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ABSTRACT 

Regard the presentation P =< x; r> as a 2-complex. Then we have the second 
homotopy module ir2(P). The elements of 7r2(P) can be represented by spherical 

pictures. This is the key idea for this thesis. We give this preliminary background in 

Chapter 1. 

In Chapter 2, we study properties of groups concerning 7r2(P). We show that 

all these properties are recursively unsolvable, that is, there is no effective methods 

which can be applied to an arbitrary finite presentation P to determine whether or 

not groups have these properties. Our main results are Theorems 2.3.1 and 2.3.2, that 

is, that p-Cockcroft and efficiency are recursively unsolvable. 

Let P be a collection of spherical pictures over P. Then we may form a 3- 

complex K =< x; r; P >. In Chapter 3 we establish the picture problem for IC-the 

analogue of the word problem for P, a dimension higher. We prove Theorem 3.1.1- 

the existence of IC with unsolvable picture problem. 

From now onwards, we deal with relative presentations. We are interested in 

investigating the asphericity of 1' _< H, t; thlth2th3t-lh4 > (hi E H). In Chapter 4, 

we survey the basic concepts, the important theorems for relative presentations and 

the tests for asphericity. 

The first major case that we consider is < H, t; t3at-lb > where a and b are non- 

trivial elements of H. We investigate asphericity of this form in Chapter 5. Excluding 

some exceptions that are not yet decided, we state our results in Theorems 5.1.1 and 

5.2.1. 

In Chapter 6, we consider the second major case-< H, t; t2atbt-lc > where a, b 

and c are non-trivial elements of H. As in Chapter 5, we have some exceptions and 

we state our results in Theorems 6.1.1,6.2.1,6.3.1 and 6.4.1. 
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NOTATIONS 

Let G and K be groups 

G®K the direct sum 
GxK the direct product 
G*K the free product 

GK G is isomorphic to K 

G/K the quotient group of G by K 

ZG the integral group ring 

IG the augmentation ideal 

rkz(G) the rank of torsion free part (when G is abelian) 
d(G) the least number of generators 
Hk (G, A) the k-th homology group of G with coefficient in A 

Hk(G, B) the k-th co-homology group of G with coefficient in B 

S(G) =1- rkz(Hj(G)) + d(H2(G)) 

cdG cohomological dimension 

G' derived group (commutator subgroup) of G 

G*K, O. HNN-extension with base group G, 

associated subgroup K with specified isomorphism a 

GxpK split extension of G by K with K-action p 
KG normal closure of K in G 

Ifa, bEG 

[a, b] the commutator of a and b (= aba-lb-1) 

o(a) the order of a 
Also 

7L"` the free abelian group of rank n 

Zn the finite cyclic group of order n 

and 

® the direct sum 

* the free product 
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If P =< x; r> is a presentation 

G(P) the group defined by P 

7rl (P) the first fundamental group 

7r2(P) the second homotopy module 
I, ('P) the first Fox ideal 

12(7') the second Fox ideal 

X(P) the Euler characteristic of P 

Pst the star graph 

M(P) the relation module 

Also if W is a word on x 
[W] equivalence classes containing W 

W the element of G(P) that represents W 

and if REr 

p(R) the period of R 

R the root of R 

Let P be a picture over P 

W(P) the label of P 

älß the boundary of P 

-IF the mirror image 

< 1F > equivalence classes containing IF 

W (-Y) the label of path y 
W(c) the label of corner c 
0(c) the angle of corner c 

eXPRP exponent sum of R in P 
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If IC is a complex 

JC(n) the n-th skeleton 

X(JC) the Euler characteristic of K 

7r, (IC) the n-th homotopy groups 
Also if p is a path in K 

[p] K equivalence classes containing p 

We adopt the usual notation in set theory 

AUB the unions of the sets A and B 

A-B the set difference 

ACB A is a subset of B 

aEA a belongs to A 

IAI the cardinality of A 
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Chapter 1 

Preliminaries 

Let x be a set (alphabet). A word W on x is of the form 

E1 EZ En 

xl x2 xn 

wheren>0, x; Ex, E; =fl(i=1, , n). Ifx; '#xý+i+'(i=1, """, n-1), then we 

say that it is reduced. Furthermore it is cyclically reduced if in addition xi` 54 xn`n. 

Then we have a presentation 

P=<x; T> 

where r is a set of non-empty cyclically reduced words on x. We say that P is finite 

if x and r are both finite. 

Throughout this thesis, all presentations will be assumed to be finite 

unless stated otherwise. 

If F(x) is the free group on x and N =« r» is the normal closure of r in 

F(x), then the quotient group 

G(P) = F(x)/N 

is the group defined by P. Denote a typical element of G(P) by W= [WIN where 

W is a word on x and [W] is the free equivalence class of W. A group G is said to be 

finitely presented if G can be defined by a finite presentation (that is G= G(P) for 

some finite presentation P) 
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We may regard P as a 2-complex 

x, 

ýý ""'. " 

x" RI R1 Rm 

This complex has a single 0-cell, the 1-cells are in bijective correspondence with x, and 
the 2-cells are in bijective correspondence with r and are attached by the boundary 

path determined by the spelling of the corresponding member of r. Thus there are 
homotopy groups irl(P) and 7r2(P). As a 2-complex, a path in P is of the form 

Cl t2 En 
xl x2 ... xn 

where n>0, x; E x, ci = ±1(i = 1, """, n). Clearly any path in P is closed since P 

has a single 0-cell. We define elementary operations on paths as follows: 

(a) Insertion/deletion of an inverse pair x`x'`(x E x). 

(b) Insertion/deletion of an element rU r-1. 

Two paths are said to be homotopic (relative to P) if one can be obtained from the 

other by a finite number of the above operations. Denote the equivalence class con- 

taining path W by [W]P. For any paths U, V in P, we may define a multiplication 

of equivalence classes [U]P[V]P = [UV]P. The first fundamental group irl(P) is 

simply the set of equivalence classes of paths with the above operations (see for ex- 

ample [17,51]). The identity is the equivalence class containing the empty path and 

the inverse of [W]P is [W-']P. Also there is a bijective homomorphism 

0: 7r, (P) -+ G(P) 

[W]P H W. 

The elements of the second homotopy module 7r2(P) can be represented by geo- 

metric configurations called spherical pictures, as described in §1.1. 

2 



1.1 Second homotopy modules 

In this section we will introduce the basic concept which is needed in all chapters. 
There are many reference to this basic theory such as [9,13,25,32,33,35,48,50]. 

1.1.1 Pictures 

A picture IF over P is a geometric configuration consisting of the following: 

1. A disc DZ with basepoint 0 on OD2. 

2. Disjoint discs I NI, 02, """, An in the interior of D2. Each 0; has a basepoint 0; 

on ä0;. 

3. A finite number of disjoint arcs a1, a2, """, am where each arc lies in the closure 

of D2 - U; _i Ai and is either a simple closed curve having trivial intersection 

with OD2 U a01 U a02 U"""U aA,,, or is a simple non-closed curved which joins 

two points of OD' U a01 U ... U a0n, neither point being a base point. Each 

arc has a normal orientation, indicated by a short arrow meeting with the arc 

transversely and is labelled by an element of xU x-1. 

4. If we travel around äAf once in clockwise direction starting from O and read off 

the labels on arcs encountered (if we cross an arc, labelled x say, in the direction 

of its normal orientation, then we read x, whereas if we cross the arc against the 

orientation, then we read x-1), then we obtain a word which belongs to rU r-1. 

We call this word the label of A j. 

For each disc 0, a corner of 0 is the closure of a connected component of OA - 
U{ßl, ß2i ""., Pk} where /31, """ �ßk are the arcs of P meeting A. The regions of P are the 

closure of connected components of D2-{(U{O1, z 2, """, Q�}) U(U{al, a2, " 
A region (P of P is called an outer region if it meets OD2 and an interior region 

otherwise. We say that P is connected if (U{z. 1i 02, """, 0�}) U(U{al, a2, """, a- D is 

connected. 

3 



Example 1.1.1 Let 'P =< a, b; a2, b3, [a, b] >. Then 

0 

is a picture over P. In this picture we have seven outer regions-4D 1, """9I and five 
inner regions-W1, """ , 

'Y5. We also have twentysix corners- c1, """, c26. 

We define öIF to be OD2. The label on P (denoted by 1V(P)) is the word read off 

by travelling around OP once in the clockwise direction starting from 0. Thus in the 

above example, W(P) = bbbb-'b-'ab'le''. 

In some articles (see for example [13,36,43,47]), the dual of pictures-diagrams- 

are considered. Thus there is a pictorial version of the `van Kampen Lemma' 

Lemma 1.1.2 There exists a picture P over P with label IV if and only if tiV =1 in 

G(P). 

We say that P is spherical if no arcs meet OP. If P is spherical we often omit OP. 

Example 1.1.1 (continued) 

bb 
b 

aQ 

bbb 

a 

is a spherical picture over P. 

A transverse path in P is a path in the closure of D2 -U _i z; which intersects the 

arcs of lP only finitely many times. If we travel along a path -y from its initial point to 

its terminal point we will cross various arcs. We can read off the labels of these arcs, 

giving a word W(7), the label on y. 

4 



Example 1.1.1 (continued) 

rf. ), 

0 

b 

bb 
60 

4 

Qb4 
b4 

Then W(y) = ba-lb. 

When we refer to the discs of P we mean the discs Al, 02, """, A, not the ambient 
disc D2. A closed arc which encircles no disc or arc of P is called a floating circle. In 

the above picture 1F', the closed arc labelled by a is a floating circle but the closed arc 
labelled by b is not. A cancelling pair is a spherical picture with exactly two discs and 

where their basepoints lie in the same region. We only allow one basepoint on each 
disc. Thus if a relator REr is a proper power, we need to be cautious. This means 

that 

QE3) CE3) 
are cancelling pairs, whereas 

is not. 

Now we introduce the basic operations on pictures. 

A) Delete floating circle. 

A)-' Insert floating circle. 

B) Delete cancelling pairs. 

B)'1 Insert cancelling pairs. 

C) Bridge moves 

aa 
a= ac, 

aa ,ý Lý 

5 



Two pictures will be said to be equivalent if one can be transformed to the other by a 
finite number of operations A)tl, B)tl and C). We let <P> denote the equivalence 

class containing P. 

Let PI, 12 be spherical pictures over P. Then the mirror image of P1 will be 

denoted by -P1 and P1 + P2 is defined to be 

tP, lp, 

Note that the set of equivalence classes of all spherical pictures over P forms an abelian 

group, denoted by 7r2(P) under the following binary operation 

<PI>+<P2>=<PI+P2>. 

The identity (zero) is the equivalence class containing the empty picture and the 

inverse (negative) of < ]F > is < -IF >. 

Let Pi't' be the spherical picture obtained from spherical picture P by surrounding 

it by a collection of concentric closed arcs with total label W. 

woo Then we can consider 7r2(P) as a left ZG(P)-module where the (well-defined) G(P)- 

action is given by 

W. < P>=<]? w> (WEG). 

We call 7r2 (P) the second homotopy module of P. There are known procedures for 

producing homotopy elements from pictures but we shall not pursue this here. See for 

example [9,13,25,48,50] for the connection with the topological definition of 7r2(P). 

Consider a collection X of spherical pictures over P. We introduce two further 

operations on spherical pictures. 
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D) If there is a simple closed path 0 in a picture such that the part of the picture 

enclosed by 0 is a copy of some P or -lF (P E X) then delete that part of the 

picture enclosed by ß. 

D)-' The opposite of E). 

Two spherical pictures will he said to be equivalent (relative to X) if one can be 

transformed to the other by a finite number of operations A)", B)tl. C) and D)±1 

Then by [48, Theorem 2.6*, Corollary 1] we have 

Theorem 1.1.3 The elements <P> (P E X) generate 7r2(P) if and only if every 

spherical picture is equivalent to the empty picture (relative to X). 

We say that X generates 7r2(P) if the elements < IP > (P E X) generate 7r2(P) 

Example 1.1.1 (continued) 

One may refer to [4] to show that 7r2(P) is generated by 

4 

b l-30 CýD 
a 

bb 
lpj 

pQ 
b 

a'j 
t° y 

b o, 

1.1.2 Properties of G(P) concerning ir2(P) 

In this subsection we give some definitions which play a major role in Chapter 2. 

Throughout this subsection assume that P =< x; r >. 

Definition 1.1.4 A presentation T is said to be aspherical if 7r2(P) =0 and a group 

G is said to be aspherical if it is defined by an aspherical presentation. 

Note that all free groups are aspherical. 

Definition 1.1.5 A presentation P is said to be combinatorially aspherical (CA) if 

7r2(P) is generated by a set of pictures containing exactly two discs, and a group C is 

said to be combinatorially aspherical (CA) if it can be defined by a CA presentation. 

7 



Example 1.1.6 Let P =< a; a' > define a cyclic group of order n. It is known that 

7r2(P) is generated by a single picture 

arl 

(: 4jRD 
Thus P is CA. 

For any picture P over 1' and for any REr, the exponent suns of R in P. denoted 

by expR(P) is the number of discs of P labelled by R minus the number labelled by 

R'1. Note that if pictures Pl and P2 are equivalent, then expR(P1) = expR(P2) for 

allREr. 

Example 1.1.7 Let P =< a, b; a2, b3, [a, b] > as in Example 1.1.1. Consider 

Then expb3(IP) =0 and exp[a, b](P) = 3. 

Definition 1.1.8 A presentation P is said to be Cockcroft if expR(IF) -0 for all 
REr and for all spherical pictures P over P. A group G is said to Cockcroft if G 

admits a Cockcroft presentation. 

The Cockcroft property has recieved considerable attention in [21,26,27,29,38]. 

Definition 1.1.9 A presentation P is said to be p-Cockcroft (p a prime) if expR(IP) 
0(p) for all REr and for all spherical pictures P over P. A group G is said to be 

p-Cockcroft if G admits a p-Cockcroft presentation. 

The p-Cockcroft property is discussed for example in [38]. 

Remark 1.1.10 It should be noted that for Definitions 1.1.8 and 1.1.9, it is enough 
to check the exponent sum of R (for all RE r) in a set of generating pictures. 

8 



Example 1.1.11 Let P =< a, b, c; [a, b], [a, c], [b, c] >. Then one may refer to [4] to 

show that 7r2(P) is generated by 

ccüC 

4 

C 

Since exp[4, b](P) = eXP[a, c](P) = exp[b, c](P) = 0, then P is Cockcroft. 

Example 1.1.12 Let P =< a, b; a2, [a, b] >. Then one may refer to [4] to show that 

7r2(P) is generated by 

06 

lp, a P. 
b ccn)D 

C 

np 

V 

Since expa2(IF1) = exp[a, b](IPI) = expa2(P2) =0 and exp[q,, b](P2) = 2, then P is 2- 

Cockcroft. 

Example 1.1.13 Let P =< a, b; a2, b3, [a, b] > as in Example 1.1.1 and so , r2(P) is 

generated by {P1, F2, F34 P4}. Since exp[a, b](F2) =2 and exp[a, b](P4) =3 then clearly 

P is not p-Cockcroft for any prime p. 

Note that 

Aspherical = CA = Cockcroft = p-Cockcroft. 

Since P can be regarded as a 2-complex we can consider the Euler characteristic 

of P, Y(P) = 1- IxJ+Ir1. It is known (see for example [241) that X(P) is 

bounded below by 8(G) =1- rkzHi(G) + d(H2(G)) (where rkz denotes the rank of 

torsion free part, d() denotes the minimal number of generators and G is the group 

defined by P). 

Definition 1.1.14 A presentation P is said to minimal if it has minimal Euler char- 

acteristic over all finite presentations defining the group G. 
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Definition 1.1.15 A presentation P is said to be efficient if X(P) = b(G(P)). A 

group G is said to be efficient if it admits an efficient presentation. 

Note that if a presentation is efficient then it is minimal. 

Example 1.1.16 Note that the finite cyclic group Z6 can be defined by presentations 
P1 =< a, b; a2, b3, [a, b] > and P2 =< t; t6 >. Since Hl (Z6) = Z6 and H2(Z6) =0 

then S(Z6) = 1. Thus P2 is an efficient presentation for Z6 while Pl is not. 

Note that if we can find a minimal presentation P for a group G such that P is not 

efficient then X(P') > X(P) > b(G) for all presentations P' defining the same group 

G. Thus there is no efficient presentation for G, that is G is not efficient. Examples 

of non-efficient groups were given in Swan [54] and their minimal presentations were 

given in [55]. New examples can be found in [4]. 

It is known (see [38] or §2.3.3) that a group G is efficient if and only if it is 

p-Cockcroft for some prime p. 

There has been a lot of ad hoc work done on determining whether various types 

of groups are efficient (see for example [7,14,37,56]). So one is led to ask whether 

these ad hoc calculations could be done algorithmically, that is 

" Is there any algorithm to decide for any given finite presentation whether the 

given group defined by the presentation is efficient? 

One of our main results (see Theorem 2.3.2) shows that no such algorithm exists. 

Definition 1.1.17 A group G is said to be ire-free or 72-projective if G admits a 

presentation P such that ir2(P) is a free or projective left ZG-module respectively. 

Note that all aspherical groups are ire-free and 72-projective. 

1.1.3 An exact sequence concerning ire (P) 

A projective resolution of the trivial G-module Z is an exact positive chain complex 

""" --4 P2 --+ PI -4 Po -+ Z --+ 0 

10 



where each Pi is projective. This resolution will be known as a free resolution if each 
P; is free. We say that this resolution is n -finite if Po, Pi, """, Pn are finitely generated 

and G is of type FP� (0 <n< oo) if G has an n-finite projective resolution. Clearly 

if G is of type FP� then it is of type FP, i_1. 

Let P =< x; r> define the group G= F(x)/N. Then the relation module M(P) 

of 7' is the abelian group N/N', regarded as a left ZG-module under the (well-defined) 

action 

W"[U]N'=[WUW-1]N'(WEG, [U]EN). 

Let Pl and P2 be the free left ZG-modules with basis {ex :xE x} and {en :RE 

r} respectively. Then there is a surjective module homomorphism (see for example 
[4,48]) 

P2: P2 -+M(P) 

eR H[R]N'(R E r) 

and there is an injective module homomorphism (see for example [4,48]) 

µ1: M(P)--+Pi 

[W]N' i--+ a(aäx ] )ex 
xEX 

where is Fox derivation (refer [43, §11.3]), 0 is the ring homomorphism ZF --} ZG 

induced by the natural surjection F -+ G. 

We have the following exact sequence (refer for example [4]) 

0 -"72 (P) 24 P2` P124 ZG °f2 ->0 (1.1) 

where po is the augmentation map which takes each elements of G to 1, and the 

module homomorphism 

PI : Pi -+ ZG 

eýHl -ý 

is surjective. The embedding µ2 is given as follows. Let <P >E 7r2(P) and suppose 

that P has discs I It z 2, """7 0� with label Rl1, R2 
,"", R; ̂  respectively (R; E r, E; _ 
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±1, i=1,2, """, n). Let wi be a transverse path from the basepoint of P to the 

basepoint of Di for 1 <i < n. Let ZV, be the label on wt. Note that if we choose 
another transverse path zb; from the basepoint of 1P to the basepoint of 0;, then 
VV, = tiV, in G where TV, is the label on w; (see for example [4S]). Then 

µ2(< P >) => CJVjeR, , 
t-i 

Example 1.1.18 Let G= 7L2 eZ be defined by P =< a, b; a2, [a, b] > and consider 

OL 

, ýý a 

- OL 

, ýý a 

µ2(< P>) _ (b- 1)e,, 2 -}-(1 +cý)eýa&ý. The 

Let I2(P) be the two sided ideal in ZG generated by the non-zero coefficient of 

elements of the image of µ2. This ideal is called the second Fox ideal. Knowing a set 

of generators of 7r2(P) enables us to compute a set of generators of 12(P). In Example 

1.1.18 (see also Example 1.1.12), I2(P) is generated by {b -1,1 + ä, 1- ä}. Note that 

there is also the first Fox ideal I, (TI) corresponding to the image of µl. The zeroth 
Fox ideal is just the augmentation ideal IG. This concept of Fox ideals is discussed 

in [41,421. We need this concept for the test of minimality (see §2.3.3). 

It follows from the above sequence (1.1) that every finitely presented aspherical 
group is of type FPS. In particular every finitely generated free group is of type 

FPS. Also from the above sequence, it follows (using Proposition 4.3 [12, page 193]) 

that a group G defined by a finite presentation P is of type FP3 if and only if 7r2(P) 

is finitely generated. 

Also note that a group G is of type FP, if and only if G is finitely generated (see 

for example [6, Proposition 2.1] ). 

The concept of FP� will be discussed in §2.4.1. 
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1.2 Decision problems 

This section introduces the main theme for Chapters 2 and 3. 

Decision problems for finitely presented groups were formulated by Max Dehn [18] 

in 1911. The objective is to determine the existence and nature of algorithms which 
decide: 

1. Global properties-whether or not groups as a whole possess certain properties 

or relationships. 

2. Local properties-whether or not elements of a group have certain properties or 

relationships. 

A rather comprehensive accounts of history, motivations and results on decision prob- 
lems can be found in [45]. 

In Chapter 2 we deal with global properties concerning second homotopy modules. 
Our main results are Theorems 2.3.1 and 2.3.2. 

" For any given prime p, there exists a recursive class fl, of finite presentations 

of groups such that the problem of determining whether an arbitrary member of 
f 2i defines a group which is p-Cockcroft is recursively unsolvable. 

" There exists a recursive class 92 of finite presentations of groups such that the 

problem of determining whether an arbitrary member of 02 defines an efficient 

group is recursively unsolvable. 

