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Abstract 

Parallel computing has developed in an attempt to satisfy the constant demand for 

greater computational power than is available from the fastest processors of the time. 
This has evolved from parallelism within a single Central Processing Unit to thousands 

of CPUs working together. The development of both novel hardware and software for 

parallel multiprocessor systems is presented in this thesis. 

A general introduction to parallel computing is given in Chapter 1. This covers the 
hardware design concepts used in the field such as vector processors, array processors 
and multiprocessors. The basic principles of software engineering for parallel 

machines (i. e. decomposition, mapping and tuning) are also discussed. 

Part 1 (Chapters 2,3 and 4) is concerned with the development of hardware for 

multiprocessor systems. Some of the concepts used in digital hardware design are 
introduced in Chapter 2. These include the fundamentals of digital electronics such as 
logic gates and flip-flops as well as the more complicated topics of rom and 

programmable logic. 

It is often desirable to change the network topology of a multiprocessor machine to suit 

a particular application. The third chapter describes a circuit switching scheme that 

allows the user to alter the network topology prior to computation. To achieve this, 

crossbar switches are connected to the nodes, and the host processor (a PC) programs 

the crossbar switches to make the desired connections between the nodes. The 

hardware and software required for this system is described in detail. 

Whilst this design allows the topology of a multiprocessor system to be altered prior to 

computation, the topology is still fixed during program run-time. Chapter 4 presents a 

system that allows the topology to be altered during run-time. The nodes send 

connection requests to a control processor which programs a crossbar switch connected 

to the nodes. This system allows every node in a parallel computer to communicate 

directly with every other node. The hardware interface between the nodes and the 

control processor is discussed in detail, and the software on the control processor is 

also described. 
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Part 2 (Chapters 5 and 6) of this thesis is concerned with the parallelisation of a large 

molecular mechanics program. Chapter 5 describes the fundamentals of molecular 
mechanics such as the steric energy equation and its components, force field 

parameterisation and energy minimisation. 

The implementation of a novel programming (COMFORT) and hardware (the 131308) 

environment into a parallel molecular mechanics (MM) program is presented in 

Chapter 6. The structure of the sequential version of the MM program is detailed, 

before discussing the implementation of the parallel version using COMFORT and the 

BB08. 

ii 



Table of Contents 

Abstract ................................................................ i 
Table of Contents 

......................................................... 
iii 

List of Figures ........................................................... vii 
List of Tables 

............................................................ xi 
Acknowledgements ....................................................... xii 

Chapter 1: Introduction to Parallel Computing ................................. 
1 

1.1 What is Parallel Computing? ........................................... 
1 

1.2 Why parallel computing? ............................................. 
2 

1.2.1 Problems in parallel computing ..................................... 
2 

1.3 Sequential models of computation ...................................... 3 
1.3.1 Von Neumann model ............................................. 

3 
1.3.21iarvard Architecture ............................................. 

4 
1.3.3 Data-Flow Computations .......................................... 

4 
1.4 Parallel Concepts 

.................................................... 
5 

1.4.1 Pipelining . ..................................................... 
5 

1.4.2 Vector Processors ............................................... 
6 

1.4.3 Array Processors 
................................................ 

7 
1.4.4 Multiprocessors ................................................. 7 

1.4.4.1 Shared memory multiprocessors . .............................. 7 
1.4.4.2 Distributed memory multiprocessors ........................... 8 

1.4.5 Multi-Workstations .............................................. 11 
1.4.6 Which parallel methodology? ...................................... 12 

1.5 Taxonomies for parallel computers ...................................... 12 
1.5.1 Flynn's taxonomy ............................................... 12 
1.5.2 Feng's taxonomy ................................................ 14 
1.5.3 Handler's taxonomy .............................................. 14 
1.5.4 Skillicorn's taxonomy ............................................ 15 

1.6 Parallel Software Engineering .......................................... 16 
1.6.1 The basic principles of software engineering for parallel machines. ........ 

17 
1.6.1.1 Decomposition ............................................ 18 
1.6.1.2 Perfectly Parallel Decomposition .............................. 19 
1.6.1.3 Domain Decomposition ..................................... 19 
1.6.1.4 Control Decomposition ...................................... 

20 
1.6.1.5 Granularity ............................................... 

21 
1.6.1.6 Mapping ................................................. 

22 
1.6.1.7 Tuning ................................................... 

22 
1.6.2 Operating Systems ............................................... 

22 
1.6.3 Parallel Development Tools ........................................ 

25 
1.6.3.1 Parallel Languages ......................................... 

25 
1.6.3.2 Compilers ................................................ 

25 
1.6.3.3 Parallel Programming Environments ........................... 25 

1.7 Key Developments in Parallel Computing ................................. 30 
1.7.1 The earliest parallel machines ...................................... 30 
1.7.2 The first SIMD machines . ......................................... 31 
1.7.3 The first MIMD machines ......................................... 31 

iii 



1.7.4 GFLOP parallel machines ......................................... 32 
1.8 Conclusions 

........................................................ 33 
References ............................................................. 34 

Part1 .................................................................. 36 

Chapter 2: Concepts in Digital Electronics .................................... 37 
2.1 Basic Digital Electronics .............................................. 37 

2.1.1 Logic Levels ................................................... 37 
2.1.2 Logic Gates .................................................... 38 

2.1.2.1 Buses and tri-state logic ..................................... 44 
2.2 Rom and Programmable Logic Devices .................................. 45 

2.2.1 ROM ......................................................... 45 
2.2.2 Programmable Logic 

............................................. 47 
2.2.3 Programming PLDs and PROMs .................................... 50 
2.2.4 CUPL programming language ...................................... 50 

2.2.4.1 CUPL source code ......................................... 51 
2.2.4.2 CUPL simulator ........................................... 57 
2.2.4.3 JEDEC format ............................................. 59 

2.3 Summary .......................................................... 63 
References ............................................................. 63 

Chapter 3: Design of a Programmable Circuit Switched Network ................... 64 
3.1 Interprocessor Communication ......................................... 64 

3.1.1 Packet Switching ................................................ 64 
3.1.2 Circuit Switching ................................................ 65 
3.1.3 Wormhole Routing .............................................. 65 

3.2 INMOS products .................................................... 66 
3.2.1 INMOS C004 ................................................... 66 

3.2.1.1 Switch Implementation ...................................... 67 
3.2.1.2 INMOS OSLinks .......................................... 67 
3.2.1.3 System Services ........................................... 68 

3.2.2 INMOS T-800 transputer .......................................... 68 
3.2.3 C012 Link Adaptors .............................................. 71 

3.3 Hardware for Static Circuit Switched Network ............................. 73 
3.3.1 Hardware setup ................................................. 74 
3.3.2 Dual Link Adaptor Board ......................................... 76 

3.3.2.1245' Octal Bus Transceiver .................................. 77 
3.3.2.2 P22V 1OL-0 Programmable Logic Device 

....................... 79 
3.3.2.3 P22V 1 OL-1 Programmable Logic Device 

....................... 81 
3.4 Software requirements ................................................ 86 

3.4.1 User interface with a command line ................................. 86 
3.4.2 Graphical user interface ........................................... 87 
3.4.3 Programming the 0004s .......................................... 90 

3.5 Conclusions ........................................................ 96 
References ............................................................. 97 

Chapter 4: A Circuit Switched Network for Inmos OS Links 
...................... 98 

4.1 Overview of Dynamic Circuit Switching Systems .......................... 98 
4.1.1 Hardware Configurations for Dynamic Link Switching 

.................. 98 

iv 



4.1.1.1 Link-pipeline driven reconfiguration ................... 99 ........ 4.1.1.2 Memory-driven reconfiguration ................. 99 .............. 4.1.1.3 Serial bus driven reconfiguration .................... 101 .......... 4.2 Preliminary Designs ................................................. 104 
4.2.1 Interrupt Driven Architecture ...................................... 104 
4.2.2 Memory Mapped Architecture using the COM20020 Network Controller 

... 107 
4.3 Novel dynamic 'on-demand' circuit switched network ...................... 109 

4.3.1 Basic Procedure ................................................. 109 
4.3.2 Hardware subsystem ............................................. 110 
4.3.3 Token Passing 

.................................................. 111 
4.3.3.1 State Machines ............................................ 111 
4.3.3.2 Token passing using a finite state machine implemented in PLDs .... 112 
4.3.3.3 Token passing test circuit .................................... 114 

4.3.4 FIFO Access ................................................... 118 
4.3.4.1 CO11 .................................................... 118 
4.3.4.2 FIFO clocking state machine ................................. 120 
4.3.4.3 Fifo clocking test Circuit .................................... 121 

4.3.5 Hardware Interface to control processor .............................. 123 
4.3.5.1 ADS P-2105 ............................................... 123 
4.3.5.2 Interface between ADSP-2105 and EPROM ..................... 128 
4.3.5.3 Interface between ADSP-2105 and C012s ....................... 129 
4.3.5.4 Other connections to ADSP-2105 .............................. 131 
4.3.5.5 Testing of Circuit .......................................... 131 
4.3.5.6 Booting Program ........................................... 134 

4.3.6 Software for control processor ...................................... 137 
4.3.6.1 Basic Procedure ........................................... 137 
4.3.6.2 Program Structure .......................................... 139 

4.3.7 Testing of overall procedure ....................................... 141 
4.3.7.1 Test circuits ............................................... 141 

4.4 Connection Request Service Time ...................................... 147 
4.5 Conclusions and Discussion ........................................... 147 

References ............................................................. 150 

Part2 .................................................................. 152 

Chapter 5: Molecular Mechanics ............................................ 153 
5.1 Introduction ........................................................ 153 

5.1.1 What is Molecular Mechanics ...................................... 153 
5.1.2 Why Molecular Mechanics ........................................ 155 

5.2 Formulation of Molecular Mechanics .................................... 155 
5.2.1 Bond Stretching ................................................. 156 
5.2.2 Angle Bending .................................................. 157 
5.2.3 Torsion Angles .................................................. 158 
5.2.4 van der Waals interactions ......................................... 159 
5.2.5 Coulombic Interactions ........................................... 160 
5.2.6 Other terms .................................................... 162 

5.2.6.1 Out of plane bending ........................................ 162 
5.2.6.2 Cross terms ............................................... 162 

5.2.7 Force Field Parameterisation ....................................... 164 
5.3 Energy Minimisation 

................................................. 165 

V 



5.3.1 Pattern Searching ................................................ 166 
5.3.2 Gradient based methods ........................................... 167 

5.3.2.1 Steepest Descent ........................................... 168 
5.3.2.2 Newton Raphson ........................................... 168 
5.3.2.3 Calculation of Derivatives ................................... 170 

5.4 Conclusions 
........................................................ 173 

References 
............................................................. 173 

Chapter 6: Parallel Molecular Mechanics Calculations using COMFORT and the BB08.176 
6.1 Introduction 

........................................................ 176 
6.2 The BB08 and COMFORT ............................................ 177 

6.2.1 The BB08 Broadcast Link Interface ................................. 177 
6.2.2 The COMFORT Programming Environment 

.......................... 179 
6.3 The Molecular Mechanics Program ..................................... 182 

6.3.1 The Chemmin Minimiser .......................................... 183 
6.3.2 Parallelisation Strategies for Energy Minimisation 

...................... 188 
6.3.3 Hostmin and Nodemin ............................................ 191 
6.3.4 Implementation of host/node communication using COMFORT and the BB08 193 

6.3.4.1 The Implementation of COMFORT in HOSTMIN 
................ 195 

6.3.4.2 The Implementation of COMFORT in Nodemin .................. 200 
6.3.4.3 Transfer of atomic coordinates between host and nodes ............ 201 

6.3.5 Minimisation times .............................................. 202 
6.4 Graphical Interface 

.................................................. 204 
6.5 Conclusions 

........................................................ 204 
References 

............................................................. 207 

Appendix A: Source code for command line and graphical interfaces 
................ 208 

Appendix B: Source code for dynamic interconnection network .................... 234 
Appendix C: Source code for parallel energy minimisation ........................ 254 
Appendix D: Photographs .................................................. 303 
Appendix E: Publications .................................................. 311 

VI 



List of Figures 

Chapter 1 

FIGURE 1.1. Von Neumann computer model ................................... 3 
FIGURE 1.2. Snapshots of a data flow diagram for z= y(x+1) ....................... 5 
FIGURE 1.3. Vector Processor .............................................. 6 
FIGURE 1.4. An array processor ............................................. 7 
FIGURE 1.5. Shared memory multiprocessor ................................... 8 
FIGURE 1.6. A distributed memory multiprocessor ............................. 8 
FIGURE 1.7. Common static network topologies . ............................... 9 
FIGURE 1.8. A crossbar switch .............................................. 10 
FIGURE 1.9. A multistage network ........................................... I1 
FIGURE 1.10. Analogy of a SIMD machine .................................... 13 
FIGURE 1.11. Analogy of a MIMD machine ................................... 13 
FIGURE 1.12. The main stages in producing a parallel program ..................... 18 
FIGURE 1.13. Functional Decomposition Model ................................ 20 
FIGURE 1.14. Iiost/Node programming model ................................. 26 
FIGURE 1.15. Cubix programming model ..................................... 26 
FIGURE 1.16. A sample of the Express routines ................................ 27 
FIGURE 1.17. PVM program hello. c ......................................... 29 
FIGURE 1.18. PVM program hello_other. c .................................... 29 

Chapter 2 

FIGURE 2.1. Logic level ranges for a digital circuit .............................. 37 
FIGURE 2.2. Examples of Pulse Waveforms ................................... 38 
FIGURE 2.3. A timing diagram .............................................. 38 
FIGURE 2.4. Basic logic gates used in digital design ............................. 39 
FIGURE 2.5. Flip-flop (set-reset) ............................................ 39 
FIGURE 2.6. Stable states of flip-flop ..... ................................... 40 
FIGURE 2.7. Clocked flip-flop .............................................. 40 
FIGURE 2.8. Master-slave and positive edge triggered flip-flops ................... 41 
FIGURE 2.9. D-type and JK flip-flops ........................................ 43 
FIGURE 2.10. Truth table for JK type flip-flop ................................. 43 
FIGURE 2.11. Basic bus structure in a microcomputer ........................... 44 
FIGURE 2.12. Conceptual diagram of a tri-state NAND gate ....................... 44 
FIGURE 2.13. A1Kx 8K ROM ............................................. 45 
FIGURE 2.14. Bipolar ROM cells ............................................ 46 
FIGURE 2.15. A 16x8-bit ROM array ......................................... 46 
FIGURE 2.16. A PAL ..................................................... 48 
FIGURE 2.17. A PLA ..................................................... 48 
FIGURE 2.18. Details of shorthand used to describe PLDs ........................ 49 
FIGURE 2.19. A PLD with registered outputs .................................. 50 
FIGURE 2.20. CUPL source code for simple gates .............................. 52 
FIGURE 2.21. CUPL source code for interface between memory and CPU 

........... 53 
FIGURE 2.22. Microprocessor-based system ................................... 54 
FIGURE 2.23. The equality operator .......................................... 55 
FIGURE 2.24. Wait state generator timing diagram .............................. 56 
FIGURE 2.25. CSIM (. SI) file for interface between CPU and memory .............. 58 

vii 



FIGURE 2.26. Output file (. SO) from simulator ................................ 60 
FIGURE 2.27. JEDEC file for interface between CPU and memory ................. 61 
FIGURE 2.28. Example of a Checksum ....................................... 62 

Chapter 3 

FIGURE 3.1. IMS C004 block diagram ............................. . 66 ... ....... FIGURE 3.2. IMS C004 link data and acknowledge packets ....................... 68 
FIGURE 3.3. IMS T-800 block diagram .................................. 69 ..... FIGURE 3.4. Examples of input and output statements ........................... 71 
FIGURE 3.5. IMS C012 block diagram ........................................ 71 
FIGURE 3.6. IMS C012 input status register ................................... 72 
FIGURE 3.7. IMS C012 output status register .................................. 73 
FIGURE 3.8. Layout of circuit switched network ................................ 73 
FIGURE 3.9. Connections from transputer board to DIN41612 plug ................. 74 
FIGURE 3.10. Block Diagram of Switch board ................................. 75 
FIGURE 3.11. Overall arrangement of transputer boards .......................... 75 
FIGURE 3.12. Connections to 16-way DIN41612 socket .......................... 76 
FIGURE 3.13. Pin and signal definitions for the PC card slots ...................... 77 
FIGURE 3.14. Dual Link Adaptor Board ...................................... 78 
FIGURE 3.15. Pin Configuration of P22V IOL .................................. 79 
FIGURE 3.16. CUPL source code for P22V IOL-0 ............................... 80 
FIGURE 3.17. CUPL source code for P22VIOL-1 ............................... 83 
FIGURE 3.18. Timing diagram for write to C012 ................................ 84 
FIGURE 3.19. Timing diagram for NotStatWr signal ............................. 85 
FIGURE 3.20. FORTRAN code to extract values from string ...................... 86 
FIGURE 3.21. Subroutine INTEG ............................................ 87 
FIGURE 3.22. Pseudocode for routine PRESSMOUSE ........ 89 ................... FIGURE 3.23. Pseudocode for subroutine CONNECTIONS ....................... 90 
FIGURE 3.24. Assembler routine RUN ........................................ 91 
FIGURE 3.25. FORTRAN code to make connections on 0004s .................... 93 
FIGURE 3.26. Assembler routine LinkOut ..................................... 94 
FIGURE 3.27. Assembler routine Linkln ...................................... 95 
FIGURE 3.28. FORTRAN code to interrogate an output .......................... 96 

connections Format of statement showin FIGURE 3 29 96 g .......................... . . 
Chapter 4 

FIGURE 4.1. General structure of a dynamic switching scheme .................... 
FIGURE 4.2. Link Pipeline Driven Reconfiguration Control ....................... 
FIGURE 4.3. Memory driven reconfiguration ................................... 
FIGURE 4.4. Serial Bus Driven Reconfiguration Control .......................... 

99 
100 
100 
101 

FIGURE 4.5. Interconnecting transputers by the TRANSBUS controller ............. 102 
FIGURE 4.6. Structure of a single cluster TRANSBUS system ..................... 103 
FIGURE 4.7. Interrupt Driven Design 

......................................... 
FIGURE 4.8. Connections on 2-line to 4-line decoder ............................ 
FIGURE 4.9. COM20020 Interface to Control Processor .......................... 
FIGURE 4.10. Multiplexed, 8051 - like bus interface with COM20020 

............... 
FIGURE 4.11. Dynamic Interconnection Network (1 node) ........................ 
FIGURE 4.12. State Machine ............................................... 
FIGURE 4.13. Token Passing ............................................... 
FIGURE 4.14. Generation of HoldToken signal ................................. 

105 
106 
107 
108 
110 
112 
112 
113 

VI11 



FIGURE 4.15. State Diagram for token passing .................. 114 ............... FIGURE 4.16. Token passing test circuit ...................... 115 ................ FIGURE 4.17. CUPL source code for token passing ..................... 116 ......... FIGURE 4.18. CUPL source code for node which injects token in to system .......... 117 
FIGURE 4.19. IMS CO 11 Mode 1 block diagram ........................ . 119 . ...... FIGURE 4.20. State Diagram for FIFO clocking ................................ 120 
FIGURE 4.21. Fifo clocking test circuit ................................. 121 ...... FIGURE 4.22. CUPL source code for P22V IOL in FIFO clocking circuit ............. 122 
FIGURE 4.23. CUPL code for FIFO clocking ................................... 124 
FIGURE 4.24. Hardware Interface to Control Processor ........................... 125 
FIGURE 4.25. Core Architecture of ADSP-2105 ................................ 127 
FIGURE 4.26. CUPL source code for P22V 10 .................................. 130 
FIGURE 4.27.. SYS file for flashing light ...................................... 132 
FIGURE 4.28. Source code for flash. dsp ....................................... 133 
FIGURE 4.29. Pseudocode for download program ............................... 135 
FIGURE 4.30. Connection request sent by node ................................. 137 
FIGURE 4.31. Connection Table in Control Processor ............................ 138 
FIGURE 4.32. Acknowledge Byte returned to source node ........................ 138 
FIGURE 4.33. Disconnection Request ........................................ 139 
FIGURE 4.34. Program structure for ADSP-2105 software ........................ 140 
FIGURE 4.35. Set-up used to test theory of dynamic connection network ............. 142 
FIGURE 4.36. PC plug-in card which emulates node ............................. 143 
FIGURE 4.37. Functional Block Diagram of FIFO ............................... 144 
FIGURE 4.38. Control of QAck and QValid .................................... 145 
FIGURE 4.39. CUPL source code for address decoding ........................... 146 
FIGURE 4.40. Multiple communications channels required between devices 

.......... 148 

Chapter 5 

FIGURE 5.1. Curves showing the variation of bond stretch energy with distance 
....... 157 

FIGURE 5.2. A typical van der Waals curve .................................... 159 
FIGURE 5.3. Single Dipole Interaction ......................................... 160 
FIGURE 5.4. The Improper Torsion Angle (c shown by dashed line) ................ 162 
FIGURE 5.5. Molecular geometries for cis and trans butane structures ............... 163 
FIGURE 5.6. Shape of rotational potential for 1,2-di-substituted ethanes ............. 166 

Chapter 6 
FIGURE 6.1. Basic layout of BB08 board ...................................... 178 
FIGURE 6.2. Connections from BB08 board on Node 3 ........................... 178 
FIGURE 6.3. Program Structure of Chemmin .................................. 184 
tIGURE 6.4. Pseudocode for Chemmin ....................................... 185 
FIGURE 6.5. Pseudocode for Mindat ......................................... 186 
FIGURE 6.6. Pseudocode for Mininitl. dat ..................................... 186 
tIGURE 6.7. Partition of subroutines between host and nodes ...................... 192 
LIGURE 6.8. Code to allocate atoms to node ................................... 193 
IIGURE 6.9. Pseudocode for Ilostmin ........................................ 194 
FIGURE 6.10. Pseudocode for Nodemin ........................................ 194 
FIGURE 6.11. Host Code that broadcasts arrays to node .......................... 196 
FIGURE 6.12. Common Block Declarations .................................... 196 
FIGURE 6.13. Graphical Representation of Equivalence Statements 

................. 198 
IIGURE 6.14. Include file that equivalences arrays/variables to dummy arrays ........ 199 

ix 



FIGURE 6.14. Include file that equivalences arrays/variables to dummy arrays ........ 199 
FIGURE 6.15. Code on node which receives data from host 

....................... 200 
FIGURE 6.16. Node code to return `improved' coordinates to host 

.................. 201 
FIGURE 6.17. Host code to receive `improved' coordinates ....................... 202 
FIGURE 6.18. Arrangement of FATXYZ in memory ............................. 203 
FIGURE 6.19. Arrangement of FATXYZ in memory with reversed indices ........... 203 
FIGURE 6.20. Pseudocode for graphical interface ............................... 206 

Appendix D 

FIGURE 1. Switch Board ................................................... 304 
FIGURE 2. Dual Link Adapter Board ......................................... 304 
FIGURE 3. Token Passing Test Circuit ........................................ 305 
FIGURE 4. FIFO Clocking Test Circuit ....................................... 305 
FIGURE 5. Control Processor Board .......................................... 306 
FIGURE 6. PC plug-in csrd to emulate node .................................... 

306 
FIGURE 7. Graphical Interface allowing connections between nodes ................ 307 
FIGURE 8. Graphical Interface showing connections between nodes ................ 307 
FIGURE 9. Initial Screen of minimiser ........................................ 

308 
FIGURE 10. Number Pad allowing user to enter number of iterations ................ 308 
FIGURE 11. Screen allowing user to fix parameters .............................. 309 
FIGURE 12. Selecting a fixed legnth .......................................... 

309 
FIGURE 13. Entering severity of constraint .................................... 

310 



List of Tables 

Chapter 2 

TABLE 2.1. Logical Operators .............................................. 
51 

TABLE 2.2. Table of Test Conditions ......................................... 
59 

Chapter 3 
TABLE 3.1. IMS C004 configuration messages ................... .............. 

67 
TABLE 3.2. IMS C004 system services ......................... .............. 

68 

TABLE 3.3. IMS C012 register selection ........................ .............. 
72 

TABLE 3.4. Function Table for 245` ............................ .............. 
77 

TALE 3.5. Pin Outs ofP22V10L-1 ............................ .............. 
81 

TABLE 3.6. Intermediate variables for P22VIOL .................. .............. 
84 

Chapter 4 

TABLE 4.1. Operations supported by Computational Units .............. .......... 
126 

Chapter 6 
TABLE 6.1. COMFORT low-level subroutines ....................... .......... 

180 
TABLE 6.2. COMFORT run-time libraries ......................... "" """""..... 

180 
182 TABLE 6.3. Description of COMFORT routines ...................... .......... 

TABLE 6.4. Variable names and definitions .......................... .......... 
197 
202 TABLE 6.5. Optimisation times for 30 iterations ...................... .......... 

xi 



Acknowledgements 

I would like to gratefully acknowledge the guidance, support and encouragement given 
to me by my supervisor Dr. David White. His advice and direction was invaluable 

during my research. 

Thanks must also be given to various staff and colleagues of the Chemistry department 

both past and present. In particular to Noel Ruddock for his guidance with software 
development and Dr Chris Gilmore for the use of his computers and printers for 

writing this thesis (and many other reports). My sincere appreciation goes to Stuart 

Mackay for taking the time to proof read this thesis and for all his suggestions. 

A big thank you to Lesley Ann for her friendship, support and lunches at the QM! I 

would also like to thank Arlene for her friendship and putting up with sharing an office 
with me. 

Thanks is also due to my Mum for taking the photos included in this thesis. 

The financial support received from the CEU (Commission of the European Union) to 

attend a conference in Harrogate is also gratefully acknowledged. 

Finally I would like to thank the E. P. S. R. C for funding this research and the attendance 

at a conference in the U. S. A. 

xii 



This thesis is dedicated to my parents 

for all their support throughout my academic career. 

xiii 



Chapter 1 

Introduction to Parallel Computing 

Throughout the evolution of computing, parallelism has become more and more 

significant. Due to the demand for more powerful machines, designers have had to 

conceive methods of achieving greater speed with the available technology of the day. 

This has often been achieved by parallelism within a sequential single processor 

machine or by using several sequential processors working together. 

This chapter explains the need for parallel computing and also describes some of the 

problems associated with it. The main types of parallel architecture and the taxonomies 

developed to describe parallel systems are detailed. An overview is presented of the 

issues involved in parallel software engineering and finally the key developments in 

parallel computing are described. 

1.1 What is Parallel Computing? 

The basic concept of parallel computing is that a computation is distributed over 

several processing units, enabling parts of the program to be executed simultaneously. 

This will potentially speed up the computation compared to executing it on a sequential 

machine. This approach is analogous to a team of people working on a common task. 

You would hope to complete the task faster with a team of people than with a single 

person. 

It is not the case however that every program can be speeded up by executing it in 

parallel. As with people the processors in a parallel computer have to communicate 

with each other to work effectively and this is one of the main overheads in parallel 

computing. Also the algorithm must be suited to parallel computing. An algorithm that 

requires a high ratio of communication to computation would not necessarily be 

speeded up by parallel computing. 



1.2 Why parallel computing? 
With the advent of high performance workstations it is often asked why there is a need 
for parallel computing. The main reason is that even the fastest computers available 
today are still not powerful enough for the so called Grand Challenges of science. 
These include applications in weather forecasting, computational fluid dynamics used 
in the automotive industry and drug design used in the pharmaceutical industry. 

Even today's fastest computers are approaching the limits imposed by physics. The 

propagation delays of signals are restricted by the speed of light. As designers try to 

shrink architectures to reduce the distance signals require to travel, device physicists 

are concerned about the impact of atom spacing on their ability to make smaller and, 
hence, faster transistors. It is therefore probable that designers will have no choice but 

to rely on parallelism to achieve higher performance. 

Another reason for parallel systems is that they can provide a good cost/performance 

ratio. Many large problems are solved too slowly on a sequential machine to be cost- 

effective, the reason being that for high-performance single processors the price grows 

rapidly with speed. It can therefore be less expensive and faster to use several `off-the- 

shelf' processors to achieve high performance. 

Other advantages of parallel systems include scalability and availability. A well- 
designed parallel system will allow for the addition of more processors as they become 

available or as the users computing requirements grow. Also as there is a high 

availability of components, if one fails the system should be able to continue operation 

using the remaining components. 

1.2.1 Problems in parallel computing 

Sequential computers are based on a single underlying model of computation known as 

the Von Neumann model. This single model has given manufacturers and users a 

common paradigm on which to construct their software and hardware. This has led to 

common standards within the sequential market and as a result has given rise to 

software that is portable between platforms. In parallel computing there is no single 

model of computation which can lead to problems when porting parallel software from 

one hardware platform to another. 
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The primary difference between parallel and sequential computing is that in a parallel 

computer a program is divided up into processes which maybe on separate processors. 
These processes will require to communicate with each other in order to produce an 

overall solution to the problem. At present there is no common standard used to pass 

messages between processors. Several schemes have been suggested and some of these 

will be discussed in the course of this thesis. 

Other problems that occur in parallel computing and not in sequential computing are 
deadlock and livelock. Deadlock is where two or more parallel processes can no longer 

execute any further due to a communication interdependency. Livelock is the state 

where a process remains active on a processor but does not communicate and acts like 

an infinite loop. Software engineers need to prevent these situations. 

1.3 Sequential models of computation 

Sequential models of computation are often used as building blocks for parallel 

machines. Three of the most common sequential models are discussed below. 

1.3.1 Von Neumann model 

The von Neumann model of computation is illustrated in Figure 1.1. 

FIGURE I. l. Von Neumann computer model 

A classical von Neumann computer consists of a program control unit (CU), an 

arithmetic logic unit (ALU), an input/output (I/O) unit, and memory (M). The CU and 

ALU collectively make up the processing element. 

The von Neumann model is based on the following principles: - 
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"A single processing element separated from memory by a communication bus 

" Linear organisation of fixed-size memory cells 

" Low-level machine language with instructions performing simple operations on 
elementary operands 

" Sequential centralised control of computations 

These principles are simple and well understood and considerable progress has been 

made with them over the years. 

1.3.2 Harvard Architecture 

The Harvard Architecture is a variation on the von Neumann model and uses two 

separate memories for instructions and data instead of the one memory for both as in 

the von Neumann model. This allows both instructions and data to be accessed 

simultaneously improving the speed of the machine. 

1.3.3 Data-Flow Computations 

In a data-flow machine computations take place when operands become available 

eliminating the need for a program counter. In a von Neumann computer the program 

counter stores the address of the next instruction in order to process instructions in a 

sequential manner. It is the data dependencies that constrain the order of computations 

in a data-flow machine. 

The result produced by an instruction is used as a token which passes to the operands 

of the next instruction. Figure 1.2 overleaf shows a data flow graph for the calculation 

z=y(x+l). Here the circles represent nodes which are connected by arcs and the dots on 

the arcs represent tokens. For example purposes x and y are 4 and 5 respectively. 

Each node is only permitted to compute when tokens are present on each input arc and 

there are not tokens on the output arc. In Figure 1.2(a) the "plus" node can compute but 

the "multiplication" node cannot. In Figure 1.2(b) as the "plus" node has produced a 

token which enables the "multiplication" node to compute. Finally in Figure 1.2(c) the 

result z=25 is produced 
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FIGURE 1.2. Snapshots of a data flow diagram for Z= y(x+1) 

1.4 Parallel Concepts 

There are various hardware schemes that exploit parallelism in computing1'2. Some of 

these are detailed below. 

1.4.1 Pipelining. 

Pipelining divides a task T into subtasks T1, T2, .., Tk and assigns the subtasks to a 

chain of processing elements (PEs). Each PE executes a particular subtask and passes 

its result onto the next PE similar to an assembly line in a factory. Pipelining can be 

applied at instruction or arithmetic level. 

An instruction cycle typically consists of 3 stages. i. e 

1) Fctch instruction. 

2) Decode instruction. 

3) Execute instruction. 

In a pipelined processor these functions are carried out in parallel. As one instruction is 

being decoded the next one will be fetched which means the ALU (arithmetic logic 

unit) always has an instruction waiting for it. This approach works best with programs 
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which contain long sections of sequential code, as obviously if an instruction has been 

prefetched and the previous instruction was a `JUMP' instruction then the new 
instruction will have to be discarded. The speed-up obtained from pipelining also 
depends on the length of the pipe as the longer the pipeline the longer it takes to `flush' 

out the pipeline. 

In arithmetic pipelining the ALU is arranged as a series of stages, and operations inside 

the ALU are pipelined. For example when multiplying two floating point numbers A 

and B, at instant one, stage one calculates the difference between the exponents of A 

and B. At instant two, stage two aligns the mantissas of A and B at the same time as 

stage one calculates the difference between the exponents of the next two numbers (C 

& D). 

Most of todays sequential processors use some form of instruction level and arithmetic 

pipelining. In this way parallelism is present within a single sequential processor. 

1.4.2 Vector Processors 

Vector processors are specifically designed for computations involving vectors. For 

example the subtraction of two vectors of n elements can be performed simultaneously 

on all it elements. This can be achieved by replicating the number of ALUs to the size 

of the vectors. This requires a considerable amount of hardware and is not particularly 

flexible. A better approach is to use pipelining. 

Vectors are one-dimensional arrays of data and the same sequence of operations is 

required for each vector element. One or more pipelined ALUs may be used and the 

vector elements are pushed through the pipeline. (See Figure 1.3) 

: lined 
Us 

FIGURE 1.3. Vector Processor 
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1.4.3 Array Processors 

An array processor is a synchronous parallel computer which consists of multiple 

processors under the supervision of a single control unit (See Figure 1.4). The 

processors each perform the same instruction at the same time but on different data. 

The control unit synchronises all the processors and collects the results from the 

processors. This approach is useful for programs with large arrays of data which 

require the same operation to be executed on each of the elements in the array. 

FIGURE 1.4. An array processor 

The processors in an array processor usually consist of a bit-serial ALU and some local 

memory. The processors are arranged in a regular lattice of two or more dimensions 

with each processor connected to at least its nearest neighbour. In the case of two 

dimensional problems such as image processing and matrix calculations the data can 

be mapped easily onto a two dimensional array. 

1.4.4 Multiprocessors 

Multiprocessing machines consist of multiple complete processors which each contain 

a CPU, ALU, local memory and an 110 interface (known as a node). This is the ideal 

approach as it should theoretically allow you to carry out any kind of computation in 

parallel. However as stated previously, the structure of the computation and the degree 

of inter-processor communication necessary, must be considered. 

1.4.4.1 Shared memory multiprocessors. 

This type of multiprocessor exchange data via a shared memory (See Figure 1.5 on 

page 8). Each node still has its own local memory but uses shared memory for data that 

is required by other nodes. Since the nodes operate more or less independently of each 

other, this is an asynchronous architecture. A disadvantage of this architecture is that it 
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is not easily scalable as if more nodes are added then the shared memory bus becomes 

a potential bottleneck. 

FIGURE 1.5. Shared memory multiprocessor 

1.4.4.2 Distributed memory multiprocessors 

In these systems each node has its own memory and the nodes communicate via an 

interconnection network (See Figure 1.6). Ideally every node would be directly 

connected to every other node but this is usually not feasible especially in 

multiprocessors with a large number of nodes (1000 nodes requires 1/2 million 

connections). Usually messages pass via intermediate nodes to reach the destination 

node (known as message passing). Obviously when designing the network the aim is to 

minimise the time taken for messages to pass over it. 

FIGURE 1.6. A distributed memory multiprocessor 

The interconnection network can be static or dynamic2. A static network topology does 

not change after the machine has been built whereas a dynamic network can change its 

topology to suit different computations. The topology can be altered before the 

computation or dynamically during the computation. Static networks are more 

appropriate for problems where the communication pattern can be predicted 

reasonably well, whereas dynamic topologies are suitable for a wider class of 

problems. 
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Some of the common static topologies are illustrated in Figure 1.7. In these static 

networks messages `hop' from node to node in order to reach the destination. In a 

simple 1-D linear network the average number of hops is N/3 where N is the number of 

nodes. The number of hops required can be reduced by increasing the dimensionality 

of the network. In a ring topology (a 2-D linear network) for example the number of 
hops is reduce to N/6 (half that of a 1-D linear network). By increasing the 

dimensionality of the network however, the number of connections required between 

the nodes increases and hence the cost and complexity increases. 

PE P 

1) Linear array 2) Ring 

ttnn 1101 

01 

100 

4) Tree 5) Star 6) Binary Ilypercube 

FIGURE 1.7. Common static network topologies. 

A compromise between the number of links and the number of hops is to use higher 

dimensions and only connect nodes in the same dimension. This is the approach used 

in the binary hypercube. The hypercube illustrated in Figure 1.7 is a four dimensional 

hypercube. It is so called as four binary digits are required to specify all the node 

positions. Each node is connected to every other node whose binary number differs 

from its own by exactly one digit. 

If n is the dimensionality of the hypercube then N(no. of nodes) = 2" and the maximum 

number of hops required is log2N which is equivalent to it. The number of connections 
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at each node is also log2N. The hypercube topology has been used in many commercial 

machines some of which will be discussed at the end of this Chapter. 

There are three basic types of dynamic network: bus networks, multistage networks 

and crossbar networks (listed in order of increasing performance and cost). 

A bus network, as the name implies, is a system where all the nodes are connected to a 

common bus, therefore any node can communicate with any other node. The main 

advantage of this system is its simplicity. However a major disadvantage is that it can 

only be used for a limited number of processors because of the limited bandwidth of 

the bus. 

A crossbar switch is an integrated circuit (IC) which when combined can connect any 

input to any output (See Figure 1.8). Each output is connected to the output of an if to I 

multiplexer where n is the number of inputs to the crossbar switch. The n inputs of 

each multiplexer are connected to the n inputs of the crossbar allowing each output to 

be connected to any input of the crossbar. Several connections between inputs and 

outputs can be present at the one time. 

Inputs Oton 

n to 
Multiplexer 

" 

" 

" 

to 1 
Lýipiexer 

FIGURE 1.8. A crossbar switch 
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By connecting nodes to a crossbar switch any node can be directly connected to any 

other node. The crossbar switch can be programmed prior to or during a computation. 

Crossbar switch systems are only usually suitable for a small number of nodes as the 

number of logic switches within the crossbar is N2 where N is the number of processors 

(usually crossbar switches are 32-to-32 or 64-to-64). 
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A multistage network attempts to provide the connectivity of a full crossbar by using 
several 2-to-2 (maybe larger) crossbars connected together. The reason for this is to 

reduce the number of switching elements required and hence the cost of the system. 

For an N node system the number of switching elements is Mog2N compared to N2 for 

a single crossbar switch. However, since a message will need to pass through several 

switches to reach its destination the latency of such systems is greater than for a single 

switch. 

Figure 1.9 shows an example of a multistage network using several 2 to 2 crossbars. 
This configuration allows any of the eight inputs to be connected to any of the eight 

outputs. Since each crossbar has four switching elements the total number of switching 

elements required is forty eight (4 x 12) compared to the sixty four required by an 8 to 
8 crossbar switch. Multistage networks do have the disadvantage however that 

messages can be blocked as two different routes through the network may require the 

same connection on one of the crossbars. 
Inputs 
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FIGURE 1.9. A multistage network 

1.4.5 Multi-Workstations 
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Multi-workstations in their simplest form are collections of high performance 

workstations, such as Sun or Silicon Graphics, connected together by ethernet. A 

program is distributed over the workstations and messages are exchanged between the 

workstations via ethernet. An advantage of this type of system is that it can utilise 
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existing general purpose hardware. A disadvantage however, is the relative slowness 



of ethernet compared to the dedicated high-speed links on a multiprocessor machine. 
The communication speed between the workstations can be increased by using optical 
links. 

1.4.6 Which parallel methodology? 
None of these approaches to parallelism is necessarily the best approach. It is 

dependent on the type of problem the parallel machine is used for and the cost/ 

performance ratio required. For example, traditionally supercomputers use pipelined 

vector processing and rely on the fastest available (expensive) circuit technology to 

produce high performance. These machines however are only suitable for high speed 

numeric problems. On the other hand multiprocessors do not require exotic circuit 

technology or custom processor designs which provides flexibility, familiarity and 

scalability. 

1.5 Taxonomies for parallel computers 
Several taxonomies have been developed to classify the various types of parallel 

computer. The main reasons for their development are: - 

they show what has been achieved to date in the field of architecture. 

" they can enable the designer to estimate the suitability of an architecture to solving 
a given problem. 

" there is the potential that such systems may reveal configurations that may not have 

occurred to designers. 

" performance models can be built that cover a wide range of systems with little, or 
no, modification. 

1.5.1 Flynn's Taxonomy 

The most widely used taxonomy was developed by Flynn in 19723. This classifies 

parallel computers into four groups: - 

" SISD - Single Instruction Stream Single Data Stream. 

" SIMD - Single Instruction Stream Multiple Data Stream 

" MIMD - Multiple Instruction Stream Multiple Data Stream 

" MISD - Multiple Instruction Stream Single Data Stream 
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SISD computers are the sequential (Von Neuman) machines where a single stream of 
instructions acts upon a single stream of data. 

A SIMD machine consists of an array of processing elements each carrying out a single 
instruction simultaneously but on different data sets. An illustration of the principle of 

a SIMD machine is shown in Figure 1.10. All the people (nodes) are carrying out the 

same instruction (walking) in lock-step time and are controlled by a leader (master 

processor). 

FIGURE 1.10. Analogy of a SIMD machine 

A MIMD machine comprises a number of processing elements all executing their own 

code simultaneously on different data sets. A diagram illustrating this concept again 

using the analogy with people is shown in Figure 1.11. In this case every person (node) 

is carrying out a different task (instruction) using different items (data). 
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FIGURE 1.1I. Analogy of a MINID machine 
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MISD computers are theoretically possible but would imply that a set of different 

instructions would all be performed simultaneously on the same data item which is an 

unlikely scenario. 

Flynn's classification is useful in certain circumstances but it fails to accurately 
describe some systems. For example a pipelined vector machine can either be 

described as SISD or SIMD, SISD if considered as processing a single stream of data 

and SIMD if every element of the vectors is regarded as belonging to an individual 

stream of data. 

Generally though a SIMD machine is taken to be an array of processors operating 

under central control and an MIMD machine is regarded as an array of processors 

operating independently of each other executing different instructions on different data 

streams. 

1.5.2 Feng's taxonomy 

This is a performance based classification which describes the parallelism of a set of 

processors in terms of the number of bits than can be processed simultaneously 4. 

Parallel machines are defined by the word length of the processing units (n) and the bit 

slice length (m -a product of the number of pipelines and their depth). This provides 

the following classification: - 

" WSBS - Word Serial, Bit Serial (bit serial processing) -m=1; n=I 

" WPBS - Word Parallel, Bit Serial (bit slice processing) -m>1; n=1 

" WSBP - Word Serial, Bit Parallel (word slice processing) -m=1; n>1 

" WPBP - Word Parallel, Bit Parallel (fully parallel) -m>1; n>1 

This classification is useful for pipeline and vector processors but would not 

distinguish between types of multiprocessor architecture. 

1.5.3 Händler's Taxonomy 

Händler identified three logical levels of parallelism5: Program level (multiple 

processors), Instruction level (multiple ALUs) and the Word level (multiple bits). The 

Händler classification system therefore uses the triple (K, D, W) to represent a 

machine, where K is the number of processors, D is the number of ALUs and W is the 
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wordlength of each ALU. On top of this, pipelining can be included (macro-, 

instruction- and arithmetic-pipelining respectively), giving rise to (K*K', D*D', 

W*W'), where the multipliers are the pipeline depth at each level. 

The system also enables representations to be combined using the following operators: 

+ indicates the existence of more than one structure that operates independently in 

parallel. 

* indicates the existence of sequentially ordered structures where all data is 

processed through all structures. 

v indicates that a certain system may have multiple configurations. 

This works well for describing conventional vector processors but it fails to describe 

the interconnection information in multiprocessor systems. 

1.5.4 Skillicorn's taxonomy 

Skillicorn introduced the idea of modelling the possible interconnection networks 

within a system6. The networks include the processor to memory, processor to ALU, 

and processor to processor subsystems. The system is therefore represented by the 

following: 

1) no. of instruction processors (IP). 

2) no. of instruction memories (IM). 

3) the IP to IM network. 

4) no. of ALUs (DP) 

5) DP to data memory network. 

6) IP to DP network. 

7) DP to DP network. 

The networks are described by abstract switches which connect the functional units 

together. These abstract switches can be implemented in different ways: by buses, 
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dynamic switches, or static interconnection networks. Four different forms of abstract 

switch connect functional units together: - 

" 1-to-1 :a single functional unit of one type connects to a single functional unit of 
another 

" n-to-n : the ith unit of one set of functional units connects to the ith unit of another. 
This type of switch is a 1-to-1 connection replicated n times. 

" 1-to-n : in this configuration, one functional unit connects to all n devices of another 
set of functional units. 

" n-by-n : in this configuration, each device of one set of functional units can 
communicate with any device of a second set and vice versa. 

Further discriminations can be made by describing whether or not each of the 

processors is pipelined and by giving its internal functional structure by a state 

diagram. 

This system is very detailed and flexible, and is capable of describing most current 

systems. However it is slightly complex and is probably best used in combination with 

Flynn's system so that only the departures from the base class need to be specified. 

These are only some of the taxonomies that have been proposed. Skillicorn's comes 

closest to the ideal as it includes the interconnection topology of nodes. However it still 

does not cover all the topologies available as it only uses simple one to one or all to all 

models to describe the interconnection networks. Depending on the type of system in 

use (i. e. pipelined, vector etc. ) the best approach is to classify the system using a 

combination of Flynn's taxonomy and one of the others (i. e Händler's for a vector 

processor). 

1,6 Parallel Software Engineering 

The development of parallel software is governed chiefly by the target hardware and 

the nature of the application. Hardware can vary from a small pipeline to a large 

multiprocessor machine containing thousands of nodes. The application can vary from 

a large numerical problem such as weather forecasting to a small real time embedded 

system. Depending on the hardware and the application different requirements are 

demanded of the software. 
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The main aims of the software engineer are to balance the computational load and to 

minimize the communication to computation ratio. It is not advantageous to have one 

node very busy while the others are idle or to have so much communication that the 

nodes spend most of their time communicating rather than computing. 

Software engineers also may be required to consider issues such as portability and 

scalability. For some applications the hardware setup will not alter during the lifetime 

of the software (i. e embedded and process control systems) but for the majority of 

systems it is desirable to allow for the possible implementation on other parallel 

systems, and also to provide for the scaling up of the existing target hardware. 

The operating system on a parallel machine provides the same services as on a 

sequential machine (i. e memory management, device I/O), as well as managing 
interprocess communication and synchronisation. The operating system may also be 

responsible for the allocation of processes onto nodes. 

1.6.1 The basic principles of software engineering for parallel 
machines. 

There are three major steps to producing a parallel program7: - 

1) Decomposition 

2) Mapping 

3) Tuning. 

Figure 1.12 overleaf illustrates these processes8. Decomposition is the partition of the 

application into a set of parallel processes and data. Mapping is the distribution of the 

processes onto the nodes. Tuning is the alteration of the working application to balance 

the load and to optimise performance. 
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FIGURE 1.12. The main stages in producing a parallel program. 

1.6.1.1 Decomposition 

Decomposition is the first and most important step to producing a parallel program. It 

guides the whole programming process. The decomposition of an application must 
break up the program into a set of well defined processes that can be linked together 

logically to provide a finite solution to a computation. 
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In order to choose the best decomposition method for an application an understanding 

of the application problem, the data domain, the algorithms used and the flow of 

control in the application are required. 

There are three general decomposition methods: - 

" Perfectly parallel decomposition 

" Domain Decomposition 

" Control Decomposition 

1.6.1.2 Perfectly Parallel Decomposition 

Perfectly parallel applications can be divided up into a set of processes that require 

little or no communication with one another. Application of this type are usually the 

easiest to decompose. 

An obvious way to implement perfect parallelism is to run equivalent sequential 

programs on several nodes but on different data sets. If this type of algorithm was 

executed on a single processor then each data set would have to be considered one at a 

time whereas by using several nodes almost linear speed-up can be achieved with little 

effort required by the programmer. 

Examples of perfectly parallel applications can be found in most disciplines. An 

example from physics is the use of the Monte Carlo technique to determine atomic 

structure. Physicists analyse thousands of random electron distributions around an 

atomic nucleus to define a probability distribution that points to the probable atomic 

structure. Each random electron distribution can be calculated independently in parallel 

making this a perfectly parallel application. 

1.6.1.3 Domain Decomposition 

Problems subject to domain composition are usually characterised by large, discrete 

static data structures. It is the fundamental data structure that controls how the program 

is parallelised. For example calculations involving matrices could be parallelised by 

dividing the matrix into columns and separate nodes could execute different sets of 

instructions on different columns as required in a Gauss Elimination for example. 
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1.6.1.4 Control Decomposition 

Control decomposition is for applications where no static or fixed domain is identified 

but instead it is the flow of control or operations that is used as the guideline for 

parallelism. As the development progresses, the data structures are also distributed but 

the focus of the parallelisation still remains the flow of control. 

Functional decomposition is a method of control decomposition. Here, the problem is 

regarded as a set of operations (in terms of its functions) and the processes for the 

nodes are based on those operations. Figure 1.13 illustrates a functional decomposition 

model of an algorithm. 

S 
" 
" 

FIGURE 1.13. Functional Decomposition Model 

The flow of control is indicated by the lines between the boxes. For small problems the 

functions are usually required to be executed sequentially therefore a parallel 

application is not produced easily. However, large problems usually have a large 

degree of overlap between functions so it is possible to extract some sort of 

parallelism. 

The most common type of functional parallelism is where the data is pipelined from 

one module to another creating what is called a large-grain pipeline. An example of 

this method can be found in image recognition. The traditional approach to image 

recognition includes the following steps: 
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1) Preprocessing to reduce noise. 

2) Edge and region detection. 

3) Object Recognition. 

4) Object grouping. 

5) Screen interpretation. 

By dedicating a node (or more likely a group of nodes) to each step, the stream of input 

frames could be pipelined through the above five steps. The number of nodes assigned 

to each step would be determined by analysis and experimentation. 

Another method of control decomposition is the manager/worker approach. This 

involves dividing the application into tasks (without attempting to make the tasks of 

equal size) and then using one of the nodes (the manager) to distribute the tasks to the 

other nodes (the workers) as they become available. The manger's job is to assist or 

create the pool of jobs to be done, and then to keep the workers busy by assigning jobs 

to workers. The manger also usually returns the final results based on the full results of 

the individual workers. 

1.6.1.5 Granularity 

Granularity is the level of parallelism which is a measure of the degree to which tasks 

are partitioned into subtasks (i. e effectively the degree of decomposition). Parallel 

systems can be fine-grained, medium grained or coarse grained. The "grain" of a 

computation can be measured by the amount of computation between tasks. An 

example of fine-grained parallelism would be the execution of a DO loop in parallel 

whereas course-grained parallelism is where large sections of code are executed in 

parallel. 

The granularity of a system relies on the number of processors to be used and the 

nature of the problem decomposition. Often there can be abundant parallelism at fine 

granularity which is not exploited as working with fine granularity increases the 

amount of data communication between processes. It also increases the software 

complexity. 
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1.6.1.6 Mapping 

Decomposition is followed by the distribution of the processes onto the nodes which is 

known as mapping. Ideally the processes should be allocated to the nodes in a manner 

which keeps all the nodes busy during the entire time the computation is running. 

Processes can be allocated dynamically during program execution or statically before 

the execution of the program. The less equal the loads on the nodes the more the 

computing resources of the system are wasted. Well balanced mapping relies on the 

modularity acquired from the problem decomposition. 

1.6.1.7 Thning 

Once an application has been mapped to the nodes of a system and it is running 

properly, the next step is to tune it to enhance the performance. Tuning usually involves 

attempting to the reduce the communication to computation ratio as this is one the 

main overheads in parallel computing. This could involve altering the mapping of the 

processes onto the nodes or altering the decomposition of the application. 

1.6.2 Operating Systems 

In addition to providing the services of a normal OS (operating system) on a sequential 

machine, the OS on a parallel machine must provide such services as program 

scheduling and interprocess communication and synchronisation. Some of the 

operating systems developed for parallel systems are simply extensions of 

uniprocessor OSs such as UNIX whereas some OSs have been developed especially 

for multiprocessors such as Helios developed for transputers. 

There are four basic designs that have been used for multiprocessor operating 

systems': - 

master/slave 

" separate executive for each processor 

" symmetric treatment of each processor 

" distributed operating systems 

In the master/slave approach the OS is permanently assigned to one particular 

processor and always operates in that processor. If a slave processor requires service, 

that service can only be provided by the executive. The slave must interrupt the 
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executive and request service. It must then wait until the program currently being 

executed is interrupted and the executive is dispatched to the slave processor. 

The main advantage of this type of system is that interprocessor communication and 

sychronisation can be very simple and well defined. A major disadvantage however is 

that the system is subject to catastrophic failure in the case of a failure in the master 

processor or at least severe degradation in the case of a failure in a slave processor. 

A separate executive system, is where every processor has a copy of the OS. In this 

configuration each processor can service its own needs. Therefore, no service requests 

or service from a single executive are required. As each processor has its own copy of 

the OS, the system is much less sensitive to catastrophic failure. A failure of one or 

more processors will cause a proportional loss of system capability, but will not bring 

down the entire multiprocessor system. 

A symmetric system maybe thought of as a master/slave type system where the master 

floats form one processor to another. This is the most difficult method of operation both 

from a design and from an operating viewpoint. It does however have the advantage 

that it provides the most efficient use of available system resources (e. g. I/O devices 

and any central memory). 

In a distributed OS the various OS utilities and functions are distributed among the 

various processors. Each processor is dedicated to a particular utility or function and 

together they implement all OS functions. 

Helios9'10 is an example of a distributed operating system which uses the client/server 

model for operating systems. A client process wishing to access a system resource, 

such as opening a file, sends a message to a server process requesting this action to be 

performed on its behalf. The client and server processes may reside on different 

processors whereas in a single CPU machine the client and server would of course be 

on the same processor. 

Each processor node contains a Helios kernel, which handles memory management 

and message passing. Each node also contains two servers: the processor manager and 

the loader. The processor manager is responsible for process creation within that 
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processor and other housekeeping jobs. The loader handles the loading and unloading 

of both program modules and resident libraries which are loaded on demand. 

Other servers run on one or several processing nodes. Some servers must run on nodes 

with particular hardware attached. For example the file system needs the disc device 

connected while a window manager must run on a processor with video memory 

attached. Servers with no specific hardware requirements are distributed to share the 

load evenly amongst the processors. 

An I/O server is provided by Helios which runs on the host machine of a parallel 

system. This causes the host machine to appear to the network of nodes just like 

another node running Helios. The I/O server communicates with the host operating 

system to provide such things as access to the file system and serial ports. 

Helios provides a task, called the Helios Shell, that acts as a command line interface to 

the operating system. The shell commands are similar to Unix shell commands. The 

standard Unix-like file manipulation commands such as Is, mv, rm and so on are 

supported by Helios. 

The Task Force Manager (TFM) is a distributed server used by Helios. This consists of 

a number identical servers distributed throughout a network of nodes, each controlling 

a different area of the network. The TFM processes all client level task force (the 

programs to be distributed over the network) execution requests. It analyses the current 

state of the network and distributes the component tasks of the task force to the most 

suitable processing elements. The criteria for the distribution include the resource 

requirements of particular component tasks, connectivity of the task force, and the 

current status of the network. 

The prime means of communication under Helios is through message passing 

implemented by the kernel. In order to provide transparency the semantics of message 

passing require to be the same regardless of whether the destination is in the same 

processor or in another. The user callable routines PutMsg and GetMsg are 

responsible for the sending and receiving of messages whether they are on the same 

processor or not. 
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Helios was specifically designed to run on a network of transputers (a single chip 

processor designed for multiprocessing). This makes programs written using the Helios 

environment less portable to other architectures. However, the Unix like command line 

interface makes the OS easier to use for Unix users. 

1.6.3 Parallel Development Tools 

As parallel computing has become more popular and accessible the evolution of 

software tools for parallel computing has accelerated. Debuggers, compilers, and 

languages are available for parallel systems. 

1.6.3.1 Parallel Languages 

Parallel versions of sequential languages such as Fortran and C have been developed. 

These can be helpful when converting existing sequential code onto a parallel system, 

as usually large sections of the code will remain unchanged and it is only the parallel 

constructs that require to be added. 

Special purpose parallel languages such as Occam, which was developed for the 

transputer, also exist. These can be combined with parallel Fortran and C to produce 

mixed language programming which is also useful when porting an application from a 

sequential platform to a parallel system. 

1.6.3.2 Compilers 

Automatic parallelisation compilers attempt to identify the elements in existing 

sequential code that are candidates for parallel computation, and produce compiled 

code for the specific multiprocessor machine. This approach however, usually gives 

inefficient code which produces disappointing speed-ups in programs. These compilers 

can be useful though to give the software engineer an idea of the parts of the program 

that can be executed in parallel. 

1.6.3.3 Parallel Programming Environments 

Parallel programming environments consist of a set of tools for parallel program 

development. The tools may include a subroutine library supporting parallel 

programming, debuggers, and performance analysis tools. The subroutine libraries 
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provide some of the same services as operating systems do for parallel machines. The 

difference however is that with an operating system its services can be accessed from 

the command line whereas the subroutine libraries are only accessed from calls within 

a program. 

An example of such a programming environment is Express developed by the Parasoft 

Corporation". This supports two basic models of parallel programming: the host/node 

model and the cubix model. In the host/node model the application program is divided 

up into two parts, one for the host machine and one for the parallel machine (See 

Figure 1.14). In the Cubix model the entire application is executed on the parallel 

machine (See Figure 1.15). 

HOST 
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Host Computer 

FIGURE 1.14.1lost/Node programming model 
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FIGURE 1.15. Cubix programming model 
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Cubix is the name of the I/O server which loads a program onto the parallel machine 

and starts it running. It also performs the system services requested by the nodes. 

However it only provides basic operating system facilities to the node programs. If the 

program needs to have direct, low level access to a peripheral device then the host/ 

node model is required. 

In the host/node model the computationally intensive aspects of an application are 

extracted and executed on the parallel machine. The interface and control portions of 

the code remain on the host machine. All communication between host and nodes and 

among the nodes is done with Express system calls. The node programs are loaded 

onto nodes by function calls from the host machine. 

Express provides a library of subroutines which supports low level communication 

primitives for sending messages between processors, peripherals and other system 

components. Utilities are also included which provide such facilities as broadcasting 

code/data onto the nodes and data redistribution. Figure 1.16 shows some of the 

routines available12. 

KXINIT Start up Express and initialise XPRESS common block 

KXLOAD Load program onto all nodes 

KXOPEN Allocate a group of processors 

KXSTAR Start execution of a node program 

KXREAD Read a message 

KXWRIT Write a message 

KXTEST Test for an incoming message - non-blocking 

KXBROD Interprocessor broadcast 

KXHAND Install asynchronous message handler 

KXRECV Read a message - non-blocking 

KXSEND Send a message - non-blocking 

FIGURE 1.16. A sample of the Express routines 

The Express environment also provides a parallel graphics library, a debugger and a 

system for analysing such matters as subroutine usage, communication overheads, load 

balancing, interprocessor timing differences etc. Express is available in both Fortran 

and C for many hardware platforms (INTEL iPSC2, iPSC/i860, CRAY X-MP etc. ). 
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Another programming environment is PVM (Parallel Virtual Machine) 13. This is a an 
integrated set of software tools and libraries, designed to link separate host machines to 

form a "virtual machine" which gives an illusion of a single manageable computing 

resource. The virtual machine can be composed of hosts of varying types, in physically 

remote locations. The system is portable to a wide variety of architectures, including 

workstations, multiprocessors, supercomputers and PCs. 

The PVM computing model divides an application into several tasks. Each task is 

responsible for a part of the application's workload. The tasks may be performing the 

same operations on different data sets or performing completely different operations on 

separate data sets. The user views the complete application as a set of communicating 

tasks and it does not matter where the tasks are executed. 

The application's computational tasks execute on a set of machines (the host-pool) that 

are selected by the user for a given run of the PVM program. Both single-CPU 

machines and hardware multiprocessors may be part of the host pool. The host pool 

may be altered by adding and deleting machines during operation. 

The PVM system is composed of two parts: a daemon and a utilities library. The 

daemon (called pvmd3) is a program which resides on all the computers making up the 

virtual machine. A user wishing to run a PVM application creates a virtual machine by 

starting up PVM. The PVM application can be started from a command line prompt on 

any of the computers in the system. 

The PVM library contains user-callable routines for message passing, spawning 

processes, coordinating tasks and modifying the virtual machine. Typically a user 

writes one or more sequential programs in C, C++, or Fortran 77 that contain embedded 

calls to the PVM library. Each program corresponds to a task making up the 

application. 

These programs are compiled for each architecture in the host pool, and the resulting 

object files are placed at a location accessible from machines in the host pool. To 

execute an application, a user typically starts one copy of one task by hand from a 

machine within the host pool. This process subsequently starts other PVM tasks, 

eventually resulting in a collection of active tasks that then compute locally and 
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exchange messages to solve the problem. Figure 1.17 and Figure 1.18 show two 

communicating PVM tasks. 
main() 
{ 

int cc, tid, msgtag; 
char buf[100]; 

} 

printf("i'm t%x\n", pvm_mytid()); 

cc = pvm spawn("hello_other", (char**)O, 0, "", 1, &tid); 

if (cc == 1) { 
msgtag = 1; 

pvm_recv(tid, msgtag); 
pvm_upkstr(buf); 
printf("from t%x: %s\n", tid, buf); 

else 

printf("can't start hello_other\n"); 

pvm exit(); 

FIGURE 1.17. PVM program hellos 

#include "pvm3. h" 

main() 
{ 

int ptid, msgtag; 
char buf(100]; 

} 

ptid = pvm-parent () ; 

strcpy(buf, "hello, world from "); 

gethostname(buf + strlen(buf), 64); 

msgtag = 1; 

pvm_initsend(PvmDataDefault); 
pvm-pkstr(buf); 
pvm_send(ptid, msgtag); 

pvm_exit(; 

FIGURE 1.18. PVM program hello other. c 

This program hello. c is intended to be invoked manually. After printing its task id 

(supplied by the daemon pvmd3 and received from the function pvm_mytid () ), it 

initiates a copy of the program hello-other (Figure 1.18) using the pvm_spawn () 

function. A successful spawn causes the program to execute a blocking receive using 

pvm recv () . After receiving the message sent by hello. other, the program prints the 

message as well as the task id of hello_other. The buffer is extracted from the message 
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using pvm_upkstr. The final pvm exit O call call dissociates the program from the PVM 

system 

The program hello_otherc is the "slave" or spawned program. Its first PVM action is to 

obtain the task id of the "master" using the pvrparent () call. The program then 

obtains its hostname and transmits the complete string to the host: pvm_initsend 
initialises the send buffer, pvm_pkstr (buf) places a string into the send buffer and 

pvm send transmits the contents of the send buffer to the task specified by ptid. The 

message is tagged with the number 1 by msgtag. 

PVM is public domain software and is available via the internet. PVM libraries are 

available for C, C++, and Fortran. It has also been used with other languages, such as 

Lisp. The most common PVM platform is a Unix machine, however it is relatively 

simple to port it to other platforms such as Intel iPSC/860, iPSC/2 etc. 

In general though, for software engineers porting an application onto a parallel system 
is still much more cumbersome than doing so onto an established system. This is partly 
due to the lack of standardisation in architecture, operating systems, languages etc. It is 

also inherent in our teaching that we think of code in a sequential manner and it is not 

natural to think of code in a parallel manner. These problems will only be overcome 

with the general acceptance of parallel computers. 

1.7 Key Developments in Parallel Computing. 

1.7.1 The earliest parallel machines 
The concept of parallelism in computing began as early as 1953 with the advent of bit- 

parallel arithmetic rather then bit-serial as had been the case. The IBM 704 was the first 

commercial machine with floating-point hardware and was capable of 5kFLOPS 

(FLoating point Operations Per Second)14. 

Functional parallelism increased throughout the 50's and early 60's with the release of 

such computers as the IBM STRETCH which included two parallel memory banks and 

instruction execution pipelining. One of the best known pipelined computers was the 

CRAY I developed by Seymour Cray. It was a vector computer operating on 64-bit 

floating point numbers with a listed peak performance of 160 MFLOPS. 
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1.7.2 The first SIMD machines. 

As the limits were reached in what could be achieved in parallel on a sequential 

machine, the idea of multiprocessing surfaced. This began with array processing where 

several processing elements were under the control of a single control unit. This was 

the approach used in the ICL DAP (Distributed Array processor) which consisted of a 
64x64 array of bit-serial processors, each with 4 Kbits of memory. 

One of the earliest SIMD machines was the ILLIAC IV designed in 19682. This 

contained 64 processing elements arranged as an 8-by-8 array with each PE connected 

to its four nearest neighbours. Each PE was capable of 4MFLOPS giving a theoretical 

maximum performance for the whole machine of 1000MFLOPS (of course this was 

never obtained). The machine contained many pioneering design concepts which are 

still relevant today. One of the lessons learned from the ILLIAC IV was that it assumed 

too much regularity in communication (i. e an 8x8 array) than was present in most 

problems. 

A SIMD machine which allowed greater flexibility in communication than the ILLIAC 

IV was the CM-1 Connection Machine manufactured by Thinking Machines 

Corporation in 1986. This consisted of 65,536 1-bit processors connected in a 256x256 

grid; in addition, clusters of 16 processors were also interconnected in a 12- 

dimensional hypercube network for routing messages, and the 16 processors within a 

cluster were linked in a daisy chain fashion. 

1.7.3 The first MIMD machines 

The idea of multiprocessor systems where each processor would have it's own 
instruction stream began to emerge in the early 1970s. One of the major designs was 

the C. mmp machine developed at Carnegie Mellon University. This used 16 DEC 

PDP-1 Is (a minicomputer) connected through a circuit-switched crossbar network to 

16 memory modules, forming a shared-memory MIMD design, 

A prototype distributed memory MIMD machines was the Cosmic Cube developed at 

the California Institute of Technology in the early 80s. This contained 64 processing 

nodes each with a direct point-to-point connection to six other nodes forming a six 
dimensional hypercube. 
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The first commercial hypercube was the iPSC/1 (Intel Personal Supercomputer) which 

comprised between 32 and 128 nodes. Each node consisted of an Intel 80286/7 

processor/coprocessor, 512 KBytes of memory, and a lOMbit/second communication 
link. The peak performance of a 32-node model is about 2MFLOPS. Intel went on to 
develop a series of iPSC computers based on the 8086 and 1860 series of 

microprocessors. 

Another commercial hypercube is the nCube/10 produced in 1985. This consists of up 

to 1024 32-bit single-chip custom processors. Each node consists of this chip plus six 
256-Kbit memory chips. 

A key development in the 80s was the arrival of the INMOS transputer. The transputer 

is a microprocessor with special on-chip serial links for communicating with other 

transputers. This allows many transputers to be connected together to form a MIMD 

machine. Transputers are relatively inexpensive which allows even individuals access 

to parallel computing. 

1.7.4 GFLOP parallel machines 

The late 80s and early 90s saw the emergence of parallel systems capable of Giga 

FLOP peak performance. Intel produced the Touchstone Delta (a prototype for the 

Paragon) in 1991. This contained 528 i860 processors arranged in a mesh pattern and 

was capable of l0GFlops. 

Parallel systems based on the fast RISC processors used in high performance 

workstations began to emerge in the 90s. Thinking Machines produced the CM-5 in 

1992 which contained up to 1024 Sparc microprocessors connected in what is known 

as a fat tree topology. This machine was capable of a peak performance of 40GFLOPS. 

Meiko also use Sparc microprocessors in their machines. 

More recently multiprocessor machines have emerged on based on the DEC Alpha 

processor. Cray have produced the T3D which contains up to 256 DEC Alpha chips 

arranged as a 3-D torus (a 3-D mesh with wraparound wires in the rows and 

columns)is. The 32 processor version has peak performance of 4GFLOPS and costs 

-$2 million. 
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Convex produce the Exempler SPPI000/XA system which is a massively parallel 

processor using Hewlett - Packard's PA-RISC 7100 processors. The SPP1000/XA can 
have up to 128 processors giving a peak performance of 25GFLOPS. The system also 

claims to provide scalability to TFLOPS (T=tera=1012)of performance and TBytes of 

storage. 

1.8 Conclusions 
The key points in hardware and software development on parallel machines have been 

described. This has shown that a wide variety of architectures exist for parallel systems 

and the most suitable architecture is dependent on the algorithm being implemented. It 

has also been shown that the development of parallel software is a complicated matter 

which lacks standardisation. 

The technologies of the future such as virtual reality and video conferencing will 

require a large amount of computational power to achieve the predicted performance 

and this will surely involve parallel computing. The computations involved in the so 

called Grand Challenges of science are also still not fast enough even on the most 

powerful supercomputers. If parallel computing is to provide the computational power 

required in the future more research has to be done to provide efficient parallel 

systems. 

Most systems are basically extensions of the Von Neumann model of computation used 

on sequential processors. It would be helpful to develop a model (or models) of 

computation specific to parallel systems. This would hopefully lead to more 

standardisation in parallel systems. 

More research is also required into interconnection networks. The study of the 

suitability of networks to particular problems is necessary to produce acceptable gains 

on parallel systems. This can be achieved by modelling parallel systems in order to 

study their features and predict their performance. 

In the area of parallel software, techniques and tools have to be developed for mapping 

algorithms onto nodes. At the moment, mapping is usually left to the programmer and 

usually a heuristic approach is used. The development of new parallel languages 

designed specifically to handle the problems associated with parallel processing (i. e 
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communication protocols, parallel 1/0 etc. ) would help to produce more efficient 

parallel code. 

Methods of interprocessor communication both in hardware and software require 

standards, to enable applications to be portable. Research into producing message 

passing standards is underway with projects such as the MPI (message passing 

interface) forum16. The aim of the forum is to discuss and define a set of library 

interface standards for message passing. 

This thesis is concerned with the design and implementation of both novel hardware 

and software for use on distributed multiprocessor machines. The hardware involves 

the design of two forms of dynamic interconnection network. The first method allows 

the topology of the network to be altered prior to computation and the second method 

permits the network topology to adapt as required during the computation. This work is 

covered in Part 1 of the thesis. 

The software development is concerned with the parallelisation of a sequential 

FORTRAN molecular mechanics program to run on novel hardware, where each node 

processor has a dedicated high speed link to the host processor. This allows the host 

processor to broadcast code/data to all the nodes simultaneously. The parallelisation of 

the sequential code, involved the implementation of the COMFORT message passing 

subroutine library. This work is described in Part 2 of the thesis. 
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Chapter 2 

Concepts in Digital Electronics 

Part I of this thesis covers the design of various hardware systems. This chapter 

describes some of techniques used in the designst'2. First of all the basics of digital 

electronics such as logic levels and gates are described and then a detailed description 

of the operation of programmable logic devices and programmable read only memory 

is presented. 

2.1 Basic Digital Electronics 

2.1.1 Logic Levels 

Whereas analogue electronics involves quantities with continuous values, digital 

electronics involves quantities with discrete values. In digital electronics there are two 

different voltage levels: a logic high and a logic low. These two values can be 

represented by the binary digits 1 and 0 (a binary digit is a bit). In positive logic system 

(which is used in most cases) a0 is logic low and aI is logic high and in a negative 

logic system the opposite is true. A group of several bits represents a piece of binary 

information such as a number or a letter (8 bits = byte, 16 bits = word). 

In a digital circuit a logic high is a voltage between a specified minimum value and 

specified maximum. Likewise, a logic low can be any voltage between a specified 

minimum value and a specified maximum value (See Figure 2.1). For the purposes of 

this thesis a logic high will be taken to be +5V and a logic low will be taken to be 0V. 

VH(max 

(-5V) HIGH 
VH(min) 

Uncertain 
VL(max) 

LOW 
VL(min) 

(-0V) 

FIGURE 2.1. Logic level ranges for a digital circuit 
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Most binary information handled by digital systems appears as a pulse waveform (See 

Figure 2.2). All pulse waveforms are derived from and related to a basic timing 

waveform called the clock (See Figure 2.3). The clock is a periodic waveform in which 

each pulse interval (period) is one bit time. Figure 2.3 shows that each change in level 

of waveform A corresponds to a leading edge on the clock waveform. In some cases 

changes can occur on the trailing edges of the clock. 

(+5V) 

Of 1 (01110111011101! 
. -- -" (0V) 

ý4--TI No 4 T2_ 101 -4 T3001 T4 -ºý 
Period= T, =T2=T3=T4=.... =T� Frequency= 1/T 

(a) Periodic (square wave) 

. 
010 

L0 

(OV) 

(b) Nonperiodic 

FIGURE 2.2. Examples of Pulse Waveforms 

Bit Time 

LJ-L ----- (+5V) 
Clock 

......... (+5V) 
Waveform A 

....... (OV) 

10010 

FIGURE 2.3. A timing diagram 

2.1.2 Logic Gates 

Complex digital systems such as microcomputers require to combine digital inputs to 

produce digital outputs. For example a FPU requires circuits that can add, divide and 

multiply numbers together. The basic elements (logic gates), and their truth tables, used 
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in combinatorial logic are shown in Figure 2.4. These gates are constructed from 

transistors. A small circle at an input or output on a gate indicates the signal is negated. 

The gates only have the capacity to combine inputs to produce an output and cannot 

memorise logic levels after the input conditions have been removed. 

OR Gate AND Gate Inverter (the NOT function) 

A JD_ 
BQB 

ý0_ QA II 

Inputs Outputs 
ABQ 
000 
011 
101 
111 

NAND Gate 

B LLLýýýý 

Inputs Outputs 
ABQAQ 
00001 
01010 
100 

111 

NOR Gate XOR Gate 

BQ BQ 

Inputs Outputs Inputs Outputs Inputs Outputs 

ABAB AB Q 
00100 100 0 
01101 001 1 
10110 010 1 
11011 011 0 

FIGURE 2.4. Basic logic gates used in digital design 

Circuits which contain memory are known as sequential circuits. The fundamental 

element of memory used in digital circuits is called the flip-flop (see Figure 2.5). This 

is the basic type of flip-flop and it is constructed by combining two OR gates with 

negative inputs. 

A 

B 

FIGURE 2.5. Flip-flop (set-reset) 

X 

Y 
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The two stable states of the flip-flop with both inputs (A and B) logic high are shown in 

Figure 2.6 (it is not possible to have both outputs in the same logic state). If the input A 

is pulled low momentarily in both stable states the flip-flop is guaranteed to go into the 

state X= HIGH, Y=LOW. When the input A is returned to logic high the flip-flop 

remains in this state so the outputs are dependent on the previous state of the inputs and 

therefore the flip-flop has memory. 

, it 

T 
Ii 

FIGURE 2.6. Stable states of flip-flop 

. Ii, `1 
C 

`L' 
t 

15 

`L' 

`H' 

Flip-flops that are made from two gates are generally known as SR (set-reset), or jam- 

loaded, flip-flops. They are forced into one state or the other by generating the correct 

input signal. The most widely used form of flip-flop however, looks slightly different. 

Instead of a pair of jam inputs, it has one or two data inputs and a single clock input. 

The outputs either change state or stay the same, depending on the levels at the data 

inputs when the clock pulse arrives. 

The simplest form of clocked flip-flop is illustrated in Figure 2.7. It is basically the 

same as an SR flip-flop, with a pair of gates (controlled by the clock) to enable the SET 

and RESET inputs. 

Q 

Q* 

_r-LCLK 

FIGURE 2.7. Clocked flip-flop 
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The truth table for this type of flip-flop is illustrated below: - 

SR Qn+ i 
00 Qn 
010 
101 
11 indeterminate 

where Qn+t is the Q output after the clock pulse and Q, is the output before the clock 

pulse. The basic difference between this and the previous type of flip-flop is that R and 

S can now be thought of as data inputs. What is present on R and S when a clock pulse 

arrives determines the logic level on Q. 

A problem with this type of flip-flop however, is that the output can change in response 

to the inputs during the time the clock is logic high. This problem is solved with the use 

of the master-slave flip-flop and the edge-triggered (lip-(lop (Sec Figure 2.8). 

D 

J 

C 

CLK 

D 

Q 

Q* 

(b) Positive edge-triggered (lip-(lops 

FIGURE 2.8. Master-slave and positive edge triggered flip-Hops 
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These are the most popular type of flip-flop. The data present on the input lines just 

before a clock transition, or "edge" determines the output state after the clock has 

changed. They are both known as D-type flip-flops. Data present on the D input is 

transferred to the Q output after a clock pulse. 

The master-slave flip-flop is basically two of the clocked SR flip-(lops joined together. 

While the clock is logic high, gates I and 2 are enabled, forcing the master flip-flop 

(gates 3 and 4) into the same state as the D-input (i. e. M=D, M'=D '). Gates 5 and 6 are 

disabled, therefore the slave flip-flop (gates 7 and 8) retains its previous state. 

When the clock returns to logic low, the inputs to the master are disconnected from the 

D input, while the inputs of the slave are simultaneously coupled to the outputs of the 

master. The master thus transfers its state to the slave and no further changes can occur 

at the output as the master is now stuck. At the next rising edge of the clock, the slave 

will be decoupled from the master and will retain its state, while the master will once 

again follow the input. 

The edge-triggered circuit behaves the same externally as the master-slave circuit 

although the inner workings are different. In this case when the clock is low gates 2 and 

3 are disabled and therefore the SR flip-flop (gates 5 and 6) retains its previous state. 

On the next rising edge of the clock gates 2 and 3 are enabled forcing the SR flip-flop 

into the same state as the D input (i. e Q=D, Q"=D"). 

These type of flip-flops are known as D-type flip-flops. They are available with either 

positive or negative edge triggering (i. e. change state either on the rising or falling edge 

of clock). In addition, most flip-flops also have SET and CLEAR jam-type inputs. 

They may be set and cleared on HIGH or on LOW, depending on the type of flip-flop. 

Figure 2.9 on page 43 shows a few popular flip-flops in IC form (explained later). The 

wedge means edge triggered and the small circle means "negation" or complement. 

The '74 is a dual type D positive-edge-triggered flip-flop with active low jam-type SET 

and CLEAR inputs. The 4013 is a CMOS dual type D positive-edge-triggered flip-flop 

with active HIGH jam-type SET and CLEAR inputs. 
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FIGURE 2.9. D-type and JK flip-flops 
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The JK flip-flop works on principles similar to those of the D-type flip-flop, but it has 

two data inputs. Figure 2.10 shows the truth table for a JK type flip-flop. If J and K are 

complements, Q will go to the value of the J input at the next clock edge. If J and K are 
both LOW, the output will not change. If J and K are both THIGH, the output will 
"toggle" (reverse its state after each clock pulse). 

JK Yn+ 
00 Qn 
010 
101 
11 Qn" 

FIGURE 7.10. Truth table for JK type flip-flop 

Logic gates and flip-flops are combined to construct more complex logic circuits, such 

as counters, registers, decoders, multiplexers and memories. These circuits are 

available in small packages called integrated circuits (ICs) made from silicon. The two 

most widely used type of IC are TTL (transistor-transistor logic) and CMOS 

(complementary metal oxide semiconductor). The difference between the two is in the 

types of transistor used in their construction; TTL uses bipolar transistors whereas 

CMOS uses field effect transistors. 

