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Abstract 

Prediction of Separated Flows Around Pitching Aerofoils 

U sing a Discrete Vortex Method 

by Hequan Lin 

A surface shedding discrete vortex method has been developed for simulating in­

compressible flows around pitching aerofoils. The method is able to predict both 

attached and separated flows, the latter typified by the formation and transport of 

large vortices. The structures of dynamic stall flow are well captured without the 

need for other means to predetermine the separation points. In contrast to most 

other vortex methods, the method presented herein can perform quantitative ana­

lysis. Throughout a wide range of incidence, the pressure distributions are smooth, 

and the normal force and pitching moment are in good agreement with experimental 

data. The method is also able to predict the flow with external constraints for sim­

ulating the effects of wind tunnel blockage. In this regard quantitative results and 

flow structures have been obtained which are consistent with those expected. 

Following the review of previous work presented in the introduction, the mathem­

atical formulation of the method is expounded. A velocity expression is theoretically 

derived for flows with both a moving inner boundary (aerofoil) and fixed external con­

straints (wind tunnel walls). To maintain both no penetration and no slip conditions, 

it is concluded that an external constraint parallel to the free stream can be modelled 

by placement of a constant vortex sheet along the boundary, and the introduction 

of distributed vortices next to the constraint to represent the boundary layer. The 

vortex sheet strength is equivalent to the free stream velocity while the strength of 

the vortices can be calculated in the same manner as for the internal boundary. This 

conclusion avoids the necessity of employing mirror vortices and iteration techniques 



in traditional models. 

The aerodynamic loads are computed from the pressure distribution. For the 

computation of surface pressures, the relationship between the pressure gradient and 

the rate of vorticity creation on the surface has been developed for a moving boundary. 

Numerically, a surface vortex shedding model has been proposed and implemented 

which contrasts with the traditional vortex shedding from sharp edges or predeter­

mined points. The method is based on the concept of two-zone vorticity discretiz­

ation. The two zones are comprised of a creation zone, for the thin strip close to 

the boundary, and a wake zone for the remaining flow region. As with most vortex 

methods, a Lagrangian description of the wake vortices is employed, in conjunction 

with a random walk model for viscous diffusion. In the creation zone, vorticity is 

re-discretized every time step at specified points, with the strength determined from 

the implementation of boundary conditions. These nascent vortices are considered as 

a discretized representation of a vortex sheet, with circulation strength distributed 

in a piecewise linear and continuous fashion. The surface vortex shedding model 

simulates the exchange of vorticity across the zone boundary. The convection and 

diffusion of vorticity are reflected in the model via operator splitting; that is, at each 

time step, vortices are first convected using the Biot-Savart law, and subsequently 

given a random displacement consistent with the viscous model employed. 

A sub-panel model has been used in the representation of the body surface. Each 

sub-panel is defined in conjunction with the multi-vortex discretization on every panel. 

De-coupling of the continuous vorticity distribution has been proposed at a sharp edge 

like an aerofoil trailing edge to improve the predicted flow behaviour in such regions. 

These novel techniques, combined with the traditional vortex blob method, random 

vortex method, vortex amalgamation and Adams-Bashfort second order method for 

vortex convection, have led to a successful simulation of separated pitching aerofoil 

flows. It is expected that the method can be further developed for simulating bluff 

body flows and three dimensional flows. 
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Chapter 1 

INTRODUCTION 

The following conclusions were made by Wilbur Wright in a lecture to the Western 

Society of Engineers on September 18, 19011: 

That the ratio of drift to lift in well-shaped surfaces is less at angles of incidence 

of five degrees to 12 degrees than at an angle of three degrees ("Drift" is what 

we now call "drag".). 

That in arched surfaces the center of pressure at gO degrees is near the center 

of the surface, but moves slowly forward as the angle becomes less, till a critical 

angle varying with the shape and depth of the curve is reached, after which it 

moves rapidly toward the rear till the angle of no lift is found. 

That a pair of superposed, or tandem surfaces, have less lift in proportion to 

drift than either surface separately, even after making allowance for weight and 

head resistance of the connections. 

The above remarks illustrate the Wright brothers' understanding of wing and aero­

foil behaviour, which undoubtedly contributed to their success in achieving mankind's 

first sustained, controlled, powered flight in a heavier-than-air machine in 1903. 

This knowledge about behaviour of a static aerofoil is not unfamiliar to today's 

aerodynamicists and aerospace engineers. This qualitative understanding is actually 

supported by databases2,3, obtained from extensive wind tunnel experiments, which 

indicate the quantitative relationships between aerodynamic characteristics (lift, drag 

and moment) and aerofoil geometry, angle of attack and flow properties. Further­

more, analytic methods have been developed to predict aerofoil flows and associated 

characteristics. It is also true, however, that technical advances have brought new 

1 
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aerodynamic phenomena to light, which have driven both the development of experi­

mental and computational methods. Indeed, dynamic stall is one such phenomenon, 

and is still an active topic of research, both experimentally4-34 and numerically.35-6o 

In this introductory chapter, the theoretical background and classical methods 

pertaining to the analysis of aerofoil flow are summarised. A presentation is then 

given of the current understanding and explanation of the dynamic stall phenomenon, 

based on the observations of numerous researchers. This is followed by a brief review 

of numerical studies of dynamic stall by means of both grid-dependent methods and 

vortex methods. A summary to a new vortex method is also given in this chapter. 

Finally, an outline of the remaining components of the thesis is provided. 

1.1 Theoretical background and classical methods 

The foundations of theoretical fluid dynamics were moulded by a triumvirate, Daniel 

Bernoulli, Jean Le Rond d'Alembert and Leonhard Euler in the early eighteenth 

century, when the momentum relations between pressure and velocity were first es­

tablished. 61 The applications of the relations, namely Euler and Bernoulli equations, 

are restricted to steady inviscid flows, with the further restriction of incompressibility 

in the latter case. In viscous flow, the equivalent momentum relations are described 

by the Navier-Stokes equations, developed by Navier(1822) and Stokes(1845). These 

equations form the basis for fluid flow analysis when combined with the mass con­

tinuity and energy equations, the former initially published by d'Alembert in 1749 

in the form of differential equations, and later developed by Euler into their present 

form. 

Although the governing equations for the motion of fluid have existed for centuries, 

there is still no general solution to them. This is partly due to the variety of boundary 

conditions and partly because of the non-linearity of the Navier-Stokes equations 

themselves. As a result, the search for practicable solutions to these equations is still 

attracting many researchers, including aerodynamicists, who are mainly interested in 
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the flows around aerofoils, wings and aircraft. 

Idealisation has been commonly practised in order to simplify the complexities as­

sociated with the solution of the governing equations for viscous flow. Flow viscosity, 

compressibility, rotationality and dimensionality have often been used as a means of 

classifying the flow conditions, and hence informing the simplifications. Assumptions 

have been made about the entire flow field, as in the case of inviscid and/or incom­

pressible flow, or about specific flow regions, for example a thin viscous boundary 

layer in an otherwise inviscid flow. 

In an inviscid flow, or inviscid flow region, if the flow is also assumed to be incom­

pressible and irrotational, the governing equations are reduced to the Laplace and 

Bernoulli equations after introduction of a velocity potential, the gradient of which is 

the velocity. The analysis procedure usually first involves the solution of the Laplace 

equations for the velocity distribution, incorporating the particular flow boundary 

conditions, and then, from this velocity field, calculating the pressure distribution 

via the Bernoulli equations. When solving the Laplace equation, it is common to 

place basic singular elements on the boundary, such as source, sink, doublet and 

vortex elements, to utilise the superposition property of the linear equations. The 

solution is a two-step process, the first step solving for the distribution of the singu­

larities, followed by the calculation of the velocity field. The expression for velocity 

in terms of the basic singular elements has been well established61- 64 . 

If the flow is assumed to be two dimensional, it is more convenient to use the 

complex potential, of which the real and imaginary parts are the velocity potential 

and stream function respectively. The complex potential is an analytic function and 

thus it satisfies the Laplace equation. The complex potential for uniform flow past 

a circle is well known62 . Complex geometries can be mapped into a circle by the 

method of conformal transformations. For a contour like an aerofoil surface, the 

Schwarz-Christoffel transformation is able to map a polygonal border in the physical 

plane into the real axis of a new complex plane, with the upper and lower half planes 

representing the inside and outside regions of the physical plane respectively. It is 
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then trivial to map a half plane into a disc. Other theories, using similar procedures 

to this for flow passing an aerofoil, were well summarised by Bryan Thwaites62 as 

theories of first inviscid approximation, in which the surface of the aerofoil is taken 

as a boundary of the potential flow. The theories described include Theodorsen's 

theory, Goldstein's approximation, and non-linear theories developed by Lighthill, 

Weber, and Spencer and Routtedge. Thwaites also stressed that, within the strict 

limitation of the first inviscid approximation, the various theories described "were 

remarkably accurate and complete" and there seemed little need for new theory. 

However, the limitations referred to by Thwaites are so strict as to exclude real 

flows, due to the neglect of viscosity. For modern requirements there is a need to 

integrate viscous effects into the flow theories. For unseparated flows, a common ex­

tension is to solve the boundary layer equations based on the velocities obtained from 

the first inviscid approximation, leading to a viscous/inviscid interaction scheme in 

which the boundary of the potential flow departs from the surface of the aerofoil by 

a small distance. The result of the boundary layer calculation can then be used to 

improve the inviscid approximation. Theoretically, this iterative procedure is viable, 

but it was pointed out that the convergence to the real solution did not necessarily 

follow due to the errors implicit in the boundary layer approximation. In practice, 

results of the second inviscid approximation were as good as may be obtained. Fol­

lowing a similar procedure, Preston62 obtained a satisfactory velocity distribution at 

the edge of the boundary layer of the flow over a symmetrical J oukowski aerofoil at 

zero incidence. 

Convergence proofs for models of aerofoil flows based on the above procedures are 

largely associated with flows which are steady and unseparated. In cases where the 

flow is separated or unsteady, little is available. Indeed, several difficulties arise if the 

boundary layer is separated. First, there is no easy way to determine the edge of the 

separated region, the line that is important for the potential flow calculation. The 

exact position of the border could probably only be decided once the convergence of 

the whole calculation has been achieved. Secondly, the boundary layer theory seems 
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to be inadequate for separated regions, mainly because the dimension of the region 

normally exceeds what is described as "thin". With a "thicker" layer, the assumption 

of constant pressure along the normal is highly questionable. Thirdly, the separated 

flow might not be steady, even for flow of a static aerofoil at high incidence, when 

the separated shear layer extends to infinity from the front half of the aerofoil. The 

unsteadiness becomes more obvious if the flow is unsettled, such as the impulse start 

of the flow around an aerofoil at incidence, or the aerofoil itself is in motion, as in 

the case associated with dynamic stall. It therefore becomes clear that the classical 

theories described above are inadequate for the prediction of unsteady, separated 

flows. 

With the fast growth of computer capabilities in recent years, a numerical ap­

proach to the solution of viscous, separated, unsteady flow has attracted much more 

attention. Prior to the discussion of the progress in numerical prediction of such flows, 

an outline is given of some of the related physical phenomena, obtained through ex­

perimental observation, with emphasis on those associated with dynamic stall. 

1.2 Dynamic stall phenomena 

It has been shown in numerous experiments27, 35, 65 that the lift curve of an aerofoil 

continues to increase with increasing incidence beyond the static stall angle, before it 

collapses, when the aerofoil is pitching up rapidly. The associated phenomena have 

been collectively named dynamic stall (figure 1.1), to differentiate the process from 

the stalling of flow over a static aerofoil - static stall. They have been studied by 

several scientists over the last fifty years, and comprehensive reviews on this subject 

have been published.8,9,11,65 The understanding obtained from these studies of the 

mechanisms governing dynamic stall has undoubtedly assisted the development of 

computational methods to predict such events. 

The interest in this stall delay phenomenon originally arose in the helicopter 

industry. It is well known that stalling is a limiting factor of maximum flight speed 
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of a helicopter. In forward flight, the magnitude of the relative velocity a rotor 

blade encounters is bigger on the advancing side than on the retreating side. This is, 

however, counterbalanced by a larger angle of attack on the retreating side to maintain 

longitudinal balance of the helicopter, and there can be certain blade sections which 

temporarily experience incidences higher than the static stall value for the aerofoil. 

As the incidence of a section changes constantly with the rotation of the blade, 

the stall, if any, is certainly a dynamic one. Accompanying the stall is also a very 

dramatic negative pitching moment, the periodic change of which affects the flutter 

characteristic of the helicopter blade and, subsequently, the control system. It is 

not surprising that the investigation of dynamic stall has its origins in the research 

into stall flutter of helicopter blades. 66-68 There has been an aim that research into 

dynamic stall would eventually lead to an improvement in helicopter performance 

and prediction69-75 . It is also believed that dynamic stall might be of benefit both 

in the increase of manoeuvrability of fighters 76 due to the extra lift coefficient and 

in the improvement of the efficiency of wind turbines77-83 , which operate in a similar 

fashion to helicopter rotors. 

Stalling of aerofoil flow is considered to initiate with boundary layer separation. 

For a better appreciation of the flow behaviour during the dynamic stall process, it is 

appropriate first to review the understanding of boundary layer separation on a static 

aerofoil. In determining the characteristics of a stalling flow, the position and pressure 

of the separation bubble are principal factors. According to Gault,84 static stall can 

be categorised as leading edge stall, thin aero foil stall, and trailing edge stall, with 

the first of these generally ascribed to all aerofoils that stall abruptly. Trailing edge 

stall commonly occurs on aerofoils with boundary layer separation that progresses 

gradually forward from the trailing edge as the angle of attack increases. Thin aerofoil 

stall, or long bubble separation, develops when a separation bubble appears near 

the leading edge and lengthens progressively with increasing angle of attack. This 

process normally leads to a round lift curve peak. Leading edge separation is generally 

associated with the bursting of a laminar leading edge separation bubble.65 When a 
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separation bubble exists, it is thought that the pressure along its edge is not constant, 

as assumed in classical Kirchhoff type of flow. It is believed that the pressure on the 

rear end of the bubble is higher than that on the front half, and that of mainstream. 62 

Around a pitching aerofoil, however, 

the focus of attention is extended bey­

ond these early stages of separation. It 

has been established by numerous ex­

periments that dynamic stall is char-

acterised by the shedding and convec­

tion of a vortex like disturbance over the 

upper surface of an aerofoil, which in­

duces a non-linearly fluctuating pressure 

field. 65 The pattern of vortex shedding 

is dependent on aerofoil shape, Reynolds 

number, cross-flow effects, and type of 

motion. However, if reduced frequency, 

amplitude and maximum incidence are 

sufficiently high, the qualitative results 
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Events of dynamic stall on NACA0012 airfoil 

are independent of all of these paramet- Figure 1.1: Illustration of dynamic stall 

ers. In addition, the unsteady fluctu- events from ref.s 

ations in the airloads are normally very 

large, corresponding to a well-defined vortex shedding phenomenon. This case IS 

referred to by McCroskey65 as "deep stall" as opposed to "light stall" . 

Preceding the full formation of the dominant dynamic stall vortex, the nature of 

the initial boundary layer separation strongly influences the dynamic stall behaviour. 

After analysing extensive experimental data for several aerofoil profiles, McCroskey 

et al. 65 identified four distinctive mechanisms of separation. These were classified into 

three categories, namely trailing edge stall, leading edge stall and mixed stall, with the 

latter containing two mechanisms. In trailing edge stall, the moment stall is preceded 
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by a gradual forward movement of flow reversal in the thin layer at the bottom of 

the boundary layer. When this flow reversal reaches the leading edge region, stall 

begins gradually and a vortex forms around x/c = 0.3 and moves rearward over the 

aerofoil. This is in contrast to leading edge stall, in which the initial flow breakdown 

begins at the leading edge and causes an abrupt moment stall as the dynamic leading 

edge vortex moves rearward closely behind the boundary layer disturbance. Mixed 

stall behaviour represents a combination of leading edge and trailing edge stall. It 

has been observed from the tests that a vortex erupts out of the leading edge region 

while the reverse flow behind this formation moves forward. The two disturbances 

appear to meet and merge near mid-chord to form a new vortex that continues to 

move rearward. It has also been observed that a disturbance generated near the 

quarter chord spreads upstream and downstream, in conjunction with the occurrence 

of trailing edge separation. 

While knowledge of the general flow physics during dynamic stall on an aero foil 

has been well advanced over the last few decades through experimental studies, the 

development of computational methods to predict this phenomenon still poses enorm­

ous challenges. This is due not only to the existence of various types of boundary 

layer separation which need to be simulated, but also the necessity of extending the 

calculation beyond separation to include the formation, shedding and convection over 

the upper surface of vortex like disturbances. The simulation of this latter process has 

exposed the inadequacies of traditional boundary layer theory. It is, however, at this 

stage of the stalling process that the potential benefit of higher lift coefficients or the 

potential disadvantage of negative pitch damping appears. The last few decades have 

seen the development of numerical methods to predict dynamic stall flow. It appears 

that the fundamental models are based either on grid dependent Navier-Stokes solv­

ers or on vortex methods, with a variety of models to incorporate viscous/turbulent 

influences. A more detailed discussion on these methods is the subject of the next 

two sections. 

A brief mention is given below of other research developments in the prediction 
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of dynamic stall. As well as attempts to predict dynamic stall characteristics purely 

from the flow physics, several empirical or semi-empirical models have been proposed 

to predict the air loading during dynamic stall. 85-88 These models, developed initially 

in the helicopter industry, employ a variety of basic relations capable of representing 

the main features of the dynamic stall process. This capability is realised through cor­

relation with extensive airload data obtained from both static and dynamic aerofoil 

experiments. A review of these methods is available.89 Despite the lack of detailed 

flow analysis, the computational efficiency and reasonably accuracy of these methods 

make them practical tools for routine analysis of rotor and wind turbine aerodynam­

ICS. 

In the Beddoes model, 85,90 time delays were introduced to represent the delay 

of moment stall and lift stall, compared with the static stall. The delay data came 

from the analysis of test results and were presented as functions of motion and flow 

properties. The timing of the major events divides the history into several time 

periods, for each of which a different simple function was in use to synthesise the 

variation of lift. In addition, one more function was introduced to describe the shift 

of centre of pressure between the onset of moment stall and that of lift stall. The 

model was further modified to improve accuracy.88 A number of applications of the 

Beddoes model have been reported.83,91,92 

The Gangwani mode187,93 is a purely empirical model, based on extensive correl­

ation with unsteady experimental data, instantaneous angles of stall onset, vortex 

passage over the trailing edge and reattachment. The data, presented with a set of 

empirical parameters, are synthesised to produce relations defined by a number of 

empirical coefficients. Although satisfactory correlation with experimental data was 

published, the choice of the large set of empirical parameters seems to be one of the 

difficulties in generalisation. 

