5 Some design objectives 

In chapter 1, we have mentioned two groups of criteria of optimality, the 

group of criteria when we want a good estimation for all parameters in the 

niodel and the remaining group is used when we need a good estimation for 

a subset or (linear) transformations of parameters. 

Models 2.2 or 2.4 are two-parameter models (i and o, ) and our objective is 

good estimation of some aspects of these parameters by choosing a design 

which will ensure this objective. We could be interested in efficient estimation 

of either the parameter µ alone or the parameter a alone or both it and 

a. Based on these objectives, we derive some criteria that we will use for 

constructing optimal designs. 

1. Efficient estimator of µ: 

We minimize Var(µ), where µ is the estimation of µ. We have: 

where: 

µ= -a/, ß =ý µ= -60 

and Var(µ) ^_' Var(cT=y), 

c=Oll a-ý1Qµ)T 

2. Efficient estimation of or : 

We iniiiiiniLe Var"(&). 

Where: 

Q 1/0 =: ý. &=1/ý 

and Var(&) ^_ Var(cT=y), 

äQ -(p, 1)T 
c=-a Oß2 ýa 
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The two cases above are examples of the c-optimal criterion with the vector 

_T _(0,1 
T 

C1 = 
(l"µ) 

and c2 = 
1) 

respectively. We will come back to these - 02 

cases later on to expand to two other criteria that we call el-optimality and 

e2-optimality respectively. 

3. Efficient, estimation of both p and a: 

We make V= cov(=y) "small". So we can minimize: 

det(V ) (D - optirriality) 

or iniiiiinize: 

t'r (V) (A - optimality) 

oi niininiize: 

Maxirr, urra eigertvalue of V (E - optimality) 

We will return to construction of these. 

2.6 Case of k=2 categories 

We now review the the work of Ford, Torsney and Wu (1992) on construction 

of optimal designs in the case of two categories. This is the simplest case 

where the vector x= xl is scalar, which means there is only one cut-point 

and consequently we have two categories. Let xl =xEX= [C, D]. 

We focus on construction of design measures ý, because if both parameters 

need to be estimated, at least two support points are needed. That is we 

seek a distribution &x on X which will identify the optimal proportions of 

observations to take at each point in X. 

Note that we are assuming that we are free to take x to be any value in 

X= [C, D], even if X=R. This can be permissible. However, we could be 
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restricted to a subset of X, say [c, d]. 

We denote li1(ý) the expected information matrix per observation. We have: 

Cov(y) aM -'(G), (2.7) 

where y= (ýx, ß)T as denoted above. 

If the distribution ý, assigns weight ýz to a discrete set of values x1, x2, ... 

and ý, > 0. E ýz = 1, then: 

M(ýT) = E&(Iý) =ý ýZIýý (2.8) 

where I, is the expected information matrix of a single observation at x or 

a one point design at x. 

From the formula 1.14 and 1.15 in chapter 1, we have: 

I(B, x) = w(z)[s sT], z= O's 

In our case, let s= (1, x)T and BT = (a, ß), we have: 

Iý = w(z) Cx) (1 x) 

where the function w(. ) is playing the role of weight function. We assume it 

is iiieasurable. It has the form: 

'UJ(z) _ 

{f (z)}2 

J 
4'(z) 

= F'(z) and z=a+ ßx 
{F(z)[1 - F(z)]} 

\Vc are now considering a standardized problem under the parameter depen- 

dent, transformation: 

(2.9) 

B=(1 0 1 
/3 
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So, we have: 

Hence 

W' here 

h= w(z) (B-1) (z) (1 z)(B-1)T (2.10) 

I. = B-1 Iz (B-1)T (2.11) 

Iz = w(z) (1, z)T (1, z) (2.12) 

Extending these results to the expected information matrix per observation, 

we lirLve: 

M(ýx) = B-iM(ýz)(B-1)T (2.13) 

where ýz is the distribution induced on Z= [A, B] by ex on X= [C, D]. 

Hence we have: 

M(ýz) = Eýz{I} _ J: ýzlz, 

and 

det{M(ýX)} cx det{M(ýz)} 

CT M(ýx)ý = CB M(G)9B 

cB=Bc, B= (1 
a 

of 
a) 

Thus D-optinnal and c-optimal criteria, as functions of ýX, transform respec- 

tively to the D-optimal and other c-optimal criteria as functions of ýz. 

Thus, we focus on finding the design ýz which either 

rriaximizes det[M(&)] D- optimality 

01' 

rrº, i riiºraizes cBM-' (Z)cB c- optimality 

We consider two cases related to the previous section: 
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T -1 
" Ifc=-(1, ýý 

=ý'CB=Bc=( 0)T 
13 

So, we itiiiiiinize c, T3M_i(ýz)cB which is equivalent to minimizing (1,0)M-i(Ez)(1,0)T 

i. c. cf3 a cl = (1,0)T. 

" Ifc= -(--ý1ý ýcBae2=(0,1)T 

We define two other criteria as follows: 

1. el-optimality: A design is called el-optimal if it maximizes the value 

of the function: 

-e1 M-1(cZ)ei 
" 

2. e2>-optimality: A design is called e2-optimal if it maximizes the value 

of the function: 

-LT M-1(z)e2, 

where el = (1,0)T and e2 = (0,1)T respectively. 

Note: e1-optimality and e2-optimality above actually are the transformed 

c-optimal criteria. 

Ford, Torsney and Wu (1992) exploited the fact that these (non-linear) design 

problems are equivalent to corresponding weighted linear design problems 

with weight function w(z). Tools for constructing designs for linear models 

can be invoked. For example there are geometrical characterizations of D- 

optimality and e-optimality relating to the design locus: 

C= {(, yl, ga) : 91 = w(z), g2 =z w(z), zEZ= [A, B]}. (2.14) 

They established, that, for several choices of F(z), D-optimal designs need 

to take observations at only two distinct points (support points) in Z, in 

which case optimal weights are (2,2). Optimal designs are then of the form: 
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z zý z2 

zz 1 
2 

1 
2 
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For the logistic and nor real/probit choices of F(z), (for which Z= R), 

z, = -z and z2 = z, with z=1.543 and z=1.138 respectively. These 

two values are well established in the literature. 

For the cases where the distribution of F(z) are the double-exponential and 

double reci rocal distribution functions (for which Z= R), three support 

points are needed and optimal designs are of the form: 

z zl Z2 Z3 
ýz ýzi ýz2 ýz3 

Iii these cases, optimal weights are not uniform. Torsney and Murasti(1993) 

report the following optimal designs: 

Double-exponential: 

z -1.594 0 1.594 

0.282 0.436 0.282 

Double-reciprocal: 

vý2 o V2- 
0.262 0.476 0.262 

Iii the case of c-optimality, either one or two support points are needed. If 

only one is needed it is the value z such that cB oc w(z)(1, z)T. If two 
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are needed these are fixed for all cB and there is an explicit solution for the 

optimal weights which vary with CB. Thus optimal designs are of the form: 

z zl z2 

LeZ ýz1 C CZ2 

For the logistic and normal/probit choices of F(z), (for which Z= R), zl = 

-Z acid z2 = z, with z=2.339 and z=1.157 respectively. These are 

the support points for e2-optimality, each having equal weighting. For el- 

o1>timality, there is one support point; namely z=0. 

We iiow focus on investigating the case of optimal designs when there are at 

least 3 categories (at least 2 cut-points). 



Chapter 3 

One Point Design: k Categories 

3.1 Introduction 

In the two-category case (only one cutpoint) described above, to ensure the 

estimation of both parameters in the model, we need at least two support 

points. That is why we can not use the same cutpoints for all respondents. 

WVe have to use at least two cutpoints and the respondents will be divided 

in to the same number of groups as cutpoints according to optimal weights. 

Thus the problem is to determine these cutpoints and their optimal design 

weights. This is the case of multiple design points that we will consider in a 

later chapter. In the context of one design point, we assume that there are 

three or more categories. The main difference from the two-category case is 

that it is possible to estimate all parameters using the same cutpoints for all 

respondents, i. e. the same design point. This is a one point design. 

In general, we assume that there are k categories, so there are k -1 cutpoints, 
(actually, there will be k+1 cutpoints but we assume that the first and the 

last cutpoint will be the lower limit and upper limit of the design space). 
Let the cutpoints be Ili 12) ... , xk_i and x0 = C, xk =D with [C, D] being 

46 
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the design space. The condition for the cutpoints is xl < x2 < : C3 ... < xk_1 
Let,: 

01 = P(X < xl). (3.1) 

H1 is the probability that the variable of interest X falls in to the category 

We call B1 a cell probability. 

Through the standardization, we have: 

B1 = P(X < : X; 1) = F(a + ßxl) = F(z1), (3.2) 

where cY and 0 are the parameters of the generalized linear model as described 

in chapter two. 

Similarly: 

ej= P(x, 
-, < X< xi) = F(zj) - F(z, 

-j) i=2,3, ..., k-1. (3.3) 

Finally, let: 

ek =1- F(zk-1). (3.4) 

(H1, H2, 
... , 

Ok) is an exhaustive set of cell probabilities in that F; 
_1 

e3 = 1. 

Now, our problem turns out to be determining the set of cutpoints z1, z2i ... , zk_1 

or the set of cell probabilities (B11 021... 
, 
Ok) optimally. Because they are in- 

vertible, we iieed only determine either one of the sets. We now construct 

the formula for information matrix of our problem. 

3.2 The formula of the Fisher information ma- 
trix 

In our problem, we need to place the response from the respondents into 

the categories or between two cutpoints. Thus, our model is a multinomial 
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response one, for which we now construct the formula for the Fisher infor- 

mation matrix. 

Let 8., be the probability that a response falls between cutpoints xi_1 and xi, 

i. c. 

02 = P(x, -i < X< xz), i= 1,2, ..., 
k. 

Denote: 

9 =(81,82,..., 9k )T, e=e(y), 

In OUI case, _ (ýIe i2)T _ (a', 13)T 

Now let: 

Y=(Y, Y T i 2i..., Yý) , 

where: 

k 

Bi = 1. 
i=1 

1: if xi_1 <X<x, 
0. if otherwise. 

Tlieii: 

Y'-' M(1, ), 

wliere: 

E(Y)=027 E(Y)=O, Cov(Y)=De-OOT, 

Do = (ý2(1yý81,82, ..., ek) = 

The likelihood function is: 

01 0 ... 0 
0 02 

... 0 

00... 0k 

k 

L=ýBY. 
2=1 

The log-likelihood function is: 

(3.5) 

LnL = 1: Y, In (0, ). 
t_i 
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We know that one general form for the Fisher information matrix is: 

Ix (-y) = Coy 

First derivatives are: 

aez/a-y, ( ýt. j 
)i 

= 
Bi 

Let vector a, be such that: 

W'i'e have: 

So for ')' - 
("Y1,1'2) T- (a, . 7) T: 

where A= (L1 ßa, 2), i. e., 

aä-nL kY aei/ay, 
iý, i_1 x 

1,2. 

alnL 

a-y, 

alnL 
l 

=aýT Y. 

((,., 
_)T 

V_ AV 
ý A-1 =Z/ _- <. i 

ý 

ölraL 

(90,1 Aji= 
a1'j ei 

We can express matrix A in the form: 

bv11P. PC 

Note that 

5111ce 

A=ýe D0-I=ED0-1 

Ej2 _ --l 
a-rj 

Ex1=0 x1= 
k e2 

- i=1 
ry 

(90i aEý 1 et al o =ý = ä-y ay z-1 __7 

ae2 
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(3.6) 
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a11C1 

Dý'9=1 

So we have 

Ix (-y) Ol, nL 

= 
Ciav(AY) 

= ACov(Y)AT 

= A(Dd-8BT)AT 

= EDe'(Dy - 66T)D0-'ET 

= EDB'DBDB'ET - ED0-'96TD0-'ET 

= EDB'ET -El 1TET 

= EDd' ET -0 

= Coy 

So the formula for the Fisher information matrix is: 

Ix(Y) _ 
ý 

aeZ I 

(aei)T ez 
i=1 -- 

We can develop this formula in more detail as follows: 

H, = P(x. t_1 <X< x2), i=1,2, ..., 
k 

= F(a + ßx, ) - F(a + ßx, 
-1), 7= (a, ß) 

-f 
(a + Qxti) _f (a + ßxi-i), f ý") = F'ý") 

Oa 

- -f 
(zi-1 )+f(, zi), zi =a+ 

, 
Qxi 

C? B, 
OJ3 

xzf (a + ßxz) - xi-1 f (4 + 'ýx, 1) 

-xi-i f (z, 
-1) 

+ xif ('Zi) 
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(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 
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So: 

0H, 

0y 

where': 

( 

X, 1- i xi 

)(-f(zi-1)) 

f(zZ)1 

1f (zZ_1) 0 -1 ( 

xZ-1 xZ 

)(0f 
(zZ) 

)1 

XD f(0 0 ... -11... 0 0)T 

X Df di 

) 

DI. _ (tiay{f(zi), f(z2), 
. .., 

f(z, 
ti-i), 

f(zti), 
..., 

f(zk-i)} 

with f (z, ) being the pdf function of Z at z=z, f (z, ) = F'(z, ). 

or: 
f ýzl) 000ý / 

D 
.f_ 

o ... 
f(z,. 

-1) 
00 

00 f(z) 0 

ý000 f (zk-1) 1 

_1111... 
1 

X-( 
X1 X2 ... X%-1 xi 

... xk-1 

riz=(OO ... -1 1 ... OO)T 
(i-1)th i-th 

In general, we have: 

Ix(7) = 
, -1 -Ic\-I 

I. ý ae2 1( aei ý 
ýý, A1A.,, 
ae2 1 aei 1T 

e2 C ary 1 
k 

XDf 
(ddT) 

DfXT 
x_1 

ei 

XDfHDe 1HTD fXT 
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= XQXT 
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where: 

Q=DfHDe1HTDf 

/ Bl o01 

Do = di, ag(9i, 82, 
... Bk) _ 

0 02 01 

ý00... ek) 
H= (Ik-rlQk-n) - 

(Qk-lIIk-r) 

0� _ (0,0, 
.... 0)T E Rn and I, is identity matrix of order n. 

or: 

H= 

1 -1 0000 
01 -1 000 
001 -1 00 

ý0 000... 1 -1 
Further, through the standardization z2 =a+ ßxß, 

/ 
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(3.12) 

Ix = B-lIz(B-1 )T (3.13) 

where: 

B= (a0 ß ) The Fisher information matrix at z= (z1, z2, ... ) zk_i)T is: 

where: 

Iz =ZQ ZT (3.14) 

10 

z1 Z2 zk-1 aQ 

)X=BX 

Note: Z is a2x (k - 1) matrix, Df is a (k - 1) x (k - 1) matrix, DB is a 
kxk matrix and H is a (k - 1) xk matrix. 
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We also note that 1z is a standardized Fisher Information matrix (corre- 

sponding to (v = 0, [3 = 1). We will show later on that for some standardized 

criteria. optimizing a criterion of Ix is equivalent to optimizing a criterion 

of Iz. 

3.3 Search method and numerical results 

We use simple search methods to find the solutions for some optimal de- 

sighs. Five standard optimal criteria and four symmetric distributions will 

be considered. 

3.3.1 Criteria and distributions considered 

The five criteria considered are: 

1. D-optimality : rnaxirnize{log det(I, 
z)} 

2. A-optimality : rnaxirnize{-tr' (Iz 1)} 

3. el-optimality : "maximize{-ei Iz 1 el} 

4. e2-optimality : rnaxirnize{-e2 Iz 1 e2} 

5. E-optimality : maximize{ -, \max} 

where Ajax is maximum eigenvalue of Iz 1 

We (!, in see that D-, A- and E-optimality will be used when we are concerned 

about, optimally estimating both parameters cx and 0 (or µ and o originally). 

On the other hand, el- and e2-optimality will be used when we want to 

optimally estimate a or 3 respectively. 
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The reason we first use symmetric distributions is that we can argue that 

there should be symmetry in the optimal cutpoints. Let z* be the vector of 

optimal cutpoints. We should have z' for up to 6 categories as follows: 

= (-z*, z*) k=3 

z* _ (-z*, 0, z*) k=4 

Z. (-z2, 

-z1, 
zl, z2) k= 5 

_(-z2, -zi, 0, zi, z2) k= 6 

Determining z' then reduces to a one or two variable maximization i. e. of 

qi(z) _ O(I_) or 4 (z1, z2) _ 'ý(Iz) where 'O(. ) is our design criterion. 

The four symmetric distributions are listed in table 3.1 

Table 3.1: Four symmetric distributions considered 

Case Distribution f2(z) FZ(z) 

1 Logit, exp(-z)/[1 + exp(-z)]2 [1 + exp(-z)]-' 

2 Probit, 
(27r) exp(-z2/2) 4) (z) 

3 Double exponential 2exp(-lzf) 
12s- 

2exp(-I zl ) 

4 Double reciprocal 1 
(1 + IzI)-2 (1 s_ (1 + lzl)-1 1 -2- 2 

ZE (-oo, oo), f, (z) = Fi'(z), s= sign(z) 

V'\"e simple evaluate the criterion at a set of values of z or (z1, z2) (defined by 

a grid) and determine the maximum by inspection (helped by plotting). 

3.3.2 Numerical results 
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Table 3.2: Numerical results for logistic distribution, k=3 

k=3 

Criterion z* F(z*) «(z*) 

D-optiniality 1.4700 0.8131 -1.5567 

A-optirnality 1.1600 0.7613 -5.0182 

e1-optirnality 0.6900 0.6660 -3.3750 

e2-optirnality 2.1700 0.8975 -1.0226 
E-optimality 0.6900 0.6660 -3.3750 

Table 3.3: Numerical results for logistic distribution, k=4 

k=4 

Criterion z* F(z*) q(z*) 

D-optimality 1.9800 0.8787 -1.2483 
A-optimality 1.7100 0.8468 -4.3789 

el-optimality 1.1000 0.7503 -3.2000 

e2-optimality 2.1700 0.8975 -1.0226 
E-optimality 1.1000 0.7503 -3.2000 
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Table 3.4: Numerical results for logistic distribution, k=5 

k=5 

Criterioil zi z2 F(zi) F(z2) 0(z1*, z2) 

D-optiiria. lity 0.8500 2.5100 0.7006 0.9248 -1.0709 
A-optiinalit, y 0.6100 2.1600 0.6479 0.8966 -4.1245 

e1-optimality 0.4100 1.3900 0.6011 0.8006 -3.1251 

c2-optiiriality 1.5900 3.1700 0.8306 0.9597 -0.8284 
E-optimality 0.4100 1.3900 0.6011 0.8006 -3.1251 

Table 3.5: Numerical results for logistic distribution, k=6 

k=6 

Criturioii zi z2 F(zl) F(z2) 0(z1*, z2) 

D-optiiriality 1.3300 2.9100 0.7908 0.9483 -0.9788 

. 4-optima1ity 1.0500 2.5400 0.7408 0.9269 -3.9942 
f'1-optiiria1ity 0.6900 1.6100 0.6660 0.8334 -3.0857 

ýz opti111aliry 1.5900 3.1700 0.8306 0.9597 -0.8284 
E cýpti111a1ity 0.6900 1.6100 0.6660 0.8334 -3.0857 
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Table 3.6: Numerical results for normal/probit distribution, k=3 

k=3 

Criterion z* F(z*) 0(z*) 

D-optimality 1.1100 0.8665 -0.2070 
A-optimality 1.0300 0.8485 -2.2784 

c1-opt, imetility 0.6100 0.7291 -1.2348 

C2-optiinality 1.4800 0.9306 -0.7666 
E-optimality 0.6100 0.7291 -1.2348 

Table 3.7: Numerical results for normal/probit distribution, k=4 

k=4 

Criterion z* F(z*) O(z*) 

D-optimality 1.3900 0.9177 0.1001 

A-optimality 1.3400 0.9099 -1.9426 
er-optimality 0.9800 0.8365 -1.1331 
e2-optimality 1.4800 0.9306 -0.7666 
E-optimality 0.9800 0.8365 -1.1331 
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Table 3.8: Numerical results for normal/probit distribution, k=5 

k=5 

Criterion zi z2 F(zi) F(z2) 0(z1z2) 

D-optiinality 0.6900 1.7000 0.7549 0.9554 0.3113 

a-01)timýility 0.6000 1.6200 0.7257 0.9474 -1.7746 

c1-optinia1ity 0.3800 1.2400 0.6480 0.8925 -1.0869 

cz optimality 1.1400 2.0000 0.8729 0.9772 -0.6065 
E-01)timality 0.3800 1.2400 0.6480 0.8925 -1.0869 

Table 3.9: Numerical results for normal/probit distribution, k=6 

k=6 

Criterion zi z2 F(zi) F(z2) 0(z1*, zz) 

D-optimality 1.0000 1.8800 0.8413 0.9699 0.4130 

A-optimality 0.9300 1.8200 0.8238 0.9656 -1.6923 
(')-optimality 0.6600 1.4500 0.7454 0.9265 -1.0615 
('2-optimality 1.1400 2.0000 0.8729 0.9772 -0.6065 
E-opt. ima, lity 0.6600 1.4500 0.7454 0.9265 -1.0615 
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Table 3.10: Numerical results for double exponential distribution, k=3 

k=3 

Criterion z* F(z*) O(z*) 

D-optimality 0.6400 0.7374 -1.1277 

A-optimality 0.6700 0.7452 -3.9972 
el-optimality 0.0000 (*) 0.5000 -1.0000 

e2-optimality 1.600 0.8985 -1.5441 

E-optimality 0.7100 0.7542 -2.0512 

(* ): q)(z*) reaches its maxirraurn value when z* = 0. Thus, the three category 
rase reduces to two category case 

Table 3.11: Numerical results for double exponential distribution, k=4 

k=4 

Criterioiu z* F(z*) O(z*) 

D-optimality 1.5900 0.8984 -0.4345 
A-optimality 1.5900 0.8982 -2.5441 
el-optlITlallty any z (* ) -1.0000 

Li0ptui1ity 1.6000 0.8985 -1.5441 
[E-optiiIiality 1.6000 0.8985 -1.5441 

(* ): For any value of z, the criterion = -1 



CHAPTER 3. ONE POINT DESIGN: K CATEGORIES 60 

Table 3.12: Numerical results for double exponential distribution, k=5 

k=5 

Criterioii zi z2 F(zi) F(z2) O(zi, Z2*) 

D-optimality 0.0000 (* ) 1.5940 0.5000 0.8984 -0.4345 
A-optimality 0.0000 (* ) 1.5920 0.5000 0.8982 -2.5441 

cl-optimality 0.0000 (* ) any z 0.5000 -1.0000 

f"2-0ptim8lity 1.0200 2.6100 0.8189 0.9632 -1.2191 
E-01tü1ality 0.3000 1.8900 0.6296 0.9245 -1.3568 

(* ý: (p(zi, z2) reaches its maximum value when zl = 0. Thus, the five category 
case reduces to four category case 

Table 3.13: Numerical results for double exponential distribution, k=6 

k=6 
Criterion zl z2 F(zi) F(z2) 0(zi, z2) 

D-optimality 1.0200 2.6100 0.8197 0.9632 -0.1981 
A-optimality 1.0200 2.6100 0.8190 0.9634 -1.2192 

('1-optiiriality any z (* ) any z (* ) -1.0000 

c", -opti1fla1it, y 1.0200 2.6100 0.8190 0.9634 -1.2192 
E-optimality 1.0200 2.6100 0.8190 0.9634 -1.2192 

: For any value of zi and z2 the criteria = -1. 
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Table 3.14: Numerical results for double reciprocal distribution, k=3 

k=3 

Criterion z* F(z*) ¢(z*) 

D-optimality 0.2500 0.6000 -2.0722 
A-optimality 0.3850 0.6390 -7.6492 

cl-optimality 0.0000 (* ) 0.5000 -1.0000 

e2-01)t1111a1ity 1.0000 0.7500 -4.0000 
E-optimality 

1- 
0.6100 

1 
0.6894 -4.2493 

(* ): (,, (z*) reaches its rnaxi'mum value when z* = 0. Thus, the three category 
ruse reduces to two category case 

Table 3.15: Numerical results for double reciprocal distribution, k=4 

k=4 

Criterion z* F(z*) O(z*) 

D-optimality 1.0000 0.7500 -1.1642 
A-optimality 1.0000 0.7500 -4.8000 

er-optimality 1.0000 0.7500 -0.8000 

('2-optimality 1.0000 0.7500 -4.0000 
L-optimality 1.0000 0.7500 -4.0000 
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Table 3.16: Numerical results for double reciprocal distribution, k=5 
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k=5 
Criterion zi z2 F(zl) F(z2) zi, z2) 

D-optimality 0.0000 (* ) 1.0000 0.5000 0.7500 -1.1642 

A-optirnality 0.0700 1.1400 0.5327 0.7664 -4.7506 

c, 1-optirna. 1ity 0.0000 (* ) 1.0000 0.5000 0.7500 -0.8000 

c'ý optirua. lity ý 0.5000 2.0000 0.6667 0.8333 -3.3750 
L'-optirnality 0.5000 2.0000 0.6667 0.8333 -3.3750 

(* ): )(z*,, z2) reaches its maximum value when zi = 0. Thus, the five 

category arse reduces to four category case 

Table 3.17: Numerical results for double reciprocal distribution, k=6 

k=6 

Criterion zi z2 F(zi) F(z2) O(zi, z2 

D-optimality 0.5000 2.0000 0.6667 0.8333 -0.9569 
I A-optiinality 0.5000 2.0000 0.6667 0.8333 -4.1464 

c 1-optima1ity 0.5000 2.0000 0.6667 0.8333 -0.7714 

(2-opti1118,1ity 0.5000 2.0000 0.6667 0.8333 -3.3750 
E-optimality 0.5000 2.0000 0.6667 0.8333 -3.3750 
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3.4 Comments and justification of the results 

We have following comments on the numerical results using the search method 

a bove. 