Although an AND gate, for instance, performs identical operations in both TTL and 

CMOS versions, the logic levels and other characteristics (speed, power, input current, 

etc. ) are quite different, Within any one logic family, outputs are designed to drive 

other inputs easily so the designer does not often have to worry about thresholds, input 

current etc. However when interfacing between logic families care has to be taken to 

ensure the correct operation of the circuit. 
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2.1.2.1 Buses and tri-state logic 

In a computer system several functional units have to exchange data. The CPU, 

memory, and various peripherals all need to be able to send and receive 16-bit or 8-bit 

words. It would be awkward to have separate 16 or 8-wire cables connecting each 

device to all others. The solution is the so-called data bus, a single set of 16 or 8-wire 

cables connecting each device to all others. Only one device at a time may assert data 

but all may receive data at the same time (See Figure 2.11). 
Data Bus 

FIGURE 2.11. Basic bus structure in a microcomputer 

As well as a data bus there are also address and control buses. Each device external to 

the CPU has an address or range of addresses corresponding to it. It can only send or 

receive data when it is addressed correctly. The control bus is for control signals such 

as read or write which specify whether the CPU is sending or receiving data. 

There needs to be some way of isolating outputs from a shared data or address bus. 

This is achieved by what is called tri-state logic levels. The name is misleading; it is 

not digital logic with three voltage logic levels. It is just ordinary logic, with a third 

output state: open circuit (See Figure 2.12). A separate enable input determines 

whether the output behaves like an ordinary active pull-up output or goes into the 

"third" state (also known as the high impedance state), regardless of the logic levels 

present at the other inputs. 

Low 
---Output High 

Open 
Disable 

FIGURE 2.12. Conceptual diagram of a tri-state NAND gate 
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2.2 Roni and Programmable Logic Devices 

Most ICs have a specific purpose (i. e. adder, comparator etc. ) but in some the internal 

connections can be programmed for the required purpose. This is the case in PROMS 

(programmable read-only memory) and PLDs (programmable logic devices). 

2.2.1 ROM 

A ROM (read-only memory) holds a byte for each distinct address applied to its inputs. 

For example a1Kx8 ROM gives eight output bits for each of 1024 input states, 

specified by a 10-bit input address (See Figure 2.13). A ROM can be programmed to 

produce a particular output from a particular input address. ROMs are often used to 

store finished programs and data tables. 

DODID2D3D4D5DGD7 

A 

A5ý lkx8 
A4 ROM 

Al 

OE 

L' 

Control inputs 
CE*"chip enable" 
OE* enables tri-state outputs 

FIGURE 2.13. A 1K x 8K ROM 

Most ROMs use the presence or absence of a transistor connection at a ROW/ 

COLUMN junction to represent a logic I or logic 0 (See Figure 2.14 on page 46). A 

connection from a ROW line to the base of a transistor represents a logic I at that 

location. When the ROW line is pulled HIGH (i. e. that row is addressed), all transistors 

with a base connection to that ROW line turn on and connect the HIGH to the 
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associated COLUMN lines. At ROW/COLUMN junctions where there are no base 

connections, the COLUMN lines remain LOW when the ROW is addressed. 
COLUMN COLUMN 

ROW 

ring a1 

FIGURE 2.14. Bipolar ROM cells 

ROW 

ring a0 

ROMs are also available in CMOS technology using MOSFETs (metal oxide 

semiconductor field-effect transistors) rather than bipolar transistors as in TTL. The 

same principles apply however: in this case it is the presence or absence of a gate 

connection at a junction that permanently stores a logic 1 or 0. 

Figure 2.15 shows a very simple ROM array. To read a byte of data from this ROM, 

first of all an address in applied to the address lines. The address decoder decodes the 

address and then sets the corresponding row to logic high. This high is connected to the 

column lines through the transistors at each junction (cell) where a1 is stored. At the 

cells where a logic 0 is stored, the column line stays logic low due to the terminating 

resistor. Since the column lines form the data output, the eight data bits stored in the 

selected ROW appear on the output lines. 

Address 
Input 

FIGURE 2.15. A 16x8-bit ROM array 
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This is an example of a very simple 16x$ ROM. In practice ROMs are usually more 

complicated but the same principles of rows and columns usually apply. 

Mask-programmable ROMs have their bit pattern built in at the time of manufacture 

whereas programmable ROMs (PROMS) are programmable by the user. PROMs 

usually employ some type of fusing process to store bits, whereby a memory link is 

fused open or left intact to represent a0 or 1. To program the connections an elevated 

voltage (usually 12.5V or 21V) is applied to the device while asserting the desired 

bytes at the appropriate addresses. 

ROMs are nonvolatile, meaning that the stored information is retained even when 

power is removed. The information can however be erased in PROMs. Erasable 

programmable ROMs (EPROMs) can be erased by exposing them to intense ultraviolet 

light. Electrically erasable programmable ROMs (EEPROMs) behave like EPROMs, 

but can be programmed and erased electrically, while in the circuit, with the standard 

supply voltage (+5V). Internal circuitry generates the higher programming voltage 

required. 

Both EPROMs and EEPROMs use an MOSFET array of transistors with an isolated- 

gate structure. The isolated gate has no electrical connections and can store an 

electrical charge for indefinite periods of time. The data bits in this type of array are 

represented by the presence or absence of a stored gate charge. 

2.2.2 Programmable Logic 

Programmable logic devices (PLDs) are similar to PROMs as they are fuse- 

programmable. However, they are different from PROMs in their applications. A PLD 

is used to implement combinatorial logic (some also have memory (registers)) and can 

replace individual gate or flip-flop ICs in many situations. 

The most popular types of PLD are PALs (programmable array logic) and PLAs 

(programmable logic arrays). They both are single ICs which contain many gates 

whose interconnections can be programmed to form the desired logic functions. 

Obviously it is not possible to program any required logic function on a PLD, the 

functions available are limited by the gates inside the PLD. 
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Figures 2.16 and 2.17 show the basic designs of combinatorial (no registers) PALs and 

PLAs. To keep the figure simple, the AND and OR gates, though drawn with a single 

input line, are in fact multiple-input gates, with an input at every crossing (See 

Figure 2.18 on page 49) 

FIGURE 2.16. A PAL 

ay 

FIGURE 2.17. A PLA 
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= programmable 
connection 

= fixed 
f connection 

symbolic shorthand 

FIGURE 2.18. Details of shorthand used to describe PLDs 

Each (tri-state) output of a combinational PAL comes from an OR gate, each of whose 

inputs is prewired to an AND gate with several inputs. PLAs are similar to PALs, but 

they have the added flexibility that the AND gate outputs can be connected to the OR- 

gate inputs in any combination (i. e the OR array is programmable), rather than being 

fixed as in a PAL. 

The PALs and PLAs described previously are combinational (i. e. only contain gates) 

but they are also available with sequential logic (i. e. contain registers -a piece of 

memory composed of flip-flops). In general the outputs of the OR array in a PAL or 

PLA generate the inputs for clocked D-type registers (See Figure 2.19 on page 50) 

with tri-state outputs. 

PLDs provide a flexible and compact alternative to fixed-function ICs. Sometimes 

designers are not quite certain how they want a circuit work, and PLDs allow the 

designer to experiment with different programming without the rewiring that would be 
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required with several ICs. Also PLDs can generally get the design job done more 

quickly once the designer had learned how to use them. 

0 

01 

on 

FIGURE 2.19. A PLD with registered outputs 

2.2.3 Programming PLDs and PROMs 

In order to program a PLD or PROM a device called a programmer is required which 
burns the fuses in the device and verifies the finished product. Most programmers 

connect via the serial port to a computer (usually a PC), on which some form of the 

programmer software runs. 

The most basic kind of software simply lets you select the fuses to burn. The user 
decides what logic is required at the gate level, then lists (or marks on a graphics 
display) the fuses. Most programmers however let the user specify logic expressions 

and the software does the rest, including minimisation, simulation, and programming. 

2.2.4 CUPL programming language 

One of the programming languages used to program PLDs is CUPL3. It is a high level 

language which allows you to define arrays (for a set of signals, e. g. an address bus), 

expressions, and intermediate values, then use them in later expressions. It also 

produces a standard JEDEC download file which is compatible with any device 

programmer that uses JEDEC files. 
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2.2.4.1 CUPL source code 

An example of a CUPL source file which shows how simple NOT, AND, OR, and 
XOR gates can be constructed using a PLD is shown in Figure 2.20 on page 52. The / 

* and */ constructs mark the beginning and end of comments. To mark the end of a 

statement a semi-colon is required. 

The inputs to the PLD are a and b (pins 1 and 2 of the PLD) and the outputs of the PLD 

are inva, invb, and, nand, or, nor, xor and xnor (pins 12-19). A description of the 
logic operators used in CUPL is given in Table 2.1. From this it should be clear how 

the outputs in Figure 2.20 are constructed. 

TABLE 2.1. Logical Operators 

Operator Example Description 

!A NOT 
& A&B AND 
# A#B OR 
$ A$B XOR 

A variable preceded by a! has different meanings in pin assignments and logic 

expressions. In a pin assignment it identifies that an input or output is active low (i. e 

when it is low it is logic true (i. e. active)). A pin assignment variable not preceded by ! 

identifies an active high input or output. In a logic expression when a variable is 

preceded by a! this inverts the signal (i. e. it makes the signal logic false (inactive) 

regardless of whether it is active high or low in the pin assignments). 

Figure 2.21 on page 53 shows a more complicated example of CUPL source code 
(waitgen. pld). In this scenario the PLD is acting as an interface between a CPU, ROM 

and RAM (See Figure 2.22 on page 54). The PLD performs address decoding and 

timing control functions. The PAL used is a 16R8 which has eight external inputs, eight 

outputs (four of which are registered (using D-type registers)), a clock, and a tri-state 

control line. 
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Name Gates; 

Partno CA0001; 

Revision 04; 

Date 9/12/89; 

Designer G. Woolhiser; 

Company Logical Devices, Inc.; 

Location None; 

Assembly None; 
Device G16V8; 

This is a example to demonstrate how CUPL *1 
compiles simple gates. 

Target Devices: P16L8, P16LD8, P16P8, EP300, and 82S153 */ 

/* Inputs: define inputs to build simple gates from*/ 

Pin 1=a; 

Pin 2=b; 

* Outputs: define outputs as active HI levels 
* 
* Note: For PAL16L8 and PAL16LD8, DeMorgan's Theorem is applied to 
* invert all outputs due to fixed inverting buffer in the device. 
*1 

Pin 12 = inva; 

Pin 13 = invb; 

Pin 14 = and; 

Pin 15 = nand; 

Pin 16 = or; 
Pin 17 = nor; 

Pin 18 = xor; 
Pin 19 = xnor; 

/* Logic: examples of simple gates expressed in CUPL*/ 

inva = ! a; 
invb = ! b; 

and = a& b; 

nand = ! (a & b); 

or = a# b; 

nor = ! (a # b); 

xor = a$ b; 

xnor = ! (a $ b); 

/* inverters */ 

/* and gate 
/* nand gate 
/* or gate 

/* nor gate 

/* exclusive or gate 
/* exclusive nor gate 

FIGURE 2.20. CUPL source code for simple gates 
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Name Waitgen; 
Partno P9000183; 
Date 03/14/85; 
Revision 02; 
Designer Osann; 
Company ATI; 
Assembly PC Memory; 
Location U106; 
Device F155; 

/* This device generates chip select signals for one 
/* 8Kx8 ROM and two 2Kx8 static RAMs. It also drives */ 
/* the system READY line to insert a wait-state of at 
/* least one CPU clock for ROM accesses. 

/** Allowable Target Device Types : PAL16R4,82S155 **/ 

/** Inputs **/ 

PIN 1 = cpu_clk ; /* CPU clock 
PIN [2.. 6] = [a15.. 111 ; /* CPU Address Bus 
PIN [7,8] = ! [memw, memr] ; /* Memory Data Strobes 
PIN 9 = reset /* System Reset 
PIN 11 = ! oe /* Output Enable 

/** Outputs **/ 

PIN 19 = ! rom_cs ; /* ROM Chip Select 
PIN 18 = ready /* CPU ready signal 
PIN 15 = waitl /* Start Wait State 
PIN 14 = wait2 ; /* End Wait State 
PIN [13,12] = ! [ram_csl.. 0] ; /* RAM Chip Selects 

/** Declarations and Intermediate Variable Definitions **/ 

Field memadr = [a15.. 11] ; /* Give The Address Bus 
/* the Name "memadr" 

memreq = memw # memr ; /* Create The Intermediate 
/* Variable "memreq" 

select_rom = memr & memadr: [0000.. 1FFFJ ; /* = rom_cs 

/** Logic Equations **/ 

rom cs = select_rom 
ram_csO = memreq & memadr: (2000.. 27FFj 

ram_csl = memreq & memadr: (2800.. 2FFF) 

waitl. d = select_rom /* = rom_cs & ! reset ; /* Synchronous Reset 

wait2. d = select_rom & waitl ; /* waitl delayed 

ready. oe = select_rom; /*turn buffer on*/ 
ready = wait2; /* End Wait */ 

FIGURE 2.21. CUPL source code for interface between memory and CPU 
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FIGURE 2.22. Microprocessor-based system 

The ! oe pin on the PLD is pulled to ground permanently which means the tri-state 

outputs of all four pins connected to registers are always enabled. 

The functions of the inputs and outputs of the PLD are given in the comments 
following each pin assignment. In order to define the address bus an intermediate 

variable memadr is defined using the FIELD statement. This statement assigns a 
single variable name to a group of bits. When the variable name is used in an 
expression, the operation specified in the expression is applied to each bit in the group. 

To check for specific values on the address bus the equality operation (See 

Figure 2.23 on page 55) is used. This checks for a bit-wise equality between a set of 

variables and a constant. If both quantities are equal then the result is set logic true 

otherwise it is set logic false. 
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list of variables equality operator 

1. [var, var, ... var]: constant marks f statement end 
a number 

2. bit_field_var: constant ; 

variable defined using a bit-field statement 

FIGURE 2.23. The equality operator 

Since both RAMs require to be selected when read from and written to, an intermediate 

variable memreq is declared which is logic true when either the memr or memw 

signal is true. Whenever memreq is used in other equations, CUPL substitutes memw 

# memr at compile time. The RAM chip select signals therefore only become logic 

true when the memreq signal is true and the addresses are within the specified ranges 

for the RAMs. 

Another intermediate variable select_rom is declared which is used as the chip select 

for the ROM and is also used in the generation of wait states. Since the ROM is only 

read from and not written to, the select_rom signal only becomes logic true when 

memr is logic true and the address is in the specified range. 

The wait and ready signals are required as the ROM chip is slow; at least one CPU 

clock period is required to be added to the ROM access time (i. e. a wait state - holds 

address valid and read or write signal logic true longer than normal). The RDY input to 

the CPU is used to insert wait states. A timing diagram for the signals necessary to 

create the wait state is shown in Figure 2.24. 

When the ! memr signal becomes logic true (actually logic low as the signal is active 

low) for an address corresponding to the ROM, the ! rom_cs signal is asserted (logic 

low). This also turns on the ready signal which is the output of a tri-state buffer (i. e. 

ready. oe = select_rom). The ready signal is logic low which indicates to the CPU to 

insert a wait state. 
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(1) (2) (3) 
CPU CLK 

A15.. 11 CPU address valid 

! MEMR 

WAITI 

WAIT2 
I 

! ROM_CS 

READY iii_ I I/ iii=. . 

FIGURE 2.24. "Wait state generator timing diagram 

Since the wait signals are outputs of D-type flip-flops they only become set on a rising 

clock edge. The waitl signal therefore only becomes logic true on the rising edge of 

the CPU clock (1) (i. e. waitl. d = select_rom). After one CPU clock period has passed, 

the wait2 signal is asserted and therefore at this point the wait state period of one clock 

cycle has been completed. This causes the ready signal to be pulled logic high which 

causes the CPU to continue its read cycle and remove the ! memr signal at the 

appropriate time. 

The ! memr returning to logic false causes the ! rom_cs to become logic false which 

disables the tri-state buffer driving the ready signal. At the next rising edge of the CPU 

clock (3) the waitl and wait2 signals are pulled logic false ready for the CPU to assert 

another cycle. 

This example illustrates the use of a PLD as an interface between a CPU and various 

components. The use of PLDs for this purpose is implemented throughout this thesis. 

PLDs are also in the design of state machines, however this will be described in 

Chapter 4. 
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2.2.4.2 CUPL simulator 

CUPL also has a simulator (CSIM) to test logic expressions. Test vectors are specified 
for the inputs to the PLD and the expected output vectors from these test vectors are 
written into a file. Test vectors can also be downloaded to a device programmer in 
order that the actual PLD is tested. 

The test specification source file (waitgen. si) for the previous example is shown in 

Figure 2.25 on page 58. This file contains three major parts; header information and 
title block, an ORDER statement, and a vectors statement. 

This file has the same header information as the CUPL source code to ensure that the 

proper files, including current revision level, are being compared against each other. 

The ORDER statement lists the input and output variables that are included in test 

vectors and also defines how they are displayed in the output file. The variables are 
listed in the order they are to be displayed. They are separated by a comma and the % 

symbol indicates the number of spaces between the variables. 

Following the ORDER statement is the VECTORS statement that creates a function 

table containing eleven test vectors. To make the vectors easier to understand the 

$MSG command is used to create a heading for the function table. The variable names 

are listed in vertical columns in the same order and with the same spacing as specified 
in the ORDER statement. 

The test vectors are entered underneath the appropriate variable names. These vectors 

are created by assigning a value to each of the input variables and an expected value to 

each of the output variables. Table 2.2. on page 59 shows the allowable values to use 
for the test vectors. 

The $REPEAT directive in the test vectors causes the eighth vector to be repeated 

twice. The asterisks in the eighth vector for WAITI, WAIT2, and READY tell CSIM to 

compute the output based on the inputs and place the results in the output file. 
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Name Waitgen; 
Partno P9000183; 
Date 03/14/85; 
Revision 02; 
Designer Osann; 
Company ATI; 
Assembly PC Memory; 
Location U106; 
Device F155; 

/* This device generates chip select signals for one 
/* 8Kx8 ROM and two 2Kx8 static RAMs. It also drives */ 
/* the system READY line to insert a wait-state of at 
/* least one CPU clock for ROM accesses. 

ORDER: 

cpu_clk , %2, a15, %2, a14, %2, 
a13, %2, a12, %2, all, %2, 
! memw, %2, Imemr, %2, reset, %2 , loe, 
%4, ! ram csl, %2, lram_cs0, %2, ! rom_cs, %2, 
waits, %2, wait2, %2, ready; 

VECTORS: 
/* 12 3456-leave six bla nks to all ow for numbers i n SO file */ 

$msg " ! ! "; 
$msg " c r r 
$msg " p a a r 
$msg " u !! r m m o w w r"; 
$msg " 

_ 
mm e _ - m a a e"; 

$msg " caaaa a ee s I c c - 
i i a"; 

$msg " 11111 1 mm e 0 s s c t t d"; 
$msg " k5432 1 wr t e 1 0 s 1 2 Y"; 
$msg 
$msg " Power On Reset 

0XXXX X 11 1 0 H U H * * Z 
$msg " Reset Flip Flops "; 

CXXXX X 11 0 0 H H H L L Z 
$msg " Write RAMO "; 

00010 0 01 0 0 H L H L L Z 
$msg " Read RAMO 0; 

00010 0 10 0 0 H L H L L Z 
$msg " Write RAM1 "; 

00010 1 01 0 0 L H H L L Z 
$msg " Read RAM1 

00010 1 10 0 0 L H H L L Z 
$msg " Begin ROM Read ' "; 

00000 0 10 0 0 H H L L L L 
$msg " Two Clocks For Wait State, Then Drive READY Hig h "; 

$repeat 2; 
00000 0 10 0 0 H H L 

$msg " End ROM Read 
00000 0 11 0 0 H H H H H Z 

$msg " End ROM Read 

00000 0 11 0 0 H H H L L Z 

FIGURE 2.25. CSIbi (. SI) file for interface between CPU and memory 
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TABLE 2.2. Table of Test Conditions 

Input Definition 

0 Drive input LO (0 volts) 
1 Drive input III (+5V) 

C Drive input LO, III, LO 
K Drive input HI, LO. III 
L Test output LO (0 volts) 
II Test output III (+5V) 
Z Test output for high impedence 
X Input undefined, Output not tested 
N Power pins and Outputs not tested 
P Preload registers 

The value of the clock variable, CPU_CLK is 0 in some vectors and C in others. A 

value of 0 causes no clocking to occur. A value of C causes CSIM to examine the input 

values in the vector for any registered outputs that would be fed back internally prior to 

the clock. Then after a clock is applied, CSIM computes the appropriate expected 

outputs for registered and nonregistered variables. 

When CSIM is run a file is created (waitgen. so) which contains the result of the 

simulation (See Figure 2.26 on page 60). Comparison of the si with the output file 

shows the vectors 8 and 9 were created as a result of the $REPEAT directive, and also 

CSIM has replaced the asterisks from the . si file with the appropriate logic levels (11 

and L) for the WAITI, WAIT2 and READY signals. 

If the any of the output tests had failed they would have been flagged with the actual 

output value displayed. Each variable that is incorrect is listed along with the expected 

(user-supplied) value. Any invalid or unexpected test values are recorded along with an 

appropriate error message. 

2.2.4.3 JEDEC format 

Once the CUPL source code has been written and tested, it is compiled into the JEDEC 

format, which is downloaded to the device programmer. Figure 2.27 on page 61 

shows the JEDEC file for waitgen. sl. It consists of an ASCII Start-of-Text (STX) 

character, followed by various fields of information, then an ASCII End-of-Text (ETX) 

character, and a transmission checksum. 
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1: Name Waitgen; 
2: Partno P9000183; 
3: Date 03/14/85; 
4: Revision 02; 
5: Designer Osann; 
6: Company ATI; 
7: Assembly PC Memory; 
8: Location U106; 
9: Device F155; 

10: 

12: /* This device generates chip select signals for one 
13: /* 8Kx8 ROM and two 2Kx8 static RAMs. it also drives 
14: /* the system READY line to insert a wait-state of at */ 
15: /* least one CPU clock fo r ROM accesses. 
16: /************************ ****************************** **/ 
17: 
18: ORDER: 
19: cpu_clk , %2, a15 , %2, a14, %2, 
20: a13, %2, a12, %2, all, %2, 
21: ! memw, %2, Imemr, %2, reset, %2, ! oe, 
22: %4, ? ram csl, %2, ! ram cs0, %2, Irom_cs, %2, 
23: waitl, %2, wait2, %2, ready; 
24: 

Simulation Results 

C rr! 
p aar 
uIr mmowwr 

_mme __ maae 
caaaaaees !c c_ iia 
111111mme osscttd 
k54321wrt e10s12y 

Power On Reset 
0001: 0X XXX X 1 1 1 0 H H H 11 H 2 

Reset Flip Flops 
0002: CX XXX X 1 1 0 0 H H H L L Z 

Write RAMO 
0003: 00 010 0 0 1 0 0 H L H L L Z 

Read RAMO 
0004: 00 010 0 1 0 0 0 H L H L L Z 

Write RAM1 
0005: 00 010 1 0 1 0 0 L H H L L Z 

Read RAM1 
0006: 00 010 1 1 0 0 0 L H H L L Z 

Begin ROM Read 
0007: 00 000 0 1 0 0 0 H H L L L L 

Two Clocks For Wait S tat e, The n Dr ive READY High 
0008: C0 000 0 1 0 0 0 H H L H L L 
0009: C0 000 0 1 0 0 0 H H L H H H 

End ROM Read 
0010: 00 000 0 1 1 0 0 H H H H H Z 

End ROM Read 
0011: C0 000 0 1 1 0 0 H H H L L Z 

FIGURE 2.26. Output file (. SO) from simulator 



<STX> 
CUPL 3.2b Serial# MD-32B-7769 
Device f155 Library DLIB-h-25-14 
Created Sun Jan 25 00: 05: 45 2065 
Name Waitgen 
Partno P9000183 
Revision 02 
Date 03/14/85 
Designer Osann 
Company ATI 
Assembly PC Memory 
Location U106 
*QP20 
*QF2108 
*QV11 
*G0 
*FO 
*L00000 10100110111111111010111111111111 
*L00032 11111011111111111111111010011011 

*L02080 0000000000010100000000000101 
*C5AE5 
*V0001 CXXXXX110NOHHLLZXXHN 

*VO011 000000110NOHHLLXXZHN 
*<ETX>74FF 

FIGURE 2.27. JEDEC file for interface between CPU and memory 

The design specification is the first field in the format (i. e. all information between the 

STX and the first asterisk). This information is for documentation purposes only, and 

consists of the header information from the CUPL source file along with version 

number of the compiler and device library. 

At the start of the fields with asterisks there are characters that identify the type of 
information in the field. The Q character indicates a value. For example, the value QP 

describes the number of pins for the device. Another value field, QF, describes the total 

number of programmable fuses in the device. Both values are decimal numbers. 

To enable the security fuse to be programmed on devices that have such an option, the 

security fuse field (G) instructs the device programmer to disable (GO) or enable (G I) 

the programming of the security fuse. 
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The default fuse state field (F) defines the state of the fuses that are not explicitly 
defined in the L field. It is the fuse link field (L) that contains the actual data. Each 

device fuse link is assigned a decimal number, starting with 0000. Each numbered fuse 

has two possible states: binary 0 specifies a low resistance link (FUSE INTACT) and 

binary I specifies a high resistance link (FUSE BLOWN). 

The L identifier begins the field and is followed by the number of the first fuse being 

defined in the field. When more than one binary value is specified, the additional values 

are assigned to fuses numbered consecutively from the first fuse number. All the L 

fields are not shown in the listing for simplicity. 

The next field is a fuse checksum (C) field. The checksum is a 16-bit hexadecimal 

value which is computed by adding 8-bit words from the specified state of each fuse 

link in the device. Link number 0 is the least-significant bit (lsb) and link number 7 is 

the most-significant bit (msb) of word 0. Unspecified bits in the final 8-bit word are set 

to zero before computing the checksum. In Figure 2.28 the first thirty-two fuses 

generate four 8-bit words. 

word 00 10 10 1101 -º AD 

word 01 11111011 -º FB 

word 02 01110011 -º 73 

word 03 1 1101 101 -º EC 

Checksum -º 0307 

FIGURE 2.28. Example of a Checksum 

In order to allow the test vectors to be applied on the device rather than just simulated, 

a test vector field (V) can be created by running CSIM with the -j option flag (this is a 

flag added to the command line when CSIM is run). The test vector fields in the 

JEDEC code contain functional test information for each device being tested. 

The test conditions, as they appear in the vector, are applied to the device pins in 

numerical order from left to right (the first condition is applied to pin 1 and the last to 

pin 20 of a 20 pin device). Signals C and K which drive the clock are presented after all 

the other inputs are stable. The L, H, and Z conditions are tested after all inputs have 

stabilised, including C and K. 
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The results of the test vectors are again presented in the so output file. 

The end of transmission is signified with a non-printing ASCII ETX character followed 

immediately by a transmission checksum (sum-check) of four ASCII hex characters. 

This checksum is the 16-bit sum of the ASCII values of all the transmitted characters 

between, and including, the starting STX and ending ETX characters. 

2.3 Summary 
This chapter described some of the fundamental principles of digital electronics. The 

basic logic gates used to construct digital circuits were detailed, along with how they 

are combined to form the basic element of memory, the flip-flop. It is these basic 

elements that are combined to form complex digital systems such as microcomputers, 

CD players etc. 

Part 1 of this thesis is concerned with design and construction of various pieces of 

hardware for parallel computers. The PLDs described in this chapter are used 

frequently in these designs. 
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Chapter 3 

Design of a Programmable Circuit Switched Network 

The design and implementation of a programmable interconnection network which 

allows the user to alter the topology of the network prior to computation is described. 

This is achieved by connecting the high speed links on the nodes to two crossbar 

switches. 

The various methods of interprocessor communication are detailed before describing 

some of the ICs utilised in the network. Design of the hardware boards is described and 

then the software required to program the crossbar switches is detailed. 

3.1 Interprocessor Communication 

There are basically three mechanisms used in interprocessor communication: packet 

switching, circuit switching1 and wormhole routing2,3. 

3.1.1 Packet Switching 

Packet switching is a form of message passing in which a message is split into smaller 

parts called packets. In a static interconnection network these packets are transmitted 

from the source node to the destination node via intermediate nodes. The packet at the 

head of the complete message has a header attached which defines the route to be taken 

at each crosspoint in the network. The packets are passed in a store and forward 

manner (i. e. the entire message has to arrive at one node before it is passed on to the 

next node. ) 

The message transmission time (i. e. the interval between the time when the beginning 

of a message leaves the source node and the time when the end of the message reaches 

the destination) for a packet switched scheme is given by: - 

" message length x number of hops required to reach the destination. 

The result of this is that as the message length is increased, the message transmission 

time increases rapidly. Packet switching schemes also require additional software on 

each node to manage the passing of the packets. 
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3.1.2 Circuit Switching 

A more efficient method for large volumes of data which does not require additional 

software on each node is circuit switching. Circuit switching mechanisms establish a 
dedicated direct communication link between the two communicating nodes and this 

link is held until the message is completely transferred (like a telephone system). No 

dedicated communication software on each node is required only on the node which is 

setting up the communication links. The dedicated communication links can be set Lip 
before program execution or dynamically on demand during the program run-time. 

3.1.3 Wormhole Routing 

Wormhole routing is effectively a combination of packet switching and circuit 

switching. The packets are handled by special switches (routers) rather than by node 

software. 

A message is divided up into a number of flow control digits or "flits" that are 

pipelined through the network. It is only the header flits of a message that are stored. 

The destination address in the header flits is decoded and, if the required link is free, 

the message body is transmitted as a stream from input to output without being stored 

at all. 

As flits are forwarded, the message becomes spread out across the channels between 

the source and the destination. Message flits may not be interleaved with the flits of 

other messages as most flits do not contain routing information. 

As each flit is forwarded to the next node as soon as it arrives (known as cut-through 

routing), the message transmission time is proportional to the sum of the message 

length and number of hops to reach the destination (i. e. it is faster than packet 

switching). This routing technique reduces the amount of node storage required 

compared to packet switching. If fast routers are used this technique can be more 

efficient than circuit switching. 

The work presented in Part I of this thesis is concerned with the development of circuit 

switched schemes for interprocessor communication. This chapter describes the design 

and implementation of a circuit switched system which sets up dedicated 

communication links prior to computation. 
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3.2 INMOS products 

This circuit switched network uses various products designed by INMOS. These are 
described in this section. 

3.2.1 INMOS C004 

The INMOS C004 is a 32 way crossbar switch which can be used to set up direct 

physical links between communicating nodes. A block diagram of the IMS C004 is 

illustrated below. 

LinkInO-31 

32 to 1 
Synchronisation Output LinkOutO Multiplexer 

ýH k-ý 
Duffer 

k-11-- 

Latch[5: 0] 

32 to 1 
Synchronisation Output 

LinkOutl Multiplexer Buffer 

Latch[5: 0] 

Control go. ConfigLinkOut 

Logic Op- 
I 

Imp- 
ConfigLinkln 
LinkSpeed 

D 
GN System CapPlus D 

Services Clockln CapMinus 
Reset 

FIGURE 3.1. INIS C004 block diagram 
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3.2.1.1 Switch Implementation 

The switch is internally organised as a set of thirty two 32-to-1 multiplexers. Each 

multiplexer has associated with it a six bit latch, five bits of which select one input as a 

corresponding source of data for the corresponding output. The sixth bit is used to 

connect and disconnect the output. 

These latches are read and written to via the ConfigLinkIn and ConfigLinkOut pins. 
The user sends configuration messages to the switch (consisting of one, two or three 

bytes) via the ConfigLinkln pin and receives any data sent back from the switch via 

the ConfigLinkOut pin (See Table 3.1. ). Each input and output is identified by a 

number in the range 0 to 31. 

Configuration 
Message Function 
[O] [input] [output] Connects Input to output 

[1] [linkt][link2] Connects linkl to link2 

[2] [output] Enquires which input the output is connected to. The IMS C004 
responds with the input. 

[3] This command byte must be sent at the end of every configuration 
sequence which sets up a connection. 

[4] Resets the switch. All outputs are disconnected and field low. 

[5] [output] Output output is disconnected and held low. 

[6] [linkl][link2] Disconnects the output oflinkl and the output of link2. 
TABLE 3.1. IMS C004 configuration messages 

3.2.1.2 INMOS OSLinks 

The INMOS C004 uses INMOS OS Links (i. e LinklnO-31 and LinkOulO-31). These 

bi-directional serial links provide synchronised communication between INMOS 

products and the outside world. Each link comprises an input and output channel 

(i. e. LinkIn and LinkOut). A link between two devices is implemented by connecting 

input to output and output to input. 

Every byte of data sent on a link is acknowledged on the input of the same link. A 

receiver can transmit an acknowledge as soon as it starts to receive a data byte. This 

allows the transmission of an acknowledge byte to be overlapped with the receipt of a 
data byte to provide continuous transmission of data. 
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The quiescent state of a link output is low. Data bytes are transmitted as a two high 

(+5V) start bits followed by eight data bits (the least significant bit of data is 

transmitted first) followed by a low (0V) stop bit (See Figure 3.2). After transmitting a 
data byte the sender waits for an acknowledge which comprises of a high start bit 

followed by a low stop bit. This acknowledge signifies to the sender that the receiver is 

ready to receive another byte of data. 

I}hII0Iht2l3I4I5I6! hILl tt Ll 

Data I+ Ack 

FIGURE 3.2. IMS C004 link data and acknowledge packets 

INMOS OS Links run at speeds of 10Mbits/s and 20 Mbits/s. When the LinkSpeed pin 

on the C004 is logic low all links operate at the lOMbits/s and when this pin is pulled 

logic high the links operate at 20Mbits/s. Links are not synchronised with Clockin (a 

5MHz crystal oscillator), enabling links from independently clocked systems to 

communicate, providing only that the clocks are nominally identical and within 

specification. 

3.2.1.3 System Services 

Descriptions of the function of the system services pins on a C004 are shown in 

Table 3.2. below. 

Pin In/Out Function 

VDD, GND Power supply and return 

CapPlus, CapMinus External capacitor (11F) for internal power supply 

Clockln in Input clock 

Reset in System reset 

TABLE 3.2. IMS C004 system services 

3.2.2 INMOS T-800 transputer 

The T-800 transputer4 is a 32-bit microprocessor designed specifically to be used in a 

distributed memory multiprocessor environment. It has four on-chip high speed serial 

(IR 



data links for communication between processors as well as a peripheral interface. A 

block diagram of the T-800 transputer is illustrated in Figure 3.3. 

Floating Point Unit 

System 
Services 

Timers 

4kbytes 32 
of 

On-chip 
Ram 

32 bit 

32 Processor 

Link 
Services 

32 I Link 
Interface 

Link 
Interface 

Link 
Interface 

External 
Memory 32 
Interface 

Link 
Interface 

Event 

FIGURE 3.3. INIS T-800 block diagram 

A transputer can be used in a single processor system or in a network using the INMOS 

OS Links (as described in Section 3.2.1.2 on page 67) to connect the transputers 

together. Within a single transputer the CPU operates a time sharing system whereby it 

can share its time between any number of concurrent processes. This allows users to 

N 
M 
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develop parallel programs on single transputer and then run them on a network of 

transputers with little alteration. 

The IMS T-800 uses a DMA (Direct Memory Access) mechanism to transfer messages 
between memory and another transputer product via the INMOS OSLinks. This allows 

the link interfaces and the CPU to operate concurrently; i. e programs can continue 

execution whilst data is being transferred on the links. 

Whilst transputers can be programmed in most high level languages such as 

FORTRAN and Ca special purpose parallel language called OCCAM5 was developed 

for the transputer. OCCAM can be used with other microprocessors although its 

principal use is with transputers. By using OCCAM the system designers task is eased 
because of the architectural relationship between OCCAM and the transputer. 

OCCAM is based on the process model of computation. A process is an independent 

computation with its own program and data, which can communicate with other 

processes executing at the same time. A process can be thought of as a black box with 
inputs and outputs, that can communicate by message passing using explicitly defined 

channels. 

Processes are connected together by channels which are built up to produce complex 

concurrent systems. Communication between processes is synchronised; if a process A 

tries to send a message to process B on channel C, it will block until B is ready to 

receive on channel C. A channel can be an INMOS OS Link between transputers or a 

software channel between processes on the same transputer. 

OCCAM enables a system to be described as a collection of concurrent processes 

which communicate with each other through channels. An OCCAM program may 

execute on an array of transputers and the same program can also execute almost 

unchanged on a smaller array, or even on a single transputer. An OCCAM channel 

describes communication in the abstract and does not depend upon a particular 

hardware implementation. The processes that communicate via channels can be on the 

same transputer or different transputers. 
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Examples of statements which send and receive variables on channels are shown in 

Figure 3.4. The symbol ? is for input in OCCAM and ! is for output. 

chanl ? xvar sets the variable xvar to the value input from the channel chanl. 

chan2 ! yvar outputs the value of the variable yvar to the channel chan2 

FIGURE 3.4. Examples or input and output statements 

Transputers are connected together via INMOS OSlinks but there has to be some way 

of interfacing these links to the outside world (i. e. in order that a network of transputers 

can be loaded with code and data at least one transputer has to be connected to a host 

computer). This is achieved by a device called a C012. 

3.2.3 C012 Link Adaptors 

The INMOS C0124 is a link adaptor which interfaces INMOS serial OS links to 

microprocessor buses (amongst other things) by converting the bi-directional serial 

link into parallel data streams. A block diagram of the IMS C012 is illustrated in 

Figure 3.5. 

Vnn 
GND 

Interrupt 
Control 

Inputlnt 
Outputlnt 

CapAllnus 
Clockin System 

Reset Services 
Register RSO 
Select RS1 

LinkSpeed RnotW 
notCS 

LinkOut Data and 
Linkln Link Status DO-D7 

Registers ýFV 

FIGURE 3.5. INIS C012 block diagram 

The status and data registers for both input and output ports can be accessed via the 

byte wide bi-directional interface (DO-D7). Registers are selected by RSO-1 and 

RnotIV, and the chip is enabled by notCS (i. e. the chip is enabled when notCS is low). 
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RnotW selects the registers for read or write mode. When RnotW is high, the contents 
of the addressed register appear on the data bus DO-D7 and when RnotW is low the 
data on DO-D7 is written into the addressed register. 

RSO-RS1 select one of the four registers; the read-only data input register, the write- 

only data output register or the read/write status registers. The addresses for the 

registers are shown in Table 3.3. . 
TABLE 33. IMS C012 register selection 

RSI RSO RnotW Register 

0 0 1 Read Data 

0 0 0 Invalid 

0 1 1 Invalid 

0 1 0 Write Data 

1 0 1 Read Input Status 
1 0 0 Write Input Status 

1 1 1 Read Output Status 

1 1 0 Write Output Status 

The input data register holds the last data packet received from the INMOS serial OS 

Link. It never contains an acknowledge packet. The output data register contains data 

that is to be transmitted out of the serial link as a data packet. 

The input status register contains the `data present' flag and the `interrupt enable' 

control bit for Inputlnt (See Figure 3.6). The `data present' flag is set to indicate that 

data in the data input buffer is valid. It is reset low only by reading the data input 

buffer, or by Reset. When writing to this register, the `data present' bit must be written 

as zero. The Inputlnt output is set high when a data packet has been received on the 

INMOS OS serial link. It is inhibited from going high if the `interrupt enable' bit is set 

to low. 

Inputlnt 

FIGURE 3.6. IMS C012 Input status register 
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The output status register contains the `output ready' flag and the `interrupt enable' 

control bit for Outputlnt (See Figure 3.7). The `output ready' flag is pulled high to 

indicate that the data output buffer is empty and it is only reset low when data is written 

to the data output buffer; it is set high by Reset. When writing to this register, the 

`output ready' bit must be written as zero. The Outputlnt output is set to indicate that 

the INMOS OS Link is ready to receive data from DO-D7. It is inhibited from going 

high when the 'interrupt enable' bit is set low. 

Outpntlnt 

FIGURE 3.7. IMS C012 output status register 

The system services for the C012 are the same as for the C004. 

3.3 Hardware for Static Circuit Switched Network 

The basic layout of the static circuit switched network is illustrated in Figure 3.8. Two 

of the links on a node are used to connect the nodes in a pipeline and the remaining two 

links are connected to two crossbar switches. This allows Link 1 on a node to be 

connected to Link 2 on any other node. The crossbar switches used in the system are 

INMOS 0004s and the nodes are INMOS T-900 transputers although the same 

principles could be applied with other nodes and crossbar switches. 
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ol.............. 31 
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FIGURE 3.8. Layout of circuit switched network 
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3.3.1 Hardware setup 

The parallel machine used with the switch system contains thirty two transputers 

arranged on four printed circuit boards with eight transputers on each. Each circuit 
board contains a DIN41612 plug which all the links on the transputers are connected to 
(See Figure 3.9). 
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I LinkOut 

FIGURE 3.9. Connections from transputer board to DIN41612 plug 

In order to connect the transputers and 0004s in the configuration shown in 

Figure 3.8 on page 73 a circuit board (switch board) was constructed which plugged 

into the transputer boards (See Figure 3.10 and Figure 3.11 on page 75). The 32-way 

DIN41612 sockets on the switch board are plugged into the equivalent plugs on the 
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transputer boards. The sockets on the switch board are wired such that they connect 
links 0 and 3 in a pipeline and links I and 2 to the crossbar switches. A photograph of 
the board is shown in Appendix D, Figure 1 on page 304. 

32-way DIN41612 sockets 

0 

16-way DIN41612 

FIGURE 3.10. Block Diagram of Switch board 

I 

0004s 

5MHz 
Oscillator 

The overall arrangement of the boards is illustrated in Figure 3.11 (the transputer 
boards are housed in a purpose built box). Two of the 16-way DIN41612 connectors 

are attached to the host computer (a PC) which sends the messages to program the 

required connections on the 0004s. The connections to the 16-way DIN41612 sockets 

on the switch board are shown in Figure 3.12 on page 76. These two 16-way 

DIN41612 sockets are connected to a dual C012 link adaptor board plugged into the 

host computer. 

Transputer 
Boards 

69MMMýM 

FIGURE 3.11. Overall arrangement or transputer boards 
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FIGURE 3.12. Connections to 16-way DIN41612 socket 

3.3.2 Dual Link Adaptor Board 

ConfigLinkOut 

The dual link adaptor circuit board, which connects to the two 0004s on the switch 
board, contains two C012s interfaced to the PC bus. A PC contains several (-8) 

system-bus expansion card slots6. The connectors on the card are capable of supporting 

62 signal connectors to a card, 31 on each side of a card (See Figure 3.13 on page 77). 

Cards are retained by attaching an L bracket to the back end of the card; the bracket, in 

turn, attaches to the top of the system unit's bulkhead. Cables are attached to the card 
by attaching a connector to the card, and extending the connector through the L bracket 

out through the slots cut in the rear of the bulkhead of the system unit. 

The dual link adaptor circuit was built on a wire-wrap card of this type. The two C012s 

each have an address and the PC communicates with them by reading/writing data at 
this address. A circuit diagram of the card is shown in Figure 3.14 on page 78 and a 

photograph of the card is shown in Appendix D, Figure 2 on page 304. 

The ICs used on the board are the two C012s, an octal bus transceiver with tri-state 

outputs (SN74LS245) and two programmable logic devices (P22V IOL). The Dß9 

connector is used to connect to the switch board. 
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FIGURE 3.13. Pin and signal definitions for the PC card slots 

3.3.2.1 245' Octal Bus Transceiver 

The SN74LS2457 acts as a buffer between the C012s and the PC bus. It allows 

transmission from the A bus to the B bus and vice versa depending on the logic level at 
the direction control (DIR) input (See Table 3.4. ). When the enable input (G*) is 

pulled high the device is effectively isolated from the A and B buses. The DIR and G* 
inputs are generated from a P22V 10. 

DIRECTION 
CONTROL 

ENABLE (G*) (DIR) OPERATION 
L L B data to A bus 

L H A data to B bus 
H X Isolation 

TABLE 3.4. Function 'T'able for 2451 
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FIGURE 3.14. Dual Link Adaptor Board 
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3.3.2.2 P22V1OL-0 Programmable Logic Device 

The P22VIOL is a CMOS high performance electrically erasable 24 pin PAL8. A 

diagram of the pin configuration of the PAL is shown in Figure 3.15. It contains 10 D- 

type registers which are provided with synchronous preset and asynchronous reset 

terms. 
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I/o 
I/O 
I/O 
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I/O 
I/O 
I/O 
I/O 
I/O 
I/O 
IN 

FIGURE 3.15. Pin Configuration of P22V10L 

The CUPL source code for both the PALs is shown in Figures 3.16 and 3.17 on pages 

80,82 and 83. Between them, the PALs generate the notCS, RnotW and Reset signals 

for the C012s, and the DIR and G* signals for the buffer. 

P22V 1OL-0 decodes the addresses for the link adaptors and control information. The 

inputs to P22V 1OL-0 are the PC bus address lines (A2-A9), the address enable signal 

(AEN) and the select signals (Se10 & Se 11). The active low outputs are NotSysO, 

NotSysl, NotLadpO and Not Ladpl. 

A FIELD declaration is used to define the address bus (i. e. FIELD IßMaddr = [A9 .. 

A21. When the FIELD variable is used with an equality operator (i. e. IBMAddr : 

[1201), CUPL assumes that the address bus includes Al and AO although they are not 

in fact connected to the PAL. The equality operator therefore compares A2-A9 with the 

top eight bits of the hexadecimal number 120 (in this case). 

The AEN signal is an active high signal from the PC which indicates when a DMA 

(Direct Memory Access) cycle is in operation (i. e. a DMA device has access to the PC 

bus). The C012s must not be accessed during a DMA cycle and therefore the AEN 

signal must be logic low during a read/write cycle to the C012s. This signal is therefore 

made active low in the CUPL pin assignments. 
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PIN 1= ! NotAEN; 

PIN 2= A9; 

PIN 3= A8; 

PIN 4= A7; 

PIN 5= A6; 

PIN 6= AS; 

PIN 7= A4; 

PIN 8= A3; 

PIN 9= A2; 

PIN 10= SelO; 

PIN 11= Sell; 

PIN 17 = INotSysO; 

PIN 18 = ! NotSysl; 

PIN 19 = ! NotLadpO; 

PIN 20 = ! NotLadpl; 

FIELD IBMAddr = [A9.. A2]; 

FIELD Select = [Sell.. Sel0j; 

/** Enable link adaptor and system control signals **/ 

NotLadpl = IBMAddr: (120] & Select: 11] & NotAEN # 

IBMAddr: (220] & Select: (2] & NotAEN # 

IBMAddr: (320] & Select: (3] & NotAEN ; 

NotLadpO = IBMAddr: [124J & Select: [1] & NotAEN # 

IBMAddr: (224] & Select: (2] & NotAEN # 

IBMAddr: (3241 & Select: [3] & NotAEN ; 

NotSysl = IBMAddr: [130] & Select: [1] & NotAEN # 

IBMAddr: [230] & Select: [21 & NotAEN # 

IBMAddr: [330] & Select: [3] & NotAEN ; 

NotSySi = IBMAddr: [134] & Select: [1] & NotAEN # 

IBMAddr: [2341 & Select: [2] & NotAEN # 

IBMAddr: [334] & Select: [3] & NotAEN 

FIGURE 3.16. CUPL source code for P22VIOL-0 
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Signals Se10 & Se 11 are controlled by jumpers (See Figure 3.14 on page 78). These 

signals are assigned to the FIELD variable Select and are used to select which address 

of the three alternatives is used. This is to give greater flexibility when selecting 

addresses for the C012s. 

Table 3.5. shows the output signals and their meaning. These signals are logic true 

when one of three alternative addresses is set to the appropriate value, the select signal 

is set to the correct value for that address and the NotAEN signal is logic true. These 

outputs are then fed into P22VIOL-1. 

Pin Outs Definition 

NotLadpl Selects link adaptor I 

NotLadpO Selects link adaptor 0 

NotSys1 Selects control information for link adaptor I 

NotSysO Selects control information for link adaptor 0 

TABLE 3.5. Pin Outs orl'ZZVIOL-I 

3.3.2.3 P22V1OL-1 Programmable Logic Device 

P22V l OL -I generates the signals notCSO, notCS1, RnotW(notWrite) and Reset 

(CO12Reset) for the C012s and the DIR and G*(BufEn) for the `245 (See Figure 3.17 

on pages 82 and 83 for CUPL code). 

The inputs to P22V I OL -I are PCLK (PC Clock), IOR* (PC Read Cycle), IOIV* (PC 

Write Cycle), Al, A0, NotIBMErrorl, NotIBMErrorO and the signals (NotSysO, 

NotSysl, NotLadp0 and Not Ladpl) from P22V IOL-0. The signal ll0 from the PC 

data bus is used as both an input and output. The signals NotIBMResetl, 

NotIBMResetO and NotStatWr are inputs to the D-type internal registers of the 

P22VIOL. 

Inputs AO and Al from the PC address bus are assigned to the FIELD variable 

Register. These inputs are also connected to the RO and R1 pins on the C012s. They 

are therefore used to address the various registers on the C012 (See Table 3.3. on page 

72). When addressing a C012 it is therefore the first two bits of the address that specify 

which register is being read/written. AO and Al are also connected to the P22V 10 as 

when writing a "reset" to a C012 both these bits require to be zero. 
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PIN 1= PC1k; /* Register Clock 

PIN 2= ! NotIOR; 

PIN 3= INotIOW; 

PIN 4= Al; 

PIN 5= AO; 

PIN 6= ! NotLadpl; 

PIN 7= ! NotLadpO; 

PIN 8= ! NotSysl; 

PIN 9= ! NotSysO; 

PIN 10 = ! NotIBMErrorl; 

PIN 11 = INotIBMErrorO; 

PIN 14 = DO; 

PIN 15 = Dl; 

PIN 16 = C012Reset; 

PIN 17 = NotIBMResetl; 

PIN 18 = NotIBMResetO; 

PIN 19 = INotCsl; 

PIN 20 = INotCsO; 

PIN 21 = ! Notwrite; 

PIN 22 = lBufEn; 

PIN 23 = lNotStatWr; 

FIELD Register = [Al. 

FIELD Outputs= [NotIBMResetl, NotIBMResetO, NotStatWr] 

/** Resets & Presets **/ 

Outputs. ar = 'b'0; /** Switch off all async resets **/ 

Outputs. sp = 'b'0; /** Switch off all sync presets **/ 

/** Definitions **/ 

ReadSysi = 

WriteSysl = 

ReadSysO = 

WriteSysO = 

NotIOR & NotSysi; 

NotIOW & NotSysl; 

NotIOR & NotSysO; 

NotIOW & NotSysO; 
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ReadLinkl = NotIOR & NotLadpl; 

WriteLinkl = NotIOW & NotLadpl; 

ReadLinkO = NotIOR & NotLadpO; 

WriteLinkO = NotIOW & NotLadpO; 

WriteResetl = WriteSysl & Register: [0]; 

WriteResetO = WriteSysO & Register: [0); 

/** C012 & 245 control signals **/ 

NotStatWr. d = NotIOW; 

NotCsl = WriteLinkl & NotStatWr # ReadLinkl; 

NotCsO = WriteLinkO & NotStatWr # ReadLinkO; 

NotWrite = NotIOW # NotStatWr; 

BufEn = NotCsl # NotCsO; 

C012Reset = NotIBMResetl # NotIBMResetO; 

/** Reset, analyze, & error **/ 

NotIBMResetl. d = DO & WriteResetl # 

NotIBMResetO. d = 

D1 = 

Dl. oe = 

DO = 

DO. oe = 

NotIBMResetl & lWriteResetl; 

DO & WriteResetO # 

NotIBMResetO 

INotIBMErrorl; 

ReadSysl; 

INotIBMErrorO; 

ReadSysO; 

FIGURE 3.17. CUPL source code for P22V1OL-1 

The inputs to the D-type registers (NotIBMResetl, NotIBMResetO, NotStat\Vr) are 

assigned to the FIELD variable Outputs. The asynchronous resets and synchronous 

presets of these registers are turned off by the statements, Outputs. ar = 'b'0 and 

Outputs. sp = `b'0 (i. e. the ar and sp are set to binary (`b') zero (OV)). 

Table 3.6. on page 84 shows the intermediate variables and their definitions. These 

are declared in order to simplify later expressions. 

The NotStatWr signal is required to effectively create a delayed IOW* signal which is 

used to generate the notCS* signals for the C012s. The notCS* signals must be logic 
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true when reading or writing to a CO 12. A timing diagram for writing data to a CO12 is 

shown in Figure 3.18. This shows that there must be a gap between the RnotW signal 

being pulled low and the notCS* going low. It is therefore not correct to use the 

expression notCS = WriteLink # ReadLink to generate the notCS signals as the 
WriteLink signals are generated from the IOW* signal as is the RnotW signal (i. e. 
the RnotW signal will become logic true at the same time as notCS. 

Pin Out Definition 

ReadSysl Read system info. from Link Adaptor I 

WriteSysl Write system info. to Link Adaptor 0 

ReadSysO Read system info. from Link Adaptor 1 

WriteSys0 Write system info. to Link Adaptor 0 

ReadLinkl Read data from Link Adaptor I 

WriteLinkO Write data to Link Adaptor 0 
ReadLinkl Read data from Link Adaptor 1 
RcadLink0 Write data to Link Adaptor 0 

1AISLE 3.6. Intermediate variables for 1'Z2V lUL 

RSO-1 

RnotW 

notCS 

DO-D7 

FIGURE 3.18. Timing diagram for write to C012 

Signal NotStatWr is the D-input of a D-type flip-flop (hence the d extension in the 

expression for NotStatWr) and hence the logic level on the input (which is NotIOW) 

is only transferred to the Q-output on a leading clock edge. A timing diagram for the 

NotStatWr signal in relation to the IOW*, RnotW(NotWrite) and notCS* signals is 

shown in Figure 3.19 on page 85. By ensuring that the chip select signals are only true 

when both NotStatWr and WriteLink are true or ReadLink is true, the timing of the 

signals is therefore correct. 
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PCLK 

IOW*_ 

NotStatWr*_ 

notCS* 

notWrite* 

FIGURE 3.19. Timing diagram for NotStatWr signal 

A similar delayed signal is not required when reading from the C012s as the 

NotWrite* signal is by default in the logic high state (i. e. when reading fron the C012 

the RnotW signal must be logic high), therefore the signal is always true before the 

notCS* signal becomes logic true. 

The chip select signals for the C012s (notCSO* and notCS1*) are therefore logic true 

when reading from or writing to the link adaptors. The RnotW signal is logic true 

when either the NotIOW* or NotStatWr* signals are logic true (i. e. when the C012s 

are being written to). 

To enable the '245 buffer which isolates the C012s from the PC bus the BufEn* signal 

is used. This signal is logic true when either of the C012s are selected. The 1DI14 signal 

on the '245 is controlled by the RnotW signal, as the direction of the buffer is 

dependent on whether information is being transmitted or received. 

The C012s are put into reset by writing a logic high to the system control address. The 

NotIBMReset. d signals are logic true when the DO and WriteReset signals are logic 

true. The second part of the expression for NotIBMReset (NotIB11Weset & 

! WriteReset) is required in order that the logic level of the signal is maintained after 

the write cycle from the PC is finished (i. e. on the previous clock edge NotIBMReset 

was true and WriteReset is no longer logic true). The C012s are reset when either 

NotIBMResetl or NotIBMResetO is true. 

95 



The NotIBMErrorl and NotIBMBrrorO signals are inputs from the transputer boards 

which indicate when errors have occurred. These signals are read on DO and DI and 
therefore these signals are only enabled as outputs from the P22V l OL when reading 
system information. 

3.4 Software requirements 
To program the required connections on the crossbar switches the configuration 

messages must be sent from the host computer via the dual link adapter board to the 
ConfigLinkIn and ConfigLinkOut pins on the C004. This is achieved by assembler 

routines on the host which input and output bytes to the link adapter board. These 

routines are called from a FORTRAN program which provides a user interface for 

entering the required connections between the processors. 

3.4.1 User interface with a command line 

The first version of the user interface written in Microsoft FORTRAN9, entered the 

values of the processor and links to be connected via a string of text entered by the 

user. 

i. e. CONNECT PROCESSOR A LINK B TO PROCESSOR C LINK D 

To extract the values of the processors and links from the string the positions of the key 

words (i. e processor and link) were found by using the FORTRAN INDEX function. 

The values were then extracted from the spaces between the words as substrings (See 

Figure 3.20). 

Iprocl = INDEX(STATEMENT, 'processor') 

Ilinkl = INDEX (STATEMENT, link') 

Ito = INDEX (STATEMENT, 'to') 

Procl = statement (iprocl + 9: ilinki -1) 
Linkl = statement (ilinkl + 4: ito -1) 

FIGURE 3.20. FORTRAN code to extract values from string 

The first three statements in this section of code locate the position of the first 

occurrence of the words `processor', 'link' and `to' respectively. The next two 
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statements extract the substrings in between the words which contain the processor and 
link numbers. 

The initial statement is stored as a character variable and therefore the values extracted 
from the statement are stored as character variables. In order that the values can be 

used in further calculations they have to be converted to integer variables. This is 

achieved by the subroutine INTEG (See Figure 3.21). 

SUBROUTINE INTEG(D, DUMR, X) 

CHARACTER*10 DUMR 

INTEGER D 

INTEGER*2 X(64) 

C CONVERT CHARACTERS INTO INTEGERS 

READ(DUMR, '(I10)') X(D) 

END 

FIGURE 3.21. Subroutine INTEL 

This routine uses internal files to transfer the character variable DUMR into the integer 

variable X. 

Since the program depends on finding the key words in the statement, if there are any 

spelling mistakes in the statement, it has to be re-entered. Once the processor and link 

numbers are established their values are stored in four separate arrays (i. e. two for the 

processor numbers and two for the link numbers). 

3.4.2 Graphical user interface 

Entering the processor and link numbers via a string of text is quite cumbersome l nd it 

was therefore decided to create a graphical interface using the Microsoft FORTRAN 

graphics libraryt0. The graphical interface takes the form of 32 boxes on screen to the 

represent the 32 processors in the switch network. Smaller boxes within the processors 

represent the links. Figure 7 and Figure 8 on page 307 in Appendix D show the 

graphical interface. 

To make a connection between two processors a line (or series of lines) is drawn 

between the processors using the mouse. If the user tries to make a connection not on a 

processor, or on a link that is not allowed then the line will not be drawn. Once a 
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connection has been established the processor and link numbers are stored in arrays 
(NP1, NP2, NL1, NL2). 

The boxes which represent the processors and links were drawn using the Microsoft 

FORTRAN "rectangle" and "line" routines. To control the mouse the public domain 

package "Mouse Driver Interface Package for Turbo C and Microsoft Fortran" was 

utilised. The routine GETMOUSECURSOR position in this package was used to find 

the physical coordinates of the mouse and the state of the mouse buttons. The lines to 

represent the connections were drawn using the "line" routine 

The main routine in the graphical interface is the routine PRESSMOUSE which 

establishes where the mouse button has been pressed, draws the appropriate lines, and 

then stores the processor and link numbers in arrays once a connection has been 

completed. It can be divided into two parts: the first part considers the situation when 

the mouse button has been pressed and second part considers the situation when the 

mouse button has been released (See Figure 3.22 on page 89). 

When a mouse button is pressed at the start of making a connection between two 

processors, the start position is set to the position of the mouse (it is actually altered so 

that the start of the line is positioned in the centre of the link box). If the mouse is 

pressed in the middle of a connection then the start position for the line is set to the end 

of the previous line. This is also the case when the previous line has been disallowed. 

Before actually drawing a line the graphicsmode is set to XOR. This allows a line to be 

deleted by drawing over the line with the same colour and also leaves any background 

to the line intact. The purpose of this is so that while the mouse is depressed a line is 

drawn constantly between the start position and the current mouse position (i. e. the 

mouse cursor can be moved and the line will follow it). This is achieved by deleting the 

previous line before drawing the next line if the mouse has moved. 
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Call routine GETMOUSECURSORPOSITION 
Check whether mouse pressed on allowed processor and link 
If mouse pressed on allowed position and not on finish 

If not at start of a connection then 
set start point for line to end of previous line 

else if last line was a disallowed connection then 
set start point for line to end of previous line 

else 
set start point for line to mouse position 

set writestyle to XOR 

While mouse button is pressed down 
store previous position of mouse 
find new position of mouse 
if mouse has moved 

draw over previous line 
draw new line 

Part 1 

Call routine GETMOUSECURSORPOSITION 
Draw over previous line 
Check whether mouse released on allowed processor and link 
if mouse released on allowed position 

draw new line Part 2 
increment counter which counts no. of lines used to make a connection 

store start and end points of line and no. of line in an array 
If connection complete 

store processor and link numbers In arrays 

FIGURE 3.22. Pseudocode for routine PRESSMOUSE 

While the mouse button is depressed the current position of the mouse is determined by 

the GETMOUSECURSORPOSITION routine. If the mouse has moved position since 

the previous call to the routine the last line is deleted. A line is then drawn between the 

start point for the line and the current position of the mouse. 

When the mouse is released a call is again made to the subroutine 
GETMOUSECURSOR position to obtain the new position of the mouse. The last line 

drawn is then erased. If the mouse is released on an allowed position then the new line 

is drawn. The position and number of the line is stored in an array in order that the 

connection can be deleted. To delete a connection the user double clicks on either end 

of the connection. 

Once a completed connection is made the processor and link numbers of the 

connection are stored in arrays. When the user has completed all the connections he/ 
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she wants he/she clicks on the "Finish" box on the screen. The program then makes the 
required connections on the 0004s. 

The FORTRAN code for both the command line interface and the graphical user 
interface is shown in Appendix A. 

3.4.3 Programming the 0004s 

To establish which connections are required on the 0004s it is necessary to construct 
tables which contain the connections from the processors to the switches. Two tables 

(one for each C004) are therefore created which are arranged in the following way: - 

Link No. 
Processor 
No. 

Linkin on 
C004 Link No. 

Processor 
No. 

Link Out on 
C004 

The pseudocode for the subroutine CONNECTIONS is illustrated in Figure 3.23. This 

routine establishes what connections are required on the 0004s. This achieved by 

considering in turn each processor and link number used in a connection, and then 

scanning the tables containing the connections to the 0004s looking for match. Once a 

match has been found the values of the links used on the 0004s are stored in arrays. 

For each processor number and link number in a connection 
For each row in each table containing connections to 0004s 

If the processor number and link numbers match the values in columns 1&2 of table 
store value of Linkin on C004 In array 

If the processor and link numbers match the values in columns 4&5 of table 
store value of LinkOut on C004 In array 

FIGURE 3.23. Pseudocode for subroutine CONNECTIONS 

Before any connections are actually made on the 0004s the dual link adapter board 

which sends the messages to the 0004s must be reset. The is achieved by using the 

assembler routine 'RUN' which is called from the main FORTRAN program (See 

Figure 3.24 overleaf). The assembler was written in Microsoft Macro Assembler 5.011 

This routine just sends a specified value to a specified address and does not by itself 

reset the link adapters. To achieve this the routine is called twice: the first time a logic I 

is sent to the reset address and the second time a logic 0 is sent to this address. 
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The MODEL directive at the start of the assembler source code defines the memory 
hiodel used by the program. In this case it is HUGE which means that code and data 

can be greater than 64K (the size of a segment). This matches the memory model used 
by the FORTRAN compiler. 

The CODE directive marks the start of a code segment. The PUBLIC directive 

declares a symbol (in this case RUN) public in order that it can be accessed by other 

l'outines. 

. MODEL HUGE 

. CODE 

PUBLIC 
_run 

_run 
PROC FAR 

push bp ; save old bp 

mov bp, sp ; set stack frame pointer 

mov dx, [bp+8] ; load address of board 

mov al, [bp+6] ; load byte to be output 

out dx, al ; output byte 

pop bp 

ret 

_run 
ENDP 

END 

FIGURE 3.24. Assembler routine RUN 

When sending values to an assembler program from FORTRAN, the stack is loaded in 

the following manner: - 

argument I 

argument 2 

return address 
(4 Bytes) 

Saved BP 

--14- BP +8 

mot- BP +6 

BP+4 4BP+2 

-4- BP 
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FORTRAN pushes values onto the stack in the order they appear in the call to the 
assembler routine so therefore argument 1 is higher in memory than argument 2. 

Immediately after the routine is called from FORTRAN the stack pointer(sp) points to 
the return address. The statement push bp decrements sp and pushes the value of the 
base pointer (bp) onto the stack. At this point sp points to the saved value for bp. The 

statement mov bp, sp therefore moves the value of sp into bp and therefore bp points 
to the saved value of bp. This is in order that bp can be used to point to the base of a 
frame of reference within the stack. 

When calling the RUN routine from FORTRAN, argument 2 is the byte to be output 

and argument 1 is the address at which the byte is output. Initially a binary 1 (reset) is 

sent to both link adapters and then a binary 0 (run). Obviously separate calls to the 

routine are required for each link adapter as they have different addresses. 

The statement mov dx, [bp + 8] moves the address of the link adapter into the register 

dx. The command mov al, [bp + 61 moves the output byte (1 or 0) into register al. The 

output byte is then written to the link adapter address by the command out dx, al. 

Before returning control to the FORTRAN program the value of bp has to be restored 

by the statement pop bp. The RET command pops the return address off the stack and 

returns control to the FORTRAN program. The ENDP directive marks the end of the 

procedure. 

Once the link adapter board has been reset in this way it is ready to receive messages 

for the 0004s. Table 3.1. on page 67 shows that before making a connection on a 

C004 a command byte [4] must be sent to reset the switch. To program a connection a 

command byte [0] is sent followed by the numbers of the input and output on the C004. 

The FORTRAN code which achieves this is in Figure 3.25 on page 93. 

The addresses of the link adapters are stored in the array LKAD and the values of the 
C004 inputs and outputs are stored in the arrays C40IN, C4000T, C41IN and 

C41OUT. 
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CALL LINKOUT (4, LKAD(1)) 

CALL LINKOUT (4, LKAD (2)) 

DO 30 N=1, LINKNO 

CALL LINKOUT 

CALL LINKOUT 

CALL LINKOUT 

CALL LINKOUT 

CALL LINKOUT 

CALL LINKOUT 

CALL LINKOUT 

CALL LINKOUT 

30 CONTINUE 

(0, LKAD(1)) 

(C40IN(N), LKAD(1)) 

(C40OUT(N), LKAD(1)) 

(3, LKAD(1)) 

(0, LKAD(2)) 

(C41IN(N), LKAD(2)) 

(C41OUT(N), LKAD(2)) 

(3, LKAD(2)) 

FIGURE 3.25. FORTRAN code to make connections on 0004s 

The subroutine LINKOUT is an 8086 assembler routine similar to RUN which outputs 

bytes to the link adapters (See Figure 3.26 on page 94). Before transmitting a byte the 

output status register is checked to ensure the link adapter is ready to receive a byte. 

The address of the output status register is loaded into register dx by the statements 

mov dx, [bp + 8] and add dx, 03H. Table 3.3. on page 72 shows that the output status 

register is 03H above the base address of the link adapter board. 

When a link adapter is ready to receive a byte, the first bit of the output status register 

is set to logic 1. This is checked by first loading the contents of the status register into 

dx (in al, dx) and then masking off the top 7 bits of the byte (statement and al, 0111). if 

the first bit is not logic I (cmp al, 0111) then the program loops round (jne loop_]). 

Once the link adapter is ready to receive a byte the address of the output data register is 

loaded into dx (sub dx, 02H). The data to be transmitted is then sent in a similar way as 

in routine RUN. 

Using the routine LINKOUT the switches are programmed to snake the required 

connections between the processors using the 0004s. It is possible to check that the 

connections have been made successfully by interrogating the outputs on the C004. 

This is achieved by sending a command byte [2] to the C004 followed by the number 
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of the output to be interrogated. The C004 returns the value of the input that the output 
is connected to. 

. MODEL HUGE 

. CODE 

PUBLIC linkout 

_linkout 
PROC FAR 

push bp ; save old bp 

mov bp, sp ; set stack frame pointer 

mov dx, (bp+8] ; load link adaptor base address 

add dx, 03H ; get address ofinput_status register 

loop-1: in al, dx ; read value of status register 

and al, l ; look at first bit 

cmp al, O1H ; see if equal to 1 

jne loop_i ; loop round if not equal 

sub dx, 02H ; find input address 

mov al, (bp+61 ; load byte to be output 

out dx, al ; output the byte in al 

pop bp 

ret 

linkout ENDP 

END 

FIGURE 3.26. Assembler routine LinkOut 

The assembler routine LINKOUT is used to send the byte [21 and the output number. 

To receive bytes back from the C004 an assembler function called LINKIN was written 

(See Figure 3.27 on page 95). 

This function is similar to LINKOUT. The major difference is that in the case of 

LINKIN it is the input status register that is polled instead of the output status register 

as with LINKOUT. The incoming data is read from the input data register which is at 

the base address of the link adapter. The byte is returned to the FORTRAN routine in 

register ax. 
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. MODEL HUGE 

. CODE 

PUBLIC 
_linkin 

_linkin 
PROC FAR 

push bp 

mov bp, sp 

; save old bp 

; set stack frame pointer 

mov dx, (bp+61 ; load link adaptor base address 

add dx, 02H ; get address of input_status register 

loop_i: in al, dx ; read value of status register 

and al, 1 ; look at first bit 

cmp al, 01H ; see if equal to 1 

jne loop_i ; loop round if not equal 

sub dx, 02H ; find input address 

in al, dx ; read input register 

xor ah, ah ; load 0 into ah 

pop bp 

ret 

_linkin 
ENDP 

END 

FIGURE 3.27. Assembler routine Linkln 

The main FORTRAN program offers two ways to test connections on the 0004s. In the 
first method a particular output can be interrogated by entering the number of the 

output (see Figure 3.28 on page 96). The second method interrogates all the outputs 

on the 0004s and then prints out the results in form illustrated in Figure 3.29 on page 
96. 
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WRITE (*, *) `ENTER NUMBER OF OUTPUT', OUTPUT 

CALL LINKOUT (2, LKAD(2)) 

IN = LINKIN(LKAD(2)) 

IN = IN - 128 

IF ((IN. GT. O). AND. (IN. LT. 32)) 

WRITE(*, *) `THIS OUTPUT IS CONNECTED TO INPUT', IN 

ELSE 

WRITE(*, *) `THIS OUTPUT IS NOT CONNECTED' 

END IF 

FIGURE 3.28. FORTRAN code to interrogate an output 

Processor A Linkln B is connected to Processor C LinkOut D 

FIGURE 3.29. Format of statement showing connections 

3.5 Conclusions 

A basic system has been presented which allows the topology of a multiprocessor 

network to be altered before computation. This provides a more flexible and efficient 

set-up than a fixed topology system as some parallel algorithms are more suitable to 

one particular configuration than another. 

The final version of the software to program the switches allowed for eight links on the 

nodes, although of course in the case of transputers this was not implemented. Some 

other processors such as the Texas Instruments C40 have more than four links and 

therefore this allows the graphical interface to be ported easily to other systems. 

Since the switch board was built on a wire-wrap board and there are 64 connections to 

each C004 the board is not very reliable. In retrospect it would probably have been 

more efficient to get a PCB (printed circuit board) made of the design. 

This prototype system does however provide a simple method to vary the topology of a 

transputer network. It would allow a particular algorithm to be tested on different 

topologies. As stated previously the same methodology could be applied to other 

processors such as the C40 and also with alternative crossbar switches. 
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Chapter 4 

A Circuit Switched Network for Ininos OS Links 

An efficient circuit switching mechanism allowing dynamic-on-demand allocation of 

physical links between processing nodes is described in this chapter. This cost- 

effective, memory-mapped system sends connection requests via an INMOS OSLink 

to a control processor which programs a crossbar switch. By setting up point-to-point 

direct physical links between nodes this allows every node to communicate directly 

with every other node of a parallel computer. 

A brief description of the basic paradigm used for providing dynamic-on-demand 

allocation of physical links is presented first. The various designs considered are then 

detailed before describing the final design. 

4.1 Overview of Dynamic Circuit Switching Systems 

Dynamic circuit switching systems1 allow inter-node connections to be established 

on-demand during program run-time. A dedicated point-point communication link is 

set-up between the two communicating nodes and is maintained until a message has 

been transferred completely. 

These schemes have the advantage over packet switching methods that no additional 

software is required on each node to manage the passing of the packets and since the 

messages do not pass via intermediate nodes no additional buffering facilities are 

required on the nodes. Under normal circumstances dynamic on-demand circuit 

switching out performs packet switching3. 

4.1.1 Hardware Configurations for Dynamic Link Switching 

To perform inter-node communications on a dynamically reconfigurable architecture 

an application program must be aware of the changing connective state of the network. 

This can be achieved by allowing the application itself to control the switching of links 

between nodes. To accomplish this the nodes send connection requests to a control 
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processor which then programs the required connection on a crossbar switch (See 
Figure 4.1). 

Configuration 
Messages Crossbar Switch 

Nodeol I Nodes II Node� 

Interface II Interface II Interface 

Control 

Control 
Information 

FIGURE 4.1. General structure of a dynamic switching scheme 

The interface from the nodes to the control processor must be efficient and fast in order 

to reduce the message latency (i. e the time interval from when a message is initiated 

until it actually leaves the node). If the message latency is too long then this will reduce 

the benefits of using circuit switching over packet switching. 

Several different mechanisms have been identified for interfacing the nodes to the 

control processor and these are described in the following sections. 

4.1.1.1 Link-pipeline driven reconfiguration 

In this method connection requests are sent via a link pipeline between the working 

nodes and the control processor (See Figure 4.2 on page 100). This requires that the 

worker nodes need to manage the passing of the connection requests which will slow 

down the application processes in the worker nodes. This is not very efficient so 

therefore this system is rarely used. It does have the advantage however that many 

commercial systems are already hardwired in a pipeline. 

4.1.1.2 Memory-driven reconfiguration 

This solution uses a byte-wide parallel bus to connect the local memories of worker 

nodes with that of the control processor (See Figure 4.3 on page 100). This bus is used 

for sending connection requests, acknowledges and link releases. The attention of the 

control processor can be attracted by a worker node by sending a request signal to the 
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Event input or by setting a flag inspected by the control processor. The control 

processor is master of the bus. 

Crossbar Switch 

link 
10 *1 

Worker II Worker Pipeline Worker 
Node1 Node2 Node� 

Control 
Processor 

FIGURE 4.2. Link Pipeline Driven Reconfiguration Control 
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FIGURE 4.3. Memory driven reconfiguration 

The control parallel bus is structurally a good solution as it leaves all the links on the 

nodes free to connect to the crossbar switch allowing the maximum communication 

bandwidth available from the nodes. However the speed of the bus should be at least as 

fast as the links on the nodes to achieve greater efficiency than packet switching. This 

is not the case in existing control bus implementations mainly because they were 

designed for supervision and not for reconfiguration purposes. 
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If a system was designed with a fast parallel bus, however, it would be a good solution. 
The main drawback would be the number of wires. 

4.1.1.3 Serial bus driven reconfiguration 

This solution uses a serial bus to exchange control information between the worker 

nodes and control processor (See Figure 4.4). The write access to the bus is controlled 

by a token which circulates among controllers which interface the node links to the 

bus. There is no master of the bus and therefore each message includes a destination 

address. 

Crossbar Switch 

""" 

140- 

140 

""" links 

Worker Worker 
""" 

Worker 
Node, Node2 Node� 

config. 

Bus Bus 
f Interface 

Bus 
Interface 

H 
Control 

Serial Bus Processor 

FIGURE 4.4. Serial Bus Driven Reconfiguration Control 

Tudruj and Kalinowskit have developed a system of this type using a TRANSBUS6 

controller to act an interface between the worker nodes and the control processor. A 

TRANSBUS is an application specific integrated circuit (ASIC) designed to connect 

transputers together into a LAN (Local Area Network) (See Figure 4.5 on page 102). 

Each transputer is connected to a TRANSBUS controller on one side using one of its 

standard links leaving only three for interprocessor communication. On the other side, 

the TRANSBUS is connected to four lines: 

"a DATA line to transmit the data bytes 

" an ACK line to transmit and receive acknowledges for each transmitted byte 

"2 lines wired as a ring to manage the token-passing 
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Data 
Ack --- 

Token -- ----------------- 

-- Transbuso -- Transbust ---- Transbusn --- 

Transputer Transputerj TransputerJ 

FIGURE 4.5. Interconnecting transputers by the TRANSBUS controller 

The format of a message sent via the serial bus is shown below: - 
destination message data I address length 

The destination address identifies the receiving transputer and the message length is the 

total number of bytes of data sent. A destination address of zero signals a broadcast to 

all the other transputers. 

If a transputer wishes to communicate through the bus, it sends the destination address 

of the message to its TRANSBUS controller. At this point the address is buffered 

waiting for the token. When the token arrives, the address byte is sent to the DATA line 

of the bus and the controller waits for acknowledges from all other controllers. The 

next byte of a message can only be sent after all TRANSBUS controllers on the bus 

have acknowledged the current byte. 

Once an ACK is received from all the other TRANSBUS components an 

acknowledgement is sent to the sending transputer via its link connection to the 

TRANSBUS controller. The sending transputer then sends the remainder of the 

message via the TRANSBUS controller to the receiving transputer. 

The destination address is read and decoded by all TRANSBUS controllers on the bus. 

Only for the addressed transputer (or for all in the case of a broadcast) however is the 

rest of the message received by the controller and transmitted via the transputer link to 

the receiving transputer. 
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Figure 4.6 shows how these TRANSBUS controllers can be used to implement a 
dynamic switching scheme. The serial bus is used for reconfiguration control, however, 

to increase the control communication bandwidth three serial control buses working in 

parallel are employed. 

Crossbar Switch 

TI 000 3 000 es* 
7T 

TB - TB 

Control Bus I 

TB = Transbus 

-1 TB 

Control Bus 2 - ITB 

1ý_L 
Control Bus 3 

FIGURE 4.6. Structure of a single cluster TRANSBUS system 
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Three links of each worker transputer are connected to the crossbar switch which is 

programmed by the control transputer CT2. One link of each worker transputer is 

connected to the TRANSBUS controller, which provides the interface with the control 
bus. 

The control transputer CTI sends and receives information from the three control 
buses. It collects the connection requests, synchronises them and sends acknowledges 

to worker transputers for the connections established by the CT2 transputer. Besides 

configuring the crossbar switch CT2 provides working transputers with program 
loading, collecting computation results and the communication with the host. 

This is an efficient and low message latency system. It does however use one of the 

valuable communication links on the nodes for connection requests. The system would 
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provide greater communication bandwidth if this could be avoided. Also the 
TRANSBUS controllers although efficient are not commercially available 

The novel dynamic-on-demand circuit switched network described in this chapter 

employs some of the same principles as detailed in the previous sections. Connection 

requests are sent via a memory mapped system to the control processor and a token 

passing mechanism is used to select nodes for servicing. Before the final design was 
implemented however two other designs were considered. These are described in the 

following sections. 