Tran et al.86 proposed a model from which the unsteady airloads are obtained 

from derivative models, the coefficients of which were extracted from unsteady tests 

by system identification methods. It seems the derivatives should vary with the 
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change of incidence as the equations are not linear during dynamic stall. This appears 

either to increase the task of the system identification or otherwise to compromise 

the accuracy. 

In recent years, in addition to the continued accumulation of aerofoil data, 12, 29, 94 

a number of papers have appeared, particularly of an experimental nature, which con­

centrate on the flow physics of reattachment,4, 14,25,30,95 three dimensional effects,96,97 

and the influence of compressibility7,98. A comprehensive review of the last item 

has been recently published.9 Although significant advances have been made by the 

development of the experimentally driven empirical and semi-empirical techniques, 

more emphasis in the future is likely to be placed on correlations derived from more 

fundamental numerical methods, as part of the drive to reduce the overall cost of 

testing. 

1.3 Numerical approach - grid based methods 

Although experimental studies have been, and continue to be, important in develop­

ing an understanding of the phenomena which comprise dynamic stall, there is no 

practical possibility of performing tests on every conceivable combination of paramet­

ers. This is one of the main reasons for research into analytical and computational 

methods of prediction. 

It was previously noted that the governing equations for the dynamic stall events 

were well established. The onus thus lies on finding a solution of the Navier-Stokes 

equations. At present, analytical solutions for these non-linear partial differential 

equations, complicated by complex boundary conditions, appear remote. A numerical 

approach, therefore, provides the only other way forward, and a large research effort 

has been made in this area. 

Among the two main numerical schemes employed for the prediction of dynamic 

stall, grid based methods and vortex methods, the former have undergone significant 

development with the appearance of a number of books99-102 devoted to the de scrip-
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tion of the general techniques involved. The general principal of the grid based meth­

ods is, through a mesh, to translate the continuous governing equations into algebraic 

ones, from which a solution is extracted for physical properties such as fluid velocity 

and pressure, at discretized points - grid points. A distribution of flow properties 

is often generated throughout the entire flow region via an appropriate interpolation 

scheme. For the four commonly used algorithms, namely the finite difference, finite 

volume, finite element and spectral methods, the initial procedure is always to divide 

the entire flow domain into sub-domains by meshing, generating grid points in the 

process. In the finite difference method, the partial derivatives of a variable at the 

grid points are approximated using variable values at the grid points only, and an 

approximation can be obtained for these values by solving the simultaneous algebraic 

equations. For the other methods, however, an approximate solution, which satisfies 

both the boundary conditions and initial conditions, is first assumed through the 

use of trial functions with unknown coefficients. A residue equation for the unknown 

coefficients is constructed by substituting the approximate solution into the governing 

equations. 

The capabilities of grid based computational fluid dynamics methods have ad­

vanced rapidly in recent years, with new techniques constantly emerging. Reviews of 

new developments in this area are available. 103, 104 For flow around a static aerofoil, 

it is now standard practice to calculate the flow field efficiently, even if the flow is 

compressible and separated. One example is flow over the NACA0012105 in which the 

finite element method106 and adaptive unstructured meshes were employed. 

For a pitching aerofoil, the complication is dramatically increased by the con­

stantly changing flow domain which requires an adjustment of the mesh. This is in 

addition to the need for mesh refinement, in order to adapt to the shifting dynamic 

stall vortex. Recently, despite the difficulties, several studies have contributed to the 

solution of dynamic stall flows. 

Osswald et al.,56 Ghia et aP07,108 developed an unsteady Navier-Stokes analysis 

on a non-inertial, generalised coordinate frame fixed to the body. In this frame they 
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used a velocity-vorticity form of the Navier-Stokes equation that was found to be 

invariant under the generalised coordinate transformation. As the flow domain re­

mains unchanged in this body fixed coordinate system, a C-grid could be generated in 

a similar way as for a static aerofoiL The model was used to calculate steady inviscid 

flow around the NACA0015 at 30°, and the streamlines show good agreement with 

those obtaining by using the Schwarz-Christoffel mapping technique. For pitching up 

motion, a dynamic vortex was generated over the 

upper surface, as indicated by both the streamline 

and vorticity contours. No comparison of lift and 

moment coefficients with experimental results was 

given. Indeed, with variation in Reynolds number, 

the time histories (figure 1.2) obtained seem quite 

different. 56 

Visbal et aL49,50 utilised a general time-

dependent coordinate transformation to match the 
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gidly attached to the aerofoil, was generated, and both the mass-averaged N avier­

Stokes equations and a Baldwin-Lomax algebraic eddy viscosity model was employed 

to simulate the unsteady flow. The comparison of lift and moment coefficients with 

experimental data (figure 1.3) shows reasonably good agreement, although discrep­

ancies are apparent in the post-stall region. It is also not clear why lift coefficients 

of more than 0.5 were predicted for angles of attack between 0° and 3°, at which the 

flow would normally be attached. Based on the computational results, the effects 

of pitch rate on the airload coefficients, and the effects of Mach number on the lift 

coefficient and stalling process were analysed. 50 

Reu et a1.37 developed an approach 

- - WITH WALL 
- WITHOUT WALL 
C EXPERIMENTALDATA(QUASI.STATIC) 
o EXPERIMENTALDATA{Re=2.7E6) 

a (degree) 

that solved an integral form of the 

Navier-Stokes equations. The model 

used coupled structured and unstruc­

tured grids effectively to handle the un­

steady boundary layer. A structured, 

highly stretched, body-conforming grid 

was generated in the region around an 

aerofoil while an unstructured grid was 

used in the remaining region. As the 

Normal force coefficient hysteresis vs allele or attack for 
Dynamic stall simulation at Ma, =0.3, Re = 2.7XiO~ and k = 0.2546 

Figure 1.4: Normal force coefficients from structured grid moved with the aerofoil 

refP and the far field unstructured grid was 

fixed, there was a borderline between the 

moving and stationary patches. For this, two proposals were examined, as described 

below. The first was the DSUG method that included the dividing line between the 

two grids. The unstructured grid near this boundary was used to patch the gap 

caused by the motion at each time step, and no interpolation was therefore required. 

The second approach, referred to as the PSUG method, was to use a slip boundary 

within the region represented by the unstructured grid. It was concluded, however, 

that this latter approach was inadequate for the prediction of unsteady wake flow due 
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to the discontinuity across the boundary, despite the use of interpolations to convey 

the data. A result for the NACA0012 using the DSUG method was obtained and the 

pressure distribution from 0° to 29° was presented, although comparisons with exper­

imental data109 were only provided up to 15.54°, the angle before the dynamic stall 

vortex becomes dominant. The computation did, however, predict the formation of 

a dynamic stall vortex and its shift downstream with increasing angle of attack. The 

effect of the addition of wind tunnel walls was also predicted, indicating an earlier 

stall (figure 1.4). 

Tuncer et al. 51 proposed two models to 

numerically study the flow around oscillating 

aerofoils, which comprised full viscous analysis 

and simplified vortical analysis. The latter ap­

proach only had the vortex shedding from the 

trailing edge, and was therefore unable to pre­

dict the dynamic stall vortex that is believed 

to initiate near the leading edge. In the vis­

cous analysis, the vorticity transport equation 

was solved along with a Biot-Savart velocity 

expression in terms of the vorticity field and 

boundary conditions. The Baldwin-Lomax 

two layer algebraic eddy viscosity modeillo was 

incorporated into the numerical method. The 

NACA0012 aerofoil profile was approximated 
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by a Joukowsky transformation of a unit circle Figure 1.5: Lift and moment coeffi­

cients from ref.51 
in the ( plane in which the solution was per-

formed by using an O-grid to discretize the 

governing equations and the velocity relations. From the instantaneous streamlines 

and vorticity contours, the computation indicated the formation of the dynamic stall 

vortex near the leading edge. The vortex convected downstream during pitch-up and 
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the flow reattached during pitch-down. The deep stall hysteresis loops in lift, drag, 

and moment coefficients were captured by the computation (figure 1.5), although 

discrepancies exist when compared with experimental data. 

Wernert et al.,19 Geissler et a1.44 employed the approximate-factorisation implicit 

methodll1 to solve the Navier-Stokes equations in a curvilinear aerofoil fitted co­

ordinate system that deformed with respect to time. The Baldwin-Lomax algebraic 

turbulence modelllo was incorporated into the method. The computed velocity vec­

tor field, streamlines and vorticity contours for the NACA0012 undergoing pitching 

oscillations were presented, together with those from PlV experiments. The main 

features of dynamic stall were captured. 

Tuncer et al. 1l2 proposed a viscous-inviscid 

interaction method that partitioned the entire 

computational domain into near-field and far-

field zones. The near-field zone encompassed 

the boundary layer and separated flow zones, 

within which the full N avier-Stokes equations 

were solved. For flow in the far-field zone, a 

potential flow solution method was employed, 

with isolated vortices shedding from the near­

field zone. Lift and drag coefficient histor-

ies were presented, indicating good agreement 

with experiments for a sinusoidally oscillat­

ing aerofoil up to a maximum angle of attack 
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Figure 1.6: Steady-state lift coeffi-
of 100, below that at which stall is expected. cients from ref.1l2 

Comparisons of static lift coefficients with ex-

perimental data were also given for the case where the full viscous computation was 

performed on the entire field. It is interesting to note that, although good agree­

ment was shown between the two computational models, the computational data 

were much bigger than the those obtained from experiments (figure 1.6). 
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Kim et aP8 used a finite volume method to solve the Navier-Stokes equations ex­

pressed in an arbitrary Lagrangian-Eulerian coordinate system. Flow turbulence was 

modelled by a multiple time-scale turbulence equation. A new sheared moving mesh 

was generated algebraically at each time step. Streamlines and turbulent viscosity 

contours were presented which indicated the process of dynamic stall. 

Choudhuri et al. 42,113 numerically 

studied unsteady leading edge separation 

on a pitching aerofoil up to the stage of 

dynamic stall vortex formation. Two al­

gorithms were employed for comparison, 

both of which were second order accur-

ate: a structured grid algorithm that 

utilised a structured, boundary fitted 

C-grid; an unstructured grid algorithm 
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The incidence variation of lift, moment 

and drag coefficients were compared for 

the two algorithms, but no comparison with experiments was provided. In the calcu­

lated instantaneous flow fields, recirculating regions near the leading edge were shown, 

and critical points were proposed and identified. However, although the formation 

and convection of the dynamic stall vortex was shown, the vortex induced lift and 

pitching moment were not evident (figure 1.7). Similar to the results from Visbal's 

model, the lift coefficients at low angles of attack (0° to 3°) seem quite high. 

Despite the differences in detail, the common feature of the methods above is 

the use of a grid to solve the N avier-Stokes equations. Turbulence models were 

integrated into some of the methods. All of the methods were able to capture the 

dynamic stall vortex, but only some predicted airloads. All of the methods have 

contributed to the advancement in the prediction of dynamic stall. However, when 
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comparison of numerically predicted airloads were made with experimental data, 

discrepancies existed, especially in the post-stall region. This highlights the necessity 

for further research. Considering the dominant influence of the dynamic stall vortex 

revealed by numerous experimental studies, techniques collectively known as vortex 

methods would appear to offer useful alternatives to grid based methods, and these 

are discussed below. 

1.4 Numerical approach - vortex methods 

Since the realisation by Helmholtz, almost one and half centuries ago, that flows with 

vorticity could be modelled with vortices of appropriate circulation and infinitely 

small cross section, computational methods with vortices have been under constant 

development. This process has accelerated with the advancement of computer tech­

nology over the last few decades, which have seen the appearance of numerous new 

models aiming to identify, solve or eliminate the problems associated with the imple­

mentation of Helmholtz's ideas in real flows. The quantity of publications available 

prohibits a detailed review here. However, comprehensive reviews have been pro­

duced.114-122 which provide the background of the methods together with a summary 

and assessment of the existing techniques. 

The essence of vortex methods is the representation, through discretization, of 

the continuous distribution of vorticity by an ensemble of vortices imbedded in a 

potential flow. The vortices are described in a Lagrangian frame of reference and 

tracked numerically through the flow field. If the flow is incompressible, the velocity 

of an individual vortex can be determined in accordance with the Biot-Savart law, 

or by the Green's function method in conjunction with the boundary conditions. 

The same methods apply to the entire flow velocity field and, therefore, when the 

distribution of vortices and boundary conditions are known, the flow is defined. 

The advantages of vortex methods come from the Lagrangian description of the 

vortices. These are a grid free computation, the need for velocity computation only 
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at the vortex locations, exact treatment of boundary conditions at infinity, the need 

to deal only with vorticity rather than with velocity and pressure, and many others. 

These advantages are, however, counterbalanced among other things by the difficulties 

with velocity computation which arise from the singularity of a point vortex and the 

cost proportional to the square of the number of vortices. Attempts to find solutions 

to these difficulties have been made, details of which have been published.114 

The theoretical basis of vortex methods lies in the flow momentum equations. 

Once vorticity is defined as the curl of velocity, the velocity-pressure form of the 

N avier-Stokes equations can be translated into the vorticity transport equations, 

which state that in an inviscid fluid, vorticity is a kinematic property of a given 

fluid particle. Such particles can undergo convection and deformation only, which 

leads to the Lagrangian description of vorticity evolution. In viscous flow, the trans­

port equations determine how the vorticity produced at a boundary is carried away 

by convection and diffusion. In homogeneous fluids, vorticity is generated only at 

the boundary of fluid regions. Regarding the generation of vorticity, Morton123 con­

cluded that "vorticity generation results from tangential acceleration of a boundary, 

from tangential initiation of boundary motion and from tangential pressure gradients 

acting along the boundary" . 

The introduction of cutoff functions for vortices to represent some sort of finite vor­

ticity distribution, like vorticity blobs or vortex balls, serves the purposes of eliminat­

ing the singular nature of a point vortex and alleviating the instabilities encountered 

in vortex computations. Several cutoff functions have been proposed and a list of 

commonly used ones is available. 124 The most extensively used functions are those 

based on the Rankine or Lamb vortices. The former assumes a constant vorticity 

distribution within the core radius and the latter represents an exact solution of the 

Navier-Stokes equations for an isolated vortex. However, the advantage arising from 

the solution provided by the Lamb core is offset by the fact that the result from 

an assembly of vortices is not the same as that obtained from a sum of individual 

particles, as the non-linear nature of the equations does not permit the superposition 
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of the vortex field. 

In the definition of cutoff functions, the core radius is a major parameter. Two 

types of scheme have been used extensively for the evolution of this parameter, em­

ploying either a time dependent radius or a fixed radius. The core expansion tech­

nique seems to reflect the effect of viscous diffusion, but it has been argued, without 

the provision of error limits, that the scheme does not converge to the equations of 

motion except for certain special flOWS. 125 The fixed core technique, on other hand, 

violates the Euler equations and Helmholtz's laws. It has been emphasised that "the 

use of blobs must be regarded as a mathematical artifice to limit the large velocities 

induced by vortices in their immediate neighbourhood".114 For this reason, instead 

of using a complicated expression for the velocity calculation in two dimensional flow, 

desingularization was also proposed by multiplying the velocity of a point vortex with 

an artificial smoothing parameter (d2~82)' d being the distance from the vortex point 

and 5 being a parameter similar to core radius.126-129 

Vortex amalgamation is also quite commonly employed in vortex computations35,53 

as a smoothing technique as well as a cost saving exercise. This is achieved through 

the avoidance of unrealisticly large velocities and a reduction in the overall number 

of vortices in the computation. However, as the approximation introduced by amal­

gamation is irreversible, it has been pointed out that merging of vortices with large 

circulation, large inter-vortex spacing and small distances from the body should be 

strongly discouraged.1l4 

As alternatives to, or complementary to, vortex amalgamation, numerous schemes 

have been developed to reduce the CPU time involved in the vortex interactions. 

The discrete vortex in cell,130 dipole-in-cell,131 Anderson's method of local correc­

tions132,133 and multipole methodl34-136 all demonstrate the possibility of speeding up 

the most expensive part of the computation. The common theme of these schemes 

is the targeting of the influence of long-range vortices by either grouping some into 

single or dual vortices, or by utilising some sort of mesh and/or Taylor expansion in 

the computation. The interactions between vortices close to each other are computed 
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directly. 

Instead of trying to reduce CPU time by reducing the direct summation cost of 

the Biot-Savart interaction, the vortex-in-cell methodl37,138 replaces the vortices at 

vortex points with vorticity distributed on a grid, maintaining the circulation of the 

original vortices. The CPU time of the interaction is proportional to the number of 

grid points rather than the number of vortices. Since it is possible to choose far less 

grid points than vortices a reduction in CPU time can be achieved. In addition to 

the above methods, parallel computation techniques have been developed for vortex 

methods in recent years.139-141 

The vortex method has been shown to be a useful tool for solving the Euler 

equations for incompressible inviscid flow. When solving the Navier-Stokes equations 

for viscous flow, however, the appearance of the diffusion term l/ \}2 W in the vorti­

city transport equations poses an enormous challenge to Lagrangian algorithms. To 

tackle this, three variations of the inviscid algorithm have been proposed: the ran­

dom vortex method;142 the core expansion method;143 the particle strength exchange 

algorithm. 144-147 In these methods, the vorticity transport equations are split into 

two parts, each governed by the Euler equations and diffusion equation respectively. 

This is known as the operator splitting method, which simulates convection and dif­

fusion sequentially rather than simultaneously. Whatever the method, a particle first 

advances in accordance with the convection prescribed by the Euler equations. The 

difference between the various methods appears in the simulation of diffusion. The 

core expansion method employs the fact that a Gaussian vortex core simulates an 

exact solution of the diffusion equation for a single vortex, but Greengard125 con­

cluded that the method solved the Euler equations incorrectly. The random vortex 

method adds a random walk to the particles at each time step, and approximates the 

equations correctly in a statistical sense. The proofs of accuracy have been provided 

by several investigatorsl48-152 although it appears that the proofs pertain to laminar 

flows and the absence of an interior boundary.1l4 Instead of maintaining the circula­

tion of every particle, the particle strength exchange algorithm adjusts the circulation 
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in accordance with the diffusion equation, or assigns circulation to mesh points close 

to the particles. Despite these developments, it appears that the capacity of current 

techniques for simulating diffusion are still limited to the purely viscous case. It could 

be argued that with enough particles the vortex method could provide a direct sim­

ulation of small scale turbulence, however the number of particles required is likely 

to be prohibitive. Future developments in this area may lie in the association of the 

vortex method with techniques developed for large eddy simulation models, in which 

the vorticity field provides the input for the calculation of the spatial distribution of 

eddy viscosity. 

