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SUMMARY 

Epirubicin is a cytotoxic anti-cancer agent that is mainly used in the treatment of 

breast cancer. Epirubicin is predominantly cleared by the liver and as many 

patients with breast cancer also have liver metastases, it is necessary to reduce the 

dose in these patients to avoid toxicity. The current UK dosage guidelines 

recommend that epirubicin is administered according to the body surface area 

(BSA) of the patient and their bilirubin concentration. However, one study found 

no significant correlation between epirubicin clearance and bilirubin and several 

studies have found no relationship between any pharmacokinetic parameter and 

BSA. A survey that included 173 UK oncologists found that many oncologists do 

not follow the current UK dosage guidelines for epirubicin. The aims of this thesis 

were to develop new dosage guidelines for epirubicin. 

In this thesis, a population analysis performed using a UK data set, including 

109 patients with breast cancer treated with single-agent epirubicin, identified aspartate 

aminotransferase (AST) as the only covariate that had a clinically significant influence 

on epirubicin CL. The population model for epirubicin CL was as follows: CL (L/h) _ 

72.9 x (1- (0.135 x (ln AST)). Inclusion of AST reduced the inter-individual 

variability in CL from 49 to 39 %. 

Internal techniques recommended in the FDA guidelines to validate 

population models, including sensitivity analysis, jacknife analysis and cross 

validation, were used to assess the stability and robustness of the population 

model. The results of these analyses found the model to be stable, not based on 

outliers or spurious data and suggested favorable predictive performance of CL in 

patients with AST above 150 U/L. 

Using the population model, new dosage guidelines were proposed to 

achieve a target AUC of 4000 ng. h/ml, as identified from the literature. The 

following doses were predicted to achieve this exposure with the greatest 

precision: AST<150 U/L = 125 mg; AST 150-250 U/L = 90 mg; AST 250-500 

U/L = 60 mg; AST> 500 U/L = 30 mg. In the UK data set, the new guidelines 

achieved the target with greater precision (root mean squared error (rinse) = 39.0 

%) than the current UK guidelines, current USA guidelines or an earlier equation 
based on AST (rmse = 63 %l 62 % and 59 %, respectively). Furthermore, as the 
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proposed dosing guidelines do not require adjustment according to BSA, they 

could reduce dosage preparation time and minimise the potential for prescribing 

and dispensing errors. 

The most stringent test for the validity of a population model is to measure 
the predictive performance of that model using a different data set. This is known 

as external validation. The predictive performance of the model was evaluated 

using two external data sets. In 18 patients with either breast cancer or 
hepatocellular carcinoma, the population model estimated CL values with poor 

precision (rmse = 82 %). Similarly, in a Swedish data set including 79 patients 

with breast cancer, the population model also estimated CL values with poor 

precision (rinse = 43 %). A comparison of CL values in patients with normal 
liver function showed that the median CL in patients from the Swedish data set 

was nearly twice that in the UK data set. The reason for the differences in CL 

between the two data sets was unclear; possible explanations include a drug 

interaction between the concomitant medication (cyclophosphamide and 
fluorouracil) administered to patients in the Swedish data set or differences in 

general health status of the two patient groups. 
The Swedish and UK data sets were combined and a new population 

model using all the data was developed. Despite the increase in patient numbers, 
AST was still the only clinical factor that was identified as influencing epirubicin 
PK. 

An alternative approach to dose individualisation, a posteriori dose- 

adjustment, was investigated. This method involves taking blood samples and 

measuring drug concentrations to enable estimation of individual PK parameters 

that can be used for dose adjustment. Using D-optimality to identify optimum 

blood sampling times, limited sampling designs were developed to facilitate 

estimation of epirubicin CL by MAP Bayesian estimation techniques from only 2 

or 3 blood samples. These limited sampling designs combined with MAP 

Bayesian estimation were found to estimate epirubicin CL with greater precision 

than both the covariate model and a previous limited sampling model derived by 

multiple linear regression. A simulation analysis indicated that the proposed 
limited sampling designs were robust with respect to errors in the recording of 
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sampling times, suggesting that they will work well in clinical practice. In 

contrast to the dosage guidelines developed using AST, these limited sampling 
designs were shown to predict CL precisely in an independent data set including 

18 patients with breast cancer or hepatocellular carcinoma. An obvious 
disadvantage of the a posteriori method is that it cannot be used to determine the 

first dose. 

On the basis of the analysis presented, a suggested future dosing strategy for 

epirubicin is to calculate the first dose from clinical characteristics and then adjust 

subsequent doses according to a posteriori methods using the proposed limited 

sampling designs. However, due to the high level of unexplained variability in 

epirubicin CL, further work to identify additional clinical characteristics that 

might influence the pharmacokinetics of epirubicin is warranted. 
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INTRODUCTION TO CHAPTER 

This Chapter gives a general background to the research performed in this thesis. 

Firstly, a brief introduction to pharmacokinetics is given in Section 1.1, then factors 

that can influence pharmacokinetics are described, focussing mainly on the influence 

of liver disease. Section 1.2 describes the various methods used to quantify liver 

dysfunction. An introduction to population pharmacokinetics is given in Section 1.3, 

followed by Section 1.4, which describes the importance of defining PK-PD 

relationships and the practical difficulties encountered in oncology. Information on 

why dose-individualisation in cancer treatment may be required and various 

approaches undertaken is provided in Section 1.5. In Section 1.6, a background to the 

clinical use, toxicity, pharmacokinetics and current dosage guidelines of epirubicin is 

provided. Finally, the aims of the analysis performed in this thesis is given. 

1.1 PHARMACOKINETICS 
Pharmacokinetics is the study of the time-course of drug concentrations within the 

body and more specifically drug absorption, distribution and elimination. 

Pharmacokinetic models are fitted to drug concentration-time data to summarise the 

results and to predict outcomes under different circumstances. Knowledge of the 

pharmacokinetics of a drug can enable optimum dosage regimens to be designed. 

Further details of the methodology used for pharmacokinetic modelling are provided in 

Chapter 2. 

1.1.1 Factors influencing pharmacokinetics of drugs 

The pharmacokinetics of a drug are largely determined by the structure of the drug 

molecule. However, there are many factors that influence the pharmacokinetics of 

drugs, resulting in variations in drug handling between different individuals (inter- 

individual variability). For example, the rate and extent of absorption can be 

influenced by diet, disease and co-administration of other drugs. Distribution can be 

influenced by obesity and physiological differences in tissue binding. Elimination may 

vary between individuals due to differences in blood flow and enzyme activity as a 

result of differences in genetics, age, disease or co-administration of other drugs. 

Similarly, the pharmacokinetics may vary within the same individual on different 
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dosing occasions (inter-occasional variability) due to a variety of factors including 

differences in diet, temperature and exercise. 

1.1.1.1 The effect of liver disease on pharmacokinetics 

Liver disease can lead to a reduction in the number of liver cells, a reduction in 

enzyme level or activity, a reduced exchange across the endothelial lining, impaired 

oxygen uptake and a reduction in portal vein perfusion as a result of intra- and 

extrahepatic portal-systemic shunting (Morgan & McLean 1995; Verbeeck & 

Horsmans 1998). Furthermore, biliary obstruction can occur, resulting in a reduced 

secretion of bile into the duodenum. These disease-induced changes in the physiology 

of the liver can lower the hepatic clearance of drugs. Hepatocellular damage can cause 

a reduction in the synthesis of proteins, including albumin and a1-acid-glycoprotein. 

This can lead to a reduction in the plasma protein binding of drugs and hence an 

increase in the fraction unbound (Rowland & Tozer 1995). In liver disease there may 

also be an accumulation of endogenous compounds, such as bilirubin, that can inhibit 

the binding of drugs to plasma proteins (Verbeeck & Horsman 1998). An increase in 

the fraction unbound can result in an increased volume of distribution and an increase 

in the total clearance of some drugs. An increase in the fraction unbound could also 

lead to an increased uptake by target tissues and an altered pharmacodynamic 

response. 

1.2 METHODS OF QUANTIFYING LIVER DYSFUNCTION 

1.2.1 Biochemical tests 

Biochemical tests are routinely performed in patients and can be used to assess the 

severity of liver disease (Gholson & Bacon 1993; Kumar & Clarke 1998). The various 

tests reflect different pathophysiological processes including necrosis and 

inflammation, cholestasis and a reduced synthetic ability. These tests are markers of 

hepatocellular damage and are therefore not markers of metabolising activity or 

capacity; however, they may still be useful as indirect markers of liver function. 

Necrosis and inflammation of the liver can cause aspartate aminotransferase 

(AST) and alanine aminotransferase (ALT) to leak into the blood from damaged liver 

cells and thus levels of these enzymes become elevated. Elevated concentrations of 
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ALT are specific to hepatocellular damage, whereas elevated levels of AST may also 

reflect damage to the heart, skeletal muscle, kidney and brain. 

In cholestasis, where cholesterol and bile acid secretion are impaired, serum 
levels of alkaline phosphatase and 'y-glutamyl transpeptidase (GGT) are elevated. 

Concentrations of alkaline phosphatase are increased in liver disease due to increased 

synthesis by liver cells but elevated levels are also observed in bone disease. The 

highest serum levels of alkaline phosphatase caused by liver disease are associated 

with hepatic metastases and primary biliary cirrhosis. GGT is present in many tissues 

as well as the liver and its activity is also increased following chronic administration of 

enzyme inducers such as phenytoin and alcohol. 

Severe cholestasis can lead to a decrease in the concentration of bile salts in the 

intestine, resulting in poor absorption of vitamin K. The resulting deficiency in 

vitamin K may cause an increase in prothrombin time, which can be corrected by 

administration of vitamin K. Prothrombin synthesis may be reduced in severe 

hepatocellular injury and in this case the increase in prothrombin time cannot be 

corrected by administration of vitamin K. 

In chronic liver disease, the synthesis of albumin may be impaired and its 

concentration will decrease slowly with time. As the half-life of serum albumin is 2-3 

weeks, concentrations do not immediately reflect liver damage and changes may not be 

observed in acute disease. 

Bilirubin is mainly generated from the extra-hepatic degradation of the haem 

pigment from erythrocytes. Bilirubin binds non-covalently to albumin and is 

transported to the liver where it is conjugated with glucuronic acid and excreted in the 

bile. Consequently, serum bilirubin concentrations can become elevated due to 

hepatocellular damage, biliary obstruction or extrahepatic diseases. 

1.2.2 Child-Pugh classification 
The Child-Pugh grading system uses clinical and biochemical measurements to 

classify the severity of liver disease (Pugh et al. 1973). The classification was first 

used in 38 patients requiring an emergency operation for bleeding oesophageal varices 

and gave a good prediction of post-operative risk. The factors used were 

encephalopathy, ascites, bilirubin concentration, albumin concentration and 
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prothrombin time. Points were scored (I to 3) with increasing abnormality for each of 

the five factors. 

As with biochemical tests, the Child-Pugh grading system does not measure 

the physiological factors that are important for the hepatic clearance of drugs. The 

method of scoring means that patients with different types of liver damage may have 

the same score yet may not necessarily have the same capacity to clear a particular 

drug. The Child-Pugh grading system is a crude measure of hepatic disease; 

encephalopathy, ascites, reduced levels of albumin and increased prothrombin time are 

insensitive markers of hepatic damage and are only observed in severe and chronic 

hepatic disease. 

1.2.3 Quantitative liver function tests 
A variety of substrates can be administered to an individual so that hepatic blood flow 

or the metabolic capacity of the liver can be estimated. The substrate is administered 

to the patient, blood samples are taken at various time points post-dose and plasma 

concentrations of the substrate are measured in order to calculate a clearance value. 

The total clearance estimated is assumed to be a measure of hepatic clearance and thus 

extrahepatic clearance of the chosen substrate should be minimal. 

For drugs with high extraction ratios, hepatic clearance is limited by blood 

flow. For such drugs, highly extracted substrates, including galactose, sorbitol and 

indocyanine green, can be used as probes to measure hepatic blood flow as they are 

highly extracted by the liver, and hepatic blood flow is assumed to correspond to their 

estimated clearances (Verbeeck & Horsmans 1998). Drugs with low extraction ratios 

are more dependent on changes in metabolic capacity. Clearance estimates of 

substrates that are enzyme capacity limited, such as caffeine and antipyrine, can be 

used as probes to measure the metabolic capacity of the liver. Antipyrine is a substrate 

for CYP1A2, CYP2C and CYP3A whereas caffeine is a substrate for CYP1A2, 

arylamine N-acetyltransferase and xanthine oxidase (Brockmoller & Roots, 1994). 

Erythromycin is a substrate for CYP3A4 and a breath test has been developed that 

measures the rate of erythromycin metabolism, and hence CYP3A4 activity (Watkins 

et al. 1989). The breath test involves intravenous administration of erythromycin 

radiolabelled with 14C and subsequent measurement of 14CO2 exhaled in the breath. 
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Docetaxel is extensively metabolised by CYP3A4, and the erthyromycin breath test 

was shown to predict docetaxel CL more precisely than biochemical tests (Hirth et al. 
2000). 

These quantitative liver function tests enable estimation of hepatic blood flow 

or the metabolic capacity of the liver and thus have potential advantages over the 

biochemical tests that reflect hepatocellular damage. However, clearance of a drug is 

dependent on a unique combination of factors including the activity of specific phase I 

isozymes, phase II enzymes, blood flow, biliary excretion and concentrations of 

various plasma proteins, and therefore, a single probe compound may not be able to 

predict the pharmacokinetics of a particular drug accurately. One solution could be to 

administer to each patient, a cocktail of probe compounds, each of which has clearance 

affected by different metabolic enzymes and other physiological factors (Brockmoller 

& Roots 1994). However, the complications of drug-drug interactions and the safety 

implications of administering a cocktail of drugs to patients with hepatic disease do not 

favor this approach as a solution. 

1.3 POPULATION PHARMACOKINETICS 

1.3.1 Uses and application of the population approach 
"Population pharmacokinetics" is the term given to a data analysis approach that can 

be used to determine the typical pharmacokinetics of a drug in a population of 

individuals and to provide estimates of inter-individual and residual variability. 

Knowledge of the typical PK parameter values and their variability in the population 

can be used to develop dosage guidelines that will achieve target drug concentrations 

in the patient population. The population approach can also identify clinical factors 

influencing the pharmacokinetics of a drug, such as age or liver function, and thus can 

indicate if there is a requirement for dose adjustment in certain subpopulations. 

1.3.2 Two-stage approach 
In traditional pharmacokinetic studies, such as those in Phase I clinical trials, a large 

number of blood samples are taken from each individual (eg. 10 to 20 blood samples) 

and thus the data is described as dense. A full concentration-time profile can be 
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characterised for each individual and enables pharmacokinetic parameters to be 

calculated using a traditional methods such as compartmental analysis. Dense data 

permits the use of the two-stage population approach so called because in the first 

stage pharmacokinetic parameters are calculated and in the second stage the individual 

pharmacokinetics parameters are used to estimate average PK parameters and inter- 

individual variability. The sources of variability in the pharmacokinetics can be 

investigated using statistical tools such as linear regression. This method is easy to 

perform and requires minimal skills. 

A disadvantage of the two-stage approach is that it requires a large number of 

samples to be taken per individual. Although such data is readily available from Phase 

I trials, these studies generally include a small number of homogenous subjects. As 

the aims of population analyses is to estimate inter-individual variability in the 

population and identify clinical factors influencing the pharmacokinetics, data 

collected from Phase II and Phase III clinical trials are more appropriate for population 

analyses as these studies have fewer entrance restrictions and include a larger number 

of heterogeneous patients. However, in Phase II and III trials only a small number of 

blood samples are usually taken per subject, commonly termed sparse data, and thus 

they do not permit the two-stage approach. Another disadvantage of the two-stage 

approach is that errors associated with the estimated PK parameters are ignored and 

this results in over estimation of inter-individual variability (Sheiner & Beal 1980). 

1.3.3 Mixed effect modelling approach 
To overcome the difficulties experienced with the two-stage approach Beal and 

Sheiner (1992) developed a software package called NONMEM that uses mixed effect 

modelling techniques to perform population pharmacokinetic analysis. NONMEM 

simultaneously fits all the data, which may be sparse and unbalanced, to attain values 

for the typical pharmacokinetics parameters and their distribution in the population. 

Using these estimates and the concentration data for each individual, NONMEM uses 

Bayesian methods to obtain individual estimates of pharmacokinetics parameters 

(details are provided in Chapter 2). 

Mixed effect models are so called because they include the influence of both 

fixed effects and random effects. Fixed effects are factors that can be measured or 
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determined, e. g. pharmacokinetic parameters and covariates. Random effects are 
factors that cannot be observed, such as unknown differences in physiology or 
bioanalytical errors. In population pharmacokinetic models, random effects can be 

subdivided into 3 types: Inter-individual variability (differences between individuals); 

inter-occasion variability (differences within an individual between different dosing 

occasions, which cannot be explained by covariates); and residual error, which is the 

difference between the observed and predicted concentrations as a result of 

measurement error, model misspecification or other unknown errors. 

Population analyses using mixed effect models estimate individual 

pharmacokinetic parameters with more precision and less bias than the two-stage 

approach (Sheiner & Beal 1980; Sheiner & Beal 1981 a). Another advantage of mixed 

effect modelling is that it provides errors of the parameter estimates. However, a 

disadvantage of mixed effect modelling is that it is less user friendly and requires 

substantial training. 

1.4 PHARMACOKINETICS AND PHARMACODYNAMICS 

1.4.1 The importance of defining a PK-PD relationship 
It is generally assumed that there is a relationship between the concentration-time 

profile of a drug in the plasma (as determined by the dosage regimen and the 

pharmacokinetics) and the observed clinical effect of the drug (pharmacodynamics), 

albeit often complex. For example, it may be possible to identify a threshold 

concentration or area under the concentration-time curve, above which the chances of a 

response increase. If we are to adjust the dosage regimen according to a patient's 

pharmacokinetics (PK) to achieve the desired pharmacodynamic (PD) effect, we need 

to understand the relationship between the PK and the PD of the drug. Unfortunately, 

due to the complex nature of neoplastic disease, this PK-PD relationship is often very 

difficult to define. 
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1.4.2. Difficulties of measuring the PK-PD relationships for anti- 

cancer drugs 

Therapeutic responses to chemotherapy are measured by changes in the size of lesions, 

time to disease progression and survival (Hayward et al. 1977). Therapeutic responses 
to antineoplastic drugs are often difficult to relate to measured drug concentrations as 

an outcome is often not observed for many months or even years. It is also difficult to 

attribute the pharmacodynamic effect to a single dose cycle as many dose cycles are 

usually given and generally many different drugs are administered. Furthermore, 

patients who show a tumour response to an anticancer agent are more likely to receive 
further treatments, resulting in a biased relationship between total systemic exposure 

and tumour response. 

1.4.3. Using haematological toxicity as a marker of therapeutic 

response 

Due to the complications associated with using tumour response as a 

pharmacodynamic endpoint, many pharmacodynamic studies of anti-cancer drugs have 

used haematological toxicity as a marker for the pharmacodynamic effect. This would 

seem a valid assumption as most cytotoxics are antiproliferative and their effect on 

proliferating bone marrow may mirror that of tumour tissue. In a study of 211 patients 

with advanced breast cancer, it was shown that patients with lower leukocyte nadirs 
had a significantly better response to chemotherapy (distance disease free and overall 

survival) then those with higher nadirs (Saarto et al. 1997). For most anti-cancer 

agents a maximum tolerated dose (MTD) is sought, which is defined as the maximum 

dose that can be given with acceptable toxicity in most patients. It is assumed that 

administration of drug at the maximum tolerated dose will maximise the chances of a 

tumour response. Relationships between systemic exposure, as measured by area 

under the curve (AUC), and white blood cell (WBC) count have been identified for 

many anti-cancer agents including 5-fluorouracil (5-FU) (Santini et al. 1989), 9- 

aminocamptothecin lactone (de Jonge et al. 1999) and etoposide (Stewart et al. 1991), 

doxorubicin (Piscitelli et al. 1993) and epirubicin (Jakobsen et al. 1991b; Dobbs et al. 
1998b). These studies used a single nadir blood cell count as the pharmacodynamic 
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end point. The relationship identified between epirubicin AUC and WBC count is 

discussed in more detail in Section 1.68. 

Patients who have prolonged leukopenia have been shown to be at a greater 

risk of infection than those who have a more a rapid recovery (Bodey et al. 1966) and 
thus the measurement of several blood cell counts over a period of time is considered a 
better marker of toxicity that a single nadir WBC measurement. Several researchers 

have developed models that incorporate the change in blood counts with time. The 

pharmacodynamic response of etoposide, measured by leukopenia, was described by a 

cubic-spline function, which fitted the average response of the population versus time 

(Karlsson et al. 1995). The model included a lag-time (length of time before WBC 

count decline is observed) and the duration of time below the WBC count baseline. 

However, the parameters estimated from this mathematical model are difficult to relate 

to physiological processes. A more physiological model was developed for paclitaxel, 

which relates the drug concentration-time profile with the time course of leukopenia 

(Minami et al. 1998). This physiological indirect-response model has 2 compartments 

corresponding to the leukocyte pool in the bone marrow, the site of drug action, and 

the peripheral blood, where the leukocytes are measured. An Er,, model was used 

which relates the extent of inhibition of leukocyte production in bone marrow cells to 

the extent of systemic exposure to paclitaxel, measured by AUC. More recently, a 

physiological model was successfully used to describe the time course of neutropenia 

following administration of 2'-deoxy-2'-methylidenecytidine (DMDC) to patients with 

colorectal or non-small-cell lung cancer (Friberg et al. 2000). The model imitated time 

delays of the bone marrow maturation process and consisted of nine proliferating 

transient compartments that were sensitive to DMDC, 5 non-proliferative, non- 

sensitive compartments and one compartment for circulating neutrophils. The 

advantages of time-dependent pharmacodynamic models are that they use information 

from many cell counts, rather than just the nadir, as a measure of response and they 

allow flexibility on when cell counts are made. 

It should be emphasized that measures of haematological toxicity are not direct 

measures of drug efficacy. For most cancer drugs, doses are administered close to the 

maximum tolerated dose, however, an increase in toxicity may not necessarily result in 

an increase in tumour response. 
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1.4.4 Relationships between tumour response and plasma 

concentrations for anti-cancer drugs 

Despite the difficulties described above, there have been a small number of studies that 

have used tumour response as a pharmacodynamic end point. In a large study of 1028 

patients administered carboplatin for the treatment of ovarian cancer, the likelihood of 

a tumour response at a given AUC was described by the modified Hill equation 

(Jodrell et al. 1992). The likelihood of a response did not increase above an AUC of 7 

mg. min/ml; however, the likelihood of leukopenia and thrombocytopenia did continue 

to increase above this threshold. This emphasizes the limitations of using 

haematological toxicity as a pharmacodynamic marker of tumour response. 

In patients with Kaposi's sarcoma associated with acquired immunodeficiency 

syndrome (AIDS), who were treated with pegylated-liposomal doxorubicin, 

classification and regression tree (CART) analysis showed that lesion response, 

evaluated 3 weeks after treatment, was significantly related to the average daily 

maximum doxorubicin concentration (Amantea et al. 1997). Doses of up to 80 mg/m2 

pegylated-liposomal doxorubicin have been administered in previous solid tumour 

trials, however, in this study it was suggested that a'dose of 20 to 30 mg/m2 every three 

weeks should be efficacious in this patient group. Although higher doses may result in 

an increased risk of toxicity, they did not appear to result in an increased tumour 

response. 
Systemic exposure to docetaxel, as measured by AUC, was investigated as a 

potential indicator of tumour response using multivariate regression, in a study with 

189 patients with non-small cell lung cancer (Bruno et al. 1998). They showed that the 

risk of tumour progression decreased with an increase in the AUC measured during the 

first cycle of treatment. 

Patients with acute lymphocytic leukaemia being treated with methotrexate, 

who had had median methotrexate serum concentrations less than 16 µM, were 3 times 

more likely to have a relapse during therapy (Evans et al. 1986). A further study in 

182 children showed that patients who received individualized doses to achieve 

methotrexate concentrations greater than 16 gM had a significantly better response 

than patients who received conventional treatment, without an increase in the number 

of severe toxic events (Evans et al. 1998). 
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1.5 DOSE INDIVIDUALISATION OF ANTI-CANCER DRUGS 

1.5.1 Why individualise doses? 

As a result of pharmacokinetic variability, drug concentrations, and consequently the 

systemic exposure, of one patient may be much higher or lower than in another patient 

who is administered the same dose. Different doses may therefore be required in 

different individuals to achieve the same target systemic exposure, indicating the need 
for individualised dosing. Doses of anti-cancer agents are often decreased in response 

to toxic events but they are rarely increased if toxic effects don't occur. It is therefore 

likely that some patients will have a systemic exposure to anti-cancer compounds that 

is too low. Individualised dosing is particularly important for drugs with a narrow 

therapeutic window (where there is only a small difference in drug concentrations at 

which a therapeutic effect is expected and that at which toxicity is expected) and where 

inter-individual variability is high. These criteria are generally true for antineoplastic 

agents. For dose-individualisation to be successful, a clearly defined concentration- 

effect relationship is required to identify a target pharmacokinetic end-point such as 

the maximum plasma concentration (Cma)) or AUC. 

1.5.2 Individualised dose adjustment -a priori 
With a priori dosing, the dose is determined from a knowledge of the relationship 

between pharmacokinetic parameters and the patient's clinical characteristics, such as 

age, weight, liver function or renal function, and on a desired pharmacokinetic end- 

point. This method of individualised dosing is simple, easy to implement and can 

reduce inter-individual variability in systemic exposure. However, it is not possible to 

ascertain if the dose for a given individual is too low. The success of this method 

depends upon how accurately the pharmacokinetics can be predicted from the clinical 

characteristics. 
N 

1.5.2.1 Dose adjustment according to body surface area 

Doses of most anti-cancer agents are routinely adjusted accordingly to the patient's 
body surface area (BSA). The rationale behind this approach originates from studies 
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that showed that the MTD was similar in different species when the dose was adjusted 
for BSA. This suggested that inter-species scaling based on BSA could aid 
identification of a safe starting dose for Phase I clinical trials. 

BSA is commonly calculated from height and weight using a formula proposed 
by Dubois (Dubois & Dubois 1916): 

Predicted surface area (m2) = weight (kg)o. 425 x height (cm)0.725 x 0.007184 

The actual BSA was measured by covering subjects in paper and then calculating the 

surface area of the paper. Although this formula was developed from only 9 

individuals, they included a diverse range of body shapes and sizes. 

There is some evidence to support scaling according to BSA between species 

but little evidence that dose adjustment based on BSA is of benefit within a species. 

Grochow and coworkers (1990) investigated the influence of weight, height and BSA 

on the pharmacokinetics of 6 anti-cancer compounds including an alkylating agent 

(busulfan), a microtubular toxin (taxol), three anti-metabolites (trimetrexate, 

dichloromethotrexate and brequinar), 2 intercalating agents (piroxantrone and 

menogaril) and 2 differentiating agents (N-methylformamide and hexamethylene-bis- 

acetamide). Clearance was only correlated with a measure of body size (height) for 

taxol (r = 0.697) and was not correlated with BSA for any of the other drugs 

investigated, indicating that dose adjustment according to BSA would not reduce inter- 

individual variability in systemic exposure. 

1.5.2.2 Dose adjustment according to renal function 

The clearance of drugs that are eliminated by the kidneys, such as carboplatin, usually 

depends on the glomerular filtration rate (GFR), which is correlated with creatinine 

clearance (CrCL). Several formulae have been proposed and validated prospectively, 

to estimate the optimal dose of carboplatin from GFR or CrCL. Egorin and coworkers 

(1985) used desired platelet nadir (dose-limiting toxicity), pre-treatment platelet count, 

BSA, status of prior chemotherapy and measured CrCL to calculate a dose whereas 

Calvert and coworkers (1989) used a measured GFR to calculate the dose required to 

obtain a target AUC. These equations require a direct measurement of CrCL or GFR. 

CrCL, and hence GFR, is commonly estimated from serum creatinine concentrations 

using formula such as the Cockcroft-Gault equation (1976), which is inaccurate at low 

creatinine concentrations (Caregaro et al. 1994). More recently, a formula has been 
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developed, using the population approach, to estimate GFR in patients with cancer 
from age, BSA, sex, serum creatinine and creatine kinase. This approach was less 

biased and more precise than the Cockcroft-Gault equation (Wright et al. 2001). 

1.5.2.3 Dose adjustment according to hepatic function 

Due to its complex nature, hepatic clearance is difficult to predict from clinical 

characteristics. Most studies have assessed the effects of liver dysfunction on the 

pharmacokinetics of anticancer drugs in the presence or absence of hepatic damage and 
have defined dosage guidelines by empirical methods. Few studies have established how 

the severity of liver damage affects the pharmacokinetics of anticancer drugs. This is 

likely to be due to the lack of an established liver function grading system and the small 

number of patients with liver dysfunction that are usually included in such studies. 
Biochemical markers such as ALT, AST, bilirubin and alkaline phosphatase have been 

used to identify the presence of liver damage and to indicate that dosage reduction may be 

necessary to avoid severe toxicity. Dose reductions have been recommended for patients 

with impaired liver function for a number of anti-cancer drugs including docetaxel (Bruno 

et al. 1998), vinorelbine (Robieux et al. 1996) and anthracyclines (Piscitelli et al. 1993, 

Dobbs et al. 2003). 

Docetaxel is active in a wide variety of tumours including metastatic breast cancer 

and non-small cell lung cancer. Bruno et al. 1998, found that docetaxel clearance was 27 

% lower in 26 patients with elevated transaminases and alkaline phosphatase compared to 

614 patients with normal hepatic enzyme levels. As toxicity (neutropenia) was related to 

the clearance of docetaxel, the authors recommended a 25 % reduction in the dose for 

patients with elevated levels of transaminases and alkaline phosphatase. 

In a study of 29 patients with breast cancer treated with vinorelbine, a significant 

correlation was found between drug clearance and prothrombin time, bilirubin 

concentration and albumin concentration (Robieux et al. 1996). Clearance of vinorelbine 

in patients who had 25 to 75 % liver volume replaced by tumour (LVRT) was similar to 

that in patients with no liver metastases, however, it was markedly reduced in patients 

estimated to have greater than 75 % LVRT. The authors recommended a dose reduction 

of at least 50 % for patients with severe liver dysfunction but no dosage alteration for 

patients with moderate liver dysfunction. 
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Following administration of doxorubicin (60 mg/m2) to 82 patients with various 

cancers, plasma concentrations in 8 patients with liver disease were 4 to 5 times higher 

than those measured in patients with normal liver function (Benjamin et al. 1974). A 

significant increase in toxicity, as measured by WBC nadir, platelet nadir, mucositis and 
drug related deaths, was observed in patients with impaired liver function compared to 

those with normal liver function. Nine subsequent patients with moderate or severe liver 

dysfunction were administered doxorubicin at 50 % and 25 % of the normal doses, 

respectively. Following these dose reductions, the patients with liver dysfunction had 

similar plasma concentrations and toxicity to patients with normal liver function. The 

influence of liver dysfunction on epirubicin pharmacokinetics is discussed in Section 

1.6.6. 

1.5.3 Individualised dose adjustment -a posteriori 
A posteriori dose adjustment requires blood samples to be taken from a patient so that 

individual pharmacokinetic parameters can be determined and used to adjust the next 

dose to achieve the target systemic exposure. A posteriori dose adjustment generally 

achieves the pharmacokinetic target with more precision than a priori methods 

(Sandstrom et al. 2001; Nguyen et al. 2002). Furthermore, it is possible to identify 

those individuals that have received subtherapeutic doses, and thus the dose can be 

increased accordingly. A limitation of the a posteriori method is that dose adjustment 

is not possible for the first dose, except for drugs administered as prolonged infusions, 

where blood samples taken early during the infusion can be used to adjust the infusion 

rate at later times. Traditional methods used to estimate pharmacokinetic parameters 

require a large number of blood samples, which is costly and inconvenient to patients 

and staff. Limited sampling methods have therefore been developed that enable 

pharmacokinetic parameters to be estimated from only 1 to 3 blood samples. These 

approaches include multiple linear regression (MLR) and maximum a posteriori 

(MAP) Bayesian analysis. 

1.5.3.1 MLR as a limited sampling approach 

Several studies have used multiple linear regression to identify the best 2 or 3 blood 

sampling times at which measured concentrations correlate most highly with the 

desired PK parameter. A PK parameter, such as AUC, that has previously been related 
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to a pharmacodynamic response is usually chosen. Following MLR analysis, an 

equation is generated which enables subsequent estimation of the PK parameter from 2 

or 3 blood samples. The MLR approach has been used successfully to estimate the 

AUC of many anti-cancer compounds including vinblastine (Ratain & Vogelzang 

1987), cyclophosphamide (Egorin et al. 1989), carboplatin (Sorensen et al. 1993), 9- 

amino-20(S)-camptothecin (Spareboom et al. 1999) and etoposide (Panetta et al. 

2002). This simple technique enables medical staff to calculate doses quickly and 

easily using a pocket calculator. A disadvantage of the MLR technique is that the 

dosage schedule and times at which blood samples are collected must strictly adhere to 

those used to generate the equation, which may not be practical in routine clinical use. 

Furthermore, estimates of pharmacokinetic parameters at the extreme ends of the 

parameter distributions have been very poorly estimated using MLR (Panetta et al. 

2002) and it is in these patients that dose adjustment is the most crucial. 

1.5.3.2 Bayesian estimation for limited sampling 

Individual pharmacokinetic parameters can be estimated from a small number of 

measured concentrations using Maximum A Posteriori (MAP) Bayesian estimation if 

there is prior knowledge of population values and their variability in the population 

(Sheiner et al. 1975). Unlike MLR limited sampling strategies, MAP Bayesian 

analysis offers more flexibility regarding blood sampling and the dosage 

administration (Rousseau et al. 2000). In addition, estimates of clearance (CL), and 

hence AUC, obtained using the Bayesian approach have been shown to be more 

accurate and precise than those determined using MLR (Panetta et al. 2002). One of 

the limitations of Bayesian estimation is that it requires the development of complex 

computer software and extensive training of medical staff. 

Population analysis has been used to design and validate limited sampling 

strategies using MAP Bayesian analysis for a number of anti-cancer compounds 

including vinorelbine (Nguyen et al. 2002), docetaxel (Baille et al. 1997) and etoposide 

(Panetta et al. 2002). The limited sampling designs were found to give good 

predictions of CL in terms of accuracy and precision. Although blood samples do not 

need to be taken strictly at specific times for MAP Bayesian estimation, they do need 
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to be accurately recorded and some sampling time windows will result in more 

accurate estimations of PK parameters than others. 

1.5.3.3 D-optimality 

The accuracy and precision of individual pharmacokinetic parameter estimates 

depends on the number of blood samples and the times of sampling (D'Argenio 1981). 

The most popular method used to identify the optimal blood sampling times is D- 

optimality. D-optimality selects the same number of sampling times as the number of 

parameters in the pharmacokinetic model, e. g. for a two compartment model, 4 

sampling times are selected. The optimum times are selected as those that minimize 

the determinant of the inverse Fisher Information Matrix (Box & Lucas 1959). 

Accurate identification of optimum sampling times using this method requires that 

both the structure of the pharmacokinetic model and the true model parameters are 

known, which of course does not occur in reality. D-optimality does not normally 

incorporate information on the population distribution of the pharmacokinetic 

parameters, i. e. inter-individual variability. However, the D-optimality criterion has 

recently been extended to include such information and therefore aid in the design of 

population pharmacokinetic studies (Mentre et al. 1995; Mentre et al. 1997). 

1.5.3.4 Limited sampling of anthracyclines 

Doxorubicin AUC and CL have been successfully estimated from 2 blood samples 

using both MLR and Bayesian estimation methods. Bayesian analysis using 

concentration measurements at 20 min and 24 h gave estimates of doxorubicin CL that 

were in close agreement with those obtained using 9 samples (Launay et al. 1989). 

MLR methods identified 2 and 48 h as the optimal times to estimate doxorubicin AUC 

(Ratain et al. 1991), which, although were in good agreement with the actual AUC 

values, were not as reliable as those obtained with the Bayesian method. 

In 78 patients receiving epirubicin for treatment of advanced breast cancer, 

Jakobsen et al. (1991 a) used MLR to identify the 2 and 24 h concentrations as the best 

combination and the 6h concentration as the best single point to estimate epirubicin 

AUC. In addition, using data collected from 55 patients, they identified a positive 

correlation between AUC and log fractional WBC nadir and proposed a model that 
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could predict log fractional WBC nadir from only 1 or 2 blood samples (Jakobsen et al. 
1991b). 

