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Abstract

An aortic dissection is a tear of the intima of the aortic wall that spreads into the media
or between the media and adventitia. In addition to the original lumen for blood flow,
the dissection creates a new flow channel, the ‘false’ lumen that may cause the artery to
narrow or even close off entirely. Aortic dissection is a medical emergency and can quickly
lead to death.

The mechanical property of the aorta has been described by the strain energy function
given by Holzapfel et al. [2000]. The aorta is idealized as an elastic axisymmetric thick-
walled tube with 3 layers. We focus on the dissection in media, which is considered as
a composite reinforced by two families of fibres. We assume the dissection in the media
is axisymmetric. The mathematical model for the dissection is presented. The 2D plane
crack problem in linear elastic infinity plane and 2D strip, the axisymmetric crack problem
in linear elastic compressible and incompressible tube, the axisymmetric crack problem in
an incompressible axisymmetric aorta are applied to obtain solutions to three different

problems. And the fluid flow inside the crack has been studied.

The 2D plane crack problem in linear elastic infinity plane has been solved analytically.
The 2D plane crack problem in linear elastic compressible and incompressible strip is mod-

elled respectively and solved numerically.

The models for axisymmetric crack problem in linear elastic compressible and incom-
pressible tube are presented respectively. The numerical solutions for the crack problems

are expressed, and the results are analyzed.

The mathematical model of the incompressible aorta axisymmetric dissection is given,
and the solutions are found numerically. The results change along with the different pa-

rameters in the strain energy function, which are analyzed and compared.

The fluid flow inside the tear is assumed very thin which is expressed as the lubrica-
tion theory. We use the implicit method to model the Stokes equation numerically, and

test the crack opening change along with time.
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Chapter 1

Introduction

The aorta is the largest artery in the body, originating from the left ventricle of the heart
and extending down to the abdomen, where it bifurcates into two smaller arteries. The
aorta distributes oxygenated blood to all parts of the body through the systemic circula-
tion. The aorta is usually divided into three segments: the ascending aorta, the arch of
aorta and the descending aorta as shown in Fig 1.1. The descending aorta is composed
of thoracic aorta, the half of the descending aorta above the diaphragm, and abdominal

aorta, the half of the descending aorta below the diaphragm.

Figure 1.1: The aorta is divided into three segments: the ascending aorta, the arch of

aorta and the descending aorta.

An aortic dissection (Holzapfel [2009]) is a tear of the delicate intima of the aortic wall that
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spreads into the media or between the media and adventitia. In addition to the original
lumen for blood flow, the dissection creates a new flow channel, the ‘false’ lumen that may
cause the artery to narrow or even close off entirely. Simultaneously, the dissection may
cause the formation of a thrombus from which fragments embolize. Aortic dissection is
a medical emergency and can quickly lead to death, even with optimal treatment. If the
dissection tears the aorta completely open (through all three layers), massive and rapid
blood loss occurs. Aortic dissections resulting in rupture have an 80 % mortality rate, and
50 % of patients die before they even reach the hospital. Aortic dissection is divided into
acute and chronic types (Khan and Nair [2002]), depending on the duration of symptoms.
Acute aortic dissection is present when the diagnosis is made within 2 weeks after the ini-
tial onset of symptoms, and chronic aortic dissection is present when the initial symptoms
are more than 2 weeks duration. About one third of patients with aortic dissection fall
into the chronic category. The most common site of initiation of aortic dissection is the
ascending aorta (50 % of the cases) followed by the aortic regions in the vicinity of the

ligamentum arteriosum.

Tear in
aortic wall

Aortic
dissection

Ascending
aorta

Descending
aorta

Figure 1.2: The sketch of an aorta and aortic dissection.

Several different classification systems have been used to describe aortic dissections. One
is the DeBakey system (DeBakey et al. [1961]),which categorizes the dissection based on

where the original intimal tear is located and the extent of the dissection: Type I orig-
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inates in the ascending aorta, propagates at least to the aortic arch and often beyond it
distally; Type Il originates in and is confined to the ascending aorta; Type III originates
in the descending aorta, rarely extends proximally but will extend distally. The Stanford
classification consists of the following two types. Type A, which involves the ascending
aorta and/or aortic arch, and possibly the descending aorta. The tear can originate in the
ascending aorta, the aortic arch, or, more rarely, in the descending aorta. It includes De-
Bakey type I, IT and retrograde type III (dissection originating in the descending aorta or
aortic arch but extending into the ascending aorta). Type B, which involves the descend-
ing aorta or the arch (distal to right brachiocephalic artery origin), without involvement
of the ascending aorta. It includes DeBakey type III without retrograde extension into

the ascending aorta.

Aortic dissections are observed in clinical practice. Suzuki et al. [2003] have analyzed
384 patients with acute type B aortic dissection enrolled in the International Registry of
Acute Aortic Dissection (IRAD). The effect of tear depth on the propagation of aortic
dissections in isolated porcine thoracic aorta is observed by Tam et al. [1998], which deter-
mines the relationship between the depth of tear and propagation pressure of a bleb using
an in vitro porcine model. Sixteen patients with descending thoracic aortic dissection,
intimal disruption close to the subclavian artery, and extension of the dissection into the
aortic arch or the ascending aorta are described in Segesser et al. [1994]. Parker et al.
[1975] outlines the rationale for therapy and the current method of managing acute dis-
section. The pathophysiology, classification, clinical manifestations, early diagnosis, and
management of acute aortic dissection is discussed by Kamalakannan et al. [2007]. Nine-
teen consecutive patients with aortic dissection underwent open surgery, which all received

aortic reconstruction with vascular grafts, are studied by Wei et al. [2009].

The arterial histology has been studied by Holzapfel et al. [2000].

A health elastic artery is composed of three layers: the intima, the media,
the adventitia. The intima is the innermost layer consisting of a single layer en-
dothelial cells that rests on a thin basal membrane and a subendothelial layer
whose thickness varies with topography, age and disease. In healthy young
individuals, the intima is very thin and makes an insignificant contribution

to the solid mechanical properties of the arterial wall. However, it should be
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noted that the intima thickens and stiffens with age (arteriosclerosis) so that
the mechanical contribution may become significant.

The media is composed of smooth muscle cells, a network of elastic and col-
lagen fibrils and elastic laminae which separate the media into a number of
fibre-reinforced layers. The media is separated from the intima and adventitia
by the so-called internal elastic lamina and external elastic lamina (absent in
cerebral blood vessels), respectively. The orientation of and close intercon-
nection between the elastic and collagen fibrils, elastic laminae, and smooth
muscle cells together constitute a continuous fibrous helix. The helix has a
small pitch so that the fibrils in the media are almost circumferentially ori-
ented. This structured arrangement gives the media high strength, resilience
and the ability to resist loads in both the longitudinal and circumferential di-
rections. From the mechanical perspective, the media is the most significant
layer in a healthy artery.

The adventitia is the outermost layer of the artery and consists mainly of fi-
broblasts and fibrocytes (cells that produce collagen and elastin), histological
ground substance and thick bundles of collagen fibrils forming a fibrous tissue.
The adventitia is surrounded continuously by loose connective tissue. The
primary constituents of the adventitia are thick bundles of collagen fibrils ar-
ranged in helical structures. The wavy collagen fibrils are arranged in helical
structures and serve to reinforce the wall. They contribute significantly to the
stability and strength of the arterial wall. The adventitia is much less stiff
in the load-free configuration and at low strains than the media. However,
at higher strain the collagen fibres reach their straightened lengths and the
adventitia changes to a stiff jacket-like tube which prevents the artery from

overstretch and rupture.

The structure of the media give it high strength, resilience and the ability to resist loads
in both the longitudinal and circumferential directions. From the mechanical perspective
(Holzapfel et al. [2000]), the media is the most significant layer in a healthy artery. Dis-
sections usually happen in media or between the media and adventitia. In this thesis we
mainly focus on the dissection in media, the artery is considered as incompressible material

since it does not change their volume within the physiological range of deformation.
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Composite reinforced by
collagen fibers arranged
in helical structures

Helically arranged fiber-
reinforced medial layers

Bundles of collagen fibrils
External elastic lamina

Elastic lamina

Elastic fibrils
Collagen fibrils
Smooth muscle cell

Internal elastic lamina

Endothelial cell

Figure 1.3: Diagrammatic model (Holzapfel et al. [2000]) of the major components of a

healthy elastic artery composed of three layers.

A Continuum-mechanical framework is specified in Holzapfel et al. [2000]. They pro-
vide the general continuum description of the deformation and the hyperelastic stress
response of the material. The artery is considered as a thick-walled circular cylindrical
tube subjected to various loads. The strain measures to be used are specified and the
equilibrium equations are discussed. Residual stress and pre-stretch play important roles
in the artery. The active mechanical behaviour of arterial walls is governed mainly by the
intrinsic properties of elastin and collagen fibres and by the degree of activation of smooth
muscles. Some constitutive models for arterial walls are introduced by Holzapfel et al.

2000).

In addition, a new constitutive model for arterial walls is given by Holzapfel et al. [2000],
They proposed strain energy functions that model each layer of the artery as a fibre-
reinforced composite. A constitutive model which incorporates some histological infor-
mation is formulated. The material parameters involved may be associated with the
histological structure of arterial walls (i.e. fibre directions). Arteries are composed of

(thick-walled) layers with a separate strain-energy function. From the engineering point
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of view, each layer may be considered as a composite reinforced by two families of (col-
lagen) fibres which are arranged in symmetrical spirals. Each layer responds with similar
mechanical characteristics and therefore the same form of strain-energy function for each
layer is used (but a different set of material parameters). In a healthy young arterial
segment (with no pathological intimal changes), the innermost layer of the artery is not of
solid mechanical interest, and they therefore focus attention on modelling the two remain-
ing layers, i.e. the media and the adventitia. It is then appropriate to model the artery as
a two-layer thick-walled tube (with residual strains) using the strain-energy functions in

Holzapfel et al. [2000].

Figure 1.4: Diagrammatic model of media and adventitia as two-layer thick-walled tube.

Arterial dissection has been studied by Gasser and Holzapfel [2006], which focus on the
solid mechanical and structure aspects and the geometry of the artery, and captures the
displacement discontinuity during arterial dissection they employ the Heaviside function
up to an enhanced displacement field. A single-field variational formulation leads to two
variational statements, which, together with their consistent linearizations, form the basis
for implementations in a finite element program. Geometrically non-linear and consistently
linearized embedded strong discontinuity models for 3D problems with an application to

the dissection analysis of soft biological tissues have been studied by Gasser and Holzapfel
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2003).

The blood inside the dissection is connecting with the blood in the aorta. Referring
to Benson et al. [1957] if there is a tear in the overlying media and intima, a column of
blood under aortic pressure may then enter the false lumen and cause a more rapid and
complete dissection due to Bernoulli’s law. This happens because the lateral pressure of
the stagnant column of blood and clot within the dissection will exceed that in the swiftly
flowing main column of blood. According to Benson et al. [1957] a second tear in the aortic
wall may follow. If the second defect is through the adventitia, massive hemorrhage and
death usually occur. If the second defect is through the internal layer, the lateral pressure
in the false lumen will drop, again in accord with Bernoulli’s law, and further dissection
may occur. Therefore the tear propagation need to be considered. We won’t be discussing

these in this thesis, however it is an important direction.

In order to understand the tear of the elastic material we review several articles. The
evaluation of stress intensity factors for plane cracks in residual stress fields by Wilks
et al. [1993] gives the modelling of residual stress, and analyze the crack by using the
dislocation density method. In Yang et al. [2001] a cohesive zone model for fatigue crack
initiation and growth in quasibrittle materials is proposed. Leise et al. [2010] considers the
problem of the dynamic, transient propagation of a semiinfinite, mode I crack in an infinite
elastic body with a nonlinear, viscoelastic cohesive zone. And they presented a combined
analytical /numerical solution method that involves reducing the problem to a Dirichlet-
to-Neumann map along the crack face plane, resulting in a integro-differential equation
relating the displacement and stress along the crack faces and within the cohesive zone.
Ortiz and Pandolfi [1999] has developed a three-dimensional finite-deformation cohesive
element and a class of irreversible cohesive laws which enable the accurate and efficient
tracking of dynamically growing cracks. A method is outlined for the determination of
cohesive zone properties in soft materials in Nilsson [2005]. The goal of the study was to
extend earlier work assuming linear kinematics and linear elasticity to include non-linear
kinematics and finite elasticity. Explicit results for cohesive traction determination are

given and discussed.

The following papers indicate how to deal with the jump conditions of the crack face
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for the axisymmetric crack problems. Axisymmetric crack problems has been solved as
the singular stress-displacement field resulting from the introduction of a Somigliana ring
dislocation in an isotropic linear elastic solid by Demir et al. [1992]. The Burgers vector
of this dislocation has two components, one being normal to the plane of the circular ring
dislocation (Vulterra type) and the other being in the radial direction of the ring disloca-
tion everywhere (Somigliana type). The analytical solution, in terms of complete elliptic
integrals of the first, second and third kinds, is obtained using the Love stress function and
Fourier transform. In Korsunsky [1995] the fundamental eigenstrain solutions are derived
for axisymmetric crack problems. The solutions are found in terms of Papkovich-Neuber
potentials, which in turn are expressed using one function from the family of Lipschitz-
Hankel integrals. In order to achieve the most concise form, two methods are used in
the analysis: integration method for the axial opening eigenstrain ring and direct solution

method for the radial opening eigenstrain ring and the ring of shear.

Above works on the axisymmetric tear focus on the linear elastic material, which can
not be used for the aorta. Our model studies the aorta, whose material is non-linear
and is described by the strain energy function Holzapfel et al. [2000]. The Cauchy stress,
nominal stress, and incremental nominal stress for the tear problem are deduced from the
strain energy function, and are used to establish the equilibrium equations with boundary

conditions and jump conditions to model the axisymmetric aorta tear problem.

The aim of this thesis is to construct a mathematical model of aortic dissection. We
consider the aorta an incompressible elastic cylindrical tube, the mechanics of which is
described by the strain energy function given by Holzapfel et al. [2000] and the dissec-
tion is axisymmetric. Residual stress and axial stretch play important roles. Hence take
the stress-free artery with an open angle as the reference configuration, and the closed
artery with residual stress as the current configuration. The dissection of the artery is
idealised as the incremental elastic deformation on the configuration with residual stress.
The equilibrium equations, which are from Cauchy’s law of motion, together with bound-
ary conditions and jump conditions for the crack face are the mathematical description
for the 3D crack problem. The methods to solve the problem and the results are included

as well.
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1.1 Structure

This thesis has solved the 2D plane crack problem in a linear elastic strip, the axisymmetric
crack problem in a linear elastic cylindrical tube, and the axisymmetric crack problem in a
non-linear elastic cylindrical aorta based on the strain energy function given by Holzapfel
et al. [2000]. Each chapter will start with an introduction, following by a problem formu-
lation, then the solutions and main results will be given. The fluid flow inside the tear is

analyzed at last.

Chapter 2 introduces basic mathematical formula for idealized artery, then the elastic
moduli and incremental moduli. Residual stress and axial stretch are pre-stretch for an
unloaded artery. They need to be considered before we think over the tear. The concept
of incremental moduli is presented, which will be used to describe the stresses and defor-
mations of the tear. An example is given to explain these concepts. Last but not least,
the crack discontinuity is modelled as jump condition, which is introduced by Demir et al.

[1992] and Korsunsky [1995].

In Chapter 3 2D plane crack problem in an infinite plane and an elastic strip are pre-
sented. The general method to solve a crack problem is given. The traction and dis-
placement components of the tear are written as the integral of Green’s function weighted
by the displacement of each point along the crack. These Green’s functions will be ob-
tained from the calculations of the equilibrium equations with the boundary conditions
and jump conditions. So when the traction is given on the tear face, the displacement
will be obtained. We use this approach to solve the 2D plane crack in compressible and

incompressible elastic strip respectively.

Chapter 4 focuses on the axisymmetric crack problem. We use the similar method as
Chapter 3 to solve the axisymmetric crack problem in a compressible and an incompress-

ible linear elastic tube.

In Chapter 5 we model the axisymmetric crack in an elastic incompressible cylindrical
thick-walled aorta, which is described as a composite reinforced by two families of collagen
fibres which are arranged in symmetrical spirals by the strain energy function given by

Holzapfel et al. [2000]. The equilibrium equations for Cauchy stress and incremental nom-
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inal stress are given with the boundary conditions and jump conditions. The approach to
model the tear is similar as Chapter 3. The results for different parameters are compared

and explained.

Chapter 6 discusses the fluid flow inside the crack. Assuming the tear is very thin we
use the lubrication theory to describe it, and we use implicit method to test how the

opening will change along with time.



Chapter 2

Background material

2.1 Background material

In this section we introduce the concept of residual stress, which plays a very important
role in the in-vivo artery. A load-free artery is not a stress-free artery, therefore before we
consider any other stress acting on the artery we have to describe the residual stress and
axial stretch first. In addition, the strain energy function used to describe the deformation
of the artery in Chapter 5 is introduced here. Then an example to explain how to calculate

the stress, in which the residual stress and axial stretch are involved, is presented.

2.1.1 Residual stress

We consider the artery as an incompressible thick-walled cylindrical tube subject to various
loads referring to Holzapfel et al. [2000]. The load free artery, which is cut along the axial
direction as the figure 2.1, is not stress-free artery and will open up with an angle «
due to the residual stress. Thus, we take the stress-free opening artery as the reference
(undeformed) configuration £y, and the closed artery with residual stress and axial stretch
as the current (deformed) configuration €.

Refering to Holzapfel et al. [2000], we use the cylindrical polar coordinates (R, ©, Z) to

describe the region Q:
Ri<R<R, 0<O<(2r—a), 0<Z<L, (2.1)

where R;, R,, a and L denote the inner and outer radii, the opening angle and length of
the undeformed tube, respectively.

In terms of cylindrical polar coordinates (r, 0, z), the geometry of the deformed configura-

17
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residual stress

open—angle
stretch in
vivo

—

Figure 2.1: Arterial ring in the (stress-free) reference configuration €, and the (load-free)

current configuration 2.

tion € is given by

Tin <7 < Tout, 0< 2 <1, (2.2)

where 75, oyt and [ denote the inner and outer radii and the length of the deformed tube,
respectively.

From Holzapfel et al. [2000] the deformation x, which is taken to be isochoric, is written
as

X =re, + ze, (2.3)

with reference to the basis vectors {e,, ey, e.} associated with the cylindrical polar coor-

dinates (r, 6, z), where

RQ—Rl2 5 o
r= S +ri, Z=A k_27r_a

(2.4)

A is the axial stretch, the parameter k is a convenient measure of the tube opening angle
in the unstressed configuration.
The Cauchy stress tensor o is decoupled into volumetric contribution o, and isochoric

contribution & as shown in Holzapfel et al. [2000]
=0y +0=-—pl+7, (2.5)

where p is the hydrostatic pressure. In the absence of body forces the equilibrium equations
are

dive =0, (2.6)

because of the geometrical and constitutive symmetry, the only non-trivial component of

(2.6) is

doyy Orr — 000
+ =

0. (2.7)

dr T
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From this equation (2.7) and the boundary condition o,y|r=r,,, = 0 on the outer surface

of the tube, the radial Cauchy stress o, may be calculated as

Tout o — 0pp
O'rr(g) = / ( - , )dT‘, Tin < & < Tout (28)
3
The internal pressure is written as pip, = —0py|r=r;, = :f’“t Mdr. Due to (2.5) the
components of o have the decompositions ogg = —p + 7g¢ and o, = —p + 7. Hence the
internal pressure
Tout o — 0
Pin = / (000 = o) 4, (2.9)
Tin r
_ / " Cn =T,
Tin r ’

The axial force N can be calculated via the definitions

Tout
N = 27‘(’/ 0z rdr (2.10)
Tin

Tout
= 271/ (—p+7,,) rdr

i
Tout
= 27 / (Opp — Tpp + Tap) rdr

Tin

= 27T/ B <Jrr (5) —Orr t EZZ) €d€

Tin

Tout Tout _
_ 27r/ (/ wdr — T +Uzz> ¢de
r 3

in

Tout Tout (A~ ——
= 27r/ (/ o =) gy 7, 4 azz> gd¢
Tin 6 r

The reduced axial force can be expressed as

F = N —71,°mpin (2.11)
Tout Tout (~ ——
= 277/ (/ Mdr — Opp + Uzz) §d§ — Tinzﬂpi
Tin 3 r
Tout Tout (A~ —— Tout
—oa [ (Trr = 300) jg — 27 [ @ )it~ P,
Tin é r Tin

Tout T d Tout
— o / / (@ — Tog)EdE™ — 210 / (Frr — Tsz) EE — 027
Tin I Tin r =

in

Tout 7:2 — 2 dr Tout Tout (~ -0
= 27T/ Tm(arr - 509)7 - 27T/ (Err - Ezz) §d§ — Tin27T/ Md?"
r T r r

Tin in in

Tout
= 7T/ (QEZZ — 0po — Err)rdr.
T

in

The hydrostatic pressure p can be calculated from

d£ o dorr +E7"7“_E€9.

= 2.12
dr dr T ( )
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We will use these results to calculate the internal pressure, the reduced axial force and the

hydrostatic pressure in §2.1.3.

2.1.2 Strain energy function

The artery is composed of the intima, media, and adventitia. According to Holzapfel
et al. [2000] the intima is not of mechanical interest, and therefore the artery is considered
as a two-layer thick-walled tube with residual stress and pre-stretch in the longitudinal

direction. The structures of the two layers are same, which have the strain energy function
vV=UJ)+V (2.13)

where U(J) is volumetric contribution and ¥ is given by Holzapfel et al. [2000]

Fr

1
\Ilzic(ll—3)+2k2

(W (1) + %y (16)] - (2.14)
In equation (2.13) and equation (2.14)

J=detA, T;=J"Puw(ATA), T,=J"tr(MLATA), Ig=J"3tr (M_ATA)
(2.15)
and

Uj(z) = exp [/@ (z — 1)2} ~ 1 (2.16)

In a cylindrical polar coordinate system the tensor A is the deformation gradient, and the

matrices M4 are given by

0 0 0
Mi=1|0 cos? 3 +cosBsinf |, (2.17)
0 +cosfsinf sin? 8
and

Sym (M) — % (M + M), (2.18)

where 2 is the angle between collagen fibers as shown in Figure 2.2. The media and adven-
titia have same strain-energy function (2.14). The differences for media and adventitia are
the material parameters c, k1, k2. The parameter c is associated with the non-collagenous
matrix of the material, and describes the isotropic part of the overall response of the tissue.
The parameters k1 and ko are associated with the anisotropic contribution of collagen to
the overall response. The material parameters are constants and do not depend on the

geometry, opening angle or fibre angle.
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The strain energy function (2.13) will be used to construct the aortic dissection model in

Chapter 5.

Figure 2.2: Sketch of the media and adventitia from Holzapfel et al. [2000].

2.1.3 Example for residual stress and axial stretch

Here is an example using above theory to calculate stress when residual stress and axial
stretch are included. For a general incompressible hyperelastic material the deformation

gradient due to residual stress and pre-stretch is

or
R 0
A=| 0 k= 0 (2.19)
R
9z
07

where g—g = A\, 7 = r(R) defined in (2.4). The incompressibility constraint J = detA =1
R

leads to % = T and therefore

A= 0 k- ol (2.20)
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Refer to Holzapfel et al. [2000] the isochoric contribution in (2.5) is

5 — dev(A2YR") (2.21)
OE
_ 8\11 T
= deV(AaEA )
LN RTINS
= Az AT Cl(AZpAT) I

where A = <J7%I> A = A, dev(-) = (-) — (3)tr(-) and E = E due to incompressibil-
ity, in which Green-Lagrange strain tensor E = 3(C — I) and right Cauchy-Green tensor

C=ATA.

5 (1 =3) = 5 (ir ()~ 3) = 1r(C ~ 1) = x(R), (2.22)

Iy=tr (M{ATA) = tr (MLATA —My) +tr(My) = 2tr (MLE) + tr (M), (2.23)

Io=tr (M_ATA) =tr (M_ATA —M_) +tr(M_) =2tr (M_E) + tr (M_), (2.24)
oL, ol

op = My, oo =2M, (2.25)

Hence

7 _ _ _ _
27]3 = CI+2k‘1 exXp [kig (I4 — 1)2} (I4 - 1) M+ + 2]{11 exp |:k‘2 (16 - 1)2} (IG — 1) M_.
(2.26)

Then the components of & are

_ R\’
- o)
C(CIR RS
T = ck? (%)2+4k1Qe4k2Q2k2 (%)2
1
B 3{0

(,g)+k (L)

Foe = A2+ 4k Q297 gin? B2

S CCIR RS

2
+ 4k1Qe4k2Q2 [cos2 Bk? (%) + sin? 6)\2] }

2
+ 4k1Qe4k2Q2 [cos2 Bk? (%) + sin? 6)\2} }

2
+ 4k1Qe4k2Q2 [cos2 Bk? (%) + sin? 5)\2] }

where

Q =2tr MLE) = [0052 I5; (k%)Q + sin? BA? — 1} i
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Figure 2.3: Plot of G when 1y, = 4, 7oyt = 6, p = 3, A = 1.1, 8 = 5, k1 = 2.3632,
ko = 0.8393, a = §.

28

Figure 2.4: Plot of Ggg when 74, = 4, 1our = 6, p =3, A = 1.1, § = 5, k1 = 2.3632,

ko = 0.8393, a = T.

In figures 2.3, 2.4, and 2.5 we plot &,,, g9, 0,.. And the internal pressure p;,, the
reduced axial force F' and the hydrostatic pressure p can be calculated from equation

(2.9), equation (2.11) and equation (2.12) respectively

- TOM(_ LQ+ K211 4k Qe k2 (1y2)g
Pin = - Mk2A2r3 2 R2 1Je R T,
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Figure 2.5: Plot of 7., when 7y, = 4, rout = 6, p = 3, A = 1.1, B = 5, k1 = 2.3632,
ko = 0.8393, a = §.

Tout
F = / i (2 pA? + 8 ky sinQ(ﬁ))\QQek2Q2> r

K

2 2,.2 kaQ? 2 2,.2
B 7r< cR ck*r +4k1Qe cos”(B)k=r )rdr,

kQ)\27“2 + Rz RQ

Tout uR? ck?r
b= / 3t TP

A k1?29 (cos (B)) k2r (4/3 k2 (Q° — Q%) +1/3Q —2/3)

72 dr.

These integrals can be calculated numerically.

2.2 Incremental moduli and elastic moduli

The stress-free artery is taken as reference configuration, and the configuration with resid-
ual stress as current configuration. We consider the aortic dissection as an incremental

deformation, whose definition is

If the displacement dx is ‘small’ for each X € Qg so that terms of order
|6x|? are negligible in comparison with those of order |6x/|, then we refer to &y

as an incremental deformation from the configuration described by .

referring to R.W.Ogden [1997]. In the following sections (§2.2.1-§2.2.5) the explanation

of elastic moduli, incremental elastic deformations, etc are from R.W.Ogden [1997]. In
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addition, an example is given to explain how to use the incremental deformation in practice.
In the end of this section, we introduce the aortic dissection as axisymmetric tear problem,

and give the ideas about how to model the axisymmetric tear.

2.2.1 Elastic moduli

An elastic material, which has a strain-energy function, is called a hyperelastic material.
The mechanical propertities of such a material are characterized by the strain-energy

function W. The nominal stress, whose transpose is first Piola-Kirchhoff stress, can be

written as
ow
S=—. 2.27
DA (2.27)
The nominal stress has following relation with Cauchy stress,
S=JB%o (2.28)

where B = (A~1)T. For a Green-elastic material subject to a single constraint C(A) = 0,
the nominal stress is given by

aC (A)
oA

S=H(A)+q (2.29)

where ¢ is an arbitrary scalar, which has the role of a Lagrange multiplier, and H is the

material response function
oW
OA”

For the incompressible constraint we have C(A) = det A — I = 0 and 8%755) = B”. The

H(A) (2.30)

nominal stress becomes

I

where we have replaced g by —p, p being referred to as the arbitrary hydrostatic pressure.
2.2.2 Deformation increments

The deformation of a body in the current configuration can be written as
x = x (X) (2.32)

where X is the position in the reference configuration {25. Suppose that the deformation
is changed to x’ and let
X =Y (X) XeQ. (2.33)
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The displacement of a material particle due to this change is
x —x=x(X)-x(X). (2.34)

We write this as

ox = ox (X) (2.35)

where the operator 0 is defined by dx = x' — x.

2.2.3 Stress increments

The deformation gradient is A, and the relative incremental deformation gradient is JA.

The nominal stress increment may be written

6S = AlA, (2.36)

where Al is elastic moduli
oS
1
= 2.

A A’ (2.37)

and in componenets
1 *wW

A (2.38)

iy = 0Ain0A;5
2.2.4 Instantaneous moduli

On page 333 of R.W.Ogden [1997], the definitions of fized-reference moduli and instanta-

neous moduli are given

Suppose we now consider a fixed reference configuration and let A be the
deformation gradient which relates this to the current configuration. We then
refer to the moduli as fixed-reference moduli.

We take the reference configuration to coincide with the current configura-
tion at any stage of the deformation. The resulting elastic moduli are called

instantaneous moduli.

Now the current configuration is used as the reference configuration, and §Ag is the value

of §A in this configuration, which leads to the relation

SA = (5Ag) A. (2.39)
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In addition
§Sg = J1ASS (2.40)

where §S is the incremental nominal stress for the fixed configuration, and dSg is its value
relative to the current configuration. The relation between the incremental deformation

gradient and incremental nominal stress for the fixed configuration is
6S = AA, (2.41)
and for the current configuration it is
6So = AjdAo, (2.42)

where

A(l)z‘jkl = JflAiaAkﬁ-Aéjgl- (2.43)

Hence when the strain energy function W is given, the nominal stress S and incremental

nominal stress dSg for current configuration could be calculated as following

ow 1 aSaj 1 -1 1 1
Sa]’ = aTja, ‘Aozjﬁl = 67[/3’ AOijkl =J AiOéAk’,BAaj,Bl? 55013 = AOijkl(SAOlk‘ (244)
Constraint

For a material with a single constraint, the incremental nominal stress is

2
§S = AV0A + 5q§i +q (;g) SA, (2.45)

and for an incompressible material this becomes
6S = A'SA + 6¢qBT — ¢BT (sA)B”. (2.46)

When the reference configuration is chosen to coincide with the current configuration, the

equation becomes

6So = A6 A + 6qI — g0 A,. (2.47)
Similar to the unconstrained material, when the strain energy function W is given, the
nominal stress S and incremental nominal stress §Sg could be calculated as following

oW
0A 4

0S4;

Saj = 814[57

Avijr = I Aia Arp Ajar, 050i; = Apijrd Aotk
(2.48)

1
—PBja;  Agjs =
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2.2.5 Structure and properties of the incremental equations

Refering to R.W.Ogden [1997] for a body whose reference configuration is {29 we write the

boundary conditions as

x = &(X) on 097, (2.49)

STN = t(X,x,A) on 00}, (2.50)

where &€ and t are prescribed functions of their arguments, x = y (X) for X € Q¢ defines
the deformation, and A = Grady (X). In R.W.Ogden [1997] the pressure P per unit

current area is considered as the loading. The true traction is then given by
on=—-Pn on 0. (2.51)
The corresponding nominal traction has the form
SN =-JPBN on 0%. (2.52)

The nominal stress S is given by an appropriate form of elastic constitutive law. In

particular,
ow
S=— 2.53
IA (2.53)
for an unconstrained hyperelastic material, and this is modified to
ow
S=_——+¢B" 2.54
oA T4 (2.54)
for an incompressible material. The equilibrium equation is
DivS + pob =0 (2.55)

where b is the body force and pg is the mass density of the body in the configuration g .

