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Abstract

An aortic dissection is a tear of the intima of the aortic wall that spreads into the media

or between the media and adventitia. In addition to the original lumen for blood flow,

the dissection creates a new flow channel, the ‘false’ lumen that may cause the artery to

narrow or even close off entirely. Aortic dissection is a medical emergency and can quickly

lead to death.

The mechanical property of the aorta has been described by the strain energy function

given by Holzapfel et al. [2000]. The aorta is idealized as an elastic axisymmetric thick-

walled tube with 3 layers. We focus on the dissection in media, which is considered as

a composite reinforced by two families of fibres. We assume the dissection in the media

is axisymmetric. The mathematical model for the dissection is presented. The 2D plane

crack problem in linear elastic infinity plane and 2D strip, the axisymmetric crack problem

in linear elastic compressible and incompressible tube, the axisymmetric crack problem in

an incompressible axisymmetric aorta are applied to obtain solutions to three different

problems. And the fluid flow inside the crack has been studied.

The 2D plane crack problem in linear elastic infinity plane has been solved analytically.

The 2D plane crack problem in linear elastic compressible and incompressible strip is mod-

elled respectively and solved numerically.

The models for axisymmetric crack problem in linear elastic compressible and incom-

pressible tube are presented respectively. The numerical solutions for the crack problems

are expressed, and the results are analyzed.

The mathematical model of the incompressible aorta axisymmetric dissection is given,

and the solutions are found numerically. The results change along with the different pa-

rameters in the strain energy function, which are analyzed and compared.

The fluid flow inside the tear is assumed very thin which is expressed as the lubrica-

tion theory. We use the implicit method to model the Stokes equation numerically, and

test the crack opening change along with time.
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Chapter 1

Introduction

The aorta is the largest artery in the body, originating from the left ventricle of the heart

and extending down to the abdomen, where it bifurcates into two smaller arteries. The

aorta distributes oxygenated blood to all parts of the body through the systemic circula-

tion. The aorta is usually divided into three segments: the ascending aorta, the arch of

aorta and the descending aorta as shown in Fig 1.1. The descending aorta is composed

of thoracic aorta, the half of the descending aorta above the diaphragm, and abdominal

aorta, the half of the descending aorta below the diaphragm.

Figure 1.1: The aorta is divided into three segments: the ascending aorta, the arch of

aorta and the descending aorta.

An aortic dissection (Holzapfel [2009]) is a tear of the delicate intima of the aortic wall that
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spreads into the media or between the media and adventitia. In addition to the original

lumen for blood flow, the dissection creates a new flow channel, the ‘false’ lumen that may

cause the artery to narrow or even close off entirely. Simultaneously, the dissection may

cause the formation of a thrombus from which fragments embolize. Aortic dissection is

a medical emergency and can quickly lead to death, even with optimal treatment. If the

dissection tears the aorta completely open (through all three layers), massive and rapid

blood loss occurs. Aortic dissections resulting in rupture have an 80 % mortality rate, and

50 % of patients die before they even reach the hospital. Aortic dissection is divided into

acute and chronic types (Khan and Nair [2002]), depending on the duration of symptoms.

Acute aortic dissection is present when the diagnosis is made within 2 weeks after the ini-

tial onset of symptoms, and chronic aortic dissection is present when the initial symptoms

are more than 2 weeks duration. About one third of patients with aortic dissection fall

into the chronic category. The most common site of initiation of aortic dissection is the

ascending aorta (50 % of the cases) followed by the aortic regions in the vicinity of the

ligamentum arteriosum.

Figure 1.2: The sketch of an aorta and aortic dissection.

Several different classification systems have been used to describe aortic dissections. One

is the DeBakey system (DeBakey et al. [1961]),which categorizes the dissection based on

where the original intimal tear is located and the extent of the dissection: Type I orig-
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inates in the ascending aorta, propagates at least to the aortic arch and often beyond it

distally; Type II originates in and is confined to the ascending aorta; Type III originates

in the descending aorta, rarely extends proximally but will extend distally. The Stanford

classification consists of the following two types. Type A, which involves the ascending

aorta and/or aortic arch, and possibly the descending aorta. The tear can originate in the

ascending aorta, the aortic arch, or, more rarely, in the descending aorta. It includes De-

Bakey type I, II and retrograde type III (dissection originating in the descending aorta or

aortic arch but extending into the ascending aorta). Type B, which involves the descend-

ing aorta or the arch (distal to right brachiocephalic artery origin), without involvement

of the ascending aorta. It includes DeBakey type III without retrograde extension into

the ascending aorta.

Aortic dissections are observed in clinical practice. Suzuki et al. [2003] have analyzed

384 patients with acute type B aortic dissection enrolled in the International Registry of

Acute Aortic Dissection (IRAD). The effect of tear depth on the propagation of aortic

dissections in isolated porcine thoracic aorta is observed by Tam et al. [1998], which deter-

mines the relationship between the depth of tear and propagation pressure of a bleb using

an in vitro porcine model. Sixteen patients with descending thoracic aortic dissection,

intimal disruption close to the subclavian artery, and extension of the dissection into the

aortic arch or the ascending aorta are described in Segesser et al. [1994]. Parker et al.

[1975] outlines the rationale for therapy and the current method of managing acute dis-

section. The pathophysiology, classification, clinical manifestations, early diagnosis, and

management of acute aortic dissection is discussed by Kamalakannan et al. [2007]. Nine-

teen consecutive patients with aortic dissection underwent open surgery, which all received

aortic reconstruction with vascular grafts, are studied by Wei et al. [2009].

The arterial histology has been studied by Holzapfel et al. [2000].

A health elastic artery is composed of three layers: the intima, the media,

the adventitia. The intima is the innermost layer consisting of a single layer en-

dothelial cells that rests on a thin basal membrane and a subendothelial layer

whose thickness varies with topography, age and disease. In healthy young

individuals, the intima is very thin and makes an insignificant contribution

to the solid mechanical properties of the arterial wall. However, it should be
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noted that the intima thickens and stiffens with age (arteriosclerosis) so that

the mechanical contribution may become significant.

The media is composed of smooth muscle cells, a network of elastic and col-

lagen fibrils and elastic laminae which separate the media into a number of

fibre-reinforced layers. The media is separated from the intima and adventitia

by the so-called internal elastic lamina and external elastic lamina (absent in

cerebral blood vessels), respectively. The orientation of and close intercon-

nection between the elastic and collagen fibrils, elastic laminae, and smooth

muscle cells together constitute a continuous fibrous helix. The helix has a

small pitch so that the fibrils in the media are almost circumferentially ori-

ented. This structured arrangement gives the media high strength, resilience

and the ability to resist loads in both the longitudinal and circumferential di-

rections. From the mechanical perspective, the media is the most significant

layer in a healthy artery.

The adventitia is the outermost layer of the artery and consists mainly of fi-

broblasts and fibrocytes (cells that produce collagen and elastin), histological

ground substance and thick bundles of collagen fibrils forming a fibrous tissue.

The adventitia is surrounded continuously by loose connective tissue. The

primary constituents of the adventitia are thick bundles of collagen fibrils ar-

ranged in helical structures. The wavy collagen fibrils are arranged in helical

structures and serve to reinforce the wall. They contribute significantly to the

stability and strength of the arterial wall. The adventitia is much less stiff

in the load-free configuration and at low strains than the media. However,

at higher strain the collagen fibres reach their straightened lengths and the

adventitia changes to a stiff jacket-like tube which prevents the artery from

overstretch and rupture.

The structure of the media give it high strength, resilience and the ability to resist loads

in both the longitudinal and circumferential directions. From the mechanical perspective

(Holzapfel et al. [2000]), the media is the most significant layer in a healthy artery. Dis-

sections usually happen in media or between the media and adventitia. In this thesis we

mainly focus on the dissection in media, the artery is considered as incompressible material

since it does not change their volume within the physiological range of deformation.
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Figure 1.3: Diagrammatic model (Holzapfel et al. [2000]) of the major components of a

healthy elastic artery composed of three layers.

A Continuum-mechanical framework is specified in Holzapfel et al. [2000]. They pro-

vide the general continuum description of the deformation and the hyperelastic stress

response of the material. The artery is considered as a thick-walled circular cylindrical

tube subjected to various loads. The strain measures to be used are specified and the

equilibrium equations are discussed. Residual stress and pre-stretch play important roles

in the artery. The active mechanical behaviour of arterial walls is governed mainly by the

intrinsic properties of elastin and collagen fibres and by the degree of activation of smooth

muscles. Some constitutive models for arterial walls are introduced by Holzapfel et al.

[2000].

In addition, a new constitutive model for arterial walls is given by Holzapfel et al. [2000],

They proposed strain energy functions that model each layer of the artery as a fibre-

reinforced composite. A constitutive model which incorporates some histological infor-

mation is formulated. The material parameters involved may be associated with the

histological structure of arterial walls (i.e. fibre directions). Arteries are composed of

(thick-walled) layers with a separate strain-energy function. From the engineering point
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of view, each layer may be considered as a composite reinforced by two families of (col-

lagen) fibres which are arranged in symmetrical spirals. Each layer responds with similar

mechanical characteristics and therefore the same form of strain-energy function for each

layer is used (but a different set of material parameters). In a healthy young arterial

segment (with no pathological intimal changes), the innermost layer of the artery is not of

solid mechanical interest, and they therefore focus attention on modelling the two remain-

ing layers, i.e. the media and the adventitia. It is then appropriate to model the artery as

a two-layer thick-walled tube (with residual strains) using the strain-energy functions in

Holzapfel et al. [2000].

Figure 1.4: Diagrammatic model of media and adventitia as two-layer thick-walled tube.

Arterial dissection has been studied by Gasser and Holzapfel [2006], which focus on the

solid mechanical and structure aspects and the geometry of the artery, and captures the

displacement discontinuity during arterial dissection they employ the Heaviside function

up to an enhanced displacement field. A single-field variational formulation leads to two

variational statements, which, together with their consistent linearizations, form the basis

for implementations in a finite element program. Geometrically non-linear and consistently

linearized embedded strong discontinuity models for 3D problems with an application to

the dissection analysis of soft biological tissues have been studied by Gasser and Holzapfel
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[2003].

The blood inside the dissection is connecting with the blood in the aorta. Referring

to Benson et al. [1957] if there is a tear in the overlying media and intima, a column of

blood under aortic pressure may then enter the false lumen and cause a more rapid and

complete dissection due to Bernoulli’s law. This happens because the lateral pressure of

the stagnant column of blood and clot within the dissection will exceed that in the swiftly

flowing main column of blood. According to Benson et al. [1957] a second tear in the aortic

wall may follow. If the second defect is through the adventitia, massive hemorrhage and

death usually occur. If the second defect is through the internal layer, the lateral pressure

in the false lumen will drop, again in accord with Bernoulli’s law, and further dissection

may occur. Therefore the tear propagation need to be considered. We won’t be discussing

these in this thesis, however it is an important direction.

In order to understand the tear of the elastic material we review several articles. The

evaluation of stress intensity factors for plane cracks in residual stress fields by Wilks

et al. [1993] gives the modelling of residual stress, and analyze the crack by using the

dislocation density method. In Yang et al. [2001] a cohesive zone model for fatigue crack

initiation and growth in quasibrittle materials is proposed. Leise et al. [2010] considers the

problem of the dynamic, transient propagation of a semiinfinite, mode I crack in an infinite

elastic body with a nonlinear, viscoelastic cohesive zone. And they presented a combined

analytical/numerical solution method that involves reducing the problem to a Dirichlet-

to-Neumann map along the crack face plane, resulting in a integro-differential equation

relating the displacement and stress along the crack faces and within the cohesive zone.

Ortiz and Pandolfi [1999] has developed a three-dimensional finite-deformation cohesive

element and a class of irreversible cohesive laws which enable the accurate and efficient

tracking of dynamically growing cracks. A method is outlined for the determination of

cohesive zone properties in soft materials in Nilsson [2005]. The goal of the study was to

extend earlier work assuming linear kinematics and linear elasticity to include non-linear

kinematics and finite elasticity. Explicit results for cohesive traction determination are

given and discussed.

The following papers indicate how to deal with the jump conditions of the crack face
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for the axisymmetric crack problems. Axisymmetric crack problems has been solved as

the singular stress-displacement field resulting from the introduction of a Somigliana ring

dislocation in an isotropic linear elastic solid by Demir et al. [1992]. The Burgers vector

of this dislocation has two components, one being normal to the plane of the circular ring

dislocation (Vulterra type) and the other being in the radial direction of the ring disloca-

tion everywhere (Somigliana type). The analytical solution, in terms of complete elliptic

integrals of the first, second and third kinds, is obtained using the Love stress function and

Fourier transform. In Korsunsky [1995] the fundamental eigenstrain solutions are derived

for axisymmetric crack problems. The solutions are found in terms of Papkovich-Neuber

potentials, which in turn are expressed using one function from the family of Lipschitz-

Hankel integrals. In order to achieve the most concise form, two methods are used in

the analysis: integration method for the axial opening eigenstrain ring and direct solution

method for the radial opening eigenstrain ring and the ring of shear.

Above works on the axisymmetric tear focus on the linear elastic material, which can

not be used for the aorta. Our model studies the aorta, whose material is non-linear

and is described by the strain energy function Holzapfel et al. [2000]. The Cauchy stress,

nominal stress, and incremental nominal stress for the tear problem are deduced from the

strain energy function, and are used to establish the equilibrium equations with boundary

conditions and jump conditions to model the axisymmetric aorta tear problem.

The aim of this thesis is to construct a mathematical model of aortic dissection. We

consider the aorta an incompressible elastic cylindrical tube, the mechanics of which is

described by the strain energy function given by Holzapfel et al. [2000] and the dissec-

tion is axisymmetric. Residual stress and axial stretch play important roles. Hence take

the stress-free artery with an open angle as the reference configuration, and the closed

artery with residual stress as the current configuration. The dissection of the artery is

idealised as the incremental elastic deformation on the configuration with residual stress.

The equilibrium equations, which are from Cauchy’s law of motion, together with bound-

ary conditions and jump conditions for the crack face are the mathematical description

for the 3D crack problem. The methods to solve the problem and the results are included

as well.
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1.1 Structure

This thesis has solved the 2D plane crack problem in a linear elastic strip, the axisymmetric

crack problem in a linear elastic cylindrical tube, and the axisymmetric crack problem in a

non-linear elastic cylindrical aorta based on the strain energy function given by Holzapfel

et al. [2000]. Each chapter will start with an introduction, following by a problem formu-

lation, then the solutions and main results will be given. The fluid flow inside the tear is

analyzed at last.

Chapter 2 introduces basic mathematical formula for idealized artery, then the elastic

moduli and incremental moduli. Residual stress and axial stretch are pre-stretch for an

unloaded artery. They need to be considered before we think over the tear. The concept

of incremental moduli is presented, which will be used to describe the stresses and defor-

mations of the tear. An example is given to explain these concepts. Last but not least,

the crack discontinuity is modelled as jump condition, which is introduced by Demir et al.

[1992] and Korsunsky [1995].

In Chapter 3 2D plane crack problem in an infinite plane and an elastic strip are pre-

sented. The general method to solve a crack problem is given. The traction and dis-

placement components of the tear are written as the integral of Green’s function weighted

by the displacement of each point along the crack. These Green’s functions will be ob-

tained from the calculations of the equilibrium equations with the boundary conditions

and jump conditions. So when the traction is given on the tear face, the displacement

will be obtained. We use this approach to solve the 2D plane crack in compressible and

incompressible elastic strip respectively.

Chapter 4 focuses on the axisymmetric crack problem. We use the similar method as

Chapter 3 to solve the axisymmetric crack problem in a compressible and an incompress-

ible linear elastic tube.

In Chapter 5 we model the axisymmetric crack in an elastic incompressible cylindrical

thick-walled aorta, which is described as a composite reinforced by two families of collagen

fibres which are arranged in symmetrical spirals by the strain energy function given by

Holzapfel et al. [2000]. The equilibrium equations for Cauchy stress and incremental nom-
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inal stress are given with the boundary conditions and jump conditions. The approach to

model the tear is similar as Chapter 3. The results for different parameters are compared

and explained.

Chapter 6 discusses the fluid flow inside the crack. Assuming the tear is very thin we

use the lubrication theory to describe it, and we use implicit method to test how the

opening will change along with time.



Chapter 2

Background material

2.1 Background material

In this section we introduce the concept of residual stress, which plays a very important

role in the in-vivo artery. A load-free artery is not a stress-free artery, therefore before we

consider any other stress acting on the artery we have to describe the residual stress and

axial stretch first. In addition, the strain energy function used to describe the deformation

of the artery in Chapter 5 is introduced here. Then an example to explain how to calculate

the stress, in which the residual stress and axial stretch are involved, is presented.

2.1.1 Residual stress

We consider the artery as an incompressible thick-walled cylindrical tube subject to various

loads referring to Holzapfel et al. [2000]. The load free artery, which is cut along the axial

direction as the figure 2.1, is not stress-free artery and will open up with an angle α

due to the residual stress. Thus, we take the stress-free opening artery as the reference

(undeformed) configuration Ω0, and the closed artery with residual stress and axial stretch

as the current (deformed) configuration Ω.

Refering to Holzapfel et al. [2000], we use the cylindrical polar coordinates (R,Θ, Z) to

describe the region Ω0:

Ri 6 R 6 Ro, 0 6 Θ 6 (2π − α), 0 6 Z 6 L, (2.1)

where Ri, Ro, α and L denote the inner and outer radii, the opening angle and length of

the undeformed tube, respectively.

In terms of cylindrical polar coordinates (r, θ, z), the geometry of the deformed configura-

17
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residual stress

open−angle
stretch in 

vivo

Figure 2.1: Arterial ring in the (stress-free) reference configuration Ω0, and the (load-free)

current configuration Ω.

tion Ω is given by

rin 6 r 6 rout, 0 6 z 6 l, (2.2)

where rin, rout and l denote the inner and outer radii and the length of the deformed tube,

respectively.

From Holzapfel et al. [2000] the deformation χ, which is taken to be isochoric, is written

as

χ = rer + zez (2.3)

with reference to the basis vectors {er, eθ, ez} associated with the cylindrical polar coor-

dinates (r, θ, z), where

r =

√
R2 −R2

i

kλ
+ r2

in, z = λ, k =
2π

2π − α
(2.4)

λ is the axial stretch, the parameter k is a convenient measure of the tube opening angle

in the unstressed configuration.

The Cauchy stress tensor σ is decoupled into volumetric contribution σvol and isochoric

contribution σ as shown in Holzapfel et al. [2000]

σ = σvol + σ = −pI + σ, (2.5)

where p is the hydrostatic pressure. In the absence of body forces the equilibrium equations

are

divσ = 0, (2.6)

because of the geometrical and constitutive symmetry, the only non-trivial component of

(2.6) is
dσrr
dr

+
σrr − σθθ

r
= 0. (2.7)
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From this equation (2.7) and the boundary condition σrr|r=rout = 0 on the outer surface

of the tube, the radial Cauchy stress σrr may be calculated as

σrr(ξ) =

∫ rout

ξ

(σrr − σθθ)
r

dr, rin ≤ ξ ≤ rout (2.8)

The internal pressure is written as pin = −σrr|r=rin =
∫ rout
rin

(σθθ−σrr)
r dr. Due to (2.5) the

components of σ have the decompositions σθθ = −p+ σθθ and σrr = −p+ σrr. Hence the

internal pressure

pin =

∫ rout

rin

(σθθ − σrr)
r

dr (2.9)

=

∫ rout

rin

(σθθ − σrr)
r

dr.

The axial force N can be calculated via the definitions

N = 2π

∫ rout

rin

σzzrdr (2.10)

= 2π

∫ rout

ri

(−p+ σzz) rdr

= 2π

∫ rout

rin

(σrr − σrr + σzz) rdr

= 2π

∫ rout

rin

(σrr (ξ)− σrr + σzz) ξdξ

= 2π

∫ rout

rin

(∫ rout

ξ

(σrr − σθθ)
r

dr − σrr + σzz

)
ξdξ

= 2π

∫ rout

rin

(∫ rout

ξ

(σrr − σθθ)
r

dr − σrr + σzz

)
ξdξ

The reduced axial force can be expressed as

F = N − rin2πpin (2.11)

= 2π

∫ rout

rin

(∫ rout

ξ

(σrr − σθθ)
r

dr − σrr + σzz

)
ξdξ − rin2πpi

= 2π

∫ rout

rin

∫ rout

ξ

(σrr − σθθ)
r

drξdξ − 2π

∫ rout

rin

(σrr − σzz) ξdξ − rin2πpi

= 2π

∫ rout

rin

∫ r

rin

(σrr − σθθ)ξdξ
dr

r
− 2π

∫ rout

rin

(σrr − σzz) ξdξ − rin2πpi

= 2π

∫ rout

rin

r2 − rin2

2
(σrr − σθθ)

dr

r
− 2π

∫ rout

rin

(σrr − σzz) ξdξ − rin2π

∫ rout

rin

(σθθ − σrr)
r

dr

= π

∫ rout

rin

(2σzz − σθθ − σrr)rdr.

The hydrostatic pressure p can be calculated from

dp

dr
=
dσrr
dr

+
σrr − σθθ

r
. (2.12)
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We will use these results to calculate the internal pressure, the reduced axial force and the

hydrostatic pressure in §2.1.3.

2.1.2 Strain energy function

The artery is composed of the intima, media, and adventitia. According to Holzapfel

et al. [2000] the intima is not of mechanical interest, and therefore the artery is considered

as a two-layer thick-walled tube with residual stress and pre-stretch in the longitudinal

direction. The structures of the two layers are same, which have the strain energy function

Ψ = U(J) + Ψ (2.13)

where U(J) is volumetric contribution and Ψ is given by Holzapfel et al. [2000]

Ψ =
1

2
c
(
I1 − 3

)
+

k1

2k2

[
Ψf

(
I4

)
+ Ψf

(
I6

)]
. (2.14)

In equation (2.13) and equation (2.14)

J = det A, I1 = J−2/3tr
(
ATA

)
, I4 = J−2/3tr

(
M+ATA

)
, I6 = J−2/3tr

(
M−ATA

)
(2.15)

and

Ψf (x) = exp
[
k2 (x− 1)2

]
− 1. (2.16)

In a cylindrical polar coordinate system the tensor A is the deformation gradient, and the

matrices M± are given by

M± =


0 0 0

0 cos2 β ± cosβ sinβ

0 ± cosβ sinβ sin2 β

 , (2.17)

and

Sym (M) =
1

2

(
M + MT

)
, (2.18)

where 2β is the angle between collagen fibers as shown in Figure 2.2. The media and adven-

titia have same strain-energy function (2.14). The differences for media and adventitia are

the material parameters c, k1, k2. The parameter c is associated with the non-collagenous

matrix of the material, and describes the isotropic part of the overall response of the tissue.

The parameters k1 and k2 are associated with the anisotropic contribution of collagen to

the overall response. The material parameters are constants and do not depend on the

geometry, opening angle or fibre angle.
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The strain energy function (2.13) will be used to construct the aortic dissection model in

Chapter 5.

Figure 2.2: Sketch of the media and adventitia from Holzapfel et al. [2000].

2.1.3 Example for residual stress and axial stretch

Here is an example using above theory to calculate stress when residual stress and axial

stretch are included. For a general incompressible hyperelastic material the deformation

gradient due to residual stress and pre-stretch is

A =


∂r

∂R
0 0

0 k
r

R
0

0 0
∂z

∂Z

 (2.19)

where ∂z
∂Z = λ, r = r(R) defined in (2.4). The incompressibility constraint J = detA = 1

leads to ∂r
∂R = R

krλz
, and therefore

A =


R

krλz
0 0

0 k
r

R
0

0 0 λ

 . (2.20)
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Refer to Holzapfel et al. [2000] the isochoric contribution in (2.5) is

σ = dev(A
∂Ψ

∂E
A
T

) (2.21)

= dev(A
∂Ψ

∂E
AT )

= A
∂Ψ

∂E
AT − 1

3
[(A

∂Ψ

∂E
AT ) : I]I

where A =
(
J−

1
3 I
)

A = A, dev(·) = (·) − (1
3)tr(·) and E = E due to incompressibil-

ity, in which Green-Lagrange strain tensor E = 1
2(C − I) and right Cauchy-Green tensor

C = ATA.

1

2

(
I1 − 3

)
=

1

2

(
tr
(
C
)
− 3
)

=
1

2
tr(C− I) = tr(E), (2.22)

I4 = tr
(
M+ATA

)
= tr

(
M+ATA−M+

)
+ tr (M+) = 2tr (M+E) + tr (M+) , (2.23)

I6 = tr
(
M−ATA

)
= tr

(
M−ATA−M−

)
+ tr (M−) = 2tr (M−E) + tr (M−) , (2.24)

∂I4

∂E
= 2M+,

∂I6

∂E
= 2M−, (2.25)

Hence

∂Ψ

∂E
= cI + 2k1 exp

[
k2

(
I4 − 1

)2] (
I4 − 1

)
M+ + 2k1 exp

[
k2

(
I6 − 1

)2] (
I6 − 1

)
M−.

(2.26)

Then the components of σ are

σrr = c

(
R

krλ

)2

− 1

3

{
c

[(
R

krλ

)2

+ k2
( r
R

)2
+ λ2

]
+ 4k1Qe

4k2Q
2

[
cos2 βk2

( r
R

)2
+ sin2 βλ2

]}

σθθ = ck2
( r
R

)2
+ 4k1Qe

4k2Q
2

k2
( r
R

)2

− 1

3

{
c

[(
R

krλ

)2

+ k2
( r
R

)2
+ λ2

]
+ 4k1Qe

4k2Q
2

[
cos2 βk2

( r
R

)2
+ sin2 βλ2

]}

σzz = cλ2 + 4k1Qe
4k2Q

2

sin2 βλ2

− 1

3

{
c

[(
R

krλ

)2

+ k2
( r
R

)2
+ λ2

]
+ 4k1Qe

4k2Q
2

[
cos2 βk2

( r
R

)2
+ sin2 βλ2

]}
where

Q = 2tr (M+E) =

[
cos2 β

(
k
r

R

)2
+ sin2 βλ2 − 1

]
.
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Figure 2.3: Plot of σrr when rin = 4, rout = 6, µ = 3, λ = 1.1, β = π
3 , k1 = 2.3632,

k2 = 0.8393, α = π
6 .

Figure 2.4: Plot of σθθ when rin = 4, rout = 6, µ = 3, λ = 1.1, β = π
3 , k1 = 2.3632,

k2 = 0.8393, α = π
6 .

In figures 2.3, 2.4, and 2.5 we plot σrr, σθθ, σzz. And the internal pressure pin, the

reduced axial force F and the hydrostatic pressure p can be calculated from equation

(2.9), equation (2.11) and equation (2.12) respectively

pin =

∫ rout

rin

(−µ R2

k2λ2r3
+ µk2 r

R2
+ 4k1Qe

4k2Q
2

k2(
r

R
)2)dr,
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Figure 2.5: Plot of σzz when rin = 4, rout = 6, µ = 3, λ = 1.1, β = π
3 , k1 = 2.3632,

k2 = 0.8393, α = π
6 .

F =

∫ rout

rin

π
(

2µλ2 + 8 k1 sin2(β)λ2Qek2Q
2
)
r

− π

(
cR2

k2λ2r2
+
ck2r2

R2
+ 4

k1Qe
k2Q2

cos2(β)k2r2

R2

)
rdr,

p =

∫ rout

rin

1/3
µR2

k2r3λ2
+ 5/3

ck2r

R2

+ 4
k1e

k2Q2
(cos (β))2 k2r

(
4/3 k2

(
Q3 −Q2

)
+ 1/3Q− 2/3

)
R2

dr.

These integrals can be calculated numerically.

2.2 Incremental moduli and elastic moduli

The stress-free artery is taken as reference configuration, and the configuration with resid-

ual stress as current configuration. We consider the aortic dissection as an incremental

deformation, whose definition is

If the displacement δx is ‘small’ for each X ∈ Ω0 so that terms of order

|δx|2 are negligible in comparison with those of order |δx|, then we refer to δχ

as an incremental deformation from the configuration described by χ.

referring to R.W.Ogden [1997]. In the following sections (§2.2.1-§2.2.5) the explanation

of elastic moduli, incremental elastic deformations, etc are from R.W.Ogden [1997]. In
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addition, an example is given to explain how to use the incremental deformation in practice.

In the end of this section, we introduce the aortic dissection as axisymmetric tear problem,

and give the ideas about how to model the axisymmetric tear.

2.2.1 Elastic moduli

An elastic material, which has a strain-energy function, is called a hyperelastic material.

The mechanical propertities of such a material are characterized by the strain-energy

function W . The nominal stress, whose transpose is first Piola-Kirchhoff stress, can be

written as

S =
∂W

∂A
. (2.27)

The nominal stress has following relation with Cauchy stress,

S = JBTσ (2.28)

where B = (A−1)T . For a Green-elastic material subject to a single constraint C(A) = 0,

the nominal stress is given by

S = H (A) + q
∂C (A)

∂A
, (2.29)

where q is an arbitrary scalar, which has the role of a Lagrange multiplier, and H is the

material response function

H (A) =
∂W

∂A
. (2.30)

For the incompressible constraint we have C(A) = det A − I = 0 and ∂C(A)
∂A = BT . The

nominal stress becomes

S =
∂W

∂A
− pBT . (2.31)

where we have replaced q by −p, p being referred to as the arbitrary hydrostatic pressure.

2.2.2 Deformation increments

The deformation of a body in the current configuration can be written as

x = χ (X) (2.32)

where X is the position in the reference configuration Ω0. Suppose that the deformation

is changed to χ′ and let

x′ = χ′ (X) X ∈ Ω0. (2.33)
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The displacement of a material particle due to this change is

x′ − x = χ′ (X)− χ (X) . (2.34)

We write this as

δx = δχ (X) (2.35)

where the operator δ is defined by δχ = χ′ − χ.

2.2.3 Stress increments

The deformation gradient is A, and the relative incremental deformation gradient is δA.

The nominal stress increment may be written

δS = A1δA, (2.36)

where A1 is elastic moduli

A1 =
∂S

∂A
, (2.37)

and in componenets

A1
αiβj =

∂2W

∂Aiα∂Ajβ
. (2.38)

2.2.4 Instantaneous moduli

On page 333 of R.W.Ogden [1997], the definitions of fixed-reference moduli and instanta-

neous moduli are given

Suppose we now consider a fixed reference configuration and let A be the

deformation gradient which relates this to the current configuration. We then

refer to the moduli as fixed-reference moduli.

We take the reference configuration to coincide with the current configura-

tion at any stage of the deformation. The resulting elastic moduli are called

instantaneous moduli.

Now the current configuration is used as the reference configuration, and δA0 is the value

of δA in this configuration, which leads to the relation

δA = (δA0) A. (2.39)
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In addition

δS0 = J−1AδS (2.40)

where δS is the incremental nominal stress for the fixed configuration, and δS0 is its value

relative to the current configuration. The relation between the incremental deformation

gradient and incremental nominal stress for the fixed configuration is

δS = A1δA, (2.41)

and for the current configuration it is

δS0 = A1
0δA0, (2.42)

where

A1
0ijkl = J−1AiαAkβA1

αjβl. (2.43)

Hence when the strain energy function W is given, the nominal stress S and incremental

nominal stress δS0 for current configuration could be calculated as following

Saj =
∂W

∂Ajα
, A1

αjβl =
∂Sαj
∂Alβ

, A1
0ijkl = J−1AiαAkβA1

αjβl, δS0ij = A1
0ijklδA0lk. (2.44)

Constraint

For a material with a single constraint, the incremental nominal stress is

δS = A1δA + δq
∂C

∂A
+ q

(
∂2C

∂A2

)
δA, (2.45)

and for an incompressible material this becomes

δS = A1δA + δqBT − qBT (δA) BT . (2.46)

When the reference configuration is chosen to coincide with the current configuration, the

equation becomes

δS0 = A1
0δA0 + δqI− qδA0. (2.47)

Similar to the unconstrained material, when the strain energy function W is given, the

nominal stress S and incremental nominal stress δS0 could be calculated as following

Saj =
∂W

∂Ajα
− pBjα, A1

αjβl =
∂Sαj
∂Alβ

, A1
0ijkl = J−1AiαAkβA1

αjβl, δS0ij = A1
0ijklδA0lk.

(2.48)
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2.2.5 Structure and properties of the incremental equations

Refering to R.W.Ogden [1997] for a body whose reference configuration is Ω0 we write the

boundary conditions as

x = ξ (X) on ∂Ωx
0 , (2.49)

STN = t (X,x,A) on ∂Ωt
0, (2.50)

where ξ and t are prescribed functions of their arguments, x = χ (X) for X ∈ Ω0 defines

the deformation, and A = Gradχ (X). In R.W.Ogden [1997] the pressure P per unit

current area is considered as the loading. The true traction is then given by

σn = −Pn on ∂Ω. (2.51)

The corresponding nominal traction has the form

STN = −JPBN on ∂Ω0. (2.52)

The nominal stress S is given by an appropriate form of elastic constitutive law. In

particular,

S =
∂W

∂A
(2.53)

for an unconstrained hyperelastic material, and this is modified to

S =
∂W

∂A
+ qBT (2.54)

for an incompressible material. The equilibrium equation is

DivS + ρ0b = 0 (2.55)

where b is the body force and ρ0 is the mass density of the body in the configuration Ω0 .

In R.W.Ogden [1997] the boundary conditions (2.49) is subjected to the increments

δx = δξ (X) on ∂Ωx
0 , (2.56)

δSTN = δt (X,x,A) on ∂Ωt
0, (2.57)

where δS is the increment in nominal stress. In the case of pressure loading (2.51) we have

t = −JPBN and

δt = −δPJBN− JP tr
(
BT δA

)
BN + JPBδATBN (2.58)
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where δP is the prescribed increment in P . The incremental counterpart of the equilibrium

equation is

DivδS + ρ0δb = 0, (2.59)

where we have

δS = A1δA (2.60)

for an unconstrained material, and

δS = A1δA + δqBT − δqBT δABT (2.61)

for an incompressible material. This is accompanied by the incompressibility constraint

δ (detA) = 0 which may be written

tr
(
BT δA

)
= 0. (2.62)

When the reference configuration is chosen to coincide with the current configuration the

equilibrium equation becomes

divδS0 + ρδb = 0, (2.63)

where

δS0 = A1
0δA0 (2.64)

for an unconstraint material, and

δS0 = A1
0δA0 + δqI− δqδA0 (2.65)

for an incompressible material with

tr (δA0) = 0. (2.66)

The boundary condition becomes

δST0 n = δt0 = −δPn− P tr (δA0) n + PδAT
0 n (2.67)

where n is the unit normal to the current boundary ∂Ω of the body, and the middle term

on the right-hand side vanishing for an incompressible material.
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2.2.6 An example

Here is an example to show how to use above theory to calculate incremental deformation.

Consider a stress-free solid incompressible elastic cylinder as the reference configura-

tion. Then the ends of the cylinder are stretched with the stretch ratio λ and take the

deformed configuration as the current configuration. Then we press the cylinder along the

circumferential direction in the middle of the axial directionwith pressure P which is ax-

isymmetric in the incremental deformation. The coordinate system is (r, θ, z), and assume

the radius of the cylinder in the current configuration is r = a.

Consider a Neo-Hookean like material with strain-energy density

W = µ

[
1

2

(
λ2

1 + λ2
2 + λ2

3

)
− log J

]
+ κg (J) (2.68)

where J = detA and let λi are the principal stretches of the deformation gradient A. The

function g(J) satisfies g(1) = g′(1) = 0 and g′′(1) = 1. The strain-energy function becomes

W = µ

[
1

2
tr
(
ATA− I

)
− log (det A)

]
+ κg (det A) . (2.69)

The first nominal stress is given by

S =
∂W

∂A
, (2.70)

and write it in the form of strain tensor

Sαi =
∂W

∂Aiα
. (2.71)

We use some standard results to generate the expression for S. First

∂

∂A

[
tr ATA

]
(2.72)

the α-ith component of this tensor is

∂

∂Aiα
[AkβAkβ] = 2Akβδikδαβ = 2Aiα = 2

(
AT
)
αi
, (2.73)

so that
∂

∂A

[
tr ATA

]
= 2AT . (2.74)

Next we use the result
∂

∂A
[det A] = (det A) A−1 (2.75)

which in component form is
∂

∂Aiα
J = J

(
A−1

)
αi
. (2.76)
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Any function of J can be differentiated easily

∂

∂A
F (det A) = (det A)F ′ (det A) A−1. (2.77)

These results allow us to write that

S = µAT +
(
κJg′ (J)− µ

)
A−1 (2.78)

for the Neo-Hookean energy. The elastic moduli, based in incremental deformation on top

of the finite deformation represented by A are

A1 =
∂S

∂A
. (2.79)

In component form we have

A1
αiβj =

∂Sαi
∂Ajβ

. (2.80)

Before we begin the computation we perform a helpful calculation

∂

∂Ajβ

[(
A−1

)
αk
Akγ

]
=

∂

∂Ajβ
δαγ = 0 (2.81)

=
∂

∂Ajβ

[(
A−1

)
αk

]
Akγ +

(
A−1

)
αk

∂

∂Ajβ
[Akγ ]

=
∂

∂Ajβ

[(
A−1

)
αk

]
Akγ +

(
A−1

)
αk
δjkδβγ

∂

∂Ajβ

[(
A−1

)
αk

]
Akγ

(
A−1

)
γi

= −
(
A−1

)
αk
δjkδβγ

(
A−1

)
γi

giving the final result that

∂

∂Ajβ

[(
A−1

)
αi

]
= −A−1

αjA
−1
βi . (2.82)

Using this result we may write

A1
αiβj = µ

[
δijδαβ +A−1

αj A
−1
βi

]
+ κJg′ (J)

[
A−1
αi A

−1
βj −A

−1
αj A

−1
βi

]
+ κJ2g′′ (J)A−1

αi A
−1
βj .

(2.83)

For the moduli when the current configuration is the new reference configuration we have

A1
0ijkl = J−1AiαAkβA1

αjβl

= J−1AiαAkβµ
[
δijδαβ +A−1

αl A
−1
βj

]
+ J−1AiαAkβµ

(
κJg′ (J)

[
A−1
αj A

−1
βl −A

−1
αl A

−1
βj

]
+ κJ2g′′JA−1

αj A
−1
βl

)
= µJ−1 (δjlAiαAkα + δilδjk)

+ κg′ (J) (δijδkl − δilδjk) + κJg′′ (J) δijδkl. (2.84)
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If the deformation A = I, so that J = 1 and Apq = δpq then

A1
0ijkl = µ (δikδjl + δilδjk) + κδijδkl (2.85)

which is the isotropic 4th rank tensor for linear elasticity with Lamé moduli µ and κ.

Constraint—Incompressible

The stress-deformation relation for the nominal stress is

S =
∂W

∂A
+ q

∂C(A)

∂A
(2.86)

with J = 1 and tr (δA0) = 0, since the cylinder is incompressible. When we take the

incremental configuration as same as the current configuration we have the incremental

nominal stress as

δS0 = A1
0δA0 + δqI− qδA0, (2.87)

Use equation (2.84) we have

(δS0)ij = A1
0ijkl (δA0)lk + δqδij − q (δA0)ij (2.88)

= µJ−1AiαAkαδij (δA0)lk + J−1µδilδkj (δA0)lk

+ κg′′ (J) Jδjiδlk (δA0)lk + δqδij − q (δA0)ij − q (δA0)ij

= µJ−1AiαA
T
αk (δA0)kl δ

T
lj + J−1µδil (δA0)lk δkj + κg′′ (J) JδTij ,

which leads to

δS0 = µJ−1AAT δA0
T IT + J−1µIδA0I + κg′′ (J) JIT tr (δA0) + δqI− qδA0. (2.89)

The deformation gradient is

A =


R
rλ 0 0

0 r
R 0

0 0 λ

 , (2.90)

and the solid cylinder is axisymmetric so the incremental deformation gradient is

δA0 =


∂δr
∂r 0 ∂δr

∂z

0 δr
r 0

∂δz
∂r 0 ∂δz

∂z

 . (2.91)
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In details the (2.89) is written as

δS0 =


µ

(
1

λ
+ 1

)
∂δr

∂r
+ δq − q∂δr

∂r
0 µ

(
1

λ

∂δz

∂r
+
∂δr

∂z

)
− q∂δr

∂z

0 µ

(
1

λ
+ 1

)
δr

r
+ δq − q δr

r
0

µ

(
λ2∂δr

∂z
+
∂δz

∂r

)
− q∂δz

∂r
0 µ

(
λ2 + 1

) ∂δz
∂z

+ δq − q∂δz
∂z

 .
(2.92)

In following parts we use u to replace δr, and w to replace δz .