1.5.3.5 Clinical outcome following a posteriori dose adjustment 

Most studies have assessed the practicalities of a posteriori dose adjustment (or 

"therapeutic drug monitoring", TDM) retrospectively and there are few that have 

demonstrated the benefits of TDM in terms of patient outcome. This is probably due, 

at least in part, to the difficulties in measuring a therapeutic response and the large 

patient numbers required. Ideally, such studies require two groups of patients; one in 

which standard, non-adjusted doses are used and the other in which individualised 

doses are used. An encouraging example of the potential benefits of TDM in 

chemotherapy was a study in which 188 children with acute lymphocytic leukaemia 

(ALL) were randomised to receive either a standard or an individualised 24 h infusion 

of methotrexate (Evans et al. 1998). In patients who received individualised doses, 2 

concentrations measured early during the infusion were used to obtain Bayesian CL 

estimates and the infusion rate was then adjusted so that the target systemic exposure 

was achieved. There was a significantly better response rate in patients who received 
individualised doses (76 %) compared to those who had standard therapy (66 %), 

without an increase in toxicity. This study highlighted that some patients do not 

respond to methotrexate therapy because they receive an inadequate dose rather than 

because their disease is resistant to treatment. 

When MAP Bayesian estimation was used to adjust doses of teniposide in 21 

paediatric patients with ALL, there was a 50 % increase in average systemic exposure 

compared to that given by conventional therapy, without any increase in dose-limiting 

toxicity (Rodman et al. 1993). Blood samples taken after an initial dose of teniposide 

were used to determine the pharmacokinetics and optimum dose of teniposide to 

achieve the desired AUC in subsequent courses. A three-fold range in dose was 

required to achieve an AUC that had previously been correlated with response 
(Rodman et al. 1987). 

In 81 patients with head and neck cancer, reduction of 5-FU infusion rate on 
Day 3 of a 5-day infusion in patients with high AUCo_3days values reduced the incidence 

of toxicity from 20 % to 12 % (Santini et al. 1989). Furthermore, the tumour response 

rate was higher in the patients who had dose adjustments than in those who received 
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conventional therapy. One explanation for this is that patients who received 

conventional therapy and had toxicity, subsequently had longer intervals between 

cycles and fewer cycles. 

1.6 EPIRUBICIN 

1.6.1 Clinical use 
Epirubicin is a cytotoxic anti-cancer agent that is mainly used in the treatment of breast 

cancer. It has been shown to be highly active in advanced breast cancer when 

administered as a single agent or in combination with other drugs (Carmo-Pereira et al. 

1991; Miller et al. 2000). Treatment of early breast cancer by administration of 

epirubicin in combination with fluorouracil and cyclophosphamide (CEF) resulted in 

prolonged relapse-free survival compared to combinations of cyclophosphamide, 

methotrexate and fluorouracil (CMF), thereby suggesting a role for epirubicin in 

adjuvant therapy (Coukell & Faulds 1997). Epirubicin has also been shown to be 

effective in the treatment of many other types of cancer including gastric, pancreatic 

and bladder (Wils 1986; Pavone-Macaluso et al. 1993; Calais da Silva et al. 1988). 

1.6.2 Maximum tolerated dose 

Epirubicin belongs to the anthracycline group of compounds. It has a structure 

identical to that of its prototype, doxorubicin, with the exception of the spatial 

orientation of the hydroxyl group at the 4' position of the daunosamine sugar 

(Arcamone et at. 1975). At equal doses, epirubicin has been shown to have similar 

efficacy to doxorubicin but with reduced toxic side effects (Robert. 1993). The dose 

limiting toxicity for epirubicin is neutropenia (Tjuljandin et al 1990). The maximum 

tolerated dose of epirubicin is 150 to 180 mg/m2 (Tjuljandin et al. 1990; Miller et al. 

2000) compared to approximately 90 mg/m2 for doxorubicin (Reich 1978). Repeated 

administration of either doxorubicin or epirubicin can result in cardiotoxicity; 

however, the maximum tolerated cumulative dose of epirubicin (1000 mg/m2) is much 

higher than that of doxorubicin (550 mg/m2) (Plosker & Faulds 1993). Thus epirubicin 

can be administered at higher doses and/or for more treatment cycles than doxorubicin. 
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1.6.3 Mechanism of action 
Although the exact mechanism of action of epirubicin is not fully understood, several 
biochemical effects have been observed following treatment with anthracyclines and it 

is thought that the cytotoxic activity of epirubicin may result from one or more of these 

mechanisms. 

Anthracyclines are thought to intercalate between DNA base pairs inducing 

DNA fragmentation (Plosker & Faulds 1993). Furthermore, the complex formed with 
DNA inhibits the activity of topoisomerase II. Topoisomerases are intranuclear 

enzymes that enable the DNA double helix to unwind by transiently breaking and 

rejoining the double DNA strands. The intercalative binding of epirubicin to DNA 

also inhibits DNA helicase activity, which is required to separate double-stranded 

DNA (Bachur et al. 1992). Thus by interfering with the activity of topoisomerase II 

and DNA helicase, epirubicin inhibits DNA replication and transcription. 

Anthracyclines react with a number of reducing agents including nicotinamide 

adenine dinucleotide (NADH) P-450 reductase, cytochrome b5-reductase and xanthine 

oxidase to undergo electron transfer resulting in the generation of semiquinone free 

radicals (Doroshow 1983; Sinha & Politi, 1990). The semiquinone free radicals can 

further react with oxygen to generate superoxide anion radicals, hydrogen peroxide 

and hydroxyl radicals (Goodman & Gilman, 1992). The free radicals and other 

reactive species are believed to result in cytotoxicity by alkylating DNA, causing DNA 

strand breaks, peroxidation of membrane phospholipids and reactions with other 

cellular macromolecules (Sinha & Politi, 1990). 

Several mechanisms of resistance to anthracyclines have been identified. The 

most consistent finding in anthracycline resistant cells is the over expression of p- 

glycoprotein, an efflux pump that reduces intracellular drug accumulation (Mouridsen 

et al. 1990). Addition of inhibitors of p-glycoprotein, such as verapamil, to cell lines 

previously resistant was shown to restore the sensitivity of these cells to epirubicin 

(Plosker & Faulds, 1993). A significant increase in glutathione peroxidase and 

glutathione transferases was observed in a breast cancer cell line (MCF-7) that was 

resistant to doxorubicin (Sinha & Politi 1990). These enzymes are believed to detoxify 

the cytotoxic reactive species generated by anthracyclines. It has also been postulated 
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that interference with apoptotic pathways, such as over expression of the c-erbB-2 

oncogene, could offer resistance to anthracyclines (Coukell & Faulds 1997). 

1.6.4 Metabolism and excretion 
The molecular structure of epirubicin and its major metabolic pathways are illustrated 

in Figure 1.1. Epirubicin is metabolised to epirubicinol and 4 aglycone metabolites by 

aldoketoreductase, predominantly in the liver, although metabolism also occurs in red 
blood cells (Weenan et al. 1983; Camaggi et al. 1988; Danesi et al. 2002). This route 

of metabolism is comparable to that of doxorubicin, which is metabolised to 

doxorubicinol and aglycones, however, epirubicin and epirubicinol can also undergo 

glucuronidation (Camaggi et al. 1988). Epirubicin glucuronide is the major metabolite 

found in both plasma and urine (Mross et al. 1988, Camaggi et al. 1988). This 

additional route of metabolism for epirubicin could account for its more rapid 

elimination and hence its lower toxicity compared to doxorubicin. Epirubicinol is 

thought to be cytotoxic, whereas the aglycone metabolites are inactive and the activity 

of glucuronides is unknown (Plosker & Faulds 1993). Approximately 6 to 12 % of an 

epirubicin dose is excreted in the urine unchanged and a further 4 to 10 % is excreted 

in the urine as metabolites (Camaggi et al. 1986; Camaggi et al. 1988; Mross et al. 

1988). The major route of epirubicin elimination is in the bile with approximately 22 

% excreted as unchanged epirubicin and a further 13 % excreted as metabolites 

(Camaggi et al. 1986). 

1.6.5 Pharmacokinetics 

The plasma concentration-time profile of epirubicin is best described by a tri- 

exponential equation. A summary of pharmacokinetic parameter estimates reported in 

the literature is given in Table 1.1. Although the plasma clearance of epirubicin is 

rapid (50-85 L/h), the terminal half-life is relatively long (20 to 40 h) due to its large 

volume of distribution (500-1500 L/m2). 
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Figure 1.1 Metabolic pathways of epirubicin 
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The pharmacokinetics of epirubicin in 78 patients with metastatic breast cancer 

were shown to be dose-proportional over the dose range of 40-135 mg/m2 (Jackobsen 

et al. 1991 a). In contrast, a greater than dose proportional increase in AUC and Cmax 

values was reported in a study of 19 patients over the dose range of 90-150 mg/m2 

(Tjuljandin et al. 1990). However, this study included a smaller number of patients 

than that of Jakobsen and coworkers. In addition, the pharmacokinetic parameters 

were calculated using a 2-compartment model and the results appeared to be variable 

and inconsistent. Using a population approach, Wade and coworkers found that dose 

did not explain any of the inter-patient variability in the pharmacokinetics of epirubicin 

and therefore concluded that epirubicin had linear pharmacokinetics over the range of 

25-100 mg/m2 (Wade et al. 1992). 

1.6.6 Factors influencing the pharmacokinetics of epirubicin 

The AUCs of epirubicin and its metabolite epirubicinol increased by approximately 30 

% and 100 %, respectively, when epirubicin was co-administered with 

paclitaxel/Cremophor EL (Danesi et al. 2002a). Both paclitaxel and Cremophor EL 

are substrates for P-glycoprotein and it has been suggested that these increases are due 

to a reduction in biliary excretion of epirubicin and epirubicinol resulting from 

competition for this carrier protein. Although co-administration of verapamil produced 

no changes in the pharmacokinetics of epirubicin and epirubicinol, significant 

increases (100 %) in the AUCs of the aglycones were observed (Mross et al. 1993). 

Verapamil also inhibits p-glycoprotein (Yusa & Tsuruo 1989), which may explain this 

effect. However, it is unclear why the pharmacokinetics of the aglycone metabolites 

were affected but not epirubicin or the other metabolites. The most likely explanation 

is that the small number of patients (n=10) included in this study was inadequate to 

obtain conclusive results. A 50 % increase in epirubicin and epirubicinol AUCs was 

observed following co-administration with cimetidine (Murray et al. 1998). The 

mechanism for this drug interaction remains unclear as although cimetidine is known 

to reduce blood flow, a decrease in liver blood flow was not observed. 

Epirubicin clearance was found to be influenced by sex and age in a population 

analysis of epirubicin pharmacokinetics (Wade et al. 1992, see Section 1.6.7 for more 

details), however, a study of 27 patients with nasopharyngeal carcinoma found no 
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relationship between any pharmacokinetic parameter and sex or age (Hu et al. 1989). 
Patients with renal disease (n = 5) were found to have similar pharmacokinetics to 

patients with normal renal function (n = 11) following administration of epirubicin, 
however, a 40 % decrease in clearance was observed in patients with liver metastases 
(n = 6) (Camaggi et al. 1982). Abnormal liver function was also identified as 
influencing epirubicin clearance by Twelves et al. (1992), who observed a strong 

correlation between AST concentrations and epirubicin CL in 30 women with 

advanced breast cancer. 

1.6.7 Population pharmacokinetics of epirubicin 
A population analysis of epirubicin pharmacokinetics performed with NONMEM 

(Wade et al. 1992) found that CL was influenced by the sex of the patient and that age 
influenced CL in females but not in males. Limited data in males older than 50 years 

may have contributed to this observation. However, these results are inconsistent with 

the results from Hu et al (1989) who found no relationship between any 

pharmacokinetic parameter for epirubicin with sex or age. It should be noted that the 

population analysis performed by Wade and coworkers included only 36 patients, 

which is a very small number for a population analysis. Furthermore, their data were 

fitted with a 2-compartment rather than a 3-compartment model and the high residual 

error of 42 % suggests some model misspecification. 

The population approach was also used to analyse data from 97 patients (177 

cycles of treatment) with advanced breast cancer, who were administered epirubicin in 

combination with fluorouracil and cyclophosphamide (FEC) (Sandstrom 2002). A 3- 

compartment model was fitted to the data using NONMEM and covariates were added 

using an automated model building procedure. Albumin and bilirubin were found to 

have a statistically significant influence on epirubicin CL. However, as only 3% of the 

variability in CL was explained by these factors, this may have limited clinical 

significance. Since inter-occasional variability was estimated to be 7 %, which is low 

relative to the inter-individual variability (15 %) it suggested that therapeutic drug 

monitoring could be useful in treatment with epirubicin. Interindividual variability 

estimated in this study was much lower than that estimated in previous studies (29 to 

75 %) (Camaggi et al 1982; Mross et al. 1988; Gurney et al. 1998; Danesi et al. 
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2002a). In most subjects only 2 to 4 blood samples were available per patient, which 
is perhaps insufficient to describe the concentration-time profile of a 3-compartment 

model. This could result in shrinkage of individual estimates of CL to the population 
values, resulting in an underestimation of interindividual variability. 

1.6.8 PK-PD relationships for epirubicin 
Jakobsen et at (1991 b) identified a relationship between the epirubicin AUC and the 
fall in white blood cells (WBC), expressed as the logarithmic ratio of WBC nadir to 

pre-treatment WBC count, in 55 patients with advanced breast cancer. Dobbs and 
Twelves (1998b) also found statistically significant relationship between both WBC 

nadir and neutrophil nadir with epirubicin AUC, in 11 patients with advanced breast 

cancer. However, other studies have been unsuccessful in finding a relationship 
between AUC and response. No correlation was found between epirubicin AUC and 
WBC nadir in 22 patients with solid tumours (Camaggi et al. 1982) while in a study of 
19 patients with various malignancies, linear regression analysis found no significant 

correlation between haematological toxicities (percentage change in granulocytes and 

neutrophils) and Cmax or AUC (Tjuljandin et al. 1990). In addition, no significant 

relationship was observed between nonhaematological toxicities (stomatitis, nausea, 

vomiting and diarrhea) and Cmax or AUC. However, both of these studies investigated 

relatively small numbers of subjects, and given the large variability in toxicity 

observed following treatment with anticancer agents, it is perhaps not surprising that 

no statistically significant relationships were observed between toxicity and 

pharmacokinetic parameters. 

Semi-physiological models have been developed that successfully described 

the PK-PD relationships between WBC count-time profiles and plasma concentrations 

of fluorouracil-epirubicin-cyclophosphamide and of epirubicin-docetaxel (Sandstrom 

2002). The models consisted of compartments that represent proliferating WBC, 

maturing WBC and circulating WBC. First order rate constants were used to describe 

the rate of proliferation, the maturation rate constant and the elimination rate of 

circulating cells. In the model, the drug acts on the proliferating compartment and 

effect is a function of drug plasma concentration and a drug-specific slope parameter. 

As the models were developed following treatment with combination therapy, it was 
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assumed that the individual influences of each drug on the WBC-time profile were 

additive. Despite this limitation, simulations based on the epirubicin model predicted 

WBC counts at 12 days post-dose that compared favourably with those reported by 

Jakobsen et al. (1991b) following administration of epirubicin as a single agent. 

In a study of patients with nasopharyngeal carcinoma treated with epirubicin 

(Hu et al. 1989), the mean AUC in 6 complete responders was 4002 ng. h/ml which 

was approximately double that observed in 13 non-responders (1881 ng. h/ml). In 

contrast, no statistically significant difference in Cmax was observed between 

responders and non-responders. Furthermore, no relationship between leukopenia, the 

dose-limiting toxicity, and any pharmacokinetic parameter was found. These results 

suggest that dose-adjustments according to an individual's estimated CL are likely to 

increase the chances of a tumour response. 

1.6.9 Dosage guidelines for epirubicin 
The current UK dosage guidelines recommend that the dose of epirubicin is based on 

the patient's BSA and bilirubin concentration (Epirubicin, Summary of Product 

Characteristics (SPC), UK). However, dosing according to BSA is "standard practice" 

in oncology and does not necessarily reflect scientific research. When 20 patients with 

BSAs ranging from 1.58 to 2.05 m2 received a fixed epirubicin dose of 150 mg, no 

relationship was found between any pharmacokinetic parameter and BSA (Gurney et 

al. 1998). In addition, a population analysis of epirubicin pharmacokinetics in 79 

patients with advanced breast cancer found that variability in epirubicin CL was not 

affected by BSA (Sandstrom 2002). 

Following administration of epirubicin to 6 patients with liver metastases, a 
40 % decrease in CL was observed compared to 11 patients with normal liver function, 

indicating that dose reductions may be required in patients with liver dysfunction 

(Camaggi et al. 1982). The UK dosage guidelines for epirubicin in patients with liver 

dysfunction are based on a study of doxorubicin (described in Section 1.5.2.3), 

performed 30 years ago (Benjamin et al. 1974). This study found that doxorubicin 

plasma concentrations in 8 patients with liver disease, as measured by elevated 

bilirubin concentrations, were 4 to 5 times higher than those measured in patients with 

normal liver function (n=82) and that this increase in systemic exposure to doxorubicin 
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was associated with a significant increase in toxicity. Nine subsequent patients with 

moderate (bilirubin 1.2 -3 mg/100 ml) or severe (bilirubin >3 mg/100ml) liver 

dysfunction were administered doxorubicin at 50 % and 25 % of the normal doses, 

respectively and their observed doxorubicin concentrations were similar to those 

observed in the patients with normal liver function. The proposed dosage guidelines 

were devised empirically rather than based on statistical evaluation of the relationships 

between PK parameters and markers of liver function, and furthermore, only included 

a relatively small number of patients with liver dysfunction. The dosage adjustments 

recommended in this study have been extended to form the dosage guidelines for all 

anthracyclines. Therefore, the current SPC guidelines for epirubicin recommend a 50 

% reduction in dose for patients with moderately elevated bilirubin concentrations 

(bilirubin: 1.4 -3 mg/ 100 ml) and a 75 % reduction for patients with severely elevated 

bilirubin levels (bilirubin: >3 mg/100 ml). It should be noted that these dosage 

guidelines for epirubicin have not been validated. 

More recently, a strong correlation was shown between serum AST levels and 

epirubicin CL in 30 women with abnormal liver function who received epirubicin for 

the treatment of advanced breast cancer (Twelves et al. 1992), however, there was no 

significant correlation with serum albumin, alkaline phosphatase or bilirubin. Thus, 

AST may be a better indicator for dose adjustment in hepatically-impaired patients 

than serum bilirubin. Another study in 16 patients with advanced breast cancer and 

abnormal liver tests also found a strong linear relationship between epirubicin CL and 

log AST (Dobbs & Twelves 2003) and used this relationship to produce a dosage 

nomogram to obtain a target AUC: dose = AUC (97.5-34.2 x log AST). The 

nomogram was used to determine epirubicin doses in a further 41 patients. Inter- 

individual variability in AUC values using the nomogram (CV = 26 - 30 %) was 

reduced compared to standard doses (CV := 47 %), however, the improvement was not 

statistically significant. 
A survey that included 173 UK oncologists found that many oncologists do not 

follow the current UK dosage guidelines for epirubicin and showed considerable 

variability in prescribing habits between clinicians (Dobbs & Twelves 1998a). 
Therefore, further work is required to develop and validate new dosage guidelines for 

epirubicin. 
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1.7 AIMS 

The aims of this thesis were to use a population approach to determine the typical 

pharmacokinetic parameters of epirubicin, evaluate their variability in the population, 
identify clinical characteristics that influence the pharmacokinetics of epirubicin and 

then use this information to develop new dosage guidelines. A priori and a posteriori 

methods for dose individualisation were investigated in this thesis. FDA guidelines on 

population pharmacokinetic analysis, recommend that population models, and 

particularly those intended to influence dosage guidelines, are validated. Therefore, a 

variety of techniques were utilised to validate the proposed dosage guidelines. 
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CHAPTER 2 

GENERAL METHODS 
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INTRODUCTION TO CHAPTER 2 

This Chapter provides details of pharmacokinetic and statistical methods that are 

common to subsequent Chapters. Firstly, a background to pharmacokinetic models is 

presented, then details are given of how the software package NONMEM was used for 

population pharmacokinetic analysis, MAP Bayesian estimation and simulation. 

Finally, some other statistical methods used in this thesis are summarised. Details of 

specific methods are provided as required within the later Chapters. 

2.1 PHARMACOKINETIC MODELS 

The most common approach to modelling pharmacokinetic data is to represent the 

body by one or more compartments. These compartments are often not representative 

of bodily tissues or organs but can be used to generate mathematical models to 

describe the data. The simplest model, a "one-compartment model", considers the 

body as a single unit in which the drug is rapidly and homogeneously distributed. 

Drug concentrations are observed to decrease with time in a monoexponential manner. 

However, most drugs do not distribute instantaneously throughout the entire body 

space but rather take some time to distribute into tissues. Drug concentrations during 

this distribution phase decline more rapidly than during the post-distribution phase and 

more complicated models with multiple compartments are needed to describe such 

profiles. In this thesis two and three compartment models were used to describe the 

pharmacokinetics of epirubicin. 

In a two compartment model, the body can be considered as having a "central" 

compartment (compartment 1) and a "peripheral" compartment (compartment 2). The 

central compartment represents the blood or organs that are in rapid equilibrium with 

the blood and the peripheral compartment represents tissues into which the drug 

distributes more slowly. Transfer of drug between compartments is assumed to be first 

order and, in this thesis, elimination is assumed to occur exclusively from the central 

compartment. A two-compartment model is illustrated in Figure 2.1 . A, where V1 and 

V2 are the volumes of compartment 1 and compartment 2, respectively, k12 is the 

constant that describes the rate of transfer of drug from compartment 1 to compartment 

2 and k21 describes the rate of transfer from compartment 2 to compartment 1. 
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Figure 2.1. A. A 2-compartment model with a corresponding concentration-time 
profile. 

Rate 

K12 

VI 
K21 

V2 

Time 

Klo 

Key: V1 is the volume of compartment 1, V2 is the volume of compartment 2, k12 is 
the rate constant describing the movement of drug from compartment 1 to 
compartment 2 and k21 is the rate constant describing the movement of drug from 

compartment 2 to compartment I 

Figure 2.1. B. A 3-compartment model with a corresponding concentration-time 
profile 
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Key: VI, V2 and V3 are the volumes of compartment 1,2 and 3, respectively k12 is the 
rate constant describing the movement of drug from compartment 1 to compartment 2, 
k21 is the rate constant describing the movement of drug from compartment 2 to 
compartment 1, k13 is the rate constant describing the movement of drug from 

compartment 1 to compartment 3 and k31 is the rate constant describing the movement 
of drug from compartment 3 to compartment 1. 
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If AI is the amount of drug in compartment 1 and A2 is the amount of drug in 

compartment 2, then the rate of change of drug in compartment 1 is described by the 

following equation: 

dA1/dt = k21A2 
- k12A1 - k1oA1 

where t is time. The rate of change of drug in compartment 2 is described as follows: 

dA2/dt = k12A, - k21A2 

Solving the above equations for the amount of drug in the central compartment (A) at 

time t gives: 

At=AIex, t+A2e2t 

Concentrations can be calculated by dividing amount by volume, hence, the 

concentration at time t in the central compartment can be described as follows: 
Xt Ct=CteI+C2e'2t 

where X1 is the slope of the distribution phase of the concentration-time curve and X2 is 

the slope of the elimination phase of the concentration time curve. Figure 2.1A 

illustrates a concentration-time profile for a two-compartment model and shows how 

drug concentrations decrease with time in a bi-exponential manner. The distribution 

and elimination half-lives, i. e. the time taken for concentrations to half, can be 

calculated as follows: 

Distribution half-life = (In 2) / X1 

Elimination half-life = (In 2) / X2 

Likewise, in a 3-compartment model, the body is represented by a central 

compartment and two peripheral compartments. A 3-compartment model is illustrated 

in Figure 2.1 . B, where V1, V2, k12 and k21 are as above, V3 is the volume of 

compartment 3 and k13 and k31 are rate constants describing the movement of drug 

from compartment 1 to compartment 3 and vice versa. If A1, A2 and A3 are drug 
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amounts in compartments 1,2 and 3 then the rate of change of drug in compartment 2 

is as described above and the rate of change of drug in compartments 1 and 3 is 

described as follows: 

Compartment I 

dA1/dt =k21A2 + k31A3 - k12A1- k13A1- k1oA1 

Compartment 3 

dA3/dt = k13A1 - k31A3 

Solving the above equations for the amount of drug in the central compartment (A) at 

time t gives: 

At =Alex"t+A2e2t +A3e-t 

and as before, dividing through by volume gives: 

Ct = Cle'x, t + C2e'it + Cie )'3t 

The distribution and elimination half-lives can be calculated as follows: 

Distribution half-life 1= (In 2) /X 

Distribution half-life 2- (In 2) / X2 

Terminal half-life = (In 2) / X3 

Clearance (CL), defined as the proportionality factor relating drug elimination to 

plasma concentrations, can be calculated from k10V1. The analysis in this thesis 

focused on systemic exposure to epirubicin as measured by the area under the 

concentration time curve (AUC), and as 

AUC = Dose/CL 

it was more useful to parameterise the pharmacokinetic model in terms of CL rather 

than micro-rate constants. The two compartment model was parameterised to give 

estimates of CL, V1, V2 and intercompartmental clearance (Q2). The three 

compartment model was parameterised to give estimates of CL, V1, V27 V3 and 

intercompartmental clearance (Q2 and Q3) where Q2 is intercompartmental CL between 
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compartments 1 and 2, and Q3 is intercompartmental CL between compartments I and 
3. 

For a 2-compartment model, parameters CL, V1, V2 and Q2 are related to the micro- 

rate constants as follows: 

CL = kio * V1 

Q2 =k12 * V1 or Q2 = k21 * V2 

For a 3-compartment model, parameters V1, V2, V3, Q2 and Q3 are related to the micro- 

rate constants as follows: 

CL =k1o * V1 

Q2 = k12 * Vi or Q2=k21 * V2 

Q3 = k13 * V1 or Q3 = k31 * V3 

2.2 POPULATION PHARMACOKINETIC ANALYSIS 

Population pharmacokinetic analysis is used to determine the typical pharmacokinetics 
in the population and their variability within the population. The population approach 

can also identify clinical factors influencing the pharmacokinetics of a drug. In this 

thesis, population analysis was performed using mixed effect modelling. Mixed effect 

models are so called because they include the influence of both fixed effects and 

random effects. Fixed effects are factors that can be measured or determined, e. g. 

pharmacokinetic parameters and covariates. Random effects are factors that cannot be 

observed, such as unknown differences in physiology or bioanalytical errors. In 

population pharmacokinetic models, random effects can be subdivided into inter- 

individual variability, inter-occasion variability and residual error. 

2.2.1 Modelling inter-individual variability in PK parameters 
In this thesis, PK parameters were assumed to be log-normally distributed (Lacey et al. 

1997). Inter-individual variability in PK parameters can be modelled as follows, using 
CL as an example: 

CL; = TVCL*EXP(? IcL; ) which is equivalent to 

ln(CL; ) = ln(TVCL) + r1CLi 
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where (CL; ) is the individual CL value, TVCL is the typical population value of CL 

and ETA (ncL) is the difference between ln(CL; ) and ln(TVCL). The relationship 
between ln(CL; ), ln(TVCL) and nCL; is illustrated in Figure 2.2A The distribution of 

7lclis for all subjects within the population is assumed to be normal with a mean of zero 

and a variance of w2, as illustrated in Figure 2.2B. 

2.2.2 Modelling residual variability 
The residual errors (E) represent the differences between the measured and model 

predicted concentrations and contain contributions from inter-occasional variability, 

assay error, model misspecification and other unknown errors. Figure 2.3A illustrates 

the jth measured concentration in the ith individual (c1), the corresponding model 

predicted concentration (PRED; j) and the difference between them (E; j). Residual 

errors are unpredictable random quantities, however, the estimates of E are assumed to 

follow a normal distribution with a mean of zero and a variance of a2. A normal 

distribution of c is illustrated in Figure 2.3B. 

Three residual error models were used in this thesis: 

1) Additive c; j = pred; j + Eij; 

where the error on each concentration measurement is constant, regardless of the 

concentration value, 

2) Proportional cif = pred; j (1+E; j) 

where the error is proportional to the concentration, 

(N. B. the code for a proportional error model used in the control stream is given in 

Figure 2.4). 

and 3) Combined cij = predij + predij. Eij + E2ij 

which has both additive and proportional components. At low concentrations the 

additive component dominates and at high concentrations the proportional component 

dominates. 
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Figure 2.2A. Diagram illustrating the relationship between TVCL, CL; and IICL; 

Ln(TVCL) Ln(CLi) 

Key: CL; is the estimate of CL for an individual, TVCL is the typical value of 
clearance in the population, rlcLi is the difference between the ln(TVCL) and ln(CL; ) 

Figure 2.2B. Distribution of ns for all subjects within the population 

Legend: ils values for all subjects are assumed to be normally distributed with a mean 
of zero and a variance of w2. `' 
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Figure 2.3A. Diagram illustrating the relationship between observed 

concentrations, predicted concentrations and residual error 

Concentration 

time 

Key: c; j is the measured concentration, PREDiJ is the predicted concentration, E; j is the 
residual error i. e. the difference between c; j and PRED; j 

Figure 2.3B. Distribution of E; j for all concentrations in all subjects in the data set 

0 
Legend: E; j values for all concentrations in all subjects in the data set are assumed to be 
normally distributed with a mean of zero and a variance of 62. 
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2.3 NONMEM 

2.3.1 Program 

Population pharmacokinetic analysis was performed using NONMEM Version V 

(Beal & Sheiner 1992) with Compac Visual Fortran Compiler Version 6.0 on a 

computer with a Microsoft Windows 98 operating system and an AMD Duron 

processor. Visual NM (2.2) (Research and Development for Population 

Pharmacokinetics (R. D. P. P)) was used as a Windows interface for NONMEM to 

enable data management and aid graphical exploration. NONMEM is a FORTRAN 

computer program that was developed to fit NONlinear Mixed Effect Models to 

pharmacokinetic and pharmacodynamic data, especially data arising from population 

pharmacokinetic studies. 

A collection of FORTRAN subroutines have been written for use with 

NONMEM, including ADVAN, TRANS, PK and ERROR. In PK, the user enters a 

model to estimate values for population pharmacokinetic parameters, individual 

pharmacokinetic parameters and inter-individual variability, whereas in ERROR, the 

user enters a model to describe the differences between measured and observed 

dependent variables e. g. concentrations. The ADVAN subroutines describe the 

structural model e. g. bolus input with monoexponential decline, first order input with 

biexponential decline, etc. In this thesis, two and three compartment models were 

fitted to the data. ADVAN3 is the subroutine for a two compartment model with basic 

parameters klo, k12 and k21. Using the translator subroutine, TRANS4, this was 

parameterised to provide estimates of CL, V1, V2 and Q2. ADVANI I is the subroutine 

that describes a three compartment model with basic parameters klo, k12, k21, k13 and 

k31. This was parameterised using TRANS4 to give estimates of CL, Q2, Q3, V 1, V2 

and V3. 

2.3.2 NONMEM data file structure 
The clinical data to be analysed was arranged in columns. Information required in the 

data file included subject identification number (ID), dose administered (AMT), rate of 

dose input (RATE), blood sampling time (TIME) and observed concentration (DV, 

dependent variable). Additional columns were included for the covariate data e. g. 
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weight, age, bilirubin concentration, etc. An example of the NONMEM data file 

structure is given in Figure 2.4. 

2.3.3 Control stream format 
An example of a control stream is presented in Figure 2.5. The control stream is a non- 

formatted text file and is comprised of a series of records each initiated with "$". The 

first line of the control stream gives the title of the problem ($PROB), then the names 

of the column headers are listed under ($INPUT). Some of these column headers, such 

as ID, AMT, DV are specifically recognised by NONMEM, whereas others, such as 

BILI, AGE, etc. can be defined by the user. The name and path (location) of the data 

file is given in the next line under ($DATA). The next part of the file defines the 

model that will be used to fit the data. The subroutine used for the structural model, 

i. e. the ADVAN and TRANS subroutines are chosen under ($SUBROUTINE). In 

$PK the THETAs were assigned to describe the typical population values of PK 

parameters and their relationship with any covariates. ETAs were assigned to describe 

the random effects for the structural model i. e. inter-individual variability. A scale 

factor was also included in the $PK record to convert the amount of drug measured in 

a compartment to a concentration. A model to describe residual error was specified in 

the $ERROR record; further details of the approaches used to model residual 

variability are given in Section 2.2.2. Initial estimates for structural parameters 

($THETA), variance of inter-individual error ($OMEGA) and variance of residual 

error ($SIGMA) are also provided. If covariance between ETAs was included in the 

model, the BLOCK command was used in the $OMEGA record. The number of ETA 

variables in the block was given e. g. `BLOCK(3)' indicates that there are 3 ETA 

variables and that covariance is to be estimated between them. An example of a 

variance-covariance matrix is shown below. 
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Figure 2.4 

Excerpt from a NONMEM data file 

ID AMT TIME DV RATE BILI AST ALB HGT WGT MG WHO IWGT AGE CRCL 
101 78 00 2364 7 36 31 155 56 78 1 98 71 62.8 
101 0 0.2 1084 07 36 31 155 56 78 1 98 71 62.8 
101 0 0.33 575 07 36 31 155 56 78 1 98 71 62.8 
101 0 0.5 157 07 36 31 155 56 78 1 98 71 62.8 
101 0 1.03 111 07 36 31 155 56 78 1 98 71 62.8 
101 0 2.03 39 07 36 31 155 56 78 1 98 71 62.8 
101 0 4.06 42.3 07 36 31 155 56 78 1 98 71 62.8 
101 0 6.07 43.9 07 36 31 155 56 78 1 98 71 62.8 
101 0 7.53 28.9 07 36 31 155 56 78 1 98 71 62.8 
101 0 29.63 25.4 07 36 31 155 56 78 1 98 71 62.8 
101 0 46.64 20.1 07 36 31 155 56 78 1 98 71 62.8 
102 22 00 1100 2 20 48 160 66 22 0 111 56 81.2 
102 0 0.2 317 02 20 48 160 66 22 0 111 56 81.2 
102 0 0.333 83.1 02 20 48 160 66 22 0 111 56 81.2 
102 0 0.5 56 02 20 48 160 66 22 0 111 56 81.2 
102 01 47.2 02 20 48 160 66 22 0 111 56 81.2 
102 0 2.5 39.2 02 20 48 160 66 22 0 111 56 81.2 

102 0 3.96 26.3 02 20 48 160 66 22 0 111 56 81.2 

102 0 22.73 10 02 20 48 160 66 22 0 111 56 81.2 

102 0 31.86 7.5 02 20 48 160 66 22 0 111 56 81.2 

102 0 46.93 3.8 02 20 48 160 66 22 0 111 56 81.2 
103 105 00 1591 7 27 37 152 53 105 1 97 71 58.5 

103 0 0.2 501.9 07 27 37 152 53 105 1 97 71 58.5 

103 0 0.333 157.4 07 27 37 152 53 105 1 97 71 58.5 

103 0 0.5 72.3 07 27 37 152 53 105 1 97 71 58.5 

103 0 1.01 37.7 07 27 37 152 53 105 1 97 71 58.5 

103 0 4.92 26 07 27 37 152 53 105 1 97 71 58.5 

103 0 8.01 24.9 07 27 37 152 53 105 1 97 71 58.5 

103 0 27.9 24.6 07 27 37 152 53 105 1 97 71 58.5 

103 0 31.27 13.7 07 27 37 152 53 105 1 97 71 58.5 

103 0 48 9.4 07 27 37 152 53 105 1 97 71 58.5 

104 40 00 2000 6 33 32 148 59.5 40 2 114 67 48.6 

104 0 0.15 577 06 33 32 148 59.5 40 2 114 67 48.6 

104 0 0.2 241 06 33 32 148 59.5 40 2 114 67 48.6 

104 0 0.25 142 06 33 32 148 59.5 40 2 114 67 48.6 

104 0 0.333 87 06 33 32 148 59.5 40 2 114 67 48.6 

104 0 0.5 66 06 33 32 148 59.5 40 2 114 67 48.6 

104 0 0.75 51 06 33 32 148 59.5 40 2 114 67 48.6 

104 01 36 06 33 32 148 59.5 40 2 114 67 48.6 

104 02 26 06 33 32 148 59.5 40 2 114 67 48.6 

104 0 6.5 12.3 06 33 32 148 59.5 40 2 114 67 48.6 

104 0 31 5.9 06 33 32 148 59.5 40 2 114 67 48.6 

104 0 37.1 3.7 06 33 32 148 59.5 40 2 114 67 48.6 

Key: ID = patient identification number, AMT = dose, TIME = time post-start of infusion, DV = 
dependent variable (epirubicin plasma concentration), RATE = rate of drug infusion, BILI = bilirubin 

concentration, AST = AST concentration, ALB = albumin concentrations, HGT = height, WGT = 
weight, MG = dose (mg), WHO = performance status, IWGT = ideal body weight, CrCL = creatinine 
clearance. 
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Figure 2.5 

Example of a control stream 

$PROB EPIRUBICIN 
$INPUT ID AMT TIME DV RATE BILI AST ALB HGT WGT MG WHO IWGT 
AGE CRCL SY BSA LMET 
$DATA C: \LORRAINE\MODEL4. PRN 
$SUBROUTINE ADVAN I1 TRANS4 
$PK TVCL=THETA(1) 

TV V 1=THETA(2) 
TVQ2=THETA(3) 
TVV2=THETA(4) 
TVQ3=THETA(5) 
TVV3=THETA(6) 
CL=TVCL*EXP(ETA(1)) 
V1=TVV1 
Q2=TVQ2 
V2=TVV2 
Q3=TVQ3 *EXP(ETA(2)) 
V3=TVV3*EXP(ETA(3)) 
S1=V1/1000 

$ERROR IPRED=F 
DEL= 
IF(F. EQ. 0) DEL=1 
W=IPRED+DEL 
IRES=DV-IPRED 
I WRES=IRES/W 
Y=F+ERR(I)* W 

$THETA (0,40) (0,10) (0,30) (0,40) (0,55) (0,800) 
$OMEGA 0.2 0.2 0.2 
$SIGMA 0.5 
$EST MAX=9000 SIG=3 PRINT=5 NOABORT 
$COV 
$TABLE ID AMT TIME DV RATE BILI AST ALB HGT WGT MG WHO IWGT 
AGE CRCL SY BSA LMET TVCL TVV3 TVQ3 CL VI Q2 V2 Q3 V3 ETA(1) ETA(2) 
ETA(3) IPRED IRES IWRES FILE=RUNI. PAR. NOPRINT 
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ETAI ETA2 ETA3 

ETA I 0.2 

ETA 2 0.01 0.2 

ETA 3 0.01 0.01 0.2 

In this example, the variance of the ETAs (diagonal values) are each estimated to be 

0.2 and the covariance teems (off-diagonal values) are each estimated to be 0.01. 

