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University of Glasgow.

ABSTRACT.

Study of Bluff Body Flow Fields and Aeroelastic Stability using a Discrete
Vortex Method.

by Ian Taylor

A two dimensional discrete vortex method has been developed to simulate the unsteady,

incompressible flow field and aerodynamic loading on bluff bodies. The method has been

validated successfully on a range of simple bluff geometries, both static and oscillating, and has

also been validated on a wider range of problems including static and oscillating suspension

bridge deck sections. The results have been compared with experimental data and demonstrate

good qualitative and quantitative agreement, and also compare favourably with other

computational methods. Most notably, the method has been used to study the aeroelastic

stability of a recent bridge deck, with accurate predictions of the critical flutter velocity.

A thorough literature review is presented, considering the nature of bluff body flows and the

aeroelastic phenomena associated with the unsteady flow field. Analytical methods are

considered for studying these phenomena and other computational methods are reviewed.

The basis of the method is the discretisation of the vorticity field into a senes of vortex

particles, which are transported in the flow field that they collectively induce. In the method

presented herein, the time evolution of the system of particles is calculated by solving the

vorticity transport equation in two stages : employing the Biot-Savart law to calculate particle

velocities and random walks to simulate flow diffusion. The Lagrangian approach to the

calculation avoids the necessity for a calculation grid, and therefore removes some of the

problems associated with more traditional grid based methods. These include numerical

diffusion and difficulties in resolving small scale vortical structures. In contrast, vortex methods

concentrate particles in areas of vorticity, and can provide high quality representations of these

small scale structures. Dispensing with a calculation mesh also eases the task of modelling a

more arbitrary range of geometries. In particular, vortex methods are well suited to the analysis

of moving body problems.



The vortex method presented herein was originally developed to study dynamic stall on

pitching aerofoils. The necessary modifications to enable the method to be used as a tool to

study bluff body flow fields are presented. These include improvements to the modelling

around sharp comers and an empirical procedure to account for three dimensional effects in the

wake. Also, a more efficient algorithm for the velocity calculation has been implemented,

reducing the computational operation count from O(N2) to O(N+MogN). The procedure uses a

zonal decomposition algorithm, where the velocity influence of a group of vortex particles can

be calculated using a series expansion.

Results of the validation exercise are firstly presented for a range of simple bluff geometries to

give confidence in the results before moving on to more complex geometries. These results

include the effect of incidence on the aerodynamic loading for a stationary square cylinder, and

also a study of the effect on aspect ratio for rectangular cylinders. This includes the limiting

case of a flat plate. Vortex lock-in is studied on a square cylinder undergoing a forced

transverse oscillation, for a range of frequencies and amplitudes. The results in each of these

cases are in good agreement with experimental data. The flutter instability on a recent bridge

design and also on the original Tacoma Narrows bridge section are considered. Predictions of

the flutter derivatives and of the critical flutter velocity on each section indicate the capability

of the method to analyse the stability of bridge sections. A study of flow control devices, which

are used to increase structural stability has been made, demonstrating how the vortex method

could potentially be used as part of a design process to investigate a range of possible designs.

It is anticipated that future work on the vortex method will include a link to a structural solver

to give a full aeroelastic model that can be used to analyse the flow around a wide range of

geometries.
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Chapter 1 : Introduction

CHAPTERl

INTRODUCTION.

1.0 Background and Objectives.

1

Knowledge of the flow field around bluff structures, in particular suspension bridge sections, is

of major importance in the fields of civil and wind engineering. As modem structures become

ever taller, longer and as a result more flexible, aeroe1astic phenomenon such as flutter,

galloping and vortex induced vibration, arising from the structural response to the aerodynamic

forcing, have a greater impact. The loading induced by the unsteady aerodynamics and the

structural response to these forces are a major consideration during the design process. The

importance of these effects can be demonstrated by using the now famous example of the

catastrophic failure of the original Tacoma Narrows suspension bridge in 1940. Prior to this

collapse, it was deemed sufficient to consider only the static wind loading on structures derived

from time-averaged wind pressures and forces. However, investigation into the Tacoma

Narrows failure, combined with many research studies since the event, has confirmed that the

response of the bridge to the unsteady wind loading was one of the prime causes of the

collapse. It is now well known that the bridge failed due to torsional flutter as depicted in Fig.

1.1 and also discussed in more detail by Billah and Scanlan [1].

Since the Tacoma incident, the analysis of unsteady aerodynamics and its effect on the

aeroelastic response of suspension bridges has become a major topic of research. With modem

bridge designs placing more challenging demands on the engineer, due to ever longer spans,

increased flexibility of the structure and the necessity for lighter materials, an understanding of

unsteady aerodynamics is now a design priority. The problems that are experienced by wind

engineers in the design and analysis of civil engineering structures are summarised in the

introductory remarks to Simiu and Scanlan's well know text on wind engineering, "Wind

Effects on Structures" [2] :

"The development of modem materials and construction techniques has resulted in the

emergence of a new generation of structures that are often, to a degree unknown in the

past, remarkably flexible, low in damping and light in weight. Such structures generally

exhibit an increased susceptibility to the action of wind. Accordingly, it has become

necessary to develop tools enabling the designer to estimate wind effects with a higher

degree of refinement than was previously required."

To illustrate the problem and highlight advances made, the original Tacoma Narrows bridge had

a span of 854m, whereas the Great Belt East (Storebelt) bridge, Denmark, opened in June 1998
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has a mam suspended span of 1624m. Longer span structures are either already under

construction or are in the design phase, notably the Akashi Kaikyo bridge in Japan with a span

of 1990m and the proposed Messina Straits bridge in Italy with a free span of 3300m. Greater

understanding of flutter instability in recent years has led to the potential to increase the critical

flutter velocity by the addition of fairings or stabilising guide vanes to the structure. These

devices, although attractive due to the increase in structural stability, lead to greater complexity

in the design and place further demands on experimental testing to optimise the flow control as

well as ensuring the devices produce the desired increase in flutter speed.

The analysis of bridge aerodynamics has advanced rapidly since Tacoma and techniques for

predicting the onset of flutter have been established for many years. One of the key analysis

techniques for analysing flutter instability employs flutter derivatives, which can be used to

derive the critical flutter velocity of a particular bridge design [3]. However, virtually all of this

analysis is based on experimental investigations of the unsteady aerodynamics from various

wind tunnel tests of the structures. Notwithstanding the rapid advances in computational

hardware and the development of many numerical models in recent years, the complex flow

field effectively places a limitation on the use of computational methods and analysis tools. Due

to the complexity of the unsteady flow field and of the associated non-linear dynamics, there

are few numerical models that have demonstrated sufficient accuracy for the results to be

reliably used in the analysis of a wide range of bluff body flows, and particularly to investigate

flutter on bridge sections. Several numerical models have been shown to be well suited to

particular problems and accurately predict the flow field for these specific cases. Despite these

developments, many of the computational models lack the generality to be reliably applied to a

wide range of cases, and fall short of the accuracy required for a usable and reliable design tool.

However, accurate prediction of the flow field using computational methods is becoming

increasingly important and attractive, due to the cost and time involved in running and building

models for wind tunnel tests. Another beneficial aspect of the numerical treatment of fluid­

structure interactions is that it allows detailed information about the flow field to be studied,

information that may not be easily extracted from wind tunnel experiments. Hence, it is clear

that the development of a numerical model to analyse the unsteady aerodynamic flow field

around bridge deck sections, or bluff structures in general, would be a valuable analysis tool for

the wind engineer and highlights a significant area of research that has yet to be fully realised.

One of the main complications with developing accurate numerical models, is that not all of

these aeroelastic instabilities are completely understood at present due to the complex nature of

the flow. There are few theoretical formulations of the aeroelastic effects from first principles,

although attempts have been made to develop empirical analytical models. However, many of

these models include parameters that need to be derived from existing experimental data and

due to the flow complexity, only tend to model the dominant aerodynamic effects. Hence, the
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analytical models do not reveal any of the basic physical causes of the instabilities and in many

cases, important details of the fluid-structure interaction may be neglected in the analysis.

One numerical technique that has undergone significant development in recent years, and has

been shown to be well suited to analysing unsteady and highly separated flow fields, is the

discrete vortex method. The numerical technique utilised by vortex methods is based on the

discretisation of the vorticity field rather than the velocity field, into a series of vortex particles.

These particles are of finite core size, each carrying a certain amount of circulation, and are

tracked throughout the flow field that they collectively induce. As such, the model does not

require a calculation mesh and provides a very different approach to more traditional grid based

computational fluid dynamics methods. More details of the modelling approach are given in

later chapters and is reviewed in detail in [4-6]. However, one of the main advantages of vortex

methods over grid based approaches is that the Lagrangian nature of the method significantly

reduces some of the problems associated with grid methods, such as numerical diffusion and

difficulties in achieving resolution of small scale vortical structures in the flow. Vortex particles

are naturally concentrated into areas of non-zero vorticity and enable vortex methods to capture

these small scale flow structures in more detail.

The research presented herein reports the development and validation of a vortex method with the

aim of producing a method that can successfully predict the flow field for a range of bluff bodies

and fluid-structure interaction problems. The discussion above highlights the lack of numerical

models that give reliable and accurate results over a wide range of cases. To ensure that there can

be sufficient confidence in the results obtained from the vortex method, an extensive validation

exercise for bluff body flows has been undertaken, starting from simple geometries and building

on each result until the prediction of the unsteady aerodynamics of suspension bridge sections

can be reliably predicted. The results of these analyses are presented in this thesis and

demonstrate the accuracy of the vortex method for a wide range of problems. As the final aim of

the research was the investigation of the effect of unsteady aerodynamics on suspension bridges,

much of the analysis has concentrated on sharp edged bluff bodies, although for completeness,

the method is briefly demonstrated on smooth curvature bodies. Added to the analysis of

suspension bridge flutter, the capability of the method is further demonstrated by a study of the

effect of flow control devices. The effect of passive and active guide vanes on the flutter

instability are analysed using the vortex method, indicating that the method may be used as a

design tool to study the unsteady aerodynamic effects on wind engineering structures. As the

focus of the research has been primarily on sharp edged bodies, the separation locations of the

shear layers are fixed and the resolution of the boundary layers is not as critical as for smooth

curvature bodies. The fixed separation, combined with a lack of wake turbulence modelling and

some empirical aspects to the model, means that the method developed takes more of an

engineering approach to the study of the flow around sharp edged bluff bodies. However, as

demonstrated in the results presented herein, the method is shown to be a useful tool for
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analysing the flow field and aerodynamic loads on sharp edged bodies and future research is

anticipated that will develop a more physical model that could be applied to a wider range of

bluff bodies.

1.1 Organisation of Thesis.

Chapter 2 gives a brief survey and review of research that has been conducted into the analysis of

bluff body and bridge aerodynamics, along with various numerical methods that have been

developed. Some of the more important analytical models that have been developed for analysing

the various aeroelastic instabilities, such as vortex induced vibration and galloping, are

mentioned. Also, a review of the analysis techniques used for analysing the flutter instability on

suspension bridge sections is discussed. Grid based numerical models and discrete vortex

methods, both using a number of different modelling approaches, are reviewed and assessed with

regard to their suitability for analysing bluffbody flow fields.

Chapter 3 outlines the vortex method that has been developed to analyse bluff body flow fields.

The method was originally used for the analysis of the dynamic stall phenomena on aerofoils

undergoing a pitching motion [7-9]. A brief summary of the numerical implementation is given,

followed by a more detailed discussion of the modelling changes that have been implemented

to enable successful prediction ofbluffbody flows.

The results of the validation exercise are presented in Chapter 4. The first part of the chapter

gives the results of calculations on various simple geometries, to demonstrate the ability of the

method to successfully predict the flow field around bluff bodies. Various key flow parameters

are presented for each case to demonstrate the accuracy of the method, both qualitative and

quantitative, to give confidence in the predictions on more complex and challenging

configurations. In the latter part of the chapter, the results of an analysis on a recent suspension

bridge are presented, including an investigation into the flutter stability of the structure. Also, to

demonstrate further the capability of the method, a study has been carried out into the effect of

flow control devices, both passive and active, on the critical flutter velocity of the bridge.

Finally, Chapter 5 summarises the developments and improvements made to the method, and

summarises the results from the validation. Indications are also given as to potential future

research and applications of the model.
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LITERATURE REVIEW.

2.0 Introduction.

5

In the field of civil and wind engineering, one of the fundamental design criteria is to produce a

structure that can withstand the wind loads to which it will be subjected. However, as most such

structures are bluff, the nature of the flow field around the body is highly separated and

unsteady. Over many years, much research has been undertaken in an attempt to understand the

nature of the complex processes and interactions involved in bluff body flow fields, and there

remain aspects that are not fully understood.

Much of the rich array of literature reporting bluff body flows is based on experimental studies.

These results have provided a valuable insight into the complex nature of the flow fields under

consideration. However, analysis of the problems using mathematical or numerical techniques

has proved far more difficult. Much of the problem has been to develop a model that can be

generally applied to a wide variety of bluff shapes. As shall be discussed, the nature of the flow

field varies from body to body, and also varies depending on the body's orientation to the

oncoming flow. Added to this, the inherently unsteady nature of the flow, means that

aeroelastic effects and fluid-structure interaction are often present. An important part of the

design process is to ensure that the fluid-structure interactions are fully analysed, so that the

oscillations can be controlled. Much of this effort is currently based on experimental

procedures and various design codes. However, numerical models are being developed that

could be potentially used in this process, though many currently lack the generality to analyse

the wide range ofproblems that would be necessary for such a design tool.

The following sections highlight some aspects of the unsteady nature of bluff body flows, and

the associated aeroelastic phenomena due to fluid-structure interaction. A number of analytical

methods that have been developed for the analysis of these effects will briefly be discussed. In

recent years, the rapid advances in both computer hardware and software have made the use of

numerical models for unsteady flow analysis much more practicable. Some of the more

common techniques, and the results of bluff body analysis along with their limitations, will be

reviewed. In particular, the development of vortex methods will be discussed along with some

of the techniques used to improve the modelling and efficiency of the calculation.
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2.1 Bluff Body Flows.
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A body immersed in an oncoming flow can be termed bluff if it generates separated flow over a

large proportion of the body surface. On bodies with curved surfaces, such as a circular

cylinder, the location of the separation points depends on the Reynolds number, Re, and the

state of the boundary layers on the body surface. This has been well documented [2, 10-11] and

the variation of drag coefficient, CD' with Re is shown in Fig. 2.1. The most notable feature is

the "Critical Region", where separation is delayed until further back on the cylinder surface,

due to the boundary layers undergoing transition from a laminar to turbulent state. The Re at

which the Critical Region occurs varies depending on factors such as surface roughness and

freestream turbulence. On sharp edged bodies, however, the separation point is likely to be

fixed at the comers and will be much less dependant on Re, as is demonstrated on the square

section cylinder [2 and 12] with the CD remaining constant over a range of Re (Fig. 2.2).

However, different aspect ratios of rectangular cylinder, and also varying the angle of incidence

of sharp edged bodies, produce a wide range of different flow fields, for which there are many

experimental studies [13-19].

One of the main features of bluff body flows is the formation of an organised unsteady wake

motion due to periodic vortex shedding from the body although the exact flow structure is also

dependent on Re (Fig. 2.3). Vortices of opposite sign are formed and shed from alternate sides

of the body forming a regular wake pattern termed the "von Karman Vortex Street" after one of

the first researchers to discuss the phenomena [20]. Vortex shedding generally occurs at a

regular frequency and for each geometry, a constant non dimensional frequency can be

obtained from the Strouhal number, St (2.1)

St = nsD
U

(2.1)

The flow pattern around each body is particular to that shape, but in general, the vortex street is

a characteristic of the wake in bluff body flows. It is also important to note that the vortex street

is dependant also on the Re of the flow as illustrated by the change in the wake of the circular

cylinder as Re is increased [2] (Fig. 2.4). The process involved in the generation of the vortex

street is complex and as yet a general model has been difficult to ascertain. However, a key

factor in the formation is the interaction of the shear layers shed from each side of the body and

various explanations of this process have been proposed [21]. The interaction of the periodic

fluctuations in the wake interact with the body, causing an unsteady pressure loading on the

structure. This unsteady loading is directly responsible for a particular type of fluid induced

body oscillation as will be discussed in the next section.
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Many of the models that have been developed are based on the assumption that the von Karman

vortex street is an inherently two-dimensional process. However, numerous experiments have

demonstrated that a significant proportion of the shed vorticity is transferred from the spanwise

component, ffi z' to the streamwise component, ffi x ' due to three dimensional wake effects [22-30],

along with oblique vortex shedding [22 and 26]. Another problem is that the shedding process

itself is not fully two-dimensional, even on sharp edged bodies, as indicated from measurement of

the spanwise variation of pressure on the body [14-15, 31-33]. Although the nature of bluff body

flows are characterised by unsteady periodic vortex shedding, each body, and even bodies at

different orientations, give very different flow fields. This variation in flow field at different

angles of incidence can lead to other sources of instability as will be mentioned later.

2.2 Vortex Induced Vibration.

One of the main effects of the vortex street is to induce an oscillating pressure load on the body.

When the structure is flexibly mounted, this can result in an oscillatory motion induced by the

vortex shedding, usually termed vortex induced vibration (VIV). In most cases the induced

motion is in the transverse direction at a frequency equal to St arising due to the unsteady lift

force. However, in some cases, usually in denser fluids, motion can be induced in the

streamwise direction, due to the unsteady drag force, at a frequency of 2St. The most noticeable

feature of VIV is when the vortex shedding frequency approaches the natural frequency of the

body, nb' Near this frequency, the body oscillation controls the vortex shedding, with the

shedding frequency being displaced to the body frequency, an effect termed "lock-in". In the

lock-in region, the vortex shedding frequency is constant rather than a function of the

free stream velocity (Fig. 2.5).

An extensive review of the phenomena of vortex induced vibration is given by Bearman [34] and

also by Parkinson [35-36] and Sarpkaya [37]. Both transverse and streamwise oscillations have

been studied in experiments by many researchers on a range of geometries. [13,31-32,37-54].

The effect of VIV may be studied using a free oscillation technique, where the body responds to

the induced loading, or a forced oscillation, where the body motion is prescribed. An important

benefit of forced oscillation experiments is indicated in [34], in that the body motion can be

closely controlled. The available experimental evidence from free and forced oscillations suggest

that the flow fields are essentially the same. That is, a freely suspended body oscillating at a

steady amplitude can be assumed to have the same flow field as that of a body being forced to

oscillate at the same amplitude and frequency and Re. As the flow can change rapidly in free

oscillation experiments, the advantage of the forced oscillation is that flow conditions can be

more closely controlled, allowing the effects of various parameters, such as amplitude and

frequency, to be investigated in detail.
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Although most bluff bodies will exhibit VIV behaviour, a general model from first principles is

difficult to derive as each geometry behaves differently, and produces very different flow

fields. Corless and Parkinson [55] suggested that VIV can occur on any bluff cylinder with an

appreciable afterbody, where the afterbody is defined as the part of the cross section

downstream of the separation points, which interacts with the wake structure to give rise to the

unsteady pressure loading on the body. Deniz et al [56] and Parkinson [35-36] suggested that

one of the most important parameters determining the oscillatory response to vortex shedding is

the afterbody length. As the pressure loading on the body occurs principally on the afterbody,

geometries with a short afterbody will be only weakly excited. For example, on aD-section

cylinder with its flat face upstream and normal to the onset flow, the shear layers will separate

at the two sharp comers with the semicircular region forming the afterbody (Fig. 2.6).

However, with the flat face downstream, the flow will still tend to separate at or near the

comers, depending on Re, resulting in very little or no afterbody and hence elicit a negligible

VIV response.

Another factor that leads to varying VIV response behaviour is the variation of key flow

parameters on different geometries. The base pressure coefficient, Cpb, has been shown to be

very sensitive to body oscillation, with a considerable increased suction for the circular cylinder

through the lock-in region compared to the base pressure on the stationary body [31, 48 and

57]. On the square cylinder, however, Cpb tends to exhibit slightly less suction in the lock-in

region relative to the stationary value [31 and 41]. Cpb is also affected by afterbody length, with

rectangular cylinders close to the critical section showing an increase in suction in the lock-in

region, contrary to the effect on higher aspect ratio sections [41]. Bearman and Obasaju [31]

also noted that the circular cylinder displayed a much greater amplification of the fluctuating

surface pressures and also fluctuating CL than the square. It has also been demonstrated that

bodies in motion also exhibit much more spanwise correlation, which is a contributing factor in

the variation of the parameters discussed above [2, 31-32, 34 and 46]. The combination of the

geometric effects, the variation exhibited by flow parameters and the complex nature of the

flow field, serve to demonstrate the problems involved in developing a general model for VIVo

Through the lock-in region, the fluctuating lift and response of a transversely oscillating body are

approximately sinusoidal, with the lift leading the body motion by some phase angle, <I> (2.2).

Y = YA sin(2nn/)

CL = C LA sin(2nns t + ~)
(2.2)

The phase is important to the response of the body, as VIV can only occur when <I> is positive.

When this is the case, the lift leads the body motion implying that lift is contributing to the

motion, the so called "negative damping" condition. For the circular cylinder, the phase tends to
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be positive throughout the lock-in region [34, 37, 48 and 58]. For the square section cylinder,

the phase is only positive at reduced velocities, Dr (2.3), higher than the resonant point [13, 31,

34 and 44] (Fig. 2.7).

(2.3)

Hence VIV only occurs on the square at the upper end of the lock-in region. Also noticeable in

the results from the square cylinder is that the reduced velocity at which ~ becomes positive

increases at higher amplitudes. This was also demonstrated by Obasaju [45], using the

measured ~ from forced oscillation experiments to calculate the variation of the mass-damping

parameter with Dr at a fixed amplitude (Fig. 2.8). This analysis gives the value that the mass­

damping parameter for a freely oscillating cylinder should take when the vibration amplitude is

constant. It is clear from Fig. 2.8 that the cylinder cannot oscillated below the resonance point

as the required mass-damping is negative.

2.2.1 Analytical Models for VIV.

As discussed above, the complex nature of the flow field around bodies undergoing VIV, and

the differing nature of the response of different geometries, make the development of a general

analytical method difficult. Most of the effort to date has been focused on the specific case of

the circular cylinder. Although most of the methods developed, with suitable parameter

selection, are applicable to other geometries, the circle has been used because of its

insusceptibility to galloping. This becomes important in cases of low damping, where the

critical velocity of galloping is close to the reduced velocities at which VIV occurs, and the two

phenomena cannot be treated separately, as will be discussed later.

For a stationary cylinder, the fluctuating lift force can be approximated by

(2.4)

where

with CU~O.6. For a cylinder undergoing oscillatory motion, (2.4) is inadequate, as FL varies

with amplitude until a limiting amplitude is reached. Ify is the transverse displacement, then the

equation of motion can be written as

my + cy + ky = F(y,y,y,t) (2.5)
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The crux of developing an analytical model for VIV lies in finding an empirical expression for

F to fit experimental observations. A variety of approaches have been developed, a number of

which are briefly discussed.

One such approach is the Lift-Oscillator method originally proposed by Hartlen and Currie

[59]. The equation of motion is rewritten to give the equation of motion

(2.6)

where

CL can be assumed to satisfy the characteristics of a Van der Pol oscillator and is linked to the

body velocity by

(2.7)

with ai' i=l to 4, being constants to be derived from experimental observations. Assuming the

body motion and the lift force both to be sinusoidal, a frequency ratio can be obtained that gives

the steady state amplitude of the response as well as the phase, ~. Two of the unknown

parameters can be obtained from the pressure oscillations on the stationary body, with the last

two being required to fit the experimental data. Reasonably good response amplitudes are

predicted by the model through the lock in region although the agreement is generally

qualitative rather than quantitative. One of the noticeable aspects of the model is the failure to

predict some hysteresis behaviour in the response for low damping cases. Also, Parkinson

indicated that the lock-in range may be displaced to the left [35].

The Hartlen-Currie Lift Oscillator model, although grvmg reasonable predictions of the

amplitude response, uses a somewhat heuristic method. The representation of the lift is based on

an approach that is dependent more on the similarity between the vortex shedding process and the

behaviour of non-linear oscillators than on the underlying physical behaviour of the fluid. Along

with the qualitative nature of the results and the need to derive the empirical parameters for

each experiment, the original model proved inadequate. An improved model, with more

accurate results, was presented by Skop and Griffen [58], where relations were derived for the

empirical model parameters from the system parameters that govern the response of the

cylinder, such as the physical mass and damping. Results of the analytic model are further

discussed and compared with experiment in [48-49] and demonstrate the ability of the model to

capture the variation in the response for a range of reduced damping. Also demonstrated by the
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models, in agreement with experiment, IS the amplification of the aerodynamic force

coefficients in the lock-in region due to the increased spanwise correlation of the vortex

shedding.

As mentioned above, one of the main criticisms of the Hartlen-Currie model is that there is no

systematic attempt to base the model on the known fluid dynamic behaviour, and hence the

results cannot be properly interpreted in terms of the fluid phenomena. An alternative model

that does attempt to retain as much of the fluid dynamics as possible whilst remaining tractable

analytically was developed by Iwan and Blevins [60]. This model introduced a hidden flow

variable to describe the vortex shedding process and is derived from considering the

momentum within a control volume around the body and part of the wake region. Hence, the

model parameters are inferred directly in terms of physical criteria and can be determined from

static and forced oscillation experiments, allowing the model to predict the response data.

Although the model was formulated from a different basis to the Hartlen-Currie model, the

hidden flow variable was also found to be the solution of a Van der Pol type non-linear

oscillator, giving some credence to both approaches. The results obtained were similar in nature

to the original Hartlen-Currie model [59].

Both models discussed above were for the analysis of elastically mounted rigid cylinders.

However, through the use of a mode shape factor and the model scaling principle, the analytical

models have been modified to investigate the VIV response of flexible structures such as cables

[61-62]. The basis for the model is the assumption that the vortex shedding process is strongly

dependent on the local vibration amplitude and only weakly on nearby spanwise elements of

the structure. Hence, an essentially 2D model can be used to analyse the response of more

complex, inherently 3D structures, although the model may still often be inaccurate for cases

with low structural damping. Skop et al [63] introduced a second component to the lift force in

the Hartlen-Currie model, represented by a stall term proportional to the body transverse

velocity, providing an asymptotic, self limiting response at zero damping, behaviour not

predicted by earlier models. This also has the benefit of using a basis for the model that is

closer to the fluid dynamics of the problem. The equations of motion are modified to give

(2.8)

where the last term on the RHS is the stall term and a is a constant to be determined from

experiments. The maximum amplitude response is well predicted, demonstrating good

agreement with experiment.



Chapter 2 : Literature Review. 12

A third, but less used model is the wake-oscillator model which originates from an attempt to

simulate the fluid dynamic effects of a circular cylinder using a torsional oscillator for the "dead

air" region behind the cylinder [64]. The lift coefficient can be represented as proportional to the

angular displacement of the wake-oscillator with the displacement being assumed to be

sinusoidal. Based on knowledge of various parameters defining the flow field around the

stationary cylinder, such as the amplitude of lift oscillations, St and the length of the vortex

formation region downstream of the body, the response amplitude can be calculated from the

equations of motion of the wake-oscillator. Good agreement with experimental data was obtained

for the phase angle, lock-in region and the response amplitude of the oscillation. Although some

promise is shown by this model, the main drawback, and the reason why the model is less

extensively used, is the required knowledge of the wake flow and vortex formation region behind

the cylinder. This is more complicated on sharp edged bodies, especially high aspect ratio bodies,

where there is more interaction between the downstream corners and the vortex formation as the

oscillation amplitude increases, making it more difficult to determine the required wake

parameters. Such a model has not been demonstrated on oscillating sharp edged bodies, although

some general wake models have been developed for stationary bodies [65].

The principles of the models discussed above were applied to more complex problems such as

bridge deck sections by Ehsan and Scanlan [66]. The maximum response amplitude for the

section was predicted and linked to the full bridge response using a modal analysis. However,

as with the models discussed above, parameter identification is still a problematic area for the

analysis. This problem was addressed by Gupta et al [67] by applying a parameter identification

technique based on the concepts of invariant imbedding and non-linear filtering theory. The

technique still requires a response experiment, but has proved to be less sensitive than previous

calculations and has also proved to give good results in turbulent flows. Larsen [68] developed

a general Van der Pol oscillator model to analyse the VIV response of a wide range of

structures. In previous models, the relationship between structural damping and response did

not always match the experimental data. However, Larsen generalised the model by introducing

a functional relation between the response and damping, by equating the energy supplied by the

vortex shedding process to the energy dissipated by the non-linear restoring force and structural

damping. The model is successfully demonstrated on a range of structures.

Practical applications of the VIV models are discussed in Griffm and Ramberg [50], Simiu and

Scanlan [2] and also Dyrbye et al [69]. Discussion of the relevance of the models to design

codes is also made, along with various methods of suppressing the oscillations such as

longitudinal slats or helical strakes. All of the models discussed have proved useful m

describing the basic criteria of VIV oscillations. However, the development of a completely

successful analytic model, from basic flow principles, that represents the full range of response
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behaviour of VIV, is still elusive. All of the models discussed above rely to varying degrees

upon empirical parameters derived from experimental data with judicious selection to obtain

good agreement with the data. One of the main drawbacks of all of the methods is the lack of

detailed flow field information that is provided by the results and the failure to reveal any of the

basic physical causes of the instabilities. For this reason, analysis of VIV has predominantly

used experimental techniques, however as computational methods become more powerful and

practicable, numerical techniques are increasingly being used, as will be discussed later.