Equilibrium equations and boundary conditions

Consider a stress-free solid incompressible elastic cylinder as the reference configura-

tion. Then the ends of the cylinder are stretched with the stretch ratio λ and take the

deformed configuration as the current configuration. The radius in the current config-

uration is r = a The equilibrium equation and boundary condition for nominal stress

are

divS = 0 (2.93)

STN = −PJBN on r = a. (2.94)

Then we press the cylinder along the circumferential direction in the middle of the axial

direction with pressure P which is axisymmetric in the incremental deformation. The

equilibrium equation and boundary condition for incremental nominal stress are

div δS0 = 0 (2.95)

δST0 n = −δPn− P tr (δA0) n + PδAT
0 n on r = a. (2.96)

The equilibrium equations (2.95) are

µ
1

λ

[
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2

]
+ µλ2∂

2u

∂z2
+
∂δq

∂r
= 0, (2.97)

µ
1

λ

(
∂2w

∂r2
+

1

r

∂w

∂r

)
+ µλ2∂

2w

∂z2
+
∂δq

∂z
= 0, (2.98)

1

r

∂

∂r
(ru) +

∂w

∂z
= 0. (2.99)

The boundary conditions (2.96) on r = a are

µ

λ

∂u

∂r
+ (µ− P − q) ∂u

∂r
+ δq + δP = 0, (2.100)

µ

λ

∂w

∂r
+ (µ− P − q)∂u

∂z
= 0. (2.101)
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Let δq = −µQ and δP = µP , so the equilibrium equations and boundary conditions

become

µ
1

λ

[
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2

]
+ µλ2∂

2u

∂z2
− µ∂Q

∂r
= 0,

µ
1

λ

(
∂2w

∂r2
+

1

r

∂w

∂r

)
+ µλ2∂

2w

∂z2
− µ∂Q

∂z
= 0,

1

r

∂

∂r
(ru) +

∂w

∂z
= 0, (2.102)

and

µ

λ

∂u

∂r
+ (µ− P − q) ∂u

∂r
− µQ+ µP = 0,

µ

λ

∂w

∂r
+ (µ− P − q)∂u

∂z
= 0 on r = a. (2.103)

Solutions

Let

u = ∇∧ ψeθ (2.104)

=
1

r

∂ (rψ)

∂r
ez −

∂ψ

∂z
er, (2.105)

that means let w =
1

r

∂ (rψ)

∂r
and let u = −∂ψ

∂z
. Put them into equations (2.102), and

reduce them to

1

λ

∂4ψ

∂r4
+ λ2∂

4ψ

∂z4
+

(
λ2 +

1

λ

)
∂4ψ

∂z2∂r2
+

2

λr
∂3ψ∂r3 +

(
λ2

r
+

1

λr

)
(2.106)

∂3ψ

∂z2∂r
−
(
λ2

r2
+

1

λr2

)
∂2ψ

∂z2
− 3

λr2

∂2ψ

∂r2
+

3

λr3

∂ψ

∂r
− 3

λr4
ψ = 0.

To factorize the equation into two parts[
1

λ

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
+ λ2 ∂

2

∂z2

] [
∂2

∂r2
+

1

r

∂

∂r
− 1

r2
+

∂2

∂z2

]
ψ = 0, (2.107)

so we change the 4th order equation into two 2nd order equations[
1

λ

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
+ λ2 ∂

2

∂z2

]
φ = 0, (2.108)[

∂2

∂r2
+

1

r

∂

∂r
− 1

r2
+

∂2

∂z2

]
ψ = φ. (2.109)

Use Fourier transformation

F [φ] =

∫ +∞

−∞
φ(r, z)e−ikzdz = φ̂(r, k), φ(r, z) =

1

2π

∫ +∞

−∞
φ̂(r, k)eikzdk,

F [
dφ

dr
] =

∫ +∞

−∞

dφ

dr
e−ikzdz =

dφ̂(r, k)

dr
, F [

d2φ

dr2
] =

∫ +∞

−∞

d2φ

dr2
e−ikzdz =

d2φ̂(r, k)

dr2
,

F [
dφ

dz
] =

∫ +∞

−∞

dφ

dz
e−ikzdz = ikφ̂, F [

d2φ

dz2
] = −k2φ̂,
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so equation (2.108) changes to

∂2φ̂

∂r2
+

1

r

∂φ̂

∂r
− φ̂

r2
− λ3k2φ̂ = 0. (2.110)

Let t = λ3/2kr and change it to Modified Bessel equation

∂2φ̂

∂t2
+

1

t

∂φ̂

∂t
− φ̂

t2
− φ̂ = 0. (2.111)

The solution of this equation is φ̂ = a(k)I1(λ3/2k, r) + b(k)K1(λ3/2k, r).

When r → 0, K1 →∞, so b = 0 and φ̂ = a(k)I1(λ3/2k, r).

Now we want to solve the second equation (2.109). After Fourier transformation the

general solution of the homogenous equation[
∂2

∂r2
+

1

r

∂

∂r
− 1

r2
+

∂2

∂z2

]
ψ = 0 (2.112)

is

ψ̂ = C(k)I1(k, r) +D(k)K1(k, r). (2.113)

When r → 0, K1 →∞, so D = 0 and ψ̂ = C(k)I1(k, r).

We show that φ̂
k2(λ3−1)

is the particular solution for the nonhomogeneous equation after

Fourier transformation, where φ̂ = a(k)I1(λ3/2k, r).

Proof :

LHS =
1

k2 (λ3 − 1)

[
a(k)λ3k2I ′′1 (λ3/2k, r) +

1

t
a(k)λ3k2I ′(λ3/2k, r)

]
− 1

k2 (λ3 − 1)

[
1

t

2

a(k)λ3k2I(λ3/2k, r) + a(k)k2I(λ3/2k, r)

]
=

1

k2 (λ3 − 1)

[
a(k)λ3k2I1(λ3/2k, r)− a(k)k2I(λ3/2k, r)

]
= a(k)I(λ3/2k, r)

= φ̂

= RHS

So the particular solution of equation (2.109) after Fourier transform is

a(k)I1(λ3/2k, r)

k2 (λ3 − 1)
. (2.114)

So the solution of equation (2.109) after Fourier transformation is

A(k)I1(λ3/2k, r) + C(k)I1(k, r). (2.115)
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In boundary conditions (2.103) we define δq = −µQ, and δP = µP .

And we have P + q = µ(1 − 1
λ). This is from the boundary condition (2.94), which is in

components as

µ

(
R

rλ
− r

R
λ

)
+ q

r

R
λ = −Pλ r

R
on r = a,

where

r =

√
R2 −R2

i

λ
+ r2

i for the solid cylinder we have Ri = 0 and ri = 0.

So boundary conditions (2.103) become

2

λ

∂u

∂r
−Q+ P = 0, (2.116)

∂w

∂r
+
∂u

∂z
= 0 on r = a. (2.117)

Put w = 1
r
∂(rψ)
∂r and u = −∂ψ

∂z into these equations

− 2

λ

∂2ψ

∂r∂z
−Q+ P = 0, (2.118)

∂2ψ

∂r2
+

1

r

∂ψ

∂r
− ψ

r2
− ∂2ψ

∂z2
= 0 on r = a. (2.119)

After Fourier transformation we put ψ = A(k)I1(λ3/2k, r) + C(k)I1(k, r) into boundary

condition (2.119) we write A(k) in the form of C(k)

A(k) =
−C(k)I1(k, a)(a2 + k2 − 1 + k2a2)

I1(kλ
3
2 , a)(a2 + k2λ3 − 1 + k2a2)

. (2.120)

Now we use the boundary condition (2.118) and the equilibrium equation (6.28) to get the

value of A(k) and C(k),

µ
1

λ

(
∂2w

∂r2
+

1

r

∂w

∂r

)
+ µλ2∂

2w

∂z2
− µ∂Q

∂z
= 0, (2.121)

− 2

λ

∂3ψ

∂r∂z2
− ∂Q

∂z
+
∂P

∂z
= 0. (2.122)

Eliminate ∂Q
∂z term from these equations, and use Fourier transformation to change the

PDE to ODE. Let F [P (z)] =
∫ +∞
−∞ P (z)e−ikzdz = P̂ (k). The values of A(k) and C(k) are

known, which include P̂ (k). Then ψ(r, k) = A(k)I1(λ3/2k, r) + C(k)I1(k, r) is known as

well. Now we use numerical way to integral ψ(r, z) = 1
2π

∫ +∞
−∞ ψ(r, k)eikzdk, w = 1

r
∂(rψ)
∂r
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and u = −∂ψ
∂z

ψ(r, z) =
1

2π

∫ +∞

−∞
ψ(r, k)eikzdk (2.123)

=
1

2π

∫ +∞

−∞
[<ψ(r, k) + i=ψ(r, k)] [cos(kz) + i sin(kz)]dk

= − 1

2π

∫ +∞

−∞
[=ψ(r, k)] [sin(kz)]dk

u = −∂ψ
∂z

= − 1

2π

∫ +∞

−∞
ψ(r, k)ikeikzdk

= − 1

2π
i

∫ +∞

−∞
k [<ψ(r, k) + i=ψ(r, k)] [cos(kz) + i sin(kz)]dk

=
1

2π

∫ +∞

−∞
k [=ψ(r, k)] [cos(kz)]dk

w =
1

r

∂ (rψ)

∂r

=
1

2π

∫ +∞

−∞

[
ψ

r
eikz +

∂ψ

∂r
eikz

]
dk

= − 1

2rπ

∫ +∞

−∞
[=ψ(r, k)] [sin(kz)]dk − 1

2π

∫ +∞

−∞

∂=ψ(r, k)

∂r
sin(kz)dk

where < is the real part, and = is the imaginary part.

In this case P (z) = 1
ε , and P̂ (k) =

∫ + ε
2

− ε
2

1

ε
e−ikzdz =

sin( εk2 )
εk
2

. Now we assume the outer

radius a = 1, λ = 1.1, and ε = 0.1, then we get the displacement as Figure 2.6

Conclusion

In this example we use the equilibrium equations of incremental nominal stress with pres-

sure on boundary to describe the problem. And we use Fourier transform (F.T.) to change

PDE to ODE, and solve the ODE analytically and invert it by inverse F.T. to obtain the

final displacement. For solving the axisymmetric crack problem we will use the F.T. and

incremental deformation. The main procedures are similar, but we consider the crack

as jump conditions, which is introduced in next part. In additional the ODE is solved

numerically.

2.2.7 Aortic dissection–Axisymmetric crack problem

We idealized the aorta as an axisymmetric thick-walled cylindrical tube with residual

stress and pre-stretch in axial direction. We assume the crack is axisymmetric in the
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Figure 2.6: The cylinder before and after deformation.

wall as shown in Figure 2.7. We take the stress-free artery with an open angle as the

residual stress

open−angle

reference configuration current cofiguration
incremental deformation

stretch in 

vivo

Figure 2.7: Axisymmetric aortic dissection on a thick-walled cylindrical tube with residual

stress and pre-stretch.

reference configuration, and the closed artery with residual stress and axial stretch as

the current configuration. The dissection of the artery is idealised as the incremental

elastic deformation on the configuration with residual stress. In current configuration the

equilibrium equation and boundary condition for Cauchy Stress are equations (5.1). Take
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the configuration with residual stress in as the same configuration for the incremental

deformation, and the equilibrium equation and boundary conditions for the incremental

nominal stress are equations (5.2). For the crack problem we still need jump conditions,

which will be discussed in §2.3.2 .

2.3 Axisymmetric crack problem

We assume that the aortic dissection is axisymmetric. The tear discontinuity is considered

as the jump conditions which has been studied by Demir et al. [1992] and Korsunsky [1995].

We will use the similar jump conditions to solve the crack problem in Chapter 3—Chapter

5.

2.3.1 Axisymmetric crack

According to Demir et al. [1992] for an isotropic elastic material the axisymmetric crack

problem is convenient to use the Love stress function φ which satisfies the equilibrium

condition. The problem is reduced to solving for the Love stress function φ which must

satisfy the biharmonic equation

∇2∇2φ = 0, (2.124)

for the axisymmetric case under consideration, the Laplacian ∇2 is given by

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
. (2.125)

The stress and displacement components are given by

σrr =
∂

∂z

(
ν∇2φ− ∂2φ

∂r2

)
, (2.126)

σθθ =
∂

∂z

(
ν∇2φ− 1

r

∂φ

∂r

)
, (2.127)

σzz =
∂

∂z

[
(2− ν)∇2φ− ∂2φ

∂z2

]
, (2.128)

σrz =
∂

∂r

[
(1− ν)∇2φ− ∂2φ

∂z2

]
, (2.129)

2Gu = − ∂2φ

∂r∂z
, (2.130)

2Gw = 2 (1− ν)∇2φ− ∂2φ

∂z2
, (2.131)

where z is the axis of symmetry, r is the radial coordinate, σrr, σθθ, σzz, σrz are the radial,

transverse, axial and shear stress components respectively. u and w are the radial and
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Figure 2.8: Korsunsky [1995]

axial displacements respectively, and G is the shear modulus of elasticity and ν is the

Poisson’s ratio. Equation 2.124 is solved by use of the Fourier transform pair

φ =
1√
2π

∫ ∞
−∞

φ̂(r, ξ)e−iξzdξ, φ̂ =
1√
2π

∫ ∞
−∞

φ(r, z)eiξzdz, (2.132)

where ξ is the Fourier transformation variable. Then upon applying the Fourier transform

to equation 2.124 we obtain a Bessel differential equation for φ whose solution is given by

ξ2 ˆφ (r, ξ) = iA (ξ) I0 (ξr) + ξrB (ξ) I1 (ξr) + iC (ξ)K0 (ξr) + ξrD (ξ)K1 (ξr) (2.133)

where I0,1 and K0,1 are the modified Bessel functions of the first and second kinds re-

spectively, and A (ξ), B (ξ), C (ξ) and D (ξ) are functions of the transform variable ξ and

should be chosen in connection with the boundary conditions.

Results for stress and displacements can be found in The Somigliana ring dislocation by

Demir et al. [1992].

2.3.2 Jump conditions

We consider the discontinuity of the crack face in the elastic cylinder as ‘Jump condition’.

Korsunsky [1995] used the following jump conditions to solve the axisymmetric crack
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problem.

(
u2 − u1

)
= δ (z) , −∞ < z <∞, (2.134)(

w2 − w1
)

= 0, −∞ < z <∞, (2.135)

σ2
rz − σ1

rz = 0, −∞ < z <∞, (2.136)

σ2
rr − σ1

rr = 0, |z| > 0, (2.137)

where u is the displacement component in radial direction and w is the displacement

component in axial direction, and the superscript ‘2’ means domain 2 and the superscript

’1’ means domain 1. By using these conditions A (ξ), B (ξ), C (ξ) and D (ξ) in equation

(2.133) can be solved.

Results are given by Demir et al. [1992] and Korsunsky [1995].

We got the idea form these jump conditions to use similar methods to cope with the crack

discontinuity in the crack problem in Chapter 3—Chapter 5.

2.4 Conclusions

We have illustrated the ideas of residual stress, incremental moduli, elastic moduli, the

strain energy function of an artery, axisymmetric crack problem and the jump conditions

for the crack. In Chapter 5 we will use all of these to build a model of a tear in the aorta.



Chapter 3

Static tears in compressible and

incompressible linear elastic 2D

strips

3.1 Introduction

Our aim in this chapter is to introduce a method for the solution of 2D crack problems.

We illustrate aspects of the method by considering a straight crack in an infinite domain

and derive an integral equation relating crack opening to traction on the crack faces. We

then consider a straight crack in an inifnite 2D strip, in which the crack is aligned with

the strip direction. The approach leads us to consider a numerical scheme to solve for

crack opening and displacements given the tractions on the crack faces. We discuss the

important parts of this scheme as it will be used in Chapters 4 and 5 to solve axisymmetric

crack problems in Chapter 4 and used to solve our idealised tear problem in the aortic

media.

3.1.1 General crack problem in plane strain

We consider a cracked body in 2D occupying a domain D with boundary ∂D as shown

in Figure 3.1. Let an arclength coordinate along L, and crack lies along L in D. The

displacement discontinuity across the crack is U(s), where s is an arbitrary point on L.

The displacement discontinuity U(s) is decomposed to give the normal jump U(s) and the

tangential jump V (s). The outer normal to ∂D is nb. The boundary ∂D is traction free

42
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L ∂D

D

nb

n
t

Figure 3.1: Crack on an arbitrary 2D body.

so

T · nb = 0 on ∂D

where T is the traction. The traction is decomposed into

T = Tnn + Ttt,

where n is the normal vector and t is the tangent vector. The equilibrium equation,

boundary conditions and jump conditions for the body are

divT = 0 on D (3.1)

T · nb = 0 on ∂D (3.2)

[u]+− = U(s) on L (3.3)

where u = (u, v) is the displacement for the body D, and [u]L = U(s) and [v]L = V (s),

where U(s) and V (s) are components of U(s). There is also continuity of traction across

the crack [T · n]L = 0 where n is normal to crack face.

Let σn be the solution to the following problem

divσn = 0 (3.4)
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in D and σnnb = 0 on ∂D with un = (un, vn) and

[un]L = δ(S − s) (3.5)

along L with arclength coordinate S, and s is variable. And σt be the solution to the

following problem

divσt = 0 (3.6)

in D and σtnb = 0 on ∂D, with ut = (ut, vt) and

[vt]L = δ(S − s). (3.7)

We can construct the solution with a prescribed jump in displacement across the crack by

superposition of the Green’s function solution weighted appropriately. By using Green’s

function methods we can write the traction components at the crack faces and displacement

components on the crack faces as integrals of Green’s functions weighted by displacement

discontinuity along the crack. The traction components, decomposed into normal and tan-

gential directions, are

Tn =

∫
σnnU (s) ds+

∫
σtnV (s) ds, (3.8)

Tt =

∫
σnt U (s) ds+

∫
σttV (s) ds. (3.9)

The displacement components, decomposed into normal direction and tangential direction,

are

u =

∫
unU(s)ds+

∫
utV (s)ds, (3.10)

v =

∫
vnU(s)ds+

∫
vtV (s)ds. (3.11)

The Green’s functions σnn, σtn, σnt , σtt and un, ut, vn, vt are solved from equations 3.1-3.3.

Hence when the traction (Tn, Tt) is given, the displacement (u, v) will be solved.

3.2 Crack problem on infinite plane

A tear problem in an infinite plane is illustrated and solved analytically in this section. The

plane strain problem has been described by the Airy stress function, and the displacements

have been given by Slaughter [2002]. We use Fourier transform on the compatibility

condition of the Airy stress function, then get the general solution of the ODEs. With
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the boundary conditions and jump conditions we get the solutions of the ODEs for the

specific crack problems. After we invert the Fourier transform, the Green’s function for

the integral equations, which describe the traction and displacement of the crack, are

expressed. The tear problem is then solved. We will get the displacement as the traction

is given.

3.2.1 Basic equations

Slaughter [2002] uses the the Airy stress function χ(x, y) to describe plane strain problems.

The stress components are written in terms of χ via

σxx = χ,yy +Ω, σyy = χ,xx +Ω and σxy = −χ,xy . (3.12)

where Ω is the potential function for the body force. If the body force is homogeneous,

the compatibility condition gives

O4χ = 0, (3.13)

and the displacement components will be

2µu = −χ,x +αψ,y , 2µv = −χ,y +αψ,x , (3.14)

where ψ(x, y) is a potential function that satisfies the conditions

O2ψ = 0 and ψ,xy = O2χ, (3.15)

and α = 1− ν for plane strain, and α =
1

1 + ν
for plane stress.

Define the Fourier trasform F [f ] = f̂(g, y) =
∫∞
−∞ f(x, y)e−igxdx and inverse Fourier trans-

form f(x, y) = 1
2π

∫∞
−∞ f̂(g, y)eigxdg. After applying the Fourier transform, the equation

(3.13) changes to

χ̂yyyy − 2g2χ̂yy + g4χ̂ = 0. (3.16)

The general solution is

χ̂(y, g) = Aegy +Be−gy + Cyegy +Dye−gy, (3.17)

where A,B,C,D are constants connected with boundary conditions and jump conditions.

Now we define region 2 as the region where y ≥ 0, and region 1 as the region where y ≤ 0.
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Using χ→ 0 as y → +∞ in region 2 we get

χ̂(y, g) = A2e
gy +B2e

−gy + C2ye
gy +D2ye

−gy, (3.18)

A2 = C2 = 0 for g > 0, (3.19)

B2 = D2 = 0 for g < 0. (3.20)

Using χ→ 0 as y → −∞ in region 1 we get

χ̂(y, g) = A1e
gy +B1e

−gy + C1ye
gy +D1ye

−gy, (3.21)

B1 = D1 = 0 for g > 0, (3.22)

A1 = C1 = 0 for g < 0. (3.23)

After appling the Fourier transform, equations (3.15) become

ψ̂yy − g2ψ̂ = 0, (3.24)

igψ̂,y = χ̂,yy −g2χ̂, (3.25)

and the general solution for equation (3.24) is

ψ̂ = Eegy + Fe−gy. (3.26)

Substituting χ̂ and ψ̂ into equation (3.25), we get

ig(Egegy − Fge−gy) = 2gCegy − 2gDe−gy. (3.27)

Hence

E = −2C

g
i, F = −2D

g
i, ψ̂ = −2C

g
iegy − 2D

g
ie−gy. (3.28)

After Fourier transformation, equations (3.12) and equations (3.14) become

σ̂xx = χ̂,yy , σ̂yy = −g2χ̂ , σ̂xy = −igχ̂,y , (3.29)

2µû = −igχ̂+ αψ̂,y , 2µv̂ = −χ̂,y +igαψ̂ . (3.30)

Substituting (3.17) and (3.28) into above equations we get

σ̂xx = Ag2egy +Bg2e−gy + gCegy(2 + yg) + gDe−gy(−2 + yg), (3.31)

σ̂yy = −Ag2egy −Bg2e−gy − g2Cyegy − g2Dye−gy,

σ̂xy = −Ag2iegy +Bg2ie−gy − igC(1 + yg)egy − igD(1− yg)e−gy,

2µû = −igAegy − igBe−gy − igCyegy − igDye−gy + α(−2iCegy + 2iDe−gy),

2µv̂ = Agegy −Bge−gy + C(1 + yg)egy +D(1− yg)e−gy + α(2Cegy + 2De−gy).
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3.2.2 Jump in v

Now assume the displacement discontinuity is only in the normal direction v and the crack

is at y = 0 as shown in Figure 3.2. The jump conditions at y = 0 are

region 1

region 2

y

x

Figure 3.2: The displacement discontinuity in normal direction.

[v]+− = v2−v1 = δ(x), [u]+− = u2−u1 = 0, [σyy]
+
− = σ2

yy−σ1
yy = 0, [σxy]

+
− = σ2

xy−σ1
xy = 0,

(3.32)

and they are used to construct the Green’s function referring to Lighthill [1958], which is

used in (3.59) etc.. After Fourier transformation these equations become

[v̂]+− = v̂2−v̂1 = 1, [û]+− = û2−û1 = 0, [σ̂yy]
+
− = σ̂2

yy−σ̂1
yy = 0, [σ̂xy]

+
− = σ̂2

xy−σ̂1
xy = 0.

(3.33)

By using (3.19), (3.22) and (3.31) in jump conditions (3.33), when g > 0 we have

[−B2g +D2 + 2αD]− [A1g + C1 + 2αC1] = 2µ, (3.34)

[−igB2 + 2αiD2]− [−igA1 − 2αiC1] = 0, (3.35)[
−B2g

2
]
−
[
−A1g

2
]

= 0, (3.36)[
iB2g

2 − igD2

]
−
[
−iA1g

2 − igC1

]
= 0. (3.37)

Hence we obtain

A1 =
2µ

4αg
, B1 = 0 , C1 = −2µ

4α
, D1 = 0; (3.38)

A2 = 0 , B2 =
2µ

4αg
, C2 = 0 , D2 =

2µ

4α
.
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When g < 0 we have

A1 = 0 , B1 = − 2µ

4αg
, C1 = 0 , D1 = −2µ

4α
; (3.39)

A2 = − 2µ

4αg
, B2 = 0 , C2 =

2µ

4α
, D2 = 0.

Put (3.38) and (3.39) into equations (3.31), and when y ≥ 0 the inverse Fourier transform

of σvyy is

σvyy =
1

2π

∫ ∞
−∞

eigxσ̂yy (g, y) dg

=
1

2π

[∫ 0

−∞
eigxσ̂yy (g, y) dg +

∫ ∞
0

eigxσ̂yy (g, y) dg

]
=

2µ

2π

[∫ 0

−∞
eigx

(
g

4α
egy − g2y

4α
egy
)
dg −

∫ ∞
0

eigx
(
g

4α
e−gy +

g2y

4α
e−gy

)
dg

]
=

µ

4πα

[∫ 0

−∞
eg(ix+y)(g − g2y)dg −

∫ ∞
0

eg(ix−y)(g + g2y)dg

]
=

1

2

µ
(
−x4 − 6x2y2 + 3y4

)
πα (−ix3 − 3yx2 + 3iy2x+ y3) (−ix3 + 3yx2 + 3ixy2 − y3)

=
µ(x4 + 6x2y2 − 3y4)

2πα(x2 + y2)3

where the superscript ‘v’ means ‘Jump in v’. When y ≤ 0, σvyy =
µ(x4 + 6x2y2 − 3y4)

2πα(x2 + y2)3
,

and when y = 0, σvyy =
µ

2παx2
.

When y ≥ 0 the inverse Fourier transform of σvxy is

σvxy =
1

2π

∫ ∞
−∞

eigxσ̂xy (g, y) dg

=
1

2π

[∫ 0

−∞
eigxσ̂xy (g, y) dg +

∫ ∞
0

eigxσ̂xy (g, y) dg

]
=

2µ

2π

[∫ 0

−∞
eigx

(
ig

4α
egy − ig

4α
(1 + yg)egy

)
dg +

∫ ∞
0

eigx
(
ig

4α
e−gy − ig

4α
(1− gy)e−gy

)
dg

]
= −

µyx
(
−x2 + 3y2

)
πα (−ix3 − 3yx2 + 3iy2x+ y3) (ix3 − 3yx2 − 3ixy2 + y3)

=
µxy(x2 − 3y)

πα(x2 + y2)3

When y ≤ 0 the inverse Fourier transform is

σvxy =
1

2π

∫ ∞
−∞

eigxσ̂xy (g, y) dg (3.40)

= −
µyx

(
x2 − 3y2

)
πα (ix3 − 3yx2 − 3iy2x+ y3) (ix3 + 3yx2 − 3ixy2 − y3)

(3.41)

= −µxy(x2 − 3y)

πα(x2 + y2)3
(3.42)



CHAPTER 3. 2D TEARS 49

and when y = 0, σvxy = 0. It’s straightforward to get uv and vv by the same way, and the

superscript u means ‘Jump in u’.

3.2.3 Jump in u

Now assume the displacement discontinuity is only in tangential direction and the crack

is at y = 0. Jump conditions at y = 0 are

[v]+− = v2−v1 = 0, [u]+− = u2−u1 = δ(x), [σyy]
+
− = σ2

yy−σ1
yy = 0, [σxy]

+
− = σ2

xy−σ1
xy = 0.

(3.43)

After Fourier transform these equations become

[v̂]+− = v̂2−v̂1 = 0, [û]+− = û2−û1 = 1, [σ̂yy]
+
− = σ̂2

yy−σ̂1
yy = 0, [σ̂xy]

+
− = σ̂2

xy−σ̂1
xy = 0.

(3.44)

We use (3.19), (3.22) and (3.31) in these jump condtions (3.33), when g > 0 we have

[−B2g +D2 + 2αD]− [A1g + C1 + 2αC1] = 0, (3.45)

[−igB2 + 2αiD2]− [−igA1 − 2αiC1] = 2µ, (3.46)[
−B2g

2
]
−
[
−A1g

2
]

= 0, (3.47)[
iB2g

2 − igD2

]
−
[
−iA1g

2 − igC1

]
= 0. (3.48)

Hence we obtain

A1 = 0 , B1 = 0 , C1 = − iµ
2α

, D1 = 0; (3.49)

A2 = 0 , B2 = 0 , C2 = 0 , D2 = − iµ
2α
.

When g < 0 we have

A1 = 0 , B1 = 0 , C1 = 0 , D1 =
iµ

2α
; (3.50)

A2 = −0 , B2 = 0 , C2 =
iµ

2α
, D2 = 0.

Put (3.49) and (3.50) into equations (3.31), when y ≥ 0 the inverse Fourier transform of

σ̂uyy is

σuyy =
1

2π

∫ ∞
−∞

eigxσ̂yy (g, y) dg (3.51)

=
1

2π

[∫ 0

−∞
eigxσ̂yy (g, y) dg +

∫ ∞
0

eigxσ̂yy (g, y) dg

]
(3.52)

= −
µyx

(
−x2 + 3y2

)
πα (−ix3 − 3yx2 + 3iy2x+ y3) (ix3 − 3yx2 − 3ixy2 + y3)

(3.53)

=
µxy(x2 − 3y)

πα(x2 + y2)3
. (3.54)
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When y ≤ 0 the inverse Fourier transform of σuyy is

σuyy =
1

2π

∫ ∞
−∞

eigxσ̂yy (g, y) dg (3.55)

= −
µyx

(
x2 − 3y2

)
πα (ix3 − 3yx2 − 3iy2x+ y3) (ix3 + 3yx2 − 3ixy2 − y3)

(3.56)

= −µxy(x2 − 3y)

πα(x2 + y2)3
. (3.57)

When y = 0 the stress component σuyy = 0. For all y the inverse Fourier transform of σuxy

is

σuxy =
µ(x4 + 6x2y2 − 3y4)

2πα(x2 + y2)3
. (3.58)

When y = 0 the stress component σuxy =
µ

2παx2
. It’s straightforward to get uu and vu by

the same way.

3.2.4 Integral equation

The traction components, decomposed into normal and tangential direction, are

Ty =

∫
σuyy (x− s, y)U (s) ds+

∫
σvyy (x− s, y)V (s) ds,

Tx =

∫
σuxy (x− s, y)U (s) ds+

∫
σvxy (x− s, y)V (s) ds. (3.59)

The displacement components, decomposed into normal and tangential direction, are

u =

∫
uu(x− s, r)U(s)ds+

∫
uv(x− s, r)V (s)ds

v =

∫
vu(x− s, r)U(s)ds+

∫
vv(x− s, r)V (s)ds (3.60)

The value of σuyy, σ
v
yy, σ

u
xy, σ

v
xy and uu, uv, vu, vv are known. Hence if the traction (Tx, Ty)

along the crack is given, we can calculate the displacement (u, v).

When y = 0 and we assume the crack is along the interval −L
2 ≤ x ≤

L
2 ,

Ty = 0 +

∫ L
2

−L
2

µV (s)

2πα(x− s)2
ds (3.61)

Tx =

∫ L
2

−L
2

µU(s)

2πα(x− s)2
ds+ 0, (3.62)
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for the plane strain problem∫ L
2

−L
2

µU(s)

2πα(x− s)2
ds =

µ

2π (1− v)

∫ L
2

−L
2

U(s)

(x− s)2
ds (3.63)

=
E

4π (1− v2)

∫ L
2

−L
2

U(s)

(x− s)2
ds, (3.64)

∫ L
2

−L
2

µV (s)

2πα(x− s)2
ds =

E

4π (1− v2)

∫ L
2

−L
2

V (s)

(x− s)2
ds (3.65)

where the integral
∫ L

2

−L
2

V (s)
(x−s)2ds is Hadamard integral, and

E =
µ(3λ+ 2µ)

λ+ µ
, ν =

λ

2(λ+ µ)
, 1 + ν =

3λ+ 2µ

2(λ+ µ)
, µ =

E

2(1 + ν)
. (3.66)

Hence when (Tx, Ty) in (3.59) along the crack is given, the value of (U(s), V (s)) is solved by

inversion of the integral equation. Then the displacement (u, v) in (3.60) will be obtained.

3.3 Static tears in 2D strip—linear elasticity for 2D plane

cracks

We illustrate the crack problem in a 2D strip, which is closer than the crack problem in

an infinite plane to our aim to solve the crack problem in an elastic tube. We try to use

analytical approach to solve it in this section, but find that the Fourier inversions can not

be performed analytically. Then we use numerical approach to solve it in next section.

3.3.1 Method for crack problem in a 2D strip

The crack is decomposed into normal direction (jump in u) and tangential direction (jump

in v) as shown in Figure 3.3 .

The jump conditions on the crack surface are

u2 − u1 = 0, v2 − v1 = δ(x), σ2
xy − σ1

xy = 0, σ2
yy − σ1

yy = 0 for jump in v (3.67)

u2 − u1 = δ(x), v2 − v1 = 0, σ2
xy − σ1

xy = 0, σ2
yy − σ1

yy = 0 for jump inu (3.68)

with boundary condition (3.2) on y = ±h and equilibrium equation (3.1).

Following are the details of the methods to solve the equilibrium equations with boundary

and jump conditions. Firstly, the strain tensor ε and stress tensor σ are the functions
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region 1

region 2

region 1

region 2

Jump in v Jump in u

y = h

y = yc

y

y = −h

x

Figure 3.3: The crack is decomposed into normal and tangential direction.

of displacements uu, wu or uw, ww. Write the equilibrium equations divσ = 0 into com-

ponents to obtain two partial differentiation equations with variables uu, wu or uw, ww;

secondly, taking the Fourier transform to change these PDEs to ODEs with the wave num-

ber g and the variables are ûu, ŵu or ûw, ŵw; thirdly, solving these ODEs with boundary

conditions and jump conditions by using analytical way or numerical way; finally, taking

the inverse Fourier transform to obtain the solution for PDEs. The Cauchy stress σ is

the functions of displacements uu, wu or uw, ww, hence when uu, wu and uw, ww are solved

σurz, σ
w
rr and σurz, σ

w
rr will be obtained.

By solving these equations for ‘Jump in u’ we get σuyy, σ
u
xy, u

u, vu, and solving them for

‘Jump in v’ we obtain σvyy, σ
v
xy, u

v, vv. Where the superscript ‘u’ means ‘Jump in u’, and

‘v’ means ‘Jump in v’.

In the 2D strip the traction components are described as

Ty =

∫
σuyy (x− s, y)U (s) ds+

∫
σvyy (x− s, y)V (s) ds, (3.69)

Tx =

∫
σuxy (x− s, y)U (s) ds+

∫
σvxy (x− s, y)V (s) ds. (3.70)

Displacements, decomposed into normal and tangential direction, are

u =

∫
uu(x− s, y)U(s)ds+

∫
uv(x− s, y)V (s)ds (3.71)

v =

∫
vu(x− s, y)U(s)ds+

∫
vv(x− s, y)V (s)ds (3.72)
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Hence if the traction (Ty,Tx) along the crack is given (U(s), V (s)) will be calculated, then

the displacement (u, v) will be obtained. We use this method to calculate the displacements

for the upper crack face, lower crack face, outer boundary layer and inner boundary layer.

Then plot them on one figure to get the crack profile.

3.3.2 Basic 2D plane crack problem

Consider the 2D problem of a crack in a linear elastic material occupying a strip −h ≤ y ≤

h in plane strain. The coordinate system is (x, y) and the displacements in the coordinate

directions are (u, v). The components of the Cauchy stress are σyy and σxy. The crack is

located along the line y = yc. The strain tensor is

ε =


∂u(x, y)

∂x

1

2

∂u(x, y)

∂y
+

1

2

∂v(x, y)

∂x
1
2

∂u(x, y)

∂y
+

1

2

∂v(x, y)

∂x

∂v(x, y)

∂y

 , (3.73)

The constitutive law is

σ = λtr (ε) I + 2µε. (3.74)

The stress tensor is

σ =

 (λ+ 2µ)
∂u(x, y)

∂x
+ λ

∂v(x, y)

∂y
µ
∂u(x, y)

∂y
+ µ

∂v(x, y)

∂x

µ
∂u(x, y)

∂y
+ µ

∂v(x, y)

∂x
(λ+ 2µ)

∂v(x, y)

∂y
+ λ

∂v(x, y)

∂y

 . (3.75)

The Poisson’s ratio

ν =
λ

2 (λ+ µ)
(3.76)

so that λ = 2ν
1−2νµ andλ+ 2µ = 2−2ν

1−2νµ. Hence (λ, µ) are replaced by (λ, ν)

σxx = (λ+ 2µ)u,x +λv,y =
2µ

1− 2ν
[(1− ν)u,x +νv,y ] (3.77)

σxy = 2µ

(
v,x +u,y

2

)
(3.78)

σyy = (λ+ 2µ) v,y +λu,y =
2µ

1− 2ν
[(1− ν) v,y +νu,x ] (3.79)

The equilibrium for Cauchy stress is

divσ = 0, (3.80)

and the boundary conditions are

σyy = 0 at y = ±h, (3.81)

σxy = 0 at y = ±h. (3.82)
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The jump conditions on crack surface y = yc are (3.68) and (3.67). Write the equilibrium

equation (3.80) into components and use Fourier transformation on these equations

ig
dv̂ (y)

dy
+ (1− 2ν)

d2û (y)

dy2
− 2g2 (1− ν) û (y) = 0, (3.83)

ig
dû (y)

dy
+ 2 (1− ν)

d2v̂ (y)

dy2
− v̂ (y) g2 (1− 2ν) = 0. (3.84)

where û(y) =
∫∞
−∞ u(x, y)e−igxdx and v̂(y) =

∫∞
−∞ v(x, y)e−igxdx. The general solution for

these two equations is

v̂ (y) = Ae−gy +Be−gyy + Cegy +Degyy (3.85)

and

û (y) = − i
g

(
4νBe−gy + 4νDegy +Age−gy +Bge−gyy − 3Be−gy − Cgegy −Dgegyy − 3Degy

)
,

(3.86)

where A,B,C,D are constants connected to boundary conditions and jump conditions.

Now assume the traction is in normal direction, which is the ‘Jump in v’ in Figure 3.3 and

h = 1 and yc = 0 are given. The boundary conditions (3.81) and (3.82) after transform

are

σ̂yy = 0 at y = ±1, (3.87)

σ̂xy = 0 at y = ±1. (3.88)

where σ̂yy =
∫∞
−∞ σyy(x, y)e−igxdx and σ̂xy =

∫∞
−∞ σxy(x, y)e−igxdx.

The jump conditions (3.67) after Fourier transformation are

û2 − û1 = 0, v̂2 − v̂1 = 1, σ̂2
yy − σ̂1

yy = 0, σ̂2
xy − σ̂1

xy = 0 at y = 0 (3.89)

where subscript or superscript ‘1’ means region 1, and ‘2’ means region 2.

Put the solutions (3.164) and (5.82) into these boundary conditions and jump conditions
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we obtain the constants A1, A2, B1, B2, C1, C2, D1, D2.

