Un1ver51ty

Qf Glasgow

Bissland, Lesley (1996) Hardware and software aspects of parallel
computing.

PhD thesis

http://theses.gla.ac.uk/3953/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Glasgow Theses Service
http://theses.qgla.ac.uk/
theses@gla.ac.uk



http://theses.gla.ac.uk/
http://theses.gla.ac.uk/3953/

Hardware and Software aspects of

Parallel Computing

BY

Lesley Bissland

A thesis submitted to the University of Glasgow for the degree of

Doctor of Philosophy in the Faculty of Science

Department of Chemistry

January 1996

© L.Bissland 1996



Abstract

Parallel computing has developed in an attempt to satisfy the constant demand for
greater computational power than is available from the fastest processors of the time.
This has evolved from parallelism within a single Central Processing Unit to thousands

of CPUs working together. The development of both novel hardware and software for

paralle]l multiprocessor systems is presented in this thesis.

A general introduction to parallel computing is given in Chapter 1. This covers the
hardware design concepts used in the field such as vector processors, array processors
and multiprocessors. The basic principles of software engineering for parallel

machines (i.e. decomposition, mapping and tuning) are also discussed.

Part 1 (Chapters 2,3 and 4) is concerned with the development of hardware for
multiprocessor systems. Some of the concepts used in digital hardware design are
introduced in Chapter 2. These include the fundamentals of digital electronics such as
logic gates and flip-flops as well as the more complicated topics of rom and

programmable logic.

It is often desirable to change the network topology of a multiprocessor machine to suit
a particular application. The third chapter describes a circuit switching scheme that
allows the user to alter the network topology prior to computation. To achieve this,
crossbar switches are connected to the nodes, and the host processor (a PC) programs
the crossbar switches to make the desired connections between the nodes. The

hardware and software required for this system is described in detail.

Whilst this design allows the topology of a multiprocessor system to be altered prior to
computation, the topology is still fixed during program run-time. Chapter 4 presents a
system that allows the topology to be altered during run-time. The nodes send
connection requests to a control processor which programs a crossbar switch connected
to the nodes. This system allows every node in a parallel computer to communicate
directly with every other node. The hardware interface between the nodes and the

control processor is discussed in detail, and the software on the control processor is

also described.



Part 2 (Chapters 5 and 6) of this thesis is concerned with the parallelisation of a large
molecular mechanics program. Chapter 5 describes the fundamentals of molecular

mechanics such as the steric energy equation and its components, force field

parameterisation and energy minimisation.

The implementation of a novel programming (COMFORT) and hardware (the BB0S8)
environment into a parallel molecular mechanics (MM) program is presented in
Chapter 6. The structure of the sequential version of the MM program is detailed,
before discussing the implementation of the parallel version using COMFORT and the
BBOS.
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Chapter 1

Introduction to Parallel Computing

Throughout the evolution of computing, parallelism has become more and more

significant. Due to the demand for more powerful machines, designers have had to
conceive methods of achieving greater speed with the available technology of the day.
This has often been achieved by parallelism within a sequential single processor

machine or by using several sequential processors working together.

This chapter explains the need for parallel computing and also describes some of the
problems associated with it. The main types of parallel architecture and the taxonomies
developed to describe parallel systems are detailed. An overview is presented of the
issues involved in parallel software engineering and finally the key developments in

parallel computing are described.

1.1 What is Parallel Computing?

The basic concept of parallel computing is that a computation is distributed over
several processing units, enabling parts of the program to be executed simultaneously.
This will potentially speed up the computation compared to executing it on a sequential
machine. This approach is analogous to a team of people working on a common task.
You would hope to complete the task faster with a team of people than with a single

person.

It is not the case however that every program can be speeded up by executing it in
parallel. As with people the processors in a parallel computer have to communicate
with each other to work effectively and this is one of the main overheads in parallel
computing. Also the algorithm must be suited to parallel computing. An algorithm that
requires a high ratio of communication to computation would not necessarily be

speeded up by parallel computing.



1.2 Why parallel computing?

With the advent of high performance workstations it is often asked why there is a need
for parallel computing. The main reason is that even the fastest computers available

today are still not powerful enough for the so called Grand Challenges of science.
These include applications in weather forecasting, computational fluid dynamics used

in the automotive industry and drug design used in the pharmaceutical industry.

Even today’s fastest computers are approaching the limits imposed by physics. The
propagation delays of signals are restricted by the speed of light. As designers try to

shrink architectures to reduce the distance signals require to travel, device physicists

are concerned about the impact of atom spacing on their ability to make smaller and,

hence, faster transistors. It is therefore probable that designers will have no choice but

to rely on parallelism to achieve higher performance.

Another reason for parallel systems is that they can provide a good cost/performance
ratio. Many large problems are solved too slowly on a sequential machine to be cost-

effective, the reason being that for high-performance single processors the price grows

rapidly with speed. It can therefore be less expensive and faster to use several ‘off-the-

shelf’ processors to achieve high performance.

Other advantages of parallel systems include scalability and availability. A well-
designed parallel system will allow for the addition of more processors as they become

available or as the users computing requirements grow. Also as there is a high

availability of components, if one fails the system should be able to continue operation

using the remaining components.

1.2.1 Problems in parallel computing

Sequential computers are based on a single underlying model of computation known as
the Von Neumann model. This single model has given manufacturers and users a
common paradigm on which to construct their software and hardware. This has led to
common standards within the sequential market and as a result has given nse to
software that is portable between platforms. In parallel computing there is no single

modcl of computation which can lead to problems when porting parallel software from

one hardware platform to another.



The primary difference between parallel and sequential computing is that in a parallel
computer a program is divided up into processes which maybe on separate processors.
These processcs will require to communicate with each other in order to produce an
overall solution to the problem. At present there is no common standard used to pass
messages between processors. Several schemes have been suggested and some of these

will be discussed in the course of this thesis.

Other problems that occur in parallel computing and not in sequential computing are
deadlock and livelock. Deadlock is where two or more parallel processes can no longer
execute any further due to a communication interdependency. Livelock is the state

where a process remains active on a processor but does not communicate and acts like

an infinite loop. Software engineers need to prevent these situations.

1.3 Sequential models of computation

Sequential models of computation are often used as building blocks for parallel

machines. Three of the most common sequential models are discussed below.

1.3.1 Von Neumann model

The von Neumann model of computation is 1llustrated in Figure 1.1.

FIGURE 1.1.Von Neumann computer model

A classical von Neumann computer consists of a program control unit (CU), an
arithmetic logic unit (ALU), an input/output (I/0) unit, and memory (M). The CU and

ALU collectively make up the processing element.

The von Neumann model is based on the following principles:-



e A single processing element separated from memory by a communication bus

e Linear organisation of fixed-size memory cells

e Low-level machine language with instructions performing simple operations on
elementary operands

e Sequential centralised control of computations

These principles are simple and well understood and considerable progress has been

made with them over the years.

1.3.2 Harvard Architecture

The Harvard Architecture is a variation on the von Neumann model and uses two
separate memories for instructions and data instead of the one memory for both as in
the von Neumann model. This allows both instructions and data to be accessed

simultaneously improving the speed of the machine.

1.3.3 Data-Flow Computations

In a data-flow machine computations take place when operands become available
eliminating the need for a program counter. In a von Neumann computer the program
counter stores the address of the next instruction in order to process instructions in a
sequential manner. It is the data dependencies that constrain the order of computations

in a data-flow machine.