When a body is imbedded in a flow, the surface ofthe body forms part ofthe flow 

boundary. On this portion of the boundary, the physical conditions of no-penetration 

and no-slip should normally be satisfied. In a similar manner to that previously 

discussed for the inviscid approximation, surface singularity distributions such as 

vortex or doublet sheets have been quite commonly used to satisfy the no-penetration 

condition. These distributions are usually divided into singularity segments over 

which the strength is assumed to vary piecewise constantly, piecewise linearly or in 

some other manner. Therefore, the nodal values describe the distributions, and these 

are determined by solving a set of simultaneous linear equations. As opposed to the 

inviscid approximation, the existence of wake vortices within an otherwise potential 

flow influences the normal velocity equation and hence the singularity distribution. If 

the flow is two dimensional, a common technique has been to introduce image vortices 

to cancel the normal velocity for simple geometric boundaries, like plates or circles. 

For complex geometries, a transformation mapping can be used, although the Routh 

rule is required to obtain the correct velocity in the new plane. 

The vortices imbedded in the otherwise potential flow originate from the boundary. 

It follows that the boundary is the source of flow vorticity, from which the vortices are 

obtained by discretization. Such methods involve the generation of nascent vortices 

near the boundary at each time step. Two major parameters, strength and position, 

describe the shedding process from a surface, sharp edge or other separation points 
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obtained from experiments or boundary layer calculation. 

For vortex shedding from a known separation point, it has been proposed that 

the shedding rate of vorticity is ~~ = ~U; with Us as the shedding velocity. It has 

been suggested that the position of the nascent vortices should be chosen to satisfy 

the Kutta condition at the sharp edge. 153 A sharp edge shedding model has also 

been proposed using a vortex sheet whose length is associated with the local velocity 

and whose strength is determined by the Kutta condition. For unsteady flows, Sears 

proposed that the time rate of change of circulation is (0.5U; - UsUe) where Us is the 

outer flow velocity at separation and Ue is the speed of the separation point. 154 

In the case of surface shedding, Chorin proposed a method that creates nascent 

vortices near the boundary at each time step to enforce the no-slip boundary con­

dition. 142,155 The vortices then advance in accordance with the Euler equations and 

random walk algorithm. Variations of the method have been developed describing a 

different relationship between the nascent vortices and the boundary .156,157 An al­

ternative algorithm was recently proposed which alters the strength of existing vortex 

blobs in the vicinity of the boundary to simulate the shedding of vorticity from the 

boundary.146,147 

The preceding discussion on the background and techniques behind the vortex 

method has illustrated that the method has developed to the stage where its applic­

ation to the computation of aerofoil flows is practicable. Most of the applications 

specify the trailing edge as the vortex shedding point, or a point upon the upper 

surface determined from a boundary layer calculation. 

Kim 158 proposed a method for solving the unsteady, incompressible, inviscid two­

dimensional flow over an aerofoil by placing continuous vorticity on the aerofoil sur­

face, with vortices shedding from the trailing edge at each time step. The strength of 

the shed vortex, whose initial position was not made clear, is determined by equaliz­

ing the pressure on the upper and lower surfaces at the trailing edge. The unsteady 

flow case presented was that of an aerofoil in plunge motion. As the model is invis­

cid, no viscous effects were included, and as the incidence remained low for the case 
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presented, no surface separation would have been expected. 

Another inviscid flow simulation was performed by Choi,41 who developed a con­

formal mapping technique to analyse a similar flow. In his model, however, a nascent 

vortex is created near the trailing edge at each time step. The position of the vortex is 

arbitrarily specified and its strength is determined by satisfying the Kutta condition 

of zero velocity at the sharp edge. 

In Tuncer's simplified vortical flow analysis, 51 no diffusion of vorticity was con­

sidered. The model applies to unseparated flow, so vorticity is shed from the trailing 

edge only. The position and strength of the nascent vortex are determined from the 

conservation of momentum and mass in a sufficiently small control volume at the 

trailing edge. The computational lift coefficient for an oscillating aero foil with max­

imum incidence below the static stall angle shows reasonably good agreement with 

experimental data. 

Ham35 used classical potential theory to calculate the unsteady aerodynamic load­

ing on an aerofoil during dynamic stall. The aerofoil was modelled by a flat plate, 

with emission of free vortex elements from both the leading and trailing edges. Their 

strengths are calculated by enforcing stagnation at these points. This highly simpli­

fied model illustrated the variations in aerodynamic loading and main flow features 

during the pitching of the plate although, as expected, accuracy was not high. 

In a viscous simulation of the separated flow around an oscillating aerofoil using a 

vortex method, Spalart divided the flow domain into inner and outer regions. 53 The 

flow in the inner region was treated as viscous and was represented by the boundary 

layer equations, which were solved by employing the finite difference method together 

with the Baldwin-Lomax turbulence model. The flow in the outer region was regarded 

as inviscid and the Euler equations were solved by a vortex method. Across the 

interface between the two regions, velocity continuity was maintained. This resulted 

in the introduction of a vortex sheet along the zonal interface. With the instantaneous 

pressure distribution calculated from the outer flow at each time step, the separation 

point was predicted by the boundary layer computation. The release of vortices 
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from the inner zone was suppressed along the segment between the leading edge and 

the separation point. In so doing, only the separation which progresses from the 

trailing edge was evident. The vortex pattern predicted for dynamic stall flow was 

representative, but discrepancies existed in the airload comparisons with experimental 

data, especially for angles of attack at which the influence of the dynamic stall vortex 

was expected to be dominant. 

In a variation of Chorin's method,155 Shih used the random vortex method to 

study dynamic stall flow of an aerofoil. 21 The surface of the aerofoil was mapped 

into a circle by a generalised von Mises transform mapping, and mirror vortices were 

introduced to maintain zero relative normal velocity at the surface. To maintain the 

no-slip boundary condition, vortices were added near the boundary at a distance of 

0.675 times the random step size 

y'2v l:::. t. Each vortex advanced with 

the same velocity as the associated flow 

particle, with the addition of a random 

walk during the time step. At each new 

time step, vortices within twice the cre­

ation distance of the boundary were re­

moved and a ring of new vortices cre­

ated. The instantaneous streamline pat-

tern and distribution of vortices for the 

NACA0012 resembled the velocity field 

from experiment in terms of the struc-

ture of the dynamic stall vortex. No air­

load data were presented. 

Instead of using vortex sheets as III 

Chorin's method,155 Huyer et al. 159 pro-
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city near the body surface. The elements underwent convection and viscous diffusion, 

simulated by random walk, in the same fashion as for vortex sheets, and subsequently 

shrank into vortices after a number of time steps. In its application to pitching aero­

foil flow, the formation and convection of the dynamic stall vortex were captured. 

The value and timing of the maximum lift coefficient were in good agreement with 

experiment, although there was no explanation of the discrepancy at lower angles of 

attack prior to stalling (figure 1.8) 

The development of the vortex method and its application to aerofoils indicate its 

suitability for the simulation of unsteady separated flows, especially vortex dominated 

flows typical of dynamic stall. However, the discrepancies between the calculated and 

experimental airloads, or the absence of the airload data altogether, suggest the need 

for further improvements in the method. 

1.5 Summary of present method 

The development and application of a vortex model is presented herein to simulate 

unsteady separated flow around a pitching aerofoil. Through the division of the flow 

domain into a creation zone and a wake zone, the model is capable of simulating 

general vortex shedding from a surface rather than from points predetermined by 

some other method, as is the case for most of the other models. The model is also 

extended to incorporate the influence of external constraints such as those provided by 

wind tunnel walls. The application of the method to pitching aerofoil flow produces 

encouraging results both in regard to the flow patterns obtained and the airloads 

predicted. 

As a vortex method, vorticity in both zones is represented by discretized vortices, 

but in a different manner. Within the creation zone, discretization is performed at 

fixed points along a line that is "parallel" to the surface. A piecewise linear dis­

tribution of the vortex sheet strength is assumed within the creation zone over the 

panels used to discretize the body surface. The vortex strengths are determined by 
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implementing the no-penetration boundary condition expressed in terms of zero mass 

flux through each panel. Within the wake zone, on the other hand, vorticity is dis­

cretized in accordance with the Lagrangian description of the vortices. During a time 

step, subject to an addition of random walks for viscous diffusion,142 vortices in both 

zones convect with the velocity of the particles to reflect the convection and diffusion 

of vorticity. Those remaining in the wake zone retain their identity, while vorticity 

within the creation zone is rediscretized together with the new vorticity generated at 

the boundary. The shedding of vorticity across the interface from creation zone to 

wake zone is represented by newly created vortices in the wake zone the strength of 

which reflects the amount of shedding. 

Amalgamation is employed to reduce the total number of vortices in the velocity 

summation which in turn reduces the CPU time. As vortices which are shed near the 

leading edge have potential to return close to the surface, the amalgamation is only 

performed for those vortices which have passed the trailing edge. The amalgamation 

of two vortices is subject to a criterion similar to the one used by Spalart,53 but 

a variation is introduced to reduce the CPU time of the merging process and to 

maintain a convergent Taylor series. 

Chapter 2 details the governing equations and velocity expression in integral form, 

which includes the influence of the moving boundary caused by the motion of the aero­

foil. The derivation is sufficiently general to include flow with external constraints 

such as wind tunnel walls. In chapter 3, the numerical implementation of the gov­

erning equations for the vortex method is presented. Results for the NACA0012 

and NACA0015 undergoing impulse start, ramp-up, ramp-up and ramp-down mo­

tion are presented in chapter 4 in the form of vortex patterns and velocity/streamline 

diagrams. Also presented are plots of normal force, tangential force and pitching 

moment against time and angle of attack, as well as selected instantaneous pressure 

distributions. The results with the influence of wind tunnel walls are also presented 

in this chapter. Chapter 5 is intended to summarize the main conclusions of the study 

and suggest future developments. 



Chapter 2 

MATHEMATICAL FORMULATION 

The main dynamic properties of interest include the velocity and static pressure. 

The determination of such parameters at relevant positions within the flow field for 

any instant is the main task of flow analysis through numerical simulation. 

In this chapter, the relationships between the main parameters in two dimensional 

incompressible flows are presented in both the forms of the Navier-Stokes equation and 

the vorticity transport equation. Emphasis has been placed on the limited vortical 

flow region and the influence of the time dependent boundary caused by the moving 

body. The velocity field is expressed in an integral form after incorporating the 

boundary conditions of undisturbed infinite flow, no-slip and no-penetration on the 

moving inner boundary and the exterior body surface. The pressure gradient is 

obtained in terms of the rate of change of vorticity on the moving body surface, and 

then integrated into the force and moment actions on the body. 

2.1 Governing equations 

The following continuity and N avier-Stokes equations govern incompressible flows: 

au ( -> ) -> 1 2 -> --;::) + U.\7 U = -- \7 P + v \7 U 
vt P 

(2.1) 

(2.2) 

Both the velocity u(x, y, z, t) and pressure p(x, y, z, t) are functions of the position 

(x, y, z) and time t. The flow density p and kinematic viscosity v are constant in the 

flows of interest due to the assumptions of the incompressibility and homogeneity. 

27 
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Taking the curl of the momentum equation results in the velocity-vorticity form 

corresponding to the vorticity transport equation, which for two dimensional flow is 

00 (.... ).... 2 .... fit + U. V w = v V w 

The vorticity 0 is defined as 

0=Vxu 

(2.3) 

(2.4) 

This is also a function of position (x, y) and time t and can be written as 0 = kw 
in two dimensional flow. Note that the distortion term (0.V) u only arises in three 

dimensional flows. 

It can be seen that in the vorticity transport equation, pressure does not appear 

explicitly. The change in vorticity at a particular position is influenced by the sur­

rounding vorticity and the velocity of the flow, either through convection or diffusion. 

By defining the Reynolds number 

Re = uooL 
v 

(2.5) 

where L is a characteristic length, usually the chord length when the body is an 

aerofoil, and U oo is the velocity at infinity, the vorticity transport equation becomes, 

for unity Land uoo , 

Ow.... 1 2 
fit + (u·V)w = Re V w (2.6) 

which shows that with increasing Reynolds number, the influence of viscous diffusion 

le V 2 w becomes less important while convection (u. V) w increasingly dominates the 

time change rate of the vorticity. 

One extreme case is when vorticity diffusion becomes insignificant. The vorticity 

transport equation reduces to 

Dw =0 
Dt 

(2.7) 

This indicates that the vorticity associated with a particular flow particle is unchanged 

and, therefore, the vorticity forms one of the conserved properties of the flow particles. 
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In addition the velocity of transportation of the vorticity is equal to that of the 

particles. 

The Navier-Stokes and vorticity transport equations do not have unique solutions 

unless the boundary and initial conditions are implemented. The kinematic conditions 

of no-slip and no-penetration on the surface of the solid body are commonly used in 

viscous flow. These require the flow particles on the surface to have the same velocity 

as that of the body point. For unrestricted flow, the outer boundary lies at infinity, 

where the flow is undisturbed. For constrained flow, some boundary conditions similar 

to those for the original body are required for the external physical constraints. 

2.2 Influence of moving body 

The incorporation of body motion dif­

ferentiates the flow simulation from that 

associated with stationary bodies. The 

flow is time dependent due to the time Y 

varying internal boundary, which adds to 

the complexity of both the surface integ-

rals, when Green's theorem is employed, 

and the pressure relations. 

aCt) 

0""--------
x 

In accordance with the kinematics, Figure 2.1: Reference coordinate system 

the velocity of an individual point r on 

the boundary of the body i can easily be described as 

(2.8) 

Reference point rCi is a point fixed on the body i, UCi is the velocity of the fixed point 

and n is the rotational velocity of the body, as shown in figure 2.l. 

The velocity Ui on the boundary is also the velocity of the attached flow particle 

as required by the no-slip and no-penetration boundary conditions. To evaluate the 

influence of the velocity of the moving boundary Si on the flow, the solenoidal velocity 
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field described by the above equation is applied within the area of body Bi . Such a 

velocity distribution is equivalent to that of the solid body in transit and rotational 

motion. It is obvious that the boundary condition is fully satisfied. 

The velocity field has uniform vorticity within the defined area Bi 

(2.9) 

which is twice the rotational velocity. From the vorticity and Stokes' Theorem, the 

circulation of velocity around the boundary contour can be easily obtained as 

(2.10) 

where Ai is the area of B i. 

The solenoidal property ofthe velocity field in Bi , V.iii = 0, indicates there exists 

a stream function 'l/Ji such that iii = V x (k'l/Ji) and k. V'l/Ji = o. Such 'l/Ji is a solution 

of the following Poisson equation 

(2.11) 

and satisfies both the boundary requirements 

-So [iiCi + Dik x (r - rcJ] 
n. [iiCi + Dik x (r - rcJ] on Si (2.12) 

It can be proved that the two boundary conditions are compatible and either one 

is enough to produce a unique solution for the Poisson equation up to a constant. 

Let 'l/J~ be another solution of the equation. ('l/Ji - 'l/JD should satisfy the Laplace 

equation in Bi . On the boundary, either the corresponding Neumann condition of 

zero normal gradient of ('l/Ji - 'l/JD, or the Dirichlet condition of constant ('l/Ji - 'l/JD, 

requires constant ('l/Ji - 'l/JD throughout the whole of Bi· Uniqueness of 'l/Ji suggests 

that the two boundary conditions imply each other as 'l/Ji always satisfies both. 

By using Green's theorem, one can prove 'l/Ji satisfies the following relationship 

(2.13) 
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where cp = 2~ In Ir - rpl, and rp ~ Bi · v 2 cp = 0 when r =1= rp 
The equation evaluates the surface integral containing the values of 'l/Ji on the 

boundary. This integral will later be used to obtain the stream function in the 

exterior flow field. 

The acceleration accompanying boundary movement produces extra forces acting 

on the flow particles, resulting in additional surface force gradients. 

The acceleration of the boundary is expressed as 

DUi DUCi DDi k-> (-> -» 112 (-> -» --=--+-- x r-r. -H' r-r. Dt Dt Dt C, 2 C, 
(2.14) 

The three components are due to linear acceleration of the reference point, rota­

tional acceleration and centripetal acceleration, and are a consequence of the body 

kinematics. 

The component tangential to the boundary 

-> DUi _ -> DUCi DDi -> (-> _ -> ) _ 112-> (-> _ -> ) 
s. Dt - s. Dt + Dt n. r r Ci Hi s. r r Ci (2.15) 

directly influences the pressure gradient along the boundary. 

2.3 Influence of external boundary 

Most of the experimental studies of aero foil flows are conducted in wind tunnels. The 

influence of the wind tunnel is regarded as insignificant when the outer constraints 

are far enough from the area of most interest and the blockage is relatively small. 

Such cases may include tests at low angles of attack in large wind tunnels. However, 

dynamic stall normally occurs at higher angles of attack and the presence of the 

dominant dynamic stall vortex increases the influence of any external boundaries due 

to the expanded region of flow disturbance. 

Compared with unbounded flows, the main effect of wind tunnel walls is the limit­

ation of the flow region. The appropriate boundary conditions on the external surfaces 

are again the no-slip and no-penetration conditions. Like the previous discussion, it 

can be proved that no-penetration implies no-slip if vortex sheets are introduced on 
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Figure 2.2: Flow regions 

the boundary, and therefore only the former need be implemented. The technique is 

to consider the assumed irrotational velocity field outside the bounded flow region. 

As shown in figure 2.2, ST and SB are the tunnel walls. Both are parallel to the 

velocity of flow at infinity, uoo . These surfaces are connected upstream by surface Su, 

which is perpendicular to uoo . ST and SE divide the boundary at infinity Soo into two, 

S~ and S~. So = S~ +ST+SU+SB is a closed contour. So is S = S~ +ST+SU+SE. 

The field enclosed by So is denoted Fo. 

Uo is the velocity in the field Fo. It can be assumed to be solenoidal and irrota­

tional, that is, V.uo = 0 and V x Uo = o. The corresponding stream function '!f;o is 

the solution of Laplace's equation 

(2.16) 

subject to boundary conditions. On boundary Su, which is far away from the aerofoil, 

it is relatively safe to assume that there is a uniform velocity Uo = uoo , corresponding 



to -k x \7'I/Jo = uoo • The other boundary conditions are 

-k x \7'I/Jo 

s. \7 'l/Jo 

u at S" 00 00 

o on ST and SE 

where only the normal components of velocity on ST and SE are specified. 
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It is easily shown that the stream function associated with the uniform velocity 

field Uo = Uoo is a solution. Using a similar argument to that given in the previous 

section, it can be further deduced that this solution is a unique one, up to an arbitrary 

constant. The existence of uniform velocity field Uo means that there is a tangential 

velocity component equal to U oo on both ST and SE. Therefore the no-slip condition 

on the side of the boundaries in region F, denoted Sy. and SE' can only be satisfied 

if the tangential velocities in the two regions Fo and F are discontinuous across the 

borders SE and ST. This can be achieved by the introduction of vortex sheets of 

constant strength, I = -Uoo on ST and I = U oo on SE, so that zero tangential 

velocity on Sy. and SE can be guaranteed. This proves that, with the additional 

vortex sheets, the no-penetration condition will imply the no-slip condition as far as 

the real flow in F is concerned. 