As inentioüed above, these are results for symmetric designs or symmetric 

("ntl>oint, sets for k=3,4,5 and 6 categories. We reiterate the forms for 

cutl)ohit sets as follows: 

z* _ (-z*, z*) 

= (-z*, 0, z*) 

z_ (-z2, 
-zl, zl, z2) 

k=3 

k=4 

k=5 

_* _ (-zä, -zi, 0, zi, z2) h, =6 

We caii sec that, in general, the values of criteria increase when we increase 

the number of cutpoints, say k. These results are to be expected since when 

we increase the number of cutpoints, we will get more information from the 

sample; thus the values of criteria should increase. We produce plots in figure 

3.1 for the logistic distribution with D-optimality and the normal distribu- 

tions with el-optimality to illustrate the changing criterion values with k 

changing from 3 to 6. 

Returning to the tables 3.10 to 3.17, we now focus on the results on the 

double exponential and double reciprocal distributions. In both cases, when 

the criterion is el-optimality and the number of categories are three, we see 

that the criterion value reaches a maximum value of -1 when the value of 

z reaches 0. Thus, the three category case will reduce to the two category 

case. We already considered this case in particular in chapter two. We see 

that when the value of z is 0, the information matrix is singular. However, 
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Figure 3.1: Plots of criteria value vs. the number of categories k 
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we still have an optimal design. See Ford et al (1992) 

In the case of the double exponential distribution, k=4 and ei-optimality, 

the criteria has a constant value of -1 because the information matrix is di- 

agonal, the first entry being 1 (we will investigate this later on). 

When /=5, some criteria in the case of the double reciprocal distribution 

(D- and el-optimality) arid some criteria in the case of the double exponen- 

tial distribution (D-, A-, and el-optimality) reach their maximizing value 

when the two middle cutpoints coincide at 0. Thus, the five category case 

reduces to four category case. 

In the case of the double exponential distribution, when k=6, four crite- 

ria, namely D-, A-, e2- arid E-optimality, have the same optimal cut-points, 

i. e. 1.02 and 2.61 while the optimal value of the criterion in the case of D- 
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optiurality is -0.1981 arid -1.2192 for the remaining cases. In the case of the 

double exponential distribution, when k=6 the er-optimal criterion has the 

same optimum as in the case of k=4, the criterion always has the value of 

-1 for any value of zr and z2. 

Similar results appears for all criteria in the case of double reciprocal distri- 

bution. 

In the following part, we will explain some of the results above by checking 

for an increase in the criterion values when the number of cutpoints (number 

of categories) increases by 1. 

We assume that the cutpoint zt is inserted between two other cutpoints z3 

and zs, 1. We illustrate this situation by the following diagram: 

iii 
zl z2 zs 

ý 

zt 
i--'i zs+i zk-1 

We will compare the new information matrix (we call it New I, 
z) after insert- 

ing the cutpoint zt and the old information matrix (we call it Old I,, ) before 

inserting the cutpoint zt. 

In the previous chapter, we have constructed the following formula for the 

Fisher information matrix: 

aei 1ýe 

(öOi)T i-1 

where., 

ae, 11 -f (zý-i) l 
a-y xi-1 x2 

)C 
f(zi) J 
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And through the standardization: 

where: 

Let: 

ý a9i 1 a9i T 

-y ez 
( 

aý, 
), 

i=1 -- 

öe2 
ý (9-Y CI11( -f (zi-1) 

z2-1 zi 
)f (zi) ). 

vi =f(zi)(zz)" 

We have following formula for the Fisher information matrix: 

(( T 

i=1 
ei 

where: 

0 001 0k =1 

zo=-o0, zk=oo 

F(zo) = 0, F(zk) =1 

f(zo) = 0, f(zk) =0 

v-o=0, v_k=0 

Now suppose cutpoint zt is inserted between two cutpoints z3 and zs+i 

Note that: 

zs<zt<zs+i 

UB=f(ze)1 
1J 
z8 / 

Us+, = f(z8+i) C1 z8+i 

Vtf(zt) 
Zt 

(1) ) 

66 
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where: 

Us+1 Us - lUs+1 - Et) +(Ut Us) 

9s+, - 8s = (es+, - Bt) + (et - 83) 

67 

Let D be the difference between New Iz and Old Iz and note that O= F(zti) - 

F(z, 
_i), we have: 

D== F(zs+1)1- F(zt) 
[V-S4-1 

- 'U t] 
[vs+1 

- vt]T 

ý 
F(zt) 

1 

F'(zs) 
[vt - vsj [vt - vsIT 

Bt = F(zt) - F(zs) 

1 

1 
F'(zs+i) - F'(zs) 

[vs+1 
_ us] 

[vs+1 
- 7Js] 

If z, z,, z,, +1 and F(. ) are symmetric about 0, it follows that: 

ýý ýf (-z) ( 
1 

-z 

f(z) 
z 

111 

Et =f (0) 
0 

(1) 

F(-z) =1- F(z), F(O) = 1/2 

In this case, we insert the cutpoint 0 between two cutpoints zs and zs+1. So 
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We have: 

1ý 
Y D=f (ý) 

[F(z) - 0.5] 

[F(z) - 0.51 
[J(O) 

( 
1 Cf(z)C [2F(z) - 1] \ 

D 

) 
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- f(o) Cý[f(z)(i)f(O)()] 
f (Z) 1 )_ ( 

_Z)i 
1 
0 

(Z) 
1Z )i 

z-f (z) 
()J [f(z) ll() l- 

f ýz) 
( lz 

lý l 

1f (z) 
- 

f(0) f (z) 
- 

f(ý) T 

zf (z) 
)C 

zf (z) 
ý 

ýý 

2zf(z) 
)( 

2zf(z) C )r) +2 I/f 
«) -f (z) 1(f (0) -f (z) T 

zf (z) /\ zf (z) 
)- 

After simplification, D has the form: 

D= 
1 4[f (0) -f (z)]2 000)1 

[2F(z) - 1] 
(04 

z2f (z) 1-(0 4z 2f (z) 

And finally: 

4[f (0) -f (z)]2 

2F(z) -1 (3.15) D=0 
00 

The first diagonal entry of the matrix D is positive. This explains why all 

the criteria (except the e2-criteria) increase when we add a cut-point of zero 

between two symmetric cut-points. In the case of the e2-criteria, because the 

vector e. 2 = (0,1), the values of the criteria stay the same when adding a 

cut-point of zero between two symmetric cut-points. 

T 
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X 

In the general case, when z3, zt, z3+1 are not necessarily symmetric, we have 

the following formula for the matrix D: 

1 
D-x 

F(z.,, 
-i) -- F(zt) 

x f(z. 
ý+1) 

1 

J- 
f (zi) 

\ 

1/] 

LJ 

(Z��) 
(1 

1(z. s+i zt \ Zs-4-1 

) 

1 
F(zs) 

X 

X 
[f(zt) 

(Zt' )- f(zs) ( ls) 1 [f(zt) 
1 

F'(zs+i) - F'(zs) 

( 
1 
zt -f ýzs) 

f (z 
i) (y11 J- 

f (zs) 
(1)] 

zLf 
(zs+, ) 

(z 

+1 

The m atrix D will have the form: 

-f(zt) 
( 

(I)] 

69 

1 )IT 

zt 

T 

)- f(z, ) ( 
1 )IT 

D=( bb1 (3.16) 

We will illustrate that the matrix D is a non-negative definite matrix. One of 

the conditions for the matrix D of the form 3.16 to be non-negative definite 

is that it satisfies: 

a>0 
c>0 

1 DI >0 

Another necessary and sufficient condition for a matrix to be non-negative 

definite is that all of its eigenvalues are non-negative. We will use the second 

condition to check for the non-negative definite property of the matrix D. In 
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older to do that, we will calculate the minimum eigenvalue of matrix D and 

slim that it is non-negative. 

The eigeiivalues of matrix D (denoted by A) are the solutions of the following 

equation: 

ID - AIJ =0 

(a _ A)(c -A) - b2 =0 

, \2 - (a + c), \ + (ac - b2) =0 

Tlie Solutions are: 

A1,2 = 

ý 1,2 - 

(a + c) (a + c)2 - 4(ac - b2) 
2 

(a+c)± (a 
-c)2+4b2 

2 

So the smaller solution (smaller eigenvalue of matrix D) is: 

_ 
(a+c) - (a-c)2+4b2 

ý2 
2 

with a, b and c being functions of zs, zt and zs+1 

Now we will find the minimum value of the smaller eigenvalue of D. If this 

lninilnuln value is non-negative, it follows that all the eigenvalues of D are 

noel-negative and D is also non-negative definite. To search for the minimum 

value of the smaller eigenvalue of matrix D, we use a multiplicative algorithm. 

For convenience, we transform the variables as follows: 

Let zs = z1, zt = z2, zs+1 Z3- 

Pi = F(zi) 

P2 = F(z2) - F(zi) 

Pi = F(z3) - F(z2). 
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P4 =1- F(23)- 

Note. that P, ?0 and EP=1. Now the problem can be stated as follows: 

Find (Pi, P2, P3, P4) that minimizes the function: 

(a+c)- (a-c)2+4b2 
ý2 ='\(P1, P2, P3, P4) =2 

with the constraints: 

PI, P2, P3, P4 >0 

Pl+P2+P3<1 

orP1+Pz+P3+P4=1 

Ne cannot determine the minima of P1, P2, P3, P4 explicitly. Numerical tech- 

niques are needed. We use the following multiplicative algorithm: (see Man- 

dal and Torsney (2000)) 

(r+1) 
_ 

P(r)17b(x(r+l)) 

P' 
ý. ý 

1 P(r)ýi(xýr)) 

iii which: 

" in(. ) is a positive increasing function (e. g. m(z) _ ß(6z)), S=1 

" ., 
(r) 

= clýr) = DA2/8P, IP= p(r) or 

" xi = F3 (r) = der) - P(r) d(r) 
, which is a directional derivative of A2. 

This algorithm has some important properties needed to be considered. We 

will explore this algorithm and such properties in more detail in the next 

chapter. 

This algorithmn is for finding the maximum value of a function. Since our 

purpose is to find the minimum value of the eigenvalue A2, we will find the 

maximum value of the function -A2. Let A3 = -A2. We will make the choice: 

a! ý 

-4EP 
a3 

j=1,2,3,4 (3.17) 
CýPj i ÖPi ' 

2=1 
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So we need to calculate: 

a, ý 33 191ý3 äz3 
= äz Opi i 1,2,3 ' Opi -ý, 

(a -+ L') - 
(Cl 

- C)2 _i- 4b2 
ý3 2 

Here are the formula for OA3/özj: 

72 

(3.18) 

a, A, 3 1 aa ac 

cýz, 2ýaz, 
+azj 

1 Oa ac aa ac ab I + 2a- -2 a- + c- +2c -+ 8b- 
2 (a- c}2+ 4b2 

[ 
az, C azj azj azj azj 

Aiid it follows that we need to calculate: 

(l = 

ý) 
- 

aa 
oz, 

Ü(1. 

Ozz 

Lf (z3) -J 
(z2)12 

+ 
[f (z2) 

-f 
(zl)12 

if 
(z3) 

-f 
(zl)12 

F(z3) - F(z2) F(z2) - F(zi) F(z3) - F(zi) 

aý 
Oz3 

2f'(z1) 
f(z3) - f(zl) 

_ 

f(/z2) - 
f(zl) 1 

\ 
[F(z3) 

- F(z1) F(z2) - F(z1) 
f if 

( z2) -f 
((z1))2 

\f 
(z3) 

-f lz1))2 
1 

+f (Z, ) 
ý(F'(z2) 

- 
F\z1))2 (F(z3) - 

F(zl))2J 

ý(z2) 
f(z2) -J 

(zi) 

_f 

(z3) 
-f 

(z2) 
2f 

1 [F(z2) 

- F(z1) F(z3) - F(z2)J 

+f (z2) 
`(f (z3) 

- 
f(Z2) )2 

- 

(f (z2) 
-f 

(z1))1 

L(F(z3) - F(z2))2 (F(z2) 
- F(z1))2 

2 fi(z3) 
ýf (z3) 

-f 
(z2) f (z3) 

-f 
(z1) 

F(z3) - F(z2) F(z3) - F(z1) 

+f (z3) 
(f (z3) 

-f 
(z1))2 (f (z3) -f (z2))2 1 ý(F(z3) 

- F(z1))2 (F(z3) - F(z2))2 

if 
(1,3) 

-f 
(z2)] 

iz3f 
(z3) 

- 22f (z2)] 
+ 

[f (z2) 
-f 

(zl)J [z2f (z2) - zlf (z1)I 

F(z3) - F(z2) F(z2) - F(zi) 

_ 

If (z3) 
-f 

(zl)I [z3f (z3) - zlf (zl)l 

F(z3) - F(z1) 
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8b -f/(zl) 
[Z2f(Z2) 

- zlf (z1)1 
- if 

(z2) 
-A Z1)1 [f (z1) + zlfl(zl)1 

Oz1 F(z2) - F(z1) 
J 

l(z1)1 

+J 
l(z1) [z3f (z3) 

- z1f ('z1)}1 + [f ('z3) 
-f 

(Z1)1 
J 

[f (. Z1) + z1{ 

F(z3) -- F(z1) 

+f 
(z1) [f (Z2). - f (Z01 ( 

lz2f 
(z2) - z1f (z1)1 

(F(z2) - F(z1))2 
f (z1) j (z3) -f (z1)1 ( 

lz3f 
(z3) - z1f (z1)1 

(F(z3) - F(z1))2 

Ob 
Ozz 

-ff(z2) 
[z: 

3f 
(z3) 

- Z2f(Z2)] - 
[f (z3) 

-f (z2)] [f (z2) + z2fI (z2)] 

F(z3) - F(z2) 

+f'(z2) 
[z2f (z2) 

- zlf (z1)l + [f (z2) 
-f 

(zl)l [f (z2) + z2f'(z2)] 

F(z2) - F(zi) 

+f 
(-2) [f (z3) 

-f 
(z2)}} 

1 
[z3f (z3) 

- z2f (z2)}} 
J 

(F(z3) - F(z2))2 
f (z2) [f (z2) 

-f 
(zl)l [z2f (z2) 

- zlf (zl )l 

(F(z2) - F(zi))2 

Ob 
al': 3 

(_ 

-fI 
(z3) [z3f (z3) - z2f (z2)] 

- 
[f (z3) 

-f 
(Z2)] [f (Z3) + z3ft(z3)] 

F(z3) 
If 

F(z2) 
tt 

+f 
f(z3) Lz3f (z3) - zlf (zl)l + [f (z3) 

-f 
(zl)I 

[f 
(Z3) + z3fl(z3)] 

(( 
F(z3) - F(zl) 

+f 
(z3) 

if 
(z3) 

-f (zl)l [z3f (z3) - zlf (zl)] 

(F(z3) 
- F(z1))2 

f (z3) [f (z3) 
-f 

(z2)] [z3f (z3) 
- z2f (z2)] 

(F(z3) - F(z2))2 

z3f (z3) 
- z2f/(z2)12 [z2f (z2) 

- zlf (zl)]2 
l'z3f 

(z3) 
- Zlf (zl)]2 

F(z3) -" F(z2) 
+ 

F(z2) 
- F(zi) F(Z3) - F(zi) 

o(' -`! 
[J'(-1) + zlf'(z1)1 1z2f (z2) 

- zlf (z1)1 f ('z1) [z2f (z2) 
- zlf (zl)]2 

F(z2) - F(zi) + 
F(z2) - F(Z1) 

2 if 
(z1) + zlf'(zl)1 [z3f (z3) 

- zlf (z1)1 f (z1) [z3f (z3) 
- z1f (z1)] 2 

F(z3) - F(z1) (F(z3) 
- F(z1))2 
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C3(' 

0, --'z 

ac 

C) ý: ý 

F(zs) - F(zi) (F(zs) - F(zi))2 

We also need to calculate 
a7P' 

where j=1,2,3 and i=1,2,3,4. 

W'e know that: 

oz, 

F(z1) = Pl ---> zi = F-1(Pi) 

11 özl äzl 

aPi - OF(PI)/OP, f(Pi)' aP2 OP3 0 
F(z2)-F(zl)=P2-->z2F-1(P1+P2) 

0z2 8z2 111 Öz2 

OPI 0 Pi aF(Pl + P2)/OP, aF(Pl + P2)/, 9P2 f (Pi + P2)' aP3 

F(z3)-F(z2)=P3--+ z3=F-1(P1+P2+P3) 
az3 az3 az3 I 

aPl 5P2 5P3 f(Pi + P2 + P3) 

Froiii the above formula, we can calculate 
aP 

in 3.18. In order to calculate 
OA`; 

in 3.17, we extend the form of A3 from the function of (Pr, P2, P3) to the 
aP, 
functiori of (Pr, P2, P3, P4) as follows: 

A: 
3 

I 

74 

(z2) + 22fI (z2)1 ýz3f (z3) 
- z2f (z2)] 

+f 
(z2) 

`z3f 
(z3) - z2f (z2)12 

F(z3) - F(z2) F(z3) - F(z2) 

ýý 
ýf (z2) + z2f f(z2)] 

lz2f 
(z2) - zlf (zl)l 

-f 

(z2) [z2f (z2) - zlf (zl )12 

F'(z2) - F(zi) (F(z2) - F(zi ))2 

ý [f (z3) + z3f I (z3)) [z3f (z3) - z2f (z2)] f (z3) [z3f (z3) - z2f (z2)12 

F(z3) - F(z2) F(z3) - F(z2) 
Z ý. f (ti3) + ti3fl(ti3)] `z3f 

(z3) 
- zlf (z1)l f (z3) 

lz3f 
(z3) 

- zlf (z1)J2 

_ A3(Pl, P2, P3) 

-ý 
[A3(Pl, P2, P3) + A3(1 - P2 - P3 - P4, P2, P3) 

+A: 3(Pl, 1-P1-P3-P4, P3)+a3(Pi, P2)1-P1-P2-P4)] 

0 

_ ý3(P1, P2, P3, P4), P1 +P2+P3+P4 =1 
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Wo have: 
aý3 aÄ3 1a aa3 

-up j=1,2,3 (3.19) 
0 P, -4 

j=, 
äP, 

al\3 09A3 

aP4-0 `äP' 3 -1,2,3 
j=1 7 

(3.20) 

It then follows that the directional derivatives of )%3 and .3 are identical 

ua, iiielV 

F) - F(ä: ') _ 
öa3 

Pz öa3 
,j1,2,3,4. j-i- aP, -ý Opi 

allowing for OA3/OP4 = 0. 

Now, we can start using the algorithm with the initial values for Pi, say 

P(°) =i ý ,ý 
Using this algorithmn, we see that all the minimum values of the smaller 

ei , eilvnlue (denoted by A) of the matrix D, whatever the distributions of the 

cutpoints, are always positive but approximately zero. 

'We quote the results from running the multiplicative algorithm for the case 

of the logistic distribution in the table 3.18 below. Note that in the table 

3.18, the maximum values of A3 are negative, which means the minimum 

values of A2 are positive. 
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Table 3.18: Results: finding minimum eigenvalue using a multiplicative al- 
gorithin for logistic distribution 

Iteration Directional derivative P; A3 

1971 -0.000000023623027 P1=0.2053 0 

0.000000013293094 P2=0.7019 

-0.000000035028102 P3=0.0926 

-0.000000065153065 P4=0.0000 

1972 -0.000000028266256 P1=0.2053 0 

0.000000013273539 P2=0.7020 

-0.000000035058472 P3=0.0926 

-0.000000028361215 P4=0.0000 

1973 -0.000000028270197 P1=0.2052 0 

0.000000013256412 P2=0.7021 

-0.000000035493534 P3=0.0926 

0.000000069396156 P4=6.9497e-005 

1974 -0.0000000382741231 P1=0.2052 0 

0.0000000813234841 P2=0.7021 

-0.0000000888081969 P3=0.0926 

0.0000000696381278 P4=0.0000 
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So both eigenvalues of the matrix D are non-negative. We now can conclude 

that itiatrix D is non-negative definite. Remember that D is the difference 

between the information matrix after inserting the cutpoint zt between two 

other cutpoints z, and z,,, (New I,, ) and the matrix before inserting this 

cutpouit. The matrix D is non-negative definite, which means if we insert a 

cut, -point between 2 other cut-points, the criterion values always increase. 

