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NOMENCLATURE

Symbols not included in the list below are only used at a specific place and are
-explained where they occur.

A Area of cylinder section.

A, Area of waterplane.

A, First moment of waterplane area about y-axis.

Ay Hydrodynamic added mass in the j-th direction due to the k-th mode of
motion; expressed in the system o-xyz.

B Width of Towing Tank.

B Breadth of a section at the waterline.

B (x,t) Beam of each demi-hull at instantaneous draught.

B, Hydrodynamic damping coefficient in the j-th direction due to the k-th
mode of motion; expressed in the system o-xyz.

Ch Hydrostatic restoring coefficient in the j-th direction due to the k-th
mode of motion; expressed in the system o-xyz.

F,. Hydrodynamic impulsive force.

F? Hydrostatic restoring force in j-th direction.

FT Hydrodynamic reactive force in j-th direction.

Fr Wave exciting force in j-th direction.

FP Complex amplitude of diffraction force in j-th direction.

F}K Complex amplitude of Froude-Krylov force in j-th direction.

Fj"’ Complex amplitude of wave exciting force in j-th direction.

F, Amplitude of wave exciting force in j-th direction.

IF ' jl Non-dimensional wave exciting force in j-th direction.

F, Froude number F, = U /[gL

G(p;q) Green function.

GM, Longitudinal metacentric height.

GM, Transverse metacentric height.

H(1) Unit step function.

I Fluid domain interior of the body.

I, Moment of inertia about the origin.

Im Imaginary part of a complex quantity.

K Encounter wave number.

L Length between perpendiculars of the catamaran.
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LCG

PV
R(?)

Sg(x',1)

Maximum distance from y-axis.

Longitudinal distance of the centre of gravity.
Element of mass matrix.

Fluid pressure.

Principal-value of a integral.

Fluid domain exterior of the body.

Ramp function.

Real part of a complex quantity.

Wetted body surface in unsteady flow.
Undisturbed free surface interior of the body.
Undisturbed free surface extenior of the body.
Wetted body surface in steady flow (mean wetted body surface).
Control boundary surface at far-field.

Maximum time interval of simulation.
Encounter wave period.

Mean forward speed of the body.
Velocity field of total fluid flow.
Local velocity of a point on the surface S;(%',7).

Velocity field of steady flow.

Radius of a circular cylinder.
Non-dimensional hydrodynamic coefficient of the added mass term in

the j-th force equation due to motion in the k-th mode; expressed in the
system o-Xyz.
Sectional hydrodynamic coefficient of the added mass term in the j-th

force equation due to motion in the k-th mode; expressed in the system

O-XYZ.
Free surface induced acceleration.

Body acceleration at the body-fixed coordinate o-x'y'z'.
Non-dimensional hydrodynamic coefficient of the damping term in the

j-th force equation due to motion in the k-th mode; expressed in the

system O-Xyz.
Sectional hydrodynamic coefficient of the damping term in the j-th

force equation due to motion in the k-th mode; expressed in the system
O-XYZ.

Sectional instantaneous draught.

Hull separation between two bodies.

Gravitational constant.



Water depth.
Distance from centre point of cylinder to the mean free surface.

J-1)

Wave number.
Discrete wave number.

Minimum characteristic length.

Normal vector outward the boundary surface.
Space-fixed coordinate system.

Steady translating coordinate system.
Body-fixed coordinate system.

Coordinates of a field point in the system o-xyz.

Body induced pressure.
Free surface induced pressure.

Coordinates of a source point in the system o-xyz.
Coordinates of mirror image of the source with respect to the plane

z=0 1n the system o-xyz.

Horizontal radial distance away from the body.
Position vector of a fluid particle on the surface S, (¥',7).

A time variable.

Coordinates of a field point.

Vertical coordinate of the centre of buoyancy.

Vertical coordinate of the centre of gravity.

Local oscillatory displacement vector.

Local velocity of a point on the surface S, (¥',7).
Angle of incident wave with x-axis ( 180° at head sea).
Dirac delta function.

Total velocity potential of the flow field.

Velocity potential of steady flow.

Velocity potential of unsteady flow.
Steady perturbation potential.
Velocity potential inside the domain I.

Velocity potential of fluid flow in the fluid domain R.

Incident wave potential per unit amplitude.

Body potential.
Wave potential.

Radiation wave potential per unit amplitude.

Diffraction wave potential per unit amplitude.
Dipole strength.
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Density of fluid.

Source strength.

Wave encounter frequency.
Discrete wave frequency.

Incident wave frequency.

Characteristic frequency.
Motion response in j-th mode of motton.

Complex amplitude response in j-th mode of motion.

Motion amplitude response in j-th mode of motion.

Exact free surface elevation.

Incident wave amplitude.

Grad operator.

Volume displacement of a catamaran.
Laplace's operator.
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The aim of this research is to develop computational tools to predict the large
amplitude motions of catamaran travelling with forward speed in waves. In this thesis,
the results of theoretical and experimental investigations to predict the motions of
catamarans in regular waves are presented. The motion problem of a catamaran
travelling in waves has been formulated with the assumptions that the flow field is a
potential flow. The solution of governing equations is determined by a set of initial-
boundary conditions. In order to solve the motion problem, the exact boundary
conditions have been simplified through lineansation by using the perturbation
expansion technique. If the motion is steady and sinusoidal in time, the initial value
problem can be precipitated out. Then, the initial-boundary value problem can be

stmplified to the boundary value problem.

Solutions of small amplitude motion problem of catamarans have been obtained by
solving the two-dimensional Green function integral equations over the mean wetted
body surface in the frequency domain. Numerical computations for three catamarans
(ASR5061, Marintek and V-1 catamarans) travelling in the oblique waves have been
carried out to compare with experimental measurements. For the low forward speed
case, good comparisons between the calculated and experimental results have been
obtained. When the forward speed increases, the linear frequency domain technique
gives a gross overprediction of the motion responses for the heave and pitch modes at
the resonance frequencies and the calculated resonance frequency is slightly higher
than the experimental measurement. Generally better predictions are obtained in heave
motions than in pitch motions.

By extending the linear frequency domain theory, a quasi-nonlinear time domain
technique has been developed to investigate the large amplitude motions of the
catamarans in regular waves. The nonlinearity of hydrodynamic forces included in this
practical method comes from the variations of ship's submerged portion. These forces
are obtained from a database generated by the linear frequency domain method at each
time step. The coupled equations, heave and pitch, have been solved in the time
domain by using the Runge-Kutta method with proper initial values. In order to
investigate the nonlinear effects of large amplitude motions of the V-1 catamaran in
the head sea condition, numerical results obtained from the linear and nonlinear strip
methods have been compared with those obtained from a series of experiments carried
out in the Towing Tank of the Hydrodynamics Laboratory at the University of

XX111



Glasgow. Based on the comparative studies, the numerical results obtained from the
time domain program can provide better predictions for the large amplitude motions of
catamarans than the linear frequency domain method. It is concluded that the nonlinear
effects are significant when the model speeds and wave amplitudes increase. The peak
values of large amplitude motions around the resonance frequencies as obtained from
the nonlinear time domain predictions as well as from measurements are smaller than
those obtained from the linear theory.