By applying Green's Theorem to region Fo, the stream function 'l/Jo satisfies the 

following integral 

1 (cp \7 'l/Jo - 'l/Jo \7 cp) .ndSi = 0 Jso 

2.4 Velocity field in terms of the vorticity 

(2.17) 

Knowledge of the velocity field is of particular importance for both the flow trans­

portation and the implementation of the boundary conditions. Flow particles pro­

gress in accordance with their velocity, and the boundary conditions (e.g. no-slip, 

no-penetration) can be expressed explicitly in terms of the velocity. Furthermore, in 
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inviscid flow, vorticity is a conserved property of the flow particles, and is transported 

with the particles. 

The vorticity field is obtained from the curl of the velocity field. The inverse 

solution, i.e. expressing the velocity in terms of the vorticity, is accomplished by the 

Biot-Savart law, and is straightforward for flow in an infinite homogeneous domain. 

The presence of flow constraints and/or interior boundaries, however, presents an 

added difficulty. Vezza160 has derived the velocity expression for the two dimensional 

infinite flow around moving bodies using Green's Theorem. A similar approach is 

employed to formulate the velocity field for flow with exterior limits similar to wind 

tunnel wall constraints. 

Referring to figure 2.2, the whole two dimensional space is considered to consist 

of three regions; Bi , Fo, as described in the previous two sections, and F, which is 

the area enclosed by the contour S, but excluding that enclosed by Si' The vorticity 

in both Fo and Bi is known to be zero and 2Di respectively, while vorticity in F is 

the subject of solution. 

The velocity field u in flow region F is solenoidal due to the continuity equation 

'V.u = O. This indicates the existence of a vector potential ~, which satisfies u = 

'V x ~. In two dimensional flow the vector potential is reduced to k1/J, in which 1/J, 

the stream function, is related to vorticity through the equation 

(2.18) 

This combines with the vorticity transport equation (2.3) in the vorticity/stream 

function form of the governing equations. 

There is a unique solution, up to an arbitrary constant, for stream function 1/J 

in the above Poisson equation provided that the following boundary conditions are 

satisfied: 

-k x 'V1/J .... Sf 
U oo on 00 

-k x 'V1/J Uoo on Su and 
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either n. \1 'l/J -so [UCi + Dik x (r - rcJ] on Si 

n. \1 'l/J 0 on ST and SE 

or s.\l'l/J n. [UCi + DJ x (r - rcJ] on Si 

s.\l'l/J 0 on ST and SE 

These conditions encompass the no-slip and no-penetration conditions on the physical 

borders of regions Bi and Fo and also the far field requirements. Uniform inflow has 

been assumed on the surface Su. 

It is convenient to combine the boundary conditions for regions Fo, F and Bi on 

common boundary surfaces. This results in the following expressions 

-kx \l'l/J Uoo on Sf 
00 

-k x \l('l/J - 'l/Jo) 0 on Su and 

either n. \1 ('l/J - 'l/Ji) o on Si 

n. \1 ('l/J - 'l/Jo) Uoo on ST 

n. \1 ('l/J - 'l/Jo) -Uoo on SE 

or s. \1 ('l/J - 'l/Ji) o on Si 

s. \1 ('l/J - 'l/Jo) 0 on ST and SE (2.19) 

The above conditions state that the velocity is continuous between the regions F and 

Bi and between F and Fo except on ST and SE, where there is a jump in tangential 

velocity of U oo . However, only the no-penetration conditions on physical boundaries 

and the condition at infinity are required to be implemented explicitly because the 

other conditions, including no-slip, follow from previous arguments. 

The solution of the Poisson equation subject to the above boundary conditions 

can be achieved by using Green's Theorem, which states 

(2.20) 

Choosing the fundamental solution to be 

1 I.... .... 1 cp= -In r-r 21f p 
(2.21) 
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in which p is a point in flow F, it can be shown 161 that 

(2.22) 

By substituting ep into Green's theorem, the stream function at point p is obtained 

'l/JP = - rr epwdF + J (ep \1 'l/J - 'l/J \1 ep).fidS IIp Js+si 

(2.23) 

The results by similar use of Green's theorem on region B i , and Fo have been 

obtained in the previous sections. Since p is a point in region F, it cannot be a point 

in regions Bi and Fi· 

Combining the three equations, 2.13, 2.17 and 2.23, obtained from these regions, 

results in 

'l/JP - Jk epwdF - Ik
i 

2[JiepdBi 

+ r [ep \1 ('l/J - 'l/Jo) - ('l/J - 'l/Jo) \1 epj.fidS 
lST+su+sB 

+ hi [ep \1 ('l/J - 'l/Ji) - ('l/J - 'l/Ji) \1 epj.fidSi + hoc [ep \1 'l/J - 'l/J \1 epj.fidSoo 

Implementation of the "relative" boundary conditions (2.19) gives, 

where 'l/Joo represents the integral at infinity and satisfies the boundary condition 

\1'l/Joo x k = Uoo 

The velocity field corresponding to the above stream function is 

(2.25) 

The velocity of a flow particle in flow F consists of four contributions. Those 

from the freestream velocity Uoo and the vorticity field ware standard. The others, 

however, are additional contributions due to the existence of the moving boundary 

and the external constraints. 
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The second contribution to up is identical to the induced velocity by a velocity 

field with constant vorticity 20i occupying the solid region Bi . This integral can be 

transformed into a surface integral along the boundary Si, which enables a simplified 

evaluation of the moving boundary contribution. The third and fourth contributions, 

due to the exterior constraints, are effectively equivalent to the influence of vortex 

sheets along ST and S B. 

Mathematically, the flow with exterior constraints and moving rigid body is the 

same as an unlimited flow occupying the whole space with vortex sheets located along 

the position of the external boundaries, and an embedded flow of uniform vorticity 

equal to twice the rotational velocity distributed over the area enclosed by the moving 

boundary. 

Further discussions are needed to clarify the above results. 

The involvement of the vortex sheets or vorticity inside moving bodies comes from 

mathematical equivalence to the boundary requirements only. This does not mean 

that there is any physical reality to the flows inside the body or beyond the exterior 

constraints. 

Note that there are inconsistencies in the boundary velocity requirements at the 

points where the connected segments of S join. These can be resolved by assigning 

the points to one or other of the segments, making S a segment continuous surface 

upon which surface integrals exist. This treatment does not affect the result of the 

integrals, whether the boundary conditions are applied in the "absolute" or "relative" 

form. 

Theoretically, segments ST and S B should be extended upstream to infinity and 

Su should become part of Soo. The final formula for stream function and velocity 

remain the same, however, as the semi-infinite surface model, described above, can 

be reduced from the infinite model if Su is far enough away from any solid body 

and the wall flow neighbouring the upstream boundary is not separated. The semi­

infinite model represents the vorticity in the flow F beyond the truncation point with 

a constant vortex sheet which has the same strength but opposite sign as the vortex 



38 

sheet implemented on the rest of the exterior boundary. Since these cancel each 

other in this region the influence is zero. This representation is reasonable when the 

truncation is far from the influence of any solid bodies. 

The same argument applies to the external surfaces downstream, although the flow 

situation is slightly different. The vorticity released from the bodies is transported 

downstream and the interaction with the vorticity associated with the constraint 

segments is relatively greater than occurs upstream. Hence the truncation points are 

required to be farther away from any solid bodies so that the constant vortex sheet 

representation of the constraints will have little erroneous impact on the flow near 

the bodies. 

By choosing two truncation points on each segment ST and SB, we have reduced an 

infinite vortex sheet or semi-infinite one into a finite one which avoids the evaluation 

of an infinite integral for constant vortex sheets. The boundary condition at infinity 

is also satisfied as the constraints are not extended to infinity. Despite these two 

truncations, the above formula for stream function and velocity remain the same if 

we regard ST and S B as finite. 

The assumption of uniform velocity distribution at inlet and outlet will make 

some difference to flow nearby, but the influence on flow near bodies is limited if 

the previous conditions are fulfilled. As the bodies are of main interest, such an 

assumption is acceptable. 

The "relative" boundary conditions, which illustrate the kinematic link between 

the different regions, are used to derive the velocity field in F. The velocity fields in 

Fo and Bi can be expressed in a similar way by specifying point p either in Fo or in 

B i , although they are known explicitly for any given Uoo and Di . For any pin Bi , the 

expression is identical to the one for F. 

In the absence of the external constraints, the stream function and velocity equa­

tions are reduced to 

(2.26) 
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(2.27) 

respectively, which are the same as those derived by Vezza. 160 

2.5 Conservation of circulation 

The circulation along a closed curve is defined as the line integral of velocity 

r = f n.dl (2.28) 

Stokes' theorem states 

(2.29) 

where A is the area enclosed by the contour Sand k is the normal of dA. For two 

dimensional flow where w = kw, Stokes' theorem becomes 

is n.dl = JL wdA (2.30) 

The circulation along a closed curve at infinity is zero, that is 

(2.31) 

As discussed earlier, the entire space consists of three regions, flow F with vorticity 

w, externally extended irrotational region Fo, and internal region Bi with vorticity 

2Di . Enclosing these regions are the boundaries Sand Si, So, and Si respectively, 

around which the circulations are 
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After implementing the velocity boundary conditions, the result is 

(2.32) 

where llO is lloo as discussed previously. The equation states that the circulation 

of all the vorticity, including that inside the bodies and the vortex sheets used to 

represent the external constraints, is zero. The equation holds whether the flow is 

inviscid or viscous. Note that Kelvin's theorem, which states that the rate of change 

of circulation is zero around a finite closed material curve, is valid only in inviscid 

flow. In the case of viscous flow there is diffusion of vorticity through the contour. 

In the absence of the external constraints, the conservation equation becomes 

(2.33) 

If there are multiple bodies immersed in the flow, the second term should be summed 

for all bodies, while the first term represents the circulation of all the flow vorticity 

in F regardless of origin. Some methods, by constructing a material contour around 

each body, employ a similar equation for each body. In doing so, this implies the 

flow is inviscid. For viscous flow, there is an equation governing the rate of change 

of circulation around each body. The equation is similar to the inviscid one, however 

the physical meaning is quite different. Details will be given in later sections. 

2.6 Boundary conditions 

Given a vorticity field, the velocity field is determined by solving the Poisson equations 

derived previously. Such a relationship indicates that the vorticity field cannot be 

arbitrary as the surface velocities must satisfy the boundary conditions. It is in fact 

these conditions which are used to completely determine the vorticity field. 

It has been shown 162 that the vorticity originates from the boundary and that it is 

convected and diffused in accordance with the vorticity transport equation. For any 

instant, vorticity in the flow can be categorised into that pre-existing and that newly 

created. The latter is defined only in the thin layer around the boundary. From this 
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fact, the flow region F is divided into FE, the thin layer around the boundary, and Fw , 

the rest of F. The vorticity in Fw evolves in accordance with the vorticity transport 

equation and the exchange between Fw and FE. The strength of vorticity in FE is 

unknown but can be calculated by implementing both the boundary conditions and 

additional conditions on the circulation. 

Referring to the previous sections, the boundary S consists of the boundary at 

infinity S:x" physical boundaries, Si, ST and SE, and imaginary boundary Su for the 

case in which ST and S E are extended downstream to infinity. The expressions for 

velocity employ the relative boundary requirements rather than the absolute velocity 

values. The absolute value of velocity on the inner boundary is given in section 2.2 

while, on the external constraints, the velocity on the physical surfaces, ST and SE, 

is zero. The velocity on imaginary surface Su is that of the free stream. Both the 

inner and external requirements are incorporated into the equations governing the 

vorticity field. 

The boundary conditions can be implemented either in Neumann form or in a 

manner similar to the Dirichelet form. The requirements for the former are 

(2.35) 
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(2.36) 

In the absence of the external constraints, the equations are reduced to 

(2.37) 

In the alternative, and considered superior, form the boundary conditions are 

expressed in terms of stream function, and the requirements become 

0£.-0 0£.-0 as -, an- on ST, and SE (2.38) 

where ~ = s. \l'l/Ji has been given previously in equations 2.12. a('Ij;a~'Ij;;) = 0 indicates 

that 'l/J - 'l/Ji remains constant along Si. That is, for any a, b on Si, ('l/Ja - 'l/JiJ - ('l/Jb -

'l/JiJ = 0, or, 

-ikw (CPa - CPb)wdF - Jki 20i(CPa - CPb)dBi 

r (CPa - CPb) \l 'l/Jo.fidS - r (CPa - CPb) \l'l/Jo.fidS iST iSB 

(ra - rb).(k X iieJ + ~Oi(lf'a - rel 2 
- Irb - rel 2

) 

+ (ra - rb).(k X iioo) for any a, bon Si (2.39) 

Similarly, for any a, b on ST or SE, ~ = 0 implies that 'l/J is a constant along either 

surface, or 
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r (CPa-CPb)V'l/Jo.fidS- r (CPa-CPb)V'l/Jo.fidS JST JSB 

+ (ra - rb).(k x uoo) for any a b on ST or on SB (2.40) 

Since a uniform velocity distribution is assumed on Su, the difference in stream 

function between ST and SB should be (uoo.fiISul), in which fi is the unit normal 

and ISul the dimension of Su respectively. Implementation results in 

-ikw (CPa - CPb)wdF - ffsi 2r2i( CPa - CPb)dBi 

r (CPa-CPb)V'l/Jo.fidS- r (CPa-CPb)V'l/Jo.fidS JST JSB 

uoolSul 

for any a on ST and b on SB 

For unbounded flows, the boundary conditions on Si become 

ikB (CPa - CPb)wdF = - ikw (CPa - CPb)wdF - ffsi 2r2i(CPa - CPb)dBi 

(ra - rb).(k X ucJ + ~r2i(lra - rcl 2 
- Irb - rcl 2

) 

(2.41) 

+ (ra - rb).(k X uoo) on Si (2.42) 

The Dirichelet form of the boundary conditions given above only accounts for the 

normal component of velocity on the boundary, while the Neumann conditions include 

the tangential component. However, both forms are compatible. This follows from 

the flow conditions on the boundaries between F and Fo and F and Bi as discussed 

previously, from which the implementation of no-penetration on the boundaries of F 

implies no-slip, that is satisfaction of the tangential conditions. 

The Dirichelet conditions and the conclusion that normal boundary conditions 

imply tangential conditions are both based on the definitions of normal and tangential. 

However there may be some points, such as an aerofoil trailing edge, where the 

definitions are ambiguous, although well defined on either side of the point. At any 

smooth surface points near a sharp edge, continuous normal velocity is required. 

Fortunately the velocity field does not allow for jumps in velocity unless there is 
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a singularity, which does not exist. Therefore, the "normal" velocity components 

should be continuous at a sharp edge irrespective of the side on which the "normal" 

is defined. This requires the velocity to be continuous in any direction at these points 

in order to satisfy this condition. 

It is apparent therefore that no special treatment is required for sharp edges if 

there are only a finite number of such points on a contour and if the above Di­

richelet conditions are applied to the contour continuously. Continuity of the velocity 

component in either normal direction of a sharp edge will guarantee continuity in 

the other normal direction because of the satisfaction of the Dirichelet conditions at 

nearby smooth surface points. 

2.7 Evaluation of the force and moment 

The force and moment can be calculated by integrating the pressure and shear stress 

along the body surface. From the Navier-Stokes equation one can obtain the pressure 

gradient, which can then be integrated along the surface to produce the pressure 

distribution. N-S equation (2.2) from section 2.1 can be rewritten 

Du 1 2-+ 
Dt - P \7 P + v \7 U 

Applying this equation to the interior boundary, where ~~ (2.14) is known, the 

pressure gradient is obtained by considering the component equation in the direction 

of the unit tangential vector s 

lop -+ DUei Dni -+ (-+ -+) n2-+ (-+ -+) ow -- = -S.-- - --no r - r. + ~6' s. r - r. + v­p os Dt Dt e, z e, on 
(2.43) 

The term, S.V \72 U = -vii. \7 w = -v~~, is the rate of vorticity creation on the 

boundary. Spalart129 proved this for stationary bodies. For moving bodies the time 

rate of change of vorticity is defined as a material derivative Dw / Dt rather than the 

temporal derivative ow /ot, as the velocity of the flow particle on the boundary is 

that of the body. Rewriting the vorticity transport equation (2.3) as 

Dw 
-=-\7.(-v\7w) 
Dt 

(2.44) 
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-v V w is the rate of increase of vorticity, which at the boundary is -v(f}wjf}n). 

Pressure, which can be obtained by integrating the above pressure gradient along 

the surface, should be single-valued in the field, which requires a zero integral of the 

pressure gradient along a closed contour. Integrating the above pressure gradient 

along the closed boundary results in 

Drli i f}w -2--Ai + v-dSi = 0 
Dt Si f}n 

(2.45) 

as integral fSi -s.(Ducj Dt)dSi and fSi rl2s.(r - rc)dSi are zero. The two terms rep-

resent the total rate of change of both circulation inside the body and vorticity en­

tering the flow respectively. The equation shows that the net increase in vorticity 

created at the body surface is produced at the expense of vorticity inside the body. 

This equation does not depend on whether vorticity diffusion occurs in the outer flow. 

Unlike Kelvin's theorem, which is only valid for inviscid flow, the above relationship 

holds for viscous flow, as the single-valued pressure requirement is a physical property 

of such flows. 

The equation can also be interpreted as a condition for each body whereby the sum 

of the total interior vorticity and that created on the surface remains constant at any 

instant in time. Practically it is easier to implement this version rather than the zero 

rate of change. The constant, Ci = 2rli(O)Ai + fi(O), is the initial value of the total 

circulation with respect to each body. For impulse started flow, where the vorticity is 

not initially dispersed in the flow, the velocity field outwith the body is undisturbed 

and the line integral of velocity around a contour big enough to enclose the body 

should be zero, that is, Ci = o. This means that there is non-zero initial circulation, 

fi(O), created by the body if there exists a non-zero initial angular velocity, rli(O). 

Such circulation is concentrated on the boundary. 

