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Abstract 

The main topics covered in this thesis involve the estimation of 
the Reproducibility of variables and the Comparability between two 
variables, with specific application to Exercise Testing in Coronary 
Care and in Sports Science. 

Reproducibility refers to the consistency of scores obtained from a 
given trait or characteristic of a given individual. Its importance 
in health and medical measurements is well recognized and scien- 
tific progress can hardly be achieved in the absence of reproducible 
data. Comparability between two variables arises when, as in Ex- 

ercise Testing, two different and distinct aspects of an underlying 
characteristic of an individual are measured at a succession of points 
during an exercise test. For example, one aspect may be a direct 
measure of breathlessness such as Ventilation while the other is 
an indirect quantitative impression of the subject's perception of 
his/her breathlessness. Any relationship between these two is likely 
to vary not only from subject to subject but even within repeat ex- 
ercise tests on the same subject. The aim of this part of the thesis 
is to quantify and estimate an overall measure of the relationship 
between the two aspects for the `typical exercise test' of the `typical 
individual' i. e. the Comparability of the two aspects/variables. 

The essential practical rationale for this is that, in Exercise Testing, 
the physiological measurement of breathlessness using a Douglas 
Bag is not a realistic option for a Coronary Care patient whereas 
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his/her subjective assessment of breathlessness and/or fatigue can 
be easily reported by the patient through the test without additional 
stress. The key question therefore is whether such a subjective 
assessment is, in general, an adequate `mirror' of the underlying 
physiological profile. 

Chapter 1 gives a brief background to Exercise Testing and its im- 

portance as well as a literature review of relevant topics including 

reproducibility, comparability, components of variance and the esti- 
mation of common correlation; the latter two are essential building 
blocks for the estimation of Comparability. 

Chapter 2 deals with the estimation of measurement reproducibil- 
ity of data from mixed effects models involving two variance com- 
ponents. Two approaches, one based on sums of squares and the 
other on Profile Likelihood are used for the separate cases of bal- 

anced and unbalanced data. This is carried out in two distinct 

contexts, one for simple replication and the other assuming an or- 
der effect to the replications. Applicability of the approaches to 
Exercise Testing data shows that while point estimates from both 

approaches are often identical, interval estimates from the Profile 
Likelihood approach tend to be narrower. 

Chapter 3 involves a simulation study to investigate and assess the 
performances of the two approaches. Data are simulated from a va- 
riety of underlying configurations and the performances then com- 
pared according to three statistical criteria. The results of this study 
again favour the Profile Likelihood approach. 

The estimation of Comparability between two variables is the other 
aspect of the thesis put forward in chapter 4 where, first of all, the 

estimation of a common correlation coefficient from a population 
of correlation coefficients is considered. Five different methods for 

point and interval estimation of a common correlation coefficient 
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are introduced. An illustrative example using data from an Exer- 
cise Testing procedure is used to compare the performances of the 
methods. 

Further investigation on the performances of the five methods was 
carried out by means of a simulation study across a variety of under- 
lying configurations. The overall results suggest the `Fisher method' 
as the best method of point and interval estimate of common cor- 
relation. 

The Comparability between two variables is then modelled, in chap- 
ter 5, by developing structures for `pooling' correlation coefficients 
across individuals and replicate visits. Illustrative examples from 
Exercise Testing are used to investigate the applicability of the mod- 
els on real data. A comprehensive simulation study across a variety 
of configurations was then carried out and the performances of the 
models assessed. The results show that the Multiplicative Fisher 

model in the One-Stage modelling and the Components of Vari- 
ance model in the Two-Stage modelling are the best approaches to 
estimating `Comparability'. 

Finally, chapter 6 outlines the conclusions from the previous chap- 
ters and suggests some ideas for further work. 
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Chapter 1 

General Introduction 

1.1 Introduction 

The Reproducibility of any form of measurement is an important is- 
sue in any scientific research. Cardiologists and sports scientists, for 

example, use physiological as well as psychological measures in Ex- 

ercise Testing to evaluate the functional performance and capacity 
of the cardiovascular system. Reproducibility studies are essential 
in such contexts to assess the validity and usefulness of these mea- 
surements. 

Further, it may be expected that any differences in physiological 
stimuli would result in changes in psychological responses to such 
stimuli. Therefore, it is important to assess the Comparability be- 
tween psychological and physiological measurements of, allegedly, 
the same underlying aspect of a subject. 

In this chapter, a brief description of different aspects of Exercise 
Testing is given. Measurement reproducibility is then defined and 
standard approaches to estimating reproducibility are discussed. 

1 
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The basic ideas involved in the comparability of variables through 
the use of correlation coefficients are outlined and finally, a brief 
layout of the thesis is presented. 

1.2 Exercise Testing 

1.2.1 Importance of Exercise Testing in Medical and 
Physical Sciences 

Physical activities are among the most common physiological stres- 
sors. `Exercise Testing'provides a distinctive and practical means of 
assessing the body's capacity for physical activity. It can define the 
functional capacities of a symptomatic patient as well as the limits 
of an athlete's performance (Skinner, 1987). Usually two categories 
of person are employed in exercise testing, athletes and those with 
a health problem (e. g. Coronary Heart Disease) unable to exercise 
but for whom assessment, perhaps, of their cardiovascular system 
is required, over a treatment period. 

Coronary heart disease continues to be the most frequent cause 
of death in economically developed countries. Participation in an 
`Exercise Testing' program allows the clinical status and exercise 
capacity of such patients to be assessed. 

Traditionally, cardiologists have used a maximum exercise tolerance 
test for: 

" disease prediction, prognosis and severity, 
" evaluation of surgical and medical treatments, 
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" assessment of functional capacity or maximum oxygen 
consumption, 

" exercise prescription (Naughton, et al, 1973) 

The reason for carrying out maximum exercise tolerance tests is the 
hope that coronary heart failure patients can attain a representative 
`maximum' effort which reflects the true limits of the cardiovascular 
system. From another point of view, although health, fun or fitness 

may result from exercise, the primary goal of most athletes is to 
improve their performance. Exercise scientists usually determine 
the specific characteristic of the activity in which an athlete is going 
to compete and decide on the details of the exercise program in order 
to develop the physiological potential of an athlete. 

1.2.2 Clinical Application of Exercise Testing 

An Exercise Test can be used to evaluate patients that currently 
have chest pain or sensations or cardiac abnormalities, patients with 
a history of myocardial infarction (MI) or chest pain, or patients 
with other findings tending to suggest of Coronary Heart Disease 
(CHD). In addition, the successful performance of a test after an 
acute myocardial infarction can be reassuring and is the first step 
in rehabilitation (Sivarajan, et al, 1977). An exercise test, which 
reflects the normal life of coronary heart failure patients and can 
evaluate symptoms, may be of value in long term monitoring of 
coronary heart failure patients. Its results may also be used to 
establish the risk of morbidity and mortality to compare potential 
treatment responses or to categorise the severity of heart failure. 

On the other hand, healthy individuals can undergo exercise testing 
to identify the individuals at high risk for CHD or even to evaluate 
the safety of participation in an exercise program or the performance 
of other activities (Skinner, 1987) 
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1.2.3 Variables Measured in Exercise Testing 

Patients with coronary heart failure often exhibit symptoms of dis- 
tress during exercise. Quantification of these during the exercise 
may be of value in the evaluation of both performance of the pa- 
tient and the efficacy of the prognosis. During the performance of 
an exercise test, a variety of physiological as well as psychological 
symptoms are often considered. 

The most common physiological variables measured at various fixed 
time points in an exercise test are: 

" V02 max: the amount of oxygen extracted from 
inspired air during a progressive Exercise Test. 
V02 max virtually defines the pumping capacity of the 
heart. Therefore it is of major importance in the evalu- 
ation of severity of heart disease and is an excellent 
indication of fitness level. 

" Heart Rate: 
" Ventilation: the volume of respiratory gas exchange dur- 

ing the exercise test. 

The self-assessed psychological variables measured at various fixed 
time points in an exercise test and measured on a subjective scale 
of 0 to 100 are: 

" Breathlessness, which is defined as breathless, out of 
breath, air hunger, unable to breath enough, and 

and 
" General Fatigue, which is described as overall tiredness 

or overall fatigue. 



Chapter 1. General Introduction 5 

1.2.4 Exercise Testing Protocols 

Exercise testing may be carried out by means of different devices 

such as treadmill, bicycle ergometer, step and arm ergo-meter. 

Among the most commonly used devices for exercise testing is a 
motor-driven treadmill (Figure 1.1). It provides flexibility because 
the speed of the belt and the slope of the treadmill can be varied 
either independently or simultaneously. 

ý_1,, 
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Figure 1.1: Treadmill 
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Before starting the maximal treadmill tests, subjects are famil- 
iarised with the treadmill and the use of the subjective scales. The 

psychological scales are displayed on a colour computer monitor in 
front of the subject while he or she exercises on the treadmill. At 
different stages of the test (e. g. at the end of specific time intervals) 
the subjects are asked to quantify their perception of breathlessness 

and general fatigue. 

During the exercise and at the specific time points, expired air was 
collected and, using an automated gas analysis system, analysed in 

order to measure the relevant respiratory variables. An Electrocar- 
diogram was used to monitor cardiac performance and in particular 
heart rate. 
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1.3 Measurement Reproducibility 

1.3.1 Definition and Its Importance 

Medicine, manufacturing industry and research in many sciences all 
require an ability to measure a characteristic under study. As dis- 
cussed by Shrout and Fleiss (1979), all measurements, particularly 
those made by humans, are usually subject to error. These errors 
can sometimes seriously affect statistical analysis and hence the in- 
terpretation of the results of any study. It is therefore not surprising 
that a great deal of time and effort is directed toward the develop- 
ment of new or `improved' and hence more reliable measurement 
and techniques. 

Measurement Reproducibility is the consistency with which a vari- 
able assesses a given trait or characteristic of a given subject. In 

other words, it is formally defined as the proportion of the total 
variation that is not attributable to random error or `natural' vari- 
ability. However, even if a measurement is precise, reproducibility 
in its use is required to provide a scientific evaluation. 

The importance of reproducibility of data in medical and health 

measurements is well recognized, and scientific progress can hardly 
be achieved in the absence of reliable assessment of the variables 
under consideration in any such problem. Failure to reproduce a 
series of measurements usually implies that the assessments are af- 
fected by some sources of variation other than that of the subject 
attribute under study. 

In clinical treatments, for instance, assessment of risk factors us- 
ing unreliable measurements can produce either overestimation or 
underestimation of the strength of association of different factors 
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(Goldberg, 1975). However, large sample sizes are no protection 
against the systematic biases that sometimes hide strong associa- 
tions or create associations when there are none and may result in 
mistaken treatment of patients (Shrout et al, 1987). 

In theory, the assessment of measurement reproducibility requires 
the use of independent measurement procedures. However, in prac- 
tice, completely independent measurements are rarely possible since 
replicate values are often affected by the previous measurements 
when assessed by human observers. 

The design of a reproducibility study clearly depends on the context 
in which the study is being undertaken, what sort of measurement 
instruments are being used or compared, what properties or charac- 
teristics are being measured and finally what sources of variations 
need to be estimated. On the other hand, it is not enough to choose 
an instrument and a measurement technique without monitoring 
and evaluating its performance during its routine use. In exercise 
testing, for example, physiological or psychological variables may 
be frequently measured to evaluate the performance of the patient. 
The measurements need to be monitored and evaluated in an equally 
rigorous way. 

There appear to be three main roles for reproducibility studies, these 

are: 

1. as an aid to instrument development (including training of in- 
terviewers, raters or examiners), 

2. as an aid to the choice of measurement instrument or choice of 
the condition in which the measurements are to be made, 

and 

3. as a way of monitoring individual performance . 
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1.3.2 Approaches to Measurement Reproducibility 
Estimation 

Reproducible measurements and reliable methodology are accepted 
as necessary to scientific research and hence, an appropriate use of 
statistically sound techniques for assessing reproducibility is cru- 
cially important. 

A `Reproducibility' experiment would typically involve a series of 
replicate measurements on a group of randomly chosen subjects 
from a target population. 

For the situations where the measurements are on a quantitative 
scale, the technique which is mostly used in the literature is based 

on `Components of Variance'. 

`Components of Variance' models may be traced back to the work 
of Fisher who introduced the term `variance' and `analysis of vari- 
ance' in the literature and implicitly employed variance component 
models (Khuri and Sahai, 1985). 

In the Components of Variance models, typically, some facets of the 
measurement process may be regarded as having fixed levels, whilst 
others may be regarded as having been selected at random from a 
population. 

1.3.2.1 Balanced Data 

A `balanced data' set is one in which there are the same number 
of replicates per subject. In this subsection different approaches to 
Components of Variance estimation are considered. 
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A: Analysis of Variance Approach 

10 

The traditional analysis of variance methods of estimating Com- 
ponents of Variance involve equating the sums of squares in the 
analysis of variance to their expected values, thereby formulating 
a set of equations with unknown parameters. The most desirable 
feature of these estimators is the ease with which their values can 
be estimated. The usefulness of the analysis of variance approach 
is impaired by the (frequent) occurrence of negative estimates of 
variance components, which naturally are nonnegative quantities. 

B: Likelihood Approach 

An alternative approach to variance components estimation is that 
of `maximum likelihood'. This approach is also based on assuming 
normality of the data and maximizing the likelihood function over 
the parameter space. Maximum likelihood approach has received 
little attention in the literature which may be mainly attributed to 
the complexity of computations associated with the solution of the 
likelihood equations. Hartley and Rao (1967) proposed a maximum 
Likelihood method for estimating Components of Variance. 

Miller (1980) showed that any balanced mixed model in which all 
effects, fixed or random, are nested has explicit maximum likelihood 
with and without the variance components constraints. However, 
explicit maximum likelihood estimators of variance components can- 
not always be obtained in balanced models (Khuri and Sahai, 1985). 
Furthermore, it has been shown that the balanced two-way crossed 
classification random models, with or without interaction, does not 
have explicit maximum likelihood estimators. 
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1.3.2.2 Unbalanced Data 

11 

`Unbalanced data' refer to a` reproducibility experiment' in which 
not all subjects have the same number of observations, e. g. due to 
drop-outs from the study. This subsection is concerned with the 
different approaches to components of variance estimation in the 
case of unbalanced data. 

A: Analysis of Variance Approach 

Fisher in 1925 extended analysis of variance to unbalanced data 
but did not propose the estimation of variance components. The 
analysis of variance method of variance components estimation for 
unbalanced data was later made clear by Tippett (1931). Winsor 
and Clark in 1940 proposed a so-called analogue of the analysis of 
variance method for unbalanced data. The essence of their work was 
a pair of quadratic expressions, similar to the analysis of variance 
sums of squares for balanced data, which were equated to their 
expected values and the resulting equations solved for the unknown 
variance components (Khuri & Sahai, 1985). 

However, Components of Variance estimation in the case of unbal- 
anced data is much more complicated and no known exact proce- 
dures exist. The main difficulty stems from the fact that in un- 
balanced data, the partitioning of the total sum of squares can be 
done in a variety of ways, hence, there is no unique way to write 
the analysis of variance table as in the case with balanced data. 
Furthermore, the sums of squares in an analysis of variance table 
for an unbalanced case, with the exception of the residual sum of 
squares, do not, in general, have "known" distributional properties 
and are not even independently distributed. 

Probably the basic paper dealing with the variance component es- 
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timation from unbalanced data is that by Henderson (1953). It 
established three different sets of quadratic form that could be used 
for components of variance estimation. All the three sets are closely 
related to the sums of squares of analysis of variance calculations 
for unbalanced data and may produce negative estimates. These 
three methods are known as Henderson's method I, II and III. 

In brief, Method I uses quadratic forms that are similar to sums 
of squares of balanced data. Estimates of variance components are 
then obtained by equating the quadratic forms to their expected 
values and solving for the equations for the unknown variance com- 
ponents. The method, however, is not suitable for mixed models, in 
which case it yields biased estimates. In addition, under the usual 
normality assumptions, the distribution of the estimators, except 
for the variance error which is usually proportional to a X2, cannot 
be specified in closed form. 

Method II is an adaptation of Method I that takes into account the 
fixed effects in the model. The data are adjusted by using some 
estimates of the fixed effects based on the observed data and then 
the method is applied to estimate the variance components from 
the adjusted data. The method, however, is not applicable when 
the mixed model contains interactions between fixed and random 
effects. Furthermore, as in Method I, no closed form expressions 
are available for sampling variances of estimators. 

Method III is the method which is applicable for both random and 
mixed models, even if interactions exist between fixed and random 
effects. This method is based on `borrowing' sums of squares from 
the analysis of fixed effects models. The procedure uses a sufficient 
number of reductions in sums of squares due to fitting various sub- 
models of it. These reductions are chosen so that their expected 
values are free from any mixed effects. Estimates of the variance 
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components are then obtained by solving the equations which result 
from equating these reductions to their expected values. Method III 
produces unbiased estimators, but may require extensive computa- 
tions. On the other hand, sampling variabilities by this methods 
can be calculated numerically, but specific closed form expressions 
are not available. 

A complete description of Henderson's methods with its merits and 
demerits are given in Searle et al, (1992). 

However, several authors noted that the analysis of variance meth- 
ods of estimation of components of variance, including Henderson's 
methods, are deficient in the sense that they can produce negative 
estimates. They proposed a number of alternative approaches which 
include, replacing the negative estimated values by zero, using al- 
ternative methods of estimation or changing the design of the data 
(Smith et al, (1984), Khuri et al, (1985), Searle (1987) and (1992)). 

B: Likelihood Approach 

Likelihood procedures for the estimation of the variance compo- 
nents and the fixed effects in a general mixed model were consid- 
ered by Hartley and Rao (1967). The solution of the likelihood 

equations is usually obtainable via iteration, which in some cases 
can be computationally cumbersome because of the need to in- 

vert a variance-covariance matrix of large order. Hemmerle et al, 
(1973) discussed the Newton-Ramphson algorithm and other itera- 
tion methods which have been proposed for computation of maxi- 
mum likelihood estimates. 

Searle (1987) and (1992) provide an up-to-date survey of modern es- 
timation methods for different models. Other methods of point and 
interval estimation of components of variance, including minimum 
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norm quadratic unbiased estimation, minimum variance quadratic 
unbiased and restricted or residual maximum likelihood are dis- 
cussed in Searle et al. (1992). Readers are referred to Khuri and 
Sahai (1985) for a review of this and a comprehensive review of 
further developments in the area of variance components. 

1.4 Comparability of Variables 

The problem of combining information from independent studies 
permeates almost all fields of science (Ölkin, 1995). In many areas 
of scientific researches, it may be useful to assess the relationship 
between continuous variables and correlation coefficients have been 
used extensively as an index of the linear relationship between vari- 
ables. In Exercise Testing, for example, physiological and psycho- 
logical variables will be measured at a number of fixed time points 
through the test, and this may be repeated in different occasions. 
Interest focuses on the link between these two variables. 

Tests and inferences for the correlation coefficient are frequently 
based on the assumption of approximate normal distribution for 
Fisher's z-transformation (Kraemer, 1975). Kraemer introduced a 
test and confidence interval procedure for a single sample correla- 
tion coefficient, and showed that there is a little difference in results 
whether one use the z-transformation or the procedure described in 
her paper. She used the likelihood ratio test to test the homogene- 
ity of correlation coefficients from k independent bivariate normal 
data, and showed that the x2 approximation to the likelihood ratio 
statistic is reasonable even for relatively small sample sizes. 

Tests of homogeneity of independent correlation coefficients based 

on the simple forms of the normal and t approximation to the dis- 
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tribution of the correlation coefficients in terms of robustness, size, 
and power were under more investigation in Kraemer (1979). She 
demonstrated that neither procedure was totally robust under bi- 
variate non-normality. Furthermore, it showed that the procedure 
based on the t-distribution appeared somewhat biased but more 
powerful. However, neither the difference in bias or power were of 
magnitude to make a difference in practical application. 

Kowalski (1972), with the aid of simulation and density estimation 
techniques, concluded that the distribution of estimates of correla- 
tion coefficients may be quite sensitive to non-normality and that 
normal correlation analyses should be limited to situations in which 
the data is (at least very nearly) normal. However, it showed that 
the distribution of sample correlation coefficient need not agree well 
with normal theory when the population correlation coefficient is 
zero. 

Whilst the necessity of combining independent statistical results is 
present in different areas of research, papers on common correlation 
coefficient are quite few in number. 

Viana (1980) described a so-called Z-additive method for combin- 
ing independent sample correlations from bivariate normal data and 
suggested a combined estimate of the correlation parameters based 

on an approximation to Olkin and Pratt's (1958) unbiased estimator 
to correlation coefficient. In this procedure, both cases of availabil- 
ity of the sample correlation coefficients or availability of the original 
paired data were considered. Furthermore, a test of homogeneity of 
the data, based on a Chi-Squared statistic, was discussed. 

Bushman and Wang (1995) used a weighted average of sample corre- 
lation coefficients to estimate the population correlation coefficient 
and suggested Fisher transformation of correlation coefficients as a 
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remedy to solve the problem with the complicated distribution of 
correlation coefficients. 

1.5 Chapter Layout 

The major aims of this thesis are to estimate 
i) - measurement reproducibility, and 
ii) -a summary measure of relationship between physiological 

and psychological measurements, 
across subjects, visits and time points into visits. 

The breakdown by chapter is as follows: 

Chapter 2 concerns two approaches of point and interval estima- 
tion to measurement Reproducibility. It deals with the cases of a 
simple replication model and a replication model with an order ef- 
fect. Real examples are given throughout the chapter to illustrate 
the application of the two approaches. 

Chapter 3 investigates the performance of the two approaches of 
estimating measurement reproducibility through a simulation study. 
This study covers the performance of the two approaches to bal- 

anced as well as unbalanced data under the two situations (i. e. 
replication and order effect replicates). Three statistical criteria 
are used to compare the performance of the two approaches. 

Chapter 4 contains two parts. The first part introduces five meth- 
ods of point and interval estimates of Comparability under the as- 
sumption that this involves a common correlation. A real example 
is used to illustrate the applicability of the methods. In the second 
part, performance of the five approaches of estimating a common 
correlation is investigated by a simulation study. This study is car- 
ried out under a number of underlying configurations. 
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Chapter 5 deals with modelling Comparability in the more realis- 
tic context where the correlation coefficient between two variables 
under consideration will vary not only between tests on the same 
subject but also across subjects. The Comparability will be, in a 
sense, the `average correlation' for the `typical test on the typical 
subject'. Two models for the cases of the a one-stage process (i. e. 
assuming no intra-subject variability in the correlation) and three 
models for the case of a two-stage process (i. e. allowing for intra- 
subject variability as well as inter-subject variability in the corre- 
lation) are proposed. Applicability of the models are illustrated by 

real examples. To examine the performance of the models, a sim- 
ulation study is carried out. Three statistical criteria are used to 
compare the performance of the models. 

Finally Chapter 6 summarizes the findings of this thesis and points 
out some directions for possible further work. 



Chapter 2 

Estimating Measurement 
Reproducibility: The Different 
Approaches 

2.1 Introduction 

Most measurements in medical sciences involve measurement vari- 
abilities/errors from a variety of sources, and judgements based 
on these measurements are usually plagued by this problem. On 
the other hand, measurement variabilities/errors can seriously af- 
fect statistical analysis and in particular interpretation of the data, 
so, it is important to assess the amount of such variabilities/errors 
by means of a reproducibility index. 

In Sports Sciences, for instance, physiological variables such as ven- 
tilation, heart rate and etc. as well as psychological variables like 
breathlessness or fatigue may be measured at different time points 
during an Exercise Test and the test may be repeated at a num- 
ber of visits. In order to assess the performance of a patient or 

18 



Chapter 2. Estimating Measurement Reproducibility: The Different... 19 

an athlete, one may be interested in estimating measurement vari- 
abilities to evaluate the reliability of the measurements. Imprecise 
estimation of variabilities of these data, can lead to serious bias in 
the reliability estimation and weaken the efficiency of a scientific 
judgement. 

