
Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

Bissland, Lesley (1996) Hardware and software aspects of parallel
computing.

PhD thesis

http://theses.gla.ac.uk/3953/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/3953/

Hardware and Software aspects of

Parallel Computing

BY

Lesley Bissland

A thesis submitted to the University of Glasgow for the degree of

Doctor of Philosophy in the Faculty of Science

Department of Chemistry

January 1996

© L. Bissland 1996

Abstract

Parallel computing has developed in an attempt to satisfy the constant demand for

greater computational power than is available from the fastest processors of the time.
This has evolved from parallelism within a single Central Processing Unit to thousands

of CPUs working together. The development of both novel hardware and software for

parallel multiprocessor systems is presented in this thesis.

A general introduction to parallel computing is given in Chapter 1. This covers the
hardware design concepts used in the field such as vector processors, array processors
and multiprocessors. The basic principles of software engineering for parallel

machines (i. e. decomposition, mapping and tuning) are also discussed.

Part 1 (Chapters 2,3 and 4) is concerned with the development of hardware for

multiprocessor systems. Some of the concepts used in digital hardware design are
introduced in Chapter 2. These include the fundamentals of digital electronics such as
logic gates and flip-flops as well as the more complicated topics of rom and

programmable logic.

It is often desirable to change the network topology of a multiprocessor machine to suit

a particular application. The third chapter describes a circuit switching scheme that

allows the user to alter the network topology prior to computation. To achieve this,

crossbar switches are connected to the nodes, and the host processor (a PC) programs

the crossbar switches to make the desired connections between the nodes. The

hardware and software required for this system is described in detail.

Whilst this design allows the topology of a multiprocessor system to be altered prior to

computation, the topology is still fixed during program run-time. Chapter 4 presents a

system that allows the topology to be altered during run-time. The nodes send

connection requests to a control processor which programs a crossbar switch connected

to the nodes. This system allows every node in a parallel computer to communicate

directly with every other node. The hardware interface between the nodes and the

control processor is discussed in detail, and the software on the control processor is

also described.

i

Part 2 (Chapters 5 and 6) of this thesis is concerned with the parallelisation of a large

molecular mechanics program. Chapter 5 describes the fundamentals of molecular
mechanics such as the steric energy equation and its components, force field

parameterisation and energy minimisation.

The implementation of a novel programming (COMFORT) and hardware (the 131308)

environment into a parallel molecular mechanics (MM) program is presented in

Chapter 6. The structure of the sequential version of the MM program is detailed,

before discussing the implementation of the parallel version using COMFORT and the

BB08.

ii

Table of Contents

Abstract .. i
Table of Contents

...
iii

List of Figures ... vii
List of Tables

.. xi
Acknowledgements ... xii

Chapter 1: Introduction to Parallel Computing
1

1.1 What is Parallel Computing? ...
1

1.2 Why parallel computing? ...
2

1.2.1 Problems in parallel computing
2

1.3 Sequential models of computation 3
1.3.1 Von Neumann model ...

3
1.3.21iarvard Architecture ...

4
1.3.3 Data-Flow Computations ..

4
1.4 Parallel Concepts

..
5

1.4.1 Pipelining
5

1.4.2 Vector Processors ...
6

1.4.3 Array Processors
..

7
1.4.4 Multiprocessors ... 7

1.4.4.1 Shared memory multiprocessors 7
1.4.4.2 Distributed memory multiprocessors 8

1.4.5 Multi-Workstations .. 11
1.4.6 Which parallel methodology? 12

1.5 Taxonomies for parallel computers 12
1.5.1 Flynn's taxonomy ... 12
1.5.2 Feng's taxonomy .. 14
1.5.3 Handler's taxonomy .. 14
1.5.4 Skillicorn's taxonomy .. 15

1.6 Parallel Software Engineering .. 16
1.6.1 The basic principles of software engineering for parallel machines.

17
1.6.1.1 Decomposition .. 18
1.6.1.2 Perfectly Parallel Decomposition 19
1.6.1.3 Domain Decomposition 19
1.6.1.4 Control Decomposition

20
1.6.1.5 Granularity ...

21
1.6.1.6 Mapping ...

22
1.6.1.7 Tuning ...

22
1.6.2 Operating Systems ...

22
1.6.3 Parallel Development Tools ..

25
1.6.3.1 Parallel Languages ...

25
1.6.3.2 Compilers ..

25
1.6.3.3 Parallel Programming Environments 25

1.7 Key Developments in Parallel Computing 30
1.7.1 The earliest parallel machines 30
1.7.2 The first SIMD machines 31
1.7.3 The first MIMD machines ... 31

iii

1.7.4 GFLOP parallel machines ... 32
1.8 Conclusions

.. 33
References ... 34

Part1 .. 36

Chapter 2: Concepts in Digital Electronics 37
2.1 Basic Digital Electronics .. 37

2.1.1 Logic Levels ... 37
2.1.2 Logic Gates .. 38

2.1.2.1 Buses and tri-state logic 44
2.2 Rom and Programmable Logic Devices 45

2.2.1 ROM ... 45
2.2.2 Programmable Logic

... 47
2.2.3 Programming PLDs and PROMs 50
2.2.4 CUPL programming language 50

2.2.4.1 CUPL source code ... 51
2.2.4.2 CUPL simulator ... 57
2.2.4.3 JEDEC format ... 59

2.3 Summary .. 63
References ... 63

Chapter 3: Design of a Programmable Circuit Switched Network 64
3.1 Interprocessor Communication ... 64

3.1.1 Packet Switching .. 64
3.1.2 Circuit Switching .. 65
3.1.3 Wormhole Routing .. 65

3.2 INMOS products .. 66
3.2.1 INMOS C004 ... 66

3.2.1.1 Switch Implementation 67
3.2.1.2 INMOS OSLinks .. 67
3.2.1.3 System Services ... 68

3.2.2 INMOS T-800 transputer .. 68
3.2.3 C012 Link Adaptors .. 71

3.3 Hardware for Static Circuit Switched Network 73
3.3.1 Hardware setup ... 74
3.3.2 Dual Link Adaptor Board ... 76

3.3.2.1245' Octal Bus Transceiver 77
3.3.2.2 P22V 1OL-0 Programmable Logic Device

....................... 79
3.3.2.3 P22V 1 OL-1 Programmable Logic Device

....................... 81
3.4 Software requirements .. 86

3.4.1 User interface with a command line 86
3.4.2 Graphical user interface ... 87
3.4.3 Programming the 0004s .. 90

3.5 Conclusions .. 96
References ... 97

Chapter 4: A Circuit Switched Network for Inmos OS Links
...................... 98

4.1 Overview of Dynamic Circuit Switching Systems 98
4.1.1 Hardware Configurations for Dynamic Link Switching

.................. 98

iv

4.1.1.1 Link-pipeline driven reconfiguration 99 4.1.1.2 Memory-driven reconfiguration 99 4.1.1.3 Serial bus driven reconfiguration 101 4.2 Preliminary Designs ... 104
4.2.1 Interrupt Driven Architecture 104
4.2.2 Memory Mapped Architecture using the COM20020 Network Controller

... 107
4.3 Novel dynamic 'on-demand' circuit switched network 109

4.3.1 Basic Procedure ... 109
4.3.2 Hardware subsystem ... 110
4.3.3 Token Passing

.. 111
4.3.3.1 State Machines .. 111
4.3.3.2 Token passing using a finite state machine implemented in PLDs 112
4.3.3.3 Token passing test circuit 114

4.3.4 FIFO Access ... 118
4.3.4.1 CO11 .. 118
4.3.4.2 FIFO clocking state machine 120
4.3.4.3 Fifo clocking test Circuit 121

4.3.5 Hardware Interface to control processor 123
4.3.5.1 ADS P-2105 ... 123
4.3.5.2 Interface between ADSP-2105 and EPROM 128
4.3.5.3 Interface between ADSP-2105 and C012s 129
4.3.5.4 Other connections to ADSP-2105 131
4.3.5.5 Testing of Circuit .. 131
4.3.5.6 Booting Program ... 134

4.3.6 Software for control processor 137
4.3.6.1 Basic Procedure ... 137
4.3.6.2 Program Structure .. 139

4.3.7 Testing of overall procedure 141
4.3.7.1 Test circuits ... 141

4.4 Connection Request Service Time 147
4.5 Conclusions and Discussion ... 147

References ... 150

Part2 .. 152

Chapter 5: Molecular Mechanics .. 153
5.1 Introduction .. 153

5.1.1 What is Molecular Mechanics 153
5.1.2 Why Molecular Mechanics .. 155

5.2 Formulation of Molecular Mechanics 155
5.2.1 Bond Stretching ... 156
5.2.2 Angle Bending .. 157
5.2.3 Torsion Angles .. 158
5.2.4 van der Waals interactions ... 159
5.2.5 Coulombic Interactions ... 160
5.2.6 Other terms .. 162

5.2.6.1 Out of plane bending .. 162
5.2.6.2 Cross terms ... 162

5.2.7 Force Field Parameterisation 164
5.3 Energy Minimisation

... 165

V

5.3.1 Pattern Searching .. 166
5.3.2 Gradient based methods ... 167

5.3.2.1 Steepest Descent ... 168
5.3.2.2 Newton Raphson ... 168
5.3.2.3 Calculation of Derivatives 170

5.4 Conclusions
.. 173

References
... 173

Chapter 6: Parallel Molecular Mechanics Calculations using COMFORT and the BB08.176
6.1 Introduction

.. 176
6.2 The BB08 and COMFORT .. 177

6.2.1 The BB08 Broadcast Link Interface 177
6.2.2 The COMFORT Programming Environment

.......................... 179
6.3 The Molecular Mechanics Program 182

6.3.1 The Chemmin Minimiser .. 183
6.3.2 Parallelisation Strategies for Energy Minimisation

...................... 188
6.3.3 Hostmin and Nodemin .. 191
6.3.4 Implementation of host/node communication using COMFORT and the BB08 193

6.3.4.1 The Implementation of COMFORT in HOSTMIN
................ 195

6.3.4.2 The Implementation of COMFORT in Nodemin 200
6.3.4.3 Transfer of atomic coordinates between host and nodes 201

6.3.5 Minimisation times .. 202
6.4 Graphical Interface

.. 204
6.5 Conclusions

.. 204
References

... 207

Appendix A: Source code for command line and graphical interfaces
................ 208

Appendix B: Source code for dynamic interconnection network 234
Appendix C: Source code for parallel energy minimisation 254
Appendix D: Photographs .. 303
Appendix E: Publications .. 311

VI

List of Figures

Chapter 1

FIGURE 1.1. Von Neumann computer model 3
FIGURE 1.2. Snapshots of a data flow diagram for z= y(x+1) 5
FIGURE 1.3. Vector Processor .. 6
FIGURE 1.4. An array processor ... 7
FIGURE 1.5. Shared memory multiprocessor 8
FIGURE 1.6. A distributed memory multiprocessor 8
FIGURE 1.7. Common static network topologies 9
FIGURE 1.8. A crossbar switch .. 10
FIGURE 1.9. A multistage network ... I1
FIGURE 1.10. Analogy of a SIMD machine 13
FIGURE 1.11. Analogy of a MIMD machine 13
FIGURE 1.12. The main stages in producing a parallel program 18
FIGURE 1.13. Functional Decomposition Model 20
FIGURE 1.14. Iiost/Node programming model 26
FIGURE 1.15. Cubix programming model 26
FIGURE 1.16. A sample of the Express routines 27
FIGURE 1.17. PVM program hello. c ... 29
FIGURE 1.18. PVM program hello_other. c 29

Chapter 2

FIGURE 2.1. Logic level ranges for a digital circuit 37
FIGURE 2.2. Examples of Pulse Waveforms 38
FIGURE 2.3. A timing diagram .. 38
FIGURE 2.4. Basic logic gates used in digital design 39
FIGURE 2.5. Flip-flop (set-reset) .. 39
FIGURE 2.6. Stable states of flip-flop 40
FIGURE 2.7. Clocked flip-flop .. 40
FIGURE 2.8. Master-slave and positive edge triggered flip-flops 41
FIGURE 2.9. D-type and JK flip-flops .. 43
FIGURE 2.10. Truth table for JK type flip-flop 43
FIGURE 2.11. Basic bus structure in a microcomputer 44
FIGURE 2.12. Conceptual diagram of a tri-state NAND gate 44
FIGURE 2.13. A1Kx 8K ROM ... 45
FIGURE 2.14. Bipolar ROM cells .. 46
FIGURE 2.15. A 16x8-bit ROM array ... 46
FIGURE 2.16. A PAL ... 48
FIGURE 2.17. A PLA ... 48
FIGURE 2.18. Details of shorthand used to describe PLDs 49
FIGURE 2.19. A PLD with registered outputs 50
FIGURE 2.20. CUPL source code for simple gates 52
FIGURE 2.21. CUPL source code for interface between memory and CPU

........... 53
FIGURE 2.22. Microprocessor-based system 54
FIGURE 2.23. The equality operator .. 55
FIGURE 2.24. Wait state generator timing diagram 56
FIGURE 2.25. CSIM (. SI) file for interface between CPU and memory 58

vii

FIGURE 2.26. Output file (. SO) from simulator 60
FIGURE 2.27. JEDEC file for interface between CPU and memory 61
FIGURE 2.28. Example of a Checksum 62

Chapter 3

FIGURE 3.1. IMS C004 block diagram 66 FIGURE 3.2. IMS C004 link data and acknowledge packets 68
FIGURE 3.3. IMS T-800 block diagram 69 FIGURE 3.4. Examples of input and output statements 71
FIGURE 3.5. IMS C012 block diagram .. 71
FIGURE 3.6. IMS C012 input status register 72
FIGURE 3.7. IMS C012 output status register 73
FIGURE 3.8. Layout of circuit switched network 73
FIGURE 3.9. Connections from transputer board to DIN41612 plug 74
FIGURE 3.10. Block Diagram of Switch board 75
FIGURE 3.11. Overall arrangement of transputer boards 75
FIGURE 3.12. Connections to 16-way DIN41612 socket 76
FIGURE 3.13. Pin and signal definitions for the PC card slots 77
FIGURE 3.14. Dual Link Adaptor Board 78
FIGURE 3.15. Pin Configuration of P22V IOL 79
FIGURE 3.16. CUPL source code for P22V IOL-0 80
FIGURE 3.17. CUPL source code for P22VIOL-1 83
FIGURE 3.18. Timing diagram for write to C012 84
FIGURE 3.19. Timing diagram for NotStatWr signal 85
FIGURE 3.20. FORTRAN code to extract values from string 86
FIGURE 3.21. Subroutine INTEG .. 87
FIGURE 3.22. Pseudocode for routine PRESSMOUSE 89 FIGURE 3.23. Pseudocode for subroutine CONNECTIONS 90
FIGURE 3.24. Assembler routine RUN .. 91
FIGURE 3.25. FORTRAN code to make connections on 0004s 93
FIGURE 3.26. Assembler routine LinkOut 94
FIGURE 3.27. Assembler routine Linkln 95
FIGURE 3.28. FORTRAN code to interrogate an output 96

connections Format of statement showin FIGURE 3 29 96 g
Chapter 4

FIGURE 4.1. General structure of a dynamic switching scheme
FIGURE 4.2. Link Pipeline Driven Reconfiguration Control
FIGURE 4.3. Memory driven reconfiguration
FIGURE 4.4. Serial Bus Driven Reconfiguration Control

99
100
100
101

FIGURE 4.5. Interconnecting transputers by the TRANSBUS controller 102
FIGURE 4.6. Structure of a single cluster TRANSBUS system 103
FIGURE 4.7. Interrupt Driven Design

...
FIGURE 4.8. Connections on 2-line to 4-line decoder
FIGURE 4.9. COM20020 Interface to Control Processor
FIGURE 4.10. Multiplexed, 8051 - like bus interface with COM20020

...............
FIGURE 4.11. Dynamic Interconnection Network (1 node)
FIGURE 4.12. State Machine ...
FIGURE 4.13. Token Passing ...
FIGURE 4.14. Generation of HoldToken signal

105
106
107
108
110
112
112
113

VI11

FIGURE 4.15. State Diagram for token passing 114 FIGURE 4.16. Token passing test circuit 115 FIGURE 4.17. CUPL source code for token passing 116 FIGURE 4.18. CUPL source code for node which injects token in to system 117
FIGURE 4.19. IMS CO 11 Mode 1 block diagram 119 FIGURE 4.20. State Diagram for FIFO clocking 120
FIGURE 4.21. Fifo clocking test circuit 121 FIGURE 4.22. CUPL source code for P22V IOL in FIFO clocking circuit 122
FIGURE 4.23. CUPL code for FIFO clocking 124
FIGURE 4.24. Hardware Interface to Control Processor 125
FIGURE 4.25. Core Architecture of ADSP-2105 127
FIGURE 4.26. CUPL source code for P22V 10 130
FIGURE 4.27.. SYS file for flashing light 132
FIGURE 4.28. Source code for flash. dsp 133
FIGURE 4.29. Pseudocode for download program 135
FIGURE 4.30. Connection request sent by node 137
FIGURE 4.31. Connection Table in Control Processor 138
FIGURE 4.32. Acknowledge Byte returned to source node 138
FIGURE 4.33. Disconnection Request .. 139
FIGURE 4.34. Program structure for ADSP-2105 software 140
FIGURE 4.35. Set-up used to test theory of dynamic connection network 142
FIGURE 4.36. PC plug-in card which emulates node 143
FIGURE 4.37. Functional Block Diagram of FIFO 144
FIGURE 4.38. Control of QAck and QValid 145
FIGURE 4.39. CUPL source code for address decoding 146
FIGURE 4.40. Multiple communications channels required between devices

.......... 148

Chapter 5

FIGURE 5.1. Curves showing the variation of bond stretch energy with distance
....... 157

FIGURE 5.2. A typical van der Waals curve 159
FIGURE 5.3. Single Dipole Interaction ... 160
FIGURE 5.4. The Improper Torsion Angle (c shown by dashed line) 162
FIGURE 5.5. Molecular geometries for cis and trans butane structures 163
FIGURE 5.6. Shape of rotational potential for 1,2-di-substituted ethanes 166

Chapter 6
FIGURE 6.1. Basic layout of BB08 board 178
FIGURE 6.2. Connections from BB08 board on Node 3 178
FIGURE 6.3. Program Structure of Chemmin 184
tIGURE 6.4. Pseudocode for Chemmin 185
FIGURE 6.5. Pseudocode for Mindat ... 186
FIGURE 6.6. Pseudocode for Mininitl. dat 186
tIGURE 6.7. Partition of subroutines between host and nodes 192
LIGURE 6.8. Code to allocate atoms to node 193
IIGURE 6.9. Pseudocode for Ilostmin .. 194
FIGURE 6.10. Pseudocode for Nodemin .. 194
FIGURE 6.11. Host Code that broadcasts arrays to node 196
FIGURE 6.12. Common Block Declarations 196
FIGURE 6.13. Graphical Representation of Equivalence Statements

................. 198
IIGURE 6.14. Include file that equivalences arrays/variables to dummy arrays 199

ix

FIGURE 6.14. Include file that equivalences arrays/variables to dummy arrays 199
FIGURE 6.15. Code on node which receives data from host

....................... 200
FIGURE 6.16. Node code to return `improved' coordinates to host

.................. 201
FIGURE 6.17. Host code to receive `improved' coordinates 202
FIGURE 6.18. Arrangement of FATXYZ in memory 203
FIGURE 6.19. Arrangement of FATXYZ in memory with reversed indices 203
FIGURE 6.20. Pseudocode for graphical interface 206

Appendix D

FIGURE 1. Switch Board ... 304
FIGURE 2. Dual Link Adapter Board ... 304
FIGURE 3. Token Passing Test Circuit .. 305
FIGURE 4. FIFO Clocking Test Circuit 305
FIGURE 5. Control Processor Board .. 306
FIGURE 6. PC plug-in csrd to emulate node

306
FIGURE 7. Graphical Interface allowing connections between nodes 307
FIGURE 8. Graphical Interface showing connections between nodes 307
FIGURE 9. Initial Screen of minimiser ..

308
FIGURE 10. Number Pad allowing user to enter number of iterations 308
FIGURE 11. Screen allowing user to fix parameters 309
FIGURE 12. Selecting a fixed legnth ..

309
FIGURE 13. Entering severity of constraint

310

List of Tables

Chapter 2

TABLE 2.1. Logical Operators ..
51

TABLE 2.2. Table of Test Conditions ...
59

Chapter 3
TABLE 3.1. IMS C004 configuration messages

67
TABLE 3.2. IMS C004 system services

68

TABLE 3.3. IMS C012 register selection
72

TABLE 3.4. Function Table for 245`
77

TALE 3.5. Pin Outs ofP22V10L-1
81

TABLE 3.6. Intermediate variables for P22VIOL
84

Chapter 4

TABLE 4.1. Operations supported by Computational Units
126

Chapter 6
TABLE 6.1. COMFORT low-level subroutines

180
TABLE 6.2. COMFORT run-time libraries "" """"".....

180
182 TABLE 6.3. Description of COMFORT routines

TABLE 6.4. Variable names and definitions
197
202 TABLE 6.5. Optimisation times for 30 iterations

xi

Acknowledgements

I would like to gratefully acknowledge the guidance, support and encouragement given
to me by my supervisor Dr. David White. His advice and direction was invaluable

during my research.

Thanks must also be given to various staff and colleagues of the Chemistry department

both past and present. In particular to Noel Ruddock for his guidance with software
development and Dr Chris Gilmore for the use of his computers and printers for

writing this thesis (and many other reports). My sincere appreciation goes to Stuart

Mackay for taking the time to proof read this thesis and for all his suggestions.

A big thank you to Lesley Ann for her friendship, support and lunches at the QM! I

would also like to thank Arlene for her friendship and putting up with sharing an office
with me.

Thanks is also due to my Mum for taking the photos included in this thesis.

The financial support received from the CEU (Commission of the European Union) to

attend a conference in Harrogate is also gratefully acknowledged.

Finally I would like to thank the E. P. S. R. C for funding this research and the attendance

at a conference in the U. S. A.

xii

This thesis is dedicated to my parents

for all their support throughout my academic career.

xiii

Chapter 1

Introduction to Parallel Computing

Throughout the evolution of computing, parallelism has become more and more

significant. Due to the demand for more powerful machines, designers have had to

conceive methods of achieving greater speed with the available technology of the day.

This has often been achieved by parallelism within a sequential single processor

machine or by using several sequential processors working together.

This chapter explains the need for parallel computing and also describes some of the

problems associated with it. The main types of parallel architecture and the taxonomies

developed to describe parallel systems are detailed. An overview is presented of the

issues involved in parallel software engineering and finally the key developments in

parallel computing are described.

1.1 What is Parallel Computing?

The basic concept of parallel computing is that a computation is distributed over

several processing units, enabling parts of the program to be executed simultaneously.

This will potentially speed up the computation compared to executing it on a sequential

machine. This approach is analogous to a team of people working on a common task.

You would hope to complete the task faster with a team of people than with a single

person.

It is not the case however that every program can be speeded up by executing it in

parallel. As with people the processors in a parallel computer have to communicate

with each other to work effectively and this is one of the main overheads in parallel

computing. Also the algorithm must be suited to parallel computing. An algorithm that

requires a high ratio of communication to computation would not necessarily be

speeded up by parallel computing.

1.2 Why parallel computing?
With the advent of high performance workstations it is often asked why there is a need
for parallel computing. The main reason is that even the fastest computers available
today are still not powerful enough for the so called Grand Challenges of science.
These include applications in weather forecasting, computational fluid dynamics used
in the automotive industry and drug design used in the pharmaceutical industry.

Even today's fastest computers are approaching the limits imposed by physics. The

propagation delays of signals are restricted by the speed of light. As designers try to

shrink architectures to reduce the distance signals require to travel, device physicists

are concerned about the impact of atom spacing on their ability to make smaller and,
hence, faster transistors. It is therefore probable that designers will have no choice but

to rely on parallelism to achieve higher performance.

Another reason for parallel systems is that they can provide a good cost/performance

ratio. Many large problems are solved too slowly on a sequential machine to be cost-

effective, the reason being that for high-performance single processors the price grows

rapidly with speed. It can therefore be less expensive and faster to use several `off-the-

shelf' processors to achieve high performance.

Other advantages of parallel systems include scalability and availability. A well-
designed parallel system will allow for the addition of more processors as they become

available or as the users computing requirements grow. Also as there is a high

availability of components, if one fails the system should be able to continue operation

using the remaining components.

1.2.1 Problems in parallel computing

Sequential computers are based on a single underlying model of computation known as

the Von Neumann model. This single model has given manufacturers and users a

common paradigm on which to construct their software and hardware. This has led to

common standards within the sequential market and as a result has given rise to

software that is portable between platforms. In parallel computing there is no single

model of computation which can lead to problems when porting parallel software from

one hardware platform to another.

2

The primary difference between parallel and sequential computing is that in a parallel

computer a program is divided up into processes which maybe on separate processors.
These processes will require to communicate with each other in order to produce an

overall solution to the problem. At present there is no common standard used to pass

messages between processors. Several schemes have been suggested and some of these

will be discussed in the course of this thesis.

Other problems that occur in parallel computing and not in sequential computing are
deadlock and livelock. Deadlock is where two or more parallel processes can no longer

execute any further due to a communication interdependency. Livelock is the state

where a process remains active on a processor but does not communicate and acts like

an infinite loop. Software engineers need to prevent these situations.

1.3 Sequential models of computation

Sequential models of computation are often used as building blocks for parallel

machines. Three of the most common sequential models are discussed below.

1.3.1 Von Neumann model

The von Neumann model of computation is illustrated in Figure 1.1.

FIGURE I. l. Von Neumann computer model

A classical von Neumann computer consists of a program control unit (CU), an

arithmetic logic unit (ALU), an input/output (I/O) unit, and memory (M). The CU and

ALU collectively make up the processing element.

The von Neumann model is based on the following principles: -

I

"A single processing element separated from memory by a communication bus

" Linear organisation of fixed-size memory cells

" Low-level machine language with instructions performing simple operations on
elementary operands

" Sequential centralised control of computations

These principles are simple and well understood and considerable progress has been

made with them over the years.

1.3.2 Harvard Architecture

The Harvard Architecture is a variation on the von Neumann model and uses two

separate memories for instructions and data instead of the one memory for both as in

the von Neumann model. This allows both instructions and data to be accessed

simultaneously improving the speed of the machine.

1.3.3 Data-Flow Computations

In a data-flow machine computations take place when operands become available

eliminating the need for a program counter. In a von Neumann computer the program

counter stores the address of the next instruction in order to process instructions in a

sequential manner. It is the data dependencies that constrain the order of computations

in a data-flow machine.

The result produced by an instruction is used as a token which passes to the operands

of the next instruction. Figure 1.2 overleaf shows a data flow graph for the calculation

z=y(x+l). Here the circles represent nodes which are connected by arcs and the dots on

the arcs represent tokens. For example purposes x and y are 4 and 5 respectively.

Each node is only permitted to compute when tokens are present on each input arc and

there are not tokens on the output arc. In Figure 1.2(a) the "plus" node can compute but

the "multiplication" node cannot. In Figure 1.2(b) as the "plus" node has produced a

token which enables the "multiplication" node to compute. Finally in Figure 1.2(c) the

result z=25 is produced

4

1xIx1x

Y

Zz
(a) (b)

FIGURE 1.2. Snapshots of a data flow diagram for Z= y(x+1)

1.4 Parallel Concepts

There are various hardware schemes that exploit parallelism in computing1'2. Some of

these are detailed below.

1.4.1 Pipelining.

Pipelining divides a task T into subtasks T1, T2, .., Tk and assigns the subtasks to a

chain of processing elements (PEs). Each PE executes a particular subtask and passes

its result onto the next PE similar to an assembly line in a factory. Pipelining can be

applied at instruction or arithmetic level.

An instruction cycle typically consists of 3 stages. i. e

1) Fctch instruction.

2) Decode instruction.

3) Execute instruction.

In a pipelined processor these functions are carried out in parallel. As one instruction is

being decoded the next one will be fetched which means the ALU (arithmetic logic

unit) always has an instruction waiting for it. This approach works best with programs

5

Z=25
(C)

which contain long sections of sequential code, as obviously if an instruction has been

prefetched and the previous instruction was a `JUMP' instruction then the new
instruction will have to be discarded. The speed-up obtained from pipelining also
depends on the length of the pipe as the longer the pipeline the longer it takes to `flush'

out the pipeline.

In arithmetic pipelining the ALU is arranged as a series of stages, and operations inside

the ALU are pipelined. For example when multiplying two floating point numbers A

and B, at instant one, stage one calculates the difference between the exponents of A

and B. At instant two, stage two aligns the mantissas of A and B at the same time as

stage one calculates the difference between the exponents of the next two numbers (C

& D).

Most of todays sequential processors use some form of instruction level and arithmetic

pipelining. In this way parallelism is present within a single sequential processor.

1.4.2 Vector Processors

Vector processors are specifically designed for computations involving vectors. For

example the subtraction of two vectors of n elements can be performed simultaneously

on all it elements. This can be achieved by replicating the number of ALUs to the size

of the vectors. This requires a considerable amount of hardware and is not particularly

flexible. A better approach is to use pipelining.

Vectors are one-dimensional arrays of data and the same sequence of operations is

required for each vector element. One or more pipelined ALUs may be used and the

vector elements are pushed through the pipeline. (See Figure 1.3)

: lined
Us

FIGURE 1.3. Vector Processor

6

1.4.3 Array Processors

An array processor is a synchronous parallel computer which consists of multiple

processors under the supervision of a single control unit (See Figure 1.4). The

processors each perform the same instruction at the same time but on different data.

The control unit synchronises all the processors and collects the results from the

processors. This approach is useful for programs with large arrays of data which

require the same operation to be executed on each of the elements in the array.

FIGURE 1.4. An array processor

The processors in an array processor usually consist of a bit-serial ALU and some local

memory. The processors are arranged in a regular lattice of two or more dimensions

with each processor connected to at least its nearest neighbour. In the case of two

dimensional problems such as image processing and matrix calculations the data can

be mapped easily onto a two dimensional array.

1.4.4 Multiprocessors

Multiprocessing machines consist of multiple complete processors which each contain

a CPU, ALU, local memory and an 110 interface (known as a node). This is the ideal

approach as it should theoretically allow you to carry out any kind of computation in

parallel. However as stated previously, the structure of the computation and the degree

of inter-processor communication necessary, must be considered.

1.4.4.1 Shared memory multiprocessors.

This type of multiprocessor exchange data via a shared memory (See Figure 1.5 on

page 8). Each node still has its own local memory but uses shared memory for data that

is required by other nodes. Since the nodes operate more or less independently of each

other, this is an asynchronous architecture. A disadvantage of this architecture is that it

7

is not easily scalable as if more nodes are added then the shared memory bus becomes

a potential bottleneck.

FIGURE 1.5. Shared memory multiprocessor

1.4.4.2 Distributed memory multiprocessors

In these systems each node has its own memory and the nodes communicate via an

interconnection network (See Figure 1.6). Ideally every node would be directly

connected to every other node but this is usually not feasible especially in

multiprocessors with a large number of nodes (1000 nodes requires 1/2 million

connections). Usually messages pass via intermediate nodes to reach the destination

node (known as message passing). Obviously when designing the network the aim is to

minimise the time taken for messages to pass over it.

FIGURE 1.6. A distributed memory multiprocessor

The interconnection network can be static or dynamic2. A static network topology does

not change after the machine has been built whereas a dynamic network can change its

topology to suit different computations. The topology can be altered before the

computation or dynamically during the computation. Static networks are more

appropriate for problems where the communication pattern can be predicted

reasonably well, whereas dynamic topologies are suitable for a wider class of

problems.

R

Some of the common static topologies are illustrated in Figure 1.7. In these static

networks messages `hop' from node to node in order to reach the destination. In a

simple 1-D linear network the average number of hops is N/3 where N is the number of

nodes. The number of hops required can be reduced by increasing the dimensionality

of the network. In a ring topology (a 2-D linear network) for example the number of
hops is reduce to N/6 (half that of a 1-D linear network). By increasing the

dimensionality of the network however, the number of connections required between

the nodes increases and hence the cost and complexity increases.

PE P

1) Linear array 2) Ring

ttnn 1101

01

100

4) Tree 5) Star 6) Binary Ilypercube

FIGURE 1.7. Common static network topologies.

A compromise between the number of links and the number of hops is to use higher

dimensions and only connect nodes in the same dimension. This is the approach used

in the binary hypercube. The hypercube illustrated in Figure 1.7 is a four dimensional

hypercube. It is so called as four binary digits are required to specify all the node

positions. Each node is connected to every other node whose binary number differs

from its own by exactly one digit.

If n is the dimensionality of the hypercube then N(no. of nodes) = 2" and the maximum

number of hops required is log2N which is equivalent to it. The number of connections

9

3) A nearest neighbour mesh

0000 0001

at each node is also log2N. The hypercube topology has been used in many commercial

machines some of which will be discussed at the end of this Chapter.

There are three basic types of dynamic network: bus networks, multistage networks

and crossbar networks (listed in order of increasing performance and cost).

A bus network, as the name implies, is a system where all the nodes are connected to a

common bus, therefore any node can communicate with any other node. The main

advantage of this system is its simplicity. However a major disadvantage is that it can

only be used for a limited number of processors because of the limited bandwidth of

the bus.

A crossbar switch is an integrated circuit (IC) which when combined can connect any

input to any output (See Figure 1.8). Each output is connected to the output of an if to I

multiplexer where n is the number of inputs to the crossbar switch. The n inputs of

each multiplexer are connected to the n inputs of the crossbar allowing each output to

be connected to any input of the crossbar. Several connections between inputs and

outputs can be present at the one time.

Inputs Oton

n to
Multiplexer

"

"

"

to 1
Lýipiexer

FIGURE 1.8. A crossbar switch

Synchronisation J
-ý

Output
Buffer

I output 0

Synchronisation Output Output it Buffer

By connecting nodes to a crossbar switch any node can be directly connected to any

other node. The crossbar switch can be programmed prior to or during a computation.

Crossbar switch systems are only usually suitable for a small number of nodes as the

number of logic switches within the crossbar is N2 where N is the number of processors

(usually crossbar switches are 32-to-32 or 64-to-64).

10

A multistage network attempts to provide the connectivity of a full crossbar by using
several 2-to-2 (maybe larger) crossbars connected together. The reason for this is to

reduce the number of switching elements required and hence the cost of the system.

For an N node system the number of switching elements is Mog2N compared to N2 for

a single crossbar switch. However, since a message will need to pass through several

switches to reach its destination the latency of such systems is greater than for a single

switch.

Figure 1.9 shows an example of a multistage network using several 2 to 2 crossbars.
This configuration allows any of the eight inputs to be connected to any of the eight

outputs. Since each crossbar has four switching elements the total number of switching

elements required is forty eight (4 x 12) compared to the sixty four required by an 8 to
8 crossbar switch. Multistage networks do have the disadvantage however that

messages can be blocked as two different routes through the network may require the

same connection on one of the crossbars.
Inputs

22
---,

3
4

5
6

7
8

FIGURE 1.9. A multistage network

1.4.5 Multi-Workstations

3
4

5
6

7
8

Multi-workstations in their simplest form are collections of high performance

workstations, such as Sun or Silicon Graphics, connected together by ethernet. A

program is distributed over the workstations and messages are exchanged between the

workstations via ethernet. An advantage of this type of system is that it can utilise

Outputs
--t
-2

existing general purpose hardware. A disadvantage however, is the relative slowness

of ethernet compared to the dedicated high-speed links on a multiprocessor machine.
The communication speed between the workstations can be increased by using optical
links.

1.4.6 Which parallel methodology?
None of these approaches to parallelism is necessarily the best approach. It is

dependent on the type of problem the parallel machine is used for and the cost/

performance ratio required. For example, traditionally supercomputers use pipelined

vector processing and rely on the fastest available (expensive) circuit technology to

produce high performance. These machines however are only suitable for high speed

numeric problems. On the other hand multiprocessors do not require exotic circuit

technology or custom processor designs which provides flexibility, familiarity and

scalability.

1.5 Taxonomies for parallel computers
Several taxonomies have been developed to classify the various types of parallel

computer. The main reasons for their development are: -

they show what has been achieved to date in the field of architecture.

" they can enable the designer to estimate the suitability of an architecture to solving
a given problem.

" there is the potential that such systems may reveal configurations that may not have

occurred to designers.

" performance models can be built that cover a wide range of systems with little, or
no, modification.

1.5.1 Flynn's Taxonomy

The most widely used taxonomy was developed by Flynn in 19723. This classifies

parallel computers into four groups: -

" SISD - Single Instruction Stream Single Data Stream.

" SIMD - Single Instruction Stream Multiple Data Stream

" MIMD - Multiple Instruction Stream Multiple Data Stream

" MISD - Multiple Instruction Stream Single Data Stream

12

SISD computers are the sequential (Von Neuman) machines where a single stream of
instructions acts upon a single stream of data.

A SIMD machine consists of an array of processing elements each carrying out a single
instruction simultaneously but on different data sets. An illustration of the principle of

a SIMD machine is shown in Figure 1.10. All the people (nodes) are carrying out the

same instruction (walking) in lock-step time and are controlled by a leader (master

processor).

FIGURE 1.10. Analogy of a SIMD machine

A MIMD machine comprises a number of processing elements all executing their own

code simultaneously on different data sets. A diagram illustrating this concept again

using the analogy with people is shown in Figure 1.11. In this case every person (node)

is carrying out a different task (instruction) using different items (data).

 1

I

1 a

`. ý

FIGURE 1.1I. Analogy of a MINID machine

.. go

13

MISD computers are theoretically possible but would imply that a set of different

instructions would all be performed simultaneously on the same data item which is an

unlikely scenario.

Flynn's classification is useful in certain circumstances but it fails to accurately
describe some systems. For example a pipelined vector machine can either be

described as SISD or SIMD, SISD if considered as processing a single stream of data

and SIMD if every element of the vectors is regarded as belonging to an individual

stream of data.

Generally though a SIMD machine is taken to be an array of processors operating

under central control and an MIMD machine is regarded as an array of processors

operating independently of each other executing different instructions on different data

streams.

1.5.2 Feng's taxonomy

This is a performance based classification which describes the parallelism of a set of

processors in terms of the number of bits than can be processed simultaneously 4.

Parallel machines are defined by the word length of the processing units (n) and the bit

slice length (m -a product of the number of pipelines and their depth). This provides

the following classification: -

" WSBS - Word Serial, Bit Serial (bit serial processing) -m=1; n=I

" WPBS - Word Parallel, Bit Serial (bit slice processing) -m>1; n=1

" WSBP - Word Serial, Bit Parallel (word slice processing) -m=1; n>1

" WPBP - Word Parallel, Bit Parallel (fully parallel) -m>1; n>1

This classification is useful for pipeline and vector processors but would not

distinguish between types of multiprocessor architecture.

1.5.3 Händler's Taxonomy

Händler identified three logical levels of parallelism5: Program level (multiple

processors), Instruction level (multiple ALUs) and the Word level (multiple bits). The

Händler classification system therefore uses the triple (K, D, W) to represent a

machine, where K is the number of processors, D is the number of ALUs and W is the

14

wordlength of each ALU. On top of this, pipelining can be included (macro-,

instruction- and arithmetic-pipelining respectively), giving rise to (K*K', D*D',

W*W'), where the multipliers are the pipeline depth at each level.

The system also enables representations to be combined using the following operators:

+ indicates the existence of more than one structure that operates independently in

parallel.

* indicates the existence of sequentially ordered structures where all data is

processed through all structures.

v indicates that a certain system may have multiple configurations.

This works well for describing conventional vector processors but it fails to describe

the interconnection information in multiprocessor systems.

1.5.4 Skillicorn's taxonomy

Skillicorn introduced the idea of modelling the possible interconnection networks

within a system6. The networks include the processor to memory, processor to ALU,

and processor to processor subsystems. The system is therefore represented by the

following:

1) no. of instruction processors (IP).

2) no. of instruction memories (IM).

3) the IP to IM network.

4) no. of ALUs (DP)

5) DP to data memory network.

6) IP to DP network.

7) DP to DP network.

The networks are described by abstract switches which connect the functional units

together. These abstract switches can be implemented in different ways: by buses,

I5

dynamic switches, or static interconnection networks. Four different forms of abstract

switch connect functional units together: -

" 1-to-1 :a single functional unit of one type connects to a single functional unit of
another

" n-to-n : the ith unit of one set of functional units connects to the ith unit of another.
This type of switch is a 1-to-1 connection replicated n times.

" 1-to-n : in this configuration, one functional unit connects to all n devices of another
set of functional units.

" n-by-n : in this configuration, each device of one set of functional units can
communicate with any device of a second set and vice versa.

Further discriminations can be made by describing whether or not each of the

processors is pipelined and by giving its internal functional structure by a state

diagram.

This system is very detailed and flexible, and is capable of describing most current

systems. However it is slightly complex and is probably best used in combination with

Flynn's system so that only the departures from the base class need to be specified.

These are only some of the taxonomies that have been proposed. Skillicorn's comes

closest to the ideal as it includes the interconnection topology of nodes. However it still

does not cover all the topologies available as it only uses simple one to one or all to all

models to describe the interconnection networks. Depending on the type of system in

use (i. e. pipelined, vector etc.) the best approach is to classify the system using a

combination of Flynn's taxonomy and one of the others (i. e Händler's for a vector

processor).

1,6 Parallel Software Engineering

The development of parallel software is governed chiefly by the target hardware and

the nature of the application. Hardware can vary from a small pipeline to a large

multiprocessor machine containing thousands of nodes. The application can vary from

a large numerical problem such as weather forecasting to a small real time embedded

system. Depending on the hardware and the application different requirements are

demanded of the software.

16

The main aims of the software engineer are to balance the computational load and to

minimize the communication to computation ratio. It is not advantageous to have one

node very busy while the others are idle or to have so much communication that the

nodes spend most of their time communicating rather than computing.

Software engineers also may be required to consider issues such as portability and

scalability. For some applications the hardware setup will not alter during the lifetime

of the software (i. e embedded and process control systems) but for the majority of

systems it is desirable to allow for the possible implementation on other parallel

systems, and also to provide for the scaling up of the existing target hardware.

The operating system on a parallel machine provides the same services as on a

sequential machine (i. e memory management, device I/O), as well as managing
interprocess communication and synchronisation. The operating system may also be

responsible for the allocation of processes onto nodes.

1.6.1 The basic principles of software engineering for parallel
machines.

There are three major steps to producing a parallel program7: -

1) Decomposition

2) Mapping

3) Tuning.

Figure 1.12 overleaf illustrates these processes8. Decomposition is the partition of the

application into a set of parallel processes and data. Mapping is the distribution of the

processes onto the nodes. Tuning is the alteration of the working application to balance

the load and to optimise performance.

17

Decomposition

Application Problem

os 0 000 (DO
Decomposed Processes

E
Mapping

B

(D6s
000

2O

A Set of Processes

A B

4 3 8

ý 6

OHO CD
Processes on Processors

A B
ý 3

2 4

OHO C D
Mapped Processes Tuned Processes
on Processors on Processors

1,2,3... 8 (circles) are processes
A, B, C and D (squares) are processors

FIGURE 1.12. The main stages in producing a parallel program.

1.6.1.1 Decomposition

Decomposition is the first and most important step to producing a parallel program. It

guides the whole programming process. The decomposition of an application must
break up the program into a set of well defined processes that can be linked together

logically to provide a finite solution to a computation.

18

CD

In order to choose the best decomposition method for an application an understanding

of the application problem, the data domain, the algorithms used and the flow of

control in the application are required.

There are three general decomposition methods: -

" Perfectly parallel decomposition

" Domain Decomposition

" Control Decomposition

1.6.1.2 Perfectly Parallel Decomposition

Perfectly parallel applications can be divided up into a set of processes that require

little or no communication with one another. Application of this type are usually the

easiest to decompose.

An obvious way to implement perfect parallelism is to run equivalent sequential

programs on several nodes but on different data sets. If this type of algorithm was

executed on a single processor then each data set would have to be considered one at a

time whereas by using several nodes almost linear speed-up can be achieved with little

effort required by the programmer.

Examples of perfectly parallel applications can be found in most disciplines. An

example from physics is the use of the Monte Carlo technique to determine atomic

structure. Physicists analyse thousands of random electron distributions around an

atomic nucleus to define a probability distribution that points to the probable atomic

structure. Each random electron distribution can be calculated independently in parallel

making this a perfectly parallel application.

1.6.1.3 Domain Decomposition

Problems subject to domain composition are usually characterised by large, discrete

static data structures. It is the fundamental data structure that controls how the program

is parallelised. For example calculations involving matrices could be parallelised by

dividing the matrix into columns and separate nodes could execute different sets of

instructions on different columns as required in a Gauss Elimination for example.

19

1.6.1.4 Control Decomposition

Control decomposition is for applications where no static or fixed domain is identified

but instead it is the flow of control or operations that is used as the guideline for

parallelism. As the development progresses, the data structures are also distributed but

the focus of the parallelisation still remains the flow of control.

Functional decomposition is a method of control decomposition. Here, the problem is

regarded as a set of operations (in terms of its functions) and the processes for the

nodes are based on those operations. Figure 1.13 illustrates a functional decomposition

model of an algorithm.

S
"
"

FIGURE 1.13. Functional Decomposition Model

The flow of control is indicated by the lines between the boxes. For small problems the

functions are usually required to be executed sequentially therefore a parallel

application is not produced easily. However, large problems usually have a large

degree of overlap between functions so it is possible to extract some sort of

parallelism.

The most common type of functional parallelism is where the data is pipelined from

one module to another creating what is called a large-grain pipeline. An example of

this method can be found in image recognition. The traditional approach to image

recognition includes the following steps:

20

1) Preprocessing to reduce noise.

2) Edge and region detection.

3) Object Recognition.

4) Object grouping.

5) Screen interpretation.

By dedicating a node (or more likely a group of nodes) to each step, the stream of input

frames could be pipelined through the above five steps. The number of nodes assigned

to each step would be determined by analysis and experimentation.

Another method of control decomposition is the manager/worker approach. This

involves dividing the application into tasks (without attempting to make the tasks of

equal size) and then using one of the nodes (the manager) to distribute the tasks to the

other nodes (the workers) as they become available. The manger's job is to assist or

create the pool of jobs to be done, and then to keep the workers busy by assigning jobs

to workers. The manger also usually returns the final results based on the full results of

the individual workers.

1.6.1.5 Granularity

Granularity is the level of parallelism which is a measure of the degree to which tasks

are partitioned into subtasks (i. e effectively the degree of decomposition). Parallel

systems can be fine-grained, medium grained or coarse grained. The "grain" of a

computation can be measured by the amount of computation between tasks. An

example of fine-grained parallelism would be the execution of a DO loop in parallel

whereas course-grained parallelism is where large sections of code are executed in

parallel.

The granularity of a system relies on the number of processors to be used and the

nature of the problem decomposition. Often there can be abundant parallelism at fine

granularity which is not exploited as working with fine granularity increases the

amount of data communication between processes. It also increases the software

complexity.

21

1.6.1.6 Mapping

Decomposition is followed by the distribution of the processes onto the nodes which is

known as mapping. Ideally the processes should be allocated to the nodes in a manner

which keeps all the nodes busy during the entire time the computation is running.

Processes can be allocated dynamically during program execution or statically before

the execution of the program. The less equal the loads on the nodes the more the

computing resources of the system are wasted. Well balanced mapping relies on the

modularity acquired from the problem decomposition.

1.6.1.7 Thning

Once an application has been mapped to the nodes of a system and it is running

properly, the next step is to tune it to enhance the performance. Tuning usually involves

attempting to the reduce the communication to computation ratio as this is one the

main overheads in parallel computing. This could involve altering the mapping of the

processes onto the nodes or altering the decomposition of the application.

1.6.2 Operating Systems

In addition to providing the services of a normal OS (operating system) on a sequential

machine, the OS on a parallel machine must provide such services as program

scheduling and interprocess communication and synchronisation. Some of the

operating systems developed for parallel systems are simply extensions of

uniprocessor OSs such as UNIX whereas some OSs have been developed especially

for multiprocessors such as Helios developed for transputers.

There are four basic designs that have been used for multiprocessor operating

systems': -

master/slave

" separate executive for each processor

" symmetric treatment of each processor

" distributed operating systems

In the master/slave approach the OS is permanently assigned to one particular

processor and always operates in that processor. If a slave processor requires service,

that service can only be provided by the executive. The slave must interrupt the

22

executive and request service. It must then wait until the program currently being

executed is interrupted and the executive is dispatched to the slave processor.

The main advantage of this type of system is that interprocessor communication and

sychronisation can be very simple and well defined. A major disadvantage however is

that the system is subject to catastrophic failure in the case of a failure in the master

processor or at least severe degradation in the case of a failure in a slave processor.

A separate executive system, is where every processor has a copy of the OS. In this

configuration each processor can service its own needs. Therefore, no service requests

or service from a single executive are required. As each processor has its own copy of

the OS, the system is much less sensitive to catastrophic failure. A failure of one or

more processors will cause a proportional loss of system capability, but will not bring

down the entire multiprocessor system.

A symmetric system maybe thought of as a master/slave type system where the master

floats form one processor to another. This is the most difficult method of operation both

from a design and from an operating viewpoint. It does however have the advantage

that it provides the most efficient use of available system resources (e. g. I/O devices

and any central memory).

In a distributed OS the various OS utilities and functions are distributed among the

various processors. Each processor is dedicated to a particular utility or function and

together they implement all OS functions.

Helios9'10 is an example of a distributed operating system which uses the client/server

model for operating systems. A client process wishing to access a system resource,

such as opening a file, sends a message to a server process requesting this action to be

performed on its behalf. The client and server processes may reside on different

processors whereas in a single CPU machine the client and server would of course be

on the same processor.

Each processor node contains a Helios kernel, which handles memory management

and message passing. Each node also contains two servers: the processor manager and

the loader. The processor manager is responsible for process creation within that

23

processor and other housekeeping jobs. The loader handles the loading and unloading

of both program modules and resident libraries which are loaded on demand.

Other servers run on one or several processing nodes. Some servers must run on nodes

with particular hardware attached. For example the file system needs the disc device

connected while a window manager must run on a processor with video memory

attached. Servers with no specific hardware requirements are distributed to share the

load evenly amongst the processors.

An I/O server is provided by Helios which runs on the host machine of a parallel

system. This causes the host machine to appear to the network of nodes just like

another node running Helios. The I/O server communicates with the host operating

system to provide such things as access to the file system and serial ports.

Helios provides a task, called the Helios Shell, that acts as a command line interface to

the operating system. The shell commands are similar to Unix shell commands. The

standard Unix-like file manipulation commands such as Is, mv, rm and so on are

supported by Helios.

The Task Force Manager (TFM) is a distributed server used by Helios. This consists of

a number identical servers distributed throughout a network of nodes, each controlling

a different area of the network. The TFM processes all client level task force (the

programs to be distributed over the network) execution requests. It analyses the current

state of the network and distributes the component tasks of the task force to the most

suitable processing elements. The criteria for the distribution include the resource

requirements of particular component tasks, connectivity of the task force, and the

current status of the network.

The prime means of communication under Helios is through message passing

implemented by the kernel. In order to provide transparency the semantics of message

passing require to be the same regardless of whether the destination is in the same

processor or in another. The user callable routines PutMsg and GetMsg are

responsible for the sending and receiving of messages whether they are on the same

processor or not.

24

Helios was specifically designed to run on a network of transputers (a single chip

processor designed for multiprocessing). This makes programs written using the Helios

environment less portable to other architectures. However, the Unix like command line

interface makes the OS easier to use for Unix users.

1.6.3 Parallel Development Tools

As parallel computing has become more popular and accessible the evolution of

software tools for parallel computing has accelerated. Debuggers, compilers, and

languages are available for parallel systems.

1.6.3.1 Parallel Languages

Parallel versions of sequential languages such as Fortran and C have been developed.

These can be helpful when converting existing sequential code onto a parallel system,

as usually large sections of the code will remain unchanged and it is only the parallel

constructs that require to be added.

Special purpose parallel languages such as Occam, which was developed for the

transputer, also exist. These can be combined with parallel Fortran and C to produce

mixed language programming which is also useful when porting an application from a

sequential platform to a parallel system.

1.6.3.2 Compilers

Automatic parallelisation compilers attempt to identify the elements in existing

sequential code that are candidates for parallel computation, and produce compiled

code for the specific multiprocessor machine. This approach however, usually gives

inefficient code which produces disappointing speed-ups in programs. These compilers

can be useful though to give the software engineer an idea of the parts of the program

that can be executed in parallel.

1.6.3.3 Parallel Programming Environments

Parallel programming environments consist of a set of tools for parallel program

development. The tools may include a subroutine library supporting parallel

programming, debuggers, and performance analysis tools. The subroutine libraries

25

provide some of the same services as operating systems do for parallel machines. The

difference however is that with an operating system its services can be accessed from

the command line whereas the subroutine libraries are only accessed from calls within

a program.

An example of such a programming environment is Express developed by the Parasoft

Corporation". This supports two basic models of parallel programming: the host/node

model and the cubix model. In the host/node model the application program is divided

up into two parts, one for the host machine and one for the parallel machine (See

Figure 1.14). In the Cubix model the entire application is executed on the parallel

machine (See Figure 1.15).

HOST
PROGRA

Host Computer

FIGURE 1.14.1lost/Node programming model

HOST Data J
Do- PROGRA

Results NODE
PROGI

Parallel Computer

Entire

IIA lica 'on

110

Host Computer

FIGURE 1.15. Cubix programming model

Parallel Computer

26

Cubix is the name of the I/O server which loads a program onto the parallel machine

and starts it running. It also performs the system services requested by the nodes.

However it only provides basic operating system facilities to the node programs. If the

program needs to have direct, low level access to a peripheral device then the host/

node model is required.

In the host/node model the computationally intensive aspects of an application are

extracted and executed on the parallel machine. The interface and control portions of

the code remain on the host machine. All communication between host and nodes and

among the nodes is done with Express system calls. The node programs are loaded

onto nodes by function calls from the host machine.

Express provides a library of subroutines which supports low level communication

primitives for sending messages between processors, peripherals and other system

components. Utilities are also included which provide such facilities as broadcasting

code/data onto the nodes and data redistribution. Figure 1.16 shows some of the

routines available12.

KXINIT Start up Express and initialise XPRESS common block

KXLOAD Load program onto all nodes

KXOPEN Allocate a group of processors

KXSTAR Start execution of a node program

KXREAD Read a message

KXWRIT Write a message

KXTEST Test for an incoming message - non-blocking

KXBROD Interprocessor broadcast

KXHAND Install asynchronous message handler

KXRECV Read a message - non-blocking

KXSEND Send a message - non-blocking

FIGURE 1.16. A sample of the Express routines

The Express environment also provides a parallel graphics library, a debugger and a

system for analysing such matters as subroutine usage, communication overheads, load

balancing, interprocessor timing differences etc. Express is available in both Fortran

and C for many hardware platforms (INTEL iPSC2, iPSC/i860, CRAY X-MP etc.).

27

Another programming environment is PVM (Parallel Virtual Machine) 13. This is a an
integrated set of software tools and libraries, designed to link separate host machines to

form a "virtual machine" which gives an illusion of a single manageable computing

resource. The virtual machine can be composed of hosts of varying types, in physically

remote locations. The system is portable to a wide variety of architectures, including

workstations, multiprocessors, supercomputers and PCs.

The PVM computing model divides an application into several tasks. Each task is

responsible for a part of the application's workload. The tasks may be performing the

same operations on different data sets or performing completely different operations on

separate data sets. The user views the complete application as a set of communicating

tasks and it does not matter where the tasks are executed.

The application's computational tasks execute on a set of machines (the host-pool) that

are selected by the user for a given run of the PVM program. Both single-CPU

machines and hardware multiprocessors may be part of the host pool. The host pool

may be altered by adding and deleting machines during operation.

The PVM system is composed of two parts: a daemon and a utilities library. The

daemon (called pvmd3) is a program which resides on all the computers making up the

virtual machine. A user wishing to run a PVM application creates a virtual machine by

starting up PVM. The PVM application can be started from a command line prompt on

any of the computers in the system.

The PVM library contains user-callable routines for message passing, spawning

processes, coordinating tasks and modifying the virtual machine. Typically a user

writes one or more sequential programs in C, C++, or Fortran 77 that contain embedded

calls to the PVM library. Each program corresponds to a task making up the

application.

These programs are compiled for each architecture in the host pool, and the resulting

object files are placed at a location accessible from machines in the host pool. To

execute an application, a user typically starts one copy of one task by hand from a

machine within the host pool. This process subsequently starts other PVM tasks,

eventually resulting in a collection of active tasks that then compute locally and

28

exchange messages to solve the problem. Figure 1.17 and Figure 1.18 show two

communicating PVM tasks.
main()
{

int cc, tid, msgtag;
char buf[100];

}

printf("i'm t%x\n", pvm_mytid());

cc = pvm spawn("hello_other", (char**)O, 0, "", 1, &tid);

if (cc == 1) {
msgtag = 1;

pvm_recv(tid, msgtag);
pvm_upkstr(buf);
printf("from t%x: %s\n", tid, buf);

else

printf("can't start hello_other\n");

pvm exit();

FIGURE 1.17. PVM program hellos

#include "pvm3. h"

main()
{

int ptid, msgtag;
char buf(100];

}

ptid = pvm-parent () ;

strcpy(buf, "hello, world from ");

gethostname(buf + strlen(buf), 64);

msgtag = 1;

pvm_initsend(PvmDataDefault);
pvm-pkstr(buf);
pvm_send(ptid, msgtag);

pvm_exit(;

FIGURE 1.18. PVM program hello other. c

This program hello. c is intended to be invoked manually. After printing its task id

(supplied by the daemon pvmd3 and received from the function pvm_mytid ()), it

initiates a copy of the program hello-other (Figure 1.18) using the pvm_spawn ()

function. A successful spawn causes the program to execute a blocking receive using

pvm recv () . After receiving the message sent by hello. other, the program prints the

message as well as the task id of hello_other. The buffer is extracted from the message

29

using pvm_upkstr. The final pvm exit O call call dissociates the program from the PVM

system

The program hello_otherc is the "slave" or spawned program. Its first PVM action is to

obtain the task id of the "master" using the pvrparent () call. The program then

obtains its hostname and transmits the complete string to the host: pvm_initsend
initialises the send buffer, pvm_pkstr (buf) places a string into the send buffer and

pvm send transmits the contents of the send buffer to the task specified by ptid. The

message is tagged with the number 1 by msgtag.

PVM is public domain software and is available via the internet. PVM libraries are

available for C, C++, and Fortran. It has also been used with other languages, such as

Lisp. The most common PVM platform is a Unix machine, however it is relatively

simple to port it to other platforms such as Intel iPSC/860, iPSC/2 etc.

In general though, for software engineers porting an application onto a parallel system
is still much more cumbersome than doing so onto an established system. This is partly
due to the lack of standardisation in architecture, operating systems, languages etc. It is

also inherent in our teaching that we think of code in a sequential manner and it is not

natural to think of code in a parallel manner. These problems will only be overcome

with the general acceptance of parallel computers.

1.7 Key Developments in Parallel Computing.

1.7.1 The earliest parallel machines
The concept of parallelism in computing began as early as 1953 with the advent of bit-

parallel arithmetic rather then bit-serial as had been the case. The IBM 704 was the first

commercial machine with floating-point hardware and was capable of 5kFLOPS

(FLoating point Operations Per Second)14.

Functional parallelism increased throughout the 50's and early 60's with the release of

such computers as the IBM STRETCH which included two parallel memory banks and

instruction execution pipelining. One of the best known pipelined computers was the

CRAY I developed by Seymour Cray. It was a vector computer operating on 64-bit

floating point numbers with a listed peak performance of 160 MFLOPS.

30

1.7.2 The first SIMD machines.

As the limits were reached in what could be achieved in parallel on a sequential

machine, the idea of multiprocessing surfaced. This began with array processing where

several processing elements were under the control of a single control unit. This was

the approach used in the ICL DAP (Distributed Array processor) which consisted of a
64x64 array of bit-serial processors, each with 4 Kbits of memory.

One of the earliest SIMD machines was the ILLIAC IV designed in 19682. This

contained 64 processing elements arranged as an 8-by-8 array with each PE connected

to its four nearest neighbours. Each PE was capable of 4MFLOPS giving a theoretical

maximum performance for the whole machine of 1000MFLOPS (of course this was

never obtained). The machine contained many pioneering design concepts which are

still relevant today. One of the lessons learned from the ILLIAC IV was that it assumed

too much regularity in communication (i. e an 8x8 array) than was present in most

problems.

A SIMD machine which allowed greater flexibility in communication than the ILLIAC

IV was the CM-1 Connection Machine manufactured by Thinking Machines

Corporation in 1986. This consisted of 65,536 1-bit processors connected in a 256x256

grid; in addition, clusters of 16 processors were also interconnected in a 12-

dimensional hypercube network for routing messages, and the 16 processors within a

cluster were linked in a daisy chain fashion.

1.7.3 The first MIMD machines

The idea of multiprocessor systems where each processor would have it's own
instruction stream began to emerge in the early 1970s. One of the major designs was

the C. mmp machine developed at Carnegie Mellon University. This used 16 DEC

PDP-1 Is (a minicomputer) connected through a circuit-switched crossbar network to

16 memory modules, forming a shared-memory MIMD design,

A prototype distributed memory MIMD machines was the Cosmic Cube developed at

the California Institute of Technology in the early 80s. This contained 64 processing

nodes each with a direct point-to-point connection to six other nodes forming a six
dimensional hypercube.

Ai

The first commercial hypercube was the iPSC/1 (Intel Personal Supercomputer) which

comprised between 32 and 128 nodes. Each node consisted of an Intel 80286/7

processor/coprocessor, 512 KBytes of memory, and a lOMbit/second communication
link. The peak performance of a 32-node model is about 2MFLOPS. Intel went on to
develop a series of iPSC computers based on the 8086 and 1860 series of

microprocessors.

Another commercial hypercube is the nCube/10 produced in 1985. This consists of up

to 1024 32-bit single-chip custom processors. Each node consists of this chip plus six
256-Kbit memory chips.

A key development in the 80s was the arrival of the INMOS transputer. The transputer

is a microprocessor with special on-chip serial links for communicating with other

transputers. This allows many transputers to be connected together to form a MIMD

machine. Transputers are relatively inexpensive which allows even individuals access

to parallel computing.

1.7.4 GFLOP parallel machines

The late 80s and early 90s saw the emergence of parallel systems capable of Giga

FLOP peak performance. Intel produced the Touchstone Delta (a prototype for the

Paragon) in 1991. This contained 528 i860 processors arranged in a mesh pattern and

was capable of l0GFlops.

Parallel systems based on the fast RISC processors used in high performance

workstations began to emerge in the 90s. Thinking Machines produced the CM-5 in

1992 which contained up to 1024 Sparc microprocessors connected in what is known

as a fat tree topology. This machine was capable of a peak performance of 40GFLOPS.

Meiko also use Sparc microprocessors in their machines.

More recently multiprocessor machines have emerged on based on the DEC Alpha

processor. Cray have produced the T3D which contains up to 256 DEC Alpha chips

arranged as a 3-D torus (a 3-D mesh with wraparound wires in the rows and

columns)is. The 32 processor version has peak performance of 4GFLOPS and costs

-$2 million.

32

Convex produce the Exempler SPPI000/XA system which is a massively parallel

processor using Hewlett - Packard's PA-RISC 7100 processors. The SPP1000/XA can
have up to 128 processors giving a peak performance of 25GFLOPS. The system also

claims to provide scalability to TFLOPS (T=tera=1012)of performance and TBytes of

storage.

1.8 Conclusions
The key points in hardware and software development on parallel machines have been

described. This has shown that a wide variety of architectures exist for parallel systems

and the most suitable architecture is dependent on the algorithm being implemented. It

has also been shown that the development of parallel software is a complicated matter

which lacks standardisation.

The technologies of the future such as virtual reality and video conferencing will

require a large amount of computational power to achieve the predicted performance

and this will surely involve parallel computing. The computations involved in the so

called Grand Challenges of science are also still not fast enough even on the most

powerful supercomputers. If parallel computing is to provide the computational power

required in the future more research has to be done to provide efficient parallel

systems.

Most systems are basically extensions of the Von Neumann model of computation used

on sequential processors. It would be helpful to develop a model (or models) of

computation specific to parallel systems. This would hopefully lead to more

standardisation in parallel systems.

More research is also required into interconnection networks. The study of the

suitability of networks to particular problems is necessary to produce acceptable gains

on parallel systems. This can be achieved by modelling parallel systems in order to

study their features and predict their performance.

In the area of parallel software, techniques and tools have to be developed for mapping

algorithms onto nodes. At the moment, mapping is usually left to the programmer and

usually a heuristic approach is used. The development of new parallel languages

designed specifically to handle the problems associated with parallel processing (i. e

31

communication protocols, parallel 1/0 etc.) would help to produce more efficient

parallel code.

Methods of interprocessor communication both in hardware and software require

standards, to enable applications to be portable. Research into producing message

passing standards is underway with projects such as the MPI (message passing

interface) forum16. The aim of the forum is to discuss and define a set of library

interface standards for message passing.

This thesis is concerned with the design and implementation of both novel hardware

and software for use on distributed multiprocessor machines. The hardware involves

the design of two forms of dynamic interconnection network. The first method allows

the topology of the network to be altered prior to computation and the second method

permits the network topology to adapt as required during the computation. This work is

covered in Part 1 of the thesis.

The software development is concerned with the parallelisation of a sequential

FORTRAN molecular mechanics program to run on novel hardware, where each node

processor has a dedicated high speed link to the host processor. This allows the host

processor to broadcast code/data to all the nodes simultaneously. The parallelisation of

the sequential code, involved the implementation of the COMFORT message passing

subroutine library. This work is described in Part 2 of the thesis.

References

[1] Moldovan, Dan I. "Parallel Processing: From Applications to Systems. " Morgan
Kaufmann Publishers, San Mateo, California, 1993 (ISBN 1 55860 254 2)

[2] Almasi, George S. and Gottlieb, Allan. "Highly Parallel Computing. " The
Benjamin/Cummings Publishing Company, Redwood City, California, 1989
(ISBN 0 8053 0177 1)

[3] Flynn, M. J. Some Computer Organizations and Their Effectiveness. IEEE Trans.
Computers, C-21, No. 9, Sept. 1972, pp. 948-960

[4] Feng, T. Y. Some Characteristics of Associative/Parallel Processing. Proc. 1972
Sagamore Computing Conf., Aug. 1972, pp 5-16

[5] Iländler, W. The Impact of Classification Schemes on Computer Architecture.
Proc. Int'l Conf. on Parallel Processing, Aug. 1977, pp. 277-300

14

[6] Skillicorn, David B. A Taxonomy for Computer Architectures. Computer, Nov.
1988, pp. 46-57

[7] Parallel Programming Primer. Intel® Corporation, 1990

[8] Hazdra, T. and Singh B. Programming Transputers Major Issues. A Workshop
Presentation to the Transputer Research and Applications Conference. Oct. 1994

[9] King, T. "Helios -A Distributed Operating System". Technical Report No. 2.
Perhelion Software Ltd. Dec. 1988

[10] "Tlte Helios Operating System". Perhelion Software Ltd. Prentice Hall
International (UK) Ltd., 1989 (ISBN 0 13 386004 3)

[11] Express User's Guide. Parasoft Corporation, 1990

[12] Express Reference Manual. Parasoft Corporation, 1990

[13] World Wide Web. http. //www. netlib. org/pvnt3/book/itode]7. lttntl

[14] Sharp, John A. "An Introduction to Distributed and Parallel Processing".
Blackwell Scientific Publications, Oxford, 1987 (ISBN 0 632 01462 8)

[15] BYTE Magazine, Feb. 1995, pp. 65-72

[16] Walker, D., Dongarra, J. (Convener & Meeting Chair). MPI: A Message-Passing
Interface Standard. March 1993, University of Tennesse, Knoxville, Tenessee

is

Part 1

M

Chapter 2

Concepts in Digital Electronics

Part I of this thesis covers the design of various hardware systems. This chapter

describes some of techniques used in the designst'2. First of all the basics of digital

electronics such as logic levels and gates are described and then a detailed description

of the operation of programmable logic devices and programmable read only memory

is presented.

2.1 Basic Digital Electronics

2.1.1 Logic Levels

Whereas analogue electronics involves quantities with continuous values, digital

electronics involves quantities with discrete values. In digital electronics there are two

different voltage levels: a logic high and a logic low. These two values can be

represented by the binary digits 1 and 0 (a binary digit is a bit). In positive logic system

(which is used in most cases) a0 is logic low and aI is logic high and in a negative

logic system the opposite is true. A group of several bits represents a piece of binary

information such as a number or a letter (8 bits = byte, 16 bits = word).

In a digital circuit a logic high is a voltage between a specified minimum value and

specified maximum. Likewise, a logic low can be any voltage between a specified

minimum value and a specified maximum value (See Figure 2.1). For the purposes of

this thesis a logic high will be taken to be +5V and a logic low will be taken to be 0V.

VH(max

(-5V) HIGH
VH(min)

Uncertain
VL(max)

LOW
VL(min)

(-0V)

FIGURE 2.1. Logic level ranges for a digital circuit

17

Most binary information handled by digital systems appears as a pulse waveform (See

Figure 2.2). All pulse waveforms are derived from and related to a basic timing

waveform called the clock (See Figure 2.3). The clock is a periodic waveform in which

each pulse interval (period) is one bit time. Figure 2.3 shows that each change in level

of waveform A corresponds to a leading edge on the clock waveform. In some cases

changes can occur on the trailing edges of the clock.

(+5V)

Of 1 (01110111011101!
. -- -" (0V)

ý4--TI No 4 T2_ 101 -4 T3001 T4 -ºý
Period= T, =T2=T3=T4=.... =T� Frequency= 1/T

(a) Periodic (square wave)

.
010

L0

(OV)

(b) Nonperiodic

FIGURE 2.2. Examples of Pulse Waveforms

Bit Time

LJ-L ----- (+5V)
Clock

......... (+5V)
Waveform A

....... (OV)

10010

FIGURE 2.3. A timing diagram

2.1.2 Logic Gates

Complex digital systems such as microcomputers require to combine digital inputs to

produce digital outputs. For example a FPU requires circuits that can add, divide and

multiply numbers together. The basic elements (logic gates), and their truth tables, used

ýR

in combinatorial logic are shown in Figure 2.4. These gates are constructed from

transistors. A small circle at an input or output on a gate indicates the signal is negated.

The gates only have the capacity to combine inputs to produce an output and cannot

memorise logic levels after the input conditions have been removed.

OR Gate AND Gate Inverter (the NOT function)

A JD_
BQB

ý0_ QA II

Inputs Outputs
ABQ
000
011
101
111

NAND Gate

B LLLýýýý

Inputs Outputs
ABQAQ
00001
01010
100

111

NOR Gate XOR Gate

BQ BQ

Inputs Outputs Inputs Outputs Inputs Outputs

ABAB AB Q
00100 100 0
01101 001 1
10110 010 1
11011 011 0

FIGURE 2.4. Basic logic gates used in digital design

Circuits which contain memory are known as sequential circuits. The fundamental

element of memory used in digital circuits is called the flip-flop (see Figure 2.5). This

is the basic type of flip-flop and it is constructed by combining two OR gates with

negative inputs.

A

B

FIGURE 2.5. Flip-flop (set-reset)

X

Y

19

The two stable states of the flip-flop with both inputs (A and B) logic high are shown in

Figure 2.6 (it is not possible to have both outputs in the same logic state). If the input A

is pulled low momentarily in both stable states the flip-flop is guaranteed to go into the

state X= HIGH, Y=LOW. When the input A is returned to logic high the flip-flop

remains in this state so the outputs are dependent on the previous state of the inputs and

therefore the flip-flop has memory.

, it

T
Ii

FIGURE 2.6. Stable states of flip-flop

. Ii, `1
C

`L'
t

15

`L'

`H'

Flip-flops that are made from two gates are generally known as SR (set-reset), or jam-

loaded, flip-flops. They are forced into one state or the other by generating the correct

input signal. The most widely used form of flip-flop however, looks slightly different.

Instead of a pair of jam inputs, it has one or two data inputs and a single clock input.

The outputs either change state or stay the same, depending on the levels at the data

inputs when the clock pulse arrives.

The simplest form of clocked flip-flop is illustrated in Figure 2.7. It is basically the

same as an SR flip-flop, with a pair of gates (controlled by the clock) to enable the SET

and RESET inputs.

Q

Q*

_r-LCLK

FIGURE 2.7. Clocked flip-flop

40

The truth table for this type of flip-flop is illustrated below: -

SR Qn+ i
00 Qn
010
101
11 indeterminate

where Qn+t is the Q output after the clock pulse and Q, is the output before the clock

pulse. The basic difference between this and the previous type of flip-flop is that R and

S can now be thought of as data inputs. What is present on R and S when a clock pulse

arrives determines the logic level on Q.

A problem with this type of flip-flop however, is that the output can change in response

to the inputs during the time the clock is logic high. This problem is solved with the use

of the master-slave flip-flop and the edge-triggered (lip-(lop (Sec Figure 2.8).

D

J

C

CLK

D

Q

Q*

(b) Positive edge-triggered (lip-(lops

FIGURE 2.8. Master-slave and positive edge triggered flip-Hops

*

41

Master (Slave

(a) Master-Slave flip-flop

These are the most popular type of flip-flop. The data present on the input lines just

before a clock transition, or "edge" determines the output state after the clock has

changed. They are both known as D-type flip-flops. Data present on the D input is

transferred to the Q output after a clock pulse.

The master-slave flip-flop is basically two of the clocked SR flip-(lops joined together.

While the clock is logic high, gates I and 2 are enabled, forcing the master flip-flop

(gates 3 and 4) into the same state as the D-input (i. e. M=D, M'=D '). Gates 5 and 6 are

disabled, therefore the slave flip-flop (gates 7 and 8) retains its previous state.

When the clock returns to logic low, the inputs to the master are disconnected from the

D input, while the inputs of the slave are simultaneously coupled to the outputs of the

master. The master thus transfers its state to the slave and no further changes can occur

at the output as the master is now stuck. At the next rising edge of the clock, the slave

will be decoupled from the master and will retain its state, while the master will once

again follow the input.

The edge-triggered circuit behaves the same externally as the master-slave circuit

although the inner workings are different. In this case when the clock is low gates 2 and

3 are disabled and therefore the SR flip-flop (gates 5 and 6) retains its previous state.

On the next rising edge of the clock gates 2 and 3 are enabled forcing the SR flip-flop

into the same state as the D input (i. e Q=D, Q"=D").

These type of flip-flops are known as D-type flip-flops. They are available with either

positive or negative edge triggering (i. e. change state either on the rising or falling edge

of clock). In addition, most flip-flops also have SET and CLEAR jam-type inputs.

They may be set and cleared on HIGH or on LOW, depending on the type of flip-flop.

Figure 2.9 on page 43 shows a few popular flip-flops in IC form (explained later). The

wedge means edge triggered and the small circle means "negation" or complement.

The '74 is a dual type D positive-edge-triggered flip-flop with active low jam-type SET

and CLEAR inputs. The 4013 is a CMOS dual type D positive-edge-triggered flip-flop

with active HIGH jam-type SET and CLEAR inputs.

42

S
D, Q

74

Q*

R

S

0Q
4013

Q*

R

FIGURE 2.9. D-type and JK flip-flops

I

S

1Q
112

Q*
KR

The JK flip-flop works on principles similar to those of the D-type flip-flop, but it has

two data inputs. Figure 2.10 shows the truth table for a JK type flip-flop. If J and K are

complements, Q will go to the value of the J input at the next clock edge. If J and K are
both LOW, the output will not change. If J and K are both THIGH, the output will
"toggle" (reverse its state after each clock pulse).

JK Yn+
00 Qn
010
101
11 Qn"

FIGURE 7.10. Truth table for JK type flip-flop

Logic gates and flip-flops are combined to construct more complex logic circuits, such

as counters, registers, decoders, multiplexers and memories. These circuits are

available in small packages called integrated circuits (ICs) made from silicon. The two

most widely used type of IC are TTL (transistor-transistor logic) and CMOS

(complementary metal oxide semiconductor). The difference between the two is in the

types of transistor used in their construction; TTL uses bipolar transistors whereas

CMOS uses field effect transistors.

Although an AND gate, for instance, performs identical operations in both TTL and

CMOS versions, the logic levels and other characteristics (speed, power, input current,

etc.) are quite different, Within any one logic family, outputs are designed to drive

other inputs easily so the designer does not often have to worry about thresholds, input

current etc. However when interfacing between logic families care has to be taken to

ensure the correct operation of the circuit.

43

2.1.2.1 Buses and tri-state logic

In a computer system several functional units have to exchange data. The CPU,

memory, and various peripherals all need to be able to send and receive 16-bit or 8-bit

words. It would be awkward to have separate 16 or 8-wire cables connecting each

device to all others. The solution is the so-called data bus, a single set of 16 or 8-wire

cables connecting each device to all others. Only one device at a time may assert data

but all may receive data at the same time (See Figure 2.11).
Data Bus

FIGURE 2.11. Basic bus structure in a microcomputer

As well as a data bus there are also address and control buses. Each device external to

the CPU has an address or range of addresses corresponding to it. It can only send or

receive data when it is addressed correctly. The control bus is for control signals such

as read or write which specify whether the CPU is sending or receiving data.

There needs to be some way of isolating outputs from a shared data or address bus.

This is achieved by what is called tri-state logic levels. The name is misleading; it is

not digital logic with three voltage logic levels. It is just ordinary logic, with a third

output state: open circuit (See Figure 2.12). A separate enable input determines

whether the output behaves like an ordinary active pull-up output or goes into the

"third" state (also known as the high impedance state), regardless of the logic levels

present at the other inputs.

Low
---Output High

Open
Disable

FIGURE 2.12. Conceptual diagram of a tri-state NAND gate

41

2.2 Roni and Programmable Logic Devices

Most ICs have a specific purpose (i. e. adder, comparator etc.) but in some the internal

connections can be programmed for the required purpose. This is the case in PROMS

(programmable read-only memory) and PLDs (programmable logic devices).

2.2.1 ROM

A ROM (read-only memory) holds a byte for each distinct address applied to its inputs.

For example a1Kx8 ROM gives eight output bits for each of 1024 input states,

specified by a 10-bit input address (See Figure 2.13). A ROM can be programmed to

produce a particular output from a particular input address. ROMs are often used to

store finished programs and data tables.

DODID2D3D4D5DGD7

A

A5ý lkx8
A4 ROM

Al

OE

L'

Control inputs
CE*"chip enable"
OE* enables tri-state outputs

FIGURE 2.13. A 1K x 8K ROM

Most ROMs use the presence or absence of a transistor connection at a ROW/

COLUMN junction to represent a logic I or logic 0 (See Figure 2.14 on page 46). A

connection from a ROW line to the base of a transistor represents a logic I at that

location. When the ROW line is pulled HIGH (i. e. that row is addressed), all transistors

with a base connection to that ROW line turn on and connect the HIGH to the

41

associated COLUMN lines. At ROW/COLUMN junctions where there are no base

connections, the COLUMN lines remain LOW when the ROW is addressed.
COLUMN COLUMN

ROW

ring a1

FIGURE 2.14. Bipolar ROM cells

ROW

ring a0

ROMs are also available in CMOS technology using MOSFETs (metal oxide

semiconductor field-effect transistors) rather than bipolar transistors as in TTL. The

same principles apply however: in this case it is the presence or absence of a gate

connection at a junction that permanently stores a logic 1 or 0.