The result produced by an instruction is used as a token which passes to the operands
of the next instruction. Figure 1.2 overleaf shows a data flow graph for the calculation

z=y(x+1). Here the circles represent nodes which are connected by arcs and the dots on

the arcs represent tokens. For example purposes x and y are 4 and 5 respectively.

Each node is only permitted to compute when tokens are present on each input arc and
there are not tokens on the output arc. In Figure 1.2(a) the “plus” node can compute but
the “multiplication” node cannot. In Figure 1.2(b) as the “plus” node has produced a
token which enables the “multiplication” node to compute. Finally in Figure 1.2(c) the

result z=25 is produced
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FIGURE 1.2.Snapshots of a data flow diagram for Z = y(x+1)

1.4 Parallel Concepts

There are various hardware schemes that exploit parallelism in computing!+2, Some of

these are detailed below.

1.4.1 Pipelining.
Pipelining divides a task T into subtasks Ty, T, .., T} and assigns the subtasks to a

chain of processing elements (PEs). Each PE executes a particular subtask and passes

its result onto the next PE similar to an assembly line in a factory. Pipelining can be

applied at instruction or arithmetic level.

An instruction cycle typically consists of 3 stages. i.e
1) Fetch instruction.
2) Decode instruction.

3) Execute instruction.

In a pipelined processor these functions are carried out in parallel. As one instruction is
being decoded the next one will be fetched which means the ALU (arithmetic logic

unit) always has an instruction waiting for it. This approach works best with programs



which contain long sections of sequential code, as obviously if an instruction has been

prefetched and the previous instruction was a ‘JUMP’ instruction then the new
instruction will have to be discarded. The speed-up obtained from pipelining also
depends on the length of the pipe as the longer the pipeline the longer it takes to ‘flush’

out the pipeline.

In arithmetic pipelining the ALU is arranged as a series of stages, and operations inside
the ALU are pipelined. For example when multiplying two floating point numbers A
and B, at instant one, stage one calculates the difference between the exponents of A

and B. At instant two, stage two aligns the mantissas of A and B at the same time as

stage one calculates the difference between the exponents of the next two numbers (C
& D).

Most of todays sequential processors use some form of instruction level and arithmetic

pipelining. In this way parallelism is present within a single sequential processor.

1.4.2 Vector Processors

Vector processors are specifically designed for computations involving vectors. For
example the subtraction of two vectors of n elements can be performed simultaneously
on all n elements. This can be achieved by replicating the number of ALUs to the size
of the vectors. This requires a considerable amount of hardware and is not particularly

flexible. A better approach is to use pipelining.

Vectors are one-dimensional arrays of data and the same sequence of operations is
required for each vector element. One or more pipelined ALUs may be used and the

vector elements are pushed through the pipeline.(See Figure 1.3)

Central
Processing

Unit

Vector

Memory Registers

FIGURE 1.3.Vector Processor



1.4.3 Array Processors

An array processor is a synchronous parallel computer which consists of multiple
processors under the supervision of a single control unit (See Figure 1.4). The
processors each perform the same instruction at the same time but on different data.
The control unit synchronises all the processors and collects the results from the
processors. This approach is useful for programs with large arrays of data which

require the same operation to be executed on each of the elements in the array.

Control Unit

Processor array

FIGURE 1.4.An array processor

The processors in an array processor usually consist of a bit-serial ALU and some local
memory. The processors are arranged in a regular lattice of two or more dimensions
with each processor connected to at least its nearest neighbour. In the case of two
dimensional problems such as image processing and matrix calculations the data can

be mapped easily onto a two dimensional array.

1.4.4 Multiprocessors

Multiprocessing machines consist of multiple complete processors which each contain
a CPU, ALU, local memory and an /O interface (known as a node). This is the ideal
approach as it should theoretically allow you to carry out any kind of computation in

parallel. However as stated previously, the structure of the computation and the degree

of inter-processor communication necessary, must be considered.

1.4.4.1 Shared memory multiprocessors.

This type of multiprocessor exchange data via a shared memory (See Figure 1.5 on
page 8). Each node still has its own local memory but uses shared memory for data that
is required by other nodes. Since the nodes operate more or less independently of each

other, this 1s an asynchronous architecture. A disadvantage of this architecture is that it



is not easily scalable as if more nodes are added then the shared memory bus becomes

a potential bottleneck.

Node

Global, Shared Memory

-

FIGURE 1.5.Shared memory multiprocessor

1.4.4.2 Distributed memory multiprocessors

In these systems each node has its own memory and the nodes communicate via an

interconnection network (See Figure 1.6). Ideally every node would be directly
connected to cvery other node but this is usually not feasible especially in
multiprocessors with a large number of nodes (1000 nodes requires 1/2 million
connections). Usually messages pass via intermediate nodes to reach the destination

node (known as message passing). Obviously when designing the network the aim is to

minimise the time taken for messages to pass over it.

FIGURE 1.6.A distributed memory multiprocessor

The interconnection network can be static or dynamicz. A static network topology does
not change after the machine has been built whereas a dynamic network can change its
topology to suit different computations. The topology can be altered before the
computation or dynamically during the computation. Static networks are more

appropriate for problems where the communication pattern can be predicted

reasonably well, whereas dynamic topologies are suitable for a wider class of

problems.



Some of the common static topologies are illustrated in Figure 1.7. In these static
networks messages ‘hop’ from node to node in order to reach the destination. In a
simple 1-D linear network the average number of hops is N/3 where N is the number of
nodes. The number of hops required can be reduced by increasing the dimensionality
of the network. In a ring topology (a 2-D linear network) for example the number of
hops is reduce to N/6 (half that of a 1-D linear network). By increasing the
dimensionality of the network however, the number of connections required between

the nodes increases and hence the cost and complexity increases.

1) Linear array 2) Ring 3) A nearest neighbour mesh

1100 1101

4) Tree J) Star 6) Binary Hypercube

FIGURE 1.7.Common static network topologies.

A compromise between the number of links and the number of hops is to use higher
dimensions and only connect nodes in the same dimension. This is the approach used
in the binary hypercube. The hypercube illustrated in Figure 1.7 is a four dimenstonal
hypercube. It is so called as four binary digits are required to specify all the node

positions. Each node is connected to every other node whose binary number differs

from its own by exactly one digit.

If  is the dimensionality of the hypercube then N(no. of nodes) = 2" and the maximum

number of hops required is log,N which is equivalent to 7. The number of connections



at each node is also logyN. The hypercube topology has been used in many commercial

machines some of which will be discussed at the end of this Chapter.

There are three basic types of dynamic network: bus networks, multistage networks

and crossbar networks (listed in order of increasing performance and cost).

A bus network, as the name implies, is a system where all the nodes are connected to a
common bus, therefore any node can communicate with any other node. The main
advantage of this system is its simplicity. However a major disadvantage 1s that it can

only be used for a limited number of processors because of the limited bandwidth of

the bus.

A crossbar switch is an integrated circuit (IC) which when combined can connect any

input to any output (See Figure 1.8). Each output is connected to the output of ann to 1
multiplexer where n is the number of inputs to the crossbar switch. The n inputs of
each multiplexer are connected to the n inputs of the crossbar allowing each output to

be connected to any input of the crossbar. Several connections between inputs and

outputs can be present at the one time,

Inputs 0 to n
n tol — Output
$

_
n tO l . . OUtpUt
Multiplexer Output n

FIGURE 1.8.A crossbar switch

By connecting nodes to a crossbar switch any node can be directly connected to any

other node. The crossbar switch can be programmed prior to or during a computation.