2.3 Galloping.

Across-wind galloping is a self excited instability only found on bodies that have some form of

asymmetry in the aerodynamic forces associated with the cross flow, whereby a body

experiencing a perturbation normal to the cross flow, receives a further force tending to

increase the motion. A circular cylinder, with perfect symmetry will not exhibit galloping,

though galloping is a common occurrence of on ice-laden cables, where the ice introduces the

required asymmetry. For low amplitude motion, it can be shown that the Glauert-Den Hartog

(2.9) criteria is a necessary, though not sufficient, condition for galloping [2, 70-71].

(2.9)

Unlike VIV, galloping may exhibit large amplitude oscillations many times the across-wind

body dimensions and, depending on the mass damping parameter, usually occurs at frequencies

much lower than those of vortex shedding. As a result of the generally low frequency

oscillation, the phenomena is governed by essentially quasi-steady forces. This is reflected in

the reasonably successful development of an analytical theory for galloping, presented in detail

in [2, 35-36, 70-73], based on a quasi-steady analysis of the variation of the aerodynamic forces

with angle of incidence on a static body.

The equation of motion can be written in the usual form (2.10).

my+ cy + ley =+CFY pU2 D (2.10)

The quasi-steady assumptions mean that the lift and drag coefficients, CL(o.) and CD(o.) on an

oscillating cylinder at an effective angle of attack a. (Fig. 2.9), are assumed to be the same as

those on a stationary body at the same angle of attack. Hence, CFy, can be obtained from the

variation of the force coefficients on the stationary body. Since the effective angle of attack is a

function of the body and freestream velocity only, CFy can be expressed as a function of %'
using a seventh order polynomial fit (2.11) suggested by Parkinson [36 and 73].
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(2.11)

The solution of (2.10) and (2.11) gives the steady state amplitude response of the body and also

gives a prediction of the critical velocity of the onset of galloping. Good agreement with

experimental data is shown in [73] and various modifications to the method, including

modelling the effects of turbulence are presented in [35, 72, 74-80].

2.4 Combined Models for Vortex-Induced Vibration and Galloping.

The analytical galloping theory works very well for cases with reasonably high mass damping

where the critical onset velocity for galloping is significantly higher than the resonant velocity of

VIVo Parkinson et al [35 and 73] showed that there is good agreement between theory and

experiment for amplitude response except in the case where the resonant velocity is closest to the

critical onset velocity for galloping (Fig. 2.10). When the resonant velocity and galloping onset

get closer, the inertia effects of the body motion become a dominant effect on the fluid dynamics

of the system, and the quasi-steady assumption inherent in the galloping theory is violated. At

low damping values, galloping and VIV become coupled and almost indistinct. These effects

have been demonstrated by numerous researchers [13, 36, 38,42,44-45, 55, 81-84]. Luo and

Bearman [81] improved the range of applicability of a quasi-steady analysis to lower reduced

velocities, by utilising unsteady aerofoil theory on a square cylinder undergoing transverse

oscillation. The results are improved by the inclusion of inertia terms in the model, though close

to the resonant region, the effects of VIV are not fully captured. A similar result was obtained by

Luo et al [85] again by the inclusion of an inertia term in the equation ofmotion.

Attempts have been made to incorporate an analytical model for VIV within galloping theory, a

number of which are reviewed by Parkinson [36]. Among the models discussed are those of

Bouclin [86] and Tamura and Shimada [87]. Bouclin used a simple combination of the Hartlen­

Currie lift-oscillator model [59] with galloping theory, and solved numerically due to the strong

non-linearity of the equations of motion. Good results for the amplitude response were obtained,

although the ratio between vortex shedding frequency and body frequency shows some trends that

are not observed experimentally. Tamura and Shimada combined the wake-oscillator model of

Tamura et al [64] with galloping theory. Numerical methods are again utilised to obtain the

amplitude response and good qualitative agreement with experimental results is demonstrated.

Corless and Parkinson [55 and 88] used a slightly modified lift-oscillator model combined with

galloping theory and use the method of multiple time scales to obtain an analytical solution for

the response of the body. The model is semi-empirical, with a few parameters that are
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determined from results of static and a number of forced vibration experiments. Good results

are obtained, although the model tends to overpredict the amplitudes in the VIV region. This is

improved upon in [88] where the higher order terms of the galloping equations are not

neglected in the resonance region. It is also suggested that this model may also indicate the

effects of sub-harmonic resonance on the amplitude response.

All of the models described above for VIV and galloping are semi-empirical with model

parameters that are defined from experimental results. The semi-empirical approach avoids

much of the complexity whilst retaining some of the predictive nature of the model. Despite the

relatively successful results obtained thus far by both the VIV and galloping models, they are

limited and do not give a detailed picture of the complex flow field and fluid structure

interactions.

2.5 Flutter

Like galloping, flutter is a self excited aeroelastic response and can lead to self destructive

oscillations. The response can manifest itself as a one degree of freedom (lDOF) torsional

rotation, or as the two degree of freedom (2DOF) "classical flutter" where the vertical translation

and torsional motion are coupled. Of all civil engineering structures, the suspension bridge in

particular is susceptible to the phenomenon of flutter and for this reason, the following discussion

will concentrate on the analysis of flutter on bridges. The most notable example is the famous

destruction of the Tacoma Narrows bridge in 1940, in which the failure is generally accepted to

have been caused by a IDOF torsional instability [1, 3, 89-90]. Bridges are particularly prone to

oscillations due to their prominent exposure to wind and the lightweight, flexible structure,

generally leading to low natural frequencies. If the structure is given an initial disturbance, the

motion will either decay or diverge depending on whether the energy the oscillation extracts from

the flow is less than or exceeds the energy dissipated through mechanical damping. The point at

which the motion changes from the decaying to diverging case is the critical flutter condition

and occurs at some wind speed termed the "critical flutter velocity".

The analysis of flutter on suspension bridges is analogous to investigations of aerofoil flutter,

although the two are sufficiently different such that separate formulations are necessary [2-3,

70,91-93]. The equations of motion for the bridge deck are essentially the same as for that ofa

typical aerofoil.

mIL + Sa.ii + c/z + khh = Lh

Sa.IL + Iii + ca.Cx + ka. u = Ma.
(2.12)
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Various methods of analysis have been proposed, but the following method by Scanlan et al [3]

is now the generally accepted analysis procedure.

The basic model uses the assumption that for small sinusoidal oscillations, the self-excited lift

and moment on a bluffbody may be treated as linear in the structural displacement and rotation,

and in their first two derivatives [2-3 70 and 93]. Most wind engineering analyses use a real

form for Lh and M a [3] rather than the complex form that is usual in aeronautical analysis.

i; = tpU' (2B{KH; (K) ~ + KH; (K)~ +K' H; (K)a + K'H; (K) Z]

u; = tpU'(2B)'[KA; (K) ~ +KA; (K)~ + K' A; (K)a +K' A; (K) Z]
(2.13)

The coefficients At and Ht are termed the "flutter derivatives" or "flutter coefficients". It can

be shown that these flutter derivatives are analogous to coefficients derived from the

Theodorsen circulation function for inviscid thin aerofoil flutter theory [2-3, 69-70]. However,

unlike thin aerofoil theory, the flutter derivatives are usually determined experimentally using

two dimensional sectional model tests. Also, whereas galloping theory relies on information

that can be obtained from static conditions, the flutter derivatives may only be measured when

the body is undergoing oscillatory motion [2 and 69]. It is also important to note that the

assumption of sinusoidal motion mean that only oscillations at the harmonic frequencies are

analysed and the higher modes are neglected.

Much research has been conducted into the determination of the flutter derivatives using a variety

of techniques [89, 91-108]. Sectional model tests are usually used to measure the aerodynamic

forces on a body either undergoing a forced sinusoidal oscillation, or from free oscillation tests.

In the latter, the body is given an initial displacement and the rate of decay of the oscillation, as

well as the oscillation frequency are used to determine the flutter derivatives. A common means

to obtain the flutter derivatives from free oscillation experiments is the System Identification

technique, in which the frequency and damping of the time history of the bridge deck response are

used to obtain the system stiffuess and damping which are then used to derive the flutter

derivatives [98, 103-105]. Many of these experiments are conducted on IDOF oscillations, and

hence information on the coupling effects of 2DOF oscillations are neglected. More recent studies

have developed the techniques allowing a multi-mode analysis of the structure, where the flutter

derivatives are derived from a single series of 2DOF oscillations. [97, 100-101, 103-105].

Another method is the "Step-by-Step" method of deriving the flutter derivatives, which allows the

effect of each derivative on the instability to be assessed, information which is unclear from the

conventional formulation [95-96]. Recent investigations have attempted to obtain general
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relations between the flutter derivatives [95] and although some success has been achieved on

streamlined bridge sections, the relationships do not hold well on other sections.

The flutter derivatives give a picture of the structural response in the frequency domain, for an

assumed small amplitude sinusoidal motion. However, the arbitrary motion of the body in both

the h and ex directions may be analysed in the time domain using indicial functions, which are

related to the flutter derivatives by a Fourier transform. Indicial functions give the circulatory

lift response to a step change in the angle of attack of the flow and are analogous to those use in

thin aerofoil theory [70, 91-93, 107 and 109]. Indicial functions cannot be derived from

theoretical principles, and require experimental data for their determination. It should be noted

that although the flutter derivatives may be used to derive the indicial functions, the flutter

derivatives are only strictly valid for sinusoidal motion. The results for a typical indicial

function obtained for bridge decks, when compared with the equivalent aerofoil Wagner

function, clearly demonstrate the dissimilarity between bridge and aerofoil flutter (Fig. 2.11)

[70, 89, 91-93 and 107]. The Wagner function describes the initial monotonic increase in

unsteady lift following a step change in incidence, whereas the bridge function rises to an initial

peak followed by a decay to steady conditions.

In modem long span bridges, the motion in the along wind direction, or swaying motion, is

becoming a much more important component of the structural response. The equations of

motion (2.13) can be extended to represent the swaying response of the structure, by a third set

of flutter derivatives, pt [70, 103, 105 and 110]. These derivatives are generally calculated

using quasi-steady relations (2.14)[103, 110-111].

p' =~ dCD

2 K da '
p' =_I_dCD

3 K 2 da
(2.14)

Recent experiments have derived Pi* from a sectional model test that allowed motion in the

along wind direction [110]. These results indicate that the above spanwise flutter derivative

relations may be somewhat pessimistic in predicting the swaying response, and it is felt that

ideally, they should be derived from oscillatory experiments in a similar manner to the vertical

and torsional derivatives. Conventionally, the critical flutter velocity is derived from the At and

Ht derivatives only. However, recent studies on long span bridges have also demonstrated that

the inclusion of the pt derivatives may play a much more vital role in the analysis than

previously anticipated. For a recent bridge design, it was found that the critical flutter velocity

when using all three DOF was almost halved when compared to the conventional analysis using

only At and Ht [112]
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The flutter derivatives (2.13) are now generally accepted for analysis of suspension bridge

flutter and have proved invaluable in the analysis of the general response of bridge decks. The

flutter derivatives can be derived from a two dimensional sectional model that models the

bridge in geometry only. Along with the static force coefficients and combined with knowledge

of the modal forms of the full bridge, the aeroelastic response of a full three-dimensional model

may be predicted [2, 69-70, 106 and 111]. To validate this, flutter derivatives have also been

measured on a full three dimensional model and consistency illustrated with those measured on

a sectional model [113]. Hence, the flutter derivatives provide a general and useful guide to the

stability of particular bridge deck configurations. Investigations on how the cables and towers

affect the stability of the structure have also been made [114].

A number of different formulations of the flutter derivatives exist, some of which are discussed in

[115] and other alternatives given in [116-118]. The Scanlan convention presented above (2.13)

although widely used, suffers from a loss of information at low Ur as each flutter derivative must

have zero value approaching zero Ur. An attempt to derive an alternative formulation, that draws

on the advantages of each formulation has been made with a reasonable amount of success [115].

A solution to the flutter equations (2.13) to derive the critical flutter velocity can be obtained by

assuming h and ex have solutions proportional to

h ho irof ho iKs-=-e =-e
B B B (2.15)

The solution procedure is discussed in more detail in [2, 69-70 and 119] and is also presented in

Appendix F.

Studies have been made to investigate the effects of turbulence and buffeting on the flutter

response and critical velocity [2, 69-70,103,105,107,111,120-123]. The random effects due

to gusting of natural wind may be determined from the flutter derivatives. It has also been shown

that turbulence in general does not have a large effect on the flutter derivatives. However, the

effect of turbulence is to generally increase the critical flutter velocity, due to the reduction in the

spanwise coherence of the flow field across the section. Recent investigations have also modified

the models to analyse the aeroelastic behaviour of bridges during construction [69 and 124]. The

main effect of the modification is to include modelling for the eccentric ballast often used to

damp any oscillatory response of the structure during the construction phase.

Vortex induced oscillation is not as great a problem on bridge structures as flutter, although the

phenomenon has been investigated by various researchers [89, 125-127]. Early investigations
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of the Tacoma Narrows catastrophe concluded that the cause of the failure was due to motion

induced by vortex shedding, although the cause is now known to be lDOF torsional flutter [1].

Scanlan suggested that when the generally low speed case of VIV occurs, the linear analytic

model for flutter may be supplemented at the lock-in condition by the inclusion of a time

dependent force term [105]. This was demonstrated in a combined model for flutter and VIV

analysis, where the maximum amplitude in the lock-in region, for vertical or torsional motion,

may be calculated [128]. However, any undesirable VIV or other instability are often avoided

early in the design stage, by altering the structural form to adjust the onset and behaviour of the

oscillatory response [105].

With the tendency towards longer span bridges, the aerodynamic stability often requires

enhancement by some flow control device that increases the critical flutter velocity of the

structure. A common practice is the addition of fairings to the edges of the section [126 and

129], where the fairing adjusts the separation from the leading edge, giving the deck section a

more streamlined form. Fairings are particularly useful for improving the behaviour of the

notably unstable H-section form used in the original Tacoma Narrows Bridge [126]. An

alternative approach is the use of guide vanes or aerodynamic appendages supported from the

section, that effectively increase the aerodynamic damping of the bridge. These vanes may be

passive with their position relative to the bridge deck remaining constant, or to gain further

increase in flutter stability, may be actively controlled. The effect of such appendages on the

flutter velocity on a number of deck sections is presented by Cobo del Arco et al [130]. Other

studies, both theoretical and experimental are presented in [131 and 132]. Kobayashi [131]

indicated that in theory the critical flutter velocity may be increased up to an infinite value. A

similar use of guide vanes was also studied by Larsen [133], with the aim of suppressing the

vertical oscillations of the Great Belt East bridge due to excitation from vortex shedding.

These models have proved reasonably successful in determining the critical flutter velocity and

response of a structure. However, there is still a heavy reliance on experimental input to the

models, with the key to these analyses being the extraction of the flutter coefficients from a

series of sectional model tests.

2.6 Grid Based Numerical Models.

Most of the analytical models discussed above rely to some extent on measurements of

aerodynamic forces, or the derivation of a number of empirical parameters from experiment.

However, the development in computer hardware and software means that, increasingly,

numerical models are being used to analyse bluff body flows and the structural response in fluid­

structure interaction problems. A numerical method that can reliably predict the flow field around
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static and oscillating bodies would be a valuable tool early in the design process of a structure.

A much wider range of designs could be investigated using the computational model than could

feasibly be studied using experimental techniques, leaving wind tunnel tests to simply validate the

final design. Many of these numerical models use Eulerian techniques, in which a mesh or grid is

used to model the flow field. Recent research and results of analyses for bluff body flows, using

some of the more prominent and successful methods, are discussed below.

For low Reynolds numbers, computational results showing good agreement with experimental

data have been achieved by numerous researchers [135-141]. In most of these cases, the flow

field is assumed to be two dimensional and also to be laminar. Okajima and fellow researchers

[135-138] reported calculations on a range of geometries. The variation of the flow field and of

key parameters, such as CD and St on different aspect ratio rectangular cylinders was well

predicted in [136] (Fig. 2.12). Results for a square cylinder undergoing forced transverse and

longitudinal oscillations were presented in [135 and 137]. Good agreement with experiment is

shown and the lock-in phenomenon is captured by the computation, although the low Re means

that the lock-in range is quite large (Dr from approximately 2.0 to 16.0). The results for the

longitudinal oscillations are not quite as good due to the failure to predict the two different

modes of vortex shedding discussed by Obasaju et al [51-52]. Davis and Moore [139] presented

computational results for various rectangular configurations, and good agreement with

experiment is demonstrated for the variation of St with Re. The authors claimed, however, that

the effects of increasing Re, and hence increasing turbulent diffusion, are partially modelled,

somewhat dubiously, by adjusting the amount of numerical diffusion in the calculation. Another

interesting use of computational methods for bluff body analysis is the study of wind tunnel

blockage and its effect on the aerodynamic characteristics of stationary and oscillating cylinders

[138].

Fujiwara et al [140] reported calculations on elastically supported bridge deck sections using a

finite difference calculation. The VIV phenomenon is captured by the calculations on some

sections, although the amplitude of the body response is overestimated. The response is limited

to the vertical degree of freedom, and no analysis of flutter is presented. Sohanker et al [141]

modelled the flow around rectangular cylinders at various angles of incidence. The effects of

aspect ratio are well predicted, although at incidence the agreement between numerical results

and experiment is not as good (Fig. 2.13). In particular, the typical variation of St, with a peak

at approximately 12° where the shear layer reattaches to the side face, is not captured by the

calculations. Similar discrepancies are found in the CD and CL results, although comparison is

more difficult due to the higher Re used in the experimental data.
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Although the mean flow field around a bluff body may be two dimensional or the problem may

be geometrically two dimensional, there is a significant three dimensionality within the flow

even at low Re due to turbulent diffusion in each direction. The vortex shedding process itself is

not fully two dimensional, as is demonstrated by the spanwise pressure variation in the base

region of the body [14-15]. Another example of the three dimensionality of the process often

found in wind tunnel studies, is oblique vortex shedding caused by end effects on the model.

Also, as Re increases, there is more vortex stretching and roll-up giving rise to streamwise

vorticity and also breakdown of the vortices due to the turbulent motion.

Hence, one of the most problematic areas for grid based methods is the modelling of turbulence

and turbulent diffusion, which has a large effect on the wakes of bluff bodies. A range of

methods have been developed to tackle these problems, each of which has a different

philosophy and modelling approach. For low Re, it is feasible to use a calculation mesh in

which all the scales of turbulent motion may be resolved. In this case, the flow field is modelled

using direct numerical simulation (DNS), and as all the turbulence scales are resolved, the

procedure does not require a turbulence model [134]. Many wind engineering applications are

at much higher Re than can be modelled successfully by DNS, and hence, DNS has not been

widely used for bluff body flow fields. At higher Re, the number of grid points required to

completely resolve the flow field becomes prohibitive and some model for the small scale

turbulent motion needs to be introduced. A natural progression from DNS is large-eddy

simulation (LES) where large structures are modelled directly with the small scale structures

approximated using some appropriate model. A different approach is to model the flow field

using the Reynolds-averaged Navier-Stokes (RANS) equations to model the general fluid

motion, together with a turbulence model that simulates only the superimposed turbulent

fluctuations, such as the k-e model.

As discussed above, many practical wind engineering problems are at a high Re, at which

turbulent diffusion plays a significant role in the flow phenomena and cannot be neglected.

Rodi [134] stated that modelling has until recently used the RANS equations together with

statistical turbulence models to simulate the effects of all turbulent motion. However, in vortex

shedding situations typical of bluff body flows, the unsteady RANS equations are solved to

model the vortex shedding motion, and only the superimposed stochastic turbulence

fluctuations are simulated by the turbulence model. Much of the research effort for predicting

bluff body flow fields has been directed to developing the k-e eddy viscosity model although

other models such as the Reynolds-Stress model have also been investigated. Experience has

shown that many of these statistical models do not fully capture the complex flow fields,

especially when the flow is dominated by the large scale vortical structures that are experienced

in processes like vortex shedding. An alternative approach is LES, where the large scale eddy
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structures are resolved, leaving only the small scale turbulent motion to be modelled. However,

the main drawback of this procedure is the large computational expense, in terms of both CPU

and memory requirements. Brief reviews and some comparisons of the various techniques and

modelling strategies, including methods of implementation, are given in [134, 142-143], with

numerous computations on bluff bodies reported by various researchers in [144-154].

The k-e turbulence model relates the Reynolds stresses to mean velocity gradients by the eddy

viscosity. The two parameters, k and E, together define the local state of the turbulence and

represent the turbulent kinetic energy, (TKE), and its rate of dissipation respectively. One of the

main problems that has been encountered in the k-e model is the high predicted TKE in regions of

stagnation, arising from the modelling assumption that the eddy viscosity is isotropic (Fig. 2.14).

The effect that this has on bluff body flow calculations is to cause too much mixing in the

separated shear layers, which in turn results in an under prediction of the forces on the body. In

some cases, this can also result in the failure to predict any vortex shedding motion in the body

wake [152]. Various adjustments to the standard k-e model have been suggested to improve the

results, based on either increasing the rate of TKE dissipation or to inhibit the rate ofproduction

[134, 142-143], although the methods used are somewhat empirical. Typical results of

calculations for the Cp around a square cylinder are shown in Fig. 2.15. Also, Rodi [134]

showed that whereas the modifications are necessary for square cylinder calculations, the

length of the separation region behind a surface mounted cube, which is already over-predicted

by the standard model, is increased by the changes.

In LES, the time dependent Navier-Stokes equations are solved numerically with only large

motions, such as those typical of vortex shedding being resolved leaving only the small scale

turbulent motions to be modelled. These small scale motions are typically accounted for in

subgrid-scale models (SGS), of which that due to Smagorinsky is often used [134, 142-143 153­

154]. In this model, the subgrid-scale eddy viscosity is related to the strain rate of the resolved

large scale motion as a velocity scale and to the mesh size as a length scale. This model however

introduces an empirical constant, Cs' which has been found not to be universal but dependent on

the flow considered, and may also vary from point to point in the flow. Dynamic models are being

investigated, where time dependent values of Cs are calculated, though these are currently at an

early stage of development and at present tend to be numerically unstable [134]. One of the main

disadvantages of LES methods is the large computational expense, with the CPU required being

around an order of magnitude higher than the standard k-e model, although the rapid increase in

the speed ofmodem computational hardware is making the use ofLES more realistic.

Near the body surface, wall functions are often necessary due to the high resolution that is

required in the mesh to sufficiently resolve the viscous sub-layer at high Re [134]. These



Chapter 2 : Literature Review. 23

functions use power laws to obtain the near wall velocities and shear stresses, although the

application of such functions is questionable in regions of highly separated flow that are typical

of bluff bodies. As with the various k-E models, qualitatively good results have been obtained for

the flow field around a square cylinder, with the representative quantities of CD and St also well

predicted. The conclusions from these analyses are that the LES models tend to give a better

simulation of the details of the flow, compared to RANS models combined with a stochastic

turbulence model, due to the extra resolution provided by the calculation. However, as well as the

much greater computational requirements, the main drawbacks with LES are that the solutions

are not uniformly good, and there can be a large variation between solutions. Postulated reasons

for the variation [134], include insufficient resolution on the side faces in the highly separated

region where there may be a small reverse flow, and also numerical diffusion due to insufficient

grid resolution as the large eddy structures are shed from the body. Yu and Kareem [153-154]

demonstrated the use ofLES on square and rectangular cylinders. Good results are obtained for

the mean force coefficients in each case although aspect ratios less than 1.0 and the effects of

incidence are not investigated. Murakami et al [144, 146 and 152] used LES to simulate the

flow around a square cylinder undergoing a forced transverse oscillation in the vortex lock-in

frequency regime. Reasonably good results for the phase angle between body oscillation and

CL are obtained. Panneer Selvam et al [155] presented an efficient LES model in which a 3D

model is used to study the flow around a circular cylinder near the critical Re. The method

utilises accurate approximations of the convection terms using a finite element model, resulting

in less numerical diffusion. A consequence of this is that the reduction in CD in the critical

regime is predicted with a greatly reduced number of grid points compared to other LES results.

Koutmos and Mavridis [151] have developed a two-dimensional procedure that encompasses

aspects of both LES and k-e models. Within these calculations, large scale vortex structures are

characterised by their quality, deterministic or random, and by their size. In this hybrid method,

the periodic component of the TKE is determined from the periodic velocity components, with

the small scale random turbulent fluctuations modelled by a modified k-e procedure. This

mixed model is in general shown to outperform the standard k-e models and produced results

similar in quality to more conventional LES calculations. However, the predicted CD and St for

the square cylinder are generally too high, although the calculations are performed in a channel

with 19% blockage ratio and appear to be uncorrected.

Numerous studies have highlighted a significant difference between two and three dimensional

LES calculations [145, 147, 152-153 and 156]. Tamura and Kuwahara [147 and 156]

demonstrated these differences by comparing the results of two and three dimensional

calculations on a square cylinder at 15° incidence. In 2D, even with excellent resolution, the

reattachment of the shear layer to the side face is not obvious due to strong vortical structures
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convecting along the surface. In 3D, with similar resolution, more representative results are

obtained and the separation is more stable and clearly defmed (Fig. 2.16). The differences can be

attributed to the three dimensional dissipation and stretching of the shed vortices. Similar effects

have been observed and measured experimentally [25-27]. Comparing both 2D and 3D

calculations at various angles of incidence shows that the 3D calculation captures the correct

variation of the force coefficients (Fig. 2.17). Similar conclusions were obtained in [152-153],

although it is interesting that the difference between 2D and 3D is much less prominent in the

results reported by Yu et al [153]. All these results show that accurate prediction of the complex

flow fields are becoming practical, although the implied necessity for a fully three dimensional

model again adds to the computational effort required for these calculations. A recent estimate

was that 20hrs CPU was required on a CRAY super-computer to calculate the flow field during

one vortex shedding cycle.

Numerical methods are also now being applied to more complex geometries including bridge

deck sections [140, 157-158]. Lee et al, using a k-E model, and Kuroda both presented

calculations of the static force coefficients at a range of angles of incidence for some recent

bridge designs. Both sets of calculations were applied to stationary bodies only and onset of

flutter using oscillating bodies was not analysed. However, Lee's results for the 2D section

static wind loading have been input to a dynamic structural response analysis to assess the

displacement of the full structure. Despite the successful predictions for static sections, "CFD,

however, is still some distance away from being sophisticated enough to handle the cases of

flutter derivatives for the complex shapes of typical bridge sections:' (Scanlan [105])

2.7 Discrete Vortex Methods.

An alternative to the grid based numerical methods is a Lagrangian approach, where the

principle is based on the tracking of quantities within the flow field rather than calculating these

quantities at the nodes of a mesh. Discrete vortex methods use such an approach and are based

on the idea that the vorticity within a flow field can be represented, through discretisation, by a

series of vortex particles. This principle is not new, with amongst others, Helmholtz and

Rosenhead suggesting that in inviscid flows, areas of vorticity could be modelled using a series

of vortices of "appropriate circulation and infinitely small cross section" [4]. Following this

lead, discretisation of the vorticity field into a distribution of vortex particles embedded in a

potential flow has become the basis from which vortex methods have evolved. However, it is

the rapid advancement in computer technology that has allowed vortex methods to become a

useful analysis tool. Many different models have been developed, and there is now a vast

literature available, with comprehensive reviews given in [4-6, 159-161].
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The vortex particles used to represent the vorticity are free to move in the flow field in a

Lagrangian manner and are tracked numerically in time, hence removing the necessity for a

calculation mesh. The velocity field can be ascertained by determining the velocity of each

particle. Therefore, given the distribution of vortex particles and the boundary conditions, the

flow field is defined. Vortex methods have a number of advantages over grid based methods

arising from the Lagrangian approach, such as the necessity for a velocity calculation only at the

vortex centres, vortices concentrated only in areas of vorticity and exact treatment of boundary

conditions at infmity. Also, the absence of a calculation mesh indicates that vortex methods may

be applied to a wide range of geometries, as problems associated with fitting meshes to the body

geometry are avoided. However, the advantages have to be measured alongside problems such as

the singularities that arise from the use of point vortices, the computational cost being

proportional to the square of the number of vortex particles and also the inherent inaccuracies

incurred by representing a continuous vorticity distribution by a series of discrete particles.

Much literature has been published on attempts to circumvent these disadvantages and will be

briefly summarised in the following section, with the reviews [4-6, 159-162] giving a much

more detailed discussion.

2.7.1 Theoretical and Numerical Aspects of Discrete Vortex Methods.

The basis of vortex methods stems from a modified representation of the two dimensional

incompressible Navier-Stokes equations (2.16). Using the definition of vorticity as the curl of

velocity, the conventional velocity-pressure form of the equations can be redefined in a

vorticity-stream function form, giving the vorticity transport equations (2.17).

V.V= 0

av() 1 0-+ V.V V = --VP+vV-vat p

aw() 0- + U. v co = vV-wat

(2.16)

(2.17)

For inviscid flows, these equations state that vorticity is a kinematic property of any given

vortex particle, and in viscous flows, they describe how the vorticity created at boundaries is

convected and diffused in the flow. It should be noted, that in homogeneous flows, vorticity is

created only by the boundaries of fluid regions [4 and 7].