In this chapter, the estimation of measurement reproducibility of 
data from mixed effects models involving two variance components, 
is investigated using ANOVA-based methods and Profile Likelihood 
methods for both balanced (equal number of observations per indi- 
vidual) and unbalanced (unequal number of observations per indi- 
vidual) data sets. This is carried out for two different models, one 
involving simple replication across one of the variance components 
while the other assumes an order effect to the replications e. g. due 
to learning or familiarisation with the Exercise Testing procedure. 

A: ANOVA-based Approach 

2.2 Balanced Data 

2.2.1 Simple Replication Model 

2.2.1.1 Basic Model 

Suppose for each of a random sample of N individuals from a popu- 
lation of interest there are T replicate observations, the model that 
will be used is: 

Xzj 
-- /2 + Ta + ej(i) ý2.1) 



Chapter 2. Estimating Measurement Reproducibility: The Different 
... 20 

i=1,2,..., N 

where 

XZj is the jth observation of the ith individual, 
µ is a general mean, 
rj is the `effect' of the ith individual, 

and ej(i) is replicate variability. 

Further 

TZ and ej(i) are assumed to be independent and normally 
distributed both with mean 0 and variances O'B 
and awl respectively, 
i. e. 

)Vi, j. TZ ̂N(0,0 1) and ej (ti) ' N(0, a, 

2.2.1.2 Definition of Measurement Reproducibility 

Measurement reproducibility of a variable (e. g. VAS on Fatigue) 
is in fact the consistency with which the variable assesses a given 
characteristic under `identical' conditions. Its importance in med- 
ical contexts is well recognized in that reliable medical decisions 

can hardly be expected in the absence of reliable assessments of the 
variables on which such decisions are based. The measurement re- 
producibility of a variable, denoted by p, is defined as the ratio of 
the between individual variance to the total variance (i. e. between 

plus within individual variance) (Dunn, G. 1989) . 
For example in 

the model given by 2.1, 
Var(rr) 

. 2) (2.2) P 
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The assumptions on the model in the previous section imply that, 

Var(-rz) = QB, 

and 
Var(XZj) = Var('rr) + Var(ej(i)) = o, 2+4 

Hence the measurement reproducibility is 

U2 

O' 2 +o. 2 
(2.3) 

Bw 

2.2.1.3 Point Estimation of Measurement Reproducibility 

Two `sums of squares' that are the basis of the analysis of variance 
of balanced data are 

N 
SSB =T E(XE. - X.. )2 (2.4) 

i=1 

NT_ 
SSW =L> (Xij -Xi. )2 (2.5) 

i=1j=1 

which are the between individual sum of squares and within individ- 
ual sum of squares with (N -1) and N(T - 1) degrees of freedom, re- 
spectively. Between-subject mean square and within-subject mean 
square are defined as: 

= 
SSB SSW 

MSB (2.6) and MSW = N-1 N(T-1) 

while the Expected Values of these mean squares are 
N_ 

E(MSB) = 1V 
T 

E[E(Xi. - X.. )2] = T4 + 4ý2ý (2.7) 
-1 i=1 

NT_ 
E(MSW) =1 E[> (X - Xa. )2] = Qw (2.8) TN- N i=l j=l 
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can be derived Based on these, unbiased estimators of 42, r and 0-2 
from the equations 

MSW = 
Awl and 

giving 
2 O'B 

MSB - MSW 
T 

MSB = TSB + ayv (2.9) 

and A`y = MSW (2.10) 

Finally, by using the definition of the measurement reproducibility 
in the previous section, this can be estimated by 

or B 

O'2 +U2 

2.2.1.4 Interval Estimation of Measurement Reproducibility 

In the case of balanced data, sums of squares divided by their ex- 

pected mean squares are, under normality assumptions, distributed 

independently with x2 distributions, 

i. e. SSB 2 (2.12) 
TSB + QW 

N X(N-1) 

independently of 
SSW 2 (2.13) 

2 X[N(T-1)] 
01W 

Hence, 
(T) /(N 

- 1) 

N FIN-1 N(T-1)} 
(2.14) 

(-Ssw-) /[N(T - 1)] 

i. e. MSB/(TaB + O'W) 
, ý, FIN-1, N(T-1)} 

(2.15) 

MSW/(a? v) 
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Thus, on defining appropriate lower and upper points of the F- 
distribution as FU and FL, by 

FL - F{N-1, NT-N ; a/2} 

FU = FIN-1, NT-N ; 1-a/2} 

one can produce a 100(l - a) % confidence interval using the result 
2 

Pr{FL< ou'F2 <FU}=1-a (2.16) 
TQB+UW 

where F= MSB/MSW and hence (TQB + 4)/44 
Now, after some algebra, one can have 

F1F 
-1 

Pr F° 
T<1p< 

FL 
T=1-a 

(2.17) 
-p 

where p= ýB as usual. Hence a 100(1- a)% confidence interval 
for p is given by 

F1P 
7° FL (2.18) 

T+FU -1, T+i-1 

where T is number of replicates per individual. 

2.2.1.5 A Specific Application 

To illustrate the above model, data from 12 individuals undergoing 
a series of exercise efforts were considered, where their Ventilation 

using a Douglas Bag, was measured at distinct 2-minute intervals 
during 8 different exercise tests/visits (i. e. N=12 and T-8). For 
this example data from a specific time point (i. e. 6 minutes into the 
test) is chosen. 
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Figure 2.1: Ventilation across each of the 8 visits (labelled in the plot by the 
order `number' of the visit) for each of the 12 subjects. 

Figure 2.1 shows a scatterplot of these data for each of the 8 visits 
and for all of the 12 individuals. 

Table 2.1 gives point estimates of within and between individuals 
variabilities as well as point and interval estimates of measurement 
reproducibility of the data. 

&B äW p 95% C. I. for p 

5.03 1.95 0.87 (0.73 , 0.93) 

Table 2.1: Point estimates of components of variance and point and interval 
estimates of measurement reproducibility for the Ventilation data 
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2.2.2 Replication Model with an Order Effect 

2.2.2.1 Model 

Since any set of exercise tests is likely to have a familiarisation or 
learning effect, it is natural to model this in order to ascertain its 
magnitude as well as to remove its effect from the assessment of 
measurement reproducibility. 

In this case suppose, for each of N individuals through T (ordered) 

replicates, there is a learning order (or visit) effect giving rise to the 
following model, 

Xzj 
_ p+Tz+ßj+e. 9(z) 

i=1,2,..., N, j=1,2,..., T. (2.19) 

where 

XZj is the j" observation of the ith individual, 

p is an unknown general mean, 
TZ is the difference of the ith individual from p, 
f3 is the fixed order effect of the jth replicate 
and ej(i) is the measurement error. 

Further, 

Tz and ej(i) are independent and distributed randomly as 
normal distributions both with mean 0 and variances a2 

and 4, respectively, 
i. e. 

TZ ̂' N(0, a2) and ej(ti) - NCO, 42 v) 

also, 1 ß? = 0. 
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2.2.2.2 Point Estimation of Measurement Reproducibility 

The only difference between this case and the simple replicate model 
(i. e. section 2.2.1.3), is the form of SSW and the resulting degrees 
of freedom which is 

NT 

SSW =E (Xzj -_ i. - 
_. 

j +_ 
. 
)2 (2.20) 

i=1j=1 

with (NT-N-T+1) degrees of freedom. 
The relevant mean square in this case is 

MSW = 
SSW (2.21) 

NT-N-T+1 
The ANOVA-based method of estimating components of variations 
is based on equating observed and expected values of mean squares 
and solving for the estimators. As before, 

MSB=Tc +4, 

and since 

(2.22) 

NT 
E(MSW) = NT -N-T1 

E[E (Xj-Xi -X j+X�)2] = U2 `F i=l j=1 
(2.23) 

so, 
_ MSW = ýw (2.24) 

and then, 

B_ 
MSB -T MSW 

and 4= MSW (2.25) 

Again, using the definition of measurement reproducibility, this can 
be estimated by 

2 UB 

QB + ýw 
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2.2.2.3 Interval Estimation of Measurement Reproducibility 

Similar to section 2.2.1.4, if one define upper and lower points of a 
different F-distribution as FU and FL, 
i. e. 

FL = FIN-1, NT-N-T+1 ; a/2} 

FU= F'{N-1, NT-N-T+1 ; 1-a/2} 

a 100 (1 - a) % confidence interval for the measurement reproducibil- 
ity is: 

F1F-1 
F° TL (2.26) 

T+FU-1 ' T+FL-1 

where F= MSB/MSW = (TTB + mow)14, 

The difference between this case and interval estimation for the Sim- 

ple Replicate Model (section 2.2.1.4), is the form of MSW and the 
second degrees of freedom (NT-N-T+1) of the resulting F-distribution. 

2.2.2.4 A Specific Application 

To illustrate the model with an order effect, each of the 12 individ- 

uals underwent 8 separate exercise tests(visits), where for each in- 
dividual Breathlessness on a Visual Analogue Scale(VAS) was mea- 
sured at distinct 2-minute intervals during the test. For this example 
data from a specific time point (i. e. 12 minutes into the test) with 
a significant learning effect through visits (P < 0.05) is chosen. 

Figure 2.2 shows a scatterplot of these data for each of the 8 visits 
and for all of the 12 individuals. 
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Figure 2.2: VAS for Breathlessness across each of the 8 visits (labelled in the plot 
by the order `number' of the visit) for each of the 12 subjects. 

ýB ýw P 95% C. I. for p 

No visit effect 20.70 13.11 0.71 (0.52,0.88) 

Visit effect 20.93 11.05 0.78 (0.61 , 0.91) 

Table 2.2: Point estimates of components of variance and point and interval 
estimates of measurement reproducibility for the VASB data 

Point estimates of within and between individuals variances as well 
as point and interval estimates of measurement reproducibility of 
the data for the two situations of without and with considering the 
learning/visit effect are given in Table 2.2. 

For these data, when the learning/visit effect is correctly included 
in the model, point estimate of measurement reproducibility signif- 
icantly increases from 0.71 to 0.78 and the interval estimate gets 
slightly narrower. 
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2.3 Unbalanced Data 

2.3.1 Simple Replication Model 

2.3.1.1 Model 

Since there may actually be cases where individuals have differ- 
ent numbers of replicates/visits due to circumstances either uncon- 
nected with the tests such as holidays, illness etc. or in the case 
of exercise tests subjects may have stopped the test `early' due to 
fatigue, one should consider the situation of unequal numbers of 
observations for each of N individuals. The appropriate model for 
this case would be identical to that considered previously, except 
that 

Xzj = It + Tz + ej(i) , 

112,. . .7N, j=1,2, ... , T2 (2.27 

In this model Ti is the number of observations observed on individual 
i. Further let S= EN Ti be the total number of observations across 
all subjects. 

2.3.1.2 Point Estimate of Measurement Reproducibility 

The `sums of squares' for unbalanced data are defined as: 

SSB = Ti(Xti. - X.. )2 =Z Ttixi - SXr (2.28) 
N Ti N Ti N 

_ SSW=Eý. (Xij-Xi)2=j: j: Xz-LT iXi (2.29) 

i=1j=1 i=1 j=1 i=1 

these being the same as in 2.2.1.3 for balanced data, except for 
having Ti in place of T. 
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The expected values of within-individuals and between-individuals 
mean squares are: 

N ý+ýýZ 2 

E(SX2) = SE + 
ýti-S 

+ 

N 
= Sµ2+abLT2/S+Ov 

i-1 

NX 
E(E ) 

i=1 

and 
I ni 

EXý E(E ) 
i=1j=1 

From these results one has 

N2 

_ liE{µ+Tz+ei} 

= sP2 + S4 + Now 

N Ti 

i=lj=1 

= S(µ2 + UB + Ow)" 

E(MSB) =E 
(SSB 1 

1 
(S -E 12/S)0, B + (N - 1)c2 

(N - i) 

E(MSW)=E 
SSW 

_U2 S-N 
and by equating observed mean squares with their expected values, 
unbiased estimators of UB and 4,, can be found as follows 

_ 
MSB - MSW (2.30) B (S - EN 1 T2/S)/(N - 1) 

UW = MSW. (2.31) 

Hence a `natural' estimate of p would be 
2 

p=2+2 (2.32) 
BW 
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2.3.1.3 Interval Estimation of Measurement Reproducibility 

In unbalanced data, just as in the balanced case, SSW r,, d Xýs_N) and 
so a confidence interval for 4, is easily derived in the same manner 
as in balanced data, 
i. e. 

Pr 2 
SSW 

< 0.2 <2 
SSW 1=1-a 

(2.33) 
x{(S-N); 1-21 X{(S-N); 21 

where X2 1- 22} and X{(S-N); 
2} 

are upper and lower bounds of 
the X2-distribution. But ECM 

B) does not follow any X2-distribution 
and there is no simple closed distribution or a multiple of it. So, 
despite independence of SSW and SSB, one could not provide a 
simple closed form of confidence interval for and hence p. 

W An exact confidence interval for p was proposed by Wald(1940) as 
follows: 

01W 2 ýW Ti (2.34) Wi 
Var(X i. ) UB + Div/7i 1+ 7'iß] 

where 

ýl =B=p (p 1) (2.35) 
ýW 1-P 

(since p= 7n 

Now define, 

F'*(q) = 
h(77) (2.36) 

(N - 1)MSW 

where, 

MSW = 
EN141(x i tij -Xti)2 

S-N 

and 
NN WiXi 2 

h(, q) =E Wi X. -- %-N (2.37) 
i=1 

Ej- WZ 
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Further, it can be shown that F*(ii) "' F{(N-1), (s-N)}" 
Hence 

FL < 
h(77) 

< FU, (2.38) 
(N - 1)MSW 

where FL and FU are lower and upper 2 limits of the F-distribution 

with (N-1) and (S-N) degrees of freedom, respectively. 
From the above equation we have, 

[(N - 1)MSW]FL < h(? 7) < [(N - 1)MSW]FU 

Wald(1940) showed that h(, q) is a decreasing function of 77, so, con- 
fidence limits for 77, rjL and reu, are based on the solution of the 
following two equations, 

and 

h(71) _ [(N - 1)MSW]FU 

h(77) = [(N - 1)MSW]FL 

Hence the corresponding induced 100(l - a) % confidence interval 
for the measurement reproducibility, p, is 

ýLýu (2.39) 
1+7JL 11 +ýU 

2.3.1.4 An illustrative example 

To illustrate the model with unequal number of observations per 
each individual, data from a set of separate exercise tests on a sam- 
ple of 12 individuals are considered, where their V02, obtained from 

use of a Douglas Bag, were measured at distinct 2-minute intervals 
during the tests. For the case where individuals may have different 
numbers of replicates/visits, data from a specific time point (i. e. 16 
minutes into the test when in fact some ̀ less fit' individuals will have 
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dropped out) is selected. In this time point there are unequal num- 
ber of observations per individual and the effect of replicates/visits 
is not significant(P > 0.05). 
Figure 2.3 shows a scatterplot of these data for each of the 12 indi- 
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Figure 2.3: V02 for each of the 12 individuals and across different visits (labelled 
in the plot by the order `number' of the visit) for each individual. 

viduals across different visits. 
Point estimates of within and between individuals variabilities as 
well as point and interval estimates of measurement reproducibility 
of the data are given in Table 2.3 

. 

QB vW p 95% C. I. for p 

0.35 0.14 0.84 (0.62 
, 0.91) 

Table 2.3: Point estimates of components of variance and point and interval 
estimates of measurement reproducibility for the V02 data 
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2.3.2 Replication Model with an Order Effect 

2.3.2.1 Model 

In measurement reproducibility where an order effect of replicates 
(visits) has to be taken into account, the model is, 

Xi =µ+ Ti + 1jß + ej(i), (2.40) 

i=1,2,..., N, j=1,2,..., 1, 

In this model Ti is the number of observations on individual i. 

2.3.2.2 Point Estimation of Measurement Reproducibility 

For the above model an unbiased estimator for cr? v is, 

SSW 
Olw = S-N-T+1 

while a possible estimator for UB) based on a similar argument to 

equating sums of squares in the simple replication model case, is 

2 SSB SSW 
olB (S-EN1T2/S)/(N- 1) N- 1 S-N-T+1 

(2.41) 

where 
T is the maximum number of replications for an individual. 

i. e. T= max Ti 
1<i<N 

In the above formulas, 

N Ti 

SSW =E ý(Xzj - Xi. - X,; +X) 
i=lj=1 
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and SSB is the sum of squares due to ri (adjusted for µ ). 
i. e. if SSW0 is the residual sum of squares under the model 

X ij - IL + Ti + ej(i) 

and SSW,, the residual sum of squares under the model 

xii = /2 + Ti + ßj + ej(i ) 

SSB in the above formula will be 

SSB = SSWo - SSW, 

35 

Again using the definition of measurement reproducibility in section 
(2.2.1.2), an obvious estimator of p is 

2 0 
p=B (2.42) 

UB + orw 

2.3.2.3 Interval estimation of measurement reproducibility 

To obtain an interval estimate for p, use a similar method as that 
obtained by Wald for the simple replicate model, 
i. e. let 

Wti -° N' _- Ti (2.43) 
Var(Xi. ) oB +0,2 /Ti 1-F- Tire 

where 
O'B 

2 
P (2.44) 

ýw 1- p 

Now by defining, 

F**(77) = 
h(71) (2.45) 

(N - 1)MSW 
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where, 
__ 

MSW = 
EN 1 I: Ti 1(Xii - X. - X. j +X-)2 

S-N-T+1 
with 

_i. 2 N ýN 
h(77) _ Wi 

(Xi. 
- 2-1 

WiX 
(2.46) 

i=1 Ej 1 
Wi 

Now supposing that F**(rj) - F{(N_1), (s-N)} for all 77, 
one can have 

FL 
h(77) 

< Fug (2.47) 
(N -1)MSW 

where FL and FU are lower and upper 2 limits of the F-distribution 

with (N-1) and (S-N) degrees of freedom, respectively. 
From the above we have, 

[(N - 1)MSW x FL, (N - 1)MSW x Fu] (2.48) 

as an approximate 100(1 - a)% confidence interval for h(77) and 
hence since h(n) is an decreasing function of rq then an approxi- 
mate 100(1- a)% confidence interval for q is (ýL, 7 u) which are the 

solutions of 
h(77) = [(N -1)MSW]FU 

and h(q) = [(N - 1)MSW]FL , respectively, 

Hence a 100(l - a) % confidence interval for the measurement re- 
producibility, p will be 

1 ýL 11U (2.49) 
1+rU 

2.3.2.4 A Specific Application 

To illustrate the model with an order effect for the case of unequal 
number of observations per each individual, a sample of 12 individ- 

uals under exercise testing were chosen, where their Breathlessness 
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on a Visual Analogue Scale (VASB), were measured at distinct 2- 
minute intervals during the different visits. As an example where 
all individuals may not have the same number of replicates/visits, 
data from a specific time point (i. e. 18 minutes into the test when 
in fact some `less fit' individuals will have dropped out) is consid- 
ered here. In this case there is a significant effect of replicates/visits 
(P < 0.05). 
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Figure 2.4: VAS for Breathlessness across each of the 8 visits (labelled in the plot 
by the order `number' of the visit) for each of the 12 subjects. 

Figure 2.4 shows a scatterplot of these data for each of the 8 visits 
and for all of the 12 individuals. 

1 1 QB 
J 

&� } 
____ 

p 95% C. I. of p 

No visit effect _____ 24.01 _ __ 12.94 0.77 (0.48 
, 0.88) 

Visit effect 23.74 11.57 0.81 (0.54,0.91) 

Table 2.4: Point estimates of components of variance and point and interval 
estimates of measurement reproducibility for the VASB data 
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Table 2.4 gives point estimates of within and between individuals 

variabilities as well as point and interval estimates of measurement 
reproducibility for the two situations of without and with taking 
into account the effect of learning/visit. 

Obviously, in this case similar to that for an equal number of ob- 
servations per individual (example 2.2.2.4), when the learning/visit 
effect is correctly included in the model, point estimate of the mea- 
surement reproducibility increases from 0.77 to 0.81 and the interval 
estimate gets slightly narrower. 
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B: Profile Likelihood Approach 

2.4 Profile likelihood: a general definition 

Suppose that 0 is the vector of unknown parameters in a model. We 
are usually not interested in all the components of 0, but rather a 
subset of them. If we define a1-1 mapping from 0 -+ 0 on such 
that Oz = gi (0), i=1,2, ... , K, we want to make inference about 
01, where, 

¢ý _1 (2.50) 
02 

such that 01 is the vector of interest parameters and 02 is the vector 
of nuisance parameters. One method of eliminating the nuisance 
parameters is to maximize over them holding cal as fixed, and define 
the profile likelihood for 01 as, 

PLik(cb1; X) = max Lik(q 1, q52; X) 
2 

= Lik(ý1, qc2(g1); X) (2.51) 

Then the log profile likelihood is 

logePLik(ý1; X) = log, Lik(ý1,2(di1); X) (2.52 

and the relative log profile likelihood is, 

rpl(O1; X) = log, Lik(ý1, ý2( 
1); 

X) - logeLik(ciil, q2; X). (2.53 

An 100Q% (Q < 1) likelihood interval estimate for 01, based on 
profile likelihood, is the set of q 1-values 

for which, 
{ýl : rpl(g1; X) > logeQ} . 

(2.54) 

If it is possible to make the standard likelihood assumption that 

_2rpl(ý1; X) ,,, X(1) (2.55) 
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40 

then a likelihood interval with approximate 100(1- a)% confidence 
would be 

[: -2rpl(ý1; X) X{ 1; (1_a)}1 (2.56) 

i. e. taking logeQ = -2X{1; (1-a)} give a 100Q% likelihood interval as 
having roughly 100(l - a) % confidence. 

2.5 Balanced Data 

2.5.1 General Model 

Here a more convenient way of writing the model used in section 
2.1 is 

X= Aµ + UT +6 (2.57) 

where for N individuals and T, replicates per individual, also let 
S= TN be the total number of observations, 
Thus here 

X is an Sx1 vector of observations; 
A is the Sx (T + 1) design matrix of zeros and ones; 

µ is an appropriate vector of one or more parameters 
depending on the particular model under consideration, 

e. g. µ= (µ) for the model 2.1 where 

µt = Gµ7 oil 
... 7 

PT) 

for the visit effect model of 2.2.2.1; 
U is an SxN known vector of zeros and ones of the 



gx 
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form 
1T 0 ... 0 
0 IT ... 0 

U= 

00... 1T 

where 

It =(1,1,..., 1) 

i. e. a t-vector of 1's; 
and z is an Nx1 vector of individual random effects 

Ti 

72 

TN 

Further 

e is an Sx1 vector of error values, with the assumptions 
that r and e are distributed independently with multivari- 
ate normal distributions of mean 0 and variances a2 IN and 
o? vls, respectively, 
i. e. 