A1 =
1

2

(
g2eg − 2 ν geg + 2 geg + eg − ν eg − e−g + ν e−g

)
e−g

ν (eg)2 − (eg)2 + 4 e−ggegν − 4 e−ggeg + (e−g)2 − (e−g)2 ν
, (3.90)

B1 =
1

4

(2 geg + eg − e−g) ge−g

ν (eg)2 − (eg)2 + 4 e−ggegν − 4 e−ggeg + (e−g)2 − (e−g)2 ν
, (3.91)

C1 = −1

2

eg
(
2 ν ge−g + ν eg − ν e−g + g2e−g − 2 ge−g − eg + e−g

)
ν (eg)2 − (eg)2 + 4 e−ggegν − 4 e−ggeg + (e−g)2 − (e−g)2 ν

, (3.92)

D1 = −1/4
geg (2 ge−g + eg − e−g)

ν (eg)2 − (eg)2 + 4 e−ggegν − 4 e−ggeg + (e−g)2 − (e−g)2 ν
, (3.93)

A2 =
1

2

eg
(
2 ν ge−g + ν eg − ν e−g + g2e−g − 2 ge−g − eg + e−g

)
ν (eg)2 − (eg)2 + 4 e−ggegν − 4 e−ggeg + (e−g)2 − (e−g)2 ν

, (3.94)

B2 = −1

4

geg (2 ge−g + eg − e−g)
ν (eg)2 − (eg)2 + 4 e−ggegν − 4 e−ggeg + (e−g)2 − (e−g)2 ν

, (3.95)

C2 = −1

2

(
g2eg − 2 ν geg + 2 geg + eg − ν eg − e−g + ν e−g

)
e−g

ν (eg)2 − (eg)2 + 4 e−ggegν − 4 e−ggeg + (e−g)2 − (e−g)2 ν
, (3.96)

D2 =
1

4

(2 geg + eg − e−g) ge−g

ν (eg)2 − (eg)2 + 4 e−ggegν − 4 e−ggeg + (e−g)2 − (e−g)2 ν
. (3.97)

3.3.3 The Fourier transform is unbounded as g increasing

In region 2

σ̂yy (g, y) =
1

4

(
2 g2e−gyy + 2 g2egyy + 2 e−gyg − 2 egyg − 2 e−gyg2 − 2 egyg2 + e−g(−2+y)

)
g

ν e2 g − e2 g + 4 ν g − 4 g + e−2 g − e−2 gν

+
1

4

(
−e−gy − egy + eg(−2+y) + ge−g(−2+y)y − ge−gyy + gegyy − geg(−2+y)y

)
g

ν e2 g − e2 g + 4 ν g − 4 g + e−2 g − e−2 gν

If we let y tends to 0, we find σ̂yy is divergent when g increases, which means this can not

be inverted by inverse Fourier transform 1
2π

∫∞
−∞ σ̂yye

igxdg.

The behaviours of σ̂yy (g, y) and σ̂xy (g, y) as g gets large lead us to consider a decompo-

sition of the form

σ̂yy (g, y) = σ1
yyg + σ0

yy + σ̃yy, (3.98)

which makes (σ̂yy (g, y)− σ1
yyg)→ 0 or (σ̂yy (g, y)− σ1

yyg − σ0
yy)→ 0 invertible.

In the future section, we will introduce a numerical approach to solve these equilibrium

equations, and we will use the decomposition and invert them numerically.
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3.3.4 Useful results

The following results

lim
y→0+

1

π

∫ ∞
0

ge−gy cos gx dg = − 1

πx2
, (3.99)

lim
y→0+

1

π

∫ ∞
0

e−gy cos gx dg = δ(x), (3.100)

lim
y→0+

1

π

∫ ∞
0

ge−gy sin gx dg = −δ′(x), (3.101)

lim
y→0+

1

π

∫ ∞
0

e−gy sin gx dg =
1

πx
, (3.102)

are useful for the calculation in the future sections.

3.4 Solution for the compressible plane crack problem in a

2D strip

In this section we are going to solve the plane crack problem in a compressible 2D strip

numerically. We consider the crack decomposed into normal and tangential direction as

shown in Figure 3.3.

3.4.1 Fourier transformation

The Fourier transform and inverse Fourier transform in the x direction are defined as

F [f ] = f̂(g, y) =

∫ ∞
−∞

f(x, y)e−igxdx, (3.103)

F−1[f̂ ] = f(x, y) =
1

2π

∫ ∞
−∞

f̂(g, y)eigxdg. (3.104)

If f(−x, y) = −f(x, y)

Fs[f ] = f̂(g, y) = −2i

∫ ∞
0

f(x, y) sin(gx)dx, (3.105)

and f̂(−g, y) = −f̂(g, y) leads to

F−1
s [f̂ ] = f(x, y) =

i

π

∫ ∞
0

f̂(g, y) sin(gx)dg. (3.106)

If f(−x, y) = f(x, y)

Fc[f ] = f̂(g, y) = 2

∫ ∞
0

f(x, y) cos(gx)dx, (3.107)
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and f̂(−g, y) = −f̂(g, y) leads to

F−1
c [f̂ ] = f(x, y) =

1

π

∫ ∞
0

f̂(g, y) cos(gx)dg. (3.108)

The derivative of these equations are

F [f,x ] =

∫ ∞
−∞

f(x, y),x e
−igxdx = igF [f(x, y)] = igf̂(g, y) (3.109)

F [f,y ] =

∫ ∞
−∞

f(x, y),y e
−igxdx = f̂(g, y),y (3.110)

F [f,xy ] =

∫ ∞
−∞

f(x, y),xy e
−igxdx = igf̂(g, y),y (3.111)

F [f,xx ] =

∫ ∞
−∞

f(x, y),xx e
−igxdx = −g2F [f(x, y)] = −g2f̂(g, y) (3.112)

F [f,yy ] =

∫ ∞
−∞

f(x, y),yy e
−igxdx = f̂(g, y),yy (3.113)

3.4.2 Jump in v across the crack

The symmetry of the problem gives u(−x, y) = −u(x, y), then the Fourier and inverse

transformation for the displacement u are

û(g, y) = Fs[u] = −2i

∫ ∞
0

u(x, y) sin(gx)dx, (3.114)

u(x, y) = F−1
s [û] =

i

π

∫ ∞
0

û(g, y) sin(gx)dg. (3.115)

Since v(−x, y) = v(x, y) the Fourier and inverse transformation for displacement v are

v̂(g, y) = Fc[v] = 2

∫ ∞
0

v(x, y) cos(gx)dx, (3.116)

v(x, y) = F−1
c [v̂] =

1

π

∫ ∞
0

v̂(g, y) cos(gx)dg. (3.117)

The stress σxx is given by

σxx =
2µ

1− 2ν
[(1− ν)u,x +νv,y ] , (3.118)

where

u,x (x, y) =
i

π

∫ ∞
0

û(g, y)g cos(gx)dg and v,y (x, y) =
1

π

∫ ∞
0

v̂,y (g, y) cos(gx)dg.

(3.119)

Hence

σxx =
2µ

1− 2ν

1

π

∫ ∞
0

((1− ν) igû+ νv̂,y ) cos(gx)dg (3.120)

=
2µ

1− 2ν

1

π

∫ ∞
0

((1− ν)F [u,x ] + νF [v,y ]) cos(gx)dg (3.121)

=
1

π

∫ ∞
0
F [σxx] cos(gx)dg =

1

π

∫ ∞
0

σ̂xx (g, y) cos(gx)dg. (3.122)
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The stress σxy is the function

σxy = µ (v,x +u,y ) , (3.123)

where

v,x (x, y) = − 1

π

∫ ∞
0

v̂(g, y)g sin(gx)dg and u,y (x, y) =
i

π

∫ ∞
0

û,y (g, y) sin(gx)dg.

(3.124)

Hence

σxy =
µ

π

∫ ∞
0

(−v̂(g, y)g + iû,y (g, y)) sin(gx)dg (3.125)

=
µ

π

∫ ∞
0

(iF [v,x ] + iF [u,y ]) sin(gx)dg (3.126)

=
i

π

∫ ∞
0
F [σxy] sin(gx)dg =

i

π

∫ ∞
0

σ̂xy (g, y) sin(gx)dg. (3.127)

Using the symmetry of the domain in x, we express the displacements and the stresses as

u (x, y) =
i

π

∫ ∞
0

û (g, y) sin(gx) dg =
1

π

∫ ∞
0

Ûv (g, y) sin(gx) dg,

v (x, y) =
1

π

∫ ∞
0

v̂ (g, y) cos(gx) dg =
1

π

∫ ∞
0

V̂ v (g, y) cos(gx) dg,

σyy (x, y) =
1

π

∫ ∞
0

σ̂yy (g, y) cos(gx) dg =
1

π

∫ ∞
0

σ̂vyy (g, y) cos(gx) dg,

σxx (x, y) =
1

π

∫ ∞
0

σ̂xx (g, y) cos(gx) dg =
1

π

∫ ∞
0

σ̂vxx (g, y) cos(gx) dg,

σxy (x, y) =
i

π

∫ ∞
0

σ̂xy (g, y) sin(gx) dg =
1

π

∫ ∞
0

σ̂vxy (g, y) sin(gx) dg, (3.128)

with the definition

Ûv = iû, V̂ v = v̂, σ̂vxx = σ̂xx, σ̂vyy = σ̂yy, σ̂vxy = iσ̂xy. (3.129)

Fourier transform on the equilibrium equation divσ = 0 are

F [σxx,x] + F [σxy,y] = 0, (3.130)

F [σxy,x] + F [σyy,y] = 0. (3.131)

Using the relations (3.77-3.79) between the stresses and the displacements we get the

equilibrium equations in terms of Ûv and V̂ v

(1− 2ν)
(
Ûv
)′′
− 2g2 (1− ν) Ûv − g

(
V̂ v
)′

= 0, (3.132)

2 (1− ν)
(
V̂ v
)′′
− g2 (1− 2ν) V̂ v + g

(
Ûv
)′

= 0. (3.133)
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The boundary conditions at y = ±h are σ̂vyy = 0 and σ̂vxy = 0, which translate to(
Ûv
)′
− gV̂ v = 0 (1− ν)

(
V̂ v
)′

+ νgÛv = 0. (3.134)

The jump conditions across the crack at y = yc are[
Ûv
]+

−
= 0,

[
V̂ v
]+

−
= 1,

[
σ̂vyy
]+
− =

[
σ̂vxy
]+
− = 0. (3.135)

3.4.3 Jump in u across the crack

The symmetry of the problem gives v(−x, y) = −v(x, y), then the Fourier and inverse

transformation for displacement v are

v̂(g, y) = Fs[v] = −2i

∫ ∞
0

v(x, y) sin(gx)dx, (3.136)

v(x, y) = F−1
s [v̂] =

i

π

∫ ∞
0

v̂(g, y) sin(gx)dg. (3.137)

Since u(−x, y) = u(x, y) the Fourier and inverse transformation for displacement u are

û(g, y) = Fc[u] = 2

∫ ∞
0

u(x, y) cos(gx)dx, (3.138)

u(x, y) = F−1
c [û] =

1

π

∫ ∞
0

û(g, y) cos(gx)dg. (3.139)

The stress σxx is the function of displacements

σxx =
2µ

1− 2ν
[(1− ν)u,x +νv,y ] , (3.140)

where

u,x (x, y) = − 1

π

∫ ∞
0

û(g, y)g sin(gx)dg and v,y (x, y) =
i

π

∫ ∞
0

v̂,y (g, y) sin(gx)dg.

Hence

σxx =
2µ

1− 2ν

1

π

∫ ∞
0

[− (1− ν) gû+ iνv̂,y ] sin(gx)dg (3.141)

=
2µ

1− 2ν

1

π

∫ ∞
0

[(1− ν) iF [u,x ] + νiF [v,y ]] sin(gx)dg (3.142)

=
i

π

∫ ∞
0
F [σxx] sin(gx)dg =

i

π

∫ ∞
0

σ̂xx sin(gx)dg. (3.143)
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Using the symmetry of the domain in x, express the displacements and the stress as

u (x, y) =
1

π

∫ ∞
0

û (g, y) cos(gx) dg =
1

π

∫ ∞
0

Ûu (g, y) cos(gx) dg,

v (x, y) =
i

π

∫ ∞
0

v̂ (g, y) sin(gx) dg =
1

π

∫ ∞
0

V̂ u (g, y) sin(gx) dg,

σyy (x, y) =
i

π

∫ ∞
0

σ̂yy (g, y) sin(gx) dg =
1

π

∫ ∞
0

σ̂uyy (g, y) sin(gx) dg,

σxx (x, y) =
i

π

∫ ∞
0

σ̂xx (g, y) sin(gx) dg =
1

π

∫ ∞
0

σ̂uxx (g, y) sin(gx) dg,

σxy (x, y) =
1

π

∫ ∞
0

σ̂xy (g, y) cos(gx) dg =
1

π

∫ ∞
0

σ̂uxy (g, y) cos(gx) dg. (3.144)

where define

Ûu = ûu, V̂ u = iv̂u, σ̂uyy = iσ̂yy, σ̂uxx = iσ̂xx, σ̂uxy = σ̂xy. (3.145)

The equilibrium equations 3.130 and 3.131 in terms of Ûu and V̂ u are

(1− 2ν)
(
Ûu
)′′
− 2g2 (1− ν) Ûu + g

(
V̂ u
)′

= 0, (3.146)

2 (1− ν)
(
V̂ u
)′′
− g2 (1− 2ν) V̂ u − g

(
Ûu
)′

= 0. (3.147)

The boundary conditions at y = ±h are σ̂uyy = 0 and σ̂uxy = 0, which translate to(
Ûu
)′

+ gV̂ u = 0 (1− ν)
(
V̂ u
)′
− νgÛu = 0. (3.148)

The jump conditions across the crack at y = yc are[
Ûu
]+

−
= 1,

[
V̂ u
]+

−
= 0,

[
σ̂uyy
]+
− =

[
σ̂uxy
]+
− = 0. (3.149)

3.4.4 Numerical solution

In this section we are going to solve Ûv, V̂ v, Ûu, V̂ u and σ̂vyy, σ̂
v
xy, σ̂

u
yy, σ̂

u
xy numerically. Now

we assume h = 1. We consider g = 0 separately, which will give singularity if we use the

following collocation method.

Collocation method

As shown in Figure 3.3, region 1 is −1 ≤ y ≤ yc and region 2 is yc ≤ y ≤ 1.

Now we change the variable y to Y . In region 1, y = −1 +Y (yc + 1) and
d

dy
=

1

yc + 1

d

dY
;

in region 2, y = 1 + Y (yc − 1) and
d

dy
=

1

yc − 1

d

dY
. The range of Y is [0, 1].

The boundary in each region is represented by Y = 0, and Y = 1 represents the crack

face.
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Jump in v

Define Y1, Y2, Y3, Y4 to be Ûv, (Ûv)′, V̂ v, (V̂ v)′ respectively in region 1, and Y5, Y6, Y7, Y8 to

be Ûv, (Ûv)′, V̂ v, (V̂ v)′ respectively in region 2.

Referring to equations (3.132)

(Ûv)′′ =
1

1− 2ν

[
2g2 (1− ν) Ûv + g(̂V̂ v)′

]
, (3.150)

(V̂ v)′′ =
1

2 (1− ν)

[
g2 (1− 2ν) V̂ v − g(̂Ûv)′

]
. (3.151)

dY1

dY
= Y2

dY2

dY
=

1

1− 2ν

[
2g2 (1− ν) (yc + 1)2 Y1 + g (yc + 1)Y4

]
dY3

dY
= Y4

dY4

dY
=

1

2 (1− ν)

[
g2 (1− 2ν) (yc + 1)2 Y3 − g (yc + 1)Y2

]
dY5

dY
= Y6

dY6

dY
=

1

1− 2ν

[
2g2 (1− ν) (yc − 1)2 Y5 + g (yc − 1)Y8

]
dY7

dY
= Y8

dY8

dY
=

1

2 (1− ν)

[
g2 (1− 2ν) (yc − 1)2 Y7 − g (yc − 1)Y6

]
(3.152)

The boundary conditions (3.134) on the boundary, and the jump conditions (3.135) on the

upper and lower crack faces are

Y2 − g (yc + 1)Y3 = 0

(1− ν)Y4 + νg(yc + 1)Y1 = 0

Y6 − g (yc − 1)Y7 = 0

(1− ν)Y8 + νg(yc − 1)Y5 = 0

Y5 − Y1 = 0

Y7 − Y3 − 1 = 0

Y2

yc + 1
− gY3 −

(
Y6

yc − 1
− gY7

)
= 0

1− ν
yc + 1

Y4 −
1− ν
yc − 1

Y8 + νgY1 − νgY5 = 0. (3.153)

We use the Matlab routine ‘bvp4c’, which solves boundary value problems for ODEs by col-

location, to calculate the values of Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, hence Ûv, V̂ v are obtained.

The stress components σ̂vyy, σ̂
v
xy are functions of Ûv, V̂ v.



CHAPTER 3. 2D TEARS 62

Jump in u

Define Y1, Y2, Y3, Y4 to be Ûu, (Ûu)′, V̂ u, (V̂ u)′ respectively in region 1, and Y5, Y6, Y7, Y8

to be Ûu, (Ûu)′, V̂ u, (V̂ u)′ respectively in region 2.

Referring to equations (3.146)

(Ûu)′′ =
1

1− 2ν

[
2g2 (1− ν) Ûu − g(V̂ u)′

]
, (3.154)

(V̂ u)′′ =
1

2 (1− ν)

[
g2 (1− 2ν) V̂ u + g(Ûu)′

]
. (3.155)

dY1

dY
= Y2

dY2

dY
=

1

1− 2ν

[
2g2 (1− ν) (yc + 1)2 Y1 − g (yc + 1)Y4

]
dY3

dY
= Y4

dY4

dY
=

1

2 (1− ν)

[
g2 (1− 2ν) (yc + 1)2 Y3 + g (yc + 1)Y2

]
dY5

dY
= Y6

dY6

dY
=

1

1− 2ν

[
2g2 (1− ν) (yc − 1)2 Y5 − g (yc − 1)Y8

]
dY7

dY
= Y8

dY8

dY
=

1

2 (1− ν)

[
g2 (1− 2ν) (yc − 1)2 Y7 + g (yc − 1)Y6

]
(3.156)

The boundary conditions (3.148) on the boundary, and the jump conditions (3.149) on the

upper and lower crack faces are

Y2 + g (yc + 1)Y3 = 0

(1− ν)Y4 − νg(yc + 1)Y1 = 0

Y6 + g (yc − 1)Y7 = 0

(1− ν)Y8 − νg(yc − 1)Y5 = 0

Y5 − Y1 + 1 = 0

Y7 − Y3 = 0

Y2

yc + 1
+ gY3 −

(
Y6

yc − 1
+ gY7

)
= 0

1− ν
yc + 1

Y4 −
1− ν
yc − 1

Y8 − νgY1 + νgY5 = 0. (3.157)

We use the Matlab routine ‘bvp4c’ to calculate the values of Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8,

hence Ûu, V̂ u are obtained. The stress components σ̂uyy, σ̂
u
xy are functions of Ûu, V̂ u.
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3.4.5 The case g = 0

The calculation of Ûv, V̂ v, σ̂vyy, σ̂
v
xy and Ûu, V̂ u, σ̂uyy, σ̂

u
xy when g = 0 must be solved sepa-

rately.

Jump in v when g = 0

Equations (3.132) become

(1− 2ν)
(
Ûv
)′′

= 0 and 2 (1− ν)
(
V̂ v
)′′

= 0. (3.158)

Hence the solution for Ûv and V̂ v are

Ûv = Ay +B and V̂ v = Cy +D.

By using the boundary conditions (3.134) on lower and upper boundaries and the jump

conditions (3.135) we get

A1 = 0 B1 = 0 C1 = 0 D1 = −1

2
A2 = 0 B2 = 0 C2 = 0 D2 =

1

2

where subscript ‘1’ means region ‘1’, and subscript ‘1’ means region ‘2’.

Hence the displacements on the upper crack face are Ûv = 0 and V̂ v = 1
2 ; the displacements

on the lower crack face are Ûv = 0 and V̂ v = −1
2 ; the displacements on the top boundary

are Ûv = 0 and V̂ v = 1
2 ; the displacements on the bottom boundary are Ûv = 0 and

V̂ v = −1
2 ; on the crack face σ̂vyy = 0 and σ̂vxy = 0.

Jump in u when g = 0

Equations 3.146 change to

(1− 2ν)
(
Ûu
)′′

= 0, (3.159)

2 (1− ν)
(
V̂ u
)′′

= 0. (3.160)

Hence the solution for Ûu and V̂ u are

Ûu = Ay +B,

V̂ u = Cy +D.

Put the solutions into the boundary conditions (3.148) on inner and outer layers and the

jump conditions (3.149) we get

A1 = 0 B1 = −1

2
C1 = 0 D1 = 0 A2 = 0 B2 =

1

2
C2 = 0 D2 = 0
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where subscript ‘1’ means region ‘1’, and subscript ‘1’ means region ‘2’.

Hence the displacements on the upper crack face are Ûu = 1
2 and Ŵ u = 0; the dis-

placements on the lower crack face are Ûu = −1
2 and Ŵ u = 0; the displacements on the

top boundary are Ûu = 1
2 and Ŵ u = 0; the displacements on the bottom boundary are

Ûu = −1
2 and Ŵ u = 0; on the crack face σ̂uyy = 0 and σ̂uxy = 0.

3.4.6 Matrix equations

We obtain Ûv(g, y), V̂ v(g, y), Ûu(g, y), V̂ u(g, y) and σ̂vyy(g, y), σ̂vxy(g, y), σ̂uyy(g, y), σ̂uxy(g, y)

for each g from above numerical approach. Now we assume the length of the crack is L,

and the length of the strip is 3L. The traction and displacement components, decomposed

into normal and tangential direction, are

Ty =

∫
σuyy (x− s, y)U (s) ds+

∫
σvyy (x− s, y)V (s) ds, (3.161)

Tx =

∫
σuxy (x− s, y)U (s) ds+

∫
σvxy (x− s, y)V (s) ds. (3.162)

u =

∫
uu(x− s, y)U(s)ds+

∫
uv(x− s, y)V (s)ds (3.163)

v =

∫
vu(x− s, y)U(s)ds+

∫
vv(x− s, y)V (s)ds (3.164)

We discretize the integral equations (3.161) and (3.162) assuming piecewise constant open-

ings along a crack of length L. We evaluate the integral equation at a discrete set of points

xi, i = 1, ..., N .

Useful results

The following results will be used in future sections

∫ xj+∆

xj−∆
Uj

(
− 1

π (xi − s)2

)
ds = Uj

− 2∆

π
(

(xi − xj)2 −∆2
)
 , (3.165)

∫ xj+∆

xj−∆
Uj (δ(xi − s)) ds = UjIxi∈(xj−∆,xj+∆), (3.166)∫ xj+∆

xj−∆
Uj
(
δ′(xi − s)

)
ds = 0, (3.167)∫ xj+∆

xj−∆
Uj

(
1

π (xi − s)

)
ds =

1

π
log

∣∣∣∣xi − xj + ∆

xi − xj −∆

∣∣∣∣Uj , (3.168)
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in which ∆ =
L

N
, i = 1, ..., N , and j = 1, ..., N .

For the first term in the RHS of equation (3.161)∫
σuyy (xi − s, y)U (s) ds =

∫ [
1

π

∫ ∞
0

σ̂uyy (g, y) sin g (xi − s) dg
]
U (s) ds

=
1

π

∑
j

∫
j

[∫ ∞
0

σ̂uyy (g, y) sin g (xi − s) dg
]
Uj ds

=
1

π

∑
j

∫
j

[∫ ∞
0

(
σ̂uyy (g, y)− gσu1

yy

)
sin g (xi − s) dg

]
Uj ds

+
1

π

∑
j

∫
j

[∫ ∞
0

gσu1
yy sin g (xi − s) dg

]
Uj ds,

where∫
j

[∫ ∞
0

(σ̂uyy (g, y)− gσu1
yy ) sin g (xi − s) dg

]
Uj ds = Uj

∫ ∞
0

(σ̂uyy − gσu1
yy )

[∫
j

sin g (xi − s) ds
]
dg,

and ∫
j

sin g (xi − s) ds =

∫ xj+∆

xj−∆
sin g (xi − s) ds = 2

sin g∆

g
sin g(xi − xj).

Then using equation (3.101) we have

1

π

∫ ∞
0

gσu1
yy sin g (xi − s) dg =

σu1
yy

π
lim
y→0+

∫ ∞
0

ge−gy sin g (xi − s) dg = σu1
yyδ
′(xi − s),

and using equation (3.167) we have∫
σuyy (xi − s, y)U (s) ds = 2

1

π

∑
j

Uj

∫ ∞
0

(
σ̂uyy (g, y)− gσu1

yy

) sin g∆

g
sin g(xi − xj) dg,

which is the form of
∑
j

σuyy[i, j]Uj and

σuyy[i, j] = 2
1

π

∫ ∞
0

(
σ̂uyy (g, y)− gσu1

yy

) sin g∆

g
sin g(xi − xj) dg.

For the second term in the RHS of equation (3.161), in which we use equations (3.99) and

(3.165), we have∫
σvyy (xi − s, y)V (s) ds =

∫ [
1

π

∫ ∞
0

σ̂vyy (g, y) cos g (xi − s) dg
]
V (s) ds

=
1

π

∑
j

∫
j

[∫ ∞
0

(
σ̂vyy (g, y)− gσv1

yy

)
cos g (xi − s) dg

]
Vj ds

+
1

π

∑
j

∫
j

[∫ ∞
0

gσv1
yy cos g (xi − s) dg

]
Vj ds

= 2
1

π

∑
j

Vj

∫ ∞
0

(
σ̂vyy (g, y)− gσv1

yy

) sin g∆

g
cos g(xi − xj) dg

− σv1
yy

∑
j

Vj

 2∆

π
(

(xi − xj)2 −∆2
)
 ,
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which is the form of
∑
j

σvyy[i, j]Vj and

σvyy[i, j] = 2
1

π

∫ ∞
0

(
σ̂vyy (g, y)− gσv1

yy

) sin g∆

g
cos g(xi − xj) dg

− σv1
yy

 2∆

π
(

(xi − xj)2 −∆2
)


For the first term in the RHS of equation (3.162), in which we use (3.99) and (3.165), we

have∫
σuxy (xi − s, y)U (s) ds =

∫ [
1

π

∫ ∞
0

σ̂uxy (g, y) cos g (xi − s) dg
]
U (s) ds

=
1

π

∑
j

∫
j

[∫ ∞
0

(
σ̂uxy (g, y)− gσu1

xy

)
cos g (xi − s) dg

]
Uj ds

+
1

π

∑
j

∫
j

[∫ ∞
0

gσu1
xy cos g (xi − s) dg

]
Uj ds

= 2
1

π

∑
j

Uj

∫ ∞
0

(
σ̂uxy (g, y)− gσu1

xy

) sin g∆

g
cos g(xi − xj) dg

− σu1
xy

∑
j

Uj

 2∆

π
(

(xi − xj)2 −∆2
)
 ,

which is the form of
∑
j

σuxy[i, j]Uj and

σuxy[i, j] = 2
1

π

∫ ∞
0

(
σ̂uxy (g, y)− gσu1

xy

) sin g∆

g
cos g(xi − xj) dg

− σu1
xy

 2∆

π
(

(xi − xj)2 −∆2
)


For the second term in the RHS of equation (3.162), in which we use (3.101) and (3.167),

we have∫
σvxy (xi − s, y)V (s) ds = 2

1

π

∑
j

Vj

∫ ∞
0

(
σ̂vxy (g, y)− gσv1

xy

) sin g∆

g
sin g(xi − xj) dg.

which is the form of
∑
j

σvxy[i, j]Vj and

σvxy[i, j] = = 2
1

π

∫ ∞
0

(
σ̂vxy (g, y)− gσv1

xy

) sin g∆

g
sin g(xi − xj) dg.

We write these integral equations (3.161) and (3.162) into the form of matrix equation Tyi

Txi

 =

 σuyy[i, j] σvyy[i, j]

σuxy[i, j] σvxy[i, j]

 Uj

Vj

 (3.169)
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where j = 1, ..., N .

We discretize the integral equations (5.82) and (3.164) assuming piecewise constant open-

ings along length L for upper, and lower crack faces and 3L for top and bottom boundaries.

We evaluate the integral equation at a discrete set of points xi, i = 1, ..., N for upper and

lower crack faces, and xi, i = 1, ..., 3N for top and bottom boundaries. For the first term

in the RHS of equation (5.82), in which we use (3.100) and (3.166), we have∫
uu(xi − s, y)U(s)ds =

1

π

∫ ∫ ∞
0

(
Ûu − u1u

)
cos g (xi − s) dg U ds

+
1

π

∫ ∫ ∞
0

u1u cos g (xi − s) dg U ds

=
2

π

∑
j

Uj

∫ ∞
0

(Ûu − u1u)
sin g∆

g
cos (gxi − gxj) dg

+ u1u
∑
j

∫
j

lim
y→0+

∫ ∞
0

e−gy cos g (xi − s) dg Uj ds

=
2

π

∑
j

Uj

∫ ∞
0

(Ûu − u1u)
sin g∆

g
cos (gxi − gxj) dg

+ u1u
∑
j

UjIxi∈(xj−∆,xj+∆),

which is the form of
∑
j

uu[i, j]Uj and

uu[i, j] =
2

π

∫ ∞
0

(Ûu − u1u)
sin g∆

g
cos (gxi − gxj) dg

+ u1uIxi∈(xj−∆,xj+∆).

For the second term in the RHS of equation (5.82), in which we use (3.102) and (3.168),

we have∫
uv(xi − s, y)V (s)ds =

1

π

∫ ∫ ∞
0

(
Ûv − u1v

)
sin g (xi − s) dg V ds

+
1

π

∫ ∫ ∞
0

u1v sin g (xi − s) dg V ds

=
2

π

∑
j

Vj

∫ ∞
0

(Ûv − u1v)
sin g∆

g
sin (gxi − gxj) dg

+ u1v
∑
j

∫
j

lim
y→0+

∫ ∞
0

e−gy sin g (xi − s) dg Vj ds

=
2

π

∑
j

Vj

∫ ∞
0

(Ûv − u1v)
sin g∆

g
sin (gxi − gxj) dg

+
u1v

π

∑
j

Vj log

∣∣∣∣xi − xj + ∆

xi − xj −∆

∣∣∣∣ ,
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which is the form of
∑
j

uv[i, j]Vj and

uv[i, j] =
2

π

∫ ∞
0

(Ûv − u1v)
sin g∆

g
sin (gxi − gxj) dg

+
u1v

π
log

∣∣∣∣xi − xj + ∆

xi − xj −∆

∣∣∣∣ .
For the first term in the RHS of equation (3.164), in which we use (3.102) and (3.168),

we have∫
vu(xi − s, y)U(s)ds =

1

π

∫ ∫ ∞
0

(
V̂ u − v1u

)
sin g (xi − s) dg U ds

+
1

π

∫ ∫ ∞
0

v1u sin g (xi − s) dg U ds

=
2

π

∑
j

Uj

∫ ∞
0

(V̂ u − v1u)
sin g∆

g
sin (gxi − gxj) dg

+ v1u
∑
j

∫
j

lim
y→0+

∫ ∞
0

e−gy sin g (xi − s) dg Uj ds

=
2

π

∑
j

Uj

∫ ∞
0

(V̂ u − v1u)
sin g∆

g
sin (gxi − gxj) dg

+
v1u

π

∑
j

Uj log

∣∣∣∣xi − xj + ∆

xi − xj −∆

∣∣∣∣ ,
which is the form of

∑
j

vu[i, j]Uj and

vu[i, j] =
2

π

∫ ∞
0

(V̂ u − v1u)
sin g∆

g
sin (gxi − gxj) dg

+
v1u

π
log

∣∣∣∣xi − xj + ∆

xi − xj −∆

∣∣∣∣ .
For the second term in the RHS of equation (3.164), in which we use (3.100) and (3.166),

we have∫
vv(xi − s, y)V (s)ds =

1

π

∫ ∫ ∞
0

(
V̂ v − v1v

)
cos g (xi − s) dg V ds

+
1

π

∫ ∫ ∞
0

v1v cos g (xi − s) dg V ds

=
2

π

∑
j

Vj

∫ ∞
0

(V̂ v − v1v)
sin g∆

g
cos (gxi − gxj) dg

+ v1v
∑
j

∫
j

lim
y→0+

∫ ∞
0

e−gy cos g (xi − s) dg Vj ds

=
2

π

∑
j

Vj

∫ ∞
0

(V̂ v − v1v)
sin g∆

g
cos (gxi − gxj) dg

+ v1v
∑
j

VjIxi∈(xj−∆,xj+∆),
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which is the form of
∑
j

vv[i, j]Uj and

vv[i, j] =
2

π

∫ ∞
0

(V̂ v − v1v)
sin g∆

g
cos (gxi − gxj) dg

+ v1vIxi∈(xj−∆,xj+∆).

We write these integral equations (5.82) and (3.164) into the form of matrix equation ui

vi

 =

 uu[i, j] uv[i, j]

vu[i, j] vv[i, j]

 Uj

Vj

 . (3.170)

3.4.7 Results

Assuming Tyi = 10−2 and Txi = 0 in equation (3.169) we could solve Uj and Vj . When

Uj and Vj have been obtained, the displacements ui and vi in (3.170) for upper and lower

crack face, and for top and bottom boundaries are obtained as shown in Figure 3.4, 3.5

and 3.6. The crack is symmetric in Figure 3.4, since it is in the middle of the strip.

When the tear location moves towards to the boundary, the opening is not symmetric.

The upper tear face, that is closer to the boundary, becomes much higher and the lower

tear face changes less in 3.5 and 3.6. The reason is that the elastic material between the

top boundary and upper tear face is thinner, which makes it easier to change.
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2d crack profile at ν = 0 and yc = 0

Figure 3.4: Plot of crack profile in compressible 2d strip with Tyi = 10−2, Txi = 0, ν = 0

and yc = 0.2.
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2d crack profile at ν = 0 and yc = 0.2

Figure 3.5: Plot of crack profile in compressible 2d strip with Tyi = 10−2, Txi = 0, ν = 0

and yc = 0.2.
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Figure 3.6: Plot of crack profile in compressible 2d strip with Tyi = 10−2, Txi = 0, ν = 0

and yc = 0.2.
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3.5 Solution for 2D incompressible plane crack problem

Now we assume that the 2D strip is incompressible. The strain tensor is still the same as

equation (3.73). But the stress tensor changes to

σ = λtr (ε) I + 2µε− pµI = 2µε− pµI (3.171)

due to incompressibility

tr (ε) = ∇ · u = 0. (3.172)

Hence

σxx = µ (2u,x−p) , (3.173)

σxy = µ (v,x +u,y ) , (3.174)

σyy = µ (2v,y −p) . (3.175)

The equilibrium equations and incompressibility are

divσ = 0 and ∇ · u = 0, (3.176)

which are written into components

σxx,x + σxy,y = 0, (3.177)

σxy,x + σyy,y = 0, (3.178)

u,x +v,y = 0. (3.179)

Put equations (3.173)-(3.175) in we obtain

u,xx−p,x +u,yy +v,xy = 0, (3.180)

u,xy +v,xx +v,yy −p,y = 0, (3.181)

u,x +v,y = 0. (3.182)

The boundary conditions are the same as equations (3.81) and (3.82), and the jump

conditions are the same as equations (3.67) and (3.68).

3.5.1 Jump in v

Fourier transform for components of displacement and stress are same as (3.128) and

(3.129), besides we have one more term transformed

p (x, y) =
1

π

∫ ∞
0

p̂ (g, y) cos gx dg =
1

π

∫ ∞
0

P̂ v (g, y) cos gx dg and define P̂ v = p̂.

(3.183)
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Equilibrium equations and incompressible equation after Fourier transform are(
Ûv
)′′
− 2g2

(
Ûv
)

+ g
(
P̂ v
)
− g

(
V̂ v
)′

= 0,

−
(
P̂ v
)′

+ g
(
Ûv
)′
− g2

(
V̂ v
)

+ 2
(
V̂ v
)′′

= 0,

g
(
Ûv
)

+
(
V̂ v
)′

= 0. (3.184)

Replace
(
V̂ u
)′

= −gÛu into these equilibrium equations we have(
V̂ v
)′′′

= g2

((
V̂ v
)′

+ P̂ v
)
, (3.185)(

P̂ v
)′

=
(
V̂ v
)′′
− g2V̂ v. (3.186)

Boundary conditions at y = ±h are σ̂vyy = 0 and σ̂vxy = 0 which translate to(
V̂ v
)′
− P̂ v = 0, (3.187)

−g2V̂ v +
(
V̂ v
)′′

= 0. (3.188)

The jump conditions across the crack at y = yc are[
Ûv
]+

−
= 0,

[
V̂ v
]+

−
= 1 and

[
σ̂vyy
]+
− =

[
σ̂vxy
]+
− = 0. (3.189)

Write into components[(
V̂ v
)′]+

−
= 0,

[
V̂ v
]+

−
= 1,

[(
V̂ v
)′
− P̂ v

]+

−
= 0 and

[
−g2V̂ v +

(
V̂ v
)′′]+

−
= 0.

3.5.2 Jump in u

Fourier transform for components of displacement and stress are same as (3.144) and

(3.145), besides we have one more term transformed

p (x, y) =
i

π

∫ ∞
0

p̂ (g, y) sin gx dg =
1

π

∫ ∞
0

P̂ u (g, y) sin gx dg and define P̂ v = ip̂.

(3.190)

Equilibrium equations and incompressible equation after Fourier transform are

−
(
Ûu
)′′

+ 2g2
(
Ûu
)

+ g
(
P̂ u
)
− g

(
V̂ u
)′

= 0,(
P̂ u
)′

+ g
(
Ûu
)′

+ g2
(
V̂ u
)

+ 2
(
V̂ u
)′′

= 0,

−g
(
Ûu
)

+
(
V̂ u
)′

= 0. (3.191)

Replace
(
V̂ u
)′

= gÛu into these equilibrium equations we have(
V̂ u
)′′′

= g2

((
V̂ u
)′

+ P̂ u
)
, (3.192)(

P̂ u
)′

=
(
V̂ u
)′′
− g2V̂ u. (3.193)
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Boundary conditions at y = ±h are σ̂uyy = 0 and σ̂uxy = 0 which translate to(
V̂ u
)′
− P̂ u = 0, (3.194)

g2V̂ u +
(
V̂ u
)′′

= 0. (3.195)

The jump conditions across the crack at y = yc are[
Ûu
]+

−
= 1,

[
V̂ u
]+

−
= 0 and

[
σ̂uyy
]+
− =

[
σ̂uxy
]+
− = 0. (3.196)

Write into components[(
V̂ u
)′]+

−
= g,

[
V̂ u
]+

−
= 0,

[(
V̂ u
)′
− P̂ u

]+

−
= 0 and

[
g2V̂ u +

(
V̂ u
)′′]+

−
= 0.

3.5.3 Numerical solution

Now we assume h = 1. We consider g = 0 separately, which will give singularity if we use

the following collocation method.

Collocation method

As shown in Figure 3.3, region 1 is −1 ≤ y ≤ yc and region 2 is yc ≤ y ≤ 1.

In region 1, y = −1 + Y (yc + 1) and
d

dy
=

1

yc + 1

d

dY
; in region 2, y = 1 + Y (yc − 1) and

d

dy
=

1

yc − 1

d

dY
. The range of Y is [0, 1].

Jump in v

Define Y1, Y2, Y3, Y4 to Ûv, (Ûv)′, V̂ v, (V̂ v)′ respectively in region 1, and Y5, Y6, Y7, Y8 to

Ûv, (Ûv)′, V̂ v, (V̂ v)′ respectively in region 2.
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Referring to equations (3.185)

dY1

dY
= Y2

dY2

dY
= Y3

dY3

dY
= g2(yc + 1)2Y2 + g2(yc + 1)3Y4

dY4

dY
=

Y3

yc + 1
− g2(yc + 1)Y1

dY5

dY
= Y6

dY6

dY
= Y7

dY7

dY
= g2(yc − 1)2Y6 + g2(yc − 1)3Y8

dY8

dY
=

Y7

yc − 1
− g2(yc − 1)Y5 (3.197)

The boundary conditions (3.187) on outer and inner boundaries, and jump conditions

(3.189) on upper and lower crack faces are

gY1 +
1

g

Y3

(yc + 1)2
= 0

2Y2

yc + 1
− Y4 = 0

gY5 +
1

g

Y7

(yc − 1)2
= 0

2Y6

yc − 1
− Y8 = 0

Y6

g(yc − 1)
− Y2

g(yc + 1)
= 0

Y5 − Y1 − 1 = 0

gY5 +
1

g

Y7

(yc − 1)2
− (gY1 +

1

g

Y3

(yc + 1)2
) = 0

2Y6

yc − 1
− Y8 − (

2Y2

yc + 1
− Y4) = 0. (3.198)

We use the Matlab routine ‘bvp4c’ to calculate the values of Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8,

hence Ûv, V̂ v, σ̂vyy, σ̂
v
xy are obtained.