The approach described above for the pressure distribution has the advantage of 

guaranteeing a single valued pressure field, although this value can only be predicted 

up to a constant, rather than an absolute value. However, in many cases, the flow 

region in contact with the upstream part of the body can be assumed irrotational 
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and the stagnation point can be located approximately. Fortunately, the accuracy of 

the stagnation point does not affect the integrated body forces, that is the force and 

moment, parameters which are of most interest for pitching aerofoils and many other 

cases. If the pressure outwith the boundary is required the boundary values can be 

used in the solution of the Poisson's equation (1/ p) \}2 P = - \} .((ii.\})ii) 

2.8 Conclusion 

Incompressible two dimensional flow is governed by the continuity and N-S equations 

which, as has been shown, can be replaced by the Poisson and vorticity transport 

equations. Extension of the Biot-Savart law, which is valid for an unbounded domain, 

has provided the relationship between velocity and vorticity for flows bounded by 

moving bodies and exterior constraints. The relationship contains additional terms 

which have been shown to be mathematically equivalent to the influences of a constant 

vorticity field occupying the body area, and a constant vortex sheet of strength U oo on 

the exterior physical boundary. Such equivalence simplifies the evaluation of velocity, 

as both vorticity distributions are known in advance of the calculation. 

Only the normal velocity component of the boundary conditions is required to 

be implemented in determining the vorticity field, as satisfaction of the tangential 

condition is subsequently implied. This is proved in regions Bi and Fo where the 

vorticity field is known, and the "continuity" of velocity across the boundaries with 

F extends this conclusion to region F. 

The method chosen to implement the normal boundary condition employs the 

stream function difference along the boundary. The velocity fields in Bi and Fo are 

known, as are the corresponding stream functions. Hence this implementation only 

requires the value of stream function rather than its derivative. 

The requirement for a single-valued pressure field provides an additional equation 

for each body, ensuring the constancy of the total vorticity contained within and 

emanating from the body. This relationship, together with boundary conditions, 
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form a set of equations which are used to determine the rate at which vorticity enters 

the flow at any instant in time. 



Chapter 3 

NUMERICAL IMPLEMENTATION 

In the previous chapter it was shown how the continuous form of the equations, 

governing the exact requirements for the vorticity field, could be obtained by imple­

menting the boundary conditions. However, for most cases it is impossible to solve 

such integral equations theoretically. One way of getting an approximate solution is 

to discretize the vorticity field with vortices distributed over the spatial domain. In 

this way one can obtain a solution numerically, although it has to be ensured that 

the discretization truly represents physical reality. 

In this chapter is presented a numerical scheme, particularly applicable to a 

streamlined body with a sharp edge like an aerofoil. The scheme is based on the 

understanding of the vorticity behaviour and special features of flows around such 

bodies. The chapter begins by discussing some aspects relating to vorticity interac­

tion with a body. This is followed by a detailed description of the model, including 

mathematical developments and considerations of accuracy. 

3.1 Vorticity layer 

Since vorticity is the curl of the velocity vector, vorticity represents the spatial change 

of the velocity field at any instant in time. Hence an insight into the vorticity dis­

tribution and its evolution can be obtained by looking at the velocity field and its 

temporal changes, especially those close to the body surface. 

A common conception is that for steady unseparated aerofoil flow, substantial 

changes in velocity mainly occur within a thin layer close to the surface. A schematic 

picture of the velocity profiles for both the laminar and turbulent boundary layers 

along the surface normal is given in figure 3.1. There is a boundary beyond which the 

48 
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velocity distribution is similar to that for irrotational flow. Within this boundary the 

velocity is mainly parallel to the surface and, in accordance with this distribution, 

vorticity is only significant in this latter region. As illustrated in figure 3.2, this 

thin layer, between the body surface and the boundary, is of special importance in 

the vortex method, and is referred to as the vorticity layer. For attached flows the 

thickness of this layer is small, which justifies the use of a vortex sheet placed near 

the surface to represent the effect of the vorticity, even in viscous flow. 

A similar boundary can be identified for separated flows, which might include 

a vortex bubble, recirculating zone( dead zone), and vortex wake, as illustrated in 

figure 3.3. The main difference from attached flows is that this boundary might be 

far away from the body surface. Within the boundary a flow particle has a significant 

normal velocity component in addition to the dominant tangential component in 

attached flows. Furthermore, along a normal line, the tangential velocity component 

can change sign, resulting in a complicated vorticity distribution. Together with the 

enlargement of the vorticity layer, it becomes difficult to represent this influence using 

a simple vortex model. 

The distinction between the vorticity layer and the remaining flow enables the 

restriction of computational resources to a relatively small area, and is one of the tra­

ditional advantages of vorticity methods. The boundary, however, is time dependent 

in unsteady flows, hence the vorticity layer is continually evolving. Boundary layer 

theory explains the formation process of the velocity profile for attached flows. Micro­

scopically the exchange of molecules between different layers results in the exchange 

of their momentum, which retards the faster layer while speeding up the slower. Mac­

roscopically the shear force, which exists because of viscosity and the flow velocity 

gradient, has a tendency to neutralise the speed differences. This formation mech­

anism leads to an assumption that the boundary layer is gradually moving from its 

initial position, which is coincident with the body surface at the start, to its final 

steady position. Correspondingly the thickness of the vorticity boundary increases 

from zero initially to a stable value. 
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Boundary L:!ycr 

Figure 3.1: Illustration of velocity distribution near surface 

vorticity layer 
I C\ body surface ~ 
" vorticity layer boundary 

Figure 3.2: Illustration of vorticity layer of attached flows 

In accordance with the developing velocity profile and vorticity layer thickness, the 

vorticity at the surface reduces from infinity at the start to a finite value. However, the 

integrated vorticity in the normal direction throughout the layer remains finite and 

constant, indicating that vorticity originates at the body surface. The development 

of the vorticity layer proceeds through a continuous process of creation followed by 

diffusion and convection, although the latter has less effect initially. 

Further expansion of the vorticity layer arises when the flow starts to separate. In 

the early stages of separation, the normal velocity component is gradually increased at 

some points within the vorticity layer, hence the resultant velocity vector is diverted 

from the previously dominant tangential direction. The additional normal velocity 

component carries the vorticity away from the body and thus the vorticity layer is 

expanded. 

The increase in normal velocity is mainly due to pressure differences, but deceler­

ation in the tangential direction due to viscosity and turbulence also occurs. Viscous 

and turbulent effects are believed to be the main factors in the growth of velocity 

gradients in the normal direction. The normal velocity gradient in the tangential dir­

ection near the separation point usually grows from a very small value. This indicates 

that, similar to unseparated flow, the strength of vorticity previously created at this 
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vortex bubble 

recirculating zone 

Figure 3.3: Illustration of vorticity layer of separated flows 

point over a short time interval is small, although at other locations higher gradients 

result in greater vorticity strength. This moderate creation rate, for both unseparated 

flows and flows near separation points, means that only a small portion of vorticity 

within the layer is transferred through the previous boundary. Based on the above 

physical reasoning, a model is developed to represent the processes described. 

3.2 Discretization - description of vorticity 

Vorticity is contained within the vorticity layer, which is thin for unseparated flows 

but significantly larger for separated zones. Outwith this relatively small region 

there is zero or almost zero vorticity, therefore discretization in the form of vortices 

is required only within this layer. 

Mathematically, vorticity w(x, y, t), as a function of position (x, y) in two dimen­

sional flows and time t, can be written in terms of stength f(Xi' Yi, t) and associated 

distribution functions li(x, y, t), that is, 

(3.1) 

where (Xi, Yi) is a discrete point within the vorticity layer. Obviously, for an exact 
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representation, the Dirac distribution 

should be associated with an infinite number of vortices, representing infinitely fine 

discretization. A finite discretization model is, however, accompanied by the complic­

ated distribution functions, since the functions are dependent on all of the discrete 

positions as well as the r values. As exact distribution functions are very difficult 

to deduce, it is simpler to invoke an approximation whereby the (Xi, Yi) and the 

fi(X, y, t) are predefined. When the (Xi, Yi) are well distributed the problem can be 

further simplified by using the same distribution function for every discrete point at 

any time. 

The simplest approximation employs the Dirac distribution fi = 6(lx - xii + IY­

Yi I)· This simulation is equivalent to the model using point vortices at discrete points. 

However, the singularities at discrete points of the velocity field induced by this model 

limit its application. For example the model is inappropriate in cases where vortices 

are densely distributed, which is often the case for flows near bodies, in an attempt to 

improve the fidelity. This, however, will increase velocity field perturbations because 

of the singular nature of the functions. 

Several cutoff functions are available which do not exhibit singular behaviour. 

These include Lamb and Rankine type core functions. The former can be expressed 

in the form 

f(r) = 

with corresponding velocity induced by an isolated vortex 

Similar expressions for the Rankine model are 

f(r} = {~'u, 
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where parameter a is the core radius and r is the distance between the vortex and the 

point of interest, r = J (x - Xi)2 + (y - Yi)2. The core functions and velocity profiles 

are illustrated in figure 3.4. 

For an isolated vortex the exponential Lamb core gives an exact solution for the 

N-S equations if the core is expanded as a = .j2vt. However it has been proven 

that a system of vortices with expanding cores converges to the solution of a different 

equation. 125 Even if a fixed core radius was employed, evaluation of the exponential 

function consumes more computer resource than simple addition and multiplication 

operations. 

The Rankine core has a uniform distribution of vorticity within the core. The 

core velocity is linear with respect to distance from the core center. Beyond the 

core radius the velocity profile follows that for a point vortex. There is, therefore, a 
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requirement for a decision process, which increases the computing cost. 

Further simplifying the Rankine core results in another core function, that is 

f(r) 

(3.2) 

which was first proposed by Spalart.129 This profile is also illustrated in figure 3.4. 

Comparing the various cores, the main differences in velocity are concentrated 

near the core center. Since no single core function can exactly simulate the real 

vorticity distribution, especially for flows governed by the non-linear N-S equations, it 

is difficult to claim superiority for anyone core. It can be seen, however, that the point 

vortex yields the worst representation of vorticity, with the induced velocity tending 

to infinity as the distance goes to zero. The simplified Rankine core function has 

the advantage of utilising the same formula regardless of distance, thereby dispensing 

with the requirement for a decision process. 

With this core the velocity ii(r) of a particle with position vector r, induced by 

the vorticity field discretized into a number of vortices of strength fi at position ri, 

IS 

(3.3) 

which is equivalent to the first integral in the velocity expression (2.25) given in the 

previous chapter. The corresponding stream function 'ljJ is 

(3.4) 

The flux through a panel connecting two points a and b equals the difference in 

the stream function evaluated at these points. Therefore the contribution from the 

vorticity to this flux is 

(3.5) 
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In addition to an appropriate core function, proper distribution of the discrete 

points makes for a better representation of the vorticity field, and hence contributes 

to a successful simulation. The level of difficulty in determining such points depends 

on the complexity of the underlying vorticity distribution. The task is relatively easy 

for thin layers in which the significant vorticity variation occurs in one dimension. 

Hence discrete points can be distributed in the relevant direction without causing 

significant discrepancy. However, the above scheme is suitable only for the early 

stages of vorticity production, when the layer is normally thin. As the layer expands 

vorticity variations in other dimensions become important, and careful thought must 

be given to the discretization process. 

The fact that the vorticity layer develops from a thin envelope around the body, in 

which vorticity is created, to become possibly more extensive suggests that it would 

be reasonable to divide the vorticity layer into two zones. These are the creation 

zone and the wake zone as shown in figure 3.5, with the zone boundary in between. 

The zone boundary is a curve parallel to the body surface displaced a short distance 

from it. Inside the creation zone, discrete points are distributed along a curve parallel 

to the boundary, and are fixed with respect to the surface regardless of the external 

flow development. These points are illustrated in figure 3.6. The distance of the 

curve from the surface is predefined in accordance with the assumption of velocity 

profile and the size of the creation zone. In the wake zone, however, the number and 

position of points depend on the flow evolution. The number is variable, starting 

from zero at the beginning when the wake does not exist. The number varies with 

vorticity exchange between the two zones, and vortex merging in the wake to limit 

computational cost. The positions are determined in accordance with the convection 

and diffusion scheme employed. 

It is arguable whether a fixed size creation zone at the very early stage of vorticity 

layer formation is appropriate, when the zone might be bigger than the layer itself. 

It is almost impossible to simulate a very fine structure like a small vorticity layer 

unless a very high resolution scheme is employed. For this reason, it is assumed that 
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Figure 3.5: Illustration of creation zone and wake zone 
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the vorticity layer envelopes the entire creation zone from the start of the simulation. 

As illustrated in figure 3.7, for convenience the set of discrete points used to 

represent the body surface also provides the basis for the discretization of the vorticity 

within the creation zone. (Xj, Yj) and (Xj+l' Yj+l) , or in complex notation Zj = 
Xj + i Yj and Zj+l = Xj+1 + i Yj+l, are two adjacent surface node points. They define 

a segment of surface and a fiat panel. Further equal division of the segment by (K -1) 

sub-node points yields K sub-panels connecting them. It is the sub-panels which are 

directly related to the discretization of the vorticity in the creation zone. 

A small strip of the creation zone, enclosed by the body surface normals at two 

adjacent node points, is divided into K sub-zones by the surface normals at the 

sub-node points. The vorticity in each sub-zone is represented by a vortex with the 

simplified Rankine core function referred to previously. As illustrated in figure 3.8, 

the vortices are located at points 

Z = ~(Z~ + Zk+l) + i 6 Z ~ 
m 2 J J nJ 

(3.6) 

where Zj is the position of the kth sub-node on the jth segment with Z] = Zj and 
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Figure 3.7: Discretization of surface 

Figure 3.8: Multi-panel discretization of vorticity upon a curved segment 

Zf+l = Zj+l, while ZnJ is the corresponding unit normal. Index m indicates the 

sub-zone in which the vortex is located, with m = (j - 1) * K + k. 

In many instances the surface is relatively flat, for example most of an aerofoil 

surface except the leading edge. The vortex locations can then be simplified for a flat 

surface, and are given by 

(
(K - k + 0.5) Z (k - 0.5) Z ) . '" Z 

Zm = K j + K j+1 + 1 u nj (3.7) 

which only includes node points rather than sub-node points as the latter are impli­

citly defined by linear interpolation. This is illustrated in figure 3.9. 

The discretization of vorticity in the creation zone into one vortex in the normal 

direction can only represent the integral effect of vorticity in this direction. This is 

equivalent to the discrete representation of a vortex sheet of strength 'Y on a curve 

displaced a distance <5 from the body surface. The variation in 'Y along the tangential 

direction reflects the vorticity distribution; it is assumed to be linear within each panel 

and continuous across panel boundaries. The circulation of an individual vortex is 
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Figure 3.9: Discretization of vorticity upon a straight segment 

therefore a function of Ij, the vortex sheet strength at node point j, that is 

r _ ((K - k + 0.5). (k - 0.5) . ) IZk+I _ Zkl 
m - K IJ + K IJ+1 j j (3.8) 

for segments with higher curvature or 

r _ ((K-k+0.5). (k-0.5). ) IZj+1- Zjl 
m - K IJ + K IJ+I K (3.9) 

for plane segments. Index m, as before, is the sub-zone counter. 

In contrast to the vortices in the creation zone, the positions of the vortices in the 

wake zone are tracked in accordance with the flow particles to which they are attached. 

This Lagrangian scheme provides an exact solution of the vorticity transport equation 

for inviscid flows. The existence of viscosity in real flows is simulated by giving the 

particles an additional displacement corresponding to a random walk. After a short 

time interval of fit, the vortex at (t + fit) is moved from Zw(t) to 

(3.10) 

Complex variable Vw is the velocity of the flow particle, and TJx and TJy are Gaussian 

random numbers with zero mean and standard deviation of .J2vfit, or J2fit/ Re in 

dimensionless form. 

Both convection and diffusion of vorticity during this period are reflected in the 

displacement of the vortices; the circulation of each vortex at the new location is 

unchanged, that is r w(t + fit) = r w. As a result, the rediscretization process is 

similar to vortex advancement. 
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The contributions to the stream function and velocity at position Z, from the 

vorticity in the creation and wake zones, are 

1jJ(Z) (3.11) 

V(Z) = (3.12) 

which are the discretized version of the relevant integrals presented in the previous 

chapter. Nm and Nw are the total number of discrete points in the creation zone and 

wake zone respectively. This velocity excludes the contributions from the free stream 

and the body motion, which are required in the Zw calculation. 

By substituting for f m, the stream function becomes a function of the unknown 

,'s 

(3.13) 

This indicates that the discretization has reduced the problem of determining an 

infinite dimensional vorticity distribution into one of evaluating a finite number of 

,'So 

The overall circulation, around a contour bounded by the external and internal 

surfaces, which accompanies this discretization is 

N m N w 

f=2: f m+2: f w (3.14) 
m=l w=l 

which contains the circulation of vortices within the creation zone and wake zone, and 

can, therefore, be considered also as incorporating the integral of vorticity throughout 

the real flow region. 

An alternative to this model is a vortex simulation of flow within the vorticity layer 

based on the time history of the layer thickness. Its application, however, encounters 
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several obstacles. First of all, prior knowledge is required of the layer thickness, which 

is difficult to identify and might necessitate a return to a grid dependent method. 

Secondly, a mechanism is required to represent the effect of changing thickness at 

different stages. Furthermore, the capacity of such a model is limited to unseparated 

flows, since the layer after separation is no longer thin and the velocity profile cannot 

be easily represented by a simple vortex model. All of these disadvantages disappear 

by dividing the vorticity layer into a creation zone and wake zone as discussed. 

3.3 Determination of flow 

One of the main tasks in predicting incompressible flows is to determine the velo­

city field. This can be evaluated using the vorticity field with the assistance of the 

boundary conditions. 

3.3.1 Vorticity field 

According to the discretization previously described, the determination of the vorti­

city field relies on the calculation of the ,'s defined in the creation zone. This can be 

done through implementation of the boundary conditions. 

In the previous chapter, the no-slip and no-penetration boundary conditions were 

reduced to a problem of maintaining the value of the surface stream function differ­

ence, between the flow and the body, equal to a constant around the surface. For a 

stationary body this means the surface line is a streamline. Although this alignment 

is destroyed by the existence of normal surface velocity due to motion of the body, the 

constancy of the stream function difference is equivalent to specifying the velocity of 

the flow particle equal to that of the associated surface point. Hence implementation 

of the boundary conditions only requires operating on the stream functions at the 

boundary. 

The surface points chosen for the purposes of the stream function boundary con­

ditions are those node points specified in the previous section identified by index j. 
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This index is increased in the clockwise or anticlockwise direction along the surface, 

therefore points j and j + 1 are adjacent. Through a panel j, which connects neigh­

bouring node points Zj and Zj+l, the flux due to the velocity of a moving solid body 

is the difference between the stream function at points Zj+1 and Zj, that is 

(3.15) 

resulting from the stream function given in the previous chapter. For the same panel, 

the flux due to the velocity field in the flow region consists of four parts, that is 

(3.16) 

which represents respectively the contributions from the free stream, vorticity in the 

creation zone, vorticity in the wake zone and vorticity inside the body arising from 

its motion. The flux from the free stream FjF can be expressed as 

(3.17) 

while the fluxes from vorticity in the creation and wake zones are 

F- - -Jc -

F- - -Jw -

by making use of the stream functions in the previous section. 