In order to solve the finite-amplitude initial value problem, the two-dimensional
transient motion is treated as a series of impulse problems by satisfying the exact body
boundary condition and the linearised free surface condition. The solution has been
constructed by means of a spectral representation for the wave field and a distribution
of simple sources on the instantaneous wetted body surface. Preliminary results for the
linear radiation problems on a submerged circular cylinder in deep water and a floating
rectangle have been carried out by using the linear and nonlinear time domain
techniques. Excellent agreement between the calculated hydrodynamic coefficients and
the analytical solutions given by Ogilvie (1963) has been found for the submerged
circular cylinder in deep water. For the floating rectangle, the calculated damping
coefficients are slightly higher than those obtained from the published experimental
measurements by Vugts (1968).
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CHAPTER 1
INTRODUCTION

Catamarans are the most accepted form of high speed crafts for passenger / vehicle
transportation. Compared with other high speed crafts, they possess good transport
efficiency at moderately high speeds. The more useable and rectangular shape of deck
area is one of the desirable charactenistics of catamarans and gives a good stability
quality and consequently a small rate and angle of roll. Howeyver, if the relative motion
between the wave and ship becomes large, the catamaran is vulnerable to wave
impacts on the bottom of the cross-deck in severe sea conditions. It may cause speed
reductions, local structural damage and transient hull vibrations. Thus, for optimal
seakeeping performance of catamarans, the vertical motions should be minimised to
avoid the hydrodynamic impacts on the cross-deck bottom. The first step to be taken
is to investigate the seakeeping characteristics of catamarans and to develop proper
design tools for naval architects.

The basic theory of motions of a ship in waves was first established by Froude
(1861) and subsequently by Krylov (1896). Assuming the incident waves are not
disturbed by the existence of body, the wave forces acting on the submerged body due
to incident waves are named as the Froude-Krylov forces. Based on the assumptions
of high characteristic frequency, Lewis (1929) introduced the added mass terms into
the Froude-Krylov approach without considering the free surface effects. Haskind
(1946) solved the velocity potential due to the ship motion by using the Green's
identities and derived the necessary Green function. Moreover, the linearised problem
was first separated into the diffraction and radiation problems and the resulting integral
equation was solved by using a thin ship approximation. In order to solve the two-
dimensional problems for free floating bodies without forward speed, Ursell (1949)
first developed a multipole method to present the radiation potential for a heaving
circular cylinder. A source distribution method was published by Frank (1967). The
submerged ship shape is divided into a series of straight-line segments and the two-
dimensional Green function is applied to represent the unknown velocity potential of
unit strength. Then, the source strength will be determined by a set of boundary
conditions.

The initial efforts on the hydrodynamic problems associated with catamarans were
primarily devoted to minimise the resistance in the calm water. (e.g. Michel, 1961;
Everest, 1968, Oving, 1985, Insel and Molland, 1991). Until the early 1970's, some
fundamental studies to predict the hydrodynamic forces acting on twin-hull floating
bodies were carried out by Ohkusu (1969), Wang & Wahab (1971) and Lee et al.



(1971). Since then, there has been a significant growth of interest in the concept of
multi-hull ships. A series of systematic theoretical and experimental investigations of
motions and sea loads of catamarans was carnied out at the Naval Ship Research and
Development Centre. An extensive experimental programme with ASR(submarine
rescue ship) catamaran model was conducted by Wahab et al. (1971) to investigate the
behaviour of the ASR model in a seaway. The full and model scale experimental
programme conducted with Hayes catamaran were presented by Hadler et al. (1974).
Lee et al. (1973) studied the twin-hull motion problems by using the strip method
which was the extension of the approach developed by Salvesen et al. (1970). Based
upon Chapman's (1975) high speed theory which was proposed to formulate a vertical
surface-piercing plate motions in unsteady yaw and sway, Faltinsen et al. (1992) and
Ohkusu & Wen (1995) reported a kind of pseudo three-dimensional theory to evaluate
the motion responses of a catamaran at high Froude number. The three-dimensional
translating and oscillating source technique was applied by Chan (1993) and Hudson et
al. (1995) to predict the seakeeping performance of multi-hull ships. Kring &
Sclavounos (1991) reported a three-dimensional Rankine panel method to investigate
the wave patterns and motions for multi-hull ships travelling with forward speed
through head seas. Most of these investigations are limited to the linear motions of
catamarans in small amplitude waves. A limited amount of research and development
efforts have been devoted to the field of large amplitude motion problem of twin-hull
ships. A quasi-nonlinear time domain approach by using the hydrodynamic coefficients
generated from the strip method was used by Arthur (1988) and Fang & Her (1995) to
simulate the nonlinear motions of SWATH ships.

The aim of present research is to develop computational tools to investigate the
motions of catamarans travelling in waves. Firstly, the small amplitude motions of a
catamaran configuration in oblique waves have been predicted by the linear frequency
domain program based on the two-dimensional Green function method. Then, a quasi-
nonlinear time domain technique extending the strip method has been used to simulate
the large amplitude motions of a catamaran in regular head waves with various wave
amplitudes and forward speeds. A set of experiments has been designed and carried
out by using a scale model of a catamaran to validate the computational tools and to
understand the nonlinear behaviour of a catamaran travelling in large amplitude waves.
Finally, some fundamental studies on the two-dimensional transient theory have been
developed for solving the "body-exact" problem where the body boundary conditions
are satisfied on the instantaneous wetted surface of the body whilst the linearised free
surface boundary conditions are maintained. All these investigations are detailed in the
following Chapters of this thesis as summarised below.



Chapter 2 presents the problem formulation of motions of a marine vehicle
travelling in waves. Three different coordinate systems have been introduced to
describe the flow field and motions of the twin-hull ship. The flow field is assumed as a
potential flow. Therefore, the Laplace's equation can be set up to represent the flow
field and the solution 1s determined by a set of initial-boundary conditions. The exact
boundary conditions lead to a nonlinear problem which is very difficult to solve in
analytical or numerical calculations. In order to solve the motion problem, the
theoretical formulation is simplified through linearisation by using the perturbation
expansion technique. The linearised free surface and body conditions require the
assumption that the disturbance on the free surface due to the steady forward motion
is small and can be neglected. In the steady-state oscillating motions, the initial-
boundary value problem can be simplified to the boundary value problem.

In Chapter 3, a two-dimensional pulsating source potential technique has been
stated to solve the unsteady velocity potential due to the incident, diffracted and
radiated wave systems. Based on assumptions of the slender body and high-frequency
oscillation motions, the two-dimensional frequency domain method is used to predict
the small amplitude motions of catamarans in oblique waves. Numerical computations
have been carried out to predict the linear motion responses of ASR5061, Marintek
and V-1 catamarans travelling in waves and validated with expenmental
measurements. Results of these comparisons are discussed. For a twin-hull floating
bodies, the negative added mass in the vertical plane motions and a set of discrete

characteristic frequencies have been observed during the numerical investigation.