Figure 2.15 shows a very simple ROM array. To read a byte of data from this ROM,

first of all an address in applied to the address lines. The address decoder decodes the

address and then sets the corresponding row to logic high. This high is connected to the

column lines through the transistors at each junction (cell) where a1 is stored. At the

cells where a logic 0 is stored, the column line stays logic low due to the terminating

resistor. Since the column lines form the data output, the eight data bits stored in the

selected ROW appear on the output lines.

Address
Input

FIGURE 2.15. A 16x8-bit ROM array

c
0

ROW0

ROW 1

ROW 2

lý

ROW 14

ROW 15

67

46

012

This is an example of a very simple 16x$ ROM. In practice ROMs are usually more

complicated but the same principles of rows and columns usually apply.

Mask-programmable ROMs have their bit pattern built in at the time of manufacture

whereas programmable ROMs (PROMS) are programmable by the user. PROMs

usually employ some type of fusing process to store bits, whereby a memory link is

fused open or left intact to represent a0 or 1. To program the connections an elevated

voltage (usually 12.5V or 21V) is applied to the device while asserting the desired

bytes at the appropriate addresses.

ROMs are nonvolatile, meaning that the stored information is retained even when

power is removed. The information can however be erased in PROMs. Erasable

programmable ROMs (EPROMs) can be erased by exposing them to intense ultraviolet

light. Electrically erasable programmable ROMs (EEPROMs) behave like EPROMs,

but can be programmed and erased electrically, while in the circuit, with the standard

supply voltage (+5V). Internal circuitry generates the higher programming voltage

required.

Both EPROMs and EEPROMs use an MOSFET array of transistors with an isolated-

gate structure. The isolated gate has no electrical connections and can store an

electrical charge for indefinite periods of time. The data bits in this type of array are

represented by the presence or absence of a stored gate charge.

2.2.2 Programmable Logic

Programmable logic devices (PLDs) are similar to PROMs as they are fuse-

programmable. However, they are different from PROMs in their applications. A PLD

is used to implement combinatorial logic (some also have memory (registers)) and can

replace individual gate or flip-flop ICs in many situations.

The most popular types of PLD are PALs (programmable array logic) and PLAs

(programmable logic arrays). They both are single ICs which contain many gates

whose interconnections can be programmed to form the desired logic functions.

Obviously it is not possible to program any required logic function on a PLD, the

functions available are limited by the gates inside the PLD.

Al

Figures 2.16 and 2.17 show the basic designs of combinatorial (no registers) PALs and

PLAs. To keep the figure simple, the AND and OR gates, though drawn with a single

input line, are in fact multiple-input gates, with an input at every crossing (See

Figure 2.18 on page 49)

FIGURE 2.16. A PAL

ay

FIGURE 2.17. A PLA

49

rjvr, ldlulllavly I%1.11 allay

ITOg[awuIauIý ru......... j

= programmable
connection

= fixed
f connection

symbolic shorthand

FIGURE 2.18. Details of shorthand used to describe PLDs

Each (tri-state) output of a combinational PAL comes from an OR gate, each of whose

inputs is prewired to an AND gate with several inputs. PLAs are similar to PALs, but

they have the added flexibility that the AND gate outputs can be connected to the OR-

gate inputs in any combination (i. e the OR array is programmable), rather than being

fixed as in a PAL.

The PALs and PLAs described previously are combinational (i. e. only contain gates)

but they are also available with sequential logic (i. e. contain registers -a piece of

memory composed of flip-flops). In general the outputs of the OR array in a PAL or

PLA generate the inputs for clocked D-type registers (See Figure 2.19 on page 50)

with tri-state outputs.

PLDs provide a flexible and compact alternative to fixed-function ICs. Sometimes

designers are not quite certain how they want a circuit work, and PLDs allow the

designer to experiment with different programming without the rewiring that would be

49

actual logic

required with several ICs. Also PLDs can generally get the design job done more

quickly once the designer had learned how to use them.

0

01

on

FIGURE 2.19. A PLD with registered outputs

2.2.3 Programming PLDs and PROMs

In order to program a PLD or PROM a device called a programmer is required which
burns the fuses in the device and verifies the finished product. Most programmers

connect via the serial port to a computer (usually a PC), on which some form of the

programmer software runs.

The most basic kind of software simply lets you select the fuses to burn. The user
decides what logic is required at the gate level, then lists (or marks on a graphics
display) the fuses. Most programmers however let the user specify logic expressions

and the software does the rest, including minimisation, simulation, and programming.

2.2.4 CUPL programming language

One of the programming languages used to program PLDs is CUPL3. It is a high level

language which allows you to define arrays (for a set of signals, e. g. an address bus),

expressions, and intermediate values, then use them in later expressions. It also

produces a standard JEDEC download file which is compatible with any device

programmer that uses JEDEC files.

50

2.2.4.1 CUPL source code

An example of a CUPL source file which shows how simple NOT, AND, OR, and
XOR gates can be constructed using a PLD is shown in Figure 2.20 on page 52. The /

* and */ constructs mark the beginning and end of comments. To mark the end of a

statement a semi-colon is required.

The inputs to the PLD are a and b (pins 1 and 2 of the PLD) and the outputs of the PLD

are inva, invb, and, nand, or, nor, xor and xnor (pins 12-19). A description of the
logic operators used in CUPL is given in Table 2.1. From this it should be clear how

the outputs in Figure 2.20 are constructed.

TABLE 2.1. Logical Operators

Operator Example Description

!A NOT
& A&B AND
A#B OR
$ A$B XOR

A variable preceded by a! has different meanings in pin assignments and logic

expressions. In a pin assignment it identifies that an input or output is active low (i. e

when it is low it is logic true (i. e. active)). A pin assignment variable not preceded by !

identifies an active high input or output. In a logic expression when a variable is

preceded by a! this inverts the signal (i. e. it makes the signal logic false (inactive)

regardless of whether it is active high or low in the pin assignments).

Figure 2.21 on page 53 shows a more complicated example of CUPL source code
(waitgen. pld). In this scenario the PLD is acting as an interface between a CPU, ROM

and RAM (See Figure 2.22 on page 54). The PLD performs address decoding and

timing control functions. The PAL used is a 16R8 which has eight external inputs, eight

outputs (four of which are registered (using D-type registers)), a clock, and a tri-state

control line.

51

Name Gates;

Partno CA0001;

Revision 04;

Date 9/12/89;

Designer G. Woolhiser;

Company Logical Devices, Inc.;

Location None;

Assembly None;
Device G16V8;

This is a example to demonstrate how CUPL *1
compiles simple gates.

Target Devices: P16L8, P16LD8, P16P8, EP300, and 82S153 */

/* Inputs: define inputs to build simple gates from*/

Pin 1=a;

Pin 2=b;

* Outputs: define outputs as active HI levels
*
* Note: For PAL16L8 and PAL16LD8, DeMorgan's Theorem is applied to
* invert all outputs due to fixed inverting buffer in the device.
*1

Pin 12 = inva;

Pin 13 = invb;

Pin 14 = and;

Pin 15 = nand;

Pin 16 = or;
Pin 17 = nor;

Pin 18 = xor;
Pin 19 = xnor;

/* Logic: examples of simple gates expressed in CUPL*/

inva = ! a;
invb = ! b;

and = a& b;

nand = ! (a & b);

or = a# b;

nor = ! (a # b);

xor = a$ b;

xnor = ! (a $ b);

/* inverters */

/* and gate
/* nand gate
/* or gate

/* nor gate

/* exclusive or gate
/* exclusive nor gate

FIGURE 2.20. CUPL source code for simple gates

52

Name Waitgen;
Partno P9000183;
Date 03/14/85;
Revision 02;
Designer Osann;
Company ATI;
Assembly PC Memory;
Location U106;
Device F155;

/* This device generates chip select signals for one
/* 8Kx8 ROM and two 2Kx8 static RAMs. It also drives */
/* the system READY line to insert a wait-state of at
/* least one CPU clock for ROM accesses.

/** Allowable Target Device Types : PAL16R4,82S155 **/

/** Inputs **/

PIN 1 = cpu_clk ; /* CPU clock
PIN [2.. 6] = [a15.. 111 ; /* CPU Address Bus
PIN [7,8] = ! [memw, memr] ; /* Memory Data Strobes
PIN 9 = reset /* System Reset
PIN 11 = ! oe /* Output Enable

/** Outputs **/

PIN 19 = ! rom_cs ; /* ROM Chip Select
PIN 18 = ready /* CPU ready signal
PIN 15 = waitl /* Start Wait State
PIN 14 = wait2 ; /* End Wait State
PIN [13,12] = ! [ram_csl.. 0] ; /* RAM Chip Selects

/** Declarations and Intermediate Variable Definitions **/

Field memadr = [a15.. 11] ; /* Give The Address Bus
/* the Name "memadr"

memreq = memw # memr ; /* Create The Intermediate
/* Variable "memreq"

select_rom = memr & memadr: [0000.. 1FFFJ ; /* = rom_cs

/** Logic Equations **/

rom cs = select_rom
ram_csO = memreq & memadr: (2000.. 27FFj

ram_csl = memreq & memadr: (2800.. 2FFF)

waitl. d = select_rom /* = rom_cs & ! reset ; /* Synchronous Reset

wait2. d = select_rom & waitl ; /* waitl delayed

ready. oe = select_rom; /*turn buffer on*/
ready = wait2; /* End Wait */

FIGURE 2.21. CUPL source code for interface between memory and CPU

53

FIGURE 2.22. Microprocessor-based system

The ! oe pin on the PLD is pulled to ground permanently which means the tri-state

outputs of all four pins connected to registers are always enabled.

The functions of the inputs and outputs of the PLD are given in the comments
following each pin assignment. In order to define the address bus an intermediate

variable memadr is defined using the FIELD statement. This statement assigns a
single variable name to a group of bits. When the variable name is used in an
expression, the operation specified in the expression is applied to each bit in the group.

To check for specific values on the address bus the equality operation (See

Figure 2.23 on page 55) is used. This checks for a bit-wise equality between a set of

variables and a constant. If both quantities are equal then the result is set logic true

otherwise it is set logic false.

54

list of variables equality operator

1. [var, var, ... var]: constant marks f statement end
a number

2. bit_field_var: constant ;

variable defined using a bit-field statement

FIGURE 2.23. The equality operator

Since both RAMs require to be selected when read from and written to, an intermediate

variable memreq is declared which is logic true when either the memr or memw

signal is true. Whenever memreq is used in other equations, CUPL substitutes memw

memr at compile time. The RAM chip select signals therefore only become logic

true when the memreq signal is true and the addresses are within the specified ranges

for the RAMs.

Another intermediate variable select_rom is declared which is used as the chip select

for the ROM and is also used in the generation of wait states. Since the ROM is only

read from and not written to, the select_rom signal only becomes logic true when

memr is logic true and the address is in the specified range.

The wait and ready signals are required as the ROM chip is slow; at least one CPU

clock period is required to be added to the ROM access time (i. e. a wait state - holds

address valid and read or write signal logic true longer than normal). The RDY input to

the CPU is used to insert wait states. A timing diagram for the signals necessary to

create the wait state is shown in Figure 2.24.

When the ! memr signal becomes logic true (actually logic low as the signal is active

low) for an address corresponding to the ROM, the ! rom_cs signal is asserted (logic

low). This also turns on the ready signal which is the output of a tri-state buffer (i. e.

ready. oe = select_rom). The ready signal is logic low which indicates to the CPU to

insert a wait state.

55

(1) (2) (3)
CPU CLK

A15.. 11 CPU address valid

! MEMR

WAITI

WAIT2
I

! ROM_CS

READY iii_ I I/ iii=. .

FIGURE 2.24. "Wait state generator timing diagram

Since the wait signals are outputs of D-type flip-flops they only become set on a rising

clock edge. The waitl signal therefore only becomes logic true on the rising edge of

the CPU clock (1) (i. e. waitl. d = select_rom). After one CPU clock period has passed,

the wait2 signal is asserted and therefore at this point the wait state period of one clock

cycle has been completed. This causes the ready signal to be pulled logic high which

causes the CPU to continue its read cycle and remove the ! memr signal at the

appropriate time.

The ! memr returning to logic false causes the ! rom_cs to become logic false which

disables the tri-state buffer driving the ready signal. At the next rising edge of the CPU

clock (3) the waitl and wait2 signals are pulled logic false ready for the CPU to assert

another cycle.

This example illustrates the use of a PLD as an interface between a CPU and various

components. The use of PLDs for this purpose is implemented throughout this thesis.

PLDs are also in the design of state machines, however this will be described in

Chapter 4.

56

2.2.4.2 CUPL simulator

CUPL also has a simulator (CSIM) to test logic expressions. Test vectors are specified
for the inputs to the PLD and the expected output vectors from these test vectors are
written into a file. Test vectors can also be downloaded to a device programmer in
order that the actual PLD is tested.

The test specification source file (waitgen. si) for the previous example is shown in

Figure 2.25 on page 58. This file contains three major parts; header information and
title block, an ORDER statement, and a vectors statement.

This file has the same header information as the CUPL source code to ensure that the

proper files, including current revision level, are being compared against each other.

The ORDER statement lists the input and output variables that are included in test

vectors and also defines how they are displayed in the output file. The variables are
listed in the order they are to be displayed. They are separated by a comma and the %

symbol indicates the number of spaces between the variables.

Following the ORDER statement is the VECTORS statement that creates a function

table containing eleven test vectors. To make the vectors easier to understand the

$MSG command is used to create a heading for the function table. The variable names

are listed in vertical columns in the same order and with the same spacing as specified
in the ORDER statement.

The test vectors are entered underneath the appropriate variable names. These vectors

are created by assigning a value to each of the input variables and an expected value to

each of the output variables. Table 2.2. on page 59 shows the allowable values to use
for the test vectors.

The $REPEAT directive in the test vectors causes the eighth vector to be repeated

twice. The asterisks in the eighth vector for WAITI, WAIT2, and READY tell CSIM to

compute the output based on the inputs and place the results in the output file.

57

Name Waitgen;
Partno P9000183;
Date 03/14/85;
Revision 02;
Designer Osann;
Company ATI;
Assembly PC Memory;
Location U106;
Device F155;

/* This device generates chip select signals for one
/* 8Kx8 ROM and two 2Kx8 static RAMs. It also drives */
/* the system READY line to insert a wait-state of at
/* least one CPU clock for ROM accesses.

ORDER:

cpu_clk , %2, a15, %2, a14, %2,
a13, %2, a12, %2, all, %2,
! memw, %2, Imemr, %2, reset, %2 , loe,
%4, ! ram csl, %2, lram_cs0, %2, ! rom_cs, %2,
waits, %2, wait2, %2, ready;

VECTORS:
/* 12 3456-leave six bla nks to all ow for numbers i n SO file */

$msg " ! ! ";
$msg " c r r
$msg " p a a r
$msg " u !! r m m o w w r";
$msg "

_
mm e _ - m a a e";

$msg " caaaa a ee s I c c -
i i a";

$msg " 11111 1 mm e 0 s s c t t d";
$msg " k5432 1 wr t e 1 0 s 1 2 Y";
$msg
$msg " Power On Reset

0XXXX X 11 1 0 H U H * * Z
$msg " Reset Flip Flops ";

CXXXX X 11 0 0 H H H L L Z
$msg " Write RAMO ";

00010 0 01 0 0 H L H L L Z
$msg " Read RAMO 0;

00010 0 10 0 0 H L H L L Z
$msg " Write RAM1 ";

00010 1 01 0 0 L H H L L Z
$msg " Read RAM1

00010 1 10 0 0 L H H L L Z
$msg " Begin ROM Read ' ";

00000 0 10 0 0 H H L L L L
$msg " Two Clocks For Wait State, Then Drive READY Hig h ";

$repeat 2;
00000 0 10 0 0 H H L

$msg " End ROM Read
00000 0 11 0 0 H H H H H Z

$msg " End ROM Read

00000 0 11 0 0 H H H L L Z

FIGURE 2.25. CSIbi (. SI) file for interface between CPU and memory

SR

TABLE 2.2. Table of Test Conditions

Input Definition

0 Drive input LO (0 volts)
1 Drive input III (+5V)

C Drive input LO, III, LO
K Drive input HI, LO. III
L Test output LO (0 volts)
II Test output III (+5V)
Z Test output for high impedence
X Input undefined, Output not tested
N Power pins and Outputs not tested
P Preload registers

The value of the clock variable, CPU_CLK is 0 in some vectors and C in others. A

value of 0 causes no clocking to occur. A value of C causes CSIM to examine the input

values in the vector for any registered outputs that would be fed back internally prior to

the clock. Then after a clock is applied, CSIM computes the appropriate expected

outputs for registered and nonregistered variables.

When CSIM is run a file is created (waitgen. so) which contains the result of the

simulation (See Figure 2.26 on page 60). Comparison of the si with the output file

shows the vectors 8 and 9 were created as a result of the $REPEAT directive, and also

CSIM has replaced the asterisks from the . si file with the appropriate logic levels (11

and L) for the WAITI, WAIT2 and READY signals.

If the any of the output tests had failed they would have been flagged with the actual

output value displayed. Each variable that is incorrect is listed along with the expected

(user-supplied) value. Any invalid or unexpected test values are recorded along with an

appropriate error message.

2.2.4.3 JEDEC format

Once the CUPL source code has been written and tested, it is compiled into the JEDEC

format, which is downloaded to the device programmer. Figure 2.27 on page 61

shows the JEDEC file for waitgen. sl. It consists of an ASCII Start-of-Text (STX)

character, followed by various fields of information, then an ASCII End-of-Text (ETX)

character, and a transmission checksum.

S9

1: Name Waitgen;
2: Partno P9000183;
3: Date 03/14/85;
4: Revision 02;
5: Designer Osann;
6: Company ATI;
7: Assembly PC Memory;
8: Location U106;
9: Device F155;

10:

12: /* This device generates chip select signals for one
13: /* 8Kx8 ROM and two 2Kx8 static RAMs. it also drives
14: /* the system READY line to insert a wait-state of at */
15: /* least one CPU clock fo r ROM accesses.
16: /************************ ****************************** **/
17:
18: ORDER:
19: cpu_clk , %2, a15 , %2, a14, %2,
20: a13, %2, a12, %2, all, %2,
21: ! memw, %2, Imemr, %2, reset, %2, ! oe,
22: %4, ? ram csl, %2, ! ram cs0, %2, Irom_cs, %2,
23: waitl, %2, wait2, %2, ready;
24:

Simulation Results

C rr!
p aar
uIr mmowwr

_mme __ maae
caaaaaees !c c_ iia
111111mme osscttd
k54321wrt e10s12y

Power On Reset
0001: 0X XXX X 1 1 1 0 H H H 11 H 2

Reset Flip Flops
0002: CX XXX X 1 1 0 0 H H H L L Z

Write RAMO
0003: 00 010 0 0 1 0 0 H L H L L Z

Read RAMO
0004: 00 010 0 1 0 0 0 H L H L L Z

Write RAM1
0005: 00 010 1 0 1 0 0 L H H L L Z

Read RAM1
0006: 00 010 1 1 0 0 0 L H H L L Z

Begin ROM Read
0007: 00 000 0 1 0 0 0 H H L L L L

Two Clocks For Wait S tat e, The n Dr ive READY High
0008: C0 000 0 1 0 0 0 H H L H L L
0009: C0 000 0 1 0 0 0 H H L H H H

End ROM Read
0010: 00 000 0 1 1 0 0 H H H H H Z

End ROM Read
0011: C0 000 0 1 1 0 0 H H H L L Z

FIGURE 2.26. Output file (. SO) from simulator

<STX>
CUPL 3.2b Serial# MD-32B-7769
Device f155 Library DLIB-h-25-14
Created Sun Jan 25 00: 05: 45 2065
Name Waitgen
Partno P9000183
Revision 02
Date 03/14/85
Designer Osann
Company ATI
Assembly PC Memory
Location U106
*QP20
*QF2108
*QV11
*G0
*FO
*L00000 10100110111111111010111111111111
*L00032 11111011111111111111111010011011

*L02080 0000000000010100000000000101
*C5AE5
*V0001 CXXXXX110NOHHLLZXXHN

*VO011 000000110NOHHLLXXZHN
*<ETX>74FF

FIGURE 2.27. JEDEC file for interface between CPU and memory

The design specification is the first field in the format (i. e. all information between the

STX and the first asterisk). This information is for documentation purposes only, and

consists of the header information from the CUPL source file along with version

number of the compiler and device library.

At the start of the fields with asterisks there are characters that identify the type of
information in the field. The Q character indicates a value. For example, the value QP

describes the number of pins for the device. Another value field, QF, describes the total

number of programmable fuses in the device. Both values are decimal numbers.

To enable the security fuse to be programmed on devices that have such an option, the

security fuse field (G) instructs the device programmer to disable (GO) or enable (G I)

the programming of the security fuse.

61

The default fuse state field (F) defines the state of the fuses that are not explicitly
defined in the L field. It is the fuse link field (L) that contains the actual data. Each

device fuse link is assigned a decimal number, starting with 0000. Each numbered fuse

has two possible states: binary 0 specifies a low resistance link (FUSE INTACT) and

binary I specifies a high resistance link (FUSE BLOWN).

The L identifier begins the field and is followed by the number of the first fuse being

defined in the field. When more than one binary value is specified, the additional values

are assigned to fuses numbered consecutively from the first fuse number. All the L

fields are not shown in the listing for simplicity.

The next field is a fuse checksum (C) field. The checksum is a 16-bit hexadecimal

value which is computed by adding 8-bit words from the specified state of each fuse

link in the device. Link number 0 is the least-significant bit (lsb) and link number 7 is

the most-significant bit (msb) of word 0. Unspecified bits in the final 8-bit word are set

to zero before computing the checksum. In Figure 2.28 the first thirty-two fuses

generate four 8-bit words.

word 00 10 10 1101 -º AD

word 01 11111011 -º FB

word 02 01110011 -º 73

word 03 1 1101 101 -º EC

Checksum -º 0307

FIGURE 2.28. Example of a Checksum

In order to allow the test vectors to be applied on the device rather than just simulated,

a test vector field (V) can be created by running CSIM with the -j option flag (this is a

flag added to the command line when CSIM is run). The test vector fields in the

JEDEC code contain functional test information for each device being tested.

The test conditions, as they appear in the vector, are applied to the device pins in

numerical order from left to right (the first condition is applied to pin 1 and the last to

pin 20 of a 20 pin device). Signals C and K which drive the clock are presented after all

the other inputs are stable. The L, H, and Z conditions are tested after all inputs have

stabilised, including C and K.

62

The results of the test vectors are again presented in the so output file.

The end of transmission is signified with a non-printing ASCII ETX character followed

immediately by a transmission checksum (sum-check) of four ASCII hex characters.

This checksum is the 16-bit sum of the ASCII values of all the transmitted characters

between, and including, the starting STX and ending ETX characters.

2.3 Summary
This chapter described some of the fundamental principles of digital electronics. The

basic logic gates used to construct digital circuits were detailed, along with how they

are combined to form the basic element of memory, the flip-flop. It is these basic

elements that are combined to form complex digital systems such as microcomputers,

CD players etc.

Part 1 of this thesis is concerned with design and construction of various pieces of

hardware for parallel computers. The PLDs described in this chapter are used

frequently in these designs.

References

[11 Floyd, Thomas L. "Digital Fundamentals", Macmillan Publishing Company,
1990, ISBN 0 02 946106 5

[2] Horowitz & Hill. "The Art of Electronics - Second Edition", Cambridge
University Press, 1991, ISBN 0 521 37095 7

[3] CUPL PAL Programming Manual

63

Chapter 3

Design of a Programmable Circuit Switched Network

The design and implementation of a programmable interconnection network which

allows the user to alter the topology of the network prior to computation is described.

This is achieved by connecting the high speed links on the nodes to two crossbar

switches.

The various methods of interprocessor communication are detailed before describing

some of the ICs utilised in the network. Design of the hardware boards is described and

then the software required to program the crossbar switches is detailed.

3.1 Interprocessor Communication

There are basically three mechanisms used in interprocessor communication: packet

switching, circuit switching1 and wormhole routing2,3.

3.1.1 Packet Switching

Packet switching is a form of message passing in which a message is split into smaller

parts called packets. In a static interconnection network these packets are transmitted

from the source node to the destination node via intermediate nodes. The packet at the

head of the complete message has a header attached which defines the route to be taken

at each crosspoint in the network. The packets are passed in a store and forward

manner (i. e. the entire message has to arrive at one node before it is passed on to the

next node.)

The message transmission time (i. e. the interval between the time when the beginning

of a message leaves the source node and the time when the end of the message reaches

the destination) for a packet switched scheme is given by: -

" message length x number of hops required to reach the destination.

The result of this is that as the message length is increased, the message transmission

time increases rapidly. Packet switching schemes also require additional software on

each node to manage the passing of the packets.

64

3.1.2 Circuit Switching

A more efficient method for large volumes of data which does not require additional

software on each node is circuit switching. Circuit switching mechanisms establish a
dedicated direct communication link between the two communicating nodes and this

link is held until the message is completely transferred (like a telephone system). No

dedicated communication software on each node is required only on the node which is

setting up the communication links. The dedicated communication links can be set Lip
before program execution or dynamically on demand during the program run-time.

3.1.3 Wormhole Routing

Wormhole routing is effectively a combination of packet switching and circuit

switching. The packets are handled by special switches (routers) rather than by node

software.

A message is divided up into a number of flow control digits or "flits" that are

pipelined through the network. It is only the header flits of a message that are stored.

The destination address in the header flits is decoded and, if the required link is free,

the message body is transmitted as a stream from input to output without being stored

at all.

As flits are forwarded, the message becomes spread out across the channels between

the source and the destination. Message flits may not be interleaved with the flits of

other messages as most flits do not contain routing information.

As each flit is forwarded to the next node as soon as it arrives (known as cut-through

routing), the message transmission time is proportional to the sum of the message

length and number of hops to reach the destination (i. e. it is faster than packet

switching). This routing technique reduces the amount of node storage required

compared to packet switching. If fast routers are used this technique can be more

efficient than circuit switching.

The work presented in Part I of this thesis is concerned with the development of circuit

switched schemes for interprocessor communication. This chapter describes the design

and implementation of a circuit switched system which sets up dedicated

communication links prior to computation.

(1 5

3.2 INMOS products

This circuit switched network uses various products designed by INMOS. These are
described in this section.

3.2.1 INMOS C004

The INMOS C004 is a 32 way crossbar switch which can be used to set up direct

physical links between communicating nodes. A block diagram of the IMS C004 is

illustrated below.

LinkInO-31

32 to 1
Synchronisation Output LinkOutO Multiplexer

ýH k-ý
Duffer

k-11--

Latch[5: 0]

32 to 1
Synchronisation Output

LinkOutl Multiplexer Buffer

Latch[5: 0]

Control go. ConfigLinkOut

Logic Op-
I

Imp-
ConfigLinkln
LinkSpeed

D
GN System CapPlus D

Services Clockln CapMinus
Reset

FIGURE 3.1. INIS C004 block diagram

66

3.2.1.1 Switch Implementation

The switch is internally organised as a set of thirty two 32-to-1 multiplexers. Each

multiplexer has associated with it a six bit latch, five bits of which select one input as a

corresponding source of data for the corresponding output. The sixth bit is used to

connect and disconnect the output.

These latches are read and written to via the ConfigLinkIn and ConfigLinkOut pins.
The user sends configuration messages to the switch (consisting of one, two or three

bytes) via the ConfigLinkln pin and receives any data sent back from the switch via

the ConfigLinkOut pin (See Table 3.1.). Each input and output is identified by a

number in the range 0 to 31.

Configuration
Message Function
[O] [input] [output] Connects Input to output

[1] [linkt][link2] Connects linkl to link2

[2] [output] Enquires which input the output is connected to. The IMS C004
responds with the input.

[3] This command byte must be sent at the end of every configuration
sequence which sets up a connection.

[4] Resets the switch. All outputs are disconnected and field low.

[5] [output] Output output is disconnected and held low.

[6] [linkl][link2] Disconnects the output oflinkl and the output of link2.
TABLE 3.1. IMS C004 configuration messages

3.2.1.2 INMOS OSLinks

The INMOS C004 uses INMOS OS Links (i. e LinklnO-31 and LinkOulO-31). These

bi-directional serial links provide synchronised communication between INMOS

products and the outside world. Each link comprises an input and output channel

(i. e. LinkIn and LinkOut). A link between two devices is implemented by connecting

input to output and output to input.

Every byte of data sent on a link is acknowledged on the input of the same link. A

receiver can transmit an acknowledge as soon as it starts to receive a data byte. This

allows the transmission of an acknowledge byte to be overlapped with the receipt of a
data byte to provide continuous transmission of data.

r, 7

The quiescent state of a link output is low. Data bytes are transmitted as a two high

(+5V) start bits followed by eight data bits (the least significant bit of data is

transmitted first) followed by a low (0V) stop bit (See Figure 3.2). After transmitting a
data byte the sender waits for an acknowledge which comprises of a high start bit

followed by a low stop bit. This acknowledge signifies to the sender that the receiver is

ready to receive another byte of data.

I}hII0Iht2l3I4I5I6! hILl tt Ll

Data I+ Ack

FIGURE 3.2. IMS C004 link data and acknowledge packets

INMOS OS Links run at speeds of 10Mbits/s and 20 Mbits/s. When the LinkSpeed pin

on the C004 is logic low all links operate at the lOMbits/s and when this pin is pulled

logic high the links operate at 20Mbits/s. Links are not synchronised with Clockin (a

5MHz crystal oscillator), enabling links from independently clocked systems to

communicate, providing only that the clocks are nominally identical and within

specification.

3.2.1.3 System Services

Descriptions of the function of the system services pins on a C004 are shown in

Table 3.2. below.

Pin In/Out Function

VDD, GND Power supply and return

CapPlus, CapMinus External capacitor (11F) for internal power supply

Clockln in Input clock

Reset in System reset

TABLE 3.2. IMS C004 system services

3.2.2 INMOS T-800 transputer

The T-800 transputer4 is a 32-bit microprocessor designed specifically to be used in a

distributed memory multiprocessor environment. It has four on-chip high speed serial

(IR

data links for communication between processors as well as a peripheral interface. A

block diagram of the T-800 transputer is illustrated in Figure 3.3.

Floating Point Unit

System
Services

Timers

4kbytes 32
of

On-chip
Ram

32 bit

32 Processor

Link
Services

32 I Link
Interface

Link
Interface

Link
Interface

External
Memory 32
Interface

Link
Interface

Event

FIGURE 3.3. INIS T-800 block diagram

A transputer can be used in a single processor system or in a network using the INMOS

OS Links (as described in Section 3.2.1.2 on page 67) to connect the transputers

together. Within a single transputer the CPU operates a time sharing system whereby it

can share its time between any number of concurrent processes. This allows users to

N
M

69

develop parallel programs on single transputer and then run them on a network of

transputers with little alteration.

The IMS T-800 uses a DMA (Direct Memory Access) mechanism to transfer messages
between memory and another transputer product via the INMOS OSLinks. This allows

the link interfaces and the CPU to operate concurrently; i. e programs can continue

execution whilst data is being transferred on the links.

Whilst transputers can be programmed in most high level languages such as

FORTRAN and Ca special purpose parallel language called OCCAM5 was developed

for the transputer. OCCAM can be used with other microprocessors although its

principal use is with transputers. By using OCCAM the system designers task is eased
because of the architectural relationship between OCCAM and the transputer.

OCCAM is based on the process model of computation. A process is an independent

computation with its own program and data, which can communicate with other

processes executing at the same time. A process can be thought of as a black box with
inputs and outputs, that can communicate by message passing using explicitly defined

channels.

Processes are connected together by channels which are built up to produce complex

concurrent systems. Communication between processes is synchronised; if a process A

tries to send a message to process B on channel C, it will block until B is ready to

receive on channel C. A channel can be an INMOS OS Link between transputers or a

software channel between processes on the same transputer.

OCCAM enables a system to be described as a collection of concurrent processes

which communicate with each other through channels. An OCCAM program may

execute on an array of transputers and the same program can also execute almost

unchanged on a smaller array, or even on a single transputer. An OCCAM channel

describes communication in the abstract and does not depend upon a particular

hardware implementation. The processes that communicate via channels can be on the

same transputer or different transputers.

70

Examples of statements which send and receive variables on channels are shown in

Figure 3.4. The symbol ? is for input in OCCAM and ! is for output.

chanl ? xvar sets the variable xvar to the value input from the channel chanl.

chan2 ! yvar outputs the value of the variable yvar to the channel chan2

FIGURE 3.4. Examples or input and output statements

Transputers are connected together via INMOS OSlinks but there has to be some way

of interfacing these links to the outside world (i. e. in order that a network of transputers

can be loaded with code and data at least one transputer has to be connected to a host

computer). This is achieved by a device called a C012.

3.2.3 C012 Link Adaptors

The INMOS C0124 is a link adaptor which interfaces INMOS serial OS links to

microprocessor buses (amongst other things) by converting the bi-directional serial

link into parallel data streams. A block diagram of the IMS C012 is illustrated in

Figure 3.5.

Vnn
GND

Interrupt
Control

Inputlnt
Outputlnt

CapAllnus
Clockin System

Reset Services
Register RSO
Select RS1

LinkSpeed RnotW
notCS

LinkOut Data and
Linkln Link Status DO-D7

Registers ýFV

FIGURE 3.5. INIS C012 block diagram

The status and data registers for both input and output ports can be accessed via the

byte wide bi-directional interface (DO-D7). Registers are selected by RSO-1 and

RnotIV, and the chip is enabled by notCS (i. e. the chip is enabled when notCS is low).

71

RnotW selects the registers for read or write mode. When RnotW is high, the contents
of the addressed register appear on the data bus DO-D7 and when RnotW is low the
data on DO-D7 is written into the addressed register.

RSO-RS1 select one of the four registers; the read-only data input register, the write-

only data output register or the read/write status registers. The addresses for the

registers are shown in Table 3.3. .
TABLE 33. IMS C012 register selection

RSI RSO RnotW Register

0 0 1 Read Data

0 0 0 Invalid

0 1 1 Invalid

0 1 0 Write Data

1 0 1 Read Input Status
1 0 0 Write Input Status

1 1 1 Read Output Status

1 1 0 Write Output Status

The input data register holds the last data packet received from the INMOS serial OS

Link. It never contains an acknowledge packet. The output data register contains data

that is to be transmitted out of the serial link as a data packet.

The input status register contains the `data present' flag and the `interrupt enable'

control bit for Inputlnt (See Figure 3.6). The `data present' flag is set to indicate that

data in the data input buffer is valid. It is reset low only by reading the data input

buffer, or by Reset. When writing to this register, the `data present' bit must be written

as zero. The Inputlnt output is set high when a data packet has been received on the

INMOS OS serial link. It is inhibited from going high if the `interrupt enable' bit is set

to low.

Inputlnt

FIGURE 3.6. IMS C012 Input status register

72

The output status register contains the `output ready' flag and the `interrupt enable'

control bit for Outputlnt (See Figure 3.7). The `output ready' flag is pulled high to

indicate that the data output buffer is empty and it is only reset low when data is written

to the data output buffer; it is set high by Reset. When writing to this register, the

`output ready' bit must be written as zero. The Outputlnt output is set to indicate that

the INMOS OS Link is ready to receive data from DO-D7. It is inhibited from going

high when the 'interrupt enable' bit is set low.

Outpntlnt

FIGURE 3.7. IMS C012 output status register

The system services for the C012 are the same as for the C004.

3.3 Hardware for Static Circuit Switched Network

The basic layout of the static circuit switched network is illustrated in Figure 3.8. Two

of the links on a node are used to connect the nodes in a pipeline and the remaining two

links are connected to two crossbar switches. This allows Link 1 on a node to be

connected to Link 2 on any other node. The crossbar switches used in the system are

INMOS 0004s and the nodes are INMOS T-900 transputers although the same

principles could be applied with other nodes and crossbar switches.

Linkln

ol.............. 31 2

C004 -00 Node0

ol.............. 31
1

LinkOut

LinkOut
2 2ý 01

....
31

."
Nodes 3

...
0

......
31

11
Linkin

FIGURE 3.8. Layout of circuit switched network

73

3.3.1 Hardware setup

The parallel machine used with the switch system contains thirty two transputers

arranged on four printed circuit boards with eight transputers on each. Each circuit
board contains a DIN41612 plug which all the links on the transputers are connected to
(See Figure 3.9).

Linkln
G

--ý I
nD

r-- LinkOut

0. 32. 0"
1. 31" lo T800-7 2" 30" 2"

3" 29. 3"
0. 28. 00
1. 279 1*
2. 26. 2" T800-6
3. 25. 3*
0. 24. Of
1. 23. 1" T800-5 2. 22. 2"
3. 21. 3"
0" 20. 0"
1* 190 1* T800-4 2" 18. 2"
3" 17. 3"
0" 16. 0"
1* 150 to T800-3
2" 14. 2"
3. 13. 30
0" 12. 0"
I* 11" 1" T800-2
2" 10. 2"
3. 9" 3"
0. 8" of
19 7" 1* T800.1 2. 6" 2"
3. 5" 3"
0. 4" 0"
to 3" 1" T800-0
2. 2" 2"
3" 1" 3"

Linkln
CI nd

I LinkOut

FIGURE 3.9. Connections from transputer board to DIN41612 plug

In order to connect the transputers and 0004s in the configuration shown in

Figure 3.8 on page 73 a circuit board (switch board) was constructed which plugged

into the transputer boards (See Figure 3.10 and Figure 3.11 on page 75). The 32-way

DIN41612 sockets on the switch board are plugged into the equivalent plugs on the

74

transputer boards. The sockets on the switch board are wired such that they connect
links 0 and 3 in a pipeline and links I and 2 to the crossbar switches. A photograph of
the board is shown in Appendix D, Figure 1 on page 304.

32-way DIN41612 sockets

0

16-way DIN41612

FIGURE 3.10. Block Diagram of Switch board

I

0004s

5MHz
Oscillator

The overall arrangement of the boards is illustrated in Figure 3.11 (the transputer
boards are housed in a purpose built box). Two of the 16-way DIN41612 connectors

are attached to the host computer (a PC) which sends the messages to program the

required connections on the 0004s. The connections to the 16-way DIN41612 sockets

on the switch board are shown in Figure 3.12 on page 76. These two 16-way

DIN41612 sockets are connected to a dual C012 link adaptor board plugged into the

host computer.

Transputer
Boards

69MMMýM

FIGURE 3.11. Overall arrangement or transputer boards

75

-00- " 16" -. 4-
+5V " 15 "

"14" +5V

"13" -
" 12"
" 11 . - C004 Resct
"10"
.9.
"8" 10012

ConfigLinkln .7" ON-
*6 "
"5 "

22kf2 "4 -
OV "2 ý 0V

"1 " -

FIGURE 3.12. Connections to 16-way DIN41612 socket

3.3.2 Dual Link Adaptor Board

ConfigLinkOut

The dual link adaptor circuit board, which connects to the two 0004s on the switch
board, contains two C012s interfaced to the PC bus. A PC contains several (-8)

system-bus expansion card slots6. The connectors on the card are capable of supporting

62 signal connectors to a card, 31 on each side of a card (See Figure 3.13 on page 77).

Cards are retained by attaching an L bracket to the back end of the card; the bracket, in

turn, attaches to the top of the system unit's bulkhead. Cables are attached to the card
by attaching a connector to the card, and extending the connector through the L bracket

out through the slots cut in the rear of the bulkhead of the system unit.

The dual link adaptor circuit was built on a wire-wrap card of this type. The two C012s

each have an address and the PC communicates with them by reading/writing data at
this address. A circuit diagram of the card is shown in Figure 3.14 on page 78 and a

photograph of the card is shown in Appendix D, Figure 2 on page 304.

The ICs used on the board are the two C012s, an octal bus transceiver with tri-state

outputs (SN74LS245) and two programmable logic devices (P22V IOL). The Dß9

connector is used to connect to the switch board.

76

k Nli
RE

I/O CH CK
+ SET DRV

5V +D7
+ +D6

+IRQ2 +D5
-5VDC +D4
+DRO2 +D3

RESERVED - +D2
+D l

+12V +DO
CND +VO CII RDY

-MEMW +AEN A 19 -MEMR l W
+

- O
IOR

+A 18
A - DACK3 -+ 17
A 16 - +

+DRQ3
DA K

+A15
A - C I + 14
A13 +DRQ1

D
+

- ACKO +A 12
A CLOCK + 11
A 10 +IRQ7 +

+IRQ6 +A9
A +IRQ5 + 8
A7 +IRQ4 +

+IRQ3
- 0

+A6
A -DACK2 + 5
A4 + +

+ALE
V

+A3
A +5

ý + 2
+OSC
+GND a -

+Al
+AO

FIGURE 3.13. Pin and signal definitions for the PC card slots

3.3.2.1 245' Octal Bus Transceiver

The SN74LS2457 acts as a buffer between the C012s and the PC bus. It allows

transmission from the A bus to the B bus and vice versa depending on the logic level at
the direction control (DIR) input (See Table 3.4.). When the enable input (G*) is

pulled high the device is effectively isolated from the A and B buses. The DIR and G*
inputs are generated from a P22V 10.

DIRECTION
CONTROL

ENABLE (G*) (DIR) OPERATION
L L B data to A bus

L H A data to B bus
H X Isolation

TABLE 3.4. Function 'T'able for 2451

77

PC Bus
74LS245

DO Al B1

DI A2 132

DZ A3 133

D3 A4 B4

D4 - Al B5

DS A2 B6

D6 A3 137

D7 A4 B8

PC
Bus

+SV

4.7kQ
ýX2)

o-

a
OV

G* DIR

P22VIOL-0

I AEN*
A9

A8

A7

A6
A5

2 A4

A3
9. A2

8

P22VIOL-1

PCLK
low*
IOR*

Al
5 AO

18 81

10 1? 91
14 DO 1
15

11 Dj 1

ERRORO
To DB9 ERRORI*
Connector RESETI'-

RESETO`

FIGURE 3.14. Dual Link Adaptor Board

Cola-o

vcc
DO CAPMINUS

HOLD
D1 TO GROUND

RESET
D2

LINK SPEED
D3 OUTPUTINT

INPUTINT
D4

LINKOUT

D5 LINKIN
RSO

D6 RSI

D7 Rno(W

CLOCKIN NOTCS*

C012-Z

vcc o. t

DO CAPMINUS
IIOLD

DI TO GROUND
RESET

D2 LINK SPEED

D3 OUTPUTINT
INPUTINT

D4 LINKOUT

D5 LINKIN
RSO

D6 RS J

D7 RnotW

CLOCKIN NOTCS*

To DB9
Connector

OV

0.1 {tF

+SV

7kS2

ov

ov

22M

nv

79

3.3.2.2 P22V1OL-0 Programmable Logic Device

The P22VIOL is a CMOS high performance electrically erasable 24 pin PAL8. A

diagram of the pin configuration of the PAL is shown in Figure 3.15. It contains 10 D-

type registers which are provided with synchronous preset and asynchronous reset

terms.

CLK/IN
IN
IN
IN
IN
IN
IN
IN
IN
IN
IN

GND

Fl [U vcc
I/o
I/O
I/O
vo
I/O
I/O
I/O
I/O
I/O
I/O
IN

FIGURE 3.15. Pin Configuration of P22V10L

The CUPL source code for both the PALs is shown in Figures 3.16 and 3.17 on pages

80,82 and 83. Between them, the PALs generate the notCS, RnotW and Reset signals

for the C012s, and the DIR and G* signals for the buffer.

P22V 1OL-0 decodes the addresses for the link adaptors and control information. The

inputs to P22V 1OL-0 are the PC bus address lines (A2-A9), the address enable signal

(AEN) and the select signals (Se10 & Se 11). The active low outputs are NotSysO,

NotSysl, NotLadpO and Not Ladpl.

A FIELD declaration is used to define the address bus (i. e. FIELD IßMaddr = [A9 ..

A21. When the FIELD variable is used with an equality operator (i. e. IBMAddr :

[1201), CUPL assumes that the address bus includes Al and AO although they are not

in fact connected to the PAL. The equality operator therefore compares A2-A9 with the

top eight bits of the hexadecimal number 120 (in this case).

The AEN signal is an active high signal from the PC which indicates when a DMA

(Direct Memory Access) cycle is in operation (i. e. a DMA device has access to the PC

bus). The C012s must not be accessed during a DMA cycle and therefore the AEN

signal must be logic low during a read/write cycle to the C012s. This signal is therefore

made active low in the CUPL pin assignments.

79

PIN 1= ! NotAEN;

PIN 2= A9;

PIN 3= A8;

PIN 4= A7;

PIN 5= A6;

PIN 6= AS;

PIN 7= A4;

PIN 8= A3;

PIN 9= A2;

PIN 10= SelO;

PIN 11= Sell;

PIN 17 = INotSysO;

PIN 18 = ! NotSysl;

PIN 19 = ! NotLadpO;

PIN 20 = ! NotLadpl;

FIELD IBMAddr = [A9.. A2];

FIELD Select = [Sell.. Sel0j;

/** Enable link adaptor and system control signals **/

NotLadpl = IBMAddr: (120] & Select: 11] & NotAEN #

IBMAddr: (220] & Select: (2] & NotAEN #

IBMAddr: (320] & Select: (3] & NotAEN ;

NotLadpO = IBMAddr: [124J & Select: [1] & NotAEN #

IBMAddr: (224] & Select: (2] & NotAEN #

IBMAddr: (3241 & Select: [3] & NotAEN ;

NotSysl = IBMAddr: [130] & Select: [1] & NotAEN #

IBMAddr: [230] & Select: [21 & NotAEN #

IBMAddr: [330] & Select: [3] & NotAEN ;

NotSySi = IBMAddr: [134] & Select: [1] & NotAEN #

IBMAddr: [2341 & Select: [2] & NotAEN #

IBMAddr: [334] & Select: [3] & NotAEN

FIGURE 3.16. CUPL source code for P22VIOL-0

90

Signals Se10 & Se 11 are controlled by jumpers (See Figure 3.14 on page 78). These

signals are assigned to the FIELD variable Select and are used to select which address

of the three alternatives is used. This is to give greater flexibility when selecting

addresses for the C012s.

Table 3.5. shows the output signals and their meaning. These signals are logic true

when one of three alternative addresses is set to the appropriate value, the select signal

is set to the correct value for that address and the NotAEN signal is logic true. These

outputs are then fed into P22VIOL-1.

Pin Outs Definition

NotLadpl Selects link adaptor I

NotLadpO Selects link adaptor 0

NotSys1 Selects control information for link adaptor I

NotSysO Selects control information for link adaptor 0

TABLE 3.5. Pin Outs orl'ZZVIOL-I

3.3.2.3 P22V1OL-1 Programmable Logic Device

P22V l OL -I generates the signals notCSO, notCS1, RnotW(notWrite) and Reset

(CO12Reset) for the C012s and the DIR and G*(BufEn) for the `245 (See Figure 3.17

on pages 82 and 83 for CUPL code).

The inputs to P22V I OL -I are PCLK (PC Clock), IOR* (PC Read Cycle), IOIV* (PC

Write Cycle), Al, A0, NotIBMErrorl, NotIBMErrorO and the signals (NotSysO,

NotSysl, NotLadp0 and Not Ladpl) from P22V IOL-0. The signal ll0 from the PC

data bus is used as both an input and output. The signals NotIBMResetl,

NotIBMResetO and NotStatWr are inputs to the D-type internal registers of the

P22VIOL.

Inputs AO and Al from the PC address bus are assigned to the FIELD variable

Register. These inputs are also connected to the RO and R1 pins on the C012s. They

are therefore used to address the various registers on the C012 (See Table 3.3. on page

72). When addressing a C012 it is therefore the first two bits of the address that specify

which register is being read/written. AO and Al are also connected to the P22V 10 as

when writing a "reset" to a C012 both these bits require to be zero.

RI

PIN 1= PC1k; /* Register Clock

PIN 2= ! NotIOR;

PIN 3= INotIOW;

PIN 4= Al;

PIN 5= AO;

PIN 6= ! NotLadpl;

PIN 7= ! NotLadpO;

PIN 8= ! NotSysl;

PIN 9= ! NotSysO;

PIN 10 = ! NotIBMErrorl;

PIN 11 = INotIBMErrorO;

PIN 14 = DO;

PIN 15 = Dl;

PIN 16 = C012Reset;

PIN 17 = NotIBMResetl;

PIN 18 = NotIBMResetO;

PIN 19 = INotCsl;

PIN 20 = INotCsO;

PIN 21 = ! Notwrite;

PIN 22 = lBufEn;

PIN 23 = lNotStatWr;

FIELD Register = [Al.

FIELD Outputs= [NotIBMResetl, NotIBMResetO, NotStatWr]

/** Resets & Presets **/

Outputs. ar = 'b'0; /** Switch off all async resets **/

Outputs. sp = 'b'0; /** Switch off all sync presets **/

/** Definitions **/

ReadSysi =

WriteSysl =

ReadSysO =

WriteSysO =

NotIOR & NotSysi;

NotIOW & NotSysl;

NotIOR & NotSysO;

NotIOW & NotSysO;

82

ReadLinkl = NotIOR & NotLadpl;

WriteLinkl = NotIOW & NotLadpl;

ReadLinkO = NotIOR & NotLadpO;

WriteLinkO = NotIOW & NotLadpO;

WriteResetl = WriteSysl & Register: [0];

WriteResetO = WriteSysO & Register: [0);

/** C012 & 245 control signals **/

NotStatWr. d = NotIOW;

NotCsl = WriteLinkl & NotStatWr # ReadLinkl;

NotCsO = WriteLinkO & NotStatWr # ReadLinkO;

NotWrite = NotIOW # NotStatWr;

BufEn = NotCsl # NotCsO;

C012Reset = NotIBMResetl # NotIBMResetO;

/** Reset, analyze, & error **/

NotIBMResetl. d = DO & WriteResetl #

NotIBMResetO. d =

D1 =

Dl. oe =

DO =

DO. oe =

NotIBMResetl & lWriteResetl;

DO & WriteResetO #

NotIBMResetO

INotIBMErrorl;

ReadSysl;

INotIBMErrorO;

ReadSysO;

FIGURE 3.17. CUPL source code for P22V1OL-1

The inputs to the D-type registers (NotIBMResetl, NotIBMResetO, NotStat\Vr) are

assigned to the FIELD variable Outputs. The asynchronous resets and synchronous

presets of these registers are turned off by the statements, Outputs. ar = 'b'0 and

Outputs. sp = `b'0 (i. e. the ar and sp are set to binary (`b') zero (OV)).

Table 3.6. on page 84 shows the intermediate variables and their definitions. These

are declared in order to simplify later expressions.

The NotStatWr signal is required to effectively create a delayed IOW* signal which is

used to generate the notCS* signals for the C012s. The notCS* signals must be logic

RI

true when reading or writing to a CO 12. A timing diagram for writing data to a CO12 is

shown in Figure 3.18. This shows that there must be a gap between the RnotW signal

being pulled low and the notCS* going low. It is therefore not correct to use the

expression notCS = WriteLink # ReadLink to generate the notCS signals as the
WriteLink signals are generated from the IOW* signal as is the RnotW signal (i. e.
the RnotW signal will become logic true at the same time as notCS.

Pin Out Definition

ReadSysl Read system info. from Link Adaptor I

WriteSysl Write system info. to Link Adaptor 0

ReadSysO Read system info. from Link Adaptor 1

WriteSys0 Write system info. to Link Adaptor 0

ReadLinkl Read data from Link Adaptor I

WriteLinkO Write data to Link Adaptor 0
ReadLinkl Read data from Link Adaptor 1
RcadLink0 Write data to Link Adaptor 0

1AISLE 3.6. Intermediate variables for 1'Z2V lUL

RSO-1

RnotW

notCS

DO-D7

FIGURE 3.18. Timing diagram for write to C012

Signal NotStatWr is the D-input of a D-type flip-flop (hence the d extension in the

expression for NotStatWr) and hence the logic level on the input (which is NotIOW)

is only transferred to the Q-output on a leading clock edge. A timing diagram for the

NotStatWr signal in relation to the IOW*, RnotW(NotWrite) and notCS* signals is

shown in Figure 3.19 on page 85. By ensuring that the chip select signals are only true

when both NotStatWr and WriteLink are true or ReadLink is true, the timing of the

signals is therefore correct.

x, 1

PCLK

IOW*_

NotStatWr*_

notCS*

notWrite*

FIGURE 3.19. Timing diagram for NotStatWr signal

A similar delayed signal is not required when reading from the C012s as the

NotWrite* signal is by default in the logic high state (i. e. when reading fron the C012

the RnotW signal must be logic high), therefore the signal is always true before the

notCS* signal becomes logic true.

The chip select signals for the C012s (notCSO* and notCS1*) are therefore logic true

when reading from or writing to the link adaptors. The RnotW signal is logic true

when either the NotIOW* or NotStatWr* signals are logic true (i. e. when the C012s

are being written to).

To enable the '245 buffer which isolates the C012s from the PC bus the BufEn* signal

is used. This signal is logic true when either of the C012s are selected. The 1DI14 signal

on the '245 is controlled by the RnotW signal, as the direction of the buffer is

dependent on whether information is being transmitted or received.

The C012s are put into reset by writing a logic high to the system control address. The

NotIBMReset. d signals are logic true when the DO and WriteReset signals are logic

true. The second part of the expression for NotIBMReset (NotIB11Weset &

! WriteReset) is required in order that the logic level of the signal is maintained after

the write cycle from the PC is finished (i. e. on the previous clock edge NotIBMReset

was true and WriteReset is no longer logic true). The C012s are reset when either

NotIBMResetl or NotIBMResetO is true.

95

The NotIBMErrorl and NotIBMBrrorO signals are inputs from the transputer boards

which indicate when errors have occurred. These signals are read on DO and DI and
therefore these signals are only enabled as outputs from the P22V l OL when reading
system information.

3.4 Software requirements
To program the required connections on the crossbar switches the configuration

messages must be sent from the host computer via the dual link adapter board to the
ConfigLinkIn and ConfigLinkOut pins on the C004. This is achieved by assembler

routines on the host which input and output bytes to the link adapter board. These

routines are called from a FORTRAN program which provides a user interface for

entering the required connections between the processors.

3.4.1 User interface with a command line

The first version of the user interface written in Microsoft FORTRAN9, entered the

values of the processor and links to be connected via a string of text entered by the

user.

i. e. CONNECT PROCESSOR A LINK B TO PROCESSOR C LINK D

To extract the values of the processors and links from the string the positions of the key

words (i. e processor and link) were found by using the FORTRAN INDEX function.

The values were then extracted from the spaces between the words as substrings (See

Figure 3.20).

Iprocl = INDEX(STATEMENT, 'processor')

Ilinkl = INDEX (STATEMENT, link')

Ito = INDEX (STATEMENT, 'to')

Procl = statement (iprocl + 9: ilinki -1)
Linkl = statement (ilinkl + 4: ito -1)

FIGURE 3.20. FORTRAN code to extract values from string

The first three statements in this section of code locate the position of the first

occurrence of the words `processor', 'link' and `to' respectively. The next two

86

statements extract the substrings in between the words which contain the processor and
link numbers.

The initial statement is stored as a character variable and therefore the values extracted
from the statement are stored as character variables. In order that the values can be

used in further calculations they have to be converted to integer variables. This is

achieved by the subroutine INTEG (See Figure 3.21).

SUBROUTINE INTEG(D, DUMR, X)

CHARACTER*10 DUMR

INTEGER D

INTEGER*2 X(64)

C CONVERT CHARACTERS INTO INTEGERS

READ(DUMR, '(I10)') X(D)

END

FIGURE 3.21. Subroutine INTEL

This routine uses internal files to transfer the character variable DUMR into the integer

variable X.

Since the program depends on finding the key words in the statement, if there are any

spelling mistakes in the statement, it has to be re-entered. Once the processor and link

numbers are established their values are stored in four separate arrays (i. e. two for the

processor numbers and two for the link numbers).

3.4.2 Graphical user interface

Entering the processor and link numbers via a string of text is quite cumbersome l nd it

was therefore decided to create a graphical interface using the Microsoft FORTRAN

graphics libraryt0. The graphical interface takes the form of 32 boxes on screen to the

represent the 32 processors in the switch network. Smaller boxes within the processors

represent the links. Figure 7 and Figure 8 on page 307 in Appendix D show the

graphical interface.

To make a connection between two processors a line (or series of lines) is drawn

between the processors using the mouse. If the user tries to make a connection not on a

processor, or on a link that is not allowed then the line will not be drawn. Once a

A7

connection has been established the processor and link numbers are stored in arrays
(NP1, NP2, NL1, NL2).

The boxes which represent the processors and links were drawn using the Microsoft

FORTRAN "rectangle" and "line" routines. To control the mouse the public domain

package "Mouse Driver Interface Package for Turbo C and Microsoft Fortran" was

utilised. The routine GETMOUSECURSOR position in this package was used to find

the physical coordinates of the mouse and the state of the mouse buttons. The lines to

represent the connections were drawn using the "line" routine

The main routine in the graphical interface is the routine PRESSMOUSE which

establishes where the mouse button has been pressed, draws the appropriate lines, and

then stores the processor and link numbers in arrays once a connection has been

completed. It can be divided into two parts: the first part considers the situation when

the mouse button has been pressed and second part considers the situation when the

mouse button has been released (See Figure 3.22 on page 89).

When a mouse button is pressed at the start of making a connection between two

processors, the start position is set to the position of the mouse (it is actually altered so

that the start of the line is positioned in the centre of the link box). If the mouse is

pressed in the middle of a connection then the start position for the line is set to the end

of the previous line. This is also the case when the previous line has been disallowed.

Before actually drawing a line the graphicsmode is set to XOR. This allows a line to be

deleted by drawing over the line with the same colour and also leaves any background

to the line intact. The purpose of this is so that while the mouse is depressed a line is

drawn constantly between the start position and the current mouse position (i. e. the

mouse cursor can be moved and the line will follow it). This is achieved by deleting the

previous line before drawing the next line if the mouse has moved.

RR

Call routine GETMOUSECURSORPOSITION
Check whether mouse pressed on allowed processor and link
If mouse pressed on allowed position and not on finish

If not at start of a connection then
set start point for line to end of previous line

else if last line was a disallowed connection then
set start point for line to end of previous line

else
set start point for line to mouse position

set writestyle to XOR

While mouse button is pressed down
store previous position of mouse
find new position of mouse
if mouse has moved

draw over previous line
draw new line

Part 1

Call routine GETMOUSECURSORPOSITION
Draw over previous line
Check whether mouse released on allowed processor and link
if mouse released on allowed position

draw new line Part 2
increment counter which counts no. of lines used to make a connection

store start and end points of line and no. of line in an array
If connection complete

store processor and link numbers In arrays

FIGURE 3.22. Pseudocode for routine PRESSMOUSE

While the mouse button is depressed the current position of the mouse is determined by

the GETMOUSECURSORPOSITION routine. If the mouse has moved position since

the previous call to the routine the last line is deleted. A line is then drawn between the

start point for the line and the current position of the mouse.

When the mouse is released a call is again made to the subroutine
GETMOUSECURSOR position to obtain the new position of the mouse. The last line

drawn is then erased. If the mouse is released on an allowed position then the new line

is drawn. The position and number of the line is stored in an array in order that the

connection can be deleted. To delete a connection the user double clicks on either end

of the connection.

Once a completed connection is made the processor and link numbers of the

connection are stored in arrays. When the user has completed all the connections he/

89

she wants he/she clicks on the "Finish" box on the screen. The program then makes the
required connections on the 0004s.

The FORTRAN code for both the command line interface and the graphical user
interface is shown in Appendix A.

3.4.3 Programming the 0004s

To establish which connections are required on the 0004s it is necessary to construct
tables which contain the connections from the processors to the switches. Two tables

(one for each C004) are therefore created which are arranged in the following way: -

Link No.
Processor
No.

Linkin on
C004 Link No.

Processor
No.

Link Out on
C004

The pseudocode for the subroutine CONNECTIONS is illustrated in Figure 3.23. This

routine establishes what connections are required on the 0004s. This achieved by

considering in turn each processor and link number used in a connection, and then

scanning the tables containing the connections to the 0004s looking for match. Once a

match has been found the values of the links used on the 0004s are stored in arrays.

For each processor number and link number in a connection
For each row in each table containing connections to 0004s

If the processor number and link numbers match the values in columns 1&2 of table
store value of Linkin on C004 In array

If the processor and link numbers match the values in columns 4&5 of table
store value of LinkOut on C004 In array

FIGURE 3.23. Pseudocode for subroutine CONNECTIONS

Before any connections are actually made on the 0004s the dual link adapter board

which sends the messages to the 0004s must be reset. The is achieved by using the

assembler routine 'RUN' which is called from the main FORTRAN program (See

Figure 3.24 overleaf). The assembler was written in Microsoft Macro Assembler 5.011

This routine just sends a specified value to a specified address and does not by itself

reset the link adapters. To achieve this the routine is called twice: the first time a logic I

is sent to the reset address and the second time a logic 0 is sent to this address.

90

The MODEL directive at the start of the assembler source code defines the memory
hiodel used by the program. In this case it is HUGE which means that code and data

can be greater than 64K (the size of a segment). This matches the memory model used
by the FORTRAN compiler.

The CODE directive marks the start of a code segment. The PUBLIC directive

declares a symbol (in this case RUN) public in order that it can be accessed by other

l'outines.

. MODEL HUGE

. CODE

PUBLIC
_run

_run
PROC FAR

push bp ; save old bp

mov bp, sp ; set stack frame pointer

mov dx, [bp+8] ; load address of board

mov al, [bp+6] ; load byte to be output

out dx, al ; output byte

pop bp

ret

_run
ENDP

END

FIGURE 3.24. Assembler routine RUN

When sending values to an assembler program from FORTRAN, the stack is loaded in

the following manner: -

argument I

argument 2

return address
(4 Bytes)

Saved BP

--14- BP +8

mot- BP +6

BP+4 4BP+2

-4- BP

9,

FORTRAN pushes values onto the stack in the order they appear in the call to the
assembler routine so therefore argument 1 is higher in memory than argument 2.

Immediately after the routine is called from FORTRAN the stack pointer(sp) points to
the return address. The statement push bp decrements sp and pushes the value of the
base pointer (bp) onto the stack. At this point sp points to the saved value for bp. The

statement mov bp, sp therefore moves the value of sp into bp and therefore bp points
to the saved value of bp. This is in order that bp can be used to point to the base of a
frame of reference within the stack.

When calling the RUN routine from FORTRAN, argument 2 is the byte to be output

and argument 1 is the address at which the byte is output. Initially a binary 1 (reset) is

sent to both link adapters and then a binary 0 (run). Obviously separate calls to the

routine are required for each link adapter as they have different addresses.

The statement mov dx, [bp + 8] moves the address of the link adapter into the register

dx. The command mov al, [bp + 61 moves the output byte (1 or 0) into register al. The

output byte is then written to the link adapter address by the command out dx, al.

Before returning control to the FORTRAN program the value of bp has to be restored

by the statement pop bp. The RET command pops the return address off the stack and

returns control to the FORTRAN program. The ENDP directive marks the end of the

procedure.

Once the link adapter board has been reset in this way it is ready to receive messages

for the 0004s. Table 3.1. on page 67 shows that before making a connection on a

C004 a command byte [4] must be sent to reset the switch. To program a connection a

command byte [0] is sent followed by the numbers of the input and output on the C004.

The FORTRAN code which achieves this is in Figure 3.25 on page 93.

The addresses of the link adapters are stored in the array LKAD and the values of the
C004 inputs and outputs are stored in the arrays C40IN, C4000T, C41IN and

C41OUT.

92

CALL LINKOUT (4, LKAD(1))

CALL LINKOUT (4, LKAD (2))

DO 30 N=1, LINKNO

CALL LINKOUT

CALL LINKOUT

CALL LINKOUT

CALL LINKOUT

CALL LINKOUT

CALL LINKOUT

CALL LINKOUT

CALL LINKOUT

30 CONTINUE

(0, LKAD(1))

(C40IN(N), LKAD(1))

(C40OUT(N), LKAD(1))

(3, LKAD(1))

(0, LKAD(2))

(C41IN(N), LKAD(2))

(C41OUT(N), LKAD(2))

(3, LKAD(2))

FIGURE 3.25. FORTRAN code to make connections on 0004s

The subroutine LINKOUT is an 8086 assembler routine similar to RUN which outputs

bytes to the link adapters (See Figure 3.26 on page 94). Before transmitting a byte the

output status register is checked to ensure the link adapter is ready to receive a byte.

The address of the output status register is loaded into register dx by the statements

mov dx, [bp + 8] and add dx, 03H. Table 3.3. on page 72 shows that the output status

register is 03H above the base address of the link adapter board.

When a link adapter is ready to receive a byte, the first bit of the output status register

is set to logic 1. This is checked by first loading the contents of the status register into

dx (in al, dx) and then masking off the top 7 bits of the byte (statement and al, 0111). if

the first bit is not logic I (cmp al, 0111) then the program loops round (jne loop_]).

Once the link adapter is ready to receive a byte the address of the output data register is

loaded into dx (sub dx, 02H). The data to be transmitted is then sent in a similar way as

in routine RUN.

Using the routine LINKOUT the switches are programmed to snake the required

connections between the processors using the 0004s. It is possible to check that the

connections have been made successfully by interrogating the outputs on the C004.

This is achieved by sending a command byte [2] to the C004 followed by the number

93

of the output to be interrogated. The C004 returns the value of the input that the output
is connected to.

. MODEL HUGE

. CODE

PUBLIC linkout

_linkout
PROC FAR

push bp ; save old bp

mov bp, sp ; set stack frame pointer

mov dx, (bp+8] ; load link adaptor base address

add dx, 03H ; get address ofinput_status register

loop-1: in al, dx ; read value of status register

and al, l ; look at first bit

cmp al, O1H ; see if equal to 1

jne loop_i ; loop round if not equal

sub dx, 02H ; find input address

mov al, (bp+61 ; load byte to be output

out dx, al ; output the byte in al

pop bp

ret

linkout ENDP

END

FIGURE 3.26. Assembler routine LinkOut

The assembler routine LINKOUT is used to send the byte [21 and the output number.

To receive bytes back from the C004 an assembler function called LINKIN was written

(See Figure 3.27 on page 95).

This function is similar to LINKOUT. The major difference is that in the case of

LINKIN it is the input status register that is polled instead of the output status register

as with LINKOUT. The incoming data is read from the input data register which is at

the base address of the link adapter. The byte is returned to the FORTRAN routine in

register ax.

94

. MODEL HUGE

. CODE

PUBLIC
_linkin

_linkin
PROC FAR

push bp

mov bp, sp

; save old bp

; set stack frame pointer

mov dx, (bp+61 ; load link adaptor base address

add dx, 02H ; get address of input_status register

loop_i: in al, dx ; read value of status register

and al, 1 ; look at first bit

cmp al, 01H ; see if equal to 1

jne loop_i ; loop round if not equal

sub dx, 02H ; find input address

in al, dx ; read input register

xor ah, ah ; load 0 into ah

pop bp

ret

_linkin
ENDP

END

FIGURE 3.27. Assembler routine Linkln

The main FORTRAN program offers two ways to test connections on the 0004s. In the
first method a particular output can be interrogated by entering the number of the

output (see Figure 3.28 on page 96). The second method interrogates all the outputs

on the 0004s and then prints out the results in form illustrated in Figure 3.29 on page
96.

95

WRITE (*, *) `ENTER NUMBER OF OUTPUT', OUTPUT

CALL LINKOUT (2, LKAD(2))

IN = LINKIN(LKAD(2))

IN = IN - 128

IF ((IN. GT. O). AND. (IN. LT. 32))

WRITE(*, *) `THIS OUTPUT IS CONNECTED TO INPUT', IN

ELSE

WRITE(*, *) `THIS OUTPUT IS NOT CONNECTED'

END IF

FIGURE 3.28. FORTRAN code to interrogate an output

Processor A Linkln B is connected to Processor C LinkOut D

FIGURE 3.29. Format of statement showing connections

3.5 Conclusions

A basic system has been presented which allows the topology of a multiprocessor

network to be altered before computation. This provides a more flexible and efficient

set-up than a fixed topology system as some parallel algorithms are more suitable to

one particular configuration than another.

The final version of the software to program the switches allowed for eight links on the

nodes, although of course in the case of transputers this was not implemented. Some

other processors such as the Texas Instruments C40 have more than four links and

therefore this allows the graphical interface to be ported easily to other systems.

Since the switch board was built on a wire-wrap board and there are 64 connections to

each C004 the board is not very reliable. In retrospect it would probably have been

more efficient to get a PCB (printed circuit board) made of the design.

This prototype system does however provide a simple method to vary the topology of a

transputer network. It would allow a particular algorithm to be tested on different

topologies. As stated previously the same methodology could be applied to other

processors such as the C40 and also with alternative crossbar switches.

96

References

[1] Gaughan, Patrick T. and Yalamanchili, Sudhakar. A daptive Routing Protocols
for Hypercube Interconnection Networks. Computer, May 1993, pp 12-22

[2] W. J. Dally and C. L. Sietz, Deadlock Free Message Routing in Multiprocessor
Interconnection Networks. IEEE Trans. Computers, Vol. C-36, No. 5, May 1987.
pp 547-553

[3] Sriskanthan et al. An adaptive switching architecture for multiprocessor
networks. Microprocessors and Microsystems, Vol. 18, No. 6, July/August 1994

[4] INMOS® Limited. The Transputer Databook. Third Edition 1992

[5] Bowler et al. An Introduction to Occam 2 programming. Chartwell-Bratt
(Publishing and Training) Ltd, 1987, ISBN 0 86238 137 1

[6] Eggebrecht, Lewis C. Interfacing to the IBM® Personal Computer. Howard W.
Sams and Company, 1990, ISBN 0 672 22722 3

[7] Texas Instruments. TTL Data Book Volume 1,1989, ISBN 3 88078 078 1

[8] Atmel Corporation. CMOS Integrated Circuit Data Book, 1991-92. pp 8-19,8-33

[9] Microsoft® FORTRAN Reference Manual, 1991

[10] Microsoft® FORTRAN Advanced Topics, 1991

[11] Microsoft® Macro Assembler 5.0 Programmer's Guide

97

Chapter 4

A Circuit Switched Network for Ininos OS Links

An efficient circuit switching mechanism allowing dynamic-on-demand allocation of

physical links between processing nodes is described in this chapter. This cost-

effective, memory-mapped system sends connection requests via an INMOS OSLink

to a control processor which programs a crossbar switch. By setting up point-to-point

direct physical links between nodes this allows every node to communicate directly

with every other node of a parallel computer.

A brief description of the basic paradigm used for providing dynamic-on-demand

allocation of physical links is presented first. The various designs considered are then

detailed before describing the final design.

4.1 Overview of Dynamic Circuit Switching Systems

Dynamic circuit switching systems1 allow inter-node connections to be established

on-demand during program run-time. A dedicated point-point communication link is

set-up between the two communicating nodes and is maintained until a message has

been transferred completely.

These schemes have the advantage over packet switching methods that no additional

software is required on each node to manage the passing of the packets and since the

messages do not pass via intermediate nodes no additional buffering facilities are

required on the nodes. Under normal circumstances dynamic on-demand circuit

switching out performs packet switching3.

4.1.1 Hardware Configurations for Dynamic Link Switching

To perform inter-node communications on a dynamically reconfigurable architecture

an application program must be aware of the changing connective state of the network.

This can be achieved by allowing the application itself to control the switching of links

between nodes. To accomplish this the nodes send connection requests to a control

99

processor which then programs the required connection on a crossbar switch (See
Figure 4.1).

Configuration
Messages Crossbar Switch

Nodeol I Nodes II Node�

Interface II Interface II Interface

Control

Control
Information

FIGURE 4.1. General structure of a dynamic switching scheme

The interface from the nodes to the control processor must be efficient and fast in order

to reduce the message latency (i. e the time interval from when a message is initiated

until it actually leaves the node). If the message latency is too long then this will reduce

the benefits of using circuit switching over packet switching.

Several different mechanisms have been identified for interfacing the nodes to the

control processor and these are described in the following sections.

4.1.1.1 Link-pipeline driven reconfiguration

In this method connection requests are sent via a link pipeline between the working

nodes and the control processor (See Figure 4.2 on page 100). This requires that the

worker nodes need to manage the passing of the connection requests which will slow

down the application processes in the worker nodes. This is not very efficient so

therefore this system is rarely used. It does have the advantage however that many

commercial systems are already hardwired in a pipeline.

4.1.1.2 Memory-driven reconfiguration

This solution uses a byte-wide parallel bus to connect the local memories of worker

nodes with that of the control processor (See Figure 4.3 on page 100). This bus is used

for sending connection requests, acknowledges and link releases. The attention of the

control processor can be attracted by a worker node by sending a request signal to the

(Y)

Event input or by setting a flag inspected by the control processor. The control

processor is master of the bus.

Crossbar Switch

link
10 *1

Worker II Worker Pipeline Worker
Node1 Node2 Node�

Control
Processor

FIGURE 4.2. Link Pipeline Driven Reconfiguration Control

Crossbar Switch

Worker Worker
Nodes Node2

... ...
II Memory Memory

Interface Interface

0" "I links

Worker
Node�

Configuration Messages

Memory
Interface

Parallel Bus

1 Control
Proccssor

FIGURE 4.3. Memory driven reconfiguration

The control parallel bus is structurally a good solution as it leaves all the links on the

nodes free to connect to the crossbar switch allowing the maximum communication

bandwidth available from the nodes. However the speed of the bus should be at least as

fast as the links on the nodes to achieve greater efficiency than packet switching. This

is not the case in existing control bus implementations mainly because they were

designed for supervision and not for reconfiguration purposes.

100

If a system was designed with a fast parallel bus, however, it would be a good solution.
The main drawback would be the number of wires.

4.1.1.3 Serial bus driven reconfiguration

This solution uses a serial bus to exchange control information between the worker

nodes and control processor (See Figure 4.4). The write access to the bus is controlled

by a token which circulates among controllers which interface the node links to the

bus. There is no master of the bus and therefore each message includes a destination

address.

Crossbar Switch

"""

140-

140

""" links

Worker Worker
"""

Worker
Node, Node2 Node�

config.

Bus Bus
f Interface

Bus
Interface

H
Control

Serial Bus Processor

FIGURE 4.4. Serial Bus Driven Reconfiguration Control

Tudruj and Kalinowskit have developed a system of this type using a TRANSBUS6

controller to act an interface between the worker nodes and the control processor. A

TRANSBUS is an application specific integrated circuit (ASIC) designed to connect

transputers together into a LAN (Local Area Network) (See Figure 4.5 on page 102).

Each transputer is connected to a TRANSBUS controller on one side using one of its

standard links leaving only three for interprocessor communication. On the other side,

the TRANSBUS is connected to four lines:

"a DATA line to transmit the data bytes

" an ACK line to transmit and receive acknowledges for each transmitted byte

"2 lines wired as a ring to manage the token-passing

101

Data
Ack ---

Token -- -----------------

-- Transbuso -- Transbust ---- Transbusn ---

Transputer Transputerj TransputerJ

FIGURE 4.5. Interconnecting transputers by the TRANSBUS controller

The format of a message sent via the serial bus is shown below: -
destination message data I address length

The destination address identifies the receiving transputer and the message length is the

total number of bytes of data sent. A destination address of zero signals a broadcast to

all the other transputers.

If a transputer wishes to communicate through the bus, it sends the destination address

of the message to its TRANSBUS controller. At this point the address is buffered

waiting for the token. When the token arrives, the address byte is sent to the DATA line

of the bus and the controller waits for acknowledges from all other controllers. The

next byte of a message can only be sent after all TRANSBUS controllers on the bus

have acknowledged the current byte.

Once an ACK is received from all the other TRANSBUS components an

acknowledgement is sent to the sending transputer via its link connection to the

TRANSBUS controller. The sending transputer then sends the remainder of the

message via the TRANSBUS controller to the receiving transputer.

The destination address is read and decoded by all TRANSBUS controllers on the bus.

Only for the addressed transputer (or for all in the case of a broadcast) however is the

rest of the message received by the controller and transmitted via the transputer link to

the receiving transputer.

102

Figure 4.6 shows how these TRANSBUS controllers can be used to implement a
dynamic switching scheme. The serial bus is used for reconfiguration control, however,

to increase the control communication bandwidth three serial control buses working in

parallel are employed.

Crossbar Switch

TI 000 3 000 es*
7T

TB - TB

Control Bus I

TB = Transbus

-1 TB

Control Bus 2 - ITB

1ý_L
Control Bus 3

FIGURE 4.6. Structure of a single cluster TRANSBUS system

CTI

: to higher level
crosshar switch

CT2 [-"Ost

; TB:

Three links of each worker transputer are connected to the crossbar switch which is

programmed by the control transputer CT2. One link of each worker transputer is

connected to the TRANSBUS controller, which provides the interface with the control
bus.

The control transputer CTI sends and receives information from the three control
buses. It collects the connection requests, synchronises them and sends acknowledges

to worker transputers for the connections established by the CT2 transputer. Besides

configuring the crossbar switch CT2 provides working transputers with program
loading, collecting computation results and the communication with the host.

This is an efficient and low message latency system. It does however use one of the

valuable communication links on the nodes for connection requests. The system would

J0

provide greater communication bandwidth if this could be avoided. Also the
TRANSBUS controllers although efficient are not commercially available

The novel dynamic-on-demand circuit switched network described in this chapter

employs some of the same principles as detailed in the previous sections. Connection

requests are sent via a memory mapped system to the control processor and a token

passing mechanism is used to select nodes for servicing. Before the final design was
implemented however two other designs were considered. These are described in the

following sections.

4.2 Preliminary Designs

4.2.1 Interrupt Driven Architecture

The hardware design of this system is shown in Figure 4.7 on page 105. Here several

16-1 multiplexers are used to interface the worker nodes to the control processor. The

address pins on the multiplexers (i. e. the pins which select the input that is selected as

the output of the multiplexer) are connected to a counter which effectively counts

through the nodes and if a node requires service then the counter stops and the control

processor is interrupted.

The design shown in Figure 4.7 is for a 32 node system. The number of nodes can be

increased by using more multiplexers.

There are four sets of two multiplexers: -

" the Flag_Out multiplexers

" the Linkln multiplexers

" the LinkOut multiplexers

" the Interrupt Acknowledge multiplexers

Each set can provide a direct connection from the control processor to a node. The

nodes are numbered from 0-31 and the counter effectively addresses each node one at a

time (i. e. direct connections are established simultaneously to the Flag_Out, Int Ack,

Linkln and LinkOut pins on a node) and if a node is requesting service the counter is

stopped.

101

The outputs of the counter are connected to the address inputs on the multiplexers.

These address inputs select which input of the sixteen is connected to the output on the

multiplexer. By connecting DO-D3 on the counter to DO-D3 on the multiplexer this

effectively cycles through all the inputs on the multiplexer. To select which multiplexer

of the two in a set is enabled a2 line to 4 line encoder (See Figure 4.8 on page 106)

enables one of the multiplexers at a time.