A local fundamental property which has played a central role in decision problems 
is the word problem. Let G be a group given by a finite presentation P =< x; r >. 

The word problem is the question of asking for the existence of an algorithm to 

determine of an arbitrary word W on x whether or not W= [WIN =1 in G. If we 

regard P as a 2-complex then the word problem is the problem of determining the 

existence of algorithm to determine for any arbitrary element of 7rl (< x >) whether 
its image under the inclusion induced homomorphism 

7r1 (<x --+7r1(<x; r>) 
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is trivial. 

The main unsolvabality result is the following Novikov-Boone Theorem [10,46]. 

Theorem 1.2.1 There exists a finitely presented group with unsolvable word problem. 

In Chapter 3, we will introduce the analogue of the word problem, a dimension higher 

called the picture problem and provide the analogue of the above theorem. Our main 

result is Theorem 3.1.1. 

" There exists a finite 3-presentation JC =< x; r; P> which has unsolvable pic- 

ture problem. Moreover IC can be chosen such that the word problem for the 

underlying presentation JC(2 =< x; r> has solvable word problem. 

Let H be a finitely generated subgroup of G. Then the generalised word problem 
for H in G is the problem of deciding for an arbitrary word W on x, whether or not 

W defines an element of H (if H is trivial then the generalised word problem is just 

simply the word problem). This concept is useful in §3.1. 

1.3 One relator relative presentation 

This section introduces the main theme for Chapters 4,5 and 6. 

The concept of a one relator relative presentation 

P=<H, t; R> 

will be introduced in Chapter 4. Here H is any arbitrary group, <t> is an infinite 

cyclic group and R is an element of H* <t> of the form 

telhlte2h2 
... 

tc%h 

where ei = ±1, hi EH for i=1,2,. "", n (if h; =1 in H, then e; # -Ei}1)" Since t 

occurs n times, we say that this is a case of t-length n. The group G defined by P, is 

the group 
H*<t> 

«R» 
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where «R» is the normal closure of R. Relative presentations are considered for 

example in [3,8,22,31]. 

There are two major issues that have been asked (see [9]): 

1. When is the natural map H -> G is injective. 

2. When is P aspherical in the sense of relative presentations (refer Definition 

4.1.1) 

A relative presentation P is injective if the natural map H --p G is injective. We are 

interested to see when P is aspherical. In Chapter 4 we survey the basic concepts, 

the important theorems for relative presentations and the tests for asphericity. The 

first case of interest is t-length 3. If R has the form thlth2th3, Levin [40] shows the 

injectivity, and the asphericity is discussed in [8]. Howie [30] shows the injectivity 

for the case th1th2t-lh3 while Edjvet [22] considers asphericity for this form. Thus 

the t-length 4 is now considered. There are four main cases for length four (refer 

§4.1). The injectivity has been discussed in [23,40]. For the case R has the form 

thith2th3th4i the asphericity is considered in [3] 
. In Chapters 5 and 6 we cover the 

next case, that is all presentations of the form 

< H, t; tatbtct-'d > 

where a, b, c and d are elements of H (c and d are not trivial). There are some 

exceptions that we can not decide at this moment. We list these exceptions in §6.5. 

Excluding these exceptions, our main results are: 

" Theorem 5.1.1 

Let P =< H, t; t3at-'a > where a is a non-trivial element of H. Then P is 

aspherical if and only if a has infinite order in H. 

9 Theorem 5.2.1 

Suppose that P =< H, t; t3at-lb > is not an exceptional case and 2< o(a) < 

o(b) where a and b are distinct elements in H. Then P is aspherical if and only 

if none of these holds: 
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1. a2=1, a=b2 

2. a2=1, a=b3 

3. a2=b3=[a, b]=1 

4. o(a) = p, o(b) = q, o(ab-1) =k for 1++1>1 where 1 :=0 pqk 00 

5. a= b-' of finite order 

" Theorem 6.1.1 

Let P =< H, t; t2atat-Ic > where a and c are non-trivial elements of H (a and 

c may be equal). Then P is aspherical if and only if c has infinite order. 

" Theorem 6.2.1 

Suppose that P =< H, t; t2atbt-lb > is not an exceptional case where a and b 

are non-trivial elements of H. Then P is aspherical except when b= a'1 and b 

has finite order. 

" Theorem 6.3.1 

Suppose that P =< H, t; t2atbt-la > is not an exceptional case where a and b 

are distinct non-trivial elements of H. Then P is aspherical if and only if none 

of these holds: 

1. o(a) = 2, o(b) < o0 

2. b= a-2 of finite order 

3. b=a2, o(a)=3 or4 

" Theorem 6.4.1 

Suppose that P =< H, t; t2atbt-lc > is not an exceptional case where a, b and c 

are distinct non-trivial elements of H. Then P is aspherical if and only if none 

of these holds: 

1. a= c-1, o(b) < oo 

2. b= ac and p+1+k>1 where o(a)=p, o(b)=q and o(c)=k (ý := 0) 
q 
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Chapter 2 

Global problems for second 

homotopy modules 

Global problems for finitely presented groups are concerned with the question of 

determining the existence of algorithms to decide whether or not groups as a whole 

possess certain properties or relationships. We are interested in properties concerning 

second homotopy modules-aspherical, CA, Cockcroft, p-Cockcroft, efficient, 72-free, 

72-projective and FP3 (in fact we consider more general-FP� for n> 3). All these 

properties will be shown to be recursively unsolvable, that is there are no effective 

method which can be applied to an arbitrary finite presentation P to determine 

whether or not G(P) has these properties. 

In §2.1 we show that properties aspherical, CA, 7r2-free and ire-projective are all 

Markov properties and hence unsolvable. The properties being of type FP,, and Cock- 

croft are homological Markov properties (see §2.2) and hence unsolvable. However for 

the properties p-Cockcroft and efficient it is not known whether or not they are Markov 

or homological Markov properties. We deal with these properties in §2.3. Originally 

we were not aware of the homological Markov property and we had our independent 

proofs for FP,, and Cockcroft. These proofs will be given in §2.4. 

The main results for this chapter are Theorems 2.3.1 and 2.3.2. 
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2.1 Markov property 

An abstract property P of finitely presented groups is said to be a Markov property if 

there are two finitely presented groups G+ and G_ such that: 

1. G+ has the property P. 

2. G_ can not be embedded into any finitely presented group that has the property 

P. 

These groups G+ and G_ will be known as positive and negative witnesses for the 

Markov property P respectively. It should be emphasized that if P is a Markov 

property then the negative witness does not have the property P, nor is it embedded 
in any finitely presented group with property P. A familiar example of a Markov 

property is being trivial. We may take G_ to be any finitely presented non-trivial 

group. Having rank 2 is not a Markov property since every finitely presented group 

can be embedded in a finitely presented group with rank 2 by the Higmann-Nuemann- 

Neumann embedding. 

The main unsolvability result concerning the recognition of properties of finitely 

presented groups is the following: 

Theorem 2.1.1 (Adian [1,2], Rabin [49]) If P is a Markov property of finitely 

presented groups, then P is not recursively solvable. 

The proof of this theorem (which can also be found in [43, Theorem 4.4.1] or [45, 

Theorem 3.3]) shows that many properties other than Markov properties are not 

recursively solvable. A property P is said to be incompatible with free product if: 

1. There is a finitely presented group G+ with the property P. 

2. If A is any non-trivial finitely presented group, then A* G+ does not have the 

property P. 

Thus to show that a property is recursively unsolvable, one may check whether 

or not the property (or its negation) satisfies one of these properties. We will show 
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that the properties of being aspherical, CA, 7r2-free and 7r2-projective (refer §1.1.2 for 

definitions) are all Markov properties and hence are undecidable. 

We will need the following idea. A group K has cohomological dimension k (we 

write cdK = k) if HI (K, A) =0 for all integers q>k and all left ZK-modules A, but 

there exists a left ZK-module B such that Hk(K, B) # 0. 

Proposition 2.1.2 If S is a subgroup of G, then cdS < cdG. 

The proof can be found in [6, Proposition 4.9] or [12, Proposition 8.2.4]. 

The following result is also well-known (see for example [4]). 

Proposition 2.1.3 Let G be a group defined by a presentation P. Then 

i. cdG <2 if 7r2(P) = 0. 

ii. cdG <3 if and only if ir2(P) is projective. 

Remark 2.1.4 Note that cdZ' =n (H"(Z", Z)! -- Z). 

(Refer [12, page 185]. ) 

We obtain the first result: 

Theorem 2.1.5 The properties aspherical, CA, ßr2 free and 7r2-projective are all 

Markov properties. 

Proof Note that Z has a presentation <x> such that 7r2(< x >) = 0. Thus Z has 

all of these properties. Hence we only need to choose four negative witness groups 

G1, G2, G3 and G4 of property aspherical, CA, 7r2-free and 7r2-projective respectively. 

Consider Gi = ? L3, so cdG1 = 3. Suppose that Z3 can be embedded into group G 

having a presentation 'P such that 7r2(P) = 0. Then by Proposition 2.1.3(i), cdG <2 

which contradicts Proposition 2.1.2. 

Consider G2 = Z3. We also claim that Z3 can not be embedded into any group 

G which is CA. Suppose it could be. Then by [15, Proposition 2.5], Z3 has a (not 

necessarily finite) presentation Pz3 =< x; r> which is CA. For all REr, write 
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R= RP(R) where R is not a proper power and p(R) is a positive integer. Since PZ3 is 

CA, it follows that (refer [48, Theorem 1.7(i)]) R defines an element of order exactly 

p(R) in G(Pz3) = Z3. Since Z3 is torsion free then p(R) = 1. This means that no 

element of r is a proper power and hence by [48, Theorem 1.8], Pzs is aspherical. 

Then by Proposition 2.1.3(i), cdZ3 <2 which contradicts Remark 2.1.4. 

We may choose G3 and G4 to be Z4. Now Z4 can not be embedded into any 

group G which has property 7r2-free or 7r2-projective because otherwise G would have 

cdG <3 which contradicts Proposition 2.1.2.0 

2.2 Homological Markov property 

Miller [45, Definition 8] (see also Gordon [28]) introduced a new property-concerned 

with decision-theoretic aspects of the homological invariants of finitely presented 

groups. An abstract property P of finitely presented groups is said to be a homo- 

logical Markov property if there are two finitely presented groups G+ and G_ such 

that: 

1. G+ has the property P. 

2. If Y is a finitely presented group such that H� (G_) 9 H,, (Y) for n>1, then Y 

does not have the property P. 

Generalising the argument of Adian-Rabin Theorem (Theorem 2.1.1), Miller [45, The- 

orem 8.6] proves 

Theorem 2.2.1 If P is a homological Markov property of finitely presented groups, 

then P is not recursively unsolvable. 

We will show that the properties of being of type FP�(n > 3) and of being Cockcroft 

are homological Markov properties. 

Fix n>3. Note that Z is of type FPS and hence it will be the positive witness for 

type FP,,. For the negative witness, we may take the Stalling group A2 (refer §2.4.1). 

Stallings [53] shows that H3(A2) is not finitely generated. Now let Y be any finitely 
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presented group such that H,, (A2) C H�(Y) for n>1. Suppose that Y is of type FP, 

then by [6, Proposition 2.151, Hk(Y) is finitely generated for 0<k<n. In particular 

H3(Y) is finitely generated and this will contradicts the fact that H3(A2) 9 H3(Y). 

For the Cockcroft property, we may again take Z to be the positive witness. We 

may take G_ to be Z® Z4 and hence H2 (G_) = Z4 which is clearly not free abelian. 
Let Y be any finitely presented group such that H�(G_) C H, a(Y) for n>1. Suppose 

that Y is Cockcroft. Then by a theorem of Cockcroft (quoted in [11, Introduction]) 

H2 (Y) is free abelian. This contradicts the fact that H2 (G_) C H2(Y). 

2.3 Decision for p-Cockcroft and efficiency 

It is not clear whether or not these properties (or their negations) are Markov or 
homological Markov properties. Having been unable to settle these problems we 

prove directly 

Theorem 2.3.1 For any given prime p, there exists a recursive class SZl of finite 

presentations of groups such that the problem of determining whether an arbitrary 

member of 1 is p-Cockcroft is recursively unsolvable. 

As a generalisation of Theorem 2.3.1, we prove 

Theorem 2.3.2 There exists a recursive class n2 of finite presentation of groups 

such that the problem of determining whether an arbitrary member of 12 is efficient 

is recursively unsolvable. 

We will prove Theorem 2.3.1 by first showing the existence of a finitely presented 

aspherical group U with unsolvable word problem (see §2.3.2). Having established 

the group U, we will construct a family S21 = {Lw :W is a word in the generators of 

U} of finitely presented groups such that Lw is p-Cockcroft if and only if W j4 1 in 

U. Since U is finitely presented, f is a recursive class. Any algorithm which would 

determine whether or not an arbitrary member of 91 is p-Cockcroft would yield a 

solution of the word problem for U. Hence there is no algorithm which determines 

wether or not an arbitrary member of Stl is p-Cockcroft. 
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It will turn out that the family S22 can be chosen to be ii and hence efficiency is 

also unsolvable. 

Note that Gordon [28] has shown the (easier) result that deficiency is not decid- 

able. It should be noted that for each group in our class 521, one can determine the 

deficiency. In fact, the presentations used to define the groups Lw (see §2.3.3) realise 

the deficiency. 

2.3.1 Generalised HNN-extensions 

We need the idea of generalised HNN-extension which was introduced by Klyachko 

[39, Theorem 2]. Suppose that we have the following: 

1. A group Go defined by To =< x; r >. 

2. A group V defined by V =< v; t >. 

3. Groups S and S, both are subgroups of Go with specified isomorphism 

ý. s--ýs. 

4. A non-trivial element 6E Go *V written in normal form. We require that the 

first and the last term of E belong to V. We also require that every term of ý 

has infinite order. 

Then the generalised HNN-extension with base group Go and associated subgroups S 

and S is the group 

G =< Go, V; (s E S) >. (2.1) 

Note that if we take the group V to be the infinite cyclic group <t> and e=t, then 

G is simply the ordinary HNN-extension. 

We will define a presentation for G. Let at, d; (i E I) be non-empty freely reduced 

words on x such that: 

1. The subgroup S is generated by the elements represented by the a; 's. 

2. The subgroup S is generated by the elements represented by the ä; 's. 
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3. a; and d; correspond under the isomorphism o,. 

Choose a reduced word T on xUv which represents the element C and let T= _ 

a; Td; -1T-1 and let a= {T= :iE I}. Then 

P=<x, v; r, t, a> (2.2) 

is a presentation for G. Thus if G is an ordinary HNN-extension, then G can be 

defined by 

P =< x, t; r, a; tdi-lt-1(i E I) >. (2.3) 

The following is a consequence of [4, Theorem 2]. 

Proposition 2.3.3 Let G be a generalised HNN-extension as defined in (2.1). If To 

and V are aspherical and S is free on the a''s then the presentation P as define in 

(2.2) is aspherical. 

Note that if G is an ordinary HNN-extension, then V =< t; > is always aspherical. 

2.3.2 The existence of group U 

The following result can be found in [45, Theorem 4.12]. 

Theorem 2.3.4 There exists a finitely presented group U having unsolvable word 

problem. Indeed U can be obtained from a free group by applying three successive 

HNN-extensions where the associated subgroups are finitely generated free groups. 

We will choose this group U. Since U can be obtained from a free group then for each 

step of extensions we may choose the associated subgroups to be free on the given 

generators. Then by Proposition 2.2.3 we may obtain an aspherical presentation U 

for U. 

2.3.3 The proof of Theorem 2.3.1 

We let F2 to be the free group < a, b> and choose H and H to be the free sub- 

groups of rank 2 generated by {a2, ab} and {a-'3, ba3} respectively. If U =< u; s> 
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is the presentation for U as in §2.3.2, then for any word W on u, let Gay denote the 

presentation 

< u, a, b; s, a2tiVa3IV-i, abWa-3b-'W-' > 

and let Lyy be the group define by L. We need the following result which is due to 

Lustig [41, Corollary 2] (see also [38, Theorem 1.4] and [42, §2.7]). 

Proposition 2.3.5 (Test for minimality) Let G be the group defined by P. If 

there is a ring homomorphism 0 from ZG into the matrix ring of all kx k-'matrices 

(k > 1) over some commutative ring A with 1, such that 0(1) = 1, and if 0 maps the 

second Fox ideal 12(P) to 0, then P is minimal. 

The following result which is essentially due to Epstein [24] can be found in [38, 

Theorem 1.3]. 

Proposition 2.3.6 A finite presentation P is efficient if and only if P is p-Cockcroft 

for some prime p. 

We use these results to prove 

Lemma 2.3.7 If W=1 in U then Liy is not p-Cockcroft (for any prime p). 

Proof If W=1 in U, then clearly 

Iv =< u, a, b; s, a5, aba-3b-1 > 

is a presentation of Lw. By [4, Theorem 2] and the fact that U is aspherical, then 

7r2 (Cw) is generated by 

Q 

Q 

and 
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Thus G'yy is clearly not p-Cockcroft for any prime p and hence not efficient by Propo- 

sition 2.3.6. We will show that C' is minimal and hence there could not be an 

efficient presentation which defines the group Lw. Thus we can conclude that Lw is 

not p-Cockcroft for any prime p. 

From the above pictures, I2(G'' ) is generated (as a 2-sided ideal) by 

I= {1 -ä, 1 -1-Zi+a2+a3+a4,3b- 1}. 

Let <x> be an infinite cyclic group and consider the ring homomorphism 

ZLw-+ Z x> 

arising from the group homomorphism defined by 

uý1(uEu), aH1, bý-->x. 

If we consider 
Z<x>--ý7L5 

by sending all integer coefficients to their congruence modulo 5 and sending x to the 

congruence class of 2, then the mapping 

ZLw-* Z<x>--+ Z5 

sends I to 0 and 1 to 1. Hence G'' is minimal. " 

Lemma 2.3.8 If W1 in U then Lyy is p-Cockcroft (true for any prime p). 

Proof Let W01 in U. Then Lw is a generalised HNN-extension define by Gw as 

in §2.3.1. Since < a, b> and U are aspherical and H is free on the given generators 

then by Proposition 2.3.3, Gw is aspherical and hence is p-Cockcroft (for any prime 

P)" 

2.3.4 The proof of Theorem 2.3.2 

0 

Let 122 = {Lw :W is a word in the generators of U} = S21 as we defined in §2.3.3. 

Then Lemma 2.3.7,2.3.8 and also Proposition 2.3.6 guarantee that Lw is efficient if 

and only if W01 in U. Thus we obtain the desired result. 
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2.4 Alternative proofs for FP,, and Cockcroft 

We obtained these independent proofs before we become aware of the existence of 
homological Markov property. 

2.4.1 Decision problem for type FP,, 

We prove 

Theorem 2.4.1 For a given n>3, there exists a recursive class 13 of finitely pre- 

sented groups such that the problem of determining whether an arbitrary member of 

S23 defines a group of type FP,, is recursively unsolvable. 

Let U be the group defined in §2.3.2. Then we may construct, for a fixed n>3a 
family f13 = {Gw :W is a word in the generators of U} of finitely presented groups 

such that Gyy is of type FP,, if and only if W 56 1 in U. Since U is finitely presented, 
SZ3 is a recursive class. Any algorithm which would determine whether or not an 

arbitrary member of fL is of type FP� would yield a solution of the word problem 
for U. Hence there is no algorithm which determines whether or not an arbitrary 

member of 113 is of type FP,,. 

We will need the following result [6, Proposition 2.13(b)]: 

Proposition 2.4.2 Let G= Go*s,, be the HNN-extension with base group Go. Then 

i) if Go is of type FP, S is of type FP�_1 then G is of type FP". 

ii) if G, S are of type FP, then so is Go. 

iii) if Go is of type FP, a_1, G is of type FP,, then S is of type FP�_1. 

The following group appears in Beiri [6, page 37]. Let 

Dm =<xisY1 >X <X2, y2> X... X <Xm, ym 

be the direct product of m free groups of rank 2. Let F,,,, be the free group on the 

generators {ak} (k E Z). Define Dm-action (p) on F,,. by 

x; - a, =y; "a2 =aj+1. 
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Then define 

Am=F�� xpDm 

to be the split extension of F... by Dm. Note that A1, can be considered as a two-step 

HNN-extension with base group Ari_i, first with stable letter x,,, then with stable 

letter y,,,. Thus A, 
_i 

is a subgroup of A,,,. Beiri shows that A,,, is of type FPm 

but not of type FP,,, +1 ((6, Proposition 2.14]). Note also that A,,, (m > 2) is finitely 

presented. 

(For the case m=2, this group is due to Stalling [53] and hence A2 will be known 

as the Stalling group. ) 

Now we may construct the group Gw. Fix n>3, let B=A, C= A�_2 and let 

U be as in §2.3.2. Define 

G`=U*B*<x>. 

Note that G* is of type FP,, since U, B and <x> are of type FP,,. It is also 

finitely presented. For any word W on the generator of U, define HIV to be the 

subgroup of G* generated by the elements (c; x)W(c; x)-'W-'c; (i = 1,2, """, k) where 

{c= :i=1,2, """, k} is a set of the generators of C. Note that since C is at least of 

type FPI, C is finitely generated. Define 

Gw = G**Hw, id 

to be the HNN-extension of G* with the associated subgroup H. Then GW is finitely 

presented since G* is finitely presented and Hw is finitely generated. 

Lemma 2.4.3 If W=1 in U then Gw is not of type FP,,. 