?- MNN(0 , Q2IN), MNs(Q, o IS) 

Applying these assumptions, one has 

E(X) = Aµ (2.58) 

Var(X) = Var(UT) + Var(6) 

= UaBINUt + aWIs 

= uBUUt + 4, Is (2.59) 

For notational simplicity in future denote Q2 UUt + 4, Is by E. 
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2.5.1.1 Point Estimation of Measurement Reproducibility 

Here there are 3 unknown parameters, p, 0B, and QW, the log like- 
lihood function in this case is defined as, 

logL =1 
Slog(27r) 

- 
1logjEj 

-1(X -Ap)tE-l (X - Aµ) (2.60) 
222 

Now, in fact, it is handier in this approach to reparameterise o,,, and 
o, W as follows: 

Remembering the definition of measurement reproducibility 
2 U B 

OB2 -i- UIV 

and taking ic =4 +42W) one has 

E=rVP 

where Vp is an SxS matrix of the form, 

Bl 0 ... 0 

V0 
B2 

... 0 (2.61) P 

0 ... 0 BN 

with each Bi aTxT matrix of the form 

1p... p 

Bi =p1... 
P 1,2,..., N 

PP... 1 

= (1-P)IT +PIT 1T 
Hence using the standard form of the inverse of such a patterned 
matrix AP -p ... -p 

1 -p AP 
... -p Bz 1 

(1 - P)[1 + (T - 1)p] 

-p -p ... 
AP 
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where 
\ =l+(T-2)p 

with T the number of replicates (visits) for each individual. 
Further 

-= (IcVP)-1 =1 VP 1 (2.62) 

and, 

SEI = kS 
{(l 

- P)N(T-1) [1 + (T - 1)P]N} as long as API <1 l 
(2.63) 

Now returning to the full likelihood function reparameterised in 
terms of p then, after some algebra, one can write (2.60) as 

l=- Slog(27r) 
- 

Slog(rk) 
- 

N(T - 1) 
log(1 - p) - 

Nlog 
[1 + (T - 1)p] 

2222 

-1 (X - Ap)tV 
2P 

1(X - Aµ). (2.64) 
rß 

Hence, for known p, maximum likelihood estimators can be achieved 
by equating to zero the partial derivative of l with respect to µ and 
n to produce 

A(p) = (AtVP 'A)-'AtVP 'X (2.65) 

and 
k(P) =1 (X 

- AA(P))t Vp 1 (x - AA(P)) (2.66) 
where 

Cl 0 ... 
0 

0 CZ 0 
Vp 1 

(1 - P) [1 + (T - 1)P] 
0 ... 0 CN 

with each CZ aTxT matrix of the form 

"p -p ... -p 
-p Ap 

Ci 

-p -p ... Ap 
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= ApIT-p_1T_Tt 

Replacing di(p) and k(p) in (2.64) gives the log profile likelihood for 

p as 

logPLik(p) 
slog(k) 

- 
Nlog 

[1 + (T - 1)P] (1 - P)T-1 (2.67) 
22 

Now such a profile likelihood can be maximised by some iterative 
procedure to produce a point estimate for p or indeed an interval 
estimate. 

2.5.1.2 Interval Estimation for Measurement Reproducibility 

The relative profile likelihood required to provide a approximate 
100Q% likelihood interval for p is 

rpl(p) = logPLik(p) - logPLik(p) 

= 
Slo kP 

+ 
Nlo [1 + (T - 1)P] (1- ß)T-1 

2g 

(Kp) 

2g [1 + (T - 1)P] (1 - P)T-1 
(2.68) 

where p is the maximum (profile) likelihood estimate for p. 
The approximate 100Q% likelihood interval for p is 

{p : rpl(p) > log(Q)} (2.69) 

Thus based on 2.55 and 2.56, a likelihood interval with approximate 
95% confidence would be 

12 
P: rpl(p) ý -2 X(1,0.95) 

Further, if one choose Q=0.147, the likelihood interval with ap- 
proximate 95% confidence will be the corresponding 14.7% likeli- 
hood interval. 
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Now these general results will be looked at for the cases consid- 
ered previously, i. e. a simple replicate experiment by itself and then 
assuming visit/order effects both for balanced (i. e. same number 
of replicates per subject) and unbalanced (i. e. unequal number of 
replicates per subject) cases. 

2.5.2 Simple Replication Model 

2.5.2.1 Model 

In this case, in the general model given by 

one has 

X =Abc+Ua+e: 

1T 

A_ 
1T 

lT 

i. e. Aa vector of l's 
and µ=(µ) 

i. e. it is a scalar 

2.5.2.2 Point Estimate of Measurement Reproducibility 

From (2.66) one has 

(P) -1 
[1 + (T - 2)p] E1S. - 2P E1 ýý'=j+1 s 33 (2.70) 

S [1+(T-1)p](1-P) 

as long as j pj < 1, 
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where N 
Sjj (Xij x.. )2, Vj=1,2, ... ,T i=1 

N 
Sjj. =; (xis 

- . 
)(xij. - x.. ), `d j* 

i=ý 

A maximum profile likelihood estimator of p, can be easily obtained 
from (2.67) as 

2 ET 'ET s 
J=1 j'=j 

P PL 
+1 jj' 2.71) 

(T - 1) EET=1 Sjj 

where T is the number of replicates per subject 

2.5.2.3 Likelihood Interval for Measurement Reproducibility 

From (2.5.1.2) a 100Q% likelihood interval for this case is of the 
form 

{p : rpl(p) > log(Q)} 

where rpl(p), as in (2.68), is 

rpl(p) = logPLik(p) - logPLik(ßPL) 

- 
Slog (kßPLNlag [1+ (T - 1)pPL] (1 pPL)i'-1 
2 iýp 2 [1 + (T - 1)p] (1 - p)T-1 

with approximate likelihood intervals based on section 2.5.1.2. 

2.5.2.4 A specific Application 

To illustrate the use of the above model and compare it with the 

model in section 2.2.1, the same data in exercise testing as used in 
the example 2.2.1.5 is used. Each of the 12 individuals underwent 
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8 separate exercise tests, where their Ventilation using a Douglas 
Bag, were measured at distinct 2-minute intervals. 

In this example, the point estimate for measurement reproducibility 
is 0.86 and an approximate 95% confidence interval for this is (0.76 

, 0.92). 

Point and interval estimate for this approach and for the ANOVA- 
based approach (point estimate of 0.87 and interval estimate of 0.73 
to 0.93) in section 2.2.1 are presented in Figure 2.5. 

9 
0 
z 

* 
A 1 

*1 
P 

0.7 0.8 0.9 1.0 

A- ANOVA method. P. Profli. Likelihood method 

Figure 2.5: Point and interval estimates by each of the two methods of estimating 
measurement reproducibility 

Here the Profile Likelihood approach provides a slightly smaller 
point estimate but, more importantly, reduces the width of the in- 
terval estimate from 0.20 to 0.16. 
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2.5.3 Replication Model with an Order Effect 

2.5.3.1 Model 

For the situation where possible learning/familiarisation effects of 
visits (replicates) are to be considered, the general model of 

X =Ap+Ur+e 

produces A to be an Sx (T + 1) matrix of the form 

110... 0 
101... 0 

100... 1 

and (T + 1) x1 vector of It is 

µt = (117011021... 
'ßT) 

2.5.3.2 Point Estimation of Measurement Reproducibility 

In this case iý can be written in the form 

1 [1 + (T - 2)Pl ýý 1 'S7j - 
2p FT 

1E =7+1 
S. 

(P)=s 
[1+(T-1)P](1-P) 

as long as +p) < 1, 
but here 

N 
E (xij 

- y.. 9 
)27 V 2, 

.., 
T 

i=1 

N 
V 54j*. 

i=1 

(2.72) 
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the maximum profile likelihood estimator of p can be obtained as 

_ ý=1 =%+i 33 (2.73) PPLV 
() T-1E15j*j 

with T the number of replicates per subject. 

2.5.3.3 Likelihood Interval for Measurement Reproducibility 

As usual from section 2.5.1.2 a 100Q% likelihood interval for this 
case is of the form 

{p : rpl(p) > log(Q)} 

where 

rpl(p) = logPLik(p) - logPLik(pPLV) 
Slog kPPLV 

+ 
Nlog [1 + (T - 

2"2 [1 + (G 

2.5.3.4 A specific Application 

, -1)p](l-p)T-i J. 

To illustrate the Profile Likelihood approach in the case of existence 
of an order effect and also compare it with the ANOVA approach, 
example 2.2.2.4 (section 2.2.1) is considered. For each of the 12 
samples into Exercise Testing, Breathlessness on a Visual Analogue 
Scale(VAS), were measured at distinct 2-minute intervals during 
test. The test was repeated on 8 different visits, so, there are equal 
number of observations for each individual. Furthermore, as noted 
before, the learning/visit effect is significant (P < 0.05). 

1/PPLVJ (1 
PPLV)T-1l 

For this example, point estimate of measurement reproducibility 
without considering the learning/visit effect is 0.70 with a 95% like- 
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lihood interval of (0.54 
, 0.87), whereas, after taking into account 

the learning/visit effect, point estimate would be 0.78 with a 95% 

confidence interval of (0.69 
, 0.93). 

To compare the estimates of measurement reproducibility using this 

approach with those based on the ANOVA-based approach (section 
2.2.2), the results from the two methods are represented in Figure 
2.6. 

D 
0 
I 

0 
Z 
F 
a 

w 

A 

p 

AV 

PV 

0.5 0.6 0.7 0.8 0.9 1.0 

A= ANOVA method, P= Profile Likelihood method: (without visit effect) 

AV = ANOVA method PV = Profile Lilelihood method: (with visit effect) 

Ü 

W 

a 

3W 
N_ 

i 

Figure 2.6: Point and interval estimates by each of the two methods of estimating 
measurement reproducibility both with and without fitting a visit effect 

The results in this example and also in example 2.2.2.4 give an 
impression that including a significant learning/visit effect in the 

model results in `improvement' (for both approaches) in the point 

and interval estimates of measurement reproducibility. 
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2.6 Unbalanced Data 

2.6.1 General Model 

In the case of unbalanced data in which there are not the same 
number of observations (replicates) for each individual, the general 
model can still have the form of 

X= Aµ+ Ua+6 (2.74) 

Further let TZ be the number of replicates for individual i, i= 
1,2, ... , N, S= E%_' 1T total number of observations and 

T= max Ti 
1<i<N 

2.6.1.1 Point Estimation of Measurement Reproducibility 

In this case the likelihood function and log likelihood function have 
the same form as in the balanced case with the exception that in 
the matrix V (2.61) each Bi is a Ti x TZ matrix of the form 

1p... p 

B2 _p1... 
p 2= 1,2,..., N 

pp... 1 

= (1 - p) ITT +pT 1t7+t 

so as before 
Ap -p .. -p 

_1 
-P ap 

... -p B1 
(1-P)[1+(T=-1)p] 

-P -P Ap 
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with 
Ai=1+(Ti-2)P 

where Ti is the number of replicates for subject i. 
Further 

-1 = (kV)-1 = 
IV-, 

(2.75) 
PP 

and 

ICI = rSlvpl T 

_ sl{(1-P)j-1[1, ý'(ý-1)P]}n' c 
j=1 

where nj, is the number of subjects with j replicates j=1,2, ... , T. 
After some algebra, one can write (2.60) as 

-slog(27r) - 
Slogrc 

- 
ilog 

11 {(1 
- p)j-1 [1 + (j - 1)P]}7' 

222 j=1 

- 2- (X - Aµ)tVP 1(X - Aµ) (2.76) 

and by equating the partial derivatives with respect top and r. to 

zero, for known p, L^ (p) and k(p) will be the same form as in section 
2.5.1.1 with the exception that T changes to Ti 

A(p) = (AtVp lA)-lAtVP lX (2.77) 

and 
k(P) =1 (X 

- Ap(P))t Vp ' (x - Aj(P)) (2.78) 
s 

where 

in this matrix 

1 
i 11 

V_1 

0 

o ... 0 
Z2- 2 ... 

o 

0 ... N 
CN 

ýZ=(1-P)[1+(Tj-1)P] 
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and each Cz is a T,, x TZ matrix of the form 

Ai -p ... -p 
-P Ai -P Bi 

-p --p ... 
A 

_ AiIT= - p1Ti 1Tti 

Now, after some algebra, the log profile likelihood for p will be 

53 

logPLik(p) 1 nj log {[1 + (ý - 1)P](1- p)i-'l - 
Slogk 

J-1 22 
(2.79) 

and such a log profile likelihood can be maximised to produce a 
point estimate for p. 

2.6.1.2 Interval Estimation for Measurement Reproducibility 

By using the relative profile log likelihood 

rpl(p) = logPLik(p) - logPLik(p) 

= 
Slog(gip) 

+' nýlog l[1 -I- (. 7 - 1)PI(1 - P)i-1f 
2 rp J=1 2 {[1 +U- 1)PI(1 - p)ý } 

(2.80) 

a 100Q% likelihood interval for p is 

{p : rpl(p) > log(Q)} (2.81) 

and for Q=0.147, a likelihood interval with approximate 95% 

confidence is achieved, since 

-12 log 0.147 
2 X(1 , 0.95) - ' 
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2.6.2 Simple Replicate Model 

2.6.2.1 Model 

For this case A and µ in the general model have the following simple 
forms 

IT1 

A= 
1T2 

and µ= (µ) 

ITN 

2.6.2.2 Point Estimation of Measurement Reproducibility 

From (2.66) after some algebra, kp is found to be 

hp 
S 

Sll+E 
1+ i-1 p (1-p 

[[1ý(i_2)P]s3-2pE 
E Sijj" 

i=2 
ý()) 

j-1 ? =13*=, 7+1 

(2.82) 

where 
_ 

Ti, 
2 Sij 

- 
E(xijk-x... ) 

k=1 

nj 
sijj* = (xijk 

- ... 
)(xij"k 

- x... ýý 

k=1 

Vi=1,27 
. T, j 5/j*, 

. 
7, j* 

A simple closed form for p is not obtainable in this context and 
hence numerical methods must be used to obtain both point and 
interval estimates. Either a simple search method or an iterative 
hill-climbing procedure such as Newton-Raphson can be used. 
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2.6.2.3 A specific Application 

To illustrate the use of the above model and compare it with the 
model from section 2.3.1, the data from example 2.3.1.4 is used. 
Each of the 12 individuals underwent separate exercise tests, where 
their V02 using a Douglas Bag, were measured at distinct 2-minute 
intervals. Since individuals had different number of replicates/visits, 
there are unequal number of observations per each individual. More- 

over, the effect of learning/visits is not significant. 

In this example, a point estimate of measurement reproducibility by 

the Profile Likelihood method is 0.85 and a 95% likelihood interval 
is (0.65 

, 0.93). 

To comparing the estimated values by this approach and the ANOVA- 
based approach, a graphical representation of the results by the two 

methods are shown in Figure 2.7. 
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A. ANOVA m. Mad. P. Profit. UkNlhood m. thod 

Figure 2.7: Point and interval estimates by each of the two methods of estimating 

measurement reproducibility 

The point estimate by the Profile Likelihood approach is slightly 
higher than that by the ANOVA-based approach and the likelihood 
interval is narrower. 
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2.6.3 Measurement Reproducibility With an Order 
Effect 

2.6.3.1 Model 

In the case of unbalanced data where the effects of visits (replicates) 
per each individual must be taken into account, then model 2.57 
should have 

A as Sx (T + 1), matrix of the form 

TI 

A= 
1T2 

1TN 

ITS 
IT2 

'TN 

and the vector µ 

ýt = ýýýß11027-.. 
7ßT 

T 
and L oj =0 

j=1 

where Ti, (i = 1,2, ... , N) is the number of replicates for 
subject i and 

T= max Ti 
1<i<N 

2.6.3.2 Point Estimation of Measurement Reproducibility 

In this case similar to (2.82) one finds that 

_1T1kii ýv S 
{si+E 

+(i-1)Pý(1-p) 
[1+(i-2)p]ESj -2p s: j. 

] 

j=1 j=1i=j+1 

with nj 
Sj = 1: (xijk 

k=1 
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and nj 
Sjj* = (Xjjk 

- ý"j") (xij*k 
- x. j"`, 

), 

k=1 

Vi=1,2,..., T, 
.7 

j*jj*=1,2,..., i 
Again a simple closed form for p is not obtainable in this case and 
hence numerical methods must be used for both point and interval 
estimates. 

2.6.3.3 A specific Application 

To illustrate the above model and compare it with the model in sec- 
tion 2.3.2, the same data in exercise testing as used in the example 
2.3.2.4 is used. The data were from a sample of 12 individuals who 
underwent separate exercise tests, where their Breathlessness on a 
Visual Analogue Scale (VAS), were measured at distinct 2-minute 
intervals. Since all individuals had not had the same number of re- 
peats/visits, there were not equal number of observations per each 
individual. In addition, as noted, the learning/visit effect was sig- 
nificant (P < 0.05). 

For this example, point estimate of measurement reproducibility 
without considering the visit effect is 0.78 with 95% likelihood in- 
terval of (0.51 

, 
0.89), while, point estimate of measurement re- 

producibility after correctly including the visit effect in the model, 
increases to 0.85 with an approximate 95% confidence interval of 
(0.61 

, 0.93). 

Graphical representation of the results by the two approaches of 
point and interval estimation of measurement reproducibility is shown 
in Figure 2.8. 

Clearly, the point estimate by the Profile Likelihood approach in 
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the case of a significant learning/visit effect is, apparently, larger 

than that by the ANOVA-based approach, the likelihood interval is 

narrower. 
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A= ANOVA method, P =Profile Likelihood method: (without visit effect) 

AV = ANOVA method PV= Profile Lnelihood methos: (with visit effect) 
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Figure 2.8: Point and interval estimates by each of the two methods of estimat- 
ing measurement reproducibility both with and without fitting a significant visit 
effect 

These results suggest that, inclusion of a significant effect of learn- 
ing/visit in the model, will considerably `improve' (for both ap- 
proaches) point and interval estimation of measurement reproducibil- 
ity. 
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C : Multivariate Approach 

2.7 Introduction 

A natural extension to the previous sections in the case of the Heart 
Failure Exercise Testing context is to estimate a pooled measure- 
ment reproducibility of a variable measured across the different time 
points during an exercise test. The multivariate approach deals with 
data containing observations from a fixed selection of time points 
which are measured on a set of individuals across a number of repeat 
tests. 

2.7.1 An Illustrative Example 

To illustrate the multivariate approach of estimating a pooled mea- 
surement reproducibility, data from a set of separate Exercise Tests 
on a sample of 12 individuals are considered, where their V 02, ob- 
tained from use of a Douglas Bag, were measured at distinct 2- 
minute intervals during the test. For this example data from 9 
distinct time points during the exercise test (i. e. after 2 minutes, 4 
minutes, 6 minutes, ..., 18 minutes into the test) are used. 

Figure 2.9 shows scatterplots of these data for each of the 9 distinct 
time points and at each time point for each of the 12 individuals 

across eight repeat tests. The estimated measurement reproducibil- 
ities along with their approximate 95% confidence interval estimates 
for each of the 9 time points are given in Table 2.5 with a graph- 
ical representation in Figure 2.10. Here, at least for the first 8 
time points, the assumption of a common reproducibility appears 
plausible. 
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Figure 2.9: Scatterplots of V02 for each of 9 time points for each of the 12 
individuals across repeat exercise tests (labelled in the plots by the order' number' 
of the visit) for each individual. 
Note: Different scales are used for each time point which are 2,4,6,..., 18 minutes 
into the test 
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Time point it Estimate 95% Interval Estimate 

1 0.77 (0.59 
, 0.91) 

2 0.82 (0.66 
, 0.93) 

3 0.80 (0.64,0.93) 

4 0.87 (0.73,0.98) 

5 0.91 (0-77,0.97) 

6 0.89 (0.76,0.96) 

7 0.88 (0.73,0.97) 

8 0.85 (0.65,0.93) 

9 0.53 (0.31 
, 0.78) 

Table 2.5: Points and interval estimates of measurement reproducibility for each 
of the 9 time points based on the Profile Likelihood approach 

2.7.2 A pragmatic approach to pooling Measurement 
Reproducibility 

One possible simple way of estimating a common measurement re- 
producibility, denoted by pc,,,,, across time points is by assuming 
that the data from each time point is independent of that from all 
other times. Although this is clearly a false assumption, it is at least 

a pragmatic attempt at solving a difficult problem which would in- 

volve not only a more complicated mathematical solution but also 
require more detailed and perhaps too specific assumptions to the 

structure of such data. 

Thus, effectively assuming a likelihood of the form 
K 
II PLikk(Pcom) 
k=1 
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Figure 2.10: Points and interval estimates of separate measurement reproducibil- 
ity for each of the 9 time points based on the Profile Likelihood approach 

when PLikk(. ) is the Profile Likelihood for the kth time point whose 

resulting likelihood equation will be of the form given in (2.67) or 
(2.79) as appropriate. 

The maximum Profile Likelihood estimate of prom can thus clearly 
be evaluated by an appropriate iterative or search procedure. 

Further, using the relative log profile likelihood 

KK 

rpl(P, o, n) _ II logPLikk(P. 
om) - 

11 logPLikk(Pcom) 
k=1 k=1 

a 100%Q likelihood interval for pco, n will be 

{Pcom : rpl(pcom) > log(Q)} 
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So, a likelihood interval with approximate 95% confidence is achiev- 
able for Q=. 147, since 

2_ 1 
l0 147 -2X(1, 

. 95) - 9ý" ý" 

Applying this process for the above example resulted in an (assumed 

common) point estimate of 0.80 for reproducibility of V02 in 
Exercise Testing with an interval estimate of (0.58 

, 0.98). 

2.7.3 Test of Equality of Measurement Reproducibility in 
Different Time Points 

Before pooling the estimated measurement reproducibility across 
different time points to provide a common measurement reproducibil- 
ity, it is important to test whether or not the measurement repro- 
ducibility at different time points is in fact the same. In other words, 
to test 

Ho : Pi = p2 = ... = PK vs Hl 
. all pi not equal 

Suppose the appropriate models for the ith individual on the jth ex- 
ercise test at the kth time point, with N individuals and TZ replicates 
per individual, using the same notation as in sections 2.2.1 and 2.2.2 
is 

Xkij = µk + aki + ekj($) (2.83) 

i=1,2,..., N, J= 1,2,..., TZ and k=1,2,..., K 

for the Simple Replication Model and 
Xki? = µk + aki + Oki + eki(z), (2.84) 

i=1,2,..., N, J= 1,2,..., Ti and k=1,2,..., K 

for the Replication Model with an Order Effect. 
Note that when there are equal numbers of replicates/visits for each 
individual (balanced data), Ti =T for each subject. 
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Now, by assuming that for each two time points k and k* (k 0 
k*; k, k* = 1,2, ... , 

K), ekj(i) is independent of ek*j. (i) for any 
j and j* = 1,2, ... , Ti and also assuming that a's and e's are inde- 
pendent, 

Cov(Xk,,, Xk.; 
i. 

) = Cov(aki + ekj(i) , ak"i + ek* *(i)) 
= Cov(akZ, ak* ) 

AuBk 0Bks (2.85) 

i. e. 
2 

alt a2 /1QB1 QB2 
... /ýQBI QBK 

2 

E= Var 
a21 

= 
/ýQB2 QBl aB2 

... 
ý1 QB2 QBK 

2.86B () 

aKi A 
BK 

QBl i10 
BK QB2 

... QB 
K 

and 

... e (a2 
i0 

0 
0 r2 ... 0 

Ew = Var 
e2j*(i) 

= Wz (2.87) 

N'K 
eK1 

K1(i) 
00... Qz 

Thus for any two time points k and k* 

Corr(Xk,,, Xk. 
$J. 

) = PkPk" Vj, 
. 
7* (2.88) 

Using multivariate notation, for each time point k, 
define Xki = (Xkjj), i. e. aT vector 

Xki ^JNT1 {Pk 1Ti' (4Bk +4k )VPk }, k=1,2, 
... ,K 

(2.89) 

with Vpk a T= x T1 matrix of the form 

I Pk ... Pk 

_ 
Pk 1 

""" Pk 
PS V 

Pk ... Pk 1 
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where 2 
UBk 

22 
QBk + cTwk 

so by taking T= ýB +0_2 ,y 
X li P11TE T1VP1 W(P1, 

P2) ... 
X 2i ... 11T, W(P2)P1) T2VPi 

= ^' NKT; XX 

Ki Pk I Ti 
W(PK'P1) W (PK IP2) ... 

where W(Pk'Pk*) is a Ti x Ti matrix of the form 
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W(P1, 
PK) 

W (P2'PK ) 

TKVPK 

W(pk, 
Pk$) _ 

"--rk pkp, " 1Ti l7ti Vk k* = 1,2, ... ,K 
(2.90) 

The likelihood function in this case is 
N 

Lik(8, p; Xi, X,... , 
XN) = fl 11 

exp -1(Xi - AM)tE-'(Xi - Aµ) 
Z-1 IEI2 2 

(2.91) 
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QTi #1 
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QTi P2 P2 
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Tk 
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pK OT, 
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QTi 1Ti P. 
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Ti VPi 

A T2P2 7-1P11Ti 

TKPK Ti P1 IT, 

T1Pi 72P2Ti lýti ... a 7,1Pi TKPK1TJ4. 
T2VP2 ... 

A T2P2 TKPK1Ti 

A TKPK 72P21Tiýti """ TK V PK 

So, likelihood ratio statistic to test Ho : pl = P2 ="""= PK against Hl : 

pk p,, for at least one k 54 k* will be 

max LikHO (B, P; xi, X2 i" "' XN) 
n(X iýX 2ý ... ,X N) = max LikHl (01 P; X1 i X2 i ... I XN) 

(2.92) 
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where Lik(X1, X2,. .., 
XN) must be estimated under Ho and Hl 

. 