4.2 Preliminary Designs 

4.2.1 Interrupt Driven Architecture 

The hardware design of this system is shown in Figure 4.7 on page 105. Here several 

16-1 multiplexers are used to interface the worker nodes to the control processor. The 

address pins on the multiplexers (i. e. the pins which select the input that is selected as 

the output of the multiplexer) are connected to a counter which effectively counts 

through the nodes and if a node requires service then the counter stops and the control 

processor is interrupted. 

The design shown in Figure 4.7 is for a 32 node system. The number of nodes can be 

increased by using more multiplexers. 

There are four sets of two multiplexers: - 

" the Flag_Out multiplexers 

" the Linkln multiplexers 

" the LinkOut multiplexers 

" the Interrupt Acknowledge multiplexers 

Each set can provide a direct connection from the control processor to a node. The 

nodes are numbered from 0-31 and the counter effectively addresses each node one at a 

time (i. e. direct connections are established simultaneously to the Flag_Out, Int Ack, 

Linkln and LinkOut pins on a node) and if a node is requesting service the counter is 

stopped. 
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The outputs of the counter are connected to the address inputs on the multiplexers. 

These address inputs select which input of the sixteen is connected to the output on the 

multiplexer. By connecting DO-D3 on the counter to DO-D3 on the multiplexer this 

effectively cycles through all the inputs on the multiplexer. To select which multiplexer 

of the two in a set is enabled a2 line to 4 line encoder (See Figure 4.8 on page 106) 

enables one of the multiplexers at a time. 
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FIGURE 4.7. Interrupt Driven Design 
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When a node (the source node) wants to send a connection request to the control 
processor it will set it's Flag_Out pin logic true. The outputs of the Flag_Out 

multiplexers are connected to CLKEN* of the counter (enables the counter) and the 
interrupt pin of the control processor. Therefore when a node is being addressed by the 

counter and the Flag-Out pin is logic true (+5V) this will stop the counter (i. e the 
CLKEN* pin will be logic false) and interrupt the control processor. 

For a 64 node 
Enable on multiplexers for 

system nodes 48-63 
- 

LEnable on multiplexers for 
nodes 32-47 - 
Enable on multiplexers for 
nodes 16-31 - 
Enable on multiplexers for 
nodes 0-15 

2-line to 4 line 
decoder 

Y3 
A D4 from counter Y2 
B D5 from counter 

Yl G* Output from Flamm Out multiplexer 
YO 

Function Table 

G* IBAI YO YI Y2 Y3 

H X X ll hI II H 
L L L L H 11 H 

L L H H L H N 
L H L H H L H 
H H H H H 11 L 

FIGURE 4.8. Connections on 2-line to 4-line decoder 

Once the control processor has been interrupted it will send an acknowledge to the 

source node to prompt it to send its connection request. This acknowledge is sent via 

the Interrupt Acknowledge multiplexers. The interrupt acknowledge line could be 

connected to the FLAG_IN input on the requesting node. 

The node sends its connection request via the Linkln and LinkOut multiplexers. The 

output from these multiplexers is connected to a C012 which is interfaced to the 

control processor. 

When the control processor has received the connection request it decides whether the 

connection required is available by looking up a table stored in memory. If available 

the connection is made and a message sent to the source node indicating this. The 

source node then transfers data to the destination node via the crossbar switch. The 

counter is then restarted by the source node by pulling its FLAG-OUT pin logic false. 
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This design was however rejected mainly because of lack of scalability. As soon as you 

add more nodes to the system the number of multiplexers requires to be increased and 

the counter extended. For a large number of processors the system would become 

impractical. Also the set-up uses one of the links on the nodes to send connection 

requests making poor use of the total communication bandwidth available from the 

nodes. 

4.2.2 Memory Mapped Architecture using the COM20020 Network 
Controller 

This design uses COM20020 Universal Local Area Network Controllers? to interface 

the nodes to the control processor (See Figure 4.9). It is similar to the design using the 

TRANSBUS controller described previously in that a token passing mechanism is used 

to restrict access to the serial bus connected to the control processor. However in this 

case the network controller is memory mapped to the nodes instead of using one of the 

links on the nodes to send the connection requests. 

FIGURE 4.9. CON, 120020 Interface to Control Processor 

The COM20020 is a special purpose communications controller for networking 

microcontrollers and intelligent peripherals using an ARCnet protocol. It is interfaced 
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to nodes via an 8-bit data bus, an address bus and control bus (See Figure 4.10). Data is 

transmitted via a serial bus that supports data rates from 156.25 Kbps to 5.0 Mbps. 
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AO/MUX* I= 

8051 

L HQ1 

FIGURE 4.10. Multiplexed, 8051 - like bus interface with CO14120020 

If a node wants to transmit data it simply loads a data packet and its destination ID into 

the COM20020 RAM buffer, and issues a command to enable the transmitter. When 

the COM20020 next receives the token it first verifies that the receiving node is ready, 

and if so it transmits the data packet followed by a 16-bit CRC (cyclical redundancy 

checksum). If the receiving node is not ready then the token is simply passed on. 

The token is passed between the controllers by transmitting an Invitation to Transmit 

signal from controller to controller. This is given by the following sequence of bits: - 

" An ALERT BURST (6 unit intervals of logic 1) 

" An EOT (End of Transmission: ASCII code 0411) 

" Two (repeated) DID (Destination ID) characters 

By interfacing a COM20020 to all the nodes in a network and to a control processor it 

is possible to send connection requests to the control processor via a memory mapped 
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system. When a node wants to send a connection a request it simply loads the message 
into the COM20020 along with the destination ID of the control processor. 

Although this architecture leaves all of the communication links on the nodes free for 

inter-node communication its main drawback is the message latency of the COM20020 

(-100 µs). This does not provide very efficient communication with the control 

processor. In order to achieve greater performance benefits over packet switching 

schemes using INMOS OSLinks, a faster link to the control processor is required. 

The best features of the previous two designs such as the token passing protocol and 
the fast Inmos OSLink to the control processor were used in the final design. 

4.3 Novel dynamic `on-demand' circuit switched network 
This combines an INMOS OSLink, memory mapping and a token passing mechanism 

to communicate with the control processor8 

The same principles as the TRANSBUS system are employed except that several 

commonly available integrated circuits (ICs) are utilised to interface the nodes with the 

control processor. Connection requests from the nodes are sent via a memory mapped 

system which leaves all the links on the nodes free for interprocessor communication. 
The nodes are not restricted to transputers, the system can be used with any processor 

which provides an external memory interface. 

4.3.1 Basic Procedure 

When a node (the source node) wants to communicate with another node (the 

destination node) via a crossbar switch, it writes its connection request (a three byte 

packet) into a FIFO (First In First Out Memory), which stores the request until it is 

honoured. To select nodes for servicing a token passing protocol is used. 

The token circulates between the nodes and when a node receives the token and there is 

a request pending, the request is passed out of the FIFO to the control processor, via an 

INMOS OSLink. The control processor then decides whether the required connection 

is available and if so makes the connection. A message indicating success or failure to 
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make the connection is sent to the source node. In this way the control processor 

processes connection requests from the nodes in a sequential manner. 

4.3.2 Hardware subsystem 
A diagram of the hardware for one node is illustrated in Figure 4.11. A node requiring 

service writes its connection request into the First In First Out Memory (FIFO), which 
is mapped into the nodes memory address space. This allows the node to continue with 

other tasks while its connection request remains stored in the FIFO until honoured. 

When a node receives the token, its request is clocked out of the FIFO into a COI I Link 

Adapter (explained later). The data is then transferred via the INMOS OSLink to the 

control processor which programs the crossbar switch. Access to the link is gated by a 

buffer ('125) which is only enabled when the node has the token and there is a request 

pending. 

CROSSBAR SWITCH 
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FIFO 

Node CLOCKING 

TOKEN O --Token Passing 
HANDLER IN --Bus 

2 1/8 

C012 

245' 

OCTAL BUS fFO _.. 
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8 
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L-Y '125 
CONTROL 

PROCESSOR 
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CO 12 
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To other nodes 

FIGURE 4.11. Dynamic Interconnection Network (1 node) 
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There are therefore four basic elements to the design: - 

" token passing 

" fifo clocking 

" hardware interface to control processor 

" software on the control processor 

These will be described individually along with the test hardware/software used to 

verify the principles 

4.3.3 Token Passing 

4.3.3.1 State Machines 

The token passing is achieved by a finite state machine (SM) implemented in PLDs. A 

state machine has a set of states and a set of transition rules for moving between the 

states at each clock edge (the clock is derived externally). The transition rules depend 

on the both the present state and on the particular combination of input levels present at 

the next clock edge. 

A diagram of a state machine is shown in Figure 4.12 on page 112. The information 

stored in the memory section, as well as the inputs to the combinatorial logic (to, It, 

....., 1m) is required for proper operation of the circuit. At any given time, the memory is 

in a state called the present state and will advance to a next state on a clock pulse as 

determined by conditions on the excitation lines (Yo, Yt, ....., Y, ). The present state of 

the memory is represented by the state variables (Qo, Qt, ....., Qm). These state 

variables, along with the inputs (Io, It, ....., 
Im), determine the system outputs (Oo, Ot, 

....., Urn) 

Not all state machines have input and output variables as described. Sometimes the 

state variables are also the outputs (i. e. the state variables bypass the combinatorial 
logic). 

Since PLDs contain combinatorial logic and memory they are ideal for implementing 

state machines. The programming language CUPL (as explained in Chapter 2) contains 

special instructions for state machine design. These will be explained in the course of 

describing the token passing using a finite state machine. 
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4.3.3.2 Token passing using a finite state machine implemented in PLDs 

The token is effectively a bit (binary `I') which passes between the PLDs and each 

node has a PLD associated with it (See Figure 4.13). The token passing bus consists of 

two lines: one which passes the token and one which acknowledges the passing of the 

token. The state variables are TokenOut and AckOut, and the inputs are Tokenln, 

Ackln, and HoldToken. The clock used for the token passing is 8MHz. 

FIGURE 4.13. Token Passing 

If a node receives the token and there is a request packet in the FIFO, then the token 

must be retained until the FIFO has been emptied and the node no longer requires the 
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token. This is achieved by the HoldToken signal, which is generated by using a 

combination of the Empty_Flag* (EF*) signal from the FIFO (logic false (+5V) when 

the FIFO contains bytes), and a D-type flip-flop (See Figure 4.14). 

The Q-output of the flip-flop is used as the HoldToken signal. The EF* signal clocks 

the flip-flop: therefore when EF* becomes logic false (+5V) indicating data is in the 

FIFO, the level at the D-input (logic high (+5V)) is transferred to the Q-output of the 

flip-flop. To release the token, the node pulls the CLR* signal on the flip-flop logic low 

(0V) for a short period, which clears the Q-output back to logic low releasing the 

token. 
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I (0V) 

D (+5V) 
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(NoldToken) Q (0V) 
CLR (-'- (+5V) 

(OV) 

FIGURE 4.14. Generation of IIoldToken signal 

A state diagram (diagram which represents the mechanism of a state machine) for the 

token passing state machine is shown in Figure 4.15 on page 114. The SM remains in 

state zero (SO) until the token arrives (i. e Tokenln = 1) and then on the next clock edge 

proceeds to state one (Si) which acknowledges the arrival of the token by setting 

AckOut true. If HoldToken is true then the state machine remains in state one (Si), 

otherwise on the next clock edge it proceeds to state two (S2) which passes the token 

on by setting TokenOut logic true. 
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The SM does not go back to state zero until the passing of the token has been 

acknowledged (AckIn = 1). To inject the token into the system one state machine is 

programmed with the initial state holding TokenOut true (i. e the initial state is S2). 

4.3.3.3 Token passing test circuit 

To verify the algorithm for the token passing a test circuit was built (See Figure 4.16 on 

page 115). This contained three PLDs (GALI6V8s) each programmed with the token 

passing state machine. Light Emitting Diodes (LEDs) were attached to the Ackin pins 

in order to see the token as it passes round the circuit. To enable the flashing of the 

LED to be seen the state machine was clocked manually by toggling a switch. The 

switch is debounced by an S-R flip-flop. A photograph of the test circuit is shown in 

Appendix D, Figure 3 on page 305. 
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AckOut =0 TokenIn =0 

TokenOut =0 

Tokenln= I 

S1 
AckOut =1 

TokenOut =0 

HoldToken =I 

0= logic `false' 

I= logic `true' 

FIGURE 4.15. State Diagram for token passing 

AckIn =0 

The state machines were programmed using the CUPL language. The source code for 

the token passing state machine is shown in Figure 4.17 on page 116 and the source 

code for the state machine that injects the token is shown in Figure 4.18 on page 117. 
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FIGURE 4.16. Token passing test circuit 
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/**INPUTS**/ 

PIN 1 =CLK; 
PIN 2 =TOKENIN; 
PIN 3 =IACKIN; 
PIN 4 =RESET; 
PIN 5 =HOLDTOKEN; 
PIN 11 =10E; 

/**OUTPUTS**/ 

PIN 14 =TOKENOUT; 
PIN 15 =! ACKOUT; 

FIELD STATEBIT =[TOKENOUT, ACKOUT); 

$DEFINE SO 'b'00 
$DEFINE Si 'b'Ol 
$DEFINE S2 'b'10 

/**DEFINITIONS**/ 

NOTOKEN = ITOKENIN & ! RESET; 
TOKEN = TOKENIN & ! RESET; 
TOKENPASSED = ACKIN & ! RESET; 
TOKENNOTPASSED = ! ACKIN & ! RESET; 

NOTHOLD = ! HOLDTOKEN & ! RESET; 
HOLD = HOLDTOKEN & ! RESET; 
CLEAR = RESET; 

SEQUENCE STATEBIT[ 

PRESENT SO IF NOTOKEN NEXT SO; /*TOKEN NOT ARRIVED*/ 
IF TOKEN NEXT Si; /*TOKEN ARRIVED*/ 
IF CLEAR NEXT SO; /*RESET*/ 

PRESENT Si IF NOTHOLD NEXT S2; /*PASS TOKEN*/ 
IF HOLD NEXT Si; /*HOLD TOKEN*/ 
IF CLEAR NEXT SO; /*RESET*/ 

PRESENT S2 IF TOKENPASSED NEXT SO; /*TOKEN PASSED*/ 
IF TOKENNOTPASSED NEXT S2; /*TOKEN NOT PASSED*/ 
IF TOKEN NEXT SO; /*POWER-UP STATE */ 
IF CLEAR NEXT SO; /*RESET*/ 

FIGURE 4.17. CUPL source code for token passing 
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/**INPUTS**/ 

PIN 1- CLK; 
PIN 2 TOKENIN; 
PIN 3 ! ACKIN; 
PIN 4= RESET; 
PIN 5= KEEPTOKEN; 
PIN 11 ! OE; 
/**OUTPUTS**/ 

PIN 14 = TOKENOUT; 
PIN 15 = ! ACKOUT; 
FIELD STATEBIT= [TOKENOUT, ACKOUTI; 
$DEFINE SO 'b'10 
$DEFINE Si 'b'00 
$DEFINE S2 'b'O1 

/**DEFINITIONS**/ 

SEQUENCE STATEBIT( 
NOTOKEN = ! TOKENIN & ! RESET; 
TOKEN = TOKENIN & ! RESET; 
TOKENPASSED= ACKIN & ! RESET; 
TOKENNOTPASSED= ! ACKIN & ! RESET; 
NOTHOLD = ! HOLDTOKEN & ! RESET! 
HOLD = HOLDTOKEN & ! RESET; 
CLEAR = RESET; 

PRESENT SO IF TOKENPASSED NEXT $1; /*TOKEN PASSED*/ 
IF TOKENNOTPASSED NEXT SO; /*TOKEN NOT PASSED*/ 
IF TOKEN NEXT SO; 
IF CLEAR NEXT SO; /*RESET*/ 

PRESENT Si IF NOTOKEN NEXT Si; /*TOKEN NOT ARRIVED*/ 
IF TOKEN NEXT S2; /*TOKEN ARRIVED*/ 
IF CLEAR NEXT SO; /*RESET*/ 

PRESENT S2 IF NOTHOLD NEXT S2; /*PASS TOKEN*/ 
IF HOLD NEXT S2; /*HOLD TOKEN*/ 

} 
IF CLEAR NEXT SO; /*RESET*/ 

FIGURE 4.18. CUPL source code for node which injects token in to system 

The syntax for the state machine is fairly self explanatory. The state variables (also the 

outputs) are defined using the FIELD statement and the three states (SO, S1 and S2) of 

the state variables are defined using the $DEFINE statement. A binary (`b') 0 in the 

$DEFINE statement indicates the state variable is logic false and a binary I indicates 

the state variable is logic taue (independent of whether it was defined active high or low 

in the pin assignments). 
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The "DEFINITIONS" define the different combinations on the input pins and the 
SEQUENCE statements actually run the state machine. For each state (S0, S1 and S2) 

the next state is determined by the levels on the input pins at the next clock edge. By 
following through the SEQUENCE statements and comparing them with the state 
diagram it is reasonably simple to see how the state machine functions. 

The HoldToken signal was generated placing a jumper between the signal and ground 
(by default the signal is pulled logic high). This was obviously just for test purposes. 

4.3.4 FIFO Access 

4.3.4.1 C011 

The connection request in the FIFO must be clocked out a byte at a time to the CO11 

and then sent to the control processor. A CO11 is similar to a C012 in that it converts a 
bi-directional serial link into parallel data streams. The link adapter can operate in one 

of two modes. 

In Mode I the IMS COI 1 converts between a link and two independent fully 

handshaken byte-wide interfaces, one input and one output. It can be used by a 

peripheral device to communicate with a transputer, an INMOS peripheral processor, 

or another link adapter, or it can provide programmable input and output pins for a 

transputer. 

When in Mode 2 the COI l provides an interface between an INMOS serial link and a 

microprocessor system bus. In fact a C011 behaves in exactly the same way as a C012 

when in Mode 2. However, the COI 1 used in the dynamic on-demand circuit switched 

network is in Mode 1 (See Figure 4.19). 

The eight bit parallel input port I0-7 can be read by a transputer family device via the 

serial link. IValid and lAck provide a simple two-wire handshake for this port. When 

data is valid on 10-7, IValid is taken high by the peripheral device to commence the 

handshake. The link adapter transmits data presented on 10-7 out through the serial 

link. 
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FIGURE 4.19. IMS Coll Mode 1 block diagram 
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IAck 
[Valid 

QO-Q7 

QAck 
QValid 

After the data byte transmission has been completed and an acknowledge packet is 

received on the input link, the IMS CO11 sets IAck high. To complete the handshake, 

the peripheral device must return IValid low. The link adaptor will then set IAck low. 

The eight bit parallel output port QO-7 can be written to by a transputer family device 

via the serial link. Qvalid and QAck provide a simple two-wire handshake for this 

port. 

A data packet received on the input link is transferred onto QO-Q7; the link adapter 

then takes QValid high to initiate the handshake. After reading the data from QO-Q7, 

the peripheral device sets QAck high. The IMS CO11 will then send an 

acknowledgement packet out of the serial link to indicate a completed transaction and 

set QValid low to complete the handshake. 

The rest of the signals on the CO11 are the same as a C012 apart from the SeparatelQ 

signal. This is used to set the CO11 to the different modes (Mode 1 and Mode 2). Mode 

1 is selected by connecting SeparatelQ to VDD (sets the LinkSpeed to 1OMbits/sec) 

or to Clockln (20Mbits/sec). 

In the circuit switching network it is the input port (10-7) that is connected to the FIFO 

and the output port (QO-7) is connected to a buffer. 
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4.3.4.2 FIFO clocking state machine 

The clocking of the data from the FIFO to the C011 is achieved by a finite state 

machine (See Figure 4.20). 

The state machine controls the RD* (read) signal on the FIFO and the IAck and IValid 

signals on the C011. Pulling the RD* signal low transfers a byte out of the FIFO to the 
COI 1 parallel port. In order to transmit the byte from the parallel port to the INMOS 

OSLink, IValid is pulled high. To indicate the byte has been transferred successfully 
IAck is pulled high by the COI 1 and then IValid returned low by the SM. 

The Empty_Flag* on the FIFO signals to the state machine when data is present in the 

FIFO, and an output called TokenArrived from the token passing state machine 
indicates when the token is present. The state machine waits at SO while the FIFO is 

empty or the token has not arrived. When the token arrives and there is data in the 

FIFO the SM then proceeds to S1 on the next clock edge and this initiates a read cycle 

on the FIFO. On the next clock edge the SM then unconditionally jumps to S2 which 

takes IValid true and enables the buffer ('125) that restricts access to the serial bus. 

The SM then waits for lAck to become true, indicating the transfer of a byte to the 

INMOS OSLink, before proceeding back to SO. 

TokenArrived =0 

SO 
IValid =O 

EnableBuffer= 0 
ReadFifo= 0 

Empty-flag =I 

TokenArrived =I 
Empty-flag =0 

/ sI 
IValid =0 

EnableBuffer = 
ReadFifo =1 

0= logic 'false' 
I= logic 'true' 

FIGURE 4.20. State Diagram for FIFO clocking 

lAck =I 

S2 
IValid =1 

EnableBuffer =I 
, 

ReadFifo =I, 

IAck=0 
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4.3.4.3 Fifo clocking test Circuit 

To test the state machine for the FIFO clocking a test circuit was built on a PC card 

(See Figure 4.21). A byte (or bytes) is written from the PC into the FIFO and then the 

state machine clocks the byte (or bytes) out of the FIFO to the COI 1. The message is 

then sent from the COI 1 via the '125 buffer to the DB9 connector which is connected to 

a dual link adapter board (as described in Chapter 3) plugged into the same PC. A 

photograph of the circuit board is shown in Appendix D, Figure 4 on page 305. 

244' FIFO coil 
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AI EnabIcBuffer 
AO 2G* 

AEN* 
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FIGURE 4.21. Fifo clocking test circuit 
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The message is received by the dual link adapter board and it is then compared with the 
message transmitted to the FIFO to verify that the message is being transferred 

correctly. 

A PAL (P22V I OL) is used for the FIFO address decoding (CUPL source code for the 
PAL is shown in Figure 4.22). 

/**INPUTS**/ 
PIN 1= PCLK; 
PIN 2= A9; 
PIN 3= A8; 
PIN 4= A7; 
PIN 5= A6; 
PIN 6= A5; 
PIN 7= A4; 
PIN 8= A3; 
PIN 9= A2; 
PIN 10 = Al; 
PIN 11 = A0; 
PIN 13 = ! NOTAEN; 
PIN 14 = ! NOTIOW; 
PIN 15 = RESETDRV; 
PIN 16 = DO; 

/**OUTPUTS**/ 

PIN 17 = ! EN; 
PIN 18 = ! WRITEFIFO; 
PIN 19 = SYSRESET; 

PIN 20 = LATCHRESET; 
PIN 21 = FIFORESET; 

/**RESETS AND PRESETS**/ 

LATCHRESET. AR = 'b'0; 
LATCHRESET. SP = 'b'0; 

/**DEFINITIONS**/ 

FIELD ADDRESS = [A9.. A0]; 

/**INTERMEDIATE VARIABLES**/ 

FIFO = ADDRESS: 'h'[100] & NOTAEN; 
WRITERESET = ADDRESS: (101] & NOTAEN & NOTIOW; 

WRITEFIFO = NOTIOW & FIFO & ! RESETDRV; 

EN = WRITEFIFO; 
LATCHRESET. d = DO & WRITERESET # LATCHRESET & ! WRITERESET; 
SYSRESET = RESETDRV # LATCHRESET; 

FIFORESET = SYSRESET; 

FIGURE 4.22. CUPL source code for P22V10L in FIFO clocking circuit 
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In order to write data into the FIFO the PC writes to address H#100. This is similar to 

the address decoding for the dual link adapter board in Chapter 3. Also similar is the 

system reset which again allows the user to reset the board by writing a binary `1' to 

address H#101. The board is also reset during power on as SYSRESET is logic true 

when RESETDRV (the PCs system reset) is logic true. 

The CUPL source code for the FIFO clocking is shown in Figure 4.23 on page 124. 

Again by comparing this code with the state diagram for the FIFO clocking it should be 

clear how the code functions. The main difference between the code and state diagram 

is that in the code there is also a third state (S3). This is required as the PAL will power 

up in this state and needs to be reset to state zero (SO). Also the TokenArrived signal 

from the token passing state machine is not required as it is only the FIFO clocking that 

is being tested. 

4.3.5 Hardware Interface to control processor 

This circuit contains the control processor (an Analog devices ADSP-2105), two 

C012s, an EPROM and a PAL (See Figure 4.24 on page 125). The serial link on one of 

the C012s is connected to the Inmos OSLink connected to the nodes and the other 

C012 is connected to the crossbar switch. The control processor receives messages 

from the nodes' via one C012 and then programs the crossbar switch via the other 

C012. A photograph of the circuit board is shown in Appendix D, Figure 5 on page 

306. 

4.3.5.1 ADSP-2105 

The ADSP-2105 is a 12MHz microcomputer suitable for high-speed numeric 

processing applications"n. It contains 1K words of on-chip program memory RAM 

and 512 words of on-chip data memory RAM (i. e Harvard Architecture). The internal 

program memory can be loaded from an EPROM (i. e. the contents of the EPROM are 

loaded into program memory). 
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/**INPUTS**/ 

PIN 1 
PIN 2 
PIN 3 
PIN 5 
PIN 11 

/**OUTPUTS**/ 
PIN 12 
PIN 13 
PIN 14 

=CLK; 
=IACK; 
=! EF; 

=CLEAR; 
=! OE; 

=IVALID; 
=! ENABLBUFFER; 

=! READFIFO; 

FIELD STATEBIT=(IVALID, ENABLEBUFFER, READFIFOJ; 

$DEFINE SO 'b' 000 
$DEFINE Si 'b' 001 
$DEFINE S2 'b' 111 
$DEFINE S3 'b' 100 

/**DEFINITIONS**/ 

FIFOEMPTY =EF & ! CLEAR; 
FIFONOTEMPTY =IEF & ! CLEAR; 
DATASENT =IACK & ! CLEAR; 

DATANOTSENT =! IACK & ! CLEAR; 

RESET =CLEAR; 

SEQUENCE STATEBIT( 

PRESENT SO IF FIFOEMPTY NEXT SO; 

IF FIFONOTEMPTY NEXT Si; 

IF RESET NEXT SO; 

PRESENT Si IF RESET NEXT SO; 
IF FIFOEMPTY NEXT S2; 
IF FIFONOTEMPTY NEXT S2; 

PRESENT S2 IF DATANOTSENT NEXT S2; 
IF DATASENT NEXT SO; 

IF RESET NEXT SO; 

PRESENT S3 NEXT SO; 

} 

FIGURE 4.23. CUPL code for FIFO clocking 
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FIGURE 4.24. Hardware Interface to Control Processor 
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The core architecture of the ADSP-2105 consists of the following elements: 

" Arithmetic-Logic Unit (ALU) 

" Multiplier-Accumulator (MAC) 

" Barrel Shifter 

" Two Data Address Generators (DAG) 

" Program Sequencer 

" Program Memory Address (PMA) Bus 

" Program Memory Data (PMD) Bus 

" Data Memory Address (DMA) Bus 

" Data Memory Data (DMD) Bus 

" Result (R) Bus 

Figure 4.25 on page 127 shows a block diagram of this core internal architecture 

The computational units process 16-bit data directly and have provision to support 

multiprecision computations. Table 4.1. shows the operations performed by each of the 

computational units. 

Computational Unit Operations Supported 

ALU Arithmetic and Logic (Division Primitives also) 
MAC Single-cycle multiply, multiply/add and multiply/subtract 
Shifter Logical and arithmetic shifts, normalisation, denormalisation and 

derive exponent 
TABLE 4.1. Operations supported by Computational Units 

Instruction addresses are supplied to the program memory from the program sequencer. 

The sequencer is driven by the Instruction Register which holds the currently executing 

instruction. Instructions are fetched, loaded into the instruction register, and decoded 

during one processor cycle; and executed during the following cycle while the next 

instruction is prefetched. 

The data address generators (DAGs) handle address pointer up-dates. Each DAG 

maintains four address pointers. Whenever the pointer is used to access data (indirect 

addressing), it is post-modified by the value of a specified modify register. A length 

value may be associated with each pointer to implement automatic modulo addressing 

for circular buffers. The two DAGs differ: DAG I only generates data memory 

addresses, but provides an optional bit-reversal capability; DAG2 can generate both 

data memory and program memory addresses, but has no bit-reversal capability. 
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Data Data 
Address Address 
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16 DMD I3US 

INPUT REGS IIII INPUT REGS IIII INPUT REGS 
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OUTPUT REGS K ;: J III OUTPUT REGS-k III OUTPUT REGS 

16RBUS 

FIGURE 4.25. Core Architecture of ADSP-2105 

Five internal buses support the internal components: The PMA and DMA buses are 

used internally for the addresses associated with Program and Data Memory. The 

Program Memory Data (PMD) and Data Memory Data (DMD) buses are used for the 
data associated with the memory spaces. These two pairs of buses are multiplexed off 

chip to the external address and data buses. The BMS* (Boot Memory Select), 

DMS*(Data Memory Select) and PMS* (Program Memory Select) signals (pins) select 

the different address spaces. The R bus is an internal bus which transfers intermediate 

results directly between the various computational sections. 

The contents of any register in the processor can be transferred to any other register or 
to any external data memory location in a single cycle via the DMD bus. The data 

memory address comes from two sources: an absolute value specified in the instruction 
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code (direct addressing) or the output of a data address generator (indirect addressing). 
Only indirect addressing is supported for data fetches from program memory. 

Program memory can store both instructions and data, permitting the ADSP-2105 to 
fetch two operands in a single cycle, one from program memory and one from data 

memory. The ADSP-2105 can fetch an operand from on-board program memory and 
the next instruction in the same cycle. 

The ADSP-2105 contains many registers. Some of these store values; i. e AXO stores an 
ALU operand, 14 stores a DAG2 pointer. Other registers consist of control bits and 
fields, or status flags. For example, ASTAT contains status flags from arithmetic 

operations, and fields in DWAIT control the numbers of wait states for different zones 

of data memory. The purpose of each of the registers will be explained as required 

whilst describing the software developed for the ADSP-2105. 

The instruction set provides flexible data moves and multifunction (one or two data 

moves with a computation) instructions. Every instruction can be executed in a single 

processor cycle. The ADSP-2105 assembly language uses an algebraic syntax for ease 

of coding and readability. The details of the assembler will be described when the 

software for the switching network is explained. 

The ADSP-2105 is supported by a complete set of tools for software and hardware 

development. The System Builder provides a high-level method for defining the 

architecture of systems under development. The Assembler produces object code and 

the Linker combines object code modules and library calls into an executable file. To 

aid in hardware and software debugging of ADSP-2105 systems an interactive 

instruction level simulator is provided. To create a PROM burner compatible file a 

PROM splitter is used. 

4.3.5.2 Interface between ADSP-2105 and EPROM 

The ADSP-2105 in the switching network is booted from an EEPROM. The boot 

memory space consists of an external 32K by 8 space, divided into eight separate 4K 

by 8 pages. Boot loading from page 0 after RESET* is initiated automatically if the 

MMAP pin is grounded. 

128 



Figure 4.24 on page 125 shows the interface between the ADSP-2105 and the 
EEPROM (28F256). The 28F256 is an 32K by 8 electrically erasable PROM. When 

the CE* and OE* pins are pulled logic low and WF* is logic high, the data stored at the 

memory location determined by the address pins is asserted on the outputs. The outputs 
are put in the high impedance state whenever CE* or OE* is high. 

To initiate a programming cycle a low pulse is applied to the WF* or CE* input with 
CE* or WF* low (respectively) and OE* high. The address is latched on the falling 

edge of CE* or WF*, whichever occurs last. The data is latched by the first rising edge 

of CE* or WF*. Once a byte write has been started it will automatically time itself to 

completion. During a write cycle a supervoltage of 13V is applied to the Vpp pin. 

The 28F256 is interfaced to the ADSP-2105 via the BMS*, D0-D7 and A0-A14 lines. 

The BMS* signal (active low) is used to select the boot memory interface and therefore 
this pin is attached the OE* and CE* pins on the 28F256; both these pins require to be 

low when reading from the EEPROM. The WF* pin is pulled logic high permanently 

as the 28F256 is only read from the ADSP-2105 and not written to. 

Pins DO-D7 on the 28F256 are connected to pins D8-D15 on the ADSP-2105 as these 

are the pins used for 8-bit data on the microcontroller. The address lines between the 

two chips are connected as normal except for A14 which is connected to D22 on the 
ADSP-2105. This is as in order to accommodate up to eight pages of boot memory, the 

two MSBs of the data bus are used in the boot memory interface as the two MSBs of 

the boot address space. 

The VP1, pin used to apply the supervoltage to program the device is grounded when in 

circuit. 

4.3.5.3 Interface between ADSP-2105 and C012s 

The ADSP-2105 is interfaced to two C012s; one connected to the nodes and the other 

to the C004 crossbar switch. A PAL (P22V I OL) is used to address the two C012s. The 

CUPL source for the P22V10 is shown in Figure 4.26 on page 130. 
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Pin 1 
Pin 2 
Pin 3 
Pin 4 
Pin 5 
Pin (6.. 11] 
Pin [13.. 18] 

PCLK; 
! NOTDMS; 
I NOTWR; 
INOTRD; 
! NOTRESET; 

[A2.. A7]; 
[A8.. A13]; 

/*PROCESSOR CLOCK */ 
/*DATA MEMORY SELECT SIGNAL */ 
/*WRITE SIGNAL */ 
/*READ SIGNAL 
/*RESET SIGNAL FROM LKADAP BOARD 
/*ADDRESS LINES*/ 
/* ADRESS LINES*/ 

/**Outputs**/ 

Pin 19 
Pin 20 
Pin 21 
Pin 22 
Pin 23 

= ! NOTWRITE; /*NOTWRITE ON C012S*/ 
_ ! NOTCSLKADPO; /*SELECT LINK ADAPTER 0*/ 
= ! NOTCSLKADP1; /*SELECT LINK ADAPTER 1*/ 
= RESET; /*RESET*/ 

= ! NOTSTATWR; /*DELAY WRITE SIGNAL*/ 

/** Declarations and Intermediate Variable Definitions **/ 

FIELD ADDRESS 
LKADP_1 
LKADP_O 
NOTSTATWR 
READLKADP1 
READLKADPO 
WRITELKADP1 
WRITELKADPO 

(A13.. A2J; 
ADDRESS: (4]; 
ADDRESS: (8); 

NOTWR; 
LKADP_1 & NOTRD & NOTDMS; 
LKADP_O & NOTRD & NOTDMS; 
LKADP_1 & NOTWR & NOTDMS; 
LKADP_O & NOTWR & NOTDMS; 

/** Logic Equations **/ 

NOTWRITE = NOTWR # NOTSTATWR; 
NOTCSLKADPO = READLKADPO # (WRITELKADPO & NOTSTATWR); 
NOTCSLKADP1 = READLKADPI # (WRITELKADPI & NOTSTATWR); 
RESET = NOTRESET; 

FIGURE 4.26. CUPL source code for P22V10 

This interface is very similar to the interface to the PC ISA Bus used in the Dual Link 

Adapter board described in Chapter 3. The inputs to the P22V 10 are CLKOUT, 

DMS*, WR*, RD*, A2-A13 from the DSP2105 and RESET* which is from a link 

adapter board. The outputs are the RnotW, NotCs* and Reset signals for the C012s. 

The DMS* strobe is used to select the data memory and the WR* and RD* signals are 

the write and read signals respectively. The intermediate variables LKADP_1 and 
LKADP_O define the addresses of the C012s. Like the situation in the dual link 

adapter board the NotIOW signal has to be delayed to create the NotCS* signals and 

therefore the NotStatWr. d signal is created. 
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The intermediate variables and logic equations are very similar to those described for 
the dual link adapter board. The main difference is that when reading and writing to the 
C012s the DMS* signal must also be true (as well as the RD* or WR* strobes and 
address). To reset the C012s the ! NOTRESET signal is inverted as the C012 reset is 

active high. 

4.3.5.4 Other connections to ADSP-2105 

All the inputs to the ADSP-2105 that are not used are tied to +5V. An 8MHz crystal 

oscillator is connected between the CLKIN and XTAL. To allow the C012 connected 

to the nodes to interrupt the ADSP-2105 when a byte has arrived the Outputlnt and 
Inputlnt pins on the C012 are connected via an OR gate to the IRQ2 (External 

Interrupt Request #2) input on the ADSP-2105. 

4.3.5.5 Testing of Circuit 

To test the booting from EEPROM code was developed which flashed an LED 

connected to the FLAG_OUT pin on the ADSP-2105. The programmable interval 

timer which can generate periodic interrupts was used as a signal to turn the light off 

and on. 

The system specification source file (. SYS file)" which describes the target hardware 

is shown in Figure 4.27 on page 132. This SYS file is processed by the system builder 

to generate an architecture description file (. ACH file). The ACH file is interpreted by 

the linker in order to place relocatable code and data fragments in memory. 

The SYSTEM directive at the start of the code assigns the name control to the 

architecture description and marks the start of the file. To identify the processor type 

the statement . ADSP-2105 is required. The MMAP directive specifies the state of the 

MMAP pin on the ADSP-2105 device. Defining MMAP as 0 indicates that boot 

memory is to be loaded into the chip's internal program memory beginning at address 

H#0000. 
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. SYSTEM control; 

. ADSP2105; 

. MMAPO; 

. SEG/BOOT=O/ROM boot_meml[1024]; 

. SEG/RAM/ABS=H#3800/DM/DATA int_dm[512]; 

. SEG/RAM/ABS=O/PM/DATA/CODE int-pm[1024]; 

. ENDSYS; 

FIGURE 4.27.. SYS file for flashing light 

The SEG directives declare the system memory segments and their characteristics. 

Memory segments can be declared in any order. In this case it is only the boot memory 

space (boot_meml), the internal program memory (int_pm) and the internal data 

memory (int d» i) that are declared. 

To identify the iK-word segment for one page of boot memory the boot_meml 

segment is declared. The int dm declaration identifies 512 bytes of on-chip data 

memory starting at absolute address H#3800. The memory space from H#0-H#3800 is 

reserved for external RAM and from H#3A00 to H#3FFF is reserved for control 

registers for the system, timer, wait state configuration and serial port operations. 

The int^pm declaration identifies the 1K of program memory starting at absolute 

address 0 which can store both code and data. There is no external data or program 

memory in the circuit 

To mark the end of the file the ENDSYS directive is used. The system builder stops 

processing when it encounters the directive. 

The assembler source code (. ASP file)" which flashes the LED is illustrated in 

Figure 4.28 on page 133. To mark the beginning of the program module and define the 

module name (flash-led) the MODULE directive is used. The . INCLUDE directive is 

used to include another source file in the file being assembled. The file included in this 

case (DEF2105. h) initialises the memory mapped control registers and gives them 

symbolic names (i. e. Sys_Ctrl_Reg for the System Control Register). This makes 

manipulation of the registers simpler in the program. 
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. MODULE/RAM/BOOT=Oflash_led; 

. INCLUDE<E: \ADI_DSP\INCLUDE\DEF2105. h>; 

JUMP restarter; NOP; NOP; NOP; 
RTI; NOP; NOP; NOP; 
NOP; NOP; NOP; NOP; 
NOP; NOP; NOP; NOP; 
NOP; NOP; NOP; NOP; 
JUMP flash; NOP; NOP; NOP; 

restarter: CALL initialisations; 
wai t_loop : IDLE; 

JUMP wait_loop; 

initialisations: AXO=H#FFFF; 
DM(Tperiod_Reg)=AXO; (Set counter) 
DM(Tcount_Reg)=AXO; 
AXO=H#1B; 
DM(Tscale_Reg)=AXO; 
IMASK=1; 

ENA TIMER; 
RTS; 

flash: TOGGLE FLAG_OUT; 
RTI; 

. ENDMOD; 

FIGURE 4.28. Source code for flash. dsp 

The first 28 addresses in program memory contain the restart and interrupt vectors 
(0x0000 - Ox001B). The 29th PM address (Ox001C) holds the first program instruction. 

Since flash_led is declared at absolute address zero, the first 28 instructions are placed 
in the interrupt vector locations. As flash_led uses only the restart (0x0000) vector and 

the TIMER interrupt the remaining instructions are simply returns (RTI) or non 

operations (NOP). 

The routine initialisations initialises the timer. It is the period register (Tperiod_Reg) 

that holds the period of the interrupt in cycles and when the timer is enabled the count 

register(Tcount_Reg) is decremented as often as once every instruction cycle. When 

the counter reaches zero an interrupt is generated. Tcount_Reg is then reloaded from 

Tperiod_Reg and the count begins again. 

The timer scaling factor register (Tscale_Reg) stores a scaling factor that is one less 

than the number of cycles between decrements of Tcount_Reg. For example, if the 

value in Tscale_Reg is 0, the counter register decrements once every cycle. Therefore 
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using these three registers, interrupts from 5.24ms (when Tperiod_Reg is at maximum 
and Tscale_Reg at minimum with resolution of 80ns) up to 1.34 seconds (when both 

Tperiod_Reg and Tscale_Reg are maximum with resolution of 20.48µs) with an 80ns 

cycle time can be generated. 

By setting Tperiod_Reg and Tcount_Reg to H#FFFF and Tscale_Reg to H#IB this 

provides an interrupt every 0.3s. This is enough so that the flashing of the LED can be 

seen by the naked eye. 

The value in the IMASK register is set to one to enable the TIMER interrupt. The ENA 
TIMER command starts the timer decrementing logic. To return from the routine 
initialisations the RTS command is required. 

The IDLE command causes the program to loop indefinitely in a low-power state, 

waiting for interrupts. When a timer interrupt does occur the program jumps to the 

flash routine. This routine toggles the FLAG_OUT pin and then returns to the 

instruction following the IDLE instructions. In this case this is JUMP instruction back 

to the IDLE instruction causing the program to wait for another interrupt. In this way 

the light flashes continuously. 

This simple example shows the basics of ADSP-2105 assembler and was used to test 

that the ADSP-2105 was being booted successfully from the EEPROM. 

4.3.5.6 Booting Program 

To develop the software for controlling the switching network a program was written 

whereby the ADSP-2105 could be booted via one of the C012s on the control 

processor board12. The program to be downloaded is sent to the C012 from a host 

computer (a PC). This allows different versions of the program to be tested without 
having to re-program the EEPROM each time. Obviously the ADSP-2105 has to be 

booted from EEPROM with some initial code that loads the bytes from the C012. The 

pseudocode for this monitor program is illustrated in Figure 4.29 on page 135 and the 

source code is shown in Appendix B, pages 235 - 236. 
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Initialise registers and variables 
If input status register is not equal to zero (i. e. C012 contains data) then 

If no. of instructions <0 then 
load no. of instructions byte at a time from C012 

If no. of instructions >0 then 
If first byte of instruction 

load most significant byte into register SI 
decrement counter which counts bytes 

If second byte of instruction then 
load middle byte into register SRO 
decrement counter which counts bytes 

If third byte of instruction then 
load least significant byte into register PX 
load instruction (3 bytes) into program memory 
reset counter which counts bytes 
decrement instruction counter 

If no. of instructions =0 then 
jump to start of downloaded program 

FIGURE 4.29. Pseudocode for download program 

The ADSP-2105 receives incoming instructions, loads them into program memory and 

when all instructions have been received executes them. However, in order to know 

when the download is complete the program must know the number of instructions that 

are to be downloaded. The first two bytes of a downloaded program therefore contain 

the number of instructions. 

Once the program has initialised various registers and variables it monitors the input 

status register on the C012 waiting for data to arrive. Once data arrives it first of all 

checks the value of the number of instructions to be dowloaded. If the number of 

instructions is less than zero (it is initialised to a negative value) then this signals that 

the byte to be downloaded is one of the two bytes which contain the number of 

instructions. 

The two bytes are loaded one at a time into the shifter registers and combined to give 

the 16-bit variable ins-count which contains tl? e number of instructions. 

The program then waits for another byte to arrive. If the number of instructions has 

been loaded previously then this byte will be a byte of the downloading program. The 

ADSP-2105 instructions are 24 bits wide so each instruction is three bytes long. A 

separate counter (count) is used to count the three bytes as they arrive. It is reset after 

each instruction is downloaded completely. 

135 



Each byte of an instruction is loaded into different registers. Whenever a program 

memory write occurs, the sixteen most significant bytes are supplied by the source 

register explicitly named in the instruction, and the eight LSBs are supplied by the PX 

register. The basic tactic of the monitor program is to assemble the two most significant 

bytes of an instruction in a data register (using the Shifter) and load PX explicitly with 

the least significant byte. 

Once this is achieved a program memory write then writes the correct twenty-four bit 

instruction into memory. In order that the downloaded program avoids overwriting the 

monitor program while the monitor executes, the downloaded program must be placed 

in memory after the monitor program. This is achieved by labelling the end of the 

monitor program with a label (code_start) and using a DAG (data address generator) to 

generate the addresses for the downloaded program instructions. 

The I register in a DAG contains the actual address used to access memory. This 

register is loaded with the address of code-start. The modify register M is loaded with 

the value one which causes the value in the I register to be incremented by one after 

each memory access. This cycles through sequential addresses starting at code-start. 

After the ADSP-2105 has received each instruction it is loaded into the program 

memory position pointed to by the I register. 

Once each instruction has been loaded the instruction counter (ins Count) is 

decremented by one. When the instruction counter is zero (i. e. the whole program has 

been downloaded) a jump is made to the start of the downloaded program and it begins 

execution. 

To test this code a program was downloaded which again flashed the LED connected to 

the Flag_Out pin on the ADSP-2105 (See Appendix B, page 237). however this 

program was slightly different to the previous example as the tinier interrupt has to be 

loaded explicitly into the interrupt table (i. e. the monitor program must be overwritten). 

This is achieved by declaring a label in the flash program which points to the 

instruction JUMP flash ((lash is the routine which flashes the LED) and then declaring 

a pointer to this instruction. The value pointed to by the pointer (i. e. the bytes which 

make up the instruction JUMP flash) is then loaded into a register. The contents of the 
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register are loaded into the timer interrupt position in memory. This causes an interrupt 

to the routine flash every time the timer times out (i. e. the light flashes). 

To download a file from the host the data must first be extracted from the Intel Ilex 

Format file produced by the PROM splitter and then sent byte at a time to the ADSP- 

2105. The FORTRAN program which achieves this is shown in Appendix B page 238. 

4.3.6 Software for control processor 

4.3.6.1 Basic Procedure 

When the source node decides it wants to communicate with the destination node, the 

system level software on the source node scans the links on the node for a free link to 

communicate with the destination node. Once a free link is found the source node 

sends its connection request (consisting of three bytes) to the ADSP-2105 (See Figure 

4.30). The first byte contains the address of the source node and the second byte 

contains the link number on the source node. The third byte holds the address of the 

destination node. This protocol can be expanded for more processors by using two 

bytes for the addresses of the source and destination processors. 

0 ................................ 7 012345670................................ 7 
Address of 
source node 

Address of 
destination node 

No of link 
on source 
node 

FIGURE 4.30. Connection request sent by node 

The control processor has a table in memory which contains the connections from the 

nodes to the crossbar switch and a flag to indicate whether the connection is already in 

use (See Figure 4.31). When a connection request is received the ADSP-2105 scans the 

table to find the link on the crossbar switch that the source node is connected to. It then 

scans the table looking for a free link on the destination node and if one is free makes 

the connection on the crossbar switch which connects the source node to the 
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destination node. The flags in the connection table are then updated and an 
acknowledge is returned to the source node. 

ARRAYS 

Node No. [32] Link No Link No Connection [32] f 
On Node [32] On Crossbar [321 Used/Unused 

o 0 10 1 
o 1 25 0 
o 2 12 0 
0 3 30 1 
1 0 8 1 

FIGURE 4.31. Connection Table in Control Processor 

The format of the acknowledge byte is shown in Figure 4.32. The link number of the 

destination node is sent in order to allow the source node to make disconnection 

requests (more on this later). If the value of the byte returned is greater than the number 

of links on the destination node (i. e greater then four for a transputer), this signifies to 

the source node that the connection could not be established. The byte is returned via 

an octal bus transceiver rather than the FIFO as only one byte is returned to the 

requesting node. Data from the source node to the control processor is therefore 

transferred via the FIFO and data is returned to the source node via an octal bus 

transceiver. 

0............................ ............................. 
Link No. on 
destination node 

V1111111 I 

FIGURE 432. Acknowledge Byte returned to source node 

Once a node receives a message indicating its connection request has been honoured it 

is free to send data via the crossbar switch to the destination node. The source node 

knows when the message has been successfully received by the destination node due to 

the link acknowledge protocol used by INMOS OSLinks. When the data has been 

completely transferred then the connection can be broken. The format of the 

disconnection request made by the source node is shown in Figure 4.33. 
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0 ................................ 7 012345670................................ 7 
I Address of II KIA Address of I 

source node destination node 

No 6f link 
on source 
node No of link 

on destination 
node 

FIGURE 4.33. Disconnection Request 

The message is basically the same as a connection request, except that the number of 

the link on the destination node is sent as well. The reason for this is that in the case 

where two nodes are connected by two or more links then the link numbers need to he 

specified in order to disconnect the correct link. 

The control processor can distinguish between connection and disconnection requests 

by looking at the value of the second byte. If it is greater than the number of links on 

the source node then the request must be a disconnection request (i. e it contains the 

address of the destination node). 

4.3.6.2 Program Structure 

A diagram of the structure of the program which receives the incoming data from the 

nodes and programs the crossbar switch is shown in Figure 4.34 on page 140. The 

program consists of several modules which are linked together by the Linker to form 

the executable file. Appendix B, pages 239 - 251 contains the source code listings for 

these programs. 

When developing the software for the ADSP-2105 it was assumed that the crossbar 

switch was an INMOS C004. Since in the case of a transputer all four links can be 

connected to the crossbar switch, 8 transputers can be fully connected by using a C004. 

A 64-way crossbar switch such as the LSILogic L6427013could be used which would 

allow 16 transputers to be fully connected. If more transputers were required then the 

number of crossbar switches could be increased. Each crossbar switch would have a 

C012 connected to it and the C012 would be addressed by the control processor. 

Effectively each crossbar switch would have a unique address. 
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Setup. dsp 
Disables Interrupts on ADSP-2105 
Receives file from host computer 
which contains connections from 
the nodes to the crossbar switch 
and loads it into a table in memory. 

Readbyte. dsp 

Reads three bytes sent fron nodes 
and loads them into data memory. 

Decode. dsp 

Tests value of second byte to see if 
it is a connection or disconnection 
request. 

Findsour. dsp Brcak. dsp 

Scans table to find to establish Extracts source and destination 

which crossbar link the source 
link numbers from second 

node is connected to. 
byte and stores them in data 
memory. 

Test that crossbar link is free. 
If not send byte H#FF to source 
node to indicate a failure to 
establish a connection. 

Finddest. dsp 

Scans table to establish crossbar 
link that link 0 of the destination 
node is connected to. 

Testlink. dsp 

Scans crossbar links that 
destination node is connected 
to to find a free link. 

If free link is not found then 
send byte H#FF to source node 
to indicate failure to establish 

Cross. dsp 

Progams connection on crossbar 
switch. 
Sends acknowledge byte to 
source node. 

FIGURE 4.34. Program structure for ADSP-2105 software 

Findsour. dsp 

Finddest. dsp 

Findlink. dsp 

Scans table for crossbar link 
that the destination node link 
is connected to. 

I)iscon. dsp 
Disconnect connection on 
crossbar switch 
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4.3.7 Testing of overall procedure 

A mock set up of the dynamic circuit-switched network using ports on a PC to emulate 

the nodes was constructed (See Figure 4.35 on page 142). The token passes between 

the two boards plugged into the PC slots and data to represent the three byte message 
from the nodes is written into the FIFO from the PC. 

The connection requests are clocked out of the CO 11 to the control processor board via 

a serial line. The C012 which would normally be connected to the crossbar switch on 

the control processor board is actually connected to a link adapter board plugged into 

the PC. This allows the PC to read the messages normally meant for the C004 and 

check they are correct. 

4.3.7.1 Test circuits 

The circuit diagram for the PC plug in cards which emulate nodes is shown in 

Figure 4.36 on page 143. Two PALs (P22V IOL) are used in this circuit: one for address 

decoding and the other for the token passing and fifo clocking state machines. A buffer 

('245) is inserted between the PC data bus and the FIFO and COI l data buses. The '74 

dual D-type positive edge triggered flip-flop is required to generate the Holdtoken and 

QAck signals. A photograph of the circuit board is shown in Appendix D, Figure 6 on 

page 306. 

A functional block diagram of the FIFO is shown in Figure 4.37 on page 144. It is 

organised as a 1024 x9 RAM with asynchronous and simultaneous read and write. The 

reads and writes are internally sequential through the use of ring pointers, with no 

address information required to load and unload data. Data is toggled in and out of the 

device through the use of the Write (W*) and Read (R*) pins. 

The CUPL source code for P22VIOL(O) which performs the address decoding is 

shown in Figure 4.39 on page 146. This code is similar to the address decoding for the 

circuit to test the clocking of the bytes out of the FIFO. The main difference here 

however, is that data must be read from the CO11 (i. e. effectively the acknowledge byte 

from the control processor) and also the token must be passed on. 
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In order to read data from the COI1 the QAck and QValid signals are controlled by a 
D-type flip-flop. The connections to the flip-flop, the truth table for the flip-flop and a 

timing diagram for the circuit are illustrated in Figure 4.38 on page 145. 

ADSP-2105 P22V 1 OL 

28F256 

C012 

rC012 

LinkOut Linkln Linkln LinkOut 

Linkln LinkOut TokcnIn 
TokenOut 

Ackin 
AckOut 

Coil FIFO 

ADDRESS STATE 
'74 

DECODING MACHINE 
(P22V 1 OL) (P22V I OL) 

'125 

P. C. Slot 

PORT 1 

i To other 
Link Adaptor 
Board 
(effectively 

crossbar switch) 

TokcnOut LinkIn LinkOut 

TokenIn 
AckOut 
Ackin 

CO11 FIFO 

ADDRESS STATE 
'74 

DECODING MACHINE 
P22V I OL P22VIOL ( ) ( ) 

' 125 

P. C. Slot 

PORT 2 

FIGURE 4.35. Set-up used to test theory of dynamic connection network 
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DATA INPUTS 
(Do - D8) 

W* Write 2 Control 

" 
" 

Write RAM Read 
Pointer 

10 
ARRAY 

24 x9 
Pointer 

S 
S 

Tri- "e" FL*/RT* RS* 
state 
buffers 

DATA OUTPUTS Reset 
(Qo - Qs) Logic 

R* I-ºj 
_' 

Read 
-ý Control 

lag EF* 
o gic FF* 

!. 

__lEEEEEEEEE Expansion 
Logic 

FIGURE 437. Functional Block Diagram of FIFO 

The node (PC port in this case) monitors the state of the Qvalid signal via the '125 

buffer. This buffer is enabled by the ReadQvalid signal from the P22V 1OL(0). When 

the QValid signal is pulled high (indicating the COI l has received data) the node (PC 

port) initiates a read cycle. 

The signal ReadCO11 from P22V 1OL(0) is used to clock the flip-flop. Therefore at the 

end of a read cycle (i. e. on the rising edge of ReadCO11) this transfers the value on the 

D input of the flip-flop to the Q output. Since the D input is tied high this transfers a 
logic high to the Q output which is connected to QAck on the CO11. This indicates to 

the CO11 that the write cycle is finished. The COiI then sends an acknowledge to the 

sending device and returns QValid low. 

144 



Truth Table for D-type Register 
PRE CLR CLK D Q Q* 

L H X X H L 
H L X X L H 
L L X X H H 
H H H H L 
H H 

T 
L L H 

H H L X Ql On* 

ReadC011 

- DO 

- ReadQValid 
QValid 

Timing Diagram 

QValidf 
(CLK) - 

ReadC011 
(CLK) 

Qn (QAck) 

FIGURE 4.38. Control of QAck and QValid 

To clear the D-type flip-flop which controls the Holdtoken signal (see Figure 4.14 on 

page 113) and thus release the token, the signal PASSTOKEN is generated by the 

P22V1OL(0). This signal is produced by writing a value of one to the address H#102. 

The token is passed on once the node receives the acknowledge byte from the control 

processor. The signals to write data into the FIFO and to control the buffer are similar 

to the PC interface designs discussed previously. 

P22V l OL(1) runs the FIFO clocking and token passing state machines. The CUPL 

source code for this PAL is shown in Appendix B pages 252-253. The two state 

machines run separately and an output from the token passing SM called 

TokenArrived signals to the FIFO clocking state machine when the token is there (i. e. 

as shown in the state diagram for the FIFO clocking). 
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/**INPUTS**/ 

PIN 1= PCLK; 
PIN (2.. 11] _ (AO. A91; 
PIN 13 = ! NOTAEN; 
PIN 14 = ! NOTIOW; 
PIN 15 = ! NOTIOR; 

PIN 21 = DO; 

/**OUTPUTS**/ 

PIN 16 = ! PASSTOKEN; 
PIN 17 = ! ENABLEBUF; 
PIN 18- _ ! WRITEFIFO; 
PIN 19 = ! READCO11; 
PIN 20 = ! READQVALID; 
PIN 22 = BUFDIR; 
PIN 23 = SYSCONTROL; 

/**DECLARATIONS AND INTERMEDIATE VARIABLE DEFINITIONS**/ 

FIELD ADDRESS= [A9.. A0]; 
FIFO = ADDRESS: (1001 & NOTAEN; 

CO11 = ADDRESS: (101] & NOTAEN; 
TOKEN = ADDRESS: (102] & NOTAEN; 
QVALID = ADDRESS: (103) & NOTAEN; 

CONTROL = ADDRESS: (1053 & NOTAEN; 

PASSTOKEN 
WRITEFIFO 
READQVALID 
READCOII 
ENABLEBUF 
BUFDIR 
SYSCONTROL 

TOKEN & NOTIOW & DO; 

FIFO & NOTIOW; 
QVALID & NOTIOR; 
CO11 & NOTIOR; 
WRITEFIFO # READCO11; 

NOTIOR; 

CONTROL & NOTIOW; 

FIGURE 4.39. CUPL source code for address decoding 

This PAL is also used to generate the reset signals for the CO il and FIFO. To reset both 

these chips a binary `1' is sent to the SYSCONTROL address. 

This mock set-up functioned successfully. The main difference between (his set-up 

and a `real' system is the interface between the node and FIFO. Obviously for various 

types of bus interface slightly different programming on the PAL may be required. 
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4.4 Connection Request Service Time 

The four major factors involved in the time taken to service a request are: 

" the time required to pass the token (0.15µs in a2 node system) 

" the time taken to clock the bytes out of the FIFO (0.15µs) 

" the time to transfer the bytes from the COI I to the Control Processor (1.2µs) 

" the time required to program the crossbar switch (1.211s) 

If the PALS are being clocked at 20MHz and the INMOS OSLink is operating at 

20Mbits/s then the connection request service time is approximately 2.7µs minimum. 

Obviously this number will be larger for a greater number of nodes as the token will 

have further to travel and also it will vary depending on how many connection requests 

are to be sent to the control processor. The service time could be speeded up by using a 

faster token passing clock and control processor. 

4.5 Conclusions and Discussion 

A system has been described which allows links between nodes to be established on- 

demand during program run-time. All the ICs employed in the design are commercially 

available at relatively low cost. The control processor used achieves a much higher 

performance than a transputer (commonly used as a control processor) enabling it to 

process connection requests much faster. All the valuable communication links on the 

node are free for interprocessor communication and are not tied up with control 

information. 

This cost-effective method provides deadlock free, low message latency, dynamic 

reconfigurability. This is especially useful in time critical applications which transmit 

and receive large volumes of data such as robotics and image processing. The hardware 

subsystem used to send data to the control processor can be used with any processor 

providing they possess a high speed communication mechanism. 

Unfortunately it was not possible to test the system running an application. Jones- 

showed however that for an N-body simulation a dynamic switching system can out- 

perform a static message passing system. With a small number of simulated bodies, the 

performance of the dynamically switched version is poor compared to the static 

topology version (a ring). However, as the number of simulated bodies increases, the 
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performance of the dynamically switched version ultimately exceeds that of the static 
version. 

The hardware Jones was using to implement dynamic switching was not built 

specifically for this purpose. Only two of the four links on the nodes could be 

dynamically reconfigured and the monitoring bus connected to the control processor 

was not designed to be fast. The results should be far better using the circuit-switching 

scheme described in this chapter. They do show however that where large volumes of 

data have to be transferred dynamic switching can give greater performance than a 

static system using message passing. 

Dynamic switching schemes do not however out-perform systems using the T-9000 

transputer and the C104 router15. The T-9000 is a second generation transputer which 

uses DS-Links operating at IOOM/bits per second for communication. A major feature 

of the DS-Link is that it provides a physical connection over which any number of 

software (or `virtual') channels may be multiplexed; these can be either be between 

two directly connected devices, or can be between any number of different devices, if 

the links are connected via (packet) routing switches. 

The OS-Links described previously use only two channels, one in each direction. To 

map a particular piece of software onto a given hardware configuration the 

programmer had to map processes to processors within the constraints of available 

connectivity. The problem is illustrated in Figure 4.40 where 3 channels are required 

between two processors, but only a single link connection is available. 

FIGURE 4.40. Multiple communications channels required between devices 
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This problem is solved with the T-9000 as it uses multiplexing hardware to allow any 
number of processes to use each link, so that physical links can be shared transparently. 
These channels which share a link are known as `virtual channels'. 

With DS-Links each message is divided into packets (32 bytes long). Every packet 
requires a header to identify its channel. Packets from messages on different channels 
are interleaved on the link. There are two important advantages to this: 

" Channels are, generally, not busy all the time, so the multiplexing can make better 
use of hardware resource by keeping the links busy with messages from different 
channels. 

" Messages from different channels can effectively be sent concurrently - the device 
does not have to wait for a long message to complete before sending another. 

DS-Links can be used to connect devices directly together or they can be connected to 

a router device known as a C104 to route messages across a network. As the DS-links 

allow all the virtual channels of a device to use a single link, complete system wide 

connectivity can be provided by connecting just one link from each device to the 

routing network. 

The IMS C104 is a full 32 x 32 non-blocking crossbar switch, enabling messages to be 

routed from any of its links to any other link. In order to minimize latency, the switch 

uses wormhole routing in which the connection through the crossbar is set up as soon 

as the header has been read. The header and the rest of the packet can start being 

transmitted from the output link immediately. 

The header of each packet is used to determine the link to be used to transmit the 
incoming packet. This is done by a set of 32 registers associated with each link. 

It is possible using 48 C104s to connect 512 nodes with only 3 routing delays. By using 

a special purpose router this requires no additional software on the nodes to route 

messages and also no additional buffering is required on the nodes to buffer the 

packets. The T-9000 and the C104 therefore provide an efficient fast low message 
latency communication system. 

Even though systems using the C104 router and T9000 would be faster than the set-up 
described in this chapter, the latter is still more cost effective. The C104 is much more 

expensive than a C004. Also there are still many systems around which use T-800 
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transputers or other processors such as the C40. These systems could benefit from the 

work described in this chapter. 

It is also possible that there will be some applications in which synchronisation 

constraints require the direct connection of processor pairs, possibly in cases when the 

uncertainties of message transit times in wormhole routing is unacceptable. In such a 

scenario, dynamic reconfiguration offers a more dependable mode of communication 

once a connection has been installed. 

Software16,17 has been developed for the T-800/400 transputers that emulates virtual 

channel routing. This however uses some of the computational power of the node for 

communication and also has a large message latency (--30µs). The system described in 

this chapter is therefore much more efficient as no additional software is required on 

each node and the message latency is much lower. 

The design presented in this chapter provides an efficient and fast mechanism for 

dynamic on-demand circuit switching. It could however be enhanced by using a faster 

token passing clock and control processor. 
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Chapter 5 

Molecular Mechanics 

In recent years with the increase in computational power it has become possible to 
predict the chemical properties of a molecule or interactions between molecules by 

computational methods. This has had increasing application in drug design where the 
behaviour of a novel drug can be predicted by computer simulation. 

One of the techniques used in this process is molecular mechanics. This chapter 
describes the mathematical expressions used to construct molecular mechanics 

calculations. 

5.1 Introduction 

5.1.1 What is Molecular Mechanics 

Molecular mechanics(MM) is a computational method designed to give accurate 

structures and energies of molecules". These properties can be determined by 

experimental methods such as x-ray crystallography, microwave and vibrational 

spectroscopy etc. These procedures however rely on having the material or crystal 

available. Computational methods avoid this problem and therefore can be used to 

predict the structure and energy of molecules that have not even been synthesised. 

Molecular orbital (MO) techniques (another computational method) determine the 

structure of a molecule by the approximate solution of the Schrödinger equation for a 

given nuclear configuration, followed by a systematic adjustment of this configuration 

to minimise the energy of the molecule. The Born-Oppenheimer approximation is 

assumed which allows the nuclear and electronic motions within an atom to be 

separated. MO methods regard the nuclei as stationary while the electrons move 

relative to them. 
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The theoretical basis of the molecular mechanics method can be derived by taking an 

alternative approach to the Born-Oppenheimer approximation: in this case the nuclear 

motion is considered while implying a fixed electron distribution associated with each 

atom. 

A molecule from this perspective is considered to be a collection of masses (nuclei) 

that are interacting with each other via (almost) harmonic forces (bonds), and it is 

rather analogous to a system composed of weights joined together by springs (a ball- 

and-spring model). Potential energy functions are used to describe the interactions 

between nuclei. Force constants of the springs are represented by a collection of 

mathematical parameters. The equations and parameters that define the energy surface 

of a molecule are referred to as the force field. 

The origin of this method lies in vibrational spectroscopy, where the information 

derived from analyses of vibrational spectra required the development of potential 

functions to describe the overall molecular behaviour. Two different approaches were 

considered. 

In the first, the Central Force Field (CFF)5 method, the molecular vibrations were fitted 

to a function which was the sum of pairwise interactions, without reference to the 

covalent structure of the molecule. A disadvantage to this approach is that although 

such a description is correct in terms of a quantum mechanical model of a molecule, it 

lacks the intuitive link with structure that is required for molecular mechanics. It has 

also been shown to give poor results in molecular mechanics calculations. 

The second method, the Valence Force Field (VFF)5, provides a description in which 

the vibrational data is fitted to a potential function consisting of bond length, bond 

angle and torsion angle dependent terms. This is much more satisfactory than CFF and 

has the advantage of allowing comparisons between molecules (CFF is very molecule 

specific). 

The major criticism of the VFF method is that the force constants produced must 

attempt to incorporate intramolecular interactions such as dispersion forces which 

result from electron correlation, and therefore are not simply a representation of the 

intrinsic vibrational frequency. 
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5.1.2 Why Molecular Mechanics 

Molecular mechanics calculations are a computationally intensive task, however, they 

are still faster than molecular orbital methods such as the ab initio calculation. 

The time for running an ab initio2 calculation increases as approximately 'z4 where n is 

the number of orbitals, whereas for molecular mechanics it increases as N2 where N is 

the number of atoms. This allows molecular mechanics calculations to be used with 
large molecules such as proteins where MO calculations would be impractical. 

Molecular mechanics does of course have its disadvantages. It is an empirical method, 

and is based on a large volume of experimental data. This data must exist for a given 

class of compounds before the method can be developed and applied to any particular 

compound in that class. On the other hand the ab initio method is only concerned with 

nuclei and electrons, few additional parameters are required. This makes it more 

generally applicable. However, MM is also more accurate than MO within its sphere of 

application. 

5.2 Formulation of Molecular Mechanics 

One of the fundamental principles of molecular mechanics calculations is that the total 

energy of a molecule can be divided into readily identifiable parts. The energy is 

calculated as a sum of the steric and non-bonded interactions present. Therefore each 

bond length, angle and torsion angle is treated individually while non-bonded 

interactions represent the influence of non-covalent forces. 

The equation to calculate the total steric energy of a molecule (VS) is thus given by: - 

VS = VI + VO + Va) + Vr + Vq 

Steric Energy Equation (EQ 5. I) 

where V1 represents the summation over all the bonds in the molecule of the individual 

potential energies due to bond stretching or compression, and Vg, Vw , V,. , and Vq 

represent similar terms for angle bending, bond torsion, van der Waals interactions, and 

coulombic interactions respectively. 
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A more refined force field will also consider interactions or cross terms such as stretch- 
bend, torsion-stretch, etc. These are usually small, and they can be neglected in the first 

approximation. Other ad hoc terms such as out of plane bending of planar atoms types 
have been used to take into account phenomena that are not properly accounted for 

otherwise. 

5.2.1 Bond Stretching 

The typical vibrational behaviour of a bond is near harmonic close to its equilibrium 
distance but shows dissociation at longer bond lengths (See Figure 5.1 on page 157). It 

is most accurately described by the Morse function6 
i 

VI >Der1-exp{-a(1-lo)} 

Morse Function (EQ 5.2) 

where 10 is the equilibrium bond length, I is the actual bond length, De the dissociation 

energy, and aa force constant. The exponential calculation is computationally 

intensive therefore most force fields have adopted a simple harmonic function 

2V, = Jkl(l-l0)2 

(EQ 5.3) 

where k, is the stretching force constant, 10 is the equilibrium bond length and I is the 

actual bond length. The bond is effectively treated as a stretched spring. This equation 

only approximately describes the actual behaviour of the bond. At extended bond 

lengths it is much too steep (see Figure 5.1 on page 157) while it provides no 

representation of dissociation at very large deformations. In order to reproduce the 

Morse curve more accurately in the region where bonds are considerably stretched a 

cubic term is sometimes added to the previous expression2. i. e. 

VI = 1:, kl (1-10) 2- k1l (I -1o)'I 
I 

(EQ 5.4) 

Careful selection of the force constant for the cubic expression gives accurate 

treatment of bond length deformations in a wide variety of molecules. A problem with 

the cubic term however, is that as bonds are stretched to greater distances, the cubic 
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term will begin to dominate. At a critical point the curve reaches a maximum and the 
bond stretching energy then plummets downwards toward negative infinity. Attempts 

have been made to remedy this by adding a quartic term which reverses the inversion7. 

-- -Harmonic Potential 
Morse Potential 

Energy 

FIGURE 5.1. Curves showing the variation of bond stretch energy with distance 

5.2.2 Angle Bending 

Angle bending can also be described by a simple harmonic function. 

2V0= Yk0(e-90)2 
0 

(EQ 5.5) 

As before ke is the bending force constant, 00 is the equilibrium bond angle and 0 is 

the actual bond angle. This equation however is not very satisfactory as the force 

constants for angle bending are smaller than for stretching allowing greater distortion 

away from the strain free value. 

The equation can be improved by adding a cubic term similar to the situation for bond 

stretching 
16. 

2 V8= ke (0 - 00) 2-k'el (0-00) 31 

0 

(EQ 5.6) 

This cubic term works well, except in the few cases where angle starts off being greatly 

deformed from the strain free value. Similarly to bond stretching the cubic term can 

I%7 
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dominate at larger angles. An extra term can be added to prevent this from occurring 
which will reduce the effect of cubic term and force the angle back towards a more 

reasonable-value. The equation for bond stretching is now8: - 

2V0= j: ke(DA2-k'8(IA031-o. 0004J O J)) 
0 

(EQ 5.7) 

where AO =0-0, ke is the bending force constant and k'8 is the anharmonic 

force constant. A fifth power is usually added as it can be calculated from the product 

of the square and cubic terms. 

5.2.3 Torsion Angles 

Initially the potential energy term due to bond torsion was calculated using an 

expression relating to the periodicity of the central bond. i. e. 

2V = 1: Vn(1 fsCosnw) 
w 

(EQ 5.8) 

where V', is the rotational barrier height, n is the periodicity of rotation (e. g. in ethane 

n=3; in ethene n =2), w is the measured torsion angle and s= +1 for a staggered 

minimum (e. g. ethane) and s= -1 for an eclipsed minimum (ethene). 

This equation is too simplistic for certain situations. Consider the torsion around the 

central C-C bond in butane. There are three kinds of torsion angle: H-C-C-H; C-C-C- 

H; and C-C-C-C. Whilst the periodicities of the first two are essentially threefold, the 

major component of C-C-C-C is onefold (i. e. the methyl-methyl eclipse occurs only 

once per 360°) with a minor threefold addition. In general the equation for torsional 

energy is written in the following forms. 

2Vw= ý[Vn(1+scosn(0) +V1(1+scos(»)] 

(EQ 5.9) 

In most cases V1 (the onefold component of the barrier to free rotation) is set to zero 

except for torsion angles such as CSp3-C3p3-Csp3-CSp3 and Csp3-Csp2-Namide-Csp3 
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5.2.4 van der Waals interactions 

Many different equations have been used to describe the van der Waals interactions. 

The common one however is the Lennard-Jones 6-12 potential9 

Vr = 
[Ar 12-Br 6] 

r 

(EQ 5.10) 

where A and B are constants that depend on the atom types (see Figure 5.2 on 

page 159. ). The summation is over all 1,4 and higher unique pairwise non-bonded 

distances. Short range repulsions are accounted for by the r 12 term where London 

dispersion-attraction forces are resolved by the t-6 component. 

r6 term predominates 

FIGURE 5.2. A typical van der Wants curve 

In general the repulsive part of the Lennard Jones curve is too steep to describe 

interactions between atoms in organic molecules over a wide range of distances. Lifson 

et al. 's showed that a power of 9 or 10 was better than 12 for organic compounds, and 

such values are sometimes used. The power 12 is usually used for proteins, not because 

it is accurate, but because it is fast to compute from the attractive r-6 term. 

The Buckingham potential replaces the twelfth power term with an exponential, which 

is a better theoretical description of the repulsion expected between electron 

clouds' 1. i. e. 

Vr =I 
[Aexp (-Br) - Cr 6] 

r 

(EQ 5.11) 

159 



In most circumstances this function behaves similarly to the Lennard-Jones equation 

but at very short interatomic distances the function inverts and goes to -oo, an obvious 
danger in poorly constructed model structures. 

For protein structures the Lennard-Jones potential is usually used, as the exponential 

term in the Buckingham potential takes 20 times longer to compute than a floating 

point multiply on most computers (r 6 can be calculated from r2). For a small molecule 

the number of interactions is relatively small and the close range behaviour is crucial 

so in this case the Buckingham potential may give better results. 

5.2.5 Coulombic Interactions 

The earliest approach to obtaining the electrostatic energy term assigned bond dipoles 

to bonds between different types of atoms and calculated the electrostatic energies 

from dipole-dipole interactions (see Figure 5.3) 

ý 
V9 
V=3µ (cos% -3 cosaicos (L ) 

r Dr ;j 

(EQ 5.12) 

where D is the dielectric constant, r, is the separation of the dipoles, x is the angle 

between the dipoles, p; and µj are the values of the dipole and ai and aj are the angles 

each dipole makes to a line connecting them. 

FIGURE 5.3. Single Dipole Interaction 

The bond dipoles were chosen to fit known dipole moments of molecules. It was found 

that the effective dielectric constant of the solvent had to be taken into account to fit 

known experimental data. When molecular mechanics calculations were extended to 

large molecules with many polar bonds, it became clear that such calculations were 

quite time consuming. 
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Instead of placing point dipoles in bonds, one can place point charges at atoms, chosen 
so as to match the previous bond moments or as determined from ab initio calculations. 
From the point charges, Coulomb's law is used to calculate the energies12 

, giqj/Dr Vq = 3321 
r 

(EQ 5.13) 

where qj and qj are the charges on the atoms i and j separated by the distance rid. The 

scaling factor 332 converts the energy to units of Kcal per mole. 

If there are net charges present, as in proteins, the point charge approximation involves 

no extra calculation, but the dipole-dipole method requires that charge-charge and 

charge-dipole interactions also be carried out. The results are similar either way, but the 

point charge calculation can be carried out more quickly, and this method is usually 

used for proteins. 

There are two choices for D, either a fixed value between 1 and 5 is used or a distance 

dependent dielectric 13,14 is used where D= 4r (sometimes D=r but this gives undue 

weight to coulombic interactions). Some force fields using a fixed dielectric constant 

(usually I) claim to accurately represent the interaction of the collection of point 

charges being considered. This method, however, has undesirable computational 

consequences as the r term in the denominator has to be calculated from r2. The 

squared term is calculated by Pythagoras and taking the square root is a relatively time 

consuming process. 

By approximating the value of D to r this avoids taking the square root of r2. There is 

also a physical justification for this procedure8. The value of D for a system consisting 

of two separated point charges in a vacuum is 1, and as matter is interspersed between 

the charges, the value of D becomes greater than 1 (i. e. the greater the separation the 

greater the chance of interspersed matter and the higher the value of D). A distance 

dependent dielectric is therefore not only computationally efficient but physically 

justified. 
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5.2.6 Other terms 

The five terms described above are the core elements of almost all molecular 

mechanics force fields; in some case the entire energy function. In many situations, 
however, it is necessary for additional terms to be included. 

5.2.6.1 Out of plane bending 

This term is included to incorporate the energy increase with out of plane bending 

(pyramidalization) of trigonal planar systems such as carbonyl groups. The four atoms 

in such a grouping should be kept in the same plane, however, the branch atom (oxygen 

in the case of carbonyl) can be distorted. Since the deformation is likely to be very 

small it is possible to use a simple harmonic potential energy function15: - 
2Vx= I: kx(180-x)2 

x 

(EQ 5.14) 

where kx is the force constant for out-of-plane bending and X is the improper torsion 

angle in degrees (it is 180° when the conformation is planar). 

x 

FIGURE 5.4. The Improper Torsion Angle (x shown by dashed line) 

5.2.6.2 Cross terms 

These terms are usually needed when the force field is required to reproduce 

information on vibrational frequencies. They involve two different motions at the same 

time such as stretch-bend, bend-bend, torsion-bend and torsion-stretchl. 

By examining the structure of butane it is clear that there is a change in the C-C bond 

length and an opening of the C-C-C bond angles when changing from the trans to the 

162 



cis conformations (see Figure 5.5 on page 163). This can be incorporated into the force 

field via a stretch-bend interaction: - 
V10 - ýýk, 

0(1-10) (0-6o) 

(EQ 5.15) 

where k10 is the force constant for stretch-bending and 1,10,0,00 are before. This has 

the effect of restraining distortion of the angle through compensatory bond stretches. 

Me Me Me IH 
116.4 112.9° 

H 

H 
1.53Ä H, 1.56A 

fl fl Me 
Cis Trans 

FIGURE 5.5. Molecular geometries for cis and trans butane structures 

To better fit vibrational frequencies, a bend-bend interaction term is used for the 

bending of two angles at a common centre. This is given by an equation of the form: - 
V08, = EY-0.021914k00, (0 - @0) (Of - 01 0) 

where 0 and 0' are two valence angles on the same atom and 00 and 0'0 are the 

appropriate strain free bond angles. 

A torsion-bend term couples a torsion angle (A-B-C-D) with the two vicinal bending 

angles A-B-C and B-C-D. 

V0W ' ý2keW(e-eo) (6'-6'0)cosü 

(EQ 5.16) 

This term has considerably improved the agreement between calculated and 

experimental frequencies of vibrational modes of atoms bonded to two adjacent carbon 

atoms. 
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A torsion-stretch term is added in situations where certain bonds eclipse each other 
resulting in insufficient bond stretching. The equation which helps correct this is given 
by the expression 

V1 = 11.995(k2 
)(1-lo) 

(l+cos3co) 

where k1, is the force constant for torsion-stretching and the other constants are as 

described previously. 