In R.W.Ogden [1997] the boundary conditions (2.49) is subjected to the increments

dx = 0&(X) on 007, (2.56)

6STN 5t (X,x,A) on 00, (2.57)

where 68 is the increment in nominal stress. In the case of pressure loading (2.51) we have

t = —JPBN and

5t = —6PJBN — JPtr (B"6§A) BN + JPBSA"BN (2.58)
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where 0 P is the prescribed increment in P. The incremental counterpart of the equilibrium

equation is

DivdS + ppdb = 0, (2.59)
where we have
5S = A5A (2.60)
for an unconstrained material, and
5S = A0A + 6¢BT — 5qBT5ABT (2.61)

for an incompressible material. This is accompanied by the incompressibility constraint

0 (detA) = 0 which may be written

tr (B'6A) = 0. (2.62)

When the reference configuration is chosen to coincide with the current configuration the

equilibrium equation becomes

divdSp + pdb = 0, (2.63)
where
§So = AbdA, (2.64)
for an unconstraint material, and
6So = Ab0A( + 6qI — 6q0 A (2.65)

for an incompressible material with
tr (0Ag) = 0. (2.66)
The boundary condition becomes
6Sin = 6tg = —0Pn — Ptr (6Ag)n + PSAln (2.67)

where n is the unit normal to the current boundary 02 of the body, and the middle term

on the right-hand side vanishing for an incompressible material.
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2.2.6 An example

Here is an example to show how to use above theory to calculate incremental deformation.
Consider a stress-free solid incompressible elastic cylinder as the reference configura-
tion. Then the ends of the cylinder are stretched with the stretch ratio A and take the
deformed configuration as the current configuration. Then we press the cylinder along the
circumferential direction in the middle of the axial directionwith pressure P which is ax-
isymmetric in the incremental deformation. The coordinate system is (7,6, z), and assume
the radius of the cylinder in the current configuration is r = a.

Consider a Neo-Hookean like material with strain-energy density
1
W =pu [2 (M + 23+ )3) — log J] + kg (J) (2.68)

where J = detA and let A\; are the principal stretches of the deformation gradient A. The

function g(J) satisfies g(1) = ¢’(1) = 0 and ¢”(1) = 1. The strain-energy function becomes
1
W =u [2tr (ATA — 1) — log (det A)} + kg (det A). (2.69)

The first nominal stress is given by
ow

S— 2.
2 (2:70)
and write it in the form of strain tensor
ow
ai — . 2.71
5 0A;q (2.71)
We use some standard results to generate the expression for S. First
9 [tr ATA] (2.72)
0A )
the a-ith component of this tensor is
9 T
A [ArsArg] = 2Aks0ik008 = 24ia =2 (AT) ., (2.73)
so that
0
— [tr ATA] = 2AT. 2.74
oA TATA] (2.74)
Next we use the result
9 .
A [det A] = (det A) A (2.75)
which in component form is
0
J=J(A),,- (2.76)

0Aiqa
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Any function of J can be differentiated easily

) : -
oA F (det A) = (det A) F (det A) A7, (2.77)

These results allow us to write that
S = uAT + (kJg' (J) — p) A~ (2.78)

for the Neo-Hookean energy. The elastic moduli, based in incremental deformation on top

of the finite deformation represented by A are

Al = STS;‘ (2.79)
In component form we have
ALy, = DO (2.80)
Before we begin the computation we perform a helpful calculation
0 _ 0
o 8 —1 1 8
- dA;g [(A )ak] Apy + (A )ak; 94,5 [Ak'y]
0 _ _
= 7)) A+ (A7),
0 _ _ _ _
oA, (A Vel Ay (A7), = = (A71) 1 0irdsy (A7),
giving the final result that
9 -1 -1 4-1
A (A7) ] = —A5; A% (2.82)

Using this result we may write

Abigy = 1 [8igdas + A AGY| + 1Tg () [AZLAG) = ATLAGE] + w2 (1) AZLAG]
(2.83)

For the moduli when the current configuration is the new reference configuration we have

Agijrr = I AiaArp Al
= T AiaAyait [Gij00s + A5 AG]
T i A (19 () [AFAG) — ALAG] + ng" A A
= pJ (0jAiaAka + 6idik)

+ Iﬁgl (J) ((51']'51@[ — 5115]143) + KJg// (J) 5ij5kl~ (2.84)
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If the deformation A =1, so that J =1 and Ay, = 64 then
Abijir = 1 (601 + 616j1) + K0ij0 (2.85)

which is the isotropic 4th rank tensor for linear elasticity with Lamé moduli u and k.

Constraint—Incompressible

The stress-deformation relation for the nominal stress is

_ oW 9C(A)

S=%A "9 A

(2.86)

with J = 1 and tr (0Ay) = 0, since the cylinder is incompressible. When we take the
incremental configuration as same as the current configuration we have the incremental

nominal stress as
6So = AJ6Ag + g1 — gd Ay, (2.87)
Use equation (2.84) we have

(650)i; = Aoijia (FA0)y + 8¢0i5 — ¢ (§Ao),; (2.88)
= ,uJ_lAmAka&ij (6A0)lk + J‘l,uéilékj (5A0)lk:
+  wg" (J) Jji01k (6 A0)y, + 0qdi5 — q (6 A0)s; — g (6A0),;

= I A AL (5A0) . 8 + T 16i (5A0)y, Okj + k9" (J) J6;

27
which leads to
6So = pJ TAATSAGTTY + T IS Aol + kg” (J) JTtr (6Ag) + 5qT — g6Ag.  (2.89)

The deformation gradient is

R
EOO

A=| o0 z 0], (2.90)
0 0 X

and the solid cylinder is axisymmetric so the incremental deformation gradient is

9r g 9or
or 0z

dAg=| 0 & o0 |. (2.91)
9z g 9%z

or 0z
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In details the (2.89) is written as

[ l + 1 @ + 5 _ @ 0 l% + @ _ @
H A or -4 or H A\ Or 0z 1 0z
1
0Sy = 0 u<+1>6r+5q—q5r 0
A r r
0or 06z 06z 06z 00z
00T 00z  00% 2 0oz 0oz
M<)\ 6z+8r> Tor 0 (1) 0z +0q q@z_
(2.92)

In following parts we use u to replace dr, and w to replace 6z .

Equilibrium equations and boundary conditions

Consider a stress-free solid incompressible elastic cylinder as the reference configura-
tion. Then the ends of the cylinder are stretched with the stretch ratio A and take the
deformed configuration as the current configuration. The radius in the current config-
uration is r = a The equilibrium equation and boundary condition for nominal stress

are

divS = 0 (2.93)
STN = —-PJBN on r=a. (2.94)
Then we press the cylinder along the circumferential direction in the middle of the axial

direction with pressure P which is axisymmetric in the incremental deformation. The

equilibrium equation and boundary condition for incremental nominal stress are

divéSy = 0 (2.95)

6SIn = —0Pn— Ptr(6Ag)n+ PSAln on r=a. (2.96)

The equilibrium equations (2.95) are

I[BQU 1 du u] ,0%u  9dq

S o trar 2t aE TS = 0 (2.97)
1 (0w 10w ,0%w  9dq

5 <a2 + Tar) MR i (2.98)
10 ow

e (ru) + 5 - 0. (2.99)

The boundary conditions (2.96) on r = a are

i ou ou B
H‘ler(u_p_q)@ = 0. (2.101)

A Or 0z



CHAPTER 2. BACKGROUND MATERIAL 34

Let g = —uQ and P = uP, so the equilibrium equations and boundary conditions

become
Pu  10u ] 2 *u  0Q

Sl T ey o 9%
'u)\[@r2+7“87“ r2 022 Mar 0,

1 /02 1 2
M)\(M+811]>+M)\26w_ @ — 07

or?2 ror 8.2 Moz
10 ow
-— = 2.102
r@r( u) + 0z 0, (2.102)
and
wou ou —
\g, T q) 5, ~HQ+h 0,
wow ou
Lt _P_g)— = = q. 1
<o +(u—P q)az 0 on r=a (2.103)
Solutions
Let
u = V Avey (2.104)
_ 10(ry) O
= &g, (2.105)
that means let w = 71,8(7:@ and let v = —?;/]. Put them into equations (2.102), and
z
reduce them to
10% + Aza‘lw P oY —6%8 + X X 1 (2.106)
A ort 04 A 6‘2287“2 Ar '
O (XL @_i@+iaﬂ_i¢_o
0220r Ar2 ) 022 X2 or2 A3 or At T
To factorize the equation into two parts
1702 10 1 , 02170 10 1 8
S (=4+2=-= =4 — |y = 2.1
[)\ <87“2 + ror 7"2) A OZQ] [87“2 + ror r? + 022} v="0 (2.107)

so we change the 4th order equation into two 2nd order equations
1/62 10 1 o
- - A2 =0 2.108
[)\ <8r2 t ror 7'2) + 8z2] ¢=0, ( )
? 10 1 0
[ +—+]1,Z):¢. (2.109)

o2 ror 2 922

Use Fourier transformation

+o00 i R 1 Yoo .
J—-'[qb] = /_ ¢(T, Z)e ’ zdz = Cb(?", k)) ¢(Ta Z) = % Qb(r, k)el de’,
do [T dD ey dO(R) A6 (YO (k)
Pl = [ Geaa= TR Fg= [ et = G,
do, oo dd - d2¢ -
Fl b = /_OO e Wde =ik, Fl5] =k,
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so equation (2.108) changes to

P6 106 ¢ 40
er;E_ﬁ_)\st:o, (2.110)

Let t = A3/2kr and change it to Modified Bessel equation
Po 106 & -
— +-——=—-—=—0=0. 2.111
ot? + tot 2 ¢ ( )
The solution of this equation is ¢ = a(k)I1(A3/2k, r) + b(k)K1(\3/2k, r).

When r — 0, K; — 00, so b =0 and ¢ = a(k)I;(\¥/2k, r).

Now we want to solve the second equation (2.109). After Fourier transformation the
general solution of the homogenous equation

2 190 1 &

o trar a0 (2.112)

o = C(k)1(k, ) + D(k)K1(k, r). (2.113)

When r — 0, K; — 00, so D =0 and ¢ = C(k)I1(k, 7).

We show that is the particular solution for the nonhomogeneous equation after

¢
RPN

Fourier transformation, where ¢ = a(k)I1(A\3/2k, r).

Proof :
1 [ 1
LHS = ——M— 327 \3/2 : 31,217 )\3/2
S oo D) (BN E LY 1)+ SN KT (A k, 1)

L 12 3E21(\3/2 27(13/2

T R oD |t a(R)NSK2I (N 2k, v) + a(k)K*T(A32k, r)

= # [ 31.2 3/2 . 2 3/2

k2 (A3 —1) _a(k)/\ =LA77k, 1) — a(k)E=I(\* 7k, ’r)]

= a(k)I(\*2k, r)

= ¢

= RHS

So the particular solution of equation (2.109) after Fourier transform is

a(k)[,(N32k, 7)
k2 (N3 —1)

(2.114)
So the solution of equation (2.109) after Fourier transformation is

A(R)LL(N2k, r) 4+ C (k)L (K, 7). (2.115)
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In boundary conditions (2.103) we define §¢ = —uQ, and §P = uP.
And we have P + ¢ = u(1 — %) This is from the boundary condition (2.94), which is in

components as

R r r r
— — = —A = —P)\—= =
“(m R>+qR R MY
where
R? — R?
r= # + r? for the solid cylinder we have R; =0 and r; =0.
So boundary conditions (2.103) become
2 0u —
- — P =0 2.116
ow Ou
E_‘_& = 0 on r=a. (2117)
Put w = %a((.;fp) and u = —g—qﬁ into these equations
2 0% —
—— — P = 2.11
A\ Oroz @+ 0 (2.118)
2 1 2
M+*%—£—a—¢ = 0 on r=a. (2.119)

or2  ror r?2 0922
After Fourier transformation we put ¢ = A(k)I;(\3/?k, r) + C(k)I,(k, r) into boundary
condition (2.119) we write A(k) in the form of C(k)

sy U 417 1+ )
Il(k:/\%?a)((ﬂ +k2X\3 — 1 + k2a2) '

(2.120)

Now we use the boundary condition (2.118) and the equilibrium equation (6.28) to get the
value of A(k) and C(k),

5 _
—i8281ﬁz —gcj—i-aa]: = 0. (2.122)
Eliminate % term from these equations, and use Fourier transformation to change the
PDE to ODE. Let F[P(z)] = fj;o P(2)e*2dy = f(;) The values of A(k) and C'(k) are
known, which include F/(;) Then o (r, k) = A(k)I,(N3/?k, r) + C(k)I,(k, ) is known as
well. Now we use numerical way to integral ¢ (r, z) = % fj;o U(r, k)e*dk, w = %8((;:,’0)




CHAPTER 2. BACKGROUND MATERIAL 37

and u = —‘Z—f
¢(T, Z) — % +oo ¢(T’ k;)eZkzdk (2123)
1 _-io-ooo
- 27r/ [R)(r, k) 4+ iS(r, k)] [cos(kz) + isin(kz)]|dk
+o0
= —% B [Se(r, k)] [sin(kz)]dk
_ 9
“ T T
1 [t .
= 5 W(r, k)ike™dk
e
= —271_@'/ kR (r, k) +iSY(r, k)] [cos(kz) + isin(kz)]dk
_ % R [Su(r, ) eos(k)ldk
_ 190y)
YT o

or

e 1 YU o Ty B ch L G

C2rm o 21 J_oo O

1 [T , ‘
- [wezkz + awezkz] dk
27 J_o T

where R is the real part, and < is the imaginary part.

- 5 1 B 21y sin()
In this case P(z) = ¢, and P(k) = / —e ""dz = —==. Now we assume the outer
€ € peAl

2 2
radius a = 1, A = 1.1, and € = 0.1, then we get the displacement as Figure 2.6

Conclusion

In this example we use the equilibrium equations of incremental nominal stress with pres-
sure on boundary to describe the problem. And we use Fourier transform (F.T.) to change
PDE to ODE, and solve the ODE analytically and invert it by inverse F.T. to obtain the
final displacement. For solving the axisymmetric crack problem we will use the F.T. and
incremental deformation. The main procedures are similar, but we consider the crack
as jump conditions, which is introduced in next part. In additional the ODE is solved

numerically.

2.2.7 Aortic dissection—Axisymmetric crack problem

We idealized the aorta as an axisymmetric thick-walled cylindrical tube with residual

stress and pre-stretch in axial direction. We assume the crack is axisymmetric in the
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-1 -2 -1 0

Figure 2.6: The cylinder before and after deformation.

wall as shown in Figure 2.7. We take the stress-free artery with an open angle as the

residual stress
1 ’
open—angle ' ,
stretch in \
vivo \
- .
incremental deformation

reference configuration current cofiguration

Figure 2.7: Axisymmetric aortic dissection on a thick-walled cylindrical tube with residual

stress and pre-stretch.

reference configuration, and the closed artery with residual stress and axial stretch as
the current configuration. The dissection of the artery is idealised as the incremental
elastic deformation on the configuration with residual stress. In current configuration the

equilibrium equation and boundary condition for Cauchy Stress are equations (5.1). Take
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the configuration with residual stress in as the same configuration for the incremental
deformation, and the equilibrium equation and boundary conditions for the incremental
nominal stress are equations (5.2). For the crack problem we still need jump conditions,

which will be discussed in §2.3.2 .

2.3 Axisymmetric crack problem

We assume that the aortic dissection is axisymmetric. The tear discontinuity is considered
as the jump conditions which has been studied by Demir et al. [1992] and Korsunsky [1995].
We will use the similar jump conditions to solve the crack problem in Chapter 3—Chapter

5.

2.3.1 Axisymmetric crack

According to Demir et al. [1992] for an isotropic elastic material the axisymmetric crack
problem is convenient to use the Love stress function ¢ which satisfies the equilibrium
condition. The problem is reduced to solving for the Love stress function ¢ which must
satisfy the biharmonic equation

ViV2¢ =0, (2.124)

for the axisymmetric case under consideration, the Laplacian V? is given by

V= §;+i£+§;. (2.125)
The stress and displacement components are given by

T 862 (uv2¢ - gif) : (2.126)

ogp = % <1/V2¢ — ig‘f) , (2.127)

0., = ;Z {(2 —v) V3 — fﬂ , (2.128)

Or, = % [(1 —v) V2 — Zif] : (2.129)

2Gu = —gfg;, (2.130)

2Gw = 2(1—v)V3— gif, (2.131)

where z is the axis of symmetry, r is the radial coordinate, o,.., 099, 0., 0, are the radial,

transverse, axial and shear stress components respectively. u and w are the radial and
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2 1
u-up= 8(z)
Uz Oprs Opg

continuous across
the interface

_— = —— — b — — e —

Domain 1 | Domain 2

Figure 2.8: Korsunsky [1995]

axial displacements respectively, and G is the shear modulus of elasticity and v is the

Poisson’s ratio. Equation 2.124 is solved by use of the Fourier transform pair

- L[ —ig T b itz
¢_\/ﬂ/—oo¢(r7§)€ dg, ¢—m/_m¢(r,z)e dz, (2.132)

where £ is the Fourier transformation variable. Then upon applying the Fourier transform

to equation 2.124 we obtain a Bessel differential equation for ¢ whose solution is given by

& (r,€) = iA (&) Lo (&) + &rB (&) L (§r) +iC (€) Ko (¢r) + &rD () Ky (¢r)  (2133)

where Ip; and Ko are the modified Bessel functions of the first and second kinds re-
spectively, and A (§), B (&), C (£) and D (&) are functions of the transform variable £ and
should be chosen in connection with the boundary conditions.

Results for stress and displacements can be found in The Somigliana ring dislocation by

Demir et al. [1992].

2.3.2 Jump conditions

We consider the discontinuity of the crack face in the elastic cylinder as ‘Jump condition’.

Korsunsky [1995] used the following jump conditions to solve the axisymmetric crack
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problem.

(W —u') = 0(2), —oo<z< o0, (2.134)
(w2 — wl) = 0, —oo<z<o0, (2.135)
o2, —ol, = 0, —oo0<z< o0, (2.136)
o —or, = 0, |z]>0, (2.137)

where u is the displacement component in radial direction and w is the displacement
component in axial direction, and the superscript ‘2’ means domain 2 and the superscript
']” means domain 1. By using these conditions A (£), B (), C (§) and D (§) in equation
(2.133) can be solved.

Results are given by Demir et al. [1992] and Korsunsky [1995].

We got the idea form these jump conditions to use similar methods to cope with the crack

discontinuity in the crack problem in Chapter 3—Chapter 5.

2.4 Conclusions

We have illustrated the ideas of residual stress, incremental moduli, elastic moduli, the
strain energy function of an artery, axisymmetric crack problem and the jump conditions

for the crack. In Chapter 5 we will use all of these to build a model of a tear in the aorta.



Chapter 3

Static tears in compressible and
incompressible linear elastic 2D

strips

3.1 Introduction

Our aim in this chapter is to introduce a method for the solution of 2D crack problems.
We illustrate aspects of the method by considering a straight crack in an infinite domain
and derive an integral equation relating crack opening to traction on the crack faces. We
then consider a straight crack in an inifnite 2D strip, in which the crack is aligned with
the strip direction. The approach leads us to consider a numerical scheme to solve for
crack opening and displacements given the tractions on the crack faces. We discuss the
important parts of this scheme as it will be used in Chapters 4 and 5 to solve axisymmetric
crack problems in Chapter 4 and used to solve our idealised tear problem in the aortic

media.

3.1.1 General crack problem in plane strain

We consider a cracked body in 2D occupying a domain D with boundary 0D as shown
in Figure 3.1. Let an arclength coordinate along L, and crack lies along L in D. The
displacement discontinuity across the crack is U (s), where s is an arbitrary point on L.
The displacement discontinuity U (s) is decomposed to give the normal jump U(s) and the

tangential jump V(s). The outer normal to D is n®. The boundary dD is traction free

42
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oD

Figure 3.1: Crack on an arbitrary 2D body.

SO

T-n®=0 on 8D

where T is the traction. The traction is decomposed into
T = T,n + Tit,

where n is the normal vector and t is the tangent vector. The equilibrium equation,

boundary conditions and jump conditions for the body are

divl' = 0 on D (3.1)
T-n® = 0 on 9D (3.2)
[t = U(s) on L (3.3)

where u = (u,v) is the displacement for the body D, and [u|r = U(s) and [v]r = V(s),
where U(s) and V(s) are components of U (s). There is also continuity of traction across
the crack [T - n];, = 0 where n is normal to crack face.

Let o™ be the solution to the following problem

dive™ =0 (3.4)
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in D and 6"n® = 0 on 9D with u" = (u",v") and
[u"]r, =6(S — s) (3.5)

along L with arclength coordinate S, and s is variable. And o! be the solution to the
following problem

dive’ =0 (3.6)

in D and o'n® =0 on 9D, with u’ = (uf, ") and
[v']L = 6(S — s). (3.7)

We can construct the solution with a prescribed jump in displacement across the crack by
superposition of the Green’s function solution weighted appropriately. By using Green’s
function methods we can write the traction components at the crack faces and displacement
components on the crack faces as integrals of Green’s functions weighted by displacement
discontinuity along the crack. The traction components, decomposed into normal and tan-

gential directions, are

T, = / oMU (s) ds + / oV (s) ds, (3.8)
T, = /ofU(s) ds+/a§V(s) ds. (3.9)

The displacement components, decomposed into normal direction and tangential direction,

are

u= /u”U(S)ds+/utV(s)ds, (3.10)
v= [ V"U(s)ds+ [ v'V(s)ds. (3.11)
forvess |

t
n’

The Green’s functions o7, o!, o', ot and u", u?,v", v are solved from equations 3.1-3.3.

Hence when the traction (7,,7}) is given, the displacement (u,v) will be solved.

3.2 Crack problem on infinite plane

A tear problem in an infinite plane is illustrated and solved analytically in this section. The
plane strain problem has been described by the Airy stress function, and the displacements
have been given by Slaughter [2002]. We use Fourier transform on the compatibility

condition of the Airy stress function, then get the general solution of the ODEs. With
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the boundary conditions and jump conditions we get the solutions of the ODEs for the
specific crack problems. After we invert the Fourier transform, the Green’s function for
the integral equations, which describe the traction and displacement of the crack, are
expressed. The tear problem is then solved. We will get the displacement as the traction

is given.

3.2.1 Basic equations

Slaughter [2002] uses the the Airy stress function x(x,y) to describe plane strain problems.

The stress components are written in terms of x via
Oze = Xoyy 780, Oyy = Xoze ¥ and  0py = — X,y - (3.12)

where () is the potential function for the body force. If the body force is homogeneous,

the compatibility condition gives
4 _
vix = 0, (3.13)
and the displacement components will be
2pu = —Xo tathy, 200 = —Xy+ap,, (3.14)

where ¥ (x,y) is a potential function that satisfies the conditions

V2 =0 and Yoay = v2y, (3.15)
) 1
and a =1 —v for plane strain,and « = 72 for plane stress.
v

Define the Fourier trasform F[f] = f(g,y) = 7% f(z,y)e "9*dz and inverse Fourier trans-
form f(z,y) = ﬁ ffooo f (g,y)e9"dg. After applying the Fourier transform, the equation
(3.13) changes to

Xyyyy — 20 Xyy + 9" = 0. (3.16)
The general solution is
j((y, g) = Ae%Y + Be 9 1 Cyegy + Dyefgy, (3_17)

where A, B, C, D are constants connected with boundary conditions and jump conditions.

Now we define region 2 as the region where y > 0, and region 1 as the region where y < 0.
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Using x — 0 as y — +o00 in region 2 we get

X(y,9) = Az + Boe % + Coye? + Daye %, (3.18)
AQ = CQ =0 for g > 0, (3.19)
By = Dy=0 for g<O0. (3.20)

Using x — 0 as y — —o0 in region 1 we get

X(,9) = A% + Biem% + Crye?? + Diye 9, (3:21)
By, = D;=0 for g>0, (3.22)
A = C1=0 for g<O. (3.23)

After appling the Fourier transform, equations (3.15) become

&yy_g%& = 0, (3.24)

~

ig@Z:y = Xayy_g2>%a (325)

and the general solution for equation (3.24) is

¢ = Ee% + Fe 9, (3.26)

Substituting ¥ and ¢ into equation (3.25), we get

Hence

ig(Eged¥ — Fge™ ) = 2gCe% — 2gDe 9. (3.27)

20 °2D. .  2C 2D
E=-"20 F=-"24 =—"Ziew — 2=y, (3.28)
g g g g

After Fourier transformation, equations (3.12) and equations (3.14) become

a'a:ac = vay ) &yy = _QZX I &:cy = _Z‘ngay I (329)

2ui = —igX+a,y , 2ub = —X.yFiga . (3.30)

Substituting (3.17) and (3.28) into above equations we get

a-xm
Tyy
Oy
2ut

2u0

Ag?e% + BgPe 9 + gCe (2 + yg) + gDe ™9 (=2 + yg), (3.31)
—Ag*e% — Bg?e 9 — ¢g*>Cye?¥ — g*Dye 9,

—Ag%ie + Bg?ie % — igC(1 + yg)e?? — igD(1 — yg)e %,

—igAedY —igBe % —igCye9 — igDye 9 + a(—2iCe% + 2iDe™ %),

Age?’ — Bge 9 + C(1 +yg)e?’ + D(1 — yg)e 9 + a(2Ce% 4 2De™ %),
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3.2.2 Jump in v

Now assume the displacement discontinuity is only in the normal direction v and the crack

is at y = 0 as shown in Figure 3.2. The jump conditions at y = 0 are

Y

region 2

region 1

Figure 3.2: The displacement discontinuity in normal direction.

[,U]t = U2—V1 = (5((E), [u]t = U2—U1 = 07 [O'yy]t = U;y_o-;y = 0’ [Uzy]i = o-z'y_o-:}:y = 07
(3.32)

and they are used to construct the Green’s function referring to Lighthill [1958], which is

used in (3.59) etc.. After Fourier transformation these equations become

[Goy)T =62, —6L =

~2 ~1
07 Ty Ty

[0]F = b=t =1, [4]F =dp—t1 =0, [6y,]" =6,,—6,, =

By using (3.19), (3.22) and (3.31) in jump conditions (3.33), when g > 0 we have

[—ng + Dy + QOéD] — [Alg + C1 + 20(01] = 2u, (334)
[—igBQ + QOéiDQ] — [—igAl — 20&iC1] = 0, (3.35)
[~Ba2g’] = [FA19?] = 0, (3.36)
[iBag? —igDs] — [—iA19> —igC1] = 0. (3.37)
Hence we obtain
21 2u
Ai=—— , B1=0,Ci=——, D; =0; 3.38
1 4C¥g ) 1 ) 1 Ao’ 1 ) ( )
2 2
AQZO, Bgzi, 02:0, Dngu

dayg 4o
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When g < 0 we have

2 2
A1:0,B1:—ﬁ,01:O,D1:—£; (3.39)
2 2
A2:_7M7B2:0702:7M7D2:0-
4ag 4o

Put (3.38) and (3.39) into equations (3.31), and when y > 0 the inverse Fourier transform

of oy, is
1 e
Tyy = o ) e"%6yy (9,y) dg
_ 1 0 19T A > 19T A
= 5 [/Ooe Uyy(gay)dg+/0 € Uyy(g,y)dg]

2M 0 19T g qy ng qy /OO ; g _ g2y —
- - <L J dg — gr ( _J 9y J I gy d
o [/_Ooe 10 "1 )Y ) G TR g

0 00
= = { / ) (g — gPy)dg — / eV (g + gzy)dg]
oo 0

4o
1 I (—a:4 — 622y + 3y4)
2 o (—ixd — 3ya? + 3iyx + y3) (—iad + 3yx? + 3izy? — y3)
p(at + 62%y* — 3y*)
2ra(z? + y?)3

. ‘ . o p(at +62%y* — 3y")
where the superscript ‘v’ means ‘Jump in v’. When y < 0, oy, = ma® 4 7P
v — M
W 2raa?’

When y > 0 the inverse Fourier transform of o7, is

and when y =0, o

Yy
1 [~ . .
Ugy -~ o 7ooelgxamy(g,y)dg
1

0o oo
— [ / €96, (9,y) dg + /0 elgw&xy(g,y)dg}

27 )

20 [ [° ign (19 gy _ 19 / * igr (19 gy 19 -
- 7 — 21 gy d wygr (2 gy _ 2 1— gy d
5 [/_ e 1a€” — g (L T yg)e™ ) dg+ N b 1oL~ 9ye g

oo
nyx (—3:2 + 3y2)
o (—ixd — 3yx? + 3iy?x + y3) (ia® — 3yx? — izy? + y3)
pry(z® — 3y)
ma(z? + y?)3

When y < 0 the inverse Fourier transform is

1 oo

%y = 3r | V0w (9.)dg (3.40)
- pyz (2* — 3°) (3.41)

o (ixd — 3yz? — 3iy?z + y3) (iz3 + 3yx? — Zizy? — y3) .
__pay(a® = 3y) (3.42)

B ra(x? 4+ y?2)3
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and when y = 0, oy, = 0. It’s straightforward to get u” and v by the same way, and the
superscript « means ‘Jump in u’.
3.2.3 Jump in u

Now assume the displacement discontinuity is only in tangential direction and the crack

is at y = 0. Jump conditions at y = 0 are

W =ve—v; =0, [uf=us—u; =6(z), [oy|F= USy_U;y =0, [og]t= aiy—aiy =0.
(3.43)

After Fourier transform these equations become

[0 =to—0y =0, [2]f =dp—iy =1, [6y)" =67,-6,,=0, [64]" =62,—6,,=0.
(3.44)

We use (3.19), (3.22) and (3.31) in these jump condtions (3.33), when g > 0 we have

[—ng + Dy + 204D] — [Alg +Cy + 20401] = 0, (345)
[—igB2 + 2aiDs] — [—igA1 — 20iCy] = 2u, (3.46)
[—Bag?] — [-419*] = O, (3.47)
[iBag? —igDs| — [—iA1g® —igCi] = 0. (3.48)
Hence we obtain
gz
A1=0, Bi=0,Ci=——, D1 =0; (3.49)
2c
Ay =0, By=0, Co=0, Dy=—H
2x
When g < 0 we have
iy
A1:0,31:0,01:0,D1:%; (3.50)

Ay=—0, By=0, Co= -2 Dy,=0.