Jump in u

Define Y1, Y2, Y3, Y4 to Ûu, (Ûu)′, V̂ u, (V̂ u)′ respectively in region 1, and Y5, Y6, Y7, Y8 to

Ûu, (Ûu)′, V̂ u, (V̂ u)′ respectively in region 2.
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Referring to equations (3.192)

dY1

dY
= Y2

dY2

dY
= Y3

dY3

dY
= g2(yc + 1)2Y2 + g2(yc + 1)3Y4

dY4

dY
=

Y3

yc + 1
− g2(yc + 1)Y1

dY5

dY
= Y6

dY6

dY
= Y7

dY7

dY
= g2(yc − 1)2Y6 + g2(yc − 1)3Y8

dY8

dY
=

Y7

yc − 1
− g2(yc − 1)Y5 (3.199)

The boundary conditions (3.194) on outer and inner boundaries, and jump consitions

(3.196) on upper and lower crack faces are

gY1 +
1

g

Y3

(yc + 1)2
= 0

2Y2

yc + 1
− Y4 = 0

gY5 +
1

g

Y7

(yc − 1)2
= 0

2Y6

yc − 1
− Y8 = 0

Y6

g(yc − 1)
− Y2

g(yc + 1)
− 1 = 0

Y5 − Y1 = 0

gY5 +
1

g

Y7

(yc − 1)2
− (gY1 +

1

g

Y3

(yc + 1)2
) = 0

2Y6

yc − 1
− Y8 − (

2Y2

yc + 1
− Y4) = 0. (3.200)

We use the Matlab routine ‘bvp4c’ to calculate the values of Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8,

hence Ûu, V̂ u, σ̂uyy, σ̂
u
xy are obtained.

3.5.4 The case g = 0

The calculation of Ûv, V̂ v, σ̂vyy, σ̂
v
xy and Ûu, V̂ u, σ̂uyy, σ̂

u
xy when g = 0 must be solved sepa-

rately.
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Jump in v when g = 0

Equations (3.184) become(
Ûv
)′′

= 0, −
(
P̂ v
)′

+ 2
(
V̂ v
)′′

= 0 and
(
V̂ v
)′

= 0. (3.201)

Hence the solution for Ûv, V̂ v and P̂ v are

Ûv = Ay +B, V̂ v = C and P̂ v = D. (3.202)

Put the solutions into the boundary conditions (3.187) and the jump conditions (3.189)

we get

A1 = 0, B1 = 0, C1 = −1

2
, D1 = 0, A2 = 0, B2 = 0, C2 =

1

2
, D2 = 0,

where subscript ‘1’ means region one, and region subscript ‘2’ means region 2.

Hence the displacements on the upper crack face are Ûv = 0 and V̂ v = 1
2 ; the displacements

on the lower crack face are Ûv = 0 and V̂ v = −1
2 ; the displacements on the top boundary

are Ûv = 0 and V̂ v = 1
2 ; the displacements on the bottom boundary are Ûv = 0 and

V̂ v = −1
2 ; on the crack face σ̂vyy = 0 and σ̂vxy = 0.

Jump in u when g = 0

Equations (3.191) become

−
(
Ûu
)′′

= 0,
(
P̂ u
)′

+ 2
(
V̂ u
)′′

= 0 and
(
V̂ u
)′

= 0. (3.203)

Hence the solution for Ûu and V̂ u are

Ûu = Ay +B, V̂ u = C and P̂ u = D

Put the solutions into the boundary conditions 3.194 and the jump conditions 3.196 we

get

A1 = 0, B1 = −1

2
, C1 = 0, D1 = 0, A2 = 0, B2 =

1

2
, C2 = 0, D2 = 0,

where subscript ‘1’ means region one, and subscript ‘2’ means region 2.

Hence the displacements on the upper crack face are Ûu = 1
2 and Ŵ u = 0; the dis-

placements on the lower crack face are Ûu = −1
2 and Ŵ u = 0; the displacements on the

top boundary are Ûu = 1
2 and Ŵ u = 0; the displacements on the bottom boundary are

Ûu = −1
2 and Ŵ u = 0; on the crack face σ̂uyy = 0 and σ̂uxy = 0.
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3.5.5 Matrix equations and results

This part for the incompressible strip are same as the compressible one. Assuming Tyi =

10−2 and Txi = 0 in equation (3.169) we could solve Uj and Vj . When (Uj , Vj) have been

obtained, the displacements (ui, vi) in (3.170) for upper and lower crack face, and for top

and bottom boundaries are obtained as shown in Figure 3.7, 3.8 and 3.9. The Figure 3.7
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2d crack profile at yc = 0.6 for incompressible material

Figure 3.7: Plot of crack profile in incompressible 2D strip with Tyi = 10−2, Txi = 0 and

yc = 0.6.

shows that when the crack location is close to the top boundary, the upper crack face and

top boundary change significantly. In Figure 3.8 the crack location is in the middle of the

strip, and the boundary condition on eack boundary layer is same. Therefore the crack

is symmetric. The Figure 3.9 shows that when the crack location is close to the bottom

boundary, the lower crack face and bottom boundary change more significantly than the

upper crack face and top boundary.
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Figure 3.8: Plot of crack profile in incompressible 2D strip with Tyi = 10−2, Txi = 0 and

yc = 0.6.
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Figure 3.9: Plot of crack profile in incompressible 2D strip with Tyi = 10−2, Txi = 0 and

yc = 0.6.
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3.6 Comparison between compressible and incompressible

solutions

In compressible 2D strip when ν = 0.5 the material is incompressible. Although we can

not make ν = 0.5 exactly in the code due to singularity in numerical, ν = 0.4999 is close

to the incompressible material. When ν = 0.4999 we compare the results for compressible

and incompressible we find out they match well as shown in Figure 3.10 and 3.11, where

the difference is of the order 0.5− ν = 0.0001.
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Figure 3.10: Difference of U for compressible and incompressible 2D strip, when the

stresses on crack face are Tyi = 10−2, Txi = 0 at yc = 0. For incompressible one the

Poisson’s ratio is ν = 0.4999
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Figure 3.11: Difference of V for compressible and incompressible 2d strip, when the

stresses on crack face are Tyi = 10−2, Txi = 0 at yc = 0. For incompressible one the

Poisson’s ratio is ν = 0.4999

3.7 Conclusions

In this chapter, we introduced the approaches to solve the linear elastic crack problem for

2D plane strain. Moreover, we solve the tear problems in compressible and incompressible

2D strips numerically, and the crack problem in infinite plane analytically. We will use

similar methods to solve the linear elastic crack problem in axisymmetric cylindrical tube

in next chapter, which is closer to our aim than the 2D crack problem.



Chapter 4

Static axisymmetric tears in

compressible and incompressible

linear elastic cylindrical annulus

Our aim in this chapter is to take one step closer to a model of a tear in the aorta. The

methods of Chapter 3 will be used in this chapter to analyse an axisymmetric crack in

a linearly elastic tube. We will show that the numerical method works well and use the

same approach in Chapter 5 to study a tear in the aorta.

4.1 Introduction-Method for axisymmetric crack problem

Now we consider an axisymmetric elastic tube with inner radius rin and outer radius rout.

We assume the crack, which locates at rc, is axisymmetric in the wall of the annulus as

shown in Figure 4.1. The coordinate system is (r, θ, z) and the displacements in the

coordinate directions are (u, v, w). The components of the Cauchy stress are σrr, σθθ, σrz

and σzz. Due to the axisymmetric crack we don’t consider the circumferential displacement

v. The jump conditions at r = rc are

[u]+− = δ(z), [w]+− = 0, [σrr]
+
− = 0, [σrz]

+
− = 0 for jump in u (4.1)

[u]+− = 0, [w]+− = δ(z), [σrr]
+
− = 0, [σrz]

+
− = 0 for jump in w (4.2)

81
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region 2

region 1

region 2

region 1

r = rout

jump in u jump in w

r = rin

r

z

r = rc

Figure 4.1: Displacement is decomposed into normal and tangential directions.

with boundary condition and equilibrium equation

σ · n = 0 at r = rout and r = rin (4.3)

divσ = 0 (4.4)

where u is the displacement in radial direction, w is the displacement in axial direction,

and n is the normal to the boundary.

Following are the details of the methods to solve the equilibrium equations with boundary

and jump conditions. The strain tensor ε and stress tensor σ are functions of displacements

uu, wu or uw, ww. Write the equilibrium equations divσ = 0 in components to obtain

2 partial differential equations with variables uu, wu or uw, ww; secondly, we take the

Fourier transform to change these PDE to ODE with the wave number g, and the variables

are ûu, ŵu or ûw, ŵw; thirdly, we solve these ODEs with boundary conditions and jump

conditions by using analytical way or numerical way; finally, taking the inverse Fourier

transform we obtain the solution for PDEs. The stress components are the functions of

displacements uu, wu or uw, ww, hence when uu, wu and uw, ww are solved σurz, σ
w
rr and

σurz, σ
w
rr will be calculated.

By solving these equations for ‘jump in u’ we get σurr, σ
u
rz, u

u, wu, and solving them for

‘jump in w’ we obtain σwrr, σ
w
rz, u

w, ww.

Similar as last chapter we define T = (Tr, Tz) as the traction on the crack, which is
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decomposed into normal and tangential direction,

Tr =

∫
σurr (z − s, r)U (s) ds+

∫
σwrr (z − s, r)W (s) ds, (4.5)

Tz =

∫
σurz (z − s, r)U (s) ds+

∫
σwrz (z − s, r)W (s) ds. (4.6)

The displacement is decomposed into normal and tangential direction as

u =

∫
uu(z − s, r)U(s)ds+

∫
uw(z − s, r)W (s)ds, (4.7)

w =

∫
wu(z − s, r)U(s)ds+

∫
ww(z − s, r)W (s)ds. (4.8)

Hence if the traction (Tr, Tz) along the crack is given, the displacement (u,w) will be

obtained. We use this method to calculate the displacements for the upper crack face,

lower crack face, outer boundary and inner boundary. Then we plot them on one figure

to get the crack profile.

4.2 Static tears for an axisymmetric crack problem in a lin-

ear compressible cylindrical tube

The strain tensor is

ε =


u,r 0

u,z +w,r
2

0
u

r
0

u,z +w,r
2

0 w,z

 . (4.9)

And the stress tensor is

σ =


(λ+ 2µ)u,r +λ

(u
r

+ w,z

)
0 µ (u,z +w,r )

0 (λ+ 2µ)
u

r
+ λ (u,r +w,z ) 0

µ (u,z +w,r ) 0 (λ+ 2µ)w,z +λ
(
u,r +

u

r

)
(4.10)

Define the Poisson’s ratio

ν =
λ

2 (λ+ µ)
(4.11)
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so that λ = 2µν/ (1− 2ν).

σrr = (λ+ 2µ)u,r +λ
(u
r

+ w,z

)
=

2µ

1− 2ν

[
(1− ν)u,r +ν

(u
r

+ w,z

)]
σrz = 2µ

u,z +w,r
2

σθθ = (λ+ 2µ)
u

r
+ λ (u,r +w,z ) =

2µ

1− 2ν

[
(1− ν)

u

r
+ ν (u,r +w,z )

]
σzr = 2µ

u,z +w,r
2

σzz = (λ+ 2µ)w,z +λ
(u
r

+ u,r

)
=

2µ

1− 2ν

[
(1− ν)w,z +ν

(u
r

+ u,r

)]
(4.12)

The equilibrium for Cauchy stress is (4.4) and the boundary conditions (4.3) are

σrr = 0 and σrz = 0 atr = rin,

σrr = 0 and σrz = 0 atr = rout.

The jump conditions on the crack faces are (4.1) and (4.2).

4.2.1 Jump in w across the crack

The symmetry of the problem gives u(r,−z) = −u(r, z), hence the Fourier and inverse

transformation for the displacement u are

û(g, r) = Fs[u] = −2i

∫ ∞
0

u(r, z) sin gzdz, (4.13)

u(r, z) = F−1
s [û] =

i

π

∫ ∞
0

û(g, z) sin gzdg. (4.14)

Since w(−r, z) = w(r, z) the Fourier and inverse transformation for displacement w are

ŵ(g, r) = Fc[w] = 2

∫ ∞
0

w(r, z) cos gzdz, (4.15)

w(r, z) = F−1
c [ŵ] =

1

π

∫ ∞
0

ŵ(g, r) cos gzdg. (4.16)

The stress σrr is given by

σrr =
2µ

1− 2ν

[
(1− ν)u,r +ν

(u
r

+ w,z

)]
, (4.17)

where

u,r (r, z) =
i

π

∫ ∞
0

û,r (g, r) sin gzdg, u(r, z) =
i

π

∫ ∞
0

û(g, r) sin gzdg, (4.18)

w,z (r, z) = − 1

π

∫ ∞
0

ŵ(g, r)g sin gzdg. (4.19)
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Hence

σrr =
2µ

1− 2ν

1

π

∫ ∞
0

[
(1− ν) iû,r +ν

(
iû

r
− gŵ

)]
sin gzdg

=
2µ

1− 2ν

1

π

∫ ∞
0

[
(1− ν) iF [u,r ] + ν

(
iF [u]

r
+ iF [w,z ]

)]
sin gzdg

=
i

π

∫ ∞
0
F [σrr] sin gzdg =

i

π

∫ ∞
0

σ̂rr(g, r) sin gzdg. (4.20)

Using the symmetry of the domain in z, we express the displacements and the stresses as

u (r, z) =
i

π

∫ ∞
0

û (g, r) sin gz dg =
1

π

∫ ∞
0

Ûw (g, r) sin gz dg,

w (r, z) =
1

π

∫ ∞
0

ŵ (g, r) cos gz dg =
1

π

∫ ∞
0

Ŵw (g, r) cos gz dg,

σrr (r, z) =
i

π

∫ ∞
0

σ̂rr (g, r) sin gz dg =
1

π

∫ ∞
0

σ̂wrr (g, r) sin gz dg,

σrz (r, z) =
1

π

∫ ∞
0

σ̂rz (g, r) cos gz dg =
1

π

∫ ∞
0

σ̂wrz (g, r) cos gz dg,

σθθ (r, z) =
i

π

∫ ∞
0

σ̂θθ (g, r) sin gz dg =
1

π

∫ ∞
0

σ̂wθθ (g, r) sin gz dg,

σzr (r, z) =
1

π

∫ ∞
0

σ̂zr (g, r) cos gz dg =
1

π

∫ ∞
0

σ̂wzr (g, r) cos gz dg,

σzz (r, z) =
i

π

∫ ∞
0

σ̂zz (g, r) sin gz dg =
1

π

∫ ∞
0

σ̂wzz (g, r) sin gz dg, (4.21)

where

Ûw = iû, Ŵw = ŵ, σ̂wrr = iσ̂rr, σ̂wrz = σ̂rz, σ̂wθθ = iσ̂θθ, σ̂wzr = σ̂zr, σ̂wzz = iσ̂zz.

(4.22)

The stress components (4.12) after Fourier transform are

F [σrr,r]

2µ
=

1

1− 2ν

[
(1− ν)F [u,rr] + ν

(
F [u,r]

r
− F [u]

r2
+ F [w,rz]

)]
, (4.23)

F [σzr,z]

2µ
=

1

2
(F [u,zz] + F [w,rz]) , (4.24)

F [σrz,r]

2µ
=

1

2
(F [u,zr] + F [w,rr]) , (4.25)

F [σzz,z]

2µ
=

1

1− 2ν

[
(1− ν)F [w,zz ] + ν

(
F [u,z]

r
+ F [u,rz]

)]
. (4.26)

Write the equilibrium equation (4.4) into components

F [σrr,r] + F [σzr,z] +
F [σrr]−F [σθθ]

r
= 0, (4.27)

F [σrz,r] + F [σzz,z] +
F [σrz]

r
= 0. (4.28)
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Replace them in terms of Ûw and Ŵw

2 (1− ν)
(
Ûw
)′′

+ 2 (1− ν)

(
Ûw
)′

r
− g2 (1− 2ν) Ûw − 2 (1− ν)

Ûw

r2
− g

(
Ŵw

)′
= 0,

(1− 2ν)
(
Ŵw

)′′
+ (1− 2ν)

(
Ŵw

)′
r

− 2 (1− ν) g2Ŵw + g
(
Ûw
)′

+ g
Ûw

r
= 0.

The boundary conditions (4.3) translate to

(1− ν)
(
Ûw
)′

+ ν

(
Ûw

r
− gWw

)
= 0 and gUw +

(
Ŵw

)′
= 0. (4.29)

The jump conditions (4.1) and (4.2) are[
Ûw
]+

−
= 0,

[
Ŵw

]+

−
= 1, [σ̂wrr]

+
− = [σ̂wrz]

+
− = 0. (4.30)

4.2.2 Jump in u across the crack

Symmetry of the problem gives w(−r, z) = −w(r, z), hence the Fourier and inverse trans-

formation for the displacement w are

ŵ(g, r) = Fs[w] = −2i

∫ ∞
0

w(r, z) sin gzdz, (4.31)

w(r, z) = F−1
s [ŵ] =

i

π

∫ ∞
0

ŵ(g, r) sin gzdg. (4.32)

Since u(−r, z) = u(r, z) the Fourier and inverse transformation for the displacement u are

û(g, r) = Fc[u] = 2

∫ ∞
0

u(r, z) cos gzdz, (4.33)

u(r, z) = F−1
c [û] =

1

π

∫ ∞
0

û(g, r) cos gzdg. (4.34)

The stress σrr is

σrr =
2µ

1− 2ν

[
(1− ν)u,r +ν

(u
r

+ w,z

)]
, (4.35)

where

u,r (r, z) =
1

π

∫ ∞
0

û,r (g, r) cos gzdg, u(r, z) =
1

π

∫ ∞
0

û(g, r) cos gzdg, (4.36)

w,z (r, z) =
i

π

∫ ∞
0

ŵ(g, r)g cos gzdg. (4.37)

Hence

σrr =
2µ

1− 2ν

1

π

∫ ∞
0

[
(1− ν) û,r +ν

(
û

r
+ igŵ

)]
cos gzdg (4.38)

=
2µ

1− 2ν

1

π

∫ ∞
0

[
(1− ν)F [u,r ] + ν

(
F [u]

r
+ F [w,z ]

)]
cos gzdg (4.39)

=
1

π

∫ ∞
0
F [σrr] cos gzdg =

1

π

∫ ∞
0

σ̂rr cos gzdg. (4.40)
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Using the symmetry of the domain in z, we express the displacements and the stresses as

u (r, z) =
1

π

∫ ∞
0

û (g, r) cos gz dg =
1

π

∫ ∞
0

Ûu (g, r) cos gz dg,

w (r, z) =
i

π

∫ ∞
0

ŵ (g, r) sin gz dg =
1

π

∫ ∞
0

Ŵ u (g, r) sin gz dg,

σrr (r, z) =
1

π

∫ ∞
0

σ̂rr (g, r) cos gz dg =
1

π

∫ ∞
0

σ̂urr (g, r) cos gz dg,

σrz (r, z) =
i

π

∫ ∞
0

σ̂rz (g, r) sin gz dg =
1

π

∫ ∞
0

σ̂urz (g, r) sin gz dg,

σθθ (r, z) =
1

π

∫ ∞
0

σ̂θθ (g, r) cos gz dg =
1

π

∫ ∞
0

σ̂uθθ (g, r) cos gz dg,

σzr (r, z) =
i

π

∫ ∞
0

σ̂zr (g, r) sin gz dg =
1

π

∫ ∞
0

σ̂uzr (g, r) sin gz dg,

σzz (r, z) =
1

π

∫ ∞
0

σ̂zz (g, r) cos gz dg =
1

π

∫ ∞
0

σ̂uzz (g, r) cos gz dg, (4.41)

where we define

Ûu = û, Ŵ u = iŵ, σ̂urr = σ̂rr, σ̂urz = iσ̂rz, σ̂uθθ = σ̂θθ, σ̂uzr = iσ̂zr, σ̂uzz = σ̂zz.

(4.42)

The stress components (4.12) after Fourier transform are

F [σrr,r]

2µ
=

1

1− 2ν

[
(1− ν)F [u,rr] + ν

(
F [u,r]

r
− F [u]

r2
+ F [w,rz]

)]
, (4.43)

F [σzr,z]

2µ
=

1

2
(F [u,zz] + F [w,rz]) , (4.44)

F [σrz,r]

2µ
=

1

2
(F [u,zr] + F [w,rr]) , (4.45)

F [σzz,z]

2µ
=

1

1− 2ν

[
(1− ν)F [w,zz] + ν

(
F [u,z]

r
+ F [u,rz]

)]
, (4.46)

and the equilibrium equation (4.4) written into components are

F [σrr,r] + F [σzr,z] +
F [σrr]−F [σθθ]

r
= 0, (4.47)

F [σrz,r] + F [σzz,z] +
F [σrz]

r
= 0. (4.48)

These equations in terms of Ûu and Ŵ u are

2 (1− ν)
(
Ûu
)′′

+ 2 (1− ν)

(
Ûu
)′

r
− g2 (1− 2ν) Ûu − 2 (1− ν)

Ûu

r2
+ g

(
Ŵ u
)′

= 0,

(1− 2ν)
(
Ŵ u
)′′

+ (1− 2ν)

(
Ŵ u
)′

r
− 2 (1− ν) g2Ŵ u − g

(
Ûu
)′
− g Û

u

r
= 0.

The boundary conditions (4.3) translate to

(1− ν)
(
Ûu
)′

+ ν

(
Ûu

r
+ gW u

)
= 0 and gUu −

(
Ŵ u
)′

= 0 (4.49)
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The jump conditions (4.1) and (4.2) are[
Ûu
]+

−
= 1,

[
Ŵ u
]+

−
= 0, [σ̂urr]

+
− = [σ̂urz]

+
− = 0. (4.50)

4.2.3 Numerical solution—Collocation method

In this section we are going to solve Ûw, Ŵw, Ûu, Ŵ u and σ̂wrr, σ̂
w
rz, σ̂

u
rr, σ̂

u
rz numerically.

Now we assume rin = 1, rout = 3. We consider g = 0 separately, which will give singularity

if we use the following collocation method.

As shown in Figure 4.1, region 1 is rin ≤ r ≤ rc and region 2 is rc ≤ r ≤ rout.

In region 1, r = rin+R(rc − rin) and
d

dr
=

1

rc − rin
d

dR
; in region 2, r = rout+R(rc − rout)

and
d

dr
=

1

rc − rout
d

dR
. The range of R is [0, 1]. The boundary in each region is represented

by R = 0, and R = 1 represents the crack face.

Jump in w

Define Y1, Y2, Y3, Y4 to be Ûw, (Ûw)′, Ŵw, (Ŵw)′ respectively in region 1, and Y5, Y6, Y7, Y8

to be Ûw, (Ûw)′, Ŵw, (Ŵw)′ respectively in region 2. Referring to the equilibrium equa-

tions (4.29)

dY1

dR
= Y2

dY2

dR
= −(rc − rin)Y2

r1
+
g2 (rc − rin)2 (1− 2ν)Y1

2(1− ν)
+

(rc − rin)2 Y1

r2
1

+
g (rc − rin)Y4

2(1− ν)

dY3

dR
= Y4

dY4

dR
= −(rc − rin)Y4

r1
+

2(1− ν) (rc − rin)2 g2Y3

(1− 2ν)
− g (rc − rin)Y2

1− 2ν
− g (rc − rin)2 Y1

(1− 2ν) r1

dY5

dR
= Y6

dY6

dR
= −(rc − rout)Y6

r2
+
g2 (rc − rout)2 (1− 2ν)Y5

2(1− ν)
+

(rc − rout)2 Y5

r2
2

+
g (rc − rout)Y8

2(1− ν)

dY7

dR
= Y8

dY8

dR
= −(rc − rout)Y8

r2
+

2(1− ν) (rc − rout)2 g2Y7

(1− 2ν)
− g (rc − rout)Y6

1− 2ν
− g (rc − rout)2 Y5

(1− 2ν) r2
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The boundary conditions (4.29) on outer and inner boundaries, and jump conditions (4.30)

on upper and lower crack faces are

(1− ν)Y2 + ν (rc − rin)

(
Y1

rin
− gY3

)
= 0

gY1 (rc − rin) + Y4 = 0

(1− ν)Y6 + ν (rc − rout)
(
Y5

rout
− gY7

)
= 0

gY5 (rc − rout) + Y8 = 0

Y5 − Y1 = 0

Y7 − Y3 − 1 = 0

(1− ν)Y6 + ν (rc − rout)
(
Y5

rout
− gY7

)
−
[
(1− ν)Y2 + ν (rc − rin)

(
Y1

rin
− gY3

)]
= 0

gY5 (rc − rout) + Y8 − [gY1 (rc − rin) + Y4] = 0.

We use the Matlab routine ‘bvp4c’ to calculate the values of Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8,

hence Ûw, Ŵw are obtained and σ̂wrr, σ̂
w
rz are functions of Ûw, Ŵw.

Jump in u

Define Y1, Y2, Y3, Y4 to be Ûu, (Ûu)′, Ŵ u, (Ŵ u)′ respectively in region 1, and Y5, Y6, Y7, Y8

to be Ûu, (Ûu)′, Ŵ u, (Ŵ u)′ respectively in region 2. Referring to the equilibrium equations

(4.49)

dY1

dR
= Y2

dY2

dR
= −(rc − rin)Y2

r1
+
g2 (rc − rin)2 (1− 2ν)Y1

2(1− ν)
+

(rc − rin)2 Y1

r2
1

− g (rc − rin)Y4

2(1− ν)

dY3

dR
= Y4

dY4

dR
= −(rc − rin)Y4

r1
+

2(1− ν) (rc − rin)2 g2Y3

(1− 2ν)
+
g (rc − rin)Y2

1− 2ν
+
g (rc − rin)2 Y1

(1− 2ν) r1

dY5

dR
= Y6

dY6

dR
= −(rc − rout)Y6

r2
+
g2 (rc − rout)2 (1− 2ν)Y5

2(1− ν)
+

(rc − rout)2 Y5

r2
2

− g (rc − rout)Y8

2(1− ν)

dY7

dR
= Y8

dY8

dR
= −(rc − rout)Y8

r2
+

2(1− ν) (rc − rout)2 g2Y7

(1− 2ν)
+
g (rc − rout)Y6

1− 2ν
+
g (rc − rout)2 Y5

(1− 2ν) r2
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The boundary conditions (4.49) on outer and inner boundaries, and jump conditions (4.50)

on upper and lower crack faces are

(1− ν)Y2 + ν (rc − rin)

(
Y1

rin
+ gY3

)
= 0

gY1 (rc − rin)− Y4 = 0

(1− ν)Y6 + ν (rc − rout)
(
Y5

rout
+ gY7

)
= 0

gY5 (rc − rout)− Y8 = 0

Y5 − Y1 − 1 = 0

Y7 − Y3 = 0

(1− ν)Y6 + ν (rc − rout)
(
Y5

rout
+ gY7

)
−
[
(1− ν)Y2 + ν (rc − rin)

(
Y1

rin
+ gY3

)]
= 0

−gY5 (rc − rout) + Y8 − [−gY1 (rc − rin) + Y4] = 0.

We use the Matlab routine ‘bvp4c’ to calculate the values of Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8,

hence Ûu, Ŵ u are obtained, and σ̂urr, σ̂
u
rz are functions of Ûu, Ŵ u.

4.2.4 The case when g = 0

The calculation of Ûw, Ŵw, σ̂wrr, σ̂
w
rz and Ûu, Ŵ u, σ̂urr, σ̂

u
rz when g = 0 must be solved sep-

arately.

Jump in w when g = 0

Equations (4.29) become

2 (1− ν)
(
Ûw
)′′

+ 2 (1− ν)

(
Ûw
)′

r
− 2 (1− ν)

Ûw

r2
= 0, (4.51)

(1− 2ν)
(
Ŵw

)′′
+ (1− 2ν)

(
Ŵw

)′
r

= 0. (4.52)

Hence the solution for Ûw and Ŵw are

Ûw = Ar +
B

r
, and Ŵw = C log(r) +D.

Put the solutions into the boundary conditions (4.29) on inner and outer layers and the

jump conditions (4.30) we get

A1 = 0, B1 = 0, C1 = 0, D1 = −1

2
, A2 = 0, B2 = 0, C2 = 0, D2 =

1

2
,

where subscript ‘1’ means region ‘1’, and subscript ‘1’ means region ‘2’.

Hence the displacements on the upper crack face are Û = 0 and Ŵ = 1
2 ; the displacements
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on the lower crack face are Û = 0 and Ŵ = −1
2 ; the displacements on the outside boundary

are Û = 0 and Ŵ = 1
2 ; the displacements on the inside boundary are Û = 0 and Ŵ = −1

2 ;

on the crack face σ̂rr = 0 and σ̂rz = 0.

Jump in u when g = 0

Equations (4.49) become

2 (1− ν)
(
Ûu
)′′

+ 2 (1− ν)

(
Ûu
)′

r
− 2 (1− ν)

Ûu

r2
= 0, (4.53)

(1− 2ν)
(
Ŵ u
)′′

+ (1− 2ν)

(
Ŵ u
)′

r
= 0. (4.54)

Hence the solution for Ûu and Ŵ u are

Ûu = Ar +
B

r
,

Ŵ u = C log(r) +D.

Put the solutions into the boundary conditions (4.49) on inner and outer layers and the

jump conditions (4.50) we get

A1 = −1

2

(r2
out − r2

in)(−1 + 2ν)

rc(r2
out − r2

in)(ν − 1)
, B1 =

1

2

r2
in(r2

out − r2
c )

rc(r2
out − r2

in)(ν − 1)
, C1 = 0, D1 = 0,

A2 = −1

2

(r2
in − r2

c )(−1 + 2ν)

rc(r2
out − r2

in)(ν − 1)
, B2 =

1

2

r2
out(r

2
in − r2

c )

rc(r2
out − r2

in)(ν − 1)
, C2 = 0, D2 = 0.

Hence the displacements on the upper crack face are

Û =
1

2

(r2
in − r2

c )(r
2
c − 2r2

cν + r2
out)

r2
c (r

2
out − r2

in)(ν − 1)
, Ŵ = 0, (4.55)

the displacements on the lower crack face are

Û =
1

2

(r2
out − r2

c )(r
2
c − 2r2

cν + r2
in)

r2
c (r

2
out − r2

in)(ν − 1)
, Ŵ = 0, (4.56)

the displacements on the outside boundary are

Û = −(r2
in − r2

c )rout
(r2
out − r2

in)rc
, Ŵ = 0, (4.57)

the displacements on the inside boundary are

Û = −(r2
out − r2

c )rin
(r2
out − r2

in)rc
, Ŵ = 0, (4.58)

on the crack face

σ̂rr =
1

2

(r2
out − r2

c )(r
2
c − r2

in)(1− 2ν)

r3
c (r

2
out − r2

in)(ν − 1)
, σ̂rz = 0. (4.59)
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4.2.5 Matrix equations

We obtain Ûw(g, r), Ŵw(g, r), Ûu(g, r), Ŵ u(g, r) and σ̂wrr(g, r), σ̂
w
rz(g, r), σ̂

u
rr(g, r), σ̂

u
rz(g, r)

for each g from above numerical approach. Now we assume the length of the crack is L,

and the length of the strip is 3L. The traction and displacement components, decomposed

into normal and tangential direction, are

Tr =

∫
σurr (zi − s, r)U (s) ds+

∫
σwrr (zi − s, r)W (s) ds, (4.60)

Tz =

∫
σurz (zi − s, r)U (s) ds+

∫
σwrz (zi − s, r)W (s) ds. (4.61)

u =

∫
uu(zi − s, r)U(s)ds+

∫
uw(zi − s, r)W (s)ds (4.62)

w =

∫
wu(zi − s, r)U(s)ds+

∫
ww(zi − s, r)W (s)ds (4.63)

We discretize the integral equations (4.60) and (4.61) assuming piecewise constant openings

along a crack of length L. We evaluate the integral equation at a discrete set of points

zi, i = 1, ..., N .

For the second term in the RHS of equation (4.60) we have∫
σwrr (zi − s, r)W (s) ds =

∫ [
1

π

∫ ∞
0

σ̂wrr (g, r) sin g (zi − s) dg
]
W (s) ds

=
1

π

∑
j

∫
j

[∫ ∞
0

σ̂wrr (g, r) sin g (zi − s) dg
]
Wj ds

=
1

π

∑
j

∫
j

[∫ ∞
0

(
σ̂wrr (g, r)− gσw1

rr − σw0
rr

)
sin g (zi − s) dg

]
Wj ds

+
1

π

∑
j

∫
j

[∫ ∞
0

gσw1
rr sin g (zi − s) dg

]
Wj ds

+
1

π

∑
j

∫
j

[∫ ∞
0

σw0
rr sin g (zi − s) dg

]
Wj ds,

where

∫
j

[∫∞
0 (σ̂wrr (g, r)− gσw1

rr − Ṡw0
rr ) sin g (zi − s) dg

]
Wj ds

= Wj

∫∞
0 (σ̂wrr − gσw1

rr − σw0
rr )

[∫
j sin g (zi − s) ds

]
dg

and ∫
j

sin g (zi − s) ds =

∫ zj+∆

zj−∆
sin g (zi − s) ds = 2

sin g∆

g
sin g(zi − zj),
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in which ∆ = L
N . Then using equation (3.101) we have

1

π

∫ ∞
0

gσw1
rr sin g (zi − s) dg =

σw1
rr

π
lim
r→0+

∫ ∞
0

ge−gr sin g (zi − s) dg = σw1
rr δ
′(zi − s),

and using equation (3.102) we have

1

π

∫ ∞
0

σw0
rr sin g (zi − s) dg =

σw0
rr

π
lim
r→0+

∫ ∞
0

e−gr sin g (zi − s) dg = σw0
rr

π(zi−s) .

Then using (3.167) and (3.168)∫
σwrr (zi − s, r)W (s) ds = 2

1

π

∑
j

Wj

∫ ∞
0

(
σ̂wrr (g, r)− gσw1

rr − σw0
rr

) sin g∆

g
sin g(zi − zj) dg

+ σw0
rr

∑
j

Wj
1

π
log |zi − zj + ∆

zi − zj −∆
|,

which is the form of
∑
j

σwrr[i, j]Wj and

σwrr[i, j] = 2
1

π

∫ ∞
0

(
σ̂wrr (g, r)− gσw1

rr − σw0
rr

) sin g∆

g
sin g(zi−zj) dg+σw0

rr

1

π
log |zi − zj + ∆

zi − zj −∆
|.

For the first term in the RHS of equation (4.60), in which we use (3.99), (3.100), (3.165)

and (3.166), we have∫
σurr (zi − s, r)U (s) ds =

∫ [
1

π

∫ ∞
0

σ̂urr (g, r) cos g (zi − s) dg
]
U (s) ds

=
1

π

∑
j

∫
j

[∫ ∞
0

(
σ̂urr (g, r)− gσu1

rr − σu0
rr

)
cos g (zi − s) dg

]
Uj ds

+
1

π

∑
j

∫
j

[∫ ∞
0

gσu1
rr cos g (zi − s) dg

]
Uj ds

+
1

π

∑
j

∫
j

[∫ ∞
0

σu0
rr cos g (zi − s) dg

]
Uj ds

= 2
1

π

∑
j

Uj

∫ ∞
0

(
σ̂urr (g, r)− gσu1

rr − σu0
rr

) sin g∆

g
cos g(zi − zj) dg

− σu1
rr

∑
j

Uj

 2∆

π
(

(zi − zj)2 −∆2
)


+ σu0
rr

∑
j

UjIzi∈(zj−∆,zj+∆),

which is the form of
∑
j

σurr[i, j]Uj and

σurr[i, j] = 2
1

π

∫ ∞
0

(
σ̂urr (g, r)− gσu1

rr − σu0
rr

) sin g∆

g
cos g(zi − zj) dg

− σu1
rr

 2∆

π
(

(zi − zj)2 −∆2
)
+ σu0

rr Izi∈(zj−∆,zj+∆).
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For the second term in the RHS of equation (4.61), in which we use (3.99), (3.100), (3.165)

and (3.166), we have∫
σwrz (zi − s, r)W (s) ds =

∫ [
1

π

∫ ∞
0

σ̂wrz (g, r) cos g (zi − s) dg
]
W (s) ds

=
1

π

∑
j

∫
j

[∫ ∞
0

(
σ̂wrz (g, r)− gσw1

rz − σw0
rz

)
cos g (zi − s) dg

]
Wj ds

+
1

π

∑
j

∫
j

[∫ ∞
0

gσw1
rz cos g (zi − s) dg

]
Wj ds

+
1

π

∑
j

∫
j

[∫ ∞
0

σw0
rz cos g (zi − s) dg

]
Wj ds

= 2
1

π

∑
j

Wj

∫ ∞
0

(
σ̂wrz (g, r)− gσw1

rz − gσw0
rz

) sin g∆

g
cos g(zi − zj) dg

− σw1
rz

∑
j

Wj

 2∆

π
(

(zi − zj)2 −∆2
)


+ σw0
rz

∑
j

WjIzi∈(zj−∆,zj+∆),

which is the form of
∑
j

σwrz[i, j]Wj and

σwrz[i, j] = 2
1

π

∫ ∞
0

(
σ̂wrz (g, r)− gσw1

rz − gσw0
rz

) sin g∆

g
cos g(zi − zj) dg

− σw1
rz

 2∆

π
(

(zi − zj)2 −∆2
)


+ σw0
rz Izi∈(zj−∆,zj+∆).

For the first term in the RHS of of equation (4.61), in which we use (3.101), (3.102), (3.167)

and (3.168), we have∫
σurz (zi − s, r)U (s) ds = 2

1

π

∑
j

Uj

∫ ∞
0

(
σ̂urz (g, r)− gσu1 − σu0

rz

) sin g∆

g
sin g(zi − zj) dg

+ σu0
rz

∑
j

Uj
1

π
log |zi − zj + ∆

zi − zj −∆
|,

which is the form of
∑
j

σurz[i, j]Uj and

σurz[i, j] = 2
1

π

∫ ∞
0

(
σ̂urz (g, r)− gσu1 − σu0

rz

) sin g∆

g
sin g(zi − zj) dg

+ σu0
rz

1

π
log |zi − zj + ∆

zi − zj −∆
|.
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We write these integral equations (4.60) and (4.61) into the form of matrix equation Trj

Tzj

 =

 σurr[i, j] σwrr[i, j]

σurz[i, j] σwrz[i, j]

 Uj

Wj

 (4.64)

where j = 1, ..., N .

We discretize the integral equations (4.62) and (4.63) assuming piecewise constant open-

ings along length L for upper, and lower crack faces and 3L for top and bottom boundaries.

We evaluate the integral equation at a discrete set of points zi, i = 1, ..., N for upper and

lower crack faces, and zi, i = 1, ..., 3N for top and bottom boundaries.