A more complicated term is the discretized form of the flux contributed by vor­

ticity inside the body region FjB . The stream function contribution from this region 

can be written in integral form. In particular, the stream function at the surface 

point with position vector rs is simply 
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which is equivalent to the effect of a uniform vorticity field, 2Di , within this region. 

r is the position vector of infinitesimal region dBi . The logarithmic integrand can be 

further manipulated by employing the identity 

-+ -+ 
r-rs 1-+ -+1 

1
-+ -+ 12 = \lIn r - r s 
r - rs 

Application of Gauss' Theorem in region Bi, bounded by surface Si, yields 

Hence the velocity at position rs , written as the following double integral over region 

Bi 

can be cast into a line integral along boundary Si 

where s is the unit tangential vector associated with surface element dSi at r. The 

flux through panel j is the integral, over the panel, of the normal velocity component 

(3.20) 

which is also the difference between the relevant components of the stream functions 

at the panel ends. rs and Ii are, respectively, the position and unit normal associated 

with infinitesimal element dS. The flux and velocity are detailed in appendix A. 

Equating Fjs and Fjs for each of the N body panels results in N simultaneous 

linear equations for the N unknown I'S at the node points. However only N - 1 

of the equations are required to satisfy the mass flow boundary conditions, and the 

remaining equation is therefore redundant. The Nth equation comes from the single­

valued pressure requirement detailed in the previous chapter, which states that the 

total circulation of vorticity entering the flow from the body surface is balanced by an 
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Figure 3.10: First time step, distribution for the NACA0012 at 0° 

equal reduction of circulation within the body region. The combined N independent 

linear simultaneous equations 

[A]{,} = {F} (3.21 ) 

is sufficient to determine the N ,'s which approximate the vorticity in the creation 

zone. 

A continuous, distribution may be appropriate for a smooth surface, but might 

not be sufficient to reflect the, variation near a sharp edge. Further consideration 

of how , can be better modelled is given in section 3.9. At present, first step , 

distribution is shown in figure 3.10 for the NACA0012 at 0°. The result is from the 

modified model detailed in section 3.9. 

Given the position and strength of the wake vortices and the, distribution, the 

entire vorticity field is determined. 

3.3.2 Velocity Field 

Similar to the composition of the stream function, the velocity of a flow particle at 

position rp is composed of four components, 

(3.22) 

or in complex form 
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representing the effects of the free stream, vorticity in the creation zone, vorticity 

in the wake zone and vorticity inside the body as shown previously in integral form. 

Zn(Z) is the unit complex normal of infinitesimal element dSi . The last integral term 

is detailed in appendix A, expressed in terms of the nodal coordinates. 

The above velocity governs the movement of flow particles and also the convection 

of vorticity, and is used in section 3.2 to determine the advancement of the vortices 

at each instant of time. 

The discretization of the vorticity into vortices and the surface into panels means 

that the no-slip, no-penetration boundary conditions will not be satisfied at all points 

on the surface. The effect will be to produce perturbations in the velocity of particles 

in the flow region, both in the creation zone and the wake zone, and a mechanism 

will be discussed later to account for this, especially close to the body surface. 

3.4 Shedding of Vorticity 

The shedding of vorticity is defined herein as the net vorticity entering the wake zone 

during a given time interval, taking account of vorticity crossing the zone boundary. 

This process is modelled by introducing new vortices into the wake zone, with a 

strength consistent with the transport of vorticity between the zones. 

As for general transportation of vorticity, both convection and diffusion contribute 

to the exchange of vorticity between the two zones. Although both processes occur 

simultaneously, as described by the N-S equations, (2.2), a good approximation for 

short time intervals is provided by operator splitting 

ow -+ 

8i+u. \]W 

oW 
ot 

o 

Accordingly, advancement of a vortex with a velocity equivalent to that for inviscid 

flows is followed by a diffusion process to incorporate the influence of viscosity. In 

the wake zone the diffusion process is modelled by a random walk as described in 
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section 3.2. It is very likely that some vortices will cross the zone boundary during a 

given time interval and advance into the creation zone. These vortices are eliminated 

from the wake zone after being integrated with the existing vorticity in the creation 

zone, and discretized in the same manner. The eliminated particles are referred to as 

absorbed vortices. 

Simultaneously, some of the vorticity in the creation zone may cross the zone 

boundary into the wake zone. This vorticity is represented by vortices, which are in 

fact the source of all vorticity in the wake. 

The new wake vorticity can be categorised into two groups, each of which is 

discretized separately according to the processes of convection and diffusion. Con­

sequently an individual vortex from the creation zone is split into three vortices, one 

remaining in the creation zone (remaining vortex) and the other two in the wake 

zone, referred to as the convected and diffused vortices. 

The new wake vorticity is distributed mainly in a narrow region along the zone 

boundary, hence the new wake vortices are located adjacent to the boundary. For a 

vortex of strength r m located at Zm at time t, the diffused vortex at time t + flt is 

placed at 

Z! Zm + (((3 - 1)5 + V52 + 2vflt)Zn~ 

or 

(3.24) 

depending on the panel representation of the surface. The convected vortex is placed 

at 

(3.25) 

where Zn:n is the unit normal of the surface at point Z:n, the nearest surface point to 
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The remaining vortex is placed at 

_ (3.26) 

6m is the distance from the surface. Subscripts j, k and m are related as previously in­

dicated for surface discretization. The positions of both the convected and remaining 

vortices are in accordance with an assumed tangential velocity profile in the normal 

direction within the creation zone. This approach is taken to better represent the 

distribution of vorticity from the surface up into the wake zone. If y is the dimen­

sionless distance from the surface with respect to the creation zone size, that is y = 0 

at the surface and y = 1 at the zone boundary, the tangential velocity profile u(y), 

u(O) = 0 and u(l) = 1, is assumed to be of the form 

u(y) = 1 - (1 - yt 

The corresponding vorticity profile w(y), which has a maximum value of unity, is 

w(y) = (1 - y)(f3- 1) 

if the normal velocity gradient in the tangential direction is ignored. j3 = 1 cor­

responds to a linear velocity distribution along the normal and a uniform vorticity, 

while j3 = 2 corresponds to a linear vorticity distribution. Both velocity profiles and 

vorticity profiles for j3 = 1 and j3 = 2 are shown in figure 3.11. 

In accordance with the above velocity profile, the convected vortex has strength 

which is the circulation of the portion of vorticity located outside the zone boundary 

after the entire vorticity patch has moved at the velocity of its discrete point. The 

remaining portion is represented by another vortex, namely the remaining vortex. 

Clearly, there is no convected vortex if the particle has a tendency to move towards 

the body. 
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Figure 3.11: Assumed velocity and vorticity profiles in creation zone 

The strength of the diffused vortex is represented by 
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(3.27) 

which is similar to a core expansion from 6 to ";62 + 2v/::lt, while the strength of the 

remaining vortex is given by 

(3.28) 

The convected vortex model above only accounts for the shedding of vorticity from 

a smooth surface. Special treatment is required at a sharp edge, such as an aero foil 

trailing edge, where there is a section of the zone boundary which is not parallel to the 

surface due to the undefined tangent. The same principle, which regards convection 

as the shifting of a patch of distributed vorticity, applies to this section of the zone 

boundary. 

Depending on the position Zm, there are three possible outcomes for an individual 

patch: no shedding; part shedding; complete shedding. The position and strength of 
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both the convected vortex and remaining vortex are decided in accordance with the 

proportion of the patch outwith or within the zone boundary, as previously described. 

The diffusion is only modelled in the normal direction since the normal velocity is 

relatively small, especially for attached flows, in contrast to the dominant tangential 

velocity. The effect of diffusion in the tangential direction is outweighed by the 

magnitude of the convection term and associated error due to the discretization. 

The distinction between the convected vortex and diffused vortex is only made 

for the new vorticity crossing the zone boundary. Subsequently, these vortices are all 

regarded as wake vortices and advance as described previously. 

The significance of the contributions to the shedding of vorticity from convection 

and diffusion varies around the surface, depending on the flow state. For attached 

flow on a smooth surface, diffusion is the main cause of shedding. This contrasts 

with separated flow near the separation point, where the importance of convection is 

dramatically increased. Regardless of whether the flow is separated or not, convection 

always dominates the shedding at sharp edges. 

The division of the flow zone and vortex splitting model described above reflect the 

fact that only a portion of the vorticity crosses the zone boundary through convection 

and diffusion, rather than the entire vortex, as simulated by some other models. Most 

of the vorticity strength is preserved within the creation zone and rediscretized at the 

next time instant, leaving only a small amount for the creation of new wake vortices. 

This scheme limits the error caused by the inaccuracy of vortex transportation within 

both the creation and wake zones due to the discretization, and enables the linear 

distribution of r to more closely represent reality. These features have not been 

included in some models, where vortices of full strength are released into the wake. 

However, full shedding causes the errors to amplify with time, hence the linear r 
distribution has increasing difficulty in representing the real vorticity distribution 

because of the presence of strong velocity perturbations. These errors also manifest 

themselves in the aerodynamic characteristics. 

The capability of the model to simulate separation is attributed to the mechanism 
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governing diffusion and convection across the zone boundary, as this enables the 

gradual shedding of vorticity into the wake zone in accordance with flow viscosity 

and the velocity of the flow particles. 

3.5 Creation of vorticity 

Vorticity is created by interaction between the flow and surface of the body. The dis­

tribution of nascent vorticity is a consequence of the no-slip no-penetration boundary 

conditions. This new vorticity appears while existing vorticity in the creation zone 

is continuously shedding through the zone boundary into the wake region. The new 

vorticity is assumed to be contained within the creation zone during a small time 

interval, and is described by a vortex sheet of strength "(n at the node points, dis­

tributed in accordance with the linear variation described previously. The created 

vorticity augments that already in existence due to absorption from the wake and 

that which remains from the previous shedding process, to form the total vorticity in 

the creation zone, which is described by the "('s. The values of the "('s are determined 

by implementing the boundary conditions as described previously, from which the 

"(n's are obtained by subtracting the existing vorticity, denoted "(T. That is 

n T 
"(j = "(j - "(j (3.29) 

It is the distribution of "(j which reflects the level of vorticity generated at the surface. 

The distribution of existing vorticity within the creation zone, "(T, is represented 

by a vortex sheet of the same form as the total vorticity. A vector {FT} can be defined, 

whose elements are the mass flux or circulation contribution by the remaining and 

absorbed vortices to be eliminated. The solution for the "(T'S is obtained from the 

following simultaneous linear equations 

(3.30) 

where matrix [Aj is identical to that defined previously for the "( solution. 
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3.6 Pressure distribution 

Static pressure on the body surface can be evaluated by integrating the pressure 

gradient along the surface contour. The surface pressure gradient expression was de­

rived in the previous chapter. Together with the surface and temporal discretization, 

the gradient at node point j, rj, becomes 

1 (OF) () .... .6.uci .6.Di .... (.... ....) n2 .... (.... ....) "/7 P as j t = -s.--;s;: - .6.t n. rj - rCi + Hi S. rj - rCi + .6.t (3.31) 

or in complex form 

~ (OF) (t) = -so .6.Vci _ .6.DiR(Zn ·(Z· - Z .) - D~8'(Zn-((Z· - Z .) + "/7 (3.32) 
p as . .6.t.6.t J J c, 2 J J c, .6.t 

J 

These expressions are also valid if rj represents any point on the surface. A 

straight panel and linear ,,/n distribution result in a linear distribution of pressure 

gradient. The pressure difference between the nodes of panel j is 

FHl - Fj = ~ [(OF) + (OF) ] fj 
2 as j+l as j 

(3.33) 

while the pressure on the surface between these two points is 

F = Fj + (OF) s + [(OF) - (OF) ] ~ as j aS HI aS j 2fj 
(3.34) 

with s the distance from Zj. Both equations provide a relative pressure distribution 

rather than absolute pressure, for which the value of a reference pressure should be 

known. However, this is sufficient to determine the aerodynamic characteristics of 

the aerofoil. 

The pressure force acting on panel j is 

. [ 1 (OF) 2 1 (OF) 2] F(J) = - Fjfj +"3 as j fj +"6 as j+1 fj Znj (3.35) 

and the corresponding moment around reference point Zc is 

M(j) = [F;e; + ~ (a::) ; ej + ~ (a::) ;+1 ej] \'s[ (Z; - Z,)Znj] 

+ [ ~P.f2 ~ (OF) f3 ~ (OF) f3] 
2 J J + 24 as j J + 8 as j+1 J 

(3.36) 
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After the summation of all the pressure forces on the panels of a closed body, the 

reference pressure term is eliminated. The same is true for the moment. 

3.7 Amalgamation of vortices 

Continuous convection and diffusion of vorticity through the boundary of the creation 

zone constantly increases the number of discrete vortices in the wake zone as the flow 

develops. This results in the growth of computing resource required, most noticeably 

in the determination of the particle velocities. However, when the vortices are far 

away from the body, little accuracy is lost in the induced surface velocity by employing 

a coarser distribution of greater strength vortices. The benefit gained is a reduction 

in the computational expenditure. 

The reduction of vortex numbers can be achieved by merging those pairs satis­

fying a given criterion. For two vortices at Zl and Z2, with circulations r 1 and r 2 

respectively, the corresponding induced velocities at a surface point Zo are 

i r 1 1 

27r Zo - Zl 
i r 2 1 

27r Zo - Z2 

The location of Zo is determined from either Zl or Z2, whichever is the closer to the 

surface. A single vortex at Z with strength r induces the velocity 

ir 1 
V(Zo) = 27r Zo - Z 

without considering the vortex core effect. When the difference 

is sufficiently small, vortices at Zl and Z2 are merged into a single vortex at Z. 

The velocity difference can be written as 

flV = i [rZo-Zn _rlZo-Zn _r2Zo-Zn] 
27r (Zo - Zn) Zo - Z Zo - Zl Zo - Z2 
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where Zn is a selected point such that I Zj-Zn I < 1, I Z2- Zn I < 1 and I Z-Zn I < l. 
ZO-Zn ZO-Zn ZO-Zn 

Provided these conditions are satisfied the terms can be expanded in Taylor series 

Zo - Zn _ 1 Zl - Zn (Zl - Zn) 2 - + + + ... 
Zo - Zl Zo - Zn Zo - Zn 

with similar expressions for ~~=~~ and '1
0
-="1. The error is minimized for the following 

merged vortex values 

f 

Z 

The merging criterion, which is based on the residual error, is 

flf21 (Z2 - Zl)21 r (Zo - Zn)3 < Vcrit 

(3.37) 

(3.38) 

(3.39) 

Zn must satisfy the previously stated conditions. If Zl is closer to Zo than Z2, and 

Zn coincides with Zl, the combined criteria are 

IZ2 - Zll < min (1, I~~I) IZo - Zll 

flf21(Z2-Z1?1 < 
f (Zo - Zl)3 Vcrit (3.40) 

The merging process preserves circulation and first moment of vorticity. The mer-

ging criteria control the discrepancy in second moment of vorticity to an acceptable 

degree. Whether two vortices merge depends on their separation, the distance from 

the body surface and also their circulations. Vortices which are closer to each other 

and further away from body surface are more likely to be merged. In addition, vor­

tices of the same sign and low strength are more likely to be merged than ones of 

opposite sign and high strength. 

The critical velocity for merging is based on the lowest order residual term of 

the Taylor expansion, that is order 2. Neglecting the higher order terms may result 

in more significant discrepancy if any of the expansion terms approach unity. A 

conservative measure is to reduce the upper limit of the distance ratios from unity to 

a small value, say 0.5. 
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The value of the critical velocity Vcrit depends on the accuracy requirement. For 

flow around an aerofoil, where most of the vortices released near the leading edge 

remain in close proximity to the body surface for a significant time period, the re­

quirement should be stricter close to the surface to avoid a noisy pressure distribution. 

In the far wake the velocity criterion can be relaxed, and a magnitude around 10-4 

seems to be adequate in this region. 

3.8 Boundary condition enhancement 

The velocity of particles at discrete points within the creation zone plays a significant 

role in determining the strength of the nascent vortices. However, velocity perturba­

tions can be expected, partly due to the discretization of vorticity and partly due to 

the implementation of the boundary conditions on a discretized form of the boundary. 

To reduce these perturbations, and their wider influence, a number of mechanisms 

are employed, some of which have been detailed previously. 

Traditionally, the singular elements of a panel method have either been a sheet or 

point element, such as a vortex sheet or vortex point. In most models of the latter 

type, there is only one vortex point for each panel, with a strength equivalent to 

the total panel vorticity. The surface velocity distribution produced by this coarse 

discretization would be quite different from that required by the boundary conditions, 

which will be satisfied at a minimum of one location on each panel. This distribution 

can be greatly improved if the number of vortices per panel is increased from the 

solitary one. A comparison is given in figure 3.12, which shows the normal velocity 

distribution on a panel of the NACA0012 aerofoil at OD angle of attack with different 

numbers of vortices. With the boundary conditions being implemented in the form 

of zero panel mass flux, the normal velocity is cancelled at more than ten locations in 

the five vortex model, compared with only five cancellations in the two vortex model. 

More generally, an increase in the number of vortices greatly reduces the normal 

velocity perturbation. This is in addition to the advantage, described previously, of 



74 

0.5 

-0.5 
(a) 2 sub-panels 

-1.0 

Uo 

l~-~ ~ ~ sl1 
o·lb C7 C7 ~o 

-0 5 
. (b) 3 sub-panels 

-1.0 

l.otin 

0.5 

-0.5 
(c) 4 sub-panels 

-1.0 

l.Olln 

0.5 

-0.5 
(d) 5 sub-panels 

-1.0 

Figure 3.12: Normal velocity on panel for different numbers of panel vortices 

a multi-panel discretization of the surface to represent high curvature segments. 

A further advantage of the multi-vortex model comes from the reduced amount 

of vorticity crossing the zone boundary due to the above mentioned velocity per­

turbations. Increasing the number of vortices on the panels reduces the strength of 

each vortex. Combined with the accompanying lower normal velocity components, 

either towards or away from the body, the desired effect is achieved. A comparison of 

normal velocity components for models with different number of vortices is given in 

figure 3.13. The difference from the previous figure is in the sampling of the velocity 

along the line of the nascent vortices. 

The continuous vortex sheet model may be more effective in reducing velocity per­

turbations because of the smoother vorticity and velocity distributions along the sur-
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Figure 3.13: Normal velocity comparison along vortex creation line for different num­

bers of panel vortices 

face and creation line. However, this advantage is usually offset by the perturbations 

introduced by subsequent discretization into vortices, which is normally necessary 

when advancing the vortex sheets in the wake. However, by discretizing the vortex 

sheet initially, before implementation of the boundary conditions and calculation of 

particle velocities, the present model exhibits the useful property of consistency. 