Crossbar switch systems are only usually suitable for a small number of nodes as the

number of logic switches within the crossbar is N* where N is the number of processors

(usually crossbar switches are 32-to-32 or 64-to-64).

10



A multistage network attempts to provide the connectivity of a full crossbar by using
several 2-to-2 (maybe larger) crossbars connected together. The reason for this is to

reduce the number of switching elements required and hence the cost of the system.

For an N node system the number of switching elements is Nlog,/N compared to N? for

a single crossbar switch. However, since a message will need to pass through several
Switches to reach its destination the latency of such systems is greater than for a single

switch.

Figure 1.9 shows an example of a multistage network using several 2 to 2 crossbars,

This configuration allows any of the eight inputs to be connected to any of the eight
Oulputs. Since each crossbar has four switching elements the total number of switching
clements required is forty eight (4 x 12) compared to the sixty four required by an 8 to
8 crossbar switch. Multistage networks do have the disadvantage however that

messages can be blocked as two different routes through the network may require the

Same connection on one of the crossbars.
Inputs Outputs

|
2by2 7

)

~3

FIGURE 1.9.A multistage network

1.4.5 Multi-Workstations

Multi-workstations in their simplest form are collections of high performance
workstations, such as Sun or Silicon Graphics, connected together by ethernet. A
Program is distributed over the workstations and messages are exchanged between the
Workstations via ethernet. An advantage of this type of system is that it can utilise

eXisting general purpose hardware. A disadvantage however, is the relative slowness

3



of ethernet compared to the dedicated high-speed links on a multiprocessor machine.

The communication speed between the workstations can be increased by using optical

links.

1.4.6 Which parallel methodology?

None of these approaches to parallelism is necessarily the best approach. It is
dependent on the type of problem the parallel machine is used for and the cost/
Performance ratio required. For example, traditionally supercomputers use pipelined
vector processing and rely on the fastest available (expensive) circuit technology to
produce high performance. These machines however are only suitable for high speed
numeric problems. On the other hand multiprocessors do not require exotic circuit

technology or custom processor designs which provides flexibility, familiarity and

scalability.

1.5 Taxonomies for parallel computers

Several taxonomies have been developed to classify the various types of parallel

computer, The main reasons for their development are:-

* they show what has been achieved to date in the field of architecture.

* they can enable the designer to estimate the suitability of an architecture to solving

a given problem.
* there is the potential that such systems may reveal configurations that may not have

occurred to designers.
* performance models can be built that cover a wide range of systems with little, or

no, modification.

1.5.1 Flynn’s Taxonomy

The most widely used taxonomy was developed by Flynn in 19723, This classifies

parallel computers into four groups:-

* SISD - Single Instruction Stream Single Data Stream.

* SIMD - Single Instruction Stream Multiple Data Stream

* MIMD - Multiple Instruction Stream Multiple Data Stream
* MISD - Multiple Instruction Stream Single Data Stream

12



SISD computers are the sequential (Von Neuman) machines where a single stream of

Instructions acts upon a single stream of data.

A SIMD machine consists of an array of processing elements each carrying out a single
instruction simultaneously but on different data sets. An illustration of the principle of
a SIMD machine is shown in Figure 1.10. All the people (nodes) are carrying out the

same instruction (walking) in lock-step time and are controlled by a leader (master

processor).

.. Q.

’o
\. |

FIGURE 1.10.Analogy of a SIMD machine
A MIMD machine comprises a number of processing elements all executing their own
code simultaneously on different data sets. A diagram illustrating this concept again
using the analogy with people is shown in Figure 1.11. In this case every person (node)

is carrying out a different task (instruction) using different items (data).

FIGURE 1.11.Analogy of a MIMD machine
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MISD computers are theoretically possible but would imply that a set of different
instructions would all be performed simultaneously on the same data item which is an

unlikely scenario.

Flynn’s classification is useful in certain circumstances but it fails to accurately

describe some systems. For example a pipelined vector machine can either be
described as SISD or SIMD, SISD if considered as processing a single stream of data

and SIMD if every element of the vectors is regarded as belonging to an individual

stream of data.

Generally though a SIMD machine is taken to be an array of processors operating

under central control and an MIMD machine is regarded as an array of processors

operating independently of each other executing different instructions on different data

streams.

1.5.2 Feng’s taxonomy

This is a performance based classification which describes the parallelism of a set of

processors in terms of the number of bits than can be processed simultaneously?.
Parallel machines are defined by the word length of the processing units (n) and the bit
slice length (m - a product of the number of pipelines and their depth). This provides

the following classification:-

e WSBS - Word Serial, Bit Serial (bit serial processing) ~-m=1; n= 1

e« WPBS - Word Parallel, Bit Serial (bit slice processing) -m> 1;n=1

e WSBP - Word Serial, Bit Parallel (word slice processing) -m=1;:n> 1
e WPBP - Word Parallel, Bit Parallel (fully parallel) -m>1;n> |

This classification is useful for pipeline and vector processors but would not

distinguish between types of multiprocessor architecture.

1.5.3 Handler’s Taxonomy

Hiindler identified three logical levels of parallelism®: Program level (multiple

processors), Instruction level (multiple ALUs) and the Word level (multiple bits). The
Hindler classification system therefore uses the triple (K, D, W) to represent a

machine, where K is the number of processors, D is the number of ALUs and W is the

14



wordlength of each ALU. On top of this, pipelining can be included (macro-,
instruction- and arithmetic-pipelining respectively), giving rise to (K*K', D*D/,

W*W"), where the multipliers are the pipeline depth at each level.
The system also enables representations to be combined using the following operators:

+ indicates the existence of more than one structure that operates independently in

parallel.

* indicates the existence of sequentially ordered structures where all data 1s

processed through all structures.

v indicates that a certain system may have multiple configurations.

This works well for describing conventional vector processors but it fails to describe

the interconnection information in multiprocessor systems.

1.5.4 Skillicorn’s taxonomy

Skillicorn introduced the idea of modelling the possible interconnection networks

within a system®. The networks include the processor to memory, processor to ALU,

and processor to processor subsystems. The system is therefore represented by the

following:
1) no.of instruction processors (IP).

2) no. of instruction memories (IM).
3) the IP to IM network.

4) no. of ALUs (DP)

5) DP t;) data memory network.

6) IP to DP network.

7) DP to DP network.

The networks are described by abstract switches which connect the functional units

together. These abstract switches can be implemented in different ways: by buses,

15



dynamic switches, or static interconnection networks. Four different forms of abstract
switch connect functional units together:-

e l-to-1 :asingle functional unit of one type connects to a single functional unit of
another

* n-to-n : the ith unit of one set of functional units connects to the 1th unit of another.
This type of switch is a 1-to-1 connection replicated n times.

e ]-to-n: in this configuration, one functional unit connects to all n devices of another
set of functional units.

 n-by-n: in this configuration, each device of one set of functional units can
communicate with any device of a second set and vice versa.

Further discriminations can be made by describing whether or not each of the

processors is pipelined and by giving its internal functional structure by a state

diagram.

This system is very detailed and flexible, and is capable of describing most current
systems. However it is slightly complex and is probably best used in combination with

Flynn’s system so that only the departures from the base class need to be specified.

These are only some of the taxonomies that have been proposed. Skillicorn’s comes

closest to the ideal as it includes the interconnection topology of nodes. However it still

does not cover all the topologies available as it only uses simple one to one or all to all
models to describe the interconnection networks. Depending on the type of system in

use (i.e. pipelined, vector etc.) the best approach is to classify the system using a

combination of Flynn’s taxonomy and one of the others (i.e Hindler’s for a vector

processor).