In Chapter 4, a practical method has been developed for predicting nonlinear ship
responses in regular waves by extending the strip method. The nonlinearity of
hydrodynamic forces included in this method comes from the time-varying ship's
submerged portion. The sectional hydrodynamic forces are retrieved from a database
generated by the linear frequency domain technique at each time step, and then
integrated in the longitudinal direction of ship's hull to obtain the total hydrodynamic
forces and moments acting on the ship. Due to the large variation of hydrodynamic
forces in the shallow draught region, the linear interpolation method has been selected
to calculate the time-varying hydrodynamic coefficients and wave exciting forces. The
coupled equations, heave and pitch, are solved in the time domain by using the
adaptive stepsize Runge-Kutta method with proper initial values. Validation of
mathematical model has been carried out by comparing numerical results obtained
from the linear frequency domain method and nonlinear time domain technique with
the V-1 catamaran travelling in the head sea conditions. Time domain simulations have



been used to trace the nonlinear motion responses of V-1 catamaran with various
wave amplitudes and forward speeds. Some parametric studies have been carried out
to investigate the nonlinearity of large amplitude motions of the V-1 catamaran in
waves.

In Chapter 5, the tests carried out with the V-1 catamaran model at the
Hydrodynamics Laboratory of the University of Glasgow are presented to evaluate the
nonlinear effects due to large amplitude motions of catamarans travelling in waves.
These tests cover different speeds and wave heights at a wide range of wave
frequencies. A measurement rig has been designed and tested to investigate the large
amplitude motions of a fast craft. Results obtained from calm water tests have been
compared with previous work (Incecik et al., 1991). Numerical computations for
predicting the motion responses of V-1 catamaran in the head sea conditions have
been obtained from the linear frequency domain and nonlinear time domain techniques
which have been described in Chapters 3 and 4. Comparisons between these calculated
results and the experimental measurements with three forward speeds and three wave
amplitudes are presented to investigate the nonlinear motions of the V-1 catamaran
travelling in regular waves. The impact phenomena of large amplitude motions have
been observed from a set of consecutive photographs of the test model.

Chapter 6 presents a theoretical formulation of the transient motion problem in the
time domain. Based on the assumptions of slender body and small wave slopes in the
longitudinal direction, the three-dimensional boundary value problem is approximated
by a set of two-dimensional initial value problems. The two-dimensional transient
motion has been treated as a series of impulse problems by satisfying the exact body
boundary condition and the linearised free surface condition. A spectral method which
was first proposed by Chapman (1979) has been used to solve the finite-amplitude
initial value problem. In the case of a linear motion problem, the hydrodynamic forces
obtained in the time domain can be related to the hydrodynamic coefficients defined in
the frequency domain through the Fourier transform technique. Numerical calculations
for the linear radiation problem on a submerged circular cylinder in deep water and a
floating rectangle have been carried by using the linear and nonlinear time domain
methods. These calculated results have been compared with the results of published
analytical predictions and experimental measurements. Some numerical instabilities
have been observed during the calculation of the hydrodynamic forces of the floating
rectangle in the captive mode. The reasons for these discrepancies are discussed.

Finally, a review of main conclusions is given in Chapter 7.



CHAPTER 2
PROBLEM FORMULATION

2.1 Introduction

The problem of determining a particular flow caused by the existence and forward
motion of the catamaran ship travelling in waves is to find a proper velocity potential
that is based on the assumptions of "Ideal Fluid" and determined by the initial-
boundary value problem.

The flow field of this ideal fluid is known as "Potential Flow" or "Irrotational
Flow". It means that the fluid is homogenous, incompressible and inviscid. Moreover,
the surface tension is neglected. Based on these assumptions, there exists a gradient of
scalar function @ to represent the velocity field of an irrotational flow. Firstly, the
differential equation such as Laplace's equation which describes the flow field will be
set up. The solution of this differential equation will be determined by the initial-
boundary conditions.

The exact formulation of the boundary conditions leads to the nonlinear free
surface condition and the body boundary condition on an unsteady body surface.
These two conditions make the problem mathematically intractable. Therefore, a
theoretical formulation of the linear boundary value problem in steady and unsteady
flows induced by forward and oscillating motions of the moving body will be presented
through linearisation by using the perturbation expansion technique.

2.2 Coordinate systems

In order to describe flow fields and motions of a rigid body moving in a seaway, it is
necessary to define frames of reference. In general, the geometrical configuration of
the twin-hull ship is easily described in a coordinate system fixed in the body.
However, the motion of the fluid is easily described in an inertial system fixed in the
fluid. Therefore, three right-handed orthogonal coordinate systems as shown in figure
2.1 are required to define the motions of the catamaran and the relation between them
will be discussed.

Firstly, a coordinate system o- x,y,z, is defined as the space-fixed system. The
0-x,, plane coincides with the undisturbed free surface, the x,-axis in the direction



of the body's forward velocity and the z,-axis vertically upward. This system will be
used to describe the free surface boundary condition.

Secondly, the steady-translating system o-xyz is defined which moves in the same
direction and mean forward velocity, U, as the moving body. The x-axis is pointing
upstream parallel to the longitudinal plane of the body and the z-axis is pointing
vertically upward through the centre of gravity of the body with the origin in the plane

of the mean free surface. The relation between the steady-translating system o-xyz and
the space-fixed system o— x,y,2, can be shown by the linear transformation:

f=(x,y,2)=(x0“Ut,yo,Zo) (21)

These two coordinate systems will coincide when the forward speed of the body 1s
zero. The body motion responses, &;(j=1,2,...6), in six degrees of freedom will be

described by the steady-translating system o-xyz. Here j =1,2,3,4,5,6 refer to surge,
sway, heave, roll, pitch and yaw motions respectively as shown in figure 2.1.

Finally, the oscillatory and translating system o’-x’y’z’ is defined which is the
body-fixed frame and which is the best way to describe the body boundary condition
on the wetted body surface. The oscillatory and translating system o’-x’y’z’ fluctuates

with respect to the steady-translating system o-xyz. Therefore, the local oscillatory
displacement @(¥,¢) of a point on the body surface S, (¥',¢) can be defined by

a(%,1) = (&,1), & (1), £(1)) +(&,(1), &), £(D) x F' (%) 2.2)

where 7'(%') is the position vector of the point on the surface S, (X', ) relative to the

body-fixed frame o'-x'y'z. (&,(¢),&,(¢),&;(¢)) and (&, (¢),&(1),&(¢¥)) are the
unsteady translational and rotational displacement vectors respectively. a(x,¢) is equal

to zero in a steady equilibrium state if the origin o' locates at the centre of gravity
which is on the undisturbed free surface.

2.3 Formulation of the initial-boundary value problem

In order to formulate the problem of potential flow, the velocity potential has to satisfy
the equation of continuity at every point in the flow field except singular points.

Furthermore, based on assumptions of the homogeneous, incompressible and inviscid
fluid, the velocity potential of the flow field ,O(%,,?), which must satisfy the Laplace’s




equation in the fluid domain is written as
VO(%,,1)=0 (2.3)

In order to determine the solution of (2.3), an initial-boundary value problem has
to be solved. The initial state of the system should be prescribed at some instant of
time. Moreover, we assume the ocean is infinite in all horizontal directions and the
boundaries enclosing the fluid domain consist of the free surface, the wetted body
surface, the sea bed and a control surface at far-field. These conditions will be
discussed in the following sections.