When trying to devise a force field for a molecule all of these additional terms are not 
included initially. At the start these terms are all assumed to be zero and are added as 

they seem to be required for some reason. If structural information is needed then few 

of these cross terms are big enough to cause significant changes. On the other hand if 

vibrational frequencies are to, be considered then these terms are required to ensure 

high accuracy of the frequencies. 

5.2.7 Force Field Parameterisation 

The reliability of a molecular mechanics calculation is dependent on the potential 

energy equations and the numerical values of the parameters that are incorporated into 

those equations. In general, parameters are not transferable from one force field to 

another due to the different forms of equations that have been used and because of 

parameter "correlation" within a force field. This occurs if an error is made regarding 

one parameter, other parameters in the force field adjust to minimise any error that 

would be caused. Thus force fields that may give good results for one group of 

compounds may yield poor results for another group. 

It is not usually possible to include all the possible parameters in a molecular 

mechanics program. For example consider a torsional angle of the form a-b-c-d where 

a, b, c, d are four different atom types. If a program contains 68 atom types then there are 

684 possible torsion sets, and there are twice as many torsional force constants giving 

several million torsional parameters. A similar situation occurs with other parameter 

types. 

It turns out that only a tiny percentage of parameters are known by experiment or 

calculation so far reported in the literature. For relatively simple functionalised 
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compounds, such as alcohols or ketones, it is likely the parameter set will be complete 
but for more complicated molecules containing various combinations of heteroatoms it 

is possible to find cases where parameters are missing. 

Parameterisation can be approached from two directions: least squares optimisation' 8 

and trial and error3. Least-squares optimisation methods obtain a simultaneous best fit 

of calculated results to experimental data. In either case parameterisation is far from 

straightforward as the data sets usually available come from a variety of sources (i. e. 

crystal structures, vibrational spectra, quantum mechanical calculations etc. ), are 

measured by different kinds of experiment in different units, and have relative 

importance that require subjective assessment. 

With the least squares approach correlation between parameters can give problems. 

Also the derivatives involved in the calculation are extremely complex. The trial and 

error method is the most frequently used - mainly because it is simple to implement 

and does not take much longer than least squares. 

The quality of a parameter is directly dependent on the quality and nature of the 

experimental or theoretical data available. It is also dependent on the level of accuracy 

required. In some cases generalised approximate parameters based on known trends are 

used. These can, however, lead to serious problems if an exact value is essential for 

understanding some property that is being studied. 

In general the greater the complexity and number of parameters, the more accurate the 

optimised force field becomes at the expense of the time required to do the calculation. 

Obviously a balance has to be reached between accuracy of calculation and time taken. 

If the structure and energy of a molecule is being studied then significant errors in the 

force field parameters are often acceptable. However, if vibrational frequencies are 

required then a more accurate force field is required. 

5.3 Energy Minimisation 

Using a CAMD (Computer Aided Molecular Design) package it is possible to 

construct a new molecule by combining smaller molecules or fragments of molecules. 

The molecule can also be constructed one atom at a time using known average bond 
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lengths, valency angles, and torsion angles. Obviously structures built up this way are 
extremely crude. Before the modelled structure can be useful it must be 

computationally optimised by a procedure known as energy minimisation. 

This involves systematically altering the geometry of the molecule (i. e. the atomic 

coordinates are shifted by a calculated amount) in the hope of locating the global 

energy minimum. Various optimisation methods can be used in the attempt to achieve 

this. Unfortunately though, all of these methods are prone to locating the local energy 

minimum closest to the starting point of the calculation, rather than the global 

minimum. 

The difference between local and global energy minimum can be illustrated by 

considering the rotational potential for a 1,2 di-substituted ethane (See Figure 5.6). The 

gauche conformation is stable but the molecule's preference would be for the anti 

conformation. This trivial example illustrates one of the most difficult problems in 

computational chemistry: how to be sure the global minimum has been reached. 

Energy 

HXX 

iH HH XH 

Torsion Angle 

FIGURE 5.6. Shape of rotational potential for 1,2-di-substituted ethanes 

There are two main categories of optimisation technique namely search and gradient 

methods. An example of a search method is pattern searching16 

5.3.1 Pattern Searching 

Pattern searching applies positive and negative shifts (-O. IA) to each atom's atomic 

coordinates one at a time and then tests to see whether the steric energy has decreased 

or increased. If the energy has decreased then the atom is left in its new position and 

the new steric energy used as the current value. However, if the energy has increased 

then the atom is returned to its original position and the coordinate is then shifted in the 
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opposite direction. Again the steric energy is calculated and if it has decreased then the 

atom is left in the new position otherwise it is returned to its original position. 

The whole pattern of successful shifts built up in this way is repeated and the steric 
energy checked for further reduction. The pattern is repeated until it no longer works 
and then the pattern is repeated with half the shift value and then iteratively until the 

shift reaches a sufficiently small value (10-5th). When the current pattern no longer 

works, or the shift becomes too small, a new pattern is established and the whole 

process repeated until a reduction in energy is no longer possible. 

This method is guaranteed to find a local energy minimum and has a large radius of 

convergence (i. e. even with an extremely crude starting structure a local energy 

minimum will be reached). However the rate of convergence is slow as the same shift 

size is applied to each coordinate and the shift size is refined very slowly (i. e it could 

take hundreds of iterations to reach an energy minimum). 

5.3.2 Gradient based methods 

Gradient based methods again apply a shift, in the search for lower energy, to each 

coordinate but in this case the shift is proportional to the gradient of the steric energy at 

this point (i. e if the gradient of the steric energy is steep then a large shift is applied, if 

the steric energy function is flatter then a smaller shift is applied). These techniques are 

said to reach an energy minimum when the vector of first partial derivatives of the 

steric energy with respect to the atomic coordinates is zero. This is the case not only at 

energy minima but also at energy maxima and saddle points; a feature of gradient 

methods which can be useful when searching for transition state structures but an 
inconvenience when looking for minima. 

Gradient based techniques have a fast rate of convergence as they calculate shifts based 

on the gradient of the steric energy function. However, the radius of convergence is 

small for the popular full matrix Newton Raphson (NR) iteration (see later for 

explanation). The radius of convergence can be increased by using approximations to 

the full NR such as the Block Diagonal Newton Raphson iteration and steepest 

descents, but at the expense of rate of convergence. 
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5.3.2.1 Steepest Descent 

An example of a simple gradient based method is steepest descent17 (a variation of the 
full NR iteration - almost all gradient based methods of optimisation are variants of the 
NR iteration). This involves calculating the gradient (the first partial derivative of the 

steric energy w. r. t. the atomic coordinates) of the steric energy function at a particular 

point. Once the gradient has been calculated the coordinates are shifted in the direction 

of lower energy by an amount proportional to the gradient. The constant of 

proportionality is determined empirically. This procedure is repeated until a local 

minima is reached. 

Steepest descent has the disadvantage that it is only the gradient of the steric energy 
function that is considered and the curvature (the second partial derivative of the steric 

energy) of the function is not taken into account when calculating the shift. A result of 
this is that the rate of convergence slows down considerably near the minimum energy 

position. Steepest descents does however have the advantage that it converges well 

when the geometry is far removed from its minimum and can be used to model 

geometries prior to refinement by another method. 

5.3.2.2 Newton Raphson 

A technique which considers both the gradient and curvature of the steric energy 

function is the Newton Raphson iteration19. The proof for this procedure can be 

derived from simple calculus. 

The minimum on a curve, at point x*, is where the first partial derivative is equal to 

zero. i. e. 

, 
f' (x*) =0 

(EQ 5.17) 

Since in a molecular mechanics calculation the starting point is x and not the 

minimum x*, 
x* =x+ Sx 

(EQ 5.18) 
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where Sx represents the changes x must undergo to reach the minimum value. 

Equation 5.17) can therefore be written in terms of x 
f (x + Sx) =0 

(EQ 5.19) 

and then expanded as a Taylor series 

f (x + Sx) =f (x) +f" (x) Sx +f ' (x) 8x2 + ... 

(EQ 5.20) 

which is also set to zero. Truncating the Taylor series after the second order term gives 
f'(x) +f'(x)Sx =0 

(EQ 5.21) 

By rearranging Equation 5.21) an expression is given for Sx (the change in x which 

must be made to x to reach the minimum). 

Sx = f� (x) 

(EQ 5.22) 

which can be substituted into Equation 5.18) to give 

x* - X-f 
(xx) 

(EQ 5.23) 

This equation implies that the energy minimum is reached in one step. This is not the 

case, however, as the Taylor series was truncated. This forces the calculation to be 

carried out in a stepwise, iterative fashion. 

This proof represents the simple one dimensional case. Molecules, in general, have 

3N-6 degrees of freedom where N is the number of atoms and therefore the term f (x) 

is replaced by a vector containing the first partial derivatives of the steric energy with 

respect to the atomic coordinates. The f' (x) term is replaced by a matrix containing 

the second partial derivatives with respect to the atomic coordinates. 
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The basic NR iteration which minimises the steric energy of the molecule is therefore 
given by: - 

xk +t- xk - aF+OVs (x) 

(EQ 5.24) 

where x is the 3N (N = number of atoms) long vector of cartesian coordinates, a is the 

step length, F+ is the generalised inverse of the Hessian: - 

2 

F= vs i=1,3N, j=1,3N 
ax, ax 

and: - 

vv (x) = 
avs; j=1,3N 

s axe 

The calculation of the complete Hessian (a 3N x 3N matrix) is a very time consuming 

procedure and is not really suitable for molecules with over 200 atoms. Therefore an 

approximation known as the Block Diagonal Newton Raphson (BDNR) is used. This is 

so called because only the second partial derivatives in each 3x3 block along the 

leading diagonal of the Hessian are calculated. Therefore F is given by: - 

2 
a vs 

=3m+ 1,3m+3; m=0 N- 1 F= ax`axJ 
i= 3m + 1,3m + 3; j, 

Each block contains second partial derivatives of the steric energy with respect to the 

coordinates of only one atom. The BDNR iteration can therefore be applied one atom 

at a time, allowing each atom to be moved to its corrected position before the 

calculations for the next atom are started. Each atom's position is therefore calculated 

on the basis of the best structure available at the time. 

The BDNR iteration converges faster (usually in 50-200 iterations) than the steepest 

descent or pattern based methods and has a reasonable radius of convergence. 

5.3.2.3 Calculation of Derivatives 

The derivatives can be calculated in two ways: numerically or analytically20. 

Numerical methods use finite difference calculations to calculate the derivatives (i. e. 
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the coordinates are shifted by a small amount and the energy re-calculated). The 

equations for the first and second derivatives by numerical methods are therefore: - 
aVs VS (xi + Sx) - VS (xi - ax) 

axe 2Sx 

Central Difference (EQ 5.25) 

a VS V,. (x1 + Sx, xi -+ Sx) - VS (xi, xj +ýS2 x) - VS (xi + Sx 
a, 

xj) + VS (xi, xf) 
xýzý 

Forward Difference followed by Reverse Difference (EQ 5.26) 

2 a vs Vs (x, + äx) + VS (x1- Sx) -2 VS (x, ) 

ax? 6x2 

(BQ 5.27) 

where hic is a small value (i. e. 0.001) and i= ON, j=1,3N. The steric energy is 

therefore calculated at (x, ), (x1 + Sx) 
, (xi - Sx), (xj + Sx) and (x, + Sx, xj + Sx) 

. 

The second partial derivatives vary by so little after each iteration that it is sufficient to 

calculate them after only every 4 or 5 iterations for the Newton Raphson method. 

Analytical derivatives are determined by applying calculus to the various steric energy 

terms. The following sum of derivatives is required. 

avs 
t=lax, 

(EQ 5.28) 

Using the chain rule the first partial derivatives of energy (V) with respect to the 

cartesian coordinates can be expressed as 

ay ay aq 
ax; __ aq axe 

(EQ 5.29) 
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and the second partial derivatives as 

v_ aV aq aq +av a a2 2 g 
Dxjx; aq2 aX; ax; aq ax, x; 

(EQ 5.30) 

where q are the internal coordinates (i. e. lengths, angles and torsion angles) 

For example for bond stretching where the original equation is given by: - 
VI = Zk! 

(l-l0)2 

= Zk1(12-2110+ 
12) 

(EQ 5.31) 

then the derivative of VI with respect to the internal coordinate 1 is 

a v, 1k1(21-210) 
= k1(1-10) 

(EQ 5.32) 

and the second derivative w. r. t 1 is 
2 aVý_k 

ale 

(EQ 5.33) 

The first partial derivative of I w. r. t the cartesian co-ordinates is fairly simple to 

calculate, however, the derivatives of 0 and co are not quite as easy. They are derived by 

taking the first partial derivative of the cosine of the angle w. r. t. the atomic coordinates, 

as this is more straightforward than differentiating the angle itself. 

The equation for the first partial derivatives of 0 w. r. t the Cartesian coordinates is 

Do 
__ -i 

a (tose) axe sin O ax, 

(EQ 5.34) 
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and the equation for the second partial derivatives is 

2 2 
e -pose a (coSO) .a (cose) _1a (tose) 
x; ax; sin30 xý x; sin0 axax; 

Minimisation is moderately faster using analytical derivatives as it does not require 

multiple energy calculations. In a situation, however, where the form of the force field 

is constantly being changed (i. e. optimisation of the force field) numerical derivatives 

are more useful as there is no need to know the form of the force field. 

5.4 Conclusions 

The basics of molecular mechanics have been described: the components of the steric 

energy equation and the energy minimisation techniques. Depending on the 

information required (i. e structural, thermodynamic) from the force field calculation, 

different forms of force field are used. 

When far from an energy minimum, the simple steepest descents based minimisation, 

and a less complicated force field are the methods preferred. Close to the energy 

minimum, more sophisticated procedures such as the Newton Raphson iteration are 

more commonly used. 

Even with the increase in computational power it is still the case that ab initio 

calculations are only feasible on molecules with up to 100 atoms. Molecular mechanics 

calculations, however, can be conducted on molecules with thousands of atoms. This 

makes them suitable for studying large biological molecules and hence they are often 

used in drug design. 
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Chapter 6 

Parallel Molecular Mechanics Calculations using 
COMFORT and the BB08 

This chapter describes the parallelisation of a sequential FORTRAN molecular 

mechanics program to run on novel hardware, where each node processor has a 
dedicated high speed link to the host processor, and to all of the other nodes. Code/data 

can be broadcast from the host to the nodes over these direct links using an overhead 
free hardware mechanism. The broadcast hardware (the BB08) is supported 'by the 
COMFORT message passing subroutine library. The calculation is executed on a PC 

host computer with four T414 nodes on a BB08. 

First of all the main features of CAMD (Computer Aided Molecular Design) are 
described before explaining the BB08 (the broadcast hardware) and COMFORT. The 

structure of the sequential molecular mechanics program CHEMMIN is detailed and 

then the parallelisation strategies for molecular mechanics calculations are discussed. 

The parallelisation of CHEMMIN is described along with the implementation of 
COMFORT into it. Finally the addition of a graphical interface to the parallel 

molecular mechanics program is detailed. 

6.1 Introduction 

Molecular mechanics(MM) calculations as described in the previous chapter are a very 

computationally intensive task. Even for a small molecule (-100 atoms) there are 

thousands of parameters to be evaluated. The advent of powerful workstations and 

parallel computers have made it possible to execute MM calculations on large protein 

structures comprising thousands of atoms. 

Usually the MM calculation is incorporated into a CAMD package1-4. This is a 

program with a graphical interface which allows the user to construct molecules by 

combining smaller molecules or fragments of molecules into a larger overall structure. 
The molecule can also be constructed one atom at a time using known average bond 

lengths, valency angles, and torsion angles. 
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Once the molecular model has been built it can be manipulated in various ways: bonds 

can be broken and joined; lengths, angles and torsion angles can be altered; the image 

of the molecule can be altered from ball and stick representation to space-filling, 3-D 

stereo etc.; the whole molecule can be rotated, scaled etc. There is usually a range of 

computational procedures available as well, such as molecular mechanics, molecular 
dynamics and conformational search procedures like Monte Carlo. 

Even on the fastest workstations that are available today it can still take a long time 

(several hours or even days) to execute the computational procedures mentioned 

above. Many implementations of parallel molecular dynamics5-9 (the simulation of 

molecular motions with time) have been attempted, however little work has been 

published on parallel energy minimisation. 

This chapter describes a parallel implementation of an energy minimiser which utilises 

the COMFORT host/node programming environment and BB08 octal broadcast link 

interface13. Each node has a direct link to the host computer, down which code and/or 

data can be transmitted, received or broadcast. 

6.2 The BB08 and COMFORT 

6.2.1 The BB08 Broadcast Link Interface 

The BB08 octal broadcast link interface is a printed circuit board with eight C012 link 

adapters interfaced to a microprocessor style bus. Data can be broadcast 

simultaneously to all the C012s. The links are either routable to size one TRAM slots 

or to a DIN41612 connector (See Figure 6.1). 

By routing the links to the connector this allows microprocessors such as PCs to be 

used as nodes. Using one BB08 board per node this can provide full connectivity 

between eight nodes each with a direct connection to the host. Figure 6.2 shows the 

connections from Node 3. The other nodes have connections that are analogous to this. 

It is possible to connect 16,32 etc. nodes if more BB08 boards are added per node. 
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PC ISA BUS 

buffer and address I 
decoding 

C012 C012 C012 C012 C012 C012 C012 0012 To Size 1 
TRAM slots 
or DIN41612 
connector 

FIGURE 6.1. Basic layout of BB08 board 

Node 3 

Link 7 Link 6 Link 5 Link 4 Link 3 Link 2 Link 1 Link 0 

Node 7 Node 6 Node 5 Node 4 Host Node 2 Node 1 Node 0 
Link 3 Link 3 Link 3 Link 3 Link 3 Link 3 Link 3 Link 3 
®®®® 

ariý. ýi O 

FIGURE 6.2. Connections from BB08 board on Node 3 

Using PC motherboards as nodes provides an easily up-gradeable, cost-effective, fast 

parallel computer. It is only the host computer that requires a keyboard and monitor as 
it loads/runs programs on the node processors. Another advantage of using PC 

motherboards as node processors is that it is simple, and inexpensive, to add a hard disc 

and CD ROM drive to every node. 

The TRAM slots on the BBO8 allow transputers or other TRAM based processors to be 

used as nodes. Again each node has a direct physical link to the host down which code/ 
data can be broadcast. In the case of a T-800 transputer that has only four links 

complete connectivity between the nodes cannot be achieved using the TRAM slots. 
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The interface between the C012s and the PC bus is similar to the dual link adapter 
board discussed in Chapter 3. The eight CO12 link adapters are accessible in the normal 

way via their read, write, input status, and output status registers. In addition, however, 

the write registers can all be accessed simultaneously via a single broadcast data 

register. During a broadcast write the DO-D7 data lines, the chip select signals, and the 

read/write signal of all eight C012 link adaptors are activated simultaneously with the 

same data. This simultaneously outputs the same byte of data down all eight links. 

When the parallel minimiser was being developed, a parallel computer that uses PCs as 

nodes was still under construction. The prototype version of the minimiser was 

therefore run on four size 1 TRAMs each with a T4XX transputer and 1Mbyte of 

memory. The same principles could be applied when using PCs as nodes with little 

alteration to the software. 

6.2.2 The COMFORT Programming Environment 

COMFORT is a library of FORTRAN subroutines similar to those provided by 

EXPRESS (Chap. 1 Ref. 11) and MPI (Chap. 1 Ref. 16), which allow the host 

computer to broadcast load code onto the nodes and also facilitate communication 

between the nodes, amongst other things. The host/node methodology allows the host 

to participate in the calculation rather than act merely as a facilities server. COMFORT 

makes parallelisation easier because no communication tasks are required on the nodes 

and no configuration (in the 3L FORTRAN sense) is required. 

The loading and running of programs on the nodes is the responsibility of the host 

processor. A program is loaded onto the nodes and run, either from the node's hard disc 

if it is already there, or via the host to node link with a hard disc copy being made for 

future use. 

For speed and efficiency COMFORT is built around a library of low level subroutines 

which are written in assembly language. An example of some of these subroutines is 

shown below in Table 6.1. 

The name of the subroutines reflect their function. The user does not usually need to 

access these low level subroutines although they are available and documented. These 
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routines are not required in the application discussed in this chapter as it does not 

require inter-node communication, only host-node. 

Fortran Call Definition of Arguments 

Call LinklnByte (Linkßase, Data- LinkBase - Base address of C012 link adaptor registers 
Byte DataByte - Data byte read from C012 read data register 
Call LinkOutByte (LinkBase, LinkBase - Base address of C012 link adaptor registers 
DataByte) DataByte - Data byte written to C012 write data register 
Call LinklnWord (Link-Base, LinkBase - Base address of C012 link adaptor registers 
DataWord, ByteRev) DataWord - Int*2 value assembled from input bytes 

ByteRev - Enables big/little endian byte ordering 

Call LinkOutWord (LinkBase, LinkBase - Base address of C012 link adaptor registers 
DataWord, ByteRev) DataWord - Int*2 value to output as bytes 

ByteRev - Enables big/little endian byte ordering 
Call LinkInLongWord (Link- LinkBase - Base address of C012 link adaptor registers 
Base, DataLongWord, ByteRev) DataWord - Int*4 value assembled from input bytes 

ByteRev - Enables big/little endian byte ordering 
Call LinkOutLongWord (Link- LinkBase - Base address of C012 link adaptor registers 
Base, DataLongWord, ByteRev) DataLongWord - Int*2 value to output as bytes 

ByteRev - Enables big/little endian byte ordering 
Call LinklnMessage (LinkBase, LinkBase - Base address of C012 link adaptor registers 
Massage, MessageLength) Message - Message assembled from input bytes 

MessageLength - Number of bytes to input 

Call LinkOutMessage (LinkBase, LinkBase - Base address of C012 link adaptor registers 
Message, MessageLength) Message - Message of bytes to output 

MessageLength - Number of bytes to output 

TABLE 6.1. COMFORT low-level subroutines 

These low level subroutines are designed to explicitly support message passing. In 

addition to these, COMFORT has a library of subroutines designed to give the 

FORTRAN programmer access, amongst other things, to the rich set of run time 

facilities usually available when programming in C. These include access to a range of 

directory services, file services and the PC extended memory. Examples of some of 

these routines are shown in Table 6.2.. 

Fortran Call Definition of Arguments 

Call ChangeDirectory (DirectoryName, DirectoryName - Name of directory to change to 

Error) Error - Error number 

Call DeleteDirectory (DirectoryName, DirectoryName - Name of directory to delete 

Error) Error - Error number 

TABLE 6.2. CUA1rUKI run-univ nulä11v3 
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Fortran Call Definition of Arguments 
Call MakeDirectory (DirectoryName, DirectoryName - Name of directory to create 
Error) Error - Error number 
Call DeleteFile (FileName, Error) FileName - Name of file to delete 

Error - Error number 
Call FindFileFirst (FileMask, Attributes, FileMask - File mask for search 
FileName, Error) Attributes - File Attributes 

FileName - First filename which matches file mask 
Error - Error number 

Call GetFileAttribs (FileName, FileName - Filename whose attributes are required 
FileAttribs, Error) File Attribs - File attributes 

Error - Error number 
Call AllocateXm (BlockSize, Handle, Blocksize - Size of extended memory block requested 
Error_ Handle - Handle of extended memory block 

Error - Error number 
Call FreeXmBlk (Handle, Error) Handle - Xm handle 

Error - Error number 
TABLE 6.2. COMFORT run-time libraries 

The application detailed in this chapter uses the higher level subroutines shown 

below: - 
Configure (BoardBase, NumberProcs, TimeoutRes) 

Reset (Node) 

Load (Node, ExeFileName, Error) 

Initialize (Error) 

Send (Destination, Buffer, BuffType, Butt Len, Error) 

Receive (Source, Buffer, BuffType, Buff Len, Error) 

Table 6.3. shows the purpose of each subroutine and defines the arguments. With the 

exception of Load, subroutines with the same name as their host counterparts are used 

by the node, although in one or two cases they operate slightly differently. For instance 

in the case of Load and Receive, on the host these routines possess an extra Timeout 

argument which specifies the time before a timeout occurs. If there is a problem with 

host/node communication, Receive will time out after the specified number of clock 

ticks and return the timeout error number in Error. 

It should also be noted that in the Load, Send and Receive routines if the Node ID is set 

equal to -1 then this broadcasts loads code/data simultaneously onto all the nodes. 
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The use of these subroutines will become clear in the explanation of their 
implementation in the parallel energy minimiser. 

Subroutine Definition of Arguments Purpose 
Configure BoardBase - Base PC i/o address of BB08 Hardware setup 

NumberProcs - Number of node processors 
TimeoutRes - Resolution of timeout clock 

Reset Node - Node ID number -1 = all nodes) Resets one or more nodes 
prior to loading 

Load Node - Node ID number -1 = all nodes) Loads program onto specified 
ExeFileName - Name of file containing pro- node/nodes 

gram code 
Error - Error number 

Initialize Error - Error number Send each node a message 
containing the total number of 
nodes, the host identification 
number, and the identification 

number by which the node 
itself will be known 

Send Destination - ID number of node to receive Sends data in Buffer to Desti- 
message nation 

Buffer - Integer* 1 array of data to transmit 
Bufflype - User defined code for type of 

message 
BuffLen - Length of message, in bytes 

Error - Error number 
Receive Source - ID number of node originating the Receives data from Source 

message and stores it in Buffer 

Buffer - Integers I array which holds received 
message 

BuffType - User defined code for type of 
message 

BuffLen - Length of message, in bytes 

Error - Error number 

TABLE 6.3. Description of COMFORT routines 

6.3 The Molecular Mechanics Program 

The parallel minimiser was derived from a sequential stand-alone minimiser, 

Chemmin, which was developed in-house at Glasgow University12. A stand-alone 

minimiser usually loads a file containing information on a molecule such as number of 

atoms, atom types and positions etc., and then performs a single calculation such as 

energy minimisation. The stand-alone minimiser Chemmin has been integrated into the 

COMMET and CHEMMOD molecular mechanics packages3. 
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6.3.1 The Chemmin Minimiser 

The basic structure of Chemmin is shown in Figure 6.3 and its pseudocode is shown in 

Figure 6.4 on page 185 with the appropriate subroutines highlighted in bold. Chemmin 

has a modular structure and was written in FORTRAN. 

The program can essentially be divided into two parts; initialisation and calculation. 
Mindat, Mininitl, Cetcop, Getopb and Asboml are responsible for the initialisation 

The pseudocode for Mindat is shown in Figure 6.5 on page 186. First of all an integer 

value is given to each atom type (i. e. H, Csp3, Csp2 etc. ). Reference bond angles and 

electronegativities values are then assigned to each atom type by storing the values in 

arrays (i. e. EN(1) stores the electronegativity value for atom type 1, EN(2) stores the 

electronegativity value for atom type 2 etc. ). The number of the atom types which are 

aromatic or involved in double bonds are stored in arrays ARTYPS and DBTYPES 

respectively. 

Several arrays are then constructed which contain: - 

reference bond lengths between atom types 

" reference bond lengths for conjugated single bonds between atom types 

" reference periodicities for each bond between atom types 

" reference barrier to free rotation for each bond between atom types 

" A6 and B 12 values for Lennard-Jones potential for interactions between atoms of 
the same type 

" reference barrier to free rotation values for conjugated single bonds. 

These arrays are two dimensional and arranged such that entry (ij) in the arrays 

contains the correct value for the bond length etc. between i and j (where i and j are 

atom type numbers). 

The pseudocode for Mininitlis shown in Figure 6.6 on page 186. Again several 

arrays are constructed which contain: - 

" bond stretching constants for each bond between atom types 

" bond stretching constants for conjugated single bonds 

" A6 and B 12 values for the Lennard-Jones potential for interactions between atoms 
of different types 
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I rXE-%Wra( 

Minda 
Sets ups variables and 
arrays containing initial 
force field parameters. 
i. e. assigns integer values 
to each atom type, sets up 
tables containing reference 
bond angles, lengths etc. 

Sets up arrays of bond 
stretching constants for 
single bonds and conjugated 
bonds. 
Lennard Jones Potential for 
atom pairs are determined. 
Various matrices made 
symmetric. 
Assigns values to various 
constants 

Getcop 
Reads file containing 
control parameters such 
as number of iterations, 
van der waals cutoff 
distance etc. 
If there are any constraints 
on the molecule then 
various atomic positions, 
bond lengths etc. are fixed 

Molmec 
Master Segment 
Loads file containing 
atomic coords etc. 

Bdmin 
Calculates derivatives 
and minimises energy 

Bak 
Sets up tables of 
bonds etc. 
Calculates total potential 
energy of molecule by 
calculating the individual 
energies due to bond 
stretching, angle bending. 
torsion angles, coulombic 
interactions and out of 
plane bending, and then 
sums these to get the 
total energy. 

Getopb_ 
Decides which atoms 
are subject to out of 
plane bending and 
assigns out of plane 
bending constants 
to them. 

FIGURE 6.3. Program Structure of Chemmin 

En=l 

Calculates the 
contribution to the 
steric energy 
from the jth atom 

Asboml 
Assigns bond multiplici 
to bonds in molecule 
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Initialise various reference values (Mindat) 
Initialise various constants (Mininitl) 
Read in file containing data on molecule (Molmec) 
Assign bond multiplicities to each bond in molecule (Asboml) 
Read in file containing control parameters (Getcop) 
Assign out of plane bending constants for planar groups of atoms in molecule (Getopb) 
Calculate what bonds, angles, torsion angles and nonbonded Interactions each atom 
in the molecule is involved in and store in tables (Pote) 
Calculate the total potential energy of the molecule (Pote) using 

VS = VI + VO + VW + Vr + Vq + Vorb 

Do j=1, number of atoms(Bdmin) 
Calculate the energy of the jth atom using Energi 
Dok=1,3 

Increment kth coordinate of jth atom and recalculate energy using Energl 

Decrement kth coordinate of jth atom and recalculate energy using Energi 

Calculate first derivative using 
3Vs Vs (xk + sx) - Vs (xk - sx) 

axk 28x 

Dok=1,3 
Calculate sum of squares of first derivatives 

If on 1st, 5th, 9th etc. iteration 
Do 1L =1,3 

Increment Ith coordinate of jth atom 
Calculate VS (x1 + Sx) - Vs (x1) 

Calculate V. (x, + Sx) -2 V5 (xi) 

Do 2M=L, 3 
If (L. EQ. M) then goto 3 

Increment mth coordinate of jth atom and recalculate energy 
using Energl 

Calculate 2nd derivative using 

a 2V VS (x, + Sx, X. + Sx) - VS (x!, X. + 84 - VS (x, + Sx, xm) + VS (x� xm) 
s aXIXm 5x 2 

3 
Goto 2 
Calculate 2nd derivative using 

2 vs 

axe 

Continue 
Continue 

2 
1 

VS (x, + 8x) + VS (x, - Sx) - 2Vs (x, ) 

5x2 

FIGURE 6.4. I'seudocode for Chemmin 
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Assign integer values to each atom type 
Assign reference bond angles to each atom type 

Assign reference electronegativities to each atom type 

Define which atom types are aromatic 

Define which atom types are double bonded 
Assign reference bond lengths to each bond between atom types 

Assign reference bond lengths for conjugated bonds 

Assign reference periodicities for each bond between atom types 
Assign reference barrier to free rotation values for each bond between atom types 
Assign A6 and B12 values for Lennard-Jones potential for each atom type 
Assign reference barrier to free rotation values for conjugated single bonds 

FIGURE 6.5. Pseudocode for Mindat 

Calculate bond stretching constants for each bond between atom types 

Calculate bond stretching constants for conjugated single bonds 

Calculate the A6 and B12 values for the Lennard-Jones potential for each atom pair 

Make matrices containing reference bond lengths, periodicities and barrier to free 

rotation symmetrical 

Set value of barrier periodicity for conjugated single bond 

Set value of Sx used to calculate numerical derivatives 

FIGURE 6.6. Pseudocode for Mininitl. dat 

The bond stretching constants are calculated from the reference bond lengths and the 

B6 and B 12 parameters are calculated from the B6 and B 12 values for the individual 

atoms. 

Mininiti also makes the matrices (arrays) set up in Mindat containing reference 

values symmetrical. When constructed in Mindat these matrices are upper triangular. 

They are made symmetrical in order that when they are accessed it is immaterial which 

way round the indices are (i. e REFLEN(x, y) is equivalent to REFLEN(y, x)). 

Then the values of various constants are set: - 

" barrier periodicity for conjugated single bond 

" value of 8x used to calculate numerical derivatives 

" bond length tolerance 

After Mindat and Mininitl have been executed, the file is read which contains the 

atomic coordinates etc. of the molecule that has to be minimised. This allows arrays to 
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be initialised that contain information specific to the molecule. The first of these is 

constructed in Asboml. 

This routine constructs a two dimensional array that contains pseudo bond orders for 

each bond in the molecule. A single bond is given a value of one, a double bond a value 

of two and a conjugated bond a value of 1.1 or 1.5 depending on the length of the bond. 

The next routine to be called is Getcop. This reads a file containing a number of 

control parameters for the minimisation. These are: - 

" number of iterations 

" van der Waals cutoff distance 

" energy threshold for printing 

" maximum allowed shift 

" long, abbreviated or short printed output 

" constraints on atoms, lengths, angles, torsion angles and molecule 

Getcop also assigns a value to NDERIV which determines whether the second 

derivatives are calculated every iteration or not. 

Initialisation is completed by the routine Getopb which assigns out of plane bending 

constants for atoms that are subject to this constraint. 

The routines which execute the calculation are Bdmin, Pote and Energl. Bdmin calls 

Pote which, using the equations detailed in chapter 5, calculates the initial potential 

energy of molecule. Pote also sets up the three two dimensional arrays NBMAT, 

NAMAT and NTMAT that contain bonded/nonbonded interactions for each atom pair, 

angles each atom is involved in and torsion angles each atom is involved in. These are 

used in Energl. 

The entries in the NBMAT array are integer values that indicate the type of interactions 

between atom pairs. A value of two indicates the two atoms are bonded, a value of four 

indicates a nonbonded interaction, a value of three indicate a 1,3 interaction and a 

value of five indicates no interaction between the pair of atoms. 

Each angle in the molecule is assigned a number and the array NAMAT contains the 

number(s) of the angle(s) each atom is involved in. The array NTMAT is analogous to 

NAMAT and is for torsion angles. 
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After Pote has finished, Bdmin calculates the derivatives and hence the corrected 
coordinates using the BDNR method, for each atom at a time. Once the specified 

number of iterations is complete the new potential energy is calculated by Pote and 

printed to the screen. 

In order to calculate the derivatives Bdmin calls Bnergl which calculates the 

contribution to the steric energy from the jth atom. Since the derivatives are calculated 
by numerical methods, the steric energy is evaluated for each atom at (x, y, z), (x + Sx, y 

, z)), (x. y+ Sy, Z), (X, y, z+ 8z), (X - 6x, y, Z)), (x, y- Sy, Z)), (x, y, z- Sz), (X + SX, Y+ 
Sy, z), (x + Sx, y, z+ Sz), (x, y+ Sy, z+ Sz). The code in Energl is very similar to Pote 

except that it is only the steric energy of one atom that is calculated. The second 
derivatives are only calculated every 1st, 5th, 9th iteration or every iteration if specified 
in Getcop. 

Chemmin is a sequential minimiser designed to run on PCs. Even if it was run on a fast 

workstation the speed of the minimisation on a large protein structure is not fast 

enough to give a good cost/performance ratio. Parallel versions of molecular 

mechanics have been constructed for use with arrays of transputers12 (and other 

processors) and also using clusters of workstations to improve the cost/performance 

ratio. 

6.3.2 Parallelisation Strategies for Energy Minimisation 

As stated previously, many parallel versions of molecular dynamics have been 

implemented. This calculation is very similar to energy minimisation as it involves 

calculating the steric energy of all the atoms in a molecule and then calculating the first 

derivative of this energy (the second derivatives are not required). The parallelisation 

strategies used are therefore comparable to those used in molecular mechanics. 

Swanson and Lybrand8 parallelised the AMBER molecular modelling package by 

distributing the calculation of nonbonded energies and forces across a collection of 

Unix workstations linked by Ethernet. The reasoning behind this is that nonbonded 

calculations typically consume over 90% of the total execution time of an energy 

calculation compared to about I% for the bonded forces. 
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AMBER calculates the nonbonded pair list (i. e. the atoms involved in nonbonded 

interactions) on an amino-acid residue basis (AMBER is only used for proteins). If the 

distance between any two atoms in two different residues is within the cutoff distance, 

then all atoms of each residue are considered to have pairwise nonbonded interactions, 

with some exceptions. 

Swanson and Lybrand distributed the calculation evenly among the nodes by giving 

each node a portion of atoms which contained an equal number of nonbonded pairs. 

The nodes only work on the nonbonded interactions and the host works on the bonded 

interactions. This ensures that the host is finished calculating in sufficient time to 

receive the results back from the nodes. 

By only allowing the host to calculate the bonded interactions this results in the host 

being idle for some time waiting for the results from the nodes. It would seem more 

efficient to include the host in calculation of some of the nonbonded forces and 

energies. Also by only including the nonbonded calculation on the nodes this means 

that the node code is significantly different from the sequential version of the code. 

Thus more work is required to parallelise the code. 

This parallel molecular dynamics code does however give good efficiency when run on 

a network of workstations using PVM to implement message passing (-88% on four 

Indigos). It is also highly portable and has been run successfully on clusters of Silicon 

Graphics, IBM RS6000, DEC ALPHA, and HP workstations as well as CRAY T3D 

and Kendal Square KSR2 parallel supercomputers. When using Ethernet connections 

between the processors, interprocessor communication is slow compared to the high 

speed connections used in special purpose multiprocessor machines such as the CRAY 

T3D. 

Vincent and Merz9 parallelised the molecular dynamics calculation in AMBER by 

dividing the calculation of both the bonded and nonbonded interactions between the 

nodes. All message passing was compliant with the MPI (Message Passing Interface) 

Standard. 

In this case the nonbonded interactions are divided between the nodes in a residue 

fashion (i. e. each node is responsible for a certain number of residues). If the residues 

are simply divided up evenly between the nodes then this results in a load imbalance 
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between the nodes as each node would be responsible for a different number of 
nonbonded pairs. This is due to the fact that AMBER calculates the nonbonded pair list 
by assuming that if any two atoms on different residues are within the specified 
distance, then all the atoms on the two residues are said to interact. 

Vincent and Merz rectify the load imbalance by manually redistributing the pairs 

among the nodes after each has generated its own pair list. This involves each node 

sending a count of its nonbonded pair list to all the other nodes and from this 
determining a target pair count. The pairs are then redistributed among the nodes until 
the target pair count is reached. This results in an increase in the amount of 
interprocessor communication which, depending on the speed of the hardware links, 

will reduce the efficiency of the system. 

Schweitzer et al. 10 parallelised the molecular mechanics MM2 package by splitting 

four computationally intensive subroutines over four processors on a shared memory 

computer. The subroutines were DVDWCG, DDIPOL, DOMGA and DRANG which 

calculate the derivatives for van der Waals energy, bond dipole interactions, torsional 

energy and stretching and bending energy respectively. Each subroutine executes on a 

separate node which results in uneven load balancing between the processors as some 

subroutines take longer than others. Using this method an improvement of only 50% in 

program execution speed is achieved. 

The parallel version of CHEMMIN divides the data domain onto the available 

processors. The atoms are divided between the available nodes so that each node works 

on a `slice' of atoms. For each atom both the bonded and nonbonded energies, and 

derivatives are calculated. Each node has a copy of the atomic coordinates of all the 

atoms, as some of the atoms in its `slice' may interact with atoms on other nodes. The 

host calculates the initial and final steric energies of the molecule and the nodes 

execute the energy minimisation. 

The nodes consider each atom in their `slice' one at a time. For each atom the first and 

second partial derivatives of the steric energy with respect to the atomic coordinates 

are calculated. The atom's corrected coordinates are then computed using the Newton 

Raphson iteration. Once the corrected coordinates for all the atoms on a node have 

been computed, they are sent back to the host. The host assembles a complete set of 
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new `improved' coordinates from the `slices' returned by the nodes and broadcasts this 

set back to all the nodes ready for the next iteration. 

In CHEMMIN the nonbonded interactions are calculated differently from in AMBER. 

They are not calculated by considering interactions between residues but instead each 

atom is considered in turn and if it is within a certain distance to any other atom then 

they are said to interact (i. e if two atoms on different residues are within the cutoff 
distance then all the atoms in the two residues are not assumed to interact). 

The number of atoms allocated to each node is equal (some nodes have an extra atom if 

the number of atoms is not exactly divisible by the number of nodes). This gives 

efficient load balancing as the nonbonded interactions which take up most time, will be 

distributed reasonably evenly across the nodes (at least any differences in the number 

of nonbonded interactions are likely to be small compared to the total number of 

nonbonded interactions). This method of parallelisation was pioneered by White et alle 

and is similar to that of Vincent and Merz. 

6.3.3 Hostmin and Nodemin 

CHEMMIN is essentially divided into two parts: Hostmin which runs on the host (a 

PC) and Nodemin which runs on the nodes. The partition of the subroutines used in 

CHEMMIN between the host (Hostmin) and the nodes (Nodemin) is shown in 

Figure 6.7 on page 192. A full program listing of Hostmin and Nodemin is shown in 

Appendix C pages 255 - 282. 

The subroutine BDMIN on the host is different from the version used in the sequential 

minimiser CHEMMIN. In the parallel version it is still responsible for calculating the 

initial and final steric energies. It does not however calculate the derivatives as it is the 

nodes that execute the minimisation. Instead it loads the node program onto the nodes 

and sends the required data to the nodes. 

To calculate the first and second derivatives, the nodes require a substantial amount of 

data that the host has obtained or already calculated. Some of this information is sent to 

the nodes but most of it is recalculated by the nodes. This is thought to be quicker than 

sending this data to the nodes (if the node processors were extremely slow then this 

may not be the case). 
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Molmec 

Bdmin 

I Mininitl Pote 

Getcop Getopb Asboml 

L 
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Nodemin 

List_Calc Mininit 1 Energl 

FIGURE 6.7. Partition of subroutines between host and nodes 

The data downloaded to the nodes is mainly information about the molecule (number 

of atoms, bonds etc. ), various constants, the tables containing fixed bond lengths, 

angles etc. and the atomic coordinates. From this data the other required information is 

calculated. The routine Nodemin on the nodes receives the data from the host, 

calculates the derivatives and sends the corrected coordinates back to the host. 

The routine List_Calc on the nodes is basically a cut-down version of Pote that only 

calculates the arrays NBMAT, NAMAT and NTMAT that contain bonded/ nonbonded 
interactions for each atom pair, angles each atom is involved in and torsion angles each 

atom is involved in. Energl is identical to the version used in the sequential minimiser. 

In the parallel version of the minimiser the routines Mindat and Mininitl were 

combined into the one routine (Mininitl). 

Figure 6.9 and Figure 6.10 on page 194 show the pseudocode for Hostmin and 
Nodemin. The NFIRST and LAST variables referred to in Nodernin are the first and last 

atoms in the nodes slice. These are calculated using the code shown in Figure 6.8; me 
is the id number of the node, NUMPROC is the number of nodes and NUMATS is the 
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number of atoms. Each node is allocated NUMATS/NUMPROC atoms, with the first 

NMOD nodes being allocated an extra atom. This distributes the atoms as evenly as 

possible across the nodes and provides efficient node balancing. The number of atoms 
in a nodes `slice' is stored in BFLENG. 

NDIV = NUMATS / NUMPROC 

NMOD = MOD (NUMATS, NUMPROC) 

IF(me. 1t. NMOD)THEN 

NFIRST = (me*NDIV)+me+1 

LAST = ((me+1)*NDIV)+me+1 

ELSE IF(me. eq. NMOD)THEN 

NFIRST = (me*NDIV)+me+1 

LAST = ((me+1)*NDIV)+"me 

ELSE IF(me. gt. NMOD)THEN 

NFIRST = (me*NDIV)+NMOD+1 

LAST = ((me+1)*NDIV)+NMOD 

ENDIF 

BFLENG=((LAST+1)-NFIRST) 

nfirst4 = (nfirst * 4) -3 

FIGURE 6.8. Code to allocate atoms to node 

6.3.4 Implementation of host/node communication using COMFORT 

and the BB08 

In a conventional 3L FORTRAN" (a Parallel Fortran) based implementation of 

parallel molecular mechanics the nodes would be connected together in a pipeline or 

more complex topology and the code would be loaded onto the nodes in the standard 

`store and forward' manner12. Any data exchanged between the host and nodes will 

generally have to pass through one or more intermediate nodes before it reaches its 

destination. This requires the nodes to run communication tasks which reduces the raw 

computational power deliverable to the application. 
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Read file containing atomic coordinates 
Read file containing various parameters 
Set up various tables required for the calculation 
(i. e. bond lengths, bond angles etc. ) 
Calculate the total potential energy of the molecule 
Configure, reset, load and initialize nodes 
Send arrays of data to the nodes 
While (no. of iterations not complete) do 

Send atomic coordinates to nodes 
Receive modified coordinates from nodes 

Calculate Final Steric Energy of the Molecule 

FIGURE 6.9. Pseudocode for Ilostmin 

Initialize node 
Receive data from host 
Set up various tables required for the calculation 
(i. e. bond lengths, bond angles etc. ) 
Decide which atoms the nodes will work on 
Receive atomic coordinates from host 
For J= NFIRST, LAST do 

Calculate Energy of Jth atom 
For k =1 ,3 do 

Increment kth coordinate of jth atom and recalculate energy 
Decrement kth coordinate and recalculate energy 
Calculate first derivative for kth coordinate 

Fork=1,3 do 
sum of squares of first derivatives = 
sum of squares of first derivatives + (first derivative for kth coordinate)2 

If Mod(Iteration, 4) =0 then 
Calculate second derivatives for jth atom 

Calculate corrections to coordinates for jth atom 
Fork=1,3 do 

Calculate new value for kth coordinate of jth atom 

Send modified coordinates and sum of squares of first derivatives back to host 

FIGURE 6.10. Pseudocode for Nodemin 

This overhead can be eliminated by using the BB08 board which allows code/data to 
be broadcast simultaneously onto all the nodes. Initial parallel versions of the 
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minimiser used a non-standard C library to implement host/node communication via 

the BB0814. The following sections describes how COMFORT was implemented 
instead of the this C library in Hostmin and Nodemin. 

6.3.4.1 The Implementation of COMFORT in HOSTMIN 

An early version of COMFORT was used. The host code was written in Microsoft (16- 

bit) FORTRAN(Chap 3, Ref. 9) (current versions of COMFORT use Microsoft 32-bit 

FORTRAN) and the node code with 3L parallel FORTRAN (the 3L FORTRAN node 

programs are configured with the stand alone FORTRAN run time library). Although 

this methodology is not without its problems (more on this later) it does result in 

reasonably portable programs15. 

COMFORT is only used in the communication between the host and the nodes: the rest 

of the code remains unchanged (compared to the earlier version that used the C 

library). Figure 6.11 on page 196 shows FORTRAN code to broadcast code and data 

onto the nodes. 

The nodes are loaded with code via the configure, reset, load and initialize routines that 

were explained in Table 6.3. on page 182. The initialize routine is slightly different as 

it sends a matrix `ProcConn' to the nodes. This tells each node the link interconnection 

topology between nodes (as explained in Section 6.2.2 on page 179 the latest versions 

of COMFORT use complete connectivity and the topology maps are unnecessary). The 

variable NETCAST used to specify the node id numbers in the SEND and LOAD 

routines is set to -1. This indicates a broadcast code or data onto all the nodes. 

The data required by the nodes is sent in several arrays via the SEND routine which 

broadcasts the data to all the nodes simultaneously via the BB08 board. The variables/ 

arrays downloaded to the nodes are stored in common blocks. A sample of the 

common block declarations is shown in Figure 6.12 on page 196 and a definition of the 

variables is presented in Table 6.4. on page 197. Sending this data to the nodes is not as 

simple as it might first appear, mainly due to restrictions imposed by the Microsoft 16- 

bit FORTRAN which are not present with the 32-bit version. 
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NETCAST = -1 
file= 'c: \comfort\lesley\min\nodemin. app'//char(0) 
call configure(#180,4, #976f) 

call reset(NETCAST) 

call load(NETCAST, file, 100, error) 

do i=1,4 

ProcConn(1, i)=4 

ProcConn(2, i)=-1 

ProcConn(3, i)=-1 

ProcConn(4, i)=-1 

end do 

call initialize(ProcConn, 100, error) 

call send (NETCAST, buffer_atmdatO, 1, total_atmdatO, 100, error) 

call send (NETCAST, buffer_atmdatl, 2, total_atmdatl, 100, error) 
call send (NETCAST, buffer-moldat, 3, total_moldat, 100, error) 
call send (NETCAST, buffer_ffp, 4, total_ffp, 100, error) 
call send (NETCAST, buffer_cffp, 5, total_cffp, 100, error) 
call send (NETCAST, buffer_contrl, 6, total_contrl, 100, error) 
call send (NETCAST, buffer_constn, 7, total_constn, 100, error) 

C SEND INTEGER*1 VARIABLES/ARRAYS SEPARATELY 

call send (NETCAST, ATYNUM, 8, LENGTH9,100, ERROR) 

call send (NETCAST, BONDML, 9, LENGTH10,100, ERROR) 

call send (NETCAST, MOLNUM, 10, LENGTH9,100, ERROR) 

999 write (5, *)'No of iterations =', itrcmp +1 

C SENDS COORDINATES TO NODES 

call send(NETCAST, XO1,42, INT2(length7), 100, error) 

FIGURE 6.11. Host Code that broadcasts arrays to node 

COMMON/ATMPRP/ EN(MAXTYP) 
COMMON/MOLDAT/ NUMATS, NMOLS 
COMMON/FILDAT/ DLUNIN, DLNOUT, LUNOUT 
COMMON/FILCHR/ INFILE, OUTFIL, FILTYP 
COMMON/HEADER/ TITLE 

COMMON/FFP/ REFLEN(MAXTYP, MAXTYP), STRCON(MAXTYP, MAXTYP) 
1, A6(MAXTYP, MAXTYP), ß12(MAXTYP, MAXTYP), REFANG(MAXTYP) 

2, PERIOD(MAXTYP, MAXTYP), BARIER(MAXTYP, MAXTYP) 

COMMON/CFFP/ CREFLN(MXCNJ, MXCNJ), CSTCON(MXCNJ, MXCNJ) 
1, CBARR(MXCNJ, MXCNJ), CPRIOD 

COMMON/CONJTP/ ARTYPS(NARTYP), DBTYPS(NDBTYP) 

FIGURE 6.12. Common Block Declarations 
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Variable Name Definition 

EN Array containing electronegativity values 
NUMATS, NMOLS Number of atoms, number of molecules 
DLUNIN, 
DLNOUT, LUNOUT 

Unit file identifiers 

INFILE, OUTFIL, FILTYP File names 
TITLE Title of file 

REFLEN Array containing reference lengths 

STRCON Array containing stretching constants 
A6, B 12 Arrays containing A6 and B 12 values for nonbonded energy 
REFANG Array containing reference angles 
PERIOD Array containing periodicity values 
BARIER Array containing barrier to free rotation values 

CREFLN, CSTCON, CBARR, 
CPRIOD 

Arrays containing reference lengths, stretching constants, bar- 
rier to free rotation, periodicity for conjugated bonds 

ARTYPS, DBTYPS Arrays containing values of aromatic and double bond atom 
types 

TABLE 6.4. Variable names and definitions 

The simplest approach may appear to be to send a large array whose start address is the 

address of the first variable in the first common block. The length (in bytes) of this 

array would be equal to the total length of all the common blocks. This approach is not 

possible as although the common blocks will be stored contiguously in memory, they 

are each assigned to a different 64kbyte wide segment by the FORTRAN compiler and 

addresses do not automatically roll over from one segment to the next. Also, unless the 

the molecule under investigation contained the maximum number of atoms, then the 

array would not be full resulting in a waste of space. 

Another possible approach might be to dispense with the individual common blocks 

and put all of the data into one large common block. This is not possible as there is 

more than 64kbytes of data and the compiler limits each common block to a maximum 

of 64kbytes in length. In addition to this restriction the COMFORT SEND subroutine 

imposes a maximum message length of 64kbytes. 

A dummy array is therefore EQUIVALENCED to the start of each common block (or 

the position in the common block where the required data starts). This dummy array is 
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dimensioned to encompass the data by calculating the combined size (in bytes) of all 
the variables/arrays required from the common block (See Figure 6.13). 

INTEGER *1 COMMOM BLOCK 
ARRAY WITH WITH INTEGER*4 
DIMENSION 20 VARIABLES 

I byte 
long EQUIVALENCED Variable 14 bytes 

long 

Variable 2 

Variable 3 

Variable 4 

Variable 5 

FIGURE 6.13. Graphical Representation of Equivalence Statements 

The include file which EQUIVALENCES the arrays/variables to dummy arrays is 

illustrated in Figure 6.14 on page 199. In order to make the calculation of the lengths 

of the dummy arrays simpler the first block of PARAMETER statements assigns values 

to the different lengths (length 1. length2 etc. ). These lengths (in bytes) are of the 

arrays/variables stored in the common block. They are all multiplied by four as the 

arrays/variables are INTEGER*4. 

The second block of parameter statements assign values to parameters that specify the 

length of the common blocks (i. e. common block `contrl' contains eight variables of 
length3). The dummy arrays (buffer atmdatO, buffer_atmdatl, etc. ) are then 

dimensioned and EQUIVALENCED to the first variable in each common block (or the 
first variable that is required). 

A further difficulty arises from the fact that the Microsoft FORTRAN compiler adheres 

rigidly to the FORTRAN standard. If the SEND subroutine is called with a message of 

one data type then any subsequent call with a message of a different data type will 

result in a run-time error. In order to overcome this difficulty SEND is always called 

with messages of type INTEGER* 1 which are EQUIVALENCED to the real data array 
(which contains data of many types). 
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c*EQUIVALENCES ARRAYS IN COMMON BLOCKS TO DUMMY ARRAYS 
C* * 
C*****t*t***r***r*****t****r***t*t***t********t************ 

integer lengthl, length2, length3, length4, length5, length6, 
1 length7, lengthB, length9, lengthlO, lengthll 

integer*2 total_atmdatO, total_atmdatl, total moldat, 
1 total_ffp, total_cffp, total_contrl, total_constn 

integer*1 buffer_atmdatO, xol, buffer_atmdatl, buffer_moldat, 
1 buffer_ffp, buffer_cffp, buffer_contrl, buffer_constn, 
2 xo2, xo3 

parameter (lengthl = MXAT*MXCN*4) 
parameter (length2 = MXAT*4) 
parameter (length3 = 4) 
parameter (length4 = MAXTYP*MAXTYP*4) 
parameter (length5 = MXCNJ*MXCNJ*4) 
parameter (length6 = MXAT*4*4) 
parameter (length? = MXAT*3*4) 
parameter (length8 = MAXCNS*4) 

parameter (length9 = MXAT) 

parameter (lengthlO = MXAT * MXCN) 
parameter (lengthll = MXAT) 

parameter (total_atmdatO = lengthl) 
parameter (total_atmdatl = length2) 
parameter (total_moldat = length3 * 2) 
parameter (total_ffp = length4) 
parameter (total_cffp = lengths) 
parameter (total_contrl = length3 * 8) 

parameter (total_constn = (5 * length3) + length6 + length? 
1+ length2 + (16 *length8)) 

dimension buffer_atmdatO(1: total_atmdatO) 
dimension buffer_atmdatl(1: total_atmdatl) 
dimension buffer_moldat(l: tota Lmoldat) 
dimension buffer_ffp(1: total_ffp) 
dimension buffer_cffp(1: total_cffp) 
dimension buffer_contrl(1: total_contrl) 
dimension buffer_constn(l: total_constn) 
dimension xol(length2) 
dimension xo2(length2) 
dimension xo3(length2) 

equivalence 
equivalence 
equivalence 
equivalence 
equivalence 
equivalence 
equivalence 
equivalence 
equivalence 
equivalence 

(buffer_atmdatO(1), atmcon) 
(buffer_atmdatl(1), charge) 
(buffer_moldat(1), numats) 
(buffer_ffp(1), strcon) 
(buffer_cffp(1), cstcon) 
(buffer_contrl(1), shiftx) 
(buffer_constn(1), conmin) 
(xol(1), xo(1,1)) 
(xo2(1), xo(1,2)) 
(xo3(1), xo(1,3)) 

FIGURE 6.14. Include file that equivalences arrays/variables to dummy arrays 
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Three of the variables/arrays that are stored in the common blocks are INTEGER* 1. 

These are sent separately as if they were included in equivalence statements they 

would disrupt the alignment of the dummy array with the common block. In the case 

where the INTEGER* 1 variable/array is in the middle of a common block, then two 

dummy arrays must be equivalenced to that common block: one starting at the 

beginning of the common block and ending before the INTEGER* 1 variable/array and 

the other beginning after the INTEGER* I variable/array and ending at the end of the 

common block. 

6.3.4.2 The Implementation of COMFORT in Nodemin 

The arrays/variables sent from the host are received using the COMFORT receive 

routine (See Figure 6.15). There must be an equivalent receive on the nodes for every 

send on the host. 

C INITIALIZE NODES 

call initialize 

C RECEIVES BUFFERS FROM HOST. 

call receive(host, buffer_atmdat0, l, total_atmdat0, error) 

call receive(host, buffer_atmdatl, 2, total_atmdatl, error) 

call receive(host, buffer_moldat, 3, total moldat, error) 

call receive(host, buffer_ffp, 4, total_ffp, error) 

call receive(host, buffer_cffp, 5, total_cffp, error) 

call receive(host, buffer_contrl, 6, total_contrl, error) 

call receive(host, buffer_constn, 7, total_constn, error) 

c RECEIVE BYTE VALUES SEPARATELY 

call receive(HOST, ATYNUM, 8, LENGTH9, ERRORj 

call receive(HOST, BONDML, 9, LENGTH10, ERROR) 

call receive(HOST, MOLNUM, 10, LENGTH9, ERROR) 

191 call receive(HOST, XO1,42, length7, error) 

FIGURE 6.15. Code on node which receives data from host 

The nodes also have a copy of the include file which equivalences the dummy arrays to 

the variables/arrays. This allows the nodes to effectively decode the information sent 

from the host. 
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6.3.4.3 Transfer of atomic coordinates between host and nodes 

The atomic coordinates are stored in an INTEGER*4 array (XO (MXAT, 3)) on the host 

which is effectively arranged as three columns one for each of the x, y and z 

coordinates. This array is EQUIVALENCED to three INTEGER*1 arrays XO1, X02 

and X03 (See Figure 6.14 on page 199); X01 contains the x coordinates, and X02, X03 

the y and z coordinates respectively. 

To send the atomic coordinates to the nodes the X01 array is used in the SEND routine 
(See Figure 6.12). X01 is EQUIVALENCED to the start of XO and the buffer length in 

the SEND statement is four times the length of XO (as XO1, X02 and X03 are 
INTEGER* 1 arrays). An equivalent RECEIVE statement is required on the nodes (See 

Figure 6.15 on page 200). 

When sending the coordinates back from the nodes to the host only the coordinates in 

the node's `slice' must be returned and the host must put the returned coordinates in the 

correct place in XO. The code on the nodes and host which achieves this is shown in 

Figure 6.16 and Figure 6.17 respectively. 

call send(HOST, xol(nfirst4), 43, bfleng*4, error) 

call send(HOST, xo2(nfirst4), 44, bfleng*4, error) 

call send(HOST, xo3(nfirst4), 45, bfleng*4, error) 

call send(HOST, sgdlsq, 46,4, error) 

FIGURE 6.16. Node code to return `improved' coordinates to host 

The x, y and z coordinates are sent separately in XO1, X02 and X03. Nfirst4 specifies the 

position of the first atom in the nodes `slice' in X01 etc. This value is not just equal to 

nfirst (the first atom in a nodes slice) as X01 etc. are INTEGER* 1 arrays so the value 

of nfirst needs to be recalculated (i. e. nfirst4 = (nfirst*4) -3). The length of XO1, X02 

and X03 is set to BFLENG *4; i. e the number of atoms in a nodes slice multiplied by 

4. 
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do 321 1=0, numproc-1 
if(l. lt. nmod)then 

nfirst = (1*ndiv)+1+1 
last = ((1+1)*ndiv)+1+1 

else if(l. eq. nmod)then 
nfirst = (1*ndiv)+1+1 
last = ((1+1)*ndiv)+l 

else if(l. gt. nmod)then 
nfirst = (1*ndiv)+nmod+l 
last = ((1+1)*ndiv)+nmod 

endif 

bfleng =((last+l)-nfirst) 
nfirst = nfirst*4 -3 

C RECALCULATE NFIRST FOR XOl(INTEGER*1 SIZE ARRAY) 
call receive(L, xol(nfirst), 43, INT2(bfleng*4), 100, error) 
call receive(L, xo2(nfirst), 44, INT2(bfleng*4), 100, error) 
call receive(L, xo3(nfirst), 45, INT2(bfleng*4), 100, error) 
call receive(L, tempi, 46,4,100, error) 
sgdlsq = sgdlsq + temp 

321 continue 

FIGURE 6.17. Host code to receive 'improved' coordinates 

6.3.5 Minimisation times 

Table 6.5. shows the run-time of the parallel minimiser on one node compared to four 

nodes for 24 and 45 atom molecules. The results illustrate that for a 24 atom molecule 
a speed-up of approximately 2.5 is obtained whereas for a 45 atom molecule a speed- 

up of approximately 3 is achieved. The difference in the results is due to the set-up time 
(i. e. the loading of the required data onto the nodes etc. ) which becomes more 

significant for smaller numbers of atoms. 

Number of atoms Number of Nodes Run-time of Minimiser 
24 1 320s 
24 4 129s 
45 1 743s 
45 4 243s 

TABLE 6.5. Optimisation times for 30 iterations 

One of the reasons that a speed up of closer to 4 is not achieved is that a large amount 

of redundant information is sent to the nodes. This is due to the fact that the dummy 

arrays sent to the nodes are dimensioned to encompass the maximum number of atoms. 
In the case of a small molecule the arrays would contain a large amount of zero values. 
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The problem could be overcome by calculating the size of the arrays based on the 

number of atoms. This would be feasible for one dimensional arrays but the situation is 

not so simple for multidimensional arrays due to the way arrays are arranged in 

memory. 

Figure 6.18 shows how the array FATXYZ, that contains the coordinates of fixed atoms 
in the molecule, is arranged in memory. The parameter MXAT is the maximum number 

of atoms and the arrows in the diagram indicate the continuation of memory addresses. 

FATXYZ (MXAT, 3) 

x; yi z; 

xn Yn Zn 
000 

000 

FIGURE 6.18. Arrangement of FATXYZ in memory 

If this array was equivalenced to a one dimensional dummy array dimensioned 

NUMATS x 3, where NUMATS is the number of atoms, then the dummy array would 

not contain the correct data. This problem can be solved by reversing the indices of the 

array FATXYZ (See Figure 6.19). By arranging the array in this manner and 

equivalencing it to a dummy array with dimension NUMATS x 3, the dummy array 

will contain all the relevant data and no zeros. 

FATXYZ (3, MXAT) 
Xi -- Xn 0--0 

Yi -- Yn 0--0 

zi -Zn 0- -0 

FIGURE 6.19. Arrangement of FATXYZ in memory with reversed indices 

Since the arrays were already dimensioned with the first index as MXAT it was decided 

for the prototype version of the minimiser to leave the arrays the way they were and 

therefore to send the redundant data to the nodes. Changing the order of the indices 
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would involve altering every instance of the arrays in the program -a time consuming 
task. 

6.4 Graphical Interface 
In order to make the minimiser more user friendly, a graphical interface was developed 

that allows the user to enter parameters such as number of iterations, van der Waals 

cut-off distance etc. via selecting boxes on the screen. These were previously entered 
in a file that was read in the subroutine Getcop. In this version of the minimiser instead 

of calling Getcop, the routine nrm get_control_parmeters is called which initiates 

the graphical interface. The graphics were drawn using the Microsoft FORTRAN 

graphics library (Chap. 3 Ref. 10). 

Several screen shots of the graphical interface are shown in Appendix D pages 308 - 
310. . The pseudocode for it is shown in Figure 6.20 on page 206 and the FORTRAN 

code is shown in Appendix C pages 283 - 302. 

The values of the parameters are entered via a number pad, which is printed at the side 

of the screen, once a parameter has been selected. In the case of fixing parameters, a 

stick representation of the molecule is drawn to allow the user to select atoms, lengths 

etc. The user also defines the severity of the restraint via the number pad. For lengths 

and angles the user enters the value via the number pad. 

6.5 Conclusions 

The use of the BB08 broadcast link interface and the COMFORT programming 

environment within a parallel molecular mechanics program has been detailed. An 

advantage of using the BB08 is that the data required by the nodes can be broadcast 

simultaneously to all the nodes and therefore no additional software is required on the 

nodes to manage the passing of the data. Also broadcasting the code and data to all the 

nodes at once reduces the run time of the minimisation considerably compared to the 

version that uses 3L FORTRAN and a pipeline of transputers. 
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Calculate position of option boxes and text 
Calculate position of number pad boxes and text 
While. NOT. start do 

Draw option box and text 
Show mouse cursor 
Find which box mouse clicked on 
If clicked on first box then 

Write message 'Enter no. of iterations' on screen 
Draw number pad boxes and text 
Decide what number was entered and store it 

Else If clicked on second box then 
Write message 'Enter van der Waals cutoff distance' 
Draw number pad boxes and text 
Decide what number was entered and store it 

Else If clicked on third box and type of output is 'long' then 
Write 'Enter print threshold energy' 
Draw number pad boxes and text 
Decide what number was entered and store it 

Else If clicked on fourth box then 
Write 'Enter maximum coordinate shift' 
Draw number pad boxes and text 
Decide what number was entered and store it 

Else If clicked on fifth box then 
If type of output is 'short' then 

set type of output to 'abbreviated' 
Else If type of output is 'long' then 

set type of output to 'short' 
Else if type of output is 'abbreviated' then 

set type of output to 'long' 
Else If clicked on sixth box then 

Calculate screen coordinates for molecule 
Draw simple stick molecule 
Label atoms with numbers 
Draw menu for fixing atoms or parameters 
Find which box in menu was selected 
If first box picked then 

Write 'Pick atom to fix' 
Find which atom selected 
Write 'Enter severity' 
Draw number pad boxes and text 
Decide what number was entered 
Enter coordinates of atom and severity of constraint in appropriate arrays 

Else If second box picked then 
Write 'Pick atoms defining fixed length' 
Find which atoms selected 
Write 'Choose value of fixed length' 
Draw number pad boxes and text 
Decide what number was entered 
Write 'Enter severity' 
Draw number pad boxes and text 
Decide what number was entered 
Enter coordinates of atoms, fixed value and severity of constraint in 
appropriate arrays 
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Else If third box picked then 
Write 'Pick atoms defining fixed angle' 
Find which atoms selected 
Write 'Choose value of fixed angle' 
Draw number pad boxes and text 
Decide what number was entered 
Write 'Enter severity' 
Draw number pad boxes and text 
Decide what number was entered 
Enter coordinates of atoms, fixed value 
appropriate arrays 

Else If fourth box picked then 
Write 'Pick atoms defining torsion angle' 
Find which atoms selected 
Write 'Choose value of torsion angle' 
Draw number pad boxes and text 
Decide what number was entered 
Write 'Enter severity' 
Draw number pad boxes and text 
Decide what number was entered 
Enter coordinates of atoms, fixed value 
appropriate arrays 

Else If fifth box picked then 
Write 'Pick any atom in molecule to fix' 
Find which atom selected 
Enter no. of molecule in appropriate array 

Else If clicked on seventh box then 
start =. TRUE. 

Else If clicked on eighth box then 
STOP 

FIGURE 6.20. Pseudocode for graphical interface 

and severity of constraint in 

and severity of constraint in 

Further improvements to this algorithm could include using the host to carry out the 

Newton Raphson iteration on a `slice' of atoms rather than it remaining idle while the 

nodes are computing. Also in this version the nodes recalculate data for all the atoms 

where they only need to calculate the data for the atoms in their slice. For example the 

arrays NBMAT, NAMAT, NTMAT which contain the bonded/nonbonded interactions, 

angles and torsion angles respectively for each atom in the molecule need only be 

calculated for the atoms in the node's slice. 

A more recent version of the software uses Microsoft Powerstation (32-bit) Fortran. 

Using this version with eight 486 PCs as nodes and a 45 atom molecule, gives a speed- 

up factor of 6.1 compared to a single node. 
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Appendix A: 

Source code for command line and graphical 
interfaces. 
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C**twt*ttt*ttt*ti*i**tst***ittieiitiastrte*tsr*r****frwt+*****twxr**" 

C NAME; C0041. FOR 
C 
C FUNCTION: A COMMAND LINE INTERFACE THAT ALLOWS CONNECTIONS TO* 

º 
C BE SPECIFIED BETWEEN PROCESSORS º 

INTERFACE TO INTEGER*2 FUNCTION LINKIN 
[C, ALIAS: '_Iinkin'] (C) 

INTEGER*2 C 
END 

INTERFACE TO SUBROUTINE LINKOUT[C, ALIAS: '_Iinkout'] (A, B) 
INTEGER*2 A, B 

END 

INTERFACE TO SUBROUTINE RUN(C, ALIAS: '_run'] (E, F) 
INTEGER*2 E, F 
END 

PROGRAM PROCESSOR 0004 

CHARACTER*10 PROC1, LINK1, PROC2, LINK2 
CHARACTER*80 STATEMENT 
CHARACTER*65 SUBSTA 
CHARACTER*1 ANS, SREP, REP 
LOGICAL TEST, ZEROO 

INTEGER IPROCI, ILINK1, ITO, IPROC2, ILINK2, 
1 LMAX, PMAX, NP1(32), NP2(32), NL1(32), NL2(32), 
1 00040(32,6), 00041(32,6), LMIN, LKAD(4), N, J, 
1 C40IN(32), C410UT(32), C400UT(32), C41IN(32), 
1 X, Y, A3, A4, P1, P2, L1, L2, BADD, T, CPROCI, CPROC2, 
1 SPROCI, SPROC2, CLINK1, CLINK2, SLINKI, SLINK2, 
1 IN, OUTPUT, C4, M, P, SSREP, INO, IN1 

INTEGER*2 LINKIN 
ZEROO = FALSE. 

C INSTRUCTIONS FOR ENTERING CONNECTIONS 

WRITE(*, *) 
WRITE(*, 3) 

3 FORMAT(20X, 'LINK CONNECTIONS') 
WRITE(*, 4) 

4 FORMAT(20X, '****************, ) 
WRITE(*, *) 

WRITE(*, 6) 
6 FORMAT(1X, ENTER THE LINKS BETWEEN THE PROCESSORS IN THE', 1X, 

1 FOLLOWING FORM: ') 
WRITE(*, *) 

WRITE(*, 7) 
7 FORMAT(1X, CONNECT PROCESSOR A LINK B TO PROCESSOR', 1X, 

1 'C LINK D') 
WRITE(*, *) 

WRITE(*, 8) 
8 FORMAT(IX, EACH STATEMENT MUST BE ON A NEW LINE AND', IX, 

1 'EACH WORD') 
WRITE(*, 9) 

9 FORMAT(1X, 'MUST BE TYPED IN ALL THE SAME CASE. ') 
WRITE(*, 21) 

21 FORMAT(1X, 'ONCE FINISHED TYPE ''QUIT ''. 9 

C SET COUNTER 

K=0 

C READ STATEMENT OF CONNECTIONS 

10 READ(*, '(A80)') STATEMENT 

C TEST FOR END 

GOTO 20 
END IF 

IF ((STATEMENT. EQ. 'QUIT'). OR. (STATEMENT. EQ. 'quit')) THEN 

K=K+1 

C FIND POSITIONS OF BEGINNING OF KEY WORDS 

CPROCI = INDEX(STATEMENT, 'PROCESSOR') 
SPROCI = INDEX(STATEMENT, 'processor') 

CLINK1 = INDEX(STATEMENT, 'LINK') 
SLINK1 = INDEX(STATEMENT, 'link') 

CTO = INDEX(STATEMENT, 'TO') 
STO = INDEX(STATEMENT, 'to') 

IF (CPROCI. GT. O) THEN 
IPROCI = CPROC1 

ELSE IF (SPROCI. GT. O) THEN 
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IPROC1 = SPROC1 
ELSE 

IPROCI =0 
END IF 
IF (CLINK1. GT. 0) THEN 

ILINK1 = CLINKI 
ELSE IF (SLINK1. GT. 0) THEN 

ILINK1 = SLINK1 
ELSE 

ILINK1 =0 
END IF 
IF (CTO. GT. 0) THEN 

ITO = CTO 
ELSE IF (STO. GT. 0) THEN 

ITO = STO 
ELSE 

ITO =0 
END IF 

SUBSTA = STATEMENT(ITO: 80) 
CPROC2 = INDEX(SUBSTA, 'PROCESSOR') 
SPROC2 = INDEX(SUBSTA, 'processor') 

CLINK2 = INDEX(SUBSTA, 'LINK') 
SLINK2 = INDEX(SUBSTA, 'link') 

IF (CPROC2. GT. 0) THEN 
IPROC2 = CPROC2 

ELSE IF (SPROC2. CT. 0) THEN 
IPROC2 = SPROC2 

ELSE 
IPROC2 =0 

END IF 
IF (CLINK2. GT. 0) THEN 

ILINK2 = CLINK2 
ELSE IF (SLINK2. GT. 0) THEN 

ILINK2 = SLINK2 
ELSE 

ILINK2 =0 
END IF 

C TEST FOR SPELLING MISTAKES 

IF ((IPROCI. EQ. O). OR. (ILINK1. EQ. 0). OR. 
1 (IPROC2. EQ. O). OR. (ILINK2. EQ. 0). OR. (ITO. EQ. O)) THEN 

WRITE(*, *)'SYNTAX ERROR. RE-ENTER STATEMENT' 
K=K-1 
GOTO 10 

END IF 

C FOR EACH ENTRY IN THE ARRAY STATEMENT FIND THE 
C RELEVANT PROCESSOR AND LINK NUMBERS 

PROC1 = STATEMENT((IPROC1 + 9): (ILINK1 - 1)) 
LINK1 = STATEMENT((ILINKI + 4): (ITO - 1)) 
PROC2 = SUBSTA((IPROC2 + 9): (ILINK2 - 1)) 

LINK2 = SUBSTA((ILINK2 + 4): ) 

C CALL SUBROUTINE WHICH WILL CONVERT CHARACTER VALUES INTO 
C INTEGER VALUES 

CALL INTEG (K, PROC1, NP1) 
CALL INTEG (K, LINK1, NL1) 
CALL INTEG (K, PROC2, NP2) 
CALL INTEG (K, LINK2, NL2) 

C CONSTANTS FOR MAXIMUM NUMBER OF PROCESSORS 
C PMAX = MAX NO OF PROCESSSORS 
C LMAX t MAX VALUE OF LINK NO 
C LMIN = MIN VALUE OF LINK NO 

PMAX = 31 
LMAX =2 
LMZN =1 

P1 = NP1(K) 
P2 = NP2(K) 
L1 = NL1(K) 
L2 = NL2(K) 

TEST = FALSE. 

C CHECK IF PROCESSOR NUMBER IS TOO HIGH 

IF (NP1(K). GT. PMAX) THEN 
TEST = TRUE. 
WRITE('. 11) 

12 FORMAT (1X, ITHE NUMBER FOR THE FIRST PROCESSOR', 1X, 
1 'IS TOO HIGH. ') 
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END IF 
IF (NP2(K). GT. PMAX) THEN 

TEST = TRUE. 
WRITE(*, 12) 

22 FORMAT(1X, 'THE NUMBER OF THR SECOND PROCESSOR', 2X, 
1 IS TOO HIGH. ') 

END IF 

C CHECK IF LINK NUMBER IS CORRECT 

IF ((NL1(K). GT. LMAX). OR. (NL1(K). LT. LMIN)) THEN 
TEST = TRUE. 
WRITE(*, 13) 

13 FORMAT(1X, 'THE NUMBER OF THE FIRST LINK IS', 1X, 
1 NOT CORRECT. ') 

END IF 
IF ((NL2(K). GT. LMP. X). OR. (NL2(K). LT. LMIN)) THEN 

TEST = TRUE. 
WRITE(*, 14) 

14 FORMAT(1X, 'THE NUMBER OF THE SECOND LINK IS', 1X, 
1 NOT CORRECT. ') 

END IF 

C CHECK LINK NUMBERS ARE NOT EQUAL 

IF (NL1(K). EQ. NL2(K)) THEN 
TEST = TRUE. 
WRITE(*, 15) 

15 FORMAT(1X, 'THE LINK NUMBERS CANNOT BE', 1X, 
1 'THE SAME. ') 

END IF 

C CHECK LINK AND PROCESSOR NUMBER NOT USED 
C BEFORE 

DO 50 J=1, K -1 
IF(((P1. EQ. NP1(J)). AND. (L1. EQ. NL1(J))). OR. 

1 ((P1. EQ. NP2(J)). AND. (L1. EQ. NL2(J)))) THEN 
TEST = TRUE. 
WRITE(*, 22) 

22 FORMAT(1X, 'THE VALUES FOR THE FIRST PROCESSOR', 1X, 
1 'AND LINK NUMBERS HAVE BEEN USED BEFORE. ') 

END IF 
IF((IP2. EQ. NP1(J)). AND. (L2. EQ. NL1(J))). OR. 

1 ((P2. EQ. NP2(J)). AND. (L2. EQ. NL2(J)))) THEN 
TEST = TRUE. 
WRITE(*, 23) 

23 FORMAT(1X, 'THE VALUES FOR THE SECOND', 1X, 
1 'PROCESSOR AND LINK NUMBERS HAVE BEEN. ') 

WRITE(*, *) 'USED BEFORE' 
END IF 

50 CONTINUE 

IF (TEST) THEN 
WRITE(*, *) 'PLEASE RE-ENTER STATEMENT. ' 
K= K-1 

END IF 

GOTO 10 

C FIND CORRESPONDING LINK NUMBERS ON C004 

20 CALL TABLE(00041, C0040) 
CALL LINKS(K, NPI, NL1, C0040, CO041, 

1 C41IN, C41OUT, C40IN, C40OUT) 
CALL LINKS(K, NP2, NL2, COO40, COO41, 

1 C41IN, C41OUT, C40IN, C400UT) 

C CREATE AN ARRAY CONTAINING BASE ADDRESSES 
C OF LINK ADAPTORS 

LKAD(1) = 384 
LKAD(2) = 388 
LKAD(3) = 392 
LKAD(4) = 396 

C SET BOARD ADDRESS 

BADD = 424 

C PUT BOARD INTO RUN STATE 

CALL RUN(1, BADD) 
DO 60 T=1.5000 

60 CONTINUE 
CALL RUN(0, BADD) 

C CALL SUBROUTINE TO OUTPUT BYTE AT LINK ADAPTOR 
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CALL LINKOUT(4, LKAD(1)) 
CALL LINKOUT(4, LKAD(2)) 

DO 30 N=1, K 
CALL LINKOUT(O, LKAD(1)) 
CALL LINKOUT(C40IN(N), LKAD(1)) 
CALL LINKOUT(C400UT(N), LKAD(1)) 
CALL LINKOUT(3, LKAD(1)) 
CALL LINKOUT(O, LKAD(2)) 
CALL LINKOUT(C41IN(N), LKAD(2)) 
CALL LINKOUT(C41OUT(N), LKAD(2)) 
CALL LINKOUT(3, LKAD(2)) 

30 CONTINUE 

C OFFER OPTION TO INTERROGATE 0004 

55 WRITE(*, *) DO YOU WANT TO INTERROGATE 0004S? (Y/N)' 
READ(*, '(A)') REP 
WRITE(*, *) REP 
IF ((REP. NE. 'N'). AND. (REP. NE. 'n'). AND. 