2a’
Put (3.49) and (3.50) into equations (3.31), when y > 0 the inverse Fourier transform of

AU

Tyy 18
ou = L [T ey (9,y)d (3.51)
vy o yy \9,Y)ag .
—0o
1 (U oo
= 5 [/ e"9%6y, (g,y) dg +/ €96y, (9,y) dg (3.52)
—o0 0
B Hyx (—x2 + 3y2) (3.53)
 ma(—ird — 3yx? + 3iy2x + y3) (ixd — 3ya? — 3izy? +y3) '
2
-3
_ pay(z y) (3.54)

ma(z? + y2)3"
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When y < 0 the inverse Fourier transform of oy, is

1 oo

gy = of eigxﬁyy(gay)dg (3.55)
— 00

B Hyx (932 — 3y2)
ma (iz3 — 3yx? — 3iy2x + y?) (123 + 3ya? — 3izy? — y3)
pay(a® - 3y)

= (3.57)

(3.56)

When y = 0 the stress component oy, = 0. For all y the inverse Fourier transform of o}

Yy zy
is
Opy = : .
i 2ra(z? + y?)3
When y = 0 the stress component o, = P 1es straightforward to get u" and v* by
Y 2rax?

the same way.
3.2.4 Integral equation
The traction components, decomposed into normal and tangential direction, are

T, = /szy (x —s,y)U (s)ds + /U;y (x —s,y)V (s)ds,

T, = /O‘;Ly (x —s,9)U (s)ds + /O’;y (x —s,y)V (s)ds. (3.59)

The displacement components, decomposed into normal and tangential direction, are

u= /u“(x —s,m)U(s)ds + /u”(a: —s,1m)V(s)ds
v = /v“(x —s,m)U(s)ds + /v”(a: —s,7)V(s)ds (3.60)

The value of Tyys Oyys Oy Oy a0d u®, u?, 0", 0" are known. Hence if the traction (77, Ty)
along the crack is given, we can calculate the displacement (u,v).

When y = 0 and we assume the crack is along the interval —% <z < %,

T, = 2 g 61
” 0+/52m(x8)2 s (3.61)

)
T, — _ M) ge 4o, 3.62
/_g 2ra(z — s)? st (362)
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for the plane strain problem

/g _ UG e K /é U e (3.63)
—L 21w — s)? 2r(1=v) J_L (x—s)?
L
- = (1E— = /_ 2 (xU_(Sz)2ds, (3.64)
L L
[ymate s = wam Lo (369
where the integral f_z (;/_(32 ds is Hadamard integral, and
E:W’V:2()\)\4_/0’1+V:§(A)\12/1/3,M:2(1€‘V). (3.66)

Hence when (T}, T,) in (3.59) along the crack is given, the value of (U(s), V (s)) is solved by

inversion of the integral equation. Then the displacement (u,v) in (3.60) will be obtained.

3.3 Static tears in 2D strip—Ilinear elasticity for 2D plane

cracks

We illustrate the crack problem in a 2D strip, which is closer than the crack problem in
an infinite plane to our aim to solve the crack problem in an elastic tube. We try to use
analytical approach to solve it in this section, but find that the Fourier inversions can not

be performed analytically. Then we use numerical approach to solve it in next section.

3.3.1 Method for crack problem in a 2D strip

The crack is decomposed into normal direction (jump in u) and tangential direction (jump
in v) as shown in Figure 3.3 .

The jump conditions on the crack surface are

ug—u; =0, wvo—w =06(x), o5,—0u, =0, sz—a;yzo for jump inv (3.67)

_ _ 2 1 _ 2 1 . .
ug —uy =90(x), ve—v1=0, o3, —0, =0, Oyy — Oyy =0 for jump inu (3.68)

with boundary condition (3.2) on y = £h and equilibrium equation (3.1).
Following are the details of the methods to solve the equilibrium equations with boundary

and jump conditions. Firstly, the strain tensor € and stress tensor o are the functions
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Y
x
Jump in v Jump in u
region 2 =t region 2
-
j
region 1 region 1

Figure 3.3: The crack is decomposed into normal and tangential direction.

of displacements u", w" or u*,w™. Write the equilibrium equations dive = 0 into com-
ponents to obtain two partial differentiation equations with variables u*, w" or u%,w";
secondly, taking the Fourier transform to change these PDEs to ODEs with the wave num-
ber g and the variables are 4%, w" or 4", w"; thirdly, solving these ODEs with boundary
conditions and jump conditions by using analytical way or numerical way; finally, taking
the inverse Fourier transform to obtain the solution for PDEs. The Cauchy stress o is
the functions of displacements u*, w" or u®”,w", hence when u*, w* and u", w" are solved

U w U w 3 3
oy,, om and oy, of. will be obtained.

U
vy’

o¥ . u", v", and solving them for

By solving these equations for ‘Jump in v’ we get o oy

v
vy’

v

2ys 0’y v”. Where the superscript ‘v’ means ‘Jump in u’, and

‘Jump in v’ we obtain o}, o

‘v’ means ‘Jump in v’.

In the 2D strip the traction components are described as
T, = /O’;jy (x —s,y)U (s)ds + /a;y (x — s,y)V (s)ds, (3.69)
T, = /a;y (x —s,y)U (s)ds + /O';y (x —s,y)V (s)ds. (3.70)
Displacements, decomposed into normal and tangential direction, are
u= /u“(x —s,y9)U(s)ds + /u”(x —s,y)V(s)ds (3.71)
v = /v“(m —s,y)U(s)ds + /v”(a: —s,y)V(s)ds (3.72)
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Hence if the traction (T, T,) along the crack is given (U(s), V (s)) will be calculated, then
the displacement (u, v) will be obtained. We use this method to calculate the displacements
for the upper crack face, lower crack face, outer boundary layer and inner boundary layer.

Then plot them on one figure to get the crack profile.

3.3.2 Basic 2D plane crack problem

Consider the 2D problem of a crack in a linear elastic material occupying a strip —h < y <
h in plane strain. The coordinate system is (z,y) and the displacements in the coordinate
directions are (u,v). The components of the Cauchy stress are oy, and o,,. The crack is

located along the line y = y.. The strain tensor is

Ou(z,y) 10u(z,y)  10v(z,y)
_ ox 2 0y 2 Ox
©= | L dulwy) | 10v(ay) ou(z,y) ’ (37
2 Oy 2 Oz oy
The constitutive law is
o = Mr(e) I+ 2ue. (3.74)
The stress tensor is
(A +201) u(z,y)  \ov(@.y) Mf)U(:v,y) +M3v(ﬂf,y)
o — ox dy dy Ox ‘ (3.75)
M3U(ﬂf,y) +M3v(x,y) O\ +201) ov(z,y)  Ov(z,y)
oy Oz y y
The Poisson’s ratio
A
= 3.76
T2+ (3.76)
so that \ = lg'éyu and A+ 2u = ?:gZu. Hence (A, ) are replaced by (A, v)
2
O = (A4 20) Uy +Av,y = ﬁ [(1—v)u,z+rv,y] (3.77)
Oy = 2 <“’”‘2H‘y> (3.78)
2
oy = (A+20) v,y +Au,y = . _,u2y (1 =v)v,y +ru,. ] (3.79)
The equilibrium for Cauchy stress is
dive =0, (3.80)
and the boundary conditions are
oy =0 at y==h, (3.81)

oy =0 at y==h (3.82)
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The jump conditions on crack surface y = y. are (3.68) and (3.67). Write the equilibrium

equation (3.80) into components and use Fourier transformation on these equations

igdilg(/y) +(1—2v) dey(Zy) -2 (1 —-v)a(y) = 0, (3.83)
i b
Z-gdd;y) o -n? dy(zy) ~o) g (1-w) = 0. (3.84)

where a(y) = [%_ u(z,y)e " dzand i(y) = [°_ v(x,y)e 9*dz. The general solution for

these two equations is
0 (y) = Ae 9 + Be %y + Ce% + De9Yy (3.85)
and

u(y) = L (4vBe 9 + 4vDe% + Age %Y + Bge %y — 3Be™ %Y — Cge?¥ — Dge?y — 3De%) ,
9
(3.86)

where A, B,C, D are constants connected to boundary conditions and jump conditions.

Now assume the traction is in normal direction, which is the ‘Jump in v’ in Figure 3.3 and
h =1 and y. = 0 are given. The boundary conditions (3.81) and (3.82) after transform

are

Gyy=0 at y==+1, (3.87)

Oy =0 at y==l. (3.88)

where Gy = [%_ oyy(z,y)e” ¥ dz and 6oy = [7 00y (z, y)e 97 du.
The jump conditions (3.67) after Fourier transformation are
Qg — =0, dp—01=1, 65, —06,,=0, 62,—06,,=0 at y=0 (3.89)

vy yy Ty

where subscript or superscript ‘1’ means region 1, and ‘2’ means region 2.

Put the solutions (3.164) and (5.82) into these boundary conditions and jump conditions
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we obtain the constants Aq, Ao, By, By, C1,Cs, D1, Ds.

(g269—2ygeg+2geg+eg —Veg—efg+ye*9) e 9

1
A = - , 3.90
! 2y (69)2 — (69)2 +4e 9gedv — 4de9ged + (e‘g)2 — (6_9)2 v ( )
1 (2ge9 +¢e9 —e 9)ge™9
b = 2 R = ———, (3.91)
4y (e9)° — (e9)" +4de9gedv —de9ged + (e79)" — (e 9)“ v
o — 1 e (2Vge_g+1/eg—Ve_9+g2e_9—296_9—eg—i—e_g) (3.92)
P2y (e9)? — (e9)* + de~9gedy — de=9ged + (e79)* — (e=9)2 v’ .
ed(2ge”9 +e9 —e Y
Dy = —1/4—— 9729 ) —, (3.93)
v (e9)” —(e9)" +4e 9gedv —4e 9ged + (e79)" — (e79) v
A = 1 e (2Vge_9 +ved —ve 94 g% 9 —2ge 9 — eI + e_g) (3.94)
22y (e9)? — (e9)* + de~9gedv — de=9ged + (e=9)* — (e=9)* v’ .
1 9(2ge 9+ eI —e 9
By = ge (2ge™t + e~ e™Y) ., (3.95)

1 v (69)2 _ (69)2 +4e9gedv —de 9ged + (6_9)2 (e

Cy — _1 (g269 —2vged +2ged +e9—ved _€—g+ye—g) 9 (3.96)
2y (69)2 B (69)2 +4de9gedy — de—9ged + (679)2 - (6*9)2 . .

1 (2ge9 + e9 — e79) ge™9

Z v (69)2 _ (69)2 +4e9gedv —de9ged + (6_9)2 — (6_9)2 V.

Dy, = (3.97)

3.3.3 The Fourier transform is unbounded as g increasing

In region 2
G (0y) = 1 (2g%e~Vy + 2 g%y 4+ 26 g — 2eg — 2~ g2 — 2 g? 4 =92V g
yy \9,Y 4 Vezg_62g+4Vg—4g+e—29—e—2g,/
T, (e — e 4 92 4 gem 92y — gemVy 4 gey — ged(T2Ty) ¢
4 ve?d —e29+4vg—4g+e 29 —e 29y

If we let y tends to 0, we find &, is divergent when g increases, which means this can not
be inverted by inverse Fourier transform % ffooo &yyeigxdg.

The behaviours of 6y, (g,y) and 64y (g9,y) as g gets large lead us to consider a decompo-
sition of the form

Gyy (9,Y) = J;yg + agy + Oyy, (3.98)

0

oy) — 0 invertible.

which makes (6, (9,y) — a;yg) — 0 or (6yy(9,v) — J;yg -0
In the future section, we will introduce a numerical approach to solve these equilibrium

equations, and we will use the decomposition and invert them numerically.
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3.3.4 Useful results

The following results

) 1 [ 1
lim — / ge % cosgrdg = ——3,
y—0t T Jo ™
1 [e.e]
lirn+ — / e Wcosgrdg = o(x),
y—0+ T 0
1 oo
yl_i}rgr)l+ - / ge Ysingxr dg = -5 (),
0
1 [ 1
lim — / e Ysingrdg = —,
y—0t+ T Jo ™

are useful for the calculation in the future sections.

56

(3.99)
(3.100)
(3.101)

(3.102)

3.4 Solution for the compressible plane crack problem in a

2D strip

In this section we are going to solve the plane crack problem in a compressible 2D strip

numerically. We consider the crack decomposed into normal and tangential direction as

shown in Figure 3.3.

3.4.1 Fourier transformation

The Fourier transform and inverse Fourier transform in the z direction are defined as

oo

FI] =f@w=[§ﬂmmww@
1

o0

FU = o) =5 |

If f(_xay) = —f(x,y)

amzf@mz—%Awﬂmmm@@m,

and f(‘%y) = —f(g,y) leads to

Eﬂﬂzﬂawzi/wﬂ%wm@m@
™ Jo

If f(—{L', y) = f(x,y)

.RU%aﬂ%w=2Amf@wN%wmm7

f(g.y)e'"dg.

(3.103)

(3.104)

(3.105)

(3.106)

(3.107)
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and f(—g,y) = —f(g,y) leads to

FUA= e = [ flo.v)costgn)ds, (3.108)
0
The derivative of these equations are

Flfa] = / F(@,y)w e 9% dx = igF[f(z,y)] = igf (9, y) (3.109)

Flf) = [ fwwgemde= fo.n), (3.110)

Flf) = [ f@g)mye ™ de = igf(g.0), (3.111)

Fllarl = [ f@p)aee de = —F )] = ~flg0) (3112

F[fayy] = / f(% y)vyy e W dy = f(gvy)ayy (3'113)

3.4.2 Jump in v across the crack

The symmetry of the problem gives u(—z,y) = —u(z,y), then the Fourier and inverse

transformation for the displacement u are

u(g,y) = Fslu] =—2i /OOO u(z,y) sin(gx)dz, (3.114)
u(z,y) = F;la)= jr/ooo u(g,y)sin(gz)dg. (3.115)

Since v(—x,y) = v(x,y) the Fourier and inverse transformation for displacement v are

ogy) = Fl=2 [ vlay)cosgo)da, (3.116)
0
1 o0
va) = Fil= 1 [ o(g.0)cos(gn)dy. (3.117)
0
The stress o, is given by
2
Oor = 7 —M21/ (1 —v)u,z+rv,y], (3.118)

where

i [ 1 [
u,m(x,y)=7r/0 u(g,y)gcos(gr)dg and v,y(m,y)zﬂ/o 0,y (9,y) cos(gx)dg.

(3.119)
Hence
—C 1/00((1— Vigi + v, ) cos(gx)d (3.120)
Owe = oo ; V) igl + vi,, gx)dg .
21 1/00((1—V).7-"[u |+ vF(v,y ]) cos(ga)d (3.121)
I—ovn o T U,y g g .

1 [ 1 [
= 7T/ Flozz) cos(gx)dg = / Gza (9,y) cos(gz)dg. (3.122)
0 0

™
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The stress o4y is the function

Ory = p(V,z+uy), (3.123)
where
1 [ . i [°° .
Vs (x,y)Z—W/O 0(g,y)gsin(gz)dg and u,y (x,y)zﬂ/o U,y (9,y) sin(gz)dg.
(3.124)
Hence
Opy = Z/o (—0(9,9)g + i,y (9,y)) sin(gz)dg (3.125)
= % / (iF[v,0] + iFluy ) sin(ga)dg (3.126)
0
7 [° . 7 [ .
= / }"[amy]sm(gzn)dg:/ Gy (9,y) sin(gx)dg. (3.127)
™ Jo ™ Jo

Using the symmetry of the domain in x, we express the displacements and the stresses as

ww) == [Talgsina)dg = = [T 07 g sinfgo) dg,

™

1 [ 1 [
vl = [ olgpeoston)dg =~ [TV (g.9)costga)do,

™ Jo ™ Jo
1 [ 1 />,

oyy (2,y) = L (9,y) cos(gx) dg = e (9,y) cos(gz) dg,
1 [ 1 />,

Orx ($>y) = ; 0 Oxx (gvy) COS(g.’L’) dg = ; 0 Ozx (gvy) COS(g.CI?) dgv
i [ _ 1 [ .

ooy o) = [ g p)sintg)dg = [ o2, (y)sin(anydg, (3.128)

0 0
with the definition
U’ =ii, V=19, G6Y =06ua, Opy=0yy 05, =i0ay. (3.129)

Fourier transform on the equilibrium equation dive = 0 are

-F[J;Bz,a:] + -F[ny,y] = 07 (3130)

Flowya] + Floyyy] = 0. (3.131)

Using the relations (3.77-3.79) between the stresses and the displacements we get the

equilibrium equations in terms of U? and V?

!/

0, (3.132)

(1 2v) (U”)” 221 -0 — g (V“)

2(1—v) (f/”)" P-4 g (U) = 0. (3.133)
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v

The boundary conditions at y = +h are 6y,

=0 and 6, = 0, which translate to
NN . N .
(U“) gVt =0  (1-v) (V“) +vglU? = 0. (3.134)
The jump conditions across the crack at y = y. are

[Ut =0, [Vt =1, [ey) =u] =0 (3.135)

3.4.3 Jump in u across the crack

The symmetry of the problem gives v(—z,y) = —v(z,y), then the Fourier and inverse

transformation for displacement v are

0(g,y) = Fslv] =—2i /Ooov(:n,y) sin(gz)dz, (3.136)

v(x,y) = }"5_1[@] = — /Oof)(g,y) sin(gz)dg. (3.137)
0

™

Since u(—z,y) = u(z,y) the Fourier and inverse transformation for displacement u are

u(g,y) = Felu] = 2/000 u(zx,y) cos(gr)dx, (3.138)
u(x,y) = ]-"c_l[ﬂ] = ;/000 (g, y) cos(gx)dg. (3.139)

The stress o, is the function of displacements

24
Oow = 75 (1 —v)uz+ro,y], (3.140)
where
L[ . U .
ta (2,y) == | g, y)gsin(ga)dg and vy (z,y) = = | 0y (g,y) sin(ge)dyg.
Hence
2u 1 [ PO .
Ore = T o5 ; [— (1 —v)gtu+ivo,,]sin(gz)dg (3.141)
2u 1 [ , . .
— [(1—v)iFu, |+ viF(v,]]sin(gx)dg (3.142)
1-2vm J

= :r/ ]-"[am]sin(gac)dgzz/ Oze Sin(gx)dg. (3.143)
0 0

™
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Using the symmetry of the domain in z, express the displacements and the stress as

1 [~ 1 o[>
u(z,y) = / i (g,y)cos(gr)dg = / U"(g,y) cos(gx) dyg,
™ Jo ™ Jo
i [ ) 1 [, .
v(z,y) = / 0 (g,y) sin(gz) dg = / V¥ (g,y)sin(gzr) dg,
™ Jo ™ Jo
i [ . 1 [~ _
oyy (z,y) = 77/0 Gyy (9,y)sin(gz) dg = 7T/0 G4y (9,y) sin(gz) dg,
i[> _ 1 [ _
7ro(09) = = [ g, sintaa)dg = = [ o, g.9)sin(ga) do.
1 [ 1 [ .
Oy (2.9) = © /0 b2y (9,) cos(gw) dg = /O 5% (g,y)cos(gn) dg.  (3.144)
where define
U =4, V"=i", 6% =ibyy, O =i0g, &Y= 0uy (3.145)

The equilibrium equations 3.130 and 3.131 in terms of U" and V" are

N i N N /
(-2 (0") =282 (=) 0" +g (V) =0, (3.146)
~ " ~ N /
2(1—v) (V“) — Pl -2V — g (U“) = 0. (3.147)
The boundary conditions at y = +h are 6., = 0 and &3, = 0, which translate to
R / N N / A
() +gve=0 (=) (V") —wg0 =0, (3.148)

The jump conditions across the crack at y = y. are

[U“t —1, [V“t —0, [on]t=Te]t =0 (3.149)

3.4.4 Numerical solution

In this section we are going to solve U v, V“, U w V¥ and Tyys Ogys Oyyy» Oy numerically. Now
we assume h = 1. We consider g = 0 separately, which will give singularity if we use the

following collocation method.

Collocation method

As shown in Figure 3.3, region 1is —1 <y <y, and region 2 is y. <y < 1.

d 1 d
Now we change the variable y to Y. In region 1, y = =14+ Y (y.+ 1) and &y = o G
d 1 d
in region 2, y =14+ Y (y. — 1) and & = 1y The range of Y is [0, 1].

The boundary in each region is represented by ¥ = 0, and Y = 1 represents the crack

face.
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Jump in v

61

Define Y1, Ys, Y3, Y4 to be U, (U”)’, VY, (V”)’ respectively in region 1, and Y3, Yg, Y7, Yg to
be UV, (U, V?, (V') respectively in region 2.

Referring to equations (3.132)

)y = 1_12V 20 (1= ) 0"+ g(7)
() = g [0 2w 7 0]
(1-v)
dy;
T}/l = Y,
% = ﬁ[292<1—u><yc+1>2Y1+g<yc+1>Y4]
dY;
dT/g = Y
%%': 2G£V)b%l—%d@u+U%%—g@wFUn]
Y:
% - Y
%? - 1_%[%%1_m@h_nﬁg+ﬁm—lﬂﬂ
Y-
% - v
%§': 2OiV)P%l—%dwu—Uﬁﬁ—gwr*U%]

[ I

(3.150)

(3.151)

(3.152)

The boundary conditions (3.134) on the boundary, and the jump conditions (3.135) on the

upper and lower crack faces are

Ye+1

(3.153)

We use the Matlab routine ‘bvp4c’, which solves boundary value problems for ODEs by col-

location, to calculate the values of Y7, Y5, Y3, Yy, Y5, Ys, Y7, Y, hence U“, Vv are obtained.

U ~FU
The stress components o, 67,

are functions of UY, V.
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Jump in u

62

Define Vi, Ys, Y3, Ys to be UY, (Uu)',VU, (V")’ respectively in region 1, and Y5, Y5, Y7, Ys

to be U, (U*),V*, (V%) respectively in region 2.

Referring to equations (3.146)

0 = 5 [292(1—1/)0“—51(‘7“)/}, (3.154)
WW’—Quiwb%LQWW+mmﬂ. (3.155)
%? = 1jéyPf(L*W@k+1PY1*9@u+DY4
% = 2(11_V)[92(12v>(yc+1)21@+g(yc+1)Yz]
%? :jhzypfﬂ—VM%—U%%—M%—lﬂq
z?::zuiwbﬂkﬂﬂ@wﬁf%+ﬂw—wn] (3.156)

The boundary conditions (3.148) on the boundary, and the jump conditions (3.149) on the

upper and lower crack faces are

Ya+g(ye+1)Y;

(1-v)Ys—vg(y.+ Y1

Ys+9(ye—1)Y7

(1 -v)Ys —vg(y. — 1)Y;

Ys—Yi+1

Y7 —Y;3

%il+g%_<%%l+gm>

1_I/Y4—1 Ys — vgY1 + vgYs
Ye+ 1 -1

We use the Matlab routine ‘bvp4c’ to calculate the values

oY

hence U", V" are obtained. The stress components Tyys Oy

(3.157)

of Yla Yv?a YE%Y47 Y57 }/67Y7> Y87

are functions of U%, V'“.
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3.4.5 The case g =0

The calculation of U v, V”, Gyys Oy and U w V“, Oyys Oy When g = 0 must be solved sepa-

rately.
Jump in v when g =0

Equations (3.132) become

"

N\ R
(1-2v) (U”) =0 and 2(1—v) (V”) ~0. (3.158)
Hence the solution for U? and V¥ are
U’=Ay+B and V'=Cy+D.

By using the boundary conditions (3.134) on lower and upper boundaries and the jump

conditions (3.135) we get
1 1
Ai=0 Bi=0 C;=0 D1:—§ Ay =0 By=0 Cy=0 D2:§

where subscript ‘1’ means region ‘1’, and subscript ‘1’ means region ‘2’.

Hence the displacements on the upper crack face are UY=0and V¥ = : the displacements

= 3;

on the lower crack face are UY = 0 and V¥ = —%; the displacements on the top boundary
are UV = 0 and V¥ = %; the displacements on the bottom boundary are UY = 0 and

Vv = —1. on the crack face ¢

= — 5V —
3 yy = 0 and o7, = 0.

Jump in v when g =0
Equations 3.146 change to
RN/
(1-2v) (U“) =0, (3.159)
R "
2(1-v) (V“) ~0. (3.160)
Hence the solution for U* and V* are

U* = Ay+ B,

vVt = Cy+D.

Put the solutions into the boundary conditions (3.148) on inner and outer layers and the

jump conditions (3.149) we get

1 1
A =0 Bl:_§ Ci=0 D=0 Ay=0 B2:§ Co=0 Dy=0
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where subscript ‘1’ means region ‘1’, and subscript ‘1’ means region ‘2’.

Hence the displacements on the upper crack face are Uv = % and W¥ = 0; the dis-
placements on the lower crack face are U" = —% and W = 0; the displacements on the
top boundary are U = % and W* = 0; the displacements on the bottom boundary are

Ut = —% and W* = 0; on the crack face oy = 0 and oz, = 0.

3.4.6 Matrix equations

We obtain U(g,y), V(9,v), U*(9,y), V*(g,y) and &2,(9,),5%,(g.9),5%,(9,),5%,(9,y)

for each ¢ from above numerical approach. Now we assume the length of the crack is L,
and the length of the strip is 3L. The traction and displacement components, decomposed

into normal and tangential direction, are

T, = /agy (x —s,9)U (s)ds + /UZy (x —s,y)V (s)ds, (3.161)

T, = /agy (x —s,9)U (s)ds + /ng (x —s,y)V (s)ds. (3.162)

u= /u“(x —s,9)U(s)ds + /u”(x —s,9)V(s)ds (3.163)

v = /v“(x —s,y)U(s)ds + /v”(m —s,y)V(s)ds (3.164)

We discretize the integral equations (3.161) and (3.162) assuming piecewise constant open-
ings along a crack of length L. We evaluate the integral equation at a discrete set of points

l‘i,i = 1,...,N.

Useful results

The following results will be used in future sections

Ti+A
/ ’ U; (_12) ds=U;j |— 24 ’ (3.165)
xj—A ™ (.731 — S) T ((xz _ l,j)Z o A2>
:L’j-‘rA
/ A UJ (5('%.71 - 8)) dS = UjI.Z’iE(xj—A,,z‘j+A)7 (3166)
Tj—
xj+A
/ Uj (8'(zi — s)) ds =0, (3.167)
x;—A

’ Uj, (3.168)
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L
in which A = N i=1,...,N,and j=1,...,N.
For the first term in the RHS of equation (3.161)

[ a—sav@as = [[2[7o gsing - 9as] v ) as

/0' (9,y)sing (z; )dg} U;ds
j 0

8

: /0 Oy (9:) 9‘75@})51“9(%—8)@] Ujds

/ smg —5) dg] Uj ds,
j 0

_|._
2=
I\

u\

where

/ [/0 (G (9:y) — go;jyl)sing(xi —s) dg} Ujds = Uj/0 (Gyy goyy [/smg —5) ds} dg,
J J

and

z;+A : A
/Sing(xi—s) ds:/ sing (z; — s) ds = 2219 sing(x; — ;).
J z;—A g

Then using equation (3.101) we have

1 [o° . oul 9]
- /0 9oy, sing (v; — s)dg = % yl_i)]r(r)l+ ; ge Wsing (x; —s)dg = ol (zi — s),

and using equation (3.167) we have
/UZy(xi—&y)U(s ds = 2— ZU/ &u, (9:y) — gogy)

which is the form of Z oy li, j]U; and
J

in gA
shga sin g(z; — x;) dg,

. 1 [, sin gA
O-gzjy[Z?j] = 2[) (Ugy (gay) _go-gyl) g

s

sin g(z; — x;) dg.
For the second term in the RHS of equation (3.161), in which we use equations (3.99) and
(3.165), we have

[ —savas = [[2 [ yy<g,y>cosg<xi—s>dg] V(s) ds
_ Z/U ) — gazé)cosg(xi—s)dg} Vi ds
+ FZ/[/ gU;;cosg(xi—s)dg} Vjds
sin gA

v g
= 2- ZV/ yy g y) go’y;) Tcosg<xi —.’L’]) dg

2A
T ((xz - xj)Q - A2>

vl .
Tyy Z Vj
J
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which is the form of Z o,y li, j]V; and
J

. [~ . sin gA
ol il = 2; /0 (cr;’y (9,y) — 90531/) cos g(z; — ;) dg

7w s ((ar:z - :Ej)2 - A2>
For the first term in the RHS of equation (3.162), in which we use (3.99) and (3.165), we
have

[t ai=sav e = [12 "o Gacosg - 9ds] U o) ds

_ i;/[/ooo (6%, (g,y)—ga;‘;)cosg(a:i—s)dg] U; ds

j
1 > ul
+ - E 9oz, cosg(w; —s)dg| Ujds
Vs - ; 0
5 M
sin gA
= 2 5 U / xy g y) go xy)

2A
T ((xz - xj)Q - AQ)

cos g(z; — ;) dg

ul § : .
- O-a:y UJ
J

which is the form of Z 0yli, j]U; and

. L[>, sin gA
whfindl = 2 [0 (0 — a0th) TS conglas - ay) do
2A
—_ a;;;

s ((xz — .Tj)Q — A2>
For the second term in the RHS of equation (3.162), in which we use (3.101) and (3.167),

we have
v vl
/ny (xl *S,y)V( ds = 2-— ZV / xy g y) g ry)

which is the form of Z o, li, j1V; and
J

sin gA

sin g(z; — x;) dg.

1

o > sin gA |
il = 22 [ (@ o) — g0

sin g(z; — x;) dg.

We write these integral equations (3.161) and (3.162) into the form of matrix equation

Tyi _ Ugy[iaﬂ U;jy[i?j] Uj (3 169)
T Ooylis 3] oy lis ] Vi
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where j =1,...,N.

We discretize the integral equations (5.82) and (3.164) assuming piecewise constant open-
ings along length L for upper, and lower crack faces and 3L for top and bottom boundaries.
We evaluate the integral equation at a discrete set of points x;,¢ = 1, ..., N for upper and
lower crack faces, and x;,7 = 1,...,3N for top and bottom boundaries. For the first term

in the RHS of equation (5.82), in which we use (3.100) and (3.166), we have
1 RN
/u“(mi—s,y)U(s)dS = // U“—u1u cosg(wi—s) dg U ds

+ // “cosg(x;—s) dgUds

A in gA
= = Z U; / U — ulu)smg cos (gz; — gxj) dg
T r 0 g

+ umZ/ lim/ e Wcosg(x; —s) dgUjds
4 0
J

jy—07
2 o in gA
= ZUj/ (" — ) PIZ cos (ga; — gaj) dg
7T ; 0 g

+ ulu Z Ujlxie(azij,xj+A)7
J

which is the form of Zu“ (4, j]U; and
J

o 2 [ . sin gA
u'li,j] = / U" —u') p cos (gr; — gx;) dg
0
+ ululmie(:vj—A,mj-i—A)'

For the second term in the RHS of equation (5.82), in which we use (3.102) and (3.168),

we have

1 RN
/u”(xi—s,y)V(s)ds = // U”—ulv sing(:ci—s) dgV ds

+ // Using (z; — s) dgV ds

N in gA
= = Z VJ/ U — uh’)smg sin (gx; — gz;) dg
™= 0 9

+ 1”2/ hm/ e Ysing (x; — s) dgVjds

y—0t
2 RN in gA
= ZVJ/ (07— u!) 2= sin (g — gay) dg
T 7 0 g
ulv z; —xi + A
el Vil J
+ T Z J o Z—J}j — A ’
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which is the form of Z u[i, j]V; and

BN o SingA
[i,j] = W/ (UY —u') sin (gz; — gx;) dg
0
n lel T —x;+ A
r;—x;— A

For the first term in the RHS of equation (3.164), in which we use (3.102) and (3.168),

we have

/v“(xi—s,y)U(s)ds - // smg( —s) dgU ds

+ // “sing (z; —s) dgU ds

N in gA
= - Z Ua‘/ (V* — o) 92 sin (ga; — gaj) dg
: 0

g
+ 1“2/2}2&/ e Wsing (x; —s) dgU; ds
~ s SingA |
= WZUj/ (Ve — ol gg sin (gx; — gx;) dg
—z;+A
- log v ) =
+ ZU pa—
which is the form of Zv”[i,j]Uj and
J
wre - 2 [ . uySIDgA
vili gl = 7T/O (V=o' , Snlgwi —gwy) dg
vl T; — iL‘j—f—A
+ —log|————
T .