2.3.1 Free surface condition

The effects of the free surface must be expressed in terms of appropriate boundary
condition on the free surface which is described by its elevation:

2y = 6(X,,Ys,1) (2.4)

The kinematic and dynamic boundary conditions must be satisfied on the free
surface. It means that a fluid particle at the surface always remains at the surface and
the pressure on the free surface must be atmospheric and conform to Bemnoulli's

equation. Assuming that the fluid is ideal and the surface tension at the free surface is
negligible, the kinematic and dynamic conditions can be written respectively as:

D
E(C_ zo) =0 (2.5)
1 2
P, +—£|V<Dl +gz,=0 (2.6)

where g is the gravitational constant.

On the exact free surface {(x,,,.f), the dynamic boundary condition (2.6) can be
combined with the kinematic condition (2.5):

1
D, +gP0, +2VO-VO, +-2-V<D-V(V<D-V(D) =0 onz,=4(x,,,:!) (2.7)



This free surface condition is nonlinear and difficult to solve it analytically because
the elevation of the free surface is not known a priori. Based on the linearisation, we
can employ the perturbation expansion to linearise the free surface condition to the

first-order and use Taylor series expansion to transform the exact free surface
£(x,,5,,t) to some known surface such as the undisturbed free surface (Chan, 1990).

Moreover, the total velocity potential ®(X,,?) can be expressed through linearisation

in the following form:

o

O(%,,7) = O(%) + D(%,7) (2.8)
where ®(¥) and ®(%,) denote steady and unsteady potential respectively.

If the disturbance on the free surface due to the steady forward motion is small, the
unsteady velocity potential ® is an order of magnitude greater than the steady velocity
potential ®. All terms associated with the steady velocity potential are of higher order
and may be neglected in the first order free surface condition for the unsteady flow. It
is assumed that the velocity field of the steady flow relative to the steady-translating
frame o-xyz is:

W(x)=Vd(x)=(-U,0,0) (2.9)

Thus, the linearised free surface boundary condition can be obtained:

7 O . =~ -
‘_"'[]'—---2 = t z=0 2.10
(‘:3 dc) ®+gdb, =0 a (2.10)

2.3.2 Body boundary condition

The kinematic body boundary condition implies that the fluid velocity component
normal to the instantaneous wetted body surface S (x',)',z',7) is equal to the

velocity component of the surface normal to itself. Thus:

Veri=V eii on S,(x',)',2',1) (2.11)
where
V(%,,t)= VO(Z,,1) (2.12)



and
V (%,1) = a(%,1) (2.13)

V(%,,t) is the velocity field of the flow; V,(%,7) is the local velocity of a point on the
wetted body surface S,(x',y',2',7).

- This body boundary condition must be satisfied on the exact oscillating surface
Sz(x',y',z',t) at each time step. In the linearised problem, the body boundary

condition can be expanded onto the steady surface S, by using the perturbation series
method. Then, the linearised body boundary condition is

®, =|a+(W-V)a-(a V)| 7 on S,,S, (2.14)

Furthermore, by linearisation, the unsteady velocity potential ®(x,y,z,t) can be

decomposed linearly into three components due to incident waves, diffraction waves
and radiation waves. If the small amplitude incident waves are sinusoidal and harmonic
in time with frequency of encounter @, the unsteady velocity potential can be written
as:

(-ﬁ(x,y,z,t) = |:;0(¢0 + ¢, )+ izf¢f ]e"“' (2.15)

where ¢ is the incident wave amplitude; ¢, is the incident wave potential; ¢, is the
diffraction wave potential; @, is the radiation wave potential in j-th mode of motion,

and Zj is the complex amplitude of motion.

In the diffraction problem the body is assumed to be fixed with respect to the
body-fixed frame o'-x'y'z' as @a=0 and &, =0. Thus, on the body boundary of no

oscillatory motion, equation (2.14) simply becomes:

§(¢0+¢7) -0 on S,.5, (2.16)

The radiation problem occurs as if the flow field is produced by the forced

oscillation of the body in j-th degree of freedom in the absence of incident waves such
that £, = 0. The linearised body boundary condition given by (2.14) is reduced to:



¥; . * S
__Ej_ —_ ""Ianj +mj J=1,2,...6 on SB’SB (2*17)

where the components n, are defined as

ii=(n,n,,n) ‘ (2.18)
7' xit = (n,,ng,ng) (2.19)
and the forward speed related coefficients m; are

(m,m, m,)=—(n- VW (2.20)
(m,,m.,m) = —(7i- V)(F' xW) (2.21)

These body conditions involve the steady velocity field. If the body is thin, slender or
the mean forward speed is low, then, m, term becomes:

mj =( j=1,2,3,4
ms = Un, I
m, = ~Un, (2.22)

This assumption leads to a simple speed correction, due to the angle of attack in pitch
and yaw motion, on the linearised body boundary condition.

2.3.3 Sea bed condition

The fluid particle on the bottom has zero velocity normal to the boundary because the
sea bed is a stationary boundary. Thus,

on z=-h (2.23)

where h is the depth of sea.

In this study, since the deepwater condition is assumed, the velocity potential @
should satisfy the sea bed condition as:

10



Z2 -0 at z — —oo (2.24)

2.3.4 Initial value problem

In the initial value problem, the displacement and velocity of the fluid and body are
specified at some instant of time, ¢ = 0. Therefore, the initial value of velocity potential

must be prescribed:
®(%,0) = f,(¥) (2.25)
®,(%,0) = f,(¥) (2.26)

where f,(¥) and £, (%) are given functions at 7 = 0.

If the motion problem of a rigid body is the steady-state harmonic oscillations in
time, the time dependence can be eliminated because the appropriate initial conditions
were well prescribed. Then, the initial-boundary value problem can be further
simplified to the boundary value problem for solving the solution of Laplace's
equation.

2.3.5 Far field radiation condition

A radiation condition at infinity must be imposed upon the potential function in order
to ensure a unique solution to the motion problem. This far field radiation condition
assumes that the fluid motion produced by the steady oscillating body travels away
from the body and vanishes at infinity on all sides. This type of radiation condition was

firstly used in the study of acoustics by Sommerfeld (1949). The far field radiation
condition of ®(X,¢) can be represented as:

lﬂ‘/’;(ab(f,t)

— ik®(%,1)) =0 (2.27)

where r 1s the honzontal radial distance away from the body; & is the wave number. It
is difficult to define the far field radiation condition for the unsteady flow due to the

forward and oscillatory motions of the body moving with constant speed in waves. An
implicit far field radiation condition may be expressed as:

11



lim Vr®(%,1) =0 * (2.28)

r—po

Based on the assumption that ®(x,7), ®,(%,f) and their first derivatives are

uniformly bounded, the boundary condition at infinity as proved by Finkelstein (1957)
states that the fluid motion vanishes everywhere for the initial value problem. If the
solution begins with determining the velocity potential as an initial value problem, the
far field radiation condition is not necessary.

2.4 Conclusions

Based on the potential theory, a theoretical formulation for the steady and unsteady
forward motion problems has been presented. Due to the nonlinearities in the free
surface and body conditions, the linearisation of boundary conditions has been
introduced to simplify the mathematical complexity. Furthermore, it has been assumed
that the steady perturbation potential is of higher order and can be neglected in the
hinearised free surface condition for the unsteady flow. The combined effects of
oscillating frequency and forward speed will only be considered.