For the first term in the RHS of equation (4.62), in which we use (3.100) and (3.166),

we have∫
uu(zi − s, r)U(s)ds =

1

π

∫ ∫ ∞
0

(
Ûu − u1u

)
cos g (zi − s) dg U ds

+
1

π

∫ ∫ ∞
0

u1u cos g (zi − s) dg U ds

=
2

π

∑
j

Uj

∫ ∞
0

(Ûu − u1u)
sin g∆

g
cos (gzi − gzj) dg

+ u1u
∑
j

∫
j

lim
r→0+

∫ ∞
0

e−gr cos g (zi − s) dg Uj ds

=
2

π

∑
j

Uj

∫ ∞
0

(Ûu − u1u)
sin g∆

g
cos (gzi − gzj) dg

+ u1u
∑
j

UjIzi∈(zj−∆,zj+∆)

which is the form of
∑
j

uu[i, j]Uj and

uu[i, j] =
2

π

∫ ∞
0

(Ûu − u1u)
sin g∆

g
cos (gzi − gzj) dg

+ u1uIzi∈(zj−∆,zj+∆).
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For the first term in the RHS of equation (4.62), in which we use (3.102) and (3.168), we

have ∫
uw(zi − s, r)W (s)ds =

1

π

∫ ∫ ∞
0

(
Ûw − u1w

)
sin g (zi − s) dgW ds

+
1

π

∫ ∫ ∞
0

u1w sin g (zi − s) dgW ds

=
2

π

∑
j

Wj

∫ ∞
0

(Ûw − u1w)
sin g∆

g
sin (gzi − gzj) dg

+ u1w
∑
j

∫
j

lim
r→0+

∫ ∞
0

e−gr sin g (zi − s) dgWj ds

=
2

π

∑
j

Wj

∫ ∞
0

(Ûw − u1w)
sin g∆

g
sin (gzi − gzj) dg

+
u1w

π

∑
j

Wj log

∣∣∣∣zi − zj + ∆

zi − zj −∆

∣∣∣∣
which is the form of

∑
j

uw[i, j]Wj and

uw[i, j] = =
2

π

∫ ∞
0

(Ûw − u1w)
sin g∆

g
sin (gzi − gzj) dg

+
u1w

π
log

∣∣∣∣zi − zj + ∆

zi − zj −∆

∣∣∣∣
For the first term in the RHS of equation (4.63), in which we use (3.102) and (3.168), we

have ∫
wu(zi − s, r)U(s)ds =

1

π

∫ ∫ ∞
0

(
Ŵ u − w1u

)
sin g (zi − s) dg U ds

+
1

π

∫ ∫ ∞
0

w1u sin g (zi − s) dg U ds

=
2

π

∑
j

Uj

∫ ∞
0

(Ŵ u − w1u)
sin g∆

g
sin (gzi − gzj) dg

+ w1u
∑
j

∫
j

lim
r→0+

∫ ∞
0

e−gr sin g (zi − s) dg Uj ds

=
2

π

∑
j

Uj

∫ ∞
0

(Ŵ u − w1u)
sin g∆

g
sin (gzi − gzj) dg

+
w1u

π

∑
j

Uj log

∣∣∣∣zi − zj + ∆

zi − zj −∆

∣∣∣∣
which is the form of

∑
j

wu[i, j]Uj and

wu[i, j] =
2

π

∫ ∞
0

(Ŵ u − w1u)
sin g∆

g
sin (gzi − gzj) dg

+
w1u

π
log

∣∣∣∣zi − zj + ∆

zi − zj −∆

∣∣∣∣ .
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For the first term in the RHS of equation (4.63), in which we use (3.100) and (3.166), we

have ∫
ww(zi − s, r)W (s)ds =

1

π

∫ ∫ ∞
0

(
Ŵw − w1w

)
cos g (zi − s) dgW ds

+
1

π

∫ ∫ ∞
0

w1w cos g (zi − s) dgW ds

=
2

π

∑
j

Wj

∫ ∞
0

(Ŵw − w1w)
sin g∆

g
cos (gzi − gzj) dg

+ w1w
∑
j

∫
j

lim
r→0+

∫ ∞
0

e−gr cos g (zi − s) dgWj ds

=
2

π

∑
j

Wj

∫ ∞
0

(Ŵw − w1w)
sin g∆

g
cos (gzi − gzj) dg

+ w1w
∑
j

WjIzi∈(zj−∆,zj+∆)

which is the form of
∑
j

ww[i, j]Wj and

ww[i, j] = =
2

π

∫ ∞
0

(Ŵw − w1w)
sin g∆

g
cos (gzi − gzj) dg

+ w1wIzi∈(zj−∆,zj+∆).

We write these integral equations (4.62) and (4.63) into the form of matrix equation ui

wi

 =

 uu[i, j] uw[i, j]

wu[i, j] ww[i, j]

 Uj

Wj

 . (4.65)

4.2.6 Results

Assuming Tri = 10−1 and Tzi = 0 in equation (5.84) we could solve Uj and Wj . When

Uj and Vj have been obtained, the displacements ui and wi in (5.85) for upper and lower

crack face, and for top and bottom boundaries are obtained as shown in Figure 4.2, 4.3

and 4.4.

In Figure 4.3 although the tear is in the middle of the wall, the displacement is not

symmetric due to the pressure on the inner boundary and outer boundary not same. In

Figure 4.2 the tear location is close to the inner boundary. That the elastic material be-

tween the inner boundary and the crack face is thinner than it between the outer boundary

and the crack leads to more change on the inner face. We can see that the introduction of a

tear in the elastic tube has led to a narrowing of the interior. This could have physiological

implications for fluid inside the wall. Comparing Figure 4.3 and Figure 4.4 we find the
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Figure 4.2: Plot of crack profile for compressible axisymmetric elastic tube with Tri = 10−1,

Tzi = 0, Poisson’s ratio ν = 0, rin = 1, rout = 3 and rc = 1.5.
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Figure 4.3: Plot of crack profile for compressible axisymmetric elastic tube with Tri = 10−1,

Tzi = 0, Poisson’s ratio ν = 0, rin = 1, rout = 3 and rc = 1.5.

opening of the tear is wider in the latter, since the pressure on the outer boundary is set

as zero, and is non-zero on inner boundary.
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Figure 4.4: Plot of crack profile for compressible axisymmetric elastic tube with Tri = 10−1,

Tzi = 0, Poisson’s ratio ν = 0, rin = 1, rout = 3 and rc = 1.5.

4.3 Static tears for axisymmetric crack problem in an in-

compressible linear elastic annulus

Now we assume the elastic tube is incompressible. The strain tensor is still the same as

(4.9). But the stress tensor changes to

σ = λtr (ε) I + 2µε− µpI (4.66)

= 2µε− µpI (4.67)

due to incompressibility tr (ε) = ∇ · u = 0.

Hence

σ = µ


2u,r −p 0 u,z +w,r

0 2ur − p 0

u,z +w,r 0 2w,z −p

 . (4.68)

Write the equilibrium equations divσ = 0 and incompressibility into components

∂σrr
∂r

+
∂σzr
∂z

+
1

r
(σrr − σθθ) = 0, (4.69)

∂σrz
∂r

+
∂σzz
∂z

+
1

r
σrz = 0, (4.70)

1

r

∂ (ru)

∂r
+
∂w

∂z
= 0. (4.71)
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Equations (4.69) and (4.70) become

2u,rr −p,r +u,zz +w,rz +
2

r

(
u,r −

u

r

)
= 0, (4.72)

u,zr +w,rr +2w,zz −p,z +
2

r
(u,z +w,r ) = 0. (4.73)

4.3.1 Jump in w

Fourier transform for components of displacement and stress are the same as (4.21) and

(4.22), moreover, we have one more term transformed

p (r, z) =
i

π

∫ ∞
0

p̂ (g, r) sin gz dg =
1

π

∫ ∞
0

P̂w (g, r) sin gz dg and define P̂w = ip̂.

(4.74)

Equilibrium equations and incompressible equation after Fourier transform are

2
(
Ûw
)′′

+
2

r

(
Ûw
)′
− g2Ûw − 2

r2
Ûw − g

(
Ŵw

)′
−
(
P̂w
)′

= 0, (4.75)

(
Ŵw

)′′
+

(
Ŵw

)′
r

− 2g2Ŵw + g
(
Ûw
)′

+
g

r
Ûw − g

(
P̂w
)

= 0, (4.76)

1

g

(
Ûw

r
+ Ûw

)
− Ŵw = 0. (4.77)

Replace Ŵw = 1
g

(
Ûw

r +
(
Ûw
)′)

,
(
Ŵw

)′
= 1

g

(
(Ûw)

′

r − (Ûw)
r2

+
(
Ûw
)′′)

and(
Ŵw

)′′
= 1

g

((
Ûw
)′′′

+
(Ûw)

′′

r − 2
(Ûw)

′

r2
+ 2

(Ûw)
r3

)
into these equilibrium equations we

can present
(
Ûw
)′′′

and
(
P̂w
)′

.

(
Ûw
)′′′

= −2

(
Ûw
)′′

r
+

(
Ûw
)′

r2
−

(
Ûw
)

r3
+ g2

(
Ûw
)

r
+ g2

(
P̂w
)

+ g2
(
Ûw
)′

(4.78)

(
P̂w
)′

=
(
Ûw
)′′

+

(
Ûw
)′

r
−
(
g2 +

1

r2

)
Ûw (4.79)

The boundary conditions at r = rin and r = rout are σ̂wrr = 0 and σ̂wrz = 0 which translate

to

2
(
Ûw
)′
− P̂w = 0, (4.80)

gÛw − 1

g

Ûw

r2
+

1

g

(
Ûw
)′

r
+

1

g

(
Ûw
)′′

= 0. (4.81)

The jump conditions at r = rc are[
Ûw
]+

−
= 0,

[
Ŵw

]+

−
= 1, [σ̂wrr]

+
− = [σ̂wrz]

+
− = 0. (4.82)
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4.3.2 Jump in u

Fourier transform for components of displacement and stress are the same as (4.41) and

(4.42), besides we have one more term transformed

p (r, z) =
1

π

∫ ∞
0

p̂ (g, r) cos gz dg =
1

π

∫ ∞
0

P̂ u (g, r) cos gz dg and define P̂ u = p̂ (4.83)

Equilibrium equations and incompressible equation after Fourier transform are

2
(
Ûu
)′′

+
2

r

(
Ûu
)′
− g2Ûu − 2

r2
Ûu + g

(
Ŵ u
)′
−
(
P̂ u
)′

= 0, (4.84)

(
Ŵ u
)′′

+

(
Ŵ u
)′

r
− 2g2Ŵ u − g

(
Ûu
)′
− g

r
Ûu + g

(
P̂ u
)

= 0, (4.85)

1

g

(
Ûu

r
+ Ûu

)
+ Ŵ u = 0. (4.86)

Replace Ŵ u = −1
g

(
Ûu

r +
(
Ûu
)′)

,
(
Ŵ u
)′

= −1
g

(
(Ûu)

′

r − (Ûu)
r2

+
(
Ûu
)′′)

and(
Ŵ u
)′′

= −1
g

((
Ûu
)′′′

+
(Ûu)

′′

r − 2
(Ûu)

′

r2
+ 2

(Ûu)
r3

)
into these equilibrium equations.

(
Ûu
)′′′

= −2

(
Ûu
)′′
r

+

(
Ûu
)′

r2
−

(
Ûu
)

r3
+ g2

(
Ûu
)

r
+ g2

(
P̂ u
)

+ g2
(
Ûu
)′

(4.87)

(
P̂ u
)′

=
(
Ûu
)′′

+

(
Ûu
)′

r
−
(
g2 +

1

r2

)
Ûu (4.88)

The boundary conditions at r = rin and r = rout are σ̂urr = 0 and σ̂urz = 0, which translate

to

2
(
Ûu
)′
− P̂ u = 0, (4.89)

gÛu − 1

g

Ûu

r2
+

1

g

(
Ûu
)′

r
+

1

g

(
Ûu
)′′

= 0. (4.90)

The jump conditions at r = rc are[
Ûu
]+

−
= 1,

[
Ŵ u
]+

−
= 0, [σ̂urr]

+
− = [σ̂urz]

+
− = 0. (4.91)

4.3.3 Numerical solution—Collocation method

In this section we are going to solve Ûw, Ŵw, Ûu, Ŵ u and σ̂wyy, σ̂
w
xy, σ̂

u
yy, σ̂

u
xy numerically.

Now we assume rin = 1, rout = 3, rc = 2. We consider g = 0 separately, which will give

singularity if we use the following collocation method.

As shown in Figure 4.1, region 1 is rin ≤ r ≤ rc and region 2 is rc ≤ r ≤ rout. In
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region 1, r = rin + R(rc − rin) and
d

dr
=

1

rc − rin
d

dR
; in region 2, r = rout + R(rc − rout)

and
d

dr
=

1

rc − rout
d

dR
. The range of R is [0, 1]. The boundary layer in each region is

represented by R = 0, and R = 1 represents the crack face.

Jump in w

Define Y1, Y2, Y3, Y4 to be Ûw, (Ûw)′, Ŵw, (Ŵw)′ respectively in region 1, and Y5, Y6, Y7, Y8

to be Ûw, (Ûw)′, Ŵw, (Ŵw)′ respectively in region 2. Referring to the equilibrium equa-

tions (4.75)

dY1

dR
= Y2

dY2

dR
= Y3

dY3

dR
= −2

Y3 (rc − rin)

r1
+
Y2 (rc − rin)2

r2
1

+ g2Y2 (rc − rin)2

− Y1 (rc − rin)3

r3
1

+ g2Y1 (rc − rin)3

r1
+ g2Y4 (rc − rin)3

dY4

dR
=

Y3

rc − rin
+
Y2

r1
−
(
g2 +

1

r2
1

)
Y1 (rc − rin)

dY5

dR
= Y6

dY6

dR
= Y7

dY7

dR
= −2

Y7 (rc − rout)
r2

+
Y6 (rc − rout)2

r2
2

+ g2Y6 (rc − rout)2 − Y5 (rc − rout)3

r3
2

+ g2Y2 (rc − rout)3

r2
+ g2Y8 (rc − rout)3

dY8

dR
=

Y7

rc − rout
+
Y6

r2
−
(
g2 +

1

r2
2

)
Y5 (rc − rout)
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The boundary conditions (4.80) on outer and inner boundaries, and jump conditions (4.82)

for upper and lower crack faces are

2
Y2

(rc − rin)
− Y4 = 0

gY1 −
Y1

gr2
in

+
Y2

grin (rc − rin)
+

Y3

g (rc − rin)2 = 0

2
Y6

(rc − rout)
− Y8 = 0

gY5 −
Y5

gr2
out

+
Y6

grout (rc − rout)
+

Y7

g (rc − rout)2 = 0

Y5 − Y1 = 0

Y5

rc
+

Y6

(rc − rout)
− Y1

rc
− Y2

(rc − rin)
− g = 0

2
Y6

(rc − rout)
− Y8 −

(
2

Y2

(rc − rin)
− Y4

)
= 0

gY5 −
Y5

gr2
out

+
Y6

grout (rc − rout)
+

Y7

g (rc − rout)2 −(
gY1 −

Y1

gr2
in

+
Y2

grin (rc − rin)
+

Y3

g (rc − rin)2

)
= 0.

We use the Matlab routine ‘bvp4c’ to calculate the values of Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8,

hence Ûw, Ŵw are obtained. σ̂wyy, σ̂
w
xy are functions of Ûw, Ŵw.

Jump in u

Define Y1, Y2, Y3, Y4 to be Ûu, (Ûu)′, Ŵ u, (Ŵ u)′ respectively in region 1, and Y5, Y6, Y7, Y8

to be Ûu, (Ûu)′, Ŵ u, (Ŵ u)′ respectively in region 2. Referring to the equilibrium equations
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(4.84)

dY1

dR
= Y2

dY2

dR
= Y3

dY3

dR
= −2

Y3 (rc − rin)

r1
+
Y2 (rc − rin)2

r2
1

+ g2Y2 (rc − rin)2

− Y1 (rc − rin)3

r3
1

+ g2Y1 (rc − rin)3

r1
+ g2Y4 (rc − rin)3

dY4

dR
=

Y3

rc − rin
+
Y2

r1
−
(
g2 +

1

r2
1

)
Y1 (rc − rin)

dY6

dR
= Y7

dY7

dR
= −2

Y7 (rc − rout)
r2

+
Y6 (rc − rout)2

r2
2

+ g2Y6 (rc − rout)2 − Y5 (rc − rout)3

r3
2

+ g2Y2 (rc − rout)3

r2
+ g2Y8 (rc − rout)3

dY8

dR
=

Y7

rc − rout
+
Y6

r2
−
(
g2 +

1

r2
2

)
Y5 (rc − rout)

The boundary conditions (4.89) on outer and inner boundaries, and jump conditions (4.91)

for upper and lower crack faces are

2
Y2

r1 (rc − rin)
− Y4 = 0

gY1 −
Y1

gr2
in

+
Y2

grin (rc − rin)
+

Y3

g (rc − rin)2 = 0

2
Y6

r1 (rc − rout)
− Y8 = 0

gY5 −
Y5

gr2
in

+
Y6

grin (rc − rout)
+

Y7

g (rc − rout)2 = 0

Y5 − Y1 − 1 = 0

Y5

rc
+

Y6

(rc − rout)
− Y1

rc
− Y2

(rc − rin)
= 0

2
Y6

r1 (rc − rout)
− Y8 −

(
2

Y2

r1 (rc − rin)
− Y4

)
= 0

gY5 −
Y5

gr2
in

+
Y6

grin (rc − rout)
+

Y7

g (rc − rout)2 −(
gY1 −

Y1

gr2
in

+
Y2

grin (rc − rin)
+

Y3

g (rc − rin)2

)
= 0.

We use the Matlab routine ‘bvp4c’ to calculate the values of Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8,

hence Ûu, Ŵ u are obtained. σ̂uyy, σ̂
u
xy are functions of Ûu, Ŵ u.
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4.3.4 The case g = 0

Jump in w when g = 0

Equations (4.75) change to

2
(
Ûw
)′′

+
2

r

(
Ûw
)′
− 2

r2
Ûw −

(
P̂w
)′

= 0, (4.92)

(
Ŵw

)′′
+

(
Ŵw

)′
r

= 0, (4.93)(
Ûw

r
+ Ûw

)
= 0. (4.94)

Hence the solution for Ûw and Ŵw are

Ûw =
A

r
,

P̂w = B,

Ŵw = C log(r) +D.

Put the solutions into the boundary conditions (4.80) on inner and outer layers and the

jump conditions (4.82) we get

A1 = 0, B1 = 0, C1 = 0, D1 = −1

2
, A2 = 0, B2 = 0, C2 = 0, D2 =

1

2
.

where subscript ‘1’ is means region 1, and subscript ‘2’ is above the crack means region ‘2’.

Hence the displacements on the upper crack face are Û = 0 and Ŵ = 1
2 ; the displacements

on the lower crack face are Û = 0 and Ŵ = −1
2 ; the displacements on the outside boundary

are Û = 0 and Ŵ = 1
2 ; the displacements on the inside boundary are Û = 0 and Ŵ = −1

2 ;

on the crack face σ̂rr = 0 and σ̂rz = 0.

Jump in u when g = 0

Equations (4.84) change to

2
(
Ûu
)′′

+
2

r

(
Ûu
)′
− 2

r2
Ûu −

(
P̂ u
)′

= 0, (4.95)

(
Ŵ u
)′′

+

(
Ŵ u
)′

r
= 0, (4.96)(

Ûu

r
+ Ûu

)
= 0. (4.97)
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Hence the solution for Ûu and Ŵ u are

Ûu =
A

r
,

P̂w = B,

Ŵ u = C log(r) +D.

Put the solutions into the boundary conditions (4.89) on inner and outer layers and the

jump conditions (4.91) we get

A1 =
r2
in(r2

c − r2
out)

rc(−r2
out + r2

in)
, B1 = 2

(r2
out − r2

c )

rc(r2
out − r2

in)
, C1 = 0, D1 = 0,

A2 =
(r2
in − r2

c )r
2
out

rc(r2
out − r2

in)
, B2 = 2

(r2
in − r2

c )

rc(r2
out − r2

in)
, C2 = 0, D2 = 0.

Hence the displacements on the upper crack face are Û = −r
2
out(r

2
in − r2

c )

r2
c (r

2
out − r2

in)
and Ŵ = 0;

the displacements on the lower crack face are Û = −r
2
in(r2

out − r2
c )

r2
c (r

2
out − r2

in)
and Ŵ = 0; the

displacements on the outside boundary are Û = −rout(r
2
in − r2

c )

rc(r2
out − r2

in)
and Ŵ = 0; the displace-

ments on the inside boundary are Û = −rin(r2
out − r2

c )

rc(r2
out − r2

in)
and Ŵ = 0; on the crack face

σ̂rr = −2
(r2
out − r2

c )(r
2
c − r2

in)

r3
c (r

2
out − r2

in)
and σ̂rz = 0.

4.3.5 Comparison between compressible and incompressible solutions

In compressible axisymmetric artery when ν = 0.5 the material is incompressible. Al-

though we can not make ν = 0.5 exactly in the code due to singularity in numerical , when

ν = 0.4999 it is close to the incompressible material. When ν = 0.4999 we compare the re-

sults for compressible and incompressible, we find out they match well as shown in Figure

4.5 and Figure 4.6, where the difference is 10−4 which is the order of 0.5− ν = 0.0001.
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Figure 4.5: Difference of U for compressible and incompressible axisymmetric elastic tube

with Trj = 10−1, Tzj = 0, rin = 1, rout = 3 and rc = 1.5.
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Figure 4.6: Difference of W for compressible and incompressible axisymmetric elastic tube

with Trj = 10−1, Tzj = 0, rin = 1, rout = 3 and rc = 1.5.
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4.4 Conclusions

In this chapter, we have solved the axisymmetric crack problems in the compressible and

incompressible linear elastic axisymmetric tube. And we have compared the displacement

of the tear in the compressible tube with ν = 0.4999, which is almost incompressible, with

the displacement of the tear in the incompressible tube. The results match very well.



Chapter 5

Static axisymmetric tears based

on Holzapfel’s energy function

In this chapter we model an axisymmetric tear in the aorta.We use the strain energy

function for a thick-walled non-linear elastic tube with residual stress and two families of

fibres in the wall given by Holzapfel et al. [2000] to deduce the stresses, then construct

the equilibrium equations with boundary conditions and jump conditions to describe the

tear. The dissection is linearized as an incremental deformation, whose traction and

displacement on the dissection faces and boundaries are presented as the integral of the

Green’s function weighted by the displacement discontinuity. The tear changes with the

parameters in the strain energy function, which is shown in our results. In addition, a

change in blood pressure inside the lumen treated as the incremental inner pressure, and

its effect on the tear are found.

5.1 Axisymmetric dissection using Holzapfel et al.’s strain

energy function

Now we consider an axisymmetric elastic tube with inner radius rin and outer radius rout.

We assume the tear, which is located at rc, is axisymmetric in the wall of tube as shown

in Figure 4.1. The coordinate system is (r, θ, z) and the displacements in the coordinate

directions are (u, v, w). Due to axisymmetry, we do not need consider the displacement v

in circumferential direction.

109
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5.1.1 Introduction—Methods for axisymmetric crack problem on aorta

We take the stress-free artery with specified opening angle as the reference configuration,

and the closed artery with residual stress as the current configuration. The dissection of

the artery is idealised as the incremental elastic deformation on the configuration with

residual stress.

In vivo the residual stress and axial stretch, which are included into the Cauchy stress,

have important effects on the aorta. The governing equations in the current configuration

are

divσ = 0, (5.1)

σrr = −Pext at r = rout,

where Pext is the pressure on the outer boundary of the aorta.

The dissection of the artery is idealized as an incremental elastic deformation,

divṠ0 = 0, (5.2)

ṠT0 n = −Ṗn− P tr (δA0) n + PδAT
0 n at r = rin and r = rout,

where Ṡ0 (the same tensor as δS0 in chapter 2) is the incremental nominal stress in the

configuration in which the dissection happens, P is the pressure on the aorta, which is

written as Pext at outer boundary and Pin at inner boundary, and Ṗ is the incremental

pressure which describes the change of P .

Similarly to the axisymmetric tear problem in Chapter 4, the tear is decomposed into

normal and tangential direction as shown in Figure 4.1. The jump conditions at r = rc

are

[u]+− = δ(z), [w]+− = 0, [Ṡ0rr]
+
− = 0, [Ṡ0rz]

+
− = 0 for the jump in u, (5.3)

[u]+− = 0, [w]+− = δ(z), [Ṡ0rr]
+
− = 0, [Ṡ0rz]

+
− = 0 for the jump in w. (5.4)

We calculate Ṡu0rr, Ṡ
u
0rz, u

u and wu for the ‘jump in u’ and Ṡw0rr, Ṡ
w
0rz, u

w and ww for the

‘jump in w’ separately by same methods.

Firstly, we obtain the nominal stress S (2.54) and the Cauchy stress from the strain-

energy function Ψ. We calculate the incremental nominal stress Ṡ0 by using the relation

(2.44). The Cauchy stress σ and the incremental nominal stress Ṡ0 are functions of the

displacements uu(r, z), wu(r, z) or uw(r, z), ww(r, z). Writing the equilibrium equations

divσ = 0 and divṠ0 = 0 in components, we obtain partial differential equations in the
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variables uu(r, z), wu(r, z) or uw(r, z), ww(r, z). Secondly, we take a Fourier transform

to change these PDEs to ODEs with wave number g and variables ûu(r, g), ŵu(r, g) or

ûw(r, g), ŵw(r, g). Thirdly, we solve these ODEs with boundary conditions and jump con-

ditions by using a collocation method. Finally, we take the inverse Fourier transform to

obtain the solution for PDEs. Ṡ0 is a function of uu(r, z), wu(r, z) or uw(r, z), ww(r, z).

Thus when uu(r, z), wu(r, z) or uw(r, z), ww(r, z) are solved, Ṡu0rz, Ṡ
u
0rr or Ṡw0rz, Ṡ

w
0rr are ob-

tained.

Define T = (Tr, Tz) as the traction on the tear, which is decomposed into normal and

tangential directions,

Tr =

∫
Ṡu0rr (z − s, r)U (s) ds+

∫
Ṡw0rr (z − s, r)W (s) ds, (5.5)

Tz =

∫
Ṡu0rz (z − s, r)U (s) ds+

∫
Ṡw0rz (z − s, r)W (s) ds. (5.6)

The displacement components are decomposed into normal and tangential direction

u =

∫
uu(z − s, r)U(s)ds+

∫
uw(z − s, r)W (s)ds (5.7)

w =

∫
wu(z − s, r)U(s)ds+

∫
ww(z − s, r)W (s)ds (5.8)

Hence if the traction (Tr, Tz) along the dissection is given, the displacement (u,w) can be

found. We use this method to calculate the displacements for the upper tear face, lower

tear face, outer boundary and inner boundary. These are plotted on one figure to get

profile of the dissection.

5.1.2 Holzapfel-Gasser-Ogden strain-energy function

Equations (2.13) and (2.14) have been introduced as the strain-energy function

Ψ = U (J) +
1

2
c
(
I1 − 3

)
+

k1

2k2

[
Ψf

(
I4

)
+ Ψf

(
I6

)]
, (5.9)

and all the details about the equations have been introduced as equations (2.16), (2.17),

(2.18).

5.1.3 Incremental Elastic Moduli

Following are some useful results for our calculation, We have

∂

∂A

[
tr ATA

]
= 2AT and

∂

∂A
[det A] = (det A) A−1, (5.10)
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which in component form are (2.73) and (2.76). Any function of J can be differentiated

easily
∂

∂A
F (det A) = (det A)F ′ (det A) A−1. (5.11)

In addition, a useful result (2.81) has been introduced

∂

∂Ajβ

[(
A−1

)
αi

]
= −A−1

αj A
−1
βi . (5.12)

Another useful result is

∂

∂Aiα
[MpqAkqAkp] = MpαAip +AiqMαq (5.13)

so that
∂

∂A

[
tr
(
MATA

)]
=
(
MT + M

)
AT . (5.14)

Combining the results above we have

∂

∂A
I1 = 2J−2/3

[
AT − 1

3
tr
(
ATA

)
A−1

]
(5.15)

∂

∂A
I4 = 2J−2/3

[
Sym (M+) AT − 1

3
tr
(
M+ATA

)
A−1

]
(5.16)

∂

∂A
I6 = 2J−2/3

[
Sym (M−) AT − 1

3
tr
(
M−ATA

)
A−1

]
. (5.17)

Then the stress S (2.27) is given by

S =
∂Ψ

∂A
= JU ′(J)A−1 + cJ−2/3

[
AT − 1

3
tr
(
ATA

)
A−1

]
(5.18)

+ 2k1J
−2/3

(
I4 − 1

)
exp

[
k2

(
I4 − 1

)2] [
Sym (M+) AT − 1

3
tr
(
M+ATA

)
A−1

]
+ 2k1J

−2/3
(
I6 − 1

)
exp

[
k2

(
I6 − 1

)2] [
Sym (M−) AT − 1

3
tr
(
M−ATA

)
A−1

]
.

The elastic moduli (2.37) are given as a function of deformation gradient A by

A1 =
∂S

∂A
. (5.19)

In component form we have

A1
αiβj =

∂Sαi
∂Ajβ

. (5.20)

Now

∂

∂Alβ

(
JU ′(J)

(
A−1

)
αj

)
= J2U ′′(J)

(
A−1

)
βl

(
A−1

)
αj

+ JU ′(J)
[(
A−1

)
βl

(
A−1

)
αj
−
(
A−1

)
αl

(
A−1

)
βj

]
.
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Let

F (M,A) = Sym (M) AT − 1

3
tr
(
MATA

)
A−1, (5.21)

then

∂

∂Alβ
F (M,A)αj = Fαjβl (M)

= Sym (M)αβ δjl −
1

3
[MpβAlp +MβpAlp]

(
A−1

)
αj

+
1

3
tr
(
MATA

) (
A−1

)
αl

(
A−1

)
βj
.

∂

∂Alβ
J−2/3 = −2

3
J−2/3

(
A−1

)
βl
, (5.22)

and
∂

∂Alβ
f
(
I4

)
= 2f ′

(
I4

)
F (M+,A)βl . (5.23)

These results lead to

A1
αjβl = J2U ′′(J)

(
A−1

)
βl

(
A−1

)
αj

+ JU ′(J)
[(
A−1

)
βl

(
A−1

)
αj
−
(
A−1

)
αl

(
A−1

)
βj

]
− 2c

3
J−2/3

(
A−1

)
βl
F (I,A)αj

+ cJ−2/3

[
δαβδjl −

2

3
Alβ

(
A−1

)
αj

+
1

3
tr
(
ATA

) (
A−1

)
αl

(
A−1

)
βj

]
− 4

3
k1J

−2/3
(
I4 − 1

)
exp

[
k2

(
I4 − 1

)2] (
A−1

)
βl
F (M+,A)αj

− 4

3
k1J

−2/3
(
I6 − 1

)
exp

[
k2

(
I6 − 1

)2] (
A−1

)
βl
F (M−,A)αj

+ 4k1J
−4/3

[
1 + 2k2

(
I4 − 1

)2]
exp

[
k2

(
I4 − 1

)2]
F (M+,A)βl F (M+,A)αj

+ 4k1J
−4/3

[
1 + 2k2

(
I6 − 1

)2]
exp

[
k2

(
I6 − 1

)2]
F (M−,A)βl F (M−,A)αj

+ 2k1J
−2/3

(
I4 − 1

)
exp

[
k2

(
I4 − 1

)2]Fαjβl (M+)

+ 2k1J
−2/3

(
I6 − 1

)
exp

[
k2

(
I6 − 1

)2]Fαjβl (M−) . (5.24)

The instantaneous moduli (2.43) defined by R.W.Ogden [1997] is

A1
0ijkl = J−1AiαAkβA1

αjβl. (5.25)
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For this problem

A1
0ijkl = JU ′′(J)δijδkl + U ′(J) [δijδkl − δilδkj ]

− 2c

3
J−5/3AiαAjαδkl +

2c

9
J−5/3tr

(
ATA

)
δijδkl

+ cJ−5/3

[
AiαAkαδjl −

2

3
AkαAlαδij +

1

3
tr
(
ATA

)
δilδjk

]
− 4

3
k1J

−5/3
(
I4 − 1

)
exp

[
k2

(
I4 − 1

)2]
δklQ+

− 4

3
k1J

−5/3
(
I6 − 1

)
exp

[
k2

(
I6 − 1

)2]
δklQ−

+ 4k1J
−7/3

[
1 + 2k2

(
I4 − 1

)2]
exp

[
k2

(
I4 − 1

)2]
P+

+ 4k1J
−7/3

[
1 + 2k2

(
I6 − 1

)2]
exp

[
k2

(
I6 − 1

)2]
P−

+ 2k1J
−5/3

(
I4 − 1

)
exp

[
k2

(
I4 − 1

)2] Tijkl (M+)

+ 2k1J
−5/3

(
I6 − 1

)
exp

[
k2

(
I6 − 1

)2] Tijkl (M−) . (5.26)

where

Q+ =

[(
ASym (M+) AT

)
ij
− 1

3
tr
(
ASym (M+) AT

)
δij

]
,

Q− =

[(
ASym (M−) AT

)
ij
− 1

3
tr
(
ASym (M−) AT

)
δij

]
,

P+ = T
(
ASym (M+) AT

)
ij
T
(
ASym (M+) AT

)
kl
,

P− = T
(
ASym (M−) AT

)
ij
T
(
ASym (M−) AT

)
kl
,

Tijkl (M) =
(
ASym (M) AT

)
ik
δjl −

2

3

(
ASym (M) AT

)
kl
δij

+
1

3
δilδjktr

(
ASym (M) AT

)
,

in which

T (G) = G− 1

3
tr (G) I. (5.27)

5.1.4 Stress

Unconstrained–compressible

We have the incremental nominal stress (2.44) in the form of

Ṡ0ij = A1
0ijklδA0lk. (5.28)
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Using the results above gives

Ṡ0ij =
[
JU ′′(J) + U ′(J)

]
tr (δA0) δij − U ′(J)δA0ij

− 2c

3
J−5/3tr (δA0)T

(
AAT

)
ij

+ cJ−5/3

[
T
(
AAT (δA0)T

)
ij

+
1

3

(
tr
(
AAT

)
δA0ij − tr

(
AAT δAT

0

)
δij
)]

− 4k1

3
J−5/3

(
I4 − 1

)
exp

[
k2

(
I4 − 1

)2]
tr (δA0)T

(
ASym (M+) AT

)
ij

− 4k1

3
J−5/3

(
I6 − 1

)
exp

[
k2

(
I6 − 1

)2]
tr (δA0)T

(
ASym (M−) AT

)
ij

+ 4k1J
−7/3

[
1 + 2k2

(
I4 − 1

)2]
exp

[
k2

(
I4 − 1

)2]
(T+)ij

+ 4k1J
−7/3

[
1 + 2k2

(
I6 − 1

)2]
exp

[
k2

(
I6 − 1

)2]
(T−)ij

+ 2k1J
−5/3

(
I4 − 1

)
exp

[
k2

(
I4 − 1

)2] Tijkl (M+) δA0lk

+ 2k1J
−5/3

(
I6 − 1

)
exp

[
k2

(
I6 − 1

)2] Tijkl (M−) δA0lk (5.29)

where

(T+)ij = T
(
ASym (M+) AT

)
ij

tr
(
T
(
ASym (M+) AT

)
δA0

)
(T−)ij = T

(
ASym (M−) AT

)
ij

tr
(
T
(
ASym (M−) AT

)
δA0

)
Tijkl (M) δA0lk =

(
ASym (M) AT δAT

0

)
ij

+
1

3
tr
(
ASym (M) AT

)
δA0ij −

2

3
tr
(
ASym (M) AT δA0

)
δij .

The equilibrium equation and boundary conditions for the incremental nominal stress are

equations (5.2), which are written in components as

∂Ṡ0rr

∂r
+
∂Ṡ0zr

∂z
+

1

r
(Ṡ0rr − Ṡ0θθ) = 0, (5.30)

∂Ṡ0rz

∂r
+
∂Ṡ0zz

∂z
+

1

r
Ṡ0rz = 0, (5.31)

and setting Ṗ = 0 in (5.2) we have
Ṡ0rr 0 Ṡ0zr

0 Ṡ0θθ 0

Ṡ0rz 0 Ṡ0zz




1

0

0

 = −P tr (δA0)


1

0

0

+ P


u,r 0 w,r

0 u
r 0

u,z 0 w,z




1

0

0

 (5.32)

on r = rout and r = rin. On the outer boundary r = rout,

Ṡ0rr = −Pext

(
u,r +

u

r
+ w,z

)
+ Pextu,r = −Pext

(u
r

+ wz

)
(5.33)

Ṡ0rz = Pextu,z (5.34)
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and on the inner boundary r = rin

Ṡ0rr = −Pin

(
u,r +

u

r
+ w,z

)
+ Pinu,r = −Pin

(u
r

+ w,z

)
(5.35)

Ṡ0rz = Pinu,z . (5.36)

The boundary conditions on the interface r = rc are given by (5.3) and (5.4).

Constrained–incompressible

Consider the artery to be incompressible, in which J = 1, U ′(J) = 0, U ′′(J) = 1 and

tr (δA0) = 0. The form of the nominal stress is slightly different from the unconstrained

equation (5.18), in that

S =
∂Ψ

∂A
− cpA−1, (5.37)

where cp is a Lagrange multiplier and

∂Ψ

∂A
= c

[
AT − 1

3
tr
(
ATA

)
A−1

]
+ 2k1

(
I4 − 1

)
exp

[
k2

(
I4 − 1

)2] [
Sym (M+) AT − 1

3
tr
(
M+ATA

)
A−1

]
+ 2k1

(
I6 − 1

)
exp

[
k2

(
I6 − 1

)2] [
Sym (M−) AT − 1

3
tr
(
M−ATA

)
A−1

]
,(5.38)

hence the nominal stress is

S = c

[
AT − 1

3
tr
(
ATA

)
A−1 − pA−1

]
+ 2k1

(
I4 − 1

)
exp

[
k2

(
I4 − 1

)2] [
Sym (M+) AT − 1

3
tr
(
M+ATA

)
A−1

]
+ 2k1

(
I6 − 1

)
exp

[
k2

(
I6 − 1

)2] [
Sym (M−) AT − 1

3
tr
(
M−ATA

)
A−1

]
(5.39)

The Cauchy stress has the relation σ = J−1AS with the nominal stress, hence

σ = J−1A
∂Ψ

∂A
− cpI

= c

[
AAT − 1

3
tr
(
ATA

)
− pI

]
+ 2k1

(
I4 − 1

)
exp

[
k2

(
I4 − 1

)2] [
Sym (M+) AAT − 1

3
tr
(
M+ATA

)
I

]
+ 2k1

(
I6 − 1

)
exp

[
k2

(
I6 − 1

)2] [
Sym (M−) AAT − 1

3
tr
(
M−ATA

)
I

]
= c

[
AAT − qI

]
+ 2F1(r)

[
Sym (M+) AAT − 1

3
tr
(
M+ATA

)
I

]
+ 2F2(r)

[
Sym (M−) AAT − 1

3
tr
(
M−ATA

)
I

]
(5.40)
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where q = p+ 1
3tr
(
AAT

)
. From equations (2.44), the incremental nominal stress is

Ṡ0ij = c

[(
AAT (δA0)T

)
ij

+
1

3
tr
(
AAT

)
δA0ij −

2

3
tr
(
AAT δAT

0

)
δij − ṗδij + pδA0lk

]
+ 4P1(r)T

(
ASym (M+) AT

)
ij

tr
(
T
(
ASym (M+) AT

)
δA0

)
+ 4P2(r)T

(
ASym (M−) AT

)
ij

tr
(
T
(
ASym (M−) AT

)
δA0

)
+ 2F1(r)Tijkl (M+) δA0lk

+ 2F2(r)Tijkl (M−) δA0lk

= c

[(
AAT (δA0)T

)
ij
− q̇δij + qδA0lk

]
,

+ 4P1(r)(T+)ij + 4P2(r)(T−)ij

+ 2F1(r)Tijkl (M+) δA0lk + 2F2(r)Tijkl (M−) δA0lk (5.41)

where

P1(r) = k1

[
1 + 2k2

(
I4 − 1

)2]
exp

[
k2

(
I4 − 1

)2]
,

P2(r) = k1

[
1 + 2k2

(
I6 − 1

)2]
exp

[
k2

(
I6 − 1

)2]
,

F1(r) = k1

(
I4 − 1

)
exp

[
k2

(
I4 − 1

)2]
,

F2(r) = k1

(
I6 − 1

)
exp

[
k2

(
I6 − 1

)2]
,

q̇ = ṗ+
2

3
tr
(
AAT δAT

0

)
.