1 (REP. NE. 'Y'). AND. (REP. NE. 'y')) THEN 
GOTO 55 

END IF 
IF ((REP. EQ. 'N'). OR. (REP. EQ. 'n')) THEN 

GOTO 110 
END IF 

70 WRITE(*, *) WHICH C004 DO YOU WANT TO INTERROGATE? ' 
READ(*, *) C4 
IF ((C4. NE. 0). AND. (C4. NE. 1)) THEN 

COTO 70 
END IF 

80 WRITE(*, *) WHICH OUTPUT TO YOU WANT TO INTERROGATE? ' 
READ(*, *) OUTPUT 
IF (OUTPUT. GT. 31) THEN 

WRITE(*, *) 'NUMBER IS TOO HIGH. ' 
GOTO 80 

END IF 

IF (C4. EQ. 0) THEN 
CALL LINKOUT(2, LKAD(1)) 
CALL LINKOUT(OUTPUT, LKAD(1)) 
IN = LINKIN(LKAD(1)) 
IF (((128 - IN). LT. O). OR. ((128 - IN). EQ. O)) THEN 

IN = IN - 128 
WRITE(*, *) THIS OUTPUT IS CONNECTED TO INPUT', IN 

ELSE 
WRITE(*, *) THIS OUTPUT IS NOT CONNECTED' 

END IF 
ELSE 

CALL LINKOUT(2, LKAD(2)) 
CALL LINKOUT(OUTPUT. LKAD(2)) 
IN = LINKIN(LKAD(2)) 
IF (((128 - IN). LT. O). OR. ((128 - IN). EQ. O)) THEN 

IN = IN - 128 

WRITE(*, *) THIS OUTPUT IS CONNECTED TO INPUT', IN 
ELSE 

WRITE(*, *) THIS OUTPUT IS NOT CONNECTED' 
END IF 

END IF 

90 WRITE(*, *) 'DO YOU WANT TO INTERROGATE THE COO4S FURTHER? (Y/N)' 
READ(*, '(A)') SREP 
IF ((SREP. NE. 'N'). AND. (SREP. NE. 'n'). AND. 

(SREP. NE. 'Y'). AND. (SREP. NE. 'y')) THEN 
GOTO 90 

END IF 
IF ((SREP. EQ. 'Y'). OR. (SREP. EQ. 'y')) THEN 

GOTO 70 
END IF 

C DISPLAY CONNECTIONS MADE BETWEEN PROCESSORS 

110 WRITE(* 25) 
25 FORMAT (1X, 'DO YOU WANT TO SEE ALL THE CONNECTIONS', 1X, 

I 'BETWEEN THE PROCESSORS? (Y/N)') 
READ(*, '(A)') SSREP 
IF ((SSREP. NE. 'N'). AND. (SSREP. NE. 'n'). AND. 

1 (SSREP. NE. 'Y'). AND. (SSREP. NE. 'y')) THEN 
GOTO 110 

END IF 
IF ((SSREP. EQ. 'N'). OR. (SSREP. EQ. 'n")) THEN 

GOTO 100 
END IF 

C FIND WHICH INPUT EACH OUTPUT IS CONNECTED TO 
C TEST MSB TO SEE IF SET 
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40 DO 130 P=1,32 
CALL LINKOUT(2, LKAD(1)) 
CALL LINKOUT(CO040(P. 6), LKAD(1)) 
INO = LINKIN(LKAD(1)) 
CALL LINKOUT(2, LKAD(2)) 
CALL LINKOUT(INO, LKAD(2)) 
IN1 = LINKIN(LKAD(2)) 
IF (((128 - INO). LT. 0). OR. ((128 - INO). EQ. 0)) THEN 

INO = INO - 128 
IN1 = IN1 - 128 
WRITE(' 26) 00040(P, 5), C0040(P, 4), C0040(INO + 1,2), 

1 00040(INO + 1,1) 
26 FORMAT(1X, 'PROCESSOR', 1X, I2,1X, 'LINKIN', lX, I2,1X, 

1 'IS CONNECTED TO PROCESSOR', 1X, I2,1X, 
1 'LINKOUT', 1X, I2) 

WRITE(*, 26) COO41(INO + 1,5), 00041(INO + 1,4), 
1 C0041(IN1 + 1,2), 00041(IN1 + 1,1) 

END IF 
130 CONTINUE 

C CODE FOR TESTING C004 

100 WRITE(*, *) 'DO YOU WANT TO TEST THE 0004 " s7(Y/N)' 
READ(*, '(Al)') ANS 

C TEST FOR ANSWER 

IF ((ANS. EQ. 'N'). OR. (ANS. EQ. 'n')) THEN 
STOP 

END IF 
WRITE(*, 16) 

16 FORMAT(lX, 'ENTER NUMBER YOU WANT TO SEND TO LINK', lX, 
1 'ADAPTOR 2') 

READ(*. *) X 
CALL LINKOUT(X, LKAD(3)) 
WRITE(*, 17) 

17 FORMAT(1X, 'ENTER NUMBER YOU WANT TO SEND TO LINK', lX, 
1 'ADAPTOR 3') 

READ(*, *) Y 
CALL LINKOUTIY, LKAD(4)) 

A3 = LINKIN(LKAD(3)) 
WRITE(*, 18) A3 

18 FORMAT(1X, 'THE NUMBER RECEIVED AT LINK ADAPTOR', lX, 
1 '2 WAS', 13) 

A4 = LINKIN(LKAD(4)) 
WRITE(*, 19) A4 

19 FORMAT(1X, 'THE NUMBER RECEIVED AT LINK ADAPTOR', 1X, 
1 '3 WAS', I3) 

END 

SUBROUTINE INTEG(D, DUMR, X) 

CHARACTER*10 DUMR 
INTEGER D, X(*) 

C CONVERT CHARACTERS INTO INTEGERS 

READ(DUMR, '(I10)') X(D) 

END 

SUBROUTINE TABLE(00041, C0040) 

INTEGER 00041(32,6), C0040(32,6) 

C SET UP ARRAYS CONTAINING CONNECTIONS 
C ON C004-1 AND C004-0 

DO 10 I=1,32 
00041(I, 1) =1 
00041(I, 2) =I-1 
00041(I, 3) =I-1 
00041(I, 4) =2 
00041(I, 5) =I-1 
00041(I, 6) =I-1 
00040(I. 1) =2 
00040(l. 2) =I-1 
COO40(I, 3) =I-1 
00040(I, 4) =1 
00040(I, 5) =I-1 
00040(I, 6) =I-1 

10 CONTINUE 
END 
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SUBROUTINE LINKS(A, PNO, LNO, ARRAYO, ARRAY1, C41I, 
1 C410, C40I, C400) 

INTEGER A, J, I, PNO(32), LNO(32), ARRAYO(32,6), ARRAY1(32,6), 
1 C41I(32), C410(32), C40I(32), C400(32) 

DO 10 I=1, A 
DO 20 J=1,32 

IF((LNO(I). EQ. ARRAY1(J, 1)). AND. (PNO(I). EQ. ARRAYI(J, 2))) 
1 THEN 

C41I(I) = ARRAY1(J, 3) 
END IF 
IF ((LNO(I). EQ. ARRAY1(J, 4))"AND. (PNO(I). EQ. ARRAYI(J, 5))) 

1 THEN 
C410(I) = ARRAY1(J, 6) 

END IF 
IF((1. NO(I). EQ. ARRAYO(J, l)). AND. (PNO(I). EQ. ARRAYO(J, 2))) 

1 THEN 
C401(I) = ARRAYO(J, 3) 

END IF 
IF((LNO(I). EQ. ARRAYO(J, 4)). AND. (PNO(I). EQ. ARRAYO(J, 5))) 

1 THEN 
C400(I) = ARRAYO(J, 6) 

END IF 
20 CONTINUE 
10 CONTINUE 

END 

SUBROUTINE LINKOUT(A, B) 
INTEGER*2 A, B 
WRITE(*, *) A, B 
END 

Appendix A 214 



G'tt*t*i*tikii*f*kt**iiR*t*R*tt**ttt*RtRt#tRf#t*RR#*tt**R#R#*º*k*k*t#R 

C NAME: GRAPH. FOR * 
C* 
C FUNCTION: A GRAPHICAL INTERFACE THAT ALLOWS CONNECTIONS TO* C BE DRAWN BETWEEN PROCESSORS * 
('**R*fRRt*t*********f**kff*********f***R*tR**ii*#******************R* 

INCLUDE 'MOUSE. FI' 
INCLUDE 'FGRAPH. FI' 

INTERFACE TO INTEGER*2 FUNCTION LINKIN 
[C, ALIAS: '_linkin') (BASEADDRESS) 

INTEGER*2 BASEADDRESS 
END 

INTERFACE TO SUBROUTINE LINKOUT[C, ALIAS: ' linkout'] 
(OUTPUTBYTE, BASEADDRESS) 

INTEGER"2 OUTPUTBYTE, BASEADDRESS 
END 

INTERFACE TO SUBROUTINE RUN[C, ALIAS: ' run') 
(OUTPUTBYTE, BOARDADDRESS) 

INTEGER*2 OUTPUTBYTE, BOARDADDRESS 
END 

PROGRAM GRAPHICS19 

INCLUDE 'GRAPH. INC' 

INTEGER"4 NUMARGS 
INTEGER"2 N, STATUS, K, J 
CHARACTERk3 BUFFER 

C SET RESET ADDRESS AND BASE ADDRESSES FOR LINK ADAPS 

BADD - 424 
LKAD(1) = 384 
LKAD(2) - 388 
LKAD(3) = 392 
LKAD(4) = 396 
NUMARGS = NARGS() 

C SET FLAGS FOR PIPELINE AND WHETHER BETWEEN 1 AND 3 OR 
C1 AND 2 

LINKS FALSE. 
PIPE FALSE. 

C LOOK AT COMMAND LINE AND SEE IF INSTRUCTIONS 
C WANTED AND/OR PIPELINE SPECIFIED 

DO 40 K-1,3 
CALL GETARG(K, BUFFER, STATUS) 
IF (STATUS. NE. -1) THEN 

IF (BUFFER. EQ. '\I') THEN 
CALL INSTRUCTIONS() 

END IF 
IF (BUFFER. EQ. '\HP') THEN 

PIPE _ TRUE. 
DO 20 J=1,3 

CALL GETARG(J, BUFFER, STATUS) 
IF (STATUS. NE. -1) THEN 

IF (BUFFER. EQ. '\03') THEN 
LINKS - TRUE. 

END IF 
END IF 

20 CONTINUE 
END IF 

END IF 
40 CONTINUE 

C PUT INTO GRAPHICSMODE AND DRAW ENDBOX, PROCESSORS 
C AND PIPELINE 

CALL GRAPHICSMODE() 
CALL ENDBOX(50,35) 
CALL DRAWPROCESSOR() 
IF (PIPE) THEN 

CALL PIPELINE() 
END IF 

C INITIALISE MOUSECURSOR 

10 CALL MOUSE() 

C FIND WHERE MOUSE HAS BEEN PRESSED 
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CALL PRESSMOUSE() 

C CALL ROUTINE TO SET UP CONNECTIONS ON 0004S 

CALL 0004CONNECTIONO 

C CALL ROUTINE TO FIND CONNECTIONS ON C004 

CALL CONNECTIONS(NP1, NL1) 
CALL CONNECTIONS(NP2, NL2) 

C PUT BOARD INTO RUN STATE 

CALL RUN(1, BADD) 
DO 60 T=1,5000 

60 CONTINUE 
CALL RUN(O, BADD) 

C CALL SUBROUTINE TO OUTPUT BYTE AT LINK ADAPTOR 

CALL LINKOUT(4, LKAD(1)) 
CALL LINKOUT(4, LKAD(2)) 

DO 30 N=1, LINKNO 
CALL LINKOUT(O, LKAD(1)) 
CALL LINKOUT(C40IN(N), LKAD(1)) 
CALL LINKOUT(C400UT(N), LKAD(1)) 
CALL LINKOUT(3, LKAD(1)) 
CALL LINKOUT(0, LKAD(2)) 
CALL LINKOUT(C41IN(N), LKAD(2)) 
CALL LINKOUT(C41OUT(N), LKAD(2)) 
CALL LINKOUT(3, LKAD(2)) 

30 CONTINUE 

C CALL SUBROUTINE TO INTERROGATE 0004S 

CALL INTERROGATE() 

C CALL SUBROUTINE TO DISPLAY CONNECTIONS 

CALL DISPLAYCONNECTIONS() 

C CALL ROUTINE TO TEST C004 

CALL TEST0004() 

END 

C ****WRITE OUT INSTRUCTIONS"*** 

SUBROUTINE INSTRUCTIONS() 

WRITE(*, 5) 
5 FORMAT(20X, '0004 PROGRAMMER') 

WRITE(*, 10) 
10 FORMAT(20X, '***************. ) 

WRITE(*, 20) 
WRITE(*, *) 

20 FORMAT(1X, 'T0 MAKE A CONNECTION BETWEEN TWO', 1X, 
1 'PROCESSORS YOU CLICK ON THE LINK') 

WRITE(*, 30) 
30 FORMAT(1X, 'YOU WANT TO USE, HOLD DOWN THE MOUSE', lX, 

1 'BUTTON AND DRAG THE') 
WRITE(*, 40) 

40 FORMAT(1X, 'MOUSE TO WHERE YOU WANT IT TO BE RELEASED. ', 1X, 
1 'IF YOU WANT, SEVERAL') 

WRITE(*, 50) 
50 FORMAT(1X, 'LINES CAN BE USED TO MAKE A CONNECTION. IF', 1X, 

1 'YOU WANT TO DELETE') 

WRITE(*, 60) 
60 FORMAT(1X, 'A CONNECTION THEN CLICK ON EITHER END OF ', 1X, 

1 'THE CONNECTION. ') 
WRITE(*, 70) 

70 FORMAT(1X, 'PRESS RETURN TO CONTINUE. ') 

READ(*, *) 

END 

C ****SET GRAPHICS MODE**** 

SUBROUTINE GRAPHICSMODE() 

INCLUDE 'FGRAPH. FD' 
INCLUDE 'GRAPH. INC' 

RECORD/VIDEOCONFIG/MYSCREEN 
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INTEGER *2 MODESTATUS, DUMMY, STATUS 

C SET VIDEOMODE TO MAXRESOLUTION 

MODESTATUS = SETVIDEOMODE($MAXRESMODE) 
IF (MODESTATUS. EQ. O) STOP 'ERROR 

1 CANNOT SET GRAPHICS MODE' 

CALL CLEARSCREEN($GCLEARSCREEN) 

C SET FONTS 

DUMMY = REGISTERFONTS('C: \MSF\LIB\*. FON') 

IF (DUMMY. LT. O) THEN 
STOP 'ERROR: CANNOT FIND FONT FILES' 

END IF 

STATUS = SETFONT('T'COURIER'"//'hl0w8b') 

IF (STATUS. LT. O) THEN 
STOP 'ERROR: CANNOT SET FONT' 

END IF 

C FIND RESOLUTION OF SCREEN 

CALL CETVIDEOCONFIG(MYSCREEN) 
MAXX = MYSCREEN. NUMXPIXELS -1 
MAXY = MYSCREEN. NUMYPIXELS -1 

C SCALE TO 1000 

C 

SCALEY = FLOAT(MAXY) / 1000.0 

END 
SCALEX = SCALEY * (FLOAT(MAXX) / FLOAT(MAXY)) * (3.0 / 4.0) 

****ENDGRAPHICS**** 

SUBROUTINE ENDGRAPHICSO 

INCLUDE 'FGRAPH. FD' 
INCLUDE 'GRAPH. INC' 

INTEGER *2 MODESTATUS 

MODESTATUS = SETVIDEOMODE($DEFAULTMODE) 

END 

C ****FIND XCOORDINATES FROM SCREEN COORDS**** 

INTEGER*2 FUNCTION NEWX(XCOORD) 

INTEGER XCOORD 

INCLUDE 'GRAPH. INC' 

REAL TEMPX 

TEMPX = FLOAT(XCOORD) * SCALEX 
NEWX = INT2(TEMPX + 0.5) 
END 

C ****FIND SCREEN COORDS FROM XCOORDS**** 

INTEGER*2 FUNCTION CONVERTX(XCOORD) 

INTEGER*2 XCOORD 

INCLUDE 'GRAPH. INC' 

REAL TEMPX 

TEMPX = FLOAT(XCOORD) / SCALEX 
CONVERTX = INT2(TEMPX t 0.5) 
END 

C ****FIND YCOORDS FROM SCREEN COORDS**** 

INTEGER*2 FUNCTION NEWY(YCOORD) 

INTEGER YCOORD 

INCLUDE 'GRAPH. INC' 

REAL TEMPY 

TEMPY = FLOATIYCOORD) * SCALEY 
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NEWY = INT2(TEMPY + 0.5) 
END 

C ****FIND SCREEN COORDS FROM YCOORDS**** 

INTEGER*2 FUNCTION CONVERTY(YCOORD) 

INTEGER*2 YCOORD 

INCLUDE 'GRAPH. INC' 

REAL TEMPY 

TEMPY = FLOAT(YCOORD) / SCALEY 
CONVERTY = INT2(TEMPY + 0.5) 
END 

C ****DRAW BOXES FOR PROCESSORS**** 

SUBROUTINE BOX(XCENT, YCENT, PROCNO) 

INTEGER XCENT, YCENT 
INTEGER PROCNO 

INCLUDE 'GRAPH. INC' 
INCLUDE 'NEWXY. INC' 

INCLUDE 'FGRAPH. FD' 

INTEGER *2 STATUS 
CHARACTER*2 CHAR 
RECORD/XYCOORD/XY 

C MAKE PROCESSOR NUMBER A CHARACTER 

WRITE (CHAR, '(I2)') PROCNO 
CALL COLOUR(9) 

C DRAWBOX 

STATUS = RECTANGLE($GBORDER, NEWX(XCENT - 50), NEWY(YCENT - 50), 
1 NEWX(XCENT + 50), NEWY(YCENT + 50)) 

CALL COLOUR(12) 

C PUT PROCESSOR NUMBER IN BOX 

CALL TEXT(XCENT - 19, YCENT - 11, CHAR) 

END 

C ****DRAW LINES**** 

SUBROUTINE DRAWLINE(STARTX, STARTY, ENDX, ENDY) 

INCLUDE 'GRAPH. INC' 
INCLUDE 'NEWXY. INC' 

INCLUDE 'FGRAPH. FD' 

INTEGER STARTX, STARTY, ENDX, ENDY 
RECORD/XYCOORD/XY 
INTEGER*2 LINE 

C MOVE CURSOR TO WHERE YOU WANT LINE TO START 
C AND THEN DRAW LINE TO NEW POSITION 

CALL MOVETO(NEWX(STARTX), NEWY(STARTY), XY) 
LINE = LINETO(NEWX(ENDX). NEWY(ENDY)) 

END 

C ****INITIALISE AND SHOW MOUSE**** 

SUBROUTINE MOUSE 

INCLUDE MOUSE. FD' 
INCLUDE FGRAPH. FD' 
INCLUDE GRAPH. INC' 
INCLUDE NEWXY. INC' 

INTEGER START 
INTEGER*2 BUTTONS 

CALL COLOUR(7) 
START = INITIALISEMOUSE(BUTTONS) 

IF (START. EQ. O) THEN 
CALL ENDGRAPHICS() 
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WRITE(*, *) 'MOUSE DRIVER NOT INSTALLED' 
END IF 

CALL SHOWMOUSECURSORC) 

END 

C ****CHECK FOR MOUSE PRESSES AND THEN TAKE 
C APPROPRIATE ACTION**** 

SUBROUTINE PRESSMOUSE() 

INCLUDE 'MOUSE. FD' 
INCLUDE 'FGRAPH. FD' 
INCLUDE 'GRAPH. INC' 
INCLUDE 'NEWXY. INC' 

INTEGER I, XPOINT, YPOINT, K, IXPOS, IYPOS, OLDXPOS, 
1 OLDYPOS, NIXPOS, NIYPOS, COLUMN, N, COUNTER, CONNO 

INTEGER*2 XPOS, YPOS, BPOS, BCOUNT 

LINKNO =0 
COLUMN =2 
COUNTER =0 

CONNECT = TRUE. 
CHOOSELINK1 = TRUE. 
CHOOSELINK2 = TRUE. 
CHANGELINKNO = TRUE. 

CALL COLOUR(11) 

10 CALL GETMOUSECURSORPOSITION(XPOS, YPOS, BPOS) 

C IF BUTTON PRESSED DOWN 

IF (BPOS. EQ. 1) THEN 
CALLMOUSETRUE = FALSE. 

C FIND SCRENN COORDS OF MOUSE POSITION 

XPOINT = CONVERTX(INT2(XPOS)) 
YPOINT = CONVERTY(INT2(YPOS)) 

C IF IN MIDDLE OF CONNECTION THEN MAKE 
C INITIAL COORDINATES PREVIOUS ONES 

IF (. NOT. CONNECT) THEN 
XPOINT = NIXPOS 
YPOINT = NIYPOS 

END IF 

C IF MADE BAD CONNECTION AND CONNECTION 
C OF MORE THAN ONE LINE THEN MAKE INITIAL 
C COORDS AT END OF PREVIOUS LINE 

IF (. NOT. CHANGELINKNO) THEN 
XPOINT = POINTS(LINKNO, COLUMN - 2) 
YPOINT = POINTS(LINKNO, COLUMN - 1) 

END IF 

C STORE LINKNO BEFORE YOU FIND NEW LINKNO 
CONNO = LINKNO 

C CHECK TO SEE IF MOUSE HAS BEEN PRESSED AND RELEASED 
C ON A PROCESSOR AND STORE PROCESSOR NUMBER AND LINKNO 
C IF IT HAS 

CALL FINDPROCNO1(NP1, NLI, XPOINT, YPOINT) 

C IF MOUSE PRESSED ON PROCESSOR BUT NOT ON LINK THEN 
C EXIT LINK 

IF (. NOT. CHOOSELINK1) THEN 
GOTO 10 

END IF 

C CHECK TO SEE WHETHER END BOX COULD HAVE BEEN PRESSED 

IF ((CONNO. EQ. LINKNO). AND. (COUNTER. EQ. O)) THEN 
IF ((XPOINT. LT. 110). AND. (XPOINT. GT. 2). AND. 

1 (YPOINT. LT. 52). AND. (YPOINT. GT. 10)) THEN 
CALL CLEARSCREEN($GCLEARSCREEN) 
CALL ENDGRAPHICS 
STOP 
RETURN 

END IF 
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GOTO 10 
END IF 

C IF PIPELINE CHOSEN CHECK THAT LINKS USED FOR 
C PIPELINE WERE NOT PRESSED 

IF ((PIPE). AND. (LINKS)) THEN 
IF ((NL1(LINKNO). EQ. O). OR. (NL1(LINKNO). EQ. 3)) THEN 

LINKNO = LINKNO -1 
COTO 10 

END IF 
END IF 
IF ((PIPE). AND. (. NOT. LINKS)) THEN 

IF ((NL1(LINKNO). EQ. 1). OR. (NL1(LINKNO). EQ. 2)) THEN 
LINKNO = LINKNO -1 
GOTO 10 

END IF 
END IF 

C SET WRITESTYLE TO XOR TO ENABLE LINES TO BE 
C WRITTEN OVER 

CALL WRITESTYLE($GXOR) 

C PUT INITIAL COORDINATES IN IXPOS AND IYPOS 

IXPOS = XPOINT 
IYPOS = YPOINT 

C HIDE MOUSE CURSOR, DRAWLINE, SHOWMOUSECURSOR 

CALL HIDEMOUSECURSOR 
CALL DRAWLINE(XPOINT, YPOINT, 

1 IXPOS, IYPOS) 
CALL SHOWMOUSECURSOR 

C WHILE BUTTON IS PRESSED DOWN 

DO WHILE (BPOS. EQ. 1) 

C STORE PREVIOUS MOUSE COORDS IN OLDXPOS&OLDYPOS 

OLDXPOS = IXPOS 
OLDYPOS = IYPOS 

C GET POSTION OF MOUSE 

CALL GETMOUSECURSORPOSITION(XPOS, YPOS, EPOS) 

C CONVERT POSITION INTO SCREEN COORDS 

IXPOS = CONVERTX(INT2(XPOS)) 
IYPOS - CONVERTY(INT2(YPOS)) 

C CHECK IF MOUSE HAS MOVED AND IF IT HAS 
C THEN DRAW OVER OLD LINE AND DRAW NEW ONE 

IF (((IXPOS - OLDXPOS) . NE. 0). OR. 
1 ((IYPOS - OLDYPOS). NE. O)) THEN 

CALL HIDEMOUSECURSOR 
CALL DRAWLINE(XPOINT. YPOINT, 

1 OLDXPOS, OLDYPOS) 
CALL DRAWLINE(XPOINT, YPOINT, 

1 IXPOS, IYPOS) 
CALL SHOWMOUSECURSOR 

END IF 
END DO 

END IF 

C CHECK FOR MOUSE BEING RELEASED 

CALL GETMOUSEBUTTONRELEASEINFO(O, XPOS, YPOS, BPOS, BCOUNT) 

C IF IT HAS BEEN RELEASED 

IF (BCOUNT. EQ. 1) THEN 
CHANGELINKNO = TRUE. 

C CHECK IF MOUSE HAS BEEN CALLED APART FROM 

C IN THIS SUBROUTINE 

IF (CALLMOUSETRUE) THEN 
GOTO 10 

END IF 

C SAME CHECKS AS FOR WHEN BUTTON WAS PRESSED 
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c DOWN 
IF (. NOT. CHOOSELINK1) THEN 

GOTO 10 
END IF 
IF ((CONNO. EQ. LINKNO). AND. (COUNTER. EQ. 0)) THEN 

GOTO 10 
END IF 

IF ((PIPE). AND. (LINKS)) THEN 
IF ((NL1(LINKNO). EQ. 0). OR. (NL1(LINKNO). EQ. 3)) THEN 

GOTO 10 
END IF 

END IF 
IF ((PIPE). AND. (. NOT. LINKS)) THEN 

IF ((NL1(LINKNO). EQ. 1). OR. (NL1(LINKNO). EQ. 2)) THEN 
GOTO 10 

END IF 
END IF 

C DRAW OVER PREVIOUS LINE 

CALL HIDEMOUSECURSOR 
CALL DRAWLINE(XPOINT, YPOINT, IXPOS, IYPOS) 
CALL SHOWMOUSECURSOR 

C FIND NEW POSITION OF MOUSE 

NIXPOS = CONVERTX(INT2(XPOS)) 
NIYPOS = CONVERTY(INT2(YPOS)) 

C CHECK TO SEE IF SECOND PROCESSOR WAS PICKED 

CALL FINDPROCNO2(NP2, NL2, NIXPOS, NIYPOS) 

C CHECK IF PROCESSOR WAS PICKED BUT NOT ON 
CA LINK 

IF (. NOT. CHOOSELINK2) THEN 
IF (COUNTER. NE. O) THEN 

CHANGELINKNO = FALSE. 
ELSE 

LINKNO = LINKNO -1 
CHANGELINKNO = TRUE. 

END IF 
GOTO 10 

END IF 

C CHECK IF SAME PROCESSOR AND LINK NO 
C USED BEFORE FOR FIRST PROCESSOR PICKED 

IF (CHOOSELINK2) THEN 

C CHECK IF SAME PROCESSOR AND LINK NO 
C USED BEFORE 

IF (NP1(LINKNO). NE. NP2(LINKNO)) THEN 
DO 200 X=1, LINKNO -1 

IF (((NP1(LINKNO). EQ. NP1(X)). AND. 
1 (NL1(LINKNO). EQ. NL1(X))). OR. 
1 ((NP1(LINKNO). EQ. NP2(X)). AND. 
1 (NL1(LINKNO). EQ. NL2(X)))) THEN 

IF (. NOT. CONNECT) THEN 
CONNECT = TRUE. 

END IF 
CHANGELINKNO = TRUE. 
LINKNO = LINKNO -1 
GOTO 10 

END IF 
200 CONTINUE 

END IF 

C CHECK FOR CONNECTION BEING MADE 

90 IF (CONNECT) THEN 

C IF PIPELINE CHECK LINKS FOR PIELINE NOT 
C USED BEFORE 

IF (IPIPE). AND. (LINKS)) THEN 
IF ((NL2(LINKNO). EQ. O). OR. (NL2(LINKNO). EQ. 3)) THEN 

IF (COUNTER. NE. O) THEN 
CHANGELINKNO = FALSE. 

ELSE 
LINKNO = LINKNO -1 
CHANGELINKNO = TRUE. 

END IF 
COTO 10 

END IF 
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END IF 
IF ((PIPE). AND. (. NOT. LINKS)) THEN 

IF ((NL2(LINKNO). EQ. 1). OR. (NL2(LINKNO). EQ. 2)) THEN 
IF (COUNTER. NE. O) THEN 

CHANGELINKNO = FALSE. 
ELSE 

LINKNO = LINKNO -1 
CHANGELINKNO = TRUE. 

END IF 
GOTO 10 

END IF 
END IF 

C CHECK IF TWO LINK NUMBERS THE SAME 

IF ((NL1(LINKNO). EQ. NL2(LINKNO)). AND. (PIPE). AND. 
1 (NP1(LINKNO). NE. NP2(LINKNO))) THEN 

IF (COUNTER. NE. O) THEN 
CHANGELINKNO = FALSE. 

ELSE 
LINKNO = LINKNO -1 
CHANGELINKNO = TRUE. 

END IF 
GOTO 10 

END IF 

C CHECK IF LINK AND PROCESSOR USED BEFORE FOR 
C SECOND PROCESSOR AND LINK SELECTED 

IF (NP1(LINKNO). NE. NP2(LINKNO). OR. 
1 (NL1(LINKNO). NE. NL2(LINKNO). AND. NP1(LINKNO). EQ. 
1 NP2(LINKNO))) THEN 

DO 300 X=1, LINKNO -1 
IF (((NP2(LINKNO). EQ. NP1(X)). AND. 

1 (NL2(LINKNO). EQ. NL1(X))). OR. 
I ((NP2(LINKNO). EQ. NP2(X)). AND. 
1 (NL2(LINKNO). EQ. NL2(X)))) THEN 

IF (COUNTER. EQ. O) THEN 
CHANGELINKNO = TRUE. 
LINKNO = LINKNO -1 
GOTO 10 

ELSE 
CHANGELINKNO = FALSE. 
GOTO 10 

END IF 
END IF 

300 CONTINUE 
END IF 

END IF 

END IF 

C DRAW NEW LINE 

CALL HIDEMOUSECURSOR 
CALL SRAWLINE(XPOINT, YPOINT, NIXPOS, NIYPOS) 
CALL SHOWMOUSECURSOR 

C INCREMENT COUNTER FOR COUNTING NO OF LINES 

COUNTER = COUNTER +1 

C STORE NO OF LINES AND POINTS THAT MAKE UP 
C CONNECTIONS IN ARRAY(POINTS) 

POINTS(LINKNO, 1) = COUNTER 
POINTS(LINKNO, COLUMN) = XPOINT 
COLUMN - COLUMN +1 
POINTS(LINKNO, COLUMN) = YPOINT 
COLUMN = COLUMN +1 
POINTS(LINKNO, COLUMN) = NIXPOS 
COLUMN = COLUMN +1 
POINTS(LINKNO, COLUMN) = NIYPOS 

COLUMN = COLUMN +1 

C IF CONNECTION HAS BEEN MADE CHECK IF DOUBLE CLICK 

C WAS MADE TO DELETE A LINE AND ALSO RESET COUNTER 

C AND COLUMN 

IF (CONNECT) THEN 
COLUMN =2 
COUNTER =0 
CALL CHECKERASE(COUNTER, COLUMN, NIXPOS, NIYPOS, XPOINT, 

YPOINT) 
END IF 
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END IF 
GOTO 10 
END 

C ****OUTPUT TEXT TO SCREEN IN GRAPHICS MODE**** 

SUBROUTINE TEXT(XCOORD, YCOORD, STRING) 

INCLUDE 'GRAPH. INC' 
INCLUDE 'NEWXY. INC' 

INCLUDE 'FGRAPH. FD' 

RECORD/XYCOORD/XY 
INTEGER XCOORD, YCOORD 
CHARACTER*(*) STRING 

CALL MOVETO(NEWX(XCOORD), NEWY(YCOORD), XY) 
CALL OUTGTEXT(STRING) 

END 

C ****SET COLOUR**** 

SUBROUTINE COLOUR(C) 

INCLUDE GRAPH. INC' 
INCLUDE 'NEWXY. INC' 

INCLUDE FGRAPH. FD' 

INTEGER C 
INTEGER*2 PICK 

PICK = SETCOLOR(C) 

IF (PICK. EQ. -l) THEN 
STOP ERROR: CANNOT SET COLOUR' 

END IF 

END 

C ****SET THE WRITEMODE(I. E XOR. AND, ETC)**** 

SUBROUTINE WRITESTYLE(STRING) 

INCLUDE GRAPH. INC' 
INCLUDE 'NEWXY. INC' 

INCLUDE FGRAPH. FD' 

INTEGER*2 STRING, STYLE 
STYLE = SETWRITEMODE(STRING) 

IF (STYLE. EQ. -l) THEN 
STOP 'ERROR: CANNOT SET WRITEMODE' 

END IF 

END 

C ****CREATE BOX TO ENABLE YOU TO FINISH**** 

SUBROUTINE ENDBOX(XCENT, YCENT) 

INCLUDE GRAPH. INC' 
INCLUDE 'NEWXY. INC' 

INCLUDE FGRAPH. FD' 

INTEGER*2 STATUS 
INTEGER XCENT, YCENT 

STATUS = RECTANGLE($GBORDER, NEWX(XCENT - 48), NEWY(YCENT - 25), 
NEWX(XCENT + 60), NEWY(YCENT + 17)) 

CALL COLOUR(13) 
CALL TEXT(XCENT - 45, YCENT - 15, 'FINISH') 

END 

C ****FIND NO OF PROCESSOR AND LINKNO**** 

SUBROUTINE FINDPROCNO1(ARRAYI, ARRAY2, IX, IY) 

INCLUDE 'GRAPH. INC' 

INTEGER M, X, N, Y, IXPOS, IYPOS 
INTEGER*2 ARRAY1(32), ARRAY2(32) 

PROCNO =0 
Y= 150 

Appendix A 223 



C MOVE DOWN ROW AT A TIME 

DO 20 M=1,4 
X= 50 

C MOVE ACROSS COLUMN AT A TIME 
DO 10 N=1,8 

C CHECK IF CLICKED IN A PROCESSOR ON A LINK THEN 
C STORE PROCESSOR AND LINK NUMBERS IN APPROPRIATE 
C ARRAYS(NP1, NP2, NL1, NL2) 

IF ((IY. GT. Y). AND. (IY. LT. Y + 100). AND. 
1 (IX. GT. X). AND. (IX. LT. X + 100)) THEN 

C INCREMENT CONNECTION NUMBER BY ONE 

LINKNO = LINKNO +1 
CHOOSELINK1 = TRUE. 
IF ((IY. GT. Y). AND. (IY. LT. Y + 25). AND. 

(IX. GT. X + 35). AND. (IX. LT. X + 65)) THEN 
IF (LINKS) THEN 

ARRAY2(LINKNO) =2 
ELSE 

ARRAY2(LINKNO) =0 
END IF 
ARRAYI(LINKNO) = PROCNO 
IX =X+ 50 

ly =Y 
ELSE IF ((IY. GT. Y + 35). AND. (IY. LT. Y + 65). AND. 

(IX. GT. X). AND. (IX. LT. X + 25)) THEN 
IF (. NOT. LINKS) THEN 

IF ((M. EQ. 1). OR. (M. EQ. 3)) THEN 
ARRAY2(LINKNO) =2 

ELSE 
ARRAY2(LINKNO) =1 

END IF 
ARRAYI(LINKNO) = PROCNO 

ELSE 
IF ((M. EQ. 1). OR. (M. EQ. 3)) THEN 

ARRAY2(LINKNO) =3 
ELSE 

ARRAY2(LINKNO) =0 
END IF 
ARRAY1(LINKNO) = PROCNO 

END IF 

IX =X 
IY =Y+ 50 

ELSE IF ((IY. GT. Y + 75). AND. (IY. LT. Y + 100). AND. 
(IX. GT. X + 35). AND. (IX. LT. X + 65)) THEN 
IF (LINKS) THEN 

ARRAY2(LINKNO) =1 
ELSE 

ARRAY2(LINKNO) =3 
END IF 
ARRAYI(LINKNO) - PROCNO 
IX=X+ 50 
IY =Y+ 100 

ELSE IF ((IY. GT. Y + 35). AND. (IY. LT. Y + 65). AND. 
(IX. GT. X + 75). AND. (IX. LT. X + 100)) THEN 
IF (. NOT. LINKS) THEN 

IF ((M. EQ. 1). OR. (M. EQ. 3)) THEN 
ARRAY2(LINKNO) =1 

ELSE 
ARRAY2(LINKNO) =2 

END IF 
ARRAYI(LINKNO) = PROCNO 

ELSE 
IF ((M. EQ. 1). OR. (M. EQ. 3)) THEN 

ARRAY2(LINKNO) =0 
ELSE 

ARRAY2(LINKNO) =3 
END IF 
ARRAYI(LINKNO) = PROCNO 

END IF 
IX =X+ 100 
IY =Y+ 50 

ELSE 

C IF LINK NOT CHOSEN THEN SET FLAG 

LINKNO = LINKNO -1 
CHOOSELINK1 = FALSE. 
RETURN 

END IF 

Appendix A 224 



RETURN 
ELSE 

CHOOSELINK1 = TRUE. 
END IF 

C FOR SECOND AND FORTH ROWS HAVE PROCESSOR NUMBERS 
C RUNNING FROM LEFT TO RIGHT 

IF (((M. EQ. 2). OR. (M. EQ. 4)). AND. (N. LT. 8)) THEN 
PROCNO = PROCNO -1 

END IF 

C FOR FIRST AND THIRD ROWS HAVE PROCESSOR NUMBERS 
C RUNNING FROM RIGHT TO LEFT 

IF (((M. EQ. 1). OR. (M. EQ. 3)). AND. (N. LT. 8)) THEN 
PROCNO = PROCNO +1 

END IF 
X=X+ 150 

10 CONTINUE 
PROCNO = PROCNO +8 
Y=Y+ 200 

20 CONTINUE 

END 

C ****FIND NO OF SECOND PROCESSOR AND LINK**** 

SUBROUTINE FINDPROCN02(ARRAY1, ARRAY2, IX, IY) 

INCLUDE 'GRAPH. INC' 
INTEGER M, X, N, Y, IXPOS, IYPOS 
INTEGER*2 ARRAY1(32), ARRAY2(32) 

PROCNO =0 
Y= 150 

C LOOK AT ROWS OF PROCESSORS 

Do 20M= 1,4 
X= 50 

C LOOK AT COLUMNS OF PROCESSORS 

DO 10 N=1,8 

C CHECK WHETHER MOUSE CLICKED WITHIN 
C PROCESSOR AND THEN WITHIN LINK 

IF ((IY. GT. Y). AND. (IY. LT. Y + 100). AND. 
1 (IX. GT. X). AND. (IX. LT. X + 100)) THEN 

CHOOSELINK2 = TRUE. 
IF ((IY. GT. Y). AND. (IY. LT. Y + 25). AND. 

1 (IX. GT. X + 35). AND. (IX. LT. X + 65)) THEN 
IF (LINKS) THEN 

ARRAY2(LINKNO) -2 
ELSE 

ARRAY2(LINKNO) =0 
END IF 
ARRAYI(LINKNO) = PROCNO 
IX =X+ 50 
IY =Y 

ELSE IF ((IY. GT. Y + 35). AND. (IY. LT. Y + 65). AND. 
1 (IX. GT. X). AND. (IX. LT. X + 25)) THEN 

IF (. NOT. LINKS) THEN 
IF ((M. EQ. 1). OR. (M. EQ. 3)) THEN 

ARRAY2(LINKNO) =2 
ELSE 

ARRAY2(LINKNO) =1 
END IF 
ARRAYI(LINKNO) = PROCNO 

ELSE 
IF ((M. EQ. 1). OR. (M. EQ. 3)) THEN 

ARRAY2(LINKNO) =3 
ELSE 

ARRAY2(LINKNO) =0 
END IF 
ARRAYI(LINKNO) = PROCNO 

END IF 
IX =X 
IY =Y+ 50 

ELSE IF ((IY. GT. Y + 75). AND. (IY. LT. Y + 100). AND. 
(IX. GT. X + 35). AND. (IX. LT. X + 65)) THEN 
IF (LINKS) THEN 

ARRAY2(LINKNO) =1 
ELSE 

ARRAY2(LINKNO) =3 
END IF 
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ARRAYI(LINKNO) = PROCNO 
IX =X+ 50 
IY =Y+ 100 

ELSE IF ((IY. GT. Y + 35). AND. (IY. LT. Y + 65). AND. 
(IX. GT. X + 75). AND. (IX. LT. X + 100)) THEN 
IF (. NOT. LINKS) THEN 

IF ((M. EQ. 1). OR. (M. EQ. 3)) THEN 
ARRAY2(LINKNO) =1 

ELSE 
ARRAY2(LINKNO) =2 

END IF 
ARRAY1(LINKNO) = PROCNO 

ELSE 
IF ((M. EQ. 1). OR. (M. EQ. 3)) THEN 

ARRAY2(LINKNO) =0 
ELSE 

ARRAY2(LINKNO) =3 
END IF 

END IF 
ARRAYI(LINKNO) = PROCNO 

IX=X+100 
IY =Y+ 50 

ELSE 

C SET FLAGS IF CLICKED ON PROCESSOR BUT 
C NOT ON LINK 

CONNECT = TRUE. 
CHOOSELINK2 = FALSE. 
RETURN 

END IF 

CONNECT = TRUE. 
RETURN 

ELSE 
CHOOSELINK2 = TRUE. 
CONNECT = FALSE. 

END IF 

C FOR SECOND AND THIRD ROWS HAVE PROCESSOR NUMBERS 
C RUNNING FROM RIGHT TO LEFT 

IF (((M. EQ. 2). OR. (M. EQ. 4)). AND. (N. LT. 8)) THEN 
PROCNO = PROCNO -1 

END IF 

C FOR SECOND AND THIRD ROWS HAVE PROCESSOR NUMBERS 
C RUNNING FROM LEFT TO RIGHT 

IF (((M. EQ. 1). OR. (M. EQ. 3)). AND. (N. LT. 8)) THEN 
PROCNO = PROCNO +1 

END IF 
X=X+ 150 

10 CONTINUE 
PROCNO = PROCNO +8 
Y=Y+ 200 

20 CONTINUE 

END 

C ****DRAW BOXES WITH LINK NUMBERS IN THEM**** 

SUBROUTINE LINKBOX(XCENT, YCENT, PROCNO) 

INTEGER XCENT, YCENT, PROCNO 
CHARACTER*1 L, R, T, P 

INCLUDE 'GRAPH. INC' 
INCLUDE 'NEWXY. INC' 

INCLUDE 'FGRAPH. FD' 

CALL COLOUR(9) 

C RIGHT HAND BOX 

CALL DRAWLINE(XCENT + 50, YCENT - 15, XCENT + 25, YCENT - 15) 
CALL DRAWLINE(XCENT + 25, YCENT - 15, XCENT + 25, YCENT + 15) 
CALL DRAWLINE(XCENT + 25, YCENT + 15, XCENT + 50, YCENT + 15) 

C TOP BOX 

CALL DRAWLINE(XCENT - 15, YCENT - 50, XCENT - 15, YCENT - 25) 
CALL DRAWLINE(XCENT - 15, YCENT - 25, XCENT + 25, YCENT - 25) 
CALL DRAWLINE(XCENT + 15, YCENT - 25, XCENT + 15, YCENT - 50) 

C BOTTOM BOX 

CALL DRAWLINE(XCENT + 15, YCENT + 50, XCENT + 15, YCENT + 25) 
CALL DRAWLINE(XCENT + 15, YCENT + 25, XCENT - 15, YCENT + 25) 

Appendix A 226 



CALL DRAWLINE(XCENT - 15, YCENT + 25, XCENT - 15, YCENT + 50) 

C LEFT BOX 

CALL DRAWLINE(XCENT - 50, YCENT - 15, XCENT - 25, YCENT - 15) 
CALL DRAWLINE(XCENT - 25, YCENT - 15, XCENT - 25, YCENT + 15) 
CALL DRAWLINE(XCENT - 25, YCENT + 15, XCENT - 50, YCENT + 15) 

C CORNER BOXES 

CALL DRAWLINE(XCENT + 25, YCENT - 15, XCENT + 15, YCENT - 25) 
CALL DRAWLINE(XCENT - 15, YCENT - 25, XCENT - 25, YCENT - 15) 
CALL DRAWLINE(XCENT - 25, YCENT + 15, XCENT - 15, YCENT + 25) 
CALL DRAWLINE(XCENT + 15, YCENT + 25, XCENT + 25, YCENT + 15) 

CALL COLOUR(10) 

C PUT LINK NUMBERS IN BOXES 

IF (. NOT. LINKS) THEN 
IF ((PROCNO. EQ. 1). OR. (PROCNO. EQ. 3)) THEN 

CALL TEXT(XCENT - 46, YCENT - 11, '2') 
CALL TEXT(XCENT - 8, YCENT + 27, '3') 
CALL TEXT(XCENT + 30, YCENT - 11, 'l') 
CALL TEXT(XCENT - 8, YCENT - 48, '0') 

ELSE 
CALL TEXT(XCENT - 46, YCENT - 11, 'l') 
CALL TEXT(XCENT - 8, YCENT + 27, '3') 
CALL TEXT(XCENT + 30, YCENT - 11, '2') 
CALL TEXT(XCENT - 8, YCENT - 48, '0') 

END IF 
ELSE 

IF ((PROCNO. EQ. 1). OR. (PROCNO. EQ. 3)) THEN 
CALL TEXT(XCENT - 46, YCENT - 11, '3') 
CALL TEXT(XCENT - 8, YCENT + 27, '11) 
CALL TEXT(XCENT + 30, YCENT - 11, '0') 
CALL TEXT(XCENT - 8, YCENT - 48, '2') 

ELSE 
CALL TEXT(XCENT - 46, YCENT - 11, '0') 
CALL TEXT(XCENT - 8, YCENT + 27, '1') 

CALL TEXT(XCENT + 30, YCENT - 11, '3') 
CALL TEXT(XCENT - 8, YCENT - 48, '2') 

END IF 

END IF 
CALL COLOUR(2) 

C PUT NUMBERS IN SIDE BOXES 

CALL TEXT(XCENT - 40, YCENT - 40, '41) 

CALL TEXT(XCENT - 40, YCENT + 25, '7') 

CALL TEXT(XCENT + 25, YCENT - 40, '5') 

CALL TEXT(XCENT + 25, YCENT + 25, '6') 

END 

C ****DRAW PIPELINE**** 

SUBROUTINE PIPELINE 

INCLUDE 'FGRAPH. FD' 

INTEGER X, Y. N, M 

CALL COLOUR(14) 
Y= 200 

DO 20 M=1,4 
X=0 

DO 10 N 1,9 
IF ((N. EQ. 1). AND. ((M. EQ. 2). OR. (M. EQ. 3))) THEN 

CALL DRAWLINE(X + 10, Y, X + 50, Y) 
ELSE 

CALL DRAWLINE(X, Y, X + 50, Y) 
END IF 

IF ((N. EQ. 9). AND. (M. EQ. 1)) THEN 
CALL DRAWLINE(X + 50, Y, X + 50, Y + 200) 

END IF 
IF ((N. EQ. 1). AND. (M. EQ. 2)) THEN 

CALL DRAWLINE (X + 10, Y, X + 10, Y + 200) 

END IF 
IF ((N. EQ. 9). AND. (M. EQ. 3)) THEN 

CALL DRAWLINE (X + 50, Y, X + 50, Y + 200) 

END IF 
IF ((N. EQ. 1). AND. (M. EQ. 4)) THEN 

CALL DRAWLINE (X, Y, X, Y - 600) 
END IF 
x=X+ 150 

10 CONTINUE 
y=y+ 200 
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20 CONTINUE 

END 

C DRAW ALL 32 PROCESSORS 

SUBROUTINE DRAWPROCESSORC) 

INTEGER N, X, Y, PROCNO, M, LINENO 
INCLUDE 'GRAPH. INC' 

C DRAW PROCESSORS ROW AT A TIME WITH FIRST 
C AND THIRD ROW NUMBERS FROM LEFT TO RIGHT 
C AND VICE-VERSA FOR RIGHT TO LEFT 

PROCNO =0 
Y= 200 
DO 20 M=1,4 

X= 100 
DO 10 N=1,8 

LINENO =M 
CALL BOX(X, Y, PROCNO) 
CALL LINKBOX(X, Y, LINENO) 
IF (((M. EQ. 2). OR. (M. EQ. 4)). AND. (N. LT. 8)) 

PROCNO = PROCNO -1 
END IF 
IF (((M. EQ. 1). OR. (M. EQ. 3)). AND. (N. LT. 8)) 

PROCNO = PROCNO +1 
END IF 
X=X+ 150 

10 CONTINUE 
PROCNO = PROCNO +8 

Y=Y+ 200 
20 CONTINUE 

END 

C** ERASE CONNECTION'"" 

SUBROUTINE ERASE(CONNO) 

INCLUDE 'GRAPH. INC' 
INCLUDE 'FGRAPH. FD' 
INTEGER NOPOINTS, N, CONNO, J 

THEN 

THEN 

C FIND OUT HOW MANY LINES USED TO MAKE CONNECTION 
C FROM POINTS(LINKNO, 1) AND THEN DELETE ONE AT A 
C TIME 

NOPOINTS = POINTS(CONNO, 1) 
J=2 
CALL HIDEMOUSECURSOR 
DO 10 N=1, NOPOINTS 

CALL DRAWLINE(POINTS(CONNO, J), POINTS(CONNO, J + 1), 
1 POINTS(CONNO, J + 2), POINTS(CONNO, J + 3)) 

J=J+4 
10 CONTINUE 

CALL SHOWMOUSECURSOR 

END 

C ****CHECKS FOR CLICK ON PROCESSOR PREVIOUSLY USED 
C BEFORE**** 

SUBROUTINE CHECKERASE(COUNTER, COLUMN, NIXPOS, NIYPOS, XPOINT, 
1 YPOINT) 

INCLUDE 'GRAPH. INC' 
INTEGER X, P1, P2, L1, L2, IREM, IC. J, COUNTER, COLUMN, NIXPOS, 

NIYPOS, XPOINT, YPOINT 
LOGICAL DELETION 

DELETION = . FALSE. 
P1 = NP1(LINKNO) 
P2 = NP2(LINKNO) 
L1 = NL1(LINKNO) 
L2 = NL2(LINKNO) 

C CHECK MOUSE CLICKED AND RELEASED ON THE SAME PROCESSOR 
C THEN CHECK IF ONE LINE DRAWN TO START MAKING CONNECTION 

IF ((P1. EQ. P2). AND. (Ll. EQ. L2)) THEN 
IF (POINTS(LINKNO, 1). EQ. 2) THEN 

CALL ERASEBOX(350,31) 

C IF YOU DO WANT ERASE BOX THEN LINKNO DECREASED 
C BY ONE. IF DON'T THEN REDRAWLINE. 
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IF (TEST) THEN 
CHANGELINKNO = TRUE. 
LINKNO = LINKNO -1 
COUNTER =0 
COLUMN =2 
RETURN 

ELSE 
CALL HIDEMOUSECURSOR 
CALL DRAWLINE(XPOINT, YPOINT, NIXPOS, NIYPOS) 
CALL SHOWMOUSECURSOR 
POINTS(LINKNO, 2) = NIXPOS 
POINTS(LINKNO, 3) = NIYPOS 
POINTS(LINKNO, 4) = XPOINT 
POINTS(LINKNO, 5) = YPOINT 
COUNTER =1 
COLUMN =6 
CONNECT = FALSE. 
NIXPOS = XPOINT 
NIYPOS = YPOINT 
CALLMOUSETRUE = TRUE. 

END IF 
ELSE 

30 

20 

10 

CHECK IF PROCESSOR NUMBER AND LINK USED BEFORE THEN 
CHECK IF CONNECTION IS REALLY MEANT TO DELETED 
AND IF IT HAS TO BE DELETED ADJUST THE ARRAYS CONTAINING 
LINK AND PROCESSOR NUMBERS ACCORDINGLY. 

DO 10 K=1, LINKNO -1 
IF (((P1. EQ. NP1(K)). AND. (L1. EQ. NL1(K))). OR. 

((P1. EQ. NP2(K)). AND. (L1. EQ. NL2(K)))) THEN 
CALL ERASEBOX(350,31) 
IF (. NOT. TEST) THEN 

LINKNO = LINKNO -1 
RETURN 

END IF 
DELETION = TRUE. 
CALL ERASE(LINKNO) 
CALL ERASE(K) 
IREM =K 
IC =0 
DO 20 J=1, LINKNO -1 

IF (J. NE. IREM) THEN 
IC = IC +1 
NP1(IC) = NP1(J) 
NP2(IC) = NP2(J) 
NL1(IC) = NL1(J) 
NL2(IC) = NL2(J) 
DO 30 N=1,20 

POINTS(IC, N) = POINTS(J, N) 
CONTINUE 

END IF 
CONTINUE 

END IF 
CONTINUE 

END IF 

CHECK IF CLICKED ON PROCESSOR AND LINK NOT USED 
BEFORE AND IF YOU HAVE USED SEVERAL LINES TO MAKE 
A CONNECTION THEN DELETE AUTOMATICALLY 

IF ((. NOT. DELETION. AND. POINTS(LINKNO, 1). EQ. 1) 
OR. IPOINTS(LINKNO, 1). GT. 2)) THEN 

CALL ERASE(LINKNO) 
CHANGELINKNO = TRUE. 
LINKNO x LINKNO -1 

END IF 

IF A DELETION HAS BEEN MADE THEN SUBTRACT TWO 

FROM THE LINK NUMBER AS POINTS FROM CLICKING 

AND RELEASING ON SAME PROCESSOR ARE STORED 

IF (DELETION) THEN 
CHANGELINKNO = TRUE. 
LINKNO = LINKNO -2 

END IF 

END IF 

END 

****PRINT BOX TO ASK WHETHER YOU DO REALLY WANT TO DELETE A 
CONNECTION AND DELETE THE BOX WHEN SELECTION 
HAS BEEN MADE**** 

SUBROUTINE ERASEBOX(XCENT, YCENT) 

INCLUDE 'MOUSE. FD' 
INCLUDE 'FGRAPH. FD' 
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INCLUDE 'GRAPH. INC' 
INCLUDE 'NEWXY. INC' 

INTEGER*2 STATUS, BPOS, XPOS, YPOS 
INTEGER XCENT, YCENT, IXPOS, IYPOS 

C PRINT BOXES FOR QUESTION AND ANSWER(Y/N? ) 

CALL COLOUR(12) 
STATUS = RECTANGLE($GBORDER, NEWX(XCENT - 200), NEWY(YCENT - 21), 

1 NEWX(XCENT + 336), NEWY(YCENT + 21)) 

STATUS = RECTANGLE($GBORDER, NEWX(XCENT + 370), NEWY(YCENT - 21), 
1 NEWX(XCENT + 400), NEWY(YCENT + 21)) 

STATUS = RECTANGLE($GBORDER, NEWX(XCENT + 401), NEWY(YCENT - 21), 
1 NEWX(XCENT + 431), NEWY(YCENT + 21)) 

CALL COLOUR(14) 
CALL TEXT(XCENT - 190, YCENT - 12, 'ARE YOU SURE YOU WANT TO') 
CALL TEXT(XCENT + 220, YCENT - 12, 'DELETE? ') 
CALL TEXT(XCENT + 377, YCENT - 12,1Y') 
CALL TEXT(XCENT + 408, YCENT - 12,1N') 

10 CALL GETMOUSECURSORPOSITION(XPOS, YPOS, BPOS) 
CALLMOUSETRUE = TRUE. 
IXPOS = CONVERTX(INT2(XPOS)) 
IYPOS = CONVERTY(INT2(YPOS)) 

C CHECK WHETHER CLICKED IN Y OR N BOX 

IF (BPOS. EQ. 1) THEN 
IF ((IXPOS. GT. (XCENT + 370)). AND. (IXPOS. LT. (XCENT + 400)) 

AND. (IYPOS. GT. YCENT - 21). AND. (IYPOS. LT. YCENT + 21)) THEN 
TEST = TRUE. 

ELSE IF ((IXPOS. GT. (XCENT + 401)). AND. (IXPOS. LT. (XCENT + 431)) 
AND. (IYPOS. GT. YCENT - 21). AND. (IYPOS. LT. YCENT + 21)) THEN 
TEST = FALSE. 

ELSE 
GOTO 10 

END IF 
ELSE 

GOTO 10 
END IF 

CALL COLOUR(12) 
CALL HIDEMOUSECURSORC) 

C DRAW OVER RECTANGLES AND WORDS 

STATUS = RECTANGLE($GBORDER, NEWX(XCENT + 401), 
NEWY(YCENT - 21), NEWX(XCENT + 431), NEWY(YCENT + 21)) 

CALL COLOUR($BLACK) 
CALL TEXT(XCENT + 408, YCENT - 12, 'N') 
CALL COLOUR(12) 
STATUS = RECTANGLE($GBORDER, NEWX(XCENT + 370), 

NEWY(YCENT - 21), NEWX(XCENT + 400), NEWY(YCENT + 21)) 
CALL COLOUR($BLACK) 
CALL TEXT(XCENT + 377, YCENT - 12, 'Y') 
CALL COLOUR(12) 
STATUS = RECTANGLE($GBORDER. NEWX(XCENT - 200), 

NEWY(YCENT - 21), NEWX(XCENT + 336), NEWY(YCENT + 21)) 

CALL COLOUR($BLACK) 
CALL TEXT(XCENT - 190, YCENT - 12, 'ARE YOU SURE YOU WANT TO') 
CALL TEXT(XCENT + 220, YCENT - 12, 'DELETE? ') 
CALL SHOWMOUSECURSOR() 

CALL COLOUR(11) 

END 

C ****SET UP AN ARRAY CONTAINING CONNECTIONS MADE 
C TO C004**** 

SUBROUTINE COO4CONNECTION() 

INCLUDE 'GRAPH. INC' 

INTEGER I 

C SET UP ARRAYS CONTAINING CONNECTIONS 
C ON 0004-1 AND 0004-0 

DO 10 I=1,32 
00041(I, 1) =1 
00041(I, 2) =I-1 
00041(I, 3) =I-1 
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00041(I, 4) =2 
00041(I, 5) =I -1 
00041(I, 6) =I -1 
00040(I, 1) =2 
00040(I, 2) =I -1 
COO40(I33) =I -1 
00040(I, 4) =1 
00040(I, 5) = I -1 
00040(I, 6) = I- 1 

10 CONTINUE 
END 

C ****FIND WHAT CONNECTIONS NEED TO BE MADE ON THE 0004**** 

SUBROUTINE CONNECTIONS(PNO, LNO) 

INCLUDE 'GRAPH. INC' 

INTEGER  2 PNO(32), LNO(32) 
INTEGER I, J 

C FIND FROM LINK AND PROCESSOR NUMBERS USED WHAT THE 
C CORRESPONDING PIN ON THE C004 IS 

DO 10 I=1, LINKNO 
DO 20 J=1,32 

IF((I. NO(I). EQ. 00041(J, 1)). AND. (PNO(I). EQ. CO041(J, 2))) 
1 THEN 

C41IN(I) = 00041(J, 3) 
END IF 
IF ((LNO(I). EQ. 00041(J, 4)). AND. (PNO(I). EQ. C0041(J, 5))) 

1 THEN 
C41OUT(I) = C0041(J, 6) 

END IF 
IF((LNO(I). EQ. 00040(J, 1)). AND. (PNO(I). EQ. CO040(J, 2))) 

1 THEN 
C40IN(I) = 00040(J. 3) 

END IF 
IF((LNO(I). EQ. 00040(J, 4)1. AND. (PNO(I). EQ. C0040(J, 5))) 

1 THEN 
C4000T(I) = 00040(J, 6) 

END IF 
20 CONTINUE 
10 CONTINUE 

END 

C ****OFFER OPTION TO INTERROGATE C004**** 

SUBROUTINE INTERROGATE 

INCLUDE 'GRAPH. INC' 

CHARACTER"1 REPLY, IREPLY 
INTEGER C4, OUTPUT 
INTEGER*2 IN 

10 WRITE(*, *) 'DO YOU WANT TO INTERROGATE 0004S? (Y/N)' 
READ(*, '(A)') REPLY 

IF ((REPLY. EQ. 'Y'). OR. (REPLY. EQ. 'y')) THEN 
20 WRITE(*, *) 'WHICH C004 DO YOU WANT TO INTERROGATE? ' 

READ(*, *) C4 
IF ((C4. NE. O). AND. (C4. NE. 1)) THEN 

GOTO 20 
END IF 

30 WRITE(*, *) 'WHICH OUTPUT TO YOU WANT TO INTERROGATE? ' 
READ(*, *) OUTPUT 
IF (OUTPUT. GT. 31) THEN 

WRITE(*, *) 'NUMBER IS TOO HIGH. ' 
GOTO 30 

END IF 

C SEND A2 THEN THE NUMBER OF THE C004 YOU 
C WANT TO INTERROGATE. TEST IF THE MSB OF THE BYTE 
C RETURNED IS SET INDICATING A CONNECTION AND IF 
C IT IS THEN SUBTRACT 128 FROM THE BYTE TO GET THE INPUT 

IF (C4. EQ. 0) THEN 
CALL LINKOUT(2, LKAD(1)) 
CALL LINKOUT(OUTPUT, LKAD(1)) 
IN = LINKIN(LKAD(1)) 
IF (((128 - IN). LT. O). OR. ((128 - IN). EQ. O)) THEN 

IN = IN - 128 
WRITE(*, `) THIS OUTPUT IS CONNECTED TO INPUT', IN 

ELSE 
WRITE(*, *) 'THIS OUTPUT IS NOT CONNECTED' 

END IF 
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ELSE 
CALL LINKOUT(2, LKAD(2)) 
CALL LINKOUT(OUTPUT, LKAD(2)) 
IN = LINKIN(LKAD(2)) 
IF (((128 - IN). LT. O). OR. ((128 - IN). EQ. O)) THEN 

IN = IN - 128 
WRITE(*, *) THIS OUTPUT IS CONNECTED TO INPUT', IN 

ELSE 
WRITE(*, *) THIS OUTPUT IS NOT CONNECTED' 

END IF 
END IF 

40 WRITE(*, *) 'DO YOU WANT TO INTERROGATE THE 0004S FURTHER? (Y/N)' 
READ(*, '(A)') IREPLY 
IF ((IREPLY. NE. 'N'). AND. (IREPLY. NE. 'n'). AND. 

1 (IREPLY. NE. 'Y'). AND. (IREPLY. NE. 'y')) THEN 
GOTO 40 

END IF 
IF ((IREPLY. EQ. 'Y'). OR. (IREPLY. EQ. 'y')) THEN 

GOTO 20 
END IF 

ELSE IF ((REPLY. EQ. 'N'). OR. (REPLY. EQ. 'n')) THEN 
RETURN 

ELSE 
GOTO 10 

END IF 

END 

C ****DISPLAY ALL THE CONNECTIONS MADE ON THE C004**** 

SUBROUTINE DISPLAYCONNECTIONSC) 

INCLUDE 'GRAPH. INC' 

CHARACTER*1 REPLY, IREPLY 
INTEGER M, P 
INTEGER *2 INO, IN1 

C DISPLAY CONNECTIONS MADE BETWEEN PROCESSORS 

10 WRITE(*, 5) 
5 FORMAT(1X, 'DO YOU WANT TO SEE ALL THE CONNECTIONS', 1X, 

1 'BETWEEN THE PROCESSORS? (Y/N)') 
READ(*, '(A)') REPLY 

C FIND WHICH INPUT EACH OUTPUT IS CONNECTED TO 
C TEST MSB TO SEE IF SET 

IF ((REPLY. EQ. 'Y'). OR. (REPLY. EQ. 'y')) THEN 
40 DO 30 P=1,32 

CALL LINKOUT(2, LKAD(1)) 
CALL LINKOUT(COO40(P, 6), LKAD(1)) 
INO = LINKIN(LKAD(1)) 
CALL LINKOUT(2, LKAD(2)) 
CALL LINKOUT(INO, LKAD(2)) 
IN1 = LINKIN(LKAD(2)) 
IF (((128 - INO). LT. 0). OR. ((128 - INO). EQ. O)) THEN 

INO = INO - 128 
IN1 = IN1 - 128 
WRITE(*, 26) 00040(P, 5), CO040(P, 4), C0040(INO + 1,2), 

1 C0040(INO + 1,1) 
26 FORMAT(1X, 'PROCESSOR', 1X, I2,1X, 'LINKIN', 1X, I2,1X, 

1 IS CONNECTED TO PROCESSOR', 1X, I2,1X, 
1 'LINKOUT', 1X, I2) 

WRITE(*, 26) 00041(INO + 1,5), 00041(INO + 1,4), 
1 00041(IN1 + 1,2), 00041(IN1 + 1,1) 

END IF 
30 CONTINUE 

ELSE IF ((REPLY. EQ. 'N'). OR. (REPLY. EQ. In')) THEN 
RETURN 

ELSE 
GOTO 10 

END IF 

END 

C ENABLE TESTING OF C004 USING FOUR LINK ADAPTERS 

SUBROUTINE TEST0004() 

INCLUDE 'GRAPH. INC' 

INTEGER OUTPUT1, OUTPUT2 
INTEGER *2 RECEIVEI, RECEIVE2 
CHARACTER"1 REPLY 
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C CODE FOR TESTING C004 

10 WRITE(*, *) 'DO YOU WANT TO TEST THE 0004''s7(Y/N)' 
READ(*, '(Al)') REPLY 

IF ((REPLY. EQ. 'Y'). OR. (REPLY. EQ. 'y')) THEN 
WRITE(* 16) 

C OUTPUT NUMBER FROM ONE LINK ADAPTER AND RECEIVE 
C AT THE OTHER IF CONNECTIONS HAVE BEEN MADE PROPERLY 
C ON THE COO4S 

16 FORMAT(1X, 'ENTER NUMBER YOU WANT TO SEND TO LINK', 1X, 
1 'ADAPTOR 2') 

READ(*, *) OUTPUT1 
CALL LINKOUT(OUTPUT1, LKAD(3)) 
WRITE(", 17) 

17 FORMAT(1X, 'ENTER NUMBER YOU WANT TO SEND TO LINK', 1X, 
1 'ADAPTOR 3') 

READ(*. *) OUTPUT2 
CALL LINKOUT(OUTPUT2, LKAD(4)) 

RECEIVE2 = LINKIN(LKAD(3)) 
WRITE(*. 18) RECEIVE2 

18 FORMAT(1X, 'THE NUMBER RECEIVED AT LINK ADAPTOR', 1X, 
1 '2 WAS', I3) 

RECEIVE1 = LINKIN(LKAD(4)) 
WRITE(", 19) RECEIVEI 

19 FORMAT(1X, 'THE NUMBER RECEIVED AT LINK ADAPTOR', 1X, 
1 '3 WAS', I3) 

ELSE IF ((REPLY. EQ. 'N'). OR. (REPLY. EQ. 'n')) THEN 
RETURN 

ELSE 
GOTO 10 

END IF 

END 
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Appendix B: 

Source code for dynamic interconnection network. 
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{trrttrartrrtrttºttr*trºtrtrrtºtarrffrftrrtrtffttrtttttrttt 
* NAME: BOOT. dsp 
* DESCRIPTION: ALLOWS ADSP-2105 TO BE BOOTED VIA A C012 
r 

r 
x 

t 
r 
xrrxtrrttrrrrrxxtrrtr 

r 

tttrtttttxttttr ttrttrttwxtxxtttrtrrttt) 

. MODULE/RAM/BOOT=O parallel-boot-monitor; 

. VAR/DM count; (counts bytes) 

. VAR/DM ins-count; (counts instructions) 

. INCLUDE <E: \ADI_DSP\INCLUDE\DEF2105. h>; (Control settings) 

. PORT read_c012; 

. PORT write_c012; 

. PORT input-status; 

. PORT output-status; 

. PORT read-c004; 

. PORT write-c004; 

. PORT c004_input_status; 

. PORT c004-output-status; 

. GLOBAL code-start; 

JUMP restarter; NOP; NOP; NOP; 
RTI; NOP; NOP; NOP; 
NOP; NOP; NOP; NOP; 
NOP; NOP; MOP; NOP; 
RTI; NOP; NOP; NOP; 
RTI; NOP; NOP; NOP; 
RTI; NOP; NOP; NOP; 

restarter: CALL initialisations; 
data-ready: A%0 = DM(input_status); 

AYO = 1; 
AR = AXO AND AYO; 
IF EQ JUMP data_ready; 

JUMP io_port; 

initialisations: I5="code-start; (pointer to start) 
MS=l; (increment by 1) 
L5=0; (length of code) 
SR0=0; 
SR1=0; (initialise results reg. ) 

AX1=1; 
DM(count)=AX1; (set no. of bytes=l) 
AXO=0; 
DM(Sys_Ctrl_Reg)=AXO; (disable sporti) 
DM(Dm_Wait_Reg)=AXO; (no wait states) 
DM(Tperiod_Reg)=AXO; (timer not used) 
DM(Tcount_Reg)=AXO; 
DM(Tscale_Reg)=AXO; 

ARO=H/FFFF; 
DM(ins_count)=AXO; (set ins-count to -ve) 
IMASK=O; (enable IRQ2 interrup) 
AX0=0; 
AYO=0; 
RTS; 

io_port; AY1=DM(ins_count); 
AR=PASS AYl; 
IF GT JUMP next-instruction; 
IF LT JUMP load_word_count; 
IF EQ JUMP code_start; 

load-word-count: AYO=DM(count); 
AR=PASS AYO; 
IF NE JUMP first_byte; 
IF EQ JUMP second_byte; 

first_byte: SI=DM(read_c012); 
AR=AYO-1; 
DM(count)=AR; 
JUMP data_ready; 

byte: second SRO=DM(read_c012); 
_ SR=SR OR LSHIFT SI BY 8 (LO); 

DM(ins_count) = SRO; 
AXO=3; 
DM(count)=AXO; 
JUMP data-ready; 
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next-instruction: A%0=2; (decide which byte is due) 
AYO=DM(count); 
AR=AXO-AYO; 

IF LT JUMP most_sig_byte; 
IF EQ JUMP middle-byte; 
IF GT JUMP least sig_byte; 

most_sig_byte: SI=DM(read_cO12); (load MS byte into SI) 
AR=AYO - 1; (decrement count) 
DM(count) = AR; 
JUMP data_ready; 

middle_byte: SRO=DM(read_cOl2); (load middle into SR) 
SR=SR OR LSHIFT SI BY 8 (LO); (put MS and mid. ) 
AR=AYO-1; 
DM(count)=AR; 
JUMP data_ready; 

least_sig_byte: PX=DM(read_c012); (put LS byte into PX) 
PM(I5, M5)=SRO; (write SRO into PM) 

(PX provides 8 LS bits) 
AX0=3; 
DM(count)=AXO; (reset byte count) 
AR=AY1-1; (decrement ins count) 
DM(ins_count)=AR; 
JUMP data_ready; 

code-start: NOP 

. ENDMOD; 
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C NAME: FLASH. DSP 
C 
C DESCRIPTION: DOWNLOADABLE PROGRAM THAT FLASHES LED 
C 
C 
C 
C 

. MODULE/ROM/SEG=int pm/ABS=HI005Dflash_led; 

. INCLUDE <E: \ADI_DSP\INCLUDE\DEF2105. h>; 

. ENTRY flash; 

. PORT read_c012; 

. PORT input-status; 

AXO=O; 
DM(input_status) = AXO; (disable inputint) 
AYO=DM(read_c012); (dummy read) 
I6=H#0018, (address of timer int) 
M6=0; 
L6=0; 
17=^intinstr; (pointer to start of flash) 
M7=0; 
L7=0; 
JUMP loadint; 

intinstr: JUMP flash; 
loadint: AXO = PM(17, M7); 

PM(16, M6) = AXO; 
(AXO=HAOH00; loads imp inst. at timer int 
PX=HNCO; 
PM(I6, M6)=AXO; ) 

AXO=HIFFFF; (sets timer period) 
DM(Tperiod_Reg)=AXO; (Set counter) 
DM(Tcount Reg)=AXO; 
AXO=HllB; 

DM(Tscale_Reg)=AXO; 
IMASK=1; 
ENA TIMER; 
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C NAME: DOWN1 
C DATE: 3/6/94 
C DESCRIPTION: ROUTINE TO TAKE A PROM SPLITTER FILE 
C IN INTEL HEX FORMAT AND DOWNLOAD IT A BYTE* 
C AT A TIME VIA C012 

PROGRAMDOWN1 
INTEGER*1 RECORD, DATA(1000), BYTEOUT1, BYTEOUT2 
INTEGER*2 ADDR, NWORDS, NBYTES, START, 

1 TOTALNBYTES, RESETADDR, LINKADDR, 
1 BYTE1, BYTE2, TOPBYTE 

INTEGER*4 LOOPCOUNT 
CHARACTER*1 DELIM 

EQUIVALENCE (BYTE1, BYTEOUT1) 
EQUIVALENCE (BYTE2, BYTEOUT2) 

OPEN (UNIT=IO, FILE='FLASH4. BNM', STATUS='OLD') 
OPEN (UNIT=20, FILE='RECEIVE. DAT', STATUS='OLD') 
OPEN (UNIT=30, FILE='CONVERT. DAT', STATUS='OLD') 

RESETADDR = #160 
LINKADDR = #150 
NWORDS =0 

START =1 

TOTALNBYTES =0 
RECORD =0 

WRITE(*, *) ' ENTER LOOP COUNT' 
READ(*, *) LOOPCOUNT 

DO WHILE (RECORD. EQ. O) 
10 READ(10,5) DELIM, NBYTES, ADDR, RECORD, 

1 (DATA(I), I-START, START + NBYTES -1) 
5 FORMAT (A1, Z2, Z4, Z2,50Z2) 

START = START + NBYTES 
TOTALNBYTES = TOTALNBYTES + NBYTES 

END DO 

NWORDS = TOTALNBYTES/3 
HYTE2 = IAND(NWORDS, IFF) 

TOPBYTE = IAND(NWORDS, IFF00) 
BYTE1 = ISHFT(TOPBYTE, -8) 

8 FORMAT (Z2) 

CALL PORTOUTBYTE(RESETADDR, 1) 
CALL PORTOUTBYTE(RESETADDR, 0) 

CALL LINKOUTBYTE(LINKADDR, BYTEOUT1) 
DO 100 K=1. LOOPCOUNT 

100 END DO 

CALL LINKOUTBYTE(LINKADDR, BYTEOUT2) 
DO 200 K=1, LOOPCOUNT 

200 END DO 

DO 20 I=1, TOTALNBYTES 
CALL LINKOUTBYTE(LINKADDR, DATA(I)) 

DO 300 K=I, LOOPCOUNT 
300 END DO 

20 END DO 

CALL LINKOUTBYTE(LINKADDR, 55) 

DO 400 K=1, LOOPCOUNT 

400 END DO 

END 
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{f#sºstrr##rrasarrtºrr#fft#fºafºº#aºiºº#º##rftººº#f#i#ff# 
" NAME: SETUP. DSP 
#* 

* DESCRIPTION: SETS UP ARRAYS WHICH CONTAIN CONECTIONS 
* BETWEEN NODES AND THE CROSSBAR SWITCH. 
* TABLES ARE LOADED VIA C012 
tff#if***a***ºttt#f#itt#ti#f#iffitf #ftRitt##ttifiitiit##fl 

. MODULE/ROM/SEG=int_pm/ASS=HN005DSETUP; 

. INCLUDE 

. VAR/DM/RAM node_id[32); 

. VAR/DM/RAM link_no[32); 

. VAR/DM/RAM crossbar_link_no[32); 

. VAR/DM/RAM connection_used_unused[32); 
(. INIT node-id <nodeid. dat>; 
. INIT link_no <linkno. dat>; 

. INIT crossbar-link-no: <crossbar. dat>; ) 

. GLOBAL node_id; 

. GLOBAL link-no; 

. GLOBAL crossbar_link_no; 

. GLOBAL connection_used_unused; 

. PORT read_c004; 

. PORT write_c004; 

. PORT c004_input_status; 

. PORT c004_output_status; 

. PORT read-c012; 

. PORT write-c012; 

. PORT input_status; 

. PORT output_status; 

. GLOBAL read_c004; 

. GLOBAL write_c004; 

. GLOBAL c004_input_status; 

. GLOBAL c004-output-status; 

. GLOBAL read_c012; 

. GLOBAL write_c012; 

. GLOBAL input_status; 

. GLOBAL output_status; 

. EXTERNAL read-bytes; 

<E: \ADI_DSP\INCLUDE\DEF2105. h>; 

IMASK=O; (disable interrupts) 
AX0=0; (load AXO) 
DM(input_status)=AXO; (disable InputInt) 
DM(output_status)=ASO; (disable Outputlnt} 
AYO=DM(read_c012); (dummy read) 
LO = %node_id; (initialize LO) 
L1 = %link_no; (initialize Li) 
L2 = %crossbar_link_no; (initialize L2) 
L3 = %connection_used_unused; (initialize L3) 
MO = 1; (set increment to 1) 
Ml = 1; (set increment to 1) 
M2 = 1; (set increment to 11 
M3 = 1; (set increment to 1) 

10 = ^node_id; (set pointer) 
I1 = ^link_no; (set pointer) 
12 = ^crossbar_link_no; (set pointer) 
13 = ^connection_used_unused; (set pointer) 

CNTR = %node_id; (set to CNTR to length 
of array) 

DO load buffer UNTIL CE; (loop until CNTR=O) 

wait: AXO=DM(input_status); (test input status of C012) 

(load AYO) 
AND AYO; (test LSB of input put 

status) 
IF EQ JUMP wait; (if 0 keep looping) 

AYO=HIFF; (load AYO) 

AXO=DM(read_co12); (read C012) 
AR=AxO AND AYO; (clear upper half ofword) 

buffer: load DM(I0. MO)=AR; (load array containing 
_ node ids) 

CNTR = %link_no; (set counter to length 
of link_no) 

DO load_bufferl UNTIL CE; (loop until CNTR=O) 

waitl: AXO=DM(input_status); (test input status of C012) 

AYO=1; (load AYO) 
AR=AXO AND AYO; (test LSB of input 

status} 
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IF EQ JUMP waitl; (if 0 keep looping) 
AYO=HIFF; (load AYO) 