For the second term in the RHS of equation (3.164), in which we use (3.100) and (3.166),

we have

1 RS
/U”(xi—s,y)V(s)ds = // V”—vlv cosg(xi—s) dgV ds

+ // Ycosg (x; —s) dgV ds

A in gA
= —E V]/ (V"—UU)Smg cos (gx; — gxj) dg
T i 0 g
1 . <
+ v /hm/ e Wcosg(x; —s) dgV;ds
> (2~ ) dgV;

2 . in gA
= = Z V]/ (Vv — Ulv)smg cos (gx; — gxj) dg
T Z 0 g

+ vl Z VjIxiE(mj—A,a:j—I—A)a
J
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which is the form of Zv”[i,j]Uj and
J

ore 2 [~ o SingA
v[i,j] = / (V¥ —o') cos (gz; — grj) dg
™ Jo g

1v
+ v Ixie(wij,xj+A) :

We write these integral equations (5.82) and (3.164) into the form of matrix equation

- | v ae (3.170)

3.4.7 Results

Assuming Ty, = 1072 and T}; = 0 in equation (3.169) we could solve U; and V;. When
U; and V; have been obtained, the displacements w; and v; in (3.170) for upper and lower
crack face, and for top and bottom boundaries are obtained as shown in Figure 3.4, 3.5
and 3.6. The crack is symmetric in Figure 3.4, since it is in the middle of the strip.
When the tear location moves towards to the boundary, the opening is not symmetric.
The upper tear face, that is closer to the boundary, becomes much higher and the lower
tear face changes less in 3.5 and 3.6. The reason is that the elastic material between the
top boundary and upper tear face is thinner, which makes it easier to change.

2d crack profile at v =0 and y. =0
2.0 : :

1.5 }

1.0

0.5

-0.5

-1.0

-1.5

-2.0 . .
-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0

Figure 3.4: Plot of crack profile in compressible 2d strip with T, = 1072, T,;, =0, v =0

and y. = 0.2.
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2d crack profile at v =0 and y. = 0.2
2.0 T T T T T

1.5 .

> 0.0
-0.5

-1.0

_20 1 1 1 1 1
-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0

Figure 3.5: Plot of crack profile in compressible 2d strip with T, = 1072, Tp; =0, v =0
and y. = 0.2.

2d crack profile at v =0 and y. = 0.6

3.0 + 4

2.0 |

0.0

-1.0

-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0

Figure 3.6: Plot of crack profile in compressible 2d strip with T;,, = 1072, T,;, =0, v =0
and y. = 0.2.
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3.5 Solution for 2D incompressible plane crack problem

Now we assume that the 2D strip is incompressible. The strain tensor is still the same as

equation (3.73). But the stress tensor changes to
o = Mr(e) I+ 2ue — pul = 2ue — pul (3.171)

due to incompressibility

tr(e) =V-u=0. (3.172)
Hence

Oz = H(2U —D), (3.173)

Opy = (U, +u,y), (3.174)

oyy = (20 —p). (3.175)

The equilibrium equations and incompressibility are
dive =0 and V-u=0, (3.176)

which are written into components

Ozzx + Oayy = 0, (3177)
Ozya + Oyyy = 0, (3.178)
Ug +0,y = 0. (3.179)

Put equations (3.173)-(3.175) in we obtain

Uyzy —Prx TUyy TV0zy = 0, (3180)
Uyzy F0s0z Ty =Py = 0, (3.181)
Uyy TV, = 0. (3.182)

The boundary conditions are the same as equations (3.81) and (3.82), and the jump

conditions are the same as equations (3.67) and (3.68).

3.5.1 Jump in v

Fourier transform for components of displacement and stress are same as (3.128) and

(3.129), besides we have one more term transformed

1 [ 1 [ . .
p(z,y) = / p(g,y) cosgxdg = / P’(g,y)cosgxdg and define PV =p.
T Jo T Jo

(3.183)
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Equilibrium equations and incompressible equation after Fourier transform are

NN . . N
() =26 (07) +a (P7) =0 (V) = 0
~ N\ ~ / N “ "
~(P) o () -t () +2 () = o
~ ~ /
g (U) n (V) — 0
N .
Replace (V“) = —gU" into these equilibrium equations we have
N ~ N/ ~
()" = ¢ <(vv> i pv) ,
N/ NN .
(#) = ()
Boundary conditions at y = +h are 6, = 0 and 67, = 0 which translate to
N
() -p = o,
R RN/
P2V (V“) ~ 0
The jump conditions across the crack at y = y. are
1+ L1+
o] =0 [ =1 ana [ep,]t = [en)t =0

Write into components
+

[(m)’]_o, v -, [(m)'_ﬁw}_o and [_gzm+(w)”]

3.5.2 Jump in u

72

(3.184)

(3.185)

(3.186)

(3.187)

(3.188)

(3.189)

Fourier transform for components of displacement and stress are same as (3.144) and

(3.145), besides we have one more term transformed

. [eS) 1 oo .
p(z,y) = 7ZT/0 p(g,y)singrdg = 77/0 P%(g,y)singxdg and define PV =ip.

Equilibrium equations and incompressible equation after Fourier transform are

) () () o) - o
(15“)/ +g (U“), + g2 (V“) +2 (V“)N _—
() + (") =0
Replace (Vu)' — gU™ into these equilibrium equations we have
) = () o)

g
() = ()

(3.190)

(3.191)

(3.192)

(3.193)
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Boundary conditions at y = +h are 6, = 0 and 6, = 0 which translate to
AN A
(V“) _pv = (3.194)
R R "
PVt (V“) - 0 (3.195)

The jump conditions across the crack at y = y. are
+ N R
o= =0 and [eg) = [on) =0 (3.196)

Write into components

~\T 1+ N . N
[(V“) } —g [V“} —0, [(V“) - Pu} —0 and [gQV“ n (V”) ] —0.
3.5.3 Numerical solution
Now we assume h = 1. We consider g = 0 separately, which will give singularity if we use
the following collocation method.
Collocation method

As shown in Figure 3.3, region 11is —1 <y < y. and region 2 is y. <y < 1.

d 1
In region 1, y = -1+ Y (y.+ 1) and ay = —_— e in region 2, y =1+ Y (y. — 1) and
d 1 d
dy = o idv The range of Y is [0, 1].

Jump in v

Define Yi,Ya, Y3, Yy to U, (UYY,V?, (V¥ respectively in region 1, and Yz, Ys, Y7, Yz to
Uv, (UvY,V?, (V¥ respectively in region 2.
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Referring to equations (3.185)

dy;

gg = Y,

% = ¢*(ye+1)°Y2 + ¢*(ye + 1)°Ya

% = y::il—gz(yﬁl)Yl

dy;

% = ¢*(ye — 1Yo + ¢*(ye — 1)°Y3

= - (3.197)

The boundary conditions (3.187) on outer and inner boundaries, and jump conditions

(3.189) on upper and lower crack faces are

PN £ =0
g g(yc+1)2
2V, _
vet1 4
1 Y7
Vs + = 0
9% g(yc_l)2
2Y.
6y, = 0
yc_1
Ys Ys _ 0

1 Y 1 Y3

s+ -———5 — (g1 + =0
Mt e T
2V 2Y,
—Ys — —Y, = 0. 3.198
2y (2w (3.198)

We use the Matlab routine ‘bvp4c’ to calculate the values of Y7, Y5, Ys, Yy, Y5, Ys, Y7, Vs,

hence U, V", 6y,,6,, are obtained.

Jump in u

Define Y7, Ys, Y3, Yy to U, (U¥), V%, (V%) respectively in region 1, and Yz, Yg, Y7, Yz to
U, (U™, Ve, (V¥) respectively in region 2.
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Referring to equations (3.192)

dy;

gg = Y,

% = ¢*(ye+1)°Y2 + ¢*(ye + 1)°Ya

% = y::il—gz(yﬁl)Yl

dy;

% = ¢*(ye — 1Yo + ¢*(ye — 1)°Y3

= - (3.199)

The boundary conditions (3.194) on outer and inner boundaries, and jump consitions

(3.196) on upper and lower crack faces are

WS £
g g(yc+1)2
2Y; _
yet1 4
1 Y
Yy 4 =0
9% g(yc_l)2
2Y;
6 Yy = 0
yc_1
Ys Yo _ 0
gye—1) gy +1)
Ys—Y, = 0
1 Y 1 Y
Vst -t (g1 +-—") = 0
T g e —1)2 G g(yc+1)2)
2Y; 2Y:
" _61—Y8—(y +21_Y4) = 0. (3.200)
C C

We use the Matlab routine ‘bvp4c’ to calculate the values of Y7, Y5, Ys, Yy, Y5, Ys, Y7, Vs,

hence U", V", 6y, , 0y, are obtained.

3.5.4 The case g =0

The calculation of U, V", 6y, .07, and U", V", 6,65, when g = 0 must be solved sepa-

rately.
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Jump in v when g =0

Equations (3.184) become
(U”)" —0, - (P“)' +2 (V”)" =0 and (f/”)' ~0. (3.201)
Hence the solution for U v, V¥ and PV are
U'=Ay+B, V'=C and P’=D. (3.202)

Put the solutions into the boundary conditions (3.187) and the jump conditions (3.189)

we get

1 1
A1:07 B1:07 Clz_ia D1:07 A2:O, B2:07 02:

= D=0
2 27 2 ’

where subscript ‘1’ means region one, and region subscript ‘2’ means region 2.

Hence the displacements on the upper crack face are UY=0and V¥ = %; the displacements

on the lower crack face are UY = 0 and V¥ = —%; the displacements on the top boundary
are UY = 0 and V¥ = %; the displacements on the bottom boundary are Uv = 0 and

v 1. v AV
V¥ = —3; on the crack face 6, =0 and 6, = 0.

Jump in v when g =0

Equations (3.191) become
N N/ RN/ N/
- (U“) —0, (P“) ) (V“) —0 and (V“) —0. (3.203)
Hence the solution for U* and V* are
U*=Ay+B, V*=C and P“=D

Put the solutions into the boundary conditions 3.194 and the jump conditions 3.196 we

get

where subscript ‘1’ means region one, and subscript ‘2’ means region 2.

Hence the displacements on the upper crack face are Uv = % and W% = 0; the dis-
placements on the lower crack face are Uv = —% and W = 0; the displacements on the

top boundary are Uv = % and W¥ = 0; the displacements on the bottom boundary are

v = f% and W* = 0; on the crack face Gyy = 0 and o3, = 0.
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3.5.5 Matrix equations and results

This part for the incompressible strip are same as the compressible one. Assuming T}, =
1072 and T}; = 0 in equation (3.169) we could solve U; and V;. When (U}, V;) have been
obtained, the displacements (u;,v;) in (3.170) for upper and lower crack face, and for top

and bottom boundaries are obtained as shown in Figure 3.7, 3.8 and 3.9. The Figure 3.7

2d crack profile at y. = 0.6 for incompressible material

3.0 T T

2.0 |

1.0 -

0.0

-1.0

-2.0 L L
-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0

Figure 3.7: Plot of crack profile in incompressible 2D strip with T}, = 1072, Tp,; = 0 and
Yo = 0.6.

shows that when the crack location is close to the top boundary, the upper crack face and
top boundary change significantly. In Figure 3.8 the crack location is in the middle of the
strip, and the boundary condition on eack boundary layer is same. Therefore the crack
is symmetric. The Figure 3.9 shows that when the crack location is close to the bottom
boundary, the lower crack face and bottom boundary change more significantly than the

upper crack face and top boundary.
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2d crack profile at y. = 0 for incompressible material
2.0 T T

1.5

1.0

0.5

-0.5

-1.0

-1.5 F

-2.0 L L
-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0

Figure 3.8: Plot of crack profile in incompressible 2D strip with T, = 1072, T,,; = 0 and
Y. = 0.6.

2d crack profile at y. = —0.6 for incompressible material

2-0 T T T T T

1.0

0.0

=
-1.0 -
-2.0 | -
_30 Il Il Il Il Il
-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0
T

Figure 3.9: Plot of crack profile in incompressible 2D strip with T;, = 1072, T,; = 0 and
Ye = 0.6.
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3.6 Comparison between compressible and incompressible

solutions

In compressible 2D strip when v = 0.5 the material is incompressible. Although we can
not make v = 0.5 exactly in the code due to singularity in numerical, v = 0.4999 is close
to the incompressible material. When v = 0.4999 we compare the results for compressible
and incompressible we find out they match well as shown in Figure 3.10 and 3.11, where

the difference is of the order 0.5 — v = 0.0001.

Difference of U for compressible and incompressible 2d strip at y. = 0

0.0001 T T T T T T
U for compressible 2d strip
5e-05 | .

Zz
=
e
=
3 0
=
Z
A

-5e-05 .

-0.0001 1 1 1 1 1 1 1

Figure 3.10: Difference of U for compressible and incompressible 2D strip, when the
stresses on crack face are T,, = 1072, T, = 0 at y. = 0. For incompressible one the

Poisson’s ratio is v = 0.4999
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Difference of V for compressible and incompressible 2d strip at y. = 0

0.0001 T T T T T T
U for compressible 2d strip
5e-05 -

=
=
[}
=
3 0 .
=
z
A

-5e-05 E

_00001 1 1 1 1 1 1 1

Figure 3.11:  Difference of V for compressible and incompressible 2d strip, when the
stresses on crack face are T,, = 1072, T,,; = 0 at y. = 0. For incompressible one the

Poisson’s ratio is v = 0.4999
3.7 Conclusions

In this chapter, we introduced the approaches to solve the linear elastic crack problem for
2D plane strain. Moreover, we solve the tear problems in compressible and incompressible
2D strips numerically, and the crack problem in infinite plane analytically. We will use
similar methods to solve the linear elastic crack problem in axisymmetric cylindrical tube

in next chapter, which is closer to our aim than the 2D crack problem.



Chapter 4

Static axisymmetric tears in
compressible and incompressible

linear elastic cylindrical annulus

Our aim in this chapter is to take one step closer to a model of a tear in the aorta. The
methods of Chapter 3 will be used in this chapter to analyse an axisymmetric crack in
a linearly elastic tube. We will show that the numerical method works well and use the

same approach in Chapter 5 to study a tear in the aorta.

4.1 Introduction-Method for axisymmetric crack problem

Now we consider an axisymmetric elastic tube with inner radius rj, and outer radius rgyt-
We assume the crack, which locates at r., is axisymmetric in the wall of the annulus as
shown in Figure 4.1. The coordinate system is (r,0,z) and the displacements in the
coordinate directions are (u,v,w). The components of the Cauchy stress are oy, 0gg, 0y
and o0,,. Due to the axisymmetric crack we don’t consider the circumferential displacement

v. The jump conditions at r = r. are

(W]t =6(z), [w]t =0,[on]= =0,[0n:]7 =0 for jump in u (4.1)

[u] " =0, [w]t =8(2), [o/]T =0,[0,,]T =0 for jump in w (4.2)

81
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jump in u /K jump in w

region 2 region 2
r="7. L
region 1 ;/ region 1

" =Tin

Figure 4.1: Displacement is decomposed into normal and tangential directions.

with boundary condition and equilibrium equation

o-n = 0 at r=ry; and r=r;, (4.3)

dive = 0 (4.4)

where u is the displacement in radial direction, w is the displacement in axial direction,
and n is the normal to the boundary.

Following are the details of the methods to solve the equilibrium equations with boundary
and jump conditions. The strain tensor € and stress tensor o are functions of displacements
u¥, w" or u",w". Write the equilibrium equations dive = 0 in components to obtain
2 partial differential equations with variables u", w" or u",w"; secondly, we take the
Fourier transform to change these PDE to ODE with the wave number g, and the variables
are u%, w" or 4%, w"; thirdly, we solve these ODEs with boundary conditions and jump
conditions by using analytical way or numerical way; finally, taking the inverse Fourier

transform we obtain the solution for PDEs. The stress components are the functions of

u

g and

displacements u", w" or u",w", hence when u*, w* and u"*,w" are solved o, o
u

UTZ’

o will be calculated.

u
rro

u
rZ)

ut, w

By solving these equations for ‘jump in v’ we get o¥., o , and solving them for

w w w

w
Tr) UTZ7 U

‘jump in w’ we obtain o , w.

Similar as last chapter we define T = (7,,T,) as the traction on the crack, which is
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decomposed into normal and tangential direction,

T, = /aﬁT (z—s,m)U (s)ds + /U}fi, (z — s, )W (s) ds, (4.5)
T, = /Uﬁz (z—s,m)U (s)ds + /U;"Z (z —s,7)W (s)ds. (4.6)

The displacement is decomposed into normal and tangential direction as

/u z—s,m)U(s)ds + /uw(z —s,r)W(s)ds, (4.7)
/w YU(s)ds +/ Y(z —s,r)W(s)ds. (4.8)

Hence if the traction (7),7T,) along the crack is given, the displacement (u,w) will be
obtained. We use this method to calculate the displacements for the upper crack face,
lower crack face, outer boundary and inner boundary. Then we plot them on one figure

to get the crack profile.

4.2 Static tears for an axisymmetric crack problem in a lin-

ear compressible cylindrical tube

The strain tensor is

) +w7
u77. O z 2 T
U
€= 0 - 0 : (4.9)
r
U,, +W,
z 2 T O w7z
And the stress tensor is
(A +20) wy +A ( +waz> 0 1 (e +0, )
o= 0 ()\+2,u)%—|—)\(u,r+w,z) 0
U
p(Uyz +w,y ) 0 A+ 2p) w,, +A (u,r+;>
Define the Poisson’s ratio
A
V= — (4.11)

4.10)
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so that A =2uv/ (1 — 2v).

2 U
Orr = ()‘_'_2#)“?7"_")‘( +waz) = 1_M2l/ |:(1_1/)UW+V (;‘Fw,z)}
U’)Z +w77"
Orz = 20——F7—
2
U 2 U
ogg = (A+2p) ~ AUy +w,, ) = . f;y {(1 —v) — v (u,r +w,, )}
_ u7Z +w77”
Oy = 2u————
2
U 2 U
0o = (A4 2u)w,s A (; n u,r> = _“21/ [(1 — V) w4 (; +u, )} (4.12)

The equilibrium for Cauchy stress is (4.4) and the boundary conditions (4.3) are

o =0 and o,., =0 atr=ry,

o =0 and o,, =0 atr=rout.

The jump conditions on the crack faces are (4.1) and (4.2).

4.2.1 Jump in w across the crack

The symmetry of the problem gives u(r, —z) = —u(r, z), hence the Fourier and inverse

transformation for the displacement u are

u(r,z) = ) sin gzdg. (4.14)

u(g,r) = 22/ u(r, z) sin gzdz, (4.13)

>w~

Since w(—r, z) = w(r, z) the Fourier and inverse transformation for displacement w are

w(g,r) = Flw] = Q/Omw(r, z) cos gzdz, (4.15)
w(r,z) = F. '] = 711_/00071)(9,7“) cos gzdg. (4.16)

The stress o, is given by

2 U
Opp = 1_,u21/ {(1 — V) Uy FV (;—i—w,z)} , (4.17)
where
I e I e
Uy (T, 2) / Uy (g,7)singzdg, u(r,z) = / (g, r)sin gzdg, (4.18)
™ Jo ™ Jo
1 oo
w,, (r,z) = / r)gsin gzdg. (4.19)
T Jo
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Hence
2p 1 i it \] .
rr = - 1-— oy —
o. T—ovn /0 [( V) ity +v < g } sin gzdg

2 1 o .

= 1 MQVT{'/O |:(1 - V) ZF[UH”] +v (Z].;[u} + ZI[U),Z]>:| Singzdg

= Z/ Florr]singzdg = Z/ Grr(g,7)sin gzdg. (4.20)

T Jo T Jo

Using the symmetry of the domain in z, we express the displacements and the stresses as

i [ ) 1 [ .
u(r,z)zﬂ/o u(g,r)smgzdg:ﬁ/o UY (g,7)singzdg,
1 [°° 1 [ ..
w(r,z) = 7T/0 w(g,r)cosgzdg = 7T/0 WY (g,7)cos gz dg,
L aysingedg = L [0 (g rysinged
Oy (1,2) = A (9,7)singzdg = A (g,7)singzdg,
1 [°° . 1 [°°
7rsr2) = 2 [ o g cosgzg = — [ a2 g cosgz .
i [ ) 1 [, )
700 (r.2) = = [ (a.r)singzdg =~ [ ol (0.7) s gz,
1 [°°. 1 [°°.
7o (r2) = = [T (gr)eosgzdg = = [ % (gur) conge da.
N oo 1 oo
Ozz (Ta Z) = :['/ OA'zz (9,7") Sing'ng = 77'/ 5’;”2 (g,r) Sing'ngv (421)
0 0

Tw o g W AW A AW A AW P TINN AW g
U* =iu, WY =w, 0. =10, 0., =0, 0py=10¢9, 0, = Ozp, 0., =10,,.

(4.22)

The stress components (4.12) after Fourier transform are
F [g;r,r] = j2y [(1 — V) Fltyr] + v <f[:f”"] - ji[f] - f[w,rz]ﬂ : (4.23)
Ao L (Flud + Flu), (1.21)
ﬂ‘z’ﬂ] = & (Fluer] + Flurs]), (4.25)
Aol 2l sy ew (P24 7). (4.26)

Write the equilibrium equation (4.4) into components

Florrs] + Flos.] + Flow] = Flool _ (4.27)
Flover) + Flowas] + T2 o, (4.28)
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Replace them in terms of U® and Wv

R /
N " (Uw) . ﬁ’w “ /
2(1 - v) (Uw) +2(1-v) —g2(1—2u)U“’—2(1—y)—Z—g<Ww> —0,
r r
R /
ww Tw
YIS Ui N
(1= 20) (W) + (1= 20) - —2(1—v) W —{—g(U)—}—gr —0.
The boundary conditions (4.3) translate to
R / [jw R /
(1-v) (U“’) +v|——gW¥ ]| =0 and gU"+ (W“’) =0. (4.29)
r
The jump conditions (4.1) and (4.2) are
A1+ A +
[Uﬂ —0, [Ww] -1,  [pe]f =64t =o. (4.30)
4.2.2 Jump in u across the crack
Symmetry of the problem gives w(—r, z) = —w(r, 2), hence the Fourier and inverse trans-
formation for the displacement w are
w(g,r) = Fsw]= —22'/ w(r, z) sin gzdz, (4.31)
0
w(r,z) = F; '] = Z/ w(g,r)sin gzdg. (4.32)
T Jo
Since u(—r, z) = u(r, z) the Fourier and inverse transformation for the displacement u are
u(g,r) = Felu] = 2/ u(r, z) cos gzdz, (4.33)
0
1 o0
u(r,z) = F.la] = / u(g,r) cos gzdg. (4.34)
T Jo
The stress o, is
2u U
O = T o0 [(1 — V) Uy +V (; + w,z>] ) (4.35)
where
1 [, 1 />,
Uy (1,2) = / Uy (g,7) cos gzdg, u(r,z) = / u(g,r)cos gzdg, (4.36)
T Jo T Jo
w,, (r,z) = Z/ w(g,r)g cos gzdg. (4.37)
T Jo
Hence
2 1 [ U
O = 7 —MQU; /0 [(1 — V) Uy v (1; + zgﬁ;)] cos gzdg (4.38)
2 1 [
1 _'L;VW/O [(1 —v) Fluy |+ v (fiu] + Flw,, ])} cosgzdg  (4.39)

1 [ L[
= / Floyr] cos gzdg = / Oy COS g2dg. (4.40)
™ Jo 0

s
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Using the symmetry of the domain in z, we express the displacements and the stresses as

1 [ 1 [ .
u(r,z)zﬂ/ ﬂ(g,r)cosgzdgzﬁ/ U“(g,7)cosgzdg,
s L
w(r,z) = 7r/ w(g,r)singzdg = 7r/ W*(g,r)singz dg,
1 OOO 10 ©
Oy (1, 2) = W/ Grr (g,7) cOs gz dg = 7T/ gy (g,r)cos gz dg,
i o 1 o
ory (1, 2) = 7r/ Orz(g,7)singzdg = 7r/ a7, (g,7)singz dg,
1 OOO 1 Ooo
o (r,z) = 7r/ G600 (97T)C0592dg: 7r/ &ga (97T)C0592d97
) OOO 1 OOO
O (1,2) = ﬂ/ G (g,7)singzdg = ﬂ/ G2.(g,7)singz dg,
e e
04, (ry2) = 7T/0 G2z (g,7) cosgzdg = 7T/0 7y, (g,7)cosgzdyg, (4.41)

where we define

A~ A

U=a, W"=iw, &, =0br, 0y, =Ii0r:, Ogg= 000, Osp =102, Ouy =0z
(4.42)
The stress components (4.12) after Fourier transform are
Florry] 1 Fluy|  Flu)
= = 1-— - — 4.4
2 5y [( V) Fluyr] +v ( . 2 + Flwyz] || s (4.43)
Flow:] 1
— = = zZZ irzl) 444
Florzr] 1
— 0 = zr i)y 44
el L (Flua] + ) (4.45)
Flozz,] 1 Flu,.]
— = 1- 2z "z ) 4.4
2 5y {( v) Flw, ]—l—l/( . + Fluy] (4.46)
and the equilibrium equation (4.4) written into components are
Flow] — F
Florry] + Flozr:] + (42 " looo] _ 0, (4.47)
‘F Tz
F[O”rz,r] +F[Uzz,z] + [U ] =0. (448)

These equations in terms of U* and W* are
R /
2(1—v) (U“)”+2(1—l/)(UT>—g2(1—2V)U“—2(1—1/)T-i-g(W“)/:O,
T ! ~
(1—2v) (W“)H +(1-2v) @ —2(1—-v)g* W —yg (U“)l — g? =0.

r

The boundary conditions (4.3) translate to

A

1-v) (U“)I y (T + gW“) —0 and gU"— (W“)I =0 (4.49)
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The jump conditions (4.1) and (4.2) are
o1+ o1t
[Uﬂ — 1, [Wu] -0, [6“]F =[6-]" =o0. (4.50)

4.2.3 Numerical solution—Collocation method

In this section we are going to solve UV, W* U W*" and 6.,6%,,6%., 0%

v, om, ok, or, numerically.

Now we assume 7, = 1,75, = 3. We consider g = 0 separately, which will give singularity
if we use the following collocation method.

As shown in Figure 4.1, region 11is r;, < r < r. and region 2 is r. < r < roys.

d 1 d
In region 1, r = 7, + R(re — 7ip) and = mﬁ, in region 2, 1 = rous + R(1c — Tout)
d 1
and — = ——————. Therange of R is [0, 1]. The boundary in each region is represented

d Te — Tout AR
by R =0, and R = 1 represents the crack face.

Jump in w

Define Y1, Ya, Y3, Yy to be U®, (U™, W¥, (W) respectively in region 1, and Yz, Yg, Y7, Ya
to be U™, (™)', W™, (W™)' respectively in region 2. Referring to the equilibrium equa-
tions (4.29)

dYi

haball S ¥

dR 2

o (re—rm)Ys  gP(re—rin) (1 =2)V1 | (re—rin)* Vi | g(re—7in) Va
dR | 2(1 —v) r? 2(1 —v)

dYs

273y,

dR 4

% _ (TC - Tin) Yy 4 2(1 - V) (Tc - rin)Q 92Y3 . g (Tc - Tin) Y . g (Tc - Tin)Z Y1
dR T (1-2v) 1—2v (1-2v)r

dYs

25y

dR 0

% _ (Tc - Tout) YES + 92 (Tc - Tout)g (1 - 27/) Y:LS + (rc - Tout)z YE) + g (Tc - Tout) Yé
dR 9 2(1—-v) 73 2(1—-v)
dYr

22Ty

dR ®

d1/8 _ (Tc - 7aout) 1/8 + 2(1 - V) (Tc - Tout)z 92Y7 . g (Tc - Tout) Y%i . g (TC - Tout)2 Ys

dR T (1—2v) 1-2v (1—2v)ry



CHAPTER 4. AXISYMMETRIC TEARS 89

The boundary conditions (4.29) on outer and inner boundaries, and jump conditions (4.30)

on upper and lower crack faces are

Y;
(1-v)Ys +v(re —rin) <'1—ng> =0
m
gyi(rc_rin)+yzl:0
Y:
(1—1/)Y6—|—I/(T'C—Tout)< 5 —gY7> =0
Tout

gYs (Tc_rout)“‘yé =0

Y5 —Y1=0

Yo —Y3—1=0
Y- Y;

(1=v)Ys+v(re — rout) (r > —gY7> — [(1—1/)Y2—|—V(rc—rm) <T1—gY3)] =0
out m

gYS (rc - rout) +Ys — [ng (rc - Tin) + Y4] =0.

We use the Matlab routine ‘bvp4c’ to calculate the values of Y7, Ys, Y3, Yy, Y5, Yg, Y7, Y,

hence UY, W* are obtained and &,.., 5,", are functions of U*, W*".

Jump in u

Define Y7, Ys, Y, Yy to be U, (%), W™, (W) respectively in region 1, and Yz, Yg, Y7, Ya
to be U, (U)W, (W) respectively in region 2. Referring to the equilibrium equations
(4.49)

dYi

2y

dR 2

o (re—rm)Ys  g(re—rin) (1=2)V1 | (re—rin)* Vi g(re—7in) Va
dR T 2(1 —v) r? 2(1 —v)

dYs

3y,

dR *

% _ (TC - Tin) Yy 4 2(1 - V) (Tc - rin)Q 92Y3 + g (Tc - Tz'n) Y + g (rc - Tin)z Y1
dR T (1-2v) 1—2v (1-2v)r

dYs

25y

dR 0

% _ (rc - Tout) Ys 92 (rc - rout)2 (1 - 27/) Y5 (rc - Tout)2 Ys 9 (7“0 - rout) Yy
dR 9 21 —v) 73 2(1—-v)
dYs

2Ty

dR ®

d}/S (Tc - 7nout) Yg 2(1 - V) (Tc - Tout)2 92Y7 g (Tc - Tout) Ys g (TC - Tout)2 Ys

drR + (1—2v) T (1—2v)7s
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The boundary conditions (4.49) on outer and inner boundaries, and jump conditions (4.50)
on upper and lower crack faces are

Y]
(I—=v)Yo+v(re —rin) <1 —|—ng> =0

wm

gY1 (re —1in) — Y1 =0

Y:
(1_V)Y6+V(rc_rout)< 5 +gY7> =0

Tout

ng (Tc _rout) - }/8 =0

Ys—Yi—1=0

Y7 -Y3=0
Y- Y;

(1—=v)Ys+v(re —Tout) (r > +gY7> — [(1—1/)Y2+V(rc—rm) <1+gY3)] =0
out m

_93/5 (Tc - Tout) + Yé - [—gY1 (Tc - Tin) + Y4] =0.