The deformation gradient is

A =


R(r)
krλ 0 0

0 k r
R(r) 0

0 0 λ

 =


ar(r) 0 0

0 aθ(r) 0

0 0 az(r)

 (5.42)

where R(r) =
√
kλ
(
r2 − r2

i

)
+R2

i . The incremental deformation gradient is

δA0 =


u,r 0 u,z

0 u
r 0

w,r 0 w,z

 . (5.43)

The equilibrium equations and boundary conditions for the Cauchy stress are equations

(5.1). Writing these in components, we have

dq

dr
= 2 ar (r)

d

dr
ar (r)− 2

3

(
d
drF1 (r)

)
I4 (r)

µ
− 2

3

F1 (r) d
drI4 (r)

µ
− 2

3

(
d
drF2 (r)

)
I6 (r)

µ

− 2

3

F2 (r) d
drI6 (r)

µ
+

(ar (r))2

r
− (aθ (r))2

r
− 2

F1 (r) (cos (β))2 (aθ (r))2

µ r

− 2
F2 (r) (cos (β))2 (aθ (r))2

µ r
(5.44)
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with

µar(r)
2 − µq(r)− 2

3
F1(r)I4(r)− 2

3
F2(r)I6(r) = −Pext at r = rout. (5.45)

The equilibrium equations and boundary conditions for the incremental nominal stress are

equations (5.2), which are written in components,

∂Ṡ0rr

∂r
+
∂Ṡ0zr

∂z
+

1

r
(Ṡ0rr − Ṡ0θθ) = 0, (5.46)

∂Ṡ0rz

∂r
+
∂Ṡ0zz

∂z
+

1

r
Ṡ0rz = 0,

and since Ṗ = 0 and tr(δA0) = 0 in (5.2) we have

Ṡ0rr = Pextu,r and Ṡ0rz = Pextu,z at r = rout, (5.47)

Ṡ0rr = Pinu,r and Ṡ0rz = Pinu,z at r = rin. (5.48)

The jump conditions on the interface at r = rc are (5.3) and (5.4).

5.1.5 Static tears for an axisymmetric incompressible aorta

Now consider one slice of crack section as shown in Figure 4.1, which is decomposed into

the‘jump in u’ and the ‘jump in w’. The jump conditions at r = rc are (5.3) and (5.4).

Jump in w across the crack

Similar to §4.2.1, using the symmetry of the domain in z, we express the displacements

and the stresses as

u (r, z) =
i

π

∫ ∞
0

û (g, r) sin gz dg =
1

π

∫ ∞
0

Ûw (g, r) sin gz dg (5.49)

w (r, z) =
1

π

∫ ∞
0

ŵ (g, r) cos gz dg =
1

π

∫ ∞
0

Ŵw (g, r) cos gz dg (5.50)

Ṡ0rr (r, z) =
i

π

∫ ∞
0

ˆ̇S0rr (g, r) sin gz dg =
1

π

∫ ∞
0

ˆ̇Sw0rr (g, r) sin gz dg (5.51)

Ṡ0rz (r, z) =
1

π

∫ ∞
0

ˆ̇S0rz (g, r) cos gz dg =
1

π

∫ ∞
0

ˆ̇Sw0rz (g, r) cos gz dg (5.52)

Ṡ0θθ (r, z) =
i

π

∫ ∞
0

ˆ̇S0θθ (g, r) sin gz dg =
1

π

∫ ∞
0

ˆ̇Sw0θθ (g, r) sin gz dg (5.53)

Ṡ0zr (r, z) =
1

π

∫ ∞
0

ˆ̇S0zr (g, r) cos gz dg =
1

π

∫ ∞
0

ˆ̇Sw0zr (g, r) cos gz dg (5.54)

Ṡ0zz (r, z) =
i

π

∫ ∞
0

ˆ̇S0zz (g, r) sin gz dg =
1

π

∫ ∞
0

ˆ̇Sw0zz (g, r) sin gz dg (5.55)

q̇(r, z) =
i

π

∫ ∞
0

ˆ̇q(g, r) sin gzdg =
1

π

∫ ∞
0

ˆ̇qw (g, r) sin gz dg. (5.56)
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where we define

Ûw = iû, Ŵw = ŵ, ˆ̇Sw0rr = i ˆ̇S0rr,
ˆ̇Sw0rz = ˆ̇S0rz,

ˆ̇Sw0θθ = i ˆ̇S0θθ (5.57)

ˆ̇Sw0zr = ˆ̇S0zr,
ˆ̇Sw0zz = i ˆ̇S0zz, ˆ̇qw = iˆ̇q, p̂w = ip̂. (5.58)

(5.59)

The equilibrium equations (5.46) after Fourier transforming become

A1Û
w +B1(Ûw)′ + C1(Ûw)′′ +D1(Ûw)′′′ + E1

ˆ̇q
w

= 0 (5.60)

A2Û
w +B2(Ûw)′ + C2(Ûw)′′ +D2(ˆ̇q

w
)′ = 0.

The boundary conditions (5.47) after Fourier transform are

a1Û
w + a2(Ûw)′ + a4

ˆ̇q
w

= 0 at r = rin (5.61)

b1Û
w + b2(Ûw)′ + b3(Ûw)′′ = 0 at r = rin

c5Û
w + c6(Ûw)′ + c8

ˆ̇q
w

= 0 at r = rout

d5Û
w + d6(Ûw)′ + d7(Ûw)′′ = 0 at r = rout.

Here A1, B1, C1, D1, E1, A2, B2, C2, D2, a1, a2, a4, b1, b2, b3, c5, c6, c8, d5, d6, d7 are given in

Appendix A.

The jump conditions after Fourier transformation are[
Ûw
]+

−
= 0,

[
Ŵw

]+

−
= 1,

[
ˆ̇Sw0rr

]+

−
=
[

ˆ̇Sw0rz

]+

−
= 0,

[
ˆ̇q
w
]+

−
= 0. (5.62)

The stress components ˆ̇Sw0rr and ˆ̇Sw0rz are functions of Ûw, Ŵw and ˆ̇qw:

ˆ̇Sw0rr = swr1(r)Ûw(r) + swr2(r)
dÛw(r)

dr
+ ˆ̇qw, (5.63)

ˆ̇Sw0rz = swz1(r)Ûw(r) + swz2(r)
dÛw(r)

dr
+ swz3(r)

d
[
Ûw(r)

]2

dr2
, (5.64)

where swr1(r), swr2(r), swz1(r), swz2(r) and swz3(r) are in Appendix A.
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Jump in u across the crack

Using the symmetry of the domain in z, we express the displacements and the stresses as

u (r, z) =
1

π

∫ ∞
0

û (g, r) cos gz dg =
1

π

∫ ∞
0

Ûu (g, r) cos gz dg (5.65)

w (r, z) =
i

π

∫ ∞
0

ŵ (g, r) sin gz dg =
1

π

∫ ∞
0

Ŵ u (g, r) sin gz dg (5.66)

Ṡ0rr (r, z) =
1

π

∫ ∞
0

ˆ̇S0rr (g, r) cos gz dg =
1

π

∫ ∞
0

ˆ̇Su0rr (g, r) cos gz dg (5.67)

Ṡ0rz (r, z) =
i

π

∫ ∞
0

ˆ̇S0rz (g, r) sin gz dg =
1

π

∫ ∞
0

ˆ̇Su0rz (g, r) sin gz dg (5.68)

Ṡ0θθ (r, z) =
1

π

∫ ∞
0

ˆ̇S0θθ (g, r) cos gz dg =
1

π

∫ ∞
0

ˆ̇Su0θθ (g, r) cos gz dg (5.69)

Ṡ0zr (r, z) =
i

π

∫ ∞
0

ˆ̇S0zr (g, r) sin gz dg =
1

π

∫ ∞
0

ˆ̇Su0zr (g, r) sin gz dg (5.70)

Ṡ0zz (r, z) =
1

π

∫ ∞
0

ˆ̇S0zz (g, r) cos gz dg =
1

π

∫ ∞
0

ˆ̇Su0zz (g, r) cos gz dg (5.71)

q̇(r, z) =
1

π

∫ ∞
0

ˆ̇q(g, r) cos gzdg =
1

π

∫ ∞
0

ˆ̇q(g, r) cos gzdg, (5.72)

where we define

Ûu = û, Ŵ u = iŵ, ˆ̇Su0rr = ˆ̇S0rr,
ˆ̇Su0rz = i ˆ̇S0rz,

ˆ̇Su0θθ = ˆ̇S0θθ, (5.73)

ˆ̇Su0zr = i ˆ̇S0zr,
ˆ̇Su0zz = ˆ̇S0zz, p̂u = p̂, ˆ̇qu = ˆ̇q. (5.74)

The equilibrium equations (5.46) after Fourier transforming become

A1Û
u +B1(Ûu)′ + C1(Ûu)′′ +D1(Ûu)′′′ + E1ˆ̇q

u
= 0 (5.75)

A2Û
u +B2(Ûu)′ + C2(Ûu)′′ +D2(ˆ̇q

u
)′ = 0

The boundary condition (5.47) after Fourier transform are given

a1Û
u + a2(Ûu)′ + a4

ˆ̇q
u

= 0 at r = rin (5.76)

b1Û
u + b2(Ûu)′ + b3(Ûu)′′ = 0 at r = rin

c5Û
u + c6(Ûu)′ + c8

ˆ̇q
u

= 0 at r = rout

d5Û
u + d6(Ûu)′ + d7(Ûu)′′ = 0 at r = rout

where A1, B1, C1, D1, E1, A2, B2, C2, D2, a1, a2, a4, b1, b2, b3, c5, c6, c8, d5, d6, d7 are in Ap-

pendix B.

The jump conditions after Fourier transform are[
Ûu
]+

−
= 1,

[
Ŵ u
]+

−
= 0,

[
ˆ̇Su0rr

]+

−
=
[

ˆ̇Su0rz

]+

−
= 0,

[
ˆ̇q
u
]+

−
= 0. (5.77)
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The stress components ˆ̇Su0rr and ˆ̇Su0rz are functions of Ûu, Ŵ u and ˆ̇qu:

ˆ̇Su0rr = sur1(r)Ûu(r) + sur2(r)
dÛu(r)

dr
− ˆ̇qu, (5.78)

ˆ̇Su0rz = suz1(r)Ûu(r) + suz2(r)
dÛu(r)

dr
+ suz3(r)

d
[
Ûu(r)

]2

dr2
, (5.79)

where sur1(r), sur2(r), suz1(r), suz2(r) and suz3(r) are given in Appendix B.

5.1.6 Numerical solution—Collocation method

In this section we are going to solve Ûw, Ŵw, Ûu, Ŵ u and ˆ̇Sw0rr,
ˆ̇Sw0rz,

ˆ̇Su0rr,
ˆ̇Su0rz numerically.

we consider the special g = 0 separately, which will give singularity if we use the following

collocation method.

BVP method

As shown in Figure 4.1, region 1 is rin ≤ r ≤ rc and region 2 is rc ≤ r ≤ rout.

In region 1, r = r1 = rin + R(rc − rin) and
d

dr
=

1

rc − rin

d

dR
; in region 2, r = r2 =

rout +R(rc − rout) and
d

dr
=

1

rc − rout

d

dR
. The range of R is [0, 1]. The boundary in each

region is represented by R = 0, and R = 1 represents the crack face.

Jump in w

It’s convenient to define Y1, Y2, Y3, Y4, Y9 to be Ûw, (Ûw)′, (Ûw)′′, ˆ̇qw, q̂w respectively in

region 1, and Y5, Y6, Y7, Y8, Y10 to be Ûw, (Ûw)′, (Ûw)′′, ˆ̇qw, q̂w respectively in region 2.
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From equations (5.44) and (5.60) we have the following system of fourth-order equations

dY1

dR
= Y2

dY2

dR
= Y3

dY3

dR
= −A1

D1
Y1 (rc − rin)3 − B1

D1
Y2 (rc − rin)2 − C1

D1
Y3 (rc − rin)− E1

D1
Y4 (rc − rin)3

dY4

dR
= −A2

D2
Y1 (rc − rin)− B2

D2
Y2 −

C2

D2
Y3

1

(rc − rin)

dY9

dR
= (rc − rin)Q(r1)

dY5

dR
= Y6

dY6

dR
= Y7

dY7

dR
= −A1

D1
Y1 (rc − rout)

3 − B1

D1
Y2 (rc − rout)

2 − C1

D1
Y3 (rc − rout)−

E1

D1
Y4 (rc − rout)

3

dY8

dR
= −A2

D2
Y1 (rc − rout)−

B2

D2
Y2 −

C2

D2
Y3

1

(rc − rout)

dY10

dR
= (rc − rout)Q(r2),

where

Q(r) = 2 ar (r)
d

dr
ar (r)− 2

3

(
d
drF1 (r)

)
I4 (r)

µ
− 2

3

F1 (r) d
drI4 (r)

µ
− 2

3

(
d
drF2 (r)

)
I6 (r)

µ

− 2

3

F2 (r) d
drI6 (r)

µ
+

(ar (r))2

r
− (at (r))2

r
− 2

F1 (r) (cos (β))2 (at (r))2

µ r

− 2
F2 (r) (cos (β))2 (at (r))2

µ r
.

We define Ya1, Ya2, Ya3, Ya4, Ya9 to be Ûw, (Ûw)′, (Ûw)′′, ˆ̇qw, q̂w respectively on the inner

boundary; Ya5, Ya6, Ya7, Ya8, Ya10 to be Ûw, (Ûw)′, (Ûw)′′, ˆ̇qw, q̂w respectively on the outer

boundary; Yb1, Yb2, Yb3, Yb4, Yb9 to be Ûw, (Ûw)′, (Ûw)′′, ˆ̇qw, q̂w respectively on the lower

crack face; Yb5, Yb6, Yb7, Yb8, Yb10 to be Ûw, (Ûw)′, (Ûw)′′, ˆ̇qw, q̂w respectively on the upper

crack face.

Referring to (5.45), (5.61) and (5.62), the conditions on the outer boundary and the jump
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conditions on tear faces are

a1Ya1 + a2
Ya2

rc − rin
+ a4Ya4 = 0

b1Ya1 + b2
Ya2

rc − rin
+ b3

Ya3

(rc − rin)2 = 0

c5Ya5 + c6
Ya6

rc − rout
+ c8Ya8 = 0

d5Ya5 + d6
Ya6

rc − rout
+ d7

Ya7

(rc − rout)
2 = 0

µar(rout)
2 − µYa10 −

2

3
F1(rout)I4(rout)−

2

3
F2(rout)I6(rout)− Pext = 0

Yb5 − Yb1 = 0

−1

g

(
Yb6

rc − rout
+
Yb5
rc

)
+

1

g

(
Yb2

rc − rin
+
Yb1
rc

)
− 1 = 0

e5Yb5 + e6
Yb6

rc − rout
+ e8Yb8 −

(
e1Yb1 + e2

Yb2
rc − rrin

+ e4Yb4

)
= 0

f5Yb5 + f6
Yb6

rc − rout
+ f7

Yb7

(rc − rout)
2 −

(
f1Yb1 + f2

Yb2
rc − rin

+ f3
Yb3

(rc − rin)2

)
= 0

Yb10 − Yb9 = 0

where e1, e2, e4, e5, e6, e8 and f1, f2, f3, f5, f6, f7 are in Appendix A. After we define the

problem appropriately, we use the Matlab routine ‘bvp4c’ to calculate the values of

Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10, from which Ûw, Ŵw are obtained, and ˆ̇Sw0rr,
ˆ̇Sw0rz are

functions of Ûw, Ŵw.

Jump in u

It is convenient to define Y1, Y2, Y3, Y4, Y9 to be Ûu, (Ûu)′, (Ûu)′′, ˆ̇qu, q̂u respectively in

region 1, and Y5, Y6, Y7, Y8, Y10 to be Ûu, (Ûu)′, (Ûu)′′, ˆ̇qu, q̂u respectively in region 2.
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From equations (5.44) and (5.75) we have

dY1

dR
= Y2

dY2

dR
= Y3

dY3

dR
= −A1

D1
Y1 (rc − rin)3 − B1

D1
Y2 (rc − rin)2 − C1

D1
Y3 (rc − rin)− E1

D1
Y4 (rc − rin)3

dY4

dR
= −A2

D2
Y1 (rc − rin)− B2

D2
Y2 −

C2

D2
Y3

1

(rc − rin)

dY9

dR
= (rc − rin)Q(r1)

dY5

dR
= Y6

dY6

dR
= Y7

dY7

dR
= −A1

D1
Y1 (rc − rout)

3 − B1

D1
Y2 (rc − rout)

2 − C1

D1
Y3 (rc − rout)−

E1

D1
Y4 (rc − rout)

3

dY8

dR
= −A2

D2
Y1 (rc − rout)−

B2

D2
Y2 −

C2

D2
Y3

1

(rc − rout)

dY10

dR
= (rc − rout)Q(r2)

We define Ya1, Ya2, Ya3, Ya4, Ya9 to be Ûu, (Ûu)′, (Ûu)′′, ˆ̇qu, q̂u respectively on the inner

boundary; Ya5, Ya6, Ya7, Ya8, Ya10 to be Ûu, (Ûu)′, (Ûu)′′, ˆ̇qu, q̂u respectively on the outer

boundary; Yb1, Yb2, Yb3, Yb4, Yb9 to be Ûu, (Ûu)′, (Ûu)′′, ˆ̇qu, q̂u respectively on the lower

crack face; Yb5, Yb6, Yb7, Yb8, Yb10 to be Ûu, (Ûu)′, (Ûu)′′, ˆ̇qu, q̂u respectively on the upper

crack face.

Refering to (5.45), (5.76) and (5.77), the conditions on the outer boundary and the jump
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conditions on crack faces are

a1Ya1 + a2
Ya2

rc − rin
+ a4Ya4 = 0

b1Ya1 + b2
Ya2

rc − rin
+ b3

Ya3

(rc − rin)2 = 0

c5Ya5 + c6
Ya6

rc − rout
+ c8Ya8 = 0

d5Ya5 + d6
Ya6

rc − rout
+ d7

Ya7

(rc − rout)
2 = 0

µar(rout)
2 − µYa10 −

2

3
F1(rout)I4(rout)−

2

3
F2(rout)I6(rout)− Pext = 0

Yb5 − Yb1 − 1 = 0

1

g

(
Yb6

rc − rout
+
Yb5
rc

)
− 1

g

(
Yb2

rc − rin
+
Yb1
rc

)
= 0

e5Yb5 + e6
Yb6

rc − rout
+ e8Yb8 −

(
e1Yb1 + e2

Yb2
rc − rrin

+ e4Yb4

)
= 0

f5Yb5 + f6
Yb6

rc − rout
+ f7

Yb7

(rc − rout)
2 −

(
f1Yb1 + f2

Yb2
rc − rin

+ f3
Yb3

(rc − rin)2

)
= 0

Yb10 − Yb9 = 0

where e1, e2, e4, e5, e6, e8 and f1, f2, f3, f5, f6, f7 are in Appendix B. Then we use the Matlab

routine ‘bvp4c’ to calculate the values of Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10, from which

Ûu, Ŵ u are obtained, and ˆ̇Su0rz,
ˆ̇Su0rz are functions of Ûu, Ŵ u.

5.1.7 The case g = 0

The calculation of Ûw, Ŵw, ˆ̇Sw0rr,
ˆ̇Sw0rz and Ûu, Ŵ u, ˆ̇Su0rr,

ˆ̇Su0rz when g = 0 are solved sepa-

rately.

Jump in w

We have exact solution for jump in w when g = 0

Ûw = 0 at r = rout and r = rin,

Ŵw =
1

2
at r = rout, Ŵw = −1

2
at r = rin,

Ûw = 0 at upper crack face and lower crack face,

Ŵw =
1

2
at upper crack face, Ŵw = −1

2
at lower crack face.

And ˆ̇Sw0rr,
ˆ̇Sw0rz are functions of Ûw, Ŵw.
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Jump in u

Define Y1, Y2, Y5 to be Ûu, ˆ̇qu, q̂u respectively in region 1; Y3, Y4, Y6 to be Ûu, ˆ̇qu, q̂u re-

spectively in region 2; Ya1, Ya2, Ya5 to be Ûu, ˆ̇qu, q̂u respectively on the inner bound-

ary; Ya3, Ya4, Ya6 to be Ûu, ˆ̇qu, q̂u respectivelyon the outer boundary; Yb1, Yb2, Yb5 to be

Ûu, ˆ̇qu, q̂u respectively on the lower crack face; Yb3, Yb4, Yb6 to be Ûu, ˆ̇qu, q̂u respectively on

the upper crack face.

When g = 0 the equations (5.44) and (5.60) simplify to

dY1

dR
= −Y1

r1

dY2

dR
= Y1(rc − rin)f2(r1)

dY5

dR
= (rc − rin)f5(r1)

dY3

dR
= −Y3

r2

dY4

dR
= Y3(rc − rin)f2(r2)

dY5

dR
= (rc − rin)f5(r2)

where f2(r) and f5(r) are given in Appendix C.

Refering to (5.45), (5.76) and (5.77), the boundary conditions on outer layers and the

jump conditions on crack faces are

p1(rin)Ya1 − µYa2 = 0

p2(rout)Ya3 − µYa4 = 0

µ (ar (rout))
2 − µYa6 −

2

3
F1 (rout) I4 (rout)−

2

3
F2 (rout) I6 (rout)− Pext = 0

Yb5 − Yb1 − 1 = 0

(p4(rc)Yb3 − µYb4)− (p3(rc)Yb1 − µYb2) = 0

Yb6 − Yb5 = 0

where p1(rc), p2(rc), p3(rc), p4(rc) are defined in Appendix C.

We use the Matlab routine ‘bvp4c’ to calculate the values of Y1, Y2, Y5, Y3, Y4, Y6. Hence

Ûu, Ŵ u ˆ̇Su0rr,
ˆ̇Su0rz which are functions of Ûu, Ŵ u are all obtained.

5.1.8 Matrix equations

We obtain Ûw(g, r), Ŵw(g, r), Ûu(g, r), Ŵ u(g, r) and ˆ̇Sw0rr(g, r),
ˆ̇Sw0rz(g, r),

ˆ̇Su0rr(g, r),
ˆ̇Su0rz(g, r)

for each value of g from above numerical approach. Now we assume the length of the crack
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is 2L, and we show a section of the tube whose length is 7L. The traction and displacement

components, decomposed into normal and tangential direction, are

Tr(z) =

∫
Ṡu0rr (z − s, r)U (s) ds+

∫
Ṡw0rr (z − s, r)W (s) ds, (5.80)

Tz(z) =

∫
Ṡu0rz (z − s, r)U (s) ds+

∫
Ṡw0rz (z − s, r)W (s) ds, (5.81)

u =

∫
uu(z − s, r)U(s)ds+

∫
uw(z − s, r)W (s)ds, (5.82)

w =

∫
wu(z − s, r)U(s)ds+

∫
ww(z − s, r)W (s)ds. (5.83)

We discretize the integral equations (5.80) and (5.81) assuming piecewise constant openings

along the tear which is of length 2L, and so we evaluate the integral equations at a discrete

set of points zi, i = 1, ..., 2N .

For the second term in the RHS of equation (5.80) we have∫
Ṡw0rr (zi − s, r)W (s) ds =

∫ [
1

π

∫ ∞
0

ˆ̇Sw0rr (g, r) sin g (zi − s) dg
]
W (s) ds

=
1

π

∑
j

∫
j

[∫ ∞
0

ˆ̇Sw0rr (g, r) sin g (zi − s) dg
]
Wj ds

=
1

π

∑
j

∫
j

[∫ ∞
0

(
ˆ̇Sw0rr (g, r)− gṠw1

0rr − Ṡw0
0rr

)
sin g (zi − s) dg

]
Wj ds

+
1

π

∑
j

∫
j

[∫ ∞
0

gṠw1
0rr sin g (zi − s) dg

]
Wj ds

+
1

π

∑
j

∫
j

[∫ ∞
0

Ṡw0
0rr sin g (zi − s) dg

]
Wj ds,

where ∫
j

[∫∞
0 ( ˆ̇Sw0rr (g, r)− gṠw1

0rr − Ṡw0
0rr) sin g (zi − s) dg

]
Wj ds

= Wj

∫∞
0 ( ˆ̇Sw0rr − gṠw1

0rr − Ṡw0
0rr)

[∫
j sin g (zi − s) ds

]
dg

and ∫
j

sin g (zi − s) ds =

∫ zj+∆

zj−∆
sin g (zi − s) ds = 2

sin(g∆)

g
sin g(zi − zj),

in which using equation (3.101)

1

π

∫ ∞
0

gṠw1
0rr sin g (zi − s) dg =

Ṡw1
0rr

π
lim
r→0+

∫ ∞
0

ge−gr sin g (zi − s) dg = Ṡw1
0rrδ

′(zi − s)

and using equation (3.102) we have

1

π

∫ ∞
0

Ṡw0
0rr sin g (zi − s) dg =

Ṡw0
0rr

π
lim
r→0+

∫ ∞
0

e−gr sin g (zi − s) dg =
Ṡw0

0rr

π(zi − s)
.
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Hence∫
Ṡw0rr (zi − s, r)W (s) ds = 2

1

π

∑
j

Wj

∫ ∞
0

(
ˆ̇Sw0rr (g, r)− gṠw1

0rr − Ṡw0
0rr

) sin g∆

g
sin g(zi − zj) dg

+ Ṡw0
0rr

∑
j

Wj
1

π
log

∣∣∣∣zi − zj + ∆

zi − zj −∆

∣∣∣∣
which is of the form

∑
j

Ṡw0rr[i, j]Wj where

Ṡw0rr[i, j] = 2
1

π

∫ ∞
0

(
ˆ̇Sw0rr (g, r)− gṠw1

0rr − Ṡw0
0rr

) sin g∆

g
sin g(zi − zj) dg

+ Ṡw0
0rr

1

π
log

∣∣∣∣zi − zj + ∆

zi − zj −∆

∣∣∣∣ .
For the first term in the RHS of equation (5.80), in which we use (3.99), (3.100), (3.165)

and (3.166), we have∫
Ṡu0rr (zi − s, r)U (s) ds =

∫ [
1

π

∫ ∞
0

ˆ̇Su0rr (g, r) cos g (zi − s) dg
]
U (s) ds

=
1

π

∑
j

∫
j

[∫ ∞
0

(
ˆ̇Su0rr (g, r)− gṠu1

0rr − Ṡu0
0rr

)
cos g (zi − s) dg

]
Uj ds

+
1

π

∑
j

∫
j

[∫ ∞
0

gṠu1
0rr cos g (zi − s) dg

]
Uj ds

+
1

π

∑
j

∫
j

[∫ ∞
0

Ṡu0
0rr cos g (zi − s) dg

]
Uj ds

= 2
1

π

∑
j

Uj

∫ ∞
0

(
ˆ̇Su0rr (g, r)− gṠu1

0rr − Ṡu0
0rr

) sin g∆

g
cos g(zi − zj) dg

− Ṡu1
0rr

∑
j

Uj

 2∆

π
(

(zi − zj)2 −∆2
)


+ Ṡu0
0rr

∑
j

UjIzi∈(zj−∆,zj+∆)

which is of the form
∑
j

Ṡu0rr[i, j]Uj where

Ṡu0rr[i, j] = 2
1

π

∫ ∞
0

(
ˆ̇Su0rr (g, r)− gṠu1

0rr − Ṡu0
0rr

) sin g∆

g
cos g(zi − zj) dg

− Ṡu1
0rr

 2∆

π
(

(zi − zj)2 −∆2
)


+ Ṡu0
0rrIzi∈(zj−∆,zj+∆)

For the second term in the RHS of equation (5.81), in which we use (3.99), (3.100),
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(3.165) and (3.166), we have∫
Ṡw0rz (zi − s, r)W (s) ds =

∫ [
1

π

∫ ∞
0

ˆ̇Sw0rz (g, r) cos g (zi − s) dg
]
W (s) ds

=
1

π

∑
j

∫
j

[∫ ∞
0

(
ˆ̇Sw0rz (g, r)− gṠw1

0rz − Ṡw0
0rz

)
cos g (zi − s) dg

]
Wj ds

+
1

π

∑
j

∫
j

[∫ ∞
0

gṠw1
0rz cos g (zi − s) dg

]
Wj ds

+
1

π

∑
j

∫
j

[∫ ∞
0

Ṡw0
0rz cos g (zi − s) dg

]
Wj ds

= 2
1

π

∑
j

Wj

∫ ∞
0

(
ˆ̇Sw0rz (g, r)− gṠw1

0rz − gṠw0
0rz

) sin g∆

g
cos g(zi − zj) dg

− Ṡw1
0rz

∑
j

Wj

 2∆

π
(

(zi − zj)2 −∆2
)


+ Ṡw0
0rz

∑
j

WjIzi∈(zj−∆,zj+∆)

which is of the form
∑
j

Ṡw0rz[i, j]Wj where

Ṡw0rz[i, j] = 2
1

π

∫ ∞
0

(
ˆ̇Sw0rz (g, r)− gṠw1

0rz − gṠw0
0rz

) sin g∆

g
cos g(zi − zj) dg

− Ṡw1
0rz

 2∆

π
(

(zi − zj)2 −∆2
)


+ Ṡw0
0rzIzi∈(zj−∆,zj+∆).

For the first term in the RHS of of equation (5.81), in which we use (3.101), (3.102),

(3.167) and (3.168), we have∫
Ṡu0rz (zi − s, r)U (s) ds = 2

1

π

∑
j

Uj

∫ ∞
0

(
ˆ̇Su0rz (g, r)− gṠu1

0rz − Ṡu0
0rz

) sin g∆

g
sin g(zi − zj) dg

+ Ṡu0
0rz

∑
j

Uj
1

π
log |zi − zj + ∆

zi − zj −∆
|

which is of the form
∑
j

Ṡu0rz[i, j]Uj where

Ṡu0rz[i, j] = 2
1

π

∫ ∞
0

(
ˆ̇Su0rz (g, r)− gṠu1

0rz − Ṡu0
0rz

) sin g∆

g
sin g(zi − zj) dg

+ Ṡu0
0rz

1

π
log

∣∣∣∣zi − zj + ∆

zi − zj −∆

∣∣∣∣
We write these integral equations (5.80) and (5.81) as the matrix equation Tri

Tzi

 =

 Ṡu0rr[i, j] Ṡw0rr[i, j]

Ṡu0rz[i, j] Ṡw0rz[i, j]

 Uj

Wj

 (5.84)
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where j = 1, ..., 2N .

We discretize the integral equations (5.82) and (5.83) assuming piecewise constant openings

along length 2L for upper, and lower crack faces and 7L for top and bottom boundaries.

We evaluate the integral equation at a discrete set of points zi, i = 1, ..., 2N for the upper

and lower crack faces, and zi, i = 1, ..., 7N for the top and bottom boundaries.

For the first term in the RHS of equation (5.82), in which we use (3.100) and (3.166),

we have∫
uu(zi − s, r)U(s)ds =

1

π

∫ ∫ ∞
0

(
Ûu − u1u

)
cos g (zi − s) dg U ds

+
1

π

∫ ∫ ∞
0

u1u cos g (zi − s) dg U ds

=
2

π

∑
j

Uj

∫ ∞
0

(Ûu − u1u)
sin g∆

g
cos (gzi − gzj) dg

+ u1u
∑
j

∫
j

lim
r→0+

∫ ∞
0

e−gr cos g (zi − s) dg Uj ds

=
2

π

∑
j

Uj

∫ ∞
0

(Ûu − u1u)
sin g∆

g
cos (gzi − gzj) dg

+ u1u
∑
j

UjIzi∈(zj−∆,zj+∆)

which is of the form
∑
j

uu[i, j]Uj where

uu[i, j] =
2

π

∫ ∞
0

(Ûu − u1u)
sin g∆

g
cos (gzi − gzj) dg

+ u1uIzi∈(zj−∆,zj+∆).

For the first term in the RHS of equation (5.82), in which we use (3.102) and (3.168),
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we have∫
uw(zi − s, r)W (s)ds =

1

π

∫ ∫ ∞
0

(
Ûw − u1w

)
sin g (zi − s) dgW ds

+
1

π

∫ ∫ ∞
0

u1w sin g (zi − s) dgW ds

=
2

π

∑
j

Wj

∫ ∞
0

(Ûw − u1w)
sin g∆

g
sin (gzi − gzj) dg

+ u1w
∑
j

∫
j

lim
r→0+

∫ ∞
0

e−gr sin g (zi − s) dgWj ds

=
2

π

∑
j

Wj

∫ ∞
0

(Ûw − u1w)
sin g∆

g
sin (gzi − gzj) dg

+
u1w

π

∑
j

Wj log

∣∣∣∣zi − zj + ∆

zi − zj −∆

∣∣∣∣
which is of the form

∑
j

uw[i, j]Wj where

uw[i, j] =
2

π

∫ ∞
0

(Ûw − u1w)
sin g∆

g
sin (gzi − gzj) dg

+
u1w

π
log

∣∣∣∣zi − zj + ∆

zi − zj −∆

∣∣∣∣ .
For the first term in the RHS of equation (5.83), in which we use (3.102) and (3.168),

we have∫
wu(zi − s, r)U(s)ds =

1

π

∫ ∫ ∞
0

(
Ŵ u − w1u

)
sin g (zi − s) dg U ds

+
1

π

∫ ∫ ∞
0

w1u sin g (zi − s) dg U ds

=
2

π

∑
j

Uj

∫ ∞
0

(Ŵ u − w1u)
sin g∆

g
sin (gzi − gzj) dg

+ w1u
∑
j

∫
j

lim
r→0+

∫ ∞
0

e−gr sin g (zi − s) dg Uj ds

=
2

π

∑
j

Uj

∫ ∞
0

(Ŵ u − w1u)
sin g∆

g
sin (gzi − gzj) dg

+
w1u

π

∑
j

Uj log

∣∣∣∣zi − zj + ∆

zi − zj −∆

∣∣∣∣
which is of the form

∑
j

wu[i, j]Uj where

wu[i, j] =
2

π

∫ ∞
0

(Ŵ u − w1u)
sin g∆

g
sin (gzi − gzj) dg

+
w1u

π
log

∣∣∣∣zi − zj + ∆

zi − zj −∆

∣∣∣∣ .
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For the first term in the RHS of equation (5.83), in which we use (3.100) and (3.166),

we have∫
ww(zi − s, r)W (s)ds =

1

π

∫ ∫ ∞
0

(
Ŵw − w1w

)
cos g (zi − s) dgW ds

+
1

π

∫ ∫ ∞
0

w1w cos g (zi − s) dgW ds

=
2

π

∑
j

Wj

∫ ∞
0

(Ŵw − w1w)
sin g∆

g
cos (gzi − gzj) dg

+ w1w
∑
j

∫
j

lim
r→0+

∫ ∞
0

e−gr cos g (zi − s) dgWj ds

=
2

π

∑
j

Wj

∫ ∞
0

(Ŵw − w1w)
sin g∆

g
cos (gzi − gzj) dg

+ w1w
∑
j

WjIzi∈(zj−∆,zj+∆)

which is of the form
∑
j

ww[i, j]Wj where

ww[i, j] =
2

π

∫ ∞
0

(Ŵw − w1w)
sin g∆

g
cos (gzi − gzj) dg

+ w1wIzi∈(zj−∆,zj+∆).

We write these integral equations (5.82) and (5.83) into the form of matrix equation ui

wi

 =

 uu[i, j] uw[i, j]

wu[i, j] ww[i, j]

 Uj

Wj

 . (5.85)

5.1.9 Conditions at the crack face

In the static tear we use the following traction conditions at the crack face. The blood

inside the tear is connecting with the blood in the aorta, and the blood pressure on the

aorta wall is −σ(rin) and the pressure on the tear face is −σ(rc). Therefore the traction

on the tear is Tri = (−σ(rc)) − (−σ(rin)) = σ(rin) − σ(rc) and Tzi = 0kPa. In order to

calculate the opening of the tear we must solve equation (5.84) to get Uj and Wj . This

requires the traction conditions at the crack face. When Uj and Wj have been obtained,

the displacements ui and wi in (5.85) for upper and lower crack face, and for top and

bottom boundaries are obtained.
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5.1.10 Results

Following results are tear profiles with rin = 4mm, rc = 5mm, rout = 6mm, Ri = 3.9mm,

Pext = 0kPa, k1 = 2.3632kPa, k2 = 0.8393, c = 3kPa, which are for a carotid artery

from rabbit, refer to Holzapfel et al. [2000]. In Figure 5.1—5.8 we illustrate some tears for

different choices of λ, k, and β. In Figure 5.9—5.20 we change one of these parameters and

keep other parameters unchanged to compare the differences in order to test the effects of

λ, k, β.

We choose the inner radius rin = 4mm and outer radius rout = 6mm instead of the inner

radius rin = 1mm and outer radius rout = 3mm. The reason is that unless the tube is

sufficiently inflated when the open angle configurations is closed, it could lead to wrinkles

on the inner boundary. Figures 5.7 and 5.8 show us the wrinkle on the inner boundary with

α = 45o. In Figures 5.3 and 5.4 the open angle is α = 45o, however, there is no wrinkle

on the inner boundary. The reason is that in Figures 5.7 and 5.8 the fibre angle with the

circumferential direction β = 30o is smaller than the fibre angle β = 60o in Figures 5.3 and

5.4, which means the the fibre angle with the axial direction in Figures 5.7 and 5.8 is larger

than the fibre angle in Figures 5.3 and 5.4, which contributes less to the axial direction to

flatten the wrinkle. In additional, the opening of the tear is wider in Figures 5.7 and 5.8

than in Figures 5.3 and 5.4 since the fiber contributes less in axial direction. Comparing

Figure 5.1 with 5.5, Figure 5.2 with 5.6, Figure 5.3 with 5.7, Figure 5.4 with 5.8 we find that

larger axial stretch makes the tear narrower. We will discuss how will these parameters

effect the opening in next part.
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Figure 5.1: Plot of crack profile with rin = 4mm, rc = 5mm, rout = 6mm, Ri = 3.9mm,

Pext = 0kPa, k1 = 2.3632kPa, k2 = 0.8393, c = 3kPa, λ = 1.1, β = 60o, k = 360o

360o−α ,

α = 15o.
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Figure 5.2: Plot of crack profile with rin = 4mm, rc = 5mm, rout = 6mm, Ri = 3.9mm,

Pext = 0kPa, k1 = 2.3632kPa, k2 = 0.8393, c = 3kPa, λ = 1.3, β = 60o, k = 360o

360o−α ,

α = 15o.
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Figure 5.3: Plot of crack profile with rin = 4mm, rc = 5mm, rout = 6mm, Ri = 3.9mm,

Pext = 0kPa, k1 = 2.3632kPa, k2 = 0.8393, c = 3kPa, λ = 1.1, β = 60o, k = 360o

360o−α ,

α = 45o.