Proof Let W=1 in U. Then Hw =C is not of type FP�_1. Since G* is of type 

FP,, (in particular it is of type FPn_1), then by Proposition 2.2.4(iii), Gw is not of 

type FP,,. 

Lemma 2.4.4 If W01 in U then Gw is of type FP,,. 

0 

Proof We will show that Hw is free on the generators (c; x)W(ctx)-1W-lc; for (i = 

1,2, """, k) and hence is of type FPS (in particular is of type FPii_1). Then by 

Proposition 2.2.4(i), Gyy is of type FP,, since G* is of type FP,,. 
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Let a; _ (c; x)W(c; x)'1W-'ci(i = 1,2, """, k). In order to show that Hw is free, 

we need to show that no non-empty reduced product of a; 's is equal to 1 in G*. We 

will show by induction that for any reduced product 

a'Q'a'°2"""aQn where aa' 54 aýjpý+' and 11 12 n 

when expressed in normal form in G* will end with 

1. W-lc;,, if ß� =1 or 

2. W-'x-'c, -' if , 3� _ -1. 

The case for n=1 is obviously true. 

Assume n>1. We can assume by inductive hypothesis that 

at, '' ain-, - 

for some word Wi. Then 

aql... aen-1 aQn 
11 to-I in 

W1W'1cý�_1 for ß�_1 =1 

WIW-'x-lcs�' 
1 

for Q�-i = -1 

71141c_1 cin xW (c{n x)-' W-1 Ctn 

WiW -lc{n-1 cýnl W(c{nx)W-lx-lcsnl 

W1W -lx-1c; 
n11 c; nxW 

(ctnx)-1W -lc;,, 

in-1 in n in 
X) 

W 

ifQn_1=1�On=1 

if 

if 

if0n_1=-1, Qn=-1. 

The word in the first case is clearly equivalent to WiW-'cxW(q�x)-'W-lc;,, where 
C- Cin_1Cin. This word does not collapse even if c is the identity. 

The second and the third cases do not collapse since c;,, _, 54 c;,, (otherwise our 

word would not be reduced). 

The word in the fourth case is equivalent to WiW-lx-1cWc4,, xW-'x-'c, -nl where 
C= C=n1 

1 
C=n1 and so does not collapse. 

In all cases, the word ends with the required form. Thus we can conclude that no 

non-empty reduced product is equal to 1 in G* and hence Hw is free. 0 
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2.4.2 Decision problem for Cockcroft 

To show that Cockcroft is undecidable, a similar technique as in §2.3 will be used. 
We will prove 

Theorem 2.4.5 There exists a recursive class S24 of finite presentations of groups 

such that the problem of determining whether an arbitrary member of SZ4 is Cockcroft 

is recursively unsolvable. 

To prove this theorem, we will show the existence of a family 04 = {K :W is a 

word in the generators of U} of finitely presented group such that Kw is Cockcroft if 

and only if W1 in U. The group U is the same group that we define in §2.3.2. 

Let F2 be the free group < a, b> and H and ft be free subgroups of rank two 

generated by {a2, ab} and {a-2, ba} respectively. Let U =< u; s> be the presentation 
for U as given in §2.3.2. For any word W on it, define 

lCw =< u, a, b; s, a2Wa2W-1, abWa-lb-1W-1 >. 

Then let Kw be the group defined by JCw. 

Lemma 2.4.6 If W=1 in U then Kw is not Cockcroft. 

Proof If W=1 in U then clearly 

Kv U*(Z4(D Z) 

and hence 

H2(Kw, Z) = H2(U, Z) ®H2(Z4 ®Z, Z) 
= ll2(U, 

Z) ®Z4. 

Then by a theorem of Cockcroft (quoted in [11, Introduction]), Kw is not Cockcroft 

since its second homology is not free abelian. 

Lemma 2.4.7 If W1 in U then Kw is Cockcroft. 

0 

Proof Let W1 in U. Then Kw is a generalised HNN-extension defined by presen- 

tation JCw. Since < a, b> and U are aspherical and H is free on the given generators, 

then by Proposition 2.3.3, JCw is aspherical and hence Cockcroft. 0 
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Chapter 3 

Picture problem 

Recall that the word problem for a finite connected 2-complex G is the problem of 
determining the existence of algorithm to decide whether for any arbitrary element of 

7rl(G(1)), its image under the inclusion induced homomorphism 

7rl(G) 

is trivial. In this chapter we introduce the picture problem which is the analogue of 
the word problem, one dimension higher. This means that for any finite connected 
3-complex 1C, we may ask whether for any arbitrary element of ir2(1C(2)), its image 

under the inclusion induced homomorphism 

72 (K(2» --p 72 (X) 

is trivial. 

Just as a presentation can be regarded as 2-complex with a single 0-cell, so we will 

consider a 3-complex with a single 0-cell, known as a 3-presentation. A 3-presentation 

X is a triple 

<x; r; P> 

where JC(2) =< x; r> is an arbitrary presentation and P is a set of spherical pictures 

over JC(2). We say that K is finite if x, r and P are all finite. Note that this definition 

is actually the same thing as an extended group presentation < x; r; I> defined by 

Fenn [25, Definition 2.7.11. The reason is because any collection of relation identities 
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I (as in Fenn) can be represented geometrically by a collection of spherical pictures 
P over the same presentation (see for example [48, Theorem 2.1]). Now using the 

equivalence relations on pictures (refer §1.1.1), we formulate the picture problem: 

" For a given finite 3-presentation K =< x; r; P> is there an algorithm to decide 

for any spherical picture IP over K(2) =< x; r >, whether P is equivalent (relative 

to P) to the empty picture? 

We are interested in the analogue of Novikov-Boone Theorem [10,46]-the ex- 
istenre of a finite presentation with unsolvable word problem. In §3.1, we give an 

example of a finite 3-presentation 1C with unsolvable picture problem but the word 

problem for K(2' is solvable. We modified our construction in §3.2 and give a sim- 

pler example of a finite 3-presentation such that both word and picture problems are 

unsolvable. 

3.1 Example 1 

The main unsolvability result for 3-presentations is the following: 

Theorem 3.1.1 There exists a finite 3-presentation 1C which has unsolvable picture 

problem. Moreover IC can be chosen such that the word problem for the underlying 

presentation 1C(2) is solvable. 

To prove this theorem we need a group V (see §3.1.1) defined by a finite presentation 
V =< v; t> such that: 

1. The word problem for V is solvable. 

2. ir2(V) is finitely generated. 

3. There exists a finitely generated normal subgroup H of V such that the gener- 

alised word problem (refer §1.2) for H in V is unsolvable. 

We will establish the existence of such a group V in §3.1.1. Having established the 

group V, then we will use it to construct a finite 3-presentation JC =< x; r; P> (see 

§3.1.2). Let TV be any arbitrary word on v. We will consider the set {Pw : Pw is 
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a spherical picture over 10(2)} and show that Pw is equivalent to the empty picture 

(relative to P) if and only if W defines an element of H. Hence we can conclude that 

JC has unsolvable picture problem since the generalised word problem for H in V is 

unsolvable. 

3.1.1 The existence of group V 

We will present the group of Miller [44, Example 4) (see also [5, Corollary 1)). Let 

U =< U17 u2, """, un; Sl, S2, """, Sm > define the group U as in §2.3.2. Let F, a+l be 

the free group < q, ul, U2, ' "", un >. Finally let V be the presentation with generators 

giUli- eunitli... ýtn, 
di, 

---adn 

and defining relations 
t; lqt, = qS;, ti lu3tj = u; 

d7-'gd; u7'quj, dý lukdj = Uk 

where 1<i<m, 1<j5n, and 1<k<n. Then let V define the group V. 

Miller [44, Lemma 2] shows that V has solvable word problem. We may choose the 

normal subgroup H to be the subgroup generated by {q, t1i , tm, dl, """, dn} and it 

is mentioned in [44] that the generalised word problem for H in V is unsolvable. Thus 

we only need to show that condition 2 is satisfied. It is not hard to see (or refer to [44, 

Lemma 1]) that V is an (m + n)-step HNN-extension with base group F�+1 (defined 

by an aspherical presentation). In the first m steps, the stable letter for the ith step 

is t; while dj is the stable letter for the jth step in the last n steps. For each step, 

the associated subgroup is F. F+1 itself and is free on the given generators. Thus by 

Proposition 2.3.3 (or [4, Theorem 2]) V is aspherical and hence condition 2 is trivially 

satisfied. 

3.1.2 The construction of 1'C 

Let V be any group satisfying conditions 1-3 above, and let V have presentation 

V =< v; t >. Then let 

Ii=VxZ2 
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defined by the presentation 

Kýýý _< V, c; t, c2, [v, c](v E v) >. 

Since V and Z2 have solvable word problem then so does K. Before we proceed, we 

need the following definition. 

Definition 3.1.2 Let v vJ'vý+1' vn^ be a word on v. Then a commutator pic- 

ture C E1 f, "I en is a picture over < v, c; [v, c](v E v) > of the form 
V1 ... V3 v)+1 1n 

C"" 

Remark 3.1.3 If we regard C 
v13 )+, vf� as a picture over < v, c; c2, [v, c)(v E 

" 1J Vj+1 
v) >, then it is equivalent to 

ýtC 
c" 

ýVt V+ 1ý'w w 

Let h be a set of words on v which represents a finite set of generators of H. Let 

P1 be a finite set of spherical pictures that generate ir2(V). Let P2 be the finite set 

of spherical pictures over IC(2) of the form 

PT 

C 
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for each TEt. Also let P3 be the finite set of spherical pictures over JCý2) of the form 

P44 

cc 

cýc 

for each hi Eh where Ch, is a commutator picture. Let P= P1 U P2 U P3. Note 

that P is finite. Thus we have a finite 3-presentation 

K=<Vic; t, c2, [v, c](vE v); P> 

such that the underlying presentation 10) has solvable word problem. 

For any word TV' on v, let Ptiv be a spherical picture of the form 

PW 

cG 
(cw 

ý" W 

where Cu, is a commutator picture. We will show that Pw is equivalent to the 

empty picture (relative to P) if and only if W defines an element of H, and hence 

JC has unsolvable picture problem since the generalised word problem for H in V is 

unsolvable. 

Lemma 3.1.4 If LV defines an element of H, then Pw is equivalent to the empty 

picture (relative to P) over )C 2). 

Proof Let 1V define an element of H, then IV = hi' h2 """h; ' in V for some hi's which 

belong to h and Et = ±1. Thus by Lemma 1.1.2, there is a picture B over < v; t> 

with boundary label hi' h2 ""h; 'W-1. 
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Now consider 

I -B 

Cý, p 

t. 3a h' y 

4, 
Fkit 

ýW 

where cch" h22". "h1iw-1 
is a commutator picture. Note that P' is equivalent to 

. ýfC ýý 4w 1. li 

9 

cl 

One may refer to [4] that P1 U P2 generates 7r2(< v, c; t, [v, c](v Ev >). Thus by 

Theorem 1.1.3, F" is equivalent (relative to P1 U P2) to the empty picture and so is 

P'. If we insert F' to the left side of PW and perform some bridge moves, we obtain 

-B 

i.. 
l£. ýi' Itýý M/ 

Pit 
1e 
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and so we may delete Ike since it is equivalent to the empty picture. Then by Remark 

3.1.3, P"' is equivalent to 

w 
c ýw E 

c 
f4 I 

wz 

where Chi, h; z... h; l is a commutator picture. Then we may delete 

wý 
-(EW ýw 

_w 

since it is equivalent to the empty picture. Again by Remark 3.1.3 we may obtain 

C 
ßh'1 

C 
ýh, 

t 
CC 

ýM ýt 
C 

.. C. 

C LLC 
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Clearly this last picture is equivalent (relative to P3) to the empty picture. Thus PIy 

is equivalent (relative to P) to the empty picture as required. 0 

Lemma 3.1.5 If TV does not define any element of H. then ff jv is not equivalent to 

the empty picture (relative to P) over 1Cý2). 

Proof Suppose that tit' does not define an element of H and suppose that lPjt-w can be 

obtained from P. Let P2 be the free ZN-module with basis {eT :TE t}U{eC2 }U{e[l,, C] : 

vE v}. We will consider the image of u ww in P2 (refer (1.1) in §1.1.3). Let C= c1 

and write 
P2=ZIiecEi PP 

where PZ is the free Z Ii -module with the above basis excluding ec,. Then the image 

of Pyy in P2 is 

ytti = (i 6' -l )ee, + Atiy for some Aji- E P. 

and the image of Ph, (Ph, E P3) is 

yi=(h; -1)ee+A for some .A EP2. 

Also let the image of each PT (T E t) be 'YT and the image of Q (Q E P1) be IQ. 

Note that IT and yQ lie entirely in P2. 

Since Ptiv is obtainable from P, we have 

711' _ {31 '1 + ß272 + ... + ßk'Yk +E aTYT +E a(Q7(Q 

TEt QEP1 

for some a's and j3's which belong to ZK. Equating the coefficients of ec, we have 

tiý -1= ßj(hj-1) +ß2(h2 -1) + ... + /3k(hk - l). 

Then consider the ring homomorphism 

ZK --> ZV --} Z(V/H) 

arising from the group homomorphism specified bbl 

C, º-; t>H(v Ev),? H 1H 

Then we have IV H-1H=0, that is IV defines the element TV of H which contradicts 

our assumption. 0 
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3.2 Example 2 

If we just want a finite 3-presentation G with both the word and picture problems 

unsolvable, we need the following construction: 

Let U be a finitely presented group defined by U =< u; s> such that: 

1. The word problem for U is unsolvable. 

2. ir2(U) is finitely generated. 

(To make a definite choice, we may take the aspherical group U given in §32.3.2. so 

condition 2 is trivially satisfied. ) 

Let 

L=UxZ2 

defined by the presentation 

G(2) =< u, c; s, c2, [11, C] (it E u) >. 

Clearly L has unsolvable word problem since it contains the subgroup U with unsolv- 

able word problem. 

Let P1 be a finite set of spherical pictures that generate 7r2(U) and P2 be the 

finite set of spherical pictures over G(2) of the form 

IPs 

ecý 

c 

for each SEs. Then let P= P1 U P2, which is clearly finite. Thus we have a finite 

3-presentation 

=< u, c; s, c2, [u, c](u E u); P > 
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such that the word problem for £ 2) is unsolvable. Now for any word IV on u, we 

may consider spherical picture Piy (as in §3.1) 

4: 

j 
and show 

Lemma 3.2.1 If TV =1 in U, then P; $, is equivalent to the empty picture (relative 

to P) over C(2) 

Lemma 3.2.2 If TV 1 in U, then Ptiy is not equivalent to the empty picture (relative 

to P) over Gý2ý. 

The proof of these lemmas are similar to the proof of Lemma 3.1.4 and 3.1.5 where 

we assume H to be the trivial subgroup. Hence C has unsolvable picture problem 

since the word problem for U is unsolvable. 
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Chapter 4 

Introduction to relative 

presentations 

From now onwards, we will deal with relative presentations. These presentations are 

considered for example in [3,8,22,31]. As a matter of fact we only consider a special 

case--one relator relative presentations. 

Our own work starts in Chapter 5. This chapter is rather an introduction to es- 

tablish the methods in proving results in Chapters 5 and 6. In §4.1 we give some 

preliminary backgrounds. One may compare spherical pictures over relative presenta- 

tions to the ordinary ones in §4.2. The asphericity test for relative presentations will 

be given in §4.3. Most material in this chapter is fairly standard (except §4.3.6) and 

can be found in at least one of these--[3], [8] and [22]. The observation in §4.4.1 plays 

an important role for the distribution test in the last two chapters while in §4.4.2 we 

identify that our work can be divided into two main classes-which will appear in 

Chapters 5 and 6 respectively. 

4.1 Preliminaries 

Let H be any arbitrary group and <t> be an infinite cyclic group. We will construct 

a new group G as follows. Let R be an element of H* <t> of the form 

t"hItE2h2 ... Vnhn (4.1) 
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where E; = ±1, h; EH for i=1,2, """, n. Then we have the one relator relative 

presentation 

P=<H, t; R>. 

The one relator relative group G, defined by P, is the group 

H*<t> 
«R» 

where «R» is the normal closure of R. If H happens to be the trivial group, 

then P is simply an ordinary one relator presentation for G in the usual sense. 

From now on when we refer to a relative presentation, we assume it is a one relator 

relative presentation. 

To obtain an ordinary presentation P defining the group G, we have to select a 

presentation Q =< a; s> defining the group H. Thus there is an epimorphism 

0: F(a) --+ H 

with kernel «s». For each h=, choose a word wi on a representing h, and let 

R= tE1witE2w2 ... t`"wn. 

Then the ordinary lifted presentation is the presentation 

P=<a, t; s, R>. 

The group G= G(9) defined by P is the group 

F(a, t) 

«s, R» 

where « s, R» is the normal closure of {s, R}. We have an isomorphism 

v: G -->G 

induced by the epimorphism 

0*id: F(a)*<t>-+H* <t>. 
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Definition 4.1.1 A relative presentation P =< H, t; R> is said to be aspherical if 

for some ordinary presentation Q =< a; s> for H and for some lifted presentation 

=< a, t; s, R >, the second homotopy module 7r2(P) is generated by ir2(Q) as a left 

ZG-module. In term of pictures, P is aspherical if every picture over P is equivalent 
(relative to Q) to the empty picture. 

The above concept of asphericity is more general than that given in [8]. The 

restricted notion according to the theory developed in [8] will be given in §4.2. 

There are two major issues that have always been asked: 

1. When is the natural map H ---+ G injective? 

2. When is P aspherical? 

It is of interest to discuss these two issues. We say that 'P is injective if the natural 

map H -+ G is injective. The main consequence is the following (see [3, Theorem 

1]) 
Theorem 4.1.2 Suppose that P =< H, t; R> is an injective aspherical relative 

presentation for a group G. Then 

i) H,, (G, A) ^_ H,, (H, A) for all n>3 and for all right ZG-modules A. 

ii) H"(G, B) H"(H, B) for all n>3 and for all left ZG-modules B. 

iii) Each finite subgroup of G is contained in a G-conjugate of H. 

The first case of interest is t-length 3. If R has the form thlth2th3i Levin [40] shows 

that H ---+ G is injective and the asphericity is decided in [8]. Howie [30] shows 
the injectivity for the case R= thlth2t-'h3 while Edjvet [22] considers asphericity 

of this form apart from eight exceptional cases. The t-length 4 is now considered. 
For the case R= th1th2th3th4i the injectivity again follows from Levin [40] while the 

asphericity is decided in [3] with five exceptional cases. When the powers of t are 

not all positive, the injectivity of H -ý G has been discussed in [23]. Our results in 

Chapters 5 and 6 deal with asphericity when R has the form thlthzth3t-'h4. There 

are two more cases for t-length 4 (up to equivalence as defined below) that need to be 

considered in future-the form thlth2t-'hat-'h4 and the form thlt-'h2th3t-'h4. We 

found that S. Wreth is considering the last case for her thesis. 
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4.1.1 Equivalent presentations 

Define some operations on words R as in (4.1) as follows: 

I Replace R by ft = t-e^ hn 11 ."" t'EZ hi lt-`1 htt 1. 

II Replace R by S= tE'+l h; +l """ tE^ hXt hl """ t', hi. 

III Let 0 be an automorphism of H* <t> fixing H. Replace R by «(R) provided 

that O(R) has the form (4.1). 

Two words of the form (4.1) are said to be equivalent if one can be obtained from 

the other by a finite number of the above operations. We say that two relative 

presentations P =< H, t; R> and P' =< H, t; R' > are equivalent if R and R' are 

equivalent. Note that all results in Chapters 5 and 6 are up to equivalence. 

4.2 Pictures over relative presentations 

A picture P over a relative presentation P has the same geometric shape as an ordinary 

pictures as in §1.1.1, but the labelling is different and additional conditions are needed. 

Fix a relative presentation P =< H, t; R >. A picture P over P is labelled as 

follows. Each arc is labelled by t and each corner is to be oriented clockwise (with 

respect to the ambient disc of P) and labelled by an element of H. If c is a corner of 
disc 0, then denote by W(c) the word obtained by reading in clockwise order around 
a0 the labels on the arcs and corners meeting ö0 beginning with the label on the 

arc at the head of the clockwise oriented corner c. The following two conditions must 

be satisfied: 

1. For each corner c of P, W(c) is a cyclic permutation of R or R-i. 

2. If k1, k2, """, k,,, is the sequence of corner labels encountered in an anticlockwise 

traversal of the boundary of an inner region of IF, then klk2 """ km =1 in H. 
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Example 4.2.1 Let P _< 4 t; t3at-la > where a generates Z3. Then 

R 
týQ 

tý t 
t ýQ 

a ö' at 

jta 

6 

is a spherical picture over P. 

A connected spherical picture P over P is said to 1, e strictly spherical if the product 

of the corner labels in the outer annular region defines the identity in H. Note that 

the above example is strictly spherical. 

Recall (refer §4.1) that for any arbitrary relative presentation P, we may obtain 

an ordinary lifted presentation P. In a similar manner (refer [8] for more details), 

one may lift (though not uniquely) a spherical picture P over P to a picture i over 
P. For each inner region E of P, there is a picture t over Q with boundary label 

equal to the product of the words in a which represent the corner labels for E. For 

the outer annular region, replace each corner label by a succession of a-arcs reading 
the representative word. Thus we may obtain the lifted picture i'. 
Example 4.2.1 (continued) 

Let Q =< y; y3 > be a presentation for Z3. Then 

ý. 
'/ 

ýý y 
ý". 

., ý"ý 
, ý-ý-- 

t: 
ý-y t ýý, 

{'' 
,Y y , ý,, , 

" ; 'ý y ', t, 
-jy.... 