In the $ESTIMATION record, conditions for the estimation process are 

provided, such as the minimum number of significant figures to which accuracy of 

estimates is required, the maximum number of objective function evaluations (Section 

2.4.1) allowed and the method of estimation eg. First Order or First Order Conditional 

Estimation (Section 2.3.4). A $COVARIANCE record was included to request that 

standard errors of parameters were generated. A $TABLE record was included to 

request generation of a table that included observation data, predicted concentrations, 

residuals, weighted residuals and other requested items. 

2.3.4 Estimation methods in NONMEM 

The best model to describe the data is the one that minimizes the differences between 

the measured concentrations and the model predicted concentrations. For non-linear 

models the best solution may not be unique ie. there may be more than one relative 

minimum. NONMEM uses linearization methods to approximate the non-linear model 

to a linear model during the fitting process. Two estimation algorithms were used in 

this thesis: the first-order method (FO) and the first-order conditional estimation 

method (FOCE). 

The first-order method (FO) linearizes the non-linear model with 

respect to the random errors i. e. ETAs and epsilons, by using a first order Taylor-series 

expansion and is evaluated with the random effects set to zero ie. the individual ETAs 

are not estimated. This method attains estimates of the population model parameters 

including PK parameters, interindividual variability and residual error, but does not 

produce individual model parameters. ETAs for each individual are attained 
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subsequently using the `POST-HOC' option (referred to as the posthoc estimates) by 

Bayes' methods using the estimated population parameters. 

The first-order conditional estimation method (FOCE) is an extension of the 

FO method, but determines individual estimates of the ETAs at every iteration of the 

regression, thereby influencing the final estimates of the population parameters. 

Again, the first-order Taylor series expansion is used but the derivatives with respect 

to the ETAs are conditional on the individual estimates of ETA rather than fixing the 

ETAs to zero. Two estimation methods are available when using FOCE: `no 

interaction' and `interaction'. The default method `no interaction' estimates the 

residual error from the mean parameter values. When `interaction' is specified, 

residual error is estimated using the conditional estimates of ETAs. If the residual 

error model contains a proportional component, it is dependent on the predicted 

concentrations, which are in turn dependent on the individual ETAs, and therefore the 

`interaction' option should be used. An additive residual error model is independent of 

the predicted concentrations, and therefore, the interaction option would not influence 

the parameter estimates. 

In some cases, the FO method has resulted in a biased fit of the data (Beal & 

Sheiner 1992). Furthermore, a simulation analysis that compared the apparent 

significance level to the actual significance level, indicated that the FO method tends 

to over estimate the significance level of covariates and is likely to result in selection 

of false covariates (Wählby et al 2001). The FOCE method can produce parameter 

estimates that are less biased than the FO method and apparent significant levels are 

more consistent with actual significance levels (Beal & Sheiner 1992; "Wählby et al 

2001). The more complex algorithm used in the FOCE method results in an increased 

computation time and may result in increased convergence difficulties compared to the 

FO method. In this thesis, FOCE was the estimation method of choice, however, the 

FO method was used if convergence difficulties were encountered with FOCE. 

In certain circumstances, such as in therapeutic drug monitoring, individual PK 

parameter estimates are required, but estimation of population parameters are not 

required. Individual PK parameters can be estimated from a small number of 

measured concentrations using Maximum A Posteriori (MAP) Bayesian estimation if 

there is prior knowledge of population values and their variability in the population 

(Sheiner et al. 1975). In this thesis, MAP Bayesian estimates of PK parameters were 
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obtained using NONMEM by including previously obtained estimates of population 

parameters in the control stream and using the `MAXEVAL=O' option in the 

$ESTIMATION step to indicate that estimation of prior distributions of PK parameters 

was not required (an example of a control stream is provided in the Appendix). 

2.4 MODEL SELECTION WITH NONMEM 

2.4.1 Objective function value 
NONMEM searches for the parameter values which best describe the data by a process 

of iteration. At each iteration, NONMEM predicts the concentrations at all sampling 

times given the current PK parameter estimates and then calculates the difference 

between the predicted and measured concentrations. The overall error between 

observations and predictions is based on the Extended Least Squares Objective 

Function Value (OFV): 

OFVELS = [log 02 + (Yi; - My (e, ji))2 / Q2] 
ý 

where v2 is the variance of the residual errors, y;, is the jth observation from the ith 

individual and M; j (B, 1) describes the jth population parameter in the ith individual. 

The process of iteration continues until the OFV is minimised. This value is based on 

the final model parameters and corresponds to -2 times the maximum log of the 

likelihood of the data (-2LL). 

2.4.2 Selecting the best structural model 

A reduction in the OFV was taken as an indication of improvement in the structural 

model. In addition, the following graphical tools were used to aid selection of the best 

structural model: 

2.4.2.1 DV versus PRED/IPRED 

Plotting measured concentrations versus predicted concentrations gives a general sense 

of the goodness of fit of the model. Predicted concentrations, estimated from the 

population model, are denoted as PREDs, whereas concentrations predicted from an 
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individual subject's pharmacokinetic parameter estimates are denoted IPREDs. 

Ideally, the points should be randomly (without bias) and closely (precisely) 

distributed around the line of unity throughout the concentration range. 

2.4.2.2 Observed concentrations, PRED and IPRED versus time 

One plot is produced per subject, which enables the analyst to compare the 

concentration-time profiles for the population predicted and individual predicted 

concentrations with the measured concentrations. These plots enable identification of 

any anomalous measurements and aid assessment of how well the structural model is 

fitting the data. 

2.4.2.2 Residuals versus time 

Residuals (RES) are the differences between the observed concentrations (DV) and the 

concentrations predicted by the population parameter estimates (DV-PRED). 

Individual residuals (IRES) are the differences between the observed concentrations 

and the concentrations predicted from the individual parameter estimates (DV- 

IPRED). Weighted residuals (WRES and IWRES) are produced by transforming the 

residuals so that all weighted residuals have unit variance and are uncorrelated. 
Weighted residuals should be randomly distributed around zero, over time. Biased 

predictions or trends in the WRES v. time plot indicates that the structural component 

of the model is inappropriate. 

2.4.3 Selecting the best residual error model 
The residual error model was selected with the help of the following graphical tools: 

2.4.3.1 WRES or IWRES versus PRED 

If the residual error model is adequate, weighted residuals should be equally and 

randomly scattered around zero when plotted against predicted concentration. WRES 

are approximately standard deviation units and WRES >3 or <-3 could indicate 

outliers. 
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2.4.4 Screening for covariates of interest 

Once the optimum structural and residual error models were selected, the inclusion of 

covariates in the model was investigated. Testing the inclusion of covariates in 

NONMEM can be a time-consuming process, particularly if a large number of 

covariates are available. It is therefore useful to screen the covariates for those of 

potential interest to limit the number required for testing with NONMEM. 

2.4.4.1 Graphical approaches 

Covariates of potential interest were identified by plotting the individual estimates of 

each PK parameter against the covariates and looking for relationships. Plotting the 

PK parameters against the'covariates can also give the analyst a feel for the `shape' of 

the relationship e. g. linear, log linear. 

2.4.4.2. Generalised additive modelling 

Generalised additive model (GAM) analysis was also used to identify potentially 

important covariates. In the GAM analysis, the relationship between parameters and 

covariates can be described by the following equation: 

P 

P=a+1; fi(Xi) 
j=1 

where P is the predicted pharmacokinetic parameter, a is a constant and fj(Xj) 

represents either a linear function or a smoothing spline. 

In this thesis, GAM analysis was performed using the software packages Xpose 

Version 3.0 (Jonsson & Karisson, 1999), which contains control files for S-PLUS 2000 

(MathSoft International, 1999). The GAM analysis was performed separately on each 

PK parameter. Models were tested using a stepwise addition/deletion method. The 

GAM was set to model build with each covariate excluded and included as a linear 

regression model. If the linear regression model was found to be statistically 

significant, the covariate was then included as a natural cubic spline with one internal 

breakpoint. At each step, the addition or deletion of a covariate was determined as the 

one that resulted in the largest decrease in the Akaike information criterion (AIC) 

(Akaike, 1978). The addition/deletion stopped when the AIC reached a minimum 

value. The AIC value was calculated as follows: 
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AIC=nubs. Ln(WRSS) + 2npar 

where nobs is the number of observations, npar is the number of parameters and WRSS 

is the weighted residual sum of squares. 

Following GAM analysis with each pharmacokinetic parameter, Cook's 

distance was plotted against leverage. Cook's distance is a measure of the influence an 
individual has on the relationship and the leverage is a measure of how much an 
individual influences the certainty of the relationship (Cook 1977). An individual with 

a high value of Cook's distance and leverage indicates that they have a strong 
influence on the fit and may affect covariate selection. A model that is highly 

influenced by one or two unusual individuals may not be representative of the data set 

as a whole. Individuals with high leverage and/or Cook's values were removed from 

the data set and the GAM analysis was repeated. 

2.4.5 Addition of covariates to the model 
The covariates identified from the scatter plots and GAM analysis as influencing the 

PK parameters were tested for their inclusion in the model using NONMEM. 

Covariates were added into the NONMEM model, one at a time, as linear, power and 

loge functions, as appropriate (an example of a control stream is provided in the 

Appendix). 

2.4.5.1 Model comparison 

The minimum value of the objective function provided in the NONMEM output was 

used as a tool to aid selection of the best model. The difference in the OFV between 

two hierarchical models indicates whether the full model is better than the reduced 

model. Two models are hierarchical if fixing the additional parameter(s) to zero 

produces the reduced model. The difference in the OFV between hierarchical models 

is approximately chi-squared distributed with n degrees of freedom, where n is the 

difference in the number of parameters between the models. For an a-level test, the 

change in the OFV can be compared to the 100(1-a) percentile of the chi-squared 
distribution, given in statistical tables. For example, when n=1 (i. e. there is 1 

additional parameter in the full model) for the improvement in the full model to be 

statistically significant at p<0.05 or p<0.001, the decrease in the OFV is required to be 
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at least 3.84 or 10.83, respectively. In this thesis, following the addition of a covariate 

to the model, a reduction in the OFV of greater than 3.84 was considered statistically 

significant (p<0.05, one degree of freedom) if FOCE was used. Wählby and 

coworkers (2001) previously showed that the FO method tends to over estimate the 

significance level of covariates and is more likely to result in false covariates being 

included in the model than if FOCE is used, therefore in this thesis if model building 

was performed using FO, the fall in OFV required to assume statistical significance 

was increased to 10.83. 

The covariate found to have the greatest influence, as judged by the largest fall 

in OFV, was retained in the model and the other covariates were then added into the 

model singularly, again retaining the covariate with the lowest OFV. This was 

repeated until all the identified covariates were added to the model or until there was 

no further statistically significant reduction in OFV. 

The effect of adding a covariate to the model was also assessed using graphics 

as follows, taking CL as an example. Delta CL for each patient was calculated by the 

subtraction of the typical population estimate of CL from the individual estimate of 

CL, estimated with and without the covariate of interest included in the model. 

Following the addition of the covariate to the model, if it has been adequately 

incorporated, no relationship between delta CL and covariate should be observed. 

If inclusion of a covariate in the model resulted' in a negligible reduction in 

interpatient variability, as measured by the coefficient of variation (CV%), it was 

considered to be of no clinical relevance and was removed from the model. 

2.5 SIMULATION 

Patient data sets were simulated by Monte Carlo methods using NONMEM. This 

approach takes into account inter-individual and residual error in a model and uses 

random inputs from the model parameter distributions to create a simulated data set 

comprising data points at the requested times for the desired number of patients. 

Information on the population model parameters was entered and a data file was 

prepared in the same format as a normal data file, containing. patient identification 

numbers for the desired number of patients in the data set, with desired dosage history 
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and blood sampling times. Zero values were entered into the DV column. Individual 

PK parameters for the patients with corresponding concentration data were generated 

with NONMEM using the `ONLY SIM' option in the $SIMULATION record with a 

random number entered as a seed (an-example of a control stream is provided in the 

Appendix). 

2.6 ESTIMATION OF BIAS AND IMPRECISION 

Imprecision and bias of parameter estimates were calculated using the method 

described by Sheiner and Beal (1981). Prediction errors (Pej) of estimates were 

expressed as follows: 

Pej (%) = (Estimate - Reference) / Reference x 100 

The smaller the prediction error, the greater the precision of the estimate. The root 

mean squared prediction error (rmse), which describes the imprecision of the 

estimates, was calculated from the square-root of the mean squared Pej (%) (mse) 

values ie. 

N2 
mse = -ý pej rmse = mse 

N ; _, 

Bias is a measure of the amount by which the estimates are systematically too high or 

too low. The mean prediction error (me), which describes the bias of the estimates, 

was calculated from the mean of the Pet (%) values. 

The standard error (sei) of the me or mse was calculated from the following equation: 

N 
1/2 

)z seX =1 
DX; 

-x N(N -1) ; _, 

where for me, X; are taken as Pei and X is the mean of Pei values (me). For mse, X; 

are the individual squared Pel values and X is the mean of squared Pej values (mse). 

Confidence intervals (95 % CI) were calculated for me and mse using the following 

formula: 
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95 % CI =X± to. 9, s (N - I)seX 

where t0.975(N-1) is the 97.5`h percentile of the t-distribution with N-1 degrees of 
freedom, determined from statistical tables. A 95 % CI for rmse was calculated from 

the square root of the end points of the 95 % CI for mse. 
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CHAPTER 3 

POPULATION ANALYSIS OF AN EPIRUBICIN DATA 

SET 
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3.1 INTRODUCTION TO CHAPTER 

Epirubicin is predominantly cleared by the liver (Weenan et al. 1983; Camaggi et al. 

1988) and a decrease in CL has been observed in patients with liver metastases 

(Camaggi et al. 1982). The current UK dosage guidelines recommend that the dose of 

epirubicin is based on the patient's BSA and bilirubin concentration (Epirubicin, 

Summary of Product Characteristics (SPC), UK). However, no significant relationship 

between epirubicin CL and bilirubin was observed in patients with abnormal liver 

function who received epirubicin for the treatment of advanced breast cancer (Twelves 

et al. 1992). 

The aim of the work in this Chapter was to identify clinical characteristics that 

influence epirubicin CL. Previous studies that have investigated the influence of liver 

dysfunction on the pharmacokinetics of epirubicin have included only a small numbers 

of patients with liver dysfunction i. e. n=6 (Camaggi et al. 1982) and n=30 (Twelves et 

al. 1992). The analysis performed in this Chapter includes 109 patients, 72 of whom 

had liver metastases. Furthermore, the analysis in this Chapter was performed using 

mixed effect modelling, which is advantageous to the two-stage methods used in 

previous analyses as it provides errors of the parameter estimates, separate estimates of 

residual and inter-individual variability and estimates individual PK parameters with 

more precision and less bias than the two-stage approach (Sheiner & Beal 1980; 

Sheiner & Beal 1981 a). 
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3.2 METHODS 

3.2.1 Patient data 

The data from 109 patients were collated from three trials in patients with cancer who 

were treated with epirubicin at Guys Hospital, London. Trial 1 included 50 patients 

(numbers 101 to 150) with advanced breast cancer who were considered to have 

normal liver function (less than 2.5-fold the reference AST level in the absence of liver 

metastases or less than 5-fold the reference AST level if liver metastases were present). 

Patients were administered epirubicin as a rapid intravenous infusion at doses in the 

range 12.5 to 120 mg/m2, generally once every 3 weeks. However, for 8 patients, the 

first course of treatment was split into two doses of epirubicin, with the second dose 

administered 3 days after the first. In Trial 2,23 patients (numbers 401-423) with 

advanced breast cancer and liver metastases were administered 25 mg/m2 as a rapid 

intravenous infusion, once a week. In Trial 3,37 patients (numbers 201 to 237) with 

advanced breast cancer and liver metastases were administered epirubicin, as a rapid 

intravenous infusion, at doses of 20 to 75 mg/m2 every 3 weeks. The dose for patients 

in Trial 3 was determined according to the individual's AST concentration and 

performance status (classified according to the WHO criteria). 

Blood samples were collected for the measurement of epirubicin concentrations 

on the first day of the first course of treatment with epirubicin. Plasma concentrations 

of epirubicin were measured using high performance liquid chromatography (HPLC) 

with fluorescence detection (Dobbs & Twelves 1991). The detection limit of the assay 

was 1 ng/ml. The precision of the assay (within-day and between-day), as measured by 

coefficients of variation, was less than 6% at concentrations ranging from 5 to 

2000 ng/ml. 

The time of administration, length of infusion and blood sampling times were 

recorded. The following clinical measurements were performed on each patient: sex; 

age; height; weight; creatinine; albumin; bilirubin; AST; alkaline phosphatase; 

haemoglobin; white blood cell count; neutrophil count; and platelets. The presence or 

absence of liver metastases and bone metastases was recorded and whether the patient 

had received prior chemotherapy or endocrine treatment. Additional clinical factors 

were calculated, such as creatinine clearance (according to the Cockcroft-Gault 

equation (1976)), ideal body weight, body surface area, and performance status 

(classified according to the WHO criteria). The following pharmacodynamic data were 
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collected: response to treatment (progressive disease, stable disease, partial response, 

complete response); progression free interval; length of survival; pre-treatment 

haemoglobin count; pre-treatment white blood cell count; pre-treatment neutrophils 

count; pre-treatment platelet count; haemoglobin nadir; white blood cell nadir; 

neutrophil nadir; platelet nadir; haemoglobin on Day 21; white blood cell count on Day 

21; neutrophil count on Day 21; and platelets on Day 21. These data were supplied by 

the clinical investigators in the form of an Excel spreadsheet. 

3.2.2. Exploratory analyses of data set 

Clinical variables were plotted against patient identification numbers in order to 

identify any gross errors such as a missing decimal place. Concentration-time profile 

plots and the data set spreadsheet were examined in order to identify any anomalous 

values. The frequency distribution of height, weight, ideal body weight, age, bilirubin, 

alkaline phosphatase, AST, albumin and creatinine clearance were plotted as 

histograms to assess normality and to identify any multi-modality. Any covari ttes that 

were identified as not normally distributed were log-transformed. Relationships 

between covariates were investigated by producing matrix plots using Minitab Version 

13. For any covariates that were only normally distributed when log-transformed, the 

log-transformed values were used in the bivariate plots. 

3.2.3. Assessment of structural and statistical models 

Data were analysed with the population pharmacokinetic software package NONMEM 

Version V (Beal & Sheiner 1992). Two and three compartment models with zero order 

input were fitted to the epirubicin concentration-time data. The variance-covariance 

matrix was constrained to be diagonal. Using the first-order method (FO), individual 

Bayesian estimates of the pharmacokinetic parameters were obtained for each 

individual following population analysis using the `post-hoc' option in NONMEM. 

The objective function values for each structural/error model and goodness of fit plots 

were compared to aid selection of the model that best fitted the data, as described in 

Chapter 2. Using the model that was determined to be the most appropriate, 

NONMEM analysis was repeated using the first-order conditional estimation method 

with interaction (FOCE-INTER) and compared to that using the first-order method 
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(FO) to see if there was an improvement in the fit of the model to the data, as judged 

by goodness of fit plots. 

3.2.4. Identification of covariates for model building with NONMEM 

Relationships between PK parameter estimates (estimated using the FO method) and 

continuous covariates (dose, height, weight, ideal body weight, BSA, age, creatinine 

clearance, bilirubin, AST, alkaline phosphatase and albumin) were investigated by 

visual inspection of scatter plots of individual PK parameters against covariates. A 

trend line (polynomial) was added to aid visual identification of any relationships. Box 

plots were produced to assess the influence of categorical variables, including presence 

of bone metastases, presence of liver metastases, WHO grade, prior endocrine 

treatment and prior chemotherapy on PK parameters. Statistical analysis of covariate- 

parameter relationships by Generalised Additive Modelling (GAM) was performed 

using the software packages Xpose Version 3.0 and S-plus 2000, as described in 

Chapter 2. The GAM analysis was performed using individual Bayesian estimates of 

PK parameters obtained using FO and FOCE. 

3.2.5. Population model building using NONMEM 

The population model building with NONMEM was performed using FOCE-INTER. 

The covariates identified from the scatter plots and GAM analysis (top 3 models) as 

influencing CL were tested using NONMEM for their inclusion in the CL model. 

Subjects with missing data for any of the clinical characteristics identified in the top 

GAM model were excluded from the analysis. Covariates were added into the model 

as linear functions. In addition, covariates that appeared to have a non-linear 

relationship with CL as judged from the scatter plots and the GAM analysis were 

added as power, exponential, reciprocal and loge functions and the most appropriate 

function selected. The inclusion of covariates in the model for CL was determined by 

the objective function value (OFV), graphics and change in inter-individual variability 

as described in Chapter 2. A reduction in the OFV of greater than 3.84 was considered 

statistically significant (p<0.05, one degree of freedom). Covariates were then 

included into the models for V3 and Q3 using the same method of addition. 
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3.2.6 Assessment of variance-covariance matrix 
The variance parameters were allowed to covary ie. a full variance-covariance matrix 

was included in the model and the model building process was repeated as described 

above. 

3.3 RESULTS 

3.3.1 Patient Data 

Concentration-time data were available from 109 patients (Trials 1 to 3). Summary 

statistics for the demographics and clinical characteristics from these patients are 

displayed in Table 3.1. The ranges of bilirubin, AST and alkaline phosphatase levels 

were extended considerably beyond the normal reference range. Approximately 21 % 

of patients had bilirubin levels above the normal range, 69 % of patients had AST 

levels above the normal range and 69 % of patients had alkaline phosphatase levels 

above the normal range. Creatinine and albumin levels were generally within the 

normal range with only 6% of patients with albumin concentrations below the normal 

range and 7% of creatinine concentrations above the normal range. Following a single 

dose of epirubicin, a median of 11 blood samples was collected post-dose from each 

patient (ranging from 7 to. 17). Typical blood sampling times were pre-dose and at 6, 

10,15 and 30 minutes post-dose and 1,2,4,6,12,24,48 hours post-dose. The median 

infusion time was 3 minutes. 

3.3.2. Exploratory analyses of data set 

The distribution of height, weight, age, creatinine and albumin were similar in all 3 

trials. However, levels of bilirubin and AST were markedly elevated in more patients 

from Trials 2 and 3 compared to patients from Trial 1. There was no evidence of 

multi-modality (multiple populations) for any of the covariates. Histograms of the 

frequency of covariates showed that albumin, height, weight, ideal body weight and 

age were from a normal distribution whereas bilirubin, alkaline phosphatase, AST and 

creatinine appeared to be log normally distribution (data not shown). Positive 

correlations were observed between AST and bilirubin, AST and alkaline phosphatase, 

and bilirubin and alkaline phosphatase. Negative correlations were observed between 

albumin and AST, albumin and bilirubin, and albumin and alkaline phosphatase 

(Figure 3.1). 
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Table 3.1 

Summary of demographics and clinical characteristics of patients 

Clinical characteristics Reference range Median Range n 

Dose (mg) 78 (20-228) 109 
Age (years) 57 (35-79) 109 
Height (cm) 157 (132-175) 108 
Weight (Kg) 62.8 (37-89) 108 
% Ideal body weight 110 (71-157) 108 
Bilirubin (µmol. l-) < 23 10 (1-282) 109 
AST (units. l-') <43 90 (7-815) 109 
Creatinine (µmol. 1-1) 50-130 82 (47-167) 104 
Albumin (g. 1-') 30-46 36.5 (25-54) 106 
Alkaline phoshatase (units. l"t) < 255 403 (61-2972) 108 
Haemoglobin (g. dl"')* 12-15 12.4 (8.4-17.1) 108 
White blood cell (x109.1-1)* 4-11 7.7 (3-22.1) 108 
Neutrophil (x109.1-')* 2-8 5.91 (1.6-21.3) 99 
Platelet (x109.1")* 150-400 242 (38-587) 108 

Clinical characteristics 

WHO performance status 
0 11 

1 47 

2 41 

3 10 

Count n 

109 

Liver metastases (yes) 72 109 
Bone metastases (yes) 66 109 
Prior chemotherapy (yes) 24 86 
Prior endocrine treatment (yes) 77 86 

*= pre-treatment cell count 
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Figure 3.1 

Matrix plot to assess relationships between covariates 
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3.3.3 Assessment of structural and statistical models 

3.3.3.1 Assessment of structural and statistical models using FO 

Successful convergence was achieved for both the 2 and 3 compartment models using 

FO. However, the estimate of the inter-individual variability of V2 using the 3 

compartment model was indeterminate, indicating that this model was over 

parameterised with respect to rd's. The goodness of fit for the 2 and 3 compartment 

models, assessed by plotting individual predicted concentrations against measured 

concentrations, showed that concentrations below 1000 ng/ml, and hence, during the 

distribution and terminal phases of the concentration profile were relatively well 

estimated. In contrast, concentrations above 1000 ng/ml, which correspond to the 

"peak" plasma concentrations, were not estimated well. Examples of measured and 

individual predicted concentration-time profiles, estimated using the 3 compartment 

model with combined error, for a typical patient from each of the 3 trials are illustrated 

in Figure 3.2. Data up to the 6 minute time point were subsequently excluding from 

further analysis. 

The 2 compartment model with proportional or combined residual error 

models had objective function values that were 818 and 715 units higher, respectively, 

than those obtained with the 3 compartment models (Table 3.2). With the 2 

compartment model, there was a positive bias in weighted residuals at early time 

points, a negative bias from 2 to 24 h post-dose and a positive bias from 24 to 60 h 

post-dose (Figure 3.3). This pattern of the weighted residuals indicates model 

misspecification. A more random pattern of weighted residuals was obtained with the 

3 compartment model (Figure 3.3). Therefore, it was concluded that the 3 

compartment model best described the data. The predicted concentrations using 

typical population pharmacokinetic parameter estimates and individual 

pharmacokinetic parameter estimates using the 3 compartment model with combined 

error are illustrated in Figure 3.4. 

The additive residual error model did not converge successfully. The objective 

function value obtained with the combined error model was slightly lower than the 

value obtained with the proportional error model (Table 3.2). However, the shape of 

the polynomial function fitted to the individual weighted residuals (modulus) versus 

the individual predicted concentrations was similar for the combined and proportional 



61 

Figure 3.2 

Measured and individual predicted concentration versus time plots for patients 

from Trial 1,2 and 3 using a3 compartment model with combined error 
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Table 3.2 

Objective function values obtained by two- and three-compartment models with 

proportional and combined error 

Model OFV 

Two compartment with proportional error 9841 

Two compartment with combined error 9728 

Three compartment with proportional error 9023 

Three compartment with combined error 9013 
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Figure 3.3 

Weighted residuals versus time for 2 and 3 compartment models with 

combined error 
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Figure 3.4 

Population predicted and individual predicted concentrations versus measured 

concentrations calculated using a3 compartment model with combined error 
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Figure 3.5 

The modulus of individual weighted residuals versus individual predicted 

concentrations for a3 compartment model with proportional or combined error 
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models (Figure 3.5). For both error models, the individual weighted residuals were 

relatively constant up to 4000 ng/ml and increased at concentrations above 4000 ng/ml. 

3.3.3.2 Assessment of the fit with the first-order conditional estimation method 

The 3 compartment model with combined error was run with FOCE-INTER, to assess 

whether there was an improvement in the fit compared to the FO method. However, 

the 3 compartment model with combined error did not run successfully with the FOCE 

method. The 3 compartment model with proportional error did run successfully if 

inter-individual variability of V1, Q2 and V2 were fixed to zero. The individual 

predicted concentration versus time plots were similar following runs with FO and 

FOCE, although there was less bias around 48 h post-dose when the model was run 

with FOCE compared to FO (Figure 3.6). Thus further model building with 

NONMEM was performed using FOCE-INTER. 

3.3.4 Identification of covariates for model building with NONMEM 

3.3.4.1 Graphical identification 

Inter-individual variability could not be estimated for V2 with FO and so covariate- 

parameter relationships could not be investigated for this parameter. Scatter plots of 

CL versus covariates are illustrated in Figure 3.7. The following covariates appeared 

to have a positive correlation with CL: albumin; dose; and creatinine clearance. The 

following covariates appeared to have a negative correlation with CL: bilirubin; AST; 

alkaline phosphatase; weight; and body surface area. From the box plots (Figure 3.8), 

it was noted that the median clearance value was lower in patients with liver 

metastases compared to those without liver metastases, however, due to the high 

variability, the CL values in the two groups overlapped considerably. There also 

appeared to be a trend towards a decrease in CL with increasing WHO grade. For the 

other pharmacokinetic parameters (Q2) Q3, VI and V3), there were no parameter- 

covariate relationships identified from the plots (data not shown). 
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Figure 3.6 

Individual weighted residuals versus time for a3 compartment models with 

proportional error using FO and FOCE-INTER 
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Figure 3.7 (1 of 2) 

Scatter plots of CL versus clinical characteristics 
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Figure 3.7 (2 of 2) 

Scatter plots of CL versus clinical characteristics 
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Figure 3.8 

Box plots of CL versus clinical characteristics 
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3.3.4.2 Generalised additive modelling 

Inter-individual variability could not be estimated for V2 with FO and could not be 

estimated for V1, V2, and Q2 with FOCE-INTER and so covariate-parameter 

relationships could not be investigated for these parameters. Figure 3.9 illustrates the 

best 30 CL models tried in the stepwise search in the GAM analysis with FO estimates 

plotted against Akaike value. The top 3 models identified by GAM analysis for each 
PK parameter, estimated using FO, are reported in Table 3.3. The best model for CL 

included AST, dose, creatinine clearance and BSA as linear functions. Patient 413 was 

identified as having a high Cooks value and high leverage value, and therefore, could 

have a large influence on the covariates that were selected for CL (Figure 3.10); 

however, removal of this patient from the analysis did not affect the covariate selection 

of the top 3 models. For V 1, a non-linear function of albumin and linear functions of 

dose and weight were determined as being the most influential covariates; however, 

following removal of 3 patients with high leverage and Cooks values, the best model 

included only dose as a linear function (Table 3.3). GAM analysis on Q2 identified 

dose and albumin as linear functions and age as a non-linear function as the best 

covariates to be included in the model, however on removal of one individual with a 

high Cook's value, only dose and age as linear functions were identified in the best 

model for Q2. Dose as a non-linear function and liver metastases as a linear function 

were identified as the best model for Q3 and this was not affected by the removal of 3 

subjects with high leverage and/or Cooks values. AST and albumin included as linear 

functions were identified as being the best model for V3 and this was not affected by 

the removal of data from patient 413, who had high leverage and Cooks values. 

The results of the GAM analysis using the parameter estimates from FOCE 

were almost identical to those estimated using FO. The best model identified was the 

same for each PK parameter, however, for Q3 the 3rd best model using FO estimates 

identified WHO grade as a covariate, whereas analysis using FOCE estimates did not 

identify WHO grade but instead identified albumin. 
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Figure 3.9 
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Table 3.3 

GAM analysis results: best three models identified for CL, V19 Q2, Q3 and V3 

Equation AIC 

CL 26870 
CL--AST+DOSE+CRCL+BSA 17556 
CL---AST+DOSE+BSA 17745 
CL -AST+DOSE+WEIGHT 17823 

Equation AIC 
V, 
V, -DOSE 
V, --DOSE+AGE 
V, -DOSE(ns) 
`Subjects 147,204 and 413 exclude 

277 
247 
247 
249 

Equation AIC 
Q2 29692 
Q2-DOSE+AGE 28470 
QrDDOSE+AGE(ns) 28510 
Q2-ALBUMIN+DOSE+AGE 28560 
*Subject 143 exclud 

Equation AIC 
Q3 36229 
Q3-LMETS+DOSE(ns) 33154 
Q3-LMETS+DOSE 33311 
Q3-WHO+LMETS+DOSE(ns) 33584 
*Subjects 128,132,117 excluded 

Equation AIC 
V3 
V3-AST+ALBUMIN 
V3-BILIRUBIN+AST+ALBUMIN 
V3-AST+ALBUMIN+HEIGHT 
*Subject 413 exc 

9184491 
8900254 
8996226 
9002008 

-= `Is a function of 
ns = natural cubic spline 
*= Subjects with high Cooks/leverage values were excluded from the analysis 
LMETS = liver metastases 
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Figure 3.10 

Cook's distance versus leverage following GAM analysis on bayesian estimations 

of CL 

Individual influence on the GAM fit for CL run 1 
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3.3.5. Population model building using NONMEM 

Patients 130,416 and 421 were excluded from the analysis due to missing albumin 

data and Patient 221 was excluded due to missing weight data. Covariates tested for 

CL included AST, dose, BSA, weight, liver metastases, WHO grade and creatinine 

clearance (CrCL). A summary of the OFV obtained for the principal models tested is 

given in Table 3.4. AST, dose and liver metastases (absent/present) were found to 

result in a statistically significant reduction in the OFV (-49, -32 and -11, respectively), 

when added separately into the CL model, with In AST having the greatest effect. 

CrCL data was not available for patients 223 and 228, thus the influence of CrCL was 

tested in only 103 patients. The inclusion of CrCL into the CL model was not 

statistically significant as judged by the change in the OFV (-1). Of the pairs of 

covariates tested, In AST and dose resulted in the lowest OFV, with a fall in the OFV 

of 6, compared to In AST alone. The addition of BSA onto this CL model resulted in a 

fall in the OFV of 7 and the further addition of liver metastases resulted in a further fall 

in the OFV of 15. Thus, the `full model' for CL included In AST, dose, BSA and liver 

metastases. The effect of adding in AST, dose and BSA separately into the model for 

CL is illustrated in plots of delta CL versus each covariate (Figure 3.11). Delta CL for 

each patient was calculated by the subtraction of the typical population estimate of CL 

from the individual estimate of CL, estimated with and without the covariate of interest 

included in the model. Following the addition of the covariate to the model, if it has 

been adequately incorporated, no relationship between delta CL and covariate should 

be observed. A negative relationship between delta CL and AST, a positive 

relationship between delta CL and dose and a negative relationship between delta CL 

and BSA is observed before the addition of any covariates into the model. Following 

the inclusion of each covariate into the model, the influence of the covariate is 

accounted for in the estimation of the population estimate and thus the relationship 

between delta CL and each covariate is seen to disappear. The effect of adding liver 

metastases into the model is illustrated in the box-plots (Figure 3.12). Before the 

addition of liver metastases in the model the median delta CL in patients with liver 

metastases was less than that in patients without liver metastases. Following the 

inclusion of liver metastases into the model, its influence is accounted for in the 

estimation of the population estimate and thus the median values for delta CL in 

patients with and without liver metastases were similar. 
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Table 3.4 

Summary of models evaluated using FOCE-INTER 

Model No. CL Model OFV DOFV cf model No. 
0 Base model 8088.65 -- 
1 Ln AST 8039.26 -49.39 0 
2 Dose 8056.90 -31.75 0 
3 BSA 8085.16 -3.49 0 
4 WGT 8097.06 +8.41 0 
5 LMETS 8077.41 -11.24 0 
6 WHO* 8092.95 +4.30 0 
7 WHO$ 8087.50 -1.15 0 
8 Basic (103 patients)# 7936.82 -- 
9 CrCL (103 patients)# 7935.94 -0.88 8 
10 Ln AST + Dose 8033.66 -5.60 1 
11 Ln AST + BSA 8036.73 -2.53 1 
12 Ln AST + WGT 8037.16 -2.10 1 
13 Dose + BSA 8045.14 -11.76 2 
14 Dose + WGT 8047.69 -9.21 2 
15 Dose +LMETS 8055.36 

-1.54 2 
16 Ln AST + Dose + BSA 8026.84 -6.82 10 
17 Ln AST + Dose + WGT 8047.68 -14.02 10 
18 Ln AST + Dose + BSA + LMETS 8011.62 -15.22 16 
19 Ln AST + Dose + BSA + WHO$ 8026.70 -0.14 16 

V3 Model 
20 AST 
21 Albumin 
22 Height 
23 Bilirubin 

Q3 Model 

8008.37 -3.25 18 
8007.81 -3.81 18 
8008.30 -3.32 18 
8009.90 -1.72 18 

24 LMETS 8004.69 -6.93 18 
25 WHO* 8006.95 -4.67 18 
26 WHO$ 8009.59 -2.03 18 
27 LnDose 8007.13 -4.49 18 
28 Albumin 8009.00 -2.62 18 
29 LMETS + LnDose 7993.35 -11.34 24 
30 LMETS + WHO* 8000.36 -4.33 24 
31 LMETS +WHO$ 8001.53 -3.16 24 
32 LMETS + albumin 8004.43 -0.26 24 
33 LMETS + LnDose+albumin 7993.34 -0.01 29 
34 LMETS + LnDose+WHO$ 7992.87 

-0.48 29 

KEY. AST = Aspartate aminotransferase; BSA = Body surface area; CrCL = Creatinine clearance; 
LMETS = Liver metastases; WGT = Weight; WHO = World Health Organisation (performance status) 
*= Fall in OFV of 7.81 required for statistical significance (p<0.05) 
$= Grades 0 and I combined, grades 2 and 3 combined 
#= patients 223 and 228 were excluded due to missing creatinine data 
Bold text indicates models that gave a statistically significant improvement 
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Figure 3.11 

Influence of AST, dose and BSA on the CL model 
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Figure 3.12 

Influence of liver metastases on the CL model 
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Using the `full model' for CL, model building was continued for V3. AST, albumin, 

height and bilirubin were all added separately into the model for V3, however, none of 

these covariates were found to result in a statistically significant improvement in OFV 

(Table 3.4). As a result of the GAM analysis for Q3. WHO grade, liver metastases, 

dose and albumin were separately added into the model for Q3. A significant fall in the 

OFV was observed following the addition of liver metastases (-7). Linear and various 

non-linear functions (as indicated by the GAM analysis) were tested for dose and the 

natural log function was the only function in which a statistically significant 

improvement in OFV was observed (-4). There was no further fall in OFV following 

addition of WHO grade or albumin into the model. 