This coiifirnis the validity of our general results about the increasing tendency 

of the criterion values when the number of cutpoints increases. 

In the next chapter we will investigate the multiplicative algorithm in more 

detail and the way of using it to find optimal cutpoints. 

3.5 Contour plotting 

3.5.1 Introduction 

We now produce contour plots in some situations. This allows us to relax 

the assumption of symmetry made in the above calculations. 

We focus on investigating triangle plots and rectangular plots in three and 

four category cases. For the triangle plots, we have three cell probabilities 

01,02,0:. So producing the plots is straight forward. We use rectangular 

plots, however, to deal with four cell probabilities, say 01,02103 and 04. We 

reduce the problem to two dimensions by imposing constraints on the cell 

probabilities. A sensible constraint is 01+02 = 03+04 = 1/2. This constraint 

snakes sense if we want the current median to be a cutpoint. 

3.5.2 Triangle and square contour plots 

For three categories, we can use triangle plots to depict criterion values. The 

triangle contour plot is a way of dealing with the constraint that the three 
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Figure 3.2: The triangle contour plot 

0.0 0.5 1.0 

X 

78 

cell probabilities should suns to 1. In our case, we need to assess the criterion 

values with respect to 3 cell probabilities 01102 and 03. Figure 3.2 presents an 

equilateral triangle such that the sum of the perpendiculars of any point to 

the three sides equals one. At each vertex of the triangle, one cell probability 

equals one and the two remaining 9's equal zero. Every point (for instance 

point A) lying within the triangle represents a set of cell probabilities. From 

point A, if we draw the lines which are perpendicular to the respective sides 

of triangle, we have the measures for the cell probabilities. In this particular 

case, AM-02, AN=01, AP=03andAM+AN+AP=1. 

Similarly in the four category case we use the rectangular plot. In our case, 
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we impose the constraint on the cell probabilities that 01+02 = 03+04 = 1/2. 

So we can substitute for 02 in terms of 01 (02 =1- 01) and 04 in terms of 

0 (0.1 =1- H3) leaving two free variables satisfying 0< 01 < 1/2 and 

0< 03 < 1/2. So we plot criteria over the square defined by these ranges. 

Here are some contour plots we produce. 
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Figure 3.3: Contour plot: logistic distribution and D-opt 
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Figure 3.4: Contour plot: normal distribution and D-opt 
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Figure 3.5: Contour plot: double-expo distribution and D-opt 
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Figure 3.6: Contour plot: double-reciprocal distribution and D-opt 
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Figure 3.7: Contour plot: logistic distribution and A-opt 
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Figure 3.8: Contour plot: normal distribution and A-opt 
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Figure 3.9: Contour plot: double-expo distribution and A-opt 
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Figure 3.10: Contour plot: double-reciprocal distribution and A-opt 
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3.5.3 Some comments about the contour plots. 

84 

" Normally, the plots do not show the highest level of contours. However, 

we can roughly determine the relative positions of the optima on the 

plots. 

. For the first two distributions where k=3, the logistic and normal 

distribution, the results verify the results we obtained on using the 

search method. The optimal criteria and optimal cutpoints in the two 

methods are very similar. From the contour plots, we see that the op- 

timal designs should lie on the vertical perpendicular of the equilateral 

triangular starting from the point (02 = 1,01 = 03 = 0). The vertex 

positions of optima also confirm our assumption about the symmetry 

of the cutpoints, 01= 03, i. e. the optimal results have the form -z*, z*. 

It was justifiable to search along perpendicular as we did. 

. In the two other triangle contour plots for the symmetric double expo- 

nential and double reciprocal distributions, there are interesting results. 

The plots show that there are two optimal design points in two differ- 

ent positions. These two points are symmetrical with respect to the 

perpendicular from the top vertex of the triangle. For the double expo- 

nential, the optimal criterion value is -1.128, and the two optimal sets 

of cutpoints are (-1.609,0) and (0,1.609) and the two respective sets 

of cell probabilities are (0.1,0.4,0.5) and (0.5,0.4,0.1). For the double 

reciprocal, the optimal criterion value is -2.08, optimal cutpoints are 

(-1,0) and (0,1) and optimal cell probabilities are (0.25,0.25,0.5) and 

(0.5,0.25,0.25). We see that the optimal criterion values in these two 

cases are larger than the ones we found using the search method. The 
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reason is that we assumed symmetric optimal cutpoints in the search 

method but in fact, by using the graphical approach, the optimal cut- 

points are not symmetric. 

" In the four-category case, for the rectangular contour plots for all four 

symmetric distributions, we can see that the optimal designs should lie 

on the diagonal line of the square, the line satisfying e1 + 03 = 1/2. 

So B2 = 03 and 01 = 04 and hence, this confirms that our previous 

assumption of symmetry of the cutpoints is valid 

Here are some other contour plots for ei- and e2-optimality 
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Figure 3.11: The contour plot: k=3,1 point, logistic dist and el-opt 
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Figure 3.12: The contour plot: k=3,1 point, normal dist and ei-opt 
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Figure 3.13: The contour plot: k=3,1 point, double-expo dist and el-opt 
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Figure 3.14: The contour plot: k=3,1 point, double-reciprocal dist and 
cl-Opt, 
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Figure 3.15: The contour plot: logistic distribution and e2-opt 
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Figure 3.16: The contour plot: normal distribution and e2-opt 
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Figure 3.17: The contour plot: double-expo distribution and e2-opt 
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Figure 3.18: The contour plot: double-reciprocal distribution and e2-opt 
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3.6 Some results for asymmetric distributions 

and three category case 

In this section, we use the search method to find the optimal solutions 

for some asymmetric distributions, namely the complementary log-log and 

skewed logistic. Because the distributions are not symmetric, the cutpoints 

arc not in the symmetric form as well. That is why, we consider the three 

category case only. The optimal cutpoints in the three category case have 

the following form: 

.* z. = zl, z2 

The asymmetric distributions and their cdf, pdf functions are given in the 

table 3.19. 

Table 3.19: Some asymmetric distributions considered 

Case Distribution Fi(z) fi (z) 

5 Complementary log-log 1- exp(-exp(z)) exp(z - exp(z)) 

6-9 Skewed logit {1 + exp(-z)}-'n m{F1(z)}'n-1 f1(z) 

6 ri, =1 /3 ... ... 
7 rn, =2/3 """ ... 
8 rrr=3/2 """ ... 
9 rrb=3 

The tables of results and illustrated triangle plots are given below. We can 

see that the optlnral cutpoints are not symmetric. The contour plots also 
illustrate this. 
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Table 3.20: Numerical results for D-optimality, k=3 

Distribution zi z2 F(zi) F(z2) O(zi, z2) 

Coin. log-log -1.3000 0.9500 0.2385 0.9246 -0.3994 
Skewed logistic 

m= 1/3 -4.2300 0.4900 0.2429 0.8527 -2.5806 

rn = 2/3 -2.1300 1.1300 0.2242 0.8297 -1.9015 

rin = 3/2 -0.8800 1.8400 0.1587 0.8016 -1.2713 
rn =3 -0.0200 2.4700 0.1212 0.7838 -0.9033 

Table 3.21: Numerical results for A-optimality, k=3 

Distribution zi z2 F(zi) F(z2) O(zi, Z2*) 

C0111. log-log -1.1733 0.8938 0.2660 0.9132 -2.5909 
Skewed logistic 

rn = 1/3 -4.2400 0.1800 0.2421 0.8167 -10.894 

Tnn = 2/3 -1.5600 0.9100 0.3112 0.7981 -6.4078 
= 3/2 -0.7400 1.5700 0.1835 0.7531 -4.3012 

Tn =3 0.0500 2.9200 0.1346 0.8542 -4.1582 

91 
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Table 3.22: Numerical results for el-optimality, k=3 

Distribution zi z2 F(z1) F(z2) O(zi , z2 ) 

Corn. log-log -0.6800 0.5400 0.3974 0.8202 -1.3601 
Skewed logistic 

rI1= 1/3 -0.6300 0.8700 0.7030 0.8899 -8.0944 

111 = 2/3 -0.6700 0.7800 0.4857 0.7775 -4.5057 

In = 3/2 -0.6900 0.5700 0.1930 0.5105 -2.7160 

rn =3 
F 

-0.5800 0.3300 0.0462 0.1968 -2.5848 

Table 3.23: Numerical results for e2-optimality, k=3 

Distribution zi z2 F(zi) F(z2) O(zi, Z2*) 

Coin. log-log -1.6900 1.2900 0.1684 0.9735 -0.9278 
Skewed logistic 

rtt, = 1/3 -5.0500 1.6400 0.1853 0.9426 -1.2162 

in 2/3 -3.0000 1.9400 0.1310 0.9143 -1.0835 

'tit = 3/2 -1.4600 2.4100 0.0818 0.8789 -0.9882 

it?, =3 -0.5000 2.9800 0.0538 0.8618 -0.9509 

92 
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Figure 3.19: The contour plot: k=3,1 point, comp-loglog dist and D-opt 
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Figure 3.20: The contour plot: k=3,1 point, skewed-logit dist (m=1/3) and 
D-opt 
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Figure 3.21: The contour plot: k=3,1 point, comp-loglog dist arid er-opt 
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Figure 3.22: The contour plot: k=3,1 point, skewed-logit dist (m=1/3) and 
(2-opt 

N 
N 
N 
L 
69 
N 

F 

0.0 0.5 1.0 

z$thetal 



Chapter 4 

A Multiplicative Algorithm for 
Finding Optimal One Point 
Designs 

In the above chapter, we used search methods to find optimal results for 5 

criteria, in the case of 3,4,5 and 6 categories and for 4 symmetric distribu- 

tions. Search methods are limited to a small number of categories. In the 

case of symmetric distributions, by imposing the assumptions of symmetric 

ciltpoiiits. we investigate up to the six category cases (i. e. up to two variable 

optimization problem). In asymmetric distribution cases, search methods 

are limited to the three category case. For a large number of categories and 

especially, asymmetric distributions, we need more sophisticated numerical 

optimization techniques. We need an algorithm. We already used a multi- 

plicative algorithm in chapter three to find the minimum value of the smaller 

eigenvalue of the difference between two information matrices to check for its 

ncýii-negative definitiveness. This algorithm will be introduced in more detail 

in this chapter with its properties and the way of using it in our particular 

problem (P1). At the end of the chapter, the results from using the algorithm 

will be presented for both symmetric and asymmetric distributions. 

95 
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4.1 Introducing the algorithm for the prob- 
lem (P1) 

In constructing optimal design problems, explicit solutions are often not pos- 

sible, except in some simple cases. Problem (P1), described in chapter one 

above, can not be solved analytically. That is why numerical techniques 

such as multiplicative algorithm noted above must be employed. This multi- 

plicative algorithm has been devised for a constrained optimization problem 

(particularly for the design problem) which requires the calculation of an 

optimizing probability distribution. 

4.1.1 A multiplicative algorithm 

Problem (P1) states that we have to choose proportions pi to maximize 

sonic criterion 0(p) subject to the constraints pi > 0, ßk1 pi = 1, i= 

1,2, ... , 
k. The criterion gy(p) can be a function of the information matrix 

as we state in chapter one. 

In our particular context, an example of problem (P1) turns out to be a trans- 

formation of the problem of determining the cut-points z1, z2, ... , zk_1 opti- 

uially, namely the problem of determining the cell probabilities 01,02, 
... , 

Ok 

to optimize a criterion (although in the first instance we only have an explicit 

dependence on Br1 02, 
... 

Ok_1). We can consider this objective problem as 

another version of problem (P1). This problem has two constraints on ei, 

namely 0, > 0, i=1,2, 
... , 

k, ßk Oi = 1. An iteration that preserves 

these constraints and has some suitable properties is the following multiplica- 

tive algorithm. As introduced before in chapter three, we can describe this 

algorithm by the following formula: 
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8(r)l7trx(r+1) 
�b) B(r+1) 

_jl7 ý 
.k 

8(r), ý(x(r) fi) 2-1 z2' 

97 

(4.1) 

in which: 

"S is a positive free parameter. 

" it (z, 6) is a positive increasing function of z for given S (e. g. m(z, S) _ 

4) (Sz)). 

" rjý') _ djr) = 0,0/00j 10 = 0(r) or 

" ý; 
(T) 

= 
; (r) 

= - O(r) d, ( ), the jth vertex directional derivative. 

This kind of iteration was first proposed by Torsney (1977), taking x= 

d, rn(d, S) = (P, with S>0. This requires derivatives to be positive. Sub- 

sequent empirical studies include Silvey, Titterington and Torsney (1978), 

which is a study of the choice of S when m(d, 6) = d6, S>0. Torsney (1988) 

mainly considers rn. (d, S) = e6d in a variety of applications, for which one cri- 

terion a)((I, S) could have negative derivatives. Torsney and Alahmadi (1992) 

consider other choices of 'rn(d, S). Mandal and Torsney (2002a) consider sys- 

tematic choices of rrt(., . 
). 

Titterington (1976) describes a proof of monotonicity of m(d, 6) =d in the 

case of D-optimality. Torsney (1983) explores monoticity of particular values 

of S for particular o(p). Torsney (1983) also establishes a sufficient condi- 

tion for monotocity of rn(d, S) = da, S= 1/(t + 1) when the criterion 0(p) 

is homogeneous of degree -t, t>0 with positive derivatives and proves this 

condition to hold in the case of linear design criteria such as c-optimality or 

A-optimality criteria when t=1 so that 6= 1/2. 
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Convergence results depend on properties of the criterion function 0(p), on 

the function nz(z, S) and on J. In our case later on, we will consider some 

standardized criteria mentioned above, take 6=1 and m(z, 6) to be of the 

form of nornna. l cdf function. 

4.1.2 Properties of the algorithm 

The multiplicative algorithm possesses the following properties considered 

by Torsney (1988), Torsney and Alahmadi (1992) and Mandal and Torsney 

(2002a). 

1. H(') is always feasible (i. e. ON > 0,1T e(r) = 1). 

2. FO {ONr>, 0(r+1)} >0 with equality when the xj corresponding to nonzero 

0, are equal ( in this case 0(ß+1) = 0(')) 

Let rrt(x) = rn(x, a). Consider the equality case where xj have a com- 

mon value, say d. We have xj = d3 =d or xj = Fj = 0. Thus, with 

: x"=dOr x=0: 

eýr+i) 3 

8ýT m(xj) 
ýi 

1 
eiT)m(xx) 

BýT ý m(x) 

m(x) I: k 1 acT) 
ON i (4.2) 

Consider the case x, = dj or x. = F; 

The inequality property (i. e. F, ý{O(r), O('+') }> 0) can be seen by letting 

a positive random variable X take the value xj _ý= dj with 
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probability O(r) 
. 

Then: 

co-U{X, M(X)} 
E{m(X)} 

Proof: 

Fýb {B('') 
, B(rt1) 1 

je(r+1) 
^ 8(r)ýT d 

i. e. 

k 
ý ý8(r+1) 

ý 
i=1 

kk 
ý eiT+1) di - 

1: 82r) dz 
z=1 i=1 

8iºn(di)di 

ýý-19irn(di) 
i-1 

Sidi 
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(4.3) 

(4.4) 

9im(di)] 

(4.5) 

[iOirn(d)dz] 

Lýý 1 
BiCýiJ 

Lr1 

ý=1 eim(d2) 

FF{B(T) 8(T+1)} = 
Cov{X, m(X)} 

Elf (X)} 

The argument then is that the covariance between X and m(X) must 

be lion-negative if m(X) is increasing in X. Thus an increase in the 

criterion can be obtained by a partial but possibly not a full step from 

ON in the direction of 8(T+1) 

3. Ail iterate 0(r) is a fixed point of the iteration if the derivative 8cß/89j(r) 

corresponding to non-zero 9(r) are all equal. This is a necessary but 

not a sufficient condition for 0(r) to solve problem (P1). 
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4.2 Using the algorithm to find optimal one 
point designs 

We now formulate the algorithm in our particular context. 

In the formula for the algorithm, we will choose 
P) to be: 

k 

Xi 8i 
aä 

,3=1,2,..., k. (4.6) 
Z=1 

Note that the function is a criterion function as defined in problem (P1). 

We will use the function m(x, 8) = ID(5x), (the normal cdf function) because 

it is a symmetric function, has the range of value from 0 to 1 and the value 

of 0.5 when x=0. In our case, we use 5=1. Now we need to determine the 

partial derivatives 0-0/80i 

At the moment, we make clear our notation: 
In the first instance, our criteria depend on k-1 cutpoints (z1, z2) ... , zk_1) 

Let: 

z= (z1) z2,..., zk-1) 

and 

(91,82,..., 9k-1), 

the first k-1 cell probabilities. 

8 and z are one to one related in the following way: 

B1 = F(zi) -' zl = F-1(91) 

02=F(z2)-F(zl) --+F(z2)=61+92--ßz2=F-1(91+02) 

93=F(z3)-F(z2)--ýF(z3)=01+02+03-ºz3=F-1(91+92+ 03) 

Bk. 
-, = F(zk-1) - F(zk-2) -' F(zk-i) = 01 + 02 +... + Bk-1 --> zk-1 z-- 

F-' (01 + B2 + ... + Bk-1) 



CHAPTER 4. A MULTIPLICATIVE ALGORITHM 101 

Note that any criterion bi(z) can be transformed to a criterion, say ý(B) _ 

4' { ti (H) } which explicitly depends on the first k-1 cell probabilities. It does 

not depend on Bk: 

O =1-F(zk-1)=1-E, -183 
Iii general we have z2 = F-' (E'3=1 B; ), i=1,2, .. 
Since: 

0,0(q) k-I aý az; 
08, - aB_ L. 

]=1 
8zj aei, 

we have.. 

aý) 
- 

aý) 
on 

A 
8z' 

where: 

A= 

z= (zl, z2,..., zk-1); 

az 
i I 

dH 
k 

00 

2 U(72 

Oz 

000 

I k-1. 

i=1,2,..., k-1. (4.7) 

B= (el, 82, 
..., 

ek-1) (4.8) 

aI 
ý a4-1 

aT2 
c7zk-1 

DT3 

äzk-1 

k-1 

The computation of aV)/8z depends on particular criteria. Below 

fornnilae for 0''/ 3z for some criteria considered: 

Assinne that 'ý) _ c/ (I, ), where Iz is the Fisher information matrix. 

I. D-optimality : O(Iz) = log det(Iz) 

2. A-optirnality -tr(Iz i) 

3. c°i-optiinality -ei I 

dz = tr 
\Iý' 

ý/ 

(4.9) 

are the 

- a'O - 
1- ( r-2 ar, 1 ci lz 

zj 

ei Iz1ý1zýe1 
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h. e2 optirnalitY : '0(Iz) = -e2lzre2 -ý 
ý= 

e2 Izr (91 Iz-r e2. L/, -, j - 

where: el = (1,0)T and e2 = (0,1)T 

\Ve see that in all cases, 

V\ c' 11E'C'. u Lc) calculaLe 

depends on Iz-' and 
aiz 

z3 

J 

From formula (3.14), we know: 

I,, = ZD fHDe 1HT DfZT 

Using the product rule for derivatives, we have: 

älz 

Where: 

Z= 

Tlieii: 

2111(1: 

(DJHD1HTDfZT) 
+ (ZLHD1HTDIZT) 
+ CZDfHaä e1HTDfZTI 

J/ 

+ 
(ZDfHD1HTZI aT 

J/ 

+ 
(ZDIHD1HTDII 

özj 

C1 Z1 

aZ 
ätit = 

I ... 1 
... 11 

Z2 ... Zt ... zk-2 zk-1 

C00... 000 
00... 100) 

Df= dittg lf (zi), f (z2), 

..., 
f (zt), 

..., 
f ('7'ýC-i) 

\\ 
) 

Then: 
özt 

= diag C0,0, ..., f ý(zt), 
..., 0l 

/ 

102 
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and. 

Do 

Thou: 

aDe 1_ 2 
aDe 1 aDg 

az, 
DB 

az; --D. az, 

= diay(91, e2,... 
1e0 

= diag F(zi), F(z2) - F(z1), 
... ,1- 

F(zk_1)ý C //// 

aDe 
=f (z1) [diag(1, 

-1,0,0, ..., 
0)] 

äzl 

aDe 
= az2 

f(z2)[diag(0,1, -1,0,..., 0)] 

0zk-1 

OD© Jr. 
r" /n ýn rý I f\l 

= Jlzk-1)Lazagku, u, u, u,..., t, -1)ý 

103 

Note: 

" The matrix H does not depend on z 

" f'(zd) is the derivative of f (zj) or second derivative of F(zj). They 

have formulae which depend on particular distributions of Z. 

In the above formula, we have calculated 2-0 ö9 for i=1,2, ... ,k-1 since (8) 
Z 

only depended oil these cell probabilities. 

We now generate a function x(01102) 
... , 

Ok) with an explicit dependence on 
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0k-. 

ýflel, e2,.... ek/ 
_ 

[«o1o2.. 

. 
Ok_1) 

k 

+ 

Then: 

+ 7ý11 1- Eej5 e21 
..., 

ek-1) 

j=2 

too) 
+ (B1,1 

- e1 - 
j=3 

+4 
(81,82, 

..., Bk-2,1 -ý Bj - 8k)1 
j=1 

104 

L0 

aT i Falb ý a-tb all) \ 

Similarly: 

and for Ok: 

k-l 5B1 + o+ ý a91 - 
ae2 / 

k-1 ý(k 

k -ae -ý aBl 1 
-ý 7J 

J- 

ý k-' k-] 
J-. -- 

ýý k-1a, ß 
äe1-k äeß 

7=1 

+... + 

(4.11) 

OT 0,0 1 k-I 
80,8B; k-1: ö6, ,J=1,2, ..., k-1 (4.12) 

aý 1 k-l a, ý 
aBk k 

, /=1 
a8 , since ä9 =0 (4.13) 0 

7k 

alp alp 
äe, aek_, 
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Note that there is an alternative definition of q, (91,02, 
... , 

9k) as follows: 

Bk) 

+ 01"ý'(1 -E8j, 
82,..., ek-1) 

j=2 

/'jj11( 

k 

+ 824ý 
1 

e1i 1- e1 
-Z 

ej, 
..., 

ek-1) 

\ 
j=3 

ek'j'(e1, e2, ..., ek-1) 

+ 
k-2 

\ 
+ ek-l ) 

(el, e2, 
... , 

ek_2,1 -E 
Oi - ek I (4.14) 

j=1 

Using this definition, we recover the same formula for 
a8 

j=1,2, ... ,k 
9 

We note that: 

constant aqj a, 0 
ae; ae; 

In fact, zP and ' have the same Ft's, i. e. directional derivatives. 