Assuming that -21og11 will be approximately X(K_1) under Ho, the 

approximate test can be carried out. 

2.7.4 Application to the Illustrative Example 2.7.1 

In Example 2.7.1, Figure 2.10 showed a considerable difference be- 

tween the point estimates of measurement reproducibility with that 
for time point 9 different from that of the other time points. For 

this example, -2logA is 17.03 which compared to the upper 95 per- 

centile of a Chi-Squared distribution with 8 degrees of freedom (i. e. 
15.51), allows one to reject the assumption of equality of measure- 

ment reproducibilities of all time points. However, after removing 
time point number 9 from the analysis, -2logA reduces to 13.14 and 

comparing this value with the upper 95 percentile of a Chi-Squared 

distribution with 7 degrees of freedom (i. e. 14.07), indicates that one 

should (just) not reject the assumption of equality of measurement 

reproducibilities across 9 time points. In this case an estimate of 

common measurement reproducibility will be 0.84 with 95% interval 

estimate of (0.65 
, 

0.98). 
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2.8 Summary 

Two distinct methods based on a sums of squares (ANOVA) and 
Profile Likelihood approaches to point and interval estimation of 
measurement reproducibility of data were considered for the cases 
of balanced (equal number of observations per individual) and un- 
balanced (unequal number of observations per individual) situations 
of `replicate' Exercise Tests under (allegedly) identical conditions. 
This was done for the situations of a replication experiment and 
also assuming an order effect to the replication. 

Illustrative examples throughout the chapter were used to describe 
the performance of the two approaches on real data. 

The illustrative examples implied that point estimates of measure- 
ment reproducibility by the Profile Likelihood approach were slightly 
higher and the interval estimates with this approach were narrower. 
Furthermore, the examples showed a considerable improvement (for 
both approaches) in point and interval estimates of measurement re- 
producibility if a (significant) visit effect existed and was allowed for 
in the analysis. 

Overall, the Profile Likelihood approach, on the basis of the exam- 
ples, appears to be a "better" method to provide point and interval 

estimates for measurement reproducibility. However, a full scale 
simulation study is required to assess this under a variety of differ- 
ent conditions. This is the basis of the following chapter. 

The problem of combining measurement reproducibilities across a 
number of distinct time points during an Exercise Test was raised 
and a simple pragmatic solution offered. 



Chapter 3 

Estimating Measurement 
Reproducibility: 
A Simulation Study 

3.1 Introduction 

The previous chapter described the Analysis of Variance (ANOVA) 
and the Profile Likelihood approaches to point and interval estima- 
tion of measurement reproducibility. 

To investigate performance of the two approaches, for the two situ- 
ations of a simple replicate model and an order effect model, 1000 
simulations of each of a number of configurations were carried out. 

The configurations can be defined by these quantities: 

i) Number of distinct subjects, N 
ii) Number of repeats (visits) per subject, T 
iii) The true measurement reproducibility, pT 

68 
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In the following simulations all combinations of the following were 
taken: 

i) N, number of subjects, taken as 6 or 10 or 30; 
ii) T, number of repeats (visits) per subjects, taken as 

2 or 4 for balanced case and a maximum 2 or 4 
replicates for the unbalanced case; 

iii) pT, true measurement reproducibility, 
taken as 0.75 or 0.85 or 0.95 . 

3.1.1 Criteria Used to Judge the Approaches 

For each simulation a set of data based on one of the above config- 
urations was generated and the performance of the approaches was 
investigated based on a number of statistical criteria. 

For each simulation the point and interval estimate of the measure- 
ment reproducibility for each approach was evaluated. 

The performance of each approach was then assessed across all the 
simulations based on: 

i) bias, 
i. e. the long run average of the estimated minus 
the true reproducibility 

ii) coverage rate, 
i. e. the long run proportion of occasions when the 
interval estimate contains the true reproducibility 

and 
iii) the average width of the interval estimate. 

This was carried out first for the simple case of replication with 
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no order effect. Then the simulation process was repeated in each 
of the following situations where an order effect to the replication 
process is relevant: 

- an order effect was simulated in the generated data and 
was fitted in the model, 

- an order effect was simulated in the generated data but 
was not fitted in the model, 

- an order effect was not simulated in the generated data 
but was fitted in the model. 

3.2 Balanced Data 

Balanced data are defined as a replicate experiment where every 
subject has the same number of observations. This section is con- 
cerned with the simulation results from the case where subjects have 

an equal number of repeat Exercise Tests (visits). 

3.2.1 Simple Replicate Model 

The simulation study in this section is based on the Simple Repli- 

cate Model which was defined and illustrated in section 2.2.1 of the 

previous chapter. 

For each approach (i. e. the ANOVA and the Profile Likelihood 

methods) the averages of the reproducibility estimates over 1000 

simulations for each of the underlying configurations are shown in 
Table 3.1 with a graphical representation of the biases in Figure 
3.1. Obviously, both the ANOVA and the Profile Likelihood ap- 
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No. PT 

Estimation of 0.75 0.85 0.95 
Method Subjects no. of replicates no. of replicates no. of replicates 

(N) 2 4 2 4 2 4 

ANOVA 6 0.68 0.69 0.79 0.80 1 1 0.92 0.93 

Method 10 0.71 0.72 0.82 0.82 0.94 0.94 
30 0.74 0.74 0.84 0.84 0.95 0.95 

Profile 6 0.63 0.65 0.76 0.77 0.91 0.91 

Likelihood 10 0.69 0.70 0.80 0.81 0.93 0.93 

Method 30 0.73 0.73 0.83 0.84 0.95 0.95 

Table 3.1: Point Estimates of Measurement Reproducibility, outcome of 1000 sim- 
ulations, for 2 and 4 replicates (visits) per subject in the case of simple replicate 
model (no order effect). 
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Figure 3.1: Bias from True Measurement Reproducibility for Simple Replicate 
Model (no order effect) 

proaches, particularly for pT = 0.75, underestimate the measure- 
ment reproducibility, although increasing the number of individuals 
in the study clearly reduces the bias. Furthermore, the point esti- 
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mates by the ANOVA approach are less biased than those of the 
other approach. 

It seems that the increase in the number of replicates per subject 
from 2 to 4 has only a marginal effect on the estimates. 

The coverage rate (which is the long run percentage of times that 
the true measurement reproducibility falls into the confidence inter- 
val and here estimated for 1000 simulations) is used as an index of 
measuring the performance of different methods of interval estima- 
tion. 

No. PT 

Estimation of 0.75 0.85 0.95 
Method Subjects no. of replicates no. o f replicates no. o f replicates 

(N) 2 4 2 4 2 4 
ANOVA 6 96 95 95 96 95 96 
Method 10 96 96 95 95 95 96 

30 94 94 94 93 95 93 

Profile 6 93 99 94 95 93 96 

Likelihood 10 94 99 93 96 92 98 
Method 30 93 97 93 98 91 99 

Table 3.2: Estimated Coverage Rates for 2 and 4 replicates (visits) per subject 
in the case of simple replicate model (no order effect). 

These rates are shown in Table 3.2 with a graphical presentation in 
Figure 3.2. The ANOVA approach provides consistent confidence 
in the range of 95% regardless of the number of replicates, although 
increasing the number of subjects slightly decreases this rate. 

In contrast, in the case of 2 replicates per subjects, the Profile Like- 
lihood approach provides slightly smaller coverage rates but the 
rates significantly increase as the number of replicates per subject 
increases from 2 to 4. Furthermore, unlike the ANOVA approach, in 
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Figure 3.2: Coverage rates for Simple Replicate Model (no order effect) 

the case of 4 replicates per subject and for higher true reproducibil- 
ity (i. e. pT = 0.85 or 0.95), the Profile Likelihood approach provides 
higher coverage rates for higher number of subjects (i. e. when the 
number of subjects increases from 6 to 10 or 30). 

Plots of the bias against confidence interval width for each simula- 
tion across different simulation configurations are shown in Figure 
3.3. Points inside the wedge shape (<) are intervals which capture 
the true value of measurement reproducibility while points outside 
fail to do so. 

Both approaches not surprisingly provide wider intervals for small 
number of subjects which get narrower as the number of subjects 
increases (i. e. from 6 to 10 and 30). Moreover, it seems that con- 
fidence intervals for higher true reproducibility and larger number 
of subjects (i. e. pT=0.95 and N=10 or 30) are narrower. However, 
the two approaches produce almost the same pattern of confidence 
intervals for a large number of subjects (i. e. N=30). 
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As far as the number of replicates per subject is concerned, an 
increase in the number of replicates significantly decreases the in- 
terval widths provided by the ANOVA approach but does not have 

a significant effect on the interval widths of the Profile Likelihood 

approach. 

In general, the Profile Likelihood approach provides narrower inter- 

vals and this might well be preferred over the ANOVA approach. 
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Figure 3.3: Confidence Diagrams with 2 and 4 replicates per subject (visits) for 
Simple Replicate Model (no order effect) for different combinations of number of 
subjects and true measurement reproducibility. 
In each diagram Vertical Axis represents Bias and Horizontal Axis represents 
(Confidence Interval Width)/2. 
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3.2.2 Order Effect Model 

In this section, the case where exercise tests are subject to order 
(i. e. learning or visit) effects are considered. The simulation results 
are based on the Order Effect Model which was illustrated in section 
2.2.2 of the previous chapter. 

In the following subsections, simulation results from three different 
situations are discussed. In the first situation, for each simulation, a 
data set with a significant learning or visit effect was generated and 
then the effect was fitted into the appropriate model. In the second 
situation, in spite of existence of a significant learning or visit effect 
in the generated data, an order effect was not fitted in the model. 
Finally in the third situation, in the absence of a significant learning 

or visit effect in the generated data, an order effect was fitted in the 
model. These three situations are summarized in the following table. 

Situation Simulated 1 1 Fitted 1 1 Subsection 
1 Yes Yes 3.2.2.1 
2 Yes No 3.2.2.2 
3 No Yes 3.2.2.3 

3.2.2.1 Simulated and Fitted Order Effect 

For each of the ANOVA and the Profile likelihood approaches, Ta- 
bles 3.3 and 3.4 show the averages of the estimated measurement re- 
producibility and the coverage rates over 1000 simulations. Graph- 
ical presentation of the biases and the coverage rates are given in 
Figures 3.4 and 3.5, respectively. 
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Table 3.3 shows that on average there is `good' agreement between 
the two approaches in providing point estimates of measurement 
reproducibility. 

No. PT 
Estimation of 0.75 0.85 0.95 

Method Subjects no. of replicates no. of replicates no. of replicates 
(N) 2 

_T: 
ý 72 T4 2 ]_4 

ANOVA 6 0.68 0.69 0.79 0.80 0.92 0.93 
Method 10 0.71 0.72 0.82 0.82 0.94 0.94 

30 0.74 0.73 0.84 0.84 0.95 0.95 

Profile 6 
-1 

0.67 1 0.68 0.78 0.80 0.92 0.93 11 

Likelihood 10 0.71 0.72 0.82 0.82 0.94 0.94 
Method 30 0.74 0.74 0.84 0.84 0.95 0.95 

Table 3.3: Estimated Measurement Reproducibility for 2 and 4 replicates (visits) 

per subject for the Order Effect Model (in the case of simulated and fitted order 
effect). 
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Figure 3.4: Bias from True Measurement Reproducibility for Order Effect Model 
(for the case simulated and fitted order effect) 
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As in the simple replicate model, both methods underestimate mea- 
surement reproducibility with a clear reduction in the biases as the 
number of subjects increase. It is clear that increase in the num- 
ber of replicates per subject has no influence in the estimation of 
reproducibility. 

In the case of high true measurement reproducibility (i. e. PT = 0.95), 
both approaches produce point estimates with negligible bias. 

The Coverage rates, displayed in Table 3.4 and Figure 3.5, suggest 
that the ANOVA approach provides consistent confidence in the 
range of 95%. Nevertheless, increase in the number of subjects 
(i. e. from 10 to 30), slightly reduces this rate. It seems that in 
this approach the number of replicates does not have a significant 
influence on the coverage rates. 

No. PT 

Estimation of 0.75 0.85 0.95 
Method Subjects no. of replicates no. o f replicates no. o f replicates 

(N) 2 4 2 4 2 4 

F--A 6 96 95 95 95 95 96 
Method 10 95 95 95 95 95 95 

30 95 94 93 93 95 93 

Profile 6 93 99 92 96 92 97 

Likelihood 10 93 98 93 98 91 98 
Method 30 94 98 93 98 90 99 

Table 3.4: Estimated Coverage Rates for 2 and 4 replicates (visits) per subject 
for the Order Effect Model (for the case of simulated and fitted order effect). 

In contrast, the Profile Likelihood approach provides smaller cov- 
erage rates for the case of 2 replicates per subjects, but the rates 
significantly increase as the number of replicates increases. This in- 
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Figure 3.5: Coverage confidence for Order Effect Model (for the case simulated 
and fitted order effects) 

crease is higher for higher true reproducibility (i. e. pT=0.85 or 0.95) 
and larger number of subjects. 

It appears that, in general, the Profile Likelihood approach with 
higher number of replicates per subject (i. e. T=4), provides the 
most consistent confidence. 

Plots of bias against confidence interval width for each of the sim- 
ulation configurations are presented in Figure 3.6. It appears that 
the pattern of confidence interval widths is almost the same as those 
in the previous section (section 3.2.1). Clearly, as in the previous 
case, the narrowest intervals are provided for the higher true repro- 
ducibility as well as the larger number of subjects. 

Moreover, in the ANOVA approach the number of replicates per 
subject inversely affects the interval width, but it does not have a 
clear influence on the intervals which are produced by the Profile 
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Likelihood approach. 

In general, in the case of small number of replicates per subject 
(e. g. 2 replicates) the Profile Likelihood approach provides narrower 
confidence intervals and may well be prefered, but as the number 
of replicates per subject increases, the two approaches have almost 
the same performance. 
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Figure 3.6: Confidence Diagrams with 2 and 4 replicates per subject (visits) for 

Order Effect Model (for the case simulated and fitted order effect) for different 

combinations of number of subjects and true measuement reproducibility. 
In each diagram Vertical Axis represents Bias and Horizontal Axis represents 
(Confidence Interval Width)/2. 
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3.2.2.2 An Order Effect Simulated but not Fitted 

Table 3.5 shows the averages of the point estimates over 1000 sim- 
ulations for the underlying simulation configurations under the two 
approaches of ANOVA and Profile Likelihood. A graphical repre- 
sentation of the biases is given in Figure 3.7. 

No. Ar 

Estimation of 0.75 0.85 0.95 
Method Subjects no. of replicates no. of replicates no. of replicates 

(N) 2 4 2 74 
1 2 1 4 

ANOVA 6 0.66 0.66 0.77 0.76 0.88 0.88 
Method 10 0.69 0.68 0.78 0.79 0.90 0.90 

30 0.71 0.71 0.81 0.80 0.91 0.91 

Profile 6 0.61 0.61 0.73 0.73 0.86 0.86 

Likelihood 10 0.66 0.66 0.77 0.77 0.89 0.89 
Method 30 0.71 0.70 0.81 0.80 0.91 0.91 

Table 3.5: Estimated Measurement Reproducibility for 2 arid 4 replicates (visits) 

per subject for the Order Effect Model (for the case of an order effect simulated 
but not fitted). 

Both approaches, as in the previous cases, underestimate measure- 
ment reproducibility with a significant decrease in the bias as the 
number of subjects increases. Furthermore, the number of replicates 
per subject, apparently, has minimum effect on bias. It appears that 
the estimated measurement reproducibilities provided by the Profile 
Likelihood approach in the case of a small number of subjects are 
more biased than those provided by the ANOVA approach. 

Generally, in both approaches, and regardless of the number of sub- 
jects and replicates per subject, less bias is exhibited for high true 

measurement reproducibility (i. e. pT = 0.95) than for lower true 
measurement reproducibilities (i. e. pT = 0.75 or 0.85). 
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Figure 3.7: Bias from True Measurement Reproducibility for Order Effect Model 
(for the case of an order effect simulated but not fitted). 

Comparing this situation with that where an order effect was sim- 
ulated and fitted in the model (section 3.2.2.1), it is clear that a 
failure to fit the order effect in the model considerably increases 
the bias. This increase is more obvious for the Profile Likelihood 

approach in the case of a small number of subjects (i. e. N=6 or 10). 

Coverage rates for each of the simulation configurations in Table 3.6 

and their graphical representation in Figure 3.8 show that, based on 
the ANOVA approach, an increase in the number of subjects from 
6 to 30 tends to a decrease in the coverage rates. This decrease is 
more obvious for higher number of replicates per subject (i. e. T=4). 

In contrast, based on the Profile Likelihood approach, an increase 
in the number of the replicates slightly increases the coverage rates 
for all the cases, although this increase is larger for higher true 

measurement reproducibility and higher number of subjects (i. e. 
PT = . 95 and N=30). 
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No. PT 

Estimation of 0.75 0.85 0.95 
Method Subjects no. of replicates no. o f replicates no. o f replicates 

(N) 2 4 2 4 2 4 
ANOVA 6 94 96 95 96 94 94 
Method 10 95 94 94 92 92 88 

30 93 90 91 84 85 85 

Profile 6 90 95 91 90 87 91 
Likelihood 10 92 97 91 90 87 93 
Method 1 _30 92 96 90 92 87 98 

Table 3.6: Estimated Coverage Rates for 2 and 4 replicates (visits) per subject for 
the Order Effect Model (for the case of an order effect simulated but not fitted). 
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Figure 3.8: Coverage rate for Order Effect Model (for the case of an order effect 
simulated but not fitted). 

Generally, in this case, the Profile Likelihood approach with 4 repli- 
cates per subject, particularly for higher true measurement repro- 
ducibility, performs better in the sense that it provides more con- 
sistent confidence intervals. 
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In comparison with the case of simulated and fitted order effect 
(section 3.2.2.1), it can be seen that a failure to fit the order effect in 
the model considerably decreases the coverage rates. This decrease 
is more obvious for the ANOVA approach with a large number of 
subjects (i. e. N=30). 

Figure 3.9 shows plots of bias against confidence interval widths 
for two cases of 2 and 4 replicates per subject. As before, points 
inside the wedge shape (<) are the intervals which capture the true 
measurement reproducibility. The figure illustrates that although 
the ANOVA approach produces wide intervals, an increase in the 
number of subjects as well as replicates per subject decreases the 
widths. 

On the other hand, confidence intervals provided by the Profile Like- 
lihood approach get narrower as the number of subjects increases, 
but unlike the ANOVA approach, an increase in the number of repli- 
cates per subject does not have much effect on the interval width. 

It seems that, for both approaches, the natural true value of the re- 
producibility does not significantly influence the confidence interval 

width. 

Comparing these intervals with those from the situation where the 

order effect was simulated and also fitted in the model (section 
3.2.2.1), it appears that, in general, when the order effect is not 
fitted in the model intervals are wider. 
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Figure 3.9: Confidence Diagrams with 2 and 4 replicates per subject (visits) for 

Order Effect Model (for the case of an order effect simulated but not fitted ) for 

different combinations of number of subjects and true measuement reproducibil- 
ity. 
In each diagram Vertical Axis represents Bias and Horizontal Axis represents 
(Confidence Interval Width)/2. 
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3.2.2.3 An Order Effect not Simulated but still Fitted 

In this section, the simulation results are concerned with the case 
where no order effect is simulated in the generated data but an order 
effect is included and fitted in the model. 

For each of the two approaches, the averages of the estimated mea- 
surement reproducibility over 1000 simulations are shown in Table 
3.7 and a graphical representation of the biases is given in Figure 
3.10. 

No. PT 

Estimation of 0.75 0.85 0.95 
Method Subjects no. of replicates no. of replicates no. of replicates 

(N) 2 4 2 4 2 4 

ANOVA 6 0.69 0.69 0.80 0.80 0.92 0.93 
Method 10 0.71 0.71 0.81 0.81 0.94 0.94 

30 0.74 0.73 0.84 0.84 0.95 0.95 

Profile 6 0.69 0.69 0.80 0.80 0.92 0.93 
Likelihood 10 0.71 0.71 0.81 0.82 0.94 0.94 

Method 30 0.74 0.74 0.84 0.84 0.95 0.95 

Table 3.7: Estimated Measurement Reproducibility for 2 and 4 replicates (visits) 

per subject for the Order Effect Model (in the case of an order effect not simulated 
but still fitted). 

Figure 3.10 shows that there is a `perfect' agreement between the 
two approaches to estimate measurement reproducibility. Further- 

more, as in previous sections, both approaches underestimate the 
measurement reproducibility with a clear reduction in the bias as 
the number of subjects increases. It can be seen that the number of 
replicates per subject does not have a significant effect on the bias. 

The point estimates of measurement reproducibility in this case 
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Figure 3.10: Bias from true Measurement Reproducibility for ordered effects 
model (for the case of an order effect is not simulated but still fitted in the 
model) 

compare to those estimated in the previous two sections (i. e. 3.2.2.1 

and 3.2.2.2), indicate that a failure to consider the order effect (even 
if it is not really significant) will increase the bias. 

Coverage rates as an index for measuring the performance of the 
two approaches in producing confidence intervals are given in Table 
3.8 and a graphical presentation is presented in Figure 3.11. 

Apparently, the ANOVA approach, regardless of the number of sub- 
jects and repeats per subject, provides consistent confidence in the 
range of 95%. In contrast, the Profile Likelihood approach pro- 
vides slightly lower coverage rates for the case of 2 replicates per 
subject (compare to corresponding rates by the ANOVA approach) 
but these rates significantly increase as the number of replicates in- 

creases from 2 to 4. Moreover, an increase in the number of subjects 
slightly increases the coverage rates. 
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No. PT 
Estimation of 0.75 0.85 0.95 

Method Subjects no. of replicates no. o f replicates no. o f replicates 
(N) 2 4 2 4 2 4 

ANOVA 6 94 95 95 96 95 95 
Method 10 96 95 93 95 96 95 

30 94 94 94 93 94 95 

Profile 6 90 97 91 95 93 98 
Likelihood 10 94 99 91 97 94 99 

Method 30 94 99 94 97 94 99 

Table 3.8: Estimated Coverage Rates for 2 and 4 replicates (visits) per subject 
for the Order Effect Model (for the case of an order effect not simulated but still 
fitted). 
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Figure 3.11: Coverage rate for ordered effect model (for the case of an order effect 
not simulated but still fitted in the model) 

In general, one can see that the Profile Likelihood approach, for a 
higher number of replicates, has a better performance in terms of 
coverage rates. 
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Comparison of the coverage rates in this situation with those in the 
previous two situations suggest that, the coverage rates here are 
comparable with those in the situation where the order effect was 
simulated and fitted in the model (section 3.2.2.1). Generally they 
are also larger than those in the situation where the order effect was 
simulated but not fitted in the model (section 3.2.2.2). This again 
highlights the importance of correctly including an order effect in 
the model. 

Figure 3.12 provides plots of bias against confidence interval width 
for different simulation configurations. 

It is clear that, in the case of 2 replicates per subject, the ANOVA 

approach produces wider confidence intervals. However, the interval 
widths get narrower as the number of subjects as well as the number 
replicate observations per subject increases. 

On the other hand, for the Profile Likelihood approach, the num- 
ber of replicates does not have a clear effect on the interval widths 
whilst, as in the ANOVA approach, an increase in the number of 
subjects reduces the interval widths. This reduction is more obvious 
for the case of high true reproducibility. Nevertheless, it seems that, 
in the case of large number of subjects (i. e. N=30), both approaches 
produce almost the same pattern of intervals. 
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Figure 3.12: Confidence Diagrams with 2 and 4 replicates per subject (visits) 

for Order Effect Model (for the case where order effect is not simulated but is 

fitted in the model) for different combinations of number of subjects and true 

measuement reproducibility. 
In each diagram Vertical Axis represents Bias and Horizontal Axis represents 
(Confidence Interval Width)/2. 
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3.3 Unbalanced Data 

So far the data were simulated on the assumption that for each 
subject there were equal number of observations (visits or repeats). 
In this section the case where not all of the subjects have equal 
number of observations is considered. 