By discretising the vorticity field into a distribution of point vortices, a solution to the 2D Euler

equations for inviscid flow is provided by the dynamics of the system. However, the singular
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nature of point vortices is potentially a large source of error within vortex methods, especially

adjacent to the body surface, where many vortices are in close proximity with each other. The

introduction of cut-off functions to represent a distribution of vorticity within some "core

radius", (J, around the vortex centre removes the singularity of point vortices. Numerous cut-off

schemes have been used and are discussed in more detail in [4-5, 160-161]. It has been pointed

out that although the use of cut-off functions removes the singularity problem, they must be

regarded as a mathematical rather than a physical artifice [4]. The velocity field induced by a

vortex with small but finite size, is quantitatively correct at large distances from the vortex, but

only qualitatively correct near the core as the singularity is removed (Fig. 2.18)

The diffusion term, vV2co in the vorticity transport equations (2.17), has proved to be

problematic for Lagrangian vortex methods. Various methods have been utilised to modify the

inviscid model to allow viscous flow calculations: the core expansion technique [5-6, 161 and

163], random vortex method [164-168], particle strength exchange [169-171] and the diffusion

velocity method [172-174]. In each of these methods, the vorticity transport equation is split

into two parts in an operator splitting technique, with convection and diffusion being solved

sequentially rather than simultaneously. All of these models simulate viscous diffusion only,

and do not model the effects of turbulent diffusion on the flow field.

The random walk technique has been widely used and is based on the idea that the diffusion

equations can be solved in a statistical sense for homogeneous flows where the kinematic

viscosity, v, is assumed to be constant. Each particle is given a random displacement with a

Gaussian probability distribution with zero mean and standard deviation ..J2vM. Numerous

convergence proofs of the technique have been derived [176-178], also discussed by Puckett in

[161], and convergence has been demonstrated practically by Sethian et al [165 and 179].

However, the random walk technique does have a more mathematical rather than physical

basis, and should ideally be applied to the case with many overlapping vortex blobs [4]. As the

diffusion equation is solved in a statistical sense, if the number of vortex particles in the

calculation is increased, the viscous diffusion effects in the flow will be better modelled. Also,

the number of particles required to provide sufficient resolution of the flow field will increase

as Re increases. Along with the effects of turbulent diffusion at high Re being neglected, other

limitations of the random walk are that at high Re, the viscous diffusion component becomes

very small, resulting in the calculated flow effectively being inviscid, although this is a problem

for all the viscous diffusion models. The core expansion technique, where (J is time varying,

has been used to simulate diffusion [5-6, 161 and 163], although Greengard [180] proved that

the model converges to a system of equations different to the Navier-Stokes equations. Despite

the diffusion being correctly modelled, the convection is calculated from an averaged velocity

rather than the local velocity field, although this problem may be redressed by using a
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combination of the core expansion method and a vortex splitting technique. In the particle

strength exchange scheme, instead of maintaining a constant circulation for each vortex

particle, the circulation is modified to account for diffusion. One technique that is often used in

this process is the Vortex-in-Cell method, where the circulation is interpolated onto a mesh

fitted to the calculation domain. The diffusion equation is solved at each mesh node, and the

new vorticity field redistributed to the vortex particles [161 and 181]. The diffusion velocity

method uses the gradient of vorticity to generate an extra velocity term, which accounts for the

diffusion part of the Navier Stokes equations. The vortices are hence propagated by the

convection velocity and diffusion velocity (2.18).
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Ogami et al [173] state that the diffusion velocity gives a net flow of vorticity that is proportional

to the vorticity gradient, and as such is consistent with the "First Law of Diffusion". Hence, the

technique is more based on the physical processes than the previous methods discussed above.

However, in the far wake of the body, where particles are greatly dispersed, calculation of the

vorticity gradient may be more prone to error. Little velocity is induced between distant vortices,

and hence eddies in the wake of a body will stop spreading once the component vortices are

sufficiently far apart. Clarke and Tutty [172] found that the diffusion velocity method worked

well close to the body, but switched to the random walk method at greater distances from the

body.

One of the main disadvantages of vortex methods is that for a flow field of N particles, the

velocity calculation requires O(N2) operations and hence becomes prohibitive at large N. One

procedure that can be used to improve computational efficiency is vortex amalgamation or

merging [160 and 182]. In this process, two vortices are merged into a single vortex particle to

limit the number of particles in the flow, and hence reduce the operation count. This merging

process is irreversible and does introduce a small error into the velocity field induced by the

newly merged vortex particle. For this reason, merging only takes place if some error tolerance

is satisfied, and hence is avoided for particles that have large circulation, that are close to the

body surface and for pairs of particles with large inter-vortex spacing. Other more complex

techniques have been developed that reduce the operation count from O(N2) to O(NlogN) or

even O(N). These techniques included the Vortex-in-Cell method [5, 160 and 166], Anderson's

method oflocal corrections [183-184], and Multipole Methods [172, 185-188]. Brief reviews

are given of each of these techniques in [161 and 189] and will be summarised below.

The Vortex in Cell (VIC) method (or sometimes Cloud in Cell method) aims to reduce the

operation count of the velocity calculation, by combining elements of both the Lagrangian and
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Eulerian approaches. A fixed mesh is fitted over the domain of the flow fIeld, with the vortex

particles representing the discretised vorticity field flowing through the mesh in a Lagrangian

manner. The reduction in the operation count is achieved through the use of the mesh to

calculate the velocity field, For a flow field containing N particles and using a mesh containing

M nodes, the VIC method reduces the operation count to approximately O(N+M1ogM). The

method of local corrections, was proposed by Anderson [183] and also used by Baden et al

[190], and is a variation on the VIC technique. The method is based on the observation that the

difference between the velocity induced by a point vortex and a vortex blob is very small at

large distances from the vortex centre. The velocity field is calculated from a distribution of

point vortices using the VIC method and is then "locally corrected" about the centre of each

vortex. The main drawback of these methods is that some of advantages of the vortex method

are lost with the need to fit a Eulerian mesh to the flow field. The interpolation to and from the

mesh will include areas of the flow where there is little or no vorticity and will also introduce

some numerical diffusion into the solution.

Multipole expansions utilise very different techniques to the VIC methods described above, the

basic philosophy being to decompose the flow field into a series of zones, each containing a

cluster of vortex particles. Provided that a zone is sufficiently far from the point z, at which the

velocity is being calculated, then the contribution of the particles in the zone to the velocity, can

be found by a Laurent series expansion (2.19) rather than from direct summation of all the

particles.

a.
U(z)-iV(z)=I 1 .

j 21ti(z - ZJl (2.19)

The advantages of this technique are that firstly, the Lagrangian nature of the vortex method is

retained and secondly, accurate results can be obtained with a significant reduction in the

operation count. The implementation of the method varies from application to application and

full descriptions of some of these methods are given in [172, 185-188 and 191]. Typically,

multipole expansions give an operation count of O(MogN) for a flow field of N particles. The

Fast Multipole Method (FMM) of Greengard and Rokhlin [185] is claimed to give an operation

count of O(N) although this is questioned by Aluru [192] who argues the algorithm may also be

O(MogN) in the worst case. In addition to all the above methods, improved calculation

efficiency can be obtained by using parallel computation techniques, examples of which are

demonstrated for vortex methods in [186, 193-194].

A significant amount of research has been conducted into the implementation of the boundary

conditions on the body surface, where the conditions of no-slip and no-penetration are to be

satisfied. Surface singularity distributions, such as vortex sheets are used to satisfy the no-
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penetration condition. Between each node that defines the body surface, these distributions are

divided into segments, with the circulation of each being either constant, varying linearly or in

some other manner. The nodal values of the distribution are determined by solving a set of

simultaneous linear equations, and therefore define the surface vorticity distribution. Once

vorticity is shed from the body, the existence of wake vorticity in an otherwise potential flow,

influences the normal velocity condition at the boundary surface. A common technique is the

use of image vortices within the body to cancel the normal velocity for simple geometries such,

as circular cylinders, with transformation mappings used to model more complex

configurations [4 and 161].

As discussed above for grid based methods, an important aspect of bluff body wakes is the

diffusion due to the small scale turbulent fluctuations in the flow. Although there exist

numerous turbulence models for grid based methods, the Lagrangian nature of vortex methods

mean that a very different modelling approach is required. It has been suggested that the

Lagrangian approach may be advantageous and that vortex methods may be better suited to

modelling turbulent flow than grid based applications [200-201]. The flow fields predicted by

vortex methods are characterised by small scale fluctuations arising from the interactions of the

vortex particles, and in a 3D model, these interactions could be sufficiently complex to

resemble the nature of turbulent flow provided there is a high enough density of particles to

give sufficient resolution of the flow. However, the development of turbulence models

applicable to vortex methods is at present not as advanced as with grid based methods and

though some theoretical models have been demonstrated, none have as yet been practically

applied to vortex method calculations. Using the idea that the limiting factor on modelling the

small scale fluctuations in the flow is the resolution provided by the vortex particles, one

turbulence modelling approach for vortex methods is a method similar to grid based LES

models. The vortex method would be used to model all the large flow structures and the small

scale structures modelled using some appropriate turbulence model although the method of

application would be very different to grid based methods. This has been demonstrated to an

extent by Milane and Nourazar [174] who use a 3D subgrid-scale model to provide the

turbulent diffusion component to the flow over a splitter plate calculated by a 2D vortex

method. The results are encouraging, though some care is needed in the implementation of the

subgrid-scale model as it requires a mesh to be fitted to the computational domain, which may

introduce a source of numerical diffusion. Another potential approach, as yet only discussed

theoretically is presented by Cottet [228], where the truncation error produced by the core

function is analysed and can be used as the starting point for an eddy viscosity model. This

method retains the Lagrangian aspect of the model though it remains to be proved as a practical

approach to the problem.
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Vortex methods have progressed rapidly with a wide variety of techniques leading to improved

modelling and calculation efficiency, as indicated in the above discussion. The grid free nature of

the method, as well as the concentration of the calculation domain in areas of high vorticity imply

that vortex methods are well suited to the analysis ofbluffbody flow fields. Also, the absence of a

calculation grid allows complex body geometries and moving bodies to be modelled fairly

easily, with boundary conditions only requiring to be applied relative to the body. In the

following section, various results from calculations on bluff body flows using discrete vortex

methods are discussed.

2.7.2 Discrete Vortex Method Results.

Successful simulation of the complex flow field around a bluff body presents a challenge for

any computational method. However, the discrete vortex method has proved particularly well

suited to these highly separated flows [162 and 195] and a range of results are presented for a

variety of geometries in [166, 168, 172, 196-207]. Each of these methods uses the theoretical

basis that is presented above, although implementation differs in each case as discussed briefly

below. It should be noted that virtually all of these methods utilise fast algorithms, generally

either VIC or a multipole method, though comparison of the efficiency of the methods will not

be discussed here.

A key aspect of vortex methods is how the vorticity is shed form the body surface into the

flow with the shedding process being described by two parameters, the strength and position

of the new wake vortex being introduced into the flow field. An extensive review and

discussion of various techniques that have been used for the introduction of the vortex

particles into the flow is given by Sarpkaya [4]. One of the main problems to be addressed is

how the newly created vortices are shed from the body surface. Generally, vortices are released

at the location of the shear layer separation. A more complex approach is to create vortices at

the boundary surface that satisfy the no-slip condition, effectively representing the boundary

layer. If the boundary layer is well resolved, the vortices will separate automatically from the

surface near to the true separation points [164].

For sharp edged bodies, the separation of the shear layer is often fixed at the comers, and this is

taken advantage of in numerous models. However, the highly separated and re-circulatory nature

of the flow mean that as well as the primary separation from the upstream comers, there may

also be secondary separation at the downstream comers, a phenomenon often neglected in many

models. Bergstrom et al [200-201] alternately released vortex particles from the upstream

comers of a square cylinder, with the strength of the vortex being determined from the local

velocity field at the separation locations (Fig. 2.19). The mean wake velocities and instantaneous
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streamlines from the calculation were realistic (Fig. 2.20), although the mean suction pressure on

the side faces was too low, and the St is overpredicted somewhat. Bienkiewicz et al [202-203]

used a similar procedure for releasing vortices at a specified separation point. However, it was

noted that a perturbation had to be introduced to the flow in symmetric cases to accelerate the

development of oscillatory flow. Good results were obtained for the square cylinder at 0°, though

the variation of St and CD with incidence was not well captured (Fig. 2.21). This may be a direct

result from the assumption that separation from the downstream comers is only a secondary

effect. As the body moves to incidence, one of the shear layers will intermittently, then fully,

separate from one of the downstream comers, making the assumption invalid (Fig. 2.22). This

may also introduce problems on high aspect ratio bodies, where there will be reattachment on

the side faces with the shear layer separating from the downstream comers. The CD results for

varying aspect ratio from Blevins [195] demonstrate this problem (Fig. 2.23).

The separation location needs much more careful treatment in the case of the circular cylinder.

Clarke and Tutty [172] allowed the vortex blobs created from the surface vorticity distribution

to be convected in the flow, and hence the separation points are automatically determined.

However, it was found that some vortex particles with large circulation were released leading to

a distorted local velocity field, and so "dynamic vortex creation" was introduced, whereby a

vortex that is formed with a strength greater than some maximum, is split into a number of

smaller strength particles. Good results were demonstrated on a circular cylinder in impulsively

started flow. Smith and Stansby [166] use a model whereby the newly created vorticity on the

body surface is shared between a specified number of new vortices that are created at each

body node. The variation with time of the surface pressure distribution and the location of the

separation point for the starting flow around a circular cylinder was well predicted.

Koumoutsakos et al [170 and 198] investigated the flow around an impulsively started circular

cylinder using a very high resolution of particles. The convergence of vortex methods ideally

requires that the vortex cores should overlap at all times, however, in practise this is difficult to

achieve as the wake convects downstream. To overcome this, the particle locations were

redistributed onto a uniform grid whilst interpolating the vorticity distribution to the new

positions. This allowed high resolution simulation of the cylinder wake, as the particles are not

allowed to disperse too quickly, or conversely, to cluster together. The variation of CD with

time compared well with analytic and experimental results, and a detailed investigation of the

development of the flow field was presented although most of the discussion is based on

qualitative comparisons with experiment. A similar method was used to investigate rotationally

oscillating cylinders by Shiels et al [199], with the results being used to study the mechanism of

the reduction in CD due to the rotational oscillations.
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Vortex methods are now being applied to a wider range of problems [167 and 168], including

more realistic applications such as the analysis of suspension bridge deck sections [119, 167,

196 and 208], though these results will be discussed in more detail in Chapter 4. In general, the

results discussed above demonstrate that discrete vortex methods are particularly well suited to

the analysis of a wide range of bluff body flows. Added to this, complex geometries can be

modelled relatively easily as the problems of mesh generation are avoided. Many of the problems

experienced with grid based methods, such as numerical diffusion and modelling of the near

wall flow in highly separated regions, are avoided in vortex methods as the vortex particles tend

to be concentrated in areas ofhigh vorticity, leading to good resolution of the vortical flows.
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DISCRETE VORTEX METHOD - THEORY AND NUMERICAL
MODELLING.

3.0 Introduction.

In this chapter, the theory and numerical implementation of a discrete vortex method is presented

and discussed. Much of the model was developed prior to this study and the numerical modelling

is presented in more detail by Lin et al [7-9]. Originally, the aim of the method was to study the

dynamic stall phenomenon on aerofoil geometries and the model was primarily developed for this

application. Hence, much of the modelling lacked the generality required to enable satisfactory

analysis of other configurations. Also, it has been found that the original model was somewhat

sensitive to a number of input parameters that defme aspects of the numerical model. The aim of

this research was to develop a model to analyse the flow field around sharp edged bodies. The

fixed location of the shear layer separation mean that boundary layer resolution is not as critical

as on smooth curvature bodies. Hence, the model developed has taken more of an engineering

approach to the analysis, though future research is anticipated that will improve the physical

modelling aspects of the method. The discussion presented herein gives a summary of the theory

and implementation of the model, but will however focus in more detail on the necessary

modifications that have been made to generalise the vortex method and allow an improved

analysis of a much wider range of geometries.

3.1 Governing Equations.

Two dimensional incompressible flow is governed by the continuity and full viscous Navier­

Stokes equations (3.1) and (3.2) :

V.V = 0

av 1
- + (V. V)V =--VP + -vu-at p

(3.1)

(3.2)

Both p and v are treated as constants as the flow is assumed to be both incompressible and

homogeneous. By taking the curl of (3.2), the momentum equation can be reformulated in a

velocity-vorticity form which corresponds to the vorticity transport equation (3.3).
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where the vorticity is defmed as the curl of the velocity (3.4)
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(3.3)

ro=Vxu with ro = koi (3.4)

Also, by defming a vector potential, \¥, such that U = V x \¥, V. \¥ = 0 and \¥ = k\f' , then the

continuity equation may be rewritten as

(3.5)

The vorticity transport equation (3.3) defmes the motion of vorticity in the flow due to convection

and diffusion. As the pressure field is not explicitly defmed in (3.3), the variation of vorticity at a

point in the flow is therefore influenced by the surrounding velocity and vorticity of the flow.

The calculations are subject to boundary conditions (3.6) that implement the no-slip and no­

penetration conditions by ensuring that the local velocity of the flow at the body surface is the

same as that of the body. Also, the boundary conditions indicate that the flow in the far field is

undisturbed by the vorticity shed from the body surface.

u = U i on S, and U = U'" on S",

or (3.6)

V\f' = V\f'i on S, and V\f' = V\f''" on S co

The boundary conditions normal and tangential to the body surface cannot both be applied

explicitly as only one component can be specified. Only the normal component is satisfied

explicitly although the tangential component is implicitly satisfied due to the representation of the

internal kinematics of each solid body. The velocity at a point r on the surface or within body i

can be described by

(3.7)

where ric is a fixed reference point on the body (Fig. 3.1). This may also be represented in stream

function form

(3.8)

The velocity field is calculated using the Biot-Savart law, which expresses the velocity in terms of

the vorticity field. This relationship has been derived by Vezza [209], also discussed in detail by

Lin [7], through the application of Greens Theorem to (3.5) for the flow region F (Fig. 3.2) and to

(3.8) for the body region Bi. For a pointp outside the solid region, the velocity is given by
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(3.9)

where F=FbUFw and FbnFw=O. Equation (3.9) details the different contributions to the velocity

from the freestream, the vorticity in a small zone around the body called the control zone, the

vorticity in the remaining flow area or wake zone and the vorticity inside the solid region due to

the rotational motion ofthe body.

3.2 Numerical Implementation.

The governing equations defined in the previous section are for most cases impossible to solve

analytically. For this reason, an approximate solution may be obtained numerically through the

discretisation of the vorticity field into a series of vortex particles. However, care must be taken

that the discretisation gives a true representation of the flow domain. Vorticity is created only at

the fluid boundaries in a thin layer close to the body surface and the vorticity in the wake of the

body arises through convection and diffusion of the vorticity created at the body surface. In cases

of highly separated flow such as that seen on bluff bodies, although the wake region is wide, the

vorticity is contained within the regions defined by the separated shear layers emanating from the

body surface (Fig. 3.3). Outside of this region, the flow is largely irrotational, and hence only the

region containing vorticity need be discretised, demonstrating why vortex methods are particularly

well suited to the analysis ofbluffbody flows.

As the vorticity in the flow originates on the body surface, the discretisation of the vorticity in this

region is important to capture well its subsequent evolution. The idea that the vorticity is created in

a thin layer around the body surface indicates that the flow can be divided into two zones. The

first is the control zone near the body surface in which vorticity is created, and the second is the

wake zone which contains the remaining vorticity that is shed from the body surface through

convection and diffusion (Fig. 3.4). These two sub-regions of the flow utilise different

discretisation procedures.

For a two dimensional body, a polygonal representation of the body surface is created by

connecting a series ofN nodes, that define the body geometry, with straight lines forming a series

of panels. Each panel is further subdivided into K equal length sub-panels. The vorticity in the

control zone can be treated as a one dimensional vortex sheet, which is then discretised using a

two stage process. First, the vorticity in the control zone, Y, is treated as a quantity that varies
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piecewise linearly and continuously along the surface. The values of y at the node points

therefore represent the entire vorticity distribution within the control zone. Secondly, the panel

distribution of vorticity is further broken down into vortex blobs, one for each sub-panel. The

blob is positioned a distance Dabove the middle of the sub-panel. This process is illustrated in

Fig. 3.5, and the vortex locations on each panel and sub-panel are given in complex notation by

(3.10)

(( K-k+ 0.5) (k -0.5) )
Zk = K Zj + K z.; +i8Znj (3.10)

The strength of each nascent vortex particle is obtained from the y values at the nodes and from

the linear variation ofy along each panel (3.11).

r = ((K -k+ 0.5) .+ (k -0.5) . ) IZj+! - Zjl
k K YJ K YJ+! K (3.11)

The circulation of each nascent vortex is equivalent to the total vorticity in the control zone above

the kth sub-panel. Both (3.10) and (3.11) are for the case where each panel is assumed to be a flat

surface, simply connecting each node with a straight line. For high curvature regions, such as

aerofoil leading edges, more general forms of these equations are used to model the high

curvature of the surface more accurately [7].

The y values in the creation zone are the solution of the linear system of equations arising from the

boundary conditions which are implemented by ensuring zero mass flow through each surface

panel. Although this cannot guarantee that the boundary conditions are satisfied at all points on

each panel, there will be at least one point on the panel with zero relative normal velocity. The

implementation is expressed as

(3.12)

where each term represents the contribution of the mass flow from different sources. The first and

second terms are from the motion of the body, with the remaining terms representing the

contributions from the freestream, the vortices in the wake and the vortices within the control

zone. The total number of equations (3.12) is N for a body with N panels, but only N-l are

independent as there is no source or sink within the body. Hence when N-l panels satisfy zero

mass flow, the mass flow for the [mal panel will automatically be zero. One advantage of the

current discretisation procedure is that the particle density on the panel surface can be increased

by simply using more sub-panels between each surface node. Hence, greater resolution of the

vorticity field near the body is obtained with little increase in the computational operation count,

as the number ofpanels and hence the number of equations in (3.12) has not increased [7].
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A further equation required to make the solution unique is based on the principle of Kelvin's

theorem. This states that the rate of change of the circulation in the entire flow field is zero as

there is no external source of vorticity. However, Kelvin's theorem is only strictly valid for

inviscid flows, and in the case of viscous flow, there is diffusion of vorticity through the body

contour. By integrating the pressure gradient along the closed boundary on the body surface, it

can be shown that the net increase in vorticity created at the surface is produced at the expense of

the vorticity inside the body and does not depend on the diffusion in the outer flow [7]. This

arises as the pressure distribution is required to be single valued in the flow field, and therefore

requires a zero integral of the pressure gradient around a closed contour. The relationship holds

for viscous flow, unlike Kelvin's theorem, due to this single valued pressure requirement. Hence,

the resulting circulation condition (3.13) completes the linear system of equations, providing a

unique solution

N K

Irw + II(rJm +2Q iAi = r,
w };! m;!

(3.13)

where the first term is the circulation of the vortices in the wake, the second is the circulation of

the vortices in the control zone, the third is the circulation due to the body rotation and the fourth

is the initial circulation in the flow field prior to the start of the calculation, which in impulsively

started flows will be zero. The second term contains the unknown y values. Once the system of

equations are solved for the Ny values, the strengths of the nascent vortices in the control zone

are obtained. The relative position of the nascent vortices to the body surface remains fixed at all

times, with changes in circulation being reflected in the y distribution at each time step.

All vortices outside the control zone originate from nascent vortices, with their positions being the

result of convection and diffusion at each time step. A wake vortex is created when a nascent

particle crosses from the control zone into the wake zone and effectively models the shedding of

vorticity from the body. The simulation of vortex convection and diffusion employs an operator

splitting technique, where the vorticity transport equation (3.3) is split into a separate convection

part (3.14) and diffusion part (3.15), both of which are solved sequentially as proposed by

Chorin [164].

am + (U. V)m = 0
at

(3.14)

(3.15)

As vorticity forms one of the conserved properties of the particles in inviscid flows, the velocity

at the centre of each vortex particle is equal to the velocity of the vorticity transport which is
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evaluated from (3.9). This is exact for point vortices though the use of vortex blobs does

introduce a truncation error. The diffusion process is modelled using a random walk procedure

[164] which satisfies the Gaussian distribution of zero mean and standard deviation .J2v!1t or

in non-dimensional form -J2!!.J!Re , where I1t is the timestep. At each time step the position of the

vortex particles are updated according to (3.16)

(3.16)

where the first term on the RHS is the original particle position, the second is the increment due to

convection and the third is the increment due to diffusion. Uw is the velocity of the particle and

T]x and T]y are the random walk components in the x and y directions respectively. The random

walk method provides a relatively simple scheme for modelling viscous diffusion, though it

does have limitations as discussed in the previous chapter. The random walk assumes

homogeneity with the kinematic viscosity taken to be constant throughout the flow. The model

works best when there are many overlapping vortex particles, particularly near to the body

surface [4]. Other limitations of the random walk are that high Re flows are not correctly

modelled. In this case, the viscous diffusion component from the random walk is negligible and

the calculated flow field is effectively modelled as if it were inviscid. As with other diffusion

models, the random walk does not model the effects of turbulent diffusion at high Re. However,

other diffusion models have their own limitations and problems, but lack the simple

implementation that the random walk offers.

The exchange of vorticity between the control zone and the wake, or the release and absorption of

vortex particles from/to the wake are determined by the new vortex positions at the next instant

of time, with respect to the surface position. To ensure that the release of the vortex particles

from the control zone to the wake is modelled smoothly, the full circulation of the nascent vortex

is not released into the wake unless it has moved a distance 28 from the edge of the control zone,

where 8 is the control zone thickness (Fig. 3.6). A more general approach to the vorticity release

was investigated by Lin [7]. However, for bluff body or highly separated cases, the differences

between the two schemes were found to be negligible.

It is likely that a number of wake vortices will at some stage cross the control zone boundary

back into the vorticity creation region. These vortices, referred to as absorbed vortices, are

removed from the wake and the circulation integrated into the vorticity distribution within the

control zone. As well as providing a mechanism to limit the number of vortices contained in the

computational domain, the process also helps to stabilise the implementation of the boundary

conditions. The procedure for vortex release and absorption is demonstrated in Fig. 3.7.
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The calculation of the velocity of a single vortex particle requires the influence of all regions of

vorticity in the flow field to be taken into account (3.9). For a flow field containing N particles

this leads to an operation count of O(N2), which becomes prohibitive as N increases. As

mentioned above, N can be restricted somewhat by the absorption of wake vortices into the

control zone. Another technique implemented in the vortex method for limiting N is to merge

particles in the body wake [7]. A pair of vortices are merged if they satisfy a given criteria, such

that the induced surface velocity on the body is not affected significantly. For this reason it is

preferable to merge vortices that are distant from the body, for which the inter-vortex spacing is

small, and whose circulation is small and of the same sign [160].

It is assumed that two vortices located at 21 and 22, with circulation r 1 and I'2, are merged into a

single vortex with location 2 (3.17) and circulation I' (3.18).

(3.17)

(3.18)

The induced velocity at the body surface is given by

(3.19)

where 20 is the nearest node on the body surface, to whichever of 21 and 22 is nearest to the body.

The difference between the induced velocity on the body from the two separate vortices and the

single merged vortex is given by flV (3.20), and only when this is sufficiently small can the

vortices be merged.

(3.20)

It can be shown that flVmay be approximated by (3.21) [210].

(3.21)

where d1 and d2 are the distance from the vortices to the body surface and Do is a parameter that

has a large influence close to the body, chosen such that the vortices near the body are less likely

to be merged. The vortices are only merged if flV is less than some criteria Verit which is defmed

such that the error on the body surface is minimal. However, sufficient vortex merging takes place

to have a significant effect on the reduction in operation count.
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The pressure distribution on the body surface can be evaluated by integrating the pressure gradient

along the body contour. The pressure gradient expression is derived in [7] and the gradient at node

j on the body surface is (3.22)
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The first three terms on the RHS are due to the body motion and represent the surface tangential

components of the body reference point acceleration, the rotational acceleration and the centripetal

acceleration. The fmal term is the negative rate of vorticity creation at the body surface and is

calculated from the vorticity distribution created in the control zone between time t-S: and t [7,

160 and 210]. The resulting pressure distribution is integrated around the body surface to calculate

the aerodynamic forces on the body and the moment about the body reference point.

3.3 Generalisation and Improvement of Model.

The discrete vortex method presented by Lin [7] was developed specifically for the analysis of the

dynamic stall phenomenon on pitching aerofoils. As a result, much of the modelling lacked

generality and could not be easily applied to other geometries. However, one of the main

advantages of the vortex method is the potential to successfully model highly separated flow fields

that provide a stiff challenge to alternative grid based methods. Hence, much of the development

of the vortex method forming part of this study has been a generalisation of the model to produce

a tool to analyse a wider range ofproblems. Much of this work involved numerous changes to the

modelling [211], some of which will be mentioned though not discussed in detail, but the

combined effect of all the corrections and improvements has been to provide a robust method

capable of analysing a variety of stationary and oscillating bodies.