CLKEN*on counter
and

(Interrupt Pin -
on

Control Processor)

DO-D7
on

Control Pro

Acknowledge
flag from

control process

Flag-Out Multiplexers

FLAG-OUT
from nodes I

DO

D2
D2 From Counter

____F -I
EN* D3

FLAG-OUT
from nodes

I DO
D1 From Counter I
D2

I
EN* D3 I

C012

BA DO-D7 LinkIn
LinkOut

Int_Ack Multiplexers
-- ---------N

INT ACK to
nodes

DO
-DI From Counter I

D2

*
D3

INT ACK to I

nodes

DO
DI From Counter ý

LD2
EN* D3

FIGURE 4.7. Interrupt Driven Design

Linkin Multiplexers

Linkln from
nodes I

DO
I- DI From

- D2 Counter

I EN* - D3 I

Linkln from I
nodes

DO
DI From I
D2 Counter

% EN* D3

--- Counter
DO

D7
CLKEN

Link Out Multiplexers

LinkOut from
nodes

:I
DO

From D2
Counter

EN*
D3

LinkOut from
nodes

DO
I

-D1 From
D2 Counter I

EN* - D3 /

ins

When a node (the source node) wants to send a connection request to the control
processor it will set it's Flag_Out pin logic true. The outputs of the Flag_Out

multiplexers are connected to CLKEN* of the counter (enables the counter) and the
interrupt pin of the control processor. Therefore when a node is being addressed by the

counter and the Flag-Out pin is logic true (+5V) this will stop the counter (i. e the
CLKEN* pin will be logic false) and interrupt the control processor.

For a 64 node
Enable on multiplexers for

system nodes 48-63
-

LEnable on multiplexers for
nodes 32-47 -
Enable on multiplexers for
nodes 16-31 -
Enable on multiplexers for
nodes 0-15

2-line to 4 line
decoder

Y3
A D4 from counter Y2
B D5 from counter

Yl G* Output from Flamm Out multiplexer
YO

Function Table

G* IBAI YO YI Y2 Y3

H X X ll hI II H
L L L L H 11 H

L L H H L H N
L H L H H L H
H H H H H 11 L

FIGURE 4.8. Connections on 2-line to 4-line decoder

Once the control processor has been interrupted it will send an acknowledge to the

source node to prompt it to send its connection request. This acknowledge is sent via

the Interrupt Acknowledge multiplexers. The interrupt acknowledge line could be

connected to the FLAG_IN input on the requesting node.

The node sends its connection request via the Linkln and LinkOut multiplexers. The

output from these multiplexers is connected to a C012 which is interfaced to the

control processor.

When the control processor has received the connection request it decides whether the

connection required is available by looking up a table stored in memory. If available

the connection is made and a message sent to the source node indicating this. The

source node then transfers data to the destination node via the crossbar switch. The

counter is then restarted by the source node by pulling its FLAG-OUT pin logic false.

106

This design was however rejected mainly because of lack of scalability. As soon as you

add more nodes to the system the number of multiplexers requires to be increased and

the counter extended. For a large number of processors the system would become

impractical. Also the set-up uses one of the links on the nodes to send connection

requests making poor use of the total communication bandwidth available from the

nodes.

4.2.2 Memory Mapped Architecture using the COM20020 Network
Controller

This design uses COM20020 Universal Local Area Network Controllers? to interface

the nodes to the control processor (See Figure 4.9). It is similar to the design using the

TRANSBUS controller described previously in that a token passing mechanism is used

to restrict access to the serial bus connected to the control processor. However in this

case the network controller is memory mapped to the nodes instead of using one of the

links on the nodes to send the connection requests.

FIGURE 4.9. CON, 120020 Interface to Control Processor

The COM20020 is a special purpose communications controller for networking

microcontrollers and intelligent peripherals using an ARCnet protocol. It is interfaced

I07

to nodes via an 8-bit data bus, an address bus and control bus (See Figure 4.10). Data is

transmitted via a serial bus that supports data rates from 156.25 Kbps to 5.0 Mbps.

XTAL 10
CON120020

XTAL2

ADO-AD7

ALE

ADO-AD2, D3-D7 RXIN

A2/BALE

S* A 15 C

TX N
RESET

* E RESET IN*

RD* No-

PULSEI

RD*/DS* PULSE2*

WR* WR*IDIR
INTI *1 «t -1 INTR* CND

=

AO/MUX* I=

8051

L HQ1

FIGURE 4.10. Multiplexed, 8051 - like bus interface with CO14120020

If a node wants to transmit data it simply loads a data packet and its destination ID into

the COM20020 RAM buffer, and issues a command to enable the transmitter. When

the COM20020 next receives the token it first verifies that the receiving node is ready,

and if so it transmits the data packet followed by a 16-bit CRC (cyclical redundancy

checksum). If the receiving node is not ready then the token is simply passed on.

The token is passed between the controllers by transmitting an Invitation to Transmit

signal from controller to controller. This is given by the following sequence of bits: -

" An ALERT BURST (6 unit intervals of logic 1)

" An EOT (End of Transmission: ASCII code 0411)

" Two (repeated) DID (Destination ID) characters

By interfacing a COM20020 to all the nodes in a network and to a control processor it

is possible to send connection requests to the control processor via a memory mapped

109

system. When a node wants to send a connection a request it simply loads the message
into the COM20020 along with the destination ID of the control processor.

Although this architecture leaves all of the communication links on the nodes free for

inter-node communication its main drawback is the message latency of the COM20020

(-100 µs). This does not provide very efficient communication with the control

processor. In order to achieve greater performance benefits over packet switching

schemes using INMOS OSLinks, a faster link to the control processor is required.

The best features of the previous two designs such as the token passing protocol and
the fast Inmos OSLink to the control processor were used in the final design.

4.3 Novel dynamic `on-demand' circuit switched network
This combines an INMOS OSLink, memory mapping and a token passing mechanism

to communicate with the control processor8

The same principles as the TRANSBUS system are employed except that several

commonly available integrated circuits (ICs) are utilised to interface the nodes with the

control processor. Connection requests from the nodes are sent via a memory mapped

system which leaves all the links on the nodes free for interprocessor communication.
The nodes are not restricted to transputers, the system can be used with any processor

which provides an external memory interface.

4.3.1 Basic Procedure

When a node (the source node) wants to communicate with another node (the

destination node) via a crossbar switch, it writes its connection request (a three byte

packet) into a FIFO (First In First Out Memory), which stores the request until it is

honoured. To select nodes for servicing a token passing protocol is used.

The token circulates between the nodes and when a node receives the token and there is

a request pending, the request is passed out of the FIFO to the control processor, via an

INMOS OSLink. The control processor then decides whether the required connection

is available and if so makes the connection. A message indicating success or failure to

109

make the connection is sent to the source node. In this way the control processor

processes connection requests from the nodes in a sequential manner.

4.3.2 Hardware subsystem
A diagram of the hardware for one node is illustrated in Figure 4.11. A node requiring

service writes its connection request into the First In First Out Memory (FIFO), which
is mapped into the nodes memory address space. This allows the node to continue with

other tasks while its connection request remains stored in the FIFO until honoured.

When a node receives the token, its request is clocked out of the FIFO into a COI I Link

Adapter (explained later). The data is then transferred via the INMOS OSLink to the

control processor which programs the crossbar switch. Access to the link is gated by a

buffer ('125) which is only enabled when the node has the token and there is a request

pending.

CROSSBAR SWITCH

PLD
FIFO

Node CLOCKING

TOKEN O --Token Passing
HANDLER IN --Bus

2 1/8

C012

245'

OCTAL BUS fFO _..
TRANSCEIVER 1DT7200

8

QO-7 10-7

8
cot i

L-Y '125
CONTROL

PROCESSOR
8

CO 12
_

To other nodes

FIGURE 4.11. Dynamic Interconnection Network (1 node)

110

There are therefore four basic elements to the design: -

" token passing

" fifo clocking

" hardware interface to control processor

" software on the control processor

These will be described individually along with the test hardware/software used to

verify the principles

4.3.3 Token Passing

4.3.3.1 State Machines

The token passing is achieved by a finite state machine (SM) implemented in PLDs. A

state machine has a set of states and a set of transition rules for moving between the

states at each clock edge (the clock is derived externally). The transition rules depend

on the both the present state and on the particular combination of input levels present at

the next clock edge.

A diagram of a state machine is shown in Figure 4.12 on page 112. The information

stored in the memory section, as well as the inputs to the combinatorial logic (to, It,

....., 1m) is required for proper operation of the circuit. At any given time, the memory is

in a state called the present state and will advance to a next state on a clock pulse as

determined by conditions on the excitation lines (Yo, Yt,, Y,). The present state of

the memory is represented by the state variables (Qo, Qt,, Qm). These state

variables, along with the inputs (Io, It,,
Im), determine the system outputs (Oo, Ot,

....., Urn)

Not all state machines have input and output variables as described. Sometimes the

state variables are also the outputs (i. e. the state variables bypass the combinatorial
logic).

Since PLDs contain combinatorial logic and memory they are ideal for implementing

state machines. The programming language CUPL (as explained in Chapter 2) contains

special instructions for state machine design. These will be explained in the course of

describing the token passing using a finite state machine.

Iii

I0

Inputs
I1

In

State
Variable
Lines

CLK

FIGURE 4.12. State Machine

00
O,

Outputs

On

Excitation Lines

4.3.3.2 Token passing using a finite state machine implemented in PLDs

The token is effectively a bit (binary `I') which passes between the PLDs and each

node has a PLD associated with it (See Figure 4.13). The token passing bus consists of

two lines: one which passes the token and one which acknowledges the passing of the

token. The state variables are TokenOut and AckOut, and the inputs are Tokenln,

Ackln, and HoldToken. The clock used for the token passing is 8MHz.

FIGURE 4.13. Token Passing

If a node receives the token and there is a request packet in the FIFO, then the token

must be retained until the FIFO has been emptied and the node no longer requires the

112

token. This is achieved by the HoldToken signal, which is generated by using a

combination of the Empty_Flag* (EF*) signal from the FIFO (logic false (+5V) when

the FIFO contains bytes), and a D-type flip-flop (See Figure 4.14).

The Q-output of the flip-flop is used as the HoldToken signal. The EF* signal clocks

the flip-flop: therefore when EF* becomes logic false (+5V) indicating data is in the

FIFO, the level at the D-input (logic high (+5V)) is transferred to the Q-output of the

flip-flop. To release the token, the node pulls the CLR* signal on the flip-flop logic low

(0V) for a short period, which clears the Q-output back to logic low releasing the

token.

+5V

+5Vº I PRE
Qf --HoldToken

CLR

To Node

(+5V)
(EF*}, _J

I (0V)

D (+5V)
(0V)
(+5V)

(NoldToken) Q (0V)
CLR (-'- (+5V)

(OV)

FIGURE 4.14. Generation of IIoldToken signal

A state diagram (diagram which represents the mechanism of a state machine) for the

token passing state machine is shown in Figure 4.15 on page 114. The SM remains in

state zero (SO) until the token arrives (i. e Tokenln = 1) and then on the next clock edge

proceeds to state one (Si) which acknowledges the arrival of the token by setting

AckOut true. If HoldToken is true then the state machine remains in state one (Si),

otherwise on the next clock edge it proceeds to state two (S2) which passes the token

on by setting TokenOut logic true.

113

The SM does not go back to state zero until the passing of the token has been

acknowledged (AckIn = 1). To inject the token into the system one state machine is

programmed with the initial state holding TokenOut true (i. e the initial state is S2).

4.3.3.3 Token passing test circuit

To verify the algorithm for the token passing a test circuit was built (See Figure 4.16 on

page 115). This contained three PLDs (GALI6V8s) each programmed with the token

passing state machine. Light Emitting Diodes (LEDs) were attached to the Ackin pins

in order to see the token as it passes round the circuit. To enable the flashing of the

LED to be seen the state machine was clocked manually by toggling a switch. The

switch is debounced by an S-R flip-flop. A photograph of the test circuit is shown in

Appendix D, Figure 3 on page 305.

7 so
AckOut =0 TokenIn =0

TokenOut =0

Tokenln= I

S1
AckOut =1

TokenOut =0

HoldToken =I

0= logic `false'

I= logic `true'

FIGURE 4.15. State Diagram for token passing

AckIn =0

The state machines were programmed using the CUPL language. The source code for

the token passing state machine is shown in Figure 4.17 on page 116 and the source

code for the state machine that injects the token is shown in Figure 4.18 on page 117.

AckIn =I

1S2
AckOut =0

HoldToken =0
TokenOut =I

U4

O

to rOn

IC C) ö

ö C
00 1=4 >

C0

ý-3 to

.A+ CC
0

On

0
r

xy
00

o rý

QJC
E--1 N

v
O

2
Vý

ýýC a
00

ö
o

FIGURE 4.16. Token passing test circuit

115

/**INPUTS**/

PIN 1 =CLK;
PIN 2 =TOKENIN;
PIN 3 =IACKIN;
PIN 4 =RESET;
PIN 5 =HOLDTOKEN;
PIN 11 =10E;

/**OUTPUTS**/

PIN 14 =TOKENOUT;
PIN 15 =! ACKOUT;

FIELD STATEBIT =[TOKENOUT, ACKOUT);

$DEFINE SO 'b'00
$DEFINE Si 'b'Ol
$DEFINE S2 'b'10

/**DEFINITIONS**/

NOTOKEN = ITOKENIN & ! RESET;
TOKEN = TOKENIN & ! RESET;
TOKENPASSED = ACKIN & ! RESET;
TOKENNOTPASSED = ! ACKIN & ! RESET;

NOTHOLD = ! HOLDTOKEN & ! RESET;
HOLD = HOLDTOKEN & ! RESET;
CLEAR = RESET;

SEQUENCE STATEBIT[

PRESENT SO IF NOTOKEN NEXT SO; /*TOKEN NOT ARRIVED*/
IF TOKEN NEXT Si; /*TOKEN ARRIVED*/
IF CLEAR NEXT SO; /*RESET*/

PRESENT Si IF NOTHOLD NEXT S2; /*PASS TOKEN*/
IF HOLD NEXT Si; /*HOLD TOKEN*/
IF CLEAR NEXT SO; /*RESET*/

PRESENT S2 IF TOKENPASSED NEXT SO; /*TOKEN PASSED*/
IF TOKENNOTPASSED NEXT S2; /*TOKEN NOT PASSED*/
IF TOKEN NEXT SO; /*POWER-UP STATE */
IF CLEAR NEXT SO; /*RESET*/

FIGURE 4.17. CUPL source code for token passing

116

/**INPUTS**/

PIN 1- CLK;
PIN 2 TOKENIN;
PIN 3 ! ACKIN;
PIN 4= RESET;
PIN 5= KEEPTOKEN;
PIN 11 ! OE;
/**OUTPUTS**/

PIN 14 = TOKENOUT;
PIN 15 = ! ACKOUT;
FIELD STATEBIT= [TOKENOUT, ACKOUTI;
$DEFINE SO 'b'10
$DEFINE Si 'b'00
$DEFINE S2 'b'O1

/**DEFINITIONS**/

SEQUENCE STATEBIT(
NOTOKEN = ! TOKENIN & ! RESET;
TOKEN = TOKENIN & ! RESET;
TOKENPASSED= ACKIN & ! RESET;
TOKENNOTPASSED= ! ACKIN & ! RESET;
NOTHOLD = ! HOLDTOKEN & ! RESET!
HOLD = HOLDTOKEN & ! RESET;
CLEAR = RESET;

PRESENT SO IF TOKENPASSED NEXT $1; /*TOKEN PASSED*/
IF TOKENNOTPASSED NEXT SO; /*TOKEN NOT PASSED*/
IF TOKEN NEXT SO;
IF CLEAR NEXT SO; /*RESET*/

PRESENT Si IF NOTOKEN NEXT Si; /*TOKEN NOT ARRIVED*/
IF TOKEN NEXT S2; /*TOKEN ARRIVED*/
IF CLEAR NEXT SO; /*RESET*/

PRESENT S2 IF NOTHOLD NEXT S2; /*PASS TOKEN*/
IF HOLD NEXT S2; /*HOLD TOKEN*/

}
IF CLEAR NEXT SO; /*RESET*/

FIGURE 4.18. CUPL source code for node which injects token in to system

The syntax for the state machine is fairly self explanatory. The state variables (also the

outputs) are defined using the FIELD statement and the three states (SO, S1 and S2) of

the state variables are defined using the $DEFINE statement. A binary (`b') 0 in the

$DEFINE statement indicates the state variable is logic false and a binary I indicates

the state variable is logic taue (independent of whether it was defined active high or low

in the pin assignments).

117

The "DEFINITIONS" define the different combinations on the input pins and the
SEQUENCE statements actually run the state machine. For each state (S0, S1 and S2)

the next state is determined by the levels on the input pins at the next clock edge. By
following through the SEQUENCE statements and comparing them with the state
diagram it is reasonably simple to see how the state machine functions.

The HoldToken signal was generated placing a jumper between the signal and ground
(by default the signal is pulled logic high). This was obviously just for test purposes.

4.3.4 FIFO Access

4.3.4.1 C011

The connection request in the FIFO must be clocked out a byte at a time to the CO11

and then sent to the control processor. A CO11 is similar to a C012 in that it converts a
bi-directional serial link into parallel data streams. The link adapter can operate in one

of two modes.

In Mode I the IMS COI 1 converts between a link and two independent fully

handshaken byte-wide interfaces, one input and one output. It can be used by a

peripheral device to communicate with a transputer, an INMOS peripheral processor,

or another link adapter, or it can provide programmable input and output pins for a

transputer.

When in Mode 2 the COI l provides an interface between an INMOS serial link and a

microprocessor system bus. In fact a C011 behaves in exactly the same way as a C012

when in Mode 2. However, the COI 1 used in the dynamic on-demand circuit switched

network is in Mode 1 (See Figure 4.19).

The eight bit parallel input port I0-7 can be read by a transputer family device via the

serial link. IValid and lAck provide a simple two-wire handshake for this port. When

data is valid on 10-7, IValid is taken high by the peripheral device to commence the

handshake. The link adapter transmits data presented on 10-7 out through the serial

link.

118

VDU
GNE

CapMinus

LinkOut
Linkln

FIGURE 4.19. IMS Coll Mode 1 block diagram

I0-7

IAck
[Valid

QO-Q7

QAck
QValid

After the data byte transmission has been completed and an acknowledge packet is

received on the input link, the IMS CO11 sets IAck high. To complete the handshake,

the peripheral device must return IValid low. The link adaptor will then set IAck low.

The eight bit parallel output port QO-7 can be written to by a transputer family device

via the serial link. Qvalid and QAck provide a simple two-wire handshake for this

port.

A data packet received on the input link is transferred onto QO-Q7; the link adapter

then takes QValid high to initiate the handshake. After reading the data from QO-Q7,

the peripheral device sets QAck high. The IMS CO11 will then send an

acknowledgement packet out of the serial link to indicate a completed transaction and

set QValid low to complete the handshake.

The rest of the signals on the CO11 are the same as a C012 apart from the SeparatelQ

signal. This is used to set the CO11 to the different modes (Mode 1 and Mode 2). Mode

1 is selected by connecting SeparatelQ to VDD (sets the LinkSpeed to 1OMbits/sec)

or to Clockln (20Mbits/sec).

In the circuit switching network it is the input port (10-7) that is connected to the FIFO

and the output port (QO-7) is connected to a buffer.

119

4.3.4.2 FIFO clocking state machine

The clocking of the data from the FIFO to the C011 is achieved by a finite state

machine (See Figure 4.20).

The state machine controls the RD* (read) signal on the FIFO and the IAck and IValid

signals on the C011. Pulling the RD* signal low transfers a byte out of the FIFO to the
COI 1 parallel port. In order to transmit the byte from the parallel port to the INMOS

OSLink, IValid is pulled high. To indicate the byte has been transferred successfully
IAck is pulled high by the COI 1 and then IValid returned low by the SM.

The Empty_Flag* on the FIFO signals to the state machine when data is present in the

FIFO, and an output called TokenArrived from the token passing state machine
indicates when the token is present. The state machine waits at SO while the FIFO is

empty or the token has not arrived. When the token arrives and there is data in the

FIFO the SM then proceeds to S1 on the next clock edge and this initiates a read cycle

on the FIFO. On the next clock edge the SM then unconditionally jumps to S2 which

takes IValid true and enables the buffer ('125) that restricts access to the serial bus.

The SM then waits for lAck to become true, indicating the transfer of a byte to the

INMOS OSLink, before proceeding back to SO.

TokenArrived =0

SO
IValid =O

EnableBuffer= 0
ReadFifo= 0

Empty-flag =I

TokenArrived =I
Empty-flag =0

/ sI
IValid =0

EnableBuffer =
ReadFifo =1

0= logic 'false'
I= logic 'true'

FIGURE 4.20. State Diagram for FIFO clocking

lAck =I

S2
IValid =1

EnableBuffer =I
,

ReadFifo =I,

IAck=0

120

4.3.4.3 Fifo clocking test Circuit

To test the state machine for the FIFO clocking a test circuit was built on a PC card

(See Figure 4.21). A byte (or bytes) is written from the PC into the FIFO and then the

state machine clocks the byte (or bytes) out of the FIFO to the COI 1. The message is

then sent from the COI 1 via the '125 buffer to the DB9 connector which is connected to

a dual link adapter board (as described in Chapter 3) plugged into the same PC. A

photograph of the circuit board is shown in Appendix D, Figure 4 on page 305.

244' FIFO coil

DO- IAI IY1 DO QO 10 QO
D1 1A2 1Y2 D1 QI 11 QI

D2- 1A3 1Y3 D2 Q2 12 Q2

D3- 1A4 1Y4 D3 Q3 13 Q3

D4- 2A1 2Y1
g

D4 Q4 14 Q4

D5- 2A2 2Y2 D5 Q5 15 Q5

D6- 2A3 2Y3 D6 Q6 16 Q6

D7 2A4 2Y4 D7 Q7+SV ÄCK Q7
1G* 2G* D8 ART 4.7k

IVALID QQAIL 0V
t

W* EF VDD LINKI

PC Bus XI FF* -C r CAPMINUS
XO/HF R* RESET LINKO

0V RS* SEPARATE IQ

P. C Bus

22V10 4.7ks1 Sti1liz
PCLK 16V8 ` 125

A9 EN* ýF* ReadFifo 2Y 2A 4752
IValid A8

WritcFifo IAck IAly

A6
22k11

AS SysReset Reset
OV

A4- FifoRese
A3-
A2- IG*
AI EnabIcBuffer
AO 2G*

AEN*
IOW*

RESET
DO

FIGURE 4.21. Fifo clocking test circuit

121

The message is received by the dual link adapter board and it is then compared with the
message transmitted to the FIFO to verify that the message is being transferred

correctly.

A PAL (P22V I OL) is used for the FIFO address decoding (CUPL source code for the
PAL is shown in Figure 4.22).

/**INPUTS**/
PIN 1= PCLK;
PIN 2= A9;
PIN 3= A8;
PIN 4= A7;
PIN 5= A6;
PIN 6= A5;
PIN 7= A4;
PIN 8= A3;
PIN 9= A2;
PIN 10 = Al;
PIN 11 = A0;
PIN 13 = ! NOTAEN;
PIN 14 = ! NOTIOW;
PIN 15 = RESETDRV;
PIN 16 = DO;

/**OUTPUTS**/

PIN 17 = ! EN;
PIN 18 = ! WRITEFIFO;
PIN 19 = SYSRESET;

PIN 20 = LATCHRESET;
PIN 21 = FIFORESET;

/**RESETS AND PRESETS**/

LATCHRESET. AR = 'b'0;
LATCHRESET. SP = 'b'0;

/**DEFINITIONS**/

FIELD ADDRESS = [A9.. A0];

/**INTERMEDIATE VARIABLES**/

FIFO = ADDRESS: 'h'[100] & NOTAEN;
WRITERESET = ADDRESS: (101] & NOTAEN & NOTIOW;

WRITEFIFO = NOTIOW & FIFO & ! RESETDRV;

EN = WRITEFIFO;
LATCHRESET. d = DO & WRITERESET # LATCHRESET & ! WRITERESET;
SYSRESET = RESETDRV # LATCHRESET;

FIFORESET = SYSRESET;

FIGURE 4.22. CUPL source code for P22V10L in FIFO clocking circuit

122

In order to write data into the FIFO the PC writes to address H#100. This is similar to

the address decoding for the dual link adapter board in Chapter 3. Also similar is the

system reset which again allows the user to reset the board by writing a binary `1' to

address H#101. The board is also reset during power on as SYSRESET is logic true

when RESETDRV (the PCs system reset) is logic true.

The CUPL source code for the FIFO clocking is shown in Figure 4.23 on page 124.

Again by comparing this code with the state diagram for the FIFO clocking it should be

clear how the code functions. The main difference between the code and state diagram

is that in the code there is also a third state (S3). This is required as the PAL will power

up in this state and needs to be reset to state zero (SO). Also the TokenArrived signal

from the token passing state machine is not required as it is only the FIFO clocking that

is being tested.

4.3.5 Hardware Interface to control processor

This circuit contains the control processor (an Analog devices ADSP-2105), two

C012s, an EPROM and a PAL (See Figure 4.24 on page 125). The serial link on one of

the C012s is connected to the Inmos OSLink connected to the nodes and the other

C012 is connected to the crossbar switch. The control processor receives messages

from the nodes' via one C012 and then programs the crossbar switch via the other

C012. A photograph of the circuit board is shown in Appendix D, Figure 5 on page

306.

4.3.5.1 ADSP-2105

The ADSP-2105 is a 12MHz microcomputer suitable for high-speed numeric

processing applications"n. It contains 1K words of on-chip program memory RAM

and 512 words of on-chip data memory RAM (i. e Harvard Architecture). The internal

program memory can be loaded from an EPROM (i. e. the contents of the EPROM are

loaded into program memory).

123

/**INPUTS**/

PIN 1
PIN 2
PIN 3
PIN 5
PIN 11

/**OUTPUTS**/
PIN 12
PIN 13
PIN 14

=CLK;
=IACK;
=! EF;

=CLEAR;
=! OE;

=IVALID;
=! ENABLBUFFER;

=! READFIFO;

FIELD STATEBIT=(IVALID, ENABLEBUFFER, READFIFOJ;

$DEFINE SO 'b' 000
$DEFINE Si 'b' 001
$DEFINE S2 'b' 111
$DEFINE S3 'b' 100

/**DEFINITIONS**/

FIFOEMPTY =EF & ! CLEAR;
FIFONOTEMPTY =IEF & ! CLEAR;
DATASENT =IACK & ! CLEAR;

DATANOTSENT =! IACK & ! CLEAR;

RESET =CLEAR;

SEQUENCE STATEBIT(

PRESENT SO IF FIFOEMPTY NEXT SO;

IF FIFONOTEMPTY NEXT Si;

IF RESET NEXT SO;

PRESENT Si IF RESET NEXT SO;
IF FIFOEMPTY NEXT S2;
IF FIFONOTEMPTY NEXT S2;

PRESENT S2 IF DATANOTSENT NEXT S2;
IF DATASENT NEXT SO;

IF RESET NEXT SO;

PRESENT S3 NEXT SO;

}

FIGURE 4.23. CUPL code for FIFO clocking

124

0 C

ö

ýný

I- r- 0r
cn 0 n p

y 0
dC Ui -

-

0 N

Gý

.ý x N

-Pb

C `rf

rr moor, >n

ý1QlnA WNro fn ý. (ý

z öö
nný.
U) (A F;

%0 00 -j M tA
Oýln iý WN ý-' O

dM rM
M ý'C J Oh lA

au

L+

N

0 G

N
iy

de aaa aaaaaa aas r
. +O W

Ný+ OýOOo
J ON AW NH * Vl i`

C.)

N

C C C
_

+iý NA
A
v

A
J

A

+ýr1 p

A

J

Fo'
0

1ý p ý 9 --v II ý ýý En
7d O ý O a, ö * 'n

n d CC7u >'> N
cl ut7t u0 t: i ti CC7+ º. + º.. . . .

'. n U'
.

'ýýý [ý'] ~'
p p ý ý

ý
ý

..
(º Q ý.. ý

n... .. r. b d dd d d d: V ýC1
1'ýT`iý

ý r'f ýfýTý' 1 14- -0 Lzro
-I Qh V1 ZWN-r

Y Y- Y

FIGURE 4.24. Hardware Interface to Control Processor

125

The core architecture of the ADSP-2105 consists of the following elements:

" Arithmetic-Logic Unit (ALU)

" Multiplier-Accumulator (MAC)

" Barrel Shifter

" Two Data Address Generators (DAG)

" Program Sequencer

" Program Memory Address (PMA) Bus

" Program Memory Data (PMD) Bus

" Data Memory Address (DMA) Bus

" Data Memory Data (DMD) Bus

" Result (R) Bus

Figure 4.25 on page 127 shows a block diagram of this core internal architecture

The computational units process 16-bit data directly and have provision to support

multiprecision computations. Table 4.1. shows the operations performed by each of the

computational units.

Computational Unit Operations Supported

ALU Arithmetic and Logic (Division Primitives also)
MAC Single-cycle multiply, multiply/add and multiply/subtract
Shifter Logical and arithmetic shifts, normalisation, denormalisation and

derive exponent
TABLE 4.1. Operations supported by Computational Units

Instruction addresses are supplied to the program memory from the program sequencer.

The sequencer is driven by the Instruction Register which holds the currently executing

instruction. Instructions are fetched, loaded into the instruction register, and decoded

during one processor cycle; and executed during the following cycle while the next

instruction is prefetched.

The data address generators (DAGs) handle address pointer up-dates. Each DAG

maintains four address pointers. Whenever the pointer is used to access data (indirect

addressing), it is post-modified by the value of a specified modify register. A length

value may be associated with each pointer to implement automatic modulo addressing

for circular buffers. The two DAGs differ: DAG I only generates data memory

addresses, but provides an optional bit-reversal capability; DAG2 can generate both

data memory and program memory addresses, but has no bit-reversal capability.

126

Data Data
Address Address
Generator Generator Program
#1 #2 FýA Sequencer

14 PMA BUS

DMA BUS

PMD BUS

16 DMD I3US

INPUT REGS IIII INPUT REGS IIII INPUT REGS

ALU III r'N MAC III r--'N SHIFTER

OUTPUT REGS K ;: J III OUTPUT REGS-k III OUTPUT REGS

16RBUS

FIGURE 4.25. Core Architecture of ADSP-2105

Five internal buses support the internal components: The PMA and DMA buses are

used internally for the addresses associated with Program and Data Memory. The

Program Memory Data (PMD) and Data Memory Data (DMD) buses are used for the
data associated with the memory spaces. These two pairs of buses are multiplexed off

chip to the external address and data buses. The BMS* (Boot Memory Select),

DMS*(Data Memory Select) and PMS* (Program Memory Select) signals (pins) select

the different address spaces. The R bus is an internal bus which transfers intermediate

results directly between the various computational sections.

The contents of any register in the processor can be transferred to any other register or
to any external data memory location in a single cycle via the DMD bus. The data

memory address comes from two sources: an absolute value specified in the instruction

127

code (direct addressing) or the output of a data address generator (indirect addressing).
Only indirect addressing is supported for data fetches from program memory.

Program memory can store both instructions and data, permitting the ADSP-2105 to
fetch two operands in a single cycle, one from program memory and one from data

memory. The ADSP-2105 can fetch an operand from on-board program memory and
the next instruction in the same cycle.

The ADSP-2105 contains many registers. Some of these store values; i. e AXO stores an
ALU operand, 14 stores a DAG2 pointer. Other registers consist of control bits and
fields, or status flags. For example, ASTAT contains status flags from arithmetic

operations, and fields in DWAIT control the numbers of wait states for different zones

of data memory. The purpose of each of the registers will be explained as required

whilst describing the software developed for the ADSP-2105.

The instruction set provides flexible data moves and multifunction (one or two data

moves with a computation) instructions. Every instruction can be executed in a single

processor cycle. The ADSP-2105 assembly language uses an algebraic syntax for ease

of coding and readability. The details of the assembler will be described when the

software for the switching network is explained.

The ADSP-2105 is supported by a complete set of tools for software and hardware

development. The System Builder provides a high-level method for defining the

architecture of systems under development. The Assembler produces object code and

the Linker combines object code modules and library calls into an executable file. To

aid in hardware and software debugging of ADSP-2105 systems an interactive

instruction level simulator is provided. To create a PROM burner compatible file a

PROM splitter is used.

4.3.5.2 Interface between ADSP-2105 and EPROM

The ADSP-2105 in the switching network is booted from an EEPROM. The boot

memory space consists of an external 32K by 8 space, divided into eight separate 4K

by 8 pages. Boot loading from page 0 after RESET* is initiated automatically if the

MMAP pin is grounded.

128

Figure 4.24 on page 125 shows the interface between the ADSP-2105 and the
EEPROM (28F256). The 28F256 is an 32K by 8 electrically erasable PROM. When

the CE* and OE* pins are pulled logic low and WF* is logic high, the data stored at the

memory location determined by the address pins is asserted on the outputs. The outputs
are put in the high impedance state whenever CE* or OE* is high.

To initiate a programming cycle a low pulse is applied to the WF* or CE* input with
CE* or WF* low (respectively) and OE* high. The address is latched on the falling

edge of CE* or WF*, whichever occurs last. The data is latched by the first rising edge

of CE* or WF*. Once a byte write has been started it will automatically time itself to

completion. During a write cycle a supervoltage of 13V is applied to the Vpp pin.

The 28F256 is interfaced to the ADSP-2105 via the BMS*, D0-D7 and A0-A14 lines.

The BMS* signal (active low) is used to select the boot memory interface and therefore
this pin is attached the OE* and CE* pins on the 28F256; both these pins require to be

low when reading from the EEPROM. The WF* pin is pulled logic high permanently

as the 28F256 is only read from the ADSP-2105 and not written to.

Pins DO-D7 on the 28F256 are connected to pins D8-D15 on the ADSP-2105 as these

are the pins used for 8-bit data on the microcontroller. The address lines between the

two chips are connected as normal except for A14 which is connected to D22 on the
ADSP-2105. This is as in order to accommodate up to eight pages of boot memory, the

two MSBs of the data bus are used in the boot memory interface as the two MSBs of

the boot address space.

The VP1, pin used to apply the supervoltage to program the device is grounded when in

circuit.

4.3.5.3 Interface between ADSP-2105 and C012s

The ADSP-2105 is interfaced to two C012s; one connected to the nodes and the other

to the C004 crossbar switch. A PAL (P22V I OL) is used to address the two C012s. The

CUPL source for the P22V10 is shown in Figure 4.26 on page 130.

129

Pin 1
Pin 2
Pin 3
Pin 4
Pin 5
Pin (6.. 11]
Pin [13.. 18]

PCLK;
! NOTDMS;
I NOTWR;
INOTRD;
! NOTRESET;

[A2.. A7];
[A8.. A13];

/*PROCESSOR CLOCK */
/*DATA MEMORY SELECT SIGNAL */
/*WRITE SIGNAL */
/*READ SIGNAL
/*RESET SIGNAL FROM LKADAP BOARD
/*ADDRESS LINES*/
/* ADRESS LINES*/

/**Outputs**/

Pin 19
Pin 20
Pin 21
Pin 22
Pin 23

= ! NOTWRITE; /*NOTWRITE ON C012S*/
_ ! NOTCSLKADPO; /*SELECT LINK ADAPTER 0*/
= ! NOTCSLKADP1; /*SELECT LINK ADAPTER 1*/
= RESET; /*RESET*/

= ! NOTSTATWR; /*DELAY WRITE SIGNAL*/

/** Declarations and Intermediate Variable Definitions **/

FIELD ADDRESS
LKADP_1
LKADP_O
NOTSTATWR
READLKADP1
READLKADPO
WRITELKADP1
WRITELKADPO

(A13.. A2J;
ADDRESS: (4];
ADDRESS: (8);

NOTWR;
LKADP_1 & NOTRD & NOTDMS;
LKADP_O & NOTRD & NOTDMS;
LKADP_1 & NOTWR & NOTDMS;
LKADP_O & NOTWR & NOTDMS;

/** Logic Equations **/

NOTWRITE = NOTWR # NOTSTATWR;
NOTCSLKADPO = READLKADPO # (WRITELKADPO & NOTSTATWR);
NOTCSLKADP1 = READLKADPI # (WRITELKADPI & NOTSTATWR);
RESET = NOTRESET;

FIGURE 4.26. CUPL source code for P22V10

This interface is very similar to the interface to the PC ISA Bus used in the Dual Link

Adapter board described in Chapter 3. The inputs to the P22V 10 are CLKOUT,

DMS*, WR*, RD*, A2-A13 from the DSP2105 and RESET* which is from a link

adapter board. The outputs are the RnotW, NotCs* and Reset signals for the C012s.

The DMS* strobe is used to select the data memory and the WR* and RD* signals are

the write and read signals respectively. The intermediate variables LKADP_1 and
LKADP_O define the addresses of the C012s. Like the situation in the dual link

adapter board the NotIOW signal has to be delayed to create the NotCS* signals and

therefore the NotStatWr. d signal is created.

130

The intermediate variables and logic equations are very similar to those described for
the dual link adapter board. The main difference is that when reading and writing to the
C012s the DMS* signal must also be true (as well as the RD* or WR* strobes and
address). To reset the C012s the ! NOTRESET signal is inverted as the C012 reset is

active high.

4.3.5.4 Other connections to ADSP-2105

All the inputs to the ADSP-2105 that are not used are tied to +5V. An 8MHz crystal

oscillator is connected between the CLKIN and XTAL. To allow the C012 connected

to the nodes to interrupt the ADSP-2105 when a byte has arrived the Outputlnt and
Inputlnt pins on the C012 are connected via an OR gate to the IRQ2 (External

Interrupt Request #2) input on the ADSP-2105.

4.3.5.5 Testing of Circuit

To test the booting from EEPROM code was developed which flashed an LED

connected to the FLAG_OUT pin on the ADSP-2105. The programmable interval

timer which can generate periodic interrupts was used as a signal to turn the light off

and on.

The system specification source file (. SYS file)" which describes the target hardware

is shown in Figure 4.27 on page 132. This SYS file is processed by the system builder

to generate an architecture description file (. ACH file). The ACH file is interpreted by

the linker in order to place relocatable code and data fragments in memory.

The SYSTEM directive at the start of the code assigns the name control to the

architecture description and marks the start of the file. To identify the processor type

the statement . ADSP-2105 is required. The MMAP directive specifies the state of the

MMAP pin on the ADSP-2105 device. Defining MMAP as 0 indicates that boot

memory is to be loaded into the chip's internal program memory beginning at address

H#0000.

131

. SYSTEM control;

. ADSP2105;

. MMAPO;

. SEG/BOOT=O/ROM boot_meml[1024];

. SEG/RAM/ABS=H#3800/DM/DATA int_dm[512];

. SEG/RAM/ABS=O/PM/DATA/CODE int-pm[1024];

. ENDSYS;

FIGURE 4.27.. SYS file for flashing light

The SEG directives declare the system memory segments and their characteristics.

Memory segments can be declared in any order. In this case it is only the boot memory

space (boot_meml), the internal program memory (int_pm) and the internal data

memory (int d» i) that are declared.

To identify the iK-word segment for one page of boot memory the boot_meml

segment is declared. The int dm declaration identifies 512 bytes of on-chip data

memory starting at absolute address H#3800. The memory space from H#0-H#3800 is

reserved for external RAM and from H#3A00 to H#3FFF is reserved for control

registers for the system, timer, wait state configuration and serial port operations.

The int^pm declaration identifies the 1K of program memory starting at absolute

address 0 which can store both code and data. There is no external data or program

memory in the circuit

To mark the end of the file the ENDSYS directive is used. The system builder stops

processing when it encounters the directive.

The assembler source code (. ASP file)" which flashes the LED is illustrated in

Figure 4.28 on page 133. To mark the beginning of the program module and define the

module name (flash-led) the MODULE directive is used. The . INCLUDE directive is

used to include another source file in the file being assembled. The file included in this

case (DEF2105. h) initialises the memory mapped control registers and gives them

symbolic names (i. e. Sys_Ctrl_Reg for the System Control Register). This makes

manipulation of the registers simpler in the program.

132

. MODULE/RAM/BOOT=Oflash_led;

. INCLUDE<E: \ADI_DSP\INCLUDE\DEF2105. h>;

JUMP restarter; NOP; NOP; NOP;
RTI; NOP; NOP; NOP;
NOP; NOP; NOP; NOP;
NOP; NOP; NOP; NOP;
NOP; NOP; NOP; NOP;
JUMP flash; NOP; NOP; NOP;

restarter: CALL initialisations;
wai t_loop : IDLE;

JUMP wait_loop;

initialisations: AXO=H#FFFF;
DM(Tperiod_Reg)=AXO; (Set counter)
DM(Tcount_Reg)=AXO;
AXO=H#1B;
DM(Tscale_Reg)=AXO;
IMASK=1;

ENA TIMER;
RTS;

flash: TOGGLE FLAG_OUT;
RTI;

. ENDMOD;

FIGURE 4.28. Source code for flash. dsp

The first 28 addresses in program memory contain the restart and interrupt vectors
(0x0000 - Ox001B). The 29th PM address (Ox001C) holds the first program instruction.

Since flash_led is declared at absolute address zero, the first 28 instructions are placed
in the interrupt vector locations. As flash_led uses only the restart (0x0000) vector and

the TIMER interrupt the remaining instructions are simply returns (RTI) or non

operations (NOP).

The routine initialisations initialises the timer. It is the period register (Tperiod_Reg)

that holds the period of the interrupt in cycles and when the timer is enabled the count

register(Tcount_Reg) is decremented as often as once every instruction cycle. When

the counter reaches zero an interrupt is generated. Tcount_Reg is then reloaded from

Tperiod_Reg and the count begins again.

The timer scaling factor register (Tscale_Reg) stores a scaling factor that is one less

than the number of cycles between decrements of Tcount_Reg. For example, if the

value in Tscale_Reg is 0, the counter register decrements once every cycle. Therefore

133

using these three registers, interrupts from 5.24ms (when Tperiod_Reg is at maximum
and Tscale_Reg at minimum with resolution of 80ns) up to 1.34 seconds (when both

Tperiod_Reg and Tscale_Reg are maximum with resolution of 20.48µs) with an 80ns

cycle time can be generated.

By setting Tperiod_Reg and Tcount_Reg to H#FFFF and Tscale_Reg to H#IB this

provides an interrupt every 0.3s. This is enough so that the flashing of the LED can be

seen by the naked eye.

The value in the IMASK register is set to one to enable the TIMER interrupt. The ENA
TIMER command starts the timer decrementing logic. To return from the routine
initialisations the RTS command is required.

The IDLE command causes the program to loop indefinitely in a low-power state,

waiting for interrupts. When a timer interrupt does occur the program jumps to the

flash routine. This routine toggles the FLAG_OUT pin and then returns to the

instruction following the IDLE instructions. In this case this is JUMP instruction back

to the IDLE instruction causing the program to wait for another interrupt. In this way

the light flashes continuously.

This simple example shows the basics of ADSP-2105 assembler and was used to test

that the ADSP-2105 was being booted successfully from the EEPROM.

4.3.5.6 Booting Program

To develop the software for controlling the switching network a program was written

whereby the ADSP-2105 could be booted via one of the C012s on the control

processor board12. The program to be downloaded is sent to the C012 from a host

computer (a PC). This allows different versions of the program to be tested without
having to re-program the EEPROM each time. Obviously the ADSP-2105 has to be

booted from EEPROM with some initial code that loads the bytes from the C012. The

pseudocode for this monitor program is illustrated in Figure 4.29 on page 135 and the

source code is shown in Appendix B, pages 235 - 236.

134

Initialise registers and variables
If input status register is not equal to zero (i. e. C012 contains data) then

If no. of instructions <0 then
load no. of instructions byte at a time from C012

If no. of instructions >0 then
If first byte of instruction

load most significant byte into register SI
decrement counter which counts bytes

If second byte of instruction then
load middle byte into register SRO
decrement counter which counts bytes

If third byte of instruction then
load least significant byte into register PX
load instruction (3 bytes) into program memory
reset counter which counts bytes
decrement instruction counter

If no. of instructions =0 then
jump to start of downloaded program

FIGURE 4.29. Pseudocode for download program

The ADSP-2105 receives incoming instructions, loads them into program memory and

when all instructions have been received executes them. However, in order to know

when the download is complete the program must know the number of instructions that

are to be downloaded. The first two bytes of a downloaded program therefore contain

the number of instructions.

Once the program has initialised various registers and variables it monitors the input

status register on the C012 waiting for data to arrive. Once data arrives it first of all

checks the value of the number of instructions to be dowloaded. If the number of

instructions is less than zero (it is initialised to a negative value) then this signals that

the byte to be downloaded is one of the two bytes which contain the number of

instructions.

The two bytes are loaded one at a time into the shifter registers and combined to give

the 16-bit variable ins-count which contains tl? e number of instructions.

The program then waits for another byte to arrive. If the number of instructions has

been loaded previously then this byte will be a byte of the downloading program. The

ADSP-2105 instructions are 24 bits wide so each instruction is three bytes long. A

separate counter (count) is used to count the three bytes as they arrive. It is reset after

each instruction is downloaded completely.

135

Each byte of an instruction is loaded into different registers. Whenever a program

memory write occurs, the sixteen most significant bytes are supplied by the source

register explicitly named in the instruction, and the eight LSBs are supplied by the PX

register. The basic tactic of the monitor program is to assemble the two most significant

bytes of an instruction in a data register (using the Shifter) and load PX explicitly with

the least significant byte.

Once this is achieved a program memory write then writes the correct twenty-four bit

instruction into memory. In order that the downloaded program avoids overwriting the

monitor program while the monitor executes, the downloaded program must be placed

in memory after the monitor program. This is achieved by labelling the end of the

monitor program with a label (code_start) and using a DAG (data address generator) to

generate the addresses for the downloaded program instructions.

The I register in a DAG contains the actual address used to access memory. This

register is loaded with the address of code-start. The modify register M is loaded with

the value one which causes the value in the I register to be incremented by one after

each memory access. This cycles through sequential addresses starting at code-start.

After the ADSP-2105 has received each instruction it is loaded into the program

memory position pointed to by the I register.

Once each instruction has been loaded the instruction counter (ins Count) is

decremented by one. When the instruction counter is zero (i. e. the whole program has

been downloaded) a jump is made to the start of the downloaded program and it begins

execution.

To test this code a program was downloaded which again flashed the LED connected to

the Flag_Out pin on the ADSP-2105 (See Appendix B, page 237). however this

program was slightly different to the previous example as the tinier interrupt has to be

loaded explicitly into the interrupt table (i. e. the monitor program must be overwritten).

This is achieved by declaring a label in the flash program which points to the

instruction JUMP flash ((lash is the routine which flashes the LED) and then declaring

a pointer to this instruction. The value pointed to by the pointer (i. e. the bytes which

make up the instruction JUMP flash) is then loaded into a register. The contents of the

116

register are loaded into the timer interrupt position in memory. This causes an interrupt

to the routine flash every time the timer times out (i. e. the light flashes).

To download a file from the host the data must first be extracted from the Intel Ilex

Format file produced by the PROM splitter and then sent byte at a time to the ADSP-

2105. The FORTRAN program which achieves this is shown in Appendix B page 238.

4.3.6 Software for control processor

4.3.6.1 Basic Procedure

When the source node decides it wants to communicate with the destination node, the

system level software on the source node scans the links on the node for a free link to

communicate with the destination node. Once a free link is found the source node

sends its connection request (consisting of three bytes) to the ADSP-2105 (See Figure

4.30). The first byte contains the address of the source node and the second byte

contains the link number on the source node. The third byte holds the address of the

destination node. This protocol can be expanded for more processors by using two

bytes for the addresses of the source and destination processors.

0 7 012345670................................ 7
Address of
source node

Address of
destination node

No of link
on source
node

FIGURE 4.30. Connection request sent by node

The control processor has a table in memory which contains the connections from the

nodes to the crossbar switch and a flag to indicate whether the connection is already in

use (See Figure 4.31). When a connection request is received the ADSP-2105 scans the

table to find the link on the crossbar switch that the source node is connected to. It then

scans the table looking for a free link on the destination node and if one is free makes

the connection on the crossbar switch which connects the source node to the

37

destination node. The flags in the connection table are then updated and an
acknowledge is returned to the source node.

ARRAYS

Node No. [32] Link No Link No Connection [32] f
On Node [32] On Crossbar [321 Used/Unused

o 0 10 1
o 1 25 0
o 2 12 0
0 3 30 1
1 0 8 1

FIGURE 4.31. Connection Table in Control Processor

The format of the acknowledge byte is shown in Figure 4.32. The link number of the

destination node is sent in order to allow the source node to make disconnection

requests (more on this later). If the value of the byte returned is greater than the number

of links on the destination node (i. e greater then four for a transputer), this signifies to

the source node that the connection could not be established. The byte is returned via

an octal bus transceiver rather than the FIFO as only one byte is returned to the

requesting node. Data from the source node to the control processor is therefore

transferred via the FIFO and data is returned to the source node via an octal bus

transceiver.

0............................
Link No. on
destination node

V1111111 I

FIGURE 432. Acknowledge Byte returned to source node

Once a node receives a message indicating its connection request has been honoured it

is free to send data via the crossbar switch to the destination node. The source node

knows when the message has been successfully received by the destination node due to

the link acknowledge protocol used by INMOS OSLinks. When the data has been

completely transferred then the connection can be broken. The format of the

disconnection request made by the source node is shown in Figure 4.33.

139

0 7 012345670................................ 7
I Address of II KIA Address of I

source node destination node

No 6f link
on source
node No of link

on destination
node

FIGURE 4.33. Disconnection Request

The message is basically the same as a connection request, except that the number of

the link on the destination node is sent as well. The reason for this is that in the case

where two nodes are connected by two or more links then the link numbers need to he

specified in order to disconnect the correct link.

The control processor can distinguish between connection and disconnection requests

by looking at the value of the second byte. If it is greater than the number of links on

the source node then the request must be a disconnection request (i. e it contains the

address of the destination node).

4.3.6.2 Program Structure

A diagram of the structure of the program which receives the incoming data from the

nodes and programs the crossbar switch is shown in Figure 4.34 on page 140. The

program consists of several modules which are linked together by the Linker to form

the executable file. Appendix B, pages 239 - 251 contains the source code listings for

these programs.

When developing the software for the ADSP-2105 it was assumed that the crossbar

switch was an INMOS C004. Since in the case of a transputer all four links can be

connected to the crossbar switch, 8 transputers can be fully connected by using a C004.

A 64-way crossbar switch such as the LSILogic L6427013could be used which would

allow 16 transputers to be fully connected. If more transputers were required then the

number of crossbar switches could be increased. Each crossbar switch would have a

C012 connected to it and the C012 would be addressed by the control processor.

Effectively each crossbar switch would have a unique address.

pia

Setup. dsp
Disables Interrupts on ADSP-2105
Receives file from host computer
which contains connections from
the nodes to the crossbar switch
and loads it into a table in memory.

Readbyte. dsp

Reads three bytes sent fron nodes
and loads them into data memory.

Decode. dsp

Tests value of second byte to see if
it is a connection or disconnection
request.

Findsour. dsp Brcak. dsp

Scans table to find to establish Extracts source and destination

which crossbar link the source
link numbers from second

node is connected to.
byte and stores them in data
memory.

Test that crossbar link is free.
If not send byte H#FF to source
node to indicate a failure to
establish a connection.

Finddest. dsp

Scans table to establish crossbar
link that link 0 of the destination
node is connected to.

Testlink. dsp

Scans crossbar links that
destination node is connected
to to find a free link.

If free link is not found then
send byte H#FF to source node
to indicate failure to establish

Cross. dsp

Progams connection on crossbar
switch.
Sends acknowledge byte to
source node.

FIGURE 4.34. Program structure for ADSP-2105 software

Findsour. dsp

Finddest. dsp

Findlink. dsp

Scans table for crossbar link
that the destination node link
is connected to.

I)iscon. dsp
Disconnect connection on
crossbar switch

140

4.3.7 Testing of overall procedure

A mock set up of the dynamic circuit-switched network using ports on a PC to emulate

the nodes was constructed (See Figure 4.35 on page 142). The token passes between

the two boards plugged into the PC slots and data to represent the three byte message
from the nodes is written into the FIFO from the PC.

The connection requests are clocked out of the CO 11 to the control processor board via

a serial line. The C012 which would normally be connected to the crossbar switch on

the control processor board is actually connected to a link adapter board plugged into

the PC. This allows the PC to read the messages normally meant for the C004 and

check they are correct.

4.3.7.1 Test circuits

The circuit diagram for the PC plug in cards which emulate nodes is shown in

Figure 4.36 on page 143. Two PALs (P22V IOL) are used in this circuit: one for address

decoding and the other for the token passing and fifo clocking state machines. A buffer

('245) is inserted between the PC data bus and the FIFO and COI l data buses. The '74

dual D-type positive edge triggered flip-flop is required to generate the Holdtoken and

QAck signals. A photograph of the circuit board is shown in Appendix D, Figure 6 on

page 306.

A functional block diagram of the FIFO is shown in Figure 4.37 on page 144. It is

organised as a 1024 x9 RAM with asynchronous and simultaneous read and write. The

reads and writes are internally sequential through the use of ring pointers, with no

address information required to load and unload data. Data is toggled in and out of the

device through the use of the Write (W*) and Read (R*) pins.

The CUPL source code for P22VIOL(O) which performs the address decoding is

shown in Figure 4.39 on page 146. This code is similar to the address decoding for the

circuit to test the clocking of the bytes out of the FIFO. The main difference here

however, is that data must be read from the CO11 (i. e. effectively the acknowledge byte

from the control processor) and also the token must be passed on.

141

In order to read data from the COI1 the QAck and QValid signals are controlled by a
D-type flip-flop. The connections to the flip-flop, the truth table for the flip-flop and a

timing diagram for the circuit are illustrated in Figure 4.38 on page 145.

ADSP-2105 P22V 1 OL

28F256

C012

rC012

LinkOut Linkln Linkln LinkOut

Linkln LinkOut TokcnIn
TokenOut

Ackin
AckOut

Coil FIFO

ADDRESS STATE
'74

DECODING MACHINE
(P22V 1 OL) (P22V I OL)

'125

P. C. Slot

PORT 1

i To other
Link Adaptor
Board
(effectively

crossbar switch)

TokcnOut LinkIn LinkOut

TokenIn
AckOut
Ackin

CO11 FIFO

ADDRESS STATE
'74

DECODING MACHINE
P22V I OL P22VIOL () ()

' 125

P. C. Slot

PORT 2

FIGURE 4.35. Set-up used to test theory of dynamic connection network

I42

wro
ý: n
m

HH ßt7

r* r /n WJC In sP WN I-ý O 7C

H I-ý HHH ýO OJ Oý 01 ýP WNNN
Ui iP W f-" ON

C
F+
O

NNNNH t-+ HH C"ý
WNHO \O co JM

0 (D (D ki il
nd rrttr

n
öm0

ºt H
ný r(D

H
rn ý, 0

mro
m

dd0 tf ti tj ti d Im UI iP WNNO

0w bU CO WW En to to
OD -1 CA Ln P. WNP

iP
Ln

b o- a\ Ui p
H 00 -1 Ol in ýP WN F-

CO

0

: 7j o' vvuv U) vvvvm
C ' W JOiLnsP6 ")NM'O * ýJ K'7
N (1

ýu >1
0

, ftl (D P-3 X
(D ä ti

l v U)) PV
n N ft l p I s 0 (D (D H ~r a O

C) v rr c n i0 1O 00 PO 0 1010 ,U 7d D4
kO co -1 Ol UI iP WNN

N
* ý1O1UiýP W NNO rt yN

O
C
N
O p

NNNNNNNNN C' +
`+

NN_O kD co -4 _01.
Uý iP ^

o P"K ao
1

�j i

o it 00
tD C.

M 1-t
N"

(D
f7

rT N
(D

rt N

`n
º-1 H , -f , -! H In xnyH" Nt

w Nma 5":, +
"

rn nW tJF o 1 .
N

((D
0

Fay
A

ft cT N" N"
ý

+ ?+ P. + ft mm0
4Lirl + o C p

b 0
1

i to n in i 0 0 H- r H r r r r 0 N"o tu 7C '. ý
*

'ý '"b J 7i ', ý AaA
07ý'7rNy'

,P
A ff -, 1 m Ch P. WN 1"+ O

0
00

1 on
N

UI N Ui P.

N

J
N C; >

ý

my
ao

0 to n
m nw
0
H

FIGURE 4.36.1'C plug-in card which emulates node

Ui C

143

DATA INPUTS
(Do - D8)

W* Write 2 Control

"
"

Write RAM Read
Pointer

10
ARRAY

24 x9
Pointer

S
S

Tri- "e" FL*/RT* RS*
state
buffers

DATA OUTPUTS Reset
(Qo - Qs) Logic

R* I-ºj
_'

Read
-ý Control

lag EF*
o gic FF*

!.

__lEEEEEEEEE Expansion
Logic

FIGURE 437. Functional Block Diagram of FIFO

The node (PC port in this case) monitors the state of the Qvalid signal via the '125

buffer. This buffer is enabled by the ReadQvalid signal from the P22V 1OL(0). When

the QValid signal is pulled high (indicating the COI l has received data) the node (PC

port) initiates a read cycle.

The signal ReadCO11 from P22V 1OL(0) is used to clock the flip-flop. Therefore at the

end of a read cycle (i. e. on the rising edge of ReadCO11) this transfers the value on the

D input of the flip-flop to the Q output. Since the D input is tied high this transfers a
logic high to the Q output which is connected to QAck on the CO11. This indicates to

the CO11 that the write cycle is finished. The COiI then sends an acknowledge to the

sending device and returns QValid low.

144

Truth Table for D-type Register
PRE CLR CLK D Q Q*

L H X X H L
H L X X L H
L L X X H H
H H H H L
H H

T
L L H

H H L X Ql On*

ReadC011

- DO

- ReadQValid
QValid

Timing Diagram

QValidf
(CLK) -

ReadC011
(CLK)

Qn (QAck)

FIGURE 4.38. Control of QAck and QValid

To clear the D-type flip-flop which controls the Holdtoken signal (see Figure 4.14 on

page 113) and thus release the token, the signal PASSTOKEN is generated by the

P22V1OL(0). This signal is produced by writing a value of one to the address H#102.

The token is passed on once the node receives the acknowledge byte from the control

processor. The signals to write data into the FIFO and to control the buffer are similar

to the PC interface designs discussed previously.

P22V l OL(1) runs the FIFO clocking and token passing state machines. The CUPL

source code for this PAL is shown in Appendix B pages 252-253. The two state

machines run separately and an output from the token passing SM called

TokenArrived signals to the FIFO clocking state machine when the token is there (i. e.

as shown in the state diagram for the FIFO clocking).

145

/**INPUTS**/

PIN 1= PCLK;
PIN (2.. 11] _ (AO. A91;
PIN 13 = ! NOTAEN;
PIN 14 = ! NOTIOW;
PIN 15 = ! NOTIOR;

PIN 21 = DO;

/**OUTPUTS**/

PIN 16 = ! PASSTOKEN;
PIN 17 = ! ENABLEBUF;
PIN 18- _ ! WRITEFIFO;
PIN 19 = ! READCO11;
PIN 20 = ! READQVALID;
PIN 22 = BUFDIR;
PIN 23 = SYSCONTROL;

/**DECLARATIONS AND INTERMEDIATE VARIABLE DEFINITIONS**/

FIELD ADDRESS= [A9.. A0];
FIFO = ADDRESS: (1001 & NOTAEN;

CO11 = ADDRESS: (101] & NOTAEN;
TOKEN = ADDRESS: (102] & NOTAEN;
QVALID = ADDRESS: (103) & NOTAEN;

CONTROL = ADDRESS: (1053 & NOTAEN;

PASSTOKEN
WRITEFIFO
READQVALID
READCOII
ENABLEBUF
BUFDIR
SYSCONTROL

TOKEN & NOTIOW & DO;

FIFO & NOTIOW;
QVALID & NOTIOR;
CO11 & NOTIOR;
WRITEFIFO # READCO11;

NOTIOR;

CONTROL & NOTIOW;

FIGURE 4.39. CUPL source code for address decoding

This PAL is also used to generate the reset signals for the CO il and FIFO. To reset both

these chips a binary `1' is sent to the SYSCONTROL address.

This mock set-up functioned successfully. The main difference between (his set-up

and a `real' system is the interface between the node and FIFO. Obviously for various

types of bus interface slightly different programming on the PAL may be required.

146

4.4 Connection Request Service Time

The four major factors involved in the time taken to service a request are:

" the time required to pass the token (0.15µs in a2 node system)

" the time taken to clock the bytes out of the FIFO (0.15µs)

" the time to transfer the bytes from the COI I to the Control Processor (1.2µs)

" the time required to program the crossbar switch (1.211s)

If the PALS are being clocked at 20MHz and the INMOS OSLink is operating at

20Mbits/s then the connection request service time is approximately 2.7µs minimum.

Obviously this number will be larger for a greater number of nodes as the token will

have further to travel and also it will vary depending on how many connection requests

are to be sent to the control processor. The service time could be speeded up by using a

faster token passing clock and control processor.

4.5 Conclusions and Discussion

A system has been described which allows links between nodes to be established on-

demand during program run-time. All the ICs employed in the design are commercially

available at relatively low cost. The control processor used achieves a much higher

performance than a transputer (commonly used as a control processor) enabling it to

process connection requests much faster. All the valuable communication links on the

node are free for interprocessor communication and are not tied up with control

information.

This cost-effective method provides deadlock free, low message latency, dynamic

reconfigurability. This is especially useful in time critical applications which transmit

and receive large volumes of data such as robotics and image processing. The hardware

subsystem used to send data to the control processor can be used with any processor

providing they possess a high speed communication mechanism.

Unfortunately it was not possible to test the system running an application. Jones-

showed however that for an N-body simulation a dynamic switching system can out-

perform a static message passing system. With a small number of simulated bodies, the

performance of the dynamically switched version is poor compared to the static

topology version (a ring). However, as the number of simulated bodies increases, the

147

performance of the dynamically switched version ultimately exceeds that of the static
version.

The hardware Jones was using to implement dynamic switching was not built

specifically for this purpose. Only two of the four links on the nodes could be

dynamically reconfigured and the monitoring bus connected to the control processor

was not designed to be fast. The results should be far better using the circuit-switching

scheme described in this chapter. They do show however that where large volumes of

data have to be transferred dynamic switching can give greater performance than a

static system using message passing.

Dynamic switching schemes do not however out-perform systems using the T-9000

transputer and the C104 router15. The T-9000 is a second generation transputer which

uses DS-Links operating at IOOM/bits per second for communication. A major feature

of the DS-Link is that it provides a physical connection over which any number of

software (or `virtual') channels may be multiplexed; these can be either be between

two directly connected devices, or can be between any number of different devices, if

the links are connected via (packet) routing switches.

The OS-Links described previously use only two channels, one in each direction. To

map a particular piece of software onto a given hardware configuration the

programmer had to map processes to processors within the constraints of available

connectivity. The problem is illustrated in Figure 4.40 where 3 channels are required

between two processors, but only a single link connection is available.

FIGURE 4.40. Multiple communications channels required between devices

148

This problem is solved with the T-9000 as it uses multiplexing hardware to allow any
number of processes to use each link, so that physical links can be shared transparently.
These channels which share a link are known as `virtual channels'.

With DS-Links each message is divided into packets (32 bytes long). Every packet
requires a header to identify its channel. Packets from messages on different channels
are interleaved on the link. There are two important advantages to this:

" Channels are, generally, not busy all the time, so the multiplexing can make better
use of hardware resource by keeping the links busy with messages from different
channels.

" Messages from different channels can effectively be sent concurrently - the device
does not have to wait for a long message to complete before sending another.

DS-Links can be used to connect devices directly together or they can be connected to

a router device known as a C104 to route messages across a network. As the DS-links

allow all the virtual channels of a device to use a single link, complete system wide

connectivity can be provided by connecting just one link from each device to the

routing network.

The IMS C104 is a full 32 x 32 non-blocking crossbar switch, enabling messages to be

routed from any of its links to any other link. In order to minimize latency, the switch

uses wormhole routing in which the connection through the crossbar is set up as soon

as the header has been read. The header and the rest of the packet can start being

transmitted from the output link immediately.

The header of each packet is used to determine the link to be used to transmit the
incoming packet. This is done by a set of 32 registers associated with each link.

It is possible using 48 C104s to connect 512 nodes with only 3 routing delays. By using

a special purpose router this requires no additional software on the nodes to route

messages and also no additional buffering is required on the nodes to buffer the

packets. The T-9000 and the C104 therefore provide an efficient fast low message
latency communication system.

Even though systems using the C104 router and T9000 would be faster than the set-up
described in this chapter, the latter is still more cost effective. The C104 is much more

expensive than a C004. Also there are still many systems around which use T-800

149

transputers or other processors such as the C40. These systems could benefit from the

work described in this chapter.

It is also possible that there will be some applications in which synchronisation

constraints require the direct connection of processor pairs, possibly in cases when the

uncertainties of message transit times in wormhole routing is unacceptable. In such a

scenario, dynamic reconfiguration offers a more dependable mode of communication

once a connection has been installed.

Software16,17 has been developed for the T-800/400 transputers that emulates virtual

channel routing. This however uses some of the computational power of the node for

communication and also has a large message latency (--30µs). The system described in

this chapter is therefore much more efficient as no additional software is required on

each node and the message latency is much lower.

The design presented in this chapter provides an efficient and fast mechanism for

dynamic on-demand circuit switching. It could however be enhanced by using a faster

token passing clock and control processor.

References

[1] Tudruj, M., Kalinowski, T. Multi-Transputer Systems with Dynamic Link
Connection Switching Controlled through a Serial Bus. Transputer Applications

and Systems '93. Proceeding of the 1993 World Transputer Congress, Aachen,
Sept. 93, pp. 803-818

[2] Tudruj, Marek. Multi-transputer architectures with the look-ahead dynamic link

connection reconfiguration. Transputer Applications and Systems '95.
Proceeding of the 1995 World Transputer Congress 1995, Harrogate, Sept. 95,

pp. 52-69

[3] Jones, P. The Implementation of a Run-Time Link-Switching Environment for
Multi-Transputer Machines. Proceedings of the NATUG 2 Meeting, Durham,
Oct. 1989, pp. 107-122

[4] Murta, Alan. Support for Network-Wide Synchronous Communication via the
Active Reconfiguration of Transputer Links. Transputer Applications and
Systems ̀93. Proceeding of the 1993 World Transputer Congress, Aachen, Sept.
93, pp. 772-773

[5] Jin, Lan et al. Dynamically Reconfigurable Architecture of a Transputer-Based
Multicomputer System. Proceedings of the 20th international conference on
parallel processing, Vol.!, 1991. pp. 1-475 -1-478

150

[6] Calvez, Jean Paul., Pasquier, Olivier. A Transputer Interconnection Bus for hard
Real-Time Systems. Transputers '92. Conference Proceedings, Besancon,
France, May 20-22,1992, pp. 273-283

[7] COM20020 ULANC Manual, Standard Microsystems Corporation. 1993

[8] Bissland, Lesley., White, David N. J. A Circuit-Switched Network for INMOS
OSLinks. Transputer Research and Applications 7. Proceedings of the Seventh
Conference of the North American Transputer Users Group, Atlanta, Oct. 1994,
pp 133-141

[9] Ingle, Vinay K., Proakis, John G. Digital Signal Processing Laboratory. Analog
Devices, Prentice Hall, Englewood Cliffs, 1991, ISBN 0 13 218181 9

[10] Analog Devices. Technical Notes on ADSP-2105.

[11] ADSP-2 100 Assembler Manual, 1991.

[12] McGuire, Gerald. Loading and ADSP-2101 Program via the Serial Port. Analog
Devices Application Note AN-243.

[13] LSI Logic Corporation 1989. L64270 Preliminary Data

[14] Integrated Device Technology High Performance CMOS Data Book 1988.
CMOS Parallel First-In/First-Out FIFO 1024 x 9-Bit, pp 6-14 - 6-26

[15] May, M. D., Thompson, P. W., Welch, P. H. Networks, Routers and Transputers.
IOS Press, 1993.

[16] Debbage, Mark., Hill, Mark B., Nicole, Denis A. The Virtual Channel Router.
Transputer Communications, 1993, Vol. 1, pp 3-18

[17] Wabnig, Harald W. Virtual Channels for Deadlock-Free Communication in
Transputer Networks. Transputer Applications and Systems '93. Proceeding of
the 1993 World Transputer Congress, Aachen, Sept. 93, pp. 1035-1051

151

Part 2

152

Chapter 5

Molecular Mechanics

In recent years with the increase in computational power it has become possible to
predict the chemical properties of a molecule or interactions between molecules by

computational methods. This has had increasing application in drug design where the
behaviour of a novel drug can be predicted by computer simulation.

One of the techniques used in this process is molecular mechanics. This chapter
describes the mathematical expressions used to construct molecular mechanics

calculations.

5.1 Introduction

5.1.1 What is Molecular Mechanics

Molecular mechanics(MM) is a computational method designed to give accurate

structures and energies of molecules". These properties can be determined by

experimental methods such as x-ray crystallography, microwave and vibrational

spectroscopy etc. These procedures however rely on having the material or crystal

available. Computational methods avoid this problem and therefore can be used to

predict the structure and energy of molecules that have not even been synthesised.

Molecular orbital (MO) techniques (another computational method) determine the

structure of a molecule by the approximate solution of the Schrödinger equation for a

given nuclear configuration, followed by a systematic adjustment of this configuration

to minimise the energy of the molecule. The Born-Oppenheimer approximation is

assumed which allows the nuclear and electronic motions within an atom to be

separated. MO methods regard the nuclei as stationary while the electrons move

relative to them.

ISA

The theoretical basis of the molecular mechanics method can be derived by taking an

alternative approach to the Born-Oppenheimer approximation: in this case the nuclear

motion is considered while implying a fixed electron distribution associated with each

atom.

A molecule from this perspective is considered to be a collection of masses (nuclei)

that are interacting with each other via (almost) harmonic forces (bonds), and it is

rather analogous to a system composed of weights joined together by springs (a ball-

and-spring model). Potential energy functions are used to describe the interactions

between nuclei. Force constants of the springs are represented by a collection of

mathematical parameters. The equations and parameters that define the energy surface

of a molecule are referred to as the force field.

The origin of this method lies in vibrational spectroscopy, where the information

derived from analyses of vibrational spectra required the development of potential

functions to describe the overall molecular behaviour. Two different approaches were

considered.

In the first, the Central Force Field (CFF)5 method, the molecular vibrations were fitted

to a function which was the sum of pairwise interactions, without reference to the

covalent structure of the molecule. A disadvantage to this approach is that although

such a description is correct in terms of a quantum mechanical model of a molecule, it

lacks the intuitive link with structure that is required for molecular mechanics. It has

also been shown to give poor results in molecular mechanics calculations.

The second method, the Valence Force Field (VFF)5, provides a description in which

the vibrational data is fitted to a potential function consisting of bond length, bond

angle and torsion angle dependent terms. This is much more satisfactory than CFF and

has the advantage of allowing comparisons between molecules (CFF is very molecule

specific).

The major criticism of the VFF method is that the force constants produced must

attempt to incorporate intramolecular interactions such as dispersion forces which

result from electron correlation, and therefore are not simply a representation of the

intrinsic vibrational frequency.

154

5.1.2 Why Molecular Mechanics

Molecular mechanics calculations are a computationally intensive task, however, they

are still faster than molecular orbital methods such as the ab initio calculation.

The time for running an ab initio2 calculation increases as approximately 'z4 where n is

the number of orbitals, whereas for molecular mechanics it increases as N2 where N is

the number of atoms. This allows molecular mechanics calculations to be used with
large molecules such as proteins where MO calculations would be impractical.

Molecular mechanics does of course have its disadvantages. It is an empirical method,

and is based on a large volume of experimental data. This data must exist for a given

class of compounds before the method can be developed and applied to any particular

compound in that class. On the other hand the ab initio method is only concerned with

nuclei and electrons, few additional parameters are required. This makes it more

generally applicable. However, MM is also more accurate than MO within its sphere of

application.

5.2 Formulation of Molecular Mechanics

One of the fundamental principles of molecular mechanics calculations is that the total

energy of a molecule can be divided into readily identifiable parts. The energy is

calculated as a sum of the steric and non-bonded interactions present. Therefore each

bond length, angle and torsion angle is treated individually while non-bonded

interactions represent the influence of non-covalent forces.

The equation to calculate the total steric energy of a molecule (VS) is thus given by: -

VS = VI + VO + Va) + Vr + Vq

Steric Energy Equation (EQ 5. I)

where V1 represents the summation over all the bonds in the molecule of the individual

potential energies due to bond stretching or compression, and Vg, Vw , V,. , and Vq

represent similar terms for angle bending, bond torsion, van der Waals interactions, and

coulombic interactions respectively.

155

A more refined force field will also consider interactions or cross terms such as stretch-
bend, torsion-stretch, etc. These are usually small, and they can be neglected in the first

approximation. Other ad hoc terms such as out of plane bending of planar atoms types
have been used to take into account phenomena that are not properly accounted for

otherwise.

5.2.1 Bond Stretching

The typical vibrational behaviour of a bond is near harmonic close to its equilibrium
distance but shows dissociation at longer bond lengths (See Figure 5.1 on page 157). It

is most accurately described by the Morse function6
i

VI >Der1-exp{-a(1-lo)}

Morse Function (EQ 5.2)

where 10 is the equilibrium bond length, I is the actual bond length, De the dissociation

energy, and aa force constant. The exponential calculation is computationally

intensive therefore most force fields have adopted a simple harmonic function

2V, = Jkl(l-l0)2

(EQ 5.3)

where k, is the stretching force constant, 10 is the equilibrium bond length and I is the

actual bond length. The bond is effectively treated as a stretched spring. This equation

only approximately describes the actual behaviour of the bond. At extended bond

lengths it is much too steep (see Figure 5.1 on page 157) while it provides no

representation of dissociation at very large deformations. In order to reproduce the

Morse curve more accurately in the region where bonds are considerably stretched a

cubic term is sometimes added to the previous expression2. i. e.

VI = 1:, kl (1-10) 2- k1l (I -1o)'I
I

(EQ 5.4)

Careful selection of the force constant for the cubic expression gives accurate

treatment of bond length deformations in a wide variety of molecules. A problem with

the cubic term however, is that as bonds are stretched to greater distances, the cubic

156

term will begin to dominate. At a critical point the curve reaches a maximum and the
bond stretching energy then plummets downwards toward negative infinity. Attempts

have been made to remedy this by adding a quartic term which reverses the inversion7.

-- -Harmonic Potential
Morse Potential

Energy

FIGURE 5.1. Curves showing the variation of bond stretch energy with distance

5.2.2 Angle Bending

Angle bending can also be described by a simple harmonic function.

2V0= Yk0(e-90)2
0

(EQ 5.5)

As before ke is the bending force constant, 00 is the equilibrium bond angle and 0 is

the actual bond angle. This equation however is not very satisfactory as the force

constants for angle bending are smaller than for stretching allowing greater distortion

away from the strain free value.

The equation can be improved by adding a cubic term similar to the situation for bond

stretching
16.

2 V8= ke (0 - 00) 2-k'el (0-00) 31

0

(EQ 5.6)

This cubic term works well, except in the few cases where angle starts off being greatly

deformed from the strain free value. Similarly to bond stretching the cubic term can

I%7

Interatomic distance

dominate at larger angles. An extra term can be added to prevent this from occurring
which will reduce the effect of cubic term and force the angle back towards a more

reasonable-value. The equation for bond stretching is now8: -

2V0= j: ke(DA2-k'8(IA031-o. 0004J O J))
0

(EQ 5.7)

where AO =0-0, ke is the bending force constant and k'8 is the anharmonic

force constant. A fifth power is usually added as it can be calculated from the product

of the square and cubic terms.

5.2.3 Torsion Angles

Initially the potential energy term due to bond torsion was calculated using an

expression relating to the periodicity of the central bond. i. e.

2V = 1: Vn(1 fsCosnw)
w

(EQ 5.8)

where V', is the rotational barrier height, n is the periodicity of rotation (e. g. in ethane

n=3; in ethene n =2), w is the measured torsion angle and s= +1 for a staggered

minimum (e. g. ethane) and s= -1 for an eclipsed minimum (ethene).

This equation is too simplistic for certain situations. Consider the torsion around the

central C-C bond in butane. There are three kinds of torsion angle: H-C-C-H; C-C-C-

H; and C-C-C-C. Whilst the periodicities of the first two are essentially threefold, the

major component of C-C-C-C is onefold (i. e. the methyl-methyl eclipse occurs only

once per 360°) with a minor threefold addition. In general the equation for torsional

energy is written in the following forms.

2Vw= ý[Vn(1+scosn(0) +V1(1+scos(»)]

(EQ 5.9)

In most cases V1 (the onefold component of the barrier to free rotation) is set to zero

except for torsion angles such as CSp3-C3p3-Csp3-CSp3 and Csp3-Csp2-Namide-Csp3

159

5.2.4 van der Waals interactions

Many different equations have been used to describe the van der Waals interactions.

The common one however is the Lennard-Jones 6-12 potential9

Vr =
[Ar 12-Br 6]

r

(EQ 5.10)

where A and B are constants that depend on the atom types (see Figure 5.2 on

page 159.). The summation is over all 1,4 and higher unique pairwise non-bonded

distances. Short range repulsions are accounted for by the r 12 term where London

dispersion-attraction forces are resolved by the t-6 component.

r6 term predominates

FIGURE 5.2. A typical van der Wants curve

In general the repulsive part of the Lennard Jones curve is too steep to describe

interactions between atoms in organic molecules over a wide range of distances. Lifson

et al. 's showed that a power of 9 or 10 was better than 12 for organic compounds, and

such values are sometimes used. The power 12 is usually used for proteins, not because

it is accurate, but because it is fast to compute from the attractive r-6 term.

The Buckingham potential replaces the twelfth power term with an exponential, which

is a better theoretical description of the repulsion expected between electron

clouds' 1. i. e.

Vr =I
[Aexp (-Br) - Cr 6]

r

(EQ 5.11)

159

In most circumstances this function behaves similarly to the Lennard-Jones equation

but at very short interatomic distances the function inverts and goes to -oo, an obvious
danger in poorly constructed model structures.

For protein structures the Lennard-Jones potential is usually used, as the exponential

term in the Buckingham potential takes 20 times longer to compute than a floating

point multiply on most computers (r 6 can be calculated from r2). For a small molecule

the number of interactions is relatively small and the close range behaviour is crucial

so in this case the Buckingham potential may give better results.

5.2.5 Coulombic Interactions

The earliest approach to obtaining the electrostatic energy term assigned bond dipoles

to bonds between different types of atoms and calculated the electrostatic energies

from dipole-dipole interactions (see Figure 5.3)

ý
V9
V=3µ (cos% -3 cosaicos (L)

r Dr ;j

(EQ 5.12)

where D is the dielectric constant, r, is the separation of the dipoles, x is the angle

between the dipoles, p; and µj are the values of the dipole and ai and aj are the angles

each dipole makes to a line connecting them.