1.6 Parallel Software Engineering

The development of parallel software is governed chiefly by the target hardware and

the nature of the application. Hardware can vary from a small pipeline to a large
multiprocessor machine containing thousands of nodes. The application can vary from

a large numerical problem such as weather forecasting to a small real time embedded

system. Depending on the hardware and the application different requirements are

demanded of the software.

16



The main aims of the software engineer are to balance the computational load and to
minimize the communication to computation ratio. It is not advantageous to have one
node very busy while the others are idle or to have so much communication that the

nodes spend most of their time communicating rather than computing.

Software engineers also may be required to consider issues such as portability and
scalability. For some applications the hardware setup will not alter during the lifetime
of the software (i.e embedded and process control systems) but for the majority of
systems it is desirable to allow for the possible implementation on other parallel

systems, and also to provide for the scaling up of the existing target hardware.

The operating system on a parallel machine provides the same services as on a

sequential machine (i.e memory management, device 1/0O), as well as managing
interprocess communication and synchronisation. The operating system may also be

responsible for the allocation of processes onto nodes.

1.6.1 The basic principles of software engineering for parallel
machines.

7._

There are three major steps to producing a parallel program
1) Decomposition

2) Mapping

3) Tuning.

Figure 1.12 overleaf illustrates these processes®. Decomposition is the partition of the
application into a set of parallel processes and data. Mapping is the distribution of the

processes onto the nodes. Tuning is the alteration of the working application to balance

the load and to optimise performance.

{7
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Decomposition @®

Application Problem A Set of Processes

Mapped Processes Tuned Processes
on Processors on Processors

1,2,3...8 (circles) are processes
A,B,C and D (squares) are processors

FIGURE 1,12.The main stages in producing a parallel program.

1.6.1.1 Decomposition

Decomposition is the first and most important step to producing a parallel program. It
guides the whole programming process. The decomposition of an application must

break up the program into a set of well defined processes that can be linked together

logically to provide a finite solution to a computation.
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In order to choose the best decomposition method for an application an understanding

of the application problem, the data domain, the algorithms used and the flow of

control in the application are required.

There are three general decomposition methods:-

e Perfectly parallel decomposition
e Domain Decomposition

e Control Decomposition

1.6.1.2 Perfectly Parallel Decomposition

Perfectly parallel applications can be divided up into a set of processes that require
little or no communication with one another. Application of this type are usually the

easiest to decompose.

An obvious way to implement perfect parallelism is to run equivalent sequential
programs on several nodes but on different data sets. If this type of algorithm was
executed on a single processor then each data set would have to be considered one at a

time whereas by using several nodes almost linear speed-up can be achieved with little

effort required by the programmer.

Examples of perfectly parallel applications can be found in most disciplines. An

example from physics is the use of the Monte Carlo technique to determine atomic
structure. Physicists analyse thousands of random electron distributions around an
atomic nucleus to define a probability distribution that points to the probable atomic
structure. Each random electron distribution can be calculated independently in parallel

making this a perfectly parallel application.

1.6.1.3 Domain Decomposition

Problems subject to domain composition are usually characterised by large, discrete
static data structures. It is the fundamental data structure that controls how the program
is parallelised. For example calculations involving matrices could be parallelised by
dividing the matrix into columns and separate nodes could execute different sets of

instructions on different columns as required in a Gauss Elimination for example.
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1.6.1.4 Control Decomposition

Control decomposition is for applications where no static or fixed domain is identified
but instead it is the flow of control or operations that is used as the guideline for

parallelism. As the development progresses, the data structures are also distributed but

the focus of the parallelisation still remains the flow of control.

Functional decomposition is a method of control decomposition. Here, the problem is
regarded as a set of operations (in terms of its functions) and the processes for the

nodes are based on those operations. Figure 1.13 illustrates a functional decomposition

model of an algorithm.

Function 1

Function 2

Decision
BIOCI( No

Yes

Function 2

FIGURE 1.13.Functional Decomposition Model

The flow of control is indicated by the lines between the boxes. For small problems the
functions are usually required to be executed sequentially therefore a parallel
application is not produced easily. However, large problems usually have a large
degree of overlap between functions so it is possible to extract some sort of

parallelism.

The most common type of functional parallelism is where the data is pipelined from

one module to another creating what is called a large-grain pipeline. An example of
this method can be found in image recognition. The traditional approach to image

recognition includes the following steps:
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1) Preprocessing to reduce noise.
2) Edge and region detection.

3) Object Recognition.

4) Object grouping.

5) Screen interpretation.

By dedicating a node (or more likely a group of nodes) to each step, the stream of input
frames could be pipelined through the above five steps. The number of nodes assigned

to each step would be determined by analysis and experimentation.

Another method of control decomposition is the manager/worker approach. This
involves dividing the application into tasks (without attempting to make the tasks of
equal size) and then using one of the nodes (the manager) to distribute the tasks to the
other nodes (the workers) as they become available. The manger’s job is to assist or
create the pool of jobs to be done, and then to keep the workers busy by assigning jobs

to workers. The manger also usually returns the final results based on the full results of

the individual workers.

1.6.1.5 Granularity

Granularity is the level of parallelism which is a measure of the degree to which tasks
are partitioned into subtasks (i.e effectively the degree of decomposition). Parallel
systems can be fine-grained, medium grained or coarse grained. The “grain” of a
computation can be measured by the amount of computation between tasks. An
example of fine-grained parallelism would be the execution of a DO loop in parallel
whereas course-grained parallelism is where large sections of code are executed in

parallel.

The granularity of a system relies on the number of processors to be used and the
nature of the problem decomposition. Often there can be abundant parallelism at fine
granularity which is not exploited as working with fine granularity increases the
amount of data communication between processes. It also increases the software

complexity.
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1.6.1.6 Mapping

Decomposition is followed by the distribution of the processes onto the nodes which is
known as mapping. Ideally the processes should be allocated to the nodes in a manner
which keeps all the nodes busy during the entire time the computation is running.
Processes can be allocated dynamically during program execution or statically before
the execution of the program. The less equal the loads on the nodes the more the
computing resources of the system are wasted. Well balanced mapping relies on the

modularity acquired from the problem decomposition.

1.6.1.7 Tuning

Once an application has been mapped to the nodes of a system and it is running
properly, the next step is to tune it to enhance the performance. Tuning usually involves
attempting to the reduce the communication to computation ratio as this is one the

main overheads in parallel computing. This could involve altering the mapping of the

processes onto the nodes or altering the decomposition of the application.

1.6.2 Operating Systems

In addition to providing the services of a normal OS (operating system) on a sequential
machine, the OS on a parallel machine must provide such services as program
scheduling and interprocess communication and synchronisation. Some of the
operating systems developed for parallel systems are simply extensions of
uniprocessor OSs such as UNIX whereas some OSs have been developed especially

for multiprocessors such as Helios developed for transputers.

There are four basic designs that have been used for multiprocessor operating

systems':-

e master/slave
e separate executive for each processor

e symmetric treatment of each processor

e distributed operating systems

In the master/slave approach the OS is permanently assigned to one particular
processor and always operates in that processor. If a slave processor requires service,

that service can only be provided by the executive. The slave must interrupt the
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executive and request service. It must then wait until the program currently being

executed is interrupted and the executive is dispatched to the slave processor.