The simulation configurations that were used are: 

i) N, number of subjects, taken as 6 or 10 or 30; 
ii) T, number of repeats (visits) per subjects, taken as 

maximum 2 or 4 replicates for the unbalanced* case; 
iii) pT, true measurement reproducibility, 

taken as 0.75 or 0.85 or 0.95 . 

* The lack of balance was as follows: 

a) For 2 replicates per subject, 
50% of the cases were complete 
and 
50% of the cases had 1 missing replicate. 

b) For 4 replicates per subject, 
roughly 33.3% of the cases were complete 
roughly 33.3% of the cases had 1 missing 
replicate 
and 
roughly 33.3% of the cases had 2 missing 
replicates 
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3.3.1 Simple Replicate Model 

The simulation study in this section is based on the Simple Replicate 
Model for unbalanced data which was defined and illustrated in 
section 2.3.1 of the previous chapter. 

Point estimates from the two approaches to estimating measurement 
reproducibility are given in Table 3.9 and the related biases are 
displayed in Figures 3.13. 

No. PT 

Estimation of 0.75 0.85 0.95 
Method Subjects no. of replicates no. of replicates no. of replicates 

(N) 2 4 2 4 2 4 

ANOVA 6 0.63 0.65 0.76 0.76 0.89 0.89 
Method 10 0.64 0.68 0.79 0.79 0.91 0.92 

30 0.70 0.72 0.82 0.83 0.93 0.93 

Profile 6 0.64 0.66 0.76 0.78 0.88 0.84 

Likelihood 10 0.67 0.70 0.78 0.82 0.91 0.92 

Method 30 0.72 0.73 0.83 0.84 0.94 0.95 

Table 3.9: Estimated Measurement Reproducibility for 2 and 4 replicates (visits) 
per subject for Simple Replicate Model (no order effect). 

It is clear that the two approaches behave similarly in terms of 
point estimation with respect to the number of subjects and repli- 
cates per subject. Both approaches underestimate the measurement 
reproducibility with a significant effect of increase in the number of 
subjects in reducing the bias, although more biased point estimates 
appear for lower true reproducibility. It seems that increasing the 

number of replicates per subject results in a significant decrease in 
the bias. This effect is more considerable for a smaller number of 
subjects (i. e. N=6 or 10). 
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Figure 3.13: Bias from true measurement reproducibility for Simple Replicate 
Model(no order effect) 

However, both approaches for a large number of subjects have al- 
most the same performance in producing point estimates, but in 

general the Profile Likelihood approach, regardless of the number 
of subjects, produces less biased point estimates. 

As far as the performance of the confidence intervals is concerned, 
as in the previous section, this is assessed by means of the `Coverage 
Rate' which is the percentage of times that the confidence interval 

captures the true measurement reproducibility. 

Coverage rates based on the above model, are given in Table 3.10 
and their graphical representation is displayed in Figure 3.14. 

Both approaches, regardless of the number of replicates per subject, 
provide consistent confidence intervals in the range of around 95%. 
Nevertheless, the coverage rates produced by the ANOVA approach 
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are slightly poorer than those produced by the Profile likelihood 

approach. It is clear that the number of subjects as well as the true 
reproducibility does not have a significant effect on these rates. 

No. PT 
Estimation of 0.75 0.85 0.95 

Method Subjects no. of replicates 
- 

no. o f replicates no. o f replicates 
(N) 11 2 4 2 4 2 4 

ANOVA 6 94 96 93 95 94 94 
Method 10 94 94 94 95 94 93 

30 94 95 95 96 95 94 

Profile 6 93 94 93 95 96 95 
Likelihood 10 94 95 95 96 95 96 

Method 30 94 96 95 97 95 96 

Table 3.10: Estimated Coverage Rates for 2 and 4 replicates (visits) per subject 
for Simple Replicate Model (no order effect). 
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Figure 3.14: Coverage rates for Simple Replicate Model (no order effect) 
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Plots of bias against confidence interval widths are presented in 
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Figure 3.15. As noted before, points inside the wedge shape (<) are 
those intervals which capture the true measurement reproducibility. 

Clearly, the number of subjects, regardless of the number of repli- 
cates per subject, inversely affects the interval widths. Furthermore, 
in different simulation configurations , the patterns of intervals pro- 
duced by the two approaches are almost the same. It appears that 
in terms of confidence interval width, there is not a clear difference 
between the two approaches. 



Chapter 3. Estimating Measurement Reproducibility: A Simulation Study 

2 Repeats per Subject 4 Repeats per Subject 
Number of Subjects Number of Subjects 

6 10 30 6 10 30 
02.4.6.81 02 .4 .602 .402 .4 .6 .810 .2 .4 .60 .2 .4 

.5 .5 
5 .5 .5 

00000 

.0 .5 5:; 

< 

". 5 

1s1s V 0.75' 
.55 

5Z .55s 

000000 
0 

"'INK 

-5 .5 
.55 

L151 

1 .5 .5 
.5 J5 .5 

0000 

.55 5 "1 
 'S 

00.85-' .55 .5 
E5 

.5 .5 
000000 

L5". 5   
". 5 

.1-. 
5 "1 

iK 
.5 

00 
5 

". 5 

0.95 "5 
00000 

_L-. 
5 

". 5 ". 5 
". 5 

I- 
.ý55 

02.4.6.81 0 2.4.6 02 .4 02.4.6.81 02 .4 .602 .4 

A= ANOVA Method, P= Profile Likelihood Method 

A 

P 

97 

Ü 
0 

2 
A 

P 

A 

P 

C 
0 

cz 

E 

W 

Figure 3.15: Confidence Diagrams with 2 and 4 replicates per subject (visits) for 

Simple Replicate Model (no order effect) for different combinations of number of 

subjects and true measuement reproducibility. 
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3.3.2 Order Effect Model 

In this section, the simulation study is based on considering an order 
effect in the simulation process. In exercise testing, for instance, 
individuals may be subject to a visit or learning effect. The model 
which is appropriate to such data is illustrated in the section 2.3.2 

of previous chapter. 

In the following three subsections, the same situations as in the 
balanced data are considered. Simulation results for these three 

situations are presented in subsections 3.3.2.1 to 3.3.2.3. These 

situations are summarized in the following table: 

11 Situation III Simulated 11 Fitted 11 Subsection 11 

1 Yes Yes 3.3.2.1 
2 Yes No 3.3.2.2 
3 No No 3.3.2.3 

3.3.2.1 Simulated and Fitted Order Effect 

In this section results from the case where an order effect is simu- 
lated and fitted in the model are illustrated. 

For each of the two approaches (i. e. ANOVA and Profile Likelihood) 
Tables 3.11 and 3.12 represent the averages of the estimated mea- 
surement reproducibilities and coverage rates over 1000 simulations 

and Figures 3.16 and 3.17 display the biases and the coverage rates, 

respectively. 

As in previous cases, both approaches underestimate measurement 

reproducibility. Table 3.11 indicates that for the case of 2 repli- 
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cates per subject, highly unbiased point estimates of reproducibil- 
ity rapidly improve as the number of subjects increases. The same 
trend exists for 4 replicates per subject but with a lesser influence of 
the number of subjects. In fact an increase in the number of repli- 
cates appears to have a large effect for the case of a small number 
of subjects (i. e. N=6). 

No. PT 

Estimation of 0.75 0.85 0.95 
Method Subjects no. of replicates no. of replicates no. of replicates 

(N) 2 4 2 4 2 4 
ANOVA 6 0.54 0.63 0.64 0.74 0.75 0.85 
Method 10 0.64 0.64 0.73 0.75 0.85 0.87 

30 0.71 0.72 0.82 0.82 0.92 0.92 

Profile 6 0.61 0.66 0.72 0.77 0.81 0.88 

Likelihood 10 0.68 0.67 0.77 0.78 0.88 0.90 
Method 30 0.72 0.73 0.83 0.83 0.93 0.93 

Table 3.11: Estimated Measurement Reproducibility for 2 and 4 replicates (visits) 

per subject for Order Effect Model(simulated and fitted order effect). 

Apparently, estimated reproducibilities based on the ANOVA ap- 
proach in the case of small number of subjects (i. e. N=6), in com- 
parison with those from the Profile likelihood approach, are likely 
to be more biased. Further, it seems that true measurement repro- 
ducibility does not have a significant effect on the bias. 

Generally, in this case, the Profile Likelihood approach shows a 
better performance throughout the underlying configurations in the 
sense that it produces less biased point estimates. 

To examine the performance of confidence intervals from the two 

approaches, Figure 3.17 indicates that for lower true reproducibili- 
ties (i. e. pT=0.75 or 0.85), both approaches provide consistent con- 
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Figure 3.16: Bias from true Measurement Reproducibility for Ordered Effect 
Model (for the case where order effect is simulated and fitted in the model) 

fidence in the range of 95%, while for high true measurement re- 
producibility (i. e. pT=0.95), the two approaches behave differently 

with respect to an increase in the number of subjects. An increase 
in the number of subjects in the ANOVA approach inversely affects 
the coverage rate, whilst for the Profile Likelihood approach this 
slightly increases the rates. These changes are more obvious for a 
larger number of subjects. However, it seems that an increase in 
the number of replicates from 2 to 4 does not have a significant 
influence on the coverage rates. 

Generally, it appears that the Profile Likelihood approach has a 
better performance in terms of coverage rate. 

To compare performance of the two approaches to produce interval 

estimates, Figure 3.18 displays plots of bias against confidence inter- 

val width. In general, wider intervals in the case of a small number 
of subjects get narrower as the number of subjects increases. In 
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No. PT 
Estimation of 0.75 0.85 0.95 

Method Subjects no. of replicates no. o f replicates no. o f replicates 
(N) J L-2-- i4 2 4 2 4 

ANOVA 6 97 97 94 96 89 91 
Method 10 96 96 95 94 88 89 

30 94 95 95 94 86 87 

Profile 6 96 97 95 95 90 92 
Likelihood 10 96 97 95 95 91 92 

Method 30 95 96 96 96 93 94 

Table 3.12: Estimated Coverage Rates for 2 and 4 replicates (visits) per subject 
for Simple Replicate Model (simulates and fitted order effect). 
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Figure 3.17: Coverage rate for order effects model (for the case where order effect 
is simulated and fitted in the model) 

addition, in the case of 2 replicates per subject and small number of 
subjects, the intervals from the ANOVA approach are, on average, 
wider than those by the other approach. It seems that although 
an increase in the number of replicates changes the pattern of the 
intervals, it does not have a significant effect on the interval widths. 
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Figure 3.18: Confidence Diagrams with 2 and 4 replicates per subject (visits) for 

Order Effect Model (for the case where order effect is simulated and fitted in the 

model) for different combinations of number of subjects and true measuement 

reproducibility. 
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(Confidence Interval Width)/2. 
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3.3.2.2 An Order Effect Simulated but not Fitted 

Simulation results from the situation where an order effect is simu- 
lated but not fitted in the model, are considered in this section. 

Average of the estimated measurement reproducibilities and cover- 
age rates over 1000 simulations are displayed in Tables 3.13 and 3.14 
with graphical presentation of biases and coverage rates in Figures 
3.19 and 3.20, respectively. 

No. PT 

Estimation of 0.75 0.85 0.95 
Method Subjects no. of replicates no. of replicates no. of replicates- 

(N)_ 2 4 2 4 2 4 
ANOVA 6 0.60 0.62 0.72 0.72 0.83 0.84 
Method 10 0.64 0.64 0.74 0.74 0.86 0.86 

30 0.68 0.69 0.77 0.80 0.90 0.91 

Profile 6 0.61 0.61 0.71 0.73 0.85 0.86 

Likelihood 10 0.64 0.65 0.75 0.76 0.89 0.89 

Method 30 0.71 0.71 0.81 0.81 0.91 0.93 

Table 3.13: Estimated Measurement Reproducibility for 2 and 4 replicates (visits) 

per subject for Order Effect Model(an order effect simulated but not fitted). 

As in the previous sections, both the ANOVA and the Profile Like- 
lihood approaches, regardless of the number of replicates, underes- 
timate measurement reproducibility with a clear reduction in the 
bias for a larger number of subjects. Furthermore, point estimates 
for higher true reproducibility are slightly less biased than the es- 
timates for other values of true reproducibility. In general, point 
estimates from the ANOVA approach look more biased than those 
from the Profile Likelihood approach. 

Results from this section in comparison with those from the case 
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Figure 3.19: Bias from true Measurement Reproducibility for ordered effects 
model (for the case of an order effect simulated but not fitted in the model) 

where the order effect was simulated and fitted in the model (section 
3.3.2.1) show that, generally, a failure to consider the order effect in 
the model increases the bias except in the ANOVA approach for the 
cases of a small number of subjects with 2 replicates per subject. 

As far as coverage rates, as a measure of performance of the two ap- 
proaches to providing confidence intervals, are concerned, Table 3.14 
and Figure 3.20 show that for lower values of measurement repro- 
ducibility (i. e. PT=0.75 or 0.85), both approaches produce consistent 
confidence in the range of 95% but for high true reproducibility (i. e. 
pT = 0.95), high coverage rates for the case of a small number of 
subjects significantly decrease as the number of subjects increases. 
Moreover, it seems that an increase in the number of replicates, 
does not affect the coverage rates for lower true reproducibility, but 
tends to a slight decrease in the coverage rates for high true repro- 
ducibility. 
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No. PT 
Estimation of 0.75 0.85 0.95 

Method Subjects no. of replicates no. of replicates no. of replicates 

-1 
1 (N) 2 4 2 4 2 4 

ANOVA 6 94 94 94 95 92 92 
Method 10 95 95 94 94 91 89 

30 94 94 93 92 84 83 

Profile 6 94 95 93 96 91 93 
Likelihood 10 94 96 94 95 91 92 

Method 30 94 96 94 93 89 85 

Table 3.14: Estimated Coverage Rates for 2 and 4 replicates (visits) per subject 
for Simple Replicate Model (an order effect simulated but not fitted ). 
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Figure 3.20: Coverage rate for ordered effects model (for the case of an order 
effect simulated but not fitted in the model) 

In general, it appears that the Profile Likelihood approach has a 
better performance in terms of coverage rates. 

To consider the effect of a failure to fit an order effect on the coverage 
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rates, Tables 3.12 and 3.14 show that this failure generally decreases 
the coverage rates. To examine the form of confidence intervals 

provided by the different approaches, Figure 3.21 represents plots 
of bias against confidence interval widths. As noted before, points 
inside the wedge shape (<) are those intervals that capture the true 
measurement reproducibility. 

Both approaches provide wide intervals in the case of small number 
of subjects but get narrower as the number of subjects increases. 
This decrease in the interval widths is more obvious with 4 replicates 
per subjects. In addition, an increase in the number of replicates 
from 2 to 4, in most cases, does not have a significant effect on the 
intervals, although it slightly changes the pattern of the interval 

widths. 
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Figure 3.21: Confidence Diagrams with 2 and 4 replicates per subject (visits) 
for Order Effect Model (for the case where an order effect is simulated but not 
fitted in the model) for different combinations of number of subjects and true 
measuement reproducibility. 
In each diagram Vertical Axis represents Bias and Horizontal Axis represents 
(Confidence Interval Width)/2. 
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3.3.2.3 An Order Effect not Simulated but still Fitted 

Finally, the situation where the order (visit) effect is not simulated 
but actually is fitted in the model, is illustrated in this section. 

Tables 3.15 and 3.16 present averages of estimated measurement 
reproducibility and coverage rates over 1000 simulations and bias 
values and coverage rates for different configurations are given in 
Figures 3.22 and 3.23. 

No. PT 

Estimation of 0.75 0.85 0.95 
Method Subjects no. of replicates no. of replicates no. of replicates 

(N) 2 4 2 4 2 4 

ANOVA 6 0.51 0.66 0.63 0.75 0.76 0.85 

Method 10 0.62 0.64 0.73 0.75 0.87 0.88 
30 0.72 0.71 0.82 0.82 0.93 0.93 

Profile 6 0.62 0.65 0.71 0.74 0.80 0.86 

Likelihood 10 0.66 0.67 0.76 0.78 0.88 0.89 

Method 30 0.73 0.73 0.83 0.83 0.93 0.93 

Table 3.15: Estimated Measurement Reproducibility for 2 and 4 replicates (visits) 
per subject for Order Effect Model (an order effect not simulated but still fitted 
in the model). 

As in the previous situations, both approaches underestimate the 

measurement reproducibility with a significant effect of the number 
of subjects. It is clear that for higher number of subjects (i. e. N=10 

or 30), regardless of the number of replicates or true reproducibility, 
there is a `relatively good' agreement between the two approaches 
to point estimation. 

Furthermore, highly biased estimates by the ANOVA approach in 
the case of small number of subjects, dramatically improve with 
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Figure 3.22: Bias from true Measurement Reproducibility for Order Effect Model 
(for the case where an order effect not simulated but still fitted in the model) 

an increase in the number of replicates per subject. It seems that 
except for small number of subjects, for other simulation config- 
urations, an increase in the number of replicates does not have a 
significant effect on the point estimates. 

In general, the Profile Likelihood approach shows a better perfor- 
mance in estimating measurement reproducibility. 

Comparing the point estimates from this case with those from the 
case where an order effect was simulated and fitted in the model 
(sections 3.3.2.1) gives an overall impression that fitting an order 
effect in the model, when in fact there is no evidence of a signif- 
icant order effect, does not cause a significant change in the bias. 
However, when compared to estimates from the case where an order 
effect was simulated but not fitted in the model (section 3.3.2.2), it 

can be seen that fitting an order effect in the model, even if there is 

no evidence of a significant order effect , in general, reduces the bias 
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except for the ANOVA approach with a small number of subjects 
and 2 replicates per subject. 

To assess the performance of the confidence intervals, the coverage 
rates, which are the percentage of times that the intervals contain 
the true measurement reproducibility, are given in Table 3.16 with 
a graphical representation in Figure 3.23. 

High coverage rates (in the range of 95%) for lower values of true 
measurement reproducibilities (i. e. p7, =0.75 or 0.85), have been achi- 
eved regardless of the number of subjects or replicates per subject. 

In the case of high true measurement reproducibility (i. e. pz, =0.95), 
both approaches provide lower coverage rates than 95%, but be- 
have differently with an increase in the number of subjects and the 
number of replicates. For the ANOVA approach, an increase in the 
number of subjects tends to decrease the coverage rates whereas, 
for the Profile Likelihood approach, an increase in the number of 
subjects increases the coverage rates. 

In general, the Profile Likelihood approach shows a better perfor- 
mance in terms of coverage rate. 

Comparing the coverage rates in this section with those in the pre- 
vious two sections, one can see that, in general, there does not 
appear to be a significant difference between the coverage rates in 
the case of not simulated but fitted order effects and those in the 
case where an order effect was simulated and fitted in the model 
(section 3.3.2.1). However, compared to the case where an order 
effect was simulated but not fitted in the model (section 3.3.2.2), it 

can be seen that, coverage rates significantly increase in almost all 
configurations except for high true reproducibility (i. e. pT = 0.95). 
In this case a small number of subjects (i. e. N=6 or 10) results in a 
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decrease in the coverage rates, but with a large number of subjects 
there is an increase in the coverage rates. This shows that failure 
to considering a `significant' order effect in the model decreases the 
coverage rates in almost all simulation configurations. 

No. PT 
Estimation of 0.75 0.85 0.95 

Method Subjects no. of replicates no. o f replicates no. o f replicates 
(N) 2 4 2 4 2 4 

ANOVA 6 96 96 96 96 84 87 
Method 10 96 96 95 95 85 86 

LL- 
30 96 96 94 95 88 84 

Profile 6 94 95 96 96 90 91 

Likelihood 10 96 96 97 97 91 93 
Method 30 97 98 98 98 93 94 

Table 3.16: Estimated Coverage Rates for 2 and 4 replicates (visits) per subject 
for Simple Replicate Model (an order effect not simulated but still fitted). 
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Figure 3.23: Coverage rate for ordered effects model (for the case where an order 
effect is not simulated but still fitted in the model) 
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To investigate the performance of the two approaches in terms of 
confidence intervals, plots of bias against confidence interval widths 
are presented in Figure 3.24. 

As in the previous situation, for the case of 2 replicates per subject, 
an increase in the number of subjects does not have a significant 
effect on the interval widths, whereas for the case of 4 replicates, 
an increase in the number of subjects slightly reduces the interval 
widths. 

Overall, it seems that there is not a significant difference between 
the pattern of interval widths from the two approaches. 
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Figure 3.24: Confidence Diagrams with 2 and 4 replicates per subject (visits) for 

Order Effect Model (for the case where an order effect is not simulated but still 
fitted in the model) for different combinations of number of subjects and true 

measuement reproducibility. 
In each diagram Vertical Axis represents Bias and Horizontal Axis represents 
(Confidence Interval Width)/2. 
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3.4 Summary 

A simulation study was carried out to compare the performance 
of the ANOVA and the Profile Likelihood approaches to estimate 
measurement reproducibility and related confidence intervals. This 
was done for the cases of balanced and unbalanced data and based 
on a variety of underlying simulation configurations. 

To investigate the effect of learning or familiarisation in the Exercise 
Tests, an Order Effect Model was also investigated across a variety 
of simulation configurations. 

Both the ANOVA and the Profile Likelihood approaches underes- 
timate measurement reproducibility with a clear reduction in the 
bias as the number of subjects increases. For the case of balanced 
data, more or less, there is a `good' agreement between the two ap- 
proaches to point estimation. This agreement is more obvious for a 
large number of subjects. 

The ANOVA approach, in the case of balanced data and 2 repli- 
cates per subject, provides wider confidence intervals than the Pro- 
file Likelihood approach. In the other cases, there is not a clear 
difference between the estimated interval widths. 

As an overall summary of the performance of both approaches across 
all the simulation situations considered the following table attempts 
to pull together the conclusions from each different situation con- 
sidered: 
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Model 
Estimation Simple R. 

model 
Order Effect Model 
SF 11. SNF 11 NSF 

Balanced Bias A N A N 
Data Coverage rate P P P P 

Interval Width P P P P 
Unbalanced Bias P P P P 

Data Coverage rate P P P P 
Interval width N P N N 

Table 3.17: Summary results for all simulations. 
Order Effect Structure 

SF : Simulated and Fitted visit effect 
SNF: Simulated but Not Fitted visit effect 
SFN: Not Simulated but Fitted visit effect 

Table Entries ( on the basis of the specific simulation situation) 
P: The Profile Likelihood approach performs better than the ANOVA 

approach 

A: The ANOVA approach performs better than the Profile Likelihood 

approach 

N: No clear difference between the approaches was appeared 

Overall, the simulation results in this table give a clear impression 
that the Profile Likelihood approach is the better approach to pro- 
ducing point and interval estimates of measurement reproducibility. 



Chapter 4 

Estimating the Comparability of 
two distinct Variables: 
How to pool correlation 
coefficients 

4.1 Introduction 

In Sports Science, variables are often measured at a number of time 
points during an Exercise Test, and often such tests are repeated 
over a number of visits for each individual in a sample of individ- 

uals. Interest often focuses on the Comparability of variables e. g. 
whether the physiological variables such as frequency of breathing, 

ventilation, heart rate etc are at all well related to psychological 
variables such as the perceived rate of exertion or breathlessness 

across at least `replicate visits' and/or indeed across individuals. 

Clearly the strength of (linear) relationship between any two vari- 
ables through one exercise test on one individual may be measured 
by a correlation coefficient. The Comparability between two vari- 

116 
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ables is then defined as combining estimates of linear correlation 
coefficients from different replicate visits across individuals into ei- 
ther a "pooled estimate" of a common correlation or into an esti- 
mate of the typical correlation of the variables on a `typical visit' 
for a typical subject. The first step in this process is the attempt 
in this chapter to investigate how best to provide point and interval 
estimates for an assumed common correlation by pooling across a 
number of visits/exercise tests for one individual. 

4.2 Estimating a Common Correlation 

4.2.1 Model 

Assume that there are I independent estimates (e. g. I Exercise Tests 
on the same individual) of an assumed common correlation, p, i. e. 
I independent bivariate samples with, possibly, different means and 
variances but the same population correlation p. 