The linearised body boundary condition contains the convective effects of the
steady velocity field due to the forward speed effects. If the body is thin and slender or
the mean forward speed is low, the linearised body boundary condition will be further
simplified to a simple speed correction on the pitch and yaw motions.

The position and velocity of system must be specified for the initial value problem
in order to solve the arbitrary motion problem. The far field radiation condition is
automatically satisfied in the initial value problem. Furthermore, if the motion of a
rigid body is considered in the steady-state time-harmonic motion, the initial-boundary
value problem can be further simplified to the boundary value problem because all
transients will die out.

12
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CHAPTER 3
SMALL AMPLITUDE MOTIONS OF CATAMARANS IN WAVES

3.1 Introduction

It has been demonstrated that linear ship-motion theories can solve many seakeeping
problems related to the average performance of a ship with good accuracy. The strip
theory has been recognised as the most practical tool for predicting motions and loads
of ships and ocean platforms utilised for various activities in deep and shallow ocean
environments. This theory was first developed to compute the heave and pitch motions
of a ship in head sea condition by Korvin-Kroukovsky (1955). Subsequently, the
original strip theory has been improved by a number of investigators. Ursell (1962)
and Newman & Tuck (1964) derived the long wave slender body theory and Ogilvie &
Tuck (1969) and Salvesen et al. (1970) derived the short wave strip theory. However,
these theories are based on the assumptions of potential flow, slender ship and small
~ amplitude motions. (Motion amplitudes are assumed to be small compared to the
transverse dimensions of the ship.)

Fundamental studies to formulate the hydrodynamic forces acting on catamarans
started in the early 1970's (Ohkusu, 1969, Wang and Wahab, 1971). A study on the
behaviour of an ASR catamaran in waves was presented by Wahab et al. (1971). The
motions in waves and wave-induced forces and moments acting on the cross-deck
structure in waves of various directions for several hull separations were investigated
by means of the model tests of two asymmetric catamarans. Based on the theory
developed by Salvesen et al. (1970), the strip method was extended by Lee et al.
(1973) to predict the coupled heave and pitch motions of catamarans in head seas. The
theoretical predictions were compared with the experimental results of three different
catamaran models. Correlations between theoretical values and experimental results
indicated that the motion amplitudes were overestimated. Some discrepancies were
believed to be caused by viscous and forward speed effects. After one year, Hadler et
al. (1974) presented a report for the experiments of USNS Hayes. It was the first
ocean-going catamaran of the U.S. Navy. The paper highlighted the model
development and full-scale trial programmes conducted on Hayes. Recently, there are
further published research studies for investigating the small amplitude motion problem
of catamarans in waves, such as Chapman's (1975) type pseudo three-dimensional
theory by Faltinsen et al. (1992), Ohkusu and Wen (1995); Ranking panel method by
Kring and Sclavounos (1991) and three-dimensional translating pulsating Green
function method by Chan (1993), Hudson et al. (1995). Although the three-
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dimensional method is a more accurate technique than the two-dimensional technique
for the calculation of the motions of twin hulls, the computation time for the three-
dimensional method is significantly higher than for the two-dimensional method.

In this Chapter, a two-dimensional linearised method based on the potential flow
theory is used to predict the motion performance of catamarans in waves. In order to
validate this method, the numerical results have been compared with experimental
values obtained for three different catamarans. The experimental values of an ASR
catamaran with hull separation/beam = 1.58 in 180° heading at Froude number = 0.31
and the motion responses of Marintek catamaran model in 90° and 135° wave
headings at Froude number =0.49 have been compared with calculations based on the
two-dimensional potential theory. For the third catamaran model (V-1 catamaran
model), the existence of characteristic frequencies of the hydrodynamic forces on the
twin hulls is discussed and the motion response values measured in the head sea
condition have been compared with the results obtained from two-dimensional linear
theory.

3.2 Theoretical formulation based on the two-dimensional Green function

The problem of linear ship motion is formulated in terms of the potential flow theory.
Therefore, the fluid is assumed to be homogeneous, incompressible and inviscid. By
assuming that the motions are steady in a moving coordinate system and are sinusoidal
in time, the initial value problem can be precipitated out. Moreover, the amplitude of
incident wave is small compared with the wave length and the dimensions of the body's
cross section. Then, the exact boundary value problem can be further simplified
through linearisation as described in Chapter 2.

Based on the linearisation, the total potential, @, can be separated into the steady
potential, ®, and the unsteady potential, ®. Furthermore, the steady velocity

potential @, can be divided into the uniform stream and the steady perturbation
potential ¢(x, y,z):

D(x,y,z,t) = 5(x, v,z2)+ C'ﬁ(x, y,2,1)
= (-Ux + ¢(x,y,2)) + D(x, y,2,1) (3.1)
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The unsteady potential, ®, can be decomposed linearly into separate components due
to the incident waves, diffraction waves and radiation waves. Then, it can be written as

&)(xﬁyazst)=|:¢o(¢o+¢7)+sz¢j]e-m (3.2)

where ¢, is the incident wave potential of amplitude, ¢, ¢, is the diffraction wave
potential and ¢, is the radiation wave potential in j-th mode of motion. The body 1s

assumed to be rigid and to oscillate in six degrees of freedom about its mean position
with encounter frequency @ and complex amplitudes &, (j=1,2,...6). Here

7=1,2,3,4,5,6 refer to surge, sway, heave, roll, pitch, and yaw modes of motion
respectively.

The incident wave potential of unit amplitude which satisfies the Laplace's
equation and the linearised free surface boundary condition can be described as

B, = —i L gla+ikixcosprysinp) (3.3)
0)0

with the wave number % is given by the dispersion relation

k=2 (3.4)

and the frequency of encounter is

» =|w, - Uk cos 3.5)

where @, is a wave frequency; and S is an angle of incidence with the x-axis (180° at
head sea). It is understood that the real part is to be taken in all expressions.

With the basic linear assumption, the diffraction wave potential ¢, and the
radiation wave potential ¢, in the j-th mode of motion, must satisfy the following

linearised boundary conditions:

Laplace's equation in the fluid domain

Vg, =0; =1,2,...7 (3.6)
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the linearised free-surface condition

(lo+Ud/ dc)’¢j+g%=0 1=1,2,...7 at z=0; (3.7)

the kinematic body boundary condition

% = _ianj +m, j=1,2,...6 on SB; (3.8)
and

the kinematic boundary condition on the ocean floor
—< =0 =1,2,...7 at z > ~oo; (3.10)

where g is acceleration due to gravity, n ; is the generalised direction cosine with
n=(n,n,,n) and F'xit = (n,,n,,ng); fl is a unit normal vector outward to the mean
wetted body surface and 7' is a position vector of a point on the mean wetted body
surface; (m,,m,,m,)=—(-V)W and (m, m,m)=—-(7-VYF'xW); and W is a

steady velocity field. If the body is slender, the steady perturbation potential due to
forward motion is negligible in the unsteady flow. Then m; =0 for }=1,2,3,4; m, =Un,

and m, = —-Un,, which are used in the present study.