Some of the problems encountered with the original method arose due to the handling of the wake

particle locations relative to the body geometry. As part ofthe merging calculation, the distance of

the particles to the nearest point on the body is required. In the original method, once the particles

were downstream of the body, the trailing edge of the aerofoil could automatically be taken as the

nearest point to simplify the calculation and improve computational efficiency, However, for bluff

body cases where the "trailing edge" can not as easily be defmed, the calculation was necessarily

modified so that the nearest point on the body for every wake vortex particle is found. This does

lead to a little more computational effort at each time step, but has been shown to be a necessary

modification.

Problems were also encountered with the check to ascertain whether a wake vortex should be re­

absorbed into the control zone. Once the nearest body node to the vortex particle is found, the
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normal distance to the adjacent body panel is found depending on whether the particle is upstream

or downstream of the node (Fig. 3.8). If the normal distance is found to be less than the control

zone width, 0, then the particle will be absorbed. This procedure was adapted for sharp edged

bodies with a number of extra checks introduced to avoid the situation demonstrated in Fig. 3.8b.

The correct procedure is shown in Fig. 3.8c and indicates the extra criteria, that the particle must

be no further from the body node than the sum of the panel length and 0, as well as being inside

the control zone. This is applied to every panel, not just sharp comers to ensure vortices

"between" panels are merged correctly.

Other small, but important modifications were also made to the method, including the body

motion that can now be utilised in the calculations. For the pitching aerofoil, the body velocity

modelling was concentrated on the specific case of an aerofoil undergoing angular ramp motions

[7]. Analysis can now be made of a much wider range of body motions, from a constant

translational or rotational velocity, sinusoidal translation in either the longitudinal or transverse

directions as well as sinusoidal pitching motion. Any single one of these or any combination may

be applied to the body. Also, a general more complex motion can be applied where the velocity of

the body, either translational, rotational or both, is specified at each time step of the calculation.

These modifications further add to the improved generality of the discrete vortex method.

3.4 Sharp Corner Modelling.

The vortex method assumes that the vorticity distribution on the body surface, defined by y,

varies linearly over each panel and is also continuous at each body node. This assumption is

acceptable over most areas of any body surface, where the surface curvature is not too great and

the resultant angle between adjacent surface panels is relatively small. However, where there are

comers on the body, special treatment is required as the vorticity distribution will not necessarily

be continuous. Lin [7] discussed this with particular reference to the trailing edge of an aerofoil.

It is noted that the y value at each node represents the difference between the velocities at the

control zone boundaries and the body surface, with this difference changing little on a low

curvature surface due to the gradual changes in the velocity field. At a sharp edge, the changes in

the velocity are much greater, and at some sharp comers may even be near to being discontinuous.

It is then dubious whether the panels joined by the node at the comer should share the same y

value. Lin modelled the aerofoil trailing edge by effectively extending the control zone

downstream of the trailing edge and discretising the nascent vorticity in this region in a process

similar to the discretisation of the nascent vorticity [7] (Fig. 3.9). Some success was achieved by

this approach, although the extension of the control zone is a feature best suited to aerofoil trailing

edges, and also works best at low angles of incidence.
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For bluff bodies, or other geometries, where the body includes a sharp comer for which the above

approach is not applicable, a new approach is required. One of the fundamental problems with the

comer is that one Yvalue is calculated for each node, and is used to obtain the circulation of the

nascent vortices for the panels on each side of the node. However, the vorticity distribution on

each side of the comer may be very different, as illustrated schematically in Fig. 3.10. On the front

face normal to the oncoming fluid, the flow tends to move up the surface towards the comer,

resulting in clockwise vorticity near the surface. On the top face, the separated shear layer from

the comer causes a clockwise rotating vortex to form above the surface, and hence the local

velocity on the top surface is directed back towards the front comer. The resultant vorticity created

at the surface therefore tends to have a counter clockwise component. Although this is a simplified

argument, it is clear that using a single Yvalue at the comer will give a poor prediction of the

vorticity field on each side of the comer.

A model has now been incorporated within the vortex method to allow a dual y value to be used at

any specified sharp comers on the body surface. This decouples the circulation of the nascent

vortices on the panels each side of the comer. The model has been derived so that any sharp

comer can be modelled, ranging from the 90° comer in Fig. 3.10 to the aerofoil trailing edge

problem. One problem of introducing the dual y at the comers, is that the linear system of

equations used to calculate the y distribution now becomes under-determined, with N equations

being used to determine N+n unknown y values, where N is the number of surface nodes and n is

the number of sharp comers. For this reason, the procedure to solve the system of equations needs

to be modified accordingly.

The coefficients for the system of equations are calculated as described previously, however, the

dual y value for the panels on either side of the sharp comers are accounted for in the coefficients.

The system of equations in the original model is shown in (3.23)

[A][Y] = [F]

(3.23)

(3.24)

where the a, are the coefficients of the nascent vortex values, Yi, and F, are the sum of the

contributions to the mass flow across panel i from different sources (3.12). This is shown in

matrix form (3.24), where A is an NxN matrix, and y and F are both Nx1 matrices. However, the

extra y values arising from the dual value introduced at the sharp comers mean that y now

becomes an (N+n)x1 matrix, and A is now a non-square Nx(N+n) matrix.
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To solve the under-determined system of equations for the N+n y values, a pseudo-inverse

technique is used [212], which is derived in Appendix D. It should be noted that the solution for y

is not unique, though it is consistent from time step to time step [212]. The pseudo-inverse

procedure gives the best approximate solution to the system of equations and furthermore, this

best approximation can be proven to be unique. Also, the solution obtained satisfies all the

necessary flow criteria and boundary conditions on the body surface. It is difficult to quantify

the size of any error that may arise from using the best approximate solution, although tests on

a number of calculations with and without the sharp comer model indicate that the error is

small. In particular, results from a number of aerofoil calculations using the new model at the

trailing edge, show little difference to previous results [7]. The vorticity distribution for the

square cylinder is shown in Fig. 3.11. The upstream face (AD) is least affected by the flow in

the separated region and the body wake. Hence, any errors arising from the sharp comer model,

especially at comers A and D would be noticeable on this face. It is clear in Fig. 3.11 that face

AD is not greatly affected by the sharp comer model indicating that the error from the

approximate solution to the system of equations is small. There is no limit to the number of

sharp comers which may be defmed and the success of this approach is demonstrated in Fig. 3.11.

A and D are located at the upper and lower front comers respectively (Fig. 3.1), and the difference

in the vorticity distribution on either side of A and D is clear. The vorticity on the front face is

clearly of opposite sign to that on the initial part of the side faces, with a sudden change across the

comer. Comparing the new model with the original case, the improvement in the distribution is

noticeable (Fig. 3.11). Downstream of the sharp comers, the region of opposite sign vorticity is

much more distinct when the sharp comer modelling is included. Also, the sharp spike in the y

distribution at the comers has been reduced significantly.

Another aspect of the sharp comer modelling that has been incorporated along with the vorticity

discontinuities described above, arises from the fact that there is an area of vorticity effectively not

discretised between the two panels. Only vorticity directly above a panel is discretised into the

nascent vortex particles, as demonstrated in Fig. 3.12. For each node that is flagged as a sharp

comer, and for which the vorticity discontinuity is applied, the position of the nascent vortex

particles on a few panels each side of the comer are shifted slightly towards the comer region

(Fig. 3.13). This gives an improved representation of the vorticity at sharp comers, and in

particular improves the modelling of aerofoil trailing edges, utilising a similar philosophy to the

model employed by Lin [7]. The procedure used is to stretch the upper boundary of the control

zone for the three panels either side of the comer, so that the control zone above these panels

continues into the comer region (Fig. 3.13). The location of the nascent vortex particles are then

adjusted towards the comer using this skewed control zone. This procedure is not radically

different from the original method, but does allow an improved model for sharp comers,

especially those of a "trailing edge" type as seen on aerofoils and some bridge deck sections.
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Numerous computational and experimental investigations into bluff body flow fields have shown

that even in predominantly two dimensional flows, there is still a strong three dimensionality

within the body wake. Experimental results show that although the vortex street typical of bluff

body wakes is an inherently two dimensional process, there is a significant proportion of the

vorticity transferred away from the spanwise component, CDz [22-30]. As the vorticity is shed from

the body, vortex stretching effects and also turbulent diffusion processes, redistribute the vorticity

into each direction. Lin et al [27] present measurements indicating that the transfer of spanwise

vorticity is predominantly to the streamwise component, CDx, and show that CDz has been reduced

by approximately 20% at a plane one diameter downstream of the cylinder. Other researchers

have demonstrated the presence of streamwise vorticity and discuss the complex three

dimensional nature of the bluffbody wake. Experimental results also demonstrate that the vortex

shedding process from a bluff body is not fully two dimensional, as shown by the variation in the

spanwise pressure coefficient (Fig. 3.14).

Numerical results also demonstrate that bluff body flows have a significant three dimensional

component. As discussed in Chapter 2, Tamura et al [147 and 156] discuss the difference in the

predicted flow fields from both two and three dimensional calculations. In two dimensions, even

with good grid resolutions, the flow field is not accurately calculated, and the shed vortices tend to

contain too much circulation. These results, along with other similar calculations [145, 147, 152

and 153], demonstrate that more representative results are predicted by three dimensional

calculations which simulate vortex stretching and dissipation of the circulation in each direction.

Similar problems have been reported by researchers using vortex methods [213-216]. Stansby

[213] found that the aerodynamic loading was affected, due to the shed vortices rolling up too

tightly in the wake, resulting in an over prediction of suction in the base region. The prime cause

was that the three dimensional effects which reduce the circulation were not modelled in the two

dimensional calculation. A solution proposed was to apply a simple exponential decay to the

circulation of each vortex particle, that would "mathematically" ifnot physically account for these

effects (3.25).

(3.25)

Sarpkaya et al [214] proposed a technique whereby each wake vortex particle loses circulation in

an amount proportional to its current strength and position after rediscretisation of the vortex

sheet. Basuki et al [215] and Kiya et al [216] also employed an exponential decay technique to

account for the three dimensionality in the flow (3.26). Basuki found that the suction pressures on

a stalled aerofoil in the separated region were overpredicted and the circulation reduction
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technique also helped to overcome this problem. It was also claimed that the circulation reduction

technique, to an extent, simulates the three dimensional effects.

Early results using the vortex method on bluff body flows indicated that similar trends were being

experienced, with strong vortices being shed from the body resulting in high predicted mean and

fluctuating force coefficients. In an attempt to model the three dimensional effects of the wake

flow, a circulation reduction, or wake decay technique, has been employed in the vortex method

presented herein. The model is similar in nature to that used by Basuki et al [215] and Kiya et al

[216] (3.26)

(3.26)

where tc is the non-dimensional time at which the vortex was created. It should be noted that this

model is an empirical approach to the problem and does not satisfy any physical representation

of the flow though the desired effect of transfer of vorticity away from the spanwise component

is achieved. Also, the effects of this model are most noticeable on bodies with a large base area

such as the square cylinder, with the higher aspect ratio bodies, such as bridge sections, being

much less reliant on the model. The decay function chosen gives a gradual initial decay rate that

increases with time. Although the exponential decay of (3.25) is simpler, the initial decay rate is

too severe and the vorticity is found to dissipate too rapidly (Fig. 3.15). The constant [3, was

chosen to produce a rate of transfer of circulation from the spanwise direction that is consistent

with the experimental results of Lin et al [27]. For simplicity, the same decay constant, [3, has

been used for all the calculations presented herein. However, for cases such as the oscillating

square cylinder, the increased spanwise correlation of the vortex shedding within the vortex

lock-in region suggests that these cases may require a different [3 to produce less wake decay.

One consequence of the model is that the decay of the circulation of the wake vortices, does not

conserve circulation in the two dimensional plane. To account for this, the decayed circulation is

effectively transferred to the point at infmity [215]. The decayed circulation still plays a part in

determining the nascent vortex strengths as it is effectively transferred to the fourth term in the

circulation equation (3.13). Hence the conservation of circulation condition becomes (3.27)

N K

"Lrw +"L"L(rjL +2QiAi =roo
w j=! m=!

(3.27)

where roo includes the circulation transferred to infinity. Care must be taken with the merging of

wake vortices when the wake decay model is implemented. The problem lies with determining the
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circulation, initial circulation and the effective creation time for the newly merged vortex,

especially when the vortices being merged have been created at significantly different times and

are at different stages of the decay process. Two possible approaches may be used to determine

these parameters : 1) the rate of vorticity decay is preserved in the merged vortex and 2) the drop

in the circulation of the two vortices is maintained in the merged vortex. These two procedures are

discussed in detail in Appendix E. Although preserving the rate of decay of circulation introduces

less error into the merging process, it is considerably more complex to implement and so the

method using the drop in circulation has been used. However, it should be noted that if the two

vortices are of a similar age, then the error is minimal. As shown in Appendix E, the newly

merged vortex has circulation

1 M (t) = II (t) + 1 2 (t) (3.28)

where I'1(t) and I"2(t) are the circulation of the two vortices being merged. The initial circulation

and creation time of the merged vortex are given by (3.29) and (3.30) respectively.

1 M (0) = II (0) +1 2 (0) (3.29)

(3.30)

The vortex decay process is a largely mathematical tool rather than a strictly physical model.

However, as found by Basuki et al [215], the reduction in the wake circulation does lower the

predicted suction pressures on the body surface, as well as reducing the intensity of fluctuating

pressures. The decay model has proved beneficial, allowing simulation of complex flow fields

using a two dimensional model rather than the necessity of full three dimensional modelling that

grid based methods appear to require [145, 147, 152 and 153]. However, the empirical nature of

the model must be remembered at all times, as the vortex decay scheme is only analogous to the

complex three dimensional processes within the wake. Future research may be aimed at

developing a model that has a more physical basis, but retains the quality of the results obtained.

3.6 Improved Computational Efficiency using a Zonal Decomposition Algorithm.

As discussed earlier, one of the problems with the vortex method is that for a flow field containing

N particles, the determination of the velocity field requires a calculation with an operation count of

O(Nl). This becomes more and more prohibitive as N increases and is a particular problem for

bluff body flows, with the large separated regions and wide wakes demanding high numbers of

particles to satisfactorily resolve the flow field. N can be restricted somewhat by the absorption of
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wake vortices into the control zone and also by the amalgamation of wake vortices as discussed

earlier. More complex techniques are available which are aimed at reducing the operation count of

the velocity calculation directly to O(NlogN) or even O(N), rather than restricting N. A number of

these techniques are discussed in Chapter 2 and also in more detail in [189]. An algorithm to

improve the computational efficiency of the vortex method has been developed and successfully

implemented. The procedure for the new velocity calculation and the improvement that has been

obtained in the operation count is presented in the next section and also in [189].

The zonal decomposition technique was chosen as the method with which to improve the

efficiency of the DVM. The choice of this technique over a VIC method was primarily based on

the fact that the Lagrangian nature of the method, and the benefits this brings, is retained. The

technique utilised in the DVM uses an adaptive zonal decomposition with square zones. The

series expansion for the velocity influence from a zone is similar in form to the FMM, although

the interactions between zones and particles are handled very differently. This leads to a much

simpler algorithm for the velocity calculation, without any great loss in accuracy when compared

to direct summation.

3.6.1 Decomposition of Flow Field into a Hierarchical Structure of Square Zones.

As with many other applications, it was decided to use square zones in the decomposition of the

flow field. Clarke et al. [172] used rectangular zones in the zonal decomposition and divided each

zone into two, along the longest side, such that each sub-zone contained half the particles of the

parent zone. However, it was found that some zones with high aspect ratio were created, which

could lead to a large radius around the zone. Consequently there would be less likelihood of using

the zonal influence in the velocity calculation thus limiting the benefits of the fast algorithm. High

aspect ratio zones are avoided if the zone is divided into half along the longest side, irrespective of

the number ofparticles in each half. This alternative, however, leads to more "dormant" zones that

contain no particles, again affecting the performance of the algorithm.

The DVM discretises the vorticity field into two sets of vortex particles, which are termed nascent

(contained in a small control zone close to the body) and wake particles. These two sets are joined

together into a single set of particles for the purpose of the zonal decomposition. The initial zone

is the smallest square that contains all the particles in the flow field. If there are greater than some

predetermined number of particles in the wake region, NPmin say, then this initial zone can be

subdivided into four smaller zones in the order shown in Fig. 3.16. Each of the children of the

initial zone are subdivided if they contain greater than NPmin particles. The children of these new

zones are then subdivided, where appropriate, until no further subdivision can take place. This
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procedure is illustrated in Fig. 3.17, along with the resulting hierarchical zonal structure for a

typical flow field.

This procedure is similar to that described by Van Dommelen et al. [188], although a much

simpler method of numbering the zones is used here. The initial zone containing the flow field is

numbered zone O. The four sub-zones of zone 0 are zones 1 to 4 respectively. If zone 1 can be

subdivided, then its children will be zones 5 to 8. In general, the children of a zone k will be

numbered Nz+1 to Nz+2, where Nz zones have previously been created. As the children of each

zone are always created in the same order (Fig. 3.16), only the first child is recorded when a zone

is subdivided. Also, when each zone is created, its parent zone will be recorded. Using this

numbering scheme, for any zone, its parent and all of its children can easily be traced. The

resulting zonal decomposition, containing all the vortex particles in the flow field, provides an

hierarchical structure of zones that can be used as part of a fast algorithm for the velocity

calculation in the DVM.

3.6.2 Velocity Calculation using Zonal Decomposition and Series Expansion.

As discussed previously (Chapter 2), the velocity influence of a group of particles contained

within a zone can be used, if the velocity is being calculated at a point sufficiently far from the

centre of the zone. It is usual to defme "sufficiently far" as some specified multiple of the zone

radius, where the radius is half the side length of the zone (Fig. 3.18). The velocity influence of a

zone, at a point z can be calculated from a truncated series expansion (3.31 - 3.32).

~ a.
U(z) - iV(z) = LJ J j

j=] (z-ZJ
+E

j = 1,... ,Nt

(3.31)

(3.32)

The derivation of these formulae is given in Appendix A. The coefficients aj of the senes

expansion for each zone, are calculated as the zonal decomposition is being performed. It should

be noted that the flow field is only decomposed into the zonal structure if greater than some

predetermined number of wake particles are present in the calculation. If there are less than this

limit, then the velocity calculation for the whole flow field is performed using direct summation.

If a zone contains Np particles, then the operation for the velocity influence at a point is O(Np2)

using direct summation, compared to O(Nt) using zonal decomposition. It is clear that the larger

Np is, then the greater will be the reduction in the operation count for the velocity calculation. For
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this reason, the hierarchical nature of the zonal decomposition is utilised with the largest possible

zone always being used in the calculation, to give the maximum improvement in the speed of the

algorithm. Extra efficiency is achieved by varying the number of terms used in the series

expansion, Nt, depending on the distance from the particle to the zone centre. For a zone a long

distance from the point of interest, the series will converge after only a few terms. However, for a

closer zone, more terms of the expansion will be required to ensure convergence.

The implementation of the algorithm will now be demonstrated by considering the calculation of

the velocity for one vortex particle. First consider the distance of the particle from the first zone

(zone 1). Ifthe particle is greater than twice the zone radius from the zone centre, then the particle

is sufficiently far from the zone, and the influence of the zone can be used in the velocity

calculation. However, if the particle is less than the required distance and the zone has no children,

then the velocity influence of the zone is calculated from direct summation. If the zone however

does have children, then each of the children are considered in the same manner as described

above. The procedure is repeated until either a zonal influence can be used, or the lowest level of

decomposition is reached, and direct summation is used. If the particle is contained within the

zone, and the lowest level has been reached, then the zone's contribution is calculated using direct

summation later in the algorithm. Otherwise the zone's children are considered as usual. This

continues until all the children and "grandchildren" of zone 1 have been considered. The

procedure is then repeated on the remaining zones at the top level (zones 2-4). This algorithm is

summarised in the flowchart shown in Fig. 3.19.

The procedure described above gives the induced velocity on a particle from all the particles

outside of the zone at the lowest level which contains the particle (Fig. 3.20). Also, as discussed

above, the largest possible zones are used to give the velocity influence, and are found by

considering the least number of possible zones. The fmal part of the algorithm is a single pass

through each of the childless zones, so that the induced velocity by the particles contained in the

zone on each other can be calculated using direct summation. This provides the fmal contribution

to the velocity of each particle.

The FMM algorithm developed by Greengard [185] uses a zone vs. zone interaction, and is

claimed to give an operation count of O(N), although Aluru indicates that it is actually nearer

O(NlogN) in the worst case [192]. The algorithm implemented in the Vortex Method and

described above uses a particle vs. zone interaction, and gives an operation count of O(N+NlogN)

(Appendix B). The reason for the use of an apparently slower algorithm was primarily due to the

simpler implementation of the method, although as discussed below, the algorithm gives very

satisfactory results in terms of the calculation efficiency.
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Three different test cases were used to assess the performance of the zonal decomposition

algorithm. Each test case involved a very different body geometry and resulting flow field. The

test cases were as follows:

1. Static aerofoil at 40 degrees incidence.

2. Circular cylinder.

3. Square cylinder at 0 degrees incidence.

In each case, the calculations were performed first using the original velocity calculation via direct

summation and then using the zonal decomposition algorithm. The calculations were perfonned

on a Silicon Graphics workstation with a 150MHz IP22 R4400 processor, 16Kb cache size and

64Mb main memory size. The performance of each calculation was obtained by outputting the

CPU time taken for the whole timestep as well as the CPU for the velocity calculation. The results

are shown in Figs. 3.21 to 3.29 and show the CPU plotted against the total number of vortices

(wake and nascent combined) for the timestep and velocity calculations respectively. Typical

decomposition of the flow field into the hierarchical zonal structure are shown for the square

cylinder in Fig. 3.30.

Comparing first the velocity calculation only for both the direct summation and zonal

decomposition algorithms, it is clear for each method that the relationship between the CPU and

the number of vortices is very similar in each of the three test cases, especially when direct

summation is used (Fig. 3.24). As expected, this shows that the calculation is dominated by the

number of vortices contained in the flow field rather than their physical location within the flow

field. There is slightly more variation in the zonal decomposition case, as the location of particles

will determine whether the series expansion can be used for the velocity calculation. However, a

strong relationship between the CPU and number of vortices is clear, irrespective of which model

is used.

The operation count for the direct summation method is D(W) as discussed above. For the zonal

decomposition, analysis of the operation count is a little more complex and is shown to be

O(N+MogN) in Appendix B. A least squares curve fit has been fitted to the CPU timings for both

direct summation and zonal decomposition, using the operation counts given above. The curve

fits, and the derived constants are shown in Figs. 3.25 and 3.26. Table 3.1 shows the improvement

obtained by the zonal decomposition algorithm for the CPU required for one timestep, based on

the curve fits to the data.

The factor improvement for the whole timestep is also shown in Fig. 3.27, and is compared with

the factor improvement in the velocity calculation only. An extra saving was made in the timestep
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by using the zonal structure as part of the vortex merging calculation [7 and 210]. Instead of

checking against any vortex in the flow field to fmd if the merging criteria is satisfied, which can

also lead to an O(N2) calculation, only vortices within the same zone at the lowest level are

checked. The CPU taken for the merging calculation using the new and old methods is shown in

Fig. 3.28. The breakdown of the timestep into various elements of the calculation is shown in

Fig. 3.29. It is clear that the main element of each timestep is the velocity calculation. As

discussed above, the merging calculation now uses little CPU. Importantly, the zonal

decomposition and sorting of the vortices also takes a relatively small amount of CPU. The speed

and accuracy of the algorithm can be optimised by judicious selection of a number of parameters

that defme the zonal decomposition. The optimisation of these parameters is discussed in

Appendix C.

Number ofVortices. CPU from Direct CPU from Zonal Factor Improvement.

Summation. (secs.) Decomposition.

(secs.)

1000 2.041 1.381 1.478

2000 8.164 3.638 2.244

3000 18.370 6.225 2.951

4000 32.658 9.027 3.618

5000 51.028 11.988 4.257

7500 114.812 19.904 5.768

10000 204.110 28.356 7.198

20000 816.440 65.470 12.470

30000 1836.990 105.890 17.348

Table 3.1

3.6.4 Error Introduced by the Zonal Decomposition Algorithm.

The infmite series expansion that is used in the velocity calculation for the zonal decomposition

algorithm gives the correct velocity as shown in Appendix A. However, for practical

implementation of the method, the series needs to be truncated after a reasonable number of terms

have been evaluated. This truncation introduces an error into the calculation when the contribution

of a zone is used. As discussed in Appendix C, the algorithm has been optimised to keep this error

low, whilst still retaining the calculation efficiency.



Chapter 3 : Discrete Vortex Method - Theory and Numerical Modelling. 52

By comparing the velocity calculation of a sample flow field using the zonal decomposition and

direct summation, estimates of this error can be obtained. The test case was on a circular

cylinder, comparing the results over a single timestep. The velocity magnitudes of all the vortices

(nascent and wake) were compared. The maximum error was 9.8791E-4, and the rms error was

1.1546E-4 compared to the direct summation results. The percentage error is shown in Fig. 3.31.

In general, the error is very small, and it is clear that the larger percentage errors occur for

vortices where the velocity is very small, and arise due to some ill-conditioning when dividing by

the velocity from direct summation. Fig. 3.32 shows a comparison of the flow field around a

circular cylinder after the first 200 time steps of the calculation, using both the direct summation

and zonal decomposition algorithms. Although there are differences between the two flow fields,

in general they are very similar, showing that despite the errors now introduced into the

calculation, the new algorithm gives comparable results to the original method.

It should be noted that the calculation of the velocity using the zonal influence via a series

expansion, is derived from assuming that the vortices in the zone are point vortices (Appendix A).

However, the vortex method uses vortex blobs, where a core function is implemented, to avoid

singularities arising from point vortices [7 and 210]. Long distances from the vortex locations, the

velocity influence of a vortex blob and a point vortex are very similar. This is also discussed in

section 2.3, for the method of Local Corrections. This method is " ... based upon the observation

that the difference between the velocity field due to a point vortex and a vortex blob located at the

same point in space becomes very small as one moves away from the centres of the vortices"

[183]. As the zonal influence is only used at "long" distances from the zone centre, it is clear that

the error arising from assuming that the vortices contained in the zone are point vortices, is small.

Draghicescu et al [191] presents an algorithm similar to the FMM, using a Taylor series

expansion, which is claimed to be not just restricted to potential type functions but also may be

used with any decaying kernel or core function. The method therefore offers the potential to

accurately calculate the zonal velocity contribution from a distribution of vortex blobs. Future

work could also investigate if this model may improve the results currently obtained from the

DVM.

3.7 Summary.

The discrete vortex method developed by Lin et al [7-9] for analysis of the dynamic stall

phenomenon on aerofoil sections has been further developed and improved. One of the key

improvements in the model is the generalisation to allow the calculation of the flow field about a

much wider range of geometries. Also, the generalisation procedure has led to the calculations

being more stable, with less variation in the results as input parameters are modified. Also, extra

modelling has been incorporated to improve the handling of sharp comers and also to account for
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wake three dimensionality in a highly separated flow field. A more efficient algorithm has been

developed and incorporated into the vortex method to give a significant reduction in the

computational operation count. All of these factors combine to improve the results obtained from

the vortex method and to enhance the capability of the method as an analysis tool for a wide range

of applications. However, some aspects of the modelling, in particular the empirical model to

account for three dimensionality in the wake and the lack of modelling for wake turbulence

mean that the model developed takes more of an engineering approach to the problem. Also,

the model has been developed and validated for primarily sharp edged bodies, though future

research is anticipated that will develop more physical aspects to the method that will allow

improved analysis of smooth curvature bodies. In the next section, the results of an extensive

validation programme for the vortex method are presented for a range of simple and more

complex bluff body flow fields. Combined with the aerofoil results presented by Lin [7], the

improved capability of the method is demonstrated.
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CHAPTER 4

VALIDATION OF DISCRETE VORTEX METHOD AND
RESULTS OF ANALYSIS.

4.0 Introduction.
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Previous development of the DVM was directed towards the analysis of the dynamic stall

phenomenon on pitching aerofoils. Validation of the method for this problem was conducted by

Lin [7] as part of the development of the initial code. However, the DVM offers the potential to

analyse a much wider range of geometries and problems. Hence, once the DVM had been

generalised and the necessary modelling improvements incorporated, as discussed in Chapter 3,

a thorough validation of the method was undertaken, the results of which are presented and

summarised within this chapter.

The main goal of the study was to develop the DVM so that it could be successfully used to

study the effects of the unsteady aerodynamic loading on suspension bridge deck sections. For

this reason, much of the validation exercise was directed towards the study of sharp edged

bodies. However, for completeness, a brief study of the circular cylinder is included in the

results presented herein to demonstrate the capability of the vortex method on bodies of smooth

curvature as well as those with sharp edges. Much of the validation exercise used the square

section cylinder, partially due to the simple geometry but also because it has been the subject of

numerous experimental studies, from which a large database of results has been generated. The

effect of angle of incidence on the flow field around the stationary cylinder is investigated.