--- 
ý.. 

is a lifted picture for the above picture. 
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We will also discuss the restricted notion of asphericity according to the theory 

developed in [8]. A dipole in a picture IP consists of a pair of corners c, c' of the picture 

together with an arc a joining the head of one corner with the tail of the other such 

that: 

1. c and c' lie in the same region of P. 

2. W(c) = W(c'). 

I., 

Co n¢rC Co' Qr C 

A picture P is said to be reduced if it does not contain a, dipole. In [8] a relative 

presentation 'P was said to be aspherical if it is injective and every connected strict ly 

spherical picture over P contains a dipole. It is quite clear that if a picture P is not 

reduced then for any lifted picture ý, it is not reduced in the sense of ordinary picture. 

Thus 1 is equivalent to the empty picture (relative to Q). Hence the restricted notion 

of asphericity implies asphericity defined in Definition 4.1.1. Thus in order to show 

that an injective relative presentation 'P is aspherical, it is suffices to show that there 

is no non-empty reduced strictly spherical picture P over P. 

4.3 Tests for asphericity 

Here we give techniques and tests for asphericity. Some of these will be used in 

Chapters 5 and 6. 

4.3.1 Small cancellation theory 

The star-complex Pst of P is a certain graph with edges labelled by elements of H. 

There are two vertices, labelled t and t-1. For each cyclic permutation that starts 

with t of Rt' say Rc, write R` = Sh where hEH and S begins and ends with t 
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or t-1. Each R` forms an edge such that the initial vertex is the first symbol of S 

and the terminal vertex is the inverse of the last symbol of S. The inverse (R`)-1, is 

defined to be S-'h-1. We label the edge Rc by A(R`) = h-1 and extend it to paths 

in the obvious way. A non-empty cyclically reduced closed path in Pat will be called 

admissible if it has a trivial label in H. 

Example 4.3.1 Let P =< H, t; t2atbt-lc >. Then P't is as follows: 

a 

bC) ö 
ß 

where a t-+ 1,0 H a-', -y t-+ b-' and S t-+ c-1. If ac =b in II then 3"18-lay is 

admissible. 

Let q be a positive integer. Then we say that P satisfies T(q) if there are no 

admissible paths in Pst of length m. for 3<m<q. 

Example 4.3.1 (continued) 

If a, b and c are distinct such that b-' 0a 54 c-1 and o(b), o(c) >3 then there is 

no admissible cycle of length 3. Thus P satisfies T(4) in this case. 

A (non-trivial) connected picture W over P is said to be a k-wheel over P (k is 

any positive integer) if W has discs {Do, Al, """, Ak} such that: 

1. Each arc of W meets a disc i; for some jE {1,2, """, k}. 

2. Each arc of W either meets Do or M. 

3. Each disc of W has a corner which lies in a region of W that meets 8W. 

We say that P satisfies C(p) if there are no reduced k-wheels over P for k<p. 
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Example 4.3.1 (continued) 

Suppose that a 54 1 in H and o(b), o(c) > 2. Then if two discs At and 02 of a 

picture W share at least two consecutive t-arcs, they constitute a dipole. Thus there 

is no reduced k-wheel over P for k<4 and hence P satisfies C(4) in this case. 

The following theorem can be found for example in [8, Theorem 2.2]. 

Theorem 4.3.2 If P satisfies C(p) and T(q) where 1+Q=2 then Pis aspherical. 

Example 4.3.1 (continued) 

If a, b and c are distinct non-trivial element of H such that b-1 0a0 c' and 

o(b), o(c) >3 then P satisfies C(4) and T(4) and so P is aspherical. 

4.3.2 Weight test 

A weight function 0 on Pst is a real valued function 0 on the set of edges of P3! such 
that 0(Sh) = 0(S-'h-1) for each edge Sh. The weight of a path is the sum of the 

weight of the constituent edges. We say that a weight function 0 is aspherical if the 
following conditions hold. 

1. If R= t"l hl "". 
t6-h� then 

n 
O(tt'hi 

... 
iln hnt"ht i -h=-t)) ý 2. 

i=1 

2. Each admissible cycle in Pst has weight at least 2. 

3. Each edge of 'P't has non-negative weight. 

The significance of the weight test is (see for example in [8]) 

Theorem 4.3.3 If Pst admits an aspherical weight function then P is aspherical. 

Example 4.3.4 Let P =< H, t: t3at-la > such that a has infinite order in H. The 

star graph Pst is 
a 

S 
ý 

47 



where a t-+ 1,0 4+ 1,7 4+ a-1 and 8 -+ a-1. We may assign the following weights 

O(a) = O(0) =1, e(ry) = ©(a) = o. 
Clearly the first and the third conditions hold. Since a has infinite order then for any 

integer p 0, y' and ö' are not admissible. Thus any admissible cycle must involve 

a and/or 0 at least twice and hence has a weight of at least two. Thus the second 

condition holds and so P is aspherical. 

4.3.3 Curvature test 

Let P be any strictly spherical picture over P. Then we can assign a real valued angle 

function 0 on the set of corners of P. Associated to 0 is a curvature function y defined 

on a typical disc 0 of P by 

'Y(o) = 27r -E 9(c) 

ccao 

and on a typical region 4D of P by 

7(ý) = 27r -E (7r - 8(c)) 

cC0 

where c denotes a corner in the boundary of a disc 0 or region 4). Noting that P has 

twice as many corners as arcs, an Euler characteristic count reveals that 

-y(o) +E y((D) = 2ir (S2) = 47r 

where the sum is taken over all discs and regions of P including the outer annular 

region. As a consequence we have 

Lemma 4.3.5 For any angle function on any connected spherical pictures, some disc 

or region has positive curvature. 

We will use the curvature test as follows. A strictly spherical picture P is flat at a disc 

0 if the sum of the angles of the corners of 0 is exactly 27r, that is y(0) = 0. Thus 

Lemma 4.3.5 says that there exists a region with positive curvature assuming that 

P is flat at every disc. This means that if c has d corners then the sum of the angles 

measures of the corners of is greater than (d - 2)ir. We will call such a region ' 
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an exceptional region. Since (D is a region in picture P, we can find the possibilities 

of the labels of the corners of and since the product of these must be 1 in H. we 

obtain some restriction on hl, h2i """, h, 

4.3.4 Distribution test 

This test was introduced by Edjvet [22]-applicable after the curvature test. Assign 

an angle function 0 on a strictly spherical picture 1P such that every disc in P is flat 

as above. So we have an exceptional region' with positive curvature. It is possible 

to flatten such a region by distributing the curvature to its neighbours. 

Suppose that shares an arc with a region V. Let i be any scalar. Subtract 

rj/2 from each of the two corners in (D that touch a and add 71/2 to the two opposite 

corners in V. 

8f +x/1 .n VVI) 

This means that we assign a new angle function 9* on P and so we have a new curvature 

function y*. It is quite clear that -y* (A) = y(0) for all discs A in IF, y*((D) = y(4ý) -71 

and y*(ý') = y(, (D) + 77. Other regions are unaffected. We will say that we have 

distributed the curvature 77 from 1 to V. 

Given any region with positive curvature, we can distribute curvature from ID 

to some of the neighbouring regions of c, so that the new curvature y*((D) of 0 is 

non-positive. Of course, this reduction in the curvature of 1 will lead to an increase 

in the curvature of other regions in P. However, if we can carry out this distribution 

in such a way that the new curvature of all regions is non-positive, then we obtain 

a contradiction to the fact that the curvature of the sphere is 47r. Then P could not 

exist. 

Example 4.3.6 Let P =< H, t; t2atbt-lc > where a, b and c are distinct non-trivial 
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element of H such that a b-', a# c-' and o(b) = 3, o(c) > 3. Suppose that there is 

a reduced strictly spherical picture P over P. Then we may assign a uniform angle 

ný1 rýý2 

n/1 n'1 

for each disc in P. Then by Lemma 4.3.5, there is an exceptional region of valence 

m with positive curvature. This means that in " 7r/2 > (in - 2)71 and so in. < 4. Since 

P is reduced then one may check that there is only one possibility for 4) namely a 

region of valence three with label bbb. Since total sum of angle in oD is 3rr/2. then the 

curvature y(40) = 7r/2. We may distribute 

7r/6 each to 'P1, 'P2 and 113. Clearly this is possible since they are not regions with 

label bbb. We need to make sure that the new curvature ry*(W; )(i = 1,2,3) remains 

non-positive. Note that in every three edges of Ti, there is at most one such 4) 

shares an edge with 'P1 (refer §4.4.1). Thus if ýV has valence n, then we do not want 

n" ir/2 + n/3 " it/6 > (n - 2)ir that is n< 42. Hence we just need to consider regions 

of valence four with label acW for some W of length two. Since P is reduced, the 

possibilities are accl, ac1b, aclb-1, aca-lb and aca'b'. Clearly the last two are not 

possible since o(b) 0 o(c). Thus if a 54 c'2 and b}' 54 ac then P must be aspherical. 

4.3.5 Finiteness of element t 

Recall that (see Theorem 4.1.1(iii)) if P =< H, t; t`1 hltC2 h2 ""- t'^hn > is injective 

aspherical then every finite subgroup of G is contained in a G-conjugate of H. Also 

note that the factor group G/HG is cyclic generated by tHG of order k= cr -f -+ rn 
(if k=0 then it has infinite order). Now suppose that k 54 ±1, then clearly t HG. 

Hence if we can show that t has finite order then we know that P is not aspherical 

since the finite subgroup {t} is not contained in any G-conjugate of H. 
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4.3.6 Degeneracy 

Let P be a strictly spherical picture over P. Recall that P can be lifted (though not 

uniquely) to a spherical picture P over P for some appropriate choice of Q =< a; s> 

(refer §4.2). We may now consider the image of 1ý under the embedding (refer (1.1) 

in §1.1.3) 

112 : 72(P) -4 (esEsWes) tf ZGeA. (4.2) 

In particular, we can consider the coefficient of eh say aý which belongs to the group 

ring Z. Since Xj is the coefficient of en, in picture ý we just need to consider all 

discs 0j (j = 1,2, """, 1) with labels k1: 1. Let (D be any region in P and B be a. picture 

over Q with boundary label equal to the product of the words in a which represent 

the corner labels for chosen for ]l'. Corresponding to 1, we have a region 4) in P 

enclosed by t-arcs. 

4. 

WN 

W4 W, 

{Ekg ý wk., 

w ^' 

i 
i 

1 {Ct' 
Vi Ii 

0 

Let v2 be a transverse path from the basepoint of l to the basepoint of OJ such that 

v,, is always `close' to t-arcs and R-discs (that is for any region ý of 1, v3 does not 

cut through l13). Since the product of corners in any region ý is the identity in II, it 

does not matter for v; to be on the left or right of B. Let V; be the label on v;. Note 

that V must be a word on aU {t}. Then 

I 
E 

=i 

where g; is the element of 0 represented by V and bj = ±1. Since the group isomor- 
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phism v: G -+ G (refer §4.2) induces the ring isomorphism 

v.: ZG--4ZG, 

let v�(Ap) = Ap. 

Suppose now we choose another presentation 2 =< it; s> for II, and so we have 

a lifted presentation 
P=<it, t; R 

and the group G= G(P) where R= ti'tLlt22th2 " t;; t6n such that tb; is a word on 

it representing hi and i=1,2, """, ii. Thus we have a, lifted picture P. Then by 

the similar set up and notation, if is a region in P then let B he a picture over 

Q with boundary label equal to the product of the words in a which represent the 

corner labels for 1 chosen for P. Similarly let (D be the region in P enclosed by t-arcs 

corresponds to $ in IF. 

Thus we may regard 1 as a copy of i by replacing 

1. R-discs by R-discs, 

2. successions of a-arcs with total label w; by successions of it-arcs with total label 

tbi and 

3. picture Ilk in region Ik by picture Bk 
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For each transverse path vj in ]ED, the copy of v3 in P is a transverse path from the 

basepoint of P to the basepoint of A j. Denote this path by vj and let V be the label 

on v1. Note that t/j must be a word on it U {t}. Since there is an isomorphism 

F(ä) 4 H' 
F(a) 

«s» «s »' 

where zbj ++ wj under this isomorphism and v, is a copy of vj, then VH V<. Thus if 

AP is the image of the coefficient of eR in picture IF under the embedding 

µ2 : ir2(P) --+ (e Zees) ®7LGeRl 

then AP t-ý )5 . 

This means that ap is independent of the choice of Q, the choice of R and the 

choice of lift. We say that IF is degenerate if Ap = 0. 

Recall that in order to show that P is aspherical, one must show that there is a 

lifted presentation P such that any picture over P is equivalent to the empty picture 
(relative to Q). Since Ap is independent of the lifting, then we have 

Lemma 4.3.7 If there exists a reduced strictly spherical picture P over P such that 

P is not degenerate (that is A0 0) then P is not aspherical. 

Proof Let P be a reduced strictly spherical picture over P such that Ap 0 and 

suppose that P is aspherical. Then there is a presentation Q =< a; s> of H such 

that 1' is equivalent to the empty picture (relative to Q). Thus the image of l under 

the embedding µ2 as in (4.2) lies entirely in ®sESZGes. Hence the coeficient of e 

must be zero that is A=0. 0 

In order to show that P is not degenerate, we can consider the ring homomorphism 

b: ZG -+ Z<x; x'> 

arising from the group homomorphism defined by 

Hº-+1, tr+x. 
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Here we assume that R has the form (4.1) and so k= et +"""+c. Then we need to 

show that d(ap) ý 0. 

Unless we manage to show that t has finite order (refer §4.3.5), we will show that 

a presentation P is not aspherical in this way. 

Example 4.3.8 Let P =< Z3, t; t3at-'a > as in Example 4.2.1. We will show that 

P is not aspherical. Consider the reduced strictly spherical picture P and its lifted 

picture li given in Example 4.2.1. Then 

ap = (1 +a+ a2)t-la - (1 +a+ a2)t-lat2at-'a. 

Thus 

zb(ap)=3x-3 0. 

So P is not degenerate. 

Let P =< H, t; tE1hitc2h2 " tf^h,, > and P be a spherical picture over P. Also let 

P(°) be the picture over P(°) _< t; R(°) > (where R(°) = ttl tf2 

" .. t'^) obtained from P 

by eliminating all corner labels. Note that P(°) is a presentation for the cyclic group 

of order k. Then &(\p) is just the coefficient of eR(o) in the embedding of 

7r2(P(°» -+ Z(Zk)eR(o) 

Thus we can work out l(ap) without having to work out ap itself. This is useful in 

particular when P has too many discs. 

Example 4.3.8 (continued) 

We obtained a picture p(o) 

The embedding p in the usual way gives 

O(Ap)=3x-3. 
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4.4 Preliminary classification 

We are interested in the asphericity of relative presentation P where R has the form 

thlth2th3t-'h4 (h3, h., 54 1). 

We give here (§4.4.1) a crucial observation concerning pictures over P. Also we list 

(§4.4.2) the different subcases which must be considered in discussing the asphericity 

of P 

4.4.1 Observation 

Fix a relative presentation P =< H, t; th1th2th3t'L/i4 >. Let (D be any region in a 

reduced strictly spherical picture P over P. We say that (D is a . 3-rEgion or a j-rrgion 

if every corner in (D is labelled by h3 or h4 respectively. Let t be any region in P that 

shares an edge with a 3-region 4). 

Jýhl 

Ma 

tiý 

From the above diagram, we know that W can not be a region of valence two. Now 

suppose that ' has valence three 

hs ly 

1ýý 114 

Since P is reduced, the only possible label for c is h-11 and hence we have hl = h2h4. 

In most of our cases, we assume hl h2h4 and so t must have valence of at least 

four. 
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Clearly 01 and '02 are not 3-regions or 4-regions. Note that since P is reduced. c1 

must have label h2-1, h4 or h, 1 and so c2 must have label /i 1,11.4 or h2-1 respectively. 

M 
Or Or' 

mv. 
lk, 

1 ý3 
ýý 41 

h4 H 
ý- 

ý. 

ýa hý h3 ý'1 '? 
Mw 

ýl 

Thus c3 can not be a 3-region but it may be a 4-region. Hence in every three edges of 

IF, there is at most one 3-region as its neighbour. By similar argument for a 4-region, 

we may conclude that if IF has valence m, then IF has at most m/3 3-regions and ni/3 

4-regions as its neighbours. 

This observation is important in assigning any distribution scheme. This fact is 

needed in §6.3.3 and §6.3.4. 

4.4.2 The forms of R 

We are looking at the asphericity of P where R has the form thlth2th3t'ih4 and 

h3, h4 1. By applying the automorphism (refer III of §4.1.1) 

t-ýthl-', H-H 
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of H* <t> if necessary, we may assume without loss of generality that hl = 1, so 

we have 

R= t2h2th3t-'h4 (h3, h4 54 1). 

There are two main cases: 

case 1: hi =1 

Then after changing notation, we have 

R= t3at-lb (a, b# 1) 

and so we have to consider: 

1.1 a=b 

1.2 a#b 

case 2: h2 54 1 

Then after changing notation we have that R has one of the following form: 

2.1 t2atat-la 

2.2 t2atat-lc 

2.3 t2atbt'ib 
2.4 t2atbt-la 

2.5 t2atbt-lc 

where a, b and c are all distinct non-trivial elements of H. 

We will consider the first case in Chapter 5 and the second case in Chapter 6. 
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Chapter 5 

The form t3at -1 b 

As we classified in §4.4.2, we have two main subcases: 

1.1 a=b 

1.2 a and b are distinct non-trivial elements of H 

For the first subcase we will show , hat P is aspherical if and only if a has infinite 

order (Theorem 5.1.1). For the second subcase we can decide the asphericity of 'P 

apart from two exceptional families 

FE1 o(a) = 2, o(b) >4 and ab = ba 

FE2 3< o(a) < oo and a= b2 

The proof of Theorem 5.1.1 is not difficult (see §5.1). However Theorem 5.2.1 requires 

a fair amount of work (see §5.2). 

Throughout this chapter 0 will denote the ring homomorphism (refer §4.3.6) 

Zo-+Z<x; x2> 

Hýl, t-+x. 
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5.1 The case a=b 

We obtain the following result. 

Theorem 5.1.1 Let P =< H, t; t3at-la > where a is a non-trivial element in ll. 

Then P is aspherical if and only if a has infinite order. 

Proof Let a have infinite order. Consider the star graph P'" 
a3 

aL 
x, 

ýy 

where al t-+ a-1, a2 H a-1, a3 44 1 and a4 44 1. Assign the following weights 

O(a1) =O(a2) _ O, O(c3) 
_ 

©(CY4) = 1. 

Since a has infinite order, any admissible cycle must involve a3 and/or a., at, least 

twice, and so it has a weight of at least two. One may check that all three conditions 

given in §4.3.2 are satisfied. Hence by Theorem 4.3.3, P is aspherical. 

Now let a have order 2<n< oo. Since an =1 in II, we may obtain a reduced 

strictly spherical picture P over P as below 

and so (refer §4.3.6) I(Ap) = n(x - 1) -76 0. Thus P is not degenerate and so by 

Lemma 4.3.7 P is not aspherical. 0 
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5.2 The case a and b are distinct 

Consider presentation P =< H, t; t3at-'b > where a, b (a, b0 1) in H. Note that 

we can apply some operations (refer §4.1.1) 

t3 at-'b --* ta-lt-3b-1 (operation I) 

-ý t-la-1 t3b-' (operation III) 

-+ tab-lt-la"1(operation II). 

So up to equivalent presentations, we can identify a with b'1 and vice versa. Thus 

without loss of generality, we may assume that o(a) < o(b). The following are two 

exceptional cases that we still can not decide: 

FE1 o(a) = 2, o(b) >4 and ab = ba 

FE2 3< o(a) < oo and a= b2 

Excluding these exceptions, we have 

Theorem 5.2.1 Suppose that P =< H, t; t3at-lb > is not an exceptional case and 

2< o(a) < o(b) where a and b are distinct non-trivial elements of H. Then P is 

aspherical if and only if none of these holds: 

1. a2=1, a=b2 

2. a2=1, a=b3 

3. a2=b3=1 and group{a, b}^_-Z2xZ3 

o(a) = p, o(b) =q and o(ab-') =k for p+q+k>1 where -L :=0 00 

5. a= b'1 and a has a finite order 

To prove this theorem, we will consider the following subcases separately. 

i. a and b have infinite order 

ii. o(a) = o(b) =2 

iii. o(a) = 2, o(b) >3 

iv. 3< o(a) < oo 
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5.2.1 The subcase a and b have infinite order 

None of the hypotheses is satisfied, so we will show that P is aspherical. Consider 

the star graph Pst 
or 3 

0(, 
( )(: 1 0 

oea 

'(4 

where al b-1, a2 a-I, a3 ++ 1 and as H I. Assign the following weights 

O(al) _ ©(a2) = 0,0(a3) _ 0(04) = 1. 

Since a and b have infinite order, any admissible cycle must involve 03 and/or n. 1 

at least twice, and so it has a weight of at least two. One may check that all three 

conditions given in §4.3.2 are satisfied. Hence by Theorem 4.3.3, P is aspherical. 

5.2.2 The subcase o(a) = o(b) =2 

In this section, we have to show that P is aspherical if and only if ab-1 has infinite 

order in H. 

1) ab-1 has finite order 

Let ab-1 have order 2<n< oo. Consider the chain 

1 b1 

' 
1 

.ý 

a 

ý b 
1 b 

a 
ia 

i 

ö 
bý 

Since (ab-')' = 1, we can join n chain like this to obtain a reduced strictly spherical 

picture 

i 

e 

-I 
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and so (refer §4.3.6) O(A1) = 2n(x -1) 0. Since P is not degenerate then by Lemma 

4.3.7, P is not aspherical. 