AXO=DM(read_c012); (read C012) 
AR=AXO AND AYO; (clear upper half of 

word) 

load_bufferl: DM(I1, M1)=AR; (load array containing 
node ids) 

CNTR = %crossbar_link_no; (set counter to length 
of crossbar_link_no) 

DO load_buffer2 UNTIL CE; (loop until CNTR=O) 
wait2: AXO=DM(input_status); (test input status of 

C012) 
AY0=1; (load AYO) 
AR=AXO AND AYO; (test LSB of input 

status) 
IF EQ JUMP wait2; (if 0 keep looping) 
AYO=HIFF; (load AYO) 

AXO=DM(read_c012); (read C012) 
AR=AXO AND AYO; (clear upper half of 

word) 
load_buffer2: DM(12, M2)=AR; (load array containing 

node ids) 
CNTR = %connection_used_unused; (set CNTR to length 

of array) 
AXO = 0; (load AXO) 
DO clear-buffer UNTIL CE; (loop until CNTR=O) 

clear-buffer: DM(I3, M3) = AROM (load array with 0's) 
call read_bytes; (call array which 

reads bytes from 
nodes) 

ENDMOD; 
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{ftf#rRt#rY4ffrtYrtff Y*ftYti##f *tii#f tft#tff tf tfff##Rf#it#f## 

* NAME: READBYTE * 
#* 
* DESCRIPTION: READS THE THREE BYTES SENT BY THE NODES AND 
* INSERTS THEM INTO DATA MEMORY ADDRESS 
* SPACE * 
tf 
* DATE: Wed 24-08-1994 
{ftr*#rr#t#rrf#rrrR##rrY#Yf#ffRtrtiºfftt#Yi#tfttf tf#tft#titif 

. MODULE/ROM/SEG=int_pm readbytes; 

. VAR/DM source_node; 

. VAR/DM link_num; 

. VAR/DM destination_node; 

. VAR/DM byte_count; 

. EXTERNAL c004-input-status; 

. EXTERNAL read-c004; 

. EXTERNAL decode_request; 

. ENTRY read-bytes; 

. GLOBAL source_node; 

. GLOBAL link_num; 

. GLOBAL destination_node; 

read-bytes; AX0=3; (set AXO) 
DM(byte_count)=AXO; (set byte-count) 

not-received: AXO=0; (reset AXO) 
AXO=DM(c004_input_statu s); (load input status of C012) 
AYO=1; (load AY1) 
AR=AXO AND AYO; (look at LSB) 
IF EQ JUMP not_received ; (test if =0) 

(i. e C012 empty) 
AXO=2; (load AXO) 
AY1=DM(byte_count); (load byte_count 

into AY1) 
AR=AXO-AY1; (find which byte 

is present) 
IF LT JUMPfirst_byte; 
IF EQ JUMP second-byte; 
IF GT JUMP third-byte; 

first_byte: AYO=HAFF; (load AYO} 
AXO=DM(read_c004); (read port) 
AR=AXO AND AYO; (mask off top byte) 
DM(source_node)=AR; (store result 

in DM) 
AR=AYl-1; (-1 from byte_ 

count) 
DM(byte_count)=AR; (store new value 

for byte_count) 
JUMP not-received; 

second-byte: AYO=HNFF; (load AYO) 
AXO=DM(read_c004); (read port) 
AR=AXO AND AYO; (mask off top 

byte) 
DM(link_num)=AR; (store result 

in DM) 

AR=AY1-1; (-1 from byte_ 

count) 
DM(byte_count)=AR; (store new value 

for byte_count) 
JUMP not-received; 

third byte. AYO=RIFF; (load AYO) 
- AXO=DM(read_c004); (read port) 

AR=AXO AND AYO; (mask off top 
byte) 

DM(destination_node)=AR; (store result in DM) 
JUMP decode-request; 

. ENDMOD; 
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* NAME: DECODE. DSP 
** 

DESCRIPTION: DECIDES WHETHER MESSAGE FROM NODE IS A CONNECTION* 
OR DISCONNECTION REQUEST 

DATE: Wed 24-08-1994 

. MODULE/ROM/SEG=int_pm decoderequest; 

l 

. EXTERNAL link_num; 

. EXTERNAL make-connection; 

. EXTERNAL break-connection; 

. ENTRY decode_request; 

decode-request: AYO=128; (set AYO) 
AXO=DM(link_num); (load AXO) 
AR=AXO AND AYO; (look at MSBit) 
IF EQ JUMP make_connection; 
IF NE JUMP break-connection; 

. ENDMOD; 
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ýttR*tRtfRºtt*R***ttR*º*f**t****ºf*****R******************* 

* NAME: FINDSOUR. DSP; * 
R* 
* DESCRIPTION: SEARCHES ARRAYS TO FIND WHICH LINK ON THE 
*CROSSBAR SWITCH THE SOURCE NODE IS CONNECTED 
" TO. 
** 
* DATE: Thu 25-08-1994 * 
** 
ttttttttttftttif tfitttttttttftttttfttititttfttktttt14tt#tt} 

. MODULE/ROM/SEG=int_pm makeconnection; 

. VAR source_node_crossbar_link; 

. VAR pointer_to_source_node_link; 

. GLOBAL pointer_to_source_node_link; 

. GLOBAL source_node_crossbar_link; 

. EXTERNAL source_node; 

. EXTERNAL source_node_link_num; 

. EXTERNAL connection_failed; 

. EXTERNAL write-c012; 

. EXTERNAL output_status; 

. ENTRY find_crossbar_link_for_source; 

find_crossbar_link_for_source: AXO=DM(source_node); (load address of 
source node) 

AY1=0; (load AY1) 
match_source: AYO=DM(IO, MO); (load value from 

table) 
AR=AY1+1; (count number of 

times round loop) 
AY1=AR; (store new value of 

AY1) 
AR=AYO-AXO; (test for match) 

IF EQ JUMP load-pointer; (if match then 
exit loop) 

IF LT JUMP match-source; (keep searching 
table) 

IF CT JUMP match_source; (keep searching 
table) 

load_pointer: AX1=AY1; (store loop count 
in AX1) 

AY1=I1; (put pointer to 
link_no in AY1) 

AYO=l; (load AY1) 
AR=AX1-AYO; {calculate actual 

amount to be added 
to 11) 

MRO=AR; (store result in 
MRO) 

AR=MRO+AY1; (calculate new 
pointer address 
for link_no) 

I1=AR; (load I1 with new 
value) 

AXO=DM(source_node_link_num); (load linknum) 
AY1=0; (load AY1) 
match_link: AYO=DM(Il, Ml); (load value 

from table) 
AR=AY1+1; (count number of 

times round loop) 
AY1=AR; (store new value 

of AY1) 
AR=AXO-AYO; (check for match) 

IF EQ JUMP find_link_on_crossbar; (match) 
IF LT JUMP match_link; (not-match) 
IF GT JUMP match_link; (not-match) 

find_link_on_crossbar: TOGGLE FLAG_OUT; (used as test) 
AYO=AY1; (load AYO with no 

of times round 
match-link) 

AR=AX1+AYO; (calculate total 
distance from start) 

AX1=AR; (load AX1 with 
result) 

A%0=I2; (load A%0 with 
start address of 
array) 

AY1=2; 
AR=AX1-AYl; (find value 

to be added 
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to 12) 
AY1=AR; (load AY1) 
AR=AXO+AYl; (calculate new 

value of pointer) 
I2=AR; (load start address 

into 12) 
AX0=i3; (repeat for 13) 
AR=AXO+AYl; (calculate new 

value of pointer) 
13=AR; (load new value 

into 13) 
DM(pointer_to_source_node_link)=I3; 
AXO=DM(I2, M2); 
DM(source_node_crossba r_link)=AXO; 

(store pointers 
for later use) 

RTS; 
ENDMOD; 
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ýfffffittffffftf tfºtf ifºtf iff*fff44tftlf Yff*fº1Rf Rf RR#*i*t*YRff 

* NANE: MAKE. DSP * 
** 
* DECRIPTION: CALLS ROUTINES REQUIRED TO MAKE A CONNECTION; 
** 
* DATE: Wed 31-08-1994 * 

ttrrttttttttrrt rrrrrrrrrrrrttrtttrftttttt*ttfttttttrtttrttrtttsj 

. MODULE/ROM/SEG=int_pm makesconnection; 

. VAR source_node_link_num; 

. GLOBAL source_node_link_num; 

. EXTERNAL link_num; 

. EXTERNAL connection-failed; 

. EXTERNAL find_destination_node; 

. 
EXTERNAL connection-failed; 

. EXTERNAL test_link_inuse; 

. EXTERNAL program_crossbar; 

. EXTERNAL find_crossbar_link_for_source; 

. ENTRY make_connection; 

make_connection: AXO=DM(link_num); (load AXO with 
link_num) 

DM(source_node_link_num)=AXO; (load value 
into different 
variable) 

AY0=3; (load AYO) 
AR=AYO-AXO; (test link 

number is not 
greater than 4) 

IF LT JUMP connection_failed; (if link number 

not valid then 
fail attempt) 

(Call routine which searches tables to find which link on the crossbar 
switch source node is connected to) 

CALL find-crossbar-link-for-source; 
test-connection: AXO=DM(I3, M3); (load ARG from array) 

AY0=1; (load AY1) 
AR=AYO-AXO; (test that link is 

free - i. e 101) 
IF EQ JUMP connection_failed; 

(call routine which locates a link on the crossbar switch the destination node could be 
connected to) 

IF NE CALL find_destination_node; 
CALL test_link_inuse; (searches for free 

links on destination 
node) 

CALL program-crossbar; (program crossbar 
switch) 

ENDMOD; 
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* NAME: FINDDEST. DSP 

* DESCRIPTION: FINDS LINK NUMBER OF DESTINATION NODE AND LINK* 
t ON CROSSBAR IT IS CONNECTED TO. 
t 

* DATE: Tue 30-08-1994 
* 
Y 

t**Yt**fftYffffYfttffftff*fYtftt*tYttf tf tlttt*ttttt*t*tYfftYl 

. MODULE/ROM/SEG=int_pm finddestinationnode; 

. VAR destination_node_link_num; 

. VAR destination_node_crossbar_link; 

. VAR pointer_to_destination_node_link; 

. GLOBAL pointer_to_destination_node_link; 

. GLOBAL destination_node_link_num; 

. GLOBAL destination_node_crossbar_link; 

. EXTERNAL destination_node; 

. EXTERNAL node_id; 

. EXTERNAL link_no; 

. EXTERNAL crossbar-link-no; 

. EXTERNAL connection_used_unused; 

. EXTERNAL connection-failed; 

. EXTERNAL program_crossbar; 

. ENTRY find_destination_node; 

find_destination_node: I0=^node_id; (reset pointers) 
Il=^link_no; 
12=^crossbar_link_no; 
I3=^connection used_unused; 

AXO=DM(destination_node); (load destination 
node) 

AY1=0; (reset ayl) 

match_destination: AYO=DM(IO, MO); (load node id) 
AR=AY1+1; (increment counter) 
AY1=AR; (store counter 

value) 
AR=AXO-AYO; (test for match 

for dest. node) 
IF EQ JUMP load_pointerl; (exit loop) 
IF LT JUMP match_destination; (keep looping) 
IF CT JUMP match_destination; (keep looping) 

load_pointerl: AR=AY1-1; (-1 from loop 
count) 

MRO=AR; (store result) 
AY1=I1; (put pointer to 

link_no in AY1) 
AR=MRO+AY1; (add offset to 

11) 
Il=AR; (load new value 

of 11) 
AY1=I2; (find new value 

for pointer to 
crossbarlinkno) 

AR=MRO+AY1; (add offset to 
I2) 

12=AR; (load new value 
of 12) 

AY1=I3; (find new value 
for pointer to 
connectionused) 

AR=MRO+AY1; (add offset to 
13) 

I3=AR; (load new value 
of 12) 

RTS; 

. 
ENDMOD; 
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ýrtttrwtrrrrrtrttkwtrtrtrrrrrrretrt*rwttwrwrwwwttrwrrwwrwrtrrttr 
* NAME: TESTLINK. DSP 
tr 
* DESCRIPTION: SERCHES LINKS FROM DESTINATION NODE TO CROSSBAR 
* LOOKING FOR A FREE LINK TO CONNECT THE 
* SOURCE NODE TO, * 
*r 
* DATE: Tue 30-08-1994 * 
*rrrr**r*rr*r**rrtr*******rrrrrrrrrrrrrtwtwrtwrrrrrrrttrtwrrr*rt} 

. MODULE/ROM/SEG=int_pm testforfreelink; 

. EXTERNAL connection-failed; 

. EXTERNAL destination_node_link_num; 

. EXTERNAL destination_node_crossbar_link; 

. EXTERNAL pointer_to_destination_node_link; 

. ENTRY test_link_inuse; 

test_link_inuse: AY1=0; (reset ayl) 
load_flag: AYO=DM(I3, M3); (load flag) 

AR=AY1+1; (incement counter) 
AY1=AR; 
AX0=5; 
AR=AY1-AXO; (test if looped 

4 times) 
IF EQ JUMP connection_failed; (if checked 

all 
4 links then 
failed) 

AR=AYO-l; 
IF EQ JUMP load_flag; (if connection used 

then test further) 
IF LT JUMP find_dest_link; (connection free 

then proceed) 

find_dest_link: AY0=I3; (load AYO with 
pointer) 

AR=AYO-1; (-1 from pointer) 
DM(pointer_to_destination_node_link)=AR; 
AR=AY1-1; (-1 from AY1) 
AY1=AR; (store loop count) 
AX1=I1; (set pointer) 
AR=AX1+AY1; (find new value 

of pointer) 
Il=AR; (load pointer) 
AXO=DM(I1, Ml); (load AXO) 
DM(destination_node_link_num)=AXO; (store in 

DM) 

link: crossbar AX1=I2; (set pointer) 
- AR=AXI+AY1; (find new value 

of 12) 
12=AR; (load new value) 
AXO=DM(I2, M2); (store link 

number) 
DM(destination_node_crossbar_link)=AXO; 

RTS; 

. ENDMOD; 
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{*tltffffRtff44tiff*tl*ft*tftt*fftf**#1******fR*ff#*************** 

* NAME: CROSS. DSP 

* DESCRIPTION: PROGRAMS REQUIRED CONNECTION ON CROSSBAR SWITCH. * 
* UPDATES FLAGS INDICATING WHETHER LINKS ARE IN USE. 
* SENDS ACKNOWLEDGE BYTE. 
* RESETS POINTERS. 

* DATE: Tue 30-08-1994 

. MODULE/ROM/SEG=int_pm programcrossbar; 

. EXTERNAL source_node_crossbar_link; 

. EXTERNAL destination_node_crossbar_link; 

. EXTERNAL pointer_to_source_node_link; 

. EXTERNAL pointer_to_destination_node_link; 

. EXTERNAL write_cO12; 

. EXTERNAL write_c004; 

. EXTERNAL output-status; 

. EXTERNAL destination_node_link_num; 

. EXTERNAL node-id, 

. EXTERNAL link-no; 

. EXTERNAL crossbar-link-no; 

. EXTERNAL connection_used_unused; 

. EXTERNAL read-bytes; 

. ENTRY program-crossbar; 

program_crossbar: AXO=DM(source_node_crossbar_link); 
AYO=DM(destination_node_crossbar_link); 

not_readyO: AX1=0; (load AX1) 
AX1=DM(output_status); (check output 

status) 
AY1=1; (look AY1) 
AR=AX1 AND AY1; (look at LSBit) 
IF EQ JUMP not_readyO; (keep looping if 

not ready) 

AX1=l; (load AX1) 
DM(write_c012)=AXl; (initiates discon 

on C004) 

readyl: not AX1=0; (load AM) 
_ AX1=DM(output_status); (check output 

status) 
AY1=1; (look AY1) 
AR=AX1 AND AYl; (look at LSBit) 
IF EQ JUMP not_readyl; (keep looping if 

not ready) 

DM(write_c012)=AXO; (send value of link 
to be connected to 
0004) 

ready2: not Axl=0; (load AX1) 
_ AX1=DM(output_status); (check output 

status) 
AY1=1; (look AY1) 
AR=AX1 AND AY1; (look at LSBit) 

IF EQ JUMP not_ready2; (keep looping if 
not ready) 

DM(write_c012)=AYO; (send value of link 
to be connected to 
C004) 

update_connection_table: 13=DM(pointer_to_source_node_link); (Ioad 
pointer) 

AXO=1; (load AXO) 
DM(I3, M3)=1; (set to 1- connected) 
13=DM(pointer_to_destination_node_link); 
AXO=1; (load AX1) 
DM(I3, M3)=1; (set to 1- connected) 

byte: acknowledge send AXO=DM(destination_node_link_num); (load AXO) 
_ _ DM(write_c004)=AXO; (send num of dest node 

as ack. byte) 

iO=^node_id; (reset pointers) 
Il=^link_no; 
I2=^crossbar_link_no; 
I3=^connection_used_unused; 

JUMP read-bytes; 

. ENDMOD; 

Appendix B 248 



#tttttlfttltttf tf####tft}1lf tft}t}}ttt#ittf #tft##tk#f#f#f#t##tý+ 
* NAME: BREAK. DSP 

DESCRIPTION: SEPARATES OUT SOURCE AND DESTINATION LINK 
NUMBERS 
CALLS ROUTINES TO BREAK A CONNECTION 

* DATE: Wed 31-08-1994 
. ttflttfl/. t/tf. f/ ............................................ 

. MODULE/ROM/SEG=int_pm breakconnection; 

. EXTERNAL destination_node_link_num; 

. EXTERNAL source_node_link_num; 

. EXTERNAL link_num; 

. EXTERNAL find_crossbar_link_for_source; 

. EXTERNAL find_destination_node; 

. EXTERNAL find_destination_link; 

. EXTERNAL disconnect_link; 

. EXTERNAL connection-failed; 

. ENTRY break_connection; 

break_connection: AXO=DM(link_num); (load link_num) 
AYO=7; (load AYO) 
AR=AXO AND AYO; (extract first 

four bits) 
DM(source_node_link_num)=AR; (load variable) 
AXO=DM(source_node_link_num); (load AX0) 
AYO=3; (load AYO) 
AR=AYO-AXO; (check value of 

link Rum is 
sensible) 

IF LT JUMP connection-failed; (fail) 

AYO=127; (load AYO) 
AR=AXO AND AYO; (remove flag bit) 
SRO=AR; (load SRO) 
SR=LSHIFT SRO BY -3(LO); (remove source node 

link number) 
AXO=SRO; (load AXO) 

DM(destination_node_link_num)=AXO; (load VAR) 
AYO=3; (load AYO) 
AR=AYO-AXO; (check linkno is 

reasonable) 
IF LT JUMP connection_failed; (fail) 

CALL find_crossbar_link_for_source; 
CALL find_destination_node; 
CALL find_destination_link; 
CALL disconnect-link; 

. ENDMOD; 
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lfffffYfff*f*ffºffYºffºººf***ffft*ftft*Ititf#\ttttit****\i 

NAME: FINDLINK. DSP 
Y 
" DESCRIPTION: FIND LINK ON CROSSBAR DESTINATION NODE IS 
# CONNECTED TO IN ORDER TO BREAK A 
' CONNECTION. 

* DATE: Wed 31-08-1994 
t 
fiffi\ff*Mttt\\tttttf tf tfttºfff\f \ftt\! t\ft\t 4f ti#itfttf\#} 

. MODULE/ROM/SEG=int_pm findlinkoncrossbar; 

. EXTERNAL destination, 
_node_link_num; 

. EXTERNAL destination_node_crossbar_link; 

. EXTERNAL pointer_to_destination_node_link; 

. ENTRY find_destination_link; 

find_destination_link: AXO=DM(destination_node_link_num); 

loops: AY1=0; (load AY1) 
AYO=DM(Il, M1); (load from table) 
AR=AY1+1; (increment counter) 
AY1=AR; (load new value of 

counter) 
AXO=DM(destination_node_link_num); 
AR=AYO-AXO; (test for match) 

IF EQ JUMP find_link_on_crossbar; 
IF CT JUMP loopl; 
IF LT JUMP loopl; 

find_link_on_crossbar: AR=AY1-1; (-1 from counter) 
AY1=AR; (load new value) 
AXl=12; (load value of pointer) 
AR=AX1+AYl; (find new value of 

pointer) 
I2=AR; (load new value of 

pointer) 
AX1=13; ( load value of pointer) 
AR=AX1+AY1; (find new value of 

pointer) 
I3=AR; (load new value of 

pointer) 
DM(pointer_to_destination_node_link)=AR; 
AXO=DM(I2, M2); (load AXO) 
DM(destination_node_crossbar_link)=AXO; 

RTS; 

. ENDMOD; 
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(ttttrttttrttttrtretttttt*****. *t*ttrttttttttt**t*ttttttt**tt*tttttt 

" NAME: DISCON. DSP * 

* DESCRIPTION: DISCONNECTS A CONNECTION ON THE CROSSBAR SWITCH AND* 
" SENDS AN ACKNOWLEDGE BYTE TO NODE. * 

" DATE: Mon 19-09-1994 
t* 
rrtrsfrrtretrr: rr rr*rrfrrr rtrtrrtrrrrrffttrtfrttr*wrrrrrrrrr*rrr*rrr} 

. MODULE/ROM/SEG=int_pm break_a_connection; 

. EXTERNAL source_node_crossbar_link; 

. EXTERNAL destination_node_crossbar_link; 

. EXTERNAL pointer_to_source_node_link; 

. EXTERNAL pointer_to_destination_node_link; 

. EXTERNAL write_c012; 

. EXTERNAL write_c004; 

. EXTERNAL output_status; 

. EXTERNAL destination_node_link_num; 

. EXTERNAL node_id; 

. EXTERNAL link_no; 

. EXTERNAL crossbar-link-no; 

. EXTERNAL connection_used_unused; 

. EXTERNAL read_bytes; 

. ENTRY disconnect_link; 

disconnect-link: AXO=DM(source_node_crossbar_link); 
AYO=DM(destination_node_crossbar_link); 

not_readyO: AX1=0; (load AX1) 
AX1=DM(output_status); (check output 

status) 
AY1=1; (load AY1) 
AR=AX1 AND AY1; (look at LSBit} 
IF EQ JUMP not_readyO; (keep looping 

if not ready) 

AX1=6; (load AX1) 
DM(write_cOl2)=AX1; (initiates discon 

on C004) 

readyl: not AXl=0; (load AX1) 
_ AX1=DM(output_status); (check output 

status) 
AY1=1; (load AY1) 
AR=AX1 AND AYl; (look at LS2it) 
IF EQ JUMP not_readyl; (keep looping 

if not ready) 

DM(write_c012)=AXO; (send value of link 
to be disconnected 
to C004) 

ready2: not AX1=0; (load AX1) 
_ AX1=DM(output status); (check output 

status) 
AY1=1; (load AYI) 
AR-AX1 AND AY1; (look at LSBit) 
IF EQ JUMP not_ready2; (keep looping 

if not ready) 
DM(write_cOl2)=AYO; (send value of link 

to be disconnected 
to C004) 

connection_table: update I3=DM(pointer_to_source_node_link); (load 
_ pointer) 

DM(13, M3)=0; (reset to 0- disconnected) 

I3=DM(pointer_to_destination_node_link); 
(load pointer) 

DM(I3, M3)=0; (reset to 0- disconnected) 

acknowledge_byte: send AXO=DM(destinatiof_node_link_num); (load AXO) 
_ c004)=AXO; (send no. of dest node DM(write 

_ as ack, byte) 

I0=^node_id; (reset pointers) 
Il=^link`no; 
I2=^crossbar_link_no; 
I3=^ connection _used_unused; 

JUMP read-bytes; 

ENDMODI 
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NAME STATE2. PLD TOKEN PASSING AND FIFO CLOCKING; 
PARTNO STATE MACHINE; 
REVISION 01; 
DATE 13/02/93; 
DESIGNER LESLEY BISSLAND; 
COMPANY GLAGOW UNIVERSITY; 
LOCATION STATE MACHINE; 
ASSEMBLY 
DEVICE P22V10; 
FORMAT -j; 
/tfff*t#f ttt##t#ft#ftRt#tf#f#1Rff#*#f ttttf *f *t*t*ff*t***#tf 4tt*t#*/ 

/*CLOCKS FIFO AND PASSES TOKEN USING TWO SEPARATE STATE MACHINES. */ 
/*ALSO SETS RESET SIGNALS. 

/*tfRfRR*R#fR##f#*RfRlfRR1Rf#1Rt1R#fRtf if #f tftitff**#t##**!! f#R#4i/ 

/**INPUTS**/ 

PIN 1 = CLK; 
PIN 2 = TOKENIN; 
PIN 3 = ITOKENACCEPTED; 
PIN 4 = RESET; 
PIN 5 = KEEPTOKEN; 
PIN 6 = IACK; 
PIN 7 =l EF; 
PIN 8 = SYSCONTROL; 
PIN 9 = D0; 
PIN 10 = RESETDRV; 
/**PIN 11 = TOKENPRESENT; **/ 

/**OUTPUTS**/ 

PIN 14 = IVALID; 
PIN 15 = ! CLOCKFIFO; 
PIN 16 = ITOKENRECEIVED; 
PIN 17 = IENABLEBUFFER; 
PIN 18 = TOKENOUT; 
PIN 19 = LATCHRESET; 
PIN 20 = SYSRESET; 
PIN 21 = tFIFORESET; 
PIN 22 = TOKENARRIVED; 

FIELD TOKENSTATEBIT = (TOKENARRIVED, TOKENOUT, TOKENRECEIVED, 
ENABLEBUFFERI; 

FIELD FIFOSTATEBIT = (IVALID, CLOCKFIFO); 

$DEFINE TOKENO b'0000 
$DEFINE TOKEN1 b'1011 
$DEFINE TOKEN2 b'0100 

$DEFINE FIFOO b' 00 
$DEFINE FIFO1 b' 01 
$DEFINE FIFO2 b' 11 
$DEFINE FIFO3 b' 10 

/**RESETS AND PRESETS"*/ 

IVALID. SP = 'b'0; 
IVALID. AR = 'b'0; 
ENABLEBUFFER. SP = 'b'0; 
ENABLEBUFFER. AR = 'b'0; 
CLOCKFIFO. SP = 'b'0; 
CLOCKFIFO. AR = 'b'0; 
TOKENOUT. SP = 'b'0; 
TOKENOUT. AR = 'b'0; 
TOKENRECEIVED. SP = 'b'0; 
TOKENRECEIVED. AR = 'b'0; 
TOKENARRIVED. SP = 'b'0; 
TOKENARRIVED. AR = 'b'0; 
LATCHRESET. AR = 'b'0; 
LATCHRESET. SP = 'b'0; 

/**DEFINITIONS**/ 

NOTOKEN = ITOKENIN & IRESET & ITOKENACCEPTED; 
TOKEN = TOKENIN & (RESET & ITOKENACCEPTED; 
TOKENPASSED = TOKENACCEPTED & IRESET & ITOKENIN; 

TOKENNOTPASSED = ITOKENACCEPTED & IRESET & ITOKENIN; 
HNOTOKEN = ITOKENIN & IRESET & ITOKENACCEPTED & 

IKEEPTOKEN; 
HTOKEN = TOKENIN & IRESET & ITOKENACCEPTED & 

IKEEPTOKEN; 
HOLD KEEPTOKEN & IRESET; 

CLEAR = RESET; 

FIFOEMPTY = EF & IRESET & IIACK; 
FIFONOTEMPTY = IEF & IRESET & IIACK & TOKENARRIVED; 
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TOKENNOTTHERE _ ! EF & ! RESET & IIACK & ITOKENARRIVED; 
DATASENT = IACK & ! RESET; 
DATANOTSENT = ! ZACK & ! RESET; 
TOKENISTHERE = TOKENARRIVED; 

SEQUENCE TOKENSTATEBIT( 

PRESENT TOKENO IF NOTOKEN NEXT TOKENO; /*TOKEN NOT ARRIVED*/ 
IF TOKEN NEXT TOKEN1; /*TOKEN ARRIVED*/ 
IF CLEAR NEXT TOKENO; /*RESET*/ 

PRESENT TOKENI IF HTOKEN NEXT TOKEN2; /*TOKEN STILL THERE*/ 
IF HNOTOKEN NEXT TOKEN2; /*TOKEN REMOVED*/ 
IF HOLD NEXT TOKEN1; 
IF CLEAR NEXT TOKENO; /*RESET*/ 

PRESENT TOKEN2 IF TOKENPASSEDNEXT TOKENO; /*TOKEN PASSED*/ 
IF TOKENNOTPASSEDNEXT TOKEN2; /*TOKEN NOT 

PASSED*/ 
IF TOKEN NEXT TOKENO; 
IF CLEAR NEXT TOKENO; /*RESET*/ 

SEQUENCE FIFOSTATEBIT( 

PRESENT FIFOO IF FIFOEMPT NEXT FIFOO; 
IF FIFONOTEMPTY NEXT FIFO1; 
IF TOKENNOTTHERE NEXT FIFOO; 
IF DATASENT NEXT FIFOO; 
IF RESET NEXT FIFOO; 

PRESENT FIFO1 IF RESET NEXT FIFOO; 
IF FIFOEMPTY NEXT FIFO2; 
IF FIFONOTEMPTY NEXT FIFO2; 

PRESENT FIFO2 IF DATANOTSENT NEXT FIFO2; 
IF DATASENT NEXT FIFOO; 
IF RESET NEXT FIFOO; 

PRESENT FIFO3 NEXT FIFOO; 

LATCHRESET. d = DO & SYSCONTROL * LATCHRESET & ISYSCONTROL; 
SYSRESET = RESETDRV / LATCHRESET; 
FIFORESET = SYSRESET; 

Appendix 0 253 



Appendix C: 

Source code for parallel energy minimisation. 
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C 
c 
C ºº\sstºirs: r\4aa\tarºairºrºiºrisstsarsttrtri\trktttfttttt 
C" 4 
CHH 00 SSSS TTTTTT MM II NN* 
C*HHOOS TT MM MM II NN N} C* HHHH 00 SSSS TT MMM II NNN 
C"HHOOS TT MM II N NN * C*HH 00 SSSS TT MM II NN C*t 
C*f 
C*4 
C* NAME: HOSTMIN. FOR t 
C** 
C* DESCR: BLOCK-DIAGONAL NEWTON-RAPHSON ENERGY 
C* MINIMISATION, WITH CONSTRAINTS IF C* DESIRED. t 
C*º 
C* ENTRY POINTS: SELF CONTAINED * 
C*\ 
C*t 
C* DAVID WHITE * 
C*# 
C* COPYRIGHT (C), 1986 * 
C* ALL RIGHTS RESERVED * 
C** 
C }4fff4*r\\iff******Y\f#\\t\4f 1tf#}f#t#}4f******t}tttt}f4# 
C 

C BLOCK DIAGONAL ENERGY MINIMISATION PROGRAM 
C 
C THIS PROGRAM IS BASED ON THE GENERAL NEWTON-RAPHSON MINIMISATION 
C ALGORITHM. THE MATRIX OF THE SECOND DERIVATIVES OF THE STERIC 
C ENERGY WITH RESPECT TO THE ATOMIC COORDINATES IS REDUCED TO A BLOCK 
C DIAGONAL FORM, I. E. ALL VALUES OTHER THAN D2VS/DXI DXJ, I, J = 1,2 
C OR 3 FOR EACH ATOM, ARE SET TO ZERO. 
C 
C 
C -- MASTER SEGMENT & FILE READER FOR MOLECULAR MECHANICS ROUTINES -- C 
c INCLUDE 'HOST. INC' 

PROGRAM MOLMEC 

IMPLICIT NONE 

INCLUDE 'CHMCM3. INC' 
C INCLUDE 'HNCOM. INC' 

INTEGER TRNTAB, TRNTB2, NUMCON, INA, I, J 
REAL CELDIM 
DIMENSION CELDIM(6) 
DIMENSION TRNTAB(MXCHEM), TRNTB2(30) 

LOGICAL VALID 
CHARACTER ATNM*2, CHRANM*3,000*1 

C 

15 
16 
17 
18 
19 
20 
21 
22 
C 

C 

C 

C 

C 
C 
C 

DATA TRNTAB/4,5,6,22,9,7,10,10,8,11,12,17,18,16,1,14,15,20,21/ 
DATA TRNTB2/15,15,15,1,2,3,6,9,5,7,10,11,10,16,17,14,12,13 

1,13,18,19,22,23,24,25,26,27,28,29,30/ 

FORMAT(A40) 
FORMAT(6F9.3) 
FORMAT(I4) 
FORMAT(A2,2X, I2,4X, 3F9.4,2X, F10.5,2X, 12) 
FORMAT(I1) 
FORMAT(12) 
FORMAT(I3) 
FORMAT(7I4) 

INQUIRE(FILE='chemmin. cwo', EXIST=VALID) 
IF(. NOT. (VALID)) STOP 

CALL MNINITI 

OPEN (DLUNIN, FILE= Ichemmin. cwo') 
OPEN(DLNOUT, FILE='MOLMEC. CWO', STATUS='NEW') 

OPEN(DLNOUT, FILE='MOLMEC. CWO') 

-- ALL FILES OPEN, NOW READ CONTENTS OF INFILE -- 

READ(DLUNIN, 15) TITLE 
READ(DLUNIN. 16) (CELDIM(I), I=1,6) 
READ(DLUNIN, 17) NUMATS 

IF(NUMATS. GT. MXAT) THEN 
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WRITE(*, *)' ***** ERROR TOO MANY ATOMS *****' 
CLOSE(DLUNIN) 
STOP 
ENDIF 

DO 100 I=1, NUMATS 
READ(DLUNIN, 18) ATNM, ATYNUM(I), (XO(I, J), J=1,3), CHARGE(I) 

1 , MOLNUM(I) 
IF(I. LT. 10) WRITE(CHRANM, 19) I 
IF(I. GE. 10. AND. I. LT. 100) WRITE(CHRANM, 20) I 
IF(I. GE. 100. AND. I. LT. 1000) WRITE(CHRANM, 21) I 
ATMNAM(I)(1: 3)=ATNM(1: 2) 
ATMNAM(I)(4: 6)=CHRANM(1: 3) 
IF(ATYNUM(I). LT. 20) ATYNUM(I)=TRNTAB(ATYNUM(I)) 
IF(ATYNUM(I). EQ. Osp3. AND. (CHARGE(I). EQ. -1. O. OR. CHARGE(I) 

1 . EQ. -2.0)) ATYNUM(I)=Oanion 
100 CONTINUE 

READ(DLUNIN, 17) NUMCON 
DO 105 I=1, NUMCON 

READ(DLUNIN, 22) INA, (ATMCON(I, J), J=1, MXCN) 
105 CONTINUE 
C 

CALL BDMIN 
WRITE(DLNOUT, 15) TITLE 
WRITE(DLNOUT, 16) (CELDIM(I), I=1,6) 
WRITE(DLNOUT, 17) NUMATS 
DO 120 I=1, NUMATS 

ATYNUM(I)=TRNTB2(ATYNUM(I)) 
IF(ATYNUM(I). EQ. 22. AND. ATMNAM(I)(1: 2). EQ. 'C ') ATYNUM(I)=4 

115 WRITE(DLNOUT, 18) ATMNAM(I)(1: 2), ATYNUM(I), (XO(I, J), J=1,3) 
1 , CHARGE(I), MOLNUM(I) 

120 CONTINUE 
WRITE(DLNOUT, 17) NUMCON 
DO 125 I=1, NUMCON 

WRITE(DLNOUT, 22) I, (ATMCON(I, J), J=1, MXCN) 
125 CONTINUE 
C CLOSE(DLUNIN, STATUS='DELETE') 

CLOSE(OLUNIN) 
CLOSE(DLNOUT) 

C 
WRITE(*, *) ' Press RETURN to Continue. ' 
READ(*, '(A)') QQQ 

C 
END 

SUBROUTINE BDMIN 

IMPLICIT NONE 

INCLUDE 'CHMCM3. INC' 
include 'equiv. inc' 

C INCLUDE 'HNCOM. INC' 
C INCLUDE '\BOARD\F77\HSTLNKIF. INC' 

LOGICAL BFCERR, AFCERR, NFCERR, TFCERR 
INTEGER ITRCMP, NFIRST, LAST, BFLENG, I, NDIV, NMOD, L, 

1 NUMPROC 
REAL SHIFT2, ETOT, temp. sgdlsq, rmsdl 

CHARACTER*64 FILE 

INTEGER *1 TEMPI 

integer*2 error, ProcConn(4,4), netcast 

EQUIVALENCE (TEMP1, TEMP) 

10 FORMAT(/, ' ATOM TYPE XY2 
1 CHARGE MOLECULE', /) 

11 FORMAT (2X, A6,4X, I2,3X, 4F12.5,6X, I2) 
12 FORMAT(' MINIMISATION ABORTED DUE TO K(BOND STRETCH) OMISSIONS') 
13 FORMAT(' MINIMISATION ABORTED DUE TO K( ANGLE BEND) OMISSIONS') 
14 FORMAT(' MINIMISATION ABORTED DUE TO K(NON - BONDED) OMISSIONS') 
15 FORMAT(' MINIMISATION ABORTED DUE TO K(BOND TORSION) OMISSIONS') 
16 FORMAT(/, ' INITIAL POTENTIAL ENERGY ', F12.4, I K. CAL PER MOLE' /) 
17 FORMAT(///, ' MINIMISATION ABANDONED DUE TO SINGULAR MATRIX', ///) 
18 FORMAT(' RMS VALUE OF dE/dX, dY, d2 = ', E12.4, ' KCAL MOL-1 A-1') 
19 FORMAT(/, ' FINAL POTENTIAL ENERGY = 1, F12.4, ' K. CAL PER MOLE', /) 
20 format (14I4) 
21 format (14F5.1) 
C 
C -- SHIFTX IS THE INCREMENT IN ATOMIC COORDINATES USED FOR CALCULATING -- 
C -- THE DERIVATIVES -- 
C 

open (20, file = 'lptl') 
CALL ASBOML 
CALL GETCOP 
CALL GETOPB 
IF(NPRINT. GT. 1) THEN 

WRITE(*, 10) 
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WRITE(*, 11) (ATMNAM(I), ATYNUM(I), XO(I, 1), XO(I, 2), XO(I, 3) 1 
ENDIF , CHARGE(I), MOLNUM(I), I=1, NUMATS) 

C 
C -- START CALCULATION PROPER -- C 

BFCERR=. FALSE. 
AFCERR=. FALSE. 
NFCERR=. FALSE. 
TFCERR=. FALSE. 
CALL POTE(ETOT, BFCERR, AFCERR, NFCERR, TFCERR) 
IF(BFCERR) THEN 

WRITE(*, 12) 
RETURN 

ELSE 
IF(AFCERR) THEN 

WRITE(*, 13) 
RETURN 

ELSE 
IF(NFCERR) THEN 

WRITE(*, 14) 
RETURN 

ELSE 
IF(TFCERR) THEN 

WRITE(*, 15) 
RETURN 

ENDIF 
ENDIF 

ENDIF 
ENDIF 

C 
C -- NO MISSING FORCE CONSTANTS SO CONTINUE -- 
C 

IF(NPRINT. EQ. O) WRITE(`, 16) ETOT 
IF(NUMITR. EQ. O) RETURN 

SHIFT2=SHIFTX*SHIFTX 
ITRCMP=O 

C CONFIGURES AND LOADS NODES 

write(*, *) 'Enter no. of nodes in use, 
READ(*, *) NUMPROC 

file= Ic: \comfort\lesley\min\nodemin. appl//char(0) 

call configure(1180, numproc, 1976f) 
call reset(-l) 
call load(-l, file, 100, error) 

If (numproc. eq. 4) then 
do i=1,4 

ProcConn(1, i)=4 
ProcConn(2, i)=-1 
ProcConn(3, i)=-1 
ProcConn(4, i)=-1 

end do 
end if 

if (numproc. eq. 1) then 
do i=1,4 

ProcConn(1, i) =1 
ProcConn(2, i) = -1 
ProcConn(3, i) = -1 
ProcConn(4, i) = -1 

end do 
end if 

netcast = -1 

call initialize(ProcConn, 100, error) 

C SENDS BUFFERS TO NODES 

call send (NETCAST, buffer_atmdatO, 1, total_atmdatO, 100, error) 
call send (NETCAST, buffer atmdatl, 2, total_atmdatl, 100, error) 
call send (NETCAST, buffer_moldat, 3, total_moldat, 100, error) 
call send (NETCAST, buffer_ffp, 4, total_ffp, 100, error) 
call send (NETCAST, buffer_cffp, 5, total_cffp, 100, error) 
call send (NETCAST, buffer_contrl, 6, total_contrl, 100, error) 
call send (NETCAST, buffer_constn, 7, total_constn, l00, error) 

C SEND BYTE ARRAYS SEPARATELY 

CALL SEND (NETCAST, ATYNUM, 8, LENGTH9,100, ERROR) 
CALL SEND (NETCAST, BONDML, 9, LENGTH10,100, ERROR) 
CALL SEND (NETCAST, MOLNUM, 10, LENGTH9,100, ERROR) 
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999 write (5, *)'NO of iterations =', itrcmp +1 

C SENDS COORDINATES TO NODES 

call send(NETCAST, X01,42, INT2(length7), 100, error) 

C NUMPROC =4 

NDIV = NUMATS / NUMPROC 
NMOD = MOD (NUMATS, NUMPROC) 

sgdlsq = 0.0 
DO 321 L=O, NUMPROC-1 

IF(L. 1t. NMOD)THEN 
NFIRST = (L*NDIV)+L+1 
LAST = ((L+1)*NDIV)+L+l 

ELSE IF(L. eq. NMOD)THEN 
NFIRST = (L*NDIV)+L+1 
LAST = ((L+1)*NDIV)+L 

ELSE IF(L. gt. NMOD)THEN 
NFIRST = (L*NDIV)+NMOD+1 
LAST = ((L+1)*NDIV)+NMOD 

ENDIF 

BFLENG=((LAST+1)-NFIRST) 

C RECALCULATE NFIRST FOR XOl(INTEGER*1 SIZE ARRAY) 

nfirst = nfirst*4 -3 

call receive(L. xol(nfirst), 43, INT2(bfleng*4), 200, error) 
c write (*, *) xo1 receive', error 

call receive(L, xo21nfirst), 44, INT2(bfleng*4), 
1 200, error) 

c write (*, *) xo2 receive', error 

call receive(L. xo3(nfirst), 45, INT2(bfleng*4), 
1 200, error) 

c write (*, *) 'xo3 receive', error 

call receive(L, templ, 46,4,200, error) 
c write (*, *) rms receive', error 

sgdlsq = sgdlsq + temp 

321 CONTINUE 

rmsdl=sgrt(sgdlsq/float(numats*3)) 
write(*, 18)rmsdl 
ITRCMP=ITRCMP+1 
IF(ITRCMP. LT. NUMITR) GO TO 999 

C 
C -- IF NPRINT IS NOT EQUAL TO ZERO -- 
C 

CALL POTE(ETOT, BFCERR, AFCERR, NFCERR, TFCERR) 
IF(NPRINT. EQ. 0) WRITE(*, 19) ETOT 
RETURN 
END 
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C 
C -- FORCE FIELD SETUP -- C 

BLOCK DATA FFSET 

IMPLICIT NONE 

INTEGER I, J 

INCLUDE 'CHMCM3. INC' 
DATA H, Har, Hh, Csp3, Csp2, Car, Nsp, Namide, Ncation, Nar 1, Osp3, Osp2,0anion, F, C1, Piii, Sii, Siii, Svi, Br, Iod, MET, MET1 

2, Mg2, Ca2, Ba2, Fe2, Fe3, Cul, Cu2 
3 /1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22 
4 , 23,24,25,26,27,28,29,30/ 

DATA REFANG/3*10., 112., 122., 120., 108., 121., 108. 1 , 120., 109.. 4*10., 103., 96., 105., 109.47,2*10., 180., 8*10. / 
DATA EN/3*2.1,3*2.5,4*3., 3*3.5,4., 3., 2.1,3*2.5,2.8,2.5,2*0. 

1 , 1.2,1.0,0.9,1.8,2*1.9,2.0/ 
DATA ARTYPS/6,10/ 
DATA DBTYPS/5,8,12,18,19/ 

DATA (REFLEN(I, 1), I=1, MAXTYP)/3*0.746,1.091,1.07,1.089, 
1 1.01,0.99,1.03,0.99,0.97,2*10.0,0.92,1.27,1.43, 
2 3*1.32,1.41,1.61,1.056,8*10.0/ 

DATA (REFLEN(I, 2), I=1, MAXTYP)/0.0,2*0.746,1.091,1.07, 
1 1.089,1.01,0.99,1.03,0.99,0.97,2*10.0,0.92,1.27,1.43, 
2 3*1.32,1.41.1.61,1.056,8*10.0/ 

DATA (REFLEN(I, 3), I=1, MAXTYP)/2*0.0,0.746,1.09,1.07,1.089, 
1 1.01,0.99,1.03,0.99,0.97,2*10.0,0.92,1.27,1.43,3*1.32, 
2 1.41,1.61,1.056,8*10.0/ 

DATA (REFLEN(I, 4), I=1, MAXTYP)/3*0.0,1.541,2*1.52,1.47, 
1 3*1.48,1.43,2*10.0,1.381,1.767,1.815,1.81,1.84,1.76, 
2 1.937,2.14.1.46,8*10.0/ 

DATA (REFLEN(I, 5), I=1, MAXTYP)/4*0.0,1.335.2.47,2*1.32, 
1 2*1.48,1.36,1.21,1.26,1.33,1.72,1.77,1.75,1.71,1.61, 
2 1.89,2.09,1.43,8*10.0/ 

DATA (REFLEN(I, 6), I=1, MAXTYP)/5.0.0,1.395,1.43,1.43,1.45, 
1 1.35,1.38,2*10.0,1.3,1.7,1.76,1.74,1.76,1.74,1.85,2.05, 
2 1.43,8*10.0/ 

DATA (REFLEN(I, 7), I=1, MAXTYP)/6*0.0,1.45,1.35,2*10.0,1.36, 
1 2*10.0,1.36,1.75,1.67,3*1.62,2.14,2.34,1.158,8*10.0/ 

DATA (REFLEN(I, 8), I=1, MAXTYP)/7*0.0,1.27,2*10.0,1.39,1.23, 
1 1.25,1.36,1.79,1.62,1.61,2*1.53,2.14,2.34,1.2, 
2 8*10.0/ 

DATA (REFLEN(I, 9), I=1, MAXTYP)/8*0.0,2*10.0,1.2,1.06,10.0, 
1 1.36,1.75,1.67,3*1.62.2.14,2.34,9*10.0/ 

DATA (REFLEN(I, 10), I=1, MAXTYP)/9*0.0,10.0,1.34,4*10.0,1.57, 
1 5*10.0,1.5,8*10.0/ 

DATA (REFLEN(I, 11), I=1, MAXTYP)/10*0.0,1.48,10.0,1.26,1.418, 
1 1.7,1.5,1.43,2*1.62,1.85,2.05,1.3,8*10.0/ 

DATA (REFLEN(I, 12). I=1, MAXTYP)/11*0.0.4*10.0,1.47,10.0, 
1 1.49,1.43,2*10.0,1.2,8*10.0/ 

DATA (REFLEN(I, 13). I=1, MAXTYP)/12.0.0,18*10.0/ 

DATA (REFLEN(I, 14), I=1, MAXTYP)/13*0.0,1.417,1.63,1.535, 
1 3*1.585,1.76,1.96,1.26,8*10.0/ 

DATA (REFLEN(I, 15), I=1, MAXTYP)/14*0.0.1.988,2.1,3*2.08, 
1 2.14,2.32,1.64,8*10.0/ 

DATA (REFLEN(I, 16), I=1, MAXTYP)/15*0.0,2.2,1.86,2*2.0, 
1 2.13,2.48,1.7,8*10.0/ 

DATA (REFLEN(I, 17), I=1, MAXTYP)/16*0.0.2.05,2*2.12,2.27, 
1 2.73,1.7,8*10/ 

DATA (REFLEN(I, 18), I=1, MAXTYP)/17*0.0,2*2.12,2.27.2.73, 
1 1.56,8*10.0/ 

DATA (REFLEN(I, 19), I=1, MAXTYP)/18.0.0,2.07,2.27,2.73, 
1 9+10.0/ 

DATA (REFLEN(I, 20), I=1, MA%TYP)/19*0.0,2.29,2.4,1.79, 
1 8'10.0/ 
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DATA (REFLEN(I, 21), I=1, MA%TYP)/20*0.0,2.84,1.99,8*10.0/ 

DATA (REFLEN(I, 22), I=1, MAXTYP)/21*0.0,1.2,8*10.0/ 

DATA (REFLEN(I, 23), I=1, MAXTYP)/22*0.0,8*10.0/ 

DATA (REFLEN(I, 24), I=1, MAXTYP)/23*0.0,7*10.0/ 

DATA (REFLENII, 25), I=1, MAXTYP)/24*0.0,6*10.0/ 

DATA (REFLEN(I, 26), I=1, MAXTYP)/25*0.0,5*10.0/ 

DATA (REFLEN(I, 27), I=1, MAXTYP)/26*0.0,4*10.0/ 

DATA (REFLEN(I, 28), I=1, MAXTYP)/27*0.0,3*10.0/ 

DATA (REFLEN(I. 29), I=I, MAXTYP)/28*0.0,2*10.0/ 

DATA (REFLEN(I, 301, I=1, MAXTYP)/29.0.0,10.0/ 

C 
C -- REFERENCE LENGTHS FOR CONJUGATED SINGLE BONDS -- C 

DATA CREFLN/ 
1 8*10. 
2 

, 0�7 10. 
3 

, 2*0., 6*10. 
4 3*0., 5*10. 
5 4*0., 1.48.1.47,10., 1.43 
6 5-0.. 1.50,10., 1.42 
7 , 6*0., 2*10. 
8 , 7*0.. 1.39/ 

DATA (PERIOD(I. 1), I=1, MAXTYP)/30*0.0/ 

DATA (PERIOD (I. 2), I=1, MAXTYP)/1*0.0.29*0.0/ 

DATA (PERIOD(I. 3). I=1. MAXTYP)/2.0.0,28*0.0/ 

DATA (PERIOD(I, 4), I=1, MAXTYP)/3*0.0,3.0, -3.0, -6.0,3.0, 1 -3.0,3.0,0.0,3.0,4*0.0,2*3.0, -3.0,3.0,2*0.0,3.0, 
2 8*0.0/ 

DATA (PERIOD(I, 5), I=1, MAXTYP)/4*0.0,2*-2.0, -3.0, -2.0, -3.0, 1 0.0,2*-2.0,3*0.0, -3.0,2*-2.0, -3.0,2*0.0,2.0,8*0.0/ 

DATA (PERIOD (I, 6), I=1, MAXTYP)/5*0.0, -2.0, -6.0, -2.0, -6.0, 1 2*-2.0,4*0.0,2*-6.0, -2.0, -6.0,2*0.0,2.0,8*0.0/ 
DATA (PERIOD (I, 7), I=1, MAXTYP)/6*0.0,3.0, -3.0,3.0,0.0,3.0, 

1 4*0.0,2*3.0, -3.0,3.0,2*0.0,3.0,8*0.0/ 

DATA (PERIOD(I, 8), I=1, MAXTYP)/7*0.0, -2.0, -3.0,0.0,2*^2.0, 
1 3*0.0. -3.0,2*-2.0, -3.0,210.0,2.0,8*0.0/ 

DATA (PERIOD(I, 9), I=1, MAXTYP)/8*0.0,2*0.0.3.0,4*0,0,3.0, 
1 3.0, -3.0,3.0,11*0.0/ 

DATA (PERIOD(I, 10), I=1, MAXTYP)/9*0.0,6*0.0, -2.0,5*0.0, 
1 2.0,8*0.0/ 

DATA (PERIOD(I, 11), I=1, MAXTYP)/10*0.0,2.0,5*0.0,2.0,0.0, 
1 3.0,2*0.0,3.0,8*0.0/ 

DATA (PERIOD(I, 12), I=1, MAXTYP)/11*0.0,6*0.0, -2.0,3*0.0, 
1 2.0,8*0.0/ 

DATA (PERIOD(I, 13), I=1, MAXTYP)/12*0.0,18*0.0/ 

DATA (PERIOD(I, 14), I=1, MAXTYP)/13*0.0,17*0.0/ 

DATA (PERIOD(I, 15), I=l, MAXTYP)/14*0.0,16*0.0/ 

DATA (PERIOD (I, 16), I=1, MAXTYP)/15*0.0,2*3.0, -3.0,3.0,2*0.0, 
1 3.0,8*0.0/ 

DATA (PERIOD (I, 17), I=1, MAXTYP)/16*0.0,2.0,4*0.0,2.0,8*0.0/ 

DATA (PERIOD (I, 18). 1=1, MAXTYP) /17*0.0,4*0.0,3.0,8*0.0/ 

DATA (PERIOD (I, 19), I-1. MAXTYP)/18*0.0,3.0,11*0.0/ 

DATA (PERIOD (I, 20). I=1, MAXTYP)/19*0.0,11*0.0/ 

DATA (PERIOD (I, 21), I=1, MAXTYPº/20*0.0,10*0.0/ 

DATA (PERIOD (I, 22). I=1, MAXTYP)/21*0.0,1.0,8*0.0/ 
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DATA (PERIOD(I, 23), I=1, MAXTYP)/22*0.0,8*0.0/ 

DATA (PERIOD(I, 24), I=1, MAXTYP)/23*0.0,7*0.0/ 

DATA (PERIOD(I, 25), I=1, MAXTYP)/24*0.0,6*0.0/ 

DATA (PERIOD(I, 26), I=1, MAXTYP)/25*0.0,5*0.0/ 

DATA (PERIOD(I, 27), I=1, MAXTYP)/26*0.0,4*0.0/ 

DATA (PERIOD(I, 28), I=1, MAXTYP)/27*0.0,3*0.0/ 

DATA (PERIOD(I, 29), I=1, MAXTYP)/28*0.0,2*0.0/ 

DATA (PERIOD(I, 30), I=1, MAXTYP)/29*0.0,0.0/ 

C ------BARRIER TO FREE ROTATION DATA---------- 

DATA (BARIER(I, 1), I=1, MAXTYP)/30*0.0/ 

DATA (BARIER(I, 2), I=1, MAXTYP)/1*0.0,29*0.0/ 

DATA (BARIER(I, 3), I=1, MAXTYP)/2*0.0,28*0.0/ 

DATA (BARIER(I, 4), I=1, MAXTYP)/3*0.0,0.133,0.182,0.008,0.114, 
1 0.083,0.0,0.008,0.1,4*0.0,0.163,0.195,0.245,12*0.0/ 

DATA (BARIER(I, 5), I=1, MAxTYP)/4*0.0,8.125,0.708,0.0,2.25, 
1 2*0.0,2.725,5*0.0,0.475,0.0,0.097,11*0.0/ 

DATA (BARIER(I, 6), I=1, MAXTYP)/5*0.0,5.0,0.825.3.65,0.0,5.0, 
1 0.821,5*0.0,0.19,13*0.0/ 

DATA (BARIER(I, 7), I=1, MAXTYP)/6*0.0,1.205,0.783,2*0.0,2.475, 
1 5*0.0,1.667,0.0,0.233,11*0.0/ 

DATA (BARIER(I, 8), I=1, MAXTYP)/7*0.0,40.0,2*0.0,5.0,5*0.0,4.3, 
1 0.0,0.467,11*0.0/ 

DATA (KARIER(I, 9), I=1, MAXTYP)/8*0.0,2*0. '0,0.215,19*0.0/ 

DATA (BARIER(I, 10), I=1, MAXTYP)/9*0.0,21*0.0/ 

DATA (BARIER(I, 11), I=1. MAXTYP)/10.0.0,3.5,5*0.0,0.4,0.0,0.31, 
1 11*0.0/ 

DATA (BARIER(I, 12), I=1, MAXTYP)/11*0.0,19*0.0/ 

DATA (BARIER(I, 13), I=1, MAXTYP)/12*0.0,18*0.0/ 

DATA (BARIER(I, 14), I=1, MAXTYP)/13*0.0,17*0.0/ 

DATA (BARIER(I, 15), I=1, MAXTYP)/14*0.0,16*0.0/ 

DATA (BARIER(I, 16), I=1, MAXTYP)/15*0.0,0.513,14*0.0/ 

DATA (BARIER(I, 17), I=1, MAXTYP)/16*0.0,4.0,13*0.0/ 

DATA (BARIER(I, 18), I=1, MAXTYP)/17*0.0,13*0.0/ 

DATA (BARIER(I, 19), I=1, MAXTYP)/18*0.0,0.407,11*0.0/ 

DATA (BARIER(I, 20), I=1, MAXTYP)/19*0.0,11*0.0/ 

DATA (BARIER(I, 21), I=1, MAXTYP)/20*0.0,10*0.0/ 

DATA (BARIER(I, 22), I=1, MAXTYP)/21*0.0,9*0.0/ 

DATA (BARIER(I, 23), I=1, MAXTYP)/22*0.0,8*0.0/ 

DATA (BARIER(I, 24), I=1, MAXTYP)/23*0.0,7*0.0/ 

DATA (BARIER(I, 25). I=1, MAXTYP)/24*0.0,6*0.0/ 

DATA (BARIER(I, 26), I=1, MAXTYP)/25*0.0,5*0.0/ 

DATA (BARIER(I, 27), I=1, MAXTYP)/26*0.0,4*0.0/ 

DATA (BARIER(I, 28), I-1, MAXTYP)/27*0.0,3*0.0/ 

DATA (BARIER(I, 29), I=1, MAXTYP)/28*0.0,2*0.0/ 

DATA (BARIER(I, 30), I=1, MAXTYP)/29*0.0,0.0/ 

C-------------------------------------------------------- 
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DATA (A6(I, 1), I=1, MAXTYP)/3.72.9,359.2,421.5,477.6, 
1 391.8,425.6,360.3.425.6,247.2,269.8,294.1,258.3, 
2 1638.4,2902.5,3.2524.9,3792.8,7579.4,492.8,0.0, 
3 2.2,27.8,178.8,5.3.1.4,23.3,7.9/ 

DATA (B12(J, J), J=1, MAXTYP)/3.26572.0,460806.6,634601.7, 
1 814852.0,426454.3,503218.8,360564.3,503218.8, 
2 190913.6,227467.4,270337.6,166788.9,3355443.0, 
3 10530820.0,3'6929778.0,11987890.0,35904920.0, 
4 866709.0,0.0,17.7,2763.1,114230.3,142.1,9.6,2706.4, 
5 309.5/ 

C 
C -- BARRIER HEIGHTS AROUND CONJUGATED SINGLE BONDS -- C 

DATA CBARR / 
1 8*. 0 
2 8*. 0 
3 , 8*. 0 
4 , 8*. 0 
5 4*. 0,. 538,. 568,. 0.. 463 
6 , 5*. 0,. 250,. 0,. 588 
7 , 8*. 0 
8 , 7.. 0,. 625/ 

END 
C 
C -- SET UP AND SYMMETRIZE FORCE CONSTANT ARRAYS -- C 

SUBROUTINE MNINITI 

IMPLICIT NONE 

INCLUDE 'CHMCM3. INC' 
INTEGER I, J 

REAL SKIJ. DEQ, A6IJ, B121J 

C 
C -- I/O LOGICAL UNIT NUMBERS -- 
C 

DLUNIN=10 
DLNOUT=12 

C 
C -- SET UP BOND STRETCH ARRAY -- 
C 

DO 1 I-H, MAXTYP 
DO 1 J=I, MAXTYP 

DEQ=REFLEN(J, I) 
IF(I. GT. Hh. AND. J. GT. Hh) THEN 

SKIJ=(1800. /(DEQ"DEQ)) f (7.90/((DEQ-1. )"(DEQ-1. ))) - 670. /DEQ 
ELSE 

SKIJ = 395. /(DEQ"DEQ) 
ENDIF 
STRCON(J, I)=SKIJ 
IF(I. EQ. J) GO TO 1 
STRCON(I, J)=SXIJ 

1 CONTINUE 
C 
C -- SET UP BOND STRETCH ARRAY FOR CONJUGATED SINGLE BONDS -- 
C 

DO 2 I=H, MXCNJ 
DO 2 J=I, MXCNJ 

DEQ=CREFLN(J, I) 
SKIJ=(1800. /(DEQ`DEQ)) + (7.90/((DEQ-1. )*(DEQ-1. ))) - 670. /DEQ 
CSTCON(J, I)=SKIJ 
IF(I. EQ. J) GO TO 2 
CSTCON(I, J)=SKIJ 

2 CONTINUE 
C 
C -- FILL OFF DIAGONAL TERMS IN A6 AND B12 -- 
C 

DO 3 I=1, MAXTYP 
DO 3 J=I+1, MAXTYP 

A6IJ=SQRT(A6(I, I)"A6(J, J)) 
A6(J, I)=A6IJ 
A6(I, J)=A6IJ 
B12IJ=SQRT(B12(I, I)'B12(J, J)) 
512(J, I)=512IJ 
B12(I, J)=B12IJ 

3 CONTINUE 
C 
C -- MAKE REFLEN. PERIODICITY & BARRIER MATRICES SYMMETRIC -- 
C 

DO 4 I=2, MAXTYP 
DO 4 J=1, I-1 
IF(I. LE. MXCNJ. AND. J. LE. MXCNJ) THEN 

Appendix C 262 



CREFLN(J, I)=CREFLN(I, J) 
CBARR(J, I)=CBARR(I, J) 

ENDIF 
REFLEN(J, I)=REFLEN(I, J) 
PERIOD(J, I)=PERIOD(I, J) 
BARIER(J, I)=BARIER(I, J) 

4 CONTINUE 
C 
C -- BARRIER PERIODICITY FOR CONJUGATED SINGLE BONDS -- 
C 

CPRIOD=-2.0 
C 

NUMATS=O 
NMOLS=O 

C 
C -- DELTA USED TO CALCULATE NUMERICAL DERIVATIVES 
C 

SHIFTX=1.0E-03 
C 
C -- BOND LENGTH TOLERANCE -- 
C 

DISTOL=0.1 
C 
C -- CONVERSION FACTORS -- 
C 

PI=3.1415926 
RAD1=PI/180.0 
RAD2=RAD1*RAD1 
RADI=1.0/RAD1 

RETURN 
END 
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-- ASSSIGNS PSEUDO BOND ORDERS -- 

SUBROUTINE ASBOML 

IMPLICIT NONE 

INTEGER I, J, IKAC, L, K 
REAL DISFIL, VL 
BYTE IATN, IKACTN 

INCLUDE 'CHMCM3. INC' 
DISFIL=0.5*DISTOL 
DO 10 J=1, MXCN 
DO 10 I=1, NUMATS 

BONDML(I, J)=0 
IF(ATMCON(I, J). NE. 0) BONDML(I, J)=10 

10 CONTINUE 
DO 100 I=1, NUMATS 
IATN=ATYNUM(I) 
DO 50 J=1, NARTYP 
IF(IATN. EQ. ARTYPS(J)) THEN 

DO 40 K=1, MXCN 
IKAC=ATMCON(I, K) 
IKACTN=ATYNUM(IKAC) 
DO 20 L=1, NARTYP 
IF(IKACTN. EQ. ARTYPS(L)) THEN 

VL=SQRT1(XO(I, 1)-XO(IKAC, 1))**2+(XO(I, 2)-XO(IKAC, 2))**2 
1 +(XO(I, 3)-XO(IKAC, 3))**2) 

BONDML(I, K)=15 
IFIVL. GE. (REFLEN(IATN, IKACTN)+DISFIL)) BONDML(I, K)=11 
GO TO 40 

ENDIF 
20 CONTINUE 

DO 30 L=1, NDBTYP 
IF(IKACTN. EQ. DBTYPS(L)) THEN 

BONDML(I, K)=11 
GO TO 40 

ENDIF 
30 CONTINUE 
40 CONTINUE 

GO TO 100 
ENDIF 

50 CONTINUE 
DO 90 J=1, NDBTYP 
IF(IATN. EQ. DBTYPS(J)) THEN 

DO 80 K=1, MXCN 
IKAC=ATMCON(I, K) 
IKACTN=ATYNUM(IKAC) 
DO 60 L=1, NDBTYP 
IF(IKACTN. EQ. DBTYPS(L)) THEN 

VL=SQRT((XO(I, 1)-XO(IKAC, 1))**2+(XO(I, 2)-XO(IKAC, 2))**2 
1 +(XO(I, 3)-XO(IKAC, 3))**2) 

IF(IATN. EQ. Csp2. AND. IKACTN. EQ. Namide. 
1 OR. IATN. EQ. Namide. AND. IKACTN. EQ. Csp2) THEN 

BONDML(I, K)=15 
IF(VL. LE. (REFLEN(IATN, IKACTN)-DISFIL)) BONDML(I, K)=20 
IF(VL. GE. (REFLEN(IATN, IKACTN)+DISFIL)) BONDML(I, K)=11 

ELSE 
BONDML(I, K)=20 
IF(VL. GE. (REFLEN(IATN. IKACTN)+DISFIL)) BONDML(I, K)=11 

ENDIF 
GO TO 80 

ENDIF 
60 CONTINUE 

DO 70 L=1, NARTYP 
IF(IKACTN. EQ. ARTYPS(L)) THEN 

BONDML(I, K)=11 
GO TO 80 

ENDIF 
70 CONTINUE 
80 CONTINUE 

GO TO 100 
ENDIF 

90 CONTINUE 
100 CONTINUE 

RETURN 
END 

-- DECODE OUT OF PLANE BENDING -- 

SUBROUTINE GETOPB 

IMPLICIT NONE 

INCLUDE 'CHMCM3. INC' 
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INTEGER IOOPBA, IOPBS. L, MF. NCON, M, IACLN, N 

REAL SOPBKS 

DIMENSION IOOPBA(3), SOPBKS(3). IOPSS(MXCN) 

DATA IOOPBA/ 56,8/ 
DATA SOPSKS/1.2E-3.1.2E-3,0.2E-3/ 

NO=0 
DO 115 L=1, NUMATS 
IF(NUMMFX. NE. O) THEN 

DO 100 MF=1, NUMMFX 
IF(MOLNUM(L). EQ. KMOL(MF)) GO TO 115 

100 CONTINUE 
ENDIF 
NCON=O 
DO 110 M=1,3 
IF(ATYNUM(L). NE. IOOPBA(M)) GO TO 110 
DO 105 N=1, MXCN 
IACLN=ATMCON(L, N) 
IF(IACLN. NE. O) THEN 

NCON=NCON+1 
IOPBS(NCON)=IACLN 

ENDIF 
105 CONTINUE 

IF(NCON. NE. 3) GO TO 115 
NO=NO+1 
IOPB3(NO)=L 
IOPB1(NO)=IOPBS(1) 
IOPB2(NO)=IOPBS(2) 
IOPB4(NO)=IOPBS(3) 
OPBK(NO)=SOPBKS(M) 
GO TO 115 

110 CONTINUE 
115 CONTINUE 

RETURN 
END 
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C -- GET COHTRCL PARAHL-rUS FROM CONSOLE-- 
C 

SUBROUTINE GETCOP 

IMPLICIT NONE 

INCIME "CNMCM3. I14C- 

INTEGER NFXATM. IKOM. JKON, KKON. LKON. I. J 

REAL ATSEV. FLEJI, DSEV. FAI1, ANSEV. FTOR. TSEV 

1 FORMAT(IS) 

2 FORMAT(E12.5) 3 FOPNATU. 1) 
OPE71(2, PILE  "$IUUDAT. CW0" ) 

C 
C -- GET t7UHSER Of ITERATIONS 
C 

READ 12.11tAAlITR 

C 
C -- GET VAN DER {BAALS CUTOFP DISTANCE -- C 

READ 12.2)DXXN 
IP(DXXH. LT. 2.0) DXX1182.0 

C 
C -- GET ENERGY THRESHOLD FOR PRINTING -- 
C 

READ (2.2) ETHR SII 
IF(ETHRSH. EQ. 0.0) ET1IRSN. -10.0 

C 
C -- GET MAXIMUM ALI. OMID SHIFT -- 
C 

READ(2.2) SHFTNX 
IF(S)iPTMX. EQ. 0.0) SttFTKX"O. S 

C 
C -- SELECT LONG. ABBREVIATED OR SHORT PRINTED OUTPUT -- 
C 

READ (2.1) NPRINT 
C 
C -- CHOOSE SECOND DERIVATIVES CALCULATED EVERY ITERATION OR NOT -- 
C 

NDERIV 1 
C 
C -- GET CONSTRAINTS. Ir ANY -- 
C 

UNNI. PX  0 
IAMFX"O 
)JUMFX"O 
Nummrx "O 
READ(2.31CONNIU IPICO*JNIN) THEN 

DO 100 I-1.4 
DO 100 J 1. NUHATS 

ATCUti3(J. I)". FALSE. 
100 CONTINUE 
C 
C -- CODE TO VIZ ATOMIC POSITIONS -- 
C 

READ(2.1)NFXATM 
Ir(NFxATN. E0.0) GOTO 400 
DO 300 1aI. NFXATN 

READ (2.111 KO" 
READ42.21ATSEV 
ATCONS(IKON. 1)". TRUE. 
FATXYZ(IKON. I1-XO(I9ON. 1) 
FATXYZIIKO. 21-XO(IKON. 2) 
FATXYZ1IKOM. )1. XO(I$ON. 11 
PATSiV(lEONI. ATSL'V"ATSPAC 

300 CONTINUE 
c 
C -- CODE TO VIZ L13fantS 
C 
400 PEAD(2. I)NUMLrX 

Ir(NtmLFX. K000) GOTO 500 
00 410 I"1. tU MLFX 

RFAD12.111KON 
RIA)(2. I )JKUfi 
RKAU12.21*1421 
)LEAD (2.21 DSEV 
A1C(A4S(ZK(IN. 2). TRUZ. 

ATCONS(J$ N. 2)& TRUK, 
VI. ATN 1111.1$", *I 
KLATH2 I I) "Jiuri 
rI XI EU 11- rt-t2l 
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FLNSEV(I)=DSEV 
410 CONTINUE 
C 
C -- CODE TO FIX ANGLES -- C 
500 READ(2,1)NUMAFX 

IF(NUMAFX. EQ. O) GOTO 600 
DO 510 I=1, NUMAFX 

READ(2,1)IKON 
READ(2,1)JKON 
READ(2,1)KKON 
READ(2,2)FANG 
READ(2,2)ANSEV 
ATCONS(IKON, 3)=. TRUE. 
ATCONS(JKON, 3)=. TRUE. 
ATCONS(KKON, 3)=. TRUE. 
KAATM1(I)=IKON 
KAATM2(I)=JKON 
KAATM3(I)=KKON 
FIXANG(I)=FANG 
FANSEV(I)=ANSEV*ANSFAC 

510 CONTINUE 
C 
C -- CODE TO FIX TORSION ANGLES -- 
C 
600 READ(2,1)NUMTFX 

IF(NUMTFX. EQ. 0) GOTO 700 
DO 610 I=1, NUMTFX 

READ(2,1)IKON 
READ(2,1)JKON 
READ(2,1)KKON 
READ(2,1)LKON 
READ(2,2)FTOR 
READ(2,2)TSEV 
ATCONS(IKON, 4)=. TRUE. 
ATCONS(JKON, 4)=. TRUE. 
ATCONS(KKON, 4)=. TRUE. 
ATCONS(LKON, 4)=. TRUE. 
KTATM1(I)=IKON 
KTATM2(I)=JKON 
KTATM3(I)=KKON 
KTATM4(I)=LKON 
FIXTOR(I)=FTOR 
FTOSEV(I)=TSEV`TOSFAC 

610 CONTINUE 
C 
C -- CODE TO FIX MOLECULES -- 
C 
700 READ(2,1)NUMMFX 

IF(NUMMFX. EQ. O) GOTO 800 
DO 710 I=1, NUMMFX 

READ(2,1)IKON 
KMOL(NUMMFX)=MOLNUM(IKON) 

710 CONTINUE 
C 
C -- EXIT -- 
C 
800 ENDIF 

CLOSE(2) 

RETURN 
END 
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c -- SUBROUTINE POTE -- C 
C 
C -- THIS SUBROUTINE CALCULATES AND PRINTS OUT THE ENERGY OF THE MOLEC 
C -- AND SETS UP 'TABLES' OF BONDS ETC. FOR USE IN ENERGL IF NPRINT EQ 
C -- ZERO, ALL INTERACTIONS BETWEEN ALL ATOMS ARE PRINTED. IF NPRINT 
C -- NOT ZERO THEN ONLY THE TOTAL ENERGIES FOR EACH TYPE OF INTERACTIO 
C -- ARE PRINTED. XFCERR IS SET TRUE IF ANY FORCE FIELD ERRORS ARE FOU 
C 

SUBROUTINE POTE(ETOT, BFCERR, AFCERR, NFCERR, TFCERR) 

IMPLICIT NONE 

INTEGER I, J, IBOND, NK, ITI, NVANG, JB, MF, JA, 
1 JC, IT1, IT2, IT3, JHCN, NI, 
2 INDT, MTII, MTJI, MTKI, 
3 MTLI, LL, IT4, ITJ, K, 
4 JAPLS1, INDA, 
5 NNT, ILI, L, IND, MT 

REAL DXXM2, SIGEB, SIGEV, SIGEA, SIGET, SIGEO, SIGEQ, DIR1, 
1 DIR2, DIR3, DOIST, DIST, RLITIJ, SCITIJ, EB, XJBI, XJB2, 
2 XJB3, DC11, DC12, DC21, DC22, DC31, DC32, RM1, RM2, R12, 
3 COSA, SUBST, RLIT12, RLIT23, BKT, THT, THSX, 
4 DELTH2, DELTH3, DELTH5, EA, DIST2, RDIST2, RDIST4, 
5 RDIST6, RDIST12, EV, EQ, XJC1, XJC2, XJC3, AA11, AA12, 
6 AA13, AA21, AA22, AA23, AA31, AA32, AA33, V11, V21, V12, 
7 V22, V13, V23, R1, R2, COSW, WASIGN, WA, XFD, TA, SON, 
8 FOLD, ET, OPBSGN, WAOPB, EO, ETOT, A, DISTI, RDIS12 

INCLUDE 'CHMCM3. INC' 
LOGICAL PRNTOG, BFCERR, AFCERR, NFCERR, TFCERR 

1 FORMAT(30(/), 22X, 'MOLECULAR POTENTIAL ENERGY (KCAL)') 
2 FORMAT(////, 2 4X, 'INTRAMOLECULAR BONDED DISTANCES', //) 
3 FORMAT(' ATOM A-ATOM B DISTANCE BOND ENERGY ATOM A-ATOM B DI 

1STANCE BOND ENERGY', /) 
4 FORMAT(4X, A6,1X, A6,2X, F8.3,2X, F11.4) 
5 FORMAT(1X, A6,1X, A6,2X, F8.3,2X, F11.4, $) 
6 FORMAT(////, 33X, 'BOND ANGLES', //) 
7 FORMAT(' ATOM A-ATOM B-ATOM C ANGLE ENERGY ATOM A-ATOM B-ATO 

1M C ANGLE ENERGY', /) 
8 FORMAT(4X, A6,1X, A6,1X, A6, F8.2, F8.4) 
9 FORMAT(1X, A6,1X, A6,1X, A6, F8.2, F8.4, $) 
10 FORMAT(////, 23X, 'INTRAMOLECULAR NON-BONDED DISTANCES , //) 11 FORMAT(29X, 'UP TO ', F6.2, ' ANGSTROMS', //) 
12 FORMAT(' ATOMA.. ATOMB DISTANCE NON-BOND COULOMB ATOMA.. ATOMB DIS 

1TANCE NON-BOND COULOMB', /) 
13 FORMAT(2X, A6,1X, A6,3X, F6.3,1X, F8.4,1X, F7.3) 
14 FORMAT(1X, 2A6,3X, F6.3,1X, F8.4,1X, F7.3, $) 
15 FORMAT(////, 33X, 'TORSION ANGLES', //) 
16 FORMAT(5X, 'ATOM A ATOM B ATOM C ATOM D TORSION ANGLE TORS 

ZION ENERGY', /) 
17 FORMAT(5X, 4(A6,2X), 2X, F13.2,4X. F14.4) 
18 FORMAT(12X, '****************OUT-OF-PLANE BENDING*************' 

1) 
19 FORMAT(////, 

1' TOTAL E(BONDED) F10.4, ' K. CAL PER MOLE', //, 
2' TOTAL MAN DER WAALS) _ '. F10.4, ' K. CAL PER MOLE', //, 
3' TOTAL E(ANGLES) = F10.4, ' K. CAL PER MOLE', //, 
4' TOTAL E(TORSION) F10.4, ' K. CAL PER MOLE', //, 
5' TOTAL E(OUT-OF-PLANE BENDING) F10.4, ' K. CAL PER MOLE', //, 
6' TOTAL E(COULOMB) _ ', F10.4, ' K. CAL PER MOLE', //) 

20 FORMAT(//, ' TOTAL POTENTIAL ENERGY = ', F10.4, ' K. CAL PER MOLE', //) 
C 

IF(NPRINT. GT. 1) THEN 
WRITE(*, 1) 

ENDIF 
DXXM2=DXXM*DXXM 

-- SIGEB ETC. ARE THE TOTAL ENERGIES FOR EACH TYPE OF INTERACTION -- 

SIGEB=0.0 
SIGEV=0.0 
SIGEA=0 .0 
SIGET=0.0 
SIGEO=0.0 
SIGEQ=0.0 

-- INITIALISE MATRICES -- 

DO 400 I=1, NUMATS 
DO 400 J=1, NUMATS 

NBMAT(J, I)=1 
400 CONTINUE 
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DO 401 I=1, NUMATS 
DO 401 J=1,1B 

NAMAT(J, I)=0 
401 CONTINUE 

DO 402 I=1. NUMATS 
DO 402 J=1,50 

NTMAT(J, I)=0 
402 CONTINUE 
C 

IF(NPRINT. GT. 1) THEN 
WRITE(*, 2) 
WRITE(*, 3) 

ENDIF 
C 
C -- PUT BONDS INTO NBMAT -- C 

DO 405 I=1, NUMATS 
DO 405 J=1, MXCN 

IBOND=ATMCON(I, J) 
IF(IBOND. EQ. 0) GO TO 405 
NBMAT(IBOND, I)=2 
NBMAT(I, IBOND)=2 

405 CONTINUE 
C 

NK=NUMATS-1 
PRNTOG=. TRUE. 

C 
DO 412 I=1, NK 
NI=I+1 
DO 411 J=NI, NUMATS 

C 
C -- SPEED UP IF THERE ARE ANY FIXED MOLECULES -- C 

IF(NUMMFX. NE. O) THEN 
DO 406 MF=1, MJMMFX 

IF(MOLNUM(I). EQ. KMOL(MF) 
406 CONTINUE 

ENDIF 
c 
c 
c 

407 
408 

C 
C 
C 

409 

AND. MOLNUM(J). EQ. KMOL(MF)) GO TO 410 

-- CALCULATE DISTANCE BETWEEN BONDED ATOMS -- 

IF(NBMAT(J, I). NE. 2) GO TO 409 
DIR1=XO(I, 1)-XO(J, 1) 
DIR2=XO(I. 2)-XO(J, 2) 
DIR3=XO(I. 3)-XO(J, 3) 
DIST=SQRT(DIR1*DIRI+DIR2*DIR2+DIR3*DIR3) 
ITI=ATYNUM(I) 
ITJ=ATYNUM(J) 
RLITIJ=REFLEN(ITI, ITJ) 
SCITIJ=STRCON(ITI, ITJ) 
IF(ITI. LE. Namide. AND. ITJ. LE. Namide) THEN 

IF(CREFLN(ITI, ITJ). NE. 10. ) THEN 
DO 407 K=1, MXCN 

IF(ATMCON(I, K). EQ. J) GO TO 408 
CONTINUE 
IF(BONDML(I, K). EQ. 11) THEN 

RLITIJ=CREFLN(ITI, ITJ) 
SCITIJ=CSTCON(ITI, ITJ) 

ENDIF 
ENDIF 

ENDIF 
IF(RLITIJ. EQ. 10. ) THEN 

RLITIJ=DIST 
BFCERR=. TRUE. 