For the two-dimensional method, a high-frequency assumption is made that the
frequency of oscillation @ is much higher than the differential operator Ud/ & in the
free surface boundary condition which reduces to

~0'¢ +g—L = (3.11)

This free surface boundary condition (3.11) for the ship body oscillation at forward
speed requires that the wave length is approximately of the same order as the ship
beam. This is a very critical assumption and it makes the theory somewhat

questionable in the low frequency range since the forward speed effects on the free
surface are not included.
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Under these assumptions, the three dimensional Laplace's equation and boundary
conditions can be reduced to the two-dimensional problems by using strip theory. A
two-dimensional pulsating source potential technique is developed to solve the
unsteady velocity potential due to the incident, diffracted and radiated wave systems.

The two-dimensional Green function method is an integral equation used in solving
a linearised boundary value problem. The formulation of the Green function method is
based on Green's second identity to define a velocity potential using a Green function
on the boundary of the fluid domain. It will be shown from Green’s theorem that ¢
may be constructed from a source distribution along the underwater surface of a
floating body and its image. Figure 3.1 shows the fluid domain for the twin-hull
bodies. The y axis is taken to coincide with the undisturbed free surface and the z axis

is directed vertically upward. The origin is taken at the midpoint between twin hulls.
S is the surface of the body below the y axis. The y axis is divided into §, interior to

the body and S, on either side. The lower half-plane, z<0, is divided into two regtons:

R exterior to the body and bounded by S,, S; and S,; and I interior to the body and
bounded by S, and S, . Let the body potential in these two regions be ¢; and ¢'.

Quasi-analytic methods are usually applied in the form of a surface integral denved
from Green’s theorem. Let

G(p,t;q9) =G(y,z;n, )e’™ (3.12)
where

p =y+iz :field point
q = n+id :source point

A two-dimensional Green’s function which satisfies the linearised boundary
conditions is given by Wehausen et al. (1960) and defined as:

® ~ivp-q)

G(p;q) = Re{log( p—q)-log(p-q)+ 2PVJ eK- y dv} -2m Re{e"x(" 'q)}
0

(3.13)

where

g = n—-i¢ :image source point
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0)2

K= ? : encounter wave number (3.14)

From Green’s second identity :

[ ¢, 2 -6ty = [[v-4,96-Gv4, s
j J‘ (¢,V’G-GV?9,)ds (3.15)

R+l

where &/ ah is the normal derivative with respect to the source point g and the

normal vector # is pointing into the fluid domain R.

Since ¢,and G are the solutions of Laplace’s equation except at a singular point in the
fluid domain I and R, the equation (3.15) can be reduced to

j (¢J — G-—Z—)dl in fluid domain (R and I) (3.16)

This integral along the body contour §; has three different characteristics which
depend on the position of the field point p relative to the source point q.

Firstly, the field point p is outside the fluid domain R. Since the source point ¢
never coincides with the field point p, equation (3.16) is valid.

Furthermore, if the field point p lies inside the fluid domain R but not on the
boundary S, concurrence of the field point p and source point may occur. When
P = q, the singularity of the Green function G makes equation (3.16) invalid. This

difficulty can be circumvented by surrounding the source point by a small circle of
radius &€ with contour §, whose origin 1s at p. Then S, +S_ is a closed contour

surrounding the fluid domain R but exterior to §,. Thus, equation (3.16) can be
replaced by

_L”' (¢;(9) a;g;q) -G(p.9) ¥ @ )dl =0 p inside R (3.17)

Then
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I (¢;(9) éG(p 4) -G(p,q)@gT(g)-)d[_l_ L(¢§ (q) ﬁg;q) _G(p.q) 5¢"(q))dl ]
q g A q
(3.18)

Using Gauss’s theorem, the following results can be obtained from equation (3.18):

. Gp.9) #, (Q))dl J, G(pia)n, - V)] ()l = I |G(p,9)V* 8} (g)ds=0
(3.19)

Then, equation (3.18) can be reduced to

[, $ @B Gip,g) M(" i = tim [ (9% (@) ZLD

= —lim[2 7¢- & ( p)-;] = —27r¢f (p) for p inside R. (3.20)

Finally, if the field point p lies on the boundary contour §,, the contour §, is

chosen to be a small semi-circle that the singularity can be avoided. Then, the factor of
2 7 1n equation (3.20) becomes 7, we can write

L(¢?(q) C'G‘(;:J;q) -G(p,q) M(Q))dl- -ng(p) for ponS§, (3.21)

q9 q

Now we summarise the results given by equations (3.16), (3.20) and (3.21)

P &R
.L (¢;(9) éGf; 4) -G(P;Q)?%@)dl ={ —ng,(p) ¢ for p €Sy
q " -2} (P) peR

(3.22)

Also from Green’s theorem, the representations for the interior domain I can be
obtained. Let us define that ¢j is the interior potential inside the domain I described

before. Thus
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. 0 pel
L(#f(‘?) d;‘(af’q)“G(P;‘?) aﬁ:‘n)d1= ag.(p) ¢ for p e Sy

q a 272¢,(P) p el
(3.23)
Then from (3.22) and (3.23)
27,()= [ (4@~ 4 @) LDy
j(wﬁ(‘?) 6¢'(q))G( q)dl for pinR, on S (3.24)
Similarly,
21(p)= [, (4@ - @) = LD ar
+L (M(Q) ~ aﬁfq))G(p; q)dl for p in1 (3.25)

q q

Thus, the potential over the entire lower half-plane is equivalent to a source
distribution over §, and a dipole distribution over S;. Then

1(q) = ¢,(q9)- 4 (q) (3.26)
- d8;(q) ,(q) .
o(q) = o - £y (3.27)

where 1(g) and o(g) can be interpreted as the dipole strength and the source strength

respectively. The most common assumption is that the potential 1s continuous across
the body, u(g)=0. The normal velocity is discontinuous across the body surface. If it
1s specified that

¢ (p)=¢,(p) for p on S, (3.28)

and the velocity potential is of the form,

27$,(p) = |, o(9)G(Pig)dl (3.29)
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which is equivalent to a source distribution of strength o(q) along S, and its image is
represented by Green’s function defined in equation (3.13).

If we apply the linearised body condition (3.8) and (3.9), the unknown source
strength o(q) can be determined. Thus

for p on §, (3.30)

ro(p)+ [, olg) Z LDy = 201D

P | 4

The first term in the left hand side of equation (3.30) ensures the isolation of
singularity for the validity of equation (3.15).

Once the source densities o{(q) are known, the velocity potential ¢,(p) can be

solved by (3.29). The hydrodynamic forces and moments can be obtained by
substituting the known velocity potential into the lineansed Bernoulli's equation and
integrating the resultant formulation over the mean wetted body contour.

3.3 Hydrodynamic forces

The hydrodynamic forces can be obtained by integrating the hydrodynamic pressures

in terms of the appropriate velocity potential and its denivatives over the mean wetted
body surface S,. Under the linearisation procedure, the unsteady velocity potential can

be decomposed into potentials due to incident waves, diffraction waves and radiation
waves.