FIGURE 5.3. Single Dipole Interaction

The bond dipoles were chosen to fit known dipole moments of molecules. It was found

that the effective dielectric constant of the solvent had to be taken into account to fit

known experimental data. When molecular mechanics calculations were extended to

large molecules with many polar bonds, it became clear that such calculations were

quite time consuming.

160

Instead of placing point dipoles in bonds, one can place point charges at atoms, chosen
so as to match the previous bond moments or as determined from ab initio calculations.
From the point charges, Coulomb's law is used to calculate the energies12

, giqj/Dr Vq = 3321
r

(EQ 5.13)

where qj and qj are the charges on the atoms i and j separated by the distance rid. The

scaling factor 332 converts the energy to units of Kcal per mole.

If there are net charges present, as in proteins, the point charge approximation involves

no extra calculation, but the dipole-dipole method requires that charge-charge and

charge-dipole interactions also be carried out. The results are similar either way, but the

point charge calculation can be carried out more quickly, and this method is usually

used for proteins.

There are two choices for D, either a fixed value between 1 and 5 is used or a distance

dependent dielectric 13,14 is used where D= 4r (sometimes D=r but this gives undue

weight to coulombic interactions). Some force fields using a fixed dielectric constant

(usually I) claim to accurately represent the interaction of the collection of point

charges being considered. This method, however, has undesirable computational

consequences as the r term in the denominator has to be calculated from r2. The

squared term is calculated by Pythagoras and taking the square root is a relatively time

consuming process.

By approximating the value of D to r this avoids taking the square root of r2. There is

also a physical justification for this procedure8. The value of D for a system consisting

of two separated point charges in a vacuum is 1, and as matter is interspersed between

the charges, the value of D becomes greater than 1 (i. e. the greater the separation the

greater the chance of interspersed matter and the higher the value of D). A distance

dependent dielectric is therefore not only computationally efficient but physically

justified.

161

5.2.6 Other terms

The five terms described above are the core elements of almost all molecular

mechanics force fields; in some case the entire energy function. In many situations,
however, it is necessary for additional terms to be included.

5.2.6.1 Out of plane bending

This term is included to incorporate the energy increase with out of plane bending

(pyramidalization) of trigonal planar systems such as carbonyl groups. The four atoms

in such a grouping should be kept in the same plane, however, the branch atom (oxygen

in the case of carbonyl) can be distorted. Since the deformation is likely to be very

small it is possible to use a simple harmonic potential energy function15: -
2Vx= I: kx(180-x)2

x

(EQ 5.14)

where kx is the force constant for out-of-plane bending and X is the improper torsion

angle in degrees (it is 180° when the conformation is planar).

x

FIGURE 5.4. The Improper Torsion Angle (x shown by dashed line)

5.2.6.2 Cross terms

These terms are usually needed when the force field is required to reproduce

information on vibrational frequencies. They involve two different motions at the same

time such as stretch-bend, bend-bend, torsion-bend and torsion-stretchl.

By examining the structure of butane it is clear that there is a change in the C-C bond

length and an opening of the C-C-C bond angles when changing from the trans to the

162

cis conformations (see Figure 5.5 on page 163). This can be incorporated into the force

field via a stretch-bend interaction: -
V10 - ýýk,

0(1-10) (0-6o)

(EQ 5.15)

where k10 is the force constant for stretch-bending and 1,10,0,00 are before. This has

the effect of restraining distortion of the angle through compensatory bond stretches.

Me Me Me IH
116.4 112.9°

H

H
1.53Ä H, 1.56A

fl fl Me
Cis Trans

FIGURE 5.5. Molecular geometries for cis and trans butane structures

To better fit vibrational frequencies, a bend-bend interaction term is used for the

bending of two angles at a common centre. This is given by an equation of the form: -
V08, = EY-0.021914k00, (0 - @0) (Of - 01 0)

where 0 and 0' are two valence angles on the same atom and 00 and 0'0 are the

appropriate strain free bond angles.

A torsion-bend term couples a torsion angle (A-B-C-D) with the two vicinal bending

angles A-B-C and B-C-D.

V0W ' ý2keW(e-eo) (6'-6'0)cosü

(EQ 5.16)

This term has considerably improved the agreement between calculated and

experimental frequencies of vibrational modes of atoms bonded to two adjacent carbon

atoms.

163

A torsion-stretch term is added in situations where certain bonds eclipse each other
resulting in insufficient bond stretching. The equation which helps correct this is given
by the expression

V1 = 11.995(k2
)(1-lo)

(l+cos3co)

where k1, is the force constant for torsion-stretching and the other constants are as

described previously.

When trying to devise a force field for a molecule all of these additional terms are not
included initially. At the start these terms are all assumed to be zero and are added as

they seem to be required for some reason. If structural information is needed then few

of these cross terms are big enough to cause significant changes. On the other hand if

vibrational frequencies are to, be considered then these terms are required to ensure

high accuracy of the frequencies.

5.2.7 Force Field Parameterisation

The reliability of a molecular mechanics calculation is dependent on the potential

energy equations and the numerical values of the parameters that are incorporated into

those equations. In general, parameters are not transferable from one force field to

another due to the different forms of equations that have been used and because of

parameter "correlation" within a force field. This occurs if an error is made regarding

one parameter, other parameters in the force field adjust to minimise any error that

would be caused. Thus force fields that may give good results for one group of

compounds may yield poor results for another group.

It is not usually possible to include all the possible parameters in a molecular

mechanics program. For example consider a torsional angle of the form a-b-c-d where

a, b, c, d are four different atom types. If a program contains 68 atom types then there are

684 possible torsion sets, and there are twice as many torsional force constants giving

several million torsional parameters. A similar situation occurs with other parameter

types.

It turns out that only a tiny percentage of parameters are known by experiment or

calculation so far reported in the literature. For relatively simple functionalised

164

compounds, such as alcohols or ketones, it is likely the parameter set will be complete
but for more complicated molecules containing various combinations of heteroatoms it

is possible to find cases where parameters are missing.

Parameterisation can be approached from two directions: least squares optimisation' 8

and trial and error3. Least-squares optimisation methods obtain a simultaneous best fit

of calculated results to experimental data. In either case parameterisation is far from

straightforward as the data sets usually available come from a variety of sources (i. e.

crystal structures, vibrational spectra, quantum mechanical calculations etc.), are

measured by different kinds of experiment in different units, and have relative

importance that require subjective assessment.

With the least squares approach correlation between parameters can give problems.

Also the derivatives involved in the calculation are extremely complex. The trial and

error method is the most frequently used - mainly because it is simple to implement

and does not take much longer than least squares.

The quality of a parameter is directly dependent on the quality and nature of the

experimental or theoretical data available. It is also dependent on the level of accuracy

required. In some cases generalised approximate parameters based on known trends are

used. These can, however, lead to serious problems if an exact value is essential for

understanding some property that is being studied.

In general the greater the complexity and number of parameters, the more accurate the

optimised force field becomes at the expense of the time required to do the calculation.

Obviously a balance has to be reached between accuracy of calculation and time taken.

If the structure and energy of a molecule is being studied then significant errors in the

force field parameters are often acceptable. However, if vibrational frequencies are

required then a more accurate force field is required.

5.3 Energy Minimisation

Using a CAMD (Computer Aided Molecular Design) package it is possible to

construct a new molecule by combining smaller molecules or fragments of molecules.

The molecule can also be constructed one atom at a time using known average bond

165

lengths, valency angles, and torsion angles. Obviously structures built up this way are
extremely crude. Before the modelled structure can be useful it must be

computationally optimised by a procedure known as energy minimisation.

This involves systematically altering the geometry of the molecule (i. e. the atomic

coordinates are shifted by a calculated amount) in the hope of locating the global

energy minimum. Various optimisation methods can be used in the attempt to achieve

this. Unfortunately though, all of these methods are prone to locating the local energy

minimum closest to the starting point of the calculation, rather than the global

minimum.

The difference between local and global energy minimum can be illustrated by

considering the rotational potential for a 1,2 di-substituted ethane (See Figure 5.6). The

gauche conformation is stable but the molecule's preference would be for the anti

conformation. This trivial example illustrates one of the most difficult problems in

computational chemistry: how to be sure the global minimum has been reached.

Energy

HXX

iH HH XH

Torsion Angle

FIGURE 5.6. Shape of rotational potential for 1,2-di-substituted ethanes

There are two main categories of optimisation technique namely search and gradient

methods. An example of a search method is pattern searching16

5.3.1 Pattern Searching

Pattern searching applies positive and negative shifts (-O. IA) to each atom's atomic

coordinates one at a time and then tests to see whether the steric energy has decreased

or increased. If the energy has decreased then the atom is left in its new position and

the new steric energy used as the current value. However, if the energy has increased

then the atom is returned to its original position and the coordinate is then shifted in the

166

opposite direction. Again the steric energy is calculated and if it has decreased then the

atom is left in the new position otherwise it is returned to its original position.

The whole pattern of successful shifts built up in this way is repeated and the steric
energy checked for further reduction. The pattern is repeated until it no longer works
and then the pattern is repeated with half the shift value and then iteratively until the

shift reaches a sufficiently small value (10-5th). When the current pattern no longer

works, or the shift becomes too small, a new pattern is established and the whole

process repeated until a reduction in energy is no longer possible.

This method is guaranteed to find a local energy minimum and has a large radius of

convergence (i. e. even with an extremely crude starting structure a local energy

minimum will be reached). However the rate of convergence is slow as the same shift

size is applied to each coordinate and the shift size is refined very slowly (i. e it could

take hundreds of iterations to reach an energy minimum).

5.3.2 Gradient based methods

Gradient based methods again apply a shift, in the search for lower energy, to each

coordinate but in this case the shift is proportional to the gradient of the steric energy at

this point (i. e if the gradient of the steric energy is steep then a large shift is applied, if

the steric energy function is flatter then a smaller shift is applied). These techniques are

said to reach an energy minimum when the vector of first partial derivatives of the

steric energy with respect to the atomic coordinates is zero. This is the case not only at

energy minima but also at energy maxima and saddle points; a feature of gradient

methods which can be useful when searching for transition state structures but an
inconvenience when looking for minima.

Gradient based techniques have a fast rate of convergence as they calculate shifts based

on the gradient of the steric energy function. However, the radius of convergence is

small for the popular full matrix Newton Raphson (NR) iteration (see later for

explanation). The radius of convergence can be increased by using approximations to

the full NR such as the Block Diagonal Newton Raphson iteration and steepest

descents, but at the expense of rate of convergence.

167

5.3.2.1 Steepest Descent

An example of a simple gradient based method is steepest descent17 (a variation of the
full NR iteration - almost all gradient based methods of optimisation are variants of the
NR iteration). This involves calculating the gradient (the first partial derivative of the

steric energy w. r. t. the atomic coordinates) of the steric energy function at a particular

point. Once the gradient has been calculated the coordinates are shifted in the direction

of lower energy by an amount proportional to the gradient. The constant of

proportionality is determined empirically. This procedure is repeated until a local

minima is reached.

Steepest descent has the disadvantage that it is only the gradient of the steric energy
function that is considered and the curvature (the second partial derivative of the steric

energy) of the function is not taken into account when calculating the shift. A result of
this is that the rate of convergence slows down considerably near the minimum energy

position. Steepest descents does however have the advantage that it converges well

when the geometry is far removed from its minimum and can be used to model

geometries prior to refinement by another method.

5.3.2.2 Newton Raphson

A technique which considers both the gradient and curvature of the steric energy

function is the Newton Raphson iteration19. The proof for this procedure can be

derived from simple calculus.

The minimum on a curve, at point x*, is where the first partial derivative is equal to

zero. i. e.

,
f' (x*) =0

(EQ 5.17)

Since in a molecular mechanics calculation the starting point is x and not the

minimum x*,
x* =x+ Sx

(EQ 5.18)

168

where Sx represents the changes x must undergo to reach the minimum value.

Equation 5.17) can therefore be written in terms of x
f (x + Sx) =0

(EQ 5.19)

and then expanded as a Taylor series

f (x + Sx) =f (x) +f" (x) Sx +f ' (x) 8x2 + ...

(EQ 5.20)

which is also set to zero. Truncating the Taylor series after the second order term gives
f'(x) +f'(x)Sx =0

(EQ 5.21)

By rearranging Equation 5.21) an expression is given for Sx (the change in x which

must be made to x to reach the minimum).

Sx = f� (x)

(EQ 5.22)

which can be substituted into Equation 5.18) to give

x* - X-f
(xx)

(EQ 5.23)

This equation implies that the energy minimum is reached in one step. This is not the

case, however, as the Taylor series was truncated. This forces the calculation to be

carried out in a stepwise, iterative fashion.

This proof represents the simple one dimensional case. Molecules, in general, have

3N-6 degrees of freedom where N is the number of atoms and therefore the term f (x)

is replaced by a vector containing the first partial derivatives of the steric energy with

respect to the atomic coordinates. The f' (x) term is replaced by a matrix containing

the second partial derivatives with respect to the atomic coordinates.

169

The basic NR iteration which minimises the steric energy of the molecule is therefore
given by: -

xk +t- xk - aF+OVs (x)

(EQ 5.24)

where x is the 3N (N = number of atoms) long vector of cartesian coordinates, a is the

step length, F+ is the generalised inverse of the Hessian: -

2

F= vs i=1,3N, j=1,3N
ax, ax

and: -

vv (x) =
avs; j=1,3N

s axe

The calculation of the complete Hessian (a 3N x 3N matrix) is a very time consuming

procedure and is not really suitable for molecules with over 200 atoms. Therefore an

approximation known as the Block Diagonal Newton Raphson (BDNR) is used. This is

so called because only the second partial derivatives in each 3x3 block along the

leading diagonal of the Hessian are calculated. Therefore F is given by: -

2
a vs

=3m+ 1,3m+3; m=0 N- 1 F= ax`axJ
i= 3m + 1,3m + 3; j,

Each block contains second partial derivatives of the steric energy with respect to the

coordinates of only one atom. The BDNR iteration can therefore be applied one atom

at a time, allowing each atom to be moved to its corrected position before the

calculations for the next atom are started. Each atom's position is therefore calculated

on the basis of the best structure available at the time.

The BDNR iteration converges faster (usually in 50-200 iterations) than the steepest

descent or pattern based methods and has a reasonable radius of convergence.

5.3.2.3 Calculation of Derivatives

The derivatives can be calculated in two ways: numerically or analytically20.

Numerical methods use finite difference calculations to calculate the derivatives (i. e.

170

the coordinates are shifted by a small amount and the energy re-calculated). The

equations for the first and second derivatives by numerical methods are therefore: -
aVs VS (xi + Sx) - VS (xi - ax)

axe 2Sx

Central Difference (EQ 5.25)

a VS V,. (x1 + Sx, xi -+ Sx) - VS (xi, xj +ýS2 x) - VS (xi + Sx
a,

xj) + VS (xi, xf)
xýzý

Forward Difference followed by Reverse Difference (EQ 5.26)

2 a vs Vs (x, + äx) + VS (x1- Sx) -2 VS (x,)

ax? 6x2

(BQ 5.27)

where hic is a small value (i. e. 0.001) and i= ON, j=1,3N. The steric energy is

therefore calculated at (x,), (x1 + Sx)
, (xi - Sx), (xj + Sx) and (x, + Sx, xj + Sx)

.

The second partial derivatives vary by so little after each iteration that it is sufficient to

calculate them after only every 4 or 5 iterations for the Newton Raphson method.

Analytical derivatives are determined by applying calculus to the various steric energy

terms. The following sum of derivatives is required.

avs
t=lax,

(EQ 5.28)

Using the chain rule the first partial derivatives of energy (V) with respect to the

cartesian coordinates can be expressed as

ay ay aq
ax; __ aq axe

(EQ 5.29)

171

and the second partial derivatives as

v_ aV aq aq +av a a2 2 g
Dxjx; aq2 aX; ax; aq ax, x;

(EQ 5.30)

where q are the internal coordinates (i. e. lengths, angles and torsion angles)

For example for bond stretching where the original equation is given by: -
VI = Zk!

(l-l0)2

= Zk1(12-2110+
12)

(EQ 5.31)

then the derivative of VI with respect to the internal coordinate 1 is

a v, 1k1(21-210)
= k1(1-10)

(EQ 5.32)

and the second derivative w. r. t 1 is
2 aVý_k

ale

(EQ 5.33)

The first partial derivative of I w. r. t the cartesian co-ordinates is fairly simple to

calculate, however, the derivatives of 0 and co are not quite as easy. They are derived by

taking the first partial derivative of the cosine of the angle w. r. t. the atomic coordinates,

as this is more straightforward than differentiating the angle itself.

The equation for the first partial derivatives of 0 w. r. t the Cartesian coordinates is

Do
__ -i

a (tose) axe sin O ax,

(EQ 5.34)

172

and the equation for the second partial derivatives is

2 2
e -pose a (coSO) .a (cose) _1a (tose)
x; ax; sin30 xý x; sin0 axax;

Minimisation is moderately faster using analytical derivatives as it does not require

multiple energy calculations. In a situation, however, where the form of the force field

is constantly being changed (i. e. optimisation of the force field) numerical derivatives

are more useful as there is no need to know the form of the force field.

5.4 Conclusions

The basics of molecular mechanics have been described: the components of the steric

energy equation and the energy minimisation techniques. Depending on the

information required (i. e structural, thermodynamic) from the force field calculation,

different forms of force field are used.

When far from an energy minimum, the simple steepest descents based minimisation,

and a less complicated force field are the methods preferred. Close to the energy

minimum, more sophisticated procedures such as the Newton Raphson iteration are

more commonly used.

Even with the increase in computational power it is still the case that ab initio

calculations are only feasible on molecules with up to 100 atoms. Molecular mechanics

calculations, however, can be conducted on molecules with thousands of atoms. This

makes them suitable for studying large biological molecules and hence they are often

used in drug design.

References

[1] Grant, Guy H. and Richards, W. Graham. Computational Chemistry. Oxford
University Press, London, 1995. ISBN 0 19 855740 X

[2] Bowen, J. Phillip., Allinger, Norman L. Molecular Mechanics: The Art and
Science of Parameterisation. Reviews in Computational Chemistry. 1991, Vo1.2,

pp. 81-95. ISBN 156081515 9

173

[3] Allinger, N. L. Calculation of Molecular Structure and Energy by Force-Field
Methods. Adv. Phys. Org. Chem. 1976,13, pp. 1-76. ISBN 0 12 033513 1

[4] White, D. N. J. Molecular Mechanics Calculations. Mol. Struct. Dir. Methods.
1978, No. 6, pp. 38-62

[5] Wilson et al. Molecular Vibrations. McGraw-Hill, London, 1955

[6] Dinur, Uri., Hagler, Arnold, T. New Approaches to Empirical Force Fields.
Reviews in Computational Chemistry. 1991, Vol. 2, pp. 99-164. ISBN 1 56081
5159

[7] Allinger, N. L., Yuh, Y. H., Lii, J. H. Molecular Mechanics. The MM3 Force Field
for Hydrocarbons. J. Am. Chem. Soc. 1989,111(23), pp. 8551-8582

[8) White, David N. J., Ruddock, Noel J. and Edgington, Paul R. Molecular Design
with Transparallel Supercomputers. Molecular Simulation. 1989, Vol. 3, pp. 71-
100

[9] Lennard-Jones, J. E. Cohesion. Proc. Phys. Soc. (London), Ser. A. 1931,43,461

[10] Warshel, A and Lifson, S. Consistent Force Field Calculations. II. Crystal
Structures Sublimation Energies, Molecular and Lattice Vibrations, Molecular
Conformations and Enthalpies of Alkanes. J. Chem. Phys. 1970,53, pp. 582-594

[11] Hill, T. L. J. Chem. Phys. 1948, Vol 16,399

[12] Meyer, A. Y., Forrest, F. R. F. Towards the Convergence of Molecular Mechanics
Force Fields. J. Comput. Chem. 1985,6, pp. 1-4

[13] Weiner et at. A New Force Field for Molecular Mechanical Simulation of
Nucleic Acids and Proteins. J. Am. Chem. Soc. 1984,106, pp. 765-784

[14] Lennart, Nilsson., Karplus, Martin., Empirical Energy Functions for Energy
Minimisation and Dynamic of Nucleic Acids. J. Comput. Chem. 1986,7, pp.
591-616

[15] Warshel, A., Levitt, M., Lifson, S. Consistent Force Field Calculations of
Vibrational Spectra and Conformations of some amides and Lactam Rings.
J. Mol. Spectroscopy, 1970, Vol. 33, pp. 84-99

[16] Engler, E. M., Andose, J. D., Schleyer, P. von R. Critical Evaluation of Molecular
Mechanics. J. Amer. Chem. Soc. 1973,95, pp. 8005-8025

[171 Wiberg, K. B. A Scheme for Strain Energy Minimisation. Application to
Cycloalkanes. J. Amer. Chem. Soc. 1965,87, pp. 1070-1078

[18] Lifson, S., Warshel. A. Consistent Force Field Calculations of Conformations,
Vibrational Spectra, and Enthalpies of Cycloalkane and n-Alkane Molecules.
J. Chem. Phys. 1968,49, pp. 5116-5129

174

[191 White, D. N. J., and Ermer, 0. Molecular Mechanics -A Cautionary Note. Chem.
Phys. Letters. 1975,31, pp. 111-112

[20] Niketic, Svetozar R., Rasmussen, Kjeld. The Consistent Force Field: A
Documentation. Springer-Verlag, Berlin, 1977.

175

Chapter 6

Parallel Molecular Mechanics Calculations using
COMFORT and the BB08

This chapter describes the parallelisation of a sequential FORTRAN molecular

mechanics program to run on novel hardware, where each node processor has a
dedicated high speed link to the host processor, and to all of the other nodes. Code/data

can be broadcast from the host to the nodes over these direct links using an overhead
free hardware mechanism. The broadcast hardware (the BB08) is supported 'by the
COMFORT message passing subroutine library. The calculation is executed on a PC

host computer with four T414 nodes on a BB08.

First of all the main features of CAMD (Computer Aided Molecular Design) are
described before explaining the BB08 (the broadcast hardware) and COMFORT. The

structure of the sequential molecular mechanics program CHEMMIN is detailed and

then the parallelisation strategies for molecular mechanics calculations are discussed.

The parallelisation of CHEMMIN is described along with the implementation of
COMFORT into it. Finally the addition of a graphical interface to the parallel

molecular mechanics program is detailed.

6.1 Introduction

Molecular mechanics(MM) calculations as described in the previous chapter are a very

computationally intensive task. Even for a small molecule (-100 atoms) there are

thousands of parameters to be evaluated. The advent of powerful workstations and

parallel computers have made it possible to execute MM calculations on large protein

structures comprising thousands of atoms.

Usually the MM calculation is incorporated into a CAMD package1-4. This is a

program with a graphical interface which allows the user to construct molecules by

combining smaller molecules or fragments of molecules into a larger overall structure.
The molecule can also be constructed one atom at a time using known average bond

lengths, valency angles, and torsion angles.

176

Once the molecular model has been built it can be manipulated in various ways: bonds

can be broken and joined; lengths, angles and torsion angles can be altered; the image

of the molecule can be altered from ball and stick representation to space-filling, 3-D

stereo etc.; the whole molecule can be rotated, scaled etc. There is usually a range of

computational procedures available as well, such as molecular mechanics, molecular
dynamics and conformational search procedures like Monte Carlo.

Even on the fastest workstations that are available today it can still take a long time

(several hours or even days) to execute the computational procedures mentioned

above. Many implementations of parallel molecular dynamics5-9 (the simulation of

molecular motions with time) have been attempted, however little work has been

published on parallel energy minimisation.

This chapter describes a parallel implementation of an energy minimiser which utilises

the COMFORT host/node programming environment and BB08 octal broadcast link

interface13. Each node has a direct link to the host computer, down which code and/or

data can be transmitted, received or broadcast.

6.2 The BB08 and COMFORT

6.2.1 The BB08 Broadcast Link Interface

The BB08 octal broadcast link interface is a printed circuit board with eight C012 link

adapters interfaced to a microprocessor style bus. Data can be broadcast

simultaneously to all the C012s. The links are either routable to size one TRAM slots

or to a DIN41612 connector (See Figure 6.1).

By routing the links to the connector this allows microprocessors such as PCs to be

used as nodes. Using one BB08 board per node this can provide full connectivity

between eight nodes each with a direct connection to the host. Figure 6.2 shows the

connections from Node 3. The other nodes have connections that are analogous to this.

It is possible to connect 16,32 etc. nodes if more BB08 boards are added per node.

177

PC ISA BUS

buffer and address I
decoding

C012 C012 C012 C012 C012 C012 C012 0012 To Size 1
TRAM slots
or DIN41612
connector

FIGURE 6.1. Basic layout of BB08 board

Node 3

Link 7 Link 6 Link 5 Link 4 Link 3 Link 2 Link 1 Link 0

Node 7 Node 6 Node 5 Node 4 Host Node 2 Node 1 Node 0
Link 3 Link 3 Link 3 Link 3 Link 3 Link 3 Link 3 Link 3
®®®®

ariý. ýi O

FIGURE 6.2. Connections from BB08 board on Node 3

Using PC motherboards as nodes provides an easily up-gradeable, cost-effective, fast

parallel computer. It is only the host computer that requires a keyboard and monitor as
it loads/runs programs on the node processors. Another advantage of using PC

motherboards as node processors is that it is simple, and inexpensive, to add a hard disc

and CD ROM drive to every node.

The TRAM slots on the BBO8 allow transputers or other TRAM based processors to be

used as nodes. Again each node has a direct physical link to the host down which code/
data can be broadcast. In the case of a T-800 transputer that has only four links

complete connectivity between the nodes cannot be achieved using the TRAM slots.

178

The interface between the C012s and the PC bus is similar to the dual link adapter
board discussed in Chapter 3. The eight CO12 link adapters are accessible in the normal

way via their read, write, input status, and output status registers. In addition, however,

the write registers can all be accessed simultaneously via a single broadcast data

register. During a broadcast write the DO-D7 data lines, the chip select signals, and the

read/write signal of all eight C012 link adaptors are activated simultaneously with the

same data. This simultaneously outputs the same byte of data down all eight links.

When the parallel minimiser was being developed, a parallel computer that uses PCs as

nodes was still under construction. The prototype version of the minimiser was

therefore run on four size 1 TRAMs each with a T4XX transputer and 1Mbyte of

memory. The same principles could be applied when using PCs as nodes with little

alteration to the software.

6.2.2 The COMFORT Programming Environment

COMFORT is a library of FORTRAN subroutines similar to those provided by

EXPRESS (Chap. 1 Ref. 11) and MPI (Chap. 1 Ref. 16), which allow the host

computer to broadcast load code onto the nodes and also facilitate communication

between the nodes, amongst other things. The host/node methodology allows the host

to participate in the calculation rather than act merely as a facilities server. COMFORT

makes parallelisation easier because no communication tasks are required on the nodes

and no configuration (in the 3L FORTRAN sense) is required.

The loading and running of programs on the nodes is the responsibility of the host

processor. A program is loaded onto the nodes and run, either from the node's hard disc

if it is already there, or via the host to node link with a hard disc copy being made for

future use.

For speed and efficiency COMFORT is built around a library of low level subroutines

which are written in assembly language. An example of some of these subroutines is

shown below in Table 6.1.

The name of the subroutines reflect their function. The user does not usually need to

access these low level subroutines although they are available and documented. These

179

routines are not required in the application discussed in this chapter as it does not

require inter-node communication, only host-node.

Fortran Call Definition of Arguments

Call LinklnByte (Linkßase, Data- LinkBase - Base address of C012 link adaptor registers
Byte DataByte - Data byte read from C012 read data register
Call LinkOutByte (LinkBase, LinkBase - Base address of C012 link adaptor registers
DataByte) DataByte - Data byte written to C012 write data register
Call LinklnWord (Link-Base, LinkBase - Base address of C012 link adaptor registers
DataWord, ByteRev) DataWord - Int*2 value assembled from input bytes

ByteRev - Enables big/little endian byte ordering

Call LinkOutWord (LinkBase, LinkBase - Base address of C012 link adaptor registers
DataWord, ByteRev) DataWord - Int*2 value to output as bytes

ByteRev - Enables big/little endian byte ordering
Call LinkInLongWord (Link- LinkBase - Base address of C012 link adaptor registers
Base, DataLongWord, ByteRev) DataWord - Int*4 value assembled from input bytes

ByteRev - Enables big/little endian byte ordering
Call LinkOutLongWord (Link- LinkBase - Base address of C012 link adaptor registers
Base, DataLongWord, ByteRev) DataLongWord - Int*2 value to output as bytes

ByteRev - Enables big/little endian byte ordering
Call LinklnMessage (LinkBase, LinkBase - Base address of C012 link adaptor registers
Massage, MessageLength) Message - Message assembled from input bytes

MessageLength - Number of bytes to input

Call LinkOutMessage (LinkBase, LinkBase - Base address of C012 link adaptor registers
Message, MessageLength) Message - Message of bytes to output

MessageLength - Number of bytes to output

TABLE 6.1. COMFORT low-level subroutines

These low level subroutines are designed to explicitly support message passing. In

addition to these, COMFORT has a library of subroutines designed to give the

FORTRAN programmer access, amongst other things, to the rich set of run time

facilities usually available when programming in C. These include access to a range of

directory services, file services and the PC extended memory. Examples of some of

these routines are shown in Table 6.2..

Fortran Call Definition of Arguments

Call ChangeDirectory (DirectoryName, DirectoryName - Name of directory to change to

Error) Error - Error number

Call DeleteDirectory (DirectoryName, DirectoryName - Name of directory to delete

Error) Error - Error number

TABLE 6.2. CUA1rUKI run-univ nulä11v3

180

Fortran Call Definition of Arguments
Call MakeDirectory (DirectoryName, DirectoryName - Name of directory to create
Error) Error - Error number
Call DeleteFile (FileName, Error) FileName - Name of file to delete

Error - Error number
Call FindFileFirst (FileMask, Attributes, FileMask - File mask for search
FileName, Error) Attributes - File Attributes

FileName - First filename which matches file mask
Error - Error number

Call GetFileAttribs (FileName, FileName - Filename whose attributes are required
FileAttribs, Error) File Attribs - File attributes

Error - Error number
Call AllocateXm (BlockSize, Handle, Blocksize - Size of extended memory block requested
Error_ Handle - Handle of extended memory block

Error - Error number
Call FreeXmBlk (Handle, Error) Handle - Xm handle

Error - Error number
TABLE 6.2. COMFORT run-time libraries

The application detailed in this chapter uses the higher level subroutines shown

below: -
Configure (BoardBase, NumberProcs, TimeoutRes)

Reset (Node)

Load (Node, ExeFileName, Error)

Initialize (Error)

Send (Destination, Buffer, BuffType, Butt Len, Error)

Receive (Source, Buffer, BuffType, Buff Len, Error)

Table 6.3. shows the purpose of each subroutine and defines the arguments. With the

exception of Load, subroutines with the same name as their host counterparts are used

by the node, although in one or two cases they operate slightly differently. For instance

in the case of Load and Receive, on the host these routines possess an extra Timeout

argument which specifies the time before a timeout occurs. If there is a problem with

host/node communication, Receive will time out after the specified number of clock

ticks and return the timeout error number in Error.

It should also be noted that in the Load, Send and Receive routines if the Node ID is set

equal to -1 then this broadcasts loads code/data simultaneously onto all the nodes.

181

The use of these subroutines will become clear in the explanation of their
implementation in the parallel energy minimiser.

Subroutine Definition of Arguments Purpose
Configure BoardBase - Base PC i/o address of BB08 Hardware setup

NumberProcs - Number of node processors
TimeoutRes - Resolution of timeout clock

Reset Node - Node ID number -1 = all nodes) Resets one or more nodes
prior to loading

Load Node - Node ID number -1 = all nodes) Loads program onto specified
ExeFileName - Name of file containing pro- node/nodes

gram code
Error - Error number

Initialize Error - Error number Send each node a message
containing the total number of
nodes, the host identification
number, and the identification

number by which the node
itself will be known

Send Destination - ID number of node to receive Sends data in Buffer to Desti-
message nation

Buffer - Integer* 1 array of data to transmit
Bufflype - User defined code for type of

message
BuffLen - Length of message, in bytes

Error - Error number
Receive Source - ID number of node originating the Receives data from Source

message and stores it in Buffer

Buffer - Integers I array which holds received
message

BuffType - User defined code for type of
message

BuffLen - Length of message, in bytes

Error - Error number

TABLE 6.3. Description of COMFORT routines

6.3 The Molecular Mechanics Program

The parallel minimiser was derived from a sequential stand-alone minimiser,

Chemmin, which was developed in-house at Glasgow University12. A stand-alone

minimiser usually loads a file containing information on a molecule such as number of

atoms, atom types and positions etc., and then performs a single calculation such as

energy minimisation. The stand-alone minimiser Chemmin has been integrated into the

COMMET and CHEMMOD molecular mechanics packages3.

182

6.3.1 The Chemmin Minimiser

The basic structure of Chemmin is shown in Figure 6.3 and its pseudocode is shown in

Figure 6.4 on page 185 with the appropriate subroutines highlighted in bold. Chemmin

has a modular structure and was written in FORTRAN.

The program can essentially be divided into two parts; initialisation and calculation.
Mindat, Mininitl, Cetcop, Getopb and Asboml are responsible for the initialisation

The pseudocode for Mindat is shown in Figure 6.5 on page 186. First of all an integer

value is given to each atom type (i. e. H, Csp3, Csp2 etc.). Reference bond angles and

electronegativities values are then assigned to each atom type by storing the values in

arrays (i. e. EN(1) stores the electronegativity value for atom type 1, EN(2) stores the

electronegativity value for atom type 2 etc.). The number of the atom types which are

aromatic or involved in double bonds are stored in arrays ARTYPS and DBTYPES

respectively.

Several arrays are then constructed which contain: -

reference bond lengths between atom types

" reference bond lengths for conjugated single bonds between atom types

" reference periodicities for each bond between atom types

" reference barrier to free rotation for each bond between atom types

" A6 and B 12 values for Lennard-Jones potential for interactions between atoms of
the same type

" reference barrier to free rotation values for conjugated single bonds.

These arrays are two dimensional and arranged such that entry (ij) in the arrays

contains the correct value for the bond length etc. between i and j (where i and j are

atom type numbers).

The pseudocode for Mininitlis shown in Figure 6.6 on page 186. Again several

arrays are constructed which contain: -

" bond stretching constants for each bond between atom types

" bond stretching constants for conjugated single bonds

" A6 and B 12 values for the Lennard-Jones potential for interactions between atoms
of different types

183

I rXE-%Wra(

Minda
Sets ups variables and
arrays containing initial
force field parameters.
i. e. assigns integer values
to each atom type, sets up
tables containing reference
bond angles, lengths etc.

Sets up arrays of bond
stretching constants for
single bonds and conjugated
bonds.
Lennard Jones Potential for
atom pairs are determined.
Various matrices made
symmetric.
Assigns values to various
constants

Getcop
Reads file containing
control parameters such
as number of iterations,
van der waals cutoff
distance etc.
If there are any constraints
on the molecule then
various atomic positions,
bond lengths etc. are fixed

Molmec
Master Segment
Loads file containing
atomic coords etc.

Bdmin
Calculates derivatives
and minimises energy

Bak
Sets up tables of
bonds etc.
Calculates total potential
energy of molecule by
calculating the individual
energies due to bond
stretching, angle bending.
torsion angles, coulombic
interactions and out of
plane bending, and then
sums these to get the
total energy.

Getopb_
Decides which atoms
are subject to out of
plane bending and
assigns out of plane
bending constants
to them.

FIGURE 6.3. Program Structure of Chemmin

En=l

Calculates the
contribution to the
steric energy
from the jth atom

Asboml
Assigns bond multiplici
to bonds in molecule

184

Initialise various reference values (Mindat)
Initialise various constants (Mininitl)
Read in file containing data on molecule (Molmec)
Assign bond multiplicities to each bond in molecule (Asboml)
Read in file containing control parameters (Getcop)
Assign out of plane bending constants for planar groups of atoms in molecule (Getopb)
Calculate what bonds, angles, torsion angles and nonbonded Interactions each atom
in the molecule is involved in and store in tables (Pote)
Calculate the total potential energy of the molecule (Pote) using

VS = VI + VO + VW + Vr + Vq + Vorb

Do j=1, number of atoms(Bdmin)
Calculate the energy of the jth atom using Energi
Dok=1,3

Increment kth coordinate of jth atom and recalculate energy using Energl

Decrement kth coordinate of jth atom and recalculate energy using Energi

Calculate first derivative using
3Vs Vs (xk + sx) - Vs (xk - sx)

axk 28x

Dok=1,3
Calculate sum of squares of first derivatives

If on 1st, 5th, 9th etc. iteration
Do 1L =1,3

Increment Ith coordinate of jth atom
Calculate VS (x1 + Sx) - Vs (x1)

Calculate V. (x, + Sx) -2 V5 (xi)

Do 2M=L, 3
If (L. EQ. M) then goto 3

Increment mth coordinate of jth atom and recalculate energy
using Energl

Calculate 2nd derivative using

a 2V VS (x, + Sx, X. + Sx) - VS (x!, X. + 84 - VS (x, + Sx, xm) + VS (x� xm)
s aXIXm 5x 2

3
Goto 2
Calculate 2nd derivative using

2 vs

axe

Continue
Continue

2
1

VS (x, + 8x) + VS (x, - Sx) - 2Vs (x,)

5x2

FIGURE 6.4. I'seudocode for Chemmin

185

Assign integer values to each atom type
Assign reference bond angles to each atom type

Assign reference electronegativities to each atom type

Define which atom types are aromatic

Define which atom types are double bonded
Assign reference bond lengths to each bond between atom types

Assign reference bond lengths for conjugated bonds

Assign reference periodicities for each bond between atom types
Assign reference barrier to free rotation values for each bond between atom types
Assign A6 and B12 values for Lennard-Jones potential for each atom type
Assign reference barrier to free rotation values for conjugated single bonds

FIGURE 6.5. Pseudocode for Mindat

Calculate bond stretching constants for each bond between atom types

Calculate bond stretching constants for conjugated single bonds

Calculate the A6 and B12 values for the Lennard-Jones potential for each atom pair

Make matrices containing reference bond lengths, periodicities and barrier to free

rotation symmetrical

Set value of barrier periodicity for conjugated single bond

Set value of Sx used to calculate numerical derivatives

FIGURE 6.6. Pseudocode for Mininitl. dat

The bond stretching constants are calculated from the reference bond lengths and the

B6 and B 12 parameters are calculated from the B6 and B 12 values for the individual

atoms.

Mininiti also makes the matrices (arrays) set up in Mindat containing reference

values symmetrical. When constructed in Mindat these matrices are upper triangular.

They are made symmetrical in order that when they are accessed it is immaterial which

way round the indices are (i. e REFLEN(x, y) is equivalent to REFLEN(y, x)).

Then the values of various constants are set: -

" barrier periodicity for conjugated single bond

" value of 8x used to calculate numerical derivatives

" bond length tolerance

After Mindat and Mininitl have been executed, the file is read which contains the

atomic coordinates etc. of the molecule that has to be minimised. This allows arrays to

186

be initialised that contain information specific to the molecule. The first of these is

constructed in Asboml.

This routine constructs a two dimensional array that contains pseudo bond orders for

each bond in the molecule. A single bond is given a value of one, a double bond a value

of two and a conjugated bond a value of 1.1 or 1.5 depending on the length of the bond.

The next routine to be called is Getcop. This reads a file containing a number of

control parameters for the minimisation. These are: -

" number of iterations

" van der Waals cutoff distance

" energy threshold for printing

" maximum allowed shift

" long, abbreviated or short printed output

" constraints on atoms, lengths, angles, torsion angles and molecule

Getcop also assigns a value to NDERIV which determines whether the second

derivatives are calculated every iteration or not.

Initialisation is completed by the routine Getopb which assigns out of plane bending

constants for atoms that are subject to this constraint.

The routines which execute the calculation are Bdmin, Pote and Energl. Bdmin calls

Pote which, using the equations detailed in chapter 5, calculates the initial potential

energy of molecule. Pote also sets up the three two dimensional arrays NBMAT,

NAMAT and NTMAT that contain bonded/nonbonded interactions for each atom pair,

angles each atom is involved in and torsion angles each atom is involved in. These are

used in Energl.

The entries in the NBMAT array are integer values that indicate the type of interactions

between atom pairs. A value of two indicates the two atoms are bonded, a value of four

indicates a nonbonded interaction, a value of three indicate a 1,3 interaction and a

value of five indicates no interaction between the pair of atoms.

Each angle in the molecule is assigned a number and the array NAMAT contains the

number(s) of the angle(s) each atom is involved in. The array NTMAT is analogous to

NAMAT and is for torsion angles.

187

After Pote has finished, Bdmin calculates the derivatives and hence the corrected
coordinates using the BDNR method, for each atom at a time. Once the specified

number of iterations is complete the new potential energy is calculated by Pote and

printed to the screen.

In order to calculate the derivatives Bdmin calls Bnergl which calculates the

contribution to the steric energy from the jth atom. Since the derivatives are calculated
by numerical methods, the steric energy is evaluated for each atom at (x, y, z), (x + Sx, y

, z)), (x. y+ Sy, Z), (X, y, z+ 8z), (X - 6x, y, Z)), (x, y- Sy, Z)), (x, y, z- Sz), (X + SX, Y+
Sy, z), (x + Sx, y, z+ Sz), (x, y+ Sy, z+ Sz). The code in Energl is very similar to Pote

except that it is only the steric energy of one atom that is calculated. The second
derivatives are only calculated every 1st, 5th, 9th iteration or every iteration if specified
in Getcop.

Chemmin is a sequential minimiser designed to run on PCs. Even if it was run on a fast

workstation the speed of the minimisation on a large protein structure is not fast

enough to give a good cost/performance ratio. Parallel versions of molecular

mechanics have been constructed for use with arrays of transputers12 (and other

processors) and also using clusters of workstations to improve the cost/performance

ratio.

6.3.2 Parallelisation Strategies for Energy Minimisation

As stated previously, many parallel versions of molecular dynamics have been

implemented. This calculation is very similar to energy minimisation as it involves

calculating the steric energy of all the atoms in a molecule and then calculating the first

derivative of this energy (the second derivatives are not required). The parallelisation

strategies used are therefore comparable to those used in molecular mechanics.

Swanson and Lybrand8 parallelised the AMBER molecular modelling package by

distributing the calculation of nonbonded energies and forces across a collection of

Unix workstations linked by Ethernet. The reasoning behind this is that nonbonded

calculations typically consume over 90% of the total execution time of an energy

calculation compared to about I% for the bonded forces.

188

AMBER calculates the nonbonded pair list (i. e. the atoms involved in nonbonded

interactions) on an amino-acid residue basis (AMBER is only used for proteins). If the

distance between any two atoms in two different residues is within the cutoff distance,

then all atoms of each residue are considered to have pairwise nonbonded interactions,

with some exceptions.

Swanson and Lybrand distributed the calculation evenly among the nodes by giving

each node a portion of atoms which contained an equal number of nonbonded pairs.

The nodes only work on the nonbonded interactions and the host works on the bonded

interactions. This ensures that the host is finished calculating in sufficient time to

receive the results back from the nodes.

By only allowing the host to calculate the bonded interactions this results in the host

being idle for some time waiting for the results from the nodes. It would seem more

efficient to include the host in calculation of some of the nonbonded forces and

energies. Also by only including the nonbonded calculation on the nodes this means

that the node code is significantly different from the sequential version of the code.

Thus more work is required to parallelise the code.

This parallel molecular dynamics code does however give good efficiency when run on

a network of workstations using PVM to implement message passing (-88% on four

Indigos). It is also highly portable and has been run successfully on clusters of Silicon

Graphics, IBM RS6000, DEC ALPHA, and HP workstations as well as CRAY T3D

and Kendal Square KSR2 parallel supercomputers. When using Ethernet connections

between the processors, interprocessor communication is slow compared to the high

speed connections used in special purpose multiprocessor machines such as the CRAY

T3D.

Vincent and Merz9 parallelised the molecular dynamics calculation in AMBER by

dividing the calculation of both the bonded and nonbonded interactions between the

nodes. All message passing was compliant with the MPI (Message Passing Interface)

Standard.

In this case the nonbonded interactions are divided between the nodes in a residue

fashion (i. e. each node is responsible for a certain number of residues). If the residues

are simply divided up evenly between the nodes then this results in a load imbalance

189

between the nodes as each node would be responsible for a different number of
nonbonded pairs. This is due to the fact that AMBER calculates the nonbonded pair list
by assuming that if any two atoms on different residues are within the specified
distance, then all the atoms on the two residues are said to interact.

Vincent and Merz rectify the load imbalance by manually redistributing the pairs

among the nodes after each has generated its own pair list. This involves each node

sending a count of its nonbonded pair list to all the other nodes and from this
determining a target pair count. The pairs are then redistributed among the nodes until
the target pair count is reached. This results in an increase in the amount of
interprocessor communication which, depending on the speed of the hardware links,

will reduce the efficiency of the system.

Schweitzer et al. 10 parallelised the molecular mechanics MM2 package by splitting

four computationally intensive subroutines over four processors on a shared memory

computer. The subroutines were DVDWCG, DDIPOL, DOMGA and DRANG which

calculate the derivatives for van der Waals energy, bond dipole interactions, torsional

energy and stretching and bending energy respectively. Each subroutine executes on a

separate node which results in uneven load balancing between the processors as some

subroutines take longer than others. Using this method an improvement of only 50% in

program execution speed is achieved.

The parallel version of CHEMMIN divides the data domain onto the available

processors. The atoms are divided between the available nodes so that each node works

on a `slice' of atoms. For each atom both the bonded and nonbonded energies, and

derivatives are calculated. Each node has a copy of the atomic coordinates of all the

atoms, as some of the atoms in its `slice' may interact with atoms on other nodes. The

host calculates the initial and final steric energies of the molecule and the nodes

execute the energy minimisation.

The nodes consider each atom in their `slice' one at a time. For each atom the first and

second partial derivatives of the steric energy with respect to the atomic coordinates

are calculated. The atom's corrected coordinates are then computed using the Newton

Raphson iteration. Once the corrected coordinates for all the atoms on a node have

been computed, they are sent back to the host. The host assembles a complete set of

190

new `improved' coordinates from the `slices' returned by the nodes and broadcasts this

set back to all the nodes ready for the next iteration.

In CHEMMIN the nonbonded interactions are calculated differently from in AMBER.

They are not calculated by considering interactions between residues but instead each

atom is considered in turn and if it is within a certain distance to any other atom then

they are said to interact (i. e if two atoms on different residues are within the cutoff
distance then all the atoms in the two residues are not assumed to interact).

The number of atoms allocated to each node is equal (some nodes have an extra atom if

the number of atoms is not exactly divisible by the number of nodes). This gives

efficient load balancing as the nonbonded interactions which take up most time, will be

distributed reasonably evenly across the nodes (at least any differences in the number

of nonbonded interactions are likely to be small compared to the total number of

nonbonded interactions). This method of parallelisation was pioneered by White et alle

and is similar to that of Vincent and Merz.

6.3.3 Hostmin and Nodemin

CHEMMIN is essentially divided into two parts: Hostmin which runs on the host (a

PC) and Nodemin which runs on the nodes. The partition of the subroutines used in

CHEMMIN between the host (Hostmin) and the nodes (Nodemin) is shown in

Figure 6.7 on page 192. A full program listing of Hostmin and Nodemin is shown in

Appendix C pages 255 - 282.

The subroutine BDMIN on the host is different from the version used in the sequential

minimiser CHEMMIN. In the parallel version it is still responsible for calculating the

initial and final steric energies. It does not however calculate the derivatives as it is the

nodes that execute the minimisation. Instead it loads the node program onto the nodes

and sends the required data to the nodes.

To calculate the first and second derivatives, the nodes require a substantial amount of

data that the host has obtained or already calculated. Some of this information is sent to

the nodes but most of it is recalculated by the nodes. This is thought to be quicker than

sending this data to the nodes (if the node processors were extremely slow then this

may not be the case).

191

Hostmin

Molmec

Bdmin

I Mininitl Pote

Getcop Getopb Asboml

L

Nodemin

Nodemin

List_Calc Mininit 1 Energl

FIGURE 6.7. Partition of subroutines between host and nodes

The data downloaded to the nodes is mainly information about the molecule (number

of atoms, bonds etc.), various constants, the tables containing fixed bond lengths,

angles etc. and the atomic coordinates. From this data the other required information is

calculated. The routine Nodemin on the nodes receives the data from the host,

calculates the derivatives and sends the corrected coordinates back to the host.

The routine List_Calc on the nodes is basically a cut-down version of Pote that only

calculates the arrays NBMAT, NAMAT and NTMAT that contain bonded/ nonbonded
interactions for each atom pair, angles each atom is involved in and torsion angles each

atom is involved in. Energl is identical to the version used in the sequential minimiser.

In the parallel version of the minimiser the routines Mindat and Mininitl were

combined into the one routine (Mininitl).

Figure 6.9 and Figure 6.10 on page 194 show the pseudocode for Hostmin and
Nodemin. The NFIRST and LAST variables referred to in Nodernin are the first and last

atoms in the nodes slice. These are calculated using the code shown in Figure 6.8; me
is the id number of the node, NUMPROC is the number of nodes and NUMATS is the

192

number of atoms. Each node is allocated NUMATS/NUMPROC atoms, with the first

NMOD nodes being allocated an extra atom. This distributes the atoms as evenly as

possible across the nodes and provides efficient node balancing. The number of atoms
in a nodes `slice' is stored in BFLENG.

NDIV = NUMATS / NUMPROC

NMOD = MOD (NUMATS, NUMPROC)

IF(me. 1t. NMOD)THEN

NFIRST = (me*NDIV)+me+1

LAST = ((me+1)*NDIV)+me+1

ELSE IF(me. eq. NMOD)THEN

NFIRST = (me*NDIV)+me+1

LAST = ((me+1)*NDIV)+"me

ELSE IF(me. gt. NMOD)THEN

NFIRST = (me*NDIV)+NMOD+1

LAST = ((me+1)*NDIV)+NMOD

ENDIF

BFLENG=((LAST+1)-NFIRST)

nfirst4 = (nfirst * 4) -3

FIGURE 6.8. Code to allocate atoms to node

6.3.4 Implementation of host/node communication using COMFORT

and the BB08

In a conventional 3L FORTRAN" (a Parallel Fortran) based implementation of

parallel molecular mechanics the nodes would be connected together in a pipeline or

more complex topology and the code would be loaded onto the nodes in the standard

`store and forward' manner12. Any data exchanged between the host and nodes will

generally have to pass through one or more intermediate nodes before it reaches its

destination. This requires the nodes to run communication tasks which reduces the raw

computational power deliverable to the application.

193

Read file containing atomic coordinates
Read file containing various parameters
Set up various tables required for the calculation
(i. e. bond lengths, bond angles etc.)
Calculate the total potential energy of the molecule
Configure, reset, load and initialize nodes
Send arrays of data to the nodes
While (no. of iterations not complete) do

Send atomic coordinates to nodes
Receive modified coordinates from nodes

Calculate Final Steric Energy of the Molecule

FIGURE 6.9. Pseudocode for Ilostmin

Initialize node
Receive data from host
Set up various tables required for the calculation
(i. e. bond lengths, bond angles etc.)
Decide which atoms the nodes will work on
Receive atomic coordinates from host
For J= NFIRST, LAST do

Calculate Energy of Jth atom
For k =1 ,3 do

Increment kth coordinate of jth atom and recalculate energy
Decrement kth coordinate and recalculate energy
Calculate first derivative for kth coordinate

Fork=1,3 do
sum of squares of first derivatives =
sum of squares of first derivatives + (first derivative for kth coordinate)2

If Mod(Iteration, 4) =0 then
Calculate second derivatives for jth atom

Calculate corrections to coordinates for jth atom
Fork=1,3 do

Calculate new value for kth coordinate of jth atom

Send modified coordinates and sum of squares of first derivatives back to host

FIGURE 6.10. Pseudocode for Nodemin

This overhead can be eliminated by using the BB08 board which allows code/data to
be broadcast simultaneously onto all the nodes. Initial parallel versions of the

194

minimiser used a non-standard C library to implement host/node communication via

the BB0814. The following sections describes how COMFORT was implemented
instead of the this C library in Hostmin and Nodemin.

6.3.4.1 The Implementation of COMFORT in HOSTMIN

An early version of COMFORT was used. The host code was written in Microsoft (16-

bit) FORTRAN(Chap 3, Ref. 9) (current versions of COMFORT use Microsoft 32-bit

FORTRAN) and the node code with 3L parallel FORTRAN (the 3L FORTRAN node

programs are configured with the stand alone FORTRAN run time library). Although

this methodology is not without its problems (more on this later) it does result in

reasonably portable programs15.

COMFORT is only used in the communication between the host and the nodes: the rest

of the code remains unchanged (compared to the earlier version that used the C

library). Figure 6.11 on page 196 shows FORTRAN code to broadcast code and data

onto the nodes.

The nodes are loaded with code via the configure, reset, load and initialize routines that

were explained in Table 6.3. on page 182. The initialize routine is slightly different as

it sends a matrix `ProcConn' to the nodes. This tells each node the link interconnection

topology between nodes (as explained in Section 6.2.2 on page 179 the latest versions

of COMFORT use complete connectivity and the topology maps are unnecessary). The

variable NETCAST used to specify the node id numbers in the SEND and LOAD

routines is set to -1. This indicates a broadcast code or data onto all the nodes.

The data required by the nodes is sent in several arrays via the SEND routine which

broadcasts the data to all the nodes simultaneously via the BB08 board. The variables/

arrays downloaded to the nodes are stored in common blocks. A sample of the

common block declarations is shown in Figure 6.12 on page 196 and a definition of the

variables is presented in Table 6.4. on page 197. Sending this data to the nodes is not as

simple as it might first appear, mainly due to restrictions imposed by the Microsoft 16-

bit FORTRAN which are not present with the 32-bit version.

195

NETCAST = -1
file= 'c: \comfort\lesley\min\nodemin. app'//char(0)
call configure(#180,4, #976f)

call reset(NETCAST)

call load(NETCAST, file, 100, error)

do i=1,4

ProcConn(1, i)=4

ProcConn(2, i)=-1

ProcConn(3, i)=-1

ProcConn(4, i)=-1

end do

call initialize(ProcConn, 100, error)

call send (NETCAST, buffer_atmdatO, 1, total_atmdatO, 100, error)

call send (NETCAST, buffer_atmdatl, 2, total_atmdatl, 100, error)
call send (NETCAST, buffer-moldat, 3, total_moldat, 100, error)
call send (NETCAST, buffer_ffp, 4, total_ffp, 100, error)
call send (NETCAST, buffer_cffp, 5, total_cffp, 100, error)
call send (NETCAST, buffer_contrl, 6, total_contrl, 100, error)
call send (NETCAST, buffer_constn, 7, total_constn, 100, error)

C SEND INTEGER*1 VARIABLES/ARRAYS SEPARATELY

call send (NETCAST, ATYNUM, 8, LENGTH9,100, ERROR)

call send (NETCAST, BONDML, 9, LENGTH10,100, ERROR)

call send (NETCAST, MOLNUM, 10, LENGTH9,100, ERROR)

999 write (5, *)'No of iterations =', itrcmp +1

C SENDS COORDINATES TO NODES

call send(NETCAST, XO1,42, INT2(length7), 100, error)

FIGURE 6.11. Host Code that broadcasts arrays to node

COMMON/ATMPRP/ EN(MAXTYP)
COMMON/MOLDAT/ NUMATS, NMOLS
COMMON/FILDAT/ DLUNIN, DLNOUT, LUNOUT
COMMON/FILCHR/ INFILE, OUTFIL, FILTYP
COMMON/HEADER/ TITLE

COMMON/FFP/ REFLEN(MAXTYP, MAXTYP), STRCON(MAXTYP, MAXTYP)
1, A6(MAXTYP, MAXTYP), ß12(MAXTYP, MAXTYP), REFANG(MAXTYP)

2, PERIOD(MAXTYP, MAXTYP), BARIER(MAXTYP, MAXTYP)

COMMON/CFFP/ CREFLN(MXCNJ, MXCNJ), CSTCON(MXCNJ, MXCNJ)
1, CBARR(MXCNJ, MXCNJ), CPRIOD

COMMON/CONJTP/ ARTYPS(NARTYP), DBTYPS(NDBTYP)

FIGURE 6.12. Common Block Declarations

196

Variable Name Definition

EN Array containing electronegativity values
NUMATS, NMOLS Number of atoms, number of molecules
DLUNIN,
DLNOUT, LUNOUT

Unit file identifiers

INFILE, OUTFIL, FILTYP File names
TITLE Title of file

REFLEN Array containing reference lengths

STRCON Array containing stretching constants
A6, B 12 Arrays containing A6 and B 12 values for nonbonded energy
REFANG Array containing reference angles
PERIOD Array containing periodicity values
BARIER Array containing barrier to free rotation values

CREFLN, CSTCON, CBARR,
CPRIOD

Arrays containing reference lengths, stretching constants, bar-
rier to free rotation, periodicity for conjugated bonds

ARTYPS, DBTYPS Arrays containing values of aromatic and double bond atom
types

TABLE 6.4. Variable names and definitions

The simplest approach may appear to be to send a large array whose start address is the

address of the first variable in the first common block. The length (in bytes) of this

array would be equal to the total length of all the common blocks. This approach is not

possible as although the common blocks will be stored contiguously in memory, they

are each assigned to a different 64kbyte wide segment by the FORTRAN compiler and

addresses do not automatically roll over from one segment to the next. Also, unless the

the molecule under investigation contained the maximum number of atoms, then the

array would not be full resulting in a waste of space.

Another possible approach might be to dispense with the individual common blocks

and put all of the data into one large common block. This is not possible as there is

more than 64kbytes of data and the compiler limits each common block to a maximum

of 64kbytes in length. In addition to this restriction the COMFORT SEND subroutine

imposes a maximum message length of 64kbytes.

A dummy array is therefore EQUIVALENCED to the start of each common block (or

the position in the common block where the required data starts). This dummy array is

197

dimensioned to encompass the data by calculating the combined size (in bytes) of all
the variables/arrays required from the common block (See Figure 6.13).

INTEGER *1 COMMOM BLOCK
ARRAY WITH WITH INTEGER*4
DIMENSION 20 VARIABLES

I byte
long EQUIVALENCED Variable 14 bytes

long

Variable 2

Variable 3

Variable 4

Variable 5

FIGURE 6.13. Graphical Representation of Equivalence Statements

The include file which EQUIVALENCES the arrays/variables to dummy arrays is

illustrated in Figure 6.14 on page 199. In order to make the calculation of the lengths

of the dummy arrays simpler the first block of PARAMETER statements assigns values

to the different lengths (length 1. length2 etc.). These lengths (in bytes) are of the

arrays/variables stored in the common block. They are all multiplied by four as the

arrays/variables are INTEGER*4.

The second block of parameter statements assign values to parameters that specify the

length of the common blocks (i. e. common block `contrl' contains eight variables of
length3). The dummy arrays (buffer atmdatO, buffer_atmdatl, etc.) are then

dimensioned and EQUIVALENCED to the first variable in each common block (or the
first variable that is required).

A further difficulty arises from the fact that the Microsoft FORTRAN compiler adheres

rigidly to the FORTRAN standard. If the SEND subroutine is called with a message of

one data type then any subsequent call with a message of a different data type will

result in a run-time error. In order to overcome this difficulty SEND is always called

with messages of type INTEGER* 1 which are EQUIVALENCED to the real data array
(which contains data of many types).

198

c*EQUIVALENCES ARRAYS IN COMMON BLOCKS TO DUMMY ARRAYS
C* *
C*****t*t***r***r*****t****r***t*t***t********t************

integer lengthl, length2, length3, length4, length5, length6,
1 length7, lengthB, length9, lengthlO, lengthll

integer*2 total_atmdatO, total_atmdatl, total moldat,
1 total_ffp, total_cffp, total_contrl, total_constn

integer*1 buffer_atmdatO, xol, buffer_atmdatl, buffer_moldat,
1 buffer_ffp, buffer_cffp, buffer_contrl, buffer_constn,
2 xo2, xo3

parameter (lengthl = MXAT*MXCN*4)
parameter (length2 = MXAT*4)
parameter (length3 = 4)
parameter (length4 = MAXTYP*MAXTYP*4)
parameter (length5 = MXCNJ*MXCNJ*4)
parameter (length6 = MXAT*4*4)
parameter (length? = MXAT*3*4)
parameter (length8 = MAXCNS*4)

parameter (length9 = MXAT)

parameter (lengthlO = MXAT * MXCN)
parameter (lengthll = MXAT)

parameter (total_atmdatO = lengthl)
parameter (total_atmdatl = length2)
parameter (total_moldat = length3 * 2)
parameter (total_ffp = length4)
parameter (total_cffp = lengths)
parameter (total_contrl = length3 * 8)

parameter (total_constn = (5 * length3) + length6 + length?
1+ length2 + (16 *length8))

dimension buffer_atmdatO(1: total_atmdatO)
dimension buffer_atmdatl(1: total_atmdatl)
dimension buffer_moldat(l: tota Lmoldat)
dimension buffer_ffp(1: total_ffp)
dimension buffer_cffp(1: total_cffp)
dimension buffer_contrl(1: total_contrl)
dimension buffer_constn(l: total_constn)
dimension xol(length2)
dimension xo2(length2)
dimension xo3(length2)

equivalence
equivalence
equivalence
equivalence
equivalence
equivalence
equivalence
equivalence
equivalence
equivalence

(buffer_atmdatO(1), atmcon)
(buffer_atmdatl(1), charge)
(buffer_moldat(1), numats)
(buffer_ffp(1), strcon)
(buffer_cffp(1), cstcon)
(buffer_contrl(1), shiftx)
(buffer_constn(1), conmin)
(xol(1), xo(1,1))
(xo2(1), xo(1,2))
(xo3(1), xo(1,3))

FIGURE 6.14. Include file that equivalences arrays/variables to dummy arrays

199

Three of the variables/arrays that are stored in the common blocks are INTEGER* 1.

These are sent separately as if they were included in equivalence statements they

would disrupt the alignment of the dummy array with the common block. In the case

where the INTEGER* 1 variable/array is in the middle of a common block, then two

dummy arrays must be equivalenced to that common block: one starting at the

beginning of the common block and ending before the INTEGER* 1 variable/array and

the other beginning after the INTEGER* I variable/array and ending at the end of the

common block.

6.3.4.2 The Implementation of COMFORT in Nodemin

The arrays/variables sent from the host are received using the COMFORT receive

routine (See Figure 6.15). There must be an equivalent receive on the nodes for every

send on the host.

C INITIALIZE NODES

call initialize

C RECEIVES BUFFERS FROM HOST.

call receive(host, buffer_atmdat0, l, total_atmdat0, error)

call receive(host, buffer_atmdatl, 2, total_atmdatl, error)

call receive(host, buffer_moldat, 3, total moldat, error)

call receive(host, buffer_ffp, 4, total_ffp, error)

call receive(host, buffer_cffp, 5, total_cffp, error)

call receive(host, buffer_contrl, 6, total_contrl, error)

call receive(host, buffer_constn, 7, total_constn, error)

c RECEIVE BYTE VALUES SEPARATELY

call receive(HOST, ATYNUM, 8, LENGTH9, ERRORj

call receive(HOST, BONDML, 9, LENGTH10, ERROR)

call receive(HOST, MOLNUM, 10, LENGTH9, ERROR)

191 call receive(HOST, XO1,42, length7, error)

FIGURE 6.15. Code on node which receives data from host

The nodes also have a copy of the include file which equivalences the dummy arrays to

the variables/arrays. This allows the nodes to effectively decode the information sent

from the host.

200

6.3.4.3 Transfer of atomic coordinates between host and nodes

The atomic coordinates are stored in an INTEGER*4 array (XO (MXAT, 3)) on the host

which is effectively arranged as three columns one for each of the x, y and z

coordinates. This array is EQUIVALENCED to three INTEGER*1 arrays XO1, X02

and X03 (See Figure 6.14 on page 199); X01 contains the x coordinates, and X02, X03

the y and z coordinates respectively.

To send the atomic coordinates to the nodes the X01 array is used in the SEND routine
(See Figure 6.12). X01 is EQUIVALENCED to the start of XO and the buffer length in

the SEND statement is four times the length of XO (as XO1, X02 and X03 are
INTEGER* 1 arrays). An equivalent RECEIVE statement is required on the nodes (See

Figure 6.15 on page 200).

When sending the coordinates back from the nodes to the host only the coordinates in

the node's `slice' must be returned and the host must put the returned coordinates in the

correct place in XO. The code on the nodes and host which achieves this is shown in

Figure 6.16 and Figure 6.17 respectively.

call send(HOST, xol(nfirst4), 43, bfleng*4, error)

call send(HOST, xo2(nfirst4), 44, bfleng*4, error)

call send(HOST, xo3(nfirst4), 45, bfleng*4, error)

call send(HOST, sgdlsq, 46,4, error)

FIGURE 6.16. Node code to return `improved' coordinates to host

The x, y and z coordinates are sent separately in XO1, X02 and X03. Nfirst4 specifies the

position of the first atom in the nodes `slice' in X01 etc. This value is not just equal to

nfirst (the first atom in a nodes slice) as X01 etc. are INTEGER* 1 arrays so the value

of nfirst needs to be recalculated (i. e. nfirst4 = (nfirst*4) -3). The length of XO1, X02

and X03 is set to BFLENG *4; i. e the number of atoms in a nodes slice multiplied by

4.

201

do 321 1=0, numproc-1
if(l. lt. nmod)then

nfirst = (1*ndiv)+1+1
last = ((1+1)*ndiv)+1+1

else if(l. eq. nmod)then
nfirst = (1*ndiv)+1+1
last = ((1+1)*ndiv)+l

else if(l. gt. nmod)then
nfirst = (1*ndiv)+nmod+l
last = ((1+1)*ndiv)+nmod

endif

bfleng =((last+l)-nfirst)
nfirst = nfirst*4 -3

C RECALCULATE NFIRST FOR XOl(INTEGER*1 SIZE ARRAY)
call receive(L, xol(nfirst), 43, INT2(bfleng*4), 100, error)
call receive(L, xo2(nfirst), 44, INT2(bfleng*4), 100, error)
call receive(L, xo3(nfirst), 45, INT2(bfleng*4), 100, error)
call receive(L, tempi, 46,4,100, error)
sgdlsq = sgdlsq + temp

321 continue

FIGURE 6.17. Host code to receive 'improved' coordinates

6.3.5 Minimisation times

Table 6.5. shows the run-time of the parallel minimiser on one node compared to four

nodes for 24 and 45 atom molecules. The results illustrate that for a 24 atom molecule
a speed-up of approximately 2.5 is obtained whereas for a 45 atom molecule a speed-

up of approximately 3 is achieved. The difference in the results is due to the set-up time
(i. e. the loading of the required data onto the nodes etc.) which becomes more

significant for smaller numbers of atoms.

Number of atoms Number of Nodes Run-time of Minimiser
24 1 320s
24 4 129s
45 1 743s
45 4 243s

TABLE 6.5. Optimisation times for 30 iterations

One of the reasons that a speed up of closer to 4 is not achieved is that a large amount

of redundant information is sent to the nodes. This is due to the fact that the dummy

arrays sent to the nodes are dimensioned to encompass the maximum number of atoms.
In the case of a small molecule the arrays would contain a large amount of zero values.

202

The problem could be overcome by calculating the size of the arrays based on the

number of atoms. This would be feasible for one dimensional arrays but the situation is

not so simple for multidimensional arrays due to the way arrays are arranged in

memory.

Figure 6.18 shows how the array FATXYZ, that contains the coordinates of fixed atoms
in the molecule, is arranged in memory. The parameter MXAT is the maximum number

of atoms and the arrows in the diagram indicate the continuation of memory addresses.

FATXYZ (MXAT, 3)

x; yi z;

xn Yn Zn
000

000

FIGURE 6.18. Arrangement of FATXYZ in memory

If this array was equivalenced to a one dimensional dummy array dimensioned

NUMATS x 3, where NUMATS is the number of atoms, then the dummy array would

not contain the correct data. This problem can be solved by reversing the indices of the

array FATXYZ (See Figure 6.19). By arranging the array in this manner and

equivalencing it to a dummy array with dimension NUMATS x 3, the dummy array

will contain all the relevant data and no zeros.

FATXYZ (3, MXAT)
Xi -- Xn 0--0

Yi -- Yn 0--0

zi -Zn 0- -0

FIGURE 6.19. Arrangement of FATXYZ in memory with reversed indices

Since the arrays were already dimensioned with the first index as MXAT it was decided

for the prototype version of the minimiser to leave the arrays the way they were and

therefore to send the redundant data to the nodes. Changing the order of the indices

203

would involve altering every instance of the arrays in the program -a time consuming
task.

6.4 Graphical Interface
In order to make the minimiser more user friendly, a graphical interface was developed

that allows the user to enter parameters such as number of iterations, van der Waals

cut-off distance etc. via selecting boxes on the screen. These were previously entered
in a file that was read in the subroutine Getcop. In this version of the minimiser instead

of calling Getcop, the routine nrm get_control_parmeters is called which initiates

the graphical interface. The graphics were drawn using the Microsoft FORTRAN

graphics library (Chap. 3 Ref. 10).

Several screen shots of the graphical interface are shown in Appendix D pages 308 -
310. . The pseudocode for it is shown in Figure 6.20 on page 206 and the FORTRAN

code is shown in Appendix C pages 283 - 302.

The values of the parameters are entered via a number pad, which is printed at the side

of the screen, once a parameter has been selected. In the case of fixing parameters, a

stick representation of the molecule is drawn to allow the user to select atoms, lengths

etc. The user also defines the severity of the restraint via the number pad. For lengths

and angles the user enters the value via the number pad.

6.5 Conclusions

The use of the BB08 broadcast link interface and the COMFORT programming

environment within a parallel molecular mechanics program has been detailed. An

advantage of using the BB08 is that the data required by the nodes can be broadcast

simultaneously to all the nodes and therefore no additional software is required on the

nodes to manage the passing of the data. Also broadcasting the code and data to all the

nodes at once reduces the run time of the minimisation considerably compared to the

version that uses 3L FORTRAN and a pipeline of transputers.

204

Calculate position of option boxes and text
Calculate position of number pad boxes and text
While. NOT. start do

Draw option box and text
Show mouse cursor
Find which box mouse clicked on
If clicked on first box then

Write message 'Enter no. of iterations' on screen
Draw number pad boxes and text
Decide what number was entered and store it

Else If clicked on second box then
Write message 'Enter van der Waals cutoff distance'
Draw number pad boxes and text
Decide what number was entered and store it

Else If clicked on third box and type of output is 'long' then
Write 'Enter print threshold energy'
Draw number pad boxes and text
Decide what number was entered and store it

Else If clicked on fourth box then
Write 'Enter maximum coordinate shift'
Draw number pad boxes and text
Decide what number was entered and store it

Else If clicked on fifth box then
If type of output is 'short' then

set type of output to 'abbreviated'
Else If type of output is 'long' then

set type of output to 'short'
Else if type of output is 'abbreviated' then

set type of output to 'long'
Else If clicked on sixth box then

Calculate screen coordinates for molecule
Draw simple stick molecule
Label atoms with numbers
Draw menu for fixing atoms or parameters
Find which box in menu was selected
If first box picked then

Write 'Pick atom to fix'
Find which atom selected
Write 'Enter severity'
Draw number pad boxes and text
Decide what number was entered
Enter coordinates of atom and severity of constraint in appropriate arrays

Else If second box picked then
Write 'Pick atoms defining fixed length'
Find which atoms selected
Write 'Choose value of fixed length'
Draw number pad boxes and text
Decide what number was entered
Write 'Enter severity'
Draw number pad boxes and text
Decide what number was entered
Enter coordinates of atoms, fixed value and severity of constraint in
appropriate arrays

205

Else If third box picked then
Write 'Pick atoms defining fixed angle'
Find which atoms selected
Write 'Choose value of fixed angle'
Draw number pad boxes and text
Decide what number was entered
Write 'Enter severity'
Draw number pad boxes and text
Decide what number was entered
Enter coordinates of atoms, fixed value
appropriate arrays

Else If fourth box picked then
Write 'Pick atoms defining torsion angle'
Find which atoms selected
Write 'Choose value of torsion angle'
Draw number pad boxes and text
Decide what number was entered
Write 'Enter severity'
Draw number pad boxes and text
Decide what number was entered
Enter coordinates of atoms, fixed value
appropriate arrays

Else If fifth box picked then
Write 'Pick any atom in molecule to fix'
Find which atom selected
Enter no. of molecule in appropriate array

Else If clicked on seventh box then
start =. TRUE.

Else If clicked on eighth box then
STOP

FIGURE 6.20. Pseudocode for graphical interface

and severity of constraint in

and severity of constraint in

Further improvements to this algorithm could include using the host to carry out the

Newton Raphson iteration on a `slice' of atoms rather than it remaining idle while the

nodes are computing. Also in this version the nodes recalculate data for all the atoms

where they only need to calculate the data for the atoms in their slice. For example the

arrays NBMAT, NAMAT, NTMAT which contain the bonded/nonbonded interactions,

angles and torsion angles respectively for each atom in the molecule need only be

calculated for the atoms in the node's slice.

A more recent version of the software uses Microsoft Powerstation (32-bit) Fortran.

Using this version with eight 486 PCs as nodes and a 45 atom molecule, gives a speed-

up factor of 6.1 compared to a single node.

206

References

[1] Chem-X. Chemical Design Inc.

[2] Sybyl. Tripos Associates

[3] White, D. N. J. Computer methods for molecular design. Phil. Traits. R. Soc.
Lond. 1986. A 317,359 - 369

[4] Weiner, P. K., Kollman, P. A., Amber: Assisted Model Building with Energy
Refinement. A General Program for Modeling Molecules and their Interactions.
J. Comp. Chem 1981,2, pp. 287-303

[5] Mertz, John. E., Tobias, Douglas, J., Brooks, Charles. L., Singh, U. C. Vector and
Parallel Algorithms for the Molecular Dynamics Simulation of Macromolecules

on Shared Memory Computers. J. Conzp. Chemn 1991,12, pp. 1270 - 1277

[6] Clark, Terry. W., McCammon, J. Andrew. Parallelisation of a Molecular Dynamics
non-bonded force algorithm for MIMD architecture. Computers & Chem. 1990,
Vol. 14, NO, 219

[7] Hwang, Yuan-Shin., Das, Raja., and Saltz. Joel. H. Parallelizing Molecular
Dynamics Programs for Distributed-Memory Machines. IEEE Computational
Science and Engineering, Summer 1995, pp. 18-29

[8] Swanson, Eric., Lybrand, Terry P. PVM-AMBER: A Parallel Implementation of
the AMBER Molecular Mechanics Package for Workstation Clusters.
J. Comp. Chem 1995,16, pp. 1131 - 1140

[9] Vincent, James J., Merz, Kenneth M. A Highly Parallel Implementation of
AMBER4 Using the Message Passing Interface Standard. J. Coinp. Chem 1995,
16, pp. 1420 - 1427

[10] Schweitzer, Robert. C., Small, Gary W., Application of Parallel Processing
Techniques to Improving the Efficiency of the MM2 Molecular Mechanics
Calculations. J. Comp. Chem. 1993,14,977 - 985

[11] Parallel Fortran User Guide, 3L Ltd, 1990

[12] White, D. N. J., Ruddock, J. Noel., Edgington, Paul R. Molecular Design with
Transparallel Supercomputers. Molecular Simulation 1989, Vol. 3,71

[13] White, David N. J. A Hardware & Software Environment for Parallel Processing

with PCs. In press, Computers & Chemistry.

[14] Harkins, Andrew. Molecular Mechanics Calculations using Parallel Computers.
Final Year Project. 1992-93

[15] Bissland, Lesley., White, David N. J. Parallel Molecular Mechanics Calcualtions.
Transputer Applications and Systems `95. Proceeding of the 1995 World
Transputer Congress 1995, Harrogate, Sept. 95, pp. 473-487

207

Appendix A:

Source code for command line and graphical
interfaces.

Appendix A 208

C**twt*ttt*ttt*ti*i**tst***ittieiitiastrte*tsr*r****frwt+*****twxr**"

C NAME; C0041. FOR
C
C FUNCTION: A COMMAND LINE INTERFACE THAT ALLOWS CONNECTIONS TO*

º
C BE SPECIFIED BETWEEN PROCESSORS º

INTERFACE TO INTEGER*2 FUNCTION LINKIN
[C, ALIAS: '_Iinkin'] (C)

INTEGER*2 C
END

INTERFACE TO SUBROUTINE LINKOUT[C, ALIAS: '_Iinkout'] (A, B)
INTEGER*2 A, B

END

INTERFACE TO SUBROUTINE RUN(C, ALIAS: '_run'] (E, F)
INTEGER*2 E, F
END

PROGRAM PROCESSOR 0004

CHARACTER*10 PROC1, LINK1, PROC2, LINK2
CHARACTER*80 STATEMENT
CHARACTER*65 SUBSTA
CHARACTER*1 ANS, SREP, REP
LOGICAL TEST, ZEROO

INTEGER IPROCI, ILINK1, ITO, IPROC2, ILINK2,
1 LMAX, PMAX, NP1(32), NP2(32), NL1(32), NL2(32),
1 00040(32,6), 00041(32,6), LMIN, LKAD(4), N, J,
1 C40IN(32), C410UT(32), C400UT(32), C41IN(32),
1 X, Y, A3, A4, P1, P2, L1, L2, BADD, T, CPROCI, CPROC2,
1 SPROCI, SPROC2, CLINK1, CLINK2, SLINKI, SLINK2,
1 IN, OUTPUT, C4, M, P, SSREP, INO, IN1

INTEGER*2 LINKIN
ZEROO = FALSE.