Also, the flow field around a square undergoing forced transverse oscillations was studied for a

range of frequencies and amplitudes. A natural extension of the validation was to investigate

the effect of aspect ratio on the flow field, including very thin bodies that give a close

approximation to a flat plate. Finally, results are presented for a representative modem bridge

deck section. These results include static force coefficients and also the extraction of the flutter

derivatives for oscillating cases. The usefulness of the DVM for analysing the flow field for

bridge deck sections is demonstrated by a study of the effect of passive and active flow control

devices on the stability of a bridge section. These devices serve to increase the critical flutter

velocity of the structure giving rise to greater aeroelastic stability.

All of the calculations presented below are performed using an impulsively started flow field.

Mean quantities are calculated from the time-dependent data once the flow has settled into a fairly

regular oscillatory pattern and the effects of the impulsive start become negligible. In each case, a

sufficient number of nascent vortices were used on each surface panel to ensure that the particles

overlap and provide an accurate resolution of the vorticity distribution on the body surface.
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4.1 Circular Cylinder.
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The development of the DVM for the prediction of bluff body flow fields has been developed

primarily for the analysis of the effect of unsteady aerodynamics on suspension bridges. For

this reason, much of the analysis and validation presented herein is for bodies with sharp

comers. However, for completeness, the circular cylinder was briefly studied due to the huge

amount of research that this geometry has attracted. Also, the flow field around a circle is much

more Reynolds number dependent than that around sharp edged bodies, where the separation is

generally defined by the comers, rather than by Re. The results presented here are intended

only to demonstrate the capability of the DVM to analyse bodies with smooth curvature and

capture the Re sensitivity of the flow field. However, the results do not constitute a full analysis

of the circular cylinder, which should be the subject offurther study.

Two calculations are presented for Reynolds numbers of 20,000 and 106 respectively. The first

is in the sub-critical regime, where the shear layers separate from near the top and bottom of the

circle. The second is in the super-critical regime, where the boundary layer undergoes transition

from a laminar to turbulent state delaying shear layer separation until further aft on the surface

of the circle (Chapter 2). From previous experimental results [2], in the low Re case, the effects

of turbulence on the wake are starting to become noticeable, although there is generally still a

fairly regular vortex street discernible close to the body. At the higher Re, a regular vortex

street may still be seen in the wake though the regular pattern is more affected by the

considerable turbulence within the wake. These effects, as well as the variation of key flow

parameters, were investigated using the DVM and assessed against expected behaviour.

4.1.1 Results.

The different Re in the DVM were achieved in two ways. The first is to adjust the Reynolds

number in the calculation, which effectively controls the amount of viscous diffusion in the

flow field using the random walk model discussed in Chapter 3. Secondly, different time steps

and vortex core sizes were used in the two calculations, similar to the fmdings of Walther in the

development of a vortex method [167]. For the higher Re, a lower time step was used along

with a much higher density of vortex particles giving greater resolution of the flow field, and is

consistent with techniques used in conventional grid based methods.

Instantaneous snapshots of the flow field predicted by the DVM at various stages of the vortex

shedding cycle are presented in Figs. 4.1 to 4.4. The results are presented both as velocity vectors

and particle plots showing the distribution of vortex blobs. It should be noted that the wake in the

calculation extends a large distance behind the body, but for plotting purposes only, is truncated to

around two diameters downstream of the body. In both calculations, the formation of the vortex

street is clearly seen, although as expected, in the higher Re case the particle plots show that the
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wake has a much noisier or random look [2]. In the high Re case the diffusion component

calculated from the random walk is negligible, as discussed earlier. The flow field shown in

Fig. 4.4 is therefore not a good representation of the flow field as the calculation is effectively

based on convection only. Also, the flow structure is not representative as no account is taken

of the turbulent diffusion in the wake. The wake decay model provides a means of accounting

for these effects and as a result the separation points of the shear layers may be predicted

reasonably accurately. However, the empirical nature of model does not satisfy any physical

criteria and so the flow structure, in particular the formation of the vortices behind the cylinder,

is not representative at highRe.

It is clear from Figs. 4.1 to 4.4 that the DVM predictions give the correct qualitative trends for

the separation locations in sub-critical and super-critical flow fields. The most notable feature

that distinguishes the two calculations is that the separation of the shear layer is further aft in

the high Re prediction, giving rise to the narrower wake that is a characteristic of the super­

critical regime, despite the high Re case is not a good representation of the flow as discussed

above. The quantitative accuracy of the predictions can be assessed by comparison of various

key flow parameters with data extracted from wind tunnel experiments. Results from the DVM

predictions are compared with experimental data in Table 4.1.

Parameter. Re= 20,000 Re = 1x106

ESDU [101 DVM ESDU [10] DVM

CD 1.200 1.295 0.338 0.392

Cob -1.200 -1.253 -0.386 -0.5460

8b 83.31° 91.20° 128.62° 132.00°

Cpmin -1.296 -1.512 -2.118 -2.672

8min 70.12° 72.00° 83.59° 86.40°

Table 4.1.

Due to the large amount of wind tunnel results that are available in the literature, the results are

only compared with data taken from ESDU [10], which gives representative data for the

parameters under investigation. The four parameters, Cpb, 8b, Cpmin and 8min, are derived from

the mean Cp distribution around the cylinder, as demonstrated using a typical Cp distribution in

Fig. 4.5. The parameter Cpmin is the minimum value of C p on the cylinder surface with 8min

being the angle from the horizontal at which the minimum pressure occurs. Cpb is the mean

base pressure and 8b is the angle at which the base region starts. Both the ESDU data and the

DVM results assume that the surface of the cylinder is smooth. The DVM data is taken from

mean Cp results over the upper half of the cylinder only though it should be noted that the lower

half gives very similar results. The Cpb from the DVM is calculated from the mean pressure

between 8b on the upper and lower surface respectively.
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The agreement between the DVM results and the ESDU data is generally very good, with the

effect of Re on the separation locations being well predicted, although the CD in the high Re

case is a little high. Another discrepancy in the results is the higher predicted suction for Cpmin

from the DVM results. However, the location of the separation and the minimum pressure are

well predicted. The mean Cp distribution from the DVM for each Re is compared with ESDU

data in Fig. 4.6, illustrating the agreement between the results. A notable difference is that the

predicted Cpb is low when compared to experiment. In general the results demonstrate the

DVM is capable of capturing the variation of the flow field with Re, in particular the much later

separation of the shear layers in the super-critical regime combined with a much lower CD and

suction in the base region. However, once again it is noted that the results of the high Re cases

are affected by the negligible diffusion component from the random walk and also the lack of

wake turbulence modelling. The circular cylinder results are only presented to indicate future

capability of the method. The model has been developed with the goal of analysing the flow

field and aerodynamic loads on sharp edged bodies, which due to the fixed separation locations,

are less sensitive than smooth curvature bodies to some of the modelling assumptions. It is

anticipated that future research will address these issues and that a full validation of the circular

cylinder will be the subject of a future investigation.

4.2 Static Square Section Cylinder.

The flow field around the static square section cylinder has been the subject of many

experimental and numerical studies as discussed in Chapter 2. Despite the simple geometry, it

provides a useful and challenging test case for the validation of the DVM. As the angle of

incidence of the oncoming flow is varied, there is a significant variation in the resulting flow

field around the body, with one of the shear layers intermittently interacting with a downstream

comer and eventually re-attaching to a side face completely. Successful prediction of this

variation in the flow field and the associated static force coefficients for the square cylinder

would provide a useful validation of the DVM and would give confidence in results on more

complex geometries. The effect of varying the angle of incidence from 0° to 45° is presented in

this analysis and the results are non-dimensionalised with respect to the length of the side face,

L. The calculations were performed at a Reynolds number of 20,000, with a time step of 0.02

and with the nascent vortex particles being created 0.0025L from the surface. The comers of the

square are labelled as shown in Fig. 4.7.

4.2.1 General Flow Field Visualisation.

Figures 4.8 and 4.9 show the flow field around the square section cylinder at two different

angles of incidence. In each case, the flow at various stages of the vortex shedding cycle are

shown, using the distribution of particles from the DVM, accompanied by velocity vector plots

to give more clarity to the predicted flow field. In general, the qualitative prediction of the flow
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fields are good. The alternate vortex shedding from the body, giving rise to a classical vortex

street, can clearly be seen in the 0° case (Fig. 4.8). At 15° incidence, the shear layer separating

from the front lower comer of the body, is clearly shown to be reattaching on the lower side

face (Fig. 4.9). The effect that this reattachment has on the mean force coefficients will be

discussed in more detail in the next section. The differences in the wake structure between the

two cases can clearly be discerned, with noticeably weaker vortex shedding in the ISO case.

4.2.2 Mean Aerodynamic Force Coefficients: CD and CL.

Sample time histories for the lift and drag coefficients are shown in Fig. 4.10. The impulsive

nature of the start to the calculation can clearly be seen. However, the flow settles down, in a

relatively short period of time, to the expected fairly regular oscillatory cycle induced by the

vortex street typical ofbluff body flow fields.

The mean aerodynamic force coefficients, CL and CD at angles of incidence ranging from 0,=0°

to 45° are shown in Fig. 4.11 and 4.12 compared with experimental data [14,16-17,203,217­

219]. A summary of some of these results is compared in Table 4.2 with data from various

other computational methods and experiments. The correct variation of both CL and CD with

incidence is predicted by the DVM and there is good quantitative agreement with the various

experimental data. The selected alternative numerical methods, in particular, do not capture the

variation in the lift and drag, at the higher angles of incidence.

As the angle of incidence increases, the mean CD reduces, primarily due to the shear layer that is

shed from comer D intermittently contacting comer C (Fig. 4.7). Eventually, when a is

approximately 15°, this shear layer reattaches completely to form a separation bubble on face DC.

The shear layer that originally separated from D, now separates from C, and hence gives rises to a

narrower wake and a lower mean CD. Further increases in a simply lead to an increase in the

width of the wake, producing the gradual increase in CD between 15° and 45°. The vortex

method predicts this trend well, although the minimum CD is predicted at 15° rather than the 12­

13° indicated in the experimental data. As shown above, the attached shear layer can clearly be

seen at the higher incidence (Fig. 4.9).

The variation of CL with incidence can also be explained by the reattachment of the shear layer

to face DC. The separation bubble causes higher local suction pressures than those on face AB,

and hence give rise to a negative lift coefficient, with a maximum at 15° when the shear layer is

fully reattached. As the angle of incidence increases further, the separation bubble becomes

smaller, reducing the high local suction pressures on face DC which leads to a gradual increase

in CL . The results obtained from the vortex method again compare well with experimental data. A

feature of the accuracy of the variation of the mean CD and CL with incidence demonstrate that

the DVM would be a useful tool for analysing galloping at high reduced velocities.
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Authors Angle Reynolds MeanCL Mean CD

(degrees) Number

DVM 0 2.0e+4 0.019 2.38

15 -0.80 1.59

Lee [14] 0 1.76e+5 0.021 2.04

(experiment) 15 -0.72 1.58

Norberg [17] 0 1.3e+4 0 2.15

(experiment) 15 -0.68 1.80

Naudascher et al [218] 0 1.06e+5 0 2.00

(experiment) 15 -0.54 1.59

Blevins [195] 0 1.0e+4 - 1.0e+5 - 1.56

(vortex method)

Koutmos et al [151] 0 14285 - 2.37

(2D CFD)

Murakami et al [152] 0 1.0e+5 0 2.09

(2D CFD)

Tamura et al [147] 0 1.0e+4 0 2.4

(2D CFD) 15 -1.2 2.3

Tamura et al [147] 0 1.0e+4 0 2.2 - 2.3

(3D CFD) 15 -0.84 1.74

Table 4.2 - Comparison of Mean Force Coefficients.

4.2.3 Mean Base Pressure Coefficient : Cpb.

The mean base pressure coefficient was calculated as the average of the pressure coefficient at

the mid and quarter points on the leeward face of the body. This is consistent with many other

researchers, although some base pressure measurements are taken from the centre of the leeward

face only. However, as the pressure in the base region on the square cylinder is reasonably

constant, comparisons can be made with each set of data. The variation of mean base pressure

with incidence is shown in Fig. 4.13. The results from the DVM show good qualitative and

quantitative agreement with experimental data, though there is slightly too much suction at the

lower angles of incidence, consistent with the slight over prediction of CD at low incidence.

Previous researchers have shown that the base pressure is directly related to the amount of

vorticity shed from each side of the body [14 and 18], which is in tum related to the distance

required from the leeward face for vortex formation. Bearman and Trueman [18] indicated that

the greater the distance that the vortices are formed from the body, the less suction there will be

in the base region. Hence, from the over prediction of the suction in the base region at low
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incidence, it can be deduced that the DVM predicts vortex formation somewhat closer to the

body than occurs in practice (Fig. 4.8).

4.2.4 Mean Moment Coefficient: CM •

The moment coefficient about the centre of the square against incidence is presented in Fig. 4.14,

compared with experimental data [17 and 220]. As shown in Fig. 4.7, a positive moment is taken

to act in the clockwise direction. Reasonable agreement is shown, with the correct trend of CM

being shown with incidence. The minimum predicted moment occurs between 20-25°, which is a

little higher than shown in the experiment. However, the results suggest that the vortex method

may be a useful tool for analysing torsional oscillation of structures.

4.2.5 Strouhal Number.

Spectral analysis was performed on the lift coefficient time history, to obtain the Strouhal

number, St:

St = nsLlU (4.1)

Due to the impulsive start to the calculation, the analysis was performed on a number of

complete oscillation cycles of the lift history, after the flow had stabilised. A spectral analysis

was also performed on the pressure coefficient time history at the centre of the upper side face.

In addition, the location of the stagnation point on the windward face was also analysed. The

value of St obtained from each of these methods was found to be consistent, and only the results

from spectral analysis of the lift coefficient time history are presented below.

The variation of St with incidence is shown in Fig. 4.15, along with selected experimental data.

Also, a summary of some of the results is compared with data from various other computational

methods and experiments in Table 4.3. The DVM results compare well with data from other

researchers. The 3D CFD results of Tamura and Kuwahara [147] fail to accurately predict the

correct variation of St at incidence, although this code did give good results for the mean lift

and drag coefficients (Table 4.2).

The correct trends are predicted with a gradual increase in St until a peak is reached at

approximately 20°. This is a little higher than experimental values, although a wide range of

results has been presented by various researchers. The DVM overpredicts to some degree the

vortex shedding frequency at the higher angles of incidence. However, the strength of the

vortex shedding and the resulting oscillation in the lift distribution is much weaker at the higher

angles of incidence, hence giving rise to a wide range of values for St.
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An interesting feature to note between 0° and 12° incidence, is that some researchers show a

steady increase in St from 0° incidence, whereas others show a decrease in St before increasing to

the peak value at approximately 130. The reason for this behaviour is unclear, however in general

terms a decrease in the width of the wake can be linked to an increase in St. The reattachment of

the shear layer to the lower side face is the angle at which the wake is narrowest, and corresponds

to the maximum St at 130. In the cases where St initially decreases, the increase in the cross

body dimension probably has most effect on the wake width, causing a wider wake. Whereas

the gradual increase in St is probably more dependant on the intermittent reattachment of the

shear layer at comer C (Fig. 4.7). The wide range of results demonstrate the sensitivity of St to

the flow field, and emphasise the good quantitative agreement between the DVM and

experiment.

Authors Angle Reynolds St

(degrees) Number

DVM 0 2.0e+4 0.1278

15 0.1467

Lee [14] 0 1.76e+5 0.1214

(experiment) 15 0.1424

Norberg [17] 0 1.3e+4 0.1322

(experiment) 15 0.1466

Obasaju [16] 0 4.74e+4 0.1269

(experiment) 15 0.1427

Koutmos et al [151] 0 14285 0.178 I

(2D CFD)

Murakami et al [152] 0 1.0e+5 0.132

(2D CFD)

Tamura et al [147] 0 1.0e+4 0.103

(2D CFD) 15 0.129

Tamura et al [147] 0 1.0e+4 0.13

(3D CFD) 15 0.18

Table 4.3 - Strouhal Number from Various Authors.

4.2.6 Pressure Coefficient on Body Surface : Cpo

The pressure coefficient around the body for the 0° case is shown compared with experimental

data [14, 31,219 and 221], and with other computations [142, 152-154 and 222] in Fig. 4.16.

The results are plotted against distance along the body surface, from the centre of the windward

I Calculation in channel, with high blockage of 19%. Results appear to be uncorrected for blockage.
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face and moving clockwise around the body, as shown in Fig. 4.7. The pressure coefficient is

normalised using the pressure at the stagnation point as the reference pressure. The pressure

coefficient at 10° incidence is shown in Fig. 4.17.

In general, good agreement is shown with experimental data, although the high suction on the

leeward face is a symptom of the slightly high prediction of CD at 0°. The results also

demonstrate a favourable comparison with selected results from various 2D and 3D CFD

calculations (Fig. 4.l6b). The 2D results show significant differences to the experimental data,

most notably in the results of Murakami et al [152]. The 2D results of Yu and Kareem [154]

show much better agreement, though on the side face of the square, the prediction is outside the

range of pressures seen in the experiments. These discrepancies in the 2D results can be

attributed to the lack of modelling of the 3D effects in the wake, such as the development of

streamwise component of vorticity, ffix, due to the vortex stretching and roll up of the spanwise

von Karman vortices as discussed earlier. The vortex decay calculation was included in the

DVM to account for these 3D effects (see Chapter 3).

The results from the vortex method compare well with those calculated from full 3D methods,

which typically use 0(105) grid points, and in general, the 3D results are in much better

agreement with the data. Despite the scatter in the predictions, most are within the range of the

experiment results. One discrepancy is the high base pressure on the leeward face from the 3D

calculation of Murakami et al [152], and the resulting mean drag coefficient is likely to be

lower than experiment. Although the 3D results demonstrate good agreement with the data it is

likely that such a detailed analysis using a full 3D model would require significantly higher

computational effort than the 2D vortex model. 2

The predicted mean pressure coefficient at 10° incidence also compares well with experimental

data. The results demonstrate that the effects of higher angles of incidence on the pressure

distribution are successfully predicted by the DVM. Notably, the displacement of the stagnation

point along the windward face, and the effects of the reattaching shear layer at comer C have

been captured.

4.2.7 RMS Fluctuating Pressure Coefficients.

The rms lift coefficient for the 0° case was calculated to be 1.369. This compares well with

experimental data, with various researchers giving values ranging between, 1.20 and 1.35 [14­

15,31 and 46].

2 Conference presentation of [149] estimated that the calculation of one vortex shedding cycle, using 3D CFD
method, with 0(10 6) grid points required approximately 20hrs CPU on a Cray super-computer. This is compared to
the DVM which typically requires 1.5hrs for calculation of one shedding cycle on an Silicon Graphics Indigo
workstation or 20 minutes on a DEC Alpha (Section 2.1).
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The rms pressure fluctuations around the body surface are shown in Fig. 4.18 compared with

various experimental data and with results from other computations. The vortex method results

compare well with experiments and, on the side faces in particular, lie in the middle of a fairly

wide range of results. The reduction of the fluctuations on the leeward face is also successfully

predicted. The results from the 2D CFD calculations give the poorest agreement with experiment,

especially on the side face of the square. In general, the 3D calculations show good agreement

with experiment and lie within the range exhibited in the data. The poor agreement in the 2D

CFD results can again be attributed to the methods not taking account of the transfer of vorticity

from the von Karman component arising from the 3D effects in the body wake. This is consistent

with the results from the DVM, in that the predicted rms pressure fluctuations, particularly on

the leeward face, were poor prior to the addition of the wake decay model.

4.3 Rectangular Section Cylinders.

The DVM has also been validated for rectangular section cylinders at 0° incidence for aspect

ratios ranging from 0.25 to 3.0. The calculations were again performed at a Reynolds number

of 20,000, with a time step of 0.02. As far as possible, the length of the surface panels were the

same as in the square cylinder calculations to ensure consistency in the results. As mentioned

above, the crosswind body dimension is used to non-dimensionalise the force coefficients and

St. The aspect ratio is defined as BIL where B is the length of the side parallel to the freestream

velocity and L is the cross wind body dimension. As the calculations are presented for 0°

incidence, only the variation of mean CD and St are shown below.

4.3.1 Mean Drag Coefficient: CD.

The variation of CD with aspect ratio is shown compared with experimental data and other

computations in Fig. 4.19. In general, good agreement is shown with the effect of aspect ratio

on the results being well predicted by the DVM. The results also compare favourably with other

computations. The most notable effect of aspect ratio on CD is in the range BIH=O to 1. A

maximum value is reached at around BIH=0.62, the so called "critical section". At aspect ratios

lower than the critical section, the vortex formation is relatively unaffected by the two leeward

comers of the body. As the aspect ratio is increased towards the critical section, there is

effectively a reduction between the base region and the vortex formation, resulting in an

increased suction in the base region and hence a higher CD [17-18]. Increasing the aspect ratio

from the critical section, the influence of the leeward comers on the shear layers moves the

vortex formation further downstream, leading to a reduction in the suction in the base region

and hence a reduced CD. The aspect ratio of the critical section is shown by the DVM to be

between 0.6 and 0.7 and the CD at this section is well predicted.
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It is notable that the DVM gives a much better prediction of this trend than the vortex methods

of both Blevins [195] and Bienkiewicz and Kutz [203]. In both of these cases, the peak CD at

the critical section is not predicted. Each of these two results shows a gradual increase in CD as

the aspect ratio reduces. The CFD results of Okajima et al [136], using a laminar model and

neglecting the effects of turbulence, do predict the correct variation of CD with aspect ratio,

both qualitatively and quantitatively. However, the peak CD at the critical section is

underpredicted.

4.3.2 Strouhal Number: St

The variation of Strouhal number with aspect ratio is shown in Fig. 4.20, compared with

experimental data and other computations. The results from the DVM show good agreement with

the data and compare well with the other computations. The Strouhal number behaves differently

to CD at aspect ratios less than 1.0, with a gradual decrease in St as aspect ratio increases. The

reason for this is that the dominant effect on St is the wake width.

At low aspect ratio, the width of the wake is generally constant as the shear layers separate from

the front two comers of the body. Hence varying aspect ratio when BIH is less than 1.0 has little

effect on St. Between aspect ratios of BIH=2.0 and 3.0, the shear layers separating from the

windward comers reattach to the side faces of the body, resulting in a much narrower wake and a

correspondingly higher vortex shedding frequency. Various experimental results show that this

reattachment is intermittent, resulting in a "double" St for some aspect ratios between 2.0 and

3.0. The higher St corresponds to the case where the flow reattaches and the lower value is

effectively a continuation of the decrease inSt with aspect ratio.

This phenomena is well predicted by the DVM and is not demonstrated in the results of

Bienkiewicz and Kutz [203], where the results are only given up to an aspect ratio of 2.0. The

"double" Strouhal number is clearly seen in the experimental results of Norberg [17] and Otsuki

et al [13]. The laminar CFD results of Okajima et al [136] are in good agreement with the data

and also demonstrate the increase in St between aspect ratios of 2.0 and 2.5, although the

increase is a little more gradual than some experimental results.

4.4 Flat Plate Calculations.

A natural extension of the effect of aspect ratio is to investigate the limiting case of the flat plate.

The modelling of the DVM requires that the geometry under consideration is a closed body and

so an infmitely thin flat plate cannot be modelled. However, a good approximation can be

obtained by using a very thin rectangular cylinder where the aspect ratio is 0(102) . In this

study, aspect ratios of 100 and 200 were used to study the flat plate flow field and ascertain the

limits of the DVM.
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One of the reasons for studying the flat plate is that the nascent vortex particles may move in any

direction due to the convection velocity and diffusion processes. This could mean a particle

moving away from the body or towards and even into the interior of the body. In the latter case,

the particle is simply re-absorbed into the surface vorticity distribution and is included in the y

distribution for the next time step. However, for the flat plate, there is a much higher probability

that a vortex particle could travel through the body to the other side, whereby it would remain as a

wake particle and as such would introduce a spurious disturbance and significant error to the

predicted flow field. The most severe test for the model where such errors may occur are when

the flat plate is normal to the freestream flow. Representative results for the instantaneous flow

field are given in Fig. 4.21 and 4.22 for aspect ratios of 100 and 200 respectively. The resulting

flow fields demonstrate the ability of the DVM to predict the flow field and no evidence of

vortices crossing the body was found in either calculation. Both predictions show the typical flow

field with the shear layer separating from each end of the plate, forming a wide wake with a fairly

stagnant base region, corresponding with the description of the flow by Simiu and Scanlan [2].

At high Re, large vortical structures do not form in the wake, although the shear layers consist of a

series of smaller vortices that are alternately shed from each end of the plate. The predicted values

of CD and St are shown in Table 4.4 along with representative values derived from experiment [2

and 12]. Reasonably good agreement with the experimental data is demonstrated. It can be seen

from comparing the results with the CD and St results for the varying aspect ratio rectangles that

the DVM and experimental results are consistent with the values shown in Figs. 4.19 and 4.20.

The results presented in Table 4.4 correspond to an aspect ratio of zero and are consistent with the

variation of the two quantities as the aspect ratio of the cylinder is reduced.

Drag Coefficient, CD Strouhal Number, St

DVM - Aspect ratio = 100 2.238 0.167

DVM - Aspect ratio = 200 2.277 0.170

Experimental Results. 1.96-2.01 0.14-0.15

Table 4.4

Calculations have also been performed on a flat plate at 0° incidence to the freestream flow. In

this case, there is no separated region and the quality of the results can be assessed by studying

the nature of the predicted boundary layer on the surface of the plate. For such an analysis, the

results from the DVM were compared with the standard Blasius profile for a laminar boundary

layer [11]. By suitable non-dimensionalisation of the velocity distribution and thickness of the

boundary layer, it can be shown that the resultant profile at each location on the flat plate will be

the same. The scale factors used for the velocity and distance from the surface are the freestream

velocity and the boundary layer thickness, 0, approximated by (4.2), respectively [11].
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(4.2)

The DVM results are shown in Fig. 4.23, for both the 100 and 200 aspect ratio cases at various

locations between 30% and 70% along the flat plate and compared to the theoretical Blasius

profile. The DVM predictions are generally in good agreement with theoretical results although

at the higher time steps, the results are less accurate. This is to be expected as the higher time

step gives a prediction more representative of lower Re and the derivation of the Blasius profile

was based on the assumption that Re is very large. Analytic values for the boundary layer

thickness, displacement thickness and momentum thickness can also be derived [11]. The

boundary layer thickness is defined as the distance from the surface where the local velocity is

equal to 0.99Uoo' Displacement thickness°1 and the momentum thickness, 8, are defmed in (4.3)

and the analytic expressions are given in (4.4) [11]. The defmitions in (4.3) are used to calculate

the respective results from the DVM calculations. Comparison of these results with the analytic

values are shown in Fig. 4.24. Reasonable agreement is demonstrated though the results again

show that the best agreement is obtained for the low time step cases.

Boundary Layer thickness :

Displacement thickness:

Momentum thickness :

Boundary Layer thickness :

Displacement thickness:

Momentum thickness :

Distance, 0, from surface at which u=Uoo'

e~ O.664~ vx
U'"

(4.3a)

(4.3b)

(4.3c)

(4.4a)

(4.4b)

(4.4c)

Although the flat plate could have presented significant problems for the DVM due to the

requirement for a closed body, the results demonstrate that no such difficulties were encountered

in this study. The successful prediction of the flat plate flow has significant implications when
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considering the modelling of bridge deck sections, many of which have struts for structural

rigidity or appendages that support fairings or other such control devices. The flat plate results

indicate the potential of the DVM to model these problems without any significant modelling

changes to the method and further extend the capability of the method as an analysis tool.

4.5 Square Cylinder undergoing Transverse Oscillations.

The flow fields around bluff bodies with square cross section undergoing forced transverse

oscillations have been computed using the DVM. The body forcing is sinusoidal in nature with

a fixed amplitude, usually presented as an amplitude ratio, aiL, as demonstrated in Fig. 4.7. The

period of the body oscillation is represented non-dimensionally as a reduced velocity, Ur , defined

as UlnJJL. Results are presented for oscillations in the transverse direction with a range of

amplitude ratios from 0.05 to 0.25, with reduced velocities typically between 4.0 and 11.0. All

calculations were performed using input data that is consistent with the calculations for the static

square cylinder discussed above.

The strong dependency of the flow field on the amplitude ratio and reduced velocity results in a

division into three distinct flow regimes, namely vortex lock-in, below lock-in and above lock-in.

Above lock-in, the flow approaches quasi steady form as the dominance of the forcing oscillation

diminishes. Below lock-in, the flow is dominated by the effects of the imposed oscillation and,

depending on amplitude, the concentrated vorticity which is generated at the shedding frequency

can lead to a complete suppression of the natural vortex shedding mode. Lock-in is defmed as the

reduced velocity range around the resonant frequency (St of the stationary cylinder, shown to be

0.128 from earlier results) when the natural vortex shedding frequency transfers to the body

frequency. The increased spanwise correlation of the vortex shedding within the vortex lock-in

region suggests that there is less three dimensionality in the wake near the body. As a result, the

decay model within the DVM may require an adjustment to the decay constant, 13, to account

for these effects. However, the constant 13 that was used for the stationary cylinder was also

used for the oscillating cylinder to ensure consistency in the modelling.