We use the Matlab routine ‘bvp4c’ to calculate the values of Y7, Ys, Ys, Yy, Y5, Y, Y7, Y,

hence U", W" are obtained, and 6}, 6}, are functions of U*, W".

4.2.4 The case when g =0

The calculation of U w, Ww, oy, 0w and U w W“, oy, 0r, when g = 0 must be solved sep-

arately.

Jump in w when g =0

Equations (4.29) become

2(1—v) (U’w)" +2(1-v) (Uw) —2(1-v) Z;U —0, (4.51)
(1—20) (WW)" (1) (W;> ~0. (4.52)

Hence the solution for U* and W are
N B o
UY=Ar+ —, and WY =Clog(r)+ D.
r

Put the solutions into the boundary conditions (4.29) on inner and outer layers and the
jump conditions (4.30) we get

1 1
Ar=0, B1=0, C;=0, D1=—§, A =0, By=0, Cy=0, D2=§,

where subscript ‘1’ means region ‘1’, and subscript ‘1’ means region ‘2’.

Hence the displacements on the upper crack face are U=0and W = %; the displacements
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on the lower crack face are U = 0 and W = —%; the displacements on the outside boundary
are U =0 and W = %; the displacements on the inside boundary are U=0and W = —%;
on the crack face 6, = 0 and 6,, = 0.
Jump in v when g =0
Equations (4.49) become
(o)
~ " U
2(1— v 2(1 - —2(1-v)— =0 4.53
A=) (0") +20-v)"—+-20-v) 5 =0, (453
. /
()
(1—2v) (W“) +(1—20) 2~ =0, (4.54)

Hence the solution for U* and W* are

i =

A

W =

Ar + E,
,
C'log(r) +

D.

Put the solutions into the boundary conditions (4.49) on inner and outer layers and the

jump conditions (4.50) we get

1(r2, —r2)(=1+2 1 2 (12, — 12

Al - _ - (Toth Tzn)z( + V), B1 _ 7; (Toth Tc) ’ Cl — 0’ D1 =0,
2 Tc(rout - Tin)<y - 1) 2 Tc(rout - Tin)(y - 1)
1(r2, —r2)(-1+42 L r2,(r, —r?

A2 = (ran TC)(Q + V) ’ B2 P 20ut(rm2 rc) ’ 02 — 0’ D2 =0
2 Tc(rout - Tin)(y - 1) 2 T‘C(rout - Tin)(y - 1)

Hence the displacements on the upper crack face are

U:}(T%”L—Tz)(rg_Qrgy—’_rgut) W:O (4 55)
2 2y —rp)v—1) 7 ,
the displacements on the lower crack face are
U: l(rgut—rz)(rg—%zl/—l—r?n) W:O (456)
2 2y - =1 ’
the displacements on the outside boundary are
2 _ .2 A
U:_%—W, W =0, (4.57)
(Tout - Tin)TC
the displacements on the inside boundary are
2 2\ .
U=— (rgut ch)Tzn7 W = 07 (4.58)
(Tout o Tin)’rc
on the crack face
1 <T(2)ut — T?)(Tg — T?n)(l — 21/)’ 6_7'2 — O (459)

o 2, — ) (v — 1)

out
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4.2.5 Matrix equations

We obtain ﬁw(g,r),Ww(g,r), U“(g,r),W“(g,r) and 6.(g,7),0%(g,7),6%.(g,7),0%(g,7)
for each g from above numerical approach. Now we assume the length of the crack is L,
and the length of the strip is 3L. The traction and displacement components, decomposed

into normal and tangential direction, are

T, = /a}fr (zi — s,m)U (s)ds + /U}f;, (z; — s,7)W (s) ds, (4.60)
T, = /U}fz (zi —s,m)U (s)ds + /Uﬁ’z (zi — s,m)W (s) ds. (4.61)
u = /u“(zZ —s,m)U(s)ds + /uw(zz —s,7)W(s)ds (4.62)

w = /w“(zi —s,m)U(s)ds + /ww(zi —s,m)W(s)ds (4.63)

We discretize the integral equations (4.60) and (4.61) assuming piecewise constant openings
along a crack of length L. We evaluate the integral equation at a discrete set of points
zi,i=1,...,N.

For the second term in the RHS of equation (4.60) we have

/aﬂ(zi—s,r)W(s)dS = /[1/0006;1; (g,r)sing(zi—s)dg] W (s) ds
_ iZ/j:/Om6ﬂ(g,r)sing(zi—s)dg] W; ds

/ (675 (g,7) — goyst — o) sing (zi — s) dg} W, ds
j LJO

+ +
= |
o\..

3

ﬁqg
=

@

=
N
0

|
=

o8
Iil
=

QL

2

where

5y |15t (g.7) = goist = $0)sing (=i — 5) dg| W ds

=W, fooo(‘}%« —gop! — o) [f] sing (z; — s) ds} dg

and

sing(z; — 2;),

S—
w0
@,
=]
S

~—~
N
|
Va)
N~—
QL
Vo)
|

——
w0
@,
=
=)
—~
w
N

|
Vo)
SN—
QL
|
X
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in which A = £. Then using equation (3.101) we have

1

00 O.wl o]
/ gollsing (z; — s)dg = " lim ge 9sing (z; —s)dg = o¥Ld (2 — s),
™ Jo T r—=0t Jo

and using equation (3.102) we have
w0

1 00 O.w() 00
/ osing (z — s) dg = 22 | 9 sing (2 —s)dg = 7T,
0

T T r—=0t Jo

Then using (3.167) and (3.168)

A
oy (zi —s,m)W (s)ds = 2 W; (g,7) — golt — 0¥ sing sing(z; — z;) dg
T rr rT rr q J

A
ZW 10| ZJ+ o~

which is the form of Z oty j]W; and
J

o 1 [>,. sin gA ol zi + A
ollij)=2= [ (6% (g.7) — golt — o) T
TJo g zi—zj— A

sin g(z;—2;) dg+o’— log ]

For the first term in the RHS of equation (4.60), in which we use (3.99), (3.100), (3.165)
and (3.166), we have

/a}fr (zi— 5,)U (s)ds — /Llr /OOO&;; (g,r)cosg(zi—s)dg] U (s) ds
VAT
+ i;/j;/ﬂwgafﬂcosg(zi—s)dg] Ujds
<l

sin gA
= 2130 [T o) o) AR ot 5

5 (9,1) — got — 029 cos g ( — ) dg| U ds

o cos g (z — s) dg] Ujds

2A
_ gul U.
Orr Z J - ((Zz B zj)2 _ Ag)
+ ZU =Dz +A)s

which is the form of Z o i, jlU; and

. 1 [ . sin gA
wilid) = 20 [ (ko) - gt = ot) TS cong( ) do
ul 2A

+O- Izle(z] —A,z;j+A):
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For the second term in the RHS of equation (4.61), in which we use (3.99), (3.100), (3.165)
and (3.166), we have

[otstmsow @ = [[L [ ot anomg o] we a

-2/l
A
[ o]
— 2l ZW/ 52 (g,r) — ottt — gor?)

v (g,r) — ga}f;l wo) cosg(z—s)dg| Wjds

o cos g (2 — ) dg] W;ds

oo
(
oo
g
oo

sin gA

cos g(z; — z;) dg
2A
-y,
i m ((zz‘ — ) - AQ)
+ o Z Wil.e(zj—n.z+0)
J

which is the form of Z o1t jJW; and

. 1 [ . sin gA
wlid) = 2 [ (62 () = g0t = gor) TI cosg(e —55) dy

T ((zl —2j)? — AQ)

wO
+ Op; Izl €(zj—Azj+A)-

For the first term in the RHS of of equation (4.61), in which we use (3.101), (3.102), (3.167)
and (3.168), we have

in gA
[otte-snusas = 22 ZU / o)~ g0 = o1) S0 g 2 dg

A
+ O‘TzZU 10| zj+ |

which is the form of Z o, li, jJU; and
J

o 1 [, . sin gA |
wlidl = 27 [ (Ot lan) 90" - o) T sin (s - 2 dy

1 Z‘—Z‘—I-A
u0 ? J
+ oY —log|———|.
rz g|zi zj 2‘
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We write these integral equations (4.60) and (4.61) into the form of matrix equation

Toy | _ | otlicd] omliid] Uj (4.64)
TZ] O-rz[iuj] U%[Z’]] Wj

where j =1,...,N.

We discretize the integral equations (4.62) and (4.63) assuming piecewise constant open-
ings along length L for upper, and lower crack faces and 3L for top and bottom boundaries.
We evaluate the integral equation at a discrete set of points z;,¢ = 1,..., N for upper and

lower crack faces, and z;,7 = 1, ..., 3N for top and bottom boundaries.

For the first term in the RHS of equation (4.62), in which we use (3.100) and (3.166),

we have

1 RERVEN
/u“(zl- —s,r)U(s)ds = // (U“ - ulu) cosg(zi—s) dgUds
T 0
+ 1// utcosg(z —s) dgU ds
T 0

2 o in gA
= ZUJ'/ (0" — ) ZIZ cos (g2 — g2;) dg
T ; 0 g

+ UIUZ/ lim/o e 9" cosg(z —s)dgU;ds

j r—0t

j
2 R in gA
= = E Uj/ (U“—ulu)smg cos (9z; — gz;) dg
T ; 0 g

+ oult Z Ujleic(zj—0,2+2)
J

which is the form of Zu“ (4, j]U; and
J

wre - 2 [ .. u Sin gA
u"li, j] = /O (0" —u') g cos (gz; — gz;) dg

s

lu
+ u Izie(ijA,Zj+A) :
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For the first term in the RHS of equation (4.62), in which we use (3.102) and (3.168), we

have

/uw(zi—s,r)W(s)ds - // Uw Slng( — ) dgW ds

+ // Ysing (z; —s) dgWds

N in g/
= ZW]/ (Uw—ulw)%sin(gzi—gzj)dg
™ - 0

g
1w _ .
+ Z/rl_lgl+/ Ising (z; — s) dgW; ds
N in g/
= ZWJ‘/ (T — u)I2 sin (g2; — g27) dg
T 4 g
—zi+ A
— > Wl J
+ Z og S A‘
which is the form of Zuw (4, j]W; and
J
wie - 2 [ ws SIDGA |
uli,jl= = / (UY —ut?) sin (gz; — gz;) dg
T Jo [
+ ZLliwlo G I e +A
™ & Zi — 25 — A

For the first term in the RHS of equation (4.63), in which we use (3.102) and (3.168), we

have

/w“(zi—s,r)U(s)ds = 1// W“—wh‘ sing(zi—s) dg U ds

+ // Ysing (z; — s) dgU ds

in gA
= = Z U; / (W — wlu)smg sin (gz; — gz;) dg
T 7 0 g

w —
— U;l
to L Uit

which is the form of Zw“[i,j]Uj and
J

2 [ . in gA
w'li, j] = 71'/0 (we —wlu)smgg sin (gz; — gz;) dg
1lu
zi— 2+ A
1 .
+ s 8 Zp T 2§ — A’
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For the first term in the RHS of equation (4.63), in which we use (3.100) and (3.166), we

have
1 .
/ww(zi —s,m)W(s)ds = // W“’ - wlw) cosg(z; —s) dgWds

+ // Ycosg(zi —s) dgW ds

“ i A
= *ZWJ» | ) I cos gz g25) dg
T = 0

9

+ WZ/ hm/ I cosg(z —s) dgWjds

r—0t

« in gA
= ZWJ/ (W — ) 22 cos (g2 — g2) dg
T ; 0 g

+ wlw Z Wj'[Z,‘E(Zj*A,Zj#»A)
J

which is the form of Z w*[i, j]W; and
J

. 2 [ we SN gA
wi,jl= = /0 (WY —w'™) gg cos (g2 — gz;) dg

+ WLz a40)-

We write these integral equations (4.62) and (4.63) into the form of matrix equation

4.2.6 Results

Assuming T;; = 107! and T,; = 0 in equation (5.84) we could solve U; and W;. When
U; and V; have been obtained, the displacements u; and w; in (5.85) for upper and lower
crack face, and for top and bottom boundaries are obtained as shown in Figure 4.2, 4.3
and 4.4.

In Figure 4.3 although the tear is in the middle of the wall, the displacement is not
symmetric due to the pressure on the inner boundary and outer boundary not same. In
Figure 4.2 the tear location is close to the inner boundary. That the elastic material be-
tween the inner boundary and the crack face is thinner than it between the outer boundary
and the crack leads to more change on the inner face. We can see that the introduction of a
tear in the elastic tube has led to a narrowing of the interior. This could have physiological

implications for fluid inside the wall. Comparing Figure 4.3 and Figure 4.4 we find the
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crack profile at r. = 1.5 and v = 0 for axisymmetric compressible tube

4.0
3.0
2.0
1.0
w 0.0
-1.0
-2.0
-3.0

-4.0

-6.0

o
T
-4.0 -2.0 0.0 2.0 4.0
T

98

Figure 4.2: Plot of crack profile for compressible axisymmetric elastic tube with 7}.; = 1071,

T,; =0, Poisson’s ratio v =0, 7, = 1, 7ot = 3 and 7. = 1.5.
1 9y

4.0
3.0
2.0
1.0
® 0.0
-1.0
-2.0
-3.0
-4.0

-6.0

crack profile at r. = 2 and v = 0 for axisymmetric compressible tube

-4.0 -2.0 0.0 2.0 4.0
T

Figure 4.3: Plot of crack profile for compressible axisymmetric elastic tube with 7,.; = 1071,

T.; = 0, Poisson’s ratio v =0, 74, = 1, 700t = 3 and r. = 1.5.

opening of the tear is wider in the latter, since the pressure on the outer boundary is set

as zero, and is non-zero on inner boundary.
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crack profile at r. = 2.5 and v = 0 for axisymmetric compressible tube

4.0 .

3.0
2.0
1.0
w 0.0

-1.0
-2.0

a

-4.0 1

-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0

Figure 4.4: Plot of crack profile for compressible axisymmetric elastic tube with 7}.; = 1071,

T.; =0, Poisson’s ratio v =0, ry, = 1, 7oy = 3 and 7. = 1.5.

4.3 Static tears for axisymmetric crack problem in an in-

compressible linear elastic annulus

Now we assume the elastic tube is incompressible. The strain tensor is still the same as

(4.9). But the stress tensor changes to

o = Mr(e)I+2ue — upl (4.66)
= 2ue — upl (4.67)
due to incompressibility tr () = V-u = 0.
Hence

22Uy —p 0 U,z +W,y
o=pu 0 2% —p 0 . (4.68)
U,y W,y 0 2w,, —p

Write the equilibrium equations dive = 0 and incompressibility into components

0oy . 0o, 1

87" 825 + ; (UTT - 009) = 07 (469)
0oy, 0oy 1 B

B 5, + SOz = 0, (4.70)

1o(rw)  ow (4.71)
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Equations (4.69) and (4.70) become

2 U
2u77’r —Dsr TUszz FW,py +; <u77" _;) = 07 (472)

2
Uyzr +W,pr +2W,5, =D, +; (uyz +w,, ) = 0. (473)

4.3.1 Jump in w

Fourier transform for components of displacement and stress are the same as (4.21) and

(4.22), moreover, we have one more term transformed

. oo 1 [e.e] R
p(r,z) = Z/ p(g,r)singzdg = / PY(g,r)singzdg and define PY =ip.
0 T Jo

™

(4.74)
Equilibrium equations and incompressible equation after Fourier transform are
N " 2 /o~ / ~ 2 . A / N /
2(00) 42 (0v) =20 - S0 —g (W) — (PY) = 0. (A7)
R /
~ " <Ww> ~ ~ / g ~ ~
()" + A = 2ghe g (00) 4 20w - g (PY) = 0, (7)
1(ov . -
- ( +U“’> -Wwv = 0. (4.77)
g\ r

([7”),// = -2 (U:)) + (T:) _ (Z:}) e (U;U) + g2 <]5w> + g2 <Uw),(4.78)

(PW)/ - (U’“)” + (U:}> - <92 + 1) v (4.79)

to
~ / ~
Q(Uw) —pv = (4.80)
N/
/\w Uw
. 1 1 1 R "
w_,UT ()+<Uw) — (4.81)
gr? g r g

The jump conditions at r = r. are

v =0, ] =1 mt=len) =0 (4.82)
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4.3.2 Jump in u

Fourier transform for components of displacement and stress are the same as (4.41) and

(4.42), besides we have one more term transformed

0o 1 0 N
p(r,z) = / p(g,r)cosgzdg = / P%(g,r)cosgzdg and define P"=7p (4.83)
0 T Jo

s

Equilibrium equations and incompressible equation after Fourier transform are

2 (U“)" + % (U“)' — U - %f]u tg (W“)l - (P“)' _— (4.84)
R /
()" + <W) —2gr g (00) - L0 g (BY) = 0, (4.85)
e +U“> +W* = 0. (4.86)
g T

Replace W = —é <Tu + ([A]“)/)’ (Wu>/ — _é

R " R " w\’ ) ru
(W“) = _é ((U“) + @) 2(UT ) + 2(2{3)) into these equilibrium equations.

A G 1 o G B o By S s

r 72 r3 r

) - oy

The boundary conditions at r = r;, and r = ryy are 6=, = 0 and 6, = 0, which translate

>
~—
|
N
s
©)
4

1 N
r2> U (4.88)

to
~ / A
2 (U“) _pu = (4.89)
N/
. 10* 1 u 1 /. \"
u_ii2 (>_|_ (U“) = 0. (4.90)
gr g T g

The jump conditions at r = r. are

[U“E —1, [Wu]f —0,  [6h]F = [6%]F =o. (4.91)

4.3.3 Numerical solution—Collocation method

In this section we are going to solve U™, W* U", W*" and &y,,05,,0,,,0;

vy Oy zy Dumerically.

Now we assume 75, = 1,75, = 3,7. = 2. We consider g = 0 separately, which will give
singularity if we use the following collocation method.

As shown in Figure 4.1, region 1 is r;; < r < 7. and region 2 is 7. < 7 < 75y In
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d 1 d
region 1, 7 = ry, + R(re — riy) and pil— R in region 2, r = rout + R(7c — Tout)
d 1 d
and — = ——————. The range of R is [0,1]. The boundary layer in each region is

d Te — Tout AR’
represented by R = 0, and R = 1 represents the crack face.

Jump in w

Define Y3, Y, Y3, Yy to be UY, (U“’)’, W, (W“’)’ respectively in region 1, and Y5, g, Y7, Y
to be U w, ([7 Wy, VV“’, (W“’)’ respectively in region 2. Referring to the equilibrium equa-
tions (4.75)

dY;

T - et Bl ey
B Yi (7’071:13 Tin) +gQY1 (TCTZ rin)3+92}q(r8—rin)3

dYs

gé’ = Y

e = Y

- el X (rcéwp et (rc—routf—w
+ 2Y2(TCTTM)3 +9%Yx (re = rout)’

dYyg Y7 2 Ys

1
2
- = - R Y _
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The boundary conditions (4.80) on outer and inner boundaries, and jump conditions (4.82)

for upper and lower crack faces are

2 -Y, =0
(Tc - Tin)
Y; Y; Y-
gY1— —5 + = + L =0
9Trin gTin (Tc - rin) g (Tc — rm)
Ye
2—° vy =0
(Tc 7ﬁout)
Y: Y Y-
gYs — 25 0 ! 5 = 0
97 out 9Tout (Tc - 7"out) g (’I“C — Tout)
Ys—-Y: = 0
Y5 Ys Y1 Yo
Te (rc rout) Te (Tc Tzn)
Y: Y-
2 LA /A <2 2 Y4> = 0
(rc Tout) (rc Tm)
Y Y-
gYs — — - + - -
97 out 9Tout (rc - 7"out) g (’I"C — rout)
Y; Y5 Y-
(gY1 -5+ 2 + & > — 0
9Tin gTin (Tc - rin) q (’I’C — Tm)

We use the Matlab routine ‘bvp4c’ to calculate the values of Y7, Ys, Ys, Yy, Y5, Ys, Y7, Vs,

hence U™, W" are obtained. &, , 05, are functions of U", W™.

Jump in u

Define Y1, Ya, Ya, Yy to be U, (U¥), W, (W") respectively in region 1, and Y3, Yg, Y7, Yz

to be U, (U“)’ W, (W“)’ respectively in region 2. Referring to the equilibrium equations
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(4.84)
dY;
ffé = Y
% = —2Y3 (Tcrl— Tin) | Y2 (Tcrg Tin) + ¢%Ys (re — 1in)?
_ Yl - rin)” | Eis (re — rin)” + g2V (re — rin)’
81 1
dY
% _ _2Y7 (7“07; Tout) N Ye (7 = Tout) + ¢Ve (re — ?“out)2 Ys (Tcr—g%ut)
+ QEWZJM)+f&Wmeﬁ

The boundary conditions (4.89) on outer and inner boundaries, and jump conditions (4.91)

for upper and lower crack faces are

Y-
2 2 Y,
71 (re — Tin)
Y; Y- Y-
gY1 — ; + 2 + - 3
gri,  9in (Te —Tin) g (re — Tin)
Y:
20 Y
™ (rc - rout)
Y: Ye Y-
gYs — 3 + S - 2
97 9Tin (Te = Tout) g (re — Tout)
Ys—Yi— 1
N (RS (N ¢
Te (Tc Tout) Te (rc - Tin)
Y: Y-
g Yo _y8_<22_y4)
1 (Te = Tout) 1 (Te — Tin)
Y: Ye Y-
9Ys — —o + - - :
gri,  9rin (Te —Tout) g (re — Tout)
Y; Y- Y-
<gY1 - ; + 2 + & 2)
9T 9Tin (e =7Tin) g (re = rin)

We use the Matlab routine ‘bvp4c’ to calculate the values of Y7,

hence U", W* are obtained. ¢, 0%

: ru YITU
s Oy are functions of U, W™.

YQ; }/37Y47 Y57 }/67Y77 Y87
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4.3.4 The case g =0
Jump in w when g =0

Equations (4.75) change to

2 (01”)” + % (U“’)l - %U“’ - (Pw)/ _ (4.92)
R /
(W“’)” + <W; ) ~ 0, (4.93)
<U:U+f]w) = 0. (4.94)
Hence the solution for U¥ and W* are
o = 2,
pPY = B,
WY = Clog(r)+ D.

Put the solutions into the boundary conditions (4.80) on inner and outer layers and the
jump conditions (4.82) we get

1 1
A1=0, Bi=0, C1=0, Di=—3, A=0 By=0, Cp=0, Dy=_.

where subscript ‘1’ is means region 1, and subscript ‘2’ is above the crack means region ‘2’.
Hence the displacements on the upper crack face are U=0and W = %; the displacements
on the lower crack face are U = 0 and W = —%; the displacements on the outside boundary
are U =0 and W = %; the displacements on the inside boundary are U=0and W= —%;

on the crack face 6,,- = 0 and 6,, = 0.

Jump in u when g =0

Equations (4.84) change to

z(ﬁu)”+§(ﬁu)’_%0u_(pu)’ _ o, (4.95)
(W“)”+@ = 0, (4.96)

<m+[]‘“> = 0. (4.97)
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Hence the solution for U% and W¢ are

- A
o= =,
,
pPv = B,
WY = Clog(r)+ D.

Put the solutions into the boundary conditions (4.89) on inner and outer layers and the

jump conditions (4.91) we get

2 (.2 2 2 2
e (ri—r oL —T
A1 — zn( 02 ou;) 7 Bl =9 ( O;Lt 02) , Cl — 07 Dl — 0’
TC(_rout + Tin) TC(Tout - Tin)
2 2y,.2 2 2
i o —Trir rio—rT
A2 (m2 c) gut’ 32:2 (1271 cg 7 C2:0’ DQZO
Tc(rout - Tin) 7,C(rout - rin)
. 3 7ﬁom&(rz — 7ﬁc) T
Hence the displacements on the upper crack face are U = —ﬁ and W = 0;
) Te (Tout - rin)
i ~ re (r — ~
the displacements on the lower crack face are U = —M—t; and W = 0; the
U (rout - Tin)
N r re —r a
displacements on the outside boundary are U = —% and W = 0; the displace-
746(7,01L1€ - Tm)
- - Tin(Tout — T2) ;
ments on the inside boundary are U = ———"*——== and W = 0; on the crack face
) ) ) 9 TC(Tout - rin)
oy — o) (rs —r:
&rr — _2( out3 20)( c 5 zn) and 6-7‘2 = 0.
re (rout - rin)

4.3.5 Comparison between compressible and incompressible solutions

In compressible axisymmetric artery when v = 0.5 the material is incompressible. Al-
though we can not make v = 0.5 exactly in the code due to singularity in numerical , when
v = 0.4999 it is close to the incompressible material. When v = 0.4999 we compare the re-
sults for compressible and incompressible, we find out they match well as shown in Figure

4.5 and Figure 4.6, where the difference is 104 which is the order of 0.5 — v = 0.0001.
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Difference of U for compressible and incompressible elastic tube

0.0001 T T T T T T T
Difference of U
5e-05 | :
8
g
A
-5e-05 i
-0.0001 ! ! ! ! ! ! !

Figure 4.5: Difference of U for compressible and incompressible axisymmetric elastic tube

with 75, = 1071, T,; = 0, 74, = 1, 7oyt = 3 and r. = 1.5.

Difference of W for compressible and incompressible elastic tube

0-0001 T T T T T T T
Difference of W ———
5e-05 E
wn
=
(]
5
% O o S—
@)
-5e-05 F E
_00001 Il Il Il Il Il Il Il

Figure 4.6: Difference of W for compressible and incompressible axisymmetric elastic tube

with T;; = 107Y, T,; = 0, 74, = 1, 7oyt = 3 and 7. = 1.5.
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4.4 Conclusions

In this chapter, we have solved the axisymmetric crack problems in the compressible and
incompressible linear elastic axisymmetric tube. And we have compared the displacement
of the tear in the compressible tube with v = 0.4999, which is almost incompressible, with

the displacement of the tear in the incompressible tube. The results match very well.



Chapter 5

Static axisymmetric tears based

on Holzapfel’s energy function

In this chapter we model an axisymmetric tear in the aorta.We use the strain energy
function for a thick-walled non-linear elastic tube with residual stress and two families of
fibres in the wall given by Holzapfel et al. [2000] to deduce the stresses, then construct
the equilibrium equations with boundary conditions and jump conditions to describe the
tear. The dissection is linearized as an incremental deformation, whose traction and
displacement on the dissection faces and boundaries are presented as the integral of the
Green’s function weighted by the displacement discontinuity. The tear changes with the
parameters in the strain energy function, which is shown in our results. In addition, a
change in blood pressure inside the lumen treated as the incremental inner pressure, and

its effect on the tear are found.

5.1 Axisymmetric dissection using Holzapfel et al.’s strain

energy function

Now we consider an axisymmetric elastic tube with inner radius r;, and outer radius royt-
We assume the tear, which is located at 7., is axisymmetric in the wall of tube as shown
in Figure 4.1. The coordinate system is (r, 6, z) and the displacements in the coordinate
directions are (u,v,w). Due to axisymmetry, we do not need consider the displacement v

in circumferential direction.

109
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5.1.1 Introduction—Methods for axisymmetric crack problem on aorta

We take the stress-free artery with specified opening angle as the reference configuration,
and the closed artery with residual stress as the current configuration. The dissection of
the artery is idealised as the incremental elastic deformation on the configuration with
residual stress.

In vivo the residual stress and axial stretch, which are included into the Cauchy stress,
have important effects on the aorta. The governing equations in the current configuration

are

dive = 0, (5.1)

Oprp = —lext at T =Trout,

where Peyt is the pressure on the outer boundary of the aorta.

The dissection of the artery is idealized as an incremental elastic deformation,

divSy = 0, (5.2)

SOTn = —Pn-— Ptr (0Ap)n + P6A0Tn at r=r7rin and 7 = rous,

where S (the same tensor as 0Sp in chapter 2) is the incremental nominal stress in the
configuration in which the dissection happens, P is the pressure on the aorta, which is
written as Pey at outer boundary and P, at inner boundary, and P is the incremental
pressure which describes the change of P.

Similarly to the axisymmetric tear problem in Chapter 4, the tear is decomposed into
normal and tangential direction as shown in Figure 4.1. The jump conditions at r = r,

are

[u]™ = d(2), [w]© =0, [Sor]" =0, [Sorz]T =0 for the jump in w, (5.3)
[u]T =0, [w]t =6(2), [Sorr]T =0, [Sor-]T =0 for the jump in w. (5.4)

We calculate S%. ., S% . u* and w* for the ‘jump in w’ and S%., S&_, u® and w® for the
‘jump in w’ separately by same methods.

Firstly, we obtain the nominal stress S (2.54) and the Cauchy stress from the strain-
energy function W. We calculate the incremental nominal stress Sy by using the relation
(2.44). The Cauchy stress o and the incremental nominal stress Sy are functions of the
displacements u"(r, z), w"*(r,z) or u"(r,z),w"(r,z). Writing the equilibrium equations

dive = 0 and divSy = 0 in components, we obtain partial differential equations in the
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variables u"(r, z), w"(r,z) or u"(r,z),w"(r,z). Secondly, we take a Fourier transform
to change these PDEs to ODEs with wave number g and variables a"(r,g),w"(r,g) or
a*(r,g), w"(r,g). Thirdly, we solve these ODEs with boundary conditions and jump con-
ditions by using a collocation method. Finally, we take the inverse Fourier transform to
obtain the solution for PDEs. Sy is a function of u¥(r,z), w"(r, z) or u®(r,z),w"(r,z).
Thus when " (r, z), w"(r, z) or u®(r, z), w®(r, z) are solved, S% _, S or S¥_ S¥  are ob-

tained.

Define T' = (T,,T,) as the traction on the tear, which is decomposed into normal and

tangential directions,

T, = /56‘,,,, (z—s,m)U (s)ds + /S’é‘;r (z —s,m)W (s)ds, (5.5)
T, = /S&Z (z—s,m)U (s)ds + /Sé‘;z (z—s,7)W (s)ds. (5.6)

The displacement components are decomposed into normal and tangential direction

u= /u“(z —s,7)U(s)ds + /uw(z —s,m)W(s)ds (5.7)
w = /w“(z —s,m)U(s)ds + /ww(z —s,m)W(s)ds (5.8)

Hence if the traction (7, T,) along the dissection is given, the displacement (u,w) can be
found. We use this method to calculate the displacements for the upper tear face, lower
tear face, outer boundary and inner boundary. These are plotted on one figure to get

profile of the dissection.