C INSTRUCTIONS FOR ENTERING CONNECTIONS

WRITE(*, *)
WRITE(*, 3)

3 FORMAT(20X, 'LINK CONNECTIONS')
WRITE(*, 4)

4 FORMAT(20X, '****************,)
WRITE(*, *)

WRITE(*, 6)
6 FORMAT(1X, ENTER THE LINKS BETWEEN THE PROCESSORS IN THE', 1X,

1 FOLLOWING FORM: ')
WRITE(*, *)

WRITE(*, 7)
7 FORMAT(1X, CONNECT PROCESSOR A LINK B TO PROCESSOR', 1X,

1 'C LINK D')
WRITE(*, *)

WRITE(*, 8)
8 FORMAT(IX, EACH STATEMENT MUST BE ON A NEW LINE AND', IX,

1 'EACH WORD')
WRITE(*, 9)

9 FORMAT(1X, 'MUST BE TYPED IN ALL THE SAME CASE. ')
WRITE(*, 21)

21 FORMAT(1X, 'ONCE FINISHED TYPE ''QUIT ''. 9

C SET COUNTER

K=0

C READ STATEMENT OF CONNECTIONS

10 READ(*, '(A80)') STATEMENT

C TEST FOR END

GOTO 20
END IF

IF ((STATEMENT. EQ. 'QUIT'). OR. (STATEMENT. EQ. 'quit')) THEN

K=K+1

C FIND POSITIONS OF BEGINNING OF KEY WORDS

CPROCI = INDEX(STATEMENT, 'PROCESSOR')
SPROCI = INDEX(STATEMENT, 'processor')

CLINK1 = INDEX(STATEMENT, 'LINK')
SLINK1 = INDEX(STATEMENT, 'link')

CTO = INDEX(STATEMENT, 'TO')
STO = INDEX(STATEMENT, 'to')

IF (CPROCI. GT. O) THEN
IPROCI = CPROC1

ELSE IF (SPROCI. GT. O) THEN

Appendix A 209

IPROC1 = SPROC1
ELSE

IPROCI =0
END IF
IF (CLINK1. GT. 0) THEN

ILINK1 = CLINKI
ELSE IF (SLINK1. GT. 0) THEN

ILINK1 = SLINK1
ELSE

ILINK1 =0
END IF
IF (CTO. GT. 0) THEN

ITO = CTO
ELSE IF (STO. GT. 0) THEN

ITO = STO
ELSE

ITO =0
END IF

SUBSTA = STATEMENT(ITO: 80)
CPROC2 = INDEX(SUBSTA, 'PROCESSOR')
SPROC2 = INDEX(SUBSTA, 'processor')

CLINK2 = INDEX(SUBSTA, 'LINK')
SLINK2 = INDEX(SUBSTA, 'link')

IF (CPROC2. GT. 0) THEN
IPROC2 = CPROC2

ELSE IF (SPROC2. CT. 0) THEN
IPROC2 = SPROC2

ELSE
IPROC2 =0

END IF
IF (CLINK2. GT. 0) THEN

ILINK2 = CLINK2
ELSE IF (SLINK2. GT. 0) THEN

ILINK2 = SLINK2
ELSE

ILINK2 =0
END IF

C TEST FOR SPELLING MISTAKES

IF ((IPROCI. EQ. O). OR. (ILINK1. EQ. 0). OR.
1 (IPROC2. EQ. O). OR. (ILINK2. EQ. 0). OR. (ITO. EQ. O)) THEN

WRITE(*, *)'SYNTAX ERROR. RE-ENTER STATEMENT'
K=K-1
GOTO 10

END IF

C FOR EACH ENTRY IN THE ARRAY STATEMENT FIND THE
C RELEVANT PROCESSOR AND LINK NUMBERS

PROC1 = STATEMENT((IPROC1 + 9): (ILINK1 - 1))
LINK1 = STATEMENT((ILINKI + 4): (ITO - 1))
PROC2 = SUBSTA((IPROC2 + 9): (ILINK2 - 1))

LINK2 = SUBSTA((ILINK2 + 4):)

C CALL SUBROUTINE WHICH WILL CONVERT CHARACTER VALUES INTO
C INTEGER VALUES

CALL INTEG (K, PROC1, NP1)
CALL INTEG (K, LINK1, NL1)
CALL INTEG (K, PROC2, NP2)
CALL INTEG (K, LINK2, NL2)

C CONSTANTS FOR MAXIMUM NUMBER OF PROCESSORS
C PMAX = MAX NO OF PROCESSSORS
C LMAX t MAX VALUE OF LINK NO
C LMIN = MIN VALUE OF LINK NO

PMAX = 31
LMAX =2
LMZN =1

P1 = NP1(K)
P2 = NP2(K)
L1 = NL1(K)
L2 = NL2(K)

TEST = FALSE.

C CHECK IF PROCESSOR NUMBER IS TOO HIGH

IF (NP1(K). GT. PMAX) THEN
TEST = TRUE.
WRITE('. 11)

12 FORMAT (1X, ITHE NUMBER FOR THE FIRST PROCESSOR', 1X,
1 'IS TOO HIGH. ')

Appendix A 210

END IF
IF (NP2(K). GT. PMAX) THEN

TEST = TRUE.
WRITE(*, 12)

22 FORMAT(1X, 'THE NUMBER OF THR SECOND PROCESSOR', 2X,
1 IS TOO HIGH. ')

END IF

C CHECK IF LINK NUMBER IS CORRECT

IF ((NL1(K). GT. LMAX). OR. (NL1(K). LT. LMIN)) THEN
TEST = TRUE.
WRITE(*, 13)

13 FORMAT(1X, 'THE NUMBER OF THE FIRST LINK IS', 1X,
1 NOT CORRECT. ')

END IF
IF ((NL2(K). GT. LMP. X). OR. (NL2(K). LT. LMIN)) THEN

TEST = TRUE.
WRITE(*, 14)

14 FORMAT(1X, 'THE NUMBER OF THE SECOND LINK IS', 1X,
1 NOT CORRECT. ')

END IF

C CHECK LINK NUMBERS ARE NOT EQUAL

IF (NL1(K). EQ. NL2(K)) THEN
TEST = TRUE.
WRITE(*, 15)

15 FORMAT(1X, 'THE LINK NUMBERS CANNOT BE', 1X,
1 'THE SAME. ')

END IF

C CHECK LINK AND PROCESSOR NUMBER NOT USED
C BEFORE

DO 50 J=1, K -1
IF(((P1. EQ. NP1(J)). AND. (L1. EQ. NL1(J))). OR.

1 ((P1. EQ. NP2(J)). AND. (L1. EQ. NL2(J)))) THEN
TEST = TRUE.
WRITE(*, 22)

22 FORMAT(1X, 'THE VALUES FOR THE FIRST PROCESSOR', 1X,
1 'AND LINK NUMBERS HAVE BEEN USED BEFORE. ')

END IF
IF((IP2. EQ. NP1(J)). AND. (L2. EQ. NL1(J))). OR.

1 ((P2. EQ. NP2(J)). AND. (L2. EQ. NL2(J)))) THEN
TEST = TRUE.
WRITE(*, 23)

23 FORMAT(1X, 'THE VALUES FOR THE SECOND', 1X,
1 'PROCESSOR AND LINK NUMBERS HAVE BEEN. ')

WRITE(*, *) 'USED BEFORE'
END IF

50 CONTINUE

IF (TEST) THEN
WRITE(*, *) 'PLEASE RE-ENTER STATEMENT. '
K= K-1

END IF

GOTO 10

C FIND CORRESPONDING LINK NUMBERS ON C004

20 CALL TABLE(00041, C0040)
CALL LINKS(K, NPI, NL1, C0040, CO041,

1 C41IN, C41OUT, C40IN, C40OUT)
CALL LINKS(K, NP2, NL2, COO40, COO41,

1 C41IN, C41OUT, C40IN, C400UT)

C CREATE AN ARRAY CONTAINING BASE ADDRESSES
C OF LINK ADAPTORS

LKAD(1) = 384
LKAD(2) = 388
LKAD(3) = 392
LKAD(4) = 396

C SET BOARD ADDRESS

BADD = 424

C PUT BOARD INTO RUN STATE

CALL RUN(1, BADD)
DO 60 T=1.5000

60 CONTINUE
CALL RUN(0, BADD)

C CALL SUBROUTINE TO OUTPUT BYTE AT LINK ADAPTOR

Appendix A 211

CALL LINKOUT(4, LKAD(1))
CALL LINKOUT(4, LKAD(2))

DO 30 N=1, K
CALL LINKOUT(O, LKAD(1))
CALL LINKOUT(C40IN(N), LKAD(1))
CALL LINKOUT(C400UT(N), LKAD(1))
CALL LINKOUT(3, LKAD(1))
CALL LINKOUT(O, LKAD(2))
CALL LINKOUT(C41IN(N), LKAD(2))
CALL LINKOUT(C41OUT(N), LKAD(2))
CALL LINKOUT(3, LKAD(2))

30 CONTINUE

C OFFER OPTION TO INTERROGATE 0004

55 WRITE(*, *) DO YOU WANT TO INTERROGATE 0004S? (Y/N)'
READ(*, '(A)') REP
WRITE(*, *) REP
IF ((REP. NE. 'N'). AND. (REP. NE. 'n'). AND.

1 (REP. NE. 'Y'). AND. (REP. NE. 'y')) THEN
GOTO 55

END IF
IF ((REP. EQ. 'N'). OR. (REP. EQ. 'n')) THEN

GOTO 110
END IF

70 WRITE(*, *) WHICH C004 DO YOU WANT TO INTERROGATE? '
READ(*, *) C4
IF ((C4. NE. 0). AND. (C4. NE. 1)) THEN

COTO 70
END IF

80 WRITE(*, *) WHICH OUTPUT TO YOU WANT TO INTERROGATE? '
READ(*, *) OUTPUT
IF (OUTPUT. GT. 31) THEN

WRITE(*, *) 'NUMBER IS TOO HIGH. '
GOTO 80

END IF

IF (C4. EQ. 0) THEN
CALL LINKOUT(2, LKAD(1))
CALL LINKOUT(OUTPUT, LKAD(1))
IN = LINKIN(LKAD(1))
IF (((128 - IN). LT. O). OR. ((128 - IN). EQ. O)) THEN

IN = IN - 128
WRITE(*, *) THIS OUTPUT IS CONNECTED TO INPUT', IN

ELSE
WRITE(*, *) THIS OUTPUT IS NOT CONNECTED'

END IF
ELSE

CALL LINKOUT(2, LKAD(2))
CALL LINKOUT(OUTPUT. LKAD(2))
IN = LINKIN(LKAD(2))
IF (((128 - IN). LT. O). OR. ((128 - IN). EQ. O)) THEN

IN = IN - 128

WRITE(*, *) THIS OUTPUT IS CONNECTED TO INPUT', IN
ELSE

WRITE(*, *) THIS OUTPUT IS NOT CONNECTED'
END IF

END IF

90 WRITE(*, *) 'DO YOU WANT TO INTERROGATE THE COO4S FURTHER? (Y/N)'
READ(*, '(A)') SREP
IF ((SREP. NE. 'N'). AND. (SREP. NE. 'n'). AND.

(SREP. NE. 'Y'). AND. (SREP. NE. 'y')) THEN
GOTO 90

END IF
IF ((SREP. EQ. 'Y'). OR. (SREP. EQ. 'y')) THEN

GOTO 70
END IF

C DISPLAY CONNECTIONS MADE BETWEEN PROCESSORS

110 WRITE(* 25)
25 FORMAT (1X, 'DO YOU WANT TO SEE ALL THE CONNECTIONS', 1X,

I 'BETWEEN THE PROCESSORS? (Y/N)')
READ(*, '(A)') SSREP
IF ((SSREP. NE. 'N'). AND. (SSREP. NE. 'n'). AND.

1 (SSREP. NE. 'Y'). AND. (SSREP. NE. 'y')) THEN
GOTO 110

END IF
IF ((SSREP. EQ. 'N'). OR. (SSREP. EQ. 'n")) THEN

GOTO 100
END IF

C FIND WHICH INPUT EACH OUTPUT IS CONNECTED TO
C TEST MSB TO SEE IF SET

Appendix A 212

40 DO 130 P=1,32
CALL LINKOUT(2, LKAD(1))
CALL LINKOUT(CO040(P. 6), LKAD(1))
INO = LINKIN(LKAD(1))
CALL LINKOUT(2, LKAD(2))
CALL LINKOUT(INO, LKAD(2))
IN1 = LINKIN(LKAD(2))
IF (((128 - INO). LT. 0). OR. ((128 - INO). EQ. 0)) THEN

INO = INO - 128
IN1 = IN1 - 128
WRITE(' 26) 00040(P, 5), C0040(P, 4), C0040(INO + 1,2),

1 00040(INO + 1,1)
26 FORMAT(1X, 'PROCESSOR', 1X, I2,1X, 'LINKIN', lX, I2,1X,

1 'IS CONNECTED TO PROCESSOR', 1X, I2,1X,
1 'LINKOUT', 1X, I2)

WRITE(*, 26) COO41(INO + 1,5), 00041(INO + 1,4),
1 C0041(IN1 + 1,2), 00041(IN1 + 1,1)

END IF
130 CONTINUE

C CODE FOR TESTING C004

100 WRITE(*, *) 'DO YOU WANT TO TEST THE 0004 " s7(Y/N)'
READ(*, '(Al)') ANS

C TEST FOR ANSWER

IF ((ANS. EQ. 'N'). OR. (ANS. EQ. 'n')) THEN
STOP

END IF
WRITE(*, 16)

16 FORMAT(lX, 'ENTER NUMBER YOU WANT TO SEND TO LINK', lX,
1 'ADAPTOR 2')

READ(*. *) X
CALL LINKOUT(X, LKAD(3))
WRITE(*, 17)

17 FORMAT(1X, 'ENTER NUMBER YOU WANT TO SEND TO LINK', lX,
1 'ADAPTOR 3')

READ(*, *) Y
CALL LINKOUTIY, LKAD(4))

A3 = LINKIN(LKAD(3))
WRITE(*, 18) A3

18 FORMAT(1X, 'THE NUMBER RECEIVED AT LINK ADAPTOR', lX,
1 '2 WAS', 13)

A4 = LINKIN(LKAD(4))
WRITE(*, 19) A4

19 FORMAT(1X, 'THE NUMBER RECEIVED AT LINK ADAPTOR', 1X,
1 '3 WAS', I3)

END

SUBROUTINE INTEG(D, DUMR, X)

CHARACTER*10 DUMR
INTEGER D, X(*)

C CONVERT CHARACTERS INTO INTEGERS

READ(DUMR, '(I10)') X(D)

END

SUBROUTINE TABLE(00041, C0040)

INTEGER 00041(32,6), C0040(32,6)

C SET UP ARRAYS CONTAINING CONNECTIONS
C ON C004-1 AND C004-0

DO 10 I=1,32
00041(I, 1) =1
00041(I, 2) =I-1
00041(I, 3) =I-1
00041(I, 4) =2
00041(I, 5) =I-1
00041(I, 6) =I-1
00040(I. 1) =2
00040(l. 2) =I-1
COO40(I, 3) =I-1
00040(I, 4) =1
00040(I, 5) =I-1
00040(I, 6) =I-1

10 CONTINUE
END

Appendix A 213

SUBROUTINE LINKS(A, PNO, LNO, ARRAYO, ARRAY1, C41I,
1 C410, C40I, C400)

INTEGER A, J, I, PNO(32), LNO(32), ARRAYO(32,6), ARRAY1(32,6),
1 C41I(32), C410(32), C40I(32), C400(32)

DO 10 I=1, A
DO 20 J=1,32

IF((LNO(I). EQ. ARRAY1(J, 1)). AND. (PNO(I). EQ. ARRAYI(J, 2)))
1 THEN

C41I(I) = ARRAY1(J, 3)
END IF
IF ((LNO(I). EQ. ARRAY1(J, 4))"AND. (PNO(I). EQ. ARRAYI(J, 5)))

1 THEN
C410(I) = ARRAY1(J, 6)

END IF
IF((1. NO(I). EQ. ARRAYO(J, l)). AND. (PNO(I). EQ. ARRAYO(J, 2)))

1 THEN
C401(I) = ARRAYO(J, 3)

END IF
IF((LNO(I). EQ. ARRAYO(J, 4)). AND. (PNO(I). EQ. ARRAYO(J, 5)))

1 THEN
C400(I) = ARRAYO(J, 6)

END IF
20 CONTINUE
10 CONTINUE

END

SUBROUTINE LINKOUT(A, B)
INTEGER*2 A, B
WRITE(*, *) A, B
END

Appendix A 214

G'tt*t*i*tikii*f*kt**iiR*t*R*tt**ttt*RtRt#tRf#t*RR#*tt**R#R#*º*k*k*t#R

C NAME: GRAPH. FOR *
C*
C FUNCTION: A GRAPHICAL INTERFACE THAT ALLOWS CONNECTIONS TO* C BE DRAWN BETWEEN PROCESSORS *
('**R*fRRt*t*********f**kff*********f***R*tR**ii*#******************R*

INCLUDE 'MOUSE. FI'
INCLUDE 'FGRAPH. FI'

INTERFACE TO INTEGER*2 FUNCTION LINKIN
[C, ALIAS: '_linkin') (BASEADDRESS)

INTEGER*2 BASEADDRESS
END

INTERFACE TO SUBROUTINE LINKOUT[C, ALIAS: ' linkout']
(OUTPUTBYTE, BASEADDRESS)

INTEGER"2 OUTPUTBYTE, BASEADDRESS
END

INTERFACE TO SUBROUTINE RUN[C, ALIAS: ' run')
(OUTPUTBYTE, BOARDADDRESS)

INTEGER*2 OUTPUTBYTE, BOARDADDRESS
END

PROGRAM GRAPHICS19

INCLUDE 'GRAPH. INC'

INTEGER"4 NUMARGS
INTEGER"2 N, STATUS, K, J
CHARACTERk3 BUFFER

C SET RESET ADDRESS AND BASE ADDRESSES FOR LINK ADAPS

BADD - 424
LKAD(1) = 384
LKAD(2) - 388
LKAD(3) = 392
LKAD(4) = 396
NUMARGS = NARGS()

C SET FLAGS FOR PIPELINE AND WHETHER BETWEEN 1 AND 3 OR
C1 AND 2

LINKS FALSE.
PIPE FALSE.

C LOOK AT COMMAND LINE AND SEE IF INSTRUCTIONS
C WANTED AND/OR PIPELINE SPECIFIED

DO 40 K-1,3
CALL GETARG(K, BUFFER, STATUS)
IF (STATUS. NE. -1) THEN

IF (BUFFER. EQ. '\I') THEN
CALL INSTRUCTIONS()

END IF
IF (BUFFER. EQ. '\HP') THEN

PIPE _ TRUE.
DO 20 J=1,3

CALL GETARG(J, BUFFER, STATUS)
IF (STATUS. NE. -1) THEN

IF (BUFFER. EQ. '\03') THEN
LINKS - TRUE.

END IF
END IF

20 CONTINUE
END IF

END IF
40 CONTINUE

C PUT INTO GRAPHICSMODE AND DRAW ENDBOX, PROCESSORS
C AND PIPELINE

CALL GRAPHICSMODE()
CALL ENDBOX(50,35)
CALL DRAWPROCESSOR()
IF (PIPE) THEN

CALL PIPELINE()
END IF

C INITIALISE MOUSECURSOR

10 CALL MOUSE()

C FIND WHERE MOUSE HAS BEEN PRESSED

Appendix A 215

CALL PRESSMOUSE()

C CALL ROUTINE TO SET UP CONNECTIONS ON 0004S

CALL 0004CONNECTIONO

C CALL ROUTINE TO FIND CONNECTIONS ON C004

CALL CONNECTIONS(NP1, NL1)
CALL CONNECTIONS(NP2, NL2)

C PUT BOARD INTO RUN STATE

CALL RUN(1, BADD)
DO 60 T=1,5000

60 CONTINUE
CALL RUN(O, BADD)

C CALL SUBROUTINE TO OUTPUT BYTE AT LINK ADAPTOR

CALL LINKOUT(4, LKAD(1))
CALL LINKOUT(4, LKAD(2))

DO 30 N=1, LINKNO
CALL LINKOUT(O, LKAD(1))
CALL LINKOUT(C40IN(N), LKAD(1))
CALL LINKOUT(C400UT(N), LKAD(1))
CALL LINKOUT(3, LKAD(1))
CALL LINKOUT(0, LKAD(2))
CALL LINKOUT(C41IN(N), LKAD(2))
CALL LINKOUT(C41OUT(N), LKAD(2))
CALL LINKOUT(3, LKAD(2))

30 CONTINUE

C CALL SUBROUTINE TO INTERROGATE 0004S

CALL INTERROGATE()

C CALL SUBROUTINE TO DISPLAY CONNECTIONS

CALL DISPLAYCONNECTIONS()

C CALL ROUTINE TO TEST C004

CALL TEST0004()

END

C ****WRITE OUT INSTRUCTIONS"***

SUBROUTINE INSTRUCTIONS()

WRITE(*, 5)
5 FORMAT(20X, '0004 PROGRAMMER')

WRITE(*, 10)
10 FORMAT(20X, '***************.)

WRITE(*, 20)
WRITE(*, *)

20 FORMAT(1X, 'T0 MAKE A CONNECTION BETWEEN TWO', 1X,
1 'PROCESSORS YOU CLICK ON THE LINK')

WRITE(*, 30)
30 FORMAT(1X, 'YOU WANT TO USE, HOLD DOWN THE MOUSE', lX,

1 'BUTTON AND DRAG THE')
WRITE(*, 40)

40 FORMAT(1X, 'MOUSE TO WHERE YOU WANT IT TO BE RELEASED. ', 1X,
1 'IF YOU WANT, SEVERAL')

WRITE(*, 50)
50 FORMAT(1X, 'LINES CAN BE USED TO MAKE A CONNECTION. IF', 1X,

1 'YOU WANT TO DELETE')

WRITE(*, 60)
60 FORMAT(1X, 'A CONNECTION THEN CLICK ON EITHER END OF ', 1X,

1 'THE CONNECTION. ')
WRITE(*, 70)

70 FORMAT(1X, 'PRESS RETURN TO CONTINUE. ')

READ(*, *)

END

C ****SET GRAPHICS MODE****

SUBROUTINE GRAPHICSMODE()

INCLUDE 'FGRAPH. FD'
INCLUDE 'GRAPH. INC'

RECORD/VIDEOCONFIG/MYSCREEN

Appendix A 216

INTEGER *2 MODESTATUS, DUMMY, STATUS

C SET VIDEOMODE TO MAXRESOLUTION

MODESTATUS = SETVIDEOMODE($MAXRESMODE)
IF (MODESTATUS. EQ. O) STOP 'ERROR

1 CANNOT SET GRAPHICS MODE'

CALL CLEARSCREEN($GCLEARSCREEN)

C SET FONTS

DUMMY = REGISTERFONTS('C: \MSF\LIB*. FON')

IF (DUMMY. LT. O) THEN
STOP 'ERROR: CANNOT FIND FONT FILES'

END IF

STATUS = SETFONT('T'COURIER'"//'hl0w8b')

IF (STATUS. LT. O) THEN
STOP 'ERROR: CANNOT SET FONT'

END IF

C FIND RESOLUTION OF SCREEN

CALL CETVIDEOCONFIG(MYSCREEN)
MAXX = MYSCREEN. NUMXPIXELS -1
MAXY = MYSCREEN. NUMYPIXELS -1

C SCALE TO 1000

C

SCALEY = FLOAT(MAXY) / 1000.0

END
SCALEX = SCALEY * (FLOAT(MAXX) / FLOAT(MAXY)) * (3.0 / 4.0)

****ENDGRAPHICS****

SUBROUTINE ENDGRAPHICSO

INCLUDE 'FGRAPH. FD'
INCLUDE 'GRAPH. INC'

INTEGER *2 MODESTATUS

MODESTATUS = SETVIDEOMODE($DEFAULTMODE)

END

C ****FIND XCOORDINATES FROM SCREEN COORDS****

INTEGER*2 FUNCTION NEWX(XCOORD)

INTEGER XCOORD

INCLUDE 'GRAPH. INC'

REAL TEMPX

TEMPX = FLOAT(XCOORD) * SCALEX
NEWX = INT2(TEMPX + 0.5)
END

C ****FIND SCREEN COORDS FROM XCOORDS****

INTEGER*2 FUNCTION CONVERTX(XCOORD)

INTEGER*2 XCOORD

INCLUDE 'GRAPH. INC'

REAL TEMPX

TEMPX = FLOAT(XCOORD) / SCALEX
CONVERTX = INT2(TEMPX t 0.5)
END

C ****FIND YCOORDS FROM SCREEN COORDS****

INTEGER*2 FUNCTION NEWY(YCOORD)

INTEGER YCOORD

INCLUDE 'GRAPH. INC'

REAL TEMPY

TEMPY = FLOATIYCOORD) * SCALEY

Appendix A 217

NEWY = INT2(TEMPY + 0.5)
END

C ****FIND SCREEN COORDS FROM YCOORDS****

INTEGER*2 FUNCTION CONVERTY(YCOORD)

INTEGER*2 YCOORD

INCLUDE 'GRAPH. INC'

REAL TEMPY

TEMPY = FLOAT(YCOORD) / SCALEY
CONVERTY = INT2(TEMPY + 0.5)
END

C ****DRAW BOXES FOR PROCESSORS****

SUBROUTINE BOX(XCENT, YCENT, PROCNO)

INTEGER XCENT, YCENT
INTEGER PROCNO

INCLUDE 'GRAPH. INC'
INCLUDE 'NEWXY. INC'

INCLUDE 'FGRAPH. FD'

INTEGER *2 STATUS
CHARACTER*2 CHAR
RECORD/XYCOORD/XY

C MAKE PROCESSOR NUMBER A CHARACTER

WRITE (CHAR, '(I2)') PROCNO
CALL COLOUR(9)

C DRAWBOX

STATUS = RECTANGLE($GBORDER, NEWX(XCENT - 50), NEWY(YCENT - 50),
1 NEWX(XCENT + 50), NEWY(YCENT + 50))

CALL COLOUR(12)

C PUT PROCESSOR NUMBER IN BOX

CALL TEXT(XCENT - 19, YCENT - 11, CHAR)

END

C ****DRAW LINES****

SUBROUTINE DRAWLINE(STARTX, STARTY, ENDX, ENDY)

INCLUDE 'GRAPH. INC'
INCLUDE 'NEWXY. INC'

INCLUDE 'FGRAPH. FD'

INTEGER STARTX, STARTY, ENDX, ENDY
RECORD/XYCOORD/XY
INTEGER*2 LINE

C MOVE CURSOR TO WHERE YOU WANT LINE TO START
C AND THEN DRAW LINE TO NEW POSITION

CALL MOVETO(NEWX(STARTX), NEWY(STARTY), XY)
LINE = LINETO(NEWX(ENDX). NEWY(ENDY))

END

C ****INITIALISE AND SHOW MOUSE****

SUBROUTINE MOUSE

INCLUDE MOUSE. FD'
INCLUDE FGRAPH. FD'
INCLUDE GRAPH. INC'
INCLUDE NEWXY. INC'

INTEGER START
INTEGER*2 BUTTONS

CALL COLOUR(7)
START = INITIALISEMOUSE(BUTTONS)

IF (START. EQ. O) THEN
CALL ENDGRAPHICS()

Appendix A 218

WRITE(*, *) 'MOUSE DRIVER NOT INSTALLED'
END IF

CALL SHOWMOUSECURSORC)

END

C ****CHECK FOR MOUSE PRESSES AND THEN TAKE
C APPROPRIATE ACTION****

SUBROUTINE PRESSMOUSE()

INCLUDE 'MOUSE. FD'
INCLUDE 'FGRAPH. FD'
INCLUDE 'GRAPH. INC'
INCLUDE 'NEWXY. INC'

INTEGER I, XPOINT, YPOINT, K, IXPOS, IYPOS, OLDXPOS,
1 OLDYPOS, NIXPOS, NIYPOS, COLUMN, N, COUNTER, CONNO

INTEGER*2 XPOS, YPOS, BPOS, BCOUNT

LINKNO =0
COLUMN =2
COUNTER =0

CONNECT = TRUE.
CHOOSELINK1 = TRUE.
CHOOSELINK2 = TRUE.
CHANGELINKNO = TRUE.

CALL COLOUR(11)

10 CALL GETMOUSECURSORPOSITION(XPOS, YPOS, BPOS)

C IF BUTTON PRESSED DOWN

IF (BPOS. EQ. 1) THEN
CALLMOUSETRUE = FALSE.

C FIND SCRENN COORDS OF MOUSE POSITION

XPOINT = CONVERTX(INT2(XPOS))
YPOINT = CONVERTY(INT2(YPOS))

C IF IN MIDDLE OF CONNECTION THEN MAKE
C INITIAL COORDINATES PREVIOUS ONES

IF (. NOT. CONNECT) THEN
XPOINT = NIXPOS
YPOINT = NIYPOS

END IF

C IF MADE BAD CONNECTION AND CONNECTION
C OF MORE THAN ONE LINE THEN MAKE INITIAL
C COORDS AT END OF PREVIOUS LINE

IF (. NOT. CHANGELINKNO) THEN
XPOINT = POINTS(LINKNO, COLUMN - 2)
YPOINT = POINTS(LINKNO, COLUMN - 1)

END IF

C STORE LINKNO BEFORE YOU FIND NEW LINKNO
CONNO = LINKNO

C CHECK TO SEE IF MOUSE HAS BEEN PRESSED AND RELEASED
C ON A PROCESSOR AND STORE PROCESSOR NUMBER AND LINKNO
C IF IT HAS

CALL FINDPROCNO1(NP1, NLI, XPOINT, YPOINT)

C IF MOUSE PRESSED ON PROCESSOR BUT NOT ON LINK THEN
C EXIT LINK

IF (. NOT. CHOOSELINK1) THEN
GOTO 10

END IF

C CHECK TO SEE WHETHER END BOX COULD HAVE BEEN PRESSED

IF ((CONNO. EQ. LINKNO). AND. (COUNTER. EQ. O)) THEN
IF ((XPOINT. LT. 110). AND. (XPOINT. GT. 2). AND.

1 (YPOINT. LT. 52). AND. (YPOINT. GT. 10)) THEN
CALL CLEARSCREEN($GCLEARSCREEN)
CALL ENDGRAPHICS
STOP
RETURN

END IF

Appendix A 219

GOTO 10
END IF

C IF PIPELINE CHOSEN CHECK THAT LINKS USED FOR
C PIPELINE WERE NOT PRESSED

IF ((PIPE). AND. (LINKS)) THEN
IF ((NL1(LINKNO). EQ. O). OR. (NL1(LINKNO). EQ. 3)) THEN

LINKNO = LINKNO -1
COTO 10

END IF
END IF
IF ((PIPE). AND. (. NOT. LINKS)) THEN

IF ((NL1(LINKNO). EQ. 1). OR. (NL1(LINKNO). EQ. 2)) THEN
LINKNO = LINKNO -1
GOTO 10

END IF
END IF

C SET WRITESTYLE TO XOR TO ENABLE LINES TO BE
C WRITTEN OVER

CALL WRITESTYLE($GXOR)

C PUT INITIAL COORDINATES IN IXPOS AND IYPOS

IXPOS = XPOINT
IYPOS = YPOINT

C HIDE MOUSE CURSOR, DRAWLINE, SHOWMOUSECURSOR

CALL HIDEMOUSECURSOR
CALL DRAWLINE(XPOINT, YPOINT,

1 IXPOS, IYPOS)
CALL SHOWMOUSECURSOR

C WHILE BUTTON IS PRESSED DOWN

DO WHILE (BPOS. EQ. 1)

C STORE PREVIOUS MOUSE COORDS IN OLDXPOS&OLDYPOS

OLDXPOS = IXPOS
OLDYPOS = IYPOS

C GET POSTION OF MOUSE

CALL GETMOUSECURSORPOSITION(XPOS, YPOS, EPOS)

C CONVERT POSITION INTO SCREEN COORDS

IXPOS = CONVERTX(INT2(XPOS))
IYPOS - CONVERTY(INT2(YPOS))

C CHECK IF MOUSE HAS MOVED AND IF IT HAS
C THEN DRAW OVER OLD LINE AND DRAW NEW ONE

IF (((IXPOS - OLDXPOS) . NE. 0). OR.
1 ((IYPOS - OLDYPOS). NE. O)) THEN

CALL HIDEMOUSECURSOR
CALL DRAWLINE(XPOINT. YPOINT,

1 OLDXPOS, OLDYPOS)
CALL DRAWLINE(XPOINT, YPOINT,

1 IXPOS, IYPOS)
CALL SHOWMOUSECURSOR

END IF
END DO

END IF

C CHECK FOR MOUSE BEING RELEASED

CALL GETMOUSEBUTTONRELEASEINFO(O, XPOS, YPOS, BPOS, BCOUNT)

C IF IT HAS BEEN RELEASED

IF (BCOUNT. EQ. 1) THEN
CHANGELINKNO = TRUE.

C CHECK IF MOUSE HAS BEEN CALLED APART FROM

C IN THIS SUBROUTINE

IF (CALLMOUSETRUE) THEN
GOTO 10

END IF

C SAME CHECKS AS FOR WHEN BUTTON WAS PRESSED

Appendix A 220

c DOWN
IF (. NOT. CHOOSELINK1) THEN

GOTO 10
END IF
IF ((CONNO. EQ. LINKNO). AND. (COUNTER. EQ. 0)) THEN

GOTO 10
END IF

IF ((PIPE). AND. (LINKS)) THEN
IF ((NL1(LINKNO). EQ. 0). OR. (NL1(LINKNO). EQ. 3)) THEN

GOTO 10
END IF

END IF
IF ((PIPE). AND. (. NOT. LINKS)) THEN

IF ((NL1(LINKNO). EQ. 1). OR. (NL1(LINKNO). EQ. 2)) THEN
GOTO 10

END IF
END IF

C DRAW OVER PREVIOUS LINE

CALL HIDEMOUSECURSOR
CALL DRAWLINE(XPOINT, YPOINT, IXPOS, IYPOS)
CALL SHOWMOUSECURSOR

C FIND NEW POSITION OF MOUSE

NIXPOS = CONVERTX(INT2(XPOS))
NIYPOS = CONVERTY(INT2(YPOS))

C CHECK TO SEE IF SECOND PROCESSOR WAS PICKED

CALL FINDPROCNO2(NP2, NL2, NIXPOS, NIYPOS)

C CHECK IF PROCESSOR WAS PICKED BUT NOT ON
CA LINK

IF (. NOT. CHOOSELINK2) THEN
IF (COUNTER. NE. O) THEN

CHANGELINKNO = FALSE.
ELSE

LINKNO = LINKNO -1
CHANGELINKNO = TRUE.

END IF
GOTO 10

END IF

C CHECK IF SAME PROCESSOR AND LINK NO
C USED BEFORE FOR FIRST PROCESSOR PICKED

IF (CHOOSELINK2) THEN

C CHECK IF SAME PROCESSOR AND LINK NO
C USED BEFORE

IF (NP1(LINKNO). NE. NP2(LINKNO)) THEN
DO 200 X=1, LINKNO -1

IF (((NP1(LINKNO). EQ. NP1(X)). AND.
1 (NL1(LINKNO). EQ. NL1(X))). OR.
1 ((NP1(LINKNO). EQ. NP2(X)). AND.
1 (NL1(LINKNO). EQ. NL2(X)))) THEN

IF (. NOT. CONNECT) THEN
CONNECT = TRUE.

END IF
CHANGELINKNO = TRUE.
LINKNO = LINKNO -1
GOTO 10

END IF
200 CONTINUE

END IF

C CHECK FOR CONNECTION BEING MADE

90 IF (CONNECT) THEN

C IF PIPELINE CHECK LINKS FOR PIELINE NOT
C USED BEFORE

IF (IPIPE). AND. (LINKS)) THEN
IF ((NL2(LINKNO). EQ. O). OR. (NL2(LINKNO). EQ. 3)) THEN

IF (COUNTER. NE. O) THEN
CHANGELINKNO = FALSE.

ELSE
LINKNO = LINKNO -1
CHANGELINKNO = TRUE.

END IF
COTO 10

END IF

Appendix A 221

END IF
IF ((PIPE). AND. (. NOT. LINKS)) THEN

IF ((NL2(LINKNO). EQ. 1). OR. (NL2(LINKNO). EQ. 2)) THEN
IF (COUNTER. NE. O) THEN

CHANGELINKNO = FALSE.
ELSE

LINKNO = LINKNO -1
CHANGELINKNO = TRUE.

END IF
GOTO 10

END IF
END IF

C CHECK IF TWO LINK NUMBERS THE SAME

IF ((NL1(LINKNO). EQ. NL2(LINKNO)). AND. (PIPE). AND.
1 (NP1(LINKNO). NE. NP2(LINKNO))) THEN

IF (COUNTER. NE. O) THEN
CHANGELINKNO = FALSE.

ELSE
LINKNO = LINKNO -1
CHANGELINKNO = TRUE.

END IF
GOTO 10

END IF

C CHECK IF LINK AND PROCESSOR USED BEFORE FOR
C SECOND PROCESSOR AND LINK SELECTED

IF (NP1(LINKNO). NE. NP2(LINKNO). OR.
1 (NL1(LINKNO). NE. NL2(LINKNO). AND. NP1(LINKNO). EQ.
1 NP2(LINKNO))) THEN

DO 300 X=1, LINKNO -1
IF (((NP2(LINKNO). EQ. NP1(X)). AND.

1 (NL2(LINKNO). EQ. NL1(X))). OR.
I ((NP2(LINKNO). EQ. NP2(X)). AND.
1 (NL2(LINKNO). EQ. NL2(X)))) THEN

IF (COUNTER. EQ. O) THEN
CHANGELINKNO = TRUE.
LINKNO = LINKNO -1
GOTO 10

ELSE
CHANGELINKNO = FALSE.
GOTO 10

END IF
END IF

300 CONTINUE
END IF

END IF

END IF

C DRAW NEW LINE

CALL HIDEMOUSECURSOR
CALL SRAWLINE(XPOINT, YPOINT, NIXPOS, NIYPOS)
CALL SHOWMOUSECURSOR

C INCREMENT COUNTER FOR COUNTING NO OF LINES

COUNTER = COUNTER +1

C STORE NO OF LINES AND POINTS THAT MAKE UP
C CONNECTIONS IN ARRAY(POINTS)

POINTS(LINKNO, 1) = COUNTER
POINTS(LINKNO, COLUMN) = XPOINT
COLUMN - COLUMN +1
POINTS(LINKNO, COLUMN) = YPOINT
COLUMN = COLUMN +1
POINTS(LINKNO, COLUMN) = NIXPOS
COLUMN = COLUMN +1
POINTS(LINKNO, COLUMN) = NIYPOS

COLUMN = COLUMN +1

C IF CONNECTION HAS BEEN MADE CHECK IF DOUBLE CLICK

C WAS MADE TO DELETE A LINE AND ALSO RESET COUNTER

C AND COLUMN

IF (CONNECT) THEN
COLUMN =2
COUNTER =0
CALL CHECKERASE(COUNTER, COLUMN, NIXPOS, NIYPOS, XPOINT,

YPOINT)
END IF

Appendix A 222

END IF
GOTO 10
END

C ****OUTPUT TEXT TO SCREEN IN GRAPHICS MODE****

SUBROUTINE TEXT(XCOORD, YCOORD, STRING)

INCLUDE 'GRAPH. INC'
INCLUDE 'NEWXY. INC'

INCLUDE 'FGRAPH. FD'

RECORD/XYCOORD/XY
INTEGER XCOORD, YCOORD
CHARACTER*(*) STRING

CALL MOVETO(NEWX(XCOORD), NEWY(YCOORD), XY)
CALL OUTGTEXT(STRING)

END

C ****SET COLOUR****

SUBROUTINE COLOUR(C)

INCLUDE GRAPH. INC'
INCLUDE 'NEWXY. INC'

INCLUDE FGRAPH. FD'

INTEGER C
INTEGER*2 PICK

PICK = SETCOLOR(C)

IF (PICK. EQ. -l) THEN
STOP ERROR: CANNOT SET COLOUR'

END IF

END

C ****SET THE WRITEMODE(I. E XOR. AND, ETC)****

SUBROUTINE WRITESTYLE(STRING)

INCLUDE GRAPH. INC'
INCLUDE 'NEWXY. INC'

INCLUDE FGRAPH. FD'

INTEGER*2 STRING, STYLE
STYLE = SETWRITEMODE(STRING)

IF (STYLE. EQ. -l) THEN
STOP 'ERROR: CANNOT SET WRITEMODE'

END IF

END

C ****CREATE BOX TO ENABLE YOU TO FINISH****

SUBROUTINE ENDBOX(XCENT, YCENT)

INCLUDE GRAPH. INC'
INCLUDE 'NEWXY. INC'

INCLUDE FGRAPH. FD'

INTEGER*2 STATUS
INTEGER XCENT, YCENT

STATUS = RECTANGLE($GBORDER, NEWX(XCENT - 48), NEWY(YCENT - 25),
NEWX(XCENT + 60), NEWY(YCENT + 17))

CALL COLOUR(13)
CALL TEXT(XCENT - 45, YCENT - 15, 'FINISH')

END

C ****FIND NO OF PROCESSOR AND LINKNO****

SUBROUTINE FINDPROCNO1(ARRAYI, ARRAY2, IX, IY)

INCLUDE 'GRAPH. INC'

INTEGER M, X, N, Y, IXPOS, IYPOS
INTEGER*2 ARRAY1(32), ARRAY2(32)

PROCNO =0
Y= 150

Appendix A 223

C MOVE DOWN ROW AT A TIME

DO 20 M=1,4
X= 50

C MOVE ACROSS COLUMN AT A TIME
DO 10 N=1,8

C CHECK IF CLICKED IN A PROCESSOR ON A LINK THEN
C STORE PROCESSOR AND LINK NUMBERS IN APPROPRIATE
C ARRAYS(NP1, NP2, NL1, NL2)

IF ((IY. GT. Y). AND. (IY. LT. Y + 100). AND.
1 (IX. GT. X). AND. (IX. LT. X + 100)) THEN

C INCREMENT CONNECTION NUMBER BY ONE

LINKNO = LINKNO +1
CHOOSELINK1 = TRUE.
IF ((IY. GT. Y). AND. (IY. LT. Y + 25). AND.

(IX. GT. X + 35). AND. (IX. LT. X + 65)) THEN
IF (LINKS) THEN

ARRAY2(LINKNO) =2
ELSE

ARRAY2(LINKNO) =0
END IF
ARRAYI(LINKNO) = PROCNO
IX =X+ 50

ly =Y
ELSE IF ((IY. GT. Y + 35). AND. (IY. LT. Y + 65). AND.

(IX. GT. X). AND. (IX. LT. X + 25)) THEN
IF (. NOT. LINKS) THEN

IF ((M. EQ. 1). OR. (M. EQ. 3)) THEN
ARRAY2(LINKNO) =2

ELSE
ARRAY2(LINKNO) =1

END IF
ARRAYI(LINKNO) = PROCNO

ELSE
IF ((M. EQ. 1). OR. (M. EQ. 3)) THEN

ARRAY2(LINKNO) =3
ELSE

ARRAY2(LINKNO) =0
END IF
ARRAY1(LINKNO) = PROCNO

END IF

IX =X
IY =Y+ 50

ELSE IF ((IY. GT. Y + 75). AND. (IY. LT. Y + 100). AND.
(IX. GT. X + 35). AND. (IX. LT. X + 65)) THEN
IF (LINKS) THEN

ARRAY2(LINKNO) =1
ELSE

ARRAY2(LINKNO) =3
END IF
ARRAYI(LINKNO) - PROCNO
IX=X+ 50
IY =Y+ 100

ELSE IF ((IY. GT. Y + 35). AND. (IY. LT. Y + 65). AND.
(IX. GT. X + 75). AND. (IX. LT. X + 100)) THEN
IF (. NOT. LINKS) THEN

IF ((M. EQ. 1). OR. (M. EQ. 3)) THEN
ARRAY2(LINKNO) =1

ELSE
ARRAY2(LINKNO) =2

END IF
ARRAYI(LINKNO) = PROCNO

ELSE
IF ((M. EQ. 1). OR. (M. EQ. 3)) THEN

ARRAY2(LINKNO) =0
ELSE

ARRAY2(LINKNO) =3
END IF
ARRAYI(LINKNO) = PROCNO

END IF
IX =X+ 100
IY =Y+ 50

ELSE

C IF LINK NOT CHOSEN THEN SET FLAG

LINKNO = LINKNO -1
CHOOSELINK1 = FALSE.
RETURN

END IF

Appendix A 224

RETURN
ELSE

CHOOSELINK1 = TRUE.
END IF

C FOR SECOND AND FORTH ROWS HAVE PROCESSOR NUMBERS
C RUNNING FROM LEFT TO RIGHT

IF (((M. EQ. 2). OR. (M. EQ. 4)). AND. (N. LT. 8)) THEN
PROCNO = PROCNO -1

END IF

C FOR FIRST AND THIRD ROWS HAVE PROCESSOR NUMBERS
C RUNNING FROM RIGHT TO LEFT

IF (((M. EQ. 1). OR. (M. EQ. 3)). AND. (N. LT. 8)) THEN
PROCNO = PROCNO +1

END IF
X=X+ 150

10 CONTINUE
PROCNO = PROCNO +8
Y=Y+ 200

20 CONTINUE

END

C ****FIND NO OF SECOND PROCESSOR AND LINK****

SUBROUTINE FINDPROCN02(ARRAY1, ARRAY2, IX, IY)

INCLUDE 'GRAPH. INC'
INTEGER M, X, N, Y, IXPOS, IYPOS
INTEGER*2 ARRAY1(32), ARRAY2(32)

PROCNO =0
Y= 150

C LOOK AT ROWS OF PROCESSORS

Do 20M= 1,4
X= 50

C LOOK AT COLUMNS OF PROCESSORS

DO 10 N=1,8

C CHECK WHETHER MOUSE CLICKED WITHIN
C PROCESSOR AND THEN WITHIN LINK

IF ((IY. GT. Y). AND. (IY. LT. Y + 100). AND.
1 (IX. GT. X). AND. (IX. LT. X + 100)) THEN

CHOOSELINK2 = TRUE.
IF ((IY. GT. Y). AND. (IY. LT. Y + 25). AND.

1 (IX. GT. X + 35). AND. (IX. LT. X + 65)) THEN
IF (LINKS) THEN

ARRAY2(LINKNO) -2
ELSE

ARRAY2(LINKNO) =0
END IF
ARRAYI(LINKNO) = PROCNO
IX =X+ 50
IY =Y

ELSE IF ((IY. GT. Y + 35). AND. (IY. LT. Y + 65). AND.
1 (IX. GT. X). AND. (IX. LT. X + 25)) THEN

IF (. NOT. LINKS) THEN
IF ((M. EQ. 1). OR. (M. EQ. 3)) THEN

ARRAY2(LINKNO) =2
ELSE

ARRAY2(LINKNO) =1
END IF
ARRAYI(LINKNO) = PROCNO

ELSE
IF ((M. EQ. 1). OR. (M. EQ. 3)) THEN

ARRAY2(LINKNO) =3
ELSE

ARRAY2(LINKNO) =0
END IF
ARRAYI(LINKNO) = PROCNO

END IF
IX =X
IY =Y+ 50

ELSE IF ((IY. GT. Y + 75). AND. (IY. LT. Y + 100). AND.
(IX. GT. X + 35). AND. (IX. LT. X + 65)) THEN
IF (LINKS) THEN

ARRAY2(LINKNO) =1
ELSE

ARRAY2(LINKNO) =3
END IF

Appendix A 225

ARRAYI(LINKNO) = PROCNO
IX =X+ 50
IY =Y+ 100

ELSE IF ((IY. GT. Y + 35). AND. (IY. LT. Y + 65). AND.
(IX. GT. X + 75). AND. (IX. LT. X + 100)) THEN
IF (. NOT. LINKS) THEN

IF ((M. EQ. 1). OR. (M. EQ. 3)) THEN
ARRAY2(LINKNO) =1

ELSE
ARRAY2(LINKNO) =2

END IF
ARRAY1(LINKNO) = PROCNO

ELSE
IF ((M. EQ. 1). OR. (M. EQ. 3)) THEN

ARRAY2(LINKNO) =0
ELSE

ARRAY2(LINKNO) =3
END IF

END IF
ARRAYI(LINKNO) = PROCNO

IX=X+100
IY =Y+ 50

ELSE

C SET FLAGS IF CLICKED ON PROCESSOR BUT
C NOT ON LINK

CONNECT = TRUE.
CHOOSELINK2 = FALSE.
RETURN

END IF

CONNECT = TRUE.
RETURN

ELSE
CHOOSELINK2 = TRUE.
CONNECT = FALSE.

END IF

C FOR SECOND AND THIRD ROWS HAVE PROCESSOR NUMBERS
C RUNNING FROM RIGHT TO LEFT

IF (((M. EQ. 2). OR. (M. EQ. 4)). AND. (N. LT. 8)) THEN
PROCNO = PROCNO -1

END IF

C FOR SECOND AND THIRD ROWS HAVE PROCESSOR NUMBERS
C RUNNING FROM LEFT TO RIGHT

IF (((M. EQ. 1). OR. (M. EQ. 3)). AND. (N. LT. 8)) THEN
PROCNO = PROCNO +1

END IF
X=X+ 150

10 CONTINUE
PROCNO = PROCNO +8
Y=Y+ 200

20 CONTINUE

END

C ****DRAW BOXES WITH LINK NUMBERS IN THEM****

SUBROUTINE LINKBOX(XCENT, YCENT, PROCNO)

INTEGER XCENT, YCENT, PROCNO
CHARACTER*1 L, R, T, P

INCLUDE 'GRAPH. INC'
INCLUDE 'NEWXY. INC'

INCLUDE 'FGRAPH. FD'

CALL COLOUR(9)

C RIGHT HAND BOX

CALL DRAWLINE(XCENT + 50, YCENT - 15, XCENT + 25, YCENT - 15)
CALL DRAWLINE(XCENT + 25, YCENT - 15, XCENT + 25, YCENT + 15)
CALL DRAWLINE(XCENT + 25, YCENT + 15, XCENT + 50, YCENT + 15)

C TOP BOX

CALL DRAWLINE(XCENT - 15, YCENT - 50, XCENT - 15, YCENT - 25)
CALL DRAWLINE(XCENT - 15, YCENT - 25, XCENT + 25, YCENT - 25)
CALL DRAWLINE(XCENT + 15, YCENT - 25, XCENT + 15, YCENT - 50)

C BOTTOM BOX

CALL DRAWLINE(XCENT + 15, YCENT + 50, XCENT + 15, YCENT + 25)
CALL DRAWLINE(XCENT + 15, YCENT + 25, XCENT - 15, YCENT + 25)

Appendix A 226

CALL DRAWLINE(XCENT - 15, YCENT + 25, XCENT - 15, YCENT + 50)

C LEFT BOX

CALL DRAWLINE(XCENT - 50, YCENT - 15, XCENT - 25, YCENT - 15)
CALL DRAWLINE(XCENT - 25, YCENT - 15, XCENT - 25, YCENT + 15)
CALL DRAWLINE(XCENT - 25, YCENT + 15, XCENT - 50, YCENT + 15)

C CORNER BOXES

CALL DRAWLINE(XCENT + 25, YCENT - 15, XCENT + 15, YCENT - 25)
CALL DRAWLINE(XCENT - 15, YCENT - 25, XCENT - 25, YCENT - 15)
CALL DRAWLINE(XCENT - 25, YCENT + 15, XCENT - 15, YCENT + 25)
CALL DRAWLINE(XCENT + 15, YCENT + 25, XCENT + 25, YCENT + 15)

CALL COLOUR(10)

C PUT LINK NUMBERS IN BOXES

IF (. NOT. LINKS) THEN
IF ((PROCNO. EQ. 1). OR. (PROCNO. EQ. 3)) THEN

CALL TEXT(XCENT - 46, YCENT - 11, '2')
CALL TEXT(XCENT - 8, YCENT + 27, '3')
CALL TEXT(XCENT + 30, YCENT - 11, 'l')
CALL TEXT(XCENT - 8, YCENT - 48, '0')

ELSE
CALL TEXT(XCENT - 46, YCENT - 11, 'l')
CALL TEXT(XCENT - 8, YCENT + 27, '3')
CALL TEXT(XCENT + 30, YCENT - 11, '2')
CALL TEXT(XCENT - 8, YCENT - 48, '0')

END IF
ELSE

IF ((PROCNO. EQ. 1). OR. (PROCNO. EQ. 3)) THEN
CALL TEXT(XCENT - 46, YCENT - 11, '3')
CALL TEXT(XCENT - 8, YCENT + 27, '11)
CALL TEXT(XCENT + 30, YCENT - 11, '0')
CALL TEXT(XCENT - 8, YCENT - 48, '2')

ELSE
CALL TEXT(XCENT - 46, YCENT - 11, '0')
CALL TEXT(XCENT - 8, YCENT + 27, '1')

CALL TEXT(XCENT + 30, YCENT - 11, '3')
CALL TEXT(XCENT - 8, YCENT - 48, '2')

END IF

END IF
CALL COLOUR(2)

C PUT NUMBERS IN SIDE BOXES

CALL TEXT(XCENT - 40, YCENT - 40, '41)

CALL TEXT(XCENT - 40, YCENT + 25, '7')

CALL TEXT(XCENT + 25, YCENT - 40, '5')

CALL TEXT(XCENT + 25, YCENT + 25, '6')

END

C ****DRAW PIPELINE****

SUBROUTINE PIPELINE

INCLUDE 'FGRAPH. FD'

INTEGER X, Y. N, M

CALL COLOUR(14)
Y= 200

DO 20 M=1,4
X=0

DO 10 N 1,9
IF ((N. EQ. 1). AND. ((M. EQ. 2). OR. (M. EQ. 3))) THEN

CALL DRAWLINE(X + 10, Y, X + 50, Y)
ELSE

CALL DRAWLINE(X, Y, X + 50, Y)
END IF

IF ((N. EQ. 9). AND. (M. EQ. 1)) THEN
CALL DRAWLINE(X + 50, Y, X + 50, Y + 200)

END IF
IF ((N. EQ. 1). AND. (M. EQ. 2)) THEN

CALL DRAWLINE (X + 10, Y, X + 10, Y + 200)

END IF
IF ((N. EQ. 9). AND. (M. EQ. 3)) THEN

CALL DRAWLINE (X + 50, Y, X + 50, Y + 200)

END IF
IF ((N. EQ. 1). AND. (M. EQ. 4)) THEN

CALL DRAWLINE (X, Y, X, Y - 600)
END IF
x=X+ 150

10 CONTINUE
y=y+ 200

Appendix A 227

20 CONTINUE

END

C DRAW ALL 32 PROCESSORS

SUBROUTINE DRAWPROCESSORC)

INTEGER N, X, Y, PROCNO, M, LINENO
INCLUDE 'GRAPH. INC'

C DRAW PROCESSORS ROW AT A TIME WITH FIRST
C AND THIRD ROW NUMBERS FROM LEFT TO RIGHT
C AND VICE-VERSA FOR RIGHT TO LEFT

PROCNO =0
Y= 200
DO 20 M=1,4

X= 100
DO 10 N=1,8

LINENO =M
CALL BOX(X, Y, PROCNO)
CALL LINKBOX(X, Y, LINENO)
IF (((M. EQ. 2). OR. (M. EQ. 4)). AND. (N. LT. 8))

PROCNO = PROCNO -1
END IF
IF (((M. EQ. 1). OR. (M. EQ. 3)). AND. (N. LT. 8))

PROCNO = PROCNO +1
END IF
X=X+ 150

10 CONTINUE
PROCNO = PROCNO +8

Y=Y+ 200
20 CONTINUE

END

C** ERASE CONNECTION'""

SUBROUTINE ERASE(CONNO)

INCLUDE 'GRAPH. INC'
INCLUDE 'FGRAPH. FD'
INTEGER NOPOINTS, N, CONNO, J

THEN

THEN

C FIND OUT HOW MANY LINES USED TO MAKE CONNECTION
C FROM POINTS(LINKNO, 1) AND THEN DELETE ONE AT A
C TIME

NOPOINTS = POINTS(CONNO, 1)
J=2
CALL HIDEMOUSECURSOR
DO 10 N=1, NOPOINTS

CALL DRAWLINE(POINTS(CONNO, J), POINTS(CONNO, J + 1),
1 POINTS(CONNO, J + 2), POINTS(CONNO, J + 3))

J=J+4
10 CONTINUE

CALL SHOWMOUSECURSOR

END

C ****CHECKS FOR CLICK ON PROCESSOR PREVIOUSLY USED
C BEFORE****

SUBROUTINE CHECKERASE(COUNTER, COLUMN, NIXPOS, NIYPOS, XPOINT,
1 YPOINT)

INCLUDE 'GRAPH. INC'
INTEGER X, P1, P2, L1, L2, IREM, IC. J, COUNTER, COLUMN, NIXPOS,

NIYPOS, XPOINT, YPOINT
LOGICAL DELETION

DELETION = . FALSE.
P1 = NP1(LINKNO)
P2 = NP2(LINKNO)
L1 = NL1(LINKNO)
L2 = NL2(LINKNO)

C CHECK MOUSE CLICKED AND RELEASED ON THE SAME PROCESSOR
C THEN CHECK IF ONE LINE DRAWN TO START MAKING CONNECTION

IF ((P1. EQ. P2). AND. (Ll. EQ. L2)) THEN
IF (POINTS(LINKNO, 1). EQ. 2) THEN

CALL ERASEBOX(350,31)

C IF YOU DO WANT ERASE BOX THEN LINKNO DECREASED
C BY ONE. IF DON'T THEN REDRAWLINE.

Appendix A 228

IF (TEST) THEN
CHANGELINKNO = TRUE.
LINKNO = LINKNO -1
COUNTER =0
COLUMN =2
RETURN

ELSE
CALL HIDEMOUSECURSOR
CALL DRAWLINE(XPOINT, YPOINT, NIXPOS, NIYPOS)
CALL SHOWMOUSECURSOR
POINTS(LINKNO, 2) = NIXPOS
POINTS(LINKNO, 3) = NIYPOS
POINTS(LINKNO, 4) = XPOINT
POINTS(LINKNO, 5) = YPOINT
COUNTER =1
COLUMN =6
CONNECT = FALSE.
NIXPOS = XPOINT
NIYPOS = YPOINT
CALLMOUSETRUE = TRUE.

END IF
ELSE

30

20

10

CHECK IF PROCESSOR NUMBER AND LINK USED BEFORE THEN
CHECK IF CONNECTION IS REALLY MEANT TO DELETED
AND IF IT HAS TO BE DELETED ADJUST THE ARRAYS CONTAINING
LINK AND PROCESSOR NUMBERS ACCORDINGLY.

DO 10 K=1, LINKNO -1
IF (((P1. EQ. NP1(K)). AND. (L1. EQ. NL1(K))). OR.

((P1. EQ. NP2(K)). AND. (L1. EQ. NL2(K)))) THEN
CALL ERASEBOX(350,31)
IF (. NOT. TEST) THEN

LINKNO = LINKNO -1
RETURN

END IF
DELETION = TRUE.
CALL ERASE(LINKNO)
CALL ERASE(K)
IREM =K
IC =0
DO 20 J=1, LINKNO -1

IF (J. NE. IREM) THEN
IC = IC +1
NP1(IC) = NP1(J)
NP2(IC) = NP2(J)
NL1(IC) = NL1(J)
NL2(IC) = NL2(J)
DO 30 N=1,20

POINTS(IC, N) = POINTS(J, N)
CONTINUE

END IF
CONTINUE

END IF
CONTINUE

END IF

CHECK IF CLICKED ON PROCESSOR AND LINK NOT USED
BEFORE AND IF YOU HAVE USED SEVERAL LINES TO MAKE
A CONNECTION THEN DELETE AUTOMATICALLY

IF ((. NOT. DELETION. AND. POINTS(LINKNO, 1). EQ. 1)
OR. IPOINTS(LINKNO, 1). GT. 2)) THEN

CALL ERASE(LINKNO)
CHANGELINKNO = TRUE.
LINKNO x LINKNO -1

END IF

IF A DELETION HAS BEEN MADE THEN SUBTRACT TWO

FROM THE LINK NUMBER AS POINTS FROM CLICKING

AND RELEASING ON SAME PROCESSOR ARE STORED

IF (DELETION) THEN
CHANGELINKNO = TRUE.
LINKNO = LINKNO -2

END IF

END IF

END

****PRINT BOX TO ASK WHETHER YOU DO REALLY WANT TO DELETE A
CONNECTION AND DELETE THE BOX WHEN SELECTION
HAS BEEN MADE****

SUBROUTINE ERASEBOX(XCENT, YCENT)

INCLUDE 'MOUSE. FD'
INCLUDE 'FGRAPH. FD'

Appendix A 229

INCLUDE 'GRAPH. INC'
INCLUDE 'NEWXY. INC'

INTEGER*2 STATUS, BPOS, XPOS, YPOS
INTEGER XCENT, YCENT, IXPOS, IYPOS

C PRINT BOXES FOR QUESTION AND ANSWER(Y/N?)

CALL COLOUR(12)
STATUS = RECTANGLE($GBORDER, NEWX(XCENT - 200), NEWY(YCENT - 21),

1 NEWX(XCENT + 336), NEWY(YCENT + 21))

STATUS = RECTANGLE($GBORDER, NEWX(XCENT + 370), NEWY(YCENT - 21),
1 NEWX(XCENT + 400), NEWY(YCENT + 21))

STATUS = RECTANGLE($GBORDER, NEWX(XCENT + 401), NEWY(YCENT - 21),
1 NEWX(XCENT + 431), NEWY(YCENT + 21))

CALL COLOUR(14)
CALL TEXT(XCENT - 190, YCENT - 12, 'ARE YOU SURE YOU WANT TO')
CALL TEXT(XCENT + 220, YCENT - 12, 'DELETE? ')
CALL TEXT(XCENT + 377, YCENT - 12,1Y')
CALL TEXT(XCENT + 408, YCENT - 12,1N')

10 CALL GETMOUSECURSORPOSITION(XPOS, YPOS, BPOS)
CALLMOUSETRUE = TRUE.
IXPOS = CONVERTX(INT2(XPOS))
IYPOS = CONVERTY(INT2(YPOS))

C CHECK WHETHER CLICKED IN Y OR N BOX

IF (BPOS. EQ. 1) THEN
IF ((IXPOS. GT. (XCENT + 370)). AND. (IXPOS. LT. (XCENT + 400))

AND. (IYPOS. GT. YCENT - 21). AND. (IYPOS. LT. YCENT + 21)) THEN
TEST = TRUE.

ELSE IF ((IXPOS. GT. (XCENT + 401)). AND. (IXPOS. LT. (XCENT + 431))
AND. (IYPOS. GT. YCENT - 21). AND. (IYPOS. LT. YCENT + 21)) THEN
TEST = FALSE.

ELSE
GOTO 10

END IF
ELSE

GOTO 10
END IF

CALL COLOUR(12)
CALL HIDEMOUSECURSORC)

C DRAW OVER RECTANGLES AND WORDS

STATUS = RECTANGLE($GBORDER, NEWX(XCENT + 401),
NEWY(YCENT - 21), NEWX(XCENT + 431), NEWY(YCENT + 21))

CALL COLOUR($BLACK)
CALL TEXT(XCENT + 408, YCENT - 12, 'N')
CALL COLOUR(12)
STATUS = RECTANGLE($GBORDER, NEWX(XCENT + 370),

NEWY(YCENT - 21), NEWX(XCENT + 400), NEWY(YCENT + 21))
CALL COLOUR($BLACK)
CALL TEXT(XCENT + 377, YCENT - 12, 'Y')
CALL COLOUR(12)
STATUS = RECTANGLE($GBORDER. NEWX(XCENT - 200),

NEWY(YCENT - 21), NEWX(XCENT + 336), NEWY(YCENT + 21))

CALL COLOUR($BLACK)
CALL TEXT(XCENT - 190, YCENT - 12, 'ARE YOU SURE YOU WANT TO')
CALL TEXT(XCENT + 220, YCENT - 12, 'DELETE? ')
CALL SHOWMOUSECURSOR()

CALL COLOUR(11)

END

C ****SET UP AN ARRAY CONTAINING CONNECTIONS MADE
C TO C004****

SUBROUTINE COO4CONNECTION()

INCLUDE 'GRAPH. INC'

INTEGER I

C SET UP ARRAYS CONTAINING CONNECTIONS
C ON 0004-1 AND 0004-0

DO 10 I=1,32
00041(I, 1) =1
00041(I, 2) =I-1
00041(I, 3) =I-1

Appendix A 230

00041(I, 4) =2
00041(I, 5) =I -1
00041(I, 6) =I -1
00040(I, 1) =2
00040(I, 2) =I -1
COO40(I33) =I -1
00040(I, 4) =1
00040(I, 5) = I -1
00040(I, 6) = I- 1

10 CONTINUE
END

C ****FIND WHAT CONNECTIONS NEED TO BE MADE ON THE 0004****

SUBROUTINE CONNECTIONS(PNO, LNO)

INCLUDE 'GRAPH. INC'

INTEGER 2 PNO(32), LNO(32)
INTEGER I, J

C FIND FROM LINK AND PROCESSOR NUMBERS USED WHAT THE
C CORRESPONDING PIN ON THE C004 IS

DO 10 I=1, LINKNO
DO 20 J=1,32

IF((I. NO(I). EQ. 00041(J, 1)). AND. (PNO(I). EQ. CO041(J, 2)))
1 THEN

C41IN(I) = 00041(J, 3)
END IF
IF ((LNO(I). EQ. 00041(J, 4)). AND. (PNO(I). EQ. C0041(J, 5)))

1 THEN
C41OUT(I) = C0041(J, 6)

END IF
IF((LNO(I). EQ. 00040(J, 1)). AND. (PNO(I). EQ. CO040(J, 2)))

1 THEN
C40IN(I) = 00040(J. 3)

END IF
IF((LNO(I). EQ. 00040(J, 4)1. AND. (PNO(I). EQ. C0040(J, 5)))

1 THEN
C4000T(I) = 00040(J, 6)

END IF
20 CONTINUE
10 CONTINUE

END

C ****OFFER OPTION TO INTERROGATE C004****

SUBROUTINE INTERROGATE

INCLUDE 'GRAPH. INC'

CHARACTER"1 REPLY, IREPLY
INTEGER C4, OUTPUT
INTEGER*2 IN

10 WRITE(*, *) 'DO YOU WANT TO INTERROGATE 0004S? (Y/N)'
READ(*, '(A)') REPLY

IF ((REPLY. EQ. 'Y'). OR. (REPLY. EQ. 'y')) THEN
20 WRITE(*, *) 'WHICH C004 DO YOU WANT TO INTERROGATE? '

READ(*, *) C4
IF ((C4. NE. O). AND. (C4. NE. 1)) THEN

GOTO 20
END IF

30 WRITE(*, *) 'WHICH OUTPUT TO YOU WANT TO INTERROGATE? '
READ(*, *) OUTPUT
IF (OUTPUT. GT. 31) THEN

WRITE(*, *) 'NUMBER IS TOO HIGH. '
GOTO 30

END IF

C SEND A2 THEN THE NUMBER OF THE C004 YOU
C WANT TO INTERROGATE. TEST IF THE MSB OF THE BYTE
C RETURNED IS SET INDICATING A CONNECTION AND IF
C IT IS THEN SUBTRACT 128 FROM THE BYTE TO GET THE INPUT

IF (C4. EQ. 0) THEN
CALL LINKOUT(2, LKAD(1))
CALL LINKOUT(OUTPUT, LKAD(1))
IN = LINKIN(LKAD(1))
IF (((128 - IN). LT. O). OR. ((128 - IN). EQ. O)) THEN

IN = IN - 128
WRITE(*, `) THIS OUTPUT IS CONNECTED TO INPUT', IN

ELSE
WRITE(*, *) 'THIS OUTPUT IS NOT CONNECTED'

END IF

Appendix A 231

ELSE
CALL LINKOUT(2, LKAD(2))
CALL LINKOUT(OUTPUT, LKAD(2))
IN = LINKIN(LKAD(2))
IF (((128 - IN). LT. O). OR. ((128 - IN). EQ. O)) THEN

IN = IN - 128
WRITE(*, *) THIS OUTPUT IS CONNECTED TO INPUT', IN

ELSE
WRITE(*, *) THIS OUTPUT IS NOT CONNECTED'

END IF
END IF

40 WRITE(*, *) 'DO YOU WANT TO INTERROGATE THE 0004S FURTHER? (Y/N)'
READ(*, '(A)') IREPLY
IF ((IREPLY. NE. 'N'). AND. (IREPLY. NE. 'n'). AND.

1 (IREPLY. NE. 'Y'). AND. (IREPLY. NE. 'y')) THEN
GOTO 40

END IF
IF ((IREPLY. EQ. 'Y'). OR. (IREPLY. EQ. 'y')) THEN

GOTO 20
END IF

ELSE IF ((REPLY. EQ. 'N'). OR. (REPLY. EQ. 'n')) THEN
RETURN

ELSE
GOTO 10

END IF

END

C ****DISPLAY ALL THE CONNECTIONS MADE ON THE C004****

SUBROUTINE DISPLAYCONNECTIONSC)

INCLUDE 'GRAPH. INC'

CHARACTER*1 REPLY, IREPLY
INTEGER M, P
INTEGER *2 INO, IN1

C DISPLAY CONNECTIONS MADE BETWEEN PROCESSORS

10 WRITE(*, 5)
5 FORMAT(1X, 'DO YOU WANT TO SEE ALL THE CONNECTIONS', 1X,

1 'BETWEEN THE PROCESSORS? (Y/N)')
READ(*, '(A)') REPLY

C FIND WHICH INPUT EACH OUTPUT IS CONNECTED TO
C TEST MSB TO SEE IF SET

IF ((REPLY. EQ. 'Y'). OR. (REPLY. EQ. 'y')) THEN
40 DO 30 P=1,32

CALL LINKOUT(2, LKAD(1))
CALL LINKOUT(COO40(P, 6), LKAD(1))
INO = LINKIN(LKAD(1))
CALL LINKOUT(2, LKAD(2))
CALL LINKOUT(INO, LKAD(2))
IN1 = LINKIN(LKAD(2))
IF (((128 - INO). LT. 0). OR. ((128 - INO). EQ. O)) THEN

INO = INO - 128
IN1 = IN1 - 128
WRITE(*, 26) 00040(P, 5), CO040(P, 4), C0040(INO + 1,2),

1 C0040(INO + 1,1)
26 FORMAT(1X, 'PROCESSOR', 1X, I2,1X, 'LINKIN', 1X, I2,1X,

1 IS CONNECTED TO PROCESSOR', 1X, I2,1X,
1 'LINKOUT', 1X, I2)

WRITE(*, 26) 00041(INO + 1,5), 00041(INO + 1,4),
1 00041(IN1 + 1,2), 00041(IN1 + 1,1)

END IF
30 CONTINUE

ELSE IF ((REPLY. EQ. 'N'). OR. (REPLY. EQ. In')) THEN
RETURN

ELSE
GOTO 10

END IF

END

C ENABLE TESTING OF C004 USING FOUR LINK ADAPTERS

SUBROUTINE TEST0004()

INCLUDE 'GRAPH. INC'

INTEGER OUTPUT1, OUTPUT2
INTEGER *2 RECEIVEI, RECEIVE2
CHARACTER"1 REPLY

Appendix A 232

C CODE FOR TESTING C004

10 WRITE(*, *) 'DO YOU WANT TO TEST THE 0004''s7(Y/N)'
READ(*, '(Al)') REPLY

IF ((REPLY. EQ. 'Y'). OR. (REPLY. EQ. 'y')) THEN
WRITE(* 16)

C OUTPUT NUMBER FROM ONE LINK ADAPTER AND RECEIVE
C AT THE OTHER IF CONNECTIONS HAVE BEEN MADE PROPERLY
C ON THE COO4S

16 FORMAT(1X, 'ENTER NUMBER YOU WANT TO SEND TO LINK', 1X,
1 'ADAPTOR 2')

READ(*, *) OUTPUT1
CALL LINKOUT(OUTPUT1, LKAD(3))
WRITE(", 17)

17 FORMAT(1X, 'ENTER NUMBER YOU WANT TO SEND TO LINK', 1X,
1 'ADAPTOR 3')

READ(*. *) OUTPUT2
CALL LINKOUT(OUTPUT2, LKAD(4))

RECEIVE2 = LINKIN(LKAD(3))
WRITE(*. 18) RECEIVE2

18 FORMAT(1X, 'THE NUMBER RECEIVED AT LINK ADAPTOR', 1X,
1 '2 WAS', I3)

RECEIVE1 = LINKIN(LKAD(4))
WRITE(", 19) RECEIVEI

19 FORMAT(1X, 'THE NUMBER RECEIVED AT LINK ADAPTOR', 1X,
1 '3 WAS', I3)

ELSE IF ((REPLY. EQ. 'N'). OR. (REPLY. EQ. 'n')) THEN
RETURN

ELSE
GOTO 10

END IF

END

Appendix A 233

Appendix B:

Source code for dynamic interconnection network.

Appendix B 234

{trrttrartrrtrttºttr*trºtrtrrtºtarrffrftrrtrtffttrtttttrttt
* NAME: BOOT. dsp
* DESCRIPTION: ALLOWS ADSP-2105 TO BE BOOTED VIA A C012
r

r
x

t
r
xrrxtrrttrrrrrxxtrrtr

r

tttrtttttxttttr ttrttrttwxtxxtttrtrrttt)

. MODULE/RAM/BOOT=O parallel-boot-monitor;

. VAR/DM count; (counts bytes)

. VAR/DM ins-count; (counts instructions)

. INCLUDE <E: \ADI_DSP\INCLUDE\DEF2105. h>; (Control settings)

. PORT read_c012;

. PORT write_c012;

. PORT input-status;

. PORT output-status;

. PORT read-c004;

. PORT write-c004;

. PORT c004_input_status;

. PORT c004-output-status;

. GLOBAL code-start;

JUMP restarter; NOP; NOP; NOP;
RTI; NOP; NOP; NOP;
NOP; NOP; NOP; NOP;
NOP; NOP; MOP; NOP;
RTI; NOP; NOP; NOP;
RTI; NOP; NOP; NOP;
RTI; NOP; NOP; NOP;

restarter: CALL initialisations;
data-ready: A%0 = DM(input_status);

AYO = 1;
AR = AXO AND AYO;
IF EQ JUMP data_ready;

JUMP io_port;

initialisations: I5="code-start; (pointer to start)
MS=l; (increment by 1)
L5=0; (length of code)
SR0=0;
SR1=0; (initialise results reg.)