ENDIF 
DOIST=RLITIJ-DIST 

-- CALCULATE BOND ENERGY (EB) -- 

EB=SCITIJ*DOIST*DOIST 
SIGEB=SIGEB+EB 
IF(NPRINT. GT. I. AND. EB. GE. ETHRSH) THEN 

IF(. NOT. PRNTOG) WRITE(*, 4) ATMNAM(I), ATMNAM(J), DIST, EB 
IF(PRNTOG) WRITE(*, 5) ATMNAM(I), ATMNAN(J), DIST, EB 
PRNTOG=. NOT. PRNTOG 

ENDIF 
GO TO 411 
DIRT=XO(I, 1)-XO(J, 1) 
IF(ABS(DIR1). GT. DXXM) GO TO 410 
DIR2=XOII, 2)-XO(J, 2) 
IF(ABS(DIR2). GT. DXXM) GO TO 410 
DIR3=XO(I, 3)-XO(J, 3) 
IF(ABS(DIR3). GT. DXXM) GO TO 410 

DIST2=DIR1'DIRI+DIR2'DIR2+DIR3*DIR3 
IF(DIST2. GT. DXXM2) GO TO 410 

NBMAT(J, I)=4 

NBMAT(I, J)=4 
GO TO 411 

Appendix C 269 



410 NBMAT(I, J)=5 
NBMAT(J, I)=5 

411 CONTINUE 
412 CONTINUE 

IF(NPRINT. CT. 1) THEN 
WRITE(", 6) 
WRITE(", 7) 

ENDIF 
C 
C -- CALCULATE ANGLE ENERGY AND SET UP MATRIX NAMAT -- C 

NVANG=O 
PRNTOG=. TRUE. 
DO 429 JB=1, NUMATS 
IF(NUMMFX. NE. O) THEN 

DO 413 MF=I, NUMMFX 
IF(MOLNUM(JB). EQ. KMOL(MF)) GO TO 429 

413 CONTINUE 
ENDIF 
DO 428 JA=1, NK 
IF(NUMMFX. NE. O) THEN 

DO 414 MF=1, NUMMFX 
IF(MOLNUM(JA). EQ. FMOL(MF)) GO TO 428 

414 CONTINUE 
ENDIF 

C 
C -- SORT OUT WHICH SETS OF THREE ATOMS FORM ANGLES -- C 

IF(JA. EQ. JB) GO TO 428 
IF(NBMAT(JA, JB). NE. 2) GO TO 428 
JAPLS1=JA+1 
DO 427 JC=JAPLS1, NUMATS 
IF(NUMMFX. NE. O) THEN 

DO 415 MF=1, NUMMFX 
IF(MOLNUM(JC). EQ. KMOL(MF)) GO TO 427 

415 CONTINUE 
ENDIF 
IF(JB. EQ. JC) GO TO 427 
IF(NBMAT(JC, JB). NE. 2) GO TO 427 
NVANG=NVANG+1 
MAI(NVANG)=JA 
MAJ(NVANG)=JB 
MAK(NVANG)=JC 

C 
C -- SET NBMAT ENTRY TO 3 FOR ALL 1,3 PAIRS OF ATOMS -- 
C 

NBMAT(JA, JC)=3 
NBMAT(JC, JA)=3 

C 
C -- CALCULATE ANGLE JA-JB-JC -- 
C 

XJBI=XO(JB, 1) 
XJB2=XO(JB, 2) 
XJB3=XO(JB, 3) 
DC11=XO(JA, 1)-XJB1 
DC12=XO(JC, 1)-XJB1 
DC21=XO(JA, 2)-XJB2 
DC22=XO(JC, 2)-XJB2 
DC31=XO(JA, 3)-XJB3 
DC32=XO(JC, 3)-XJB3 
RM1=DC11*DC11+DC21*DC21+DC31*DC31 
RM2=DC12*DC12+DC22*DC22+DC32*DC32 
R12=DC11*DC12+DC21*DC22+DC31*DC32 
RM1=SQRT(RM1)+0.000001 
RM2=SQRT(RM2)+0.000001 
COSA=R12/(RM1*RM2) 
COSA=SIGN(AMIN1(ABS (COSA), 1. OE+00), COSA) 
A=ACOS(COSA)*RADI 

C 
C -- SELECT CORRECT FORCE FIELD RECORD -- 
C 

IT1=ATYNUM(JA) 
IT2-ATYNUM(JB) 
IT3=ATYNUM(JC) 
IF(REFANG(IT2). EQ. 10. ) THEN 

BKS(NVANG)=0.0 
BKAS(NVANG)=0.0 
THS(NVANG)=A 
AFCERR=. TRUE. 

ELSE 
SUBST=O. 
DO 416 K=1, MXCN 
JBCN=ATMCON(JB, K) 
IF(JBCN. NE. 0) THEN 

IF(ATYNUM(JBCN). GT. Hh) SUBST=SUBST+1. 
ENDIF 

416 CONTINUE 
RLIT12=REFLEN(IT1, IT2) 
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417 
418 

419 
420 

RLIT23=REFLEN(IT2, IT3) 
IF(IT1. LE. Namide. AND. IT2. LE. Namide) THEN 

IF(CREFLN(IT1, IT2). NE. 10. ) THEN 
DO 417 K=1, MXCN 

IF(ATMCON(JA, K). EQ. JB) GO TO 418 
CONTINUE 
IF(BONDML(JA, K). EQ. 11) RLIT12=CREFLN(IT1, IT2) 

ENDIF 
ENDIF 
IF(IT2. LE. Namide. AND. IT3. LE. Namide) THEN 

IF(CREFLN(IT2, IT3). NE. 10. ) THEN 
DO 419 K=1, MXCN 

IF(ATMCON(JB, K). EQ. JC) GO TO 420 
CONTINUE 
IF(BONDML(JB, K). EQ. 11) RLIT23=CREFLN(IT2, IT3) 

ENDIF 
ENDIF 
BKT=0.001388 

*(15. *2.33*(ABS(EN(IT1)-EN(IT2))*ABS(EN(IT2)-EN(IT3)))) 
/(RLIT12*RLIT23) 

THT=REFANG(IT2) 
IF((IT1. LE. Hh. AND. IT3. GT. Hh). OR. (IT1. GT. Hh. AND. IT3. LE. Hh)) THEN 

BKT=0.45*HKT 
THT=0.98*THT 

ENDIF 
IF(IT1. LE. Hh. AND. IT3. LE. Hh) THEN 

BKT=0.20*BKT 
THT=0.95*THT 

ENDIF 
BKS(NVANG)=BKT 
BKAS(NVANG)=0.0096 
THS(NVANG)=THT 

ENDIF 
THSX=THS(NVANG)-A 
DELTH2=THSX*THSX 
DELTH3=ABS(DELTH2*THSX) 
DELTHS=DELTH3*DELTH2 

-- CALCULATE ANGLE ENERGY -- 

EA=BKS(NVANG)*(DELTH2-BKAS(NVANG)*(DELTH3-(0.0004*DELTHS))) 
SIGEA=SIGEA+EA 

-- SET UP NAMAT, WHICH IS USED AS FOLLOWS -- 
TO SEE WHICH ANGLES THE JTH ATOM IS INVOLVED IN, -- 
READ NAMAT(J, 1), (J, 2) ETC TILL A ZERO ENTRY IS FOUND. -- 
IF NAMAT(J, 1) = 5, THEN ATOM J IS PART OF THE ANGLE NVANG=5 -- 

--(IE THE ANGLE WITH ATOMS MAI(S), MAJ(5), MAK(5)) -- 

421 
422 

423 
424 

425 
C 
426 

427 
428 
429 

DO 421 INDA=1,18 
IF(NAMAT(INDA, JA). NE. O) GO TO 421 
NAMAT(INDA, JA)=NVANG 
GO TO 422 

CONTINUE 
DO 423 INDA=1,18 

IF(NAMAT(INDA, JB). NE. O) GO TO 423 
NAMAT(INDA, JB)=NVANG 
GO TO 424 

CONTINUE 
DO 425 INDA=1,18 

IF(NAMAT(INDA, JC). NE. O) GO TO 425 
NAMAT(INDA, JC)=NVANG 
GO TO 426 

CONTINUE 

IF(NPRINT. GT. I. AND. EA. GE. ETHRSH) THEN 
IF(. NOT. PRNTOG) WRITE(*, 8) ATMNAM(JA), ATMNAM(JB), 

ATMNAM(JC), A, EA 
IF(PRNTOG) WRITE(*, 9) ATMNAM(JA), ATMNAM(JB), 

ATMNAM(JC), A, EA 
PRNTOG=. NOT. PRNTOG 

ENDIF 
CONTINUE 
CONTINUE 
CONTINUE 
IF(NPRINT. GT. 1) THEN 

WRITE(*, 10) 
IF(DXXM. NE. 25.0) WRITE(*, 11) DXXM 
WRITE(*, 12) 

ENDIF 

-- CALCULATE NON-BONDED INTERACTIONS USING NBMAT -- 
LOOK AT ENTRY NBMATII, J) - IF NOT =4 (IE I AND J ARE BONDED, 1,3 

-- , OR SEPARATED BY MORE THAN DXXM) GO ON TO NEXT PAIR, OTHERWISE 
- 

-- CALCULATE VAN DER WAALS ENERGY -- 

PRNTOG=. TRUE. 
DO 430 I=1, NK 
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NI=I+1 
DO 430 J=NI, NUMATS 
IF(NBMAT(J, I). NE. 4) GO TO 430 
DIRT=XO(I, 1)-XO(J, 1) 
DIR2=XO(I, 2)-XO(J, 2) 
DIR3=XO(I. 3)-XO(J, 3) 
DIST2=DIR1`DIRI+DIR2*DIR2+DIR3*DIR3 
DISTI=SQRT(DIST2) 
ITI=ATYNUM(I) 
ITJ=ATYNUN(J) 
IF(A6(ITI, ITJ). EQ. 0. ) NFCERR=. TRUE. 
RDIST2=1.0/DIST2 
RDIST4=RDIST2*RDIST2 
RDIST6=RDIST2*RDIST4 
RDIS12=RDIST6*RDIST6 

C 
C -- CALCULATE VAN DER WAALS ENERGY (EV) -- 
C 

EV=B12(ITI, ITJ)*RDIS12 - A6(ITI, ITJ)*RDIST6 
SIGEV=SIGEV+EV 

C 
C -- CALCULATE COULOMBIC ENERGY (EQ) -- 
C 

EQ=332.17*CHARGE(I)*CHARGE(J)*RDIST2 
SIGEQ=SIGEQ+EQ 
IF(NPRINT. GT. I. AND. (EV. GE. ETHRSH 

1 . OR. EQ. GE. ETHRSH)) THEN 
IF(. NOT. PRNTOG) WRITE(*, 13) ATMNAM(I), ATMNAM(J), DISTI, EV, 

1 EQ 
IF(PRNTOG) WRITE(*. 14) ATMNAM(I), ATMNAM(J), DISTI, EV, 

1 EQ 
PRNTOG=. NOT. PRNTOG 

ENDIF 
430 CONTINUE 

IF(NPRINT. GT. 1 ) THEN 
WRITE(+, 15) 
WRITE(*, 16) 

ENDIF 
C 
C -- CALCULATE TORSIONAL ENERGY AND SET UP NTMAT IN SAME WAY AS NAMAT 
C 

NNT=O 
C 
C -- SORT OUT WHICH SETS OF ATOMS FORM A TORSION ANGLE -- 
C 

DO 445 I=1, NK 
IF(NUMMFX. NE. O) THEN 

DO 431 MF=1, NUMMFX 
IF(MOLNUM(I). EQ. KMOL(MF)) GO TO 445 

431 CONTINUE 
ENDIF 
ILI=I+1 
DO 444 J=1, NUMATS 
IF(NUM FX. NE. O) THEN 

DO 432 MF=1, NUMMFX 
IF(MOLNUM(J). EQ. KMOL(MF)) GO TO 444 

432 CONTINUE 
ENDIF 
IF(NBMAT(J, I). NE. 2) GO TO 444 
DO 443 K=1, NUMATS 
IF(NUMMFX. NE. O) THEN 

DO 433 MF=I, NUMMFX 
IF(MOLNUM(K). EQ. KMOL(MF)) GO TO 443 

433 CONTINUE 
ENDIF 
IF(K. EQ. I) GO TO 443 
IF(NBMAT(J, K). NE. 2) GO TO 443 
DO 442 L=ILI, NUMATS 
IF(NUMMFX. NE. O) THEN 

DO 434 MF=1, NUMMFX 
IF(MOLNUM(L). EQ. KMOL(MF)) GO TO 442 

434 CONTINUE 
ENDIF 
IF(L. EQ. J) GO TO 442 
IF(NBMAT(L, K). NE. 2) GO TO 442 
NNT=NNT+1 
MTI(NNT)=I 
MTJ(NNT)=J 
MTK(NNT)=K 
MTL(NNT)=L 

C 
C- - SET UP NTMAT -- 
C 

DO 435 INDT=1,50 
IF(NTMAT(INDT, I). NE. O) GO TO 435 

NTMAT(INDT, I)=NNT 
GO TO 436 

435 CONTINUE 
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436 DO 437 INDT=1,50 
IF(NTMAT(INDT, J). NE. 0) GO TO 437 
NTMAT(INDT, J)=NNT 
GO TO 438 

437 CONTINUE 
438 DO 439 INDT=1,50 

IF(NTMAT(INDT, K). NE. 0) GO TO 439 
NTMAT(INDT, K)=NNT 
GO TO 440 

439 CONTINUE 
440 DO 441 INDT=1,50 

IF(NTMAT(INDT, L). NE. 0) GO TO 441 
NTMAT(INDT, L)=NNT 
GO TO 442 

441 CONTINUE 
442 CONTINUE 
443 CONTINUE 
444 CONTINUE 
445 CONTINUE 
C 

DO 448 I=1, NNT 
MTII=MTI(I) 
MTJI=MTJ(I) 
MTKI=MTK(I) 
MTLI=MTL(I) 

-- CALCULATE TORSION ANGLE -- 

XJB1=XO(MTJI, 1) 
XJB2=XO(MTJI, 2) 
XJB3=XO(MTJI, 3) 
XJC1=XO(MTKI, 1) 
XJC2=XO(MTKI, 2) 
XJC3=XO(MTKI, 3) 
AA11=XO(MTII, 1)-XJB1 
AA12=XJC1-XJ51 
AA13=XJC1-XO(MTLI, 1) 
AA21=XO(MTII, 2)-XJB2 
AA22=XJC2-XJB2 
AA23=XJC2-XO(MTLI, 2) 
AA31=XO(MTII, 3)-XJB3 
AA32=XJC3-XJB3 
AA33=XJC3-XO(MTLI, 3) 
V11=AA21*AA32-AA31*AA22 
V21=AA22*AA33-AA32*AA23 
V12=AA31*AA12-AA11*AA32 
V22=AA32*AA13-AA12*AA33 
V13=AA11*AA22-AA21*AA12 
V23=AA12*AA23-AA22*AA13 
R1=SQRT(V11*V11+V12*V12+V13*V13)+0.000001 
R2=SQRT(V21*V21+V22*V22+V23*V23)+0.000001 
COSW=(V11/R1)*(V21/R2)+(V12/R1)*(V22/R2)+(V13/R1)*(V23/R2) 
COSW=SIGN(AMIN1(ABS(COSW), 1. OE+00), COSW) 
WA=ACOS(COSW)*RADI 

-- CALCULATE CORRECT SIGN FOR TORSION ANGLE -- 

WASIGN=AA11*(AA22*AA33-AA23*AA32)-AA21*(AA12*AA33-AA13*AA32) 
+AA31*(AA12"AA23-AA13*AA22) 

WA=SIGN(WA, WASIGN) 
LL=O 
IT1=ATYNUM(MTII) 
IT2=ATYNUM(MTJI) 
IT3=ATYNUM(MTKI) 
IT4=ATYNUM(MTLI) 

C -- SELECT CORRECT FORCE FIELD RECORD -- 
C 

FDS(I)=PERIOD(IT2, IT3) 
IF(FDS(I). EQ. -3. ) THEN 

IF(PERIOD(IT1, IT2). NE. -2.0. AND. PERIOD(IT3, IT4). NE. -2.0) 
1 FDS(I)=3. 

ENDIF 
VOS(I)=BARIER(IT2, IT3) 
VO1S(I)=0.0 
IF(IT2. LE. Namide. AND. IT3. LE. Namide) THEN 

IF(CBARR(IT2, IT3). NE. O. ) THEN 
DO 446 K=1, MXCN 

IF(ATMCON(MTJI, K). EQ. MTKI) GO TO 447 
446 CONTINUE 
447 IF(BONDML(MTJI, K). EQ. 11) THEN 

FDS(I)=CPRIOD 
VOS(I)=CBARR(IT2, IT3) 
VOIS(I)=0.0 

ENDIF 
ENDIF 

ENDIF 
IF(PERIOD(IT2, IT3). EQ. O) THEN 
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FDS(I)=1.0 
VOS(I)=0.0 
VO1S(1)=0.0 
TFCERR=. TRUE. 

ENDIF 

c 
c 
c 

448 
C 
C 
C 
C 
C 

C 
C 
C 

XFD=FDS(I) 

-- CALCULATE TORSIONAL ENERGY (ET) -- 

TA=WA*RAD1 
SGN=XFD/ABS(XFD) 
FOLD=ABS(XFD) 
ET=VOS(i)*(1. O+SGN*COS(FOLD*TA))+VO1S(I)*(1. O+COS(TA)) 
SIGET=SIGET+ET 
IF(NPRINT. GT. I. AND. ET. GE. ETHRSH) THEN 

WRITE(*, 17) ATMNAM(MTII), ATMNAM(MTJI), ATMNAM(MTKI), 
1 ATMNAM(MTLI), WA, ET 

ENDIF 
CONTINUE 

-- CALCULATE OUT OF PLANE BENDING ENERGY -- 
(IF THEIR ARE ANY O. O. P. B. RECORDS) -- 

IF(NO. EQ. O) GO TO 450 
IF(NPRINT. GT. 1) THEN 

WRITE(*, 18) 
ENDIF 
DO 449 I=1, NO 

-- CALCULATE IMPROPER TORSION ANGLE -- 

XJ81=XO(IOPB2(I), 1) 
XJB2=XO(IOPB2(I), 2) 
XJB3=XO(IOPB2(I), 3) 
XJC1=XO(IOPS3(I), 1) 
XJC2=XO(IOPB3(I), 2) 
XJC3=XO(IOPB3(I), 3) 
AAI1=XO(IOPB1(I), 1)-XJB1 
AA12=XJC1-XJB1 
AA13=XJC1-XO(IOPB4(I), 1) 
AA21=XO(IOPB1(I), 2)-XJB2 
AA22=XJC2-XJ82 
AA23=XJC2-XO(IOPB4(I), 2) 
AA31=XO(IOP81(I), 3)-XJB3 
AA32=XJC3-XJB3 
AA33=XJC3-XO(IOPB4(I), 3) 
V1. l=AA21*AA32-AA31*AA22 
V21=AA22*AA33-AA32*AA23 
V12=AA31*AA12-AA11*AA32 
V22=AA32*AA13-AA12*AA33 
V13=AA11*AA22-AA21*AA12 
V23=AA12*AA23-AA22*AA13 
R1=SQRT(V11*V11+V12*V12+V13*V13)+0.000001 
)t2=SQRT(V21*V21+V22*V22+V23*V23)+0.000001 
QcSW=(V11/R1)*(V21/R2)+(V12/R1)*(V22/R2)+(V13/R1)*(V23/R2) 

' COSW=SIGN(AMIN1(ABS(COSW), 1. OE+00), COSW) 
WAOPB=ACOS(COSW)*RADI 

c 
c 
c 

C 
C 
C. 

449 
C 
C 
C 
450 

-- CALCULATE CORRECT SIGN FOR ANGLE -- 

OPBSGN=AA11*(AA22*AA33-AA23*AA32)-AA21*(AA12*AA33-AA13*AA32) 
1 +AA31*(AA12*AA23-AA13*AA22) 

WAOPB=SIGN(WAOPB, OPBSGN) 

-- CALCULATE OUT OF PLANE BENDING ENERGY (EO) -- 

EO=OPBK(I)*(180.0-ABS(WAOPB))**2 

IF(NPRINT. GT. I. AND. EO. GE. ETHRSH) THEN 
WRITE(", 17) ATMNAM(IOPB1(I)), ATMNAM(IOPB2(I)), 

1 ATMNAM(IOPB3(I)), ATMNN4 (IOPB4(I)), WAOPB, EO 
ENDIF 
SIGEO=SIGEO+EO 
CONTINUE 

-- CALCULATE TOTAL ENERGY -- 

ETOT=SIGEB+ S IGEV+ SIGEA+ SIGET+S IGEO+SIGEQ 
IF(NPRINT. GT. 0) THEN 

WRITE(`, 19) SIGEB, SIGEV, SIGEA, SIGET, SIGEO, SIGEQ 
WRITE(r, 20) ETOT 

ENDIF 

RETURN 
END 
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PROGRAM NODEMIN 

IMPLICIT NONE 

INCLUDE 'CHMCM3. INC' 
include 'nodeequ. inc' 

c INCLUDE 'HNCOM. INC' 
c INCLUDE '\\BOARD\\TPR\\NODELINK. INC' 

include 'chan. inc' 
include 'node. inc' 

INTEGER NDIV, NMOD, NFIRST, LAST, BFLENG, J, MF, JINDX, 
1 K, ITRCMP, LM, L, M, ii, X, xx, nfirst4 

REAL XO, PEO, XS, PEP, PEN, V, PESP, PESN, SGDISQ, XSL, PESPL, 
1 PESPL1, PESPL2, XSM, PE2P, AM, SHIFT2, AMI, DET, PD, PDK, 
2 PEO, offset 

LOGICAL first_iter, error 

DIMENSION AMI(MXATT6), PESP(3). PESN(3), AM(6), V(3), PD(3) 
C 
C INITIALIZES NODES 

call initialize() 
C 
C RECEIVES BUFFERS FROM HOST. 

call receive(host, buffer_atmdatO, 1, total_atmdatO, error) 
call receive(host, buffer_atmdatl, 2, total_atmdatl, error) 
call receive(host, buffer_moldat, 3, total_noldat, error) 
call receivelhost, buffer_ffp, 4, total_ffp, error) 
call receive(host, buffer_cffp, 5, total_cffp, error) 
call receive(host, buffer_contrl, 6, total_contrl, error) 
call receive(host, buffer_constn, 7, total_constn, error) 

c RECEIVE BYTE VALUES SEPARATELY 

CALL RECEIVE (HOST, ATYNUM, 8, LENGTH9, ERROR) 
CALL RECEIVE (HOST, BONDML, 9, LENGTH10, ERROR) 
CALL RECEIVE (HOST, MOLNUM, 10, LENGTH9, ERROR) 

C ERROR CHECKING. SENDS BUFFERS BACK TO HOST. 

C 
C 
C -- CALCULATE ATOMIC INTERACTION LISTS ( QUICKER THAN -- 
C -- CALCULATING THEM ON THE HOST AND PASSING THEM DOWN -- 
C -- THE LINKS ) -- 
C 

CALL MNINIT1 
SHIFT2 = shiftx * shiftx 

C 
C -- ALLOCATE ATOMS TO EACH NODE PROCESSOR -- 
C 

NDIV = NUMATS / NUMPROC 
NMOD = MOD (NUMATS, NUMPROC) 

IF(me. 1t. NMOD)THEN 
NFIRST = (me*NDIV)+me+l 
LAST = ((me+l)*NDIV)+me+l 

ELSE IF(me. eq. NMOD)THEN 
NFIRST = (me*NDIV)+me+l 
LAST = ((me+l)*NDIV)+me 

ELSE IF(me. gt. NMOD)THEN 
NFIRST = (me*NDIV)+NMOD+1 
LAST = ((me+l)*NDIV)+NMOD 

ENDIF 

BFLENG=((LAST+1)-NFIRST) 
nfirst4 = (nfirst * 4) -3 

ITRCMP =0 
first_iter = TRUE. 

191 call receive (HOST, XO1.42, length7, error) 

C 
C -- CALCULATE FIRST DERIVATIVES USING -- 
C -- F-(XI)=(F(XI*DX)-F(XI-DX)1/2DX 

C 
IF (first_iter) THEN 

CALL LIST_CALC 
first_iter = FALSE. 

END IF 
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C 

sgdlsq = 0.0 
DO 160 J=NFIRST, LAST 
IF(NUMMFX. NE. 0) THEN 

DO 105 MF=1, NUMMFX 
IF(MOLNUM(J). EQ. KMOL(MF)) GO TO 160 

105 CONTINUE 
ENDIF 
JINDX=(J-1)*6 

C 
C -- CALCULATE ENERGY OF JTH ATOM -- C 

CALL ENERGL(J, PE0) 

DO 110 K=1,3 
XS=XO(J, K) 

C 
C -- INCREMENT KTH COORDINATE OF JTH ATOM AND RECALCULATE ENERGY -- C 

XO(J, K)=XS+SHIFTX 
CALL ENERGL(J, PEP) 

C 
C -- DECREMENT COORDINATE AND RECALCULATE ENERGY 
C 

XO(J, K)=XS-SHIFTX 
CALL ENERGL(J, PEN) 
XO(J, K)=XS 

C 
C -- CALCULATE FIRST DERIVATIVES (V) -- 
C 

V(K)=(PEP-PEN)/(2.0"SHIFTX) 
PESP(K)=PEP 
PESN(K)=PEN 

110 CONTINUE 

C 
C -- CALCULATE SUM OF SQUARES OF FIRST DERIVATIVES -- 
C 

DO 115 K=1,3 
SGDISQ=SGDISQ+V(K)*V(K) 

115 CONTINUE 
IF(NDERIV)125,120,125 

C 
C -- IF NOT ON 1ST, 5TH, 9TH ETC. ITERATION, SKIP THE NEXT SECTION -- C 
120 IF(MOD(ITRCMP, 4). NE. 0) GO TO 150 
C 
C -- CALCULATE SECOND DERIVATIVES -- 
C -- USING F"(XI, XI)=[F(XI+DX)+F(XI-DX)-2F(XI)1/DX**2 AND -- 
C -- F'(XI, XJ)=(F(XI+DX. XJ+DX)-F(XI, XJ+DX)-F(XI+DX, XJ)+F(XI, X))/DX**2 
C 
125 LM=1 

DO 145 L=1,3 
XSL=XO(J, L) 
XO(J, L)=XSL+SHIFTX 
PESPL=PESP(L) 
PESPL1=PESPL-PEO 
PESPL2=PESPLI-PEO 
DO 140 M=L, 3 
IF(L. EQ. M) GO TO 130 
XSM=XO(J, M) 
XO(J, M)=XSM+SHIFTX 
CALL ENERGL(J, PE2P) 
XO(J, M)=XSM 

C 
C -- CALCULATE SECOND DERIVATIVES (AM) -- 
C 

AM(LM)=(PE2P-PESPL1-PESP(M))/SHIFT2 
GO TO 135 

130 AM(LM)=(PESPL2+PESN(M))/SHIFT2 
135 LM=LM+1 
140 CONTINUE 

XO(J, 1. )=XSL 
145 CONTINUE 

C 
C -- INVERT MATRIX OF SECOND DERIVATIVES -- 
C 

AMI(JINDX+1)=AM(4)*AM(6)-AM(5)*AM(5) 
AMI(JINDX+2)=AM(21*AM(6)-AM(3)*AM(5) 
AMI(JINDX+3)=AM(2)*AM(S)-AM(3)*AM(4) 
DET=AM(1)*AMI(JINDX+1)-AM(2)*AMI(JINDX+2)+AM(3)*AMI(JINDX+3) 

C 
C -- IF DETERMINANT EQUALS ZERO THEN SWITCH TO STEEPEST DESCENTS -- 
C 
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IF(DET. EQ. 0.0) THEN 
AMI(JINDX+1)=1.0E-03 
ANI(JINDX+2)=0.0 
ANI(JINDX+3)=0.0 
ANI(JINDX+4)=1.0E-03 
AMI(JINDX+S)=0.0 
AMI(JINDX+6)=1.0E-03 

ELSE 
AMI(JINDX+4)=AM(1)*AM(6)-AM(3)*AM(3) 
AMI(JINDX+5)=AM(1)*AM(5)-AM(2)*AM(3) 
AMI(JINDX+6)=AN(1)*AM(4)-AM(2)*AM(2) 
ANI(JINDX+1)=AMI(JINDX+1)/DET 
AMI(JINDX+2)=(-1.0)*AMI(JINDX+2)/DET 
AMI(JINDX+3)=AMI(JINDX+3)/DET 
ANI(JINDX+4)=AMI(JINDX+4)/DET 
AMI(JINDX+5)=(-1.0)*AMI(JINDX+5)/DET 
AMI(JINDX+6)=AMI(JINDX+6)/DET 

ENDIF 
C 
C -- CALCULATE CORRECTIONS TO COORDINATES (PD) -- 
C 
150 PD(1)=ANI(JINDX+1)*V(1)+AMI(JINDX+2)*V(2)+AMI(JINDX+3)*V(3) 

PD(2)=ANI(JINDX+2)*V(1)+AMI(JINDX+4)*V(2)+AMI(JINDX+S)*V(3) 
PD(3)=ANI(JINDX+3)*V(1)+AMI(JINDX+S)*V(2)+AMI(JINDX+6)*V(3) 

C 
C -- CALCULATE NEW COORDINATES -- 
C 

DO 155 K=1,3 
PDK=PD(K) 
IF(ABS(PDK). GT. SHFTMX) PDK=SIGN(SHFTMX, PDK) 
XO(J, K)=XO(J, K)-PDK 

155 CONTINUE 
160 CONTINUE 

call send(HOST, xol(nfirst4), 43, bfleng*4, error) 

call send(HOST, xo2(nfirst4), 44, bfleng*4, error) 

call send(HOST, xo3(nfirst4), 45, bfleng*4, error) 

call send(HOST, sgdlsq, 46,4, error) 

ITRCMP = ITRCMP +1 
GOTO 191 
STOP 
END 
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C 
C 
C -- SUBROUTINE ENERGL(I, EL) 
C 
C 
C -- THIS SUBROUTINE CALCULATES THE TOTAL ENERGY (EL) -- 
C -- OF ALL INTERACTIONS INVOLVING THE ITH ATOM -- 
C 

SUBROUTINE ENERGL(I, EL) 

IMPLICIT NONE 

INCLUDE 'CHMCM3. INC' 
include 'nodeequ. inc' 

INTEGER J, NBMTIJ, ITYPI, ITYPJ, K, ICL, NAMTIK, JAMAI, 
1 JBMAJ, JCMAK, ICA, L, NTMTIL, IT1, IT2, IT3, IT4, 
2 ICT, N, IOPBIN, IOPB2N, IOPB3N, IOPB4N 

REAL ECX, DIR1, DIR2, DIR3, DIST2, DIST, RLITIJ, SCITIJ, 
1 DOIST, EB, RDIST2, RDIST4, RDIST6, RDIS12, EV, EQ, 
2 DISTC, ECL, XJB1, XJB2, XJB3, DC11, DC12, DC21, DC22, 
3 DC3 1, DC32, RM1, RM2, R12, COSA, A, THSX, DELTH2, DELTH3, 
4 DELTH5, EA, COSAC, AC, ECA, XJC1, XJC2, XJC3, AA11, AA12, 
5 AA13, AA21, AA22, AA23, AA31, AA32, AA33, V11, V21, V12, 
6 V22, V13, V23, R1, R2, COSW, WA, WASIGN, XFD, TA, SGN, 
7 FOLD, ET, WC, WCSIGN, ECT, WAOPB, EO 

EL=0.0 
C 
C -- CALCULATE PSEUDO-ENERGIES FOR FIXED ATOMS (IF ANY) -- 
C 

IF(CONMIN) THEN 
IF(ATCONS(I. 1)) THEN 

ECX=FATSEV(I)*( 
1 (FATXYZ(I, 1)-XO(I, 1))**2+ 
2 (FATXYZ(I, 2)-XO(I, 2))**2+ 
3 (FATXYZ(I, 3)-XO(I, 3))**2) 

EL=EL+ECX 
ENDIF 

ENDIF 
C 
C -- CALCULATE THE BONDED AND NON-BONDED ENERGIES -- 
C 

DO 101 J=1, NUMATS 
NBMTIJ=NBMAT(J, I) 

C 
C -- SORT OUT WHICH PAIRS OF ATOMS ARE 1,1 OR 1,3 OR TOO -- 
C -- LONG (NBMTIJ=5), SKIP THESE AND GO ON TO NEXT PAIR -- 
C 

IF(NBMTIJ. EQ. 1. OR. NBMTIJ. EQ. 3. OR. NBMTIJ. EQ. 5) GO TO 101 
C 
C -- CALCULATE DISTANCE I-J -- 
C 

DIRT=XO(I, 1)-XO(J, 1) 
DIR2=XO(I, 2)-XO(J, 2) 
DIR3=XO(I, 3)-XO(J, 3) 
DIST2=DIR1*DIR1+DIR2*DIR2+DIR3*DIR3 
ITYPI=ATYNUM(I) 
ITYPJ=ATYNUM(J) 

C 
C -- IF ATOMS I AND J ARE NON BONDED, -- 
C -- GO ON TO VAN DER WAALS SECTION -- 
C 

IF(NBMTIJ. EQ. 4) GO TO 100 
DIST=SQRT(DIST2) 

C 
C -- GET REFERENCE LENGTHS AND FORCE CONSTANTS -- 
C 

RLITIJ=REFLEN(ITYPI, ITYPJ) 
SCITIJ=STRCON(ITYPI, ITYPJ) 
IFIITYPI. LE. Namide. AND. ITYPJ. LE. Namide) THEN 

IF(CREFLN(ITYPI, ITYPJ). NE. 10. ) THEN 
DO 98 K=1, MXCN 

IF(ATMCON(I, K). EQ. J) GO TO 99 
98 CONTINUE 
99 IF(BONDML(I, K). EQ. 11) THEN 

RLITIJ=CREFLN(ITYPI. ITYPJ) 
SCITIJ=CSTCON(ITYPI, ITYPJ) 

ENDIF 
ENDIF 

ENDIF 
DOIST=RLITIJ-DIST 

C 
C -- CALCULATE BOND ENERGY -- 
C 

EB=SCITIJ*DOIST*DOIST 

Appendix C 278 



EL=EL+EB 
GO TO 101 

C 
C -- VAN DER WAALS SECTION -- C 
100 RDIST2=1.0/DIST2 

RDIST4=RDIST2*RDIST2 
RDIST6=RDIST2*RDIST4 
RDIS12=RDIST6*RDIST6 

C 
C -- CALCULATE VAN DER WAALS ENERGY (EV) -- C 

EV=B12(ITYPI, ITYPJ)*RDIS12 - A6(ITYPI, ITYPJ)*RDIST6 
EL=EL+EV 

C 
C -- CALCULATE COULOMBIC ENERGY (EQ) -- C 

EQ=332.17*CHARGE(I)*CHARGE(J)*RDIST2 
EL=EL+EQ 

101 CONTINUE 
C 
C -- CALCULATE PSEUDO-ENERGIES FOR FIXED LENGTHS (IF ANY) -- C 

IF(CONMIN) THEN 
DO 102 ICL=1, NUMLFX 
IF(ATCONS(I, 2). AND. 

1 (KLATM1(ICL). EQ. I. OR. KLATM2(ICL). EQ. I)) THEN 
DIRT=XO(KLATM1(ICL), 1)-XO(KLATM2(ICL), 1) 
DIR2=XO(KLATM1(ICL), 2)-XO(KLATM2(ICL), 2) 
DIR3=XO(KLATMI(ICL), 3)-XO(KLATM2(ICL), 3) 
DIST2=DIR1*DIRI+DIR2*DIR2+DIR3*DIR3 
DISTC=SQRT(DIST2) 
ECL=FLNSEV(ICL)*((FIXLEN(ICL)-DISTC)**2) 
EL=EL+ECL 

ENDIF 
102 CONTINUE 

ENDIF 
C 
C -- CALCULATE THE ANGLE ENERGY -- 
C 

DO 103 K=1,18 
C 
C -- CHECK IF ATOM IS INVOLVED IN ANY ANGLES -- 
C -- WHEN DONE GO TO ANGLE CONSTRAINTS SECTION -- 
C 

NAMTIK=NAMAT(K, I) 
IF(NAMTIK. EQ. O) GO TO 104 
JAMAI=MAI(NAMTIK) 
JBMAJ=MAJ(NAMTIK) 
JCMAK=MAK(NAMTIK) 

C 
C -- CALCULATE ANGLE -- 
C 

XJB1=XO(JBMAJ, 1) 
XJB2=XO(JBMAJ, 2) 
XJB3=XO(JBMAJ, 3) 
DC11=XO(JAMAI. 1)-XJB1 
DC12=XO(JCMAK, 1)-XJB1 
DC21=XO(JAMAI, 2)-XJB2 
DC22=XO(JCMAK, 2)-XJB2 
DC31=XO(JAMAI, 3)-XJB3 
DC32=XO(JCMAK, 3)-XJB3 
RM1=DC11*DC11+DC21*DC21+DC31*DC31 
RM2=DC12*DC12+DC22*DC22+DC32*DC32 
R12=DC11*DC12+DC21*DC22+DC31*DC32 
RM1=SQRT(RM1)+0.000001 
RM2=SQRT(RM2)+0.000001 
COSA=R12/(RM1*RM2) 
COSA=SIGN(AMIN1(ABS(COSA), 1. OE+00), COSA) 
A=ACOS(COSA)*RADI 
THSX=THS(NAMTIK)-A 
DELTH2=THSX*THSX 
DELTH3=ABS(DELTH2*THSX) 
DELTH5=DELTH3*DELTH2 

C 
C -- CALCULATE ANGLE ENERGY -- 
C 

EA=BKS(NAMTIK)*(DELTH2-BKAS(NAMTIK)*(DELTH3-(0,0004*DELTHS))) 
EL=EL+EA 

103 CONTINUE 
C 
C -- CALCULATE PSEUDO-ENERGIES FOR FIXED ANGLES (IF ANY) -- 
C 
104 IF(CONMIN) THEN 

DO 105 ICA=1, NUMAFX 
IF(ATCONS(I. 3). AND. 

1 (KAATMI(ICA). EQ. I. OR. KAATM2(ICA). EQ. I. OR. 

2 KAATM3(ICA). EQ. I)) THEN 
XJB1=XO(KAATM2(ICA), 1) 
XJB2=XO(KAATM2(ICA), 2) 
XJ53=XO(KAATM2(ICA), 3) 
DC11=XO(KAATM1(ICA), 1)-XJB1 
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DC12=XO(KAATM3(ICA), 1)-XJB1 
DC21=XO(KAATMI(ICA), 2)-XJB2 
DC22=XO(KAATM3(ICA), 2)-XJB2 
DC31=XO(l(AATM1(ICA), 3)-XJB3 
DC32=XO(KAATM3(ICA), 3)-XJB3 
RM1=DC11*DC11+DC21*DC21+DC31*DC31 
RM2=DC12*DC12+DC22*DC22+DC32*DC32 
R12=DC11*DC12+DC21*DC22+DC31*DC32 
RMI=SQRT(RM1)+0.000001 
RM2=SQRT(RM2)+0.000001 
COSAC=R12/(RM1*RM2) 
COSAC=SIGN(AMIN1(ADS(COSAC), 1. OE+00), COSAC) 
AC=ACOS(COSAC)*RADI 
ECA=FANSEV(ICA)*((FIXANG(ICA)-AC)**2) 
EL=EL+ECA 

ENDIF 
105 CONTINUE 

ENDIF 
C 
C -- CALCULATE TORSIONAL ENERGY -- C 

DO 106 L=1,50 

-' CHECK IF ATOM IS INVOLVED IN ANY TORSION ANGLES -- WHEN DONE GO TO TORSION ANGLE CONSTRAINTS SECTION -- 

NTMTIL=NTMATIL, I) 
IF(NTMTIL. EQ. O) GO TO 107 

-- CALCULATE TORSION ANGLE -- 

IT1=MTI(NTMTIL) 
IT2=MTJ(NTMTIL) 
IT3=MTK(NTMTIL) 
IT4=MTL(NTMTIL) 
XJB1=XO(IT2,1) 
XJB2=XO(IT2,2) 
XJB3=XO(IT2,3) 
XJCI=XO(IT3,1) 
XJC2=XO(IT3,2) 
XJC3=XO(IT3,3) 
AA11=XO(ITI, 1)-XJB1 
AA12=XJC1-XJB1 
AA13=XJC1-XO(IT4,1) 
AA21=XO(IT1,2)-XJ82 
AA22=XJC2-XJB2 
AA23=XJC2-XO(IT4,2) 
AA31=XO(IT1,3)-XJB3 
AA32=XJC3-XJB3 
AA33=XJC3-XO(IT4,3) 
V11=AA21*AA32-AA31*AA22 
V21=AA22*AA33-AA32*AA23 
V12=AA31*AA12-AAI1*AA32 
V22=AA32*AA13-AA12*AA33 
V13=AA11*AA22-AA21*AA12 
V23=AA12*AA23-AA22*AA13 
R1=SQRT(V11*V11+V12*V12+V13*V13)+0.000001 
R2=SQRT(V21*V21+V22*V22*V23*V23)+0.000001 
COSW=(V11/R1)*(V21/R2)+(V12/R1)*(V22/R2)+(V13/R1)*(V23/R2) 
COSW=SIGN(AMIN1(ABS(COSW), 1.0E+00). COSW) 
WA=ACOS(COSW)*RADI 

C 
C -- CALCULATE CORRECT SIGN FOR TORSION ANGLE -- 
C 

WASIGN=AA11*(AA22*AA33-AA23*AA32)-AA21*(AA12*AA33-AA13*AA32) 
1 +AA31*(AA12*AA23-AA13*AA22) 

WA=SIGN(WA, WASIGN) 
XFD=FDS(NTMTIL) 

C 
C -- CALCULATE TORSIONAL ENERGY -- 
C 

TA=WA*RAD1 
SGN=XFD/ABS(XFD) 
FOLD=ABS(XFD) 
ET=VOS(NTMTIL)*(1.0+SGN*COS(FOLD*TA))+VO1S(NTMTIL)* 

1(1.0+COS(TA)) 
EL=EL+ET 

106 CONTINUE 
C 
C -- CALCULATE PSEUDO-ENERGIES FOR FIXED TORSION ANGLES (IF ANY) -- 
C 
107 IF(CONMIN) THEN 

DO 108 ICT=1, NUMTFX 
IF(ATCONS(I, 4). AND. 

1 (KTATM1(ICT). EQ. I. OR. KTATM2(ICT). EQ. I. OR. 
2 KTATM3(ICT). EQ. I. OR. KTATM4(ICT). EQ. I)) THEN 

ITI=KTATMI(ICT) 
IT2=KTATM2(ICT) 
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IT3=KTATM3(ICT) 
IT4=KTATM4(ICT) 
XJB1=XO(IT2,1) 
XJB2=XO(IT2.2) 
XJB3=XO(IT2,3) 
XJC1=XO(IT3.1) 
XJC2=XO(IT3,2) 
XJC3=XO(IT3,3) 
AA11=XO(IT1,1)-XJB1 
AA12=XJC1-XJB1 
AA13=XJC1-XO(IT4,1) 
AA21=XO(IT1,2)-XJB2 
AA22=XJC2-XJB2 
AA23=XJC2-XO(IT4,2) 
AA31=XO(IT1,3)-XJB3 
AA32=XJC3-XJB3 
AA33=XJC3-XO(IT4,3) 
V11=AA21*AA32-AA31*AA22 
V21=AA22*AA33-AA32*AA23 
V12=AA31*AA12-AA11*AA32 
V22=AA32*AA13-AA12*AA33 
V13=AA11*AA22-AA21*AA12 
V23=AA12*AA23-AA22*AA13 
R1=SQRT(V11*V11+V12*V12+V13*V13)+0.000001 
R2=SQRT(V21*V21+V22*V22+V23*V23)+0.000001 
COSW=(V11/R1)*(V21/R2)+(V12/R1)*(V22/R2)+(V13/R1)*(V23/R2) 
COSW=SIGN(AMIN1(ABS(COSW), 1.0E+00), COSW) 
WC=ACOS(COSW)*RADI 
WCSIGN=AA11*(AA22*AA33-AA23*AA32)-AA21*(AA12*AA33-AA13*AA32) 

1 +AA31*(AA12*AA23-AA13*AA22) 
WC=SIGN(WC, WCSIGN) 
ECT=FTOSEV(ICT)*( 

1 (FIXTOR(ICT)-WC)**2) 
EL=EL+ECT 

ENDIF 
108 CONTINUE 

ENDIF 

-- CALCULATE OUT OF PLANE BENDING ENERGY -- 
(IF THERE SHOULD BE ANY) -- 

IF(NO. EQ. O) RETURN 
DO 113 N=1, NO 
IOPBIN=IOPB1(N) 
IOPB2N=IOPB2(N) 
IOP53N=IOPB3(N) 
IOPB4N=IOPB4(N) 
IF((IOPBIN. EQ. I). OR. (IOPB2N. EQ. I). OR. 

(IOPB3N. EQ. I). OR. (IOP84N. EQ. I)) THEN 
GOTO 112 

ELSE 
GOTO 113 

ENDIF 
C 
C -- CALCULATE IMPROPER TORSION ANGLE -- 
C 
112 XJB1=XO(IOPB2N, 1) 

XJB2=XO(IOPB2N, 2) 
XJB3=XO(IOPB2N. 3) 
XJC1=XO(IOPB3N, 1) 
XJC2=XO(IOPB3N, 2) 
XJC3=XO(IOPB3N. 3) 
AA11=XO(IOPBIN, 1)-XJB1 
AA12=XJC1-XJ51 
AA13=XJC1-XO(IOPB4N. 1) 
AA21=XO(IOPBIN, 2)-XJB2 
AA22=XJC2-XJ82 
AA23=XJC2-XO(IOPB4N, 2) 
AA31=XO(IOPBIN, 3)-XJB3 
AA32=XJC3-XJB3 
AA33=XJC3-XO(IOPB4N, 3) 
V11=AA21*AA32-AA31 AA22 
V21=AA22*AA33-AA32*AA23 
V12=AA31*AA12-AA11*AA32 
V22=AA32*AA13-AA12*AA33 
V13=AA11*AA22-AA21*AA12 
V23=AA12*AA23-AA22*AA13 
R1=SQRT(V11*V11+V12*V12+V13*V13)+0.000001 
R2=SQRT (V21*V21+V22*V22+V23*V23)+0.000001 
COSW=(V11/R1)*(V21/R2)+(V12/R1)*(V22/R2)+(V13/R1)*(V23/R2) 
COSW=SIGN(AMIN1(ABS(COSW), 1. OE+00), COSW) 
WAOPB=ACOS(COSW)*RADI 

-- CALCULATE OUT OF PLANE BENDING ENERGY -- 

EO=OPBK(N)*(180.0-ABS(WAOPB))**2 
EL=EL+EO 
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113 CONTINUE 
RETURN 
END 
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INCLUDE 'fgraph. fi' 

INCLUDE 'c: \lesley\MOUSE. FI' 

SUBROUTINE nrm_get_controlparameters 

INCLUDE 'chmcm3. inc' 

INCLUDE 'commnpcn. inc' 

INCLUDE 'commmenu. inc' 

INCLUDE 'FGRAPH. FD' 

INTEGER nboxes, chce, DISP_MIN_PARAM 
LOGICAL start 
REAL rdum 

OPEN (UNIT = 10, FILE = 'XY. OUT', STATUS = 'old') 

numitr = 10 
dran = 25.0 
nprint =0 
ethrsh = -10.0 
shftmx = 0.5 
nderiv =1 

nboxes =8 

CALL graphicsmode() 
CALL register_fonts 

CALL init_constraints 
DISP_MIN_PARAM =1 

CALL snit_screen_area(DISP_MIN_PARAM) 

CALL init_option_box_data (nboxes, 
1 'NEWTON-RAPHSON MINIMISER PARAMETERS') 

CALL init_npad_data() 

start = FALSE. 

DO WHILE (. NOT. start) 
CALL nrm_display_options(chce) 

IF (chce. EQ. 1) THEN 
CALL MESSAGE(1, 'ENTER NO. OF ITERATIONS', 13) 

numitr = 10 
CALL number. pad(rdum, numitr, 2) 
numitr = MAX(numitr, 0) 
CALL MESSAGE(1, 'ENTER NO. OF ITERATIONS-, O) 

ELSE IF (chce. eq. 2) THEN 
CALL MESSAGE(1, 

'ENTER VAN DER WAALS CUTOFF DISTANCE', 13) 
DXXM = 25.0 

CALL number_pad(DXXM, IDUM, 1) 
CALL MESSAGE(1, 

'ENTER VAN DER WAALS CUTOFF DISTANCE', 0) 
DXXM = MAXIDXXM, 2.0) 

ELSE IF ((CHCE. EQ. 3). AND. (NPRINT. EQ. 2)) THEN 
CALL MESSAGE(1, 

1 'ENTER PRINT THRESHOLD ENERGY', 13) 
ethrsh = -10.0 

CALL numberpad(ethrsh, idum, l) 
CALL MESSAGE(1, 

1 'ENTER PRINT THRESHOLD ENERGY', 0) 
ELSE IF (CHCE. EQ. 4) THEN 

CALL MESSAGE(1, 
1 'ENTER MAXIMUM COORDINATE SHIFT1,13) 

shftmx = 0.5 
CALL numberpad(shftmx. IDUM, 1) 

CALL MESSAGE(1, 
1 'ENTER MAXIMUM COORDINATE SHIFT', 0) 

shftmx = MAX(shftmx, 0.0001) 
ELSE IF (CIICE. EQ. 5) THEN 

IF (nprint EQ. 0) THEN 
nprint -1 

ELSE IF (riprint EQ. 1) THEN 

nprint -2 
ELSE IF (nprint EQ. 2) THEN 

nprint =0 
END IF 

ELSE IF (CHCE. EQ. 6) THEN 
call fix-parameters 

CALL init_screen_area(DISP_MIN_PARAM) 
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CALL init_option_box_data (nboxes, 
'NEWTON-RAPHSON MINIMISER PARAMETERS') 

CALL init_npad_dataf) 
ELSE IF (CHCE. EQ. 7) THEN 

CALL CLEARSCREEN($GCLEARSCREEN) 
call endgraphics 

START = TRUE. 
ELSE IF (CHCE. EQ. 8) THEN 

CALL endgraphics 
STOP 

END IF 
END DO 

END 

SUBROUTINE init_option_box_data(nbox, mess) 

INTEGER nbox 
CHARACTER * (") mess 

INCLUDE 'commobcm. inc' 

INCLUDE 'commgrap. inc' 

INTEGER txtwd, txtht, xtp, ytp, tsx, xsl, xs2, tsy, ysl, ys2, yt, ty, 
1 px, py, nb, btx, bty, i 

LOGICAL error 

CALL set_font(chl2w9) 
CALL text_info(txtwd, txtht) 

write(10, *) message_spacey 

xtp = viewport_xspace 
ytp = viewport_yspace 

optnbox_width = MAX(txtwd * 2, txtht * 2) 
optnbox_height = optnbox_width 

nb = MIN(nbox, ytp / (optnbox_height + 1)) 
IF (nb LT. nbox) THEN 

error = TRUE. 
RETURN 

END IF 
bty = nb * optnbox_height 
tsy a ytp - bty 

ysl = MIN(MAX(tsy / (nb + 1), 1), txtht * 2) 
ys2 = (tsy - ((nb - 1) * ysl)) /2 
xsl =1 

btx = optnbox_width 
tsx = xtp - btx 
optnbox_maxm = MIN((tsx - (xsl * 3)) / txtwd, 50) 
write(10, *) 'optnbox_maxm is', optnbox_maxm 

xsl = MIN(MAX(tsx - (optnbox_maxm * txtwd), 1), txtwd * 2) 
write (10, *) 'xsl is', xsl 

xs2 = MAX((tsx - ((optnbox_maxm * txtwd) + xsl)) / 2,1) 
write (10, *) 'xs2 is', xs2 
optnbox_maxl = INT((FLOAT(optnbox_Inaxm) * 3.0) / 5.0) 
optnbox_max2 = optnbox_maxm - optnbox_maxl 
optnbox_txl = xs2 
optnbox_tx2 = optnbox_txl + (optnbox_maxl * txtwd) 

optnbox_xl = optnbox_txl + (optnbox__naxm * txtwd) + xsl 
yt =0+ ys2 
px = optnbox_xl + (optnbox_width / 2) 

DO i=1, nb 
ty = yt + (txtht / 2) 

py = yt + (optnbox_height / 2) 
optnbox. yt(i) = yt 

optnbox_ty(i) = ty 
optnbox-px (i) = px 
optnbox py (i) = py 
yt = yt + optnbox_height + ysl 

END DO 
optnbox_nbox = nb 
optnbox_titmess = mess 

END 

SUBROUTINE nrm_display_options(chce) 

INCLUDE chmcm3. incl 

INCLUDE "commobcm. incl 

INTEGER chce 
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INTEGER*2 mx, my 
CHARACTER"30 msgl(20) 
CHARACTER*20 msg2(20) 

optnbox_col(1) =3 
msgl(1) = 'NUMBER OF ITERATIONS' 
WRITE (msg2(1), 10) numitr 10 FORMAT (' (1,2X, I10,3X, 1)1) 

optnbox_col(2) =3 
msgl(2) = VAN DER WAALS CUTOFF DISTANCE' 
WRITE (msg2(2), 30) dxxm 

30 FORMAT (', 8X. F7.2,1)1) 

msgl(3) _ 'ENERGY THRESHOLD FOR PRINTING' 
IF (nprint EQ. 2) THEN 

optnbox_col(3) =3 
WRITE (msg2(3), 40) ethrsh 

40 FORMAT (' (1,9X, F6.2,1)1) 
ELSE 

optnbox_col(3) =8 
msg2(5) 

END IF 

msgl(4) = 'MAXIMUM SHIFT' 
IF (numitr GT. 0) THEN 

optnbox_col(4) =3 
WRITE (msg2(4), 20) shftmx 

20 FORMAT 
ELSE 

optnbox_col(4) =8 
msg2(2) 

END IF 

optnbox_col(5) =3 
msgl(5) = TYPE OF OUTPUT' 
IF (nprint EQ. 0) THEN 

msg2(5) ='( SHORT)' 
ELSE IF (nprint EQ. 2) THEN 

msg2(5) ='( LONG 
ELSE IF (nprint EQ. 1) THEN 

msg2(5) ABBREIVIATED)' 
END IF 

optnbox_col(6) =3 
msgl(6) = FIX ATOMS OR PARAMETERS' 
msg2(6) = 

optnbox_col(7) =3 
msgl(7) = START MINIMISER' 
msg2(7) = 

optnbox_col(8) = 12 
msgl(8) _ EXIT MINIMISER' 
msg2(8) _ 

CALL draw_option_boxes(msgl, msg2) 
CALL mouse() 

chce -0 
DO WHILE(chce. EQ. O) 

CALL chms(mx, my) 
CALL find_box_select(mx, my, chce) 

END DO 

END 

SUBROUTINE draw_option_boxes(msgsl, msgs2) 

CHARACTER*(*) msgsl(*), msgs2(*) 

INCLUDE 'commobcm. inc' 

INCLUDE 'FGRAPH. FD' 

INCLUDE 'commgrap. incl 

C INCLUDE 'colour. inc' 
INTEGER i. xl, x2, yl, y2 

CALL CLEARSCREEN($GCLEARSCREEN) 
CALL set_font(chl2w9) 
CALL MESSAGE(O, optnbox_titmess, 9) 

DO i=1, optnbox-nbox 
xl = optnbox_xl 
x2 = xl + optnbox_width 
yl = optnbox_yt(i) 
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y2 = yl + optnbox_height 
write(10, ") x1, y1, x2, y2 

CALL colour(optnbox_col(i)) 
CALL box(xl, yl, x2, y2) 
CALL text (optnbox_txl, optnbox_ty(i), msgsl(1)) 

END DO 
CALL text (optnbox_tx2, optnbox_ty(i), msgs2(i)) 

END 

SUBROUTINE Chms(xpos, ypos) 

INCLUDE 'c: \lesley\MOUSE. FD' 
INCLUDE 'FCRAPH. FD' 

INTEGER*2 XPOS. YPOS, BPOS 

bpos =0 

CALL showmousecursor 

DO WHILE(BPOS. EQ. 0) 
CALL GETMOUSECURSORPOSITION(XPOS, YPOS, BPOS) 

END DO 

DO WHILE(BPOS. EQ. 1) 
CALL GETMOUSECURSORPOSITION(XPOS, YPOS, BPOS) 

END DO 

CALL convert_to viewport_coords(XPOS, YPOS) 

CALL hidemousecursor 

END 

SUBROUTINE find_box_select(xpos, ypos, chce) 

INCLUDE 'c: \lesiey\MOUSE. FD' 
INCLUDE 'FGRAPH. FD' 

INCLUDE 'commobcm. incl 

INTEGER chce, half_width, half_height, i 
INTEGER*2 XPOS, YPOS 

half_width = optnbox_width/2 
half_height optnbox_height/2 

chce =0 

DO i=l, optnbox_nbox 
IF (XPOS. GT. (optnbox_px(i) - half_width). AND. 

1 XPOS. LT. (optnbox_px(i) + half_width). )ND. 

2 YPOS. GT. (optnbox_py(i) - half_height). AND. 
3 YPOS. LT. (optnbox_py(i) + half-height)) THEN 

chce =i 

END IF 

END DO 

END 

SUBROUTINE find_menu_select(xpos, ypos, num_box, xcentre, ycentre, 
1 xhalf_width, yhalf_height, kk) 

INCLUDE 'c: \lesley\MOUSE. FD' 
INCLUDE 'FGRAPH. FD' 

INTEGER num_box, xcentre(num_box), ycentre(num_box), 
1 xhalf_width, yhalf height, kk 

INTEGER"2 XPOS, YPOS 

kk =0 

DO i=1, num_box 
IF (XPOS. GT. (xcentre(i) - xhalf_width). AND. 

1 XPOS. LT. (xcentre(i) + xhalf_width). AND. 
2 yPOS. GT. (ycentreli) - yhalf_height). AND. 

3 YPOS. LT. (ycentre(i) + yhalf_height)) THEN 
kk =i 

END IF 

END DO 

END 
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SUBROUTINE init_npad data 

INCLUDE 'commnpcn. inc' 

INCLUDE 'commgrap. inc' 

INTEGER ht2, wd2, padrowp, padcolp, padysp, padxsp, 
1 pxsp2, pysp2, wd22, ht22, row, col, rowp, colp, tlen, tlenp, 
2 tlenp2, txsp, txsp2, 
3 i, j, xtp, ytp 

CALL set_font(chl5w12) 
CALL text_info(wd2, ht2) 
CALL get_screen_coords(xtp, ytp) 

padrowp = pad_row * ht2 
padcolp = pad_col * wd2 
padysp = ((ytp - message_spacey) - padrowp) / (pad-row + 1) 
padxsp = (menu_spacex - padcolp) / (pad_col + 1) 
pxsp2 = padxsp /3 
pysp2 = padysp /3 
wd22 = wd2 /2 
ht22 = ht2 /2 
DO i=l, num_box 

row = (i - 1) / pad_col 
col = MOD(i - l, pad_col) 
rowp =0+ ((row * (ht2 + padysp)) + padysp) 
colp = (0 - menu_spacex) + (col * (wd2 + padxsp)) + padxsp 
np_pbxl(i) = colp - pxsp2 
np_pbyt(i) = rowp - pysp2 
np_pbxr(i) = np_pbxl(i) + (wd22 + pxsp2) *2 
np_pbyb(i) = np_pbyt(i) + (ht22 + pysp2) *2 
np_ppkx(i) = colp + wd22 
np. ppky(i) = rowp + ht22 

np-ptxx(i) = colp 
np_ptxy(i) = rowp 

END DO 
np_pxti = wd22 + pxsp2 
np_pytl = ht22 + pysp2 
tlen = LEN(other_text(1)) 
tlenp = tlen * wd2 
tlenp2 = tlenp /2 
txsp = (menu_spacex - tlenp) /2 
txsp2 = txsp /3 
DO j=1, num_other 

rowp =0+ (((j + 3) * (ht2 + padysp)) + padysp) 
colp = (0 - menu_spacex) + txsp 
np_obxl(j) = colp - txsp2 
np_obyt(j) = rowp - pysp2 
np_obxr(j) = np_obxl(j) + (tlenp2 + txsp2) *2 
np_obyb(j) = np_obyt(j) + (ht22 + pysp2) *2 
np_opkx(j) = colp + tlenp2 
np_opky(j) = rowp + ht22 

np_otxx(j) = colp 
np_otxy(j) = rowp 

END DO 
np_oxtl = tlenp2 + txsp2 
np_oytl = ht22 + pysp2 

END 

BLOCK DATA number-pad_data 

INCLUDE 'commnpcn. inc' 

DATA padn_text / 17894561230-. ' / 
DATA other_text /' RESET ', ' ENTER ', 'DEFAULT' 

END 

SUBROUTINE number_pad(pad_value, ipad_value, option) 

REAL pad_value 
INTEGER ipad_value, option 

INCLUDE 'commnpcn. inc' 

CHARACTER * 10 value_text 
CHARACTER " 20 def_text 
INTEGER kt, kk, idef, noth 

INTEGER*2 mx, my 
REAL rdef 

LOGICAL exitf, fraction, negative, default 

IF (option EQ. 0) THEN 
noth =2 
def_text 

ELSE 
noth =3 
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IF (option EQ. 1) THEN 
rdef = pad_value 
WRITE (def_text, 10) rdef 10 FORMAT ('DEFAULT : 1, F10.4) 

ELSE IF (option EQ. 2) THEN 
idef = ipad_value 
WRITE (def_text, 20) idef 

20 FORMAT ('DEFAULT ', I10) 
END IF 

END IF 
pad_value = 0.0 
ipad_value =0 

value-text ='' 
fraction = FALSE. 
negative = FALSE. 

default = FALSE. 
kt =1 

exitf = FALSE. 
CALL draw_npad_boxes(13, noth) 
CALL draw_npad_text(13, noth) 
CALL message(3, def_text, 10) 
DO WHILE (. NOT. exitf) 

CALL chms(mx. my) 
CALL find_menu_select(mx, my, num_box, np_ppkx, np_ppky, 

1 np_pxtl, np_pytl, kk) 
IF ((kk GE. 1) AND. (kk LE. 10)) THEN 

IF (kt LT. 10) THEN 
CALL message(2, value_text, 0) 
kt = kt +1 
value_text(kt: kt) = padn_text(kk: kk) 
CALL message(2, value_text, 15) 

END IF 
ELSE IF (kk EQ. 11) THEN 

CALL message(2, value_text, 0) 
IF (negative) THEN 

value_text(1: 1) = 
ELSE 

value_text(1: 1) _ '-' 
END IF 

CALL message(2, value_text, 15) 
negative = NOT. negative 

ELSE IF ((kk EQ. 12) AND. (. NOT. fraction) AND. 
1 (kt LT. 9)) THEN 

CALL message(2, value_text, 0) 
fraction = TRUE. 
kt = kt +1 
value_text(kt: kt) = padn_text(kk: kk) 

CALL message(2, value_text, 15) 
ELSE 

CALL find_menu_select(mx, my, noth, np_opkx, np_opky, 
np_oxtl, np_oytl, kk) 

IF (kk EQ. 1) THEN 
CALL message(2, value_text, 0) 
kt =1 
negative = FALSE. 
fraction - FALSE. 
value-text ='' 

ELSE IF (kk EQ. 2) THEN 
exitf = TRUE. 

ELSE IF (kk. EQ. 3) THEN 
exitf = TRUE. 

default = TRUE. 
END IF 

END IF 
END DO 

IF (default) THEN 
IF (option EQ. 1) THEN 

pad _value = rdef 
ELSE IF (option EQ. 2) THEN 

ipad_value = idef 
END IF 

ELSE 
READ(value_text, 30) pad_value 

30 FORMAT(F10.0) 
ipad_value = INT(pad_value) 

END IF 
CALL draw_npad_boxes(O, noth) 
CALL draw_npad_text(0, noth) 

CALL message(2, value_text, 0) 
CALL message(3, def_text, 0) 

END 

SUBROUTINE draw_npad_boxes(col, noth) 

INTEGER col, noth 

INCLUDE "commnpcn. inc' 
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INTEGER i 

CALL colour(col) 
DO i=l, num_box 

END DO 
CALL BOX(np pbxl(i), np_pbyt(i), np-pbxr(i), np pbyb(i)) 

DO i=1, noth 

END DO 
CALL BOX(np_obxl(i), np_obyt(i), np_obxr(i), np_obyb(i)) 

END 

SUBROUTINE draw_npad_text(col, noth) 

INTEGER col, noth 

INCLUDE 'commnpcn. inc' 
INCLUDE 'commgrap. inc' 

INTEGER i 

CALL set_font(chl5wl2) 
CALL colour(col) 
DO i=1, num_box 

CALL text(np_ptxx(i), np_ptxy(i), padn_text(i: i)) 
END DO 
DO i=1, noth 

CALL text(np_otxx(i), np_otxy(i), other_text(i)) 
END DO 

END 

SUBROUTINE fixparameters 

INCLUDE 'CHMCM3. INC' 

integer num_opt, disp_mol, chce, I, J, disp_min. param 
INTEGER*2 XPOS, YPOS 
LOGICAL exitf 

NUMLFX=O 
NUMAFX=O 
NUMTFX=O 
NUMMFX=O 
CONMIN = FALSE. 

DO I=1,4 
DO J=1, NU14ATS 

ATCONS(j, i) = . 
false. 

END DO 
END DO 

num_opt =6 
DISP_MOL =2 

CALL init_screen_area(DISP_MOL) 
CALL init_npad_data() 

CALL get_mol_screen_coords 
CALL draw_simple_stick_molecule 
CALL draw_atom_numbers(15) 
CALL init_nenu_data(num_opt) 

exitf = FALSE. 
DO WHILE(. NOT. exitf) 

CALL init_menu_data(num_opt) 
CALL display_fix_menu(num_opt) 
CHCE =0 
DO WHILE (CHCE. EQ. 0) 

call chms(xpos, ypos) 
call find_side_menu_select(xpos, ypos, chce, num_opt) 

END DO 

IF (CHCE. EQ. 1) THEN 
CALL ATOM-CONSTRAINT 
CONMIN = TRUE. 

ELSE IF (CHCE. EQ. 2) THEN 
CALL length_constraint 

CONMIN = TRUE. 
ELSE IF (CHCE. EQ. 3) THEN 

CALL angle-constraint 
CONMIN = TRUE. 

ELSE IF (CHCE. EQ. 4) THEN 
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CALL torsion_constraint 
CONMIN = TRUE. 

ELSE IF (CHCE. EQ. 5) THEN 
CALL molecule_constraint 
CONMIN = TRUE. 

ELSE 
EXITF = . TRUE. 

END IF 
END DO 

END 

SUBROUTINE INIT_CONSTRAINTS 

INCLUDE 'CHMCM3. inc' 

INTEGER I, J 

NUMLFX=O 
NUMAFX=O 
NUMTFX=O 
NUMMFX=O 
CONMIN = FALSE. 

DO I=1,4 
DO J=1, NUMATS 

ATCONS(j, i) = false. 
END DO 

END DO 

END 

SUBROUTINE FIND_SIDE_MENU_SELECT(XPOS, YPOS, CHCE, NUM_OPT) 

INCLUDE 'COMMMENU. INC' 

INTEGER CHCE, NUM_OPT, I 
INTEGER*2 XPOS, YPOS 

chce = -1 

DO I=1, NUM_OPT 
IF (XPOS. GT. MENU_OBXL(I). AND. 

1 XPOS. LT. MENU_OBXR(I). AND. 
2 YPOS. GT. MENU_OBYT(I). AND. 
3 YPOS. LT. MENU_OBYB(I)) THEN 

CHCE =I 
END IF 

END DO 

END 

SUBROUTINE ATOM-CONSTRAINT 

INCLUDE 'commgrap. inc' 

LOGICAL exitf 
INTEGER idum, ikon, ITOK, num_opt 
REAL severity 

num_opt 
ITOK =1 

exitf = FALSE. 

ikon = -1 
CALL CLEAR-MENU 
CALL set_font(chl2w9) 
CALL message(1, 'PICK ATOM TO FIX1,13) 
CALL FIND_ATOM_SELECT(ITOK, IKON, IDUM, IDIJM, IDUM) 
CALL message(1, 'PICK ATOM TO FIX', 0) 
CALL CLEAR_MENU 

CALL get_severity(severity) 
CALL enter_atom_constraint(ikon, severity) 

END 

SUBROUTINE FIND-ATOM-SELECT (ITOK, IKON, JKON, KKON, LKON) 

include 'chmcm3. inc' 
INTEGER IAT(4), ITOK, I, J, IKON, JKON, KKON, LKON, chce, num_opt 
INTEGER"2 XPOS, YPOS 

ikon =0 
num opt 
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do i=1,4 
iat(i) =0 

end do 

DO J=1, ITOK 
DO WHILE (IAT(j). EQ. O) 

CALL CHMS(XPOS, YPOS) 
DO I=1, NUMATS 

IF (XPOS. GT. (ISX(I) - 3). AND. 
1 XPOS. LT. (ISX(I) f 3). AND. 
2 YPOS. GT. (ISY(I) - 3). AND. 
3 YPOS. LT. (ISY(I) + 3)) THEN 

CALL mark_atom(I, 15) 
IAT(J) =I 

END IF 
END DO 

END DO 
END DO 

IKON = IAT(1) 
JKON = IAT(2) 
KKON = IAT(3) 
LKON = IAT(9) 

END 

SUBROUTINE enter_atom_constraint(ikon, severity) 

INTEGER ikon 
REAL severity 

INCLUDE 'chmcm3. inc' 

atcons(ikon, l) _ TRUE. 
C num-atm_fix = num_atm_fix +1 

fatxyz(ikon, 1) = xo(ikon, l) 
fatxyz(ikon, 2) = xo(ikon, 2) 
fatxyz(ikon. 31 = xo(ikon, 3) 
fatsev(ikon) = severity * atsfac 

END 

SUBROUTINE lengt(_constraint 

INCLUDE 'chmcm3. inc' 

INCLUDE 'commgrap. inc' 

LOGICAL exitf 
INTEGER idum, ikon, jkon, itok 
REAL fixed_val, severity 

itok =2 

ikon = -1 
exitf = FALSE. 

CALL CLEAR-MENU 
CALL message(1, 

'PICK ATOMS DEFINING FIXED LENGTH', 13) 
CALL find_atom_select(itok, ikon, jkon, idum, idum) 

CALL message(1, 
'PICK ATOMS DEFINING FIXED LENGTH', 0) 

CALL set_font(chl2w9) 
CALL message(1, 

'CHOOSE VALUE OF FIXED LENGTH', 13) 
CALL atom_distance(ikon, jkon, fixed_val) 

CALL number_pad(fixed_val, idum, l) 
CALL set_font(chl2w9) 
CALL message(1, 

'CHOOSE VALUE OF FIXED LENGTH', O) 

CALL get-severity(severity) 
CALL enter_length_constraint(ikon, jkon, 

fixed_val, severity) 
CALL mark_atom(ikon, 15) 
STOP 
CALL mark_atom(jkon, 12) 

END 

SUBROUTINE enter_length_constraint(ikon, jkon, fixed_vai, severity) 

INTEGER ikon. jkon 
REAL fixed_val, severity 
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INCLUDE Ichmcm3. inc- 

atcons(ikon, 2) = TRUE. 
atcons(jkon, 2) = TRUE. 

numlfx = numlfx +1 
klatml(numlfx) = ikon 
klatm2(numlfx) = jkon 
fixed_val = ABS(fixed_val) 
fixlen(numlfx) = fixed_val 

flnsev(numlfx) = severity 

END 

SUBROUTINE angle_constraint 

INCLUDE 'chmcm3. inc' 
INCLUDE 'commgrap. inc' 

LOGICAL exitf 
INTEGER idum, ikon, jkon, kkon, itok 
REAL fixed val, severity 

itok =3 
ikon = -1 
exitf = FALSE. 

CALL CLEAR-MENU 
CALL message(l, 

'PICK ATOMS DEFINING FIXED ANGLE', 13) 
CALL find_atom_select(itok, ikon, jkon, kkon, idum) 
CALL message(1, 

'PICK ATOMS DEFINING FIXED ANGLE', 0) 
CALL set_font(chl2w9) 
CALL message(1, 

'CHOOSE VALUE OF FIXED ANGLE', 0) 
CALL bond_angle(ikon, jkon, kkon, fixed_val) 

CALL number_pad(fixed_val, idum, 1) 
CALL set_font(chl2w9) 
CALL message(1, 

'CHOOSE VALUE OF FIXED ANGLE', 0) 
CALL get-severity(severity) 

CALL enter_angle_constraint(ikon, jkon, kkon, 
1 fixed_val, severity) 

END 

SUBROUTINE enter_angle_constraint(ikon, jkon, kkon, fixed_val, 
1 severity) 

INTEGER ikon, jkon, kkon 
REAL fixed_val, severity 

INCLUDE 'chmcm3. inc' 

atcons(ikon. 3) = TRUE. 
atcons(jkon, 3) _ TRUE. 
atcons(kkon, 3) _ TRUE. 
numafx = numafx +1 
kaatml(numafx) = ikon 
kaatm2(numafx) = jkon 
kaatm3(numafx) = kkon 
fixed_val = ABS(fixed_val) 
fixang(numafx) = fixed_val 
fansev(numafx) = severity * ansfac 

END 

SUBROUTINE torsion_constraint 

INCLUDE 'chmcm3. inc" 
INCLUDE 'commgrap. inc' 

LOGICAL exitf 
INTEGER idum, ikon, jkon, kkon, lkon, itok 
REAL fixed_val, severity 

itok =4 
ikon = -1 
exitf = FALSE. 