Another measure which has been introduced is a grace strip, shown in figure 3.14, 

which is a small area attached to the outer boundary of the creation zone. If vorticity 

remains within this area after convection, it does not become a wake vortex. This has 

the dual effect of eliminating spurious separation due to velocity perturbations and 

removing convected vortices with very small strength. The addition of such vortices 
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Figure 3.14: Additional control strip 
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to the wake zone can dramatically increase the computational cost without much 

benefit in terms of accuracy. 

3.9 Sharp edge modelling 

Along most of the surface, the piecewise continuity of the vortex sheet strength , 

is acceptable for smooth segments where the change in normal from one panel to 

another is moderate. However special treatment is required at a sharp edge, such as 

an aerofoil trailing edge. 

The value of, represents the difference between the velocities at the zone bound­

ary and corresponding point on the body surface. This difference does not change 

much across the junction of smooth segments due to gradual changes which occur 

there in the velocity field. However, this is not true at a sharp edge, and it is ques­

tionable whether panels joined at such points should share the same value of ,. It is 

desirable to have two separate, values on each side of the sharp edge, although this 

requires one more relationship in addition to those arising from the regular boundary 

and pressure conditions. 

In steady potential flow simulations, an infinitely thin vortex sheet is placed on 

the body surface, across which the velocity jumps by a value of ,. At a sharp edge, 

both the joined surface segments and the vortex sheet meet at a point, hence the 

flow velocity at this point should be the same on either segment. This establishes a 
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relationship between the two ,s and leads to the Kutta condition for aerofoils. In the 

present model, the flow is unsteady and the introduction of a creation zone separates 

the two corresponding zone boundary points, therefore the local velocity field implied 

by the steady Kutta condition does not exist. This extra relationship must come from 

other sources. 

Along the creation zone boundary the above type of singularity does not exist, 

which implies that the velocity distribution along this curve does not exhibit sharp 

changes. This means that, changes smoothly in the absence of a strong vortex group 

nearby, which should be the case during the first time step of the calculation, at least 

on the surface segment encountering the free stream. The, distribution employed 

should therefore reflect these conditions. 

A test case in which no distinction between a sharp or smooth edge was made, 

that is the two ,s were equalised, did not provide satisfactory results. Figure 3.15 

illustrates the first time step, distribution near the trailing edge of a NACA0012 

aerofoil at 00 and 100. As can be seen the , distribution changes dramaticlly near 

the trailing edge over both upper and lower surfaces when the aerofoil is at 00. The 

distribution near the trailing edge is spiky, changing rapidly from about zero. Such a 

distribution obviously does not satisfy the requirement previously discussed in relation 

to , around the trailing edge area. Furthermore, the calculated, in this region is 

highly dependent on the choice of node points, although the pattern is preserved. It 

can also be seen that, away from the trailing edge, the distribution is smooth and, 

in the most part, close to linear. Such linearity persists unless a strong vortex group 

is located around that portion of the surface. A much stranger result is observed 

in the 100 case, where , on both the lower and upper surfaces changes erratically 

within a few panels near the trailing edge. This panel dependent, can result in 

unrepresentative release of vorticity from the trailing edge at this early stage of the 

flow, although the change in , becomes less pronounced at later time steps when the 

value at the trailing edge approaches zero. 

Another test case was run in which a constant vorticity was specified on the lower 
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Figure 3.15: First time step 'Y distribution for model with equal trailing edge 'Y for 

upper and lower surface 

surface panel connected to the sharp trailing edge. This was done by equating the 

'Y values at the two panel nodes. The 'Y distribution for the first time step is shown 

in figure 3.16, from which it is apparent that the sudden changes in 'Y on the lower 

surface in the trailing edge region have been eliminated. Furthermore, increasing the 

number of vortices on each panel results in an even smoother 'Y distribution. Equally 

interesting is the constant 'Y achieved for the corresponding upper surface panel for 

this symmetric aerofoil at 0°. 

For an aerofoil at 10°, one could expect a strong vortex group on the upper surface 

in the region near the trailing edge when the flow is impulsively started. This is 

reflected by the erratic 'Y variation on the associated panels in figure 3.16. In contrast 

to the case with equal 'Y at the trailing edge, the variation becomes insignificant with 

the full development of the flow when the bound circulation is established. 

An alternative way to eliminate the additional unknown is to make use of the 

relatively smooth 'Y distribution on the lower surface, shown in figure 3.16, by linearly 

interpolating a node point value of'Y from neighbouring trailing edge nodes. The first 
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Figure 3.16: First time step I distribution for model with constant I on lower surface 

trailing panel 
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Figure 3.17: First time step "f distribution for model which interpolates "f on lower 

surface 

time step result is illustrated in figure 3.17, with not much difference observed from 

the previous case. Both models fulfil the previously discussed requirements. For this 

reason the "f distribution defined in the previous case is employed in the model. 

However, such "f de-coupling presents a new difficulty in representing the vorticity 

in a small region following the trailing edge. As shown, for 0° case, in figure 3.16, the 

magnitude of "f is large but of opposite sign on the adjoining panels. Consequently, 

in this trailing edge region, convected vortices of large circulation but opposite signs 

could be produced. Their interaction could produce unrealistic instabilities in the flow 

at later times. To avoid this, the following model is employed, which re-discretizes 

the vorticity in the trailing edge region into vortices. 

As illustrated in figure 3.18, the trailing edge region is defined as the area enclosed 

by the two panel normals, two extended control zone boundaries which are parallel 

to the edge bisector, and a line normal to the bisector located 0.6Voo 6 t downstream 
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Figure 3.18: Illustration of trailing edge region 

from the edge. Vortices within this zone are combined together and re-discretized into 

vortices along the bisector. The underlying, distribution is assumed to be linear, 

and is determined by conserving both the stream function contribution at the trailing 

edge and the total circulation. 

3.10 External constraints 

The influence of the external constraints, detailed in continuous form in the previous 

chapter, has been implemented numerically. The explicit differences in the imple­

mentation from those without the constraints appear in equations (3.16), (3.23), 

(3.21) and (3.30) respectively for mass flux, velocity and linear simultaneous equa­

tions for, and ,T. The implicit differences exist in equations (3.19), (3.13), (3.23) 

and (3.18), which includes the interaction of vortices originating from the constraint 

surfaces. 

The two vortex sheets at the external constraints, which are required to maintain 

the no slip and no penetration conditions, result in two additional terms in equation 

(3.16), representing their contribution to {F}. Similarly, their contributions to velo­

city, equation (3.23), are accounted for by two additional terms which correspond to 

the relevant terms in equation (2.25). Since the vortex sheets have constant strength 

equal to - / + uoo , the above calculations are standard. 

In addition to vorticity creation on the aerofoil surface, a thin region attached to 

each constraint is also identified as part of the creation zone. An identical discretiz­

ation process is employed for all nascent vorticity, hence there are more unknown ,s 
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Figure 3.19: Illustration of constraints 

associated with the constraints in equation (3.18). 

The system is still solvable since more equations are available due to the boundary 

conditions at the constraints. As shown in figure 3.19, truncation occurs at Tl and 

ENB+! on the upper and lower constraints, with Too and Eoo being their respective 

extensions to infinity. There are (NT + 1) unknown IS for the NT upper constraint 

panels and (N B + 1) IS for the N B lower constraint panels. This results in (NT + N B) 

additional equations for the additional (NT + N E + 2) unknowns. However, zero flux 

is prescribed on pseudo panels Tl to Too and ENB+! to Eoo in order to fully satisfy the 

boundary conditions in region Fo. This provides two more equations which combine 

with those for the body to form the expanded system of linear equations (3.21) and 

(3.30) for I and IT. 

3.11 Computational procedure 

A diagram of the computational procedure is given in figure 3.20. The computation 

begins with preliminary procedures which include geometric calculations and initial 

construction of matrix [AJ and vector {F} in equation (3.21). The geometric cal­

culations are standard and generate the following: area of the body A; length and 

unit normal of each panel Cj and Znj; positions of vortices in creation zone Zm (3.7). 

However, to avoid unnecessary repetition, the elements in [AJ are divided into two 

groups representing the time independent components and those associated with the 
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motion of the body. Similar division of {F} is also made. 

The computation proceeds as follows: 

1. Calculate the time dependent components of elements in [AJ, (3.18 and 

section 2.7), and {F}, (3.15,3.17,3.19,3.20, and section 2.7), and combine 

them with the time independent components to generate the full [Aj and 

{F}. 

2. Solve the simultaneous linear equations (3.21) for {,}. 

3. Obtain, from the ,s, the circulation of vortices in the creation zone in 

accordance with equations (3.8) or (3.9). 

4. Calculate the velocity of vortices in the creation zone and in the wake zone, 

if any, by making use of equation (3.23). 

5. Increase the time by a step 6t. 

6. Update the position of the body surface, the surface normals Znj and the 

nascent vortex positions in the creation zone Zm in accordance with the 

prescribed motion. 

7. Convect and diffuse vortices in the creation zone, calculate the shedding 

of vorticity across the zone boundary in accordance with section 3.4, and 

record the contribution to {FT} from existing vortices within the zone 

earmarked for rediscretization. 

8. Convect and diffuse vortices in the wake zone, if any, in accordance with 

equation (3.10), eliminating those which cross the creation zone boundary. 

Solve equation (3.30) 

9. Merge pairs of vortices satisfying criteria (3.40). 

10. Calculate the contribution to {F} from the vortices in the wake zone. 

11. Repeat steps 1 and 2. 
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12. Obtain {In}, representing the newly created vorticity during the time step, 

from 3.29. 

13. Calculate the surface pressure gradient (3.32), force (3.35) and moment 

(3.36). 

14. Repeat the above steps, starting from step 3. 
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Figure 3.20: Flow diagram of computational procedure 



Chapter 4 

FLOW PREDICTION AND ANALYSIS 

Presented in this chapter are the results obtained from the application of the 

numerical model described in chapters 2 and 3 to a variety of flows around aerofoils. 

The test cases demonstrate the capabilities of the model and therefore, to some extent, 

serve the purpose of validation. Whereas the results presented in many previous 

simulation studies of dynamic stall flow have been limited to the qualitative geometric 

flow structures, this study incorporates quantitative comparisons with experimental 

data. Results are presented for both the NACA0012 and NACA0015, although more 

detail is given for flows around the former section. 

Three types of unsteady flow cases are considered: impulsively started flows; flows 

around pitching aerofoils; constrained flow around aerofoils. The flows are all assumed 

to be incompressible and two dimensional. 

For all cases, eighty panels are used to represent the aerofoil surface, each panel 

composed of five sub-panels. Most of the panels are of similar length, especially 

away from the leading edge. To provide a better representation of surface curvature, 

however, the panel length is gradually reduced as the leading edge is approached. At 

the leading edge, the length is about half of those panels close to the trailing edge. 

In common with most flow simulations using vortex methods, empirical paramet­

ers are employed in the computation. These include the vortex core radius and the 

creation distance from the surface of the nascent vortices. Both values have compar­

able dimensions to the sub-panel lengths. 

86 
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4.1 Impulsively started flows 

This flow is also referred to as an unsteady static flow. The initial condition is of a 

potential flow around a fixed aerofoil with zero bound circulation. The flow velocity is 

uniform at infinity and there is initially no vorticity except in a thin layer enveloping 

the aerofoil. The vorticity in this thin layer, referred to as the creation zone in 

this thesis, is represented by nascent vortices. The flow evolution expected from 

this initial condition includes the development of the surface pressure distribution 

and aerodynamic loads. This is associated with the growth of bound circulation 

over time, counterbalanced by vortex shedding mainly from the trailing edge. The 

computational results reflect these events. 

Figures 4.1(a) and 4.1(b) illustrate the development ofthe normal force coefficient 

at various incidences for the NACA0012 and NACA0015 aerofoils respectively. It can 

be seen that the results from the simulations gradually approach the corresponding 

experimental data, reduced from its original form2. In contrast to other published 

results112 , no significant overshoot ofthe coefficients is predicted. The surface pressure 

distributions at different fixed incidences around the NACA0012 at tV / c = 20 are 

shown in figure 4.2(a), while the development of static pressure around the NACA0012 

at 100 is presented in figure 4.2(b). It can be clearly seen that smooth pressure 

distributions are predicted by the model for these cases. 

Figures 4.3(a) and 4.3(b) show the corresponding build-up of circulation within 

the creation zone. Since the flow is attached, the curve gradients reflect the level 

of the circulation of vorticity shedding from the trailing edge. It is evident that the 

circulation approaches constant values asymptotically, with higher circulation when 

the aerofoil is at higher incidences. This is echoed by the vortex pattern in figure 4.4, 

which illustrates the roll-up, at an early stage, of vortices shed from trailing edge. The 

intensity of the roll-up increases with increasing incidence as a direct consequence of 

the bigger circulation assigned to the vortex blobs. In addition, the vortices convect 

downstream as time progresses while more vortices are continually shed from the 



88 

aerofoil. The absence of roll-up of the later vortices is a sign that their total circulation 

is diminishing. At tV / c = 15.00, the starting vortex is in the far wake and a line 

of vortices extends from the trailing edge in a manner consistent with the Kutta 

condition. For unseparated aerofoil flow at small incidence, a simple vortex method 

with vortex shedding from the trailing edge only would produce a similar vortex 

pattern. The method proposed herein regains this ability in contrast to other surface 

vortex shedding methods, some of which employ techniques to suppress shedding to 

avoid early separation 129. 

Presented along with the vortex patterns are the corresponding streamlines which 

indicate, as expected, attached flow around the aerofoil. The velocity field is directly 

related to compression and expansion of the streamlines as they deflect around the 

aerofoil, greater compression close to the surface leading to higher velocities and hence 

lower pressures. The extent of streamline deflection is also a measure of the strength 

of the starting vortex and hence the circulation around the aerofoil. 

The increasing strength of starting vortex with incidence can be better identi­

fied in figure 4.5, in which the contours of velocity magnitude and vertical velocity 

component are presented. The area in the wake with the concentration of contour 

lines marks the starting vortex: the more dense the lines the higher is the gradient. 

Therefore the increase in contour density with incidence indicates the shedding of 

stronger vortices. 

4.2 Flows around pitching aerofoils 

The distinctive flow features arising from an aerofoil in pitching motion have been 

identified as the delay of separation, the formation of the dynamic stall vortex, and 

its subsequent passage over the upper surface. These processes have been simulated 

by the numerical model for the case of the NACA0012 undergoing a ramp-up from 

-1 ° to 40° at a pitch rate K = 0.0415. The flow structures are illustrated in figure 4.6, 

and associated velocity magnitude contours in figure 4.7. The correlations of normal 
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force, tangential force, and moment with experimental data are given in figure 4.8, 

and the comparison of surface pressure distributions in figure 4.10(a). 

The computation employed the same angle of attack history as in the experi­

ment16 , shown in figure 4.8. For each discretized time step in the computation, the 

exact value of incidence is obtained by interpolating between experimentally measured 

incidences, the sample frequency of which was lower. The quoted pitch rate refers to 

the main motion outwith the transition zones at each end for acceleration and decel­

eration respectively. The Reynolds number in the experiment was Re = 1,500,000. 

During the ramp-up motion, the main features in the vortex pattern and stream­

lines are similar to those for attached flow described for the static case. However, 

this pattern occurs at an angle of attack a = 21.4°, as shown in figure 4.6, well 

beyond the static stall angle for this aero foil. As can be seen, vortices are mainly 

shedding from the trailing edge and the flow is unseparated. This assessment is 

supported by the absence of circulatory regions in the streamline pattern. As the 

incidence continues to increase, vortices begin to accumulate on the upper surface 

and the associated streamlines indicate the development of a bubble-like disturbance 

at a = 23.6°, a = 27.8°, and a = 28.3°. An identifiable leading edge vortex has 

formed at a = 31.9, along with a smaller vortex upon the rear half of the surface. 

As illustrated in the streamline patterns for a = 35.2° to a = 37.6°, it seems that 

the stronger leading edge vortex sucks the weaker vortex forward and merges with it 

while being transported over the upper surface. The formation of a counter vortex 

near the trailing edge occurs when the dynamic vortex passes above the edge, which 

is clearly visible in the patterns for a = 38.4° and a = 38.8°. The plots in lower left 

corners of the vortex patterns are the corresponding pressure distributions during the 

process. 

Figure 4.7 presents velocity magnitude contours at various times during the ramp 

motion. At a = 21.45°, the contour pattern is typical of that for attached flow around 

an aerofoil. At a = 27.83°, however, the contours become more dense in the area 

near the upper surface, indicating the existence of high velocity gradients associated 
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with the presence of intense vorticity. The vortices shedding near the leading edge 

remain close to the surface for a substantial time period during their downstream 

transportation, which might be a factor in initiating the separation process along 

the surface. The effect could be similar to that of natural flow turbulence on the 

diffusion of vorticity. However, uncertainty remains about this process and further 

investigation is needed to establish the connection between the numerical parameters 

and the physical parameters like Reynolds number. The subsequent frames illustrate 

the formation of the dynamic stall vortex and its transport along the surface, indicated 

by the clusters of dense contours. The development of the counter vortex mentioned 

above can also be identified near the trailing edge. 

The comparisons between the computational results and experimental data 16 are 

shown in figure 4.8, which presents the normal force, tangential force and moment 

coefficients versus dimensionless time and angle of attack. Excellent agreement is 

illustrated in the normal force coefficient during the attached flow phase. In addition, 

the main features of the vortex-induced normal force and its subsequent collapse have 

been simulated, although some of the post-stall details are different. Particularly 

satisfying is the close agreement in the indicated time of separation. 

The comparison of tangential force coefficients shows good agreement during at­

tached flow and for part of the stall and post-stall phase. The main features of 

the dynamic stall vortex formation and transport have been simulated, although the 

details of the vortex-induced component show discrepancies. 

The moment coefficient comparison also indicates excellent agreement during the 

attached flow phase. The build up and passage of the dynamic stall vortex have been 

simulated to a high degree, as has the associated moment break. The discrepancies 

in the post-stall region are due to the details of the counter vortex which forms near 

the trailing edge. Note that the moment break occurs prior to the break in normal 

force, which is consistent with the results of many experimental investigations. 

Similar agreement is obtained with experiment5 for the case of the NACA0015 

undergoing ramp-up motion at a pitch rate K, = 0.0487 and Reynolds number Re = 
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990,000, as illustrated in figure 4.9. 