AX1=1;
DM(count)=AX1; (set no. of bytes=l)
AXO=0;
DM(Sys_Ctrl_Reg)=AXO; (disable sporti)
DM(Dm_Wait_Reg)=AXO; (no wait states)
DM(Tperiod_Reg)=AXO; (timer not used)
DM(Tcount_Reg)=AXO;
DM(Tscale_Reg)=AXO;

ARO=H/FFFF;
DM(ins_count)=AXO; (set ins-count to -ve)
IMASK=O; (enable IRQ2 interrup)
AX0=0;
AYO=0;
RTS;

io_port; AY1=DM(ins_count);
AR=PASS AYl;
IF GT JUMP next-instruction;
IF LT JUMP load_word_count;
IF EQ JUMP code_start;

load-word-count: AYO=DM(count);
AR=PASS AYO;
IF NE JUMP first_byte;
IF EQ JUMP second_byte;

first_byte: SI=DM(read_c012);
AR=AYO-1;
DM(count)=AR;
JUMP data_ready;

byte: second SRO=DM(read_c012);
_ SR=SR OR LSHIFT SI BY 8 (LO);

DM(ins_count) = SRO;
AXO=3;
DM(count)=AXO;
JUMP data-ready;

Appendix B 235

next-instruction: A%0=2; (decide which byte is due)
AYO=DM(count);
AR=AXO-AYO;

IF LT JUMP most_sig_byte;
IF EQ JUMP middle-byte;
IF GT JUMP least sig_byte;

most_sig_byte: SI=DM(read_cO12); (load MS byte into SI)
AR=AYO - 1; (decrement count)
DM(count) = AR;
JUMP data_ready;

middle_byte: SRO=DM(read_cOl2); (load middle into SR)
SR=SR OR LSHIFT SI BY 8 (LO); (put MS and mid.)
AR=AYO-1;
DM(count)=AR;
JUMP data_ready;

least_sig_byte: PX=DM(read_c012); (put LS byte into PX)
PM(I5, M5)=SRO; (write SRO into PM)

(PX provides 8 LS bits)
AX0=3;
DM(count)=AXO; (reset byte count)
AR=AY1-1; (decrement ins count)
DM(ins_count)=AR;
JUMP data_ready;

code-start: NOP

. ENDMOD;

Appendix B 236

C NAME: FLASH. DSP
C
C DESCRIPTION: DOWNLOADABLE PROGRAM THAT FLASHES LED
C
C
C
C

. MODULE/ROM/SEG=int pm/ABS=HI005Dflash_led;

. INCLUDE <E: \ADI_DSP\INCLUDE\DEF2105. h>;

. ENTRY flash;

. PORT read_c012;

. PORT input-status;

AXO=O;
DM(input_status) = AXO; (disable inputint)
AYO=DM(read_c012); (dummy read)
I6=H#0018, (address of timer int)
M6=0;
L6=0;
17=^intinstr; (pointer to start of flash)
M7=0;
L7=0;
JUMP loadint;

intinstr: JUMP flash;
loadint: AXO = PM(17, M7);

PM(16, M6) = AXO;
(AXO=HAOH00; loads imp inst. at timer int
PX=HNCO;
PM(I6, M6)=AXO;)

AXO=HIFFFF; (sets timer period)
DM(Tperiod_Reg)=AXO; (Set counter)
DM(Tcount Reg)=AXO;
AXO=HllB;

DM(Tscale_Reg)=AXO;
IMASK=1;
ENA TIMER;

Appendix B 237

C NAME: DOWN1
C DATE: 3/6/94
C DESCRIPTION: ROUTINE TO TAKE A PROM SPLITTER FILE
C IN INTEL HEX FORMAT AND DOWNLOAD IT A BYTE*
C AT A TIME VIA C012

PROGRAMDOWN1
INTEGER*1 RECORD, DATA(1000), BYTEOUT1, BYTEOUT2
INTEGER*2 ADDR, NWORDS, NBYTES, START,

1 TOTALNBYTES, RESETADDR, LINKADDR,
1 BYTE1, BYTE2, TOPBYTE

INTEGER*4 LOOPCOUNT
CHARACTER*1 DELIM

EQUIVALENCE (BYTE1, BYTEOUT1)
EQUIVALENCE (BYTE2, BYTEOUT2)

OPEN (UNIT=IO, FILE='FLASH4. BNM', STATUS='OLD')
OPEN (UNIT=20, FILE='RECEIVE. DAT', STATUS='OLD')
OPEN (UNIT=30, FILE='CONVERT. DAT', STATUS='OLD')

RESETADDR = #160
LINKADDR = #150
NWORDS =0

START =1

TOTALNBYTES =0
RECORD =0

WRITE(*, *) ' ENTER LOOP COUNT'
READ(*, *) LOOPCOUNT

DO WHILE (RECORD. EQ. O)
10 READ(10,5) DELIM, NBYTES, ADDR, RECORD,

1 (DATA(I), I-START, START + NBYTES -1)
5 FORMAT (A1, Z2, Z4, Z2,50Z2)

START = START + NBYTES
TOTALNBYTES = TOTALNBYTES + NBYTES

END DO

NWORDS = TOTALNBYTES/3
HYTE2 = IAND(NWORDS, IFF)

TOPBYTE = IAND(NWORDS, IFF00)
BYTE1 = ISHFT(TOPBYTE, -8)

8 FORMAT (Z2)

CALL PORTOUTBYTE(RESETADDR, 1)
CALL PORTOUTBYTE(RESETADDR, 0)

CALL LINKOUTBYTE(LINKADDR, BYTEOUT1)
DO 100 K=1. LOOPCOUNT

100 END DO

CALL LINKOUTBYTE(LINKADDR, BYTEOUT2)
DO 200 K=1, LOOPCOUNT

200 END DO

DO 20 I=1, TOTALNBYTES
CALL LINKOUTBYTE(LINKADDR, DATA(I))

DO 300 K=I, LOOPCOUNT
300 END DO

20 END DO

CALL LINKOUTBYTE(LINKADDR, 55)

DO 400 K=1, LOOPCOUNT

400 END DO

END

Appendix B 238

{f#sºstrr##rrasarrtºrr#fft#fºafºº#aºiºº#º##rftººº#f#i#ff#
" NAME: SETUP. DSP
#*

* DESCRIPTION: SETS UP ARRAYS WHICH CONTAIN CONECTIONS
* BETWEEN NODES AND THE CROSSBAR SWITCH.
* TABLES ARE LOADED VIA C012
tff#if***a***ºttt#f#itt#ti#f#iffitf #ftRitt##ttifiitiit##fl

. MODULE/ROM/SEG=int_pm/ASS=HN005DSETUP;

. INCLUDE

. VAR/DM/RAM node_id[32);

. VAR/DM/RAM link_no[32);

. VAR/DM/RAM crossbar_link_no[32);

. VAR/DM/RAM connection_used_unused[32);
(. INIT node-id <nodeid. dat>;
. INIT link_no <linkno. dat>;

. INIT crossbar-link-no: <crossbar. dat>;)

. GLOBAL node_id;

. GLOBAL link-no;

. GLOBAL crossbar_link_no;

. GLOBAL connection_used_unused;

. PORT read_c004;

. PORT write_c004;

. PORT c004_input_status;

. PORT c004_output_status;

. PORT read-c012;

. PORT write-c012;

. PORT input_status;

. PORT output_status;

. GLOBAL read_c004;

. GLOBAL write_c004;

. GLOBAL c004_input_status;

. GLOBAL c004-output-status;

. GLOBAL read_c012;

. GLOBAL write_c012;

. GLOBAL input_status;

. GLOBAL output_status;

. EXTERNAL read-bytes;

<E: \ADI_DSP\INCLUDE\DEF2105. h>;

IMASK=O; (disable interrupts)
AX0=0; (load AXO)
DM(input_status)=AXO; (disable InputInt)
DM(output_status)=ASO; (disable Outputlnt}
AYO=DM(read_c012); (dummy read)
LO = %node_id; (initialize LO)
L1 = %link_no; (initialize Li)
L2 = %crossbar_link_no; (initialize L2)
L3 = %connection_used_unused; (initialize L3)
MO = 1; (set increment to 1)
Ml = 1; (set increment to 1)
M2 = 1; (set increment to 11
M3 = 1; (set increment to 1)

10 = ^node_id; (set pointer)
I1 = ^link_no; (set pointer)
12 = ^crossbar_link_no; (set pointer)
13 = ^connection_used_unused; (set pointer)

CNTR = %node_id; (set to CNTR to length
of array)

DO load buffer UNTIL CE; (loop until CNTR=O)

wait: AXO=DM(input_status); (test input status of C012)

(load AYO)
AND AYO; (test LSB of input put

status)
IF EQ JUMP wait; (if 0 keep looping)

AYO=HIFF; (load AYO)

AXO=DM(read_co12); (read C012)
AR=AxO AND AYO; (clear upper half ofword)

buffer: load DM(I0. MO)=AR; (load array containing
_ node ids)

CNTR = %link_no; (set counter to length
of link_no)

DO load_bufferl UNTIL CE; (loop until CNTR=O)

waitl: AXO=DM(input_status); (test input status of C012)

AYO=1; (load AYO)
AR=AXO AND AYO; (test LSB of input

status}

Appendix B 239

IF EQ JUMP waitl; (if 0 keep looping)
AYO=HIFF; (load AYO)

AXO=DM(read_c012); (read C012)
AR=AXO AND AYO; (clear upper half of

word)

load_bufferl: DM(I1, M1)=AR; (load array containing
node ids)

CNTR = %crossbar_link_no; (set counter to length
of crossbar_link_no)

DO load_buffer2 UNTIL CE; (loop until CNTR=O)
wait2: AXO=DM(input_status); (test input status of

C012)
AY0=1; (load AYO)
AR=AXO AND AYO; (test LSB of input

status)
IF EQ JUMP wait2; (if 0 keep looping)
AYO=HIFF; (load AYO)

AXO=DM(read_c012); (read C012)
AR=AXO AND AYO; (clear upper half of

word)
load_buffer2: DM(12, M2)=AR; (load array containing

node ids)
CNTR = %connection_used_unused; (set CNTR to length

of array)
AXO = 0; (load AXO)
DO clear-buffer UNTIL CE; (loop until CNTR=O)

clear-buffer: DM(I3, M3) = AROM (load array with 0's)
call read_bytes; (call array which

reads bytes from
nodes)

ENDMOD;

Appendix B 240

{ftf#rRt#rY4ffrtYrtff Y*ftYti##f *tii#f tft#tff tf tfff##Rf#it#f##

* NAME: READBYTE *
#*
* DESCRIPTION: READS THE THREE BYTES SENT BY THE NODES AND
* INSERTS THEM INTO DATA MEMORY ADDRESS
* SPACE *
tf
* DATE: Wed 24-08-1994
{ftr*#rr#t#rrf#rrrR##rrY#Yf#ffRtrtiºfftt#Yi#tfttf tf#tft#titif

. MODULE/ROM/SEG=int_pm readbytes;

. VAR/DM source_node;

. VAR/DM link_num;

. VAR/DM destination_node;

. VAR/DM byte_count;

. EXTERNAL c004-input-status;

. EXTERNAL read-c004;

. EXTERNAL decode_request;

. ENTRY read-bytes;

. GLOBAL source_node;

. GLOBAL link_num;

. GLOBAL destination_node;

read-bytes; AX0=3; (set AXO)
DM(byte_count)=AXO; (set byte-count)

not-received: AXO=0; (reset AXO)
AXO=DM(c004_input_statu s); (load input status of C012)
AYO=1; (load AY1)
AR=AXO AND AYO; (look at LSB)
IF EQ JUMP not_received ; (test if =0)

(i. e C012 empty)
AXO=2; (load AXO)
AY1=DM(byte_count); (load byte_count

into AY1)
AR=AXO-AY1; (find which byte

is present)
IF LT JUMPfirst_byte;
IF EQ JUMP second-byte;
IF GT JUMP third-byte;

first_byte: AYO=HAFF; (load AYO}
AXO=DM(read_c004); (read port)
AR=AXO AND AYO; (mask off top byte)
DM(source_node)=AR; (store result

in DM)
AR=AYl-1; (-1 from byte_

count)
DM(byte_count)=AR; (store new value

for byte_count)
JUMP not-received;

second-byte: AYO=HNFF; (load AYO)
AXO=DM(read_c004); (read port)
AR=AXO AND AYO; (mask off top

byte)
DM(link_num)=AR; (store result

in DM)

AR=AY1-1; (-1 from byte_

count)
DM(byte_count)=AR; (store new value

for byte_count)
JUMP not-received;

third byte. AYO=RIFF; (load AYO)
- AXO=DM(read_c004); (read port)

AR=AXO AND AYO; (mask off top
byte)

DM(destination_node)=AR; (store result in DM)
JUMP decode-request;

. ENDMOD;

Appendix B 241

* NAME: DECODE. DSP
**

DESCRIPTION: DECIDES WHETHER MESSAGE FROM NODE IS A CONNECTION*
OR DISCONNECTION REQUEST

DATE: Wed 24-08-1994

. MODULE/ROM/SEG=int_pm decoderequest;

l

. EXTERNAL link_num;

. EXTERNAL make-connection;

. EXTERNAL break-connection;

. ENTRY decode_request;

decode-request: AYO=128; (set AYO)
AXO=DM(link_num); (load AXO)
AR=AXO AND AYO; (look at MSBit)
IF EQ JUMP make_connection;
IF NE JUMP break-connection;

. ENDMOD;

Appendix B 242

ýttR*tRtfRºtt*R***ttR*º*f**t****ºf*****R*******************

* NAME: FINDSOUR. DSP; *
R*
* DESCRIPTION: SEARCHES ARRAYS TO FIND WHICH LINK ON THE
*CROSSBAR SWITCH THE SOURCE NODE IS CONNECTED
" TO.
**
* DATE: Thu 25-08-1994 *
**
ttttttttttftttif tfitttttttttftttttfttititttfttktttt14tt#tt}

. MODULE/ROM/SEG=int_pm makeconnection;

. VAR source_node_crossbar_link;

. VAR pointer_to_source_node_link;

. GLOBAL pointer_to_source_node_link;

. GLOBAL source_node_crossbar_link;

. EXTERNAL source_node;

. EXTERNAL source_node_link_num;

. EXTERNAL connection_failed;

. EXTERNAL write-c012;

. EXTERNAL output_status;

. ENTRY find_crossbar_link_for_source;

find_crossbar_link_for_source: AXO=DM(source_node); (load address of
source node)

AY1=0; (load AY1)
match_source: AYO=DM(IO, MO); (load value from

table)
AR=AY1+1; (count number of

times round loop)
AY1=AR; (store new value of

AY1)
AR=AYO-AXO; (test for match)

IF EQ JUMP load-pointer; (if match then
exit loop)

IF LT JUMP match-source; (keep searching
table)

IF CT JUMP match_source; (keep searching
table)

load_pointer: AX1=AY1; (store loop count
in AX1)

AY1=I1; (put pointer to
link_no in AY1)

AYO=l; (load AY1)
AR=AX1-AYO; {calculate actual

amount to be added
to 11)

MRO=AR; (store result in
MRO)

AR=MRO+AY1; (calculate new
pointer address
for link_no)

I1=AR; (load I1 with new
value)

AXO=DM(source_node_link_num); (load linknum)
AY1=0; (load AY1)
match_link: AYO=DM(Il, Ml); (load value

from table)
AR=AY1+1; (count number of

times round loop)
AY1=AR; (store new value

of AY1)
AR=AXO-AYO; (check for match)

IF EQ JUMP find_link_on_crossbar; (match)
IF LT JUMP match_link; (not-match)
IF GT JUMP match_link; (not-match)

find_link_on_crossbar: TOGGLE FLAG_OUT; (used as test)
AYO=AY1; (load AYO with no

of times round
match-link)

AR=AX1+AYO; (calculate total
distance from start)

AX1=AR; (load AX1 with
result)

A%0=I2; (load A%0 with
start address of
array)

AY1=2;
AR=AX1-AYl; (find value

to be added

Appendix B 243

to 12)
AY1=AR; (load AY1)
AR=AXO+AYl; (calculate new

value of pointer)
I2=AR; (load start address

into 12)
AX0=i3; (repeat for 13)
AR=AXO+AYl; (calculate new

value of pointer)
13=AR; (load new value

into 13)
DM(pointer_to_source_node_link)=I3;
AXO=DM(I2, M2);
DM(source_node_crossba r_link)=AXO;

(store pointers
for later use)

RTS;
ENDMOD;

Appendix B 244

ýfffffittffffftf tfºtf ifºtf iff*fff44tftlf Yff*fº1Rf Rf RR#*i*t*YRff

* NANE: MAKE. DSP *
**
* DECRIPTION: CALLS ROUTINES REQUIRED TO MAKE A CONNECTION;
**
* DATE: Wed 31-08-1994 *

ttrrttttttttrrt rrrrrrrrrrrrttrtttrftttttt*ttfttttttrtttrttrtttsj

. MODULE/ROM/SEG=int_pm makesconnection;

. VAR source_node_link_num;

. GLOBAL source_node_link_num;

. EXTERNAL link_num;

. EXTERNAL connection-failed;

. EXTERNAL find_destination_node;

.
EXTERNAL connection-failed;

. EXTERNAL test_link_inuse;

. EXTERNAL program_crossbar;

. EXTERNAL find_crossbar_link_for_source;

. ENTRY make_connection;

make_connection: AXO=DM(link_num); (load AXO with
link_num)

DM(source_node_link_num)=AXO; (load value
into different
variable)

AY0=3; (load AYO)
AR=AYO-AXO; (test link

number is not
greater than 4)

IF LT JUMP connection_failed; (if link number

not valid then
fail attempt)

(Call routine which searches tables to find which link on the crossbar
switch source node is connected to)

CALL find-crossbar-link-for-source;
test-connection: AXO=DM(I3, M3); (load ARG from array)

AY0=1; (load AY1)
AR=AYO-AXO; (test that link is

free - i. e 101)
IF EQ JUMP connection_failed;

(call routine which locates a link on the crossbar switch the destination node could be
connected to)

IF NE CALL find_destination_node;
CALL test_link_inuse; (searches for free

links on destination
node)

CALL program-crossbar; (program crossbar
switch)

ENDMOD;

Appendix B 245

* NAME: FINDDEST. DSP

* DESCRIPTION: FINDS LINK NUMBER OF DESTINATION NODE AND LINK*
t ON CROSSBAR IT IS CONNECTED TO.
t

* DATE: Tue 30-08-1994
*
Y

t**Yt**fftYffffYfttffftff*fYtftt*tYttf tf tlttt*ttttt*t*tYfftYl

. MODULE/ROM/SEG=int_pm finddestinationnode;

. VAR destination_node_link_num;

. VAR destination_node_crossbar_link;

. VAR pointer_to_destination_node_link;

. GLOBAL pointer_to_destination_node_link;

. GLOBAL destination_node_link_num;

. GLOBAL destination_node_crossbar_link;

. EXTERNAL destination_node;

. EXTERNAL node_id;

. EXTERNAL link_no;

. EXTERNAL crossbar-link-no;

. EXTERNAL connection_used_unused;

. EXTERNAL connection-failed;

. EXTERNAL program_crossbar;

. ENTRY find_destination_node;

find_destination_node: I0=^node_id; (reset pointers)
Il=^link_no;
12=^crossbar_link_no;
I3=^connection used_unused;

AXO=DM(destination_node); (load destination
node)

AY1=0; (reset ayl)

match_destination: AYO=DM(IO, MO); (load node id)
AR=AY1+1; (increment counter)
AY1=AR; (store counter

value)
AR=AXO-AYO; (test for match

for dest. node)
IF EQ JUMP load_pointerl; (exit loop)
IF LT JUMP match_destination; (keep looping)
IF CT JUMP match_destination; (keep looping)

load_pointerl: AR=AY1-1; (-1 from loop
count)

MRO=AR; (store result)
AY1=I1; (put pointer to

link_no in AY1)
AR=MRO+AY1; (add offset to

11)
Il=AR; (load new value

of 11)
AY1=I2; (find new value

for pointer to
crossbarlinkno)

AR=MRO+AY1; (add offset to
I2)

12=AR; (load new value
of 12)

AY1=I3; (find new value
for pointer to
connectionused)

AR=MRO+AY1; (add offset to
13)

I3=AR; (load new value
of 12)

RTS;

.
ENDMOD;

Appendix ß 246

ýrtttrwtrrrrrtrttkwtrtrtrrrrrrretrt*rwttwrwrwwwttrwrrwwrwrtrrttr
* NAME: TESTLINK. DSP
tr
* DESCRIPTION: SERCHES LINKS FROM DESTINATION NODE TO CROSSBAR
* LOOKING FOR A FREE LINK TO CONNECT THE
* SOURCE NODE TO, *
*r
* DATE: Tue 30-08-1994 *
*rrrr**r*rr*r**rrtr*******rrrrrrrrrrrrrtwtwrtwrrrrrrrttrtwrrr*rt}

. MODULE/ROM/SEG=int_pm testforfreelink;

. EXTERNAL connection-failed;

. EXTERNAL destination_node_link_num;

. EXTERNAL destination_node_crossbar_link;

. EXTERNAL pointer_to_destination_node_link;

. ENTRY test_link_inuse;

test_link_inuse: AY1=0; (reset ayl)
load_flag: AYO=DM(I3, M3); (load flag)

AR=AY1+1; (incement counter)
AY1=AR;
AX0=5;
AR=AY1-AXO; (test if looped

4 times)
IF EQ JUMP connection_failed; (if checked

all
4 links then
failed)

AR=AYO-l;
IF EQ JUMP load_flag; (if connection used

then test further)
IF LT JUMP find_dest_link; (connection free

then proceed)

find_dest_link: AY0=I3; (load AYO with
pointer)

AR=AYO-1; (-1 from pointer)
DM(pointer_to_destination_node_link)=AR;
AR=AY1-1; (-1 from AY1)
AY1=AR; (store loop count)
AX1=I1; (set pointer)
AR=AX1+AY1; (find new value

of pointer)
Il=AR; (load pointer)
AXO=DM(I1, Ml); (load AXO)
DM(destination_node_link_num)=AXO; (store in

DM)

link: crossbar AX1=I2; (set pointer)
- AR=AXI+AY1; (find new value

of 12)
12=AR; (load new value)
AXO=DM(I2, M2); (store link

number)
DM(destination_node_crossbar_link)=AXO;

RTS;

. ENDMOD;

Appendix B 247

{*tltffffRtff44tiff*tl*ft*tftt*fftf**#1******fR*ff#***************

* NAME: CROSS. DSP

* DESCRIPTION: PROGRAMS REQUIRED CONNECTION ON CROSSBAR SWITCH. *
* UPDATES FLAGS INDICATING WHETHER LINKS ARE IN USE.
* SENDS ACKNOWLEDGE BYTE.
* RESETS POINTERS.

* DATE: Tue 30-08-1994

. MODULE/ROM/SEG=int_pm programcrossbar;

. EXTERNAL source_node_crossbar_link;

. EXTERNAL destination_node_crossbar_link;

. EXTERNAL pointer_to_source_node_link;

. EXTERNAL pointer_to_destination_node_link;

. EXTERNAL write_cO12;

. EXTERNAL write_c004;

. EXTERNAL output-status;

. EXTERNAL destination_node_link_num;

. EXTERNAL node-id,

. EXTERNAL link-no;

. EXTERNAL crossbar-link-no;

. EXTERNAL connection_used_unused;

. EXTERNAL read-bytes;

. ENTRY program-crossbar;

program_crossbar: AXO=DM(source_node_crossbar_link);
AYO=DM(destination_node_crossbar_link);

not_readyO: AX1=0; (load AX1)
AX1=DM(output_status); (check output

status)
AY1=1; (look AY1)
AR=AX1 AND AY1; (look at LSBit)
IF EQ JUMP not_readyO; (keep looping if

not ready)

AX1=l; (load AX1)
DM(write_c012)=AXl; (initiates discon

on C004)

readyl: not AX1=0; (load AM)
_ AX1=DM(output_status); (check output

status)
AY1=1; (look AY1)
AR=AX1 AND AYl; (look at LSBit)
IF EQ JUMP not_readyl; (keep looping if

not ready)

DM(write_c012)=AXO; (send value of link
to be connected to
0004)

ready2: not Axl=0; (load AX1)
_ AX1=DM(output_status); (check output

status)
AY1=1; (look AY1)
AR=AX1 AND AY1; (look at LSBit)

IF EQ JUMP not_ready2; (keep looping if
not ready)

DM(write_c012)=AYO; (send value of link
to be connected to
C004)

update_connection_table: 13=DM(pointer_to_source_node_link); (Ioad
pointer)

AXO=1; (load AXO)
DM(I3, M3)=1; (set to 1- connected)
13=DM(pointer_to_destination_node_link);
AXO=1; (load AX1)
DM(I3, M3)=1; (set to 1- connected)

byte: acknowledge send AXO=DM(destination_node_link_num); (load AXO)
_ _ DM(write_c004)=AXO; (send num of dest node

as ack. byte)

iO=^node_id; (reset pointers)
Il=^link_no;
I2=^crossbar_link_no;
I3=^connection_used_unused;

JUMP read-bytes;

. ENDMOD;

Appendix B 248

#tttttlfttltttf tf####tft}1lf tft}t}}ttt#ittf #tft##tk#f#f#f#t##tý+
* NAME: BREAK. DSP

DESCRIPTION: SEPARATES OUT SOURCE AND DESTINATION LINK
NUMBERS
CALLS ROUTINES TO BREAK A CONNECTION

* DATE: Wed 31-08-1994
. ttflttfl/. t/tf. f/ ..

. MODULE/ROM/SEG=int_pm breakconnection;

. EXTERNAL destination_node_link_num;

. EXTERNAL source_node_link_num;

. EXTERNAL link_num;

. EXTERNAL find_crossbar_link_for_source;

. EXTERNAL find_destination_node;

. EXTERNAL find_destination_link;

. EXTERNAL disconnect_link;

. EXTERNAL connection-failed;

. ENTRY break_connection;

break_connection: AXO=DM(link_num); (load link_num)
AYO=7; (load AYO)
AR=AXO AND AYO; (extract first

four bits)
DM(source_node_link_num)=AR; (load variable)
AXO=DM(source_node_link_num); (load AX0)
AYO=3; (load AYO)
AR=AYO-AXO; (check value of

link Rum is
sensible)

IF LT JUMP connection-failed; (fail)

AYO=127; (load AYO)
AR=AXO AND AYO; (remove flag bit)
SRO=AR; (load SRO)
SR=LSHIFT SRO BY -3(LO); (remove source node

link number)
AXO=SRO; (load AXO)

DM(destination_node_link_num)=AXO; (load VAR)
AYO=3; (load AYO)
AR=AYO-AXO; (check linkno is

reasonable)
IF LT JUMP connection_failed; (fail)

CALL find_crossbar_link_for_source;
CALL find_destination_node;
CALL find_destination_link;
CALL disconnect-link;

. ENDMOD;

Appendix B 249

lfffffYfff*f*ffºffYºffºººf***ffft*ftft*Ititf#\ttttit****\i

NAME: FINDLINK. DSP
Y
" DESCRIPTION: FIND LINK ON CROSSBAR DESTINATION NODE IS
CONNECTED TO IN ORDER TO BREAK A
' CONNECTION.

* DATE: Wed 31-08-1994
t
fiffi\ff*Mttt\\tttttf tf tfttºfff\f \ftt\! t\ft\t 4f ti#itfttf\#}

. MODULE/ROM/SEG=int_pm findlinkoncrossbar;

. EXTERNAL destination,
_node_link_num;

. EXTERNAL destination_node_crossbar_link;

. EXTERNAL pointer_to_destination_node_link;

. ENTRY find_destination_link;

find_destination_link: AXO=DM(destination_node_link_num);

loops: AY1=0; (load AY1)
AYO=DM(Il, M1); (load from table)
AR=AY1+1; (increment counter)
AY1=AR; (load new value of

counter)
AXO=DM(destination_node_link_num);
AR=AYO-AXO; (test for match)

IF EQ JUMP find_link_on_crossbar;
IF CT JUMP loopl;
IF LT JUMP loopl;

find_link_on_crossbar: AR=AY1-1; (-1 from counter)
AY1=AR; (load new value)
AXl=12; (load value of pointer)
AR=AX1+AYl; (find new value of

pointer)
I2=AR; (load new value of

pointer)
AX1=13; (load value of pointer)
AR=AX1+AY1; (find new value of

pointer)
I3=AR; (load new value of

pointer)
DM(pointer_to_destination_node_link)=AR;
AXO=DM(I2, M2); (load AXO)
DM(destination_node_crossbar_link)=AXO;

RTS;

. ENDMOD;

Appendix B 250

(ttttrttttrttttrtretttttt*****. *t*ttrttttttttt**t*ttttttt**tt*tttttt

" NAME: DISCON. DSP *

* DESCRIPTION: DISCONNECTS A CONNECTION ON THE CROSSBAR SWITCH AND*
" SENDS AN ACKNOWLEDGE BYTE TO NODE. *

" DATE: Mon 19-09-1994
t*
rrtrsfrrtretrr: rr rr*rrfrrr rtrtrrtrrrrrffttrtfrttr*wrrrrrrrrr*rrr*rrr}

. MODULE/ROM/SEG=int_pm break_a_connection;

. EXTERNAL source_node_crossbar_link;

. EXTERNAL destination_node_crossbar_link;

. EXTERNAL pointer_to_source_node_link;

. EXTERNAL pointer_to_destination_node_link;

. EXTERNAL write_c012;

. EXTERNAL write_c004;

. EXTERNAL output_status;

. EXTERNAL destination_node_link_num;

. EXTERNAL node_id;

. EXTERNAL link_no;

. EXTERNAL crossbar-link-no;

. EXTERNAL connection_used_unused;

. EXTERNAL read_bytes;

. ENTRY disconnect_link;

disconnect-link: AXO=DM(source_node_crossbar_link);
AYO=DM(destination_node_crossbar_link);

not_readyO: AX1=0; (load AX1)
AX1=DM(output_status); (check output

status)
AY1=1; (load AY1)
AR=AX1 AND AY1; (look at LSBit}
IF EQ JUMP not_readyO; (keep looping

if not ready)

AX1=6; (load AX1)
DM(write_cOl2)=AX1; (initiates discon

on C004)

readyl: not AXl=0; (load AX1)
_ AX1=DM(output_status); (check output

status)
AY1=1; (load AY1)
AR=AX1 AND AYl; (look at LS2it)
IF EQ JUMP not_readyl; (keep looping

if not ready)

DM(write_c012)=AXO; (send value of link
to be disconnected
to C004)

ready2: not AX1=0; (load AX1)
_ AX1=DM(output status); (check output

status)
AY1=1; (load AYI)
AR-AX1 AND AY1; (look at LSBit)
IF EQ JUMP not_ready2; (keep looping

if not ready)
DM(write_cOl2)=AYO; (send value of link

to be disconnected
to C004)

connection_table: update I3=DM(pointer_to_source_node_link); (load
_ pointer)

DM(13, M3)=0; (reset to 0- disconnected)

I3=DM(pointer_to_destination_node_link);
(load pointer)

DM(I3, M3)=0; (reset to 0- disconnected)

acknowledge_byte: send AXO=DM(destinatiof_node_link_num); (load AXO)
_ c004)=AXO; (send no. of dest node DM(write

_ as ack, byte)

I0=^node_id; (reset pointers)
Il=^link`no;
I2=^crossbar_link_no;
I3=^ connection _used_unused;

JUMP read-bytes;

ENDMODI

Appendix B 251

NAME STATE2. PLD TOKEN PASSING AND FIFO CLOCKING;
PARTNO STATE MACHINE;
REVISION 01;
DATE 13/02/93;
DESIGNER LESLEY BISSLAND;
COMPANY GLAGOW UNIVERSITY;
LOCATION STATE MACHINE;
ASSEMBLY
DEVICE P22V10;
FORMAT -j;
/tfff*t#f ttt##t#ft#ftRt#tf#f#1Rff#*#f ttttf *f *t*t*ff*t***#tf 4tt*t#*/

/*CLOCKS FIFO AND PASSES TOKEN USING TWO SEPARATE STATE MACHINES. */
/*ALSO SETS RESET SIGNALS.

/*tfRfRR*R#fR##f#*RfRlfRR1Rf#1Rt1R#fRtf if #f tftitff**#t##**!! f#R#4i/

/**INPUTS**/

PIN 1 = CLK;
PIN 2 = TOKENIN;
PIN 3 = ITOKENACCEPTED;
PIN 4 = RESET;
PIN 5 = KEEPTOKEN;
PIN 6 = IACK;
PIN 7 =l EF;
PIN 8 = SYSCONTROL;
PIN 9 = D0;
PIN 10 = RESETDRV;
/**PIN 11 = TOKENPRESENT; **/

/**OUTPUTS**/

PIN 14 = IVALID;
PIN 15 = ! CLOCKFIFO;
PIN 16 = ITOKENRECEIVED;
PIN 17 = IENABLEBUFFER;
PIN 18 = TOKENOUT;
PIN 19 = LATCHRESET;
PIN 20 = SYSRESET;
PIN 21 = tFIFORESET;
PIN 22 = TOKENARRIVED;

FIELD TOKENSTATEBIT = (TOKENARRIVED, TOKENOUT, TOKENRECEIVED,
ENABLEBUFFERI;

FIELD FIFOSTATEBIT = (IVALID, CLOCKFIFO);

$DEFINE TOKENO b'0000
$DEFINE TOKEN1 b'1011
$DEFINE TOKEN2 b'0100

$DEFINE FIFOO b' 00
$DEFINE FIFO1 b' 01
$DEFINE FIFO2 b' 11
$DEFINE FIFO3 b' 10

/**RESETS AND PRESETS"*/

IVALID. SP = 'b'0;
IVALID. AR = 'b'0;
ENABLEBUFFER. SP = 'b'0;
ENABLEBUFFER. AR = 'b'0;
CLOCKFIFO. SP = 'b'0;
CLOCKFIFO. AR = 'b'0;
TOKENOUT. SP = 'b'0;
TOKENOUT. AR = 'b'0;
TOKENRECEIVED. SP = 'b'0;
TOKENRECEIVED. AR = 'b'0;
TOKENARRIVED. SP = 'b'0;
TOKENARRIVED. AR = 'b'0;
LATCHRESET. AR = 'b'0;
LATCHRESET. SP = 'b'0;

/**DEFINITIONS**/

NOTOKEN = ITOKENIN & IRESET & ITOKENACCEPTED;
TOKEN = TOKENIN & (RESET & ITOKENACCEPTED;
TOKENPASSED = TOKENACCEPTED & IRESET & ITOKENIN;

TOKENNOTPASSED = ITOKENACCEPTED & IRESET & ITOKENIN;
HNOTOKEN = ITOKENIN & IRESET & ITOKENACCEPTED &

IKEEPTOKEN;
HTOKEN = TOKENIN & IRESET & ITOKENACCEPTED &

IKEEPTOKEN;
HOLD KEEPTOKEN & IRESET;

CLEAR = RESET;

FIFOEMPTY = EF & IRESET & IIACK;
FIFONOTEMPTY = IEF & IRESET & IIACK & TOKENARRIVED;

Appendix B 252

TOKENNOTTHERE _ ! EF & ! RESET & IIACK & ITOKENARRIVED;
DATASENT = IACK & ! RESET;
DATANOTSENT = ! ZACK & ! RESET;
TOKENISTHERE = TOKENARRIVED;

SEQUENCE TOKENSTATEBIT(

PRESENT TOKENO IF NOTOKEN NEXT TOKENO; /*TOKEN NOT ARRIVED*/
IF TOKEN NEXT TOKEN1; /*TOKEN ARRIVED*/
IF CLEAR NEXT TOKENO; /*RESET*/

PRESENT TOKENI IF HTOKEN NEXT TOKEN2; /*TOKEN STILL THERE*/
IF HNOTOKEN NEXT TOKEN2; /*TOKEN REMOVED*/
IF HOLD NEXT TOKEN1;
IF CLEAR NEXT TOKENO; /*RESET*/

PRESENT TOKEN2 IF TOKENPASSEDNEXT TOKENO; /*TOKEN PASSED*/
IF TOKENNOTPASSEDNEXT TOKEN2; /*TOKEN NOT

PASSED*/
IF TOKEN NEXT TOKENO;
IF CLEAR NEXT TOKENO; /*RESET*/

SEQUENCE FIFOSTATEBIT(

PRESENT FIFOO IF FIFOEMPT NEXT FIFOO;
IF FIFONOTEMPTY NEXT FIFO1;
IF TOKENNOTTHERE NEXT FIFOO;
IF DATASENT NEXT FIFOO;
IF RESET NEXT FIFOO;

PRESENT FIFO1 IF RESET NEXT FIFOO;
IF FIFOEMPTY NEXT FIFO2;
IF FIFONOTEMPTY NEXT FIFO2;

PRESENT FIFO2 IF DATANOTSENT NEXT FIFO2;
IF DATASENT NEXT FIFOO;
IF RESET NEXT FIFOO;

PRESENT FIFO3 NEXT FIFOO;

LATCHRESET. d = DO & SYSCONTROL * LATCHRESET & ISYSCONTROL;
SYSRESET = RESETDRV / LATCHRESET;
FIFORESET = SYSRESET;

Appendix 0 253

Appendix C:

Source code for parallel energy minimisation.

Appendix C 254

C
c
C ºº\sstºirs: r\4aa\tarºairºrºiºrisstsarsttrtri\trktttfttttt
C" 4
CHH 00 SSSS TTTTTT MM II NN*
C*HHOOS TT MM MM II NN N} C* HHHH 00 SSSS TT MMM II NNN
C"HHOOS TT MM II N NN * C*HH 00 SSSS TT MM II NN C*t
C*f
C*4
C* NAME: HOSTMIN. FOR t
C**
C* DESCR: BLOCK-DIAGONAL NEWTON-RAPHSON ENERGY
C* MINIMISATION, WITH CONSTRAINTS IF C* DESIRED. t
C*º
C* ENTRY POINTS: SELF CONTAINED *
C*\
C*t
C* DAVID WHITE *
C*#
C* COPYRIGHT (C), 1986 *
C* ALL RIGHTS RESERVED *
C**
C }4fff4*r\\iff******Y\f#\\t\4f 1tf#}f#t#}4f******t}tttt}f4#
C

C BLOCK DIAGONAL ENERGY MINIMISATION PROGRAM
C
C THIS PROGRAM IS BASED ON THE GENERAL NEWTON-RAPHSON MINIMISATION
C ALGORITHM. THE MATRIX OF THE SECOND DERIVATIVES OF THE STERIC
C ENERGY WITH RESPECT TO THE ATOMIC COORDINATES IS REDUCED TO A BLOCK
C DIAGONAL FORM, I. E. ALL VALUES OTHER THAN D2VS/DXI DXJ, I, J = 1,2
C OR 3 FOR EACH ATOM, ARE SET TO ZERO.
C
C
C -- MASTER SEGMENT & FILE READER FOR MOLECULAR MECHANICS ROUTINES -- C
c INCLUDE 'HOST. INC'

PROGRAM MOLMEC

IMPLICIT NONE

INCLUDE 'CHMCM3. INC'
C INCLUDE 'HNCOM. INC'

INTEGER TRNTAB, TRNTB2, NUMCON, INA, I, J
REAL CELDIM
DIMENSION CELDIM(6)
DIMENSION TRNTAB(MXCHEM), TRNTB2(30)

LOGICAL VALID
CHARACTER ATNM*2, CHRANM*3,000*1

C

15
16
17
18
19
20
21
22
C

C

C

C

C
C
C

DATA TRNTAB/4,5,6,22,9,7,10,10,8,11,12,17,18,16,1,14,15,20,21/
DATA TRNTB2/15,15,15,1,2,3,6,9,5,7,10,11,10,16,17,14,12,13

1,13,18,19,22,23,24,25,26,27,28,29,30/

FORMAT(A40)
FORMAT(6F9.3)
FORMAT(I4)
FORMAT(A2,2X, I2,4X, 3F9.4,2X, F10.5,2X, 12)
FORMAT(I1)
FORMAT(12)
FORMAT(I3)
FORMAT(7I4)

INQUIRE(FILE='chemmin. cwo', EXIST=VALID)
IF(. NOT. (VALID)) STOP

CALL MNINITI

OPEN (DLUNIN, FILE= Ichemmin. cwo')
OPEN(DLNOUT, FILE='MOLMEC. CWO', STATUS='NEW')

OPEN(DLNOUT, FILE='MOLMEC. CWO')

-- ALL FILES OPEN, NOW READ CONTENTS OF INFILE --

READ(DLUNIN, 15) TITLE
READ(DLUNIN. 16) (CELDIM(I), I=1,6)
READ(DLUNIN, 17) NUMATS

IF(NUMATS. GT. MXAT) THEN

Appendix C 255

WRITE(*, *)' ***** ERROR TOO MANY ATOMS *****'
CLOSE(DLUNIN)
STOP
ENDIF

DO 100 I=1, NUMATS
READ(DLUNIN, 18) ATNM, ATYNUM(I), (XO(I, J), J=1,3), CHARGE(I)

1 , MOLNUM(I)
IF(I. LT. 10) WRITE(CHRANM, 19) I
IF(I. GE. 10. AND. I. LT. 100) WRITE(CHRANM, 20) I
IF(I. GE. 100. AND. I. LT. 1000) WRITE(CHRANM, 21) I
ATMNAM(I)(1: 3)=ATNM(1: 2)
ATMNAM(I)(4: 6)=CHRANM(1: 3)
IF(ATYNUM(I). LT. 20) ATYNUM(I)=TRNTAB(ATYNUM(I))
IF(ATYNUM(I). EQ. Osp3. AND. (CHARGE(I). EQ. -1. O. OR. CHARGE(I)

1 . EQ. -2.0)) ATYNUM(I)=Oanion
100 CONTINUE

READ(DLUNIN, 17) NUMCON
DO 105 I=1, NUMCON

READ(DLUNIN, 22) INA, (ATMCON(I, J), J=1, MXCN)
105 CONTINUE
C

CALL BDMIN
WRITE(DLNOUT, 15) TITLE
WRITE(DLNOUT, 16) (CELDIM(I), I=1,6)
WRITE(DLNOUT, 17) NUMATS
DO 120 I=1, NUMATS

ATYNUM(I)=TRNTB2(ATYNUM(I))
IF(ATYNUM(I). EQ. 22. AND. ATMNAM(I)(1: 2). EQ. 'C ') ATYNUM(I)=4

115 WRITE(DLNOUT, 18) ATMNAM(I)(1: 2), ATYNUM(I), (XO(I, J), J=1,3)
1 , CHARGE(I), MOLNUM(I)

120 CONTINUE
WRITE(DLNOUT, 17) NUMCON
DO 125 I=1, NUMCON

WRITE(DLNOUT, 22) I, (ATMCON(I, J), J=1, MXCN)
125 CONTINUE
C CLOSE(DLUNIN, STATUS='DELETE')

CLOSE(OLUNIN)
CLOSE(DLNOUT)

C
WRITE(*, *) ' Press RETURN to Continue. '
READ(*, '(A)') QQQ

C
END

SUBROUTINE BDMIN

IMPLICIT NONE

INCLUDE 'CHMCM3. INC'
include 'equiv. inc'

C INCLUDE 'HNCOM. INC'
C INCLUDE '\BOARD\F77\HSTLNKIF. INC'

LOGICAL BFCERR, AFCERR, NFCERR, TFCERR
INTEGER ITRCMP, NFIRST, LAST, BFLENG, I, NDIV, NMOD, L,

1 NUMPROC
REAL SHIFT2, ETOT, temp. sgdlsq, rmsdl

CHARACTER*64 FILE

INTEGER *1 TEMPI

integer*2 error, ProcConn(4,4), netcast

EQUIVALENCE (TEMP1, TEMP)

10 FORMAT(/, ' ATOM TYPE XY2
1 CHARGE MOLECULE', /)

11 FORMAT (2X, A6,4X, I2,3X, 4F12.5,6X, I2)
12 FORMAT(' MINIMISATION ABORTED DUE TO K(BOND STRETCH) OMISSIONS')
13 FORMAT(' MINIMISATION ABORTED DUE TO K(ANGLE BEND) OMISSIONS')
14 FORMAT(' MINIMISATION ABORTED DUE TO K(NON - BONDED) OMISSIONS')
15 FORMAT(' MINIMISATION ABORTED DUE TO K(BOND TORSION) OMISSIONS')
16 FORMAT(/, ' INITIAL POTENTIAL ENERGY ', F12.4, I K. CAL PER MOLE' /)
17 FORMAT(///, ' MINIMISATION ABANDONED DUE TO SINGULAR MATRIX', ///)
18 FORMAT(' RMS VALUE OF dE/dX, dY, d2 = ', E12.4, ' KCAL MOL-1 A-1')
19 FORMAT(/, ' FINAL POTENTIAL ENERGY = 1, F12.4, ' K. CAL PER MOLE', /)
20 format (14I4)
21 format (14F5.1)
C
C -- SHIFTX IS THE INCREMENT IN ATOMIC COORDINATES USED FOR CALCULATING --
C -- THE DERIVATIVES --
C

open (20, file = 'lptl')
CALL ASBOML
CALL GETCOP
CALL GETOPB
IF(NPRINT. GT. 1) THEN

WRITE(*, 10)

Appendix C 256

WRITE(*, 11) (ATMNAM(I), ATYNUM(I), XO(I, 1), XO(I, 2), XO(I, 3) 1
ENDIF , CHARGE(I), MOLNUM(I), I=1, NUMATS)

C
C -- START CALCULATION PROPER -- C

BFCERR=. FALSE.
AFCERR=. FALSE.
NFCERR=. FALSE.
TFCERR=. FALSE.
CALL POTE(ETOT, BFCERR, AFCERR, NFCERR, TFCERR)
IF(BFCERR) THEN

WRITE(*, 12)
RETURN

ELSE
IF(AFCERR) THEN

WRITE(*, 13)
RETURN

ELSE
IF(NFCERR) THEN

WRITE(*, 14)
RETURN

ELSE
IF(TFCERR) THEN

WRITE(*, 15)
RETURN

ENDIF
ENDIF

ENDIF
ENDIF

C
C -- NO MISSING FORCE CONSTANTS SO CONTINUE --
C

IF(NPRINT. EQ. O) WRITE(`, 16) ETOT
IF(NUMITR. EQ. O) RETURN

SHIFT2=SHIFTX*SHIFTX
ITRCMP=O

C CONFIGURES AND LOADS NODES

write(*, *) 'Enter no. of nodes in use,
READ(*, *) NUMPROC

file= Ic: \comfort\lesley\min\nodemin. appl//char(0)

call configure(1180, numproc, 1976f)
call reset(-l)
call load(-l, file, 100, error)

If (numproc. eq. 4) then
do i=1,4

ProcConn(1, i)=4
ProcConn(2, i)=-1
ProcConn(3, i)=-1
ProcConn(4, i)=-1

end do
end if

if (numproc. eq. 1) then
do i=1,4

ProcConn(1, i) =1
ProcConn(2, i) = -1
ProcConn(3, i) = -1
ProcConn(4, i) = -1

end do
end if

netcast = -1

call initialize(ProcConn, 100, error)

C SENDS BUFFERS TO NODES

call send (NETCAST, buffer_atmdatO, 1, total_atmdatO, 100, error)
call send (NETCAST, buffer atmdatl, 2, total_atmdatl, 100, error)
call send (NETCAST, buffer_moldat, 3, total_moldat, 100, error)
call send (NETCAST, buffer_ffp, 4, total_ffp, 100, error)
call send (NETCAST, buffer_cffp, 5, total_cffp, 100, error)
call send (NETCAST, buffer_contrl, 6, total_contrl, 100, error)
call send (NETCAST, buffer_constn, 7, total_constn, l00, error)

C SEND BYTE ARRAYS SEPARATELY

CALL SEND (NETCAST, ATYNUM, 8, LENGTH9,100, ERROR)
CALL SEND (NETCAST, BONDML, 9, LENGTH10,100, ERROR)
CALL SEND (NETCAST, MOLNUM, 10, LENGTH9,100, ERROR)

Appendix C 257

999 write (5, *)'NO of iterations =', itrcmp +1

C SENDS COORDINATES TO NODES

call send(NETCAST, X01,42, INT2(length7), 100, error)

C NUMPROC =4

NDIV = NUMATS / NUMPROC
NMOD = MOD (NUMATS, NUMPROC)

sgdlsq = 0.0
DO 321 L=O, NUMPROC-1

IF(L. 1t. NMOD)THEN
NFIRST = (L*NDIV)+L+1
LAST = ((L+1)*NDIV)+L+l

ELSE IF(L. eq. NMOD)THEN
NFIRST = (L*NDIV)+L+1
LAST = ((L+1)*NDIV)+L

ELSE IF(L. gt. NMOD)THEN
NFIRST = (L*NDIV)+NMOD+1
LAST = ((L+1)*NDIV)+NMOD

ENDIF

BFLENG=((LAST+1)-NFIRST)

C RECALCULATE NFIRST FOR XOl(INTEGER*1 SIZE ARRAY)

nfirst = nfirst*4 -3

call receive(L. xol(nfirst), 43, INT2(bfleng*4), 200, error)
c write (*, *) xo1 receive', error

call receive(L, xo21nfirst), 44, INT2(bfleng*4),
1 200, error)

c write (*, *) xo2 receive', error

call receive(L. xo3(nfirst), 45, INT2(bfleng*4),
1 200, error)

c write (*, *) 'xo3 receive', error

call receive(L, templ, 46,4,200, error)
c write (*, *) rms receive', error

sgdlsq = sgdlsq + temp

321 CONTINUE

rmsdl=sgrt(sgdlsq/float(numats*3))
write(*, 18)rmsdl
ITRCMP=ITRCMP+1
IF(ITRCMP. LT. NUMITR) GO TO 999

C
C -- IF NPRINT IS NOT EQUAL TO ZERO --
C

CALL POTE(ETOT, BFCERR, AFCERR, NFCERR, TFCERR)
IF(NPRINT. EQ. 0) WRITE(*, 19) ETOT
RETURN
END

Appendix C 258

C
C -- FORCE FIELD SETUP -- C

BLOCK DATA FFSET

IMPLICIT NONE

INTEGER I, J

INCLUDE 'CHMCM3. INC'
DATA H, Har, Hh, Csp3, Csp2, Car, Nsp, Namide, Ncation, Nar 1, Osp3, Osp2,0anion, F, C1, Piii, Sii, Siii, Svi, Br, Iod, MET, MET1

2, Mg2, Ca2, Ba2, Fe2, Fe3, Cul, Cu2
3 /1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22
4 , 23,24,25,26,27,28,29,30/

DATA REFANG/3*10., 112., 122., 120., 108., 121., 108. 1 , 120., 109.. 4*10., 103., 96., 105., 109.47,2*10., 180., 8*10. /
DATA EN/3*2.1,3*2.5,4*3., 3*3.5,4., 3., 2.1,3*2.5,2.8,2.5,2*0.

1 , 1.2,1.0,0.9,1.8,2*1.9,2.0/
DATA ARTYPS/6,10/
DATA DBTYPS/5,8,12,18,19/

DATA (REFLEN(I, 1), I=1, MAXTYP)/3*0.746,1.091,1.07,1.089,
1 1.01,0.99,1.03,0.99,0.97,2*10.0,0.92,1.27,1.43,
2 3*1.32,1.41,1.61,1.056,8*10.0/

DATA (REFLEN(I, 2), I=1, MAXTYP)/0.0,2*0.746,1.091,1.07,
1 1.089,1.01,0.99,1.03,0.99,0.97,2*10.0,0.92,1.27,1.43,
2 3*1.32,1.41.1.61,1.056,8*10.0/

DATA (REFLEN(I, 3), I=1, MAXTYP)/2*0.0,0.746,1.09,1.07,1.089,
1 1.01,0.99,1.03,0.99,0.97,2*10.0,0.92,1.27,1.43,3*1.32,
2 1.41,1.61,1.056,8*10.0/

DATA (REFLEN(I, 4), I=1, MAXTYP)/3*0.0,1.541,2*1.52,1.47,
1 3*1.48,1.43,2*10.0,1.381,1.767,1.815,1.81,1.84,1.76,
2 1.937,2.14.1.46,8*10.0/

DATA (REFLEN(I, 5), I=1, MAXTYP)/4*0.0,1.335.2.47,2*1.32,
1 2*1.48,1.36,1.21,1.26,1.33,1.72,1.77,1.75,1.71,1.61,
2 1.89,2.09,1.43,8*10.0/

DATA (REFLEN(I, 6), I=1, MAXTYP)/5.0.0,1.395,1.43,1.43,1.45,
1 1.35,1.38,2*10.0,1.3,1.7,1.76,1.74,1.76,1.74,1.85,2.05,
2 1.43,8*10.0/

DATA (REFLEN(I, 7), I=1, MAXTYP)/6*0.0,1.45,1.35,2*10.0,1.36,
1 2*10.0,1.36,1.75,1.67,3*1.62,2.14,2.34,1.158,8*10.0/

DATA (REFLEN(I, 8), I=1, MAXTYP)/7*0.0,1.27,2*10.0,1.39,1.23,
1 1.25,1.36,1.79,1.62,1.61,2*1.53,2.14,2.34,1.2,
2 8*10.0/

DATA (REFLEN(I, 9), I=1, MAXTYP)/8*0.0,2*10.0,1.2,1.06,10.0,
1 1.36,1.75,1.67,3*1.62.2.14,2.34,9*10.0/

DATA (REFLEN(I, 10), I=1, MAXTYP)/9*0.0,10.0,1.34,4*10.0,1.57,
1 5*10.0,1.5,8*10.0/

DATA (REFLEN(I, 11), I=1, MAXTYP)/10*0.0,1.48,10.0,1.26,1.418,
1 1.7,1.5,1.43,2*1.62,1.85,2.05,1.3,8*10.0/

DATA (REFLEN(I, 12). I=1, MAXTYP)/11*0.0.4*10.0,1.47,10.0,
1 1.49,1.43,2*10.0,1.2,8*10.0/

DATA (REFLEN(I, 13). I=1, MAXTYP)/12.0.0,18*10.0/

DATA (REFLEN(I, 14), I=1, MAXTYP)/13*0.0,1.417,1.63,1.535,
1 3*1.585,1.76,1.96,1.26,8*10.0/

DATA (REFLEN(I, 15), I=1, MAXTYP)/14*0.0.1.988,2.1,3*2.08,
1 2.14,2.32,1.64,8*10.0/

DATA (REFLEN(I, 16), I=1, MAXTYP)/15*0.0,2.2,1.86,2*2.0,
1 2.13,2.48,1.7,8*10.0/

DATA (REFLEN(I, 17), I=1, MAXTYP)/16*0.0.2.05,2*2.12,2.27,
1 2.73,1.7,8*10/

DATA (REFLEN(I, 18), I=1, MAXTYP)/17*0.0,2*2.12,2.27.2.73,
1 1.56,8*10.0/

DATA (REFLEN(I, 19), I=1, MAXTYP)/18.0.0,2.07,2.27,2.73,
1 9+10.0/

DATA (REFLEN(I, 20), I=1, MA%TYP)/19*0.0,2.29,2.4,1.79,
1 8'10.0/

Appendix C 259

DATA (REFLEN(I, 21), I=1, MA%TYP)/20*0.0,2.84,1.99,8*10.0/

DATA (REFLEN(I, 22), I=1, MAXTYP)/21*0.0,1.2,8*10.0/

DATA (REFLEN(I, 23), I=1, MAXTYP)/22*0.0,8*10.0/

DATA (REFLEN(I, 24), I=1, MAXTYP)/23*0.0,7*10.0/

DATA (REFLENII, 25), I=1, MAXTYP)/24*0.0,6*10.0/

DATA (REFLEN(I, 26), I=1, MAXTYP)/25*0.0,5*10.0/

DATA (REFLEN(I, 27), I=1, MAXTYP)/26*0.0,4*10.0/

DATA (REFLEN(I, 28), I=1, MAXTYP)/27*0.0,3*10.0/

DATA (REFLEN(I. 29), I=I, MAXTYP)/28*0.0,2*10.0/

DATA (REFLEN(I, 301, I=1, MAXTYP)/29.0.0,10.0/

C
C -- REFERENCE LENGTHS FOR CONJUGATED SINGLE BONDS -- C

DATA CREFLN/
1 8*10.
2

, 0�7 10.
3

, 2*0., 6*10.
4 3*0., 5*10.
5 4*0., 1.48.1.47,10., 1.43
6 5-0.. 1.50,10., 1.42
7 , 6*0., 2*10.
8 , 7*0.. 1.39/

DATA (PERIOD(I. 1), I=1, MAXTYP)/30*0.0/

DATA (PERIOD (I. 2), I=1, MAXTYP)/1*0.0.29*0.0/

DATA (PERIOD(I. 3). I=1. MAXTYP)/2.0.0,28*0.0/

DATA (PERIOD(I, 4), I=1, MAXTYP)/3*0.0,3.0, -3.0, -6.0,3.0, 1 -3.0,3.0,0.0,3.0,4*0.0,2*3.0, -3.0,3.0,2*0.0,3.0,
2 8*0.0/

DATA (PERIOD(I, 5), I=1, MAXTYP)/4*0.0,2*-2.0, -3.0, -2.0, -3.0, 1 0.0,2*-2.0,3*0.0, -3.0,2*-2.0, -3.0,2*0.0,2.0,8*0.0/

DATA (PERIOD (I, 6), I=1, MAXTYP)/5*0.0, -2.0, -6.0, -2.0, -6.0, 1 2*-2.0,4*0.0,2*-6.0, -2.0, -6.0,2*0.0,2.0,8*0.0/
DATA (PERIOD (I, 7), I=1, MAXTYP)/6*0.0,3.0, -3.0,3.0,0.0,3.0,

1 4*0.0,2*3.0, -3.0,3.0,2*0.0,3.0,8*0.0/

DATA (PERIOD(I, 8), I=1, MAXTYP)/7*0.0, -2.0, -3.0,0.0,2*^2.0,
1 3*0.0. -3.0,2*-2.0, -3.0,210.0,2.0,8*0.0/

DATA (PERIOD(I, 9), I=1, MAXTYP)/8*0.0,2*0.0.3.0,4*0,0,3.0,
1 3.0, -3.0,3.0,11*0.0/

DATA (PERIOD(I, 10), I=1, MAXTYP)/9*0.0,6*0.0, -2.0,5*0.0,
1 2.0,8*0.0/

DATA (PERIOD(I, 11), I=1, MAXTYP)/10*0.0,2.0,5*0.0,2.0,0.0,
1 3.0,2*0.0,3.0,8*0.0/

DATA (PERIOD(I, 12), I=1, MAXTYP)/11*0.0,6*0.0, -2.0,3*0.0,
1 2.0,8*0.0/

DATA (PERIOD(I, 13), I=1, MAXTYP)/12*0.0,18*0.0/

DATA (PERIOD(I, 14), I=1, MAXTYP)/13*0.0,17*0.0/

DATA (PERIOD(I, 15), I=l, MAXTYP)/14*0.0,16*0.0/

DATA (PERIOD (I, 16), I=1, MAXTYP)/15*0.0,2*3.0, -3.0,3.0,2*0.0,
1 3.0,8*0.0/

DATA (PERIOD (I, 17), I=1, MAXTYP)/16*0.0,2.0,4*0.0,2.0,8*0.0/

DATA (PERIOD (I, 18). 1=1, MAXTYP) /17*0.0,4*0.0,3.0,8*0.0/

DATA (PERIOD (I, 19), I-1. MAXTYP)/18*0.0,3.0,11*0.0/

DATA (PERIOD (I, 20). I=1, MAXTYP)/19*0.0,11*0.0/

DATA (PERIOD (I, 21), I=1, MAXTYPº/20*0.0,10*0.0/

DATA (PERIOD (I, 22). I=1, MAXTYP)/21*0.0,1.0,8*0.0/

Appendix C 260

DATA (PERIOD(I, 23), I=1, MAXTYP)/22*0.0,8*0.0/

DATA (PERIOD(I, 24), I=1, MAXTYP)/23*0.0,7*0.0/

DATA (PERIOD(I, 25), I=1, MAXTYP)/24*0.0,6*0.0/

DATA (PERIOD(I, 26), I=1, MAXTYP)/25*0.0,5*0.0/

DATA (PERIOD(I, 27), I=1, MAXTYP)/26*0.0,4*0.0/

DATA (PERIOD(I, 28), I=1, MAXTYP)/27*0.0,3*0.0/

DATA (PERIOD(I, 29), I=1, MAXTYP)/28*0.0,2*0.0/

DATA (PERIOD(I, 30), I=1, MAXTYP)/29*0.0,0.0/

C ------BARRIER TO FREE ROTATION DATA----------

DATA (BARIER(I, 1), I=1, MAXTYP)/30*0.0/

DATA (BARIER(I, 2), I=1, MAXTYP)/1*0.0,29*0.0/

DATA (BARIER(I, 3), I=1, MAXTYP)/2*0.0,28*0.0/

DATA (BARIER(I, 4), I=1, MAXTYP)/3*0.0,0.133,0.182,0.008,0.114,
1 0.083,0.0,0.008,0.1,4*0.0,0.163,0.195,0.245,12*0.0/

DATA (BARIER(I, 5), I=1, MAxTYP)/4*0.0,8.125,0.708,0.0,2.25,
1 2*0.0,2.725,5*0.0,0.475,0.0,0.097,11*0.0/

DATA (BARIER(I, 6), I=1, MAXTYP)/5*0.0,5.0,0.825.3.65,0.0,5.0,
1 0.821,5*0.0,0.19,13*0.0/

DATA (BARIER(I, 7), I=1, MAXTYP)/6*0.0,1.205,0.783,2*0.0,2.475,
1 5*0.0,1.667,0.0,0.233,11*0.0/

DATA (BARIER(I, 8), I=1, MAXTYP)/7*0.0,40.0,2*0.0,5.0,5*0.0,4.3,
1 0.0,0.467,11*0.0/

DATA (KARIER(I, 9), I=1, MAXTYP)/8*0.0,2*0. '0,0.215,19*0.0/

DATA (BARIER(I, 10), I=1, MAXTYP)/9*0.0,21*0.0/

DATA (BARIER(I, 11), I=1. MAXTYP)/10.0.0,3.5,5*0.0,0.4,0.0,0.31,
1 11*0.0/

DATA (BARIER(I, 12), I=1, MAXTYP)/11*0.0,19*0.0/

DATA (BARIER(I, 13), I=1, MAXTYP)/12*0.0,18*0.0/

DATA (BARIER(I, 14), I=1, MAXTYP)/13*0.0,17*0.0/

DATA (BARIER(I, 15), I=1, MAXTYP)/14*0.0,16*0.0/

DATA (BARIER(I, 16), I=1, MAXTYP)/15*0.0,0.513,14*0.0/

DATA (BARIER(I, 17), I=1, MAXTYP)/16*0.0,4.0,13*0.0/

DATA (BARIER(I, 18), I=1, MAXTYP)/17*0.0,13*0.0/

DATA (BARIER(I, 19), I=1, MAXTYP)/18*0.0,0.407,11*0.0/

DATA (BARIER(I, 20), I=1, MAXTYP)/19*0.0,11*0.0/

DATA (BARIER(I, 21), I=1, MAXTYP)/20*0.0,10*0.0/

DATA (BARIER(I, 22), I=1, MAXTYP)/21*0.0,9*0.0/

DATA (BARIER(I, 23), I=1, MAXTYP)/22*0.0,8*0.0/

DATA (BARIER(I, 24), I=1, MAXTYP)/23*0.0,7*0.0/

DATA (BARIER(I, 25). I=1, MAXTYP)/24*0.0,6*0.0/

DATA (BARIER(I, 26), I=1, MAXTYP)/25*0.0,5*0.0/

DATA (BARIER(I, 27), I=1, MAXTYP)/26*0.0,4*0.0/

DATA (BARIER(I, 28), I-1, MAXTYP)/27*0.0,3*0.0/

DATA (BARIER(I, 29), I=1, MAXTYP)/28*0.0,2*0.0/

DATA (BARIER(I, 30), I=1, MAXTYP)/29*0.0,0.0/

C--

Appendix C 261

DATA (A6(I, 1), I=1, MAXTYP)/3.72.9,359.2,421.5,477.6,
1 391.8,425.6,360.3.425.6,247.2,269.8,294.1,258.3,
2 1638.4,2902.5,3.2524.9,3792.8,7579.4,492.8,0.0,
3 2.2,27.8,178.8,5.3.1.4,23.3,7.9/

DATA (B12(J, J), J=1, MAXTYP)/3.26572.0,460806.6,634601.7,
1 814852.0,426454.3,503218.8,360564.3,503218.8,
2 190913.6,227467.4,270337.6,166788.9,3355443.0,
3 10530820.0,3'6929778.0,11987890.0,35904920.0,
4 866709.0,0.0,17.7,2763.1,114230.3,142.1,9.6,2706.4,
5 309.5/

C
C -- BARRIER HEIGHTS AROUND CONJUGATED SINGLE BONDS -- C

DATA CBARR /
1 8*. 0
2 8*. 0
3 , 8*. 0
4 , 8*. 0
5 4*. 0,. 538,. 568,. 0.. 463
6 , 5*. 0,. 250,. 0,. 588
7 , 8*. 0
8 , 7.. 0,. 625/

END
C
C -- SET UP AND SYMMETRIZE FORCE CONSTANT ARRAYS -- C

SUBROUTINE MNINITI

IMPLICIT NONE

INCLUDE 'CHMCM3. INC'
INTEGER I, J

REAL SKIJ. DEQ, A6IJ, B121J

C
C -- I/O LOGICAL UNIT NUMBERS --
C

DLUNIN=10
DLNOUT=12

C
C -- SET UP BOND STRETCH ARRAY --
C

DO 1 I-H, MAXTYP
DO 1 J=I, MAXTYP

DEQ=REFLEN(J, I)
IF(I. GT. Hh. AND. J. GT. Hh) THEN

SKIJ=(1800. /(DEQ"DEQ)) f (7.90/((DEQ-1.)"(DEQ-1.))) - 670. /DEQ
ELSE

SKIJ = 395. /(DEQ"DEQ)
ENDIF
STRCON(J, I)=SKIJ
IF(I. EQ. J) GO TO 1
STRCON(I, J)=SXIJ

1 CONTINUE
C
C -- SET UP BOND STRETCH ARRAY FOR CONJUGATED SINGLE BONDS --
C

DO 2 I=H, MXCNJ
DO 2 J=I, MXCNJ

DEQ=CREFLN(J, I)
SKIJ=(1800. /(DEQ`DEQ)) + (7.90/((DEQ-1.)*(DEQ-1.))) - 670. /DEQ
CSTCON(J, I)=SKIJ
IF(I. EQ. J) GO TO 2
CSTCON(I, J)=SKIJ

2 CONTINUE
C
C -- FILL OFF DIAGONAL TERMS IN A6 AND B12 --
C

DO 3 I=1, MAXTYP
DO 3 J=I+1, MAXTYP

A6IJ=SQRT(A6(I, I)"A6(J, J))
A6(J, I)=A6IJ
A6(I, J)=A6IJ
B12IJ=SQRT(B12(I, I)'B12(J, J))
512(J, I)=512IJ
B12(I, J)=B12IJ

3 CONTINUE
C
C -- MAKE REFLEN. PERIODICITY & BARRIER MATRICES SYMMETRIC --
C

DO 4 I=2, MAXTYP
DO 4 J=1, I-1
IF(I. LE. MXCNJ. AND. J. LE. MXCNJ) THEN

Appendix C 262

CREFLN(J, I)=CREFLN(I, J)
CBARR(J, I)=CBARR(I, J)

ENDIF
REFLEN(J, I)=REFLEN(I, J)
PERIOD(J, I)=PERIOD(I, J)
BARIER(J, I)=BARIER(I, J)

4 CONTINUE
C
C -- BARRIER PERIODICITY FOR CONJUGATED SINGLE BONDS --
C

CPRIOD=-2.0
C

NUMATS=O
NMOLS=O

C
C -- DELTA USED TO CALCULATE NUMERICAL DERIVATIVES
C

SHIFTX=1.0E-03
C
C -- BOND LENGTH TOLERANCE --
C

DISTOL=0.1
C
C -- CONVERSION FACTORS --
C

PI=3.1415926
RAD1=PI/180.0
RAD2=RAD1*RAD1
RADI=1.0/RAD1

RETURN
END

Appendix C 263

-- ASSSIGNS PSEUDO BOND ORDERS --

SUBROUTINE ASBOML

IMPLICIT NONE

INTEGER I, J, IKAC, L, K
REAL DISFIL, VL
BYTE IATN, IKACTN

INCLUDE 'CHMCM3. INC'
DISFIL=0.5*DISTOL
DO 10 J=1, MXCN
DO 10 I=1, NUMATS

BONDML(I, J)=0
IF(ATMCON(I, J). NE. 0) BONDML(I, J)=10

10 CONTINUE
DO 100 I=1, NUMATS
IATN=ATYNUM(I)
DO 50 J=1, NARTYP
IF(IATN. EQ. ARTYPS(J)) THEN

DO 40 K=1, MXCN
IKAC=ATMCON(I, K)
IKACTN=ATYNUM(IKAC)
DO 20 L=1, NARTYP
IF(IKACTN. EQ. ARTYPS(L)) THEN

VL=SQRT1(XO(I, 1)-XO(IKAC, 1))**2+(XO(I, 2)-XO(IKAC, 2))**2
1 +(XO(I, 3)-XO(IKAC, 3))**2)

BONDML(I, K)=15
IFIVL. GE. (REFLEN(IATN, IKACTN)+DISFIL)) BONDML(I, K)=11
GO TO 40

ENDIF
20 CONTINUE

DO 30 L=1, NDBTYP
IF(IKACTN. EQ. DBTYPS(L)) THEN

BONDML(I, K)=11
GO TO 40

ENDIF
30 CONTINUE
40 CONTINUE

GO TO 100
ENDIF

50 CONTINUE
DO 90 J=1, NDBTYP
IF(IATN. EQ. DBTYPS(J)) THEN

DO 80 K=1, MXCN
IKAC=ATMCON(I, K)
IKACTN=ATYNUM(IKAC)
DO 60 L=1, NDBTYP
IF(IKACTN. EQ. DBTYPS(L)) THEN

VL=SQRT((XO(I, 1)-XO(IKAC, 1))**2+(XO(I, 2)-XO(IKAC, 2))**2
1 +(XO(I, 3)-XO(IKAC, 3))**2)

IF(IATN. EQ. Csp2. AND. IKACTN. EQ. Namide.
1 OR. IATN. EQ. Namide. AND. IKACTN. EQ. Csp2) THEN

BONDML(I, K)=15
IF(VL. LE. (REFLEN(IATN, IKACTN)-DISFIL)) BONDML(I, K)=20
IF(VL. GE. (REFLEN(IATN, IKACTN)+DISFIL)) BONDML(I, K)=11

ELSE
BONDML(I, K)=20
IF(VL. GE. (REFLEN(IATN. IKACTN)+DISFIL)) BONDML(I, K)=11

ENDIF
GO TO 80

ENDIF
60 CONTINUE

DO 70 L=1, NARTYP
IF(IKACTN. EQ. ARTYPS(L)) THEN

BONDML(I, K)=11
GO TO 80

ENDIF
70 CONTINUE
80 CONTINUE

GO TO 100
ENDIF

90 CONTINUE
100 CONTINUE

RETURN
END

-- DECODE OUT OF PLANE BENDING --

SUBROUTINE GETOPB

IMPLICIT NONE

INCLUDE 'CHMCM3. INC'

Appendix C 264

INTEGER IOOPBA, IOPBS. L, MF. NCON, M, IACLN, N

REAL SOPBKS

DIMENSION IOOPBA(3), SOPBKS(3). IOPSS(MXCN)

DATA IOOPBA/ 56,8/
DATA SOPSKS/1.2E-3.1.2E-3,0.2E-3/

NO=0
DO 115 L=1, NUMATS
IF(NUMMFX. NE. O) THEN

DO 100 MF=1, NUMMFX
IF(MOLNUM(L). EQ. KMOL(MF)) GO TO 115

100 CONTINUE
ENDIF
NCON=O
DO 110 M=1,3
IF(ATYNUM(L). NE. IOOPBA(M)) GO TO 110
DO 105 N=1, MXCN
IACLN=ATMCON(L, N)
IF(IACLN. NE. O) THEN

NCON=NCON+1
IOPBS(NCON)=IACLN

ENDIF
105 CONTINUE

IF(NCON. NE. 3) GO TO 115
NO=NO+1
IOPB3(NO)=L
IOPB1(NO)=IOPBS(1)
IOPB2(NO)=IOPBS(2)
IOPB4(NO)=IOPBS(3)
OPBK(NO)=SOPBKS(M)
GO TO 115

110 CONTINUE
115 CONTINUE

RETURN
END

Appendix C 265

C -- GET COHTRCL PARAHL-rUS FROM CONSOLE--
C

SUBROUTINE GETCOP

IMPLICIT NONE

INCIME "CNMCM3. I14C-

INTEGER NFXATM. IKOM. JKON, KKON. LKON. I. J

REAL ATSEV. FLEJI, DSEV. FAI1, ANSEV. FTOR. TSEV

1 FORMAT(IS)

2 FORMAT(E12.5) 3 FOPNATU. 1)
OPE71(2, PILE "$IUUDAT. CW0")

C
C -- GET t7UHSER Of ITERATIONS
C

READ 12.11tAAlITR

C
C -- GET VAN DER {BAALS CUTOFP DISTANCE -- C

READ 12.2)DXXN
IP(DXXH. LT. 2.0) DXX1182.0

C
C -- GET ENERGY THRESHOLD FOR PRINTING --
C

READ (2.2) ETHR SII
IF(ETHRSH. EQ. 0.0) ET1IRSN. -10.0

C
C -- GET MAXIMUM ALI. OMID SHIFT --
C

READ(2.2) SHFTNX
IF(S)iPTMX. EQ. 0.0) SttFTKX"O. S

C
C -- SELECT LONG. ABBREVIATED OR SHORT PRINTED OUTPUT --
C

READ (2.1) NPRINT
C
C -- CHOOSE SECOND DERIVATIVES CALCULATED EVERY ITERATION OR NOT --
C

NDERIV 1
C
C -- GET CONSTRAINTS. Ir ANY --
C

UNNI. PX 0
IAMFX"O
)JUMFX"O
Nummrx "O
READ(2.31CONNIU IPICO*JNIN) THEN

DO 100 I-1.4
DO 100 J 1. NUHATS

ATCUti3(J. I)". FALSE.
100 CONTINUE
C
C -- CODE TO VIZ ATOMIC POSITIONS --
C

READ(2.1)NFXATM
Ir(NFxATN. E0.0) GOTO 400
DO 300 1aI. NFXATN

READ (2.111 KO"
READ42.21ATSEV
ATCONS(IKON. 1)". TRUE.
FATXYZ(IKON. I1-XO(I9ON. 1)
FATXYZIIKO. 21-XO(IKON. 2)
FATXYZ1IKOM.)1. XO(I$ON. 11
PATSiV(lEONI. ATSL'V"ATSPAC

300 CONTINUE
c
C -- CODE TO VIZ L13fantS
C
400 PEAD(2. I)NUMLrX

Ir(NtmLFX. K000) GOTO 500
00 410 I"1. tU MLFX

RFAD12.111KON
RIA)(2. I)JKUfi
RKAU12.21*1421
)LEAD (2.21 DSEV
A1C(A4S(ZK(IN. 2). TRUZ.

ATCONS(J$ N. 2)& TRUK,
VI. ATN 1111.1$", *I
KLATH2 I I) "Jiuri
rI XI EU 11- rt-t2l

Appcodu C 266

FLNSEV(I)=DSEV
410 CONTINUE
C
C -- CODE TO FIX ANGLES -- C
500 READ(2,1)NUMAFX

IF(NUMAFX. EQ. O) GOTO 600
DO 510 I=1, NUMAFX

READ(2,1)IKON
READ(2,1)JKON
READ(2,1)KKON
READ(2,2)FANG
READ(2,2)ANSEV
ATCONS(IKON, 3)=. TRUE.
ATCONS(JKON, 3)=. TRUE.
ATCONS(KKON, 3)=. TRUE.
KAATM1(I)=IKON
KAATM2(I)=JKON
KAATM3(I)=KKON
FIXANG(I)=FANG
FANSEV(I)=ANSEV*ANSFAC

510 CONTINUE
C
C -- CODE TO FIX TORSION ANGLES --
C
600 READ(2,1)NUMTFX

IF(NUMTFX. EQ. 0) GOTO 700
DO 610 I=1, NUMTFX

READ(2,1)IKON
READ(2,1)JKON
READ(2,1)KKON
READ(2,1)LKON
READ(2,2)FTOR
READ(2,2)TSEV
ATCONS(IKON, 4)=. TRUE.
ATCONS(JKON, 4)=. TRUE.
ATCONS(KKON, 4)=. TRUE.
ATCONS(LKON, 4)=. TRUE.
KTATM1(I)=IKON
KTATM2(I)=JKON
KTATM3(I)=KKON
KTATM4(I)=LKON
FIXTOR(I)=FTOR
FTOSEV(I)=TSEV`TOSFAC

610 CONTINUE
C
C -- CODE TO FIX MOLECULES --
C
700 READ(2,1)NUMMFX

IF(NUMMFX. EQ. O) GOTO 800
DO 710 I=1, NUMMFX

READ(2,1)IKON
KMOL(NUMMFX)=MOLNUM(IKON)

710 CONTINUE
C
C -- EXIT --
C
800 ENDIF

CLOSE(2)

RETURN
END

Appendix C 267

c -- SUBROUTINE POTE -- C
C
C -- THIS SUBROUTINE CALCULATES AND PRINTS OUT THE ENERGY OF THE MOLEC
C -- AND SETS UP 'TABLES' OF BONDS ETC. FOR USE IN ENERGL IF NPRINT EQ
C -- ZERO, ALL INTERACTIONS BETWEEN ALL ATOMS ARE PRINTED. IF NPRINT
C -- NOT ZERO THEN ONLY THE TOTAL ENERGIES FOR EACH TYPE OF INTERACTIO
C -- ARE PRINTED. XFCERR IS SET TRUE IF ANY FORCE FIELD ERRORS ARE FOU
C

SUBROUTINE POTE(ETOT, BFCERR, AFCERR, NFCERR, TFCERR)

IMPLICIT NONE

INTEGER I, J, IBOND, NK, ITI, NVANG, JB, MF, JA,
1 JC, IT1, IT2, IT3, JHCN, NI,
2 INDT, MTII, MTJI, MTKI,
3 MTLI, LL, IT4, ITJ, K,
4 JAPLS1, INDA,
5 NNT, ILI, L, IND, MT

REAL DXXM2, SIGEB, SIGEV, SIGEA, SIGET, SIGEO, SIGEQ, DIR1,
1 DIR2, DIR3, DOIST, DIST, RLITIJ, SCITIJ, EB, XJBI, XJB2,
2 XJB3, DC11, DC12, DC21, DC22, DC31, DC32, RM1, RM2, R12,
3 COSA, SUBST, RLIT12, RLIT23, BKT, THT, THSX,
4 DELTH2, DELTH3, DELTH5, EA, DIST2, RDIST2, RDIST4,
5 RDIST6, RDIST12, EV, EQ, XJC1, XJC2, XJC3, AA11, AA12,
6 AA13, AA21, AA22, AA23, AA31, AA32, AA33, V11, V21, V12,
7 V22, V13, V23, R1, R2, COSW, WASIGN, WA, XFD, TA, SON,
8 FOLD, ET, OPBSGN, WAOPB, EO, ETOT, A, DISTI, RDIS12

INCLUDE 'CHMCM3. INC'
LOGICAL PRNTOG, BFCERR, AFCERR, NFCERR, TFCERR

1 FORMAT(30(/), 22X, 'MOLECULAR POTENTIAL ENERGY (KCAL)')
2 FORMAT(////, 2 4X, 'INTRAMOLECULAR BONDED DISTANCES', //)
3 FORMAT(' ATOM A-ATOM B DISTANCE BOND ENERGY ATOM A-ATOM B DI

1STANCE BOND ENERGY', /)
4 FORMAT(4X, A6,1X, A6,2X, F8.3,2X, F11.4)
5 FORMAT(1X, A6,1X, A6,2X, F8.3,2X, F11.4, $)
6 FORMAT(////, 33X, 'BOND ANGLES', //)
7 FORMAT(' ATOM A-ATOM B-ATOM C ANGLE ENERGY ATOM A-ATOM B-ATO

1M C ANGLE ENERGY', /)
8 FORMAT(4X, A6,1X, A6,1X, A6, F8.2, F8.4)
9 FORMAT(1X, A6,1X, A6,1X, A6, F8.2, F8.4, $)
10 FORMAT(////, 23X, 'INTRAMOLECULAR NON-BONDED DISTANCES , //) 11 FORMAT(29X, 'UP TO ', F6.2, ' ANGSTROMS', //)
12 FORMAT(' ATOMA.. ATOMB DISTANCE NON-BOND COULOMB ATOMA.. ATOMB DIS

1TANCE NON-BOND COULOMB', /)
13 FORMAT(2X, A6,1X, A6,3X, F6.3,1X, F8.4,1X, F7.3)
14 FORMAT(1X, 2A6,3X, F6.3,1X, F8.4,1X, F7.3, $)
15 FORMAT(////, 33X, 'TORSION ANGLES', //)
16 FORMAT(5X, 'ATOM A ATOM B ATOM C ATOM D TORSION ANGLE TORS

ZION ENERGY', /)
17 FORMAT(5X, 4(A6,2X), 2X, F13.2,4X. F14.4)
18 FORMAT(12X, '****************OUT-OF-PLANE BENDING*************'

1)
19 FORMAT(////,

1' TOTAL E(BONDED) F10.4, ' K. CAL PER MOLE', //,
2' TOTAL MAN DER WAALS) _ '. F10.4, ' K. CAL PER MOLE', //,
3' TOTAL E(ANGLES) = F10.4, ' K. CAL PER MOLE', //,
4' TOTAL E(TORSION) F10.4, ' K. CAL PER MOLE', //,
5' TOTAL E(OUT-OF-PLANE BENDING) F10.4, ' K. CAL PER MOLE', //,
6' TOTAL E(COULOMB) _ ', F10.4, ' K. CAL PER MOLE', //)

20 FORMAT(//, ' TOTAL POTENTIAL ENERGY = ', F10.4, ' K. CAL PER MOLE', //)
C

IF(NPRINT. GT. 1) THEN
WRITE(*, 1)

ENDIF
DXXM2=DXXM*DXXM

-- SIGEB ETC. ARE THE TOTAL ENERGIES FOR EACH TYPE OF INTERACTION --

SIGEB=0.0
SIGEV=0.0
SIGEA=0 .0
SIGET=0.0
SIGEO=0.0
SIGEQ=0.0

-- INITIALISE MATRICES --

DO 400 I=1, NUMATS
DO 400 J=1, NUMATS

NBMAT(J, I)=1
400 CONTINUE

Appendix C 268

DO 401 I=1, NUMATS
DO 401 J=1,1B

NAMAT(J, I)=0
401 CONTINUE

DO 402 I=1. NUMATS
DO 402 J=1,50

NTMAT(J, I)=0
402 CONTINUE
C

IF(NPRINT. GT. 1) THEN
WRITE(*, 2)
WRITE(*, 3)

ENDIF
C
C -- PUT BONDS INTO NBMAT -- C

DO 405 I=1, NUMATS
DO 405 J=1, MXCN

IBOND=ATMCON(I, J)
IF(IBOND. EQ. 0) GO TO 405
NBMAT(IBOND, I)=2
NBMAT(I, IBOND)=2

405 CONTINUE
C

NK=NUMATS-1
PRNTOG=. TRUE.

C
DO 412 I=1, NK
NI=I+1
DO 411 J=NI, NUMATS

C
C -- SPEED UP IF THERE ARE ANY FIXED MOLECULES -- C

IF(NUMMFX. NE. O) THEN
DO 406 MF=1, MJMMFX

IF(MOLNUM(I). EQ. KMOL(MF)
406 CONTINUE

ENDIF
c
c
c

407
408

C
C
C

409

AND. MOLNUM(J). EQ. KMOL(MF)) GO TO 410

-- CALCULATE DISTANCE BETWEEN BONDED ATOMS --

IF(NBMAT(J, I). NE. 2) GO TO 409
DIR1=XO(I, 1)-XO(J, 1)
DIR2=XO(I. 2)-XO(J, 2)
DIR3=XO(I. 3)-XO(J, 3)
DIST=SQRT(DIR1*DIRI+DIR2*DIR2+DIR3*DIR3)
ITI=ATYNUM(I)
ITJ=ATYNUM(J)
RLITIJ=REFLEN(ITI, ITJ)
SCITIJ=STRCON(ITI, ITJ)
IF(ITI. LE. Namide. AND. ITJ. LE. Namide) THEN

IF(CREFLN(ITI, ITJ). NE. 10.) THEN
DO 407 K=1, MXCN

IF(ATMCON(I, K). EQ. J) GO TO 408
CONTINUE
IF(BONDML(I, K). EQ. 11) THEN

RLITIJ=CREFLN(ITI, ITJ)
SCITIJ=CSTCON(ITI, ITJ)

ENDIF
ENDIF

ENDIF
IF(RLITIJ. EQ. 10.) THEN

RLITIJ=DIST
BFCERR=. TRUE.