The main advantage of this type of system is that interprocessor communication and
sychronisation can be very simple and well defined. A major disadvantage however is
that the system is subject to catastrophic failure in the case of a failure in the master

processor or at least severe degradation in the case of a failure in a slave processor.

A separate executive system, is where every processor has a copy of the OS. In this
configuration each processor can service its own needs. Therefore, no service requests
or service from a single executive are required. As each processor has its own copy of
the OS, the system is much less sensitive to catastrophic failure. A failure of one or
more processors will cause a proportional loss of system capability, but will not bring

down the entire multiprocessor system.

A symmetric system maybe thought of as a master/slave type system where the master
floats form one processor to another. This 1s the most difficult method of operation both
from a design and from an operating viewpoint. It does however have the advantage
that it provides the most efficient use of available system resources (e.g. I/O devices

and any central memory).

In a distributed OS the various OS utilities and functions are distributed among the
various processors. Each processor is dedicated to a particular utility or function and

together they implement all OS functions.

Helios”!? is an example of a distributed operating system which uses the client/server
model for operating systems. A client process wishing to access a system resource,
such as opening a file, sends a message to a server process requesting this action to be
performed on its behalf. The client and server processes may reside on different

processors whereas in a single CPU machine the client and server would of course be

on the same processor.

Each processor node contains a Helios kernel, which handles memory management
and message passing. Each node also contains two servers: the processor manager and

the loader. The processor manager is responsible for process creation within that
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processor and other housekeeping jobs. The loader handles the loading and unloading

of both program modules and restdent libraries which are loaded on demand.

Other servers run on one or several processing nodes. Some servers must run on nodes
with particular hardware attached. For example the file system needs the disc device
connected while a window manager must run on a processor with video memory

attached. Servers with no specific hardware requirements are distributed to share the

load evenly amongst the processors.

An /O server is provided by Helios which runs on the host machine of a parallel
system. This causes the host machine to appear to the network of nodes just like

another node running Helios. The I/O server communicates with the host operating

system to provide such things as access to the file system and serial ports.

Helios provides a task, called the Helios Shell, that acts as a command line interface to
the operating system. The shell commands are similar to Unix shell commands. The

standard Unix-like file manipulation commands such as Is, mv, rm and so on are

supported by Helios.

The Task Force Manager (TFM) is a distributed server used by Helios. This consists of
a number identical servers distributed throughout a network of nodes, each controlling
a different area of the network. The TFM processes all client level task force (the
programs to be distributed over the network) execution requests. It analyses the current
state of the network and distributes the component tasks of the task force to the most
suitable processing elements. The criteria for the distribution include the resource

requirements of particular component tasks, connectivity of the task force, and the

current status of the network.

The prime means of communication under Helios is through message passing
implemented by the kernel. In order to provide transparency the semantics of message

passing require to be the same regardless of whether the destination is in the same
processor or in another. The user callable routines PutMsg and GetMsg are
responsible for the sending and receiving of messages whether they are on the same

processor or not.
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Helios was specifically designed to run on a network of transputers (a single chip
processor designed for multiprocessing). This makes programs written using the Helios

environment less portable to other architectures. However, the Unix like command line

interface makes the OS easier to use for Unix users.

1.6.3 Parallel Development Tools

As parallel computing has become more popular and accessible the evolution of

software tools for parallel computing has accelerated. Debuggers, compilers, and

languages are available for parallel systems.

1.6.3.1 Parallel Languages

Parallel versions of sequential languages such as Fortran and C have been developed.

These can be helpful when converting existing sequential code onto a parallel system,

as usually large sections of the code will remain unchanged and it i1s only the parallel

constructs that require to be added.

Special purpose parallel languages such as Occam, which was developed for the
transputer, also exist. These can be combined with parallel Fortran and C to produce

mixed language programming which is also useful when porting an application from a

sequential platform to a parallel system.

1.6.3.2 Compilers

Automatic parallelisation compilers attempt to identify the elements in existing
sequential code that are candidates for parallel computation, and produce compiled
code for the specific multiprocessor machine. This approach however, usually gives

inefficient code which produces disappointing speed-ups in programs. These compiiers

can be useful though to give the software engineer an idea of the parts of the program

that can be executed in parallel.

1.6.3.3 Parallel Programming Environments

Parallel programming environments consist of a set of tools for parallel program

development. The tools may include a subroutine library supporting parallel

programming, debuggers, and performance analysis tools. The subroutine libraries



provide some of the same services as operating systems do for parallel machines. The
difference however is that with an operating system its services can be accessed from

the command line whereas the subroutine libraries are only accessed from calls within

a program.

An example of such a programming environment is Express developed by the Parasoft

Corporation!!, This supports two basic models of parallel programming: the host/node
model and the cubix model. In the host/node model the application program is divided
up into two parts, one for the host machine and one for the parallel machine (See
Figure 1.14). In the Cubix model the entire application is executed on the parallel

machine (See Figure 1.15).

NODE
PROGRA

Host Computer Parallel Computer

FIGURE 1.14.Host/Node programming model

Host Computer Parallel Computer

FIGURE 1.15.Cubix programming model




Cubix is the name of the I/O server which loads a program onto the parallel machine
and starts it running. It also performs the system services requested by the nodes.

However it only provides basic operating system facilities to the node programs. If the

program needs to have direct, low level access to a peripheral device then the host/

node model is required.

In the host/node model the computationally intensive aspects of an application are
extracted and executed on the parallel machine. The interface and control portions of
the code remain on the host machine. All communication between host and nodes and
among the nodes is done with Express system calls. The node programs are loaded

onto nodes by function calls from the host machine.

Express provides a library of subroutines which supports low level communication
primitives for sending messages between processors, peripherals and other system

components. Utilities are also included which provide such facilities as broadcasting

code/data onto the nodes and data redistribution. Figure 1.16 shows some of the

routines available!?.

KXINIT Start up Express and initialise XPRESS common block
KXLOAD Load program onto all nodes

KXOPEN Allocate a group of processors

KXSTAR Start execution of a node program

KXREAD Read a message

KXWRIT Write a message

KXTEST Test for an incoming message - non-blocking
KXBROD Interprocessor broadcast

KXHAND Install asynchronous message handler

KXRECV Read a message - non-blocking

KXSEND Send a message - non-blocking

FIGURE 1.16.A sample of the Express routines

The Express environment also provides a parallel graphics library, a debugger and a
system for analysing such matters as subroutine usage, communication overheads, load

balancing, interprocessor timing differences etc. Express is available in both Fortran

and C for many hardware platforms (INTEL iPSC2, iPSC/i860, CRAY X-MP etc.).
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Another programming environment is PVM (Parallel Virtual Machine)'3. This is a an
integrated set of software tools and libraries, designed to link separate host machines to
form a “virtual machine” which gives an illusion of a single manageable computing
resource. The virtual machine can be composed of hosts of varying types, in physically
remote locations. The system is portable to a wide variety of architectures, including

workstations, multiprocessors, supercomputers and PCs.

The PVM computing model divides an application into several tasks. Each task is
responsible for a part of the application’s workload. The tasks may be performing the
same operations on different data sets or performing completely different operations on
separate data sets. The user views the complete application as a set of communicating

tasks and it does not matter where the tasks are executed.

The application’s computational tasks execute on a set of machines (the host-pool) that
are selected by the user for a given run of the PVM program. Both single-CPU
machines and hardware multiprocessors may be part of the host pool. The host pool

may be altered by adding and deleting machines during operation.