The influence of dose and liver metastases on Q3 are presented graphically in 

Figure 3.13. Before the addition of liver metastases to the model, the median delta Q3 

in patients with liver metastases was greater than in patients without liver metastases. 

Following the inclusion of liver metastases into the model, its influence was accounted 

for in the estimation of the population estimate and thus the median values for delta Q3 

in patients with and without liver metastases were similar. In contrast, there did not 

appear to be an improvement in the delta Q3 values following inclusion of dose as a 

natural log function. 

The full model included CL as a function of In AST, dose, BSA and liver 

metastases and Q3 a function of In dose and liver metastases with an OFV of 7993 

compared to the basic model, without inclusion of covariates, which had an OFV of 

8089. The parameter estimates of the basic and full models are given in Table 3.5. 

The inclusion of liver metastases and dose on Q3 accounted for approximately 

1.4 and 1.7 % of the variability of Q3, respectively. The inclusion of dose, BSA and 

liver metastases each accounted for approximately 2% of the variability of CL. The 

influence of these covariates in the population model for epirubicin was therefore 

deemed to be of little clinical significance. In contrast, the inclusion of AST on CL 

accounted for approximately I1 % of the variability in CL. Thus, the final model 

included CL as a natural log function of AST only: 

CL=74.9 x (1-(0.139 x In AST)) 
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Figure 3.13 

Influence of liver metastases and dose on Q3 model 
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Table 3.5 

Parameter estimates from basic, full and final model 

Basic Full Final 
Estimate RSE (%) Estimate RSE (%) Estimate RSE (%) 

CL (L/h) B, 28.0 5.32 20.1 8.06 74.9** 12.3 
V, (L) 02 9.88 8.77 9.93 8.87 9.99 8.66 
Q2 (L/h) B3 29.0 14.0 29.1 14.0 29.5 13.8 
V2 (L) 04 35.2 18.9 35.2 18.9 36.0 18.6 
Q3 (L/h) B5 60.3 6.30 52.4 7.84 60.6 6.19 
V3 (L) B6 780 6.50.791 6.52 790 6.38 

Ln AST (CL) 
dose (CL) 
BSA (CL) 
Lmets (CL) 
Ln dose (Q3) 
Lmets NO 

07 
08 
B9 
Bio 
Oil 
el2 

0.415 17.3 0.139 6.35 
0.00367 30.0 -- 
0.581 38.6 -- 
1.58 13.1 -- 

0.182 32.6 -- 
1.31 7.60 -- 

wCL (%) 53.3 16.5 36.9 16.9 42.5 15.4 
wQ3 (%) 32.9 18.1 29.8 18.4 31.6 19.5 
wV3 (%) 44.0 22.9 43.2 21.9 43.1 22.1 
a (%) 23.1 9.23 23.0 9.25 23.1 9.29 
**CL=74.9-(74.9*0.139*LnAST) 

Basic Model 

TVCL=B, 
TVV1=82 
TVQ2=83 
TVV2=84 
TVQ3=05 
TVV3=B6 

Full Model 

TVCL=B1*(1-Bi*(LnAST-4.5)*(1+88*(DOSE-78))*(1-89*(BSA-1.7)) if liver metastases present*Blo 
TVV 1=82 
TVQ2=83 
TVV2=84 
TVQ3=85*(1+811(LnDOSE-4.4)) if liver metastases present*812 
TVV3=86 
(N. B. covariates were centred around median values) 

Final Model 

TVCL=9 i *(1-B7*(LnAST) 
TVV1=BZ 
TVQ24; 
TVV2=B4 
TVQ3=85 
TVV346 
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Estimates of parameters from the final model are given in Table 3.6. The 

relative standard errors (RSE) for the estimates of pharmacokinetic parameters and 

variability parameters ranged from 6 to 22 % indicating that the parameters were 

estimated from the model with a good degree of precision. The residual error was 

estimated to be approximately 23 %. Given the range of AST concentrations (7 - 815 

units/L) in this group of patients, the CL is predicted to range from 5 to 55 L/h. The 

individual Bayesian estimates for CL ranged from 4 to 86 L/h. 

3.3.6. Assessment of variance-covariance matrix 
The OFV was lower (8035 versus 8089) following the inclusion of the off-diagonal 

terms in the variance-covariance matrix. The results of the model building with 

NONMEM are given in Table 3.6. The covariates selected for the full model were In 

AST, dose, BSA and liver metastases for CL and were In dose and liver metastases for 

Q3 ie. the same covariates as when the variance-covariance was restricted to the 

diagonals. However, for V3, height, bilirubin and albumin were also identified as 

statistically significant covariates. AST accounted for approximately 10 % of the inter- 

individual variability on CL, however, the remaining covariates each accounted for less 

than 2% of the inter-individual variability of a pharmacokinetic parameter and 

therefore were not considered to be of clinical significance. The final model only 

included In AST on CL: 

CL = 72.9 x (1- (0.135 x In AST)) 
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Table 3.6 

Summary of models using FOCE-INTER with full variance-covariance matrix 

Model No. CL Model OFV LOFV cf. model No. 
0 Base model 8034.60 
1 Ln AST 7978.24 56.36 0 
2 Dose 8007.49 27.11 0 
3 BSA 8032.10 2.50 0 
4 WGT 8033.50 1.10 0 
5 LMETS 8016.10 18.50 0 
6 WHO$ 8034.58 0.02 0 
7 WHO* 8025.61 8.99 0 
8 Basic (103 patients)# 7874.54 - 
9 CrCL (103 patients)# 7873.51 1.03 8 
10 Ln AST + Dose 7974.89 3.35 1 
11 Ln AST + BSA 7975.75 2.49 1 
12 Ln AST + WGT 7976.53 1.71 1 
13 Ln AST + LMETS 7972.70 5.54 1 
14 LnAST + WHO$ 7977.24 1.00 1 
15 LnAST and WHO* 7975.27 2.97 1 
16 Dose + BSA 7997.24 10.25 2 
17 Dose + WGT 7999.89 7.60 2 
18 Dose + LMETS 8002.01 5.48 2 
19 Dose + WHO* 8000.60 6.89 2 
20 Lmets + WHO* 8011.88 4.22 5 
21 Ln AST + LMETS+Dose 7966.76 5.94 13 
22 Ln AST + LMETS+BSA 7971.02 1.68 13 
23 Ln AST + LMETS+WHO* 7969.96 2.74 13 
24 Ln AST + LMETS+Dose+BSA 7962.12 4.64 21 
25 Ln AST + LMETS+Dose+WHO* 7962.57 4.19 21 
26 Ln AST + LMETS+Dose+BSA+WHO* 7958.38 3.74 24 

V3 Model 

27 AST 7959.53 2.59 24 
28 Albumin 7960.63 1.49 24 
29 Height 7958.11 4.01 24 
30 Bilirubin 7956.94 5.18 24 
31 Bilirubin + Height 7953.01 3.93 30 
32 Bilirubin + Height + albumin 7948.43 4.58 31 
33 Bilirubin + Height + AST 7952.98 0.03 31 
34 Bilirubin + Height + albumin + AST 7947.38 1.05 32 

Q3 Model 

35 LMETS 7938.43 10.00 32 
36 WHO* 7945.82 2.61 32 
37 WHO$ 7947.80 0.63 32 
38 LnDose 7946.77 1.66 32 
39 Albumin 7946.56 1.87 32 
40 LMETS + LnDose 7930.64 7.79 35 
41 LMETS + WHO* 7945.82 -7.39 35 
42 LMETS +WHO$ 7937.24 1.19 35 
43 LMETS + albumin 7938.37 0.06 35 
44 LMETS + LnDose+albumin 7930.51 0.13 40 
45 LMETS + LnDose+WHO$ 7930.33 0.31 40 

KEY. AST = Aspartate arninotransferase; BSA = Body surface area; CrCL = Creatinine clearance; 
LMETS = Liver metastases; WGT = Weight; WHO = World Health Organisation (performance status) 
*= Fall in OFV of 7.81 required for statistical significance (p<0.05) 
$= Grades 0 and I combined, grades 2 and 3 combined 
#= patients 223 and 228 were excluded due to missing creatinine data 
Bold text indicates models that gave a statistically significant improvement 
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3.4 DISCUSSION 
Following initial exploratory population analysis, estimation of peak concentrations 

using NONMEM was poor, i. e. predicted concentrations were very different to the 

measured concentrations. Difficulty in estimating epirubicin concentrations at early 

blood sampling times has previously been reported by other investigators (Camaggi et 

al. 1982). A very sharp peak was observed as plasma concentrations were seen to rise 

and fall several thousand nglml over the period of a few minutes. A minor inaccuracy 

in measurement of the actual blood sampling time in the first few minutes after 

administration of epirubicin could therefore result in a major error in the estimation of 

the epirubicin plasma concentration. Thus, minor deviations in measurement and/or 

recording of actual blood sampling times could be the cause of the poor estimations of 

the peak concentrations. In addition, compartmental analysis assumes that there is 

instantaneous and homogenous mixing of drug within the plasma or blood. However, 

there have previously been several reports of peak concentrations being observed up to 

3 minutes after a rapid infusion of various drugs and it is thought that this could be due 

to the time for drug to reach the sampling site, mixing or other haemodynamic effects 

(Chiou 1979). The impact of the mixing phenomenon on early observations is greatest 

in drugs with very rapid distribution phases, such as epirubicin. Given the difficulty in 

accurately predicting peak plasma concentrations and the likely inaccuracy of the 

sampling times, it was considered appropriate that concentrations measured up to 6 

minutes post-start of the infusion (end of the infusion or shortly after) should be 

excluded from further analysis. 

Scatterplots of pharmacokinetic parameters versus covariates are a 

simple yet informative method of identifying parameter-covariate relationships and in 

particular the shape of any such relationships (Ette & Ludden 1995). However, the 

scatter plots only allow the effects of each covariate to be assessed individually and if 

some covariates are correlated, they may not all be required in the model. In addition, 

a covariate with a very strong influence on a parameter may mask a weaker influence 

of another covariate. Due to the larger number of parameters and covariates to be 

assessed in this analysis, the total number of possible models is very large and it would 

not be practical to test all potential models identified from the scatterplots due to the 

computing time required. 
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Generalised additive modelling (GAM) was used to identify 

combinations of covariates that influenced the phannacokinetic parameters. The GAM 

analysis and the plots are dependent on the accuracy of the individual Bayesian 

estimates of the pharmacokinetic parameters. Parameter estimates using the FOCE are 

generally considered to be more reliable and less biased than those estimated by FO 

(Beal & Sheiner, 1992). However, the GAM analysis results using estimates from both 

methods were similar. From the GAM analysis, dose, AST, CrCL and BSA were 

identified as the combination of covariates that had the most influence on CL. Thus, 

although from the scatter plots, bilirubin and alkaline phosphatase appeared to be 

important covariates with respect to CL, they were not identified as important 

covariates by the GAM analysis. It is likely that their effect was over shadowed by the 

greater influence of AST, and hence, the addition of bilirubin and alkaline phosphatase 

to the model did not offer any further advantage over AST. A number of covariates 

were identified by GAM analysis, using FO estimates, as influencing V1 and Q2. 

however, the influence of these parameters was not tested with NONMEM as inter- 

individual variability of these parameters could not be estimated using FOCE. As 

graphical analysis did not find relationships between V1 and Q2, with any covariates, 

the influence of these parameters is likely to be of little clinical relevance. 

Following analysis using NONMEM, dose was identified as influencing 

CL and Q. It was noted that following the inclusion of dose and AST separately in the 

CL model, there was a large fall in OFV, whereas when added into the model together 

there was only a marginal improvement in the OFV compared to inclusion of them 

singularly. Clinicians would expect patients with liver disease to have reduced 

epirubicin CL and hence are likely to have reduced the dose in these patients. 

Certainly, in 37 of the patients in the data set, the dose was administered according to 

the AST level to achieve a target AUC. This could explain the apparent increase in 

epirubicin CL with an increase in dose. Due to the interaction of dose with liver 

function, it is not possible to fully dissociate the individual influences of AST and dose 

on CL. The inclusion of AST in the model explained 11 % of the variability of CL but 

the addition of dose in the model only accounted for a further 1.7 % of the variability. 

From the model, the CL was estimated to change 2-fold over the entire dosage range 

whereas it was estimated to change 11-fold over the range of AST values, thus the 

inclusion of dose in the model was considered to be of much less clinical value than 
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AST. A study of 78 patients with metastatic breast cancer reported that the kinetics of 

epirubicin were linear over the dose range of 40 to 135 mg/m2 (Jakobsen et al. 1991a). 

However, there was some suggestion of dose-dependent pharmacokinetics as AUC 

values increased in a slightly less than dose proportional manner, consistent with our 

findings, and statistical analysis found the terminal half-life at the 40 mg/m2 dose level 

to be significantly longer compared to the 60 and 135 mg/m2 dose levels. In contrast, a 

greater than dose proportional increase in AUC and Cmax values was reported in a study 

of 19 patients with various malignancies (Tjuljandin et al. 1990). However, the 

pharmacokinetic parameters were calculated using a 2-compartment model and the 

results appeared to be inconsistent. Using a population approach, Wade and co- 

workers (1992) concluded that epirubicin has linear pharmacokinetics over the dose 

range of 25 to 100 mg/m2. Thus overall, there is no consistent evidence to support 

dose-dependent pharmacokinetics for epirubicin. 

The inter-individual variability in the basic model was estimated to be 

53 %, however, using the full model that included 4 covariates on CL, only 16 % of the 

variability was explained. It is possible that the data set is too small to identify all the 

sources of variability and that some variability could be due to factors not available in 

this data set such as diet or genetic differences in metabolic enzymes. The inclusion of 

dose, BSA and liver metastases on Cl... and liver metastases and dose on Q3 each 

accounted for 2% or less of the interindividual variability. Thus, the influence of these 

covariates on the pharmacokinetics of epirubicin was deemed to be of little clinical 

significance and given the increased complexity of the model, and hence, increased 

complexity of any resulting dosage guidelines, were considered to be of marginal 

benefit. Hence, the final model included only AST as a natural log function on CL. 

Model building allowing a full covariance matrix resulted in the selection of the same 

final model i. e. CL as a natural log function of AST, as when the variance-covariance 

was restricted to be diagonal. 

As data were available from each individual on one occasion only, it 

was not possible to account for the inter-occasion variability (intra-subject variability) 

in this data set. It is likely that the residual error (23 %) is artificially inflated and 

reflects inter-occasion variability in addition to the `true' residual error (Karlsson & 

Sheiner 1993). 
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The current dosing guidelines in the UK recommend a reduction in 

dose of 50 % in patients with moderately elevated bilirubin levels and 75 % reduction 

in patients with severely elevated bilirubin levels (SPC, UK). However, bilirubin was 

not identified by the GAM analysis, whereas AST was, suggesting that AST is a better 

maker for epirubicin CL than bilirubin. It was noted that patients with liver metastases 

mostly had bilirubin levels within the reference range, whereas their AST levels were 

generally elevated. Thus, AST appeared to be a more sensitive marker than bilirubin 

of liver damage in patients with liver metastases. These results suggest that current 

dosage procedures in the UK, based on bilirubin, may not be ideal. 

The current dosing procedures in the UK also recommend that dose is 

administered according to the body surface area of a patient. This method of dosing 

epirubicin was developed because of convention in oncology rather than by scientific 

research. A previous study in which 20 patients received 150 mg epirubicin regardless 

of body size, did not find a relationship between BSA and any pharmacokinetic 

parameter, despite the wide range of BSA (1.58 to 2.05 m2) of the patients studied 

(Gurney et al. 1998). In the current analysis, a weak negative relationship was 

observed between CL and BSA, further indicating that the increase of epirubicin dose 

with increasing BSA does not offer any clinical advantage. The results from the 

population analysis in this Chapter are subsequently used to propose new guidelines for 

epirubicin (Chapter 5). 
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CHAPTER 4 

VALIDATION OF POPULATION MODEL FOR 

EPIRUBICIN USING INTERNAL TECHNIQUES 
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4.1 INTRODUCTION TO CHAPTER 

A population model is dependent on the quality of the data and by the decisions taken 

by the analyst during model building, which may be subjective. Therefore, the validity 

of the population model should be tested. In particular, if the results obtained are 

intended to define dosage guidelines, the predictive performance of the model should 

be assessed (Sun et al. 1999). A number of methods have been used to validate 

population pharmacokinetic models but there is currently no consensus on the correct 

approach. A universal validation method may never be available. Rather an 

appropriate validation method should be selected based on the objectives of the 

analysis (Mentre & Ebelin 1997). Perhaps the most compelling evidence for the 

validity of a population model is to measure the predictive performance of that model 

in a different data set (external validation). A limitation of this method is that if 

unsatisfactory predictive performance is attained, it is not possible to establish whether 

this is due to invalid model parameters or because of genuine differences between the 

data sets (Vozeh 1991). Despite this limitation, external validation is the most 

stringent test for validity of a population model and hence is the method of choice 

when possible (Sun et al. 1999). 

The predictive performance of a population model can be determined by 

assessing the ability of the model to accurately predict concentrations in the validation 

data set. The measured concentrations in the validation data set are compared to those 

predicted by the population model given the clinical characteristics and dosing history 

of each patient. This method of validation may be of interest if a target concentration 

is desirable for optimum therapeutic outcome, however, it is unsuitable if more than 

one concentration is available per subject as concentrations within the same individual 

will be correlated. Although it is possible to use only one concentration from a patient, 

this would result in potentially valuable information being discarded. Vozeh and 

coworkers (1990) suggest that if more than one concentration per subject is available, a 

standardized mean prediction error for each patient is calculated (mean prediction 

error/standard deviation of prediction error). The standardized mean prediction errors 

should have a mean of zero and a standard deviation of one, if the model optimally 

describes the data. Alternatively, it may be that a desired pharmacokinetic parameter 

is of particular interest rather than individual concentration values. In this situation, 



90 

the population estimate of the parameter from the population model, given the clinical 

characteristics and dosing history of the patient is compared to the actual Bayesian 

estimate for that individual (Bruno et al. 1996). This approach overcomes the 

problems of multiple concentrations. However, this method assumes that the Bayesian 

estimate of the parameter is the `true' value, and should only be used if one is 

confident that this estimate is reliable, hence, a rich data set is usually required. 

In many cases, an external data set for validation purposes is not available so 

other internal techniques are used. One method is to split the data set (data-splitting) 

into a training data set and a validation data set before commencing analysis. The 

disadvantage of this method is that because the accuracy of the model is a function of 

sample size, removal of a proportion of the data (usually one third) may impact on the 

reliability of model parameter estimates. Furthermore, the results obtained from data- 

splitting are highly variable and dependent on the split of the data (Roecker 1991). 

One refinement is cross-validation which involves repeated data-splitting. This may 

be advantageous because the results are not dependent on a single data split and a 

larger proportion of patients can be included in the estimation process with each split. 

Furthermore, with cross-validation all subjects will contribute to both the estimation 

process and validation. 

The bootstrap resampling method does not require the removal of a proportion 

of the data for validation purposes and thus, like cross-validation, has the advantage of 

utilising all the available data during model development. Bootstrap resampling can be 

used to test model stability in terms of covariate selection and to evaluate model 

performance (Ette 1997). A bootstrap sample is generated by random sampling from 

the original data set so that a new data set is formed that includes the same number of 

individuals as the original data set. A minimum of 200 bootstrap replicates is advised 

for model validation purposes (FDA guidelines, 1999). The extensive computation 

time required for model validation using hundreds of datasets in bootstrap validation 

methods is clearly a drawback of this approach, although with ever improving 

computer systems and the availability of automated model building software (Jonsson 

& Karlsson 1998), this is becoming less of a problem. 

Sensitivity analysis can be used to determine the robustness of the model by 

changing values of covariates or plasma concentrations by a small amount to assess the 

sensitivity of the model to small changes in the data (Karlsson et al. 1998). Case 
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deletion diagnostics such as jacknifing can be used to identify outliers or influential 

individuals (Sadray et al. 1999). This could highlight that caution is required if the 

model parameters are highly dependent on only one or 2 unusual individuals. 

Confidence intervals of parameters calculated using extended least squares, the 

algorithm used by NONMEM, were previously been shown to be too narrow, relative 

to the true values (Sheiner & Beal, 1987). Alternative methods to estimate standard 

errors or confidence intervals, such as the jacknife, are recommended to attain more 

reliable estimates of standard errors (FDA guidelines, 1999). The jacknife is a non- 

parametric method, which involves repeated estimation of population estimates 

following consecutive deletions of data from individuals (n-1) or a percentage of 

individuals (eg. n-10%) from the data set. 

Although validation using an external data set is the preferred validation 

method, internal methods can identify an invalid model without the further need for 

testing with an external data set. 

The aims of the analysis in this Chapter was to assess the model stability, the 

predictability of the model and the impact of some of the decisions taken in the 

development of the final population model, using internal validation techniques. 
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4.2 METHODS 

4.2.1 The effect of removing concentration data collected before 0.1 h 

post-dose 
In the population analysis (Chapter 3) a decision was taken to exclude all concentration 

data collected prior to 0.1 h post-dose. The impact of this decision on the results was 

evaluated. Population parameter estimates were calculated using all the concentration 

data available (i. e. including concentration data collected before 0.1 h post-dose) for 

the 105 subjects included in the final model using NONMEM as described previously. 

The effect of removing the early time-points was assessed by comparing the 

population parameter estimates and their precision on the exclusion of the early time- 

points, with those obtained on their inclusion. 

4.2.2 Jacknife analysis 
4.2.2.1 Calculation of standard errors 

Standard errors for the population parameters were calculated by jacknife analysis 

according to the method described by Effron and Tibshirani (1993). From the original 

data set, 105 new data sets were produced so that each excluded the data from one, 

patient (a different patient was excluded in each data set). These are termed jacknife 

samples. Each jacknife sample was analysed with NONMEM using the final 

population model. A population parameter estimated from a jacknife sample is termed 

Ö; where i represents the jacknife sample in which the ith individual was deleted. 

Pseudo values (Ö; ) for each parameter were calculated as follows: 

Ö; = nÖ - (n- 1)Ö; 

where Ö is population estimate of the parameter (estimated from all patients) and n is 

the total number of patients in the data set. The standard error for the population 

parameter (Ö) was calculated as follows: 

, (Ö; - 6)2) / n(n-1) 
] 112 

se(Ö) =I (_2: 

where Ö is the average of the pseudo values ie. Ö= 6i/n. 
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4.2.2.2 Identification of influential individuals 

Population estimates from the jacknife samples were compared to the final population 

estimates to identify any individuals that had a large influence on the parameter values. 

4.2.3 Likelihood based method for detection of individuals 

influencing covariate selection 
Individuals influencing covariate (AST) selection were identified using the likelihood 

based method previously described by Sadray and coworkers (1999). The influence of 

an individual was assessed by comparing the difference in OFV between the basic and 

final models when calculated using all the data and when calculated with the individual 

in question removed: 

OFV, Aj'acknife>i - (OFVfinal, n - OFVbasic, n) - (OFVfinal, 
n-i - OFVbasic, 

n-i) 

Individuals that support the model have a negative OFVAjacknife, i, whereas individuals 

that do not support the model have a zero or positive value. Individuals with high 

negative values were termed `driving' whereas those individuals with a high positive 

value were termed `masking'. 

For example, using all data, the OFV values for the final (OFVfnal, n) and basic 

(OFVbasic, n) models are 7978 and 8034, respectively, and hence the first part of the 

equation (OFVfnal, n - OFVb. ic, n) is a constant (-56). If an individual supported the 

model (ie. they are `driving'), on their removal from the data set, the fall in the 

objective function would be less than the fall observed when they were included, thus, 

the fall in the OFV (OFVfna1, n-i - OFVbasic, n_i) may be, for example, reduced by only - 
30. Therefore, for a driving individual, OFVjaci ife, i will be a negative number, as (- 

56) - (-30) _ -26. Likewise, the opposite is true for a `masking' individual. 

The OFV for the basic and final models were available from previous analyses. 

Likewise the OFV's for the jacknife samples of the final model were available from 

the previous jacknife analysis. The OFV's for the jacknife samples of the basic model 
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were obtained by fitting the basic model to each of the jacknife samples using 
NONMEM. 

4.2.4 Cross validation analysis 
The data set was randomly split into 5 groups of 21 patients. A new data set was 
formed, referred to as ̀ Training dataset 1', comprising 4 of these groups, (i. e. 84 

patients). This was used to estimate population parameters using the basic and final 

models as previously described. The remaining 21 patients were used for validation 

and referred to as ̀ Validation data set 1'. This process was repeated 4 times so that 

Training data sets 2 to 5 were formed, each with a different group removed for 

validation purposes (Validation data sets 2 to 5). 

The basic and final CL model derived from each training data set were used to 

predict CL for patients in the corresponding validation data sets from their AST 

measurements. Individual Bayesian estimates of model parameters were estimated for 

the validation data sets. The ability of the basic and final population models derived 

from the training data sets to estimate CL in the corresponding validation data sets was 

assessed by calculating prediction errors as follows: 

Pe1 (%) = (Population CL - Bayesian CL) / Bayesian CL x 100 

The root mean squared prediction error (rmse), which describes the precision of the 

population estimate relative to the Bayesian CL estimate, was calculated as described 

in Chapter 2. A paired t-test was performed on the squared prediction errors to assess 

whether differences in imprecision of CL estimated using the basic or final model 

(with AST) was statistically significant (p<0.05). 

The prediction errors for CL estimates using the basic and final models were plotted 

against AST to assess whether each model performed equally well over the range of 

AST values. 
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4.2.5 Sensitivity of the model to 10 % errors in AST and plasma 

concentrations 
The sensitivity of the model to errors in AST concentrations was assessed by 

performing a sensitivity analysis. AST concentrations were randomly changed by +/- 

10 % of the measured value. Randomisation was performed by generating a column of 

random numbers in Excel using the `random number generator' tool. The column of 

random number was inserted next to a column of patient ID numbers and both columns 

were sorted according to ascending order of the random numbers. The first 53 patients 

were assigned to be changed by + 10 % and the remaining 52 patients were assigned to 

be changed by - 10 %. Population analysis of the altered data was performed using 

NONMEM as previously described for the final population model. The population 

parameters and OFV using the altered dataset were compared to those attained using 

the original data. In a similar manner, a population analysis was performed using 

epirubicin plasma concentration data that were randomly changed by +/- 10 % to 

assess the sensitivity of the model to errors in plasma concentration measurements. 
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4.3 RESULTS 

4.3.1 The effect of removing concentration data collected before 0.1 h 

post-dose 
The population parameter estimates and corresponding precision (relative standard 

error) calculated with the early time points included and excluded are given in Table 

4.1. The precision of the structural parameter estimates was markedly inferior, as 

measured by the relative standard errors (RSE) for all parameters when early time- 

points were included compared to when they were excluded. Parameters estimated 

using the early time-points, had an RSE ranging from 6.3 to 56 %, indicating that they 

were unreliable, compared to 4.5 to 16 % when these early time-points were excluded. 

The structural parameter estimates calculated when the early time-points were included 

were up to 67 % lower than those estimated when they were excluded. The parameters 

least affected by the inclusion/exclusion of the early time-points were THETAI and 

THETA7, which represent CL and the influence of AST on CL, with differences of 

only 15 and 4 %, respectively. Estimates of inter-individual variability and their 

corresponding precisions were similar when calculated with and without the inclusion 

of early time-points. The residual error was higher following the inclusion of the early 

time points (31 %) compared to that estimated when they were excluded (23.0 %) 

indicating a poorer fit of the model to these data. This is a large increase in residual 

error given that the increase in the total number of data points was relatively small 

(from 1051 to 1120). 

4.3.2 Jacknife analysis 
4.3.2.1 Calculation of standard errors 

The estimates of standard errors using the jacknife technique were very similar to those 

estimated by NONMEM, although the standard errors estimated by the jacknife 

method were generally higher than those estimated by NONMEM (Table 4.2). The 

mean population parameter estimates from the jacknife samples were almost identical 

to those estimated using NONMEM. 
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Table 4.1 

Parameter estimates including and excluding concentration data before 0.1 h 

Early time-points 
Excluded Included 

Pharmacokinetic parameter 
Bi 72.9 
Bz 
0,30.2 
B4 35.7 
05 61.5 
B6 772 
07 0.135 

10.3 
62.2 
4.97 
13.0 
11.9 
40.6 
583 

0.129 

Inter-individual variability 
wCL (%) 39.4 35.9 

wQ3 (%) 34.4 33.2 

wV3 (%) 42.7 40.0 

6 %) 

Residual error 
23.2 30.7 

Key 
TVCL=9, *(1-B, *(LnAST) 
TVV, =B2 
TVQZ=B3 
TVVz=B4 
TVQ3=85 
TVV3=B6 
where TV is typical value 

Early time-points 
Excluded Included 

RSE (%) 
7.97 13.9 
8.18 34.2 
12.7 42.1 
16.1 56.4 
6.13 24.3 
5.45 18.5 
4.54 6.26 

RSE (%) 
14.3 16.0 
17.8 14.3 
22.4 28.8 

RSE (%) 
9.27 17.1 

wCL, wQ3, and wV3 = interindividual variability (CV) for CL, V3 and Q3, respectively; 6= residual 
variability 
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Table 4.2 

Estimates of population estimates and standard errors using NONMEM and 

Jacknife analysis 

Estimated from NONMEM Estimated from Jacknife 
analysis 

Population Mean population 
Estimate se Estimate se 

01 72.9 5.8 72.9 5.9 
02 10.3 0.84 10.3 0.96 
03 30.2 3.8 30.2 4.0 
04 35.7 5.7 35.7 6.0 
05 61.5 3.8 61.5 3.7 
06 772 42 772 43 
07 0.135 0.0061 0.135 0.0066 

r11 0.155 0.022 0.155 0.023 

r12 0.118 0.021 0.118 0.022 

113 0.182 0.041 0.182 0.044 

ri1-2 0.0659 0.016 0.0660 0.017 

n 1-3 0.0825 0.020 0.0825 0.020 

r12-3 0.0974 0.029 0.0975 0.030 

or 0.0537 0.0050 0.0537 0.0050 

se = standard error 

Model: 

TVCL (1/h) =8 , *(1-87*(LnAST) 
TVVI (1) = 82 
TVQ2 (Uh) = es 
TW2 (1) = B4 
Tv43 (1/h) = e5 
TVV3 (1) = B6 

CL = TVCL*EXP n1 
Q3 = TVQ3*EXP n2 
V3 = TVV3*EXP n3 

where TV is typical value 
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4.3.2.2 Identification of influential individuals 

The estimates of the population parameters from the jacknife samples are illustrated in 

Figure 4.1. There was little variability in the population parameter estimates between 

jacknife samples with most estimates being within 5% of the final population 

estimate. The structural parameter estimates from the jacknife samples were all within 

5% of the final population estimates with the exception of Theta 3 and Theta 4, which 

were 6 and 7.5 % higher, respectively, when patient 228 was removed. For the inter- 

individual variability parameters, only 1 or 2 jacknife samples varied from the final 

estimate by more than 5 %, with a maximum variation of -17 % for ETA3 when 

patient 402 was removed. The covariance parameters were most sensitive to removal 

of individual patients with up to 5 jacknife samples varying by more than 5% from the 

final estimates. The maximum variation was 19 %, which was observed for covariance 

between ETA2 and ETA 3 when patient 143 was removed. All jacknife estimates of 

residual error were within 5% of the final estimate. 

4.3.3 Likelihood based method for detection of individuals 

influencing covariate selection 
The OFVOjacknife, i values are illustrated in Figure 4.2. Patient 225 had a high positive 

value for OFVAjacknife, i indicating that this patient was masking the relationship 

between AST concentration and CL. Patient 225 had a CL value of 30.5 L/h, which is 

is higher than expected from the final population model for CL based on the AST 

value of 179 U/L (21.8 L/h). 

The individuals with the greatest positive influence on the inclusion of AST in 

the model were Patients 413,228 and 419, who had highest AST concentrations in the 

data set at 815,530 and 489 U/L respectively. Although these individuals had the 

greatest influence on the final covariate model, they were not outliers as they were not 

set apart from the other individuals (Figure 4.2). Data from 73 patients produced 

negative OFVOjacknife, i values and thus were better described by the final model, 

whereas data from 32 patients generated positive values and consequently were better 

described by the basic model. 
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Figure 4.1 (1 of 5) 

Population parameter estimates from jacknife samples 
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Figure 4.1 (2 of 5) 

. 
Population parameter estimates from jacknife samples 
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Figure 4.1 (3 of 5) 

Population parameter estimates from jacknife samples 
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Figure 4.1 (4 of 5) 

Population parameter estimates from jacknife samples 
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Figure 4.1 (5 of 5) 

Population parameter estimates from jacknife samples 
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Figure 4.2 

Likelihood-based method to identify individuals influencing covariate selection: 

change in OFV jacknife versus patient ID number 
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4.3.4 Cross validation analysis 
Population estimates from the 5 training data sets were similar (within 10 %) to those 

attained using the complete dataset (Table 4.3). The rinse for CL values estimated 

using the basic model and using the final model based on AST values, showed that the 

imprecision of the CL estimates improved in 4 of the 5 validation data sets if AST was 

used to estimate CL compared to estimations using the basic model (Table 4.4). 

However, the observed improvements in rinse were not statistically significant in any 

of the validation data sets. As the lack of statistical significance could be due to the 

relatively small number of patients (21) in each validation data set, a t-test was 

performed on prediction errors combined from all datasets (n=105). Following 

combination of the validation data sets, there was an improvement in rmse from 66 % 

to 47 % with the inclusion of AST in the population model. Again, this was not 

statistically significant 

(p = 0.062). 