5.1.2 Holzapfel-Gasser-Ogden strain-energy function

Equations (2.13) and (2.14) have been introduced as the strain-energy function

qf:U<J>+;c(11_3)+2’“k12 (W, (1)) + 9, (Ts)] (5.9)

and all the details about the equations have been introduced as equations (2.16), (2.17),
(2.18).

5.1.3 Incremental Elastic Moduli

Following are some useful results for our calculation, We have

;A[trATA]:2AT and fjl[detA]:(detA)Al, (5.10)
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which in component form are (2.73) and (2.76). Any function of J can be differentiated
easily

B , _
oA L (det A) = (det A) F' (det A) A L (5.11)

In addition, a useful result (2.81) has been introduced

-1 —14-1
DA [(A )ai} = _Aaj A,Bi : (5'12)
JB
Another useful result is
0
Gy [Mpg AkgArpl = MpaAip + AigMaq (5.13)
so that
D [t (MATA)] = (M + M) AT, (5.14)

Combining the results above we have

(9 e _ T 1 T .

Al = 2J 2/3 _A —gtr (ATA)A 1] (5.15)
ail“ = 27723 Sym(M+)AT—%tr (MATA) Al] (5.16)
a - [ 1 .

xle = 2J 2/3 _Sym (M,)AT—gtr (M_ATA) A 1]. (5.17)

Then the stress S (2.27) is given by

ov

5=29a

= JU'(J)A™L 4 cJ 23 [AT - étr (ATA) Al] (5.18)
£ 2T (I 1) exp [k (T~ 1)7] [Sym (M) AT - Lir (ML ATA) A‘l]

+ 202 (Tg = 1) exp [y (Ts — 1) [Sym (M_)A” — %tr (M_ATA) A‘I] .

The elastic moduli (2.37) are given as a function of deformation gradient A by

aS
1
= i 1
A A (5.19)
In component form we have
084
Abgi = —2 (5.20)
7 0A

Now

0 / — 7 _ _
Y (JU (J) (A 1)aj) = JAU"() (ATY) (A7),

+ U [(AT) (A7), = (A7), (A7) 5]
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Let
F(M,A) =Sym (M) AT - %tr (MATA) AT, (5.21)
then
0 F(M,A),, = Fajp (M)
aAlB ) aj ajpBl
1 _
= Sym (M)aﬁ 0ji — 3 [Mypp Aip + My Ay] (A l)aj
1 _ _
+ gt (MATA) (A7), (A7),
9 —2/3 2 —2/3 ( 41
—-_z A 22
i U T 522
and
o _ _
aAlﬁf (Is) = 2f" (1) F (M4, A) g (5.23)

These results lead to

Ay = JU) (A7) 5 (A7), + TV [(A7) 5 (A7), = (A7) (471,
2c

A o Y |
2 (4)

+ 73 [Waﬂ -
kg T3 [1 4 2%y (T4 — 1) 2} exp | ky (T4 — 1)2} F(Mi, A)y F (M, A),,

[ [
Ay J4/3 [1 + 2k, (To — 1) 2} exp [k2 (To — 1)2} F(M_,A); F(M_,A),,
2k S (T = 1) exp [k (T4 — 1)

( )

+ o+ o+ +

76 — 1) exp |:k2 (TG -1 fajﬁl (M_) . (5.24)

The instantaneous moduli (2.43) defined by R.W.Ogden [1997] is

Agijin = Aia Arp Abiar- (5.25)
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For this problem
Agiie = JU"()8i00 + U’ (J) [6i0k — ;)
- %J—W?’Am/xjaakl + %J‘Wgtr (ATA) 60k
+ g5 [AmAkaéjl - gAkaAlacSij + étr (ATA) 6Z-l6jk]
- fli 3 (Ty = 1) exp [ka (T

- klj 5/3(6—1)exp[2

4l<:1J 3 4 2y (T, — 1)

| I
@}
e

ol
o
[\
—~
~
N
I
—_

| I
@]
e}
o]
~—
B
[\
—
: : ~i |
=)
I
—_
~—  —
L)
— - L— a0
v

[
AkyJ 713 [1 +2hy (Ts —1)°

+ 4+ + 4+
[\
T
=
3
ot
~
w
AA
,.|>
—_
~—
@
»
o
e
()
—~
~
S
|
—_

where
Q+ = [(ASym (M) AT), — %tr (ASym (M) AT) 5”} ’

Q. = [(ASym(M_)AT) —étr(ASym( -)A )5”},

Py = T (ASym(My)AT), T (ASym(M4)AT),
P_ = T(ASym(M-)AT), T (ASym(M-)AT), .
M)A")

2
Tijet (M) = (ASym(M)AT)ikéjl 3(Asym Sij

kl
1
+ goadjktr (ASym (M) ATy,
in which
T(G) =G - %tr (G)1.
5.1.4 Stress

Unconstrained—compressible

We have the incremental nominal stress (2.44) in the form of

- 1
Soij = Agijri0 Aotk-

114

(5.26)

(5.27)

(5.28)
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Using the results above gives

Soij = [JU"(J)+U'(J)] tr (3Ag)d;; — U'(J)5Agij
2c __
= TP (0A0) T (AAT),,

+ g3 [T (AAT (6A0)T)‘ + é (tr (AAT) 6 Agi; — tr (AATSAY) 65)

— ST (L= 1) exp ke (T = 1)°] tr (5A0) T (ASym (M) A7)
- 4’“ 7 (T = 1) exp [k (To — 1)°] tr (6A0) T (ASym (M) AT)
+ 4k1J‘7/3 (14 2k (T1 = 1) exp [k (T4 = 1)*] (T1),
AT 14 20y (T = 1) exp [k (Ts = 1)°) (T2,
+ 2@ (T = 1) exp [y (Ta = 1)°] Tige (ML) 840
+ 2@ (T = 1) exp [y (To = 1)°] Tige (M) 840

where

(T+)ij = T (ASym(M.)AT), tr(T (ASym(M,)AT)6A,)

(T_)ij = T (ASym(M-)AT) tr(T (ASym(M-)AT)5A,)

Tijit M) 6Age = (ASym (M) AT5Ag)ij

+ Ly (ASym (M) AT) §Ap;; — ;tr (ASym (M) AT65Ap) 6;.

3

115

(5.29)

The equilibrium equation and boundary conditions for the incremental nominal stress are

equations (5.2), which are written in components as

dSorr  0S0.r
0 + 0

1 . )
+ ;(SOT‘T' - 5099) =0,

or 0z
8SUTZ 8SOZZ 1.
~Spr, =0
or + 0z + 0 ’
and setting P = 0 in (5.2) we have
S(]rr 0 SOzr 1 1 Uyp 0 W,y
0 Soe O 0|=-Ptr(6Ag)| 0 |+P| 0 % 0
SO’I‘Z 0 SOzz 0 0 u,, 0 w,
on r = 1oyt and r = riy. On the outer boundary r = rqyt,
. U U
Sorr = —Pext (uar +; + waz) + PextUyr = —Pext (; + wz)

Sorz = PextlU,

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)
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and on the inner boundary r = riy

. U u
SO'rr = _Rn (uﬂ" +; + wyz) + Rnuvr = _iDi (; + waz) (535)

Sor: = P, . (5.36)

The boundary conditions on the interface r = r. are given by (5.3) and (5.4).

Constrained—incompressible

Consider the artery to be incompressible, in which J = 1, U’(J) = 0, U"(J) = 1 and
tr (Ap) = 0. The form of the nominal stress is slightly different from the unconstrained

equation (5.18), in that
S = — —cpAl (5.37)

where cp is a Lagrange multiplier and

ov
0A

c [AT - %tr (ATA) A‘l]
+ 2k (Ty— 1) exp [1@ (T4 — 1)2} [Sym (M) AT — étr (M, ATA) A‘l]
+ 2k (I — 1) exp [kQ (Is — 1)2} [Sym (M_)AT — étr (M_ATA) Al](5.38)
hence the nominal stress is
S = ¢ [AT — étr (ATA)A! —pA_l]
+ 2k (T4 — 1) exp [kg (T, — 1)2} [Sym (M) AT — %tr (M,ATA) Al}
+ 2k (Te— 1) exp [1@ (To — 1)2} [Sym (M_)AT — %tr (M_ATA) A‘l} (5.39)
The Cauchy stress has the relation o = J~'AS with the nominal stress, hence
o = JlAgi — ¢epl
= ¢ [AAT - %tr (ATA) — pI]
+ 2k (To = 1) exp [y (Tt — 1) [Sym (M) AAT — étr (M, ATA) 1]
+ 2k (Ts = 1) exp [z (Ts - 1)°] [Sym (M_)AAT — étr (M_ATA) I]
= c[AAT — 4]

+ 2R (r) [Sym (M) AAT — %tr (MATA) I]

+ 2F(r) [Sym (M_)AAT — %tr (M_ATA) I] (5.40)
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where ¢ = p + %tr (AAT). From equations (2.44), the incremental nominal stress is

Soij = c[(AAT(cSAO ) tr (AAT) 5 Ag;; — tr (AATSAT) 65 — poi; + pd Aok
+ AP1(r)T (ASym(M+) D)t (T (ASym(M+)AT) §A)
+ 4P2(r)T (ASym (M-) AT) . tr (T (ASym (M_) AT) 6A,)
+ 2F1(r) Tijm (M) S Ao
+ 2F2(r) Tijm (M=) 6 Ao

c [(AAT (6A0) ) = q0ij +q5A0lk} ;

4]

4 APL(r) (T} )i + AP2(r)(T )i
4 2F1(r) Tije (ML) 6 Ao, + 2F2(r) Tijra (M) 8 Aoy (5.41)
where
Pi(r) = k [1 +2ky (Ty — 1)2} exp [/@ (I, - 1)2] :
P(r) = ki |1+ 2k (To— 1)) exp [k (Ts = 1)°]
Fi(r) = ki (Ta—1)exp [k:g (T4 — 1)2} ,
By(r) =k (To = 1) exp [k (Ts —1)°] .

q = p+§tr (AATSAT).

The deformation gradient is

0
A= 0 kg 0= 0 ag(r) O (5.42)
A

0 0 0 0 ax(r)
where R(r \/ k)\ —|— R2 The incremental deformation gradient is
uﬂ’ 0 u?Z
0Ag = 0o % 0 |- (5.43)
wﬂ“ 0 waz

The equilibrium equations and boundary conditions for the Cauchy stress are equations

(5.1). Writing these in components, we have

dg  _ 2a, ( )i ( )_2 (%FI(T))LL(T) _2F1(7')d%f4(7') 2 (%Fg(r))l};(r)

dr ar 7 draT " 3 I 3 I 3 7

_ 2RO GEEE) (e ()’  (a()’ ) Fi(r)(cos(8))” (as ()"
3 H r r nr

F (r) (cos (8))* (ag (r))°
ur

2

(5.44)
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with
9 2 2
par () — pg(r) — §F1 (r)1s(r) — gFQ(T)IG(T') = —Fext at 7 =rout. (5.45)

The equilibrium equations and boundary conditions for the incremental nominal stress are

equations (5.2), which are written in components,

8SOTT aSOZT L . : o
ar + 02 + ;(SO’I"I‘ - 5009) =0, (546)
ag(]rz 65‘102,2 I _
or + 9z + TSOT‘Z - Oa

and since P = 0 and tr(6Ag) = 0 in (5.2) we have

S()rr = Putu,r and SOrz: extW,z At T = Tout, (547)

S()rr = Pnu, and SO’V‘Z: inl,> at T = Tin. (548)

The jump conditions on the interface at r = r. are (5.3) and (5.4).

5.1.5 Static tears for an axisymmetric incompressible aorta

Now consider one slice of crack section as shown in Figure 4.1, which is decomposed into
the‘jump in «’ and the ‘jump in w’. The jump conditions at r = r. are (5.3) and (5.4).
Jump in w across the crack

Similar to §4.2.1, using the symmetry of the domain in z, we express the displacements

and the stresses as

u(r,z) = 72;_/000 u(g,r)singzdg = % /000 uv (g,7)singzdg (5.49)
w(r,z) = % /Ooo w(g,r)cosgzdg = % /Ooo WY (g,7) cos gz dg (5.50)
Sopr (1, 2) = % 000 é(]rr (g,7)singzdg = = 000 é&r (g,7)singz dg (5.51)
Sops (r,2) = % OOO é(]m (g,7)cosgzdg = = 000 ég;z (g,7) cos gz dg (5.52)
Sogg (r,2) = % Ooo é()gg (g,7)singzdg = = 000 ég’@e (g,7)singz dg (5.53)
Soorr2) = = [ o gy eosgedg = = [T gryeosgzdg (550
Soz (1, 2) = % 000 é’gzz (g,7)singzdg = = 000 5’6’22 (g,7)singzdg (5.55)
g(r,z) = jr/ooo 4(g,7)sin gzdg = 71T/Ooo ¢¥ (g,7)sin gz dg. (5.56)



CHAPTER 5. AXISYMMETRIC AORTA TEARS

where we define

0" = i, WO=b, S8 = iSo S = Sores S = iS00
S(’l)lfzr - SOZT? S(q)l,}zz = Z.SOZZ’ qw = Z(L ﬁw = lﬁ

The equilibrium equations (5.46) after Fourier transforming become

AU + B (UY) + Co(U)" + Dy(U®)" + B¢ = 0

AsUY + Bo(U™Y + Co(U™)" + Do(¢”) = 0.
The boundary conditions (5.47) after Fourier transform are

al(jw + CLQ(UU))/ + a4(}w = 0 at r=nmy
biU" + bo(U™) +b3(U")" = 0 at r=ry
C5Uw + Cﬁ(Uw)/ + CSC}w = 0 at r=rou

dsU" +dg(U") + dz(U")" = 0 at r=rou.
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(5.57)
(5.58)

(5.59)

(5.60)

(5.61)

Here Ay, B1,Ch, D1, E1, As, Ba, O3, Do, a1, a2, aq,b1, b2, b3, c5, 6, cs, ds, dg, d7 are given in

Appendix A.

The jump conditions after Fourier transformation are

T UG MR AN A

The stress components S, and S, are functions of UY, W* and ¢*:

& A U (r -

SéliT = Swrl(T)Uw (T) + Swr2 (T) dr( ) +q,

éw _ ﬁw dUw (7“) d [Uw (T):| ’
Ore = Swaa(r)UY(r) + swa2(r) dr + swz3(r) 42

where $ur1(7), Swr2(r), Swz1(T), Swz2(r) and s,.3(r) are in Appendix A.

(5.62)
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Jump in u across the crack

Using the symmetry of the domain in z, we express the displacements and the stresses as

1 [ 1 [°° .
u(r, z) = = /0 U (g,7)cosgzdg = = /0 U“(g,7)cosgzdg (5.65)
- o0 1 o0 R
w(r,z) = % /0 w(g,r)singzdg = = /0 W (g,r)singzdg (5.66)
. 1 x4 x4
Sorr (r,2) = — ; Sorr (g,7) cos gzdg = — ; Sorr (g,7) cos gz dg (5.67)
. ] x4 1 x4
Sorz (1, 2) = % ; Sorz (g,7)singzdg = = /0 Ses (g,7)singzdg (5.68)
. 1 x4 x4
Sogg (r,2) = = Soge (g,7) cos gzdg = = Sope (g,7) cos gz dg (5.69)
0 0
SOZ’!‘ (’I", Z) = % 0 é()zr (ga 7") singzdg = ; 0 égzr (ga ’I") sin gz dg (570)
. 1 [ = 4
Sozz (ry2) = = ; Sozz (g,7) cosgzdg = = ; S0y, (g,7) cos gz dg (5.71)
) 1 [ 1 [
q(r,z) = 77/0 q(g,r) cos gzdg = 77/0 q(g, ) cos gzdg, (5.72)

where we define

U = 4, W*=iw, S%,=Sorr, S&.=iSor Shs= S,  (5.73)

ngr = iSOZT? ngz = SOZZ? ﬁu =P, un = é (574)

The equilibrium equations (5.46) after Fourier transforming become

AU + By(U") + C1 (U™ + Dy(U™)" + E1§" = 0 (5.75)

AU + Bo(UY) + Co(U") + Da(¢") = 0
The boundary condition (5.47) after Fourier transform are given

alﬁ“+a2(U“)'+a4éu = 0 at r=ry (5.76)
U + by (UY) +b3(U%) = 0 at r=ry
esU + (U +cgg” = 0 at 7 =rou
dsU" + dg(U™) + d7 (U™ = 0 at r=rou
where Ay, By,C1, D1, E1, As, Bo, Co, Do, a1, as, a4, b1, ba, b3, cs5, cg, 8, ds, dg, d7 are in Ap-
pendix B.

The jump conditions after Fourier transform are

U

oM MR 0 8 R ARt
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The stress components Sg,.,. and S, are functions of U“, W* and ¢“:

égrr - Surl(’/’)Uu(T) + Sur2 (T) dU;r(’r) — §u7 (578)
~ 2

2 . Tu P d Uu(r)

Sory = Suzt(MUY(r) + Suz2(r) dUdr( ) + 8uz3(?”)[ e } , (5.79)

where $u,71(7), Sura(7), Suz1(7), Suz2(r) and s,.3(r) are given in Appendix B.

5.1.6 Numerical solution—Collocation method

In this section we are going to solve U w, W“’, U v W and S&T, S&z, S’gw, Sburz numerically.
we consider the special g = 0 separately, which will give singularity if we use the following

collocation method.

BVP method

As shown in Figure 4.1, region 1 is riy < r < 7. and region 2 is r. < r < rout-
d 1

In region 1, r = 1 = rip + R(re —7min) and — = ——————; in region 2, r = 1o =

dr Te —Tin AR’
d 1 d

Tout + R(re — rout) and — = ——————_ The range of R is [0, 1]. The boundary in each
dr 71— rout AR

region is represented by R = 0, and R = 1 represents the crack face.

Jump in w

It’s convenient to define Y1, Ys, Vs, Yy, Yy to be U™, (U™), (U™)", ¢, ¢" respectively in

region 1, and Ys, Yg, Yz, Yz, Yio to be U, (U™), (U™)", ¢, §* respectively in region 2.
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From equations (5.44) and (5.60) we have the following system of fourth-order equations

dY:

221 v

dR 2

dYs

272 _ vy

dR 5

dys Ay 3 DB s (1 Eq 3
— = ——Y] c in —Y c in —Y- c in) — —Y, ¢ — Tin
IR D, 1(re = Tin) D, 2 (re — rin) D, 3(re — Tin) D, 1 (re — Tin)
dYa Ao B Cy 1

— = ——Y] c in Y, — Y-

dR D, 1 e =) = 5 Yo = 5 ¥

dYe

Tp = (=) Q)

dYs

20— v

dR 6

dYs

276 _ v

dR T

dY- A B C FE

d7R7 = 7D71}/1 (rc Tout)3 D71YV2 (Tc rout)2 Dillyé (Tc 7ﬁout) D*1Y4 (rc - Tout)
dYé A2 By 02 1

— = ——=Y] c ou Yy — Y-

dR D2 1(T " t) DQ 2 DQ S(TC Tout)

dY;

T; = (Tc Tout) Q(TQ)a
where

d 2 %Fl (r)) Iy (r) 2 Fy(r) %LL (r) 2 (5Fy(r)) Is(r)
Q(T) — QGT(T)far(T)—f(d ) _ = d _7((1 )
dr 3 W 3 I 3 I
2R () s (r) n (ar (r)?  (ar(r))® o F1.(r) (cos (8))% (s (1))°
3 7 T r wr
o £2(r) (cos (6))” (a¢ (1))
wr

crack face.

Referring to (5.45), (5.61) and (5.62), the conditions on the outer boundary and the jump
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conditions on tear faces are

a1Yq1 + a2 ) +a4Y =0
c in
Y,
biYar +by—2 b3 =0
Te — Tin (T‘c — Tm)
c5Yy5 + co +cgYs =0
c out
Y,
d5Yos + dg—2— + dy LA
Te — Tout (T’C rout)
2 2
/Jlafr(rout)2 - MYaIO - gFl (Tout)I4(T0ut) - §F2(Tout)16(rout) — Pt =0
Yo5 — Yo1 =0

1 Y; Y, 1 Y, Y,
_(lﬁ+%>+(lﬂ+w>_1:0
g \Tc — Tout Tc g \Tc — Tin Te
Y: Y;
e5Yhs + 66— + egVs — <€1Ybl fep—2 4 64%4) =0

¢ — Tout c ™ I'rip
Yie

Yir
Yoo+ fo———+fr— 5 —
Tec — Tout (7’(: - Tout)

<f1Y3>1+f2 YbQT + /3 Tos )2)2

¢ — Tin (TC — Tin

where ey, es, eq4, €5, €6, €8 and f1, fa, f3, f5, f6, f7 are in Appendix A. After we define the
problem appropriately, we use the Matlab routine ‘bvp4c’ to calculate the values of
Y1,Y5,Y3, Yy, Y5, Ys, Y7, Y, Yo, Y10, from which Uw, W% are obtained, and S&T,S%”m are

functions of U w, W,

Jump in u

It is convenient to define Y7,Ys,Ys, Yy, Yy to be UY, (U¥), (U%)", ¢, ¢ respectively in

region 1, and Y5, Ys, Yz, Ys, Yio to be U, (ﬁ“)’, (U")”, g, q" respectively in region 2.
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From equations (5.44) and (5.75) we have

dY;

% - _1/;11’1(7“6 rin) gin(rc Tin)’ ZCDIIY:’)(% Tln)—lE)in(rc—Tin)S
% = _ngI(rc Tin) ZB;ZY2_Z(;ZY:°>(TC_1TIH)

% = (re—rin) Q(r1)

% = lji}/l(rc Tout)® giyé(rc Tout)” gllYg(rc Tout) gin(rcrom)
T = Yl row) = P - P

% = (re — Tout) Q(12)

We define Y1, Yao, Yas, Yas, Y9 to be U“,(U“)’, (U“)”,é“,(j“ respectively on the inner
boundary; Yus, Yag, Yaz, Yas, Yaio to be U¥, (U)', (U
boundary; Yi1, Yia, Ye3, Y, Yao to be UY, (U“)’, (U”)”,q?“,(j“ respectively on the lower

w7 q", G* respectively on the outer
crack face; Yis, Yis, Yo7, Yos, Ya1o to be UY, (U“)’, (U“)”, ¢*, ¢* respectively on the upper
crack face.

Refering to (5.45), (5.76) and (5.77), the conditions on the outer boundary and the jump
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conditions on crack faces are

a1Yq1 + a2 +a4Y =0
¢ — Tin
Y,
biYar +by—2 b3 =0
Te — Tin (T‘c — Tm)
c5Yy5 + co +cgYs =0
c out
Y,
d5Yos + dg—2— + dy LA
Te — Tout (T’C rout)
2 2
/Jlafr(rout)2 - MYaIO - gFl (Tout)I4(T0ut) - §F2(Tout)16(rout) — Py =0

Yois =Yy —1=0

1 Y, Y; 1 Y, Y,
<Tb6+b5>_<b2+bl):0

g ¢ — Tout Tc g \Tc — Tin Tc
Y, Y
e5Yis + e6——2— + egYpg — <€1Ybl tep—2 4 64%4) =0
¢ — Tout [ ™
Y6 Yy7 Yio Y3
JsYes +fo———+fi————— — ( iYa + f2 + /3 5| =
Tc — Tout (re — Tout) ¢~ Tin (re —Tin)
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where e1, es, €4, €5, €g, €s and f1, fo, f3, f5, f6, fr are in Appendix B. Then we use the Matlab

routine ‘bvp4c’ to calculate the values of Yi,Ys, Y3, Yy, Y5, Vs, Y7, Yg, Yy, Yio, from which

U", W" are obtained, and S§,,, S, are functions of U", W*.

5.1.7 The case g =0

The calculation of U, W, Sy, S and e, we, Sy, S4 _ when g = 0 are solved sepa-

rately.

Jump in w

We have exact solution for jump in w when g =0

UY = 0 at r=ryyg and r= Tin,

WY = % at = rout, WY = —% at = rin,

UY = 0 atupper crack face and lower crack face,

W = % at upper crack face, WY = 1 at lower crack face.

And 8%, S¥._ are functions of U, W™,
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Jump in u

Define Y7,Y5,Y5 to be U“,(}“,q”‘ respectively in region 1; Y3, Yy, Ys to be ﬁ“,(}“,(ju re-
spectively in region 2; Yg1, Yao, Yu5 to be (7“,(}“,(}" respectively on the inner bound-
ary; Y3, Ya4, Yag to be U“,(}“,cju respectivelyon the outer boundary; Yy, Yy, Yis to be
U “ &“, q" respectively on the lower crack face; Y3, Yo, Yig to be U“, (j“, q" respectively on
the upper crack face.

When g = 0 the equations (5.44) and (5.60) simplify to

wvi . h

dR N T1

dY:

m%z Y1 (re = 7in) f2(r1)
dY:

TR = (re—mm)fs(n)
vs %

dR N T9

dY,

Tp = Yal(re— i) fa(r2)
dY:

TR5 = (TC_Tin)fS(TQ)

where fo(r) and f5(r) are given in Appendix C.
Refering to (5.45), (5.76) and (5.77), the boundary conditions on outer layers and the

jump conditions on crack faces are

p1(rin)Yor —pYa2 = 0

p2(rout)Yas — pYas = 0

p oy (rout))2 = Va5 — > i (rout) Tt () = = F (ow) T (rout) — P = 0
Yis =Y —1 = 0

(Pa(re)Yes — uYps) — (p3(rc)Yor — uYp2) = 0

Yoo —Yps = 0

where p1(r¢), p2(re), p3(re), pa(re) are defined in Appendix C.
We use the Matlab routine ‘bvp4c’ to calculate the values of Y7, Y5, Ys, Y3, Yy, Ys. Hence

U, wu ngw, ng which are functions of U%, W are all obtained.

5.1.8 Matrix equations

We obtain U™ (g, 7), W¥(g,7), U%(g,r), W*(g,7) and S..(g,7), S&.(9,7), S&..(9,7), S, (g, 7)

for each value of g from above numerical approach. Now we assume the length of the crack
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is 2L, and we show a section of the tube whose length is 7L. The traction and displacement

components, decomposed into normal and tangential direction, are
T.(z) = /Sé‘w (z—s,m)U (s)ds + / Sy (z—s,m)W (s)ds, (5.80)
T.(z) = /S&Z (z—s,r)U (s)ds + /S&Z (z —s,m)W (s)ds, (5.81)

u= /u“(z —s,m)U(s)ds + /u“’(z —s,7)W(s)ds, (5.82)
w= /w“(z —s,m)U(s)ds + /ww(z —s,m)W(s)ds. (5.83)

We discretize the integral equations (5.80) and (5.81) assuming piecewise constant openings
along the tear which is of length 2L, and so we evaluate the integral equations at a discrete
set of points z;,i =1,...,2N.

For the second term in the RHS of equation (5.80) we have

/Séi«r (zi — s,7)W (s)ds = /[; 5& (g,r)sing(zi—s)dg] W (s) ds
0
- 12/ ‘SA%I;’T (gaT)Sing(Zz‘—S)dg} Wjds
m < J;i Lo

1 [ [ /2 . ‘
= ; Z/ /0 <Sg1}ﬂr (ga ) gSOW Sg;g) sin g (ZZ — 3) dg:| W] ds
;i

i
+ = g8 wlsing (2 — s dg} W, ds
([ o] W,
SATA
+ - S40 sing (2 — s dg] W; ds,
FX [ |, Swrang (o)) W,
where
Iy [ (38 (9. — g8 S58)sing (=) dg| W; ds
:Wj fOOO(S(l]I;‘T gSOTT‘ Orr [f Slng _S) ds} dg
and

/sing (z; —s)ds = / ’ sing (z; — s)ds = QSm(g ) sin g(z; — zj),
j Zj*A g

in which using equation (3.101)

1 oo val )
/0 9SG sing (2 — s)dg = =2 lim [ ge 9 sing (2 —s)dg = Syt (zi — s)

™ T™ r—=0t Jg

and using equation (3.102) we have

S
/ SO,,T sing (z — s)dg = =% lim e Ising(z —s)dg =
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Hence

. 1  ra sin gA |
[ 8= snw s = 2 W, | (880 0r) — o853 - $52) 22 sing( - 2 dg
- 0

+ Sg;gZW —log Zz_zﬂ_ri‘
which is of the form Z S, i, j)W; where
J
Slid) = 2% / ) (éar (9.7) — 55— 552) S92 gz — =) do

For the first term in the RHS of equation (5.80), in which we use (3.99), (3.100), (3.165)
and (3.166), we have

1 o0 A

/5’6‘” (z; —s,7)U (s)ds = / [77 5’6‘” (g,r)cosg(z; — s) dg] U (s) ds
0
1 Nz
= Z/ / (Sgrr (gv ) gSOrr SDTT) cos g (Zz - S) dg:| Uj ds
™ j LJo
+ 1 Z/ / 9S4 cos g (z — s) dg] U;ds
™ j LJo
/ SU0 cos g (zi — s) dg] Ujds
0

j L

1 x /2 sin gA
= 2- Z UJA (Sgrr (97 ) gSOrr SOT‘T’) gg COSg(Zi - Zj) dg

™

2A
—  Sorr Z Uj ((Zz ~ Zj)2 B A2>]

+ 07‘7‘ Z U j—A,z;+A)

which is of the form Z Sy, [i, )U; where
J

S 1 [/ sin gA
SOrr[Zaﬂ = 277\/0 (SOT‘T‘ (97 ) gSOrr SOrr) 7COSg(Zi—Zj)dg
2A
- SOrr

7'(' ((zZ — zj)? — A2>

Su0
+ S(]rr]zi €(z;—Azj+A)

For the second term in the RHS of equation (5.81), in which we use (3.99), (3.100),
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(3.165) and (3.166), we have
1 [

[ —sowsas = [ [ S&(g,r)cosg(zi—s)dg] W (s) ds
™ Jo
1 ValE
= IS 7 (i tar) - it — 52 cosg (s - ) g Wi
Qo j 0

J

) -
+ WZ/ / Sorzcosg(i—s)dg] W;ds
j J

1
+ ;E // S0 cos g (= —S)dg] W;ds
oy

: sin gA
- 2 ZW | (885 (0. — 955L - 9352) 202 cos g~ ) dg

2A

— Sors Z W; ((Zz B Zj)2 B Ag)

+ Séi?z Z W]'IZiG(Zj—A7Zj+A)
J
which is of the form Z S i, j]W; where
J
1

o o0 ol [ éw _ owo) SIngA o
SOrz[Z’]] - 27_[_/0 <SOrz (gv ) gSOrz Orz) g COSg(Zl Z])dg

2A
SOrz |:7T ((Zz B Zj)2 _ AQ)

Sw0
+ SOTZIZZ'E(ZJ‘—A7ZJ’+A)'

For the first term in the RHS of of equation (5.81), in which we use (3.101), (3.102),
(3.167) and (3.168), we have

. in gA
/Sgrz(zi_sar)U(s s = 2-— ZU/ (S[)rz g,7 ) gSOrz SOTZ)%Sing(Zi_zj)dg

+ A
+ 07”2 Z U IOg | Z] ‘
which is of the form Z Sy li, j]U; where
J
e I sin gA .
SOTZ[Z7]] = 27‘('/0 <SOTZ (97 ) gSOT‘Z SOTZ) - Slng('zi - Zj) dg
i —zj + A
Gquo 71
+ Orz 2y — Zj — A’

We write these integral equations (5.80) and (5.81) as the matrix equation

Tm’ _ Sgrr[zvj] Sg;"r[zﬂj] Uj (584)
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where 7 =1,...,2N.