Interest here is how to pool the separate estimates of correlation for 

each sample (i. e. each Exercise Test) to provide a point and interval 

estimate for this common correlation, p. 

4.2.2 Data 

Let {xij, yij :j=1,2, ... , ni} be the ith random sample (i 

1,2,... I). 
Now sij 

Siisjj 
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is the ith sample estimate of correlation, 
where n; 

saj =E (Xij - Yj) (yij 
- v) etc. 

j=1 

Arther let 
N=ni+n2+... +nl 

4.2.3 Methods of Point Estimation 

Five distinct methods of producing a point estimate of p based on 
pooling the I sample correlations are investigated in this section. 

4.2.3.1 Weighted Estimate 

The simplest and most immediately appealing estimate is 

P_ 
ýz 1 niPa 

WN (4.1) 

i. e. an average of the individual sample correlations weighted 
by the appropriate sample sizes. 

4.2.3.2 Unbiased Estimate 

Since it is well known that p1 is a biased estimate of pi, 

i. e. 
E(pi) pi+A(1-pi) 2ni 
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it has been suggested (01kin and Pratt, 1958) that, 

G(Pi) = Pi + PZ (1 Pt 
2(ni - 3) 

(4.2) 

will be approximately unbiased for pi. Accordingly rather than use 
p,, above, one could use a weighted average of the individual unbi- 
ased estimates for each sample, 

E2 
1 niG(PZ 

Pý _ (4.3) 

Obviously this will be approximately unbiased for p. 

4.2.3.3 Fisher Estimate 

Since any Normal approximation to the distribution of any estima- 
tor of p is clearly unsatisfactory (as p can only range between -1 
and +1), Fisher(1921) suggested the use of the transformation, 

1-I-p 
F(p) 

1= 
21og 

° 

He then deduced that F(p) was approximately normally distributed 

with mean F(p) and variance 1/(n - 3). 

A possible point estimate of the common correlation investigated 
here based on the use such a transformation might be a weighted 
average of the form: 

I 

PF = F-' (ni - 3)F(Pi)/(N - 31) (4.4) 
i=1 
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4.2.3.4 Hedges and O1kin Estimate 

It is possible to write down a likelihood involving all I separate 
population means and variances as well as the common population 
correlation. 

In general, the maximum likelihood estimate for p cannot be ex- 
pressed in closed form. However, an approximate estimate of it can 
be obtained numerically as the solution of g(p) = 0, 

where I^ 
9(P) = 

NP 
2_ 

n-PZ (4.5) 
P i=11 PA 

(Hedges and 0lkin, 1985). 
Denote such an estimate by pfo . 

4.2.3.5 Profile Likelihood Estimate 

Profile Likelihood may be used as a method of parameter estimation 
when many nuisance parameters are involved in a model (in this case 
the `population' means and variances for each sample are nuisance 
parameters i. e. p.,, ic, i, 

a',, o, for i=1,2, 
... , 

I). The likelihood 

contribution Li from the ith sample (i = 1,2, 
... , 

I) can be written 
as 

n1Z (Xij - µ'x{)2 xij - ilxi (yij /2y) ýJij - µyi)2 Li - °x y: ) -; 
L 
exp 21- Q2 - 2p( 

aQ+ Q2 p2) j. l xi Xiyi vi 

I 

with the full likelihood of rj Li. 
i=1 

To obtain the Profile Likelihood for p, maximise with respect to all 
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µx2, ox;, µy; and oy; (i = 1,2, ... , 
1) for fixed p to give 

PLik(p) _ (&2t&y=)-4(1 - P2)_4exp 
nz(i - pPj) 

=1 1_p2 

where 
E' i 

Ü2 = 
1=1(xij - xiý 

x, ni 

ni r_2 

and &2 = 
/sj 1. jJij Yi) 

ni 

121 

Finally, after some algebra, the full log profile likelihood, could be 
written as (ignoring constants) 

l(P) = -N log(1 - p2) - 
n2 pýj) (1_ 

2 
(4.6) 

2 ý=i 1P 

The maximum profile likelihood estimator of p would be obtainable 
by equating to zero the partial derivative of l(p) with respect to p, 
that is 

al(p) 
= 

Np 
2- 

ni(2p - p2P 2 Pi) (4.7) 
aP 1p Z=1 

(1 P) 

Denote such an estimate by /PL . 
Note how similar the form of this is to that in the previous section 
(i. e. PHO) 

4.2.4 Methods of Interval Estimation 

Rather than simply produce point estimates of a parameter, it is 
clearly more informative to produce interval estimates. Here, to 
provide approximate 95% confidence intervals for p, the following 

pivotal functions were used: 

i) The Weighted, Unbiased and Hedges and Olkin esti- 
mates could all be used to provide interval estimates based 
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on the approximate result (Hedges and Olkins, 1985) that 

1-p2 

Possible approximate 95% confidence intervals for p would 
be based on the solutions of 

p) 
2= 

(1-96)2 4.9 1_p2 
) 

122 

which give intervals of the form 

[-, 1N-- N-4 x 1.96(VNp- 1.96) -V+ N+4 x 1.96(V7ß+ 1.96) 
l2x1.96 2x1.96 j 

(4.10) 

where p in turn is replaced by pW, pu and ß11o for the three 
methods. 
ii) The Fisher estimate would use the following approxi- 
mate result for the pivotal function, 

F(13) - F(p) 
N(0,1) 

1/(N - 31) 

to give approximate 95% confidence intervals for p of the 
form 

F'-1 F(P, ) ± 
1.96 

(4.11) 
N-3I 

iii) For the Profile Likelihood method, the relative profile 
likelihood required to provide an approximate likelihood 
interval for p is 

rl(p) = l(P) - l(PPL) 
2I^ N 1-p ni(1-ppi) 

- -2 log 1P2 -i ' 1_p2 

+ nil - PPLPZ, ý 
t-1 p2 

(4.12) 
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Hence a likelihood interval with approximate 95% confi- 
dence would be 

{p : rlogPLik(p) > -1.92} 

since it is likely that 

D= -2rlogPLik(p) '- 4') approximately. 

4.2.5 Illustration of the Estimation methods 

4.2.5.1 Data 

In a study of the reliability of an Exercise Testing procedure, each of 
12 subjects had their Breathlessness measured on a Visual Analogue 
Scale(VASB) and Ventilation measured using a Douglas Bag at two 
minute intervals through the test to give 8 or 9 time points per 
subject per test. The subjects exercised at progressive difficulties 

until voluntary withdrawal or 18 minutes. The Exercise Test was 
repeated on 8 different occasions for each subject. Scatterplots of 
these values for each of the 12 subjects are presented in Figure 4.1. 

For each subject it is assumed that the correlation between VASB 

and Ventilation across time in any test is the same for all tests 
although the time profile may shift on one or both variables from 
test to test due to variations in temperature, fitness etc. 

The correlations for each subject are displayed in Figure 4.2 and 
it appears they may be assumed constant across visits (i. e. in the 
notation of the previous sections I=8 and ni=8 or 9, as appropriate, 
for each subject). It may even be reasonable to assume that the 
common correlation for the ith subject (i=1,2,..., I) is the same for 

all subjects but this will be investigated later (see 4.2.6). 
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Figure 4.1: Scatterplots of the two variables Visual Analogue Scale for Breath- 
lessness (VASB) and Ventilation for each of the 12 subjects. 
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Figure 4.2: Sample Correlations between VASB and Ventilation across each of 
the 8 visits for each of the 12 subjects. 

4.2.5.2 Results 

Table 4.1 gives the point and interval estimates of the common 
correlations for each of the 12 subjects by each of the 5 methods of 
estimation and Figure 4.3 displays these results graphically. 

Point estimates of the common correlation coefficients from the 
Weighted method are in general less than those estimates from the 
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other methods. The estimates from the Fisher method and Hedges 

and Olkin method appear very similar. 

Figure 4.4 displays the appropriate approximate 95% confidence in- 
tervals. Except for the Profile Likelihood method which in all cases 
provides the narrowest intervals, there are no obvious general differ- 

ences among the widths of the intervals from the other 4 methods, 
although, in cases with very narrow intervals, those based on the 
Hedges and O1kin estimate are narrower than those based on the 
other 3 methods. 
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Figure 4.4: Point and Interval Estimates of Common Correlation for each subject 
between VAS for Breathlessness and Ventilation. 

*: Different scale for subject number 8 with the widest confidence intervals is 

used. 
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Subject Weighted met. Unbiased met. Fisher met. HO met. PL met. 
no. (95% C. I. ) (95% C. I. ) (95% C. I. ) (95% C. I. ) (95% C. I. ) 

1 0.980 0.982 0.986 0.986 0.982 
(0.962,0.986) (0.969,0.988) (0.975,0.992) (0.973,0.990) (0.975,0.986) 

2 0.982 0.989 0.988 0.988, 0.984 
(0.966,0.988) (0.972,0.990) (0.979,0.993) (0.985,0.992) (0.978,0.988) 

3 0.987 0.988 0.989 0.989 0.989 
(0.974,0.991) (0.980,0.993) (0.979,0.994) (0.979,0.993) (0.984,0.991) 

4 0.968 0.976 0.972 0.972 0.971 
(0.941,0.978) (0.950,0.982) (0.950,0.984) (0.949,0.981) (0.960,0.979) 

5 0.922 0.943 0.940 0.937 0.931 
(0.862,0.947) (0.881,0.955) (0.895,0.966) (0.887,0.957) (0.902,0.949) 

6 0.985 0.988 0.988 0.988 0.987 
(0.972,0.990) (0.977,0.992) (0.978,0.993) (0.985,0.992) (0.982,0.990) 

7 0.945 0.962 0.953 0.954 0.951 
(0.901$0 . 962) (0.915,0.968) (0.917,0.973) (0.917,0.968) (0.931,0.964) 

8 0.850 0.879 0.890 0.876 0.866 
(0.745,0.896) (0.776,0.910) (0.811,0.937) (0.785,0.915) (0.810,0.902) 

9 0.983 0.980 0.984 0.985 0.985 
(0.968,0.988) (0.973,0.990) (0.972,0.991) (0.973,0.990) (0.979,0.988) 

10 0.959 0.961 0.968 0.968 0.963 
(0.924,0.972) (0.936,0.976) (0.943,0.982) (0.941,0.978) (0.948,0.973) 

11 0.955 0.946 0.967 0.967 0.961 
(0.915,0.970) (0.930,0.975) (0.940,0.982) (0.937,0.978) (0.944,0.971) 

12 0.980 0.982 0.988 0.988 0.982 
(0.963,0.986) (0.969,0.988) (0.979,0.993) (0.985,0.992) (0.975,0.986) 

Table 4.1: Estimated Common Correlations and approximate 95% confidence 
intervals for VAS for Breathlessness and Ventilation 
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4.2.6 Checking the Assumption of the Commonality of a 
sample of Estimated Correlation Coefficients 

4.2.6.1 Introduction 

Before pooling the sample correlations across different visits to pro- 
vide an estimate of common correlation, it is important to test 
whether or not these correlations do in fact have the same common 
population correlation, p. In other words, to test the consistency of 
the estimated sample correlations. 

4.2.6.2 Tests of Commonality 

Suppose there are P17 p2, 
... , 

p, independent sample correlation co- 
efficient estimates, with each pi based on a sample of ni observations 
from a bivariate normal population having correlation coefficient pi. 
Several approaches have been suggested to test the consistency of 
correlations (i. e. testing Ho : pi = p, vs H1 : pi p for all i, i= 
1,27 ... , 

I). 
In the first approach which is based on the Fisher Transformation, 
let F(pl), F(p2), ..., 

F(PI) be the Fisher transformed sample corre- 
lations and F(p ,) 

be the Fisher estimate of the common correlation 
(see section 1.2.3.3), 
i. e. 

F'(PF) _ 
Ei 1(ni - 3)F(, 3 ) 

N-3I 

Now the commonality of the correlation coefficients is based on re- 
garding 

r 
Q= E(nj - 3)(F(Pi) - F(, 5 ))2 (4.13) 

i=1 
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as having approximately chi-square distribution with (I-1) degrees 
of freedom under Ho. 
The second approach is based on a likelihood ratio test and the 
commonality of the correlations is based on 

I2 
LRT =-L (nj - 2) log 1- Pi - PHo (4.14) 

i=1 1- PAP1, o 

with / 
HQ as the Hedges and Olkin estimator of common correlation 

coefficient, also having approximately a x1_1 distribution under Ho. 
For the example in section 4.2.5.1, for subject number 1 with 8 sam- 
ple correlation coefficients from 8 assumed independent visits (i. e. 
I=8), the two observed values of the statistics (i. e. Q and LRT) 
are 7.64 and 8.60, respectively, neither of which proves significant 
to reject Ho (i. e. both are less than, 14.07, the upper 95 percentile 
(critical value) of a Chi-Squared distribution with 7 degrees of free- 
dom). 

The appropriate values of the test statistics for each of the other 11 
subjects are presented in Table 4.2. 

Comparing these values with the upper 95 percentile of a chi-square 
distribution with 7 degrees of freedom (i. e. 14.07), indicates that one 
should not reject the assumption of the consistency of the correlation 
coefficients for any of the subjects, except for number 12. 

There is considerable variability of sample correlations across vis- 
its for some of the 12 subjects. Figure 4.2 showed the wide range 
of these sample correlations for subject number 8 but only moder- 
ate variability of those for subject number 12 compared to other 
subjects. Thus it is somewhat surprising that since virtually all 
samples for every subject are based on the same number of observa- 
tions (i. e. 7 or 8) the wide range of sample correlations for subject 
8 proves non-significant while the more restricted but numerically 
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Subject Q LRT 

2 10.03 10.61 

3 3.05 3.62 

4 3.06 3.53 

5 9.60 10.35 

6 3.86 4.47 

7 3.76 4.25 

8 13.36 13.18 

9 2.60 2.99 

10 5.53 6.34 

11 7.91 8.93 

12 16.90 17.99 

Table 4.2: Fisher and Likelihood Ratio Test statistics for the other 11 subjects 

higher values for subject 12 show apparently clear evidence of a lack 

of commonality. This is further investigated in the following section. 

4.2.6.3 Suitability of X2 approximate for Q and LRT statistics under 
Ho 

First of all, the assumption of the test statistics having Chi-Squared 

distributions under the null hypothesis of normality was considered. 
Estimated probability density functions for Q and LRT statistics 
under Ho based on 1000 simulations for I=8 and different values 
of true common correlations (i. e. p=0.75,0.85,0.90,0.95,0.99) 

were constructed and compared to the probability density function 

of a Chi-Squared distribution with 7 degrees of freedom. These are 

presented in Figure 4.5 and show that the assumption of underlying 
Chi-Squared approximations to the test statistics under Ho is fairly 



Chapter 4. Estimating the Comparability: How to pool Corr. Coeff. 133 

reasonable here especially for the LRT approach. 

4.2.6.4 Deviation from bivariate normality 

It has been shown that the distribution of Q will not be even ap- 
proximately X2 [_1 under deviation from bivariate normality (Duncan 
and Layard, 1973). For each of the 12 subjects, bivariate normality 
of the original data at each visit was assessed by using jacknifed ma- 
halanobis probability distance plots and tests of skewness. These 

showed no particular evidence of a lack of bivariate normality for 

subject 12 or indeed any of the other 11 subjects. 

4.2.6.5 Variability in the Sample Correlation 

For each of the 12 subjects, the variation of the sample correlation 
coefficients across visits is another characteristic of the data which 
is considered in this subsection. 

Table 4.3 gives the rank ordered standard deviations of the corre- 
lations across visits based on both raw values and on the Fisher 
transformed values. Clearly, due to the effect of the Fisher trans- 
formation at high (> 0.95) values of p, the rank values are far from 

similar. It can be seen that whereas, in the raw data space, subject 
12 is only of modest variability compared to the other subjects, in 
the transformed space it is the most variable across visits. So this 
may well be the explanation as to why subject 12 has to be rejected 
for the assumption of common correlation. i. e. The Fisher transfor- 

mation can provide large variability in the transformed space if the 
typical value of the correlation tends towards one (or indeed minus 
one) . 
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Order 
No. 

Subject 
No. 

Std. Dev. of 
Raw Data 

Subject 
No. 

Std. Dev. of 
Fisher Trans. Data 

1 3 0.01 9 0.25 

2 9 0.01 4 0.28 

3 6 0.01 3 0.30 

4 4 0.02 7 0.31 

5 2 0.02 6 0.33 

6 1 0.02 10 0.38 

7 12 0.02 1 0.45 

8 10 0.03 2 0.49 

9 11 0.03 11 0.49 

10 7 0.04 5 0.51 

11 5 0.04 8 0.57 

12 
L8 0.08 12 0.64 

Table 4.3: Rank ordered Standard Deviation of Raw data and Fisher transformed 
data for each of the 12 subjects 

4.2.6.6 Conclusions on the rejection of common correlation for 
subject 12 

In previous subsections the suitability of the Chi-Squared approxi- 
mation, the deviation from normality of the data and the variation 
of sample correlation coefficients in the Fisher transformed space 
were examined. The only characteristic of the data that might sig- 
nificantly influence the values of these statistics (i. e. Q and LRT) is 
the standard deviation of sample correlations across visits in the 
Fisher transformed space. In other words, these two statistics 
are very sensitive to the location of the transformed data. Subject 

number 12 with a comparable variability of sample correlations to 
other subjects but a relatively high range of values (i. e. 0.94 to 0.99) 
has the largest variability in the Fisher transformation space. This 

may indeed be the reason why both tests proved significant for this 
subject. 
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4.3 A Simulation Study 

To compare and contrast the 5 distinct methods of point and inter- 
val estimation of a common correlation, 1000 simulations of each of 
a number of underlying configurations were carried out. 

The configurations were defined by three quantities: 

i) The number of distinct samples/exercise tests, I; 
ii) The number of observations per sample, ni; 
iii) The true underlying common correlation, pT. 

In the simulations, all combinations of the following values were 
taken: 

i) I=5 or 10; 
ii) ni =n for all i and n=4,8 or 12; 
iii) pT =0.1,0.4,0.7 or 0.95. 

(i. e. 2x3x4= 24 separate configurations were investigated) 

4.3.1 Summary of Results of the Simulations 

4.3.1.1 Point Estimation 

For each method of estimation of a common correlation, the average 
estimate over the 1000 simulations for each of the above configura- 
tions are presented in Table 4.4 and the estimated biases (i. e. the 
average estimate for 1000 simulations - PT) are displayed in Figure 
4.6. 
Obviously as the number of observations per sample increases, all 
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methods tend towards minimal bias. Generally there is more bias 
at moderate p (i. e. 0.4 and 0.7) than at 'extreme' p=0.1 or 0.95. 

The Weighted and Profile Likelihood methods are negatively bi- 
ased while the Hedges and Olkin as well as the Fisher methods are 
positively biased. 

For small number of observations per sample (i. e. n=4) the Unbiased 
method is slightly (positively) biased. 
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Figure 4.6: Estimates of Bias for each method of common correlation estimation 
based on the results of 1000 simulations 
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pT Method I=5 I=10 11 
n=4 n=8 n=12 n=4 n=8 n=12 

Weighted 0.083 0.089 0.095 0.085 0.089 0.098 

Unbiased 0.099 0.095 0.099 0.103 0.095 0.102 

0.1 Fisher 0.108 0.102 0.102 0.116 0.101 0.103 

H. O. 0.109 0.101 0.102 0.118 0.101 0.103 

P. L. 0.101 0.093 0.095 0.090 0.089 0.098 

Weighted 0.359 0.375 0.382 0.350 0.384 0.382 

Unbiased 0.423 0.397 0.397 0.415 0.407 0.396 

0.4 Fisher 0.459 0.415 0.407 0.467 0.431 0.412 

H. O. 0.458 0.415 0.408 0.469 0.431 0.411 

P. L. 0.360 0.375 0.382 0.350 0.384 0.382 

Weighted 0.622 0.672 0.683 0.624 0.672 0.686 

Unbiased 0.711 0.700 0.700 0.714 0.700 0.703 

0.7 Fisher 0.740 0.717 0.710 0.762 0.724 0.718 

H. O. 0.741 0.717 0.710 0.761 0.724 0.717 

P. L. 0.622 0.672 0.683 0.624 0.672 0.686 

Weighted 0.923 0.941 0.944 0.916 0.941 0.946 

Unbiased 0.970 0.951 0.949 0.963 0.951 0.951 

0.95 Fisher 0.963 0.955 0.952 0.966 0.956 0.954 

H. O. 0.938 0.955 0.952 0.959 0.956 0.954 

P. L. 0.922 0.941 0.944 0.915 0.941 0.945 

Table 4.4: Average values for each method of common correlation estimation 
based on the results of 1000 simulations 



Chapter 4. Estimating the Comparability: How to pool Corr. Coeff. 139 

It appeares that increasing the number of samples from 5 to 10 has 
no major influence on the pattern or magnitude of-such biases. 

4.3.1.2 Interval Estimation 

To compare the performance of the methods of interval estimation, 
the estimated coverage rate (i. e. the percentage of times in the 1000 
simulations that pT lay inside the alleged 95% confidence intervals) 
for each of the above configurations was evaluated. These are pre- 
sented in Table 4.5 with a graphical presentation in Figure 4.7. 
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Figure 4.7: Coverage Rates for each of the methods 
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pT Method I=5 1=10 
n=4 n=8 n=12 n=4 n=8 n=12 

Weighted 91 93 94 93 93 95 

Unbiased 84 91 93 85 90 94 

0.1 Fisher 96 94 95 98 94 96 

H. O. 77 89 92 77 88 92 

P. L. 91 92 93 91 92 94 

Weighted 88 91 93 87 92 93 

Unbiased 80 90 92 82 91 93 

0.4 Fisher 96 94 95 95 94 95 

H. O. 80 89 93 76 89 92 

P. L. 84 89 90 84 90 90 

Weighted 78 89 90 74 86 89 

Unbiased 72 90 90 72 89 91 

0.7 Fisher 96 95 94 94 93 92 

H. O. 85 94 92 77 90 91 

P. L. 70 84 85 68 
_7 

81 84 

Weighted 74 83 87 59 81 87 

Unbiased 46 90 90 31 88 91 

0.95 Fisher 94 94 95 92 93 94 

H. O. 90 94 94 79 91 93 

P. L. 55 62 63 44 59 61 

Table 4.5: Proportion of times in 1000 simulations that the interval estimate 
captured the true common correlation 
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The Hedges and 01kin method provides poor confidence for low 
numbers of observations per sample (i. e. ni = 4) and low true com- 
mon correlations, but this improves as the number of observations 
per sample and the true value of common correlation increases, while 
the Profile likelihood method produces higher confidence for low val- 
ues of true common correlations but decreases as the value of the 
true common correlation increases. 

Poor confidence is obtained using the Unbiased method for low val- 
ues of observations per sample and high values of true common 
correlation. This rate dramatically improves with an increase in 
the number of observations per sample. 

Only the Fisher method provides consistent confidence in the range 
of 95% regardless of the number of subjects, observations per sample 
and the true value of the common correlation. 

All the other four methods do not perform adequately throughout 
the simulations, particularly for a low number of observations per 
sample (i. e. ni = 4) as well as for a true common correlation of 0.95. 

It seems that increasing the number of samples from 5 to 10 does 

not radically improve the pattern of coverage rates. 

4.3.2 Comparison of Confidence Interval Widths and 
Coverage Rates in Different Methods 

To investigate the differences in the estimated confidences for the 

underlying simulation configurations, scatterplots of the bias against 
confidence interval width for each simulation are used. These plots 
across different simulation configurations are shown in Figures 4.8 
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(1=5) and 4.9 (I=10). To provide a clearer presentation for the true 
common correlation of 0.95, the same form of plots with a larger 
scale is presented in Figure 4.10. 

Points inside the wedge (<) shape are interval estimates which cap- 
ture the true value of the common correlation while points outside 
fail to do so. 

Apparently increasing in the number of samples/exercises as well as 
increase in the number of observations per sample/exercise decreases 
length of the estimated confidence intervals. While the Fisher ap- 
proach provides the most stable coverage rates irrespective of the 
length of estimated confidence intervals, in the other approaches 
coverage rates increase as the confidence interval widths decrease. 