4.3 The results 

tip this section, we use the multiplicative algorithm first to verify the results 

obtained using the search method for symmetric distributions and asymmet- 

ric distributions (three category case), and secondly to find the optimal set 

of cutpoiiits and respective set of cell probabilities for asymmetric cases. 

4.3.1 Symmetric distributions 

In chapter three, using search methods for symmetric distributions, we as- 

suiiied that the optimal cutpoints have symmetric forms. Using the algo- 

ritliin, it is not necessary to impose this assumption. Arbitrary cutpoints 

will be used. However, if the initial cell probabilities are equal and the distri- 

bution is symmetric, then the cutpoints in all iterations are also symmetric. 
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Ve start the algorithm from both equal and unequal initial cell probabilities. 

We now construct the formula for the derivatives of the pdf function for some 

symmetric distributions. 

" Logistic distribution. 

F(z) = 
ez 

1+ez 

f (z) = F'(z) = F(z)[1 - F(z)] 

f'(z) = F(z)[1 - F(z)][1 - 2F(z)] 

9 Normal distribution. 

f 
F(z) - (z) -1 e 

f (z) = F'(z) =1 e-z2/2 27r 

11 -x2/ f(z\ _ -z ýe 
2 

-_'f(y\ ! n- "- "J l"/ 

v Z7r 
9 Double exponential. 

Az) =1 e-Izl 2 

P(Z) se-1zl 
2 

Note that. s= sign(z) and f'(0) =0 

" Double reciprocal. 

f (z) = 
1(1 

+ Izl)-2 

f'(z) = -s(1 + IzI)-3 

Note that: s= sign(z) and f'(O) =0 
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Running the algorithm to verify the results we obtained by using the search 

inethod, we see that for the four symmetric distributions, namely the logis- 

tic, norinal, double-exponential and double reciprocal, the results are very 

consistent. The two sets of results are very similar. The algorithm converges 

very well (normally only fewer than 1000 iterations needed). However, the 

larger the number of categories is, the slower is the convergence of the algo- 

rithm. For example, in the case of the logistic distribution and D-optimality, 

we need about 300,450,700 and 960 iterations for the three, four, five and 

six category cases respectively for convergence. There are several elements 

which we can use to check for the convergence of the algorithm such as di- 

rectional derivatives or the values of cutpoints and criteria. In our cases, we 

consider that the algorithm has converged if all the directional derivatives 

reach the values which are less than 10-6. 

We use either equal or unequal initial cell probabilities to start the algorithm. 

In the case of equal starting cell probabilities, the initial values 69 = 1/k for 

Q, j=1,2, ... ,k with k being the number of categories. In the unequal 

case, we choose the initial cell probabilities arbitrarily providing that they 

sum up to 1. For example, we can choose the initial set of cell probabilities 

(0.2,0.3,0.5) for the three category case or (0.1,0.2,0.3,0.25,0.15) for 

the five category case. We quote here the results we obtained by using the 

algorithm in the case of the logistic distribution and D-optimality for the 

number of categories running from three to six. In the tables below, the 

first column contains the number of iterations needed for convergence. The 

second column presents the directional derivatives in each iteration. The 

third and the last column show the cutpoints and criterion value in each 

iteration. Using both equal and unequal initial cell probabilities, we obtain 
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the same optimal results but after different numbers of iterations. Note we 

explored other starting values but the algorithm always converges to same 

V211He. 
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Table 4.1: Solution: Logistic distribution, D-opt and k=3 

109 

Iteration Directional derivatives Cutpoints Criterion value 

316 -0.00000073 -1.46717329 -1.55667658 
0.00000043 1.46717329 

-0.00000073 
317 -0.00000071 -1.46718044 -1.55667658 

0.00000042 1.46718044 

-0.00000071 
318 -0.00000069 -1.46718740 -1.55667658 

0.00000041 1.46718740 

-0.00000069 
319 -0.00000067 -1.46719418 -1.55667657 

0.00000040 1.46719418 

-0.00000067 
320 -0.00000065 -1.46720078 -1.55667657 

0.00000039 1.46720078 

-0.00000065 
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Table 4.2: Solution: Logistic distribution, D-opt and k=4 

Iteration Directional derivatives Cutpoints Criterion value 

430 -0.0000011 -1.97916827 -1.24833985 
0.00000035 0 

0.00000035 1.97916827 

-0.0000011 
431 -0.0000011 -1.97917821 -1.24833984 

0.00000034 0 

0.00000034 1.97917821 

-0.0000011 
432 -0.0000011 -1.97918797 -1.24833984 

0.00000034 0 

0.00000034 1.97918797 

-0.0000011 

433 -0.0000010 -1.97919756 -1.24833984 
0.00000033 0 

0.00000033 1.97919756 

-0.0000010 
434 -0.0000010 -1.97920698 -1.24833983 

0.00000033 0 

0.00000033 1.97920698 

-0.0000010 
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Table 4.3: Solution: Logistic distribution, D-opt and k=5 

Iteration 

699 

700 

701 

702 

Directional derivatives 

-0.0000038 

-0.0000038 
0.0000058 

-0.0000038 

-0.0000038 

-0.0000038 

-0.0000038 

0.0000058 

-0.0000038 

-0.0000038 

-0.0000038 

-0.0000038 

0.0000058 

-0.0000038 

-0.0000038 

-0.0000037 

-0.0000038 

-0.0000057 

-0.0000038 

-0.0000037 

Cutpoints 

-2.50419943 

-0.84051687 

0.84051687 

2.50419943 

-2.50423229 

-0.84056083 
0.84056083 

2.50423229 

-2.50426492 

-0.84060450 

-0.84060450 

2.50426492 

-2.50429732 

-0.84064787 

0.84064787 

2.50429732 

Criterion value 

-1.07096211 

-1.07096193 

-1.07096175 

-1.07096158 
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Table 4.4: Solution: Logistic distribution, D-opt and k=6 

Iteration 

961 

962 

963 

964 

Directional derivatives 

-0.0000019 

-0.0000017 

0.0000012 

0.0000012 

-0.0000017 

-0.0000019 

-0.0000019 

-0.0000017 
0.0000012 

0.0000012 

-0.0000017 

-0.0000019 

-0.0000019 

-0.0000017 

0.0000012 

0.0000012 

-0.0000017 

-0.0000019 

-0.0000019 

-0.0000017 

0.0000012 

0.0000012 

-0.0000017 

-0.0000019 

Cutpoints 

-2.90566517 

-1.33064179 
0 

1.33064179 

2.90566517 

-2.90568127 

-1.33065938 
0 

Criterion value 

-0.97876512 

-0.97876511 

1.33065938 

2.90568127 

-2.90569727 

-1.33067685 
0 

-0.97876501 

1.33067685 

2.90569727 

-2.90571317 

-1.33069422 
0 

-0.97876507 

1.33069422 

2.90571317 
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We can see that the vertex directional derivatives in all cases are very close 

to zero. Thus, numerically, the optimality conditions are satisfied. These 

results also suggest that our assumption about the symmetry of the optimal 

cutpoilits in the cases of symmetric distributions is reasonable. Using the 

ailgoritluii for the case when the number of categories is larger than six, we 

also verify that the values of the criteria level off with k. For example, in the 

case of D-optimality and the logistic distribution, the values of criteria are 

-1.5567, -1.2483, -1.0714, -0.9784, -0.9198 and -0.8809 when k runs from 3 to 

8 correspondingly. 

4.3.2 Asymmetric distributions 

We know that for asymmetric distributions, the optimal cutpoints are not in 

the symmetric form. Thus, when the number of cutpoints is large, it makes 

the number of variables too large for search methods (normally more than 

two). We can have a high dimensional problem. The use of multiplicative 

algorithmn solves this difficulty. We now consider some asymmetric distribu- 

tions. namely the complementary log-log and the skewed logistic distribution. 

Table 3.19 in chapter three introduces the formula for the cdf function F(z) 

and pdf function f (z) of these two asymmetric distributions. In order to 

carry out the algorithm, we need the derivative of pdf function f'(z). 

" Complementary log-log: 

f(z) = exp[z - exp(z)] 

f'(z) _ [1- exP(z)] f(z) 

" Skewed logistic: 

Let F1(z), f, (z) and fi(z) be the cdf, pdf and first derivative of the pdf 
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of z in the case of the logistic distribution. We have for the skewed 

logistic distribution: 

F(z) = LF'1(z)1' 
f (z) = F'(z) = `mfl(z)[F1(z)]m-1 

f'(z) = rrifi(z)[Fi(z)]'-1 +`m(m - 1)[fl(z)12[F1(z)]m-l 

where -r. > 0. We choose the values of m= 1/3,2/3,3/2 and 3. 

Tables 4.5 to 4.24 below report the results obtained by using the multiplica- 

tive algorithm for two asymmetric distributions and four criteria D-, A-, el- 

and e2-optimality, the number of categories considered runs from three to 

six. In these tables, we quote the results on the optimal cutpoint z*, the cdf 

value F(z*) at z* and the optimal criterion value 0*(z*). 

Some comments: 

" As in the symmetric case, the algorithm converges very well for both 

distributions, for the four criteria and for the number of categories run- 

ning froin three to six. The number of iterations needed for convergence 

is almost the same as in the case of symmetric distributions. (We al- 

ready quoted the results for the case of the logistic distribution and 

D-optimality). Again, when the number of categories increases, the 

speed of convergence of the algorithm decreases. We also start the al- 

goritlnn with both equal initial cell probabilities and unequal arbitrary 

initial cell probabilities provided that they sum to 1. We also obtain the 

same solutions but with different numbers of iterations needed. Vertex 
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directional derivatives are also very close to zero. However, with the 

sa. ine numbers of the iterations, the directional derivative in the case 

of asymmetric distributions are normally larger than those in the case 

of symmetric distributions. For example, after about 950 iterations, 

we obtain directional derivatives less than 10-5 in the case of the lo- 

gistic distribution, D-optimality and 6 categories but these values are 

about less than 10-4 for the case of the skewed logistic distribution, D- 

optirnality and 6 categories. However, they still satisfy our convergence 

requirement (all directional derivatives reach the values which are less 

than 10-4). As we expected, the optimal cutpoints in the asymmetrical 

cases are not symmetric. 

. For the three category case, the results obtained by using the algorithm 

are very similar to those obtained by the search method. 

. The criterion value in each case also increases but levels off when the 

the number of categories increases. 
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Table 4.5: The results: D-optimality and complementary log-log distribution 

k z* F(z*) ]ý 1 z* F(z*) 2ý 2 z* F(z*) 3ý 3 z* F(z*) z* F(z*) 4ý 4 5ý 5 0*(z*) 

. 2978 0.9580 -0.3989 
q 

. 2389 0.9262 

1.5561 0.3350 1.2270 -0.0872 

. 1901 1 (0 0.7529 0.9670 
'S 

z* -2.2591 -0.6688 0.6724 1.3508 0.1172 

F( z*) 0.0991 04008 0.8590 0.9789 

z* -2.5610 -1.0083 0.2041 0.9447 1.4837 0.2194 

F(z*) 0.0743 0.3056 0.7066 0.9236 0.9878 
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Table 4.6: The results: A-optimality and complementary log-log distribution 

k- z1, F(Z1) z21 F(z2) z3ý F(z3) z4, F(z4) z5, F(z5) 0*(z*) 

3 -1.1726 0.8945 -2.5854 

F(z* ) 0.2662 0.9133 

4 z* -1.8183 -0.1945 1.0678 -2.1999 

F(z*) 0.1498 0.5609 0.9454 

z* -2.2158 -0.6880 0.4949 1.2755 -2.0220 

' F( z* 0.1033 0.3950 0.8061 0.9721 

G z* -2.6414 -1.1408 -0.0993 0.7737 1.3962 -1.9297 
F(z*) 0.0687 0.2735 0.5956 0.8855 0.9824 

Table 4.7: The results: el-optimality and complementary log-log distribution 

k zl, F(zi) z2, F(z2) z3, F(zg**) z4, F(z4) zý, F(z5) o* (Z*) 

3 z* -0.6792 0.5400 -1.3593 
F(z*) 0.3977 0.8204 

4 z* -1.1839 -0.0069 0.8166 -1.2510 
F(z*) 0.2636 0.6295 0.8959 

5 z* -1.6033 -0.4159 0.3404 0.9955 -1.2017 
F(z*) 0.1822 0.4829 0.7547 0.9332 

6 z* -1.9686 -0.7551 -0.0160 0.5653 1.1248 -1.1747 , 
F(z*) 0.1303 0.3749 0.6261 0.8279 0.9540 
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Table 4.8: The results: e2-optimality and complementary log-log distribution 

z* F(z*) 2+ 2 z* F(z*) z* F(z*) 3+ 3 4+ 4 z* F(z* ) 5+ 5 ý(z 

1.2909 

" 

-0.9163 

0.9736 F 

1ý * -2.7345 -1.1762 1.2291 -0.7954 

F(z*) 0.0628 0.2654 0.9454 

5 z -2.2158 -1.1644 0.0603 1.2431 -0.7952 

F( z* ) 0.0639 0.2680 0.6543 0.9687 

G z* -3.4835 -1.9499 -0.9253 1.0572 1.5647 -0.6961 
F(z*) 0.0302 0.1326 0.3272 0.9437 0.9916 

Table 4.9: The results: D-optimality and Skewed logistic distribution, rrt=1/3 

Fk 
z* F(z*) z* F(z*) 1 2+ 2 z* F(z*) 3ý 3 z* F(z*) 4ý 4 z* F(z*) 5+ 5 *(z* ýl) 

3 z* -4.1235 0.4906 -2.5781 
F(z*) 0.2516 0.8528 

4 z* -5.6530 -1.2682 1.0690 -2.2484 
F(z*) 0.1517 0.6032 0.9062 

5 z* -7.3804 -2.8261 -0.2490 1.5606 -2.0669 
F(z*) 0.0854 0.3824 0.7594 0.9384 

6 z -8.6235 -3.9515 -1.3136 0.3378 1.9763 -1.9704 
F(z*) 0.0564 0.2661 0.5961 0.8357 0.9576 
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Table 4.10: The results: D-optimality and Skewed logistic distribution, 

m=2/3 

l: z, F(zi) z2, F(z2* z3*, F(z 3 *) , F(z*) z 4* 4 zý F(zý) ý ýý ý*(z*) 

3, z* -2.1719 1.1124 -1.8984 

F(z*) 0.2187 0.8273 

Z -2.8877 -0.4218 1.6471 -1.5847 
F(z*) 0.1406 0.5393 0.8892 

5 z* -3.6671 -1.4178 0.4616 2.1622 -1.4081 
F(z*) 0.0853 0.3362 0.7219 0.9299 

ý6 z* -4.2792 -2.0461 -0.4420 0.9714 2.5632 -1.3150 L 
F( z* ) 0.0571 0.2357 0.5349 0.8073 0.9517 

Table 4.11: The results: D-optimality and Skewed logistic distribution, 
rn=3/2 

k F zl#) z2#, F(z2#) z3#, F(z3#) z4#, F(z4#) z5 
#, F(z5#) , I#/ # 

3 z* -0.8826 1.8285 -1.2688 
F(z*) 0.1582 0.7997 

4 z* -1.2870 0.3837 2.3103 -0.9631 
F(z*) 0.1006 0.4587 0.8676 

5 z* -1.6777 -0.3578 1.2204 2.8575 -0.7826 
F(z*) 0.0624 0.2639 0.6784 0.9196 

6 z* -1.9625 -0.7593 0.4052 1.6880 3.2526 -0.6901 
F(z*) 0.0432 0.1800 0.4646 

- 
0.7753 

1 
0.9446 

1 
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Table 4.12: The results: D-optimality and Skewed logistic distribution, m=3 

k zl F z*) 1 z F(z*) 2+ 2 z* F(z*) z F(z*) 3+ 3 4+ 4 z* F(z) 5+ ý ýÄ*(z*) 

3 z* -0.0214 2.4663 -0.9032 

F(. *) 0.1210 0.7831 
771 

z* -0.3433 0.9923 2.8813 -0.5984 
fI F(z*) 0.0714 0.3882 0.8490 

5 z* -0.6052 0.3951 1.8589 3.4719 -0.4103 

F(z*) 0.0440 0.2133 0.6476 0.9123 

6 z* -0.8016 0.0678 1.0530 2.2917 3.8482 -0.3157 
1 F(z*) 0.0296 0.1381 0.4074 0.7490 0.9386 

Table 4.13: The results: A-optimality and Skewed logistic distribution, 
m=1/3 

k 
z1, 

F(z1) z21 F(z2) z3e F(z3) z4, F(z4) z5, F(z5) (Z*) 

3 z* -4.2423 0.1658 
-10.8904 

F(z*) 0.2419 0.8150 

4 z* -4.9267 -0.6885 0.9521 -9.3333 
F(z*) 0.1930 0.6940 0.8969 

5 z* -6.0457 -1.2725 0.0730 1.4523 -8.8322 
F(z*) 0.1331 0.6026 0.8032 0.9323 

6 Z* -6.7469 -1.9361 -0.5313 0.5045 1.8026 -8.6051 
F(z*) 0.1054 0.5014 0.7180 0.8543 0.9504 
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Table 4.14: The results: A-optirnality and Skewed logistic distribution, 

m. =2/3 

k z* F(z*) 1> 1 z* F(z*) 21 2 z. * F(z*) z* F(z*) 3ý 3 41 4 z* F(z5) 5ý 0* (z*) 

3 z* -1.5689 0.9058 -6.4039 
F(z*) 1 0.3097 0.7974 

1ý ý* -2.3764 -0.1956 1.4310 -5.5956 

F(z*) 0.1933 0.5883 0.8668 

5 z* -3.0432 -0.7595 -0.0392 1.2319 -5.3884 

F(z*) 0.1274 0.4666 0.6216 0.8431 

6 z* -3.4809 -1.3728 -0.2101 0.8167 2.2002 -5.1308 
F( z* ) 0.0962 0.3444 0.5851 0.7835 0.9323 

Table 4.15: The results: A-optimality and Skewed logistic distribution, 
ni=3/2 

k zl , 
F(z1 ) z2, F(z2) z31 F(z3) z4+ F(z4) z5, F(z5) o* (Z*) 

3 z* 0.9155 1.5637 -4.3005 
F(z*) 0.1850 0.7519 

z* -1.2399 0.1466 2.0578 -3.6925 
F(z*) 0.1063 0.3930 0.8350 

15 z* -1.5745 -0.3813 0.7801 2.5119 -3.4572 
F(z*) 0.0710 0.2585 0.5678 0.8896 

6 z* -1.7863 -0.6706 0.2349 1.2422 2.8031 -3.3370 
ý, ý F(z*) 0.0543 0.1968 0.4173 0.6835 0.9155 
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Table 4.16: The results: A-optimality and Skewed logistic distribution, m=3 

k zý F(z) z2, F(z 2*) z3, F(3 z*) z4*, F(z4*) z5*, F(z 5 0*(z*) 

3 z* 0.0459 2.9147 -4.1460 
F(z*) 0.1338 0.8535 

4i z* I 0.0462 0.5020 2.9847 -3.4499 
F(z*) 0.0535 0.2417 0.8624 

5 -0.8067 0.0095 0.8642 3.1128 -3.2221 
F(z*) 0.0293 0.1267 0.3482 0.8776 

6 z* -0.8571 -0.0721 0.6985 1.9713 3.7204 -3.0897 
F(z*) 0.0264 0.1119 0.2979 0.6762 0.9307 

TdUle 1.17: The results: ei-optimality and Skewed logistic distribution, 
in. =1/3 

k zi, F(zl) z2, r(z2) z3+F(z3ý z4, F(z4) z5, F(z5) 0*(z*) 

3 z* -0.6328 0.8651 
-8.0724 

F(z*) 0.7026 0.8894 

1 
1 

ý -0.9595 0.1652 1.3993 -7.7214 
F(z*) 0.6518 0.8149 0.9291 

5 -4.2743 -1.0737 0.0923 1.3309 -7.7151 
F(z*) 0.2394 0.6338 0.8057 0.9248 

6 z* -5.5820 -1.4499 -0.3954 0.4993 1.6386 -7.5401 
F(z* ) 0.1553 0.5749 0.7382 0.8537 0.9425 
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Table 4.18: The results: el-optiinality and Skewed logistic distribution, 

rir-2/3 

k 

I3 

F(z*) 

4ý z* 

F(z*) 
5I z* 

F(z*) 

Gý z* 

F(z*) 

2ý, F(zi) 

-0.6713 
0.4854 

-1.0444 

0.4076 

-1.2957 
0.3587 

-1.9301 

0.2523 

zz, F(z2) 

0.7790 

0.4854 

0.0803 

0.6467 

-0.3144 
0.5626 

-0.8364 
0.4504 

Table 4.19: The results: ei-optimality and Skewed logistic distribution, 

m=3/2 

k 

3 

I 
r) 

i 
i 

z* 

F(z*) 

z* 

F(z*) 

F(z*) 
I ý 
16 
ý 
I 
i 

z* 

F(z*) 

zi, F(zi) 

-0.6924 

0.1925 

-1.1116 

0.1231 

-1.4172 

0.0861 

-1.4493 
0.0828 

z2, F(z2) 

0.5731 

0.5114 

-0.0927 
0.3292 

-0.4949 
0.2330 

-0.5501 
0.2212 

z3+ F(z3) z4*, F(zä) 

-4.5050 

1.2487 

0.8452 

0.5288 

0.7342 

-0.0492 
0.6195 

z3, F(zs) 

1.5944 

z, *, F(z5*) H* 

-4.2887 

-4.1966 

0.8840 

0.7280 

0.7690 

1.7744 

0.8537 
-4.1582 

z4, F(z4) z5, F(zS) o'(z*) 

-2.7141 

0.8927 

0.5975 

0.2511 

0.4218 

0.1250 

0.3871 

1.1069 

0.6515 

0.7931 

0.5713 

1.6680 

0.7716 

-2.5627 

-2.4974 

-2.4733 
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Table 4.20: The results: el-optimality and Skewed logistic distribution, m=3 

F'(zi) 

i 

6 

z' 

F(zý 

F 

z* 

F(z*) 
ý 

0.0350 

-, * 

F(--* 

-0.5746 

0.0467 

0.4025 

0.2152 

-0.7206 

F(z*) 

z2, F(z2) 

0.3335 

0.1977 

0.5682 

0.2601 

0.0683 

0.1382 

-0.2510 

0.0837 

z3, F *l 
3 zQ, F(z 

-2.5671 

4.4694 

0.9664 

0.6882 

0.2948 

0.3489 

0.2015 

2.8373 

5, F(z) , /, +(z*) 

-2.4688 

-2.3599 
0.8429 

1.0573 

0.4088 

3.7398 -2.2563 
0.9319 

Table 4.21: The results: e2-optimality and Skewed logistic distribution, 

m=113 

l: 