We discretize the integral equations (5.82) and (5.83) assuming piecewise constant openings
along length 2L for upper, and lower crack faces and 7L for top and bottom boundaries.
We evaluate the integral equation at a discrete set of points z;,7 = 1,...,2N for the upper

and lower crack faces, and z;,7 =1, ..., 7IN for the top and bottom boundaries.

For the first term in the RHS of equation (5.82), in which we use (3.100) and (3.166),

we have
u 1 > Tu lu
u(z —s,r)U(s)ds = = <U —u )cosg(zi—s) dgU ds
d 0
1 o
+ // u cos g (z — s) dgU ds
d 0
2 R in gA
= ZUj/ (U“—ulu)smg cos (9z; — gz;) dg
T ; 0 g
1lu : > —gr
1 g i —S)dgU;d
+ wu Zj:/jr—%l*/o e 9" cosg(z—s) dgU;ds

2 o in gA
= ZUJ/ (0" — ) P2IZ cos (g2 — g27) dg
T ; 0 g

+oul Z Ujleie(zj—a,2+2)
J

which is of the form Zuu i, j]U; where
J

wr - 2 [ . uySingA
u'li,j] = / 0" —u') cos (g2 — gz;) dg
™ Jo g

lu
+ u Izie(zj—A,zj—&-A) .

For the first term in the RHS of equation (5.82), in which we use (3.102) and (3.168),
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we have
/uw(zl- —s,r)W(s)ds = // Uw smg( —8) dgWds

+ // Ysing (z; —s) dgW ds

in gA
= WZW]/ (O — ) 22 sin (g2; — g2;) dg
0

; g
+ ule/jrlirng Oooe I"sing (z; — s) dgWjds
= i;W] /OOO(U“’ )smgA sin (gz; — gz;) dg
+ f)zj:leog z _Zji‘
which is of the form Zu i, 7|W; where
J
wiiog) = 2 [0 - u) ™ i g g2) dy

Wlwo 472'+A9

+ %log :—zj—A‘

For the first term in the RHS of equation (5.83), in which we use (3.102) and (3.168),

we have
" 1 * (v U 1u :
w(z — s,7)U(s)ds = — W —w smg (z; —s) dgUds

+ // “sing (z; —s) dgU ds

in gA
= = Z Uj / (W — ') 2 sin (g2; — g25) dg
Q0 0 g

J

o
+ wl /lim e Ising (z; —s) dgU,ds
v Z ]r—>0+ 0 g( ’ ) 93
2 © . sin gA |
= 7TZUj/O (W — ™) ’ sin (gz; — gz;) dg
J
wt zi—zj+ A
- U1 J
which is of the form Zw“[i,j]Uj where
J
2 [ in gA
w'li, j] = / (W“—wlu)smg sin (gz; — gz;) dg
T Jo 9
1lu
zi— 2+ A
1 .
+ s 8 Zi—Zj—A’
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For the first term in the RHS of equation (5.83), in which we use (3.100) and (3.166),

we have
1 .
/ww(zi —s,m)W(s)ds = // W“’ - wlw) cosg(z; —s) dgWds

+ // Ycosg(zi —s) dgW ds

“ i A
= EZWG/‘avw—wMng cos (g2 — 973) dg
(e 0 g

+ WZ/ hm/ I cosg(z —s) dgWjds

r—0t

N in gA
= ; E Wj/ (W“’—w“”)smg cos (gz; — gzj) dg
- 0
J

g

+ wlw Z Wj'[Z,‘E(Zj*A,Zj#»A)
J

which is of the form Z w®[i, j]W; where
J

o 2 [ < ws SIngA
Wi j] = .A<W — ) T2 cos (g2 — g dy

+ WL ez a0)-

We write these integral equations (5.82) and (5.83) into the form of matrix equation

- 1 1 . (5.85)

5.1.9 Conditions at the crack face

In the static tear we use the following traction conditions at the crack face. The blood
inside the tear is connecting with the blood in the aorta, and the blood pressure on the
aorta wall is —o(7i,) and the pressure on the tear face is —o(r.). Therefore the traction
on the tear is T,; = (—o(r¢)) — (—o(rin)) = o(7in) — 0(rc) and T,; = 0kPa. In order to
calculate the opening of the tear we must solve equation (5.84) to get U; and W;. This
requires the traction conditions at the crack face. When U; and W) have been obtained,
the displacements u; and w; in (5.85) for upper and lower crack face, and for top and

bottom boundaries are obtained.
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5.1.10 Results

Following results are tear profiles with 7, = 4mm, r. = bmm, 7oy = 6mm, R; = 3.9mm,
P.t = O0kPa, k1 = 2.3632kPa, ko = 0.8393, ¢ = 3kPa, which are for a carotid artery
from rabbit, refer to Holzapfel et al. [2000]. In Figure 5.1—5.8 we illustrate some tears for
different choices of A, k, and . In Figure 5.9—5.20 we change one of these parameters and
keep other parameters unchanged to compare the differences in order to test the effects of
Ak, B

We choose the inner radius 7, = 4mm and outer radius 7o, = 6mm instead of the inner
radius ri, = 1lmm and outer radius roy = 3mm. The reason is that unless the tube is
sufficiently inflated when the open angle configurations is closed, it could lead to wrinkles
on the inner boundary. Figures 5.7 and 5.8 show us the wrinkle on the inner boundary with
a = 45°. In Figures 5.3 and 5.4 the open angle is @ = 45°, however, there is no wrinkle
on the inner boundary. The reason is that in Figures 5.7 and 5.8 the fibre angle with the
circumferential direction 8 = 30° is smaller than the fibre angle 5 = 60° in Figures 5.3 and
5.4, which means the the fibre angle with the axial direction in Figures 5.7 and 5.8 is larger
than the fibre angle in Figures 5.3 and 5.4, which contributes less to the axial direction to
flatten the wrinkle. In additional, the opening of the tear is wider in Figures 5.7 and 5.8
than in Figures 5.3 and 5.4 since the fiber contributes less in axial direction. Comparing
Figure 5.1 with 5.5, Figure 5.2 with 5.6, Figure 5.3 with 5.7, Figure 5.4 with 5.8 we find that
larger axial stretch makes the tear narrower. We will discuss how will these parameters

effect the opening in next part.
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Crack profile when k = 363?20150, B=060° =11
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Figure 5.1: Plot of crack profile with 7, = 4mm, r. = dmm, roy = 6mm, R; = 3.9mm,

Pexy = OkPa, ki = 2.3632kPa, ky = 0.8393, ¢ = 3kPa, A = 1.1, B = 60°, k = 5300
a = 15°.

Crack profile when k = %, B =060° A=1.3
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Figure 5.2: Plot of crack profile with 7, = 4mm, r. = dmm, roy = 6mm, R; = 3.9mm,

Pex = OkPa, ki = 2.3632kPa, ky = 0.8393, ¢ = 3kPa, A = 1.3, B = 60°, k = 5300
o = 15°.
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Crack profile when k = %, =60°, A=1.1
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Figure 5.3: Plot of crack profile with 7, = 4mm, r. = dmm, roy = 6mm, R; = 3.9mm,
P = OkPa, k; = 2.3632kPa, ky = 0.8393, ¢ = 3kPa, A = 1.1, 8 = 60°, k = 209

360°—a’
o = 45°.

Crack profile when k = %, B =060° A=1.3
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Figure 5.4: Plot of crack profile with 7, = 4mm, r. = dmm, roy = 6mm, R; = 3.9mm,

Pex = OkPa, ki = 2.3632kPa, ky = 0.8393, ¢ = 3kPa, A = 1.3, B = 60°, k = 5300
o = 45°.
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Crack profile when k = 363?2150, B=30° =11
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Figure 5.5: Plot of crack profile with 7, = 4mm, r. = dmm, roy = 6mm, R; = 3.9mm,

Pexy = OkPa, ki = 2.3632kPa, ky = 0.8393, ¢ = 3kPa, A = 1.1, B = 30°, k = 5300
a = 15°.

Crack profile when k = %, 6=30° A=13
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Figure 5.6: Plot of crack profile with 7, = 4mm, r. = dmm, roy = 6mm, R; = 3.9mm,

Pex = OkPa, ki = 2.3632kPa, ky = 0.8393, ¢ = 3kPa, A = 1.3, B = 30°, k = 5300
o = 15°.
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Crack profile when k = %, =30°, A=1.1
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Figure 5.7: Plot of crack profile with 7, = 4mm, r. = dmm, roy = 6mm, R; = 3.9mm,

Pexy = OkPa, ki = 2.3632kPa, ky = 0.8393, ¢ = 3kPa, A = 1.1, B = 30°, k = 5300
o = 45°.

Crack profile when k = %, 6=30° =13
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Figure 5.8: Plot of crack profile with 7, = 4mm, r. = dmm, roy = 6mm, R; = 3.9mm,

Pex = OkPa, ki = 2.3632kPa, ky = 0.8393, ¢ = 3kPa, A = 1.3, B = 30°, k = 5300
o = 45°.
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Comparison of A

Figures 5.9—5.12 show us how the opening changes, when the axial stretch A changes and
other parameters are unchanged.
The results are as we expected: when the axial stretch A\ increases, the tear becomes

narrower, which means that a larger axial stretch makes the tear opening thinner.

Compare crack profiles for different A when k = %, 8 = 60°
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Figure 5.9: Comparison of the crack profiles for different values of A with ry, = 4mm,
re = bmm, 1oyt = 6mm, R; = 3.9mm, P = 0kPa, k4 = 2.3632kPa, ko = 0.8393,
¢ =3kPa, =60 k = 559 o = 15°.
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Compare crack profiles for different A when k = %, B =60°
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Figure 5.10: Comparison of the crack profiles for different values of A with r, = 4mm,
re = bmm, Ty = 6mm, R; = 3.9mm, P,y = O0kPa, k1 = 2.3632kPa, ks = 0.8393,

c=3kPa, B =60° k= 350« = 45°.

Compare crack profiles for different A when k = %, 8 = 60°
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Figure 5.11: Comparison of the crack profiles for different values of A with r, = 4mm,
re = bmm, 1oyt = 6mm, R; = 3.9mm, P = 0kPa, k4 = 2.3632kPa, ko = 0.8393,
¢ =3kPa, B =60° k= 330"« = 30°.
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360°

Compare crack profiles for different A when k = 55557555, 8 = 307
6.0

5.5 + 4
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Figure 5.12: Comparison of the crack profiles for different values of A with r, = 4mm,
re = bmm, Ty = 6mm, R; = 3.9mm, P,y = O0kPa, k1 = 2.3632kPa, ks = 0.8393,

c=3kPa, B =30% k= 350"« = 30°.

Comparison of k

The parameter k = Zf—fa, where « is the open angle, is related to the residual stress. The
Figures 5.13—5.16 show the effect of k£ on the opening of the tear.

The results are as we expected: when « increases (the residual stress parameter k in-
creases), the opening of the tear becomes wider, which means that a larger residual stress

in the circumferential direction makes the tear wider.
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Compare crack profiles for different k = ngfia when A = 1.1, 8 = 60°
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Figure 5.13: Comparison of the crack profiles for different k& with ry, = 4mm, r. = 5mm,
rout = 6mm, R; = 3.9mm, Py = 0kPa, k; = 2.3632kPa, ko = 0.8393, ¢ = 3kPa, A = 1.1,
B = 60°.

Compare crack profiles for different k = 36306(9ja when A = 1.3, 8 = 60°
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Figure 5.14: Comparison of the crack profiles for different k& with ry, = 4mm, r. = 5mm,
Tout = 6mm, R; = 3.9mm, Pey = 0kPa, k; = 2.3632kPa, ko = 0.8393, ¢ = 3kPa, A = 1.3,
B8 = 60°.
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Compare crack profiles for different k = ngfia when A = 1.1, 8 = 30°
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Figure 5.15: Comparison of the crack profiles for different k& with ry, = 4mm, r. = 5mm,
rout = 6mm, R; = 3.9mm, Py = 0kPa, k; = 2.3632kPa, ko = 0.8393, ¢ = 3kPa, A = 1.1,
B = 30°.

Compare crack profiles for different k = 36306(9ja when A = 1.3, 8 = 30°
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Figure 5.16: Comparison of the crack profiles for different k& with ry, = 4mm, r. = 5mm,
Tout = 6mm, R; = 3.9mm, Pey = 0kPa, k; = 2.3632kPa, ko = 0.8393, ¢ = 3kPa, A = 1.3,
B8 = 30°.
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Comparison of 3

The parameter (§ is the fibre angle with respect to the circumferential direction. The
Figures 5.18—5.20 show how the opening of the tear change when S varies.

As we expected, when the fibre angle with circumferential direction is larger (that is the
angle with axial direction is small), then the fibre contributes more to the axial direction,

which will make the opening of the tear narrower.

Compare crack profiles for different 5 when A = 1.1, k = %
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Figure 5.17: Comparison of the crack profiles for different 5 with 7, = 4mm, r. = 5mm,

Tout = 6mm, R; = 3.9mm, Peyy = 0kPa, k; = 2.3632kPa, ko = 0.8393, ¢ = 3kPa, A = 1.1,

_ _360° _ 1ro
k= 35000, @ = 15°.
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3607

Compare crack profiles for different 8 when A = 1.1, k = 5555 1=

6.0
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3.5

Figure 5.18: Comparison of the crack profiles for different § riy = 4mm, r. = 5mm,
Tout = 6mm, R; = 3.9mm, Peyy = 0kPa, k; = 2.3632kPa, ko = 0.8393, ¢ = 3kPa, A = 1.1,

_ _360° _ AFO
k= s500—0, o = 45°.

360°
360°—15°

Compare crack profiles for different § when A = 1.3, k =

6.0
5.5 F i
5.0 F i

45 + 8
B = 60°
B=45 —
8=300 ——

40 L L L

-2.0 0.0 2.0

Figure 5.19: Comparison of the crack profiles for different § with i, = 4mm, r. = 5mm,
Tout = 6mm, R; = 3.9mm, P = 0kPa, ky = 2.3632kPa, ky = 0.8393, ¢ = 3kPa, A = 1.3,

_360° _ 1ro
k= s50—5, a = 15°.
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360°

Compare crack profiles for different 8 when A = 1.3, k = 555" 1=

6.0

5.5

4.5 +
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Figure 5.20: Comparison of the crack profiles for different 8 with 7, = 4mm, r. = 5mm,
Tout = 6mm, R; = 3.9mm, Peyy = 0kPa, k; = 2.3632kPa, ko = 0.8393, ¢ = 3kPa, A = 1.3,

_ _360° _ AFO
k= s500—0, o = 45°.

Summary

From comparing these figures we know that larger axial stretch or larger fibre angle with
circumferential direction makes the opening of the tear narrower, and larger residual stress

in circumferential direction makes tear wider.
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5.2 Incremental Inner Pressure

The blood pressure inside the aorta might change due to hypertension or other reasons.
We consider the pressure change as the incremental inner pressure. The incremental inner

pressure is presented as P. Then the traction (7,(z),T.(z)) and displacement (u,w) are
T.(z) = / Sy (z—s,m)U (s)ds + / SY (z—s,r )W (s)ds+SL P (5.86)

T.(z) = /S&Z (z—s,m)U (s)ds + /S&Z (z—s,7)W (s)ds, (5.87)

u = /u“(z —s,m)U(s)ds + /uw(z — 5,7)W(s)ds +uf P (5.88)
w = /w“(z —s,m)U(s)ds + /ww(z —s,m)W(s)ds. (5.89)

The displacement (u,w) is calculated as the previous section, and the values of S&,r,
Sf)‘m, 58‘;,7,, Sg;z, and u", w*, v, w" are the same. The only difference is that we need
to obtain % and u”, which are calculated as follows. Once they have been found, and
(T.(2), T.(z)) and P are given, we can get the displacement (u, w).

The equilibrium equations for Cauchy stress and incremental nominal stress are same as
equations (5.1) and (5.2), where tr (§Ap) = 0 is due to incompressibility. The displacement

of the incremental inner pressure is just in radial direction, which means w = 0. Using

incompressibility V - u = %8((‘;?) + %ﬁ’ = 0 we have %823:”) = 0, hence % = —=. The
equilibrium equations in (5.1), (5.2) and the incompressibility are written
dq
— = A 5.90
A= AG) (5.90)
du u
= - _Z 5.91
dr r ( )
dqg B
i _ B, (5.92)
dr I

where A(r) and B(r) are in Appendix C. We define Y7, Y5, Y3 to ¢, u, § respectively in region
1; Yy, Ys, Y5 to g, u, ¢ respectively in region 2. Y1, Yo, Yas to g, u, ¢ respectively on inner
boundary layer; Ya4, Yas, Yas to ¢, u, ¢ respectively on inner boundary layer; Yy, Yo, Yz to
q,u, q respectively on lower crack face; Y4, Yss, Yo to q, u, ¢ respectively on upper crack

face.
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In region 1, 7 =7in + R(re — 7in)

Ccllryll = A(T’l)
dY2 . u
dry
dYs  B(r)
dry  op
in region 2, 1o = roy, + R(re — Tout)
CCZ;/;L = A(’I“Q)
dY5 . u
dry
D _ B,
dry M

Write the boundary conditions in (5.1) and (5.2) into components we have

O — Pext =0 at 7 = rou

) d )
SM—Pin—u—l—P:(J at r =17
dr

. d
Spr — Pextfu =0 at 7r=rou.
dr

which are
p Car (row)? = 1Yt = 2 Fy (roue) I (rout) — = B (o) T () = Pl
a(rin)u(rin) = pd(rin) + P
b(rout)u(rout) — H4(Tout)
where a(r), b(r) are in Appendix C.
The jump conditions are
Yoa —Yo1 =0 at r=rc
Yois = Yo =0 at r=r,

Yie — Y3 =0 at r=re,

147

(5.93)
(5.94)

(5.95)

(5.96)
(5.97)

(5.98)

(5.99)

(5.100)

(5.101)

(5.102)
(5.103)

(5.104)

We use the Matlab routine ‘bvpdc’ to calculate ¢,u,q in region 1 and 2 and S(];T =

Si(r)u(r) — ¢(r), in which S;(r) is in Appendix C. Hence when the traction (7}, 1) is

given, we will get the displacement (u, v) for upper and lower crack faces, and top and

bottom boundaries.

The traction on the tear is T}, = o (rin) —0(re) — P and T, = 0kPa. Figure 5.21—Figure 5.23

are our results, which show that the opening of the tear changes along with the incremental

inner pressure.
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Crack profile when there is no incremental inner pressure
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Figure 5.21: Plot of crack profile when there is no incremental inner pressure with ry, =
4dmm, r. = dmm, roy = 6mm, R; = 3.9mm, P, = 0kPa, k1 = 2.3632kPa, ks = 0.8393,
c=3kPa, =60° k=1, A=1.1.

Crack profile when the incremental inner pressure P = 1[kPa)]
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Figure 5.22: Plot of crack profile with incremental inner pressure P = 1kPa with ry, =
4dmm, r. = dSmm, 7oy = 6mm, R; = 3.9mm, P.y; = 0kPa, k1 = 2.3632kPa, ko = 0.8393,
c=3kPa, =60° k=1, A=1.1.

From Figure 5.21—Figure 5.23 we find that tear and the aorta wall are pushed away

from the original location when the incremental inner pressure is P = 1kPa. The fluid
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Compare crack profiles with and without the incremental inner pressure

8.0

75 + g

7.0 + E

o 6.0 //_\ 1
5.5 | \_/ |

50 F i
45 P = 1[kPa) 1
10 No incremental inner pressure

-2.0 0.0 2.0

r

Figure 5.23: Different crack profiles for upper and lower crack face when the incremental
inner pressure is P = 1kPa or there is no incremental inner pressure with ry, = 4mm,
re = dbmm, Toy = 6mm, R; = 3.9mm, P, = O0kPa, k1 = 2.3632kPa, ks = 0.8393,
c=3kPa, =60° k=1, A=1.1.

inside the tear is connecting with the fluid in the aorta, so the incremental inner pressure

makes the tear wider in the case when P = 1kPa.

5.3 Conclusions

In this chapter, we have modelled the tear on the idealized aorta, which is a thick-walled
non-linear incompressible axisymmetric elastic annulus with residual stress and two family
fibers and whose property is described by the strain energy function Holzapfel et al. [2000],
as the incremental deformation. The parameters in the strain energy function has an effect
the opening of the tear, which are compared and shown in our results. In addition, we
have modelled the pressure change inside the aorta as the incremental inner pressure,

which leads the change of the tear as well.



Chapter 6

Fluid dynamics in the tear

In an aortic dissection, blood penetrates the intima, and enters the media layer. The high
pressure rips the tissue of the media apart. This can propagate along the length of the
aorta for a variable distance forward and backwards, and the tear is filled with fluid.

In general terms, the fluid flow and tear opening are coupled, and an evolution equations
for the tear opening must be found. In addition, a theory of propagation must include
a criterion for tear extension and tear direction. We do not discuss these in this thesis,
however it is an important direction for the development of a realistic tearing model that
couples the elasticity of the artery and fluid flow.

In this chapter we get the equation, which is used to describe how the width of tear changs

along time in the radial direction, from the Navier-Stokes equation.

I=

Figure 6.1: The distance from R to the upper tear face is ha(z,t), and hi(z,t) is the

distance from R to the lower tear face.
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6.1 Lubrication theory in Stokes flow

We assume a very thin tear in the aorta wall, which is in axisymmetric cylindrical polar
coordinate, and blood, which is considered as the very viscous flow, filled in the tear.
Define h(z,t) as the width of the tear, L the length of the tear, R the location where tear
happens, ha(z,t) the distance from R to the upper tear face, and hi(z,t) the distance from
R to the lower tear face. Hence the location of the upper tear face is R + ho, the location
of the lower tear face is R — hy, and h = hy + ho. The blood is considered to be a viscous

fluid whose Reynolds number is very small, and the Navier-Stokes equations become
—Vp+p’V32u=0, V- -u=0, (6.1)

in which h is the opening distance between the upper face and the lower face, " is the
coefficient of viscosity, z is in the axial direction, ¢ is time, p is the pressure on the tear

face, and

Viu = (Vzu - %) e+ (Vzw) e, (6.2)

where e, is the unit vector in radius direction, e, is the unit vector in axial direction, and

u is the velocity which is u = ue, + we,.

Since h < L
10 ou 0%u
2 —_— —— — [
v YT o <T8r>+8z2’ (6.3)
10 ou U
——|r=)~= 4
ror <T6r> h?’ (64)
0%u u
92~ I (6.5)
the dominant term is %% (T%). The equations in components are
op L1090 ([ Ou ul
“or TH [r@r (r6r> _7“2} =0 (6.6)
dp  ,10 [ Oow) _
—%"1',[1/ ror (T‘ar>—0. (67)

v

In (6.7), £ ~ &5 Hence in equation (6.6), & ~

L L () ~ e and

RS ror ~ gz and 3 ~ g
Since the crack width is much less than the radius h < R, the equation (6.6) becomes to

Op

— =0 6.8
or ’ (6:8)

so p is a function of z only.

Solve the equation (6.7) we have

1 d
w= o £T2 +Clogr + D, (6.9)
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. r—R
and since 5

R
logr = log(r— R+ R)—1logR+1logR = 10g<R+ )+logR

— " g iersof (F2E i
-~ R & R '

Hence, approximately,
Loy sy prof (T2R)
4p? dz' " R ’

The no slip boundary condition on the tear faces are

w=0 at r=-hi(z,t)+ R w=0 at r=hs(zt)+R,

we get

A — _Ldp(=hi+2R+hy)

4dz g ’
p — Ldp(=Rhi+ R?+ Rhy — hol)
 4dz w? '

The incompressibility condition gives

V-u=0,
10(ru) Ow
e R

Integrating the equation between —h; + R and R + ho and multiplying 27 gives

RBtha /19 (ru)  Ow
2”/}”1 T<r o 8z>d =0,

which is

] R—+hao

2n [ ] 2w [ ) i — (R ) ul)]

0z Rehy

0(—h Oh
+2m {(R — h1) w|p—p, (8z 1) — (R4 h2) w|gthy—— P 2l = o.

Since ¢ = 2« fR+ 2 rwdr and d fo(z = fi(2)q(f2(2),2) — f1(2)q(f1(2),
ff2(z) aq (r.2) dr, we have

% 427 [(R+ ha) ulpan, — (R — 1) ulp—n,]

+27r[ (R+ ho) wlgn, 22 + (R - hl)wlR_hla(gf”] _o
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(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

z) +

(6.19)
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The kinematic boundary conditions are

D
Dt (r—(R—h))=0, (6.20)
D (Rt ha)) =0 (6.21)
Dt 2 — Y .
which are written out in full
0h ohy
o T Ulr-n +wlr-p = =0, (6.22)
_Ohy Oho
r + UlRthy — W| Rty —— 9% =0, (6.23)
Put them in (6.19) we have
Oho Ohy dq
— - = .24
0 dq
R+h R—11)?)— == =0 6.25
(R + ha)? = (R = m)?) - 5L =0, (6:25)
7 lho = by +2B) (hs + h)) — 22 — ¢ (6.26)
o2 1 2 1 2, .
Since h; < R and hy < R, it becomes
0 dq
—[2R(ho + hy)] — == = 2
oy (2R (ke + )] = 57 =0 (6.27)
where
R+ho
q = 277/ rwdr
R—hy
R+ho
= 277/ < 1 dpr2+Ar+B)dr
R—hy 4pv d
1 dpw (6hyRhy® + 6haRhy”® + hy — ha* 4 2Rhy® + 2Rhy® + 2k hy® — 2hohs®)
T 24dz uY ’

and it becomes

1 dpm (6h1 Rho? + 6haRhy* + 2Rhs® + 2Rhy®)

24 dz e

1 dp

since h1 < R and ho < R.
Combine (6.27) and (6.28) we have

oh 1 0 (,3dp
5= 30 <h dZ) , (6.29)

which is used to describe the flow inside the tear.
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Non-dimensional equation

In this part the (6.29) is changed into non-dimension equation. From equation (5.5) the

pressure on the tear face is written as

p = /S},LT (z—s,7m)h(s)ds (6.30)

The pressure p has the dimension leO. We define h = Hyh*,z = Lz*,p = klfo Pt =

8%12 t*, where h*, z*, p*, t* are non-dimensional parameters. Hence we have h ~ Hy, z ~
Lt~ i{ﬂgg, St~ % and p ~ klfo. So the equation (6.29) changes to

w12 (i)

In following sections we will drop *’ for simplicity and we use this non-dimension lubri-

cation equation for our calculation.

Reynolds number

We can estimate Reynolds number as follows: typical length scale is the width of the
v L3

H3ky

width dissection, so for example we have Hy = 10™°m, and L = 10~2m. The viscosity of

blood p? is about 3 x 1073Pa - s, v is about 3 x 10_67"72, and kq in Chapter 5 is 2.3632kPa,

dissection Hp, and typical time scale is given by . Now we are considering a small

hence the time scale is around 10s. If the time interval At is 1s, and AHq is 1073 Hy,

which is close to our results in next section, the Reynolds number, which is expressed as

%AEO, is % x 1073 <« 1. Therefore the Reynolds number is very small, which satisfies

our assumption.

6.2 Evolution of a fluid filled artery

We will discuss how the distance h between the upper tear face and lower tear face changes
with time. By solving the equation (6.31) we find the opening of the tear changes in the
radius direction with time, and finally stops. We use the explicit method to test the
lubrication equation at first. For very small time interval this explicit method works,
but when the time interval increases this method doesn’t work anymore. Therefore an

implicit method should be employed, which has been proved much better. To illustrate



CHAPTER 6. FLUID DYNAMICS IN THE TEAR 155

the numerical method we use following expression

OO
_/L g (6.32)

which is similar as the result (3.61) in Chapter 3, to test our methods. Then we will use

the p (6.30) to solve the problem.

6.2.1 Implicit method for time-dependent function

The lubrication equation can be written in the form

Oh 10 (,30p
ot 30z 0z

2@@ + lh?’@

= h .
020z 3 022 (6:33)
L h
where p = / ——ds. The initial condition is
L (S — 2)2
h=hy at t=0. (6.34)
We discretize the integral equation p into N equal pieces
h / ! ds = Mrh (6.35)
pi = N T g @8 = Mgl .
Ly (8—2)?
where k=1,.... Nandi=1,...,N, and
1 €k 1 1] 1 1
Mik:/ 2dsz/ st:[— ] = - + .
L, (8 — zi) eny (58— 2i) $—2ile, e — % €p_1 — %
(6.36)
Hence p can be written into the matrix form p = Mh.
The implicit difference method gives us
hitt —po ontopitt 1 o*pp
i i (h’.‘“)Q i Pi - (h?”rl)?’ 9P (6.37)
At ! 0z 0z 3N 022
where
AT = Ah; + BT, pitt = Ap +pl', Ap; = My Ah;. (6.38)
Hence the equation (6.33) is written as
Ah; 2 0 (AhZ + hn) 0 (Apl + pn) 1 3 02 (Apl + pn)
Ah; + hi L i)y~ (AR 4+ R AT T
Ar © (BhirhD)TT oz 3BT
O0Ah; Op? 9 ORT OAp; Ohlr Op? 5 0%pl
= ((np)? Lot () R 2k R R AR+ (B])? S Ay
<(Z) dz 0z (k) 9z 9. 9. 02 + () 022

Uy OPADY o0 0BT 0P 1,5 0°p] 2
- (B(hi) S+ () TR S () )+ O(AY). (6.39)
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Define
Hij = 6507, (Ha)ij = 0i5(h7)%,  (Ha)ij = 0i(h})?, (6.40)
(Dap)ij = 0ij(D2p)i,  (Dp)ij = 6ij(Dp)i, (Dh)ij = 6i;(Dh);, (6.41)

where ¢ = 1,....N, j =1,..,.N, §;; = L for i = j, §;; = 0 for i # j and D, and D are

N x N matrixes

-3 4 =10 0 0 O
-1 0 1 0 0 0 O
0O -1 0 1 0 0 O
0
D=—= 6.42
2 0 0 0 0 (6.42)
0 0 0 .0
o 0 0 0 -1 0 1
. 0 0 0 0 1 -4 3]
(2 5 4 10 0 0]
1 -2 1 0 0 0 O
01 -2 1 0 0 0
82
Dy =—— = 4
2= 5 0 0 0 0 (6.43)
0 0 0 0
0 0o 0o 0 1 =21
0 0 0 -1 4 -5 2|
Write the equation (6.39) in the form of matrix we have
QAh = An (6.44)
where
At Hj
Q = I- ?(?)DQM — At(Hz)(Dap) — 2At(H)(Dh)(Dp) (6.45)
— At(Hz)(Dp)D — At(Hy)(Dh)DM, (6.46)
At
A = S(H;) (D) + AH(H) (DR)(Dp) (6.47)
T
n o= [ 1,1,..,1 } : (6.48)

Figures 6.2 and 6.3 show that h(z,t) changes with time, but finally stops.
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hiz

Figure 6.2: The profiles of h(z,t) with the initial hy = \/<1 + i) <1 —
N =101, and the final time 10.
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Figure 6.3: The profile of h(0,t) changes with time with the initial hy =

\/<1 + %) (1 _ %) L =1, N =101, and the final time 10.