More insight into the capacity of the model is given by figures 4.10(a) and 4.10(b), 

which illustrate the correlation of computational and experimental pressure distribu­

tions for the NACA0012 and NACA0015 performing the previously described ramp­

up motions. There is a good match between the pressures before the formation of 

the dynamic stall vortex. However, there is a small offset between the experimental 

and computational distributions, which is probably due to defining the pressure with 

respect to a reference at the approximate stagnation point. The adoption of this ap­

proximation avoids the necessary, and expensive, calculation of the pressure constant, 

which does not affect the calculation of the overall aerodynamic loads. Discrepancies 

exist in the detailed effects of the dynamic stall vortex on the surface pressure at 

higher incidences, although the main pressure pulse is simulated. The resolution of 

the surface geometry and vorticity representation, the size of vortex core and the lack 

of small scale turbulence modelling are all undoubtedly contributory factors. 

The pressure spike at the leading edge originates in the vorticity solution around 

the high curvature zone, which requires more linear panels than were employed in the 

study. The unnaturally high strength vortices which enter the wake from this region 

could also be a factor in the core size of the stall vortex. 

The ad hoc turbulence generated by vortices near the surface only exists while 

shed vortices remain close to the surface. However, more vortices would be required to 

model this effect properly. Alternatively, a distributed eddy viscosity model could be 

implemented as for large eddy simulations. This would lead to greater vortex diffusion 

and possibly better correlations in the pressure pulse and post-stall loads at higher 

incidence. The importance of turbulence following separation is well documented for 

grid base methods163-165, which seem to produce quite different aerodynamic charac­

teristics with different turbulence models. 

The existence of wind tunnel walls in the experiment could also affect the trans­

portation of the dynamic stall vortex. To what extent this is the case is investigated 

in the next section. 
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Notwithstanding the above, the model has demonstrated its ability in simulating 

the influence of geometry and pitch rate on aerodynamic characteristics. Figure 4.11 

presents the results for the NACA0012 and NACA0015 undergoing the same ramp-up 

motion at a pitch rate", = 0.0415. No significant difference is observed. The results 

for both aerofoils at various pitch rates are shown in figures 4.12(a) and 4.12(b). As 

expected, higher pitch rates result in further delay of dynamic stall. 

In summary, the model has demonstrated its ability to simulate the primary fea­

tures of unsteady flows around pitching aerofoils, including aerodynamic character­

istics in good agreement with experimental data. It is considered that the estab­

lishment of a relationship between the numerical parameters and physical properties, 

the modification of the leading edge modelling, and the incorporation of turbulence 

would further improve its capabilities. 

4.3 Constrained flows around aerofoils 

The effect of wind tunnel blockage on unsteady flows is an area which has not been 

significantly addressed. For a simulation, the flow region is now limited by the ex­

istence of upper and lower constraints, and only the fluid within the constraints is 

of interest. The determination of the effects of these constraints on the aerodynamic 

loads and pressures is the aim of such a study, and results are presented in this section 

to achieve this. 

In the computation, the two parallel lines which model the constraints are separ­

ated by 3.872728c, the width ofthe test section of the University of Glasgow's "Hand­

ley Page" wind tunnel. The external constraints only extend from 2c upstream to 

4c downstream of the quarter chord position to avoid excessive computational cost. 

The aerofoil's quarter chord point is "fixed" mid-way between the constraints which 

corresponds with the experimental set-up16. Other conditions remain unchanged. 

Figure 4.13 shows the constraint effect for impulsively started flow around the 

NACA0012 at 10° at the two instants tV / c = 0.50 and tV / c = 15.0. The pictures on 
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the left and right correspond to infinite flow and constrained flow respectively, with 

the position of the wind tunnel walls coinciding with the upper an lower boundaries 

of the relevant pictures. The streamlines next to the constraints remain parallel to 

them as a result of the no penetration condition, while the corresponding streamlines 

for the open flow are slightly deflected. The velocity magnitude contours illustrate 

some differences in the velocity field, but these are insignificant in the area near the 

body for such a moderate incidence. 

The pictures in figure 4.14 illustrate the typical vortex and streamline patterns 

for the NACA0012 undergoing ramp-up motion at /"i, = 0.0415, in this case with 

external constraints present. Comparing with the results presented in the previous 

section, at tV / c = 7.40, the effect ofthe constraints on the flow near the body are not 

readily apparent. However, at tV/c = 8.00, the pressure distribution, vortex patterns 

and streamlines resemble more those for open flows at tV / c = 8.20, while those for 

constrained flow at tV / c = 8.20 are closer to those for open flow at tV / c = 8.30. 

This suggests an earlier separation for constrained flow. Comparing the pictures 

for tV / c = 9.90, the dynamic stall vortex for constrained flow has been transported 

further rearwards. 

Figure 4.15 presents a comparison of the streamline patterns for the two flows. 

As in figure 4.13, the position of the wind tunnel walls coincides with the upper an 

lower boundaries of the pictures on the right. In contrast to the patterns for attached 

flow at low incidence, the effect of the constraints on the streamline pattern in the 

presence of the stall vortex is quite marked, with greater compression evident. It 

can be concluded that the dynamic stall vortex is closer to the trailing edge in the 

constrained case. 

The difference in velocity field is shown in figures 4.16 and 4.17, in which contours 

of velocity magnitude and vertical velocity component are presented. It can be seen 

that stronger velocity gradients appear very close to the body for constrained flow 

at high angles of attack, which not only affects the shedding of vorticity from the 

surface but also influences the formation and subsequent transport of the dynamic 
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stall vortex. 

Three sets of aerodynamic characteristics are presented in figure 4.18 for the 

NACA0012. The data correspond to infinite flow, flow with the previously defined 

constraint separation of 3.872728c, and constrained flow with half this separation. 

These constraints are referred to as constraints 1 and 2 respectively. The results 

show that constrained flow separates earlier and stalls earlier. This effect is more 

pronounced in the flow with constraints 2. 

In figure 4.19 experimental data are plotted with the predicted results for both 

infinite flow and the flow with the experimental constraints simulated. The numerical 

data for constrained flow are in better agreement with those from experiment. 

The pressure distributions for the NACA0012 and NACA0015, during ramp-up 

motion at K, = 0.0415 and K, = 0.0487 respectively, are illustrated in figures 4.20(a) 

and 4.20(b). The plots include experimental data, infinite flow data and constrained 

flow data. Little effect of the constraints is observed before a = 25.8° for the 

NACA0012 and a = 28.0° for the NACA0015. However, the constrained flow pres­

sure distribution over the rear part of the upper surface is in good agreement with 

experimental data at a = 36.6° for the NACA0012 and a = 38.2° for the NACA0015. 

This reflects the actual situation as the experimental data have not been subject to 

wind tunnel correction. 

Due to a lack of techniques to account for wind tunnel wall effects, most dynamic 

stall experimental data have not been corrected. The differences illustrated in this 

section between infinite and constrained flow suggests that a more accurate represent­

ation of the flow field requires incorporation of external constraints in the numerical 

simulation. 

4.4 Ramp-up and Ramp-down motion 

The process of flow reattachment on an oscillating aerofoil which experiences dynamic 

stall is of interest to aerodynamicists. Figures 4.21 and 4.22 present computational 
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results for flow around the NACA0012 undergoing ramp-up motion immediately fol­

lowed by ramp-down motion. As shown in the top picture of figure 4.22, the angle 

of attack increases from 0° to 40° and then decreases to -10°. The pitch rate of the 

motion K; = 0.0415 for ramp-up and -0.0415 for ramp-down, with smooth transition 

periods between the phases to avoid the generation of unrealistically high impulse 

forces. The Reynold number is Re = 1,500,000. 

In figure 4.21, the vortex patterns and streamlines are shown at four instances of 

time, two during the upstroke and two during the downstroke. The main features 

discussed in previous sections for the ramp-up motion appear during the upstroke 

phase, where no separation is observed until an angle of attack as high as 21.35°, 

at tV / c = 4.50, is reached. With increasing angle of attack, the separation which 

initiates near the leading edge is followed by the formation and subsequent transport 

of the dynamic stall vortex over the upper surface towards the trailing edge and 

into the far wake. However, of particular note during the downstroke is the clear 

reattachment of the separation line on the upper surface from the leading edge to the 

trailing edge, culminating in full reattachment. This process is clearly illustrated in 

the lower two frames in figure 4.21. 

Figure 4.22 presents the normal force, tangential force and moment coefficients 

against both dimensionless time tV / c and angle of attack. The hysterisis loops are 

apparent in this case. As expected the reattachment is delayed to a relatively low 

angle of attack during the down stroke. 
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Figure 4.4: Vortex patterns and streamlines for impulsively started flow around the 

NACA0012 
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NACAOO12 Velocity magnitudo contour Pulso-atart tV/o-O.50 "",2.0 Tunnol wall: no NACAOO12 vertlcal va/oclty contour Pulsa-atart tWo-O.50 "",2.0 Tunnol willi: no 

NACA0012 Volocily magnitude contour Pu)so-atart tVfc.,O.50 Tunnol woll: no NACAOO12 vorticnl voIocily contour Pula6-slart tWo-O.50 w-6.0 Tunl10l wall .. no 
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NACAOO12 vertical voIocity contour Pulse-start IVfc",15.00 a=1O.0 Tunl10l wnll", no 

Figure 4.5: Contours of velocity magnitude and vertical velocity for impulsively star­

ted flow around the NACA0012 
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Figure 4.6: (Continued) 
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Figure 4.6: (Continued) 
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Figure 4.7: Velocity magnitude contours for the NACA0012 in ramp-up, K, 0.0415 
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Figure 4.13: Tunnel wall effects for impulsively started flow around the NACA0012 



109 
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Figure 4.14: Vortex patterns and streamlines for the NACA0012 III ramp-up with 

wall effect 
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Figure 4.15: Comparison of NACA0012 streamlines with and without wall effect 
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Figure 4.16: Comparison of NACA00l2 velocity magnitude contours with and 

without wall effect 
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Figure 4.17: Comparison of vertical velocity contours with and without wall effect 
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Figure 4.19: Correlation of characteristics for the NACA0012 III ramp-up with wall 

effect 
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Figure 4.21: Vortex patterns and streamlines for the NACA0012 in ramp-up and 

ramp-down, K, = 0.0415 
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Chapter 5 

CONCLUDING REMARKS 

This chapter presents concluding remarks with regard to the development and 

application of the vortex method described in the previous chapters. The remarks 

are split into two sections: a summary section, in which the main contributions of 

the research presented in this thesis are outlined; a section suggesting areas in which 

further improvements in the capabilities of the method could be achieved. 

5.1 Summary 

• A vortex method has been developed for simulating unsteady flows around 

pitching aerofoils. The capabilities of the model have been demonstrated through 

the prediction of both separated flows and attached flows. In particular, the 

structure of the flow around an aero foil undergoing dynamic stall is well cap­

tured by the model without the need for other means to predetermine separation 

points. In contrast to many other vortex methods, the model can provide both 

qualitative and detailed quantitative information. Throughout a wide range of 

incidence, for the test cases considered, the predicted pressure distributions are 

smooth and the normal force and pitching moment are in good agreement with 

experimental data . 

• The model has been developed to include flow around an aerofoil in the presence 

of external constraints. Of particular interest is the flow past a pitching aero foil 

in a wind tunnel, for which the method has demonstrated an ability to predict 

the wall effects. Since most experimental data from dynamic stall tests are not 

subject to wind tunnel wall correction, the capability to model wall effects is 

of practical importance in the validation of numerical models and in gaining a 
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proper understanding of aerofoil behaviour. The predicted flow structures and 

quantitative results produced by the model are consistent with those expected. 

• Both theoretical and numerical progress has been made in the research. The­

oretically, a velocity expression has been derived for flows with both a moving 

inner boundary and fixed external constraints. To maintain both the no penet­

ration and no slip conditions, it is concluded that constraints parallel to the free 

stream velocity can be modelled by placement of a constant vortex sheet at the 

boundary and the introduction of distributed vortices next to the constraints 

to represent vorticity creation on the surface. The strength of the vortex sheet 

is equivalent to the free stream velocity, while the strength of the vortices can 

be calculated in the same manner as for an internal boundary. This approach 

has the advantage of representing directly the developing boundary layer on 

the external surfaces, avoiding the necessity of employing mirror vortices and 

iteration techniques, incorporated into more traditional models. 

• For the computation of surface pressure distribution, an equation has been 

derived relating the pressure gradient to the rate of vorticity creation on the 

surface. The relation was originally proved for a fixed boundary only but the 

validity of the conclusion is now extended in this thesis to a moving boundary, 

such as the surface of a moving aerofoil. 

• Numerically, substantial improvements have been made in the modelling of the 

vorticity close to the surface. These include representation of high curvature 

surfaces, better discretization of vorticity, better simulation of the vorticity 

diffusion process and more accurate implementation of boundary conditions. 

• With regard to surface representation, a sub-panel model was proposed to 

provide a more accurate polygonal representation of the body surface, as well 

as to facilitate a more straightforward vorticity discretization scheme. 
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• In the description of vorticity, the concept of two zone vorticity discretization 

is employed to represent the real vorticity field. The zones are divided into 

the creation zone, for the thin strip close to the boundary, and the wake zone 

containing the remaining vorticity. As for most vortex methods, vortices in the 

wake zone are tracked in a Lagrangian manner, in conjunction with the random 

walk method. However, vorticity in the creation zone is re-discretized every 

time step at predetermined points, with the strength obtained by implementing 

the boundary conditions. These latter vortices are considered to be a discretized 

representation of the vortex sheet which envelops the surface. The piecewise 

linear variation in the circulation density of this sheet necessitates the use of 

multiple vortices on each panel. This arrangement is advantageous, however, for 

two main reasons: the number of vortices on each panel does not affect the size 

of the system matrix, which depends on the number of panels only; increasing 

the number of vortices per panel improves the quality of the solution. 

• A surface vortex shedding model has been proposed to simulate the exchange of 

vorticity across the interface between the two discretization zones. The model 

contrasts with the traditional vortex shedding from a sharp edge or predeter­

mined points. The convection and diffusion of vorticity are reflected in the 

model via appropriate displacements of the vortices at each time step. The 

transport equations for the vortices are an approximation to the continuous 

equations. Since the accuracy deteriorates when the vortices are of large circu­

lation, the surface vortex shedding model alleviates this difficulty by employing 

many vortices of smaller circulation. 

• The assumption that the vortex sheet strength , is continuous on a smooth 

surface may not be as reasonable at a sharp edge such as an aerofoil trailing edge. 

This distinctive feature is represented by de-coupling the vorticity strength, " 

for each panel connected to the point. In addition, the vorticity shed from the 
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upper and lower surfaces at the trailing edge, into a small zone immediately 

downstream, is re-discretized in a manner which reflects the combined vorticity 

of the two vortex streams. 

Some standard techniques associated with vortex methods have also been imple­

mented into the model. These include the use of vortex blobs to avoid singular­

ities, the random vortex method for simulating viscous diffusion, a vortex merging 

scheme to reduce computational cost and the Adams-Bashforth second order method 

for vortex convection. The combination of these standard techniques with the new 

modelling features summarised above has led to improvements in the simulation of 

unsteady flows about pitching aerofoils. 

5.2 Further developments 

The vortex method presented in this thesis has provided encouraging results in the 

simulation of flows around pitching aerofoils. It is possible that the model, with 

the proposed new techniques, could be further developed to predict other flows, for 

example flows around bluff bodies, three dimensional flows. To improve the efficiency 

and accuracy of the model, the following modifications are suggested. 

1. Implementation of a fast method to compute the vortex velocities. In a 

vortex method, most of the CPU time is consumed in the computation of 

the interaction between vortices during the velocity computation. In the 

current model, only the amalgamation process provides a reduction in com­

putation time. This is due mainly to the fact that the computational speed 

is not prohibitive for the computation of flows around pitching aerofoils 

since, at most instances of time, the flow remains attached and therefore 

the total number of vortices is not great. The situation would be different 

for bluff body flow simulation or for three dimensional flow computation, 

in which cases the benefit of a fast algorithm would then be more attract-
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ive. Existing algorithms include vortex-in-cloud, multipole decomposition, 

zonal decomposition, parallel computation and many others. 

2. Improvement in leading edge modelling. The current model has predicted 

spiky pressure distributions at the leading edge, which may be due to 

the inadequacy of the current linear distribution of panel vorticity in this 

region. Special treatment may be required for this high curvature surface 

segment, including modifications to both the circulation distribution and 

the vortex shedding model. 

3. Incorporation of a turbulence model. No explicit account of turbulence 

is included in the model although it is possible that the chaos caused by 

the vortices near the boundary may have some resemblance to the effects 

of turbulence. However, this effect is greatly reduced as the vortices are 

transported farther away from the body into the wake, and is compoun­

ded by vortex merging. The small scale turbulence could then only be 

accounted for by implementing an appropriate model. 

4. Development of relationships between the numerical parameters and phys­

ical properties. Most vortex methods involve some degree of empiricism in 

the specification of some numerical parameters, and the current model is 

no exception. In order to remove a certain amount of arbitrariness in the 

values employed for these parameters there is a need to establish a more 

general process for identifying these values. 

In conclusion, the current model has demonstrated its capability in simulating 

flows around pitching aerofoils. As might be expected, a number of improvements 

which could be made to the model have been identified which will further increase 

its modelling capability. 
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Appendix A 

The velocity of point rp induced by vortex with circulation dr at r is 

(A.l) 

where 

dr = 2DB dA 

By integrating over the body area, the induced velocity becomes 

j dup 
AB 

DB "' .... !oem \\.... .... \\2 d DB "' .... I - - ~ Sm In r - rp s = - - ~ 8 m 1 
27f m 0 27f m 

(A.2) 

where 

and 

Co 6.xmp 6. Ym - 6.Ymp 6. Xm 

Cl 6.X;;'+lP + 6.Y;;'+lP 

(A.3) 
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for 1m - jl > 1, 

for m = j, 

for m = j + 1, and 
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for m = j-l. 

Some variables are expressed as 

al 6x~+lj + 6Y~+lj 

a2 6x~j + 6Y~j 

a3 6xmj 6 Xm + 6Ymj 6 Ym 

a4 6xmj 6 Ym - 6Ymj 6 Xm 

a5 6xm+lj 6 Xm + 6Ym+lj 6 Ym 

a6 )£;£;+1 - a§ 

b1 6xm+lj 6 Xj + 6Ym+lj 6 Yj 

b2 6xmj 6 Xj + 6Ymj 6 Yj 

b3 6xm 6 Xj + 6Ym 6 Yj 

b4 6xj 6 Ym - 6Yj 6 Xm 

b6 )£;£;-1 - b§ 

C3 6X~+lj+l + 6Y~+lj+l 

C4 6xm+lj 6 Yj - 6Ym+lj 6 Xj 

C6 6x~j+l + 6Y~j+l 

C7 6xmj 6 Yj - 6Ymj 6 Xj 

Cg 6Xm+lj+l 6 Xm + 6Ym+lj+l 6 Ym 

CI0 6xmj+l 6 Xm + 6Ymj+l 6 Ym 

Cll 6xmj+l 6 Ym - 6Ymj+l 6 Xm 
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