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0

z

r

Crack profile when k = 360o

360o−45o , β = 60o, λ = 1.3

Figure 5.4: Plot of crack profile with rin = 4mm, rc = 5mm, rout = 6mm, Ri = 3.9mm,

Pext = 0kPa, k1 = 2.3632kPa, k2 = 0.8393, c = 3kPa, λ = 1.3, β = 60o, k = 360o

360o−α ,

α = 45o.
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Figure 5.5: Plot of crack profile with rin = 4mm, rc = 5mm, rout = 6mm, Ri = 3.9mm,

Pext = 0kPa, k1 = 2.3632kPa, k2 = 0.8393, c = 3kPa, λ = 1.1, β = 30o, k = 360o

360o−α ,

α = 15o.
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Figure 5.6: Plot of crack profile with rin = 4mm, rc = 5mm, rout = 6mm, Ri = 3.9mm,

Pext = 0kPa, k1 = 2.3632kPa, k2 = 0.8393, c = 3kPa, λ = 1.3, β = 30o, k = 360o

360o−α ,

α = 15o.
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Figure 5.7: Plot of crack profile with rin = 4mm, rc = 5mm, rout = 6mm, Ri = 3.9mm,

Pext = 0kPa, k1 = 2.3632kPa, k2 = 0.8393, c = 3kPa, λ = 1.1, β = 30o, k = 360o

360o−α ,

α = 45o.
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Figure 5.8: Plot of crack profile with rin = 4mm, rc = 5mm, rout = 6mm, Ri = 3.9mm,

Pext = 0kPa, k1 = 2.3632kPa, k2 = 0.8393, c = 3kPa, λ = 1.3, β = 30o, k = 360o

360o−α ,

α = 45o.
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Comparison of λ

Figures 5.9—5.12 show us how the opening changes, when the axial stretch λ changes and

other parameters are unchanged.

The results are as we expected: when the axial stretch λ increases, the tear becomes

narrower, which means that a larger axial stretch makes the tear opening thinner.
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Figure 5.9: Comparison of the crack profiles for different values of λ with rin = 4mm,

rc = 5mm, rout = 6mm, Ri = 3.9mm, Pext = 0kPa, k1 = 2.3632kPa, k2 = 0.8393,

c = 3kPa, β = 60o, k = 360o

360o−α , α = 15o.
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Figure 5.10: Comparison of the crack profiles for different values of λ with rin = 4mm,

rc = 5mm, rout = 6mm, Ri = 3.9mm, Pext = 0kPa, k1 = 2.3632kPa, k2 = 0.8393,

c = 3kPa, β = 60o, k = 360o

360o−α , α = 45o.
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Figure 5.11: Comparison of the crack profiles for different values of λ with rin = 4mm,

rc = 5mm, rout = 6mm, Ri = 3.9mm, Pext = 0kPa, k1 = 2.3632kPa, k2 = 0.8393,

c = 3kPa, β = 60o, k = 360o

360o−α , α = 30o.
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Figure 5.12: Comparison of the crack profiles for different values of λ with rin = 4mm,

rc = 5mm, rout = 6mm, Ri = 3.9mm, Pext = 0kPa, k1 = 2.3632kPa, k2 = 0.8393,

c = 3kPa, β = 30o, k = 360o

360o−α , α = 30o.

Comparison of k

The parameter k = 2π
2π−α , where α is the open angle, is related to the residual stress. The

Figures 5.13—5.16 show the effect of k on the opening of the tear.

The results are as we expected: when α increases (the residual stress parameter k in-

creases), the opening of the tear becomes wider, which means that a larger residual stress

in the circumferential direction makes the tear wider.
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Figure 5.13: Comparison of the crack profiles for different k with rin = 4mm, rc = 5mm,

rout = 6mm, Ri = 3.9mm, Pext = 0kPa, k1 = 2.3632kPa, k2 = 0.8393, c = 3kPa, λ = 1.1,

β = 60o.
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Figure 5.14: Comparison of the crack profiles for different k with rin = 4mm, rc = 5mm,

rout = 6mm, Ri = 3.9mm, Pext = 0kPa, k1 = 2.3632kPa, k2 = 0.8393, c = 3kPa, λ = 1.3,

β = 60o.
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Figure 5.15: Comparison of the crack profiles for different k with rin = 4mm, rc = 5mm,

rout = 6mm, Ri = 3.9mm, Pext = 0kPa, k1 = 2.3632kPa, k2 = 0.8393, c = 3kPa, λ = 1.1,

β = 30o.
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Figure 5.16: Comparison of the crack profiles for different k with rin = 4mm, rc = 5mm,

rout = 6mm, Ri = 3.9mm, Pext = 0kPa, k1 = 2.3632kPa, k2 = 0.8393, c = 3kPa, λ = 1.3,

β = 30o.
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Comparison of β

The parameter β is the fibre angle with respect to the circumferential direction. The

Figures 5.18—5.20 show how the opening of the tear change when β varies.

As we expected, when the fibre angle with circumferential direction is larger (that is the

angle with axial direction is small), then the fibre contributes more to the axial direction,

which will make the opening of the tear narrower.
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Compare crack profiles for different β when λ = 1.1, k = 360o

360o−15o

β = 60o

β = 45o

β = 30o

Figure 5.17: Comparison of the crack profiles for different β with rin = 4mm, rc = 5mm,

rout = 6mm, Ri = 3.9mm, Pext = 0kPa, k1 = 2.3632kPa, k2 = 0.8393, c = 3kPa, λ = 1.1,

k = 360o

360o−α , α = 15o.
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Figure 5.18: Comparison of the crack profiles for different β rin = 4mm, rc = 5mm,

rout = 6mm, Ri = 3.9mm, Pext = 0kPa, k1 = 2.3632kPa, k2 = 0.8393, c = 3kPa, λ = 1.1,

k = 360o

360o−α , α = 45o.
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Figure 5.19: Comparison of the crack profiles for different β with rin = 4mm, rc = 5mm,

rout = 6mm, Ri = 3.9mm, Pext = 0kPa, k1 = 2.3632kPa, k2 = 0.8393, c = 3kPa, λ = 1.3,

k = 360o

360o−α , α = 15o.
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Compare crack profiles for different β when λ = 1.3, k = 360o

360o−45o

β = 60o

β = 45o

β = 30o

Figure 5.20: Comparison of the crack profiles for different β with rin = 4mm, rc = 5mm,

rout = 6mm, Ri = 3.9mm, Pext = 0kPa, k1 = 2.3632kPa, k2 = 0.8393, c = 3kPa, λ = 1.3,

k = 360o

360o−α , α = 45o.

Summary

From comparing these figures we know that larger axial stretch or larger fibre angle with

circumferential direction makes the opening of the tear narrower, and larger residual stress

in circumferential direction makes tear wider.
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5.2 Incremental Inner Pressure

The blood pressure inside the aorta might change due to hypertension or other reasons.

We consider the pressure change as the incremental inner pressure. The incremental inner

pressure is presented as Ṗ . Then the traction (Tr(z), Tz(z)) and displacement (u,w) are

Tr(z) =

∫
Ṡu0rr (z − s, r)U (s) ds+

∫
Ṡw0rr (z − s, r)W (s) ds+ ṠP0rrṖ (5.86)

Tz(z) =

∫
Ṡu0rz (z − s, r)U (s) ds+

∫
Ṡw0rz (z − s, r)W (s) ds, (5.87)

u =

∫
uu(z − s, r)U(s)ds+

∫
uw(z − s, r)W (s)ds+ uP Ṗ (5.88)

w =

∫
wu(z − s, r)U(s)ds+

∫
ww(z − s, r)W (s)ds. (5.89)

The displacement (u,w) is calculated as the previous section, and the values of Ṡu0rr,

Ṡu0rz, Ṡ
w
0rr, Ṡ

w
0rz, and uu, wu, uw, ww are the same. The only difference is that we need

to obtain ṠP0rr and uP , which are calculated as follows. Once they have been found, and

(Tr(z), Tz(z)) and Ṗ are given, we can get the displacement (u,w).

The equilibrium equations for Cauchy stress and incremental nominal stress are same as

equations (5.1) and (5.2), where tr (δA0) = 0 is due to incompressibility. The displacement

of the incremental inner pressure is just in radial direction, which means w = 0. Using

incompressibility ∇ · u = 1
r
∂(ru)
∂r + ∂w

∂r = 0 we have 1
r
∂(ru)
∂r = 0, hence du

dr = −u
r . The

equilibrium equations in (5.1), (5.2) and the incompressibility are written

dq

dr
= A(r) (5.90)

du

dr
= −u

r
(5.91)

dq̇

dr
=

B(r)

µ
u, (5.92)

where A(r) and B(r) are in Appendix C. We define Y1, Y2, Y3 to q, u, q̇ respectively in region

1; Y4, Y5, Y6 to q, u, q̇ respectively in region 2. Ya1, Ya2, Ya3 to q, u, q̇ respectively on inner

boundary layer; Ya4, Ya5, Ya6 to q, u, q̇ respectively on inner boundary layer; Yb1, Yb2, Yb3 to

q, u, q̇ respectively on lower crack face; Yb4, Yb5, Yb6 to q, u, q̇ respectively on upper crack

face.
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In region 1, r1 = rin +R(rc − rin)

dY1

dr1
= A(r1) (5.93)

dY2

dr1
= − u

r1
(5.94)

dY3

dr1
=

B(r1)

µ
u, (5.95)

in region 2, r2 = rout +R(rc − rout)

dY4

dr2
= A(r2) (5.96)

dY5

dr2
= − u

r2
(5.97)

dY6

dr2
=

B(r2)

µ
u. (5.98)

Write the boundary conditions in (5.1) and (5.2) into components we have

σrr − Pext = 0 at r = rout (5.99)

Ṡrr − Pin
du

dr
+ Ṗ = 0 at r = rin (5.100)

Ṡrr − Pext
du

dr
= 0 at r = rout. (5.101)

which are

µ (ar (rout))
2 − µYa1 −

2

3
F1 (rout) I4 (rout)−

2

3
F2 (rout) I6 (rout)− Pext = 0

a(rin)u(rin)− µq̇(rin) + Ṗ = 0

b(rout)u(rout)− µq̇(rout) = 0

where a(r), b(r) are in Appendix C.

The jump conditions are

Yb4 − Yb1 = 0 at r = rc (5.102)

Yb5 − Yb2 = 0 at r = rc (5.103)

Yb6 − Yb3 = 0 at r = rc, (5.104)

We use the Matlab routine ‘bvp4c’ to calculate q, u, q̇ in region 1 and 2 and ṠP0rr =

S1(r)u(r) − q̇(r), in which S1(r) is in Appendix C. Hence when the traction (Tr, Tz) is

given, we will get the displacement (u, v) for upper and lower crack faces, and top and

bottom boundaries.

The traction on the tear is Tr = σ(rin)−σ(rc)−Ṗ and Tz = 0kPa. Figure 5.21—Figure 5.23

are our results, which show that the opening of the tear changes along with the incremental

inner pressure.
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Crack profile when there is no incremental inner pressure

Figure 5.21: Plot of crack profile when there is no incremental inner pressure with rin =

4mm, rc = 5mm, rout = 6mm, Ri = 3.9mm, Pext = 0kPa, k1 = 2.3632kPa, k2 = 0.8393,

c = 3kPa, β = 60o, k = 1, λ = 1.1.
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Figure 5.22: Plot of crack profile with incremental inner pressure Ṗ = 1kPa with rin =

4mm, rc = 5mm, rout = 6mm, Ri = 3.9mm, Pext = 0kPa, k1 = 2.3632kPa, k2 = 0.8393,

c = 3kPa, β = 60o, k = 1, λ = 1.1.

From Figure 5.21—Figure 5.23 we find that tear and the aorta wall are pushed away

from the original location when the incremental inner pressure is Ṗ = 1kPa. The fluid
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Figure 5.23: Different crack profiles for upper and lower crack face when the incremental

inner pressure is Ṗ = 1kPa or there is no incremental inner pressure with rin = 4mm,

rc = 5mm, rout = 6mm, Ri = 3.9mm, Pext = 0kPa, k1 = 2.3632kPa, k2 = 0.8393,

c = 3kPa, β = 60o, k = 1, λ = 1.1.

inside the tear is connecting with the fluid in the aorta, so the incremental inner pressure

makes the tear wider in the case when Ṗ = 1kPa.

5.3 Conclusions

In this chapter, we have modelled the tear on the idealized aorta, which is a thick-walled

non-linear incompressible axisymmetric elastic annulus with residual stress and two family

fibers and whose property is described by the strain energy function Holzapfel et al. [2000],

as the incremental deformation. The parameters in the strain energy function has an effect

the opening of the tear, which are compared and shown in our results. In addition, we

have modelled the pressure change inside the aorta as the incremental inner pressure,

which leads the change of the tear as well.



Chapter 6

Fluid dynamics in the tear

In an aortic dissection, blood penetrates the intima, and enters the media layer. The high

pressure rips the tissue of the media apart. This can propagate along the length of the

aorta for a variable distance forward and backwards, and the tear is filled with fluid.

In general terms, the fluid flow and tear opening are coupled, and an evolution equations

for the tear opening must be found. In addition, a theory of propagation must include

a criterion for tear extension and tear direction. We do not discuss these in this thesis,

however it is an important direction for the development of a realistic tearing model that

couples the elasticity of the artery and fluid flow.

In this chapter we get the equation, which is used to describe how the width of tear changs

along time in the radial direction, from the Navier-Stokes equation.

Figure 6.1: The distance from R to the upper tear face is h2(z, t), and h1(z, t) is the

distance from R to the lower tear face.
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6.1 Lubrication theory in Stokes flow

We assume a very thin tear in the aorta wall, which is in axisymmetric cylindrical polar

coordinate, and blood, which is considered as the very viscous flow, filled in the tear.

Define h(z, t) as the width of the tear, L the length of the tear, R the location where tear

happens, h2(z, t) the distance from R to the upper tear face, and h1(z, t) the distance from

R to the lower tear face. Hence the location of the upper tear face is R+ h2, the location

of the lower tear face is R− h1, and h = h1 + h2. The blood is considered to be a viscous

fluid whose Reynolds number is very small, and the Navier-Stokes equations become

−∇p+ µv∇2u = 0, ∇ · u = 0, (6.1)

in which h is the opening distance between the upper face and the lower face, µv is the

coefficient of viscosity, z is in the axial direction, t is time, p is the pressure on the tear

face, and

∇2u =
(
∇2u− u

r2

)
er +

(
∇2w

)
ez, (6.2)

where er is the unit vector in radius direction, ez is the unit vector in axial direction, and

u is the velocity which is u = uer + wez.

Since h� L

∇2u =
1

r

∂

∂r

(
r
∂u

∂r

)
+
∂2u

∂z2
, (6.3)

1

r

∂

∂r

(
r
∂u

∂r

)
∼ u

h2
, (6.4)

∂2u

∂z2
∼ u

L2
, (6.5)

the dominant term is 1
r
∂
∂r

(
r ∂u∂r

)
. The equations in components are

−∂p
∂r

+ µv
[

1

r

∂

∂r

(
r
∂u

∂r

)
− u

r2

]
= 0 (6.6)

−dp
dz

+ µv
1

r

∂

∂r

(
r
∂w

∂r

)
= 0. (6.7)

In (6.7), p
L ∼

µvw
h2

. Hence in equation (6.6), p
h ∼

µvwL
h3

, 1
r
∂
∂r

(
r ∂u∂r

)
∼ u

h2
and u

r2
∼ u

R2 .

Since the crack width is much less than the radius h� R, the equation (6.6) becomes to

∂p

∂r
= 0, (6.8)

so p is a function of z only.

Solve the equation (6.7) we have

w =
1

4µv
dp

dz
r2 + C log r +D, (6.9)
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and since r−R
R is small

log r = log (r −R+R)− logR+ logR = log

(
r −R
R

+ 1

)
+ logR (6.10)

=
r

R
− 1 + logR+O

((
r −R
R

)2
)
. (6.11)

Hence, approximately,

w =
1

4µv
dp

dz
r2 +Ar +B +O

((
r −R
R

)2
)
. (6.12)

The no slip boundary condition on the tear faces are

w = 0 at r = −h1(z, t) +R w = 0 at r = h2(z, t) +R, (6.13)

we get

A = −1

4

dp

dz

(−h1 + 2R+ h2)

µv
, (6.14)

B =
1

4

dp

dz

(−Rh1 +R2 +Rh2 − h2h1)

µv
. (6.15)

The incompressibility condition gives

∇ · u = 0, (6.16)

1

r

∂ (ru)

∂r
+
∂w

∂z
= 0. (6.17)

Integrating the equation between −h1 +R and R+ h2 and multiplying 2π gives

2π

∫ R+h2

R−h1
r

(
1

r

∂ (ru)

∂r
+
∂w

∂z

)
dr = 0, (6.18)

which is

∂

∂z

[
2π

∫ R+h2

R−h1
rwdr

]
+ 2π [(R+ h2)u|R+h2 − (R− h1)u|R−h1 ]

+2π

[
(R− h1)w|R−h1

∂ (−h1)

∂z
− (R+ h2)w|R+h2

∂h2

∂z

]
= 0.

Since q = 2π
∫ R+h2
R−h1 rwdr and d

dz

∫ f2(z)
f1(z) q(r, z)dr = f ′2(z)q(f2(z), z) − f ′1(z)q(f1(z), z) +∫ f2(z)

f1(z)
∂q(r,z)
∂z dr, we have

∂q
∂z + 2π [(R+ h2)u|R+h2 − (R− h1)u|R−h1 ]

+2π
[
− (R+ h2)w|R+h2

∂h2
∂z + (R− h1)w|R−h1

∂(−h1)
∂z

]
= 0. (6.19)
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The kinematic boundary conditions are

D

Dt
(r − (R− h1)) = 0, (6.20)

D

Dt
(r − (R+ h2)) = 0, (6.21)

which are written out in full

∂h1

∂t
+ u|R−h1 + w|R−h1

∂h1

∂z
= 0, (6.22)

−∂h2

∂t
+ u|R+h2 − w|R+h2

∂h2

∂z
= 0, (6.23)

Put them in (6.19) we have

2π

[
(R+ h2)

∂h2

∂t
+ (R− h1)

∂h1

∂t

]
− ∂q

∂z
= 0, (6.24)

∂

∂t
(π[(R+ h2)2 − (R− h1)2])− ∂q

∂z
= 0, (6.25)

π
∂

∂t
[(h2 − h1 + 2R)(h2 + h1)]− ∂q

∂z
= 0. (6.26)

Since h1 � R and h2 � R, it becomes

π
∂

∂t
[2R(h2 + h1)]− ∂q

∂z
= 0 (6.27)

where

q = 2π

∫ R+h2

R−h1
rwdr

= 2π

∫ R+h2

R−h1
r

(
1

4µv
dp

dz
r2 +Ar +B

)
dr

= − 1

24

dp

dz

π
(
6h1Rh2

2 + 6h2Rh1
2 + h2

4 − h1
4 + 2Rh2

3 + 2Rh1
3 + 2h1h2

3 − 2h2h1
3
)

µv
,

and it becomes

≈ − 1

24

dp

dz

π
(
6h1Rh2

2 + 6h2Rh1
2 + 2Rh2

3 + 2Rh1
3
)

µv

= − 1

12

dp

dz
πR(h1 + h2)3, (6.28)

since h1 � R and h2 � R.

Combine (6.27) and (6.28) we have

∂h

∂t
=

1

24µv
∂

∂z

(
h3 dp

dz

)
, (6.29)

which is used to describe the flow inside the tear.
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Non-dimensional equation

In this part the (6.29) is changed into non-dimension equation. From equation (5.5) the

pressure on the tear face is written as

p =

∫
Ṡurr (z − s, r)h (s) ds (6.30)

The pressure p has the dimension
k1H0

L
. We define h = H0h

?, z = Lz?, p =
k1H0

L
p?, t =

8
µvL3

H3
0k1

t?, where h?, z?, p?, t? are non-dimensional parameters. Hence we have h ∼ H0, z ∼

L, t ∼ 8µvL3

H3
0k1

, Ṡurr ∼
k1

L2
and p ∼ k1H0

L
. So the equation (6.29) changes to

∂h?

∂t?
=

1

3

∂

∂z?

(
h?3∂p

?

∂z?

)
. (6.31)

In following sections we will drop ‘?’ for simplicity and we use this non-dimension lubri-

cation equation for our calculation.

Reynolds number

We can estimate Reynolds number as follows: typical length scale is the width of the

dissection H0, and typical time scale is given by
8µvL3

H3
0k1

. Now we are considering a small

width dissection, so for example we have H0 = 10−3m, and L = 10−2m. The viscosity of

blood µv is about 3×10−3Pa · s, ν is about 3×10−6m2

s , and k1 in Chapter 5 is 2.3632kPa,

hence the time scale is around 10s. If the time interval ∆t is 1s, and ∆H0 is 10−3H0,

which is close to our results in next section, the Reynolds number, which is expressed as

H0
ν

∆H0
∆t , is 1

3 × 10−3 � 1. Therefore the Reynolds number is very small, which satisfies

our assumption.

6.2 Evolution of a fluid filled artery

We will discuss how the distance h between the upper tear face and lower tear face changes

with time. By solving the equation (6.31) we find the opening of the tear changes in the

radius direction with time, and finally stops. We use the explicit method to test the

lubrication equation at first. For very small time interval this explicit method works,

but when the time interval increases this method doesn’t work anymore. Therefore an

implicit method should be employed, which has been proved much better. To illustrate
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the numerical method we use following expression

p =

∫ L

−L

h(s)

(s− z)2
ds, (6.32)

which is similar as the result (3.61) in Chapter 3, to test our methods. Then we will use

the p (6.30) to solve the problem.

6.2.1 Implicit method for time-dependent function

The lubrication equation can be written in the form

∂h

∂t
=

1

3

∂

∂z

(
h3∂p

∂z

)
= h2∂h

∂z

∂p

∂z
+

1

3
h3∂

2p

∂z2
(6.33)

where p =

∫ L

−L

h

(s− z)2
ds. The initial condition is

h = h0 at t = 0. (6.34)

We discretize the integral equation p into N equal pieces

pi = hk

∫
Lk

1

(s− zi)2
ds = Mikhk (6.35)

where k = 1, ..., N and i = 1, ..., N , and

Mik =

∫
Lk

1

(s− zi)2
ds =

∫ ek

ek−1

1

(s− zi)2
ds =

[
− 1

s− zi

]ek
ek−1

= − 1

ek − zi
+

1

ek−1 − zi
.

(6.36)

Hence p can be written into the matrix form p = Mh.

The implicit difference method gives us

hn+1
i − hni

∆t
=

(
hn+1
i

)2 ∂hn+1
i

∂z

∂pn+1
i

∂z
+

1

3

(
hn+1
i

)3 ∂2pn+1
i

∂z2
(6.37)

where

hn+1
i = ∆hi + hni , pn+1

i = ∆pi + pni , ∆pi = Mqi∆hi. (6.38)

Hence the equation (6.33) is written as

∆hi
∆t

= (∆hi + hni )2 ∂ (∆hi + hni )

∂z

∂ (∆pi + pni )

∂z
+

1

3
(∆hi + hni )3 ∂

2 (∆pi + pni )

∂z2

=

(
(hni )2 ∂∆hi

∂z

∂pni
∂z

+ (hni )2 ∂h
n
i

∂z

∂∆pi
∂z

+ 2hni
∂hni
∂z

∂pni
∂z

∆hi + (hni )2 ∂
2pni
∂z2

∆hi

)
+

(
1

3
(hni )3 ∂

2∆pni
∂z2

+ (hni )2 ∂h
n
i

∂z

∂pni
∂z

+
1

3
(hni )3 ∂

2pni
∂z2

)
+O(∆2). (6.39)
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Define

Hij = δijh
n
i , (H2)ij = δij(h

n
i )2, (H3)ij = δij(h

n
i )3, (6.40)

(D2p)ij = δij(D2p)i, (Dp)ij = δij(Dp)i, (Dh)ij = δij(Dh)i, (6.41)

where i = 1, ..., N , j = 1, ..., N , δij = 1 for i = j, δij = 0 for i 6= j and D, and D2 are

N ×N matrixes

D =
∂

∂z
=



−3 4 −1 0 0 0 0

−1 0 1 0 0 0 0

0 −1 0 1 0 0 0

0 0 . . . 0 0

0 0 0 . . . 0

0 0 0 0 −1 0 1

0 0 0 0 1 −4 3


(6.42)

D2 =
∂2

∂z2
=



2 −5 4 −1 0 0 0

1 −2 1 0 0 0 0

0 1 −2 1 0 0 0

0 0 . . . 0 0

0 0 0 . . . 0

0 0 0 0 1 −2 1

0 0 0 −1 4 −5 2


. (6.43)

Write the equation (6.39) in the form of matrix we have

Q∆h = An (6.44)

where

Q = I− ∆t

3
(
H3

3
)D2M−∆t(H2)(D2p)− 2∆t(H)(Dh)(Dp) (6.45)

− ∆t(H2)(Dp)D−∆t(H2)(Dh)DM, (6.46)

A =
∆t

3
(H3)(D2p) + ∆t(H2)(Dh)(Dp), (6.47)

n =
[

1, 1, ..., 1
]T
. (6.48)

Figures 6.2 and 6.3 show that h(z, t) changes with time, but finally stops.
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Figure 6.2: The profiles of h(z, t) with the initial h0 =

√(
1 +

z

L

)(
1− z

L

)
, L = 1,

N = 101, and the final time 10.

Figure 6.3: The profile of h(0, t) changes with time with the initial h0 =√(
1 +

z

L

)(
1− z

L

)
, L = 1, N = 101, and the final time 10.

Figure 6.2 is the profiles of h(z, t), which change along with time and finally stop. Fig-

ure 6.3 is the relation between h(0, t) and time t, which shows that h(0, t) stops changing

before time t reaching 2.



CHAPTER 6. FLUID DYNAMICS IN THE TEAR 158

Blood injection

The blood in the aorta interconnects with the blood in the tear. Now we assume the

steady slow flow is injected from the middle of the crack, we use the condition below to

replace the middle term of the matrix (6.44).

∆p|N+1
2

= pinjection − pn|N+1
2

(6.49)

Figures 6.4 and 6.5 show that h(z, t) changes with time, but finally stops.

Figure 6.4: The profiles of h(z, t) with the initial h0 =

√(
1 +

z

L

)(
1− z

L

)
, L = 1,

N = 101, and the final time 10.

Figure 6.4 is the profiles of h(z, t), which change along with time and finally stop. Fig-

ure 6.5 is the relation between h(0, t) and time t, which shows that h(0, t) stops changing

before time t reaching 6.



CHAPTER 6. FLUID DYNAMICS IN THE TEAR 159

Figure 6.5: The profile of h(0, t) changes with time with the initial h0 =√(
1 +

z

L

)(
1− z

L

)
, L = 1, N = 101, and the final time 10.

Tear on aorta based on Holzapfel Strain energy function

Now we use equation (6.30) to replace p, where Ṡurr (z − s, r) has been calculated in Chapter

5.

Without injection

If the injection is not considered and the initial tear is h0 =

√(
1 +

z

L

)(
1− z

L

)
. We have

the results shown in Figure 6.6 and 6.7.

Figure 6.6 shows profiles of h(z, t), which change along with time and finally stop. Fig-

ure 6.7 shows the relation between h(0, t) and time t, which shows that h(0, t) stops

changing before time t reaching 10.

With injection

If the injection is same as (6.49), and the initial tear is h0 =

√(
1 +

z

L

)(
1− z

L

)
. We

have the results shown in Figure 6.8 and 6.9.

Figure 6.8 is the profiles of h(z, t), which change along with time and finally stop. Fig-

ure 6.9 is the relation between h(0, t) and time t, which shows that h(0, t) stops changing

before time t reaching 30.

Comparing Figure 6.6 and 6.8 we find h(0, t) stops at the place lower than 1 in Figure 6.6,

however the parabola h(t, z) becomes lower and wider. And h(0, t) stops at the place
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Figure 6.6: The profiles of h(z, t) with the initial h0 =

√(
1 +

z

L

)(
1− z

L

)
, L = 2,

N = 101, and the final time 100.

Figure 6.7: The profile of h(0, t) changes with time with the initial h0 =√(
1 +

z

L

)(
1− z

L

)
, L = 2, N = 101, and the final time 100.

higher than 1 since the tear is inflated by the injection in Figure 6.8.
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Figure 6.8: The profiles of h(z, t) with the initial h0 =

√(
1 +

z

L

)(
1− z

L

)
, L = 2,

N = 101, and the final time 100.

Figure 6.9: The profile of h(0, t) changes with time with the initial h0 =√(
1 +

z

L

)(
1− z

L

)
, L = 2, N = 101, and the final time 100.

6.3 Conclusions

In this chapter we have obtained equations to model the thin steady flow inside the dis-

section. And we have modelled how the distance between the upper tear face and lower

tear face along the tear changes with time. The work to couple fluid and elastic models,

that the details in a real artery will depend on the viscosity, and flow regime in which the
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fluid operates (low Reynolds number, high Reynolds number etc.) need to be considered

in the future. The propagation of the tear in the axial direction should be learned, and it

will be necessary to look at finite element methods.



Chapter 7

Conclusions

In this thesis we have analyzed and solved the 2D linear elastic plane crack problem for

infinite plane and 2D compressible and incompressible strip in Chapter 3. The approach

leads us to consider a numerical scheme to solve for the crack opening and displacements

given the traction on the crack faces. The axisymmetric linear elastic crack problem in

Chapter 4 for an elastic annulus has been studied. These crack problems are modelled

mathematically with equilibrium equations, boundary conditions and jump conditions.

Chapter 5 illustrates the mathematical model of the axisymmetric tear on the idealized

aorta, which is a thick-walled non-linear incompressible axisymmetric elastic tube with

residual stress and two family fibers and whose properties are described by the strain

energy function Holzapfel et al. [2000]. The tear problem is considered as the incremental

deformation, and decomposed into normal and tangential direction. We use the integral

of Green’s function weighted by the displacement continuity to express the traction and

displacement along the crack. The equilibrium equations of Cauchy stress and incremental

nominal stress with boundary conditions, and jump conditions are solved to obtain the

Green’s function kernel, and the numerical methods are expressed in this paper. Given

the traction along the crack the displacement along the crack is solved. We use the values

of the parameters in Holzapfel et al. [2000] to test our model. The parameters in the

strain energy function have effects on the opening of the tear, which are compared in our

results. In addition, we consider the pressure change inside the aorta as the incremental

inner pressure, and model the change caused by the incremental inner pressure.

The crack propagation is important and should be studied in the future. Referring to

Benson et al. [1957] if there is a tear in the overlying media and intima, a column of

blood under aortic pressure may then enter the false lumen and cause a more rapid and

163
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complete dissection due to Bernoulli’s law. The high pressure rips the tissue of the media

apart. This can propagate along the length of the aorta for a variable distance forward

and backwards. Hence the tear is filled with fluid. In general terms the fluid flow and

tear opening are coupled, and an evolution equation for the tear opening must be found.

In addition, a theory of propagation must include a criterion for tear extension and tear

direction. We didn’t discuss it in this thesis, however it is an important direction for the

development of a realistic tearing model that couples the elasticity of the aorta and the

fluid flow.



Appendix A

Coefficients for ODEs in the

incremental crack problem of

Chapter 5

Below equations are coefficients of ODEs for Jump in ’w’ in Chapter 5.

A1 =
µ (az (r))2 g

r
+ 2/3

F1 (r) g (sin (β))2 (az (r))2

r

− 4
P1 (r) (cos (β))2 (aθ (r))2 g (sin (β))2 (az (r))2

r
+ 4/3

P1 (r) (cos (β))4 (aθ (r))4 g

r

+
gµ (aθ (r))2

r
− gµ (ar (r))2

r
− µ (ar (r))2

gr3
+ 10/3

F1 (r) (cos (β))2 (aθ (r))2 g

r

+ 2/3
F2 (r) g (sin (β))2 (az (r))2

r
+ 10/3

F2 (r) (cos (β))2 (aθ (r))2 g

r

− 4
P2 (r) (cos (β))2 (aθ (r))2 g (sin (β))2 (az (r))2

r
+ 4/3

P2 (r) (cos (β))4 (aθ (r))4 g

r

+ 8/3
P1 (r) g (sin (β))4 (az (r))4

r
+ 8/3

P2 (r) g (sin (β))4 (az (r))4

r
− 2 gµ ar (r)

d

dr
ar (r)

− 2/3

(
d

dr
F1 (r)

)
g (cos (β))2 (aθ (r))2 − 2/3

(
d

dr
F1 (r)

)
g (sin (β))2 (az (r))2

− 2/3

(
d

dr
F2 (r)

)
g (cos (β))2 (aθ (r))2 − 2/3

(
d

dr
F2 (r)

)
g (sin (β))2 (az (r))2

+ 2/3 gF1 (r)
d

dr
I4 (r) + 2/3 g

(
d

dr
F1 (r)

)
I4 (r) + 2/3 gF2 (r)

d

dr
I6 (r)

+ 2/3 g

(
d

dr
F2 (r)

)
I6 (r) + 2

µ ar (r) d
dr ar (r)

gr2

− 4/3F1 (r) g (cos (β))2 aθ (r)
d

dr
aθ (r)− 4/3F1 (r) g (sin (β))2 az (r)

d

dr
az (r)

− 4/3F2 (r) g (cos (β))2 aθ (r)
d

dr
aθ (r)− 4/3F2 (r) g (sin (β))2 az (r)

d

dr
az (r)
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B1 = µ (az (r))2 g + 8/3P1 (r) g (sin (β))4 (az (r))4

− 4/3P1 (r) g (sin (β))2 (az (r))2 (cos (β))2 (aθ (r))2

+ 8/3P2 (r) g (sin (β))4 (az (r))4 − 4/3P2 (r) (cos (β))2 (aθ (r))2 g (sin (β))2 (az (r))2

+
µ (ar (r))2

gr2
− 2

µ ar (r) d
dr ar (r)

gr
+ 2/3F1 (r) g (sin (β))2 (az (r))2

+ 2/3F2 (r) g (sin (β))2 (az (r))2

C1 = −2
µ ar (r) d

dr ar (r)

g
− 2

µ (ar (r))2

gr

D1 = −µ (ar (r))2

g

E1 = µg
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A2 = 8/3
F2 (r) (cos (β))2 aθ (r) d

dr aθ (r)

r
+ µ (az (r))2 g2

+ 4/3

(
d
drF2 (r)

)
(cos (β))2 (aθ (r))2

r
− 4/3

(
d
drF2 (r)

)
(sin (β))2 (az (r))2

r

+ 2/3
F2 (r) (cos (β))2 (aθ (r))2

r2
+ 4/3

F2 (r) (sin (β))2 (az (r))2

r2

+ 4/3

(
d
drF1 (r)

)
(cos (β))2 (aθ (r))2

r
− 4/3

(
d
drF1 (r)

)
(sin (β))2 (az (r))2

r

+ 4/3

(
d
drP1 (r)

)
(cos (β))4 (aθ (r))4

r
− 4/3

(
d
drP1 (r)

)
(sin (β))4 (az (r))4

r

+ 4/3

(
d
drP2 (r)

)
(cos (β))4 (aθ (r))4

r
− 4/3

(
d
drP2 (r)

)
(sin (β))4 (az (r))4

r

+ 4/3
P2 (r) (sin (β))4 (az (r))4

r2
+ 8/3

P2 (r) (cos (β))4 (aθ (r))4

r2

+ 2/3
F1 (r) (cos (β))2 (aθ (r))2

r2
+ 4/3

F1 (r) (sin (β))2 (az (r))2

r2

+ 4/3
P1 (r) (sin (β))4 (az (r))4

r2
+ 2F1 (r) (sin (β))2 (az (r))2 g2

+ 2F2 (r) (sin (β))2 (az (r))2 g2 + 8/3
F1 (r) (cos (β))2 aθ (r) d

dr aθ (r)

r

− 8/3
F1 (r) (sin (β))2 az (r) d

dr az (r)

r
+ 16/3

P1 (r) (cos (β))4 (aθ (r))3 d
dr aθ (r)

r

− 16/3
P1 (r) (sin (β))4 (az (r))3 d

dr az (r)

r
− 8/3

F2 (r) (sin (β))2 az (r) d
dr az (r)

r

− 4
P2 (r) (sin (β))2 (az (r))2 (cos (β))2 (aθ (r))2

r2

− 4
P1 (r) (sin (β))2 (az (r))2 (cos (β))2 (aθ (r))2

r2

− 16/3
P2 (r) (sin (β))4 (az (r))3 d

dr az (r)

r

+ 16/3
P2 (r) (cos (β))4 (aθ (r))3 d

dr aθ (r)

r
+
µ (aθ (r))2

r2

+ 8/3
P1 (r) (cos (β))4 (aθ (r))4

r2
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B2 = −4/3

(
d

dr
P2 (r)

)
(sin (β))4 (az (r))4 − 2

(
d

dr
F2 (r)

)
(sin (β))2 (az (r))2

− 16/3P1 (r) (sin (β))4 (az (r))3 d

dr
az (r)− 4F2 (r) (sin (β))2 az (r)

d

dr
az (r)

− 2

(
d

dr
F1 (r)

)
(sin (β))2 (az (r))2 − 16/3P2 (r) (sin (β))4 (az (r))3 d

dr
az (r)

− 4F1 (r) (sin (β))2 az (r)
d

dr
az (r)− 4/3

(
d

dr
P1 (r)

)
(sin (β))4 (az (r))4

− 2/3

(
d

dr
F1 (r)

)
(cos (β))2 (aθ (r))2 + 2/3

(
d

dr
F1 (r)

)
I4 (r) + 2/3F2 (r)

d

dr
I6 (r)

+ 2/3F1 (r)
d

dr
I4 (r) + 2/3

(
d

dr
F2 (r)

)
I6 (r)− 2

µ (ar (r))2

r

− 4/3F1 (r) (cos (β))2 aθ (r)
d

dr
aθ (r)− 4/3F2 (r) (cos (β))2 aθ (r)

d

dr
aθ (r)

+ 10/3
F1 (r) (cos (β))2 (aθ (r))2

r
+ 10/3

F2 (r) (cos (β))2 (aθ (r))2

r

− 4/3
F1 (r) (sin (β))2 (az (r))2

r
− 2/3

(
d

dr
F2 (r)

)
(cos (β))2 (aθ (r))2

+
µ (aθ (r))2

r
− 4µ ar (r)

d

dr
ar (r)− 4

P1 (r) (sin (β))2 (az (r))2 (cos (β))2 (aθ (r))2

r

− 8/3P2 (r) (sin (β))2 (az (r))2 (cos (β))2 aθ (r)
d

dr
aθ (r)

− 8/3P1 (r) (sin (β))2 az (r)

(
d

dr
az (r)

)
(cos (β))2 (aθ (r))2

− 4/3

(
d

dr
P1 (r)

)
(sin (β))2 (az (r))2 (cos (β))2 (aθ (r))2

− 8/3P1 (r) (sin (β))2 (az (r))2 (cos (β))2 aθ (r)
d

dr
aθ (r)

− 4/3

(
d

dr
P2 (r)

)
(sin (β))2 (az (r))2 (cos (β))2 (aθ (r))2

− 8/3P2 (r) (sin (β))2 az (r)

(
d

dr
az (r)

)
(cos (β))2 (aθ (r))2

− 4
P2 (r) (sin (β))2 (az (r))2 (cos (β))2 (aθ (r))2

r

− 4/3
F2 (r) (sin (β))2 (az (r))2

r
− 4/3

P2 (r) (sin (β))4 (az (r))4

r

+ 4/3
P2 (r) (cos (β))4 (aθ (r))4

r
− 4/3

P1 (r) (sin (β))4 (az (r))4

r

+ 4/3
P1 (r) (cos (β))4 (aθ (r))4

r
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C2 = −4/3P2 (r) (sin (β))2 (az (r))2 (cos (β))2 (aθ (r))2 − 4/3F1 (r) (sin (β))2 (az (r))2

− 4/3F2 (r) (sin (β))2 (az (r))2 − 4/3P1 (r) (sin (β))2 (az (r))2 (cos (β))2 (aθ (r))2

− µ (ar (r))2 − 4/3P2 (r) (sin (β))4 (az (r))4 − 4/3P1 (r) (sin (β))4 (az (r))4

D2 = µ

a1 = 4/3
P1 (rin) (cos (β))4 (aθ (rin))4

rin
− 4/3

F1 (rin) (sin (β))2 (az (rin))2

rin

− 4/3
P1 (rin) (sin (β))4 (az (rin))4

rin
− 4/3

F2 (rin) (sin (β))2 (az (rin))2

rin

+ 4/3
F2 (rin) (cos (β))2 (aθ (rin))2

rin
+ 4/3

F1 (rin) (cos (β))2 (aθ (rin))2

rin

− 4/3
P2 (rin) (sin (β))4 (az (rin))4

rin
+ 4/3

P2 (rin) (cos (β))4 (aθ (rin))4

rin

a2 = −4/3P2 (rin) (sin (β))4 (az (rin))4 − 2/3F1 (rin) I4 (rin)− 2/3F2 (rin) I6 (rin)