The PVM system is composed of two parts: a daemon and a utilities library. The
daemon (called pvmd3) is a program which resides on all the computers making up the
virtual machine. A user wishing to run a PVM application creates a virtual machine by
starting up PVM. The PVM application can be started from a command line prompt on

any of the computers in the system.

The PVM library contains user-callable routines for message passing, spawning

processes, coordinating tasks and modifying the virtual machine. Typically a user

writes one or more sequential programs in C, C**, or Fortran 77 that contain embedded
calls to the PVM library. Each program corresponds to a task making up the

application.

These programs are compiled for each architecture in the host pool, and the resulting
object files are placed at a location accessible from machines in the host pool. To
execute an application, a user typically starts one copy of one task by hand from a

machine within the host pool. This process subsequently starts other PVM tasks,

eventually resulting in a collection of active tasks that then compute locally and
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exchange messages to solve the problem. Figure 1.17 and Figure 1.18 show two

communicating PVM tasks.

main()

{
int cc, tid, msgtag;
char buf[100];

printf(*i'm t%$x\n", pvm_mytid());

cc = pvm_spawn{"hello_other"*, (char**)0, 0, *"*, 1, &tid);

if (cc == 1) {
nsgtag = 1;
pvi_recv(tid, msgtag);
pvim_upkstr (buf) ;
printf("from t%x: %s\n", tid, buf);

} else
printf(*can't start hello_other\n");

pvin_exit () ;

FIGURE 1.17.PVM program hello.c

#include *pvm3.h"

main()

{
int ptid, msgtag;

char buf(100]);
ptid = pvm_parent();

strcpy(buf, "hello, world from *);
gethostname (buf + strlen(buf), 64);

msgtag = 1;
pvin_initsend (PvmDataDefault);

pvm_pkstr (buf) ;
pvim_send(ptid, msgtag);

pvm_exit();

FIGURE 1.18.PVM program hello_other.c

This program hello.c is intended to be invoked manually. After printing its task id
(supplied by the daemon pvmd3 and received from the function pvm_mytid()), it
initiates a copy of the program hello_other (Figure 1.18) using the pvm_spawn()
function. A successful spawn causes the program to execute a blocking receive using
pvm_recv (). After receiving the message sent by hello.other, the program prints the

message as well as the task id of hello_other. The buffer is extracted from the message
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using pvm_upkstr. The final pvm_exit ()call dissociates the program from the PVM

system

The program hello_other.c is the “slave” or spawned program. Its first PVM action is to
obtain the task id of the “master” using the pvm_parent ()call. The program then
obtains its hostname and transmits the complete string to the host: pvm_initsend

initialises the send buffer, pvm_pkstr(buf) places a string into the send buffer and
pvm_send transmits the contents of the send buffer to the task specified by ptida.The

message is tagged with the number 1 by msgtag.

PVM is public domain software and is available via the internet. PVM libraries are

available for C, C**, and Fortran. It has also been used with other languages, such as

Lisp. The most common PVM platform is a Unix machine, however it is relatively

simple to port it to other platforms such as Intel iPSC/860, iPSC/2 etc.

In general though, for software engineers porting an application onto a parallel system
is still much more cumbersome than doing so onto an established system. This is partly
due to the lack of standardisation in architecture, operating systems, languages etc. It is
also inherent in our teaching that we think of code in a sequential manner and it is not
natural to think of code in a parallel manner. These problems will only be overcome

with the general acceptance of parallel computers.

1.7 Key Developments in Parallel Computing.

1.7.1 The earliest parallel machines

The concept of parallelism in computing began as early as 1953 with the advent of bit-
parallel arithmetic rather then bit-serial as had been the case. The IBM 704 was the first

commercial machine with floating-point hardware and was capable of SkFLOPS

(FLoating point Operations Per Second)”.

Functional parallelism increased throughout the 50°s and early 60’s with the release of
such computers as the IBM STRETCH which included two parallel memory banks and
instruction execution pipelining. One of the best known pipelined computers was the
CRAY-1 developed by Seymour Cray. It was a vector computer operating on 64-bit
floating point numbers with a listed peak performance of 160 MFLOPS.
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1.7.2 The first SIMD machines.

As the limits were reached in what could be achieved in parallel on a sequential
machine, the idea of multiprocessing surfaced. This began with array processing where
several processing elements were under the control of a single control unit. This was
the approach used in the ICL DAP (Distributed Array processor) which consisted of a

64x64 array of bit-serial processors, each with 4 Kbits of memory.

One of the earliest SIMD machines was the ILLIAC IV designed in 1968%. This
contained 64 processing elements arranged as an 8-by-8 array with each PE connected
to its four nearest neighbours. Each PE was capable of 4MFLOPS giving a theoretical
maximum performance for the whole machine of 1000MFLOPS (of course this was
never obtained). The machine contained many pioneering design concepts which are
still relevant today. One of the lessons learned from the ILLIAC 1V was that it assumed
too much regularity in communication (i.e an 8x8 array) than was present in most

problems.

A SIMD machine which allowed greater flexibility in communication than the ILLIAC

IV was the CM-1 Connection Machine manufactured by Thinking Machines

Corporation in 1986. This consisted of 65,536 1-bit processors connected in a 256x256

grid; in addition, clusters of 16 processors were also interconnected in a 12-

dimensional hypercube network for routing messages, and the 16 processors within a

cluster were linked in a daisy chain fashion.

1.7.3 The first MIMD machines

The idea of multiprocessor systems where each processor would have it’s own
instruction stream began to emerge in the early 1970s. One of the major designs was
the C.mmp machine developed at Carnegie Mellon University. This used 16 DEC
PDP-11s (a minicomputer) connected through a circuit-switched crossbar network to

16 memory modules, forming a shared-memory MIMD design.

A prototype distributed memory MIMD machines was the Cosmic Cube developed at
the California Institute of Technology in the early 80s. This contained 64 processing
nodes each with a direct point-to-point connection to six other nodes forming a six

dimensional hypercube.
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The first commercial hypercube was the iPSC/1 (Intel Personal Supercomputer) which
comprised between 32 and 128 nodes. Each node consisted of an Intel 80286/7

processor/coprocessor, 312 KBytes of memory, and a 10Mbit/second communication
link. The peak performance of a 32-node model is about 2MFLOPS. Intel went on to
develop a series of iPSC computers based on the 8086 and i860 series of

MICrOProcessors.

Another commercial hypercube is the nCube/10 produced in 1985. This consists of up
to 1024 32-bit single-chip custom processors. Each node consists of this chip plus six

256-Kbit memory chips.

A key development in the 80s was the arrival of the INMOS transputer. The transputer
IS a microprocessor with special on-chip serial links for communicating with other
transputers. This allows many transputers to be connected together to form a MIMD

machine. Transputers are relatively inexpensive which allows even individuals access

to parallel computing.

1.7.4 GFLOP parallel machines

The late 80s and early 90s saw the emergence of parallel systems capable of Giga
FLOP peak performance. Intel produced the Touchstone Delta (a prototype for the

Paragon) in 1991. This contained 528 1860 processors arranged in a mesh pattern and

was capable of 10GFlops.

Parallel systems based on the fast RISC processors used in high performance
workstations began to emerge in the 90s. Thinking Machines produced the CM-5 in
1992 which contained up to 1024 Sparc microprocessors connected in what is known

as a fat tree topology. This machine was capable of a peak performance of 40GFLOPS.

Meiko also use Sparc microprocessors in their machines.