2) ab-1 has infinite order 

Now let ab' have infinite order. We will show that P is , spherical. It suffices to 

show that there is no reduced strictly spherical picture P over P. Suppose there were. 

Since P is reduced, we only have the following double bonds 

b\ýý-, 4 
b 

ýb 
aa' 

b' 

1ý 

1b1b 
1Q 

1 

P 

Some of them may form a chain 

no4 a not a doube 1001, C) 

do, bie end . 

Regard each chain as a single disc 

ý ..., d" 
.., 

ýý 

where labels c and c' must have the form (ab-'ab'1 "". ab-1)}1, (ab-lab'1 """ ab'la)tI 

or (b-lab-'a """ b'Ia)". So we obtain a new derived picture tin' such that each disc 

has valence four. Assign the angle function ir/2 to each corner so that every disc in 

IF' is flat. Then by Lemma 4.3.5, there exists an exceptional region J' such that the 

curvature ry(D') > 0. If J' has in sides, this means that -1(, D') > (m - 2)ir. Since each 

corner has angle 7r/2, we have m7r/2 > (m - 2)ir which means in < 4. We will show 

that there is no such region by examining the label on V (refer Appendix A. 1.1) and 

so we conclude that P must be aspherical. 
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5.2.3 The subcase o(a) = 2, o(b) >3 

When is P aspherical? 

Assume that none of the relations in the hypothesis holds. We will show that P is 

aspherical. It is suffices to show that there is no reduced strictly spherical picture P 

over 'P. Suppose there were. Since P is reduced and o(b) > 3, we have the following 

double bonds 

ýý ' 
"\ý 

1tb ci 
ý' 

,b 1aa' 
b' 

Some of them may form chains of length two or three 

ý öý ý 
býýaa 

A' öý 

i Q 
ý b 

ý ' p ýb ý ýQ ý 

a ý Öý 

Regard all bonds and chains 

e' 

b ýý 

0 

b 

iý 
b 

as single discs. Then we have a new derived picture P'such that each disc has valence 

four. Assign the angle function it/2 to each corner of the disc so that every disc in 

P' is flat. Then by Lemma 4.3.5 there is an exceptional region'' of valence in such 

that y(V) > 0. This means that m7r/2 > (m - 2)ir and so in < 4. Thus I' must have 

either valence two or three. Finding all possibilities for J' (refer Appendix A. 2.1 for 

more details), we may conclude that P is aspherical except possibly if one of these 
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holds: 

1. o(ab-1) =2 

2. o(ab-1) =3 

)2 3. b= (b-'a 

4. o(b) =3 

5. ab-lab =1 

We will consider each of these separately. 

1) o(ab-1) =2 

(5.1) 

Since we assume that (refer hyphothesis 4) 1/2 + 1/q + 1/2 < 1, b must, have infinite 

order. Note that we have a double bond 

yb 

yý ba bä bö 

1i nb 

Some of them may form chains and so regard them as single discs 

yb... bbh 
b 

bü b"o ! gib 1io Vb I: o Iso bo 

bb """ bbý Ipp b0 

b" 

Thus we have the second derived spherical picture IF" such that each disc has valence 

four. As before, we can assign the angle function 7r/2 to each corner so that each disc 

in ll" is flat. Thus by Lemma 4.3.4, there is an exceptional region 4)" with positive 

curvature. So -V" must have either two or three sides. Since we have already eliminated 

a lot of possibilities (refer Appendix A. 2.2), we found that no more possible labels 

may hold and this leads to a contradiction. Thus P must be aspherical. 
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2) o(ab-1) =3 

Note that since we assume that (refer hypothesis 4) 1/2+ 1/q+ 1/3 < 1, then we must 

have o(b) > 6. We will use the distribution test and so we go back to the exceptional 

region V in P. Now we will show that the only possible label for 1i' is b-lab-lab-la 

since other relations in (5.1) do not hold. 

Clearly ab-lab-' 54 1. We can not have relation b= (b'la)2 since (b-'a )3 =1 

would give a=1. Clearly b3 54 1 since we assume that o(b) > 6. Also if relation 

ab-lab =1 holds then we would have b-lab-1 =b and hence a= b3 which satisfies 

hypothesis 2. 

Thus V must have label b-'ab-'ab-la of valence 3, and so the curvature y(ý') _ 

it/2. We will distribute 7r/6 to each region' that shares an edge with b' since' can 

not have label b-lab-lab-la (refer Appendix A. 2.3). Assume that %F has valence m, 

then total sum of angles in' is less than or equal to m7r/2+mir/6. We will make sure 

that the new curvature -y*(T) remains non-positive, that is (m - 2)7r > m7r/2 + m7r/6 

which means that m>6. So consider the case when J has valence less than six. 

There is no possible labels for IF of valence two, three or four (refer Appendix A. 2.3 

for more details). There are some possible labels for of valence five. This gives rise 

to the following relations: 

1. a=64 

2. b2aba =1 

3. blab-la =1 

4. b3aba =1 

We will show that they are not possible too. 

If a= b4 then b8 = 1. Also we have ab-1 = b3 and so b9 =1 since o(ab-1) = 3. 

This leads to b=1. 

Suppose that b2aba = 1. Then ab-lab-2 =1 and so b'1 = ab-1 which contradicts 

the fact that a is not trivial. 
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If the relation blab-la =1 holds then 

bib-lab-la =1= b3 = b-la since (b-'a )3 =1 

= b4=a 

= b8=1. 

Also b3 = b-la = b9 =1 since o(ab-') = 3. This will imply that b=1a contradiction. 

Now suppose that b3aba =1 and then b2 = a-lb'la-lb-1 = ab-'ab-1 since a2 = 1. 

Thus we have b2 = (ab-1)-1 since (ab-1)3 =1 which implies that b=a. 

Thus none of the above labels is possible and so the above distribution guarantees 

that there is no exceptional region and hence we can conclude that P is aspherical. 

3) b= (b-la)2 

We will show that this relation does not hold. If b= (b-la)2 then we have babab =1 

since a2 = 1. 
bababa2 =1 

abababa =1 

abababab =b 
(ab)4 =b 
(ab)4 = (b-la)2 

(b-ia)-4 = (b-ia)2 

(b-'a )6 = 1. 

So we have b3 =1 since b= (b-la)2. Also b2aba =1 will imply that b-laba =1 

in particular a and b commute. This will satisfy hypothesis 3 and contradict our 

assumption. So the relation b= (b-'a)2 does not hold. 

4) o(b) =3 

We will use the distribution test on P' and so we go back to the exceptional region J' 

(one may also refer back to Appendix A. 2.1). We will show that there is no possible 

label for I' except bbb since other relations in (5.1) do not hold. 

Clearly ab-lab-' 56 1 and ab-lab-lab-1 01 since we assume that 1/2 + 1/3 + 

1/k <1 where o(ab-1) =k (that is k> 6). We can not have relation b= (b'ia)2 
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since otherwise we would have b'la-lba =1 (the last relation listed in (5.1)). Then 

hypothesis 3 is satisfied. 

Since the only possible label for 4' is bbb of valence three, the curvature 

ir/2. We will distribute 7r/6 to each region T that shares an edge with V. This is 

possible because IF can not be a region with label bbb (refer Appendix A. 2.4). Since 

total sum of angle for region T is less or equal to m7r/2+mir/6 (assume T has valence 

m) then we must have (m - 2)7r > mir/2 + m7r/6 which means that m>6 in order 

to make sure that the new curvature 1*(P) remains non-positive. So we will consider 

when ' has valence two, three, four or five. Finding the possibilities of the label of 

T (refer Appendix A. 2.4 for more details), we conclude that P is aspherical except 

possibily if one of these holds: 

1. b-'ababa =1 (or b'ab-laba = 1) 

2. b-labababa =1 (or b-lab-'ab-'aba = 1) 

3. b-lab-lababa =1 

If b-lababa =1 then we have a-'b-laba = b'' since a2 = 1. This means that a is 

conjugate to b-1 which is not possible since they have different orders. 

The relation b-'abababa =1 does not hold since this will imply that a-'bababa =b 

and so babab has order 3 as b. Thus we have 

(b2aba)3 =1= (b-laba)3 = 1. 

Also 

b-'abababa =1= b-'aba = ab-lab'' = (ab-')2. 

Thus we have (ab-')' =1 which implies (ba)s =1 and so 

b-'abababa =1 b-la = (ba) -3 = (ba)3. 

This means b-la = bababa and again leads to b=1. 

For the last possibility is not known whether or not it holds. Thus we will draw 

all possibilities for 'Y and show that ' is not an exceptional region since the new 

curvature remains non-positive. There are two possibilities: 
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i) 

ii) 

In the first case, 'Y only accepts the distribution angles from at most three out of five 

of its neighbours. Thus the curvature -y*(W) < (5 " it/2 +3" ir/G) - 3ir which remains 

non-positive. Clearly the curvature in the second case is also non-positive since 

may accept the distribution angles from at most two out of five of its neighbours. 

Thus we conclude that P is aspherical. 
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5) ab-iab =1 

Again there is no possible label for V except ab-tab since no other relations in (5.1) 

hold. Clearly ab-lab-' 54 1 since otherwise we would have b2 = 1. If (ab-' )3 =1 

then we would have a= b3 and hence hypothesis 2 is satisfied. Now suppose that 

b= (b-la)2. Then we obtained b3 =1 and so hypothesis 3 is satisfied. 

We have a problem for this case because (' may have neighbours that have the 

same label ab-lab such as following: 

bý b 

bb Gý'ö) 
bai 

6' ýb 4 j' ab 

This is the first family exception that we can not decide (refer FE1). 

When is P not aspherical? 

We have to show that if one of these holds then P is not aspherical. 

1. a=b2 

2. a=b3 

3. o(b) =3 and group{a, b} ^_r z2 X Z3 

4,2 +9+ .1>1 where o(b) =q and o(ab-1) =k 

(Clearly the relation a= b-1 (hypothesis 5) does not hold since o(a) 0 o(b). ) 

For each case, we will draw a reduced strictly spherical picture (except in case 2) 

and show that it is not degenerate (refer §4.3.6). 
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1) a-b2 

ßb4=1 

Thus (refer §4.3.6) ? (Ap) = 12(x - 1) 0. Since P is not degenerate then by Len i' a 
4.3.7, P is not aspherical. 

2) a= b3 

Clearly we have b6 =1 and so 

t3at-lb =1 =+ t3b3t-lb =1 

= tab-st-ib =1 

= bt3 = tb3. 

One may refer to [36, page 1831 to see that the group defined by 

<b, t; bt3=tb3, bs=1> 

is finite. Thus we conclude that t has finite order and hence (refer §4.3.5) P is not 

aspherical. 
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3) b3 =1 and ab = ba 

Since a2 = b3 = aba-'b-' =1 then we have abab2 = 1. We draw a reduced strictly 

spherical picture 

Thus (refer §4.3.6) O(A) = 18(x - 1) -0 0. Since ]P is not degenerate then by Lemma 

4.3.7, P is not aspherical. 

k>1 where o(b) =q and o(ab-1) =k 

We will draw a family of group of strictly reduced spherical pictures over P. To make 

drawing simpler, we draw the chain 

as 

b 
i d' 1( Ll äý 

b0b 

bä 
bb 

b ýQ 
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so that in a region with k-chain, 

b 'o 
yb 

6 'o 

b 
öä bO 

bu - bo 
bb 

has label (ab-')tk. Also one should note that the label for any region where q-chain 
is attached, 

h 
b bQ bö 

b 'O 
bQ 

b b 

b'o h 

yb iQ b 

boo 

b 

is b". 

i) o(b) = 3, o(ab-i) =3 

to b 

ba &ýIol bö loa 
ý kä b 

b b 
ä b b ý 4iÖ 

Q 
b app 

b b 
CIA 

b b 
b ýa 

Since O(AP) = 12(x - 1) 34 0 then P is not degenerate. Then by Lemma 4.3.7, 'P is 

not aspherical. 
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ii) o(b) = 3, o(ab-1) =4 

b yo A. 

b 
bö bla 

b 
bQ 

b4 
y bö bö 

he y 
b eýý bp b 

Io0 %ý y6 bý bO t,. b0 IýýQ 

b b6 bh 
byb to b 

bý b'4 Va 
bö bý 

b bc, b 
bb 

Here we have ý'(Ap) = 24(x - 1) 0 0. Thus P is not degenerate and by Lemma 3.3. i. 

P is not aspherical. 

iii) o(b) = 3, o(ab-I) =5 

b b a 

y bü a 
,b 

Is c, 
b° 

bö y1o bb bQ 

j° 
b bÖ Ha b 

bb 

b 
b 

bo 

Ö 

W10 
b 

bo 
Ga 

eQ t0Q b O bö 
byb bý b 

dö 
bb bb 

b4 
b A bp `o 

Vb 
br4 

bb br° e bö 
bo e b Wb bÖ Y '° b b 5 

b b eO ýQ by b-b bb b b1° 
bb 

bö b b'o 
Y 

Uh b 
bq bö 

ba 
böb0 Ja b b 

b b do bb w' 
b b'ro 

bp bQ 
b' Q 

b 64 

b w- 10 
b 

Since O(AP) = 60(x - 1) 0 then P is not degenerate. Then by Lemma 4.3.7, P is 

not aspherical. 
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iv) 3< o(b) < oo, o(ab-1) =2 

Consider 

hý 

bQ 

: ib 
bo ba 

b 

and if o(b) = q, then join q of these to form a strictly reduced spherical picture 

.- 10 
bKö+ 

bä bä 

ea r9rr---tll 
b4 h 

h bq 
ý 

b'o 6'0 

b 

Then'(Ap) = 2q(x - 1) 00 and so P is not degenerate. Hence by Lemma 4.3.7, P 

is not aspherical. 

vi) o(ab-1) = 3, o(b) =4 

Since O(AP) = 24(x - 1) 54 0 then P is not degenerate. Then by Lemma 4.3.7, P is 

not aspherical. 
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vii) o(ab-1) = 3, o(b) =5 

b bb bö 

40 b0 
ba y0 bß 

b ya r 
b 

log b 

b ba r b° !nb v'a 

,, bb 
ba eb bb ' l do a 

bo 
b o 

b eö "o yý ýb 
y a sö 

b'o yb^ 1e o 
b 

yyüh 

10 V'd b 
böb 

b b1 
Q 

G b 
6 .. y 

. 1 
G U y 

In ya v6 b 0 b 
Ioä r bb ) L'i 

b b 
to ; it, bb b bä 

b b 1' G 
ba 

,ýý, 
bb yýý bö bä b4 to 

ho yu 6c, 

b 'o y'Q b b 
bb 

y 
0 hä 

ba b'p 
b 'G 

A; 1a 

b 
b" 'u 

Then b(A1) = 60(x -1) 54 0 and hence IF is not degenerate. Thus P is not aspherical. 

5.2.4 The subcase 3< o(a) 

When is P aspherical? 

Assume that none of the relations in hypothesis holds. We will show that P is 

aspherical. It is suffices to show that there is no reduced strictly spherical picture P 

over P. Suppose there were. Note that there is only one possibility for double bonds 

in P (since P is reduced) as follows. 

b 
1a pv 

Also note that there is no two or more double bonds forming a chain 
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Regard all double bonds as single discs 

6' 
01 

a 

and so we obtain a new derived picture P' such that every disc has valence four. 

Assign the angle function 7r/2 to each corner, so that every disc in P' is flat. Then 

by Lemma 4.3.4, there exists an exceptional region c' with positive curvature. If 4' 

has valence m, this means that y(V) > (in - 2)ir. Since each corner has angle 7r/2. 
J' must have valence three or four. We may now find all possible labels for c' (refer 

Appendix A. 3.1). Thus we conclude that P is aspherical except possibly if one of 

these holds: 

1. o(a) =3 

2. o(b) =3 

3. a=b2 

a2 4. b= 

Up to equivalence, we just need to consider the first and the third case. At the 

moment we can not decide for the third case (refer FE2). Now assume that o(a) =3 

and a# b2. Clearly b 54 a2 since we also assume that a 54 b-'. We will proceed by 

considering the order of b. 

1) o(b) =3 

Note that 40' may be a region with label aaa or with label bbb of valence three. The 

curvature is ir/2 and so we may distribute 7r/6 to each of their three neighbours. This 

is possible since none of their neighbours have label aaa or bbb (refer Appendix A. 3.2). 

Let T be a neighbour of V. We have to make sure that the new curvature for 

remains non-positive. If T has valence in, then we need 

m7r/2 + m7r/6 < (m - 2)7r. 
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Since m>6, we need to consider the case when 1 has valence less than six. Finding all 

possibilities (refer Appendix A. 3.2), we conclude that P is aspherical except possibly 
if one of these holds: 

1. ba 2= ab (or a 2b = ba) 

2. b2a = ab (or ab' = ba) 

3. ba=ab 

We will show that the first and second relations are not possible. Suppose that 

ba 2= ab. Then 

b-lab = a2 
b-'ab' = b-'(b-'ab)b = b-'a2b = (b-'ab )2 = a4 

b-3ab3 = b-1(b-2ab2)b = b-'aab = (b-iab)4 = as 

=ý- a= as since b3 =1 

= a7=1 

Since a3 = 1, then a would be trivial. 

The second case can be shown similarly. 

Now suppose that ba = ab. Then there are two possible regions T in 1' of valence 
five (refer appendix A. 3.2). In each case T may only accept distribution angles from 

at most three out of five of its neighbours. 

new curvature < (5ir/2 + 37r/6) - 37r =0 

This means that T is not exceptional. 
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2) o(b) = 4,5 

This case is similar to the first case except the only possible label for V is just aaa. 

We will use the similar distribution scheme. If 'P shares an edge with 1', then IF will 

receive ir/6 from V. Since in every two edges of I, there is at most one edge shared 

with '' and so we have m7r/2 + m/2 " it/6 < (in - 2)7r where in is the valence of 

t. This means that if T has valence more than four than the new curvature for P 

remains non-positive. There is no possible label for I of valence two, three or four 

(refer Appendix A. 3.2), and hence we may conclude that P is aspherical. 

3)o(b)>6 

Note that there is no possible region of valence two in IP' and the only possible region 

of valence three is with label aaa (refer Appendix A. 3.1). In order to make sure 

that c will not be the exceptional, we will assign the following angle 

5"/q 5nýa 
s 

ý/, its: 
ý 

si 5ýý9 n/ n ný3 
ON 

y9 
17 

5ry 
ý5ný9 

sn/ 4 

Since every disc is flat then by Lemma 4.3.4, there exists an exceptional region i" 

with positive curvature. If (D" has valence m then m" 57x/9 > (m - 2)ir and so rri. < 4. -21, 

Thus (D" must be a region of valence four. There is only one such possible region (refer 

Appendix A. 3.3) as follows 

The curvature for I" is at most 2ir/9 and so we distribute it/9 each to T1 and 

W2. Suppose that Ti (i = 1,2) has valence m. We need to make sure that the new 
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curvature for both of WW's remain non-positive that is m" 57r/9 +m" 7r/9 < (m - 2)7r. 

Since m>6, we need to consider when 'J1 has valence four or five. There is no 

possible region for 'Y; of valence less than six (refer Appendix A. 3.4) and so we may 

conclude that P is aspherical. 

When is P not aspherical? 

We have to show that if one of these is satisfied, then P is not aspherical. 

1P+q+k>1 where o(a) = p, o(b) =q and o(ab-') =k 

2. a= b'1 of finite order 

For the first case, we draw reduced strictly spherical pictures. Then we will show that 

they do not degenerate (refer §4.3.6). Then by Lemma 4.3.7 'P is not asphcrical. 

i) o(a) = 3, o(b) = 3, o(ab-1) =2 

Then O(AP) = 12(x - 1) 00 and hence IF is not degenerate. 
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Since t(ap) = 24(x - 1) 0 then P is not degenerate. 

80 

ii) o(a) = 3, o(b) = 4, o(ab-1) =2 



Then we have '(A ') = 60(x - 1) 0 and hence P is not degenerate. 

We will not draw pictures for the second case. Note that if a= b'1 then 

1= t3at-lb =1= t3at-'a-' 

=: ý ata-1 = t3 

= a2ta-2 = a(ata-')a-i = at3a-' = t32 

By induction, one may prove that for any integer n, a"ta-" = t3". Since o(a) = p, we 

have 
t3' = apta-P =t 

which implies tap-' =1 and hence t has a finite order. Thus (refer §4.3.5) P is not 

aspherical. 
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Chapter 6 

The form t2atbt-1 c 

This chapter covers all five subcases when F? has the following form: 

2.1 t2atat-la 

2.2 t2atat-lc 

2.3 t2atbt-lb 

2.4 t2atbt-la 

2.5 t2atbt"lc 

where a, b and c are distinct non-trivial elements of II. 

For the first subcase we will show that P is aspherical if and only if a has infinite 

order while for the second subcase we will show that P is aspherical if and only if c 

has infinite order (Theorem 6.1.1). We can decide the asphericity of P for the third 

subcase apart from a special exception and a family of exceptions (refer §6.2): 

SEI o(a) = 2, o(b) =3 

FE3 o(a) < oo, o(b) =2 

There is a special exception and three families of exceptions for the fourth subcase 

(see §6.3) that are not yet decided. 