ENDIF
DOIST=RLITIJ-DIST

-- CALCULATE BOND ENERGY (EB) --

EB=SCITIJ*DOIST*DOIST
SIGEB=SIGEB+EB
IF(NPRINT. GT. I. AND. EB. GE. ETHRSH) THEN

IF(. NOT. PRNTOG) WRITE(*, 4) ATMNAM(I), ATMNAM(J), DIST, EB
IF(PRNTOG) WRITE(*, 5) ATMNAM(I), ATMNAN(J), DIST, EB
PRNTOG=. NOT. PRNTOG

ENDIF
GO TO 411
DIRT=XO(I, 1)-XO(J, 1)
IF(ABS(DIR1). GT. DXXM) GO TO 410
DIR2=XOII, 2)-XO(J, 2)
IF(ABS(DIR2). GT. DXXM) GO TO 410
DIR3=XO(I, 3)-XO(J, 3)
IF(ABS(DIR3). GT. DXXM) GO TO 410

DIST2=DIR1'DIRI+DIR2'DIR2+DIR3*DIR3
IF(DIST2. GT. DXXM2) GO TO 410

NBMAT(J, I)=4

NBMAT(I, J)=4
GO TO 411

Appendix C 269

410 NBMAT(I, J)=5
NBMAT(J, I)=5

411 CONTINUE
412 CONTINUE

IF(NPRINT. CT. 1) THEN
WRITE(", 6)
WRITE(", 7)

ENDIF
C
C -- CALCULATE ANGLE ENERGY AND SET UP MATRIX NAMAT -- C

NVANG=O
PRNTOG=. TRUE.
DO 429 JB=1, NUMATS
IF(NUMMFX. NE. O) THEN

DO 413 MF=I, NUMMFX
IF(MOLNUM(JB). EQ. KMOL(MF)) GO TO 429

413 CONTINUE
ENDIF
DO 428 JA=1, NK
IF(NUMMFX. NE. O) THEN

DO 414 MF=1, NUMMFX
IF(MOLNUM(JA). EQ. FMOL(MF)) GO TO 428

414 CONTINUE
ENDIF

C
C -- SORT OUT WHICH SETS OF THREE ATOMS FORM ANGLES -- C

IF(JA. EQ. JB) GO TO 428
IF(NBMAT(JA, JB). NE. 2) GO TO 428
JAPLS1=JA+1
DO 427 JC=JAPLS1, NUMATS
IF(NUMMFX. NE. O) THEN

DO 415 MF=1, NUMMFX
IF(MOLNUM(JC). EQ. KMOL(MF)) GO TO 427

415 CONTINUE
ENDIF
IF(JB. EQ. JC) GO TO 427
IF(NBMAT(JC, JB). NE. 2) GO TO 427
NVANG=NVANG+1
MAI(NVANG)=JA
MAJ(NVANG)=JB
MAK(NVANG)=JC

C
C -- SET NBMAT ENTRY TO 3 FOR ALL 1,3 PAIRS OF ATOMS --
C

NBMAT(JA, JC)=3
NBMAT(JC, JA)=3

C
C -- CALCULATE ANGLE JA-JB-JC --
C

XJBI=XO(JB, 1)
XJB2=XO(JB, 2)
XJB3=XO(JB, 3)
DC11=XO(JA, 1)-XJB1
DC12=XO(JC, 1)-XJB1
DC21=XO(JA, 2)-XJB2
DC22=XO(JC, 2)-XJB2
DC31=XO(JA, 3)-XJB3
DC32=XO(JC, 3)-XJB3
RM1=DC11*DC11+DC21*DC21+DC31*DC31
RM2=DC12*DC12+DC22*DC22+DC32*DC32
R12=DC11*DC12+DC21*DC22+DC31*DC32
RM1=SQRT(RM1)+0.000001
RM2=SQRT(RM2)+0.000001
COSA=R12/(RM1*RM2)
COSA=SIGN(AMIN1(ABS (COSA), 1. OE+00), COSA)
A=ACOS(COSA)*RADI

C
C -- SELECT CORRECT FORCE FIELD RECORD --
C

IT1=ATYNUM(JA)
IT2-ATYNUM(JB)
IT3=ATYNUM(JC)
IF(REFANG(IT2). EQ. 10.) THEN

BKS(NVANG)=0.0
BKAS(NVANG)=0.0
THS(NVANG)=A
AFCERR=. TRUE.

ELSE
SUBST=O.
DO 416 K=1, MXCN
JBCN=ATMCON(JB, K)
IF(JBCN. NE. 0) THEN

IF(ATYNUM(JBCN). GT. Hh) SUBST=SUBST+1.
ENDIF

416 CONTINUE
RLIT12=REFLEN(IT1, IT2)

Appendix C 270

417
418

419
420

RLIT23=REFLEN(IT2, IT3)
IF(IT1. LE. Namide. AND. IT2. LE. Namide) THEN

IF(CREFLN(IT1, IT2). NE. 10.) THEN
DO 417 K=1, MXCN

IF(ATMCON(JA, K). EQ. JB) GO TO 418
CONTINUE
IF(BONDML(JA, K). EQ. 11) RLIT12=CREFLN(IT1, IT2)

ENDIF
ENDIF
IF(IT2. LE. Namide. AND. IT3. LE. Namide) THEN

IF(CREFLN(IT2, IT3). NE. 10.) THEN
DO 419 K=1, MXCN

IF(ATMCON(JB, K). EQ. JC) GO TO 420
CONTINUE
IF(BONDML(JB, K). EQ. 11) RLIT23=CREFLN(IT2, IT3)

ENDIF
ENDIF
BKT=0.001388

*(15. *2.33*(ABS(EN(IT1)-EN(IT2))*ABS(EN(IT2)-EN(IT3))))
/(RLIT12*RLIT23)

THT=REFANG(IT2)
IF((IT1. LE. Hh. AND. IT3. GT. Hh). OR. (IT1. GT. Hh. AND. IT3. LE. Hh)) THEN

BKT=0.45*HKT
THT=0.98*THT

ENDIF
IF(IT1. LE. Hh. AND. IT3. LE. Hh) THEN

BKT=0.20*BKT
THT=0.95*THT

ENDIF
BKS(NVANG)=BKT
BKAS(NVANG)=0.0096
THS(NVANG)=THT

ENDIF
THSX=THS(NVANG)-A
DELTH2=THSX*THSX
DELTH3=ABS(DELTH2*THSX)
DELTHS=DELTH3*DELTH2

-- CALCULATE ANGLE ENERGY --

EA=BKS(NVANG)*(DELTH2-BKAS(NVANG)*(DELTH3-(0.0004*DELTHS)))
SIGEA=SIGEA+EA

-- SET UP NAMAT, WHICH IS USED AS FOLLOWS --
TO SEE WHICH ANGLES THE JTH ATOM IS INVOLVED IN, --
READ NAMAT(J, 1), (J, 2) ETC TILL A ZERO ENTRY IS FOUND. --
IF NAMAT(J, 1) = 5, THEN ATOM J IS PART OF THE ANGLE NVANG=5 --

--(IE THE ANGLE WITH ATOMS MAI(S), MAJ(5), MAK(5)) --

421
422

423
424

425
C
426

427
428
429

DO 421 INDA=1,18
IF(NAMAT(INDA, JA). NE. O) GO TO 421
NAMAT(INDA, JA)=NVANG
GO TO 422

CONTINUE
DO 423 INDA=1,18

IF(NAMAT(INDA, JB). NE. O) GO TO 423
NAMAT(INDA, JB)=NVANG
GO TO 424

CONTINUE
DO 425 INDA=1,18

IF(NAMAT(INDA, JC). NE. O) GO TO 425
NAMAT(INDA, JC)=NVANG
GO TO 426

CONTINUE

IF(NPRINT. GT. I. AND. EA. GE. ETHRSH) THEN
IF(. NOT. PRNTOG) WRITE(*, 8) ATMNAM(JA), ATMNAM(JB),

ATMNAM(JC), A, EA
IF(PRNTOG) WRITE(*, 9) ATMNAM(JA), ATMNAM(JB),

ATMNAM(JC), A, EA
PRNTOG=. NOT. PRNTOG

ENDIF
CONTINUE
CONTINUE
CONTINUE
IF(NPRINT. GT. 1) THEN

WRITE(*, 10)
IF(DXXM. NE. 25.0) WRITE(*, 11) DXXM
WRITE(*, 12)

ENDIF

-- CALCULATE NON-BONDED INTERACTIONS USING NBMAT --
LOOK AT ENTRY NBMATII, J) - IF NOT =4 (IE I AND J ARE BONDED, 1,3

-- , OR SEPARATED BY MORE THAN DXXM) GO ON TO NEXT PAIR, OTHERWISE
-

-- CALCULATE VAN DER WAALS ENERGY --

PRNTOG=. TRUE.
DO 430 I=1, NK

Appendix C 271

NI=I+1
DO 430 J=NI, NUMATS
IF(NBMAT(J, I). NE. 4) GO TO 430
DIRT=XO(I, 1)-XO(J, 1)
DIR2=XO(I, 2)-XO(J, 2)
DIR3=XO(I. 3)-XO(J, 3)
DIST2=DIR1`DIRI+DIR2*DIR2+DIR3*DIR3
DISTI=SQRT(DIST2)
ITI=ATYNUM(I)
ITJ=ATYNUN(J)
IF(A6(ITI, ITJ). EQ. 0.) NFCERR=. TRUE.
RDIST2=1.0/DIST2
RDIST4=RDIST2*RDIST2
RDIST6=RDIST2*RDIST4
RDIS12=RDIST6*RDIST6

C
C -- CALCULATE VAN DER WAALS ENERGY (EV) --
C

EV=B12(ITI, ITJ)*RDIS12 - A6(ITI, ITJ)*RDIST6
SIGEV=SIGEV+EV

C
C -- CALCULATE COULOMBIC ENERGY (EQ) --
C

EQ=332.17*CHARGE(I)*CHARGE(J)*RDIST2
SIGEQ=SIGEQ+EQ
IF(NPRINT. GT. I. AND. (EV. GE. ETHRSH

1 . OR. EQ. GE. ETHRSH)) THEN
IF(. NOT. PRNTOG) WRITE(*, 13) ATMNAM(I), ATMNAM(J), DISTI, EV,

1 EQ
IF(PRNTOG) WRITE(*. 14) ATMNAM(I), ATMNAM(J), DISTI, EV,

1 EQ
PRNTOG=. NOT. PRNTOG

ENDIF
430 CONTINUE

IF(NPRINT. GT. 1) THEN
WRITE(+, 15)
WRITE(*, 16)

ENDIF
C
C -- CALCULATE TORSIONAL ENERGY AND SET UP NTMAT IN SAME WAY AS NAMAT
C

NNT=O
C
C -- SORT OUT WHICH SETS OF ATOMS FORM A TORSION ANGLE --
C

DO 445 I=1, NK
IF(NUMMFX. NE. O) THEN

DO 431 MF=1, NUMMFX
IF(MOLNUM(I). EQ. KMOL(MF)) GO TO 445

431 CONTINUE
ENDIF
ILI=I+1
DO 444 J=1, NUMATS
IF(NUM FX. NE. O) THEN

DO 432 MF=1, NUMMFX
IF(MOLNUM(J). EQ. KMOL(MF)) GO TO 444

432 CONTINUE
ENDIF
IF(NBMAT(J, I). NE. 2) GO TO 444
DO 443 K=1, NUMATS
IF(NUMMFX. NE. O) THEN

DO 433 MF=I, NUMMFX
IF(MOLNUM(K). EQ. KMOL(MF)) GO TO 443

433 CONTINUE
ENDIF
IF(K. EQ. I) GO TO 443
IF(NBMAT(J, K). NE. 2) GO TO 443
DO 442 L=ILI, NUMATS
IF(NUMMFX. NE. O) THEN

DO 434 MF=1, NUMMFX
IF(MOLNUM(L). EQ. KMOL(MF)) GO TO 442

434 CONTINUE
ENDIF
IF(L. EQ. J) GO TO 442
IF(NBMAT(L, K). NE. 2) GO TO 442
NNT=NNT+1
MTI(NNT)=I
MTJ(NNT)=J
MTK(NNT)=K
MTL(NNT)=L

C
C- - SET UP NTMAT --
C

DO 435 INDT=1,50
IF(NTMAT(INDT, I). NE. O) GO TO 435

NTMAT(INDT, I)=NNT
GO TO 436

435 CONTINUE

Appendix C 272

436 DO 437 INDT=1,50
IF(NTMAT(INDT, J). NE. 0) GO TO 437
NTMAT(INDT, J)=NNT
GO TO 438

437 CONTINUE
438 DO 439 INDT=1,50

IF(NTMAT(INDT, K). NE. 0) GO TO 439
NTMAT(INDT, K)=NNT
GO TO 440

439 CONTINUE
440 DO 441 INDT=1,50

IF(NTMAT(INDT, L). NE. 0) GO TO 441
NTMAT(INDT, L)=NNT
GO TO 442

441 CONTINUE
442 CONTINUE
443 CONTINUE
444 CONTINUE
445 CONTINUE
C

DO 448 I=1, NNT
MTII=MTI(I)
MTJI=MTJ(I)
MTKI=MTK(I)
MTLI=MTL(I)

-- CALCULATE TORSION ANGLE --

XJB1=XO(MTJI, 1)
XJB2=XO(MTJI, 2)
XJB3=XO(MTJI, 3)
XJC1=XO(MTKI, 1)
XJC2=XO(MTKI, 2)
XJC3=XO(MTKI, 3)
AA11=XO(MTII, 1)-XJB1
AA12=XJC1-XJ51
AA13=XJC1-XO(MTLI, 1)
AA21=XO(MTII, 2)-XJB2
AA22=XJC2-XJB2
AA23=XJC2-XO(MTLI, 2)
AA31=XO(MTII, 3)-XJB3
AA32=XJC3-XJB3
AA33=XJC3-XO(MTLI, 3)
V11=AA21*AA32-AA31*AA22
V21=AA22*AA33-AA32*AA23
V12=AA31*AA12-AA11*AA32
V22=AA32*AA13-AA12*AA33
V13=AA11*AA22-AA21*AA12
V23=AA12*AA23-AA22*AA13
R1=SQRT(V11*V11+V12*V12+V13*V13)+0.000001
R2=SQRT(V21*V21+V22*V22+V23*V23)+0.000001
COSW=(V11/R1)*(V21/R2)+(V12/R1)*(V22/R2)+(V13/R1)*(V23/R2)
COSW=SIGN(AMIN1(ABS(COSW), 1. OE+00), COSW)
WA=ACOS(COSW)*RADI

-- CALCULATE CORRECT SIGN FOR TORSION ANGLE --

WASIGN=AA11*(AA22*AA33-AA23*AA32)-AA21*(AA12*AA33-AA13*AA32)
+AA31*(AA12"AA23-AA13*AA22)

WA=SIGN(WA, WASIGN)
LL=O
IT1=ATYNUM(MTII)
IT2=ATYNUM(MTJI)
IT3=ATYNUM(MTKI)
IT4=ATYNUM(MTLI)

C -- SELECT CORRECT FORCE FIELD RECORD --
C

FDS(I)=PERIOD(IT2, IT3)
IF(FDS(I). EQ. -3.) THEN

IF(PERIOD(IT1, IT2). NE. -2.0. AND. PERIOD(IT3, IT4). NE. -2.0)
1 FDS(I)=3.

ENDIF
VOS(I)=BARIER(IT2, IT3)
VO1S(I)=0.0
IF(IT2. LE. Namide. AND. IT3. LE. Namide) THEN

IF(CBARR(IT2, IT3). NE. O.) THEN
DO 446 K=1, MXCN

IF(ATMCON(MTJI, K). EQ. MTKI) GO TO 447
446 CONTINUE
447 IF(BONDML(MTJI, K). EQ. 11) THEN

FDS(I)=CPRIOD
VOS(I)=CBARR(IT2, IT3)
VOIS(I)=0.0

ENDIF
ENDIF

ENDIF
IF(PERIOD(IT2, IT3). EQ. O) THEN

Appendix C 273

FDS(I)=1.0
VOS(I)=0.0
VO1S(1)=0.0
TFCERR=. TRUE.

ENDIF

c
c
c

448
C
C
C
C
C

C
C
C

XFD=FDS(I)

-- CALCULATE TORSIONAL ENERGY (ET) --

TA=WA*RAD1
SGN=XFD/ABS(XFD)
FOLD=ABS(XFD)
ET=VOS(i)*(1. O+SGN*COS(FOLD*TA))+VO1S(I)*(1. O+COS(TA))
SIGET=SIGET+ET
IF(NPRINT. GT. I. AND. ET. GE. ETHRSH) THEN

WRITE(*, 17) ATMNAM(MTII), ATMNAM(MTJI), ATMNAM(MTKI),
1 ATMNAM(MTLI), WA, ET

ENDIF
CONTINUE

-- CALCULATE OUT OF PLANE BENDING ENERGY --
(IF THEIR ARE ANY O. O. P. B. RECORDS) --

IF(NO. EQ. O) GO TO 450
IF(NPRINT. GT. 1) THEN

WRITE(*, 18)
ENDIF
DO 449 I=1, NO

-- CALCULATE IMPROPER TORSION ANGLE --

XJ81=XO(IOPB2(I), 1)
XJB2=XO(IOPB2(I), 2)
XJB3=XO(IOPB2(I), 3)
XJC1=XO(IOPS3(I), 1)
XJC2=XO(IOPB3(I), 2)
XJC3=XO(IOPB3(I), 3)
AAI1=XO(IOPB1(I), 1)-XJB1
AA12=XJC1-XJB1
AA13=XJC1-XO(IOPB4(I), 1)
AA21=XO(IOPB1(I), 2)-XJB2
AA22=XJC2-XJ82
AA23=XJC2-XO(IOPB4(I), 2)
AA31=XO(IOP81(I), 3)-XJB3
AA32=XJC3-XJB3
AA33=XJC3-XO(IOPB4(I), 3)
V1. l=AA21*AA32-AA31*AA22
V21=AA22*AA33-AA32*AA23
V12=AA31*AA12-AA11*AA32
V22=AA32*AA13-AA12*AA33
V13=AA11*AA22-AA21*AA12
V23=AA12*AA23-AA22*AA13
R1=SQRT(V11*V11+V12*V12+V13*V13)+0.000001
)t2=SQRT(V21*V21+V22*V22+V23*V23)+0.000001
QcSW=(V11/R1)*(V21/R2)+(V12/R1)*(V22/R2)+(V13/R1)*(V23/R2)

' COSW=SIGN(AMIN1(ABS(COSW), 1. OE+00), COSW)
WAOPB=ACOS(COSW)*RADI

c
c
c

C
C
C.

449
C
C
C
450

-- CALCULATE CORRECT SIGN FOR ANGLE --

OPBSGN=AA11*(AA22*AA33-AA23*AA32)-AA21*(AA12*AA33-AA13*AA32)
1 +AA31*(AA12*AA23-AA13*AA22)

WAOPB=SIGN(WAOPB, OPBSGN)

-- CALCULATE OUT OF PLANE BENDING ENERGY (EO) --

EO=OPBK(I)*(180.0-ABS(WAOPB))**2

IF(NPRINT. GT. I. AND. EO. GE. ETHRSH) THEN
WRITE(", 17) ATMNAM(IOPB1(I)), ATMNAM(IOPB2(I)),

1 ATMNAM(IOPB3(I)), ATMNN4 (IOPB4(I)), WAOPB, EO
ENDIF
SIGEO=SIGEO+EO
CONTINUE

-- CALCULATE TOTAL ENERGY --

ETOT=SIGEB+ S IGEV+ SIGEA+ SIGET+S IGEO+SIGEQ
IF(NPRINT. GT. 0) THEN

WRITE(`, 19) SIGEB, SIGEV, SIGEA, SIGET, SIGEO, SIGEQ
WRITE(r, 20) ETOT

ENDIF

RETURN
END

Appendix C 274

PROGRAM NODEMIN

IMPLICIT NONE

INCLUDE 'CHMCM3. INC'
include 'nodeequ. inc'

c INCLUDE 'HNCOM. INC'
c INCLUDE '\\BOARD\\TPR\\NODELINK. INC'

include 'chan. inc'
include 'node. inc'

INTEGER NDIV, NMOD, NFIRST, LAST, BFLENG, J, MF, JINDX,
1 K, ITRCMP, LM, L, M, ii, X, xx, nfirst4

REAL XO, PEO, XS, PEP, PEN, V, PESP, PESN, SGDISQ, XSL, PESPL,
1 PESPL1, PESPL2, XSM, PE2P, AM, SHIFT2, AMI, DET, PD, PDK,
2 PEO, offset

LOGICAL first_iter, error

DIMENSION AMI(MXATT6), PESP(3). PESN(3), AM(6), V(3), PD(3)
C
C INITIALIZES NODES

call initialize()
C
C RECEIVES BUFFERS FROM HOST.

call receive(host, buffer_atmdatO, 1, total_atmdatO, error)
call receive(host, buffer_atmdatl, 2, total_atmdatl, error)
call receive(host, buffer_moldat, 3, total_noldat, error)
call receivelhost, buffer_ffp, 4, total_ffp, error)
call receive(host, buffer_cffp, 5, total_cffp, error)
call receive(host, buffer_contrl, 6, total_contrl, error)
call receive(host, buffer_constn, 7, total_constn, error)

c RECEIVE BYTE VALUES SEPARATELY

CALL RECEIVE (HOST, ATYNUM, 8, LENGTH9, ERROR)
CALL RECEIVE (HOST, BONDML, 9, LENGTH10, ERROR)
CALL RECEIVE (HOST, MOLNUM, 10, LENGTH9, ERROR)

C ERROR CHECKING. SENDS BUFFERS BACK TO HOST.

C
C
C -- CALCULATE ATOMIC INTERACTION LISTS (QUICKER THAN --
C -- CALCULATING THEM ON THE HOST AND PASSING THEM DOWN --
C -- THE LINKS) --
C

CALL MNINIT1
SHIFT2 = shiftx * shiftx

C
C -- ALLOCATE ATOMS TO EACH NODE PROCESSOR --
C

NDIV = NUMATS / NUMPROC
NMOD = MOD (NUMATS, NUMPROC)

IF(me. 1t. NMOD)THEN
NFIRST = (me*NDIV)+me+l
LAST = ((me+l)*NDIV)+me+l

ELSE IF(me. eq. NMOD)THEN
NFIRST = (me*NDIV)+me+l
LAST = ((me+l)*NDIV)+me

ELSE IF(me. gt. NMOD)THEN
NFIRST = (me*NDIV)+NMOD+1
LAST = ((me+l)*NDIV)+NMOD

ENDIF

BFLENG=((LAST+1)-NFIRST)
nfirst4 = (nfirst * 4) -3

ITRCMP =0
first_iter = TRUE.

191 call receive (HOST, XO1.42, length7, error)

C
C -- CALCULATE FIRST DERIVATIVES USING --
C -- F-(XI)=(F(XI*DX)-F(XI-DX)1/2DX

C
IF (first_iter) THEN

CALL LIST_CALC
first_iter = FALSE.

END IF

Appendix C 275

C

sgdlsq = 0.0
DO 160 J=NFIRST, LAST
IF(NUMMFX. NE. 0) THEN

DO 105 MF=1, NUMMFX
IF(MOLNUM(J). EQ. KMOL(MF)) GO TO 160

105 CONTINUE
ENDIF
JINDX=(J-1)*6

C
C -- CALCULATE ENERGY OF JTH ATOM -- C

CALL ENERGL(J, PE0)

DO 110 K=1,3
XS=XO(J, K)

C
C -- INCREMENT KTH COORDINATE OF JTH ATOM AND RECALCULATE ENERGY -- C

XO(J, K)=XS+SHIFTX
CALL ENERGL(J, PEP)

C
C -- DECREMENT COORDINATE AND RECALCULATE ENERGY
C

XO(J, K)=XS-SHIFTX
CALL ENERGL(J, PEN)
XO(J, K)=XS

C
C -- CALCULATE FIRST DERIVATIVES (V) --
C

V(K)=(PEP-PEN)/(2.0"SHIFTX)
PESP(K)=PEP
PESN(K)=PEN

110 CONTINUE

C
C -- CALCULATE SUM OF SQUARES OF FIRST DERIVATIVES --
C

DO 115 K=1,3
SGDISQ=SGDISQ+V(K)*V(K)

115 CONTINUE
IF(NDERIV)125,120,125

C
C -- IF NOT ON 1ST, 5TH, 9TH ETC. ITERATION, SKIP THE NEXT SECTION -- C
120 IF(MOD(ITRCMP, 4). NE. 0) GO TO 150
C
C -- CALCULATE SECOND DERIVATIVES --
C -- USING F"(XI, XI)=[F(XI+DX)+F(XI-DX)-2F(XI)1/DX**2 AND --
C -- F'(XI, XJ)=(F(XI+DX. XJ+DX)-F(XI, XJ+DX)-F(XI+DX, XJ)+F(XI, X))/DX**2
C
125 LM=1

DO 145 L=1,3
XSL=XO(J, L)
XO(J, L)=XSL+SHIFTX
PESPL=PESP(L)
PESPL1=PESPL-PEO
PESPL2=PESPLI-PEO
DO 140 M=L, 3
IF(L. EQ. M) GO TO 130
XSM=XO(J, M)
XO(J, M)=XSM+SHIFTX
CALL ENERGL(J, PE2P)
XO(J, M)=XSM

C
C -- CALCULATE SECOND DERIVATIVES (AM) --
C

AM(LM)=(PE2P-PESPL1-PESP(M))/SHIFT2
GO TO 135

130 AM(LM)=(PESPL2+PESN(M))/SHIFT2
135 LM=LM+1
140 CONTINUE

XO(J, 1.)=XSL
145 CONTINUE

C
C -- INVERT MATRIX OF SECOND DERIVATIVES --
C

AMI(JINDX+1)=AM(4)*AM(6)-AM(5)*AM(5)
AMI(JINDX+2)=AM(21*AM(6)-AM(3)*AM(5)
AMI(JINDX+3)=AM(2)*AM(S)-AM(3)*AM(4)
DET=AM(1)*AMI(JINDX+1)-AM(2)*AMI(JINDX+2)+AM(3)*AMI(JINDX+3)

C
C -- IF DETERMINANT EQUALS ZERO THEN SWITCH TO STEEPEST DESCENTS --
C

Appendix C 276

IF(DET. EQ. 0.0) THEN
AMI(JINDX+1)=1.0E-03
ANI(JINDX+2)=0.0
ANI(JINDX+3)=0.0
ANI(JINDX+4)=1.0E-03
AMI(JINDX+S)=0.0
AMI(JINDX+6)=1.0E-03

ELSE
AMI(JINDX+4)=AM(1)*AM(6)-AM(3)*AM(3)
AMI(JINDX+5)=AM(1)*AM(5)-AM(2)*AM(3)
AMI(JINDX+6)=AN(1)*AM(4)-AM(2)*AM(2)
ANI(JINDX+1)=AMI(JINDX+1)/DET
AMI(JINDX+2)=(-1.0)*AMI(JINDX+2)/DET
AMI(JINDX+3)=AMI(JINDX+3)/DET
ANI(JINDX+4)=AMI(JINDX+4)/DET
AMI(JINDX+5)=(-1.0)*AMI(JINDX+5)/DET
AMI(JINDX+6)=AMI(JINDX+6)/DET

ENDIF
C
C -- CALCULATE CORRECTIONS TO COORDINATES (PD) --
C
150 PD(1)=ANI(JINDX+1)*V(1)+AMI(JINDX+2)*V(2)+AMI(JINDX+3)*V(3)

PD(2)=ANI(JINDX+2)*V(1)+AMI(JINDX+4)*V(2)+AMI(JINDX+S)*V(3)
PD(3)=ANI(JINDX+3)*V(1)+AMI(JINDX+S)*V(2)+AMI(JINDX+6)*V(3)

C
C -- CALCULATE NEW COORDINATES --
C

DO 155 K=1,3
PDK=PD(K)
IF(ABS(PDK). GT. SHFTMX) PDK=SIGN(SHFTMX, PDK)
XO(J, K)=XO(J, K)-PDK

155 CONTINUE
160 CONTINUE

call send(HOST, xol(nfirst4), 43, bfleng*4, error)

call send(HOST, xo2(nfirst4), 44, bfleng*4, error)

call send(HOST, xo3(nfirst4), 45, bfleng*4, error)

call send(HOST, sgdlsq, 46,4, error)

ITRCMP = ITRCMP +1
GOTO 191
STOP
END

Appendix C 277

C
C
C -- SUBROUTINE ENERGL(I, EL)
C
C
C -- THIS SUBROUTINE CALCULATES THE TOTAL ENERGY (EL) --
C -- OF ALL INTERACTIONS INVOLVING THE ITH ATOM --
C

SUBROUTINE ENERGL(I, EL)

IMPLICIT NONE

INCLUDE 'CHMCM3. INC'
include 'nodeequ. inc'

INTEGER J, NBMTIJ, ITYPI, ITYPJ, K, ICL, NAMTIK, JAMAI,
1 JBMAJ, JCMAK, ICA, L, NTMTIL, IT1, IT2, IT3, IT4,
2 ICT, N, IOPBIN, IOPB2N, IOPB3N, IOPB4N

REAL ECX, DIR1, DIR2, DIR3, DIST2, DIST, RLITIJ, SCITIJ,
1 DOIST, EB, RDIST2, RDIST4, RDIST6, RDIS12, EV, EQ,
2 DISTC, ECL, XJB1, XJB2, XJB3, DC11, DC12, DC21, DC22,
3 DC3 1, DC32, RM1, RM2, R12, COSA, A, THSX, DELTH2, DELTH3,
4 DELTH5, EA, COSAC, AC, ECA, XJC1, XJC2, XJC3, AA11, AA12,
5 AA13, AA21, AA22, AA23, AA31, AA32, AA33, V11, V21, V12,
6 V22, V13, V23, R1, R2, COSW, WA, WASIGN, XFD, TA, SGN,
7 FOLD, ET, WC, WCSIGN, ECT, WAOPB, EO

EL=0.0
C
C -- CALCULATE PSEUDO-ENERGIES FOR FIXED ATOMS (IF ANY) --
C

IF(CONMIN) THEN
IF(ATCONS(I. 1)) THEN

ECX=FATSEV(I)*(
1 (FATXYZ(I, 1)-XO(I, 1))**2+
2 (FATXYZ(I, 2)-XO(I, 2))**2+
3 (FATXYZ(I, 3)-XO(I, 3))**2)

EL=EL+ECX
ENDIF

ENDIF
C
C -- CALCULATE THE BONDED AND NON-BONDED ENERGIES --
C

DO 101 J=1, NUMATS
NBMTIJ=NBMAT(J, I)

C
C -- SORT OUT WHICH PAIRS OF ATOMS ARE 1,1 OR 1,3 OR TOO --
C -- LONG (NBMTIJ=5), SKIP THESE AND GO ON TO NEXT PAIR --
C

IF(NBMTIJ. EQ. 1. OR. NBMTIJ. EQ. 3. OR. NBMTIJ. EQ. 5) GO TO 101
C
C -- CALCULATE DISTANCE I-J --
C

DIRT=XO(I, 1)-XO(J, 1)
DIR2=XO(I, 2)-XO(J, 2)
DIR3=XO(I, 3)-XO(J, 3)
DIST2=DIR1*DIR1+DIR2*DIR2+DIR3*DIR3
ITYPI=ATYNUM(I)
ITYPJ=ATYNUM(J)

C
C -- IF ATOMS I AND J ARE NON BONDED, --
C -- GO ON TO VAN DER WAALS SECTION --
C

IF(NBMTIJ. EQ. 4) GO TO 100
DIST=SQRT(DIST2)

C
C -- GET REFERENCE LENGTHS AND FORCE CONSTANTS --
C

RLITIJ=REFLEN(ITYPI, ITYPJ)
SCITIJ=STRCON(ITYPI, ITYPJ)
IFIITYPI. LE. Namide. AND. ITYPJ. LE. Namide) THEN

IF(CREFLN(ITYPI, ITYPJ). NE. 10.) THEN
DO 98 K=1, MXCN

IF(ATMCON(I, K). EQ. J) GO TO 99
98 CONTINUE
99 IF(BONDML(I, K). EQ. 11) THEN

RLITIJ=CREFLN(ITYPI. ITYPJ)
SCITIJ=CSTCON(ITYPI, ITYPJ)

ENDIF
ENDIF

ENDIF
DOIST=RLITIJ-DIST

C
C -- CALCULATE BOND ENERGY --
C

EB=SCITIJ*DOIST*DOIST

Appendix C 278

EL=EL+EB
GO TO 101

C
C -- VAN DER WAALS SECTION -- C
100 RDIST2=1.0/DIST2

RDIST4=RDIST2*RDIST2
RDIST6=RDIST2*RDIST4
RDIS12=RDIST6*RDIST6

C
C -- CALCULATE VAN DER WAALS ENERGY (EV) -- C

EV=B12(ITYPI, ITYPJ)*RDIS12 - A6(ITYPI, ITYPJ)*RDIST6
EL=EL+EV

C
C -- CALCULATE COULOMBIC ENERGY (EQ) -- C

EQ=332.17*CHARGE(I)*CHARGE(J)*RDIST2
EL=EL+EQ

101 CONTINUE
C
C -- CALCULATE PSEUDO-ENERGIES FOR FIXED LENGTHS (IF ANY) -- C

IF(CONMIN) THEN
DO 102 ICL=1, NUMLFX
IF(ATCONS(I, 2). AND.

1 (KLATM1(ICL). EQ. I. OR. KLATM2(ICL). EQ. I)) THEN
DIRT=XO(KLATM1(ICL), 1)-XO(KLATM2(ICL), 1)
DIR2=XO(KLATM1(ICL), 2)-XO(KLATM2(ICL), 2)
DIR3=XO(KLATMI(ICL), 3)-XO(KLATM2(ICL), 3)
DIST2=DIR1*DIRI+DIR2*DIR2+DIR3*DIR3
DISTC=SQRT(DIST2)
ECL=FLNSEV(ICL)*((FIXLEN(ICL)-DISTC)**2)
EL=EL+ECL

ENDIF
102 CONTINUE

ENDIF
C
C -- CALCULATE THE ANGLE ENERGY --
C

DO 103 K=1,18
C
C -- CHECK IF ATOM IS INVOLVED IN ANY ANGLES --
C -- WHEN DONE GO TO ANGLE CONSTRAINTS SECTION --
C

NAMTIK=NAMAT(K, I)
IF(NAMTIK. EQ. O) GO TO 104
JAMAI=MAI(NAMTIK)
JBMAJ=MAJ(NAMTIK)
JCMAK=MAK(NAMTIK)

C
C -- CALCULATE ANGLE --
C

XJB1=XO(JBMAJ, 1)
XJB2=XO(JBMAJ, 2)
XJB3=XO(JBMAJ, 3)
DC11=XO(JAMAI. 1)-XJB1
DC12=XO(JCMAK, 1)-XJB1
DC21=XO(JAMAI, 2)-XJB2
DC22=XO(JCMAK, 2)-XJB2
DC31=XO(JAMAI, 3)-XJB3
DC32=XO(JCMAK, 3)-XJB3
RM1=DC11*DC11+DC21*DC21+DC31*DC31
RM2=DC12*DC12+DC22*DC22+DC32*DC32
R12=DC11*DC12+DC21*DC22+DC31*DC32
RM1=SQRT(RM1)+0.000001
RM2=SQRT(RM2)+0.000001
COSA=R12/(RM1*RM2)
COSA=SIGN(AMIN1(ABS(COSA), 1. OE+00), COSA)
A=ACOS(COSA)*RADI
THSX=THS(NAMTIK)-A
DELTH2=THSX*THSX
DELTH3=ABS(DELTH2*THSX)
DELTH5=DELTH3*DELTH2

C
C -- CALCULATE ANGLE ENERGY --
C

EA=BKS(NAMTIK)*(DELTH2-BKAS(NAMTIK)*(DELTH3-(0,0004*DELTHS)))
EL=EL+EA

103 CONTINUE
C
C -- CALCULATE PSEUDO-ENERGIES FOR FIXED ANGLES (IF ANY) --
C
104 IF(CONMIN) THEN

DO 105 ICA=1, NUMAFX
IF(ATCONS(I. 3). AND.

1 (KAATMI(ICA). EQ. I. OR. KAATM2(ICA). EQ. I. OR.

2 KAATM3(ICA). EQ. I)) THEN
XJB1=XO(KAATM2(ICA), 1)
XJB2=XO(KAATM2(ICA), 2)
XJ53=XO(KAATM2(ICA), 3)
DC11=XO(KAATM1(ICA), 1)-XJB1

Appendix C 279

DC12=XO(KAATM3(ICA), 1)-XJB1
DC21=XO(KAATMI(ICA), 2)-XJB2
DC22=XO(KAATM3(ICA), 2)-XJB2
DC31=XO(l(AATM1(ICA), 3)-XJB3
DC32=XO(KAATM3(ICA), 3)-XJB3
RM1=DC11*DC11+DC21*DC21+DC31*DC31
RM2=DC12*DC12+DC22*DC22+DC32*DC32
R12=DC11*DC12+DC21*DC22+DC31*DC32
RMI=SQRT(RM1)+0.000001
RM2=SQRT(RM2)+0.000001
COSAC=R12/(RM1*RM2)
COSAC=SIGN(AMIN1(ADS(COSAC), 1. OE+00), COSAC)
AC=ACOS(COSAC)*RADI
ECA=FANSEV(ICA)*((FIXANG(ICA)-AC)**2)
EL=EL+ECA

ENDIF
105 CONTINUE

ENDIF
C
C -- CALCULATE TORSIONAL ENERGY -- C

DO 106 L=1,50

-' CHECK IF ATOM IS INVOLVED IN ANY TORSION ANGLES -- WHEN DONE GO TO TORSION ANGLE CONSTRAINTS SECTION --

NTMTIL=NTMATIL, I)
IF(NTMTIL. EQ. O) GO TO 107

-- CALCULATE TORSION ANGLE --

IT1=MTI(NTMTIL)
IT2=MTJ(NTMTIL)
IT3=MTK(NTMTIL)
IT4=MTL(NTMTIL)
XJB1=XO(IT2,1)
XJB2=XO(IT2,2)
XJB3=XO(IT2,3)
XJCI=XO(IT3,1)
XJC2=XO(IT3,2)
XJC3=XO(IT3,3)
AA11=XO(ITI, 1)-XJB1
AA12=XJC1-XJB1
AA13=XJC1-XO(IT4,1)
AA21=XO(IT1,2)-XJ82
AA22=XJC2-XJB2
AA23=XJC2-XO(IT4,2)
AA31=XO(IT1,3)-XJB3
AA32=XJC3-XJB3
AA33=XJC3-XO(IT4,3)
V11=AA21*AA32-AA31*AA22
V21=AA22*AA33-AA32*AA23
V12=AA31*AA12-AAI1*AA32
V22=AA32*AA13-AA12*AA33
V13=AA11*AA22-AA21*AA12
V23=AA12*AA23-AA22*AA13
R1=SQRT(V11*V11+V12*V12+V13*V13)+0.000001
R2=SQRT(V21*V21+V22*V22*V23*V23)+0.000001
COSW=(V11/R1)*(V21/R2)+(V12/R1)*(V22/R2)+(V13/R1)*(V23/R2)
COSW=SIGN(AMIN1(ABS(COSW), 1.0E+00). COSW)
WA=ACOS(COSW)*RADI

C
C -- CALCULATE CORRECT SIGN FOR TORSION ANGLE --
C

WASIGN=AA11*(AA22*AA33-AA23*AA32)-AA21*(AA12*AA33-AA13*AA32)
1 +AA31*(AA12*AA23-AA13*AA22)

WA=SIGN(WA, WASIGN)
XFD=FDS(NTMTIL)

C
C -- CALCULATE TORSIONAL ENERGY --
C

TA=WA*RAD1
SGN=XFD/ABS(XFD)
FOLD=ABS(XFD)
ET=VOS(NTMTIL)*(1.0+SGN*COS(FOLD*TA))+VO1S(NTMTIL)*

1(1.0+COS(TA))
EL=EL+ET

106 CONTINUE
C
C -- CALCULATE PSEUDO-ENERGIES FOR FIXED TORSION ANGLES (IF ANY) --
C
107 IF(CONMIN) THEN

DO 108 ICT=1, NUMTFX
IF(ATCONS(I, 4). AND.

1 (KTATM1(ICT). EQ. I. OR. KTATM2(ICT). EQ. I. OR.
2 KTATM3(ICT). EQ. I. OR. KTATM4(ICT). EQ. I)) THEN

ITI=KTATMI(ICT)
IT2=KTATM2(ICT)

Appendix C 280

IT3=KTATM3(ICT)
IT4=KTATM4(ICT)
XJB1=XO(IT2,1)
XJB2=XO(IT2.2)
XJB3=XO(IT2,3)
XJC1=XO(IT3.1)
XJC2=XO(IT3,2)
XJC3=XO(IT3,3)
AA11=XO(IT1,1)-XJB1
AA12=XJC1-XJB1
AA13=XJC1-XO(IT4,1)
AA21=XO(IT1,2)-XJB2
AA22=XJC2-XJB2
AA23=XJC2-XO(IT4,2)
AA31=XO(IT1,3)-XJB3
AA32=XJC3-XJB3
AA33=XJC3-XO(IT4,3)
V11=AA21*AA32-AA31*AA22
V21=AA22*AA33-AA32*AA23
V12=AA31*AA12-AA11*AA32
V22=AA32*AA13-AA12*AA33
V13=AA11*AA22-AA21*AA12
V23=AA12*AA23-AA22*AA13
R1=SQRT(V11*V11+V12*V12+V13*V13)+0.000001
R2=SQRT(V21*V21+V22*V22+V23*V23)+0.000001
COSW=(V11/R1)*(V21/R2)+(V12/R1)*(V22/R2)+(V13/R1)*(V23/R2)
COSW=SIGN(AMIN1(ABS(COSW), 1.0E+00), COSW)
WC=ACOS(COSW)*RADI
WCSIGN=AA11*(AA22*AA33-AA23*AA32)-AA21*(AA12*AA33-AA13*AA32)

1 +AA31*(AA12*AA23-AA13*AA22)
WC=SIGN(WC, WCSIGN)
ECT=FTOSEV(ICT)*(

1 (FIXTOR(ICT)-WC)**2)
EL=EL+ECT

ENDIF
108 CONTINUE

ENDIF

-- CALCULATE OUT OF PLANE BENDING ENERGY --
(IF THERE SHOULD BE ANY) --

IF(NO. EQ. O) RETURN
DO 113 N=1, NO
IOPBIN=IOPB1(N)
IOPB2N=IOPB2(N)
IOP53N=IOPB3(N)
IOPB4N=IOPB4(N)
IF((IOPBIN. EQ. I). OR. (IOPB2N. EQ. I). OR.

(IOPB3N. EQ. I). OR. (IOP84N. EQ. I)) THEN
GOTO 112

ELSE
GOTO 113

ENDIF
C
C -- CALCULATE IMPROPER TORSION ANGLE --
C
112 XJB1=XO(IOPB2N, 1)

XJB2=XO(IOPB2N, 2)
XJB3=XO(IOPB2N. 3)
XJC1=XO(IOPB3N, 1)
XJC2=XO(IOPB3N, 2)
XJC3=XO(IOPB3N. 3)
AA11=XO(IOPBIN, 1)-XJB1
AA12=XJC1-XJ51
AA13=XJC1-XO(IOPB4N. 1)
AA21=XO(IOPBIN, 2)-XJB2
AA22=XJC2-XJ82
AA23=XJC2-XO(IOPB4N, 2)
AA31=XO(IOPBIN, 3)-XJB3
AA32=XJC3-XJB3
AA33=XJC3-XO(IOPB4N, 3)
V11=AA21*AA32-AA31 AA22
V21=AA22*AA33-AA32*AA23
V12=AA31*AA12-AA11*AA32
V22=AA32*AA13-AA12*AA33
V13=AA11*AA22-AA21*AA12
V23=AA12*AA23-AA22*AA13
R1=SQRT(V11*V11+V12*V12+V13*V13)+0.000001
R2=SQRT (V21*V21+V22*V22+V23*V23)+0.000001
COSW=(V11/R1)*(V21/R2)+(V12/R1)*(V22/R2)+(V13/R1)*(V23/R2)
COSW=SIGN(AMIN1(ABS(COSW), 1. OE+00), COSW)
WAOPB=ACOS(COSW)*RADI

-- CALCULATE OUT OF PLANE BENDING ENERGY --

EO=OPBK(N)*(180.0-ABS(WAOPB))**2
EL=EL+EO

Appendix C 281

113 CONTINUE
RETURN
END

Appendix C 282

INCLUDE 'fgraph. fi'

INCLUDE 'c: \lesley\MOUSE. FI'

SUBROUTINE nrm_get_controlparameters

INCLUDE 'chmcm3. inc'

INCLUDE 'commnpcn. inc'

INCLUDE 'commmenu. inc'

INCLUDE 'FGRAPH. FD'

INTEGER nboxes, chce, DISP_MIN_PARAM
LOGICAL start
REAL rdum

OPEN (UNIT = 10, FILE = 'XY. OUT', STATUS = 'old')

numitr = 10
dran = 25.0
nprint =0
ethrsh = -10.0
shftmx = 0.5
nderiv =1

nboxes =8

CALL graphicsmode()
CALL register_fonts

CALL init_constraints
DISP_MIN_PARAM =1

CALL snit_screen_area(DISP_MIN_PARAM)

CALL init_option_box_data (nboxes,
1 'NEWTON-RAPHSON MINIMISER PARAMETERS')

CALL init_npad_data()

start = FALSE.

DO WHILE (. NOT. start)
CALL nrm_display_options(chce)

IF (chce. EQ. 1) THEN
CALL MESSAGE(1, 'ENTER NO. OF ITERATIONS', 13)

numitr = 10
CALL number. pad(rdum, numitr, 2)
numitr = MAX(numitr, 0)
CALL MESSAGE(1, 'ENTER NO. OF ITERATIONS-, O)

ELSE IF (chce. eq. 2) THEN
CALL MESSAGE(1,

'ENTER VAN DER WAALS CUTOFF DISTANCE', 13)
DXXM = 25.0

CALL number_pad(DXXM, IDUM, 1)
CALL MESSAGE(1,

'ENTER VAN DER WAALS CUTOFF DISTANCE', 0)
DXXM = MAXIDXXM, 2.0)

ELSE IF ((CHCE. EQ. 3). AND. (NPRINT. EQ. 2)) THEN
CALL MESSAGE(1,

1 'ENTER PRINT THRESHOLD ENERGY', 13)
ethrsh = -10.0

CALL numberpad(ethrsh, idum, l)
CALL MESSAGE(1,

1 'ENTER PRINT THRESHOLD ENERGY', 0)
ELSE IF (CHCE. EQ. 4) THEN

CALL MESSAGE(1,
1 'ENTER MAXIMUM COORDINATE SHIFT1,13)

shftmx = 0.5
CALL numberpad(shftmx. IDUM, 1)

CALL MESSAGE(1,
1 'ENTER MAXIMUM COORDINATE SHIFT', 0)

shftmx = MAX(shftmx, 0.0001)
ELSE IF (CIICE. EQ. 5) THEN

IF (nprint EQ. 0) THEN
nprint -1

ELSE IF (riprint EQ. 1) THEN

nprint -2
ELSE IF (nprint EQ. 2) THEN

nprint =0
END IF

ELSE IF (CHCE. EQ. 6) THEN
call fix-parameters

CALL init_screen_area(DISP_MIN_PARAM)

Appendix C 283

CALL init_option_box_data (nboxes,
'NEWTON-RAPHSON MINIMISER PARAMETERS')

CALL init_npad_dataf)
ELSE IF (CHCE. EQ. 7) THEN

CALL CLEARSCREEN($GCLEARSCREEN)
call endgraphics

START = TRUE.
ELSE IF (CHCE. EQ. 8) THEN

CALL endgraphics
STOP

END IF
END DO

END

SUBROUTINE init_option_box_data(nbox, mess)

INTEGER nbox
CHARACTER * (") mess

INCLUDE 'commobcm. inc'

INCLUDE 'commgrap. inc'

INTEGER txtwd, txtht, xtp, ytp, tsx, xsl, xs2, tsy, ysl, ys2, yt, ty,
1 px, py, nb, btx, bty, i

LOGICAL error

CALL set_font(chl2w9)
CALL text_info(txtwd, txtht)

write(10, *) message_spacey

xtp = viewport_xspace
ytp = viewport_yspace

optnbox_width = MAX(txtwd * 2, txtht * 2)
optnbox_height = optnbox_width

nb = MIN(nbox, ytp / (optnbox_height + 1))
IF (nb LT. nbox) THEN

error = TRUE.
RETURN

END IF
bty = nb * optnbox_height
tsy a ytp - bty

ysl = MIN(MAX(tsy / (nb + 1), 1), txtht * 2)
ys2 = (tsy - ((nb - 1) * ysl)) /2
xsl =1

btx = optnbox_width
tsx = xtp - btx
optnbox_maxm = MIN((tsx - (xsl * 3)) / txtwd, 50)
write(10, *) 'optnbox_maxm is', optnbox_maxm

xsl = MIN(MAX(tsx - (optnbox_maxm * txtwd), 1), txtwd * 2)
write (10, *) 'xsl is', xsl

xs2 = MAX((tsx - ((optnbox_maxm * txtwd) + xsl)) / 2,1)
write (10, *) 'xs2 is', xs2
optnbox_maxl = INT((FLOAT(optnbox_Inaxm) * 3.0) / 5.0)
optnbox_max2 = optnbox_maxm - optnbox_maxl
optnbox_txl = xs2
optnbox_tx2 = optnbox_txl + (optnbox_maxl * txtwd)

optnbox_xl = optnbox_txl + (optnbox__naxm * txtwd) + xsl
yt =0+ ys2
px = optnbox_xl + (optnbox_width / 2)

DO i=1, nb
ty = yt + (txtht / 2)

py = yt + (optnbox_height / 2)
optnbox. yt(i) = yt

optnbox_ty(i) = ty
optnbox-px (i) = px
optnbox py (i) = py
yt = yt + optnbox_height + ysl

END DO
optnbox_nbox = nb
optnbox_titmess = mess

END

SUBROUTINE nrm_display_options(chce)

INCLUDE chmcm3. incl

INCLUDE "commobcm. incl

INTEGER chce

Appendix C 284

INTEGER*2 mx, my
CHARACTER"30 msgl(20)
CHARACTER*20 msg2(20)

optnbox_col(1) =3
msgl(1) = 'NUMBER OF ITERATIONS'
WRITE (msg2(1), 10) numitr 10 FORMAT (' (1,2X, I10,3X, 1)1)

optnbox_col(2) =3
msgl(2) = VAN DER WAALS CUTOFF DISTANCE'
WRITE (msg2(2), 30) dxxm

30 FORMAT (', 8X. F7.2,1)1)

msgl(3) _ 'ENERGY THRESHOLD FOR PRINTING'
IF (nprint EQ. 2) THEN

optnbox_col(3) =3
WRITE (msg2(3), 40) ethrsh

40 FORMAT (' (1,9X, F6.2,1)1)
ELSE

optnbox_col(3) =8
msg2(5)

END IF

msgl(4) = 'MAXIMUM SHIFT'
IF (numitr GT. 0) THEN

optnbox_col(4) =3
WRITE (msg2(4), 20) shftmx

20 FORMAT
ELSE

optnbox_col(4) =8
msg2(2)

END IF

optnbox_col(5) =3
msgl(5) = TYPE OF OUTPUT'
IF (nprint EQ. 0) THEN

msg2(5) ='(SHORT)'
ELSE IF (nprint EQ. 2) THEN

msg2(5) ='(LONG
ELSE IF (nprint EQ. 1) THEN

msg2(5) ABBREIVIATED)'
END IF

optnbox_col(6) =3
msgl(6) = FIX ATOMS OR PARAMETERS'
msg2(6) =

optnbox_col(7) =3
msgl(7) = START MINIMISER'
msg2(7) =

optnbox_col(8) = 12
msgl(8) _ EXIT MINIMISER'
msg2(8) _

CALL draw_option_boxes(msgl, msg2)
CALL mouse()

chce -0
DO WHILE(chce. EQ. O)

CALL chms(mx, my)
CALL find_box_select(mx, my, chce)

END DO

END

SUBROUTINE draw_option_boxes(msgsl, msgs2)

CHARACTER*(*) msgsl(*), msgs2(*)

INCLUDE 'commobcm. inc'

INCLUDE 'FGRAPH. FD'

INCLUDE 'commgrap. incl

C INCLUDE 'colour. inc'
INTEGER i. xl, x2, yl, y2

CALL CLEARSCREEN($GCLEARSCREEN)
CALL set_font(chl2w9)
CALL MESSAGE(O, optnbox_titmess, 9)

DO i=1, optnbox-nbox
xl = optnbox_xl
x2 = xl + optnbox_width
yl = optnbox_yt(i)

Appendix C 285

y2 = yl + optnbox_height
write(10, ") x1, y1, x2, y2

CALL colour(optnbox_col(i))
CALL box(xl, yl, x2, y2)
CALL text (optnbox_txl, optnbox_ty(i), msgsl(1))

END DO
CALL text (optnbox_tx2, optnbox_ty(i), msgs2(i))

END

SUBROUTINE Chms(xpos, ypos)

INCLUDE 'c: \lesley\MOUSE. FD'
INCLUDE 'FCRAPH. FD'

INTEGER*2 XPOS. YPOS, BPOS

bpos =0

CALL showmousecursor

DO WHILE(BPOS. EQ. 0)
CALL GETMOUSECURSORPOSITION(XPOS, YPOS, BPOS)

END DO

DO WHILE(BPOS. EQ. 1)
CALL GETMOUSECURSORPOSITION(XPOS, YPOS, BPOS)

END DO

CALL convert_to viewport_coords(XPOS, YPOS)

CALL hidemousecursor

END

SUBROUTINE find_box_select(xpos, ypos, chce)

INCLUDE 'c: \lesiey\MOUSE. FD'
INCLUDE 'FGRAPH. FD'

INCLUDE 'commobcm. incl

INTEGER chce, half_width, half_height, i
INTEGER*2 XPOS, YPOS

half_width = optnbox_width/2
half_height optnbox_height/2

chce =0

DO i=l, optnbox_nbox
IF (XPOS. GT. (optnbox_px(i) - half_width). AND.

1 XPOS. LT. (optnbox_px(i) + half_width).)ND.

2 YPOS. GT. (optnbox_py(i) - half_height). AND.
3 YPOS. LT. (optnbox_py(i) + half-height)) THEN

chce =i

END IF

END DO

END

SUBROUTINE find_menu_select(xpos, ypos, num_box, xcentre, ycentre,
1 xhalf_width, yhalf_height, kk)

INCLUDE 'c: \lesley\MOUSE. FD'
INCLUDE 'FGRAPH. FD'

INTEGER num_box, xcentre(num_box), ycentre(num_box),
1 xhalf_width, yhalf height, kk

INTEGER"2 XPOS, YPOS

kk =0

DO i=1, num_box
IF (XPOS. GT. (xcentre(i) - xhalf_width). AND.

1 XPOS. LT. (xcentre(i) + xhalf_width). AND.
2 yPOS. GT. (ycentreli) - yhalf_height). AND.

3 YPOS. LT. (ycentre(i) + yhalf_height)) THEN
kk =i

END IF

END DO

END

Appendix C 286

SUBROUTINE init_npad data

INCLUDE 'commnpcn. inc'

INCLUDE 'commgrap. inc'

INTEGER ht2, wd2, padrowp, padcolp, padysp, padxsp,
1 pxsp2, pysp2, wd22, ht22, row, col, rowp, colp, tlen, tlenp,
2 tlenp2, txsp, txsp2,
3 i, j, xtp, ytp

CALL set_font(chl5w12)
CALL text_info(wd2, ht2)
CALL get_screen_coords(xtp, ytp)

padrowp = pad_row * ht2
padcolp = pad_col * wd2
padysp = ((ytp - message_spacey) - padrowp) / (pad-row + 1)
padxsp = (menu_spacex - padcolp) / (pad_col + 1)
pxsp2 = padxsp /3
pysp2 = padysp /3
wd22 = wd2 /2
ht22 = ht2 /2
DO i=l, num_box

row = (i - 1) / pad_col
col = MOD(i - l, pad_col)
rowp =0+ ((row * (ht2 + padysp)) + padysp)
colp = (0 - menu_spacex) + (col * (wd2 + padxsp)) + padxsp
np_pbxl(i) = colp - pxsp2
np_pbyt(i) = rowp - pysp2
np_pbxr(i) = np_pbxl(i) + (wd22 + pxsp2) *2
np_pbyb(i) = np_pbyt(i) + (ht22 + pysp2) *2
np_ppkx(i) = colp + wd22
np. ppky(i) = rowp + ht22

np-ptxx(i) = colp
np_ptxy(i) = rowp

END DO
np_pxti = wd22 + pxsp2
np_pytl = ht22 + pysp2
tlen = LEN(other_text(1))
tlenp = tlen * wd2
tlenp2 = tlenp /2
txsp = (menu_spacex - tlenp) /2
txsp2 = txsp /3
DO j=1, num_other

rowp =0+ (((j + 3) * (ht2 + padysp)) + padysp)
colp = (0 - menu_spacex) + txsp
np_obxl(j) = colp - txsp2
np_obyt(j) = rowp - pysp2
np_obxr(j) = np_obxl(j) + (tlenp2 + txsp2) *2
np_obyb(j) = np_obyt(j) + (ht22 + pysp2) *2
np_opkx(j) = colp + tlenp2
np_opky(j) = rowp + ht22

np_otxx(j) = colp
np_otxy(j) = rowp

END DO
np_oxtl = tlenp2 + txsp2
np_oytl = ht22 + pysp2

END

BLOCK DATA number-pad_data

INCLUDE 'commnpcn. inc'

DATA padn_text / 17894561230-. ' /
DATA other_text /' RESET ', ' ENTER ', 'DEFAULT'

END

SUBROUTINE number_pad(pad_value, ipad_value, option)

REAL pad_value
INTEGER ipad_value, option

INCLUDE 'commnpcn. inc'

CHARACTER * 10 value_text
CHARACTER " 20 def_text
INTEGER kt, kk, idef, noth

INTEGER*2 mx, my
REAL rdef

LOGICAL exitf, fraction, negative, default

IF (option EQ. 0) THEN
noth =2
def_text

ELSE
noth =3

Appendix C 287

IF (option EQ. 1) THEN
rdef = pad_value
WRITE (def_text, 10) rdef 10 FORMAT ('DEFAULT : 1, F10.4)

ELSE IF (option EQ. 2) THEN
idef = ipad_value
WRITE (def_text, 20) idef

20 FORMAT ('DEFAULT ', I10)
END IF

END IF
pad_value = 0.0
ipad_value =0

value-text =''
fraction = FALSE.
negative = FALSE.

default = FALSE.
kt =1

exitf = FALSE.
CALL draw_npad_boxes(13, noth)
CALL draw_npad_text(13, noth)
CALL message(3, def_text, 10)
DO WHILE (. NOT. exitf)

CALL chms(mx. my)
CALL find_menu_select(mx, my, num_box, np_ppkx, np_ppky,

1 np_pxtl, np_pytl, kk)
IF ((kk GE. 1) AND. (kk LE. 10)) THEN

IF (kt LT. 10) THEN
CALL message(2, value_text, 0)
kt = kt +1
value_text(kt: kt) = padn_text(kk: kk)
CALL message(2, value_text, 15)

END IF
ELSE IF (kk EQ. 11) THEN

CALL message(2, value_text, 0)
IF (negative) THEN

value_text(1: 1) =
ELSE

value_text(1: 1) _ '-'
END IF

CALL message(2, value_text, 15)
negative = NOT. negative

ELSE IF ((kk EQ. 12) AND. (. NOT. fraction) AND.
1 (kt LT. 9)) THEN

CALL message(2, value_text, 0)
fraction = TRUE.
kt = kt +1
value_text(kt: kt) = padn_text(kk: kk)

CALL message(2, value_text, 15)
ELSE

CALL find_menu_select(mx, my, noth, np_opkx, np_opky,
np_oxtl, np_oytl, kk)

IF (kk EQ. 1) THEN
CALL message(2, value_text, 0)
kt =1
negative = FALSE.
fraction - FALSE.
value-text =''

ELSE IF (kk EQ. 2) THEN
exitf = TRUE.

ELSE IF (kk. EQ. 3) THEN
exitf = TRUE.

default = TRUE.
END IF

END IF
END DO

IF (default) THEN
IF (option EQ. 1) THEN

pad _value = rdef
ELSE IF (option EQ. 2) THEN

ipad_value = idef
END IF

ELSE
READ(value_text, 30) pad_value

30 FORMAT(F10.0)
ipad_value = INT(pad_value)

END IF
CALL draw_npad_boxes(O, noth)
CALL draw_npad_text(0, noth)

CALL message(2, value_text, 0)
CALL message(3, def_text, 0)

END

SUBROUTINE draw_npad_boxes(col, noth)

INTEGER col, noth

INCLUDE "commnpcn. inc'

Appendix C 288

INTEGER i

CALL colour(col)
DO i=l, num_box

END DO
CALL BOX(np pbxl(i), np_pbyt(i), np-pbxr(i), np pbyb(i))

DO i=1, noth

END DO
CALL BOX(np_obxl(i), np_obyt(i), np_obxr(i), np_obyb(i))

END

SUBROUTINE draw_npad_text(col, noth)

INTEGER col, noth

INCLUDE 'commnpcn. inc'
INCLUDE 'commgrap. inc'

INTEGER i

CALL set_font(chl5wl2)
CALL colour(col)
DO i=1, num_box

CALL text(np_ptxx(i), np_ptxy(i), padn_text(i: i))
END DO
DO i=1, noth

CALL text(np_otxx(i), np_otxy(i), other_text(i))
END DO

END

SUBROUTINE fixparameters

INCLUDE 'CHMCM3. INC'

integer num_opt, disp_mol, chce, I, J, disp_min. param
INTEGER*2 XPOS, YPOS
LOGICAL exitf

NUMLFX=O
NUMAFX=O
NUMTFX=O
NUMMFX=O
CONMIN = FALSE.

DO I=1,4
DO J=1, NU14ATS

ATCONS(j, i) = .
false.

END DO
END DO

num_opt =6
DISP_MOL =2

CALL init_screen_area(DISP_MOL)
CALL init_npad_data()

CALL get_mol_screen_coords
CALL draw_simple_stick_molecule
CALL draw_atom_numbers(15)
CALL init_nenu_data(num_opt)

exitf = FALSE.
DO WHILE(. NOT. exitf)

CALL init_menu_data(num_opt)
CALL display_fix_menu(num_opt)
CHCE =0
DO WHILE (CHCE. EQ. 0)

call chms(xpos, ypos)
call find_side_menu_select(xpos, ypos, chce, num_opt)

END DO

IF (CHCE. EQ. 1) THEN
CALL ATOM-CONSTRAINT
CONMIN = TRUE.

ELSE IF (CHCE. EQ. 2) THEN
CALL length_constraint

CONMIN = TRUE.
ELSE IF (CHCE. EQ. 3) THEN

CALL angle-constraint
CONMIN = TRUE.

ELSE IF (CHCE. EQ. 4) THEN

Appendix C 289

CALL torsion_constraint
CONMIN = TRUE.

ELSE IF (CHCE. EQ. 5) THEN
CALL molecule_constraint
CONMIN = TRUE.

ELSE
EXITF = . TRUE.

END IF
END DO

END

SUBROUTINE INIT_CONSTRAINTS

INCLUDE 'CHMCM3. inc'

INTEGER I, J

NUMLFX=O
NUMAFX=O
NUMTFX=O
NUMMFX=O
CONMIN = FALSE.

DO I=1,4
DO J=1, NUMATS

ATCONS(j, i) = false.
END DO

END DO

END

SUBROUTINE FIND_SIDE_MENU_SELECT(XPOS, YPOS, CHCE, NUM_OPT)

INCLUDE 'COMMMENU. INC'

INTEGER CHCE, NUM_OPT, I
INTEGER*2 XPOS, YPOS

chce = -1

DO I=1, NUM_OPT
IF (XPOS. GT. MENU_OBXL(I). AND.

1 XPOS. LT. MENU_OBXR(I). AND.
2 YPOS. GT. MENU_OBYT(I). AND.
3 YPOS. LT. MENU_OBYB(I)) THEN

CHCE =I
END IF

END DO

END

SUBROUTINE ATOM-CONSTRAINT

INCLUDE 'commgrap. inc'

LOGICAL exitf
INTEGER idum, ikon, ITOK, num_opt
REAL severity

num_opt
ITOK =1

exitf = FALSE.

ikon = -1
CALL CLEAR-MENU
CALL set_font(chl2w9)
CALL message(1, 'PICK ATOM TO FIX1,13)
CALL FIND_ATOM_SELECT(ITOK, IKON, IDUM, IDIJM, IDUM)
CALL message(1, 'PICK ATOM TO FIX', 0)
CALL CLEAR_MENU

CALL get_severity(severity)
CALL enter_atom_constraint(ikon, severity)

END

SUBROUTINE FIND-ATOM-SELECT (ITOK, IKON, JKON, KKON, LKON)

include 'chmcm3. inc'
INTEGER IAT(4), ITOK, I, J, IKON, JKON, KKON, LKON, chce, num_opt
INTEGER"2 XPOS, YPOS

ikon =0
num opt

Appendix C 290

do i=1,4
iat(i) =0

end do

DO J=1, ITOK
DO WHILE (IAT(j). EQ. O)

CALL CHMS(XPOS, YPOS)
DO I=1, NUMATS

IF (XPOS. GT. (ISX(I) - 3). AND.
1 XPOS. LT. (ISX(I) f 3). AND.
2 YPOS. GT. (ISY(I) - 3). AND.
3 YPOS. LT. (ISY(I) + 3)) THEN

CALL mark_atom(I, 15)
IAT(J) =I

END IF
END DO

END DO
END DO

IKON = IAT(1)
JKON = IAT(2)
KKON = IAT(3)
LKON = IAT(9)

END

SUBROUTINE enter_atom_constraint(ikon, severity)

INTEGER ikon
REAL severity

INCLUDE 'chmcm3. inc'

atcons(ikon, l) _ TRUE.
C num-atm_fix = num_atm_fix +1

fatxyz(ikon, 1) = xo(ikon, l)
fatxyz(ikon, 2) = xo(ikon, 2)
fatxyz(ikon. 31 = xo(ikon, 3)
fatsev(ikon) = severity * atsfac

END

SUBROUTINE lengt(_constraint

INCLUDE 'chmcm3. inc'

INCLUDE 'commgrap. inc'

LOGICAL exitf
INTEGER idum, ikon, jkon, itok
REAL fixed_val, severity

itok =2

ikon = -1
exitf = FALSE.

CALL CLEAR-MENU
CALL message(1,

'PICK ATOMS DEFINING FIXED LENGTH', 13)
CALL find_atom_select(itok, ikon, jkon, idum, idum)

CALL message(1,
'PICK ATOMS DEFINING FIXED LENGTH', 0)

CALL set_font(chl2w9)
CALL message(1,

'CHOOSE VALUE OF FIXED LENGTH', 13)
CALL atom_distance(ikon, jkon, fixed_val)

CALL number_pad(fixed_val, idum, l)
CALL set_font(chl2w9)
CALL message(1,

'CHOOSE VALUE OF FIXED LENGTH', O)

CALL get-severity(severity)
CALL enter_length_constraint(ikon, jkon,

fixed_val, severity)
CALL mark_atom(ikon, 15)
STOP
CALL mark_atom(jkon, 12)

END

SUBROUTINE enter_length_constraint(ikon, jkon, fixed_vai, severity)

INTEGER ikon. jkon
REAL fixed_val, severity

Appendix C 291

INCLUDE Ichmcm3. inc-

atcons(ikon, 2) = TRUE.
atcons(jkon, 2) = TRUE.

numlfx = numlfx +1
klatml(numlfx) = ikon
klatm2(numlfx) = jkon
fixed_val = ABS(fixed_val)
fixlen(numlfx) = fixed_val

flnsev(numlfx) = severity

END

SUBROUTINE angle_constraint

INCLUDE 'chmcm3. inc'
INCLUDE 'commgrap. inc'

LOGICAL exitf
INTEGER idum, ikon, jkon, kkon, itok
REAL fixed val, severity

itok =3
ikon = -1
exitf = FALSE.

CALL CLEAR-MENU
CALL message(l,

'PICK ATOMS DEFINING FIXED ANGLE', 13)
CALL find_atom_select(itok, ikon, jkon, kkon, idum)
CALL message(1,

'PICK ATOMS DEFINING FIXED ANGLE', 0)
CALL set_font(chl2w9)
CALL message(1,

'CHOOSE VALUE OF FIXED ANGLE', 0)
CALL bond_angle(ikon, jkon, kkon, fixed_val)

CALL number_pad(fixed_val, idum, 1)
CALL set_font(chl2w9)
CALL message(1,

'CHOOSE VALUE OF FIXED ANGLE', 0)
CALL get-severity(severity)

CALL enter_angle_constraint(ikon, jkon, kkon,
1 fixed_val, severity)

END

SUBROUTINE enter_angle_constraint(ikon, jkon, kkon, fixed_val,
1 severity)

INTEGER ikon, jkon, kkon
REAL fixed_val, severity

INCLUDE 'chmcm3. inc'

atcons(ikon. 3) = TRUE.
atcons(jkon, 3) _ TRUE.
atcons(kkon, 3) _ TRUE.
numafx = numafx +1
kaatml(numafx) = ikon
kaatm2(numafx) = jkon
kaatm3(numafx) = kkon
fixed_val = ABS(fixed_val)
fixang(numafx) = fixed_val
fansev(numafx) = severity * ansfac

END

SUBROUTINE torsion_constraint

INCLUDE 'chmcm3. inc"
INCLUDE 'commgrap. inc'

LOGICAL exitf
INTEGER idum, ikon, jkon, kkon, lkon, itok
REAL fixed_val, severity

itok =4
ikon = -1
exitf = FALSE.