More recently multiprocessor machines have emerged on based on the DEC Alpha
processor. Cray have produced the T3D which contains up to 256 DEC Alpha chips

arranged as a 3-D torus (a 3-D mesh with wraparound wires in the rows and

columns)'®. The 32 processor version has peak performance of 4GFLOPS and costs

~$2 million.
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Convex produce the Exempler SPP1000/XA system which is a massively parallel
processor using Hewlett - Packard’s PA-RISC 7100 processors. The SPP1000/X A can
have up to 128 processors giving a peak performance of 25GFLOPS. The system also

claims to provide scalability to TFLOPS (T=tera=10!%)of performance and TBytes of

storage.

1.8 Conclusions

The key points in hardware and software development on parallel machines have been
described. This has shown that a wide variety of architectures exist for parallel systems
and the most suitable architecture is dependent on the algorithm being implemented. It
has also been shown that the development of parallel software is a complicated matter

which lacks standardisation.

The technologies of the future such as virtual reality and video conferencing will
require a large amount of computational power to achieve the predicted performance
and this will surely involve parallel computing. The computations involved in the so
called Grand Challenges of science are also still not fast enough even on the most
powerful supercomputers. If parallel computing is to provide the computational power

required in the future more research has to be done to provide efficient parallel

systems.

Most systems are basically extensions of the Von Neumann model of computation used
on sequential processors. It would be helpful to develop a model (or models) of
computation specific to parallel systems. This would hopefully lead to more

standardisation in parallel systems.

More research is also required into interconnection networks. The study of the
suitability of networks to particular problems is necessary to produce acceptable gains
on parallel systems. This can be achieved by modelling parallel systems in order to

study their features and predict their performance.

In the area of parallel software, techniques and tools have to be developed for mapping
algorithms onto nodes. At the moment, mapping is usually left to the programmer and
usually a heuristic approach is used. The development of new parallel languages

designed specifically to handle the problems associated with parallel processing (i.e
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communication protocols, parallel I/O etc.) would help to produce more efficient

parailel code.

Methods of interprocessor communication both in hardware and software require
standards, to enable applications to be portable. Research into producing message

passing standards is underway with projects such as the MPI (message passing

interface) forum'®. The aim of the forum is to discuss and define a set of library

interface standards for message passing.

This thesis is concerned with the design and implementation of both novel hardware
and software for use on distributed multiprocessor machines. The hardware involves
the design of two forms of dynamic interconnection network. The first method allows
the topology of the network to be altered prior to computation and the second method

permits the network topology to adapt as required during the computation. This work is

covered in Part 1 of the thesis.

The software development is concerned with the parallelisation of a sequential
FORTRAN molecular mechanics program to run on novel hardware, where each node
processor has a dedicated high speed link to the host processor. This allows the host
processor to broadcast code/data to all the nodes simultaneously. The parallelisation of

the sequential code, involved the implementation of the COMFORT message passing

subroutine library. This work is described in Part 2 of the thesis.

References

[1] Moldovan, Dan 1. “Parallel Processing: From Applications to Systems.” Morgan
Kaufmann Publishers, San Mateo, California, 1993 (ISBN 1 55860 254 2)

[2] Almasi, George S. and Gottlieb, Allan. “Highly Parallel Computing.” The
Benjamin/Cummings Publishing Company, Redwood City, California, 1989

(ISBN 0 8053 0177 1)

[3] Flynn, M.J. Some Computer Organizations and Their Effectiveness. IEEE Trans.
Computers, C-21, No.9, Sept. 1972, pp. 948-960

[4] Feng, T.Y. Some Characteristics of Associative/Parallel Processing. Proc. 1972
Sagamore Computing Conf.,Aug. 1972, pp 5-16

[5] Haindler, W. The Impact of Classification Schemes on Computer Architecture.
Proc. Int’l Conf. on Parallel Processing, Aug. 1977, pp.277-300

R



[6]

[7]
8]

[9]

[10]

[11]
[12]

[13]
[14]

[15]
[16]

Skillicorn, David B. A Taxonomy for Computer Architectures. Computer, Nov.
1988, pp.46-57

Parallel Programming Primer. Intel® Corporation, 1990

Hazdra, T. and Singh B. Programming Transputers Major Issues. A Workshop
Presentation to the Transputer Research and Applications Conference. Oct. 1994

King, T. “Helios - A Distributed Operating System”. Technical Report No.2.
Perhelion Software Ltd. Dec. 1988

“The Helios Operating System”. Perhelion Software Ltd. Prentice Hall
International (UK) Ltd., 1989 (ISBN 0 13 386004 3)

Express User’s Guide. Parasoft Corporation, 1990
Express Reference Manual. Parasoft Corporation, 1990
World Wide Web. http.//www.netlib.org/pvm3/book/nodel 7.litml

Sharp, John A. “An Introduction to Distributed and Parallel Processing”.
Blackwell Scientific Publications, Oxford, 1987 (ISBN 0 632 01462 8)

BYTE Magazine, Feb. 19935, pp. 65-72

Walker, D., Dongarra, J. (Convener & Meeting Chair). MPI: A Message-Passing
Interface Standard. March 1993, University of Tennesse, Knoxville, Tenessee

35



16



Chapter 2

Concepts in Digital Electronics

Part 1 of this thesis covers the design of various hardware systems. This chapter

describes some of techniques used in the designs"z. First of all the basics of digital
electronics such as logic levels and gates are described and then a detailed description

of the operation of programmable logic devices and programmable read only memory

is presented.

2.1 Basic Digital Electronics

2.1.1 Logic Levels

Whereas analogue electronics involves quantities with continuous values, digital
electronics involves quantities with discrete values. In digital electronics there are two
different voltage levels: a logic high and a logic low. These two values can be
represented by the binary digits 1 and O (a binary digit is a bit). In positive logic system
(which is used in most cases) a O is logic low and a 1 is logic high and in a negative
logic system the opposite is true. A group of several bits represents a piece of binary

information such as a number or a letter (8 bits = byte, 16 bits = word).

In a digital circuit a logic high is a voltage between a specified minimum value and
specified maximum. Likewise, a logic low can be any voltage between a specified
minimum value and a specified maximum value (See Figure 2.1). For the purposes of
this thesis a logic high will be taken to be +5V and a logic low will be taken to be OV.

vH(max
(~5V)

VH(min)
Uncertain

Vumn)

vL(min)
(~0V)

FIGURE 2.1. Logic level ranges for a digital circuit
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Most binary information handled by digital systems appears as a pulse waveform (See
Figure 2.2). All pulse waveforms are derived from and related to a basic timing
waveform called the clock (See Figure 2.3). The clock is a periodic waveform in which
each pulse interval (period) is one bit time. Figure 2.3 shows that each change in level
of waveform A corresponds to a leading edge on the clock waveform. In some cases

changes can occur on the trailing edges of the clock.

....... (+5V)
0 I 0 l 0 i 0 1 0 [
----- (0V)
Tt
Period=T)y=Ty=Ty =Ty = T, Frequency =
(a) Periodic (square wave)
----------- (+5V)
01 0 | 0 0| 1 0 |
......... (OV)
(b) Nonperiodic
FIGURE 2.2. Examples of Pulse Waveforms
Bit Time
--------- (+5V)
Clock
. ' ' ¢ v T nEEm (OV)
' ' § ' s . (+5V)
Waveform A E
— (OV)

FIGURE 2.3. A timing diagram

2.1.2 Logic Gates

Complex digital systems such as microcomputers require to combine digital inputs to
produce digital outputs. For example a FPU requires circuits that can add, divide and

multiply numbers together. The basic elements (logic gates), and their truth tables, used

IR



in combinatortal logic are shown in Figure 2.4. These gates are constructed from

transistors. A small circle at an input or output on a gate indicates the signal is negated.