When the prediction errors from the basic model for CL were plotted against 

AST, if the AST concentration was less than 150 U/L, they were generally within 50 % 

of the Bayesian estimate (Figure 4.3A). However, if the AST concentration was above 

150 U/L, the prediction errors were up to 300 % and were generally much greater than 

50 %, indicating that the basic model over predicted CL for patients with AST values 

above 150 U/L. As expected, prediction errors for CL at AST values above 150 U/L, 

improved following the inclusion of AST in to the final model and generally fell below 

50 % (Figure 4.3B). However, it was noted that for AST values less than 150 U/L, CL 

was grossly overestimated by the final model for several patients. Prediction errors 

attained using the final model in only those patients with AST above 150 U/L showed 

a statistically significant improvement compared to the basic model (p<0.01). These 

results suggests that if AST values are above 150 U/L, AST can aid prediction of CL 

but if AST values are less than 150 U/L, AST is not a useful predictor of CL. 
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Table 4.4 

Imprecision (rmse %) of population CL estimates calculated with basic and final 

models 

Validation dataset Basic Population CL model Final Population CL model t-test 
rmse (%) rmse (%) delta rmse (%) p-value 

1 45.1 43.6 -1.53 0.891 
2 49.7 61.6 11.9 0.270 
3 56.9 44.4 -12.5 0.505 
4 94.1 47.1 -47.0 0.151 
5 71.1 30.9 -40.2 0.120 

Combined 65.8 46.6 -19.2 0.062 
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Figure 4.3A 

Prediction errors from basic CL model versus AST 
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Figure 4.3B 

Prediction errors from final CL model versus AST 
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4.3.5 Sensitivity of the model to 10 % errors in AST and plasma 

epirubicin concentrations 
Following random alteration of AST concentrations by +/- 10 %, there was little 

change in OFV (7976) compared to that obtained with the original data (7978). The 

alteration of AST values by +/- 10 % had a negligible effect on the population 

parameter estimates and their imprecision (Table 4.5). Of particular interest, there was 

no change in Theta 7, which describes the influence of AST on CL. This indicates that 

the model is robust in terms of measurement errors in AST. 

Following random alteration of epirubicin plasma concentrations by +/- 10 

the OFV increased from 7978 to 8104, and the residual error increased from 23.2 to 

24.9 % indicating a poorer fit of the data. However, there was little change in the 

population parameter estimates or their precision suggesting that the population model 
is robust in terms of measurement errors in concentrations (Table 4.5). 
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Table 4.5 

Population parameter estimates following sensitivity analysis 

Pharmacokinetic parameter 

Original data +/- 10 % error in AST +/- 10 % error in 

concentrations 
Estimate RSE (%) Estimate RSE (%) Estimate RSE (%) 

0,72.9 8.0 73.7 7.9 73.0 8.4 
0Z 10.3 8.2 10.3 8.2 10.5 9.0 
03 30.2 12.7 30.1 12.7 32.1 13.2 
04 35.7 16.1 35.6 16.0 39.8 17.1 
05 61.5 6.1 61.6 6.1 61.2 6.4 
06 772 5.5 772 5.5 782 6.1 
07 0.135 4.5 0.136 4.4 0.135 4.7 

Inter-individual variability 
n1 0.16 14.3 0.16 14.3 0.16 14.6 

712 0.12 17.8 0.12 17.9 0.12 17.1 

q3 0.18 22.4 0.18 22.4 0.20 22.0 

ý11-2 0.07 24.9 0.07 24.4 0.07 25.7 

1-3 0.08 23.9 0.08 24.4 0.08 27.7 

r12-3 0.10 29.8 0.10 30.3 0.10 29.4 

Residual Error 
O 

RSE _ relative standard error 

Model: 

TVCL (1/h) = 01*(1-07*(LnAST) 
TVV, (1) = @2 
TVQ2 / 

llh) - B3 
TVV2 (1) = 

e4 

TVQ3 (Uh) - Bs 
TVV3 (1) = e6 

CL = TVCL*EXP nI 
Q3 = TVQ3*EXP 112 
V3= TVV3*EXP 713 

0.05 9.3 0.05 9.3 0.06 7.9 

where TV is typical value 
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4.4 DISCUSSION 

The population model for epirubicin determined in the previous chapter is intended for 

use in the development of new dosage guidelines for epirubicin, and therefore warrants 

validation (FDA guidelines, 1999). Since an external data set was not available for 

validation purposes at this stage, internal validation methods were used. The impact of 

some of the analytical decisions taken, the robustness of the model and the predictive 

performance of the model were assessed. 

During model development, it was noted that the model provided a poor fit of 

early peak concentrations. The poor prediction of these early time-points could be due 

to an inadequate time for mixing in the circulation (Chiou 1979). Alternatively, minor 

inaccuracies in recording of blood sampling times could have had a substantial 

influence on predicted concentrations given their rapid change during the early part of 

the concentration-time profile. Therefore, time points up to 6 minutes post-start of the 

infusion were excluded from the analysis. The decision to remove these early time- 

points was subjective, so the impact of their removal was assessed. As expected, the 

residual error was substantially higher when the early time-points were included 

compared to when they were excluded indicating that the model provided a poor fit of 

these data. Inclusion of the early time-points resulted in parameter estimates that were 

highly unreliable, as judged by the large relative standard errors (up to 56 %), whereas 

on their removal, the relative standard errors were all below 17 % and therefore 

considered acceptable. This does not rule out the possibility that the inability of the 

model to fit the early time points was due to model mis-specification. However, it is 

widely accepted that the structural model for epirubicin is a 3-compartment model and 

the parameter values obtained following the removal of the early time-points are 

highly consistent with those reported elsewhere (Robert 1994). Furthermore, the 

removal of the early time-points had a minimal impact on the estimates of the 

parameters of most interest i. e. those influencing CL. Based on these results, the 

decision to remove the early time-points is justified. 

The sensitivity analysis that involved +/-10 % changes in AST or epirubicin 

concentrations had a negligible impact on parameter estimates or their associated 

relative standard error. This suggests that the model is relatively robust and is not 

sensitive to minor measurement or recording errors. Likewise, the results of the 
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jacknife analysis showed that removal of any one individual did not result in any major 

changes to the population parameter estimates. The likelihood method, which was 

used to identify individuals influencing covariate selection, indicated that the selection 

of AST in the final model was not due to the presence of outliers. One individual, 

Patient 225 was identified as masking the relationship between AST and CL, as CL 

was much higher than expected for the measured AST concentration of 179 U/L. It is 

possible that this patient could have had an inaccurate AST measurement as both 

bilirubin and albumin levels were within the reference ranges. Three individuals, 

Patients 413,228 and 419, were identified as having the greatest influence on the 

selection of AST in the model. The GAM analysis (Chapter 3) also previously 

identified Patient 413 as having a high influence on the selection of covariates for CL; 

however, the same covariates were selected in the GAM analysis on the exclusion of 

Patient 413. Although these individuals had the greatest influence on the final 

covariate model, they were not outliers. These results provide evidence that the model 

is stable and is not influenced by spurious data. 

Given the relatively small size of the dataset, a split of the data into a training 

and a validation dataset was not performed as it may have compromised model 

development. Cross-validation was used to test the model for its ability to predict 

epirubicin CL, as AUC (Dose/CL) has previously been shown be a useful predictor of 

toxicity and therapeutic outcome (Jacobsen et al. 1991b; Hu et al. 1989). As the 

dataset contained rich data, the individual Bayesian CL estimates were likely to be 

accurate enough to be taken as the `true' values. The results of the cross-validation 

were disappointing. Although the prediction of CL was better with the final model 

compared to the basic model, the improvement was not statistically significant. 

Further investigation revealed that a statistically significant improvement in CL 

predictions using the final model only occurred in patients with AST concentrations 

above 150 U/L. This suggests that the final model has improved predictive 

performance in patients with AST concentrations greater than 150 U/L but is not useful 

for those with a lower value. 

The jacknife method has been recommended for the calculation of standard 

errors for parameter estimates (FDA guidelines, 1999) because unlike NONMEM 

estimations, this non-parametric method does not assume that parameters are normally 

distributed. In this analysis, the standard errors calculated using the jacknife technique 
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were, however, very similar to those attained from the NONMEM'analysis. This is 

consistent with the analysis previously performed by Gibiansky and coworkers (2001), 

who found that standard errors estimated by NONMEM were in most cases reliable 

and rarely improved by more computer intensive methods such as bootstrap, jacknife 

and likelihood profile techniques. However, they found that standard errors were 

poorly estimated by NONMEM for parameters with non symmetrical distributions; for 

example, a parameter such as Emax that could have a value close to zero, bounded by 

zero and large error. 

The true test for the usefulness of this model is its ability to predict CL, in a 

new patient group. However, internal validation methods can be useful to identify a 

model that is unstable or invalid, indicating that it would not be worthwhile performing 

further validation in a new dataset. The internal validation methods used in this 

analysis found the model to be stable, not based on outliers or spurious data and 

suggested favourable predictive performance of CL in patients with AST above 150 

U/L. This provides evidence that further validation in an external data set is 

warranted. 
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CHAPTER 5 

DEVELOPMENT OF NEW DOSAGE GUIDELINES 
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5.1 INTRODUCTION TO CHAPTER 

The aim of this Chapter was to develop new dosage guidelines for epirubicin. In order 

to develop new dosage guidelines, the relationship between pharmacokinetics and 

pharmacodynamics should be clearly defined. In a study of patients with 

nasopharyngeal carcinoma treated with epirubicin (Hu et al. 1989), the mean AUC in 6 

complete responders was approximately double that observed in 13 non-responders. In 

contrast, no statistically significant difference in Cmax was observed between 

responders and non-responders. Furthermore, statistically significant relationships 

between epirubicin AUC and WBC nadir, in patients with advanced breast cancer, 

have also been identified (Dobbs & Twelves 1998; Jakobsen et al. 1991b). AUC, 

therefore, appears to be an appropriate PK target. 

In this Chapter, further attempts were made to define the relationships between 

pharmacokinetic parameters and haematological toxicity. In Chapter 3, a population 

model was developed that identified AST as influencing epirubicin CL. As AUC can 

be calculated from the relationship: AUC = Dose/CL, the population model was used 

create dosage guidelines based on AST measurements that would achieve a target 

AUC. The accuracy and precision of these guidelines to achieve the target AUC was 

compared to that achieved using the current UK guidelines for epirubicin (SPC, UK), 

current USA guidelines for epirubicin (Product label, USA) and according to the 

equation developed previously by Dobbs and Twelves (2003). Finally, the proposed 

dosage guidelines were evaluated in an external data set. 

5.2 METHODS 

5.2.1 Investigation of PK/PD relationships 

The ratio of nadir: pretreatment count and the ratio of the log nadir: log pretreatment 

count was calculated for haemoglobin, white blood cells (WBC), neutrophils and 

platelets. The ratios were plotted against dose (mg and mg/m2) and the following 

pharmacokinetic parameters: AUC, C,,, a,, and time above a threshold concentration, 

where the threshold was set at 10,25,50,100,200,500 and 1000 ng/ml. C, T, a, ( values 

and time above threshold concentrations were determined were using WinNonlin 

version 3.0. The AUC values were calculated using the formula: 
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AUC = Dose/CL; 

where CL; is the individual Bayesian estimate for CL determined from the previous 

NONMEM analysis (Chapter 3). Linear regression analysis was performed on the 

blood count ratios against the dose and against the pharmacokinetic parameters using 

Microsoft Excel. In addition, the published literature was examined for evidence of 

relationships between the PK and PD for epirubicin. 

5.2.2 Development of new dosage guidelines 
The standard dose for patients with normal liver function was set at 125 mg, calculated 

from the current recommended dose of 75 mg/m2 multiplied by the median BSA of the 

patients (1.65 m2). CL estimates that would require 100 %, 75 %, 50 % and 25 % of 

this standard dose, (i. e. 125 mg, 90 mg, 60 mg and 30 mg), to attain the target AUC 

were calculated using the formula: 

CL = Dose/AUC 

The AST concentrations associated with CL values in the middle of these ranges were 

calculated from the population model for CL: 

CL = 72.9 * (1- (0.135 x In AST)) 

and were used to propose the new dosage guidelines. 

5.2.3 Comparison of dosage guidelines 
5.2.3.1 Prediction of A UC values 

The expected AUC values for the 105 patients in the UK data set were determined 

from doses (mg) proposed in the new guidelines. The expected AUC values (AUC; ) 

were calculated for each patient using the following formula: 

AUC; = Dose/CL; 

where dose was entered according to the proposed guidelines and CL; was the 

individual Bayesian estimate for CL estimated from the NONMEM analysis (Chapter 

3). This was repeated but with doses adjusted for the BSA of the patients (mg/m2). 

The expected AUC values were estimated in a similar manner using doses suggested 

by the current UK guidelines for epirubicin (SPC, UK), current USA guidelines for 

epirubicin (Product label, USA) and according to the equation developed previously by 

Dobbs and Twelves (2003). 
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The current UK guidelines suggest a standard dose of 60-90 mg/m2 with a 50 

% dose reduction if bilirubin concentrations are 24-51 . tmol/L and a 75 % dose 

reduction if bilirubin concentrations are >51 µmol/L. For this analysis the standard 

UK dose was taken as 75 mg/m2. The current USA guidelines suggest a standard dose 

of 100-120 mg/m2 with a 50 % dose reduction if bilirubin concentrations are 20-51 

pmol/L or AST concentrations are 86 to 172 U/L and a 75 % dose reduction if 

bilirubin concentrations are >51 pmol/L or AST concentrations are > 172 U/L. For 

this analysis the standard USA dose was taken as 110 mg/m2. The Dobbs and Twelves 

equation (Dobbs, 2003) was recommended to be used in patients with AST 

concentrations >2x normal upper limit (>86 U/L) as follows: 

Dose (mg/m2) = Target AUC (97.5 - 34.2 x log10 AST) 

In patients with AST levels <_86 U/L a standard dose of 75 mg/m2 was used. 

5.2.3.2 Calculation of bias and imprecision 

The prediction error (Pei) of the AUC estimates relative to the target AUC was defined 

as 

Pei (%) _ (AUC; - target AUC) / target AUC x 100 

where AUC; is the individual estimate of AUC for the ith individual, given each set of 

dosage guidelines. The root mean squared prediction error (rmse) and the mean 

prediction error (me) with 95 % confidence intervals, which describes the imprecision 

and bias of the estimates, respectively were calculated as described in Chapter 2. 

5.2.4 Validation of the population model using an external data set 

5.2.4.1 Patients 

Four patients were available from the original breast cancer patient data set who were 

previously excluded from the model building step of the population analysis due to 

missing covariates. A further data set was available from a trial conducted at Kings 

Hospital, London, which included 19 patients with hepatocellular carcinoma who were 

administered epirubicin as an intravenous infusion (n=11) or as an intra-arterial 

infusion (n=8). In 5 hepatocellular carcinoma patients unusual peaks occurred during 

the terminal concentration-time profiles so these patients were, excluded from the 
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validation data set. In total, 18 patients were used to evaluate the proposed dosage 

guidelines. 

5.2.4.2. Evaluation of new dosage guidelines 

The data from the external data set was analysed using NONMEM (FOCE-INTER) by 

fitting a 3-compartment pharmacokinetic model with a proportional residual error 

model as described in Chapter 3. Interindividual variability was estimated for CL, V3 

and Q3. 

The expected AUC values (AUC) for each individual, given the proposed 

doses in the new guidelines, were calculated using the following formula: 

AUC; = Dose/CL; 

where dose was entered according to the proposed guidelines and CL; was the 

individual Bayesian estimate for CL estimated from the NONMEM analysis. The 

precision and bias with 95 % CI of the expected AUC values relative to the target 

AUC were calculated as described above. 

5.2.4.3. Validation of the population model for CL 

CL values for each patient in the validation set were estimated from their recorded 

AST concentrations using the population model for CL: 

CL = 72.9 * (1- (0.135 x In AST)) 

The Bayesian estimates of CL estimated from NONMEM as described above, were 

considered to be the `true' values for each individual. Estimates of CL from the AST 

values were compared to the `true' estimates of CL using scatter plots and by 

calculating me and rmse, as described above. 
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5.3 RESULTS 

5.3.1 Investigation of PKIPD relationships 
The results of the linear regression of survival fraction for haemoglobin, WBC, 

neutrophils and platelets against AUC, Cmax, dose (mg) and dose (mg/m2) are given in 

Table 5.1A. A statistically significant relationship (p<0.05) was found between 

survival fractions of WBC, neutrophils and platelets all the explanatory variables: 

AUC, Cmax, dose (mg and mg/m2). Dose explained more of the variability in survival 

fraction than AUC or Cmax, with dose expressed as mg/m2 being the best explanatory 

variable as judged by the R2 value. Dose (mg/m2) accounted for 39.0 % and 40.6 % of 

the variability in WBC and neutrophil survival fractions, respectively. Cmax was the 

only explanatory variable that was significantly correlated with haemoglobin survival 

fraction. 

The results of linear regression of the log survival fraction were consistent with 

those using the survival fraction, however, in most cases more variability in the 

pharmacodynamic variables was explained when the log survival fraction was used 

(Table 5.1B). Dose (mg/m2) accounted for 49.4 and 34.3 % of the variability in WBC 

and neutrophil log survival fractions, respectively. The relationships between log 

survival fraction of haemoglobin, WBC, neutrophils and platelets against AUC and 

dose (mg/m2) are illustrated in Figures 5.1 and 5.2. It was noted that some blood cell 

counts increased following treatment; i. e. the survival fraction was greater than 1. 

However, at AUC values above 4000 ng. h/ml survival fractions were generally less 

than 1. 

The strength of the relationship between the time above a threshold and the 

survival fraction generally increased as the threshold concentration increased (Table 

5.2). The strongest relationship was observed between time above 500 ng/ml and 

platelet survival fraction with an R2 value of 22.5 %, however, the amount of 

variability in platelet survival fraction explained by time above 500 ng/ml was still 

lower compared to that explained by dose. 
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Table 5.1A 

Linear regression of survival fraction for haemoglobin, white blood cells, 

neutrophils and platelets against AUC, Cmaz, dose (mg) and dose (mg/m2) 

AUC (ng. h/ml) C,,, a, 
(ng/ml) Dose (mg) Dose (mg/m2) 

R2 (%) p-value R2 (%) p-value R2 (%) p-value R2 (%) 
__p-value 

HB 3.47 0.104 5.10 0.0482* 4.39 0.0675 4.78 0.0560 

WBC 13.1 0.00112* 15.3 0.000389* 35.5 p<0.0001* 39.0 p<0.0001* 
Neutrophils 9.16 0.0193* 13.3 0-00161* 36.1 P<0.0001* 40.6 p<0.0001 * 

Platelets 15.1 0.000477* 12.0 0.00201 * 21.5 P<0.0001* 23.8 P<0.0001* 

Table 5.1B 

Linear regression of log survival fraction for haemoglobin, white blood cells, 

neutrophils and platelets against AUC, Cmax, dose (mg) and dose (mg/m2) 

AUC (ng. h/ml) C. (ng/ml) Dose (mg) Dose (mg/m2) 

R2 (%) p-value R2 (%) p-value R2 (%) p-value R2 (%) p-value 

HB 4.11 0.0771 5.56 0.0390* 4.77 0.0564 5.15 0.0471 * 

WBC 16.0 0.000281 * 21.5 P<0.0001* 44.6 p<0.0001 * 49.4 p<0.0001 * 

Neutrophils 12.1 0.00295* 12.9 0.00210* 30.5 p<0.0001 * 34.3 P<0.0001* 

Platelets 15.7 0.000368* 13.6 0.000972* 22.0 p<0.0001* 24.3 p<0.0001* 

HB = Haemoglobin 
WBC = White blood cells 
*= Statistically significant (P<0.05) 
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Figure 5.1 
Relationship between toxicity and AUC 
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Figure 5.2 

Relationship between toxicity and dose 
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Due to the relatively weak relationships between PK and PD parameters in 

this study, the target AUC was ascertained from information available in the literature. 

Hu and coworkers (1989) found that the mean epirubicin AUC associated with 

complete response was 4002 ng. h/ml in a study of patients with nasopharyngeal 

carcinoma. Using the equation for the relationship between WBC and AUC previously 

described by Jakobsen et al. (1991) (survival fraction = -0.0001 15AUC - 0.147; r2 = 

30 %) and the average pre-treatment WBC count (5.6 x 109) observed in that study, 

AUCs of 2800-4400 ng. h/ml were associated with nadirs of 1-2 x 109 for WBC). 

Using this information, a target AUC of 4000 ng. hlml was selected. 

5.3.2 Development of new dosage guidelines 
For the target AUC of 4000 ng. h/ml, the CL estimates associated with 125 mg, 90 mg, 

60 mg and 30 mg were calculated to be 32 L/h, 22.5 L/h, 15 L/h and 7.5 L/h, 

respectively. CL values in the middle of these ranges were calculated to be 27.25 L/h, 

18.75 L/h and 11.25 L/h. Using the population model, these CL values were 

associated with AST concentrations of 103,245 and 525 Units/L. New dosage 

guidelines based on AST, for 50 % and 75 % dose reductions (as suggested by UK and 

USA guidelines), are given in Table 5.3A and likewise guidelines with additional 

adjustment for BSA are given in Table 5.3B. 

5.3.3 Comparison of dosage guidelines 

At the standard dose of epirubicin (75 mg/m2) the median predicted AUC was 3730 

ng. h/ml, in the UK data set in patients with normal liver function (bilirubin <23 

gmol/L), which is similar to the proposed target AUC. 

Figure 5.3 illustrates the predicted AUC values from the population model that 

would be achieved if patients received a standard dose of 125 mg or if doses were 

administered according to the new dosage guidelines. This figure shows that without 

dose-adjustments in patients with highly elevated AST concentrations, the expected 

AUC values could be up to 20,000 ng. h/ml, which is 5 times the target AUC, and 

therefore, likely to be associated with severe toxicity. 

The imprecision (rmse) and bias (me) for the AUC estimates obtained using the 

different dosage guidelines, relative to the target AUC of 4000 ng. h/ml, are given in 

Table 5.4. The imprecision of the AUC estimates was lower when the dose was 
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Table 5.3A 

New dosage guidelines based on AST concentration 
AST Dose Dose 

Units/L (mg) (% normal) 
< 250 125 100 

250-500 60 50 

>500 30 25 

Table 5.3B 

New dosage guidelines based on AST concentration and BSA 

AST Dose Dose 

Units/L (mg/m2) (% normal) 

< 250 75 100 
250-500 37.5 50 

>500 18.75 25 

Table 5.3C 

New dosage guidelines based on AST concentration with additional 25 % dose 

reduction 
AST Dose Dose 

Units/L (mg) (% normal) 

< 150 125 100 

150-250 90 75 

250-500 60 50 

>500 30 25 
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Figure 5.3 

Predicted AUC values associated with AST values following no dose-adjustment 

or dose-adjustment according to new proposed dosage guidelines 

No dose adjustment -Proposed guidelines 
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adjusted according to the proposed new guidelines (44.9 %) compared to dose 

adjustments based on the UK guidelines (62.8 %). For both dosage guidelines the 

AUC estimates were unbiased. There was no improvement in the imprecision of the 

AUC estimates if the new dosage guidelines were also adjusted for BSA (47 %) but a 

slight improvement was observed when the doses were individualised based on their 

individual AST concentration (42.4 %). 

Predicted AUC values from the proposed new guidelines were plotted against 

AST in Figure 5.4A. It was noted that in patients with AST concentrations between 

150 and 250 U/L, the predicted AUC values were generally greater than the target 

suggesting that the proposed dose for these patients is too high. An additional 25 % 

dose reduction was introduced for patients with AST values ranging from 150 to 250 

U/L (Table 5.3C). Following the inclusion of the, additional 25 % dose reduction 

criterion, a more random distribution of predicted AUC values around the target AUC 

was observed in the patients with AST values between 150 to 250 U/L (Figure 5.4B) 

and a further reduction in the imprecision to 39 % was observed (Table 5.4). The new 

proposed dosage guidelines were therefore amended to include the additional 25 % 

dose reduction (Table 5.3C). 

The relationship between the AST and bilirubin concentrations measured in 

each individual is presented in Figure 5.5. This shows that many patients with 

elevated AST concentrations had bilirubin concentrations within the normal range. In 

contrast, there were no patients with elevated bilirubin levels who had normal AST 

concentrations. Figure 5.6 illustrates the similarities and differences in doses 

administered according to UK guidelines and the new proposed guidelines where the 

dose is adjusted according to bilirubin and AST, respectively. The dose in this figure 

is expressed as % standard dose for comparative purposes as the units of dose in the 

new dosage guidelines are mg whereas the units are mg/m2 in the UK guidelines. The 

% of standard dose was the same in approximately two thirds of the patients (indicated 

by the black symbols). In the remaining patients the dose was different by up to 4- 

fold. 

The doses selected for each individual using the new proposed guidelines, UK 

guidelines, USA guidelines and the Dobbs and Twelves equation are illustrated in 

Figure 5.7. It was noted that in patients with very high AST levels (>710 U/L) the 

equation proposed by Dobbs and Twelves, calculated a negative dose. One patient in 
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Figure 5.4 

5.4A - Predicted AUC values for patients in UK data set administered a dose 

according to new AST guidelines 
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5.4B - Predicted AUC values for patients in UK data set administered a dose 
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Figure 5.5 

Comparison of AST and bilirubin concentrations 
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Figure 5.6 

Comparison of AST and bilirubin concentrations and resulting doses according 
to current UK or new AST guidelines 
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Figure 5.7 

Proposed doses using UK guidelines, USA guidelines, new AST guidelines and 

the Dobbs and Twelves equation 
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the data set who had an AST value of 815 U/L was therefore excluded from the 

evaluation of the Dobbs and Twelves equation. The imprecision in the predicted AUC 

values, using doses according to the USA guidelines and the Dobbs and Twelves 

equation, were similar to the current UK guidelines i. e. approximately 60 % (Table 

5.4). However, using the Dobbs and Twelves equation, the predicted AUC values 

were, on average, 19 % greater than the target AUC, indicating that the dose 

recommended by these guidelines was too high for many patients. The AUC values 

estimated using doses calculated from the UK guidelines, the USA guidelines and 

using the equation proposed by Dobbs and Twelves are plotted against AST 

concentrations in Figure 5.8. Using the USA guidelines, AUC values tended to be 

greater than the target AUC in patients with normal AST concentrations and less than 

the target AUC in patients with elevated AST concentrations. Using the Dobbs and 

Twelves equation, AUC values tended to be greater than the target in patients with 

elevated AST concentrations. Out of the 105 patients in the group, the number 

estimated to achieve an AUC value between 3000 and 5000 ng. h/ml was 39 following 

the current UK dosage guidelines, 37 following the USA dosage guidelines and 35 

using Dobbs and Twelves equation compared to 54 following the proposed new AST 

guidelines. If doses were administered according to current UK dosage guidelines the 

estimated AUC values ranged from 640 to 17200 ng. h/ml, whereas if doses were 

administered according to the new AST guidelines the estimated AUC values ranged 

from 1460 to 10200 ng. h/ml. 

5.3.4 Validation of the population model using an external data set 
5.3.4.1 Patients 

In the validation data set 5 patients received epirubicin as an intra-arterial infusion and 

13 patients received epirubicin as an intravenous infusion. The length of infusion 

ranged from 2 to 15 minutes, with a median of approximately 5 minutes. The 

concentration time profile for each patient is illustrated in Figure 5.9. On average, 10 

blood samples were collected post-dose from each patient, ranging from 8 to 17. 

Summary statistics of clinical characteristics available for the validation set are 
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Figure 5.8 

Estimated AUC values for patients administered a dose according to the UK 

guidelines, USA guidelines or Twelves' equation 
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presented in Table 5.5. The ranges of bilirubin, AST and alkaline phosphatase levels 

extended to well above the reference range, whereas creatinine and albumin levels 

were generally within the reference range. 

5.3.4.2. Evaluation of new dosage guidelines 

The goodness of fit plots for the NONMEM analysis of the validation data set are 

given in Figure 5.10. The plot of IWRES against concentration shows that the IWRES 

were randomly distributed around the zero at all concentrations suggesting that the 

proportional residual error model was appropriate for this data set. In the plot of 

IWRES against time, the IWRES were generally randomly distributed around zero, 

although a slight positive bias was observed at 48 h post-dose. Overall, the individual 

predicted concentrations correlated well with the measured concentrations, thus the 3 

compartment model with a proportional residual error appeared to be suitable for 

calculation of pharmacokinetic parameters for patients in the validation data set. The 

typical values of parameters for the validation data set were similar to those obtained 

for the main UK data set, although the relative standard errors of the parameter 

estimates were higher than those derived from the main UK data set (Table 5.6). 

The imprecision (rmse) of the AUC estimates obtained using the proposed new 

guidelines, relative to the target AUC of 4000 ng. h/ml, was high at 72 % (95 % Cl - 
13.4,103 %). The estimates of AUC were not biased relative to the target AUC (me = 

16.8 %; 95 % Cl -16.5,50.1 %), however, it should be noted that the confidence 

interval were wide due to the high variability of the estimates and the small number of 

patients included (n=18). 

5.3.4.3. Validation of the population model for CL 

Estimates of CL obtained using the population model based on AST concentrations 

produced poor estimates of CL, as judged from the rmse and me values, which were 

81.6 (95 % CI -33.1,120) and 20.5 % (95 % CI -19.9,60.9), respectively. The model 

appeared to overestimate low CL values (<20 L/h) and underestimate high CL values 

(>20 L/h) (Figure 5.11). 
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Table 5.5 

Summary of clinical characteristics of patients in validation data set 

Clinical characteristics Reference range Median Range n 

Dose (mg) 125 (25-150) 18 
Age (years) 57 (28-68) 18 
Bilirubin (µmol. l-') <23 25.5 (4-62) 18 
AST (units.! ') <43 91.5 (29-560) 18 
Creatinine (µmol. L-') 50-130 79 (59-187) 15 
Albumin (g. l-') 30-46 34 (20-41) 15 
Alkaline phoshatase (units. l-') <255 228 (104-1723) 17 

Clinical characteristics Count n 

WHO performance status 
00 
1 13 

25 
30 

18 

Liver metastases (yes) 17 18 
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Figure 5.10 

Goodness of fit plots for validation data set 
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Table 5.6 

Population parameter estimates for the validation data set 

Validation data set Original data set 
Estimate RSE (%) Estimate RSE (%) 

CL (L/h) 25.8 15.0 28.0 5.32 

V, (L) 8.34 28.8 9.88 8.77 

Q2 (L/h) 19.7 42.9 29.0 14.0 

V2 (L) 20.0 70.5 35.2 18.9 

Q3 (L/h) 62.2 19.9 60.3 6.30 

V3 (L) 695 15.0 780 6.50 

wCL (%) 56.7 26.1 53.3 16.5 

wQ3 M 29.1 45.4 32.9 18.1 

wV3 (%) 42.3 39.7 44.0 22.9 

ß (%) 26.8 21.0 23.1 9.23 

RSE = relative standard error 
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Figure 5.11 

Scatter plot of the CL values estimated from AST values versus `true' CL values 
in the validation data set 
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5.4 DISCUSSION 

The results of the PK/PD analysis were disappointing, as although statistically 

significant relationships between PK parameters for epirubicin and WBC, neutrophils 

and platelets were identified, they only explained only up to 22.5% of the variability in 

the haematological toxicity. In addition, the PK parameters explained less of the 

variability in toxicity than dose, which was unexpected and inconsistent with the 

analysis performed by Dobbs and Twelves (1998) who found that AUC was more 

strongly correlated with WBC nadir or neutrophil nadir than dose. In the UK data set, 

a single blood sample to measure blood cell counts was taken between 7 and 14 days 

after dosing and therefore in many cases would not represent the true nadir, which 

generally occurs between days 10 and 14 (SPC, UK). The increase in blood cell 

counts post-dose observed in some patients is likely to be due to infection, and would 
distort any relationships between the PK and PD. Consequently, a target systemic 

exposure to epirubicin identified from the literature was considered a more reliable 

approach. 

The new suggested dosage guidelines (based on AST concentration) had 

improved precision in attaining the target AUC compared to the current recommended 
UK dosage guidelines (based on bilirubin concentration and BSA). AST appears to be 

a more sensitive marker of liver dysfunction in this patient group than bilirubin as AST 

was elevated in many of the patients whose bilirubin levels were normal. The 

inclusion of an additional 25 % dose reduction for patients with AST concentrations of 

150 to 250 Units/L resulted in further improvement of the precision. The USA 

guidelines and Dobbs and Twelves' equation also use AST concentrations to adjust 

epirubicin dose. However, the USA guidelines and Dobbs and Twelves equation did 

not achieve much improvement in the precision of AUC values compared to the UK 

guidelines and the predicted AUC values from the Dobbs and Twelves equation were 

on average 19 % greater. than the target AUC. It was noted that the USA guidelines 

tended to achieve AUC values greater than the target in patients with normal AST 

concentrations but lower than the target in patients with moderately elevated AST 

concentrations. The USA guidelines recommend a 50 % dose reduction in patients 

with AST levels 2 to 4-fold the upper limit of reference levels, whereas the present 

analysis suggested that a reduction of only 0-25 % is required for these patients. Thus 
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it appears that the dose reductions recommended by the USA guidelines for patients 

with moderately elevated AST concentrations are too severe. 

The Dobbs and Twelves equation and the current dosing guidelines in the UK 

and USA recommend that epirubicin doses are calculated from the BSA of the patient. 

This is a conventional approach used within oncology although the scientific basis 

with respect to epirubicin is unclear. This study found no improvement in the accuracy 

or precision of attaining the AUC target by including a dose-adjustment according to 

BSA. Administration of a dose in mg rather than mg/m2 units, as proposed in the new 

guidelines, would be advantageous because adjusting dose according to BSA is time- 

consuming and prone to errors (Favier et al. 1994). 

It should be noted that the accuracy and bias calculated for the AUC estimates 

in this analysis assume that the Bayesian estimates of CL are the `true' values for each 

individual, when in fact the `true' values are not known. It also assumes that the 

selected AUC target of 4000 ng. h/ml is correct. Furthermore, although the new 

proposed guidelines appear to be better than the other guidelines tested, they have been 

tested in the same data set in which they were developed. The real test of the dosage 

guidelines is to evaluate them in an external data set. 

When the proposed new guidelines were evaluated using the validation patient 

group, the imprecision of the predicted AUC values was high at approximately 72 %. 

The validation set predominantly contained patients with hepatocellular carcinoma, 

unlike the main data set used to develop the population model which included only 

patients with advanced breast cancer. It is possible that AST is only a useful marker 

for epirubicin CL in patients with metastatic breast cancer and is not appropriate for 

patients with primary liver cancer. Another difference between the two data sets was 

that all patients in the main data set received epirubicin by intravenous infusion 

whereas 5 patients in the validation data set received epirubicin by intraarterial 

infusion. It was not possible to evaluate the other guidelines using this data set, as 

information on height and weight and thus BSA, was not available in these patients. 
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CHAPTER 6 
VALIDATION OF UK POPULATION MODEL USING A 

SWEDISH DATA SET 
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6.1. INTRODUCTION TO CHAPTER 

The aim of this Chapter was to perform an external validation of the UK population 

model developed in Chapter 3 using epirubicin data collected for a separate study in 

patients from Sweden (Sandstrom 2002). The ability of the UK population model to 

predict the measured concentrations and individual CL values in the Swedish data set 

was tested. 

6.2. METHODS 

6.2.1 Patient data 

The data were derived from a previously published study and were provided in an 

Excel spreadsheet formatted for NONMEM (Sandstrom 2002). Data were available 

from 79 patients treated with epirubicin in combination with fluorouracil and 

cyclophosphamide (FEC) for early or advanced breast cancer. FEC was administered 

at doses of 600/60/600 mg/m2 or 600/75/900 mg/m2 of fluorouracil, epirubicin and 

cyclophosphamide, respectively. Generally, cyclophosphamide was administered as a 

15 minute intravenous infusion, followed by a bolus dose of fluorouracil and then an 

intravenous infusion of epirubicin, median infusion time 1 h, range, 5 min to 2.3 h. A 

total of 235 plasma samples were available with a median of 3 samples per patient 

(range, 2 to 6). Blood samples were collected between 4 min and 25 h post-start of the 

infusion. Eighty seven blood samples were collected during the infusion and 148 after 

the end of the infusion. Blood samples collected more than 15 h post-dose were 

available from 41 patients. 

Box-plots were produced to assess whether the data for each clinical 

characteristic was normally distributed. Clinical characteristics in UK and Swedish 

patients were compared using a 2-sided t-test. For characteristics that displayed 

skewed distributions, Box-plots were produced for the logged values and if the logged 

data was approximately normally distributed, logged values were used in the t-tests. 

Differences in mean values between UK and Swedish patients were considered to be 

statistically significant if p<0.05. 
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6.2.2 Prediction of concentrations in Swedish patients using UK 

population model 
Using the final population model developed from the UK data set, predicted 

concentrations (PREDs) were calculated for each patient in the Swedish data set at the 

available blood sampling times, given each individual's dosage history and AST 

concentration. These predictions were obtained by entering the parameters of the 

structural model (including AST as a covariate) into NONMEM and fixing both inter- 

individual variability in the pharmacokinetic parameters and residual error to zero. 

The $ESTIMATION command was set as MAXEVAL=O and NONMEM was then 

run. Prediction errors (Pe) were calculated for each PRED and expressed as a 

percentage of the measured value (DV) as follows: 

Pe = (PRED-DV)/DV*100 

A mean prediction error (MPE) was then calculated for each individual. Bias (me) and 

imprecision (rmse) of the MPEs was estimated with 95 % CI as described in Chapter 2. 

6.2.3 Prediction of CL values in Swedish patients using UK 

population model 
The UK population model was used to predict CL estimates (CLUK) for the Swedish 

patients, given their measured AST concentration. NONMEM was then used to obtain 

Bayesian estimates of CL (CLBayesian) for the Swedish patients using all available 

concentration measurements and the UK population parameter estimates. The program 

was run with MAXEVAL = 0. 