The hydrodynamic exciting forces F,” are the results of the pressure associated

with the incident wave potential and diffraction potential due to the incident waves per
unit amplitude and can be expressed in the form

]J}"" = —pg n(o+U —5:)(% + @, )dse™™

= F}“'e"‘“ = |F}|e'f(“”‘ ‘ =1,2,...6 (3.31)
where
F* = Fg +iFy (3.32)
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F|=Fx +F; (3.33)
_F~

E. =tan_l _f (334)

J F,R

F” and |F}| are the complex amplitude and amplitude of wave exciting forces,
respectively. &, is the phase angle which is positive if the force leads the wave

elevation at the origin of the coordinate.

The exciting forces FJ."' can be further decomposed into two components as the

Froude-Krylov force and diffraction force. The Froude-Krylov force involves the
incident wave potential only and corresponds to the force experienced by the body
when the incident wave trains pass through it unaffected. Therefore the Froude-Krylov
force is significant in the long wave or for a thin body in head waves with little
scattering waves. The diffraction force becomes important in the short wave region or
for a large body with a large frontal area exposed to the incident waves.

Under the assumption of a linear frequency response to harmonic excitation
relationship, the solutions for the displacements from the mean position of the
catamaran can be expressed by

E (1) = Ee™™ =|E | k=1,.2,...6 (3.35)
where

& = &g Hiky (3.36)
&)= VEa’ +&4® (3.37)
£, =tan™ Z’:’ (3.38)

£ and |&,| are the complex amplitude and amplitude of motions, respectively; &, is

the phase angle with respect to the wave crest. A positive phase angle of the motion
response indicates that a motion reaches its positive maximum value before the crest of
the undisturbed incoming regular wave passes the origin.

23



The hydrodynamic reactive forces in the j-th direction resulting from the motion &,
are obtained by

FR =—p|[n,(io+ U-§)¢,ds2,e-m ik=12,..6 (3.39)
. 5, | |

where j and k indicate the direction of the fluid reaction force and the mode of motion
respectively.

A

On the other hand, the hydrodynamic reactive forces can be expressed in phase with
the body acceleration and velocity, that is

FR = (A4, &, (1)+B & (1) = (0?4, +iaB,)Ee™ (3.40)

The coefficients A, and B, are real quantities which are functions of the body shape,
the forward speed and the frequency of motion. As A, is associated with the body
acceleration, it is normally called "Added Mass coefficient". The quantity B, is related

to the velocity of the motion in the k-th mode and is called "Damping coefficient". The
added mass and damping coefficients are given from (3.39) and (3.40)

P . 74

Ay =-Re l j nj(tw+U—§)¢kds‘ (3.41)
P . 74

By=-"Im Unj(tm+U—§)¢,ds (3.42)

The hydrostatic restoring forces are defined as the fluid forces to restore the body
to its static equilibrium state when the body is displaced freely from the rest position.

By using Gauss's theorem, the surface integral can be transformed to the volume
integral in the form

F}‘g = pg yzn, ds =pg I 'Un, dV =—pg J- J‘ dA. J':({;(t)-*yh(f)-xts(t))*r-- n dze~"™
» & A,
=3 Cple™™ =12,..6 (3.43)

=}

The quantity C,, is called the hydrostatic restoring coefficient which is a function of

the body geometry only and is independent of the motion &,. With one longitudinal

plane of symmetry, a motion in the longitudinal plane cannot produce any forces
perpendicular to that plane. The hydrostatic coefficients C, are given by
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Cys = P8A,;Cy = pBVGM,; Css = pgVGM

Cys =Cs3 = —pgA (3.44)

y

where A, and A, are the area and the first moment of the waterplane area at z=0

respectively; V is the volume displacement of the catamaran, GM, is the transverse
metacentric height and GM, is the longitudinal metacentric height above the origin.

T

3.4 Equations of motion

For dynamic equilibrium the total wave-induced forces must be equal to the mass
inertia forces and the coupled linear equations of motion of the rigid body can be
written as

Z{(Mﬁ: +Aﬁ-)zk(r)+Bﬁ-&k(r)+cﬁ-§t(t)} = goF}W =1,2,..6 (3.45)

k=1

where &, and £, are motion acceleration and velocity respectively; M & 1s the mass
matrix; 4, 1s the added mass; B, is the damping; and C, is the restoring coefficient.
F;” is the wave exciting force;¢, is the incident wave amplitude. The indices j and k

indicate the direction of the fluid force and the mode of motion respectively.

It is assumed that the catamaran has one longitudinal plane of symmetry. The
symmetry of the hull with respect to the longitudinal centre-plane of the twin-hull ship
leads to decoupling of the vertical plane modes from the hornizontal plane modes. Thus
the equations of motion can be divided into surge-heave-pitch and sway-roll-yaw

equations. The generalised mass matrix [M] of the ship whose centre of gravity is at
(0,0, z,;) can be written as

M 0 0 0 Mz; O
0 M 0 Mz, O 0
0 0 M O 0 0
0 -Mz; 0 [, 0 -/,

Mz, 0 0 0 I 0
0 0 0 -1 0 I

(3.46)
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where M is the mass of the ship, I is the moment of inertia about the origin in the j-th
mode of motion and L s the cross-product of inertia about the origin.

Once the hydrodynamic forces as described in section 3.3 are determined by
integration of the related radiation potential and the diffraction potential due to the

incident wave, the linear motion responses of catamaran in regular waves can be
obtained from equation (3.45).

o

3.5 Correlation studies

Based on the two-dimensional Green function, the formulation of the hydrodynamic
forces on a catamaran and the resulting motion responses in regular waves has been
described in the previous sections. The validation of the mathematical model was
carried out by comparing numerical results obtained from the two-dimensional
frequency domain program developed by Dr. H. S. Chan in 1993 with those obtained

from experiments with three catamaran models. (ASR5061, 1971; Marintek, 1992; V-
1 model, 1994)

3.5.1 Motion responses of the ASR3061 catamaran

The most comprehensive sea load measurements were carried out in the Naval Ship
Research and Development Centre by Wahab et al. (1971) for the ASRS5061
catamaran model advancing obliquely in deep water waves. The model 5061
represents the ASR at the end of the preliminary design stage. Tests were carried out
for a range of regular waves, speeds, headings and hull separations with six degree
freedom of motions. The demi-hull is asymmetrical forward and symmetrical aft as
shown in figure 3.2. Some of the main particulars are given in Table 3.1. The
ASRS061 catamaran was modelled by 21 sections and each contour was approximated
by a number of straight-line segments, as shown in figure 3.3. In this correlation study,

the experimental values of ASR model with hull separationbeam = 1.58, wave
direction B = 180° and Froude number Fp(=U //gL) =0.31 were compared with the

theoretical results based on the two-dimensional method.

Figures 3.4 and 3.5 show the comparison of experimental data with the present
theoretical results for the non-dimensional pitch and heave motions of the ASR5061
catamaran against the non-dimensional wave frequencies. Comparisons show that
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there is a good correlation between the theoretical and experimental results except
around the resonance regions. When the effects of viscous damping are not taken into
account, the numerical results obtained from the two-dimensional potential theory are
higher than experimental results at the resonance regions for both heave and pitch
‘motions. Both experimental data and numerical results show a second peak in the pitch

motion response curve. It may be caused by the interaction effects between the twin
hulls.