CALL CLEAR-MENU 
CALL message(l, 

'PICK ATOMS DEFINING FIXED TORSION ANGLE', 13) 
CALL find_atom_select(itok, ikon, jkon, kkon, lkon) 

CALL message(l, 
'PICK ATOMS DEFINING FIXED TORSION ANGLE-, O) 

CALL set_font(ch12w9) 
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CALL message(1, 
1 'CHOOSE FIXED VALUE OF TORSION ANGLE', 13) 

CALL torsion_angle(ikon, jkon, kkon, lkon, fixed_val) 
CALL numberpad(fixed_val, idum, 1) 
CALL set_font(chl2w9) 
CALL message(1, 

1 'CHOOSE FIXED VALUE OF TORSION ANGLE', O) 
CALL get_severity(severity) 

CALL 
enter_torsion_constraint(ikon, jkon, kkon, lkon, 

1 fixed val, severity) 

END 

SUBROUTINE enter_torsion_constraint(ikon, jkon, kkon, ikon, 
1 fixed_val, severity) 

INTEGER ikon, jkon, kkon, ikon 
REAL fixed_val, severity 

INCLUDE "chmcm3. inc, 

atcons(ikon, 4) = TRUE. 
atcons(jkon, 4) = TRUE. 
atcons(kkon, 4) _ TRUE. 
atcons(lkon, 4) = TRUE. 
numtfx = numtfx +1 
ktatml(numtfx) = ikon 
ktatm2(numtfx) = jkon 
ktatm3(numtfx) = kkon 
ktatm4(numtfx) = Ikon 
fixtor(numtfx) = fixed_val 
ftosev(numtfx) = severity * TOSFAC 

END 

SUBROUTINE molecule_constraint 

INCLUDE 'comingrap. inc' 
INCLUDE 'chmcm3. inc' 

LOGICAL exitf 
INTEGER idum, ikon, itok 

itok =1 

ikon = -1 
CALL CLEAR-MENU 
CALL message(i, 

'PICK ANY ATOM IN MOLECULE TO FIX', 13) 
CALL find_atom_select(itok, ikon, idum, idum, idum) 
CALL message(1, 

1 'PICK ANY ATOM IN MOLECULE TO FIX', 0) 

CALL enter_molecule_constraint(moinum(ikon)) 

END 

SUBROUTINE enter_moolecule_constraint(imol) 

INTEGER"1 imol 

INCLUDE 'commgrap. incl 
INCLUDE 'chmcm3. inc' 

nummfx = nummfx +1 
kmol(nwmnfx) = imol 

END 

SUBROUTINE atom_distance(i, j, dist) 

INTEGER i, j 
REAL dist 

INCLUDE 'cluacm3. incl 

REAL dirl, dir2, dir3, dist2 

dirt = xo(i, 1) - xo(j, 1) 
dirt = xo(i, 2) - xo(j, 2) 
dir3 = xo(i, 3) - xo(j, 3) 
dist2 = (dirl ** 2) + (dirt ** 2) + (dir3 ** 2) 
dist = SQRT(dist2) 

END 
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SUBROUTINE bondangle(i, j, l, bangl) 

INTEGER i, j, 1 
REAL bangs 

INCLUDE 'chmcm3. inc' 

REAL xb, yb, zb, dcll, dcl2, dc21, dc22, dc31, dc32, rm1, rm2, r12, cosa, 
1 res 

C 
C -- CALCULATE BOND ANGLE -- 
C 

xb = xo(j, 1) 
yb = xo(j, 2) 
zb = xo(j, 3) 
dcli = xo(i, l) - xb 
dc12 = xo(1,1) - xb 
dc21 = xo(i, 2) - yb 
dc22 = xo(1,2) - yb 
dc31 = xo(i, 3) - zb 
dc32 = xo(1,3) - zb 
rml = ((dcll * dcii) + (dc2l * dc2l)) + (dc31 * dc31) 
rm2 = ((dc12 * dcl2) + (dc22 * dc22)) + (dc32 * dc32) 
r12 = ((dcll * dcl2) + (dc2l * dc22)) + (dc3l * dc32) 
rml = SQRT(rml) 
rm2 = SQRT(rm2) 
res = r12 / (rml * rm2) 
cosa = SIGN(MIN(AHS(res), 1.0), res) 
bangs = ACOS(cosa) * radi 

END 

SUBROUTINE torsion angle(i, j, l, m, tangl) 

INTEGER i, j, l, in 
REAL tangl 

INCLUDE 'chmcm3. inc' 

REAL xj, yj, zj, xl, yl, zl, aall, aal2, aal3. aa21, aa22, aa23, ta_sign, 
1 aa31, aa32, aa33, v11, v12, v21, v22, v13, v23, rl, r2, dotpr, cosw 

C 
C -- CALCULATE TORSION ANGLE -- 
C 

xj = xo(j, 1) 
yj = xo(j, 2) 
zj = xo(j, 3) 
xi = xo(1,1) 
Y1 = xo(1,2) 
zl = xo(1,3) 
aall = xo(i, 1) - xi 
aalt = x1 - xi 
aa13 = x1 - xo(m, i) 
aa21 = xo(i, 2) - yj 
aa22 = yl - yj 
aa23 = yl - xo(m. 2) 
aa31 = xo(i. 3) - zj 
aa32 = zi - zj 
aa33 = zi - xo(m. 3) 
V11 = (aa21 * aa32) - (aa3i * aa22) 
v21 = (aa22 * aa33) - (aa32 * aa23) 
v12 = (aa31 * aalt) - (aalt * aa32) 
v22 = (aa32 * aa13) - (aa12 * aa33) 
v13 = (aall * aa22) - (aa2l * aalt) 
v23 = (aal2 * aa23) - (aa22 * aa13) 
ri = SQRT(((vll * v11) + (v12 * v12)) + (v13 * v13)) 
r2 = SQRT(((v21 * v21) + (v22 * v22)) + (v23 * v23)) 
dotpr = (((vil / rl) * (v21 / r2)) + 

((v12 / ri) * (v22 / r2))) + 
2 ((v13 / ri) * (v23 / r2)) 

cosw = SIGN (MIN (ABS (dotpr), 1.0), dotpr) 
tangl = ACOS(cosw) * RADI 

C 
C -- CALCULATE CORRECT SIGN FOR TORSION ANGLE -- 
C 

ta_sign = ((aall * ((aa22 * aa33) - (aa23 * aa32))) - 
(aa2l * ((aal2 * aa33) - (aal3 * aa32)))) + 

2 (aa31 * ((aa12 * aa23) - (aa13 * aa22))) 
tangl = SIGN(tangl, ta_sign) 

END 

SUBROUTINE get_severity(severity) 

REAL severity 

INCLUDE 'commgrap. inc' 
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INTEGER idum 

CALL set_font(chl2w9) 

CALL message(1, 'CHOOSE SEVERITY OF CONSTRAINT1,13) 
CALL number-pad(severity, idum, 0) 
IF (severity LT. 10.0) THEN 

severity = 10.0 
ELSE IF (severity GT. 3000.0) THEN 

severity = 3000.0 
END IF 
CALL set_font(chl2w9) 
CALL message(1, 'CHOOSE SEVERITY OF CONSTRAINT', 0) 

END 

SUBROUTINE fi11_circle (xl, yl, x2, y2) 

INCLUDE 'fgraph. FD' 

INTEGER*2 dummy 
INTEGER xl, yl, x2, y2 

dummy = ellipse($GFILLINTERIOR, xl, yl, x2, y2) 

END 

SUBROUTINE mark_atom(atm_num, c_colour) 

INCLUDE 'chmcm3. inc' 

INTEGER atm_num, xl, yl, x2, y2, c_colour, i 

xl = isx(atm_num) -3 
yl = isy(atm_num) -3 
x2 = isx(atm_num) +3 
y2 = isy(atm_num) +3 

CALL xorstyle 

call colour(c_colour) 

call fill_circle(xl, yl. x2, y2) 

CALL presetstyle 

END 

SUBROUTINE CLEAR-MENU 

INCLUDE 'COMMGRAP. INC' 

CALL COLOUR(O) 

CALL FILL_BOX (0 - MENU_SPACEX, O, 
O, MENU_SPACEY) 

END 

SUBROUTINE GRAPHICSMODE() 

INCLUDE 'FGRAPH. FD' 

INTEGER '2 MODESTATUS 

C SET VIDEOMODE TO MAXRESOLUTION 

MODESTATUS = SETVIDEOMODE($MAXRESMODE) 
IF (MODESTATUS. EQ. O) STOP 'ERROR 

CANNOT SET GRAPHICS MODE' 

CALL CLEARSCREEN($CCLEARSCREEN) 

END 

SUBROUTINE ENDGRAPHICS() 

INCLUDE 'FGRAPH. FD' 

INTEGER -2 MODESTATUS 

MODESTATUS = SETVIDEOMODE($DEFAULTMODE) 

END 
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SUBROUTINE MOUSE 

INCLUDE 'c: \1esley\MOUSE. FD' 
INCLUDE 'FGRAPH. FD' 

INTEGER START 
INTEGER*2 BUTTONS 

CALL COLOUR(7) 
START = INITIALISEMOUSE(BUTTONS) 

IF (START. EQ. O) THEN 
CALL ENDGRAPHICSO 
WRITE(*, *) 'MOUSE DRIVER NOT INSTALLED' 

END IF 

CALL SHOWMOUSECURSOR() 

END 

SUBROUTINE set_font(type) 

INCLUDE 'FGRAPH. FD' 

INTEGER *2 STATUS 

INTEGER type 

C SET FONTS 

IF (type. eq. 1) THEN 
STATUS = SETFONT("T'COURIER'"//'h12w9b') 

ELSE IF (type. eq. 2) THEN 
STATUS = SETFONT("T'COURIER "//'h15W12b') 

ELSE 
STATUS = SETFONT("T'COURIER'"//'h10w8b') 

END IF 

IF (STATUS. LT. O) THEN 
STOP 'ERROR: CANNOT SET FONT' 

END IF 

END 

SUBROUTINE register-fonts 

INCLUDE 'FGRAPH. FD' 

INTEGER *2 DUMMY 

INTEGER type 

C SET FONTS 

DUMMY = REGISTERFONTS('C: \MSF\LIB\*. FON') 

IF (DUMMY. LT. O) THEN 
STOP 'ERROR: CANNOT FIND FONT FILES' 

END IF 

END 

SUBROUTINE text_info(textwd, textht) 

INCLUDE fgraph. fd' 

RECORD /fontinfo/myfont 

INTEGER*2 status 
INTEGER textwd, textht 

status = GETFONTINFO(myfont) 

IF (STATUS. NE. O) THEN 

STOP 'ERROR: CANNOT FIND FONT CHARACTERISTICS' 
END IF 

textht a myfont. pixheight 
textwd = myfont. pixwidth 

write(10, *) textwd, textht 

END 

SUBROUTINE get_screen_coords (maxx, maxy) 

INTEGER maxx, maxy 
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INCLUDE 'FCRAPH. FD' 

RECORD/VIDEOCONFIG/MYSCREEN 

CALL GETVIDEOCONFIG(MYSCREEN) 

MAXX = MYSCREEN. NUMXPIXELS -1 
MAXY = MYSCREEN. NUMYPIXELS -1 

END 

SUBROUTINE convert-to viewport_coords(XPOS, YPOS) 

INTEGER*2 XPOS, YPOS 

INCLUDE 'FCRAPH. FD' 

RECORD /XYCOORD/viewport 

CALL getviewcoord(XPOS, YPOS, viewport) 

XPOS = viewport. xcoord 
YPOS = viewport. ycoord 

END 

SUBROUTINE init_screen_area(screen_type) 

INCLUDE 'commgrap. inc' 

INTEGER txtwd, txtht, xtp, ytp, screen_type 

CALL get_screen_coords(xtp, ytp) 

C set message area at top of screen 

CALL set_font(chl2w9) 
CALL text_info(txtwd, txtht) 

message_spacey a ((no_of_messages*txtht) + 
1 ((no_of_messages - 1) * txtht/2)) 

C Set menu area at side of screen 

IF (screen_type. eq. 2) THEN 
menu_spacex = (MAX_LENGTH_MENU_STRING"txtwd) + 

1 txtwd 
ELSE 

call set_font(chl5wl2) 
CALL text_info(txtwd, txtht) 
menu_spacex = (7 * txtwd) + txtwd 

END IF 

menu_spacey = ytp - message_spacey 

C set display area 

CALL set_display_area(menu_spacex, message_spacey) 

C calculate centre coordiantes of display area 

viewport_xspace = xtp - menu_spacex 
viewport_yspace = ytp - message_spacey 

x_viewport_cent = (viewport_xspace)/2 
y_viewport_cent - (viewport_yspace)/2 

END 

SUBROUTINE set_display_area(xshift, yshift) 

include 'FGRAPH. FD' 

INTEGER xshift, yshift 

RECORD /xycoord/org 

CALL setvieworg(xshift, yshift, org) 

END 

SUBROUTINE MESSAGE (ROW, STRING, TEXT_COLOUR) 

INCLUDE 'commgrap. incl 

INTEGER row, mposx, mposy, text colour, txtwd, txtht, xtp, ytp, 
1 cent re-pi xel, length, length_pixeIs, centre_string 
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CHARACTER*(*) string 

IF (ROW. GT. no_of_messages) THEN 
STOP 'ERROR: NO SPACE FOR MESSAGE' 

END IF 

CALL text_info (txtwd, txtht) 

MESPOSY =0- message_spacey + (row * (txtht + txtht/2)) 

IF (row. eq. 0) THEN 
CALL get_screen_coords(xtp, ytp) 

centre-pixel = INT((xtp + 1)/2) 
length - LEN_TRIM(string) 
length-pixels = length * txtwd 
centre_string - INT(length_pixels/2) 

ELSE 
MESPOSX =0- menu_spacex + centre_pixel - centre_string 

MESPOSX =0- menu_spacex 
END IF 

call colour (TEXT_COLOUR) 
call text (mesposx, mesposy, string) 

END 

SUBROUTINE iniC menu_data(num_opt) 

INCLUDE 'commgrap. inc' 
INCLUDE 'commmenu. inc' 

INTEGER textwd, textht, text_spacey, free_spacey, 
1 free_spacey2, tlen, nuxnopt, 
2 total_length_text, length_half_text, 
3 free_spacex, free_spacex2, i 

CRARACTER"20 menu-text(20) 

CALL set_font(chl2w9) 
CALL text-info (textwd, textht) 

text_spacey = num_opt * textht 
free_spacey = (menu_spacey - text_spacey)/ 

num_opt +1 
free_spacey = MIN(free_spacey, (3 * (textht/2))) 
free_spacey2 = free_spacey/3 

tlen = LEN(menu_text(1)) 
total_length_text = tlen * textwd 
length_half_text = total-length-text/2 

free_spacex = (menu_spacex - total_length_text)/2 
free_spacex2 = free_spacex/3 

DO I=1, num_opt 
xpos_text(i) _ (0 - menu_spacex) + free_spacex 
ypos_text(i) = (((I-1) * (textht + free_spacey)) + 

free_spacey) 
menu_obxl(i) = xpos_text(i) - free_spacex2 
menu_obxr(i) = menu_obxl(i) + (length-half-text + 

free_spacex2) *2 
menu_obyt(i) = ypos_text(i) - free_spacey2 
menu_obyb(i) = menu_obyt(i) + (textht/2 + 

free_spacey2) *2 

middle_text(i) = xpos_text(i) + length-half-text 
END DO 

END 

SUBROUTINE display_fix_menu(num_opt) 

INTEGER num_opt 
CHARACTER*20 menu_text(20) 

menu-text(l) = 'FIX ATOM' 
menu-text(2) _ 'FIX DISTANCE' 

menu-text(3) _ 'FIX VALENCE ANGLE' 

menu-text(4) _ 'FIX TORSION ANGLE, 

menu-text(S) - 'FIX MOLECULE' 

menu-text(6) = 'DONE' 

CALL draw_nenu(num_opt, menu_text) 

END 

SUBROUTINE draw menu(num_opt, menu_text) 
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INCLUDE 'commmenu. inc' 
INCLUDE 'commgrap. inc' 

INTEGER num opt, len, len2, textwd, textht, len2 pixels 
CHARACTER*(*) menu_text(*) 

DO I=1, num_opt 
IF (menu_text(i). EQ. 'DONE') THEN 

CALL COLOUR(done_box_colour) 
ELSE 

CALL colour(box_menu_colour) 
END IF 
CALL BOX(menu_obxl(i), menu_obyt(i), 

1 menu_obxr(i). menu_obyb(i)) 

IF (menu_text(i). EQ. 'DONE') THEN 
CALL COLOUR(done_text_colour) 

ELSE 
CALL colour(text_menu_colour) 

END IF 

c calculate start position of centralised text 

len = LEN_TRIM(menu_text(1)) 
lent = len/2 

call text_info(textwd, textht) 
lent pixels = lent * textwd 
xpos_text(i) = middle-text(i) - lent pixels 
CALL TEXT(xpos_text(i), ypos_text(i). menu_text(i)) 

END DO 

END 

SUBROUTINE get_mol_screen. coords 

INCLUDE chmcm3. jnc, 

INCLUDE "commgrap. inc" 

REAL xcent, ycent 
COMMON /SCCDCN/ xcent, ycent 

REAL xleft, xright, ylow, yhigh, xt, yt, 
1 xsize, ysize, rxl, rxr, ryl, ryh, rzf, rzb, size_mean, 
2 xot, yot 

INTEGER i, iatomxl, iatomxr, iatomyl, iatomyh 

DO i=1, numats 
xt = xo(i, 1) 
yt = xo(i. 2) 
IF (xt LT. xleft) THEN 

xleft = xt 
iatnmxl =i 

END IF 
IF (xt GT. xright) THEN 

xright = xt 
iatomxr =i 

END IF 
IF (yt LT. ylow) then 

glow = yt 
iatomyl -i 

END IF 
IF (yt GT. yhigh) THEN 

yhigh = yt 
iatomyh ai 

END IF 
END DO 
xsize = xright - xleft + 0.2 
ysize = yhigh - ylow + 0.2 
xcent = xleft + (xsize / 2.0) 
ycent = glow + (ysize / 2.0) 

size_mean = (xsize * xsize) + (ysize * ysize) 
size_mean = SQRT(size_mean) 
IF (size mean GT. 0.001) THEN 

scale_ang_screen = FLOAT(MIN(viewport_xspace, 
1 viewportyspace))/size_mean 

ELSE 
scale_ang_screen = 0.0 

END IF 
C 
C -- CALCULATE SCREEN COORDINATES AFTER CENTERING MOLECULE ON ORIGIN 

C -- OF USER COORDINATES. -- 
C 

DO i=1, numats 
xot = xo(i, 1) - xcent 
yot = xo(i, 2) - ycent 
zot = xo(i, 3) - zcent 
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isx(i) = INT(xot * scale_ang_screen) + x_viewport_cent 
isy(i) = INT(yot * scale_ang_screen) + y_viewport_cent 

END DO 

END 

SUBROUTINE draw_simple_stick_molecule 

INCLUDE 'chmcm3. inc' 
INCLUDE 'commgrap. inc' 
INCLUDE 'fgraph. FD' 

INTEGER bnd_cnt, point(6), idelx, idely, iacol, colour_atom 
LOGICAL drawf, hydro 

CALL CLEARSCREEN($GCLEARSCREEN) 
hydro = TRUE. 

CALL init_atom colours 

DO i=1, numats 
IF (atynum(i) GT. MAXTYP) THEN 

CONTINUE 
ELSE IF ((. NOT. hydro) AND. 

(atynum(i) LE. Hh)) THEN 
CONTINUE 

ELSE 
bnd_cnt =0 

DO j=1, MXCN 
drawf = FALSE. 
iconnij = atmcon(i, j) 
IF (iconnij EQ. 0) THEN 

bnd_cnt = bnd_cnt +1 
ELSE IF ((. NOT. hydro) AND. 

(atynum(iconnij) LE. Hh)) THEN 
bnd_cnt = bnd_cnt +1 

ELSE IF (iconnij GT. i) THEN 
drawf = TRUE. 

END IF 
IF (drawf) THEN 

idelx = isx(iconnij) - iex(i) 
idely = isy(iconnij) - isy(i) 
point(1)=isx(i) 
point(2)=isy(i) 
point(3)=isx(i) + (idelx / 2) 
point(4)=isy(i) + (idely / 2) 
point(5)=isx(iconnij) 
point(6)=isy(iconnij) 

iacol = colour_atom(atynum(i)) 
CALL colour(iacol) 

CALL draw-line (point(1)) 

iacol = colour_atom(atynum(iconnij)) 
CALL colour(iacol) 

CALL draw-line (point(3)) 
END IF 

END DO 
C IF (bnd_cnt EQ. MXCN) THEN 
C CALL get_z_int(isz(i), ibint) 
C CALL setfcr(atom_color(atynum(i), ibint)) 
C CALL filcir(isx(i), isy(i), 
C1 INT(MAX(4.0,0.1 * scale_ang screen)) 
C END IF 

END IF 
END DO 

END 

SUBROUTINE draw_atom__numbers(col) 

INCLUDE 'chmcm3. inc' 
INCLUDE 'commgrap. inc' 
CHARACTER"2 atom-number 
INTEGER textwd, textht, i, col, posx_atom_number, 

posy-atom-number 

CALL set_font(chl2w9) 

CALL text_info(textwd, textht) 

DO I=1, NUMATS 

posx_atom_number = isx(i) - textwd - (textwd/2) 

posy-atom-number = isy(i) 
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WRITE(atom_number,, (I2), ) I 
CALL colour(col) 
CALL text (posx_atom_number, posy_atom_number, 

atom_number) 
END DO 

END 

SUBROUTINE init_atom_colours 

INCLUDE 'chmcm3. inc' 
INCLUDE 'commgrap. inc' 

DO I=1, MAXTYP 
IF ((I. EQ. H). OR. (I. EQ. Har). OR. (I. EQ. Hh)) THEN 

atom-colours(I) = 15 
ELSE IF ((I. EQ. Csp3). OR. (I. EQ. Csp2). OR. (I. EQ. Car)) THEN 

atom_colours(I) =2 
ELSE IF ((I. EQ. Nsp). OR. (I. EQ. Namide). OR. (I. EQ. Ncation). OR. 

1 (I. EQ. Nar)) THEN 
atom_colours(I) =9 

ELSE IF ((I. EQ. Osp3). OR. (I. EQ. Osp2). OR. (I. EQ. Oanion)) THEN 
atom_colours(I) = 12 

ELSE IF ((I. EQ. F). OR. (I. EQ. C1). OR. (I. EQ. Br). OR. 
1 (I. EQ. Iod)) THEN 

atom_colours(I) = 11 
ELSE IF (I. EQ. Piii) THEN 

atom_colours(I) = 13 
ELSE IF ((I. EQ. Sii). OR. (I. EQ. Siii)) THEN 

atom-colours(I) = 14 
ELSE IF ((I. EQ. Mg2). OR. (I. EQ. Ca2). OR. (I. EQ. Ba2). OR. 

1 (I. EQ. Fe2). OR. (I. EQ. Fe3). OR. (I. EQ. Cul). OR. 
2 (I. EQ. Cu2). OR. (I. EQ. MET). OR. (I. EQ. MET1)) THEN 

atom_colours(I) =8 
ELSE 

atom_colours(I) =6 
END IF 

END DO 

END 

INTEGER FUNCTION colour_atom(atom_type_num) 

INCLUDE 'chmcm3. inc' 

BYTE atom_type_num 

colour-atom = atom_colours(atom_type_num) 

END 
RETURN 

SUBROUTINE draw_line(points) 

INCLUDE 'FGRAPH. FD' 

RECORD /xycoord/xy 

INTEGER*2 status 
INTEGER points(4) 

CALL moveto(points(1), points(2), xy) 
status = lineto(points(3), points(4)) 

END 

SUBROUTINE BOX(xl, yl, x2, y2) 

INTEGER x1, y1, x2, y2 

INCLUDE 'FGRAPH. FD' 

INTEGER *2 STATUS 

C DRAWBOX 

STATUS = RECTANGLE($GBORDER, x1, yl, x2, y2) 

END 

SUBROUTINE FILL_BOX(x1, yl, x2, y2) 

INTEGER xl, yl, x2, y2 

INCLUDE 'FGRAPH. FD' 

INTEGER *2 STATUS 
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C DRAWBOX 

STATUS = RECTANGLE($GFILLINTERIOR, x1, y1, x2, y2) 

END 

SUBROUTINE TEXT(XCOORD, YCOORD, STRING) 

INCLUDE 'FGRAPH. FD' 

RECORD/XYCOORD/XY 
INTEGER XCOORD, YCOORD 
CHARACTER*(*) STRING 

CALL MOVETO(XCOORD, YCOORD, XY) 
CALL OUTGTEXT(STRING) 

END 

C ****SET COLOUR**** 

SUBROUTINE COLOUR(C) 

INCLUDE 'FGRAPH. FD' 

INTEGER C 
INTEGER*2 PICK 

PICK = SETCOLOR(C) 

IF (PICK. EQ. -1) THEN 
STOP ERROR: CPNNOT SET COLOUR' 

END IF 

END 

SUBROUTINE XORSTYLE 

IMPLICIT NONE 

INCLUDE FGRAPH. FD' 

INTEGER*2 STYLE 
STYLE = SETWRITEMODE($GXOR) 

IF (STYLE. EQ. -l) THEN 
STOP ERROR: CANNOT SET WRITEMODE' 

END IF 

END 

SUBROUTINE PRESETSTYLE 

INCLUDE 'FGRAPH. FD' 

INTEGER*2 STYLE 
STYLE = SETWRITEMODE($GPSET) 

IF (STYLE. EQ. -I) THEN 
STOP 'ERROR: CANNOT SET WRITEMODE' 

END IF 

END 
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FIGURE 1. Switch Board 

FIGURE 2. Dual Link Adapter Board 
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FIGURE 3. Token Passing Test Circuit 
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FIGURE 4. FIFO Clocking Test Circuit 
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FIGURE 5. Control Processor Board 

FIGURE 6. PC plug-in card to emulate node 
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FIGURE 7. Graphical interface allowing connections between nodes 

FIGURE S. Graphical Interface showing connections between nodes 
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FIGURE 9. Initial Screen of minimiser 

FIGURE 10. Number Pad allowing user to enter number of iterations 
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FIGURE 11. Screen allowing user to fix parameters 

FIGURE 12. Selecting a fixed length 
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FIGURE 13. Entering severity of constraint 
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A circuit switched network for Inmos OSLinks 
Lesley Bissland and David N. J. White 
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Abstract. Inter-processor communication paradigms are crucial factors 
in parallel computer system performance. An efficient circuit switching 
mechanism allowing dynamic-on-demand allocation of physical links 
between processing nodes is described. This cost-effective, memory- 
mapped system sends connection requests via an INMOS OSLink to a 
control processor which programs a crossbar switch. By setting up 
point-to-point direct physical links between nodes this allows every 
node to communicate directly with every other node of a parallel 
computer. 

1.0 Introduction 

The passing of messages between nodes is potentially the dominant component in the 
performance of multiprocessor architectures. If the communication mechanism cannot support 
the speed of the nodes then the full potential of a multiprocessor architecture is not realised. 
This has led to research into the development of better routing algorithms, hardware routers, 
and interconnection networks which all hope to provide high-bandwidth interprocessor 

communication resilient to failures, bottlenecks and deadlock. 
There are three methods of interprocessor communication [I]: packet switching, circuit 

switching and packet switching through circuit switching. Any method which utilises packet 
switching usually relies on dedicated software on each node to manage the passing of the 
packets. INMOS provide software for the T-800 transputer which supports virtual channel 
routing (a packet switching scheme). Since additional software is required on each node to 
support the packet switching this uses up some of the computational power of the node and also 
introduces a large message latency. Obviously the longer the message the larger the message 
latency, therefore for systems where large volumes of data are transferred it is more efficient to 
use a circuit switching mechanism. 

Circuit switching mechanisms establish a dedicated communication link between the two 
communicating nodes. This link is maintained until the complete message has been transmitted 
from the source node to the destination node. No dedicated communication software is required 
on each node, only on the control node which is setting up the communication links. The 
dedicated communication link can be set up before the execution of a program or dynamically 

on demand during the program run time. 
A control processor programs a crossbar switch to set up the connections between nodes. To 

enable connections to be established during program run-time the nodes send connection 
requests to the control processor. In order to reduce the message latency an efficient and fast 

mechanism must be used to interface the nodes to the control processor. 



Tudruj and Kalinowski [1] described a method whereby the nodes sent connection requests 
to a control transputer via a TRANSBUS [2]. The TRANSBUS is an application specific 
integrated circuit (ASIC) which acts as an interface between the node and the serial bus 
connected to the control processor. The ASIC is not commercially available and this restricts 
its use in systems other than [1]. Also one of the data links on the node provides the serial bus 
to the control transputer. In the case of the transputer this means that only three links are 
available for internode data transfers. This does not make good use of the total available 
bandwidth available from a transputer. 

The dynamic-on-demand circuit switched network described in this paper employs the 
same principle as in [1] but instead of using an ASIC (i. e. TRANSBUS) several commonly 
available integrated circuits (ICs) are utilised to interface the nodes with the control processor. 
Connection requests from the nodes are sent via a memory mapped system which leaves all the 
links on the nodes free for interprocessor communication. The nodes are not restricted to 
transputers, the system can be used with any processor which provides an external memory 
interface. The control processor used is twice as fast as a T222 transputer. 

2.0 Dynamic Interconnection Network 

2.1 Basic Procedure 

When a node (the source node) wants to communicate with an another node (the destination 
node) via the crossbar switch, it writes its connection request (a three byte packet) into a FIFO 
(First In First Out Memory), which stores the request until it is honoured. To select nodes for 
servicing a token passing protocol is used. The token circulates between the nodes and when a 
node receives the token and there is a request pending, the request is passed out of the FIFO to 
the control processor, via an INMOS OSLink. The control processor then decides whether the 
required connection is available and if so makes the connection. A message indicating success 
or failure to make the connection is sent to the source node. In this way the control processor 
processes connection requests from the nodes in a sequential manner. 

2.2 Hardware subsystem 

A diagram of the hardware is illustrated in Figure 1. A node requiring service writes its 
connection request into the First In First Out Memory (FIFO), which is mapped into the nodes 
memory address space. This allows the node to continue with other tasks while its connection 
request remains stored in the FIFO until honoured. When a node receives the token, its request 
is clocked out of the FIFO into a C011 Link Adapter [3]. The data is then transferred via the 
INMOS OSLink to the control processor which programs the crossbar switch. Access to the 
link is gated by a buffer ('125) which is only enabled when the node has the token and there is 

a request pending. 

2.3 Token Passing 

The token passing is achieved by a finite state machine (SM) implemented in PLDs 
(Programmable Logic Device). A state machine has a set of states and a set of transition rules 
for moving between the states at each clock edge (the clock is derived externally). The 
transition rules depend on the both the present state and on the particular combination of input 
levels present at the next clock edge. 

The token passing bus consists of two lines: one which passes the token and one which 
acknowledges the passing of the token (See Figure 2). The state variables are TokenOut and 
AckOut, and the inputs are Tokenin, AckIn, and HoldToken. The token is effectively a bit 



which passes between the PLDs and each node has a PLD associated with it. The clock used 
for the token passing is 8Mliz 
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FIGURE 2. Token Passing 

If a node receives the token and there is a request packet in the FIFO, then the token must be 

retained until the FIFO has been emptied and the node no longer requires the token. This is 

achieved by the IloldToken signal, which is generated by using a combination of the 



Empty_Flag* (EF*) signal from the FIFO (logic false (+5V) when the FIFO contains bytes), 
and a D-type flip-flop (See Figure 3). 
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FIGURE 3. Generation of IloldToken signal 

The Q-output of the flip-flop is used as the HoldToken signal. The EF* signal clocks the 
flip-flop: therefore when EF* becomes logic false (+5V) indicating data is in the FIFO, the 
level at the D-input (logic high (+5V)) is transferred to the Q-output of the flip-flop. To release 
the token, the node pulls the CLR* signal on the flip-flop logic low (0V) for a short period, 
which clears the Q-output back to logic low releasing the token. 

A state diagram for the token passing state machine is shown in Figure 4. The SM remains 
in state zero (SO) until the token arrives (i. e Tokenln = 1) and then on the next clock edge 
proceeds to state one (S 1) which acknowledges the arrival of the token by setting AckOut true. 
If IloldToken is true then the state machine remains in state one (Si), otherwise on the next 
clock edge it proceeds to state two (S2) which passes the token on by setting TokenOut logic 
true. The SM does not go back to state one until the passing of the token has been 
acknowledged (Ackln = 1). To inject the token into the system one state machine is 
programmed with the initial state holding TokenOut true (i. e the initial state is S2). 

2.4 FIFO Access 

The connection request in the FIFO must be clocked out byte at a time to the COI I and then 
sent to the control processor. This is also achieved by a finite state machine (See Figure 5). The 
state machine controls the RD* (read) signal on the FIFO and the lAck and IValid signals on 
the CC11. Pulling the RD* signal low transfers a byte out of the FIFO to the COI 1 parallel port. 
In order to transmit the byte from the parallel port to the INMOS OSLink, IValid is pulled 
high. To indicate the byte has been transferred successfully IAck is pulled high by the COII 
and then IValid returned low by the SM. 

The Empty_Flag* on the FIFO signals to the state machine when data is present in the 
FIFO, and an output called TokenArrived from the token passing state machine indicates when 
the token is present. The state machine waits at SO while the FIFO is empty or the token has 



not arrived. When the token arrives and there is data in the FIFO the SM then proceeds to Si 
on the next clock edge and this initiates a read cycle on the FIFO. On the next clock edge the 
SM then unconditionally jumps to S2 which takes IValid true and enables the buffer ('125) that 
restricts access to the serial bus. The SM then waits for lAck to become true, indicating the 
transfer of a byte to the INMOS OSLink, before proceeding back to SO. 

The FIFO clocking and Token passing state machines can be implemented in the same PLD 
and therefore can both use the same clock. Using terminated coax wires to connect the clock 
inputs on the PLDs together, it would be possible to run the token passing and FIFO clocking 
at 40 Mliz. 
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To summarise the steps required to communicate with the control processor a schematic 
representation is shown in Figure 6. 
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FIGURE 6. Schematic Representation 
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The function of the control processor is to receive the connection requests from the nodes and 
then program the required connections on the crossbar switch. The processor used is an Analog 
devices ADSP-2105 [4). This is used instead of a transputer as it achieves higher performance 
(at least twice as fast as a T222 transputer) at much lower cost. 

3.1 ADSP -2105 

The ADSP-2105 is a 12MHIz microcomputer suitable for high-speed numeric processing 
applications (higher speed versions are available). It contains 1K words of on-chip program 
memory RAM and 512 words of on-chip data memory RAM. The internal program memory 
can be automatically booted upon reset from an EPROM. 

3.2 Software considerations 

When the source node decides it wants to communicate with the destination node, the system 
level software on the source node scans the links on the node for a free link to communicate 
with the destination node. Once a free link is found the source node sends its connection 
request (consisting of three bytes) to the control processor (See Figure 7). The first byte 

contains the address of the source node and the second byte contains the link number on the 
source node. The third byte holds the address of the destination node. This protocol can be 

expanded for more processors by using two bytes for the addresses of the source and 
destination processors. 

0 ................................ 
7 012 3456 7 0................................ 7 

Address of Address of 
source node destination node 

No of link 
on source 
node 

FIGURE 7. Connection request sent by node 

The control processor has a table in memory which contains the connections from the nodes 
to the crossbar switch and a flag to indicate whether the connection is already in use (See 
Figure 8). When a connection request is received the control processor scans the table to find 

the link on the crossbar switch that the source node is connected to. It then scans the table 



looking for a free link on the destination node and if one is free makes the connection on the 
crossbar switch which connects the source node to the destination node. The flags in the 
connection table are then updated and an acknowledge is returned to the source node. 

ARRAYS 

Node No. [32] Link No Link No Connection [32] 
On Node [32] On Crossbar [32] 

L 
Used/Unused 

o o 10 1 
0 1 25 0 
0 2 12 0 
0 3 30 1 
1 0 8 1 

FIGURE 8. Connection Table in Control Processor 

The format of the acknowledge byte is shown in Figure 9. The link number of the 
destination node is sent in order to allow the source node to make disconnection requests 
(more on this later). If the value of the byte returned is greater than the number of links on the 
destination node (i. e greater then four for a transputer), this signifies to the source node that the 
connection could not be established. The byte is returned via an octal bus transceiver rather 
than the FIFO as only one byte is returned to the requesting node. Data from the source node to 
the control processor is therefore transferred via the FIFO and data is returned to the source 
node via an octal bus transceiver. 

0 ............................ 
2 3................................. 7 

Link No. on 
destination node 

FIGURE 9. Acknowledge Byte returned to source node 

Once a node receives a message indicating its connection request has been honoured it is 
free to send data via the crossbar switch to the destination node. The source node knows when 
the message has been successfully received by the destination node due to the link 
acknowledge protocol used by INMOS OSLinks. When the data has been completely 
transferred then the connection can be broken. The format of the disconnection request made 
by the source node is shown in Figure 10. 

0 ................................ 7 012345670................................ 7 
I Address of Address of 

source node destination node 

No of link 
on source 
node 

No of link 
on destination 
node 

FIGURE 10. Disconnection Request 



The message is basically the same as a connection request, except that the number of the 
link on the destination node is sent as well. The reason for this is that in the case where two 
nodes are connected by two or more links then the link numbers need to be specified in order to 
disconnect the correct link. 

The control processor can distinguish between connection and disconnection requests by 
looking at the value of the second byte. If it is greater than the number of links on the source 
node then the request must be a disconnection request (i. e it contains the address of the 
destination node). 

3.3 Crossbar switch 

The crossbar switch used is the 32-way INMOS C004 [3]. Since in the case of a transputer all 
four links can be connected to the crossbar switch, 8 transputers can be fully connected by 
using a C004. A 64-way crossbar switch such as the LSILogic L64270 [5] could be used which 
would allow 16 transputers to be fully connected. If more transputers were required then the 
number of crossbar switches could be increased. Each crossbar switch would have a C012 
connected to it and the C012 would be addressed by the control processor. Effectively each 
crossbar switch would have a unique address. 

4.0 Connection Request Service Time 

The four major factors involved in the time taken to service a request are: 

" the time required to pass the token. 

" the time taken to clock the bytes out of the FIFO 

" the time to transfer the bytes from the CO11 to the Control Processor 

" the time required to program the crossbar switch. 

If the PALS are being clocked at 20MHz and the INMOS OSLink is operating at 20Mbits/s 
then the connection request service time is approximately 2µs. The service time could be 

speeded up by using a faster token passing clock and control processor. 

5.0 Conclusions 

All the ICs employed in our system are commercially available at relatively low cost. The 
control processor used achieves a much higher performance than a transputer enabling it to 
process connection requests much faster. Also all the valuable communication links on the 
node are free for interprocessor communication and are not tied up with control information. 

This cost-effective method provides deadlock free, low message latency, dynamic 

reconfigurability. This is especially useful in time critical applications which transmit and 
receive large volumes of data such as robotics and image processing. Although in our case the 

nodes were transputers, the hardware subsystem can be used with other processors providing 
they possess a high speed communication mechanism. 

The system described is a prototype version which functions successfully. It is hoped that 

when the system is fully integrated into a multiprocessor architecture a faster token passing 
clock and control processor will be used. 

Acknowledgements 

LB would like to thank the EPSRC (Engineering and Physical Sciences Research Council) for 

the award of a studentship to fund this work. 



References 

[1] M. Tudruj, T. Kalinowski, Multi-Transputer Systems with Dynamic Link Connection 
Switching Controlled through a Serial Bus. Transputer Applications and Systems 1993, 
pp 803-818 

[2] J. P. Calvez, O. Pasquier, A Transputer Interconnection Bus For Hard Real-Time Systems, 
Transputers 1992, pp 273 - 283 

[3] INMOS Ltd, Transputer Databook, INMOS 1992 

141 ADSP-2100 Family Assembler Manual 1991, Analog Devices, Inc. 

[5] L64270 Preliminary Data, LSI Logic Corporation 1989 
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Astract. This paper describes the parallelisation of a sequential FORTRAN 
molecular mechanics program to run on novel hardware, where each node processor 
has a dedicated high speed link to the host processor, and to all of the other nodes. 
The host processor can broadcast code/data to the nodes over these direct links using 
an overhead free hardware mechanism. The broadcast hardware is supported by the 
COMFORT message passing subroutine library. 

1. Introduction 

In order to design a new molecule using a CAMD (Computer Aided Molecular Design) 
package [ 1,2,3] a crude structure is built up by combining smaller molecules or 
fragments of molecules into a larger overall structure. The molecule can also be 
constructed one atom at a time using known average bond lengths, valency angles, and 
torsion angles. Obviously structures built up this way are extremely crude as they do 
not take into account the interactions between the various molecular fragments and 
how they will affect the structure of the molecule as a whole. Before the modelled 
structure can be useful in the drug design process its structure must be computationally 
optimised by a procedure known as energy minimisation. 

The steric energy of the molecule is calculated by adding together the potential 
energy contributions from bond stretching, angle bending, bond torsion, non-bonded 
interactions, coulombic interactions and pyramidalisation of non-planar systems. Once 
this energy has been found the geometry of the molecule is systematically altered (i. e. 
the atomic coordinates are shifted by a calculated amount) in the hope of locating the 
global energy minimum. 

Various optimisation methods can be used in the attempt to find this global energy 
minimum. Unfortunately though, all of these methods are prone to locate the local 
energy minimum closest to the starting point of the calculation, rather than the global 
minimum. The difference between local and global minima is illustrated below. 

Local Maximum 

Saddle Point 
N 
R 

Local Minimum 

G 
Global Energy Minimum Y 

MOLECULAR SHAPE 
FIGURE 1. Energy of a molecule vs. Molecular Shape 
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There are two main categories of optimisation technique namely search and gradient 
methods. An example of a search method is pattern searching [4]. 

Pattern searching applies positive and negative shifts (--0.1A) to each atom's atomic 
coordinates one at a time and then tests to see whether the steric energy has decreased 
or increased. If the energy has decreased then the atom is left in its new position and 
the new steric energy used as the current value. However, if the energy has increased 
then the atom is returned to its original position and the coordinate is then shifted in the 
opposite direction. Again the steric energy is calculated and if it has decreased then the 
atom is left in the new position otherwise it is returned to its original position. 

The whole pattern of successful shifts built up in this way is repeated and the steric 
energy checked for further reduction. The pattern is repeated until it no longer works 
and then the pattern is repeated with half the shift value and then iteratively until the 

shift reaches a sufficiently small value (10-5Ä). When the current pattern no longer 
works, or the shift becomes too small, a new pattern is established and the whole 
process repeated until a reduction in energy is no longer possible. 

This method is guaranteed to find a local energy minimum and has a large radius of 
convergence (i. e. even with an extremely crude starting structure a local energy 
minimum will be reached). However the rate of convergence is slow as the same shift 
size is applied to each coordinate and the shift size is refined very slowly (i. e it could 
take hundreds of iterations to reach an energy minimum). 

Gradient based methods again apply a shift, in the search for lower energy, to each 
coordinate but in this case the shift is proportional to the gradient of the steric energy at 
this point (i. e if the gradient of the steric energy is steep then large shift is applied, if 
the steric energy function is flatter then a smaller shift is applied). These techniques are 
said to reach an energy minimum when the vector of first partial derivatives of the 
steric energy with respect to the atomic coordinates is zero. This is the case not only at 
energy minima but also at energy maxima and saddle points; a feature of gradient 
methods which can be useful when searching for transition state structures but an 
inconvenience when looking for minima. 

Gradient based techniques have a fast rate of convergence as they calculate shifts 
based on the gradient of the steric energy function. However, the radius of convergence 
is small for the popular full matrix Newton Raphson (NR) iteration (see later for 

explanation). The radius of convergence can be increased by using approximations to 
the full NR such as the Block Diagonal Newton Raphson iteration and steepest 
descents, but at the expense of rate of convergence. 

An example of a simple gradient based method is steepest descent [5] (a variation of 
the full NR iteration - almost all gradient based methods of optimisation are variants of 
the NR iteration). This involves calculating the gradient (the first partial derivative of 
the steric energy w. r. t. the atomic coordinates) of the steric energy function at a 
particular point. Once the gradient has been calculated the coordinates are shifted in the 
direction of lower energy by an amount proportional to the gradient. The constant of 
proportionality is determined empirically. This procedure is repeated until a local 
minima is reached. 

Steepest descents has the disadvantage that it is only the gradient of the steric 
energy function that is considered and the curvature (the second partial derivatives of 
the steric energy) of the function is not taken into account when calculating the shift. 

A technique which considers both the gradient and curvature of the steric energy 
function is the Block Diagonal Newton Raphson iteration [6]. This technique 
converges faster (usually in 50-200 iterations) than the steepest descent or pattern 
based methods and has a reasonable radius of convergence. This is the method used in 
our energy minimisation algorithm and it will be discussed in detail in Section 2. 
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Obviously the larger the number of atoms in the molecule, the longer the 
optimisation takes, so for large protein structures comprising up to thousands of atoms 
the program run-time can be very long on a sequential computer. Energy minimisation 
can be parallelised by dividing up the atoms between the available nodes so that each 
node works on a 'slice' of atoms; i. e each node executes the same code but on a 
different data set. 

Many implementations of parallel molecular dynamics [7,8] (the simulation of 
molecular motions with time) have been attempted, however little work has been 
published on parallel energy minimisation. Schweitzer et al. [9] parallelised the 
molecular mechanics MM2 package by splitting four computationally intensive 
subroutines over four processors on a shared memory computer. Our parallel minimiser 
parallelises the code by dividing the data domain onto the available processors on a 
distributed memory machine. 

In our parallel minimiser each node has a copy of the atomic coordinates of all the 
atoms, as some of the atoms in it's 'slice' may interact with atoms on other nodes. The 
nodes consider each atom in their 'slice' one at a time. For each atom the first and 
second partial derivatives of the steric energy with respect to the atomic coordinates 
are calculated. The atom's corrected coordinates are then computed using the Newton 
Raphson iteration. Once the corrected coordinates for all the atoms have been 
computed, they are sent back to the host. The host assembles a complete set of new 
`improved' coordinates from the `slices' returned by the nodes and broadcasts this set 
back to all the nodes ready for the next iteration. 

In a conventional 3L FORTRAN based implementation of parallel molecular 
mechanics the nodes would be connected together in a pipeline or more complex 
topology and the code would be loaded onto the nodes in the standard `store and 
forward' manner [101. Any data exchanged between the host and nodes will generally 
have to pass through one or more intermediate nodes before it reaches its 
destination. This requires the nodes to run communication tasks which reduces the raw 
computational power deliverable to the application. 

The overheads discussed above can be eliminated by broadcasting code and data to 
all the nodes simultaneously via hardware. This paper describes a parallel 
implementation of an energy minimiser which utilises the COMFORT host/node 

programming environment and BB08 octal broadcast link interface [11]. Each node 
has a direct link to the host computer, down which code and/or data can be transmitted, 
received or broadcast. 

COMFORT is a library of FORTRAN subroutines similar to those provided by 
EXPRESS [12] and MPI [13], which allow the host computer to broadcast load code 
onto the nodes and also facilitate communication between the nodes, amongst other 
things. The host/node methodology allows the host to participate in the calculation 
rather than act merely as a facilities server. COMFORT makes parallelisation easier 
because no communication tasks are required on the nodes and no configuration (in the 
3L sense) is required. 

The BB08 is basically an eight fold replication of the Inmos B004 interface which 
also allows link broadcasting (See Figure 2). The board contains eight C012 link 

adaptors and the links are either routable to size one TRAM slots or to a DIN41612 

connector. Data can be broadcast from the PC bus simultaneously to all the link 
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adapters. The DIN41612 connector is utilised when other PCs are used as nodes, 
otherwise the transputer or other TRAM based processors are plugged into the BB08. 

PC SLOT 

buffer and address I 
decoding 

C0121 IC0121 IC0121 IC0121 1c0121 IC0121 1c0121 Icoil 

FIGURE 2. Basic diagram of BB08 board 

To Size I 
TRAM slots 
or DIN41612 
connector 

To DIN41612 
connector 

The following sections begin with an overview of the energy minimisation procedure, 
and then focus on the COMFORT host/node FORTRAN code. 

2. Energy Minimisation Procedure 

2.1 Steric Energy Equation 

The equation to calculate the total steric energy of a molecule (Vs) is: - 
Vs = Vi + VO +VW+Vr+Vq+VV 

(EQ 1) 

where V1 represents the summation over all the bonds in the molecule of the individual 

potential energies due to bond stretching or compression, and V8, Vw , Vq 
, V,. and Vx 

represent similar terms for angle bending, bond torsion, coulombic interactions, non- 
bonded interactions, and out-of plane bending respectively. 

The equations for the individual components are shown below: - 

2V, = 
Ekl(l-! 

0)2 
1 

k, = the stretching force constant 
10 = reference bond length 

(EQ 2) 
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2V0= IkeAQ2-k'e(JA031-0.0004IA65, )) 

oe=0 
ke = angle bending force constant 
k'e = anharmonic force constant 
00 = reference bond angle 

2VW= [V�(l+scosnw)+V1(l+scosw)] 

Vn =n- fold components of the barrier to free rotation. 
V, = one - fold component of the barrier to free rotation. 
w= torsion angle. 
n= periodicity 
s=+1 for staggered torsional energy minimum 
s= -1 for an eclipsed minimum 

Vr =, 
[Ar'Z-Br-6 ] 

r 

A and B are constants which depend on the atom types. 

Vq 332ýgiqjl Dr 

r 

q; = charge on atom i 

qj = charge on atom j 

r= distance between atoms i and j 
D= dielectric constant 

2Vx= kx(180-x)2 
x 

kx = force constant for out-of-plane bending 

x= improper torsion angle in degrees 

(EQ 3) 

(EQ 4) 

(EQ 5) 

(EQ 6) 

(EQ 7) 
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2.2 Newton Raphson Iteration 

The basic NR iteration which minimises the steric energy of the molecule is given by: - 

xk+ 1= xk-aFVVs(x) 

(EQ 8) 

where x is the 3N (N = number of atoms) long vector of Cartesian coordinates, a is the 

step length, F+ is the generalised inverse of the Hessian: - 

2 
V 

F=i= ON, j=1,3N 

and: - 

av OVS (x) _ axs; 
j=1,3N 

j 
The calculation of the complete Hessian (a 3N x 3N matrix) is a very time 

consuming procedure and is not really suitable for molecules with over 200 atoms. 
Therefore an approximation known as the Block Diagonal Newton Raphson (BDNR) 
is used. This is so called because only the second partial derivatives in each 3x3 block 

along the leading diagonal of the Hessian are calculated. Therefore F is given by: - 

p= 

2 
a VS 

i= 3m + 1,3m + 3; j =3m+ 1 3m +3" m =0, N- 1 
axýaxý ' 

Each block contains second partial derivatives of the steric energy with respect to 
the coordinates of only one atom. The JDNR iteration can therefore be applied one 
atom at a time, this allows each atom to be moved to its corrected position before the 
calculations for the next atom are started. Each atom's position is therefore calculated 
on the basis of the best structure available at the time. 

3. Parallel Energy Minimisation Algorithm 

The procedure described uses an early version of COMFORT and hardware reserved 
for program development work. The host code was written in Microsoft (16-bit) 
FORTRAN (current versions of COMFORT use Microsoft 32-bit FORTRAN) and the 

node code with 3L parallel FORTRAN (the 3L FORTRAN node programs are 
configured with the stand alone FORTRAN run time library). Although this 

methodology is not without it's problems (some of which will be explained later) it 

does result in reasonably portable programs. The hardware set-up used was a BB08 

board with four size 1 TRAMs each with a T4XX transputer and 1Mbyte of memory. 
The algorithm was derived from pre-existing sequential FORTRAN code. 

The host program first calculates the initial steric energy of the molecule. It then 

sends data, which includes the atomic coordinates, to all the nodes. While the nodes are 
computing the new atomic coordinates the host is idle waiting for the new 'improved' 
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coordinates to return. Each node returns improved coordinates for the `slice' of atoms 
it is responsible for. These `slices' are assembled into a complete set of improved 
coordinates and broadcast back to all of the nodes. When the required number of 
iterations have been completed by the nodes the host recalculates the new minimised 
steric energy. 

The node processors calculate the first and second partial derivatives described 
above and use these to obtain improved coordinates for their 'slice' of atoms via the 
BDNR iteration. The node processors do not need to communicate with each other. 

3.1 Host Program 

The pseudocode showing the main features of the host program is illustrated in 
Figure 3. 

The program sets up tables of reference bond lengths, bond angles, torsion angles, 
non-bonded interactions and coulombic interactions. From these values, and various 
other constants, it is possible using various mathematical approximations to calculate 
the various force constants required for the calculations. Once all this information is 
available, the host calculates the steric energy components and adds the values together 
to get the initial steric energy. 

Read file containing atomic coordinates 

Read file containing various parameters 

Set up various tables required for the calculation 
(i. e. bond lengths, bond angles etc. ) 
Calculate the total potential energy of the molecule 

Configure, reset, load and initialize nodes 

Send arrays of data to the nodes 
While (no. of iterations not complete) do 

Send atomic coordinates to nodes 
Receive modified coordinates from nodes 

Calculate Final Steric Energy of the Molecule 

FIGURE 3. Pseudocode for Host Program 

The nodes require a substantial amount of information to calculate the first and 
second partial derivatives of the steric energy w. r. t the atomic coordinates. Some of this 
data is sent from the host and some is recalculated on the nodes (duplicating a host 
calculation) as it is quicker. 

The figure overleaf (Figure 4) shows the broadcast load/broadcast data FORTRAN 
code. The nodes are loaded with code via the configure, reset, load and initialize 
routines. The configure routine defines the hardware setup and its arguments are the 
base address of the BB08 board, the number of processors and a value which specifies 
the `tick' of the timeout clock. The reset routine resets all the nodes and the load 
routine loads the nodes with the file 'nodemin. app'. Each node is assigned its id 
number by the initialize routine and this routine tells each node the link interconnection 
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topology via the matrix `ProcConn' (the latest version of COMFORT uses complete 
connectivity and the topology maps are unnecessary). 

NETCAST = -1 
file= 'c: \comfort\lesley\min\nodemin. app'//char(0) 

call configure(#180,4, #976f) 

call reset(NETCAST) 

call load(NETCAST, file, 100, error) 

do i=1,4 

ProcConn(l, i)=4 

ProcConn(2, i)=-1 

ProcConn(3, i)=-1 

ProcConn(4, i)=-1 

end do 

call initialize(ProcConn, 100, error) 

call send (NETCAST, buffer_atmdat0,1, total_atmdat0,100, error) 

call send (NETCAST, buffer_atmdatl, 2, total_atmdatl, 100, error) 
call send (NETCAST, buffer moldat, 3, total_moldat, 100, error) 

call send (NETCAST, buffer_ffp, 4, total_ffp, 100, error) 

call send (NETCAST, buffer_cffp, 5, total_cffp, 100, error) 

call send (NETCAST, buffer_contrl, 6, total_contrl, 100, error) 

call send (NETCAST, buffer_constn, 7, total_constn, 100, error) 

C SEND INTEGER*1 VARIABLES/ARRAYS SEPARATELY 

call send (NETCAST, ATYNUM, 8, LENGTH9,100, ERROR) 

call send (NETCAST, BONDML, 9, LENGTH10,100, ERROR) 

call send (NETCAST, MOLNUM, 10, LENGTH9,100, ERROR) 

999 write (5, *)'No of iterations =', itrcmp +1 

C SENDS COORDINATES TO NODES 

call send(NETCAST, XO1,42, INT2(length7), 100, error) 

FIGURE 4. Code which broadcasts arrays to nodes 

The data required by the nodes is sent in several arrays. The SEND routine 
broadcasts all the data to all the nodes simultaneously via the BB08 board. The format 

of the SEND statement is shown belowO 'I: - 

i. e SEND(Destination, Buffer, Bufftype, BuffLen, Timeout, Error) 

where Destination contains the id number of the node (if equal to -1 this broadcasts to 
all the nodes simultaneously), Buffer contains data for the node, Bufftype is a user 
assignable number to identify the buffer, BuffLen is the length of the buffer in bytes, 
Timeout specifies the time before timeout occurs, and error returns a specific number if 
an error occurs. 

The variables/arrays downloaded to the nodes are stored in common blocks. A 
sample of the common block declarations is shown in Figure 5 overleaf. Sending this 
data to the nodes is not as simple as it might first appear; mainly due to restrictions 
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imposed by the Microsoft 16-bit FORTRAN which are not present with the 32-bit 
version. 

COMMON/ATMPRP/ EN(MAXTYP) 
COMMON/MOLDAT/ NUMATS, NMOLS 
COMMON/FILDAT/ DLUNIN, DLNOUT, LUNOUT 
COMMON/FILCHR/ INFILE, OUTFIL, FILTYP 
COMMON/HEADER/ TITLE 

COMMON/FFP/ REFLEN(MAXTYP, MAXTYP), STRCON(MAXTYP, MAXTYP) 
1, A6(MAXTYP, MAXTYP), B12(MAXTYP, MAXTYP), REFANG(MAXTYP) 
2, PERIOD(MAXTYP, MAXTYP), BARIER(MAXTYP, MAXTYP) 

COMMON/CFFP/ CREFLN(MXCNJ, MXCNJ), CSTCON(MXCNJ, MXCNJ) 
1, CBARR(MXCNJ, MXCNJ), CPRIOD 

COMMON/CONJTP/ ARTYPS(NARTYP), DBTYPS(NDBTYP) 

FIGURE 5. Common Block declarations 

The simplest approach may appear to be, to send a large array whose start address is 
the address of the first variable in the first common block. The length (in bytes) of this 
array would be equal to the total length of all the common blocks. This approach is not 
possible as although the common blocks will be stored contiguously in memory, they 
are each assigned to a different 64kbyte wide segment by the FORTRAN compiler and 
addresses do not automatically roll over from one segment to the next. 

Another possible approach might be to dispense with the individual common blocks 

and put all of the data into one large common block. This is not possible as there is 

more than 64kbytes of data and the compiler limits each common block to a maximum 
of 64kbytes in length. In addition to this restriction the COMFORT SEND subroutine 
imposes a maximum message length of 64kbytes. 

A dummy array is therefore EQUIVALENCED to the start of each common block 
(or the position in the common block where the required data starts). This dummy 

array is dimensioned to encompass the data by calculating the combined size (in bytes) 

of all the variables/arrays required from the common block (See Figure 6). An example 
of the statements necessary to EQUIVALENCE the common block moldat (which was 
shown in Figure 5) to an array are illustrated in Figure 7 overleaf. Both the variables in 

moldat are INTEGER*4. 
INTEGER *1 COMMOM BLOCK 
ARRAY WITH WITH INTEGER*4 
DIMENSION 20 VARIABLES 

I byte` 
long Variable 14 bytes 

S 

Variable 2 

Variable 3 

Variable 4 

Variable 5 

FIGURE 6. Graphical Representation of equivalence statements 

-10 1 
EQUIVALENCED 

The equivalence statements are written in an include file which is used on both the 
host and node. 
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parameter (length3 = 4) 

parameter (total moldat = length3 * 2) 
dimension buffer_moldat (total_moldat) 

equivalence (buffer_moldat(1), numats) 

FIGURE 7. Example of equivalence statements 

A further difficulty arises from the fact that the Microsoft FORTRAN compiler 
adheres rigidly to the FORTRAN standard. If the SEND subroutine is called with a 
message of one data type then any subsequent call with a message of a different data 
type will result in a run-time error. In order to overcome this difficulty SEND is always 
called with messages of type INTEGER* 1 which are EQUIVALENCED to the real 
data array (which contains data of many types). Obviously a different dummy 
INTEGER* 1 array will be required for each common block to be sent as it would be 
nonsense to EQUIVALENCE all of the common blocks to the one array 

3.2 Node Program 

The pseudocode for the node program is shown in Figure 8 overleaf. 
The node program considers each atom at a time and calculates its corrected 

coordinates using the Newton Raphson iteration. The first and second partial 
derivatives are calculated numerically by finite difference methods. i. e. 

aVS VS (xj + 3x) - VS (x, - 6x) 

axi 26x 

(EQ 9) 

DVS 
_ 

VS(x, +Sx, x, +Sx) -VS(x, +Sx) -VS(x+Sx) +E(x, ) 
axýaxý - 8x 2 

(EQ 10) 

a2Vs V, (x, +Sx) -V, (x, -Sx) -2E(x, ) 

öxi? 5x2 

(EQ 11) 

where Sx is a small value (i. e. 0.001) and i=1,3N, j=1,3N. The steric energy is 

therefore calculated at (x, ), (xi + Sx) 
, 

(x; - Sx), (x, + Sx) and (x, + Sx, xj + Sx) 
. 

The second partial derivatives vary by so little after each iteration that it is sufficient to 
calculate them after only every 4 or 5 iterations. Once the node has the first and second 
partial derivatives of the steric energy with respect to the atomic coordinates, it uses the 
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Newton Raphson equation to calculate the new `improved' coordinates. These 
coordinates are then sent back to the host. 

Initialize node 
Receive data from host 
Sets up various tables required for the calculation 
(i. e. bond lengths, bond angles etc. ) 
Decide which atoms the nodes will work on 
Receive atomic coordinates from host 
For J= NFIRST, LAST do 

Calculate Energy of Jth atom 
For k =1 ,3 do 

Increment kth coordinate of jth atom and recalculate energy 
Decrement kth coordinate and recalculate energy 
Calculate first derivative for kth coordinate 

Fork = 1,3 do 

sum of squares of first derivatives = 
sum of squares of first derivatives + (first derivative for kth coordinate)2 

If Mod(Iteration, 4). = 0 then 
Calculate second derivatives for jth atom 

Calculate corrections to coordinates for jth atom 
Fork=1.3 do 

Calculate new value for kth coordinate of jth atom 

Send modified coordinates and sum of squares of first derivatives back to host 

FIGURE 8. Pseudocode for Node Program 

The arrays sent from the host are received using the COMFORT RECEIVE routine 
(See Figure 9 overleaf). 

i. e RECEIVE (Source, Buffer, Bufftype, Bufflen, Error) 

This is basically the same format as the SEND routine on the host. For every SEND 
call on the host there has to be an equivalent RECEIVE call on the node. The code 
which allocates atoms to nodes is shown in Figure 10 overleaf; me is the id number of 
the node, numproc is the number of nodes, numats is the number of atoms and nfirst 
and last are the first and last atoms a node will work on. Each node is allocated 
NUMATS/NUMPROC atoms, with the first NMOD nodes being allocated an extra 
atom. This distributes the atoms as evenly as possible across the nodes. The number of 
atoms in a nodes 'slice' is stored in BFLENG. 
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C INITIALIZE NODES 

call initialize 

C RECEIVES BUFFERS FROM HOST. 

call receive(host, buffer_atmdatO, l, total_atmdat0, error) 
call receive(host, buffer_atmdatl, 2, total_atmdatl, error) 
call receive(host, buffer_moldat, 3, total_moldat, error) 
call receive(host, buffer_ffp, 4, total_ffp, error) 
call receive(host, buffer_cffp, 5, total_cffp, error) 
call receive(host, buffer contrl, 6, total_contrl, error) 
call receive(host, buffer constn, 7, total_constn, error) 

c RECEIVE BYTE VALUES SEPARATELY 

call receive(HOST, ATYNUM, 8, LENGTH9, ERROR) 

call receive(HOST, BONDML, 9, LENGTH10, ERROR) 

call receive(HOST, MOLNUM, 10, LENGTH9, ERROR) 

191 call receive(HOST, X01,42, length7, error) 

FIGURE 9. Code which receives data from host 

NDIV = NUMATS / NUMPROC 

NMOD = MOD (NUMATS, NUMPROC) 

IF(me. 1t. NMOD)THEN 

NFIRST = (me*NDIV)+me+1 

LAST = ((me+1)*NDIV)+me+1 

ELSE IF(me. eq. NMOD)THEN 

NFIRST = (me*NDIV)+me+1 

LAST = ((me+1)*NDIV)+me 

ELSE IF(me. gt. NMOD)THEN 

NFIRST = (me*NDIV)+NMOD+1 

LAST = ((me+1)*NDIV)+NMOD 

ENDIF 

BFLENG=((LAST+1)-NFIRST) 

nfirst4 = (nfirst * 4) -3 

FIGURE 10. Code to allocate atoms to nodes 

3.3 Transfer of atomic coordinates benveen host and nodes 

The atomic coordinates are stored in an INTEGER*4 array (XO (MXAT, 3)) on the host 
which is effectively arranged as three columns for the x, y and z coordinates. This array 
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is EQUIVALENCED to three INTEGER*1 arrays XO1, X02 and X03 (See Figure 11); 
X01 contains the x coordinates, and X02, X03 the y and z coordinates respectively. 

equivalence (xol(1), xo(1,1)) 

equivalence (xo2(1), xo(1,2)) 

equivalence (xo3(1), xo(1,3)) 

FIGURE 11. Equivalence statements for XO 

To send the atomic coordinates to the nodes the XOI array is used in the SEND 
routine (See Figure 4). X01 is EQUIVALENCED to the start of XO and the buffer 
length in the SEND statement is four times the length of X0. An equivalent RECEIVE 
statement is required on the nodes (See Figure 9). 

When sending the coordinates back from the nodes to the host only the coordinates 
in the node's `slice' must be returned and the host must put the returned coordinates in 
the correct place in XO. The code on the nodes and host which achieves this is shown 
in Figure 12 and Figure 13 respectively. 

call send(HOST, xol(nfirst4), 43, bfleng*4, error) 

call send(HOST, xo2(nfirst4), 44, bfleng*4, error) 

call send(HOST, xo3(nfirst4), 45, bfleng*4, error) 

call send(HOST, sgdlsq, 46,4, error) 

FIGURE 12. Node code to return 'improved' coordinates to host 

do 321 1=0, numproc-1 
if (1. It. runod) then 

nfirst = (1*ndiv)+1+1 

last = ((1+1)*ndiv)+1+1 

else if(l. eq. nmod)then 
nfirst = (1*ndiv)+1+1 

last = ((1+1)*ndiv)+1 

else if(l. gt. nmod)then 
nfirst = (1*ndiv)+nmod+l 
last = ((1+1)*ndiv)+nmod 

endif 

bflength=((last+l)-nfirst) 

nfirst = nfirst*4 -3 

C RECALCULATE NFIRST FOR XO1(INTEGER*1 SIZE ARRAY) 
call receive(L, xo1(nfirst), 43, INT2(bfleng*4), 100, error) 
call receive (L, xo2(nfirst)44, INT2(bfleng*4), 100, error) 
call receive (L, xo3 (nfirst), 45, INT2 (bf leng*4), 100, error) 
call receive(L, templ, 46,4,100, error) 

sgdlsq = sgdlsq + temp 

321 continue 

FIGURE 13. Host code to receive ̀ improved' coordinates 
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The x, y and z coordinates are sent separately in XOl, X02 and X03. Nflrst4 specifies 
the position of the first atom in the nodes `slice' in X01 etc. This value is not just equal 
to nfirst (the first atom in a nodes slice) as X01 etc. are INTEGER* 1 arrays so the value 
of nfirst needs to be recalculated (i. e. nfirst4 = (nfirst*4) -3). The length of XO1, X02 
and X03 is set to BFLENG *4; i. e the number of atoms in a nodes slice multiplied by 
4. 

4. Results 

Table 1 shows the run-time of the parallel minimiser on one node compared to four 
nodes for 24 and 45 atom molecules. The results illustrate that for a 24 atom molecule 
a speed-up of approximately 2.5 is obtained whereas for a 45 atom molecule a speed- 
up of approximately 3 is achieved. The difference in the results is due to the set-up time 
(i. e. the loading of the required data onto the nodes etc. ) which becomes more 
significant for smaller numbers of atoms. The present version of the minimiser loads 
the data in an inefficient manner as each node receives more data then is necessary; this 
will be corrected in future versions. 

TABLE 1. Optimisation times for 30 Iterations 

Number of atoms Number of Nodes Run-time of Minimiser 

24 1 320s 

24 4 129s 

45 1 743s 

45 4 243s 

5. Conclusions 

Further improvements to this algorithm could include using the host to carry out the 
Newton Raphson iteration on a `slice' of atoms rather than it remaining idle while the 
nodes are computing. The use of Microsoft Powerstation (32-bit) Fortran would allow 
the host to send all the variables/arrays in one large array as the compiler `sees' the 
address space as contiguous and SEND/RECEIVE operate on messages up to 4Gbytes 
long. 

The use of the COMFORT routines and BB08 board provide faster energy 
minimisation than the conventional 3L FORTRAN version which uses a pipeline of 
transputers. Broadcasting code and data simultaneously to all the nodes reduces the run 
time of the minimisation program considerably. 
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Interfacing Electrochromic Spectacles to 
Computer 10 Ports 

David N. J. White and Lesley Bissland 
University of Glasgow, Department of Chemistry, Glasgow, Scotland 

e-mail: lesley@tcrystal-gla. ac. uk 

Many important properties of molecules depend on their precise three dimentional(3D) 
structure. It is therefore useful to be able to view a molecule in 3D on a 2D computer 
screen when manipulating it. An inexpensive method for viewing in 3D using liquid 
crystal glasses and a PC is presented. The methodology used is easily extended to other 
computers and workstations. 

Keywords: Liquid crystal glasses, stereoscopy, PC card 

1 Introduction 

Although red/green stereo is a fairly simple and inexpensive method for viewing in 3D the 
images produced are monochromatic. This loss of colour can be important in many cases. 
For example when viewing a molecule, colour coding can be used to signify different 
atom types. Full-colour clear 3D images can be obtained by using liquid crystal glasses. 
These glasses are generally quite expensive (-£1000) however by using SEGA video 
game liquid crystal glasses (-£70) the cost can be cut dramatically. 

Chelvanayagam and McKeaigl described a method for stereo viewing using the SEGA 
glasses. Their approach involved modifying the existing SEGA circuit board and 
connecting a line to the DO pin on a PC parallel port to toggle the glasses. Whilst this 
approach is perfectly satisfactory a number of people have reported to the authors that 
they have been unable to get the modified SEGA circuit board to work. In order to 
circumvent these problems this paper contains a full circuit diagram of the SEGA control 
circuit and describes an alternative control circuit built on a PC plug-in card. 

2 Stereoscopy 

Binocular stereoscopy is a method of generating pairs of two dimensional images which 
deceive the human eye and brain onto perceiving a three dimensional image. The pairs of 
images can be generated either side by side or full screen sequentially on the computer 
screen. The second image is generated from the first by a rotation of 2-6° around the y-axis 
(x axis horizontal, y axis vertical, both in the plane of the screen). Various methods are 
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employed to ensure that the left eye sees only one of the images and the right eye only the 
other. The images can be either stationary or rotating. 

The method of stereoscopy used by the SEGA glasses is known as tachistoscopy. This a 
binocular process in which the left and right eye images are displayed on the screen 
alternately and the view of each eye is obscured in synchronisation with the display of the 
`wrong image'. To achieve this alternate lenses of the glasses are turned opaque at the 
appropriate moment by an electric field. The frequency of switching between images must 
be approximately 40Hz to obtain a flicker free image. 

2.1 Liquid Crystal Glasses 

The liquid crystal glasses 2,3,4 consist of a thin layer of liquid crystals sandwiched 
between two glass plates. Liquid crystals differ from other compounds in that in a normal 
crystalline solid the atoms or molecules are in an ordered fixed state, and when the crystal 
melts the substance goes directly to the disordered liquid phase. In a liquid crystal there is 
an intermediate phase when there is partial order over a range of temperatures before the 
liquid phase. This disorder in the liquid crystal, known as the nematic phase, consists of 
molecules out of position but with the same orientations they had in the solid. (See Figure 
1(a)). 

Transparent electrodes are evaporated onto the inner surfaces of the glass plates. Tiny 

parallel scratches on the plates cause the nematic molecules to orient themselves in the 
direction of the scratches. Since the scratches on one glass plate are perpendicular to those 
on the other this gives the molecules a twisted structure with the molecules in successive 
planes turning continuously through 900. This is known as a "twisted nematic" cell. 

Polarising filters sandwich the cell with their axes of polarisation at right angles to each 
other. Light is polarised as it enters the cell and can then escape from the other side only if 
the plane of polarisation is rotated through a right angle. 

When the electrodes are not applying an electric field, the liquid crystals rotate the plane 
of polarisation of the light and the light passes through the cell. The glasses are therefore 
transparent as in Figure 1(b). Applying an electric field forces the molecules to lie parallel 
to it and to the direction of the light. The plane of polarisation, which is at right angles to 
the direction of the light is therefore unaffected by the molecules: it is not rotated and light 

cannot pass through the cell. This causes the glasses to become opaque as illustrated in 
Figure 1(c). 

3 SEGA Circuit 

The glasses are operated by a simple circuit controlled by a Z80 microprocessor in the 
game console. The glasses circuit board plugs into the SEGA console and the glasses are 
attached to the circuit board by a 3.5mm jack connector. See Figure 2. 
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Address decoding is achieved by a 13-Input NAND gate (74HCT133') which outputs a 
logic low (for the purposes of the following discussion logic low means OV electrical and 
logic high means 5V electrical) when all the address lines connected to it are pulled high 
(address 0FFF8h). The output of the 74HCT133 is fed to the least significant address bit 
(A0) of the 741ICT259 addressable latch. The 74HCT259 will direct the signal on its data 
input (D) to the latch (Q0-Q7) addressed by its A0-A2 inputs. When the 74HCT259 
enable input (E*) is logic low the addressed latch will follow the data input whilst all 
unaddressed latches will retain their previous state. When E* goes high the logic level on 
the addressed Q output will be latched (i. e memorized) and unaffected by any further 
changes in D. As stated previously when the SEGA circuit is being addressed AO on the 
latch will be logic low. Since MREQ* is low during a write cycle and the address FFF8 is 
being used, A0-A2 on the latch will all be logic low which selects QO as the output. The 
logic level on the data pin of the 74HCT259 will therefore be latched on QO when the 
write cycle finishes and WR* goes to logic high. Q1-Q7 are ignored. 

Gates 1 and 2 of the 74HCT86 form a simple RC oscillator which produces an 
approximately 400Hz square wave output at point (A). The waveform is shown in Figure 
3(a). Whilst it is possible to switch the glasses from opaque to transparent with a simple 
DC voltage, this will greatly reduce the life of the liquid crystal cells. Using a 40011z 
square wave will prolong life of the cells almost indefinitely. 

Section 1 of the LM324 quad operational amplifier is configured to act as a non-inverting 
level shifting comparator and section 3 as an inverting level shifting comparator. The 
reference voltage for the two comparators is set to 2.5V by the two 100M resistors. A 
logic high at point (A) will drive each comparator into positive or negative saturation, 
depending on whether the comparator is inverting or non-inverting, and a logic low at 
point (A) will cause each comparator to saturate in the opposite sense. As the LM324 has 
a 12V power supply the outputs of the comparators will be 400Hz square waves with 
amplitudes of 12V as shown in Figure 3(b). 

The waveform at point (D) depends on whether a logic high ('I') or low ('0') has been 
written into the 74HCT259 addressable latch. If QO of the 74HCT259 is high then gate 3 
of the 74HCT86 will invert the output of the oscillator (point (A)) and feed it to section 4 
of the LM324 for a further inversion and level shift to an amplitude of 12V. If on the other 
hand QO is low the '86 behaves as a non-inverting buffer and the output of the oscillator is 
inverted and level shifted by section 4 of the LM324. The waveforms are shown in Figure 
(b). 

The signal at point (D) is applied to both the left and right eye liquid crystal cells of the 
SEGA glasses, whilst the signal at point (B) is applied only to the left eye cell and the 
signal at point (C) to the right eye cell only. When QO is high, points (C) and (D) are out of 
phase and an electric field reversing direction 400 times a second will be applied to the 
right eye liquid crystal cell of the glasses, turning it opaque. On the other hand points (B) 
and (D) are in phase, the field applied to the left eye cell is zero, and it remains 
transparent. If QO is low the situation is reversed; the left eye cell is opaque and the right 
eye cell transparent. So by writing a `1' or a `0' to the `259 addressable latch either the left 
or right eye liquid crystal cell is rendered transparent whilst the other cell remains opaque. 

Appendix E 338 



As the voltage needed to run the glasses is approximately 12V, a voltage tripler (Part 2 of 
Figure 2) is required to increase the LM324 supply voltage from 5V to 12V. The 
capacitors (C4-C6) charge in parallel and the diodes direct the current so the capacitors 
discharge in series. This triples the +5V supply voltage, however as 0.6V is lost over each 
diode the result is an output of approximately 12V. 

The modifications to the circuit proposed by C&M are indicated by the dotted lines on 
Figure 2. The C&M modifications dispense with the address decoder & addressable latch 
so that the switch signal for the glasses feeds directly into pin 5 of the `86 (gate 3) (from 
one of the data lines of a PC printer port). The SEGA controller uses the pulsing RD* and 
WR* strobes of the Z80 processor as a source of alternating current (AC) for the voltage 
tripler. C&M do not connect the controller direct to a computer bus, so there are no RD* 
and WR* signals and another source of AC must be found for the voltage tripler. The 
400Hz output of the RC oscillator formed by gate I and 2 of the `86 is ideal for this 
purpose. 

However the SEGA controller uses surface mount components and the PCB tracks are 
very fine and well hidden under a black solder resist. It is easy to see how people unused 
to surface mount fabrication techniques (i. e most molecular modellers) could make 
mistakes. In any event we preferred to make up a PC plug in card so that we could still use 
the printer port, and because the voltage tripler is unnecessary if one uses the 12 volts 
already available on the PC bus. 

3.1 PC Card 

The circuit built on a PC plug-in card is shown Figure 4. It varies very little from the one 
used by the SEGA console. Address decoding is achieved by using an Octal Comparator 

enabled by the PC bus input/output write signal IOW*, rather than a 13-Input NAND gate. 
When the address on the P side is equal to that on the Q side and G* is low the logic low 
output from the comparator is used to enable the latch. The signals AO, Al and AEN* 
select the output Q0. As in the SEGA circuit DO is used to toggle the glasses. This circuit 
does not require a voltage tripler as an input of 12V can be taken directly from the PC bus. 

Another possible method of interfacing the glasses to a PC is to clamp the existing SEGA 
controller PCB onto a PC prototyping card and use the IBM PC bus signals more or less 
unchanged. All the data and control signals can be taken directly from the PC apart from 
MREQ* for which AEN* can be used instead. The address lines from the PC can also be 
used but in order so as not to restrict the card to a single address, inverters may be 
selectively added to the address lines as shown in Figure 5. Since the usable addresses of 
the I/O ports on the PC lie in the range 0200-3FF, A9 is always going to be high. 

4 Software 

The code to operate the glasses has been incorporated into the CHEMMOD and 
COMMET 5.6,7molecular modelling packages. Both packages were developed in house at 
Glasgow University. COMMET is running on a 386 PC with a DATAPATH graphics 
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controller and CHEMMOD is running on a PC/AT with a DIGISOLVE graphics 
controller. 

As described by Chelvanayagam and McKeaig the vertical retrace(VR) of the electron 
gun is used as a signal to switch the glasses. For CHEMMOD the monitor is interlaced, 
therefore the glasses are switched after every second vertical retrace. The DIGISOLVE 
graphics controller contains two display buffers in which images can be stored. The left 
and right eye images are drawn on separate display buffers and then the contents of each 
buffer are displayed on the screen alternately. Code to poll the bit in the register associated 
with the VR and to toggle the glasses was written in 8086 assembler for CIIEMMOD. 
(See Figure 6). 

Bit 2 of the status register signals when a vertical retrace is occurring (i. e when bit 2 is 
logic high a VR is occurring, when logic low the image is being drawn). This bit is polled 
to establish when an image is complete. See Figure 7. When the electron beam has 
finished drawing the image the display buffer is switched in order that the other half of the 
stereo image is displayed next time round the loop. The glasses are then flipped by 
sending a logic high or logic low (depending on the value in CL) to the glasses port. The 
state of the mouse buttons are polled in order to exit the routine by pressing a mouse 
button. 

For COMMET the code was written in C and was almost the same as Chelvanayagam and 
McKeaigs'. The monitor used was non-interlaced and the graphics card contained four 
display buffers but for stationary images only two were needed. 

The routines to draw the left and right eye images for both CHEMMOD and COMMET 

were written in FORTRAN. Since both packages contained code for red/green stereo it 
was relatively simple to modify this code for colour stereo images. The main difference in 
the algorithms of the stereo systems is that, for the liquid crystal glasses, both images have 
to be drawn in colour and in separate display buffers whereas for red/green stereo both 
images are drawn in the same display buffer. 

5 Discussion 

Even when viewing complex molecules (1800 atoms) the 3D stationary images produced 
are excellent. However for proteins with many double bonds drawn as such the images 

appear cluttered, therefore better results are obtained by representing the double bonds 
with single vectors. When viewing complex rotating images on a 386' PC using four 
display buffers the rotation appears jerky. This problem could be solved by using a faster 
PC. 

Our method has the advantage over Chelvanayagam and McKeaigs' that the card is 
housed inside the PC so there are no stray wires present. Chelvanayagam and McKeaig 

also mentioned that it would be possible to have more than one viewer using their system, 
and this is possible for the PC card plug in system. An additional LM324 and glasses jack 
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is required for each extra viewer. It is also relatively straightforward to use an IR light 
beam rather than wires to connect the glasses to the controller. 

6 Conclusions 

Although SEGA are no longer manufacturing the glasses, some pairs are still available 
commercially (through Molecular Design, Oxford), various US companies also have 
hoards, and it should be possible to obtain supplies via newspaper small ads. As a last 
resort you could always buy some of the rather expensive models still being made by 
manufacturers other than SEGA. Future developments could involve combining the 
glasses with a spaceball in order to manipulate the molecule in 3D space: spaceballs are, 
however, relatively expensive. 
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Figure 2: Sega Circuit 
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Figure 3(a) : Waveform at Point A (Fig. 2) 
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Figure 4: PC Circuit 
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Figure 5: Alternative Address Decoding 
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Figure 6: 8086 Assembler Code 

PUBLIC 
_swchgl 

_swchgl 
PROC FAR 

PUSH BP 
MOV BP, SP 
NOV CH, 03H 
NOV CL, OOH 

test--vb : NOV DX, 310H 

vb_is_la IN AL, DX 
TEST AL, 02H 
JZ vb_is_la 

vb_is_Ob : IN AL, DX 
TEST AL, 0211 
JNZ vb is Ob 

vb_is_lb : IN AL, DX 
TEST AL, 02H 
JZ vb_is_lb 

vb_is_Oa : IN AL, DX 
TEST AL, 02H 
JNZ vb_is_Oa 

NOV AL, CL 

NOV DX, 300H 
OUT DX, AL 

MOV DX, 150H 
OUT DX, AL 

XCHG CL, CH 

PUSH CX 
MOV AX, 3 

INT 33H 
POP CX 
CMP BX, O 

JE test_vb 

test_bu MOV AX, 3 

INT 33H 
CMP BX, O 
JNE test bu 

POP BP 

RET 

_swchgl 
ENDP 

OVL8 TEXT ENDS 

END 

; Set up stack frame 

; Set plane 1 value 
; Set plane 0 value 

; Load status port address 

; Read status register 
Test if on 
Jump back if not 1 

Read status register 
Test if off 
Jump back if not 

Read status register 
Test if on 
Jump back if not 1 

Read status register 
Test if off 

; Jump back if not 0 

; Get value to output in AL 

; Load page port address 
; Switch display page 

; Load glasses port address\ 
; Switch glasses 

; Swap page number in CL 

; Save CH, and CL 
; Load mouse function code 
; Call mouse interrupt 
; Restore CH, and CL 
; Check the button status 
; Exit if one is down 

; Load mouse function code 
; Call mouse interrupt 
; Check the button status 
; Exit when all up 

; Restore previous stack frame 
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Figure 7: Status Register Polling 
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