Prediction errors (Pe) were calculated for each predicted CL and expressed as a 

percentage of the Bayesian estimate as follows: 

Pe = (CLUK- CI-Bayesian)/ CLBayesian * 100 

The accuracy and precision of the CL values predicted from UK population model 

were assessed by calculation of rmse and me values (as described in Chapter 2). 
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6.3 RESULTS 

6.3.1 Patient data 

A summary of the clinical characteristics of the Swedish patients is given in Table 6.1. 

From the box-plots, all characteristics were approximately normally distributed with 

the exception of bilirubin, AST and creatinine. Taking logs of these parameters 

resulted in more normal distributions, and therefore, logged values were used for 

statistical comparisons of bilirubin, AST and creatinine. The mean dose in Swedish 

patients was 30 mg greater than the mean dose administered to UK patients. The 

Swedish patients were, on average (mean), 7 cm taller than UK patients and 5 kg 

heavier; these differences were statistically significant. The distributions of bilirubin 

and AST in the Swedish patients extended beyond their normal reference ranges. 

However, the mean AST and bilirubin values in the Swedish patients were statistically 

significantly lower than those in the UK patients. Approximately 6% of Swedish 

patients had bilirubin levels above the upper reference limit and 20 % had AST 

concentrations above the upper reference limit. This is a smaller fraction compared to 

the UK data set where approximately 21 % and 69 % had bilirubin and AST 

concentrations above the normal range, respectively. The mean CrCL in Swedish 

patients was 11 L/h greater than the mean CrCL in UK patients. The mean ages of UK 

and Swedish patients were similar. 

6.3.2 Prediction of concentrations in Swedish patients using UK 

population model 
The epirubicin concentrations predicted in the Swedish patients using the UK 

population model are plotted against the measured concentrations in Figure 6.1. The 

UK population model poorly predicted the concentrations in the Swedish patients with 

imprecision (rmse) of 102 % (95 % CI: 96.4,108 %). Concentrations were 

significantly overestimated (me) in the Swedish patients by 81.4 % (95 % CI: 68.5, 

94.2 %). This over prediction was most evident at concentrations less than 200 ng/ml, 

which corresponded to the later time points in the concentration-time profile 

(elimination phase). The predicted and measured concentrations for the Swedish 

patients are plotted versus time in Figure 6.2. 
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Table 6.1 

Summary of clinical characteristics in Swedish and UK patients 

Swedish (n=79) UK (n=105) 

Reference Range Mean Range Mean Range Difference 
Dose (mg) 118 (30-120) 87 (20-228) *p<0.05 
Age (years) 53 (32-83) 56 (35-79) n. s. 
Height (cm) 165 (154-177) 158 (132-175) *p<0.05 
Weight (kg) 68 (35-102) 63 (37-89) *p<0.05 
Body surface area (m2) 1.74 (1.3-2.1) 1.64 (1.25-2.2) *p<0.05 
Bilirubin (pmol/L) <23 9 (3-63) 26 (1-282) #*p<0.05 
AST(U/L) <43 58 (11-511) 125 (7-815) #*p<0.05 
ALT (U/L) <34 42 (7-258) --- 
Albumin (g/L) 30-46 40 (24-49) 37 (25-54) *p<0.05 
Creatinine (µmol/L) 50-130 79 (53-197) 82 (47-167) #n. s. 
Creatinine Clearance (mu min) 77 (17-137) 66 (21-127) *p<0.05 

*= statisitically significant; n. s. = not statistically significant; #= t-test performed using logged data 
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Figure 6.1 

Concentrations predicted in Swedish patients using UK population model plotted 

versus measured concentrations 
A. Concentration range 0-1600 ng/ml 

0 200 400 1400 1600 600 800 1000 1200 

Measured Concentration (ng/mI) 
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6.3.3 Prediction of CL values in Swedish patients using UK 

population model 
Individual CL estimates were poorly predicted using the UK population model with 
imprecision (rmse) estimated to be 43 % (95 % CI: 37.8,48.0). CL in the Swedish 

patients was underestimated by 27.9 % and this bias (me) was statistically significantly 

(95 % CI: -35.2, -20.5). CL values estimated from UK population model are plotted 

against Bayesian CL estimates in Swedish patients with normal and elevated AST 

levels in Figure 6.3. 
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Figure 6.3 

CL estimates for Swedish patients obtained using the UK population model 

plotted against Bayesian CL estimates 
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6.4 DISCUSSION 

The UK population model could not accurately or precisely predict CL or 

concentrations in the Swedish patients. Predicted concentrations in the Swedish data 

set were almost double the measured concentrations. Likewise, CL values in the 

Swedish patients, estimated using measured AST values and the UK population model, 

were not predictive of the Bayesian CL estimates. The question, therefore, arises as to 

whether the UK population model is invalid or whether there are genuine differences 

between the two populations. Results from the Chapter 4 indicated that the population 

model for CL only improved the precision of CL estimates in patients with AST above 

150 U/L and as the Swedish data set contained only 6 patients with AST above 150 

U/L, poor precision of the model was not unexpected. However, such pronounced bias 

was not anticipated and this suggests that there are genuine differences in the 

pharmacokinetics between the two data sets. 

The two data sets differed in terms of the length of infusion, the dose, the 

number and timing of blood samples taken and the proportion of patients with liver 

dysfunction. Furthermore, the UK population model was developed in patients 

receiving single agent epirubicin, whereas the Swedish patients received epirubicin as 

part of a combination therapy including epirubicin, cyclophosphamide and 5-FU. Co- 

administration of verapamil (Kerr et al. 1986) or paclitaxel (Danesi et at. 1999), has 

previously been shown to affect the pharmacokinetics of anthracyclines. Although 

previously a relationship between systemic exposure of cyclophosphamide, 5-FU and 

epirubicin was not found (Sandstrom et al. 1996), the possibility of a drug interaction 

cannot be ruled out until a cross-over study has been performed. There could also be 

differences in the general health status of the patients. The UK data set included 

patients with advanced disease with poor prognosis and in general poor health. In 

contrast, in the Swedish data set approximately half of the patients were receiving 

epirubicin as adjuvant therapy and were therefore likely to be in better health overall. 

Some small differences in height, weight, albumin and CrCL were observed between 

the UK and Swedish patients, but such small differences would not be expected to 

result in such marked differences in the PK of epirubicin. Other physiological 

differences due to genetics, diet or other environmental factors in Swedish and UK 

patients would appear unlikely but cannot be excluded. 
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The true CL values in the Swedish patients were not known, and as the `true' 

CL values were estimated from sparse data, they are likely to be unreliable. However, 

potential inaccuracies of the Bayesian CL estimates in the Swedish data set does not 

account for the over predictions observed in the concentration data. 

The validation of the UK population model may have been clearer if the 

Swedish data set had included patients with single agent epirubicin therapy and a 

similar health status, liver function and dosage regimen as observed in the UK data set. 

However, a favourable outcome with such a validation data set may have mislead the 

reader into believing that the UK population model was valid in all patients despite the 

reality of great heterogeneity between patients and treatment schedules. This study has 

highlighted some of the difficulties in using an external data set to validate a 

population model and also the limitations of extrapolating results from a relatively 

small patient group to the population as a whole. Clearly, more work is required to 

identify the many factors that influence the pharrnacokinetics of epirubicin so that 

more safe and effective dosage guidelines can be developed. 
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CHAPTER 7 

INVESTIGATION INTO THE DIFFERENCES IN 

PHARMACOKINETICS BETWEEN THE UK AND 

SWEDISH DATA SETS 



156 

7 INTRODUCTION TO CHAPTER 

This Chapter explores the possible reasons into why the population model developed 

from the UK data set poorly predicted concentrations and CL values in the Swedish 

patients. Section A compares epirubicin population pharmacokinetic parameters and 

distributions of individual epirubicin CL estimates in the UK data set to those in the 

Swedish data set. Section B evaluates the differences in clinical characteristics and 

dosage regimens between the two data sets. Section C assesses the impact of the 

limited number of blood samples included in the Swedish data set and assesses how 

the estimates of CL vary depending on the method used to estimate CL. 

7A COMPARISON OF EPIRUBICIN PHARMACOKINETICS IN 

UK AND SWEDISH DATA SETS 

7A. 1 METHODS 

7A. 1.1 Estimation of population parameters for Swedish data set 

Development of a population model for epirubicin using the Swedish data set was 

performed using NONMEM with FOCE-INTER. For the structural model, the fit of 2 

and 3 compartment models to the data were compared and for the residual error model 

additive, proportional and combined models were tested. Inter-individual variability 

terms for parameters were added as judged appropriate based on the OFV and the 

ability of the model to converge without termination errors. The inclusion of a full 

covariance matrix was included if variance-covariance terms could be reliably 

determined and if judged appropriate from the OFV. The goodness of fit of the models 

was assessed using plots, as described in Chapter 2. The population parameters from 

the Swedish data set were compared to the population parameters obtained from the 

UK data set. 
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7A. 1.2 Estimation of population parameters for the combined data 

set (UK and Swedish patients) 
The Swedish data set and UK data set were combined and population analysis was 

performed using NONMEM with FOCE-INTER. A3 compartment model with 

proportional residual error was fitted to the data. Inter-individual variability terms 

were included as judged appropriate based on the OFV and the ability of the model to 

converge without termination errors. Population pharmacokinetics parameters were 

compared to those obtained from analysis of the UK and Swedish data sets separately. 

7A. 1.3 Comparison of individual Bayesian CL estimates in UK and 

Swedish patients 
Individual Bayesian CL estimates for the UK and Swedish patients were obtained from 

the population analysis of the combined data set. The distributions of Bayesian CL 

estimates in UK and Swedish patients were compared using Box and Whisker plots. A 

t-test was performed and differences in mean values between UK and Swedish patients 

were considered to be statistically significant if p<0.05. 
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7A. 2 RESULTS 

7A. 2.1 Estimation of population parameters for Swedish data set 

The additive residual error model did not successfully converge for either the 2 or 3- 

compartment models. The proportional and combined residual error models did 

converge successfully. The additive component of the combined error model was, 

however, negligible and there was no improvement in the OFV of the combined error 

model compared to the proportional error model. The OFV for the 3-compartment 

model (2043) was lower by 25 units than the OFV for the 2-compartment model 

(2068). On close examination of the weighted residual (WRES) versus time plots, a 

slight U-shaped pattern is observed for the 2-compartment model ie. WRES tend to be 

positive at approximately 2 h, negative at approximately 6h and positive around 22 h 

(Figure 7.1). A more random distribution of WRES is observed for the 3-compartment 

model. Thus, the 3-compartment model with proportional error was selected. 

Figure 7.2 illustrates the population and individual predicted concentrations 

plotted against the measured concentrations for the Swedish data set. The predicted 

concentrations are in good agreement with the measured concentrations and without 

any obvious bias, suggesting that the model fitted the data well. 

The population model parameters for the Swedish data set are given in Table 

7.1. When inter-individual variability terms were included on all PK parameters, 

estimates of inter-individual variability on V2 and V3 were indeterminate and 

consequently they were removed from the model. The inter-individual variability term 

for Q2 was also removed from the model as its inclusion resulted in termination errors. 

Therefore, the final model included inter-individual variability terms on CL, V1 and 

Q. Inclusion of a full variance-covariance matrix resulted in a fall in OFV of 28. 

However, the relative standard error associated with the additional variance-covariance 

terms was high (44-76 %), indicating that they could not be reliably estimated, and 

therefore, covariance was restricted to diagonals. Population estimates of V 1, Q3 and 

V3 and residual error were similar to those observed in the UK epirubicin data set. 

However, the typical value of CL of 71 L/h was much higher than that estimated with 

the UK data set (28 L/h) (Table 7.1). 
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Figure 7.1 

Swedish data set population analysis: WRES versus time for 2- and 3- 

compartment models 
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Figure 7.2 

Population predicted and individual predicted concentrations plotted against 

measured concentrations for Swedish data set 
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Table 7.1 

Population parameter estimates for the UK data set, the Swedish data set and the 

combined data set 

UK data set Swedish data set Combined data set 
Parameter Estimate RSE (%) Estimate RSE (%) Estimate RSE (%) 

CL (L/h) 28.0 5.32 71.3 3.62 38.0 5.50 
V, (L) 9.88 8.77 13.8 11.7 8.72 8.66 
Q2 (L/h) 29.0 14.0 13.7 19.2 28.2 10.8 
V2 (L) 35.2 18.9 15.0 31.7 41.1 14.5 
Q3 (L/h) 60.3 6.30 69.4 6.24 49.8 6.08 
V3 (L) 780 6.50 762 8.06 782 5.86 

wCL (%) 53.3 16.5 19.8 43.3 74.2 13.4 

WV, (%) -- 72.5 28.4 46.0 29.6 

WQ3 (%) 32.9 18.1 33.3 33.9 -- 
WV3 (%) 44.0 22.9 ---- 

Q (%) 23.1 9.23 20.5 22.6 28.3 8.63 

Key: RSE = relative standard error 



162 

The estimate of inter-individual variability in CL (wCL) was much lower in the 

Swedish data set (20 %) than in the UK data set (53 %), although the RSE for wCL 

was high indicating that it could not be reliably estimated in the Swedish data set. 
Estimates of Q2 and V2 for the Swedish data set were approximately half of those 

estimated in the UK data set. Again, it should be noted that RSE for estimates of Q2 

and V2 for both the Swedish data set and the UK data set were higher than for the other 
PK parameters indicating that these estimates were determined with the least 

confidence. 

7A. 2.2 Estimation of population parameters for the combined data 

set (UK and Swedish patients) 
A3 compartment model with proportional error fitted the combined UK and Swedish 

data well as judged from the goodness of fit plots (data not shown). Termination 

errors occurred if inter-individual error terms were included on all parameters. 

Successful convergence was achieved if only 2 inter-individual error terms were 

included. Inter-individual error terms were therefore included on CL, as this is the 

parameter of most interest, and on V1 as this gave the lowest OFV compared to 

inclusion of other terms. The population parameter estimates obtained with the 

combined data set are given in Table 7.1 and were similar to those obtained by analysis 

of the UK data set alone. Although the population estimate of CL increased from 28 

L/h for the UK data set to 38 L/h for the combined data set, this is still much lower 

than that estimated from the Swedish data set alone (71 L/h). Inter-individual 

variability of CL increased from 53 % and 18 % in the UK and Swedish data sets, 

respectively, to 74 %, reflecting the greater spread of CL values in the combined data 

set. 
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7A. 2.3 Comparison of individual Bayesian CL estimates in UK and 

Swedish patients 
The distributions of the individual Bayesian CL estimates for UK and Swedish patients 

are illustrated in Box and Whisker plots in Figure 7.3. The median CL value in the 

Swedish data set was 69 L/h compared with only 30 L/h in the UK data set. The 

difference in CL between the two data sets was found to be statistically significant 

(p<0.000001). 



164 

Figure 7.3 

Box plots of individual CL estimates in Swedish and UK data sets estimated from 

population analysis of the combined data sets 
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7A. 3 DISCUSSION 

A population analysis of the Swedish data set estimated the typical value of CL to be 

71 L/h, which was significantly higher than that estimated in the UK data set (28 L/h). 

Epirubicin CL has previously been reported in the literature to range from 33 to 89 L/h 

(Plosker & Faulds 1993). The relatively lower CL in the UK data set is likely to 

reflect, at least in part, the high proportion of patients with liver metastases and/or 

abnormal liver function in this data set. 

Inter-patient variability in CL (wCL) estimated in the Swedish data set was 

only a third of that estimated in the UK data set, which could also reflect the smaller 

proportion of patients with abnormal liver function in the Swedish data set. In 

addition, as the blood samples were sparse in the Swedish data set, it is likely that there 

was shrinkage towards the typical population value for CL, and hence, an 

underestimation of inter-individual variability. 

Estimates of Q2 and V2 for the Swedish data set were approximately half of the 

values obtained with the UK data set. These differences may also be due to the 

sparseness of the blood samples in the Swedish data set, resulting in difficulties in 

defining all phases of the concentration time profile. With both data sets, the relative 

standard errors for V2 and Q2 were higher than those for other parameters, indicating 

that they were estimated with less certainty. The evidence supporting selection of a 3- 

compartment model over a 2-compartment model was less convincing with the 

Swedish data set compared to the UK data set. 

Following population analysis of the Swedish data set, inter-individual 

variability terms could be determined for CL, Q3 and V1. By contrast, population 

analysis of the UK data set enabled inter-individual variability terms to be determined 

for CL, Q3 and V3 but not Vi. The different infusion durations and sampling designs 

may influence the ability to define different PK parameters. The limited number of 

samples available in the Swedish patients during the terminal phase of the 

concentration-time profile, is likely to have resulted in difficulties in defining CL. It 

should be noted that although inter-individual variability could not be estimated for 3 

parameters in the analysis of both data sets, this does not mean that there was no inter- 

individual variability on these parameters. Inter-individual variability in the 

pharmacokinetics appear to be `re-partitioned' on to the other parameters that were 
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more readily defined. For example, in the Swedish data set inter-individual variability 

on V1 was very high, whereas it was very low for CL. In contrast, in the UK data set 

inter-individual variability on V1 was apparently zero, whereas it was very high for 

CL. It might be expected that on combination of the two data sets that inter-individual 

variability could be more readily characterised on an increased number of parameters. 

In practice, on combination of the two data sets, inter-individual variability could only 

be defined for 2 pharmacokinetic parameters, CL and V1. The model became very 

unstable on the combination of the two data sets and difficulties were experienced in 

achieving successful convergence, which may be due to the apparently different CL 

distributions for the two data sets. 
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7B: INVESTIGATION INTO THE DIFFERENCES IN LIVER 

FUNCTION AND DOSAGE REGIMENS BETWEEN THE UK AND 

SWEDISH DATA SETS 

7B. 1 INTRODUCTION 

The aim of this section was to explore the possible reasons why the population model 

developed in the UK data set produced poor predictions of CL values and 

concentrations in the Swedish data set. There were various differences between the 

two data sets including length of infusion, the number and timing of blood samples 

taken and differences in the proportion of patients with liver dysfunction. The 

differences in the number and timing of blood samples is explored in Section C. This 

section explores the differences in liver dysfunction and dosage regimen between the 

two data sets and their influence on the pharmacokinetics of epirubicin as follows: 

1) The differences in mean CL between the two data sets could be due to 

differences in the proportion of patients with liver dysfunction. The 

distributions of CL and dose-adjusted concentration time-profiles in the two 

data sets were compared in patients with normal liver function only. 

2) It is possible that AST is not a good marker for epirubicin CL in the Swedish 

patients. The relationship between epirubicin CL and AST in the Swedish 

patients was explored using NONMEM. 

3) The average length of infusion in the UK data set was 3 min compared with 1h 

in the Swedish data set. A difference in the infusion rate will result in 

concentration-time profiles with different shapes. Assuming identical 

(schedule-independent) pharmacokinetics, the shape of the concentration time 

profiles were predicted following either a3 min or a1h infusion of the same 

epirubicin dose. This could indicate if the differing concentrations at the later 

time-points are simply due to the differing lengths of infusion. 
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7B. 2 METHODS 

7B. 2.1 Comparison of CL distributions and concentrations in 

Swedish and UK data sets in patients with normal liver function 

Box and Whisker plots were produced to compare the CL distributions of the UK and 

Swedish patients with normal liver function. Patients were considered to have normal 

liver function if their AST concentration was less than 43 U/L and their bilirubin 

concentration was less than 23 gmol/L. Bayesian CL estimates from the combined 

population analysis were used. A t-test was performed on CL values and differences in 

mean values between UK and Swedish patients were considered to be statistically 

significant if p<0.05. 

Concentrations in all patients with normal liver function were adjusted to a 

"standard" dose of 100 mg and the concentration time-profiles for the Swedish and UK 

patients were compared graphically. 

7B. 2.2 Assessment of the relationship between AST and CL in the 

Swedish data set 
AST was included as a natural log function in the population model for CL in the 

Swedish data set and the resultant OFV was compared to that attained from the basic 

Swedish population model with no covariates included. 

7B. 2.3 The effect of varying the duration of infusion on concentration 

time profiles 
The effect of the different infusion durations between the Swedish and UK data sets on 

the shape of concentration-time profiles was illustrated by predicting the 

concentrations in a typical individual, administered epirubicin as either a3 min or 1h 

infusion. Population parameter estimates for epirubicin from the combined data set 

analysis were entered into NONMEM. Residual error and inter-individual variability 

were fixed to zero. The $Estimation step was entered as MAXEVAL=O. Population 

predicted concentrations (PREDS) were generated up to 48 h assuming an intravenous 

dose of 100 mg administered over either 3 min or 1 h, to represent the UK and 

Swedish dosage regimens, respectively. The predicted concentration-time profiles for 

each dosage regimen were compared graphically. 
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7B. 3 RESULTS 

7B. 3.1 Comparison of CL distributions and concentrations in 

Swedish and UK data sets in patients with normal liver function 

Thirty-three patients in the UK data set and 62 patients in the Swedish data set were 

considered to have normal liver function. The distributions of Bayesian CL estimates 

are illustrated in Figure 7.4. Median CL values in the Swedish patients with normal 

liver function were markedly higher (62 L/h) that those in the UK patients (38 L/h). A 

t-test of CL values found the difference in CL values between the two data sets to be 

statistically significant (p<0.00001). 

The dose-adjusted concentration time-profiles in the Swedish and UK patients 

with normal liver function are illustrated in Figure 7.5. Although there is some overlap 

in concentrations between the two data sets, the concentrations in Swedish patients 

tended to be lower than those in the UK patients. 

7B. 3.2 Assessment of the relationship between AST and CL in the 

Swedish data set 
Inclusion of AST as a loge function in the CL model for the Swedish data set resulted 

in a fall in the OFV of 11.9, which is a statistically significant improvement in the 

model (p<0.001). Following inclusion of AST in the model, inter-individual 

variability in CL fell from 19.8 % to 17.3 %. 

7B. 3.3 The effect of varying the duration of infusion on concentration 

time profiles 
The effect of varying the duration of infusion by 3 to 60 minutes on the concentration 

time profile for a typical individual is illustrated in Figure 7.6. The predicted 

concentration-time profiles for a patient with typical pharrnacokinetics show that 

following administration of epirubicin as a1 hour infusion, the concentrations are 

markedly higher for 20 to 60 minutes post-start of the infusion compared to following 

administration of a3 minute infusion. After the end of the 1 hour infusion 
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Figure 7.4 

Comparison of CL distributions in Swedish and UK data sets in patients with 

normal liver function 
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Figure 7.5 

Dose-adjusted concentration time profiles in Swedish patients and UK patients 

with normal liver function 
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Figure 7.6 

Predicted epirubicin concentration-time profiles in a typical individual assuming 

a 100 mg dose administered as a3 min or a1 hour infusion 
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concentrations fall rapidly, approaching those following a3 minute infusion, and by 

8h post-start of dosing, concentrations following a1h infusion are within 3% of those 

following a3 minute infusion. 
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7B. 4 DISCUSSION 

This section has investigated some of the potential reasons for the poor prediction of 
CL in the Swedish patients when the UK population model was used. The UK 

population model included CL as a function of loge AST. Investigations in the 

Swedish data set also identified a statistically significant relationship between CL and 
loge AST. Thus AST also appeared to be a suitable marker for epirubicin CL in the 

Swedish patients. However, on the inclusion of AST in the model for CL, the fall in 

inter-individual variability was smaller in the Swedish patients (-2.5 %) than that 

observed in the UK patients (-11 %). This is likely to be due to the smaller proportion 

of patients with abnormal liver function in the Swedish data set. 

The population analysis in Section A showed the typical estimate of CL in the 

Swedish data set to be more than double that in the UK data set. It was suggested that 

this difference may be due to differences in the number of patients with liver 

dysfunction between the data sets. However, comparison of CL values in patients with 

normal liver function only also showed that median CL. in Swedish patients was nearly 

2-fold that in UK patients. As previously discussed, there is uncertainty associated 

with the accuracy of the individual CL values in the Swedish patients due to the 

sparseness of the blood samples taken. Hence, comparison of dose-adjusted 

concentration time data in Swedish and UK patients with normal liver function was 

also compared. Consistent with the analysis of CL values, graphics showed that dose- 

adjusted epirubicin concentrations in Swedish patients were lower than those in UK 

patients. This suggests that there are genuine differences in the pharmacokinetics 

between the two patient groups that cannot be attributed to differences in liver function 

alone. 

A potential problem with comparing dose-adjusted concentration-time profiles 

is that two groups of patients were administered epirubicin for different infusion 

durations and this difference in itself could influence the concentration-time profiles. 

The median infusion time in the Swedish data sets was 1h compared to 3 min in the 

UK data set. Simulation of the concentration-time profiles following a3 minute 

infusion or a1h infusion indicated that the concentrations following either dosage 

regimen are 
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expected to be similar by 8h post-start of infusion. Therefore, the lower 

concentrations measured at later time points in the Swedish patients could not be 

attributed to different dosage schedules per se. 



176 

7C ASSESSMENT OF CL ESTIMATES IN THE SWEDISH DATA 

SET 

7C. 1 INTRODUCTION 

Only sparse blood samples were available in the Swedish data set (range, 2 to 6 per 

patient) and in 38 patients no samples were collected after 15 h post-dose. Therefore, 

it is likely that the estimates of CL in the Swedish data set are unreliable. In this 

Section, individual CL estimates were calculated from 3 different methods to assess 

whether the estimates were highly influenced by the method used. The 3 methods used 
to estimate epirubicin CL were as follows: 

1) Estimated from the population analysis of the Swedish data set alone 

without external prior information. 

2) Estimated by fixing the population parameters to those estimated from the 

UK data set using "Maxeval=O" option. 

3) Estimated from the population analysis of the combined data set (Swedish 

and UK) without external prior information. 

Next, in an attempt to determine which method most reliably estimated CL, a data set 

was simulated that mimicked the sampling times in the Swedish data set and the CL 

estimates from this data set using each method were compared to the true CL values. 

Finally, by performing another simulation analysis, the ability of each method to 

estimate CL if an additional 48 h blood sample had been available, as in the UK data 

set, was evaluated. 

7C. 2 METHODS 

7C. 2.1 Comparison of Bayesian CL estimates in Swedish data set 

obtained by 3 different methods 
Individual Bayesian CL estimates estimated by methods 1,2 and 3 described above 

were available from previous analysis performed in Section 7A. 1.1,6.2.3 and 7A. 1.2, 

respectively. Individual Bayesian CL estimates from methods 1,2 and 3 were 

compared using graphics. 
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7C. 2.2 Simulation analysis to assess 3 methods of attaining Bayesian 

estimates of CL 

5 new data sets containing 200 patients were simulated. The simulated data sets were 

intended to imitate the blood sampling times and dosage regimens used in the Swedish 

data set. A resampling method was used to determine blood sampling times and 

dosage regimens for the 200 simulated patients based on those observed in the Swedish 

data set. The patient identification (ID) numbers of the Swedish data set (n=79) were 

listed in Microsoft Excel and using the resampling option in Microsoft Excel, a new 

list of 200 patient ID numbers generated. For example, the new list of ID numbers 

could be as follows: 1,1,1,2,4,4,4,4,5,5,6,6,6,7,7,7,7,8,8,9,10,10... etc. 

and was used to generate the simulated data set so that the blood sampling times with 

corresponding dosage history for patient 1 would be included three times, whereas 

patient 2 would be included once and patient 4 included four times, etc. This process 

was performed 5 times to generate 5 simulated data sets (called data sets A-E). 

Population parameter estimates attained from the previous analysis of the combined 

UK and Swedish data sets were entered into NONMEM and used to simulate 

individual pharmacokinetic parameters and concentration data for each patient in the 

simulated data sets using the ONLY SIM option (details are provided in Chapter 2). 

The simulated individual pharmacokinetic parameters were designated the `true' 

pharmacokinetic parameters. The concentration data generated for each subject was 

transferred to a new NONMEM data file and was used to estimate CL for each subject 

using three different methods, i. e. 

1) population analysis of the simulated data set alone using FOCE-INTER with 

variability terms included on CL, V1 and Q3 (mimics the analysis of the Swedish 

data set without external prior information); 

2) Bayesian estimation of CL using prior information from the UK population 

parameters with the MAXEVAL=O option (mimics the analysis of the Swedish 

data set with prior information taken as the UK population estimates); 

3) combination of the simulated data set with the UK data set and population analysis 

of this combined data set using FOCE-INTER with variability terms included on 

CL and V1 (mimics the analysis of the Swedish data set when combined with the 

UK data set). 
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The imprecision (rmse) and bias (me) for CL estimates relative to the true CL values 

were calculated for the 3 different methods for each of the 5 simulated data sets. 

7C. 2.3 Simulation analysis to assess whether inclusion of a 48 h blood 

sample affects the accuracy and precision of CL values estimated by 3 

methods 
The 5 data sets generated above (A-E) were modified to include an extra blood sample 

taken at 48 h post-dose in each patient. Individual PK parameters and corresponding 

concentrations for patients in each data set were then simulated as described previously 

and Bayesian CL estimates were obtained by the 3 methods described above. The 

imprecision (rmse) and bias (me) for the CL estimates relative to the true CL values 

were calculated for the 3 estimation methods for each of the 5 data sets. 
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7C. 3 RESULTS 

7C. 3.1 Comparison of Bayesian CL estimates in Swedish patients 

obtained by 3 different methods 
The individual Bayesian CL estimates in Swedish patients obtained by the 3 different 

methods are illustrated in Figure 7.7. There was a marked increase in the spread of 

the Swedish CL estimates when analysed in combination with the UK data (10-123 

L/h, CV = 33 %) or when estimated using priors from the UK population model (11- 

113 L/h, CV = 28 %), compared to when the Swedish data set was analysed alone 

without external prior information on population estimates (40-92 L/h, CV = 14 %). 

The median of the Bayesian CL estimates for the Swedish patients was similar 

when the data set was analysed separately (73 L/h) and when combined with the UK 

data set (69 L/h). In contrast, the median of Bayesian CL estimates in Swedish 

patients obtained using UK priors, was lower at 59 L/h. 

7C. 3.2 The accuracy and imprecision of Bayesian CL estimates 

attained by 3 different methods 
Table 7.2 lists the accuracy and imprecision of individual Bayesian CL values for the 5 

simulated data sets (A-E) following estimation by 3 different methods: 

1) analysis of the simulated data set alone 

2) analysis using fixed external priors from the UK population model 

3) analysis of the simulated data set combined with the UK data set 

Individual CL values estimated by the 3 different methods are plotted against the true 

values in Figure 7.8. True individual CL values ranged from 5 to 475 L/h. However, 

to optimise visual interpretation of the data, the axis was restricted to a maximum of 

200 L/h; this resulted in the exclusion of data from 10 individuals out of a total of 

1000. It would seem unlikely that in practice patients would have an epirubicin CL 

value of greater than 200 L/h, given that the maximum CL value estimated in the 

Swedish data set was 123 L/h. 
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Figure 7.7 

Bayesian CL estimates in Swedish patients obtained by 3 different methods 

125 1 

100 

75 ý 

ý 
.ý ý 
U 

50 

1 
I 

25 ý 

--- 0 
UK Priors Swedish population model Combined population model 

Key: is -0 = Median CL (L/h) for each estimation method 

UK priors - analysis of Swedish data set alone using priors from the UK population model 
Swedish population model = analysis of Swedish data set alone without external priors 
Combined population model = analysis of Swedish data set combined with the UK data set 



CY0DD 
NU 

o 
O\ ýfi ýG 

N O\ MM 

^" 00 
MM '-ý d' "7 

O 

O ýO v^i 
öý MNUN 

v1 . -+ ON o0 
oö v'ý 
... i ýýý 

a) ýD NUN 

.rN 

ý 

v1 oo Ö "ý "-" 
oýe Vi e VI 

te) MN7", o \45 
MMMMM 
ý.. ý....... ý- - 

. --i MM l- V'1 

O. -. M'Oý 

N ýf -t eM e* 

.d 
0 

ýÜ 
Vj M~ vi 

ý 

0, 
-, 1 M . -. (V (n 

yN v) 00 \O 
00 OO 
Oi Oý tý cri 0ý 

\ 
OÖ rY1 trl . -i 

h 00 oÖ M 
M Oý M fr'1 d' 

ýý.. i 

op rr [ý 

... 
Ö 

O\ r. . -i M 
00 NNM 

ýf1 
(> ,.. i M \G . -+ l- 

°O M xý M 

a'+) 
ýz aaaýAw 

M 

O 

N 
.d 
O 

ý 

ý 
b 0 ý 
ý ý 

" °' y. 

ýz ý A 

aý oo cý rn 
M ý-"' Vl U 

N C'\ CO) 
M 

-4 U 
ö 
ý oý 

00 ý ý 

C) t- 1o I- 
U 
ö 
ý 
C. ' 

r- 110 - .+MN 
MÖ 

cý 
. -+ ýO N 
OO H O\ 

ý.. .. ý .,. 

ýD NývN 
rj . kf) C+ ý ý ý 

öý ýö öv 
vi oö Ö . -: . --ý ý �j 

oö 

K1 NtO \O 
MMMM en 
ý.. ý... ý... ý .ýý 

U 
ö 

ý 

. --i MM l` V'1 

CD .-Mv 't 
ct -t eM e* 

ý ý 

, -. . -. , -. 

09 r, ý "It 
W) v el) ý. U 

Oý 

ýýý N V1 ýO 
er d V"ý 

. -i ýýý 

N vl 00 \O N 
00 OýO t` 
Oý Oý tý cri Oý 

ý ý 

N Oý rý oý 
vi , 

;ý 
le \o 

O\ 00 0ö to) O 
d MMMý.. i 

U 
ö 

a 

W-) wl coýr,: 
ý. ýC, j 

r. ýo ý r' kn tt W" 
ý ý 

.ý,.. .,. ý-. aý 
M 00 NNM U 

ö 
4n oý . -i M \G .- l- 

pp MM xý M 

NlNýN ý 

QmuAW 

U 
iý 

'ý.. V, 00 

06 
0O 

ý, 
i 

ýý 

ý ý 0 .C 
ýa 
bý ýý 

aý 
ö äi 

"ý «. ýö 
öý 
a 

ý 

ýN 
ýý 

-yý ~vý 
ýy 
ý, 

ý' ýN 

a. ý ý 
. -, _ý 

w 

t 
0 U 

i 

b aý 
.m 

övý 

Ii 

"ý 

ý 

ý 
nfl 
I' 

ýQ 

U M cy 
ý-+ UQ 

Cýý II 

aý 
ýý:: ý äýp 



182 

Figure 7.8 

Bayesian CL estimates for simulated data sets estimated using 3 different 

methods plotted against true CL values (with and without additional 48 h sample) 
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Estimation of CL using Method 1 resulted in estimates of CL that were positively 

biased (me) by approximately 20 % in 4 out of 5 simulations. The imprecision was 
high with a median rmse of 53 %. Estimation of CL using Method 3 resulted in only a 

slight improvement in the median bias (16 %) and imprecision (48 %); however, one 

of the data sets did not successfully converge using this method. CL was poorly 

estimated for data set B using both method 1 and method 3, with imprecisions of 115 

and 114%, respectively. This unusually high imprecision was due to a poor 

estimation of CL in one individual. Removal of this individual reduced the 

imprecision to 39 % and 43 % respectively. 

Method 2 resulted in CL estimates with a median bias of 9% and median 
imprecision of 41 %. These results were more consistent than those obtained with the 

other methods as no unusually high imprecision values were observed. However, 

examination of the plots estimated CL against `true' CL suggested that Method 2 

overestimated low CL values and underestimated high CL values (Figure 7.8). 

7C. 3.3 Simulation analysis to assess whether inclusion of a 48 h blood 

sample affects the accuracy and precision of CL values estimated by 3 

methods 
Table 7.3 shows the accuracy (me) and imprecision (rmse) of CL values when 

estimated using the 3 different methods. On the inclusion of the 48 h sample, all 3 

methods gave CL estimates with similar bias and imprecision. Median bias in the CL 

estimates was approximately 6-8 % and the imprecision was 22-24 %, which is 

approximately half that observed without the 48 h value. 
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7C. 4 DISCUSSION 
Bayesian estimation of individual CL values in Swedish patients, estimated using prior 
information from the UK population model or when the data set was combined with 

the UK data set resulted in CL estimates with a CV % that was approximately double 

that obtained when estimated without prior information. This suggests that when the 

Swedish data set was analysed alone without external prior information on the 

population estimates, due to the sparseness of the blood samples per patient, the 

individual estimates of CL shrank towards the population estimate. However, 

Bayesian CL estimates calculated using prior UK estimates were, on average, lower 

than estimates attained using the other two methods. An evaluation of vancomycin 

dosage guidelines found that individual CL estimates of vancomycin varied 

considerably depending on the population parameters taken as priors in the analysis 

(Thomson & Sie; 2003). Thus, using the PK parameter estimates from the UK data set 

may have resulted in underestimates of CL as the population estimate for CL from the 

UK data set was low relative to values reported in the literature (Plosker & Faulds 

1993). 