SE2 o(b) = 3, o(a) =4 

FE4 o(b) =2 

FE5 o(a) = 3, o(b) < oo 
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FE6 b has finite order and b 54 a'1, a2, a±3, a±4 

or b2 54 a±2 or a b±2, b±3 

For the last subcase we can decide the asphericity of P apart from (see §6.4): 

SE3 a2 = b3 =1 and a= c-2 

SE4 o(c) = 3, o(b) = 2, b= ac, c= a2 

SE5 o(c) = 6, o(b) = 2, b= ac, a= c2 

FE7 b2 = 1, a= c-2 where 4< o(c) < oo 

Then we list again all exceptions for both forms in §6,6. 

As in Chapter 5,0 will denote the ring homomorphism (refer §4.3.6) 

ZG ->Z< r r2> 

HH1, tHx. 

6.1 The subcase a=b 

The main result is 

Theorem 6.1.1 Let P =< H, t; t2atat-lc > where a and c are fof-trivial elenrtent, a 

of H (a and c may be equal). Then P is aspherical if and only if c has infinite order. 

Proof Let c have infinite order and consider the star graph P'ý 
a3 

a, 
014 

where cal c-1, u2 * a-', a3 H a-1 and a4 +4 1. We will assign the weights 

depending on the order of a. 

If a has infinite order, assign 

O(al) = O(a2) = 0, ©(a3) = 0(04) = 1. 
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Since a and c have infinite order, then any admissible cycle must involve 03 and/or 

a4 at least twice, and so it has a weight of at least two. One may check that all 

three conditions given in §4.3.2 are satified and hence by Theorem 4.3.3, P must be 

aspherical. 

We assign the following weights 
1 

0(a1) = 0, O(a2) = 1,0(a3) = 0(a4) _ 

if a has finite order. Let y be any cycle in P. If 7 

(a) involves a2 at least twice or 

(b) involves a2 at least once and involves a3 and/or a4 at least twice or 

(c) involves a3 and/or a4 at least four times 

then y has a weight of at least two. Thus we only need to check 

(a) 4P>0 

(b) ai p(a3a4 1), p>0 

Since c has infinite order, then clearly the first form is not admissible. Note that the 

second form is not admissible since 1 54 a0 cIP. With the above weights, all three 

conditions in §4.3.2 are satisfied and hence by Theorem 4.3.3, V is aspherical. 

Now let c have order 2<q< oo and so we will show that 'P is not aspherical. 

Since c9 = 1, we may obtain a reduced strictly spherical picture P over P as below 

C 

C 

and so (refer §4.3.6) d(ap) = q(1 - x) 54 0. Since IF is not degenerate then by Lemma 

4.3.7, P is not aspherical. 0 
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6.2 The subcase a; b=c 

If we have P =< H, t; t2atbt-lb > where a and b are distinct non-trivial elements of 
H, then we have two cases that we still can not decide. 

SEI o(a) = 2, o(b) =3 

FE3 o(a) < oo, o(b) =2 

Excluding these two exceptions, we have 

Theorem 6.2.1 Suppose that P =< H, t; t2atbt-'b > i4 not an exceptional rosy. 

Then 71 is aspherical except when b= a-1 and b has finite order. 

To prove this theorem, we consider the order of b as follows: 

i. b has infinite order 

ii. 4< o(b) < oo 

iii. o(b) =3 

iv. o(b) =2 

The star graph Pst for this case is 
C(3 

(D 
ö(Z a 

ay 

where al H b-1, a2 +- b-', 03 f+ a-1 and a4 44 1. 

6.2.1 The subsubcase o(b) = oo 

Since b has infinite order, we have to show that P is aspherical. Any admissible cycle 

in Pst must involve a3 and/or a4 at least twice. Thus we may assign the following 

weights 
O(a1) = O(a2) _ 0,0(a3) = 0(a4) = 1. 

Since all three conditions in §4.3.2 are satisfied, then by Theorem 4.3.3, P is , spherical. 
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6.2.2 The subsubcase 4< o(b) < oo 

Assume that b: 1 a-1 and so we will show that P is aspherical. Consider the weights 

0(al) = 0(a2) = 0(a3) = 0(a4) =1 , 

Since all edges in Pst have weight 2 then all admissible cycles of length four or more 

must have weight of at least two. Thus we only need to check all cycles of length two 

and three. There is no admissible cycle of length two because b2 #1 and ao1. Any 

admissible cycle of length three will produce relations b3 = 1, ab =1 or ab'i = 1. Since 

none of these relations holds, then there is no admissible cycle of length three and so 

all three conditions in §4.3.2 are satisfied. Thus by Theorem 4.3.3, P is aspherical. 

Now let b= a-1 of finite order. So we have to show that P is not aspherical. 
Clearly 

t2atbt-lb =1= t2b-'tbt-lb =1 
t2 = b-Itb-'t-lb. 

Since t2 is conjugate to b'' of finite order, then t must have finite order and hence 

(refer §4.3.5) P is not aspherical. 

6.2.3 The subsubcase o(b) =3 

Assign the folowing weights 

B(al) ©(a2) 270(a3) 
0(04) 

3 

Since the minimum weight is 1/3 we need to check all cycles up to length five. Since 

any cycle of length five must involve al or a2 at least once then the minimum weight 

for a cycle of length five is 4 . 1/3 + 2/3 = 2. Thus we just need to check up to length 

four. The possibilities (up to cyclic permutation) are: 

length 2 length 3 length 4 
±2 ±3 f4 

a1 a1 a1 
±2 ±3 ±4 

a2 a2 a2 

`a3a1)f1 al1/a3a41\±1 a1(a3a41ýf1 l 

021a31a4'±1 a2(a31a4)f1 

(a3a4-1 )±2 
l 
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If we assume that a2 1 (SE1) and b0 a-1, then we have to show that P is 

aspherical. By the above assumptions, the possible admissible cycles of length less 

than five are al 3, a2 3, ai(a3a41)fl and a2(a31a4)±1. They have weight two, and so 

all three conditions in §4.3.2 are satisfied. Thus by Theorem 4.3.3,7 is aspherical. 

Now suppose that b= a'1. Then 

t2atbt-lb =1= t2b'ltbt-'b =1 

= t2 = b-ltb-lt-lb. 

Since b3 =1 then t6 =1 and hence (refer §4.3.5) P is not aspherical. 

We still can not decide asphericity when a2 =1 (refer SE1). 

6.2.4 The subsubcase o(b) =2 

Suppose that a have infinite order, then clearly b0 a'1. Thus we have to show that 

P is aspherical. Assign the following weights 

O(a1) = O(a2) = 1,0(a3) = 0(a4) = 0. 

Since a has infinite order, any admissible cycle must involve al and/or a2 at least 

twice and hence has a weight of at least two. Thus by Theorem 4.3.3, P is aspherical. 

For the case when a has finite order, then we still can not decide (refer FE3). 

6.3 The sub case a=c 54 b 

We encounter quite a number of exceptions in this case. 

SE2 o(b) = 3, o(a) =4 

FE4 o(b) =2 

FE5 o(a) = 3, o(b) < o0 

FE6 b has finite order and b a-', a2, a}3, a±4 

or b2#a±2 or aOb±2, b±3 
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Excluding these exceptions, we have 

Theorem 6.3.1 Suppose that P =< II, t; t2atbt-'a > is not an exceptional case 

where a and b are distinct non-trivial elements of H. Then P is aspherical if and 

only if none of these holds: 

1. o(a) = 2, o(b) < oo 

ý. b= a-2 of finite order 

3. b= a2, o(a) =3 or 4 

To prove this theorem, we consider 

i. o(a) = o(b) = oc 

ii. o(a) < o(b) = oo 

iii. o(b) < o(a) = oc 

iv. o(a), o(b) < oc 

The star graph for this case is 

q; ýz 

'2e4 

where al H a-1, a2 H b'1, a3 t-+ a-1 and a4 t-* 1. 

6.3.1 The subsubcase o(a) = o(b) = oo 

Note that none of the conditions 1,2,3 in the statement of the theorem holds, so we 
have to show that P is aspherical. Assign the following weights 

0(01) = 0(02) _ 0, ©(03) = 0(a4) = 1. 

Since a and b have infinite order, then any admissible cycle must involve a3 and/or 

a4 at least twice. Thus all three conditions in §4.3.2 are satisfied and by Theorem 

4.3.3, P is aspherical. 
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6.3.2 The subsubcase o(a) < o(b) = oo 

Clearly b ý< a> and so none of the conditions 1,2,3 in the statement is satisfied. 
Thus we have to show that P is aspherical. Consider the weights 

O(a1) = 1,9(02) = 0, ©(a3) = ©(a4) =1 . 

Let -y be any cycle in Pst. If 'y 

(a) involves al at least twice or 

(b) involves al at least once and involves a3 and/or ca4 at least twice or 

(c) involves as and/or a4 at least four times 

then y has a weight of at least two. Also note that since b has infinite order then 

clearly a2 C is not admissible. Thus we only need to check (up to cyclic permutation) 

cycles of the form 

a2(a31a4)tl, p > 0. 

They are not admissible since 1ab: 4. Since all three conditions in §. 1.3.2 are 

satisfied, then by Theorem 4.3.3, P is aspherical. 

6.3.3 The subsubcase o(b) < o(a) = oo 

We can not use the weight test anymore. Again we have to show that P is aspherical 

since none of the relations in hypothesis is satisfied. It suffices to show that there is 

no reduced strictly spherical picture P over P. Suppose there were. In picture p we 

may have a region ýD1 of the form 

a 
i 

Qba 
b, ci 

1 

We call 4D1 a bad region. Note that 4)2 can not be a had region but 4)3 and 4). i are 

possible. Also note that a 3- or a 4-region (refer §4.4.1) can not share an edge with a 

bad region. 
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We may assign the angle function 

zn/3 23 
n? 

2 
n/3 n/d ý/ ý3 

nY 3 

to bad regions and for the rest, assign 

Ti Ii?;. 2 

Thus by Lemma 4.3.4, there exists an exceptional region 4) of valence in with, positive 

curvature. Since the maximum angle is 2ir/3, then we have in " 2ir/3 > (in, - 2)ir which 

means that m<6. From Appendix B. 1.1 we conclude that P is aspherical except 

possibly when o(b) < 5. 

Since a 3-region can not share an edge with a bad region then the maximum angle 

for any corner in a 3-region is 7r/2. Thus if o(b) =4 or 5 then for any . 3-region of 

valency four or five, the curvature is not positive. Hence we just need to cheek when 

o(b) =2 or 3. 

1) o(b) =3 

Clearly the only exceptional region is a 3-region P of valence three with label bbb. 

Since the maximum angle of any corner in 1D is 7r/2, then the curvature ry('P) < 7/2. 

We may distribute 7r/6 to each region T that shares an edge with (D. First note that 1P 

is not a 3-region o: a bad region. We have to make sure that the new curvature for IV 

remains non-positive. Note also that by the observation in §4.4.1, in every three edges 

of %P there is at most one 3-region. Thus we do not want (assume that '1'' has valence 

m) (in - 2)ir <m" 2ir/3 + ni/3 " ir/6 which means that in < 7G. if'P has valence 

seven then IF may share an edge with at most two 3-regions. Then the curvature 

y'(ql) <7.2ir/3 +2. n/G - sir =0 

and so it is not exceptional. From Appendix B. 1.2, we know that there is no possible 

label if' has valence six or less. Thus P must be aspherical. 
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2) o(b) =2 

At this moment we can not decide asphericity for this case (refer FE4). 

6.3.4 The subsubcase o(a), o(b) < oo 

When is P aspherical? 

Excluding FE6, note that a2 #1 since otherwise hypothesis 1 is satisfied. It suffices 
to show that there is no reduced strictly spherical picture P over P. Suppose there 

were. Then as in §6.3.3, assign the angle function 

z7 

TI/3 rý ßn3 
1 

for bad regions and for the rest, assign the angle function 

n, 
2 

TIY2 

nil nil 

Since all discs in P are flat, then by Lemma 4.3.4, there is an exceptional region t of 

valence less than six (refer §6.3.3). From Appendix B. 2.1, we may conclude that P is 

aspherical if o(a), o(b) > 6. 

As in §6.3.3, there is no 3- or 4-region sharing an edge with a bad region. Thus the 

maximum angle for any corner in a 3- or a 4-region is it/2. Thus if they have valence 

four or more then they are not exceptional regions. Note that there are regions of 

valence five with label laaaa and lalaa 

aobib od 

cad 

h aid ci 
a ZTY 

bas 

ai 
l/s aP 

06 ., a 
bQ bad I i 4, ci 

f not' bod 

Since they share an edge with at most one bad region, the total sum of angles is less 

than or equal to 2.21r/3 +3" it/2 < 37r. Thus they are not exceptional regions either. 
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However there is a possible exceptional region of valence four with label laaa. The 

complexity of this region together with a bad region does not enable us to decide 

asphericity when o(a) =3 (refer FE5). Thus if o(a), o(b) >4 then P is aspherical 

and so we just need to consider when o(b) =2 or 3. 

1) o(b) =3 

Assume that o(a) 04 (refer SE2). As in §6.3.3, the only exceptional region is ,, 

3-region of valence three with label bbb. Using the same argument, we need to check 

a region W with label aa6F of valence six or less. From Appendix 13.2.2 there is a 

possible label namely laaaaa. 

-I b1ý 

bý bod 

Ü Ej 'Q0. b 

y' bQ ýM4 
bod 

Since' may share at most an edge with a bad region then there are most two corners 

having angle 2ir/3. Thus the curvature 

y*(Ii) < (2.27r/3 +4" it/2) + i/G - 4ir < 0. 

Thus W is not exceptional and hence P must be aspherical. 

2) o(b) =2 

We can not decide asphericity for this case (refer FE4). 

When is P not aspherical? 

If one of these holds: 

1. a2 = 1, o(b) < o0 

2. b= a-2 of finite order 

3. b=a2, o(a)=3 
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then P is not aspherical. 

Suppose that a2 = 1, then 

t2atbt-la =1= tea -ltbt'la =1 
t2 = atb'lt-la'1 

So we know that t has finite order since it is conjugate to b' of finite order and hence 

(refer §4.3.5) P is not aspherical. 

If b= a-2, then consider 

b 

CL a Tbý 

b a 61 b 

p. 
1Q11 

We can join an appropriate number of these (according to the order of b) to forte a 

reduced strictly spherical picture 

b 

b 

and so (refer §4.3.6) 

ap = (1 +b+ b2 + ... + b7-')(t-la + t-lata - t-latat - t-lat-1). 

We can not use the mapping ý' as in §4.3.6 for this case and so we will consider another 

ring homomorphism. Consider 

0: ZG--+Z(Hx<x; x2>), 
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the ring homomorphism arising from the group homomorphism defined by 

HiH, tHx. 

Then 

«(Ap) = (1 +b+... +b9-')(ax+a2-a2x-a) 

(1 a+... -ý-a29-2)(a2-a)(1-x) 

5 o. 

Thus P is not degenerate and hence P is not aspherical. 

For the third case, we draw 

and so (refer §4.3.6) b(\1) = 3(l - x) 54 0. Then P is not degenerate and hence by 

Lemma 4.3.7, P is not aspherical. 
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Remark 

This case is the most difficult to handle because we have a bad region 

air äý 

o, b 

and if we have a3 = 1, we have to consider 

Q' i'. b a' 

r 

Äý ýOb 

It is quite difficult to keep track in argument while handling these regions. Therefore 

we can not decide for the case when o(a) =3 (refer FE5). The complexity of these 

regions also makes us unable to decide for the other exceptions. 

6.4 The subcase a, b and c are distinct 

Throughout this section we assume that a b-1 since (refer operations in 1.1.1.1) 

t2b-ltbt-lc t-* tbtbb-'tbbb-lt-'c = tbtabt-lc 

tb-it-2b-it-lc-1 

tom' t-ýb-ýt2b-ltd 
iiý 

t2b-`tc-it-ib-' 

which is subcase 6.3. Thus one may refer §6.3 when a= b-1. 

If we have P =< H, t; t2atbt-lc > where a, b and c are all distinct non-trivial 

elements of H, then we have three special exceptions and a family of exceptions that 

we still can not decide. 

SE3 a2=b3=1 anda=c'2 
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SE4 o(c) = 3, o(b) = 2, b= ac, c= a2 

SE5 o(c) = 6, o(b) = 2, b= ac, a= c2 

FE7 b2 =1 and a=c2 where 4< o(c) < o0 

Excluding these exceptions, we have 

Theorem 6.4.1 Suppose that P =< H, t; t2atbt'lc > is not an exceptional case 

where a, b and c are distinct non-trivial elements of II. Then P is aspherical if and 

only if none of these holds: 

1. a= c'l, o(b) < oo 

2. b= ac andp+9+k >1 where o(a)=p, o(b)=q ando(c)=h ( ;. 0) 

To prove this theorem, we will consider the following subsubcascs separately. 

i. b and c have infinite order 

ii. o(b) < o(c) = oo 

And if both b and c have finite orders 

iii. o(b) = o(c) =2 

iv. o(b) = 2, o(c) >3 

v. o(b) = 3, o(c) >3 

vi. 3< o(b), o(c) < 00 

Note that up to equivalent presentations, we may identify bH c-i, so we do trot 

consider the subsubcase o(c) < o(b) = oo, the subsubcase o(c) = 2,3 < o(b) < oo 

and the subsubcase o(c) = 3,3 < o(b) < oo since the result and proof are similar to 

subsubcases 6.4.2,6.4.4 and 6.4.5 respectively. 

The star graph 'P for this case is 

Nj 

where al ++ c-1, a2 ++ b-1, a3 a-1 and a4 H 1. 
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6.4.1 The subsubcase o(b) = o(c) = oo 

Since b and c have infinite order, we have to show that P is aspherical. Any admissible 

cycle in Pst must involve a3 and/or a4 at least twice. Thus we may assign the following 

weights 
O(a1) = O(a2) _ 01 O(a3) = 0(a4) = 1. 

Since all three conditions in §4.3.2 are satisfied, then by Theorem 4.3.3, P is aspherical. 

6.4.2 The subsubcase o(b) < o(c) = oo 

We have to show that P is aspherical if and only if a c-1. 

Suppose first that a 54 c-1. 

If a0 ct', p>1 then we may assign the weights 

8(a1) = 0,0(a2) = 1, ©(a3) = 0(a4) =1 , 

Let -y be any cycle in Pst. If ry 

(a) involves a2 at least twice or 

(b) involves a2 at least once and involve a3 and/or a4 at least twice or 

(c) involves a3 and/or a4 at least four times 

then 7 has a weight of at least two. Clearly ai k, k>0 is not admissible since c has 

infinite order. Thus we just need to check cycles of the form 

ai(a3a41): k1, q > 0. 

They are not admissible since 10a0 c9. Then all three conditions in §4.3.2 are 

satisfied and hence by Theorem 4.3.3, P is aspherical. 

If a= c±P, p >2 then a must have infinite order since o(c) = oo. We may assign 

1 
= 1. B(al) = O(a3) = 0(a4) = 3'0(a2) 

Let 'y be any cycle in Pst. If -y 
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(a) involves a2 more than once or 

(h) involves al and a2 at least once each and involves a3 and/or a4 at least 
twice or 

(c) involves a3 and/or a4 at least six times or 

(d) involves al at least twice and involve a3 and/or n., at least twice or 

(e) involves ai at least once and involves a3 and/or a4 at least four times 

then y has a weight of at least two. Thus we just need to check 

(a) ai k, k<6 

ýb) (a3a41)Ill' = 1,2 

(c) ai(a3a4l)±l 

Since c and a have infinite order then the first two forms are not admissible. The last 

form is not admissible since a, c±1. Thus P must be aspherical. 

Now suppose that a= C'. Then 

t2atbt-lc =1= t2 = c-'tb'lt-'c. 

Since b has finite order, then so does t and hence (refer §4.3.5) 7' is not asplierical. 

6.4.3 The subsubcase o(b) = o(c) =2 

In this subsubcase, we have to show that P is asplierical if and only if either as has 

infinite order or b0 ac. 

When is 9 aspherical? 

It is suffices to show that there is no reduced strictly spherical picture P over P. 

Suppose there were. Then we have two forms of double bonds 
c 

x0c 

o.. 

btb 

aCý 
ý' ýp4 

ýbb 
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and so we have a new derived picture IF' such that every disc has valence four. We 

may assign the angle function 

ný1 11ýZ 

and so there is an exceptional region V of valence less than four. Finding all pos- 

sibilities (refer Appendix B. 3.1), we conclude that P is asphcrical except possibly 

if 

1. b=ac 

2. ba=ac 

1) b=ac 

Since b= ac then a must have infinite order since otherwise hypothesis 4 would lWr 

satisfied. We may assign weights 

0(a1) = 0(a2) = 1,0(03) = 0(04) = 0. 

Since a has infinite order and o(b) = o(c) =2 then clearly (a3a4 i )±k, al (a30,1)±P and 

a2(a4 Ia39 are not admissible. Thus any admissible cycle must involve a, and/or ai 

at least twice and has weight of at least two. Thus by Theorem 4.3.3, P is aspherical. 

2) ba = ac 

Clearly b ac since otherwise a would be trivial. Also ac ca since otherwise we 

would have b=c. Since (refer operations in §4.1.1) 

t2atbt-lc t-' 1 to-'ta-rata-lbat-ic = to-'t2 c1 'c 

I 
tc-It-tat-lc-' 

t1 t-lc-'t2atc-1 

t2atc-lt-ic-1 

which is subcase 6.2, one may refer §6.2.4 for this case. 
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When is P not aspherical? 

If b= ac and a has finite order then P is not aspherical. Consider 

CL 1 
b` 1cba 
riE 

1%abC 

If ap =1 then join p of this to form 

and hence (refer §4.3.6) O(ap) = 2,,, (x - 1) 54 0. Since P is not degenerate then by 

Lemma 4.3.7 P is not aspherical. 