4.5.1 Analysis of Lift History.

The DVM results for the time history of the lift coefficient at various amplitudes and reduced

velocities demonstrate clearly the different flow regimes discussed above, and also show

interesting features of the flow field. Sample lift histories are shown in Fig. 4.25 for the 0.10

amplitude ratio case, at four different reduced velocities. For the case below vortex lock-in, with

reduced velocity Ur=5.0, the lift history is quite irregular with a significant modulation of the

amplitude. This arises as both the natural vortex shedding frequency and the body frequency are

significantly different (stationary square St corresponds to a reduced velocity of 7.8), and each

has a significant effect on the lift history. As the body frequency becomes closer to the natural
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shedding frequency, but still in the region below lock-in, the characteristic beating due to two

slightly different forcing frequencies is clearly demonstrated in the case with Ur=6.75. The

beating frequency is approximately equal to the difference between the body and shedding

frequencies.

In the lock-in range, the lift history is close to sinusoidal, with only one dominant frequency

present and with very little modulation of the amplitude of the lift coefficient. This is clearly

demonstrated in the results from Ur=8.0. The upper end of the lock-in range is much less distinct

than the lower end, as the higher reduced velocity has less effect on the shedding frequency due to

the lower energy oscillations of the body. This results in a range of reduced velocities where the

flow condition is moving in and out of the resonant vortex lock-in. The lift history for Ur=8.3

clearly demonstrates this effect. The first part of the time history, up to non-dimensional time of

approximately 120, demonstrates results typical of the vortex lock-in region, that is high

amplitude and fairly regular lift oscillations. The later part of the time history is more

representative of results above vortex lock-in: the lift amplitude has reduced significantly, and

increased in irregularity as the vortex shedding and body frequencies become distinct. However,

the lift is much more regular and sinusoidal when compared to the case below lock-in due to the

lesser effect of the body forcing oscillation. This is consistent with a flow which is increasingly

quasi-steady in nature above lock-in at higher reduced velocities.

4.5.2 Vortex Shedding Frequency Measurements.

Spectral analysis was performed on the lift histories with the results being used to ascertain the

reduced velocity range at which vortex lock-in occurs for each amplitude ratio. Away from lock­

in, the vortex shedding frequency and the body frequency can be seen as two distinct peaks in the

frequency analysis. At vortex lock-in, the shedding frequency is modulated to the body frequency,

and a single peak is seen in the frequency analysis. Both of these phenomena are demonstrated in

the results of the DVM calculations, samples of which are given in Fig. 4.26.

The vortex shedding frequency, ns, is estimated from these power spectra, and is shown, divided

by the body frequency, nb, plotted against U, in Fig. 4.27. The straight lines in the figures show

the ratio between St for the stationary body and nt; Outside of vortex lock-in, the ratio n/nb

should be approximately on this line. In the lock-in region, the ratio becomes equal to unity as the

shedding frequency is transferred to the body frequency. This is clearly demonstrated in the

results from the DVM. Compared with experimental data [13 and 31], the region of vortex lock-in

is well predicted for both the 0.1 and 0.15 amplitude ratios. The most noticeable feature of the

results is the wider lock-in range as amplitude ratio increases. Again, this effect is well predicted

by the DVM.
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4.5.3 General Flow Field Visualisation.
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The flow field around the oscillating body is presented (Fig. 4.28 and 4.29) at different stages

of the oscillatory cycle, for the reduced velocities Ur=6.0, below vortex lock-in, and Ur=8.0, in

vortex lock-in. The results are shown as velocity vectors and in general provide good qualitative

representations of the flow field. Compared to the results on a static square (section 4.2) a much

greater modulation of the wake is clearly discernible.

In the Ur=8.0 case, the vortex shedding frequency is quite clearly the same as the body frequency

demonstrating the vortex lock-in phenomena. This is apparent from Figs. 4.29a and 4.2ge, where

the body is at the same stage of the oscillation cycle. In both cases, a vortex is forming close to

the rear face, due to the shear layer that is shed from the lower side face. If the same comparison

is made between Figs. 4.28a and 4.28e, it is clear that vortex shedding occurs at a different

frequency to the body oscillation, as illustrated by the dissimilar stages of the shedding cycle.

4.5.4 RMS Lift Coefficient, CLrms.

The variation of the rms lift coefficient, CLrrns, with U, over a range of amplitudes is compared

with experimental data [38-39] in Fig. 4.30. The variation of CLrrns can be explained by

considering the different flow regimes. At low Ur, below lock-in, concentrated vorticity is

generated and shed at the body frequency, resulting in the natural vortex shedding mode being

suppressed. This leads to a reduction in the fluctuating lift force on the body, an effect which is

magnified with increasing oscillation amplitude. In the lock-in region, CLrrns gradually increases

until the maximum value is reached at the resonance point. Just above lock-in, the sharp decrease

in the CLrrns corresponds with the separation of the vortex shedding and body frequencies. An

interaction occurs between the vortex formation and the rear comers on the square which reduces

the strength of the vortex, producing the decrease in CLrrns. As U, is increased further, the flow

approaches a quasi steady form, with CLrrns gradually approaching the value found on the

stationary body (equal to 1.37 in the DVM and 1.12 in Lu, Chen et al [39]3).

The results from the DVM demonstrate the variation discussed above and show generally good

agreement with experimental data. It should be noted that some of the discrepancies can be

attributed to the differences in the range of U, for which lock-in is assumed. For example, the

0.25 amplitude ratio case has a lock-in range of approximately Ur=5.5 to 12.0 in the experiments

[31 and 38], whereas the DVM lock-in range is from 4.5 to 9.0. The variation in experimental

results is larger at the upper end of the lock-in range due to the lower frequency oscillation. This

explains to some degree why the biggest discrepancy in the DVM results is at the upper end of

lock-in. Also, it can be shown that the lock-in is somewhat sensitive to Reynolds number, with a

larger range of U, expected at lower values. The Re employed in the DVM was chosen to be

3Various experimental data shows that CLnns is generally within the range 1.20 to 1.35 (section 4.2.7).
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representative of all the experimental data being used for comparison but differs from each

dataset to some degree. The results for the lowest amplitude ratio, 0.05, are more difficult to

interpret as only a very small lock-in region was predicted at V r",7.5. Also, the vortex shedding

is more dominant making the effects ofbody oscillation sometimes difficult to detect.

4.5.5 Pressure Coefficient and Fluctuating Pressure Distribution on Body Surface.

The surface pressure coefficient, Cp, around the body is shown in Fig. 4.31 for various reduced

velocities, at an amplitude ratio of 0.25. For reference Cp around a stationary square at 0°

incidence is shown in Fig. 4.16. In each figure, the comers of the body are indicated (Fig. 4.7).

Two of the three results shown are in the vortex lock-in region (Ur=7.5 and 7.75) with the third

(Ur=8.5) just above lock-in. The DVM results exhibit the correct trends as U, is varied when

compared with the experimental data [31].

The Cp varies only slightly through the resonance region, however one noticeable feature is the

significantly increased suction on the side faces when compared to the Cp on the stationary body.

During lock-in, the vortices shed from the body are stronger due to the effect of the body

oscillation, giving rise to the higher suction on the side faces. Above lock-in, the Cp on the side

faces reverts to values closer to those seen on the static body, although there is a significant

reduction in the base suction. Lu and Chen et al [39] found a similar effect with a reduction in

the drag coefficient at reduced velocities just above lock-in. A conjectured reason for this effect is

the significant interference of vortices forming from the side faces with the rear comers of the

body at reduced velocities just above lock-in. This interference tends to move the vortex

formation further downstream, reducing the base suction.

The rms fluctuating pressure on the body surface, Cprms, is shown in Fig. 4.32 for various

reduced velocities at an amplitude ratio of 0.1. For reference, the results from the static body

are shown in Fig. 4.18. It should be noted that the measurements of fluctuating pressure have

not been corrected to account for acceleration effects (due to the pressure transducer not being

mounted flush to the cylinder surface), though the errors are only expected to be significant at

low reduced velocities [31]. However, previous comparisons between various experimental

data have indicated that there can be a wide variation in the Cprms results (Fig. 4.18). Allowing

for the wide scatter of data, the DVM results exhibit the correct trends with reduced velocity.

For instance, in the lock-in region, Cprms is noticeably greater, with a maximum at the

resonance point.

Below lock-in, Cprms is generally reduced slightly, as the flow is dominated by the body motion.

The results towards the rear comers of the body (B and C) do however show a tendency for

increased Cprms. The relative angle of incidence of the freestream flow as the body oscillates,

causes the shear layer to begin to reattach to one of the side faces of the body. Before full
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reattachment, however, there is be a significant interaction between the shear layer and the rear

comer, leading to the higher Cprms in this region. Above lock-in, the Cprms begins to approach

the results seen on the static model. The reduced velocities for the above lock-in case used in

the DVM are different from the experimental values due to differences in the upper lock-in

boundary (see section 4.5.1). The results of calculations just above lock-in are used (Ur=8.5

and U r=9.0) which demonstrate the change in Cprms as the flow state changes.

4.5.6 Phase Angle and Frequency-Response Component of Lift.

The phase angle, $, is defined as the angle by which the lift force leads the body displacement.

From this definition, the lift is capable of sustaining free oscillations of a spring mounted

cylinder, when $ is within the range 0°<$<180°, the so called negative damping condition. The

characteristic distribution for $ with varying U, is demonstrated in the results from the DVM

shown in Fig. 4.33. The most noticeable feature is the sudden increase from negative to positive

phase angle through the lock-in region. It is clear that positive $ required for vortex induced

oscillations only occurs once the reduced velocity is above the resonance point. This is also

demonstrated in free oscillation experiments [13 and 44]. The slope of the phase angle

distribution also tends to decrease with increasing amplitude, giving further indication of the

increased lock-in range at higher amplitude.

The results from the DVM demonstrate good agreement with experimental data (Fig. 4.34),

although these data show a wide variation, highlighting the sensitive nature of the unsteady

flow field. In addition, variations in the experimental flow conditions, such as Re, and

variations in the static St, may have had a strong effect on the results obtained from the

oscillatory tests. However, the DVM results are within the range of experimental data, with the

only discrepancy being the smaller predicted lock-in range at higher amplitudes discussed

earlier. A favourable comparison can also be made with results obtained from a 3D CFD

method [152] at amplitude ratios of 0.10 and 0.25.

The component of the lift history at the body frequency, or "frequency-response" component,

may be expressed as

(4.5)

The amplitude of the frequency-response component, La, may be non-dimensionalised to give

the frequency-response component of the lift coefficient

(4.6a)

where
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(4.6b)

is the amplitude of the frequency response component of the lift coefficient. CLb can be written

in complex notation

The complex components, CLbR and CLbIo can obtained from (4.7)

CLbR = CL O coso

CLbI = CLO sin o

It may be noted that the condition for vortex induced oscillation is for QbI to be positive.

(4.6c)

(4.7)

Comparisons of the frequency response amplitude, CLO, with various experimental data are

shown in Fig. 4.35. The most noticeable feature of the results is the approximate correspondence

of the peak CLO with the resonance point, and the increasing peak value with amplitude. The

DVM results demonstrate good agreement with experiment, although the wide range of data

should again be noted. Another feature to be noted is the CLO values below lock-in tend to be

higher than those above lock-in. This is indicative of the body oscillation having a more

dominant effect on the lift force at the higher frequencies.

Good agreement between the DVM results for CLbI and experiments have also been obtained

(Fig. 4.36). Again, comparison is affected by the large variation in different experimental

results. The results show that the value of Dr at which CLbI becomes positive increases with

amplitude as found in experiments. Allowing for differences in the experimental results, the

reduced velocity at which CLbI becomes positive is also well predicted.

4.6 H-Section Cylinder.

The detailed investigation of the unsteady aerodynamic loading and aeroelastic response of

bridge deck sections became important after the failure of the Tacoma Narrows bridge in 1940.

The problems arose due to the fundamentally unstable aerodynamic nature of the bridge cross

section along with the lightweight and flexible structure. Prior to the collapse the bridge had

been nicknamed "Galloping Gertie" due to its unstable nature and there were many reports of

the bridge undergoing plunging oscillations due to VIV response. However, as discussed by

Billah and Scanlan [1], the ultimate catastrophic failure was due to torsional flutter response

(Fig. 1.1) and not due to vertical response to VIVas was originally assumed at the time of the

failure. Since the Tacoma failure, the H-section cylinder which formed the bridge deck has

been the subject of many experimental and numerical analyses to study the unsteady
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aerodynamics of the section. Due to the availability of data, the H-section forms a natural step

in the validation of the DVM, from the simple geometric bodies discussed above to the study of

modem bridge deck sections.

4.6.1 Static H-Section Cylinder.

The section used in this study is a simplified Tacoma geometry, with the cylinder having an

aspect ratio of 5. Instantaneous snapshots of the flow field around the cylinder at 0° and 6°

incidence (positive angle in clockwise direction) are given in Figs. 4.37 and 4.38 respectively.

The figures demonstrate the complex flow field, with vortices shed from both the upstream and

downstream vertical faces of the section. The formation of the vortex street is clearly discerned

in the wake of the body. Also clearly demonstrated is the strong vortex formed behind the front

plate of the H-section and the reattachment of this vortex onto the middle part of the section.

The strength of this vortex has a significant effect on the variation of the mean aerodynamic

force coefficients with incidence as is discussed below.

Static force coefficients for the section at a range of incidence between -10° to +10° are

presented in Fig. 4.39 and results at 0° are presented in Table 4.5. The crosswind dimension is

used to non-dimensionalise St and CD, with the along-wind or body width used for CL and CM.

In general, good agreement is demonstrated with the experimental data [90]. CD is generally

slightly overpredicted although the correct trend is observed in the DVM results.

CD CLnns dCdda Ia=O° dCMlda!a=O° St

(a=OO) (a=OO) (rad) (rad) (a=OO)

Experiment : 1.24 0.227 6.9 -0.77 0.11

Schewe [90]

Re = 8.1x10 5

Larsen : Vortex 1.40 0.37 N/A N/A 0.11

Method [119, 196].

Re = 105

DVM 1.31 0.337 6.50 -0.473 0.113

Re = 105

Table 4.5

The CL and CM results are good, especially at the low angles of incidence. However, the non­

linearity in the experimental data at higher angles is not captured. At the higher angles of

incidence, the shear layer is likely to separate completely from the front face leading to the a

reduction in both CL and CM that is seen in the experimental data. In the DVM results, it is likely

that the shear layer does not separate completely and closes in on the body, and hence the linear
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region continues beyond the experimental region. A possible cause is an overproduction of

vorticity in the DVM calculation although further investigation is necessary to address this

discrepancy. Comparing parameters at 0° incidence with experiment and also with results

obtained from a vortex method by Larsen et al [119 and 196] again serve to demonstrate the

quality of the predictions obtained. The results given in Table 4.5 in particular show that the

gradient of CL and CM are well predicted and the results compare favourably with those of

Larsen. The negative gradient of CM is responsible for the torsional flutter instability of the H­

section.

4.6.2 Oscillating H-Section and Flutter Analysis.

To study the flutter characteristics of the H-section, a series of calculations were performed with

the body undergoing forced sinusoidal transverse and torsional oscillations. Both sets of

calculations were performed for a range of Dr with the amplitude ratio (with respect to the body

width) of the transverse oscillations being 0.025 and the amplitude of the torsional oscillations

being 3°. These results are used to derive the flutter coefficients and hence, obtain the critical

flutter velocity of the section. The method of the extraction of the flutter coefficients and

calculation of the flutter velocity is briefly discussed in Appendix F. The flutter coefficients are

compared with experimental data [3] and results from calculations by Larsen [119] in Figs. 4.40

and 4.41. The experimental data for Al * and A3* is assumed to be negligible. In general, good

agreement is demonstrated with the experimentally derived data and also show a favourable

comparison with the vortex method results of Larsen.

The flutter derivatives of most interest in this case are A2* and HI *, which represent the

aerodynamic damping in the torsional and vertical degrees of freedom respectively. A slight

peak in the HI * results at Dr 2.0 is caused by the effects of vortex lock-in for the vertical

degree of freedom influencing the flutter derivative and are similar to the results reported by

Larsen [196] (Fig. 4.40a). For lDOF torsional flutter, the critical flutter velocity may be

calculated directly from theA2* flutter derivative, as shown in Appendix F, using (4.8).

(4.8)

The most important aspect of the A2* derivative is the reversal in sign at higher Dr, and as such

is the prime reason for the torsional instability of the H-section (Fig. 4.4lb). The equation (4.8)

represents the point at which the total damping (mechanical plus aerodynamic) of the system is

zero. At reduced velocities higher than this, a negative damping condition arises and the

structure becomes fundamentally unstable. It is clear that the flutter criteria in (4.8) can only

occur at positive values ofA2* and hence the reversal in sign is an inherent characteristic of the

flutter instability in the torsional DOF. The A2* derivative shows good agreement with the

experimental data. There was some indication from the results, between reduced velocities 3 to
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4, of a lock-in phenomena predicted by the DVM. It is not clear if this is a physical or

numerical phenomenon and further investigation of these results is required.

The structural properties of the original Tacoma Narrows bridge were taken to be

I=177.73x103kgm2/m, Sa=0.005 and B=12m [119] and using this data in (4.8) indicates that the

critical flutter velocity corresponds to when Az*=0.07. By linearly interpolating from the DVM

results, the critical flutter velocity occurs at a reduced velocity of 3.88 or using the structural

data, a flutter speed of 9.3lms· l
. If a quadratic curve is fitted to the DVM results, the flutter

speed is calculated to be 10.3lms·1
• Both of these results compare well to the experimentally

derived flutter speed of 8.3lms·1 as given by Billah et al [1]. The DVM predictions also

compare favourably to the vortex method results of Larsen where a flutter speed of l I.Sms" is

calculated [119]. It should be noted that although the flutter instability occurs at a speed of

8.3lms·1
, the bridge eventually failed at a wind speed of approximately of 19ms1

•

4.7 Study of Great Belt East Suspension Bridge.

The successful validation of the DVM presented above gives confidence in the method when

applied to the analysis of suspension bridge deck sections. To investigate the capability of the

DVM for the analysis of the flow field around a representative geometry, a study of the Great

Belt East Suspension bridge was undertaken. The bridge forms part of the link between the

islands of Funen and Zealand in Denmark [133, 223-226] and the bridge configuration along

with the cross section of the main suspended span is illustrated in Fig. 4.42. The Great Belt East

bridge with a main span of 1624m, opened in June 1998, and will form the longest single span

until the completion of the Akashi Kaikyo bridge in Japan. Therefore, with the bridge being one

of the major recent projects in the fields of suspension bridge aerodynamics and wind

engineering, it has been the subject of numerous studies, both experimental and numerical,

giving a significant data base which can be used to assess the DVM predictions. All of the

analysis presented herein is performed on the main suspended span (Fig. 4.42b).

4.7.1 Analysis of Static Section.

A series of calculations on the static section were performed at a range of angles of incidence

from -10° to +10°. Instantaneous flow field distributions are given in Figs. 4.43 and 4.44. In the

10° case, the vortices under the body and towards the downstream lower comer show a

significant increase in strength when compared to the 0° case and in tum lead to an increase in

the lift and moment coefficients. Most modem long span suspension bridge designs, as in this

case, utilise a streamlined box section to ensure that the increase in the force coefficients with

incidence is not so dramatic to produce a fundamentally unstable design.
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In the 0° case, the flow along the upper surface is virtually fully attached and exhibits little

separation. The prime reason for this is that the geometric model used in the DVM is a

simplified cross section and more complex features, such as crash barriers and cable supports

that would disturb the flow, are not modelled. An initial attempt was made to model the crash

barriers on the extremities of the upper surface and the effect on the flow field is clearly seen in

Fig. 4.45. In this case, there is a significant separation on the upper surface caused by the

barriers. Each barrier is modelled by the addition of a flat plate of representative height and

thickness at the approximate location. Hence, care must be taken as the "plates" are treated as a

solid geometry, and porosity effects are neglected. However, the results demonstrate the effect

of barriers and give a indication of potential future developments of the code.

The static force coefficients for the section are presented in Fig. 4.46, compared with

experimental results from a section model test [225] and also with results from a finite

difference grid based numerical method [158]. CL and CM are non-dimensionalised using the

along wind body dimensions, B, and B2 respectively, whereas CD is non-dimensionalised using

the crosswind dimension, L. The results presented by Kuroda [158] also use a simplified deck

section with the barriers omitted. Results at 0° incidence are also presented in Table 4.6 along

with vortex method results on the Great Belt section from Larsen and Walther [119, 167 and

196], who again model a simplified geometry without any crash barriers.

CD(a=OO) CL(a=OO) dCdda lu=o° CM(a=OO) dCM/dalu=oo

(rad) (rad)

Experiment 0.57 0.067 4.37 0.028 1.17

r133,225-2261

DVM 0.3544 0.127 6.58 0.0519 1.34

Kuroda - Finite 0.4811 -0.1792 7.567 0.0345 1.135

difference r1581

Larsen and 0.430 0.000 4.13 0.027 1.15

Walther - Vortex

Method [119 and

196].

Walther - Vortex 0.4022- -0.0571- 3.214-7.060 0.0262- 0.6807-1.1723

Method [167]. 0.5855 0.0545 (Mean = 0.0418 (Mean =

4.699) 0.9325)

Table 4.6

In general the results compare well with the experiment, in particular CL and CM, and show

favourable comparison with the alternative numerical methods. The results of Larsen et al [119

and 196] are based on and summarise the results presented in Walther [167]. As can be seen in
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Fig. 4.46, Walther's results show a range of values for the force coefficients at each angle of

incidence, obtained by use of different parameters in the vortex method. The variation is obtained

through variations in the time step and by adjusting the maximum circulation of the wake vortex

particles. The range of the results for these parameters, for both the mean force coefficients and

the gradients at a=O° are summarised in Table 4.6. Although the data presented by Larsen

appears to be more accurate than the DVM, it is not clear which of Walther's results were used

to obtain this data. It is clear from Fig. 4.46 that the results of the DVM are comparable with the

other predictions in terms of their qualitative and quantitative agreement with experiment.

CD at 0° is underpredicted somewhat, as also indicated in Larsen's results. However, Larsen

suggests that a possible explanation for this discrepancy is the lack of modelling of the crash

barriers and parapets in the calculations, elements that were included in the wind tunnel model. It

is suggested [119 and 196] that simple calculations of the effect of freestream wind on each

barrier or parapet would lead to a contribution to the CD of approximately 0.162. This increment

applied to the DVM results clearly brings the results more in line with the experiment. It is

interesting to note that at positive incidence, the CD predicted by the DVM is higher than the

experimental results. In this case, flow is more likely to separate from the "leading edge" of the

structure, with the barrier near the front of the section now likely to be located within the vortex

generated at the "leading edge". Hence, the barriers are less likely to have a significant effect on

the CD at positive incidence. At negative incidence, the barriers still play are large role in

determining the location of the separation and this can be seen in the underprediction of CD.

The same calculations are performed using the DVM, but including the approximate barrier

modelling discussed above and the results are compared to experiment and DVM without

barriers in Fig. 4.47. It should again be noted that the model is a crude approximation as the

barriers in the DVM are assumed to be solid and impermeable, contrary to the real structure.

This is clearly noticeable in the results at 0° where CD is now overpredicted compared to

experiment. The discussion above is backed up to an extent by these results. CD at positive

incidence is still in good agreement with the data and has changed only slightly relative to the

DVM without barriers. At negative incidence, where the barriers continue to playa large part in

determining the location of separation, the results are significantly affected by the inclusion of

the barriers, with CD now overpredicted by the DVM. Similar effects can be seen on the CL,

where the results at positive incidence are not greatly affected, whereas the results at negative

incidence demonstrate a considerable change. Again the differences with experiment may be

attributed to the barriers being modelled as a solid plate. The results demonstrate the potential

to incorporate detailed structural features within the DVM analysis.

The numerical results of Kuroda [158] were also obtained using a model with the barriers

omitted, though the CD seems to show good agreement with the experimental data. Kuroda

attributes the poor agreement with the data for CL at negative angles of incidence to the lack of
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modelling of the barriers. At negative incidence, it is claimed that the flow will be fully

attached to the upper surface of the section and will hence lead to a lower CL than the

experiment where the barriers cause a significant separation. Although this argument is

plausible, the good agreement of CD with the data despite the lack of modelling of barriers

detracts from the quality of these predictions.

4.7.2 Analysis of Oscillating Section.

On flexible long span bridges, 2DOF flutter is often encountered and careful design of the section

is essential to ensure that the critical flutter velocity is within the relevant design criteria. A

common method of analysing flutter on bridge sections is by means of the flutter derivatives

discussed in Chapter 2. These derivatives are usually extracted from sectional model tests in a

wind tunnel, using numerous techniques from either free or forced oscillation experiments. The

DVM has been used to derive the flutter derivatives for the Great Belt East main suspended span

from a series of calculations of the section undergoing forced sinusoidal oscillations. The

simulations involved separate vertical and torsional motion about the axis at mid-chord of the

section (Fig. 4.42) at a range of reduced velocities from Ur=4.0-15.0 using the simplified section

omitting the crash barriers. The amplitudes were O.04B and 4° for the vertical and torsional cases

respectively. The flutter derivatives were extracted from the DVM results using the method

outlined in Appendix F.

The calculated flutter derivatives are compared with experimental data [98, 124 and 225] in Fig.

4.48. Comparison is also made with flutter derivatives calculated by Walther [167], also using a

vortex method modelling the section undergoing 1DOF forced oscillations. The experimental data

was derived from wind tunnel tests with smooth freestream flow, using a system identification

technique. It should also be noted that this technique requires the body to be excited in both the

vertical and torsional directions simultaneously unlike the DVM calculations which employed

forced oscillations in each direction separately. This may account for some of the differences

between the results. However, good agreement with the data is obtained for all of the derivatives,

although generally, in wind engineering, the derivatives A4* and H4* are assumed to be zero as

they are of little significance for practical flutter predictions. An interesting point to note with the

Great Belt flutter derivatives is that A2* does not exhibit the change in sign that is characteristic

for 1DOF torsional flutter as demonstrated for the H-section cylinder in [1-2] and in section

4.6.2. The derivative A2 * represents the aerodynamic damping in the torsional direction and

"negative damping" criteria necessary for torsional flutter only occurs at positive A2 *. Hence, as

A2 * remains negative over the whole range of reduced velocity, the flutter oscillation for this

section is likely to be a 2DOF coupled flutter in both the vertical and torsional directions.

Favourable comparison with the results of Walther [167] are also obtained. As with the static

results presented in [167] and discussed above, for each reduced velocity, a range of flutter
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derivatives are obtained, depending on the amplitude of the oscillation used in the calculation. It is

clear from Fig. 4.48 that the DVM results demonstrate better agreement with the experimental

data and show less scatter than those of Walther.

Structural Property Great Belt East: Main Suspended S~an.

Mass / unit length: m (Kg/m) 22.74x103

Mass moment of inertia / unit length: I 2.47x106

(K.Q;1112/m)

Frequency of response in vertical 0.099

direction :/h (Hz)

Frequency of response in torsional 0.272

direction .t; (Hz)

Relative-to-critical damping ratio: C;; 0.002

Table 4.7

The critical flutter velocity may be derived from the flutter derivatives using the method outlined

by Simiu and Scanlan [2] also discussed by Larsen [119] and extended in Appendix F to

incorporate the final two derivatives A4* and H4* in the calculation. The structural properties of

the bridge section used in the analysis are given in Table 4.7 taken from [133 and 196]. Flutter

velocity predictions from the DVM analysis are presented in Table 4.8 compared with results

from a wind tunnel sectional model test [133 and 225] and predictions by Larsen et a1 [196]. The

flutter derivatives used by Larsen are essentially those presented by Walther [167] and are shown

in Fig. 4.48. Noting the scatter of these flutter derivatives, it is not clear which of these results

have been used to derive the critical flutter velocity. The DVM results are presented for two cases,

the first using only the traditional derivatives At and Ht for i=1-3 and the second also including

the [mal two derivatives, A4* and H4*. The DVM predictions give an excellent prediction of the

critical flutter velocity and the results are certainly comparable with Larsen's results. The accuracy

of these results indicates that the DVM is a useful analysis tool for design studies of long span

bridges.

Data Critical Flutter Velocity Dc (msl)

Full Aeroelastic Model r133] 70-75

Taut Strip Model r1331 72

Wind Tunnel Sectional Model r133, 224-2251 74.2

DVM -At andHt i=1-3 only 74.997

DVM-At andHt i=1-4 71.632

Larsen - Vortex method r1961 74.0

Table 4.8
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The discussion above only considers the motion of the bridge deck in the vertical and torsional

degrees of freedom. Recent studies have suggested that the response of the bridge in the

swaying or along-wind direction may also have an important influence on the stability of the

structure [112]. It was found on a recent bridge design that if only the vertical and torsional

flutter derivatives (Ht and At) were used in the analysis, a flutter velocity of approximately

130ms-1 was obtained. However, including the swaying flutter derivatives (Pt) into the

analysis reduced the flutter velocity to between 70ms-1 and 80ms-1 [112]. Clearly, on longer

span bridges with greater flexibility in the along-wind direction, analysis of the pt derivatives

may become more important in the future. Although the DVM has not been used to analyse the

swaying derivatives, there is no reason why the method may not be used in such an analysis by

modelling a forced oscillation in the along-wind degree of freedom. Future development of the

DVM may include an investigation of the potential of the method to derive thePi* derivatives.