The Fisher approach obviously provides the widest confidence in- 
terval with the best estimated confidence based on coverage rates. 
In contrast, the Profile Likelihood approach provides the narrowest 
intervals and in all situations, except in the case of small number of 
observations per sample (i. e. ni = 4), gives the smallest confidence. 
The skewness of the intervals as the true common correlation in- 
creases is clearly obvious. 

Unsurprisingly, the Weighted, Unbiased and Hedges and O1kin ap- 
proaches, with the same pivotal functions to produce confidence in- 
tervals, give the same pattern of confidence intervals. In these three 
approaches, plots of bias against width overlap each other and so it 
is impossible to distinguish the performance of each approach. 

To have a clearer presentation of confidence interval width for each 
of these three approaches, Figure 4.11 shows the distributions of 
the produced confidence interval widths by each of the three men- 
tioned methods for the case of pT = 0.95. The Unbiased approach, 
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obviously, produces the narrowest confidence intervals for the case 
of 4 observations per sample irrespective of the number of samples. 
It appears that in other situations these three approaches produce 
almost the same pattern of confidence interval widths. 

4.3.3 Conclusion of the simulations 

All five approaches of estimating a common correlation, provide 
biased point estimates. Generally the bias rate is more at moderate 
true common correlations (i. e. pT=0.4 or 0.7) and tends to decrease 

as the number of observations per sample increases. 

Regarding the effect of different factors on the attained confidence 
of the different approaches of interval estimation, it is clear that a 
combination of factors influence the coverage rates. 

To illustrate the influence of different factors on the estimated confi- 
dence, the five different approaches to estimate common correaltion 
can be summarised as follows: 

1) The Fisher approach 
This approach provides a moderate, positive bias, but has the most 
stable coverage rates. It seems that number of observations per 
sample and true common correlation, which affect the width of the 
intervals, have no significant effect on the achieved confidence. 

2) The Hedges and 01kin approach 
This approach like the Fisher approach provides positively biased 

point estimates and it appears that the number of observations per 
sample is the most important factor influencing the coverage rate. 
Obviously in the case of a small number of samples with a small 
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number of observations per sample (i. e. I=5 and n=4), higher true 
common correlation significantly increases the achieved confidence. 

3) The Weighted, the Unbiased and the Profile Likelihood 

approaches 
In these three approaches, the Unbiased approach provides slightly 
positively biased point estimates and the Weighted and the Profile 
Likelihood approaches provide negatively biased point estimates. 
Generally an increase in the true common correlation results in 
narrower confidence intervals and smaller coverage rates, but an 
increase in the number of observations per sample (e. g. from 4 to 8) 
improves the coverage rate. With the Unbiased method, for exam- 
ple, increase in the true common correlation continuously decreases 
the provided coverage rates with its minimum value at pT = 0.95, 
but the higher number of observations per each sample quickly re- 
covers this rate. 
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In each diagram vertical axis represents Bias and horizontal axis represents (Con- 
fidence Interval Width)/2. 
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4.4 Summary 

Five distinct methods of point and interval estimation were consid- 
ered for the case of estimating a common correlation coefficient. 

A particular example suggested that both the Fisher and Hedges 
and Olkin methods would provide similar results for high (i. e. greater 
than 0.95) correlations. 

A simulation study supported the Fisher method as the only method 
to achieve near the required 95% confidence for interval estimation 
across a variety of underlying situations. 

Overall the Fisher method appears to be, on the basis of this study, 
the best method to estimate a common correlation. 



Chapter 5 

Estimating the Comparability of 
two distinct Variables: 
How to model across individuals 
and repeat Exercise Tests 

5.1 Introduction 

Essentially, a correlation coefficient measures the linear relationship 
between two variables of interest. The `Comparability' between vari- 
ables refers to combining estimates of simple correlation coefficients 
from different replicates across individuals into either a pooled esti- 
mate of a common correlation if this is an appropriate assumption or 
into an estimate of the "typical/average" correlation from the vari- 
ables on a `typical replicate' exercise test of a `typical individual'. 
It is thus latter interpretation of Comparability that is considered 
in this chapter. 

Various methods of pooling estimates of a common correlation coef- 
ficient from different samples were considered in the previous chap- 

150 
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ter. In this chapter it is intended to investigate how to model the 
correlation between a pair of variables (e. g. physiological and psy- 
chological assessments of physical effort) across replicate visits for 
a number of individuals and then to model these across all individ- 
uals in a sample from an appropriate population. First one models 
how one can estimate the `typical or average' correlation for an indi- 
vidual (one-stage modelling) and then extend this idea to obtain an 
overall estimate of the `typical' correlation of the `typical' individual 
(two-stage modelling). 

Throughout this chapter the modelling of the data will be in the 
`Fisher transformation space'. For instance if an individual has a 
true correlation p for a specific visit/retest, then the corresponding 
Fisher value will be 

11+P 
F'(P)=2log1_p (5.1) 

The choice of such a space for modelling in this chapter is clearly 
dictated by the results in the previous chapter where the Fisher 
transformation was found to be `best' with respect to the estimation 
of a common correlation coefficient. 

5.2 One-Stage Modelling Process 

Consider an individual with a set of J bivariate samples of size nj 
(j=1,2,..., J), which arise from bivariate (X, Y) normal distribu- 
tions and let FT and Fj = F(ps), (j=1,2,... 

, J), be the transformed 
(Fisher space) `average' population correlation coefficient (or Com- 

parability) and sample correlation coefficients between the two vari- 
ables of interest, respectively. In Exercise Testing, for example, an 
individual may be tested on each of J different visits where a physi- 
ological variable X and a psychological variable Y are measured at 
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nj specific time intervals during an exercise test on that visit with 
resulting observations 

{xjk, yjk; k=1,2,..., njj ,=1,1, ... I 
J} 

The sample correlation for the jth test will be 

Si xy 
ý; p Ts 7- -- 

y xxsy 

where nj 

S'y= E(xjk-x. 7")(Yk-yj. ) etc. 
k=1 

Further denote 
1 Fj =F(ps)=2-log 1- Pj 

This section is concerned with two possible models whereby the P, 
(j=1,2,..., J) may be used to estimate FT. 

5.2.1 The Basic (Fisher) Model 

Since, for each individual, there are J underlying `true correlations' 
pj, (j = 1,2, ... , 

J), it is reasonable to suppose that 

All the J tests should measure exactly the same true un- 
derlying correlation PT. 

In the Fisher space this could give rise to the following models 

Fj =FT, for all j=1,2,..., J 

where FT =F (pT ) 
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Now, of course, what is actually observed is Fj which, on the basis 
of the Fisher transformation, one could assume 

Fj =Fj -I- t, for all j=1,2,..., J (5.2) 

and where it might be further assumed that 

AN0, 
nj 

13 
j=1,2,..., J(nj >3) 

with these .j assumed independent of each other. 
Standard Normal Theory then provides a maximum likelihood esti- 
mate 

E 1(nß - 3) Fj 
FT - Ej 1(nß - 3) 

(5.3) 

with 
Var(FT, ) =j1 (5.4) 

E, =, (nj - 3) 

Further a 95% confidence interval for p,., the assumed common cor- 
relation, can be produced in the form 

F-1 FT f 1.96 x1 (5.5) 
Ej_1(ný 

- 3) 

as long as all nj > 3, 
(c. f. section 4.2.3.3) 

5.2.2 Multiplicative Fisher Model 

A natural extension to the model which is found to be applicable in 
practice is that the Aj do not adequately mirror the variability seen 
in the P j. 
Accordingly one could hypothesise the model: 

F; =FT+7j for all j=1,2,.. ., J (5.6) 
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where one assumes that 

7j -N 
(07 

i. e. Fj -NF, 7 

0' 

nj -3 
independently of other ryes 

0, 
T 

nj -3 

154 

Thus if o,, 2 =1 the model of the previous section is appropriate 
whereas if aT<1 then the standard Fisher model overestimates the 
variability in the Fj. 
Standard Maximum Likelihood Estimators for FT and QT are ob- 
tained as 

- 

E7 
1(nj - 

3). P. 
7 

-PML 

and j T=T 
!ý 

(nj - 
3) Cri 

ML 
)2" (5.8) 

J j-1 

Further, it can be shown that 
A2 

Var(FML) - 
O'T 

= ýJ 1(nj - 3) 
(5.9) 

and a 95% confidence interval for PT, the estimated common corre- 
lation, is of the form 

QT [F_i (PAIL 
± t(J-1,0.975) X 

J-1 J 
(5.10) 

J 
ýj=1(nj 

- 3) 

as long as all nj > 3. 

Note: An Alternative (Additive) Fisher Model 
Another potential model that might be considered is the model 
based on additive rather than multiplicative errors 

+'ý =FT+Ej +/\ for all j=1,2,..., J (5.11) 
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with 
Ej rJ N\O, uT/ 

independently of 

Aj ^-j Ný3,1 l 
(nj - 3) 

i. e. 
1j, N[FT, o, 2+ 1/(nj - 3)] (5.12) 

where Maximum Likelihood estimators for F, and o can be pro- 
duced by equating to zero the partial derivative of log-likelihood 

equation with respect to FT and o and simultaneously solving the 
two equations: 

al J-j- FT 
0 (5.13) 

OFT. j=j UT + 
nj -3 

and al 
_J1J 

(F; - FT)2 
0 (5-14) 

099T 3 T j-3 T nj-3 

to obtain point estimates for FT and o, T. 

However in the remainder of this chapter the Multiplicative Fisher 

model is used as it is certainly simpler to fit and, on the grounds 
of practical experience, is a substantially better fit for physiological 
data than the above Additive model. 

5.2.3 A Specific Application 

To illustrate the use of the above models, data from 8 separate ex- 
ercise tests of a specific individual are considered, where his Fatigue 
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on a Visual Analogue Scale (VAS), and Ventilation using a Dou- 
glas Bag, were measured at 6 or 7 or 8, as appropriate 1, distinct 
2-minute intervals during the test (i. e. J=8 while nj=6 or 7 or 8). 
Figure 5.1 shows a scatterplot of these data for each of the 8 visits 
of the individual. 

On the basis of this part it seems reasonable to assume that the 
correlation between Ventilation and VAS for Fatigue across time in 
any test is the same for all tests for that individual. 

Figure 5.2 gives a plot of the estimated sample correlation coeffi- 
cients for each test for this individual as well as interval estimates 
for the common correlation coefficients under both the Fisher and 
Multiplicative Fisher models. 

While the two point estimates are obviously the same, the appropri- 
ate confidence interval produced by the Multiplicative Fisher model 
is considerably narrower than that under the Fisher model. 

In fact the 95% confidence interval for o is (0.09 
, 0.81), so in this 

example the Multiplicative Fisher model is clearly appropriate since 
the interval is `completely' less than one, i. e. C2 T<1. 

In this example, an approximate 95% confidence interval for the 
common correlation between two variables, VAS for Fatigue and 
Ventilation across time during an exercise test, is 0.95 to 0.98. 

'Note that the number of time points was determined by how long the subject managed to 
run on the treadmill for each of the 8 visits. 
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VAS for Fatigue 

Figure 5.1: Scatterplot of the two variables VAS for Fatigue and Ventilation for 
each of the 8 visits 
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F= Basic (Fisher) model, M= Multiplicative Fisher model 

Figure 5.2: Point and interval estimates of the Comparability between VAS for 
Fatigue and Ventilation from 8 tests on the same individual under the Fisher and 
Multiplicative Fisher model 
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5.3 Two-Stage Modelling Process 

In this section the case considered is where a sample of I individuals 
is taken, and each of these provides a set of J bivariate samples of 
size nzj, which are assumed to arise from bivariate (X, Y) normal 
distributions with an `average' correlation, p7,, across all visits from 
all individuals (and corresponding Fisher value of FT =F (pT)) 

. 

For example, in Exercise Testing, each of I subjects was tested on 
each of J different visits, where the two variables, VAS for Breath- 
lessness and V02, were measured at ni j different time points into 
each test at 2 minute intervals (nib usually 6 or 7 or 8). 

Let pik be the sample correlation coefficient for the j"I sample 
((Xijk, yjjk), k=1,2.... 

, n2j]I from the ith individual, (j =1,2, ... , 
J, 

i=1,2, ... , 
I), and N=> L1 Eß-1 nzj be the total number of ob- 

servations. 
i. e. Sig xy 

Pz3 _ Sxxshy 

where ntj 
Sý? _ (xijk - xij") (yijk 

- yij. ) etc. 
y 

k=1 

Further let Fi3 denotes the Fisher transformed sample correlation 
coefficient on the jth test of the ith individual. 
The major aim in this section is to model the relationship between 
the set of Fzj for i=1,2, ... ,I and j=1,2, .... J and the true 

underlying `population correlation', FT. 
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5.3.1 The Potential Models 

Since there are I individuals and, for each individual, through nib 
time points, J underlying `true correlations' pik, (i = 1,2, ... ,I and 
j=1,2, ... , 

J), there are three models which might arise naturally 
when considering data from a Two-Stage context: 

i) Basic Model: Each of the true correlation coefficients 
between the variables of interest across all replicates of all 
individuals can assumed to be the same with the Fisher 

model explaining all the variability across the �3,. 
ii) Multiplicative Model: As i) but with the Fisher 

model not fully explaining variability across p2j. In fact 
the true correlation coefficients between the variables of 
interest are assumed to be the same, on average, for all 
individuals but there are variations in the actual correla- 
tion across different replicates, i. e. there is no systematic 
difference in the average correlations across individuals. 

iii) Components of Variance Model: Two sources of 
variability of the `common correlation' may be considered, 
one of which is the variability within each individual across 
different replicates, i. e. the variability of correlations be- 
tween replicates on the same individual, and the other is 
the variability in the `average' correlation per individual 

across individuals, i. e. the variability of correlations be- 
tween individuals. 

What is actually observed of course are the ki which, based on the 
Fisher Transformation, could be assumed to be 

Fij =Fä. 9+A () (5.15 
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where the \j(j) are independently distributed as 

Aj(i) -N 
(01 

7tij1 -3 
as long asn2j >3 

The next three subsections describe in turn each of the three above 
models. 

5.3.2 Basic Model 

Basically all sets of observations [(xijk, Yijk), k=1,2, 
... , ndj], for 

i=1,2,... , I, j=1,2,..., J, through different visits and across all in- 
dividuals are sampled from populations with the same correlation 
between the two variables, i. e. a constant correlation structure be- 
tween the two variables. Thus the model can be written 

Fig = F, +Äj(i), i=1,27... 7 I, j= 1ý2,..., J. (5.16 

where 
Aj(ti) N[O , n2, - 3] 

and all the Ab(i) are independent. 
The natural point estimate of FT would be: 

FZii (ntij 3)Fij 
5.17 T-- Ei 1 Ej l (n1j - 3) 

) 

as long as ni j>3 for all i, j, with 

Var(FT) =1 N-31J 

Finally a 95% confidence interval for pT would be of the form: 

[F-'( FT ± 1.96/sN-31J)]. (5.18) 
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5.3.3 Multiplicative Model 

In the case where the assumed variance in the Basic Model does not 
adequately describe the variability of Fib, the above model could be 
extended to 

Fij = FT+Aj(i) (5.19) 

where it might be assumed that Ab(i)s are independently distributed 
as 

aj(z) -N 
(0) 

nib -3 
i. e. 

ý2 FZj -N Fz,, T 
nib-3 

Maximum Likelihood estimators for FT and Qare T 

_ 
Ei 1 Ej 1(n2j - 3)Fig 

FML 
EZ ii (nij - 3) 

(5.20) 

and 
Ei=1 E 

1(nij - 3)(. ij - FML)? 
ä2 (5.21) 

T IJ 
Further 

E2 Var(FML) = EI 1 EJ7T 
(5.22) 

i==1(ni9 - 3) 

and a 95% confidence interval for p, the true Comparability, is of 
the form 

Q [F_i (EML 
± t(IJ-1 

, 0.975) 

V IJ-1 I ,7 
(5.23) 

IJ 
ýi=1 Ej=1(nij - 3) 
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5.3.4 Components of Variance Model 

A more natural model arises where, apart from the variability men- 
tioned in the previous models, there also exists variability across 
individuals. 
In this case 

Fij =FT+ai+\j(i) 5.24) 

where one can assume that 

ai e, -., N(O 
,o 

), i=1,2, ... ,I ID- 

independently of 

Ab(i)-N0, 
n _3)' 

j=1,2,..., J 

and all ai and Ab(i) are mutually independent. 

i. e. 
0,2 

Var(F$j) = Var(ai + Aj(i)) = QB +T 
nij - 

and 
Cov (fi 7 

FZj") = QB 

Thus the full model here is 

Fzi N FT , c7 +T 

Maximum Likelihood estimation of all the three parameters is not 
possible so a numerical solution has to be sought. Thus an Iterative 
Generalized Least Squares method may be used to estimate these 

parameters. 

Suppose, for instance, for each individual, say individual i, with J 

replicates of correlation coefficients, the JxJ matrix Vi contains 
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the variance of Fib in the diagonal positions and the covariance be- 
tween two correlation coefficients, oB, in each of the other positions. 
Since the covariance between each of two individuals is supposed to 
be zero, it is possible to form the full covariance matrix V for all 
observations, which is a `block diagonal structure' matrix. 

i. e. 

2 Q2 Z ýa + 
n; j -3 

UB 

vi 
U2 

and 

22 

Q2 - f- 
0; 2 

B n; j -3 

22ý QB ... QB -F' nth -3 

Vl 0 ... 0 
V2 

... 0 
V= 

00... VI 

i= 1,2,..., I 

so, applying Generalized Least Squares estimation for known V, an 
estimator for FT would be 

FT = (AtV-1A)-1AtV-iF (5.25) 

with 
Var(FT) = (AtV-'A)-l (5.26) 

where 
A is a JI design vector of ones 

and F is the JI vector of observations (i. e. Fib ) 

When in the above model ai and Ab(i) are assumed to be nor- 
mally distributed, this estimator gives maximum likelihood esti- 
mates (Goldstein, 1987), but the matrix V is unknown so an iter- 

ative procedure should be applied. Suppose Vo is a sensible matrix 



Chapter 5. Estimating the Comparability: How to model ... 164 

close to V chosen as a starting point (it may be reasonable to use 
the results from the multiplicative model as starting vectors, i. e. 
assuming or 2=0, to form the matrix VO). Using GLS estimation 
(equation 5.25), an initial estimator for FT would be 

FTý1ý _ (AtV0 1A)-1AtV0 1F (5.27) 

then the raw residuals are 

F(1) =F- FT(l) (5.28) 

i. e. F(1) is aIJ vector of residuals. 

If one forms the cross-product matrix F(1)F(1), it is straightforward 
to show that E(F(1)F(1)) = V. 

In the first stage of the iterative procedure, and after rearranging 
the two matrixes F(1)F(1) and V as vectors, the relationship be- 
tween these two vectors can be regarded as a linear model with the 

elements of F(j)F(j)t as responses and V contains two explanatory 
variables with coefficients cB and o to be estimated. Again, one 
may use Generalized Least Squares to estimate them. 

With these two estimates, say QB(1) and QT (1), a new estimate of the 
matrix V is obtainable that may again be applied in (5.25) to obtain 
a `new' estimate of FT. 

The same procedure should be continued for sufficient times until 
estimates from one iteration to the next do not change, i. e. for 

22 
iteration 1, (1=1,2,... )a2 

(1+ýý = 98(I) ýT (1+1) = UT(I) and 
to some required degree of accuracy. 
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5.3.4.1 Interval Estimation of Comparability 

Remembering that (AtV-'A)-1 is the variance of FT and letting FT 

and V be the final estimates of FT and V from the iterative proce- 
dure, {(FT - 

FT)2(AtV-lA)-1} has approximately a X2 distribution 

with 1 degree of freedom (Goldstein, 1987). So an approximate 95% 
confidence interval for FT is obtainable by equating 

AFT _ FT)2(AtV-'A)-l 

to the 95% upper tail of a Chi-squared distribution with 1 degree 

of freedom, that is 

FT [(AtTT_1A)_1x,. 
95] 

1/2 

i. e. 
FT f 1.96 (AtV-1A)-1 

and then an approximate 95% confidence interval for pT would be 

of the form 
F-1 

(PT 
± 1.96 (At 7_1A)-1 

. 
(5.29) 

5.3.5 A specific application 

This procedure is illustrated using data from a study where each of 
12 individuals underwent 8 separate exercise tests, (i. e. J= 8), with 
for each individual Breathlessness on a Visual Analogue Scale(VAS), 

and V 02 using a Douglas Bag, being measured at 6 or 7 or 8, 

as appropriate, distinct 2-minute intervals during the test (i. e. at 
2,4,6,... or 16 minutes, k=1,2,... , nib and j=1,2,... )8). Scatterplots 

of these values for each of the 12 subjects are presented in Figure 
5.3. 
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Sample correlation coefficients between these two variables for each 
of the 12 subjects across different visits are given in Table 5.1 with 
a graphical presentation in Figure 5.4. 

Figure 5.5 shows the estimated point estimation for overall correla- 
tion coefficient and approximate 95% confidence intervals for each 
of the three models. 

While the point estimates of FT from the Fisher and the Multiplica- 
tive models are obviously the same, that from the Components of 
Variance model is slightly bigger. The confidence interval provided 
by the Multiplicative model is slightly narrower than that provided 
by the Fisher model while that provided by the Components of 
Variance model is considerably wider than either of those obtained 
using the other two models. 
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Figure 5.3: Scatterplot of the two variables VAS for Breathlessness and V02 for 

each of 12 subjects 
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Subject 1st visit 2nd visit 3rd visit 4th visit 5th visit 6th visit 7th visit 8th visit 
number (nij) (nij) (nij) 

(nij) 
(nij) (nij) (nij) (nij) 

1 0.966 0.995 0.966 0.965 0.990 0.971 0.977 0.986 
(8) (8) (8) (8) (8) (7) (7) (8) 

2 0.974 0.993 0.985 0.972 0.982 0.984 0.985 0.948 
(8) (8) (8) (8) (8) (7) (7) (8) 

3 0.957 0.980 0.983 0.990 0.990 0.977 0.953 0.982 
(7) (7) (7) (7) (6) (7) (7) (7) 

4 0.896 0.982 0.987 0.975 0.993 0.964 0.966 0.983 
(8) (8) (8) (8) (7) (8) (8) (8) 

5 0.912 0.931 0.984 0.913 0.962 0.968 0.971 0.835 
(8) (8) (8) (8) (8) (7) (7) (8) 

6 0.981 0.971 0.925 0.929 0.970 0.990 0.984 0.945 
(8) (8) (8) (8) (8) (7) (7) (7) 

7 0.869 0.858 0.837 0.858 0.967 0.947 0.863 0.806 
(8) (8) (8) (8) (7) (8) (8) (7) 

8 0.996 0.954 0.928 0.907 0.946 0.942 0.977 0.848 
(8) (8) (8) (8) (7) (8) (7) (7) 

9 0.979 0.929 0.957 0.982 0.958 0.916 0.911 0.891 
(8) (8) (8) (8) (7) (8) (8) (8) 

10 0.950 0.981 0.990 0.967 0.927 0.903 0.864 0.913 
(7) (7) (7) (8) (8) (7) (7) (8) 

11 0.973 0.882 0.983 0.986 0.958 0.964 0.984 0.973 
(7) (7) (7) (7) (7) (6) (7) (7) 

12 0.936 0.921 0.965 0.979 0.974 0.970 0.991 0.979 
(8) (8) (8) (8) (7) (8) (8) (8) 

Table 5.1: Simple correlation coefficients between two variables VASB and V02 

and in brackets the number of observations per visit for each of the 8 visits 
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Figure 5.4: Sample correlation coefficient between VAS for Breathlessness and 
V02 for 8 tests on each of 12 individuals 

In fact, in this example, an approximate 95% confidence interval for 

QB is [0.01 
, 0.20] and for o is [0.50 

, 0.821. The former result sug- 
gesting that the between individual variance is significantly greater 
than zero (but perhaps only marginally). The latter interval clearly 
demonstrates that o<1 and so the basic Fisher model is again 
inadequate to describe this data. So, in this example the Compo- 

nents of Variance is clearly the most appropriate model since o is 
`apparently' greater than zero and o, 2 is `significantly' less than 1. 