6.4.4 The subsubcase o(b) = 2,3 < o(c) < oo 

When is P aspherical? 

Assume that none of the relations in hypothesis is satisfied. The technique used here 

is a combination of curvature and weight tests. 

Suppose that there were a reduced strictly spherical picture P over P and so we 

may have a double bond 

ac qc 

ýýLl 1 to lo I ---t> L 
ac 

We may regard it as a single disc and so we have a new derived spherical picture PI 

such that every disc has valence four. Assign the angle function 

n/3 nj2 

ni n 
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and then by Lemma 4.3.4, there exists an exceptional region V with positive curva- 

ture. If c' has valence in, then (m - 2)ir >m" ir/2 which means that m< . 1. Thus 4)' 

must have valency two or three. Then we may conclude that P must be aspherical 

(refer Appendix B. 4.1) except possibily if b= ac or ace = 1. 

1) ace =1 

It is quite clear that if ace =1 then o(c) >4 since otherwise a is trivial or equal to 

c. Also b ac since otherwise b=c. At the moment we can not decide for this case 
(refer FE 7). 

2)b=ac 

Now assume that b= ac and so ace 0 1. We will use the weight test to get more 

information. Recall that the star graph P9t for this case is 

a3 

c x: ý)C )cl a, 

0ý4 

where al H c-1, a2 H b-', a3 t-* a-' and 04 t4 1. 

a)o(c)>6, a c3 

By hypothesis 4, o(a) > 2. Assign weights 

0(al) = 0(a3) = 0(a4) = 
3,0(o2) 

= 1. 

Since the minimum weight is 3, then we need to check cycles up to length five. Note 

that any closed path involving a2 twice or al and a2 at least once each has a weight of 

at least two. Since o(a) >2 then clearly (a3a4 1)±l and (a3a4')t2 are not admissible. 

Clearly ai p(p < 6) is not admissible since o(c) > 6. Thus we only need to consider 

a21(a310)2, a22(a3a. ý1), a13(a3a41) and a 1(a3a, l1)2 

that is b= a±2, c2 = af', c3 = a-1 and c= a±2. 

Clearly b a2 since b= ac =a=c. Similarly b 54 a-2 since b2 = 1. 
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If c2 =a then b= ac = c3 = c6 =1 then refer to SE5. 

Clearly c2 0 a-1 since b= ac =b=c. 

Also c3 0 a-1 since b= ac b= c'2 c4 = I. This would contradict the fact that 

o(c) > 6. 

Similarly if c= a2 then b= ac b= a3. Then we would have a6 =1 and so Cý3 = 1. 

Clearly c0 a-2 since b= ac => b=a. 

Thus none of them is admissible. Hence we may conclude that P is asplierical. 

b) o(c) > 3(a = c3 if o(c) > 6) 

Start off by assigning weights 

0(al) =1- 277, O(a2) = 1,0(03) = O(a, 1) = 11 

such that o(c)(1 - 277) = 2. This guarantees that any admissible cycle involving just 

al has a weight of at least two.. Note that any closed path involving a2 twice or 01 

and a2 at least once each has a weight of at least two. 

Now we claim that any admissible cycle y just involving a3 and 04 has a weight 

of at least two. Suppose that y has weight less than two . Since 7 has weight of at 
least 21jo(a) then 

2rjo(a)<2 : (1-o2 )"o(a)<2 

22 
1< 

o(a) 
+ 

o(o) 

Also since we assume that 
o1+2+ -I <1 (refer hypothesis 4), then we would have 

22< 
1<O(a)+O(c) 1 

which is not possible. 

Let -y be any admissible cycle of the form a2(a3Ia4)}q. For such y to have weight 

less than two we require 1+ 217q <2 and so we need (1 - oF2, 
)q <1 that is 

o(c) 
_q+2 

o(c) -2 o(c) - 
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Since o(c) >3 then q<3 and if o(c) >4 then q<2. Clearly a2 (a3Ia4)ý1 is not 

admissible since a 54 btl. If o(c) =3 then we need to consider q=2 that is b= ate. 
Since o(b) =2 then b= ac a=c if b= a2. Thus 02(031a4 )±2 is not admissible. 

Then we just need to consider all cycles of the form a}p(a3a41)4 for some p and 

q such that their total weights is less than two. We will show that they are not 

admissible. Note that al(03041) is not admissible since a and c are distinct. Also 

since we assume that a0 c'1 then ai 1(a3a91) is not admissible. 

i) o(c) =3 

Since 77 =1 then we have to consider 

a1 (a3a4-1), ai 1(a3a41)2 and at1(a3a4 i )3 

that is c2 = atl, c= a±2 and c=a ±3. 

Since c3 =1 then clearly c2 , -4 a. Otherwise hypothesis 1 would be satified. 

Also c2 a-1 since both a and c are distinct. 

If c= a2 then refer to SE4. 

Now suppose that c= a-2. Then b= ac b=a which is not possible. 

Ifc=a3then a9=1. Also b=ac erb=a' as=1. Thus a=1. 

Now suppose that c= a-3. Then b= ac b= a2 a' =1 Then %ve would lia%-( 

(1= I 

Thus none of them is admissible. 

ii) o(c) =4 

Since q=ä then we have to consider 

ai 2(0304 _1) and n, (03a4' )a 

that is c2 = a±l and c=a ±2 

Clearly c2 # at' for otherwise since b= ac we would have b= cJ = c. '' b=r. 

Ifc=a2then a8=1. Also b= ac'b=a3=a6=1. Then we have a2= 1 which 

contradicts the fact that o(a) > 4. 
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We can not have relation c= a-2 since b= ac would imply b=ä. 

Thus none of them is admissible. 

iii) o(c) =5 

Since 77 = io then we have to consider 

t4 
3(a3a4 1), CYj 

2(CY3Ck4 1) 
and all ( 

3a-1)2 

that is c3 = a: ", c2 = a±l and c= a±2. 

If c3 =a then b= ac b= c4 c$ = 1. Since o(c) = 5, this is not possible. 

Suppose that c3 = a'1. Then b= ac =b=c2= c4 = 1. Again this is not possible. 
If c2=athen b=ac tb=c3ýc6=1 =c=1. 

Also c2 # a-1 since b= ac =b=c. 

Suppose that c= a2, then a1° = 1. Also b= ac b= a3 = ae =1 and Bence a2 = 1, 

contradicts the fact that o(a) > 4. 

If c=a-2 then b=ac=b=a. 

Thus none of them is admissible. 

iv) o(c) i 6, a= C3 

Note that a= c3, b= ac b= c4 and hence c$ = 1. Since o(c) >6 then clearly 

o(c) = 8. Thus 77 =4 and so we need to consider 

a12(a3a41) and a±1(a3a41)2 

that is c2 = a}1 and c= a±2. 

Since a= c3 and o(c) =8 then clearly c2 ail. 

Suppose that c= a2 and so a= c3 = a5 = 1. Also b= ac =b= a3 aß . 1. Then 

a=1. 

Clearly c# a-2 since b= ac =b=a. 

Thus none of them is admissible. 

When is P not aspherical? 

We have to show that if one of these holds: 
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1. a=c1 

2. b= ac and 1 +2±I> 1 where o(a) =p and o(c) =kpk 

then P is not aspherical. 

If a= c-i then we have 

t2atbt-lc =1 t2 = atb-'t-'a-1 

Since b2 =1 then we have t4 =1 and hence (refer §4.3.5) P is not aspherical. 

For the second case, consider 

i) o(a) = 2, o(c) < oo 

Consider 
cci 

a° 

ab1 aio 
11 

Cý 

and then join this according to the order of c. 
rl 

c 

G 

If o(c) =q then (refer §4.3.6) c, (A? ) = 2q(l - . r) 0. Thus lf' is not degenerate and 

hence P is not aspherical. 
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ii) o(a) = 3, o(c) =3 

Q 

Note that (refer §4.3.6) O(Ap) = 12(1 - x) 0 0. Thus 'P is not aspherical. 

iii) o(a) = 4, o(c) =3 
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Here we have (refer §4.3) &(Ai) = 24(l - x) 0. Thus P is not aspherical. 

Thus (refer §4.3.6) b(Ai) = 60(1 - x) 0 and hence P is not asphcrical. 
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v) o(a) = 3, o(c) =4 

Thus (refer §4.3.6) (A) = 24(l - x) ý 0. Since P is not degenerate tlu, u P is not 

aspherical. 
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Thus (refer §4.3.6) b(\i) = 60(1 - x) # 0. Since P is not degenerate then p is not 

aspherical. 

6.4.5 The subsubcase o(b) = 3,3 < o(c) < oo 

When is P aspherical? 

Assume that none of the relations 1-4 in the statement of Theorem 6.4.1 holds. Assign 

the weights 
O(al) = 0(02) = 

31 
0(a3) = 0(a4) =1 , 

Then the only possible admissible cycle with weight less than two is (03 ät )±2 5o if 

o(a) 02 then P must be aspherical. 

If o(c) > 6, then assign the weights 

0(al) 
31O(a2) 

21O(a3) 
0(04) 

2 
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Since a b-' or c-1 then one may check that all admissible cycles have weights 

of at least two. Thus by Theorem 4.3.3, P must be aspherical. 

From the above two arguments, we know that we only have to consider: 

1. o(c) = 5, o(a) =2 

2. o(c) = 4, o(a) =2 

3. o(c) = 3, o(a) =2 

We also assume that b0 ac in any of these three cases because otherwise hypothesis 

4 is satisfied. 

Now suppose that there were a reduced strictly spherical picture P over P. Con- 

sider any 3-region 

I 

c4 qc at 
b 

db {ý cI 
Qt 

1cu' 

So Ave have a new derived spherical picture F'. Then assign the angle function 

V/ n, 
ßi '7iý 

TI/ 
77/ ny3 

ý1 2 '3 

to 1F'. Since every disc is flat then by Lemma 4.3.4, there is an exceptional region (I)' 

with positive curvature. If V has valence in. then (ni - 2)7r <m 7r/2 which means 

that m<4. Finding the possibilities for (refer Appendix B. 5.1), we may conclude 

that P is aspherical except possibly a= c- *2 

From the above weight test argument, we know that P is aspherical except possibly 

if 3< o(c) <5 and a2 = I. Combining with the curvature test (a= c'2) immediately 

above we may conclude that P is aspherical except possibly a2 = Ls = c' =1 and 

a= c-2. This is an exceptional case that we can not decide (refer SE3). 
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When is P not aspherical? 

We have to show that if one of these holds: 

1. a=c-', o(b)=3 

2. o(a) = 2, b= ac, o(c) = 3,4 or 5 

then P is not aspherical. 

If a= c-1 then 

t2atbt-lc =1= t2 = atb-'t-'a -' 

and so t has finite order. Hence (refer §4.3.5) P is not aspherical. 

For the second case, we draw reduced strictly spherical pictures 

i)o(c)=3 
T 

and so (refer §4.3.6) t"(AF) = 12(l - x) 0. Then P is not aspherical. 
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ii) o(c) =4 

and so (refer §4.3.6) ü'(pp) = 24(1 - x) 0. Thus P is not asplicrical. 
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iii) o(c) =5 

Then 'P is not aspherical since O(Ap) = 60(1 - x) # 0. 
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6.4.6 The subsubcase 3< o(b), o(c) < oc 

We have to show that P is aspherical if and only if a 54 c-1. 

Suppose that a# c-1. Then assign the weights 

O(al) = 0(a2) = 0(a3) = 0(a4) =1 . 

Since a 54 b-1 or c-1 then all admissible cycles have weights of at least two. Hence by 

Theorem 4.3.3, P is aspherical. 

If a= c-1 then 

t2atbt'ic =1 t2 = atb-lt'la-1. 

Since t2 is conjugate to b-1 of finite order, then t also has finite order and hence (refer 

§4.3.5) P is not aspherical. 

6.5 Exceptions 

The following are all special exceptions that we still can not decide. 

SEI 

SE2 

SE3 

SE4 

SE5 

We also can not decid 

t2atbt"lb: 

t2atbt-la : 

t2atbt-lc: 

t2atbt-lc: 

t2atbt-lc: 

e for the foil 

o(a) = 2, o(b) =3 

o(b) = 3, o(a) =4 

a2=b3=1 and a=c'2 

o(c) = 3, o(b) = 2, b= ac, c= a' 

o(c)=6, o(b)=2, b=ac, a=c2 

owing family of exceptions: 

FE1 t3at-lb : o(a) = 2, o(b) >4 and ab = ba 

FE2 t3 at-'b :3< o(a) < oo and a= b2 

FE3 t2atbt-lb : o(a) < oo, o(b) =2 

FE4 taatbt-la : o(b) =2 

FE5 t2atbt-la : o(a) = 3, o(b) < o0 

FE6 t2atbt-la :b has finite order and 

b a-1, a2, a±3, a±4 or 

b2 aft or a b±2, b±3 

FE7 t2atbt' 'c :a= C-2 of finite order, b2 =1 and o(c) >4 
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Appendix A 

Reference for Chapter 5 

Let P be any reduced strictly spherical picture over P. Thus we do not have t he 
following 

ba ä' b-' 
.a 
1b0i 

Hence in any first derived picture F', we do not have the following 

i 

aw, ab 

iQ 

ib (bv 

21 COW, ) b"V4 ýbWlý 

for some words WI, 4V2, W3 and W4 (possibly empty). Also note that 

b. ý bý ab b' ß. 
or 41 niI G' Iiýi 

is not possible but 

b bI ci 
I 

I' * 
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is possible and so we may have 

Z 
ow-ý 

A. 1 Reference for §5.2.2 

We have the following 

b1 
Q 

and `square' discs of the form 

C 

d' 

where c and c' must have labels of the form 

(ab-lab-1 ... ab-t)tt, (ab-iab-t ... ab-la)fl or (b-tab-ta ... b-tab-t )tt 

whiled and d must have labels 1, a, a-', b or b-'. Note that we have to find possil>Iee 
labels for V of valence two and three. Note that there is no region in P' of valence 

two as follows: 

b 

Xa 

since they would contradict our choice of `square' discs. Thus as and bb are not 

possible for -'. Clearly we can not have a region with label aaa or bbb since o(a) 
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o(b) = 2. Hence any possible label must be a mixture of c, c', d and d'. Since o(a) = 

o(b) =2 and any product of labels in any region is 1 in H, then we obtain 

ab-lab-1"""ab-' = 1, ab-lab-1"""ab-la =1 or b-lab-'a """b-lab-' = 1. 

The first form is not possible since ab-1 has infinite order while the last two forms are 

not possible since a and b are not trivial. Thus there is no possible label for V. 

A. 2 Reference for §5.2.3 

Throughout this section, all restrictions in A* is applicable. 

A. 2.1 Possibilities for 4' 

We have the following discs: 

1 b1 6 b1 b'a 
by a' byb 

IIONl 

aýab ya bn 

We will find the possible labels for 1' of valence two and three. Any possible label 

will give a relation and so most of them can be eliminated immediately. We mark 

if they seem possible and leave unmarked if they are obviously not possible. Here we 

also assume that a and b are distinct such that a , -4 b'1, b2 or b3 while a2 = 1. As in 

Appendix A. 1, we do not have the following 

ý xx 

'/'« 
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valence 2 

lb-1 ba b-lab ab al ba b-'aa 

1b-la ba-' b-'a ab-' ab bl b-lab-la* 

la ba-lb b-'al ab-' 

valence 3 

lla lbl bbb* bbb* b-'alb-' 

11a-' lb-11 bll bba b-lab-lb-1 

lib lba blb bba-lb b-'aal 

llb-' lb-la bla-' baa b-labl 

llb-la lbb bab ba-'a-1 b-lab-lb-1 

llb-'aa lb-lb-la bal ba-lba-lb* b-lab-lal* 

lb-lab lab bll b-lab-'aa 

lb-lab'' lab-' bba 

lab-'a blb-la 

lb-la ba-'bl 

lb-'b-1 

lb-lb-la 

aaa abb 

aab alb 

aab-1 aal 

aab-la aab 

all abl 

alb-' aba-'b* 

alb-la ab-lab* 

abl ab-lal 

aba ab-11 

ab-is-'b* 

bba b-lab-lab-'a* 

bbl b-lab-laa 

baa b-lab-lab-1* 

bab b-'all 

bab-la* b-'abl 

bla b-laba* 

blb b-'alb-'a* 

blb-la b-gala 

Since any possible label gives a relation, we have the following possible relations: 

1. ab-lab-' =1 
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2. ab-lab-lab'1 =1 

3. b= (b-'a )2 

4. b3 =1 

5. bab-la =1 

A. 2.2 Possibilties for V' 

We are dealing with the second derived picture lF". Note that all restrictions A* is 

also applicable. In picture F", we have the same discs as in A. 2.1 together with extra 
discs of the form 

n 
V 

y-ý ha 

b" 

for some n. Since no other relations listed in (5.1) hold (except (ab-1)2 = 1), then all 

possibilities listed in A. 2.1 are no longer possible. Since we have extra discs, we also 

some extra possibilities for C" as follows: 

valence 2 

bý 

valence 3 

bn11 bulb bnla-1 bnbl bnba-' basal 

However all of these are not possible since we assume that b has infinite order. 

A. 2.3 Possibilities for' (o(ab-1) = 3) 

Since there is only one possible region I' with label b-'ab-'ab-'a (refer A. 2.1) 

vä0 
b bQ 

b ýi hýb'o b 
Vý yb W bb 

ki'o 
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any possible label for T must be in in the form bbW for some word W. We mark * 

if they seem possible and leave unmarked if they are obviously not possible. Here we 

assume that o(b) > 6, b (b-'a )2, ab-lab 01 and a j4 b-1, b2 or b3 where a2 = 1. 

valence 2 

b2 

valence 3 

b2bb 

valence 4 

b2bb b211 b21a-' b2al b2bl b2ba-1 

valence 5 

b2bbb b21al b2bal b2b(b-la)1 

b2bll b21a-'l b2abl b2b(b-'a)a-1 

bzbla-1 b2lbl b2a(b-la)l* b2b(b-la)-'l* 

b2bal b2lba-' b2bal b2b(b-la)-1a-1* 

b2bbl b21(b-'a)1 b2ba-11 

b2bba-'* b21(b-'a)''1 b2bbl 

bsl(b-'a)-ia-'* b2bba -'* 

Thus we have to consider the following relations: 

1. a=b4 

2. b2aba =1 

3. blab-la =1 

4. b3aba =1 

A. 2.4 Possibilities for ' (o(b) = 3) 

There are a lot of possible regions for V with label bbb and none of their neighbours 

that sharing an edge with c' has the same label bbb. We identify sixteen different 

possible forms for IF. 
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i 
ýi 

b' 

ýý 

býý bý a' 

aý "ý 
a 

4'ýx 

iý 

a 
a 

b 

ii 

, ýº a 
L 

il 

Aa 

-Fc 

toll. bi 

bn I', -, ' 

lö ýýý "ý lö ý Vý L~ 6ý 
ýOý 

a 
ä' (ir'ý 

b 
Ueaj ý (b ;j ý6ý) ý. ) (bal 

ý (bös 
(ý°) 

Ib 
'ý$6 

) 

bT 
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Thus there are a lot of possibilities for 'Y but of course most of them are obviously not 

possible. We mark * if they seem possible and leave unmarked if they are obviously 

not possible. Here we assume that o(ab-1) > 6, a b2, abab-1 01 and b0 (b-la)2. 

valence 2 

1: 2: 3: b-'a l 4: 

5: 6: ab-' 7: (b-lab-1 8: 