CALL CLEAR-MENU
CALL message(l,

'PICK ATOMS DEFINING FIXED TORSION ANGLE', 13)
CALL find_atom_select(itok, ikon, jkon, kkon, lkon)

CALL message(l,
'PICK ATOMS DEFINING FIXED TORSION ANGLE-, O)

CALL set_font(ch12w9)

Appendix C 292

CALL message(1,
1 'CHOOSE FIXED VALUE OF TORSION ANGLE', 13)

CALL torsion_angle(ikon, jkon, kkon, lkon, fixed_val)
CALL numberpad(fixed_val, idum, 1)
CALL set_font(chl2w9)
CALL message(1,

1 'CHOOSE FIXED VALUE OF TORSION ANGLE', O)
CALL get_severity(severity)

CALL
enter_torsion_constraint(ikon, jkon, kkon, lkon,

1 fixed val, severity)

END

SUBROUTINE enter_torsion_constraint(ikon, jkon, kkon, ikon,
1 fixed_val, severity)

INTEGER ikon, jkon, kkon, ikon
REAL fixed_val, severity

INCLUDE "chmcm3. inc,

atcons(ikon, 4) = TRUE.
atcons(jkon, 4) = TRUE.
atcons(kkon, 4) _ TRUE.
atcons(lkon, 4) = TRUE.
numtfx = numtfx +1
ktatml(numtfx) = ikon
ktatm2(numtfx) = jkon
ktatm3(numtfx) = kkon
ktatm4(numtfx) = Ikon
fixtor(numtfx) = fixed_val
ftosev(numtfx) = severity * TOSFAC

END

SUBROUTINE molecule_constraint

INCLUDE 'comingrap. inc'
INCLUDE 'chmcm3. inc'

LOGICAL exitf
INTEGER idum, ikon, itok

itok =1

ikon = -1
CALL CLEAR-MENU
CALL message(i,

'PICK ANY ATOM IN MOLECULE TO FIX', 13)
CALL find_atom_select(itok, ikon, idum, idum, idum)
CALL message(1,

1 'PICK ANY ATOM IN MOLECULE TO FIX', 0)

CALL enter_molecule_constraint(moinum(ikon))

END

SUBROUTINE enter_moolecule_constraint(imol)

INTEGER"1 imol

INCLUDE 'commgrap. incl
INCLUDE 'chmcm3. inc'

nummfx = nummfx +1
kmol(nwmnfx) = imol

END

SUBROUTINE atom_distance(i, j, dist)

INTEGER i, j
REAL dist

INCLUDE 'cluacm3. incl

REAL dirl, dir2, dir3, dist2

dirt = xo(i, 1) - xo(j, 1)
dirt = xo(i, 2) - xo(j, 2)
dir3 = xo(i, 3) - xo(j, 3)
dist2 = (dirl ** 2) + (dirt ** 2) + (dir3 ** 2)
dist = SQRT(dist2)

END

Appendix C 293

SUBROUTINE bondangle(i, j, l, bangl)

INTEGER i, j, 1
REAL bangs

INCLUDE 'chmcm3. inc'

REAL xb, yb, zb, dcll, dcl2, dc21, dc22, dc31, dc32, rm1, rm2, r12, cosa,
1 res

C
C -- CALCULATE BOND ANGLE --
C

xb = xo(j, 1)
yb = xo(j, 2)
zb = xo(j, 3)
dcli = xo(i, l) - xb
dc12 = xo(1,1) - xb
dc21 = xo(i, 2) - yb
dc22 = xo(1,2) - yb
dc31 = xo(i, 3) - zb
dc32 = xo(1,3) - zb
rml = ((dcll * dcii) + (dc2l * dc2l)) + (dc31 * dc31)
rm2 = ((dc12 * dcl2) + (dc22 * dc22)) + (dc32 * dc32)
r12 = ((dcll * dcl2) + (dc2l * dc22)) + (dc3l * dc32)
rml = SQRT(rml)
rm2 = SQRT(rm2)
res = r12 / (rml * rm2)
cosa = SIGN(MIN(AHS(res), 1.0), res)
bangs = ACOS(cosa) * radi

END

SUBROUTINE torsion angle(i, j, l, m, tangl)

INTEGER i, j, l, in
REAL tangl

INCLUDE 'chmcm3. inc'

REAL xj, yj, zj, xl, yl, zl, aall, aal2, aal3. aa21, aa22, aa23, ta_sign,
1 aa31, aa32, aa33, v11, v12, v21, v22, v13, v23, rl, r2, dotpr, cosw

C
C -- CALCULATE TORSION ANGLE --
C

xj = xo(j, 1)
yj = xo(j, 2)
zj = xo(j, 3)
xi = xo(1,1)
Y1 = xo(1,2)
zl = xo(1,3)
aall = xo(i, 1) - xi
aalt = x1 - xi
aa13 = x1 - xo(m, i)
aa21 = xo(i, 2) - yj
aa22 = yl - yj
aa23 = yl - xo(m. 2)
aa31 = xo(i. 3) - zj
aa32 = zi - zj
aa33 = zi - xo(m. 3)
V11 = (aa21 * aa32) - (aa3i * aa22)
v21 = (aa22 * aa33) - (aa32 * aa23)
v12 = (aa31 * aalt) - (aalt * aa32)
v22 = (aa32 * aa13) - (aa12 * aa33)
v13 = (aall * aa22) - (aa2l * aalt)
v23 = (aal2 * aa23) - (aa22 * aa13)
ri = SQRT(((vll * v11) + (v12 * v12)) + (v13 * v13))
r2 = SQRT(((v21 * v21) + (v22 * v22)) + (v23 * v23))
dotpr = (((vil / rl) * (v21 / r2)) +

((v12 / ri) * (v22 / r2))) +
2 ((v13 / ri) * (v23 / r2))

cosw = SIGN (MIN (ABS (dotpr), 1.0), dotpr)
tangl = ACOS(cosw) * RADI

C
C -- CALCULATE CORRECT SIGN FOR TORSION ANGLE --
C

ta_sign = ((aall * ((aa22 * aa33) - (aa23 * aa32))) -
(aa2l * ((aal2 * aa33) - (aal3 * aa32)))) +

2 (aa31 * ((aa12 * aa23) - (aa13 * aa22)))
tangl = SIGN(tangl, ta_sign)

END

SUBROUTINE get_severity(severity)

REAL severity

INCLUDE 'commgrap. inc'

Appendix C 294

INTEGER idum

CALL set_font(chl2w9)

CALL message(1, 'CHOOSE SEVERITY OF CONSTRAINT1,13)
CALL number-pad(severity, idum, 0)
IF (severity LT. 10.0) THEN

severity = 10.0
ELSE IF (severity GT. 3000.0) THEN

severity = 3000.0
END IF
CALL set_font(chl2w9)
CALL message(1, 'CHOOSE SEVERITY OF CONSTRAINT', 0)

END

SUBROUTINE fi11_circle (xl, yl, x2, y2)

INCLUDE 'fgraph. FD'

INTEGER*2 dummy
INTEGER xl, yl, x2, y2

dummy = ellipse($GFILLINTERIOR, xl, yl, x2, y2)

END

SUBROUTINE mark_atom(atm_num, c_colour)

INCLUDE 'chmcm3. inc'

INTEGER atm_num, xl, yl, x2, y2, c_colour, i

xl = isx(atm_num) -3
yl = isy(atm_num) -3
x2 = isx(atm_num) +3
y2 = isy(atm_num) +3

CALL xorstyle

call colour(c_colour)

call fill_circle(xl, yl. x2, y2)

CALL presetstyle

END

SUBROUTINE CLEAR-MENU

INCLUDE 'COMMGRAP. INC'

CALL COLOUR(O)

CALL FILL_BOX (0 - MENU_SPACEX, O,
O, MENU_SPACEY)

END

SUBROUTINE GRAPHICSMODE()

INCLUDE 'FGRAPH. FD'

INTEGER '2 MODESTATUS

C SET VIDEOMODE TO MAXRESOLUTION

MODESTATUS = SETVIDEOMODE($MAXRESMODE)
IF (MODESTATUS. EQ. O) STOP 'ERROR

CANNOT SET GRAPHICS MODE'

CALL CLEARSCREEN($CCLEARSCREEN)

END

SUBROUTINE ENDGRAPHICS()

INCLUDE 'FGRAPH. FD'

INTEGER -2 MODESTATUS

MODESTATUS = SETVIDEOMODE($DEFAULTMODE)

END

Appendix C 295

SUBROUTINE MOUSE

INCLUDE 'c: \1esley\MOUSE. FD'
INCLUDE 'FGRAPH. FD'

INTEGER START
INTEGER*2 BUTTONS

CALL COLOUR(7)
START = INITIALISEMOUSE(BUTTONS)

IF (START. EQ. O) THEN
CALL ENDGRAPHICSO
WRITE(*, *) 'MOUSE DRIVER NOT INSTALLED'

END IF

CALL SHOWMOUSECURSOR()

END

SUBROUTINE set_font(type)

INCLUDE 'FGRAPH. FD'

INTEGER *2 STATUS

INTEGER type

C SET FONTS

IF (type. eq. 1) THEN
STATUS = SETFONT("T'COURIER'"//'h12w9b')

ELSE IF (type. eq. 2) THEN
STATUS = SETFONT("T'COURIER "//'h15W12b')

ELSE
STATUS = SETFONT("T'COURIER'"//'h10w8b')

END IF

IF (STATUS. LT. O) THEN
STOP 'ERROR: CANNOT SET FONT'

END IF

END

SUBROUTINE register-fonts

INCLUDE 'FGRAPH. FD'

INTEGER *2 DUMMY

INTEGER type

C SET FONTS

DUMMY = REGISTERFONTS('C: \MSF\LIB*. FON')

IF (DUMMY. LT. O) THEN
STOP 'ERROR: CANNOT FIND FONT FILES'

END IF

END

SUBROUTINE text_info(textwd, textht)

INCLUDE fgraph. fd'

RECORD /fontinfo/myfont

INTEGER*2 status
INTEGER textwd, textht

status = GETFONTINFO(myfont)

IF (STATUS. NE. O) THEN

STOP 'ERROR: CANNOT FIND FONT CHARACTERISTICS'
END IF

textht a myfont. pixheight
textwd = myfont. pixwidth

write(10, *) textwd, textht

END

SUBROUTINE get_screen_coords (maxx, maxy)

INTEGER maxx, maxy

Appendix C 296

INCLUDE 'FCRAPH. FD'

RECORD/VIDEOCONFIG/MYSCREEN

CALL GETVIDEOCONFIG(MYSCREEN)

MAXX = MYSCREEN. NUMXPIXELS -1
MAXY = MYSCREEN. NUMYPIXELS -1

END

SUBROUTINE convert-to viewport_coords(XPOS, YPOS)

INTEGER*2 XPOS, YPOS

INCLUDE 'FCRAPH. FD'

RECORD /XYCOORD/viewport

CALL getviewcoord(XPOS, YPOS, viewport)

XPOS = viewport. xcoord
YPOS = viewport. ycoord

END

SUBROUTINE init_screen_area(screen_type)

INCLUDE 'commgrap. inc'

INTEGER txtwd, txtht, xtp, ytp, screen_type

CALL get_screen_coords(xtp, ytp)

C set message area at top of screen

CALL set_font(chl2w9)
CALL text_info(txtwd, txtht)

message_spacey a ((no_of_messages*txtht) +
1 ((no_of_messages - 1) * txtht/2))

C Set menu area at side of screen

IF (screen_type. eq. 2) THEN
menu_spacex = (MAX_LENGTH_MENU_STRING"txtwd) +

1 txtwd
ELSE

call set_font(chl5wl2)
CALL text_info(txtwd, txtht)
menu_spacex = (7 * txtwd) + txtwd

END IF

menu_spacey = ytp - message_spacey

C set display area

CALL set_display_area(menu_spacex, message_spacey)

C calculate centre coordiantes of display area

viewport_xspace = xtp - menu_spacex
viewport_yspace = ytp - message_spacey

x_viewport_cent = (viewport_xspace)/2
y_viewport_cent - (viewport_yspace)/2

END

SUBROUTINE set_display_area(xshift, yshift)

include 'FGRAPH. FD'

INTEGER xshift, yshift

RECORD /xycoord/org

CALL setvieworg(xshift, yshift, org)

END

SUBROUTINE MESSAGE (ROW, STRING, TEXT_COLOUR)

INCLUDE 'commgrap. incl

INTEGER row, mposx, mposy, text colour, txtwd, txtht, xtp, ytp,
1 cent re-pi xel, length, length_pixeIs, centre_string

Appendix C 297

CHARACTER*(*) string

IF (ROW. GT. no_of_messages) THEN
STOP 'ERROR: NO SPACE FOR MESSAGE'

END IF

CALL text_info (txtwd, txtht)

MESPOSY =0- message_spacey + (row * (txtht + txtht/2))

IF (row. eq. 0) THEN
CALL get_screen_coords(xtp, ytp)

centre-pixel = INT((xtp + 1)/2)
length - LEN_TRIM(string)
length-pixels = length * txtwd
centre_string - INT(length_pixels/2)

ELSE
MESPOSX =0- menu_spacex + centre_pixel - centre_string

MESPOSX =0- menu_spacex
END IF

call colour (TEXT_COLOUR)
call text (mesposx, mesposy, string)

END

SUBROUTINE iniC menu_data(num_opt)

INCLUDE 'commgrap. inc'
INCLUDE 'commmenu. inc'

INTEGER textwd, textht, text_spacey, free_spacey,
1 free_spacey2, tlen, nuxnopt,
2 total_length_text, length_half_text,
3 free_spacex, free_spacex2, i

CRARACTER"20 menu-text(20)

CALL set_font(chl2w9)
CALL text-info (textwd, textht)

text_spacey = num_opt * textht
free_spacey = (menu_spacey - text_spacey)/

num_opt +1
free_spacey = MIN(free_spacey, (3 * (textht/2)))
free_spacey2 = free_spacey/3

tlen = LEN(menu_text(1))
total_length_text = tlen * textwd
length_half_text = total-length-text/2

free_spacex = (menu_spacex - total_length_text)/2
free_spacex2 = free_spacex/3

DO I=1, num_opt
xpos_text(i) _ (0 - menu_spacex) + free_spacex
ypos_text(i) = (((I-1) * (textht + free_spacey)) +

free_spacey)
menu_obxl(i) = xpos_text(i) - free_spacex2
menu_obxr(i) = menu_obxl(i) + (length-half-text +

free_spacex2) *2
menu_obyt(i) = ypos_text(i) - free_spacey2
menu_obyb(i) = menu_obyt(i) + (textht/2 +

free_spacey2) *2

middle_text(i) = xpos_text(i) + length-half-text
END DO

END

SUBROUTINE display_fix_menu(num_opt)

INTEGER num_opt
CHARACTER*20 menu_text(20)

menu-text(l) = 'FIX ATOM'
menu-text(2) _ 'FIX DISTANCE'

menu-text(3) _ 'FIX VALENCE ANGLE'

menu-text(4) _ 'FIX TORSION ANGLE,

menu-text(S) - 'FIX MOLECULE'

menu-text(6) = 'DONE'

CALL draw_nenu(num_opt, menu_text)

END

SUBROUTINE draw menu(num_opt, menu_text)

Appendix C 298

INCLUDE 'commmenu. inc'
INCLUDE 'commgrap. inc'

INTEGER num opt, len, len2, textwd, textht, len2 pixels
CHARACTER*(*) menu_text(*)

DO I=1, num_opt
IF (menu_text(i). EQ. 'DONE') THEN

CALL COLOUR(done_box_colour)
ELSE

CALL colour(box_menu_colour)
END IF
CALL BOX(menu_obxl(i), menu_obyt(i),

1 menu_obxr(i). menu_obyb(i))

IF (menu_text(i). EQ. 'DONE') THEN
CALL COLOUR(done_text_colour)

ELSE
CALL colour(text_menu_colour)

END IF

c calculate start position of centralised text

len = LEN_TRIM(menu_text(1))
lent = len/2

call text_info(textwd, textht)
lent pixels = lent * textwd
xpos_text(i) = middle-text(i) - lent pixels
CALL TEXT(xpos_text(i), ypos_text(i). menu_text(i))

END DO

END

SUBROUTINE get_mol_screen. coords

INCLUDE chmcm3. jnc,

INCLUDE "commgrap. inc"

REAL xcent, ycent
COMMON /SCCDCN/ xcent, ycent

REAL xleft, xright, ylow, yhigh, xt, yt,
1 xsize, ysize, rxl, rxr, ryl, ryh, rzf, rzb, size_mean,
2 xot, yot

INTEGER i, iatomxl, iatomxr, iatomyl, iatomyh

DO i=1, numats
xt = xo(i, 1)
yt = xo(i. 2)
IF (xt LT. xleft) THEN

xleft = xt
iatnmxl =i

END IF
IF (xt GT. xright) THEN

xright = xt
iatomxr =i

END IF
IF (yt LT. ylow) then

glow = yt
iatomyl -i

END IF
IF (yt GT. yhigh) THEN

yhigh = yt
iatomyh ai

END IF
END DO
xsize = xright - xleft + 0.2
ysize = yhigh - ylow + 0.2
xcent = xleft + (xsize / 2.0)
ycent = glow + (ysize / 2.0)

size_mean = (xsize * xsize) + (ysize * ysize)
size_mean = SQRT(size_mean)
IF (size mean GT. 0.001) THEN

scale_ang_screen = FLOAT(MIN(viewport_xspace,
1 viewportyspace))/size_mean

ELSE
scale_ang_screen = 0.0

END IF
C
C -- CALCULATE SCREEN COORDINATES AFTER CENTERING MOLECULE ON ORIGIN

C -- OF USER COORDINATES. --
C

DO i=1, numats
xot = xo(i, 1) - xcent
yot = xo(i, 2) - ycent
zot = xo(i, 3) - zcent

Appendix C 299

isx(i) = INT(xot * scale_ang_screen) + x_viewport_cent
isy(i) = INT(yot * scale_ang_screen) + y_viewport_cent

END DO

END

SUBROUTINE draw_simple_stick_molecule

INCLUDE 'chmcm3. inc'
INCLUDE 'commgrap. inc'
INCLUDE 'fgraph. FD'

INTEGER bnd_cnt, point(6), idelx, idely, iacol, colour_atom
LOGICAL drawf, hydro

CALL CLEARSCREEN($GCLEARSCREEN)
hydro = TRUE.

CALL init_atom colours

DO i=1, numats
IF (atynum(i) GT. MAXTYP) THEN

CONTINUE
ELSE IF ((. NOT. hydro) AND.

(atynum(i) LE. Hh)) THEN
CONTINUE

ELSE
bnd_cnt =0

DO j=1, MXCN
drawf = FALSE.
iconnij = atmcon(i, j)
IF (iconnij EQ. 0) THEN

bnd_cnt = bnd_cnt +1
ELSE IF ((. NOT. hydro) AND.

(atynum(iconnij) LE. Hh)) THEN
bnd_cnt = bnd_cnt +1

ELSE IF (iconnij GT. i) THEN
drawf = TRUE.

END IF
IF (drawf) THEN

idelx = isx(iconnij) - iex(i)
idely = isy(iconnij) - isy(i)
point(1)=isx(i)
point(2)=isy(i)
point(3)=isx(i) + (idelx / 2)
point(4)=isy(i) + (idely / 2)
point(5)=isx(iconnij)
point(6)=isy(iconnij)

iacol = colour_atom(atynum(i))
CALL colour(iacol)

CALL draw-line (point(1))

iacol = colour_atom(atynum(iconnij))
CALL colour(iacol)

CALL draw-line (point(3))
END IF

END DO
C IF (bnd_cnt EQ. MXCN) THEN
C CALL get_z_int(isz(i), ibint)
C CALL setfcr(atom_color(atynum(i), ibint))
C CALL filcir(isx(i), isy(i),
C1 INT(MAX(4.0,0.1 * scale_ang screen))
C END IF

END IF
END DO

END

SUBROUTINE draw_atom__numbers(col)

INCLUDE 'chmcm3. inc'
INCLUDE 'commgrap. inc'
CHARACTER"2 atom-number
INTEGER textwd, textht, i, col, posx_atom_number,

posy-atom-number

CALL set_font(chl2w9)

CALL text_info(textwd, textht)

DO I=1, NUMATS

posx_atom_number = isx(i) - textwd - (textwd/2)

posy-atom-number = isy(i)

Appendix C 300

WRITE(atom_number,, (I2),) I
CALL colour(col)
CALL text (posx_atom_number, posy_atom_number,

atom_number)
END DO

END

SUBROUTINE init_atom_colours

INCLUDE 'chmcm3. inc'
INCLUDE 'commgrap. inc'

DO I=1, MAXTYP
IF ((I. EQ. H). OR. (I. EQ. Har). OR. (I. EQ. Hh)) THEN

atom-colours(I) = 15
ELSE IF ((I. EQ. Csp3). OR. (I. EQ. Csp2). OR. (I. EQ. Car)) THEN

atom_colours(I) =2
ELSE IF ((I. EQ. Nsp). OR. (I. EQ. Namide). OR. (I. EQ. Ncation). OR.

1 (I. EQ. Nar)) THEN
atom_colours(I) =9

ELSE IF ((I. EQ. Osp3). OR. (I. EQ. Osp2). OR. (I. EQ. Oanion)) THEN
atom_colours(I) = 12

ELSE IF ((I. EQ. F). OR. (I. EQ. C1). OR. (I. EQ. Br). OR.
1 (I. EQ. Iod)) THEN

atom_colours(I) = 11
ELSE IF (I. EQ. Piii) THEN

atom_colours(I) = 13
ELSE IF ((I. EQ. Sii). OR. (I. EQ. Siii)) THEN

atom-colours(I) = 14
ELSE IF ((I. EQ. Mg2). OR. (I. EQ. Ca2). OR. (I. EQ. Ba2). OR.

1 (I. EQ. Fe2). OR. (I. EQ. Fe3). OR. (I. EQ. Cul). OR.
2 (I. EQ. Cu2). OR. (I. EQ. MET). OR. (I. EQ. MET1)) THEN

atom_colours(I) =8
ELSE

atom_colours(I) =6
END IF

END DO

END

INTEGER FUNCTION colour_atom(atom_type_num)

INCLUDE 'chmcm3. inc'

BYTE atom_type_num

colour-atom = atom_colours(atom_type_num)

END
RETURN

SUBROUTINE draw_line(points)

INCLUDE 'FGRAPH. FD'

RECORD /xycoord/xy

INTEGER*2 status
INTEGER points(4)

CALL moveto(points(1), points(2), xy)
status = lineto(points(3), points(4))

END

SUBROUTINE BOX(xl, yl, x2, y2)

INTEGER x1, y1, x2, y2

INCLUDE 'FGRAPH. FD'

INTEGER *2 STATUS

C DRAWBOX

STATUS = RECTANGLE($GBORDER, x1, yl, x2, y2)

END

SUBROUTINE FILL_BOX(x1, yl, x2, y2)

INTEGER xl, yl, x2, y2

INCLUDE 'FGRAPH. FD'

INTEGER *2 STATUS

Appendix C 301

C DRAWBOX

STATUS = RECTANGLE($GFILLINTERIOR, x1, y1, x2, y2)

END

SUBROUTINE TEXT(XCOORD, YCOORD, STRING)

INCLUDE 'FGRAPH. FD'

RECORD/XYCOORD/XY
INTEGER XCOORD, YCOORD
CHARACTER*(*) STRING

CALL MOVETO(XCOORD, YCOORD, XY)
CALL OUTGTEXT(STRING)

END

C ****SET COLOUR****

SUBROUTINE COLOUR(C)

INCLUDE 'FGRAPH. FD'

INTEGER C
INTEGER*2 PICK

PICK = SETCOLOR(C)

IF (PICK. EQ. -1) THEN
STOP ERROR: CPNNOT SET COLOUR'

END IF

END

SUBROUTINE XORSTYLE

IMPLICIT NONE

INCLUDE FGRAPH. FD'

INTEGER*2 STYLE
STYLE = SETWRITEMODE($GXOR)

IF (STYLE. EQ. -l) THEN
STOP ERROR: CANNOT SET WRITEMODE'

END IF

END

SUBROUTINE PRESETSTYLE

INCLUDE 'FGRAPH. FD'

INTEGER*2 STYLE
STYLE = SETWRITEMODE($GPSET)

IF (STYLE. EQ. -I) THEN
STOP 'ERROR: CANNOT SET WRITEMODE'

END IF

END

Appendix C 302

Appendix D:

Photographs.

Apixndix D
303

FIGURE 1. Switch Board

FIGURE 2. Dual Link Adapter Board

Appendix 304

FIGURE 3. Token Passing Test Circuit

a*ssaswrfws*. r- ýº 4 :s tt s*kA! ß s.. ""f! !?! Mº Yc d gl
" rf r"$ sa4x. 4k .snrr t> f ^'.: V *. s: *. s Y> r* 4º 4r ý+ ew

FIGURE 4. FIFO Clocking Test Circuit

Appends D 305

FIGURE 5. Control Processor Board

FIGURE 6. PC plug-in card to emulate node

APPcodu D 306

FIGURE 7. Graphical interface allowing connections between nodes

FIGURE S. Graphical Interface showing connections between nodes

Appends D 307

FIGURE 9. Initial Screen of minimiser

FIGURE 10. Number Pad allowing user to enter number of iterations

APB D 308

FIGURE 11. Screen allowing user to fix parameters

FIGURE 12. Selecting a fixed length

Appendix D 309

FIGURE 13. Entering severity of constraint

Appcixix D 310

Appendix E:

Publications.

. --- I'- V
I%ppcuuIA c 311

A circuit switched network for Inmos OSLinks
Lesley Bissland and David N. J. White

University of Glasgow, Department of Chemistry, Glasgow, Scotland
e-mail: lesley@tcrystal. gla. ac. uk

Abstract. Inter-processor communication paradigms are crucial factors
in parallel computer system performance. An efficient circuit switching
mechanism allowing dynamic-on-demand allocation of physical links
between processing nodes is described. This cost-effective, memory-
mapped system sends connection requests via an INMOS OSLink to a
control processor which programs a crossbar switch. By setting up
point-to-point direct physical links between nodes this allows every
node to communicate directly with every other node of a parallel
computer.

1.0 Introduction

The passing of messages between nodes is potentially the dominant component in the
performance of multiprocessor architectures. If the communication mechanism cannot support
the speed of the nodes then the full potential of a multiprocessor architecture is not realised.
This has led to research into the development of better routing algorithms, hardware routers,
and interconnection networks which all hope to provide high-bandwidth interprocessor

communication resilient to failures, bottlenecks and deadlock.
There are three methods of interprocessor communication [I]: packet switching, circuit

switching and packet switching through circuit switching. Any method which utilises packet
switching usually relies on dedicated software on each node to manage the passing of the
packets. INMOS provide software for the T-800 transputer which supports virtual channel
routing (a packet switching scheme). Since additional software is required on each node to
support the packet switching this uses up some of the computational power of the node and also
introduces a large message latency. Obviously the longer the message the larger the message
latency, therefore for systems where large volumes of data are transferred it is more efficient to
use a circuit switching mechanism.

Circuit switching mechanisms establish a dedicated communication link between the two
communicating nodes. This link is maintained until the complete message has been transmitted
from the source node to the destination node. No dedicated communication software is required
on each node, only on the control node which is setting up the communication links. The
dedicated communication link can be set up before the execution of a program or dynamically

on demand during the program run time.
A control processor programs a crossbar switch to set up the connections between nodes. To

enable connections to be established during program run-time the nodes send connection
requests to the control processor. In order to reduce the message latency an efficient and fast

mechanism must be used to interface the nodes to the control processor.

Tudruj and Kalinowski [1] described a method whereby the nodes sent connection requests
to a control transputer via a TRANSBUS [2]. The TRANSBUS is an application specific
integrated circuit (ASIC) which acts as an interface between the node and the serial bus
connected to the control processor. The ASIC is not commercially available and this restricts
its use in systems other than [1]. Also one of the data links on the node provides the serial bus
to the control transputer. In the case of the transputer this means that only three links are
available for internode data transfers. This does not make good use of the total available
bandwidth available from a transputer.

The dynamic-on-demand circuit switched network described in this paper employs the
same principle as in [1] but instead of using an ASIC (i. e. TRANSBUS) several commonly
available integrated circuits (ICs) are utilised to interface the nodes with the control processor.
Connection requests from the nodes are sent via a memory mapped system which leaves all the
links on the nodes free for interprocessor communication. The nodes are not restricted to
transputers, the system can be used with any processor which provides an external memory
interface. The control processor used is twice as fast as a T222 transputer.

2.0 Dynamic Interconnection Network

2.1 Basic Procedure

When a node (the source node) wants to communicate with an another node (the destination
node) via the crossbar switch, it writes its connection request (a three byte packet) into a FIFO
(First In First Out Memory), which stores the request until it is honoured. To select nodes for
servicing a token passing protocol is used. The token circulates between the nodes and when a
node receives the token and there is a request pending, the request is passed out of the FIFO to
the control processor, via an INMOS OSLink. The control processor then decides whether the
required connection is available and if so makes the connection. A message indicating success
or failure to make the connection is sent to the source node. In this way the control processor
processes connection requests from the nodes in a sequential manner.

2.2 Hardware subsystem

A diagram of the hardware is illustrated in Figure 1. A node requiring service writes its
connection request into the First In First Out Memory (FIFO), which is mapped into the nodes
memory address space. This allows the node to continue with other tasks while its connection
request remains stored in the FIFO until honoured. When a node receives the token, its request
is clocked out of the FIFO into a C011 Link Adapter [3]. The data is then transferred via the
INMOS OSLink to the control processor which programs the crossbar switch. Access to the
link is gated by a buffer ('125) which is only enabled when the node has the token and there is

a request pending.

2.3 Token Passing

The token passing is achieved by a finite state machine (SM) implemented in PLDs
(Programmable Logic Device). A state machine has a set of states and a set of transition rules
for moving between the states at each clock edge (the clock is derived externally). The
transition rules depend on the both the present state and on the particular combination of input
levels present at the next clock edge.

The token passing bus consists of two lines: one which passes the token and one which
acknowledges the passing of the token (See Figure 2). The state variables are TokenOut and
AckOut, and the inputs are Tokenin, AckIn, and HoldToken. The token is effectively a bit

which passes between the PLDs and each node has a PLD associated with it. The clock used
for the token passing is 8Mliz

2

245'
OCTAL BUS

TRANSCEIVER

CO 12

CROSSBAR SWITCH

PLD
FIFO

Node CLOCKING

TOKEN o --Token Passing
HANDLER IN --Bus

8

HOO

coil

CONTROL
ROCESSOF 8 -Icol

`125
To other nodes

FIGURE 1. Dynamic Interconnection Network (1 node)

LCik
PLD

Clk
PLD

Clk
PLD

okenIn TokenOut - Tokenln

Tt pnn, ir nkenin TokenO

wkIn Ackout - AckIn
Ackout Ackln Acko

IoldToken oldToken HoldToken

FIGURE 2. Token Passing

If a node receives the token and there is a request packet in the FIFO, then the token must be

retained until the FIFO has been emptied and the node no longer requires the token. This is

achieved by the IloldToken signal, which is generated by using a combination of the

Empty_Flag* (EF*) signal from the FIFO (logic false (+5V) when the FIFO contains bytes),
and a D-type flip-flop (See Figure 3).

+5V

+5V, I PRE
Q[-HoldToken

CLR

To Node

(+5V)
(E f* -I (0V)

D (+5V)
(0V)
(+5V)

(IioldToken)Q (0V)
CLR (+5V)

(0V)

FIGURE 3. Generation of IloldToken signal

The Q-output of the flip-flop is used as the HoldToken signal. The EF* signal clocks the
flip-flop: therefore when EF* becomes logic false (+5V) indicating data is in the FIFO, the
level at the D-input (logic high (+5V)) is transferred to the Q-output of the flip-flop. To release
the token, the node pulls the CLR* signal on the flip-flop logic low (0V) for a short period,
which clears the Q-output back to logic low releasing the token.

A state diagram for the token passing state machine is shown in Figure 4. The SM remains
in state zero (SO) until the token arrives (i. e Tokenln = 1) and then on the next clock edge
proceeds to state one (S 1) which acknowledges the arrival of the token by setting AckOut true.
If IloldToken is true then the state machine remains in state one (Si), otherwise on the next
clock edge it proceeds to state two (S2) which passes the token on by setting TokenOut logic
true. The SM does not go back to state one until the passing of the token has been
acknowledged (Ackln = 1). To inject the token into the system one state machine is
programmed with the initial state holding TokenOut true (i. e the initial state is S2).

2.4 FIFO Access

The connection request in the FIFO must be clocked out byte at a time to the COI I and then
sent to the control processor. This is also achieved by a finite state machine (See Figure 5). The
state machine controls the RD* (read) signal on the FIFO and the lAck and IValid signals on
the CC11. Pulling the RD* signal low transfers a byte out of the FIFO to the COI 1 parallel port.
In order to transmit the byte from the parallel port to the INMOS OSLink, IValid is pulled
high. To indicate the byte has been transferred successfully IAck is pulled high by the COII
and then IValid returned low by the SM.

The Empty_Flag* on the FIFO signals to the state machine when data is present in the
FIFO, and an output called TokenArrived from the token passing state machine indicates when
the token is present. The state machine waits at SO while the FIFO is empty or the token has

not arrived. When the token arrives and there is data in the FIFO the SM then proceeds to Si
on the next clock edge and this initiates a read cycle on the FIFO. On the next clock edge the
SM then unconditionally jumps to S2 which takes IValid true and enables the buffer ('125) that
restricts access to the serial bus. The SM then waits for lAck to become true, indicating the
transfer of a byte to the INMOS OSLink, before proceeding back to SO.

The FIFO clocking and Token passing state machines can be implemented in the same PLD
and therefore can both use the same clock. Using terminated coax wires to connect the clock
inputs on the PLDs together, it would be possible to run the token passing and FIFO clocking
at 40 Mliz.

Tokenln= 1

"-Si SAckOut
=1

TokenOut =0

IloldToken =I

0 =logic 'false'

1= logic 'true'

SO
AckOut =0 Tokenln =0

TokenOut =0

)ýD

Ackln =1

S2 `
AckOut =0

HioldToken =0

{T0kenOut
=1

AckIn =0

FIGURE 4. State Diagram for token passing

so

TokenArrived =0
IValid =0 Empty-flag =1 EnableBuffer =0

ReadFifo= 0

TokenArrived =1
Empty-flag =0 IAck =1

SI S2
IValid =0 IValid =1

EnableBuffer

)ýO

EnableBuffer =1
RcadFifo = ReadFifo =1,

0= logic `false`
I= logic `true' lAck =0

FIGURES. State Diagram for FIFO clocking

To summarise the steps required to communicate with the control processor a schematic
representation is shown in Figure 6.

Node requires to
communicate with
other node

Node writes connection Token
request to FIFO arrives

Data clocked out
of FIFO into CO11

Control Processor
programs X-bar

3.0 Control Processor

FIGURE 6. Schematic Representation

Data transferred to I
Control Processor

The function of the control processor is to receive the connection requests from the nodes and
then program the required connections on the crossbar switch. The processor used is an Analog
devices ADSP-2105 [4). This is used instead of a transputer as it achieves higher performance
(at least twice as fast as a T222 transputer) at much lower cost.

3.1 ADSP -2105

The ADSP-2105 is a 12MHIz microcomputer suitable for high-speed numeric processing
applications (higher speed versions are available). It contains 1K words of on-chip program
memory RAM and 512 words of on-chip data memory RAM. The internal program memory
can be automatically booted upon reset from an EPROM.

3.2 Software considerations

When the source node decides it wants to communicate with the destination node, the system
level software on the source node scans the links on the node for a free link to communicate
with the destination node. Once a free link is found the source node sends its connection
request (consisting of three bytes) to the control processor (See Figure 7). The first byte

contains the address of the source node and the second byte contains the link number on the
source node. The third byte holds the address of the destination node. This protocol can be

expanded for more processors by using two bytes for the addresses of the source and
destination processors.

0
7 012 3456 7 0................................ 7

Address of Address of
source node destination node

No of link
on source
node

FIGURE 7. Connection request sent by node

The control processor has a table in memory which contains the connections from the nodes
to the crossbar switch and a flag to indicate whether the connection is already in use (See
Figure 8). When a connection request is received the control processor scans the table to find

the link on the crossbar switch that the source node is connected to. It then scans the table

looking for a free link on the destination node and if one is free makes the connection on the
crossbar switch which connects the source node to the destination node. The flags in the
connection table are then updated and an acknowledge is returned to the source node.

ARRAYS

Node No. [32] Link No Link No Connection [32]
On Node [32] On Crossbar [32]

L
Used/Unused

o o 10 1
0 1 25 0
0 2 12 0
0 3 30 1
1 0 8 1

FIGURE 8. Connection Table in Control Processor

The format of the acknowledge byte is shown in Figure 9. The link number of the
destination node is sent in order to allow the source node to make disconnection requests
(more on this later). If the value of the byte returned is greater than the number of links on the
destination node (i. e greater then four for a transputer), this signifies to the source node that the
connection could not be established. The byte is returned via an octal bus transceiver rather
than the FIFO as only one byte is returned to the requesting node. Data from the source node to
the control processor is therefore transferred via the FIFO and data is returned to the source
node via an octal bus transceiver.

0
2 3................................. 7

Link No. on
destination node

FIGURE 9. Acknowledge Byte returned to source node

Once a node receives a message indicating its connection request has been honoured it is
free to send data via the crossbar switch to the destination node. The source node knows when
the message has been successfully received by the destination node due to the link
acknowledge protocol used by INMOS OSLinks. When the data has been completely
transferred then the connection can be broken. The format of the disconnection request made
by the source node is shown in Figure 10.

0 7 012345670................................ 7
I Address of Address of

source node destination node

No of link
on source
node

No of link
on destination
node

FIGURE 10. Disconnection Request

The message is basically the same as a connection request, except that the number of the
link on the destination node is sent as well. The reason for this is that in the case where two
nodes are connected by two or more links then the link numbers need to be specified in order to
disconnect the correct link.

The control processor can distinguish between connection and disconnection requests by
looking at the value of the second byte. If it is greater than the number of links on the source
node then the request must be a disconnection request (i. e it contains the address of the
destination node).

3.3 Crossbar switch

The crossbar switch used is the 32-way INMOS C004 [3]. Since in the case of a transputer all
four links can be connected to the crossbar switch, 8 transputers can be fully connected by
using a C004. A 64-way crossbar switch such as the LSILogic L64270 [5] could be used which
would allow 16 transputers to be fully connected. If more transputers were required then the
number of crossbar switches could be increased. Each crossbar switch would have a C012
connected to it and the C012 would be addressed by the control processor. Effectively each
crossbar switch would have a unique address.

4.0 Connection Request Service Time

The four major factors involved in the time taken to service a request are:

" the time required to pass the token.

" the time taken to clock the bytes out of the FIFO

" the time to transfer the bytes from the CO11 to the Control Processor

" the time required to program the crossbar switch.

If the PALS are being clocked at 20MHz and the INMOS OSLink is operating at 20Mbits/s
then the connection request service time is approximately 2µs. The service time could be

speeded up by using a faster token passing clock and control processor.

5.0 Conclusions

All the ICs employed in our system are commercially available at relatively low cost. The
control processor used achieves a much higher performance than a transputer enabling it to
process connection requests much faster. Also all the valuable communication links on the
node are free for interprocessor communication and are not tied up with control information.

This cost-effective method provides deadlock free, low message latency, dynamic

reconfigurability. This is especially useful in time critical applications which transmit and
receive large volumes of data such as robotics and image processing. Although in our case the

nodes were transputers, the hardware subsystem can be used with other processors providing
they possess a high speed communication mechanism.

The system described is a prototype version which functions successfully. It is hoped that

when the system is fully integrated into a multiprocessor architecture a faster token passing
clock and control processor will be used.

Acknowledgements

LB would like to thank the EPSRC (Engineering and Physical Sciences Research Council) for

the award of a studentship to fund this work.

References

[1] M. Tudruj, T. Kalinowski, Multi-Transputer Systems with Dynamic Link Connection
Switching Controlled through a Serial Bus. Transputer Applications and Systems 1993,
pp 803-818

[2] J. P. Calvez, O. Pasquier, A Transputer Interconnection Bus For Hard Real-Time Systems,
Transputers 1992, pp 273 - 283

[3] INMOS Ltd, Transputer Databook, INMOS 1992

141 ADSP-2100 Family Assembler Manual 1991, Analog Devices, Inc.

[5] L64270 Preliminary Data, LSI Logic Corporation 1989

Parallel Molecular Mechanics Calculations

Lesley Bissland and David N. J. White
Department of Chemistry, University of Glasgow, Glasgow, G12 8QQ

e-niail. -lesley@tcrystaLgia. ac. uk

Astract. This paper describes the parallelisation of a sequential FORTRAN
molecular mechanics program to run on novel hardware, where each node processor
has a dedicated high speed link to the host processor, and to all of the other nodes.
The host processor can broadcast code/data to the nodes over these direct links using
an overhead free hardware mechanism. The broadcast hardware is supported by the
COMFORT message passing subroutine library.

1. Introduction

In order to design a new molecule using a CAMD (Computer Aided Molecular Design)
package [1,2,3] a crude structure is built up by combining smaller molecules or
fragments of molecules into a larger overall structure. The molecule can also be
constructed one atom at a time using known average bond lengths, valency angles, and
torsion angles. Obviously structures built up this way are extremely crude as they do
not take into account the interactions between the various molecular fragments and
how they will affect the structure of the molecule as a whole. Before the modelled
structure can be useful in the drug design process its structure must be computationally
optimised by a procedure known as energy minimisation.

The steric energy of the molecule is calculated by adding together the potential
energy contributions from bond stretching, angle bending, bond torsion, non-bonded
interactions, coulombic interactions and pyramidalisation of non-planar systems. Once
this energy has been found the geometry of the molecule is systematically altered (i. e.
the atomic coordinates are shifted by a calculated amount) in the hope of locating the
global energy minimum.

Various optimisation methods can be used in the attempt to find this global energy
minimum. Unfortunately though, all of these methods are prone to locate the local
energy minimum closest to the starting point of the calculation, rather than the global
minimum. The difference between local and global minima is illustrated below.

Local Maximum

Saddle Point
N
R

Local Minimum

G
Global Energy Minimum Y

MOLECULAR SHAPE
FIGURE 1. Energy of a molecule vs. Molecular Shape

321

There are two main categories of optimisation technique namely search and gradient
methods. An example of a search method is pattern searching [4].

Pattern searching applies positive and negative shifts (--0.1A) to each atom's atomic
coordinates one at a time and then tests to see whether the steric energy has decreased
or increased. If the energy has decreased then the atom is left in its new position and
the new steric energy used as the current value. However, if the energy has increased
then the atom is returned to its original position and the coordinate is then shifted in the
opposite direction. Again the steric energy is calculated and if it has decreased then the
atom is left in the new position otherwise it is returned to its original position.

The whole pattern of successful shifts built up in this way is repeated and the steric
energy checked for further reduction. The pattern is repeated until it no longer works
and then the pattern is repeated with half the shift value and then iteratively until the

shift reaches a sufficiently small value (10-5Ä). When the current pattern no longer
works, or the shift becomes too small, a new pattern is established and the whole
process repeated until a reduction in energy is no longer possible.

This method is guaranteed to find a local energy minimum and has a large radius of
convergence (i. e. even with an extremely crude starting structure a local energy
minimum will be reached). However the rate of convergence is slow as the same shift
size is applied to each coordinate and the shift size is refined very slowly (i. e it could
take hundreds of iterations to reach an energy minimum).

Gradient based methods again apply a shift, in the search for lower energy, to each
coordinate but in this case the shift is proportional to the gradient of the steric energy at
this point (i. e if the gradient of the steric energy is steep then large shift is applied, if
the steric energy function is flatter then a smaller shift is applied). These techniques are
said to reach an energy minimum when the vector of first partial derivatives of the
steric energy with respect to the atomic coordinates is zero. This is the case not only at
energy minima but also at energy maxima and saddle points; a feature of gradient
methods which can be useful when searching for transition state structures but an
inconvenience when looking for minima.

Gradient based techniques have a fast rate of convergence as they calculate shifts
based on the gradient of the steric energy function. However, the radius of convergence
is small for the popular full matrix Newton Raphson (NR) iteration (see later for

explanation). The radius of convergence can be increased by using approximations to
the full NR such as the Block Diagonal Newton Raphson iteration and steepest
descents, but at the expense of rate of convergence.

An example of a simple gradient based method is steepest descent [5] (a variation of
the full NR iteration - almost all gradient based methods of optimisation are variants of
the NR iteration). This involves calculating the gradient (the first partial derivative of
the steric energy w. r. t. the atomic coordinates) of the steric energy function at a
particular point. Once the gradient has been calculated the coordinates are shifted in the
direction of lower energy by an amount proportional to the gradient. The constant of
proportionality is determined empirically. This procedure is repeated until a local
minima is reached.

Steepest descents has the disadvantage that it is only the gradient of the steric
energy function that is considered and the curvature (the second partial derivatives of
the steric energy) of the function is not taken into account when calculating the shift.

A technique which considers both the gradient and curvature of the steric energy
function is the Block Diagonal Newton Raphson iteration [6]. This technique
converges faster (usually in 50-200 iterations) than the steepest descent or pattern
based methods and has a reasonable radius of convergence. This is the method used in
our energy minimisation algorithm and it will be discussed in detail in Section 2.

322

Obviously the larger the number of atoms in the molecule, the longer the
optimisation takes, so for large protein structures comprising up to thousands of atoms
the program run-time can be very long on a sequential computer. Energy minimisation
can be parallelised by dividing up the atoms between the available nodes so that each
node works on a 'slice' of atoms; i. e each node executes the same code but on a
different data set.

Many implementations of parallel molecular dynamics [7,8] (the simulation of
molecular motions with time) have been attempted, however little work has been
published on parallel energy minimisation. Schweitzer et al. [9] parallelised the
molecular mechanics MM2 package by splitting four computationally intensive
subroutines over four processors on a shared memory computer. Our parallel minimiser
parallelises the code by dividing the data domain onto the available processors on a
distributed memory machine.

In our parallel minimiser each node has a copy of the atomic coordinates of all the
atoms, as some of the atoms in it's 'slice' may interact with atoms on other nodes. The
nodes consider each atom in their 'slice' one at a time. For each atom the first and
second partial derivatives of the steric energy with respect to the atomic coordinates
are calculated. The atom's corrected coordinates are then computed using the Newton
Raphson iteration. Once the corrected coordinates for all the atoms have been
computed, they are sent back to the host. The host assembles a complete set of new
`improved' coordinates from the `slices' returned by the nodes and broadcasts this set
back to all the nodes ready for the next iteration.

In a conventional 3L FORTRAN based implementation of parallel molecular
mechanics the nodes would be connected together in a pipeline or more complex
topology and the code would be loaded onto the nodes in the standard `store and
forward' manner [101. Any data exchanged between the host and nodes will generally
have to pass through one or more intermediate nodes before it reaches its
destination. This requires the nodes to run communication tasks which reduces the raw
computational power deliverable to the application.

The overheads discussed above can be eliminated by broadcasting code and data to
all the nodes simultaneously via hardware. This paper describes a parallel
implementation of an energy minimiser which utilises the COMFORT host/node

programming environment and BB08 octal broadcast link interface [11]. Each node
has a direct link to the host computer, down which code and/or data can be transmitted,
received or broadcast.

COMFORT is a library of FORTRAN subroutines similar to those provided by
EXPRESS [12] and MPI [13], which allow the host computer to broadcast load code
onto the nodes and also facilitate communication between the nodes, amongst other
things. The host/node methodology allows the host to participate in the calculation
rather than act merely as a facilities server. COMFORT makes parallelisation easier
because no communication tasks are required on the nodes and no configuration (in the
3L sense) is required.

The BB08 is basically an eight fold replication of the Inmos B004 interface which
also allows link broadcasting (See Figure 2). The board contains eight C012 link

adaptors and the links are either routable to size one TRAM slots or to a DIN41612

connector. Data can be broadcast from the PC bus simultaneously to all the link

323

adapters. The DIN41612 connector is utilised when other PCs are used as nodes,
otherwise the transputer or other TRAM based processors are plugged into the BB08.

PC SLOT

buffer and address I
decoding

C0121 IC0121 IC0121 IC0121 1c0121 IC0121 1c0121 Icoil

FIGURE 2. Basic diagram of BB08 board

To Size I
TRAM slots
or DIN41612
connector

To DIN41612
connector

The following sections begin with an overview of the energy minimisation procedure,
and then focus on the COMFORT host/node FORTRAN code.

2. Energy Minimisation Procedure

2.1 Steric Energy Equation

The equation to calculate the total steric energy of a molecule (Vs) is: -
Vs = Vi + VO +VW+Vr+Vq+VV

(EQ 1)

where V1 represents the summation over all the bonds in the molecule of the individual

potential energies due to bond stretching or compression, and V8, Vw , Vq
, V,. and Vx

represent similar terms for angle bending, bond torsion, coulombic interactions, non-
bonded interactions, and out-of plane bending respectively.

The equations for the individual components are shown below: -

2V, =
Ekl(l-!

0)2
1

k, = the stretching force constant
10 = reference bond length

(EQ 2)

324

2V0= IkeAQ2-k'e(JA031-0.0004IA65,))

oe=0
ke = angle bending force constant
k'e = anharmonic force constant
00 = reference bond angle

2VW= [V�(l+scosnw)+V1(l+scosw)]

Vn =n- fold components of the barrier to free rotation.
V, = one - fold component of the barrier to free rotation.
w= torsion angle.
n= periodicity
s=+1 for staggered torsional energy minimum
s= -1 for an eclipsed minimum

Vr =,
[Ar'Z-Br-6]

r

A and B are constants which depend on the atom types.

Vq 332ýgiqjl Dr

r

q; = charge on atom i

qj = charge on atom j

r= distance between atoms i and j
D= dielectric constant

2Vx= kx(180-x)2
x

kx = force constant for out-of-plane bending

x= improper torsion angle in degrees

(EQ 3)

(EQ 4)

(EQ 5)

(EQ 6)

(EQ 7)

325

2.2 Newton Raphson Iteration

The basic NR iteration which minimises the steric energy of the molecule is given by: -

xk+ 1= xk-aFVVs(x)

(EQ 8)

where x is the 3N (N = number of atoms) long vector of Cartesian coordinates, a is the

step length, F+ is the generalised inverse of the Hessian: -

2
V

F=i= ON, j=1,3N

and: -

av OVS (x) _ axs;
j=1,3N

j
The calculation of the complete Hessian (a 3N x 3N matrix) is a very time

consuming procedure and is not really suitable for molecules with over 200 atoms.
Therefore an approximation known as the Block Diagonal Newton Raphson (BDNR)
is used. This is so called because only the second partial derivatives in each 3x3 block

along the leading diagonal of the Hessian are calculated. Therefore F is given by: -

p=

2
a VS

i= 3m + 1,3m + 3; j =3m+ 1 3m +3" m =0, N- 1
axýaxý '

Each block contains second partial derivatives of the steric energy with respect to
the coordinates of only one atom. The JDNR iteration can therefore be applied one
atom at a time, this allows each atom to be moved to its corrected position before the
calculations for the next atom are started. Each atom's position is therefore calculated
on the basis of the best structure available at the time.

3. Parallel Energy Minimisation Algorithm

The procedure described uses an early version of COMFORT and hardware reserved
for program development work. The host code was written in Microsoft (16-bit)
FORTRAN (current versions of COMFORT use Microsoft 32-bit FORTRAN) and the

node code with 3L parallel FORTRAN (the 3L FORTRAN node programs are
configured with the stand alone FORTRAN run time library). Although this

methodology is not without it's problems (some of which will be explained later) it

does result in reasonably portable programs. The hardware set-up used was a BB08

board with four size 1 TRAMs each with a T4XX transputer and 1Mbyte of memory.
The algorithm was derived from pre-existing sequential FORTRAN code.

The host program first calculates the initial steric energy of the molecule. It then

sends data, which includes the atomic coordinates, to all the nodes. While the nodes are
computing the new atomic coordinates the host is idle waiting for the new 'improved'

326

coordinates to return. Each node returns improved coordinates for the `slice' of atoms
it is responsible for. These `slices' are assembled into a complete set of improved
coordinates and broadcast back to all of the nodes. When the required number of
iterations have been completed by the nodes the host recalculates the new minimised
steric energy.

The node processors calculate the first and second partial derivatives described
above and use these to obtain improved coordinates for their 'slice' of atoms via the
BDNR iteration. The node processors do not need to communicate with each other.

3.1 Host Program

The pseudocode showing the main features of the host program is illustrated in
Figure 3.

The program sets up tables of reference bond lengths, bond angles, torsion angles,
non-bonded interactions and coulombic interactions. From these values, and various
other constants, it is possible using various mathematical approximations to calculate
the various force constants required for the calculations. Once all this information is
available, the host calculates the steric energy components and adds the values together
to get the initial steric energy.

Read file containing atomic coordinates

Read file containing various parameters

Set up various tables required for the calculation
(i. e. bond lengths, bond angles etc.)
Calculate the total potential energy of the molecule

Configure, reset, load and initialize nodes

Send arrays of data to the nodes
While (no. of iterations not complete) do

Send atomic coordinates to nodes
Receive modified coordinates from nodes

Calculate Final Steric Energy of the Molecule

FIGURE 3. Pseudocode for Host Program

The nodes require a substantial amount of information to calculate the first and
second partial derivatives of the steric energy w. r. t the atomic coordinates. Some of this
data is sent from the host and some is recalculated on the nodes (duplicating a host
calculation) as it is quicker.

The figure overleaf (Figure 4) shows the broadcast load/broadcast data FORTRAN
code. The nodes are loaded with code via the configure, reset, load and initialize
routines. The configure routine defines the hardware setup and its arguments are the
base address of the BB08 board, the number of processors and a value which specifies
the `tick' of the timeout clock. The reset routine resets all the nodes and the load
routine loads the nodes with the file 'nodemin. app'. Each node is assigned its id
number by the initialize routine and this routine tells each node the link interconnection

327

topology via the matrix `ProcConn' (the latest version of COMFORT uses complete
connectivity and the topology maps are unnecessary).

NETCAST = -1
file= 'c: \comfort\lesley\min\nodemin. app'//char(0)

call configure(#180,4, #976f)

call reset(NETCAST)

call load(NETCAST, file, 100, error)

do i=1,4

ProcConn(l, i)=4

ProcConn(2, i)=-1

ProcConn(3, i)=-1

ProcConn(4, i)=-1

end do

call initialize(ProcConn, 100, error)

call send (NETCAST, buffer_atmdat0,1, total_atmdat0,100, error)

call send (NETCAST, buffer_atmdatl, 2, total_atmdatl, 100, error)
call send (NETCAST, buffer moldat, 3, total_moldat, 100, error)

call send (NETCAST, buffer_ffp, 4, total_ffp, 100, error)

call send (NETCAST, buffer_cffp, 5, total_cffp, 100, error)

call send (NETCAST, buffer_contrl, 6, total_contrl, 100, error)

call send (NETCAST, buffer_constn, 7, total_constn, 100, error)

C SEND INTEGER*1 VARIABLES/ARRAYS SEPARATELY

call send (NETCAST, ATYNUM, 8, LENGTH9,100, ERROR)

call send (NETCAST, BONDML, 9, LENGTH10,100, ERROR)

call send (NETCAST, MOLNUM, 10, LENGTH9,100, ERROR)

999 write (5, *)'No of iterations =', itrcmp +1

C SENDS COORDINATES TO NODES

call send(NETCAST, XO1,42, INT2(length7), 100, error)

FIGURE 4. Code which broadcasts arrays to nodes

The data required by the nodes is sent in several arrays. The SEND routine
broadcasts all the data to all the nodes simultaneously via the BB08 board. The format

of the SEND statement is shown belowO 'I: -

i. e SEND(Destination, Buffer, Bufftype, BuffLen, Timeout, Error)

where Destination contains the id number of the node (if equal to -1 this broadcasts to
all the nodes simultaneously), Buffer contains data for the node, Bufftype is a user
assignable number to identify the buffer, BuffLen is the length of the buffer in bytes,
Timeout specifies the time before timeout occurs, and error returns a specific number if
an error occurs.

The variables/arrays downloaded to the nodes are stored in common blocks. A
sample of the common block declarations is shown in Figure 5 overleaf. Sending this
data to the nodes is not as simple as it might first appear; mainly due to restrictions

328

imposed by the Microsoft 16-bit FORTRAN which are not present with the 32-bit
version.

COMMON/ATMPRP/ EN(MAXTYP)
COMMON/MOLDAT/ NUMATS, NMOLS
COMMON/FILDAT/ DLUNIN, DLNOUT, LUNOUT
COMMON/FILCHR/ INFILE, OUTFIL, FILTYP
COMMON/HEADER/ TITLE

COMMON/FFP/ REFLEN(MAXTYP, MAXTYP), STRCON(MAXTYP, MAXTYP)
1, A6(MAXTYP, MAXTYP), B12(MAXTYP, MAXTYP), REFANG(MAXTYP)
2, PERIOD(MAXTYP, MAXTYP), BARIER(MAXTYP, MAXTYP)

COMMON/CFFP/ CREFLN(MXCNJ, MXCNJ), CSTCON(MXCNJ, MXCNJ)
1, CBARR(MXCNJ, MXCNJ), CPRIOD

COMMON/CONJTP/ ARTYPS(NARTYP), DBTYPS(NDBTYP)

FIGURE 5. Common Block declarations

The simplest approach may appear to be, to send a large array whose start address is
the address of the first variable in the first common block. The length (in bytes) of this
array would be equal to the total length of all the common blocks. This approach is not
possible as although the common blocks will be stored contiguously in memory, they
are each assigned to a different 64kbyte wide segment by the FORTRAN compiler and
addresses do not automatically roll over from one segment to the next.

Another possible approach might be to dispense with the individual common blocks

and put all of the data into one large common block. This is not possible as there is

more than 64kbytes of data and the compiler limits each common block to a maximum
of 64kbytes in length. In addition to this restriction the COMFORT SEND subroutine
imposes a maximum message length of 64kbytes.

A dummy array is therefore EQUIVALENCED to the start of each common block
(or the position in the common block where the required data starts). This dummy

array is dimensioned to encompass the data by calculating the combined size (in bytes)

of all the variables/arrays required from the common block (See Figure 6). An example
of the statements necessary to EQUIVALENCE the common block moldat (which was
shown in Figure 5) to an array are illustrated in Figure 7 overleaf. Both the variables in

moldat are INTEGER*4.
INTEGER *1 COMMOM BLOCK
ARRAY WITH WITH INTEGER*4
DIMENSION 20 VARIABLES

I byte`
long Variable 14 bytes

S

Variable 2

Variable 3

Variable 4

Variable 5

FIGURE 6. Graphical Representation of equivalence statements

-10 1
EQUIVALENCED

The equivalence statements are written in an include file which is used on both the
host and node.

329

parameter (length3 = 4)

parameter (total moldat = length3 * 2)
dimension buffer_moldat (total_moldat)

equivalence (buffer_moldat(1), numats)

FIGURE 7. Example of equivalence statements

A further difficulty arises from the fact that the Microsoft FORTRAN compiler
adheres rigidly to the FORTRAN standard. If the SEND subroutine is called with a
message of one data type then any subsequent call with a message of a different data
type will result in a run-time error. In order to overcome this difficulty SEND is always
called with messages of type INTEGER* 1 which are EQUIVALENCED to the real
data array (which contains data of many types). Obviously a different dummy
INTEGER* 1 array will be required for each common block to be sent as it would be
nonsense to EQUIVALENCE all of the common blocks to the one array

3.2 Node Program

The pseudocode for the node program is shown in Figure 8 overleaf.
The node program considers each atom at a time and calculates its corrected

coordinates using the Newton Raphson iteration. The first and second partial
derivatives are calculated numerically by finite difference methods. i. e.

aVS VS (xj + 3x) - VS (x, - 6x)

axi 26x

(EQ 9)

DVS
_

VS(x, +Sx, x, +Sx) -VS(x, +Sx) -VS(x+Sx) +E(x,)
axýaxý - 8x 2

(EQ 10)

a2Vs V, (x, +Sx) -V, (x, -Sx) -2E(x,)

öxi? 5x2

(EQ 11)

where Sx is a small value (i. e. 0.001) and i=1,3N, j=1,3N. The steric energy is

therefore calculated at (x,), (xi + Sx)
,

(x; - Sx), (x, + Sx) and (x, + Sx, xj + Sx)
.

The second partial derivatives vary by so little after each iteration that it is sufficient to
calculate them after only every 4 or 5 iterations. Once the node has the first and second
partial derivatives of the steric energy with respect to the atomic coordinates, it uses the

330

Newton Raphson equation to calculate the new `improved' coordinates. These
coordinates are then sent back to the host.

Initialize node
Receive data from host
Sets up various tables required for the calculation
(i. e. bond lengths, bond angles etc.)
Decide which atoms the nodes will work on
Receive atomic coordinates from host
For J= NFIRST, LAST do

Calculate Energy of Jth atom
For k =1 ,3 do

Increment kth coordinate of jth atom and recalculate energy
Decrement kth coordinate and recalculate energy
Calculate first derivative for kth coordinate

Fork = 1,3 do

sum of squares of first derivatives =
sum of squares of first derivatives + (first derivative for kth coordinate)2

If Mod(Iteration, 4). = 0 then
Calculate second derivatives for jth atom

Calculate corrections to coordinates for jth atom
Fork=1.3 do

Calculate new value for kth coordinate of jth atom

Send modified coordinates and sum of squares of first derivatives back to host

FIGURE 8. Pseudocode for Node Program

The arrays sent from the host are received using the COMFORT RECEIVE routine
(See Figure 9 overleaf).

i. e RECEIVE (Source, Buffer, Bufftype, Bufflen, Error)

This is basically the same format as the SEND routine on the host. For every SEND
call on the host there has to be an equivalent RECEIVE call on the node. The code
which allocates atoms to nodes is shown in Figure 10 overleaf; me is the id number of
the node, numproc is the number of nodes, numats is the number of atoms and nfirst
and last are the first and last atoms a node will work on. Each node is allocated
NUMATS/NUMPROC atoms, with the first NMOD nodes being allocated an extra
atom. This distributes the atoms as evenly as possible across the nodes. The number of
atoms in a nodes 'slice' is stored in BFLENG.

331

C INITIALIZE NODES

call initialize

C RECEIVES BUFFERS FROM HOST.

call receive(host, buffer_atmdatO, l, total_atmdat0, error)
call receive(host, buffer_atmdatl, 2, total_atmdatl, error)
call receive(host, buffer_moldat, 3, total_moldat, error)
call receive(host, buffer_ffp, 4, total_ffp, error)
call receive(host, buffer_cffp, 5, total_cffp, error)
call receive(host, buffer contrl, 6, total_contrl, error)
call receive(host, buffer constn, 7, total_constn, error)

c RECEIVE BYTE VALUES SEPARATELY

call receive(HOST, ATYNUM, 8, LENGTH9, ERROR)

call receive(HOST, BONDML, 9, LENGTH10, ERROR)

call receive(HOST, MOLNUM, 10, LENGTH9, ERROR)

191 call receive(HOST, X01,42, length7, error)

FIGURE 9. Code which receives data from host

NDIV = NUMATS / NUMPROC

NMOD = MOD (NUMATS, NUMPROC)

IF(me. 1t. NMOD)THEN

NFIRST = (me*NDIV)+me+1

LAST = ((me+1)*NDIV)+me+1

ELSE IF(me. eq. NMOD)THEN

NFIRST = (me*NDIV)+me+1

LAST = ((me+1)*NDIV)+me

ELSE IF(me. gt. NMOD)THEN

NFIRST = (me*NDIV)+NMOD+1

LAST = ((me+1)*NDIV)+NMOD

ENDIF

BFLENG=((LAST+1)-NFIRST)

nfirst4 = (nfirst * 4) -3

FIGURE 10. Code to allocate atoms to nodes

3.3 Transfer of atomic coordinates benveen host and nodes

The atomic coordinates are stored in an INTEGER*4 array (XO (MXAT, 3)) on the host
which is effectively arranged as three columns for the x, y and z coordinates. This array

332

is EQUIVALENCED to three INTEGER*1 arrays XO1, X02 and X03 (See Figure 11);
X01 contains the x coordinates, and X02, X03 the y and z coordinates respectively.

equivalence (xol(1), xo(1,1))

equivalence (xo2(1), xo(1,2))

equivalence (xo3(1), xo(1,3))

FIGURE 11. Equivalence statements for XO

To send the atomic coordinates to the nodes the XOI array is used in the SEND
routine (See Figure 4). X01 is EQUIVALENCED to the start of XO and the buffer
length in the SEND statement is four times the length of X0. An equivalent RECEIVE
statement is required on the nodes (See Figure 9).

When sending the coordinates back from the nodes to the host only the coordinates
in the node's `slice' must be returned and the host must put the returned coordinates in
the correct place in XO. The code on the nodes and host which achieves this is shown
in Figure 12 and Figure 13 respectively.

call send(HOST, xol(nfirst4), 43, bfleng*4, error)

call send(HOST, xo2(nfirst4), 44, bfleng*4, error)

call send(HOST, xo3(nfirst4), 45, bfleng*4, error)

call send(HOST, sgdlsq, 46,4, error)

FIGURE 12. Node code to return 'improved' coordinates to host

do 321 1=0, numproc-1
if (1. It. runod) then

nfirst = (1*ndiv)+1+1

last = ((1+1)*ndiv)+1+1

else if(l. eq. nmod)then
nfirst = (1*ndiv)+1+1

last = ((1+1)*ndiv)+1

else if(l. gt. nmod)then
nfirst = (1*ndiv)+nmod+l
last = ((1+1)*ndiv)+nmod

endif

bflength=((last+l)-nfirst)

nfirst = nfirst*4 -3

C RECALCULATE NFIRST FOR XO1(INTEGER*1 SIZE ARRAY)
call receive(L, xo1(nfirst), 43, INT2(bfleng*4), 100, error)
call receive (L, xo2(nfirst)44, INT2(bfleng*4), 100, error)
call receive (L, xo3 (nfirst), 45, INT2 (bf leng*4), 100, error)
call receive(L, templ, 46,4,100, error)

sgdlsq = sgdlsq + temp

321 continue

FIGURE 13. Host code to receive ̀ improved' coordinates

333

The x, y and z coordinates are sent separately in XOl, X02 and X03. Nflrst4 specifies
the position of the first atom in the nodes `slice' in X01 etc. This value is not just equal
to nfirst (the first atom in a nodes slice) as X01 etc. are INTEGER* 1 arrays so the value
of nfirst needs to be recalculated (i. e. nfirst4 = (nfirst*4) -3). The length of XO1, X02
and X03 is set to BFLENG *4; i. e the number of atoms in a nodes slice multiplied by
4.

4. Results

Table 1 shows the run-time of the parallel minimiser on one node compared to four
nodes for 24 and 45 atom molecules. The results illustrate that for a 24 atom molecule
a speed-up of approximately 2.5 is obtained whereas for a 45 atom molecule a speed-
up of approximately 3 is achieved. The difference in the results is due to the set-up time
(i. e. the loading of the required data onto the nodes etc.) which becomes more
significant for smaller numbers of atoms. The present version of the minimiser loads
the data in an inefficient manner as each node receives more data then is necessary; this
will be corrected in future versions.

TABLE 1. Optimisation times for 30 Iterations

Number of atoms Number of Nodes Run-time of Minimiser

24 1 320s

24 4 129s

45 1 743s

45 4 243s

5. Conclusions

Further improvements to this algorithm could include using the host to carry out the
Newton Raphson iteration on a `slice' of atoms rather than it remaining idle while the
nodes are computing. The use of Microsoft Powerstation (32-bit) Fortran would allow
the host to send all the variables/arrays in one large array as the compiler `sees' the
address space as contiguous and SEND/RECEIVE operate on messages up to 4Gbytes
long.

The use of the COMFORT routines and BB08 board provide faster energy
minimisation than the conventional 3L FORTRAN version which uses a pipeline of
transputers. Broadcasting code and data simultaneously to all the nodes reduces the run
time of the minimisation program considerably.

References

Eli Chem-X. Chemical Design Inc.

[2j Sybyl. Tripos Associates

[3j White, D. N. J. Computer methods for molecular design. Phil. Trans. R. Soc. Lond. 1986. A 317,
359

334

[41 Engler, E. M., Andose, J. D., Schleyer, P. von R. Critical Evaluation of Molecular Mechanics.
J. Amer. Chent. Soc. 1973,95,8005

15) Witberg, K. B. A Scheme for Strain Energy Minimisation. Application to Cycloalkanes. J. Amer.
Chem. Soc. 1965,87,1070

[6] Lifson, S., Warshel. A. Consistent Force Field Calculations of Conformations, Vibrational
Spectra, and Enthalpies of Cycloalkane and n-Alkane Molecules. J. Chem. Phys. 1968,49,5116

[7] Mertz, John. E., Tobias, Douglas, J., Brooks, Charles. L., Singh, U. C. Vector and Parallel
Algorithms for the Molecular Dynamics Simulation of Macromolecules on Shared Memory
Computers. J. Comp. Chent 1991,12,1070

[8] Clark, Terry. W., McCammon, J. Andrew. Parallelisation of a Molecular Dynamics non-bonded
force algorithm for MIMD architecture. Computers & Chem. 1990, Vol. 14, No3,219

[9] Schweitzer, Robert. C., Small, Gary W., Application of Parallel Processing Techniques to
Improving the Efficiency of the MM2 Molecular Mechanics Calculations. J. Comp. Chem. 1993,
14,977

[10] White, D. N. J., Ruddock, J. Noel., Edgington, Paul R. Molecular Design with Transparallel
Supercomputers. Molecular Simulation 1989, Vol. 3,71

[111 White, David N. J. A Hardware & Software Environment for Parallel Processing with PCs. In

press, Computers & Chemistry.

[12] Express User's Guide. Parasoft Corporation, 1990

[13] Walker, D., Dongarra, J. (Convener & Meeting Chair). MPI: A Message-Passing Interface
Standard. March 1993, University of Tennesse, Knoxville, Tenessee

335

Interfacing Electrochromic Spectacles to
Computer 10 Ports

David N. J. White and Lesley Bissland
University of Glasgow, Department of Chemistry, Glasgow, Scotland

e-mail: lesley@tcrystal-gla. ac. uk

Many important properties of molecules depend on their precise three dimentional(3D)
structure. It is therefore useful to be able to view a molecule in 3D on a 2D computer
screen when manipulating it. An inexpensive method for viewing in 3D using liquid
crystal glasses and a PC is presented. The methodology used is easily extended to other
computers and workstations.

Keywords: Liquid crystal glasses, stereoscopy, PC card

1 Introduction

Although red/green stereo is a fairly simple and inexpensive method for viewing in 3D the
images produced are monochromatic. This loss of colour can be important in many cases.
For example when viewing a molecule, colour coding can be used to signify different
atom types. Full-colour clear 3D images can be obtained by using liquid crystal glasses.
These glasses are generally quite expensive (-£1000) however by using SEGA video
game liquid crystal glasses (-£70) the cost can be cut dramatically.

Chelvanayagam and McKeaigl described a method for stereo viewing using the SEGA
glasses. Their approach involved modifying the existing SEGA circuit board and
connecting a line to the DO pin on a PC parallel port to toggle the glasses. Whilst this
approach is perfectly satisfactory a number of people have reported to the authors that
they have been unable to get the modified SEGA circuit board to work. In order to
circumvent these problems this paper contains a full circuit diagram of the SEGA control
circuit and describes an alternative control circuit built on a PC plug-in card.

2 Stereoscopy

Binocular stereoscopy is a method of generating pairs of two dimensional images which
deceive the human eye and brain onto perceiving a three dimensional image. The pairs of
images can be generated either side by side or full screen sequentially on the computer
screen. The second image is generated from the first by a rotation of 2-6° around the y-axis
(x axis horizontal, y axis vertical, both in the plane of the screen). Various methods are

Appendix E 336

employed to ensure that the left eye sees only one of the images and the right eye only the
other. The images can be either stationary or rotating.

The method of stereoscopy used by the SEGA glasses is known as tachistoscopy. This a
binocular process in which the left and right eye images are displayed on the screen
alternately and the view of each eye is obscured in synchronisation with the display of the
`wrong image'. To achieve this alternate lenses of the glasses are turned opaque at the
appropriate moment by an electric field. The frequency of switching between images must
be approximately 40Hz to obtain a flicker free image.

2.1 Liquid Crystal Glasses

The liquid crystal glasses 2,3,4 consist of a thin layer of liquid crystals sandwiched
between two glass plates. Liquid crystals differ from other compounds in that in a normal
crystalline solid the atoms or molecules are in an ordered fixed state, and when the crystal
melts the substance goes directly to the disordered liquid phase. In a liquid crystal there is
an intermediate phase when there is partial order over a range of temperatures before the
liquid phase. This disorder in the liquid crystal, known as the nematic phase, consists of
molecules out of position but with the same orientations they had in the solid. (See Figure
1(a)).

Transparent electrodes are evaporated onto the inner surfaces of the glass plates. Tiny

parallel scratches on the plates cause the nematic molecules to orient themselves in the
direction of the scratches. Since the scratches on one glass plate are perpendicular to those
on the other this gives the molecules a twisted structure with the molecules in successive
planes turning continuously through 900. This is known as a "twisted nematic" cell.

Polarising filters sandwich the cell with their axes of polarisation at right angles to each
other. Light is polarised as it enters the cell and can then escape from the other side only if
the plane of polarisation is rotated through a right angle.

When the electrodes are not applying an electric field, the liquid crystals rotate the plane
of polarisation of the light and the light passes through the cell. The glasses are therefore
transparent as in Figure 1(b). Applying an electric field forces the molecules to lie parallel
to it and to the direction of the light. The plane of polarisation, which is at right angles to
the direction of the light is therefore unaffected by the molecules: it is not rotated and light

cannot pass through the cell. This causes the glasses to become opaque as illustrated in
Figure 1(c).

3 SEGA Circuit

The glasses are operated by a simple circuit controlled by a Z80 microprocessor in the
game console. The glasses circuit board plugs into the SEGA console and the glasses are
attached to the circuit board by a 3.5mm jack connector. See Figure 2.

Appendix E 337

Address decoding is achieved by a 13-Input NAND gate (74HCT133') which outputs a
logic low (for the purposes of the following discussion logic low means OV electrical and
logic high means 5V electrical) when all the address lines connected to it are pulled high
(address 0FFF8h). The output of the 74HCT133 is fed to the least significant address bit
(A0) of the 741ICT259 addressable latch. The 74HCT259 will direct the signal on its data
input (D) to the latch (Q0-Q7) addressed by its A0-A2 inputs. When the 74HCT259
enable input (E*) is logic low the addressed latch will follow the data input whilst all
unaddressed latches will retain their previous state. When E* goes high the logic level on
the addressed Q output will be latched (i. e memorized) and unaffected by any further
changes in D. As stated previously when the SEGA circuit is being addressed AO on the
latch will be logic low. Since MREQ* is low during a write cycle and the address FFF8 is
being used, A0-A2 on the latch will all be logic low which selects QO as the output. The
logic level on the data pin of the 74HCT259 will therefore be latched on QO when the
write cycle finishes and WR* goes to logic high. Q1-Q7 are ignored.

Gates 1 and 2 of the 74HCT86 form a simple RC oscillator which produces an
approximately 400Hz square wave output at point (A). The waveform is shown in Figure
3(a). Whilst it is possible to switch the glasses from opaque to transparent with a simple
DC voltage, this will greatly reduce the life of the liquid crystal cells. Using a 40011z
square wave will prolong life of the cells almost indefinitely.

Section 1 of the LM324 quad operational amplifier is configured to act as a non-inverting
level shifting comparator and section 3 as an inverting level shifting comparator. The
reference voltage for the two comparators is set to 2.5V by the two 100M resistors. A
logic high at point (A) will drive each comparator into positive or negative saturation,
depending on whether the comparator is inverting or non-inverting, and a logic low at
point (A) will cause each comparator to saturate in the opposite sense. As the LM324 has
a 12V power supply the outputs of the comparators will be 400Hz square waves with
amplitudes of 12V as shown in Figure 3(b).

The waveform at point (D) depends on whether a logic high ('I') or low ('0') has been
written into the 74HCT259 addressable latch. If QO of the 74HCT259 is high then gate 3
of the 74HCT86 will invert the output of the oscillator (point (A)) and feed it to section 4
of the LM324 for a further inversion and level shift to an amplitude of 12V. If on the other
hand QO is low the '86 behaves as a non-inverting buffer and the output of the oscillator is
inverted and level shifted by section 4 of the LM324. The waveforms are shown in Figure
(b).

The signal at point (D) is applied to both the left and right eye liquid crystal cells of the
SEGA glasses, whilst the signal at point (B) is applied only to the left eye cell and the
signal at point (C) to the right eye cell only. When QO is high, points (C) and (D) are out of
phase and an electric field reversing direction 400 times a second will be applied to the
right eye liquid crystal cell of the glasses, turning it opaque. On the other hand points (B)
and (D) are in phase, the field applied to the left eye cell is zero, and it remains
transparent. If QO is low the situation is reversed; the left eye cell is opaque and the right
eye cell transparent. So by writing a `1' or a `0' to the `259 addressable latch either the left
or right eye liquid crystal cell is rendered transparent whilst the other cell remains opaque.

Appendix E 338

As the voltage needed to run the glasses is approximately 12V, a voltage tripler (Part 2 of
Figure 2) is required to increase the LM324 supply voltage from 5V to 12V. The
capacitors (C4-C6) charge in parallel and the diodes direct the current so the capacitors
discharge in series. This triples the +5V supply voltage, however as 0.6V is lost over each
diode the result is an output of approximately 12V.

The modifications to the circuit proposed by C&M are indicated by the dotted lines on
Figure 2. The C&M modifications dispense with the address decoder & addressable latch
so that the switch signal for the glasses feeds directly into pin 5 of the `86 (gate 3) (from
one of the data lines of a PC printer port). The SEGA controller uses the pulsing RD* and
WR* strobes of the Z80 processor as a source of alternating current (AC) for the voltage
tripler. C&M do not connect the controller direct to a computer bus, so there are no RD*
and WR* signals and another source of AC must be found for the voltage tripler. The
400Hz output of the RC oscillator formed by gate I and 2 of the `86 is ideal for this
purpose.

However the SEGA controller uses surface mount components and the PCB tracks are
very fine and well hidden under a black solder resist. It is easy to see how people unused
to surface mount fabrication techniques (i. e most molecular modellers) could make
mistakes. In any event we preferred to make up a PC plug in card so that we could still use
the printer port, and because the voltage tripler is unnecessary if one uses the 12 volts
already available on the PC bus.

3.1 PC Card

The circuit built on a PC plug-in card is shown Figure 4. It varies very little from the one
used by the SEGA console. Address decoding is achieved by using an Octal Comparator

enabled by the PC bus input/output write signal IOW*, rather than a 13-Input NAND gate.
When the address on the P side is equal to that on the Q side and G* is low the logic low
output from the comparator is used to enable the latch. The signals AO, Al and AEN*
select the output Q0. As in the SEGA circuit DO is used to toggle the glasses. This circuit
does not require a voltage tripler as an input of 12V can be taken directly from the PC bus.

Another possible method of interfacing the glasses to a PC is to clamp the existing SEGA
controller PCB onto a PC prototyping card and use the IBM PC bus signals more or less
unchanged. All the data and control signals can be taken directly from the PC apart from
MREQ* for which AEN* can be used instead. The address lines from the PC can also be
used but in order so as not to restrict the card to a single address, inverters may be
selectively added to the address lines as shown in Figure 5. Since the usable addresses of
the I/O ports on the PC lie in the range 0200-3FF, A9 is always going to be high.

4 Software

The code to operate the glasses has been incorporated into the CHEMMOD and
COMMET 5.6,7molecular modelling packages. Both packages were developed in house at
Glasgow University. COMMET is running on a 386 PC with a DATAPATH graphics

Appendix E 339

controller and CHEMMOD is running on a PC/AT with a DIGISOLVE graphics
controller.

As described by Chelvanayagam and McKeaig the vertical retrace(VR) of the electron
gun is used as a signal to switch the glasses. For CHEMMOD the monitor is interlaced,
therefore the glasses are switched after every second vertical retrace. The DIGISOLVE
graphics controller contains two display buffers in which images can be stored. The left
and right eye images are drawn on separate display buffers and then the contents of each
buffer are displayed on the screen alternately. Code to poll the bit in the register associated
with the VR and to toggle the glasses was written in 8086 assembler for CIIEMMOD.
(See Figure 6).

Bit 2 of the status register signals when a vertical retrace is occurring (i. e when bit 2 is
logic high a VR is occurring, when logic low the image is being drawn). This bit is polled
to establish when an image is complete. See Figure 7. When the electron beam has
finished drawing the image the display buffer is switched in order that the other half of the
stereo image is displayed next time round the loop. The glasses are then flipped by
sending a logic high or logic low (depending on the value in CL) to the glasses port. The
state of the mouse buttons are polled in order to exit the routine by pressing a mouse
button.

For COMMET the code was written in C and was almost the same as Chelvanayagam and
McKeaigs'. The monitor used was non-interlaced and the graphics card contained four
display buffers but for stationary images only two were needed.

The routines to draw the left and right eye images for both CHEMMOD and COMMET

were written in FORTRAN. Since both packages contained code for red/green stereo it
was relatively simple to modify this code for colour stereo images. The main difference in
the algorithms of the stereo systems is that, for the liquid crystal glasses, both images have
to be drawn in colour and in separate display buffers whereas for red/green stereo both
images are drawn in the same display buffer.

5 Discussion

Even when viewing complex molecules (1800 atoms) the 3D stationary images produced
are excellent. However for proteins with many double bonds drawn as such the images

appear cluttered, therefore better results are obtained by representing the double bonds
with single vectors. When viewing complex rotating images on a 386' PC using four
display buffers the rotation appears jerky. This problem could be solved by using a faster
PC.

Our method has the advantage over Chelvanayagam and McKeaigs' that the card is
housed inside the PC so there are no stray wires present. Chelvanayagam and McKeaig

also mentioned that it would be possible to have more than one viewer using their system,
and this is possible for the PC card plug in system. An additional LM324 and glasses jack

Appendix B 340

is required for each extra viewer. It is also relatively straightforward to use an IR light
beam rather than wires to connect the glasses to the controller.

6 Conclusions

Although SEGA are no longer manufacturing the glasses, some pairs are still available
commercially (through Molecular Design, Oxford), various US companies also have
hoards, and it should be possible to obtain supplies via newspaper small ads. As a last
resort you could always buy some of the rather expensive models still being made by
manufacturers other than SEGA. Future developments could involve combining the
glasses with a spaceball in order to manipulate the molecule in 3D space: spaceballs are,
however, relatively expensive.

Acknowledgments

The authors would like to thank Mr. JN Ruddock and Dr. KJ I'1er for their help and
advice. L. B would also like to thank SERC for the award of a Research Studentship.

Appendix E 341

References

[1] Chelvanayagam, G. and McKeaig, L. Stereo viewing on the PLAT with EGA
graphics. J. Mot. Graphics 1991,9,111-114

[2] Harris, M. R., Geddes, A. J and North, A. C. T. Frame sequential stereoscopic system
for use in television and computer graphics. Displays - Technology and Applications
1986, Vol. 7 No 1,12-16

[31 Harris, M. R., Geddes, A. J and North, A. C. T. A liquid crystal stereo viewer for
molecular graphics. J. Mol. Graphics 1985,3,121-2

[41 Guinier, A. The Structure of Matter: from the blue sky to liquid crystals. Edward
Arnold (Publishers) Ltd., London, 1984 (ISBN 0 7131 3489 5)

(51 White, D. N. J., Computer methods for molecular design. Phil. Trans. R. Soc. Lond. A
1986,317,359-369

[6] White, D. N. J., Tyler, J. Kelvin, Lindley, Matthew R., High Performance
Microcomputer Molecular Modelling. Computers & Chemistry 1986, Vol. 10, No. 3,
193-199

[7] White, D. N. J., Pearson J. E, J. Mol. Graphics 1986,4,132-142

Appendix E 342

Figure 1(a): EJuiicl Crystals
Solid Phase Nematic Phase

II Ill luI i I HI Iii 1H1
Figure I(b): Twisted Nematic Cell

Polariser Glass Plates Polariser

IL DD I Io ý I
Unpolarised Verti Light lariPolarisation Horizontally
Light In. ýolhrised Rotated by 90° Polarised

Light Out
Figure l(c): Cell with Electric Field One

Polariser Glass Plates Polariser

o 1111 I FF
Un olaris

d
Verty Molecules aligned Vertically polarised light

LiNt In. polarised by field blocked by polariser
Light

Appendix E 343

Figure 2: Sega Circuit

,....
WR*1 ® C62.2µF

= RD* X86

' j+5V
2.2µF

+5V C4 C5 2.2µF

DI D2 D

5v

VV
+5v

la

13V
(D 10 GD)

12 '86 9
86 8

IOOkf) 47.2kO

Zpi nF

(B)

(C)
(D)

A3
A4 C9 C2 C10 4

A6 3 10µF

A7 2x 27nF
A8 7 0V
A9

(9
A10
All
A12 1

A14

Appendix E 344

j+5V Part 2

2.2µF o C7

+12V(Pin 4 on `324)

4c8
T

27nF
5

OV

Figure 3(a) : Waveform at Point A (Fig. 2)

.............. 5V

.... OV

figure 3(h): Waveforms at Points B. C& i) (Fig. 2)

...... 12V

... F-L Point (B)

. 0V

... 12V

Point (C)

......
12V

Point (D)
.....

OV Q0='1'

_ Point (D)
..... 12V

QO = '0' 4V

............. .
L17

.......

Appendix E 345

Figure 4: PC Circuit

+5V

4x lOOnF +SV

2x IpF

4.7ki1
Resistors

ov
`521 11

low*

Appendix E 346

Figure 5: Alternative Address Decoding

A3

A4

A5

A6

A7

A8

A9

'133

Appendix E 347

Figure 6: 8086 Assembler Code

PUBLIC
_swchgl

_swchgl
PROC FAR

PUSH BP
MOV BP, SP
NOV CH, 03H
NOV CL, OOH

test--vb : NOV DX, 310H

vb_is_la IN AL, DX
TEST AL, 02H
JZ vb_is_la

vb_is_Ob : IN AL, DX
TEST AL, 0211
JNZ vb is Ob

vb_is_lb : IN AL, DX
TEST AL, 02H
JZ vb_is_lb

vb_is_Oa : IN AL, DX
TEST AL, 02H
JNZ vb_is_Oa

NOV AL, CL

NOV DX, 300H
OUT DX, AL

MOV DX, 150H
OUT DX, AL

XCHG CL, CH

PUSH CX
MOV AX, 3

INT 33H
POP CX
CMP BX, O

JE test_vb

test_bu MOV AX, 3

INT 33H
CMP BX, O
JNE test bu

POP BP

RET

_swchgl
ENDP

OVL8 TEXT ENDS

END

; Set up stack frame

; Set plane 1 value
; Set plane 0 value

; Load status port address

; Read status register
Test if on
Jump back if not 1

Read status register
Test if off
Jump back if not

Read status register
Test if on
Jump back if not 1

Read status register
Test if off

; Jump back if not 0

; Get value to output in AL

; Load page port address
; Switch display page

; Load glasses port address\
; Switch glasses

; Swap page number in CL

; Save CH, and CL
; Load mouse function code
; Call mouse interrupt
; Restore CH, and CL
; Check the button status
; Exit if one is down

; Load mouse function code
; Call mouse interrupt
; Check the button status
; Exit when all up

; Restore previous stack frame

Appendix E 348

Figure 7: Status Register Polling

Yes

Yes

Yes

Yes

i. e image is being drawn

i. e Ist VR is occuring

i. e image is being drawn

i. e 2nd VR is occuring

Appendix E GLAS
349

GOYI
IVE UN

I