A simulation analysis showed that all three methods gave poor results in terms 

of bias and precision of the CL estimates. The least biased (9 %) and least imprecise 

(41 %) results were obtained when CL was estimated by fixing the population values 

to those estimated for the UK data set, and it was this method of CL estimation that 

was used in the validation of the UK model (Chapter 6). Further simulation analysis 

confirmed that the imprecision and bias would have been greatly reduced if an 

additional blood sample had been taken at 48 h. If a 48 h sample had been taken, the 

accuracy and precision of the 3 methods in the estimation of epirubicin CL was 

similar. Thus it appears that the difficulties in attaining accurate and precise estimates 

of CL for individual patients are more greatly affected by the timing of the blood 

samples in those individuals than the method used to attain the estimates. It was noted 

that all methods over estimated CL in the Swedish patients, however, the 2 fold 

differences in CL observed between the two data sets can not be accounted for the 9% 

bias observed in the CL estimates for the Swedish patients. 
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CHAPTER 8 

POPULATION ANALYSIS OF COMBINED UK AND 

SWEDISH DATA SETS 
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8.1 INTRODUCTION TO CHAPTER 

The aim of this Chapter was to perform a population analysis on the combined UK and 

Swedish data sets to investigate whether the increase in patient numbers enables 

identification of any further covariates that influence epirubicin pharmacokinetics. 

8.2 METHODS 

8.2.1 Generation of the data set 

The UK and Swedish data sets were combined and included all covariates that were 

available for both data sets i. e.: bilirubin, AST, albumin, height, weight, dose, age, 

creatinine clearance and BSA. An additional covariate, `study', was included to 

identify the source of the patient data: patients from the UK study were coded as `0' 

and patients from the Swedish study were coded as `1'. 

8.2.2 Model building 

A3 compartment model was fitted to the data and analysis was performed using 

NONMEM with the first order method. This approach maximised the number PK 

parameters for which inter-individual variability could be estimated. The inclusion of 

a full covariance matrix was included if variance-covariance terms could be reliably 

determined and if judged appropriate from the OFV. Proportional, additive and 

combined residual error models were evaluated using OFVs and graphics. 

Covariates were plotted against individual pharmacokinetic parameters. 

Covariates that appeared to have a relationship with a PK parameter were subsequently 

included in the model building analysis with NONMEM. Covariates were considered 

to have a statistically significant influence on a PK parameter if the fall in the OFV 

was greater than 16.83, which corresponds to ap value of < 0.001 for one degree of 

freedom. 
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8.3 RESULTS 

8.3.1 Selection of the basic model 
The combined data set included 105 patients from the UK data set and 79 patients from 

the Swedish data set. Inter-individual variability on V2 was indeterminate and 

consequently this parameter was removed from the model. Covariance was restricted 

to diagonals as the relative standard error associated with variance-covariance terms 

was high (60-240 %), indicating that they could not be reliably estimated. The best 

residual error model was the combined error model, which resulted in a fall in the OFV 

of 16 relative to the proportional error model. The additive residual error model did 

not converge successfully. When model predicted concentrations were plotted against 

measured concentrations, they were randomly and closely distributed around the line 

of unity suggesting that the model adequately fitted the data (Figure 8.1). However, a 

slight positive bias was observed at 48 h post-dose when weighted residuals were 

plotted versus time indicating that the model slightly under predicted concentrations at 

later time points. Weighted residuals were equally and randomly scattered around zero 

when plotted against predicted concentrations, indicating that the residual error model 

fitted the data well. The parameter estimates for the basic model are given in Table 

8.1. The RSEs for the PK parameters ranged from 5 to 15 % indicating that they were 

estimated with a good degree of precision. The RSEs for the estimates of inter- 

individual variability terms were generally less than 30 %, with the exception of wV1 

for which the RSE was 66 %, indicating that this parameter was estimated with less 

certainty. 

8.3.2 Model building with covariates 

Scatter plots of CL versus covariates are illustrated in Figure 8.2. The following 

covariates appeared to have a positive correlation with CL: albumin; height; and 

creatinine clearance. The following covariates appeared to have a negative correlation 

with CL: bilirubin; AST; and age. For the other pharmacokinetic parameters (V1, Q21 

Q3 and V3), there were no parameter-covariate relationships identified from the scatter 

plots (data not shown). Box plots of CL, V1, Q2, Q3 and V3 for the UK and Swedish 

data sets are illustrated in Figure 8.3. The median CL in Swedish patients was higher 

than the median CL in UK patients, consistent with that observed in Chapter 7 using 
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Figure 8.1 

Goodness of fit plots for combined UK and Swedish data sets using the first order 

method 
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Table 8.1 

Population parameter estimates for the combined UK and Swedish data sets 

calculated using the first order method 

Parameter Estimate RSE (%) 

CL (Uh) 40.0 6.88 
V, (L) 12.3 9.67 
Q2 (L/h) 38.5 12.0 
V2 (L) 41.8 15.0 
Q3 (L/h) 65.7 5.27 
V3 (L) 953 10.4 

wCL (%) 85.0 23.8 

WV, (%) 41.2 66.5 

wQ2 (%) 60.4 27.7 

wV2 (%) -- 
wQ3 (%) 40.2 21.5 

W V3 (%) 81.9 29.2 

Additive a 2.62 33.4 
Proportional a (%) 29.0 9.41 



191 

Figure 8.2 

Scatter plots of individual estimates of CL versus clinical characteristics 
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Figure 8.3 

Box-plots of CL, V1, Q2, Q3, and V3 in UK and Swedish patients 
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FOCE-INTER. Median values of Q2 and Q3 were similar in the UK and Swedish data 

sets, whereas median values of V1 and V3 were slightly higher in the patients from the 

Swedish data set. 

A summary of the OFVs obtained for the models tested for CL using 

NONMEM is given in Table 8.2. Creatinine clearance (CrCL) data were not available 

for patients 223 and 228 (UK data set), thus the influence of CrCL was tested in a 

reduced data set in which these patients were removed. Inclusion of In AST, study, 
height, In bilirubin and CrCL in the model for CL resulted in a statistically significant 
improvement in the model as determined by the OFV. 

Inclusion of study into models V1 and V3 resulted in a statistically significant 

fall in the OFV, with the largest improvement observed for V1 (Table 8.3). Inclusion 

of study on both V1 and V3 did not result in a statistically significant fall in the OFV 

compare to inclusion on Vi only. 

The full model included CL as a function of In AST, study, height, In bilirubin 

and CrCL and V1 as a function of study. The inclusion of AST and study in the model 

reduced inter-individual variability in CL from 85 % to 54 % and 41 %, respectively. 

In contrast, the inclusion of height, bilirubin and CrCL in the CL model accounted for 

no variability in CL and the inclusion of study in the model for V1 reduced the inter- 

individual variability by only 1 %. The influence of these covariates in the population 

model for epirubicin was therefore deemed to be of little clinical significance. Thus, 

the final model included CL as a function of study and a natural log function of AST: 

CL=75.9*(1-(0.132*LnAST)) and if study is Swedish * 1.57 

Estimates of parameters from the final model are given in Table 8.4. Figure 8.4 

illustrates the fit of the final population model to the individual CL estimates. 
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Table 8.2 

Summary of clearance models tested using the combined data set 

Model No. CL Model OFV Delta cf model No. 
OFV 

No Covariates 
I Basic model 11000.43 - 
I Covariate 
2 Ln AST 10793.40 -207.03 1 
3 Ln Bili 10936.61 -63.82 1 
4 Study 10937.19 -63.24 1 
5 HGT 10973.48 -26.94 1 
6 Alb 10977.44 -22.99 1 
7 Basic model# 10803.09 - 
8 CrCL# 10788.64 -14.45 7 
9 Age 10987.24 -13.19 1 
10 BSA 10992.88 -7.55 1 
2 Covariates 
11 Ln AST + Study 10754.76 -38.64 2 
12 Ln AST + Alb 10764.16 -29.24 2 
13 In AST + Ln Bili 10769.73 -23.67 2 
14 Ln AST + HGT 10776.26 -17.14 2 
15 Ln AST# 10793.40 -- 
16 Ln AST + CrCL# 10785.44 -7.96 15 
17 Ln AST + BSA 10785.73 -7.68 2 
18 Ln AST + Age 10787.64 -5.76 2 
3 Covariates 
19 Ln AST + Study + Hgt 10712.47 -42.29 11 
20 Ln AST + Study + Ln Bili 10727.79 -26.97 11 
21 Ln AST + Study + Alb 10731.35 -23.41 11 
22 Ln AST + Study + BSA 10738.91 -15.85 11 
23 Ln AST + Study# 10591.22 -- 
24 Ln AST + Study + CrCL# 10587.86 -3.36 23 
25 Ln AST + Study + Age 10753.68 -1.08 11 
4 Covariates - 
26 Ln AST + Study + Hgt + Ln Bili 10692.63 -19.85 19 
27 Ln AST + Study + Hgt# 10550.01 -- 
28 Ln AST + Study + Hgt + CrCL# 10531.89 -18.12 27 
29 Ln AST + Study + Hgt + Alb 10698.87 -13.60 19 
30 Ln AST + Study + Hgt + Age 10704.04 -8.43 19 
31 Ln AST + Study + Hgt + BSA 10712.32 -0.16 19 
5 Covariates 
32 
33 
34 
35 
36 
6 Covariates 

Ln AST + Study + Hgt + Ln Bili# 
Ln AST + Study + Hgt + CrCL + Ln Bili# 
Ln AST + Study + Hgt + Ln Bili + Age 
Ln AST + Study + Hgt + Ln Bili + Alb 
Ln AST + Study + Hgt + Ln Bili + BSA 

10533.70 
10514.05 
10678.69 
10681.85 
10692.44 

-19.65 
-13.94 
-10.77 
-0.19 

32 
26 
26 
26 

37 Ln AST + Study + Hgt + CrCL + Ln Bili + Alb 10504.52 -9.53 33 
38 Ln AST + Study + Hgt + CrCL + Ln Bili + BSA 10507.77 -6.28 33 
39 Ln AST + Study + Hgt + CrCL + Ln Bili + Age 10512.78 -1.27 33 
KEY. Alb = Albumin; AST = Aspartate aminotransferase; Bili = Bilirubin; BSA = Body surface area; 
CrCL = Creatinine clearance; Hgt = Height; 
#= patients 223 and 228 were excluded due to missing creatinine data 

Bold text indicates models that gave a statistically significant improvement 
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Table 8.3 

Summary of volume models tested using the combined data set 

Model No. Model OFV Delta OFV cf model No. 
V, model 
40 Study 10479.16 -34.89 33 

V3 model 
41 Study 10490.41 -23.64 33 

V, +V3 model 
42 V, + Study and V3 + Study 10474.09 -5.07 40 
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Table 8.4 

Population parameter estimates from final model 
Final 

CL **(L/h) 
V, (L) 
Q2 (L/h) 
V2 (L) 
Q3 (L/h) 
V3 (L) 

Ln AST (CL) 
Study (CL) 

wCL (%) 
(DV, (%) 
wQ2 (%) 

wQ3 (%) 

a)V3 (%) 

Estimate RSE (%) 

Bý 75.9 10.7 
Bz 11.5 16.5 
03 38.2 11.6 
04 43.1 17.7 
Os 58.5 5.06 
0e 833 10.7 

B, 
08 

0.132 6.40 
1.57 12.1 

41.2 23.9 
61.5 76.7 
52.6 33.4 
36.7 22.8 
67.6 20.5 

a additive 1.15 76.0 

6 proportional (%) 24.6 11.1 

** CL=75.9*(1-(0.132*LnAST)) if Study= Swedish * 1.57 
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Figure 8.4 

Individual CL estimates fitted with the final population model 
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8.4 DISCUSSION 

A population analysis was performed using the combined UK and Swedish data sets to 

investigate whether any further covariates could be identified as influencing epirubicin 

pharmacokinetics following the increase in patient numbers. Previously, (Chapter 7) 

CL was shown to be higher in the Swedish patients than the UK patients. In Chapter 

7, population analysis was performed using FOCE-INTER, however, using this 

method of estimation, inter-individual variability could only be estimated for CL and 

VI. As it was of interest to see whether other PK parameters differed between the two 

data sets, in this Chapter the FO method was used as convergence problems were less 

frequent enabling estimates of inter-individual variability to be obtained for CL, V1, 

Q2, Q3 and V3. 

The population value of CL in the Swedish data set was estimated to be 1.57- 

fold greater than the population CL value in the UK data set. No differences in other 

PK parameters between the two data sets were observed. Despite the increase in 

number of patients from 105 to 184, analysis of the combined data set identified AST 

as the only clinical factor that significantly influenced CL. The relationship between 

CL and AST identified from the combined analysis was: 

CL = 75.9*(l - (0.132*LnAST)) if study = Swedish * 1.57 

which is very similar to that identified from analysis of the UK data set alone ie. 

CL = 72.9*(l - (0.135*LnAST)). 

Another advantage of the FO method is that the run times for each model are 

substantially less than those using the FOCE method eg. approximately 2 minutes 

compared to 1 hour. The number of covariates tested in the analysis of the combined 

data sets was less than in the original analysis of the UK data set alone, as the Swedish 

data set did not contain information on presence/absence of liver metastases, bone 

metastases, prior chemotherapy or endocrine treatment, performance status and 

alkaline phosphatase. The reduced number of covariates and reduced run times meant 

that screening of parameters of interest to reduce NONMEM analysis time was less 

crucial, and therefore, all covariates that appeared to have any relationship (even a very 

weak one) with a PK parameter from the plots were tested in the model building 

analysis with NONMEM. This is advantageous over screening methods which could 

result in the loss of potentially significant covariates. A disadvantage of using FO is 
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that parameter estimates have previously been shown, in some cases, to be more biased 

than those estimated using FOCE (Beal & Sheiner 1992). The parameter estimates 

using FO were higher than those previously estimated using FOCE-INTER (Tables 7.1 

and 8.1), with the largest differences in Q2. Q3 and V3. 

A simulation analysis that compared the change in OFV on the addition of 

covariates, hence the apparent significance level to the actual significance level, 

indicated that the FO method tends to over estimate the significance level of 

covariates, and therefore, is more likely to result in false covariates being included in 

the model than if FOCE is used (Wählby et al. 2001). The apparent significant level 

was increased to 0.001 (corresponding to a change in the OFV of 10.83) in this 

analysis to reduce the risks of inclusion of false covariates. However, despite this 

increase in the stringency of the inclusion criteria, 5 of the 8 covariates were found to 

have a statistically significant relationship with CL whereas examination of inter- 

individual variability accounted for by each covariate showed that only 2 of these 

covariates appeared to be of any clinical relevance. Despite the disadvantages of using 

the FO method, the conclusions drawn from this analysis were entirely consistent with 

those from the previous analysis of the UK data set using FOCE. 

In contrast, a covariate analysis of the Swedish data set previously included 

albumin and bilirubin in the CL model but not AST (Sandstrom 2002). In Chapter 3, 

AST was found to be correlated with both albumin and bilirubin. It has previously 

been reported that if covariates `A' and `B' are correlated with each other, one study 

can identify covariate `A' as being important whereas a study with a different data set 

may identify covariate `B' as being important (Bonate 1999). Both albumin and 

bilirubin were identified as influencing epirubicin CL in the combined analysis, but the 

relationship was weaker than that observed for AST and once AST was included in the 

model, the addition of bilirubin and albumin offered no further improvement. 
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CHAPTER 9 

DEVELOPMENT OF A LIMITED SAMPLING STRATEGY 
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9.1 INTRODUCTION TO CHAPTER 

The previous population analysis showed that there is a large amount of inter-patient 

variability in CL of epirubicin and identified AST as a covariate that influenced CL 

(Chapter 3). However, only a small proportion of the variability in CL was accounted for 

by AST and the model poorly predicted CL in two external data sets. Thus, it appears that 

investigation of an alternative approach for dose-individualisation is warranted. A 

posteriori dose adjustment requires blood samples to be taken from a patient so that 

individual pharmacokinetic parameters can be determined and used to adjust the next dose 

to achieve the target systemic exposure. In practice, taking a large number of blood 

samples would not be feasible, therefore, this Chapter investigates whether epirubicin CL 

can be adequately calculated from a small number of blood samples. 

This Chapter is split into 4 sections. The aim of Section 9A was to identify a 

limited sampling design that would achieve good estimates of epirubicin CL. D- 

optimality was used to identify 6 optimum blood sampling times for characterisation of 

epirubicin pharmacokinetics. Limited sampling designs including 2 or 3 blood samples in 

conjunction with MAP Bayesian estimation were then investigated, giving particular 

attention to sampling times that would be practical in a routine clinical setting. Predictive 

performances were assessed by comparing MAP Bayesian estimates of CL from the 

limited sampling designs with estimates of CL that were obtained using all the available 

concentration data. In addition an external data set was used to validate the limited 

sampling designs. 

In Section 9B a simulation analysis was performed to assess the sensitivity of the 

best limited sampling designs to sample time recording errors of 0-10 % or 10-20 %. 

As Section 9B indicated that the Bayesian estimates of epirubicin CL were biased, 

Section 9C investigates the potential reasons for the observed bias. 

A second simulation analysis was performed in Section 9D to assess the 

imprecision and bias attained using the limited sampling designs previously developed 

using multiple linear regression (Jakobsen et al. 1991a). 
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9A. DEVELOPMENT AND VALIDATION OF LIMITED SAMPLING 

DESIGNS TO ESTIMATE EPIRUBICIN CL 

9A. 1. METHODS 

9A. 1.1. Identification of optimum sampling times 
Six optimal sampling times that could define the pharmacokinetics of epirubicin were 

identified by D-optimality using Adapt II (D'Argenio & Schumitzky 1997). The 

pharmacokinetic parameters entered were those previously identified by population 

analysis of the UK data set using the basic model (no covariates). The intravenous input 

was entered as a bolus or as an infusion lasting either 3 or 19 minutes. These inputs were 

chosen as they represent the median infusion time (3 minutes) and the minimum and 

maximum infusion times for the data set. The slope was entered as 0.2 as residual error 

was previously estimated to be approximately 20 %. The blood sampling times were 

restricted to be between the end of infusion and 48 h post-dose. 

9A. 1.2 Assessment of limited sampling designs 

10 limited sampling designs labelled A to J consisting of 2 or 3 blood samples were 

selected based on the times identified from Adapt II and practical issues. The UK data set 

(105 patients) was truncated to include the sampling times for each of the designs. Blood 

samples closest to the selected time were used and if two blood samples were equally 

close to the selected time, the earlier sampling time was used. If a patient did not have a 

blood sample taken within 33 % of the selected sampling time, their data were excluded 

from the analysis for that design. Bayesian estimates of CL for individuals in each of the 

truncated data sets were estimated with NONMEM using the MAXEVAL=O option in the 

$ESTIMATION step. The population estimates for the PK parameters, interindividual 

variability and residual error determined previously with the basic model (Chapter 3) were 

used in the estimation. The `true' CL values were taken as the individual estimates 

obtained from the NONMEM FOCE-INTER analysis that was conducted using the full 

data set. CL estimates from the truncated data sets were compared to the `true' estimates 

of CL using scatter plots and by calculating the relative me and rinse with 95 % CI 

(previously described in Chapter 2). 
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9A. 1.3 Selection of optimum sampling times using the minimum and 

maximum CL estimates in the data set 
The pharmacokinetic parameter values estimated for the individuals with the minimum 

and maximum CL values in the data set were used in Adapt II to identify six optimal 

sampling times for each patient. The intravenous input was entered as an infusion lasting 

3 minutes. The slope was entered as 0.2 and blood sampling times were restricted to be 

between the end of infusion and 48 h post-dose, as previous. 

9A. 1.4 Validation of limited sampling designs using a new patient group 

A data set containing 18 patients with hepatocelluar carcinoma or breast cancer, described 

in Chapter 5, was used to validate the 10 proposed limited sampling designs. Ten new 

truncated data sets were produced that included the sampling times described for Designs 

A to J. Bayesian estimates of CL were obtained for each of the truncated data sets with 

NONMEM using the MAXEVAL =0 option, with PK parameters fixed to those 

previously estimated for the UK population model. The `true' CL values were taken as 

the individual estimates obtained from the NONMEM FOCE-INTER analysis that was 

conducted using the full data set in Chapter 5. Bayesian estimates of CL estimated using 

the limited sampling designs were compared to the `true' estimates of CL using scatter 

plots and by calculating the relative me and rinse with 95 % Cl, as described previously. 
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9A. 2. RESULTS 

9A. 2.1 Identification of optimum sampling times 
The 6 optimal sampling times identified following administration of epirubicin as a bolus 

injection, as a3 minute infusion and as a 19 minute infusion are given in Table 9.1. The 

duration of the infusion had very little effect on the later blood sample times and only a 

modest influence on the earlier optimal times, so the limited sampling designs were based 

on the optimum times identified for a3 minute (0.05h) infusion. The same times post-start 

of infusion were therefore selected in each patient regardless of the length of infusion 

received. As the first blood samples available in each patient ranged from between 0.1 

and 0.4 hours post-dose, the first 2 optimum times identified (end of infusion and 0.3 h) 

were combined and represented by the first available blood sampling time in the patient. 
Ten limited sampling designs (2 or 3 blood samples) were proposed using different 

combinations of the first available sample and the 0.7,3,10 and 48 h samples. These are 

given in Table 9.2. Designs A and B were selected as they include blood samples taken 

within the first 3 hours and thus would cause minimum inconvenience to the patient. 

Designs C to G included a 48 h time point to test if a later time point would improve the 

estimates of CL. Design H was proposed because if the 48 h sample fell at the weekend it 

may be more convenient to take a 24 h sample. The 10 h sample would cause the most 

inconvenience to patients and hospital staff as this would be required to be taken during 

the evening or night; consequently, designs I and J were proposed to test if a 10 h sample 

offered any improvement in the estimates of CL. 

9A. 2.2. Assessment of limited sampling designs 

Scatter plots of the CL values estimated from the truncated data sets were plotted against 

the estimates from the full data set (Figure 9.1). The me and rmse estimates with 

corresponding 95 % confidence intervals for each of the sampling designs are given in 

Table 9.3. Designs C, D, E and J were unbiased and had the lowest rmse values (9.06 to 

10.7 %) indicating that the CL estimates were the most similar to those obtained from the 

full data set. These designs all contained 3 blood samples, including an early sample 

(either the first available sample or 0.7 h) and a 48 h sample. 
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Table 9.1 

Optimum sampling times (h) selected following administration of epirubicin as a 
bolus injection, as a3 minute infusion and as a 19 minute infusion 

sample bolus 3 minute infusion 19 minute infusion 

number 
1 EOI EOI EOI 
2 0.3 0.3 0.5 
3 0.6 0.7 0.9 
4 3.0 3.0 3.2 
5 10.4 10.4 10.6 
6 48.0 48.0 48.0 

EOI = End of infusion 
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Table 9.2 

Limited sampling designs 

Design Selected Times 

A 1st 3h 
B Ist 0.7 h 3h 

C 1st 3h 48 h 
D 1st 0.7 h 48 h 
E 0.7h 3h 48h 
F Ist 48 h 

G 3h 48h 

H Ist 3h 24 h 

I Ist 3h 10h 
i 1st 10h 48 h 

1St = first available blood sample 
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Figure 9.1 (1 of 3) 

Scatter plots of the CL estimates from the truncated data sets versus CL estimates 

from full data set 
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Figure 9.1 (2 of 3) 

Scatter plots of the CL estimates from the truncated data sets versus CL estimates 
from full data set 
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Figure 9.1 (3 of 3) 

Scatter plots of the CL estimates from the truncated data sets versus CL estimates 

from full data set 
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Table 9.3 

Me and rmse estimates with 95 % confidence intervals for each limited sampling 

design 

Design Sampling Times n me (%) 
estimate 95 % Cl 

rmse (%) 

estimate 95 % Cl 

A Ist 3h 93 16.2 (9.3,23.2)* 37.7 (30.7,43.5) 

B Ist 0.7 h 3h 86 9.4 (3.1,15.6)* 30.9 (23.7,36.6) 
C Ist 3h 48 h 77 0.6 (-1.8,2.9) 10.6 (6.7,13.3) 

D Ist 0.7 h 48 h 80 -1.7 (-3.9,0.6) 10.3 (5.6,13.5) 

E 0.7 h 3h 48 h 70 -0.3 (-2.4,1.9) 9.1 (7.3,10.5) 

F Ist 48 h 87 0.7 (-2.7,4.1) 15.9 (11.5,19.4) 

G 3h 48 h 77 0.9 (-1.9,3.7) 12.4 (9.6,14.6) 
H ist 3h 24 h 83 10.0 (5.5,14.5)* 22.9 (17.8,27.1) 
I Ist 3h 10 h 67 20.1 (9.9,30.4)* 47.0 (29.0,59.8) 

J Ist 10 h 48 h 62 -0.6 (-3.3,2.1) 10.7 (6.6,13.6) 

*= statistically significant, p<0.05 
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Design H, which included the first available sample, a3h sample and a 24 h sample 
(rather than a 48 h sample) gave less precise estimates of CL (rinse = 22.9 %) than if a 48 

h sample was used (rinse = 10.6 %). The worst estimates of CL were attained when a late 

sample i. e. 48 h or 24 h was not included (Designs A, B and I) with rinse values ranging 
from 30.9 to 47.0 % and bias (me) ranging from 9.4 to 20.1 %o. Of the 2 sample designs, 

Design G, which included the 3h sample and the 48 h sample gave estimates of CL'that 

were not biased and had the lowest rinse (12.4 %). 

9A. 2.3 Selection of optimum sampling times using the minimum and 

maximum CL estimates in the data set 
The pharmacokinetic parameter values estimated for the individuals with the minimum 

and maximum CL (7 and 85 L/h, respectively) along with the population pharmacokinetic 

parameters are given in Table 9.4. The optimum sampling times identified using all three 

sets of PK parameters were the same or within 33 % of each other (Table 9.4). 

9A. 2.4 Validation of limited sampling designs using a new patient group 

Scatter plots of the CL estimates obtained using the truncated data sets were plotted 

against the `true' CL values (Figure 9.2). The me and rinse estimates with corresponding 

95 % confidence intervals for each of the sampling designs are given in Table 9.5. 

Designs C, D, E and G had the lowest rinse values (4.2 to 5.6 %) and were not 

significantly biased. Designs C, D and E contained 3 blood samples, including an early 

sample (either the 1st available sample or 0.7 h) and a 48 h sample. However, Design G 

included only 2 blood samples, 3h and 48 h. The worst estimates of CL were attained 

when a 48 h sample was not included (Designs A, B, H and I) with rinse values ranging 

from 27.1 to 37.2 %. Designs A, B and H were significantly biased, with me values 

ranging from 15.5 to 21.3 %. 
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Table 9.4 

Comparison of optimal sampling times selected using population PK parameters to 

those selected using the PK parameters of individuals with minimum and maximum 

CL 

Pharmacokinetic Population Estimates Minimum CL Maximum CL 

Parameter 

CL (L/h) 28 7.2 85 
V, (L) 9.9 9.9 9.9 

Q2 (L/h) 29 29 29 

V2(L) 35 35 35 

Q3 (L/h) 60 32 71 
V3(L) 780 237 852 

Sample 
Time (h) 
1 0.05 0.05 0.05 

2 0.3 0.4 0.2 

3 0.7 0.9 0.5 

4 3.0 3.5 2.7 

5 10 12 10 

6 48 48 48 
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Figure 9.2 (1 of 3) 

Scatter plots of the CL estimates from the validation truncated data sets versus CL 

estimates from full validation data set 
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Figure 9.2 (2 of 3) 

Scatter plots of the CL estimates from the validation truncated data sets versus CL 

estimates from full validation data set 
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Figure 9.2 (3 of 3) 

Scatter plots of the CL estimates from the validation truncated data sets versus CL 

estimates from full validation data set 
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Table 9.5 

Me and rinse estimates with 95 % confidence intervals for each limited sampling 

design using the validation data set, 

Design Sampling Times n 
estimate 

me (%) 
95 % Cl 

rmse (%) 

estimate 95 % Cl 
A lst 3h 17 21.3 (5.1,37.5)* 37.2 (24.8,46.5) 
B Ist 0.7 h 3h 17 15.5 (0.7,30.2)* 31.8 (14.1,42.7) 
C Ist 3h 48 h 14 0.34 (-3.0,3.7) 5.6 (2.8,7.5) 
D Ist 0.7 h 48 h 15 -0.7 (-3.9,2.5) 5.6 (3.3,7.3) 
E 0.7 h 3h 48 h 14 -1.2 (-3.5,1.3) 4.2 (2.6,5.3) 

F Ist 48 h 15 6.3 (-5.2,17.7) 20.9 (-11.1,31.6) 

G 3h 48 h 14 -1.1 (-4.3,2.2) 5.6 (3.7,7.0) 
H Ist 3h 24 h 16 18.6 (7.8,29.5)* 27.1 (16.5,34.6) 
I Ist 3h 10 h 13 7.8 (-9.2,24.8) 28.2 (13.5,37.5) 

J Ist 10 h 48 h 11 9.0 (-3.2,21.1) 19.4 (-12.2,30.1) 

* statistically significant bias, p<0.05 
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9A. 3. DISCUSSION 
Without time constraints, D-optimality will select an optimum blood sampling time that is 

essentially zero. This is because it is assumed that volume will be most accurately 
determined if a blood sample is taken at the earliest possible time before any elimination 
has occurred. In addition, for a proportional error model the smallest error is associated 

with the lowest concentration. However, in practice, it would be difficult to take a blood 

sample at this time and it is likely that the concentration would be below the limit of 

quantification of the assay. Moreover, the computer software will assume that there is 

instantaneous mixing within the central compartment, whereas it has previously been 

shown that mixing in the blood can take up to 3 minutes (Chiou 1979). For these reasons 

the optimal blood sampling times were restricted to be after the end of the infusion. 

The most convenient times to take a blood sample would be within the first three 

hours as this would allow the patient to leave the hospital within a relatively short period 

of time after dosing. Design B included 3 samples taken within the first 3 hours and 

although this design offers practical advantages, the imprecision was approximately three- 

fold greater than that of other designs which included later blood samples. A 10 h sample 

may require the patient to remain in hospital until the evening or overnight. Alternatively, 

it would require hospital staff to visit the patient at home outside normal working hours. 

Thus, taking a 10 h sample would be costly and impractical and as it did not appear to 

offer any advantages in terms of accuracy and precision of CL estimates over other blood 

sampling times, the 10 h sample was excluded from further consideration. The most 

precise estimates of CL were obtained from Designs C, D, E and J, which required 3 blood 

samples to be taken, including an early blood sample and a 48 h sample. However, these 

designs would require the patient to return to the clinic two days after dosing. 

Blood samples were not available in most patients at the exact recommended 

sampling times and so samples taken within 33 % of the optimum time were allowed. 

This allowance of variation round the selected times and variability in the infusion times 

between patients is consistent with what is likely to happen in the clinic. Despite this 

variability in the actual blood sampling time from the optimum blood sampling time, the 

estimates of CL were still estimated well, and thus, suggests that the sampling designs will 

still work well in a clinical setting where it may often not be practical to take a blood 

sample exactly at the optimum blood sampling time. The least inconvenient design of the 

best four designs is Design D as this design would enable the patient to leave the clinic 

within 45 minutes after dosing. Given the long half-life of the drug, it may be that 
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concentrations are measurable 7 days after dosing, so if a patient was receiving weekly 

treatment with epirubicin, the blood sample could be taken before dosing on day 7. Of 

course, additional practical problems such as assay turn-around time may not make this 

approach feasible. 

Despite the large range in individual CL estimates (7 to 85 L/h), the sampling 

times selected using the PK parameters in the individuals with the minimum and 

maximum CL were similar to those estimated using the population estimates of PK 

parameters. This indicates that the optimum sampling times selected in this analysis are 

suitable for all the patients in this data set. 

It is recognised that the above testing of the truncated data sets does not represent a 

true Bayesian analysis, as each individual was present in the original analysis from which 

the population parameters were determined. To test this approach properly, Bayesian 

estimates using a new data set were used. Like the original training data set, Design E was 

also confirmed as the best limited sampling design using the validation data set. However, 

unlike the training data set, in which all patients had breast cancer and epirubicin was 

administered intravenously, the validation data set mainly included patients with 

hepatocellular carcinoma and included 5 patients in whom epirubicin was administered by 

intra-arterial administration. Despite these differences between the data sets, the best 

limited sampling designs achieved precise and accurate predictions of epirubicin CL for 

all patients in the validation data set. 

Estimation of CL by using a limited sampling strategy gave substantially better 

estimates of CL compared to using AST concentrations to estimate CL. Using the best 

limited sampling strategy, the imprecision of CL estimates was approximately 4% 

whereas when the population model was used to calculate CL from AST concentrations, 

the imprecision of CL estimates was approximately 82 %. Estimates of CL using the 

limited sampling strategy (Design E) were not significantly biased (me = -1.2 %; 95% CI 

-3.5 %, 1.3 %) and although the bias of CL estimated from AST concentrations was also 

not found to be statistically significant, it should be noted that the confidence interval were 

wide (me = 20.5 %; 95% CI -19.9 %, 60.9 %). Thus, although a posteriori dose- 

adjustment has a number of disadvantages, including inconvenience to patients and 

addition cost and time involved for the health service, it appears to be a far superior 

method to estimate epirubicin CL, and hence achieve a target AUC, than a priori methods. 

There are a number of limitations of the analysis presented here. The first is that 

the accuracy and bias for the CL estimates calculated in this analysis assume that the 
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Bayesian estimates from the full validation data set are the `true' values of CL for each 
individual. In addition, although the estimates of CL from the limited sampling strategy 

were on average only 4% different from the `true' estimate for CL, if a dose was based on 

an individual's CL estimate, it is unlikely that the systemic exposure would be attained 

with such precision, as an individual's CL may vary between occasions. It has not been 

possible to determine the interoccasional variability of epirubicin in this analysis as blood 

samples were available on one occasion only. Clearly, the lower the interoccasional 

variability, the greater the usefulness of this approach. 
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9B SENSITIVITY OF LIMITED SAMPLING DESIGNS TO 

RECORDING ERRORS OF BLOOD SAMPLING TIMES 

9B. 1 METHODS 

9B. 1.1 Simulation of reference data sets and estimation of PK 

parameters 
Using NONMEM, a data set (reference data set) containing 200 patients was simulated 

using population model parameters previously estimated for epirubicin. These parameters 

were obtained using FOCE-INTER, with the variance-covariance matrix restricted to a 
diagonal format and with no covariates included in the model. The dose was 125 mg 

given as an intravenous infusion over 3 minutes. Concentrations were simulated for the 

following sampling times: pre-dose, 3 (end of infusion), 6,10,20 and 40 min and 1,2,3, 

4,6,8,10,12,16,24,36 and 48 h post-dose using a seed value of 3396450. The 

individual PK parameters were generated. with NONMEM using the `ONLY SIM' option 

(is described in Chapter 2) and were designated the `true' individual PK parameters. 

The reference data set was truncated four times to include only the sampling times 

for designs C, D, E and G. Individual PK parameters for each truncated data set and the 

full reference data set were estimated by Bayesian analysis with NONMEM using the 

MAXEVAL=O option. The precisions (rmse) and biases (me) for CL, V3 and Q3 estimates 

using the truncated data sets and full data set relative to the `true' parameter values were 

calculated. 

9B. 1.2 Simulation of data sets with recording errors and estimation of 

CL 
Designs C, D, E and G include the following times: end of infusion, 40 min, 3h and 48 h. 

The random number generator function in Excel was used to create 200 new times for 

each of the nominal times. These new times differed by up to ±10 % (uniformly 

distributed) from the nominal time and were intended to mimic errors in the recording of 

the sample time. Four new data sets based on designs C, D, E and G were created from 

the truncated reference data sets described above but modified to include the new 

simulated recording error times. The individual CL values for each truncated recording 

error data set were estimated by Bayesian analysis with NONMEM using the 
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MAXEVAL=O option. The precision (rmse) and bias (me) of the truncated recording 

error data sets, relative to the `true' CL values were calculated. 

Four additional data sets were generated using a similar approach but in this case 

the nominal blood sampling times were changed by ±10-20 %. Individual CL values were 

estimated as before and precisions and biases relative to the `true' CL values were 

calculated using the methodology described previously. 
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9B. 2 RESULTS 

9B. 2.1 Estimation of PK parameters from reference data sets 
Estimates of CL using the full data set with the correct blood sampling times were plotted 

against the `true' CL estimates and are shown in Figure 9.3. The rmse and me values 

calculated for CL from the full data set relative to the true simulated estimates are given in 

Table 9.6. The full data set gave estimates of CL that were significantly biased (5.6 %) 

with an imprecision of 19.6 (Table 9.6). 

The CL values estimated from truncated designs C, D, E and G using the data set 

with correct blood sampling times, were plotted against the `true' CL estimates in Figure 

9.4. The figures show that all designs gave estimates of CL that were in close agreement 

with the true CL estimates. All four limited sampling designs, without recording errors, 

gave estimates of CL that were upwardly biased (me) by approximately 10 to 11 % (Table 

9.6). As none of the 95 % CI's for these designs included zero, this was a statistically 

significant overestimation. The imprecision (rmse) was on average 29 % in the truncated 

designs without error. 