9: ab-1 10 : 11: 12 : (b-ia)b-1 

13: a(b-la ) 14: 15: 16 (b-la)2 

valence 3 

b-salb-1 
alb 

alb-1 b-'alb b-laal 
1: alb-la 2: 3: 4: 

alb b-'alb-' b-'alb-la 
all 

b-lall 

ab-'b-1 b-lab-lb-1 

ab-'b-1 ab-lb b-lab-lb blab-la 
5: 6: 7: 8: 

ab-'l ab-lb-i b-lab-'b-' b-lab-il 

ab-lb-'a b-lab-lb-ia 

ab-'a b-lab-la 
ab-lb blab-lb 

ab-la-1 b-lab-la-1 
ab'ia'i b'lab-la 

9 ab-iab-la 10 : 11: 12 : b-iab-'b-la 
ab-11 b-lab'11 

ab-la(b-ia)-i b-iab-i(b-iaý-i 
ab-1(b-ia)-i b-'ab-1(b-ia )-1 

ab-lb-i b-'ab-lb-1 

ab-laa 
b'lab-la 

ab-lab-la ab-'ab b-lab-lab 
13: 14 : 15: 16 : b'lab'lab'la 

ab-iab ab-lal b-lab-'al 
b-'ab-lab-i 

ab-iab-1 
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valence 4 

alb-'a 

alb-'a'1 

alb-'b-la 

alb-la-'b 

ala2 

1: slab-la 

alb-laa 

alb-'ab-la 

alba 

alb-lb-' 

alb-lb-'a 

a lab 

alal 

ala(b-'a)-' 

ala-lb 

ala-11 

ala-1(b-'a)-1 

alb-iab 

alb-tal 
2: alb-la-ib 

al(b-la)-lb 

ala-1ba-laa-'bl 

ala-1ba-lb 

albb 

ala-'b 

ala-lb-'alb 

alb-' 

ala-'bb 

ab-'b-'a 
ab-1 

ab-lb -2a 
ab-'b-'a 

ab-lb-lab 
ab-lb-1 

ab-' 
ab-'b-'ab 

ab-'ab-'a 
ab-lab 

5: ab-'b 6: 
ab-'a 

ab-'a 
ab-lb 

ab-'ab 
ab-lab'' 

ab'lb-1 
ab'lb2 

ab-lba 
ab-'b-2 

ab'lb'2 

b-'a 1b-'a 

b-'alb-11 

b-salb-'a'lb 

b'lalab 

b-1a1a1 

b-lalaa'lb 

b-'alb 
3: 

b-gala-1 

b'lala-lb 

b-lalb-lab 

b-'alb-'aa-1 

b-salb-'al 

b-'albb 

b-'alb-lb-1 

b-iab-' 

b-'ab-'b-'a 

b-'ab-lb-' 

b-lab-tab 

7: b-'ab-'ab 

b-'ab-1a 

b-'aab-1 

b-lab-lb 2 

b-'ab-lb-2 

123 

b-'a 1b'la 

b-'alb-la'1 

b-Talaa-'b 

b-'alga 

b-Talaa-1 

b-talab-la 

b-Talaa-'b 

b-'alb-'aa 

b''alb-faa-1 
4: 

b-'alb-'ab-'a 

b-'alb-'aa'lb 

b-lalbb'1 

b-lalba 

b-'alb-'a 

b-'albb-'b-' 

b-'alb-la 

b-salb-lb-la 

b-'alb-lab-' 

b-lab-lb-'a 

b-lab-'b-2a 

blab-1l 

b-lab-lab-la 

b'ab-'ba 
8: 

b-lab-la 

b-lab-lbab 

b-lab-'b-2 

b-lab-iab-1 

b-lab-2aab-1 



ab-1 

ab-lab-la 

ab-lb 

ab-lb-1 

ab-'ba 

ab-la 

ab-'aba 
9: ab-1(b-la)2 

ab-'a-lbab-1* 

ab-lab-' 

ab-lab 

ab-1b-la 

ab-labe 

ab-lb-lab 

ab-ib-iab-' 

ab-lab 

ab-lb-' 

ab-' 

ab-'a 

ab-lb 

ab-laba 10 . 
ab-lab-' 

ab-lb-lab 

ab-lb-la 

ab-lab 

ab-'a-1ba-lb* 

ab-labe 

b-'ab-'ab 

b-'ab-i 

b-lab-la 

b-'ab-lb 

b-lab-'aba 

b-'ab-'ab-' 

b-lab-'b g 
11 : 

b-'ab-'babb 

b-lab-'ba 

b-lab- b-lab 

b-'ab-lb-' 

b-lab-lb-'a 

b-lab-labe 

b-lab-ia-1ba-lb 

b-lab-1 b-'ab-lab-la b-lab-lb 

b-lab-lb-' b-lab-'ba b-'ab-la 

b-'ab-'aba* b-lab-lb-lab-'a* b-'ab-'abab 
12: 

b-'ab-'ab-1 b-'ab-lab b-'ab-'b-la 

b-lab-'a b-'ab-lab-' b-'ab-'b-'a 

b-lab-labs b-lab-lb-'ab b-'ab-'b-lab-'* 
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ab-la 

ab-'aab-la 

ab-'ab 

ab-'ab-' 

ab-laba 

ab-'aa 

ab-'aaba 

ab-lab-lab-la 13 
ab-'aa-'ba-lb 

ab-laab-' 

ab-saab 

ab-'ab-'a 

ab-labe 

ab-lab 

ab-lab-'ab* 

ab-lab-lab-' 

ab-'aab 

ab-la 

ab-lab* 

ab-'aaba 

ab-'aab-1 

ab-'ab-'ab* 

14 : ab-lab-' 

ab-lab-la 

ab-laab2 

ab-'aa-lba-'b 

ab-labe 

ab-'aba 

ab-laba 

b-lab-'al b-lab-'aab-'a 

b-lab-lab'' b-lab-'aba* 

b-lab-lab-lab-1* b-lab-laaba 
16 . b-'ab'laa-'ba-lb b-'ab'laab-' 

b-lab-lab-la b-lab-laba* 

b-lab-lab-la 
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b'ab-'aab 

b-'ab-la* 

blab-lab 

b-lab-'aaba 

b-'ab-'aab-1 

15: b-lab-lab-lab 

b-'ab-lab-1 

b'ab-'aab2 

b-'ab-laa-lbaa-lb 

b-lab-labe 

b-lab-labab 

b-lab-lab 

b-'ab-'aa 

b-lab-lab-lab-la 

b-'ab-saab 

b-lab-labe 



valence 5 

alb-lb-2 alb-lb-3 

alab alab-1 

alab-2 alba 

alb-'a aib'a 
1 alb-2a alb-3a 

albab alb-lab 

alb-tab alb-labab 

alb-'ab 2 alb -2 ab-' 

alb-lab'' alb-lab-2 

b-'alb-la 

b-'albab-la* 

b-'alb-lab-la 

b-'alb-lab-2 

b-'alb-labe 

b-'ab -2 ab-' 
b-labab-1 

b-1aab-'ab-' 

b'iaab-lab 

albab 

alb-lab 

alb-lab-1 
2: alb-labe 

alb-tab 

alb-lab-2 

alb-'abab* 

ab-lab'' 

ab-lb-lab 

ab-labe 

ab-'b-lab-2 
5: ab-'b-labe 

ab-lb-tab 

ab-lab-2 

ab-lab-lab-1 

ab-lab-'ab* 
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ab-lab-1 

b-'a 1b'la 

b-'alb-2a 

3 b-'alba 

b-'albab-la* 

b'lalb-'ab-2 

ab-lb-iab-1 6: 
ab-lb-lab-2 

ab-labab-1* 

b-lab-'a 

b-iab-'b -2 

b-'ab-'b-3 

7: b-'ab-lb-'a 

b''ab-'b-2a 

blab-lab-la 

b-iab-lab-2 



b-'ab-la 

b-'ab-lb -3 

b-lab-'b-'a 

b-'ab-'b-'a 

b-'ab-lb-3a 

b-lab-'aba* 
8: 

b-lab-lab-la 

b-lab-lab-2a* 

b-lab-lb-laba* 

b-lab-'b-lab-la* 

b-lababa* 

b-lab-ia(b-1a)2 

b-'ab-'a 

b-lab-'b-2 

b-lab-'aba 

b-lab-'ab-' 

11 : b-iab-lb-iab-ia* 

b-lab-la(ba)2* 

b-lab-'b 2a 

b-lab-lb-'abab 

b-lab-lb-lab-lab 

ab-lab 

ab-lab-' 

ab-labe 

ab-lab-2 

ab-labab* 9: 
ab-'abab-'* 

ab-lab-'ab* 

ab-'ababab* 

ab-lb-3 

ab-'(ab-i)2 

ab-lab 

ab-lab-' 

ab-labe 

ab-lab-2 

ab-'ab 3 

ab-'b-'ab 

10: ab-ib-iab-i 

ab-'abab* 

ab-labab-'* 

ab-labab2* 

ab-labab* 

ab-'b-'abab 

ab-lb-lab-lab 

b-lab-'a 

b-'ab-'b-2 

b-'ab-'b-'a 

b-'ab-'b-2a 

b-lab-laba* 

b-lab-lab-la 
12 : 

b'ab-lab2a 

b-lab-lab-2a* 

b-lab-'b-laba* 

b-lab-'ababa* 

b-lab-'abab-la* 

b-lab-'a(b-'a)2 

ab-lab 

ab-lab-' 

ab-labe 

ab-lab-2 

ab-'abab-'* 

13 : ab-lb-lab-' 

ab-'abab* 

ab-lab-'ab* 

ab-'(ab-1)2 

ab-lb-lab 

ab-'a(b-'a)2 
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ab-gab 

ab-labe 

ab-lab-2 

ab-'ab 3 

ab-lab-' 

14 : ab-'abab* 

ab-lab-'ab* 

ab-'(ab-1)z 

ab-'abab2* 

ab-'abab-'* 

ab-lab-' (ab)2* 

(b-ßa)2 

(b-'a )2ba* 

(b-'a )2bab-1* 

(b-'a )2b-la 

(b-'a )2(b-1a)2 

15: (b-'a )2b2a 

(b-'a)2b-2a* 

(b-'a )2bab2* 

(b-'a )2bab-'* 

(b-'a)2b-labab 

(b-'a )2 (b-'a )2b 

Thus we obtain the following possible relations: 

1. b-'ababa =1 (or b-lab-laba = 1) 

2. b-'abababa =1 (or b"lab-lab-'aba = 1) 

3. b-lab-lababa =1 

A. 3 Reference for §5.2.4, 

(b-'a)21 

(b-'a)2b-la 

(b-la )2ba* 

(b-'a )2b-2a* 

(b-ia)2b-2 

16: (b-'a )2b-lab-'* 

(b-'a )2b-'aba* 

(b-'a )2(b-'a)2 

(b-la )2b-2a* 

(b-'a )2(b-la)3 

(b-'a )2bab-'* 

Throughout this section, all restriction in A* is also applicable. 

A. 3.1 Possibilities for 4' 

We have two type of discs 

b' 
bib 4l 

a 

Now we will find the possible label for 4' of valence two and three. As usual, we mark 

* if they seem possible and leave unmarked if they are obviously not possible. Here 

we assume that a and b are distinct and a 54 b-' or V. 
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valence 2 

la lb al as ab-1 bl bb ba-1 

valence 3 

aaa* all ab'la* bbl 

bbb* a-'ll ab-11 bba-'* 

ala a-'ba bla-' 

alb a-'b-'l bll 

a-'lb bab-' 

bal 

Thus we need to consider the following relations: 

1. a3=1 

2. b3 =1 

3. a=b2 

4. b=a2 

A. 3.2 Possibilities for 

There are two possibilities for V-with label aaa or with label bbb. If I' is a 3-region 

with label aaa, then IF must have label of the form a-'btiVI or 1bVi for some words 

Wl and Vi. However if 4i' is a 4-region with label bbb, then' must have label of the 

form b-'aW2 or a1V2 for some words IV2 and V2. Up to equivalent we just consider 

when T has label a-lbW or lbV. 

b 

4b ýý 
ä' 

k; b 
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We need to consider up to valence five. From Appendix A. 3.1, we know that there 

is no possible label for W of valence two or three, and so we just consider when it has 

valence four or five. We mark * if they seem possible and leave unmarked if they are 

obviously not possible. Here we assume that a and b are distinct and a 54 b'1 or V. 

Also if o(b) = 3,4 or 5, then we assume that (b-'a)2 54 1 since otherwise hypothesis 4 

in Theorem 5.2.1 would be satisfied. 

valence 4 

a-ibll 

a-lbla 

a'iblb 

a-'ba-11 

a'1ba-lb 

a-lbaa 

lbll 

lbla 

iblb 

lba-'l 

lba-lb 

lbaa 

lba-la-1 

a-'bbl 

a-'bba 
T3: a-lbla 

a-'bla-' 

a-lba-la-i 

lblb 

1bba 
I'4 : lbla 

1b1a-1 

iba-la'' 

valence 5 

a-iblbl a-'bla a-lblb a-1bala-1 

a-lbalb-'* a-'bab-1l* a'ibab-ia-'* a-ibab-'b-'* 

a-lba-111 a-lba-'la-1 a-iba-'lb-'* a-'bab-'l* 

a-lba-ib-la-i* a-lba-'b-ib a-'ba-la-11 a-lba-la-'a-1 

a-lba-la-lb* a-'blla a-lblla-' a-lblaa 

a-lblba a-lblba-' a-lba-lla a-lba-lla-1 

a-lba-'ba a-'ba'lba-'* a-'bb-'la a-lbb-lla 

a-lbb-'la-i a-lb-'aa a-lbaaa a-1ba-la-'a-1 

lblbl lblba-' lball lbala-1 

lbalb-' lbab-'l lbab-la-'* lbab'2 

lba-'ll lba-lla-' lba-'lb-' lba-'b-'l 

'I'2: lba'lb-la-'* lba-lb-2 lba-21 lba-3 

lba-2b'1 lblla lblla-1 lbla2 

lblba lblba-' lba-lla lba-'la'1 

lba-lba* lba-'ba-' lba3 lba-3 
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a'lbbla 

a-1bla-2 

a-1bb21 

a-lbb-2a T3 

a-lbla-11 

a-'ball 

a-'bab-'a 

a-'bba-11 

a-lbbla-1 

a-lba-3 

a-' bb2a 

a-lblll 

a-ibla-lb 

a-'bala 

a-'bbl l 

a-lbba-lb* 

lbbla 

lbla-2 

1bb21 

lbb-'a 
T4: 

lbla-11 

lball 

lbab'la* 

lbba-11 

If o(b) =3 then we have to con 

1. bat = ab (or alb = ba) 

2. b2a = ab (or ab2 = ba) 

3, ab = ba 

lbbla-1 

lba-3 

lbb2a 

lblll 

lbla-lb 

lbala 

lbbll 

lbba-lb 

sider the 

a-'bba2 a-'bla2 

a -'bb-lag a'lbb-la-2 

a-'bb' a-lbb-21 

a -lblla a-lblbb 

a -'blb-11 a-lblb-la 

a -'balb* a-lbab-'* 

a-lbbla a-'bblb 

1bba2 1bla2 

lbb-'a2 lbb-'a-2 

1W 1bb-21 

1b11a lbllb 

1b1b-11 lblb-'a 

ibalb lbab-11 

lbbla lbblb 

following possible relations: 

However if o(b) =4 or 5 then we just have to check when ' has valence four. 

From the above list, there is no such possible label. 
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A. 3.3 Possibilities for 4)" 

The following are the list of label for regions of valence four: 

aaaa 

aall 

aala 

aalb 

aab'll 

aab-la 

albl lala 

alb-11 lblb 

alba ab-'ab-1* 

alb-'a 

a1 bb 

ab-lb-11 

ab-'b-la 

Since a3 =1 and a b-', b2 then the only possible label for (D" is ab-'ab-'. 

A. 3.4 Possibilities for xF1 and '2 

From the diagram we know that Wt's must have label of the form bbW for some word 

W. Here we assume that a0 b-1, b2 and o(b) > 6. The following are the list: 

valence 4 
bbbb bbb-lb-' bbll bbla -1 

bblb-' bbal bbbl bbba* 

valence 5 
bbbbb bbbll bblal bba-21 

bbb-3 bbbla-'* bblab-' bba-3 

bbllb bbblb-' bbla-11 bba-2b-1 

bbllb-' bbbal* bbla-2 bbb-lal 

bbla-lb* bbbab-1 bola-lb-1 bbb-'ab'1 

bbla-'b-' bbb-la-11 

bblb-2 bbb-la-2 

bbb-is-lb-1 

Thus we need to consider the following: 

1. a=b3 

2. a= b-3 
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If a= b3 then ab-lab-' =1 b4 =1 which is impossible since o(b) > 6. Note that 

a0 b-3 since otherwise a3 =1 b9 =1 and ab-lab'' =1 b$ = 1. Then b would 

be trivial. 

Thus there is no possible label for Ti of valence four or five. 
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Appendix B 

Reference for Chapter 6 

B. 1 Reference for §6.3.3 

B. 1.1 Possibilities for 4 

We only have one type of disc 

ia 

ab 

and we need to list down all labels for $ of valence up to five. As usual, we mark * 

if they seem possible and leave unmarked if they are obviously not possible. Since a 
has infinite order, then clearly b ý< a >. 

valence 2 

al as bb* 

valence 3 

aal alb alb-' aaa bbb* 

134 



valence 4 

aaaa a2la a-21a lala 

bbbb* b2al b-2a1 

albl alb-'l alba alb-la 

a-llbl a-llb-'l a-llba a -llb-la 

as-'ba as-lb-'a as-'bl as-'b-11 

a-la-'ba a-la-lb-ia a-'a-'bi a-is-'b-il 

valence 5 

aaaaa a3la a-3la alala a-llala 

bbbbb* b31a-' b3al blala b-'lala 

baa2a-i bla2a-' b2aaa-' b2lal 

baa-2a-' bla-2a-' b2aa-la-1 b21a-i 1 

baa21 bla21 b-2aaa-1 b-21a1 

baa -21 bla-21 b-2aa-la-' b -2 la-'l 

b-'aa2a-' b-'la 2a-' b2aal b2laa-' 

b-'aa-2a-' b-'la-2a-1 b2aa-'l b21a-'a-' 

b-'aa21 b-'1a21 b-2aaa-' b-21aa-' 

b-'aa-21 b-'1a-21 b-2aa-11 b-2la-'a-1 

Thus we need to consider when o(b) < 5. 

$. 1.2 Possibilities for ' 

Since IF shares an edge with 4D 

rt9ran 
Yý y, a_ 

W 

then must have label of the form aaW for some word IV. Below are the list for VP 

of valence up to six. 

valence 2 
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valence 3 

aal 

valence 4 

valence 5 

valence 6 

aaal aalb aalb-1 aaa-lb aaa-'b-1 

aaaal aaalb aaalb-' aaaa-lb aaaa-'b-1 

aalal aalb2 aalb-2 aaa-lb g aaa-lb-2 

aaa31 aaalb2 aalbi aalala aalalb 

aaa2lb aalb-2 aalb-3 aalbal aalalb-1 

aaa2lb-' aaaa-'b g aaa'1b3 aalb-'al aaa-lla-lb 

aaa2a-lb aaaa-'b "2 aaa-lb-3 aaa-'bal aaa-lla-lb-' 

aaa2a-lb-' aaa-lb-'al 

Since a has infinite ord er and o(b) =3 then cl early none of these is possible. 

B. 2 Reference for §6.3.4 

B. 2.1 Possibilities for 4 

Assume that a2 0 1. Then the list are 

valence 2 

al as bb* 

valence 3 

aal alb alb-' aaa* bbb* 

valence 4 

aaaa* a2la* a-21a lala 

bbbb* b2al b-2a1 

albl alb-'l alba alb-la 

a-'lbl a-'lb-'l a-'lba a-'lb-la 

as-'ba as-lb-la as-lbl as-lb-1l 

a-la-'ba a-la-lb-la a-la-'bl a-la-lb-11 
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valence 5 

aaaaa* a3la* 
bbbbb* b31a-' 

baa2a-1 bla2a-1 

baa-2a-' bla-2a-' 

baa21 bla2l 

baa-21 bla-21 

b-'aa2a-' b-'la 2a-' 

b-'aa-2a-' b-'la-2a-i 

b-la a21 b-11a21 

b-laa-21 b-lla-21 

a-3la 

b3a 1 

b2aaa-' 

b2aa-la-1 

b-2aaa-1 

b-2aa-ia-1 

b2aal 

b2aa-1l 

b-2aaa-1 

b-2aa-11 

alala* a-llala 

blala b-'lala 

b21a1 

b21a-11 

b-21a1 

b-21a-11 

b21aa-1 

b21a-'a-1 

b-21aa-1 

b-21a-'a-1 

Excluding FE6, then we need to consider when o(a), o(b) < 5. 

B. 2.2 Possibilities for ' 

Since IF shares an edge with ' 

., 
a 

ný ä 

Qý . 

then' must have label of the form aall' for some word TV. Below are the list for' 

of valence up to six. 

valence 2 

valence 3 

valence 4 

aal 

anal aalb aalb-1 aaa-'b aaa-lb-' 
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valence 5 

valence 6 

B. 3 

B. 3.1 

aaaal aaalb aaalb-1 aaaa-lb aaaa-'b-' 

aalal aalb2 aalb-2 aaa-lbg aaa-lb -2 

aaa31 

aaa2lb 

aaa2lb-' 

aaa2a-lb 

aaa2a-'b-' 

aaalb2 aalbi aalala 

aalb-2 aalb-3 aalbal 

aaaa-lb' aaa-'b3 aalb-'al 

aaaa-lb-2 aaa-lb-3 aaa'rbal 

aaa-'b-'al 

Reference for §6.4.3 

Possibilities for V 

We have three type of discs 

Qb 
aa 

cbb 

Note that in picture IF' we do not have 

iQý 
bý 

abbIý 

b 

Cýi, Vj 

q6 

1 

QG 

aalalb 

aalalb-1 

aaa-'la-lb 

aaa'lla-1b-1 

C (qc} 

bQ (oc} ýý 

qii Rc 

c Qc 

since otherwise picture P is not reduced. So the possibilities are: 

valence 2 
1(ac)-' la-' lb-1 

a(ac)-1 ab'' b(ac)-'* 
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valence 3 

cia clac clb ca-ll ca-lb* 

cb-'l cb-la* cb-iac bla-' bl(ac)-I* 

bal ba(ac)'1* bb(ac)-1 bacl* baca-'* 

C3 b3 

Thus we have to consider: 

1. b=ac 

2. ba=ac 

B. 4 Reference for §6.4.4 

B. 4.1 Possibilities for 4' 

We have two type of discs 

q ac 
iý 

cb Qý 

Note that in picture ]P' we do not have 

G1 IC ý4ý) ý Q' ý1 4G 

6. a (ac)s ý b' G' as ý 

since otherwise picture P is not reduced. So the possibilities are: 

valence 2 

la lac a(ac)-i cc 

valence 3 
bla-1 ba(ac)-' cla 

b1(ac)-1* baca-1 clac* 

bat 

Clearly ba(ac)-' and baca-' are not possible since o(b) o(c). Thus we just need to 

consider 
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1. a=c2 

2. b=ac 

B. 5 Reference for §6.4.5 

1 3.5.1 Possibilities for 4 

We have two type of discs 

A Qý GG 

GbI ac 

and all restrictions similar to Appendix B. 4.1 are applicable leere. 

crI 
cac)' 

44 (o Q lac )' Qci' 
r 

-I QG 
Qý1t 

b" G' QGAL 

Thus the list of possibilities are as in Appendix B. 4.1. However there is only one 

possibilities namely clac. 
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