In this example, an approximate 95% confidence interval for the 
Comparability (i. e. `average' correlation, FT) between two variables 
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VAS for Breathlessness and V 02 across time during an exercise test 
and over the sample of 12 individuals is 0.951 to 0.976. 

D 
O 

c3 
Z 
F= 

F 

W 

F I ] 

M I ] 

C I * ] 

0.94 0.95 0.96 0.97 0.98 0.99 

F= Basic (Fisher) model. M= Multiplicative Fisher model 
C= Components of Variance model 

Figure 5.5: Point and interval estimates of the Comparability between VAS for 
Breathlessness and V02 from 8 tests on 12 individuals under three different mod- 
els 
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5.4 A Simulation Study 

To compare and contrast the different methods of modelling a pop- 
ulation common correlation in both the One-Stage and Two-Stage 
processes, a simulation study was carried over a number of under- 
lying configurations. For each configuration, 1000 simulations were 
undertaken. 

5.4.1 One-Stage Modelling Simulation 

In One-Stage modelling the configurations were defined by three 

quantities: 

i) The number of distinct samples/exercise tests, J; 
ii) The number of observations per sample, nj; 
iii) The true underlying Comparability, PT. 

In the simulations all combinations of the following values were 
taken: 

i) J=4 or 8 or 12; 
ii) n? =n for all j and n=6,10 or 15; 
iii) pT = 0.4,0.7 or 0.95. 

i. e. 3x3x 3= 27 separate configurations 

5.4.1.1 Summary of Results of the Simulations in One-Stage Mod- 

elling 

The mean of the estimated correlations over 1000 simulations as well 
as the coverage rate (the number of times in 1000 simulations that 
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the interval estimate captures the true Comparability) for different 

values of o! =1,072 = 0.5 or ýT = 0.1 are reported in Tables 5.2 
and 5.3. A graphical representation of estimated biases (i. e. the 
mean estimate for 1000 simulations - pT), coverage rates and also 
average confidence interval widths are shown in Figures 5.6 to 5.8, 
respectively. 

Both models produce identical and positively biased point estimates 
of Comparability with a sharp decrease in the bias as the number 
of observations per sample increases from 6 to 15. The decrease in 
the bias is more obvious for lower and intermediate true values of 
Comparability. Generally, in the case of a smaller true Compara- 
bility, the bias is higher and it decreases as the true Comparability 
increases from 0.4 to 0.95. Furthermore, an increase in the number 
of samples tests from 4 to 12 slightly decreases the bias. 
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A: True Comoarability=0.4. B: True Comparability. =0.7. C: True Comoarability=0.9! 

Figure 5.6: Plots of Biases with respect to different number of distinct samples, 
observations per samples and QT. 
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PT 

0.4 0.7 0.95 
2 (T 
T 

0. No. of samples, J No. of samples, J No. of samples, J 

ö 4 8 T12 4 8 12 4 8 12 
6 0.43 0.43 0.42 0.74 0.73 0.72 0.96 0.96 0.96 

1 10 0.42 0.42 0.42 0.72 0.72 0.71 0.95 0.95 0.95 

15 0.41 0.41 0.40 0.71 0.71 0.70 0.95 0.95 0.95 

6 0.44 0.42 0.42 0.73 0.73 0.72 0.96 0.96 0.95 

0.5 10 0.41 0.41 0.41 0.72 0.72 0.70 0.95 0.95 0.95 

jJ is 

_ 

0.41 0.41 0.40 0.71 0.71 0.70 0.95 0.95 0.95 

6 0.43 0.43 0.42 0.74 0.73 0.72 0.96 0.96 0.96 
0.1 10 0.41 0.41 0.41 0.72 0.71 0.71 0.95 0.95 0.95 

15 0.41 0.41 0.41 0.71 0.71 0.71 0.95 0.95 0.95 

Table 5.2: Mean of the estimated Comparability across 1000 simulations for tI1c 
One-Stage model with different numbers of samples and observations per sample. 

The coverage rates which are used as an index of measuring perfor- 
mance of the models in reaching the desired confidence level, show 
that when o, 2 =1 both the Basic Fisher and the Multiplicative 

models provide consistent confidence in the range of 95% although 
increase in the number of samples slightly reduces this rate. In con- 
trast, when o<1 coverage rates differ with respect to the size of 
01 2 and the number of samples. Decrease in the size of o from 0.5 
to 0.1 appears to reduce the coverage rate. In this case the cover- 
age rates provided by the Multiplicative Fisher model are generally 
higher than those provided by the Fisher model. It seems that the 

number of samples inversely influences the coverage rate whilst the 

number of observations per sample does not have a considerable 
effect on it. 
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Figures of average confidence interval widths show that, in general, 
an increase in the number of samples or observations per sample 
significantly reduces the average confidence interval widths in all 
cases and especially for smaller true Comparability. 

on the confidence , when a=1 the Regarding the effect of o 1; 
71 

intervals on average are slightly wider for the Multiplicative model, 
whereas for o<1, the Multiplicative model, especially for smaller 
o! (i. e. o= . 1), provides considerably narrower intervals. 

Comparing coverage rates and average confidence interval widths in 
Figures 5.7 and 5.8, it is clear that when o=1, the Multiplicative 

model, has provided wider intervals on average but with a more sta- 
ble confidence level. While, for oT <1 significantly higher coverage 
rates were produced by the Multiplicative model with considerably 
narrower confidence intervals. This shows that capturing the true 
Comparability may not always be related to the width of confideiict 
interval! 

Overall, the Multiplicative model seems to perform better with re- 
spect to narrower interval on average and a `more consistent' con- 
fidence level across the configurations covered in this simulation 
study. 
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4 PT 
0.4 0.7 0.9 5 

2 
No. of samples, J No. of samples, i No. of samples, J 

- 
1 
14 

8 12114.8 12 4 
F8 

12 

6 
F 96 96 95 96 96 95 96 96 95 

M 98 97 94 98 97 95 97 96 94 

1 10 
F 96 96 95 96 96 95 97 97 95 

M 98 96 95 97 96 94 97 96 95 

15 
F 95 94 96 97 97 96 97 96 96 

M 97 94 94 97 96 94 96 94 94 

6 
F 92 87 89 95 86 87 91 85 84 

M 95 92 91 96 91 87 96 87 86 
0.5 F 93 88 90 95 88 90 92 86 87 10 

M 96 92 91 96 92 90 97 91 88 
F 93 87 86 94 86 83 94 87 86 

15 
M 96 95 95 96 94 9411 96 93 -94 
F 83 81 79 84 81 77 82 78 74 

M 89 86 82 89 84 79 86 81 76 
0.1 F 82 81 80 83 81 78 82 79 78 10 

M 87 86 82 90 85 79 89 83 80 
F 83 83 79 82 82 77 82 80 V 77 

15 
1VI 89 88 83 85 85 82 87 86 78 

Table 5.3: Percentage of cases, over 1000 simulations, where the estimated con- 
fidence interval captures the true Comparability based on different number of 
samples and observations per sample. In this table: 

F= Fisher model 
M= Multiplicative Fisher model. 
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5.4.2 Two-Stage Modelling Simulation 

In Two-stage modelling the underlying configurations were based 
on the following four quantities: 

i) The number of individuals into exercise testing, 1; 
ii) The number of distinct samples/exercise tests per 

individual, J; 
iii) The number of observations per sample, nah; 
iv) The true underlying Comparability, pr . 

with combinations of all of the following values: 

i) 1=6 or 15; 
ii) J=4 or 8; 
iii) n2j =n for all j and n=6 or 12; 
iv) pT = 0.4,0.7 or 0.95. 

i. e. 2x2x2x 3= 24 separate configurations 

5.4.2.1 Summary of Results of the Simulations in Two-Stage 
Modelling 

For each of the three methods of modelling Comparability, the av- 
erage point estimates of the true Comparability, p,,, coverage rates 
and average interval estimate widths were produced over 1000 simu- 
lations. These are reported in Tables 5.4 and 5.5. Graphical presen- 
tation of coverage rates as well as average biases and average interval 

estimate widths are provided in Figures 5.9 to 5.11, respectively. 
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Figure 5.9: Plots of Biases for each of the three models with respect to different 

number of subjects, distinct samples, observations per samples and o, 
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True Comparability, pT 

0.4 0.7 0.95 

Model Model Model 

F&MI C JIF&MI C JIF&MI C 
0.44 0.44 0.74 0.74 0.96 0.96 
0.42 0.42 0.72 0.72 0.95 0.95 
0.43 0.44 0.73 0.74 0.96 0.96 
0.41 0.41 0.71 0.71 0.95 0.95 
0.44 0.44 0.74 0.74 0.96 0.96 
0.42 0.42 11 0.72 0.72 0.96 0.96 
0.43 0.43 0.73 0.74 0.96 0.96 
0.41 0.42 0.71 0.72 0.95 0.95 

0.43 0.43 0.72 0.72 0.96 0.96 
0.42 0.41 0.72 0.72 0.96 0.95 

0.43 0.43 0.73 0.73 0.96 0.96 
0.42 0.41 0.72 0.72 0.96 0.95 

11 

0.43 0.43 0.72 0.72 0.96 0.96 
0.42 0.41 0.72 0.72 0.95 0.9 5 
0.43 0.42 0.73 0.72 0.96 0.96 
0.41 0.41 0.71 0.71 0.95 0.95 

0.43 0.43 0.73 0.73 0.96 0.96 
0.42 0.41 0.72 0.71 0.95 0.95 
0.43 0.42 0.73 0.73 0.96 0.96 

0.41 0.41 0.71 0.71 0.95 0.95 

0.43 0.43 0.73 0.73 0.96 0.96 

0.41 0.41 0.72 0.71 0.95 0.95 

0.43 0.42 0.73 0.72 0.96 0.96 

0.41 0.41 0.71 0.71 0.95 0.95 

Table 5.4: Mean estimate of Comparability over 1000 simulations based on dif- 
ferent number of subjects, samples per subject and observations per sample, by 

each of the three models. In this table: 
F= Basic Fisher Model 
M= Multiplicative Fisher Model 
C= Components of Variance Model 
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The point estimates from the Fisher model and the Multiplicative 
Fisher model are naturally the same whereas those from the Compo- 
nent of Variance are somewhat different. The point estimators gen- 
erally overestimate the Comparability with the larger the number of 
observations per sample the smaller the bias. This improvement is 
more obvious for lower values of the true Comparability (i. e. p,, =0.4 
or 0.7) but unlike the One-Stage modelling, the number of samples 
per subject has minimal effect on the point estimates. It seems that 
an increase in the number of subjects from 6 to 15 slightly decreases 
the bias. 

Estimated coverage rates show that there are, generally, higher cov- 
erage rates for a larger number of subjects (i. e. I=15) as well as 
for a larger number of observations per sample (i. e. n=12). This 
simply indicates the positive effect of these two factors in increasing 
the performance of the models in providing consistent confidence 
levels. Clearly, in the case of a small number of observations per 
sample, an increase in the number of samples from 4 to 8 reduces 
the coverage rates for higher values of the true Comparability (i. e. 
pT=0.7 or 1). 

When oT = 1, the estimated coverage rates under the Fisher and the 
Multiplicative models are almost the same, while the Components of 
Variance model, especially in the case of 4 samples, provides slightly 
higher and more stable coverage rates. For 0-2 < 1, coverage rates 
under the Fisher and the Multiplicative models are smaller than 
those for the Components of Variance model. This reduction applies 
to the cases of higher true Comparability (i. e. PT=0.7 or 0.95) and 
is more obvious when the Fisher model is used. 
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True Comparability, pT 

CTS, 0.4 0.7 0.95 

Model Model Model 

F M CF M CF MC 
4 6 84 84 85 77 78 78 67 70 79 

6 12 87 90 88 84 85 85 79 82 82 
8 6 85 87 88 76 76 79 69 71 N 

12 93 95 92 89 90 90 80 81 8: 1 
4 6 85 86 88 82 87 86 77 8.1 85 

15 12 86 88 88 84 87 86 83 M 87 
8 6 87 88 88 82 85 86 74 76 71) 

12 89 90 88 86 89 87 84 86 871 
4 6 77 93 93 72 82 87 56 70 8 

6 12 83 93 94 79 85 87 70 ßi2 89 
8 6 79 92 94 64 75 84 u0 60 71 

0.5 12 83 93 95 76 87 85 59 70 8,4 
4 6 79 91 91 77 87 90 69 81 87 

15 12 82 92 92 77 89 91 75 87 9O 
8 6 83 93 94 75 88 90 64 77 811) 

L- L 12 84 95 95 78 90 91 75 89 91 

4 6 84 89 86 70 75 86 53 61 61 
6 12 85 92 95 82 85 91 70 77 8rl 

8 6 88 89 92 66 71 84 48 57 
0.1 12 93 94 94 82 84 88 68 71 84) js 

4 6 81 91 92 79 87 91 71 78 1 
15 12 84 93 94 82 91 93 79 89 '92 

8 6 89 
- 

91 93 80 81 85 65 68 81 (f 
`! L L 

12 93 94 94 11 88 90 91 77 82 89 
- '; 

Table 5.5: Percentage of the cases, over 1000 simulations, where the confidenep 
interval captures the true Comparability based on different numbers of sutbjeects, 
samples per subject and observations per sample, for each of the three models. 
In this table: 

F= Basic Fisher Model 
M= Multiplicative Fisher Model 
fl = Components of Variance Model 
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Figure 5.10: Plots of coverage rates for each of the three models with respect 
to different number of distinct samples, observations per samples and a72for G 
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Plots of average confidence interval width (Figures 5.12 and 5.13) 
show that the case of a larger number of subjects tends, not sur- 
prisingly, to produce narrower confidence intervals. For lower true 
Comparability (i. e. pT=0.4 or 0.7), confidence intervals under the 
Fisher and the Multiplicative models are, on average, narrower than 
the Components of Variance model as the number of observations 
per samples increase. When u=1, confidence intervals frone the 
Multiplicative model are wider than those from the Fisher model, 
whereas in the cases of o<1 the intervals from the Multiplicative 

model are, on average, slightly narrower than those from the Fisher 

model. Further, for lower true Comparability (i. e. PT=0.4 or 0.7), 
the typical confidence interval from the Components of Variance 
model is wider than those provided by the other models, with an 
increase in the number of samples decreasing the width in general. 
In these cases it seems that the number of observations per sample 
has no significant effect on average interval width. 

Overall, the Components of Variance model seems to provide higher 

and more stable coverage rates, irrespective of the size of o and the 
true Comparability, at least over these simulation configurations. 
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5.4.3 Summary 

Two competing approaches for a One-Stage model to estimating a 
population Comparability and three distinct approaches for a Two- 
Stage model were introduced and assessed. 

A specific illustration of One-Stage modelling suggested that, while 
the two point estimates based on the two models are always the samt, 
the confidence interval under the Multiplicative model tends to be 
narrower than that under the Basic Fisher model. 

A simulation study strongly suggested narrower confidence intervals 

and better performance in achieving higher confidence for interval 
estimation under the Multiplicative model across a variety of simu- 
lated configurations. 

A specific illustration of Two-Stage modelling showed that while the 
two point estimates based on the Fisher model and the Multiplica- 

tive model are always the same, that based on the Components of 
Variance model is slightly different. Confidence intervals under the 
Fisher model and the Multiplicative model are almost the same in 
this instance, while the confidence interval under the Component of 
Variance model is wider that those from the other two models. 

A simulation study showed a tendency for wider confidence intervals 

under the Components of Variance model but with better perfor- 

inance in achieving the required 95% confidence across the range of 

simulated configurations. 



.ý 

Chapter 6 

Conclusions and Further Work 

6.1 Conclusions 

Estimating the Reproducibility of variables and the Comparability 
between two variables (based on common correlation coefficients or 
modelling a population of correlation coefficients) were the main 
topics covered in this thesis. Chapters 2 and 3 were concerned 
with the estimation of measurement reproducibility of data and its 
application in Exercise Testing data. In chapter 4 five different 

statistical approaches to estimating a common correlation coefficient 
were examined and finally in chapter 5 modelling a population of 
correlation coefficients was introduced and developed to allow the 
estimation of Comparability between two variables. 

Chapter 2 dealt with the estimation of measurement Reproducibil- 

ity of data from mixed effects models involving two variance compo- 

nents. Two models, one based on the idea of using sums of squares 
(ANOVA) and the other based on a Profile Likelihood approach, 

were set forth for both the cases of balanced (equal number of 

observations per individual) and unbalanced (unequal number of 
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observations per individual) data to provide point and interval es- 
timates of the measurement Reproducibility. This was carried out 
for two different models, one for simple replication and the other 
one assuming an order effect to the replications. 

Throughout the chapter, illustrative examples using exercise test- 
ing data, each with different features, were used to describe the 
performance and the applicability of the two approaches. It has 
been found that while the point estimates from both approaches 
are almost the same, interval estimates from the Profile Likelihood 
approach tend to be narrower. The basic recommendation here is to 
use the Profile Likelihood approach in both the point and interval 
estimation of measurement Reproducibility. 

Performances of the two approaches were subject to further investi- 
gation and comparison in chapter 3, where a simulation study, with 
a variety of underlying configurations for both a simple replicate 
model and for a replicate model with an order effect, was carried 
out. The performances then were compared according to three basic 

criteria (bias, coverage rate and interval estimate width). 

The simulation study indicated that both approaches on average 
tend to underestimate measurement Reproducibility; however, an 
increase in the number of subjects significantly reduces this bias. 
It was concluded that failure to fit a (significant) visit effect in the 
model considerably increases the bias as well as decreasing the con- 
sistency of the interval estimation in terms of coverage rate. For 
balanced data, the ANOVA-based approach showed a better per- 
formance in terms of bias although, in comparison with the Profile 

Likelihood approach, lower coverage rates as well as wider interval 

estimates were revealed. For unbalanced data, the Profile Likeli- 

hood approach provided a better overall performance in the sense 
that it produces less biased point estimates with narrower confidence 
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intervals in general. 

In the choice of a better approach, the results of the simulation 
study over the different configurations seemed on balance to favour 
the Profile Likelihood approach. 

The second aspect of the thesis in chapter 4 involved, as a first step 
in estimating the Comparability of two variables, the estimation of 
a common correlation coefficient from a sample of correlation co- 
efficients. Five different methods of point and interval estimation 
of a common correlation coefficient were examined. These were the 
Weighted method, the Unbiased method based on an approximately 
unbiased estimate for a common correlation coefficient suggested by 
O1kin and Pratt, the Fisher method based on a Fisher transforma- 
tion of the simple correlation coefficients, a method proposed by 
Hodges and Olkin, and finally a Profile Likelihood based method. 

An illustrative example with data from an Exercise Testing study 
was used to compare the performance of the five methods. The point 
estimates from the Weighted method were, in general, less than 
those from the other methods while the estimates from the Fisher 

and the Hedges and Olkin methods appeared similar. On the other 
hand, except for the Profile Likelihood method which provided the 

narrowest interval estimates, there was no obvious differences among 
the widths of the interval estimates from the other 4 methods. 

For this example, the assumption of commonality of correlation co- 
efficients was validated and the problem with inconsistency of cor- 
relation coefficients for a specific subject was investigated. It was 

shown that, the major characteristic of the data that may have a 

significant effect on statistics for testing commonality of correla- 
tion is the standard deviation of sample correlations in the Fisher 

Transformation space. 
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Further investigations of the performances of the five methods were 
carried out by means of a simulation study with a variety of un- 
derlying configurations. Some methods were better than others oii 
certain simulation configurations but the overall results suggested 
that the Fisher method was the best in the sense that it provides 
the "most stable" confidence levels irrespective of the number of 
subjects, replicates per subject or true common correlation. 

The Comparability of two variables was finally modelled, in chap- 
ter 5, by developing structures for `pooling' correlation coefficient 
across replicate visits for individuals. In this chapter, estimation of 
a `typical or average' correlation coefficient between two variables 
of interest for an individual (One-Stage modelling) was developed 

and then extended to the "overall" estimation of a `typical' correla- 
tion for a `typical' individual (Two-Stage modelling). Based on the 
results from the previous chapter, the modelling process here was 
carried out in the Fisher Transformation space. 

Two distinct approaches were developed for the One-Stage mod- 
elling (i. e. the Basic Fisher model and the Multiplicative Fisher 

model) and three distinct approaches (the Basic model, the Mul- 
tiplicative model and the Components of Variance model) were 
adopted for Two-Stage modelling. Illustrative examples from Ex- 

ercise Testing were used to investigate the performance of these 

models on real data. 

The example for the models in One-Stage modelling showed identi- 

cal point estimates of Comparability for both models, but a consid- 

erably narrower interval under the Multiplicative model. The real 
data example for the models in Two-Stage modelling showed that 
basically the point and interval estimates under the Fisher model 

and the Multiplicative model were similar, but a slightly different 

point estimate and a wider interval estimate were found under the 
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Components of Variance model. 
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The performance and applicability of the models developed in this 
chapter was considered by means of a simulation study based on 
a wide variety of configurations. The main conclusion drawn from 
these for One-Stage modelling was that the Multiplicative Fisher 
model is better in the sense that it produces narrower interval esti- 
mates and more consistent confidence levels. 

The results from the simulation study for Two-Stage modelling sug- 
gested that the Components of Variance model, in spite of the fact 
that it tends to produce wider interval estimates than the other 
models, has the advantage of providing higher and more stable cov- 
erage rates. 

6.2 Possible Further Work 

Methods for estimating Reproducibility of variables and Compa- 

rability between two variables using different techniques were de- 

scribed in this thesis. In this section, some points are given that 
can be the subject of further work: 

" Data in medical sciences often has a hierarchical organisation in 

which units at one level are grouped in units at another level. 
In Exercise Testing, for example, measurements/replicates of 
one individuals are nested in the individual and individuals 

are nested in time points. One type of popular analysis for this 
kind of data is known as "Multilevel Modelling". As use of Mul- 

tilevel techniques and related software becomes widespread in 
different areas of statistical researches, one possible approach is 
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to apply standard Multilevel Modelling techniques to estimate 
components of variance and hence measurement reproducibil- 
ity. 

"A pragmatic solution to the multivariate approach of estimat- 
ing a pooled Measurement Reproducibility was described in 
chapter 2. The case was restricted to the situation where the 
time points are `independent' from each other. In reality, time 
points will not be independent in any sense and estimation of a 
pooled measurement reproducibility, in spite of the fact that it 
may be computationally difficult, should be a subject of further 
investigation. 

" From a practical point of view, the effect of medication changes 
on Exercise Testing results may be considered in the analysis 
of such data. For instance, individuals with a heart failure 

problem may take a `Beta-blocker' as medication. The effect 
of such a medication changes an individual's response and its 
effect (i. e. the Sensitivity of the measurement) should be esti- 
mated within a reproducibility study. 

" Validity of Measurement Reproducibility estimates can be in- 
creased by considering the results from independent studies. In 
Exercise Testing, for instance, exercise testing may be carried 
out in "exercise" centres in different hospitals or different coun- 
tries with the same exercise device (i. e. treadmill or bicycle). 
Such data has a hierarchical structure. Measurements of one 
individual are nested in the individual, which in turn are nested 
in the exercise centre in hospitals, hospitals in countries, and so 
on. One might wish to consider these centres as fixed but it is 

often of more interest to consider the exercise centres as a ran- 
dom sample drawn from a potentially much bigger population 
of possible hospital and/or countries. In this case the estima- 
tion of three or four variance components (for subject effects, 
for hospital effects and country effects as well as the `natural 
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variability') would be involved. This would be extended to the 
situation of unequal number of individuals per each centre as 
well as unequal number of tests per individual. 

" Modelling a population of correlation coefficients to estimate 
the Comparability between two variables across individuals was 
described in chapter 5. The idea can be extended to the case 
where variables of interest are measured in different centres, 
e. g. different hospitals or countries. In such a situation it may 
be possible to extending the modelling techniques for estimat- 
ing a "pooled" Comparability between two variables. In this 

case another sources of variability i. e. those within and between 
different centres, e. g. across hospitals and/or countries, would 
be involved. 
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