4.8 Control of Flutter Oscillations.

There have been a number of studies into how the structural stability of suspension bridges may

be improved. For "bluff' cross sections, the use of fairings as demonstrated in [126 and 129]

gives a significant improvement in stability. However, for "streamlined" sections such as that of

the Great Belt East bridge studied in the previous section, the critical flutter velocity may be

increased by the addition of guide vanes that act as flow control devices. Such devices are

studied in [130-132] indicating the effects of both passive and actively controlled devices.

Typical arrangements and applications of these devices are given in Fig. 4.49. The system is

based on the idea that the movements of the bridge deck are constantly monitored with the

angle of the controlling guide vanes adjusted accordingly to generate stabilising aerodynamic

forces and effectively increasing the aerodynamic damping to counteract any tendency to

motion. Typical results of the application of such devices as presented in [131-132] are given in

Fig. 4.50. It is essential that the guide vanes be located far enough from the bridge deck as is

practical to ensure operation outside of the bridge shear layers. Typically the vanes have a

chord length that is around 10% of the deck section width. The actively controlled vanes are

given an oscillatory motion with the same frequency as the bridge section but out of phase, with

the vanes at the leading and trailing edges of opposite phase. It is claimed by Ostenfeld and

Larsen [132] that the critical flutter velocity is increased by up to 50% and as suggested by

Kobayashi et al, may theoretically be increased up to an infinitely high speed [131].

Although these devices add considerable complexity to the bridge design, from a structural

stability point of view, they are attractive. However, testing the effect of the guide vanes in a

wind tunnel would involve a significant amount of effort to model even just the passive

configuration accurately. The actively controlled guide vanes would present further problems

with the modelling of the control and actuation system. Such an experimental study with

reasonable results is presented in [131]. To demonstrate the capability of the DVM to be used
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as part of a bridge design system, a brief study into the effect of passive and active control

vanes on the flutter stability has been carried out. As part of the study, various configurations of

passive and active control vanes have been applied to the Great Belt East main suspended span

to investigate their effect on the flutter criteria (Fig. 4.51). As this is only a study of the effect

of the vanes, a basic elliptical cross section is used. For more practical applications and to

optimise the flow control, a more complex aerofoil section may be required. Each of the vanes

has chord length 10% of the bridge section width. The effect on the flutter velocity of passive

vanes at different angles, and of active vanes at different phase angles, were studied using the

DVM. In the calculations, the bridge was given a forced sinusoidal oscillation in either the

transverse or torsional DOF and for the passive calculations, the vanes were oscillated with the

same amplitude and frequency. To demonstrate the active vanes, the control surfaces were

given a forced motion that simulates the displacements that would be activated by the

controller. The prescribed displacements of the vanes are given by (4.9). An example of the

relative motions of the bridge deck and the two guide vanes is given in Fig. 4.52.

Bridge torsional motion: a(t) =a, Sin(~:J

Vane motion : a.(t) ~ Mao S~~: +$J
(4.9)

Varying performance of the flow control vanes can be achieved by using different values for

the amplitude factor, M, and the phase relative to the bridge section, $. In each calculation, the

downstream vane is in opposite phase to the upstream vane as demonstrated by Ostenfeld et al

[132]. Using this procedure, simulations may be performed relatively simply and without the

need to implement control theory, yet the effect of the active vanes on the flutter criteria can

still be assessed.

Five different configurations of guide vanes were used, two of which were passive and three

using active vanes each with different phase angles as summarised below:

1) Passive vanes : a=O°

2) Passive vanes : a=4°

3) Active vanes : M= -2, $ = 0°

4) Active vanes : M = -2, $ = 60°

5) Active vanes : M= -2, $ = 90°

The effect on the flutter derivatives for the passive vanes compared to those of the bridge section

without vanes is shown in Fig. 4.53 and 4.54. In general, the vanes do not give rise to any large

changes in the flutter derivatives. The most notable effect is a reduction in the magnitude of both

H2* and A2*. However, the changes are only minor, suggesting that the critical flutter velocity
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will only be affected very slightly. The flutter velocity for each configuration is calculated using

the structural properties given in Table 4.7 using the assumption that the addition of the vanes

have no effect on the mass and stiffuess of the structure. This assumption may be a little

unrealistic but allows an investigation of how the aerodynamic properties of the bridge are

affected by the flow control devices. The results are given in Table 4.9.

Configuration. Critical Flutter Velocity (ms ')

Wind Tunnel Sectional Model-No vanes 74.2

rI33,224-2251-

DVM calculation - No vanes. 71.632

Passive Vanes - a=O° 68.199

Passive Vanes - a=4° 70.8563

Table 4.9

As expected, the passive guide vanes do not have a large effect on the critical flutter velocity

and in fact very slightly reduce the stability of the bridge. This result agrees with the findings of

the studies in Ostenfeld et al [132] and Kobayashi [131] as demonstrated in Fig. 4.50. The

passive vanes effectively corresponds to the case with M=1 and <1>=00
• The analysis from [131]

gives reducing flutter velocity for <1>=0 0 as M increases.

The active control of the guide vanes in this study are only modelled in the cases where the

structure is undergoing a torsional oscillation. Hence, no results are presented for Al * and HI *
and the variation in the remaining flutter derivatives due to the actively controlled vanes are

shown in Fig. 4.53 and 4.54. As with the passive vanes, there is relatively little change to A3*
and H3*. However, for <1>=60 0 and 900 there is a marked change to the A2* and H2* derivatives.

In particular, H2* changes from negative to positive at a higher reduced velocity. The <1>=0 0 case

gives results similar to the bridge deck without vanes.

Configuration. Critical Flutter Velocity (ms l)

Wind Tunnel Sectional Model-No vanes 74.2

r133,224-2251.

DVM calculation - No vanes. 71.632

Active Vanes - M=-2, cP=Oo 65.50

Active Vanes - M=-2, cP=60° 108.154

Active Vanes - M=-2, <1>=900 N/A 4

Table 4.10

4 No Flutter velocity found.
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The reduction in flutter velocity for the ~=Oo case is to be expected from the results of Kobayashi

[131] (Fig. 4.50b). Also, as ~=Oo, the oscillation of the vanes is in phase with the bridge deck as in

the passive case, although the amplitude is double that of the bridge deck. The two cases where

~>Oo show a significant change in the flutter velocity, and in the ~=90° calculation, no flutter

velocity was found even when the aerodynamic derivatives were extrapolated beyond the range of

reduced velocities used in the calculations (Table 4.10). Again, this agrees with the studies

presented in [131-132] (Fig. 4.50) from which it was found that, as M increases, the flutter

velocity tends to infinity for a phase of 90°, or even less at the higher amplitude factors. For

~=60°, the flutter velocity has been increased by approximately 51% in agreement with the

previous studies (increase of ~50% claimed in [132]). However, as calculations were only

performed for U, of 6.0 to 14.0, this result was obtained by extrapolating the flutter derivatives

to higher Ur. The flutter velocity obtained must therefore be treated cautiously. Despite this, the

result does demonstrate the effect of the actively controlled guide vanes and indicates the

capability of the method to study varying design configurations of bridge sections to assess

their aeroelastic stability. It is clear that the effect of the passive and active flow controlling

guide vanes as predicted by the DVM is in agreement with the results presented in previous

studies.

4.9 Summary.

The results presented in this chapter for a wide range of test cases, demonstrate that the DVM is

a useful tool for the analysis of bluff body flow fields. The successful prediction of the effects

of incidence and aspect ratio on stationary rectangular cylinders, as well as the results on a

transversely oscillating square cylinder, show quantitative agreement with experiment over a

wider range of cases than the results from many other published numerical methods.

The method has also successfully been applied to static and oscillating bridge deck sections.

The mean force coefficients are in good agreement with data and the calculated flutter

derivatives have been used to give an accurate prediction of the critical flutter velocity of the

bridge sections studied. These results, along with the study of the effect of active and passive

flow control devices, demonstrate the capability and power of the DVM for use in the analysis

of unsteady aerodynamic effects on suspension bridge decks. Also, the DVM may be used to

assess the aeroe1astic stability of a wide range of preliminary bridge deck section designs and

configurations. Although wind tunnel experiments are still a vital part of the design process, the

capability of the DVM to give a relatively quick turnaround time for setting up a model and

obtaining results would enable more cost effective assessments covering a potentially wider

range of designs than is currently practicable in the wind tunnel.
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Within this final chapter, the development and application of the DVM for predicting the flow

field around bluffbodies, described in the previous chapters, is summarised. The chapter is split

into two sections, the first provides a summary of the research presented in this thesis.

Modifications that have been implemented to develop the DVM are summarised, as are the

results from the analysis of a range of bluff body calculations. The second section indicates

areas of future development and research in which the capability of the DVM could be further

improved.

5.0 Summary.

A vortex method was developed by Lin [7] for the analysis of the dynamic stall phenomenon on

pitching aerofoils. This method has been modified and developed to allow analysis of any

general closed two-dimensional geometry. In particular, the model has been generalised with

the particular aim of analysing the flow field around sharp edged bluffbodies.

Major improvements to the DVM include the incorporation of a fast algorithm to reduce the

operation count from O(N2) to nearer O(N+NlogN), hence giving a significant improvement in

the calculation efficiency. Developments also include the addition of a sharp comer model to

give a more accurate representation of the local vorticity distribution near the comers. An

empirical circulation decay model has been incorporated into the DVM to provide a means of

simulating the three-dimensional effects in the body wake such as vortex stretching. Although

this model has had a beneficial effect on the results, the empirical nature means that it does not

satisfy any physical representation of the flow. The wake decay, combined with the focus of the

research being to analyse the flow around sharp edged bodies, has meant the approach to the

analysis was to develop a useful, engineering model.

An extensive validation of the DVM has been carried out on simple bluff body geometries and

good agreement with experimental data has been obtained. The results demonstrate the capability

of the method to analyse a wide range of bluff body flow fields. The variation of the flow field at

different static angles of incidence is well predicted, as is the effect of the body aspect ratio on

the flow. Comparison with experimental data is demonstrated in both cases for a number of key

flow parameters such as the mean aerodynamic loads and Strouhal number. The aspect ratio

study also included successful prediction of the flow around a flat plate, both normal and parallel

to the freestream flow. The degree of quantitative agreement between the predicted and

experimental results, over this wide range of test cases, compared very favourably with that from
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other published computational results, where the agreement is much more selective. Although

much of the analysis with the DVM was of sharp edged bodies, a brief study of a circular

cylinder demonstrated the capability of the method on a wide range of stationary geometries.

The flow field around a square cylinder undergoing a forced transverse oscillation was studied, to

investigate the effects of vortex lock-in. This aeroelastic effect was captured, and the effect of

both frequency and amplitude on the results were in good agreement with experimental data. The

phase angle, ~, between the body displacement and the lift coefficient, CL, was extracted from

the results and was in concordance with the experimental data. Also, the results gave favourable

comparison with results from other computations.

The DVM has also been validated on stationary bridge deck sections, using the H-section of the

original Tacoma Narrow bridge and a more recent streamlined section used in the main span of

the Great Belt East Bridge. Good agreement with published data is obtained for the mean force

coefficients and their gradient at a=O°. The results are also of comparable quality to other

published computational results. The ability of the DVM to model more complex geometries is

demonstrated by the inclusion of crash barriers in some of the calculations on the Great Belt East

section. The correct qualitative effect on the results is demonstrated, though care must be taken

as the barriers are modelled as solid objects whereas there is some porosity in the real case.

Calculations on the H-section and Great Belt East main section undergoing forced IDOF

oscillations in the transverse and torsional directions, demonstrate that the DVM is capable of

analysing the aeroelastic stability of bridge sections. Flutter derivatives are extracted from the

calculations and are in good agreement with those derived from sectional model tests. The results

obtained are at least as accurate as the only other prediction of flutter derivatives that has been

found in published literature. The critical flutter velocity for the Great Belt section calculated

from the predicted flutter derivatives is found to within a few percent of the value found from

experiment. The capability of the method is further demonstrated through a study into the effect of

flow control devices on the stability of the bridge section. Both active and passive guide vanes are

modelled and the change in the critical flutter velocity gives qualitative agreement with results

from previous studies of such devices.

5.1 Future Research and Developments.

A much more detailed analysis of the circular cylinder should be undertaken to add to the

validation that has been presented in this thesis. The DVM has shown the potential to capture the

variation in the flow field at both sub-critical and super-critical Reynolds numbers (Chapter 4).

However, a much more detailed analysis is required to fully develop physical relations between

the input parameters of the DVM and Re. The engineering approach to some of the modelling

means that prior to full validation of the circular cylinder, a number of aspects of the method



Chapter 5 : Concluding Remarks 86

would require further investigation and improvement. In particular, the resolution of the

boundary layers is more critical on smooth curvature bodies and the problematic aspects of the

modelling of both viscous diffusion and wake turbulence at high Re need to be addressed.

These modelling improvements would add to the range of geometries to which the DVM could

be applied, and would also demonstrate the capability of the method on bluff geometries other

than those with sharp comers.

The circulation decay model implemented to account for three-dimensional effects in the body

wake, despite giving good results, is more of a mathematical tool and is not based completely on

the real physical behaviour of the fluid. Future investigations may include the development of a

more physical model to account for the three-dimensional effects in the wake although it is not

clear as to what form such a model will take.

At present, a turbulence model is not incorporated within the DVM. The low numerical diffusion

of a grid free technique, along with a high particle density in the calculation means that a lot of

the small scale structures within the flow would be captured. An investigation along these lines

to improve the capability of the DVM to model turbulence should be the subject of future

research. Such a model may take a form similar to the grid based LES method, although it

would require a careful implementation to retain beneficial aspects of the vortex method. Other

theoretical models more appropriate for vortex methods and very different to grid based

approaches are also worthy of investigation.

The calculation efficiency of the DVM has been significantly improved from O(lfl) to nearer

O(N+NlogN) with the incorporation of a fast algorithm. However, further improvement may be

obtained from the Fast Multipole Method of Greengard and Rokhlin et al [185 and 187] which is

claimed to be O(N). The benefits of this algorithm will become more significant as the number of

particles in the flow field is increased beyond the typical number used in the current analysis. A

more significant improvement in calculation efficiency could be obtained through the use of

parallel computational techniques.

The DVM has been used to investigate the flutter instability of a recently designed bridge deck

section. Although the results obtained have demonstrated good agreement with the experimental

data, for the DVM to be used with increased confidence as a design tool, further validation needs

to be carried out on more existing bridge sections. A validation study of a range of bridge

sections that essentially encompass a variety of designs should be conducted in the future. Future

studies could also include the calculation and validation of the flutter derivatives in the swaying or

along-wind degree of freedom. Most analyses currently assume that the flutter is primarily

dependent on the transverse and torsional degrees of freedom, though recent studies have shown

the along-wind response may have a significant effect on the critical flutter velocity [112]. Future
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modelling enhancements may include linking the DVM to a structural solver to enable the

response of a structure to the unsteady aerodynamic flow field to be calculated.

In conclusion, the DVM has been developed to model the flow field around simple sharp edged

bluff body geometries and bridge deck sections. An extensive validation of the method has been

carried out demonstrating the capability of the method to predict aerodynamic loads for a wide

range of problems. Good agreement with experimental data has been obtained and the results

demonstrate favourable comparison with other published computational results. The

quantitative agreement with experiment demonstrates that the DVM can be applied successfully

to a wide range of bluff body flow fields and can be used to analyse the aeroelastic stability of

suspension bridge deck sections.
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Consider a zone D, containing Np point vortices, with strengths/circulation I'k» at positions

given by the complex co-ordinates zk=Xk+iYk ' k=1,2 ... Np . The velocity U(z) induced by the

particles contained in D, at an arbitrary point, z=x+iy, outside zone D, is obtained from the

Biot-Savart law using,

Now UCz) = u+iv, where

(A. I)

Taking the conjugate of the velocity and substituting from (A.1), we can write

U*Cz) = u -iv

1 Np I'
=- -.L k? [iCY - Yk ) - Cx - X k ) ]

2m Iz - z 1-k=! k

Using Izj2 = z.z" for any complex z, then (A.2) can be rewritten

Np

U*Cz)=_l_"" r k

2ni ft Cz - Z k )

(A.2)

(A.3)
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Taking some arbitrary point, Zm, within D (centre of D say), rewrite the positions of all the

vortex particles inD relative to Zm'

then substituting in (A.3)

(A.4)

,
(t) Provided Zk < (z - Zm) for all k, then (A.4) can be expanded as a power series of the

form

( )
- 1 2 3 nI-x = I+x+x +x +...+x +...

Hence,

Np r I ( , J2 ( I ~ Nt ]• 1 r Z Z Z
U(z)=- k 1+ k + k + ...+ k +RN

2ni~ (z-Zm) (z-Zm) (z-Zm) (z-Zm) t

1
=-----1

2ni(z - Zm)

(A.S)
Np

where -, = Irk(zk -Zm)j-l
k=l

and RNt is the error due to truncation of the infinite geometric series after N, terms. The above

shows the derivation of the series coefficients and the zonal expansion formula, with (A.S)

being equivalent to equations (3.33) and (3.34). Zonal decomposition is only used if a zone is

sufficiently far from the point at which the velocity is being calculated. This ensures that the

condition (t) for the series expansion is satisfied.
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The analysis of the operation count of the zonal decomposition algorithm is very complex.

Hence, to simplify the analysis, the case ofN vortices homogeneously distributed over a square

domain will be considered. The flow domain is continuously subdivided (as shown in Fig. B.1)

until the lowest level is comprised of zones that contain n particles. The number of zones at the

lowest level is given by Nln. The number of zones at any level of subdivision, I, for a uniform

distribution of vortices and uniform subdivisions, is given by 4/. Therefore the number oflevels

of subdivision is given by

(B.1)

The total computational time required for one time step in the calculation is dominated by the

velocity calculation. The dominant two factors in the velocity calculation for a domain

containing N particles are the contributions from direct summation and zonal decomposition.

Only the operation count of these two factors will be considered to simplify the analysis further.

Consider the contribution first from direct summation. For any single vortex, the contribution

from direct summation will be due to, at most, the 9 neighbouring zones (including the zone

that contains the particle). As each zone contains n particles and there are N particles, the total

CPU required for the direct summation contribution istds' where

t ds oc 9nN

i.e t ds =aN
(B.2)

where a is a constant that is derived from the number of zones contributing to the direct

summation, the number of particles in each zone and the floating point operation speed of the

processor.

For the contribution from series expansion due to the influence of distant zones, the analysis is

more complex. Consider the worst case, where a series expansion is required to be evaluated at

every zone at the lowest level, except the 9 neighbouring zones, i.e.(Nln-9) zones. To evaluate

the series expansion at the lowest level, each level and each branch of the quadtree must be

evaluated. The number of operations to perform this calculation will be proportional to the

number of levels, I as shown in (B.1). These are the main factors affecting the operation count
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of the zonal contribution to the velocity. Hence, the CPU required to evaluate the influence of

distant zones on a single vortex using series expansion, tzd' is approximately given by

(B.3)

where c is a constant that is derived from the number of "traverses" around the quadtree. (B.3)

gives the worst case, where the series expansion is used for every zone at the lowest level,

except the neighbours. In general, only p zones will be required, where p«N/n-9). The total

CPU required for the zonal contribution is then given by

109(~)
tZd oc N.Nt.p.c--­

10g(4)

t Zd = NblogN

usmg log, (a) = log(a)
10g(4)

(BA)

(B.5)

where b is a constant that is derived from the number of zones whose series expansion is used,

the number of terms in the series expansion and the floating point operation speed of the

processor. Note that the dominant factor in the logarithm in (BA) is the number of particles N,

therefore tzd can be approximated using an operation count O(MogN).

Although this is a very simplified analysis of the zonal decomposition algorithm, it is clear that

the total CPU required for the velocity calculation is approximately given by

ttot =aN +bNlogN (B.6)

giving an algorithm that is of O(N+MogN). A curve of the form shown in (B.6), has been fitted

to the CPU timings from the zonal decomposition algorithm, and is shown in Fig. 3.27, along

with the derived constants. The curve is shown to give a reasonable fit to the data, giving some

validation to the somewhat simplified analysis discussed above.
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APPENDIXC

OPTIMISATION OF PARAMETERS IN THE ZONAL
DECOMPOSITION ALGORITHM.

The main parameters that affect the speed and accuracy of the algorithm are:

1. Np - Minimum number of vortices in a zone, such that the zone can be further subdivided.

2. Nt - Number of terms in series expansion.

3. H - Series expansion can be used only when the distance of the vortex from the zone centre

is greater than H multiplied by the zones radius.

These parameters have been optimised to obtain the best combination of calculation efficiency

and accuracy. The results of this analysis are shown in Figs. C.1-C.3. The results are very much

as expected. Increasing H means that only distant zones can be used in the calculation, leading

to a larger contribution to the velocity via direct summation and hence an increase in the CPU.

However, as the zones used are distant, the series is more likely to converge giving a reduction

in the error as H increases (Fig. C.1).

The CPU also increases as Nt increases, as more calculations are clearly required to evaluate

more terms in the series expansion (Fig. C.2). As Nt increases, the series is more likely to

converge and so the error is reduced. The series is also likely to converge much more quickly if

the vortex is further from the zone, and this observation can be used to obtain extra efficiency

in the calculation [193]. For example, if a vortex is 4 times the zone radius from the zone

centre, the series may converge in around 10 terms say, whereas a vortex that is only 3 times

the zone radius from the zone centre, may require 15 terms. As a result, the algorithm uses a

varying number of terms in the series expansion, depending on the distance of the vortex from

the zone centre.

The variation of CPU and error with Np is a little more complex. If Np is small, there are a large

number of small zones, each containing a relatively small number of vortices. Each velocity

calculation will therefore require a contribution from a large number of zones, with the series

expansion giving a small saving in operation count over direct summation as each zone contains

a small number of particles. Hence, for small Np, the CPU will be high. Also, the small zones

mean that vortices will satisfy the distance from zone centre criteria, but will still be a small

distance from the zone, and may affect the series convergence leading to an increase in the error.

For large Np, although when a zone is used in the velocity calculation a large saving in operation

count is made, each vortex will have to be further from the zone before the zonal contribution
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can be used. Hence, there is likely to be a larger contribution from direct summation and a

resulting increase in CPU. However, this does mean that when series expansion is used, the

series is more likely to be converged, and so the error is reduced. These effects can be observed

in Fig. C.3.

The optimised code requires a balance to be struck between all of these parameters to obtain

maximum efficiency for the desired calculation accuracy. The final optimised parameters are:

Np=200

H=2.0

Nt : Varying from 8 to 13 depending on the distance to the zone centre.

These parameters were used in all the calculation results that are presented herein.
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SOLUTION OF UNDER-DETERMINED SYSTEM OF LINEAR
EQUATIONS USING A PSEUDO-INVERSE METHOD.

The vorticity distribution on the body surface is assumed to be continuous, with the y

distribution at the body nodes being used to define the vortex strengths on the panels either side

of the node. However, the new sharp comer model uses a dual y value at the comer node so that

a discontinuity can be introduced to the vorticity distribution. Hence the vortex strengths on the

panels adjacent to the comer may be calculated from different y values. This is discussed in

more detail in Chapter 3.

Where there is only one y value for each node and the surface vorticity distribution is assumed

to be continuous, then the linear system of equations is (D.l)

Ay=F (D.!)

where A is an NxN matrix containing the coefficients of the unknown y values, which are

stored in the Nx 1 matrix, y, where N is the number of nodes on the body surface. F is the

influence matrix containing the contributions to the nascent vorticity from the body motion and

wake vorticity. When the vorticity discontinuities are introduced, (D.l) becomes an under­

determined system of equations, with more unknowns than equations. In this case, A is now an

Nx(N+n) matrix, and y is an (N+n)x 1 matrix. Hence a new solution procedure is required to

determine the unknown y values from the linear system of equations. Such a procedure can be

found by utilising the mate of matrix A and is presented below.

For a matrix A, of size NxM, an MxN matrix B can be defined such that B will be called the

mate of A if the following four conditions are satisfied [212].

1) ABA=A

2) BAB=B

3) (AB)T =AB

4) (BA)T=BA

Also, it should be noted that B is unique, and that if B is the mate of A, then A is also the mate

of B. The mate is often called the "pseudo-inverse", the "generalised inverse" or the "Moore­

Penrose inverse".
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From condition 1) above,

ABA=A

ABAAT=AAT

AB = AAT(AAT)-l (=1)

B = AT(AAT)-l
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(D.2)

(D.3)

Hence the mate of A can be found from (D.3). It should also be noted that the mate B is

analogous to the inverse of A for any matrix A, even if the matrix is not square and has no

defined inverse. This can be seen in (D.2) where the product of A and its mate B is equal to the

identity matrix I. Note that the matrix AAT is of Rank N and therefore the inverse exists for the

case when N<M.

Using the principle of the matrix mate, and taking M=N+n, so that N<M, a solution to the under­

determined system of equations defined in (D.1) may be found as follows. Transforming y so that

y = B<I> where B is MxN, and <I> is Nx 1.

then from (D. 1),

AB<I>=F

using (D.3)

so that

<I>=F

Hence,

y=B<I>=BF

and the unknown y can be found from

(D.4)

Note that

as required. It should be noted that the resultant y distribution is not unique but it is consistent

in time. It can also be shown that it gives a unique best approximate solution to the system of

equations and also gives the minimum norm solution [212].
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APPENDIXE

VORTEX MERGING CALCULATION TO ENSURE CONSISTENT
WAKE DECAY PROCESS.

In the vortex merging scheme, the position of the merged vortex is derived from the position

and circulation of the two vortices being merged, with the circulation of the merged vortex

being the sum of the circulation. However, the process is complicated by the inclusion of the

wake decay model within the vortex method. As part of the merging process, the newly merged

vortex must decay at a rate that is consistent with the two vortices being merged. To continue

the decay process consistently the age and initial circulation of the merged vortex needs to be

carefully calculated, accounting for the fact that the two vortices being merged are often

decaying at different rates due to their different creation times. Two approaches may be used to

maintain the consistency in the vorticity decay process :

1) The circulation of the vortices as well as the rate of decay of circulation should be

preserved.

2) The drop in the circulation of each particle from their initial values should be maintained.

The first approach is likely to introduce less error into the calculations but leads to a more

complicated procedure to obtain the creation time of the vortex. Whereas the second approach

is slightly less accurate, it is much easier to implement within the vortex method. The method

for obtaining the initial circulation T(O) and the creation time, te, defined as the time at which

the particle is shed from the body into the wake, of the merged vortex using both procedures is

discussed below.

The circulation of a vortex particle is decayed using (E.1) as discussed in Chapter 3.

(E.1)

The age of the vortex can be defined as I1te where

(E.2)

Procedure 1)

To maintain the circulation and the rate of decay of circulation of the two particles being

merged, the conditions (E.3) and (E.4) respectively must hold for the merged particle.
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1 M (t) =I, (t) +1 2 (t)

drM (t) = dr, (t) + dr2 (t)
dt dt dt

114

(E.3)

(E.4)

where the subscript M refers to the merged particle and the subscripts 1 and 2 refer to the two

particles that are to be merged.

Using (E.1) in (E.3) and (E.4), then

Substituting for r M(O) from (E.6) in (E.5), then

(E.7)

To find the age of the merged vortex, (E.7) needs to be solved using some iterative scheme.

Once L).teM and hence teM are found, then the initial circulation can be found from (E.1).

However, with large numbers of vortex particles in the wake and a large number of potential

merging calculations, the necessity for an iterative scheme for each merged vortex particle

would be computationally expensive. For this reason, a simpler procedure has been

implemented to define the creation time and initial circulation of the merged vortex.

Procedure 2)

A simpler scheme is to preserve the circulation and also the drop in circulation of the two

vortices. The conditions (E.8) and (E.9) are the necessary conditions for the merged particle.

1 M (t) = I, (t) + 1 2 (t) (E.8)
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where

The problem again is to findrM(O) and teM. Using (E.1) and (E.10),

zr. =r.(o)exp( -~)
I I Lit .

ct

Using (E.11) in (E.9)

(E.10)

(E.11)

(E.12)

Substituting for r M(O) from (E.12) in (E.8) and using the vorticity decay function from (E.1),

we have

exp(~)[rj (0) exp(2)+ r; (0)eXP(~)][l- exp(~)] =r, (t) + r, (t)
LiteM Litcl Lite2 LiteM

(E.13)

from (E.11)

and using (E.10)

(E.14)
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where L1teM gives the age of the merged vortex, so that the creation time can be determined

using (E.2). The initial circulation of the merged vortex can be found using L1teM and (E.l),

however from combining (E.1) and (E.8)

(E.15)

and using (E.14)

(E.16)

Substituting from (E.16) in (E.15)

and using (E.lO), it can be shown that

(E.17)

Hence, using (E.14) and (E.l7), the creation time, teM, and the initial circulation, I'M(O), of the

merged vortex can be found, such that the total circulation and the drop in circulation of the

two original particles is maintained. This procedure is relatively straightforward to implement

within the existing merging scheme and does not lead to a significant increase the

computational operation count. Although the procedure is slightly less accurate than the first

procedure in giving a consistent decay cycle, it should be noted that when the ages of the two

merged vortex particles are similar, the rate of decay of the circulation will also be

approximately preserved.



Appendix F : Extraction ofFlutter Derivatives and Calculation ofFlutter Velocity. 117

APPENDIXF

EXTRACTION OF FLUTTER DERIVATIVES AND
CALCULATION OF CRITICAL FLUTTER VELOCITY.