− 2/3F2 (rin) (cos (β))2 (aθ (rin))2 − 2F1 (rin) (sin (β))2 (az (rin))2 − 2µ q (rin)

− 4/3P1 (rin) (sin (β))2 (az (rin))2 (cos (β))2 (aθ (rin))2 − 2F2 (rin) (sin (β))2 (az (rin))2

− 2/3F1 (rin) (cos (β))2 (aθ (rin))2 − 4/3P2 (rin) (sin (β))2 (az (rin))2 (cos (β))2 (aθ (rin))2

− 4/3P1 (rin) (sin (β))4 (az (rin))4

a4 = µ

b1 = −2 gµ q (rin) +
µ (ar (rin))2

grin2
− 2/3F1 (rin) g (cos (β))2 (aθ (rin))2

− 2/3F1 (rin) g (sin (β))2 (az (rin))2 − 2/3F2 (rin) g (cos (β))2 (aθ (rin))2

− 2/3F2 (rin) g (sin (β))2 (az (rin))2 + gµ (ar (rin))2

− 2/3 gF1 (rin) I4 (rin)− 2/3 gF2 (rin) I6 (rin)
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b2 = −µ (ar (rin))2

grin

b3 = −µ (ar (rin))2

g

c5 = 4/3
F2 (rout) (cos (β))2 (aθ (rout))

2

rout
− 4/3

F2 (rout) (sin (β))2 (az (rout))
2

rout

− 4/3
P1 (rout) (sin (β))4 (az (rout))

4

rout
− 4/3

P2 (rout) (sin (β))4 (az (rout))
4

rout

+ 4/3
F1 (rout) (cos (β))2 (aθ (rout))

2

rout
+ 4/3

P1 (rout) (cos (β))4 (aθ (rout))
4

rout

+ 4/3
P2 (rout) (cos (β))4 (aθ (rout))

4

rout
− 4/3

F1 (rout) (sin (β))2 (az (rout))
2

rout

c6 = −µ (ar (rout))
2 − 4/3P2 (rout) (sin (β))2 (az (rout))

2 (cos (β))2 (aθ (rout))
2

− µ q (rout)− 2/3F1 (rout) (cos (β))2 (aθ (rout))
2 + Pext − 4/3P1 (rout) (sin (β))4 (az (rout))

4

− 2/3F2 (rout) (cos (β))2 (aθ (rout))
2 − 4/3P1 (rout) (sin (β))2 (az (rout))

2 (cos (β))2 (aθ (rout))
2

− 4/3P2 (rout) (sin (β))4 (az (rout))
4 − 2F1 (rout) (sin (β))2 (az (rout))

2

− 2F2 (rout) (sin (β))2 (az (rout))
2

c8 = µ

d5 = −µ q (rout) g +
µ (ar (rout))

2

grout2
− 2/3F1 (rout) g (cos (β))2 (aθ (rout))

2

− 2/3F1 (rout) g (sin (β))2 (az (rout))
2 − 2/3F2 (rout) g (cos (β))2 (aθ (rout))

2

− 2/3F2 (rout) g (sin (β))2 (az (rout))
2 + Pext g

d6 = −µ (ar (rout))
2

grout
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d7 = −µ (ar (rout))
2

g

swr1(r) = 4/3
P2 (r) (cos (β))4 (aθ (r))4

r
+ 4/3

P1 (r) (cos (β))4 (aθ (r))4

r

− 4/3
P2 (r) (sin (β))4 (az (r))4

r
− 4/3

P1 (r) (sin (β))4 (az (r))4

r

− 4/3
F1 (r) (sin (β))2 (az (r))2

r
+ 4/3

F2 (r) (cos (β))2 (aθ (r))2

r

+ 4/3
F1 (r) (cos (β))2 (aθ (r))2

r
− 4/3

F2 (r) (sin (β))2 (az (r))2

r

swr2(r) = −4/3P1 (r) (sin (β))4 (az (r))4

− 4/3P2 (r) (sin (β))2 (az (r))2 (cos (β))2 (aθ (r))2

− 4/3P2 (r) (sin (β))4 (az (r))4 − 2F1 (r) (sin (β))2 (az (r))2

− µ (ar (r))2 − 4/3P1 (r) (sin (β))2 (az (r))2 (cos (β))2 (aθ (r))2

− µ q(r)− 2F2 (r) (sin (β))2 (az (r))2 − 2/3F2 (r) (cos (β))2 (aθ (r))2

− 2/3F1 (r) (cos (β))2 (aθ (r))2

suz1(r) = −µ q(r)g +
µ (ar (r))2

gr2
− 2/3F1 (r) g (cos (β))2 (aθ (r))2

− 2/3F1 (r) g (sin (β))2 (az (r))2 − 2/3F2 (r) g (cos (β))2 (aθ (r))2

− 2/3F2 (r) g (sin (β))2 (az (r))2

suz2(r) = −µ (ar (r))2

gr

suz3(r) = −µ (ar (r))2

g
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e1 = 4/3
P2 (rc) (cos (β))4 (aθ (rc))

4

rc
+ 4/3

F1 (rc) (cos (β))2 (at (rc))
2

rc

+ 4/3
P1 (rc) (cos (β))4 (aθ (rc))

4

rc
− 4/3

F1 (rc) (sin (β))2 (az (rc))
2

rc

+ 4/3
F2 (rc) (cos (β))2 (aθ (rc))

2

rc
− 4/3

P2 (rc) (sin (β))4 (az (rc))
4

rc

− 4/3
F2 (rc) (sin (β))2 (az (rc))

2

rc
− 4/3

P1 (rc) (sin (β))4 (az (rc))
4

rc

e2 = −µYb9 − 2/3F2 (rc) (cos (β))2 (aθ (rc))
2 − 2/3F1 (rc) (cos (β))2 (aθ (rc))

2

− 2F2 (rc) (sin (β))2 (az (rc))
2 − 4/3P2 (rc) (sin (β))4 (az (rc))

4 − 2F1 (rc) (sin (β))2 (az (rc))
2

− µ (ar (rc))
2 − 4/3P1 (rc) (sin (β))4 (az (rc))

4

− 4/3P2 (rc) (sin (β))2 (az (rc))
2 (cos (β))2 (aθ (rc))

2

− 4/3P1 (rc) (sin (β))2 (az (rc))
2 (cos (β))2 (aθ (rc))

2

e4 = µ

e5 = 4/3
P2 (rc) (cos (β))4 (aθ (rc))

4

rc
+ 4/3

F1 (rc) (cos (β))2 (at (rc))
2

rc

+ 4/3
P1 (rc) (cos (β))4 (aθ (rc))

4

rc
− 4/3

F1 (rc) (sin (β))2 (az (rc))
2

rc

+ 4/3
F2 (rc) (cos (β))2 (aθ (rc))

2

rc
− 4/3

P2 (rc) (sin (β))4 (az (rc))
4

rc

− 4/3
F2 (rc) (sin (β))2 (az (rc))

2

rc
− 4/3

P1 (rc) (sin (β))4 (az (rc))
4

rc

e6 = −µYb10 − 2/3F2 (rc) (cos (β))2 (aθ (rc))
2 − 2/3F1 (rc) (cos (β))2 (aθ (rc))

2

− 2F2 (rc) (sin (β))2 (az (rc))
2 − 4/3P2 (rc) (sin (β))4 (az (rc))

4 − 2F1 (rc) (sin (β))2 (az (rc))
2

− µ (ar (rc))
2 − 4/3P1 (rc) (sin (β))4 (az (rc))

4

− 4/3P2 (rc) (sin (β))2 (az (rc))
2 (cos (β))2 (aθ (rc))

2

− 4/3P1 (rc) (sin (β))2 (az (rc))
2 (cos (β))2 (aθ (rc))

2
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e8 = µ

f1 = −µYb9 g +
µ (ar (rc))

2

grc2
− 2/3F1 (rc) g (cos (β))2 (aθ (rc))

2 − 2/3F1 (rc) g (sin (β))2 (az (rc))
2

− 2/3F2 (rc) g (cos (β))2 (aθ (rc))
2 − 2/3F2 (rc) g (sin (β))2 (az (rc))

2

f2 = −µ (ar (rc))
2

grc

f3 = −µ (ar (rc))
2

g

f5 = −µYb10 g +
µ (ar (rc))

2

grc2
− 2/3F1 (rc) g (cos (β))2 (aθ (rc))

2 − 2/3F1 (rc) g (sin (β))2 (az (rc))
2

− 2/3F2 (rc) g (cos (β))2 (aθ (rc))
2 − 2/3F2 (rc) g (sin (β))2 (az (rc))

2

f6 = −µ (ar (rc))
2

grc

f7 = −µ (ar (rc))
2

g



Appendix B

Coefficients for ODEs in the

incremental crack problem of

Chapter 5

Below equations are coefficients of ODEs for Jump in ’u’ in Chapter 5.

A1 =
µ (az (r))2 g

r
+ 2/3

F1 (r) g (sin (β))2 (az (r))2

r

− 4
P1 (r) (cos (β))2 (aθ (r))2 g (sin (β))2 (az (r))2

r
+ 4/3

P1 (r) (cos (β))4 (aθ (r))4 g

r

+
gµ (aθ (r))2

r
− gµ (ar (r))2

r
− µ (ar (r))2

gr3
+ 10/3

F1 (r) (cos (β))2 (aθ (r))2 g

r

+ 2/3
F2 (r) g (sin (β))2 (az (r))2

r
+ 10/3

F2 (r) (cos (β))2 (aθ (r))2 g

r

− 4
P2 (r) (cos (β))2 (aθ (r))2 g (sin (β))2 (az (r))2

r
+ 4/3

P2 (r) (cos (β))4 (aθ (r))4 g

r

+ 8/3
P1 (r) g (sin (β))4 (az (r))4

r
+ 8/3

P2 (r) g (sin (β))4 (az (r))4

r
− 2 gµ ar (r)

d

dr
ar (r)

− 2/3

(
d

dr
F1 (r)

)
g (cos (β))2 (aθ (r))2 − 2/3

(
d

dr
F1 (r)

)
g (sin (β))2 (az (r))2

− 2/3

(
d

dr
F2 (r)

)
g (cos (β))2 (aθ (r))2 − 2/3

(
d

dr
F2 (r)

)
g (sin (β))2 (az (r))2

+ 2/3 gF1 (r)
d

dr
I4 (r) + 2/3 g

(
d

dr
F1 (r)

)
I4 (r) + 2/3 gF2 (r)

d

dr
I6 (r)

+ 2/3 g

(
d

dr
F2 (r)

)
I6 (r) + 2

µ ar (r) d
dr ar (r)

gr2

− 4/3F1 (r) g (cos (β))2 aθ (r)
d

dr
aθ (r)− 4/3F1 (r) g (sin (β))2 az (r)

d

dr
az (r)

− 4/3F2 (r) g (cos (β))2 aθ (r)
d

dr
aθ (r)− 4/3F2 (r) g (sin (β))2 az (r)

d

dr
az (r)

174
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B1 = µ (az (r))2 g + 8/3P1 (r) g (sin (β))4 (az (r))4

− 4/3P1 (r) g (sin (β))2 (az (r))2 (cos (β))2 (aθ (r))2

+ 8/3P2 (r) g (sin (β))4 (az (r))4 − 4/3P2 (r) (cos (β))2 (aθ (r))2 g (sin (β))2 (az (r))2

+
µ (ar (r))2

gr2
− 2

µ ar (r) d
dr ar (r)

gr
+ 2/3F1 (r) g (sin (β))2 (az (r))2

+ 2/3F2 (r) g (sin (β))2 (az (r))2

C1 = −2
µ ar (r) d

dr ar (r)

g
− 2

µ (ar (r))2

gr

D1 = −µ (ar (r))2

g

E1 = µg
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A2 = −4/3
P1 (r) (sin (β))4 (az (r))4

r2
− 4/3

(
d
dr1 P2 (r)

)
(cos (β))4 (aθ (r))4

r

+ 4/3

(
d
drP2 (r)

)
(sin (β))4 (az (r))4

r
− 8/3

P2 (r) (cos (β))4 (aθ (r))4

r2

− 4/3
P2 (r) (sin (β))4 (az (r))4

r2
− 2F1 (r) (sin (β))2 (az (r))2 g2

− 2F2 (r) (sin (β))2 (az (r))2 g2 − 4/3

(
d
drF1 (r)

)
(cos (β))2 (aθ (r))2

r

+ 4/3

(
d
drF1 (r)

)
(sin (β))2 (az (r))2

r
− 2/3

F1 (r) (cos (β))2 (aθ (r))2

r2

− 4/3
F1 (r) (sin (β))2 (az (r))2

r2
− 4/3

(
d
drF2 (r)

)
(cos (β))2 (aθ (r))2

r

+ 4/3

(
d
drF2 (r)

)
(sin (β))2 (az (r))2

r
− 2/3

F2 (r) (cos (β))2 (aθ (r))2

r2

− 4/3
F2 (r) (sin (β))2 (az (r))2

r2
− 16/3

P2 (r) (cos (β))4 (aθ (r))3 d
dr aθ (r)

r

− µ (az (r))2 g2 − µ (aθ (r))2

r2
− 4/3

(
d
drP1 (r)

)
(cos (β))4 (aθ (r))4

r

+ 4/3

(
d
drP1 (r)

)
(sin (β))4 (az (r))4

r
− 8/3

P1 (r) (cos (β))4 (aθ (r))4

r2

+ 8/3
F1 (r) (sin (β))2 az (r) d

dr az (r)

r
+ 16/3

P2 (r) (sin (β))4 (az (r))3 d
dr az (r)

r

− 8/3
F2 (r) (cos (β))2 aθ (r) d

dr aθ (r)

r
+ 8/3

F2 (r) (sin (β))2 az (r) d
dr az (r)

r

+ 4
P1 (r) (cos (β))2 (aθ (r))2 (sin (β))2 (az (r))2

r2

+ 4
P2 (r) (cos (β))2 (aθ (r))2 (sin (β))2 (az (r))2

r2

− 16/3
P1 (r) (cos (β))4 (aθ (r))3 d

dr aθ (r)

r

+ 16/3
P1 (r) (sin (β))4 (az (r))3 d

dr az (r)

r

− 8/3
F1 (r) (cos (β))2 aθ (r) d

dr aθ (r)

r
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B2 = 16/3P2 (r) (sin (β))4 (az (r))3 d

dr
az (r) + 4/3F2 (r) (cos (β))2 aθ (r)

d

dr
aθ (r)

+ 4F2 (r) (sin (β))2 az (r)
d

dr
az (r) + 2

µ (ar (r))2

r
+ 4/3

F1 (r) (sin (β))2 (az (r))2

r

+ 4/3F1 (r) (cos (β))2 aθ (r)
d

dr
aθ (r)

+ 8/3P2 (r) (sin (β))2 (az (r))2 (cos (β))2 aθ (r)
d

dr
aθ (r)

+ 4/3

(
d

dr
P1 (r)

)
(sin (β))2 (az (r))2 (cos (β))2 (aθ (r))2

+ 4
P1 (r) (sin (β))2 (az (r))2 (cos (β))2 (aθ (r))2

r

+ 4
P2 (r) (sin (β))2 (az (r))2 (cos (β))2 (aθ (r))2

r

+ 8/3P1 (r) (sin (β))2 az (r)

(
d

dr
az (r)

)
(cos (β))2 (aθ (r))2

+ 8/3P1 (r) (sin (β))2 (az (r))2 (cos (β))2 aθ (r)
d

dr
aθ (r)

+ 4/3

(
d

dr
P2 (r)

)
(sin (β))2 (az (r))2 (cos (β))2 (aθ (r))2

+ 8/3P2 (r) (sin (β))2 az (r)

(
d

dr
az (r)

)
(cos (β))2 (aθ (r))2

+ 2/3

(
d

dr
F1 (r)

)
(cos (β))2 (aθ (r))2 + 2

(
d

dr
F2 (r)

)
(sin (β))2 (az (r))2

+ 2/3

(
d

dr
F2 (r)

)
(cos (β))2 (aθ (r))2 + 4/3

(
d

dr
P2 (r)

)
(sin (β))4 (az (r))4

+ 4/3
F2 (r) (sin (β))2 (az (r))2

r
− 4/3

P2 (r) (cos (β))4 (aθ (r))4

r

+ 4/3
P2 (r) (sin (β))4 (az (r))4

r
− 10/3

F1 (r) (cos (β))2 (aθ (r))2

r

− 10/3
F2 (r) (cos (β))2 (aθ (r))2

r
+ 16/3P1 (r) (sin (β))4 (az (r))3 d

dr
az (r)

− 2/3F1 (r)
d

dr
I4 (r)− µ (aθ (r))2

r
− 4/3

P1 (r) (cos (β))4 (aθ (r))4

r

+ 4/3
P1 (r) (sin (β))4 (az (r))4

r
+ 4µ ar (r)

d

dr
ar (r)

+ 4/3

(
d

dr
P1 (r)

)
(sin (β))4 (az (r))4 + 2

(
d

dr
F1 (r)

)
(sin (β))2 (az (r))2

+ 4F1 (r) (sin (β))2 az (r)
d

dr
az (r)− 2/3

(
d

dr
F2 (r)

)
I6 (r)

− 2/3

(
d

dr
F1 (r)

)
I4 (r)− 2/3F2 (r)

d

dr
I6 (r)
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C2 = µ (ar (r))2 + 4/3 P2 (r) (sin (β))2 (az (r))2 (cos (β))2 (aθ (r))2

+ 4/3P1 (r) (sin (β))2 (az (r))2 (cos (β))2 (aθ (r))2 + 4/3P1 (r) (sin (β))4 (az (r))4

+ 4/3F1 (r) (sin (β))2 (az (r))2 + 4/3F2 (r) (sin (β))2 (az (r))2

+ 4/3P2 (r) (sin (β))4 (az (r))4

D2 = −µ

a1 = −4/3
F1 (rin) (cos (β))2 (aθ (rin))2

rin
+ 4/3

P2 (rin) (sin (β))4 (az (rin))4

rin

− 4/3
F2 (rin) (cos (β))2 (aθ (rin))2

rin
+ 4/3

F1 (rin) (sin (β))2 (az (rin))2

rin

− 4/3
P1 (rin) (cos (β))4 (aθ (rin))4

rin
+ 4/3

P1 (rin) (sin (β))4 (az (rin))4

rin

+ 4/3
F2 (rin) (sin (β))2 (az (rin))2

rin
− 4/3

P2 (rin) (cos (β))4 (aθ (rin))4

rin

a2 = 4/3P1 (rin) (sin (β))2 (az (rin))2 (cos (β))2 (aθ (rin))2 + 4/3P2 (rin) (sin (β))4 (az (rin))4

+ 4/3P2 (rin) (sin (β))2 (az (rin))2 (cos (β))2 (aθ (rin))2 + 2F1 (rin) (sin (β))2 (az (rin))2

+ 2µ q (rin) + 2/3F1 (rin) (cos (β))2 (aθ (rin))2 + 2F2 (rin) (sin (β))2 (az (rin))2

+ 4/3P1 (rin) (sin (β))4 (az (rin))4 + 2/3F2 (rin) (cos (β))2 (aθ (rin))2

+ 2/3F1 (rin) I4 (rin) + 2/3F2 (rin) I6 (rin)

a4 = −µ

b1 = −2 gµ q (rin) +
µ (ar (rin))2

grin2
− 2/3F1 (rin) g (cos (β))2 (aθ (rin))2

− 2/3F1 (rin) g (sin (β))2 (az (rin))2 − 2/3F2 (rin) g (cos (β))2 (aθ (rin))2

− 2/3F2 (rin) g (sin (β))2 (az (rin))2 + gµ (ar (rin))2

− 2/3 gF1 (rin) I4 (rin)− 2/3 gF2 (rin) I6 (rin)
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b2 = −µ (ar (rin))2

grin

b3 = −µ (ar (rin))2

g

c5 = −4/3
P2 (rout) (cos (β))4 (aθ (rout))

4

rout
− 4/3

F1 (rout) (cos (β))2 (aθ (rout))
2

rout

+ 4/3
F1 (rout) (sin (β))2 (az (rout))

2

rout
+ 4/3

P2 (rout) (sin (β))4 (az (rout))
4

rout

− 4/3
F2 (rout) (cos (β))2 (aθ (rout))

2

rout
+ 4/3

F2 (rout) (sin (β))2 (az (rout))
2

rout

− 4/3
P1 (rout) (cos (β))4 (aθ (rout))

4

rout
+ 4/3

P1 (rout) (sin (β))4 (az (rout))
4

rout

c6 = 4/3P1 (rout) (sin (β))2 (az (rout))
2 (cos (β))2 (aθ (rout))

2 + 4/3P2 (rout) (sin (β))4 (az (rout))
4

+ 4/3P2 (rout) (sin (β))2 (az (rout))
2 (cos (β))2 (aθ (rout))

2 + 2F1 (rout) (sin (β))2 (az (rout))
2

+ µ q (rout) + 2/3F1 (rout) (cos (β))2 (aθ (rout))
2 + µ (ar (rout))

2

+ 2F2 (rout) (sin (β))2 (az (rout))
2 + 4/3P1 (rout) (sin (β))4 (az (rout))

4

+ 2/3F2 (rout) (cos (β))2 (aθ (rout))
2 − Pext

c8 = −µ

d5 = −µ q (rout) g +
µ (ar (rout))

2

grout2
− 2/3F1 (rout) g (cos (β))2 (aθ (rout))

2

− 2/3F1 (rout) g (sin (β))2 (az (rout))
2 − 2/3F2 (rout) g (cos (β))2 (aθ (rout))

2

− 2/3F2 (rout) g (sin (β))2 (az (rout))
2 + Pext g

d6 = −µ (ar (rout))
2

grout
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d7 = −µ (ar (rout))
2

g

sur1(r) = −4/3
P2 (r) (cos (β))4 (aθ (r))4

r
+ 4/3

P1 (r) (sin (β))4 (az (r))4

r

− 4/3
F1 (r) (cos (β))2 (aθ (r))2

r
+ 4/3

F1 (r) (sin (β))2 (az (r))2

r

+ 4/3
P2 (r) (sin (β))4 (az (r))4

r
− 4/3

F2 (r) (cos (β))2 (aθ (r))2

r

+ 4/3
F2 (r) (sin (β))2 (az (r))2

r
− 4/3

P1 (r) (cos (β))4 (aθ (r))4

r

sur2(r) = 4/3P1 (r) (sin (β))2 (az (r))2 (cos (β))2 (aθ (r))2

+ 4/3P2 (r) (sin (β))4 (az (r))4

+ 4/3P2 (r) (sin (β))2 (az (r))2 (cos (β))2 (aθ (r))2

+ 2F1 (r) (sin (β))2 (az (r))2 + µ q (r) + 2/3F1 (r) (cos (β))2 (aθ (r))2

+ µ (ar (r))2 + 2F2 (r) (sin (β))2 (az (r))2

+ 4/3P1 (r) (sin (β))4 (az (r))4 + 2/3F2 (r) (cos (β))2 (aθ (r))2

suz1(r) = −µ q (r) g +
µ (ar (r))2

gr2
− 2/3F1 (r) g (cos (β))2 (aθ (r))2

− 2/3F1 (r) g (sin (β))2 (az (r))2 − 2/3F2 (r) g (cos (β))2 (aθ (r))2

− 2/3F2 (r) g (sin (β))2 (az (r))2

suz2(r) = −µ (ar (r))2

gr

suz3(r) = −µ (ar (r))2

g
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e1 = −4/3
P2 (rc) (cos (β))4 (aθ (rc))

4

rc
+ 4/3

P1 (rc) (sin (β))4 (az (rc))
4

rc

− 4/3
F1 (rc) (cos (β))2 (aθ (rc))

2

rc
+ 4/3

F1 (rc) (sin (β))2 (az (rc))
2

rc

+ 4/3
P2 (rc) (sin (β))4 (az (rc))

4

rc
− 4/3

F2 (rc) (cos (β))2 (aθ (rc))
2

rc

+ 4/3
F2 (rc) (sin (β))2 (az (rc))

2

rc
− 4/3

P1 (rc) (cos (β))4 (aθ (rc))
4

rc

e2 = 4/3P1 (rc) (sin (β))2 (az (rc))
2 (cos (β))2 (aθ (rc))

2 + 4/3P2 (rc) (sin (β))4 (az (rc))
4

+ 4/3P2 (rc) (sin (β))2 (az (rc))
2 (cos (β))2 (aθ (rc))

2 + 2F1 (rc) (sin (β))2 (az (rc))
2 + µYb9

+ 2/3F1 (rc) (cos (β))2 (aθ (rc))
2 + µ (ar (rc))

2 + 2F2 (rc) (sin (β))2 (az (rc))
2

+ 4/3P1 (rc) (sin (β))4 (az (rc))
4 + 2/3F2 (rc) (cos (β))2 (aθ (rc))

2

e4 = µ

e5 = −4/3
P2 (rc) (cos (β))4 (aθ (rc))

4

rc
+ 4/3

P1 (rc) (sin (β))4 (az (rc))
4

rc

− 4/3
F1 (rc) (cos (β))2 (aθ (rc))

2

rc
+ 4/3

F1 (rc) (sin (β))2 (az (rc))
2

rc

+ 4/3
P2 (rc) (sin (β))4 (az (rc))

4

rc
− 4/3

F2 (rc) (cos (β))2 (aθ (rc))
2

rc

+ 4/3
F2 (rc) (sin (β))2 (az (rc))

2

rc
− 4/3

P1 (rc) (cos (β))4 (aθ (rc))
4

rc

e6 = 4/3P1 (rc) (sin (β))2 (az (rc))
2 (cos (β))2 (aθ (rc))

2 + 4/3P2 (rc) (sin (β))4 (az (rc))
4

+ 4/3P2 (rc) (sin (β))2 (az (rc))
2 (cos (β))2 (aθ (rc))

2 + 2F1 (rc) (sin (β))2 (az (rc))
2 + µYb10

+ 2/3F1 (rc) (cos (β))2 (aθ (rc))
2 + µ (ar (rc))

2 + 2F2 (rc) (sin (β))2 (az (rc))
2

+ 4/3P1 (rc) (sin (β))4 (az (rc))
4 + 2/3F2 (rc) (cos (β))2 (aθ (rc))

2

e8 = µ
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f1 = −µYb9g +
µ (ar (rc))

2

grc2
− 2/3F1 (rc) g (cos (β))2 (aθ (rc))

2

− 2/3F1 (rc) g (sin (β))2 (az (rc))
2 − 2/3F2 (rc) g (cos (β))2 (aθ (rc))

2

− 2/3F2 (rc) g (sin (β))2 (az (rc))
2

f2 = −µ (ar (rc))
2

grc

f3 = −µ (ar (rc))
2

g

f5 = −µYb10g +
µ (ar (rc))

2

grc2
− 2/3F1 (rc) g (cos (β))2 (aθ (rc))

2

− 2/3F1 (rc) g (sin (β))2 (az (rc))
2 − 2/3F2 (rc) g (cos (β))2 (aθ (rc))

2

− 2/3F2 (rc) g (sin (β))2 (az (rc))
2

f6 = −µ (ar (rc))
2

grc

f7 = −µ (ar (rc))
2

g



Appendix C

Coefficients for ODEs in the

incremental inner pressure of

Chapter 5

Below equations are coefficients of ODEs for incremental inner pressure in Chapter 5.

f5(r) = 2 ar (r)
d

dr
ar (r)− 2/3

(
d
drF1 (r)

)
I4 (r)

µ
− 2/3

F1 (r) d
drI4 (r)

µ

− 2/3

(
d
drF2 (r)

)
I6 (r)

µ
− 2/3

F2 (r) d
drI6 (r)

µ
+

(ar (r))2

r

− (aθ (r))2

r
− 2

F1 (r) (cos (β))2 (aθ (r))2

µ r

− 2
F2 (r) (cos (β))2 (aθ (r))2

µ r

183
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f2(r) = −4/3
P1 (r) (cos (β))4 (aθ (r))4

µ r2
− 4/3

P2 (r) (cos (β))4 (aθ (r))4

µ r2

+ 8/3
P1 (r) (cos (β))2 (aθ (r))2 (sin (β))2 (az (r))2

µ r2

+ 8/3
P2 (r) (cos (β))2 (aθ (r))2 (sin (β))2 (az (r))2

µ r2

− 4
F2 (r) (cos (β))2 aθ (r) d

draθ (r)

µ r
− 4/3

F2 (r) (sin (β))2 az (r) d
draz (r)

µ r

− 4/3

(
d
drP1 (r)

)
(cos (β))2 (aθ (r))2 (sin (β))2 (az (r))2

µ r

− 16/3
P1 (r) (cos (β))4 (aθ (r))3 d

draθ (r)

µ r

− 8/3
P1 (r) (cos (β))2 aθ (r)

(
d
draθ (r)

)
(sin (β))2 (az (r))2

µ r

− 8/3
P1 (r) (cos (β))2 (aθ (r))2 (sin (β))2 az (r) d

draz (r)

µ r

− 4/3

(
d
drP2 (r)

)
(cos (β))2 (aθ (r))2 (sin (β))2 (az (r))2

µ r

− 16/3
P2 (r) (cos (β))4 (aθ (r))3 d

draθ (r)

µ r

− 4/3

(
d
drP1 (r)

)
(cos (β))4 (aθ (r))4

µ r
− 4/3

(
d
drP2 (r)

)
(cos (β))4 (aθ (r))4

µ r

− 2

(
d
drF1 (r)

)
(cos (β))2 (aθ (r))2

µ r
− 2/3

(
d
drF1 (r)

)
(sin (β))2 (az (r))2

µ r

− 2

(
d
drF2 (r)

)
(cos (β))2 (aθ (r))2

µ r
− 2/3

(
d
drF2 (r)

)
(sin (β))2 (az (r))2

µ r

+ 8/3
F1 (r) (cos (β))2 (aθ (r))2

µ r2
+ 8/3

F2 (r) (cos (β))2 (aθ (r))2

µ r2
+ 2/3

(
d
drF1 (r)

)
I4 (r)

µ r

+ 2/3
F1 (r) d

drI4 (r)

µ r
+ 2/3

(
d
drF2 (r)

)
I6 (r)

µ r
+ 2/3

F2 (r) d
drI6 (r)

µ r

− 8/3
P2 (r) (cos (β))2 aθ (r)

(
d
draθ (r)

)
(sin (β))2 (az (r))2

µ r

− 8/3
P2 (r) (cos (β))2 (aθ (r))2 (sin (β))2 az (r) d

draz (r)

µ r
− 4

F1 (r) (cos (β))2 aθ (r) d
draθ (r)

µ r

− 4/3
F1 (r) (sin (β))2 az (r) d

draz (r)

µ r
− 4

ar (r) d
drar (r)

r
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p1(rin) = −2
µYa5

rin
− 2/3

F1 (rin) (sin (β))2 (az (rin))2

rin

− 2/3
F2 (rin) (sin (β))2 (az (rin))2

rin
− 2

F2 (rin) (cos (β))2 (aθ (rin))2

rin

− 4/3
P1 (rin) (cos (β))4 (aθ (rin))4

rin
− 2

F1 (rin) (cos (β))2 (aθ (rin))2

rin

− 4/3
P2 (rin) (cos (β))4 (aθ (rin))4

rin

− 4/3
P2 (rin) (cos (β))2 (aθ (rin))2 (sin (β))2 (az (rin))2

rin

− 2/3
F1 (rin) I4 (rin)

rin
− 2/3

F2 (rin) I6 (rin)

rin

− 4/3
P1 (rin) (cos (β))2 (aθ (rin))2 (sin (β))2 (az (rin))2

rin

p2(rin) = −µYa6

rout
− µ (ar (rout))

2

rout
− 4/3

P1 (rout) (cos (β))4 (aθ (rout))
4

rout

− 4/3
P1 (rout) (cos (β))2 (aθ (rout))

2 (sin (β))2 (az (rout))
2

rout

− 4/3
P2 (rout) (cos (β))4 (aθ (rout))

4

rout

− 4/3
P2 (rout) (cos (β))2 (aθ (rout))

2 (sin (β))2 (az (rout))
2

rout

− 2
F1 (rout) (cos (β))2 (aθ (rout))

2

rout
− 2/3

F1 (rout) (sin (β))2 (az (rout))
2

rout

− 2
F2 (rout) (cos (β))2 (aθ (rout))

2

rout
− 2/3

F2 (rout) (sin (β))2 (az (rout))
2

rout
+
Pext
rout

p3(rc) = −µYb5
rc
− µ (ar (rc))

2

rc
− 4/3

P1 (rc) (cos (β))4 (aθ (rc))
4

rc

− 4/3
P1 (rc) (cos (β))2 (aθ (rc))

2 (sin (β))2 (az (rc))
2

rc
− 4/3

P2 (rc) (cos (β))4 (aθ (rc))
4

rc

− 4/3
P2 (rc) (cos (β))2 (aθ (rc))

2 (sin (β))2 (az (rc))
2

rc
− 2

F1 (rc) (cos (β))2 (aθ (rc))
2

rc

− 2/3
F1 (rc) (sin (β))2 (az (rc))

2

rc
− 2

F2 (rc) (cos (β))2 (aθ (rc))
2

rc

− 2/3
F2 (rc) (sin (β))2 (az (rc))

2

rc
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p4(rc) = −µYb6
rc
− µ (ar (rc))

2

rc
− 4/3

P1 (rc) (cos (β))4 (aθ (rc))
4

rc

− 4/3
P1 (rc) (cos (β))2 (aθ (rc))

2 (sin (β))2 (az (rc))
2

rc

− 4/3
P2 (rc) (cos (β))4 (aθ (rc))

4

rc

− 4/3
P2 (rc) (cos (β))2 (aθ (rc))

2 (sin (β))2 (az (rc))
2

rc
− 2

F1 (rc) (cos (β))2 (aθ (rc))
2

rc

− 2/3
F1 (rc) (sin (β))2 (az (rc))

2

rc
− 2

F2 (rc) (cos (β))2 (aθ (rc))
2

rc

− 2/3
F2 (rc) (sin (β))2 (az (rc))

2

rc

S1(r) = −µ q (r)

r
− µ (ar (r))2

r
− 4/3

P1 (r) (cos (β))4 (at (r))4

r

− 4/3
P1 (r) (cos (β))2 (at (r))2 (sin (β))2 (az (r))2

r

− 4/3
P2 (r) (cos (β))4 (at (r))4

r

− 4/3
P2 (r) (cos (β))2 (at (r))2 (sin (β))2 (az (r))2

r

− 2
F1 (r) (cos (β))2 (at (r))2

r
− 2/3

F1 (r) (sin (β))2 (az (r))2

r

− 2
F2 (r) (cos (β))2 (at (r))2

r
− 2/3

F2 (r) (sin (β))2 (az (r))2

r

A(r) = 2 ar (r)
d

dr
ar (r)− 2/3

(
d
drF1 (r)

)
I4 (r)

µ
− 2/3

F1 (r) d
dr I4 (r)

µ

− 2/3

(
d
drF2 (r)

)
I6 (r)

µ
− 2/3

F2 (r) d
dr I6 (r1 )

µ
+

(ar (r))2

r

− (aθ (r))2

r
− 2

F1 (r) (cos (β))2 (aθ (r))2

µ r
− 2

F2 (r) (cos (β))2 (aθ (r))2

µ r
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B(r) = −8/3
P1 (r) (cos (β))2 aθ (r)

(
d
draθ (r)

)
(sin (β))2 (az (r))2

r

+ 8/3
P2 (r) (cos (β))2 (aθ (r))2 (sin (β))2 (az (r))2

r2
− 16/3

P1 (r) (cos (β))4 (aθ (r))3 d
draθ (r)

r

− 4/3

(
d
drP1 (r)

)
(cos (β))2 (aθ (r))2 (sin (β))2 (az (r))2

r

− 16/3
P2 (r) (cos (β))4 (aθ (r))3 d

draθ (r)

r

− 8/3
P2 (r) (cos (β))2 aθ (r)

(
d
draθ (r)

)
(sin (β))2 (az (r))2

r

− 8/3
P2 (r) (cos (β))2 (aθ (r))2 (sin (β))2 az (r) d

draz (r)

r

+ 8/3
P1 (r) (cos (β))2 (aθ (r))2 (sin (β))2 (az (r))2

r2

− 8/3
P1 (r) (cos (β))2 (aθ (r))2 (sin (β))2 az (r) d

draz (r)

r

− 4/3

(
d
drP2 (r)

)
(cos (β))2 (aθ (r))2 (sin (β))2 (az (r))2

r

− 4
F2 (r) (cos (β))2 aθ (r) d

draθ (r)

r
− 4/3

F2 (r) (sin (β))2 az (r) d
draz (r)

r

− 4
F1 (r) (cos (β))2 aθ (r) d

draθ (r)

r
− 4/3

F1 (r) (sin (β))2 az (r) d
draz (r)

r

− 4/3

(
d
drP1 (r)

)
(cos (β))4 (aθ (r))4

r
+ 8/3

F1 (r) (cos (β))2 (aθ (r))2

r2
− 4

µ ar (r) d
drar (r)

r

− 4/3

(
d
drP2 (r)

)
(cos (β))4 (aθ (r))4

r
− 4/3

P2 (r) (cos (β))4 (aθ (r))4

r2

− 2

(
d
drF1 (r)

)
(cos (β))2 (aθ (r))2

r
+ 8/3

F2 (r) (cos (β))2 (aθ (r))2

r2

− 4/3
P1 (r) (cos (β))4 (aθ (r))4

r2
− 2/3

(
d
drF1 (r)

)
(sin (β))2 (az (r))2

r

− 2

(
d
drF2 (r)

)
(cos (β))2 (aθ (r))2

r
− 2/3

(
d
drF2 (r)

)
(sin (β))2 (az (r))2

r
+ 2/3

(
d
drF1 (r)

)
I4 (r)

r

+ 2/3

(
d
drF2 (r)

)
I6 (r)

r
+ 2/3

F2 (r) d
drI6 (r)

r
+ 2/3

F1 (r) d
drI4 (r)

r
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a(r) = −2
µYa1

rin
− 4/3

P1 (rin) (cos (β))4 (aθ (rin))4

rin

− 4/3
P1 (rin) (cos (β))2 (aθ (rin))2 (sin (β))2 (az (rin))2

rin

− 4/3
P2 (rin) (cos (β))4 (aθ (rin))4

rin

− 4/3
P2 (rin) (cos (β))2 (aθ (rin))2 (sin (β))2 (az (rin))2

rin

− 2
F1 (rin) (cos (β))2 (aθ (rin))2

rin
− 2/3

F1 (rin) (sin (β))2 (az (rin))2

rin

− 2
F2 (rin) (cos (β))2 (aθ (rin))2

rin
− 2/3

F2 (rin) (sin (β))2 (az (rin))2

rin

− 2/3
F1 (rin) I4 (rin)

rin
− 2/3

F2 (rin) I6 (rin)

rin

b(r) = −µYa1

rout
− µ (ar (rout))

2

rout
− 4/3

P1 (rout) (cos (β))4 (aθ (rout))
4

rout

− 4/3
P1 (rout) (cos (β))2 (aθ (rout))

2 (sin (β))2 (az (rout))
2

rout

− 4/3
P2 (rout) (cos (β))4 (aθ (rout))

4

rout

− 4/3
P2 (rout) (cos (β))2 (aθ (rout))

2 (sin (β))2 (az (rout))
2

rout

− 2
F1 (rout) (cos (β))2 (aθ (rout))

2

rout
− 2/3

F1 (rout) (sin (β))2 (az (rout))
2

rout

− 2
F2 (rout) (cos (β))2 (aθ (rout))

2

rout
− 2/3

F2 (rout) (sin (β))2 (az (rout))
2

rout
+

Pext

rout
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