3 

4 

5 

7* 

F(z*) 

z* 

F(z*) 

.* 1 

F(z*) 

-0.9552 

0.0214 

zi , F'(zi) 

-5.0511 

0.1852 

-8.7098 
0.0548 

-8.4530 
0.0597 

61Z*( -10.254 

0.0327 

z2, F(zz) 

1.6401 

0.9426 

-4.0279 
0.2596 

-3.7849 

0.2810 

-5.5174 

0.1587 

z3, F(zs) 

1.4910 

0.9345 

-0.6895 

0.6939 

-2.8107 
0.3842 

Z4, F(zä) 

1.6124 

zs', F(z5) 0*(z*) 

-1.2073 

-1.0316 

-1.0278 
0.9411 

0.8419 

0.8874 

2.4679 

0.9732 
-0.9140 
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Table 4.22: The results: e2-optimality and Skewed logistic distribution, 

iii=2/3 

zi F(zi) z2, F(z2) z3, F(zs) z4, F'(zä) z5, F(zb) 0*(z*) 

,3 z* -3.0015 1.9389 -1.0765 
F(z*) 0.1308 0.9142 

4 z -4.5859 -2.3286 1.7613 -0.9584 
F(z*) 0.0467 0.1990 0.8996 

5 z* -4.4967 -2.2443 1.3549 2.9381 -0.8703 

F(z*) 0.0495 0.2094 0.8581 0.9661 

6 z* -5.4823 -3.2023 -1.7177 1.1927 2.7936 -0.8378 
F(z*) 0.0257 0.1151 0.2850 0.8380 0.9611 

Table 4.23: The results: e2-optimality and Skewed logistic distribution, 
nu=3/2 

ýC 
zi, F(zl) z2, F(z2) z3, F(z3) z4, F(z4) z5, F(z5) 0*(z*) 

3 z -1.4597 2.40945 
-0.9851 

F( . *) 0.0818 0.8789 

z -1.3354 0.6859 2.5600 -0.9727 
F(z*) 0.0950 0.5423 0.8943 

5 z -1.6517 -0.1955 1.2554 2.8824 -0.8625 
F(z*) 0.0645 0.3031 0.6865 0.9215 

6 z* 
, 

-2.0663 -0.8380 0.6497 1.9416 3.5010 -0.7939 
F(z*) 0.0376 0.1659 0.5324 0.817$ 0.9563 
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Tz: ible 4.24: The results: e2-optimality and Skewed logistic distribution, rra=3 

k z* F(z*) 1+ 1 z* F(z*) 2+ 2) z* F(z* 3 3) z* F(z) 4+ 4 z F(z5) 0*(z*) 5 + 

3z -0.4995 2.9747 -0.9479 
F(z*) 0.0538 0.8612 

l'7 -0.4222 2.5542 4.1155 -0.8365 

F(z*) 0.0620 0.7988 0.9526 

z -0.9919 -0.1645 2.4116 3.9738 -0.7637 
F(z*) 0.0198 0.0966 0.7728 0.9456 

6z -0.9073 -0.0379 1.8389 2.9448 4.4761 -0.7379 
F(z*) 0.0237 0.1180 0.6423 0.8574 0.9666 



Chapter 5 

Multiple Design Points 

So far, we have considered only one point designs, under which we offer all 

the respondents the same set of cutpoints. In practice, several sets may be 

needed. In this chapter, we consider the case where we offer respondents 

one of several sets of cutpoints. The proportion of times they are used being 

determined by a set of weights to be chosen optimally. In this case, respon- 

deists will be divided into several groups and each group will be offered a 

common set of cutpoints. So, the optimal design problem turns out to be 

determining the sets of cutpoints and the respective weights optimally. We 

call this situation a multiple design point case. Actually, in chapter two, we 

already mentioned the concept of multiple design points when we reviewed 

the case of two categories. In this case, to ensure estimation of both param- 

eters a' and 03 for any distribution and most criteria, we need at least two 

distinct support points. We now introduce the problem of multiple design 

points in which two cases will be considered: multiple design points with 

equal weights, and with arbitrary weights. Then, the methods of finding 

optimal designs will be presented along with some results and contour plots. 
Finally, we will summarize both cases, the one point design case and multiple 

127 
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design point case in respect of choosing the number of design points and the 

number of categories. 

5.1 The problem and notations 

We will extend the notation from the one design point problem to the multiple 

deign point, problem and extend the formula for the expected information 

matrix. 

5.1.1 The problem 

Suppose that we offer respondents one of I sets of cutpoints, indexed by 

i. each consisting of k-1 cutpoints. We denote these sets by zW, i= 

1,2, ... ,I and the corresponding cell probabilities by Bpi) so that: 

(z) { (i) (ý) (ý) } z= z1 , z2 
,... zk-1 ) 

k 

0(i) _ {91ii 
182 1... OW 9jaý = 1. 

j=1 

The proportion of observations to be taken at each set is called the design 

weights and denoted by p,. Hence: I E, 
_1 pi =1 

So, our problem turns out to be: 

Choose pi, 0(') optimally 

subjected to: pi ? 0,1 
=1 pi = 1, 

k 
0(i)>0, Bz)=1, 

J=1 

This prohleln is called problem (P2). This is an optimization problem with 

respect to I+1 distributions or the problem of optimizing the function 

O(p, e(1), e(2), 
... 

0(1)). 
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5.1.2 The expected information matrix 

We denote by I, (, ) the information matrix at z(i) or by 10(t) the information 

matrix at 8('). Then, the expected per observation information matrix of this 

(lesigii problem is: 
I 

. 
(5.1) M(P) _EA IB(. ) 

i=1 

Our optimizing function will be a function of the expected information ma- 

trix. i. c,. 

ýý{M(P)}. 

Note that the multiple design point problem is an extension of the one point 

design problem. So, in principle, the methods we use in the one design point 

case to find an optimal design can be applied to the case of multiple design 

points. However, in the multiple design point problem, there normally are 

iiwiiy variables of interest, the use of the search method sometimes may not 

be relevant. In the following sections, we consider two cases, one when we 

assume equal design weights with (for simplicity) constraints imposed on 

the cell probabilities and a second one with arbitrary design weights and 

no constraints on cell probabilities. In the first case, we still use the search 

method and a graphical approach to find optimal solutions. In the second 

caase, we will focus on using the multiplicative algorithm. 

5.2 Multiple point designs with constraints 
and equal design weighting 

We first assume that the optimal weights are equal, i. e. p; = 1/I for all sets 

of cutpoints. We set up the new design points by using a single set of cell 

probability values as in the one point design case but using permutations of 
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diem, to define different cutpoint sets. For example, in the three category 

case, to set up the two design points, the first design point will be (01,02,03) 

and for syinnietry purposes the second one will be (03,02,6i). We will focus 

on the cases of three and four categories. In the three category case, the 

number of design points that will be considered is 2,3 and 6. For the four 

category case, there will be 2,4 and 8 design points. For higher numbers of 

categories, the same method of investigation still applies. 

5.2.1 The case of three categories 

In this case, we have three cell probability values, say (Or, 62,03) for a one 

point design. For 2,3 and 6 point designs, we consider the following designs 

from which to construct optimal designs. 

" Design 3A: one design point 

(el, e2, e3) 

" Design 3B: two design points 

(el, 02,03), (03,02,01) 

" Design 3C: three design points 

(e1,02,03), (02) 03, e1), (03,01) 02) 

" Design 3D: six design points 

(e1, e2)03), (02)B3, el), (e3, el, 82) 

(03,02,0k), (01) 03,02), (02,01,03) 
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We have used the concept of Latin squares to construct designs 3C and 3D. 

The design weights for case 1 through case 4 above are 1,1/2,1/3 and 1/6 

respectively. 

5.2.2 The case of four categories 

In this case, the cell probability values are (91,02) 03,04). For the purpose of 

producing contour plots and avoiding too many combinations of cell proba- 

bilities, we impose the following constraint on them: 

91+92=93+94=1/2 

Here are the designs considered for the case of four categories: 

" Design 4A: one design point 

(01,02,03,04) 

" Design 4B: two design points 

(01,02,03,04), (02,01)04,03) 

" Design 'IC: four design points 

(01) 02,03,04), (02,01,03) 04) 
(01) 02,04 03), (02) 01,04,03) 

" Design 4D: eight design points 

(01,02,03,04), (02,01,03,04) 

(01,02,04 03), (02,01) 04,03) 

(03,04) 01,02), (03,04,02,01) 

(04) 03,01,02), (04,03) 02,01) 
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The design weights in this case will be 1,1/2,1/4 and 1/8 respectively. 

5.2.3 Graphical approach 

132 

Since we assume equality for the weights pi and impose constraints on the 

Q,, j=1,2,3,4 (in the four category case), we can use a graphical approach 

to find optimal solutions. Given the manner above of setting up the cell 

probabilities for the design points, the number of free variables is the same 

as in the one design point case. 

Design 3A and 4A above are one point designs. We already had results 

for these using the search method, graphical approach and a multiplicative 

algorithm in previous chapters. The remaining designs are multiple point 

designs. We are focusing on four criterion functions, namely D-, A-, el- 

and c2-optimality and four symmetric distributions for the variables, namely 

the logistic, normal, double-exponential, double-reciprocal. For the higher 

number of categories and asymmetric distributions, we will use the algorithm 

in the next section. Note that in the multiple design point case, we have I 

sets of cutpoints (as defined above, I is the number of design points). In 

order to complete the calculation of the expected information matrix M(p), 

we treat each set of cutpoints as one in the one point designs, i. e. we calculate 

the information matrix for each set using formula 3.14 and then calculate the 

expected information matrix using formula 5.1. 

5.2.4 Some results 

For the purpose of determining which case is better in terns of criterion 

values (among the different number of design point cases), we summarize 

in tables 5.1 to 5.8 the optimal criterion values for designs 3A to 3D for 
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the three category case and for designs 4A to 4D for the four category case 

for four symmetric distributions. We also quote the optimal set (or sets) 

of cell probabilities and optimal cutpoints for the case of D-optimality and 

the logistic distribution and for the case of A-optimality and the normal 

distribution to see differences amongst cases. The contour plots in figures 

5.1 to 5.3 illustrate the results and show the positions of the optimal design 

points (or e-values) in the above cases. 
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Table 5.1: The criterion values of multiple point designs: k=3, logistic dis- 

tribution 

Design 

3A 

3B 

3C 

3D 

D-optirnality 

-1.5572 

-1.5572 

-2.0560 

-2.0560 

A-optimality 

-5.0182 

-5.0182 

-5.7166 

-5.7166 

el-optimality 

-3.3756 

-3.3756 

-3.3753 

-3.3753 

e2-optimality 

-1.0226 

-1.0226 

-1.5574 

-1.5574 

Table 5.2: The criterion values of multiple point designs: k=3, normal dis- 
tribution 

Design D-optimality A-optimality el-optimality e2-optimality 

3A -0.2070 -2.2801 -1.2348 -0.7666 
3B -0.2070 -2.2801 -1.2348 -0.7666 
3C -0.7962 -2.9905 -1.2607 -1.1316 
3D -0.7962 -2.9905 -1.2607 -1.1316 
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Table 5.3: The criterion values of multiple point designs: k=3, double expo- 
nential distribution 

Design D-optimality A-optimality el-optimality e2-optimality 

3A -1.1277 -3.9971 -1.0000 -1.5484 

3B -1.1277 -3.9971 -1.0000 -1.5484 
3C -1.3208 -4.3536 -1.0000 -2.3300 

3D -1.3208 -4.3536 -1.0000 -2.3300 

Table 5.4: The criterion values of multiple point designs: k=3, double recip- 
roca, l distribution 

Design D-optimality A-optimality e1-optimality e2-optimality 

3A -2.0710 -7.6493 -1.0442 -4.0115 
3B -2.0743 -7.3344 -0.9612 -4.0040 
3C -2.0703 -7.1551 -1.0955 -4.5022 
3D -2.0760 -7.1551 -1.0927 -4.5022 
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Table 5.5: The criterion values of multiple point designs: k=4, logistic dis- 
tribution 

Design D-optimality A-optimality el-optimality e2-optimality 

4A -1.2483 -4.3788 -3.2000 -1.0226 

4B -1.5504 -4.6729 -3.2000 -1.4729 
4C -1.5504 -4.6729 -3.2000 -1.4729 

7- 
4D -1.5504 -4.6729 -3.2000 -1.4729 

Table 5.6: The criterion values of multiple point designs: k=4, normal dis- 

t ributioii 

Design D-optimality A-optimality e. 1-optimality e2-optimality 

4A 0.1001 -1.9425 -1.1331 -0.7666 
4B -0.4578 -2.5211 -1.1333 -1.3266 
4C -0.4578 -2.5211 -1.1333 -1.3266 
4D -0.4578 -2.5211 -1.1333 -1.3266 
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Table 5.7: The criterion values of multiple point designs: k=4, double expo- 
ueiitial distribution 

Design 

4A 

4B 

4C 

4D 

D-optimality 

-0.4359 

-0.7330 

-0.7330 

-0.7330 

A-optimality 

-2.5464 

-3.0813 

-3.0813 

-3.0813 

el-optimality 

-1.0000 

-1.0000 

-1.0000 

-1.0000 

e2-optimality 

-1.5464 

-2.0813 

-2.0813 

-2.0813 

Table 5.8: The criterion values of multiple point designs: k=4, double recip- 
rocal distribution 

Design D-optimality A-optimality el-optimality e2-optimality 

4A -1.1631 -4.8000 -0.8000 -4.0000 
4B -1.1631 -4.8000 -0.8000 -4.0000 
4C -1.1631 -4.8000 -0.8000 -4.0000 
4D -1.1631 -4.8000 -0.8000 -4.0000 



CHAPTER 5. MULTIPLE DESIGN POINTS 138 

Some comments: 

We discuss tables 5.1 to 5.8. To begin, for the three category case, the 

optimal criterion values for one and two point designs are almost the same. 

Similarly, the optimal criterion values for three and six points designs are the 

same. Look at designs 3A to 3D, we see that design 3A and 3B, 3C and 3D 

coincide if 81 = 03. We also see that compared to three or six point designs, 

one or two point designs are better in terms of optimal criterion values. 

For the four category case, one point design is the best while two, four and 

eight point designs are the same in terms of optimal criterion values. 

There are some exceptions. In the three category case, for the case of the 

double reciprocal distribution where two point designs seem to be better 

for D-, c1- and e2-optimality and the three point design is the best for A- 

optimality (one point, design is worst). For ei-optimality, the logistic and 

double-exponential distribution, the optimal criterion values stay the same 

in all four cases, namely one, two, three and six point designs. Similarly in 

the four category case, for the logistic and double exponential distribution, 

the c1-optimality criterion values are the same for all four cases, namely one, 

two, four and eight point designs. Also, for the case of the double reciprocal 

distribution, the criterion values are unchanged when the number of design 

points increases from two to eight for all criteria considered. We now show 

details of some of the optimizing designs. 
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Table 5.9: The optürial cell probabilities and optimal cutpoints: k=3, logistic 
distribution and D-optimality 

Design 

3A 

3B 

3C 

3D 

Alternative 0 
, 
*'s 

(0.18,0.64,0.18) 

(0.18,0.64,0.18) 

(0.56,0.22,0.22) 

(0.22,0.56,0.22) 

(0.22,0.22,0.56) 

(0.56,0.22,0.22) 

(0.22,0.56,0.22) 

(0.22,0.22,0.56) 

Corresponding cutpoints 

(-1.5163,1.5163) 

(-1.5163,1.5163) 

(0.2411,1.2656) 

(-1.2656,1.2656) 

(-1.2656, -0.2411) 
(0.2411,1.2656) 

(-1.2656,1.2656) 

(-1.2656, -0.2411) 

Optimal criteria 

-1.5572 

-1.5572 

-2.0559 

-2.0559 

Table 5.10: The optimal cell probabilities and optimal cutpoints: k=4, lo- 
gistic distribution and D-optimality 

Design Alternative Br's Corresponding cutpoints Optimal criteria 

4A (0.12,0.38,0.38,0.12) (-1.9924,0,1.9924) -1.2484 
4B (0.25,0.25,0.25,0.25) (-1.0986,0,1.0986) -1.5504 
4C (0.25,0.25,0.25,0.25) (-1.0986,0,1.0986) 

-1.5504 
4D (0.25,0.25,0.25,0.25) (-1.0986,0,1.0986) -1.5504 
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Table 5.11: The optimal cell probabilities and optimal cutpoints: k=3, nor- 

mal distribution and A-optimality 

Design Alternative 0 
, 
*'s Corresponding cutpoints Optimal criteria 

3A (0.15,0.70,0.15) (-1.0364,1.0364) -2.2801 

3B (0.15,0.70,0.15) (-1.0364,1.0364) -2.2801 
3C (0.15,0.70,0.15) (-1.0364,1.0364) -2.9905 

(0.15,0.15,0.70) (-1.0364, -0.5244) 
(0.70,0.15,0.15) (0.5244,1.0364) 

3D (0.15,0.70,0.15) (-1.0364,1.0364) -2.9905 
(0.15,0.15,0.70) (-1.0364, -0.5244) 
(0.70,0.15,0.15) (0.5244,1.0364) 

Table 5.12: The optimal cell probabilities and optimal cutpoints: k=4, nor- 
iriM (listribution and A-optimality 

Design 

4A 
i 

4B 

iý 

4C 

Alternative Oi's 

(0.09,0.41,0.41,0.09) 

(0.19,0.31,0.31,0.19) 

(0.19,0.31,0.19,0.31) 

(0.31,0.19,0.31,0.19) 

(0.31,0.19,0.19,0.31) 

Corresponding cutpoints 

(-1.3408,0,1.3408) 

(-0.8779,0,1.8779) 

(-0.8779,0,0.4959) 

(-0.4959,0,0.8779) 

(-0.4959,0,0.4959) 

(-0.8779,0,1.8779) 

(-0.8779,0,0.4959) 

(-0.4959,0,0.8779) 

(-0.4959,0,0.4959) 

Optimal criteria 

-1.8425 

-2.5211 

-2.5211 
(0.19,0.31,0.31,0.19) 

(0.19,0.31,0.19,0.31) 

(0.31,0.19,0.31,0.19) 

(0.31,0.19,0.19,0.31) 

4D (0.19,0.31,0.31,0.19) 

(0.19,0.31,0.19,0.31) 

(0.31,0.19,0.31,0.19) 

1 (0.31,0.19,0.19,0.31) 

(-0.8779,0,1.8779) 

(-0.8779,0,0.4959) 

(-0.4959,0,0.8779) 

(-0.4959,0,0.4959) 

-2.5211 
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Figure 5.1: The contour of criterion values versus three cell probabilities 
(Logistic distribution and D-optimality) 
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Figure 5.2: The contour of criterion values versus four cell probabilities (Lo- 

gistic distribution and D-optimality) 
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Figure 5.3: The contour of criterion values versus four cell probabilities (Nor- 

mal distribution and A-optimality) 
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We can consider the results in more details by looking at tables 5.9 to 5.12 

and the contour plots 5.1 to 5.3 which results for D-optimality combined 

with the logistic distribution and A-optimality combined with the normal 

distribution. For the three category case there is in both examples, a unique 

optimizing design of the form 3A and 3B and these coincide; since for 3B, 

01 = 03. Hence criterion value is the same. We have a similar result in respect 

of the best 3C and 3D designs. These share a unique optimizing design, but 

(not surprisingly) with three possible sets of optimizing 0-values, under each 

solution two cell probabilities are equal. Hence the six point design of 3D 

reduces to the three point design of 3C. 

The results are different in the four category case. For the logistic distribution 

and D-optimality, the best 4B, 4C and 4D designs coincide since all optimal 

0-values are equal. In other words, the best 4B, 4C and 4D designs reduce to 

a one point optimal design with equal cell probabilities at the optimum. For 

the normal distribution and A-optimality, there are four distinct solutions, 

each 'equivalent' to 02 = 03 (and hence 01 = 04) for designs 4B, 4C, 4D. The 

implications of this are that there are two optimal designs of the form 4B, one 

given by (01,02,03,04) _ (0.19,0.31,0.19,0.31) or (0.31,0.19,0.31,0.19) and 

the other by (02,01,04,03) _ (0.19,0.31,0.31,0.19) or (0.31,0.19,0.19,0.31). 

In contrast, there is a common unique optimizing design for cases 4C, 4D, 

the eight points of the latter reducing to four distinct points. 

In the following section, we will consider the results of the multiple point 

designs when there are no constraints on weights and cell probabilities. 
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5.3 Multiple point designs with arbitrary 
weights and no constraints 

In this section, we investigate multiple point designs without any assumptions 

or constraints on the weights pi and cell probabilities ei. For example, in 

the case of two point designs with three cell probabilities at each point, 

we have two cutpoints in each design point and two weights. In the case 

where the number of variables considered is large, more relevant techniques 

for finding optimal solutions should be employed. We will use the extension 

of the multiplicative algorithm as introduced the in previous chapter for 

this purpose. For problem (P2), we apply the iteration for both sets of cell 

probabilities and the design weights. 

5.3.1 Multiplicative algorithm for multiple point de- 
signs 

Here are the formula of the multiplicative algorithm for finding optimal p* 

awl H*: 

p2r+1) = 
pir)mp{Fi(p(r)), 8} 

At 

=l pjr) mp{ F; (p(r) ), b} 
(5.2) 

9(y)(r)rrt Fýti) e(t)(r) ý 
5.3 ýý 

Et_19ti)(r), r, Z, i{F('ý)(8(t)(r)) b} 
ý) 

where: 

" F, (p) is the iUi directional derivatives w. r. t pi 

" F, (')(0(')) is the j eh directional derivatives w. r. t B(a) 
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" rrt,, (z, S) and mz(z, 6) are once again positive increasing functions of z 

for given positive 6.6 is one of the free parameters that these two 

fiuictioiis may depend on. In our case, we use the normal cdf function 

for both rri,, (z, 6) and rrti(z, 6) and 6=1, i. e. 'rni(z, 6) = ß(8z). 

The procedure for calculation of directional derivatives is exactly the same 

as in the case of one point designs but remember that our criterion functions 

now are functions of the pi and 8, ('), i=1,2, ... , I. We are still using four 

criteria: D-, A-, er- and e2-optimality. 

In particular, if the criterion function is: 

(ý(ý 8{1} e(2), 
..., 

0(1)) - Yý{M(P)}. 