Figure 6.2 is the profiles of h(z,t), which change along with time and finally stop. Fig-
ure 6.3 is the relation between h(0,¢) and time ¢, which shows that h(0,t) stops changing

before time ¢ reaching 2.
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Blood injection

The blood in the aorta interconnects with the blood in the tear. Now we assume the
steady slow flow is injected from the middle of the crack, we use the condition below to

replace the middle term of the matrix (6.44).
AP!% = Pinjection — p”!% (6.49)

Figures 6.4 and 6.5 show that h(z,t) changes with time, but finally stops.

hiz

Figure 6.4: The profiles of h(z,t) with the initial hy = \/<1 + i) (1 — i), L =1,
N =101, and the final time 10.

Figure 6.4 is the profiles of h(z,t), which change along with time and finally stop. Fig-
ure 6.5 is the relation between h(0,¢) and time ¢, which shows that h(0,t) stops changing

before time t reaching 6.
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Figure 6.5: The profile of h(0,¢) changes with time with the initial hy =

\/(1 n %) (1 - %) L =1, N =101, and the final time 10.

Tear on aorta based on Holzapfel Strain energy function

Now we use equation (6.30) to replace p, where S% (z — s,7) has been calculated in Chapter

D.

Without injection

If the injection is not considered and the initial tear is hg = \/(1 + %) (1 — %) We have
the results shown in Figure 6.6 and 6.7.

Figure 6.6 shows profiles of h(z,t), which change along with time and finally stop. Fig-
ure 6.7 shows the relation between h(0,¢) and time ¢, which shows that h(0,t) stops

changing before time t reaching 10.

With injection

If the injection is same as (6.49), and the initial tear is hg = \/(1 + %) (1 = %) We
have the results shown in Figure 6.8 and 6.9.

Figure 6.8 is the profiles of h(z,t), which change along with time and finally stop. Fig-
ure 6.9 is the relation between h(0,t) and time ¢, which shows that h(0,t) stops changing
before time t reaching 30.

Comparing Figure 6.6 and 6.8 we find h(0,t) stops at the place lower than 1 in Figure 6.6,

however the parabola h(t, z) becomes lower and wider. And h(0,t) stops at the place
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hitz)

Figure 6.6: The profiles of h(z,t) with the initial hy = \/<1 + i) <1 —
N =101, and the final time 100.
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Figure 6.7: The profile of h(0,t) changes with time with the initial hy =

\/<1 + %) (1 _ %) L =2, N =101, and the final time 100.

higher than 1 since the tear is inflated by the injection in Figure 6.8.
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hitz)

Figure 6.8: The profiles of h(z,t) with the initial hy = \/<1 + i) <1 -
N =101, and the final time 100.
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Figure 6.9: The profile of h(0,t) changes with time with the initial hy =

\/<1 + %) (1 _ %) L =2, N =101, and the final time 100.

6.3 Conclusions

In this chapter we have obtained equations to model the thin steady flow inside the dis-
section. And we have modelled how the distance between the upper tear face and lower
tear face along the tear changes with time. The work to couple fluid and elastic models,

that the details in a real artery will depend on the viscosity, and flow regime in which the
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fluid operates (low Reynolds number, high Reynolds number etc.) need to be considered
in the future. The propagation of the tear in the axial direction should be learned, and it

will be necessary to look at finite element methods.



Chapter 7

Conclusions

In this thesis we have analyzed and solved the 2D linear elastic plane crack problem for
infinite plane and 2D compressible and incompressible strip in Chapter 3. The approach
leads us to consider a numerical scheme to solve for the crack opening and displacements
given the traction on the crack faces. The axisymmetric linear elastic crack problem in
Chapter 4 for an elastic annulus has been studied. These crack problems are modelled
mathematically with equilibrium equations, boundary conditions and jump conditions.
Chapter 5 illustrates the mathematical model of the axisymmetric tear on the idealized
aorta, which is a thick-walled non-linear incompressible axisymmetric elastic tube with
residual stress and two family fibers and whose properties are described by the strain
energy function Holzapfel et al. [2000]. The tear problem is considered as the incremental
deformation, and decomposed into normal and tangential direction. We use the integral
of Green’s function weighted by the displacement continuity to express the traction and
displacement along the crack. The equilibrium equations of Cauchy stress and incremental
nominal stress with boundary conditions, and jump conditions are solved to obtain the
Green’s function kernel, and the numerical methods are expressed in this paper. Given
the traction along the crack the displacement along the crack is solved. We use the values
of the parameters in Holzapfel et al. [2000] to test our model. The parameters in the
strain energy function have effects on the opening of the tear, which are compared in our
results. In addition, we consider the pressure change inside the aorta as the incremental
inner pressure, and model the change caused by the incremental inner pressure.

The crack propagation is important and should be studied in the future. Referring to
Benson et al. [1957] if there is a tear in the overlying media and intima, a column of

blood under aortic pressure may then enter the false lumen and cause a more rapid and
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complete dissection due to Bernoulli’s law. The high pressure rips the tissue of the media
apart. This can propagate along the length of the aorta for a variable distance forward
and backwards. Hence the tear is filled with fluid. In general terms the fluid flow and
tear opening are coupled, and an evolution equation for the tear opening must be found.
In addition, a theory of propagation must include a criterion for tear extension and tear
direction. We didn’t discuss it in this thesis, however it is an important direction for the
development of a realistic tearing model that couples the elasticity of the aorta and the

fluid flow.
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Coefficients for ODEs in the
incremental crack problem of

Chapter 5

Below equations are coefficients of ODEs for Jump in 'w’ in Chapter 5.
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Er = pg
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— 2/3F (rin) (cos (8))* (a (1in))* = 2 F) (rin) (sin (8))* (az (rin))® = 2104 (rin)
sin () (rin))? (cos (8))* (ag (rin))* = 2 Fa (rin) (sin (8))* (az (rin))?
cos (8))* (ag (rin))* = 4/3 Py (rin) (sin (8))? (az (rin))? (cos (8))” (ag (rin))?
(Tin))

4

— 4/3 P (rin ? (a

(rin) ( )" (
(rin) ( )™ (
= 2/3F (rin) ( ) (
— 4/3P1 (i) (sin (8))" (

Tin Az \Tin

ar = L

W2
b = —QQMQ(Tm)JrW—?/?)Fl (rin) 9 (cos (8))? (g (rin))?
2B F (r) 9 (sin (8))? (a5 (rn))? — 2/3 F (rin) g (c0s (8))? (g (rn))?
/3 Fy (rin) g (sin (8)? (s (rn))? + g1t (ar (7in))?

- 2/3 gF (Tm) Iy (Tm) - 2/3 gFs (Tin) I (T’m)
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b w (ay (Tin))2
9 _
9Tin

by = M (ar (Tin))Q

9

By (rout) (cos (5))2 (ag (rout))Z B (rout) (sin (6))2 (a, (Tout))2

Cy = 4/3 ” —4/3 ,
— 4/3 Py (rout) (sin 7(05))4 (a (Tout))4 —4/3 P (rout) (Sinfnﬁ)f (a (rout))4
+4/3 Py (Tout) (COS,(«B))2 (ag (rout))2 +4/3 Py (Tout) (Cosiﬁ))4 (ag (Tout))4

P, (rout) (cos (5))4 (ag (rout))4 —4/3 B (rout) (sin (5))2 (a, (Tout))z

Tout Tout

+ 4/3

c6 = =i (ar (row))® = 4/3 P2 (rou) (sin (8))? (az (rour))” (cos (8))* (a (rour))?
— 14 (Tou) = 2/3 F1 (rout) (c0s (8))? (ag (rour))> + Peat — 4/3 Pt (rous) (sin (8))" (az (rour))*
— 2/3F (rout) (c0s (8))? (ap (rout))” — 4/3 Pt (rou) (sin (8))” (a2 (rout))? (cos (8))” (g (rour))”
— 4/3 Py (rour) (sin ()" (@ (rout))" — 2 Fi (rout) (sin (8))” (az (rour))?
— 2P (rour) (sin (8))? (@ (rou))”

2
ds = —pq(rout)g+ W —2/3 F (rout) g (cos (8))? (ag (rour))?

out

2/3 F1 (Tout) g (sin (5))2 (a (Tout))Q —2/3 F2 (rout) g (cos (/3))2 (ag (Tout))z

- 2/3 F2 (rout) g (Sin (5))2 (az (7ﬁout))2 + Pezt g

1% (ar (Tout))2
d6
9gTout
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Swrl (T)

Swr2 (7") =

Suzl(r)

= —pg(r)g+ -

COEFFICIENTS FOR JUMP IN ‘W’

_ oyl (r) (cos ()" (a (r))" La3ht (r) (cos (8))" (ag ()"

T r

g P2 (r) (sin (8))" (a= (r))" 4301 (r) (sin (8))* (az ()"

T r

_ 4/
43 Fy (r) (sin (é))Q (as (1)) L4 Fy (r) (cos (f))2 (ag (1))*

435 (r) (cos (f))2 (ag (r)* _ 432 (r) (sin (é))2 (az (r))”

—4/3 Py (r) (sin (8))" (az (r)"

4/3 Py (r) (sin (8))* (az (r))* (cos (8))* (ag (r))*

4/3 Py (r) (sin (8))" (az ()" = 2F1 (r) (sin (8))° (az (r))*

i (ar (r)* = 4/3 Py (r) (sin (8))? (az (r)* (cos (8))* (ag (r))*

pa(r) =2 F (r) (sin (8))° (az (r)* = 2/3 Fa (r) (cos (8))” (ag ()’

)
2/3 Fy (r) (cos (8))* (ap (r))*

—2/3F1(r) g (cos (8))* (ag (r))*

p (ar ()
gr

r2
— 2/3F1(r) g (sin (8))* (az (r)* = 2/3 F2 () g (cos (8))® (ag ()
— 2/3F(r)g(sin(B)

)* (az (r)*

2
Suna(r) = — (a; ;7“))
suus(r) = (ar (r))?

171
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e = 4/3 , +4/3 ,
Loyl (COS(TB)) (g (re))” _ g F1 (1) (Sm(f)) (a: (re))*
Loyl (COS(f)) (g (re))” _ g P2 (re) (Sm(f)) (a: (o))"
_ gyl (Sin(f)) (a: (re))” 43 Dlre) (Sm(f)) (a: (o))"

2 = —puYso—2/3F(rc) (cos (8))" (ag (re))* = 2/3 Fi (re) (cos (8))* (ag (rc))”

— 2B (r) (sin(8))* (az (re))* = 4/3 Py (re) (sin (8))" (az (re))* = 2 F1 (re) (sin (8))* (az (re))?
— p(ar (re))? = 4/3 Py (re) (sin (8))* (a (re))"

— 4/3P2(rc) (sin (8))* (az (re))? (cos (8))* (ag (re))?

— 43Py (re) (sin (8))* (az (re))* (cos (8))” (ag (re))?

€4 = U

es = 4/3 . +4/3 ;
L4 Py (re) (cos (B8))" (ag (re))" 4/3 Fi (re) (sin (8))* (a5 (re))?
+o4/3 By (re) (cos (ﬂ))z (ag (TC))Q —4/3 P (re) (sin (8))” (az (TC))4
— 43 Fy (re) (sin (8))° (az (re)® 4/3 Py (re) (sin (8))" (a2 (re))”
6 = —p Yoo —2/3Fs(re) (cos (8))? (ag (re))? — 2/3 F (re) (cos (8))* (ag (re))?

— 2P (re) (sin(8))° (az (re)* — 4/3 P2 (re) (sin (8))" (az (re))" = 2 F1 (re) (sin (8))* (a2 (rc))?
— p (ay (re)* = 4/3 Py (re) (sin (8))" (az (re))*

— 4/3P2(rc) (sin (8))* (az (re))? (cos (8))* (ag (re))?
— 4/3P1(r) (sin (8))* (az (re)? (cos (8))* (ag (re))?
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€8 = 1

2
M(gg)) —2/3Fi () g (cos (8))? (ag (rc))” = 2/3 Fy (re) g (sin (B))? (as (rc))”

— 2/3Fy(rc) g (cos (B))* (ag (re))* —2/3 F2 (re) g (sin (8))* (a2 (1))

J1 = —uYg+

ho— -
gre
fa = _M(ar(Tc»Q
g
2
o= —mmg+W—2/3Fl (re) g (cos (8))2 (ag (r))? — 2/3 Fi (re) g (sin (8))? (as (rc))?

— 2/3Fy(rc) g (cos (8))* (ag (re))* —2/3 F2 (re) g (sin (8))* (az (r))?

gre




Appendix B

Coefficients for ODEs in the
incremental crack problem of

Chapter 5

Below equations are coefficients of ODEs for Jump in 'u’ in Chapter 5.

a = RO P (B) 0 )

~—
~—
(V]
Q
—~
wn
=
=}
—~ 3
=)
~—
~—
[\
—~
S
N
—~
=3
~—
~—
(V]

Py (r) (cos (8))* (ag (r

4 a3 P (08 () (09 (1) g

NS S A AL TL O O
s (1) (e0s (5))* (a9 (r))* g

Pa (1) feos ()" (an (1)* g sin () (3 (1)* o P2 (1) (cos ()" a (1)
Py (1) (s ()" (0. (r)'

r T

= 23 () gleos (90 (aa () = 2/3 (-1 (1)) sin (9)) o (1)

- 4

d
—2gpay (1) %ar (1)

= 23 (P ) afeos (90 (an (1) = 2/3 (P2 (1)) sin (9)) (o (1)

+ 2/3gFi(r) dirh (r)+2/3g¢ (;lrfﬁ (7’)) Iy (r)+2/3gF>(r) dirIG (r)

war (r) d%ar ()
gr?

+ 2/3g <$FQ (7’)) Is (1) +2

— A/3FL(r) g (cos (8)) a0 () a0 (1) = 4/3F1 (1) g sin (8))* az (1) - (1)

— 4/3E (1) g cos () ag (r) - (r) — 4/3F> (r) g (s (8))? oz (1) -

174
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Er = pg
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—2F (r) (sin (8))? (az (1))? ¢
L Fy (1)) (cos (B))? (ag (r))?

Fy (r) (sin (8))° (az (r)* 16/3 22 (r) (cos (8))" (ag (r))* fag (r)

b (o ()2~ L0 () g (e () (cos (8) (s (r))*

(P21 () (sin (8))* (az (r)*

Py (r) (sin (8))" (az (r))* fa (r)

176

r r
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16/3 P (1) (sin ()" (0 (r))* Lz (r) +4/3 Fy (1) (cos (8))% ag (r) a9 (1)

177

dr d
CE ) (i (50 o (1) Lo () 20 P O (1) s ()° o (1)
N dr Tt r r
A/3F (r) (cos (9))* ay (r) -9 (1)
8/3 Py (r) (sn (9))2 (a () (cos (8) ag () - (1)
d 2

§/3 71 ) s (9)) 0 (1) 1 (1)) Ceos (90 (a0 (1)

d

8/3 P1 (r) (sin (8))* (az (r))* (cos (8))* ag () 2, (7)

13 (P2 () 6 (8)F a0 (1) con () (an (1)
d

§/3 2 (1) s (8) 0. (1) (0 1)) (o (90 (an (1)

d

2/3 (51 (1) cos 30 (a0 (1)) +2 (2 (1)) 6 ) (o= ()

2/3 <dF2 (r)

P () (s 8)R o () + 473 (£22 () Gsn (8)* (. ()"

dr

43 2 (1) (sin (@)2 (a: ()* 43 o) (eos (é))4 (a9 (r))"
43 L2 (r) (sin (ﬁ))4 (a: ()" 10,3 F(r) (eos (f))2 (ag (r))*
2 2
10/3 £2(r) feos (’f)) (@0 (1) 4 16/3 Py (1) (sin ()" (s (r))° dilraz (r)

215y (r) L1y ) - S _ g Pl cos0) )
TG IEC ) O
13 (o7 0) G5 (0. () +2 (073 (1)) Gin () (o (1)
LR (60 (3) 0 () 0. (1) - 213 (222 () B )

d
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2+ 4/3 Py (r) (sin (8))* (az (1)) (cos (8))* (ag (1))

(sin (8)) (az (r))* (cos (8))* (ag (r))* +4/3 Py (r) (sin (8))" (az ()"
(sin (8))* (az (r))* + 4/3 F2 (r) (sin (8))° (az (r))?

(sin (8))* (az ()"

Co = p(ar(r))
+ 4/3Pi(r)
+ 4/3F1(7')
)

+ 4/3P2 (T’

Fy (1in) (cos (8))* (ag (rin))? Py (1in) (sin (8))* (az (rin))*

a = —4/3 . +4/3 -
g Pl (cos B o (), 3 FiL(rn) sin (3)) (o (rin)?
4y Patrin) (cos ) (o (r) 4 473 P (sin ) o )’
o a3 P2 () (sin <§§>2 (0 (rn))? _ 5 P (1) (cos (?)34 (00 (n))’

az = 4/3Pi (rin) (sin (8))* (az (rin))* (cos (8))* (ag (rin))* + 4/3 P2 (rin) (sin (8))* (az (rin))"
4/3 Py (1) (sin (8))” (az (rin))* (cos (8))° (ag (rin))* + 2 F1 (rin) (sin (8))* (az (rin))*
2114 (rin) +2/3 F1 (rin) (cos (8))° (ag (rin))* + 2 F (rin) (sin (8))* (a (rin))*
4/3 Py (rin) (sin (8))" (az (rin))* + 2/3 2 (rin) (cos (8))* (ag (rin))?
(

2/3 Fy (Tzn) 1y (rm) + 2/3 Fy rm Ig (rm)

+ o+ o+ o+

aqg = — W

W2

b = —QQMQ(Tin)+w—2/3F1 (rin) g (cos (8))? (ap (rin))?
— 2/3F (rin) g (50 (8))? (az (13n))? — 2/3 F3 (13n) g (cos (8))? (ag (74n))?
/3 Fy (rin) g (sin (B)? (s (rn))? + g1t (ar (7in))?

— 2/3gF1 (rin) Iy (rin) — 2/3 gF> (Tin) I (1in)
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_H (ar (Tin))2
gTin,

by =

1 (ar (rin))

s = —4/3 Py (Tout) (Cosiﬂ)f (ag (Tout))4 —4/3 Fi (rout) (Cosfnﬁ)f (ag (Tout))z
F1 (1ou) (sin (5))2 (a, (7"ouzt))2 +4/3 Py (out) (sin (5))4 (a, (Tout))4

Fy (rout) (cos (5))2 (ag (Tout))Q +4/3 Fy (Tout) (sin (B))2 (a, (Tout))Q

Tout Tout

Py (Tout) (cos (5))4 (ag (rout))4 +4/3 Py (Tout) (sin (5))4 (a, (Tout))4

Tout Tout

+ 4/3

— 43

— 43

4/3 Py (rou) (sin (8))” (az (rour))? (c0s (8))” (ag (rour))* + 4/3 Pa (rour) (sin (8))* (a2 (rous))’
4/3 Py (rour) (51 (8))” (az (rour))? (cos (8))* (ag (rout))? + 2 Fi (rous) (sin (8))* (az (rour))?
10 (Tout) + 2/3 Fi (our) (c0s (8)) (ag (rour))* + it (ar (rour))?

2 Fy (rout) (sin (8))? (@ (rowr))* + 4/3 Pt (rour) (sin (8))* (a (rour))*

2/3 Fy (Tout) (COS (/B))Q (QG (Tout))2 — Peg

C6

+ o+ o+ o+

cg = — U

2
ds = —pq(rou)g+ W —2/3Fy (rout) g (cos (8))? (ag (rout))?

out

2/3 F1 (Tout) g (sin (5))2 (a (Tout))Q —2/3 F2 (rout) g (cos (/3))2 (ag (Tout))z

- 2/3 F2 (rout) g (Sin (5))2 (az (7ﬁout))2 + Pezt g

_H (ar (Tout))2
gTout

dg =
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Surl(r) = _4/3
_ oyt (r) (cos (f)) (ag (r)) La3 (r) (sin (8))” (a= (1))
b ol (r) (sin (f)) (az (r))* _yst2 (r) (cos (f)) (ag (r))*

Sura(r) = 4/3 P

+ + + + +
[\
|
Ve
=
—
wn
2
=
~~
i)
N~—
[\
—
S
N
—~~
=
N—
N—
[\
+
S
w)
—~
=
N—
+
[\
~
w
s
—~
=
N—
—~~
@)
o}
wn
~~
i)
N—
N~—
—
Q
>
—~
=
N—
N—
[\

—2/3F1(r) g (cos (8))° (ag ()
? (az (r))* = 2/3 F, (r) g (cos (8))* (ag (r))*

Sut(r) = —pq(r)g+
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€2

€6

+ o+ o+

er = —4/3 . +4/3 ;
g3 Filre) (cos (B))C (a9 (re))” | 4/ F1(r) (sim (5);2 (az (re)*
v oz (Sin(;C)) (az ()", /3 P2 (re) (cos (;C)) (ag (rc))
+ a3 2o (sm(%c)) (az (e)” _, sz Prlre) (cos(:ﬁc)) (ag (re))

)2 (cos (8)) (ag (r))? +4/3 3 (1) (sin (8))" (a (ro))’*
)2 (cos (8))* (ag (r))? + 2 F (1) (sin (8))° (az (ro))? + uYig
)

2+ (ar (r)” + 2y (re) (sin (8))* (az (re))?

es = —4/3 . +4/3 ;
3 F (re) (cos (f)f (ag (r¢)) +4/3 Fy (re) (sm(f)) (az (re))’
L3 P (re) (sm(f)) (az (re)" 4/3 Fy (re) (cos(f)) (ag (r¢))
L3 Fy (re) (sm(f)) (az (re)” 4/3 Py (r¢) (cos (f)) (ag (rc))

4/3 Py (re B))? (ax (re))” (cos (B))” (ag (re))* +4/3 Py (re) (sin (8))" (az (re))
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N

fs

_ —mgg+((c”—2/3m (re) g (cos (8))? (ag (re))?
23 () g (sin (B))? (as (r2))? — 2/3 Fs (1) g (cos (8))? (ap (re))?
23 (r) g (sin (8))? (as (ro))’?
fo = M (ar(rc))2
gre
fy = M (ar(TC))2
g
2
= —uvinog + G s () g (cos ()2 a0 ()
23R (r)g (re))? — 2/3 Fy (re) g (cos (8))° (ap (r2))?

(sin (6))* (a=
B)

— 2/3Fy(r.) g (sin(8))* (a,

fo =

fr =

(re))”

182
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Coefficients for ODEs in the
incremental inner pressure of

Chapter 5

Below equations are coefficients of ODEs for incremental inner pressure in Chapter 5.

(d%Fl (7")) Iy (r) Fi(r) d%Ll (r)

d
f5(r) = 2a,(r) iy (r)—2/3 . —2/3
oy BRIy RO, )
~ (ag(r)” o £1(r) (cos (B))” (ag (r))
r wr
o B2 (1) (cos (B))" (ag (r)?
wr

183
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Py (r) (cos (8))" (ag (r))* Py (r) (cos (8))" (ag ()"

f2(7") = _4/3 ,u?"2 _4/3 ,u7“2
4 g3 D) (cos (B) (@ i)) (sin (8))” (a= (1))*
+ g3l (r) (cos (8))* (ag 5232 (sin (8))° (az (r))?
_ B0 eos(B) an () fan(r) _, o Fo1) (6in(8) a: (1) ras (1)
ur ur
_ a3 B (003 (8)* (a0 (1) (sin () (e (1))
nr
_ g3 PO (cos (B)" (a0 ()" Frao (r)
ur
_ g3 P (o8 (8)) a0 () (oo (1) (sin (8)) (4 ()’
ur
_ g3 P (c0s ()" (an (1)) (sin (8) o (1) oz (1)
ur
_ a3 EP(0) (003 (8)® (a0 (1) (sin (8)) (4 ()’
ur
163 ) (cos (B (@ ()" oo (1)
wr
_yyl@P0) <M 7@)4 (@0 ()", 5 (P2 () <M 7@)4 (ap ()*
@GR (s @) (@), o GEF 0) 6n(3)” @ 1)’

wr wr
(4 F2 () (cos (8))* (ag (r))* 2/3 (452 () (sin (8))* (a= (1))
uwr ur

- 2

+ 8/3

Fi (1) (eos (8) (a0 ()" ¢ 0 Po (1) (cos (B))* a0 ()" (P () 1a )

pr? pr? pr

Fy <r>ﬁf4 ") 4 53 (& F> <M>) Io(r) | o5 2 <r>ﬁfﬁ (r)

Py (r) (cos () ag (r) (ap (1)) (sin (8))? (- (1))
wr

Py (r) (cos (8))” (g (r))* (sin (8)) @z (r) o= (r)

+ 2/3

— 8/3

— 8/3

Fy (r) (cos (8))* ag (r) fag (r)

pr o
Fy (r) (sin (8))*ax (1) graz (r) _ ar (1) oo (1)

— 4/3
/ wr r
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P1(Tin)

P2(Tin)

D3 (Tc) = -

_ 9 By (rout) (cos (5))2 (ag (Tout))Q

4/
4/3

4/3
9 Fi (rout) (cos (5))2 (ag (Tout))2

_9 MYa5

~2/3

185

Fi (rin) (i (8))° (az (rin))?

Tin Tin

F (rin) (sin (8))* (az (rin))”

_ o F2(rin) (cos (8))° (ag (rin))*

2/3

Tin

Py (rin) (cos (8))" (ag (rin))*

Tin

Fi (rin) (cos (B))” (ag (rin))”

4/3

Tin

4/3

-2

Py (rin) (cos (8))" (ag (rin))"

Tin

4/3

Tin

Py (rin) (cos (8))* (ag (rin))* (sin (8))* (a= (rin))?

y FL) 10 (r) g P

Tin

F5 (1in) 16 (Tin)
Tin

Py (rin) (cos (8))* (ag (rin))* (sin (8))* (a- (rin))?

4/3

Tin

p Yas K (ar (Tout))2

—4/3

Py (rout) (cos (5))4 (ag (Tout))4

Tout Tout

Tout

Py (rout) (cos (B))* (ag (rour))’

Tout

o 21 (Tout) (cos (8))° (a9 (row))” (sin (8))” (az (rour))”

Py (rout) (cos (ﬁ))2 (ag (Tout))2 (sin (5))2 (a. (TOut))2

Tout

Tout

Tout

Fi (rout) (sin (ﬁ))2 (az (Towt))2

—2/3

Tout

Pea:t

~92/3

By (o) (sin (8))* (0 (rour))?

Tout Tout

pYs o lar () Py () (cos () (ao ()
\ /32 () (05 (9) (1) 5 30 a2 ) _ 13 P2 re) (c0s () (0o (r0)*
43 P lre) (cos (9)* (ag () (5n (8) (0 () LR (s (8)" (00 5
3 F1.r0) (sin (8)) (o m , Fa(re) (cos (8) (ao (1))’ ’
iy (r0) (50 (8) (s () ’

Tc



APPENDIX C. COEFFICIENTS FOR INCREMENTAL INNER PRESURE 186

) — 43 Prre) (cos (8))* (ap (r))*

Te Te Tec

Py (re) (cos (8))* (ag (re))* (sin (8))° (as (rc))”

Tc

Py (re) (cos (8))" (ag (rc))"

Tc

Py (re) (cos (8))* (ag (re))* (sin (8))* (az (re))* o £ (rc) (cos (8))* (ao (re))*

~ 43

~ 43

— 4/3

Te Tc

Fy (re) (sin (8))° (az (re))* o £2 (rc) (cos (8))° (ag (rc))?

Te Tc

F (re) (sin(8))° (az (re))*

Tc

~ 93

~ 9/3

Sry — _Ma0) g ar () PLE) (eos (8)* (at (r)*

P1 (r) (cos (8))* (at (r))* (sin (8))* (az (r))*
P2 (r) (cos (8))" (at (r))*

r

_ oy t2 (r) (cos (8))* (at (:))2 (sin (8))* (az (r))*

_ g F1(r)(cos (8))° (at (r))* 53 11 (r) (sin (8))* (az (r))*

F2 (r) (cos (8))* (at (r))* F2 (r) (sin (8))* (az (r))*

r

— 4/3

— 4/3

- 2

—2/3

Ar) = 2a,(r) dilrar (r)—2/3 (%Fl (;)) Lo () -2/3 w
~ 9/3 (& Fo (;)) Ig (r) 2/3 By (r) LI (r1) N (ar Y))z

(@ () o £1(7) (cos (8))* (ag (r))* o £2(r) (cos (8))* (g (r))?
r ur wr
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Py (r) (cos (B))% ag (r) (& ag (r)) (sin (8))” (az (r))?

r

5 P2 (7) (cos (8))” (a (r))” (sin (8))” (e ()’

B(r) = -8/3

+ 8/

2 ~16/3 Py (r) (cos (5))1@9 (r))? d%ag (r)

(e P1(r)) (cos (B))* (ap (r))* (sin (8))” (az (r))*

r

(r) (cos (8))" (ag (r))° g ag (r)

~ 43

— 16/3 e
Py (1) (cos (B))? ag (r) (L ag (r)) (sin (8))° (a. (r))?

Py (r) (cos (8))* (ag (1)) (sin (8))° as (r) 4L a. (r)

r
2

— 8/3

— 8/3

Py (r) (cos (8))° (ag (r)* (sin (8))* (. (r))?

+ 8/3

Py (r) (cos (8))* (ag (1)) (sin (8))* as (r) jLa. (r)

~ 8/3

r r

(L F, (r)) Is (r) L3 Fy (r) 1 (r) N Fy (r) 14 (r)
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pYar 4/3 Py (r4n) (cos (8))* (ag (rin))*

Py (7in) (cos (8))* (ag (rin))* (sin (8))* (a (in))?

a(r) = =2

— 4/3 ;"
Py (rin) (05 (8))* (1 (rin))*

Py (rin) (cos &5)2 (a9 (rin))* (sin (8))° (: (rin))”

Fi (rin) (cos (8))° (a9 <>> _ 3 F10) 611 (8)) (02 (1in))°
F (rin) (cos &5)2 (a0 (rn))” ;5 P2 (rin) (sin %)2 (a: (rin))’
RO o Pl

Tin Tin

~ 43

— 4/3

- 2

- 2

~ 93

b(r) = _Nr:;c:l _H (arr(()::ut))z ~ g Plrow) (CC>S7(;5;)75)4 (ag (rou))*
P1 (rout) (cos (8))* (ag (rour))” (sin (83))* (az (rour))”

Ps (1out) (cos (5))4 (ag (rout))4

Py (rout) (cos (5))2 (ag (Tout))z (sin (5))2 (a. (Tout))2

Fi (rout) (cos (6))2 (ag (7'out))2

~ 43

— 4/3

~ 43

- 2

. —9/3 By (rout) (sin iﬂ))Q (a, (rout))2

F2 (rout> (COS (5))2 (ae (rout»2 - 2/3 F2 (rout) (Sin (5))2 (az (7"0ut))2 + Pezt

- 2
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