Estimates of V3 and Q3 from the full data set with the correct blood sampling times 

were plotted against the `true' estimates in Figure 9.5 and rmse and me values are given in 

Table 9.7. The full data set gave estimates of V3 and Q3 that were in good agreement with 

the true values with imprecision of 15 and 10 %, respectively. Estimates of V3 were 

unbiased and Q3 was only slightly biased (1.5 %). In contrast, the limited sampling 

designs did not achieve good estimates of V3 and Q3 (Table 9.7). For Designs C, E and G, 

the imprecision of V3 estimates was approximately 29 %. The figures show that for these 

designs the estimates of V3 were most poorly estimated at values greater than 1000 L, 

where estimates were shrunk towards the population value (Figure 9.6). The poorest 

estimates of V3 were attained using Design D, in which the imprecision was 44 %. The 

figure for Design D illustrates that estimates at all values of V3 were shrunk towards the 

population value. For Q3, the best estimates were attained using Designs D and E, with an 

imprecision of approximately 26 %. The figures show that for these designs the estimates 

of Q3 were most poorly estimated at values greater than 80 L/h, where estimates were 

shrunk towards the population value (Figure 9.7). The poorest estimates of Q3 were 

attained using Designs C and G, in 
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Figure 9.3 

CL estimates using full data set against `true' CL values 
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Figure 9.4 (1 of 2) 

CL estimates from limited sampling designs with and without recording errors 

against `true' CL values 
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Figure 9.4 (2 of 2) 

CL estimates from limited sampling designs with and without recording errors 
against `true' CL values 
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Figure 9.5 

V3 (above) and Q3 (below) estimates from full data set against `true' values 
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Figure 9.6 

V3 estimates from limited sampling designs against `true' V3 values 
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Figure 9.7 

Q3 estimates from limited sampling designs against `true' Q3 values 
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Table 9.7 

The precision and bias of V3 and Q3 estimates from limited sampling designs 

Parameter Design Sampling Times me (%) rmse (%) 
estimate 95 % CI estimate 95%C1 

V3 All data -1.0 (-3.1,1.1) 15.1 (13.6,16.5) 

C3 min 3h 48 h -4.4 (-8.4, -0.5)* 28.6 (25.0,31.7) 
D3 min 40 min 48 h 3.4 (-2.7,9.4) 43.9 (29.5,54.6) 

E 40 min 3h 48 h -2.3 (-6.2,1.7) 28.8 (24.9.32.2) 

G3h 48 h -4.5 (-8.4, -0.6)* 28.6 (25.1,31.8) 

Q3 All data 1.5 (0.1,2.9)* 10.3 (9.1,11.4) 

C3 min 3h 48 h 10.6 (5.8,15.5)* 36.6 (29.9,42.3) 

D3 min 40 min 48 h 4.5 (1.0,8.0)* 25.6 (21.9,28.9) 

E 40 min 3h 48 h 6.0 (2.4,9.5)* 26.1 (22.4,29.4) 

G3h 48 h 11.4 (6.4,16.4)* 37.7 (31.3,43.1) 

* statistically significant bias, p<0.05 
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which the imprecision was 37-38 %. The figures for Designs C and G illustrate that 

estimates at all values of Q3 were shrunk towards the population value. 

9B. 2.2 Estimation of CL from data sets with recording errors 
The CL values estimated from truncated Designs C, D, E and G with up to 10 % error 
in recording of blood sampling times, were plotted against the `true' CL estimates and 
are shown in Figure 9.4. The figures show that even with the introduction of up to 10 
% error in blood sampling times, all designs gave estimates of CL that were in close 

agreement with the true CL estimates. Introduction of 0-10 % recording error resulted 
in little change in the bias and there was only a marginal increase in imprecision 

(Table 9.6). 

The CL values estimated from truncated Designs C, D, E and G with 10-20 % 

error in blood sampling times, were also plotted against the `true' CL estimates and 

shown in Figure 9.4. Figure 9.4 shows that all designs still gave estimates of CL that 

were in close agreement with the true CL estimates even when the increase in blood 

sampling times errors were increased to 10 to 20 %. Introduction of 10-20 % 

recording error again only resulted in a marginal increase in the bias and imprecision 

(Table 9.6). Design E (40 min, 3 h, 48 h) was found to have the least bias and the 

lowest imprecision with and without recording errors and design G (3 h, 48 h) had the 

greatest bias and imprecision. 

ý 
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9. B. 3 DISCUSSION 

In the simulation analysis, all designs over estimated CL by approximately 10 %, 

which is in contrast to the results obtained with the breast cancer patients (original data 

set) and the hepatocellular carcinoma patients (validation data set), where none of the 

designs gave estimates of CL that were significantly biased. In addition, the 

imprecision of the designs estimated from the simulation analysis was approximately 

30 % whereas in the real patient data sets it was only around 5-10 %. It should be 

noted that in the simulation analysis, the true individual estimates of CL are known, 

whereas, for the analysis using real data collected from patients, the true individual CL 

values were not known so were taken as those values estimated from all the available 

blood samples. In the simulation analysis, when CL was estimated using the all the 

available blood sampling times, the estimates of CL were found to be significantly 

biased (5 %) and rinse was 20 % relative to the true values of CL. The difference 

between the true CL and that estimated from the full data set was up to 12 L/h. This 

indicates that CL estimated from the full data set and taken as the `true' CL for the 

breast cancer patients and the hepatocellular carcinoma patients are subject to error and 

are likely to have lead to an underestimation of the bias and imprecision of the 

sampling designs tested in these data sets. 

In the simulation analysis, the best limited sampling design for CL was Design 

E as this gave the lowest bias (9.5 %) and imprecision (26.8); however, the bias and 

imprecision were similar for all designs. The simulation of 0-10 % or 10-20 % 

recording errors of the blood sampling times had negligible effect on the bias and 

imprecision of CL estimates and all designs appeared to be equally robust in terms of 

such errors. 

Designs C, G and E attained estimates of V3 with similar imprecision (29 %) to 

that observed for CL, although it was noted that at values above 1000 L there was a 

tendency for estimates to shrink towards the population value. Design D gave 

estimates of V3 that were shrunken towards the population value at all values and had 

greater imprecision that the other designs at approximately 44 %. In contrast to the 

other designs, Design D does not include a3h concentration, suggesting that this may 

be an important sampling time for the estimation of V3. Likewise, Designs D and E 

attained estimates of Q3 with similar imprecision (26 %) to that observed for CL 
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(although values were shrunken towards the population average at values above 80 

L/h), whereas Designs C and G had increased imprecision (37-38 %), and again values 

that were shrunken towards the population value at all values. Unlike Designs D and E, 

Designs C and G did not include a 40 min concentration, suggesting that this may be 

an important sampling time for the estimation of Q. 

Overall, Design E gave the best estimates for all parameters and therefore this 

should be the limited sampling model used in any future analysis. 
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9C INVESTIGATION INTO REASONS FOR BIAS IN CL 

ESTIMATES 

9C. 1 METHODS 

Three hypotheses were tested for the cause of the bias observed in the Bayesian 

estimates for CL: 

1) Bias can be attributed to the high the residual error 
2) Bias occurred by chance in the simulated data set 

3) Bias occurred because blood samples were not taken for a long enough period 

post-dose. Was the bias most pronounced in patients with low CL values, and 
hence, longer half-lives? 

9C. 1.1 Assessment of the influence of residual error on bias 

Using NONMEM, a data set containing 200 patients was simulated using population 

model parameters for epirubicin as previously described (Section 9B. 1) with the 

exception that residual error was fixed to zero. As before, concentrations were 

simulated for the following sampling times: pre-dose, 3 (end of infusion), 6,10,20 and 
40 min and 1,2,3,4,6,8,10,12,16,24,36 and 48 h post-dose using a seed value of 
3396450. The concentration data simulated was then used to estimate individual 

values of CL by Bayesian analysis and the bias and imprecision of these estimates 

relative to the true simulated CL values were calculated as described previously. 

9C. 1.2 Investigation into whether bias occurred by chance 
Four further data sets each containing 200 patients were generated as described 

previously, using four new seeds (280874; 6258910; 4512373; 7914362). The 

concentration data simulated was then used to estimate individual values of CL by 

Bayesian analysis and the bias and imprecision of these estimates relative to the true 

simulated CL values were calculated as described previously. 
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9C. 1.3 Investigation into the influence of blood sampling times on 
bias 

Two groups of 5 new data sets, each containing 200 patients, were generated using the 

same seeds as above. The first group included an additional blood sample at 96 hours, 

the second group contained two additional blood samples, one at 96 hours and one at 

168 hours post dose. The concentration data simulated for each data set were then 

used to estimate individual values of CL by Bayesian estimation and the bias and 
imprecision of these estimates relative to the true simulated CL values were calculated 

as described previously. 

The number of patients with simulated concentrations above the limit of 

quantification of the assay (LOQ) at 48,96 and 168 h post-dose was recorded and 

expressed as a percentage. The LOQ of the assay used to analyse epirubicin 

concentrations in the original data set was 1 ng/ml. However, as a lower LOQ of 0.58 

ng/ml has since been achieved using an improved analytical method, the LOQ was set 

at 0.58 ng/ml for the current analysis (Danesi et al. 2002a). 

The geometric mean of CL was estimated for each of the 5 data sets simulated 

up to 48,96 and 168 h. The CL estimates within each data set were separated into 2 

groups: those below the geometric mean and those above the geometric mean. The 

imprecision and bias was estimated for the CL values below the geometric mean and 

for those above the geometric mean. 
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9C. 2 RESULTS 

9C. 2.1 Assessment of influence of residual error on bias 
CL values estimated from the concentration data simulated without residual error had 
imprecision and bias 19.2 % and 9.0 %, respectively, which was consistent with that 

observed when residual error was included at 23 % (19.6 % and 5.0 %, respectively). 

9C. 2.2 Investigation into whether bias occurred by chance 
The imprecision and bias of the CL values estimated by Bayesian analysis for the 

group of data sets containing simulated concentrations up to 48 h post-dose, are shown 
in Table 9.8. The bias of the estimates, as measured by me, ranged from 5.6 to 8.9 %, 

whereas the imprecision, as measured by rinse, ranged from 15 to 22 %. As the 95 % 

confidence intervals for me did not include zero, a statistically significant bias was 

observed in all cases. 

9C. 2.3 Investigation into the influence of blood sampling times on 
bias 

The imprecision and bias of the CL values estimated by Bayesian analysis for the 

second group of data sets containing concentrations up to 96 h post-dose, and for the 

third group containing concentrations up to 168 h post-dose, are shown in Tables 9.9 

and 9.10, respectively. Inclusion of a 96 h sample led to a reduction in both bias (3.0 

% to 3.8 %) and imprecision (9.3 % to 11.5 %). A further improvement was seen with 
data sets that contained an additional measurement at 168 h post-dose. Bias ranged 
from 1.9 to 2.4 % and imprecision from 6.6 to 11.6 % in four of the data sets but 

unexpectedly high values were observed with data set No. 4 (bias 3.4 % and 
imprecision 18.9 %). The high bias and imprecision of data set No. 4 was attributed to 

one outlier patient. Removal of this patient resulted in a bias and imprecision of 2.2 

and 6.7 %, respectively, which is consistent with the other data sets. Although bias 

was reduced when later samples were included, since the 95 % confidence intervals 

did not include zero a statistically significant bias remained. 
The limit of quantification of the assay was assumed to be 0.58 ng/ml. The 

percentages of simulated concentrations that were below this value were 0.3 % in the 
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Table 9.8 

The precision and bias of CL estimates from 5 simulated data sets in which blood 

samples were taken up to 48 h post-dose 

me 95 % CI rmse 95 % CI 

1 5.57 (2.97,8.17) 19.6 (8.53,26.3) 
2 5.58 (3.63,7.52) 15.1 (12.8,17.0) 
3 8.93 (6.10,11.8) 22.2 (16.1,27.0) 
4 7.02 (4.97,9.06) 16.3 (12.8,19.2) 
5 5.89 (3.92,7.86) 15.3 (11.8,18.2) 

Table 9.9 

The precision and bias of CL estimates from 5 simulated data sets in which blood 

samples were taken up to 96 h post-dose 

me 95 % CI rinse 95 % Cl 

1 3.81 (2.31,5.31) 11.5 (8.01,14.1) 

2 3.54 (2.24,4.83) 9.99 (7.73,11.8) 

3 2.95 (1.72,4.28) 9.3 (7.16,11.0) 

4 3.65 (2.24,4.85) 9.36 (7.81,10.7) 

5 3.38 (1.91,4.86) 11.2 (6.73,14.3) 

Table 9.10 

The precision and bias of CL estimates from 5 simulated data sets in which blood 

samples were taken up to 168 h post-dose 

me 95 % Cl rinse 95 % CI 
1 1.9 (1.01,2.80) 6.73 (5.43,7.82) 

2 2.44 (1.55,3.33) 6.86 (5.16,8.22) 

3 2.13 (0.548,3.71) 11.6 (7.78,18.1) 

4 3.44 (0.874,6.01) 18.8 (15.9,31.0) 

5 1.93 (1.05,2.81) 6.61 (5.16,7.79) 
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Figure 9.8 (1 of 2) 

Bias calculated for CL values above geometric mean and below geometric mean 
in data sets with concentrations simulated up to 48,96 and 168 h post-dose 
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Figure 9.8 (2 of 2) 

Bias calculated for CL values above geometric mean and below geometric mean 

in data sets with concentrations simulated up to 48,96 and 168 h post-dose 
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data sets sampled up to 48 h, 10 % in data sets sampled to 96 h and 38 % in data sets 

sampled to 168 h. 

The bias calculated in individuals whose CL was less than the geometric mean 

was greater than the bias calculated in individuals whose CL was greater than the 

geometric mean, in all data sets (Figure 9.8). 
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9C. 3 DISCUSSION 

The bias observed in the CL estimates was not influenced by the magnitude of the 

residual error, as no decrease in the bias was observed if the residual error was set to 

zero when simulating the data set. The statistically significant bias observed for the 

CL estimates was not a chance occurrence as repetition of the analysis with 4 new data 

sets gave similar bias values and in all data sets the bias was statistically significant. 

When the simulated data set included concentration measurements at later time 

points, the extent of the bias was reduced, thus indicating that the cause of the bias was 
due to failure to measure blood samples for an adequate time period post-dose. It is 

perhaps not surprising that the estimates of CL are biased when blood samples are only 

measured up to 48 h, given that the population estimate of the terminal half-life for 

epirubicin in the original data set was approximately 30 h. It has previously been 

shown using a simulated data set that CL can be accurately and precisely determined if 

concentrations are measured for 2 half-lives (Ette 1998). Even when blood samples 

were simulated at 168 h (1 week) post-dose, which is more than 5 times the population 

elimination half-life, although the bias was reduced to approximately 2 to 3 %, it was 

still found to be statistically significant. It was noted that the bias was greatest in 

individuals with CL values below the geometric mean and hence a longer half-life. 

The longest half-life in the simulated data sets was calculated to be 280 h, whereas the 

maximum terminal half-life estimated in the patient data set was 72 h. 

The limit of quantification (LOQ) of the assay used to analyse epirubicin 

concentrations in plasma samples in the original data set was 1 ng/ml. More recently, 

an improved HPLC method achieved a lower LOQ of 0.58 ng/ml (Danesi et al. 2002a). 

If the lower limit of quantification was set at 0.58 ng/ml, 38 % of concentrations 

simulated at 168 h would have been below the LOQ and therefore not available for 

inclusion in the analysis in a real-life clinical setting. Likewise, 10 % of the data at 96 

h would not have been available. If a limited sampling approach was used, for 

example including two early samples and either a 96 h sample or a 168 h sample, in 

those patients where the concentrations were not measurable at the later time point, the 

individual's CL would have to be estimated using only the two early samples. 

Estimation of CL using only early time points was previously shown to be very poor 

(Section A). Thus, although bias and imprecision were slightly worse when 
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concentrations were only measured up to 48 h, compared to 96 h or 168 h, less than 1 

% of the concentrations at 48 h would be expected to be below the LOQ of the assay. 

Therefore, in a clinical setting, taking a 48 h sample is likely to achieve estimates of 

CL that are closer to the true CL values in most patients. Thus a limited sampling 

design in which a 48 h sample is taken would be preferable to a design including either 

a 96 or 168 h sample. 
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9D ASSESSMENT OF JAKOBSEN'S MULTIPLE LINEAR 

REGRESSION LIMITED SAMPLING APPROACH 

9D. 1 INTRODUCTION 
Using data from 78 patients who received epirubicin for treatment of advanced breast 

cancer, Jakobsen and coworkers (1991 a) used multiple linear regression to identify 

blood sampling times at which measured concentrations correlated most highly with 
AUC. The 2 and 24 h concentrations were identified as the best combination to 

estimate epirubicin AUC and the 6h concentration was identified as the best single 

point. In this Section, a simulation analysis was performed to compare the imprecision 

and bias of AUC, and hence CL, estimated using the sampling approach developed by 

Jakobsen to that achieved using the MAP Bayesian limited sampling approach 

developed in Section 9A. 

9D. 2 METHODS 

Using NONMEM, a data set containing 200 patients was simulated using population 

model parameters previously estimated for epirubicin. The dose was 125 mg given as 

an intravenous infusion over 10 minutes to mimic the dose regimen administered to the 

patients studied by Jakobsen and coworkers. Individual CL values were generated by 

NONMEM using the `ONLY SIM' option using a seed value of 3396450 and were 

designated the `true' CL values. Concentrations were simulated at 2 and 24 h post- 

dose. The above methods were repeated to simulate a data set with concentrations at 6 

h post-dose. 

AUC values were estimated from the simulated concentrations at 2 and 24 h, 

using the equation previously attained by multiple linear regression by Jakobsen and 

coworkers (1991 a): 

AUC = 9.44 x C2 (ng/ml) + 62.5 x C24 (ng/ml) + 157.7 

Likewise, AUC values were estimated from the simulated concentrations at 6 h: 

AUC = 39.6 x C6 (ng/ml) + 302 

CL values were calculated from the predicted AUC values using the formula: 

CL = Dose/AUC 
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The imprecisions (rmse) and biases (me) with 95 % confidence intervals for CL 

estimates using the limited sampling equations relative to the `true' CL values were 

calculated. 
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9D. 3 RESULTS 

CL values estimated by the two-sample and one-sample equations are plotted versus 

the true CL values in Figure 9.9. Both the one and two-sample equations resulted in 

CL values that were statistically significantly biased. The imprecision (rmse) and bias 

(me) of CL estimates from the two-sample equation were 47.7 (95% CI 37.1,56.3) and 

27.7 (95% Cl 22.3,33.1), respectively. The bias from the two-sample design was most 

noticeable at high CL values ie. above 65 L/h. For the one-sample equation the 

imprecision and bias of CL estimates were 107 % (95% CI 89.2,122) and 71.8 % 

(95% CI 60.8,82.8), respectively. 
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Figure 9.9 

CL values estimated by two-sample and one-sample equations plotted versus true 

CL values 
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9D. 4 DISCUSSION 

The CL values estimated from the one-sample equation, previously proposed by 

Jakobsen were substantially biased (72 %) and were highly imprecise (rmse = 107 %). 

Although an improvement in bias (28 %) and imprecision (48 %) of CL estimates was 

observed for the two sample equation this was still very poor compared to the bias (10 

%) and imprecision (27 %) observed for the best limited sampling design (Design E) 

developed in Section A using MAP Bayesian estimation. In addition to the improved 

precision and reduced bias in CL estimates obtained using MAP Bayesian estimation, 

this approach offers flexibility in terms of the timing of blood samples, dose level and 

length of the infusion, which is not possible using the multiple linear regression 

equation. 
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9.2 CONCLUSIONS TO CHAPTER 

Using D-optimality to identify optimum blood sampling times, limited sampling 
designs were developed to facilitate estimation of epirubicin CL by MAP Bayesian 

estimation techniques from only 2 or 3 blood samples. These limited sampling designs 

combined with MAP Bayesian estimation were found to estimate epirubicin CL with 

greater precision than both the covariate model and a previous limited sampling model 
derived by multiple linear regression. Furthermore, these limited sampling designs 

were shown to predict CL precisely in an independent data set. A simulation analysis 
indicated that the proposed limited sampling designs were robust with respect to errors 

in the recording of sampling times, suggesting that they will work well in clinical 

practice. 
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CHAPTER 10 

GENERAL CONCLUSIONS 
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The aims of this thesis were to use a population approach to determine typical 

pharmacokinetic parameters for epirubicin, and their variability, in a population of 

patients with normal and impaired hepatic function, to identify clinical characteristics 

that influence these parameters and to develop dosage guidelines to achieve a target 

drug exposure. The model and dosage guidelines were then evaluated using both 

internal and external validation methods. 

Development of dosage guidelines based on clinical characteristics 

The analysis of a data set obtained from UK patients identified AST as having the 

strongest influence on epirubicin CL. No other clinical characteristics were identified 

as having any additional clinically relevant influence. The population model 
developed was subsequently used to propose new dosage guidelines based on AST. A 

major advantage of these new guidelines is that, unlike the currently available 

guidelines, dose adjustment according to BSA is not required and is likely to reduce 

dosage preparation time and dosage errors. These new guidelines achieved a target 

AUC of 4000 ng. h/ml in the UK data set, with greater precision than UK, USA or 

previous guidelines proposed by Dobbs and Twelves (2003). 

Despite the apparent improvement, the precision of the proposed 

guidelines to achieve a target AUC was still very poor. The difficulties in attaining the 

target AUC reflected the high inter-individual variability in CL that remained 

unexplained by the population model. Further work is required to identify other 

covariates that influence epirubicin pharmacokinetics. It may be that genetic or dietary 

differences account for the differences in PK between individuals. Dietary differences 

are likely to be difficult to measure and adjust for. Likewise, genetic differences are 

also difficult to identify, however, with advances in molecular biology techniques for 

identification of genetic polymorphisms, pharmacogenetics may offer a suitable 

solution in the future (Evans & Johnson 2001). Of course it is possible that there are 

hundreds of factors that each have a small influence on the pharmacokinetics of 

epirubicin and it may be that dose adjustment based on covariates may never be able to 

attain target PK end-points with adequate precision. 
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Validation of proposed dosage guidelines 
Internal model validation techniques recommended by the FDA include jacknife 

analysis, sensitivity analysis and cross-validation. The results of this analysis found 

the model to be stable, not based on outliers or spurious data and suggested favourable 

predictive performance of CL. However, these results are inconsistent with those of 

the external validation, which found the population model unable to predict CL 

adequately in two external data sets. The value in using internal techniques, therefore, 

has to be questioned. The use of internal validation techniques to validate population 

pharmacokinetic models has become increasingly popular over the last few years 

(Enders Klein et al 2002; van Kesteren et al. 2002; Parke & Charles 2000). Logically, 

it would seem unlikely that validation of a population model, using the same data set 

that was used to develop it, would find the model to be anything other than valid. Of 

course such internal techniques are really assessing the robustness and stability of the 

model in terms of any spurious results. It is perhaps the terminology internal 

`validation' that is responsible for many authors placing too much emphasis on the 

results of such analyses. 

FDA guidelines recommend that the predicted performance of a 

population model is tested using an external data set, particularly if the results are 

intended to define dosage guidelines (FDA guidelines, 1999). When the model was 

tested in 18 patients with either breast cancer or hepatocellular carcinoma, the 

predictive performance of the model was found to be highly imprecise. It is possible 

that AST is not an appropriate marker of epirubicin CL for patients with primary liver 

cancer or that the model developed in patients receiving epirubicin intravenously is not 

suitable for patients receiving epirubicin as an intra-arterial infusion. However, the 

performance of model was also poor when applied to a larger data set from Sweden 

that included 79 patients with breast cancer. Although poor precision was predictable 

due to the wide variability in CL, the large bias observed in the CL estimates obtained 

with the Swedish data set was unexpected. The typical CL in Swedish data set was 

estimated to be 57 % higher than the typical CL in UK data set. The reason for this 

was unclear. Possible explanations for the differences in the two data sets could be the 

concomitant chemotherapy that was administered to the Swedish patients, or 

differences in prior chemotherapy, disease status or genetic factors. The results of this 

analysis have indicated that the 105 subjects included in the original analysis are not 
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representative of the true population and highlights the limitation of extrapolating 

results from a relatively small patient group to the population as a whole. Ideally, the 

population analysis should be performed on larger patient numbers and should include 

patients with greater heterogeneity. 

Dose-adjustment based on measured drug concentrations 

An alternative approach to dose adjustment based on covariate measurement (a priori 
dose adjustment) is to take blood samples after administering the dose, estimate CL 

from measured concentrations and adjust the next dose accordingly (a posteriori dose 

adjustment). Using D-optimality to identify optimum blood sampling times, limited 

sampling designs were developed. These sampling strategies enabled accurate 

estimation of epirubicin CL by MAP Bayesian estimation techniques from only 2 or 3 

blood samples. 

MAP Bayesian estimation was found to estimate epirubicin CL with better 

precision than the covariate model approach and a previous limited sampling model 

derived by multiple linear regression (Jakobsen et al. 1991a). Unlike equations 

derived by multiple linear regression, MAP Bayesian estimation offers flexibility in 

terms of the timing of blood samples and the dosage regimen. Furthermore, the 

proposed limited sampling designs were shown to be robust when sampling times had 

recording errors of up to 20%, suggesting that they will work well in clinical practice. 

In contrast to the dosage guidelines based on covariate analysis (AST), these limited 

sampling designs achieved precise estimates of CL in an independent data set that 

included 18 patients with breast cancer or hepatocellular carcinoma. 

An advantage of measuring blood concentrations to individualise dosage from 

an estimate of CL (a posteriori methods), is that it enables identification of patients 

who are receiving potentially subtherapeutic doses. This is not possible when dose 

individualisation is performed using covariate models. An obvious disadvantage of the 

a posteriori method is that it can not be used to determine the first dose. Furthermore, 

taking blood samples is inconvenient to patients, samples are costly to analyse and it 

takes considerable training of staff to perform MAP Bayesian estimation of epirubicin 

CL. 
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Suggestions for future dosing strategies 

The solution to these difficulties in epirubicin dose individualisation could be to adopt 

a similar approach to that used for busulphan (Sandstrom et al. 2001). Dose 

individualisation of busulphan according to clinical characteristics (ALT, weight and 

phenytoin co-administration) improved the ability to achieve the target AUC compared 

to non-individualised therapy. However, therapeutic drug monitoring with MAP 

Bayesian estimation of busulphan CL enabled the target AUC to be achieved with 

greater precision than using clinical characteristics. Thus, a busulphan dosing program 

was proposed in which the first dose of busulphan was calculated from the clinical 

characteristics and subsequent doses were calculated according to 3 measured 

concentrations. To overcome difficulties in training staff to perform MAP Bayesian 

estimation, the authors wrote a user-friendly program in the widely available software 

package Microsoft Excel using macros, in which the doses are calculated following 

input of basic information by the user. 

Limitations of the work performed in this thesis 

For dose-individualisation to be successful, inter-occasion variability needs to be less 

than inter-individual variability. The data sets used in this thesis included data from 

one dosing occasion only in each individual, and therefore, it was not possible to 

estimate variability in the pharmacokinetics between different dosing occasions. A 

previous population analysis performed on data from patients administered epirubicin 

estimated inter-occasion variability in CL to be 7% and inter-individual variability to 

be 15 % (Sandstrom 2002). The lower inter-occasion variability relative to inter- 

individual variability indicates that dose individualisation has the potential to improve 

therapeutic outcome. 

Another criterion for the successful implementation of dose 

individualisation is a clearly defined PK/PD relationship. If the PK target associated 

with either the desired response or alternatively undesirable toxicity is unknown, we 

cannot know how to alter the dose to achieve optimum chemotherapy. Despite the 

importance of this fundamental principal, there are few studies that have attempted to 

define the PK/PD relationship for epirubicin. PK-PD relationships in oncology are 

notoriously difficult to define due to the high variability in response observed and the 

difficulties in measuring response. 
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Only weak relationships were found between PK parameters and 
haematological toxicity in the UK data set. Although the blood cell counts were 

labelled as representing the nadir, they were measured in a single blood sample taken 

between 7 and 14 days after dosing and therefore were unlikely to represent the true 

nadir for all patients. If the actual day of sampling had been available, it may have 

been possible to model the blood cell counts over time using a transit model such as 

that developed by Sandstrom (2002). Unfortunately, as the data sets used in this thesis 

were from studies performed at least 10 years ago, it was not possible to determine the 

actual day of blood sampling. This highlights the sort of difficulties often experienced 

when using data collected from a routine clinical environment. 

The most successful study, in terms of identifying a PK/PD relationship 

was performed in 55 patients with advanced breast cancer (Jakobsen et al. 1991b). 

This study identified a relationship between the AUC of epirubicin and a fall in white 

blood cells (WBC), expressed as the logarithmic ratio of WBC nadir to pre-treatment 

WBC count. In this thesis, using the relationship proposed by Jakobsen et al (1991b), 

an AUC of 4000 ng. h/ml was taken as a PK target in the generation of the dosage 

guidelines. It has not been possible to confirm if 4000 ng. h/ml is a suitable PK target, 

however, it is consistent with a study of patients with nasopharyngeal carcinoma 

treated with epirubicin in which the mean AUC associated with complete response was 

4002 ng. h/ml (Hu et al. 1989). This target would therefore seem reasonable in the 

absence of any further information; however, the PK target may vary between 

individuals depending on their health and therapeutic requirements. 

The work performed in this thesis has focused on CL, and hence AUC, 

as the parameter of primary importance in terms of dose individualisation. No 

investigation into other potential parameters of interest, such as C, r, a,,, has been 

performed. Studies of doxorubicin, the prototype of epirubicin, found that 

cardiotoxicity was reduced following administration as a prolonged infusion compared 

to a bolus injection, and hence, cardiotoxicity was assumed to be associated with Cr,, a,, 
rather than AUC (Berrak et al. 2001). However, administration as a prolonged 

infusion resulted in increased severity of mucositis and bone marrow suppression 

(Danesi et al. 2002). An association between epirubicin Cmax and toxicity is less 

evident, although one study reported a relationship between epirubicin Ct�a� and 

alopecia (Eksborg et al. 1992). UK and USA guidelines recommend that epirubicin is 
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administered as a bolus injection. In contrast, some Swedish clinicians prefer to 

administer epirubicin as a prolonged intravenous infusion due to perceived 

associations between toxicity and anthracycline Cmax, and this is reflected by the longer 

infusion rate (median 1 h) observed in the Swedish data set. Clearly more work is 

warranted to define the relationship between toxicity/response and PK markers such as 

Cmax, AUC or time above a threshold concentration for epirubicin. Without more 

clearly defined PK-PD relationships, attempts to improve therapeutic outcome by dose 

individualisation are unlikely to be effective. 

Concluding remarks 

The importance of optimising dosage and administration procedures in cancer therapy 

is exemplified by the massive improvements in cure rates achieved in childhood 

leukaemia. In the 1960s childhood leukaemia was essentially incurable, whereas more 

recently the cure rate has been estimated to be 75 % (Mason & Zamboni 1997). The 

improvement in the cure rate is not attributed to the discovery of new drugs but rather 

an improvement in the methods of dose administration of the same drugs used in the 

1960s. Of course the search for new methods and drugs to cure cancer must continue, 

but it is also essential to optimise therapy with the drugs that are currently available to 

maximise the chances of a favourable therapeutic response. In this thesis, 

investigations into the optimum dosage procedures for epirubicin to treat patients with 

breast cancer have been performed in an attempt to improve therapeutic outcome. 
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Control Stream for 3 compartment model with proportional error using FOCE 
with `interaction' option; used in covariate model building in Chapter 3, Section 
3.3.5 (Table 3.5: model 32) 

$PROB EPIRUBICIN 
$INPUT ID AMT TIME DV RATE BILI AST ALB HGT WGT MG WHO IWGT 
AGE CRCL SY BSA LMET 
$DATA C: \LORRAINE\MODEL4. PRN IGNORE='C' 
$SUBROUTINE ADVAN11 TRANS4 
$PK LAST=LOG(AST) 

TVCL=THETA(1)*(1-(THETA(7)*LAST))*(1+(THETA(8)*MG)) 
TVCL=TVCL*(1-(THETA(9)*BSA)) 
IF(LMET. EQ. 1) TVCL=TVCL*THETA(10) 
TV V 1=THETA(2) 
TVQ2=THETA(3) 
TV V 2=THETA(4) 
TVQ3=THETA(5)*(1-(THETA(I 1)*ALB)) 
IF(LMET. EQ. 1) TVQ3=TVQ3 *THETA(12) 
TVV3=THETA(6) 
CL=TVCL*EXP(ETA(1)) 
V1=TVV1 
Q2=TVQ2 
V2=TVV2 
Q3=TVQ3 *EXP(ETA(2)) 
V3=TVV3*EXP(ETA(3)) 
SI=V1/1000 

$ERROR IPRED=F 
DEL=O 
IF(F. EQ. 0) DEL=1 
W=IPRED+DEL 
IRES=DV-IPRED 
IWRES=IRES/W 
Y=F+ERR(1)* W 

$THETA (30) (10) (30) (40) (20) (700) (0.001) (0.0001) (0.0001) (1) 
(0.0001) (1) 
$OMEGA (0.1) (0.1) (0.1) 
$SIGMA 0.5 
$EST METHOD=1 INTERACTION MAX=9000 SIG=3 PRINT=5 NOABORT 
$COV 
$TABLE ID AMT TIME DV RATE BILI AST ALB HGT WGT MG WHO IWGT 
AGE CRCL SY BSA LMET TVCL CL V1 Q2 V2 Q3 V3 ETA(1) ETA(2) ETA(3) 
IPRED [RES IWRES FILE=RUN4. PAR NOPRINT 
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Control stream for MAP Bayesian estimation of PK parameters for Swedish 
data set using prior estimates from UK population model; used in Chapter 6, 
Section 6.2.3 

$PROB EPIRUBICIN 
$INPUT ID TIME AMT RATE DV AGE WGT HGT BSA AST ALT ALB CREA 
CRCL 
$DATA C: \LORRAINE3\MARIE. PRN IGNORE='#' 
$SUBROUTINE ADVAN 11 TRANS4 
$PK TV CL=THETA(1) 

TV V 1=THETA(2) 
TVQ2=THETA(3) 
TVV2=THETA(4) 
TVQ3=THETA(5) 
TVV3=THETA(6) 
CL=TV CL*EXP(ETA(1)) 
V1=TVV1 
Q2=TVQ2 
V2=TVV2 
Q3=TVQ3*EXP(ETA(2)) 
V3=TVV3*EXP(ETA(3)) 
SI=V1/1000 

$ERROR IPRED=F 
DEL=O 
IF(F. EQ. 0) DEL=1 
W=IPRED+DEL 
IRES=DV-IPRED 
IWRES=IRES/W 
Y=F+ERR(1)* W 

$THETA (28.0) (9.88) (29.0) (35.2) (60.3) (780) 
$OMEGA (0.284) (0.108) (0.194) 
$SIGMA (0.0533) 
$EST METHOD=1 INTERACTION MAXEVAL=O SIG=3 PRINT=5 
$COV OMIT 
$TABLE ID TIME AMT RATE DV AGE WGT HGT BSA AST ALT ALB CREA 

CRCL CL Vi Q2 V2 Q3 V3 ETA(1) ETA(2) ETA(3) 
IPRED IRES IWRES FILE=RUNT. PAR NOPRINT 



277 

Control stream for simulation of a reference data set; used in Chapter 9B 
Section 9B. 1.1 

$PROB SENSITIVITY 
$INPUT ID AMT TIME DV RATE 
$DATA C: \LORRAINE\REF. PRN IGNORE='C' 
$SUBROUTINE ADVAN 11 TRANS4 
$PK TVCL=THETA(1) 

TV V 1=THETA(2) 
TVQ2=THETA(3) 
TVV2=THETA(4) 
TVQ3=THETA(5) 
TVV3=THETA(6) 
CL=TVCL*EXP(ETA(1)) 
V1=TVV1 
Q2=TVQ2 
V2=TVV2 
Q3=TVQ3*EXP(ETA(2)) 
V3=TVV3*EXP(ETA(3)) 
S1=V1/1000 

$ERROR IPRED=F 
DEL=O 
IF(F. EQ. 0) DEL=1 
W=IPRED+DEL 
IRES=DV-IPRED 
IWRES=IRES/W 
Y=F+ERR(1)* W 

$THETA (28.0) (9.88) (29.0) (35.2) (60.3) (780) 
$OMEGA (0.284) (0.108) (0.194) 
$SIGMA (0.0533) 
$SIMULATION (3396450) ONLYSIM 
$TABLE ID AMT TIME DV RATE CL Vl Q2 V2 Q3 
V3 ETA(l) ETA(2) ETA(3) IPRED IRES IWRES 
FILE=RUN3. PAR NOPRINT 