Then: 
I 

Fz (p) = 
aPi pt ap 

,i =1,2, ... , r, 

FcZý(acz, ) = 
aý a 
a0j 1: -5-0 

=1 t 
All the procedures for calculation of these are exactly the same as in the case 

of one point designs. However, for applying the multiplicative algorithm 

for multiple point designs, we also need to calculate derivatives of criteria 

with respect to the pi. We summarize the formulae for 
ä_\ 

and 
ä 

in the 

following table: 
0 zil ̀' api 
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5.3.2 Some results 

In the two tables below, we summarize the results obtained by using the mul- 

tiplicative algorithm in the cases of two point and three point designs for one 

symmetric distribution (logistic, table 5.10) and one asymmetric distribution 

(skewed logistic, table 5.11). In both cases, we use the D-criterion. We run 

the algorithm for the four cases where the number of categories is 3,4,5 and 

6. We use arbitrary initial values for the sets of cell probabilities and the 

design weights. The reason for using these arbitrary initial values is that we 

need to start from distinct design points. If the cell probabilities were initially 

equal for all design points, there would be only one distinct design point and 

the algorithm would not change this. For example, in the case of two design 

points and three categories, we use two sets of values {(0.3,0.4,0.3); (0.2, 

0.5,0-3)j for the initial cell probabilities and a set of values (0.4,0.6) for 

the initial weights (although these could have been equal). In all cases, the 

liigher the number of categories is, the more slowly the algorithm converges. 

For instalice, in the case of the logistic distribution and D-optimality, for the 

two point, design case, the number of iterations needed for convergence (as 

ill chapter 1, we define the the algorithm to have converged whenever the 

respective directional derivatives are very close to zero) are about 420,565, 

743,1034 for the three, four, five and six category case in turn. For the three 

point design case, the number of iterations needed are 940,1400,1900 and 

2690. All of the directional derivative values are less than 10-6. 

The results show that the optimal two point designs and three point designs 

arc almost the same in terms of optimal cut points and criterion values. In 

general, the algorithm tends to converge to the same optimal cutpoints what- 
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ever the number of design points is. If we compare with the results from the 

one point design case, the multiple point designs are not better. The op- 

timal cutpoints and the optimal criterion values do not increase when we 

nwve from a one point to a three point design. In consequence, the design 

w(iglits do not matter and we do not need to use multiple design points. Our 

assumption about the symmetry of cutpoint sets in the case of symmetric 

distributions proves to be justified. In tables 5.14 and 5.15, we present the 

results of optinial cutpoints (two sets and three sets for the two point design 

and three point design cases), respective optimal weights and optimal crite- 

rion values. In all but one case (three design points for k=6 in table 5.15) 

all design points are approximately equal suggesting one design point. 
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5.3.3 The case of unequal number of cutpoints across 
design points 

In the previous cases, we assume the number of cutpoints (the number of 

categories) in each design point are the same. In this section, we will inves- 

tigate the case where these numbers are different. 

We consider that we have a two point design problem, one point with three 

categories and another point with four categories. So, the optimal cell prob- 

abilities will have the form: 

\\}l e* B* e* e* e* e* e7*) ( 1,2+ 34' 5+ 6' 

The sets of optimal cutpoints are: 

{(zl, z2), (z3, z4, z5)J" 

The optimal weights are: 

(Pi, PZ) 

Similarly, if we consider a three point design with one point with three cat- 

egories, one point with four categories and the remaining one with five cat- 

egories, the sets of optimal cell probabilities, cutpoints and optimal weights 

respectively are: 

and: 

and: 

{(O1 28 e8 e (e e* Ba e* 1,2,3), (04 5+ 67 8+ 9+ 10+ 1+ 2)} 

{(z1 
+ z2(z3, z4+ z5)+ (z6, z7, z+ z) I 

(pi, p2, ps) " 



CHAPTER 5. MULTIPLE DESIGN POINTS 153 

We can use the multiplicative algorithm to find optimal solutions. The tables 

below show the results for two examples of these kinds of designs for the case 

of D-optimality. For the logistic distribution, we consider the case of three 

and four categories and for the skewed logistic distribution the cases of four 

and five categories. 

Table 5.16: 2 points: three and four categories, logistic distribution, D- 
Optiinality 

Point order Directional derivatives Cutpoints Criterion values 

and weights and weights 

Point 1 0.000000016 -1.47569480 -1.24959796 

-0.000000033 1.47569480 

0.000000016 

Point 2 0.0000000099 -1.97968464 

-0.0000000099 0 

-0.0000000099 1.97968464 

0.0000000099 

Weights 0.000000099 0.00040196 

0.000000099 0.99959804 
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Table 5.17: 3 points: three, four and five categories, skewed logistic distribu- 
tion, D-optiniality 

Point order 

and weights 

Point 1 

Directional derivatives 

0.00000032 

0.00000023 

-0.00000020 

Cutpoints 

and weights 

-3.83569480 

Criterion values 

Point 2 

Point 3 

0.00000054 

-0.00000011 

-0.00000075 

0.00000013 

0.0000000068 

0.0000000015 

-0.0000000093 

-0.0000000096 

-0.0000000035 

0.25512450 

-4.43392095 

-1.72071692 

0.30690745 

-7.37536562 

-2.82211890 

-0.24585599 

1.56297317 

Weights 0.0000000018 0.00040196 

-0.0000000018 0.00021454 

-0.0000000018 0.99938350 

-2.06956878 
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Some comments: 

The algoritluu converges very well in both cases. We need about 1250 it- 

ei ations in the three and four category case and 2110 iterations in the three, 

four and five category case for the convergence (the directional derivatives in 

all cases are less than 10-6 of the algorithm. We see that if the number of 

C'utpoints are not equal in each point, the optimal criteria are always the same 

as the values that we achieve for the one design point case, when the design 

point has the largest number of cutpoints. For example, in the above tables, 

the two point design with three and four categories, the optimal criteria and 

the respective optimal cutpoints are the same as those for the case of four 

categories alone, i. e. -1.245 for optimal criterion value and (-1.98,0,1.98) for 

the optimal cutpoints. Similarly, in the case of the three point design with 
three four and five categories, we attain the optimal solution of the one point 
five category case design. These results are confirmed because the optimal 

weights put unit, weight to the point with the highest number of categories. 
11, the examples above, weights are almost one for the four category design 

point (case 1) and five category design point (case 2). Weights are almost 
Zero for the remaining design points. Such results are to be expected since we 
know that the optimal criterion values increase when we increase the num- 
her of cutpoints. So, if we consider offering respondents either three category 
bids or four category bids with respective design weights to be chosen opti- 
ltlally, it is reasonable to expect that the four category bids will dominate in 
terrrls of design weight and the optimal design will be the optimal design of 
the four category case with weight 1 (weight for four category bid is one). 
SO, it would seem that in general it is not necessary to consider the case 
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where the number of cutpoints (or categories) are not equal across design 

points. 

5.4 Choosing the number of design points 

Our main purpose is to identify the optimal number of design points and the 

optimal values for their cutpoints or cell probabilities. We have already used 

various methods to find optimal solutions such as search methods, graphical 

approaches and a multiplicative algorithm. The optimal solutions depend on 

the criterion under consideration. From all the results we have, we can make 

some statements on how to choose optimal solutions as follows. 

" In general, the results obtained from the methods listed above are very 

consistent. Although we sometimes imposed some constraints on the 

cutpoints and design points in the search method and the graphical ap- 

proach, the results obtained are verified by using the algorithm without 

any assumptions. 

" The general tendency in the results is that when we increase the number 

of cutpoints, the optimal criteria initially increase but then level off. 

So in practice, using four or five categories seems to be suitable. 

In most cases, multiple point designs are not better than one point 

designs in term of the values of criteria, i. e. the criterion values either 

stay the same or decrease. So, using one point designs for the survey 

is enough. There is an exception in the case of the double reciprocal 

distribution where a two point design is better than a one point design. 

In this case, we would be better to use two point designs. 



Chapter 6 

The Bivariate Approach 

In this chapter, we continue to identify optimal cutpoints and cell probabili- 

ties by a different method called the bivariate approach. We first summarize 

this method in the literature. Then we consider the problem of the bivariate 

atpproach by introducing the formula for the Fisher information matrix. We 

also investigate the particular situations where sets of cutpoints will be of- 

fered and the method of searching for optimal results. Finally, the results by 

this method will be compared with previous cases and conclusions reached. 

6.1 Introduction 

In previous chapters, we already considered cases where there is only one 

variable of interest. We call these cases univariate approaches. In our par- 

ticular context, the univariate approach corresponds to the case where we 

offer respondents a set of cutpoints (one point design) or one of a set of 

('utpoints (multiple point design). In the case of multiple point designs, the 

sets of cutpoin is are distinct and we have respective weights for each design 

Point. Now, assume that we want to consider two variables simultaneously 

and these two variables are related to each other. In our context, the way of 

157 
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dealing with two variables is called the bivariate approach. 

In chapter 2, we introduced the concept of Contingent Valuation (CV) stud- 

ies, the aim of which is to estimate a population mean or total willingness 

to pay (WTP) for some non-market commodity. In particular, we described 

dichotomous choice of single bound CV studies in which respondents are 

offered to which they respond 'YES' if their WTP is larger than bid and 

otherwise 'NO'. An extension of the single bound CV study is the double 

bound CV study under which a second bound is offered to each respondent, 

higher if the first bid answer is 'YES', lower otherwise. Thus the bid is a 

middle one and three together are cutpoints defining four categories of WTP 

values. Optimal choice for them can be determined using the results of chap- 

ter 3 assuming WTP has a c. d. f of the form F(wTa-µ). We describe this 

approach as univariate approach. Note that this sequential approach is not 

natural for other context such as estimating mean income. 

However, the sequential nature of the above process has led to what we call 

the bivariate approach. This allows a change in the (marginal) distribution 

of WTP between the two bids. In keeping with this we denote by WTPI 

and WTP2 the willingness to pay of the respondent at the first and second 
bid respectively. We need a joint distribution for WTPI, WTP2. A popular 

assumption has seen bivariate normal or log-normal distribution. In the lit- 

erature, several authors have done some work on this topic. 

Cameron and Quiggin (1994) propose the use of a bivariate probit (or nor- 

mal) contingent valuation model when respondents are offered a follow-up bid 

to an initial contingent valuation question. They adopt several competing 

specifications based on the bivariate probit, and compare them to the double 

bound model to analyze CV data. The distinction between single bound and 
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double bound is that in the first case, only one bid is offered to each indi- 

vidual while in the latter case, a second bid is offered, higher than the first 

if the answer to that was 'YES', and lower otherwise. Alberini (1994) corn- 

pares the associated double bound models and recently proposed bivariate 

models of WTP. She carries out some Monte Carlo simulations to show that 

the double bound estimates of mean or median WTP can be surprisingly ro- 

bust to departure from the true, bivariate model, and that the double bound 

model is often superior to the bivariate model in terms of the mean square 

error of the estimates. In another paper Alberini (1995) finds optimal de- 

signs for discrete choice Contingent Valuation surveys using various models 

including the bivariate one. In the double bound context, she assumes that 

the two willingness to pay values (WTP1) and (WTP2) (or log(WTP1) and 

loy(WTP. )) have a bivariate normal distribution with a common location 

parameter (p), scale parameter (a) and a correlation coefficient (p). Depen- 

dent on the values of p (0 < jpj < 1), she constructs two two-point designs 

given the first bid answer. She assumed the first bid to be median WTP. If 

the first bid answer is 'YES', she calculates a design weight A for a higher 

second bid and 1-A for a lower second bid; these standardized bids and 

A being determined optimally. Similarly, if the first bid answer is 'NO', the 

design weight for the higher second bid is 1-A and A is the design weight 

for the lower second bid. We use the same notation A in both cases (Alberini 

denotes them by AUP and ADN) as optimal values are equal because of the 

symmetry of the bivariate normal distribution, and the choice of the first bid 

as being the median. The two designs differ only by a change of sign. 

Later on, the bivariate approach is further pursued by Alberini, Carson and 

Kanninen (1997). Using bivariate probit specifications, they model different 
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behavioral patterns induced by the reiteration of the elicitation question after 

the first answer has been obtained. Such different behavioral hypotheses are 

then tested as competing models by means of standard specification tests. 

One very common difficulty when we assume the bivariate normal for the 

joint distribution of two WTPs is that this assumption is not supported 

by the data and this may lead to biased estimates. In our case, there is 

another difficulty; namely in the computation of bivariate normality distri- 

bution function. We therefore extend our analysis to alternative bivariate 

models, namely Copula models which are characterized by a great flexibility 

in the distributional shape of their marginals, and in their dependence struc- 

ture. In our case, we will focus on using the Plackett Copula which we will 

mention later on. 

6.2 Construction of the problem 

Suppose that in a survey (as in Contingent Valuation studies or market re- 

search), we are interested in two aspects of the population which are specified 
by two random variables X and Y, XE [C1, D1]; YE [C2, D2]. In other 

words, we are concerned about two dimensions of the subjects and these two 

dimensions are characterized by two random variables X and Y. As in the 

uuivariate case, the questions are categorical with the recorded cutpoints. 

X has I categories and Y has J categories. So, the respective numbers of 

cutpoints are I-1 for variable X and J-1 for variable Y. 

X= (xl, X2, ..., x]-1); h= (yl, y2, ... ) yJ-i). 

We have a two-variable problem. The cell probability Obß is the probability 

that, the first, response falls between two cutpoints xi-1 and xi and the second 
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response falls between two cutpoints yj-1 and yj: 

eij = P(x, -1 
<X< Xi, yj-1 <Y< yj). 

We can use the following diagram to depict the relationships between the 

variables and cell probabilities. 

Yd 

B1J e1J 

Y2 

Ui 
012 022 

Yo 
X0 

oil 

xl 

021 

xz 

Oil 

xo_Ci, xr=D1i yo=C2, yj=D2. 

XI 

We assume that the two responses from the respondents are related and are 

cliau"acterized by the joint distribution function between X and Y, namely 

F(i,, yj). We further assume that the two variables X and Y have the same 

stanclarclizecl marginal distribution function but their location and scale pa- 

rarneters may be the same or different. For generality, we denote these param- 

eters as /ix, ox and ty, öy, respectively. We can standardize the variables 

X and Y as follows: 

U=X µx 
_ax+oxX, Ux 

V- 
Y- µy 

_ ay + NyY, 6y 

(6.1) 

(6.2) 
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where: 
1 µY 1 µx QY = 

(TX Qx QY QY 

and the design spaces are [A1, B1I and [A2, B21 for U and V respectively, 

Al = 
Cl 

- µx B1 = 
D1 - µx 

ax ox 

. 42 = 
C'2 - I-'Y, B2 _ 

D2 - AY 

. Qy Oy 

For convenience, we denote: 

^/ _ 
('Y1) 72,73, N )T = (aX, OX, ay, QY)T. 

If U and V have joint distribution F2(u, v; V)) where 0 is the measure of 

associatioii between U and V, then X and Y have joint distribution 

F2(x, y, ý» = F2 x- µx y- µY; e 
Qx Qy 

= F2(ax + i3xx, aY + QYy; e) 

= F2(u, v; e). (6.3) 

, 2(u, v; -cj)) is a standardized bivariate cdf model. As mentioned above, in 

the literature, many authors use the bivariate probit model. In our case, we 

focus on using a copula form of the function F2(u, v; V)). A copula has the 

form: 

F2 (u, v; e) = H{Fl(u), Fl(v); ip 1 (6.4) 

where Fl ("u) and Fl (v) are standardized marginal cdf's of U and V respec- 

tively. 

The Plackett Copula will be used as the joint distribution function between 

the two variables X and Y. 
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6.2.1 Concept of copula and Plackett copula 

in this section, we will briefly introduce the concept of copula and the Plack- 

ett copula. A class of functions called copulas was first introduced by A. 

Sklai in 1959, when answering a question raised by M. Frechet about the 

relationship between a multidimensional probability function and its lower 

dimensional margins. These new functions are restrictions to [0,112 of bivari- 

ate distribution functions whose margins are uniform in [0,1]. In short, Sklar 

showed that if H is a bivariate distribution function with margins F(x) and 

G(y), then there exists a copula C such that H(x, y) = C{F(x), G(y)j. 

At the beginning, copulas were mainly used in the development of the the- 

ory of probabilistic metric spaces. Later, they were of interest for defining 

iioilparametric measures of the dependence between random variables, and 

since then. they have began to play an important role in probability and 

Iiiathematical statistics. 

Here is the definition of copula for the bivariate case: 
Definition: A copula is a function C: [0,1]2 --* [0,1] which satisfies: 

1. For every u, v in [0,11, C(u, 0) = C(0, v) =0 and C(u, 1) =u and 
C(1. 'v) = V. 

2. For every u1, u2, v1, v2 in [0,11 such that ul < u2 and vl < v2, we have: 

C(u2, v2) - C(n2, vl) - C(ui, V2) + C(ui, vl) >- 0 

One of the copula families that we use throughout this chapter is the Plackett 

family. We can define this copula as follows: 
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For 0>0, the members of the Plackett family are defined by: 

F, 2 (tt,., Z'j) = H{Fl(ue), F1(vj)} = H(F,,, F21) 

164 

[1+(ýý-1)(Fu+F, )]- [l+(ý-1)(Fu+Fv)]2-4V)(V)-1)FuF,, 

2(V - 1) 

Where for us, F,, = Fl (u, ) and F, = Fl (vj) and ' is the measure of associ- 

ation. From now on, we denote Fl(. ) as the marginal distribution function 

a nd F2(u, iv) the joint distribution function. 

Let: L= {1 + (, ý) - 1) [Fl (ul) + Fl(v2)] Ii the above formula is as follows: 

H(F. 
_ 

F.. ) = 
L- L2 - 4'4'(' - 1)FuF� 

2(0-1) 

There are three cases depending on value of : 

"ýý =1: X and Y are independent. 

" ý> >1: There is positive association between X and Y. 

" ý, <1: There is negative association between X and Y. 

Note that in the limit as .0 -4 1, using l'Hopital's rule, we have: 

H(Fu, Fu) 
-' 

Fl(ui)Fl(v7) 

(6.5) 

With the definition of the copula F2(ui, vj), we can calculate the cell proba- 
bility O in the following way: 

©ij = 
F'2(ui) vj) - F2(ui-,, v, 3) - 

F2(ui, vj-, ) + F2(ui-1, vj-, ) (6.6) 

"Vltll: 

F2(uo, vj) = F2(ui, vo) =0 

F2(ur, vj) = Fl(v3), F2(u,, vj) = Fi(u, ) and F2(ut, vj) =1 
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6.2.2 Fisher information matrix 

In the univariate case, the underlying model is a one dimensional multinomial 

<listiibution with cell probabilities ei. In the bivariate case, our model is also 

inultinomnial but with two dimensions. We will construct the formula for the 

Fisher information matrix. This procedure is similar to the procedure we 

used in the univariate case. 

Denote: 

B, j = P(: x; t, -i 
<_ X <_ x,, yj-i <_ Y< yj), i=1,2, 

..., 
I; j=1,2, ..., 

J 

t111(l: 

( rI 
J 

(0111 012,..., 017,... 0I1,0I2,... BIJ), e= 8\ý_ýý 
[ýýBzJ 

= 1, 

i=1 j=1 

where ry is a vector of parameters to be estimated. (In our case, ry = 
(1'i, 'Y2, 'Ys, N)T = (OX, 

ßX, aY, ßY)T or .y= (a, O)T). 

Now let: 

Ü= ("ull, ul2, """)"ull, """"ull, 'u12i ... u1J) 

where: 

_1: 
if (xi-1 <X< xi) and (yß_1 <X< yj) Ui' 0: if otherwise 

Then, U has a rnultinomial distribution. 

U- . Nt(1, e). (6.7) 

E(Uij) = ei3, 

Var(Uij) = eijll 
- 

gijl, 

COv(Ui,, Urs) 
_ -eijBrs" 
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The covariance matrix is: 

Cov(U) = DB - BOT 

where Do = rliag(9), 0 is defined above. 

The Log-likelihood function is: 

Uz; ln(Bzj) 
8=1 j=1 

Extending the formula 3.7 for Fisher information matrix in the univariate 

case, we have the general formula for Fisher information matrix in bivariate 

case as follows: 

tt 1(al 
Bij 

ý 

6.2.3 Design objectives 

(6.8) 

As in the univariate case, our objective is to choose the cutpoints ui and vj 

optimally in order to obtain good estimation of some aspects of the param- 

eters in the models 6.1 and 6.2. Depending on the objective of having good 

estimation of each parameter alone or good estimation of all parameters si- 

multaneously, we can construct the following criteria. 

1. Efficient, estimation of each parameter alone: 

For instance, if we want to have efficient estimation of parameter Ax, we will 

minimize Va, r(µx) where Ax is the estimator of Ax. 

We know that: 

µx = -Qxißx =* µx = -äxl(3x and Var(µx) "_ Var(ci'Y), 

where: 

a c_ 
aµx -(1, µx, 0,0) T 

_1 a'Y ax 
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Through standardization, we have: 

fi IX, Y('Y)ýi =Q 1Iu, v('Y)cB1, 

where 

iii which B is the matrix 

B 

CBi = BC1, 

1000 

I ax ýx 00 
10 010 

00 ay , 
Or, 

167 

So the initial form of a c-optimal criterion, as a function of IX, y(-y), is trans- 

formed to another c-optimal criterion as a function of Iu, v(-y) which is the 

standardized version of the Fisher information matrix with respect to the 

variables U and V. 
T 

In this particular case, as cl = -(1, µ ,, 0,0 
CB, = Bcl = (ß 

1 
0,0,0)T 

So, in order to have efficient estimation of the parameter µX, we minimize 

Q1 Ij v (y)QB, which is equivalent to minimizing 

(10,0,0)1-1 v (ß') (1,0,0,0)T i. e. cB1 a el = (1,0,0,0)T. 

We have the following definition: 

" el-optimality: A design is called el-optimal if it maximizes the value 

of the function. 

T 
-el lU, 1V(-y) el, 

where ei = (1,0,0,0). 

-Similarly, if we want to have efficient estimation of either parameter aX or 

/' or Q} we minimize Var(&X) or Var(µy) or Var(Qy) respectively . 
Using 
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the same manner as above, we have: 

aQx (0,1, o, o) T 
c2 -« 

(9-Y ýX 

(), 1, µY )T 
C3 = OC 

Ö'y ßy 

Day - (o, o, 0,1 )T 
c4 = a7 OC 

Qy 

aild: 

CB2 = BC2 = (0, -LYX, 0, Q)T 

-1 
cBý = BC3 = (0 

, 0' 
Qx' 

0' 0' o)T 

cB4 = BC4 = (0,0,0, -aY)T 

We also easily see that: 

CB2ae2_(0,1,0,0)T 

cB3 oc e3 = (0,0 1 0)T 

CB4 «ý= (0,0,0,1)T 
Thus, we have following definitions: 

" e2-optimality: A design is called e2-optimal if it maximizes the value 

of the function: 
T1 

-e2lu, vý"_Y)e2l 

where ei = (0,1,0,0). 

. e'3-optimality: A design is called e3-optimal if it maximizes the value 

of the function: 
T1 

-e3 IUV (y)e3i 

where ei = (0,0,1,0). 
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" e4-optimality: A design is called e4-optimal if it maximizes the value 

of the function: 

Ti )ý -ý lu, v('Yý 

where el = (0,0,0,1). 