-

3.5.2 Motion responses of the Marintek catamaran

Tests with the Marintek catamaran model were carried out in the Ocean Environment
Laboratory of MARINTEK (Faltinsen et al., 1992). The demi-hull of this catamaran is
round bottom, symmetrical with respect to the longitudinal vertical plane and had a
transom stern as shown in figure 3.6. Table 3.2 gives the main particulars of the test
model and figure 3.7 shows the segmentation of Marintek catamaran model for the
numerical calculations. A free running model was used and measurements were carried
out with 90° and 135° heading at F;=0.49. The published non-dimensional heave and
roll responses in regular beam waves and heave and pitch transfer functions in 135°
oblique waves for the catamaran model have been compared with the numerical values
obtained from the two-dimensional method as shown in figures 3.8 to0 3.11.

In figure 3.8, the experimental roll motions are somewhat higher than the
numerical results at certain frequencies and the resonance position of the experimental
curve is slightly shifted towards the low frequency. For heave motion predictions in
beam sea, the numerical results are in good agreement with the experimental values as
shown in figure 3.9. Unfortunately, the published experimental data lack values at high

wave frequencies to validate the numerically predicted transfer function values of
heave motion around the resonance region.

Results for the non-dimensional pitch and heave motion responses in 135° heading
are presented in figures 3.10 and 3.11. There are some discrepancies observed in the
prediction of pitch motions at the lower wave frequencies. A good correlation between
the numerically predicted and experimentally measured heave motion responses is
obtained. However, the analytical results overpredict the values determined
experimentally and the calculated heave and pitch resonance positions shift slightly
towards the higher wave frequency region. Experimental errors may have occurred in
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the autopilot system since it was not possible to keep the constant heading during
these tests as discussed by the authors (Faltinsen et al., 1992).

-3.5.3 Motion responses of the V-1 catamaran

Incecik et al. (1991) reported a series of expeniments for the V.I.L. catamaran model
with variable spacing between the demi-hull and the position of LCG. In this study, the
V.I.L. catamaran model was modified to arrive at the V-1 model. The V-1 model was
tested with a new measurement system to investigate the nonlinear effects of large
amplitude motions in the Towing Tank of the Hydrodynamics Laboratory at the
University of Glasgow. Details about the experimental work can be found in Chapter
5. In this Chapter, the experimental data of small incident wave amplitude, ¢, =1.0cm,
have been used to validate the two-dimensional frequency domain method. The V-1
model is a high speed catamaran hull form. The demi-hull is of the planing type,
featuring V-type section and cut-off transom stern as shown in figure 3.12. The
principal dimensions of the V-1 catamaran are given in Table 3.3. The segmentation
of the V-1 catamaran model is presented in figure 3.13.

The hydrodynamic forces in terms of added mass, damping coefficients and wave
exciting forces at three different forward speeds are indicated in figures 3.14 to 3.28
and in the following non-dimensional forms :

- Added mass coefficient

a,. A, 1 pV 1,k=1,2,3
A,/ pVL 1=1,2,3 : k=4,5,6
k=1,2,3 : 4,5,6
A,/ pVI 1,k=4,5,6 (3.47)
- Damping coefficient
by B, /pV\/g/ L 1,k=1,2.3

B,/pVLJg/IL  j=1,2,3:k=4,5,6

k=1,2,3 :1=4,5,6
B,/ pVL 1/3/ L 1,.k=4,5,6 (3.48)
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- Wave exciting force

7| |F,|L1 g,V i=1,2,3
F|/ pg,V j=4,5,6 (3.49)

where g is acceleration due to gravity; V is the volume displacement of the

catamaran, L is the length between perpendiculars of the catamaran. These results are
platted against the non-dimensional frequency.

For a catamaran with port-starboard symmetry, the vertical plane motions (surge,
heave and pitch) are affected by the symmetric interaction and the horizontal plane
motions (sway, roll and yaw) by the antisymmetric interaction (Hudson et al., 1995).
There exists a set of discrete characteristic frequencies at which the motion of the fluid
between the twin bodies is strongly excited by the body oscillation (Wang and
Wahab,1971). These frequencies closely correspond to the gravity wavelength for
deep water which satisfies the following relation :

Symmetric interaction : @ = 1/2ngl d for n=1,2,3... (3.50)
Antisymmetric interaction : @, =\/(2n-1)ng/d, forn=1,23... (3.51)

where d, 1s the hull separation between two bodies. The characteristic frequencies

derived from these equations are similar to the natural modes of the motion of fluid
between two vertical walls of d, apart, with no energy dissipation. These like the form

of a standing wave between the hulls.

It should be noted that another resonance peak of hydrodynamic coefficient exists
between @ =0 and the first characteristic frequency specified in equation (3.50) in the
vertical plane motions. The large negative added mass is observed around
a)JZTE = 3.05 in the heave and pitch modes. For heaving motion of two-dimensional
single bodies in a free surface, no negative heave added mass has been reported. Thus
the existence of negative added mass for twin-hull bodies strongly suggests the effect
of hydrodynamic interaction between the twin hulls. From equation (3.50), the first
charactenistic frequency of the vertical plane motion is at leTg = 7.089 for the V-1
catamaran. These abrupt discontinuities of results at characteristic frequencies can also
be found from the numerical investigations as shown in figures 3.14 to 3.25. In the

horizontal plane motions, the apparent discontinuity is observed around non-
dimensional encounter frequency a),/L /g =5.012 from the hydrodynamic coefficient
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curves of the V-1 catamaran. This is a kind of antisymmetric standing wave interaction
and can be predicted by using the minimum distance between the hulls in equation
(3.51). There are no any troughs observed among zero and first characteristic
frequency in the antisymmetric interaction to the V-1 catamaran configuration.

The cross coupled hydrodynamic coefficients are well satisfied the Timman-
Newman's (1962) symmetry relationships at the zero forward speed condition as found
in "hydrodynamic coefficient curves. Figures 3.26 to 3.28 show the wave exciting
forces, moments and related phases of the V-1 catamaran in the head sea condition.
The symmetnic hydrodynamic interaction between twin hulls can also be found in the

curves of wave exciting force and moment. The discontinuity of numerical results is
very significant at wM/L/ g =3.81 (related to a),/L/ g =7.089) at Fn=0.226.

Furthermore, the minor effects appear at w,/L/g =2.58 when Froude Number is
equal to 0.677.

Validations of the two-dimensional method by the model tests of V-1 catamaran
are given in figures 3.29 to 3.34. In this study, the incident wave amplitude was chosen
lcm 1n order to eliminate the nonlinear effects. Experiments with three different
forward speeds, Fn= 0.00, 0.226, 0.677, were carried out in the head sea condition to
compare the measurements with theoretical results. Agreement between the
experimental data and predictions based on the two-dimensional frequency domain
theory for heave and pitch motions is good at zero speed. When the Froude number
increases, the analytical method begins to overpredict peak values. The theoretically
predicted position of resonance is higher compared to the experimental measurement
when the forward speed increases. For the pitch motion predictions, the comparison
shows some differences between the numerical results and experimental data in the
low frequency region as shown in figures 3.32 and 3.34. The validation studies on the
prediction of the small amplitude motions of V-1 catamaran in the head sea condition
indicate that the resonance positions of both heave and pitch response curves shift to
the lower wave frequency region and the peak amplitudes increase as the model speed
increases. In general, phase angle predictions are in 