F.l Extraction of Flutter Derivatives.

As discussed in Chapter 2, for small amplitude oscillations, the unsteady lift and moment

coefficients may be treated as linear in the structural transverse and torsional displacements and

their first derivatives. In wind engineering, the commonly used expression for the linearised

form of the lift and moment coefficients, developed by Scanlan and co-workers [2-3] is given

in (F. 1).

L, ~ tpU' (2B{KH: (K) ~ + KH; (K)~ + K' H; (K)u + K' H; (K) ~ ]

. (F.l)

u, ~ tpU'(2B)'[KA:(K) ~ + KA; (K)~ + K' A; (K)u + K' A;(K)~ ]

where K is defined as a reduced frequency

K = Bill = B(2nn)
U U

(F.2)

The coefficients of the displacements and their first derivatives, Ht and At, i=1-4, are the

flutter derivatives, which can be used to determine the critical flutter velocity of a structure. The

unsteady CL and CM predicted by the DVM on bodies undergoing a steady forced oscillation,

in either the transverse or torsional degree of freedom, have been used to derive the flutter

derivatives numerically. The technique used is briefly described below.

The Fourier transforms of the CL and CM may be represented by

<D L (ill) = F Lh (ill )B(ill) + FLU (ill )A(ill)

<D M (ill) = FMh (ill )B(ill) + FMu (ill )A (ill )
(F.3)

where B((0) and A((0) are the Fourier transforms of the transverse and torsional displacements

respectively. The four F functions in (F.3) represent the components of the lift and moment

coefficients due to the transverse or torsional motion respectively. These can be calculated from

(FA) using the assumption that the motion is harmonic and takes the solution forms given by

(F.8).



Appendix F : Extraction ofFlutter Derivatives and Calculation ofFlutter Velocity.

FLh ( oi) = t co 2 pB2 ( H; (co ) + in; (co ))

FLu(ro) = t ro 2pB 3 (H; (ro ) +iH; (ro ))

FMh ( co ) = t co 2 pB3 ( A; (co ) + zA; (co ))

FMu (oi) = tro2pB4( A; (or)+ iA; (ro))
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(FA)

The DVM calculations were all performed using a forced sinusoidal oscillation in a single

DOF, either transverse or torsional. This results in one or other of the displacement Fourier

transforms in (F.3) being zero for each of the calculations, hence the flutter derivatives can be

extracted directly from (F.3) and (FA).

F.2 Calculation of Critical Flutter Velocity.

The critical flutter velocity can be obtained from the flutter derivatives. However, different

procedures are used depending on whether the flutter instability is a single DOF or two DOF

response. The following sections briefly describe the procedures used in both cases.

F.2.1 Two Degree of Freedom Flutter.

The method for calculating the critical velocity from the flutter derivatives is outlined in detail

by Simiu and Scanlan [2], in which the derivatives H4* and A4* are both assumed to be zero.

The procedure briefly outlined below is based on this method but is extended to include these

final two derivatives. Similar derivations of this method are given by Dyrbye et al [69] and

Walther [167].

The critical flutter velocity of a structure can be found from the flutter derivatives and the

system equations of motion (F.5).

... 2 [ • it • s« 2. 2. h]
mh+chh+khh=tpU (2B) KH\(K)U+ KH2(K)U+ K H3(K)a+K H4(K) B

.,. 2 2[ • it • s« 2. 2. h]
Ia+cua+kua=tpU (2B) KA\ (K)U +KA2(K)U+ K A3(K)a+K A4(K) B

(F.5)

By using a non-dimensional time (F.6), the equations ofmotion can be rewritten as (F.7).

Ut
s=-

B
also (F.6)
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(F.7)

At the critical flutter velocity, the transverse and torsional frequencies are usually coincident

and as a harmonic oscillation is assumed, the solutions to (p.7) can be assumed to have the forms

h h h_ = _0 exp(irot) = _0 exp(iKs)
B B B

ex = ex°exp(irot) = ex°exp(iKs)

Using these solution forms in (F.7) gives

(F.8)

~[-K2+2ShKhKi+Ki-PB2 K 2H;(K)i_ PB 2
K 2H:(K)]_cx

o[PB
2

K 2H;(K)i+ pB2
K 2H;(K)] = 0

B m m m m

~[PB4 K2A'(K)i_pB4 K2A'(K)]+CX [-K2+2r K Ki+K2_ pB4
K 2A'(K)i_ PB4

K 2A'(K)]=O
B I 1 I 4 0 ~'" c; a: I 2 I 3

(F.9)

Defining an unknown X as

(F.lO)

and setting the determinant of the coefficients of hOIB and exo respectively in (F.9) to zero,

results in a fourth order complex polynomial in ;r, the real and imaginary parts of which are

given in (F.ll).

real

rmag

(F.11)

where

R4

= l + PB
4

A3
• pB2H._p2B6H'A.+p2B6A'H' p2B6A'H._p2B6H'A'

I +-;;; 4 mI 1 2 mI 3 4 + mI 1 2 mI 3 4

4 ? K
R =2(" pB A' +2(" pB- _'" H'

3 ~h I 2 ~'" m K; 1

K 2 K pB4 B' K 2
C;; C;; '" 1 A' - -p- _'"H'R =__a -4 ----

2 K~ h a K; 1 3 m K~ 4

and
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The solution for the unknown flutter frequency, 0), will in general of the form 0)=0)1+i0)2 and

will represent either a decaying (0)2 > 0) or a divergent (0)2 < 0) oscillation. The critical flutter

condition can be found from the point at which the solution is purely imaginary, that is when

0)2=0, so that 0)=0)1. The two quartic polynomials in (F.ll) are solved at different values of

frequency and the roots of the real and imaginary parts are plotted against reduced velocity, U,

(=l/K), as shown in Fig. F.l. The point at which the roots of the two equations cross, (Ure, Xc)

defines the flutter condition. This gives the frequency of the flutter instability, 0), and combined

with appropriate structural parameters, the critical flutter velocity can be found from (F.12).

where
(F.12)

F.2.2 Single Degree of Freedom Flutter.

For a single degree of freedom flutter instability in the torsional DOF, the equation of motion is

as shown in (F.5). However, using the solution forms given in (F.8), for a single DOF

oscillation, equation (F.9) simplifies to

(F.13)

The critical wind speed at which lDOF torsional flutter occurs is identified at the point at

which the structural damping and the aerodynamic damping are balanced. This condition can

be obtained from (F.13) by setting the two damping terms (imaginary parts) equal to each other

and by also taking Ka to be approximately equal to K. Hence, a critical value of A2* can be

obtained, at which the damping terms are balanced and which can be used to derive the wind

speed for the onset of flutter (F.14).

(F. 14)

By plotting A2* against reduced velocity, the reduced velocity which corresponds to the critical

flutter velocity, (Ure), corresponds to the reduced velocity at which (A2*)e occurs (Fig. F.2).
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a) Oscillation Prior to Collapse.

b) View along Main Span Demonstrating Torsional Oscillation of Bridge.

121

c) Final Collapse.

Fig. 1.1 - Failure of Original Tacoma Narrows Suspension Bridge due to Flutter in Torsional

Degree of Freedom.
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Fig. 2.1 - Variation of Drag Coefficient with Reynolds Number on a Smooth Circular Cylinder.

(from Schlichting, 1968 [11])
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Fig. 2.2 - Variation of Drag Coefficient with Reynolds number on Square Cylinder.

(from Simiu and Scanlan, 1986 [2])

Fig. 2.3 - Vortex Street in Wake of a Circular Cylinder.

(from Simiu and Scanlan, 1986 [2])
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Fig. 2.4 - Variation ofWake and Vortex Street of Circular Cylinder with Reynolds Number.

(from Simiu and Scanlan, 1986 [2])
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Fig. 2.5 - Evolution ofVortex Shedding Frequency with Flow Velocity over an Elastic Structure.

(from Simiu and Scanlan, 1986 [2])
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Shear Layer.

Afterbody.
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Shear Layer.

Afterbody.

Fig. 2.6 - Effect of afterbody on Structural Response due to Vortex Induced Vibration.
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b) Circular Cylinder.

(from Bearman and Currie 1979 [57])

Fig. 2.7 - Phase Angle between Lift Coefficient and Cylinder Displacement: Variation with

Reduced Velocity.
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2S Mass-damping parameter versus reduced velocity: 0, AID ... _
8, AID,.. 0.25; ---. prediction of linear quasisteady theory.
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Fig. 2.8 - Variation of Mass-Damping parameter with Reduced Velocity.

(from Obasaju, 1983 [45])
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Fig. 2.10 - Amplitude Response Predicted by Quasi-Steady Galloping Theory.

(from Parkinson, 1974 [35])
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Fig. 2.11 - Comparison ofWagner-type Indicial functions for Aerofoil and Bridge Deck.

(from Scanlan, 1996 [107])
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Fig. 2.12 - Variation of Flow Parameters with Aspect Ratio. (from Okajima et aI, 1992 [136])
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Fig. 2.13 - Comparison of Experiment and

Numerical Predictions on Square Cylinder

at Varying Angles ofIncidence.

(from Sohankar et al, 1997 [141])



Figures - Chapter 2 128

(I) Wind tunnel experiment (2) standard k-e model

Fig. 2.14 - Over-Production of Turbulent Kinetic Energy by the Standard k-e Model.

(from Murakami, 1997 [143])
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Fig. 2.15 - Predicted Pressure Coefficient Distributions Around Surface of Square Cylinder

using k-e and LES. (from Lee, 1997 [142])
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a) 2D Computational Streamlines.

129

b) 3D Computational Streamlines on a Sectional Plane.

Fig. 2.16 - Comparison of2D and 3D Computations on Square Cylinder at 15° Incidence.

(from Tamura et ai, 1990 [147])
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Fig. 2.17 - Variation of Aerodynamic Forces with Incidence on Square Cylinder: Comparison of

2D and 3D Computations. (from Tamura et ai, 1990 [156])
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Fig. 2.18 - Vorticity and Velocity Distributions for Various Core Functions.

(from Lin, 1997 [7])
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Fig. 2.19 - Schematic Diagram of Vortex Particle Release from Upstream Comers on Square

Cylinder.

(from Bergstrom et al, 1997 [201])
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Fig. 2.20 - Streamlines of Flow Field for Square Cylinder Predicted by a Vortex Method.

(from Bergstrom et al, 1997 [201])
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Fig. 2.21 - Comparison of Experiment and Computational Results on a Square Cylinder at

Varying Angles of Incidence. (from Bienkiewicz et al, 1990 [202])



Figures - Chapter 2 132

00 - Shear layer separates
from front two comers.

>15 0
- Shear layer forms~

closed separation on side~
face and separates from rear corner.

Fig. 2.22 - Schematic of Reattachment of Shear Layer to Side Face of Square Cylinder at Higher

Angles of Incidence.
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Fig. 2.23 - Variation of Drag Coefficient with Aspect Ratio - Comparison of Experiment and

Computational Results. (from Blevins, 1989 [195])
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Fig. 3.1 - Body Orientation and Reference Coordinate System.
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Fig. 3.2 - Flow Domain.
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Fig. 3.3 - Illustration of Vorticity Layer and Wake in Separated Flows (from Lin 1997 [7]).
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. Vorticity Boundary.

Control Zone

......~.~~~~~~.......•.............

Control Zone.
Fig. 3.4 - Schematic Diagram of Control Zone and Wake Zone for Vorticity Discretisation in

Flow Field.
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Discretisation of Vorticity on Panel j,
between nodes j and j+1.

k=K-1k=K

Zj+l~_......._--_....._-_..........._ ...._ .........._-_......_~~

Panel length, lj

Fig. 3.5 - Discretisation ofVorticity into Vortex Blobs in Control Zone.

...._... _... _...._... -.... -.... _...._.... -... _... _... _...._.._...._.... _...-... -"Release zone"
boundary.

x
• •••• Control zone

boundary.•••••••••••
Surface.

Vortex A : Circulation released to wake = r w(x-O)/20

Remaining circulation reabsorbed into control zone.
Vortex B : Full circulation r released into wake as outside "release zone".

w
T - Circulation of vortex. 0 - Control zone thickness.

w

Fig. 3.6 - Schematic Diagram of Partial Release of Vortex Particles from Control Zone into

Wake.
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• •Wake Vortices.
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Initial position of nascent vortices and wake vortices.

Position incremented for convection and diffusion.
Vortices released into wake or reabsorbed into control zone.

• •
.0 ....0-··.0.··-0-··-0-.··
//////..%//////P///~//////////////////

Nascent vorticity re-discretised. Includes vorticity reabsorbed
into control zone.

Fig. 3.7 - Transport of Vorticity between Control Zone and Wake through Vortex Release and

Absorption.
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Control zone.
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b) Incorrect Absorption at Sharp Comers.
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New calculation: vortex P is absorbed
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Control zone is effectively "rounded"
at comer as shown. 0
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c) Modification to Check for Absorption at Sharp Comers.

Fig. 3.8 - Modification of Vortex Absorption Calculation for Sharp Comers and Regions

Between Panels.
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Fig. 3.9 - Discretisation ofVorticity at Aerofoil Trailing Edge (from Lin 1997 [7]).
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Fig. 3.10 - Schematic ofVelocity and Vorticity Distribution Near Upstream Comers of a Square

Cylinder.
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Fig. 3.11 - Vorticity Distribution around Square Cylinder. (Shortly after start of Calculation.)
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Nascent Vortex particles
discretise vorticity directl_y::.....__..r-,-T::-T--:-r-,-:­
above sub-panel.

138

Vorticity in region between
sub-panels at sharp comer
is not discretised.

Fig. 3.12 - Region ofVorticity Omitted from Discretisation ofNascent Vorticity at Sharp
Comers.
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Fig. 3.13 - Modification of Discretisation to Include Nascent Vorticity at Sharp Comers.
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Fig. 3.14 - Spanwise Correlation of the Fluctuating Pressure Difference across the Centre Line of

a Square Cylinder (from Simiu and Scanlan 1986 [2]).
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Fig, 3,15 - Comparison of Decay Rates for Different Vorticity Decay Schemes,
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Fig, 3,16 - Numbering of Child Zones in Zonal Decomposition Algorithm,
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Fig. 3.17 - Decomposition of Flow Field in Hierarchical Zonal Structure.
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Fig. 3.17 - Decomposition of Flow Field into Hierarchical Zonal Structure.
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Algorithm For Velocity Calculation using Zonal Decomposition.

Algorithm performed in a single pass over all vortex particles.

First Zone - Zone 1

Move onto next zone.

No

Is the zone at the top
Does the Zone Contain No

Is the zone the last Yes Yes

any Particles ?
in a group offour level (zones 1 to 4) ? -

zones?

No
lYes

No Move up one level to
1-

the zones parent?

Does the zone contain the -
particle for which velocity Yes

Does the zone have

is being calculated ?
any children ?

Yes

No
Move down one level
to the zones children.

Is the particle greater than Use zonal decomposition
2*(Zone Radius) from Yes to calculate the velocity f-----P-

zone centre? influence at the particle
location from the zone.

No

Does the zone have any Use direct summation to

children? No calculate the velocity
f-----P-... influence at the particle

location from the zone.

Yes

Move down one level to
the zones children.

1

Influence of all zones (except
smallest zone containing

particle') to velocity of particle
completed.

Move onto next vortex particle.

t At lowest level, contribution of other particles m zone calculated from direct
summation later in algorithm.

Fig. 3.19 - Flowchart for Velocity Calculation using Series Expansion and Zonal
Decomposition.
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Sample FlowFieldand Zonal Decomposition

3

2

143

o

-1

-2

_3l.....--'--....L_~__~_---:~_~:-_~:-_~__-::_---'
-1 0 2 3 4 5 6
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b) Illustration ofZones used in the Series Expansion part of Velocity Calculation.

Fig. 3.20 - Example Illustrating use of Series Expansion and Zonal Decomposition in Velocity

Calculation.
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Fig. 3.21 - Comparison of CPU Required for Direct Summation and Zonal Decomposition:

Aerofoil Test Case.
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Fig. 3.23 - Comparison of CPU Required for Direct Summation and Zonal Decomposition:
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Fig. 3.24 - Comparison of CPU Required for Direct Summation and Zonal Decomposition: All

Test Cases.
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Fig. 3.25 - Curve Fit to CPU Required for Direct Summation Method.
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Fig. 3.26 - Curve Fit to CPU Required for Zonal Decomposition Method.
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Fig. 3.27 - Comparison of Curve Fits to CPU Required for Direct Summation Method and Zonal

Decomposition Method.
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Zonal Decomposition for Square Model - VER1.53
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Fig. 3.30 - Sample Flow Field and Zonal Decomposition for Square Cylinder.
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Velocity Magnitude of Wake Particles - Zonal Decomposition
2.-------r----,-----,----....-----,;-----,

300025001000 1500 2000
Vortexin Wake

500

...........: : .

1.8 ······ .. ····:.. ·· · .. ····T · ·· r ·.. ·f ·.. ·
............:....... . :............ . ~ .... .. .... . -;. . .

· .· .· .
1.6

0.6

0.2

1.4

0.4

CD

~ 1.2
'c
11
:::!
~8 .
Gi 0.8
>

a) Velocity Magnitude.

Errorin VelocityMagnitude of Wake Particles - Zonal Decomposition
1.5r------,.-------,.----,----,-----,-------,

· ................. : :-..

· ................................................................. , .

.. .
. . . . . . . . . . . . . . : , ~ : !. . . . . . . .. . ',. . , .

· . . .· . . .· . . .· . .· . .· . .· .

· . . ............... .. : : ; -: .
· "· ..· ..· ..· ..· ..· "

· ............. , ..: : : ; :..
· .· .· .· .· .· .· .

CD

~ 0.5
c
11
:::!
.~ 0 f---........""""_.",.",,~....--...;..r_.....~noII..--..--~--'r_-;.

8
Gi
>
.5-0.5

g
CD
CD -1
~c
CD

~ -1.5
0..

-2

300025001000 1500 2000
Vortexin Wake

500
-2.5 '----____:-'---___:-::':-::-----..J..----:-:':=-=----::-::::::------;:::o

b) Percentage Error in Velocity Magnitude.

Fig. 3.31 - Analysis of Error in Velocity Magnitude Calculated by Zonal Decomposition for

Wake Vortex Particles.
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Fig. 3.32 - Comparison of Predicted Flow Field for Circular Cylinder after 200 Time Steps.
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Fig. 4.1 - Flow Field around Circular Cylinder Predicted by DVM for Re=20,000 : Velocity

Vectors.
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a) t*=161.0
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b) t*=163.0

Fig. 4.2 - Flow Field around Circular Cylinder Predicted by DVM for Re=20,000 : Vortex

Particle Distribution.
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a) t*=28.0
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b) t*=30.0

Fig. 4.3 - Flow Field around Circular Cylinder Predicted by DVM for Re=106 : Velocity

Vectors.
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Fig. 4.4 - Flow Field around Circular Cylinder Predicted by DVM for Re=106 : Vortex Particle

Distribution.

158



Figures - Chapter 4 159

100

;...-'---------i C
pb

e

Fig. 4.5 -Mean Pressure Distribution on Circular Cylinder and Defining Parameters (from ESDU

1980 [10]).

Circular Cyinder : Re • 20000

. ., : :
DVM Resull3 ::
DlItB tom ESDU 1980 [10] ••••••••••• ; •••••••••••• i

: :J.......... .;.. ;00
.- ~ : ~ _ ~ ~ ~ .

: ::::r·· .. ·· ·.. -: t· ·t············t ·· t··· ·~ ~ .
.~ ~ 't : ~ : ~ ~ .
.~ ~ ~ ~ ~ ~ ~

: ~ ~XJirml~~~~~:d

..; 0.5
-g
;§- 0
"0

~ -0.5
"t:
::J

UJ

§ -1

1;."!E -1.5
8
o
~ -2
:l
e
n, -2.5

-3.5
50 100 150 200 250

Angle around Cy6nder
300 250

a) Re=20,000

Circular Cyinder : Re • 10E+6

DVM ReSU1l5
Data from ESDU 1980 [10]o 0

" "

.~ : f············~·············~············~·· ~ ~ .
: :.::

.~ ~ ~ ~ ~ ~ : ~ .
: : : : : : : :· . . . . . . .· . : : : : : :
.~ , .~, - :- ~ ~ ~ ~...... .._.~ .
:: :::::

a:; 0.5

-g
;§- 0
"0
e
g-O.5
"5
UJ

5 -1

~
'Q

~ -1.5

<3i -2

0: -2.5

-:l .; : ; ; ; ; ; : .
· .. .. .. " .

50 100 150 200 250
Angle around Cylinder

300 350

b) Re=106
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a) Static Cylinder
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Fig. 4.7 - Labelling and Orientation of Square Cylinder.
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Fig. 4.8 - Square Section Cylinder at 00 Incidence: Visualisation of Vortex Shedding.
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Fig. 4.9 - Square Section Cylinder at 15° Incidence: Visualisation of Vortex Shedding.
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Fig. 4.10 - Static Square Cylinder: Sample Time History of Force Coefficients.
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Square Cylinder - Mean lift Coefficient vs. Angle of Incidence
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Fig. 4.12 - Static Square Cylinder: Variation of Mean Drag Coefficient with Angle of Incidence.
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Square Cyinder - Mean Ba.. Preeeure Coefficient va. Anglo of Incidence
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Square at 0 Degrees Incidence: RMS. Fluctuating Pressure Coefficient on Body Surface vs. Distance Along Surface
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Rectangular Cylinder- Mean DragCoefficient vs. Aspect Ratio
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a) Particle Distributions.

169
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b) Velocity Vectors.

Fig. 4.21 - Predicted Flow Field around "Flat Plate" Normal to Freestream Flow: Aspect ratio =

100.
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a) Particle Distributions.

b) Velocity Vectors.

Fig. 4.22 - Predicted Flow Field around "Flat Plate" Normal to Freestream Flow: Aspect ratio =

200.
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Fig. 4.23 - Comparison of Predicted and Theoretical Boundary Layer Profiles on Flat Plate at 0°

Incidence.
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Fig. 4.24 - Comparison of Predicted and Theoretical Boundary Layer Thickness on Flat Plate at
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Square Cylinder - Transverse Oscillation: Ur-5.0, AR-<J.1 : lime History of lift Coefficient
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Fig. 4.25 - Sample Lift Histories for Square Cylinder Undergoing Forced Transverse Oscillation.
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Square Cyinder - Transverse Oscilletion : Ur-S.3, AR-O.l : TIme Histofy of Uft Coefficient
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Fig. 4.25 - Sample Lift Histories for Square Cylinder Undergoing Forced Transverse Oscillation.

Square Cylinder - Transverse Oscilletion : Ur-5.0, AR-O.l : Frequency Analysis of Ufl CoefficIent
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Fig. 4.26 - Sample Spectral Analysis for Square Cylinder Undergoing Forced Transverse
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Square Cylinder undergoing Forced Transverse Osc. : Amplitude ratio=O.10
2.....---.,---~---r---.,---~-----,r---,----,-----,

.0
Z
~ 1.8

o
x
+

o DVM Results
x BEARMAN + OBASAJU : AR_O.10, (1982) [31J
+ OTSUKI etal :AR-O.10, (1974) [13J

. .· . . .........................................................................· . . . . .· . . . . .· " .

. .· . . . . . . .. '0 : : : : : : : ..

+ : . : : : : :
. ....

. ". . .
o

......... : :: : : : : : : .

......... ; ; ;: : :- ..

· . . . . .
......... ~ ~ ~ ~ ~.··· .. ····~ .. ··O·-f:

: :: :+· .· .

· . . " .
. . . . . . . . . ~ : = : : : : : ..

., .. .

., .

.2
~ 1.6
>.s
Q)

5-1.4
l!!
LL
t:

~ 1.2
13
8
>.

"8m
.9
l?0.8
'is
"0
Q)
.c
~ 0.6
Q)
1::
o
>

0.4

4 5 6 7 8 9 10
Reduced Velocity, Ur

a) Amplitude Ratio = 0.1.

11 12 13

Square Cylinder undergoing Forced Transverse Osc. : Amplitude ratio=O.15
2r----,.-----,-----r----,.----,----,...----r--~----,

.... : ~ ~ .
. .. .

+. . . .
···0·+:--········:··········;··········;·········

. . . .· .

· . . . . .........................................................................· . . . . .· . " .· . " .. . .

+ :

DVM results
OTSUKI et al, AR~O.1333, (1974) [13J

o
+

. . +.. .............. : ,~ ~ ~ ~', ~., ~ .

.................... : : : : : : : ..
· .· .

o
+

· . _. _........... : : ; : : ,.: : ~ .
. . . .

.. ... .................................................................................................· . . . . . . .· . . . . . . .· .· .· .

l?0.8
:g
Q)
.c
~ 0.6

~
o
>

0.4

o
aia: 1.6

E;'
t:
Q)

6-1.4 .
l!!
LL
t:o . .
~1.2 ~ ; ~ ~ : .
~ - .,

8
>. 1 ..

~
g

.0

~ 1.8
t:

4 5 6 7 8 9 10
Reduced Velocity, Ur

b) Amplitude Ratio = 0.15.

11 12 13

Fig. 4.27 - Variation of Vortex Shedding Frequency with Reduced Velocity: Demonstration of

Vortex Lock-in on Square Cylinder with Transverse Oscillation.



Figures - Chapter 4 176

Y=O.O

Bodyrrsxicn
Upwards.

Y=O.O

BodyMolion
Downwanls.

a) t* =192.0

c) t* =195.0

b) t* =193.5

Y=-ll.l

Body"min.
Negative Positica,

d) t* =196.5

Y=O.O

Bodyrrsxion
Upwards.

e) t* =198.0
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b) Velocity Vectors.

Fig. 4.37 - Predicted Flow Field around Static H-Section Cylinder at 0° Incidence.
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Fig. 4.38 - Predicted Flow Field around Static H-Section Cylinder at 6° Incidence.
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Fig. 4.39 - Static H-Section Cylinder: Variation of Aerodynamic Forces with Incidence.
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Fig. 4.40 - Flutter Derivatives on Oscillating H-Section Cylinder: Ht Derivatives.
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Fig. 4.41 - Flutter Derivatives on Oscillating H-Section Cylinder: AtDerivatives.
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Great Belt East Bridge
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J 8=31.0
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General arrangement of the Great Belt East Bridge.

a) Full Bridge (from Larsen 1993 [133] and 1997 [119]).
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Note - Dimensions in mm for Sectional Model Test, Figures in Brackets Refer to Actual

Dimensions of Bridge in m.

b) Main Suspended Section (from Poulsen et al 1992 [98]).

Fig. 4.42 - General Arrangement of the Great Belt East Bridge.
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, - .
t ".": \ ,t, L~'

a) Particle Distributions.

:::: : : :

b) Velocity Vectors.

Fig. 4.43 - Predicted Flow Field around Great Belt East Main Span at 0° Incidence.



Figures - Chapter 4 191

[":,.:: ..~,;;n:,C~'~.. .. . .. .. :'.;

a) Particle Distributions.

b) Velocity Vectors.

Fig. 4.44 - Predicted Flow Field around Great Belt East Main Span at 10° Incidence.
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a) Particle Distributions.

b) Velocity Vectors.

Fig. 4.45 - Predicted Flow Field around Great Belt East Main Span at 0° Incidence with Barrier

Model.



Figures - Chapter 4 193

Great EleftEastBridge, Main Span : Mean Drag Coefficient
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Fig. 4.46 - Great Belt East Main Span - Variation ofAerodynamic Forces with Incidence.
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Fig. 4.47 - Great Belt East Main Span with Barrier Mode1- Variation of Aerodynamic Forces

with Incidence.
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GrulIl Belt East Bridge, Main Span : Rutter Derivllliv. A1
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Fig. 4.48 - Flutter derivatives for the Great Belt East Main Span.
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Fig. 4.48 - Flutter Derivatives for the Great Belt East Main Span.



Figures - Chapter 4 197

. .. .

~1.&I.i~
ConlroIsmace ~

Fig. 4.49 - Suggestions for Implementation of Active Control Surface Systems on Streamlined

Bridge Sections (from Ostenfeld and Larsen 1992 [132]).

Critical WindSpeed
U9(1f 2.0 ActIve Control

1.6

1.0

0.9 c.....~_+-__+-__+-__.......

b) Experimental Study (from Kobayashi et al 1992 [131]).

~(deg.)90eo30

a) Theoretical Study (from Ostenfeld and Larsen 1992 [132]).

TI/2 )

( 8
1,

8 ) = ( 0, 0)
1

2

(TI/2, -TI/2)

0
1 2 3 4

Kl , K
2

Amplitude factor

Fig. 4.50 - Potential Enhancement ofAerodynamic Stability through Active Control Surfaces.
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Fig. 4.53 - Hi* Flutter Derivatives for Great Belt East Main Span with Active and Passive Flow

Control Vanes.
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Fig. 4.54 - A/ Flutter Derivatives for Great Belt East Main Span with Active and Passive Flow

Control Vanes.
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Fig. B.1 - Division of Flow Field into Uniform Square Zones.
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Varlallon In CPU and Error with Nt
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Solution of Flutter Equations to Derive 2DOF Critical Flutter Velocity
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Fig. F.1 - Solution of Flutter Equations to Derive 2DOF Critical Flutter Velocity.
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