2. Efficient estimation of all parameters: 

We wish to make Cov(=y) 'small'. As in the univariate case in chapter two, 

we can use either D-optimality or A-optimality. 

0 D-optimality : maximize flog det(Iu, v) } 

' )} " A-optimality : maximize{-tr (I- U, V 

Possible marginal distributions for variables X and Y are symmetric distribu- 

tions such as the logistic, normal, double exponential and double reciprocal 

and asymmetric distributions such as the complementary log-log and skewed 

logistic. We will investigate these in detail by dividing into two main cases. 

The first one is a two parameter case when we assume that the location and 

scale parameters of X and Y are the same. The second case is the four pa- 

ranieter case when we assume these parameters are different. We will come 

back to these cases later on. 

6.3 Case 1: The two marginal distributions 

are identical in their parameters 

The assumed distributions for two variables X and Y are the same and can 

he in the forun of symmetric distributions such as logistic, normal, double 

exponential and double reciprocal or asymmetric distributions such as corn- 

plernentary log-log and skewed logistic. 
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6.3.1 Models and the Fisher information matrix 

In this case, we assume in the model 6.1 and 6.2 that ax = ay =a and 

ßx _ ßy = , 
ß. Our models are then two parameter ones under which: 

Ui =a+, 3xi 

V3 = +, ßyi 

The Fisher information matrix 6.8 can be written in the form: 

IJ1 

I((V, d/2Li., vj) 

ti=1 j=1 ý 

aeiJ 
2 

aeij aeij ý 
ac) aa aa 

aeiý aei, 0 i; 
2 

ace ap 
( 

aa 

(6.9) 

(6.10) 

(6.11) 

In order to compute the Fisher information matrix, we need to have the 

derivatives of 8i, with respect to the parameters ce and ß. We now demon- 

strate the calculation procedure by using some particular cases. 

6.3.2 Symmetric distribution cases 

\Ve first focus on the symmetric marginal distributions, say logistic, normal, 

double exponential and double reciprocal distributions. Because of the sym- 

iiietry, we also assume that the forms of the cutpoints in each dimension are 

symmetrical. The number of the cutpoints in each dimension may or may 

not be equal. The sets of cutpoints in each dimension can be the same or 

different. Since the model has two parameters, to ensure estimation of both 

parameters, we heed at least one cutpoint in each dimension. We use the no- 

týitioii {(. ): (. ){ to present the two sets of cutpoints in two dimensions where 

the first, cutpoint, or set of cutpoints is enclosed in the first round parentheses. 
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\V'ith this notation, we can write the form for the most simple case, which 

has one cutpoint in each direction, as follows: 

{(x); (y)} 

If we transform from x and y to the u and v through the standardization, we 

have the form: {(u); (v)}. 

Similarly, we can extend to other cases and here are some we will consider: 

1. {(: a; ); (y)} -, 
{(u); (v)} 

(-; y, y)} - {(0); (-v, v)} 

(-y, 0, y)} ---> {(0); (-v, 0, v)} 

(-x, x)} , {(-u, u); (-u, u)} 

(-x, 0, x) }ý{(`'U,, u); (-u, 0, u)} 

6. {(-X, x); (-y, 0, y)} --> {(-u, u); (-v, 0, v)} 

7. {(-x, x); (-y, y)} --+ {(-"u, u); (-v, v)} 
8. {(-. r, ", O, : x: ); (-x, 0, x)} --> {(-u, 0, u); (-u, 0, u)} 

0,: x: ); (-y, 0, y)} --º {(-u, 0, u); (-v, 0, v)} 

IO. {(-L2, 
-xl, xl, x2); (-x2, 

-X1, xl, x2)} 

(-t12 
i -U1, Uli u2); (-u21 

-Uli Uli U2)} 

11. {(-9; 
21-. x: l, 0, xl, x2); (-x25-xl, 0, xl, x2)} 

-' 
{ (--u2 

-ul, 
U, ul, u2); (-u2, 

-ulý 0, U1, U2)} 
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Iii all the cases above, we are generating a one or two variable optimization 

problem. We will use search methods to find optimal solutions. Since search 

methods are used, we limit the number of variables to two. Then the number 

of cutpoints in each dimension can vary from one to five (including cutpoint 

0). 

We now consider the first case above to demonstrate the computational pro- 

ce(lure. We use the square diagram below to describe the case. 

(u) 

Iii this case, we have only one cutpoint for each dimension. This is a two 

variable and two parameter problem. 

If the design space for X and Y is from -oo to oo, in this case we have 

x() = yo = -oo and x2 = Y2 = oo. Through the standardized transformation, 

we have new variables: 

u=a+, ßx1 and v=a+, 3y1 

Using formula 6.6, we have: 

Oil 
012 

021 

F2(u, v) 

Fi(u) - F2(u, v) 

F1(v) - F2(u, v) 

1- F1(u) - F, (v) + F2(u, v) 
022 = 
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Here F1(. ) is the marginal distribution function and F2(.. ) is the joint distri- 

hutioll function. 

We now calculate the derivatives. 

1901, aF2(u, v) aF2(u, v) 
Oa - au + av 
0011 0F2 (u, v) + yl 

aF2(u, v) 
1919 - x1 

au 19V 
00ý 

=f (u) 19 
- aß a 

19012 1901, 
1919 = x1f(ýu) - 1919 
19021 1901, 
as =f (V) - as 
19021 081, 
1919 = ylf(ýU) - as 

aý 
X2 

-[f(u) +J (v)] + 
as 

a8ß 
= -[xIf (u) + y, f (v)] + 

19aß 

where f (. ) is the density function: f (. ) = F`(. ). 

We know that: 

(')=( 
Q 

Tlueii: 

011_ )B( 1(1 
ý x1 x)=n-'() 

I (a,, ß1x, y) = BI (u, v)BT 

So, through the standardization, we transform from variables X and Y to U 

and V and evaluate the information matrix I (u, v) or functions of it which 

are independent of the parameters a and , 
ß. 

In the above formula, we can replace x and y by u and v without any loss of 

generality. 

Iii our case, we use the Plackett copula as the joint distribution function 

'u,, 1\ cY 
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between the two variables X and Y or between U and V. We know that: 

F2 (u, v) = H{Fl(u), Fi(v)} = H(Fu, FV) 

Then: 

aFz(u, v) aH{Fl(u), Fl(v)} 
= 

OH (Fu, Fv) 
au -f (u) 

aF1 (u) 
f (u) 

aFz, 
aFz(u, v) aH{Fl(u), Fl(v)} 

_ 
OH (F, F�) 

aý. - f (v) 
aFI(v) -f (v) 

OF, 

Frain formula 6.5, let P= L2 - 4V)(0 - 1)F.,, F,,. We calculate the deriva- 

tives `ds: 

2L2(0-1)L-4,0(0 -1)F'v] 
c(F, F2, ) 

_P OF, 2(, 0-1) 

Or: 

1 L- 2V)F 1 2, OF, -L 
2f 1- 

P =2 1+ p 

OH {F, (u), F, (v)} 
_11+ 

(ý) + 1)Fi(v) - (e - 1)Fi(u) -1 
OF1(u) 2P, 

Similarly: 

UH1F, (u)> Fl(v)} 1 
L1 

+ 
(o + 1)Fl(u) - (e - 1)Fl(v) -1 

OF1(ýý) 2IL Pý 

(6.12) 

(6.13) 

We are still using search methods to find the optimal solutions. We start 

the calculation procedure from values for u and v. Then, given our assumed 

distribution for the variables, we compute the values of cell probabilities O3 

and the derivatives of Oj w. r. t. parameters. The next step is to calculate the 
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Fisher information matrix and evaluate the values for the chosen criterion 

function. Note that the optimal designs will depend on the values of the 

coefficient of association -0. 

6.3.3 Some results. 

In tables 6.1 and 6.2 below, we report the D-optimal solutions in respect of 

the logistic distribution for the four cases (1), (4), (6) and (8) above, namely 

{('u); (n)}, {(-'a, 'u); (-'u, u)}, 

{ it, 0, u); (-'u, 0, 'u, )} and {(-u, u); (-v, 0, v) }. For each case, we change 

the value of the coefficient of association 0 from 0.001 (very low negative as- 

sociation) to 100 (very high positive association). The optimal cutpoints and 

optimal criterion values are also reported. Note that after standardization, 

cases (4) and (6) are one-variable optimizing problems but cases (1) and (8) 

are two-variable optimizing problems. 

Comments 

We can see that when the parameter increases, the results do not change 

significantly in terms of optimal cutpoints arid optimal criterion values. For 

example, in the case of {(u); (v)}, the optimal u* and v* are symmetrical and 

slightly change from the smallest value of -1.55 to the biggest value of -1.37. 
So, we can say that the optimal cutpoints are not very sensitive to the value 

of 'u'. 

When the parameter 0 approaches 1, we see that the optimal criterion values 

obtained are similar to the ones we found in the respective univariate cases. 
For instance, in the case {(-u, u); (-v, 0, v)}, when V) = 0.999, u* = 1.52, 
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W=2.06. These values are similar to the optimal cutpoints in the three and 

four category cases respectively. We will investigate the independent case 

(il, = 1) to verify this result. 

\Ve also found similar results in terms of optimal cutpoints and optimal cri- 

terion values between the following pairs of cases: 

{(-'u, u); (-v, v)} and {(-u, u); (-u, u)} 

arid {(-u, 0, uJe (-u, 0, u)} 
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Table 6.1: D-optimal cutpoints for: logistic distribution; bivariate approach; 
two parameters; cases (1) and (4). 

cp Forrn{ (u); (v) } Form { (-u, u); (-u, u) } 

("u*> v*) `I'*('u*, v*) u* (D* (U*) 

0.001 (-1.3700,1.3700) 0.2969 1.1200 2.0450 

0.010 (-1.3900,1.3900) -0.6946 1.1000 1.0895 

0.100 (-1.4700,1.4700) -1.4005 1.1900 0.3695 

0.200 (-1.5000,1.5000) -1.5168 1.2700 0.1984 

0.300 (-1.5200,1.5200) -1.5610 1.3300 0.1053 

0.400 (-1.5300,1.5300) -1.5825 1.3700 0.0410 

0.500 (-1.5300,1.5300) -1.5940 1.3900 -0.0087 
0.600 (-1.5400,1.5400) -1.6003 1.4200 -0.0498 
0.700 (-1.5400,1.5400) -1.6040 1.4300 -0.0851 

0.800 (-1.5500,1.5500) -1.6060 1.4500 -0.1164 
0.900 (-1.5400,1.5400) -1.6068 1.4600 -0.1446 
0.990 (-1.5400,1.5400) -1.6070 1.4700 -0.1679 
0.999 (-1.5400,1.5400) -1.6070 1.4700 -0.1701 
2.000 (-1.5500,1.5500) -1.6005 1.5100 -0.3551 
3.000 (-1.5300,1.5300) -1.5919 1.5200 -0.4738 
4.000 (-1.5200,1.5200) -1.5862 1.5200 -0.5606 
5.000 (-1.5100,1.5100) -1.5821 1.5200 -0.6280 
10.00 (-1.4900,1.4900) -1.5716 1.5100 -0.8292 
20.00 (-1.4800,1.4800) -1.5648 1.5000 -1.0051 
50.00 (-1.4700,1.4700) -1.5601 1.4900 -1.1869 
100.0 (-1.4700,1.4700) -1.5584 1.4300 -1.2897 
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Table 6.2: D-optimal cutpoints for: logistic distribution; bivariate approach; 
two parameters; cases (6) and (8). 

Forin {(-u, u); (-v, 0, v)} Forrn {(-u, 0, u); (-u, 0, u)} 

(. u* v*) `D*(, u* v*) u* ('u*) 

0.001 (0.1100,2.1800) 2.3819 1.3900 2.7065 

0.010 (0.3300,1.8800) 1.4279 1.5200 1.1985 

0.100 (0.9200,1.8900) 0.6568 1.6700 0.9006 

0.200 (1.1300,1.9400) 0.4344 1.8100 0.6520 

0.300 (1.2400,1.9500) 0.3143 1.8800 0.5141 

0.400 (1.3600,1.9700) 0.2345 1.9100 0.4199 

0.500 (1.4200,2.0000) 0.1739 1.9400 0.3489 

0.600 (1.4500,2.0100) 0.1257 1.9500 0.2921 

0.700 (1.4700,2.0200) 0.0846 1.9600 0.2449 

0.800 (1.4900,2.0400) 0.0488 1.9700 0.2045 

0.900 (1.5000,2.0400) 0.0177 1.9700 0.1692 

0.990 (1.5100,2.0500) -0.0076 1.9800 0.1409 

0.999 (1.5200,2.0600) -0.0100 1.9800 0.1382 

2.000 (1.5700,2.0900) -0.2011 2.0100 -0.0631 
3.000 (1.6000,2.0900) -0.3147 2.0300 -0.1776 
4.000 (1.6000,2.1000) -0.3948 2.0300 -0.2576 
5.000 (1.6000,2.1100) -0.4553 2.0400 -0.3188 
10.00 (1.5800,2.2000) -0.6296 2.0300 -0.5019 
20.00 (1.4100,2.4000) -0.7687 2.0200 -0.6683 
50.00 (1.3200,2.5700) -0.8833 2.0100 -0.8502 
100.0 (1.2500,2.7000) -0.9289 2.2000 -0.9557 



CHAPTER. 6. A BIVARIATE APPROACH 179 

6.3.4 Special case: o=1. 

Consider the case J=1, i. e. the two variables X and Y are independent. 

Denote: 

and.. 

(i Bx. = Plxi-1 : ý- X <- xi) 
E exj 

j=1 

I 
B. 

j = P(yj-1 <_ Y yi) -E 
eij) 

i=1 

ei. 8. j=1. 
i=1 ; =1 

0, and Bj are in turn the cell probabilities if we consider the two variables X 

and Y as the two separate univariate cases. Since X and Y are independent, 

we have: 

0i3 

=O:. 
X 0. 

j. 

H, and 9. depend on the two parameters a and ß. So 

(6.14) 

(6.15 

aeý 
a(aej) 

- Caý)Bj +ei. Mi 
/ 

re -y can be either a or , ß. whe 

Frain formula 6.11, we can find the elements of the Fisher information matrix. 
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First,. the two diagonal elements are (for -y = (a, a)): 
I� - 

7= 

aBZ, a 

ary 
ý 

1 ff /eýI le.; 
+ eiI/ 1a 

.IIa. l aeý/ 
ý 

e1. e , l \\ ll 

. (a0i. 
)2(O)2 aei ae2 

9ý. J 
+2 C a7 19-Y 

(Bz. g., ) + (et. ) ()2] 
0-Y J=1 

1J 

EE 
i=1 , 7=1 

1 aa2.2 8.; +2 aeti, ae.; +1' (OO)21 Bi. 
( 

i- a-ý -i j- -i a-ý a-ý ti-_i j_1 0-Y 9. 

'1 
aB2 

2J 

, _i j_i 
jý1 

t=1 / Lj=1 

I aez ' ae.; +2 

z_l aý 
, ýý 

a7 

I ae., l2 
e.; 

(a-yý 

(ýBi. 12+0 
-ý 

ýý ý 
e1 

(Ö9,; 

dý ) LLuu 

2 

BL .7 \Ö1 

) 

C j=i j_-i 

Since Z B,, = 1, then Z i. =ý 
ae'j 

=0 
i=i 

(6.16) 

The two off-diagonal elements are identical given symmetry of I, and can 
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be found as follows: 

Ica 
'i 

181 

aei, ae, 1 aei. aei. 
(B7)2 +IJ1B+ ) ij 

(aO'. 

CY a, Q ap as lI 

i=i 
j=1 

jJi + 
ZE 

ei. 8.? 
(Bti. )2 

( 

Da i9)3 

) 

\ i=1 j=1 

'go 

'', 
1: 

= 
8ýd 

("', J) act 
(""') 

ý-1 

11 18 
+eZ. 

.ý 

ff 
au au lJ 

ýý 
ýa I' 

ý 
as 

i- 
a,. ej 

-ý ., -1 
lý J 

11 ae'. aaz 
'I 

ae. 
' 

'90. j 
I a8i. ' a8.; 

E 
B". (9a äE 

(o. )j 
+E äa E 

ap +E äp E äa 
7j=1 i=1 j=1 i=1 j=1 

+ 
I1 ae.; ae.; ý ez. e"j " act aQ ti=1 7=1 

I 00i. aei. 

ý, �, 
ý 1 ae., ae., 

1=1 
ý äý äý +u1-uý-LB. 

j äa äp 

So, the Fisher information matrix in this case is of the form: 

I((r, p/u, v) _ 

ti .2+' ei. 

(ao 

äa/ e. 
ýaa' i=i j=i 

1 1902. aei. '1 ae.; 190., ý e2. äa äa +ýO. J. ý as as i=1 j=1 

(6.17) 

I aei. aei. 1 ae., ae., ý 
ei. r3a äp + 8.; aa 90 

i 
(aoi. 

)2 +' I 
(Oýj)2 

e"9 
\aß 

Porin 6.18 reveals an expected result namely that in the two parameter case 

Of a bivariate model, if the two variables X and Y are independent (ýb = 1), 

the Fisher information matrix is the sum of two Fisher information matrices 

ý. 1s) 
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of X and Y if we consider them as separate univariate cases, i. e. 

Ixx = Ix + Iy 

or: 

I(a, Q1 uZ, v3) = I(a, aluti) + I(a�0 Iv3) 

182 

(6.19) 

This structure of the Fisher information matrix explains the similarity of 

results, in terms of optimal cutpoints and criterion values, we found between 

the bivariate and the respective univariate cases for 0 close to 1. 

6.3.5 Asymmetric distribution cases. 

In the asymmetrical case, the cutpoints in each dimension may not be sym- 

metric or zero may not be a cutpoint. As mentioned above, because we use 

a search method to find the optimal solution, we need to limit the search to 

at most, a two variable optimization problem. In addition to the condition 

that there are at least two cutpoints in each case to ensure the estimation 

of two parameters, we consider the following scenarios for the asymmetrical 

distribution case. 

1. {(: x); (y)} - I(a); (V)} 

2. {(ý:, y); (x, y)} -i {(u, v); (u, v)} 
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Table 6.3: D-optimal cutpoints for: complementary log-log distribution; bi- 

variate approach; two parameters. 

Forrn{(u); (v)} Form {(u, v); (u, v)} 

(u*, v*) `D*(uv*) (u*, u*) ý*(u*, v 

0.001 (0.5900, -1.7100) 1.2729 (-0.3700,1.1000) 3.5172 

0.010 (0.6200, -1.7100) 0.3001 (-0.3800,1.0900) 2.4461 

0.100 (0.8500, -1.4800) -0.3027 (-0.6000,1.0200) 1.5453 

0.200 (0.9300, -1.3800) -0.3719 (-0.8200,0.9900) 1.3476 

0.300 11 (0.9600, -1.3500) -0.3970 (-0.9800,0.9700) 1.2483 

0.400 0 (0.9700, -1.3400) -0.4091 (-1.0700,0.9600) 1.1833 

0.500 (0.9700, -1.3400) -0.4155 (-1.1400,0.9600) 1.1352 

0.600 (0.9800, -1.3300) -0.4192 (-1.1900,0.9600) 1.0966 

0.700 (0.9800, -1.3400) -0.4212 (-1.2300,0.9600) 1.0641 

0.800 (0.9800, -1.3400) -0.4222 (-1.2500,0.9600) 1.0357 

0.900 (0.9800, -1.3400) -0.4227 (-1.2800,0.9600) 1.0104 

0.990 (0.9800, -1.3400) -0.4229 (-1.2900,0.9600) 0.9896 

0.999 (0.9800, -1.3400) -0.4229 (-1.3000,0.9600) 0.9876 

2.000 (0.9800, -1.3300) -0.4190 (-1.3700,0.9800) 0.8236 

3.000 (0.9700, -1.3300) -0.4150 (-1.3800,1.0000) 0.7175 

4.000 (0.9700, -1.3200) -0.4123 (-1.3800,1.0100) 0.6391 

5.000 (0.9700, -1.3200) -0.4103 (-1.3700,1.0200) 0.5773 

10.00 (0.9600, -1.3100) -0.4054 (-1.3400,1.0500) 0.3873 

20.00 (0.9600, -1.3100) -0.4024 (-1.3100) 1.0600) 0.2113 

50.00 (0.9600, -1.3000) -0.4003 (-1.2900,1.0500) 0.0177 

100.0 (0.9600, -1.3000) -0.3997 (-1.2900,1.0300) -0.0943 
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6.4 Case 2: The two marginal distributions 
differ in their parameters 

Now we consider the case when the parameters in the models of the two 

d1111('1i51Olib are different. 

6.4.1 Model and the Fisher information matrix 

If the paraiueters of the two marginal distributions of X and Y are different, 

i. c. o. N: j (y and 13,1 a'3y, we have a four parameter model. Denote 

(, V=01. (). = (12.3x = 31,5y = 32, the standardized design variables are: 

ui - ce1 + Olxi 

U7 

t bý 1= 

aeti, aei; aeti, ae, 
a(kl aCk2 aal aO2 

= (x2 + ß2y3 

((VI 
, /31,021 E32)T 

. The Fisher information matrix 6.8 is of the form: 

1-1 J-l 7 

aBj, )2 aBi3 aBi7 

ax, aal aßl 
002, ae2, aei; 12 

Do 1 
aßl 

( 

0,31 
/ 

ae,, ae,, aei, ae,, 

aal 502 
(9a2 aOl 

aoi, 7 a9i; aei. 
7 

aBi) 

L a(xi 002 1901 1902 

Ill this Cilti('. 

aeij aei; aeij aei; 

(6.20) 

(6.21) 

-1 

aal 
1901 1901 1902 

aojj 2 aoi4 aoij 

C aal) aal 1902 

aOj aojj aOti, 
2 

19192 aß2 

( 

aß2 

) 

0.22) 

we have four parameters. In order to ensure the estimation of 

all the l)ar, ºnu'terS, we need a total of at least four distinguished cutpoints in 

the two diºnew ions. We consider the following scenarios. 