The gates only have the capacity to combine inputs to produce an output and cannot

memorise logic levels after the input conditions have been removed.

AND Gate Inverter (the NOT function)

FIGURE 2.4. Basic logic gates used in digital design

Circuits which contain memory are known as sequential circuits. The fundamental
element of memory used in digital circuits is called the flip-flop (see Figure 2.5). This
is the basic type of flip-flop and it is constructed by combining two OR gates with

negative inputs.

FIGURE 2.5. Flip-flop (set-reset)




The two stable states of the flip-flop with both inputs (A and B) logic high are shown in
Figure 2.6 (it is not possible to have both outputs in the same logic state). If the input A
is pulled low momentarily in both stable states the flip-flop is guaranteed to go into the
state X = HIGH, Y=LOW. When the input A is returned to logic high the flip-flop
remains in this state so the outputs are dependent on the previous state of the inputs and

therefore the flip-flop has memory.

‘}I' CH’

FIGURE 2.6. Stable states of flip-flop

Flip-flops that are made from two gates are generally known as SR (set-reset), or jam-
loaded, flip-flops. They are forced into one state or the other by generating the correct
input signal. The most widely used form of flip-flop however, looks slightly different.
Instead of a pair of jam inputs, it has one or two data inputs and a single clock input.
The outputs either change state or stay the same, depending on the levels at the data

inputs when the clock pulse arrives.

The simplest form of clocked flip-flop is illustrated in Figure 2.7. It is basically the
same as an SR flip-flop, with a pair of gates (controlled by the clock) to enable the SET
and RESET inputs.

S
Q
R Q*
M.CLK

FIGURE 2.7. Clocked flip-flop
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The truth table for this type of flip-flop is illustrated below:-

where Q,, is the Q output after the clock pulse and Q,, is the output before the clock

pulse. The basic difference between this and the previous type of flip-flop is that R and
S can now be thought of as data inputs. What is present on R and S when a clock pulse

arrives determines the logic level on Q.

A problem with this type of flip-flop however, is that the output can change in response
to the inputs during the time the clock is logic high. This problem is solved with the use

of the master-slave flip-flop and the edge-triggered flip-flop (Sce Figure 2.8).
D

Master | Slave
|
(a) Master-Slave flip-flop

(b) Positive edge-triggered flip-flops

FIGURE 2.8. Master-slave and positive edge triggered flip-flops
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These are the most popular type of flip-flop. The data present on the input lines just

before a clock transition, or “edge” determines the output state after the clock has

changed. They are both known as D-type flip-flops. Data present on the D input is

transferred to the Q output after a clock pulse.

The master-slave flip-flop 1s basically two of the clocked SR flip-flops joined together.
While the clock is logic high, gates 1 and 2 are enabled, forcing the master flip-flop
(gates 3 and 4) into the same state as the D-input (i.e. M=D, M '=D"). Gates 5 and 6 arc

disabled, therefore the slave flip-flop (gates 7 and 8) retains its previous state.

When the clock returns to logic low, the inputs to the master are disconnected from the
D input, while the inputs of the slave are simultaneously coupled to the outputs of the
master. The master thus transfers its state to the slave and no further changes can occur
at the output as the master is now stuck. At the next rising edge of the clock, the slave
will be decoupled from the master and will retain its state, while the master will once

again follow the input.

The edge-triggered circuit behaves the same externally as the master-slave circuit
although the inner workings are different. In this case when the clock is low gates 2 and
3 are disabled and therefore the SR flip-flop (gates S and 6) retains its previous state.
On the next rising edge of the clock gates 2 and 3 are enabled forcing the SR flip-flop

into the same state as the D input (i.e Q=D, Q’=D").

These type of flip-flops are known as D-type flip-flops. They are available with either
positive or negative edge triggering (i.e. change state either on the rising or falling edge
of clock). In addition, most flip-flops also have SET and CLEAR jam-type inputs.
They may be set and cleared on HIGH or on LOW, depending on the type of flip-flop.

Figure 2.9 on page 43 shows a few popular flip-flops in IC form (explained later). The
wedge means edge triggered and the small circle means “negation” or complement.
The “74 is a dual type D positive-edge-triggered flip-flop with active low jam-type SET
and CLEAR inputs. The 4013 is a CMOS dual type D positive-edge-triggered flip-flop
with active HIGH jam-type SET and CLEAR inputs.
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FIGURE 2.9. D-type and JK flip-flops

The JK flip-flop works on principles similar to those of the D-type flip-flop, but it has
two data inputs. Figure 2.10 shows the truth table for a JK type flip-flop. If J and K are
complements, Q will go to the value of the J input at the next clock edge. If J and K are

both LOW, the output will not change. If J and K are both HIGH, the output will

“toggle” (reverse its state after each clock pulse).

FIGURE 2.10. Truth table for JK type flip-flop

Logic gates and flip-flops are combined to construct more complex logic circuits, such
as counters, registers, decoders, multiplexers and memories. These circuits are
available in small packages called integrated circuits (ICs) made from silicon. The two
most widely used type of IC are TTL (transistor-transistor logic) and CMOS
(complementary metal oxide semiconductor). The difference between the two is in the
types of transistor used in their construction; TTL uses bipolar transistors whereas

CMOS uses field effect transistors.

Although an AND gate, for instance, performs identical operations in both TTL and
CMOS versions, the logic levels and other characteristics (speed, power, input current,
etc.) are quite different. Within any one logic family, outputs are designed to drive
other inputs easily so the designer does not often have to worry about thresholds, input
current elc. However when interfacing between logic families care has to be taken to

ensure the correct operation of the circuit.
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2.1.2.1 Buses and tri-state logic

In a computer system several functional units have to exchange data. The CPU,
memory, and various peripherals all need to be able to send and receive 16-bit or 8-bit
words. It would be awkward to have separate 16 or 8-wire cables connecting each
device to all others. The solution is the so-called data bus, a single set of 16 or 8-wire
cables connecting each device to all others. Only one device at a time may assert data

but all may receive data at the same time (See Figure 2.11).

Data Bus
I I /O
I/0 () -
Addrcss bus

FIGURE 2.11. Basic bus structure in a microcomputer

As well as a data bus there are also address and control buses. Each device external to
the CPU has an address or range of addresses corresponding to it. It can only send or
receive data when it is addressed correctly. The control bus is for control signals such

as read or write which specify whether the CPU is sending or receiving data.

There needs to be some way of isolating outputs from a shared data or address bus.
This is achieved by what is called tri-state logic levels. The name is misleading; it is
not digital logic with three voltage Jogic levels. It is just ordinary logic, with a third
output state: open circuit (See Figure 2.12). A separate enable input determines
whether the output behaves like an ordinary active pull-up output or goes into the
“third” state (also known as the high impedance state), regardiess of the logic fevels

present at the other inputs.

Low
. *— Qutput High
: Open

FIGURE 2.12. Conceptual diagram of a tri-state NAND gate
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2.2 Rom and Programmable Logic Devices

Most ICs have a specific purpose (i.e. adder, comparator etc.) but in some the internal
connections can be programmed for the required purpose. This is the case in PROMs

(programmable read-only memory) and PLDs (programm