1. {(0): (-y. 0, y)} -+ {(0); (-v, 0, V)} 
2. {( -. r,. r), (-. r, x)) ---ý {(-u, a); (-u, u)} 

3. 
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4. {(-x, 0, x); (-x, 0, x)} -> {(-u, 0, u); (-u, 0, u)} 

5. {(-x, x); (-y, y)} --* {(-u, u); (-v, v)} 

6. {(-. x", x); (--y, 0, y)} --ý {(-u, u); (-v, 0, v)} 

7. {(-i, 0-1. ); (-y, 0, y)} --ý {(-u, 0, u); (-v, 0, 'V) } 

8. {(-. x: 2, -Z1, x1, x2); (-x2, -x1, x1, x2) } 

{(-u2, -'u1, u1, u2); (-u2, -u1, u1, u2) } 

9. {(-x2, -xl, 0, X1, x2); (-x2, -x1,0, xl, x2) } 

-4 
{(-`U, 

2, -u1,0,71,1 n2); (-u2, 
-u1,0, u1, u2)} 

The calculation procedure is slightly different from the case of the two pa- 

ra111eter model in the sense that u depends only on a1 and , ß1, v depend 

only on a2 and 02, so the derivative of 8iß w. r. t the parameters are different 

compared with the two parameter case. We use the case {(-u, u); (-v, v)} 

as an illustration for the calculation procedure. 

ya 

(U) Y2 

(-v) yi 

Yo 

013 023 033 

012 022 032 

011 021 031 

10 X1 

(-'u) 
x2 

(u) 
xq 
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The cell probabilities: 

O11 

012 

01: 3 

021 

022 

023 

e3l 

0s2 

0: 
3: 3 

F2(-u, -v) 

F2(-u, v) - F2(-u, -v) 

Fi(-u) - F2(-u, v) 

Fz(u, -v) - F2(-u, -v) 

F2(u, v) - F2(-u, v) - F2(u, -v) + F2(-u, -v) 

F, (u) - Fl(-v) - F2(u, v) + F2(-u, v) 

Fl(-v) - F2(u, -v) 

Fl(v) - Fl(-v) - F2 (u, v) + F2(u, -v) 

1- Fl(v) - Fl(u) +F2(u, v) 

The derivatives of 0,, j w. r. t the parameters are: 

'9011 
_ 

0F2(-u) -v) 
aa1 a(-2l) 
(gell aF2(-u, 

-v) 
002 - a(-v) 

001, aF2(-u, -v) 

'901 =x 1 a(-u) 
x011 

= y1 
aF2(-u, -v) 

002 a(_v) 

49012 aF2(-u, v) (9011 

eal 0(-u) (9a, 

8012 aF2(-u, v) 
_ 

0011 
ea2 a(v) aa2 
0912 0F2(-u, v) 

0011 

aal - xl a(-u) aal 
0012 0F2(-u, v) 8011 
002 = y2 a(v) a, ß2 
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0013 
0cY 

1 

0013 
d(A2 

0013 
001 
0012 

aal 

0021 

0ct 
1 

021 

0o2 

0021 

apt 
0012 

0p2 

öF2(-u, v) 
_ fý(-'u) - ä(-"u) 

aF2(-u, v) 
__ a` 

xif (-'u) - x1 
äF2(-u, v) 

a(-u) 

äF2(-u, v) 
y2 av 

0F2(u, -'U) 
0011 

au aül 
aF2(U, -v) 0011 

X2 

0(-v) OCV2 

8F2(u, -v) ä9l1 

(9(u) (901 
(9F2(u, -v) (9011 'I,. - 

yl a(-v) 1902 

(9022 (9F2(u, v) aF2(-u, v) aF2(u, -v) + 
aoll 

aal - au - a(-u) - au aal 
0022 aFz(u, v) 0F2(-u, v) aF2(u, -v) aoll 
(902 ý av - av - a(-v) + 0CY2 
(9021 aF2(u, v) aF2(-u, v) aF2(u, -v) , 0011 

- r. ý "-X, 
`l n '°G `l -- + rl I\ -4 " 

ae12 
001 

0,02 ý; F` av V° av U1 a(-v) ' 002 

au -[i aý-u) x2 au t 

aai 
-� 

aF2(u, -v) _ 71,1 
aF2(-u, v) - 

71aFz(u, -v) + "ell 

a023 
aCI, 

a023 
aa2 
a021 
03, 

(9012 

f (u) f (-u) - 
aF2(u, v) + aF2(-u, v) 

au a(-u) 
aF2(u, v) aF2(-u, v) 

- av + av 

d42 

X'2f (U) 
-Xlf 

(-U) 
- x2aF2(u, 

v) + XI aF2(-u, v) 

au a(-u) 

aF2 (u, v) aF2 (-u, v) -J2 aU 
+ y2 

av 
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0031 
oCl l 

0031 
ütx2 

0821 

oil 

0H 12 

032 

d 032 

aal 
d 023 
dCY2 

0021 

ddl 

O012 
a 13z 

äF2(u, -v) 
au 

8F2(u, -v) f ý-v) 
a(-v) 

aF2(u, -v) 
-r2 au 

äF2(u, -v) 
y1f (_v) _' yi a(-v) 

aF2(u, v) aF2(u, -v) -- au 
+ 

a(u) 
aF2(u, v) aF2(u, -v) - f(ý) - f(--ý) - av + a(-v) 

aF2(u, v) 
+ y2aF2(u, 

-v) 
2 au a(u) 

aF2(u, v) aF2(u, -v) 
= y2f (v) - yif (^v) - Y2 äv + yi a(-v) 

0033 
_ 

aF2(u, y) 

Oal -f (u) 
au 

0033 aF2 (u, v) 

aC12 -f (v) - av 

aB2t 0 F2(u, v) 
a191 _ -xzf (u) - x2 au 
0012 F2 u, v 

a3z = -y2f (v) - 
y2 

av 
6.4.2 Some results 

188 

In tables 6.4 to 6.6 below, we report the D-optimal solutions in respect of the 

logistic distribution for the four cases {(-u, 0, u); (-v, 0, v)}, {(-u, u); (-u, u)}, 

{ (- a, "u); (-v, 0, v) I and {(-u, 'u); (-u, 0, u)} and the skewed logistic (m = 

2/3) and complimentary log-log distribution for the case {(-u, v); (u, v)}. 

The results have the same patterns and characteristics as we found in two 

parameter case. 
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Table 6.4: D-optimal cutpoints for: logistic distribution; bivariate approach; 
four parameters. 

Form{(-u, 0, u); (-v, 0, v)} Form {(-u, u); (-u, u)} 

("u*, v*) (u*, v*) u* (u*) 

0.001 (1.6200,1.6200) 1.6509 1.3200 0.6860 

0.010 (1.6200,1.6200) -0.2745 1.3200 -1.2635 

0.100 (1.7800,1.7800) -1.8097 1.37000 -2.6450 

0.200 (1.8700,1.8700) -2.1476 1.4000 -2.8887 
0.300 (1.9200,1.9200) -2.2988 1.4300 -2.9895 

0.400 (1.9400,1.9400) -2.3815 1.4400 -3.0423 
0.500 (1.9600,1.9600) -2.4306 1.4500 -3.0730 

0.600 (1.9700,1.9700) -2.4607 1.4600 -3.0915 
0.700 (1.9700,1.9700) -2.4791 1.4600 -3.1027 

0.800 (1.9800,1.9800) -2.4898 1.4700 -3.1092 
0.900 (1.9800,1.9800) -2.4951 1.4700 -3.1124 
0.990 (1.9800,1.9800) -2.4966 1.4700 -3.1133 
0.999 (1.9800,1.9800) -2.4966 1.4700 -3.1133 
2.000 (1.9600,1.9600) -2.4306 1.5100 -3.0730 
3.000 (1.9300,1.9300) -2.3316 1.4300 -3.0106 
4.000 (1.9000,1.9000) -2.2357 1.4200 -2.9480 
5.000 (1.8700,1.8700) -2.1476 1.4000 -2.8887 
10.00 (1.7800,1.7800) -1.8097 1.3700 -2.6450 
20.00 (1.7100,1.7100) -1.3991 1.3400 -2.3145 
50.00 (1.6400,1.6400) -0.7838 1.3300 -1.7588 
100.0 (1.6200,1.6200) -0.2745 1.3200 -1.2635 
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Table 6.5: D-optimal cutpoints for: logistic distribution; bivariate approach; 
four parameters. 

V' 

0.001 

Form {(-u, u); (-v, 0, v) } 

(1.4100,1.4200) 

0.010 i (1.3800,1.4500) 

0.100 

0.200 

0.300 

0.400 

0.500 

0.600 

0.700 

0.800 

0.900 

0.990 

0.999 

2.000 

3.000 

(1.3400,1.7800) 

(1.3800,1.8800) 

(1.4100,1.9300) 

(1.4300,1.9500) 

(1.4500,1.9600) 

(1.4600,1.9700) 

(1.4600,1.9800) 

(1.4700,1.9800) 

(1.4700,1.9800) 

(1.4700,1.9800) 

(1.4700,1.9800) 

(1.4500,1.9600) 

(1.4200,1.9400) 

(u V 

-0.9557 

0.9158 

-2.2614 

-2.5296 

-2.6495 

-2.7148 

-2.7534 

-2.7770 

-2.7913 

-2.7996 

-2.8038 

-2.8050 

-2.8050 

-2.7534 

-2.6754 

Form 1 (-u, u); (-u, 0, u)} 
u* 

1.4100 

1.4200 

1.5100 

1.6500 

1.6000 

1.6200 

1.6000 
1.6300 

1.6400 

1.6400 

1.6500 

1.6500 

1.6500 

1.6300 

1.6000 

11) *(u*) 

0.9149 

-0.9705 

-2.3273 

-2.5942 

-2.7104 

-2.7731 

-2.8100 

-2.8326 

-2.8464 

-2.8543 

-2.8582 

-2.8594 

-2.8594 

-2.8100 

-2.7353 
4,000 1 (1.4000,1.9100) 1 -2.5995 1 1.5800 -2.6620 
5.000 (1.3800,1.8800) -2.5296 1.5600 -2.5942 
10.00 (1.3400,1.7800) -2.2614 1.5100 -2.3273 
20.00 (1.3400,1.7000) -1.9357 1.4600 -1.9878 

50.00 (1.3600,1.5000) -1.4168 1.4300 -1.4452 
100.0 (1.3800,1.4500) -0.9557 1.4200 -0.9705 
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Tahle 6.6: D-optimal cutpoints for: bivariate approach, skewed logistic 

(ui=2/3) and Complementary log-log distributions; form {(u, v); (u, v)} 

Skewed logistic Complementary log-log 

(u*, v*) V (u*, V*) (u*, v*) V (u*, v*) 

0.001 (-2.1900,0.8200) 0.0049 (-1.6700,0.5700) 2.6020 

0.010 (-2.1900,0.8300) -1.9444 (-1.6500,0.5900) 0.6749 

0.100 (-2.1300,0.9500) -3.3225 (-1.3500,0.8400) -0.5050 

0.200 (-2.1100,1.0300) -3.5661 (-1.2500,0.9200) -0.6493 

0.300 (-2.1200,1.0700) -3.6684 (-1.2600,0.9400) -0.7131 

0.400 (-2.1400,1.0900) -3.7228 (-1.2700,0.9500) -0.7484 

0.500 (-2.1500,1.1000) -3.7546 (-1.2800,0.9500) -0.7695 

0.600 (-2.1600,1.1000) -3.7740 (-1.2800,0.9600) -0.7825 
0.700 (-2.1700,1.1100) -3.7857 (-1.2900,0.9600) -0.7903 

0.800 (-2.1700,1.1100) -3.7925 (-1.2900,0.9600) -0.7949 

. 900 (-2.1700,1.1100) -3.7959 (-1.3000,0.9600) -0.7972 

0.990 (-2.1700,1.1100) -3.7968 (-1.3000,0.9600) -0.7978 

0.999 (-2.1700,1.1100) -3.7968 (-1.3000,0.9600) -0.7978 
2.000 (-2.1500,1.1000) -3.7546 (-1.2700,0.9500) -0.7686 
3.000 (-2.1300,1.0800) -3.6898 (-1.2600,0.9500) -0.7219 

4.000 (-2.1100,1.0600) -3.6253 (-1.2400,0.9400) -0.6737 

5.000 (-2.0900,1.0500) -3.5646 (-1.2300,0.9300) -0.6270 

10.00 (-2.0500,1.0100) -3.3170 (-1.2000,0.9100) -0.4242 
20.00 (-2.0200,1.0000) -2.9842 (-1.1900,0.8800) -0.1294 

50.00 (-2.0200,0.9600) -2.4271 (-1.1900,0.8400) 0.3930 

100.0 (-2.0200,0.9500) -1.9316 (-1.1900,0.8300) 0.8724 
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6.4.3 Special case: 0=1. 

1( ae2, l2 

(ý, 
ý 

\aal / 
ý. ýý . 

i=1 

We again consider the special case when 'e/> = 1, i. e. the two variables X 

Hied Y are independent (symmetric distribution). We have Bij = O. xO. 

(), depends only on al and ßl, ©, depends only on a2 and /32. Denote the 

information matrix 6.22 by: 

DDil 21 

D12 
D22 

W'e can transform the elements of I(ryw,, v) as follows: 

D! 1 _ I .1 1 aei, a'ýez; 
A ! Y/Y. 

"n. 

ý i-1 j-1 "3 --t " EE 

jý1 aei j ae', 
e act, 001 

ti=l j=1 
'J1 

iEE _ 3=1 

2 

aQ1 
) 

Biý (190i, 
11 aei 

2 

ei e., 
(aal e jý 

I-. -! J-i 
IJ. / nn \ / ýn f 

1: 1 (oul. o. j) 
(oui. o. 

j 

3-1 
ea. e. i aal öß, 

I1 Caez. 2ý 
z=1 
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(6.23) 

aei 

e. ý 
(; o. 2) (; o) 

i_ 

(OO. ) 
-1 ý=1 ý 

`1 aei. 1 aei. 1 , 8. j) 
ý-ý 

(UO. 
) 

(üO. 
)) 

'_' e., ý 
i=1 

I1 (36)2) (Zj 

j-i ej ý 
i=1 
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Finally, since 

D11 
- 

I = 1, we have: 

I1 aei. 2 

ei. 

(au, ) 

l 

L_l 'ý 
ae2. ( aeý (ÜLY1) 

\O/3i) 
i-1 

=iu 

Similarly, we have: 

= D22 

and: 

'i ae., l2 ýeýý 
aý2 J ý=1 

ae, 1 ae. i ý 
.ýC 

öa2 Jýa ý-1 

= Iv 

00 D12 = D21 _00 

1 (II e.; (ae.; 
ý. 

7 \ aa2 ap2 

i ae., 12 
'-_-ý e.; 

( 
aal J 
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where IU and IV are the information matrices in the univariate case for U 

and V separately. So, in the four parameter model, where X and Y are 

independent, the Fisher information matrix turns out to be: 

I('YlU, V) =rö0 l 
This is to be expected. So in the independent case, the optimal cutpoints 

will be similar to the ones we obtain in corresponding univariate cases when 

'i aeZ. 1 ti. ý ez. 
( 
aý, l 

(aeäaý ) 
i-1 

11 aB". 2 

et. 
(190 ) 

, ý1 
Z_, 

, close to 1. 



Chapter 7 

Conclusions and Future Work 

7.1 Conclusions 

This thesis has considered the determination of a set (or sets) of cutpoints 

(iii a categorized survey question) in a number of cases (one point designs, 

multiple point designs, a bivariate approach) by using various methods of 

finding optimal solutions (search methods, graphical approach, multiplica- 

tive algorithms). We now summarize the whole work and draw conclusions. 

We first introduced the design problem for linear and non-linear models in- 

cluding some basic concepts and their properties such as information matrices 

or design criteria. 

Then, in chapter 2 we started from some applications to construct our formal 

problem. A generalized linear model for categorical responses was assumed 

with two parameters of interest µ and o (or a and Q). Depending on which 

parameter will be estimated (or both of them), the design objectives (design 

criteria) were defined. 

194 
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In chapter 3 we considered the one design point problem with k categories. 

The formula of the information matrix in our particular case was constructed. 

We used search methods to find the optimal solutions (optimal cutpoints, 

corresponding c. d. f function and optimal criterion values) for k=3,4,5,6. 

Five standard optimal criteria (D-, A-, el, e2 and E-optimality) and four 

symmetric distributions (logistic, normal, double exponential and double re- 

ciprocal) were considered. We saw that when the number of categories (or 

cutpoints) increases, the criterion values also increase but level off. In gen- 

eral, we concluded that a reasonable number of categories used in each case 

is 4 or 5. We also checked analytically the increase of criterion values when 

we insert one cutpoint between two consecutive cutpoints. We found that 

the difference between the new information matrix (after inserting cutpoint) 

and the old information matrix (before inserting cutpoint) is a non-negative 

definite matrix, which means that the values of standard criteria always in- 

crease when the number of categories increase in this way. At the end of 

the chapter, results for asymmetric distributions in the three category case 

were reported and contour plots were produced to illustrate results found by 

search methods. 

To overcome the limitation of search methods (limited number of cutpoints) 

especially for asymmetric distributions, we introduced multiplicative alga 

ritlun in chapter 4 to find optimal cutpoints and optimal cell probabilities. 

We used this algorithm to verify the results found by search methods and 

exteiicled it to find optimal solutions in the asymmetric distribution cases 

when the number of categories is bigger than two. 
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In chapter 5, we extended our considerations to the case of multiple design 

points. In this case, several sets of cutpoints available. Respondents will be 

divided into several groups and each group will be offered a common set of 

cutpoints. The optimal design problem turns out to be determining the sets 

of cutpoirrts and the respective weights optimally. We constructed this niul- 

tiple point design problem and introduced the expected information matrix. 

We focused on considering two main cases. In the first case, we assumed 

equal weights and constraints on the cell probabilities and hence cutpoints. 

We used the concept of latin-squares to construct the design points when 

there were three and four cell probabilities. The constraints limit our con- 

sideration to one or two variable optimizing problems. So we can use search 

methods or a graphical approach to find optimal solutions. 

Iii the second case, there was no constraints and arbitrary weights. We used 

the multiplicative algorithm to find optimal solutions in this case. The algo- 

rithin deals with both cell probabilities and design weights. 

We also considered the case of unequal numbers of cutpoints across design 

points. 

The general result in terms of criterion values was that it would be usually 

better to use one or two point designs since criterion values are higher at 

these designs than at designs with more support points. 

Chapter 6 was devoted to the problem of the bivariate approach. This ap- 

proach is motivated from the two stage process or the double bound model 

in contingent valuation studies. This generates an extension of our problem 

in which we wish to find a set or sets of cutpoints in each of two dimensions. 

The bivariate problem was set up with the use of the Plackett copula and 
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the joint distribution function. The coefficient of association 0 represents 

the relationship between two variables. We focused on two main cases. In 

the first case, the two marginal distributions are identical in their parame- 

ters. We have two parameter problem. In the other case, a four parameter 

probleni was considered when the two marginal distributions are different 

in their parameters. In both cases, we used search methods to find optimal 

solutions for a variety of situations. We considered the changes of optimal 

cutpoints and criterion values corresponding to the change in parameter Vi. 

We also investigated the information matrix in the independent case (' = 1) 

and compared findings with those of the univariate case. Results found are 

to be expected. 

7.2 Future work 

We now list some topics we will pursue in the future 

7.2.1 Conditional approach. 

kk'hether or not we assume a change in distribution between bids, one ap- 

proach to design construction when bids are offered iteratively, particularly 

wlieii there is a time gap between offers, is to consider designing for the 

second or next stage by changing the cdf F(z) to that corresponding to the 

conditional distribution of X (or X2) given the response to the first or previ- 

ous bid. See Gunduz and Torsney (2002b). Design points could still be sets 

of Cut-points. 
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7.2.2 Extensions to higher dimensions. 

Iii the two-category case we often view one of the two categories as a "re- 

; poie e" of interest. If this equates to "X < x" then: 

P(response) = F(a + ßx) 

Sitter and Torsney (1995a, 1995b) consider the extension of this model to 

two and to more than two design variables respectively, so that: 

P(response) = F(cx +, ßT u), uEUC R"'" 

Following Ford. Torsney and Wu (1992) they consider a linear transformation 

from u to z such that zl = (a + OTU) with the remaining zj to be chosen 

by the experimenter. With the possible exception of z1, z must be bounded. 

This will be the case if U is hounded. They argue that any design space Z 

twist be equivalent to a subset of: 

Z,,, =1 z1 E [A, B], -1 < zj < 1, j=2,3,. .., m}, 

where [A, B] is the sample space of F(z). This is a widest or 'largest' possible 

design space. 

On Z,,,, observations need only be taken at zj = ±1, j=2,3, 
... , m, while 

ti ii lays the role of z in section 2.6 in chapter 2. In fact the total weight at 

21 value of z1 can be split uniformly across the 2m-1 combinations of zj = ±1 

or over subsets of these forming Hadamard matrices. Hence we can focus 

on the marginal design on z1. Solutions have a similar structure to the one- 

design variable case. This includes the case of z1 restricted to a subset [a, b] 

of [A, B1. See Torsney and Gunduz (2000,2002). 

We could now consider the possibility of two or more cut-points for z1. In 
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this case the matrix Z in the definition of the information matrix Iz changes. 

Suppose the cut-points are z1 = (z11) z12, ... , zl(k_1) )T. Then in the case 

to =3 there are four possible forms for Z, namely: 

(1k-lizll - lk-ll - lk-1)T, (lk-llzll - lk-1l + lk-1)T, 

(lk: -1Iz1l -4- 1k-ll - lk-1)T, (lk-llzl l+ lk-ll + 1k-1)T. 

These correspond to the four possible combinations (z2, z3) _ (±1, t1). 

Suppose we use this set of cut-points for all design points (i. e. for all respon- 

dents regardless of their z2 and z3 status). Then this implies a one-point 

ina ginal design on z1. If we wish to choose zl to optimize any of the stan- 

dard criteria, then the information matrix Iz must be replaced by it's sum 

over the above four Z-matrices. 

For the logistic and normal/probit choices of F(z) this optimization problem 

again reduces to an univariate optimization in the case k=3,4 as zl must 

he of the form (-z, z)T or (-z, 0, z)T respectively. 

7.2.3 Using bivariate normal distribution in the bivari- 
ate approach 

In the bivariate approach considered in chapter 6, we used the Plackett copula 

as a joint distribution function between two variables U and V. We see that 

the optimal criterion values and optimal cutpoints are not very sensitive to 

the change in the coefficient of association 0. Maybe this will not be the 

case with the bivariate normal. After standardization, the bivariate normal 

distribution between U and V has the following form: 

1 z p('u, U; p) = 27r 1--p2 
exp I 2(1 

ti 
p2) 
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where 

z=u2-2puv+v2 

p is coefficient of correlation, -1 <p<1. 

, v, P) = 
fufvdd 

Fz(u 
v 

oo oo 
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However, in order to calculate F2(u, v; p) and other derivatives, we have to 

use simulation techniques. 

7.2.4 The multivariate approach 

We can extend the bivariate approach to the multivariate approach in which 

we wish to find a set or sets of cutpoints in each of multiple dimensions. In 

this case, we have to use a multivariate distribution. Note that this problem 

will be more complicated in computation if we use the multivariate normal 

distribution as we need to calculate multiple integrals. 

7.2.5 The use of multiplicative algorithms for bivariate 
and multivariate approach 

We can extend the use of the multiplicative algorithm to find the optimal 

solutions in the case of bivariate approach. The problem arising as the re- 
lationship between Ojj's and (xi, y, ) is not one to one. We should consider 

to assume some constraints between Ojj's. With this idea, we can apply the 

illgorithin for multivariate approach. 
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